
C"
I ,

ICON/UXB
Operating Sys'tem
Reference '-'~

Manual

Volume 2

ICON
INTERNATIONAL
P.o. Box 340
Orem, Utah 84059
(801) 225-6888

c

C···~

/

o

OPERATING SYSTEM REFERENCE MANUAL

ICON/UXB

Supplementary
Documents

Volume 2

© 1988 Icon International, Inc.
All rights reserved worldwide.

Copyright c 1987 Icon International, Inc. All rights reserved. No part of this
manual shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from Icon International, Inc. While every precaution has
been taken in the preparation of this manual, Icon International assumes no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

Copyright 1979, 1980 Regents of the University of California. Permission to
copy these documents or any portion thereof as necessary for licensed use of the
software is granted to licensees of this software, provided this copyright notice
and statement of permission are included.

The document "Writing Tools - The STYLE and DICTION ProgramsU is
copyrighted 1979 by Bell Telephone Laboratories. Holders of a UNIX· /32V
software license are permitted to copy this document, or any portion of it, as
necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

The document "The Programming Language EFL" is copyrighted 1979 by Bell
Telephone Laboratories. EFL has been approved for general release, so that one
may copy it subject only to the restriction of giving proper acknowledgement to
Bell Telephone Laboratories.

This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291, MCS-8005144, and MCS-74-07644-A04; DOE
Contract DE-AT03-76SFOOO34 and Project Agreement DE-AS03-79ERI0358; and
by Defense Advanced Research Projects Agency (000) ARPA Order No. 4031,
Monitored by Naval Electronics Systems Command under Contract No.
NOOO39-80-K-0649.

This manual was prepared by the Documentation Group of Icon International,
Inc., P.O. Box 340, Orem, UT 84057-0340. A form for reader's comments has
been provided at the back of this publication. Comments are welcomed and
may be sent to the above address. Users who respond will be entitled to free
updates of this manual for one year.

Revision B

Order Number 172-022-003 (Manual Assembly)
Order Number 171-070-003 (Pages Only)

Printed in the U.S.A.

ICeN is a registered trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.

o Change Record Page

Manual Part No. "172-022-003

Date Revision Description Pages Affected

Jan. 1987 A Initial production release All

Nov. 1987 B Incorporate additions of new Main cover, titlepage, Table of Contents
supplementary documentation
included in Releases 2.16, 3.0,
and 3.1 of the ICON/UXB
Operating System

c

o

c

ICON/UXB Operating System Reference Manual

Volume 2 - Supplement~ry Documents

Icon International, Inc.

October, 19S7

This volume contains documents which supplement the information in Volume 1 of
the ICON/UXB Operating System Reference Manual, for the ICON version of the UNIXiIl
operating system as distributed by V.C. Berkeley. The documents within this volume
are grouped into the areas of general works and summaries, basic information on the
UNIXIIP operating system, document preparation, programming, and miscellaneous in for­
.mation.

General Works
1. The UNIX Time-Sharing System. D.M. Ritchie and K. Thompson.

The original UNIXIIP operating system paper, reprinted from CACM.

2. Bug Fixes and changes in 4.2BSD. S.J. Leffler.
A brief discussion of the major user-visible changes made to the system since
the last release.

3. UNIX/32V - Summary.
A concise summary of the facilities available in the 32V Version of the
UNIXIIP operating system.

4. 7th Edition UNIX - Summary.
A concise summary of the facilities available in the 7th edition of the UNIX~'
operating system.

Getting Started

5. UNIX for Beginners - Second Edition. B.W. Kernighan.
An introduction to the most basic use of the system.

6. Learn - Computer Aided Instruction on UNIX. M.E. Lesk and B.W. Kernighan.
Describes a computer-aided instruction program that walks new users
through the basics of files, the editor, and document preparat.ion software.

7. An Introduction to the UNIX Shell. S.R. Bourne.
An introduction to the capabilities of the command interpreter, the shell.

S. An Introduction to the C Shell. W. Joy.
Introducing a popular command interpreter and many of the commonly used
commands, assuming little prior knowledge of the UNIXIIP operating system.

ICON INTERNATIONAL iii

9. An Introduction to Display Editing with Vi. W. Joy.
The document to read to learn to use the vi screen-oriented display text edi­
tor.

10. Vi Command & Function Reference. A.P.W. Hewett.
The reference manual for vi.

11. A Tutorial Introduction to the UNIX Text Editor. B.W. Kernighan.
An easy way to get started with the editor.

12. Edit: A tutorial (Revised). R. Blau and J. Joyce.
For those who prefer line oriented editing, an introduction assuming no pre­
vious knowledge of the UNIX operating system or of text editing.

13. Ex Reference Manual (Version 3.5 - Sept. 1980). W. Joy and M. Horton.
The final reference for the ex editor, which underlies both edit and vi.

14. Ex Changes - Version 2.0 to 3.5
A quick guide to what is new in version 3.5 of ex and vi, for those who have
used version 2.0 through 3.1. Includes an update to the vi Tutorial and a
command summary for ex/edit, version 2.0.

15. Advance Editing on UNIX. B.W. Kernighan.
The next step.

16. Mail Reference Manual (Revised). K. Shoens and C. Leres.
Complete details on the mail processing program.

Document preparation

17. Typing Documents on the UNIX System: Using the -ms Macros with Troff and
Nroff. M.E. Lesk.

Describes the basic use of the formatting tools and the formatting requests
that can be used to layout most documents, including thoses in this volume.
Also includes A Guide to Preparing Documents with -ms, a quick summary to
the -ms macro commands.

18. A Revised Version of -ms. B. Tuthill.
A quick description of the revisions made to the -ms formatting macros for
nroff and troff.

19. Writing Papers with nroffusing -me. E.P. Allman.
A popular macro package for nroff.

20. -me Reference Manual. E.P. Allman.
The final word on -me.

21. Writing Tools - The Style and Diction Programs. L.L. Cherry and W. Vesterman
Description of programs which help you understand and improve your writ­
ing style.

22. NROFF /TROFF User's Manual. J.F.Ossanna.
The basic text formatting program.

23. A TROFF Tutorial. B.W. Kernighan.
An introduction to TROFF for those who really want to know such things.

24. Refer - A Bibliography System. B. Tuthill.

iv

An introduction to the tools used to maintain bibliographic databases. The
major program, reIer, is used to automatically retrieve and format references
based on document citations.

ICON INTERNATIONAL

c

C···'
j

o

25. Some Applications of Inverted Indexes on the UNIX System. M.E. Lesk.
Describes, among other things, the program refer which fills in bibliographic
citations from a database automatically.

26. Updating Publication Lists. M.E. Lesk.
Using refer to update a bibliographic database.

27. TBL - A Program to Format Tables. M.E.,Lesk.
A program to permit easy specification of tabular material for typesetting.
Easy to learn and use.

28. A System for Typsetting Mathematics. B.W. Kernighan a.nd L.L. Cherry.
Describes EQN, an easy-t~learn language for doing high-quality mathemati­
cal typesetting.

29. Typesetting Mathematics - User's Guide (Second Edition). B.W. Kernighan and
L.L. Cherry.

The EQN User's Guide for typesetting mathematics.

Programming

30. UNIX Programming. B.W. Kernighan and D.M. Ritchie.
Describes the programming interface to the operating system and the stan­
dard I/O library.

31. Make - A Program for Maintaining Computer PTograms. S.I. Feldman.
An indispensable tool for making sure that large programs are properly com­
piled with minimal effort.

32. System V /68 Assembler User's Guide.
For compiler writers using the 68000 series microprocessors.

33. Screen Updating and Cursor Movement Optimization: A Library Package.
K.C.R.C. Arnold.

An aide for writing screen-oriented, terminal independent programs.

34. A Tutorial Introduction to ADB. J.F. Maranzano and S.R. Bourne.
How to use the ADB debugger.

35. An Introduction to the Source Code Control System. E. Allman.
A useful introductory article for those users who are licensed for SCCS.

Miscellaneous

36. A Guide to the Dungeons of Doom (Revised). M.C. Toy and K.C.R.C. Arnold.
An introduction to the popular game of rogue.

37. STAR TREK. E. Allman.
What's UNIX without a "trekkie" to accompany us?

38. A 4.2BSD Interprocess Communication Primer. S.l. Leffler, R.S. Fabry and W.N.
Joy.

An introduction to the interprocess communication facilities included in the
4.2BSD release of the s-lUNIXGP operating system.

39. gprof: a Call Graph Execution Profiler. S.L. Graham, P.B. Kessler and M.K.
McKusick.

A description of the gprof profile used to account for the running time of
called routines in the running time of the routines that called them.

ICON INTERNATIONAL y

c

The UNIX Time-Sharing System·

D. M. Ritchie and K. Thompson

ABSTRAOT

UNlXt is a general-purpose, multi-user, interactive operating system for the
larger Digital Equipment Corporation PDP-ll and the Interdata 8/32 computers.
It offers a number of features seldom found even in larger operating systems,
including

i A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process I/0,
iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of the
user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa 1969-70)
ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second version ran on the
unprotected PDP-ll/20 computer. The third incorporated multiprogramming and ran on the PDP-
11/34, /40, /45, /60, and /70 computers; it is the one described in the previously published version
of this paper, and is also the most widely used today. This paper describes only the fourth,
current system that runs on the PDP-ll/70 and the Interdata 8/32 computers. In fact, the
differences among the various systems is rather small; most of the revisions made to the originally
published version of this paper, aside from those concerned with style, had to do with details of
the implementation of the file system.

Since PDP-ll UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education, the
preparation and formatting of documents and other textual material, the collection and processing
of trouble data from various switching machines within the Bell System, and recording and check­
ing telephone service orders. Our own installation is used mainly for research in operating systems,
languages, computer networks, and other topics in computer science, and also for document
preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operat­
ing system for interactive use need not be expensive either in equipment or in human effort: it can
TUn on hardware costing as little as $40,000, and less than two man-years were spent on the main
system software. We hope, however, that users find that the most important characteristics of the

• Copyright 1974, Association ror Computing Maehinery, Inc., reprinted by permission. This is a revised version
or an artie1e that appeared in Communications or the.ACM, 17, No.7 (July 1974), pp. 365-375. That article was
a revised version or a paper presented at the Fourth JO,4 Symposium on Operating Systems Principles, IBM Tho­
mas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.
t UNIX is a tra.demark or Bell Laboratories.

-2-

system are its simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs available under UNIX are

C compiler
Text editor based on QEDl

Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs" 3
Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG,

Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally. The
UNIX user community, which numbers in the thousands, has contributed many more programs and
languages. It is worth noting that the system is totally self-supporting. All UNIX software is
maintained on the system; likewise, this paper and all other documents in this issue were generated
and formatted by the UNIX editor and text formatting programs.

U. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-ll/70 on which the Research UNIX system is installed is a 16-bit word (8-bit byte)
computer with 768K bytes of core memory; the system kernel occupies 90K bytes about equally
divided between code and data tables. This system, however, includes a very large number of dev­
ice drivers and enjoys a generous allotment of space for I/O buffers and system tables; a minimal
system capable of running the software mentioned above can require as little as 96K bytes of core
altogether. There are even larger installations; see the description of the PWB/UNlX systems,4,3 for

. example. There are also much smaller, though somewhat restricted, versions of the system.3

Our own PDP-ll has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data sets,
and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite comput­
ers. There are also several 2400- and 4800-baud synchronous communication interfaces used for
machine-to-machine file transfer. Finally, there is a variety of miscellaneous devices including
nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digital switching
network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language. S Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that of
the old. Since the new system not only became much easier to understand and to modify but also
included many functional improvements, including multiprogramming and the ability to share
reentrant code among several user programs, we consider this increase in size quite acceptable.

m. THE FILE SYSTEM

The most important role of the system is to provide. a file system. From the point of view of
the user, there are three kinds of files: ordinary disk files, directories, and special files.

8.1 Ordinary flies

A file contains whatever information the user places on it, for example, symbolic or binary
(object) programs. No particular structuring is expected by the system. A file of text consists sim­
ply of a string of characters, with lines demarcated by the newline character. Binary programs are
sequences of words as they will appear in core memory when the program starts executing. A few
user programs manipulate files with more structure; for example, the assembler generates, and the
loader expects, an object file in a partiCUlar format. However, the structure of files is controlled by
the programs that use them, not by the system.

o

c

C
~'·

/

(

o

-3-

8.2 Directories

Directories provide the mapping between the names of files and the files themselves, and thus
induce a structure on the file system as a whole. Each user has a directory of his own files; he may
also create subdirectories to contain groups of files conveniently treated together. A directory
behaves exactly like an ordinary file except that it cannot be written on by unprivileged programs,
so that the system controls the contents of directories. However, anyone with appropriate permis­
sion may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root directory.
All files in the system can be found by tracing a path through a chain of directories u,ntil the
desired file is reached. The starting point for such searches is often the root. Other system direc­
tories contain all the programs provided for general use; that is, all the commands. As will be
seen, however, it is by no means necessary that a program reside in one of these directories for it to
be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified
to the system, it may be in the form of a path name, which is a sequence of directory names
separated by slashes, "I", and ending in a file name. If the sequence begins with a slash, the
search begins in the root directory. The name /alpha/beta/gamma causes the system to search
the root for directory alpha, then to search alpha for beta, finally to find gamma in beta,
gamma may be an ordinary file, a directory, or a special file. As a limiting case, the name "/"
refers to the root itself.

A path name not starting with "/" causes the system to begin the search in the user's
. current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers to
the current directory.

The same non-directory file may appear in several directories under possibly different names.
This feature is called linking; a directory entry for a file is sometimes called a link. The UNIX sys­
tem differs from other systems in which linking is permitted in that all links to a file have equal
status. That is, a file does not exist within a particular directory; the directory entry for a file con­
sists merely of its name and a pointer to the information actually describing the file. Thus a file
exists independently of any directory entry, although in practice a file is made to disappear along
with the last link to it.

Each directory always has at least two entries. The name" • " in each directory refers to the
directory itself. Thus a program may read the current directory under the name "." wit.hout
knowing its complete path name. The name" •• " by convention refers to the parent of the direc­
tory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the spe­
cial entries " ." and " •• ", each directory must appear as an entry in exactly one other directory,
which is its parent. The reason for this is to simplify the writing of programs that visit subtrees of
the directory structure, and more important, to avoid the separation of portions of the hierarchy.
If arbitrary links to directories were permitted, it would be quite difficult to detect when the last
connection from the root to a directory was severed.

8.8 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported I/O
device is associated with at least one such file. Special files are read and written just like ordinary
disk files, but requests to read or write result in activation of the associated device. An entry for
each special file resides in directory /dev, although a link may be made to one of these files just as
it may to an ordinary file. Thus, for example, to write on a magnetic tape one may write on the
file /dev/mt. Special files exist for each communication line, each disk, each tape drive, and for
physical main memory. Of course, the active disks and the memory special file are protected from
indiscriminate access.

-4-

There is a threefold advantage in treating I/O devices this way: file and device I/O are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are subject
to the same protection mechanism as regular files.

3.4 Removable fUe 8)'8tems

Although the root of the file system is always stored on the same device, it is not necessary
that the entire file system hierarchy reside on this device. There is a mount system request with
two arguments: the name of an existing ordinary file,' and the name of a special file whose associ­
ated storage volume (e.g., a disk pack) should have the structure of an independent file system con­
taining its own directory hierarchy. The effect of mount is to cause references to the heretofore
ordinary file to refer instead to the root directory of the file system on the removable volume. In
effect, mount replaces a leaf of the hierarchy tree (the ordinary file) by a whole new subtree (the
hierarchy stored on the removable volume). After the mount, there is virtually no distinction
between files on the removable volume and those in the permanent file system. In our installation,
for example, the root directory resides on a small partition of one of our disk drives, while the
other drive, which contains the user's files, is mounted by the system initialization sequence. A
mountable file system is generated by writing on its corresponding special file. A utility program
is available to create an empty file system, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no
link may exist between one file system hierarchy and another. This restriction is enforced so as to
avoid the elaborate bookkeeping that would otherwise be required to assure removal of the links
whenever the removable volume is dismounted.

3.5 Proteetion

Although the access control scheme is quite simple, it has some unusual features. Each user
of the system is assigned a unique user identification number. When a file is created, it is marked
with the user ID of its owner. Also given for new files is a set of ten protection bits. Nine of these
specify independently read, write, and execute permission for the owner of the file, for other
members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a pro­
gram. This change in user II> is effective only during the execution of the program that calls for it.
The set-user-ID feature provides for privileged programs that may use files inaccessible to other
users. For example, a program may keep an accounting file that should neither be read nor
changed except by the program itself. If the set-user-ID bit is on for the program, it may access
the file although this access might be forbidden to other programs invoked by the given program's
user. Since the actual user ID of the invoker of any program is always available, set-user-ID pro­
grams may take any measures desired to satisfy themselves as to their invoker's credentials. This
mechanism is used to allow users to execute the carefully written commands that call privileged
system entries. For example, there is a system entry invokable only by the "super-user" (below)
that creates an empty directory. As indicated above, directories are expected to have entries for
" • " and " •• ". The command which creates a directory is owned by the super-user and has the
set-user-ID bit set. After it checks its invoker's authorization to create the specified directory, it
creates it and makes the entries for" ... and " •• ".

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is gen­
erally available without administrative intervention. For example, this protection scheme easily
solves the MOO accounting problem posed by "Aleph-null."6

The system recognizes one particular user ID (that of the "super-user") as exempt from the
usual constraints on file access; thus (for example), programs may be written to dump and reload
the file system without unwanted interference from the protection system.

~"'"

~,,/

c

o

-5-

8.8 I/O calls

The system calls to do I/O are designed to eliminate the differences between the various dev­
ices and styles of access. There is no distinction between "random" and "sequential" I/O, nor is
any logical record size imposed by the system. The size of an ordinary file is determined by the
number of bytes written on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of I/O, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underlying
complexities. Each call to the system may potentially' result in an error return, which for simpli­
city is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The nag
argument indicates whether ·the file is to be read, written, or "updated," that is, read and written
simultaneously.

The returned value filep is called a lile ducriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; ereate also
opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for the
contents of a file to become scrambled when two users write on it simultaneously, in practice
difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in our
environment, to prevent interference between users of the same file. They are unnecessary because
we are not faced with large, single-file data bases maintained by independent processes. They are
insufficient because locks in the ordinary sense, whereby one user is prevented from writing on a
file that another user is reading, cannot prevent confusion when, for example, both users are edit­
ing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the file
system when two users engage simultaneously in activities such as writing on the same file, creat­
ing files in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential. This means that if a particu­
lar byte in the file was the last byte written (or read), the next I/O call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to eount bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as eount except under exceptional conditions, such as I/O errors or end of physical
medium on special files; in a read, however, n may without error be less than eount. If the read
pointer is so near the end of the file that reading eount characters would cause reading beyond the
end, only sufficient bytes are transmitted to reach the end of the file; also, typewriter-like terminals
never return more than one line of input. When a read call returns with n equal to zero, the end
of the file has been reached. For disk files this occurs when the read pointer becomes equal to the
current size of the file. It is possible to generate an end-of-file from a terminal by use of an escape
sequence that depends on the device used.

-6-

Bytes written affect only those parts of a file implied by the position of the write pointer and
the count; no other part of the file is changed. Ir the last byte lies beyond the end of the file, the
file is made to grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to the
appropriate location in the file.

location = !seek (filep, offset, base)

The pointer associated with filep is moved to a posi~ion offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base. offset
may be negative. For some devices (e.g., paper tape and terminals) seek calls are ignored. The
actual offset from the beginning of the file to which the pointer was moved is returned in location.

There are several additional system entries having to do with I/O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protection
mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM
As mentioned in Section 3.2 above, a directory entry contains only a name for the associated

file and a pointer to the file itself. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system table
(the i-list) stored in a known part of the device on which the directory resides. The entry found
thereby (the file's i-node) contains the description of the file:

the user and group-JD of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its device,
i-number, and read/write pointer are stored in a system table indexed by the file descriptor
returned by the open or ereate. Thus, during a subsequent call to read or write the file, the
descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by decre­
menting the link-count of the i-node specified by its directory entry and erasing the directory
entry. Ir the link-count dr<>ps to 0, any disk blocks in the file are freed and the i-node is de­
allocated.

The space on all disks that contain a file system is divided into a number of 512-byte blocks
logically addressed from 0 up to a limit that depends on the device. There is space in the i-node of
each file for 13 device addresses. For nonspecial files, the first 10 device addresses point at the first
10 blocks of the file. Ir the file is larger than 10 blocks, the 11 device address points to an indirect
block containing up to 128 addresses of additional blocks in the file. Still larger files use the
twelfth device address ot the i-node to point to a double-indirect block naming 128 indirect blocks,
each pointing to 128 blocks of the file. Ir required, the thirteenth device address is a triple-indirect
block. Thus files may conceptually grow to [(10+128+1282+1288)'512 J bytes. Once opened, bytes
numbered below 5120 can be read with a single disk access; bytes in the range 5120 to 70,656
require two accesses; bytes in the range 70,656 to 8,459,264 require three accesses; bytes from there
to the largest file (1,082,201,088) require four accesses. In practice, a device cache mechanism (see c

c

-7-

below) proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and the
first specifies an internal device nGme, which is interpreted as a pair of numbers representing,
respectively, a device type and subdevice number. The device type indicates which system routine
will deal with I/O on that device; the subdevice number selects, for example, a disk drive attached
to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the, mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the device
name of the indicated special file. This table is searched for each i-number/device pair that turns
up while a path name is being scanned during an open or create; if a match is found, the i­
number is replaced by the i-number of the root directory and the device name is replaced by the
table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a write
the user's workspace may be reused. In fact, the system maintains a rather complicated buffering
mechanism that reduces greatly the number of I/O operations required to access a file. Suppose a
write call is made specifying transmission of a single byte. The system will search its buffers to
see whether the affected disk block currently resides in main memory; if not, it will be read in from
the device. Then the affected byte is replaced in the buffer and an entry is made in a list of blocks
to be written. The return from the write call may then take place, although the actual I/O may
not be completed until a later time. Conversely, if a single byte is read, the system determines
whether the secondary storage block in which the byte is located is already in one of the system's
buffers; if so, the byte can be returned immediately. If not, the block is read into a buffer and the
byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file, and
asynchronously pre-reads the next block. This significantly reduces the running time of most pro­
grams while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from the
avoidance of system overhead. If a program is used rarely or does no great volume of I/O, it may
quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organizing
the file system has proved quite reliable and easy to deal with. To the system itself, one of its
strengths is the fact that each file has a short, unambiguous name related in a simple way to the
protection, addressing, and other information needed to access the file. It also permits a quite sim­
ple and rapid algorithm for checking the consistency of a file system, for example, verification that
the portions of each device containing useful information and those free to be allocated are disjoint
and together exhaust the space on the device. This algorithm is independent of the directory
hierarchy, because it need only scan the linearly organized i-list. At the same time the notion of
the i-list induces certain peculiarities not found in other file system organizations. For example,
there is the question of who is to be charged for the space a file occupies, because all directory
entries for a file have equal status. Charging the owner of a file is unfair in general, for one user
may create a file, another may link to it, and the first user may delete the file. The first user is
still the owner of the file, but it should be charged to the second user. The simplest reasonably fair
algorithm seems to be to spread the charges equally among users who have links to a file. Many
installations avoid the issue by not charging any fees at all.

V. PROCESSES AND IMAGES
An image is a computer execution environment. It includes a memory image, general register

values, status of open files, current directory and the like. An image is the current state of a

- 8-

pseudo-computer.

A proc", is the execution of an image. While the processor is executing on behalf of a pro­
cess, the image must reside in main memory; during the execution of other processes it remains in
main memory unless the appearance of an active, higher-priority process forces it to be swapped
out to the disk.

The user-memory part of an image is divided into three logical segments. The program text
segment begins at location 0 in the virtual address space. During execution, this segment is write­
protected and a single copy of it is shared among all processes executing the same program. At the
first hardware protection byte boundary above the program text segment in the virtual ,address
space begins a non-shared, writable data segment, the size of which may be extended by a system
call. Starting at the highest address in the virtual address space is a stack segment, which
automatically grows downward as the stack pointer fluctuates.

0.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come into
existence only by use of the fork system call:

processid = fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The new
processes differ only in that one is considered the parent process: in the parent, the returned
processid actually identifies the child process and is never 0, while in the child, the returned value

. is always O.

Because the values returned by fork in the parent and child process are distinguishable, each
process may determine whether it is the parent or child.

0.2 Pipes

Processes may communicate with related processes using the same system read and write
calls that are used for file-system I/O. The call:

filep = pipe ()

returns a file descriptor tilep and creates an inter-process channel called a pipe. This channel, like
other open files, is passed from parent to child process in the image by the fork call. A read
using a pipe file descriptor waits until another process writes using the file descriptor for the same
pipe. At this point, data are passed between the images of the two processes. Neither process need
know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2), it is
not a completely general mechanism, because the pipe must be set up by a common ancestor of the
processes involved.

0.3 Execution of programs

Another major system primitive is invoked by

execute (file, ars}' arg2, ••• , argn)

which requests the system to read in and execute the program named by file, passing it string
arguments arg1 , arg2' ••• ,argo' All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are unal­
tered. Only if the call fails, for example because tile could not be found or because its execute­
permission bit was not set, does a return take place from the execute primitive; it resembles a
"jump" machine instruction rather than a subroutine call.

o

(.'.

o

-9-

5.4 Process synchronisation

Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one oC its children has completed execution. Then wait
returns the pl'ocessid oC the terminated process. An error return is taken if the calling process has
no descendants. Certain status Crom the child process is also available.

5.5 Termination

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result oC various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid oC a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and inter­
prets them as requests to execute other programs. (The shell is described Cully elsewhere,S so this
section will discuss only the theory oC its operation.) In simplest Corm, a command line consists of
the command name followed by arguments to the command, all separated by spaces:

command argI arg2 ... argn

The shell splits up the command name and the arguments into separate strings. Then a file with
name command is sought; command may be a path name including the "/" character to specify
any file in the system. If command is Cound, it is brought into memory and executed. The argu­
ments collected by the shell are accessible to the command. When the command is finished, the
shell resumes its own execution, and indicates its readiness to accept another command by typing a
prompt character.

If file command cannot be found, the shell generally prefixes a string such as / bin / to
command and attempts again to find the file. Directory / bin contains commands intended to be
generally used. (The sequence oC directories to be searched may be changed by user request.)

6.1 Standard I/O

The discussion of I/O in Section m above seems to imply that every file used by a program
must be opened or created by the program in order to get a file descriptor Cor the file. Programs
executed by the shell, however, start off with three open files with file descriptors 0, 1, and 2. .AB
such a program begins execution, file 1 is open Cor writing, and is best understood as the standard
output file. Except under circumstances indicated below, this file is the user's terminal. Thus pro­
grams that wish to write inCormative inCormation ordjnarily use file descriptor 1. Conversely, file 0
starts off open Cor reading, and programs that wish to read messages typed by the user read this
file.

The shell is able to change the standard assignments of these file descriptors from the user's
terminal printer and keyboard. If one of the arguments to a command is prefixed by ">", file
descriptor 1 will, Cor the duration oC the command, refer to the file named after the ">". For
example:

ls

ordinarily lists, on the typewriter, the names of the files in the current directory. The command:

ls >there

creates a file called there and places the listing there. Thus the argument >there means "place

output on there." On the other hand:

ed

- 10-

ordinarily enters the editor, which takes requests trom the user via his keyboard. The command

ed <script

interprets script as a file of editorcommandsj thus <script means "take input from seript."

Although the file name following "<" or ">" appears to be an argument to the command,
in fact it is interpreted completely by the shell and is not passed to the command at all. Thus no
special coding to handle 1/0 redirection is needed within each commandj the command need merely
use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. When
an output-diversion request with ">" is specified, file 2 remains attached to the terminal, so that
commands may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard 1/0 notion is used to direct output from one command to the
input of another. A sequence of commands separated by vertical bars causes the shell to execute
all the commands simultaneously and to arrange that the standard output of each command be
delivered to the standard input of the next command in the sequence. Thus in the command line:

Is Ipr -210pr

Is lists the names of the files in the current directoryj its output is passed to PI', which paginates
its input with dated headings. (The argument "-2" requests double-column output.) Likewise, the
output from pI' is input to oprj this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

Is >tempi
pr -2 <tempI >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the Is command to accept user requests
to paginate its output, to print in multi-column format, and to arrange that its output be
delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons, to
expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pI' which copies its standard input to its standard output (with process­
ing) is called a filter. Some filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not be
on different linesj instead they may be separated by semicolons:

Isj ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by "&," the shell will not
wait for the command to finish before prompting againj instead, it is ready immediately to accept
a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion of

(~\

\ I
"---/

o

c

o

-11-

a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
" It" may be used several times in a line:

as source >output & Is >files &,

does both the assembly and the listing in the background. In these examples, an output file other
than the terminal was provided; if this bad not been done, the outputs of the various commands
would have been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; Is) >x &,

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

8.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
SOUl'ce would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con­
struct argument lists from a specified subset of the file names in a directory. It also provides gen­
eral conditional and looping constructions.

8.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the shell
is waiting for the user to type a command. When the newline character ending the line is typed,
the shell's read call returns. The shell analyzes the command line, putting the arguments in a
form appropriate for execute. Then fork is called. The child process, whose code of course is
still that of the shell, attempts to perform an execute with the appropriate arguments. If success­
ful, this will bring in and start execution of the program whose name was given. Meanwhile, the
other process resulting from the fork, which is the parent process, waits for the child process to
die. When this happens, the shell knows the command is finished, so it types its prompt and reads
the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial; whenever a
command line contains "It," the shell merely refrains from waiting for the process that it created
to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and out­
put files. When a process is created by the fork primitive, it inherits not only the memory image
of its parent but also all the files currently open in its parent, including those with file descriptors
0, 1, and 2. The shell, of course, uses these files to read command lines and to write its prompts
and diagnostics, and in the ordinary case its children-the command programs-inherit them
automatically. When an argument with "<" or ">" is given, however, the offspring process, just
before it performs execute, makes the standard I/O file descriptor (0 or 1, respectively) refer to
the named file. This is easy because, by agreement, the smallest unused file descriptor is assigned

---------- -... -------~~

- 12-

when a new file is opened (or created); it is only necessary to close file 0 (or 1) and open the
named file. Because the process in which the command program runs simply terminates when it is
through, the association between a file specified after "<" or ">" and file descriptor 0 or 1 is
ended automatically when the process dies. Therefore the shell need not know the actual names of
the files that are its own standard input and output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead of
files.

In ordinary circumstances, the main loop of t~e shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter­
minate is discovering an end-of-file condition on its input file. Thus,. when the shell is executed as
a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance of
the shell invoked by .h will terminate. Because this shell process is the child of another instance
of the shell, the wait executed in the latter will return, and another command may then be pro­
cessed.

8.8 Initialization

The instances of the shell to which users type commands are themselves children of another
process. The last step in the initiali~ation of the system is the creation of a single process and the
invocation (via execute) of a program called mit. The role of init is to create one process for
each terminal channel. The various subinstances of mit open the appropriate terminals for input
and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established on dial-up lines.
Then a message is typed out requesting that the user log in. When the user types a name or other
identification, the appropriate instance of mit wakes up, receives the log-in line, and reads a pass­
word file. If the user's name is found, and if he is able to supply the correct password, init
changes to the user's default current directory, sets the process's user ID to that of the person log­
ging in, and performs an execute of the shell. At this point, the shell is ready to receive com­
mands and the logging-in protocol is complete.

Meanwhile, the mainstream path of mit (the parent of all the subinstances of itself that will
later become shells) does a wait. If one of the child processes terminates, either because a shell
found an end of file or because a user typed an incorrect name or password, this path of mit sim­
ply recreates the defunct process, which in turn reopens the appropriate input and output files and
types another log-in message. Thus a user may log out simply by typing the end-of-file sequence
to the shell.

0.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the sys­
tem, because it will invoke the execution of any program with appropriate protection mode. Some­
times, however, a different interface to the system is desirable, and this feature is easily arranged
for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user's entry in the password file may
contain the name of a progra.m to be invoked after log-in instead of the shell. This program is free
to interpret the user's messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might specify
that the editor ed is to be used instead of the shell. Thus when users of the editing system log in,
they are inside the editor and can begin work immediately; also, they can be prevented from
invoking programs not intended for their use. In practice, it has proved desirable to allow a tem­
porary escape from the editor to execute the formatting program and other utilities.

G

c

c

- 13-

Several of the games (e.g., chess, blackjack, 3D tie-tac-toe) available on the system illustrate
a much more severely restricted environment. For each of these, an entry exists in the password
file specifying that the appropriate game-playing program is to be invoked instead of the shell.
People who log in as a player of one of these games find themselves limited to the game and
unable to investigate the (presumably more interesting) offerings of the UNIX system as a whole.

vn.TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-existent
memory, unimplemented instructions, and odd addresses used where an even address is required.
Such Caults cause the processor to trap to a system routine. Unless other arrangements have been
made, an illegal action causes the system to terminate the process and to write its image on file
COI"e in the current directory. A debugger can be used to determine the state of the program at
the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the "delete" character. Unless special action has been taken, this signal simply causes the program
to cease execution without producing a core file. There is also a quit signal used to force an
image file to be produced. Thus programs that loop unexpectedly may be halted and the remains
inspected without prearrangement.

The hardware-generated Caults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit Crom logging
the user out. The editor catches interrupts and returns to its command level. This is useful for
stopping long printouts without losing work in progress (the editor manipulates a copy of the file
it is editing). In systems without floating-point hardware, unimplemented instructions are caught
and floating-point instructions are interpreted.

vm. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is la.rgely due to the fact that it was
not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7 and
set out to create a more hospitable environment. This (essentially personal) effort was sufficiently
successful to gain the interest of the other author and several colleagues, and later to justify the
acquisition of the PDP-11/20, specifically to support a text editing and formatting system. When
in turn the 11/20 was outgrown, the system had proved useful enough to persuade management to
invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32 machines, upon which it
developed to its present form. Our goals throughout the effort, when articulated at all, have
always been to build a comfortable relationship with the machine and to explore ideas and inven­
tions in operating systems and other software. We have not been faced with the need to satisfy
someone else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming con­
venience was that the system was arranged for interactive use, even though the original version
only supported one user. We believe that a properly designed interactive system is much more
productive and satisfying to use than a "batch" system. Moreover, such a system is rather easily
adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its software.
Given the partially antagonistic desires Cor reasonable efficiency and expressive power, the size con­
straint has encouraged not only economy, but also a certain elegance of design. This may be a
thinly disguised version of the "salvation through suffering" philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system, they

quickly become aware of its functional and superficial deficiencies and are strongly motivated to
correct them before it is too late. Because all source programs were always available and easily
modified on-line, we were willing to revise and rewrite the system and its software when new ideas
were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient from a
programming standpoint. The lowest possible interface level is designed to eliminate distinctions
between the various devices and files and between direct and sequential access. No large "access
method" routines are required to insulate the progra~mer from the system calls; in fact, all user
programs either call the system directly or use a small library program, less than a page long, that
buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no "control blocks"
with a complicated structure partially maintained by and depended on by the file system or other
system calls. Generally speaking, the contents of a program's address space are the property of the
program, and we have tried to avoid placing restrictions on the data structures within that address
space.

Given the requirement that aU programs should be usable with any file or device as input or
output, it is also desirable to push device-dependent considerations into the operating system itself.
The only alternatives seem to be to load, with all programs, routines for dealing with each device,
which is expensive in space, or to depend on some means of dynamically linking to the routine
appropriate to each device when it is actually needed, which is expensive either in overhead or in
hardware.

Likewise, the process-control scheme and the command interface have proved both convenient
and efficient. Because the shell operates as an ordinary, swappable user program, it consumes no
"wired-down" space in the system proper, and it may be made as powerful as desired at little cost.
In particular, given the framework in which the shell executes as a process that spawns other
processes to perform commands, the notions of I/O redirection, background processes, command
files, and user-selectable system interfaces all become essentially trivial to implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation of
a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

The fork operation, essentially as we implemented it, was present in the GENIE time-sharing
system.7 On a number of points we were influenced by Multics, which suggested the particular
form of the I/O system calls8 and both the name of the shell and its general functions. The notion
that the shell should create a process for each command was also suggested to us by the early
design of Multics, although in that system it was later dropped for efficiency reasons. A similar
scheme is used by TENEX.9

IX. STATISTICS
The following numbers are presented to suggest the scale of the Research UNIX operation.

Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important "applications" programs.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files
512-byte secondary storage blocks used c

(--:

c

- 15-

There is a "background" process that runs at the lowest possible priority; it is used to soak up any
idle CPU time. It has been used to produce a million-digit approximation to the constant e, and
other semi-infinite problems. Not counting this background work, we average daily:

13,500
9.6
230
62

240

commands
CPU hours
connect hours
different users
log-ins

X.ACKNOWLEDGMENTS
The contributors to UNIX are, in the traditional but here especially apposite phrase, too

numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing Sci­
ence Research Center. R. H. Canaday contributed much to the basic design oC the file system. We
are particularly appreciative oC the inventiveness, thoughtCul criticism, and constant support oC R.
Morris, M. D. McIlroy, and J. F. Ossanna.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

1. P. Deutsch and B. W. Lampson, "An online editor," Comm. A"8oc. Compo Mach., vol. 10,
no. 12, pp. 793-799, 803, December 1967.

B. W. Kernighan and L. L. Cherry, "A System Cor Typesetting Mathematics," Comm. A88oc.
Compo Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey, March 1975.

This issue, B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "UNlX Time-Sharing System:
Document Preparation," Bell Sys. Tech. 1., vol. 57, no. 6, pp. 2115-2135, 1978.

T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Workbench," Proc.
2nd Int. ConI. on Soltware Engineering, pp. 164-168, October 13-15, 1976.

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Cliffs, New Jersey, 1978.

Aleph-null, "Computer Recreations," Soltware Practice and Ezpen'ence, vol. 1, no. 2, pp.
201-204, April-June 1971.

L. P. Deutsch and B. W. Lampson, "SDS 930 time-sharing system preliminary reference
manual," Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley, April 1965.

R. J. Feiertag and E. I. Organick, "The Multics input-output system," Proc. Third Sympo­
sium on Operating Systems Principles, pp. 35-41, October 18-20, 1971.

D. G. Bobrow, J. D. Burchfiel, D. 1. Murphy, and R. S. Tomlinson, "TENEX, a Paged Time
Sharing System for the PDP-10," Comm. A88oc. Compo Mach., vol. 15, no. 3, pp. 135-143,
March 1972.

o

c

c

•

•

Bug fixes and changes in 4.2BSD

July 28, 1983

Samuel J. LejJter

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document describes briefly the changes in the Berkeley system for the
VA."'\.. between the 4.1BSD distribution of April 1981 and this, its revision of July
1983. It attempts to summarize, without going into great detail, the changes
which have been made.

Notable improvements

The file system organization has been redesigned to provide at least an order of magnitude
improvement in disk bandwidth.

The system now provides full support for the DOD Standard. TCP /IP network communica­
tion protocols. This support has been integrated into the system in a manner which allows
the development and concurrent use of other communication protocols. Hardware support
and routing have been isolated from the protocols to allow sharing between varying network
architectures. Software support is provided for 10 different hardware devices including 3
different 10 Mb/s Ethernet modules.

• A new set of interprocess communication facilities has replaced the old multiplexed file
mechanism. These new facilities allow unrelated processes to exchange messages in either a
connection-oriented or connection-less manner. The interprocess communication facilities
have been integrated with the networking facilities (described above) to provide a single user
interface which may be used in constructing applications which operate on one or more
machines.

• A new signal package which closely models the hardware interrupt facilities found on the
VAX replaces the old signals and jobs library of 4.1BSD. The new signal package provides
for automatic masking of signals, sophisticated signal stack management, and reliable protec­
tion of critical regions.

• File names are now almost arbitrary length (up to 255 characters) and a new file type, sym­
bolic link, has been added. Symbolic links provide a "symbolic referencing" mechanism simi­
lar to that found in Multics. They are interpolated during pathname expansion and allow
users to create links to files and directories which span file systems.

• The system supports advisory locking on files. Files can have "shared" or "exclusive" locks
applied by processes. Multiple processes may apply shared locks, but only one process a.t any
time may have an exclusive lock on a file. Further, when an exclusive lock is present on a
file, shared locks are disallowed. Locking requests normally block a process until they can be

•

-2-

completed, or they may be indicated as "non-blocking" in which ease an error is returned ir
the lock can not be immediately obtained.

The group identifier notion has been extended to a "group set". When users log in to the
system they are placed in all their groups. Access control is now done based on the group set
rather than just a single group id. This has obviated the need ror the newgrp command.

• Per-user, per-filesystem disk quotas are now part of the system. Soft and hard limits may be
specified on a per user and per filesystem basis to control the number of files and amount of
disk space allocated to a user. Users who exceed a soft limit are warned and if, after three
login sessions, their disk usage has not dropped below the soft limit, their soft limit is treated
as a hard limit. Utilities exist for the creation, maintenance, and reporting of disk quotas.

• System time is now available in microsecond precision and millisecond accuracy. Users are
provided with 3 high-resolution timers which may be set up to automatically reload on
expiration. The timers operate in real time, user time, and process virtual time (for
profiling). All statistics and times returned to users are now given in a standard format with
seconds and microseconds separated. This eliminates program dependence on the line clock
rrequency.

• A new system call to rename files in the same file system has been added. This call elim­
inates many of the anomalies which could occur in older versions of the system due to lack of
atomicity in removing and renaming files.

• A new system call to truncate files to a specific length has been added. This call improves
the performance of the Fortran I/O library.

•

•

•

Swap space configuration has been improved by allowing multiple swap partition of varying
sizes to be interleaved. These partitions are sized at boot time to minimize configuration
dependencies.

The Fortran 77 compiler and associated I/O library have undergone extensive changes to
improve reliability and performance. Compilation may, optionally, include optimization
phases to improve code density and decrease execution time.

A new symbolic debugger, dbx, replaces the old symbolic debugger sdb. Dbx works on both
C and Fortran 77 programs and allows users to set break points and trace execution by
source code line numbers, references to memory locations, procedure entry, etc. Dbx allows
users to reference structured and local variables using the program's programming language
syntax.

• The delivermail program has been replaced by sendmail. Sendmail provides full internetwork
routing, domain style naming as defined in the DARPA Request For Comments document
#833, and eliminates the compiled in configuration database previously used by delivermail.
Further, sendmail uses the DARPA standard Simple Mail Transfer Protocol (SMTP) for mail
delivery.

• The system contains a new line printer system. Multiple line printers and spooling queues
are supported through a printer database file. Printers on serial lines, raster printing devices,
and laser printers are supported through a series of filter programs which interrace to the
standard line printer "core programs". A line printer control program, lpc, allows printers
and printer queues to be manipulated. Spooling to remote printers is supported in a tran­
sparent Cashion.

• Cu bas been replaced by a new program tip. Tip supports a number of auto-call units and
allows destination sites to be specified by name rather than phone number. Tip also sup­
ports file transfer to non-UNIX machines and can be used with sites which require half­
duplex and/or odd-even parity.

• Uucp now supports many auto-caU units other than the DNn. Spooling has been reorgan­
ized into multiple directories to cut down on system overhead. Several new utilities and shell
scripts exist ror use in adminstrating uucp traffic. Operation has been greatly improved by
numerous bug fixes. c

o

adb

addbib

apply

ar

ee

ebfn

ebgrp

ep

esh

etags

-3-

Bug fixes and changes

Section 1

Support has been added for interpreting kernel data structures on a running system
and in post mortem crash dumps created by savecore. A -k option causes adb to
map addresses according to the system and current process page tables. A new com­
mand, 'p, can be used to switch between process contexts. Many scripts are available
for symbolically displaying kernel data structures, searching Cor a process' context by
process ID, etc. A new document, "Using ADB to Debug the UNIX Kernel", supplies
hints in the use of adb with system crash dumps.

Is a new utility for creating and extending bibliographic data bases for use with refer.

Is a new program which may be used to apply a command to a set of arguments.

Has a new key, '0', for preserving a file's modification time when it is extracted from
an archive.

Supports the additional symbol information used by dbx. The old symbol inCorma­
tion, used by the deCunct sdb debugger, is available by speciCying the -go flag. A new
flag, -pg, creates executable programs which collect profiling inCormation to be inter­
preted by the new gproC program. A bug in the C preprocessor, which caused line
numbers to be incorrect for macros with Cormal parameters with embedded newlines
has been fixed. The C preprocessor now properly handles hexadecimal constants in
"#iC" constructs and checks Cor missing "#endiC" statements.

Now works interactively in changing a user's inCormation field in the password file.

Is now in section 1 and may be executed by anyone. Users other than the super-user
may change group ownership oC a file they own to any group in their group access list.

Now has a -r flag to copy recursively down a file system tree.

A bug which caused backquoted commands to wedge the terminal when interrupted
has been fixed. Job identifiers are now globbed. A bug which caused the "wait" com­
mand to uninteruptible in certain cases has been fixed. History may now be saved
and restored across terminal sessions with the aavehiBt variable. The newgrp com­
mand has been deleted due to the new group Cacilities.

Now handles C typedefs.

eu Exists only in the Corm oC a "compatible Cront-end" to the new tip program.

dbx Is a new symbolic debugger replacing sdb. Dbx handles C and Fortran programs.

delivermail

df

du

dump

error

eyaee

f77

Has been replaced by the new sendmail program.

Understands the new file system organization and reports all disk space totals in kilo­
bytes.

Now reports disk usage in kilobytes and uses the new field in the inode structure
which contains the actual number of blocks allocated to a file t.o increase accuracy oC
calculations.

Has been moved to section 8.

Has been taught about the error message formats of troff.

A bug which caused the generated parser to not. recognize valid null statements has
been fixed.

Has undergone major changes.

The i/o library has been extensively tested and debugged. Sequential files are now
opened at the BEGINNING by default; previously t.hey were opened at the end.

ted

file

find

tp

. tpr

tsplit

ftp

geore

gprot

groups

hostid

hostname

indent

install

iostat

last

-4-

Compilation of data statements has been substantially sped up. Significant new
optimization is optionally available (this is still a bit buggy and should be used with
caution). Even without optimization, however, single precision computations execute
much faster.

The new debugger, dbx, has replaced sdb for debugging Fortran programs; sdb is no
longer supported.

Files with ".F" sufl"txes are preprocessed by the C preprocessor. This allows C-style
"#include" and "#define" constructs to be used. The compiler has been modified to
print error messages with sensible line numbers. Make also understands the ".F"
suffix. Note that when u~ing the C preprocessor, the 72 column convention is' not fol­
lowed.

The -I option for specifying short integers has been changed to -i. The -I option is
now used to specify directory search paths for "#include" statements. A -pg option
for creating executable images which collect profiling information for gprof has been
added.

ls a Cont editor of dubious value.

Now understands symbolic links.

Has a new -t)'pe value, '1', for finding symbolic links.

ls a new compiler/interpreter Cor the Functional Programming language. A support­
ing document is present in Volume 2C of the UNIX Programmer's Manual.

ls a new program Cor printing Fortran files with embedded Fortran carriage controls .

ls a new program for splitting a multi-function Fortran file into individual files.

ls a new program which supports the ARPA standard File Transfer Protocol.

ls a new program which creates a core dump of a running process.

ls a new profiling tool which displays execution time for the dynamic call graph of a
program. GproC works on C, Fortran, and Pascal programs compiled with the -pg
option. Gprof may also be used in creating a call graph profile for the operating sys­
tem. A supporting document, "gprof: A Call Graph Execution Profiler" is included in
Volume 2C of the UNIX Programmer's Manual.

ls a new program which displays a user's group access list.

ls a new program which displays the system's unique identifier as returned by the new
gethostid system call. The super-user uses this program to set the host identifier at
boot time.

ls a new program which displays the system's name as returned by the new gethost­
name system call. The super-user uses this program to set the host name at boot
time.

ls a new program Cor formatting C program source.

ls a shell script used in installing software.

Now reports kilobytes per second transCerred for each disk. This is useful as the unit
of inCormation transferred is no longer a constant one kilobytes.

Now displays the remote host from which a user Jogged in (when accessing a machine
across a network). The pseudo user "ftp" may be specified to find out inCormation
about FTP file transfer sessions.

lasteomm Now displays flags for each command indicating iC the program dumped core, used

learn

PDP-ll mode, executed with a set-user-ID, or was created as the result of a fork (with
no following exec).

Now has lessons for vi (this is user contributed soCtware which is not part of the stan­
dard system).

o

C)

(~

o

lint

lisp

In

login

Ipq

Ipr

Iprm

Is

m4

Mail

make

mkdir

mt

mv

net

netstat

oldcsh

od

pagesize

passwd

pc/pi

pc

-5-

Has a new -0 flag for creating lint libraries from 0 source code. Has improved type
checking on static variables.

Has been ported to several 68000 UNIX systems, the relevant code is included in the
distribution. A new vector data type and a form of "closure" have been added.

Has a new flag, -s, for creating symbolic links.

Has been extensively modified for use with the rlogind and telnetd network servers.

Is totally new, see lpr.

And its related programs are totally new. The line printer syst.em supports multiple
printers of many different characteristics. A master data base, /etc/printcap,
describes both local printers and printers accessable across a network. A document
describing the line printer system is now part of Volume 20 of the UNIX
Programmer's Manual.

Is totally new, see lpr.

Has been rewritten for the new directory format. It understands symbolic links and
uses the new inode field which contains the actual number of blocks allocated to a file
when the -8 flag is supplied. Many rarely used options have been deleted.

A bug which caused m4 to dump core when keywords were undefined t.hen redefined
has been fixed.

Now supports mail folders in the style of the Rand MH system. Has been reworked to
cooperate with send mail in understanding the new mail address formats. Allows users
to defined message header fields which are not be displayed when a messages is viewed.
Many other changes are described in a revised version of the user manual.

Understands not to unlink directories when interrupted. Understands the new ".F"
suffix for Fortran source files which are to be run through the 0 preprocessor. Has a
new predefined macro MFLAGS which contains the flags supplied to make on the
command line (useful in creating hierarchies of makefiles).

Now uses the mkdir system call to run faster.

Has a new command, status, which shows the current state of a tape drive.

Has been rewritten to use the new rename system call. As a result, multiple direc­
tories may now be moved in a single command, the restrictions on having " .. " in a
pathname are no longer present, and everything runs faster.

And all related Berknet programs are no longer part of the standard distribution.
These programs live on in /usr/src/old for those who can not do without them.

Is a new program which displays network statistics and active connections.

No longer exists.

Has gobs of new formats options.

Is a new program which prints the sys~m page size for use in constructing portable
shell scripts.

Now reliably interlocks with chsh, chfn, and vipw, in guarding against concurrent
updates to the password file.

For loops are now done according to the standard. Files may now be dynamically
allocated and disposed. Records and variant records are now aligned to correspond to
C structures and unions (this was falsely claimed before). Several obscure bugs
involving formal routines have been fixed. Three new library routines support random
access file i/o, see /usr/include/pascal for details.

For loop variables and with pointers are now allocated to registers. Separate compi­
lation type checking can now be done without reference to the source file; this permits
movement (including distribution) of .0 files and creation of libraries. Display entries

pdx

ps

pwd

rep

refer

reset

rlogin

rmdir

are saved only when needed (a speed optimization).

Is a new debugger for use with pi. Pdx is invoked automatically by the interpreter if
a run-time error is encountered. Future work is planned to extend the new dbx
debugger to understand code generated by the Pascal compiler pc.

Has been changed to work with the new kernel and is no longer dependent on system
page size. All process segment sizes are now shown in kilobytes. Understands that
the old "using new signal facilities" bit in the process structure now means "using old
4.1BSD signal facilities".

Now simply calls the ,etwd(3) routine.

Is a new program for copying files across a network. The complete syntax of cp is
supported, including recursive directory copying.

Has had many bugs fixed in it and the associated -ms macro package support made to
work.

Now resets all the special characters to the system defaults specified in the include file
<sys/ttychars.h> .

Is a new program for logging in to a machine across a network. Rlogin uses the files
/etc/hosts.equiv and .rhosts in the users login directory to allow logins to be per-
formed without a password. Rlogin supports proper handling of ·S/"Q and flushing
of output when an interrupt is typed at the terminal. Its ,-, escape sequences are rem­
iniscent of the old cu program (as it is based on the same source code).

Now uses the rmdir system call to run more efficiently and not. require root privileges.
Unfortunately, this means arguments which end in one or more "/" characters are no
longer legal.

roftbib Is a new program for running off bibiliographic databases.

rsh Is a new program which supports remote command execution across a network.

ruptime Is a new program which displays system status information for clusters of machines
attached to a local area network.

rwho Is a new program which displays users logged in on clusters of machines attached to a
local area network.

script Has been rewritten to use pseudo-terminals. This allows the C shell job control facili­
ties (among other things) to be used while scripting. A side effect of this change is
that scripts now contain everything typed at a terminal.

sdb Has been replaced by dbx; it still lives on in /usr/src/old for those with a personal
attachment.

sendbug Is a new command for submitting bug reports on 4.2BSD in a standard format suit-
able for automatic filing by the bugfiler program.

sh No longer has a newgrp command due to the new groups facilities.

sortbib Is a new command for sorting bibliographic databases.

strip Has been made blindingly fast by using the new truncate system call (thereby elim­
inating the old method of copying the file).

stty The default system erase, kill, and interrupt characters have been made the DEC stan­
dard values of DEL ('"1'), '·U', and '·0'. This is not expected to gain much popular­
ity, but was done in the interest of compatibility with many other standard operating
systems.

au Has been changed to do a "full login" when starting up the subshell. A new fiag, -f,
does a "fast" su for when a system is heavily loaded. Extra arguments supplied to su
are now treated as a command line and execut.ed directly instead of creating an
interactive shell.

.---~--~ .. --.-----

o

sysline

tail

talk

tar

telnet

tip

ul

uucp

- 7 -

Is a new program for maintaining system status information on terminals which sup­
port a "status line"; a poor man's alternative to a window manager (or emacs).

Has a larger buffer so that "tail -r" and similar show more.

Is a new program which provides a screen-oriented write facility. Users may be
"talked to"across a network, though satellite response times have indicated overseas
conversations are still best done by phone. Can be very obnoxious when engaged in
important work.

Now allocates its internal buffers dynamically so that the block size can be specified to
be very large for streaming tape drives. Also, now avoids many core-core copy opera­
tions. Has a new -C option for forcing chdir operations in the middle of operation
(thereby allowing multiple disjoint subtrees to be easily placed in a single file, each
with short relative pathnames). Has a new flag, 'B', for forcing 20 block records to be
read and written; useful in joining two tar commands with a remote shell to transfer
large amounts of data across a network.

Is a new program which supports the ARPA standard Telnet protocol.

Replaces cu as the standard mechanism for connecting to machines across a phone line
or through a hardwired connection. Tip uses a database of syst.em descriptions, sup-
ports many different auto-call units, and understands many nuances required to talk
to non-UNIX systems. Files may be transferred to and from non-UNIX systems in a
simple fashion.

A bug which sometimes caused an extra blank line to be printed after reaching end of
file has been fixed.

And related programs have been extensively enhanced to support many different
auto-call units and multiple spooling directories (among other things). A large
number of bugs and performance enhancements have been made.

uusnap Is a new program which gives a snap-shot of the uucp spooling area.

vfontinfo Is a program used to inspect and print information about fonts.

vgrind

vi

vIp

vmstat

vpr

vwidth

we

whereis

which

who

Now uses a regular expression language to describe formatting. A -f flag forces
vgrind to act as a filter, generating output suitable for inclusion in troff and/or Droff
documents. Language descriptions exist for C, Pascal, Model, C shell, Bourne shell,
Ratfor, and Icon programs.

A bug which caused the "B command to place the cursor on the wrong line has been
fixed. A bug which caused vi to believe a file had been modified when an i/o error
occurred has been fixed. A bug which allowed "hardtabs" to be set to 0 causing a
divide by zero fault has been fixed.

Is a new program for prett.y printing Lisp programs.

Has had one new piece of information added to -8 summary, the number of fast page
reclaims performed. The fields related to paging activity are now all given in kilo­
bytes.

And associated programs for spooling and printing files on Varian and Versatec
printers are now shell scripts which use the new line printer support.

Isa new program for making troff width tables for a font.

Is once again identical to the version 7 program. That is, the -v, -t, -b, -8, and -u
flags have been deleted.

Understands the new directory organization for the source code.

Now understands how to handle aliases.

Now displays the remote machine from which a user is logged in.

-8-

Section 2.

The most important change in section 2 is that the documentation has been significantly
improved. Manual page entries now indicate the possible error codes which may be returned and
how to interpret them. The introduction to section 2 now includes a glossary of terms used
throughout the section. The terminology and formatting have been made consistent. Many
manual pages now have "NOTES" or "CAVEATS" providing useful information heretofore left
out Cor the sake oC brevity. As always the manual pages are still Cor the programmer; they are
terse and extremely concise. The "4.2BSD System Manual" is likewise concise, but a bit more ver­
bose in providing an overall picture of the system facilities.

With regard to changes in the facilities, these Call into three major categories: interprocess
communication, signals, and file system related calls. The interprocess communication facilities
center around the ,ocket mechanism described in the "A 4.2BSD Interprocess Communication Pri­
mer". The new signals do not have an accompanying document, so the manual pages should be
studied careCully. The new file system calls pretty much stand on their own, with a late section oC
the document "A Fast File System Cor UNIX" supplying a quick overview oC the most important
new file system Cacilities. Finally, it should be noted that the job control facilities introduced in
4.1BSD have been adopted as a standard part oC 4.2BSD. No special distinction is given to these
calls (in 4.1BSD they were earmarked "2J").

Many oC the new system calls have both a "set" and a "get" form. Only the "get" Corms
are indicated below. Consult the manual Cor details on the "set" Corm.

intro Has been updated to reBect the new list oC possible error codes. Now includes a glos-
sary oC terminology used in section 2.

access Now has symbolic definitions Cor the mode paramet,er defined in <'lIs/fiJe.h>.

bind Is a new interprocess communication system call Cor binding names to sockets.

connect Is a new interprocess communication system call Cor establishing a connection between
two sockets.

ereat Has been obsoleted by the new open interCace.

fchmod

fehown

fent}

flock

fstat

fsync

Is a new system call which does a ehmod operation given a file descriptor; useful in
conjunction with the new advisory locking Cacilities.

Is a new system call which does a chown operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.

Is a new system call which is useful in controlling how i/o is perCormed on a file
descriptor (non-blocking i/o, signal drive i/o). This interface is compat.ible with the
System III fcntI interface.

Is a new system call for manipulating advisory locks on files. Locks may be shared or
exclusive and locking operations may be indicated as being non-blocking, in which
case a process is not blocked if the requested lock is currently in use.

Now returns a larger stat buffer; see below under stat.

Is a new system call for synchronizing a file's in-core state with that on disk. Its
intended use is in building transaction oriented facilities.

ftruncate Is a new system call which does a truncate operat,ion given a file descriptor; useful in
conjunction with the new advisory locking facilities.

getdtablesize
Is a new system call which returns the size oC the descriptor table.

getgroups Is a new system call which returns the group access list for the caller.

gethostid Is a new system call which returns the unique (hopefully) identifier for the current
host. c

(-

c

-9-

gethostname
Is a new system call which returns the name of the current host.

getitimer Is a new system call which gets the current value for an interval timer.

getpagesizeIs a new system all whieh returns the system page size.

getpriority Is a new system call which retUl'ftS the eurrent scheduling priority for a specific pro­
cess, a group of proeesses, or all processes owned by a user. In the latter two eases,
the priority returned is the highest (lowest numerieal value) enjoyed by any of the
specified proeesses.

getrlimit Is a new system caB whieh retul'M information about a resouree limit. The getrlimit
and setrlimit calls rrplace the old vlimit eall Crom 4.1BSD.

getrusage Is a new system eall whieh returns inCormation about resource utilitization of a child
process or the caller. This eall replaces the vtimes eall oC 4.1BSD.

getsoekopt ls a new interprocess communieation system call which returns the eurrent options
present on a socket.

gettimeofday
ls a new system call whieh returns the current Greenwich date and time, and the
current timezone in which the machine is operating. Time is returned in seconds and
microseeonds sia~ January 1, 1970.

ioctl Has been changed to encode the size of parameters and whether they are to be copied
in, out, or in and out of the user address space in the request. The symbolic names
Cor the various ioetll'equests remain the same, only the numerit' values have changed.
A number oC new iettls exist for use with sockets and the network facilities. The old
LINTRUP request has been replaced by a call to fcntl and the SIGIO signal.

killpg

listen

Jseek

mkdir

mpx

open

Has now been made a system call; m 4.1BSD it was a library routine.

ls a new interproeess rommunieat.ion system call used to indicate a socket will be used
to listen for incoming connection requests.

Now has symbolie definitions for its whence parameter defined in <sgs/ file.h>.

Is a new system eall-wbich creates a directory.

The multiplexed .file facilities are no longer part of the system. They have been
replaced by the socket, and related, system calls.

Is different, now taking an optional third parameter and supporting file creation,
automatic truncation, automatic append on write, and "exclusive" opens. The open
interface has been umde compatible with System m with the exception that non­
blocking opens on tem:ainal lines requiring carrier are not supported.

profil Now returns statistical information based on a 100 hz clock rate.

quota Is a new system call which is part of the disk quota facilities. Quota is used to mani­
pulate disk quotas far Jl. specific user, as well as perform certain random chores such as
syncing quotas to disk.

read Now automatically ftStarts when a read on a terminal is interrupted by a signal
before any data is read.

ready Is a new system call wIDeh supports scattering of read data into (possibly) disjoint
areas of memory.

readlink Is a new system call for reading the value of a symbolic link.

reev Is a new interprocess communication system call used to receive a message on a con­
nected socket.

recvfrom Is a new interprocess communication system call used to receive a message on a (possi­
bly) unconnected socket.

- 10-

recvmsg Is a new interprocess communication system call used to receive a message on a (possi­
bly) unconnected socket which may have access rights included. When using on­
machine communication, recvmsg and sendmsg may be used to pass file descriptors
between processes.

rename Is a new system call which changes the name of an entry in the file system (plain file,
directory, character special file, etc.). Rename has an important property in that it
guarantees the target will always exist, even if the system crashes in the middle of the
operation. Rename only works with source and destination in the same file system.

rmdir Is a new system call for removing a directory.

select

send

sendto

sendmsg

setquota

setregid

setreuid

Is a new system call (mainly for interprocess communication) which provides facility
for synchronous i/o multiplexing. Sets of file descriptors may be queried for readabil­
ity, writability, and if any exceptional conditions are present (such as out of band
data on a socket). An optional timeout may also be supplied in which case the select
operation will return after a specified period of time should no descriptor satisfy the
requests.

Is a new interprocess communication system call for sending a message on a connected
socket.

Is a new interprocess communication system call for sending a message on a (possibly)
unconnected socket.

Is a new interprocess communication system call for sending a message on a (possibly)
unconnected socket which may included access rights.

Is a new system call for enabling or disabling disk quotas on a file system.

Is a new system call which replaces the 4.1BSD setgid system call. Setregid allows the
real and effective group ID's of a process to be set separately.

Is a new system call which replaces the 4.1BSD setuid system call. Setreuid allows the
real and effective user ID's of a process to be set separately.

shutdown Is a new interprocess communication system call for shutting down part or all of full­
duplex connection.

sigblock Is a new system call for blocking signals during a critical section of code.

sigpause Is a new system call for blocking a set of signals and then pausing indefinitely for a
signal to arrive.

sigsetmask Is a new system call for setting the set of signals which are currently blocked from
delivery to a process.

aigstack Is a new system call for defining an alternate stack on which signals are to be pro­
cessed.

aigays Is no longer supported. The new signal faciljties a.re a superset of those which sigsys
provided.

aigvec Is the new system ca.ll interrace for defining signal actions. For each signal (except
SIGSTOP and SIGKILL), sigvec allows a "signal vector" to be defined. The signal
vector is comprised of a handler, a mask of signals to be blocked while the handler
executes, and an indication of whether or not the handler should execute on a signal
stack defined by a sigstack call. The old signal interrace is provided as a library rou­
tine with several important caveats. First, signal actions are no longer reset to their
default value after a signal is delivered to a process. Second, while a signal handler is
executing the signal which is being processed is blocked until the handler returns. To
simulate the old signal interface, the user must explicitly reset the signal action to be
the default value and unblock the signal being processed.

Four new signals have been added for the interprocess communication and interval
timer facilities. SIGIO is delivered to a process when an fcntl call enables signal
driven i/o and input is present on a terminal (and a signal handler is defined).

soeket

- 11-

SIOURO is delivered when an urgent condition arises on a socket (and a handler is
defined). SIOPROF and SIOVTALRM are associated with the ITIMERJ>ROF and
ITIMElLvmTUAL interval timers, and delivered to a process when such a timer
expires (the SIGALRM signal is used for the ITIMER-REAL interval timer). The old
SIOTINT signal is replaced by SIOIO.

Is a new interprocess communication system call for creating a socket.

soeketpair Is a new interprocess communication system call for creating a pair of connected and
unnamed sockets.

stat Now returns a larger structure. New fields are present indicating the optimal blocking
factor in which i/o should be performed (for disk files the block size of the underlying
file system) and the actual number of disk blocks allocated to the file. Inode numbers
are now 32-bit quantities. Several spare fields have been allocated for future expan­
sion. These include space for 54-bit file sizes and 54-bit time stamps. Two new file
types may be returned, SJFLNK for symbolic links, and S_IFSOCK for sockets resid­
ing in the file system.

swapon Has been renamed from the vswapon call of 4.1BSD.

symlink Is a new system call for creating a symbolic link.

truncate Is a new system call for truncating a file to a specific size.

unlink Should no longer be used for removing directories. Directories should only be created
with mkdir and removed with rmdir. Creating hard links to directories can cause
disastrous results.

utime Is defunct, replaced by utimes.

utimes Is a new system call which uses the new time format in setting the accessed and
updated times on a file.

vfork

vlimit

vread

vswapon

vtimes

vwrite

wait

wait3

write

writev

Is still present, but definitely on its way out. Future plans include implementing fork
with a scheme in which pages are initially shared read-only. On the first attempt by a
process to write on a page the parent and child would receive separate writable copies
of the page.

Is no longer supported. Vlimit is replaced by the getrlimit and setrlimit calls.

Is no longer supported in the system.

Has been renamed swapon.

Is no longer supported. Vtimes is replaced by the getrusage call.

Is no longer supported in the system.

Now is automatically restarted when interrupted by a signal before status could be
returned.

Returns resource usage in a different format than that which was returned in 4.1BSD.
This structure is compatible with the new getrusage system call. Wait3 is now
automatically restarted when interrupted"by a signal before status could be returned.

Now is automatically restarted when writing on a terminal and interrupt.ed by a sig­
nal before any i/o was completed.

Is a new version of the write system call which supports gathering of data in (possi­
bly) discontiguous areas of memory

Section 3

The section 3 documentation has been reorganized to group manual entries by library. Intro­
ductory sections for each logical and physical library contain lists of the entry points in the
library.

- 12-

A number of routines which had been system calls under 4.1BSD are now user-level library
routines in 4.2BSD. These routines have been grouped under section "30" headings, "0" for com­
patibility. Further, certain routines present in the standard 0 run-time library which do not easily
categorize as part of one of the standard libraries, have been group under "3X" headings.

CUl'8e8

stdio

bstring

ctime

isprint

directory

getpass

getwd

perror

psignal

A number of bug fixes have been incorporated, and the documentation has been
revised.

The standard i/o library has been modified to block i/o operations to disk files accord­
ing to the block size of the underlying file .system. This is accomplished using the new
.'_hlkaize value returned by /8tat. The resultant performance improvement is
significant as the old 1 kilobyte buffer size often resulted in 7 memory-to-memory copy
operations by the system on 8 kilobyte block file .systems.

End-of-file marks now "stick". That is, all input requests on a stdio channel after
encountering end-of-file will return end-of-file until a clearerr call is made. This has
implications for programs which use stdio to read from a terminal and do not process
end-of-file as a terminating keystroke.

Two new functions may be used to control i/o buffering. The aetlinebu/ routine is
used to change stdout or stderr from block buffered or unbuffered to line buffered.
The aetbuffer routine is an alternate form of sctbu/ which can be used after a stream
has been opened, but before it is read or written.

Three new routines, hemp, bcopy, and bzero have been added to the library. These
routines use the VAX string instructions to manipulate binary byte strings of a known
size.

Now uses the gettimeo/day system call and supports time conversion in six different
time zones. Daylight savings calculations are also performed in each time zone when
appropriate.

Now considers space a printing character; as the manual page has always indicated.

Is a new directory interface package which provides a portable interface to reading
directories. A version of this library which operates under 4.1BSD is also available.

Now properly handles being unable to open /dev/tty.

Has been moved from the old jobs library to the standard C run-time library. It now
returns an error string rather than printing on the standard error when unable to deci­
pher the current working directOry.

Now uses the writev system call to pass all its arguments to the system in a single
system call. This has profound effects on programs which transmit error messages
across a network.

And sysJiglist are routines for printing signal names in an equivalent, manner to per­
ror.

qsort Has been greatly sped up by choosing a random element, with which to apply its
divide and conquer algorithm.

random Is a successor to rand which generates much better random numbers. The old rand
routine is still available and most programs have not been switched over to random as
doing so would make certain facilities such encrypted mail unable to operate on exist­
ing data files.

setjmp And longjmp now save and restore the signal mask so that non-local exit from a sig­
nal handler is transparent. The old semantics are available with Jetjmp and
Jongjmp.

net Is a new set of routines for accessing database files for the DARPA Internet. Four
databases exist: one for host names, one for network names, one for protocol numbers,
and one for network services. The latter returns an Internet port and protocol to be
used in accessing a given network service.

(\

(~

o

lstab

- 13-

An additional collection of routines, all prefaced with "ineL" may be used to manipu­
late Internet addresses, and interpret and convert between Internet addresses and
ASCD representations in the Internet standard "dot" notation.

Finally, routines are available for converting 16 and 32 bit quantities between host
and network order (on high-ender machines these routines are defined to be noops).

The routines for manipulating /etc/fstab have been rewritten to return arbitrary
length null-terminated strings.

Section 4

The system now supports the 11/730, the new 64Kbit RAM memory controllers for the
11/750 and 11/780, and the second UNIBUS adapter for the 11/750. Several new character
and/or block device drivers have been added, as well as support for many hardware devices which
are accessible only through the network racilities. Each new piece of hardware supported is listed
below.

New manual entries in section 4 have been created to describe communications protocols, and
network architectures supported. At present the only network architecture fully supported is the
DARPA Internet with the TCP, IP, UDP, and IOMP protocols.

aee
ad
arp

cas

dme

ee
en

hy
ik

il

imp

kg

10
pel
p8

pty

rx

ts
tu

A network driver ror the ACC LH/DH IMP interface.

A driver for the Data Translation A/D converter.

The Address Resolution Protocol for dynamically mapping betwee 32-bit DARPA
Internet addresses and 48-bit Xerox 10Mb/s Ethernet addresses.

A network driver for the DEC IMP-1lA LH/DH IMP interface.

A network interface driver for the DEC DMC-ll/D1vrn.-11 point-to-point communica­
tions device.

A network interface driver for the 3Com 10Mb/s Ethernet controller.

A network interface driver for the Xerox 3Mb/s experimental Ethernet controller.

A network interface driver for the Network Systems Hyperchannel Adapter.

A driver for an Ikonas frame buffer graphics device interface.

A network interface driver for the Interlan 10Mb/s Ethernet interface.

A network interface driver for the standard 1822 interface to an IMP; used in conjunc­
tion with either ace or css hardware.

A driver for a KL-11/DL-llW used as an alternate real time clock source for gathering
kernel statistics and profiling information.

A software loopback network interface for protocol testing and performance analysis.

A network interface driver for the DEC PCL-llB communications controller.

A driver for an Evans and Sutherland Picture System 2 graphics device connected
with a DMA interface.

Now includes a simple packet protocol to support flow controlled operation with
mechanisms for flushing data to be read and/or written.

A driver for the DEC dual RX02 floppy disk unit.

Now supports TU80 tape drives.

The VAX-ll/750 console cassette interface has been made somewhat usable when
operating in single-user mode. The device driver employs assembly language pseudo-
dma code for the reception of incoming packets from the cassette.

uda Now supports RA81, RA80, and MBO disk drives.

un

up

- 14-

A network interface driver for an Ungermann-Bass network interface unit connected to
the host via a DR-UW.

Now supports ECC correction and bad sector handling. Also has improved logic for
recognizing many different kinds of disk drives automatically at boot time.

uu A driver for DEC dual TUS8 tape cartridges connected via a DL-llW interface.

va The Varian driver has been rewritten so that it may coexist on the same UNIBUS
with devices which require exclusive use of the bus; i.e. RK07's.

vv A network interface driver for the Proteon' proNET lOMb/s ring network controller.

dir
disktab

dump

fa

gettytab

hosts

Section 5

Reflects the new directory format.

Is a new file for maintaining disk geometry information. This is a temporary scheme
until the information stored in this file for each disk is recorded on the disk pack
itself.

Is a superset of that used in 4.1BSD.

Reflects the new file system organization.

Is a new file which idescribes terminal characteristics. Each entry in the file describes
one of the possible arguments to the getty program.

Is a database for mapping between host names and DARPA Internet host addresses.

mtab Has been modified to include a "type" field indicating whether the file system is
mounted read-only, read-write, or read-write with disk quotas enabled.

networks Is a database for mapping between network names and DARPA standard network
numbers.

phones Is a phone number data base for tip.

printcap

protocols

remote

services

tar
utmp

Is a termcap clone for configuring printers.

Is a database for mapping between protocol names and DARPA Internetwork stan­
dard protocol numbers.

Is a database of remote hosts for use with tip.

Is a database in which DARPA Internet services are recorded. The information con­
tained in this file indicates the name of the service, the protocol which is required to
access it, and the port number at which a client should connect to utilize the service.

Is a new entry describing the format of a tar tape.

Has been augmented to include a remote host from which a login session originates.
The wtmp file is also used to record FTP sessions.

vgrindefs Is a file describing how to vgrind programs written in many languages.

Section 6

aardvark Does not work because it requires the "Dungeon Definition Language tl processor which
is a binary image requiring 4.1BSD compatibility mode; the DDL source is still
present.

aliens The aliens have returned home, the game is no longer included in the dist.ribution.

backgammon
Is now screen oriented. A new program, teachgammon, instructs the new backgam­
mon player. The old version is now called btlgammon.

~'
\

~j

(~

o

canfield

ching

chase

factor

fortune

hangman

mille

primes

rogue

sail

trek

- 15-

Is a new game which plays a brand of the popular game of solitaire. Betting is
included, the program cfscores may be used to find out your current debt.

Now pipes its output through more. Thus the hacker placates the seekers.

No longer exists because the binary does not work under 4.2BSD.

Is a rewrite in C of the old version 7 assembly language program which finds the
prime factors of a number.

Has yet more adages.

Is now screen oriented.

Now plays more intelligently.

Is a rewrite in C of the old version 7 assembly language program which finds prime
numbers within a specified range.

Has been made more of a scoundrel. The supplementary document "A Guide to the
Dungeons of Doom", has been updated as well, and is now part of Volume 2C of the
programmer's manual.

Is a new game which simulates sea battles of yore. The ma.nual page is large enough
to be a separate document and so has been left in its source directory.

The original trek bas returned; trekies rejoice.

Section 7

hier Has been updated to reflect the reorganization to the user and system source.

mailaddr Is a new entry describing mail addressing syntax under sendmail (possibly too Berke­
ley specific).

ms The -ms macros have been extended to allow automatic creation of a table of con­
tents. Support for the refer preprocessor is improved. Several bugs related to multi­
column output and floating keeps have been fixed. Extensions to the accent mark
string set are available by including the .AM macro. Footnotes can now be automati­
cally numbered (in superscript) by -ms and referenced in the text with a \ ** string
register. The manual page includes a summary of important number and string regis­
ters. A new document "Changes to -ms" is included in Volume 2C of the
programmer's manual.

Section 8
Major changes affecting system operations include:

• The system now supports disk quotas. These allow system administrat.ors to control users' disk
space and file allocation on a per-file system basis. Utilit.ies in this section exist for fixing, sum­
marizing, and editing disk quota summary files.

• File systems are now made with a new program, newfs, which acts as front end to the old mkfs
program. There no longer is a need to remember disk part.ition sizes, as newfs gets this infor­
mation automatically from the /etc/disktab file. In addition, newfs attempts to layout file
systems according to the characteristics of the underlying disk drive (taking into account disk
geometry information).

• DEC standard bad block forwarding is now supported on the RP06 and second vendor
UNIBUS storage module disks. The bad144 program can now be used to mark sectors bad on
many disks, though inclusion in the bad sector table is still somewhat risky due to requirements
in the ordering of entries in the table.

• A new program, format, should be used to initialize all non-DEC storage modules before creat­
ing file systems. Format formats the sector headers and creat.es a bad sector table which is
used in normal system operation. Format runs in a standalone mode.

• Getty has been rewritten to use a description file, /ete/gettytab. This allows sites to tailor ter­
minal operation.and configuration without making modifications to gd.ty.

• The line printer system is totally new. A program to administer the operation of printers, Ipc,
is supplied, and printer accounting has been consolidated int.o a single program, pac.

• The program used to restore files from dump tapes is now called rulore. This name change
was done to reinforce the fact that it is completely rewritten and operates in a very different
way than the old restor program. Restore operates on mounted file systems and uses only nor­
mal file system operations to restore files. Versions of both dump and restore which operate
across a network are included as rdump and rrestore. Dump and restore (and their .network
oriented counterparts) now perform so efficiently (mostly because of the new file system), that
disk to disk backups.should no lo~u be an attractive JLlternative.

bad144

badseet

bugfiler

ebgrp

eomsat

No longer asks if you want to clobber the floppy when manipulating archives which
are not on the floppy.

Has been modified to use the /etc/disktab file. Can be used to create bad sector
tables for the DEC RP06 and several new Winchester disk drives. Consult the source
code for details and use with extreme care.

Has been modified to work with the new file system and now must interact with fsck
to perform its duties. Consult the manual page for mote information.

Is a new program for automatic filing and acknowledgement of bug reports submitted
by the sendbug 'Program. Intended to operate with the Rand MH software which is
part of the user contributed software. Used at Berkeley to process bug reports on
4.2BSD.

Has been moved to section 1.

Has been chaRged to filter the Doise lines in message headers when displaying incoming
mail. No longer uses a second process watchdog as it uses the more reliable socket
facilities instead of the old mpx facilities.

eonflg Has been extensively modified to handle the new root and swap device specification
syntax. A new document, "Configuring 4.2BSD UNIX Systems with Config",
describes its use, as well as other important information needed in configuring system
images; this is part of Volume 2.0 of the programmer's manual.

disk part Is a new program which may be used to generate disk partition tables according to the
rules used at Berkeley. Can automatically generat.e entries required for device drivers
and for the /etc/diskpart file. (Does not handle the new DEC DSA style drives prop­
erly because it tries to reserve space for the bad sector table.)

drtest Is a new standalone program which is useful in t.esting standalone disk device drivers
and for pinpointing bad ~ on a disk.

dump Has been modified for the new file system organization. Mainly due to the new file
system, it runs virtually at tape speed. Properly handles locking on the dumpdates
file when multiple dumps are performed concurrently on the same machine.

dumpfs Is a new program for dumping out information about a file system such as the block
size and disk layout information.

edquota Is a new program for editing user quotas. Operat.es by invoking your favorite editor
on an ASCn representation of the information stored in the binary quota files.
Edquota also has a "replication" mode whereby a quota template may be used to
create quotas for a group of users.

fastboot Is a new shell script which reboots the system without checking the file systems;
should be used with extreme care.

------~.---------

o

- 17-

futhalt Is a new script which is similar to fastboot.

format

fsek

ftpd

Is a new standalone program for formatting non-DEC storage modules and creating
the appropriate bad sector table on the disk.

Has been changed for the new file system. Fsck is more paranoid then ever in check­
ing the disks, and has been sped up significantly. The accompanying Volume 2C
document has been updated to reflect the new file system organization.

Is the DARPA File Transfer Protocol server program. It supports C shell style glob­
bing of arguments and a large set of the commands in the specification (except the
ABORT command!).

gettable Is a new program which can be used in aquiring up to date DARPA Internet host
database files.

getty Has been rewritten to use a terminal description database, /etc/gettyta,b. Consult the
manual entries for getty(8) and gettytab (5) for more information.

ieheek Has been modified Cor the new file system.

init Has been significantly modified to use the new signal Cacilit.ies. In doing so, several
race conditions related to signal delivery have been fixed.

kgmon Is a new program for controlling running systems which have been created with kernel
profiling. Using kgmon, profiling can be turned on or off and internal profiling buffers
can dumped into a gmon.out file suiitable for interpretation by gprof.

lpe Is a new program controlling line printers and their associated spooling queues. Lpc
can be used to enable and disable printers and/or their spooling queues. Lpc can also
be used to rearrange existing jobs in a queue.

Ipd Has been rewritten and now runs as a "server", using the interprocess communication
Cacilities to service print requests. A supplementary document describing the line
printer system is now part of Volume 20 of the programmer's manual.

MAKEDEV

mIds

mount

newts

pae

quot

Is a new shell script which resides in /dev and is used to create special files there.
MAKEDEV keeps commands for creating and manipulating local devices in a separate
file MAKEDEV.local.

Has been virtually re'\\Titten for the new file system. The arguments supplied are very
different. For the most part, users now use the newfs program when creating file sys-
tems. Mkfs now automatically creates the 10st+Cound directory.

Now indicates file systems which are mounted read-only or have disk quotas enabled.

Is a new Cront-end to the mkfs program. Newfs figures out the appropriate parame­
ters to supply to mkfs, invokes it, and then, if necessary, installs the boot blocks
necessary to bootstrap UNIX on 11/750's. '

Is a new program which can be used to do printer accounting on any printer. It sub­
sumes the vpac program.

Now uses the information in the inode of each file to find out how many blocks are
allocated to it.

quotaeheek
Is a new program which performs consistency checks on disk quota files. Quotacheck
is normally run from the /etc/rc.local file after a system is rebooted, though it can
also be run on mounted on file systems which are not in use.

quotaon Is a new program which enables disk quotas on file systems. A link to quotaon,
named quotaoff, is used to disable disk quotas on file systems.

pstat

re

Has been modified to understand new kernel data structures.

Has had system dependent startup commands moved to /etc/rc.local.

rdump

renice

repquota

restor
restore

rexecd

rlogind

rmt
route

routed

rrestore

rshd

rwhod

- 18-

Is a new program to dump file systems across a network.

Has been rewritten to use the new setpriority system call. As a result, you can now
renice users and process groups.

Is a new program which summarizes disk quotas on one or more file systems.

No longer exists. A new program, restore, is its successor.

Replaces restor. Restore operates on mounted file systems; it contains an interactive
mode and can be used to restore files by name. Restore has become almost as flexible
to use as tar in retrieving files from tape. .

Is a network server for the rezee (3X) library routine. Supports remote command exe­
cution where authentication is performed using user accounts and passwords.

Is a network server for the rlogin (IC) command. Supports remote login sessions
where authentication is performed using privileged port numbers and two files,
/etc/hosts.equiv and .rhosts (in each users home directory).

Is a program used by rrestore and rdump for doing remote tape operations.

Is a program for manually manipulating network routing tables.

Is a routing daemon which uses a variant of the Xerox Routing Information Protocol
to automatically maintain up to date routing tables.

Is a version of restore which works across a network.

Is a server for the rsh (10) command. It supports remote command execution using
privileged port numbers and the /etc/hosts.equiv and .rhosts files in users' home direc­
tories.

Is a server which generates and listens for host status information on local networks.
The information stored by rwhod is used by the rwho (10) and rup time (IC) programs.

rxformat Is a program for formatting floppy disks (this uses the rx device driver, not the console
floppy interface).

savecore Has been modified to get many pieces of information from t.he running system and
crash dump to avoid compiled in constants.

sendmail Is a new program replacing delivermail; it provides fully internetwork mail forwarding
capabilities. Sendmail uses the DARPA standard Sl\·1TP protocol to send and receive
mail. Sendmail uses a configuration file to control its operation, eliminating the com­
piled in description used in delivermail.

setifaddr

syslog

telnetd

tltpd

trpt

tunefs

vipw

Is a new program used to set a network interface's address. CaUs to this program are
normally placed in the /etc/rc.local file to configure the network hardware present on
a machine.

Is a server which receives system logging messages. Currently, only the sendmail pro­
gram uses this server.

Is a server for the DARPA standard TELNET protocol.

Is a server for the DARPA Trivial File Transfer Protocol.

Is a program used in debugging TCP. Trpt transliterates protocol trace information
recorded by TOP in a circular buffer in kernel memory.

Is a program for modifying certain parameters in the super block of file systems~

Is no longer a shell script and properly interacts with passwd, chsh, and chfn in lock­
ing the password file.

C~;
./

UNIX/32V - Summary

March 9, 1979

A. What's new: highlights ot the UNIXt/32V System

32-bit world. UNIX/32V handles 32-bit addresses and 32-bit data. Devices are addressable to
231 bytes, files to 230 bytes.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware. UNIX/32V is highly compatible with UNIX ver­
sion 7.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured program­
ming, user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. l\"ROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for preparing
complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs ~pooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream
of indefinite length. AWK report generator does free-field pattern selection and arithmetic opera­
tions.

Program development. MAKE controls r~creation of complicated software, arranging for
minimal recompilation.

Debugging. ADB does postmortem and breakpoint debugging.

C language. The language now supports definable data types, generalized initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately compiled
functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream I/O is integrated with for­
matted input and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in many
other ways too numerous to relate.

t UNIX is a Trademark or Bell Laboratories.

- 2-

B. Hardware

The UNIX/32V operating system runs on a DEC VAX-ll/780* with at least the following
equipment:

memory: 256K bytes or more.

disk: RP06, RM03, or equivalent.

tape: any 9-track MASSBUS-compatible tape drive.

The following equipment is strongly recommended:

communications controller such as DZll or DLll.

full duplex 96-charaeter ASCn terminals.

extra disk for system backup.

The system is normally distributed on 9-track tape. The DllDlmum memory and disk space
specified is enough to run and maintain UNIX/32V, and to keep all source on line. More memory
will be needed to handle a large number of users, big data bases, diversified complements of dev­
ices, or large programs. The resident code occupies 40-55K bytes depending on configuration; sys­
tem data also occupies 30-55K bytes.

C. Software

Most of the programs available as UNIX/32V commands are listed. Source code and printed
manuals are distributed for all of the listed software except games. Almost all of the code is writ­
ten in C. Commands are self-contained and do not require extra setup information, unless
specifically noted as "interactive." Interactive programs can be made to run from a prepared script
simply by redirecting input. Most programs intended for interactive use (e.g., the editor) allow for
an escape to command level (the Shell). Most file processing commands can also go from standard
input to standard output ("filters"). The piping facility of the Shell may be used to connect such
filters directly to the input or output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, and a compiler for the pro­
gramming language C-enough software to write and run new applications and to maintain or
modify UNIX/32V itself.

1.1. Operating System

o tTh.1JX The basic resident code on which everything else depends. Supports the system
calls, and maintains the file system. A general description of UNIX design philoso­
phy and system facilities appeared in the Communications of the ACM, July,
1974. A more extensive survey is in the Bell System Technical Journal for July­
August 1978. Capabilities include:
OReentrant code for user processes.
O"Group" access permissions for cooperative projects, with overlapping member­

ships.
OAlarm-clock timeouts.
OTimer-interrupt sampling and interprocess monitoring for debugging and meas­

urement.
OMultiplexed I/O for machine-to-machine communication.

o DEVICES All I/O is logically synchronous. I/O devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware's ability to do overlapped
I/O. Unbuffered physical record I/O is available for unusual applications. Drivers

·VAX is a Tra.demark of Digital Equipment Corporation.

~~~-~~-~~~--------- -------

c 



('-

c 

o BOOT 

- 3 -

for these devices are available: 
OAsynchronous interfaces: DZll, D11l. Support for most common ASCII termi-

nals. 
OAutomatic calling unit interface: DNIL 
OPrinter /plotter: Versatek. 
OMagnetic tape: TE16. 
OPack type disk: RP06, RM03; minimum-latency seek scheduling. 
OPhysical memory of VAX-ll, or mapped memory in resident system. 
ONull device. 
ORecipies are supplied to aid the construction of drivers for: 

Asynchronous interface: DRB. 
Synchronous interface: DUll. 
DECtape: TCIL 
Fixed head disk: RSll, RS03 and RS04. 
Cartridge-type disk: RK05. 
Phototypesetter: Graphic Systems System/l through DRllC. 

Procedures to get UNIX/32V started. 

1.2. User Access Control 

o LOGIN 

OPASSWD 

o :!\1EWGRP 

Sign on as a new user. 
OVerify password and establish user's individual and group (project) identity. 
OAdapt to characteristics of terminal. 
OEstablish working directory. 
OAnnounce presence of mail (from MAll.,). 
OPublish message of the day. 
OExecute user-specified profile. 
OS tart command interpreter or other initial program. 

Change a password. 
OUser can change his own password. 
OPasswords are kept encrypted for security. 

Change working group (project). Protects against unauthorized changes to pro­
jects. 

1.3. Terminal Handling 

o TABS 

OSTTY 

Set tab stops appropriately for specified terminal type. 

Set up options for optimal control of a terminal. In so far as they are deducible 
from the input, these options are set automatically by LOGIN. 
OHalf vs. full duplex. 
OCarriage return+line feed vs. newline. 
OInterpretation of tabs. 
OParity. 
OMapping of upper case to lower. 
ORaw vs. edited input. 
ODelays for tabs, newlines and carriage returns. 

1.4. File Manipulation 

o CAT Concatenate one or more files onto standard output. Particularly used for una­
dorned printing, for inserting data into a pipeline, and for buffering output that 
comes in dribs and drabs. Works on any file regardless of contents. 



oOP 

OPR 

OLPR 

oCMP 

o TAIL 

o SPLIT 

ODD 

o SUM 

·4· 

Copy one file to another, or a set of files to a directory. Works on any file regard­
less of contents. 

Print files with title, date, and page number on every page. 
OMulticolumn output. 
OParallel column merge of several files.' 

Off-line print. Spools arbitrary files to the line printer. 

Compare two files and report if different. 

Print last n lines of input 
OMay print last n characters, or from n lines or characters to end. 

Split a large file into more manageable pieces. Occasionally necessary for editing 
(ED). 

Physical file format translator, for exchanging data with foreign systems, espe­
cially mM 370's. 

Sum the words of a file. 

1.5. Manipulation or Directories and File Names 

ORM 

DLN 

DMY 

DCHMOD 

DCHOWN 

o CHGRP 

DMKDIR 

DRMOIR 

DCD 

o FIl\1]) 

Remove a file. Only the name goes away if any other names are linked to the file. 
OStep through a directory deleting files interactively. 
ODelete entire directory hierarchies. 

"Link" another name (alias) to an existing file. 

Move a file or files. Used for renaming files. 

Change permissions on one or more files. Executable by files' owner. 

Change owner of one or more files. 

Change group (project) to which a file belongs. 

Make a new directory. 

Remove a directory. 

Change working directory. 

Prowl the directory hierarchy finding every file that meets specified criteria. 
OCriteria include: 

name matches a given pattern, 
creation date in given range, 
date of last use in given range, 
given permissions, 
given owner, 
given special file characteristics, 
boolean combinations of above. 

OAny directory may be considered to be the root. 
OPerform specified command on each file found. 

1.6. Running of Programs 

OSH The Shell, or command language interpreter. 
OSupply arguments to and run any executable program. 
ORedirect standard input, standard output, and standard error files. 

o 



(-

( 

c 

o TEST 

oE.XPR 

o WAIT 

DREAD 

o ECHO 

o SLEEP 

oNOHUP 

o NICE 

o KILL 

oCRON 

OAT 

o TEE 

-5-

OPipes: simultaneous execution with output of one process connected to the input 
of another. 

OCompose compound commands using: 
if ... then ... else, 
case switches, 
while loops, 
for loops over lists, 
break, continue and exit, 
parentheses for grouping. 

Olnitiate background processes. 
OPerform Shell programs, i.e., command scripts with substitutable arguments. 
OConstruct argument lists from all file names satisfying specified patterns. 
OTake special action on traps and interrupts. 
OUser-settable search path for finding commands. 
OExecutes user-settable profile upon login. 
OOptionally announces presence of mail as it arrives. 
OProvides variables and parameters with default setting. 

Tests for use in Shell conditionals. 
OString comparison. 
OFile nature and accessibility. 
OBoolean combinations of the above. 

String computations for calculating command arguments. 
OInteger arithmetic 
OPattern matching 

Wait for termination of asynchronously running processes. 

Read a line from terminal, for interactive Shell procedure. 

Print remainder of command line. Useful for diagnostics or prompt.s in Shell pro­
grams, or for inserting data into a pipeline. 

Suspend execution for a specified time. 

Run a command immune to hanging up the terminal. 

Run a command in low (or high) priority. 

Terminate named processes. 

Schedule regular actions at specified times. 
OActions are arbitrary programs. 
OTimes are conjunctions of month, day of month, day of week, hour and minute. 

Ranges are specifiable for each. 

Schedule a one-shot action for an arbitrary time. 

Pass data between processes and divert a copy into one or more files. 

1.7. Status Inquiries 

oLS 

o FILE 

List the names of one, several, or all files in one or more directories. 
OAlphabetic or temporal sorting, up or down. 
OOptional information: size, owner, group, date last modified, date last accessed, 

permissions, i-node number. 

Try to determine what kind of information is in a file by consulting the file sys­
tem index and by reading the file itself. 



o DATE 

ODF 

oDU 

o QUOT 

o WHO 

OPS 

OIOSTAT 

o TTY 

oPWD 

-6-

Print today·s date and time. Has considerable knowledge of calendric and horo­
logical peculiarities. 
OMay set UNIX/32V·s idea of date and time. 

Report amount of free space on file system devices. 

Print a summary of total space occupied by all files in a hierarchy. 

Print summary of file space usage by user id. 

Tell who·s on the system. 
OList of presently logged in users, ports and times on. 
OOptional history of alilogins and logouts. 

Report on active processes. 
OList your own or everybody·s processes. 
OTell what commands are being executed. 
OOptional status information: state and scheduling info, priority, attached termi· 

nal, what it's waiting for, size. 

Print statistics about system I/O activity. 

Print name of your terminal. 

Print name of your working directory. 

1.8. Backup and Maintenance 

o MOUNT 

OUMOUNT 

OMKFS 

OMKNOD 

OTP 

o TAR 

o DUMP 

o RESTOR 

OSU 

o DCHECK 

o ICHECK 

o NCHECK 

Attach a device containing a file system to the tree of directories. Protects against 
nonsense arrangements. 

Remove the file system contained on a device from the tree of directories. Protects 
against removing a busy device. 

Make a new file system on a device. 

Make an i-node (file system entry) for a special file. Special files are physical dev· 
ices, virtual devices, physical memory, etc. 

Manage file archives on magnetic tape or DECtape. TAR is newer. 
OCollect files into an archive. 
OUpdate DECtape archive by date. 
OReplace or delete DECtape files. 
OPrint table of contents. 
ORetrieve from archive. 

Dump the file system stored on a specified device, selectively by date, or indiscrim· 
inately. 

Restore a dumped file system, or selectively retrieve parts thereof. 

Temporarily become the super user with all the rights and privileges thereof. 
Requires a password. 

Check consistency of file system. 
OPrint gross statistics: number of files, number of directories, number of special 

files, space used, space free. 

c 



( "-- .. 

OCLRI 

o SYNC 

-7-

OReport duplicate use of space. 
ORetrieve lost space. 
OReport inaccessible files. 
OCheck consistency of directories. 
OList names of all files. 

Peremptorily expunge a file and its space from a file system. Used to repair dam­
aged file systems. 

Force all outstanding I/O on the system to completion. Used to shut down grace­
fully. 

1.9. Accounting 

The timing information on which the reports are based can be manually cleared or shut off com­
pletely. 

o AC Publish cumulative connect time report. 

OSA 

OConnect time by user or by day. 
OFor all users or for selected users. 

Publish Shell accounting report. Gives usage information on each command exe­
cuted. 
ONumber of times used. 
OTotal system time, user time and elapsed time. 
OOptional averages and percentages. 
OSorting on various fields. 

1.10. Communication 

o MAll., Mail a message to one or more users. Also used to read and dispose of incoming 
mail. The presence of mail is announced by LOGIN and optionally by SH. 
OEach message can be disposed of individually. 
OMessages can be saved in files or forwarded. 

o CALEl\TIAR Automatic reminder service for events of today and tomorrow. 

o "WRITE 

o WALL 

OMESG 

OCU 

OUUCP 

Establish direct terminal communication with another user. 

Write to all users. 

Inhibit receipt of messages from WRITE and WALL. 

Call up another time-sharing system. 
OTransparent interface to remote machine. 
OFile transmission. 
OTake remote input from local file or put remote output into local file. 
ORemote system need not be UNIX/32V. 

UNIX to UNIX copy. 
OAutomatic queuing until line becomes available and remote machine is up. 
OCopy between two remote machines. 
ODifferences, mail, etc., between two machines. 

1.11. Basic Program Development Tools 

Some of these utilities are used as integral parts of the higher level languages described in section 
2. 

DAR Maintain archives and libraries. Combines several files into one for housekeeping 
efficiency. 



OAS 

o Library 

OADB 

DOD 

OLD 

o LORDER 

ONM 

OCreate new archive. 
OUpdate archive by date. 
OReplace or delete files. 
OPrint table of contents. 
ORetrieve from archive. 

Assembler. 

-8-

OCreates object program consisting of 
code, normally read-only and sharable, 
initialized data or read-write code, 
uninitialized data. 

ORelocatable object code is directly executable without further transformation. 
OObject code normally includes a symbol table. 
O"Conditional jump" instructions become branches or branches plus jumps 

depending on distance. 

The basic run-time library. These routines are used freely by all software. 
OBuffered character-by-character I/O. 
OFormatted input and output conversion (SCANF and PRINTF) for standard 

input and output, files, in-memory conversion. 
OStorage allocator. 
OTime conversions. 
ONumber conversions. 
OPassword encryption. 
OQuicksort. 
ORandom number generator. 
OMathematical function library, including trigonometric functions and inverses, 

exponential, logarithm, square root, bessel functions. 

Interactive debugger. 
OPostmortem dumping. 
OExamination of arbitrary files, with no limit on size. 
Olnteractive breakpoint debugging with the debugger as a separate process. 
OSymbolic reference to local and global variables. 
OStack trace for C programs. 
OOutput formats: 

1-, 2-, or 4-byte integers in octal, decimal, or hex 
single and double floating point 
character and string 
disassembled machine instructions 

OPatching. 
OSearching for integer, character, or floating patterns. 

Dump any file. Output options include any combination of octal or decimal or 
hex by words, octal by bytes, ASCII, opcodes, hexadecimal. 
ORange of dumping is controllable. 

Link edit. Combine relocatable object files. Insert required routines from specified 
libraries. 
OResulting code is sharable by default. 

Places object file names in proper order for loading, so that files depending on oth­
ers come after them. 

Print the namelist (symbol table) of an object program. Provides control over the 
style and order of names that are printed. 

'C'" '.' \ • J 



o SIZE 

o STRIP 

o TIME 

o PROF 

o MAKE 

- 9-

Report the memory requirements of one or more object files. 

Remove the relocation and symbol table information from an object file to save 
space. 

Run a command and report timing information on it. 

Construct a profile of time spent per routine from statistics gathered by time­
sampling the execution of a program. 
OSubroutine call frequency and average times for C programs. 

Controls creation of large programs. Uses a control file specifying source file 
dependencies to make new version; uses time last changed to deduce minimum 
amount of work necessary. 
OKnows about CC, YACC, LEX, etc. 

1.12. UNIX/32V Programmer's Manual 

o Manual 

o 1-fAN 

Machine-readable version of the UNIX/32V Programmer's Manual. 
OSystem overview. 
OAll commands. 
OAlI system calls. 
OAlI subroutines in C and assembler libraries. 
OAlI devices and other special files. 
OFormats of file system and kinds of files known to system software. 
OBoot and maintenance procedures. 

Print specified manual section on your terminal. 

1.13. Computer-Aided Instruction 

DLEARN 

2. Languages 

A program for interpreting CAl scripts, plus scripts for learning about UNIX/32V 
by using it. 
OScripts for basic files and commands, editor, advanced files and commands, 

EQN, MS macros, C programming language. 

2.1. The C Language 

DCC Compile and/or link edit programs in the C language. The UNIX/32V operating 
system, most of the subsystems and C itself are written in C. For a full descrip­
tion of C, read The C Programming Language, Brian W. Kernighan and Dennis 
M. Ritchie, Prentice-Hall, 1978. 
OGeneral purpose language designed for structured programming. 
OData types include character, integer, float, double, pointers to all types, func­

tions returning above types, arrays of all types, structures and unions of all 
types. 

OOperations intended to give machine-independent control of full machine facil-
ity, including to-memory operations and pointer arithmetic. 

OMacro preprocessor for parameterized code and inclusion of standard files. 
OAlI procedures recursive, with parameters by value. 
OMachine-independent pointer manipulation. 
OObject code uses full addressing capability of the VAX-H. 
ORuntime library gives access to all system facilities. 
ODefinable data types. 



o LINT 

o CB 

2.2. Fortran 

OF77 

ORATFOR 

OSTRUCT 

-10 -

OBlock structure 

Verifier for C programs. Reports questionable or nonportable usage such as: 
Mismatched data decla:rations and procedure interfaces. 
Nonportable type conversions. 
Unused variables, unreachable code, n~eft'ect operations. 
Mistyped pointers. 
Obsolete syntax. 

OFull cross-module checking of separately compiled programs. 

A beautifier for C programs. Does proper indentation and placement of braces. 

A full compiler for ANSI Standard Fortran 77. 
OCompatible with C and supporting tools at object level. 
OOptional source compatibility with Fortran 66. 
OFree format source. 
OOptional subscript-range checking, detection of uninitialized variables. 
OAlI widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-

byte complex. 

Ratfor adds rational control structure alae to Fortran. 
OCompound statema3ts. 
OIr-else, do, for, while, repeat-until, break, next statements. 
OSymbolic constants. 
OFile insertion. 
OFree format source 
OTranslation of relat.ioo.als like>, >=. 
OProduces genuine Fortran to carry away. 
OMay be used with F77. 

Converts ordinary ugly Fortran into structured Fortran (Le., Ratfor), using state­
ment grouping, if-else, while, for, ~peat-uDtil. 

2.3. Other Algorithmic Languages 

o DC 

o BC 

Interactive programmable desk calculator. Has named storage locations as well as 
conventional stack for holding integers or programs. 
OUnlimited precision decimal arithmetic. 
OAppropriate treatment of decimal fractions. 
OArbitrary input and output radices, in particular binary, octal, decimal and 

hexadecimal. 
OReverse Polish operators: 

+ - * I 
remainder, power, square root, 
load, store, duplicate, clear, 
print, enter program text, execute. 

A C-like interactive interface to the desk calculator DC. 
OAlI the capabilities of DC with a high-level syntax. 
OArrays and recursive functions. 
OImmediate evaluation of expressions and evaluation of functions upon call. 
OArbitrary precision elementary functions: exp, sin, cos, atan. 
OGo-to-iess programming. 

o 



CI 

- 11-

2.4. Macroprocessing 

OM4 A general purpose macroprocessor. 
o Stream-oriented , recognizes macros anywhere in text. 
OSyntax fits with functional syntax of most higher-level languages. 
OCan evaluate integer arithmetic expressions. 

2.5. Compiler-compilers 

o YACC 

o LEX 

An LR(l)-based compiler writing system. During execution of resulting" parsers, 
arbitrary C functions may be called to do code generation or semantic actions. 
OBNF syntax specifications. 
OPrecedence relations. 
OAccepts formally ambiguous grammars with non-BNF resolution rules. 

Generator of lexical analyzers. Arbitrary C functions may be called upon isolation 
of each lexical token. 
OFull regular expression, plus left and right context dependence. 
OResulting lexical analysers interface cleanly with YACC parsers. 

3. Text Processing 

3.1. Document Preparation 

OED 

OPTX 

o SPELL 

o LOOK 

o CRYPT 

Interactive context editor. Random access to all lines of a file. 
OFind lines by number or pattern. Patterns may include: specified characters, 

don't care characters, choices among characters, repetitions of these constructs, 
beginning of line, end of line. 

OAdd, delete, change, copy, move or join lines. 
OPermute or split contents of a line. 
OReplace one or all instances of a pattern within a line. 
OCom bine or split files. 
OEscape to Shell (command language) during editing. 
ODo any of above operations on every pattern-selected line in a given range. 
OOptional encryption for extra security. 

Make a permuted (key word in context) index. 

Look for spelling errors by comparing each word in a document against a word 
list. 
025,OOO-word list includes proper names. 
OHandles common prefixes and suffixes. . 
OCollects words to help tailor local spelling lists. 

Search for words in dictionary that begin with specified prefix. 

Encrypt and decrypt files for security. 

3.2. Document Formatting 

o TROFF 

o NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter; 
NROFF drives ascii terminals of all types. This summary was typeset using 
TROFF. TROFF and NROFF are capable of elaborate feats of formatting, when 
appropriately programmed. TROFF and NROFF accept the same input language. 



OCompletely definable page format keyed to dynamically planted "interrupts" at 
specified lines. 

OMaintains several separately definable typesetting environments (e.g., one for 
body text, one for footnotes, and one for unusually elaborate headings). 

OArbitrary number of output pools can be combined at will. 
OMacros with substitutable arguments, and macros invocable in mid-line. 
OComputation and printing of numerical quantities. 
OConditional execution of macros. 
OTabular layout facility. 
OPositions expressible in inches, centimeters, ems, points, machine units or arith-

metic combinations thereof. 
OAccess to character-width computation for unusually difficult layout problems. 
OOverstrikes, built-up brackets, horizontal and vertical line drawing. 
ODynamic relative or absolute positioning and size selection, globally or at the 

character level. 
OCan exploit the characteristics of the terminal being used, for approximating 

special characters, reverse motions, proportional spacing, etc. 

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultaneously) 
in 15 sizes. TROFF provides terminal output for rough sampling of the product. 

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the 
postprocessor COL. 

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF, 
although unskilled personnel can easily be trained to enter documents according to canned formats 
such as those provided by MS, below. TROFF and EQN are essentially identical to NROFF and 
NEQN so it is usually possible to define interchangeable formats to produce approximate proof 
copy on terminals before actual typesetting. The preprocessors MS, TBL, and REFER are fully 
compatible with TROFF and NROFF. 

o MS A standardized manuscript layout package for use with NROFF ITROFF. This 
document was formatted with MS. 

DEQN 

OPage numbers and draft dates. 
OAutomatically numbered subheads. 
OFootnotes. 
OSingle or double column. 
OParagraphing, display and indentation. 
ONumbered equations. 

A mathematical typesetting preprocessor for TROFF. Translates easily readable 
formulas, either in-line or displayed, into detailed typesetting instructions. For­
mulas are written in a style like this: 

sigma sup 2 -=- lover N s~m from i=1 to N (x sub i-x bar) sup 2 

which produces: 

OAutomatic calculation of size changes for subscripts, sub-subscripts, etc. 
OFull vocabulary of Greek letters and special symbols, such as 'gamma', 

'GAMMA', 'integral'. 
OAutomatic calculation of large bracket sizes. 
OVertical "piling" of formulae for matrices, conditional alternatives, etc. 
OIntegrals, sums, etc., with arbitrarily complex limits. 
ODiacriticals: dots, double dots, hats, bars, etc. 

o 



(~: 
oNEQN 

oTBL 

- 13-

OEasily learned by non programmers and mathematical typists. 

A version of EQN for NROFFj accepts the same input language. Prepares formu­
las for display on any terminal that NROFF knows about, for example, those 
based on Diablo printing mechanism. 
OSame facilities as EQN within graphical capability of terminal. 

A preprocessor for NROFF /TROFF that translates simple descriptions of table 
layouts and contents into detailed typesetting instructions. 
OComputes column widths. . 
OHandles left- and right-justified columns, centered columns and decimal-point 

alignment. 
OPlaces column titles. 
OTable entries can be text, which is adjusted to fit. 
OCan box all or parts of table. 

o REFER Fills in bibliographic citations in a document from a data base (not supplied). 
OReferences may be printed in any style, as they occur or collected at the end. 
OMay be numbered sequentially, by name of author, etc. 

o TC Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for check-
ing TROFF page layout before typesetting. 

o COL Canonicalize files with reverse line feeds for one-pass printing. 

o DEROFF Remove all TROFF commands from input. 

o CHECKEQ Check document for possible errors in EQN usage. 

4. Information Handling 

o SORT 

o TSORT 

o Ul\TJ.Q 

oTR 

oDIFF 

oCOMM 

o JOIN 

oGREP 

Sort or merge ASCn files line-by-line. No limit on input size. 
OSort up or down. 
OSort lexicographically or on numeric key. 
OMultiple keys located by delimiters or by character position. 
OMay sort upper case together with lower into dictionary order. 
OOptionally suppress duplicate data. 

Topological sort - converts a partial order into a total order. 

Collapse successive duplicate lines in a file into one line. 
OPublish lines that were originally unique, duplicated, or both. 
OMay give redundancy count for each line. 

Do one-to-one character translation according to an arbitrary code. 
OMay coalesce selected repeated characters. 
OMay delete selected characters. 

Report line changes, additions and deletions necessary to bring two files into 
agreement. 
OMay produce an editor script to convert one file into another. 
OA variant compares two new versions against one old one. 

Identify common lines in two sorted files. Output in up to 3 columns shows lines 
present in first file only, present in both, and/or present in second only. 

Combine two files by joining records that have identical keys. 

Print all lines in a file that satisfy a pattern as used in the editor ED. 
OMay print all lines that fail to match. 



o LOOK 

OWC 

o SED 

OAWK 

5. Graphics 

- 14-

OMay print count of hits. 
OMay print first hit in each file. 

Binary search in sorted file for lines with specified prefix. 

Count the lines, "words" (blank-separated strings) and characters in a file. 

Stream-oriented version of ED. Can perform a sequence of editing operations on 
each line of an input stream of unbounded length. 
OLines may be selected by address or Tange of addresses. 
OControl flow and conditional testing. 
OMultiple output streams. 
OMulti-line capability. 

Pattern scanning and processing language. Searches input for patterns, and per­
forms actions on each line of input that satisfies the pattern. 
OPatterns include regular expressions, arithmetic and lexicographic conditions, 

boolean combinations and ranges of these. 
OData treated as string or numeric as appropriate. 
OCan break input into fields; fields are variables. 
OVariables and arrays (with non-numeric subscripts). 
OFull set of arithmetic operators and control flow. 
OMultiple output streams to files and pipes. 
OOutput can be formatted as desired. 
OMulti-line capabilities. 

The programs lD this section are predominantly intended for use with Tektronix 4014 storage 
scopes. 

o GRAPH 

o SPLl1\1E 

o PLOT 

Prepares a graph of a set of input numbers. 
OInput scaled to fit standard plotting area. 
OAbscissae may be suppiied automatically. 
OGraph may be labeled. 
OControl over grid style, line style, graph orientation, etc. 

Provides a smooth curve through a set of points intended for GRAPH. 

A set of filters for printing graphs produced by GRAPH and other programs on 
various terminals. Filters provided for 4014, DASI terminals, Versatec 
printer/plotter. 

6. Novelties, Games, and Things That Didn't Fit Anywhere Else 

o BACKGAMMON 

o BCD 

o CAL 

o CHING 

o FORTUl\TE 

o UNITS 

A player of modest accomplishment. 

Converts ascii to card-image form. 

Print a calendar of specified month and year. 

The I Ching. Place your own interpretation on the output. 

Presents a random fortune cookie on each invocation. Limited jar of cookies 
included. 

Convert amounts between different scales of measurement. Knows hundreds of 
units. For example, how many km/sec is a parsec/megayear? 

---~--------- -----------

o 



C\ 
/' 

o 

- 15-

° ARITHMETIC 

° QUIZ 
oWUMP 

Speed and accuracy test for number facts. 

Test your knowledge of Shakespeare, Presidents, capitals, etc. 

Hunt the wumpus, thrilling search in a dangerous cave. 

° HANGMAN Word-guessing game. Uses a dictionary supplied with SPELL. 

° FISH Children's card-guessing game. 





(-

( 

o 

7th Edition UNIX-Summary 

September 6, 1978 

Bell Laboratories 
Murray Hill, New Jersey 07974 

A. What's new: highlights of the 7th Edition UNIXt System 

Aimed at larger systems. Devices are addressable to 281 bytes, files to 280 bytes. 128K memory 
(separate instruction and data space) is needed for some utilities. 

Portability. Code of the operating system and most utilities has been extensively revised to 
minimize its dependence on particular hardware. 

Fortran 77. F77 compiler for the new standard language is compatible with C at the object 
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured 
dialect usable with F77. 

Shell. Completely new SH program supports string variables, trap handling, structured program­
ming, user profiles, settable search path, multilevel file name generation, etc. 

, Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is 
now highly compatible with TROFF. MS macro package provides canned commands for many 
common formatting and layout situations. TBL provides an easy to learn language for preparing 
complicated tabular material. REFER fills in bibliographic citations from a data base. 

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines. 

Data processing. SED stream editor does multiple editing functions in parallel on a data stream 
of indefinite length. AWK report generator does free-field pattern selection and arithmetic opera­
tions. 

Program development. MAKE controls re-creation of complicated software, arranging for 
minimal recompilation. 

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and 
data spaces, floating point, etc. 

C language. The language now supports definable data types, generalizes initialization, block 
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type 
checking and detection of probable errors and portability problems even across separately compiled 
functions. 

Lexical analyzer generator. LEX converts specification of regular expressions and semantic 
actions into a recognizing subroutine. Analogous to YACC. 

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters 
adapted to various devices are now standard. 

Standard input-output package. Highly efficient buffered stream I/O is integrated with for­
mated input and output. 

Other. The operating system and utilities have been enhanced and freed of restrictions in many 
other ways too numerous to relate. 

t UNIX is a trademark of Bell Laboratories. 



-2-

B. Hardware 

The 7th edition UNIX operating system runs on DEC PDP-11/45 or 11/70* with at least the 
following equipment: 

123K to 2M words of managed memory; parity not used. 

disk: RP03, RP04, RP06, RK05 (more than 1 RK05) or equivalent. 

console typewriter. 

clock: KW11-L or KW11-P. 

The following equipment is strongly recommended: 

communications controller such as DL11 or DH11. 

full duplex 96-character ASCn terminals. 

9-track tape or extra disk for system backup. 

The system is normally distributed on 9-track tape. The mImmum memory and disk space 
specified is enough to run and maintain UNIX. More will be needed to keep all source on line or to 
handle a large number of users, big data bases, diversified complements of devices, or large pro­
grams. The resident code occupies 12-20K words depending on configuration; system data occupies 
10-28K words. 

There is no commitment to provide 7th Edition UNIX on PDP-11/34, 11/40 and 11/60 
hardware. 

c. Software 

Most of the programs available as UNIX commands are listed. Source code and printed 
manuals are distributed for all of the listed software except games. Almost all of the code is writ­
ten in C. Commands are self-contained and do not require extra setup information, unless 
specifically noted as "interactive." Interactive programs can be made to run from a prepared script 
simply by redirecting input. Most programs intended for interactive use (e.g., the editor) allow for 
an escape to command level (the Shell). Most file processing commands can also go from standard 
input to standard output ("filters"). The piping facility of the Shell may be used to connect such 
filters directly to the input or output of other programs. 

1. Basic Software 

This includes the time-sharing operating system with utilities, a machine language assembler 
and a compiler for the programming language C-enough software to write and run new applica­
tions and to maintain or modify UNIX itself. 

1.1. Operating System 

~1X The basic resident code on which everything else depends. Supports the system 
calls, and maintains the file system. A general description of UNIX design philo­
sophy and system facilities appeared in the Communications of the ACM, July, 
1984. A more extensive survey is in the Bell System Technical Journal for July­
August 1978. Capabilities include: 

• Reentrant code for user processes. 

• Separate instruction and data spaces. 

• "Group" access permissions for cooperative projects, with overlapping 
memberships. 

• Alarm-clock timeouts. 

• PDP is a Trademark of Digital Equipment Corporation. 

(\ 

U 

c 



DEVICES 

BOOT 

MKCO~'F 

- 3-

• Timer-interrupt sampling and interprocess monitoring for debugging and 
measurement. 

• Multiplexed I/O for machine-to-machine communication. 

All I/O is logically synchronous. I/O devices are simply files in the file system. 
Normally, invisible buffering makes all physical record structure and device 
characteristics transparent and exploits the hardware's ability to do overlapped 
I/O. Unbuffered physical record I/O is available for unusual applications. 
Drivers for these devices are availablej· others can be easily written: 

• Asynchronous interfaces: DHll, DLll. Support for most common ASCII 
terminals. 

• Synchronous interCace: DPll. 

• Automatic calling unit interface: DNll. 

• Line printer: LPll. 

• Magnetic tape: TUIO and TU16. 

• DECtape: TCll. 

• Fixed head disk: RSll, RS03 and RS04. 

• Pack type disk: RP03, RP04, RP06; minimum-latency seek scheduling. 

• Cartridge-type disk: RK05, one or more physical devices per logical device. 

• Null device. 

• Physical memory of PDP-ll, or mapped memory in resident system. 

• Phototypesetter: Graphic Systems Systemjl through DRllC. 

Procedures to get UNIX started. 

Tailor device-dependent system code to hardware configuration. As distributed, 
UNIX can be brought up directly on any acceptable CPU with any acceptable 
disk, any sufficient amount of core, and either clock. Other changes, such as 
optimal assignment of directories to devices, inclusion of floating point simulator, 
or installation of device names in file system, can then be made at leisure. 

1.2. User Access Control 

LOGIN 

PASSWD 

NEWGRP 

Sign on as a new user. 

• Verify password and establish user's individual and group (project) identity. 

• Adapt to characteristics of terminal. 

• Establish working directory. 

• Announce presence of mail (from MAIL). 
• Publish message oC the day. 

• Execute user-specified profile. 

• Start command interpreter or other initial program. 

Change a password. 

• User can change his own password. 

• Passwords are kept encrypted Cor security. 

Change working group (project). Protects against unauthorized changes to pro­
jects. 



·4· 

1.3. Terminal Handling 

TABS 

STTY 

Set tab stops appropriately for specified terminal type. 

Set up options for optimal control of a terminal. In so far as they are deducible 
from the input, these options are set automatically by LOGIN. 

• Half vs. full duplex. 

• Carriage return + line feed vs. newline. 

• Interpretation of tabs. 

• Parity. 

• Mapping of upper case to lower. 

• Raw vs. edited input. 

• Delays for tabs, newlines and carriage returns. 

1.4. File Manipulation 

CAT 

CP 

PR 

LPR 

CMP 

TAIL 

SPLIT 

DD 

SUM 

Concatenate one or more files onto standard output. Particularly used for una­
dorned printing, for inserting data into a pipeline, and for buffering output. t.hat. 
comes in dribs and drabs. Works on any file regardless of contents. 

Copy one file to another, or a set of files to a directory. Works on any file 
regardless of contents. 

Print files with title, date, and page number on every page. 

• Multicolumn output. 

• Parallel column merge of several files. 

Off-line print. Spools arbitrary files to the line printer. 

Compare two files and report if different. 

Print last n lines of input 

• May print last n characters, or from n lines or characters to end. 

Split a large file into more manageable pieces. Occasionally necessary for editing 
(ED). 

Physical file format translator, for exchanging data with foreign systems, espe­
cially IBM 370s. 

Sum the words of a file. 

1.5. Manipulation of Directories and File Names 

RM 

LN 

MY 

CH}.10D 

CROWN 

Remove a file. Only the name goes away if any other names are linked to the 
file. 

• Step through a directory deleting files interactively. 

• Delete entire directory hierarchies. 

''Link'' another name (alias) to an existing file. 

Move a file or files. Used for renaming files. 

Change permissions on one or more files. Executable by files' owner. 

Change owner of one or more files. 

o 

(~\ 

~j 



( 

o 

CHGRP 

MKDIR 

RMDIR 

CD 

FIND 

- 5-

Change group (project) to which a file belongs. 

Make a new directory. 

Remove a directory. 

Change working directory. 

Prowl the directory hierarchy finding every title that meets specified criteria. 

• Criteria include: 

name matches a given pattern. 

creation date in given range. 

date of last use in give range. 

given permissions. 

given owner. 

given special file characteristics. 

boolean combinations of above. 

• Any directory may be considered to be the root. 

• Perform specified command on each file found. 

1.6. Running of Programs 

SH The Shell, or command language interpreter. 

• Supply arguments to and run any executable program. 

• Redirect standard input, standard output, and standard error files. 

• 

• 

Pipes: simultaneous execution of one process connected to the input of 
another. 

Compose compound commands using: 

if ... then '" else. 

case switches. 

while loops. 

for loops over lists. 

break, continue and exit. 

parentheses for grouping. 

• Initiate background processes. 

• Perform Shell programs, i.e., command scripts with substitutable argu-
ments. 

• Construct argument lists from all file names satisfying specified patterns. 

• Take special action on traps and interrupts. 

• User-settable search path for finding commands. 

• Executes user-settable profile upon login. 

• Optionally announces presence of mail as it arrives. 

• Provides variables and parameters with default setting. 



TEST 

EXPR 

WAIT 

READ 

ECHO 

SLEEP 

NOHUP 

NICE 

KILL 

CRON 

AT 

TEE 

-6-

Tests for use in Shell conditionals. 

• 
• 
• 

String comparison. 

File nature and accessibility. 

Boolean combinations of the above. 

String computations for calculating command arguments. 

• Integer arithmetic 

• Pattern matching 

Wait for termination of asynchronously running processes. 

Read from a terminal, for interactive Shell procedure. 

Print remainder of command line. Useful for diagnostics or prompts in Shell pro­
grams, or for inserting data into a pipeline. 

Suspend execution for a specified time. 

Run a command immune to hanging up the terminal. 

Run a command in low (or high) priority. 

Terminate named process. 

Schedule regular actions at specified times. 

• Actions are arbitrary programs. 

• Times are conjunctions of month, day of month, day of week, hour and 
minute. Ranges are specifiable for each. 

Schedule a one-shot action for an arbitrary time. 

Pass data between processes and divert a copy into one or more files. 

1.7. Status Inquiries 

L8 

FILE 

DATE 

DF 

DU 

QUOT 

WHP 

List the names of one, several or all files in one or more directories. 

• Alphabetic or temporal sorting, up or down. 

• Optional information: size, owner, group, date last modified, date last 
accessed, permissions, i-node number. 

Try to determine what kind of information is in a file by consuling the file system 
index and by reading the file itself. 

Print today's date and time. Has considerable knowledge of calendric and horo­
logical peculiarities. 

• May set UNIX's idea of date and time. 

Report amount of free space on file system devices. 

Print a summary of total space occupied by all files in a hierarchy. 

Print summary of file space usage by userid. 

Tell who's on the system. 

• List of presently logged in users, ports and times on. 

• Optional history of all logins and logouts. 



( 

(-

(~! 

PS 

IOSTAT 

TTY 

PWD 

- 7-

Report on active processes. 

• 
• 

List your own or everybody's processes. 

Tell what commands are being executed. 

• Optional status information: state and scheduling info, priority, attached 
terminal, what it's waiting for, size. 

Print statistics about system I/O activity. 

Print name of your terminal. 

Print name of your working directory. 

1.S. Backup and Maintenance 

MOUNT 

UMOUNT 

!\l1ITS 

W{.NOD 

'TP 

TAR 

DUMP 

RESTOR 

SU 

DCHECK 

ICHECK 

NCHECK 

Attach a device containing a file system to the tree of directories. Protects 
against nonsense arrangements. 

Remove the file system contained on a device from the tree of directories. Pro­
tects against removing a busy device. 

Make a new file system on a device. 

Make an i-node (file system entry) for a special file. Special files are physical dev­
ices, virtual devices, physical memory, etc. 

Manage file archives on magnetic tape or DECtape. TAR is newer. 

• 
• 
• 

Collect files into an archive. 

Update DECtape archive by date. 

Replace or delete DECtape files. 

• Print table of contents. 

• Retrieve from archive. 

Dump the file system stored on a specified device, selectively by date, or 
indiscriminately. 

Restore a dumped file system, or selectively retrieve parts thereof. 

Temporarily become the super user with all the rights and privileges thereof. 
Requires a password. 

Check consistency of file system. 

• Print gross statistics: number of files, number of directories, number of spe-
cial files, space used, space free. 

• Report duplicate use of space. 

• Retrieve lost space. 

• Report inaccessible files. 

• Check consistency of directories. 

• List names of all files. 



CLRI 

SYNC 

Peremptorily expunge a file and its space from a file system. Used to repair dam· 
aged file systems. 

Force all outstanding I/O on the system to completion. Used to shut down grace. 
fully. 

1.9. Accounting 

The timing information on which the reports are base~ can be manually cleared or shut off com­
pletely. 

AC 

SA 

Publish cumulative connect time report. 

• Connect time by user or by day. 

• For all users or for selected users. 

Publish Shell accounting report. Gives usage information on each command exe. 
cuted. 

• Number of times used. 

• Total system time, user time and elapsed time. 

• Optional averages and percentages. 

• Sorting on various fields. 

1.10. Communication 

:MAlL 

CALEl'.'DAR 

WRITE 

WALL 

MESG 

CU 

UUCP 

Mail a message to one or more users. Also used to read and dispose of incoming 
mail. The presence of mail is announced by LOGIN and optionally by SH. 

• Each message can be disposed of individually. 

• Messages can be saved in files or forwarded. 

Automatic reminder service for events of today and tomorrow. 

Establish direct terminal communication with another user. 

Write to all users. 

Inhibit receipt of messages from WRITE and WALL. 

Call up another time-sharing system. 

• Transparent interface to remote machine. 

• File transmission. 

• Take remote input from local file or put remote output into local file. 

• Remote system need not be UNIX. 

UNIX to UNIX copy. 

• Automatic queuing until line becomes available and remote machine is up. 

• Copy between two remote machines. 

• Differences, mail, etc., between two machines. 

o 



( 

(-

C-
I 

./ 

- 9-

1.11. Basic Program Development Tools 

Some of these utilities are used as integral parts of the higher level languages described in section 
2. 

AR 

AS 

Library 

ADB 

Maintain archives and libraries. Combines several files into one for housekeeping 
efficiency. 

• Create new archive. 

• Update archive by date. 

• Replace or delete files. 

• Print table of contents. 

• Retrieve from archive. 

Assembler. Similar to PAlrll, but different in detail. 

• Creates object program consisting of 

code, possibly read-only, 

initialized data or read-write code, 

uninitialized data. 

• Relocatable object code is directly executable without further transforma-
tion. 

• Object code normally includes a symbol table. 

• Multiple source files. 

• Local labels. 

• Conditional assembly. 

• "Conditional jump" instructions become branches or branches plus jumps 
depending on distance. 

The basic run-time library. These routines are used freely by all software. 

• Buffered character-by-character I/0. 

• Formatted input and output conversion (SCAA'F and PRINTF) for stan-
dard input and output, files, in-memory conversion. 

• Storage allocator. 

• Time conversions. 

• Number conversions. 

• Password encryption. 

• Quicksort. 

• Random number generator. 

• Mathematical function library, including trigonometric functions and 
inverses, exponential, logarithm, square root, bassel functions. 

Interactive debugger. 

• Postmortem dumping. 

• Examination of arbitrary files, with no limit on size. 

• Interactive breakpoint debugging with the debugger as a separate process. 

• Symbolic reference to local and global variables. 

• Stack trace for C programs. 



OD 

LD 

LORDER 

NM 

SIZE 

STRIP 

TIME 

PROF 

MAKE 

·10· 

• Output formats: 

1-, 2-, or 4-byte integers in octal, decimal, or hex 

single and double floating point 

character and string 

disassembled machine instructions 

• Patching. 

• Searching for integer, character, or floating patterns. 

• Handles separated instruction and data space. 

Dump any file. Output options include any combination of octal or decimal by 
words, octal by bytes, ASCn, opcodes, hexadecimal. 

• Range of dumping in controllable. 

Link edit. Combine relocatable object files. Insert required routines from 
specified libraries. 

• Resulting code may be sharable. 

• Resulting code may have separate instruction and data spaces. 

Places object file names in proper order for loading, so that files depending on 
others come after them. 

Print the namelist (symbol table) of an object program. Provides control over 
the style and order of names that are printed. 

Report the core requirements of one or more object files. 

Remove the relocation and symbol table information from an object file to save 
space. 

Run a command and report timing information on it. 

Construct a profile of time spent per routine from statistics gathered by t.ime 
sampling the execution of a program. Uses floating point. 

• Subroutine call frequency and average times for C programs. 

Controls creation of large programs. Uses a control file specifying source file 
dependencies to make new version; uses time last changed to deduce minimum 
amount of work necessary. 

• Knows about CC, YAC, LEX, etc. 

1.12. UNIX Programmer's Manual 

Manual Machine-readable version of the UNIX Programmer's Manual. 

• System overview. 

• All commands. 

• All system calls. 
• All subroutines in C and assembler libraries. 

• All devices and other special files. 

• Formats of file system and kinds of files known to system software. 

• Boot and maintenance procedures. 

(~"'\ 

~-j 

o 



( 

- 11-

1.13. Computer-Aided Instruction 

LEARN 

2. Languages 

A program for interpreting CAl scripts, plus scripts for learning about Ul\.1X by 
using it. 

• Scripts for basic files and commands, editor, advanced files and commands, 
EQN, MS macros, C programming language. 

2.1. The C Language 

CC 

LINT 

CB 

2.2. Fortran 

F77 

Compile and/or link edit programs in the C language. The UNIX operating sys­
tem, most of the subsystems and C itself are written in C. For a full description 
of C, read The C Programming Language, Brian W Kernighan and Dennis M. 
Ritchie, Prentice-Hall, 1978. 

• General purpose language designed for structured programming. 

• Data types include characters, integer, float, double, pointers to all types, 
functions returning above types, arrays of all types, structures and unions 
of all types. 

• Operations intended to give machine-independent control of full machine 
facility, including to memory operations and pointer arithmetic. 

• Macro preprocessor for parameterized code and inclusion of standard files. 

• All procedures recursive, with parameters by value. 

• Machine-independent pointer manipulation. 

• Object code uses full addressing capability of the PDP-11. 

• 
• 

Runtime library gives access to all system facilities. 

Definable data types. 

• Block structure. 

Verifier for C programs. Reports questionable or nonportable usage such as: 

Mismatched data declarations and procedure interfaces. 

Nonportable type conversions. 

Unused variables, unreachable code, no-effect operations. 

Mistyped pointers. 

Obsolete syntax. 

• Full cross-module checking of separately compiled programs. 

A beautifier for C programs. Does proper indentation and placement of braces. 

A full compiler for ANSI Standard Fortran 77. 

• Compatible with C and supporting tools at object level. 

• Optional source compatibility with Fortran 66. 

• Free format source. 

• Optional subscript-range checking, detection of uninitialized variables. 

• All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 
16-byte complex. 



RATFOR 

STRUCT 

- 12-

Ratfor adds rational control structure ala C to Fortran. 

• Compound statements. 

• 
• 

If-else, do, for, while, repeat-until, break, next statements. 

Symbolic constants. 

• File insertion. 

• Free format source. 

• Translation of relationals like>, >=. 
• Produces genuine Fortran to carry away. 

• May be used with F77. 

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using state­
ment grouping, if-else, while, for, repeat-until. 

2.3. Other Algorithmic Languages 

BAS 

DC 

An interactive interpreter, similar in style to BASIC. Interpret unnumbered 
statements immediately, numbered statements upon "run". 

• Statements include: 

comment, 

dump, 

for ... next, 

goto, 

if ... else ... fi, 

list, 

print, 

prompt, 

return, 

run, 

save. 

• All calculations double precision. 

• Recursive function defining and calling. 

• Built-in functions include log, exp, sin, cos, atn, int, sqr, abs, rnd. 

• Escape to ED for complex program editing. 

Interactive programmable desk calculator. Has named storage locations as well as 
conventional stack for holding integers or programs. 

• Unlimited precision decimal arithmetic. 

• Appropriate treatment of decimal fractions. 

• Arbitrary input and output radices, in particular binary, octal, decimal and 
hexadecimal. 

• Reverse Polish operators: 

+ - * / 
remainder, power, square root, 

load, store, duplicate, clear, 

print, enter program text, execute. 

-------------------- ._----_._-------- --- ------_ .. --

c 



- 13-

BC A C-like interactive interface to the desk calculator DC. 

• All the capabilities of DC with a high-level syntax. 

• Arrays and recursive functions. 

• Immediate evaluation of expressions and evaluation of functions upon call. 

• Arbitrary precision elementary functions: exp, sin, cos, atn. 

• Go-to-less programming. 

M4 A general purpose macroprocessor. 

• Stream-oriented, recognizes macros anywhere in text. 

• Syntax fits with functional syntax of most higher-level languages. 

• Can evaluate integer arithmetic expressions. 

2.4. Compiler-compilers 

YACC 

LEX 

An LR-based compiler writing system. During execution of resulting parsers, 
arbitrary C functions may be called to do code generation or semantic actions. 

• B~'F syntax specifications. 

• Precedence relations. 

• Accepts formally ambiguous grammars with non-BNF resolution rules. 

Generator of lexical analyzers. Arbitrary C functions may be callt'd upon isola­
tion of each lexical token. 

• Full regular expression, plus left and right context dependence. 

• Resulting lexical analyzers interface cleanly with YACC parsers. 

(- .'. 3. Text Processing 

(j 

3.1 Document Preparation 

ED 

PTX 

SPELL 

Interactive context editor. Random access to all lines of a file. 

• Find lines by number or pattern. Patterns may include: specified charac­
ters, don't care characters, choices among characters, repetitions of these 
constructs, beginning of line, end of line. 

• Add, delete, change, copy, move or join lines. 

• Permute or split contents of a line. 

• Replace one or all instances of a pattern within a line. 

• Combine or split files. 

• Escape to Shell (command language) during editing. 

• Do any of above operations on every pattern-selected line in a given range. 

• Optional encryption for extra security. 

Make a permuted (key word in context) index. 

Look Cor spelling errors by comparing each word in a document against a word 
list. 

• 25,OOO-word list includes proper names. 

• Handles common prefixes and suffIXes. 

• Collects words to help tailor local spelling lists. 



LOOK 

TYPO 

CRYPT 

- 14-

Search (or words in dictionary that begin with specified prefix. 

Look for spelling errors by a statistical technique; not limited to English. 

Encrypt and decrypt files (or security. 

3.2. Document Formatting 

ROFF. 

TROFF 

NROFF 

A typesetting program for terminals. Easy for nontechnical people to learn, and 
good for simple documents. Input consists of data lines iIltermixed with control 
lines, such as 

.sp 2 insert two lines of space 

.ce center the next line 
ROFF is deemed to be obsolete; it is intended only for casual use. 

• Justification of either or both margins. 

• Automatic hyphenation. 

• Generalized running heads and feet, with even-odd page capability, number­
ing, etc. 

• Definable macros for frequently used control sequences (no substitutable 
arguments). 

• All 4 margins and page size dynamically adjustable. 

• Hanging indents and one-line indents. 

• Absolute and relative parameter settings. 

• Optional legal-style numbering of output lines. 

• Multiple file capability. 

• Not usable as a filter. 

Advanced typesetting, TROFF drives a Graphic Systems phototypesetter; 
NROFF drives ASCn terminals of all types. This summary was typeset using 
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of 
much more elaborate feats of formatting, when appropriately programmed. 
TROFF and NROFF accept the same input language. 

• All ROFF capabilities available or definable. 

• Completely definable page format keyed to dynamically planted "interrupts" 
at specified lines. 

• Maintains several separately definable typesetting environments (e.g., one 
for body text, one for footnotes, and one for unusually elaborate headings). 

• Arbitrary number of output pools can be combined at will. 

• Macros with substitutable arguments, and macros invocable in mid-line. 

• Computation and printing of numerical quantities. 

• Conditional execution of macros. 

• Tabular layout facility. 

• Positions expressible in inches, centimeters, ems, points, machine units or 
arithmetic combinations thereof. 

• Access to character-width computation for unusually difficult layout prob­
lems. 

• Overstrikes, built-up rackets, horizontal and vertical line drawing. 

o 

/~\ 
[ , 

~) 



o 

- 15-

• Dynamic relative or absolute positioning and size selection, globally or at 
the character level. 

• Can exploit the characteristics of the terminal being used, for approximat-
ing special characters, reverse motions, proportional spacing, etc. 

The Graphic Systems typesetter has a vocabulary of severall02-character fonts (4 simultaneously) 
in 15 sizes. TROFF provides terminal output for rough sampling of the product. 

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the 
postprocessor COL. 

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF, 
although unskilled personnel can easily be trained to enter documents according to canned formats 
such as those provided by MS, below. TROFF and EQN are essentially identical to NROFF and 
NEQN so it is usually possible to define interchangeable formats to product approximate proof 
copy on terminals before actual typesetting. The preprocessors MS, TBL, and REFER are fully 
compatible with TROFF and NROFF. 

MS 

EQN 

NEQN 

A standardized manuscript layout package for use with NROFF /TROFF. This 
document was formated with MS. 

• Page numbers and draft dates. 

• Automatically numbered subheads. 

• Footnotes. 

• Single or double column. 

• Paragraphing, display and indentation. 

• Numbered equations. 

A mathematical typesetting preprocessor for TROFF. Translates easily readable 
formulas, either in-line or displayed, into detailed typesetting instructions. For­
mulas are written in a style like this: 

sigma sup 2 "=" 1 over N sum from i=l to N (x sub i-x bar) sup 2 

which produces: 

• Automatic calculation of size changes for subscripts, sub-subscripts, etc. 

• Full vocabulary of Greek letters and special symbols, such as "gamma", 
"G.AJvlli1A" , and "integral". 

• Automatic calculation of large bracket sizes. 

• Vertical "piling" of formulae for matrices, conditional alternatives, etc. 

• Integrals, sums, etc., with arbitrarily complex limits. 

• Diacriticals: dots, double dots, hats, bars, etc. 

• Easily learned by nonprogrammers and mathematical typists. 

A version of EQN for NROFF; accepts the same input language. Prepares formu­
las for display on any terminal that NROFF knows about, for example, those 
based on Diablo printing mechanism. 

• Same facilities as EQN within graphical capability of terminal. 



TBL 

REFER 

TC 

GREEK 

COL 

DEROFF 

CHECKEQ 

- 16-

A preprocessor for NROFF /TROFF that translates simple descriptions of table 
layouts and contents into detailed typesetting instructions. 

• Computes column widths. 
• Handles left- and right-justified columns, centered columns and decimal-

point alignment. 

• Places column titles. 

• Table entries can be text, which ,is adjusted to fit. 

• Can box all or parts of table. 

Fills in bibliographic citations in a document from a data base (not supplied). 

• References may be printed in any style, as they occur or collected at the 
end. 

• May be numbered sequentially, by name of author, etc. 

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for check­
ing TROFF page layout before typesetting. 

Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450, and 
on Tektronix 4014. 

• Gives half-line forward and reverse motions. 

• Approximates Greek letters and other special characters by overstriking. 

Canonicalize files with reverse line feeds for one-pass printing. 

Remove all TROFF commands from input. 

Check document for possible errors in EQN usage. 

4. Information Handling 

SORT 

TSORT 

UNIQ 

TR 

DIFF 

Sort or merge ASCn files line-by-line. No limit on input size. 

• Sort up or down. 

• Sort lexicographically or on numeric key. 

• Multiple keys located by delimiters or by character position. 

• May sort upper case together with lower into dictionary order. 

• Optionally suppress duplicate data. 

Topological sort-converts a partial order into a total order. 

Collapse successive duplicate lines in a file into one line. 

• Publish lines that were originally unique, duplicated, or both. 

• May give redundancy count for each line. 

Do one-to-one character translation according to an arbitrary code. 

• May coalesce selected repeated characters. 

• May delete selected characters. 

Report line changes, additions and deletions necessary to bring two files into 
agreement. 

• May produce an editor script to convert one file into another. 

• A variant compares two new versions against one old one. 

1\ 
U 

o 



o 

COMM 

JOIN 

GREP 

LOOK 

WC 

SED 

AWK 

5. Graphics 

- 17-

Identify common lines in two sorted files. Output in up to 3 columns shows lines 
present in first file only, present in both, and/or present in second only. 

Combine two files by joining records that have identical keys. 

Print all lines in a file that satisfy a pattern as used in the editor ED. 

• May print all lines that fail to match. 

• May print count of hits. 

• May print first hit in each file. 

Binary search in sorted file for lines with specified prefix. 

Count the lines, "words" (blank-separated strings) and characters in a file. 

Stream-oriented version of ED. Can perform a sequence of editing operations on 
each line of an input stream of unbounded length. 

• Lines may be selected by address or range of addresses. 

• Control flow and conditional testing. 

• Multiple output streams. 

• Multi-line capability. 

Pattern scanning and processing language. Searches input for patterns, and per­
forms actions on each line of input that satisfies the pattern. 

• Patterns include regular expressions, arithmetic and lexicographic condi­
tions, boolean combinations and ranges of these. 

• Data treated as string or numeric as appropriate. 

• Can break input into fields; fields are variables. 

• 
• 

Variables and arrays (with non-numeric subscripts). 

Full set of arithmetic operators and control flow. 

• Multiple output streams to files and pipes. 

• Output can be formatted as desired. 

• Multi-line capabilities. 

The programs in this section are predominantly for use with Tektronix 4014 storage scopes. 

GRAPH 

SPLINE 

PLOT 

Prepares a graph of a set of input numbers. 

• Input scaled to fit standard plotting area. 

• Abscissae may be supplied automatically. 

• Graph may be labeled. 

• Control over grid style, line style, graph orientation, etc. 

Provides a smooth curve through a set of points intended for GRAPH. 

A set of filters for printing graphs produced by GRAPH and other programs on 
various terminals. Filters provided for 4014, DASI terminals, Versatec 
printer/plotter. 



- 18-

6. Novelties, Games, and Things That Didn't Fit Anywhere Else 

BACKGAMMON 

CHESS 

CHECKERS 

BCD 

PPT 

BJ 

CUBIC 

MAZE 

MOO 

CAL 

BANJ\T£R 

CHING 

FORTUJ'..'E 

UNITS 

TT 

A player of modest accomplishment. 

Plays good class D chess. 

Ditto for checkers. 

Converts ASCn to card-image form. 

Converts ASCn to paper tape form. 

A blackja.ck dealer. 

An accomplished player of 4x4x4 tic-tac-toe. 

Constructs random mazes for you to solve. 

A fascinating number-guessing game. 

Print a calendar of specified month and year. 

Print output in huge letters. 

The I ching. Place your own interpretation on the output. 

Presents a random fortune cookie on each invocation. Limited jar of cookies 
included. 

Convert amounts between different scales of measurement. Knows hundreds of 
units. For example, how many km/sec is a parsec/megayear? 

A tic-tac-toe program that learns. It never makes the same mistake twice. 

ARITHMETIC Speed and accuracy test for number facts. 

FACTOR 

QUIZ 

WUMP 

REVERSl 

HANGMAN 

FISH 

Factor large integers. 

Test your knowledge of Shakespeare, Presidents, capitals, etc. 

Hunt the wumpus, thrilling search in a dangerous cave. 

A two person board game, isomorphic to Othellol!!i. 

Word guessing game. Uses the dictionary supplied with SPELL. 

Children's card-guessing game. 

c 



( 

o 

UNIX For Beginners - Second Edition 

Brian W Kernighan 

ABSTRAOT 

This paper is meant to help new users get started on the UNIXt operating sys­
tem~ It includes: 

• basics needed ror day-t<>-day use or the system - typing commands, correcting 
typing mistakes, logging in and out, mail, inter-terminal communication, the 
file system, printing files, redirecting I/O, pipes, and the shell. 

• document preparation - a brier discussion or the major rormatting programs 
and macro packages, hints on preparing documents, and capsule descriptions or 
some supporting sortware. 

• UNIX programming - using the editor, programming the shell, programming 
in 0, other languages and tools. 

• An annotated UNIX bibliography. 

September 12, 1986 

t UNIX is a trademark or Bell Laboratories. 



o 



( 

() 

UNIX For Beginners - Second Edition 

En'an W. Kernighan 

INTRODUCTION 

From the user's point of view, the UNIX 
operating system is easy to learn and use, and 
presents few of the usual impediments to getting 
the job done. It is hard, however, for the beginner 
to know where to start, and how to make the best 
use of the facilities available. The purpose of this 
introduction is to help new users get used to the 
main ideas of the UNIX system and start making 
effective use of it quickly. 

You should have a couple of other documents 
with you for easy reference as you read this one. 
The most important is The UNIX Programmer's 
Manual; it's often easier to tell you to read about 
something in the manual than to repeat its con­
tents here. The other useful document is A 
Tutorial Introduction to the UNIX Tezt Editor, 
which will tell you how to use the editor to get 
text - programs, data, documents - into the 
computer. 

A word of warning: the UNIX system has 
become quite popular, and there are several major 
variants in widespread use. Of course details also 
change with time. So although the basic structure 
of UNIX and how to use it is common to all ver­
sions, there will certainly be a few things which are 
different on your system from what is described 
here. We have tried to minimize the problem, but 
be aware of it. In cases of doubt, this paper 
describes Version 7 UNIX. 

This paper has five sections: 

1. Getting Started: How to log in, how to type, 
what to do about mistakes in typing, how to 
log out. Some of this is dependent on which 
system you log into (phone numbers, for 
example) and what terminal you use, so this 
section must necessarily be supplemented by 
local information. 

2. Day-t<>-day Use: Things you need every day 
to use the system effectively: generally useful 
commands; the file system. 

3. Document Preparation: Preparing manuscripts 
is one of the most common uses for UNIX sys­
tems. This section contains advice, but not 
extensive instructions on any of the format­
ting tools 

4. Writing Programs: UNIX is an excellent sys­
tem for developing programs. This section 
talks about some of the tools, but again is not 
a tutorial in any of the programming 
languages provided by the system. 

S. A UNIX Reading List. An annotated bibliog­
raphy of documents that new users should be 
aware of. 

I. GETTING STARTED 

Logging In 

You must have a UNIX login name, which you 
can get from whoever administer~ your system. 
You also need to know the phone number, unless 
your system uses permanently connected terminals. 
The UNIX system is capable of dealing with a wide 
variety of terminals: Terminet 300's; Execuport, 
TI and similar portables; video (CRT) terminals 
like the HP2640, etc.; high-priced graphics termi­
nals like the Tektronix 4014; plotting terminals 
like those from GSI and DASI; and even the vener­
able Teletype in its various forms. But note: UNIX 
is strongly oriented towards devices with lower 
case. If your terminal produces only upper case 
(e.g., model 33 Teletype, some video and portable 
terminals), life will be so difficult that you should 
look for another terminal. 

Be sure to set the switches appropriately on 
your device. Switches that might need to be 
adjusted include the speed, upper flower case 
mode, full duplex, even parity, and any others 
that local wisdom advises. Establish a connection 
using whatever magic is needed for your terminal; 
this may involve dialing a telephone call or merely 
flipping a switch. In either case, UNIX should type 
"login:" at you. If it types garbage, you may be 
at the wrong speed; check the switches. If that 
fails, push the "break" or "interrupt" key a few 
times, slowly. If that fails to produce a login mes­
sage, consult a guru. 

When you get a login: message, type your 
login name in lower case. Follow it by a RETURN; 
the system will not do anything until you type a 
RETURN. If a password is required, you will be 
asked for it, and (if possible) printing will be 
turned off while you type it. Don't forget 



RETURN. 

The culmination of your login efforts is a 
"prompt character," a single character that indi­
cates that the system is ready to accept commands 
from you. The prompt character is usuaJly a dol­
lar sign $ or a percent sign %. (You may also get 
a message of the day just before the prompt char­
acter, or a notification that you have mail.) 

Typing Commands 

Once you've seen the prompt character, you 
can type commands, which are requests that the 
system do something. Try typing 

date 

followed by RETURN. You should get back som&­
thing like 

Mon Jan 16 14:1'1:10 EST 1978 

Don't forget the RETURN after the command, or 
nothing will happen. If you think you're being 
ignored, type a RETURN; something should hap­
pen. RETURN won't be mentioned again, but 
don't forget it - it has to be there at the end of 
each line. 

Another command you might try is who, 
which tells you everyone who is currently logged 
in: 

who 

gives something like 

mb 
ski 
gam 

ttyOI 
tty05 
tty 11 

Jan 16 
Jan 16 
Jan 16 

09:11 
09:33 
13:07 

The time is when the user logged in; "ttyxx" is the 
system's idea of what terminal the user is on. 

If you make a mistake typing the command 
name, and refer to a non-existent command, you 
will be told. For example, if you type 

whom 

you will be told 

whom: not found 

Of course, if you inadvertently type the name of 
some other command, it will run, with more or less 
mysterious results. 

Strange Terminal Behavior 

Sometimes you can get into a state where 
your terminal acts strangely. For example, each 
letter may be typed twice, or the RETURN may 
not cause a line feed or a return to the left margin. 
You can often fix this by logging out and logging 
back in. Or you can read the description of the 
command "tty in section I of the manual. To get 

-2-

--------_.-._-----_.-

intelligent treatment of tab characters (which are 
much used in UNIX) if your terminal doesn't have 
tabs, type the command 

.tty -tabs 

and the system will convert each tab into the right 
number of blanks for you. If your terminal does 
have computer-settable tabs, the command tabs 
Will set the stops correctly for you. 

Mistakes in Typing 

If you make a typing mistake, and see it 
before RETURN has been typed, there are two 
ways to recover. The sharp-character '* erases the 
last character typed; in fact successive uses of '* 
erase characters back to the beginning of the line 
(but not beyond). So if you type badly, you can 
correct as you go: 

dd*atte*#e 

is the same as date. 

The at-sign @ erases all of the characters 
typed so far on the current input line, so if the line 
is irretrievably fouled up, type an @ and start the 
line over. 

What if you must enter a sharp or at-sign as 
part of tne text? If you precede either * or @ by 
a backslash \, it loses its erase meaning. So to 
enter a sharp or at-sign in something, type \* or 
\@. The system will always echo a newline at 
you after your at-sign, even if preceded by a 
backslash. Don't worry - the at-sign has been 
recorded. 

To erase a backslash, you have to type two 
sharps or two at-signs, as in \**. The backslash 
is used extensively in UNIX to indicate that the fol­
lowing character is in some way special. . 

Read-ahead 

UNIX has full read-ahead, which means that 
you can type as fast as you want, whenever you 
want, even when some command is typing at you. 
If you type during output, your input characters 
will appear intermixed with the output characters, 
but they will be stored away and interpreted in 
the correct order. So you can type several com­
mands one after another without waiting for the 
first to finish or even begin. 

Stopping a Program 

You can stop most programs by typing the 
character "DEL" (perhaps called "delete" or 
"rubout" on your termina.I). The "interrupt" or 
"break" key found on most terminals can also be 
used. In a few programs, like the text editor, DEL 
stops wha.tever the program is doing but leaves 
you in that program. Hanging up the phone will C'i 

.~ 



() 

stop most programs. 

Logging Out 

The easiest way to log out is to hang up the 
phone. You can also type 

login 

and let someone else use the terminal you were on. 
It is usually not sufficient just to turn off the ter­
minal. Most UNIX sylIt.ems do not use a time-out 
mechanism, so you'll be there forever unless you 
hang up. 

Mail 

When you log in, you may sometmles get the 
message 

You have mail. 

UNIX provides a postal system so you can com­
municate with other users of the system. To read 
your mail, type the command 

mail 

Your mail will be printed, one message at a time, 
most recent message first. After each message, 
mail waits for you to say what to do with it. The 
two basic responses are d, which deletes the mes­
sage, and RETURN, which does not (so it will still 
he there the next time you read your mailbox). 
Other responses are described in the ,-nuual. 
(Earlier versions of mail do not proeess une mes­
sage at a time, but are otherwise similar.) 

How do you send mail to someone else'? Sup­
pose it is to go to "joe" (assuming "joe" is 
someone's login name). The easiest way js this: 

mail joe 
now type in the text of the letter 
on as many lines as you like ... 
After the last line of the letter 
type the character "control-d", 
that is, hold down "control" and type 
a letter "d". 

And that's it. The "control-d" sequence, often 
called "EOF" for end-of-file, is used throughout 
the system to mark the end of input from a termi­
nal, so you might as well get used to it. 

For practice, send mail to yourself. (This 
isn't as strange as it might sound - mail to one­
self is a handy reminder mechanism.) 

There are other ways to send mail - you can 
send a previously prepared letter, and you can 
mail to a number of people all at once. For more 
details see mail(l). (The notation mail(l) means 
the command mail in section I of the UNIX 
Programmer's Manual.) 

- 3-

Writing to other U8e1'8 

At some point, out of the blue will come a 
message like 

Message from joe tty07 ••. 

accompanied by a startling beep. It means that 
Joe wants to talk to you, but unless you take 
explicit action you won't be able to talk back. To 
respond, type the command 

write joe 

This establishes a two-way communication path. 
Now whatever Joe types on his terminal will 
appear on yours and vice versa. The path is slow, 
rather like talking to the moon. (If you are in the 
middle of something, you have to get to a state 
where you can type a command. Normally, what­
ever program you are running has to terminate or 
be terminated. If you're editing, you can escape 
temporarily from the editor - read the editor 
tutoriaL) 

A protocol is needed to keep what you type 
from getting garbled up with what Joe types. Typ­
ically it's like this: 

Joe types write smith and waits. 
Smith types write joe and waits. 
Joe now types his message (as many lines 
as he likes). When he's ready for a reply, 
he signals it by typing (0), which stands 
for "over". 
Now Smith types a reply, also terminated 
by (0). 
This cycle repeats until someone gets tired; 
he then signals his intent to quit with (00), 
for "over and out". 
To terminate the conversation, each side 
must type a "control-d" character alone on 
a line. ("Delete" also works.) When the 
other person types his "control-d", you will 
get the message EOF on your terminal. 

If you write to someone who isn't logged in, 
or who doesn't want to be disturbed, you'll be 
told. If the target is logged in but doesn't answer 
after a decent interval, simply type "control-d". 

On-line Manual 

The UNIX Programmer's Manual is typically 
kept on-line. If you get stuck on something, and 
can't find an expert to assist you, you can print on 
your terminal some manual section that might 
help. This is also useful for getting the most up­
to-date information on a command. To print a 
manual section, type "man command-name". 
Thus to read up on the who command, type 

man who 

and, of course, 



man man 

tells all about the man command. 

Computer Aided Instruction 

Your UNIX system may have available a pro­
gram called learn, which provides computer aided 
instruction on the file system and basic commands, 
the editor, document preparation, and even C pro­
gramming. Try typing the command 

learn 

If learn exists On your system, it will tell you 
what to do from there. 

n. DAY-TO-DAYUSE 

Creating Files - The Editor 

If you have to type a paper or a letter or a 
program, how do you get the information stored in 
the machine? Most of these tasks are done with 
the UNIX "text editor" ed. Since ed is thoroughly 
documented in ed(l) and explained in A Tutorial 
Introduction to the UNIX Tezt Editor, we won't 
spend any time here describing how to use it. All 
we want it for right now is to make some files. (A 
file is just a collection of information'stored in the 
machine, a simplistic but adequate definition.) 

To create a file called junk with some text in 
it, do the following: 

ed junk (invokes the text editor) 
a (command to "ed", to add text) 
now type in 
whatever tezt you want ... 

(signals the end of adding text) 

The "." that signals the end of adding text must 
be at the beginning of a line by itself. Don't for­
get it, for until it is typed, no other ed commands 
will be recognized - everything you type will be 
treated as text to be added. 

At this point you can do various editing 
operations on the text you typed in, such as 
correcting spelling mistakes, rearranging para­
graphs and the like. Finally, you must write the 
information you have typed into a file with the 
editor command w: 

w 

ed will respond with the number of characters it 
wrote into the file junk. 

Until the w command, nothing is stored per­
manently, so if you hang up and go home the 
information is lost.t But after w the information is 

t This is not Itrictly true - it ;you han, up while editin" 
the data you were working on is saved in a Ble called 
ed.bup, which you CIID continue with .. t your Bext Iellion. 

-4-

there permanently; you can re-a.ccess it any time 
by typing 

ed junk 

Type a q command to quit the editor. (If you try 
to quit without writing, ed will print a ! to rem­
ind you. A second q gets you out regardless.) 

Now create a second file called temp in the 
same manner. You should now have two files, 
Junk and temp. 

What flies are out there! 

The Ie (for "list") command lists the names 
(not contents) of any of the files that UNIX knows 
about. If you type .. 
the response w ill be 

junk 
temp 

which are indeed the two files just created. The 
names are sorted into alphabetical order automati­
cally, but other variations are possible. For exam­
ple, the command 

Ie -t 

causes the files to be listed in the order in which 
they were last changed, most recent first. The-l 
option gives a "long" listing: 

.. -I 

will produce something like 

-rw-rw-rw- 1 bwk 41 Jul 222:56 junk 
-rw-rw-rw- 1 bwk 78 Jul 22 2:57 temp 

The date and time are of the last change to the 
file. The 41 and 78 are the number of characters 
(which should agree with the numbers you got 
from ed). bwk is the owner of the file, that is, 
the person who created it. The -rw-rw-rw­
tells who has permission to read and write the file, 
in this case everyone. 

Options can be combined: Ie -It gives the 
same thing as Ie -I, but sorted into time order. 
You can also name the files you're interested in, 
and Ie will list the information about them only. 
More details can be found in le(I). 

The use of optional arguments that begin 
with a minus sign, like -t and -It, is a common 
convention for UNIX programs. In general, if a 
program accepts such optional arguments, they 
precede any filename arguments. It is also vital 
that you separate the various arguments with 
spaces: la-I is not the same as Ie -I. 

o 



(~ 

Printing Files 

Now that you've got a file of text, how do you 
print it so people can look at it? There are a host 
of programs that do that, probably more than are 
needed. 

One simple thing is to use the editor, since 
printing is often done just before making changes 
anyway. You can say 

ed junk 
l,$p 

ed will reply with the count of the characters in 
junk and then print all the lines in the file. After 
you learn how to use the editor, you can be selec­
tive about the parts you print. 

There are times when it's not feasible to use 
the editor for printing. For example, there is a 
limit on how big a file ed can handle (several 
thousand lines). Secondly, it will only print one 
file at a time, and sometimes you want to print 
several, one after another. So here are a couple of 
alternatives. 

First is cat, the simplest of all the printing 
programs. cat simply prints on the terminal the 
contents of all the files named in a list. Thus 

cat junk 

prints one file, and 

eat junk temp 

prints two. The files are simply concatenated 
(hence the name "cat") onto the terminal. 

pI' produces formatted printouts of files. As 
with cat, pI' prints 8011 the files named in a list. 
The difference is that it produces headings with 
date, time, page number and file name at the top 
of each page, and extra lines to skip over the fold 
in the paper. Thus, 

pI' junk temp 

will print junk neatly, then skip to the top of a 
new page and print temp neatly. 

pI' can also produce multi-column output: 

pI' -3 junk 

prints junk in 3-column format. You can use any 
reasonable number in place of "a" and pI' will do 
its best. pI' has other capabilities as well; see 
pr(I). 

It should be noted that pI' is not a formatting 
program in the sense of shuffling lines around and 
justifying margins. The true formatters are DI'Oft 
and tl'Orr, which we will get to in the section on 
document preparation. 

There are also programs that print files on a 
high-speed printer. Look in your manual under 

- 5-

opr and Ipr. Which to use depends on what 
equipment is attached to your machine. 

Shuffling Files About 

Now that you have some files in the file sys­
tem and some experience in printing them, you can 
try bigger things. For example, you can move a 
file from one place to another (which amounts to 
giving it a new name), like this: 

mv junk precious 

This means that what used to be "junk" is now 
"precious". If you do an Is command now, you 
will get 

precious 
temp 

Beware that if you move a file to another one that 
already exists, the already existing contents are 
lost forever. 

If you want to make a copy of a file (that is, 
to have two versions of something), you can use 
the cp command: 

cp precious tempI 

makes a duplicate copy of precious in tempI. 

Finally, when you get tired of creating and 
moving files, there is a command to remove files 
from the file system, called I'm. 

I'm temp tempI 

will remove both of the files named. 

You will get a warning message if one of the 
named files wasn't there, but otherwise I'm, like 
most UNIX commands, does its work silently. 
There is no prompting or chatter, and error mes­
sages are occasionally curt. This terseness is some­
times disconcerting to newcomers, but experienced 
users find it desirable. 

What's in a Filename 

So far we have used filenames without ever 
saying what's a legal name, so it's time for a cou­
ple of rules. First, filenames are limited to 14 
characters, which is enough to be descriptive. 
Second, although you can use almost any character 
in a filename, common sense says you should stick 
to ones that are visible, and that you should prob­
ably avoid characters that might be used with 
other meanings. We have already seen, for exam­
ple, that in the Is command, Is -t means to list in 
time order. So if you had a file whose name was 
-t, you would have a tough time listing it by 
name. Besides the minus sign, there are other 
characters which have special meaning. To avoid 
pitfalls, you would do well to use only letters, 
numbers and the period until you're familiar with 



the situation. 

On to some more positive suggestions. Sup­
pose you're typing a large document like a book. 
Logically this divides into many small pieces, like 
chapters and perhaps sections. Physically it must 
be divided too, for ed will not handle really big 
files. Thus you should type the document as a 
number of files. You might have a separate file for 
each chapter, called 

chapl 
chap2 
etc ... 

Or, if each chapter were broken into several files, 
you might have . 

chapl.l 
chap!'2 
chap!.3 

chap2.l 
chap2.2 

You can now tell at a glance where a particular file 
fits into the whole. 

There are advantages to a systematic naming 
convention which are not obvious to the novice 
UNIX user. What if you wanted to print the whole 
book? You could say 

PI' chap!.l chapl.2 chapl.3 •••••• 

but you would get tired pretty fast, and would 
probably even make mistakes. Fortunately, there 
is a shortcut. You can say 

pI' chap· 

The • means "anything at all," so this translates 
into "print all files whose names begin with 
chap", listed in alphabetical order. 

This shorthand notation is not a property of 
the pI' command, by the way. It is system-wide, a 
service of the program that interprets commands 
(the "shell," sh(I». Using that fact, you can see 
how to list the names of the files in the book: 

Is chap· 

produces 

chap!.l 
chap1.2 
chapl.3 

The • is not limited to the last position in a 
filename - it can be anywhere and can occur 
several times. Thus 

I'm ·junk· ·temp· 

removes all files that contain junk or temp as 

any part of their name. As a special case, * by 
itself matches ff'lery filename, so 

PI' • 
prints all your files (alphabetical order), and 

I'm * 
removes all files. (You had better be very sure 
that's what you wanted to say!) 

The * is not the only pattern-matching 
feature available. Suppose you want to print only 
chapters I through 4 and 9. Then you can say 

PI' chap[l2349]* 

The ( ••• ] means to match any of the characters 
inside the brackets. A range of consecutive letters 
or digits can be abbreviated, 80 you can also do 
this with 

PI' chap[l-.(9]· 

Letters can also be used within brackets: [a-z] 
matches any character in the range a through z. 

The T pattern matches any single character, so 

1sT 

lists all files which have single-character names, 
and 

Is -I chap!.l 

lists information about the first file of each chapter 
(chapl.l, chap2.l, etc.). 

Of these niceties, * is certainly the most use­
ful, and you should get used to it. The others are 
frills, but worth knowing. 

If you should ff'ler have to turn off the special 
meaning of ., " etc., enclose the entire argument 
in single quotes, as in 

Is'T' 

We'll see some more examples of this shortly. 

What'. in a Filename, Continued 

When you first made that file called junk, 
how did the system know that there wasn't 
another junk somewhere else, especially since the 
person in the next office is also reading this 
tutorial? The answer is that generally each user 
has a private directory, which contains only the 
files that belong to him. When you log in, you are 
"in" your directory. Unless you take special 
action, when you create a new file, it is made in 
the directory that you are currently in; this is 
most often your own directory, and thus the file is 
unrelated to any other file of the same name that 
might exist in someone else's directory. 

The set of all files is organized into a (usually 
big) tree, with your files located several branches 

-- ----~~---- ---- - --- ---~-

o 



(: 

c 

into the tree. It is possible for you to "walk" 
around this tree, and to find any file in the system, 
by starting at the root of the tree and walking 
along the proper set of branches. Conversely, you 
can start where you are and walk toward the root. 

Let's try the latter first. The basic tools is 
the command pwd ("print working directory"), 
which prints the name of the directory you are 
currently in. 

Although the details will vary according to 
the system you are on, if you give the command 
pwd, it will print something like 

/usr/your-name 

This says that you are currently in the directory 
your-name, which is in turn in the directory 
/usr, which is in turn in the root directory called 
by convention just f. (Even if it's not called /usr 
on your system, you will get something analogous. 
Make the corresponding changes and read on.) 

If you now type 

Is/uer/your-name 

you should get exactly the same list of file names 
as you get from a plain Is: with no arguments, Is 
lists the contents of the current directory; given 
the name of a directory, it lists the contents of 
that directory. 

Next, try 

Is/usr 

This should print a long series of names, among 
which is your own login name your-name. On 
many systems, usr is a directory that contains the 
directories of all the normal users of the system, 
like you. 

The next step is to try 

Is / 

You should get a response something like this 
(although again the details may be different): 

bin 
dey 
etc 
lib 
tmp 
usr 

This is a collection of the basic directories of files 
that the system knows about; we are at the root of 
the tree. 

Now try 

cat /usr/your-name/junk 

(if junk is still around in your directory). The 
name 

- 7 -

/usr/your-name/junk 

is called the path name of the file that you nor­
mally think of as "junk". "Pathname" has an 
obvious meaning: it represents the full name of the 
pa.th you ha.ve to follow from the root through the 
tree of directories to get to a particular file. It is a 
universal rule in the UNIX system that anywhere 
yo.u can use an ordinary filename, you can use a 
pathname. 

Here is a picture which may make this clearer: 

(root) 

11\ 
/~~ /i\ li\ 11, 'iF, 

adam eve mary 

/ / \ ~nk 
junk temp 

Notice that Mary's junk is unrelated to Eve's. 

This isn't too exciting if all the files of interest 
are in your own directory, but if you work with 
someone else or on several projects concurrently, it 
becomes handy indeed. For example, your friends 
can print your book by saying 

pr /usr/your-name/chap* 

Similarly, you can find out what files your neigh­
bor has by saying 

Is lusr/neighbor-name 

or make your own copy of one of his files by 

cp /usr/your-neighbor/his-nle yourfile 

If your neighbor doesn't want you poking 
around in his files, or vice versa, privacy can be 
arranged. Each file and directory has read-write­
execute permissions for the owner, a group, and 
everyone else, which can be set to control access. 
See Is(l} and chmod(l} for details. As a matter 
of observed fact, most users most of the time find 
openness of more benefit than privacy. 

As a final experiment with pathnames, try 

Is/bin /usr/bin 

Do some of the names look familiar? When you 
run a program, by typing its name after the 
prompt character, the system simply looks for a 
file of that name. It normally looks first in your 
directory (where it typically doesn't find it), then 
in Ibin and finally in lusr/bin. There is nothing 
magic about commands like cat or Is, except that 
they have been collected into a couple of places to 
be easy to find and administer. 



What if you work regularly with someone else 
on common information in his directory? You 
could just log in as your friend each time you 
want to, but you can also say "I want to work on 
his files instead of my own". This is done by 
changing the directory that you are currently in: 

ed /uar/your-friend 

(On some systems, cd is spelled ehdir.) Now when 
you use a filename in something like eat or pr, it 
refers to the file in your friend's directory. Chang­
ing directories doesn't affect any permissions ass0-

ciated with a file - if you couldn't access a file 
from your own directory, changing to another 
directory won't alter that fact. Of course, if you 
forget what directory you're in, type 

pwd 

to find out. 

It is usually convenient to arrange your own 
files so that all the files related to one thing are in 
a directory separate from other projects. For 
example, when you write your book, you might 
want to keep all the text in a directory called 
book. So make one with 

mkdir book 

then go to it with 

cd book 

then start typing chapters. The book is now 
found in (presumably) 

/ usr /your-name/book 

To remove the directory book, type 

rm bookj· 
rmdir book 

The first command removes all files from the direc­
tory; the second removes the empty directory. 

You can go up one level in the tree of files by 
saying 

cd •• 

" •• " is the name of the parent of whatever direc­
tory you are currently in. For completeness, "." is 
an alternate name for the directory you are in. 

Using Files instead or the Terminal 

Most of the commands we have seen so far 
produce output on the terminal; some, like the edi­
tor, also take their input from the terminal. It is 
universal in UNIX systems that the terminal can be 
replaced by a file for either or both of input and 
output. As one example, 

Is 

makes a list of files on your terminal. But if you 

say 

Is >tilelist 

a list of your files will be placed in the file tilelist 
(which will be created if it doesn't already exist, or 
overwritten if it does). The symbol > means "put 
the output on the following file, rather than on the 
terminal. II Nothing is produced on the terminal. 
As another example, you could combine several 
files into one by capturing the output of cat in a 
file: 

eat f1 f2 f'3 > temp 

The symbol > > operates very much like > 
does, except that it means "add to the end of." 
That is, 

eat f1 f2 f'3 > > temp 

means to concatenate fl, 12 and f'3 to the end of 
whatever is already in temp, instead of overwrit­
ing the existing contents. As with >, if temp 
doesn't exist, it will be created for you. 

In a similar way, the symbol < means to take 
the input for a program from the following file, 
instead of from the terminal. Thus, you could 
make up a script of commonly used editing com­
mands and put them into a file called script. 
Then you can run the script on a file by saying 

ed nIe <script 

As another example, you can use ed to prepare a 
letter in file let, then send it to several people with 

mail adam eve mary joe <let 

Pipes 

One of the novel contributions of the UNIX 
system is the idea of a pipe. A pipe is simply a 
way to connect the output of one program to the 
input of another program, so the two run as a 
sequence of processes - a pipeline. 

For example, 

pr fg h 

will print the files t, g, and h, beginning each on a 
new page. Suppose you want them run together 
instead. You could say 

eat t g h >temp 
pr <temp 
rm temp 

but this is more work than necessary. Clearly 
what we want is to take the output of eat and 
connect it to the input of pro So let us use a pipe: 

eat r g h I pr 

The vertical bar I means to take the output from c 



cat, which would normally have gone to the ter­
minal, and put it into PI' to be neatly formatted. 

There are many other examples of pipes. For 
example, 

Is I pr-3 

prints a list of your files in .three columns. The 
program we counts the number of lines, words and 
characters in its input, and as we saw earlier, who 
prints a list of currently-logged on people, one per 
line. Thus 

who Iwe 

tells how many people are logged on. And of 
course 

Is Iwe 

counts your files. 

Any program that reads from the terminal 
can read from a pipe instead; any program that 
writes on the terminal can drive a pipe. You can 
have as many elements in a pipeline as you wish. 

Many UNIX programs are written so that they 
will take their input from one or more files if file 
arguments are given; if no arguments are given 
they will read from the terminal, and thus can be 
used in pipelines. pI' is one example: 

pI' -3 abc 

prints files a, b and e in order in three columns. 
But in 

cat abc I PI' -3 

pI' prints the information coming down the pipe­
line, still in three columns. 

The Shell 

We have already mentioned once or twice the 
mysterious "shell," which is in fact sh(l). The 
shell is the program that interprets what you type 
as commands and arguments. It also looks after 
translating ., etc., into lists of filenames, and <, 
>, and I into changes of input and output 
streams. 

The shell has other capabilities too. For 
example, you can run two programs with one com­
mand line by separating the commands with a 
semicolon; the shell recognizes the semicolon and 
breaks the line into two commands. Thus 

date; who 

does both commands before returning with a 
prompt character. 

You can also have more than one program 
running simultaneously if you wish. For example, 
if you are doing something time-consuming, like 
the editor script of an earlier section, and you 

-9-

don't want to wait around for the results before 
starting something else, you can say 

ed tile <script" 

The ampersand at the end of a command line says 
"start this command running, then take further 
commands from the terminal immediately," that 
is, don't wait for it to complete. Thus the script 
wi.\l begin, but you can do something else at the 
same time. Of course, to keep the output from 
interfering with what you're doing on the terminal, 
it would be better to say 

ed tile <script >script.out & 

which saves the output lines in a file called 
script.out. 

When you initiate a command with &, the 
system replies with a number called the process 
number, which identifies the command in case you 
later want to stop it. If you do, you can say 

kill process-number 

If you forget the process number, the command ps 
will tell you about everything you have running. 
(If you are desperate, kill 0 will kill all your 
processes.) And if you're curious about other peo­
ple, ps a will tell you about all programs that are 
currently running. 

You can say 

(command-I; command-2; command-3) & 

to start three commands in the background, or 
you can start a background pipeline with 

command-I I eommand-2 " 

Just as you can tell the editor or some similar 
program to take its input from a file instead of 
from the terminal, you can tell the shell to read a 
file to get commands. (Why not? The shell, after 
all, is just a program, albeit a clever one.) For 
instance, suppose you want to set tabs on your 
terminal, and find out the date and who's on the 
system every time you log in. Then you can put 
the three necessary commands (tabs, date, who) 
mto a file, let's call it startup, and then run it 
with' 

sh startup 

This says to run the shell with the file startup as 
input. The effect is as if you had typed the con­
tents of startup on the terminal. 

If this is to be a regular thing, you can elim­
inate the need to type sh: simply type, once only, 
the command 

chmod +x startup 

and thereafter you need only say 



atartup 

to run the sequence of commands. The chmod(l} 
command marks the file executable; the shell 
recognizes this and runs it as a sequence of com­
mands. 

If you want atartup to run automatically 
~ery time you log in, create a file in your login 
directory called ,pJ"Onle, and place in it the line 
atartup. When the shell first gains control when 
you log in, it looks for the .pronte file and does 
whatever commands it finds in it. We'll get back 
to the shell in the section on programming. 

m. DOCUMENT PREPARATION 
UNIX systems are used extensively for docu­

ment preparation. There are two major format­
ting programs, that is, programs that produce a 
text with justified right margins, automatic page 
numbering and titling, automatic hyphenation, 
and the like. nrott is designed to produce output 
on terminals and line-printers. troff (pronounced 
"tee-roff") instead drives a phototypesetter, which 
produces very high quality output on photographic 
paper. This paper was formatted with tro"~. 

Formatting Packages 

The basic idea of nrott and trott is that the 
text to be formatted contains within it "format­
ting commands" that indicate in detail how the 
formatted text is to look. For example, there 
might be commands that specify how long lines 
are, whether to use single or double spacing, and 
what running titles to use on each page. 

Because nrott and troff are relatively hard to 
learn to use effectively, several "packages" of 
canned formatting requests are available to let you 
specify paragraphs, running titles, footnotes, 
multi-column output, and so on, with little effort 
and without having to learn nrott and trott. 
These packages take a modest effort to learn, but 
the rewards for using them are so great that it is 
time well spent. 

In this section, we will provide a hasty look at 
the "manuscript" package known as -m8. For­
matting requests typically consist of a period and 
two upper-case letters,· such as • TL, which is used 
to introduce a title, or .PP to begin a new para­
graph. 

A document is typed so it looks something 
like this: 

- 10-

.TL 
title of document 
.AU 
author name 
.SH 
eection heading 
.PP 
paragraph ... 
.PP 
another paragraph ... 
.sH 
another eectlon heading 
.PP 
etc. 

The lines that begin with a period are the format­
ting requests. For example, .PP calls for starting 
a new paragraph. The precise meaning of .PP 
depends on what output device is being used 
(typesetter or terminal, for instance), and on what 
publication the document will appear in. For 
example, -ms normally assumes that a paragra~h 
is preceded by a space (one line in nrott, Ik line In 

troff) , and the first word is indented. These rules 
can be changed if you like, but they are changed 
by changing the interpretation of .PP, not by re­
typing the document. 

To actually produce a document in standard 
format using -me, use the command 

tJ"Oft -rna nles ... 

for the typesetter, and 

nrotr -me nles ••• 

for a terminal. The -me argument tells troff and 
nroff to use the manuscript package of formatting 
requests. 

There are several similar packages; check with 
a local expert to determine which ones are in com­
mon use on your machine. 

Supporting Toola 

In addition to the basic formatters, there is a 
host of supporting programs that help with docu­
ment preparation. The list in the next few para­
graphs is far from complete, so browse through the 
manual and check with people around you for 
other possibilities. 

eqn and neqn let you integrate mathematics 
into the text of a document, in an easy-t<rlearn 
language that closely resembles the way you would 
speak it aloud. For example, the eqn input 

aum trom j .... O to n x aub i -... - pi over 2 

produces the output 

• 11" b Z.--
.-0 2 

o 

c 



c 

The program tbl provides an analogous ser­
vice for preparing tabular material; it does all the 
computations necessary to align complicated 
columns with elements of varying widths. 

I'erel' prepares bibliographic citations from a 
data base, in whatever style is defined by the for­
matting package. It looks after all the details of 
numbering references in sequence, filling in page 
and volume numbers, getting the author's initials 
and the journal name right, and so on. 

spell and typo detect possible spelling mis­
takes in a document. spell works by comparing 
the words in your document to a dictionary, print­
ing those that are not in the dictionary. It knows 
enough about English spelling to detect plurals 
and the like, so it does a very good job. typo 
looks for words which are "unusual", and prints 
those. Spelling mistakes tend to be more unusual, 
and thus show up early when the most unusual 
words are printed first. 

grep looks through a set of files for lines that 
contain a particular text pattern (rather like the 
editor's context search does, but on a bunch of 

. files). For example, 

grep , ingS' chap· 

will find all lines that end with the letters iog in 
the files chap·. (It is almost always a good prac­
tice to put single quotes around the pattern you're 
searching for, in case it contains characters like • 
or $ that have a special meaning to the shell.) 
gl'ep is often useful for finding out in which of a 
set of files the misspelled words detected by spell 
are actually located. 

dirr prints a list of the differences between 
two files, so you can compare two versions of 
something automatically (which certainly beats 
proofreading by hand). 

wc counts the words, lines and characters in a 
set of files. tr translates characters into other 
characters; for example it will convert upper to 
lower case and vice versa. This translates upper 
into lower: 

tr A-Z a-a <input >output 

sort sorts files in a variety of ways; crer 
makes cross-references; ptx makes a permuted 
index (keyword-in-context listing). sed provides 
many of the editing facilities of ed, but can apply 
them to arbitrarily long inputs. awk provides the 
ability to do both pattern matching and numeric 
computations, and to conveniently process fields 
within lines. These programs are for more 
advanced users, and they are not limited to docu­
ment preparation. Put them on your list of things 
to learn about. 

- 11-

Most of these programs are either indepen­
dently documented (like eqn and tbl), or are 
sufficiently simple that the description in the UNIX 
Programmer's Manual is adequate explanation. 

Hinte ror Prepal'tng Documents 

Most documents go through several versions 
(always more than you expected) before they are 
fin·ally finished. Accordingly, you should do what­
ever possible to make the job of changing them 
easy. 

First, when you do the purely mechanical 
operations of typing, type so that subsequent edit­
ing will be easy. Start each sentence on a new 
line. Make lines short, and break lines at natural 
places, such as after commas and semicolons, 
rather than randomly. Since most people change 
documents by rewriting phrases and adding, delet­
ing and rearranging sentences, these precautions 
simplify any editing you have to do later. 

Keep the individual files of a document down 
to modest size, perhaps ten to fifteen thousand 
characters. Larger files edit more slowly, and of 
course if you make a dumb mistake it's better to 
have clobbered a small file than a big one. Split 
into files at natural boundaries in the document, 
for the same reasons that you start each sentence 
on a new line. 

The second aspect of making change easy is to 
not commit yourself to formatting details too 
early. One of the advantages of formatting pack­
ages like -IDS is that they permit you to delay 
decisions to the last possible moment. Indeed, 
until a document is printed, it is not even decided 
whether it will be typeset or put on a line printer. 

As a rule of thumb, for all but the most 
trivial jobs, you should type a document in terms 
of a set of requests like .PP, and then define them 
appropriately, either by using one of the canned 
packages (the better way) or by defining your own 
nroff and trott commands. As long as you have 
entered the text in some systematic way, it can 
alway·s be cleaned up and re-formatted by a judi­
cious combination of editing commands and 
request definitions. 

IV. PROGRAMMING 

There will be no attempt made to teach any 
of the programming languages available but a few 
words of advice are in order. One of the reasons 
why the UNIX system is a productive programming 
environment is that there is already a rich set of 
tools available, and facilities like pipes, I/O 
redirection, and the capabilities of the shell often 
make it possible to do a job by pasting together 
programs that already exist instead of writing 
from scratch. 



- 12-

The Shell 

The pipe mechanism lets you fabricate quite 
complicated operations out of spare parts that 
already exist. For example, the first draft of the 
spell program was (roughly) 

cat ••• collect the files 
, tr ••• put each word on a new line 
, tr ... delete punctuation, etc. 
'sort into dictionary order 
, uniq discard duplicates 
, comm print words in text 

6ut not in dictionary 

More pieces have been add'ed subsequently, but 
this goes a long way for such a small effort. 

The editor can be made to do things that 
would normally require special programs on other 
systems. For example, to list the first and last 
lines of each of a set of files, such as a book, you 
could laboriously type 

ed 
e chap!.l 
lp 
$p 
e chapl.2 
lp 
$p 
etc. 

But you can do the job much more easily. One 
way is to type 

Is chap· >temp 

to get the list of filenames into a file. Then edit 
this file to make the necessary series of editing 
commands (using the global commands of ed), and 
write it into script. Now the command 

ed <script 

will produce the same output as the laborious 
hand typing. Alternately (and more easily), you 
can use the fact that the shell will perform loops, 
repeating a set of commands over and over again 
for a set of arguments: 

tor i in chap· 
do 

ed $1 <script 
done 

This sets the shell variable i to each file name in 
turn, then does the command. You can type this 
command a.t the terminal, or put it in a file for 
later execution. 

Programming the Shell 

An option often overlooked by newcomers is 
that the shell is itself a programming language, 
with variables, control Bow (it-else, while, tor, 

cue), subroutines, and interrupt handling. Since 
there are many building-block programs, you can 
sometimes avoid writing a new program merely by 
piecing together some of the building blocks with 
shell command files. 

We will not go into any details here; examples 
and rules can be found in An Introduction to the 
UNIX Shell, by S. R. Bourne. 

Programming in C 

If you are undertaking anything substantial, 
e is the only reasonable choice of programming 
language: everything in the UNIX system is tuned 
to it. The system itself is written in e, as are 
most of the programs that run on it. It is also a 
easy language to use once you get started. e is 
introduced and fully described in The C Program­
ming Language by B. W. Kernighan and D. M. 
Ritchie (Prentice-Hall, 1978). Several sections of 
the manual describe the system interfaces, that is, 
how you do I/O and similar functions. Read 
UNIX Programming for more complicated things. 

Most input and output in e is best handled 
with the standard I/O library, which provides a 
set of I/O functions that exist in compatible form 
on most machines that have e compilers. In gen­
eral, it's wisest to confine the system interactions 
in a program to the facilities provided by this 
library. 

e programs that don't depend too much on 
special features of UNIX (such as pipes) can be 
moved to other computers that have e compilers. 
The list of such machines grows daily; in addition 
to the original PDP-Il, it currently includes at 
least Honeywell 6000, IBM 370, Interdata 8/32, 
Data General Nova and Eclipse, HP 2100, Harris 
/7, VAX 11/780, SEL 86, and Zilog ZSo. Calls to 
the standard I/O library will work on all of these 
machines. 

There are a number of supporting programs 
that go with e. lint checks e programs for poten­
tial portability problems, and detects errors such 
as mismatched argument types and uninitialized 
variables. 

For larger programs (anything whose source is 
on more than one file) make allows you to specify 
the dependencies among the source files and the 
processing steps needed to make a new version; it 
then checks the times that the pieces were last 
changed and does the minimal amount of recom­
piling to create a consistent updated version. 

The debugger adb is useful for digging 
through the dead bodies of e programs, but is 
rather hard to learn to use effectively. The most 
effective debugging tool is still careful thought, 
coupled with judiciously placed print statements. 

o 



( 

() 

The C compiler provides a limited instrumen­
tation service, so you can find out where programs 
spend their time and what parts are worth optim­
izing. Compile the routines with the -p option; 
after the test run, use prof to print an execution 
profile. The command time will give you the 
gross run-time statistics of a program, but they 
are not super accurate or reproducible. 

Other Languages 

If you have to use Fortran, there are two pos­
sibilities. You might consider Ratfor, which gives 
you the decent control structures and free-form 
input that characterire C, yet lets you write code 
that is still portable to other environments. Bear 
in mind that UNIX Fortran tends to produce large 
and relatively slow-running programs. Further­
more, supporting software like adb, prof, etc., are 
all virtually useless with Fortran programs. There 
may also be a Fortran 77 compiler on your system. 
If so, this is a viable alternative to Ratfor, and has 
the non-trivial advantage that it is compatible 
with C and related programs. (The Ratfor proces­
sor and C tools can be used with Fortran 77 too.) 

If your application requires you to translate a 
language into a set of actions or another language, 
you are in effect building a compiler, though prob­
ably a small one. In that case, you should be 
using the yacc compiler-compiler, which helps you 
develop a compiler quickly. The lex lexical 
analyzer generator does the same job for the 
simpler languages that can be expressed as regular 
expressions. It can be used by itself, or as a front 
end to recognize inputs for a yacc-based program. 
Both yacc and lex require some sophistication to 
use, but the initial effort of learning them can be 
repaid many times over in programs that are easy 
to change later on. 

Most UNIX systems also make available other 
languages, such as Algol 68, APL, Basic, Lisp, Pas­
cal, and Snobol. Whether these are useful depends 
largely on the local environment: if someone cares 
about the language and has worked on it, it may 
be in good shape. If not, the odds are strong that 
it will be more trouble than it's worth. 

v. UNIX READING LIST 

General: 

K. L. Thompson and D. M. Ritchie, The UNIX 
Programmer's Manual, Bell Laboratories, 1978. 
Lists commands, system routines and interfaces, 
file formats, and some of the maintenance pro­
cedures. You can't live without this, although you 
will probably only need to read section 1. 

Documents lor Use with the UNIX Time-sharing 
System. Volume 2 of the Programmer's Manual. 
This contains more extensive descriptions of major 

- 13-

commands, and tutorials and reference manuals. 
All of the papers listed below are in it, as are 
descriptions of most of the programs mentioned 
above. 

D. M. Ritchie and K. L. Thompson, "The UNIX 
Time-sharing System," CACM, July 1974. An 
overview of the system, for people interested in 
operating systems. Worth reading by anyone who 
programs. Contains a remarkable number of one­
sentence observations on how to do things right. 

The Bell System Technical Journal (BSTJ) Special 
Issue on UNIX, July/August, 1978, contains many 
papers describing recent developments, and some 
retrospective material. 

The 2nd International Conference on Software 
Engineering (October, 1976) contains several 
papers describing the use of the Programmer's 
Workbench (PWB) version of UNIX. 

Document Preparation: 

B. W. Kernighan, "A Tutorial Introduction to the 
UNIX Text Editor" and "Advanced Editing on 
UNIX," Bell Laboratories, 1978. Beginners need 
the introduction; the advanced material will help 
you get the most out of the editor. 

M. E. Lesk, "Typing Documents on UNIX," Bell 
Laboratories, 1978. Describes the -me macro 
package, which isolates the novice from the 
vagaries of nrorr and trofr, and takes care of 
most formatting situations. If this specific pack­
age isn't available on your system, something simi­
lar probably is. The most likely alternative is the 
PWB/UNIX macro package -mm; see your local 
guru if you use PWB/UNIX. 

B. W. Kernighan and L. L. Cherry, "A System for 
Typesetting Mathematics," Bell Laboratories Com­
puting Science Tech. Rep. 17. 

M. E. Lesk, "Tbl - A Program to Format 
Tables," Bell Laboratories CSTR 49, 1976. 

J. F. Ossanna, Jr., "NROFF /TROFF User's 
Manual," Bell Laboratories CSTR 54, 1976. trore 
is the basic formatter used by -ms, eqn and tbl. 
The reference manual is indispensable if you are 
going to write or maintain these or similar pro­
grams. But start with: 

B. W. Kernighan, "A TROFF Tutorial," Bell 
Laboratories, 1976. An attempt to unravel the 
intricacies of trort. 

Programming: 

B. W. Kernighan and D. M. Ritchie, The C Pro­
gramming Language, Prentice-Hall, 1978. Contains 
a tutorial introduction, complete discussions of all 
language features, and the reference manual. 

B. W. Kernighan and D. M. Ritchie, "UNIX Pro­
gramming," Bell Laboratories, 1978. Describes 



how to interface with the system from C pro­
grams: I/O calls, signaJs, ptoCeSBeS. 

S. R. Bourne, "An introduction to the UNIX 
Shell," Bell Laboratories, 1978. An introduction 
and reference manual for the Version 7 shell. 
Mandatory reading if you intend to make effective 
use of the programming power of this shell. 

S. C. Johnson, ''Yacc - Yet Another Compiler­
Compiler," Bell Laboratories CSTR 32, 1978. 

M. E. Lesk, "Lex - A Lexical .Analy.zer Genera­
tor," Bell Laboratories CSTR 39, 1975. 

S. C. Johnson, "Lint, a C Program CluIcker," Bell 
Laboratories CSTR 65, 1977. 

S. I. Feldman, "MAKE - A Program lor Main­
taining Computer Programs," Bell Laboratories 
CSTR 57, 1977. 

J. F. Maranzano and S. R. Bourne, "A Tutorial 
Introduction to ADB," Bell Laboratories CSTR 62, 
1977. An introduction to a powerful but complex 
debugging tool. 

S. I. Feldman and P. J. Weinberger, ''A Portable 
Fortran 77 Compiler," Bell Laboratories, 1978. A 
full Fortran 77 for UNIX systems. 

- 14-

o 

i"""'\ 
U 

c 



( 

o 

LEARN - Computer-Aided Instruction on UNIX 
(Second Edition) 

Brian W. Kernighan 

Michael E. Ltsk 

ABSTRACT 

This paper describes the second version of the learn program for interpreting 
CAl scripts on the UNIXt operating system, and a set of scripts that provide a 
computerized introduction to the system. 

Six current scripts cover basic commands and file handling, the editor, addi­
tional file handling commands, the eqn program for mathematical typing, the 
"-ms" package of formatting macros, and an introduction to the C programming 
language. These scripts now include a total of about 530 lessons. 

Many users from a wide variety of backgrounds have used learn to acquire 
basic UNIX skills. Most usage involves the first two scripts, an introduction to 
UNIX files and commands, and the UNIX editor. 

The second version of learn is about four times faster than the previous one 
in CPU utilization, and much faster in perceived time because of better overlap of 
computing and printing. It also requires less file space than the first version. 
Many of the lessons have been revised; new material has been added to reflect 
changes and enhancements in UNIX itself. Script-writing is also easier because of 
revisions to the script language. 

1. Introduction. 

Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons 
and lesson fragments to teach people computer skills. Since it is teaching the same system on 
which it is implemented, it makes direct use of UNIX facilities to create a controlled UNIX environ­
ment. The system includes two main parts: (1) a driver that interprets the lesson scripts; and (2) 
the lesson scripts themselves. At present there are seven scripts: 

ing: 

basic file handling commands 

the UNIX text editors cd and vi 

advanced file handling 

the eqn language for typing mathematics 

the "ms" macro package for document formatting 

the C programming language 

The purported advantages of CAl scripts for training in computer skills include the follow-

(a) students are forced to perform the exercises that are in fact the basis of training in any 
case; 

t UNIX is a trademark of Bell Laboratories. 



USD:2-2 LEARN - Computer-Aided Instruction on UNIX 

(b) students receive immediate feedback and confirmation of progress; 

(c) students may progress at their own rate; 

(d) no schedule requirements are imposed; students may study at any time convenient for 
them; 

(e) the lessons may be improved individually and the improvements are immediately avail­
able to new users; 

(f) since the student has access to a computer for the CAl script there is a place to do exer­
cises; 

(g) the use of high technology will improve student motivation and the interest of their 
management. 

Opposed to this, of course, is the absence of anyone to whom the student may direct ques­
tions. If CAl is used without a "counselor" or other assistance, it should properly be compared to 
a textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for many 
years in a variety of educational areas.1,2,3 The use of a computer to teach computer use itself, 
however, offers unique advantages. The skills developed to get through the script are exactly those 
needed to use the computer; there is no waste effort. 

The scripts written so far are based on some familiar assumptions about education; these 
assumptions are outlined in the next section. The remaining sections describe the operation of the 
script driver and the particular scripts now available. The driver puts few restrictions on the 
script writer, but the current scripts are of a rather rigid and stereotyped form in accordance with 
the theory in the next section and practical limitations. 

2. Educational Assumptions and Design. 

First, the way to teach people how to do something is to have them do it. Scripts should not 
contain long pieces of explanation; they should instead frequently ask the student to do some task. 
So teaching is always by example: the typical script fragment shows a small example of some tech­
nique and then asks the user to either repeat that example or produce a variation on it. All are 
intended to be easy enough that most students will get most questions right, reinforcing the desired 
behavior. 

Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or 
no answer to a question. The student is given a chance to experiment before replying. The script 
checks for the correct reply. Problems of this form are sparingly used. 

The second type asks for a word or number as an answer. For example a lesson on files 
might say 

How many jiles are there in the current directory? Type "answer N", where N i.s the number 
of jiles. 

The student is expected to respond (perhaps after experimenting) with 

answer 17 

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N 
by 17) is difficult for non-programmer students, so the first few such lessons need real care. 

The third type of lesson is open-ended - a task is set for the student, appropriate parts of 
the input or output are monitored, and the student types ready when the task is done. Figure 1 
shows a sample dialog that illustrates the last of these, using two lessons about the cat (concaten­
ate, i.e., print) command taken from early in the script that teaches file handling. Most learn les­
sons are of this form. 

Atter each correct response the computer congratulates the student and indicates the lesson 
number that has just been completed, permitting the student to restart the script after that lesson. 
If the answer is wrong, the student is offered a chance to repeat the lesson. The "speed" rating of 
the student (explained in section 5) is given after the lesson number when the lesson is completed 
successfully; it is printed only for the aid of script authors checking out possible errors in the 
lessons. 

/--'" 
L 

o 



<-

(/ 

LEARN - Computel'-Aided Instruction on UNIX 

Figure 1: Sample dialog from basic files script 

(Student responses in italics; 'S' is the prompt) 

A file can be printed on your terminal 
by using the "eat" command. Just say 
"eat file" where "file" is the file name. 
For example, there is a file named 
"food" in this directory. List it 
by saying "eat food"; then type "ready". 
$ cat lood 

this is the file 
named food. 

S ready 

Good. Lesson 3.3a (1) 

Of course, you can print any file with "cat". 
In particular, it is common to first use 
"Is" to find the name of a file and then "eat" 
to print it. Note the difference between 
"Is", which tells you the name of the file, 
and "cat", which tells you the contents. 
One file in the current directory is named for 
a President. Print the file, then type "ready". 
$ cat Pre8ident 
cat: can't open President 
$ ready 

Sorry, that's not right. Do you want to try again? ye8 
Try the problem again. 
$ 18 
.ocopy 
Xl 
roosevelt 
Scat roo8evelt 

this file is named roosevelt 
and contains three lines of 
text. 

S ready 

Good. Lesson 3.3b (0) 

The "cat" command can also print several files 
at once. In fact, it is named "cat" as an abbreviation 
for "concatenate" .... 

USD:2-3 

It is assumed that there is no foolproof way to determine if the student truly "understands" 
what he or she is doing; accordingly, the current learn scripts only measure performance, not 
comprehension. If the student can perform a given task, that is deemed to be "learning."4 

The main point of using the computer is that what the student does is checked for correct­
ness immediately. Unlike many CAl scripts, however, these scripts provide few facilities for 



USD:2-4: LEARN - Computer-Aided Instruction on UNIX 

dealing with wrong answers. In practice, if most of the answers are not right the script is a failure; 
the universal solution to student error is to provide a new, easier script. Anticipating possible 
wrong answers is an endless job, and it is really easier as well as better to provide a simpler script. 

Along with this goes the assumption that anything can be taught to anybody if it can be 
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdivided. 

To avoid boring the faster students, however, an effort is made in the files and editor scripts 
to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at roughly 
the bulk and speed of a typical tutorial manual and should be adequate for review and for well­
prepared students. The next track is intended for most users and is roughly twice as long. Typi­
cally, for example, the fast track might present· an idea and ask for a variation on the example 
shown; the normal track will first ask the student to repeat the example that was shown before 
attempting a variation. The third and slowest track, which is often three or four times the length 
of the fast track, is intended to be adequate for anyone. (The lessons of Figure 1 are from the 
third track.) The multiple tracks also mean that a student repeating a course is unlikely to hit the 
same series of lessons; this makes it profitable for a shaky user to back up and try again, and 
many students have done so. 

The tracks are not completely distinct, however. Depending on the number of correct 
answers the student has given for the last few lessons, the program may switch tracks. The driver 
is actually capable of following an arbitrary directed graph of lesson sequences, as discussed in sec­
tion 5. Some more structured arrangement, however, is used in all current scripts to aid the script 
writer in organizing the material into lessons. It is sufficiently difficult to write lessons that the 
three-track theory is not followed very closely except in the files and editor scripts. Accordingly, in 
some cases, the fast track is produced merely by skipping lessons from the slower track. In others, 
there is essentially only one track. 

The main reason for using the learn program rather than simply writing the same material 
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing is 
much more effective than pencil and paper exercises. 

Learn also provides a mechanical check on performance. The first version in fact would not 
let the student proceed unless it received correct answers to the questions it set and it would not 
tell a student the right answer. This somewhat Draconian approach has been moderated in version 
2. Lessons are sometimes badly worded or even just plain wrong; in such cases, the student has no 
recourse. But if a student is simply unable to complete one lesson, that should not prevent access 
to the rest. Accordingly, the current version of learn allows the student to skip a lesson that he 
cannot pass; a "no" answer to the "Do you want to try again?" question in Figure 1 will pass to 
the next lesson. It is still true that learn will not tell the student the right answer. 

Of course, there are valid objections to the assumptions above. In particular, some students 
may object to not understanding what they are doing; and the procedure of smashing everything 
into small pieces may provoke the retort "you can't cross a ditch in two jumps." Since writing 
OAl scripts is considerably more tedious than ordinary manuals, however, it is safe to assume that 
there will always be alternatives to the scripts as a way of learning. In fact, for a reference manual 
of 3 or 4: pages it would not be surprising to have "a tutorial manual of 20 pages and a (multi­
track) script of 100 pages. Thus the reference manual will exist long before the scripts. 

3. Scripts. 

As mentioned above, the present scripts try at most to follow a three-track theory. Thus lit­
tle of the potential complexity of the possible directed graph is employed, since care must be taken 
in lesson construction to see that every necessary fact is presented in every possible path through 
the units. In addition, it is desirable that every unit have alternate successors to deal with student 
errors. 

In most existing courses,the first few lessons are devoted to checking prerequisites. For 
example, before the student is allowed to proceed through the editor script the script verifies that 
the student understands files and is able to type. It is felt that the sooner lack of student 

o 

o 



(-

( ",-, 

-.-// 

LEARN - Computer-Aided Instruction on UNIX USD:2-5 

preparation is detected, the easier it will be on the student. Anyone proceeding through the scripts 
should be getting mostly correct answers; otherwise, the system will be unsatisfactory both because 
the wrong habits are being learned and because the scripts make little effort to deal with wrong 
answers. Unprepared students should not be encouraged to continue with scripts. 

There are some preliminary items which the student must know before any scripts can be 
tried. In particular, the student must know how to connect to a UNIX system, set the terminal 
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character erase 
and line kill conventions (# and @) should be known. It is hard to see how this much could be 
taught by computer-aided instruction, since a student who does not know these basic skills will not 
be able to run the learning program. A brief description on paper is provided (see Appendix A), 
although assistance will be needed for the first few minutes. This assistance, however, need not be 
highly skilled. 

The first script in the current set deals with files. It assumes the basic knowledge above and 
teaches the student about the Is, eat, rnv, nn, ep and diif commands. It also deals with the 
abbreviation characters *, 1, and [J in file names. It does not cover pipes or I/O redirection, nor 
does it present the many options on the Is command. 

This script contains 31 lessons in the fast trackj two are intended as prerequisite checks, 
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instructional 
passages typed at the student to begin each lesson total 4,476 words. The average lesson thus 
begins with a 60-word message. In general, the fast track lessons have somewhat longer introduc­
tions, and the slow tracks somewhat shorter ones. The longest message is 144 words and the shor­
test 14. 

The second script trains students in the use of the UNIX context editor ed, a sophisticated 
editor using regular expressions for searching.s All editor features except encryption, mark names 
and I j' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a 
review lesson. It is supplemented by 146 additional lessons in other tracks. 

A comparison of sizes may be of interest. The cd description in the reference manual is 2,572 
words long. The cd tutorial6 is 6,138 words long. The fast track through the cd script is 7,407 
words of explanatory messages, and the total cd script, 242 lessons, has 15,615 words. The average 
ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10. The original cd 
script represents about three man-weeks of effort. 

The advanced file handling script deals with Is options, I/O diversion, pipes, and supporting 
programs like pr, we, tail, spell and grep. (The basic file handling script is a prerequisite.) It is 
not as refined as the first two scripts; this is reflected at least partly in the fact that it provides 
much less of a full three-track sequence than they do. On the other hand, since it is perceived as 
"advanced," it is hoped that the student will have somewhat more sophistication and be better 
able to cope with it at a reasonably high level of performance. 

A fourth script covers the eqn language for typing mathematics. This script must be run on 
a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based 
terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of tracks: 
of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these provide addi­
tional practice for students who are having trouble in the first track. 

The -rns script for formatting macros is a short one-track only script. The macro package it 
describes is no longer the standard, so this script will undoubtedly be superseded in the future. 
Furthermore, the linear style of a single learn script is somewhat inappropriate for the macros, 
since the macro package is composed of many independent features, and few users need all of 
them. It would be better to have a selection of short lesson sequences dealing with the features 
independently. 

The script on 0 is in a state of transition. It was originally designed to follow a tutorial on 
0, but that document has since become obsolete. The current script has been partially converted 
to follow the order of presentation in The 0 Programming Language,7 but this job is not complete. 
The 0 script was never intended to teach 0; rather it is supposed to be a series of exercises for 



USD:2-6 LEARN - Computer-Aided Instruction on UNIX 

which the computer provides checking and (upon success) a suggested solution. 

This combination of scripts covers much of the material which any UNIX user will need to 
know to make effective use of the system. With enlargement of the advanced files course to include 
more on the command interpreter, there will be a relatively complete introduction to UNIX avail- . 
able via learn. Although we make no pretense that learn will replace other instructional materials, 
it should provide a useful supplement to existing tutorials and reference manuals. 

4. Experience with Students. 

Learn has been installed on many different UNIX systems. Most of the usage is on the first 
two scripts, so these are more thoroughly debugged and polished . .As a (random) sample of user 
experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 lessons in a four 
month period. About 3600 of these are in the files script, 4100 in the editor, and 1400 in advanced 
files. The passing rate is about 80%, that is, about 4 lessons are passed for every one failed. 
There have been 86 distinct users of the files script, and 58 of the editor. On our system at Mur­
ray Hill, there have been nearly 2000 lessons over two weeks that include Christmas and New 
Year. Users have ranged in age from six up. 

It is difficult to characterize typical sessions with the scripts; many instances exist of someone 
doing one or two lessons and then logging out, as do instances of someone pausing in a script for 
twenty minutes or more. In the earlier version of learn, the average session in the files course took 
32 minutes and covered 23 lessons. The distribution is quite broad and skewed, however; the long­
est session was 130 minutes and there were five sessions shorter than five minutes. The average 
lesson took about 80 seconds. These numbers are roughly typical for non-programmers; a UNIX 
expert can do the scripts at approximately 30 seconds per lesson, most of which is the system 
printing. 

At present working through a section of the middle of the files script took about 1.4 seconds 
of processor time per lesson, and a system expert typing quickly took 15 seconds of real time per 
lesson. A novice would probably take at least a minute. Thus a UNIX system could support ten 
students working simultaneously with some spare capacity. 

o. The Script Interpreter. 

The learn program itself merely interprets scripts. It provides facilities for the script writer 
to capture student responses and their effects, and simplifies the job of passing control to and 
recovering control from the student. This section describes the operation and usage of the driver 
program, and indicates what is required to produce a new script. Readers only interested in the 
existing scripts may skip this section. 

The file structure used by learn is shown in Figure 2. There is one parent dirertory (named 
lib) containing the script data. Within this directory are subdirectories, one for each subject in 
which a course is available, one for logging (named log), and one in which user sub-directories are 
created (named play). The subject directory contains master copies of all lessons, plus any sup­
porting material for that subject. In a given subdirectory, each lesson is a single text file. Lessons 
are usually named systematically; the file that contains lesson n is called Ln . 

When learn is executed, it makes a private directory for the user to work in, wit.hin the learn 
portion of the file system. A fresh copy of all the files used in each lesson (mostly data for the stu­
dent to operate upon) is made each time a student starts a lesson, so the script writer may assume 
that everything is reinitialized each time a lesson is entered. The student directory is deleted after 
each session; any permanent records must be kept elsewhere. 

The script writer must provide certain basic items in each lesson: 

(1) the text of the lesson; 

(2) the set-up commands to be eXecuted before the user gets control; 

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process; 

o 



( 

( 

LEARN - Computer-Aided Instruction on UNIX 

Figure 2: Directory structure for learn 

lib 

play 

files 

editor 

(other courses) 

log 

student I 

student2 

10.180 
1O.lb 

files for student!... 

files for student2 ... 

lessons for files course 

USD:2-7 

(4) the evaluating commands to be executed after the user has finished the lesson, to decide 
whether the answer is right; and 

(5) a list of possible successor lessons. 

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort 
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests 
of student performance. 

The basic sequence of events is as follows. First, learn creates the working directory. Then, 
for each lesson, learn reads the script for the lesson and processes it a line at a time. The lines in 
the script are: (I) commands to the script interpreter to print something, to create a files, to test 
something, etc.; (2) text to be printed or put in a file; (3) other lines, which are sent to the shell to 
be executed. One line in each lesson turns control over to the user; the user can run any UNIX 
commands. The user mode terminates when the user types yes, no, ready, or answer. At this 
point, the user's work is tested; if the lesson is passed, a new lesson is selected, and if not the old 
one is repeated. 

Let us illustrate this with the script for the second lesson of Figure I; this is shown in Figure 
3. 

Lines which begin with # are commands to the learn script interpreter. For example, 

#print 

causes printing of any text that follows, up to the next line that begins with a sharp. 

#print file 
prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print 
have the added property that if a lesson is failed, the #print will not be executed the second time 
through; this avoids annoying the student by repeating the preamble to a lesson. 

#create filename 

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is 
used for creating and initializing working files and reference data for the lessons. 

#user 

gives control to the student; each line he or she types is passed to the shell for execution. The 
#user mode is terminated when the student types one of yes, no, ready or answer. At that time, 



USD:2-8 LEARN - Computer-Aided Instruction on UN1X 

Figure 3: Sample Lesson 

#print 
Of course, you can print any file with "cat". 
In particular, it is common to first use 
"Is" to find the name of a file and then "cat" 
to print it. Note the difference between 
''Is'', which tells you the name of the files, 
and "cat", which tells you the contents. 
One file in the current directory is named for 
a President. Print the file, then type "ready". 
#create roosevelt 

this file is named roosevelt 
and contains three lines of 
text. 

#copyout 
#user 
#uncopyout 
tail -3 .ocopy > Xl 
#cmp Xl roosevelt 
#log 
#next 
3.2b 2 

the driver resumes interpretation of the script. 

#copyin 
#uncopyin 

Anything the student types between these commands is copied onto a file called . copy. This lets 
the script writer interrogate the student's responses upon regaining control. 

#copyout 
#uncopyout 

Between these commands, any material typed at the student by any program is copied to the file 
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true beli­
evers in the performance theory of learning usually prefer to the student's actual input. 

#pipe 
#unpipe 

Normally the student input and the script commands are fed to the UNIX command interpreter 
(the "shell") one line at a time. This won't do if, for example, a sequence of editor commands is 
provided, since the input to the editor must be handed to the editor, not to the shell. Accordingly, 
the material between #pipe and #unpipe commands is fed continuously through a pipe so that 
such sequences work. H eopyout is also desired the copyout brackets must include the pipe brack­
ets. 

There are several commands for setting status after the student has attempted the lesson. 

#cmp fiJel fiJet! 

is an in-line implementation of emp, which compares two files for identity. 

#match stuff 

The last line of the student's input is compared to stuff, and the success or fail status is set 
according to it. Extraneous things like the word answer are stripped before the comparison is 
made. There may be several #match lines; this provides a convenient mechanism for handling c 



LEARN - Computer-Aided Instruction on UNIX USD:2-9 

multiple "right" answers. Any text up to a # on subsequent lines after a successful #match is 
printed; this is illustrated in Figure 4, another sample lesson. 

#bad stuff 

Figure 4: Another Sample Lesson 

#print 
What command will move the current line 
to the end of the file? Type 
"answer COMMAND", where COMMAND is the command. 
#copyin 
#user 
#uncopyin 
#match mS 
#match .mS 
"mS" is easier. 
#log 
#next 
63.1d 10 

This is similar to #match, except that it corresponds to specific failure answers; this can be used 
, to produce hints for particular wrong answers that have been anticipated by the script writer. 

#succeed 
#/ail 

print a message upon success or failure (as determined by some previous mechanism). 

When the student types one of the "commands" yes, no, ready, or answer, the driver ter­
minates the #user command, and evaluation of the student's work can begin. This can be done 
either by the built-in commands above, such as #match and #cmp, or by status returned by nor­
mal UNIX commands, typically grep and test. The last command should return status true (0) if 
the task was done successfully and false (non-zero) otherwise; this status return tells the driver 
whether or not the student has successfully passed the lesson. 

Performance can be logged: 

#log file 

writes the date, lesson, user name and speed rating, and a success/failure indication on file. The 
command 

#log 

by itself writes the logging information in the logging directory within the learn hierarchy, and is 
the normal form. 

#next 

is followed by a few lines, each with a successor lesson name and an optional speed rating on it. A 
typical set might read 

25.1a 10 
25.2a 5 
25.3a 2 

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main­
tained for each session with a student; the rating is increased by one each time the student gets a 
lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver tries 
to maintain a level such that the users get 80% right answers. The maximum rating is limited to 



USD:2-10 LEARN - Computer-Aided Instruction on UNIX 

10 and the minimum to O. The initial rating is zero unless the student specifies a different rating 
when starting a session. 

If the student passes a lesson, a new lesson is selected and the process repeats. If the student 
fails, a false status is returned and the program reverts to the previous lesson and tries another 
alternative. If it can not find another alternative, it skips forward a lesson. bye, bye, which 
causes a graceful exit from the learn system. Hanging up is the usual novice's way out. 

The lessons may form an arbitrary directed graph, although the present program imposes a 
limitation on cycles in that it will not present a lesson. twice in the same session. If the student is 
unable to answer one of the exercises correctly, the driver searches for a previous lesson with a set 
of alternatives as successors (following the #ne%t line). From the previous lesson with alternatives 
one route was taken earlier; the program simply tries a different one. 

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of 
response, or try to estimate the elegance of the answer, or provide detailed analysis of wrong 
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to go 
unused. 

The driver program depends heavily on features of UNIX that are not available on many 
other operating systems. These include the ease of manipulating files and directories, file redirec­
tion, the ability to use the command interpreter as just another program (even in a pipeline), com­
mand status testing and branching, the ability to catch signals like interrupts, and of course the 
pipeline mechanism itself. Although some parts of learn might be transferable to other systems, 
some generality will probably be lost. 

A bit of history: The first version of learn had fewer built-in words in the driver program, 
and made more use of the facilities of UNIX. For example, file comparison was done by creating a 
cmp process, rather than comparing the two files within learn. Lessons were not stored as text 
files, but as archives. There was no concept of the in-line document; even #print had to be fol­
lowed by a file name. Thus the initialization for each lesson was to extract the archive into the 
working directory (typically 4-8 files), then #print the lesson text. 

The combination of such things made learn slower. The new version is about 4 or 5 times 
faster. Furthermore, it appears even faster to the user because in a typical lesson, the printing of 
the message comes first, and file setup with #create can be overlapped with the printng, so that 
when the program finishes printing, it is really ready for the user to type at it. 

It is also a great advantage to the script maintainer that lessons are now just ordinary text 
files. They can be edited without any difficulty, and UNIX text manipulation tools can be applied 
to them. The result has been that there is much less resistance to going in and fixing substandard 
lessons. 

6. Conclusions 

The following observations can be made about secretaries, typists, and other non­
programmers who have used learn: 

(a) 

(b) 

A novice must have assistance with the mechanics of communicating with the computer to 
get through to the first lesson or two; once the first few lessons are passed people can proceed 
on their own. 

The terminology used in the first few lessons is obscure to those inexperienced with comput­
ers. It would help if there were a low level reference card for UNIX to supplement the exist-
ing programmer oriented bulky manual and bulky reference card. 

(c) The concept of "substitutable argument" is hard to grasp, and requires help. 

(d) They enjoy the system for the most part. Motivation matters a great deal, however. 

It takes an hour or two for a novice to get through the script on file handling. The total time for 
a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable ability to 
create new files and manipulate old ones seems to be a few days, with perhaps half of each day 
spent on the machine. 

.0 



(/ 

c 

LEARN - Computer-Aided Instruction on UNIX USD:2-11 

The normal way of proceeding has been to have students in the same room with someone 
who knows UNIX and the scripts. Thus the student is not brought to a halt by difficult questions. 
The burden on the counselor, however, is much lower than that on a teacher of a course. Ideally, 
the students should be encouraged to proceed with instruction immediately prior to their actual use 
of the computer. They should exercise the scripts on the same computer and the same kind of ter­
minal that they will later use for their real work, and their first few jobs for the computer should 
be relatively easy ones. Also, both training and initial work should take place on days when the 
UNIX hardware and software are working reliably. Rarely is all of this possible, but the closer one 
comes the better the result. For example, if it is known that the hardware is shaky one day, it is 
better to attempt to reschedule training for another one. Students are very frustrated by machine 
downtime; when nothing is happening, it takes some sophistication and experience to distinguish 
an infinite loop, a slow but functioning program, a program waiting for the user, and a broken 
machine.* 

One disadvantage of training with learn is that students come to depend completely on the 
CAl system, and do not try to read manuals or use other learning aids. This is unfortunate, not 
only because of the increased demands for completeness and accuracy of the scripts, but because 
the scripts do not cover all of the UNIX system. New users should have manuals (appropriate for 
their level) and read them; the scripts ought to be altered to recommend suitable documents and 
urge students to read them. 

There are several other difficulties which are clearly evident. From the student's viewpoint, 
the most serious is that lessons still crop up which simply can't be passed. Sometimes this is due 
to poor explanations, but just as often it is some error in the lesson itself - a botched setup, a 
missing file, an invalid test for correctness, or some system facility that doesn't work on the local 
system in the same way it did on the development system. It takes knowledge and a certain 
healthy arrogance on the part of the user to recognize that the fault is not his or hers, but the 
script writer's. Permitting the student to get on with the next lesson regardless does alleviate this 
somewhat, and the logging facilities make it easy to watch for lessons that no one can pass, but it 
is still a problem. 

The biggest problem with the previous learn was speed (or lack thereof) - it was often 
excruciatingly slow and made a significant drain on the system. The current version so far does 
not seem to have that difficulty, although some scripts, notably eqn, are intrinsically slow. eqn, 
for example, must do a lot of work even to print its introductions, let alone check the student 
responses, but delay is perceptible in all scripts from time to time. 

Another potential problem is that it is possible to break learn inadvertently, by pushing 
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The 
defenses against such problems have steadily been improved, to the point where most students 
should not notice difficulties. Of course, it will always be possible to break learn maliciously, but 
this is not likely to be a problem. 

One area is more fundamental - some UNIX commands are sufficiently global in their effect 
that learn currently does not allow them to be executed at all. The most obvious is cd, which 
changes to another directory. The prospect of a student who is learning about directories inadver­
tently moving to some random directory and removing files has deterred us from even writing les­
sons on cd, but ultimately lessons on such topics probably should be added. 

7. Acknowledgments 

We are grateful to all those who have tried learn, for we have benefited greatly from their 
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and 
M. J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also pro­
vided many of the ideas in the system. We are also indebted to Don Jackowski for serving as a 

• We have even known an expert programmer to decide the computer was broken when he had simply left his 
terminal in local mode. Novices have great difficulties with such problems. 



USD:2-12 LEARN - Computer-Aided Instruction on UNIX 

guinea pig for the second version, and to Tom Plum for his efforts to improve the C script. 

References 

1. D.L. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educa­
tional System: Plato IV," in Computer A88i8ted In8truction, Te8ting and Guidance, ed. 
Wayne Holtzman, pp. 17-29, Harper and Row, New York, 1970. 

2. D.C. Gray, J.P. Hulskamp, J.H. Kumm, S. Lichtenstein, and N.E. Nimmervoll, "COALA - A 
Minicomputer CAl System," IEEE Tran8. Education, vol. E-20(1), pp. 73-77, Feb. 1977. 

3. P. Suppes, "On Using Computers to Individualize Instruction," in The Computer in Ameri­
can Education, ed. D.D. Bushnell and D.W. Allen, pp. 11-24, John Wiley, New York, 1967. 

4. B.F. Skinner, "Why We Need Teaching Machines," Barv. Educ. Review, vol. 31, pp. 377-
398, 1961. Reprinted in Educational Technology, ed. J.P. DeCecco, Holt Rinehart & Winston 
(New York, 1964) 

5. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978. See 
section ed(I). 

6. B.W. Kernighan, A Tutorial Introduction to the UNIX text editor, 1974. Bell Laboratories 
internal memorandum 

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Clift's, New Jersey, 1978. 



( 

An Introduction to the UNIX Shell 

S. R. Bourne 

ABSTRACT 

The ,hell is a command programming language that provides an interface to the 
UNIXt operating system. Its features include control-flow primit.ives, parameter 
passing, variables and string substitution. Constructs such as while, if then el,e, 
C4"e and for are available. Two-way communication is possible between the 8hell 
and commands. String-valued parameters, typically file names or flags, may be 
passed to a command. A return code is set by commands that may be used to 
determine control-flow, and the standard output from a command may be used as 
shell input. 

The 8hell can modify the environment in which commands run. Input and output 
can be redirected to files, and processes that communicate through 'pipes' can be 
invoked. Commands are found by searching directories in the file system in a 
sequence that can be defined by the user. Commands can be read either from the 
terminal or from a file, which allows command procedures to be stored for later 
use. 

September 16, 1986 

t UNIX is a trademark or Bell Labora.tories. 



o 

o 



(~- . 

( 

() 

An Introduction to the UNIX Shell 

S. R. Bourne 

1.0 Introduction 

The shell is both a command language and a programming language that provides an interface to 
the UNIX operating system. This memorandum describes, with examples, the UNIX shell. The 
first section covers most of the everyday requirements of terminal users. Some familiarity with 
UNIX is an advantage when reading this section; see, for example, ''UNIX for beginners".l Section 
2 describes those features of the shell primarily intended for use within shell procedures. These 
include the control-flow primitives and string-valued variables provided by the shell. A knowledge 
of a programming language would be a help when reading this section. The last section describes 
the more advanced features of the shell. References of the form "see pipe (2)" are to a section of 
the UNIX manual.2 

1.1 Simple commands 

Simple commands consist of one or more words separated by blanks. The first word is the name of 
the command to be executed; any remaining words are passed as arguments to the command. For 
example, 

who 

is a command that prints the names of users logged in. The command 

Is -1 

prints a list of files in the current directory. The argument -I tells Is to print status information, 
size and the creation date for each file. 

1.2 Background commands 

To execute a command the shell normally creates a new process and waits for it to finish. A com­
mand may be run without waiting for it to finish. For example, 

cc pgm.c & 

calls the C compiler to compile the file pgrn. c. The trailing lie is an operator that instructs the 
shell not to wait for the command to finish. To help keep track of such a process the shell reports 
its process number following its creation. A list of currently active processes may be obtained 
using the ps command. 

1.3 Input output redirection 

Most commands produce output on the standard output that is initially connected to the terminal. 
This output may be sent to a file by writing, for example, 

Is -1 >file 

The notation> file is interpreted by the shell and is not passed as an argument to Is. If file does 
not exist then the shell creates it; otherwise the original contents of file are replaced with the out­
put from Is. Output may be appended to a file using the notation 

Is -I »file 

In this case file is also created if it does not already exist. 



-2-

The standard input oC a command may be taken Crom a file instead oC tbe terminal by writing, for 
example, 

wc <file 

The command we reads its standard input (in this case redirected Crom file) and prints the number 
oC characters, words and lines found. Ir only the number oC lines is required then 

we -1 <file 

could be used. 

1.4 Pipelines and llters 

The standard output oC one command may be connected to the standard input oC anotber by writ­
ing the 'pipe' operator, indicated by I, as in, 

Is -I I wc 

Two commands connected in this way constitute a pipeline and the overall effect is the same as 

Is -1 >filej wc <file 

except that no file is used. Instead tbe two processes are connected by a pipe (see pipe (2» and are 
run in parallel. Pipes are unidirectional and synchronization is achieved by halting we when there 
is nothing to read and halting 18 when the pipe is Cull. 

A filter is a command tbat reads its standard input, transforms it in some way, and prints the 
result as output. One such filter, grep, selects Crom its input those lines that contain some specified 
string. For example, 

Is I grep old 

prints those lines, if any, oC the output Crom Is that contain the string old. Another useful filter is 
1I0rt. For example, 

who I sort 

will print an alphabetically sorted list of logged in users. 

A pipeline may consist of more than two commands, for example, 

Is I grep old I wc -1 

prints the number of file names in the current directory containing the string old. 

1.5 File name generation 

Many commands accept arguments which are file names. For example, 

Is -I main.c 

prints inCormation relating to the file main.e. 

The shell provides a mechanism for generating a list oC file names that match a pattern. For 
example, 

Is-I *.c 

generates, as arguments to III, all file names in the current directory that end in . e. The character 
* is a pattern that will match any string including the null string. In general patterns are specified 
as Collows. 

• Matches any string of characters including the null string. 

f 

[ ••• J 
Matches any single character. 

Matches anyone of the characters enclosed. A pair of characters separated by a 
minus will match any character lexically between the pair. 

o 

/'.---_._-'\ 

( 
'''----,/ 

c 



( 

( 

-3-

For example, 

[a-z] * 
matches all names in the current directory beginning with one of the letters IJ through z. 

/usr/Cred/test/? 

matches all names in the directory /usr /Ired/test that consist oC a single character. If no file 
name is Cound that matches the pattern then the patte~ is passed, unchanged, as an argument. 

This mechanism is useful both to save typing and to select names according to some pattern. It 
may also be used to find files. For example, 

echo /usr/Cred/*/core 

finds and prints the names oC all core files in sub-directories of /ur /Ired. ( ech 0 is a standard 
UNIX command that prints its arguments, separated by blanks.) This last. feature can be expen­
sive, requiring a scan of all sub-directories of /UR/Ired. 
There is one exception to the general rules given Cor patterns. The character '.' at. the start of a 
file name must be explicitly matched. 

echo * 

will therefore echo all file names in the current directory not beginning with '.' . 

echo .* 

will echo all those file names that begin with '.'. This avoids inadvertent matching of the names 
'o' and c • .' which mean 'the current directory' and 'the parent directory' respectively. (Notice that 
I" suppresses information Cor the files '.' and ' • .' .) 

1.8 Quoting 

Characters that have a special meaning to the shell, such as < > .? I &, are called metacharac­
ters. A complete list of metacharacters is given in appendix B. Any character preceded by a \ is 
quoted and loses its special meaning, if any. The \ is elided so that 

echo \? 
will echo a single ? , and 

echo \\ 

will echo a single \. To allow long strings to be continued over more than one line the sequence 
\newline is ignored. 

\ is convenient for quoting single characters. When more than one character needs quoting the 
above mechanism is clumsy and error prone. A string of characters may be quoted by enclosing 
the string between single quotes. For example, 

echo xx '**** 'xx 

will echo 

xx****xx 

The quoted string may not contain a single quote but may contain newlines, which are preserved. 
This quoting mechanism is the most simple and is recommended for casual use. 

A third quoting mechanism using double quotes is also available that prevents interpretation of 
some but not all metacharacters. Discussion of the details is deferred to section 3.4 . 



. ". 
1.7 Prompting 

When the shell is used from a terminal it will issue a prompt before reading a command. By 
default this prompt is'S '. It may be changed by saying, for example, 

PSl=yesdear 

that sets the prompt to be the string ,esdear. If a newline is typed and further input is needed 
then the shell will issue the prompt '> '. Sometimes this can be caused by mistyping a quote 
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another command. 
This prompt may be changed by saying, for example, 

PS2=more 

1.8 The shell and login 

Following login (1) the shell is called to read and execute commands typed at the terminal. If the 
user's login directory contains the file .profile then it is assumed to contain commands and is read 
by the shell before reading any commands from the terminal. 

1.9 Summary 

• Is 
Print the names of files in the current directory. 

• Is >file 
Put the output from Is into Jile. 

• Is I we -I 
Print the number of files in the current directory. 

• Is I grep old 
Print those file names containing the string old. 

• Is I grep old I we -I 
Print the number of files whose name contains the string old. 

• ee pgm.e &, 
Run cc in the background. 

/--"-,,-
/ .. 

i~ 

c 



( 

<: 

o 

- 5-

2.0 Shell procedures 

The shell may be used to read and execute commands contained in a file. For example, 

sb file [ args ••• 1 
calls the shell to read commands from Jile. Such a file is called a command procedure or ,hell pro­
cedure. Arguments may be supplied with the call and are reCerred to in Jile using the positional 
parameters $1, S2, •••• For example, iC the file wg contains 

who I grep SI 

then 

sh wg fred 

is equivalent to 

who I grep fred 

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod 
(1) may be used to make a file executable. For example, 

chmod +xwg 

will ensure that the file wg has execute status. Following this, the command 

wg fred 

is equivalent to 

sh wg Cred 

This allows shell procedures and programs to be used interchangeably. In either case a new process 
is created to run the command. 

As well as providing names for the positional parameters, the number oC positional parameters in 
the call is available as $#. The name oC the file being executed is available as $0. 

A special shell parameter $* is used to substitute for all positional parameters except $0. A typi­
cal use oC this is to provide some deCault arguments, as in, 

nroft' -T450 -ms ** 
which simply prepends some arguments to those already given. 

2.1 Control flow - for 

A Crequent use oC shell procedures is to loop through the arguments ($1, $2, ••• ) executing com­
mands once Cor each argument. An example oC such a procedure is tel that searches the file 
/usr/lib/telnos that contains lines of the Corm 

fred mb0123 
bert mh0789 

The text of tel is 

fori 
do grep Si /usr/lib/telnos; done 

The command 

tel fred 

prints those lines in /usr/lib/telnos that contain the string fred. 



-6-

tel fred bert 

prints those lines containing Ired followed by those for bert. 

The for loop notation is recognized by the shell and has the general form 

for name in wI we ••• 
do command·l.,t 
done 

A command·l.,t is a sequence of one or more simpie commands separated or terminated by a new­
line or semicolon. Furthermore, reserved words like do and done are only recognized foll~wing a 
newline or semicolon. name is a shell variable that is set to the words wI we ••• in turn each time 
the command·l.,t following do is executed. If in wI we • •• is omitted then the loop is executed 
once for each positional parameterj that is, in S * is assumed. 

Another example of the use of the for loop is the create command whose text is 

for i do >Sij done 

The command 

create alpha beta 

ensures that two empty files alpha and beta exist and are empty. The notation> fiJe may be used 
on its own to create or clear the contents of a file. Notice also that a semicolon (or newline) is 
required before done. 

'2.2 Control flow - case 

A multiple way branch is provided for by the case notation. For example, 

case $# in 
1) cat »$1 jj 
2) cat »$2 <$1 ;; 
*) echo 'usage: append [ from 1 to' jj 

esac 

is an append command. When called with one argument as 

append file 

$# is the string 1 and the standard input is copied onto the end of file using the eat command. 

append filel file2 

appends the contents of fileI onto JUee. If the number of arguments supplied to append is other 
than 1 or 2 then a message is printed indicating proper usage. 

The general Corm of the case command is 

case word in 
pattern) command-list;; 

esac 

The shell attempts to match word with each pattern, in the order in which the patterns appear. If 
a match is found the associated command-list is executed and execution of the case is complete. 
Since * is the pattern that matches any string it can be used for the default case. 

A word of caution: no check is made to ensure that only one pattern· matches the case argument. 
The first match found defines the set of commands to be executed. In the example below the com­
mands following the second * will never be executed. 

o 

o 



( 

( 

c 

case 1# in 
*) ••• ;; 
*) •• • ;; 

esac 

-7-

Another example or the use or the case construction is to distinguish between different rorms or an 
argument. The rollowing example is a rragment or a ee command. 

rori 
do case Ii in 

-[ocs]) ••• ;; 
-*) echo 'unknown flag Ii';; 
*.c) /lib/cO Ii ••• ;; 
*) echo 'unexpected argument Ii' ;; 
esac 

done 

To allow the same commands to be associated with more than one pattern the case command pro­
vides for alternative patterns separated by a I. For example, 

case Ii in 
-x I-y) 

esac 

is equivalent to 

case Ii in 
-[xyJ) ••• 

esac 

The usual quoting conventions apply so that 

case Ii in 
\1) 

will match the character! • 

2.3 Here documents 

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data ror grep. 
An alternative is to include this data within the shell procedure as a here document, as in, 

ror i 
do grep Ii «I 

rred mh0123 
bert mh0789 

! 
done 

In this example the shell takes the lines between «~I and! as the standard input ror grep. The 
string! is arbitrary, the document being terminated by a line that consists or the string rollowing 
«. 
Parameters are substituted in the document berore it is made available to grep as illustrated by the 
rollowing procedure called edg. 



The call 

ed'3 «% 
g/'l/s/ /'2/g 
w 
% 

eelg string1 string2 file 

is then equivalent to the command 

eel file «% 
g/string1/s/ /string2/g 
w 
% 

-8-

and changes all occurrences of atM'ngl in jile to atring!. Substitution can be prevented using \ to 
quote the special character' as in 

eel $3 «+ 
1,\$s/$I/$2/g 
w 

+ 
(This version of edg is equivalent to the first except that. ed will print a T if t.here are no 
occurrences of the string $1 .) Substitution within a here document may be prevented entirely by 
quoting the terminating string, for example, 

grep $i «\# 

# 
The document is presented without modification to grep. If parameter substitution is not required 
in a here document this latter form is more efficient. 

2.4 Shell variables 

The shell provides string-valued variables. Variable names begin with a letter and consist of 
letters, digits and underscores. Variables may be given values by writing, for example, 

user=fred box=mOOO acct=mhOOOO. 

which assigns values to the variables user, box and acct. A variable may be set to the null 
string by saying, for example, 

nul1= 

The value of a variable is substituted by preceding its name with S; for example, 

echo Suser 

will echo Ired. 

Variables may be used interactively to provide abbreviations for frequently used strings. For 
example, 

b=/usr/fred/bin 
mv pgm Sb 

will move the file pgm from the current directory to the directory /usr /tred/bin. A more general 
notation is available for parameter (or variable) substitution, as in, 

echo S{ user} 

which is equivalent to o 



( 

( 

- 9-

echo Suser 

and is used when the parameter name is followed by a letter or digit. For example, 

tmp=/tmp/ps 
ps a >${tmp}a 

will direct the output of I" to the file /tmp/psa, whereas, 

ps a >Stmpa 

would cause the value of the variable tmpa to be substituted. 

Except for Sf the following are set initially by the shell. Sf is set after executing each command. 

S! The exit status (return code) of the last command executed as a decimal string. 
Most commands return a zero exit status if they complete successfully, otherwise a 
non-zero exit status is returned. Testing the value of return codes is dealt with 
lat.er under if and while commands. 

$# The number of positional parameters (in decimal). Used, for example, in the append 
command to check the number of parameters. 

S$ The process number of this shell (in decimal). Since process numbers are unique 
among all existing processes, this string is frequently used to generate unique tem­
porary file names. For example, 

ps a > /tmp/ps$$ 

rm /tmp/ps$$ 

$ ! The process number of the last process run in the background (in decimal). 

$- The current shell flags, such as -x and -v. 
Some variables have a special meaning to the shell and should be avoided for general use. 

SMAIL When used interactively the shell looks at the file specified by this variable before it 
issues a prompt. If the specified file has been modified since it was last looked at 
the shell prints the message 'au have mail before prompting for the next command. 
This variable is typically set in the file .profile, in the user's login directory. For 
example, 

MAIL=/usr/mailjfred 

SHOME The default argument for the cd command. The current direct.ory is used to resolve 
file name references that do not begin with a / , and is changed using the cd com­
mand. For example, 

cd /usr/fred/bin 

makes the current directory /usr /Ired/bin • 

cat wn 

will print on the terminal the file wn in this directory. The command cd with no 
argument is equivalent to 

cd SHOME 

This variable is also typically set in the the user's login profile. 

SPATH A list of directories that contain commands (the 8earch path). Each time a com-



·10-

mand is executed by the shell a list of directories is searched for an executable file. 
H 'PATH is not set then the current directory, /bin, and /usr/bin are searched 
by default. Otherwise SPATH consists of directory names separated by :. For 
example, 

PATH=:/usr/fred/bin:/bin:/usr/bin 

specifies that the current directory (the null string before the first :), 
/usr/tred/bin, /bin and /usr/bin are to be searched in that order. In this way 
individual users can have their own 'private' commands that are accessible indepen­
dently of the current directory. H the command name contains a / then this direc­
tory search is not used; a single attempt is made to execute the command. 

'PSt The primary shell prompt string, by default, '$ '. 

SPS2 The shell prompt when further input is needed, by default, '> '. 
SIFS The set of characters used by blank interpretation (see section 3.4). 

2.5 The test command 

The test command, although not part of the shell, is intended for use by shell programs. For 
example, 

test -f file 

returns zero exit status if file exists and non-zero exit status otherwise. In general test evaluates a 
predicate and returns the result as its exit status. Some of the more frequently used test argu­
ments are given here, see test (1) for a complete specification. 

test s true if the argument s is not the null string 
test -f file true if file exists 
test -r file true if file is readable 
test -w filetrue if file is writable 
test -d file true if file is a directory 

2.8 Control flow - while 

The actions of the for loop and the ease branch are determined by data available to the shell. A 
while or until loop and an it then else branch are also provided whose actions are determined by 
the exit status returned by commands. A while loop has the general form 

while command.listl 

do command.list, 
done 

The value tested by the while command is the exit status of the last simple command following 
while. Each time round the loop command.listJ is executed; if a zero exit status is returned then 
command.liat, is executed; otherwise, the loop terminates. For example, 

while test $1 
do ... 

shift 
done 

is equivalent to 

for i 
do ••• 
done 

aM!t is a shell command that renames the positional parameters $2, $3, ••• as $1, $2, ••• and 
loses St. 

o 



( 

( 

() 

-11-

Another kind or use ror the while/untllloop is to wait until some external event occurs and then 
run some commands. In an until loop the termination condition is reversed. For example, 

until test -C file 
do sleep 300; done 
command8 

will loop until file exists. Each time round the loop it waits Cor 5 minutes berore trying again. 
{presumably another process will eventually create the file.} 

2.7 Control flow - if 

Also available is a general conditional branch or the Corm, 

if command-Iut 
then command-li8t 
else command-1i8t 
fi 

that tests the value returned by the last simple command rollowing it. 

The it command may be used in conjunction with the te8t command to test for the existence of a 
file as in 

if test -f file 
then proceS8 file 
else do 80mething e/8e 
fi 

An example of the use or it, case and tor constructions is given in section 2.10. 

A multiple test it command or the rorm 

if ••• 
then 
else if ••• 

then 
else ir ••• 

fi 
fi 

fi 

may be written using an extension or the it notation as, 

if ... 
then 
elif 
then 
elif 

fi 

The following example is the touch command which changes the 'last modified' time for a list or 
files. The command may be used in conjunction with make (I) to force recompilation of a list or 
files. 



Bag== 
Cor i 
do case Si in 

-c) Bag==N ;; 
*)if test -C Si 

-12 -

then In Si junkSS; rm junkSS 
elif test Sflag 
then echo file \ 'Si\ ' does not exist 
else >Si . 
fi 

esac 
done 

The -c flag is used in this command to force subsequent files to be created if they do not already 
exist. Otherwise, if the file does not exist, an error message is printed. The shell variable flag is 
set to some non-null string if the -c argument is encountered. The commands 

In ••• ; rm ••• 

make a link to the file and then remove it thus causing the last modified date to be updated. 

The sequence 

if commandl 
then command2 
fi 

may be written 

commandl && command2 

Conversely, 

command! II command2 

executes command2 only if commandl fails. In each case the value returned is that of the last sim­
ple command executed. 

2.8 Command grouping 

Commands may be grouped in two ways, 

{ command·1i8t ; } 

and 

( command-1i8t) 

In the first command-li8t is simply executed. The second Corm executes command·li81 as a separate 
process. For example, 

(cd x; rm junk) 

executes nn junk in the directory x without changing the current directory of the invoking shell. 

The commands 

cd x; rm junk 

have the same effect but leave the invoking shell in the directory x. 

o 



( 

-13 -

2.0 Debuaging shell procedures 

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is 
invoked within the procedure as 

set -v 

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help 
isolate syntax errors. It may be invoked without modifying the procedure by saying 

sh -v proc ••• 

where proc is the name of the shell procedure. This flag may be used in conjunction with the -n 
flag which prevents execution of subsequent commands. (Note that saying ,et -n at a terminal 
will render the terminal useless until an end-of-file is typed.) 

The command 

set -x 

will produce an execution trace. Following parameter substitution each command is printed as it 
is executed. (Try these at the terminal to see what effect they have.) Both flags may be turned off 
by saying 

set -

and the current setting of the shell flags is available as $- • 

2.10 The man command 

The following is the man command which is used to print sections of the UNIX manual. It is 
called, for example, as 

man sh 
man -t ed 
man 2 fork 

In the first the manual section for ,h is printed. Since no section is specified, section 1 is used. 
The second example will typeset (-t option) the manual section for ed. The last prints the fork 
manual page from section 2. 



- 14-

cd /usr/man 

: 'colon is the comment command' 
: 'default is nrofl' (SN), section 1 (Ss)' 
N=ns=1 

for i 
do case Si in 

[1-9)*) s=Si ii 

-t} N=t ii 

-n} N=n ii 

-*} echo unknown flag \ 1i\' ii 

*) if test -f manSs/SLSs 
then S{N}rofl' manO/${N}aa mads/Si.$s 
else : 100k through all manual sections' 

found=no 

fi 
esac 

done 

for j in 1 2 3 4 5 6 7 8 9 
do if test -f man$j/$i.$j 

then man $j $i 
found=yes 

fi 
done 
ease Sfound in 

no) echo 1i: manual page not found' 
esac 

Figure 1. A version of the man command 

o 

c 



( 

- 15-

8.0 Keyword parameters 

Shell variables may be given values by assignment or when a shell procedure is invoked. An argu­
ment to a shell procedure of the form name=t)(zlue that precedes the command name causes value 
to be assigned to nome before execution of the procedure begins. The value of nome in the invok­
ing shell is not affected. For example, 

user=fred command 

will execute command with user set to Ired. The -k flag causes arguments of the form 
name=value to be interpreted in this way anywhere in the argument list. Such nom" are some­
times called keyword parameters. If any arguments remain they are available as positional param­
eters $1, $2, •••• 

The aet command may also be used to set positional parameters from within a procedure. For 
example, 

set - * 

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that the 
first argument, -, ensures correct treatment when the first file name begins with a - . 

8.1 Parameter transmission 

'When a shell procedure is invoked both positional and keyword parameters may be supplied with 
the call. Keyword parameters are also made available implicitly to a shell procedure by specifying 
in advance that such parameters are to be exported. For example, 

export user box 

marks the variables user and box for export. When a shell procedure is invoked copies are made 
of all exportable variables for use within the invoked procedure. Modification of such variables 
within the procedure does not affect the values in the invoking shell. It is generally true of a shell 
procedure that it may not modify the state of its caller without explicit request on the part of the 
caller. (Shared file descriptors are an exception to this rule.) 

Names whose value is intended to remain constant may be declared readonlll. The form of this 
command is the same as that of the export command, 

readonly name ••• 

Subsequent attempts to set read only variables are illegal. 

3.2 Parameter substitution 

If a shell parameter is not set then the null string is substituted for it. For example, if the variable 
d is not set 

echo $d 

or 

echo ${d} 

will echo nothing. A default string may be given as in 

echo S{d-.} 

which will echo the value of the variable d if it is set and '.' otherwise. The default string is 
evaluated using the usual quoting conventions so that 

echo ${d-'* 1 
will echo * if the variable d is not set. Similarly 



-16 -

echo I{d-'I} 

will echo the value of d if it is set and the value (if any) of t1 otherwise. A variable may be 
assigned a default value using the notation 

echo .{d=.} 

which substitutes the same string as 

echo '{d-.} 

and if d were not previously set then it will be set to the string '.'. (The notation S{ ••• = •.• } is 
not available for positional parameters.) 

If there is no sensible default then the notation 

echo '{d!message} 

will echo the value of the variable d if it has one, otherwise me"age is printed by the shell and 
execution of the shell procedure is abandoned. If me88age is absent then a standard message is 
printed. A shell procedure that requires some parameters to be set might start as follows. 

: S{user!} ${acct?} ${bin!} 

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been 
evaluated. If any of the variables user, acct or bin are not set then the shell will abandon execu­
tion of the procedure. 

3.3 Command substitution 

The standard output from a command can be substituted in a similar way to parameters. The 
command pwd prints on its standard output the name of the current directory. For example, if the 
eurrent directory is /usr /fred/bin then the command 

d='pwd' 

is equivalent to 

d=/usr /fred/bin 

The entire string between grave accents C •• :) is taken as the command to be executed and is 
replaced with the output from the command. The command is written using the usual quoting 
conventions except that a ' must be escaped using a \. For example, 

Is 'echo "$1''' 

is equiyalent to 

Is SI 

Command substitution occurs in all contexts where parameter substitution occurs (including here 
documents) and the treatment of the resulting text is the same in both cases. This mechanism 
allows string processing commands to be used within shell procedures. An example of such a com­
mand is ba8ename which removes a specified suffIX from a string. For example, 

basename main.c .c 

will print the string main. Its use is illustrated by the following fragment from a c:c command. 

o 

0 \ 
,'P -



( 

c 

- 17-

ease'A in 

*.e) B='basename'A .e' 

esae 

that sets B to the part of SA with the suffix .c stripped. 

Here are some composite examples. 

• tor i in 'Is -t'; do ••• 
The variable i is set to the names of files in time order, most recent first. 

• set 'date'; echo '8 S2 S3, $4 
will print, e.g., 1977 Nov 1, tS:59:59 

3.4 Evaluation and quoting 

The shell is a macro processor that provides parameter substit.ution, command substitution and file 
name generation for the arguments to commands. This section discusses the order in which these 
evaluations occur and the effects of the various quoting mechanisms. 

Commands are parsed initially according to the grammar given in appendix A. Before a command 
is executed the following substitutions occur. 

• parameter substitution, e.g. Suser 

• command substitution, e.g. 'pwd' 

• 

Only one evaluation occurs so that if, for example, the value of the variable X is the 
string $y then 

echo$X 

will echo $y. 

blank interpretation 

Following the above substitutions the resulting characters are broken into non-blank 
words (blank interpretation). For this purpose 'blanks' are the characters of the string 
SIFs. By default, this string consists of blank, tab and newline. The null string is not 
regarded as a word unless it is quoted. For example, 

echo" 

will pass on the null string as the first argument to echo, whereas 

echo Snull 

will call echo with no arguments if the variable null is not set or set to the null string. 

• file name generation 

Each word is then scanned for the file pattern characters *, ! and [ ••• J and an alpha­
betical list of file names is generated to replace the word. Each such file name is a 
separate argument. 

The evaluations just described also occur in the list of words associated with a tor loop. Only 
substitution occurs in the word used for a case branch. 

As well as the quoting mechanisms described earlier using \ and ' ••• ' a third quoting mechanism is 
provided using double quotes. Within double quotes parameter and command substitution occurs 
but file name generation and the interpretation of blanks does not. The following characters have 
a special meaning within double quotes and may be quoted using \ • 



For example, 

• , 

" 
\ 

parameter substitution 
command substitution 
ends the quoted string 

-18-

quotes the special characters S ' " \ 

echo "'x" 

will pass the value of the variable x as a single argument to echo. Similarly, 

echo ".*" 
will pass the positional parameters as a single argument and is equivalent to 

echo "'1 '2 ••• " 

The notation S@ is the same as •• except when it is quoted. 

echo "'@" 

will pass the positional parameters, unevaluated, to echo and is equivalent to 

echo "$1" "$2" ••• 

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated. 

meiacharacter 

\ a * " 
n n n n n t 
y n n t n n .. y y n y t n 

t terminator 
Y interpreted 
n not interpreted 

Figure 2. Quoting mechanisms 

In cases where more than one evaluation of a string is required the built-in command eval may be 
used. For example, if the variable X has the value $y, and if y has the value pqr then 

eval echo ax 
will echo the string pqr. 

In general the eval command evaluates its arguments (as do all commands) and treats the result as 
input to the shell. The input is read and the resulting command(s} executed. For example, 

wg='eval who Igrep' 
'wg fred 

is equivalent to 

who Igrep fred 

In this example, eval is required since there is no interpretation of metacharacters, such as I, fol­
lowing substitution. 

8.6 Error handling 
The treatment of errors detected by the shell depends on the type of error and on whether the shell 
is being used interactively. An interactive shell is one whose input and output are connected to a 
terminal (as determined by gtty (2». A shell invoked with the -i fta:g is also interactive. 

(_.,\ 
\ 
'\...../ 



( 

( 

- 19-

Execution of a command (see also 3.7) may fail for any of the following reasons. 

• 
• 
• 

Input output redirection may fail. For example, if a file does not exist or cannot be created. 

The command itself does not exist or cannot be executed. 

The command terminates abnormally, for example, with a "bus error" or "memory fault". 
See Figure 2 below for a complete list of UNIX signals. 

• The command terminates normally but returns a non-zero exit status. 

In all of these eases the shell will go on to execute the next command. Except for the last ease an 
error message will be printed by the shell. All remaining errors cause the shell to exit from a com­
mand procedure. An interactive shell will return to read another command from the terminal. 
Such errors include the following. 

• Syntax errors. e.g., if ••• then ••• done 

• A signal such as interrupt. The shell waits for the current command, if any, to finish execu­
tion and then either exits or returns to the terminal. 

• Failure of any of the built-in commands such as cd. 

The shell flag -e causes the shell to terminate if any error is detected. 

1 hangup 
2 interrupt 
3* quit 
4* illegal instruction 
5* trace trap 
6* lOT instruction 
7* EMT instruction 
8* floating point exception 
9 kill (cannot be caught or ignored) 
10* bus error 
11 * segmentation violation 
12* bad argument to system call 
13 write on a pipe with no one to read it 
14 alarm clock 
15 software termination (from kill (1)) 

Figure 3. UNIX signals 

Those signals marked with an asterisk produce a core dump if not caught. However, the shell 
itself ignores quit which is the only external signal that can cause a dump. The signals in this list 
of potential interest to shell programs are 1, 2, 3, 14 and 15. 

8.8 Fault handling 

Shell procedures normally terminate when an interrupt is received from the terminal. The trap 
command is used if some cleaning up is required, such as removing temporary files. For example, 

trap 'rm /tmp /ps$$; exit' 2 

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com­
mands 

rID /tmp/psS$j exit 

exit is another built-in command that terminates execution of a shell procedure. The exit is 
required; otherwise, after the trap has been taken, the shell will resume executing the procedure at 
the place where it was interrupted. 



- 20-

UNIX signals can be handled in one ot three ways. They can be ignored, in which case the signal 
is never sent to the process. They can be caught, in which case the process must decide what 
action to take when the signal is received. Lastly, they can be left to cause termination of the pro­
cess without it having to take any further action. It a signal is being ignored on entry to the shell 
procedure, tor example, by invoking it in the background (see 3.7) then trap commands (and the 
signal) are ignored. 

The use of trap is illustrated by this modified version of the touch command (Figure 4). The 
cleanup action is to remove the file JunkSS . 

flag= 
trap 'rm -f junUS; exit' 1 2 3 15 
for i 
do case $i in 

-c) flag=N ;; 
* ) if test -t Si 

then In $i junkSS; rm junUS 
elif test Sflag 
then echo file \ 1i\ ' does not exist 
else >$i 
fi 

esac 
done 

Figure 4. The touch command 

The trap command appears before the creation of the temporary file; otherwise it would be possible 
for the process to die without removing the file. 

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed 
on exit from the shell procedure. 

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to 
trap. The following fragment is taken from the nobp command. 

trap " 1 2 3 15 

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked 
commands. 

Traps may be reset by saying 

trap 2 3 

which resets the traps for signals 2 and 3 to their default values. A list of the current values of 
traps may be obtained by writing -

trap 

The procedure ecan (Figure 5) is an example of the use of trap where there is no exit in the trap 
command. "can takes each directory in the current directory, prompts with its name, and then 
executes commands typed at the terminal until an end of file or an interrupt is received. Inter­
rupts are ignored while executing the requested commands but cause termination when ecan is 
waiting for input. 



(/ 

(-

o 

d='pwd' 
for i in * 
do if test -d $d/li 

then cd $d/li 
while echo "$i:" 

trap exit 2 
read x 

- 21-

do trap: 2j eval ax; done 
fi 

done 

Figure 5. The sean command 

read :t is a built-in command that reads one line from the standard input and places the result in 
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is 
received. 

3.7 Command execution 

To run a command (other than a built-in) the shell first creates a new process using the system call 
lark. The execution environment for the command includes input, output and the states of signals, 
and is established in the child process before the command is executed. The built-in command 
exec is used in the rare cases when no fork is required and simply replaces the shell with a new 
command. For example, a simple version of the nohup command looks like 

trap "1 2 3 15 
exec h 

The trap turns off the signals specified so that they are ignored by subsequently created commands 
and exec replaces the shell by the command specified. 

Most forms of input output redirection have already been described. In the following word is only 
subject to parameter and command substitution. No file name generation or blank interpretation 
takes place so that, for example, 

echo ••• >*.c 

will write its output into a file whose name is *.c. Input output specifications are evaluated left 
to right as they appear in the command. 

> word 

» word 

< word 

« word 

>& digit 

<& digit 

<&­
>&-

The standard output (file descriptor 1) is sent to the file word which is created if it 
does not already exist. 

The standard output is sent to file word. If the file exists then output is appended 
(by seeking to the end); otherwise the file is created. 

The standard input (file descriptor 0) is .taken from the file word. 

The standard input is taken from the lines of shell input that follow up to but not 
including a line consisting only of word. If word is quoted then no interpretation of 
the document occurs. If word is not quoted then parameter and command substitu­
tion occur and \ is used to quote the characters \ $ , and the first character of word. 
In the latter case \newline is ignored (c.f. quoted strings). 

The file descriptor digit is duplicated using the system call dup (2) and the result is 
used as the standard output. 

The standard input is duplicated from file descriptor digit. 

The standard input is closed. 

The standard output is closed. 



Ally of the above may be preceded by a digit in which case the file descriptor created is that 
specified by the digit instead of the default 0 or 1. For example, 

••• 2>file 

runs a command with message output (file descriptor 2) directed to file . 

••• 2>&1 

runs a command with its standard output and message output merged. (Strictly speaking file 
descriptor 2 is created by duplicating file descriptor I' but the effect is usually to merge the two 
streams.) 

The environment for a command run in the background such as 

list *.c Ilpr & 

is modified in two ways. Firstly, the default standard input for such a command is the empty file 
/dev/null. This prevents two processes (the shell and the command), which are running in paral­
lel, from trying to read the same input. Chaos would ensue if this were not the case. For exam­
ple, 

ed file & 

would allow both the editor and the shell to read from the same input at the same time. 

The other modification to the environment of a background command is to turn oft' the QUIT and 
INTERRUPT signals so that they are ignored by the command. This allows these signals to be 
used at the terminal without causing background commands to terminate. For this reason the 
UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even for a 
short time. Note that the shell command trap has no effect for an ignored signal. 

3.8 Invoking the shell 

The following flags are interpreted by the shell when it is invoked. H the first character of argu­
ment zero is a minus, then commands are read from the file .profile • 

-e 8tring 
H the -e flag is present then commands are read from 8tring. 

-s H the -s flag is present or if no arguments remain then commands are read from the st.an­
dard input. Shell output is written to file descriptor 2. 

-i H the -i flag is present or if the shell input and output are attached to a terminal (as told by 
gtty) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does 
not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is inter­
ruptable). In all cases QUIT is ignored by the shell. 

Aeknowledgements 

The design of the shell is based in part on the original UNIX shell3 and the PWBjUNIX shell,4 
some features having been taken from both. Similarities also exist with the command interpreters 
of the Cambridge Multiple Access SystemS and of CTSS.6 

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of 
the shell. I am also grateful to the members or the Computing Science Research Center and to Joe 
Maranzano for their comments on drafts of this document. 

References 

1. 

2. 
B. W. Kernighan, UNIX/or Beginner8, 1978. 

K. Thompson and D. M. Ritchie, UNIX Programmer'8 Manual, Bell Laboratories, 1978. 
Seventh Edition. 

u 

c 



3. 

( 4. 
5. 

6. 

( 

c 

- 23-

K. Thompson, "The UNIX Command Language," in Structured Programming-In/oiech State 
0/ the Art Report, pp. 375-384, Infotech International Ltd., Nicholson House, Maidenhead, 
Berkshire, England, March 1975. 

J. R. Mashey, PWBjUNIX Shell Tutorial, September 30,1977. 

D. F. Hartley (Ed.), The Cambridge Multiple Acct:36 System - U6er6 Re/erence Manual, 
University Mathematical Laboratory, Cambridge, England, 1968. 

P. A. Crisman (Ed.), The Compatible Time-Sharing SJl8tem, M.I.T. Press, Cambridge, Mass., 
1965. 



Appendix A - Grammar 

item: word 
input-output 
name = f)a/ue 

aimple-command: item 
aimple-command itcm 

command: aimple-commllnd 
( command-li&t ) 
{ command-/iat } 

·24 -

for name do command-It&t done 
for name in word • •• do command-1i8t done 
while command-/iat do command·1i8t done 
until commllnd·liat do commllnd·IiBt done 
ease word in ca8e·part ••• esae 
it command·/iat then command·list else.part fl 

pipeline: command 
pipeline I command 

IIndor: pipeline 
IIndor &,& pipeline 
andor II pipeline 

command·list: andor 
commllnd·list ; 
command·/ist &, 
command·/ist ; andor 
command·list &, andor 

input·output: > file 
< file 
» word 
« word 

file: word 
&, digit 
&,-

case·part: pdtern) command-/i&t ;; 

pattern: word 
pattern I word 

e1se·pllrt: eli' command·/iBt then command·list else· part 
else command-list 
empty 

empty: 

word: a sequence of non-blank characters 

name: a sequence of letters, digits or underscores starting with a letter 

digit: 0123468789 

--- ---~---~-. --- ----'---- - ------- . 

C) 

c 



- 25-

Appendix B - Meta-charaetel'S and Reserved Words 

a) syntactic 

( > I pipe symbol 

&& 'andr'symbol 

II 'orc' symbol 

command sep8fator 

;; case delimiter 

8r. background commands 

() command grouping 

< input redirection 

« input rrom a here document 

> output creation 

» output append 

b) patterns 

• match any character(s) including none 

? match any single character 

[ ••• ] match any of the enclosed characters 

c) substitution 

S{ ••• } substitute shell variable 

( substitute command output 

d) quoting 

\ quote the next character 

quote the enclosed characters except ror ' .. .. quote the enclosed characters except for $ , \ .. 

e) reserved words 

it then else elif fi 
ease in esae 
for while until do done 
{ } 



C) 



( 

( 

An Introduction to the C Shell 

William Joy 

Computer Science Division 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, California 94720 

ABSTRAOT 

Osh is a new command language interpreter for UNIXt systems. It incor­
porates good features of other shells and a history mechanism similar to the redo 
of INTERLISP. While incorporating many features of other shells which make writ­
ing shell programs (shell scripts) easier, most of the features unique to csh are 
designed more for the interactive UNIX user. 

UNIX users who have read a general introduction to the system will find a 
valuable basic explanation of the shell here. Simple terminal interaction with csh 
is possible after reading just the first section of this document. The second section 
describes the shells capabilities which you can explore after you have begun to 
become acquainted with the shell. Later sections introduce features which are use­
ful, but not necessary for all users of the shell. 

Back matter includes an appendix listing special characters of the shell and a 
glossary of terms and commands introduced in this manual. 

September 16, 1986 

t UNIX is a trademark or Bell Laboratories. 



o 

- .. _--_. ----



Introduction 

An introduction to the C shell 

William JO'll 

Computer Science Division 
Department of Electrical Engineerin'g and Computer Science 

University of California, Berkeley 
Berkeley, California 94720 

A 8hell is a command language interpreter. 08h is the name of one particular command 
interpreter on UNIX. The primary purpose of c8h is to translate command lines typed at a termi­
nal into system actions, such as invocation of other programs. O,h is a user program just like any 
you might write. Hopefully, c8h will be a very useful program for you in interacting with the UNIX 
system, 

In addition to this document, you will want to refer to a copy of the UNIX programmer's 
manual. The c8h documentation in the manual provides a full description of all features of the 
shell and is a final reference for questions about the shell. 

Many words in this document are shown in italic,. These are important words; names of 
commands, and words which have special meaning in discussing the shell and UNIX. Many of the 
words are defined in a glossary at the end of this document. II you don't know what is meant by 
a word, you should look for it in the glossary. 

Acknowledgements 

Numerous people have provided good input about previous versions of c,h and aided in its 
debugging and in the debugging of its documentation. I would especially like to thank Michael 
Ubell who made the crucial observation that history commands could be done well over the word 
structure of input text, and implemented a prototype history mechanism in an older version of the 
shell. Eric Allman has also provided a large number of useful comments on the shell, helping to 
unify those concepts which are present and to identify and elimina.te useless and marginally useful 
features. Mike O'Brien suggested the pathname hashing mechanism which speeds command execu­
tion. Jim Kulp added the job control and directory stack primitives and added their documenta­
tion to this introduction. 



-2-

1. Terminal usale of the shell 

1.1. The basie notion or eommands 

A mell in UNIX acts mostly as a medium through which other program8 are invoked. While 
it has a set or builtin functions which it performs directly, most commands cause execution of pro­
grams that are, in ract, external to the shell. The shell is thus distinguished from the command 
interpreters or other systems both by the fact that it is just a user program, and by the ract that it 
is used almost exclusively as a mechanism for invoking.other programs. 

Oommands in the UNIX system consist or a list of strings or words interpreted as a command 
name followed by arguments. Thus the command . 

mail bill 

consists or two words. The first word mail names the command to be executed, in this case the' 
mail program which sends messages to other users. The shell uses the name or the command in 
attempting to execute it for you. It will look in a number or directories ror a file with the name 
mail which is expected to contain the mail program. 

The rest or the words of the command are given as arguments to the command itself when it 
is executed. In this case we specified also the argument bill which is interpreted by the mail pro­
gram to be the name or a user to whom mail is to be sent. In normal terminal usage we might use 
the mail command as rollows. 

% mail bill 
1 have a question about the csh documentation. 
My document seems to be missing page 5. 
Does a page five exist? 

Bill 
EOT 
% 

Here we typed a message to send to bill and ended this message with a tD which sent an 
end-of-file to the mail program. (Here and throughout this document, the notation "tx" is to be 
read "control-x" and represents the striking of the z key while the control key is held down.) The 
mail program then echoed the characters 'EOT' and transmitted our message. The characters '% ' 
were printed before and after the mail command by the shell to indicate that input was needed. 

After typing the '% ' prompt the shell was reading command input from our terminal. We 
typed a complete command 'mail bill'. The shell then executed the mail program with argument 
bill and went dormant waiting ror it to complete. Themail program then read input from our ter­
minal until we signalled an end-of-file via typing a tD after which the shell noticed that mail had 
completed and signaled us that it was ready to read from the terminal again by printing another 
'%' prompt. 

This is the essential pattern of all interaction with UNIX through the shell. A complete com­
mand is typed at the terminal, the shell executes the command and when this execution completes, 
it prompts for a new command. If you run the editor for an hour, the shell will patiently wait for 
you to finish editing and obediently prompt you again whenever you finish editing. 

An example or a userul command you can execute now is the tset command, which sets the 
default eralle and kill characters on your terminal - the erase character erases the last character 
you typed and the kill character erases the entire line you have entered so rar. By default, the 
erase character is '#' and the kill character is '@'. Most people who use CRT displays prerer to use 
the backspace (tH) character as their erase character since it is then easier to see what you have 
typed so rar. You can make this be true by typing 

tset -e 

which tells the program tIIet to set the erase character, and its derault setting for this character is 

o 

c 



-3-

a backspace. 

1.2. Flag arguments 

A useful notion in UNIX is that of a flag argument. While many arguments to commands 
specify file names or user names some arguments rather specify an optional capability of the com­
mand which you wish to invoke. By convention, such arguments begin with the character '-' 
(hyphen). Thus the command 

Is 

will produce a list of the files in the current working direetory. The option -, is the size option, 
and 

Is-s 

causes I, to also give, for each file the size of the file in blocks of 512 characters. The manual sec­
tion for each command in the UNIX reference manual gives the available options for each command. 
The Is command has a large number of useful and interesting options. Most other commands have 
either no options or only one or two options. It is hard to remember options of commands which 
are not used very frequently, so most UNIX utilities perform only one or two functions rather than 
having a large number of hard to remember options. 

1.3. Output to files 

Commands that normally read input or write output on the terminal can also be executed 
with this input and/or output done to a file. 

Thus suppose we wish to save the current date in a file called 'now'. The command 

date 

will print the current date on our terminal. This is because our terminal is the default ,tandard 
output for the date command and the date command prints the date on its standard output. The 
shell lets us redirect the ,tandard output of a command through a notation using the metacharac­
ter '>' and the name of the file where output is to be placed. Thus the command 

date> now 

runs the date command such that its standard output is the file 'now' rather than the terminal. 
Thus this command places the current date and time into the file 'now'. It is important to know 
that the date command was unaware that its output was going to a file rather than to the termi­
nal. The shell performed this redirection before the command began executing. 

One other thing to note here is that the file 'now' need not have existed before the date com­
mand was executed; the shell would have created the file if it did not exist. And if the file did 
exist? H it had existed previously ihese previous contents would have been discarded! A shell 
option noclo66er exists to prevent this from happening accidentally; it is discussed in section 2.2. 

The system normally keeps files which you create with '>' and all other files. Thus the 
default is for files to be permanent. If you wish to create a file which will be removed automati­
cally, you can begin its name with a 'I' character, this 'scratch' character denotes the fact that the 
file will be a scratch file.'" The system will remove such files after a couple of days, or sooner if file 
space becomes very tight. Thus, in running the date command above, we don't really want to 
save the output forever, so we would more likely do 

"'Note tha.t it your erase cha.ra.eter .is a. ',,', you will ha.ve to precede the '''' with a '\t. The ra.et tba.t the ''*' 
cha.ra.eter is the old (pre-an-) sta.ndud erue cha.racter mea.ns that it seldom a.ppeus in a. file na.me. a.nd allows 
this convention to be used for sera.teh files. If you ve usin, a. an-. your era.se eba.ra.eter should be a. tHo as we 
demonstra.ted in section 1.1 how this could be set up. 



-4-

date> #now 

1.4. Metacharaetel"s in the shell 

The shell has a large number of special characters (like '>') which indicate special functions. 
We say that these notations have .,ntactic and .emantic meaning to the shell. In general, most 
characters which are neither letters nor digits have special meaning to the shell. We shall shortly 
learn a means of quotation which allows us to use me,acharacter. without the shell treating them 
in any special way. 

Metacharacters normally have effect only when the shell is reading our input. We need not 
worry about placing shell metacharacters in a letter we are sending via mail, or when we are typ­
ing in text or data to some other program. Note that the shell is only reading input when it has 
prompted with '% '. 

1.6. Input from files; pipelines 

We learned above how to redirect the .tandard output of a command to a file. It is also pos­
sible to redirect the .tandard input of a command from a file. This is not often necessary since 
most commands will read from a file whose name is given as an argument. We can give the com­
mand 

sort < data 

to run the sort command with standard input, where the command normally reads its input, from 
the file 'data'. We would more likely say 

sort data 

letting the sort command open the file 'data' for input itself since this is less to type. 

We should note that if we just typed 

sort 

then the sort program would sort lines from its ,tandard input. Since we did not redirect the stan­
dard input, it would sort lines as we typed them on the terminal until we typed a tD to indicate 
an end-of-file. 

A most useful capability is the ability to combine the standard output of one command with 
the standard input of another, i.e. to run the commands in a sequence known as a pipeline. For 
instance the command 

Is-s 

normally produces a list of the files in our directory with the size of each in blocks of 512 charac­
ters. If we are interested in learning which of our files is. largest we may wish to have this sorted 
by size rather than by name, which is the default way in which Is sorts. We could look at the 
many options of I, to see if there was an option to do this but would eventually discover that 
there is not. Instead we can use a couple of simple options of the ,ort command, combining it 
with I, to get what we want. 

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus 

Is -s I sort -n 

specifies that the output of the I, command run with the option -, is to be piped to the command 
.ort run with the numeric sort option. This would give us a sorted list of our files by size, but 
with the smallest first. We could then use the -r reverse sort option and the head command in 
combination with the previous command doing 

Is -s I sort -n -r I head -5 

Here we have taken a list of our files sorted alphabetically I each with the size in blocks. We have c 



(" 

( 

() 

-5-

run this to the standard input of the .ort command asking it to sort numerically in reverse order 
(largest first). This output has then been run into the command head which gives us the first few 
lines. In this case we have asked .head for the first 5 lines. Thus this command gives us the names 
and sizes of our 5 largest files. 

The notation introduced above is called the pipe mechanism. Commands separated by , I' 
characters are connected together by the shell and the standard output of each is run into the stan­
dard input of the next. The leftmost command in a pipeline will normally take its standard input 
from the terminal and the rightmost will place its standard output on the terminal. Other exam­
ples of pipelines will be given later when we discuss the history mechanism; one important use of 
pipes which is illustrated there is in the routing of information to the line printer. 

1.8. Filenames 

Many commands to be executed will need the names of files as arguments. UNIX pathnames 
consist of a number of component. separated by'/,o Each component except the last names a 
directory in which the next component resides, in effect specifying the path of directories to follow 
to reach the file. Thus the pathname 

fetcfmotd 

specifies a file in the directory 'etc' which is a subdirectory of the root directory c/,. Within this 
directory the file named is 'motd' which stands for 'message of the day'. A pathname that begins 
with a slash is said to be an absolute pathname since it is specified from the absolute top of the 
entire directory hierarchy of the system (the root). Pathname. which do not begin with 'f' are 
interpreted as starting in the current working directory, which is, by default, your home directory 
and can be changed dynamically by the cd change directory command. Such pathnames are said 
to be relative to the working directory since they are found by starting in the working directory 
and descending to lower levels of directories for each component of the pathname. If the path­
name contains no slashes at all then the file is contained in the working directory itself and the 
pathname is merely the name of the file in this directory. Absolute pathnames have no relation to 
the working directory. 

Most filenames consist of a number of alphanumeric characters and'.'s (periods). In fact, all 
printing characters except 'f' (slash) may appear in filenames. It is inconvenient to have most 
non-alphabetic characters in filenames because many of these have special meaning to the shell. 
The character '.' (period) is not a shell-metacharacter and is often used to separate the extension 
of a file name from the base of the name. Thus 

prog.c prog.o prog.errs prog.output 

are four related files. They share a baBe portion of a name (a base portion being that part of the 
name that is left when a trailing '.' and following characters which are not '.' are stripped off). 
The file 'prog.c' might be the source for a C program, the file 'prog.o' the corresponding object file, 
the file 'prog.errs' the errors resulting from a compilation of the program and the file 'prog.output' 
the output of a run of the program. 

U we wished to refer to all four of these files in a command, we could use the notation 

prog.* 

This word is expanded by the shell, before the command to which it is an argument is executed, 
into a list of names which begin with 'prog.'. The character '.' here matches any sequence (includ­
ing the empty sequence) of characters in a file name. The names which match are alphabetically 
sorted and placed in the argument list of the command. Thus the command 

echo prog.* 

will echo the names 

prog.c prog.errs prog.o prog.output 



-6-

Note that the names are in sorted order here, and a different order than we listed them above. The 
echo command receives four words as arguments, even though we only typed one word as as argu­
ment directly. The four words were generated by filename upanaion of the one input word. 

Other notations for filename ezpaneion are also available. The character '1' matches any sin­
gle character in a filename. Thus 

echo'l 11 T11 

will echo a line of filenamesj first those with one character names, then those with two character 
names, and finally those with three character names. . The names of each length will be indepen­
dently sorted. 

Another mechanism consists of a sequence of characters between 'f' and 'I'. This metase­
quence matches any single character from the enclosed set. Thus 

prog.[co] 

will match 

prog.c prog.o 

in the example above. We can also place two characters around a '-' in this notation to denote a 
range. Thus 

chap.[l-S] 

might match files 

chap.l chap.2 chap.3 chapA chap.S 

if they existed. This is shorthand for 

chap.[1234S] 

and otherwise equivalent. 

An important point to note is that if a list of argument words to a command (an argument 
list) contains filename expansion syntax, and if this filename expansion syntax fails to match any 
existing file names, then the shell considers this to be an error and prints a diagnostic 

No match. 

and does not execute the command. 

Another very important point is that files with the character'.' at the beginning are treated 
specially. Neither '.' or '1' or the 'I' 'I' mechanism will match it. This prevents accidental match­
ing of the filenames '.' and ' . .' in the working directory which have special meaning to the system, 
as well as other files such as .cehrc which are not normally visible. We will discuss the special role 
of the file .c8hrc later. 

Another filename expansion mechanism gives access to the pathname of the home directory 
of other users. This notation consists of the character ,-, (tilde) followed by another users' login 
name. For instance the word '-bill' would map to the pathname '/usr/bill' if the home directory 
for 'bill' was '/usr/bill'. Since, on large systems, users may have login directories scattered over 
many different disk volumes with different prefix directory names, this notation provides a reliable 
way of accessing the files of other users. 

A special case of this notation consists of a ,-, alone, e.g. ,- /mbox'. This notation is 
expanded by the shell into the file 'mbox' in your home directory, i.e. into '/usr/bill/mbox' for me 
on Emie Co-vax, the UeB Computer Science Department VAX machine, where this document was 
prepared. This can be very useful if you have used cd to change to another directory and have 
found a file you wish to copy using cpo If I give the command 

cp thatfile -

the shell will expand this command to 



(. 

(~ 

-7-

cp thatfile /usr /biD 

since my home directory is /usr/biD. 

There also exists a mechanism using the characters c{' and c}' for abbreviating a set or words 
which have common parts but cannot be abbreviated by the above mechanisms because they are 
not files, are the names of files which do not yet exist, are not thus conveniently described. This 
mechanism wiD be described much later, in section 4.2, as it is used less rrequently. 

1.7. Quotation 

We have already seen a number of metacharacters used by the shell. These metacharacters 
pose a problem in that we cannot use them directly as parts of words. Thus the command 

echo * 

will not echo the character C*'. It will either echo an sorted list of filenames in the current working 
directory, or print the message 'No match' ir there are no files in the working directory. 

The recommended mechanism ror placing characters which are neither numbers, digits, c/', c.' 
or C_' in an argument word to a command is to enclose it with single quotation characters''', i.e. 

echo '*' 
There is one special character CI' which is used by the history mechanism of the shell and which 
cannot be escaped by placing it within ,,, characters. It and the character ,,, itself can be pre­
ceded by a single '\' to prevent their special meaning. Thus 

echo \ \! 
prints 

1 

These two mechanisms suffice to place any printing character into a word which is an argument to 
a shell command. They can be combined, as in 

echo \''*' 
which prints 

since the first '\' escaped the first c" and the c*, was enclosed between ", characters. 

1.8. Terminating commands 

When you are executing a command and the shell is waiting for it to complete there are 
several ways to force it to stop. For instance ir you type the command 

cat /etc/passwd 

the system will print a copy of a list or all users or the system on your terminal. This is likely to 
continue ror several minutes unless you stop it. You can send an INTERRUPT signal to the cat 
command by typing the DEL or RUBOUT key on your terminal.* Since cat does not take any pre­
cautions to avoid or otherwise handle this signal the INTERRUPT will cause it to terminate. The 
shell notices that cat has terminated and prompts you again with '% '. If you hit INTERRUPT 

again, the shell will just repeat its prompt since it handles INTERRUPT signals and chooses to con­
tinue to execute commands rather than terminating like cat did, which would have the effect of 
logging you out. 

*Ma.ny users use .".,(1) to eha.nge the interrupt eha.ra.eter to to. 



-8-

Another way in which many programs terminate is when they get an end-of-file from their 
standard input. Thus the mail program in the first, example above was terminated when we typed 
a tD which generates an end-of-file from the standard input. The shell also terminates when it 
gets an end-of-file printing 'logout'; UNIX then logs you off the system. Since this means that typ­
ing too many tD's can accidentally log us off, the shell has a mechanism for preventing this. This 
'IRoneo/ option will be discussed in section 2.2. 

If a command has its standard input redirected from a file, then it will normally terminate 
when it reaches the end of this file. Thus if we execute. 

mail bill < prepared.text 

the mail command will terminate without our typing a tD. This is because it read to the end-of­
file of our file 'prepared.text' in which we placed a message for 'bill' with an editor program. We 
could also have done 

eat prepared. text I mail bill 

since the eat command would then have written the text through the pipe to the standard input of 
the mail command. When the eat command completed it would have terminated, closing down 
the pipeline and the mail command would have received an end-of-file from it and terminated. 
Using a pipe here is more complicated than redirecting input so we would more likely use the first 
form. These commands could also have been stopped by sending an IN'I'ERRUPT. 

Another possibility for stopping a command is to suspend its execution temporarily, with the 
possibility of continuing execution later. This is done by sending a STOP signal via typing a fZ . 

. This signal causes all commands running on the terminal (usually one but more if a pipeline is exe­
cuting) to become suspended. The shell notices that the command(s) have been suspended, types 
'Stopped' and then prompts for a new command. The previously executing command has been 
suspended, but otherwise unaffected by the STOP signal. Any other commands can be executed 
while the original command remains suspended. The suspended command can be continued using 
the /g command with no arguments. The shell will then retype the command to remind you which 
command is being continued, and cause the command to resume execution. Unless any input files 
in use by the suspended command have been changed in the meantime, the suspension has no effect 
whatsoever on the execution of the command. This feature can be very useful during editing, 
when you need to look at another file before continuing. An example of command suspension fol­
lows. 

% mail harold 
Someone just copied a big file into my directory and its name is 
tZ 
Stopped 
%ls 
funnyfile 
prog.c 
prog.o 
% jobs 
[lJ + Stopped 
%fg 
mail harold 

mail harold 

funnyfile. Do you know who did it? 
EOT 
% 

In this example someone was sending a message to Harold and forgot the name of the file he 
wanted to mention. Themail command was suspended by typing fZ. When the shell noticed that 
the mail program was suspended, it typed 'Stopped' and prompted for a new command. Then the 
" command was typed to find out the name of the file. The ;068 command was run to find out 
which command was suspended. At this time the /g command was typed to continue execution of c 



( 

( 

() 

-9-

the mail program. Input to the mail program was then continued and ended with a tD which 
indicated the end of the message at which time the mail program typed EOT. The ;063 command 
will show which commands are suspended. The fZ should only be typed at the beginning of a line 
since everything typed on the current line is discarded when a signal is sent from the keyboard. 
This also happens on INTERRUPT, and QUIT signals. More information on suspending jobs and con­
trolling them is given in section 2.6. 

H you write or run programs which are not fully debugged then it may be necessary to stop 
them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by typing a 
f\. This will usually provoke the shell to produce a message like: 

Quit (Core dumped) 

indicating that a file 'core' has been created containing information about the program 'a.out's 
state when it terminated due to the QUIT signal. You can examine this file yourself, or forward 
information to the maintainer of the program telling him/her where the core file is. 

H you run background commands (as explained in section 2.6) then these commands will 
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill com­
mand. See section 2.6 for an example. 

H you want to examine the output of a command without having it move off the screen as 
the output of the 

cat /etc/passwd 

command will, you can use the command 

more /etc/passwd 

The more program pauses after each complete screenful and types '-More--' at which point you 
can hit a space to get another screenful, a return to get another line, or a 'q' to end the more pro­
gram. You can also use more as a filter, i.e. 

cat /etc/passwd I more 

works just like the more simple more command above. 

For stopping output of commands not involving more you can use the 1S key to stop the 
typeout. The typeout will resume when you hit 1Q or any other key, but tQ is normally used 
because it only restarts the output and does not become input to the program which is running. 
This works well on low-speed terminals, but at 9600 baud it is hard to type tS and 1Q fast enough 
to paginate the output nicely, and a program like more is usually used. 

An additional possibility is to use the to flush output character; when this character is 
typed, all output from the current command is thrown away (quickly) until the next input read 
occurs or until the next shell prompt. This can be used to allow a command to complete without 
having to suffer through the output on a slow terminal; to is a toggle, so flushing can be turned 
off by typing to again while output is being flushed. 

1.9. What DOW! 

We have so far seen a number of mechanisms of the shell and learned a lot about the way in 
which it operates. The remaining sections will go yet further into the internals of the shell, but 
you will surely want to try using the shell before you go any further. To try it you can log in to 
UNIX and type the following command to the system: 

chsh myname /bin/csh 

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:' to get 
onto the system. Thus I would use 'chsh bill /bin/csh'. You only have to do this once; it 
takes effect at next login. You are now ready to try using cah. 



-10-

Before you· do the 'chsh? command, the shell you are using when you log into the system is 
'/bin/sh'. In fact, much of the above discussion is applicable to '/bin/sh'. The next section will 
introduce many features particular to cak so you should change your shell to uk before you begin 
reading it. 

-_ .. __ ... --.-~.-.----

c 



(-

o 

- 11-

2. Details on the shell tor terminal users 

2.1. Shell startup and termination 

When you login, the shell is started by the system in your home directory and begins by 
reading commands from a file .cahrc in this directory. All shells which you may start during your 
terminal session will read Crom this file. We will later see what kinds of commands are usefully 
placed there. For now we need not have this file and the shell does not complain about its 
absence. 

A login ,hell, executed after you login to the system, will, after it reads commands from 
.cahrc, read commands Crom a file .Iogin also in your home directory. This file contains com­
mands which you wish to do each time you login to the UNIX system. My .login file looks some­
thing like: 

set ignoreeof 
set mail=(/usr jspooljmailjbill) 
echo "S{prompt}users" ; users 
alias ts \ 

'set noglob ; eval 'tset -s -m dialup:cl00rv4pna -m plugboard:?hp2621nl *"; 
ts; stty intr tC kill tV crt 
set time=15 history=10 
msgs -f 
if (-e Smail) then 

endif 

echo US{prompt}mailU 
mail 

This file contains several commands to be executed by UNIX each time I login. The first is a 
act command which is interpreted directly by the shell. It sets the shell variable ignoreeof which 
causes the shell to not log me oft' if I hit tD. Rather, I use the logout command to log oft' of the 
system. By setting the mail variable, I ask the shell to watch for incoming mail to me. Every 5 
minutes the shell looks for this file and tells me if more mail has arrived there. An alternative to 
this is to put the command 

bift'y 

in place of this act; this will cause me to be notified immediately when mail arrives, and to be 
shown the first few lines of the new message. 

Next I set the shell variable 'time' to '15' causing the shell to automatically print out statis­
tics lines for commands which execute for at least 15 seconds of CPU time. The variable 'history' is 
set to 10 indicating that I want the shell to remember the last 10 commands I type in its hi8tory 
li8t , (described later). 

I create an ali48 "ts" which executes a taet(l) command setting up the modes of the termi­
nal. The parameters to tact indicate the kinds of terminal which I usually use when not on a 
hardwired port. I then execute "ts" and also use the attll command to change the interrupt char­
acter to tC and the line kill character to tU. 

I then run the 'msgs' program, which provides me with any system mesSages which I have 
not seen before; the '-C' option here prevents it Crom telling me anything iC there are no new mes­
sages. Finally, if my mailbox file exists, then I run the 'mail' program to process my mail. 

When the 'mail' and 'msgs' programs finish, the shell will finish processing my .login file and 
begin reading commands Crom the terminal, prompting for each with '% '. When I log oft' (by giv­
ing the lo,out command) the shell will print 'logout' and execute commands from the file' .logout' 
if it exists in my home directory. After that the shell will terminate and UNIX will log me oft' the 
system. If the system is not going down, I will receive a new login message. In any case, after the 
'logout' message the shell is committed to terminating and will take no Curther input from my 



-12 -

terminal. 

2.2. Shell variables 

The shell maintains a set of "4"46Iu. We saw above the variables history and time which 
had values '10' and '15'. In fact, each shell variable has as value an array of zero or more strings. 
Shell variables may be assigned values by the set command. It has several forms, the most useful 
of which was given above and is 

set name=value 

Shell variables may be used to store values which are to be used in commands later through 
a substitution mechanism. The shell variables most commonly referenced are, however, those 
which the shell itself refers to. By changing the values of these variables one can directly affect the 
behavior of the shell. 

One of the most important variables is the variable '4th. This variable contains a sequence 
of directory names where the shell searches for commands. The set command with no arguments 
shows the value of all variables currently defined (we usually say set) in the shell. The default 
value for path will be shown by set to be 

% set 
argv 
cwd 
home 
path 
prompt 
shell 
status 
term 
user 
% 

o 
/usr/bill 
/usr/bill 
(. /usr/ucb /bin /usr/bin) 
% 
/bin/csh 
o 
cl00rv4pna 
bill 

This output indicates that the variable path points to the current directory '.' and then '/usr/ucb', 
'/bin' and '/usr/bin'. Commands which you may write might be in '.' (usually one of your direc­
tories). Commands developed at Berkeley, live in '/usr/ucb' while commands developed at Bell 
Laboratories live in '/bin' and '/usr/bin'. 

A number of locally developed programs on the system live in the directory '/usr/local'. If 
we wish that all shells which we invoke to have access to these new programs we can place the 
command 

set path=(. /usr/ucb /bin /usr/bin /usr/local) 

in our file .cshrc in our home directory. Try doing this and then logging out and back in and do 

set 

again to see that the value assigned to ,4th has changed. 

One thing you should be aware of is that the shell examines each directory which you insert 
into your path and determines which commands are contained there. Except for the current direc­
tory '.', which the shell treats specially, this means that if commands are added to a directory in 
your search path after you have started the shell, they will not necessarily be found by the shell. 
If you wish to use a command which has been added in this way, you should give the command 

rehash 

to the shell, which will cause it to recompute its internal table of command locations, 50 that it 
will find the newly added command. Since the shell has to look in the current directory'.' on each 
command, placing it at the end of the path specification usually works equivalently and reduces 
overhead. 

(\ 
\0 

0·.·\ " 



( 

( 

c 

- 13-

Other useful built in variables are the variable kome which shows your home directory, cwd 
which contains your current working directory, the variable ignoreeo/ which can be set in your 
.Iogin file to tell the shell not to exit when it receives an end-of-file from a terminal (as described 
above). The variable 'ignoreeof' is one of several variables which the shell does not care about the 
value of, only whether they are ad or unact. Thus to set this variable you simply do 

set ignoreeof 

and to unset it do 

unset ignoreeof 

These give the variable 'ignoreeof' no value, but none is desired or required. 

Finally, some other built-in shell variables of use are the variables noclobber and mail. The 
metasyntax 

> filename 

which redirects the standard output of a command will overwrite and destroy the previous con­
tents of the named file. In this way you may accidentally overwrite a file which is valuable. H 
you would prefer that the shell not overwrite files in this way you can 

set noclobber 

in your .login file. Then trying to do 

date> now 

would cause a diagnostic if 'now' existed already. You could type 

date >! now 

if you really wanted to overwrite the contents of 'now'. The I>!' is a special metasyntax indicat­
ing that clobbering the file is ok.t 

2.3. The shell's history list 

The shell can maintain a hi8tory lut into which it places the words of previous commands. 
It is possible to use a notation to reuse commands or words from commands in forming new com­
mands. This mechanism can be used to repeat previous commands or to correct minor typing mis­
takes in commands. 

The following figure gives a sample session involving typical usage of the history mechanism 
of the shell. In this example we have a very simple C program which has a bug {or two} in it in 
the file 'bug.c', which we 'cat' out on our terminal. \Ve then try to run the C compiler on it, refer­
ring to the file again as 'IS', meaning the last argument to the previous command. Here the 'I' is 
the history mechanism invocation metacharacter, and the '$' stands for the last argument, by anal­
ogy to '$' in the editor which stands for the end of the line. The shell echoed the command, as it 
would have been typed without use of the history mechanism, and then executed it. The compila­
tion yielded error diagnostics so we now run the editor on the file we were trying to compile, fix 
the bug, and run the C compiler again, this time referring to this command simply as 'Ie', which 
repeats the last command which started with the letter 'c'. H there were other commands starting 
with 'c' done recently we could have said 'Icc' or even '!cc:p' which would have printed the last 
command starting with ICC' without executing it. 

Mter this recompilation, we ran the resulting 'a.out' file, and then noting that there still was 
a bug, ran the editor again. After fixing the program we ran the C compiler again, but tacked 
onto the command an extra '-0 bug' telling the compiler to place the resultant binary in the file 
'bug' rather than 'a.out'. In general, the history mechanisms may be used anywhere in the 

1The space between the '!' a.nd the word 'now' is eritical here, a.s '!now' would be an invocation or the hitttor1l 
mecha.nism, and have to totally ditJerent effect. 



% cat bug.e 
mainO 

{ 

} 
printr("hello )j 

% ee!S 
ee bug.e 

-14-

"bug.e", line 4: newline in string or char constant 
"bug.e", line 5: syntax error 
%ed !S 
ed bug.e 
29 
4B/);/"&/p 

w 
30 
q 
% !e 

printf("hello"); 

ce bug.c 
% a.out 
hello% !e 
ed bug.e 
30 
4B/lo/lo\\n/p 

w 
32 
q 

printf("hello\ntl}j 

%!e -0 bug 
ee bug.e -0 bug 
% size a.out bug 
a.out: 2784+364+1028 = 4176b = Oxl050b 
bug: 2784+364+1028 = 4176b = Oxl050b 
% Is -1!* 
Is -I a.out bug 
-rwxr-xr-x 1 bill 
-rwxr-xr-x 1 bill 
% bug 
hello 
% num bug.e \ spp 

3932 Dec 19 09:41 a.out 
3932 Dec 19 09:42 bug 

spp: Command not found. 
% tspptssp 
num bug.c \ ssp 

1 mainO 
3 { 
4 
5 } 

% !! Ilpr 

printf(,'hello\n ")j 

num bug.e \ ssp \lpr 
% 

r\ 
\ I 

"-...J 

c 



( 

- 15-

formation of new commands and other characters may be placed before and after the substituted 
commands. 

We then ran the 'size' command to see how large the binary program images we have created 
were, and then an 'Is -I' command with the same argument list, denoting the argument list '*'. 
Finally we ran the program 'bug' to see that its output is indeed correct. 

To make a numbered listing of the program we ran the 'num' command on the file 'bug.c'. 
In order to compress out blank lines in the output of 'num' we ran the output through the filter 
'ssp', but misspelled it as spp. To correct this we used a shell substitute, placing the old text and 
new text between 't' characters. This is similar to the substitute command in the editor. Finally, 
we repeated the same command with "!!', but sent its output to the line printer. 

There are other mechanisms available for repeating commands. The M,to,., command prints 
out a number of previous commands with numbers by which they can be referenced. There is a 
way to refer to a previous command by searching for a string which appeared in it, and there are 
other, less useful, ways to select arguments to include in a new command. A complete description 
of all these mechanisms is given in the C shell manual pages in the UNIX Programmers Manual. 

2.4. Aliases 

The shell has an aliaB mechanism which can be used to make transformations on input com­
mands. This mechanism can be used to simpliry the commands you type, to supply default argu­
ments to commands, or to perform transformations on commands and their arguments. The alias 
facility is similar to a macro racility. Some of the features obtained by aliasing can be obtained 
also using shell command files, but these take place in another instance or the shell and cannot 
directly affect the current shells environment or involve commands such as cd which must be done 
in the current shell. 

As an example, suppose that there is a new version of the mail program on the system called 
'newmail' you wish to use, rather than the standard mail program which is called 'mail'. If you 
place the shell command 

alias mail newmail 

in your .cBhrc file, the shell will transrorm an input line or the rorm 

mail bill 

into a calIon 'newmail'. More generally, suppose we wish the command 'Is' to always show sizes 
of files, that is to always do '-s'. We can do 

alias Is Is -s 

or even 

alias dir Is -s 

creating a new command syntax 'dir' which does an 'Is -s'. If we say 

dir -bill 

then the shell will translate this to 

Is -s /mnt/bill 

Thus the a/ia& mechanism can be used to provide short names for commands, to provide 
default arguments, and to define new short commands in terms or other commands. It is also pos­
sible to define aliases which contain multiple commands or pipelines, showing where the arguments 
to the original command are to be substituted using the facilities or the history mechanism. Thus 
the definition 

alias cd 'cd \!* ; Is ' 

would do an /, command after each change directory cd command. We enclosed the entire alias 



-16 -

definition in ,"t characters to prevent most substitutions from occurring and the character 'j' from 
being recognized as a metaeharaeter. The 'I' here is escaped with a '\' to prevent it from being 
interpreted when the alias command is typed in. The '\'*' here substitutes the entire argument list 
to the pre-aliasing etl command, without giving an error if there were no arguments. The ';' 
separating commands is used here to indicate that one command is to be done and then the next. 
Similarly the definition 

alias whois 'grep \!t /etc/passwd' 

defines a command which looks up its first argument in'the password file. 

Warning: The shell currently reads the .e,hre file each time it starts up. If you place a 
large number of commands there, shells will tend to start slowly. A mechanism for saving the 
shell environment after reading the .elAre file and quickly restoring it is under development, but 
for now you should try to limit the number of aliases you have to a reasonable number ... 10 or 15 
is reasonable, 50 or 60 will cause a noticeable delay in starting up shells, and make the system 
seem sluggish when you execute commands from within the editor and other programs. 

2.5. More redirection; > > and >8c 

There are a few more notations useful to the terminal user which have not been introduced 
yet. 

In addition to the standard output, commands also have a tliagno,tic output which is nor­
mally directed to the terminal even when the standard output is redirected to a file or a pipe. It is 
occasionally desirable to direct the diagnostic output along with the standard output. For instance 
if you want to redirect the output of a long running command into a file and wish to have a record 
or any error diagnostic it produces you can do 

command >& file 

The '>&' here tells the shell to route both the diagnostic output and the standard output into 
'file'. Similarly you can give the command 

command 1& Ipr 

to route both standard and diagnostic output through the pipe to the line printer daemon Ipr.:#: 

Finally, it is possible to use the form 

command > > file 

to place output at the end of an existing file. t 

2.8. Jobs; Background, Foreground, or Suspended 

When one or more commands are typed together as a pipeline or as a sequence of commands 
separated by semicolons, a single job is created by the shell consisting of these commands together 
as a unit. Single commands without pipes or semicolons create the simplest jobs. Usually, every 
line typed to the shell creates a job. Some lines that create jobs (one per line) are 

#A command form 

command >&! file 

exists, ud is used when noclo66er is set and file already exists. 
tu noclo66er is set, then an error will result if file does not exist, otherwise the shell will create file if it doesn't 
at. A form 

command »! file 

makes it Dot be an error for file to not exist when noclo66er is set. 

o 

o 



(-

( 

sort < data 
Js -s I sort -n I head -5 
mail harold 

- 17-

If the metacharacter '&,' is typed at the end of the commands, then the job is started as a 
background job. This means that the shell does not wait for it to complete but immediately 
prompts and is ready for another command. The job runs in the background at the same time 
that normal jobs, called foreground jobs, continue to ,be read and executed by the shell one at a 
time. Thus 

du > usage &, 

would run the du program, which reports on the disk usage of your working directory (as well as 
any directories below it), put the output into the file 'usage' and return immediately with a 
prompt for the next command without out waiting for du to finish. The du program would con­
tinue executing in the background until it finished, even though you can type and execute more 
commands in the mean time. When a background job terminates, a message is typed by the shell 
just before the next prompt telling you that the job has completed. In the following example the 
dv job finishes sometime during the execution of the mail command and its completion is reported 
just before the prompt after the mail job is finished. 

% du > usage &, 
[11503 
% mail bill 
How do you know when a background job is finished? 
EOT 
[11- Done du > usage 
% 

H the job did not terminate normally the 'Done' message might say something else like 'Killed'. If 
you want the terminations of background jobs to be reported at the time they occur (possibly 
interrupting the output of other foreground jobs), you can set the notify variable. In the previous 
example this would mean that the 'Done' message might have come right in the middle of the mes­
sage to Bill. Background jobs are unaffected by any signals from the keyboard like the STOP, 
INTERRUPT, or QUIT signals mentioned earlier. 

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell 
remembers the command names, arguments and the proceaa numbera of all commands in the job 
as well as the working directory where the job was started. Each job in the table is either running 
in the foreground with the shell waiting for it to terminate, running in the background, or 
3U6pended. Only one job can be running in the foreground at one time, but several jobs can be 
suspended or running in the background at once. AB each job is started, it is assigned a small 
identifying number called the job number which can be used later to refer to the job in the com­
mands described below. Job numbers remain the same until the job terminates and then are re­
used. 

When a job is started in the backgound using '&", its number, as well as the process numbers 
of all its (top level) commands, is typed by the shell before prompting you for another command. 
For example, 

% Js -s I sort -n > usage & 
[2] 20342035 
% 

runs the 'Is' program with the '-s' options, pipes this output into the 'sort' program with the '-n' 
option which puts its output into the file 'usage'. Since the '&' was at the end of the line, these 
two programs were started together as a background job. After starting the job, the shell prints 
the job number in brackets (2 in this case) followed by the process number of each program started 
in the job. Then the shell immediates prompts for a new command, leaving the job running 



-18-

simultaneously. 

As mentioned in section 1.8, foreground jobs become .. a,ended by typing tZ which sends a 
STOP signal to the currently running foreground job. A background job can become suspended by 
using the ato, command described below. When jobs are suspended they merely stop any further 
progress until started again, either in the foreground or the backgound. The shell notices when a 
job becomes stopped and reports this fact, much like it reports the termination of background 
jobs. For foreground jobs this looks like 

% du > usage 
tZ 
Stopped 
% 

'Stopped' message is typed by the shell when it notices that the du program stopped. For back­
ground jobs, using the atop command, it is 

% sort usage & 
[1]2345 
% stop %1 
11] + Stopped (signal) sort usage 
% 

Suspending foreground jobs can be very useful when you need to temporarily change what you are 
doing (execute other commands) and then return to the suspended job. Also, foreground jobs can 
be suspended and then continued as background jobs using the bg command, allowing you to con­
tinue other work and stop waiting for the foreground job to finish. Thus 

% du > usage 
tZ 
Stopped 
%bg 
[lJ du > usage & 
% 

starts 'du' in the foreground, stops it before it finishes, then continues it in the background allow­
ing more foreground commands to be executed. This is especially helpful when a foreground job 
ends up taking longer than you expected and you wish you had started it in the backgound in the 
beginning. 

All job control commands can take an argument that identifies a particular job. All job 
name arguments begin with the character '%\ since some of the job control commands also accept 
process numbers (printed by the p8 command.) The default job (when no argument is given) is 
called the current job and is identified by a '+' in the output of the job8 command, which shows 
you which jobs you have. When only one job is stopped or running in the background (the usual 
case) it is always the current job thus no argument is needed. IC a job is stopped while running in 
the foreground it becomes the current job and the existing current job becomes the previou8 job -
identified by a '-' in the output of joba. When the current job terminates, the previous job 
becomes the current job. When given, the argument is either '0/0-' (indicating the previous job); 
'%=#' I where =# is the job number; '%pref' where pref is some unique prefix of the command name 
and arguments of one of the jobs; or '%1' followed by some string found in only one of the jobs. 

The jobs command types the table of jobs, giving the job number, commands and status 
('Stopped' or 'Running') of each backgound or suspended job. With the '-I' option the process 
numbers are also typed. 

o 

c 



( 

( 

% du > usage & 
[I] 3398 
% Js -s I sort -n > myfile & 
[2] 3405 
% mail bill 
tZ 
Stopped 
% jobs 
[I] - Running 
[2J Running 
[3] + Stopped 
% fg %ls 
Js -s I sort -n > myfile 
% more myfile 

- 19-

du > usage 
Js -s I sort -n > myfile 
mail bill 

The fg command runs a suspended or background job in the foreground. It is used to restart 
a previously suspended job or change a background job to run in the foreground (allowing signals 
or input from the terminal). In the above example we used fg to change the 'Is' job from the 
background to the foreground since we wanted to wait for it to finish before looking at its output 
file. The bg command runs a suspended job in the background. It is usually used after stopping 
the currently running foreground job with the STOP signal. The combination of the STOP signal 
and the bg command changes a foreground job into a background job. The IJtop command 
suspends a background job. 

The lcil/ command terminates a background or suspended job immediately. In addition to 
jobs, it may be given process numbers as arguments, as printed by PIJ. Thus, in the example 
above, the running du command could have been terminated by the command 

% kill %1 
[1] Terminated 
% 

du > usage 

The notify command (not the variable mentioned earlier) indicates that the termination of a 
specific job should be reported at the time it finishes instead of waiting for the next prompt. 

If a job running in the background tries to read input from the terminal it is automatically 
stopped. When such a job is then run in the foreground, input can be given to the job. If desired, 
the job can be run in the background again until it requests input again. This is illustrated in the 
following sequence where the's' command in the text editor might take a long time. 

% ed bigfile 
120000 
1,Ss/thisword/thatword/ 
tZ 
Stopped 
%bg 
[I J ed bigfile & 
% 
. . . some foreground commands 

[lJ Stopped (tty input) ed bigfile 
%rg 
ed bigfile 
w 
120000 
q 
% 



·20-

So alter the's' command was issued, the 'ed' job was stopped with tZ and then put in the back­
ground using 6,. Some time later when the's' command was finished, ttl tried to read another 
command and was stopped because jobs in the backgound cannot read from the terminal. The 1, 
command returned the 'ed' job to the foreground where it could once again accept commands from 
the terminal. 

The command 

stty tostop 

causes all background jobs run on your terminal to stop when they are about to write output to 
the terminal. This prevents messages from background jobs from interrupting foreground job out­
put and allows you to run a job in the background without losing terminal output. It also can be 
used for interactive programs that sometimes have long periods without interaction. Thus each 
time it outputs a prompt for more input it will stop before the prompt. It can then be run in the 
foreground using ,g, more input can be given and, if necessary stopped and returned to the back­
ground. This 8tty command might be a good thing to put in your .login file if you do not like 
output from background jobs interrupting your work. It also can reduce the need for redirecting 
the output of background jobs if the output is not very big: 

% stty tostop 
% wc hugefile & 
[1110387 
% ed text 
... some time later 
q 
[1] Stopped (tty output) wc hugefile 
% fgwc 
wc hugefile 

13371 30123 302577 
% stty -tostop 

Thus after some time the 'wc' command, which counts the lines, words and characters in a file, 
had one line of output. When it tried to write this to the terminal it stopped. By restarting it in 
the foreground we allowed it to write on the terminal exactly when we were ready to look at its 
output. Programs which attempt to change the mode of the terminal will also block, whether or 
not t08tOP is set, when they are not in the foreground, as it would be very unpleasant to have a 
background job change the state of the terminal. 

Since the jobs command only prints jobs started in the currently executing shell, it knows 
nothing about background jobs started in other login sessions or within shell files. The p8 can be 
used in this case to find out about background jobs not started in the current shell. 

2.7. Working Direetories 

As mentioned in section 1.6, the shell is always in a particular working tliree to '7/. The 
'change directory' command ehdir (its short form cd may also be used) changes the working direc­
tory of the shell, that is, changes the directory you are located in. 

It is useful to make a directory for each project you wish to work on and to place all files 
related to that project in that directory. The 'make directory' command, mkdir, creates a new 
directory. The pwd ('print working directory') command reports the absolute pathname of the 
working directory of the shell, that is, the directory you are located in. Thus in the example 
below: 

o 



( 

( 

%pwd 
/usr/bill 
% mkdir newpaper 
% chdir newpaper 
%pwd 
lusr Ibill/newpaper 
% 

- 21-

the user has created and moved to the directory newpaper. where, Cor example, he might place a 
group of related files. 

No matter where you have moved to in a directory hierarchy, you can return to your 'home' 
login directory by doing just 

cd 

with no arguments. The name ' . .' always means the directory above the current one in the hierar­
chy, thus 

cd .. 

changes the shell's working directory to the one directly above the current one. The name ' . .' can 
be used in any pathname, thus, 

cd . ./programs 

means change to the directory 'programs' contained in the directory above the current one. If you 
have several directories for different projects under, say, your home directory, this shorthand nota­
tion permits you to switch easily between them. 

The shell always remembers the pathname of its current working directory in the variable 
cwd. The shell can also be requested to remember the previous directory when you change to a 
new working directory. If the 'push directory' command pU8hd is used in place of the cd com­
mand, the shell saves the name of the current working directory on a directory 8tack before chang­
ing to the new one. You can see this list at any time by typing the 'directories' command dir8. 

% pushd newpaper /references 
- /newpaper/references -
% pushd /usr/lib/tmac 
/usr/lib/tmac - /newpaper/references -
%dirs 
/usr/lib/tmac - /newpaper/references -
%popd 
- Inewpaper/rererences -
%popd 

% 

The list is printed in a horizontal line, reading left to right, with a tilde C) as shorthand for your 
home directory-in this case '/usr/bill'. The directory stack is printed whenever there is more 
than one entry on it and it changes. It is also printed by a dir8 command. Dir8 is usually Caster 
and more informative than pwd since it shows the current working directory as well as any other 
directories remembered in the stack. 

The pU8hd command with no argument alternates the current directory with the first direc­
tory in the list. The 'pop directory' popd command without an argument returns you to the direc­
tory you were in prior to the current one, discarding the previous current directory from the stack 
(forgetting it). Typing popd several times in a series takes you backward through the directories 
you had been in (changed to) by pU8hd command. There are other options to pushd and popd to 
manipulate the contents of the directory stack and to change to directories not at the top of the 
stack; see the c8h manual page for details. 



- 22-

Since t.he shell remembers t.he working directory in which each job was started, it. warns you 
when you might. be confused by restarting a job in the foreground which bas a different working 
directory t.han the current working directory of the shell. Thus if you st.art a background job, then 
change the shell's working directory and then cause t.he background job to run in t.he foreground, 
the shell warns you that the working directory of the currently running foreground job is different 
from that of the shell. 

% dirs-I 
/mnt/bill 
% cd myproject 
%dirs 
- /myproject 
% ed prog.c 
1143 
tZ 
Stopped 
%cd .. 
%Is 
myproject 
textfile 
%fg 
ed prog.c (wd: - jmyproject) 

This way the shell warns you when there is an implied change of working directory, even though 
no cd command was issued. In the above example the 'ed' job was still in '/mnt/bill/project' even 
though the shell had changed to '/mnt/bill'. A similar warning is given when such a foreground 
job t.erminates or is suspended (using the STOP signal) since the return to the shell again implies a 
change of working directory. 

%fg 
ed prog.c (wd: - jmyproject) 
... after some editing 

q 
(wd now: -) 
% 

These messages are sometimes confusing if you use programs that change their own working direc­
tories, since the shell only remembers which directory a job is started in, and assumes it stays 
there. The '-1' option of jobs will type the working directory or suspended or background jobs 
when it is different from the current working directory or the shell. 

2.8. Useful built-in commands 

We now give a few of the useful built-in commands of the shell describing how they are used. 

The alias command described above is used to assign new aliases and to show the existing 
aliases. With no arguments it prints the current aliases. It may also be given only one argument 
such as 

alias Is 

to show the current alias for, e.g., 'Is'. 

The echo command prints its arguments. It is often used in .hell scripts or as an interactive 
command to see what filename expansions will produce. 

The histo,., command will show the contents of the history list. The numbers given with the 
history events can be used to reference previous events which are difficult to reference using the 
contextual mechanisms introduced above. There is also a shell variable called prompt. By placing 
a 'J' character in its value the shell will there substitute the number of the current command in the 

o 

o 



( 

- 23-

history list. You can use this number to refer to this command in a history substitution. Thus 
you could 

set prompt=\! % • 

Note that the'!' character had to be ucaped here even within ,#) characters. 

The limit command is used to restrict use of resources. With no arguments it prints the 
current limitations: 

cputime 
filesize 
datasize 
stacksize 
coredumpsize 

unlimited 
unlimited 
5616 kbytes 
512 kbytes 
unlimited 

Limits can be set, e.g.: 

limit coredumpsize 128k 

Most reasonable units abbreviations will work; see the c&h manual page for more details. 

The logout command can be used to terminate a login shell which has ignoreeof set. 

The rehash command causes the shell to recompute a table of where commands are located. 
This is necessary if you add a command to a directory in the current shell's search path and wish 
the shell to find it, since otherwise the hashing algorithm may tell the shell that the command 
wasn't in that directory when the hash table was computed. 

The repeat command can be used to repeat a command several times. Thus to make 5 
copies of the file one in the file five you could do 

repeat 5 cat one > > five 

The &etenv command can be used to set variables in the environment. Thus 

setenv TERM adm3a 

will set the value of the environment variable TERM to 'adm3a'. A user program pn'ntenv exists 
which will print out the environment. It might then show: 

% printenv 
HOME=/usr/bill 
SHELL=/bin/ csh 
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local 
TERM=adm3a 
USER=bill 
% 

The &DUrCe command can be used to force the current shell to read commands from a file. 
Thus 

source .cshrc 

can be used after editing in a change to the .e&hre file which you wish to take effect before the next 
time you login. 

The time command can be used to cause a command to be timed no matter how much CPU 
time it takes. Thus 



- 24-

% time cp /etc/rc /usr/bill/rc 
O.Ou O.ls 0:018% 2+lk 3+2io Ipf+Ow 
% time we /etc/rc /usr/bill/rc 

52 178 1347 /etc/rc 
52 178 1347/usr/bill/rc 

104 356 2694 total 
O.lu 0.1s 0:00 13% 3+3k 5+3io 7pf+Ow 
% 

indicates that the cp command used a negligible amount of user time (u) and about 1/IOth of a 
system time (s); the elapsed time was I second (0:01), there was an average memory usage of 2k 
bytes of program space and lk bytes of data space over the cpu time involved (2+1k); the program 
did three disk reads and two disk writes (3+2io), and took one page fault and was not swapped 
(lpf+Ow). The word count command we on the other hand used 0.1 seconds of user time and 0.1 
seconds of system time in less than a second of elapsed time. The percentage '13%' indicates that 
over the period when it was active the command 'we' used an average of 13 percent of the avail­
able CPU cycles of the machine. 

The flRalias and flR8et commands can be used to remove aliases and variable definitions 
from the shell, and flR8eteRtJ removes variables from the environment. 

2.9. What else! 

This concludes the basic discussion of the shell for terminal users. There are more features of 
the shell to be discussed here, and all features of the shell are discussed in its manual pages. One 
useful feature which is discussed later is the /oreach built-in command which can be used to run 
the same command sequence with a number of different arguments. 

H you intend to use UNIX a lot you you should look through the rest of this document and 
the shell manual pages to become familiar with the other facilities which are available to you. 

c 



( 

( 

(~j 

- 25-

8. Shell contl'Ol structures and command scripts 

8.1. Intl'Oduetion 

. It is possible to place commands in files and to cause shells to be invoked to read and execute 
commands from these files, which are called ,hell ,cn,ts. We here detail those features of the shell 
useful to the writers of such scripts. 

8.2. Make 

It is important to first note what shell scripts are not useful for. There is a program called 
make which is 'Very useful for maintaining a group of related files or performing sets of operations 
on related files. For instance a large program consisting of one or more files can have its dependen­
cies described in a mdefile which contains definitions of the commands used to create these 
different files when changes occur. Definitions of the means for printing listings, cleaning up the 
directory in which the files reside, and installing the resultant programs are easily, and most 
appropriately placed in this makefile. This format is superior and preferable to maintaining a 
group of shell procedures to maintain these files. 

Similarly when working on a document a makefile may be created which defines how 
different versions of the document are to be created and which options of nroff or frolf are 
appropriate. 

8.3. Invocation and the argv variable 

A csh command script may be interpreted by saying 

% csh script ... 

where script is the name of the file containing a group of esh commands and ' ... ' is replaced by a 
sequence of arguments. The shell places these arguments in the variable argv and then begins to 
read commands from the script. These parameters are then available through the same mechan­
isms which are used to reference any other shell variables. 

H you make the file 'script' executable by doing 

chmod 755 script 

and place a shell comment at the beginning of the shell script (Le. begin the file with a '#' charac­
ter) then a '/bin/csh' will automatically be invoked to execut:e 'script' when you type 

script 

If the file does not begin with a '#' then the standard shell '/bin/sh' will be used to execute it. 
This allows you to convert your older shell scripts to use esk at your convenience. 

3.4. Variable substitution 

Mter each input line is broken into words and history substitutions are done on it, the input 
line is parsed into distinct commands. Before each command is executed a mechanism know as 
variable ,ubBtitution is done on these words. Keyed by the character'S' this substitution replaces 
the names of variables by their values. Thus 

echo Sargv 

when placed in a command script would cause the current value of the variable argv to be echoed 
to the output of the shell script. It is an error for argv to be unset at this point. 

A number of notations are provided for accessing components and attributes of variables. 
The notation 

S?name 

expands to '1' if name is set or to '0' if name is not set. It is the fundamental mechanism used for 



- 26-

checking whether particular variables have been assigned values. All other forms of reference to 
undefined variables cause errors. 

The notation 

'''name 

expands to the number of elements in the variable name. Thus 

% set argv==(a b c) 
% echo $!argv 
1 
% echo '''a.rgv 
3 
% unset a.rgv 
% echo $!a.rgv 
o 
% echo $argv 
Undefined variable: argv. 
% 

It is also possible to access the components of a variable which has several values. Thus 

$a.rgv[l] 

gives the first component of org" or in the example above 'a'. Similarly 

$a.rgv[$#argv] 

would give 'c', and 

$argv[1-2] 

would give 'a b'. Other notations useful in shell scripts are 

$n 

where n is an integer as a shorthand for 

$a.rgv[n] 

the n th parameter and 

$* 

which is a shorthand for 

$a.rgv 

The form 

$S 

expands to the process number of the current shell. Since this process number is unique in the sys­
tem it can be used in generation of unique temporary file names. The form 

$< 

is quite special and is replaced by the next line of input read from the shell's standard input (not 
the script it is reading). This is useful for writing shell scripts that are interactive, reading com­
mands from the terminal, or even writing a shell script that acts as a filter, reading lines from its 
input file. Thus the sequence 

echo 'yes or no1\c' 
set a=($<) 

would write out the prompt 'yes or no?' without a newline and then read the answer into the c 



c 

- 27-

variable 'a'. In this case 'S#a' would be '0' if either a blank line or end-of-file (tD) was typed. 

One minor difference between 'In' and 'Sargv[n J' should be noted here. The form 'Sargv[n J' 
will yield an error if n is not in the range 'I-S#argv' while 'Sn' will never yield an out of range 
subscript error. This is for compatibility with the way older shells handled parameters. 

Another important point is that it is never an error to give a subrange of the form 'n-'; if 
there are less than n components of the given variable then no words are substituted. A range of 
the form 'm-n' likewise returns an empty vector without giving an error when m exceeds the 
number of elements of the given variable, provided the subscript n is in range. 

8.5. ExpreuioDS 

In order for interesting shell scripts to be constructed it must be possible to evaluate expres­
sions in the shell based on the values of variables. In fact, all the arithmetic operations of the 
language C are available in the shell with the same precedence that they have in C. In particular, 
the operations '==' and '1=' compare strings and the operators '&&' and 'I t implement the 
boolean and/or operations. The special operators '=-' and '1-' are similar to '==' and '!=' 
except that the string on the right side can have pattern matching characters (like *, 1 or 0) and 
the test is whether the string on the left matches the pattern on the right. 

The shell also allows file enquiries of the form 

-1 filename 

where '1' is replace by a number of single characters. For instance the expression primitive 

-e filename 

tell whether the file 'filename' exists. Other primitives test for read, write and execute access to the 
file, whether it is a directory, or has non-zero length. 

It is possible to test whether a command terminates normally, by a primitive of the form '{ 
command}' which returns true, i.e. '1' if the command succeeds exiting normally with exit status 
0, or '0' if the command terminates abnormally or with exit status non-zero. If more detailed 
information about the execution status of a command is required, it can be executed and the vari­
able 'Sstatus' examined in the next command. Since 'Sstatus' is set by every command, it is very 
transient. It can be saved if it is inconvenient to use it only in the single immediately following 
command. 

For a full list of expression components available see the manual section for the shell. 

3.6. Sample shell script 

A sample shell script which makes use of the expression mechanism of the shell and some of 
its control structure follows: 



- 28-

% cat copyc 

'* '* Copyc copies those C programs in the specified list '* to the directory - /backup if they differ from the files '* already in -/backup 

'* set noglob 
{oreach i (Sargv) 

end 

if (Si !- • .c) continue '* not a .c file so do nothing 

if (! -r -/backup/Si:t) then 

endif 

echo Si:t not in backup ... not cp\'ed 
continue 

cmp -s Ii -/backup/Si:t '* to set Sstatus 

if (Sstatus != 0) then 
echo new backup of Si 
cp Si - /backup/Si:t 

endif 

This script makes use of the foreach command, which causes the shell to execute the com­
mands between the foreach and the matching end for each of the values given between '(' and C)' 
with the named variable, in this case 'i' set to successive values in the list. Within this loop we 
may use the command break to stop executing the loop and continue to prematurely terminate 
one iteration and begin the next. Arter the foreach loop the iteration variable (i in this case) has 
the value at the last iteration. 

We set the variable noglob here to prevent filename expansion of the members of argv. This 
is a good idea, in general, if the arguments to a shell script are filenames which have already been 
expanded or if the arguments may contain filename expansion metacharacters. It is also possible 
to quote each use of a'S' variable expansion, but this is harder and less reliable. 

The other control construct used here is a statement of the form 

if ( expression ) then 
command 

endif 

The placement of the keywords here is not flexible due to the current implementation of the shell. t 

tThe rollowing two rorm&ts a.re not currently a.ecept&ble to the shell: 

and 

It ( expression ) 
then 

eomm&nd 

endlt 

* Won't work! 

It ( expression ) then eomm&nd endlt * Won't work 

o 

c 



- 29-

The shell does have another form of the if statement of the form 

if ( expression ) command 

( which can be written 

( 

c 

If ( expression ) \ 
command 

Here we have escaped the newline for the sake of appearance. The command must not involve ' I', 
ell' or 'j' and must not be another control command: The second form requires the final '\' to 
Immediately precede the end-of-line. 

The more general if statements above also admit a sequence of else-if pairs followed by a 
single else and an endi/, e.g.: 

if ( expression ) then 
commands 

else if (expression ) then 
commands 

else 
commands 

endif 

Another important mechanism used in shell scripts is the ':' modifier. We can use the 
modifier ':r' here to extract a root of a filename or ':e' to extract the eztenaion. Thus if the vari­
able i has the value '/mnt/foo.bar' then 

% echo $i Si:r Si:e 
/mnt/foo.bar fmnt/foo bar 
% 

shows how the ':r' modifier strips oft' the trailing' .bar' and the the ':e' modifier leaves only the 
'bar'. Other modifiers will take oft' the last component of a pathname leaving the head ':h' or all 
but the last component of a pathname leaving the tail ':t'. These modifiers are fulJy described in 
the csh manual pages in the programmers manual. It is also possible to use the command substitu­
tion mechanism described in the next major section to perform modifications on strings to then 
reenter the shells environment. Since each usage of this mechanism involves the creation of a new 
process, it is much more expensive to use than the ':' modification mechanism.# Finally, we note 
that the character '#' lexically introduces a shell comment in shell scripts (but not from the termi­
nal). All subsequent characters on the input line after a '#' are discarded by the shell. This char­
acter can be quoted using'" or '\' to place it in an argument word. 

3.7. Other control structures 

The shell also has control structures while and switch similar to those of C. These take the 
forms 

*It is also import.a.nt t.o Dote that the current implement.ation or the shelllimit.& the Dumber or ':' modifiers OD a 
'$' substitut.ion to 1. Thus 

% echo $i $i:h:t. 
/a/b/e /a/b:t 
% 

does Dot do what ODe would expect. 



and 

while ( expression ) 
commands 

end 

switeh ( word ) 

case strl: 
commands 
breaksw 

ease stm: 
commands 
breaksw 

default: 
commands 
breaksw 

endsw 

- 30-

For details see the manual section for csh. C programmers should note that we use breaksw to exit 
Crom a switch while break exits a while or /oreach loop. A common mistake to make in cah 
scripts is to use break rather than breaksw in switches. 

Finally, csh allows a golo statement, with labels looking like they do in C, i.e.: 

loop: 
commands 
goto loop 

3.S. Supplying input to eommands 

Commands run from shell scripts receive by default the standard input of the shell which is 
running the script. This is different from previous shells running under UNIX. It allows shell 
scripts to fully participate in pipelines, but mandates extra notation for commands which are to 
take inline data. 

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an 
example, consider this script which runs the editor to delete leading blanks from the lines in each 
argument file 

% cat deblank 
# deblank - remove leading blanks 
foreach i ($a.rgv) 
ed - $i « 'EOF' 
I,$s/t! ]*11 
w 
q 
'EOF' 
end 
% 

The notation '< < 'EOF" means that the standard input for the ed command is to come from 
the text in the shell script file up to the next line consisting of exactly ''EOF·'. The fact that the 
'EOF' is enclosed in ,,, characters, i.e. quoted, causes the shell to not perform variable substitution 

o 

/ '\ 
I ' 
I 

~j 



( 

( 

- 31-

on the intervening lines. In general, if any part of the word rollowing the '< <' which the shell 
uses to terminate the text to be given to the command is quoted then these substitutions will not 
be performed. In this case since we used the form 'l,S' in our editor script we needed to insure 
that this 'S' was not variable substituted. We could also have insured this by preceding the '$' 
h . h '\'. ere Wlt a , l.e.: 

1,\Ss/t[ J* / / 
but quoting the 'EOF' terminator is a more reliable way of achieving the same thing. 

3.0. Catching iDtel'l'Upts 

If our shell script creates temporary files, we may wish to catch interruptions of the shell 
script so that we can clean up these files. We can then do 

onintr label 

where label is a label in our program. If an interrupt is received the shell will do a 'goto label' and 
we can remove the temporary files and then do an e:rit command (which is built in to the shell) to 
exit rrom the shell script. If we wish to exit with a non-zero status we can do 

exit(l) 

e.g. to exit with status '1'. 

3.10. What else! 

There are other reatures of the shell useful to writers or shell procedures. The verbose and 
echo options and the related -tl and -:r command line options can be used to help trace the 
actions or the shell. The -n option causes the shell only to read commands and not to execute 
them and may sometimes be of use. 

One other thing to note is that csh will not execute shell scripts which do not begin with the 
character Ii', that is shell scripts that do not begin with a comment. Similarly, the '/bin/sh' on 
your system may well defer to 'csh' to interpret shell scripts which begin with Ii'. This allows 
shell scripts for both shells to live in harmony. 

There is also another quotation mechanism using ,H, which allows only some of the expansion 
mechanisms we have so far discussed to occur on the quoted string and serves to make this string 
into a single word as ,,, does. 



- 32-

4. Other, leas commonly used, sheD features 

4.1. Loops at the terminal; variables as vectors 

It is occasionally useful to use the foreach control structure at the terminal to aid in per­
forming a number of similar commands. For instance, there were at one point three shells in use 
on the Cory UNIX system at Cory Hall, '/bin/sh', '/bin/nsh', and '/bin/csh'. To count the number 
of persons using each shell one could have issued the commands 

% grep -e eshS /etc/passwd 
27 
% grep -e nshS /etc/passwd 
128 
% grep -e -v shS /etc/passwd 
430 
% 

Since these commands are very similar we can use /oreach to do this more easily. 

% foreach i ('shS' 'cshS' '-v shS 1 
? grep -e Si /etc/passwd 
1 end 
27 
128 
430 
% 

Note here that the shell prompts for input with '1 ' when reading the body of the loop. 

Very useful with loops are variables which contain lists of filenames or other words. You 
can, for example, do 

% set a=('ls') 
% echo $a 
esh.n csh.rm 
%ls 
esh.n 
esh.rm 
% echo $#a 
2 
% 

The Bet command here gave the variable a a list of all the filenames in the current directory as 
value. We can then iterate over these names to perform any chosen function. 

The output of a command within ", characters is converted by the shell to a list of words. 
You can also place the '" quoted string within ,tI, characters to take each (non-empty) line as a 
component of the variable; preventing the lines from being split into words at blanks and tabs. A 
modifier ':x' exists which can be used later to expand each component of the variable into another 
variable splitting it into separate words at embedded blanks and tabs. 

4.2. Braces { ••• } in argument expaJUJion 

Another form of filename expansion, alluded to before involves the characters '{' and '}'. 
These characters specify that the contained strings, separated by ',' are to be consecutively substi­
tuted into the containing characters and the results expanded left to right. Thus 

A{str1,str2, ... strn}B 

expands to 

( '\ 

',,-J 



( 

( 

() 

- 33-

AstrlB Astr2B ... AstrnB 

This expansion oecurs before the other filename expansions, and may be applied recursively (i.e. 
nested). The results of each expanded string are sorted separately, left to right order being 
preserved. The resulting filenames are not required to exist if no other expansion mechanisms are 
used. This means that this mechanism can be used to generate arguments which are not filenames, 
but which have common parts. 

A typical use of this would be 

mkdir - /{hdrs,retrofit,csh} 

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is most 
useful when the common prefix is longer than in this example, i.e. 

choWD root /usr/{ucb/{ex,edit},lib/{exU*,how_ex}} 

4.3. Command substitution 

A command enclosed in '" characters is replaced, just before filenames are expanded, by the 
output from that command. Thus it is possible to do 

set pwd='pwd' 

to save the current directory in the variable pwd or to do 

ex 'grep -1 TRACE * .c' 

to run the editor e:r supplying as arguments those files whose names end in '.c' which have the 
string 'TRACE' in them. * 

4.4. Other details not covered here 

In particular circumstances it may be necessary to know the exact nature and order of 
different substitutions performed by the shell. The exact meaning of certain combinations of quo­
tations is also occasionally important. These are detailed fully in its manual section. 

The shell has a number of command line option flags mostly of use in writing UNIX pro­
grams, and debugging shell scripts. See the shells manual section for a list of these options . 

• Command expansion also occurs in input redirected with '< <' and within ,-, quotations. Refer to the shell 
man ual section for full details. 



- 34-

Appendix. - Special charaetera 
The following table lists the special characters of e,A and the UNIX system, giving for each the 
section(s} in which it is discussed. A number of these characters also have special meaning in 
expressions. See the ul manual section for a complete list. 
Syntactic metacharacters 

, 
I 
() 
& 

2.4 separates commands to be executed sequentially 
1.5 separates commands in a pipeline . 
2.2,3.6 brackets expressions and variable values 
2.5 follows commands to be executed without waiting for completion 

Filename metacharacters 

/ 
? 

* 
[ ] 

{ } 

1.6 separates components of a file's pathname 
1.6 expansion character matching any single character 
1.6 expansion character matching any sequence of characters 
1.6 expansion sequence matching any single character from a set 
1.6 used at the beginning of a filename to indicate home directories 
4.2 used to specify groups of arguments with common parts 

Quotation metacharacters 

\ 
.. 

1.7 prevents meta-meaning of following single character 
1.7 prevents meta-meaning of a group of characters 
4.3 like', but allows variable and command expansion 

Input/output metacharacters 

< 1.5 indicates redirected input 
> 1.3 indicates redirected output 

Expansion/substitution metacharacters 

$ 3A indicates variable substitution 
2.3 indicates history substitution 
3.6 precedes substitution modifiers 

t 2.3 used in special forms of history substitution 
4.3 indicates command substitution 

Other metacharacters 

:/I 1.3,3.6 begins scratch file names; indicates shell comments 
1.2 prefixes option (flag) arguments to commands 

% 2.6 prefixes job name specifications 

c 



( 

- 35-

Glossary 

This glossary lists the most important terms introduced in the introduction to the shell and 
gives references to sections of the shell document for further information about them. References 
of the form 'pr (1)' indicate that the command ,r is in the UNIX programmer's manual in section 
1. You can get an online copy of its manual page by doing 

man 1 pr 

References of the form (2.5) indicate that more information can be found in section 2.5 of this 
manual. . 

a.out 

Your current directory has the name '.' as well as the name printed by the com­
mand ,wd; see also dirs. The current directory '.' is usually the first component 
of the search path contained in the variable path, thus commands which are in '.' 
are found first (2.2). The character '.' is also used in separating components of 
filenames (1.6). The character '.' at the beginning of a com,onent of a ,athname 
is treated specially and not matched by the filename ezpansion metacharacters 
'1', '*', and '[' 'J' pairs (1.6). 
Each directory has a file ' . .' in it which is a reference to its parent directory. 
Mter changing into the directory with cMir, i.e. 

chdir paper 

you can return to the parent directory by doing 

chdir .. 

The current directory is printed by ,wd (2.7). 
Compilers which create executable images create them, by default, in the file 
a.out. for historical reasons (2.3). 

absolute pathname 

alias 

argument 

argv 

background 

base 

bg 

A pathname which begins with a'/' is absolute since it specifies the path of 
directories from the beginning of the entire directory system - called the root 
directory. Path name s which are not abBo/ute are called relative (see definition of 
relative ,athname) (1.6). 

An alias specifies a shorter or different name for a UNIX command, or a transfor­
mation on a command to be performed in the shell. The shell has a command 
alias which establishes aliases and can print their current values. The command 
unalias is used to remove aliuC8 (2.4). 

Commands in UNIX receive a list of Argument words. Thus the command 

echo abc 

consists of the command name 'echo' and three argument words 'a', 'b' and 'c'. 
The set of arguments after the command name is said to be the argument list of 
the command (1.1). 
The list of arguments to a command written in the shell language (a shell script 
or shell procedure) is stored in a variable called argv within the shell. This name 
is taken from the conventional name in the C programming language (3.4). 
Commands started without waiting for them to complete are called background 
commands (2.6). 
A filename is sometimes thought of as consisting of a base part, before any '.' 
character, and an eztension - the part after the '.'. See filename and eztension 
(1.6) 
The 6g command causes a sus,ended job to continue execution in the background 
(2.6). 

______ ~. _____________ " ___ __ ~ c __ • __ ,_~ __ ~_~_~ ___ ."_",,,,~~ •• ___ _ 



bin 

break 

breaksw 

builtin 

case 

cat 

cd 

chdir 

chsh 

cmp 

command 

command name 

·36· 

A directory containing binaries of programs and shell scripts to be executed is 
typically called a.... directory. The standard system bin directories are '/bin' 
containing the most heavily used commands and '/usr/bin~ which contains most 
other user programs. Programs developed at UC Berkeley live in '/usr/ucb', 
while locally written programs live in '/usr/local'. Games are kept in the direc­
tory '/usr/games'. You can place binaries in any directory. If you wish to exe­
cute them often, the name of the directories should be a e(#mponent of the vari­
able path. 

Break is a builtin command used to irot from loops witnin the control structure 
of the shell (3.7). 
The breakaw builtin command is ~ to exit from a .!DiU. control structure, like 
a break exits from loops (3.7). 
A command executed directly by the shell is called a builtin command. Most 
commands in UNIX are not built into the shell, but rather exist as files in bin 
directories. These commands are accessible because the directories in which they 
reside are named in the path variable. 

A eaae command is used as a label in a .witeh statement in the shell's control 
structure, similar to that of the language C. Details are given in the shell docu­
mentation 'csh(l)' (3.7). 
The eat program catenates a list of specified files on tlM: .tandard output. It is 
usually used to look at the contents of a single file on Ute terminal, to 'cat a file' 
(1.8, 2.3). 

The ed command is used to change the working direetory. With no arguments, 
ed changes your working directory to be your home directory (2.4, 2.7). 

The ehdir command is a synonym for ed. Cd is usuaRy used because it is easier 
to type. 

The chah command is used to change the shell which you use on UNIX. By 
default, you use an different version of the shell which resides in '/bin/sh'. You 
can change your shell to '/bin/csh' by doing 

chsh your-login-name /binj csh 

Thus I would do 

chsh bill jbin/csh 

It is only necessary to do this once. The next time you log in to UNIX after doing 
this command, you will be using c8h rather than the shell in '/bin/sh' (1.9). 
Cmp is a program which compares files. It is usually used on binary files, or to 
see if two files are identical (3.6). For comparing tat files the program diif, 
described in 'diff (1)' is used. 

A function performed by the system, either by the shen (a builtin eommand) or 
by a program residing in a file in a directory within the UNIX system, is called a 
eommand (1.1). 

When a command is issued, it consists of a eommand name, which is the first 
word of the command, followed by arguments. The convention on UNIX is that 
the first word of a command names the function to be performed (1.1). 

command substitution 

component 

The replacement of a command enclosed in ,., characters by the text output by 
that command is called eommutl8Ub8titution {4.3}. 

A part of a pathname between 'I' characters is called a I!.omponent of that path­
name. A variable which has multiple strings as value is said to have several 

o 

c ' "" 



( 

( 

continue 

control-

core dump 

cp 

csh 

. cshrc 

cwd 

date 

debugging 

default: 

DELETE 

detached 

diagnostic 

directory 

- 37-

component Si each string is a component of the variable. 

A builtin command which causes execution of the enclosing /oreach or while loop 
to cycle prematurely. Similar to the continue command in the programming 
language C (3.6). 

Certain special characters, called control characters, are produced by holding 
down the CONTROL key on your terminal and simultaneously pressing another 
character, much like the SHIFT key is used to produce upper case characters. Thus 
control- c is produced by holding down the CONTROL key while pressing the 'c' 
key. Usually UNIX prints an up-arrow (t) followed by the corresponding letter 
when you type a control character (e.g. 'tC' for control- c (1.8). 

When a program terminates abnormally, the system places an image of its 
current state in a file named 'core'. This core dump can be examined with the 
system debugger 'adb(l)' or 'sdb(l)' in order to determine what went wrong with 
the program (1.8). If the shell produces a message of the form 

megal instruction (core dumped) 

(where 'megal instruction' is only one of several possible messages), you should 
report this to the author of the program or a system administrator, saving the 
'core' file. 

The cp (copy) program is used to copy the contents of one file into another file. 
It is one of the most commonly used UNIX commands (1.6). 

The name of the shell program that this document describes. 

The file .cshrc in your home directory is read by each shell as it begins execution . 
It is usually used to change the setting of the variable path and to set alias 
parameters which are to take effect globally (2.1). 
The cwd variable in the shell holds the absolute pathname of the current working 
directory. It is changed by the shell whenever your current working directory 
changes and should not be changed otherwise (2.2). 

The date command prints the current date and time (1.3). 

Debugging is the process of correcting mistakes in programs and shell scripts. 
The shell has several options and variables which may be used to aid in shell 
debugging (4.4). 

The label de/ault: is used within shell switch statements, as it is in the C 
language to label the code to be executed if none of the casc labels matches the 
value switched on (3.7). 
The DElETE or RUBOUT key on the terminal normally causes an interrupt to be 
sent to the current job. :Many users change the interrupt character to be tC. 

A command that continues running in the background after you logout is said to 
be detached. 

An error message produced by a program is often referred to as a diagnostic. 
Most error messages are not written to the standard output, since that is often 
directed away from the terminal (1.3, 1.5). Error messsages are instead written to 
the diagnoBtic output which may be directed away from the terminal, but usually 
is not. Thus diagnostics will usually appear on the terminal (2.5). 
A structure which contains files. At any time you are in one particular directory 
whose names can be printed by the command pwd. The chdir command will 
change you to another directory, and make the files in that dircctory visible. The 
directory in which you are when you first login is your home directory (1.1, 2.7). 

directory stack The shell saves the names of previous working diredoneB in the directory stack 
when you change your current working directory via the pushd command. The 



dirs 

du 

echo 

else 

endif 

EOF 

escape 

/etc/passwd 

exit 

exit status 

expansion 

- 38· 

f1'redo,., .tack can be printed by using the f1ire command, which includes your 
eunent workin, «ireeto,., as the first directory name on the left (2.7). 
The f1ir. command prints the shell's f1ireeto,."tack (2.7). 
The flu command is a program (described in 'duel)') which prints the number of 
disk blocks is all directories below and including your current workin, f1,·recto,., 
(2.6). 

The ecAo command prints its arguments (1.6, 3.6). 

The dee command is part of the 'if-then-eJse..endif' control command construct 
(3.6). 

It an i' statement is ended with the word tAen, all lines following the .1 up to a 
line starting with the word endi, or e/ee are executed if the condition between 
parentheses after the if is true (3.6). 

An entl-offiJe is generated by the terminal by a control-d, and whenever a com­
mand reads to the end of a file which it has been given as input. Commands 
receiving input from a pipe receive an end-offile when the command sending 
them input completes. Most commands terminate when they receive an entl-of 
file. The shell has an option to ignore end-offile from a terminal input which 
may help you keep from logging out accidentally by typing too many control-d's 
(1.1, 1.8, 3.8). 

A character 'V used to prevent the special meaning of a metacharacter is said to 
eecape the character from its special meaning. Thus 

echo \* 
will echo the character '*' while just 

echo * 
will echo the names of the file in the current directory. In this example, \ eacape s 
'*' (1.7). There is also a non-printing character called eecape, usually labelled 
ESC or ALTMODE on terminal keyboards. Some older UNIX systems use this char­
acter to indicate that output is to be .. epended. Most systems use control-s to 
stop the output and control-q to start it. 

This file contains information about the accounts currently on the system. It 
consists of a line for each account with fields separated by':' characters (1.8). 
You can look at this file by saying 

cat /etc/passwd 

The commands fin,er and ,rep are often used to search for information in this 
file. See 'finger(l)', 'passwd(5)', and 'grep(l)' for more details. 

The ent command is used to force termination of a shell script, and is built into 
the shell (3.9). 

A command which discovers a problem may reflect this back to the command 
(such as a shell) which invoked (executed) it. It does this by returning a non-zero 
number as its ezit etatue, a status of zero being considered 'normal termination'. 
The ezit command can be used to force a shell command script to give a non-zero 
ent etatue (3.6). 

The replacement of strings in the shell input which contain metacharacters by 
other strings is referred to as the proeess of espan,ion. Thus the replacement of 
the word '*' by a sorted list of files in the current directory is a 'filename expan­
sion'. Similarly the replacement of the characters 'II' by the text of the last com­
mand is a 'history expansion'. Eqa",ion. are also referred to as .ubstitutions 
(1.6, 3.4, 4.2}. c 



( 

expressions 

extension 

fg 

fi.1ename 

- 39-

E:rpre"ionl are used in the shell to control the conditional structures used in the 
writing of shell scripts and in calculating values for these scripts. The operators 
available in shell e:rpre,aionl are those of the language C (3.5). 
Filenames often consist of a bue name and an eztenaion separated by the char­
acter '.'. By convention, groups of related files often share the same root name. 
Thus if 'prog.c' were a C program, then the object file for this program would be 
stored in 'prog.o'. Similarly a paper written with the '-me' nroff macro package 
might be stored in 'paper. me' while a formatted version of this paper might be 
kept in 'paper.out' and a list of spelling errors in 'paper. errs' (1.6). 

The job control command fg is used to run a background or .u.pended job in the 
foreground (1.8, 2.6). 

Each fi.1e in UNIX has a name consisting of up to 14 characters and not including 
the character '/' which is used in pathname building. Most filename. do not 
begin with the character '.', and contain only letters and digits with perhaps a '.' 
separating the bale portion of the filename from an eztenlion (1.6). 

filename expansion 

fiag 

foreach 

foreground 

goto 

grep 

head 

Filename ezpansion uses the metacharacters '.', '1' and 'I' and 'l' to provide a 
convenient mechanism for naming files. Using filename e:rpan"ion, it is easy to 
name all the files in the current directory, or all files which have a common root 
name. Other filename ezpanaion mechanisms use the metacharacter ,-, and allow 
files in other users' directories to be named easily (1.6, 4.2). 

Many UNIX commands accept arguments which are not the names of files or other 
users but are used to modify the action of the commands. These are referred to 
as flag options, and by convention consist of one or more letters preceded by the 
character '-' (1.2). Thus the II (list files) command has an option '-s' to list the 
sizes of files. This is specified 

ls-s 

The foreach command is used in shell scripts and at the terminal to specify 
repetition of a sequence of commands while the value of a certain shell variable 
ranges through a specified list (3.6, 4.1). 

When commands are executing in the normal way such that the shell is waiting 
Cor them to finish before prompting for another command they are said to be 
foreground jobs or running in the foreground. This is as opposed to background. 
Foreground jobs can be stopped by signals from the terminal caused by typing 
different control characters at the keyboard (1.8, 2.6). 

The shell has a command goto used in shell scripts to transfer control to a given 
label (3.7). 
The grep command searches through a list of argument files for a specified string. 
Thus 

grep bill /etc/passwd 

will print each line in the file /etc/pa88wd which contains the string 'bill'. Actu­
ally, ,rep scans Cor regular e:rprealiona in the sense oC the editors 'edell' and 
'ex(l)'. Grep stands for 'globally find regular e:rpreaaion and print' (2.4). 

The head command prints the first Cew lines of one or more files. If you have a 
bunch oC files containing text which you are wondering about it is sometimes use­
ful to run head with these files as arguments. This will usually show enough of 
what is in these files to let you decide which you are interested in (1.5). 
Head is also used to describe the part of a pathname before and including the 
last '/' character. The tail of a pathname is the part after the last '/'. The ':h' 
and ':t' modifiers allow the head or tail of a pathname stored in a shell variable 



history 

home directory 

if 

ignoreeof 

input 

interrupt 

job 

job control 

job number 

jobs 

kill 

to be used (3.6). 

The Auto" mechanism of the shell allows previous commands to be repeated, 
possibly after modification to correct typing mistakes or to change the meaning of 
the command. The shell has a Ai"o,., lut where these commands are kept, and a 
Auto,., variable which controls how large this list is (2.3). 

Each user has a Aome 4ireeto,." which is given in your entry in the password file, 
I etcl ,IlHwd. This is the directory which you are placed in when you first login. 
The c4 or c/ulir command with no arguments takes you back to this directory, 
whose name is recorded in the shell variable Aome. You can also access the Aome 
4ireetorie, of other users in Corming filenames using a filename e:q:Jan,ion nota­
tion and the character ,-, (1.6). 

A conditional command within the shell, the il command is used in shell com­
mand scripts to make decisions about what course oC action to take next (3.6). 

Normally, your shell will exit, printing 'logout' if you type a eontrol-d at a 
prompt of '% '. This is the way you usually log oft' the system. You can ,et the 
ignoreeof variable if you wish in your .login file and then use the command 
logout to logout. This is useful if you sometimes accidentally type too many 
control-d characters, logging yourself oft' (2.2). 
Many commands on UNIX take information from the terminal or from files which 
they then act on. This inCormation is called input. Commands normally read 
for in,ut from their .tandard input which is, by default, the terminal. This 8tan­
dard input can be redirected from a file using a shell metanotation with the char­
acter '<'. Many commands will also read Crom a file specified as argument. 
Commands placed in ,i,eline, will read Crom the output of the previous com­
mand in the ,ipeline. The leftmost command in a pipeline reads Crom the termi­
nal if you neither redirect its in,ut nor give it a filename to use as .tandard 
input. Special mechanisms exist for supplying input to commands in shell scripts 
(1.5, 3.8). 

An interrupt is a signal to a program that is generated by hitting the RUBOUT or 
DELETE key (although users can and often do change the interrupt character, usu­
ally to tC). It causes most programs to stop execution. Certain programs, such 
as the shell and the editors, handle an interrupt in special ways, usually by stop­
ping what they are doing and prompting for another command. While the shell 
is executing another command and waiting for it to finish, the shell does not 
listen to interrupt8. The shell often wakes up when you hit interrupt because 
many commands die when they receive an interrupt (1.8, 3.9). 

One or more commands typed on the same input line separated by ,t or 'j' char­
acters are run together and are called a job. Simple commands run by them­
selves without any ,t or 'j' characters are the simplest job8. Job8 are classified as 
foreground, background. or ••• pended (2.6). 

The builtin Cunctions that control the execution oC jobs are called job control 
commands. These are bg, Ig, .top, Inll (2.6). 

When each job is started it is assigned a small number called a job number which 
is printed next to the job in the output of the job8 command. This number, pre­
ceded by a '%' character, can be used as an argument to job control commands 
to indicate a specific job (2.6). 
The job. command prints a table showing jobs that are either running in the 
background or are .u,pended (2.6). 

A command which sends a signal to a job causing it to terminate (2.6). 

-.~ .. ---.- .----

c 



( 

.login 

login shell 

logout 

.logout 

lpr 

Is 

mail 

make 

makefile 

manual 

metacharacter 

mkdir 

modifier 

more 

- 41-

The file .Iogin in your home directory is read by the shell each time you login to 
UNIX and the commands there are executed. There are a number of commands 
which are usefully placed here, especially .et commands to the shell itselC (2.1). 

The shell that is started on your terminal when you login is called your login 
.hell. It is different from other shells which you may run (e.g. on shell scripts) in 
that it reads the .login file before reading commands from the terminal and it 
reads the .logout file after you logout (2.1). 

The logout command causes a login shell to exit. Normally, a login shell will exit 
when you hit control-d generating an end-offiJe, but if you have set ignoreeoj in 
you .Iogin file then this will not work and you must use logout to log off the UNIX 
system (2.8) . 
When you log off of UNIX the shell will execute commands from the file .Iogout in 
your home directory after it prints 'logout'. 

The command Ipr is the line printer daemon. The standard input of Ipr spooled 
and printed on the UNIX line printer. You can also give Ipr a list of filenames as 
arguments to be printed. It is most common to use Ipr as the last component of 
a pipeline (2.3). 

The I. (list files) command is one of the most commonly used UNIX commands. 
With no argument filenames it prints the names of the files in the current direc­
tory. It has a number of useful flag arguments, and can also be given the names 
of directories as arguments, in which case it lists the names of the files in these 
directories (1.2). 

The mail program is used to send and receive messages from other UNIX users 
(1.1, 2.1). 

The make command is used to maintain one or more related files and to organize 
functions to be performed on these files. In many ways make is easier to use, and 
more helpful than shell command scripts (3.2). 

The file containing commands for make is called makefiJe (3.2). 

The manual often referred to is the 'UNIX programmer's manual'. It contains a 
number of sections and a description of each UNIX program. An online version of 
the manual is accessible through the man command. Its documentation can be 
obtained online via 

man man 

Many characters which are neither letters nor digits have special meaning either 
to the shell or to UNIX. These characters are called metacharacter.. H it is neces­
sary to place these characters in arguments to commands without them having 
their special meaning then they must be quoted. An example of a metacharacter 
is the character' >' which is used to indicate placement of output into a file. For 
the purposes of the Ai.tory mechanism, most unquoted metacharacter. form 
separate words (1.4). The appendix to this user's manual lists the metacharacters 
in groups by their function. 

The mkdir command is used to create a new directory. 

Substitutions with the hi8tory mechanism, keyed by the character 'I' or of vari­
ables using the metacharacter 'S', are often subjected to modifications, indicated 
by placing the character ';' after the substitution and following this with the 
modifier itself. The command .uhtitution mechanism can also be used to per­
form modification in a similar way, but this notation is less clear (3.6). 

The program more writes a file on your terminal allowing you to control how 
much text is displayed at a time. More can move through the file screenful by 



noclobber 

noglob 

notify 

onintr 

output 

pushd 

path 

pathname 

- 42-

screenful, line by line, s~b forward for a string, or start again at the beginning 
of the file. It is generally the easiest way of viewing a file (1.8). 

The shell has a variable noclol1ber which may be set in the file .login to prevent 
accidental destruction of files by the '>' output redirection metasyntax of the 
shell (2.2, 2.5). 

The shell variable no,lob is set to suppress the filename "1'an"on of arguments 
containing the metacharacters '-', '*', '1', 'l' and 'l' (3.6). 

The noti" command tells the shell-to report on the termination of a specific 
background ]'ob at the exact time it occurs as opposed to waiting until just before 
the next prompt to report the termination. The notify variable, if set, causes the 
shell to always report the termination of 6ackground jobs exactly when they 
occur (2.6). 

The onintr command is built into the shell and is used to control the action of a 
shell command script when an intcrrvpt signal is received (3.9). 

Many commands in UNIX result in some lines of text which are called their out­
put. This output is usually placed on what is known as the ,tandard output 
which is normally connected to the user's terminal. The shell has a syntax using 
the metacharacter '>' for redirecting the ,tandarcl output of a command to a file 
(1.3). Using the pipc mechanism and the metacharacter 'r it is also possible for 
the ,tanda,d output of one command to become the ,tanda,d input of another 
command (1.5). Certain commands such as the line printer daemon p do not 
place their results on the ,tandard output but rather in more useful places such as 
on the line printer {2.3}. Similarly the write command places its output on 
another user's terminal rather than its ,tanda,d output (2.3). Commands also 
have a cliagno,tic output where they write their error messages. Normally these 
go to the terminal even if the ,tandard output has been sent to a file or another 
command, but it is possible to direct error diagnostics along with stanclard output 
using a special metanotation (2.5). 

The pushcl command, which means 'push directory', changes the shell's working 
directory and also remembers the current working directory before the change is 
made, allowing you to return to the same directory via the popd command later 
without retyping its name (2.7). 

The shell has a variable path which gives the names of the directories in which it 
searches for the commands which it is given. It always checks first to see if the 
command it is given is built into the shell. If it is, then it need not search for the 
command as it can do it internally. If the command is not builtin, then the shell 
searches for a file with the name given in each of the directories in the path vari­
able, left to right. Since the normal definition of the path variable is 

path (. lusr/ucb /bin /usr/bin) 

the shell normally looks in the current directory, and then in the standard system 
directories '/usr/ucb', '/bin' and '/usr/bin' for the named command (2.2). If the 
command cannot be found the shell will print an error diagnostic. Scripts of shell 
commands will be executed using another shell to interpret them if they have 
'execute' permission set. This is normally true because a command of the form 

chmod 755 script 

was executed to turn this execute permission on (3.3). If you add new commands 
to a directory in the path, you should issue the command reha,h (2.2). 

A list of names, separated by 'I' characters, forms a pathname. Each component, 
between successive 'I' characters, names a directory in which the next component 
file resides. Pathnames which begin with the character 'I' are interpreted relative 

o 

c 



( 

( 

pipeline 

popd 

port 

pr 

printenv 

process 

- 43-

to the root directory in the filesystem. Other pathnamu are interpreted relative 
to the current directory as reported by pwd. The last component of a ,athname 
may name a directory, but usually names a file. 

A group of commands which are connected together, the .tandard output of each 
connected to the .tandard input of the next, is called a pipeline. The pipe 
mechanism used to connect these commands is indicated by the shell metacharac­
ter 'f (1.5, 2.3). 

The popd command changes the shell's working directoFJ to the directory you 
most recently left using the pu.hd command. It returns to the directory without 
having to type its name, forgetting the name of the current working directoFJ 
before doing 80 (2.7). 

The part of a computer system to which each terminal is connected is called a 
port. Usually the system has a fixed number of port., 80me of which are con­
nected to telephone lines for dial-up access, and 80me of which are permanently 
wired directly to specific terminals. 

The pr command is used to prepare listings of the contents of files with headers 
giving the name of the file and the date and time at which the file was last 
modified (2.3). 

The printentJ command is used to print the current setting of variables in the 
environment (2.8). 
An instance of a running program is called a proce •• (2.6). UNIX assigns each 
proce •• a unique number when it is started - called the proce •• number. Proce •• 
number. can be used to stop individual proce88e. using the kill or .top com­
mands when the proce •• e. are part of a detached background job. 

program Usually synonymous with comma"d; a binary file or shell command script which 
performs a useful function is often called a program. 

programmer's manuals manual'u>(450u+1n) .br 

prompt 

ps 

pwd 

quit 

quotation 

redirection 

Also referred to as the manual. See the glossary entry for 'manual'. 

Many programs will print a prompt on the terminal when they expect input. 
Thus the editor 'ex(l)' will print a ':' when it expects input. The shell prompt8 
for input with '% ' and occasionally with '? ' when reading commands from the 
terminal (1.1). The shell has a variable prompt which may be set to a different 
value to change the shell's main prompt. This is mostly used when debugging 
the shell (2.8). 

The p8 command is used to show the processes you are currently running. Each 
process is shown with its unique process number, an indication of the terminal 
name it is attached to, an indication of the state of the process (whether it is run­
ning, stopped, awaiting 80me event (sleeping), and whether it is swapped out), 
and the amount of CPU time it has used 80 far. The command is identified by 
printing some of the words used when it was invoked (2.6). Shells, such as the 
c.h you use to run the p8 command, are not normally shown in the output. 

The pwd command prints the full pathname of the current working directoFJ. 
The dir. builtin command is usually a better and faster choice. 

The quit signal, generated by a control-\, is used to terminate programs which 
are behaving unreasonably. It normally produces a core image file (1.8). 

The process by which metacharacters are prevented their special meaning, usually 
by using the character" in pairs, or by using the character '\', is referred to as 
quotation (1.7). 

The routing of input or output from or to a file is known as redirection of input 
or output (1.3). 



rehash 

- 44-

The reAa.A command tells the shell to rebuild its internal table of which com­
mands are found in which direetories in your ,atA. This is necessary when a new 
program is installed in one of these directories (2.8). 

relative pathname 

repeat 

root 

RUBOUT 

scratch file 

script 

set 

setenv 

shell 

shell script 

signal 

sort 

source 

A ,atAname which does not begin with a '/' is called a re/atit)e ,atAname since it 
is interpreted relative to the current working directo,.,. The first com,onent of 
such a ,atAname refers to some file or directory in the working directo,." and 
subsequent com,onenu between 'I' characters refer to directories below the work­
ing directo,.,. Pathname. that are not relative are called d.ol.te ,athname8 
(1.6). . 

The repeat command iterates another command a specified number of times. 

The directory that is at the top of the entire directory structure is called the root 
directory since it is the 'root' of the entire tree structure of directories. The name 
used in ,athnamu to indicate the root is 'I'. PatAname. starting with 'I' are 
said to be abBol.te since they start at the root directory. Root is also used as 
the part of a ,athname that is left after removing the ezten.ion. See filename 
for a further explanation (1.6). 
The RUBOUT or DELETE key sends an interrupt to the current job. Most interac­
tive commands return to their command level upon receipt of an interrupt, while 
non-interactive commands usually terminate, returning control to the shell. Users 
often change interrupt to be generated by tC rather than DELETE by using the 
.tty command. 

Files whose names begin with a '#' are referred to as .cratcA file., since they are 
automatically removed by the system after a couple of days of non-use, or more 
frequently if disk space becomes tight (1.3). 
Sequences of shell commands placed in a file are called shell command .Cri,t8. It 
is often possible to perform simple tasks using these 'Cript8 without writing a 
program in a language such as C, by using the shell to selectively run other pro­
grams (3.3, 3.10). 
The builtin 8et command is used to assign new values to shell variables and to 
show the values of the current variables. Many shell variables have special mean­
ing to the shell itself. Thus by using the 8et command the behavior of the shell 
can be affected (2.1). 

Variables in the environment 'environ(5)' can be changed by using the 8etenv 
builtin command (2.8). The printenv command can be used to print the value of 
the variables in the environment. 

A .hell is a command language interpreter. It is possible to write and run your 
own .hell, as 8hell8 are no different than any other programs as far as the system 
is concerned. This manual deals with the details of one particular 8hell, called 
c.h. 

See .cript (3.3, 3.10). 
A rignal in UNIX is a short message that is sent to a running program which 
causes something to happen to that process. Signal8 are sent either by typing 
special control characters on the keyboard or by using the kill or .top commands 
(1.8,2.6). 

The .ort program sorts a sequence of lines in ways that can be controlled by 
argument flag8 (1.5). 
The 80urce command causes the shell to read commands from a specified file. It 
is most useful for reading files such as .c8Arc after changing them (2.8). 

c 



( 

special character 

standard 

status 

stop 

string 

stty 

substitution 

suspended 

switch 

termination 

then 

time 

tset 

tty 

unalias 

UNIX 

unset 

- 45-

See metacharactera and the appendix to this manual. 

We refer often to the .tandard inp.t and atandard o.tput of commands. See 
input and output (1.3, 3.8). 

A command normally returns a atatu. when it finishes. By convention a .tatu. 
of zero indicates that the command succeeded. Commands may return non-zero 
.tatu. to indicate that some abnormal event has occurred. The shell variable 
atat.. is set to the atatu returned by the last command. It is most useful in 
shell commmand scripts (3.6). 
The .top command causes a background job to become ",.pended (2.6). 

A sequential group of characters taken together is called a atring. String. can 
contain any printable characters (2.2). 

The att1/ program changes certain parameters inside UNIX which determine how 
your terminal is handled. See 'stty(l)' for a complete description (2.6). 

The shell implements a number of ad.titutiona where sequences indicated by 
metacharacters are replaced by other sequences. Notable examples of this are his­
tory .ub.titution keyed by the metacharacter 'I' and variable .ubBtitution indi­
cated by '$'. We also refer to .ub.titution. as ezpan.ions (3.4). 
A job becomes au.pended after a STOP signal is sent to it, either by typing a 
control-z at the terminal (for loreground jobs) or by using the atop command 
(for background jobs). When au.pended, a job temporarily stops running until it 
is restarted by either the 19 or bg command (2.6). 

The .witch command of the shell allows the shell to select one of a number of 
sequences of commands based on an argument string. It is similar to the .witch 
statement in the language C (3.7). 
When a command which is being executed finishes we say it undergoes termina­
tion or terminate •. Commands normally terminate when they read an end-of-file 
from their .tandard input. It is also possible to terminate commands by sending 
them an interrupt or quit signal (1.8). The kill program terminates specified jobs 
(2.6). 

The then command is part of the shell's 'if-then-else-endif' control construct used 
in command scripts, (3.6). 
The time command can be used to measure the amount of CPU and real time con­
sumed by a specified command as well as the amount of disk i/o, memory util­
ized, and number of page faults and swaps taken by the command (2.1, 2.8). 

The t.et program is used to set standard erase and kill characters and to tell the 
system what kind of terminal you are using. It is often invoked in a .login file 
(2.1). 

The word tt1/ is a historical abbreviation for 'teletype' which is frequently used in 
UNIX to indicate the port to which a given terminal is connected. The tt1/ com­
mand will print the name of the tt1/ or port to which your terminal is presently 
connected. 

The .nalia. command removes aliases (2.8). 

UNIX is an operating system on which c.h runs. UNIX provides facilities which 
allow cah to invoke other programs such as editors and text formatters which you 
may wish to use. 

The un.et command removes the definitions of shell variables (2.2, 2.8). 

variable expansion 
See fHlriab/e. and ezpan.ion (2.2, 3.4). 



variables 

verbose 

wc 

while 

word 

Yarid/e. in eaA hold one or more strings as value. The most common use of 
varid/e, is in controlling the behavior of the· shell. See path, Roclobber, and 
i,Rorceol for examples. Yaridlc, such as ar,v are also used in writing shell pro­
grams (shell command scripts) (2.2). 
The tJerboBe shell variable can be set to cause commands to be echoed after they 
are history expanded. This is often useful in debugging shell scripts. The ver-
bOBe variable is set by the shell's -v command line option (3.10). 

The toe program calculates the number of characters, words, and lines in the files 
whose names are given as arguments (2.6). 
The tohile builtin control construct is used in shell command scripts (3.7). 
A sequence of characters which forms an argument to a command is called a 
word. Many characters which are neither letters, digits, '-" '.t nor 'I' form 
wor" all by themselves even if they are not surrounded by blanks. Any sequence 
of characters may be made into a toord by surrounding it with ,,, characters 
except for the characters'" and 'P which require special treatment (1.1). This 
process of placing special characters in word, without their special meaning is 
called quoting. 

working directory 

write 

At any given time you are in one particular directory, called your working direc­
t01'1/ . This directory's name is printed by the ,wd command and the files listed 
by I, are the ones in this directory. You can change working directon·cB using 
ehdir. 

The writc command is used to communicate with other users who are logged in 
toUNlX. 

c 



(' 

( 

o 

An Introduction to Display Editing with Vi 

William J01l 

Rrw.rd lor IIrrriDn. 8.$/1.18 t" 
Mark Horton 

Computer Science Division 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, Ca. 94720 

ABSTRACT 

Vi (visual) is a display oriented interactive text editor. When using vi the 
screen of your terminal acts as a window into the file which you are editing. 
Changes which you make to the file are reflected in what you see. 

Using vi you can insert new text any place in the file quite easily. Most of 
the commands to vi move the cursor around in the file. There are commands to 
move the cursor forward and backward in units of characters, words, sent.ences 
and paragraphs. A small set of operators, like d for delete and e for change, are 
combined with the motion commands to form operations such as delete word or 
change paragraph, in a simple and natural way. This regularity and the 
mnemonic assignment of commands to keys makes the editor command set easy to 
remember and to use. 

Vi will work on a large number of display terminals, and new terminals are 
easily driven a.f'ter editing a terminal description file. While it is advantageous to 
have an intelligent terminal which can locally insert and delete lines and charac­
ters from the display, the editor will function quite well on dumb t.erminals over 
slow phone lines. The editor makes allowance for the low bandwidth in these 
situations and uses smaller window sizes and different display updating algorithms 
to make best use of the limited speed available. 

It is also possible to use the command set of vi on hardcopy terminals, 
storage tubes and "glass tty's" using a one line editing window; thus vi'3 com­
mand set is available on all terminals. The full -command set of the more tradi­
tional, line oriented editor ex is available within vi; it is quite simple to switch 
between the two modes of editing. 

September 15, 1986 





(, An Introduction to Display Editing with Vi 

William Joy 

Relli,ed/(Jr flerN'" 8.5/t.18 6, 
Mark Horton 

Computer Science Division 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, Ca. 94720 

1. Getting started 

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be 
running vi on a file you are familiar with while you are reading this. The first part of this docu­
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are 
presented in section 6, and some nitty-gritty details of how the editor functions are saved for sec­
tion 7 to avoid cluttering the presentation here. 

There is also a short appendix here, which gives for each character the special meanings 
which this character has in vi. Attached to this document should be a quick reference card. This 
card summarizes the commands of vi in a very compact format. You should have the card handy 
while you are learning vi. 

1.1. Specifying terminal type 

Before you can start vi you must tell the system what kind of terminal you are using. Here 
is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear here, you 
should consult with one of the staff members on your system to find out the code for your termi­
nal. If your terminal does not have a code, one can be assigned and a description for the terminal 
can be created. 

Code 
2621 
2645 
act4 
act5 
adm3a 
adm31 
clOO 
dm1520 
dm2500 
dm3025 
fox 
hl500 
h19 
ilOO 
mime 

Full name 
Hewlett-Packard 2621A/P 
Hewlett-Packard 264x 
Microterm ACT-IV 
Microterm ACT-V 
Lear Siegler ADM-3a 
Lear Siegler ADM-31 
Human Design Concept 100 
Datamedia 1520 
Datamedia 2500 
Datamedia 3025 
Perkin-Elmer Fox 
Hazeltine 1500 
Heathkit h19 
Infoton 100 
Imitating a smart act4 

Type 
Intelligent 
Intelligent 
Dumb 
Dumb 
Dumb 
Intelligent 
Intelligent 
Dumb 
Intelligent 
Intelligent 
Dumb 
Intelligent 
Intelligent 
Intelligent 
Intelligent 

The financial support of an IBM Graduate Fellowship and tbe National Science Foundation under grantS 
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged. 



tl061 
vt52 

-2-

Teleray 1061 
DeeVT-52 

Intelligent 
Dumb 

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by 
the system for this terminal is '2621'. In this case you can use one of the following commands to 
tell the system the type or your terminal: 

% setenv TERM 2621 

This command works with the shell ta1& on both version 6 and 7 systems. If you are using the 
standard version 7 shell then you should give the commands 

STERM=2621 
S export TERM 

If you want to arrange to have your terminal type set up automatically when you log in, you 
can use the taet program. If you dial in on a mime, but often use hardwired ports, a typical line 
for your .login file (ir you use csh) would be 

setenv TERM 'teet - -d mime' 

or for your .profile file (if you use sh) 

TERM= 'teet - -d mime' 

Taet knows which terminals are hardwired to each port and needs only to be told that when you 
dial in you are probably on a mime. Taet is usually used to change the erase and kill characters, 
too. 

1.2. Editing a file 

After telling the system which kind of terminal you have, you should make a copy of a file 
you are familiar with, and run vi on this file, giving the command 

% vi name 

replacing name with the name of the copy file you just created. The screen should clear and the 
text of your file should appear on the screen. If something else happens refer to the footnote.; 

1.S. The editor's copy: the buffer 

The editor does not directly modify the file which you are editing. Rather, the editor makes a 
copy of this file, in a place called the buffer, and remembers the file's name. You do not affect the 
contents of the file unless and until you write the changes you make back into the original file. 

1.4. Notational conventions 

In our examples, input which must be typed as is will be presented in bold face. Text which 
should be replaced with appropriate input will be given in italica. We will represent special charac­
ters in SMALL CAPITALS. 

* If' you gave the system an incorrect terminal type code then the editor may have just made a mess out or your 
Bcreen. This happens when it sends control codes for one kind of terminal to some ot.her kind of terminal. In 
this case hit the keys tq (colon and the q key) and then hit theJUmJRN key. This should get you back to the 
command level interpreter. Figure out what IOU did wrong (ask someone else if necessary) and try again. 

Another thing which can go wrong is that you typed the wrong file Dame and the editor just printed an er­
ror diagnostic. In this case you should Collow the aboye procedure for getting out or t.h.e editor, and try again 
this time spelling the Ille name correctly. 

If'the editor doesn't leem to respond to the commands which you t.ype here, try sendiua an iDterrupt to it 
by hitting the t1!L or RUB key on your t.ermiDal, and then hitting the Iq command again rollowed by a carriage 
return. 

o 

o 



( 

-3-

1.5. Arrow ke)"S 

The editor command set is independent of the terminal you are using. On most terminals 
with cursor positioning keys, these keys will also work within the editor. Ir you don't have cursor 
positioning keys, or even it you do, you can use the h j k and 1 keys as cursor positioning keys 
(these are labelled with arrows on an adm9a). It 

(Particular note for the HP2621: on this terminal the function keys must be ,hi/ted (ick) to 
send to the machine, otherwise they only act locally. Unshitted use will leave the cursor positioned 
incorrectly. ) 

1.8. Special characters: ESC, CR and DEL 

Several of these special characters are very important, so be sure to find them right now. 
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left comer of 
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate that it is 
in a quiescent state.* Partially formed commands are cancelled by ESC, and when you insert text in 
the file you end the text insertion with ESC. This key is a fairly harmless one to hit, so you can 
just hit it it you don't know what is going on until the editor rings the bell. 

The CR or RETURN key is important because it is used to terminate certain commands. It is 
usually at the right side of the keyboard, and is the same command used at the end of each shell 
command. 

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the edi­
tor to stop what it is doing. It is a forceful way of making the editor listen to you, or to return it 
to the quiescent state if you don't know or don't like what is going on. Try hitting the 'I' key on 
your terminal. This key is used when you want to specify a string to be searched for. The cursor 
should now be positioned at the bottom line of the terminal after a 'I' printed as a prompt. You 
can get the cursor back to the current position by hitting the DEL or RUB key; try this now.· From 
now on we will simply refer to hitting the DEL or RUB key as "sending an interrupt. " •• 

The editor often echoes your commands on the last line of the terminal. If the cursor is on 
the first position of this last line, then the editor is performing a computation, such as computing a 
new position in the file af'ter a search or running a command to reformat part of the buffer. When 
this is happening you can stop the editor by sending an interrupt. 

1.7. Getting out of the editor 

After you have worked with this introduction for a while, and you wish to do something else, 
you can give the command ZZ to the editor. This will write the contents of the editor's buffer 
back into the file you are editing, if you made any changes, and then quit from the editor. You 
can also end an editor session by giving the command :q!CR;t this is a dangerous but occasionally 
essential command which ends the editor session and discards all your changes. You need to know 
about this command in case you change the editor's copy of a file you wish only to look at. Be 
very careful not to give this command when you really want to save the changes you have made. 

2. Moving aroUDd in the file 

• JiB we will see later, h moves back to the lel't (like control·h which is a backspace), i moves down (in the same 
column), k moves up (in the same column), and I mons to the right. * On smart terminals where it is possible, the editor will quietl1llash the Krten rather than ringing the bell. 
• Backspacing over tJle 'I' will also canl:el the aearch . 
•• On some systems, this interruptibility eomes at. a price: 1011 cannot type Mead when the editor is computing 
with the cursor on the bottom line. 
t All commands which read from the last display line can also be terminat.ed with & ESC as well as an CR. 



-4-

2.1. Scrolling and paging 

The editor has a number of commands for moving around in the file. The most useful of 
these is generated by hitting the control and D keys at the same time, a control-D or 'AD'. We 
will use this two character notation for referring to these control keys from now on. You may 
have a key labelled ,A, on your terminal. This key will be represented as '1' in this document; ,A, 
is exclusively used as part of the '''x' notation for control characters.* 

AJs you know now if you tried hitting AD, this command serolls down in the file. The D thus 
stands for down. Many editor commands are mnemonic and this makes them much easier to 
remember. For instance the command to scroll up is "U. Many dumb terminals can't scroll up at 
all, in which case hitting "U clears the screen and refreshes it with a line which is farther back in 
the file at the top. 

IC you want to see more of the file below where you are, you can bit AE to expose one more 
line at the bottom of the screen, leaving the cursor where it is. ** The command Ay (which is 
hopelessly non-mnemonic, but next to "U on the keyboard) exposes one more line at the top of the 
screen. 

There are other ways to move around in the file; the keys AF and "B * move forward and 
backward a page, keeping a couple of lines of continuity between screens so that it is possible to 
read through a file using these rather than AD and AU if you wish. 

Notice the difference between scrolling and paging. IC you are trying to read the text in a file, 
hitting "F to move forward a page will leave you only a little context to look back at. Scrolling 
on the other hand leaves more context, and happens more smoothly. You can continue to read the 
text as scrolling is taking place. 

2.2. Searching, goto, and previous context 

Another way to position yourself in the file is by giving the editor a string to search for. 
Type the character I followed by a string of characters terminated by CR. The editor will position 
the cursor at the next occurrence of this string. Try hitting n to then go to the next occurrence of 
this string. The character? will search backwards from where you are, and is otherwise like I.t 

IC the search string you give the editor is not present in the file the editor will print a diag­
nostic on the last line of the screen, and the cursor will be returned to its initial position. 

IC you wish the search to match only at the beginning of a line, begin the search string with 
an t. To match only at the end of a line, end the search string with a $. Thus Itsearc:hcR will 
search for the word 'search' at the beginning of a line, and 11astScR searches for the word 'last' at 
the end of a line. * 

The command G, when preceded by a number will position the cursor at that line in the file. 
Thus IG will move the cursor to the first line of the file. If you give G no count, then it moves to 
the end of the file. 

If you are near the end of the file, and the last line is not at the bottom of the screen, the 
editor will place only the character ,-, on each remaining line. This indicates that the last line in 
the file is on the screen; that is, the ,-, lines are past the end of the file. 

t If' you don't have a , •• key on your terminal then there is probably a key labelled 't'j in any eaae these charac­
ters are one and the same. 
tt Version 3 only. 
t Not available in all v2 editors due to memory constraints. 
t These searches will normally wrap around the end or the file. and thus find the string even ir it is not on a line 
in the direction you search provided it is anywhere else in the file. You can disable this wraparound in scans by 
giving the command lie DowrapscaDOt, or more briefty de DOwseR. 
.Actually. the string you give to search ror here can be a n,u1ar eqre.fton in the stnSe or the editors e~(l} and 
e4(1}. If' you don't wish to learn about this yet, you can disable this more general racility by doing 
De nomaglcal; by putting this comma.nd in EXINIT in your environment, you can have this always be in effect 
(more about EXINIT later.) 

o 

c 



(-

( 

-5-

You can find out the state of the file you are editing by typing a A G. The editor will show 
you the name of the file you are editing, the number of the current line, the number of lines in the 
buffer, and the percentage of the way through the buffer which you are. Try doing this now, and 
remember the number of the line you are on. Give a G command to get to the end and then 
another G command to get back where you were. 

You can also get back to a previous position by using the command" (two back quotes). 
This is often more convenient than G because it requires no advance preparation. Try giving a G 
or a search with / or l' and then a " to get back to where you were. If you accidentally hit n or 
any command which moves you far away from a context of interest, you can quickly get back by 
hitting ". 

2.S. Moving around on the saeen 

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4 or 
5 keys with arrows going in each direction) try them and convince yourself that they work. (On 
certain terminals using v2 editors, they won't.) If you don't have working arrow keys, you can 
always use h, j, k, and I. Experienced users of vi prefer these keys to arrow keys, because they are 
usually right underneath their fingers. 

Hit the + key. Each time you do, notice that the cursor advances to the next line in the file, 
at the first non-white position on the line. The - key is like + but goes the other way. 

These are very common keys for moving up and down lines in the file. Notice that if you go 
off the bottom or top with these keys then the screen will scroll down (and up if possible) to bring 
a line at a time into view. The RETURN key has the same effect as the + key. 

Vi also has commands to take you to the top, middle and bottom of the screen. B will take 
you to the top (home) line on the screen. Try preceding it with a number as in SH. This will take 
you to the third line on the screen. Many vi commands take preceding numbers and do interesting 
things with them. Try M, which takes you to the middle line on the screen, and L, which takes 
you to the last line on the screen. L also takes counts, thus 5L will take you to the fifth line from 
the bottom. 

2.4. Moving within a line 

Now try picking a word on some line on the screen, not the first word on the line. move the 
cursor using RETURN and - to be on the line where the word is. Try hitting the w key. This will 
advance the cursor to the next word on the line. Try hitting the b key to back up words in the 
line. Also try the e key which advances you to the end of the current word rather than to the 
beginning of the next word. Also try SPACE (the space bar) which moves right one character and 
the BS (backspace or AH) key which moves left one character. The key h works as AH does and is 
useful if you don't have a BS key. (Also, as noted just above, I will move to the right.) 

If the line had punctuation in it JfPU may have noticed that that the wand b keys stopped 
at each group of punctuation. You can also go back and forwards words without stopping at 
punctuation by using W and B rather than the lower case equivalents. Think of these as bigger 
words. Try these on a few lines with punctuation to see how they differ from the lower case w and 
b. 

The word keys wrap around the end of line, rather than stopping at the end. Try moving to 
a word on a line below where you are by repeatedly hitting w. 

2.5. Summary 

SPACE 

"B 
"D 
AE 
"F 

advance the cursor one position 
backwards to previous page 
scrolls down in the file 
exposes another line at the bottom (v3) 
forward to next page 



-6-

"G tell what is going on 
"H backspace the cursor 
"N next line, same column 
"P previous line, same column 
AU scrolls up in the file 
Ay exposes another line at the top (v3) 
+ next line, at the beginning 

previous line, at the beginning 
/ scan for a following string forwards 
! scan backwards 
B back a word, ignoring punctuation 
G go to specified line, last default 
H home screen line 
M middle screen line 
L last screen line 
W forward a word, ignoring punctuation 
b back a word 
e end of current word 
n scan for next instance of / or ! pattern 
w word after this word 

2.6. View * 
H you want to use the editor to look at a file, rather than to make changes, invoke it as view 

instead of vi. This will set the readonlll option which will prevent you from accidently overwrit­
ing the file. 

3. Making simple changes 

3.1. Inserting 

One of the most useful commands is the i (insert) command. After you type i, everything 
you type until you hit ESC is inserted into the file. Try this now; position yourself to some word 
in the file and try inserting text before this word. H you are on an dumb terminal it will seem, for 
a minute, that some of the characters in your line have been overwritten, but they will reappear 
when you hit ESC. 

Now try finding a word which can, but does not, end in an's'. Position yourself at this 
word and type e (move to end of word), then a for append and then 'sESC' to terminate the tex­
tual insert. This sequence of commands can be used to easily pluralize a word. 

Try inserting and appending a few times to make sure you understand how this works; i 
placing text to the left of the cursor, a to the right. 

It is often the case that you want to add new lines to the file you are editing, before or after 
some specific line in the file. Find a line where this makes sense and then give the command 0 to 
create a new line after the line you are on, or the command 0 to create a new line before the line 
you are on. After you create a new line in this way, text you type up to an ESC is inserted on the 
new line. 

Many related editor commands are invoked by the same letter key and differ only in that one 
is given by a lower case key and the other is given by an upper case key. In these cases, the upper 
case key often differs from the lower case key in its sense of direction, with the upper case key 
working backward and/or up, while the lower case key moves forward and/or down. 

t Not availa.ble in all v2 editors due to memory constraints. 

0 . .. \ 

o 



("--,,', 

/ 

( 

c 

-7-

Whenever you are typing in text, you can give many lines of input or just a few characters. 
To type in more than one line of text, hit a RETURN at the middle of your input. A new line will 
be created for text, and you can continue to type. If you are on a slow and dumb terminal the edi­
tor may choose to wait to redraw the tail of the screen, and will let you type over the existing 
screen lines. This avoids the lengthy delay which would occur if the editor attempted to keep the 
tail of the screen always up to date. The tail of the screen will be fixed up, and the missing lines 
will reappear, when you hit ESC. 

While you are inserting new text, you can use the characters you normally use at the system 
command level (usually ·H or #) to backspace over the last character which you typed, and the 
character which you use to kill input lines (usually @, ·X, or ·U) to erase the input you have 
typed on the current line.t The character ·W will erase a whole word and leave you after the space 
alter the previous word; it is useful for quickly backing up in an insert. 

Notice that when you backspace during an insertion the characters you backspace over are 
not erased; the cursor moves backwards, and the characters remain on the display. This is often 
useful if you are planning to type in something similar. In any case the characters disappear when 
when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a again. 

Notice also that you can't erase characters which you didn't insert, and that you can't back­
space around the end of a line. If you need to back up to the previous line to make a correction, 
just hit ESC and move the cursor back to the previous line. After making the correction you can 
return to where you were and use the insert or append command again. 

3.2. Making small corrections 

You can make small corrections in existing text quite easily. Find a single character which is 
wrong or just pick any character. Use the arrow keys to find the character, or get near the charac­
ter with the word motion keys and then either backspace (hit the BS key or ·H or even just h) or 
SPACE (using the space bar) until the cursor is on the character which is wrong. If the character is 
not needed then hit the x key; this deletes the character from the file. It is analogous to the way 
you x out characters when you make mistakes on a typewriter (except it's not as messy). 

If the character is incorrect, you can replace it with the correct character by giving the com­
mand re, where c is replaced by the correct character. Finally if the character which is incorrect 
should be replaced by more than one character, give the command s which substitutes a string of 
characters, ending with ESC, for it. If there are a small number of characters which are wrong you 
can precede s with a count of the number of characters to be replaced. Counts are also useful with 
x to specify the number of characters to be deleted. 

3.3. More corrections: operators 

You already know almost enough to make changes at a higher level. All you need to know 
now is that the d key acts as a delete operator. Try the command dw to delete a word. Try hit­
ting • a few times. Notice that this repeats the effect of the dw. The command. repeats the last 
command which made a change. You can remember it by analogy with an ellipsis ' ••• '. 

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE. 
This deletes a single character, and is equivalent to the x command. 

Another very useful operator is c or change. The command cw thus changes the text of a 
single word. You follow it by the replacement text ending with an ESC. Find a word which you 
can change to another, and try this now. Notice that the end of the text to be changed was 
marked with the character'S' so that you can see this as you are typing in the new material. 

t In fact, the character "H (backspace) always works to erase t.be last input character here, regardless of what 
your erase charact.er is. 



·8· 

8.4. Operathag on lines 

It is orten the ease that you want to operate on lines. Find a line which you want to delete, 
and type dd, the d operator twice. This will delete the line. If you are on a dumb terminal, the 
editor may just erase the line on the screen, replacing it with a line with only an @ on it. This 
line does not correspond to any line in your file, but only acts as a place holder. It helps to avoid 
a lengthy redraw or the rest or the screen which would be necessary to close up the hole created by 
the deletion on a terminal without a delete line capability. 

Try repeating the e operator twice; this will cha..nge a whole line, erasing its previous con­
tents and replacing them with text you type up to an ESC.t 

You can delete or change more than one line by preceding the dd or ee with a count, i.e. 
6dd deletes 5 lines. You can also give a command like elL to delete all the lines up to and includ­
ing the last line on the screen, or d3L to delete through the third rrom the bottom line. Try some 
commands like this now.· Notice that the editor lets you know when you change a large number or 
lines so that you can see the extent or the change. The editor will also always tell you when a 
change you make affects text which you cannot see. 

3.5. Undoing 

Now suppose that the last change which you made was incorrect; you could use the insert, 
delete and append commands to put the correct material back. However, since it is often the case 
that we regret a change or make a change incorrectly, the editor provides a u (undo) command to 
reverse the last change which you made. Try this a few times,· and give it twice in a row to notice 
that an u also undoes a u. 

The undo command lets you reverse only a single change. After you make a number of 
changes to a line, you may decide that you would rather have the original state of the line back. 
The U command restores the current line to the state berore you started changing it. 

You can recover text which you delete, even ir undo will not bring it back; see the section on 
recovering lost text below. 

3.6. Summary 

erase 
kill 

o 
U 
a 
e 
d 
i 
o 
u 

advance the cursor one position 
backspace the cursor 
erase a word during an insert 
your erase (USUally AH or #), erases a character during an insert 
your kill (usually @, AX, or ·U), kills the insert on this line 
repeats the changing command 
opens and inputs new lines, above the current 
undoes the changes you made to the current line 
appends text after the cursor 
changes the object you specify to the following text 
deletes the object you specify 
inserts text before the cursor 
opens and inputs new lines, below the current 
undoes the last change 

t The command S is a convenient synonym ror ror ee, by analogy with s. Think or S as a substitute on lines, 
while 8 is a substitute on characters. 
• One subtle point here involves using the / search atter a d. This will normally delete cha.ra.cters from the 
current position to the point or the match. If wha.t is desired is to delete whole lines including the two points, 
give the pa.ttern as /pat/ +0, a. line a.ddress. 

o 



(-

() 

·9· 

4. Moving about; rearranging and duplicating text 

4.1. Low level character motions 

Now move the cursor to a line where there is a punctuation or a bracketing character such as 
a parenthesis or a comma or period. Try the command f% where % is this character. This com­
mand finds the next % character to the right of the cursor in the current line. Try then hitting a ;, 
which finds the next instance of the same character. By using the f command and then a sequence 
of ;'s you can often get to a particular place in a line, much faster than with a sequence of word 
motions or SPACEs. There is also a F command, which is like f, but searches backward. The; 
command repeats F also. 

When you are operating on the text in a line it is often desirable to deal with the characters 
up to, but not including, the first instance of a character. Try df% for some % now and notice that 
the % character is deleted. Undo this with u and then try dtr, the t here stands for to, i.e. delete 
up to the next %, but not the %. The command T is the reverse of t. 

When working with the text of a single line, an t moves the cursor to the first non-white 
position on the line, and a • moves it to the end of the line. Thus Sa will append new text at the 
end of the current line. 

Your file may have tab rI) characters in it. These characters are represented as a number of 
spaces expanding to a tab stop, where tab stops are every 8 positions. * When the cursor is at a 
tab, it sits on the last of the several spaces which represent that tab. Try moving the cursor back 
and forth over tabs so you understand how this works. 

On rare occasions, your file may have nonprinting characters in it. These characters are 
displayed in the same way they are represented in this document, that is with a two character 
code, the first character of which is 'A'. On the screen non-printing characters resemble a CA, char­
acter adjacent to another, but spacing or backspacing over the character "''ill reveal that the two 
characters are, like the spaces representing a tab character, a single character. 

The editor sometimes discards control characters, depending on the character and the setting 
of the beautrll1 option, if you attempt to insert them in your file. You can get a control character 
in the file by beginning an insert and then typing a AV before the control character. The'V 
quotes the following character, causing it to be inserted directly into the file. 

4.2. Higher level text objects 

In working with a document it is often advantageous to work in terms of sentences, para­
graphs, and sections. The operations ( and ) move to the beginning of the previous and next sen­
tences respectively. Thus the command d) will delete the rest of the current sentence; likewise d( 
will delete the previous sentence if you are at the beginning of the current sentence, or the current 
sentence up to where you are if you are not at the beginning of the current sentence. 

A sentence is defined to end at a'.', 'I' or '1' which is followed by either the end of a line, or 
by two spaces. Any number of closing ,)" ']', ,tt, and '" characters may appear after the '.', 'I' or 
'1' before the spaces or end of line. 

The operations { and } move over paragraphs and the operations [[ and ]] move over sec­
tions·t 

A paragraph begins after each empty line, and also at each of a set of paragraph macros, 
specified by the pairs of characters in the definition of the string valued option paragraph8. The 
default setting for this option defines the paragraph macros of the -m8 and -mm macro packages, 

• This is settable by a command or the form lie ts-=3Clt, where s is 4 to set tabstops every (our columns. This 
has elJect on the screen representation within the editor. 
t The [( and )) operations require the operation character to be doubled because they can move the cursor far 
(rom where it currently is. While it is easy to get back with the command ", these commands would still be 
frustrating ir they were easy to hit accidentally. 



-10-

i.e. the '.IP', '.LP', '.PP' and '.QP', '.P' and '.LJ' macros.* Each paragraph boundary is also a sen­
tence boundary. The sentence and paragraph commands can be given counts to operate over 
groups of sentences and paragraphs. 

Sections in the editor begin after each macro in the .ection. option, normally '.NH', '.SH', 
'.H' and '.HlP, and each line with a formfeed AL in the first column. Section boundaries are 
always line and paragraph boundaries also. 

Try experimenting with the sentence and paragraph commands until you are sure how they 
work. . If you have a large document, try looking through it using the section commands. The sec­
tion commands interpret a preceding count as a different window size in which to redraw the screen 
at the new location, and this window size is the base size for newly drawn windows until another 
size is specified. This is very useful if you are on a slow terminal and are looking for a particular 
section. You can give the first section command a small count to then see each successive section 
heading in a small window. 

4.S. Rearranging and duplicating text 

The editor has a single unnamed buffer where the last deleted or changed away text is saved, 
and a set of named buffers a-s which you can use to save copies of text and to move text around 
in your file and between files. 

The operator 7 yanks a copy of the object which follows into the unnamed buffer. If pre­
ceded by a buffer name, "%7, where :r here is replaced by a letter a-z, it places the text in the 
named buffer. The text can then be put back in the file with the commands p and P; p puts the 
text after or below the cursor, while P puts the text before or above the cursor. 

If the text which you yank forms a part of a line, or is an object such as a sentence which 
partially spans more than one line, then when you put the text back, it will be placed after the 
cursor (or before if you use Pl. If the yanked text forms whole lines, they will be put back as 
whole lines, without changing the current line. In this case, the put acts much like a 0 or 0 com­
mand. 

Try the command YP. This makes a copy of the current line and leaves you on this copy, 
which is placed before the current line. The command Y is a convenient abbreviation for yy. The 
command Yp will also make a copy of the current line, and place it after the current line. You 
can give Y a count of lines to yank, and thus duplicate several lines; try SYP. 

To move text within the buffer, you need to delete it in one place, and put it back in 
another. You can precede a delete operation by the name of a buffer in which the text is to be 
stored as in "a5dd deleting 5 lines into the named buffer a. You can then move the cursor to the 
eventual resting place of the these lines and do a "ap or "aP to put them back. In fact, you can 
switch and edit another file before you put the lines back, by giving a command of the form :e 
nameCR where name is the name of the other file you want to edit. You will have to write back 
the contents of the current editor buffer (or discard them) if you have made changes before the edi­
tor will let you switch to the other file. An ordinary delete command saves the text in the 
unnamed buffer, so that an ordinary put can move it elsewhere. However, the unnamed buffer is 
lost when you change files, so to move text from one file to another you should use an unnamed 
buffer. 

4.4. Summary. 

t 
s 
) 
} 

first non-white on line 
end of line 
forward sentence 
forward paragraph 

t You can easily ehange or extend this set or maeros by assigning a ditrerent string to the ,OrOl"O,M option in 
your EXlNIT. See seetion 6.2 ror details. The '.bp· directive is &Iso eoDsidered to start a paragraph. 

o 

o 



( 

( 

() 

]] 
( 
{ 
[[ 
fx 
p 
y 
tx 
Fx 
p 
Tx 

forward section 
backward sentence 
backward paragraph 
backward section 
find z forward in line 

- 11-

put text back, after cursor or below current line 
yank operator, for copies and moves 
up to z forward, for operators 
f backward in line 
put text back, before cursor or above current line 
t backward in line 

5. High level commands 

5.1. Writing, quitting, editing new files 

So far we have seen how to enter vi and to write out our file using either ZZ or :wCR. The 
first exits from the editor, (writing if changes were made), the second writes and stays in the edi­
tor. 

If you have changed the editor's copy of the file but do not wish to save your changes, either 
because you messed up the file or decided that the changes are not an improvement to the file, then 
you can give the command :q!CR to quit from the editor without writing the changes. You can 
also reedit the same file (starting over) by giving the command :e!CR. These commands should be 
used only rarely, and with caution, as it is not possible to recover the changes you have made after 
you discard them in this manner. 

You can edit a different file without leaving the editor by giving the command :e nameCR. If 
you have not written out your file before you try to do this, then the editor will tell you this, and 
delay editing the other file. You can then give the command :wCR to save your work and then the 
:e nameCR command again, or carefully give the command :e! nameCR, which edits the other file 
discarding the changes you have made to the current file. To have the editor automatically save 
changes, include aet avtowrite in your EXINIT, and use :n instead of :e. 

5.2. Escaping to a shell 

You can get to a shell to execute a single command by giving a vi command of the form 
:! cmdCR. The system will run the single command cmd and when the command finishes, the edi­
tor will ask you to hit a RETURN to continue. When you have finished looking at the output on 
the screen, you should hit RETURN and the editor will clear the screen and redraw it. You can then 
continue editing. You can also give another: command when it asks you for a RETURN; in this 
case the screen will not be redrawn. 

If you wish to execute more than one command in the shell, then you can give the command 
:shCR. This will give you a new shell, and when you finish with the shell, ending it by typing a 
AD, the editor will clear the screen and continue. 

On systems which support it, AZ will suspend the editor and return to the (top level) shell. 
When the editor is resumed, the screen will be redrawn. 

5.3. Marking and returning 

The command " returned to the previous place after a motion of the cursor by a command 
such as /, ! OJ' G. You can also mark lines in the file with single letter tags and return to these 
marks later by naming the tags. Try marking the current line with the command mx, where you 
should pick some letter for z, say 'a'. Then move the cursor to a different line (any way you like) 
and hit 'a. The cursor will return to the place which you marked. Marks last only until you edit 
another file. 



·12 -

When using operators such as d and referring to marked lines, it is often desirable to delete 
whole lines rather than deleting to the exact position in the line marked by m. In this case you 
can use the form 'ao rather than 'ao. Used without an operator, 'ao will move to the first non-white 
character or the marked line; similarly " moves to the first non-white character of the line contain­
ing the previous context mark ". 

6.4. AdjuetiDg the acrean 

If the screen image is messed up because of a transmission error to your terminal, or because 
some program other than the editor wrote output to your terminal, you can hit a AL, the AScn 
form-feed character, to cause the screen to be refreshed. 

On a dumb terminal, if there are @ lines in the middle of the screen. as a result of line dele­
tion, you may get rid of these lines by typing AR to cause the editor to retype the screen, closing 
up these holes. 

Finally, if you wish to place a certain line on the screen at the top middle or bottom of the 
screen, you can position the cursor to that line, and then give a & command. You should follow 
the a command with a RETURN if you want the line to appear at the top of the window, a • if you 
want it at the center, or a - if you want it at the bottom. (a., z., and a+ are not available on all 
v2 editors.) 

8. Special topics 

8.1. Editing OD alow terminals 

When you are on a slow terminal, it is important to limit the amount of output which is 
generated to your screen so that you will not suffer long delays, waiting for the screen to be 
refreshed. We have already pointed out how the editor optimizes the updating of the screen during 
insertions on dumb terminals to limit the delays, and how the editor erases lines to @ when they 
are deleted on dumb terminals. 

The use of the slow terminal insertion mode is controlled by the ,lowopen option. You can 
Coree the editor to use this mode even on faster terminals by giving the command :se slowCR. If 
your system is sluggish this helps lessen the amount of output coming to your terminal. You can 
disable this option by :se DoslowCR. 

The editor can simulate an intelligent terminal on a dumb one. Try giving the command :se 
rechawCR. This simulation generates a great deal of output and is generally tolerable only on 
lightly loaded systems and fast terminals. You can disable this by giving the command 
:se DorechawCR. 

The editor also makes editing more pleasant at low speed by starting editing in a small win­
dow, and letting the window expand as you edit. This works particularly well on intelligent termi­
nals. The editor can expand the window easily when you insert in the middle of the screen on 
these terminals. If possible, try the editor on an intelligent terminal to see how this works. 

You can control the size of the window which ~s redrawn each time the screen is cleared by 
giving window sizes as argument to the commands which cause large screen motions: 

:/tH}]" 
Thus if you are searching for a particular instance of a common string in a file you can precede the 
first search command by a small number, say 3, and the editor will draw three line windows 
around each instance of the string which it locates. 

You can easily expand or contract the window, placing the current line as you choose, by giv­
ing a number on a & command, after the & and before the following RETURN, • or -. Thus the 
command a5. redraws the screen with the current line in the center of a five line window. t 

t Note that the comma,nd iz. haa an entirely dilerent elect, pla,cing line S in the center or a, new window. 

c 



( 

o 

- 13-

If the editor is redrawing or otherwise updating large portions of the display, you can inter­
rupt this updating by hitting a DEL or RUB as usual. If you do this you may partially confuse the 
editor about what is displayed on the screen. You can still edit the text on the screen if you wish; 
clear up the confusion by hitting a AL; or move or search again, ignoring the current state of the 
display. 

See section 7.8 on open mode for another way to use the vi command set on slow terminals. 

0.2. Options, set, and editor startup flies 

The editor has a set of options, some of which have been mentioned above. The most useful 
options are given in the following table. 

Name Detault Description 
autoindent noai Supply indentation automatically 
autowrite noaw Automatic write before :n, :ta, At, ! 
ignorecase noic Ignore case in searching 
lisp nolisp ( { ) } commands deal with S-expressions 
list nolist Tabs print as AI; end of lines marked with $ 
magic nomagic The characters. [ and * are special in scans 
number nonu Lines are displayed prefixed with line numbers 
paragraphs para=IPLPPPQPbpP 11 Macro names which start paragraphs 
redraw nore Simulate a smart terminal on a dumb one 
sections sect=NHSHH HU Macro names which start new sections 
shiftwidth sw=8 Shift distance for <, > and input AD and AT 
showmatch nosm Show matching ( or { as ) or } is typed 
slowopen slow Postpone display updates during inserts 
term dumb The kind of terminal you are using. 

The options are of three kinds: numeric options, string options, and toggle options. You can 
set numeric and string options by a statement of the form 

set opt=val 

and toggle options can be set or unset by statements of one of the forms 

set opt 
set noopt 

These statements can be placed in your EXINIT in your environment, or given while you are run­
ning vi by preceding them with a : and following them with a CR. 

You can get a list of all options which you have changed by the command :setCR, or the 
value of a single option by the command :set opt?CR. A list of all possible options and their 
values is generated by :set aIlCR. Set can be abbreviated se. Multiple options can be placed on 
one line, e.g. :se ai aw DuCR. 

Options set by the set command only last while you stay in the editor. It is common to 
want to have certain options set whenever you use the editor. This can be accomplished by creat­
ing a list of ex commandst which are to be run fNery time you start up ez, edit, or vi. A typical 
list includes a set command, and possibly a few map commands (on v3 editors). Since it is advis­
able to get these commands on one line, they can be separated with the I character, for example: 

set ai aw terselmap @ dd~ap # x 

which sets the options •• toin4eftt, .,downle, terse, (the eet command), makes @ delete a line, (the 
first map), and makes # delete a character, (the second map). (See section 6.9 for a description 
of the map command, which only works in version 3.) This string should be placed in the variable 

t All commands which start with I a.re es commands. 



-14· 

EX.INIT in your environment. If you use uk, put this line in the file .Iogin in your home direc.­
tory: 

setenv EXINIT 'set ai aw terselmap @ ddlmap '* x' 

If you use the standard v7 shell, put these lines in the file .profile in your home directory: 

EXINIT=='set ai aw terse~ap @ ddlmap '* x' 
export EXINIT 

On a version 6 system, the concept of environments is not present. In this case, put the line in the 
file • ezrc in your home directory. 

set ai aw terselmap @ dd~ap '* x 

or course, the particulars of the line would depend on which options you wanted to set. 

1.3. Recovering lost lines 

You might have a serious problem if you delete a number of lines and then regret that they 
were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of numbered 
registers 1-9. You can get the n'th previous deleted text back in your file by the command "np. 
The" here says that a buffer name is to follow, n is the number of the buffer you wish to try (use 
the number 1 for now), and p is the put command, which puts text in the buffer after the cursor. 
If this doesn't bring back the text you wanted, hit u to undo this and then. (period) to repeat the 
put command. In general the. command will repeat the last change you made. As a special case, 

. when the last command refers to a numbered text buffer, the. command increments the number of 
the buffer before repeating the command. Thus a sequence of the form 

"lpu.u.u. 

will, if repeated long enough, show you all the deleted text which has been saved for you. You can 
omit the u commands here to gather up all this text in the buffer, or stop after any. command to 
keep just the then recovered text. The command P can also be used rather than p to put the 
recovered text before rather than after the cursor. 

8.4. Recovering lost flIes 

If the system crashes, you can recover the work you were doing to within a few changes. 
You will normally receive mail when you next login giving you the name of the file which has been 
saved for you. You should then change to the directory where you were when the system crashed 
and give a command of the form: 

% vi -r name 

replacing name with the name of the file which you were editing. This will recover your work to a 
point near where you left off.t 

You can get a listing of the files which are saved for you by giving the command: 

%vi-r 

If there is more than one instance of a particular file saved, the editor gives you the newest 
instance each time you recover it. You can thus get an older saved copy back by first recovering 
the newer copies. 

For this feature to work, vi must be correctly installed by a super user on your system, and 
the mail program must exist to receive mail. The invocation "fJi -r' will not always list all saved 

t ID rare cases, lOme or the IiDes or the file may be l08t. The editor will give you the Dumbel'6 or these liDes and 
the text of the liDes will be replaced by the string 'LOST'. These liDes will almost always be amoDg the last rew 
which you changed. You C&JI either c:hOOft to discard the changes which you made (if they are easy to remake) 
or to replace the few lost lines by hand. 

o 



(-

( 

o 

- 15-

files, but they can be recovered even if they are not listed. 

8.5. Continuous text input 

When you are typing in large amounts of text it is convenient to have lines broken near the 
right margin automatically. You can cause this to happen by giving the command :se 
wm=10CR. This causes all lines to be broken at a space at least 10 columns from the right hand 
edge of the screen.· 

H the editor breaks an input line and you wish to put it back together you can tell it to join 
the lines with J. You can give J a count of the number of lines to be joined as in 3J to join 3 
lines. The editor supplies white space, if appropriate, at the juncture of the joined lines, and 
leaves the cursor at this white space. You can kill the white space with x if you don't want it. 

8.8. Features for editing programs 

The editor has a number of commands for editing programs. The thing that most distin­
guishes editing of programs from editing of text is the desirability of maintaining an indented 
structure to the body of the program. The editor has a auto indent facility for helping you gen­
erate correctly indented programs. 

To enable this facility you can give the command :se aiCR. Now try opening a new line 
with 0 and type some characters on the line after a few tabs. H you now start another line, notice 
that the editor supplies white space at the beginning of the line to line it up with the previous line. 
You cannot backspace over this indentation, but you can use AD key to backtab over the supplied 
indentation. 

Each time you type AD you back up one position, normally to an 8 column boundary. This 
amount is settable; the editor has an option called ahl1twidth which you can set to change this 
value. Try giving the command :se sw=4CR and then experimenting with autoindent again. 

For shifting lines in the program left and right, there are operators < and >. These shift 
the lines you specify right or left by one ahiftwidth. Try < < and > > which shift one line left or 
right, and <L and >L shifting the rest of the display left and right. 

H you have a complicated expression and wish to see how the parentheses match, put the 
cursor at a left or right parenthesis and hit %. This will show you the matching parenthesis. 
This works also for braces { and }, and brackets [ and ]. 

H you are editing C programs, you can use the [[ and ]] keys to advance or retreat to a line 
starting with a {, i.e. a function declaration at a time. When]] is used with an operator it stops 
after a line which starts with }; this is sometimes useful with y]]. 

8.7. Filtering portioIl8 of the buffer 

You can run system commands over portions of the buffer using the operator!. You can use 
this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer. Try typ­
ing in a list of random words, one per line and ending them with a blank line. Back up to the 
beginning of the list, and then give the command !}sortCR. This says to sort the next paragraph 
of material, and the blank line ends a paragraph. 

8.S. Commands for editing LlSPt 

H you are editing a LISP program you should set the option lup by doing :se lispCR. This 
changes the ( and ) commands to move backward and forward over s-expressions. The { and } 
commands are like ( and ) but don't stop at atoms. These can be used to skip to the next list, or 
through a comment quickly. 

• This feature is not available on some v2 editors. In v2 editors where it is availa.ble, the break can only occur 
to the right of the specified boundary instead or to the left. 
t The USP features are not available on some v2 editors due to memory constraints. 



-16 -

The autoindent option works differently for USP, supplying indent to align at the first argu­
ment to the last open list. If' there is no such argument then the indent is two spaces more than 
the last level. 

There is another option which is useful for typing in USP. the ,1&otDmate1& option. Try set­
ting it with 1M .mCR and then try typing a 'C some words and then a')'. Notice that the cursor 
shows the position of the '(' which matches the C)' briefly. This happens only if the matching '(' is 
on the screen, and the cursor stays there for at most one second. 

The editor also has an operator to realign existing lines as though they had been typed in 
with li,p and autoindent set. This is the = operator. Try the command =% at the beginning 
of a function. This will realign all the lines of the function declaration. 

When you are editing USP" the [[ and ]] advance and retreat to lines beginning with a (, and 
are useful for dealing with entire function definitions. 

1.9. MaeJ'Ost 

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single 
keystroke, the editor will act as though you had hit some longer sequence of keys. You can set 
this up if you find yourself typing the same sequence of commands repeatedly. 

Briefly, there are two flavors of macros: 

a) Ones where you put the macro body in a buffer register, say z. You can then type @x to 
invoke the macro. The @ may be followed by another @ to repeat the last macro. 

b) You can use the map command from vi (typically in your EXINIT) with a command of the 
form: 

:map Ih, rhBCR 

mapping Ih. into r1& ••. There are restrictions: 11&8 should be one keystroke (either 1 character 
or one function key) since it must be entered within one second (unless notimeout is set, in 
which case you can type it as slowly as you wish, and vi will wait for you to finish it before 
it echoes anything). The 11&8 can be no longer than 10 characters, the r1&. no longer than 
100. To get a space, tab or newline into 11&8 or m. you should escape them with a ·V. (It 
may be necessary to double the ·V if the map command is given inside vi, rather than in 
ez.) Spaces and tabs inside the r1&. need not be escaped. 

Thus to make the q key write and exit the editor, you can give the command 

:map q :wq·V·VCR CR 

which means that whenever you type q, it will be as though you had typed the four characters 
:wqCR. A ·V's is needed because without it the CR would end the: command, rather than becom­
ing part of the map definition. There are two AV'S because from within vi, two ·V's must be 
typed to get one. The first CR is part of the r1&., the second terminates the: command. 

Macros can be deleted with 

unmap lhs 

If' the 11&. of a macro is ",*0" through ",*9", this maps the particular function key instead of 
the 2 character "'*" sequence. So that terminals without function keys can access such definitions, 
the form ",*x" will mean function key z on all terminals (and need not be typed within one 
second.) The character "'*" can be changed by using a macro in the usual way: 

:map ·V·V·I '* 
to use tab, for example. (This won't affect the map command, which still uses ,*, but just the 
invocation from visual mode. 

* The macro reature is availa.ble only in version 3 editors. 

c 



( 

() 

- 17-

The undo command reverses an entire macro call as a unit, if it made any changes; 

Placing a 'I' alter the word map causes the mapping to apply to input mode, rather than 
command mode. Thus, to arrange for AT to be the same as 4 spaces in input mode, you can type: 

:map .. T .. ~tststs 

where ~ is a blank. The AV is necessary to prevent the blanks from being taken as white space 
between the Ih3 and rh3. 

7. Word Abbreviations U 
A feature similar to macros in input mode is word abbreviation. This allows you to type a 

short word and have it expanded into a longer word or words. The commands are :abbreviate 
and :unabbreviate (:ab and :una) and have the same syntax as :map. For example: 

:ab eecs Electrical Engineering and Computer Sciences 

causes the word 'eees' to always be changed into the phrase 'Electrical Engineering and Computer 
Sciences'. Word abbreviation is dift'erent from macros in that only whole words are affected. H 
'eees' were typed as part of a larger word, it would be left alone. Also, the partial word is echoed 
as it is typed. There is no need for an abbreviation to be a single keystroke, as it should be with a 
macro. 

7.1. Abbreviations 

The editor has a number of short commands which abbreviate longer commands which we 
have introduced here. You can find these commands easily on the quick reference card. They 
often save a bit of typing and you can learn them as convenient. 

8. Nitty-gritty details 

8.1. Line representation in the display 

The editor folds long logical lines onto many physical lines in the display. Commands which 
advance lines advance logical lines and will skip over all the segments of a line in one motion. The 
command I moves the cursor to a specific column, and may be useful for getting near the middle of 
a long line to split it in half. Try 801 on a line which is more than 80 columns long.t 

The editor only puts full lines on the display; if there is not enough room on the display to 
fit a logical line, the editor leaves the physical line empty, placing only an @ on the line as a place 
holder. When you delete lines on a dumb terminal, the editor will often just clear the lines to @ 
to save time (rather than rewriting the rest of the screen.) You can always maximize the informa­
tion on the screen by giving the OR command. 

H you wish, you can have the editor place line numbers before each line on the display. Give 
the command :se nuCR to enable this, and the command :se DonuCR to turn it oft'. You can have 
tabs represented as "I and the ends of lines indicated with 'I' by giving the command :sa IistCR; 
:se nolistCR turns this oft'. 

Finally, lines consisting of only the character ,-, are displayed when the last line in the file is 
in the middle of the screen. These represent physical lines which are past the logical end of file. 

8.2. Counts 

Most vi commands will use a preceding count to affect their behavior in some way. The fol­
lowing table gives the common ways in which the counts are used: 

** Version 3 only. 
t You ca.n make long lines very ea.sily by using J to join together short lines. 



s/fH)} 
AD AU 
sal 

- 18-

new window size 
scroll amount 
line/column number 
repeat eft'ect most of the rest 

The editor maintains a notion of the current default window size. On terminals which run at 
speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which are 
slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the default 
window size. At 1200 baud the default is 16 lines. 

This size is the size used when the editor clears and refills the screen after a search or other 
motion moves far from the edge of the current window. The commands which take a new window 
size as count all often cause the screen to be redrawn. If you anticipate this, but do not need as 
large a window as you are currently using, you may wish to change the screen size by specifying 
the new size before these commands. In any case, the number of lines used on the screen will 
expand if you move oft' the top with a - or similar command or off the bottom with a command 
such as RETURN or AD. The window will revert to the last specified size the next time it is cleared 
and refilled. t 

The scroll commands "D and "U likewise remember the amount of scroll last specified, using 
half the basic window size initially. The simple insert commands use a count to specify a repeti­
tion of the inserted text. Thus 10a+-ESC will insert a grid-like string of text. A few com­
mands also use a preceding count as a line or column number. 

Except for a few commands which ignore any counts (such as "R), the rest of the editor com­
mands use a count to indicate a simple repetition of their effect. Thus ow advances five words on 
the current line, while oRETURN advances five lines. A very useful instance of a count as a repeti­
tion is a count given to the • command, which repeats the last changing command. If you do dw 
and then 3., you will delete first one and then three words. You can then delete two more words 
with 2 •. 

8.3. More file manipulation commands 

The following table lists the file manipulation commands which you can use when you are in 
vi. All of these commands are followed by a OR or ESC. The most basic commands are :w and :e. 
A normal editing session on a single file will end with a ZZ command. If you are editing for a 
long period of time you can give :w commands occasionally after major amounts of editing, and 
then finish with a ZZ. When you edit more than one file, you can finish with one with a:w and 
start editing a new file by giving a:e command, or set autowrite and use :n <file>. 

If you make changes to the editor's copy of a file, but do not wish to write them back, then 
you must give an ! after the command you would otherwise use; this forces the editor to discard 
any changes you have made. Use this carefully. 

The :e command can be given a + argument to start at the end of the file, or a +n argu­
ment to start at line n. In actuality, n may be any editor command not containing a space, use­
fully a scan like +/pat or +!pat. In forming new names to the e command, you can use the char­
acter % which is replaced by the current file name, or the character :# which is replaced by the 
alternate file name. The alternate file name is generally the last name you typed other than the 
current file. Thus if you try to do a :e and get a diagnostic that you haven't written the file, you 
can give a :w command and then a :e :# command to redo the previous :e. 

You can write part of the buffer to a file by finding out the lines that bound the range to be 
written using "G, and giving these numbers after the: and before the w, separated by ,'s. You 
can also mark these lines with m and then use an address of the form 'z,', on the w command 

t But not b'y a "L which just redraws the screen as it is. 



(~ 

( 

o 

- 19-

:w write back changes 
:wq write and quit 
:x write (if necessary) and quit (same as ZZ). 
:e name edit file name 
let reedit, discarding changes 
:e + name edit, starting at end 
:e +n edit, starting at line n 
:e# edit alternate file 
:w name write file name 
:w! name overwrite file name 
:X,yw name write lines z through , to name 
:r name read file name into buffer 
:r !cmd read output of cmd into buffer 
:n edit next file in argument list 
:n! edit next file, discarding changes to current 
:n argB specify new argument list 
:ta tag edit file containing tag tag, at tag 

here. 

You can read another file into the buffer after the current line by using the :r command. 
You can similarly read in the output from a command, just use !emd instead of a file name. 

If you wish to edit a set of files in succession, you can give all the names on the command 
line, and then edit each one in turn using the command m. It is also possible to respecify the list 
of files to be edited by giving the :n command a list of file names, or a pattern to be expanded as 
you would have given it on the initial vi command. 

If you are editing large programs, you will find the :ta command very useful. It utilizes a 
data base of function names and their locations, which can be created by programs such as ctags, 
to quickly find a function whose name you give. If the :ta command will require the editor to 
switch files, then you must :w or abandon any changes before switching. You can repeat the :ta 
command without any arguments to look for the same tag again. (The tag feature is not available 
in some v2 editors.) 

8.4. More about searching for strings 

When you are searching for strings in the file with / and 1, the editor normally places you at 
the next or previous occurrence of the string. If you are using an operator such as d, c or '1, then 
you may well wish to affect lines up to the line before the line containing the pattern. You can 
give a search of the form /pat/-n to refer to the n'th line before the next line containing pat, or 
you can use + instead of - to refer to the lines after the one containing pat. If you don't give a 
line offset, then the editor will affect characters up to the match place, rather than whole lines; 
thus use "+0" to affect to the line which matches. 

You can have the editor ignore the case of words in the searches it does by giving the com­
mand :se ieCR. The command :Be noieCR turns this off. 

Strings given to searches may actually be regular expressions. If you do not want or need 
this facility, you should 

setnomagic 

in your EXINIT. In this case, only the characters t and S are special in patterns. The character \ 
is also then special (as it is most everywhere in the system), and may be used to get at the an 
extended pattern matching facility. It is also necessary to use a \ before a / in a forward scan or a 
1 in a backward scan, in any case. The following table gives the extended forms when magic is 
set. 



t 
$ 

- 20-

at beginning of pattern, matches beginning of line 
at end of pattern, matches end of line 
matches any character 
matches the beginning of a word 
matches the end of a word 
matches any single character in .tr 
matches any single character not in .Ir 
matches any character between ~ and .; 
matches any number of the preceding pattern 

If you use nomagic mode, then the. [ and - primitives are given with a preceding \. 

8.5. More about input mode 

There are a number of characters which you can use to make corrections during input mode. 
These are summarized in the following table. 

erase 
kill 
\ 
ESC 
DEL 
CR 
AD 
OAD 
tAD 
AV 

deletes the last input character 
deletes the last input word, defined as by b 
your erase character, same as AH 
your kill character, deletes the input on this line 
escapes a following AH and your erase and kill 
ends an insertion 
interrupts an insertion, terminating it abnormally 
starts a new line 
backtabs over auto,·ndent 
kills all the autoindent 
same as O·D, but restores indent next line 
quotes the next non-printing character into the file 

The most usual way of making corrections to input is by typing AH to correct a single char­
acter, or by typing one or more AW'S to back over incorrect words. If you use # as your erase 
character in the normal system, it will work like AB. 

Your system kill character, normally @, AX or ·U, will erase all the input you have given on 
the current line. In general, you can neither erase input back around a line boundary nor can you 
erase characters which you did not insert with this insertion command. To make corrections on 
the previous line after a new line has been started you can hit ESC to end the insertion, move over 
and make the correction, and then return to where you were to continue. The command A which 
appends at the end of the current line is often useful for continuing. 

If you wish to type in your erase or kill character (say # or @) then you must precede it 
with a \, just as you would do at the normal system command level. A more general way of typ­
ing non-printing characters into the file is to precede them with a "v. The"V echoes as a t char­
acter on which the cursor rests. This indicates that the editor expects you to type a control char­
acter. In tact you may type any character and it will be inserted into the file at that point.· 

If you are using autoindent you can backtab over the indent which it supplies by typing a 
AD. This backs up to a .hiftwidth boundary. This only works immediately after the supplied 

• This is not quite true. The implementation or the editor d<* not allow the NUlL ("@) chara.eter to appear in 
Illes. Also the IF (linereed or • J) character is used by the editor to separate lines in the IIle, so it ea.nnot a.ppear 
in the middle or a line. You ea.n inllert any other chara.eter, however, ir you wait ror the editor to echo the t be­
fore you type the chara.eter. In fact, the editor will treat a following letter as a request ror the corresponding 
control chara.eter. This is the only way to type "S or "Q, since the system normally uses them to suspend and 
resume output and never gives them to the editor to process. 

o 



(' 

- 21-

lIutointlent. 

When you are using "utointlent you may wish to place a label at the left margin of a line. 
The way to do this easily is to type t and then -D. The editor will move the cursor to the left 
margin for one line, and restore the previous indent on the next. You can also type a 0 followed 
immediately by a -D if you wish to kill all the indent and not have it come back on the next line. 

8.6. Upper case only terminals 

If your terminal has only upper case, you can still use "i by using the normal system conven­
tion for typing on such a terminal. Characters which you normally type are converted to lower 
case, and you can type upper case letters by preceding them with a \. The characters { - } I' are 
not available on such terminals, but you can escape them as \( \ t \) \! \'. These characters are 
represented on the display in the same way they are typed.* * 

8.7. Vi and ex 

Vi is actually one mode of editing within the editor ex. When you are running w you can 
escape to the line oriented editor of ex by giving the command Q. All of the : commands which 
were introduced above are available in ex. Likewise, most ex commands can be invoked from 'Vi 
using:. Just give them without the: and follow them with a CR. 

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and 
be left in the command mode of ex. You can then save your work and quit if you wish by giving a 
command x after the : which ex prompts you with, or you can reenter vi by giving ex a"i com­
mand. 

There are a number of things which you can do more easily in ex than in w. Systematic 
changes in line oriented material are particularly easy. You can read the advanced editing docu­
ments for the editor etl to find out a lot more about this style of editing. Experienced users often 
mix their use of ex command mode and w command mode to speed the work they are doing. 

8.8. Open mode: vi on hardcopy terminals and "glass tty's" * 
If you are on a hardcopy terminal or a terminal which does not have a cursor which can 

move off the bottom line, you can still use the command set of vi, but in a different mode. When 
you give a vi command, the editor will tell you that it is using open mode. This name comes 
from the open command in ex, which is used to get into the same mode. 

The only difference between wsual mode and open mode is the way in which the text is 
displayed. 

In open mode the editor uses a single line window into the file, and moving backward and 
forward in the file causes new lines to be displayed, always below the current line. Two commands 
of vi work differently in open: z and OR. The II command does not take parameters, but rather 
draws a window of context around the current line and then returns you to the current line. 

If you are on a hardcopy terminal, the -R command will retype the current line. On such 
terminals, the editor normally uses two lines to represent the current line. The first line is a copy 
of the line as you started to edit it, and you work on the line below this line. When you delete 
characters, the editor types a number of \'s to show you the characters which are deleted. The edi­
tor also reprints the current line soon after such changes so that you can see what the line looks 
like again. 

It is sometimes useful to use this mode on very slow terminals which can support w in the 
full screen mode. You can do this by entering ex and using an open command. 

* The \ character you give will not echo until you type a.Dother key. * Not available in all v2 editors due to memory constraints. 



- 22-

Acknowledgements 

Bruce Englar encouraged the early development of this display editor. Peter Kessler helped 
bring sanity to version 2's command layout. Bill Joy wrote versions 1 and 2.0 through 2.7, and 
created the framework that users see in the present editor. Mark Horton added macros and other 
features and made the editor work on a large number of terminals and Unix systems. 



( 

o 

- 23-

Appendix: character functions 

This appendix gives the uses the editor makes or each character. The characters are 
presented in their order in the Mcn character set: Control characters come first, then most special 
characters, then the digits, upper and then lower case characters. 

For each character we tell a meaning it has as a command and any meaning it has during an 
insert. If it has only meaning as a command, then only this is discussed. Section numbers in 
parentheses indicate where the character is discussed; a cr' after the section number means that the 
character is mentioned in a rootnote. 

A@ Not a command character. If typed as the first character or an insertion it is 
replaced with the last text inserted, and the insert terminates. Only 128 charac­
ters are saved rrom the last insert; ir more characters were inserted the mechan­
ism is not available. A A@ cannot be part or the file due to the editor implemen­
tation (7.5r). 

AC 
AD 

AE 

AF 

AG 

AH (BS) 

AI (TAB) 

AM (CR) 

Unused. 

Backward window. A count specifies repetition. Two lines of continuity are kept 
if possible (2.1, 6.1, 7.2). 

Unused. 

As a command, scrolls down a half-window or text. A count gives the number of 
(logical) lines to scroll, and is remembered for ruture AD and AU commands (2.1, 
7.2). During an insert, backtabs over tJvtoindent white space at the beginning of 
a line (6.6, 7.5); this white space cannot be backspaced over. 

Exposes one more line below the current screen in the file, leaving the cursor 
where it is if possible. (Version 3 only.) 

Forward window. A count specifies repetition. Two lines of continuity are kept 
if possible (2.1, 6.1, 7.2). 

Equivalent to :fCR, printing the current file, whether it has been modified, the 
current line number and the number of lines in the file, and the percentage of the 
way through the file that you are. 

Same as left arrow. (See h). During an insert, eliminates the last input charac­
ter, backing over it but not erasing it; it remains so you can see what you typed 
if you wish to type something only slightly different (3.1, 7.5). 

Not a command character. When inserted it prints as some number of spaces. 
When the cursor is at a tab character it rests at the last or the spaces which 
represent the tab. The spacing of tabstops is controlled by the tab8top option 
(4.1, 6.6). 

Same as down arrow (see j). 
Unused. 

The AScn formCeed character, this causes the screen to be cleared and redrawn. 
This is useful after a transmission error, if characters typed by a program other 
than the editor scramble the screen, or after output is stopped by an interrupt 
(5.4, 7.2r). 

A carriage return advances to the next line, at the first non-white position in the 
line. Given a count, it advances that many lines (2.3). During an insert, a CR 
causes the insert to continue onto another line (3.1). 

Same as down arrow (see j). 
Unused. 

Same as up arrow (see k). 
Not a command character. In input mode, AQ quotes the next character, the 
same as AV, except that some teletype drivers will eat the A Q so that the editor 



SPACE 

! 

- 24-

never sees it. 

Redraws the current screen, eliminating logical lines not corresponding to physical 
lines (lines with only a single @ character on them). On hardcopy terminals in 
o,en mode, retypes the current line (5.4, 7.2, 7.8). 

Unused. Some teletype drivers use "8 to suspend output until AQis 

Not a command character. During an insert, with ".toindent set and at the 
beginning of the line, inserts ,M/twidth white space. 

Serolls the screen up, inverting AD which scrolls down. Counts work as they do 
for "D, and the previous scroll amount is common to both. On a dumb terminal, 
"U will often necessitate clearing and redrawing the screen further back in the file 
(2.1,7.2). 

Not a command character. In input mode, quotes the next character so that it is 
possible to insert non-printing and special characters into the file (4.2, 7.5). 

Not a command character. During an insert, backs up as b would in command 
mode; the deleted characters remain on the display (see AU) (7.5). 

Unused. 

Exposes one more line above the current screen, leaving the cursor where it is if 
possible. (No mnemonic value for this key; however, it is next to AU which 
scrolls up a bunch.) (Version 3 only.) 

If supported by the Unix system, stops the editor, exiting to the top level shell. 
Same as :stopCR. Otherwise, unused. 

Cancels a partially formed command, such as a • when no following character has 
yet been given; terminates inputs on the last line (read by commands such as : / 
and 1); ends insertions of new text into the buffer. If an ESC is given when quies­
cent in command state, the editor rings the bell or flashes the screen. You can 
thus hit ESC if you don't know what is happening till the editor rings the bell. If 
you don't know if you are in insert mode you can type ESCa, and then material 
to be input; the material will be inserted correctly whether or not you were in 
insert mode when you started (1.5, 3.1, 7.5). 

Unused. 

Searches for the word which is after the cursor as a tag. Equivalent to typing 
:ta, this word, and then a CR. Mnemonically, this command is "go right to" 
(7.3). 

Equivalent to :e #CR, returning to the previous position in the last edited file, or 
editing a file which you specified if you got a 'No write since last change diagnos­
tic) and do not want to have to type the file name again (7.3). (You have to do a 
:w before At will work in this case. If you do not wish to write the file you 
should do :e! #CR instead.) 

Unused. Reserved as the command character for the Tektronix 4025 and 4027 
terminal. 

Same as right arrow (see I). 

An operator, which processes lines from the buffer with reformatting commands. 
Follow! with the object to be processed, and then the command name terminated 
by CR. Doubling! and preceding it by a count causes count lines to be filtered; 
otherwise the count is passed on to the object after the!. Thus 2!}/mtcR refor­
mats the next two paragraphs by running them through the program Imt. If you 
are working OD USP. the command !%grindCR,· given at the beginning of a 

.Both Imt and grind are Berkelel programs and may not be present at aJl installations. 

o 

o 



.. 

# 

% 

& 

( 

( 

) 

• 
+ 

/ 

- 25-

function, will run the text of the function through the LISP grinder (6.7, 7.3). To 
read a file or the output of a command into the buffer use :r (7.3). To simply 
execute a command use :! (7.3) . 

Precedes a named buffer specification. There are named buffers 1-1 used for sav­
ing deleted text and nsmed buffers a-s into which you can place text (4.3, 6.3) 

The macro character which, when followed by a number, will substitute for a 
function key on terminals without function keys (6.9). In input mode, if this is 
your erase character, it will delete the last character you typed in input mode, 
and must be preceded with a \ to insert it,since it normally backs over the last 
input character you gave. 

Moves to the end of the ClllTeDt line. If you :se listCR, then the end of each line 
will be shown by printing a • after the end of the displayed text in the line. 
Given a count, advances to the count'th following end of line; thus 2$ advances 
to the end of the following line. 

Moves to the parenthesis or brace { } which balances the parenthesis or brace at 
the current cursor position. 

A synonym for :&CR, by analogy with the e% & command. 

When followed by a • returns to the previous context at the beginning of a line. 
The previous context is set whenever the current line is moved in a non-relative 
way. When followed by A letter a-.s, returns to the line which was marked with 
this letter with a m command, .at the first non-white character in the line. (2.2, 
5.3). When used with an operator such as d, the operation takes place over com­
plete lines; if you use " the operation takes place from the exact marked place to 
the current cursor position within the line. 

Retreats to the beginning of a sentence, or to the beginning of a LISP s-expression 
if the lup option is set. A sentence ends at a • ! or ! which is followed by either 
the end of a line or by two spaces. Any number of closing ) ] .. and ' characters 
may appear after the. ! or T, and before the spaces or end of line. Sentences also 
begin at paragraph and section boundaries (see { and [[ below}. A count advances 
that many sentences (4..2~ 6.8). 

Advances to the beginning of a sentence. A count repeats the effect. See ( above 
for the definition of a sentence (4.2, 6.8). 

Unused . 

Same as CR when used as a command. 

Reverse of the last t F t or T command, looking the other way in the current 
line. Especially useful after hitting too many ; characters. A count repeats the 
search. 

Retreats to the previous line at the first non-white character. This is the inverse 
of + and RETURN. If the line moveq to is not on the screen, the screen is scrolled, 
or cleared and redrawn if this is not possible. H a large amount of scrolling 
would be required the screen is also cleared and redrawn, with the current line at 
the center (2.3). 

Repeats the last command which changed the buffer. &pecially useful when 
deleting words or lines; you can delete some words/lines and then hit • to delete 
more and more words/lines. Given a count, it passes it on to the command being 
repeated. Thus after a 2dw, 8. deletes three words (3.3, 6.3, 7.2, 7.4). 

Reads a string from the last line on the screen, and scans forward for the next 
OCC\llTeDce of this string. The normal input editing sequences may be used during 
the input on the bottom line; an returns to command state without ever search­
ing. The search begins when you hit CR to terminate the pattern; the cursor 



o 

1-9 

< 

== 
> 

., 

@ 

A 
B 

C 

D 
E 

F 

G 

·26· 

moves to the beginning or the last line to indicate that the search is in progress; 
the search may then be terminated with a DEL or RUB, or by backspacing when at 
the beginning of the bottom line, returning the cursor to its initial position. 
Searches normally wrap end-around to find a string anywhere in the buffer. 

When used with an operator the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern you can force whole lines 
to be affected. To do this give a pattern with a closing a closing / and then an 
offset +n or -n. 
To include the character / in the search string, you must escape it with 8: preced­
ing \. A t at the beginning or the pattern forces the match to occur at the begin­
ning of a line only; this speeds the search. A' at the end of the pattern forces 
the match to occur at the end of a line only. More extended pattern matching is 
available, see section 7.4; unless you set Domagle in your .e:rrc file you will have 
to preceed the characters. [ • and - in the search pattern with a \ to get them to 
work as you would naively expect (1.5,2,2,6.1,7.2,7.4). 

Moves to the first character on the current line. Also used, in forming numbers, 
after an initial 1-9. 

Used to form numeric arguments to commands (2.3, 7.2). 

A prefix to a set of commands for file and option manipulation and escapes to the 
system. Input is given on the bottom line and terminated with an CR, and the 
command then executed. You can return to where you were by hitting DEL or 
RUB if you hit: accidentally (see primarily 6.2 and 7.3). 

Repeats the last single character find which used r F t or T. A count iterates the 
basic scan (4.1). 

An operator which shifts lines left one ehiftwidth, normally 8 spaces. Like all 
operators, affects lines when repeated, as in < <. Counts are passed through to 
the basic object, thus 3 < < shifts three lines (6.6, 7.2). 

Reindents line for USP, as though they were typed in with lisp and autoindent set 
(6.8). 
An operator which shifts lines right one ehiftwidth, normally 8 spaces. Affects 
lines when repeated as in > >. Counts repeat the basic object (6.6, 7.2). 

Scans backwards, the opposite of /. See the / description above for details on 
scanning (2.2,6.1, 7.4). 

A macro character (6.9). IT this is your kill character, you must escape it with a 
\ to type it in during input mode, as it normally backs over the input you have 
given on the current line (3.1,3.4, 7.5). 

Appends at the end of line, a synonym for Sa {7.2}. 

Backs up a word, where words are composed of non-blank sequences, placing the 
cursor at the beginning of the word. A count repeats the effect (2.4). 

Changes the rest of the text on the current line; a synonym for d. 
Deletes the rest of the text on the current line; a synonym for dS. 

Moves forward to the end of a word, defined as blanks and non-blanks, like B 
and W. A count repeats the effect. 

Finds a single following character, backwards in the current line. A count repeats 
this search that many times (4.1). 

Goes to the line number given as preceding argument, or the end of the file if no 
preceding count is given. The screen is redrawn with the new current line in the 
center if necessary {7.2}. 

o 



( 

H 

I 

J 

K 

L 

M 

N 

o 

p 

Q 

R 

s 

T 

U 

V 

W 

x 

y 

zz 

- 27-

Home arrow. Homes the cursor to the top line on the screen. If a count is 
given, then the eursor is moved to the count'th line on the screen. In any case 
the cursor is moved to the first non-white character on the line. If used as the 
target of an operator, full lines are affected (2.3, 3.2). 

Inserts at the heginning of a line; a synonym for ti. 
Joins together lines, supplying appropriate white space: one space between words, 
two spaces after a 0, and no spaces at all if the first character of the joined on line 
is). A count causes that many lines to be joined rather than the default two 
(6.5, 7.!f). 

Unused. 

Moves the cursor to the first non-white character of the last line on the screen. 
With a count, to the first non-white of the count'th line from the bottom. 
Operators affect whole lines when used with L (2.3). 

Moves the cursor to the middle line on the screen, at the first non-white position 
on the line (2.3). 

Scans for the next match of the last pattern given to / or !, but in the reverse 
direction; this is the reverse of n. 

Opens a new line above the current line and inputs text there up to an ESC. A 
count can be used on dumb terminals to specify a number of lines to be opened; 
this is generally obsolete, as the elowopen option works better (3.1). 

Puts the last deleted text back before/above the cursor. The text goes back as 
whole lines above the cursor if it was deleted as whole lines. Otherwise the text is 
inserted between the characters before and at the cursor. May be preceded by a 
named buffer specification "z to retrieve the contents of the buffer; buffers 1-9 
contain deleted material, buffers a-Ii are available for general use (6.3). 

Quits from vi to ez command mode. In this mode, whole lines form commands, 
ending with a RETURN. You can give all the: commands; the editor supplies the 
: as a prompt (7.7). 

Replaces characters on the screen with characters you type (overlay fashion). 
Terminates with an ESC. 

Changes whole lines, a synonym for ee. A count substitutes for that many lines. 
The lines are saved in the numeric buffers, and erased on the screen before the 
substitution begins. 

Takes a single following character, locates the character before the cursor in the 
current line, and places the cursor just after that character. A count repeats the 
effect. Most useful with operators such as d (4.1). 

Restores the current line to its state before you started changing it (3.5). 

Unused. 

Moves forward to the beginning of a word in the current line, where words are 
defined as sequences of blank/non-blank characters. A count repeats the effect 
(2.4). 
Deletes the character before the cursor. A count repeats the effect, but only char­
acters on the current line are deleted. 

Yanks a copy of the CUJTeDi line into the unnamed buffer, to be put back by a 
later p or P; a very useful synonym for Y7. A count yanks that many lines. May 
be preceded by a bufier name to put lines in that buffer (1.4). 

Exits the editor. (Same as :XCR.) If any changes have been made, the buffer is 
written out to the current file. Then the editor quits. 



[[ 

\ 
]] 
t 

a 

b 

c 

d 

e 

t 

g 

h 

i 

j 

k 

- 28-

Backs up to the previous section boundary. A section begins at each macro in the 
.ettioft. option, normally a '.NII' or '.SII' and also at lines which which start 
with a formfeed AL. Lines beginning with { also stop H; this makes it useful for 
looking backwards, a function at a time, in C programs. If the option 1i8" is set, 
stops at each ( at the beginning of a line, and is thus useful for moving back­
wards at the top level LISP objects. (4.2, 6.1, 6.6, 7.2). 

Unused. 

Forward to a section boundary, see [[ for a definition (4.2, 6.1, 6.6, 7.2). 

Moves to the first non-white position on the current line (4.4). 
Unused. 

When followed by a ' returns to the previous context. The previous context is set 
whenever the current line is moved in a non-relative way. When followed by a 
letter a-s, returns to the position which was marked with this letter with a m 
command. When used with an operator such as d, the operation takes place 
from the exact marked place to the current position within the line; if you use " 
the operation takes place over complete lines (2.2, 5.3). 

Appends arbitrary text after the current cursor position; the insert can continue 
onto multiple lines by using RETURN within the insert. A count causes the 
inserted text to be replicated, but only if the inserted text is all on one line. The 
insertion terminates with an ESC (3.1, 7.2). 

Backs up to the beginning of a word in the current line. A word is a sequence of 
alphanumerics, or a sequence of special characters. A count repeats the effect 
(2.4). 

An operator which changes the following object, replacing it with the following 
input text up to an ESC. If more than part of a single line is affected, the text 
which is changed away is saved in the numeric named buffers. If only part of the 
current line is affected, then the last character to be changed away is marked with 
a S. A count causes that many objects to be affected, thus both 3e) and c3) 
change the following three sentences (7.4). 

An operator which deletes the following object. If more than part of a line is 
affected, the text is saved in the numeric buffers. A count causes that many 
objects to be affected; thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4). 

Advances to the end of the next word, defined as for b and w. A count repeats 
the effect (2.4, 3.1). 

Finds the first instance of the next character following the cursor on the current 
line. A count repeats the find (4.1). 

Unused. 

Arrow keys h, j, k, 1, and H. 

Left arrow. Moves the cursor one character to the left. Like the other arrow 
keys, either h, the lett arrow key, or one of the synonyms rH) has the same 
effect. On v2 editors, arrow keys on certain kinds of terminals (those which send 
escape sequences, such as vt52, c100, or hp) cannot be used. A count repeats the 
effect (3.1, 7.5). 

Inserts text before the cursor, otherwise like a (7.2). 

Down alTOw. Moves the cursor one line down in the same column. If the posi­
tion does not exist, vi comes as close as possible to the same column. Synonyms 
include· J (lineCeed) and "N. 

Up arrow. Moves the cursor one line up. "P is a synonym. 

o 



(/', 

( 

1 

m 

D 

0 

P 
q 

r 

8 

t 

u 

v 

w 

x 

y 

z 

{ 

I 
} 

·7 (DEL) 

- 29-

Right arrow. Moves the cursor one character to the right. SPACE is a synonym. 

Marks the current position of the cursor in the mark register which is specified by 
the next character a-so Return to this position or use with an operator using , or 
, (5.3). 

Repeats the last / or ! scanning commands (2.2). 

Opens new lines below the current line; otherwise like 0 (3.1). 

Puts text after/below the cursorj othet:Wise like P (6.3). 

Unused. 

Replaces the single character at the cursor with a single character you type. The 
new character may be a RETURNj this is the easiest way to split lines. A count 
replaces each of the following count characters with the single character given; see 
R above which is the more usually useful iteration of r (3.2). 

Changes the single character under the cursor to the text which follows up to an 
ESC; given a count, that many characters from the current line are changed. The 
last character to be changed is marked with $ as in e (3.2). 

Advances the cursor upto the character before the next character typed. Most 
useful with operators such as d and e to delete the characters up to a following 
character. You can use • to delete more if this doesn't delete enough the first 
time (4.1). 

Undoes the last change made to the current buffer. If repeated, will alternate 
between these two states, thus is its own inverse. When used after an insert which 
inserted text on more than one line, the lines are saved in the numeric named 
buffers (3.5). 

Unused. 

Advances to the beginning of the next word, as defined by b (2.4). 

Deletes the single character under the cursor. With a count deletes deletes that 
many characters forward from the cursor position, but only on the current line 
(6.5). 
An operator, yanks the following object into the unnamed temporary buffer. If 
preceded by a named buffer specification, "%, the text is placed in that buffer also. 
Text can be recovered by a later p or P (7 A). 
Redraws the screen with the current line placed as specified by the following char­
acter: RETURN specifies the top of the screen, • the center of the screen, and - at 
the bottom of the screen. A count may be given after the z and before the fol­
lowing character to specify the new screen size for the redraw. A count before the 
z gives the number of the line to place in the center of the screen instead of the 
default current line. (504) 
Retreats to the beginning of the beginning of the preceding paragraph. A para­
graph begins at each macro in the paragraphs option, normally '.IP', '.LP', '.PP', 
'.QP' and '.bp'. A paragraph also begins after a completely empty line, and at 
each section boundary (see [[ above) (4.2, 6.8, 7.6). 

Places the cursor on the character in the column specified by the count (7.1, 7.2). 

Advances to the beginning of the next paragraph. See { for the definition of 
paragraph (4.2, 6.8, 7.6). 

Unused. 

Interrupts the editor, returning it to command accepting state (1.5, 7.5) 

-------- ., --- -.-~ - - "-- -- «-~- ----- ~- - ---- - ~ 



(\ 
U 

c 



(' 

Vi Command & Function Reference 

Alan P. W. Hewett 

RetJi&ed for tJer&ion e.le 6,1 Mark Horton 

1. Author's Disclaimer 

This document does not claim to be 100% complete. There are a Cew commands listed in the origi­
nal document that I was unable to test either because I do not speak lisp, because they required 
programs we don't have, or because I wasn't able to make them work. In these cases I leCt the 
command out. The commands listed in this document have been tried and are known to work. It 
is expected that prospective users of this document will read it once to get the flavor of everything 
that vi can do and then use it as a reference document. Experimentation is recommended. If you 
don't understand a command, try it and see what happens. 

[Note: In revising this document, I have attempted to make it completely reflect version 2.12 of vi. 
It does not attempt to document the VAX version (version 3), but with one or two exceptions 
(wrapmargin, arrow keys) everything said about 2.12 should apply to 3.1. Mark Horton 1 

2. Notation 

[option] is used to denote optional parts of a command. Many vi commands have an optional 
count. [cnt] means that an optional number may precede the command to multiply or iterate the 
command. {variable item} is used to denote parts of the command which must appear, but can 
take a number oC different values. <character [-character]> means that the character or one 
oC the characters in the range described between the two angle brackets is to be typed. For exam­
ple <esc> means the escape key is to be typed. <a-z> means that a lower case letter is to be 
typed. A <character> means that the character is to be typed as a control character, that is, 
with the <cntl> key held down while simultaneously typing the specified character. In this 
document control characters will be denoted using the upper case character, but A <uppercase 
chr> and A <lowercase chr> are equivalent. That is, Cor example, < AD> is equal to < Ad>. 
The most common character abbreviations used in this list are as follows: 

< esc> escape, octal 033 

<cr> carriage return, AM, octal 015 

<If> lineCeed A J, octal 012 

<nl> newline, A J, octal 012 (same as lineCeed) 

<bs> backspace, AH, octal 010 

<tab> tab, AI, octal 011 

<bell> bell, "G, octal 07 

<ff> Cormfeed, AL, octal 014 

<sp> space, octal 040 

<del> delete, octal 0177 



[cnt]B 

[cntJe 

[cnt]E 

[line number]G 

Move the cursor to the preceding word that is separated from the current word 
by a "white space" «sp> ,<tab>, or <nl». 

Move the cursor to the end of the current word or the end of the "cnt"'th word 
hence. Mnemonic: end-of-word 

Move the cursor to the end of the current word which is delimited by "white 
space" «sp>,<tab>, or <nl». 

Move the cursor to the line specifie4. Of particular use are the sequences "lG" 
and "G", which move the cursor to the beginning and the end of the file respec­
tively. Mnemonic: Go-to 

NOTE: The next four commands ("D, AU, AF, "B) are not true motion commands, in that they 
cannot be used as the object of commands such as delete or change. 

[cntJ"D Move the cursor down in the file by "cnt" lines (or the last "cnt" if a new count 
isn't given. The initial default is half a page.) The screen is simultaneously 
scrolled up. Mnemonic: Down 

[cnt}"U Move the cursor up in the file by "cnt" lines. The screen is simultaneously 
scrolled down. Mnemonic: Up 

[cntj"F 

[cnt]·B 

[cntJ( 

[cnt]) 

[cnt]} 

[cnt]{ 

]J 

[[ 
% 

[cnt]H 

Move the cursor to the next page. A count moves that many pages. Two lines 
of the previous page are kept on the screen for continuity if possible. Mnemonic: 
Forward-a-page 

Move the cursor to the previous page. Two lines of the current page are kept if 
possible. Mnemonic: Backup-a-page 

Move the cursor to the beginning of the next sentence. A sentence is defined as 
ending with a ..... , "!", or "7" followed by two spaces or a <nl>. 

Move the cursor backwards to the beginning of a sentence. 

Move the cursor to the beginning of the next paragraph. This command works 
best inside nroff documents. It understands two sets of nroff macros, -ms and 
-mm, for which the commands ".lP", ".LP", ".PP", ".QP", ''P'', as well as the 
nroff command ".bp" are considered to be paragraph delimiters. A blank line 
also delimits a paragraph. The nroff macros that it accepts as paragraph delim­
iters is adjustable. See paragraphs under the Set Commands section. 

Move the cursor backwards to the beginning of a paragraph. 

Move the cursor to the next "section", where a section is defined by two sets of 
nroff macros, -ms and -mm, in which ".NH", ".SH", and ".H" delimit a section. 
A line beginning with a <ff> <nl> sequence, or a line beginning with a "{" are 
also considered to be section delimiters. The last option makes it useful for 
finding the beginnings of C functions. The nroff macros that are used for sec­
tion delimiters can be adjusted. See sections under the Set Commands sec­
tion. 

Move the cursor backwards to the beginning of a section. 

Move the cursor to the matching parenthesis or brace. This is very useful in C 
or lisp code. If the cursor is sitting on a ( ) { or } the cursor is moved to the 
matching character at the other end of the section. If the cursor is not sitting 
on a brace or a parenthesis, vi searches forward until it finds one and then 
jumps to the match mate. 

If there is no count move the cursor to the top left position on the screen. If 
there is a count, then move the cursor to the beginning of the line "cnt" lines 
from the top of the screen. Mnemonic: Home 

o 

c 



(.-

c 

-3-

4.1. Entry and Exit 

To enter vi on a particular file , type 

vi file 

The file will be read in and the cursor will be placed at the beginning of the first line. The first 
screenfull of the file will be displayed on the terminal. 

To get out of the editor, type 

ZZ 
If you are in some special mode, such as input mode or the middle of a multi-keystroke command, 
it may be necessary to type <esc> first. 

4.2. Cursor and Page Motion 

NOTE: The arrow keys (see the next four commands) on certain kinds of terminals will not work 
with the PDP-ll version of vi. The control versions or the hjklversions will work on any termi­
nal. Experienced users prefer the hjkl keys because they are always right under their fingers. 
Beginners often prefer the arrow keys, since they do not require memorization of which hjkl key is 
which. The mnemonic value oC hjkl is clear from looking at the keyboard of an adm3a. 

[cnt]<bs> or [cnt]h or [cnt]-
Move the cursor to the leCt one character. Cursor stops at the left margin of the 
page. If cnt is given, these commands move that many spaces. 

[cnWN or [cntJj or [cntJl or [cnt]<lf> 
Move down one line. Moving oft' the screen scrolls the window to force a new 
line onto the screen. Mnemonic: Next 

[cnWP or [cnt]k or [cnt]f 
Move up one line. Moving oft' the top of the screen Corces new text onto the 
screen. Mnemonic: Previous 

[cnt]<sp> or [cnt]l or [cnt]-
Move to the right one character. Cursor will not go beyond the end of the line. 

[cnt]- Move the cursor up the screen to the beginning of the next line. Scroll if neces-
sary. 

[cnt]+ or [cnt] <cr> 

[cnt]$ 

o 
[cntJl 

[cnt]w 

[cnt]W 

[cnt]b 

Move the cursor down the screen to the beginning of the next line. Scroll up if 
necessary. 

Move the cursor to the end of the line. If there is a count, move to the end of 
the line "cnt" lines forward in the file. 

Move the cursor to the beginning of the first word on the line. 

Move the cursor to the left margin of the current line. 

Move the cursor to the column specified by the count. The deCault is column 
zero. 

Move the cursor to the beginning oC the next word. If there is a count, then 
move forward that many words and position the cursor at the beginning of the 
word. Mnemonic: nex~word 

Move the cursor to the beginning of the next word which follows a "white space" 
( <sp >, <tab>, or < nl ». Ignore other punctuation. 

Move the cursor to the preceding word. Mnemonic: backup-word 

------------ ._- -_. ---- ... -------~-- ----.-----~-.-----.-------.-.--... ----------- ------.-- .. -~- .. ---.---



-6-

n Repeat the last /Istring]/ or ?[string]? search. Mnemonic: next occurrence. 

N Repeat the last j(stringJl or ?[string]? search, but in the reverse direction. 

:g/[string]/[editor command] <nl > 

Using the : syntax it is possible to do global searches ala the standard UNIX 
"ed" editor. 

4.4. Text Insertion 

The following commands allow for the insertion of text. All multicharacter text insertions are ter­
minated with an <esc> character. The last change can always be undone by typing a u. The 
text insert in insertion mode can contain newlines. 

a{text} < esc > Insert text immediately following the cursor position. Mnemonic: append 

A{text} < esc > Insert text at the end of the current line. Mnemonic: Append 

i{text} < esc > Insert text immediately preceding the cursor position. Mnemonic: insert 

I{text}<esc> Insert text at the beginning of the current line. 

o{text} < esc > Insert a new line after the line on which the cursor appears and insert text there. 
Mnemonic: open new line 

O{text} <esc> Insert a new line preceding the line on which the cursor appears and insert text 
there. 

4.5. Text Deletion 

The following commands allow the user to delete text in various ways. All changes can always be 
undone by typing the u command. 

[cnt]x Delete the character or characters starting at the cursor position. 

[cnt]X Delete the character or characters starting at the character preceding the cursor 
position. 

D Deletes the remainder of the line starting at the cursor. Mnemonic: Delete the 
rest of line 

[cnt]d{motion} 
Deletes one or more occurrences of the specified motion. Any motion from sec­
tions 4.1 and 4.2 can be used here. The d can be stuttered (e.g. [cnt]dd) to 
delete cnt lines. 

4.6. Text Replacement 

The following commands allow the user to simultaneously delete and insert new text. All such 
actions can be undone by typing u following the comma~d. 

r<chr> Replaces the character at the current cursor position with <chr>. This is a one 
character replacement. No <esc> is required for termination. Mnemonic: 
replace character 

R{ text} < esc > Starts overlaying the characters on the screen with whatever you type. It does 
not stop until an <esc> is typed. 

[cnt]s{text} < esc > Substitute for "ent" characters beginning at the current cursor position. A "S" 
will appear at the position in the text where the "cnt"'th character appears so 
you will know how much you are erasing. Mnemonic: substitute 

[cnt]S{text}<esc>Substitute for the entire current line (or lines). If no count is given, a "S" 
appears at the end of the current line. If a count of more than 1 is given, all the 
lines to be replaced are deleted before the insertion begins. 

[cnt]c{motion}{text} < esc> 
Change the specified "motion" by replacing it with the insertion text. A "S" will 

/--~ . 
I ' 

\,,--) 

o 



( 

c 

[cnt]L 

M 

m<a-z> 

'<a-z> 

'<a-z> 

4.3. Searches 

-5-

It there is no count move the cursor to the beginning of the last line on the 
screen. It there is a count, then move the cursor to the beginning of the line 
"cnt" lines from the bottom of the screen. Mnemonic: Last 

Move the cursor to the beginning of the middle line on the screen. Mnemonic: 
Middle 

This command does not move the cursor, but it marks the place in the file and 
the character "<a-z>" becomes the label for referring to this location in the file. 
See the next two commands. Mnempnic: mark NOTE: The mark command is 
not a motion, and cannot be used as the target of commands such as delete. 

Move the cursor to the beginning of the line that is marked with the label "< a­
z>". 

Move the cursor to the exact position on the line that was marked with with the 
label "<a-z>". 

Move the cursor back to the beginning of the line where it was before the last 
"non-relative" move. A "non-relative" move is something such as a search or a 
jump to a specific line in the file, rather than moving the cursor or scrolling the 
screen. 

Move the cursor back to the exact spot on the line where it was located before 
the last "non-relative" move. 

The following commands allow you to search for items in a file. 

[cnt]f{ chr} 

[cnt]F{chr} 

[cnt]t{ chr} 

[cnt]T{chr} 

[cnt]; 

[cnt] , 

Search forward on the line for the next or "cnt"'th occurrence of the character 
"chr". The cursor is placed at the character of interest. Mnemonic: find charac­
ter 

Search backwards on the line for the next or "cnt"'th occurrence of the character 
"chr". The cursor is placed at the character of interest. 

Search forward on the line for the next or "cnt"'th occurrence of the character 
"chr". The cursor is placed just preceding the character of interest. 
Mnemonic: move cursor up to character 

Search backwards on the line for the next or "cnt"'th occurrence of the character 
"chr". The cursor is placed Just preceding the character of interest. 

Repeat the last "r, ''F'', "t" or "T" command. 

Repeat the last tor', "F", "t" or "T" command, but in the opposite search direc­
tion. This is useful if you overshoot. 

[cntJj[stringJ/ <nl> 
Search forward for the next occurrence of "string". Wrap around at the end of 
the file does occur. The final <I> is not required. 

[cnt]?[string]? <nl > 
Search backwards fOf the next occurrence of "string". If a count is specified, the 
count becomes the new window size. Wrap around at the beginning of the file 
does OCCUf. The final <1> is not required. 



-8-

4.8. Miscellaneous Commamda 

Vi has a number of miscellaneous commands that are very useful. They are: 

ZZ This is the normal way to exit from vi. H any changes have been made, the file 
is written out. Then you are returned to the shell. 

u 

U 

[cnt]J 

Q 

Redraw the current screen. This is useful if someone "write"s you while you are 
in "vi" or if for any reason garbage gets onto the screen. 

On dumb terminals, those not having the "delete line" function (the vt100 is 
such a terminal), vi saves redrawing the screen when you delete a line by just 
marking the line with an "@" at the beginning and blanking the line.' H you 
want to actually get rid of the lines marked with "@" and see what the page 
looks like, typing a AR will do this. 

"Dot" is a particularly useful command. It repeats the last text modifying com­
mand. Therefore you can type a command once and then to another place and 
repeat it by just typing ".". 

Perhaps the most important command in the editor, u undoes the last command 
that changed the buffer. Mnemonic: undo 

Undo all the text modifying commands performed on the current line since the 
last time you moved onto it. 

Join the current line and the following line. The <nl> is deleted and the two 
lines joined, usually with a space between the end of the first line and the begin-
ning of what was the second line. H the first line ended with a "period", then 
two spaces are inserted. A count joins the next cnt lines. Mnemonic: Join lines 

Switch to ex editing mode. In this mode vi will behave very much like ed. The 
editor in this mode will operate on single lines normally and will not attempt to 
keep the "window" up to date. Once in this mode it is also possible to switch to 
the open mode of editing. By entering the command [line 
number]open<nl> you enter this mode. It is similar to the normal visual 
mode except the window is only one line long. Mnemonic: Quit visual mode 

A] An abbreviation for a tag command. The cursor should be positioned at the 
beginning of a word. That word is taken as a tag name, and the tag with that 
name is found as if it had been typed in a :tag command. 

[cnt]!{motion}{UNIX cmd}<nl> 

z{cnt}<nl> 

Any UNIX filter (e.g. command that reads the standard input and outputs 
something to the standard output) can be sent a section of the current file and 
have the output of the command replace the original text. Useful examples are 
programs like cb, sort, and nroft'. For instance, using sort it would be possible 
to sort a section of the current file into a new list. Using!! means take a line or 
lines starting at the line the cursor is currently on and pass them to the UNIX 
command. NOTE: To just escape to the shell Cor one command, use 
:!{cmd}<nl>, see section 5. 

This resets the current window size to "cnt" lines and redraws the screen. 

4.9. Special Insert Characters 

There are some characters that have special meanings during insert modes. They are: 

AV During inserts, typing a AV allows you to quote control characters into the file. 

rrD or [OrO 

Any character typed after the AV will be inserted into the file. 

< AD> without any argument backs up one shiftwidth. This is necessary to 
remove indentation that was inserted by the autoindent Ceature. • < AD> 
temporarily removes all the autoindentation, thus placing the cursor at the left 
margin. On the next line, the previous indent level will be restored. This is 

o 



-~~--~~----------------~------

( 

( 

c' 

-7-

appear at the end of the last item that is being deleted unless the deletion 
involves whole lines. Motion's can be any motion from sections 4.1 or 4.2. 
Stuttering the c (e.g. [cnt]cc) changes cnt lines. 

4.7. Moving Text 

Vi provides a number of ways of moving chunks of text around. There are nine buffers into which 
each piece of text which is deleted or "yanked" is put in addition to the "undo" buffer. The most 
recent deletion or yank is in the "undo" buffer and also usually in buffer 1, the next most recent in 
buffer 2, and so forth. Each new deletion pushes down 'all the older deletions. Deletions older than 
9 disappear. There is also a set of named registers, &-z, into which text can optionally be placed. 
If any delete or replacement type command is preceded by "<&-11>, that named buffer will con­
tain the text deleted after the command is executed. For example, "a3dd will delete three lines 
starting at the current line and put them in buffer "a.· There are two more basic commands and 
some variations useful in getting and putting text into a file. 

["<a-z> j[cnt]y{motion} 

Yank the specified item or "cnt" items and put in the "undo" buffer or the 
specified buffer. The variety of "items" that can be yanked is the same as those 
that can be deleted with the "d" command or changed with the "c" command. 
In the same way that "dd" means delete the current line and "cc" means replace 
the current line, "yy" means yank the current line. 

[" <a-z> ][cnt]Y Yank the current line or the "cnt" lines starting from the current line. If no 

["<a-z>]p 

buffer is specified, they will go into the "undo" buffer, like any delete would. It 
is equivalent to "yy". Mnemonic: Yank 

Put "undo" buffer or the specified buffer down after the cursor. If whole lines 
were yanked or deleted into the buffer, then they will be put down on the line 
following the line the cursor is on. If something else was deleted, like a word or 
sentence, then it will be inserted immediately following the cursor. Mnemonic: 
put buffer 

It should be noted that text in the named buffers remains there when you start 
editing a new file with the :e flle<esc> command. Since this is so, it is possi­
ble to copy or delete text from one file and carry it over to another file in the 
buffers. However, the undo buffer and the ability to undo are lost when chang­
ing files. 

[" < a-z > ]P Put "undo" buffer or the specified buffer down before the cursor. If whole lines 
where yanked or deleted into the buffer, then they will be put down on the line 
preceding the line the cursor is on. If something else was deleted, like a word or 
sentence, then it will be inserted immediately preceding the cursor. 

[cnt] > {motion} The shift operator will right shift all the text from the line on which the cursor 
is located to the line where the motion is located. The text is shifted by one 
.hittwidth. (See section 6.) > > means right shift the current line or lines. 

[cnt] < {motion} The shift operator will left shift all the text from the line on which the cursor is 
located to the line where the item is located. The text is shifted by one 
.hiftwidth. (See section 6.) < < means left shift the current line or lines. 
Once the line has reached the left margin it is not further affected. 

[cnt]={motion} Prettyprints the indicated area according to lisp conventions. The area should 
be a lisp s-expression. 

" Referring to a.n upper case letter as a. butl'er name (A-Z) is the sa.me a.s referring to the lower ca.se letter, except 
tha.t text placed in such a. butl'er is a.ppended to it instea.d of replacing it. 



-10 -

tag filename vi-search-command 

If vi finds the tag you specified in the :ta command, it stops editing the current 
file if necessary and if the current file is up to date on the disk and switches to 
the file specified and uses the search pattern specified to find the "tagged" item of 
interest. This is particularly useful when editing multi-file C programs such as 
the operating system. There is a program called ctags which will generate an 
appropriate tags file for C and r17 programs 80 that by saying :ta 
funetion<nI> you will be switched to that function. It could also be useful 
when editing multi-file documents, though the tags file 'Would have to be gen­
erated manually. 

8. Special Arrangements for Startup 

Vi takes the value of 'TERM and looks up the characteristics of that terminal in the file 
/etc/termcap. If you don't know vi's name for the terminal you are working on, look in 
/ete/termcap. 

'When vi starts, it attempts to read the variable EXINIT from your environment. * If that 
exists, it takes the values in it as the default values for certain of its internal constants. See the 
section on "Set Values" for further details. If EXINIT doesn't exist you will get all the normal 
defaults. 

Should you inadvertently hang up the phone while inside vi, or should the computer crash, 
all may not be lost. Upon returning to the system, type: 

vi -r file 

This will normally recover the file. If there is more than one temporary file for a specific file name, 
vi recovers the newest one. You can get an older version by recovering the file more than once. 
The command "vi _rtf without a file name gives you the list of files that were saved in the last sys­
tem crash (but not the file just saved when the phone was hung up). 

7. Set Commands 

Vi has a number of internal variables and switches which can be set to achieve special affects. 
These options come in three forms, those that are switches, which toggle from off to on and back, 
those that require a numeric value, and those that require an alphanumeric string value. The tog­
gle options are set by a command of the form: 

:set option <nl > 

and turned off with the command: 

:set nooption <nl > 

Commands requiring a value are set with a command of the form: 

:set option-value<nl> 

To display the value of a specific option type: 

:set option? <nl> 

To display only those that you have changed type: 

:set<nl> 

and to display the long table of all the settable parameters and their current values type: 

• On version 6 systems Instead or EXINIT, put the startup commands in the lile .exrc in your home directory. 

o 



( 

<bs> 

i. : Commands 

-9-

useful for putting "labels" at the left margin. 0< AD> says remove all autoin­
dents and stay that way. Thus the cursor moves to the left margin and stays 
there on successive lines until <tab>'s are typed. As with the <tab>, the 
< AD> is only effective before any other "non-autoindent" controlling characters 
are typed. Mnemonic: Delete a shiftwidth 

If the cursor is sitting on a word, < AW> moves the cursor back to the begin­
ning of the word, thus erasing the word from the insert. Mnemonic: erase Word 

The backspace always serves as an erase during insert modes in addition to your 
normal "erase" character. To insert a <bs> into your file, use the < AV> to 
quote it. 

Typing a ":" during command mode causes vi to put the cursor at the bottom on the screen in 
preparation for a command. In the ":" mode, vi can be given most ed commands. It is also from 
this mode that you exit from vi or switch to different files. All commands of this variety are ter­
minated by a <nl>, <cr>, or <esc>. 

:wll] [file] Causes vi to write out the current text to the disk. It is written to the file you 
are editing unless "file" is supplied. If "file" is supplied, the write is directed to 
that file instead. If that file already exists, vi will not perform the write unless 
the "'" is supplied indicating you really want to destroy the older copy of the 
file. 

:q['] 

:e[!] [+[cmd]] [file] 

Causes vi to exit. If you have modified the file you are looking at currently and 
haven't written it out, vi will refuse to exit unless the "'" is supplied. 

Start editing a new file called "file" or start editing the current file over again. 
The command ":e'" says "ignore the changes I've made to this file and start over 
from the beginning". It is useful if you really mess up the file. The optional "+" 
says instead of starting at the beginning, start at the "end·', or, if "cmd" is sup­
plied, execute "cmd" first. Useful cases of this are where cmd is "n" (any integer) 
which starts at line number n, and "/text", which searches Cor "text" and starts 
at the line where it is found. 

Switch back to the place you were before your last tag command. If your last 
tag command stayed within the file, A A returns to that tag. If you have no 
recent tag command, it will return to the same place in the previous file that it 
was showing when you switched to the current file. 

:n[!] Start editing the next file in the argument list. Since vi can be called with mul­
tiple file names, the ":n" command tells it to stop work on the current file and 
switch to the next file. If the current file was modifies, it has to be written out 
before the ":n" will work or else the "I" must be supplied, which says discard the 
changes I made to the current file. 

:n [I] file [file file ... J 

:r file 

:r Icmd 

:Icmd 

:tall] tag 

Replace the current argument list with a new list of files and start editing the 
first file in this new list. 

Read in a copy oC "file" on the line after the cursor. 

Execute the "cmd" and take its output and put it into the file after the current 
line. 

Execute any UNIX shell command. 

Vi looks in the file named tags in the current directory. Tags is a file of lines 
in the format: 

~~-----~~ -~ ----~------~-~--~ 



open 

- 12-

Default: open Type: toggle 
When set, prevents entering open or visual modes from ex or edit. Not of 
interest from vi. 

optimize opt Default: opt Type: toggle 
Basically of use only when using the ex capabilities. This option prevents 
automatic <cr>s from taking place, and speeds up output of indented lines, at 
the expense of losing t~ahead on some versions of UNIX. 

paragraphs para Default: para-IPLPPPQPP bp Type: string 

prompt 

redraw 

report 

scroll 

Each pair of characters in the string indicate nroff macros which are to be 
treated as the beginning of a paragraph for the { and } commands. The default 
string is for the -IDS and -mm macros. To indicate one letter nroff macros, 
such as .P or .H, quote a space in for the second character position. For exam­
ple: 

:set paragraphs=P\ bp<nl> 

would cause vi to consider .P and .bp as paragraph delimiters. 

Default: prompt Type: toggle 
In ex command mode the prompt character: will be printed when ex is waiting 
Cor a command. This is not of interest from vi. 

Default: noredraw Type: toggle 
On dumb terminals, force the screen to always be up to date, by sending great 
amounts of output. Useful only at high speeds. 

Default: report=5 Type: numeric 
This sets the threshold for the number of lines modified. When more than this 
number of lines are modified, removed, or yanked, vi will report the number of 
lines changed at the bottom of the screen. 

Default: scroll={1/2 window} Type: numeric 
This is the number of lines that the screen scrolls up or down when using the 
<AU> and <AD> commands. 

sections Default: sections=SHNHH HU Type: string 
Each two character pair of this string specify nroff macro names which are to be 
treated as the beginning of a section by the )] and [[ commands. The default 
string is for the -IDS and -mm macros. To enter one letter nroff macros, use a 
quoted space as the second character. See paragraphs for a fuller explanation. 

shell sh Default: sh=from environment SHELL or /bin/sh Type: string 
This is the name of the sh to be used for "escaped" commands. 

shiftwidth sw Default: sw=8 Type: numeric 
This is the number of spaces that a < AT> or < AD> will move over for 
indenting, and the amount < and > shift by. 

showmatch sm Default: nosm Type: toggle 
When a ) or } is typed, show the matching ( or { by moving the cursor to it for 
one second if it is on the current screen. 

slowopen slow Default: terminal dependent Type: toggle 
On terminals that are slow and unintelligent, this option prevents the updating 
of the screen some of the time to improve speed. 

tabstop ts Default: ts=8 Type: numeric 
<tab>s are expanded to boundaries that are multiples of this value. 

taglength tl DeCault: tl=O Type: numeric 
IC nonzero, tag names are only significant to this many characters. c 



( 

c 

- 11-

:set all<nl> 

Most of the options have a long Corm and an abbreviation. Both are listed in the following 
table as well as the normal default value. 

To arrange to have values other than the deCault used every time you enter vi, place the 
appropriate set command in EXINIT in your environment, e.g. 

EXINIT='set ai aw terse sh=/bin/csh' 
export EXINIT 

or 

setenv EXINIT 'set ai aw terse sh=/bin/csh' 

for sh and esh, respectively. These are usually placed in your .profile or .login. If you are run­
ning a system without environments (such as version 6) you can place the set command in the file 
.exrc in your home directory. 

autoindent ai DeCault: noai Type: toggle 

autoprint ap 

autowrite aw 

beautify bf 

directory dir 

errorbells eb 

hardtabs ht 

ignorecase ic 

lisp 

list 

magic 

number nu 

When in autoindent mode, vi helps you indent code by starting each line in the 
same column as the preceding line. Tabbing to the right with <tab> or 
< AT> will move this boundary to the right, and it can be moved to the left 
with <AD>. 

Default: ap Type: toggle 
Causes the current line to be printed after each ex text modifying command. 
This is not of much interest in the normal vi visual mode. 

Default: noaw type: toggle 
Autowrite causes an automatic write to be done if there are unsaved changes 
before certain commands which change files or otherwise interact with the out­
side world. These commands are :!, :tag, :next, :re"ind, A A, and A]. 
Default: nobf Type: toggle 
Causes all control characters except <tab>, <nl>, and <if> to be discarded. 

Default: dir=/tmp Type: string 
This is the directory in which vi puts its temporary file. 

Default: noeb Type: toggle 
Error messages are preceded by a <bell>. 

Default: hardtabs=8 Type: numeric 
This option contains the value of hardware tabs in your terminal, or of software 
tabs expanded by the Unix system. 

Default: noic Type: toggle 
All upper case characters are mapped to lower case in regular expression match­
ing. 

Default: nolisp Type: toggle 
Autoindent for lisp code. The commands ( ) [[ and JJ are modified appropri­
ately to affect s-expressions and functions. 

Default: nolist Type: toggle 
All printed lines have the <tab> and <nl> characters displayed visually. 

Default: magic Type: toggle 
Enable the metacharacters for matching. These include • • < > [string] 
rstring] and [<chr>-<chr>]. 

Default: nonu Type: toggle 
Each line is displayed with its line number. 



o 

o 



( '"-

.. 

( 

term 

- 13-

Default: (from environment TERM, else dumb) Type: string 
This is the terminal and controls the visual displays. It cannot be changed when 
in "visual" mode, you have to Q to command mode, type a set term command, 
and do "vi." to get back into visual. Or exit vi, fix 'TERM, and reenter. The 
definitions that drive a particular terminal type are found in the file 
/ete/termeap. 

terse Default: terse Type: toggle 
When set, the error diagnostics are short. 

warn Default: warn Type: toggle 
The user is warned if she/he tries to escape to the shell without writing out the 
current changes. 

window Default: window={8 at 600 baud or less, 16 at 1200 baud, and screen size - 1 at 
2400 baud or more} Type: numeric 
This is the number of lines in the window whenever vi must redraw an entire 
screen. It is useful to make this size smaller if you are on a slow line. 

w300, w1200, w9600 

wrapscan ws 

These set window, but only within the corresponding speed ranges. They are 
useful in an EXINIT to fine tune window sizes. For example, 

set w300=4 wI200=12 

causes a 4 lines window at speed up to 600 baud, a 12 line window at 1200 
baud, and a full screen (the default) at over 1200 baud. 

Default: ws Type: toggle 
Searches will wrap around the end of the file when is option is set. When it is 
oft', the search will terminate when it reaches the end or the beginning of the file. 

wrap margin wm Default: wm-O Type: numeric 

writeany wa 

Vi will automatically insert a <nl> when it finds a natural break point (usu­
ally a <sp> between words) that occurs within "wm" spaces of the right mar­
gin. Therefore with "wm=O" the option is oft'. Setting it to 10 would mean 
that any time you are within 10 spaces of the right margin vi would be looking 
for a <sp> or <tab> which it could replace with a <nl>. This is convenient 
for people who forget to look at the screen while they type. (In version 3, wrap-­
margin behaves more like nroft', in that the boundary specified by the distance 
from the right edge of the screen is taken as the rightmost edge of the area 
where a break is allowed, instead of the leftmost edge.) 

Default: nowa Type: toggle 
Vi normally makes a number of checks before it writes out a file. This prevents 
the user from inadvertently destroying a file. When the "writeany" option is 
enabled, vi no longer makes these checks. 



o 



c 

A Tutorial Introduction to the UNIX Text Editor 

Brian W. Kemighan 

ABSTRACT 

Almost all text input on the UNIXt operating system is done with the text­
editor ed. This memorandum is a tutorial guide to help beginners get started with 
text editing. 

Although it does not cover everything, it does discuss enough for most users' 
day-to-day needs. This includes printing, appending, changing, deleting, moving 
and inserting entire lines of text; reading and writing files; context searching and 
line addressing; the substitute command; the global commands; and the use of 
special characters for advanced editing. 

September 12, 1986 

t UNIX is a trademark or Bell Laboratories. 



a 
Now is the t.ime 
for all good men 
to come to the aid of their party. 

The only way to stop appending is to type a 
line that contains only a period. The III' is used to 
tell ed that you have finished appending. (Even 
experienced users forget that terminating 1(1' some­
times. If ed seems to be ignoring you, type an 
extra line with just .01 on it. You may then find 
you've added some garbage lines to your text, 
which you'll have to take out later.) 

After the append command has been done, the 
buffer will contain the three lines 

Now is the time 
for all good men 
to come to the aid of their party. 

The "a" and .. " aren't there, because they are not 
text. 

To add more text to what you already have, 
just issue another a command, and continue typ­
ing. 

Error Messages - "T" 

If at any time you make an error in the com­
mands you type to ed, it will tell you by typing 

? 

This is about as cryptic as it can be, but with 
practice, you can usually figure out how you 
goofed. 

Writing text out &8 a file - the Write eom­
mand "w" 

It's likely that you'll want to save your text 
for later use. To write out the contents of the 
buffer onto a file, use the write command 

w 

followed by the filename you want to write on. 
This will copy the buffer's contents onto the 
specified file (destroying any previous information 
on the file). To save the text on a file named 
junk, for example, type 

w junk 

Leave a space between w and the file name. Ed 
will respond by printing the number of characters 
it wrote out. In this case, ed would respond with 

68 

(Remember that blanks and the return character 
at the end of each line are included in the charac­
ter count.) Writing a file just makes a copy of the 

-2-

text - the buffer's contents are not disturbed, so 
you can go on adding lines to it. This is an impor­
tant point. Ed at all times works on a copy of a 
file not the file itself. No change in the contents 
of ~ file takes place until you give a w command. 
(Writing out the text onto a file from time to time 
as it is being created is a good idea, since if the 
system crashes or if you make some horrible mis­
take, you will lose all the text in the buffer but 
any text that was written onto a file is relatively 
safe.) 

Leaving ed - the Quit eommand "q" 

To terminate a session with ed, save the text 
you're working on by writing it onto a file using 
the w command, and then type the command 

q 

which stands for quit. The system will respond 
with the prompt character ($ or %). At this point 
your buffer vanishes, with all its text, which is 
why you want to write it out before quitting.t 

Exereise 1: 

Enter ed and create some text using 

a 
... text ... 

Write it out using w. Then leave ed with the q 
command, and print the file, to see that everything 
worked. (To print a file, say 

pr filename 

or 

cat filename 

in response to the prompt character. Try both.) 

Reading text Crom a file - the Edit eam­
mand "e" 

A common way to get text into the buffer is to 
read it from a file in the file system. This is what 
you do to edit text that you saved with the w 
command in a previous session. The edit com­
mand e fetches the entire contents of a file into the 
buffer. So if you had saved the three lines "Now is 
the time", etc., with a w command in an earlier 
session, the ed command 

.e junk 

would fetch the entire contents of the file junk 
into the buffer, and respond 

t Ac&ualb". fI~ will priD& t if )'08 &1)' &0 quit wi&houi wri'­
bal. A' 'hal poba&. wrile if )'08 WaD'; ir 80&, &Ilo&her q will 
p& )'011 Ollt reprdl ... 

o 

/ ',' 



(, 

( 

A Tutorial Introduction to the UNIX Text Editor 

Brian W. Kernighan 

Introduction 

Ed is a "text editor", that is, an interactive 
program for creating and modifying "text", using 
directions provided by a user at a terminal. The 
text is often a document like this one, or a pro­
gram or perhaps data for a program. 

This introduction is meant to simplify learning 
ed. The recommended way to learn ed is to read 
this document, simultaneously using ed to follow 
the examples, then to read the description in sec­
tion I of the UNIX Programmer's Manual, all the 
while experimenting with ed. (Solicitation of 
advice from experienced users is also useful.) 

Do the exercises! They cover material not 
completely discussed in the actual text. An appen­
dix summarizes the commands. 

Disclaimer 

This is an introduction and a tutorial. For 
this reason, no attempt is made to cover more 
than a part of the facilities that ed offers (although 
this fraction includes the most useful and fre­
quently used parts). When you have mastered the 
Tutorial, try Advanced Editing on UNIX. Also, 
there is not enough space to explain basic UNIX 
procedures. We will assume that you know how to 
log on to UNIX, and that you have at least a vague 
understanding of what a file is. For more on that, 
read UNIX for Beginners. 

You must also know what character to type as 
the end-of-Iine on your particular terminal. This 
character is the RETURN key on most terminals. 
Throughout, we will refer to this character, what­
ever it is, as RETURN. 

Getting Started 

We'll assume that you have logged in to your 
system and it has just printed the prompt charac­
ter, usually either a $ or a %. The easiest way to 
get ed is to type 

ed (followed by a retum) 

You are now ready to go - ed is waiting for you to 
tell it what to do. 

Creating Text - the Append command "a" 

As your first problem, suppose you want to 
create some text starting from scratch. Perhaps 
you are typing the very first draft of a paper; 
clearly it will have to start somewhere, and 
undergo modifications later. This section will 
show how to get some text in, just to get started. 
Later we'll talk about how to change it. 

When ed is first started, it is rather like work­
ing with a blank piece of paper - there is no text 
or information present. This must be supplied by 
the person using ed; it is usually done by typing in 
the text, or by reading it into ed from a file. We 
will start by typing in some text, and return 
shortly to how to read files. 

First a bit of terminology. In ed jargon, the 
text being worked on is said to be "kept in a 
buffer." Think of the buffer as a work space, if you 
like, or simply as the information that you are 
going to be editing. In effect the buffer is like the 
piece of paper, on which we will write things, then 
change some of them, and finally file the whole 
thing away for another day. 

The user tells ed what to do to his text by typ­
ing instructions called "commands." Most com­
mands consist of a single letter, which must be 
typed in lower case. Each command is typed on a 
separate line. (Sometimes the command is pre­
ceded by information about what line or lines of 
text are to be affected - we will discuss these 
shortly.) Ed makes no response to most commands 
- there is no prompting or typing of messages like 
"ready". (This silence is preferred by experienced 
users, but sometimes a hangup for beginners.) 

The first command is append, written as the 
letter 

a 

all by itself. It means "append (or add) text lines 
to the buffer, as I type them in." Appending is 
rather like writing fresh material on a piece of 
paper. 

So to enter lines of text into the buffer, just 
type an a followed by a RETURN, followed by the 
lines of text you want, like this: 



To print the IGBt line of the buffer, you could 
use 

S,Sp 

but ed lets you abbreviate this to 

Sp 

You can print any single line by typing the line 
number followed by a p. Thus 

Ip 

produces the response 

Now is the time 

which is the first line of the buffer. 

In fact, ed lets you abbreviate even further: 
you can print any single line by typing jU8t the 
line number - no need to type the letter p. So if 
you say 

S 

ed will print the last line of the buffer. 

You can also use S in combinations like 

S-I,Sp 

which prints the last two lines of the buffer. This 
helps when you want to see how far you got in 
typing. 

Exercise 3: 

.As before, create some text using the a com­
mand and experiment with the p command. You 
will find, for example, that you can't print line 0 
or a line beyond the end of the buffer, and that 
attempts to print a buffer in reverse order by say­
ing 

3,lp 

don't work. 

The current line - "Dot" or ... " 

Suppose your buffer still contains the six lines 
as above, that you have just typed 

1,3p 

and ed has printed the three lines for you. Try 
typing just 

p (no line numbers) 

This will print 

to come to the aid of their party. 

which is the third line of the buffer. In fact it is 
the last (most recent) line that you have done any­
thing with. (You just printed it!) You can repeat 
this p command without line numbers, and it will 
continue to print line 3. 

The reason is that ed maintains a record of the 
last line that you did anything to (in this case, line 
3, which you just printed) so that it can be used 
instead of an explicit line number. This most 
recent line is referred to by the shorthand symbol 

(pronounced "dot"). 

Dot is a line number in the same way that I is; it 
means exactly "the current line", or loosely, "the 
line you most recently did something to." You can 
use it in several ways - one possibility is to say 

,Ip 

This will print all the lines from (including) the 
current line to the end of the buffer. In our exam­
ple these are lines 3 through 6. 

Some commands change the value of dot, while 
others do not. The p command sets dot to the 
number of the last line printed; the last command 
will set both 

and S to 6. 

Dot is most useful when used in combinations 
like this one: 

+1 (or equivalently, +lp) 

This means "print the next line" and is a handy 
way to step slowly through a buffer. You can also 
say 

-I (or -Ip ) 

which means "print the line before the current 
line." This enables you to go backwards if you 
wish. Another useful one is something like 

-3,-lp 

which prints the previous three lines. 

Don't forget that all of these change the value 
of dot. You can find out what dot is at any time 
by typing 

= 

Ed will respond by printing the value of dot. 

Let's summarize some things about the p com­
mand and dot. Essentially p can be preceded by 
0, 1, or 2 line numbers. If there is no line number 
given, it prints the "current line", the line that 
dot refers to. If there is one line number given 
(with or without the letter p), it prints that line 
(and dot is set there); and if there are two line 
numbers, it prints all the lines in that range (and 
sets dot to the last line printed.) If two line 
numbers are specified the first can't be bigger than 
the second (see Exercise 2.) 

Typing a single return will cause printing of 
the next line - it's equivalent to .+lp. Try it. 
Try typing a -; you will find that it's equivalent 

o 



(/ 

68 

which is the number of characters in Junk. 1/ 
In1Jfhing wa" already in the buffer, it i" deleted 
fir"t. 

If you use the e command to read a file into 
the buffer, then you need not use a file name after 
a subsequent w command; ed remembers the last 
file name used in an e command, and w will write 
on this file. Thus a good way to operate is 

ed 
e file 
lediting session] 
w 
q 

This way, you can simply say w from time to 
time, and be secure in the knowledge that if you 
got the file name right at the beginning, you are 
writing into the proper file each time. 

You can find out at any time what file name ed 
is remembering by typing the file command r. In 
this example, if you typed 

f 

ed would reply 

junk 

Reading text from a file - the Read com­
mand "1''' 

Sometimes you want to read a file into the 
buffer without destroying anything that is already 
there. This is done by the read command r. The 
command 

r junk 

will read the file junk into the buffer; it adds it to 
the end of whatever is already in the buffer. So if 
you do a read after an edit: 

ejunk 
r junk 

the buffer will contain two copies of the text (six 
lines). 

Now is the time 
for all good men 
to come to the aid of their party. 
Now is the time 
for al1 good men 
to come to the aid of their party. 

Like the w and e commands, I' prints the number 
of characters read in, after the reading operation is 
complete. 

Generally speaking, I' is much less used than e. 

-3-

Exercise 2: 

Experiment with the e command - try reading 
and printing various files. You may get an error 
Tname, where name is the name of a file; this 
means that the file doesn't exist, typically because 
you spelled the file name wrong, or perhaps that 
you are not allowed to read or write it. Try alter­
nately reading and appending to see that they 
w~rk similarly. Verify that 

ed filename 

is exactly equivalent to 

ed 
e filename 

What does 

f filename 

do? 

Printing the contents of the buft'er - the 
Print command "p" 

To print or Jist the contents of the buffer (or 
parts of it) on the terminal, use the print com­
mand 

p 

The way this is done is as follows. Specify the 
lines where you want printing to begin and where 
you want it to end, separated by a comma, and 
followed by the letter p. Thus to print the first 
two lines of the buffer, for example, (that is, lines 1 
through 2) say 

1,2p (starting line=l, ending line=2 p) 

Ed will respond with 

Now is the time 
for all good men 

Suppose you want to print all the lines in the 
buffer. You could use 1,3p as above if you knew 
there were exactly 3 lines in the buffer. But in 
general, you don't know how many there are, so 
what do you use for the ending Jine number? Ed 
provides a shorthand symbol for "line number of 
last line in buffer" - the dollar sign $. Use it this 
way: 

l,Sp 

This will print all the Jines in the buffer (line 1 to 
last Jine.) If you want to stop the printing before it 
is finished, push the DEL or Delete key; ed will 
type 

? 

and wait for the next command. 



right. If it didn't, you can tIy again. (Notice that 
there is a p on the same line as the 8 command. 
With few exceptions, p can follow any command; 
no other multi-command lines are legal.) 

It's also legal to say 

s/ .. . 1/ 
which means "change the first string of characters 
to "nothing", i.e., remove them. This is useful for 
deleting extra words in a line or removing extra 
letters from words. For instance, if you had 

Nowxx is the time 

you can say 

s/xx//p 

to get 

Now is the time 

Notice that / / (two adjacent slashes) means "no 
characters", not a blank. There i8 a difference! 
(See below for another meaning of / /.) 

Exercise 5: 

Experiment with the substitute command. See 
what happens if you substitute for some word on a 
line with several occurrences of that word. For 
example, do this: 

a 
the other side of the coin 

s/the/on the/p 

You will get 

on the other side of the coin 

A substitute command changes only the first 
occurrence of the first string. You can change all 
occurrences by adding a g (for "global") to the s 
command, like this: 

5/ ... / ... /gp 

Try other characters instead of slashes to delimit 
the two sets of characters in the s command -
anything should work except blanks or tabs. 

(If you get funny results using any of the char­
acters 

s • \ & 

read the section on "Special Characters".) 

Context searching _ "/ ••• /n 
With the substitute command mastered, you 

can move on to another highly important idea of 
ed - context searching. 

Suppose you have the original three line text in 
the buffer: 

-6-

Now is the time 
for all good men 
to come to the aid of their party. 

Suppose you want to find the line that contains 
their so you can change it to the. Now with only 
three lines in the buffer, it's pretty easy to keep 
track of what line the word their is on. But if the 
buffer contained several hundred lines, and you'd 
been making changes, deleting and rearranging 
lines, and so on, you would no longer really know 
what this line number would be. Context search­
. ing is simply a method of specifying the desired 
line, regardless of what its number is, by specify­
ing some context on it. 

The way to say "search for a line that contains 
this particular string of characters" is to type 

/8tring of ch4r4cter8 we w4nt to find/ 

For example, the ed command 

/their/ 

is a context search which is sufficient to find the 
desired line - it will locate the next occurrence of 
the characters between slashes ("their"). It also 
sets dot to that line and prints the line for 
verification: 

to come to the aid of their party. 

"Next occurrence" means that ed starts looking for 
the string at line .+1, searches to the end of the 
buffer, then continues at line 1 and searches to line 
dot. (That is, the search "wraps around" from $ 
to 1.) It scans all the lines in the buffer until it 
either finds the desired line or gets back to dot 
again. If the given string of characters can't be 
found in any line, ed types the error message 

? 

Otherwise it prints the line it found. 

You can do both the search for the desired line 
4nd a substitution all at once, like this: 

/their Is/their /the/p 

which will yield 

to come to the aid of the party. 

There were three parts to that last command: con­
text search for the desired line, make the substitu­
tion, print the line. 

The expression Itheir/ is a context search 
expression. In their simplest form, all context 
search expressions are like this - a string of char­
acters surrounded by slashes. Context searches are 
interchangeable with line numbers, so they can be 
used by themselves to find and print a desired line, 
or as line numbers for some other command, like s. 
They were used both ways in the examples above. 

--_ .. -' -----_._-_ .. _--. 

o 



(-

( 

o 

to .-lp. 

Deleting linea: the "d" command 

Suppose you want to get rid of the three extra 
lines in the buffer. This is done by the delete com­
mand 

d 

Except that d deletes lines instead of printing 
them, its action is similar to that of p. The lines 
to be deleted are specified for d exactly as they are 
for p: 

atarling line, ending line d 

Thus the command 

4,ld 

deletes lines 4 through the end. There are now 
three lines left, as you can check by using 

1,lp 

And notice that $ now is line 3! Dot is set to the 
next line after the last line deleted, unless the last 
line deleted is the last line in the buffer. In that 
case, dot is set to $. 

Exercise 4: 

Experiment with a, e, r, w, p and d until you 
are sure that you know what they do, and until 
you understand how dot, $, and line numbers are 
used. 

If you are adventurous, try using line numbers 
with a, r and w as well. You will find that a will 
append lines after the line number that you specify 
(rather than after dot); that r reads a file in after 
the line number you specify (not necessarily at the 
end of the buffer); and that w will write out 
exactly the lines you specify, not necessarily the 
whole buffer. These variations are sometimes 
handy. For instance you can insert a file at the 
beginning of a buffer by saying 

Or filename 

and you can enter lines at the beginning of the 
buffer by saying 

Oa 
... ten . .. 

Notice that .w is very different from 

w 

Modifying text: the Substitute command 
"8" 

- 5-

We are now ready to try one of the most 
important of all commands - the substitute com­
mand 

s 

This is the command that is used to change indivi­
dual words or letters within a line or group of 
lines. It is what you use, for example, for correct­
ing spelling mistakes and typing errors. 

Suppose that by a typing error, line 1 says 

Now is th time 

- the e has been left off the. You can use 8 to fix 
this up as follows: 

ls/th/the/ 

This says: "in line 1, substitute for the characters 
th the characters the." To verify that it works (ed 
will not print the result automatically) say 

p 

and get 

Now is the time 

which is what you wanted. Notice that dot must 
have been set to the line where the substitution 
took place, since the p command printed that line. 
Dot is always set this way with the 8 command. 

The general way to use the substitute com­
mand is 

atarling-line, ending-line s/ change this/to this/ 

Whatever string of characters is between the first 
pair of slashes is replaced by whatever is between 
the second pair, in all the lines between atarling­
line and ending-line. Only the first occurrence on 
each line is changed, however. If you want to 
change every occurrence, see Exercise 5. The rules 
for line numbers are the same as those for p, 
except that dot is set to the last line changed. 
(But there is a trap for the unwary: if no substitu­
tion took place, dot is not changed. This causes 
an error! as a warning.) 

Thus you can say 

l,ls/speling/spelling/ 

and correct the first spelling mistake on each line 
in the text. (This is useful for people who are con­
sistent misspellers!) 

If no line numbers are given, the 8 command 
assumes we mean "make the substitution on line 
dot", so it changes things only on the current line. 
This leads to the very common sequence 

s/something/something else/p 

which makes some correction on the current line, 
and then prints it, to make sure it worked out 



you typed in. 

"Insert" is similar to append - for instance 

/string/i 
· .. type the lines to be iMerted here ... 

will insert the given text be/ore the next line that 
contains "string". The text between i and • is 
inserted be/ore the specified line. If no line number 
is specified dot is used. Dot is set to the last line 
inserted. 

Exercise 7': 

"Change" is rather like a combination of delete 
followed by insert. Experiment to verify that 

&tart, end d 
i 
· .. text . .. 

is almost the same as 

start, end c 
· .. text . .. 

These are not precisely the same if line S gets 
deleted. Check this out. What is dot? 

Experiment with a and i, to see that they are 
similar, but not the same. You will observe that 

line-number a 
· .. text . .. 

appends after the given line, while 

line-number i 
· .. text . .. 

inserts be/ore it. Observe that if no line number is 
given, i inserts before line dot, while a appends 
after line dot. 

Moving text around: the "m" command 

The move command m is used for cutting and 
pasting - it lets you move a group of lines from 
one place to another in the buffer. Suppose you 
want to put the first three lines of the buffer at the 
end instead. You could do it by saying: 

l,Sw temp 
Sr temp 
l,ad 

(Do you see why?) but you can do it a lot easier 
with the m command: 

l,3mS 

The general case is 

- 8-

.4ftline, end line m 4fter this line 

Notice that there is a third line to be specified -
the place where the moved stuff gets put. Of 
course the lines to be moved can be specified by 
context searches; if you had 

First paragraph 

end of first paragraph. 
Second paragraph 

end of second paragraph. 

you could reverse the two paragraphs like this: 

/Second/./end of second/m/First/-l 

Notice the -1: the moved text goes alter the line 
mentioned. Dot gets set to the last line moved. 

The global commands "g" and "v" 

The global command g is used to execute one 
or more ed commands on all those lines in the 
buffer that match some specified string. For exam­
ple 

g/peling/p 

prints all lines that contain peling. More usefully, 

g/peling/sl/pelIing/gp 

makes the substitution everywhere on the line, 
then prints each corrected line. Compare this to 

l,Ss/peling/pelling/gp 

which only prints the last line substituted. 
Another subtle difference is that the g command 
does not give a T if peling is not found where the 
s command will. 

There may be several commands (including a, 
c, i, r, W, but not g); in that case, every line 
except the last must end with a backslash \: 

g/xxx/-is/abc/def/B 
+2s/ghiJjkl/B 
:"'2,p 

makes changes in the lines before and after each 
line that contains xxx, then prints all three lines. 

The v command is the same as g, except that 
the commands are executed on every line that does 
not match the string following v: 

vi /d 
deletes every line that does not contain a blank. 

Special Characters 

You may have noticed that things just don't 
work right when you used some characters like, ., 
S, and others in context searches and the substi-

o 

c 



( 

( 

Suppose the buffer contains the three familiar 
lines 

Now is the time 
for all good men 
to come to the aid of their party. 

Then the ed line numbers 

INow/+1 
Igood/ 
/party/-l 

are all context search expressions, and they all 
refer to the same line (line 2). To make a change 
in line 2, you could say 

/Now /+ls/good/bad/ 

or 

/good/s/good/bad/ 

or 

/party/-ls/good/bad/ 

The choice is dictated only by convenience. You 
could print all three lines by, for instance 

/Now / ./party /p 

or 

/Now/./Now/+2p 

or by any number of similar combinations. The 
first one of these might be better if you don't 
know how many lines are involved. (Of course, if 
there were only three lines in the buffer, you'd use 

1,Sp 

but not if there were several hundred.) 

The basic rule is: a context search expression is 
the same as a line number, so it can be used wher­
ever a line number is needed. 

Exercise 6: 

Experiment with context searching. Try a 
body of text with several occurrences of the same 
string of characters, and scan through it using the 
same context search. 

Try using context searches as line numbers for 
the substitute, print and delete commands. (They 
can also be used with r, w, and a.) 

Try context searching using !text! instead of 
/text/. This scans lines in the buffer in reverse 
order rather than normal. This is sometimes use­
ful if you go too far while looking for some string 
of characters - it's an easy way to back up. 

(If you get funny results with any of the char­
acters 

$ • \ & 

-7-

read the section on "Special Characters".) 

Ed provides a shorthand for repeating a con­
text search for the same string. For example, the 
ed line number 

/atring/ 

will find the next occurrence of string. It often 
happens that this is not the desired line, so the 
search must be repeated. This can be done by 
typing merely 

// 
This shorthand stands for "the most recently used 
context search expression." It can also be used as 
the first string of the substitute command, as in 

/atringl/s/ /string2/ 

which will find the next occurrence of stringl and 
replace it by atring2. This can save a lot of typ­
ing. Similarly 

11 

means "scan backwards for the same expression" 

Change and Insert - "e" and "i" 

This section discusses the change command 

c 

which is used to change or replace a group of one 
or more lines, and the insert command 

which is used for inserting a group of one or more 
lines. 

"Change", written as 

c 

is used to replace a number of lines with different 
lines, which are typed in at the terminal. For 
example, to change lines .+1 through $ to some­
thing else, type 

.+l,$c 

... type the lines of text you want here . .. 

The lines you type between the e command and 
the • will take the place of the original lines 
between start line and end line. This is most use­
ful in replacing a line or several lines which have 
errors in them. 

If only one line is specified in the e command, 
then just that line is replaced. (You can type in as 
many replacement lines as you like.) Notice the use 
of. to end the input - this works just like the • 
in the append command and must appear by itself 
on a new line. If no line number is given, line dot 
is replaced. The value of dot is set to the last line 



to produce 

the end of the world is at hand 

Observe this expression carefully, for it illustrates 
how to take advantage of ed to save typing. The 
string !world! found the desired line; the short­
hand ! / found the same word in the line; and the 
11& saves you from typing it again. 

The 11& is a. special character only within the 
replacement text of a substitute command, and 
has no special meaning elsewhere. You can turn 
off the special meaning of 11& by preceding it with a 
\: 

s/ampersand/\&/ 

will convert the word "ampersand" into the literal 
symbol 11& in the current line. 

Summary of Commands and Line Numbers 

The general form of ed commands is the com­
mand name, perhaps preceded by one or two line 
numbers, and, in the case of e, r, and w, followed 

, by a file name. Only one command is allowed per 
line, but a p command may follow any other com­
ma.nd (except for e, r, wand q). 

a: Append, that is, add lines to the buffer (at line 
dot, unless a different line is specified). Appending 
continues until 

-10-

is typed on a new line. Dot is set to the last line 
appended. 

c: Change the specified lines to the new text which 
follows. The new lines are terminated by a , as 
with a. If no lines are specified, replace line dot. 
Dot is set to last.line changed. 

d: Delete the lines specified. If none are specified, 
delete line dot. Dot is set to the first undeleted 
line, unless $ is deleted, in which case dot is set to 
$. 

e: Edit new file. Any previous contents of the 
buffer are thrown away, so issue a w beforehand. 

I: Print remembered filename. If a name follows 1 
the remembered name will be set to it. 

g: The command 

g/--/commands 

will execute the commands on those lines that con­
tain -, which can be any context search expres­
sion. 

i: Insert lines before specified line (or dot) until a 

is typed on a new line. Dot is set to last line 
inserted. 

m: Move lines specified to after the line named 
after m. Dot is set to the last line moved. 

p: Print specified lines. If none specified, print line 
dot. A single line number is equivalent to line­
number p. A single return prints .+1, the next 
line. 

q: Quit ed. Wipes out all text in buffer if you give 
it twice in a row without first giving a w com­
mand. 
l': Read a file into buffer (at end unless· specified 
elsewhere.) Dot set to last line read. 

s: The command 

s/stringl/string2/ 

substitutes the characters stringl into atring2 in 
the specified lines. If no lines are specified, make 
the substitution in line dot. Dot is set to last line 
in which a substitution took place, which means 
that if no substitution took place, dot is not 
changed. s changes only the first occurrence of 
stringl on a line; to change all of them, type a g 
after the final slash. 

v: The command 

v/-/commands 

executes commands on those lines that do not 
contain --. 

w: Write out buffer onto a file. Dot is not 
changed. 

.-: Print value of dot. (= by itself prints the 
value of $.) 

I: The line 

!command-line 

causes command·line to be executed as a UNIX 
command. 

/--/: Context search. Search for next line 
which contains this string of characters. Print it. 
Dot is set to the line where string was found. 
Search starts at .+1, wraps around from $ to 1, 
and continues to dot, if necessary. 

!---1: Context search in reverse direction. Start 
search at .-1, scan to 1, wrap around to $. 

o 

c 



( 

tute command. The reason is rather complex, 
although the cure is simple. Basically, etl treats 
these characters as special, with special meanings. 
For instance, in II contezt eellrch or the firs etring 
of the eubetitute commllntl only, 

means "any character," not a period, so 

/xy/ 

means "a line with an x, ling character, and a y," 
not just "a line with an x, a period, and a y." A 
complete list of the special characters that can 
cause trouble is the following: 

$ • \ 

Warning: The backslash character \ is special to 
etl. For safety's sake, avoid it where possible. If 
you have to use one of the special characters in a 
substitute command, you can turn off its magic 
meaning temporarily by preceding it with the 
ba.ckslash. Thus 

s/\\\\./backslash dot star/ 

will change \ •• into "backslash dot star". 

Here is a hurried synopsis of the other special 
characters. First, the circumflex • signifies the 
beginning of a line. Thus 

rstring/ 

finds string only if it is at the beginning of a line: 
it wil1 find 

string 

but not 

the string ... 

The dollar-sign $ is just the opposite of the 
circumflex; it means the end of a line: 

/string$/ 

will only find an occurrence of string that is at 
the end of some line. This implies, of course, that 

rstringS/ 

will find only a line that contains just string, and 

finds a line containing exactly one character. 

The character ., as we mentioned above, 
matches anything; 

/xy/ 

matches any of 

-9-

x+y 
x-y 
xy 
xy 

This is useful in conjunction with ., which is a 
repetition character; a. is a shorthand for "any 
number of a's," so •• matches any number of any­
things. This is used like this: 

s/./stuff/ 

which changes an entire line, or 

s/.'/ / 
which deletes aU characters in the line up to and 
including the last comma. (Since •• finds the long­
est possible match, this goes up to the last 
comma.) 

[ is used with] to form "chara.cter classes"; for 
example, 

/10123456789]/ 

matches any single digit - anyone of the charac­
ters inside the braces will cause a match. This can 
be abbreviated to [0-9]. 

Final1y, the &. is another shorthand character 
- it is used only on the right-hand part of a substi­
tute command where it means "whatever was 
matched on the left-hand side". It is used to save 
typing. Suppose the current line contained 

Now is the time 

and you wanted to put parentheses around it. 
You could just retype the line, but this is tedious. 
Or you could say 

sr/(I 
s/S/)/ 

using your knowledge of • and $. But the easiest 
way uses the &.: 

5/./(&)/ 
This says "match the whole line, and replace it by 
itself surrounded by parentheses." The &. can be 
~sed several times in a line; consider using 

s/./&? &!!/ 

to produce 

Now is the time? Now is the time!! 

You don't have to match the whole line, of 
course: if the buffer contains 

the end of the world 

you could type 

/world/s// & is at hand/ 



Introduction 3 

Session 1 4 
Making contact with UNIX 4 
Logging in 4 
Asking for edit 4 

Contents 

The "Command not found" message 5 
Asummary 5 
Entering text 5 
Messages from edit 5 
Text input mode 6 
Making corrections 6 
Writing text to disk 7 
Signing off 7 

Session 2 8 
Adding more text to the file 8 
Interrupt 8 
Making corrections 8 
Listing what's in the buffer (p) 9 
Finding things in the buffer 9 
The current line 10 
Numbering lines (nu) 10 
Substitute command (s) 10 
Another way to list what's in the buffer (z) l1 
Saving the modified text 12 

Session 3 13 
Bringing text into the buffer (e) 13 
Moving text in the buffer (m) 13 
Copying lines (copy) 14 
Deleting lines (d) 14 
A word or two of caution 15 
Undo (u) to the rescue 15 
More about the dot (.) and buffer end ($) 16 
Moying around in the buffer (+ and -) 16 
Changing lines (c) 17 

Session 4 18 
Making commands global (g) 18 
More about searching and substituting 19 
Special characters 19 
Issuing UNIX commands from the editor 20 
Filenames and file manipulation 20 
The file (C) command 20 
Reading additional files (r) 21 
Writing parts of the buffer 21 
Recovering files 21 
Other recovery techniques 21 
Further reading and other information 22 
Using ez 22 

Index 23 c 



(-

(-

c 

Edit: A Tutorial 

Ricki Blau 

James Joyce 

Computing Services 
University of California 

Berkeley, California 94720' 

ABSTRACT 

This narrative introduction to the use of the text editor edit assumes no prior 
familiarity with computers or with text editing. Its aim is to lead the beginning 
UNIXt user through the fundamental steps of writing and revising a file of text. 
Edit, a version of the text editor ex, was designed to provide an informative 
environment for new and casual users. 

We welcome comments and suggestions about this tutorial and the UNIX 
documentation in general. 

September 1981 

tuNIX is a. trademark or Bell Laboratories. 



·4-

Session 1 

Making contact with UNIX 

To use the editor you must first make contact with the computer by logging in to UNIX. 
We'll quickly review the standard UNIX login procedure for the two ways you can make contact: on 
a terminal that is directly linked to the computer, or over a telephone line where the computer 
answers your call. 

Directly-linked terminals 

Turn on your terminal and press the RETURN key. You are now ready to login. 

Dial-up terminals 

If your terminal connects with the computer over a telephone line, tum on the terminal, dial 
the system access number, and, when you hear a high-pitched tone, place the receiver of the tele­
phone in the acoustic coupler. You are now ready to login. 

Logging in 

The message inviting you to login is: 

:login: 

Type your login name, which identifies you to UNIX, on the same line as the login message, and 
press RETURN. If the terminal you are using has both upper and lower case, be sure you enter 
your login name in lower case; otherwise UNIX assumes your terminal has only upper case and 
will not recognize lower case letters you may type. UNIX types ":login:" and you reply with your 
login name, for example i'susan": 

:login: susan (and press the RETURN key) 

(In the examples, input you would type appears in bold face to distinguish it from the responses 
from UNIX.) 

UNIX will next respond with a request for a password as an additional precaution to prevent 
unauthorized people from using your account. The password will not appear when you type it, to 
prevent others from seeing it. The message is: 

Password: (type your password and press RETURN) 

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX will 
respond with 

Login incorrect. 
:login: 

in which case you should start the login process anew. Assuming that you have successfully logged 
in, UNIX will print the message of the day and eventually will present you with a % at the begin­
ning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is ready to 
accept a command. 

Asking for e4it 

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con­
venient time to choose a name for the file of text you are about to create. To begin your editing 
session, type edit followed by a space and then the filename you have selected; for example, 
"text". When you have completed the command, press the RETURN key and wait for edit's 
response: c 



o 

-3-

Introduction 
Text editing using a terminal connected to a computer allows you to create, modify, and 

print text easily. A tezt editor is a program that assists you as you create and modify text. The 
text editor you will learn here is named edit. Creating text using edit is as easy as typing it on an 
electric typewriter. Modifying text involves telling the text editor what you want to add, change, 
or delete. You can review your text by typing a command to print the file contents as they were 
entered by you. Another program, a text formatter, rearranges your text for you into "finished 
form." This document does not discuss the use of a text formatter. 

These lessons assume no prior familiarity with computers or with text editing. They consist 
of a series of text editing sessions which lead you through the fundamental steps of creating and 
revising text. After scanning each lesson and before beginning the next, you should practice the 
examples at a terminal to get a feeling for the actual process of text editing. It you set aside some 
time for experimentation, you will soon become familiar with using the computer to write and 
modify text. In addition to the actual use of the text editor, other features of UNIX will be very 
important to your work. You can begin to learn about these other features by reading "Communi­
cating with UNIX" or one of the other tutorials that provide a general introduction to the system. 
You will be ready to proceed with this lesson as soon as you are familiar with (1) your terminal 
and its special keys, (2) the login procedure, (3) and the ways of correcting typing errors. Let's 
first define some terms: 

program 

UNIX 

edit 

file 

filename 

disk 

buffer 

A set of instructions, given to the computer, describing the sequence of steps the 
computer performs in order to accomplish a specific task. The tasks must be specific, 
such as balancing your checkbook or editing your text. A general task, such as 
working for world peace, is something we can do, but not something we can write 
programs to do. 

UNIX is a special type of program, called an operating system, that supervises the 
machinery and all other programs comprising the total comput.er system. 

edit is the name of the UNIX text editor you will be learning to use, and is a program 
that aids you in writing or revising text. Edit was designed for beginning users, and 
is a simplified version of an editor named ex. 

Each UNIX account is allotted space for the permanent storage of information, such as 
programs, data or text. A file is a logical unit of data, for example, an essay, a pro­
gram, or a chapter from a book, which is stored on a computer system. Once you 
create a file, it is kept until you instruct the system to remove it. You may create a 
file during one UNIX session, end the session, and return to use it at a later time. 
Files contain anything you choose to write and store in them. The sizes of files vary 
to suit your needs; one file might hold only a single number, yet another might con­
tain a very long document or program. The only way to save information from one 
session to the next is to store it in a file, which you will learn in Session 1. 

Filenames are used to distinguish one file from another, serving the same purpose as 
the labels of manila folders in a file cabinet. In order to write or access information 
in a file, you use the name of that file in a UNIX command, and the system will 
automatically locate the file. 

Files are stored on an input/output device called a disk, which looks something like a 
stack of phonograph records. Each surface is coated with a material similar to the 
coating on magnetic recording tape, and information is recorded on it. 

A temporary work space, made available to the user for the duration of a session of 
text editing and used for creating and modifying the text file. We can think of the 
buffer as a blackboard that is erased after each class, where each session with the edi­
tor is a class. 



-6-

: add 
add: Not an editor command 

When you receive a diagnostic message, check what you typed in order to determine what part of 
your command confused edit. The message above means that edit was unable to recognize your 
mistyped command and, therefore, did not execute it. Instead, a new u:" appeared to let you 
know that edit is again ready to execute a command. 

Text input mode 

By giving the command "append" (or using the abbreviation "a"), you entered text input 
mode, also known as append mode. When you enter text input mode, edit stops sending you a 
prompt. You will not receive any prompts or error messages while in text input mode. You can 
enter pretty much anything you want on the lines. The lines are transmitted one by one to the 
buffer and held there during the editing session. You may append as much text as you want, and 
when you wi8h to 8tOp entering tezt Iine8 you ,hould type a period a8 the only charaeier on the line 
and pre88 the RETURN key. When you type the period and press RETURN, you signal that you want 
to stop appending text, and edit responds by allowing you to exit text input mode and reenter 
command mode. Edit will again prompt you for a command by printing U:". 

Leaving append mode does not destroy the text in the buffer. You have to leave append 
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you 
type a period as the first character and type any other character on the same line, edit will believe 
you want to remain in append mode and will not let you out. As this can be very frustrating, be 

. sure to type only the period and the RETURN key. 

This is a good place to learn an important lesson about computers and text: a blank space is 
a character as far as a computer is concerned. If you so much as type a period followed by a blank 
(that is, type a period and then the space bar on the keyboard), you will remain in append mode 
with the last line of text being: 

Let's say that the lines of text you enter are (try to type exactly what you see, including "thiss"): 

This is some sample text. 
And thiss is some more text. 
Text editing is strange, but nice. 

The last line is the period followed by a RETURN that gets you out of append mode. 

Making corrections 

If you have read a general introduction to UNIX, such as "Communicating with UNIX", you 
will recall that it is possible to erase individual letters that you have typed. This is done by typ­
ing the designated erase character as many times as there are characters you want to erase. 

The usual erase character is the backspace (control-H), and you can correct typing errors in 
the line you are typing by holding down the CTRL key and typing the "H" key. If you try typing 
control-H you will notice that the terminal backspaces in the line you are on. You can backspace 
over your error, and then type what you want to be the rest of the line. 

If you make a bad start in a line and would like to begin again, you can either backspace to 
the beginning of the line or you can use the at-sign "@" to erase everything on the line: 

Text edtiing is strange, but@ 
Text editing is strange, but niee. 

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh line to 
type on. You may immediately begin to retype the line. This, unfortunately, does not help after 

- ~. - --- ._--.- ~--- ~----. --~. -'-- ---

c 



(-

o 

-5-

% edit text {Jollowed 6, (I RETURN) 
"text" No such file or directory 

H you typed the command correctly, you will now be in communication with edit. Edit has set 
aside a buffer for use as a temporary working space during your current editing session. It also 
checked to see if the file you named, "text", already existed. It was unable to find such a file, since 
"text" is a new file we are about to create. Edit confirms this with the line: 

"text" No such file or directory 

On the next line appears edit's prompt ":", announcing that you are in command mode and edit 
expects a command from you. You may now begin to create the new file. 

The "Command not found" message 

If you misspelled edit by typing, say, "editor", your request would be handled as follows: 

% editor 
editor: Command not found 
% 

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named "edi­
tor". Since there is no program named "editor", UNIX reported that the program was "not 
found". A new % indicates that UNIX is ready for another command, and you may then enter the 
correct command. 

A summary 

Your exchange with UNIX as you logged in and made contact with edit should look something 
like this: 

Entering text 

:login: susan 
Password: 
... A Message of General Interest ... 
% edit text 
"text" No such file or directory 

You may now begin entering text into the buffer. This is done by appending (or adding) text 
to whatever is currently in the buffer. Since there is nothing in the buffer at the moment, you are 
appending text to nothing; in effect, since you are adding text to nothing you are creating text. 
Most edit commands have two forms: a word that suggests what the command does, and a shorter 
abbreviation of that word. Either form may be used. Many beginners find the full command 
names easier to remember at first, but once you are familiar with editing you may prefer to type 
the shorter abbreviations. The command to input text is "append", and it may be abbreviated 
"a". Type append and press the RETURN key. 

% edit text 
: append 

Messages from edit 
If you make a mistake in entering a command and type something that edit does not recog­

nize, edit will respond with a message intended to help you diagnose your error. For example, if 
you misspell the command to input text by typing, perhaps, "add" instead of "append" or "a", 
you will receive this message: 



-8-

Session 2 

Login with UNIX as in the first session: 

:login: susan (carriage return) 
Password: (give ,a"word and carriage return) 
... A Message or General Interest .,. 
% 

When you indicate you want to edit, you can specify the name of the file you worked on last time. 
This will start edit working, and it will fetch the contents of the file into the buffer, so that you 
can resume editing the same file. When edit has copied the file into the buffer, it will repeat its 
name and tell you the number of lines and characters it contains. Thus, 

% edit text 
"text" 3 lines, 90 characters 

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 charac­
ters of text into the buffer. Edit awaits your further instructions, and indicates this by its prompt 
character, the colon (:). In this session, we will append more text to our file, print the contents of 
the buffer, and learn to change the text of a line. 

Adding more text to the file 

If you want to add more to the end of your text you may do so by using the append com­
mand to enter text input mode. When "append" is the first command of your editing session, the 
lines you enter are placed at the end of the buffer. Here we'll use the abbreviation for the append 
command, "au: 

:a 
This is text added in Session 2. 
It doesn't mean much here, but 
it does illustrate the editor. 

You may recall that once you enter append mode using the "a" (or "append") command, you need 
to type a line containing only a period (.) to exit append mode. 

Interrupt 

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will 
send this message to you: 

Interrupt 

Any command that edit might be executing is terminated by rub or delete, causing edit to prompt 
you for a new command. If you are appending text at the time, you will exit from append mode 
and be expected to give another command. The line of text you were typing when the append 
eommand was interrupted will not be entered into the buffer. 

Making corrections 

If while typing the line you hit an incorrect key, recall that you may delete the incorrect 
character or cancel the entire line of input by erasing in the usual way. Refer either to the last few 
pages of Session 1 or to "Communicating with UNIX" if you need to review the procedures for 
making a correction. The most important idea to remember is that erasing a character or cancel­
ling a line must be done before you press the RETURN key. 

c 



( 

-7-

you type the line and press RETURN. To make corrections in lines that have been completed, it is 
necessary to use the editing commands covered in the next session and those that rollow. 

Writing text to disk 

You are now ready to edit the text. The simplest kind or editing is to write it to disk as a 
file ror safekeeping after the session is over. This is the only way to save inrormation rrom one ses­
sion to the next, since the editor's buffer is temporary and will last only until the end or the edit­
ing session. Learning how to write a file to disk is 5eCQnd in importance only to entering the text. 
To write the contents or the buffer to a disk file, use the command "write" (or its abbreviation 
"w"): 

: write 

Edit will copy the contents or the buffer to a disk file. IC the file does not yet exist, a new file will 
be created automatically and the presence or a "[New file]" will be noted. The newly-created file 
will be given the name specified when you entered the editor, in this case "text". To confirm that 
the disk file has been successrully written, edit will repeat the filename and give the number or lines 
and the total number or characters in the file. The buffer remains unchanged by the "write" com­
mand. Allor the lines that were written to disk will still be in the buffer, should you want to 
modify or add to them. 

Edit must have a filename to use berore it can write a file. If you rorgot to indicate the name 
or the file when you began the editing session, edit will print 

No current filename 

in response to your write command. IC this happens, you can specify the filename in a new write 
command: 

: write text 

(- After the "write" (or "w"), type a space and then the name or the file. 

Signing oft' 

We have done enough ror this first lesson on using the UNIX text editor, and are ready to quit 
the session with edit. To do this we type "quit" (or "q") and press RETURN: 

: write 
"text" [New file] 3 lines, 90 characters 
: quit 
% 

The % is rrom UNIX to tell you that your session with edit is over and you may command UNIX 
rurther. Since we want to end the entire session at the terminal, we also need to exit rrom UNIX. 
In response to the UNIX prompt or " % " type the command 

% logout 

This will end your session with UNIX, and will ready the terminal ror the next user. It is always 
important to type logout at the end or a session to make absolutely sure no one could accidentally 
stumble into your abandoned session and thus gain access to your files, tempting even the most 
honest or souls. 

This is the end or the first session on UNIX text editing. 



-10-

The currept be 

Edit keeps track of the line in the buffer where it is located at all times during an editing ses­
sion. In general, the line that has been most recently printed, entered, or changed is the current 
location in the buffer. The editor is prepared to make changes at the current location in the buffer, 
unless you direct it to another location. 

In particular, when you bring a file into the buffer, you will be located at the last line in the 
file, where the editor left off copying the lines from the file to the buffer. Ir your first editing com­
mand is "append", the lines you enter are added to the end of the file, alter the current line - the 
last line in the file. 

You can refer to your current location in the buffer by the symbol period (.) usually known 
by the name "dotH. Ir you type ".H and carriage return you will be instructing edit to print the 
eurrent line: 

And thiss is some more text. 

Ir you want to know the number of the current line, you can type .= and press RETURN, and 
edit will respond with the line number: 

.. -
2 

If you type the number of any line and press RETURN, edit will position you at that line and print 
its contents: 

:2 
And thiss is some more text. 

You should experiment with these commands to gain experience in using them to make changes. 

Numbering lines (nu) 

The number (nu) command is similar to print, giving both the number and the text of each 
printed line. To see the number and the text of the current line type 

:nu 
2 And thiss is some more text. 

Note that the shortest abbreviation for the number command is "nu" (and not "n", which is used 
for a different command). You may specify a range or lines to be listed by the number command 
in the same way that lines are specified for print. For example, l,$nu lists all lines in the buffer 
with their corresponding line numbers. 

Substitute command (s) 

Now that you have found the misspelled word, you can change it from "thiss" to "this". As 
far as edit is concerned, changing things is a matter of substituting one thing for another. As a 
stood ror append, so , stands for ,ubstitute. We will use the abbreviation "s" to reduce the chance 
of mistyping the substitute command. This command will instruct edit to make the change: 

2s/thiss/this/ 

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want edit to 
make a substitution. Inside the first set or slashes are the characters that we want to change, fol­
lowed by the characters to replace them, and then a closing slash mark. To summarize: 

28/ what ;, to be changed / what to change it to / 

Ir edit finds an exact match of the characters to be changed it will make the change only in the 
first occurrence of the characters. Ir it does not find the characters to be changed, it will respond: 



( 

( 

c:' 

-9-

Listing what'. in the buffer (p) 

Having appended text to what you wrote in Session 1, you might want to see all the lines in 
the buffer. To print the contents of the buffer, type the command: 

:l,Sp 

The "1 "t stands for line 1 of the buffer, the "S" is a special symbol designating the last line of the 
buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer. The com­
mand "1,Sp" gives you: 

This is some sample text. 
And thiss is some more text. 
Text editing is strange, but nice. 
This is text added in Session 2. 
It doesn't mean much here, but 
it does illustrate the editor. 

Occasionally, you may accidentally type a character that can't be printed, which can be done by 
striking a key while the CTRL key is pressed. In printing lines, edit uses a special notation to show 
the existence of non-printing characters. Suppose you had introduced the non-printing character 
"control-A" into the word "illustrate" by accidently pressing the CTRL key while typing "a". This 
can happen on many terminals because the CTRL key and the "A" key are beside each other. If 
your finger presses between the two keys, control-A results. When asked to print the contents of 
the buffer, edit would display 

it does illustr" Ate the editor. 

To represent the control-A, edit shows"" A". The sequence""" followed by a capital letter stands 
for the one character entered by holding down the CTRL key and typing the letter which appears 
after the """. We'll soon discuss the commands that can be used to correct this typing error. 

In looking over the text we see that "this" is typed as "thiss" in the second line, a deliberate 
error so we can learn to make corrections. Let's correct the spelling. 

Finding things in the buffer 

In order to change something in the buffer we first need to find it. We can find "thiss" in 
the text we have entered by looking at a listing of the lines. Physically speaking, we search the 
lines of text looking for "thiss" and stop searching when we have found it. The way to tell edit to 
search for something is to type it inside slash marks: 

: /thiss/ 

By typing /thiss/ and pressing RETURN, you instruct edit to search for "thiss". If you ask edit 
to look for a pattern of characters which it cannot find in the buffer, it will respond "Pattern not 
found". When edit finds the characters "thiss", it will print the line of text for your inspection: 

And thiss is some more text. 

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the line. 

rrhe numeral "one" is the top lert-most key, and should not be confused with the letter "tl". 



-12· 

:s 

If' no starting line number is given Cor the z command, printing will start at the "current" line, in 
this case the last line printed. Viewing lines in the buffer one screen Cull at a time is known as pag­
ing. Paging can also be used to print a section oC text on a hard-copy terminal. 

Saving the modified text 

This seems to be a good place to pause in our work, and so we should end the second session. 
If' you (in haste) type "q" to quit the session your dialogue with edit will be: 

:q 
No write since last change (:quit! overrides) 

This is edit's warning that you have not written the modified contents of the buffer to disk. You 
run the risk of losing the work you did during the editing session since you typed the latest write 
command. Because in this lesson we have not written to disk at all, everything we have done 
would have been lost if edit had obeyed the q command. If' you did not want to save the work 
done during this editing session, you would have to type "q!" or ("quit!") to confirm that you 
indeed wanted to end the session immediately, leaving the file as it was after the most recent 
"write" command. However, since you want to save what you have edited, you need to type: 

:w 
"text" 6 lines, 171 characters 

. and then follow with the commands to quit and logout: 

:q 
% logout 

and hang up the phone or turn off the terminal when UNIX asks for a name. Terminals connected 
to the port selector will stop after the logout command, and pressing keys on the keyboard will do 
nothing. 

This is the end of the second session on UNIX text editing. 

c 



( 

( 

- 11-

Substitute pattern match failed 

indicating that your instructions could not be carried out. When edit does find the characters that 
you want to change, it will make the substitution and automatically print the changed line, so 
that you can check that the correct substitution was made. In the example, 

: 2s/thiss/this/ 
And this is some more text. 

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact match 
is found, "thiss" will be changed to "this". Strictly speaking, it was not necessary above to 
specify the number of the line to be changed. In 

: 8/thiss/this/ 

edit will assume that we mean to change the line where we are currently located (". "). In this 
case, the command without a line number would have produced the same result because we were 
already located at the line we wished to change. 

For another illustration of the substitute command, let us choose the line: 

Text editing is strange, but nice. 

You can make this line a bit more positive by taking out the characters "strange, but" so the line 
reads: 

Text editing is nice. 

A command that will first position edit at the desired line and then make the substitution is: 

: /strange/s/strange, but / / 

What we have done here is combine our search with our substitution. Such combinations are per­
fectly legal, and speed up editing quite a bit once you get used to them. That is, you do not neces­
sarily have to use line numbers to identify a line to edit. Instead, you may identify the line you 
want to change by asking edit to search for a specified pattern of letters that occurs in that line. 
The parts of the above command are: 

/strange/ 
8 

/strange, but / / 

tells edit to find the characters "strange" in the text 
tells edit to make a substitution 
substitutes nothing at all for the characters "strange, but " 

You should note the space after "but" in "/strange, but /". IT you do not indicate that the 
space is to be taken out, your line will read: 

Text editing is nice. 

which looks a little funny because of the extra space between "is" and "nice". Again, we realize 
from this that a blank space is a real character to a computer, and in editing text we need to be 
aware of spaces within a line just as we would be aware of an "a" or a "4". 

Another way to list what's in the buffer (II) 

Although the print command is useful for looking at specific lines in the buffer, other com­
mands may be more convenient for viewing large sections of text. You can ask to see a screen full 
of text at a time by using the command II. IT you type 

:lz 

edit will start with line 1 and continue printing lines, stopping either when the screen of your ter­
minal is full or when the last line in the buffer has been printed. IT you want to read the next seg­
ment of text, type the command 



- 14-

This is some sample text. 
It doesn't mean much here, but 
it does illustrate the editor. 
And this is some more text. 
Text editing is nice. 
This is text added in Session 2. 

You can restore the original order by typing: 

:4,Sml 

or, combining context searching and the move command: 

: / And this is some/ ,/This is text/m/This is some sample/ 

(Do not type both examples here!) The problem with combining context searching with the move 
command is that your chance ot making a typing error in such a long command is greater than if 
you type line numbers. 

Copying lines (copy) 

The copy command is used to make a second copy of specified lines, leaving the original 
lines where they were. Copy has the same format as the move command, for example: 

:2,Scopy $ 

makes a copy ot lines 2 through 5, placing the added lines after the buffer's end ($). Experiment 
with the copy command so that you can become familiar with how it works. Note that the shor­
test abbreviation for copy is co (and not the letter "c", which has another meaning). 

Deleting lines (d) 

Suppose you want to delete the line 

This is text added in Session 2. 

from the buffer. If you know the number of the line to be deleted, you can type that number fol­
lowed by delete or d. This example deletes line 4, which is "This is text added in Session 2." if 
you typed the commands suggested so tar. 

:4d 
It doesn't mean much here, but 

Here "4" is the number of the line to be deleted, and "delete" or "d" is the command to delete the 
line. After executing the delete command, edit prints the line that has become the current line 
(" ."). 

If you do not happen to know the line number you can search for the line and then delete it 
using this sequence of commands: 

: /added in Session 2./ 
This is text added in Session 2. 
:d 
It doesn't mean much here, but 

The "/added in Session 2./" asks edit to locate and print the line containing the indicated text, 
starting its search at the current line and moving line by line until it finds the text. Once you are 
sure that you have correctly specified the line you want to delete, you can enter the delete (d) com­
mand. In this case it is not necessary to specify a line number before the "d". If no line number 
is given, edit deletes the current line ("."), that is, the line found by our search. After the dele­
tion, your buffer should contain: 

\ 

c 



( 

( 

o 

- 13-

Session 3 

Bringing text into the buffer (e) 

Login to UNIX and make contact with edit. You should try to login without looking at the 
notes, but if you must then by all means do. 

Did you remember to give the name of the file you wanted to edit? That is, did you type 

% edit text 

or simply 

% edit 

Both ways get you in contact with edit, but the first way will bring a copy of the file named 
"text" into the buffer. H you did Corget to tell edit the name of your file, you can get it into the 
buffer by typing: 

:e text 
"text" 6 lines, 171 characters 

The command edit, which may be abbreviated e, tells edit that you want to erase anything that 
might already be in the buffer and bring a copy of the file "text" into the buffer for editing. You 
may also use the edit (e) command to change files in the middle of an editing session, or to give 
edit the name of a new file that you want to create. Because the edit command clears the buffer, 
you will receive a warning if you try to edit a new file without having saved a copy of the old file. 
This gives you a chance to write the contents of the buffer to disk before editing the next file. 

Moving text in the buffer (m) 

Edit allows you to move lines of text Crom one location in the buffer to another by means of 
the move (m) command. The first two examples are for illustration only, though after you have 
read this Session you are welcome to return to them for practice. The command 

:2,4mS 

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move com­
mand is that you specify the first line to be moved, the last line to be moved, the move command 
"m", and the line after which the moved text is to be placed. So, 

: 1,3mB 

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer. To 
move only one line, say, line 4, to a location in the buffer after line 5, the command would be 
"4m5". 

Let's move some text using the command: 

:5,Sm1 
2 lines moved 
it does illustrate the editor. 

After executing a command that moves more than one line of the buffer, edit tells how many lines 
were affected by the move and prints the last moved line for your inspection. If you want to see 
more than just the last line, you can then use the print (p), z, or number (nu) command to view 
more text. The buffer should now contain: 



:u 
2 more lines in file after undo 
And this is some more text. 

- 16-

Here again, edit informs you if the command affects more than one line, and prints the text of the 
line which is now "dot" (the current line). 

More about the dot (.) and buffer end ($) 
The function assumed by the symbol dot depends on its context. It can be used: 

1. to exit from append modej we type dot (and only a dot) on a line and press RETURNj 

2. to refer to the line we are at in the buffer. 

Dot can also be combined with the equal sign to get the number of the line currently being edited: 

.. -
If we type ".=" we are asking for the number of the line, and if we type "." we are asking for the 
text of the line. 

In this editing session and the last, we used the dollar sign to indicate the end of the buffer in 
commands such as print, copy, and move. The dollar sign as a command asks edit to print the 
last line in the buffer. If the dollar sign is combined with the equal sign ($=) edit will print the 
line number corresponding to the last line in the buffer. 

"." and "$", then, represent line numbers. Whenever appropriate, these symbols can be used 
in place of line numbers in commands. For example 

: .,Sd 

instructs edit to delete all lines from the current line (.) to the end of the buffer. 

Moving around in the bufl'er (+ and -) 

When you are editing you often want to go back and re-read a previous line. You could 
specify a context search for a line you want to read if you remember some of its text, but if you 
simply want to see what was written a few, say 3, lines ago, you can type 

-3p 

This tells edit to move back to a position 3 lines before the current line (.) and print that line. 
You can move forward in the buffer similarly; 

+2p 

instructs edit to print the line that is 2 ahead of your current position. 

You may use "+" and "-" in any command where edit accepts line numbers. Line numbers 
specified with "+" or "-" can be combined to print a range of lines. The command 

: -1,+2copy$ 

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied lines 
will be placed after the last line in the buffer ($), and the original lines referred to by "-1" and 
"+2" remain where they are. 

Try typing only "-"j you will move back one line just as if you had typed "-lp". Typing 
the command "+" works similarly. You might also try typing a few plus or minus signs in a row 
(such as "+++") to see edit's response. Typing RETURN alone on a line is the equivalent of typing 
"+lp"; it will move you one line ahead in the buffer and print that line. 

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a 
"+" or a carriage return alone on the line, edit will remind you that you are at the end of the 
buffer: 

-- ~- -- ------~--
-~----- --- --- ---

c 



( 

( 

( --., 

; 
--'/ 

This is some sample text. 
And this is some more text. 
Text editing is nice. 

- 15-

It doesn't mean much here, but 
it does illustrate the editor. 
And this is some more text. 
Text editing is nice. 
This is text added in Session 2. 
It doesn't mean much here, but 

To delete both lines 2 and 3: 

you type 

And this is some more text. 
Text editing is nice. 

:2,3d 
2 lines deleted 

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for delete. If 
you delete more than one line you will receive a message telling you the number of lines deleted, as 
indicated in the example above. 

The previous example assumes that you know the line numbers for the lines to be deleted. If 
you do not you might combine the search command with the delete command: 

: /And this is some/,/Text editing is niee./d 

A word or two or caution 

In using the search function to locate lines to be deleted you should be absolutely sure the 
characters you give as the basis for the search will take edit to the line you want deleted. Edit will 
search for the first occurrence of the characters starting from where you last edited - that is, from 
the line you see printed if you type dot (.). 

A search based on too few characters may result in the wrong lines being deleted, which edit 
will do as easily as if you had meant it. For this reason, it is usually safer to specify the search 
and then delete in two separate steps, at least until you become familiar enough with using the 
editor that you understand how best to specify searches. For a beginner it is not a bad idea to 
double-check each command before pressing RETURN to send the command on its way. 

Undo (u) to the rescue 

The undo (u) command has the ability to reverse the effects of the last command that 
changed the buffer. To undo the previous command, type "u" or "undo". Undo can rescue the 
contents of the buffer from many an unfortunate mistake. However, its powers are not unlimited, 
so it is still wise to be reasonably careful about the commands you give. 

It is possible to undo only commands which have the power to change the buffer - for 
example, delete, append, move, copy, substitute, and even undo itself. The commands write (w) 
and edit (e), which interact with disk files, cannot be undone, nor can commands that do not 
change the buffer, such as print. Most importantly, the only command that can be reversed by 
undo is the last "undo-able" command you typed. You can use control-H and @ to change com­
mands while you are typing them, and undo to reverse the effect of the commands after you have 
typed them and pressed RETURN. 

To illustrate, let's issue an undo command. Recall that the last buffer-changing command 
we gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will reverse 
the effects of the deletion, causing those two lines to be replaced in the buffer. 



- 18-

Session 4: 

This lesson covers several topics, starting with commands that apply throughout the buffer, 
characters with special meanings, and how to issue UNIX commands while in the editor. The next 
topics deal with files: more on reading and writing, and methods of recovering files lost in a crash. 
The final section suggests sources of further information. 

Making commands global (g) 

One disadvantage to the commands we have used for searching or substituting is that if you 
have a number of instances of a word to change it appears that you have to type the command 
repeatedly, once for each time the change needs to be made. Edit, however, provides a way to 
make commands apply to the entire contents of the buffer - the global (g) command. 

To print all lines containing a certain sequence of characters (say, "textH ) the command is: 

:g/text/p 

The "g" instructs edit to make a global search for all lines in the buffer containing the characters 
"text". The "p" prints the lines found. 

To issue a global command, start by typing a "g" and then a search pattern identifying the 
lines to be affected. Then, on the same line, type the command to be executed for the identified 
lines. Global substitutions are frequently useful. For example, to change all instances of the word 
"text" to the word "material" the command would be a combination of the global search and the 
substitute command: 

: g/text/s/text/material/g 

Note the "g" at the end of the global command, which instructs edit to change each and every 
instance of "text" to "material". If you do not type the "g" at the end of the command only the 
first instance of "text" in tach line will be changed (the normal result of the substitute command). 
The "g" at the end of the command is independent of the "g" at the beginning. You may give a 
command such as: 

: Ds/text/material/g 

to change every instance of "text" in line 5 alone. Further, neither command will change "text" 
to "material" if "Text" begins with a capital rather than a lower-case t. 

Edit does not automatically print the lines modified by a global command. If you want the 
lines to be printed, type a "p" at the end of the global command: 

: g/text/s/text/material/ gp 

You should be careful about using the global command in combination with any other - in essence, 
be sure of what you are telling edit to do to the entire buffer. For example, 

:g/ /d 
72 less lines in file after global 

will delete every line containing a blank anywhere in it. This could adversely affect your docu­
ment, since most lines have spaces between words and thus would be deleted. After executing the 
global command, edit will print a warning if the command added or deleted more than one line. 
Fortunately, the undo command can reverse the effects of a global command. You should experi­
ment with the global command on a small file of text to see what it can do for you. 

More about searching and substituting 

In using slashes to identify a character string that we want to search for or change, we have 
always specified the exact characters. There is a less tedious way to repeat the same string of char­
acters. To change "text" to "texts)) we may type either c 



( 

- 17-

At end-or-file 
or 

Not that many lines in buffer 

Similarly, ir you try to move to a position berore the first line, edit will print one or these mes­
sages: 

Nonzero address required on this command 
or 

Negative address - first buffer line is 1 . 

The number associated with a buffer line is the line's "address", in that it can be used to locate 
the line. 

Changing lines (c) 

You can also delete certain lines and insert new text in their place. This can be accomplished 
easily with the change (e) command. The change command instructs edit to delete specified lines 
and then switch to text input mode to accept the text that will replace them. Let's say you want 
to change the first two lines in the buffer: 

to read 

This is some sample text. 
And this is some more text. 

This text was created with the UNIX text editor. 

To do so, you type: 

: 1,2e 
2 lines changed 
This text was created with the UNIX text editor. 

In the command 1,2e we speciry that we want to change the range or lines beginning with 1 and 
ending with 2 by giving line numbers as with the print command. These lines will be deleted. 
After you type RETURN to end the change command, edit notifies you ir more than one line will be 
changed and places you in text input mode. Any text typed on the rollowing lines will be inserted 
into the position where lines were deleted by the change command. You will remain in text 
input mode until you exit in the usual way, by typing a period alone on a line. Note 
that the number or lines added to the buffer need not be the same as the number or lines deleted. 

This is the end or the third session on text editing with UNIX. 



- 20-

: ./\S/doUar/ 

looks for the character US" in the current line and replaces it by the word "dollar". Were it not 
for the backslash, the "s" would have represented "the end of the linen in your search rather than 
the character "$". The backslash retains its special significance unless it is preceded by another 
backslash. 

Issuing UNIX commands from the editor 

After creating several files with the editor, you may want to delete files no longer useful to 
you or ask for a list of your files. Removing and listing files are not functions of the editor, and so 
they require the use of UNIX system commands (also referred to as "shell" commands, as "shell" is 
the name of the program that processes UNIX commands). You do not need to quit the editor to 
execute a UNIX command as long as you indicate that it is to be sent to the shell for execution. To 
use the UNIX command nn to remove the file named "junk" type: 

: !nn junk 
! 

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell command. 
If the buffer contents have not been written since the last change, a warning will be printed before 
the command is executed: 

[No write since last change] 

The editor prints a "!" when the command is completed. The tutorial "Communicating with 
UNIX" describes useful features of the system, of which the editor is only one part. 

Filenames and file manipulation 

Throughout each editing session, edit keeps track of the name of the file being edited as the 
current filename. Edit remembers as the current filename the name given when you entered the 
editor. The current filename changes whenever the edit (e) command is used to specify a new file. 
Once edit has recorded a current filename, it inserts that name into any command where a filename 
has been omitted. If a write command does not specify a file, edit, as we have seen, supplies the 
current filename. If you are editing a file named "draft3" having 283 lines in it, you can have the 
editor write onto a different file by including its name in the write command: 

: 'W chapter3 
"chapterS" [new file] 283 lines, 8698 characters 

The current filename remembered by the editor will not be changed as a result 0/ the write com­
mand. Thus, if the next write command does not specify a name, edit will write onto the current 
file ("draft3") and not onto the file "chapter3". 

The file (f) command 

To ask for the current filename, type file (or f). In response, the editor provides current 
information about the buffer, including the filename, your current position, the number of lines in 
the buffer, and the percent of the distance through the file your current location is. 

:f 
"text" lModified] line S or 4 -750/0-

If the contents of the buffer have changed since the last time the file was written, the editor will 
tell you that the file has been "lModifiedj". After you save the changes by writing onto a disk file, 
the buffer will no longer be considered modified: 

c 



- 19-

:/text/s/text/texts/ 
as we have done in the past, or a somewhat abbreviated command: 

:/text/s//texts/ 
In this example, the characters to be changed are not specified - there are no characters, not even a 
space, between the two slash marks that indicate what is to be changed. This lack of characters 
between the slashes is taken by the editor to mean "use the characters we last searched for as the 
characters to be changed. JJ . 

Similarly, the last context search may be repeated by typing a pair of slashes with nothing 
between them: 

:/does/ 
It doesn't mean much here, but 
:// 
it does illustrate the editor. 

(You should note that the search command found the characters "does" in the word "doesn't" in 
the first search request.) Because no characters are specified for the second search, the editor scans 
the buffer for the next occurrence of the characters "does". 

Edit normally searches forward through the buffer, wrapping around from the end of the 
buffer to the beginning, until the specified character string is found. If you want to search in the 
reverse direction, use question marks (7) instead of slashes to surround the characters you are 
searching for. 

It is also possible to repeat the last substitution without having to retype the entire com­
mand. An ampersand (&) used as a command repeats the most recent substitute command, using 
the same search and replacement patterns. After altering the current line by typing 

: s/text/texts/ 
you type 

:/text/& 
or simply 

://& 
to make the same change on the next line in the buffer containing the characters "text". 

Special characters 

Two characters have special meanings when used in specifying searches: "$" and "A".. "$" 
is taken by the editor to mean "end of the line" and is used to identify strings that occur at the 
end of a line. 

: g/text •• /s/ /material./p 

tells the editor to search for all lines ending in "text." (and nothing else, not even a blank space), 
to change each final "text." to "material.", and print the changed lines. 

The symbol "A" indicates the beginning of a line. Thus, 

:sr /1. / 
instructs the editor to insert "1. U and a space at the beginning of the current line. 

The characters "$" and "AU have special meanings only in the context of searching. At other 
times, they are ordinary characters. If you ever need to search for a character that has a special 
meaning, you must indicate that the character is to lose temporarily its special significance by typ­
ing another special character, the backslash (\), before it. 



- 22-

If' this is not possible and you cannot find someone to help you, enter the command 

: preserve 

and wait for the reply, 

File preserved. 

If' you do not receive this reply, seek help immediately. Do not simply leave the editor. If' you do, 
the buffer will be lost, and you may not be able to save your file. If the reply is "File preserved." 
you can leave the editor (or logout) to remedy the situation. Arter a preserve, you can use the 
recover command once the problem has been corrected, or the -r option of the edit command if 
you leave the editor and want to return. 

If' you make an undesirable change to the buffer and type a write command before discover­
ing your mistake, the modified version will replace any previous version of the file. Should you 
ever lose a good version of a document in this way, do not panic and leave the editor. As long as 
you stay in the editor, the contents of the buffer remain accessible. Depending on the nature of the 
problem, it may be possible to restore the buffer to a more complete state with the undo command. 
Arter fixing the damaged buffer, you can again write the file to disk. 

Further reading and other information 

Edit is an editor designed for beginning and casual users. It is actually a version of a more 
powerful editor called ex. These lessons are intended to introduce you to the editor and its more 
commonly-used commands. We have not covered all of the editor's commands, but a selection of 
commands that should be sufficient to accomplish most of your editing tasks. You can find out 
more about the editor in the Ez Reference Manual, which is applicable to both ex and edit. The 
manual is available from the Computing Services Library, 218 Evans Hall. One way to become 
familiar with the manual is to begin by reading the description of commands that you already 
know. 

Using ex 

As you become more experienced with using the editor, you may still find that edit continues 
to meet your needs. However, should you become interested in using ex, it is easy to switch. To 
begin an editing session with ex, use the name ex in your command instead of edit. 

Edit commands work the same way in ex, but the editing environment is somewhat different. 
You should be aware of a few differences that exist between the two versions of the editor. In edit, 
only the characters "A", "$", and "\" have special meanings in searching the buffer or indicating 
characters to be changed by a substitute command. Several additional characters have special 
meanings in ex, as described in the Ex Reference Manual. Another feature of the edit environment 
prevents users from accidently entering two alternative modes of editing, open and visual, in 
which the editor behaves quite differently from normal command mode. If you are using ex and 
the editor behaves strangely, you may have accidently entered open mode by typing "0". Type 
the ESC key and then a "Q" to get out of open or visual mode and back into the regular editor 
command mode. The document An Introduction to Display Editing with Vi provides a full discus­
sion of visual mode. 

c 



c: 
:w 
"text" 4 lines, 88 characters 
:t 
"text" line 3 oC 4 -750/0-

Reading additional files (1') 

- 21-

The read (1') command allows you to add the contents oC a file to the buffer at a specified 
location, essentially copying new lines between two existing lines. To use it, specify the line aCter 
which the new text will be placed, the read (1') command, and then the name oC the file. IC you 
have a file named "example", the command 

:$1' example 
"example" 18 lines, 473 characters 

reads the file "example" and adds it to the buffer aCter the last line. The current filename is not 
changed by the read command. 

Writing parts ot the buffer 

The write (w) command can write all or part oC the buffer to a file you speciCy. We are 
already Camiliar with writing the entire contents oC the buffer to a disk file. To write only part of 
the buffer onto a file, indicate the beginning and ending lines beCore the write command, Cor exam­
ple 

: 45,$w ending 

Here all lines Crom 45 through the end oC the buffer are written onto the file named ending. The 
lines remain in the buffer as part oC the document you are editing, and you may continue to edit 
the entire buffer. Your original file is unaffected by your command to write part of the buffer to 
another file. Edit still remembers whether you have saved changes to the buffer in your original 
file or not. 

Recovering files 

Although it does not happen very oCten, there are times UNIX stops working because of some 
malfunction. This situation is known as a cra6h. Under most circumstances, edit's crash recovery 
Ceature is able to save work to within a Cew lines oC changes beCore a crash (or an accidental phone 
hang up). U you lose the contents oC an editing buffer in a system crash, you will normally receive 
mail when you login that gives the name oC the recovered file. To recover the file, enter the editor 
and type the command recover (rec), Collowed by the name oC the lost file. For example, to 
recover the buffer Cor an edit session involving the file "chap6", the command is: 

: recover chap6 

Recover is sometimes unable to save the entire buffer successCully, so always check the contents of 
the saved buffer careCully beCore writing it back onto the original file. For best results, write the 
buffer to a new file temporarily so you can examine it without risk to the original file. Unfor­
tunately, you cannot use the recover command to retrieve a file you removed using the shell com­
mand I'm. 

Other recovery techniques 

IC something goes wrong when you are using the editor, it may be possible to save your work 
by using the command preserve (pre), which saves the buffer as if the system had crashed. IC you 
are writing a file and you get the message "Quota exceeded", you have tried to use more disk 
storage than is allotted to your account. Proceed with caution because it is likely that only a part 
oC the editor's buffer is now present in the file you tried to write. In this case you should use the 
shell escape Crom the editor (!) to remove some files you don't need and try to write the file again. 



recovery, ,ee file recovery 
references, 3, 23 
remove (rm) command, 21, 22 
reverse command eft'eets (undo), 16-17,23 
searching, 10-12, 19-21 
shell, 21 
shell escape (!), 21 
slash (f), 11-12, 20 
special characters r, s, \), 10, 11, 17, 20-21 
substitute (5) command, 11-12, 19, 20 
terminals, 4-5 
text input mode, 7 
undo (u) command, 16-17,23 
UNIX,3 
write (w) command, 8, 13,21, 22 
z command, 12-13 

- 24-

c 



<-

( 

addressing, Itee line numbers 
ampersand, 20 
append mode, 6-7 
append (a) command, 6, 7, 9 
"At end of file" (message), 18 
backslash (\), 21 
buffer, 3 
caret r), 10, 20 
change (c) command, 18 
command mode, 5-6 
"Command not found" (message), 6 
context search, 10-12, 19-21 
control characters (u." notation), 10 
control-H, 7 
copy (co) command, 15 
corrections, 7, 16 
current filename, 21 
current line (.), 11, 17 
delete (d) command, 15-16 
dial-up, 5 
disk,3 
documentation, 3, 23 
dollar ($),10, 11,17,20-21 
dot ( • ) 11, 17 
edit (text editor), 3, 5, 23 
edit (e) command, 5, 9, 14 
editing commands: 

append (a), 6, 7, 9 
change (e), 18 
copy (co), 15 
delete (d), 15-16 
edit (text editor), 3, 5, 23 
edit (e), 5, 9, 14 
file (f), 21-22 
global (g), 19 
move (m), 14-15 
number (nu), 11 
preserve (pre), 22-23 
print (p), 10 
quit (q), 8, 13 
read (r), 22 
recover (rec), 22, 23 
substitute (s), 11-12, 19, 20 
undo (u), 16-17,23 
write (w), 8, 13, 21, 22 
z, 12-13 
! (shell escape), 21 
$=,17 
+,17 
-, 17 
11,12,20 

- 23-

Index 

T1,20 
.,11,17 
.=,11,17 

entering text, 3, 6-7 
erasing 

. characters ("H), 7 
lines (@), 7 

error corrections, 7, 16 
ex (text editor), 23 
Ex Reference Manual, 23 
exclamation (!), 21 
file, 3 
file (f) command, 21-22 
file recovery, 22-23 
filename, 3, 21 
global (g) command, 19 
input mode, 6-7 
Interrupt (message), 9 
line numbers, Itee also current line 

dollar sign ($), 10, 11, 17 
dot ( . ), 11, 17 
relative (+ and -), 17 

list, 10 
logging in, 4-6 
logging out, 8 
"Login incorrect" (message), 5 
minus (-), 17 
move (m) command, 14-15 
"Negative address-first buffer line is 1" (message). 18 
"No current filename" (message), 8 
"No such file or directory" (message), 5, 6 
"No write since last change" (message), 21 
non-printing characters, 10 
"Nonzero address required" (message), 18 
"Not an editor command" (message), 6 
"Not that many lines in buffer" (message), 18 
num~er (nu) command, 11 
password,5 
period ( .), 11, 17 
plus (+), 17 
preserve (pre) command, 22-23 
print (p) command, 10 
program, 3 
prompts 

% (UNIX), 5 
: (edit), 5, 6, 7 

(append),7 
question (1), 20 
quit (q) command, 8, 13 
read (r) command, 22 
recover (rec) command, 22, 23 



-2-

3. Basics 

To run vi the shell variable TERM must be defined and exported to your environment. How you 
do this depends on which shell you are using. You can tell which shell you have by the character 
it prompts you for commands with. The Bourne shell prompts with'S', and the C shell prompts 
with '%'. For these examples, we will suppose that you are using an HP 2621 terminal, whose 
termcap name is "2621". 

3.1. Bourne Shell 

To manually set your terminal type to 2621 you would type: 

TERM=2621 
export TERM 

There are various ways of having this automatically or semi~automatically done when you 
log in. Suppose you usually dial in on a 2621. You want to tell this to the machine, but still have 
it work when you use a hardwired terminal. The recommended way, if you have the tset pr~ 
gram, is to use the sequence 

tset -s -d 2621 > tset$$ 
. tset$$ 
rm tset$$ 

in your .login (for csh) or the same thing using '.' instead of 'source' in your .profile (for sh). The 
above line says that if you are dialing in you are on a 2621, but if you are on a hardwired terminal 
it figures out your terminal type from an on~line list. 

3.2. The C Shell 

To manually set your terminal type to 2621 you would type: 

setenv TERM 2621 

There are various ways of having this automatically or semi~automatically done when you 
log in. Suppose you usually dial in on a 2621. You want to tell this to the machine, but still have 
it work when you use a hardwired terminal. The recommended way, if you have the tset pr~ 
gram, is to use the sequence 

tset -s -d 2621 > tset$$ 
source tset$$ 
rm tset$$ 

in your .login.* The above line says that jf you are dialing in you are on a 2621, but if you are on 
a hardwired terminal it figures out your terminal type Crom an on~line list. 

4. Normal Commands 

Vi is a visual editor with a window on the file. What you see on the screen is vi's current notion 
oC what your file will contain, (at this point in the file), when it is written out. Most commands do 
not cause any change in the screen until the complete command is typed. Should you get confused 
while typing a command, you can abort the command by typing an <del> character. You will 
know you are back to command level when you hear a <bell>. Usually typing an <esc> will 
produce the same result. When vi gets an improperly Cormatted command it rings the < bell> . 
Following are the vi commands broken down by function. 

• On a. version 6 system without environments, the invoca.tion of tset is simpler, just add the line "tset -d 2621" 
to your .Iogin or .profile. 

------- --- - -. ----_ .. ---

o 

c 



Ex Reference Manual 
Version 3.5/2.13 - September, Ig80 

William JOll 

Relli.etl lor vernon. 8.5/ t.18 h, 

Mark Horton 

Computer Science Division 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, Ca. 94720 

ABSTRACT 

Ex a line oriented text editor, which supports both command and display 
oriented editing. This reference manual describes the command oriented part of 
ex; the display editing features of ex are described in An Introduction to Display 
Editing with Vi. Other documents about the editor include the introduction Edit: 
A tuton'al, the Ex/edit Command Summarll, and a Vi Quick Reference card. 

September 15, 1986 



o 

o 



(-

(-

o 

1. Starting ex 

Ex Reference Manual 
Version 3.5/2.13 - September, IgS0 

William J01/ 

Revi.e4/or lIerrion. 8.5/t.18." 
Mark Horton 

Computer Science Division 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, Ca. 94720 

Each instance of the editor has a set of options, which can be set to tailor it to your liking. 
The command edit invokes a version of ex designed for more casual or beginning users by chang­
ing the default settings of some of these options. To simplify the description which follows we 
assume the default settings of the options. 

When invoked, ex determines the terminal type from the TERM variable in the environment. 
It there is a TERMCAP variable in the environment, and the type of the terminal described there 
matches the TERM variable, then that description is used. Also if the TERMCAP variable contains a 
pathname (beginning with a /) then the editor will seek the description of the terminal in that file 
(rather than the default /etc/termcap.) IT there is a variable EXINIT in the environment, then the 
editor will execute the commands in that variable, otherwise if there is a file . exrc in your HOME 

directory ex reads commands from that file, simulating a Bource command. Option setting com­
mands placed in EXINIT or .ezrc will be executed before each editor session. 

A command to enter ex has the following prototype:t 

ex [-] [-v] [-t tag] [-r] [-1] [-own] [-x] [-R] [ +command] name ... 

The most common case edits a single file with no options, i.e.: 

ex name 

The - command line option option suppresses all interactive-user feedback and is useful in process­
ing editor scripts in command files. The -v option is equivalent to using vi rather than ex. The 
-t option is equivalent to an initial tag command, editing the file containing the tag and position­
ing the editor at its definition. The -r option is used in recovering after an editor or system crash, 
retrieving the last saved version of the named file or, if no file is specified, typing a list of saved 
files. The -I option sets up for editing LISP, setting the Bhowmatch and liBp options. The-ow 
option sets the default window size to n, and is useful on dial ups to start in small windows. The 
-x option causes ex to prompt for a key, which is used to encrypt and decrypt the contents of the 
file, which should already be encrypted using the same key, see crypt(l). The -R option sets the 
readonly option at the start. * Name arguments indicate files to be edited. An argument of the 
form +command indicates that the editor should begin by executing the specified command. IT 
command is omitted, then it defaults to "$", positioning the editor at the last line of the first file 

The financial support. or an IBM Graduat.e Fellowship and t.he National Science Foundation under grant.s 
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged. 
t Brackets 'I' ')' surround optional parameters here. 
t Not available in all v2 editors due to memory constraints. 



- 2-

initially. Other useful commands here are scanning patterns of the form "/pat" or line numbers, 
e.g. "+100" starting at line 100. 

2. File manipulation 

2.1. Current file 

Ez is normally editing the contents of a single file, whose name is recorded in the current file 
name. Ez performs all editing actions in a buffer (actu!Llly a temporary file) into which the text of 
the file is initially read. Changes made to the buffer have no effect on the file being edited unless 
and until the buffer contents are written out to the file with a write command. Arter the buffer 
contents are written, the previous contents of the written file are no longer accessible. When a file 
is edited, its name becomes the current file name, and its contents are read into the buffer. 

The current file is almost always considered to be edited. This means that the contents of the 
buffer are logically connected with the current file name, so that writing the current buffer contents 
onto that file, even if it exists, is a reasonable action. If the current file is not edited then ez will 
not normally write on it if it already exists. * 

2.2. Alternate file 

Each time a new value is given to the current file name, the previous current file name is 
saved as the alternate file name. Similarly if a file is mentioned but does not become the current 
file, it is saved as the alternate file name. 

2.3. Filename expansion 

Filenames within the editor may be specified using the normal shell expansion conventions. 
In addition, the chara.eter '%' in filenames is replaced by the current file name and the character 
'#' by the alternate file name.t 

2.4. Multiple files and named buffers 

If more than one file is given on the command line, then the first file is edited as described 
above. The remaining arguments are placed with the first file in the argument list. The current· 
argument list may be displayed with the args command. The next file in the argument list may 
be edited with the nezt command. The argument list may also be respecified by specifying a list 
of names to the ned command. These names are expanded, the resulting list of names becomes 
the new argument list, and ez edits the first file on the list. 

For saving blocks of text while editing, and especially when editing more than one file, ex 
has a group of named buffers. These are similar to the normal buffer, except that only a limited 
number of operations are available on them. The buffers have names a through z.; 

2.5. Read only 

It is possible to use ez in read only mode to look at files that you have no intention of modi­
fying. This mode protects you from accidently overwriting the file. Read only mode is on when 
the readonlll option is set. It can be turned on with the -R command line option, by the view 
command line invocation, or by setting the readonly option. It can be cleared by setting 
noreadonly. It is possible to write, even while in read only mode, by indicating that you really 
know what you are doing. You can write to a different file, or can use the! form of write, even 
while in read only mode. 

• The file command will say "(Not editedj" ir the current file is not considered edited. 
t This makes it euy to deal alternately with two files and eliminates the need ror retyping the name supplied on 
an edit command after a No write "nee III,t Mllnge diagnostic is received. 
t It is also possible to refer to A through Z; the upper cue bullers are the same &S the lower but commands ap­
pend to named bulJers rather t.han replacing ir upper cue names are used. 

o 

o 



-3-

3. Exceptional Conditions 

( . 3.1. Errors and interrupts 

( 

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error 
diagnostic. If the primary input is Crom a file, editor processing will terminate. If an interrupt sig­
nal is received, ex prints "Interrupt" and returns to its command level. If the primary input is a 
file, then ex will exit when this occurs. 

3.2. Recovering from hangups and crashes 

If a hangup signal is received and the buffer has been modified since it was last written out, 
or if the system crashes, either the editor (in the first case) or the system (after it reboots in the 
second) will attempt to preserve the buffer. The next time you log in you should be able to recover 
the work you were doing, losing at most a few lines of changes from the last point before the 
hangup or editor crash. To recover a file you can use the -r option. If you were editing the file 
N:8Ume, then you should change to the directory where you were when the crash occurred, giving 
the command 

ex -r re8'Ume 

After checking that the retrieved file is indeed ok, you can write it over the previous contents of 
that file. 

You will normally get mail from the system telling you when a file has been saved after a 
crash. The command 

ex -r 

will print a list of the files which have been saved for you. (In the case of a hangup, the file will 
not appear in the list, although it can be recovered.) 

4. Editing modes 

Ex has five distinct modes. The primary mode is command mode. Commands are entered 
in command mode when a ':' prompt is present, and are executed each time a complete line is sent. 
In text input mode ex gathers input lines and places them in the file. The append, in8ert, and 
change commands use text input mode. No prompt is printed when you are in text input mode. 
This mode is left by typing a '.' alone at the beginning of a line, and command mode resumes. 

The last three modes are open and tJi8uai modes, entered by the commands of the same 
name, and, within open and visual modes text in8ertion mode. Open and tJUJuai modes allow local 
editing operations to be performed on the text in the file. The open command displays one line at 
a time on any terminal while tJi8uai works on CRT terminals with random positioning cursors, 
using the screen as a (single) window for file editing changes. These modes are described (only) in 
An Introduction to Di8pia1l Editing with Vi. 

o. Command structure 

Most command names are English words, and initial prefixes of the words are acceptable 
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used 
commands. * 

5.1. Command parameters 

Most commands accept prefix addresses specifying the lines in the file upon which they are to 
have effect. The forms of these addresses will be discussed below. A number of commands also 
may take a trailing count specifying the number of lines to be involved in the command.t Thus 

• A$ an example, the command 1U6.tilute can be abbreviated's' while the shortest available abbreviation for the 
.et command is 'se'. 
t Counts are rounded down ir necessary. 



-4-

the command "lOp" will print the tenth line in the buffer while "delete 5" will delete five lines 
from the buffer, starting with the current line. 

Some commands take other information or parameters, this information always being given 
after the command name.t 

6.2. Command variants 

A number of commands have two distinct variants. The variant form of the command is 
invoked by placing an 'I' immediately after the command name. Some of the default variants may 
be controlled by options; in this case, the '!' serves to tOggle the default. 

5.3. Flags after commands 

The characters '#', 'p' and '1' may be placed after many commands." In this ease, the com­
mand abbreviated by these characters is executed after the command completes. Since ex nor­
mally prints the new current line after each change, 'p' is rarely necessary. Any number of '+' or 
'-' characters may also be given with these flags. If they appear, the specified offset is applied to 
the current line value before the printing command is executed. 

5.4. Comments 

It is possible to give editor commands which are ignored. This is useful when making com­
plex editor scripts for which comments are desired. The comment character is the double quote: ft. 

Any command line beginning with" is ignored. Comments beginning with " may also be placed at 
the ends of commands, except in cases where they could be confused as part of text (shell escapes 

. and the substitute and map commands). 

6.5. MUltiple commands per line 

More than one command may be placed on a line by separating each pair of commands by a 
'I' character. However the global commands, comments, and the shell escape '!' must be the last 
command on a line, as they are not terminated by a 'I'. 

6.6. Reporting large changes 

Most commands which change the contents of the editor buffer give feedback if the scope of 
the change exceeds a threshold given by the report option. This feedback helps to detect undesir­
ably large changes so that they may be quickly and easily reversed with an undo. After commands 
with more global effect such as global or visual, you will be informed if the net change in the 
number of lines in the buffer during this command exceeds this threshold. 

6. Command addressing 

6.1. Addressing primitives 

n 

$ 

+n -n 

The current line. Most commands leave the current line as the last line 
which they affect. The default address for most commands is the current 
line, thus 'o' is rarely used alone as an address. 

The nth line in the editor's buffer, lines being numbered sequentially from 1. 

The last line in the buffer. 

An abbreviation for "l,S", the entire buffer. 

An offset relative to the current buffer line. t 

t Examples would be option names in a let command i.e. "set number", a file name in an edit command, a reg­
ular expression in a 1U6.titute command, or a target address for a cop" command, i.e. "1,5 copy 25", 
•• A 'p' or 'I' must be preceded by a blank or tab except in the single special ease 'dp'. 
t The forms ',+3' '+3' and '+++' 1Il'e all equivalent; if the current line is line 100 they all address line 103. 

o 



- 5-

I patl fpatT Scan forward and backward respectively for a line containing pat, a regular 
expression (as defined below). The scans normally wrap around the end of 
the buffer. If all that is desired is to print the next line containing pat, then 
the trailing I or f may be omitted. If pat is omitted or explicitly empty, 
then the last regular expression specified is located.; 

" ':r Before each non-relative motion of the current line '.', the previous current 
line is marked with a tag, subsequently referred to as ''''. This makes it 
easy to refer or return to this previous context. Marks may also be esta­
blished by the mark command, using single lower case letters re and the 
marked lines referred to as "z'. 

8.2. Combining addressing primitives 

Addresses to commands consist of a series of addressing primitives, separated by',' or ';'. 
Such address lists are evaluated left-to-right. When addresses are separated by';' the current line 
'.' is set to the value of the previous addressing expression before the next address is interpreted. If 
more addresses are given than the command requires, then all but the last one or two are ignored. 
If the command takes two addresses, the first addressed line must precede the second in the buffer.t 

7. Command descriptions 

The following form is a prototype for all ere commands: 

addres8 command! parameter8 count flags 

All parts are optional; the degenerate case is the empty command which prints the next line in the 
file. For sanity with use from within tJi8ua/ mode, ex ignores a ":" preceding any command. 

In the following command descriptions, the default addresses are shown in parentheses, which 
are not, however, part of the command. 

abbreviate word rh8 abbr: ab 

Add the named abbreviation to the current list. When in input mode in visual, if word IS 

typed as a complete word, it will be changed to rhs. 

( • ) append 
text 

abbr: a 

a! 
text 

Reads the input text and places it after the specified line. Mter the command, '.' addresses 
the last line input or the specified line if no lines were input. If address '0' is given, text is 
placed at the beginning of the buffer. 

The variant flag to append toggles the setting for the autoindent option during the input of 
text. 

* The forms V and \1 sean using the last regular expression used in a scan; after a. substitute II and 1! would 
Bcan using the substitute's regular expression. 
t Null address specifications are permitted in a list of addresses, the derault in this case is the current line '.'; 
thus ',100' is equivalent to '.,100'. It is a.n error to give a prefix address to a command which expects none. 

~--- - - --- ---- -



ugs 

-6-

The members of t.he argument. list. are print.ed, with the current argument. delimited by '[' 
and 'j'. 

( • , • ) change count 
tezt 

abbr: c 

c! 
text 

Replaces the specified lines with the input text. The current line becomes the last line input; 
if no lines were input. it. is left as for a delete. 

The variant toggles 4utoindent during the change. 

( • , • ) copy addr jlag8 abbr: co 

A copy of the specified lines is placed after addr, which may be '0'. The current line '.' 
addresses the last line of the copy. The command t is a synonym for copy. 

( • , • ) delete buffer count jlag8 abbr: d 

Removes the specified lines from the buffer. The line after the last line deleted becomes the 
current line; if t.he lines deleted were originally at the end, the new last line becomes the 
current line. If a named buffer is specified by giving a letter, then the specified lines are 
saved in that buffer, or appended to it if an upper case letter is used. 

edit file 
ex file 

abbr: e 

Used to begin an editing session on a new file. The editor first checks to see if the buffer has 
been modified since the last write command was issued. If it has been, a warning is issued 
and the command is aborted. The command otherwise deletes the entire contents of the edi­
tor buffer, makes the named file the current file and prints the new filename. After insuring 
that this file is sensiblet the editor reads the file into its buffer. 

e! file 

If the read of the file completes without error, the number of lines and characters read is 
typed. If there were any non-ASCII characters in the file they are stripped of their non-ASCIl 
high bits, and any null characters in the file are discarded. If none of these errors occurred, 
the file is considered edited. If the last line of the input file is missing the trailing newline 
character, it will be supplied and a complaint will be issued. This command leaves the 
current line C.' at the last line read.; 

The variant form suppresses the complaint about modifications having been made and not 
written from the editor buffer, thus discarding all changes which have been made before edit­
ing the new file. 

e +n file 

Causes the editor to begin at line n rather than at the last line; n may also be an editor 
command containing no spaces, e.g.: u+/pat". 

t I.e., that it is not a. bina.ry file such a.s a. directory, a. block or cha.ra.cter speeia.l file other than / dev/ U1J, a. ter­
minal, or a. bina.ry or executa.ble file (a.s indicated by the first word). * If executed from within open or vinGI, the current line is initially the first line or the file. 

o 

o 



( 

( 

c.\ 
/ 

file 

-7-

abbr: f 

Prints the current file name, whether it has been '(Modified]' since the last write command, 
whether it is read only, the current line, the number of lines in the buffer, and the percentage 
of the way through the buffer of the current line. * 

file file 

The current file name is changed to file which is considered '[Not edited]'. 

( 1 , $ ) global/pat / cmd8 abbr: g 

First marks each line among those specified which matches the given regular expression. 
Then the given command list is executed with '.' initially set to each marked line. 

The command list consists of the remaining commands on the current input line and may 
continue to multiple lines by ending all but the last such line with a '\'. If cmd8 (and possi­
bly the trailing I delimiter) is omitted, each line matching pat is printed. Append, in8ert, 
and change commands and associated input are permitted; the 'o' terminating input may be 
omitted if it would be on the last line of the command list. Open and vi8ual commands are 
permitted in the command list and take input from the terminal. 

The global command itself may not appear in cmds. The undo command is also not permit­
ted there, as undo instead can be used to reverse the entire global command. The options 
autoprint and autoindent are inhibited during a global, (and possibly the trailing I delim­
iter) and the value of the report option is temporarily infinite, in deference to a report for the 
entire global. Finally, the context mark' 0, is set to the value of '.' before the global com­
mand begins and is not changed during a global command, except perhaps by an open or 
visual within the global. 

g! I patl cmds abbr: v 

The variant form of global runs cmds at each line not matching pat. 

( • ) insert 
text 

abbr: i 

. , 
I. 

text 

Places the given text before the specified line. The current line is left at the last line input; if 
there were none input it is left at the line before the addressed line. This command differs 
from append only in the placement of text . 

The variant toggles autoindent during the insert. 

( . , .+1 ) join count flags abbr: j 

Places the text from a specified range of lines together on one line. White space is adjusted 
at each junction to provide at least one blank character, two if there was a 'o' at the end of 
the line, or none if the first following character is a C)'. If there is already white space at the 
end of the line, then the white space at the start of the next line will be discarded. 

• In the rue cue tha.t the current file is ',Not edited]' this is noted also; in this cue you ha.ve to use the form w! 
to write to the file, since the editor is not sure tha.t a. write will not destroy a. file unrela.ted to·the current con­
tents or the buffer. 

_~ ___________ ~ ~T_ ~ __ _ 



J! 

-8-

The variant causes a simpler join with no white space processing; the characters in the lines 
are simply concatenated. 

(.)k:t 
The k command is a synonym for mark. It does not require a blank or tab before the follow­
ing letter. 

( • , • ) list count flags 

Prints the specified lines in a more unambiguous way: tabs are printed as e T and the end of 
each line is marked with a trailing es,. The current line is left at the last line printed. 

map Ihs rhs 

The map command is used to define macros for use in fliBual mode. LhB should be a single 
character, or the sequence "#n", for n a digit, referring to function key n. When this char­
acter or function key is typed in t1uual mode, it will be as though the corresponding ,.11,8 had 
been typed. On terminals without function keys, you can type "#n". See section 6.9 of the 
"Introduction to Display Editing with Vi" for more details. 

( • ) mark :t 

Gives the specified line mark :r, a single lower case letter. The:r must be preceded by a 
blank or a tab. The addressing form "x' then addresses this line. The current line is not 
affected by this command. 

( • , • ) move add,. abbr: m 

The move command repositions the specified lines to be after addr. The first of the moved 
lines becomes the current line. 

next abbr: n 

n! 

The next file from the command line argument list is edited. 

The variant suppresses warnings about the modifications to the buffer not having been writ­
ten out, discarding (irretrievably) any changes which may have been made. 

n file/ist 
n + command filelist 

The specified filelist is expanded and the resulting list replaces the current argument list; the 
first file in the new list is then edited. If command is given (it must contain no spaces), then 
it is executed after editing the first such file. 

( • , • ) number count flags abbr: # or nu 

Prints each specified line preceded by its buffer line number. The current line is left at the 
last line printed. 

( • ) open flags abbr: 0 

( • ) open / pat / flags 

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor 
will be placed initially at the beginning of the string matched by the pattern. To exit this 
mode use Q. See An Introduction to Duplay Editing with Vi for more details. 
i 

* Not ,,\,ajla.ble in all \'2 editors due to memory eonstrajnts. o 



( 

(~ 

-9-

preserve 

The current editor buffer is saved as though the system had just crashed. This command is 
for use only in emergencies when a mte command has resulted in an error and you don't 
know how to save your work. Arter a preaenJe you should seek help. 

( • , • ) print count abbr: p or P 
Prints the specified lines with non-printing characters printed as control characters ,A %'j 

delete (octal 177) is represented as 'T. The curr~nt line is left at the last line printed. 

( • ) put buffer abbr: pu 

quit 

q! 

Puts back previously deleted or lIanked lines. Normally used with delete to effect movement 
of lines, or with lank to effect duplication of lines. If no buffer is specified, then the last 
deleted or lIanked text is restored.* By using a named buffer, text may be restored that was 
saved there at any previous time. 

abbr: q 

Causes ez to terminate. No automatic write of the editor buffer to a file is performed. How­
ever, ez issues a warning message if the file has changed since the last write command was 
issued, and does not quit. t Normally, you will wish to save your changes, and you should 
give a write command; if you wish to discard them, use the q! command variant. 

Quits from the editor, discarding changes to the buffer without complaint. 

( • ) read file abbr: r 

Places a copy of the text of the given file in the editing buffer after the specified line. If no 
JUe is given the current file name is used. The current file name is not changed unless there 
is none in which case JUe becomes the current name. The sensibility restrictions for the edit 
command apply here also. If the file buffer is empty and there is no current name then ez 
treats this as an edit command. 

Address '0' is legal for this command and causes the file to be read at the beginning of the 
buffer. Statistics are given as for the edit command when the read successfully terminates. 
After a read the current line is the last line read.* 

( • ) read ! command 

Reads the output of the command command into the buffer after the specified line. This is 
not a variant form of the command, rather a read specifying a command rather than a 
JUename; a blank or tab before the ! is mandatory. 

recover file 

Recovers JUc from the system save area. Used after a accidental hangup of the phone** or a 
system crash** or presenJc command. Except when you use presenJe you will be notified by 
mail when a file is saved. 

* But no modifying commands may intervene between the delete or ,onk and the put, Dor may lines be moved 
between liles withou t using a named buller. 
t Ez will also issue a diagnostic ir there Ile more files in the argument list. * Within open and lli8uol the current line is set to the first line read rather than the last. 
*. The system saves a. copy or the lile you were editing only if you have made changes to the file. 



- 10-

rewind abbr: rew 

The argument list is rewound, and the first file in the list is edited. 

rew! 

Rewinds the argument list discarding any changes made to the current buffer. 

eet parameter 

shell 

With no arguments, prints those options whose v~ues have been changed from their defaults; 
with parameter oil it prints all of the option values. 

Giving an option name followed by a '1' causes the current value oC that option to be 
printed. The '1' is unnecessary unless the option is Boolean valued. Boolean options are 
given values either by the form 'set option' to tum them on or 'set nooption' to turn them 
off; string and numeric options are assigned via the form 'set option=value'. 

More than one parameter may be given to 8et ; they are interpreted leCt-to-right. 

abbr: sh 

A new shell is created. When it terminates, editing resumes. 

source file abbr: so 

Reads and executes commands from the specified file. Source commands may be nested . 

. ( • , • ) substitute / pat / repl / options count flags abbr: s 

stop 

On each specified line, the first instance oC pattern pat is replaced by replacement pattern 
repl. If the global indicator option character 'g' appears, then all instances are substituted; if 
the confirm indication character 'c' appears, then before each substitution the line to be sub­
stituted is typed with the string to be substituted marked with 't' characters. By typing an 
'y' one can cause the substitution to be performed, any other input causes no change to take 
place. After a 8ub8titute the current line is the last line substituted. 

Lines may be split by substituting new-line characters into them. The newline in rep/ must 
be escaped by preceding it with a '\'. Other metacharacters available in pat and rep/ are 
described below. 

Suspends the editor, returning control to the top level shell. If autowrite is set and there are 
unsaved changes, a write is done first unless the form stop! is used. This commands is only 
available where supported by the teletype driver and operating system. 

( • , • ) substitute options count flags abbr: s 

If pat and rep/ are omitted, then the last substitution is repeated. This is a synonym for the 
&; command. 

( . , . ) t addr flags 

The t command is a synonym for COP1l. 

ta tag 

The Cocus of editing switches to the location of tag, switching to a different line in the 
current file where it is defined, or if necessary to another file.* 

* If you have modified the current file before giving a ta, command, you must write it out; giving another tag 
command, specifying no t4, will reuse the previous tag. 

c 



c 

- 11-

The tags file is normally created by a program such as etags, and consists of a number of 
lines with three fields separated by blanks or tabs. The first field gives the name of the tag, 
the second the name of the file where the tag resides, and the third gives an addressing form 
which can be used by the editor to find the tag; this field is usually a contextual scan using 
'/pat/' to be immune to minor changes in the file. Such scans are always performed as if 
nomagic was set. 

The tag names in the tags file must be sorted alphabetically. * 
unabbreviate word abbr: una 

Delete word from the list of abbreviations. 

undo abbr: u 

Reverses the changes made in the buffer by the last buffer editing command. Note that glo­
bal commands are considered a single command for the purpose of undo (as are open and 
visual.) Also, the commands write and edit which interact with the file system cannot be 
undone. Undo is its own inverse. 

Undo always marks the previous value of the current line '.' as ''''. After an undo the 
current line is the first line restored or the line before the first line deleted if no lines were 
restored. For commands with more global effect such as global and visual the current line 
regains it's pre-command value after an undo. 

unmap Ihs 

The macro expansion associated by map for Ihs is removed. 

( 1 , $ ) v / pat / cmds 

A synonym for the global command variant g!, running the specified cmds on each line which 
does not match pat. 

version abbr: ve 

Prints the current version number of the editor as well as the date the editor was last 
changed. 

( • ) visual type count flags abbr: vi 

Enters visual mode at the specified line. Type is optional and may be '-' , It' or co' as in the 
z command to specify the placement of the specified line on the screen. By default, if type is 
omitted, the specified line is placed as the first on the screen. A count specifies an initial 
window size; the default is the value of the option window. See the document An Introduc­
tion to Display Editing with Vi for more details. To exit this mode, type Q. 

visual file 
visual +n file 

From visual mode, this command is the same as edit. 

( 1 , $ ) write Jile abbr: w 

Writes changes made back to Jile, printing the number of lines and characters written. Nor­
mally Jile is omitted and the text goes back where it came from. If a Jile is specified, then 
text will be written to that file. * If the file does not exist it is created. The current file name 
is changed only if there is no current file name; the current line is never changed. 

* Not avallable in all v2 editors due to memory constralnts. 
• The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file is ac­
tually a teletype, / dev/ ttll, / dev/ null. Otherwise, you must give the variant form wI to force the write. 



- 12-

IC an error occurs while writing the current and edited file, the editor considers that there has 
been "No write since last change" even it the buffer had not previously been modified. 

( 1 , • ) write> > file abbr: w» 
Writes the buffer contents at the end of an existing file. 

w! name 

Overrides the checking of the normal write command, and will write to any file which the 
system permits. 

( 1 , • ) w !command 

Writes the specified lines into command. Note the difference between w! which overrides 
checks and w ! which writes to a command. 

wq name 

Like a write and then a quit command. 

wq! name 

The variant overrides checking on the sensibility of the write command, as w! does. 

xit name 

If any changes have been made and not written, writes the buffer out. Then, in any case, 
quits. 

( • , • ) yank buffer count abbr: ya 

Places the specified lines in the named buffer, for later retrieval via put. IC no buffer name is 
specified, the lines go to a more volatile place; see the put command description. 

( .+1 ) z count 

Print the next count lines, default window. 

( • ) z type count 

Prints a window of text with the specified line at the top. If type is '-' the line is placed at 
the bottom; a '.' causes the line to be placed in the center.· A count gives the number of 
lines to be displayed rather than double the number specified by the 8croll option. On a CRT 
the screen is cleared before display begins unless a count which is less than the screen size is 
given. The current line is left at the last line printed. 

! command 

The remainder of the line after the 'I' character is sent to a shell to be executed. Within the 
text of command the characters '%' and '#' are expanded as in filenames and the character 
'I' is replaced with the text of the previous command. Thus, in particular, 'II' repeats the 
last such shell escape. If any such expansion is performed, the expanded line will be echoed. 
The current line is unchanged by this command. 

IC there has been "[No write]" of the buffer contents since the last change to the editing 
buffer, then a diagnostic will be printed before the command is executed as a warning. A sin­
gle 'I' is printed when the command completes. 

• Forms '1=' and 'zt' also exist; 'z=' places the current line in the center, lIurrounds it with lines of '-' charac­
ters and leaves the current line at this line. The rorm 'z1' prints the window before 'z-' would. The characters 
'+', 't' and '-' may be repeated for cumulative elfect. On some v2 editors, no 'llpe may be given. 

o 

o 



( 

- 13-

( addr , addr ) ! command 

Takes the specified address range and supplies it as standard input to command,. the result­
ing output then replaces the input lines. 

($) = 
Prints the line number of the addressed line. The current line is unchanged. 

( . , . ) > count flags 
( . , . ) < count flags 

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The quan­
tity of shift is determined by the shiftwidth option and the repetition of the specification 
character. Only white space (blanks and tabs) is shifted; no non-white characters are dis­
carded in a left-shift. The current line becomes the last line which changed due to the shift­
ing. 

An end-of-file from a terminal input scrolls through the file. The scroll option specifies the 
size of the scroll, normally a half screen of text. 

( .+1 , .+1 ) 
( .+1 , .+1 ) I 

An address alone causes the addressed lines to be printed. A blank line prints the next line 
in the file. 

( • , • ) & options count flags 

Repeats the previous substitute command. 

( • , • ) - options count flags 

Replaces the previous regular expression with the previous replacement pattern from a substi­
tution. 

8. Regular expressions and substitute replacement patterns 

8.1. Regular expressions 

A regular expression specifies a set of strings of characters. A member of this set of strings is 
said to be matched by the regular expression. Ex remembers two previous regular expressions: the 
previous regular expression used in a substitute command and the previous regular expression used 
elsewhere (referred to as the previous scanning regular expression.) The previous regular expression 
can always be referred to by a null re, e.g. '/ /' or '17'. 

8.2. Magic and nomagic 

The regular expressions allowed by ex are constructed in one of two ways depending on the 
setting of the magic option. The ex and vi default setting of magic gives quick access to a power­
ful set of regular expression metacharacters. The disadvantage of magic is that the user must 
remember that these metacharacters are magic and precede them with the character '\' to use 
them as "ordinary" characters. With nomagic, the default for edit, regular expressions are much 
simpler, there being only two metacharacters. The power of the other metacharacters is still avail­
able by preceding the (now) ordinary character with a '\'. Note that '\' is thus always a meta­
character. 

The remainder of the discussion of regular expressions assumes that that the setting of this 
option is magic. t 

t To discern what is true with nomllgic it suffices to remember that the only special characters in this case will 
be "t' at the beginning of a regular expression, 'S' at the end of a regular expression, and "". With nomllgic the 



-14 -

8.3. Basic regular expression summary 

The following basic constructs are used to construct magic mode regular expressions. 

char 

t 

$ 

\< 

\> 

[string] 

An ordinary character matches itself. The characters 't' at the beginning of a 
line, 'S' at the end of line, ,*, as any character other than the first, '.', 'V, It', and 
,-, are not ordinary characters and must be escaped (preceded) by '\' to be 
treated as such. 

At the beginning of a pattern forces the match to succeed only at the beginning 
of a line. 

At the end of a regular expression forces the match to succeed only at the end of 
the line. 

Matches any single character except the new-line character. 

Forces the match to occur only at the beginning of a "variable" or "word"j that 
is, either at the beginning of a line, or just before a letter, digit, or underline and 
after a character not one of these. 

Similar to '\<', but matching the end of a "variable" or "word", i.e. either the 
end of the line or before character which is neither a letter, nor a digit, nor the 
underline character. 

Matches any (single) character in the elass defined by atring. Most characters in 
alring define themselves. A pair of characters separated by '-' in alM'ng defines 
the set of characters collating between the specified lower and upper bounds, thus 
'[a-z]' as a regular expression matches any (single) lower-case letter. If the first 
character of string is an 't' then the construct matches those characters which it 
otherwise would notj thus '[ta-z]' matches anything but a lower-case letter (and 
of course a newline). To place any of the characters 'f', 'I', or '-' in slM'ng you 
must escape them with a preceding '\'. 

8.4. Combining regular expression primitives 

The concatenation of two regular expressions matches the leftmost and then longest string 
which can be divided with the first piece matching the first regular expression and the second piece 
matching the second. Any of the (single character matching) regular expressions mentioned above 
may be followed by the character ,*, to form a regular expression which matches any number of 
adjacent occurrences (including 0) of characters matched by the regular expression it follows. 

The character ,-, may be used in a regular expression, and matches the text which defined 
the replacement part of the last subiJtitute command. A regular expression may be enclosed 
between the sequences '\(' and '\)' with side effects in the aubstitule replacement patterns. 

8.5. Substitute replacement patterns 

The basic metacharacters for the replacement pattern are '&' and '-'j these are given as '\&' 
and '\ -, when nomagic is set. Each instance of '&' is replaced by the characters which the regular 
expression matched. The metacharacter ,-, stands, in the replacement pattern, for the defining 
text of the previous replacement pattern. 

Other metasequences possible in the replacement pattern are always introduced by the escap­
ing character '\'. The sequence '\n' is replaced by the text matched by the n-th regular subexpres­
sion enclosed between ,\(' and '\)'.t The sequences '\u' and ,\1' cause the immediately following 
character in the replacement to be converted to upper- or lower-case respectively if this character is 
a letter. The sequences '\U' and '\L' turn such conversion on, either until '\E' or '\e' is encoun­
tered, or until the end of the replacement pattern. 

characters ,-, and 'ell:' also lose their special meanings related to the replacement pattern of a substitute. 
t When nested, parenthesized 5ubexpressions 8le present, n is determined by counting occurrences or '\(' starting 
(rom the left. o 



( 

o 

- 15-

9. Option descriptioDB 

autoindent, ai default: noai 

Can be used to ease the preparation of structured program text. At the beginning of each 
append, change or insert command or when a new line is opened or created by an append, 
change, insert, or substitute operation within open or visual mode, ex looks at the line 
being appended after, the first line changed or the line inserted before and calculates the 
amount of white space at the start of the line. It then aligns the cursor at the level of inden­
tation so determined. 

H the user then types lines of text in, they will continue to be justified at the displayed 
indenting level. H more white space is typed at the beginning of a line, the following line 
will start aligned with the first non-white character of the previous line. To back the cursor 
up to the preceding tab stop one can hit AD. The tab stops going backwards are defined at 
multiples of the shiftwidth option. You cannot backspace over the indent, except by sending 
an end-of-file with a AD. 
Specially processed in this mode is a line with no characters added to it, which turns into a 
completely blank line (the white space provided for the autoindent is discarded.) Also spe­
cially processed in this mode are lines beginning with an '1' and immediately followed by a 
AD. This causes the input to be repositioned at the beginning of the line, but retaining the 
previous indent for the next line. Similarly, a '0' followed by a AD repositions at the begin­
ning but without retaining the previous indent, 

Autoindent doesn't happen in global commands or when the input is not a terminal. 

autoprint, ap default: ap 

Causes the current line to be printed after each delete, copy, join, move, substitute, t, undo 
or shift command. This has the same effect as supplying a trailing 'p' to each such com­
mand. Autopn'nt is suppressed in globals, and only applies to the last of many commands 
on a line, 

autowrite, aw default: noaw 

Causes the contents of the buffer to be written to the current file if you have modified it and 
give a next, rewind, stop, tag, or ! command, or a At (switch files) or A] (tag goto) com­
mand in visual, Note, that the edit and ex commands do not autowrite. In each case, there 
is an equivalent way of switching when autowrite is set to avoid the autown'te (edit for next, 
rewind! for .I rewind , stop! Cor stop, tag! Cor tag, shell Cor!, and :e # and a :ta! command 
from within visual), 

beautify, bl deCault: nobeautiCy 

Causes all control characters except tab, newline and form-feed to be discarded Crom the 
input. A complaint is registered the first time a backspace character is discarded. Beautify 
does not apply to command input, 

directory, dir deCault: dir=/tmp 

Specifies the directory in which ex places its buffer file, If this directory in not writable, then 
the editor will exit abruptly when it fails to be able to create its buffer there. 

edeompatible deCault: noedcompatible 

Causes the presence of absence of sand e suffIxes on substitute commands to be remembered, 
and to be toggled by repeating the suffices. The suffIX r makes the substitution be as in the 
- command, instead oC like ~, it 

** Version 3 only. 



-16 -

enorbells, eb default: noeb 

Error messages are preeeded by a bell.· If possible the editor always places the error message 
in a standout mode of the terminal (such as inverse video) instead of ringing the bell. 

hardtabs, ht default: ht=8 

Gives the boundaries on which terminal hardware tabs are set (or on which the system 
expands tabs). 

ignoreease, ic default: noic 

All upper case characters in the text are mapped to lower case in regular expression match­
ing. In addition, all upper case characters in regular expressions are mapped to lower case 
except in character class specifications. 

lisp default: nolisp 

Autoindent indents appropriately for li3p code, and the ( ) { } [[ and ]] commands in open 
and visual are modified to have meaning for lisp. 

list default: nolist 

All printed lines will be displayed (more) unambiguously, showing tabs and end-or-lines as in 
the li3t command. 

magic default: magic for ex and vlT 

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with 
only 't' and '$' having special effects. In addition the metacharacters ,-, and '&' of the 
replacement pattern are treated as normal characters. All the normal metacharacters may be 
made magic when nomagic is set by preceding them with a '\'. 

mesg default: mesg 

Causes write permission to be turned off to the terminal while you are in visual mode, if 
nomesg is set. tt 

number, nu default: nonumber 

open 

Causes all output lines to be printed with their line numbers. In addition each input line will 
be prompted for by supplying the line number it will have. 

default: open 

If noopen, the commands open and visual are not permitted. This is set for edit to prevent 
confusion resulting from accidental entry to open or visual mode. 

optimize, opt default: optimize 

Throughput of text is expedited by setting the terminal to not do automatic carriage returns 
when printing more than one (logical) line of output, greatly speeding output on terminals 
without addressable cursors when text with leading white space is printed. 

paragraphs, para default: para=1PLPPPQPP LIbp 

Specifies the paragraphs for the { and } operations in open and visual. The pairs of charac­
ters in the option's value are the names of the macros which start paragraphs. 

• Bell ringing in open and tMuoi on errors is not suppressed by setting nod. 
t No magic ror edit. 
** Version 3 only. 



o 

- 17-

prompt default: prompt 

Command mode input is prompted for with a':'. 

redraw default: noredraw 

The editor simulates (using great amounts of output), an intelligent terminal on a dumb ter­
minal (e.g. during insertions in visual the characters to the right of the cursor position are 
refreshed as each input character is typed.) Useful only at very high speed. 

remap default: remap 

If on, macros are repeatedly tried until they are unchanged. ** For example, if 0 is mapped 
to 0, and 0 is mapped to I, then if remap is set, 0 will map to I, but if noremap is set, it. 
will map to O. 

report default: report=5t 

Specifies a threshold for feedback from commands. Any command which modifies more than 
the specified number of lines will provide feedback as to the scope of its changes. For com­
mands such as global, open, undo, and visual which have potentially more far reaching 
scope, the net change in the number of lines in the buffer is presented at the end of the com­
mand, subject to this same threshold. Thus notification is suppressed during a global com­
mand on the individual commands performed. 

scroll default: scroll=% window 

Determines the number of logical lines scrolled when an end-of-file is received from a terminal 
input in command mode, and the number of lines printed by a command mode z command 
(double the value of scroll). 

sections default: sections=SHNIllI HU 

Specifies the section macros for the [[ and II operations in open and visual. The pairs of char­
acters in the options's value are the names of the macros which start para.graphs. 

shell, sh default: sh=/bin/sh 

Gives the path name of the shell forked for the shell escape command'!" and by the shell 
command. The default is taken from SHELL in the environment, if present. 

shiftwidth, sw default: sw=8 

Gives the width a software tab stop, used in reverse tabbing with AD when using autoindent 
to append text, and by the shift commands. 

showmatch, sm default: nosm 

In open and visual mode, when a) or } is typed, move the cursor to the matching ( or { for 
one second if this matching character is on the screen. Extremely useful with lisp. 

slowopen, slow terminal dependent 

Affects the display algorithm used in visual mode, holding off display updating during input 
of new text to improve throughput when the terminal in use is both slow and unintelligent. 
See An Introduction to Display Editing with Vi for more details. 

*f Version 3 only. 
t 2 for edit. 



- 18-

tabstop, ts default: ts=8 

The editor expands tabs in the input file to be on ta6stop boundaries for the purposes of 
display. 

taglength, tl default: tl=O 

tags 

term 

terse 

Tags are not significant beyond this many characters. A value of zero (the default) means 
that all characters are significant. 

default: tags==tags /usr/lib/tags 

A path of files to be used as tag files for the tag command. U A requested tag is searched 
for in the specified files, sequentially. By default (even in version 2) files called tags are 
searched for in the current directory and in /usr/lib (a master file for the entire system.) 

from environment TERM 

The terminal type of the output device. 

default: noterse 

Shorter error diagnostics are produced for the experienced user. 

warn default: warn 

Warn if there has been '[No write since last change]' before a 'I' command escape. 

window default: window=speed dependent 

The number of lines in a text window in the visual command. The default is 8 at slow 
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus one 
line) at higher speeds. 

w300, w1200, w9600 

These are not true options but set window only if the speed is slow (300), medium (1200), or 
high (9600), respectively. They are suitable for an EXINIT and make it easy to change the 
8/I6/full screen rule. 

wrapsean, ws default: ws 

Searches using the regular expressions in addressing will wrap around past the end of the file. 

wrapmargin, wm default: wm=O 

Defines a margin for automatic wrapover of text during input in open and visual modes. 
See An Introduction to Text Editing with Vi for details. 

writeany, wa default: nowa 

Inhibit the checks normally made before write commands, allowing a write to any file which 
the system protection mechanism will allow. 

10. Limitations 

Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 256 
characters per global command list, 128 characters per file name, 128 characters in the previous 
inserted and deleted text in open or visual, 100 characters in a shell escape command, 63 charac­
ters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines in the 
file is silently enforced. 

U Version 3 only. 

o 

o 



( / 

() 

-19 -

The vuual implementation limits the number of macros defined with map to 32, and the 
total number of characters in macros to be less than 512. 

Acknowledgment8. Chuck Haley contributed greatly to the early development of ex. Bruce Englar 
encouraged the redesign which led to elt version 1. Bill Joy wrote versions 1 and 2.0 through 2.7, 
and created the framework that users see in the present editor. Mark Horton added macros and 
other features and made the editor work on a large number of terminals and Unix systems. 



o 



Ex changes - Version 3.1 to 3.5 
This update describes the new features and changes which have been made in converting 

from version 3.1 to 3.5 of ex. Each change is marked with the first version where it appeared. 

Update to Ex Reference Manual 

Command line options 

3.4 A new command called view has been created. View is just like vi but it sets readonly. 

3.4 The encryption code from the v7 editor is now part of ex. You can invoke ex with the -x 
option and it will ask for a key, as ed. The ed x command (to enter encryption mode from 
within the editor) is not available. This feature may not be available in all instances of ex 
due to memory limitations. 

Commands 

3.4 Provisions to handle the new process stopping features of the Berkeley TTY driver have been 
added. A new command, stop, takes you out of the editor deanly and efficiently, returning 
you to the shell. Resuming the editor puts you back in command or visual mode, as 
appropriate. If autowrite is set and there are outstanding changes, a write is done first 
unless you say "stop!". 

3.4 A 

:vi <file> 

command from visual mode is now treated the same as a 

:edit <file> or :ex <file> 

command. The meaning of the vi command from ex command mode is not affected. 

3.3 A new command mode command xit (abbreviated x) has been added. This is the same as 
wq but will not bother to write if there have been no changes to the file. 

Options 

3.4 A read only mode now lets you guarantee you won't clobber your file by accident. You can 
set the on/off option readonly (ro), and writes will fail unless you use an ! after the write. 
Commands such as x, Zz, the autowrite option, and in general anything that writes is 
affected. This option is turned on if you invoke ex with the -R flag. 

3.4 The tlJrapmargin option is now usable. The way it works has been completely revamped. 
Now if you go past the margin (even in the middle of a word) the entire word is erased and 
rewritten on the next line. This changes the semantics of the number given to wrapmargin. 
o still means off. Any other number is still a dist~ce from the right edge of the screen, but 
this location is now the right edge of the area where wraps can take place, instead of the left 
edge. Wrap margin now behaves much like fill/nojustify mode in nroff. 

3.3 The options w900, w1200, and w9600 can be set. They are synonyms for window, but only 
apply at 300, 1200, or 9600 baud, respectively. Thus you can specify you want a 12 line 
window at 300 baud and a 23 line window at 1200 baud in your EXINIT with 

:set w300=12 wI200=23 

3.3 The new option timeout (default on) causes macros to time out after one second. Turn it off 
and they will wait forever. This is useful if you want multi character macros, but if your 
terminal sends escape sequences for arrow keys, it will be necessary to hit escape twice to get 
a beep. 

3.3 The new option remap (default on) causes the editor to attempt to map the result of a macro 
mapping again until the mapping fails. This makes it possible, say, to map q to # and #1 



- 2· 

to something else and get ql mapped to something else. Turning it off makes it possible to 
map AL to 1 and map AR to AL without having AR map to l. 

3.3 The new (string) valued option tag3 allows you to speeify a list of tag files, similar to the 
"path" variable of csh. The files are separated by spaces (which are entered preceded by a 
backslash) and are searched left to right. The default value is "tags /usr/lib/tags", which 
has the same effeet as before. It is reeommended that "tags" always be the first entry. On 
Ernie CoVax, /usr/lib/tags contains entries for the system defined library procedures from 
seetion 3 of the manual. 

Environment enquiries 

3.4 The editor now adopts the convention that a null string in the environment is the same as 
not being set. This applies to TERM, TERMCAP, and EXINIT. 

Vi Tutorial Update 

Deleted features 

3.3 The "q" command from visual no longer works at all. You must use "Q" to get to ex com­
mand mode. The "q" command was deleted because of user complaints about hitting it by 
accident too often. 

3.5 The provisions for changing the window size with a numeric prefix argument to certain visual 
commands have been deleted. The correct way to change the window size is to use the z 
command, for example z5<cr> to change the window to 5 lines. 

3.3 The option "mapinput" is dead. It has been replaced by a much more powerful mechanism: 
":map!". 

Change in default option settings 

3.3 The default window sizes have been changed. At 300 baud the window is now 8 lines (it was 
1/2 the screen size). At 1200 baud the window is now 16 lines (it was 2/3 the screen size, 
which was usually also 16 for a typical 24 line CRT). At 9600 baud the window is still the 
full screen size. Any baud rate less than 1200 behaves like 300, any over 1200 like 9600. 
This change makes vi more usable on a large screen at slow speeds. 

Vi commands 

3.3 The command "ZZ" from vi is the same as ":x<cr>". This is the recommended way to 
leave the editor. Z must be typed twice to avoid hitting it accidently. 

3.4 The command AZ is the same as ":stop<cr>". Note that if you have an arrow key that 
sends AZ the stop function will take priority over the arrow function. If you have your 
"susp" character set to something besides A Z, that key will be honored as well. 

3.3 It is now possible from visual to string several search expressions together separated by semi­
colons the same as command mode. For example, you can say 

/fOO/i/bar 

from visual and it will move to the first "bar" after the next "foo". This also works within 
one line. 

3.3 AR is now the same as AL on terminals where the right arrow key sends AL (This includes the 
Televideo 912/920 and the ADM 31 terminals.) 

3.4 The visual page motion commands AF and AB now treat any preceding counts as number of 
pages to move, instead of changes to the window size. That is, 2"F moves forward 2 pages. 

o 

o 



( 

( 

-3-

Macros 

3.3 The "mapinput" mechanism of version 3.1 has been replaced by a more powerful mechanism. 
An "!" can follow the word "map" in the map command. Map!'ed macros only apply dur­
ing input mode, while map'ed macros only apply during command mode. Using "map" or 
"map!" by itself produces a listing of macros in the corresponding mode. 

3.4 A word abbreviation mode is now available. You can define abbreviations with the abbrevi­
ate command 

:abbr foo find outer otter 

which maps "foo" to "find outer otter". Abbreviations can be turned off with the ttnabbrevi­
ate command. The syntax of these commands is identical to the map and ttnmap com­
mands, except that the ! forms do not exist. Abbreviations are considered when in visual 
input mode only, and only affect whole words typed in, using the conservative definition. 
(Thus "foobar" will not be mapped as it would using "map!") Abbreviate and unabbreviate 
can be abbreviated to "ab" and "una", respectively. 





( 

Ex changes - Version 2.0 to 3.1 
This update describes the new features and changes which have been made in converting 

from version 2.0 to 3.1 of e:e. Each change is marked with the first version where it appeared. 
Versions 2.1 through 2.7 were implemented by Bill Joy; Mark Horton produced versions 2.8, 2.9 
and 3.1 and is maintaining the current version. 

Command line options 

2.1 Invoking e:e via 

% ex-I 

Update to Ex Reference Manual 

now sets the Ii&p and &howmatch options. This is suitable for invocations from within 
li8p (I). If you don't like &howmatch you can still use "ex -1" to get li&p set, just put the 
command "set noshowmatch" in your .e:erc file. 

3.1 Invoking e:e with an argument -wn sets the value of the window option before starting; this 
is particularly suitable when invoking vi, thus 

% vi -w5 ex2.0-3.1 

edits the file with a 5 line initial window. 

2.9 The text after a + on the command line is no longer limited to being a line number, but can 
be any single command. This generality is also available within the editor on edit and next 
commands (but no blanks are allowed in such commands.) A very useful form of this option 
is exemplified by 

% vi + /main more.c 

Command addressing 

2.9 The address form % is short for "l,S". 

Commands 

2.2 The editor now ignores a ":" in front of commands, so you can say ":wq" even in command 
mode. 

2.8 The global command now does something sensible when you say 

g/pat/ 

printing all lines containing pat; before this printed the first line after each line containing 
pat. The trailing / may be omitted here. 

3.1 New commands map and unmap have been added which are used with macros in vi8ual 
mode. These are described below. 

3.1 The next command now admits an argument of the form "+command" as described above. 

3.1 The &ubBtitute command, given no arguments, now repeats the previous &ub8titute, just as 
"&" does. This is easier to type. 

2.8 The substititute command "s/str", omitting the delimiter on the regular expression, now 
deletes "str"j previously this was an error. 

2.9 During pattern searches of a tag command, the editor uses nomagic mode; previously a 
funny, undocumented mode of searching was used. 

3.1 The editor requires that the tag names in the tag& file be sorted. 

2.3 The command P is a synonym for pn·nt .. 



-2-

2.9 The default starting address Cor z is .+1. If z is Collowed by a number, then this number is 
remembered by setting the scroll option. 

2.9 A command consisting of only two addresses, e.g. "1,10" now causes all the lines to be 
printed, rather than just the last line. 

Options 

2.8 Autowrite (which can be abbreviated. aw) is an on/of! option, of! by deCault. If you set this 
option, then the editor will perCorm write commJU}ds iC the current file is modified and you 
give a next, AA (in visual), ! or tag commands, (and noticeably not beCore edit commands.) 
Note that there is an equivalent way to do the command with autowrite set without the 
write in each case: edit, :e #, shell and tag! do not autowrite. 

3.1 A new option edcompatible causes the presence or absence oC , and c sufI'lXes on subatitute 
commands to be remembered, and to be toggled by repeating the suffices. The sufI'lX r 
makes the substitution be as in the - command instead oC like S. 

2.8 There is a new hardtds option, which is numeric and deCaults to 8. Changing this to, say, 
4, tells ex that either you system expands tabs to every 4 spaces, or your terminal has 
hardware tabs set every 4 spaces. 

3.1 There is a new boolean option mapinput which is described with the macro Cacility Cor visual 
below. 

2.9 'Whether ex prompts Cor commands now depends only on the setting or the prompt variable 
so that you can say "set prompt" inside scnpt{l) and get ex to prompt. 

Environment enquiries 

3.1 Ex will now execute initial commands Crom the EXINIT environment variable rather than 
.ezrc if it find such a variable. 

2.9 Ex will read the terminal description rrom the TERMCAP environment variable ir the 
description there is the one Cor the TERM in the environment. TERM CAP may still be a 
pathname (starting with a /; in that case this will be used as the termcap file rather than 
/etc/termcap, and the terminal description will be sought there.) 

o 

c 



( 

-3-

Vi Tutorial Update 

Change in default option settings. 

3.1 The default setting for the magic option is now magic. Thus the characters 

. [ . -
are special in scanning patterns in vi. You should 

set nomagic 

in your .ezrc if you don't use these regularly. This makes vi default like ez. In a related 
change, beautify is no longer the default for vi. 

Line wrap around 

2.4 The w W b B e and E operations in visual now wrap around line boundaries. Thus a 
sequence of enough w commands will get to any word after the current position in the file, 
and b's will back up to any previous position. Thus these are more like the sentence opera­
tions ( and). (You still can't back around line boundaries during inserts however.) 

2.3 The / and f searches now find the next or previous instance of the searched for string. Pre­
viously, they would not find strings on the current line. Thus you can move to the right on 
the current line by typing "/pref <ESC>" where "pref" is a prefix of the word you wish to 
move to, and delete to a following string "str" by doing "d/str<ESC> ", whether it is on 
the same or a succeeding line. (Previously the command "d/pat/" deleted lines through the 
next line containing "pat". This can be accomplished now by the somewhat unusual com­
mand "d/pat/O", which is short for "d/pat/+O". The point is that whole lines are affected 
if the search patter only specifies a line, and using address arithmetic makes the pattern only 
specify a line.) 

3.1 Arrow keys on terminals that send more than 1 character now work. Home up keys are sup­
ported as are the four directions. (Note that the HP 2621 will turn on function key labels, 
and even then you have to hold shift down to use the arrow keys. To avoid turning on the 
labels, and to give up the function keys, use terminal type 2621nl instead of 2621.) 

Macros 

3.1 A parameterless macro facility is included from visual. This facility lets you say that when 
you type a particular key, you really mean some longer sequence of keys. It is useful when 
you find yourself typing the same sequence of commands repeatedly. 

Briefly, there are two flavors of macros: 

a} Put the macro body in a buffer register, say x. Then type @x to invoke it. @ may be 
followed by another @ to repeat the last macro. This allows macros up to 512 chars. 

b} Use the map command from command mode (typically in the .ezrc file) as follows: 

map Ihs rhs 

where Ihs will be mapped to rhs. There are restrictions: Ihs should be I-keystroke (either 1 
char or 1 function key) since it must be entered within 1 second. The Ihs can be no longer 
than 10 chars, the rhs no longer than 100. To get space, tab, "r', or newline into Ihs or rhs, 
escape them with ctrl V. (It may be necessary to escape the ctrl V with ctrl V if the map 
command is given from visual mode.) Spaces and tabs inside the rhs need not be escaped. 

For example, to make the Q key write and exit the editor, you can do 

:map Q :wq·VCR 

which means that whenever you type 'Q', it will be as though you had typed the four charac­
ters :wqCR. The control V is needed because without it the return would end the colon com­
mand. 



-4-

For 1 shot macros it is best to put the macro in a buffer register and map a key to '@r', 
since this will allow the macro to be edited. 

Macros can be deleted with 

unmap Ihs 

H the lhs of a macro is "#0" through "#9", this maps the particular function key instead of 
the 2 char # sequence, if the terminal has function keys. For terminals without function 
keys, the sequence #z means function key ~, for any digit ~. As a special case, on terminals 
without function keys, the #x sequence need not' be typed within one second. The character 
# can be changed by using a macro in the usual way: 

map AVAI # 

to use tab, for example. (This won't affect the map command, which still uses #, but just the 
invocation from visual mode.) The undo command will undo an entire macro call as a unit. 

3.1 New commands in visual: Ay and AE. These scroll the screen up and down 1 line, respec­
tively. They can be given counts, controlling the number of lines the screen is scrolled. They 
differ from AU and AD in that the cursor stays over the same line in the buffer it was over 
before rather than staying in the same place on the screen. ("'Yon a dumb terminal with a 
full screen will redraw the screen moving the cursor up a few lines.) II you're looking for 
mnemonic value in the names, try this: Y is right next to U and E is right next to D. 

Miscellaneous 

'3.1 In visual: '&' is a synonym for ':&<cr>'. 

2.2 In input mode in open and visual AV (like tenex) is now equivalent to AQ (which is reminis­
cent of ITS) superquoting the next character. 

2.8 The j, k, and 1 keys now move the cursor down, up, and right, respectively, in visual mode, 
as they used to do (and always did on some terminals). This is to avoid the creeping of these 
keys into the map descriptions of terminals and to compensate for the lack or arrow keys on 
some terminals. 

2.5 The $ command now sets the column ror future cursor motions to effective infinity. Thus a 
'$' rollowed by up/down cursor motions moves at the right margin of each line. 

2.9 The way window sizes and scrolling commands are based on the options window and scroll 
has been rearranged. All command mode scrolling commands (z and ctrl D) are based on 
scroll: AD moves scroll lines, z moves scroll*2 lines. Everything in visual rD, AU, AF, AB, z, 
window sizes in general) are based on the window option. The deraults are arranged so that 
everything seems as berore, but on hardcopy terminals at 300 baud the derault ror scroll is 11 
instead of 6. 

c 



(-

( 

Ex/Edit Command Summary (Version 2.0) 

Ex and ,rUt are text editors, used for creating and 
modifying files of text on the UNIX computer system. 
Edit is a variant of ,z with features designed to make it 
less complicated to learn and use. In terms of command 
syntax and effect the editors are essentially identical, and 
this command summary applies to both. 

The summary is meant as a quick reference for users 
already acquainted with edit or ez. Fuller explanations 
of the editors are available in the documents Edit: A 
Tutorial (a self-teaching introduction) and the Ex ReIer­
ence Alanual (the comprehensive reference source for both 
edit and ez). Both of these writeups are available in the 
Computing Services Library. 

In the examples included with the summary, com­
mands and text entered by the user are printed in bold­
face to distinguish them from responses printed by the 
computer_ 

The Editor Buffer 
In order to perform its tasks the editor sets aside a 

temporary work space, called a buffer, separate from the 
user's permanent file. Before starting to work on an 
existing file the editor makes a copy of it in the buffer, 
leaving the original untouched. All editing changes are 
made to the buffer copy, which must then be written 
back to the permanent file in order to update the old 
version. The buffer disappears at the end of the editing 
session. 

Editing: Command and Text Input Modes 
During an editing session there are two usual modes 

of operation: command mode and tezt input mode. (This 
disregards, for the moment, open and visual modes, dis­
cussed below.) In command mode, the editor issues a 
colon prompt (:) to show that it is ready to accept and 
execute a command. In text input mode, on the other 
hand, there is no prompt and the editor merely accepts 
text to be added to the buffer. Text input mode is ini­
tiated by the commands append, insert, and change, and 
is terminated by typing 3. period as the first and only 
character on a line. 

Line Numbers and Command Syntax 
The editor keeps track of lines of text in the buffer 

by numbering them consecutively starting with 1 and 
renumbering as lines are added or deleted. At any given 
time the editor is positioned at one of these lines; this 
position is called the current line. Generally, commands 
that change the contents of the buffer print the new 
current line at the end of their execution. 

Most commands can be preceded by one or two line­
number addresses which indicate the lines to be affected. 
If one number is given the command operates on that 
line only; if two, on an inclusive range of lines. Com­
mands that can take line-number prefixes also assume 
default prefixes if none are given. The default assumed 
by each command is designed to make it convenient to 
use in many instances without any line-number prefix. 

Computing Services, U.C. Berkeley 

For the most part, a command used without a prefix 
operates on the current line, though exceptions to this 
rule should be noted. The print command by itself, for 
instance, causes one line, the current line, to be printed 
at the terminal. 

The summary shows the number of line addresses 
that can be prefixed to each command as well as the 
defaults assumed if they are omitted. For example, (.,.) 
means that up to 2 line-numbers may be given, and that 
if none is given the command operates on the current 
line. (In the address prefix notation, "." stands for the 
current line and "S" stands for the last line of the 
buffer.) If no such notation appears, no line-number 
prefix may be used. 

Some commands take trailing information; only the 
more important instances of this are mentioned in the 
summary. 
Open and Visual Modes 

Besides command and text input modes, ez and edit 
provide on some CRT terminals other modes of editing, 
open and visual. In these modes the cursor can be 
moved to individual words or characters in a line. The 
commands then given are very different from the stan­
dard editor commands; most do not appear on the screen 
when typed. An Introduction to Display Editing with Vi 
provides a full discussion. 
Special Characters 

Some characters take on special meanings when used 
in context searches and in patterns given to the substitute 
command. For edit, these are "A" and "S", meaning the 
beginning and end of a line, respectively. Ez has the fol­
lowing additional special characters: 

& • [ ] 
To use one of the special characters as its simple graphic 
representation rather than with its special meaning, pre­
cede it by a backslash (\). The backslash always has a 
special meaning_ 

April 3, 1979 



Name 

(.)append 

(.,.)change 

(.,.)eopy addr 

(.,.}delete 

edit fiJe 
edit! file 

file name 

(l,S)global 
(l,$)global! 

(.)iosert 

{.,.+I)joio 

Abbr 

a 

c 

co 

d 

e 
e! 

f 

Description 

Begill$ text input mode, adding lines to the buffer 
after the line specified. Appending continues until ". It 
is typed alone at the beginning of a new line, followed 
by a carriage return. Oa places lines at the beginning 
of the buffer. 

Deletes indicated line(s) and initiates text input mode 
to replace them with new .. ext which follows. New 
text is terminated the same way as with append. 

Places a copy of the specified lines after the line indi­
cated by addr. The example places a copy of lines 8 
through 12, inclusive, after line 25. 

Removes lines from the buffer and prints the current 
line after the deletion. 

Clears the editor buffer and then copies into it the 
named fiJe, which becomes the current file. This is a 
way of shifting to a different file without leaving the 
editor. The editor issues a warning message if this 
command is used before saving changes made to the 
file already in the buffer; using the form e! overrides 
this protective mechanism. 

If followed by a name, renames the current file to 
name. If used without name, prints the name of the 
current file. 

Examples 

:a 
Three lines of text 
are added t.o the buffer 
after the current line. 

:S,Bc 
Lines 5 and Bare 
deleted and replaced by 
these three lines. 

:8,12eo 25 
Last line copied is printed 

:13,15d 
New current line is printed 

:e ehlO 
No write since last change 
:e! ehlO 
"chlO" 3 lines, 62 characters 

:f eh9 
"ch9" [Modifiedj 3 lines ... 
:f 
"ch9" [ModifiedJ 3 lines ... 

g globalf pattern/ commands :g/nonsense/ d 
g! or v Searches the entire buffer (unless a smaller range is 

l 

specified by line-number prefixes) and executes com-
mands on every line with an expression matching pat-
tern. The second form, abbreviated either g! or v, 
executes commands on lines that do not contain the 
expression pattern. 

Inserts new lines of text immediately before the 
specified line. Differs from append only in that text is 
placed before, rather than after, the indicated line. In 
other words, Ii has the same effect as Oa. 

Join lines together, adjusting white space (spaces and 
tabs) as necessary. 

:li 
These lines of text will 
be added prior t.o line 1. 

:2,5j 
Resulting line is printed 

(\ 
U 

\ i 
"-./ 



( 

o 

Name 

(.,.)Iist 

(.,.)move addr 

(.,.)number 

(.)open 

preserve 

(.,.)print 

quit 
quit! 

( . )rea.d fil e 

recover file 

(.,.)aubstitute 

Abbr 

m 

nu 

o 

pre 

p 

q 
q! 

r 

rec 

a 

Description 

Prints lines in .. more unambiguous way than the 
print command does. The end of a line, for example, is 
marked with a US", and tabs printed as "'I". 

Moves the specified lines to a position after the line 
indicated by addr. 

Prints each line preceded by i.ts buffer line number. 

Too involved to discuss here, but if you enter open 
mode accidentally, press the ESC key followed by q to 
get back into normal editor command mode. Edit is 
designed to prevent accidental use of the open com­
mand. 

Saves a copy of the current buffer contents as though 
the system had just crashed. This is for use in an 
emergency when a write command has failed and you 
don 't know how else to save your work. t 

Prints the text of line(s). 

Ends the editing session. You will receive a warning if 
you have changed the buffer since last. writing its con­
tents to the file. In this event you must either type w 
to write, or type q! to exit from the editor without 
saving your changes. 

Places a copy of jile in the buffer after the specified 
line. Address 0 is permissible and causes the copy of 
file to be placed at the beginning of the buffer. The 
read command does not erase any text already in the 
buffer. If no line number is specified, file is placed 
after the current line. 

Retrieves a copy of the editor buffer after a s;ystem 
crash, editor crash, phone line disconnection, or 
preserve command. 

au bstitu tel pattern/ replacement/ 
au batitute/ pattern/ replacement/ ge 
Replaces the first occurrence of pattern on a line with 
replacement. Including .. I after the command 
changes all occurrences of pattern on the line. The e 
option allows the user to confirm each substitution 
before it is made; see the manual for details. 

Examples 

:91 
This is line g$ 

:12,15m 25 
New current line is printed 

:nu 
10 This is line 10 

:preserve 
File preserved. 

:+2,+3p 
The second and third lines 
after the current line 

:q 
No write since last change 
:q! 
% 

:Or newflle 
"newfile" 5 lines, 86 characters 

:3p 
Line 3 contains a misstake 
:a/ miastake/ mistake/ 
Line 3 contains a mistake 

t Seek usL;t3ll"e from a coD.ult:ut as fOOli as possible after savin, a IIle with the pnHroc comm3lld. beense the IIle is .:Iov",1 on ,yotrm stornse 
apace Cor only one week. 



Name 

undo 

(l,S)write file 
(l,$)write! file 

(.)z count 

!command 

control·d 

(.+l}<cr> 

fpatteml 

II 

!pattern! 

!? 

Abbr 

u 

w 
wI 

z 

Description 

Reverses t.he changes made in the buffer by the last 
buffer-editing command. Note that this example COD­

tains a notification about the number of lines affected. 

Copies data from the buffer onto a permanent file. If 
no file is named, the current'filename is used. The file 
is automatically created if it does not yet exist. A 
response containing the number of lines and characters 
in the file indicates that the write has been completed 
successfully. The editor's built-in protections against 
overwriting existing files will in some circumstances 
inhibit a write. The form wI forces the write, 
confirming that an existing file is to be overwritten. 

Prints a screen full of text starting wit.h the line indi­
cated; or, if count is specified, prints that number of 
lines. Variants of the z command are described in the 
manual. 

Executes the remainder of the line after I as a UNIX 
command. The buffer is unchanged by this, and con· 
trol is returned to the editor when the execution of 
command is complete. 

Prints the next scroll of text, normally half of a 
screen. See the manual for details of the scroll option. 

An address alone followed by a carriage return causes 
the line to be printed. A carriage return by itself 
prints the line following the current line. 

Searches for the next line in which pattern occurs and 
prints it. 

Repeats the most recent search. 

Searches in the reverse direction for pattern. 

Repeats the most recent search. moving in the reverse 
direction through the buffer. 

Examples 

:1,15d 
15 lines deleted 
new line number 1 is printed 
:u 
15 more lines in file ... 
old line number 1 is printed 

:w 
"file7" 64 lines, 1122 characters 
:w flle8 
"fileS" File exists ... 
:wl flle8 
"fileS" 64 lines, 1122 characters 

:Idate 
Fri Jun 9 12:15:11 PDT 1978 

:<cr> 
the line after the current line 

:/This pattern I 
This pattern next occurs here. 

:/ / 
This pattern also occurs here. 

c 



( 

c 

Ex differences - version 1.1 to 2.0 

This sheet summarizes the differences between the old version 1.1 of e:r and the new version 
2.0. The new e:r is available as the standard e:r on the VAX on the 5th floor of Evans, and as a 
new and experimental version in /usr/new on the Cory 11/70. It will soon be available in 
/usr/new on the Computer Center and Ingres Machines. Send problems over the Berkeley network 
to "vax:bill". 

Changes to existing features 

Options. 

The options editan1l, edited, fork, hush, printall and sticky have been deleted because of 
lack of use. The notify option has been renamed report. 

The home option will soon be superseded by the environment feature of version 7 UNIX and 
has been deleted. Similarly the mode option is superseded by the umask of version 7 and has also 
been deleted. 

The visualmessage option has been deleted; use "mesg n" at the system command level to 
inhibit interconsole messages. 

The ittl option is replaced by a more general mechanism which allows portions of the buffer 
to be processed through specified commands; you can get iul processing on lines 1 to 100 of a file 
by doing "1,lOO!iul". This replaces the lines 1 to 100 by the output of an iul command, giving 
the command these lines as input. 

Invocation 

The options -0, -n and -p have been deleted. 

Filename formation 

The alternate filename is now represented as 'I' rather than '-', since ,-, is a shell metachar­
acter. The editor now uses a shell to expand filenames containing shell metacharacters. If you use 
esh, then you can use all the shell metasyntax in forming new filenames, including home directory 
references with ,-, and variables you define in .cshrc using '$'. 

Character representation 

Control characters are now represented as '~:r'; thus a control X is printed as '~X'; the delete 
character is represented '~?'. 

Command changes 

There have been major changes to open/visual (incompatible ones are described below). 

It is no longer possible to discard changes by repeating the quit command twice. You must 
use the variant form quit! to get out of the editor discarding changes. Similarly the variant forms 
e! and next! must be used to edit a new file or the next file without saving changes you have 
made.t 

A new form of the 'I' shell escape replaces the e:rpand and tabulate commands. Thus the 
command "1,10expand" of the old version is replaced by "1,lO!expand" in the new. Note also 
that the command abbreviation ta no longer refers to the tabulate command, which has been 
deleted, but rather refers to the new tag command. 

t Less useful are rewind! and reeover!' 

.. -.--.-.--------------~.~~-~-~ 



-2-

The format of the or,. command has been changed; the files are no longer numbered, rather 
the entire argument list is always printed with the current file name enclosed by 'I' and e],. 

The format of the file command output has been changed; the editor says '[Not edited]' in 
the rare case that this is true rather than saying '[Edited]'. The command also gives the percen­
tage of the way into the buffer that the current line is. 

The format of the eet command has been improved; "set allU now prints in a three column 
format. The commands "set %", "set !" and "set ." have been deleted. The command "setU now 
prints in a one line format rather than down the screen: 

The commands echo, ezpantl, help, reed, erne, tabulate and zpantl have been deleted. 

Changes to open and visual 
A large number of changes have been made to open and visual; we summarize only the most 

noticeable ones here. See the attached reference card for more information, and (even if you know 
how to use visual already) you should look at An Introduction to Ted Editing with Vi. We do not 
discuss any of the new commands in visual here.t 

The delete line command is now dd rather than \\ (\\ no longer works!.) In fact, d and 
other operators can now operate on lines; thus dL deletes to the last line on the screen. The shift 
commands < and > are now operators, thus < < and > > now have the effect that < and > 
used to have. 

The command v has been deleted; only its synonym • remains. The K operation has been 
,moved to mj K has no meaning in the new version. The AS operation has been deleted, but ·C 
does a sync, and· also prints some information. The·W operation has been deleted (use B). The 
#, @ and ·X operations have been deleted. To delete to the beginning of the line use dOj the 
commands and x and X are similar to #. 

During inputs, ·W backs up like b rather than B. 

Terminal support has been vastly improvedj the editor will now drive most any display ter­
minal, using all terminal features such as cursor addressing, clear to end of line, insert and delete 
line and insert and delete character. To help performance on slow terminals some options are now 
set based on the intelligence and speed of the terminalj in particular, the default window size is 1/2 
a full screen at 300 baud, or 2/3 of a full screen at 1200 baud. 

t It is now possible to edit with the focus or the editing being viBulJl using a command iii rather than ez on the 
command line, and using a new I command from within visual to run command mode commands. 

o 



( 

c 

Advanced Editing on UNIX 

Brian W. Kernighan 

ABSTRACT 

This paper is meant to help secretaries, typists and programmers to make 
effective use of the UNIXt facilities for preparing and editing text. It provides 
explanations and examples of 

• special characters, line addressing and global commands in the editor ed; 

• commands for "cut and paste" operations on files and parts of files, includ­
ing the mY, ep, eat and rm commands, and the r, W, m and t commands 
of the editor; 

• editing scripts and editor-based programs like grep and sed. 

Although the treatment is aimed at non-programmers, new users with any 
background should find helpful hints on how to get their jobs done more easily. 

November 14, 1986 

t UNIX is a. tra.dema.rk or Bell La.bora.tories. 



C) 

o 



( 

( 

Advanced Editing on UNIX 

Brian W. Kernighan 

1. INTRODUCTION 

Although UNIX provides remarkably 
effective tools for text editing, that by itself is no 
guarantee that everyone will automatically make 
the most effective use of them. In particular, peo­
ple who are not computer specialists - typists, 
secretaries, casual users - often use the system 
less effectively than they might. 

This document is intended as a sequel to A 
Tutorial Introduction to the UNIX Text Editor [1], 
providing explanations and examples of how to 
edit with less effort. (You should also be familiar 
with the material in UNIX For Beginners [21.) 
Further information on all commands discussed 
here can be found in The UNIX Programmer's 
Manual [31. 

Examples are based on observations of users 
and the difficulties they encounter. Topics covered 
include special characters in searches and substi­
tute commands, line addressing, the global com­
mands, and line moving and copying. There are 
also brief discussions of effective use of related 
tools, like those for file manipulation, and those 
based on ed, like grep and sed. 

A word of caution. There is only one way 
to learn to use something, and that is to use it. 
Reading a description is no substitute for trying 
something. A paper like this one should give you 
ideas about what to try, but until you actually try 
something, you will not learn it. 

2. SPECIAL CHARACTERS 

The editor ed is the primary interface to the 
system for many people, so it is worthwhile to 
know how to get the most out of ed for the least 
effort. 

The next few sections will discuss shortcuts 
and labor-saving devices. Not all of these will be 
instantly useful to anyone person, of course, but a 
few will be, and the others should give you ideas 
to store away for future use. And as always, until 
you try these things, they will remain theoretical 
knowledge, not something you have confidence in. 

The List command 'I' 

ed provides two commands for printing the 
contents of the lines you're editing. Most people 
are familiar with p, in combinations like 

I,Sp 

to print all the lines you're editing, or 

s/abc/def /p 

to change 'abc' to 'def' on the current line. Less 
familiar is the list command I (the letter 'I '), 
which gives slightly more information than p. In 
particular, I makes visible characters that are nor­
mally invisible, such as tabs and backspaces. If 
you list a line that contains some of these, I will 
print each tab as 7 and each backspace as -oE:. 
This makes it much easier to correct the sort of 
typing mistake that inserts extra spaces adjacent 
to tabs, or inserts a backspace followed by a space. 

The I command also 'folds' long lines for 
printing - any line that exceeds 72 characters is 
printed on multiple lines; each printed line except 
the last is terminated by a backslash \, so you can 
tell it was folded. This is useful for printing long 
lines on short terminals. 

Occasionally the I command will print in a 
line a string of numbers preceded by a backslash, 
such as \07 or \16. These combinations are used 
to make visible characters that normally don't 
print, like form feed or vertical tab or bell. Each 
such combination is a single character. When you 
see such characters, be wary - they may have 
surprising meanings when printed on some termi­
nals. Often their presence means that your finger 
slipped while you were typing; you almost never 
want them. 

The Su bstitute Command's' 

Most of the next few sections will be taken 
up with a discussion of the substitute command s. 
Since this is the command for changing the con­
tents of individual lines, it probably has the most 
complexity of any ed command, and the most 
potential for effective use. 

As the simplest place to begin, recall the 
meaning of a trailing g after a substitute com­
mand. With 



s/this/thatl 

and 

s/this/tha.t/g 

the first one replaces the first 'this' on the line 
with 'that'. If there is more than one 'this' on the 
line, the second form with the trailing g changes 
all of them. 

Either form of the 8 command can be fol­
lowed by p or I to 'print' or 'list' (as described in 
the previous section) the contents of the line: 

s/this/that/p 
s/this/that/l 
s/this/that/gp 
s/this/that/gl 

are all legal, and mean slightly different things. 
Make sure you know what the differences are. 

Of course, any 8 command can be preceded 
by one or two 'line numbers' to specify that the 
substitution is to take place on a group of lines. 
Thus 

l,$s/mispell/misspell/ 

changes the first occurrence of 'mispell' to 
'misspell' on every line of the file. But 

l,$s/mispell/misspell/g 

changes every occurrence in every line (and this is 
more likely to be what you wanted in this particu­
lar case). 

You should also notice that if you add a p 
or I to the end of any of these substitute com­
mands, only the last line that got changed will be 
printed, not all the lines. We will talk later about 
how to print all the lines that were modified. 

The Undo Command Cu' 

Occasionally you will make a substitution in 
a line, only to realize too late that it was a ghastly 
mistake. The 'undo' command u lets you 'undo' 
the last substitution: the last line that was substi­
tuted can be restored to its previous state by typ­
ing the command 

u 

The Metacharaet.er '.' 

.As you have undoubtedly noticed when you 
use ed, certain characters have unexpected mean­
ings when they occur in the left side of a substi­
tute command, or in a search for a particular line. 
In the next several sections, we will talk about 
these special characters, which are often called 
'metacharacters' . 

-2-

The first one is the period '.'. On the left 
side of a substitute command, or in a search with 
'1 ... /', '.' stands for any single character. Thus the 
search 

Ix.y/ 
finds any line where 'x' and 'y' occur separated by 
a single character, as in 

x+y 
x-y 
xoy 
x.y 

and so on. (We will use 0 to stand for a space 
whenever we need to make it visible.) 

Since • .' ma.tches a single character, that 
gives you a way to deal with funny characters 
printed by l. Suppose you have a line that, when 
printed with the I command, appears as 

.... th\07is .... 

and you want to get rid of the \07 (which 
represents the bell character, by the way). 

The most obvious solution is to try 

s/\07 / / 

but this will fail. (Try it.) The brute force solu­
tion, which most people would now take, is to re­
type the entire line. This is guaranteed, and is 
actually quite a reasonable tactic if the line in 
question isn't too big, but for a very long line, re­
typing is a bore. This is where the metacharacter 
'.' comes in handy. Since '\07' really represents a 
single character, if we say 

s/th.is/this/ 

the job is done. The'.' matches the mysterious 
character between the 'h' and the "i', whatever it 
is. 

Bear in mind that since '.' matches any sin­
gle character, the command 

s/././ 
converts the first character on a line into a ',', 
which very often is not what you intended. 

.As is true of many characters in ed, the '.' 
has several meanings, depending on its context. 
This line shows all three: 

The first '.' is a line number, the number of the 
line we are editing, which is called 'line dot'. (We 
will discuss line dot more in Section 3.) The second 
'.' is a metacharacter that matches any single char­
acter on that line. The third '.' is the only one 
that really is an honest literal period. On the right 
side of a substitution, '.' is not special. If you 
apply this command to the line 

o 

/' \, 
\ 

',,-- / 

c 



( 

( 

(~/' 

Now is the time. 

the result will be 

which is probably not what you intended. 

The Backaluh '\' 

Since a period means 'any character', the 
question naturally arises of what to do when you 
really want a period. For example, how do you 
convert the line 

Now is the time. 

into 

Now is the time? 

The backslash '\' does the job. A backs lash turns 
off any special meaning that the next character 
might have; in particular, 'V converts the '.' from 
a 'match anything' into a period, so you can use it 
to replace the period in 

Now is the time. 

like this: 

s/\.J?1 
The pair of characters '\.' is considered by ed to 
be a single real period. 

The backslash can also be used when search­
ing for lines that contain a special character. Sup­
pose you are looking for a line that contains 

The search 

I·PP/ 
isn't adequate, for it will find a line like 

THE APPLICATION OF ... 

because the '.' matches the letter 'A'. But if you 
say 

j\.PP/ 

you will find only lines that contain '.PP'. 

The backslash can also be used to turn off 
special meanings for characters other than '.'. For 
example, consider finding a line that contains a 
backslash. The search 

/\1 
won't work, because the '\' isn't a literal '\', but 
instead means that the second'/, no longer delim­
its the search. But by preceding a backslash with 
another one, you can search for a literal backslash. 
Thus 

/\\/ 
does work. Similarly, you can search for a forward 

-3-

slash'/, with 

All 
The backslash turns off the meaning of the 
immediately following'/, so that it doesn't ter­
minate the /, .. 1 construction prematurely. 

As an exercise, before reading further, find 
two substitute commands each of which will con­
vert the line 

\x\.\y 

into the line 

\x\y 

Here are several solutions; verify that each 
works as advertised. 

s/\ \\.1 I 
s/x··/xl 
s/.·y/yl 

A couple of miscellaneous notes about 
backslashes and special characters. First, you can 
use any character to delimit the pieces of an 8 

command: there is nothing sacred about slashes. 
(But you must use slashes for context searching.) 
For instance, in a line that contains a lot of slashes 
already, like 

/Iexec Ilsys.fort.go /1 etc ... 

you could use a colon as the delimiter - to delete 
all the slashes, type 

s:f::g 

Second, if :# and @ are your character erase 
and line kill characters, you have to type \:# and 
\@; this is true whether you're talking to ed or 
any other program. 

When you a.re adding text with a or i or c, 
backs lash is not special, and you should only put 
in one backslash for each one you really want. 

The Dollar Sign'S' 

The next metacharacter, the '$', stands for 
'the end of the line'. As its most obvious use, sup­
pose you have the line 

Now is the 

and you wish to add the word 'time' to the end. 
Use the S like this: 

s/S/otimel 
to get 

Now is the time 

Notice that a space is needed before 'time' in the 
substitute command, or you will get 



Now is thetime 

As another example, replace the second 
comma in the following line with a period without 
altering the first: 

Now is the time, for all good men, 

The command needed is 

s/,S/./ 

The S sign here provides context to make specific 
which comma we mean. Without it, of course, the 
• command would operate on the first comma to 
produce 

into 

Now is the time. for all good men, 

As another example, to convert 

Now is the time. 

Now is the time? 

as we did earlier, we can use 

s/'S/?/ 

Like '.', the '$' has multiple meanings 
depending on context. In the line 

$5/$/$/ 

the first '$' refers to the last line of the file, the 
second refers to the end of that line, and the third 
is a literal dollar sign, to be added to that line. 

The Circumflex ,-, 

The circumflex (or hat or caret) ,-, stands 
for the beginning of the line. For example, sup­
pose you are looking for a line that begins with 
'the'. If you simply say 

/the/ 

you will in all likelihood find several lines that 
contain 'the' in the middle before arriving at the 
one you want. But with 

rthe/ 

you narrow the context, and thus arrive at the 
desired one more easily. 

The other use of ,-, is of course to enable 
you to insert something at the beginning of a line: 

sr/o/ 

places a space at the beginning of the current line. 

Metacharacters can be combined. To search 
for a line that contains only the characters 

you can use the command 

-4-

r\·pps/ 

The Star '.' 

Suppose you have a line that looks like this: 

tezt x y tezt 

where text stands for lots of text, and there are 
sople indeterminate number of spaces between the 
x and the y. Suppose the job is to replace all the 
spaces between x and y by a single space. The 
line is too long to retype, and there are too many 
spaces to count. What now? 

This is where the metacharactE'f '.' comes in 
handy. A character followed by a star stands fOf 
as many consecutive occurrences of that character 
as possible. To refer to all the spaces at once, say 

s/xr:n.y /xoy / 

The construction '010' means 'as many spaces as 
possible'. Thus 'xOloy' means 'an x, as many 
spaces as possible, then a y'. 

The star can be used with any character, 
not just space. If the original example was instead 

tezt x:-----'y tezt 

then all '-' signs can be replaced by a single space 
with the command 

s/x-.y /xoy / 

Finally, suppose that the line was 

tezt x .................. y text 

Can you see what trap lies in wait for the unwary? 
If you blindly type 

s/x .• y/xoy/ 

what will happen? The answer, naturally, is that 
it depends. If there are no other x's or y's on the 
line, then everything works, but it's blind luck, 
not good management. Remember that ' .' 
matches any single character? Then ' .• ' matches 
as many single characters as possible, and unless 
you're careful, it can eat up a lot more of the line 
than you expected. If the line was, for example, 
like this: 

tezt x tezt x ................ y text y tezt 

then saying 

s/x.*y/xoy/ 

will take everything from the first 'x' to the last 
'y', which, in this example, is undoubtedly more 
than you wanted. 

The solution, of course, is to turn off the 
special meaning of '.' with '\.': 

c 



c 

s/x\ .• y /xcy / 

Now everything works, for '\'.' means 'as many 
periods as possible'. 

There are times when the pattern ' .• ' is 
exactly what you want. For example, to change 

Now is the time for all good men .... 

into 

Now is the time. 

use ' .• ' to eat up everything after the 'for': 

s/oror .• ;'/ 

There are a couple of additional pitfalls 
associated with '.' that you should be aware of. 
Most notable is the fact that 'as many as possible' 
means zero or more. The fact that zero is a legiti­
mate possibility is sometimes rather surprising. 
For example, if our line contained 

text xy text x 

and we said 

s/xfIJilY /xcy / 

y text 

the first 'xy' matches this pattern, for it consists of 
an 'x', zero spaces, and a 'y'. The result is that 
the substitute acts on the first 'xy', and does not 
touch the later one that actually contains some 
intervening spaces. 

The way around this, if it matters, is to 
specify a pattern like 

/xr:r:r;,yl 
which says 'an x, a space, then as many more 
spaces as possible, then a y', in other words, one or 
more spaces. 

The other startling behavior of '.' is again 
related to the fact that zero is a legitimate number 
of occurrences of something followed by a star. 
The command 

s/x*/y /g 

when applied to the line 

abcdef 

produces 

yaybycydyeyfy 

which is almost certainly not what was intended. 
The reason for this behavior is that zero is a legal 
number of matches, and there are no x's at the 
beginning of the line (so that gets converted into a 
'y'), nor between the 'a' and the 'b' (so that gets 
converted into a 'y'), nor... and so on. Make sure 
you really want zero matches; if not, in this case 
write 

-5-

'xx.' is one or more x's. 

The Brackets 'f]' 
Suppose that you want to delete any 

numbers that appear at the beginning of all lines 
of a file. You might first think of trying a series of 
commands like 

1,$s/"h// 
1,$s/"2*// 
1,$s/"3.// 

and so on, but this is clearly going to take forever 
if the numbers are at all long. Unless you want to 
repeat the commands over and over until finally 
all numbers are gone, you must get all the digits 
on one pass. This is the purpose of the brackets [ 
and ]. 

The construction 

[0123456789] 

matches any single digit - the whole thing is 
called a 'character class'. With a character class, 
the job is easy. The pattern '[0123456789]*' 
matches zero or more digits (an entire number), so 

I,Ssrt0123456789]*/ / 

deletes all digits from the beginning of all lines. 

Any characters can appear within a charac­
ter class, and just to confuse the issue there are 
essentially no special characters inside the brack­
ets; even the backslash doesn't have a special 
meaning. To search for special characters, for 
example, you can say 

/[.\SA[j/ 
Within [ ... ], the '[' is not special. To get a '1' into 
a character class, make it the first character. 

It's a nuisance to have to spell out the 
digits, so you can abbreviate them as 10-9]; simi­
larly, [a-z] stands for the lower case letters, and 
[A-Z] for upper case. 

As a final frill on character classes, you can 
specify a class that means 'none of the following 
characters'. This is done by beginning the class 
with a 'A': 

stands for 'any character except a digit'. Thus you 
might find the first line that doesn't begin with a 
tab or space by a search like 

/T(spaceXtab)J! 

Within a character class, the circumflex has 
a special meaning only if it occurs at the begin­
ning. Just to convince yourself, verify that 



finds a line that doesn't begin with a circumflex. 

The Ampersand '&' 

The ampersand '&' is used primarily to save 
typing. Suppose you have the line 

Now is the time 

and you want to make it 

Now is the best time 

Of course you can always say 

s/the/the best/ 

but it seems silly to have to repeat the 'the'. The 
'&' is used to eliminate the repetition. On the 
right side of a substitute, the ampersand means 
'whatever was just matched', so you can say 

s/the/& best/ 

and the '&' will stand for 'the'. Of course this 
isn't much of a saving if the thing matched is just 
'the', but if it is something truly long or awful, or 
if it is something like ' .• ' which matches a lot of 
text, you can save some tedious typing. There is 
also much less chance of making a typing error in 
the replacement text. For example, to 
parenthesize a line, regardless of its length, 

s/'*/(&)/ 

The ampersand can occur more than once 
on the right side: 

s/the/ & best and & worst/ 

makes 

Now is the best and the worst time 

and 

s/'*/&? &!!/ 

converts the original line into 

Now is the time? Now is the time!! 

To get a literal ampersand, naturally the 
backslash is used to turn off the special meaning: 

s/ ampersand/\&/ 

converts the word into the symbol. Notice that 
'&' is not special on the left side of a substitute, 
only on the "'ght side, 

Substituting Newline. 

ed provides a facility for splitting a single 
line into two or more shorter lines by 'substituting 
in a newline', As the simplest example, suppose a 
line has gotten unmanageably long because of edit-

- 6-

ing (or merely because it was unwisely typed). If 
it looks like 

text xy tezt 

you can break it between the 'x' and the 'y' like 
this: 

s/xy/x\ 
y/ 

This is actually a single command, although it is 
typed on two lines. Bearing in mind that '\' turns 
off special meanings, it seems relatively intuitive 
that a '\' at the end of a line would make the new­
line there no longer special. 

You can in fact make a single line into 
several lines with this same mechanism. As a large 
example, consider underlining the word 'very' in a 
long line by splitting 'very' onto a separate line, 
and preceding it by the roft' or nraft' formatting 
command '.ul'. 

text a very big text 

The command 

s/overyo/\ 
very\ 
/ 

converts the line into four shorter lines, preceding 
the word 'very' by the line '.ul', and eliminating 
the spaces around the 'very', all at the same time. 

When a newline is substituted in, dot is left 
pointing at the last line created. 

Joining Lines 

Lines may also be joined together, but this 
is done with the j command instead of s. Given 
the lines 

Now is 
cthe time 

and supposing that dot is set to the first of them, 
then the command 

joins them together. No blanks are added, which 
is why we carefully showed a blank at the begin­
ning of the second line. 

All by itself, a j command joins line dot to 
line dot+l, but any contiguous set of lines can be 
joined. Just specify the starting and ending line 
numbers. For example, 

I,Sjp 

joins all the lines into one big one and prints it. 
(More on line numbers in Section 3.) 



Rearranging a Line with \( ••• \) 

(This section should be skipped on first 
reading.) Recall that '&' is a shorthand that 
stands for whatever was matched by the left side 
of an II command. In much the same way you can 
capture separate pieces of what was matched; the 
only difference is that you have to specify on the 
left side just what pieces you're interested in. 

Suppose, for instance, that you have a file of 
lines that consist of names in the form 

Smith, A. B. 
Jones, C. 

and so on, and you want the initials to precede the 
name, as in 

A. B. Smith 
C. Jones 

It is possible to do this with a series of editing 
commands, but it is tedious and error-prone. (It is 
instructive to figure out how it is done, though.) 

The alternative is to 'tag' the pieces of the 
pattern (in this case, the last name, and the ini­
tials), and then rearrange the pieces. On the left 
side of a substitution, if part of the pattern is 
enclosed between \( and \), whatever matched that 
part is remembered, and available for use on the 
right side. On the right side, the symbol '\1' 
refers to whatever matched the first \( .. .\) pair, 
'\2' to the second \( ... \), and so on. 

The command 

l,$sr\W,I*\)'*\('*\)/\2\1/ 

although hard to read, does the job. The first 
\( .. .\) matches the last name, which is any string 
up to the comma; this is referred to on the right 
side with '\1'. The second \( .. .\) is whatever fol­
lows the comma and any spaces, and is referred to 
as '\2'. 

Of course, with any editing sequence this 
complicated, it's foolhardy to simply run it and 
hope. The global commands g and v discussed in 
section 4 provide a way for you to print exactly 
those lines which were affected by the substitute 
command, and thus verify that it did what you 
wanted in all cases. 

3. LINE ADDRESSING IN THE EDITOR 

The next general area we will discuss is that 
of line addressing in ed, that is, how you specify 
what lines are to be affected by editing commands. 
We have already used constructions like 

1,Ss/x/y/ 

to specify a change on all lines. And most users 
are long since familiar with using a single newline 
(or return) to print the next line, and with 

-7-

/thing/ 

to find a line that contains 'thing'. Less familiar, 
surprisingly enough, is the use of 

?thing? 

to scan 64ckwards for the previous occurrence of 
'thing'. This is especially handy when you realize 
that the thing you want to operate on is back up 
the page from where you are currently editing. 

The slash and question mark are the only 
characters you can use to delimit a context search, 
though you can use essentially any character in a 
substitute command. 

Addreu Arithmetic 

The next step is to combine the line 
numbers like '.', 'S', 'j. .. /, and '1 ... 1' with '+' and 
'-' Thus 

S-1 

is a command to print the next to last line of the 
current file (that is, one line before line '$'). For 
example, to recall how far you got. in a previous 
editing session, 

$-5,Sp 

prints the last six lines. (Be sure you understand 
why it's six, not five.) If there aren't six, of course, 
you'll get an error message. 

As another example, 

prints from three lines before where you are now 
(at line dot) to three lines after, thus giving you a 
bit of context. By the way, the '+' can be omit­
ted: 

is absolutely identical in meaning. 

Another area in which you can save typing 
effort in specifying lines is to use '-' and '+' as line 
numbers by themselves. 

by itself is a command to move back up one line 
in the file. In fact, you can string several minus 
signs together to move back up that. many lines: 

moves up three lines, as does '-3'. Thus 

-3,+3p 

is also identical to the examples above. 

Since '-' is shorter than' .-1', constructions 
like 

-, .s/bad/good/ 

are useful. This changes 'bad' to 'good' on the pre-



vious line and on the current line. 

'+' and '-' can be used in combination with 
searches using '/ ... /, and '1 ... 1', and with'S'. The 
search 

Ithing/-

finds the line containing 'thing', and positions you 
two lines before it. . 

Repeated Searches 

Suppose you ask for the search 

/horrible thing/ 

and when the line is printed you discover that it 
isn't the horrible thing that you wanted, so it is 
necessary to repeat the search again. You don't 
have to re-type the search, for the construction 

II 
is a shorthand for 'the previous thing that was 
searched for', whatever it was. This can be 
repeated as many times as necessary. You can 
also go backwards: 

11 

searches for the same thing, but in the reverse 
direction. 

Not only can you repeat the search, but you 
can use 'I/' as the left side of a substitute com­
mand, to mean 'the most recent pattern'. 

Ihorrible thing/ 
.... ed prints line with 'horrible thing' ... 

s//good/p 

To go backwards and change a line, say 

11s/ /goodl 

Of course, you can still use the '&' on the right 
hand side of a substitute to stand for whatever got 
matched: 

/ /s/ /&B&/p 

finds the next occurrence of whatever you searched 
for last, replaces it by two copies of itself, then 
prints the line just to verify that it worked. 

Default Line Numbers and the Value of Dot 

One of the most effective ways to speed up 
your editing is always to know what lines will be 
affected by a command if you don't specify the 
lines it is to act on, and on what line you will be 
positioned (i.e., the value of dot) when a command 
finishes. If you can edit without specifying 
unnecessary line numbers, you can save a lot of 
typing. 

As the most obvious example, if you issue a 
search command like 

-8-

Ithingl 

you are left pointing at the next line that contains 
'thing'. Then no address is required with com­
mands like s to make a substitution on that line, 
or p to print it, or I to list it, or dto delete it, or 
a to append text after it, or c to change it, or i to 
insert text before it. 

What happens if there was no 'thing'? Then 
you are left right where you were - dot is 
unchanged. This is also true if you were sitting on 
the only 'thing' when you issued the command. 
The same rules hold for searches that use '?..1'; 
the only difference is the direction in which you 
search. 

The delete command d leaves dot pointing 
at the line that followed the last deleted line. 
When line'S' gets deleted, however, dot points at 
the new line '$'. 

The line-changing commands &, c and i by 
default all affect the current line - if you give no 
line number with them, a appends text after the 
current line, c changes the current line, and i 
inserts text before the current line. 

a, c, and i behave identically in one respect 
- when you stop appending, changing or insert­
ing, dot points at the last line entered. This is 
exactly what you want for typing and editing on 
the fiy. For example, you can say 

a 
... text ... 
... botch ... 

s/botch/ correct/ 
a 
... more text ... 

(minor error) 
(fix botched line) 

without specifying any line number for the substi­
tute command or for the second append command. 
Or you can say 

a 
... text ... 
... horrible botch ... 

c 
... fixed up line ... 

(major error) 
(replace entire line) 

You should experiment to determine what 
happens if you add no lines with a, c or i. 

The r command will read a file into the text 
being edited, either at the end if you give no 
address, or after the specified line if you do. In 
either case, dot points at the last line read in. 
Remember that you can even say Or to read a file 
in at the beginning of the text. (You can also say 
0& or Ii to start adding text at the beginning.) 

The w command writes out the entire file. 
If you precede the command by one line number, 
that line is written, while if you precede it by two 

/' 



('-
line numbers, that range of lines is written. The 
w command does not change dot: the current line 
remains the same, regardless of what lines are 
written. This is true even if you say something 
like 

r\.AB/,r\.AE/w abstract 

which involves a context search. 

Since the w command is so easy to use, you 
should save what you are editing regularly as you 
go along just in case the system crashes, or in case 
you do something foolish, like clobbering what 
you're editing. 

The least intuitive behavior, in a sense, is 
that of the II command. The rule is simple - you 
are left sitting on the last line that got changed. If 
there were no changes, then dot is 'unchanged. 

To illustrate, suppose that there are three 
lines in the buffer, and you are sitting on the mid­
dle one: 

xl 
x2 
x3 

Then the command 

-,+s/x/y/p 

prints the third line, which is the last one changed. 
But if the three lines had been 

xl 
y2 
y3 

and the same command hadbeen::issued while dot 
pointed at the second line, then the result would 
be to change and print only the first line, and that 
is where dot would be set. 

Semicolon 'j' 

Searches with '/ ... J' and '1 ... ?' start at the 
current line and move forward or backward respec­
tively until they either find the pattern or get back 
to the current line. Sometimes this is not what is 
wanted. Suppose, for example, that the buffer 
contains lines like this: 

ab 

be 

Starting at line 1, one would expect that the com­
mand 

-9-

/a/,/b/p 

prints all the lines from the 'ab' to the 'be' 
inclusive. Actually this is not what happens. Both 
searches (for 'a' and for 'b') start from the same 
point, and thus they both find the line that con­
tains "ab'. The result is to print a single line. 
Worse, if there had been a line with a 'b' in it 
before the "ab' line, then the print command would 
be in error, since the second line number would be 
less than the first, and it is illegal to try to print 
lines in reverse order. 

This is because the comma separator for line 
numbers doesn't set dot as each address is pro­
cessed; each search starts from the same place. In 
ed, the semicolon ";' can be used just like comma, 
with the single difference that use of a semicolon 
forces dot to be set at that point as the line 
numbers are being evaluated. In effect, the semi­
colon 'moves' dot. Thus in our example above, 
the command 

/a/;/b/p 

prints the range of lines from 'ab' to 'be', because 
after the 'a' is found, dot is set to that line, and 
then 'b' is searched for, starting beyond that line. 

This property is most often useful in a very 
simple situation. Suppose you want to find the 
second occurrence of 'thing'. You could say 

/thing/ 
// 

but this prints the first occurrence as well as the 
second, and is a nuisance when you know very well 
that it is only the second one you're interested in. 
The solution is to say 

/thing/;/ / 

This says to find the first occurrence of 'thing', set 
dot to that line, then find the second and print 
only that. 

Closely related is searching for the second 
previous occurrence of something, as in 

?something1;?? 

Printing the third or fourth or ... in either direc­
tion is left as an exercise. 

Finally, bear in mind that if you want to 
find the first occurrence of something in a file, 
starting at an arbitrary place within the file, it is 
not sufficient to say . 

l;jthing/ 

because this fails if 'thing' occurs on line 1. But it 
is possible to say 

O;jthing/ 



(one of the few places where 0 is a legal line 
number), for this starts the search at line 1. 

Interrupting the Editor 

As a final note on what dot gets set to, you 
should be aware that if you hit the interrupt or 
delete or rubout or break key while ed is doing a 
command, things are put back together again and 
your state is restored as much as possible to what 
it was before the command began. Naturally, 
some changes are irrevocable - if you are reading 
or writing a file or making substitutions or delet,­
ing lines, these will be stopped in some clean but 
unpredictable state in the middle (which is why it 
is not usually wise to stop them). Dot mayor 
may not be changed. 

Printing is more clear cut. Dot is not 
changed until the printing is done. Thus if you 
print until you see an interesting line, then hit 
delete, you are not sitting on that line or even near 
it. Dot is left where it was when the p command 
was started. 

4. GLOBAL COMMANDS 

The global commands g and v are used to 
perform one or more editing commands on all lines 
that either contain (g) or don't contain (v) a 
specified pattern. 

As the simplest example, the command 

g/UNIX/p 
prints all lines that contain the word 'UNIX'. The 
pattern that goes between the slashes can be any­
thing that could be used in a line search or in a 
substitute command; exactly the same rules and 
limitations apply. 

-10-

As another example, then, 

g/'\·/p 
prints all the formatting commands in a file (lines 
that begin with'. '). 

The v command is identical to g, except 
that it operates on those line that do not contain 
an occurrence of the pattern. (Don't look too hard 
for mnemonic significance to the letter 'v'.) So 

v/,\./p 

prints all the lines that don't begin with '.' - the 
actual text lines. 

The command that follows g or v can be 
anything: 

deletes all lines that begin with'.', and 

g/,S/d 

deletes all empty lines. 

Probably the most useful command that can 
follow a global is the substitute command, for this 
can be used to make a change and print each 
affected line for verification. For example, we 
could change the word 'Unix' to 'UNIX' every­
where, and verify that it really worked, with 

g/Unix/s/ fUNTX/gp 

Notice that we used '/ /' in the substitute com­
mand to mean 'the previous pattern', in this case, 
'Unix'. The p command is done on every line that 
matches the pattern, not just those on' which a 
substitution took place. 

The global command operates by making 
two passes over the file. On the first pass, all lines 
that match the pattern are marked. On the 
second pass, each marked line in turn is examined, 
dot is set to that line, and the command executed. 
This means that it is possible for the command 
that follows a g or v to use addresses, set dot, and 
so on, quite freely. 

g/,\.PP/+ 

prints the line that follows each' .PP' command 
(the signal for a new paragraph in some formatting 
packages). Remember that '+' means 'one line 
past dot'. And 

g/topicl?A\.SH?l 

searches for each line that contains 'topic', scans 
backwards until it finds a line that begins '.SH' (a 
section heading) and prints the line that follows 
that, thus showing the section headings under 
which 'topic' is mentioned. Finally, 

g/,\.EQI +.t\.EN /-p 
prints all the lines that lie between lines beginning 
with '.EQ' and '.EN' formatting commands. 

The g and v commands can also be pre­
ceded by line numbers, in which case the lines 
searched are only those in the range specified. 

Multi-line Global Commands 

It is possible to do more than one command 
under the control of a global command, although 
the syntax for expressing the operation is not espe­
cially natural or pleasant. As an example, suppose 
the task is to change 'x' to 'y' and 'a' to 'b' on all 
lines that contain 'thing'. Then 

g/thing/s/x/y 1\ 
s/a/b/ 

is sufficient. The '\' signals the g command that 
the set of commands continues on the next line; it 
terminates on the first line that does not end with 
'\'. (As a minor blemish, you can't use a substi­
tute command to insert a newline within a g com­
mand.) 

o 

j 



( 

( 

You should watch out for this problem: the 
command 

g/x/s//y/\ 
s/a/b/ 

does not work as you expect. The remembered 
pattern is the last pattern that was actually exe­
cuted, so sometimes it will be 'x' (as expected), and 
sometimes it will be 'a' (not expected). You must 
spell it out, like this: 

g/x/s/x/y/\ 
s/a/b/ 

It is also possible to execute a, C and i com­
mands under a global command; as with other 
multi-line constructions, all that is needed is to 
add a '\' at the end of each line except the last. 
Thus to add a '.nf' and '.sp' command before each 
'.EQ' line, type 

gr\.EQ/i\ 

There is no need for a final line containing a '.' to 
terminate the i command, unless there are further 
commands being done under the global. On the 
other hand, it does no harm to put it in either. 

5. CUT AND PASTE WITH UNIX COM­
MANDS 

One editing area in which non-programmers 
seem not very confident is in what might be called 
'cut and paste' operations - changing the name of 
a file, making a copy of a file somewhere else, mov­
ing a few lines from one place to another in a file, 
inserting one file in the middle of another, splitting 
a file into pieces, and splicing two or more files 
together. 

Yet most of these operations are actually 
quite easy, if you keep your wits about you and go 
cautiously. The next several sections talk about 
cut and paste. We will begin with the UNIX com­
mands for moving entire files around, then discuss 
eel commands for operating on pieces of files. 

Changing the Name of a File 

You have a file named 'memo' and you want 
it to be called 'paper' instead. How is it done~ 

The UNIX program that renames files is 
called mv (for 'move'); it 'moves' the file from one 
name to another, like this: 

mv memo paper 

That's all there is to it: mv from the old name to 
the new name. 

mv oldname newname 

Warning: if there is already a file around with the 

- 11-

new name, its present contents will be silently 
clobbered by the information from the other file. 
The one exception is that you can't move a file to 
itself -

mv x x 

is illegal. 

Making a Copy of a File 

Sometimes what you want is a copy of a file 
- an entirely fresh version. This might be 
because you want to work on a file, and yet save a 
copy in case something gets fouled up, or just 
because you're paranoid. 

In any case, the way to do it is with the cp 
command. (ep stands for 'copy'; the system is big 
on short command names, which are appreciated 
by heavy users, but sometimes a strain for 
novices.) Suppose you have a file called 'good' and 
you want to save a copy before you make some 
dramatic editing changes. Choose a name 
'savegood' might be acceptable - then type 

cp good savegood 

This copies 'good' onto 'savegood', and you now 
have two identical copies of the file 'good'. (If 
'savegood' previously contained something, it gets 
overwritten. ) 

Now if you decide at some time that you 
want to get back to the original state of 'good', 
you can say 

mv savegood good 

(if you're not interested in 'savegood' any more), 
or 

cp savegood good 

if you still want to retain a safe copy. 

In summary, mv just renames a file; cp 
makes a duplicate copy. Both of them clobber the 
'target' file if it already exists, so you had better 
be sure that's what you want to do before you do 
it. 

Removing a File 

If you decide you are really done with a file 
forever, you can remove it with the rm command: 

rm savegood 

throws away (irrevocably) the file called 
'savegood' . 

Putting Two or More Files Together 

The next step is the familiar one of collect­
ing two or more files into one big one. This will 
be needed, for example, when the author of a 
paper decides that several sections need to be com-



bined into one. There are several ways to do it, of 
which the cleanest, once you get used to it, is a 
program called cat. (Not "U programs have two­
letter names.) cat is short for 'concatenate', which 
is exactly what we want to do. 

Suppose the job is to combine the files 'filel' 
and 'file2' into a single file ca.lled 'bigfile'. If you 
say 

cat file 

the contents of 'file' wi\1 get printed on your termi­
nal. If you say 

cat filel file2 

the contents of 'filel' and then the contents of 
'file2' will 60th be printed on your terminal, in 
that order. So cat combines the files, all right, 
but it's not much help to print them on the termi­
nal - we want them in 'bigfile'. 

Fortunately, there is a way. You can tell 
the system that instead of printing on your termi­
nal, you want the same information put in a file. 
The way to do it is to add to the command line 
the character > and the name of the file where 
you want the output to go. Then you can say 

cat filel file2 > bigfile 

and the job is done. (As with ep and mv, you're 
putting something into 'bigfile', and anything that 
was already there is destroyed.) 

This ability to 'capture' the output of a pro­
gram is one of the most useful aspects of the sys­
tem. Fortunately it's not limited to the eat pro­
gram - you can use it with any program that 
prints on your terminal. We'll see some more uses 
for it in a moment. 

Naturally, you can combine several files, not 
just two: 

cat file I file2 file3 ... > bigfile 

collects a whole bunch. 

Question: is there any difference between 

cp good savegood 

and 

cat good >savegood 

Answer: for most purposes, no. You might reason­
ably ask why there are two programs in that case, 
since cat is obviously all you need. The answer is 
that cp will do some other things as weIl, which 
you can investigate for yourself by reading the 
manual. For now we'll stick to simple usages. 

·12· 

Adding Something to the End of a File 

Sometimes you want to add one file to the 
end of another. We have enough building blocks 
now that you can do it; in fact before reading 
further it would be valuable if you figured out 
how. To be specific, how would you use cp, mv 
and/or cat to add the file 'goodl' to the end of 
the file 'good'? 

You could try 

cat good goodl >temp 
mv temp good 

which is probably most direct. You should also 
understand why 

cat good goodl >good 

doesn't work. (Don't practice with a good 'good'!) 

The easy way is to use a variant of >, 
called > >. In fact, > > is identical to > except 
that instead of clobbering the old file, it simply 
tacks stuff on at the end. Thus you could say 

cat goodl > > good 

and 'goodl' is added to the end of 'good'. (And if 
'good' didn't exist, this makes a copy of 'good!' 
called 'good'.) 

6. CUT AND PASTE WITH THE EDITOR 
Now we move on to manipulating pieces of 

files - individual lines or groups of lines. This is 
another area where new users seem unsure of 
themselves. 

Filenames 

The first step is to ensure that you know the 
ed commands for reading and writing files. Of 
course you can't go very far without knowing r 
and w. Equally useful, but less well known, is the 
'edit' command e. Within ed, the command 

e newfile 

says 'I want to edit a new file called new/ile, 
without leaving the editor.' The e command dis­
cards whatever you're currently working on and 
starts over on newfile. It's exactly the same as if 
you had quit with the q command, then re-entered 
ed with a new file name, except that if you have a 
pattern remembered, then a command like / / will 
still work. 

If you enter ed with the command 

ed file 

ed remembers the name of the file, and any subse­
quent e, I' or w commands that don't contain a 
filename will refer to this remembered file. Thus 



( 

( 

(~ 

ed filel 
... (editing) ... 

w (writes back in filel) 
e file2 (edit new file, without leaving editor) 
... (editing on file2) ... 

w (writes back on file2) 

(and so on) does a series of edits on various files 
without ever leaving ed and without typing the 
name of any file more than once. (As an aside, if 
you examine the sequence of commands here, you 
can see why many UNIX systems use e as a 
synonym for ed.) 

You can find out the remembered file name 
at any time with the r command; just type r 
without a file name. You can also change the 
name of the remembered file name with r; a useful 
sequence is 

ed precious 
f junk 
... (editing) ... 

which gets a copy of a precious file, then uses r to 
guarantee that a careless w command won't 
clobber the original. 

Inserting One File into Another 

Suppose you have a file called 'memo', and 
you want the file called 'table' to be inserted just 
after the reference to Table 1. That is, in 'memo' 
somewhere is a line that says 

Table 1 shows that ... 

and the data contained in 'table' has to go there, 
probably so it will be formatted properly by nroff 
or troff. Now what? 

This one is easy. Edit 'memo', find 'Table 
1', and add the file 'table' right there: 

ed memo 
/Table 1/ 
Table 1 shows that ... {response from edj 

The critical line is the last one. As we said earlier, 
the r command reads a file; here you asked for it 
to be read in right after line dot. An r command 
without any address adds lines at the end, so it is 
the same as Sr. 

Writing out Part or a File 

The other side of the coin is writing out 
part of the document you're editing. For example, 
maybe you want to split out into a separate file 
that table from the previous example, so it can be 
formatted and tested separately. Suppose that in 
the file being edited we have 

... llots of stuff] 

-13-

which is the way a table is set up for the tbl pro­
gram. To isolate the table in a separate file called 
'table', first find the start of the table (the' .TS' 
line), then write out the interesting part: 

t\·TS/ 

and the job is done. If you are confident, you can 
do it aJI at once with 

t\.TS/F\.TE/w table 

The point is that the w command can write 
out a group of lines, instead of the whole file. In 
fact, you can write out a single line if you like; 
just give one line number instead of two. For 
example, if you have just typed a horribly compli­
cated line and you know that it (or something like 
it) is going to be needed later, then save it -
don't re-type it. In the editor, say 

a 
a 
a 

This last example is worth studying, to be sure 
you appreciate what's going on. 

Moving Lines Around 

Suppose you want to move a paragraph 
from its present position in a paper to the end. 
How would you do it? As a concrete example, sup­
pose each paragraph in the paper begins with the 
formatting command '.PP'. Think about it and 
write down the details before reading on. 

The brute force way (not necessarily bad) is 
to write the paragraph onto a temporary file, 
delete it from its current position, then read in the 
temporary file at the end. Assuming that you are 
sitting on the '.PP' command that begins the 
paragraph, this is the sequence of commands: 

Sr temp 

That is, from where you are now ('. ') until one line 
before the next '.PP' ('r\.pP/-') write onto 
'temp'. Then delete the same lines. Finally, read 
'temp' at the end. 

As we said, that's the brute force way. The 
easier way (often) is to use the move command m 
that ed provides - it lets you do the whole set of 
operations at one crack, without any temporary 
file. 

The m command is like many other ed 
commands in that it takes up to two line numbers 
in front that tell what lines are to be affected. It 
is also loUowed by a line number that tells where 
the lines are to go. Thus 

linel, line2 m line3 

says to move all the lines between 'linel' and 



'Jine2' after 'line3'. Naturally, any of 'linel' etc., 
can be patterns between slashes, $ signs, or other 
ways to specify lines. 

Suppose again that you're sitting at the first 
line of the paragraph. Then you can say 

That's all. 

As another example of a frequent operation, 
you can reverse the order of two adjacent lines by 
moving the first one to after the second. Suppose 
that you are positioned at the first. Then 

m+ 

does it. It says to move line dot to after one line 
after line dot. If you are positioned on the second 
line, 

m-

does the interchange. 

As you can see, the m command is more 
succinct and direct than writing, deleting and re­
reading. When is brute force better anyway? This 
is a matter of personal taste - do what you have 
most confidence in. The main difficulty with the 
m command is that if you use patterns to specify 
both the lines you are moving and the target, you 
have to take care that you specify them properly, 
or you may well not move the lines you thought 
you did. The result of a botched m command can 
be a ghastly mess. Doing the job a step at a time 
makes it easier for you to verify at each step that 
you accomplished what you wanted to. It's also a 
good idea to issue a w command before doing any­
thing complicated; then if you goof, it's easy to 
back up to where you were. 

Marks 

ed provides a facility for marking a line 
with a particular name so you can later reference 
it by name regardless of its actual line number. 
This can be handy for moving lines, and for keep­
ing track of them as they move. The mark com­
mand is k; the command 

kx 

marks the current line with the name 'x'. If a line 
number precedes the k, that line is marked. (The 
mark name must be a single lower case letter.) 
Now you can refer to the marked line with the 
address 

IX 

Marks are most useful for moving things 
around. Find the first line of the block to be 
moved, and mark it with I a. Then find the last 
line and mark it with I b. Now position yourself at 
the place where the stuff is to go and say 

- 14-

I a/bm. 

Bear in mind that only one line can have a 
particular mark name associated with it at any 
given time. 

Copying Lines 

We mentioned earlier the idea of saving a 
line that was hard to type or used often, so as to 
cut down on typing time. Of course this could be 
more than one line; then the saving is presumably 
even greater. 

ed provides another command, called t (for 
'transfer') for making a copy of a group of one or 
more lines at any point. This is often easier than 
writing and reading. 

The t command is identical to the m com­
mand, except that instead of moving lines it sim­
ply duplicates them at the place you named. Thus 

I,StS 

duplicates the entire contents that you are editing. 
A more common use for t is for creating a series of 
lines that differ only slightly. For example, you 
can say 

a 
t. 
s/x/y/ 
t. 
s/y/z/ 

and so on. 

(make a copy) 
(change it a bit) 
(make third copy) 
(change it a bit) 

The Temporary Escape 'I' 

Sometimes it is convenient to be able to 
temporarily escape from the editor to do some 
other UNIX command, perhaps one of the file copy 
or move commands discussed in sect.ion 5, without 
leaving the editor. The 'escape' command ! pro­
vides a way to do this. 

If you say 

!any UNIX command 

your current editing state is suspended, and the 
UNIX command you asked for is executed. When 
the command finishes, ed will signal you by print­
ing another I; at that point you can resume edit­
ing. 

You can really do any UNIX command, 
including another ed. (This is quite common, in 
fact.) In this case, you can even do another I. 

7. SUPPORTING TOOLS 

There are several tools and techniques that 
go along with the editor, all of which are relatively 
easy once you know how ed works, because they c 



( 

Ci 

are all based on the editor. In this section we will 
give some fairly cursory examples of these tools, 
more to indicate their existence than to provide a 
complete tutorial. More information on each can 
be found in [3J. 

Grep 

Sometimes you want to find all occurrences 
of some word or pattern in a set of files, to edit 
them or perhaps just to verify their presence or 
absence. It may be possible to edit each file 
separately and look for the pattern of interest, but 
if there are many files this can get very tedious, 
and if the files are really big, it may be impossible 
because of limits in ed. 

The program grep was invented to get 
around these limitations. The search patterns that 
we have described in the paper are often called 
'regular expressions', and 'grep' stands for 

g!re!p 

That describes exactly what grep does - it prints 
every line in a set of files that contains a particular 
pattern. Thus 

grep 'thing' filel file2 file3 ... 

finds 'thing' wherever it occurs in any of the files 
'filel', 'file2', etc. grep also indicates the file in 
which the line was found, so you can later edit it if 
you like. 

The pattern represented by 'thing' can be 
any pattern you can use in the editor, since grep 
and ed use exactly the same mechanism for pat­
tern searching. It is wisest always to enclose the 
pattern in the single quotes' ... ' if it contains any 
non-alphabetic characters, since many such charac­
ters also mean something special to the UNIX com­
mand interpreter (the 'shell'). If you don't quote 
them, the command interpreter will try to inter­
pret them before grep gets a chance. 

There is also a way to find lines that don't 
contain a pattern: 

grep -v 'thing' file! file2 ... 

finds all lines that don't contains 'thing'. The-v 
must occur in the position shown. Given grep 
and grep -v, it is possible to do things like select­
ing all lines that contain some combination of pat­
terns. For example, to get all lines that contain 'x' 
but not 'y': 

grep x file... I grep -v y 

(The notation I is a 'pipe', which causes the output 
of the first command to be used as input to the 
second command; see [2J.) 

- 15-

Editing Scripts 

If a fairly complicated set of editing opera­
tions is to be done on a whole set of files, the easi­
est thing to do is to make up a 'script', i.e., a file 
that contains the operations you want to perform, 
then apply this script to each file in turn. 

For example, suppose you want to change 
every 'Unix' to 'UNIX' and every 'Gcos' to 'GCOS' 
in a large number of files. Then put into the file 
'script' the lines 

g!Unix!s//UNIX!g 
g!Gcos/s/ /GCOS!g 
w 
q 

Now you can say 

ed filel <script 
ed file2 <script 

This causes ed to take its commands from the 
prepared script. Notice that the whole job has to 
be planned in advance. 

And of course by using the UNIX command 
interpreter, you can cycle through a set of files 
automatically, with varying degrees of ease. 

Sed 

lied ('stream editor') is a version of the edi­
tor with restricted capabilities but which is capa­
ble of processing unlimited amounts of input. 
Basically sed copies its input to its output, apply­
ing one or more editing commands to each line of 
input. 

As an example, suppose that we want to do 
the 'Unix' to 'UNIX' part of the example given 
above, but without rewriting the files. Then the 
command 

sed I s/Unix((JNIX!g' filel file2 

applies the command 's/Unix!UNIX!g' to all lines 
from 'filel " 'file2', etc., and copies all lines to the 
outpu·t. The advantage of using lied in such a 
case is that it can be used with input too large for 
ed to handle. All the output can be collected in 
one place, either in a file or perhaps piped into 
another program. 

If the editing transformation is so compli­
cated that more than one editing command is 
needed, commands can be supplied from a file, or 
on the command line, with a slightly more com­
plex syntax. To take commands from a file, for 
example, 

sed -f cmdfile input-files ... 

sed has further capabilities, including condi­
tional testing and branching, which we cannot go 



into here. 

Acknowledgement 

I am grateful to Ted Dolotta for his careful 
reading and valuable suggestions. 

References 

[11 Brian W. Kernighan, A Tuton'al Introduc­
tion to the UNIX Tezt Editor, Bell Labora­
tories internal memorandum. 

[21 Brian W. Kernighan, UNIX For Beginners, 
Bell Laboratories internal memorandum. 

131 Ken L. Thompson and Dennis M. Ritchie, 
The UNIX Programmer's Manual. Bell 
Laboratories. 

- 16-

(\ 
I I 

~ 



( 

( 

~LREFERENCEMANUAL 

Kurt Skoens 

Revised by 

Craig LeTes 

Version 2.18 

September 12, 1986 

1. Introduction 

Mail provides a simple and friendly environment for sending and receiving mail. It divides 
incoming mail into its constituent messages and allows the user to deal with them in any order. In 
addition, it provides a set of ed-like commands for manipulating messages and sending mail. Mail 
offers the user simple editing capabilities to ease the composition of outgoing messages, as well as 
providing the ability to define and send to names which address groups of users. Finally, Mail is 
able to send and receive messages across such networks as the ARPAATET, UUCP, and Berkeley 
network. 

This document. describes how to use the Mail program to send and receive messages. The 
reader is not assumed to be familiar with other message handling systems, but should be familiar 
with the U!\1Xl shell, the te,.t editor, and some of the common UNIX commands. "The UNIX 
Programmer's Manual," "An Introduction to esh," and "Text Editing with Ex and Vi" can be 
consulted for more information on these topics. 

Here is how messages are handled: the mail system accepts incoming messages for you from 
other people and collects them in a file, called your system mailbox. When you login, the system 
notifies you if there are any messages waiting in your system mailbox. If you are a csll user, you 
will be notified when new mail arrives if you inform the shell of the location of your mailbox. On 
version 7 systems, your system mailbox is located in the directory /usr/spool/mail in a file with 
your login name. If your login name is "sam," then you can make csh notify you of new mail by 
including the following line in your .cshrc file: 

set mail= /usr /spool/mail/sam 

\Yhen you read your mail using Alail, it reads your system mailbox and separates that file into the 
individual messages that have been sent to you. You can then read, reply to, delete, or save these 
messages. Each message is marked with its author and the date they sent it. 

1 UNIX is a trademark of Bell Laboratories. 



· Mall Reference Manual 0/12/88 2 

2. Common usage 

The Mail command has two distinct usages, according to whether one wants to send or 
receive mall. Sending mail is simple: to send a message to a user whose login name is, say, 
"root," use t.he shell command: 

% Mail root 

then type your message. When you reach the end of the message, type an EOT (oontrol-d) at the 
beginning of a line, which will cause Mail to echo "EOT" and return you to the Shell. When the 
user you sent mail to next logs in, he will receive the message: 

You have mail. 

to alert him to the existence of your message. 

If, while you are composing the message you decide that you do not wish to send it after all, 
you can abort the letter with a RUBOUT. Typing a single RUBOUT causes Mail to print 

(Interrupt - one more to kill letter) 

Typing a second RUBOUT causes Mail to save your partial letter on the file "dead.letter" in your 
hom{ d;:,~::::::,' and abort the letter. Once you have sent mail to someone, there is no way to undo 
the act, so be careful. 

The message your recipient reads will consist of the message you typed, preceded by a line 
telling who sent the message (your login name) and the date and time it was sent. 

If you want to send the same message to several other people, you can list their login names 
on the command line. Thus, 

% Mail sam bob john 
Tuition fees are due next Friday. Don't forget!! 
< Control-d> 
EOT 
% 

will send the reminder to sam, bob, and john. 

If, when you log in, you see the message, 

You have mail. 

you can read the mail by typing simply: 

% Mail 

Mail will respond by typing its version number and date and t.hen listing the messages you have 
wait.ing. Then it will type a prompt. and await your command. The messages are assigned 
numbers start.ing with 1 - you refer to the messages with these numbers. Mail keeps tack of which 
messages are netL' (have been sent since you last read your mail) and read (have been read by you). 
New messages have an N next to them in the header listing and old, but unread messages have a 
U next to t.hem. Mail keeps track of new/old and read/unread messages by putting a header field 
called "Status" into your messages. 

To look at a specific message, use the type command, which may be abbreviat.ed to simply 
t. For example, if you had the following messages: 

N 1 root Wed Sep 21 09:21 "Tuition fees" 
N 2 sam Tue Sep 20 22:55 

you could examine the first message by giving the command: 

type 1 

which might cause Mail to respond with; for example: 

Message 1: 
From root Wed Sep 21 09:21:45 1978 
Subject: Tuition fees 

o 

o 



( 

( 

· Mail Reference Manual 1/12/88 8 

Status: R 

Tuition fees are due next Wednesday. Don't forget!! 

Many Mail commands that operate on messages take a message number as an argument like the 
type command. For these commands, there is a notion of a current message. When you enter the 
Mail program, the current message is initially the first one. Thus, you can often omit the message 
number and use, for example, 

t 

to type the current message. As a further shorthand, you can type a message by simply giving its 
message number. Hence, 

1 

would type the first message. 

Frequently, it is useful to read the messages in your mailbox in order, one after another. 
You can read the next message in Mail by simply typing a newline. As a special case, you can 
t::lJ~ 2 ne'wli!J(, a~ your first command to Mail to type the first message. 

If, after typing a message, you wish to immediately send a reply, you can do so with the 
reply command. Reply, like type, takes a message number as an argument. Mail then begins a 
message addressed to the user who sent you the message. You may then type in your letter in 
reply, followed by a <control-d> at the beginning of a line, as before. Mail will type EOT, then 
type the ampersand prompt to indicate its readiness to accept another command. In our example, 
if, after t.yping the first message, you wished to reply to it, you might give the command: 

reply 

Mail responds by typing: 

To: root 
Subject: Re: Tuition fees 

and waiting for you to enter your letter. You are now in the message collection mode described at 
the beginning of this section and Mail will gather up your message up to a control-d. Note that it 
copies the subject header from the original message. This is useful in that correspondence about a 
particular matter will tend to retain the same subject heading, making it easy to recognize. If 
there are other header fields in the message, t.he information found will also be used. For example, 
if the letter had a "To:" header listing several recipients, Mail would arrange to send your replay 
to thE' same people as well. Similarly, if the original message contained a "Cc:" (carbon copies to) 
field, Mail would send your reply to tho8C users, too. Mail is careful, though, not too send the mes­
sage to you, even if you appear in the "To:" or "Cc:" field, unless you ask to be included expli­
citly. See section 4 for more details. 

After typing in your letter, the dialog with Mail might look like the following: 

reply 
To: root 
Subject: Tuition fees 

Thanks for the reminder 
EOT 
& 

The reply command is especially useful for sustaining extended conversations over the mes­
sage system, with other "listening" users receiving copies of the conversation. The reply com­
mand can be abbreviated to r. 

Somet.imes you will receive a message that has been sent to several people and wish to reply 
only to the person who sent it. Reply with a capital R replies to a message, but sends a copy to 
the sender only. 

---------------- --"-------------



· Mail Reference Manual 1/12/88 

If you wish, while reading your mail, to send a message to someone, but not as a reply to one 
of your messages, you can send the message directly with the mail command, which ta.kes as argu­
ments the names of the recipients you wish to send to. For example, to send a message to 
"frank," you would do: 

mail frank 
This is to confirm our meeting next Friday at 4. 
EOT 
& 

The mail command can be abbreviated to m. 

Normally, each message you receive is saved in the file mboz in your login directory at the 
time you leave Mail. Often, however, you will not want to save a particular message you have 
received because it is only of passing interest. To avoid saving a message in mboz you can delete it 
using the delete command. In our example, 

delete 1 

will prevent Mail from saving message 1 (from root) il:l mboz. In addition to not saving deleted 
D"lessages. Mail will not let you type them. either. The effect is to make the message disappear 
altogether, along with its number. The delete command can be abbreviated to simply d. 

Many features of Mail can be tailored to your liking with the set command. The set com­
mand has two forms, depending on whether you are setting a binary option or a valued option. 
Binary options are either on or off. For example, the "ask" option informs Mail that each time 
you send a message, you want it to prompt you for a subject header, to be included in the mes­
sage. To set the "ask" option, you would type 

set ask 

Another useful Mail option is "hold." Unless told otherwise, Mail moves the messages from 
your system mailbox to the file mboz in your home directory when you leave Mail. If you want 
Mail to keep your letters in the system mailbox instead, you can set the "hold" option. 

Valued options are values which Mail uses to adapt to your tastes. For example, the 
"SHELL" option tells Mail which shell you like to use, and is specified by 

set SHELL=/bin/csh 

for example. Note that no spaces are allowed in "SHELL=/bin/csh." A complete list of the Mail 
options appears in section 5. 

Another important valued option is "crt." If you use a fast video terminal, you will find that 
when you print long messages, they fiy by too quickly for you to read them. With the "crt" 
option, you can make Mail print any message larger than a given number of lines by sending it 
through the paging program more. For example, most CRT users should do: 

set crt==24 

to paginate messages that will not fit on their screens. More prints a screenful of information, then 
types -MORE-. Type a space to see the next screenful. 

Another adaptation to user needs that Mail provides is that of aliases. An alias is simply a 
name which stands for one or more real user names. Mail sent to an alias is really sent t.o the list 
of real users associated with it. For example, an alias can be defined for the members of a project, 
so that you can send mail to the whole project by sending mail to just a single name. The alias 
command in Ma,1 defines an alias. Suppose that the users in a project are named Sam, Sally, 
Steve, and Susan. To define an alias called "project" for them, you would use the .A/ail command: 

alias project sam sally steve susan 

The alias command can also be used to provide a convenient name for someone whose user name 
is inconvenient. For example, if a user named "Bob Anderson" had the login name "anderson,'''' 
you might 'Want to use: 

alias bob anderson o 



~-~---- --~~----

(~ 

( 

Mail Reference Manual 1/12/88 

so that you could send mail to the shorter name, "bob." 

'While the alias and set commands allow you to customize Mail, they have the drawback 
that they must be retyped each time you enter Mall To make them more convenient to use, Mail 
always looks for two files when it is invoked. It first reads a system wide file "/usrflibjMail.rc," 
then a user specific file, ".mailrc," which is found in the user's home directory. The system wide 
file is maintained by the system administrator and contains set commands that are applicable to 
all users of the system. The" .mailrc" file is usually used by each user to set options the way he 
likes and define individual aliases. For example, my .mailrc file looks like this: 

set ask nosave SHELL=/bin/csh 

As you can see, it is possible to set many options in the same set command. The "nosave" option 
is described in section 5. 

Mail aliasing is implemented at the system-wide level by the mail delivery system 8endmai/. 
These aliases are stored in the file /usr/lib/aliases and are accessible to all users of the system. 
The lines in /usr/lib/aliases are of the form: 

alias: namel , name2, namea 

where alia6 is the mailing list. name and the name. are the members of the list. Long lists can be • 
continued onto the next line by starting the next line with a space or tab. Remember that you 
must execute the shell command newalia8e8 after editing /usr/lib/aliases since the delivery system 
uses an indexed file created by newalia8e8. 

We have seen that Mail can be invoked with command line arguments which are people to 
send the message to, or with no arguments to read mail. Specifying the -f flag on the command 
line causes Mail to read messages from a file other than your system mailbox. For example, if you 
have a collection of messages in the file "letters" you can use Mail to read them with: 

% Mail -f letters 

You can use all the A/ail commands described in this document to examine, modify, or delet.e mes­
sages from your "letters" file, which will be rewritten when you leave A/ail with the quit command 
described below. 

Since mail that you read is saved in the file mboz in your home directory by default, you can 
read mboz in your home directory by using simply 

% Mail-f 

Normally, messages that you examine using the type command are saved in the file "mbox" 
in your home directory if you leave Mail with the quit command described below. If you wish to 
retain a message in your system mailbox you can use the preserve command to tell Mail to leave 
it there. The preserve command accepts a list of message numbers, just like type and may be 
abbreviated to pre. 

Messages in your system mailbox that you do not examine are normally retained in your sys­
tem mailbox automatically. If you wish to have such a message saved in mboz without reading it, 
you may use the mbox command to have them so saved. For example, 

mbox 2 

in our example would cause the second message (from sam) to be saved in mboz when the quit 
command is executed. Mbox is also the way to direct messages to your mboz file if you have set 
the "hold" option described above. Mbox can be abbreviated to mb. 

W'ben you have perused all the messages of interest, you can leave Mail with the quit com­
mand, which saves the messages you have typed but not deleted in the file mbox in your login 
directory. Deleted messages are discarded irretrievably, and messages left untouched are preserved 
in your system mailbox so that you will see them the next time you type: 

% Mail 

The quit command can be abbreviated to simply q. 



Mail Reference Manual '/12/88 8 

If you wish for some reason to leave Mail quickly without altering either your system mail­
box or mboz, you can type the x command (short for exit), which will immediately return you to 
the Shell without changing anything. 

If, instead, you want to execute a Shell command without leaving Mail, you can type the 
command preceded by an exclamation point, just as in the text editor. Thus, for instance: 

!date 

"'ill print the current date without leaving Mail. 
Finally, the help command is available to print out a brief summary of the Mail commands, 

using only the single character command abbreviations. 

o 



( 

· Mail Reference Manual 1/12/88 '1 

3. Maintaining folders 

Mail includes a simple facility for maintaining groups of messages together in folders. This 
section describes this facility. 

To use the folder facility, you must tell Mail where you wish to keep your folders. Each 
folder of messages will be a single file. For convenience, all of your folders are kept in a single 
directory of your choosing. To tell Mail where your folder directory is, put a line of the form 

set folder==letters 

in your . mailrc file. It, as in the example above, your folder directory does not begin with a '/,' 
Mail will assume that your folder directory is to be found starting from your home directory. 
Thus, if your home directory is /usr /person the above example told Mail to find your folder 
directory in /usr /person/letters. 

Anywhere a file name is expected, you can use a folder name, preceded with '+.' For exam­
ple, to put a message into a folder with the save command, you can use: 

save +classwork 

to save the current message in the classwork folder. If the classwork fo1der does not yet exist, it 
will be created. r\ote that messages which are saved with the save command are automatically 
removed from your system mailbox. 

In order to make a copy of a message in a folder without causing that message to be removed 
from your system mailbox, use the copy command, which is identical in all other respects to the 
save command. For example, 

copy +classwork 

copies the current message into the classwork folder and leaves a copy in your system mailbox. 

The folder command can be used to direct Mail to the contents of a different folder. For 
example, 

folder +classwork 

directs Mail to read the contents of the classwork folder. All of the commands that you can use on 
your system mailbox are also applicable to folders, including type, delete, and reply. To inquire 
which folder you are currently editing, use simply: 

folder 

To list your current set of folders, use the folders command. 

To start Mail reading one of your folders, you can use the -f option described in section 2. 
For example: 

% Mail -f +dasswork 

will cause Mail to read your classwork folder without looking at your system mailbox. 



'Mall Reference Manual 8/12/88 8 

4. More about sending mail 

4.1. Tilde escapes 

While typing in a message to be sent to others, it is often useful to be able to invoke the text 
editor on the partial message, print the message, execute a shell command, or do some other auxili­
ary function. Mail provides these capabilities through tilde eaC4pe&, which consist of a tilde r) at 
the beginning of a line, followed by a single character which indicates the function to be per­
formed. For example, to print the text of the message'so far, use: 

-p 

which will print a line of dashes, the recipients of your message, and the text of the message so far. 
Since Mail requires two consecutive RUBOUT's to abort a letter, you can use a single RUBOUT to 
abort the output of -p or any other - escape without killing your letter. 

If you are dissatisfied with the message as it stands, you can invoke the text editor on it 
using the escape 

e 

which causes the message to be copied into a temporary file and an instance of the editor to be 
spawned. Alter modifying the message to your satisfaction, write it out and quit the editor, Mail 
will respond by typing 

(continue) 

after which you may continue typing text which wiU be appended to your message, or type 
<control-d> to end the message. A standard text editor is provided by Mail. You can override 
this default by setting the valued option "EDITOR" to something else. For example, you might 
prefer: 

set EDITOR=/usr/ucb/ex 

Many systems offer a screen editor as an alternative to the standard text editor, such as the 
t,j editor from DC Berkeley. To use the screen, or visual edit.or, on your current message, you can 
use the escape, 

v 

-v works like - e, except that the screen editor is invoked instead. A default screen editor is 
defined by A.fail, If it does not suit. you, you can set the valued option "VISUAL" to the path 
name of a different. editor. 

It is often useful to be able to include the contents of some file in your message; the escape 

-r filename 

is provided for this purpose, and causes the named file to be appended to your current message. 
Mail complains if the file doesn't exist or can't be read. If the read is successful, the number of 
lines and characters appended to your message is printed, after which you may continue appending 
text. The filename may contain shell metacharacters like * and? which are expanded according to 
the conventions of your shell. 

.As a special case of -r, the escape 
-d 

reads in the file "dead.letter" in your home directory. This is often useful since Mail copies the 
text of your message there when you abort a message with RUBOUT. 

To save the current text of your message on a file you may use the 

-w filename 

escape. A{ail will print out the number of lines and characters written to the file, after which you 
may continue appending text to your message. Shell metacharacters may be used in the filename, 
as in -r and are expanded with the conventions of your shell. 

o 



( 

· Mail Reference Manual 1/12/88 

H you are sending mail Crom within Mail', command mode you can read a message sent to 
you into the message you are constructing with the escape: 

-m 4 

which will read message 4 into the current message, shiCted right by one tab stop. You can name 
any non-deleted message, or list oC messages. Messages can also be Corwarded without shifting by 
a tab stop with - C. This is the usual way to Corward a message. 

H, in the process of composing a message, you decide to add additional people to the list of 
message recipients, you can do so with the escape 

- t namel name2 ... 

You may name as Cew or many additional recipients as you wish. Note that the users originally on 
the recipient list will still receive the message; you cannot remove someone Crom the recipient list 
'with - t. 

H you wish, you can associate a subject with your message by using the escape 

-s Arbitrary string oC text 

",·hich replaces any previous subjE'Ct with "Arbit.rary string of text." The subject, iC given, is sent 
near t.he top of the message prefixed with "Subject:" You can see what the message will look like 
by using -po 

For political reasons, one occasionally prefers to list certain people as recipients of carbon 
copies of a message rather than direct recipients. The escape 

- c namel name2 ... 

adds the named people to the "Cc:" list, similar to -to Again, you can execute -p to see what the 
message will look like. 

The recipients of the message together constitute the "To:" field, the subject the "Subject:" 
field, and the carbon copies the "Cc:" field. If you wish to edit these in ""ays impossible with the 
- t, -s, and - c escapes, you can use the escape 

-h 

which prints "To:" followed by the current list of recipients and leaves the cursor (or printhead) at 
the end of the line. If you type in ordinary characters, they are appended to the end of the current 
list of recipients. You can also use your erase character to erase back into the list of recipients, or 
your kill character to erase them altogether. Thus, for example, if your erase and kill characters 
are the standard # and @ symbols, 

-h 
To: root kurt####bill 

would change the initial recipients "root kurt" to "root bill." \\'hen you type a newline, A/ail 
advances to the "Subject:" field, where the same rules apply. Another newline brings you to the 
"Cc:" field, which may be edited in the same Cashion. Another newline leaves you appending text 
to the end of your message. You can use -p to print the current text of the header fields and the 
body of the message. 

To effect a temporary escape to the shel1, the escape 

-!command 

is used, 'which executes command and returns you to mailing mode without altering the text of 
your message. H you wish, instead, to filter the body of your message through a shell command, 
then you can use 

-~ommand 

which pipes your message through the command and uses the output as the new text of your mes­
sage. If the command produces no output, Mail assumes that something is amiss and retains the 
old version of your message. A frequently-used filter is the command Iml, designed to format out­
going mail. 



· Mall Reference Manual '/12/88 

To effect a temporary escape to Mail command mode instead, you can use the 

- :Mail command 

10 

escape. This is especially useful for retyping the message you are replying to, using, for example: 
-:t 

It is also useful for setting options and modifying aliases. 

If you wish (for some reason) to send a message that contains a line beginning with a tilde, 
you must double it. Thus, for example, 

--This line begins with a tilde. 

sends the line 

-This line begins with a tilde. 

Finally, the escape 
-1 

prints out a brief summary of the available tilde escapes. 

Oil some terminals (particularly ones with no lower case) tilde's are difficult to type. Mail 
allows you to change the escape character with the "escape" option. For example, I set 

set escape=] 

and use a right bracket instead of a tilde. If I ever need to send a line beginning with right 
bracket, I double it, just as for -. Changing the escape character removes the special meaning of 

4.2. Network access 

This section describes how to send mail to people on other machines. Recall that sending to 
a plain login name sends mail to that person on your machine. If your machine is directly (or 
sometimes, even, indirectly) connected to the Arpanet, you can send messages to people on the 
Arpanet using a name of the form 

name@host 

where name is the login name of the person you're trying to reach and host is the name of the 
machine where he logs in on the Arpanet. 

If your recipient logs in on a machine connected to yours by UUCP (the Bell Laboratories 
supplied network that communicates over telephone lines), sending mail to him is a bit more com­
plicated. You must know the list of machines through which your message must travel to arrive 
at his site. So, if his machine is directly connected to yours, you can send mail toO him using the 
syntax: 

host!name 

where, again, host is the name of his machine and name is his login name. If your message must 
go through an intermediate machine first, you must use the syntax: 

intermediate!host!name 

and so on. It is actually a feature of UUCP that the map of all the systems in the network is not 
known anywhere (except where people decide to write it down for convenience). Talk to your sys­
tem administrator about the machines connected to your site. 

If you want to send a message to a recipient on the Berkeley network (Berknet), you use the 
syntax: 

host:name 

where host is his machine name and name is his login name. Unlike UUCP, you need not know 
the names of the intermediate machines. 

c 



( 

· Mail Reference Manual 1/12/88 11 

When you use the reply command to respond to a letter, there is a problem of figuring out 
the names of the users in the "To:" and "Cc:" lists relative to the current machine. If the original 
letter was sent to you by someone on the local machine, then this problem does not exist, but if 
the message came (rom a remote machine, the problem must be dealt with. Mail uses a heuristic 
to build the correct name (or each user relative to the local machine. So, when you reply to 
remote mail, the names in the "To:" and "Cc:" lists may change somewhat. 

4.3. Special recipients 

As described previously, you can send mail to either user names or alias names. It is also 
possible to send messages directly to files or to programs, using special conventions. Ir a recipient 
name has a 'I' in it or begins with a '+', it is assumed to be the path name of a file into which to 
send the message. If the file already exists, the message is appended to the end of the file. Ir you 
want to name a file in your current directory (ie, one for which a 'I' would not usually be needed) 
you can precede the name with '.1' So, to send mail to the file "memo" in the current directory, 
you can give the command: 

% Mail .Jmemo 

If the name beginf 'with a '+,' It is expanded into the full path name of the folder name in your 
folder directory. This ability to send mail to files can be used for a variety of purposes, such as 
maintaining a journal and keeping a record of mail sent to a certain group of users. The second 
example can be done automatically by including the full pathname of the record file in the alias 
command for the group. Using our previous alias example, you might give the command: 

alias project sam sally steve susan /usr/project/maiLrecord 

Then, all mail sent to "project" would be saved on the file "/usr/project/maiLrecord" as well as 
being sent to the members of the project. This file can be examined using Mail -/ 

It. is sometimes useful to send mail directly to a program, for example one might write a pro­
ject billboard program and want to access it using Mail. To send messa.ges to the billboard pro­
gram, one can send mail to the special name '~illboard' for example. Mail treats recipient names 
that begin with a 'I' as a program to send the mail to. An alias can be set up to reference a 'I' 
prefaced name if desired. Caveats: the shell treats 'I' specially, so it must be quoted on the com­
mand line. Also, the 'I program' must be presented as a single argument to mail. The safest 
course is to surround the entire name with double quotes. This also applies to usage in the alias 
command. For example, if we wanted to alias 'rmsgs' to 'rmsgs -s' we would need to say: 

alias rmsgs "I rmsgs -s" 



· Mall Reference Manual 1/12/88 12 

6. Additional features 

This section describes some additional commands of use for reading your mail, setting 
options, and handling lists of messages. 

6.1. Message lists 

Several Mail commands accept a list of messages as an argument. Along with type and 
delete, described in section 2, there is the from command, which prints the message headers asso­
ciated with the message list passed to it. The from command is particularly useful in conjunction 
with some of the message list features described below. 

A message IiBt consists of a list of message numbers, ranges, and names, separated by spaces 
or tabs. Message numbers may be either decimal numbers, which directly specify messages, or one 
of the special characters "t" "." or "$" to specify the first relevant, current, or last relevant mes­
sage, respectively. Relevant here means, for most commands "not deleted" and "deleted" for the 
undelete command. 

A range of messages consists of two message numbers (of the form described in the previous 
paragraph) separated by a dash. Thus, to print the first four messages, use 

type 1-4 

and to print all the messages from the current message to the last message, use 

type .-$ 

A name is a user name. The user names given in the message list are collected together and 
each message selected by other means is checked to make sure it was sent by one of the named 
users. If the message consists entirely of user names, then every message sent by one those users 
that is reiet.ant (in the sense described earlier) is selected. Thus, to print every message sent to you 
by "root," do 

type root 

As a shorthand notation, you can specify simply""''' to get every relevant (same sense) mes­
sage. Thus, 

type '" 

prints all undeleted messages, 

delete '" 

deletes all undeleted messages, and 

undelete '" 

undeletes all deleted messages. 

You can search for the presence of a word in subject lines with f. For example, to print the 
headers of all messages that contain the word "PASCAL," do: 

from /pascal 

Note that subject searching ignores upper/lower case differences. 

6.2. List of commands 

This section describes all the Mail commands available when receiving mail. 

Used to preface a command to be executed by the shell. 

The - command goes to the previous message and prints it. The - command may be given a 
decimal number n as an argument, in which case the nth previous message is gone to and 
printed. 

Print 
Like print, but also print out ignored header fields. See also print and ignore. 

o 



( 

( 

. Mail Reference Manual 1/12/88 13 

Reply 
Note the capital R in the name. Frame a reply to a one or more messages. The reply (or 
replies if you are using this on multiple messages) will be sent ONLY to the person who sent 
you the message (respectively, the set of people who sent the messages you are replying to). 
You can add people using the -t and -c tilde escapes. The subject in your reply is formed 
by prefacing the subject in the original message with "Re:" unless it already began thus. If 
the original message included a "reply-to" header field, the reply will go only to the recipient 
named by "reply-to." You type in your message using the same conventions available to you 
through the mail command. The Reply command is especially useful for replying to mes­
sages that were sent to enormous distribution groups when you really just want to send a 
message to the originator. Use it often. 

Type 
Identical to the Print command. 

alias Define a name to stand for a set of other names. This is used when you want to send mes­
sages to a certain group of pE'Ople and want to avoid retyping their names. For example 

alias project. john sue willie kathryn 

creates an alias project which expands to the four people John, Sue, "rillie, and Kathryn. 

alternates 
If you have accounts on several machines, you may find it convenient to use the 
/usr/lib/aliases on all the machines except one to direct your mail to a single account. The 
alternates command is used to inform Mail that each of these other addresses is really you. 
A/tematel! takes a list of user names and remembers that they are all actually you. When 
you reply to messages that. were sent to one of these alternate names, Mail will not bother to 
send a copy of the message to this other address (which would simply be directed back to 
you by the alias mechanism). If alternate6 is given no argument, it lists the current set of 
alternate names. Alternates is usually used in the .mailrc file. 

ehdir 
The ehdir command allows you to change your current directory. Chdir takes a single 
argument, which is taken to be the pathname of the directory to change to. If no argument 
is given, chdir changes to your home directory. 

copy The copy command does the same thing that save does, except that it does not mark the 
messages it is used on for deletion when you quit. 

delete 
Deletes a list of messages. Deleted messages can be reclaimed with the undelete command. 

dt The dt command deletes the current message and prints the next message. It is useful for 
quickly reading and disposing of mail. 

edit To edit. individual messages using the text editor, the edit command is provided. The edit 
command takes a list of messages as described under the type command and processes each 
by writing it into the file Message% where % is the message number being edited and executing 
the text editor on it. When you have edited the message to your satisfaction, write the mes­
sage out and quit, upon which Mail will read the message back and remove the file. Edit 
may be abbreviated to e. 

else Marks the end of the then-part of an it statement and the beginning of the part to take effect 
if the condition of the if statement is false. 

endifMarks the end of an it statement. 

exit Leave Mail without updating the system mailbox or the file your were reading. Thus, if you 
accidentally delete several messages, you can use exit to avoid scrambling your mailbox. 

file The same as folder. 

folders 
List the names of the folders in your folder directory. 



· Mail Reference Manual 1/12/88 14 

folder 
The folder command switches to a new mail file or folder. With no arguments, it tens you 
which file you are currently reading. Ie you give it an argument, it will write out changes 
(such as deletions) you have made in the current file and read the new file. Some special con­
ventions are recognized for the name: 

Name 

* % 
%name 
& 
+folder 

Meaning 
Previous file read 
Your system mailbox 
Name's system mailbox 
Your· /mbox file 
A file in your folder directory 

from The from command takes a list of messages and prints out the header lines for each one; 
hence 

from joe 

i!'< the ea..~' way to display aU the message headers from "joe." 

headers 
When you start up Mail to read your mail, it lists the message headers that you have. These 
headers tell you who each message is from, when they were sent, how many lines and charac­
ters each message is, and the "Subject:" header field of each message, if present. In addition, 
Mail tags the message header of each message that has been the object of the preserve com­
mand with a "P." Messages that have been saved or written are flagged with a "*." 
Finally, deleted messages are not printed at all. Ie you wish to reprint the current list of 
message headers, you can do so with the headers command. The headers command (and 
thus the initial header list.ing) only lists the first so many message headers. The number of 
headers listed depends on the speed of your terminal. This can be overridden by specifying 
the number of headers you want with the window option. Mail maintains a notion of the 
current "window" into your messages for the purposes of printing headers. Use the I com­
mand to move forward and back a window. You can move Mail's notion of the current win­
dow directly to a particular message by using, for example, 

headers 40 

to moye Alail's attention to the messages around message 40. The headers command can be 
abbreviated to h. 

help Print a brief and usually out of date help message about. the commands in Mail. Refer to 
t.his manual instead. 

hold Arrange to hold a list of messages in the system mailbox, instead of moving them to the file 
mboz in your home directory. If you set the binary option hold, this will happen by default. 

if Commands in your ".mailrc" file can be executed conditionally depending on whether you 
are sending or receiving mail with the it command. For example, you can do: 

if receive 
commands ... 

endif 

AJt else form is also a\'ailable: 

if send 
commands ... 

else 
commands ... 

endif 

Note that the only allowed conditions are receive and send. 



( 

· Mail Reference Manual 1/12/88 15 

ignore 
Add the list of header fields named to the ignore lut. Header fields in the ignore list are not 
printed on your terminal when you print a message. This allows you to suppress printing of 
certain machine-generated header fields, such as Via which are not usually of interest. The 
Type and Print commands can be used to print a message in its entirety, including ignored 
fields. If ignore is executed with no arguments, it lists the current set of ignored fields. 

list List the vaild Mail commands. 

mail Send mail to one or more people. If you have the a,1r option set, Mail will prompt you for a 
subject to your message. Then you can type in your message, using tilde escapes as described 
in section 4 to edit, print, or modify your message. To signal your satisfaction with the mes­
sage and send it, type control-d at the beginning of a line, or a . alone on a line if you set the 
option dot. To abort the message, type two interrupt characters (RUBOUT by default) in a 
row or use the - q escape. 

mbox 
Indicate that a list of messages be sent to mboz in your home directory when you quit. This 
is the default action for messages if you do not have the hold option set. 

next The next command goes to the next message and types it. If given a message list, next goes 
to the first such message and types it. Thus, 

next root 

goes to the next message sent by "root" and types it. The next command can be abbrevi­
ated to simply a newline, which means that one can go to and type a message by simply giv­
ing its message number or one of the magic characters "t" "." or "$". Thus, 

prints the current message and 

4 

prints message 4, as described previously. 

preserve 
Same as hold. Cause a list of messages to be held in your system mailbox when you quit. 

quit Lean Mail and update the file, folder, or system mailbox your were reading. Messages that 
you have examined are marked as "read" and messages that existed when you start.ed are 
marked as "old." If you were editing your system mailbox and if you have set the binary 
option hold, all messages which have not been deleted, saved, or mboxed will be retained in 
your system mailbox. If you were editing your system mailbox and you did not have hold 
set, all messages which have not been deleted, saved, or preserved will be moved to the file 
mboz in your home directory. 

replyFrame a reply to a single message. The reply will be sent to the person who sent you the 
message to which you are replying, plus all the people who received the original message, 
except you. You can add people using the - t and - c tilde escapes. The subject in your 
reply is formed by prefacing the subject in the original message with "Re:" unless it already 
began thus. If the original message included a "reply-to" header field, the reply will go only 
to the recipient named by "reply-to." You type in your message using the same conventions 
available to you through the mail command. 

save It is often useful to be able to save messages on related topics in a file. The save command 
gives you ability to do this. The save command takes as argument a lit of message 
numbers, followed by the name of the file on which to save the messages. The messages are 
appended to the named file, thus allowing one to keep several messages in the file, stored in 
the order they were put there. The save command can be abbreviated to s. An example of 
the save command relative to our running example is: 

s 1 2 tuitionmail 

Saved messages are not automatically saved in mboz at quit time, nor are they selected <by 



· Mail Reference Manual 1/12/88 18 

the next command described above, unless explicitly specified. 

set Set an option or give an option a value. Used to customize Mail. Section 5.3 contains a list 
of the options. Options can be bina'll, in which case they are on or off. or "alued. To set a 
binary option option on, do 

set option 

To give the valued option option tbe value "alue, do 

set option=value 

Several options can be specified in a single Bet command. 

shell The shell command allows you to escape to the shell. Shell invokes an interactive shell and 
allows you to type commands to it. When you leave the shell, you will return to Mail. The 
shell used is a default assumed by Mail; you can override this default by setting the valued 
option "SHELL," eg: 

set SHELL=/bin/csh 

source 
Tll(' source command reads Mail commands from a file. It is useful when you are trying to 
fix your" .mailrc" file and you need to re-read it. 

top The top command takes a message list and prints the first five lines of each addressed mes­
sage. It may be abbreviated to to. If you wish, you can change the number of lines that 
top prints out by setting the valued option "toplines." On a CRT terminal, 

set toplines=lO 

might be preferred. 

type Print a list of messages on your terminal. If you have set the option crt to a number and the 
total number of lines in the messages you are printing exceed that specified by crt, the mes­
sages will be printed by a terminal paging program such as more. 

undelete 
The undelete command causes a message that had been deleted previously to regain its ini­
tial status. Only messages that have been deleted may be undeleted. This command may be 
abbreviated to u. 

unset 
Reverse the action of setting a binary or valued option. 

visual 
It is often useful to be able to invoke one of two editors, based on the type of terminal one is 
using. To invoke a display oriented editor, you can use the visual command. The operation 
of the visual command is otherwise identical to that of the edit command. 

Both the edit and visual commands assume some default text editors. These default editors 
can be overridden by the valued options "EDITOR" and ''VISUAL'' for the standard and 
screen editors. You might want to do: 

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi 

write 
The save command always writes the entire message, including the headers, into the file. If 
you want to write just the message itself, you can use the write command. The write com­
mand has the same syntax as the save command, and can be abbreviated to simply w. 
Thus, we could write the second message by doing: 

w 2 file.c 

As suggested by this example, the write command is useful for such tasks as sending and 
receiving source program text over the message system. 



· Man Rererenee Manual '/12/88 17 

Mail presents message headers in windowCuls as described under the headers command. You 
can move Mail's attention Corward to the next window by giving the 

z+ 
command. Analogously, you can mon to the previous window with: 

z-

5.3. Custom options 

Throughout this manual, we have seen examples oC binary and valued options. This section 
describes each of the options in alphabetical order, including some that you have not seen yet. To 
avoid confusion, please note that the options are either all lower case letters or all upper ease 
letters. "When I start a sentence such as: "Ask" causes Mail to prompt you for a subject header, I 
am only capitalizing "ask" as a courtesy to English. 

EDITOR 
The valued option "EDITOR" defines the pathname of the text editor to be used in the edit 
command and - e. If not defined, a standard editor is used. 

SHELL 
The valued option "SHELL" gives the path name of your shell. This shell is used Cor the! 
command and -! escape. In addition, this shell expands file names with shell metacharacters 
like • and ? in them. 

VISUAL 
The valued option "VISUAL" defines the pathname of your screen editor Cor use in the 
visual command and - v escape. A standard screen editor is used if you do not define one. 

append 
The "append" option is binary and causes messages saved in mboz to be appended to the end 
rather than prepended. Normally, Mai/will mboz in the same order that the system puts 
messages in your system mailbox. By setting "append," you are requesting that mboz be 
appended to regardless. It is in any event quicker to append. 

ask "Ask" is a binary option which causes Mail to prompt you for the subject of each message 
you send. If you respond with simply a newline, no subject field will be sent. 

askcc 
"Askcc" is a binary option which causes you to be prompted for additional carbon copy reci­
pients at the end of each message. Responding with a newline shows your satisfaction with 
the current list. 

autoprint 
"Autoprint" is a binary option which causes the delete command to behave like dp - thus, 
after deleting a message, the next one will be typed automatically. This is useful to quickly 
scanning and deleting messages in your mailbox. 

debug 
The binary option "debug" causes debugging information to be displayed. Use of this option 
is the same as useing the 

-d command line flag. 

dot "Dot" is a binary option which, if set, causes Mail to interpret a period alone on a line as the 
terminator of a message you are sending. 

escape 
To allow you to change the escape character used when sending mail, you can set the valued 
option "escape." Only the first character of the "escape" option is used, and it must be dou­
bled if it is to appear as the first character of a line of your message. If you change your 
escape character, then - loses all its special meaning, and need no longer be doubled at the 
beginning of a line. 



'Mail Reference Manual 1/12/88 18 

folder 
The name of the directory to use for storing folders of messages. If this name begins with a 
'/' Mail considers it to be an absolute pathnamej otherwise, the folder directory is found rela­
tive to your home directory. 

hold The binary option "hold" causes messages that have been read but not manually dealt with 
to be held in the system mailbox. This prevents such messages from being automatically 
swept into your mbox. 

ignore 
The binary option "ignore" causes RUBOUT characters from your terminal to be ignored and 
echoed as @'s while you are sending mail. RUBOUT characters retain their original meaning 
in Mail command mode. Setting the "ignore" option is equivalent to supplying the -i fiag 
on the command line as described in section 6. 

ignoreeof 
An option related to "dot" is "ignoreeof" which makes Mail refuse to accept a control-d as 
the end of a message. "Ignoreeof" also applies to Mail command mode. 

keep The "keep" option causes Mail to truncate your system mailbox instead of deleting it when 
it. is empty. This is useful if you elect to protect your mailbox, which you would do with the 
shell command: 

chmod 600 /usr/spool/mail/yourname 

where yourname is your login name. If you do not do this, anyone can probably read your 
mail, although people usually don't. 

keeps ave 
When you save a message, Mail usually discards it when you quit. To retain all saved mes­
sages, set the "keepsave" option. 

metoo 
When sending mail to an alias, Mail makes sure that if you are included in the alias, that 
mail will not be sent to you. This is useful if a single alias is being used by all members of 
the group. If however, you wish to receive a copy of all the messages you send to the alias, 
you can set the binary option "metoo." 

noheader 
The binary option "noheader" suppresses the printing of the version and headers when Mail 
is first inyoked. Setting this option is the same as using -N on the command line. 

nosave 
Normally, when you abort a message with two RUBOUTs, Mail copies the partial letter to the 
file "dead.letter" in your home directory. Setting the binary option "nosave" prevents this. 

quietThe binary option "quiet" suppresses the printing of the version when Mail is first invoked, 
as well as printing the for example "Message 4:" from the type command. 

record 
If you love to keep records, then the valued option "record" can be set to the name of a file 
to save your outgoing mail. Each new message you send is appended to the end of the file. 

screen 
When Mail initially prints the message headers, it determines the number to print by looking 
at the speed of your terminal. The faster your terminal, the more it prints. The valued 
option "screen" overrides this calculation and specifies how many message headers you want 
printed. This number is also used for scrolling with the. command. 

sendmail 
To alternate delivery system, set the "sendmail" option to the full pathname of the program 
to use. Note: this is not for everyone! Most people should use the default delivery system. 

toplines 
The valued option "toplines" defines the number of lines that t.he "top" command will print 

o 

c 



( " " 

- " 

( 

Mail Reference Manual 1/12/88 19 

out instead of the default five lines. 

verbose 
The binary option "verbose" causes Mail to invoke sendmail with the -v flag, which causes it 
to go into versbose mode and announce expansion of aliases, etc. Setting the "verbose" option 
is equivalent to invoking Mail with the -v flag as described in section 6. 



· Mail J.teference Manual 1/12/88 

8. Command nne options 

This section describes command line options for Mail and what they are used for. 

-N Suppress the initial printing of headers. 

-d Turn on debugging information. Not of general interest. 

20 

-f fileShow the messages in file instead of your system mailbox. If file is omitted, Mail reads mbox 
in your home directory. 

-i Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious RUBOUT 
or DELETE characters. It's usually more effective to change your interrupt character to 
control-c, for which see the 'ftg shell command. 

-n Inhibit reading of /usr/lib/Mail.rc. Not generally useful, since /usr/lib/Mail.rc is usually 
empty. 

-s string 
Used for sending mail. Stn'ng is used as the subject of the message being composed. If ,tn'ng 
contains blanks, you must surround it with quote marks. 

-u name 
Read name6'8 mail instead of your own. Unwitting others often neglect to protect their mail­
boxes, but discretion is advised. Essentially, -u user is a shorthand way of doing -f 
/usr/spool/user. 

-v Use the -v flag when invoking sendmail. This feature may also be enabled by setting the the 
option "verbose". 

The following command line flags are also recognized, but are intended for use by programs 
invoking Mail and not for people. 

-T file 
Arrange to print on file the contents of the orticle-id fields of all messages that were either 
read or deleted. -T is for the readnews program and should NOT be used for reading your 
mail. 

-h number 
Pass on hop count information. Mail will take the number, increment it, and pass it with -h 
to the mail delivery system. -h only has effect when sending mail and is used for network 
mail forwarding. 

-r name 
Used for network mail forwarding: interpret name as the sender of the message. The name 
and -r are simply sent along to the mail delivery system. Also, Mail will wait for the mes­
sage to be sent and return the exit status. Also restricts formatting of message. 

l\;ote that -h and -r, which are for network mail forwarding, are not used in practice since 
mail forwarding is now handled separately. They may disappear soon. 

o 



( 

( 

Mail Refel'enee Manual 1/12/88 21 

7. Format ofmeasages 

This section describes the format of messages. Messages begin with a from line, which con· 
sists of the 'word "From" followed by a user name, followed by anything, followed by a date in the 
format returned by the ctime library routine described in section 3 of the Unix Programmer's 
Manual. A possible ctime format date is: 

Tue Dec 1 10:58:23 1981 

The ctime date may be optionally followed by a single space and a time zone indication, which 
should be three capital letters, such as PDT. 

Following the from line are zero or more header field lines. Each header field line is of the 
form: 

name: information 

Name can be anything, but only certain header fields are recognized as having any meaning. The 
recognized header fields are: article.id, bee, ee, from, reply-to, ,ender, ,djeet, and to. Other header 
fields are also significant to other systems; see, for example, the current Arpanet message standard 
for much more on this topic. A header field can be continued onto following lines by making the 
first character on the following line a space or tab character. 

Ii any headers are present, they must be followed by a blank line. The part that follows is 
called the body of the message, and must be ASCII text, not containing null characters. Each line 
in the message body must be terminated with an ASCII newline character and no line may be 
longer than 512 characters. If binary data must be passed through the mail system.itis suggested 
that this data be encoded in a system which encodes six bits into a printable character. For exam· 
pIe, one could use the upper and lower case letters, the digits, and the characters comma and 
period to make up the 64 characters. Then, one can send a 16-bit binary number as three charac· 
ters. These characters should be packed into lines, preferably lines about 70 characters long as 
long lines are transmitted more efficiently. 

The message delivery system always adds a blank line to the end of each message. This 
blank line must not be deleted. 

The UUCP message delivery system sometimes adds a blank line to the end of a message 
each time it is forwarded through a machine. 

It should be noted that some network transport protocols enforce limits to the lengths of 
messages. 



· Mail Reference Manual 8/12/88 

8. Glossary 

This section contains the definitions of a few phrases peculiar to Mail. 

alias An alternative name for a person or list of people. 

22 

flag An option, given on the command line of Mail, prefaced with a -. For example, -f is a flag. 

header field 

mail 

At the beginning of a message, a line which contains information that is part of the structure 
of the message. Popular header fields include to; ce, and 8Ubject. 

A collection of messages. Often used in the phrase, "Have you read your mail?" 
mailbox 

The place where your mail is stored, typically in the directory /usr/spool/mail. 

message 
A single letter from someone, initially stored in your mailbox. 

message list 
A string used in :Afail command mode to describe a sequence of messages. 

option 
A piece of special purpose information used to tailor Mail to your taste. Options are 
specified with the set command. 

o 



(/ 

( 

. Mail Reference Manual 8/12/88 23 

9. Summary of commands, options, and escapes 

This section gives a quick summary or the Mail commands, binary and valued options, and 
tilde escapes. 

The rollowing table describes the commands: 

Command 

Print 
Reply 
Type 
alias 
alternates 
chdir 
copy 
delete 
dt 
endif 
edit 
else 
exit 
file 
folder 
folders 
from 
headers 
help 
hold 
if 
ignore 
list 
local 
mail 
mbox 
next 
preserve 
quit 
reply 
save 
set 
she)) 
top 
type 
undelete 
unset 
visual 
write 

• 

De8cription 
Single command escape to shell 
Back up to previous message 
Type message with ignored fields 
Reply to author or message only 
Type message with ignored fields 
Define an alias as a set of user names 
List other names you are known by 
Change ",'orking directory, home by default 
Copy a message to a file or folder 
Delete a list of messages 
Delete current message, type next message 
End of conditional statement; see if 
Edit a list. of messages 
Start of else part of conditional; see if 
Leave mail without changing anything 
Interrogate/change current mail file 
Same as file 
List the folders in your folder directory 
List headers of a list of messages 
List current window of messages 
Print brief summary of Mail commands 
Same as preserve 
Conditional execution of Mail commands 
Set/examine list of ignored header fields 
List valid Mail commands 
List other names for the local host 
Send mail to specified names 
Arrange to san a list. of messages in mbo:r 
Go to next message and type it 
Arrange to leave list of messages in system mailbox 
Leave ~Mail; update system mailbox, mboz as appropriate 
Compose a reply to a message 
Append messages, headers included, on a file 
Set binary or valued options 
Invoke an interactive shell 
Print first so many (5 by default) lines of list of messages 
Print messages 
Undelete list of messages 
Undo the operation of a set 
Invoke visual editor on a list of messages 
Append messages to a file, don't include headers 
Scroll to next/previous screenful of headers 



.Mail Reference Manual 8/12/88 

The following table describes the options. Each option is shown as being either a binary 
or valued option. 

Option 
EDITOR 
SHELL 
VISUAL 
append 
ask 
askcc 
autoprint 
crt 
debug 
dot 
escape 
folder 
hold 
i~nore 
ignoreeof 
keep 
keepsave 
metoD 
noheader 
nosave 
quiet 
record 
screen 
sendmail 
toplines 
verbose 

Trpe 
valued 
valtied 
valtied 
hinary 
hinary 
binary 
hinary 
t)altied 
hinary 
binary 
t)altied 
t)altied 
binary 
binary 
binary 
binary 
binary 
hinary 
binary 
binary 
binary 
valued 
va/tied 
t·a/ued 
valued 
binary 

Description 
Pathname of editor for ~ e and edit 
Pathname of shell for sbell, ~! and ! 
Pathname of screen editor for ·v, visual 
Always append messages to end of mbo:!: 
Prompt user for Subject: field when sending 
Prompt user for additional Cc's at end of message 
Print next message after delete 
Minimum number of lines before using more 
Print out debugging information 
Accept . alone on line to terminate message input 
Escape character to be used instead of ~ 
Directory to store folders in 
Hold messages in system mailbox by default 
Ig-nore RUBOUT while sending mail 
Don't terminate letters/command input with tD 
Don't unlink system mailbox when empty 
Don't delete saved messages by default 
Include sending user in aliases 
Suppress initial printing of version and headers 
Don't save partial letter in dead.letter 
Suppress printing of Mail version and message numbers 
File to save all outgoing mail in 
Size of window of message headers for Il, etc. 
Choose alternate mail delivery system 
Number of lines to print in top 
Invoke sendmail with the -v Bag 

The following table summarizes the tilde escapes available while sending mail. 

Escape Ar2umenis Descri1!.tion 
- ! command Execute shell command 

c name ... Add names to Cc: field 
-d Read dead. letter into message 
e Invoke text editor on partial message 

-f messages Read named messages 
-h Edit the header fields 

m messages Read named messages, right shift by tab 
p Print message entered so far 
q Abort entry of letter; like RUBOUT 

~ 

filename Read file into message r 
s 'tring Set Subject: field to string 

-t name ... Add names to To: field 
v Invoke screen editor on message 
VI' filename Write message on file 

-I command Pipe message through command 
'iring Quote a - in front of string 

24 

o 

o 



( 

Mail Reference Manual 1/28/87 25 

The following table shows the command line flags that }.fail accepts: 

Flag Description 
-N Suppress the initial printing of headers 
-T file Article-id's of read/deleted messages to file 
-d Turn on debugging 
-f file Show messages in file or - /m6oz 
-h num6er Pass on hop count for mail forwarding 
-i Ignore tty interrupt signals 
-n Inhibit reading of /usrflibfMall.rc 
-r name Pass on name for mail forwarding 
... "~ring Use ,tring as subject in outgoing mail 
-u nllme Read nllme', mail instead or your own 
-v Invoke sendmail with the -v flag 

Notes: -T, -d, -h, and -r are not for human use. 

10. Conclusion 

Mail is an attempt to provide a simple user interrace to a variety of underlying message sys­
tems. Thanks are due to the many users who contributed ideas and testing to Mail. 



o 



(-

Typing Documents on the UNIX System: 
Using the -ms Macros with Troti' and Nrotl' 

M. E. Le,k 

Text Formatting 
Phototypesetting 

ABSTRAOT 

This document describes a set of easy-t<>-use macros for preparing documents 
on the UNIX system. Documents may be produced on either the phototypesetter 
or a on a computer terminal, without changing the input. 

The macros provide facilities for paragraphs, sections (optionally with 
automatic numbering), page titles, footnotes, equations, tables, two-column for­
mat, and cover pages for papers. 

This memo includes, as an appendix, the text of the "Guide to Preparing 
Documents with -ms" which contains additional examples of features of -ms. 

This manual is a revision of, and replaces, "Typing Documents on UNIX," 
dated November 22, 1974. 

September 16, 1986 





(~ 
Typing Documents on the UNIX System: 

Using the -ms Macros with Troft' and Nroft' 

Text Formatting 
Phototypesetting 

Introd"ction. This memorandum describes a package of commands to produce papers using 
the troff and nroff formatting programs on the UNIX system. As with other roff-derived programs, 
text is prepared interspersed with formatting commands. However, this package, which itself is 
written in troff commands, provides higher-level commands than those provided with the basic 
troff program. The commands available in this package are listed in Appendix A. 

Ted. Type normally, except that instead of indenting for paragraphs, place a line reading 
".PP" before each paragraph. This will produce indenting and extra space. 

Alternatively, the command .LP that was used here will produce a left-aligned (block) paragraph. 
The paragraph spacing can be changed: see below under "Registers." 

Beginning. For a document with a paper-type cover sheet, the input should start as follows: 

[optional overall format .RP - see below] 
.TL 
Title of document (one or more lines) 
.AU 
Author(s) (may also be several lines) 
.AI 
Author's institution(s) 
.AB 
Abstract; to be placed on the cover sheet of a paper. 
Line length is 5/6 of normal; use .Il here to change . 
.AE (abstract end) 
text ... (begins with .PP, which see) 

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit the 
corresponding fields and command lines. The word ABSTRACT can be suppressed by writing".AB 
no" for ".AB". Several interspersed .AU and .AI lines can be used for multiple authors. The 
headings are not compulsory: beginning with a .PP command is perfectly OK and will just start 
printing an ordinary paragraph. Warning: You can't just begin a document with a line of text. 
Some -ms command must precede any text input. When in doubt, use .LP to get proper initializa­
tion, although any of the commands .PP, .LP, .TL, .~H, .NII is good enough. Figure 1 shows the 
legal arrangement of commands at the start of a document. 

Gover Skeet • •• d Fir.t Page.. The first line of a document signals the general format of 
the first page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The 
default format is useful for scanning drafts. 

In general -ms is arranged so that only one form of a document need be stored, containing 
all information; the first command gives the format, and unnecessary items for that format are 
ignored. 

Warning: don't put extraneous material between the .TL and .AE commands. Processing of 
the titling items is special, and other data placed in them may not behave as you expect. Don't 
forget that some -ms command must precede any input text. 



-2-

P.,e A ••• ;.,a. The -IDS macros, by default, will print a page heading containing a page 
number (if greater than 1). A default page footer is provided only in ftrojf, where the date is 
used. The user can make minor adjustments to the page headings/footings by redefining the 
strings LH, CH, and RH which are the left, center and right portions of the page headings, respec­
tively; and the strings LF, OF, and RF, which are the left, center and right portions of the page 
footer. For more complex formats, the user can redefine the macros PT and BT, which are 
invoked respectively at the top and bottom of each page. The margins (taken from registers lIM 
and FM for the top and bottom margin respectively) are normally 1 inch; the page header/footer 
are in the middle of that space. The user who redefines these macros should be careful not to 
change parameters such as point size or font without resetting them to default values. 

M.lti-eolu"'ft forma'a. If you place Care and Feeding of Directors 
the command ".2C" in your document, the 
document will be printed in double column 
format beginning at that point. This feature 
is not too useful in computer terminal output, 
but is often desirable on the typesetter. The 
command ".lC" will go back to one-column 
format and also skip to a new page. The 
".2C" command is actually a special case of 
the command 

.MC [column width [gutter width]] 

which makes multiple columns with the 
specified column and gutter width; as many 
columns as will fit across the page are used. 
Thus triple, quadruple, ... column pages can 
be printed. Whenever the number of columns 
is changed (except going from full width to 
some larger number of columns) a new page is 
started. 

Headinga. To produce a special head­
ing, there are two commands. If you type 

.NH 
type section heading here 
may be several lines 

you will get automatically numbered section 
headings (1, 2, 3, ... ), in boldface. For exam­
ple, 

.NH 
Care and Feeding of Department Heads 

produces 

1. Care and Feeding of Department 
Heads 

Alternatively, 

.sH 
Care and Feeding of Directors 

will print the heading with no number added: 

Every section heading, of either type, 
should be followed by a paragraph beginning 
with .PP or .LP, indicating the end of the 
heading. Headings may contain more than 
one line of text. 

The .NH command also supports more 
complex numbering schemes. If a numerical 
argument. is given, it is taken to be a "level" 
number and an appropriate sub-section 
number is generated. Larger level numbers 
indicate deeper sub-sections, as in this exam­
ple: 

.NH 
Erie-Lackawanna 
.NH2 
Morris and Essex Division 
.NH3 
Gladstone Branch 
.NH3 
Montclair Branch 
.NH2 
Boonton Line 

generates: 

2. Erie-Lackawanna 

2.1. Morris and Essex Division 

2.1.1. Gladstone Branch 

2.1.2. Montclair Branch 

2.2. Boonton Line 

An explicit ".NH 0" will reset the 
numbering of level 1 to one, as here: 

.NHO 
Penn Central 

1. Penn Central 



(" 

(/ 

c 

I.de"ted ,ora,ra,h.. (paragraphs 
with hanging numbers, e.g. references.) The 
sequence 

.IP [1] 
Text for first paragraph, typed 
normally for as long as you would 
like on as many Jines as needed . 
. IP [2] 
Text for second paragraph, ... 

produces 

[1] Text for first paragraph, typed normally 
for as long as you would like on as 
many lines as needed. 

[2] Text for second paragraph, ... 

A series of indented paragraphs may be fol­
lowed by an ordinary paragraph beginning 
with .PP or .LP, depending on whether you 
wish indenting or not. The command .LP 
was used here. 

More sophisticated uses of .IP are also 
possible. If the label is omitted, for example, 
a plain block indent is produced. 

.IP 
This material will 
just be turned into a 
block indent suitable for quotations or 
such matter. 
.LP 

will produce 

This material will just be turned into a 
block indent suitable for quotations or 
such matter. 

If a non-standard amount of indenting is 
required, it may be specified after the label (in 
character positions) and will remain in effect 
until the nel:t .PP or .LP. Thus, the general 
form of the .IP command contains two addi­
tional fields: the label and the indenting 
length. For example, 

.IP first: 9 
Notice the longer label, requiring larger 
indenting for these paragraphs. 
.IP second: 
And so forth . 
.LP 

produces this: 

first: Notice the longer label, requumg 
larger indenting for these para­
graphs. 

-3-

second: And so forth. 

It is also possible to produce multiple nested 
indents; the command .RS indicates that the 
next .IP starts from the current indentation 
level. Each .RE will eat up one level of 
indenting so you should balance .RS and .RE 
commands. The .RS command should be 
thought of as "move right" and the .RE com­
mand as "move left". As an example 

.IP 1. 
Bell Laboratories 
.RS 
.IP 1.1 
Murray Hill 
.IP 1.2 
Holmdel 
.IP 1.3 
Whippany 
.RS 
.IP 1.3.1 
Madison 
.RE 
.IP 1.4 
Chester 
.RE 
.LP 

will result in 

1. Bell Laboratories 

1.1 Murray Hill 

1.2 Holmdel 

1.3 Whippany 

1.3.1 Madison 

1.4 Chester 

All of these variations on .LP leave the right 
margin untouched. Sometimes, for purposes 
such as setting off a quotation, a paragraph 
indented on both right and left is required. 

A single paragraph like this is 
obtained by preceding it with .QP. 
More complicated material (several 
paragraphs) should be bracketed 
with .QS and .QE. 

Em,/u .. i.. To get italics (on the typesetter) 
or underlining (on the terminal) say 

.I 
as much text as you want 
can be typed here 
.R 

as was done for these three words. The.R 
command restores the normal (usually 



Roman) font. It only one word is to be itali­
cized, it may be just given on the line with 
the 1 command, 

.I word 

and in this case no .R is needed to restore the 
previous font. Boldface can be produced by 

.B 
Text to be set in boldface 
goes here 
.R 

and also will be underlined on the terminal or 
line printer. As with .I, a single word can be 
placed in boldface by placing it on the same 
line as the .B command. 

A few size changes can be specified simi­
larly with the commands .LG (make larger), 
.SM (make smaller), and .NL (return to nor­
mal size). The size change is two points; the 
commands may be repeated for increased eIrecS 

(here one .~"L canceled two .sM commands). 

If actual underlining as opposed to itali­
cizing is required on the typesetter, the com­
mand 

.UL word 

will underline a word. There is no way to 
underline multiple words on the typesetter. 

Footnote.. Material placed between 
lines with the commands .FS (footnote) and 
.FE (footnote end) will be collected, remem­
bered, and finally placed at the bottom of the 
current page* . By default, footnotes are 
1l/12th the length of normal text, but this 
can be changed using the FL register (see 
below). 

Di.plag. "nd Table.. To prepare 
displays of lines, such as tables, in which the 
lines should not be re-arranged, enclose them 
in the commands .DS and .DE 

.oS 
table lines, like the 
examples here, are placed 
between .DS and .DE 
.DE 

By default, lines between .oS and .DE are 
indented and left-adjusted. You can also 
center lines, or retain the left margin. Lines 
bracketed by .DS C and DE commands are 

• Like this. 

-4-

centered (and not re-arranged); lines brack­
eted by .DS L and DE are left-adjusted, not 
indented, and not re-arranged. A plain .oS is 
equivalent to .DS I, which indents and left­
adjusts. Thus, 

whereas 

these lines were preceded 
by .oS C and followed by 

a .DE command; 

these lines were preceded 
by .DS L and followed by 
a DE command. 

Note that .oS C centers each line; there is a 
variant .DS B that makes the display into a 
left-adjusted block of text, and then centers 
that entire block. Normally a display is kept 
together, on one page. If you wish to have a 
long display which may be split across page 
boundaries, use .CD, .LD, or .ID in place of 
the commands .DS C, .DS L, or .DS I respec­
tively. An extra argument to the .DS I or 
.DS command is taken as an amount to 
indent. Note: it is tempting to assume that 
.DS R will right adjust lines, but it doesn't 
work. 

Bozing word. or line.. To draw rec­
tangular boxes around words the command 

.BXword 

will print tima::l as shown. The boxes will 
not be neat on a terminal, and this should 

Longer pieces of text may be boxed by enclos­
ing them with .BI and .B2: 

.BI 
text ... 
.B2 

Keepin, 61ock. to,ether. If you wish 
to keep a table or other block of lines together 
on a page, there are "keep - release" com­
mands. If a block of lines preceded by KS 
and followed by KE does not fit on the 
remainder of the current page, it will begin on 
a new page. Lines bracketed by .DS and .DE 
commands are automatically kept together 
this way. There is also a "keep floating" 
command: if the block to be kept together is 
preceded by .KF instead of .KS and does not 
fit on the current page, it will be moved down 
through the text until the top of the next 

(\ 
~) 

o 



( 

( 

page. Thus, no large blank space will be 
introduced in the document. 

Nrolf/ Trolf co mm II lui.. Among the 
useful commands Crom the basic Cormatting 
programs are the Collowing. They all work 
with both typesetter and computer terminal 
output: 

.bp - begin new page. 

.br - "break", stop running text 
Crom line to line. 

. sp n - insert n blank lines. 

.na - don't adjust right margins. 

Dille. By default, documents produced 
on computer terminals have the date at the 
bottom of each page; documents produced on 
the typesetter don't. To force the date, say 
".DA". To Corce no date, say" .NO". To lie 
about the date, say ".DA July 4,1776" which 
puts the specified date at the bottom of each 
page. The command 

.ND May 8, 1945 

in ".RP" format places the specified date on 
the cover sheet and nowhere else. Place this 
line before the title. 

Signllture line. You can obtain a sig­
nature line by placing the command .SG in 
the document. The authors' names will be 
output in place of the .SG line. An argument 
to .sG is used as a typing identification line, 
and placed after the signatures. The .SG 
command is ignored in released paper format. 

Regider.. Certain of the registers used 
by -ms can be altered to change default set­
tings. They should be changed with .nr com­
mands, as with 

.nr PS 9 

to make the default point size 9 point. If the 
effect is needed immediately, the normal trolf 
command should be used in addition to 
changing the number register. 

Register Defines Takes 

PS 
VS 
IL 
LT 
PD 
PI 
FL 
CW 
GW 
PO 

point size 
line spacing 
line length 
title length 
para. spacing 
para. indent 
footnote length 
column width 
intercolumn gap 
page offset 

effect 
next para. 
next para. 
next para. 
next para. 
next para. 
next para. 
next FS 
next 2C 
next 2C 
next page 

Default 

10 
12 pts 
611 

611 

O.3VS 
5 ens 
11/12 LL 
7/15 IL 
1/15 LL 
26/2711 

-5-

HM top margin next page 11 I 

FM bottom margin next page 11 I 

You may also alter the strings LH, CH, and 
RH which are the left, center, and right head­
ings respectively; and similarly LF, CF, and 
RF which are strings in the page footer. The 
page number on output is taken Crom register 
PN, to permit changing its output style. For 
more complicated headers and Cooters the 
macros PT and BT can be redefined, as 
explained earlier . 

Accent.. To simplify typing certain 
Coreign words, strings representing common 
accent marks are defined. They precede the 
letter over which the mark is to appear. Here 
are the strings: 

Input Output Input Output 
\*' e e \*-a a 
\*'e e \*Ce 

v 
e 

\*:u \i \*,c s: 
\*·e e 

U.e. After your document is prepared 
and stored on a file, you can print it on a ter­
minal with the command* 

nrolf -ms file 

and you can print it on the typesetter with 
the command 

trolf -ms file 

(many options are possible). In each case, if 
your document is stored in several files, just 
list all the filenames where we have used 
"file". If equations or tables are used, eqn 
and/or tbl must be invoked as preprocessors. 

Refereneea and further .tudy. If you 
have to do Greek or mathematics, see eqn [lJ 
for equation setting. To aid eqn users, -m. 
provides definitions of .EQ and .EN which 
normally center the equation and set it off 
slightly. An argument on .EQ is taken to be 
an equation number and placed in the right 
margin near the equation. In addition, there 
are three special arguments to EQ: the letters 
C, I, and L indicate centered (default), 
indented, and left adjusted equations, respec­
tively. If there is both a format argument and 
an equation number, give the format argu-

.. II' .2C was 1Ised. pipe the flroll output through 
eol; make the Brst line or the input ... pi 
/usr /bin/eol." 



--------~ --~---~~-

ment first, as in 

.EQ L (1.3a) 

Cor a leCt-adjusted equation numbered (1.3a). 

Similarly, the macros .1'5 and . TE are 
defined to separate tables (see [2]) Crom text 
with a little space. A very long table with a 
heading may be broken across pages by begin­
ning it with .TS H instead oC .TS, and plac­
ing the line .TH in the table data after the 
heading. If the table has no heading repeated 
Crom page to page, just use the ordinary .TS 
and .TE macros. 

To learn more about trolf see [3] Cor a 
general introduction, and [4J Cor the Cull 
details (experts only). InCormation on related 
UNIX commands is in [5J. For jobs that do 
not seem well-adapted to -ms, consider other 
macro packages. It is oCten Car easier to write 
a specific macro packages Cor such tasks as 
imitating particular journals than to try to 
adapt -Ms. 

Acknowledgment. Many thanks are 
due to Brian Kernighan Cor his help in the 
design and implementation oC this package, 
and Cor his assistance in preparing this 
manual. 

References 

[IJ B. W. Kernighan and L. L. Cherry, 
Typesetting Mathematics - Users Guide 
(f!nd edition), Bell Laboratories Com­
puting Science Report no. 17. 

[2J M. E. Lesk, Tbl - A Program to For­
mat Tables, Bell Laboratories Comput­
ing Science Report no. 45. 

[3] B. W. Kernighan, A Trolf Tutorial, Bell 
Laboratories, 1976. 

[4] J. F. Ossanna, Nrolf/Trolf Reference 
Manual, Bell Laboratories Computing 
Science Report no. 51. 

[5] K. Thompson and D. M. Ritchie, UNIX 
Programmer's Manual, Bell Labora­
tories, 1978. 

- 6-

o 

o 



-7-

Appendix A 
List of Commands (- 10 Return to single column format. LG Increase type size. 

20 Start double column format. LP Left aligned block paragraph. 
AB Begin abstract. 
AE End abstract. 
AI Specify author's institution. 
AU Specify author. ND. Change or cancel date. 
B Begin boldface. NH Specify numbered heading. 
DA Provide the date on each page. NL Return to normal type size. 
DE End display. PP Begin paragraph. 
DS Start display (also CD, LD, ID). 
EN End equation. R Return to regular font (usually Roman). 
EQ Begin equation. RE End one level of relative indenting. 
FE End footnote. RP Use released paper format. 
FS Begin footnote. RS Relative indent increased one level. 

SG Insert signature line. 
I Begin italics. SH Specify section heading. 

SM Ohange to smaller type size. 
IP Begin indented paragraph. TL Specify title. 
KE Release keep. 
KF Begin Boating keep. UL Underline ODe word. 
KS Start keep. 

Register Names 

The following register names are used by -DlS internally. Independent use of these names in 

( one's own macros may produce incorrect output. Note that no lower case letters are used in any 
-ms internal name. 

Number r{!gisters used in -ms 
DW GW lIM IQ LL NA OJ PO T. TV 

#T EF HI lIT IR LT NO PD PQ TB VS 
IT FL H3 IK KI MM NF PF PX TD YE 
AV FM H4 1M L1 MN NS PI RO TN yy 
OW FP H5 IP LE MO 01 PN ST TQ ZN 

String registers used in -ms 
A5 OB DW EZ I KF ~m Rl RT TL 
AB 00 DY FA 11 KQ ND R2 SO TM 
AE CD El FE 12 KS NH R3 SI TQ 
AI OF E2 FJ 13 LB NL R4 S2 TS 
AU CH E3 FK 14 LD NP R5 SG TT 

, B OM E4 FN 15 LG OD RO SH UL 
10 BG OS E5 FO ID LP OK RE SM \VB 
20 BT OT EE FQ IE ME PP RF SN WH 
AI 0 D EL FS 1M MF PT RH SY WT 
A2 01 DA EM FV IP MH PY RP TA XD 
A3 02 DE EN FY IZ MN QF RQ TE XF 
A4 OA DS EQ HO KE MO R RS TH XK 



.8-

pp,LP 

\ 
text .,. 

~ 



( A Guide to Preparing 
Documents with -ms 

M. E. Lesk 

Bell Laboratories August 1978 

This guide gives some simple examples oC docu­
ment preparation on Bell Labs computers, em­
phasizing the use oC the -ms macro package. It 
enormously abbreviates inCormation in 
1. Typing Documents on UNIX and GOOS, by 

M. E. Leskj 
2. Typesetting Mathematics - User's Guide, 

by B. W. Kernighan and L. L. Cherry; and 
3. Tbl - A Program to Format Tables, by M. 

E. Lesk. 
These memos are all included in the UNIX 
Programmer's Manual, Volume e. The new user 
should also have A Tuton'al Introduction to the 
UNIX Te:d Editor, by B. W. Kernighan. 

For more detailed inCormation, read Advanced 
Editing on UNIX and A TroJ! Tutorial, by B. 
W. Kernighan, and (Cor experts) Nroff/Troff 
Reference Manual by J. F. Ossanna. Informa­
tion on related commands is Cound (Cor UNIX 
users) in UNIX for Beginners by B. W. Ker­
nighan and the UNIX Programmer's Manual by 
K. Thompson and D. M. Ritchie. 

Contents 

ATM .................... 2 
A released paper . . . . . . . . . . . . . . 3 
An internal memo, and headings 4 
Lists, displays, and footnotes . . . . . . 5 
Indents, keeps, and double column 6 
Equations and registers ......... 7 
Tables and usage ............. 8 

Throughout the examples, input is shown in 
this Helvetica sans serif ront 

while the resulting output is shown in 
this Times Roman font. 

UNIX Document no. 1111 

2 

Commands for a TM 

.1M 1978-5b3 99999 99999-ll 

.NDApriJ 1,1978 

.'lL 
The Role of the Allen Wrench in M>dem 
Flectronics 
.AU"MH 2G-l11" 2345 
J. Q. Pencilpusher 
.AJJ"MH 1:K-222" 0432 
X. Y. Hardwired 
.AI 
.MIl 
.oK 
Tools 
Design 
.AD 
This abe 1J'&c t should be ahort enough to 
flt on a a ingle page cover a heet.. 
It must attract the reader into aending for 
the complete memorandum. 
.AE 
.os 102 12 5 6 7 
.NH 
Introducuon. 
PP 
Now the flrst paragraph of actual text_ 

Las t line of text. 
.sG MH-1234-lQPfX.YH-unix 
.NH 
Reference8 _ 

Commands not needed in a particular format are ig­
nored. 

o Bell Labora&orieI Cover Sheet for TM 

TI&i, i"'orm41ior& if lor tmplo,tt. 0/ B.lI Labor410"." (GEl 18.9-8) 

TIde-The Role or the Allen Wrench 
in Modern Electronics 

Other Keyword .. Tools 
Design 

Date-April I, 1976 

'I'M. 1978-5b3 

Author Location Ext. Charging Cue- 909gg 
J. Q. Pencilpusher MH 20-111 2345 Filing Cue- 99999& 
X. Y. Hardwired MH lK-222 &432 

ABSTRACT 

This abstract should be short enough to 
fit on a single page cover sheet. It must 
attrsct the rea.der into sending for the com­
plete memorandum. 

Pages Text 10 Other 2 Total 12 

No. Figures 5 No. Ta.blea 6 No. Refs. 7 

&l882-U (&-73) 



3 

A Released Paper with Mathematics 

~ 
denm$S 
.EN 
BP 

... (as for a TM) 

.os 10 2 12 5 6 '1 

.NIl 
Introduction 
.PP 
The solution 10 the lorque handle equation 
~(1) 
sum flOm 010 infF (x sub I) - G (x) 
.EN 
is found with the transfonnation S x - rho over 
theta S where S rho -G prime (x) $ and SthetaS 
is derived _ 

The Role of the Allen Wrench 
in Modern Electronics 

J. Q. Pencilpus"er 

X. Y. HlJrdwired 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This abstract should be short enough to fit on a 
single page cover sheet. It must attract the reader 
into sending for the complete memorandum. 

April 1, 1976 

The Role of the Allen Wrench 
in Modern Electronics 

J. Q. Pencilpus"er 

x. Y. HlJrdwired 

Bell Laboratories 
Murray Hill, New Jersey 07974 

1. Introduction 
The solution to the torque handle equation 

00 

D(z,)-G(z) (1) 
o 

is found with the tn.nsformation z-f where ,..G' (z) and 6 

is derived from well·known principles. 

An Internal Memorandum 

JM 
.NO Janual')' 24,1956 
:lI. 
The 1956 ConsentDecree 
JJJ 
AbIe,Baker & 
Charley, AUiYs • 
.PP 
Platntlft', United States of America, having tiled 
Ita complaint herein on January 14, 1949; the 
defendants having appeared and tiled their 
answer 10 such complaint denying the 
substantive allegations thereof; and the partie., 
by their aUDmeys,_ 

o 
Bell Laborawries 

Subjec:&: The UI56 Consent Decree dak Januvy 24,1056 

from: Able, Baker 81: 
Chvley, Attys. 

Plaintiff, United States of America, having filed its com· 
plaint herein on January 14, 1949; the defendants having 
appeared and filed their answer to such complaint denying 
the substantive allegations thereof; and the parties, by their 
attorneys, having severally consented to the entry of this 
Final Judgment without trial or adjUdication of any issues of 
fact or law herein and without this Final Judgment consti· 
tuting any evidence or admission by any party in respect of 
any such issues; 

Now, therefore before any testimony has been taken herein, 
and without trial or adjudication of any issue of fact or law 
herein, and upon the consent of all parties hereto, it is hereby 

Ordered, adjudged and decreed as follows: 

1. IS herman Act) 
This Court has jurisdiction of the subject matter herein 

and of all the parties hereto. The complaint states a claim 
upon which relief may be granted against each of the defen­
dants under Sections 1, 2 and 3 of the Act of Congress of 
July 2, 1890, entitled "An aet to protect trade and commerce 
against unlawful restraints and monopolies," commonly 
known as the Sherman Act, as amended. 

n. (Definitionsl 
For the purposes of this Final Judgment: 
(a) "Western" shall mean the defendant Western Electric 

Company, Incorporated. 

Other formats possible (specify before .'IL) are: .MR 
("memo for record"), .'MF ("memo for file"), .EO 
("engineer's notes") and .m. (Computing Science 
Tech. Report). 

.NIl 
Introduction. 
.PP 
text text text 

1. Introduction 
text text text 

Headings 

SH 
.Appendix I 
pp 
text text text 

Appendix I 
text text text 

o 



5 

A Simple List 

JPl. 

(
_ .. ' J. PencUpusher and X Hardwired, 

,J 
!ANew Kind of SetScrew, 
.R 
Proc.JEEE 
.B 75 
(1976),23-255. 
JP2. 
IL Nails and R. Irons, 
J 
Fastenel'll for Printed C"lI'Cuit Boards, 
.R 
Proc.ASME 
.B 23 
(1974),23-24. 
LP (terminates list) 

1. J. Pencilpusher and X. Hardwired, A New Kind 0/ 
Set Screw, Proc. IEEE 75 (1976), 23-255. 

2. H. Nails and R. Irons, Fasteners lor Printed Cir­
cuit Boards, Proc. ASME 23 (1974), 23-24. 

Displays 

text text text text text text 
J)S 

and now 
for something 
completely different 
DE 

( .. text text text text text text 

hoboken harrison newark roseville avenue grove street 
east orange brick church orange highland avenue 
mountain station south orange maplewood millburn 
short hills summit new providence 

and now 
for something 
completely different 

murray hill berkeley heights gillette stirling millington 
lyons basking ridge bernardsville far hills peapack 
gladstone 

Options: .os L: left-adjust; J)S C: line-by-line center; 
J)S B: make block, then center. 

Footnotes 

.Among the most importa.ntoccupantB 
of the workbench are the long-nosed pliel'B. 
'Without these basic tools· 
.FS 
• .As fil'Btahown by 1lger & Leopard 
(1975). 
.FE 
few assemblles could be completed. They may 
lack the popular appeal of the sledgehammer 

Among the most important occupants of the work-

C,,l'lenCh are the long-nosed pliers. Without these basic 
)ols· few assemblies could be completed. They may 

. ack the popular appeal of the sledgehammer 

• As first shown by Tiger & Leopard (1975). 

6 

Multiple Indents 

Th •• ordinary text to point out 
the margins of the page. 
lPl. 
Fil'llt level Item 
.RS 
lPa) 
Second level • 
lPb) 
Continued here with another second 
level.item, butaomewhat longer • 
.HE 
lP2. 
Retum to previous value of the 
Indenting at this point. 
lP3 • 
Another 
nne. 

This is ordinary text to point out the margins of the 
page. 
1. First level item 

a) Second level. 
b) Continued here with another second level 

item, but somewhat longer. 
2. Return to previous value of the indenting at this 

point. 
3. Another line. 

Keeps 

Lines bracketed by the following commands are kept 
together, and will appear entirely on one page: 

.KS not moved .KF may float 

.KE through text .KE in text 

Double Column 

.'lL 
The Declaration of Independence 
.2C 
.PP 
\\'hen in the course of human eventB, it becomes 
nece88ary for one people to dissolve the 
political bonds which have connected them with 
another, and to assume among the powers of the 
earth the separate and equal station to which 
the laws of Nature and of Nature's God entitle 
them, a decent respect to the opinions of 

The Declaration of Independence 

When in the course of 
human events, it becomes 
necessary for one people 
to dissolve the political 
bonds which have con­
nected them with anoth­
er, and to assume among 
the powers of the earth 
the separate and equal 
station to which the laws 
of Nature and of Nature's 
God entitle them, a de­
cent respect to the opin­
ions of mankind requires 
that they should declare 

the causes which impel 
them to the separation. 

We hold these truths 
to be self-evident, that all 
men are created equal, 
that they are endowed by 
their creator with certain 
unalienable rights, that 
among these are life, li­
berty, and the pursuit of 
happiness. That to 
secure these rights, 
governments are institut­
ed among men, 



7 

Equations 

A displayed equation is marked 
with an equatIon number at the right margin 
by adding an argument to the ~ nne: 
.EQ (1.3) 
x sup 2 over a sup 2 - ... - sqrt {p ISUP 2 +qz+r} 
.EN 

A displayed equation is marked with an equation 
number at the right margin by adding an argument to 
the EQ line: 

(1.3) 

.EQ I (2.2 a) 
bold Vbarsub nu-... .-left [pile {a above b above 
c } right] + left [ ma1rix { col { A(U) above. 
above.} col { • above. above .} col {. above. 
above A(33) }} right] cdot lett [ pile { alpha 
above beta above gamma} right] 
.EN 

:Y,,_[b1.[A(.1l). : ].[p] (2.2a) 
cf. A (33) 1 

.EQL 
F hat ( chi) - mark = - Idel V Isup 2 
.EN , 
.EQL 
line up = - {left ( {partIal V} over {partIal x} right) 
} sup 2 + { left ( {partial V} over {partIal y} right 
)} sup 2 ------ lambda -> inf 
.EN 

F(X) - IVV 12 

$ a dot $, $ b dotdotS, $ xi tilde times y vec$: 

Ii, ii, exy. (with delim $$ on, see panel 3). 

See also the equations in the second table, panel 8. 

Some Registers You Can Change 

Line length 
.nr 11 7i 

Title length 
.nr LT 7i 

Point size 
.nr PS 9 

Venical spacing 
.nrVS 11 

Column width 
.nr CW 3i 

Intercolumn spacing 
.nr GW .5i 

Margins - head and foot 
.nr HM .75i 
.nr FM .75i 

Paragraph indent 
. nr PI 2n 

Paragraph spacing 
.nr PD 0 

Page offset 
.nr PO O.5i 

Page heading 
.ds CH Appendix 

(center) 
.ds RH 7-25-76 

(right) 
.ds LH Private 

(left) 

Page footer 
.ds CF Draft 
.dsLF "1 
.ds RF Slml ar 

Page numbers 
.nr%3 

8 

Tables 

:m 
aUbox; 
caa 

(d') indicates a tab) 

ccc 
n n n • 
A"mTOormnon Stock 
Year(f) Price (f)Dividend 
18'11 (f) 4.1-54 (f) 12.80 
2 (f)U-54 d')2.70 
3 (f).O-55 (f)2.87 
4 (f)40-53 (f)3.24 
5 (f)45-52 (f)3AO 
8 (f)51-59 (f).95* 
:1E 
• (6mt quarter only) 

The meanings of the key-letters describing the align­
ment of each entry are: 

e center n numerical 
r right-adjust a subcolumn 
I left-adjust s spanned 

The global table options are center, expand, box, 
double box, allbox, tab (%) and linesize (n). 

:IS (with de lim $$ on, see panel 3) 
double box, center; 
e c 
II . 
Name (,!')De6nitlon 
.ap 
Gamma(f)$GAMMA.(z) .... intsub 0 sup inf\ 

tsup {z-I} e sup -tdtS 
Sine (f) $sin (x) .... 1 over 2i ( e sup ix - e sup -ix )$ 
Error(f)$ roman err(z} =2 oversqrtpi \ 

intsub 0 sup z e sup {-tsup 2} dtS 
Bessel(,!')$ J sub 0 (z) -= lover pi \ 

intsub 0 sup pi eos (z sin theta) d theta $ 
Zeta(f)$ leta (s)-=\ 

sum from k=1 to infk sup -s --( He-8 > 1)$ 
.lE 

Name 

Gamma 

Sine 

Error 

Bessel 

Zeta 

Definition 

Usage 

Documents with just text: 
troff -ms files 

With equations only: 
eqn files I troff -ms 

With tables only: 
tbl files I troff -ms 

With both tables and equations: 
tbl files lean Itrofi -ms 

The above generates STARE output on GCOS: replace 
- at with - ph for typesetter output . 

o 

o 



( 

c 

A Revised Version of-ms 

Bill Tu thill 

Computing Services 
University of .California 

Berkeley, CA 94720 

The InS macros have been slightly revised and rearranged. Because of the rearrangement, the new 
macros can be read by the computer in about half the time required by the previous version of lns. This 
means that output will begin to appear between ten seconds and several minutes more quickly, depending 
on the system load. On long files, however, the savings in total time are not substantial. The old version 
of InS is still available as """lIlos. 

Several bugs in lnS have been fixed, including a bad problem with the .1C macro, minor difficulties 
with boxed text, a break induced by .EQ before initialization, the failure to set tab stops in displays, and 
several bothersome errors in the refer macros. Macros used only at Bell Laboratories have been removed. 
There are a few extensions to previous lnS macros, and a number of new macros, but all the documented 
InS macros still work exactly as they did before, and have the same names as before. Output produced 
with lnS should look like output produced with lnos. 

One important new feature is automatically numbered footnotes. Footnote numbers are printed by 
means of a pre-defined string (\**), which you invoke separately from .FS and .FE. Each time it is used, 
this string increases the footnote number by one, whether or not you use .FS and .FE in your text. Foot­
note numbers will be superscripted on the phototypesetter and on daisy-wheel terminals, but on low­
resolution devices (such as the Ipr and a crt), they will be bracketed. If you use \** to indicate numbered 
footnotes, then the .FS macro will automatically include the footnote number at the bottom of the page. 
This footnote, for example, was produced as follows: 1 

This footnote, for example, was produced as follows:\** 
.FS 

.FE 

If you are using \** to number footnotes, but want a particular footnote to be marked with an asterisk or 
a dagger, then give that mark as the first argument to .FS: t 

then give that mark as the first argument to .FS: \(dg 
.FS \(dg 

.FE 

Footnote numbering will be temporarily suspended, because the \** string is not used. Instead of a dagger, 
you could use an asterisk * or double dagger *, represented as \(dd. 

Another new feature is a macro for printing theses according to Berkeley standards. This macro is 
called .TM, which stands for thesis mode. (It is much like the .th macro in Ine.) It will put page numbers 
in the upper right-hand comer; number the first page; suppress the date; and doublespace everything except 
quotes, displays, and keeps. Use it at the top of each file making up your thesis. Calling.TM defines the 

1 II' you never use the ",_" string, no footnote numbers will appea.r anywhere in the text, including down here. The 
output footnotes will look exactly like footnotes produced with -mos. 

t In the rootnote, the dagger will appear where the rootnote number would otherwise appear, as on the left. 



The New -tn8 Macros 

.CT macro for chapter titles, which skips to a new page and moves the pagenumber to the center footer. 
The .Pl (P one) macro can be used even without thesis mode to print the header on page 1, which is 
suppressed except in thesis mode. If you want roman numeral page numbering, use an ".af PN i" request. 

There is a new macro especially for bibliography entries, called Ja>, which stands for exdented para­
graph. It will exdent the first line of the paragraph by \n(PI units, usually 5n (the same as the indent for 
the first line of a .PP). Most bibliographies are printed this way. Here are some examples of exdent,ed 
paragraphs: 

Lumley, Lyle S., Se% in Orustaceans: Shell Fi8h Habits, Harbinger Press, Tampa Bay and San Diego, 
October 1979. 243 pages. The pioneering work in this field. 

Leffadinger, Harry A, "Mollusk Mating Season: 52 Weeks, or All Year?" in Acta Biologica, voL 42, no. 11, 
November 1980. A provocative thesis, but the conclusions are wrong. 

Of course, you will have to take care of italicizing the book title and journal, and quoting the title of the 
journal article. Indentation or exdentation can be changed by setting the value of number register PI. 

If you need to produce endnotes rather than footnotes, put the references in a file of their own. This 
is similar to what you would do if you were typing the paper on a conventional typewriter. Note that you 
can use automatic footnote numbering without actually having .FS and .FE pairs in your text. If you 
place footnotes in a separate file, you can use .IP macros with \** as a hanging tag; this will gin you 
numbers at the left-hand margin. With some styles of endnotes, you would want to use .PP rather then 
.IP macros, and specify \** before the reference begins. 

There are four new macros to help produce a table of contents. Table of contents entries must be 
enclosed in .XS and .XE pairs, with optional .XA macros for additional entries; arguments to .xs and .x.-\. 
specify the page number, to be printed at the right. A final .PX macro prints out the table of contents. 
Here is a sample of typical input and output text: 

.xsii 
Introduction 
XA 1 
Chapter 1: Review of the Literature 
XA 23 
Chapter 2: Experimental Evidence 
.xE 
.PX 

Table of Contents 

Introduction .. ................................. ...................................................................... ii 
Chapter 1: Review of the Literature . ............. .... ......... .................. .......... .... .... ........ 1 
Chapter 2: Experimental Evidence ...... ................................................... ......... ....... 23 

The .xs and .XE pairs may also be used in the text, after a section header for instance, in which case page 
numbers are supplied automatically. However, most documents that require a table of contents are too 
long to produce in one run, which is necessary if this method is to work. It is recommended that you do a 
table of contents after finishing your document. To print out the table of contents, use the .PX macro; if 
you forget it, nothing will happen. 

As an aid in producing text that will format correctly with both Droft' and troft', there are some new 
string definitions that define quotation marks and dashes for each of these two formatting programs. The 
\*- string will yield two hyphens in Droft', but in troft' it will produce an em dash- like this one. The 
\*Q and \*U strings will produce" and " in troft', but" in nroft'. (In typesetting, the double quote is 
traditionally considered bad form.) 

There are now a large number of optional foreign accent marks defined by the lIlS macros. All the 
accent marks available in 1nOS are present, and they all work just as they always did. However, there are o 



( 

(-

c 

The New -ms Macroa Page 3 

better definitions available by placing.AM at the beginning of your document. Unlike the ""'mos accent 
marks, the accent strings should come after the letter being accented. Here is a list of the diacritical 
marks, with examples of what they look like. 

name of accent input output 

acute accent e\*' e 
grave accent e\*' e 
circumflex O\*A 0 
cedilla c\*, ~ 
tilde n\*- Ii 
question \*1 ~ 
exclamation \*! ·1 
umlaut u\*: ij 

digraph s \*8 fJ 
hacek c\*v 

y 

c 
macron a\*_ i. 
underdot s\*. s 
o-slash 0\*/ ~ 
Mgstrom a\*o • a 
yogh kni\*3t kniat 
Thorn \*(Th p 
thorn \*(th p 
Eth \*(D- D 
eth \*(d- 8 
hooked 0 \*q 9 
ae ligature \*(ae lie 

AE ligature \*(Ae £ 
oe ligature \*(oe CE 

OE ligature \*(Oe <E 

IT you want to use these new diacritical marks, don't forget the .AM at the top of your file. Without it, 
some will not print at all, and others will be placed on the wrong letter. 

It is also possible to produce custom headers and footers that are different on even and odd pages. 
The .OH Md .EH macros define odd Md even headers, while .OF and .EF define odd and even footers. 
Arguments to these four macros are specified as with .tl. This document was produced with: 

.OH \flThe -mx Macros "Page %\fP' 
EH \fIPage % "The -mx Macros\fP' 

Note that it would be a error to have an apostrophe in the header text; if you need one, you will haye t.o 
use a different delimiter around the left, center, and right portions of the title. You can use any character 
as a delimiter, provided it doesn't appear elsewhere in the argument to .OH, .EH, .OF, or EF. 

The ""'ms macros work in conjunction with the tbl, eqn, and refer preprocessors. Macros to deal 
with these items are read in only as needed, as are the thesis macros (.TM), the special accent mark 
definitions (.AM), table of contents macros (.xs and JeE), and macros to format the optional cover page. 
The code for the ""'Ins package lives in /usr/lib/tmac/tmac.s, and sourced files reside in the directory 
/usr/ucb/lib/ms. 

September 16, 1986 





( 

( 

WRITING PAPERS WITH NROFF USING -ME 

Eric P. Allman 

Electronics Research Laboratory 
University of California, Berkeley 

Berkeley, California 94720 

This document del!.cribes the text processing facilities available on the UNIXt operating sys­
t.em via NROFFt and the -me macro package .. It is assumed that the reader already is generally 
familiar with the UNIX operating system and a text editor such as ex. This is intended to be a 
casual introduction, and as such not all material is covered. In particular, many variations and 
additional features of the -me macro package are not explained. For a complete discussion of this 
and other issues, see The -me Reference Manual and The NROFF/TROFF Reference /t,fanual. 

NROFF, a computer program that runs on the UNIX operating system, reads an input file 
prepared by the user and outputs a formatted paper suitable for publication or framing. The 
input consists of text, or words to be printed, and requests, which give instructions to the NROFF 
program telling how to format the printed copy. 

Section 1 describes the basics of text processing. Section 2 describes the basic requests. Sec­
tion 3 introduces displays. Annotations, such as footnotes, are handled in section 4. The more 
complex requests which are not discussed in section 2 are covered in section 5. Finally, section 6 
discusses things you will need to know if you want to typeset documents. If you are a novice, you 
probably won't want to read beyond section 4 until you have tried some of the basic features out. 

When you have your raw text ready, call the NROFF formatter by typing as a request to the 
r;-.1X shell: 

nroft' -me -Ttype fiJes 

where type describes the type of terminal you are outputting to. Common values are dtc for a 
DTC 300s (daisy-wheel type) printer and Ipr for the line printer. If the -T flag is omitted, a 
"lowest common denominator" terminal is assumed; this is good for previewing output on most 
terminals. A complete description of options to the NROFF command can be found in The 
NROFF / TROFF Reference Manual. 

The word argument is used in this manual to mean a word or number which appears on the 
same line as a request which modifies the meaning of that request. For example, the request 

.sp 

spaces one line, but 

.sp 4 

spaces four lines. The number" is an argument to the .sp request which says to space four lines 
iustead of one. Arguments are separated from the request and from each other by spaces. 

tUNlX, NROFF, aDd TROFF are Trademarks or Bell Laboratories 

USING NROFF AND -ME 1 



· USING NROFF AND -ME 

1. Basies of Text Processing 

The primary function of NROFF is to collect words from input lines, fiJI output lines with 
those words, jU8tifr the right hand margin by inserting extra spaces in the line, and output the 
result. For example, the input: 

Now is the time 
for a11 good men 
to come to the aid 
of their party. 
Four score and seven 
years ago, ... 

will be read, packed onto output lines, and justified to produce: 

Now is the time for all good men to come to the aid of their party. Four score and 
seven years ago, ... 

Sometimes you may want to start a new output line even though the line you are on is not yet 
full; for example, at the end of a paragraph. To do this you can cause a break, which starts a 
new output line. Some requests cause a break automatically, as do blank input lines and input 
lines beginning "'ith a space. 

Not all input lines are text to be formatted. Some of the input lines are reque8t8 which 
describe how to format the text. Requests always have a period or an apostrophe (" , ") as the 
first character of the input line. 

The text formatter also does more complex things, such as automatically numbering 
pages, skipping over page folds, putting footnotes in the correct place, and so forth. 

I can offer you a fe'" hints for preparing text for input to NROFF. First, keep the input 
lines short. Short input lines are easier to edit, and NROFF will pack words onto longer lines 
for you anyhow. In keeping with this, it is helpful to begin a new line after every period, 
comma, or phrase, since common corrections are to add or delete sentences or phrases. Second, 
do not put spaces at the end of lines, since this can sometimes confuse the NROFF processor. 
Third, do not hyphenate words at the end of lines (except words that should have hyphens in 
them, such as "mother-in-law"); NROFF is smart enough to hyphenate words for you as 
needed, but is not smart enough to take hyphens out and join a word back together. Also, 
words such as "mother-in-law" should not be broken over a line, since then you will get a space 
where not wanted, such as "mother- in-law". 

2. Basic Requests 

2.1. Paragraphs 

Paragraphs are begun by using the .pp request. For example, the input: 

.pp 
Now is the time for all good men 
to come to the aid of their party. 
Four score and seven years ago, ... 

produces a blank line followed by an indented first line. The result is: 

Now is the time for all good men to come to the aid of their party. Four 
score and seven years ago, ... 

Notice that the sentences of the paragraphs must not begin with a space, since blank 
lines and lines begining with spaces cause a break. For example, if I had typed: 

'~ 



( 

'USING NROFF AND-ME 8 

.pp 
Now is the time for all good men 

to come to the aid of their party. 
Four score and seven years ago, ... 

The output would be: 

Now is the time for all good men 
to come to the aid of their party. Four score and seven years ago, ... 

A new line begins after the word "men" because the second line began with a space charac­
ter. 

There are many fancier types of paragraphs, which will be described later. 

2.2. Headen and Footen 

Arbitrary headers and footers can be put at the top and bottom of every page. Two 
requests of the form .he title and .ro title define the titles to put at the head and the foot of 
every page, respectively. The titles are called three-part titles, that is, there is a left­
ju~tifie-d part, a cent.ered part, and a righHustified part. To separate these three parts the 
first character of title (whatever it may be) is used as a delimiter. AIly character may be 
used, but backslash and double quote marks should be avoided. The percent sign is 
replaced by the current page number whenever found in the title. For example, the input: 

.he "%" 

.fo 'Jane Jones "My Book' 

results in the page number centered at the top of each page, "Jane Jones" in the lower left 
corner, and "My Book" in the lower right corner. 

2.3. Double Spacing 

NROFF will double space output text automatically if you use the request .Is 2, as is 

done in this section. You can revert to single spaced mode by typing .Is 1. 

2.4. Page Layout 

A number of requests allow you to change the way the printed copy looks, sometimes 
called the layout of the output page. Most of these requests adjust the placing of "white 
space" (blank lines or spaces). In these explanations, characters in italics should be replaced 
with values you wish to use; bold characters represent characters which should actually be 
typed. 

The .bp request starts a new page. 

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a 
single line) or can be of the form M (for N inches) or Nc (for N centimeters). For example, 
the input: 

.sp 1.Si 
My thoughts on the subject 
.sp 

leaves one and a half inches of space, followed by the line "My thoughts on the subject", 
followed by a single blank line. 

The .in +N request changes the amount of white space on the left of the page (the 
indent). The argument N can be of the form +N (meaning leave N spaces more than you 
are already leaving), -N (meaning leave less than you do now), or just N (meaning leave 
exactly N spaces). N can be of the form M or Nc also. For example, the input: 



·USING NROFF AND -ME 

initial text 
.in 5 
some text 
.in +li 
more text 
.in -2c 
final text 

produceS "some text" indented exactly five "spaces from the left margin, "more text" 
indented five spaces plus one inch from the left margin (fifteen spaces on a pica typewriter), 
and "final text" indented five spaces plus one inch minus two centimeters from the margin. 
That is, the output is: 

initial text 
some text 

more text 
final text 

The .ti +N (temporary indent) request is used like .in +N when the indent should 
apply to one line on)y, after which it should revert to the previous indent. For example, the 
input: 

.in Ii 

.ti 0 
Ware, James R. The Best of Confucius, 
Halcyon House, 1950. 
An excellent book containing translations of 
most of Confucius' most delightful sayings. 
A definite must for anyone interested in the early foundations 
of Chinese philosophy. 

produces: 
Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book contain­

ing translations of most of Confucius' most delightful sayings. A definite 
must for anyone interested in the early foundations of Chinese philosophy. 

Text lines can be centered by using the.ee request. The line after the .ee is centered 
(horizontally) on the page. To center more than one line, use .ee N (where N is the number 
of lines to center), followed by the N lines. If you want to center many lines but don't want 
to count them, t.ype: 

.ce 1000 
lines to center 
.ce 0 

The .ee 0 request tells NROFF to center zero more lines, in other words, stop centering. 

All of these requests cause a break; that is, they always start a new line. Jr you want 
to start a new line without performing any other action, use .br. 

2.5. Underlining 

Text can be underlined using the .ul request. The.uI request causes the next input 
line to be underlined when output. You can underline multiple lines by stating a count of 
input lines to underline, followed by those lines (as with the .ee request). For example, the 
input: 

.u12 
Notice that these two input lines 
are underlined. 

will underline those eight words in NROFF. (In TROFF they will be set in italics.) 

o 

o 



( 

. USING NROFF AND -ME 

3. Displa)'8 

Displays are sections or text to be set off rrom the body or the paper. Major quotes, 
tables, and figures are types or displays, as are all the examples used in this document. All 
displays except centered blocks are output single spaced. 

3.1. Major Quotes 

. Major quotes are quotes which are several lines long, and hence are set in from the rest 
or the text without quote marks around them. These can be generated using the 
commmands .(q and .)q to surround the quote. For example, the input: 

As Weizenbaum points out: 
.(q 
It is said that to explain is to explain away. 
This maxim is nowhere so well rulfilled 
as in the areas of computer programming, ... 
. )q 

generates as output: 

As \Veizenbaum points out: 
It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in 
the areas of computer programming •... 

3.2. Lists 

A li8t is an indented, single spaced, unfilled display. Lists should be used when the 
material to be printed should not be filled and justified like normal text, such as columns of 
figures or the examples used in this paper. Lists are surrounded by the requests .(1 and .)1. 
For example, type: 

Alternatives to avoid deadlock are: 
.(1 
Lock in a specified order 
Detect deadlock and back out one process 
Lock all resources needed before proceeding 
. )1 

"'ill produce: 
Alternatives to avoid deadlock are: 

Lock in a specified order 
Detect deadlock and back out one process 
Lock all resources needed berore proceeding 

3.3. Keeps 

A keep is a display or lines which are kept on a single page if possible. An example or 
where you would use a keep might be a diagram. Keeps differ rrom lists in that lists may 
be broken over a page boundary whereas keeps will not. 

Blocks are the basic kind of keep. They begin with the request .(b and end with the 
request .)b. If there is not room on the current page for everything in the block, a new 
page is begun. This has the unpleasant effect or leaving blank space at the bottom of the 
page. When this is not appropriate, you can use the alternative, called floating keep8. 

Floating keeps move relative to the text. Hence, they are good ror things which will 
be rererred to by name, such as "See figure 3". A floating keep will appear at the bottom 
of the current page if it will fit; otherwise, it will appear at the top or the ne:~:t page. Float­
ing keeps begin with the line .(I! and end with the line .)I!. For an example of a floating 
keep, see figure 1. The .hl request is used to draw a horizontal line so that the figure stands 



. USING NROFF AND -ME 

.(z 

.hl 
Text of keep to be floated . 
.sp 
.ce 
Figure 1. Example of a Floating Keep . 
. hl 
.)z 

Figure 1. Example of a Floating I\eep. 

out from the text. 

3.4. Fancier Displays 

Keeps and lists are normally collected in nofill mode, so that they are good for tables 
and such. If you want a display in fill mode (for text), type .(1 F (Throughout this section, 
comments applied to .(1 also apply to .(b and .(a). This kind of display will be indented 
from both margins. For example, the input: 

.(1 F 
And now boys and girls, 
a newer, bigger, better toy than ever before! 
Be the first on your block to have your own computer! 
Yes kids, you too can have one of these modern 
data processing devices. 
You too can produce beautifully formatted papers 
without even batting an eye! 
.)1 

will be output as: 

And now boys and girls, a newer, bigger, better toy than ever before! Be the first 
on your block to have your own computer! Yes kids, you too can have one of 
these modern data processing devices. You too can produce beautifully formatted 
papers wit-hout even batting an eye! 

Lists and blocks are also normally indented (floating keeps are normally left justified). 
To get a lefHustified list, type .(1 L. To get a list centered line-for-line, type .{1 C. For 
example, to get a filled, left justified list, enter: 

.(1 LF 
text of block 
.)1 

The input: 

.(1 
first line of unfilled display 
more lines 
. )1 

produces the indented text: 

rr\ 
U 



( 

'USING NROFF AND -ME 

first line of unfilled display 
more lines 

Typing the character L alter the .(1 request produces the left justified result: . 

first line of unfilled display 
more lines 

Using C instead or L produces the line-at-a-time centered output: 

first line of unfilled display 
more lines 

'1 

Sometimes it may be that you want to center several lines as a group, rather than 
centering them one line at a time. To do this use centered blocks, which are surrounded by 
the requests .( e and • )e. All the lines are centered as a unit, such that the longest line is 
centered and the rest are lined up around that line. Notice that lines do not move relative 
to each other using centered blocks, whereas they do using the C argument to keeps. 

Centered blocks are not keeps, and may be used in conjunction with keeps. For exam-
ple, to center a group or lines as a unit and keep them on one page, use: 

.(b L 

.(c 
first line or unfilled display 
more lines 
.)c 
.)b 

to produce: 

first line of unfilled display 
more lines 

If the block requests (.(b and .)b) had been omitted the result would have been the same, 
but ~rith no guarantee that the lines of the centered block would have all been on one page. 
Note the use of the L argument to .(b; this causes the centered block to center within the 
entire line rather than within the line minus the indent. Also, the center requests must be 
nested inside the keep requests. 

4. Annotations 

There are a number of requests to save text ror later printing. Footnotes are printed at 
the bottom of the current page. Delayed tezt is intended to be a variant rorm of footnote; the 
text is printed only when explicitly called for, such as at the end of each chapter. Indexes are a 
type of delayed text having a tag (usually the page number) attached to each entry after a row 
of dots. Indexes are also saved until called for explicitly. 

4.1. Footnotes 

Footnotes begin with the request .(r and end with the request .)r. The current foot­
note number is maintained automatically, and can be used by typing \ .. , to produce a 
footnote number1• The number is automatically incremented arter every footnote. For 
example, the input: 

lLike this. 



'USING NROFF AND-ME 

.(q 
A man who is not upright 
and at the same time is presumptuous; 
one who is not diligent and at the same time is ignorant; 
one who is untruthful and at the same time is incompetent; 
such men I do not count among acquaintances'\" 
.(f 
\ .. James R. Ware, 
.ul 
The Best of Confucius, 
Halcyon House, 1950. 
Page 77 . 
. )f 
.)q 

generates the result: 
A man who is not upright and at the same time is presumptuous; one who is not diligent 
a:ld at thl' sa..1'!le time i~ ignorant; one who is untruthful and at the same time is incom­
petent; such men I do not count among acquaintances.!l 

8 

It is important that the footnote appears inside the quote, so that you can be sure that the 
footnote will appear on the same page as the quote. 

4.2. Delayed Text 

Delayed text is very similar to a footnote except that it is printed when called for 
explicitly. This allows a list of references to appear (for example) at the end of each 
ch!lpter, as is the convention in some disciplines. Use \.=11 on delayed text instead of \ •• 
as on footnotes. 

If you are using delayed text as your standard reference mechanism, you can still use 
footnotes, except that you may want to reference them with special characters· rather than 
numbers. 

4.3. Indexes 

An "index" (actually more like a table or contents, since the entries are not sorted 
alphabetically) resembles delayed text, in that it is saved until called ror. However, each 
entry has the page number (or some other tag) appended to the last line or the index entry 
after a row or dots. 

Index entries begin with the request .(x and end with .)x. The .)x request may have a 
argument, which is the value to print as the "page number". It defaults to the current 
page number. If the page number given is an underscore ("_") no page number or line of 
dots is printed at all. To get the line of dots without a page number, type .)x .... , which 
specifies an explicitly null page number. 

The oXp request prints the index. 

For example, the input: 

llJ&mes R. Ware, Tile Be.' ./ COn/UciUB, Halcyon House. 1950. Pille 77. 

·Such &S an asterisk. 



... ( 

( 

c' 

. USING NROFF AND -ME 

.(x 
Sealing wax 
.)X 
.(x 
Cabbages and kings 
.)x -
.(x 
Why the sea is boiling hot 
.)x 2.5a 
.(x 
Whether pigs have wings 
) "" . x 

.(x 
This is a terribly long index entry, such as might be used 
ror a list of illustrations, tables, or figures; I expect it to 
take at least two lines . 
. )x 

generates: 
Sealing wax ............................................................................................................. 9 

Cabbages and kings 
\Vhy the sea is boiling hot ....................................................................................... 2.5a 
\\'hether pigs have wings ........................................................................................ . 
This is a terribly long index entry, such as might be used for a list or illustra-

tions, tables, or figures; I expect it to take at least two lines. ......................... 9 

The .(x request may have a single character argument, specifying the "name" of the 
index; the normal index is x. Thus, several "indicies" may be maintained simultaneously 
(such as a list of tables, table of contents, etc.). 

Notice that the index must be printed at the end of the paper, rather than at the 
beginning where it will probably appear (as a table of contents); the pages may have to be 
physically rearranged after printing. 

o. Fancier Features 

A large number of fancier requests exist, notably requests to provide other sorts of para­
graphs, numbered sections of the form 1.2.3 (such as used in this document), and multicolumn 
output. 

5.1. More Paragraphs 

Paragraphs generally start with a blank line and with the first line indented. It is 
possible to get left-justified block-style paragraphs by using .lp instead of .pp, as demon-
strated by the next paragraph. . 

Sometimes you want to use paragraphs that have the 60dy indented, and the first line 
exdented (opposite of indented) with a label. This can be done with the .ip request. A 
word specified on the same line as .ip is printed in the margin, and the body is lined up at a 
prespecified position (normally five spaces). For example, the input: 



'USING NROFF AND -ME 

.ip one 
This is the first paragraph. 
Notice how the first line 
of the resulting paragraph lines up 
with the other lines in the paragraph . 
. ip two 
And here we are at the second paragraph already. 
You may notice that the argument to .lp . 
appears 
in the margin . 
.lp 
We can continue text ... 

produces as output: 

10 

one This is the first paragraph. Notice how the first line of the resulting paragraph lines 
up with the other lines in the paragraph. 

two And here we are at the second paragraph already. You may notice that the argument 
to .ip appea~ in the margin. 

We can continue text without starting a new indented paragraph by using the .Ip request. 

If you have spaces in the label of a .ip request, you must use an "unpaddable space" 
instead of a regular space. This is typed as a backslash character ("\") followed by a space. 
For example, to print the label "Part 1", enter: 

.ip ''Part\ I" 

If a label of an indented paragraph (that is, the argument to .ip) is longer than the 
space allocated for the label, .ip will begin a new line after the label. For example, the 
input: 

.ip longlabel 
This paragraph had a long label. 
The first character of text on the first line 
will not line up with the text on second and subsequent lines, 
although they wiIlline up with each other. 

will produce: 

longlabel 
This paragraph had a long label. The first character of text on the first line will not 
line up with the text on second and subsequent lines, although they ""ill line up with 
each other. 

It is possible to change the size of the label by using a second argument which is the 
size of the label. For example, the above example could be done correctly by saying: 

.ip longlabell0 

which will make the paragraph indent 10 spaces for this paragraph only. If you have many 
paragraphs to indent all the same amount, use the ntlmber regi3ter ii. For example, to leave 
one inch of space for the label, type: 

.nr ii Ii 
somewhere before the first call to .ip. Refer to the reference manual for more information. 

If .ip is used with no argument at all no hanging tag will be printed. For example, 
the input: 



( 

· USING NROFF AND -ME 

.ip fa] 
This is the first paragraph of the example. 
We have seen this sort of example before . 
. ip 
This paragraph is lined up with the previous paragraph, 
but it has no tag in the margin. 

produces as output: 

11 

[a] This is the first paragraph of the example. We have seen this sort of example before. 

This paragraph is lined up with the previous paragraph, but it has no tag in the mar­
gin. 

A special case of .ip is .np, which automatically numbers paragraphs sequentially 
from 1. The numbering is reset at the next .pp, .Ip, or .. h (to be described in the next sec­
tion) request. For example, the input: 

.np 
This is the first point . 
. np 
This is the second point. 
Points are just regular paragraphs 
which are given sequence numbers automatically 
by the .np request . 
. pp 
This paragraph will reset numbering by .np . 
. np 
For example, 
we have reverted to numbering from one now. 

generates: 

(1) This is the first point. 

(2) This is the second point. Points are just regular paragraphs which are given sequence 
numbers automatically by the .np request. 

This paragraph will reset numbering by .np. 

(1) For example, we have reverted to numbering from one now. 

5.2. Section Headings 

Section numbers (such as the ones used in this document) can be automatically gen­
erated using the .. h request. You must tell .sh the depth of the section number and a sec­
tion title. The depth specifies how many numbers are to appear (separated by decimal 
points) in the section number. For example, the section number 4.2.5 has a depth of three. 

Section numbers are incremented in a fairly intuitive fashion. If you add a number 
(increase the depth), the new number starts out at one. If you subtract section numbers (or 
keep the same number) the final number is incremented. For example, the input: 

.sh 1 "The Preprocessor" 

.sh 2 "Basic Concepts" 

.sh 2 "Control Inputs" 

.sh 3 

.sh 3 

.sh 1 "Code Generation" 

.sh 3 

produces as output the result: 



· USING NROFF AND-ME 

1. The Preprocessor 
1.1. Basic Concepts 
1.2. Control Inputs 
1.2.1. 
1.2.2. 
2. Code Generation 
2.1.1. 

12 

You can specify the section number to begin by placing the section number after the 
section title, using spaces instead of dots. For example, the request: 

.sh 3 "Another section" 7 34 

will begin the section numbered '1.3.4; all subsequent .ah requests will number relative to 
this number. 

There are more complex features which will cause each section to be indented propor­
tionally to the depth of the section. For example, if you enter: 

.Dr si N 

each section will be indented by an amount N. N must have a scaling factor attached, that 
is, it must be of the form Nz, where % is a character telling what units N is in. Common 
values for % are i for inches, c for centimeters, and n for ens (the width of a single charac­
ter). For example, to indent each section one-haIr inch, type: 

.nr si O.5i 

After this, sections will be indented by one-half inch per level or depth in the section 
number. For example, this document was produced using the request 

.nr si 3n 

at the beginning of the input file, giving three spaces or indent per section depth. 

Section headers without. automatically generated numbers can be done using: 

.uh "Title" 

which will do a section heading, but will put no number on the section. 

5.3. Parts of the Basic Paper 

There are some requests 'which assist in setting up papers. The .tp request initializes 
for a title page. There are no headers or footers on a title page, and unlike other pages you 
can space down and leave blank space at the top. For example, a typical title page might 
appear as: 

.tp 

.sp 2i 

.(1 C 
THE GROWTH OF TOENAILS 
IN UPPER PRIMATES 
.sp 
by 
.sp 
Frank N. Furter 
.)1 
.bp 

The request .th sets up the environment or the NROFF processor to do a thesis, using 
the rules established at Berkeley. It defines the correct headers and footers (a page number 
in the upper right hand corner only), sets the margins correctly, and double spaces. 

The .+c T request can be used to start chapters. Each chapter is automatically num­
bered from one, and a heading is printed at the top of each chapter with the chapter 

o 

o 



.' (~. 

( 

c 

· USING NROFF AND -ME 13 

number and the chapter name T. For example, to begin a chapter called "Conclusions", 
use the request: 

.+c "CONCLUSIONS" 

which will produce, on a new page, the lines 

CHAPTERS 
CONCLUSIONS 

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on 
the first page of a chapter. Although the .+c request was not designed to work only with 
the .tb request, it is tuned for the format acceptable for a PhD thesis at Berkeley. 

If the title parameter T is omitted from the .+c request, the result is a chapter with 
no heading. This can also be used at the beginning of a paper; for example, .+c was used 
to generate page one of this document. 

Although papers traditionally have the abstract, table of contents, and so forth at the 
front of the paper, it is more convenient to format and print them last when using NROFF. 
This is so that index entries can be collected and then printed for the table of contents (or 
whatever). At the end of the paper, issue the .++ P request, which begins the preliminary 
part of the paper. Mter issuing this request, the .+c request will begin a preliminary sec­
tion of the paper. Most notably, this prints the page number restarted from one in lower 
case Roman numbers. .+c may be used repeatedly to begin different parts of the front 
material for example, the abstract, the table of contents, acknowledgments, list of illustra­
tions, etc. The request .++ B may also be used to begin the bibliographic section at. the 
end of the paper. For example, the paper might appear as outlined in figure 2. (In this 
figure, comments begin with the sequence \ ".) 

6.4. Equations and Tables 

Two special tJI\1X programs exist to format special types of material. Eqn and neqn 
set equations for the phototypesetter and NROFF respectively. Tbl arranges to print 
extremely pretty tables in a variety of formats. This document will only describe the 
embellishments to the standard features; consult the reference manuals for those processors 
for a description or their use. 

The eqn and neqn programs are described fully in the document Tvpesetting 
Mathematics - Users' GtJide by Brian W. Kernighan and Lorinda L. Cherry. Equations are 
centered, and are kept on one page. They are introduced by the .EQ request and ter­
minated by the .EN request. 

The .EQ request may take an equation number as an optional argument, which is 
printed vertically centered on the right hand side or the equation. I( the equation becomes 
too long it should be split between two lines. To do this, type: 

.EQ (eq 34) 
text of equation 34 
.ENC 
.EQ 
continuation or equation 34 
.EN 

The C on the .EN request specifies that the equation will be continued. 

The tbl program produces tables. It is rully described (including numerous examples) 
in the document Tbl - A Program to Format Tables by M. E. Lesk. Tables begin with the 
.TS request and end with the .TE request. Tables are normally kept on a single page. If 
you have a table which is too big to fit on a single page, so that you know it will extend to 
several pages, begin the table with the request .TS H and put the request .TH after the 
part or the table which you want duplicated at the top of every page that the table is 
printed on. For example, a table definition for a long table might look like: 



.-

· USING NROFF AND -ME 

.th \" set. for thesis mode 

.fo "DRAFT" \" define footer for each page 

.tp \" begin tide page 

.(1 C \" center a large block 
THE GROWTH OF TOENAILS 
IN UPPER PRIMATES 
.sp 
by 
.sp 
Frank Furt.er 
.)1 
.+c INTRODUCTION 
.(x t 
Introduction 
.)X 
text of chapter one 
.+c "NEXT CHAPTER" 
.(x t 
Next Chapter 
.)X 
text of chapter two 
.+c CONCLUSIONS 
.(x t 
Conclusions 
.)x 
text of chapter three 
.++B 
.+c BIDLIOGR,o\PID' 
.(x t 
Bibliography 
.)x 
text of bibliography 
.++P 
.+c "TABLE OF CONTENTS" 
.xp t 
.+cPREFACE 
text of preface 

\" end centered part. 
\" begin chapter named "INTRODUCTION" 
\" make an entry into index It' 

\" end of index entry 

\ .. begin another chapter 
\It enter into index It' again 

\It begin bibliographic information 
\" begin another 'chapter' 

\" begin preliminary material 

\" print index It' collected above 
\ .. begin another preliminary section 

Figure 2. Outline of a Sample Paper 

.TSH 
css 
n n n. 
THE TABLE TITLE 
.TH 
text of the table 
.TE 

14 

o 

--" 



( 

o 

USING NROFF AND -ME 15 

5.6. Two Column Output 

You can get two column output automatically by using the request .2c. This causes 
everything after it to be output in two-column rorm. The request .bc will start a new 
column; it differs rrom .bp in that .bp may leave a totally blank column when it starts a 
new page. To revert to single column output, use .lc. 

5.8. Defining Macros 

A macro is a collection of requests and text which may be used by stating a simple 
request. Macros begin with the line .de zz (where n: is the name of the macro to be 
defined) and end with the line consisting of two dots. Arter defining the macro, stating the 
line .zz is the same as stating all the other lines. For example, to define a macro that spaces 
3 lines and then centers the next input line, enter: 

.de 88 

.sp 3 

.ce 

and use it by typing: 

.88 
Title Line 
(beginning of text) 

Macro names may be one or two characters. In order to avoid conflicts with names in 
-me, always use upper case letters as names. The only names to avoid are T8, TH, TE, 
EQ, and EN. 

6.7. Annotations Inside Keeps 

Sometimes you may want to put a footnote or index entry inside a keep. For exam-
ple, if you want to maintain a "list of figures" you will want to do something like: 

.(z 

.(c 
text of figure 
.)e 
.ce 
Figure 5 . 
. (x f 
Figure 5 
.)x 
.)z 

which you may hope will give you a figure with a label and an entry in the index f (presum­
ably a list of figures index). Unfortunately, the index entry is read and interpreted when 
the keep is read, not when it is printed, so' the page number in the index is likely to be 
wrong. The solution is to use the magic string \! at the beginning of all the lines dealing 
with the index. In other words, you should use: 



· USING NROFF AND -ME 

.(z 

.(c 
Text or figure 
.)c 
.ce 
Figure 5. 
\I.(x r 
\!Figure 5 
\!.)x 
.)z 

18 

which will derer the processing or the index until the figure is output. This will guarantee 
that the page number in the index is correct. The same comments apply to blocks (with .(b 
and .)b) as well. 

6. TROFF and the Photosetter 

With a little care, you can prepare documents that will print nicely on either a regular 
terruin.:..] or whi.:I~ yL:.t.otn.e:.ct using tIle TROFF formatting program. 

6.1. Fonts 
A font is a style of type. There are three ronts that are available simultaneously, 

Times Roman, Times Italic, and Times Bold, plus the special math rant. The normal rant 
is Roman. Text which would be underlined in NROFF with the .ut request is set in italics 
in TROFF. 

There are ways or switching between rants. The requests or, .i, and .b switch to 
Roman, italic, and bold rants respectively. You can set a single word in some rant by typ­
ing (for example): 

.i word 

which will set word in italics but does not affect the surrounding text. In NROFF, italic and 
bold text is underlined. 

Notice that if you are setting more than one word in whatever rant, you must sur­
round that word with double quote marks (' " ') so that it wiD appear to the NROFF proces­
sor as a single word. The quote marks will not appear in the rormatted text. If you do 
want a quote mark to appear, you should quote the entire string (even ir a single word), and 
use two quote marks where you want one to appear. For example, if you want to produce 
the text: 

"MG8ter Oontrol" 

in italics, you must type: 

.i ""'':Master Control\ r"'" 
The \ I produces a very narrow space so that the "1" does not overlap the quote sign in 
TROFF, like this: 

"MG8ter Oonlro" 

There are also several "pseudo-ronts" available. The input: 

.(b 

.u underlined 

.bi "bold italics" 

.bx "words in a box" 

.)b 

generates 

o 

o 



( 

· USING NROFF AND -ME 

underlined 
hid italic. 
Iwords in a hox I 

17 

In NROFF these all just underline the text. Notice that pseudo font requests set only the 
single parameter in the pseudo ront; ordinary font requests will begin setting all text in the 
special font if you do not provide a parameter. No more than one word should appear with 
these three font requests in the middle of lines. This is because of the way TROFF justifies 
text. For example, if you were to issue the requests: 

.bi "some bold italics" 
and 
.bx "words in a box" 

in the middle of a line TROFF would produce ' .... ebblddiu6i4" and Iwords jn a hoxl, 
which I think you will agree does not look good. 

The second parameter or all font requests is set in the original font. For example, the 
font request: 

.b bold face 

generates "bold" in bold font, but sets "face" in the font of the surrounding t.ext, resulting 
in: 

boldface. 

To set the two words bold and face both in bold face, type: 

.b "bold face" 

You can mix fonts in a word by using the special sequence \e at the end of a line to 
indicate "continue text processing"; this allows input lines to be joined together wit.hout a 
space inbetween them. For example, the input: 

.u under \c 

.i italics 

generates llll.<kI:italics, but if we had typed: 

.u under 

.i italics 

the result would havt: been llII..d..e.r italics as t.wo words. 

6.2. Point Sizes 

The phototypesetter supports different sizes of type, measured in points. The default. 
point size is 10 points for most text, 8 points for footnotes. To change the pointsize, type: 

.sz +N 
where N is the size wanted in points. The vertical 'pacing (distance between the bottom of 
most letters (the baseline) between adjacent lines) is set to be proportional to the type size. 

Warning: changing point sizes on the phototypesetter is a slow mechanical operation. 
Size changes should be considered carefully. 

6.3. Quotes 

It is conventional when using the typesetter to use pairs of grave and acute accents to 
generate double quotes, rather than the double quote character ('" '). This is because it 
looks better to use grave and acute accents; for example, compare "quote" to "quote". 

In order to make quotes compatible between the typesetter and terminals, you may 
use the sequences \ ·(Iq and \ ·(rq to stand for the left and right quote respectively. These 
both appear as " on most terminals, but are typeset as " and" respectively. For example, 
use: 



· USING NROFF AND -ME 

\ *(lqSome things &ren't true 
even if they did happen.\ *(rq 

to generate the result: 

"Some things aren't true even if they did happen." 

As a shorthand, the special font request: 

.q "quoted text" 

18 

will generate "quoted text". Notice that you mustaurround the material to be quoted with 
double quote marks if it is more than one word. 

Ackn.:iwledgments 

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use 
the -me macros to produce non-trivial papers during the development stages; Ricki Blau, Pamela 
Humphrey, and Jim Joyce for their help with the documentation phase; and the plethora of people 
who have contributed ideas and have given support for the project. 

This document 'was TROFF'ed on September 16, 1986 and applies to version 1.1 of the ":me mac­
ros. 

o 



( 
-ME REFERENCE MANUAL 

Releaae 1.1/f!5 

Eric P. AUman 

Electronics Research Laboratory 
University of California, Berkeley 

Berkeley, California 94720 

This document. describes in extremely terse form the features of the -me macro package for 
version seven NROFF iTROFF. Some familiarity is assumed with those programs, specifically, the 
reader should understand breaks, fonts, pointsizes, the use and definition of number registers and 
strings, how to define macros, and scaling factors for ens, points, v's (vertical line spaces), etc. 

For a more casual introduction to text processing using NROFF, refer to the document lVn't­
ing Papers with NROFF using -me. 

There are a number of macro parameters that may be adjusted. Fonts may be set to a font 
number only. In l\lWFF font 8 is underlined, and is set in bold font in TROFF (although font 3, 
bold in TROFF, is not underlined in l\~OFF). Font 0 is no font change; the font of the surround­
ing text is used instead. Notice that fonts 0 and 8 are "pseudo-fonts"; that is, they are simulated 
b)' th", macros. This means that alt.hough it is legal to set a font register to zero or eight, it is not 
legal to use the escape character form, such as: 

\{8 

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For 
example, the request to set. the paragraph indent to eight one-en spaces is: 

.Dr pi 8n 

and not 

.nr pi 8 

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default parameter 
values are given in brackets in the remainder of this document. 

Registers and strings of the form $z may be used in expressions but should not be changed. 
Macros of the form $x perform some function (as described) and may be redefined t.o change this 
function. This may be a sensitive operation; look at the body of the original macro before chang­
ing it. 

All names in -me follow a rigid naming convention. The user may define number registers, 
strings, and macros, provided that sihe uses single character upper case names or double character 
names consisting of letters and digits, with at least one upper case letter. In no case should special 
characters be used in user-defined names. 

On daisy wheel type printers in twelve pitch, the -rxl flag can be stated to make lines 
default to one eighth inch (the normal spacing for a newline in twelve-pitch). This is normally too 
small for easy readability, so the default is to space one sixth inch. 

tNROFF and TROIT are Trademarks of Bell La.boratories. 

-ME REFERENCE MANUAL 1 



.-ME REFERENCE MANUAL 2 

This documentation was TROFF'ed on September 16, 1986 and applies to version 1.1/25 of 
the -me macros. 

1. Paragraphing 

These macros are used to begin paragraphs. The standard paragraph macro is .pp; the oth­
ers are all variants to be used for special purposes. 

The first call to one of the paragraphing macros defined in this section or the .ah macro 
(defined in the next session) initializea the macro processor. Alter initialization it is not possible to 
use any of the following requests: .ee, .10, .th, or .ae. Also, the effects of changing parameters 
which will have a global effect on the format of the page (notably page length and header and 
footer margins) are not well defined and should be avoided . 

• lp Begin left-justified paragraph. Centering and underlining are turned off if 
they were on, the font is set to \n(pl' IIJ the type size is set to \n(pp 
[lOp], and a \n(ps space is inserted before the paragraph [O.35v in 
TROFF, Iv or O.5v in NROFF depending on device resolution]. The indent 
is reset to \n($i [0] plus \n(po 10J unless the paragraph is inside a 
di:-p!ay. (!"E'e .ba). At ksst the first two lines of the paragrarh are kept 
together on a page . 

• pp Like .lp, except that it puts \n(pi 15nJ units of indent. This is the stan­
dard paragraph macro . 

• ip T I Indented paragraph with hanging tag. The body of the following para­
graph is indented I spaces (or \n(ii [5nJ spaces if I is not specified) more 
than a non-indented paragraph (such as with .pp) is. The title T is 
exdented (opposite of indented). The result is a paragraph ,,-jth an even 
left edge and T printed in the margin. Any spaces in T must be unpadd­
able. If Twill not fit in the space provided, .ip will start a new line. 

.np 

2. Section Headings 

A variant of .ip which numbers paragraphs. Numbering is reset after a 
.Jp, .pp, or .sh. The current paragraph number is in \n($p. 

Numbered sections are similiar to paragraphs except that a section number is automatically 
generated for each one. The section numbers are of the form 1.2.3. The depth of the sect.ion is the 
count of numbers (separated by decimal points) in the section number. 

Unnumbered section headings are similar, except that no number is attached to the heading . 

• sh +N Tab c de f Begin numbered section of depth N. If N is missing the current depth 
(maintained in the number register \n($O) is used. The values of the 
individual parts of the section number are maintained in \n($1 through 
\n($6. There is a \n(ss [lvJ space before the section. T is printed as a 
section title in font \n(sl' [8] and size \n(sp [IOpJ. The "name" of the 
section may be accessed via \ -($n. If \n(si is non-zero, the base indent is 
set to \n(si times the section depth, and the section title is exdented. (See 
.ba.) Also, an additional indent of \n(so [OJ is added to the section title 
(but not to the body of the section). The font is then set to the para­
graph font, so that more information may occur on the line with the sec­
tion number and title. .ah insures that there is enough room to print the 
section head plus the beginning of a paragraph (about 3 lines total). If a 
through f are specified, the section number is set to that number rather 
than incremented automatically. If any of a through f are a hyphen that 
number is not reset. If T is a single underscore ("_") then the section 
depth and numbering is reset, but the base indent is not reset and nothing 
is printed out. This is useful to automatically coordinate section numbers 
with chapter numbers. 

o 

c 



( 

c 

· -ME REFERENCE MANUAL 3 

.ax +N 

• uh T 

• $p T B N 

• $0 T B N 

• $1 - .$6 

Go to section depth N [-IJ, but do not print the number and title, and do 
not increment the section number at level N. This has the effect of start­
ing a nev.' paragraph at level N . 

Unnumbered section heading. The title T is printed with the same rules 
for spacing, font, etc., as for .ab . 

Print section heading. May be redefined to get Jancier headings. T is the 
title passed on the .. h or .Wl line; B is the section number for this sec­
tion, and N is the depth of this section. These parameters are not always 
present; in particular, .. h passes all three, .uh passes only the first, and 
.ax passes three, but the first two are null strings. Care should be taken 
if this macro is redefined; it is quite complex and subtle . 

This macro is called automatically after every call to .$p. It is normally 
undefined, but may be used to automatically put every section title into 
the table of contents or for some similiar function. T is the section title 
for the section title 'Which was just printed, B is the section number, and 
N is the section depth . 

Traps called just before printing that depth section. May be defined to 
(for example) give variable spacing before sections. These macros are 
called from .$p, so if you redefine that macro you may lose this feature. 

3. Headers and Footers 

Headers and footers are put at the top and bottom of every page automatically. They are 
set in font \n(tf [3] and size \n(tp [lOp]. Each of the definitions apply as of the next page. 
Three-part titles must be quoted if there are two blanks adjacent anywhere in the title or more 
than eight blanks total. 

The spacing of headers and footers are controlled by three number registers. \n(hm [4vJ is 
the distance from the t.op of the page to the top of the header, \n(fm [3vJ is the distance from the 
bottom of the page to tbe bottom of the footer, \n(tm [7v] is the distance from the top of the 
page to the top of the text, and \n(bm [6vJ is the distance from the bottom of the page to the 
bottom of the text (nominal). The macros .ml, .m2, .m3, and .m4 are also supplied for compati­
bility with ROFF documents. 
• he '1"12' r ' 

.fo'I'm'r' 

• eh 'I'm 'r' 

• 0h'I'm'r' 

• ef '1 'm'r' 

• 0f'I'm'r' 

• hx 

• ml +N 

• m2 +N 

• m3 +N 

• m4 +N 

.ep 

.$h 

Define three-part header, to be printed on the top of every page . 

Define footer, to be print.ed at the bottom of every page . 

Define header, to be printed at the top of every even-numbered page . 

Define header, to be printed at the top of every odd-numbered page. 

Define footer, to be printed at the bottom of every even-numbered page . 

Define footer, to be printed at the bottom of every odd-numbered page . 

Suppress headers and footers on the next page . 

Set the space between the tOp of the page and the header [4\'J . 

Set the space between the header and the first line of text [2vJ . 

Set the space between the bottom of the text and the footer [2vJ . 

Set the space between the footer and the bottom of the page [4vJ . 

End this page, but do not begin the next page. Useful for forcing out 
footnotes, but other than that hardly every used. Must be followed by a 
.bp or the end of input. 

Called at every page to print the header. May be redefined to provide 
fancy (e.g., multi-line) headers, but doing so loses the function of the .he, 
.fo, .eh, .oh, .ef, and .of requests, as well as the chapter-style title 
feature of .+e. 



· -ME REFERENCE MANUAL 

.Sf 

.SH 

4. Displays 

Print footer; same comments apply as in .th. 
A normally undefined macro which is called at the top of each page (after 
outputing the header, initial saved floating keeps, etc.); in other words, 
this macro is called immediately before printing text on a page. It can be 
used for column headings and the like. 

All displays except centered blocks and block quotes are preceeded and followed by an extra 
\n(bs [same as \n(ps] space. Quote spacing is stored in a separate register; centered blocks have 
no default initial or trailing space. The vertical spacing of all displays except quotes and centered 
blocks is stored in register \n(SR instead of \n($r . 

• (1 m J Begin list. Lists are single spaced, unfilled text. If J is F, the list will be 
filled. If m [I] is I the list is indented by \n(bi [4n]; if M the list is 
indented to the left margin; if L the list is left justified with respect to the 
text (different from M only if the base indent (stored in \n($i and set 
with .ba) is not zero}; and if C the list is centered on a line-by-line basis. 
The list is set. in font \n(df [OJ. Must be matched by a .)1. This macro is 
almost like .(b except that no attempt is made to keep the display on one 
page . 

• )1 End list . 

• (q Begin major quote. These are single spaced, filled, moved in from the text 
on both sides by \n(qi [4n], preceeded and followed by \n(qs [same as 
\n(bs] space, and are set in point size \n( qp [one point smaller than sur­

• )q 

• (b m f 

• )b 
.(1 mJ 

• )1 

• (e 

• )e 

6. Annotations 

.(d 

rounding text] . 

End major quote . 

Begin block. Blocks are a form of keep, where the text of a keep is kept 
together on one page if possible (keeps are useful for tables and figures 
which should not be broken over a page). If the block will not fit on the 
current page a new page is begun, unless that would leave more than 
\n(bt [0] white space at the bottom of the text. If \n(bt is zero, the 
threshold feature is turned off. Blocks are not filled unless J is F, when 
they are filled. The block will be left~justified if m is L, indented by 
\n(bi [4n] if m is I or absent, centered (line-for-line) if m is C, and left 
justified t.o the margin (not to the base indent) if m is M. The block is 
set in font \n(dC [0] . 
End block. 

Begin floating keep. Like .(b except that the keep is floated to the bot­
tom of the page or the top of the next page. Therefore, its position rela­
tive to the text changes. The floating keep is preceeded and followed by 
\n(ls [Iv] space. Also, it defaults to mode M . 

End floating keep . 

Begin centered block. The next keep is centered as a block, rather than 
on a line-by-line basis as with .(b C. This call may be nested inside 
keeps . 

End centered block. 

Begin delayed text. Everything in the next keep is saved for output later 
with .pd, in a manner similar to footnotes. 

o 

./ .". 
\ j 

c 



( 

· -ME REFERENCE MANUAL I) 

.)d n 

• pd 

• (t 

• )t n 

• $s 

.(x x 

• )x PA 

.xp :r 

6. Columned Output 

.2e +S N 

• le 

.be 

7. Fonts and Sizes 

.BZ +P 

.r WX 

.i WX 

End delayed text. The delayed text number register \n(Sd and the associ­
ated string \·11 are incremented if \·11 has been referenced. 

Print delayed text. Everything diverted via .( d is printed and truncated . 
This might be used at the end of each chapter . 

Begin footnote. The text of the footnote is floated to the bottom of the 
page and set in font \n(ff [1] and size \n(tp [Bp]. Each entry is preceeded 
by \n(ts [0.2vj space, is indented \n(B [3n] on the first line, and is 
indented \n(fu [OJ Crom the right margin. Footnotes line up underneath 
two columned output. If the text of the footnote will not all fit on one 
page it will be carried over to the next page . 

End footnote. The number register \n(Sf and the associated string \ •• 
are incremented if they have been referenced . 

The macro to output the footnote seperator. This macro may be 
redefined to give other size lines or other types of separators. Currently it 
draws a l.5i line. 

Begin index entry. Index entries are saved in the index x [x] until called 
Up witl" ... xp. Each entry is preceeded by a \n(xs [O.2v] space. Each 
entry is "undented" by \n(xu [O.5i]; this register tells how Car the page 
number extends into the right margin . 

End index entry. The index entry is finished with a row of dots with A 
[null] right justified on the last line (such as for an author's name), fol­
lowed by P [\n%]. If A is specified, P must be specified; \n% can be 
used to print the current page number. If P is an underscore, no page 
number and no row of dots are printed. 

Print index x [x]. The index is formated in the font, size, and so forth in 
effect at the time it is printed, rather than at the time it is collected. 

Enter two-column mode. The column separation is set to +S [4n, 0.5i in 
ACM mode] (saved in \n(Ss). The column width, calculated to fill the 
single column line length with both columns, is stored in \n(Sl. The 
current column is in \n($e. You can test register \n($m [1] t.o see if you 
are in single column or double column mode. Actually, the request enters 
N [2] columned output. 

Revert to single-column mode . 

Begin column. This is like .bp except that it begins a new column on a 
new page only if necessary, rather than forcing a whole new page if there 
is another column left on the current page. 

The pointsize is set to P [lOp], and the line spacing is set. proportionally . 
The ratio of line spacing to pointsize is stored in \n($r. The ratio used 
internally by displays and annotations is stored in \n($R (although this is 
not used by .sz). 

Set W in roman font, appending X in the previous font. To append 
different font requests, use X = \e. If no parameters, change to roman 
font. 

Set W in italics, appending X in the previous font. If no parameters, 
change to italic font.. Underlines in NROFF. 



· -ME REFERENCE MANUAL 

.b WX 

orb WX 

• u WX 

• q WX 

• bi WX 

.bx WX 

8. Roft'Support 

• ix +N 

.bl N 

• pa +N 

• ro 

• ar 

• n1 

• n2 N 

.sk 

Set W in bold font and append X in the previous font. It no parameters, 
switch to bold font. In NROFF. underlines. 

Set W in bold font and append X in the previous font. It no parameters, 
switch to bold font. orb differs from .b in that orb does not underline in 
NROFF . 

Underline Wand append X This is a true underlining, as opposed to the 
.ul request, which changes to "underline Cont" (usually italics in TROFF). 
It won't work right if W is spread or broken (including hyphenated). In 
other words, it is safe in nofill mode only . 

Quote W and append X In NROFF this just surrounds W with double 
quote marks ('" '), but in TROFF uses directed quotes . 

Set W in bold italics and append X Actually, sets W in italic and over­
strikes once. Underlines in NROFF. It won't work right if W is spread or 
broken (including hyphenated). In other words, it is safe in nofil) mode 
only. 

Sets W in a box, with X appended. Underlines in NROFF. It won't work 
right if W is spread or broken (including hyphenated). In other words, it 
is safe in nofill mode only. 

Indent, no break. Equivalent to in N . 

Leave N contiguous white space, on the next page if not enough room on 
this page. Equivalent to a .sp N inside a block . 

Equivalent to .bp. 

Set page number in roman numerals. Equivalent to .af % i . 
Set page number in arabic. Equivalent to .af' % 1 . 

Number lines in margin from one on each page . 

Number lines from N, stop if N = O . 

Leave the next output page blank, except for headers and footers. This is 
used t.o leaye space for a full-page diagram which is produced ('xternally 
and pasted in later. To get a partial-page paste-in display, say .8V N, 
where N is the amount of space to leave; this space will be output 
immediately if there is room, and will otherwise be output at. the top of 
the next page. However, be warned: if N is greater than the amount of 
available space on an empty page, no space will ever be output. 

9. Preprocessor Support 

.EQ m T Begin equation. The equation is centered if mise or omitted, indented 
\n(bi 14n] if m is I, and left justified if m is L. T is a title printed on the 
right margin next to the equation. See Typesetting Mathematics - User's 
Guide by Brian W. Kernighan and Lorinda L. Cherry. 

.EN c 

.TS h 

End equation. It c is C the equation must be continued by immediately 
following with another .EQ, the text of which can be centered along with 
this one. Otherwise, the equation is printed, always on one page, with 
\n(es IO.5v in TROFF, Iv in NROFF] space above and below it. 

Table start. Tables are single spaced and kept on one page if possible. It 
you have a large table which will not fit on one page, use It = H and fol-
low the header part (to be printed on every page of the table) with a .TH. 
See Tbl - A Program to Format Tables by M. E. Lesk. 

c 



( 

C: 

· -ME REFERENCE MANUAL '1 

• TH 

.TE 

10. Miscellaneous 

• re 

.ba +N 

.xl +N 

.Il +N 

.hl 

.10 

11. Standard Papers 

With .TS H, ends the header portion of the table . 

Table end. Note that this table does not float, in fact, it is not even 
guaranteed to stay on one page if you use requests such as .sp intermixed 
with the text of the table. If you want it to float (or if you use requests 
inside the table), surround the entire table (including the • TS and • TE 
requests) with the requests .(z and .)z. 

Reset tabs. Set to every O.5i in TROFF and every O.8i in J\TROFF . 

Set the base indent to +N [OJ (saved in \n($i). All paragraphs, sections, 
and displays come out indented by this amount. Titles and footnotes are 
unaffected. The .sh request performs a .ba request if \n(si [OJ is not zero, 
and sets the base indent to \n(si*\n($O. 

Set the line length to N [6.OiJ. This differs from .11 because it only affects 
the current environment. 

Set line length in all environments to N [6.0iJ. This should not be used 
after output has begun, and particularly not in two-columned output. 
The current line length is stored in \n(Sl. 

Draws a horizontal line the length of the page. This is useful inside float­
ing keeps to differentiate between the text and the figure. 

This macro loads another set of macros (in /usr/lib/me/local.me) 
which is intended to be a set of locally defined macros. These macros 
should all be of the form .* X, where X is any letter (upper or lower case) 
or digit. 

.tp Begin title page. Spacing at the top of the page can occur, and headers 
and footers are supressed. Also, the page number is not incremented for 
this page. 

.th 

.++ mH 

Set thesis mode. This defines the modes acceptable for a doctoral disser­
tation at Berkeley. It double spaces, defines the header to be a single page 
number, and changes the margins to be 1.5 inch on the left and one inch 
on the top. .++ and .+c should be used with it. This macro must be 
stated before initialization, that is, before the first call of a paragraphing 
macro or .sh. 

This request defines the section of the paper which we are entering. The 
section type is defined by m. C means that we are entering the chapter 
portion of the paper, A means that we are entering the appendix portion 
of the paper, P means that the material following should be the prelim­
inary portion (abstract, table of contents, etc.) portion of the paper, AB 
means that we are entering the abstract. (numbered independent.ly from 1 
in Arabic numerals), and B means that we are entering the bibliographic 
portion at the end of the paper. Also, the variants RC and RA are 
allowed, which specify renumbering of pages from one at the beginning of 
each chapter or appendix, respectively. The H parameter defines the new 
header. If there are any spaces in it, the entire header must be quoted. If 
you want the header to have the chapter number in it, Use the string 
\\\\n(ch. For example, to number appendixes A.l etc., type .++ RA N, \\ \n(ch.%'. Each section (cha.pter, appendix, etc.) should be pre­
ceeded by the .+c request. It should be mentioned that it is easier when 
using TROFF to put the front material at the end of the paper, so that 
the table of contents can be collected and output; this material can then 



· -ME REFERENCE MANUAL 8 

. +c T 

.Sc T 

.SC K NT 

.acA N 

be physica}]y moved to the beginning of the paper. 

Begin chapter with title T. The chapter number is maintained in \n(ch . 
This register is incremented every time .+c is called with a parameter. 
The title and chapter number are printed by .Sc. The header is moved to 
the footer on the first page of each chapter. If T is omitted, .Sc is not 
called; this is useful for doing your own "title page" at the beginning of 
papers without a. title page proper. .Sc calls .SC as a hook so that 
chapter titles can be inserted into a table of contents automatically. The 
footnote numbering is reset to orie. 

Print chapter number (from \n(eh) and T. This macro can be redefined 
to your liking. It is defined by default to be acceptable for a PhD thesis 
at Berkeley. This macro calls SC, which can be defined to make index 
entries, or whatever. 

This macro is called by .Sc. It is normally undefined, but can be used to 
automatically insert index entries, or whatever. K is a keyword, either 
"Chapter" or "Appendix" (depending on the .++ mode); N is the 
chapter or appendix number, and T is the chapter or appendix title. 

This macro (short for .acm) sets up the NROFF environment for photo­
ready papers as used by the ACM. This format is 25% larger, and has no 
headers or footers. The author's name A is printed at the bottom of the 
page (but off the part which will be printed in the conference proceedings), 
together with the current page number and the total number of pages N. 
Additionally, this macro loads the file /usr/Jib/me/acm.me, which 
may later be augmented with other macros useful for printing papers for 
ACM conferences. It should be noted that this macro will not work 
correctly in TROFF, since it sets the page length wider than the physical 
width of the phototypesetter roll. 

12. Predefined Strings 

,.# 
,.[ 

'*] 

'*< 

'*> 
'*(dw 
,*(mo 

'*(td 

Footnote number, actually \·[\n($f\·}. This macro is incremented after 
each call to .)f. 
Delayed text number. Actually [\n($d]. 

Superscript. This string gives upward movement. and a change to a 
smaller point size if possible, otherwise it gives the left. bracket character 
(' I'). Extra space is left above the line to allow room for the superscript. 

Unsuperscript. Inverse to \. [. For example, to produce a superscript you 
might type x, * [2'·], which will produce x2 • 

Subscript. Defaults to '<' if half-carriage motion not possible. Extra 
space is left below the line to allow for the subscript. 

Inverse to \. <. 
The day of the week, as a word. 

The month, as a word. 

Today's date, directly printable. The date is of the form September 16, 
1986. Other forms of the date can be used by using 'n(dy (t.he day of 
the month; for example, 16), ,·(mo (as noted above) or \n(mo (the 
same, but as an ordinal number; for example, September is 9), and \n(yr 
(the last two digits of the current year). 

Left quote marks. Double quote in J\~OFF. 

Right quote. 

o 

o 



'-ME REFERENCE MANUAL 9 

'*- % em dash in TROFFj two hyphens in NROFF. 

(', 13. Special Characters and Marks 

There are a number of special characters and diacritical marks (such as accents) available 
through -me. To reference these characters, you must call the macro .sc to define the characters 
beCore using them . 

.sc Define special characters and diacritical marks, as described in the 
remainder of this section. This macro must be stated before initialization. 

The special characters available are listed below. 
Name Usage Example 
Acute accent \*' a\*' a 
Grave accent \ *' e\ *' e 
UmIat \*: u\*: ii 
Tilde \ *- n\ *- n 
Caret \*" e\*" e 
Cedilla \*, c\ *, ~ 
Czech \ "'v e\ *v e 
Circle \*0 A\*o A 
There exists \*(qe =I 
For all \"'(qa '\/ 

Acknowledgments 

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use 
the -me macros to produce non-triyial papers during the development stages; Ricki Blau, Pamela 
Humphrey, and Jim Joyce for their help with the documentation phase; and the plet.hora of people 
who have contribut.ed ideas and have given support for the project. 





(-

() 

Writing Tools - The STYLE and DICTION Programs 

L. L. Oherry 

W. Veaterman 

Livingston College 

Rutgers University 

readability 

ABSTRAOT 

Text processing systems are now in heavy use in many companies to format 
documents. With many documents stored on line, it has become possible to use 
computers to study writing style itself and to help writers produce better written 
and more readable prose. The system of programs described here is an initial step 
toward such help. It includes programs and a data base designed to produce a 
stylistic profile of writing at the word and sentence level. The system measures 
readability, sentence and word length, sentence type, word usage, and sentence 
openers. It also locates common examples of wordy phrasing and bad diction. 
The system is useful for evaluating a document's style, locating sentences that 
may be difficult to read or excessively wordy, and determining a particular writer's 
style over several documents. 

September 12, 1986 





( 
1. Introduction 

Computers have become importa.nt in the document preparation process, with programs to 
check for spelling errors a.nd to format documents. As the amount of text stored on line increases, 
it becomes feasible and attractive to study writing style and to attempt to help the writer in pro­
ducing readable documents. The system of writing tools described here is a first step toward such 
help. The system includes programs and a data base to analyze writing style at the word and sen­
tence level. We use the term "style" in this paper to describe the results of a writer's particular 
choices among individual words a.nd sentence forms. Although many judgements of style are sub­
jective, particularly those of word choice, there are some objective measures that experts agree lead 
to good style. Three programs have been written to measure some of the objectively definable 
characteristics of writing style a.nd to identify some commonly misused or unnecessary phrases. 
Although a document that conforms to the stylistic rules is not guaranteed to be coherent and 
readable, one that violates all of the rules is likely to be difficult or tedious to read. The program 
STYLE calculates readability, sentence length variability, sentence type, word usage and sentence 
openers at a rate of about 400 words per second on a PDPll/70 running the UNIXt Operating Sys­
tem. It assumes that the sentences are well-formed, i. e. that each sentence has a verb and that 
the subject a.nd verb agree in number. DICTION identifies phrases that are either bad usage or 
unnecessarily wordy. EXPLAIN acts as a thesaurus for the phrases found by DICTION. Sections 
2, 3, and 4 describe the programs; Section 5 gives the results on a cross-section of technical docu­
ments; Section 6 discusses accuracy and problems; Section 7 gives implementation details. 

2. STYLE 

The program STYLE reads a document a.nd prints a summary of readability indices, sentence 
length and type, word usage, and sentence openers. It may also be used to locate all sentences in a 
document longer than a given length, of readability index higher than a given number, those con­
taining a passive verb, or those beginning with an expletive. STYLE is based on the system for 
finding English word classes or parts of speech, PARTS [1]. PARTS is a set of programs that uses 
a small dictionary (about 350 words) and SufflX rules to partially assign word classes to English 
text. It then uses experimentally derived rules of word order to assign word classes to all words in 
the text with an accuracy of about 95%. Because PARTS uses only a small dictionary and general 
rules, it works on text about any subject, from physics to psychology. Style measures have been 
built into the output phase of the programs that make up PARTS. Some of the measures are sim­
ple counters of the word classes found by PARTS; many are more complicated. For example, the 
verb count is the total number of verb phrases. This includes phrases like: 

has been going 
was only going 
to go 

each of which each counts as one verb. FigUTe 1 shows the output of STYLE run on a paper by 
Kernighan and Mashey about the UNIX programming environment [2]. As the example shows, 
STYLE output is in five parts. After a brief discussion of sentences, we will describe the parts in 
order. 

2.1. What is a sentence! 

Readers of documents have little trouble deciding where the sentences end. People don't even 
have to stop and think about uses of the character "." in constructions like 1.25, A. J. Jones, 
Ph.D., i. e., or etc .. When a computer reads a document, finding the end of sentences is not as 
easy. First we must throwaway the printer's marks and formatting commands that litter the text 
in computer form. Then STYLE defines a sentence as a string of words ending in one of: 

f UNlX is a trademark or Bell Laboratories. 



programming environment 
readability grades: 

sentence info: 

sentence types: 

word usage: 

sentence beginnings: 

. ! ? j. 

-2-

(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3) 

no. sent 335 no. wds 7419 
av sent leng 22.1 av word -leng 4.91 
no. questions 0 no. imperatives 0 
no. nonfunc wds 4362 58.8% av leng 6.38 
short sent «17) 35% (118) long sent (>32) 16% (55) 
longest sent 82 wds at sent 174; shortest sent 1 wds at sent 117 

simple 34% (114) complex 32% (108) 
compound 12% (41) compound-complex 21% (72) 

verb types as % of total verbs 
tobe 45% (373) awe 16% {133} inf 14% (ll4) 
passives as % of non-inf verbs 20% (144) 
types as % of total 
prep 10.8% (804) conj 3.5% (262) adv 4.8% (354) 
noun 26.7% (1983) adj 18.7% (1388) pron 5.3% (393) 
nominalizations 2 % (155) 

subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67% 
prep 12% (39) adv 9% (31) 
verb 0% (1) sub_conj 6% (20) conj 1% (5) 
expletives 4% (13) 

Figure 1 

The end marker "j." may be used to indicate an imperative sentence. Imperative sentences that 
are not so marked are not identified as imperative. STYLE properly handles numbers with embed­
ded decimal points and commas, strings of letters and numbers with embedded decimal points used 
for naming computer file names, and the common abbreviations listed in Appendix 1. Numbers 
that end sentences, like the preceding sentence, cause a sentence break if the next word begins with 
a capital letter. Initials only cause a sentence break if the next word begins with a capital and is 
found in the dictionary of function words used by PARTS. So the string 

J. D. JONES 

does not cause a break, but the string 

... system H. The ... 

does. With these rules most sentences are broken at the proper place, although occasionally either 
two sentences are called one or a fragment is called a sentence. More on this later. 

2.2. Readability Grades 
The first section of STYLE output consists of four readability indices. As Klare points out in 

[3J readability indices may be used to estimate the reading skills needed by the reader to under­
stand a document. The readability indices reported by STYLE are based on measures of sentence 
and word lengths. Although the indices may not measure whether the document is coherent and o 



- 3 -

well organized, experience has shown that high indices seem to be indicators of stylistic difficulty. 
Documents with short sentences and short words have low scores; those with long sentences and 
many polysyllabic words have high scores. The 4 formulae reported are Kincaid Formula [4], 
Automated Readability Index [5J, Coleman-Liau Formula [6] and a normalized version of Flesch 
Reading Ease Score [7]. The formulae differ because they were experimentally derived using 
different texts and subject groups. We will discuss each of the formulae briefly; for a more detailed 
discussion the reader should see [3]. 

The Kincaid Formula, given by: 

Reading_Grade =11.8 *,yLper_wd +.39 *wdLper_,ent -15.59 

was based on Navy training manuals that ranged in difficulty from 5.5 to 16.3 in reading grade 
level. The score reported by this formula tends to be in the mid-range of the 4 scores. Because it 
is based on adult training manuals rather than school book text, this formula is probably the best 
one to apply to technical documents. 

The Automated Readability Index (ARI), based on text from grades 0 to 7, was derived to be 
easy to automate. The formula is: 

Readin.9-Grade =4.71 */eLper_tL,d +.5 *wdB_per_8ent -21.43 

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but are usually 
slightly lower than Flesch. 

The Coleman-Liau Formula, based on text ranging in difficulty from .4 to 16.3, is: 

Reading_Grade =5.89 */eLper_wd -.3 *8enLper_lOO_wd8 -15.8 

Of the four formulae this one usually gives the lowest grade when applied to technical documents. 

The last formula, the Flesch Reading Ease Score, is based on grade school text covering 
grades 3 to 12. The formula, given by: 

Reading_Seore =206.835-84.6 *8yLper_ wd -1.015 *wd8_per_8ent 

is usually reported in the range 0 (very difficult) to 100 (very easy). The score reported by STYLE 
is scaled to be comparable to the other formulas, except that the maximum grade level reported is 
set to 17. The Flesch score is usually the highest of t.he 4 scores on technical documents. 

Coke [8] found that the Kincaid Formula is probably the best predictor for technical docu­
ments; both ARI and Flesch tend to overestimate the difficulty; Coleman-Liau tend to underesti­
mate. On text in the range of grades 7 to 9 the four formulas tend to be about the same. On easy 
text. the Coleman-Liau formula is probably preferred since it is reasonably accurate at the lower 
grades and it is safer to present text that. is a little too easy than a little too hard. 

If a documcnt has particularly difficult technical contcnt, especially if it includes a lot of 
mat.hematics, it is probably best to make the text very easy to read, i.e. a lower readability index 
by shortening the sentences and words. This will allow the reader to concent.rate on the technical 
content and not the long sentences. The user should remember that these indices are estimators; 
they should not be taken as absolute numbers. SmE called with "-r number" will print all sen­
tences with an Automated Readability Index equal to or greater than "number". 

2.3. Sentence length and structure 

The next two sections of STYLE output deal with sentence length and struct ure. Almost all 
books on writing style or effective writing emphasize the importance of variet.y in sentence length 
and structure for good writing. Ewing'S first rule in discussing style in the book Writing for 
Re8ult8 [9] is: 

"Vary the sentence structure and length of your sentences." 

Legget.t, Mead and Charvat break this rule into 3 in Prentice-Hall Han.dbook for Wr;fer8 [10J as fol­
lows: 



- 4-

"34a. Avoid the overuse of short simple sentences. n 

"34b. Avoid the overuse of long compound sentences. n 

"34c. Use various sentence structures to avoid monotony and increase effectiveness." 

Although experts agree that these rules are important, not all writers follow them. Sample techni­
cal documents have been found with almost no sentence length or type variability. One document 
had 90% of its sentences about the same length as the average; another was made up almost 
entirely of simple sentences (80%). 

The output sections labeled "sentence infou and "sentence typesu give both length and struc­
ture measures. STYLE reports on the number and average length of both sentences and words, 
and number of questions and imperative sentences (those ending in "/.U). The measures of non­
function words are an attempt to look at the content words in the document. In English non­
function words are nouns, adjectives, adverbs, and non-auxiliary verbs; function words are preposi­
tions, conjunctions, articles, and auxiliary verbs. Since most function words are short, they tend 
to lower the average word length. The average length of non-function words may be a more useful 
measure for comparing word choice of different writers than the total average word length. The 
percentages of short and long sentences measure sentence length variability. Short sentences are 
those at least 5 words less than the average; long sentences are those at least 10 words longer than 
the average. Last in the sentence information section is the length and location of the longest and 
shortest sentences. li the flag "-I numberu is used, STYLE will print all sentences longer than 
"number" . 

Because of the difficulties in dealing with the many uses of commas and conjunctions in 
. English, sentence type definitions vary slightly from those of standard textbooks, but still measure 

the same constructional activity. 

1. A simple sentence has one verb and no dependent clause. 

2. A complex sentence has one independent clause and one dependent clause, each with one 
verb. Complex sentences are found by identifying sentences that contain either a subordinate 
conjunction or a clause beginning with words like "that" or "who". The preceding sentence 
has such a clause. 

3. A compound sentence has more than one verb and no dependent clause. Sentences joined by 
";" are also counted as compound. 

4. A compound-complex sentence has either several dependent clauses or one dependent clause 
and a compound verb in either the dependent or independent clause. 

Even using these broader definitions, simple sentences dominate many of the technical docu­
ments that have been tested, but the example in Figure 1 shows variety in both sentence structure 
and sentence length. 

2.4. Word Usage 

The word usage measures are an attempt to identify some other constructional features of 
writing style. There are many different ways in English to say the same thing. The constructions 
differ from one another in the form of the words used. The following sentences all convey approxi­
mately the same meaning but differ in word usage: 

The cxio program is used to perform all communication between the systems. 
The exio program performs all communications between the systems. 
The cxio program is used to communicate between the systems. 
The cxio program communicates between the systems. 
All communication between the systems is performed by the cxio program. 

The distribution of the parts of speech and verb constructions helps identify overuse of particular 
constructions. Although the measures used by STYLE are crude, they do point out problem areas. 
For each eategory, STYLE reports a percentage and a raw count. In addition to looking at the 
percentage, the user may find it useful to compare the raw count with the number of sentences. li, " c···~. 



( 

c 

- 5-

for example, the number of infinitives is almost equal to the number of sentences, then many of the 
sentences in the document are constructed like the first and third in the preceding example. The 
user may want to transform some of these sentences into another form. Some of the implications 
of the word usage measures are discussed below. 

Verba are measured in several different ways to try to determine what types of verb constructions 
are most frequent in the document. Technical writing tends to contain many passive verb 
constructions and other usage of the verb "to be". The category of verbs labeled "tobe" 
measures both passives and sentences of the form: 

IJubiect tobe predicate 

In counting verbs, whole verb phrases are counted as one verb. Verb phrases containing aux­
iliary verbs are counted in the category "aux". The verb phrases counted here are those 
whose tense is not simple present or simple past. It might eventually be useful to do more 
detailed measures of verb tense or mood. Infinitives are listed as "inf". The percentages 
reported for these three categories are based on the total number of verb phrases found. 
These categories are not mutually exclusive; they cannot be added, since, for example, "to be 
going" counts as both "tobe" and "inr'. Use of these three types of verb constructions 
varies significantly among authors. 

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most style 
books warn against the overuse of passive verbs. Coleman [11 J has shown that sentences 
with active verbs are easier to learn than those with passive verbs. Although the inverted 
object-subject order of the passive voice seems to emphasize the object, Coleman's experi­
ments showed that there is little difference in retention by word position. He also showed 
that the direct object of an active verb is retained better than the subject of a passive verb. 
These experiments support the advice of the style books suggesting that writers should try to 
use active verbs wherever possible. The flag "-p" causes STYLE to print all sentences con­
taining passive verbs. 

Pronoun8 
add cohesiveness and connectivity to a document by providing back-reference. They are 
often a short-hand notation for something previously mentioned, and therefore connect the 
sentence containing the pronoun with the word to which the pronoun refers. Although there 
are other mechanisms for such connections, documents with no pronouns tend to be wordy 
and to have little connectivity. 

Adverb8 
can provide transition between sentences and order in time and space. In performing these 
functions, adverbs, like pronouns, provide connectivity and cohesiveness. 

Co niunc tion8 
provide parallelism in a document by connecting two or more equal units. These units may 
be whole sentences, verb phrases, nouns, adjectives, or prepositional phrases. The compound 
and compound-complex sentences reported under sentence type are parallel structures. Other 
uses of parallel structures are indicated by the degree that the number of conjunctions 
reported under word usage exceeds the compound sentence measures. 

Nouna and Adicctivca. 
A ratio of nouns to adjectives near unity may indicate the over-use of modifiers. Some 
technical writers qualify every noun with one or more adjectives. Qualifiers in phrases like 
"simple linear single-link network model" often lend more obscurity than precision to a text. 

Nomina/izatioR8 
are verbs that are changed to nouns by adding one of the suffixes "ment", "ance", "ence", or 
"ion". Examples are accomplishment, admittance, adherence, and abbreviation. \Vhen a 
writer transforms a nom in ali zed sentence to a non-nominalized sentence, she/he increases the 



-6-

effectiveness of the sentence in several ways. The noun becomes an active verb and fre­
quently one complicated clause becomes two shorter clauses. For example, 

Their inclusion of this provision is admission of the importance of the system. 
When they included this provision, they admitted the importance of the system. 

Coleman found that the transformed sentences were easier to learn, even when the transfor­
mation produced sentences that were slightly longer, provided the transformation broke one 
clause into two. Writers who find their document contains many nominalizations may want 
to transform some of the sentences to use active verbs. 

2.5. Sentence openers 

Another agreed upon principle of style is variety in sentence openers. Because STYLE deter­
mines the type of sentence opener by looking at the part of speech of the first word in the sentence, 
the sentences counted under the heading "subject opener" may not all really begin with the sub­
ject. However, a large percentage of sentences in this category still indicates lack of variety in sen­
tence openers. Other sentence opener measures help the user determine if there are transitions 
between sentences and where the subordination occurs. Adverbs and conjunctions at the beginning 
of sentences are mechanisms for transition between sentences. A pronoun at the beginning shows a 
link to something previously mentioned and indicates connectivity. 

The location of subordination can be determined by comparing the number of sentences that 
begin with a subordinator with the number of sentences with complex clauses. II few sentences 
start with subordinate conjunctions then the subordination is embedded or at the end of the com­
plex sentences. For variety the writer may want to transform some sentences to have leading 
subordination. 

The last category of openers, expletives, is commonly overworked in technical writing. 
Expletives are the words "it" and "there", usually with the verb "to be", in constructions where 
the subject follows the verb. For example, 

There are three streets used by the traffic. 
There are too many users on this system. 

This construction tends to emphasize the object rather than the subject of the sentence. The flag 
"-e" will cause STYLE to print all sentences that begin with an expletive. 

3. DICTION 

The program DICTION prints all sentences in a document containing phrases that are either 
frequently misused or indicate wordiness. The program, an extension of Aho's FGREP [12J string 
matching program, takes as input a file of phrases or patterns to be matched and a file of text to 
be searched. A data base of about 450 phrases has been compiled as a default pattern file for DIC­
TION. Before attempting to locate phrases, the program maps upper case letters to lower case and 
substitutes blanks for punctuation. Sentence boundaries were deemed less critical in DICTION 
than in STYLE, so abbreviations and other uses of the character "." are not treated specially. 
DICTION brackets all pattern matches in a sentence with the characters U[" "l". Although many 
of the phrases in the default data base are correct in some contexts, in others they indicate wordi­
ness. Some examples of the phrases and suggested alternatives are: 

o 



Phrase 
a large number of 
arrive at a decision 
collect together 
for this reason 
pertaining to 
through the use of 
utilize 
with the exception of 

Alternative 
many 
decide 
collect 
so 
about 
by or with 
use 
except 

-7-

Appendix 2 contains a complete list of the default file. Some of the entries are short forms of 
problem phrases. For example, the phrase "the fact" is found in all of the following and is 
sufficient to point out the wordiness to the user: 

Phrase 
accounted for by the fact that 
an example of this is the fact that 
based on the fact that 
despite the fact that 
due to the fact that 
in light of the fact that 
in view of the fact that 
notwithstanding the fact that 

Alternative 
caused by 
thus 
because 
although 
because 
because 
sIDce 
although 

Entries in Appendix 2 preceded by ..-" are not matched. See Section 7 for details on the use of 
"-,, 

The user may supply her Ihis own pattern file with the flag "-f patfile". In this case the 
default file will be loaded first, followed by the user file. This mechanism allows users to suppress 
patterns contained in the default file or to include their own pet peeves that are not in the default 
file. The flag "-n" will exclude the default file altogether. In constructing a pattern file, blanks 
should be used before and after each phrase to avoid matching substrings in words. For example, 
to find all occurrences of the word "the", the pattern" the" should be used. The blanks cause 
only the word "the" to be matched and not the string "the" in words like there, other, and there­
fore. One side effect of surrounding the words with blanks is that when two phrases occur without 
intervening words, only the first will be matched. 

4. EXPLAIN 

The last program, EXPLAIN, is an interactive thesaurus for phrases found by DICTION. 
The user types one of the phrases bracketed by DICTION and EXPLAIN responds with suggested 
substitutions for the phrase that will improve the diction of the document. 

5. Results 

5.1. STYLE 
To get baseline statistics and check the program's accuracy, we ran STYLE on 20 technical 

documents. There were a total of 3287 sentences in the sample. The shortest document was 67 
sentences long; the longest 339 sentences. The documents covered a wide range of subject matter, 
including theoretical computing, physics, psychology, engineering, and affirmative action. Table 1 
gives the range, median, and standard deviation of the various style measures. As you will note 
most of the measurements have a fairly wide range of values across the sample documents. 

As a comparison, Table 2 gives the median results for two different technical authors, a sam­
ple of instructional material, and a sample of the Federalist Papers. The two authors show similar 



Readability 

sentence info. 

sentence types 

verb types 

word usage 

sentence openers 

-8-

Table 1 
Text Statistics on 20 Technical Documents 

variable 
Kincaid 
automated 
Cole-Liau 
Flesch 
av sent length 
av word length 
av nonfunction length 
short sent 
long sent 
simple 
complex 
compound 
compound-complex 
tobe 
auxiliary 
infinitives 
passives 
prepositions 
conjunction 
adverbs 
nouns 
adjectives 
pronouns 
nominalizations 
prepositions 
adverbs 
subject 
verbs 
subordinating conj 
conjunctions 
expletives 

minimum 
9.5 
9.0 

10.0 
8.9 

15.5 
4.61 
5.72 

23% 
7% 

31% 
19% 
2% 
2% 

26% 
10% 
8% 

12% 
10.1% 
1.8% 
1.2% 

23.6% 
15.4% 
1.2% 
2% 
6% 
0% 

56% 
0% 
1% 
0% 
0% 

maximum 
16.9 
17.4 
16.0 
17.0 
30.3 

5.63 
7.30 

46% 
20% 
71% 
50% 
14% 
19% 
64% 
40% 
24% 
50% 
15.0% 
4.8% 
5.0% 

31.6% 
27.1% 
8.4% 
5% 

19% 
20% 
85% 

4% 
12% 

4% 
6% 

mean 
13.3 
13.3 
12.7 
14.4 
21.6 
5.08 
6.52 

33% 
14% 
49% 
33% 

7% 
10% 
44.7% 
21% 
15.1% 
29% 
12.3% 
3.4% 
3.4% 

27.8% 
21.1% 
2.5% 
3.3% 

12% 
9% 

70% 
1% 
5% 
0% 
2% 

standard deviation 
2.2 
2.5 
1.8 
2.2 
4.0 

.29 

.45 
5.9 
2.9 

11.4 
8.3 
3.3 
4.8 

10.3 
8.7 
4.8 
9.3 
1.6 

.9 
1.0 
1.7 
3.4 
1.1 

.8 
3.4 
4.6 
8.0 
1.0 
2.7 
1.5 
1.7 

styles, although author 2 uses somewhat shorter sentences and longer words than author 1. 
Author 1 uses all types of sentences, while author 2 prefers simple and complex sentences, using 
few compound or compound-complex sentences. The other major difference in the styles of these 
authors is the location of subordination. Author 1 seems to prefer embedded or trailing subordina­
tion, while author 2 begins many sentences with the subordinate clause. The documents tested for 
both authors 1 and 2 were technical documents, written for a technical audience. The instructional 
documents, which are written for craftspeople, vary surprisingly little from the two technical sam­
ples. The sentences and words are a little longer, and they contain many passive and auxiliary 
verbs, few adverbs, and almost no pronouns. The instructional documents contain many impera­
tive sentences, so there are many sentence with verb openers. The sample of Federalist Papers con­
trasts with the other samples in almost every way. 

5.2. DICTION 
In the few weeks that DICTION has been available to users about 35,000 sentences have been 

run with about 5,000 string matches. The authors using the program seem to make the suggested 
changes about 50-75% of the time. To date, almost 200 of the 450 strings in the default file have 
been matched. Although most of these phrases are valid and correct in some contexts, the 50-75% 

/~\ 
( I V( 



-9-

Table 2 

(--- Text Statistics on Single Authors 

variable author 1 author 2 inst. FED 
readability Kincaid 11.0 10.3 10.8 16.3 

automated 11.0 10.3 11.9 17.8 
Coleman-Liau 9.3 10.1 10.2 12.3 
Flesch 10.3 10.7 10.1 15.0 

sentence info av sent length 22.64 19.61 22.78 31.85 
av word length 4.47 4.66 4.65 4.95 
av nonfunction length 5.64 5.92 6.04 6.87 
short sent 35% 43% 35% 40% 
Ions sent 18% 15% 16% 21% 

sentence types simple 36% 43% 40% 31% 
complex 34% 41% 37% 34% 
compound 13% 7% 4% 10% 
com~ound-com~lex 16% 8% 14% 25% 

verb type tobe 42% 43% 45% 37% 
auxiliary 17% 19% 32% 32% 
infinitives 17% 15% 12% 21% 
~assives 20% 19% 36% 20% 

word usage prepositions 10.0% 10.8% 12.3% 15.9% 
conjunctions 3.2% 2.4% 3.9% 3.4% 
adverbs 5.05% 4.6% 3.5% 3.7% 
nouns 27.7% 26.5% 29.1% 24.9% 
adjectives 17.0% 19.0% 15.4% 12.4% 
pronouns 5.3% 4.3% 2.1% 6.5% 

( nominalizations 1% 2% 2% 3% 
sentence openers prepositions 11% 14% 6% 5% 

adverbs 9% 9% 6% 4% 
subject 65% 59% 54% 66% 
verb 3% 2% 14% 2% 
subordinating conj 8% 14% 11% 3% 
conjunction 1% 0% 0% 3% 
expletives 3% 3% 0% 3% 

change rate seems to show that the phrases are used much more often than concise diction war-
rants. 

6. Accuracy 

6.1. Sentence Identification 

The correctness of the STYLE output on the 20 document sample was checked in detail. 
STYLE misidentified 129 sentence fragments as sentences and incorrectly joined two or more sen-
tences 75 times in the 3287 sentence sample. The problems were usually because of nonstandard 
formatting commands, unknown abbreviations, or lists of non-sentences. An impossibly long sen-
tence found as the longest sentence in the document usually is the result of a long list of non-
sentences. 

6.2. Sentence Types 

Style correctly identified sentence type on 86.5% of the sentences in the sample. The type 
distribution of the sentences was 52.5% simple, 29.9% complex, 8.5% compound and 9% 

() compound-complex. The program reported 49.5% simple, 31.9% complex, 8% compound and 



-10-

10.4% compound-complex. Looking at the errors on the individual documents, the number of sim­
ple sentences was under-reported by about 4% and the complex and compound-complex were 
over-reported by 3% and 2%, respectively. The Collowing matrix shows the programs output vs. 
the actual sentence type. 

Actual 
Sentence 

Type 

simple 
complex 
compound 
comp-complex 

Program Results 
simple complex 

1566 132 
47 892 
40 6 
o 52 

compound 
49 

6 
207 

5 

comp-complex 
17 
65 
23 

249 

The system's inability to find imperative sentences seems to have little effect on most of the 
style statistics. A document with half of its sentences imperative was run, with and without the 
imperative end marker. The results were identical except Cor the expected errors of not finding 
verbs as sentence openers, not counting the imperative sentences, and a slight difference (1%) in the 
number of nouns and adjectives reported. 

6.3. Word Usage 

The accuracy of identifying word types reflects that of PARTS, which is about 95% correct. 
The largest source of confusion is between nouns and adjectives. The verb counts were checked on 
about 20 sentences from each document and Cound to be about 98% correct. 

7. Technical Details 

7.1. Finding Sentences 

The Cormatting commands embedded in the text increase the difficulty of finding sentences. 
Not all text in a document is in sentence Corm; there are headings, tables, equations and lists, for 
example. Headings like "Finding Sentences" above should be discarded, not attached to the next 
sentence. However, since many of the documents are Cormatted to be phototypeset, and contain 
font changes, which usually operate on the most important words in the document, discarding all 
formatting commands is not correct. To improve the programs' ability to find sentence boun­
daries, the deCormatting program, DEROFF [13], has been given some knowledge of the formatting 
packages used on the UNIX operating system. DEROFF will now do the following: 

1. Suppress all formatting macros that are used for titles, headings, author's name, etc. 

2. Suppress the arguments to the macros for titles, headings, author's name, etc. 

3. Suppress displays, tables, footnotes and text that is centered or in no-fill mode. 

4. Substitute a place holder for equations and check for hidden end markers. The place holder 
is necessary because many typists and authors use the equation setter to change fonts on 
important words. For this reason, header files. containing the definition of the EQN delim­
iters must also be included as input to STYLE. End markers are often hidden when an equa­
tion ends a sentence and the period is typed inside the EQN delimiters. 

5. Add a "." after lists. If the flag -ml is also used, all lists are suppressed. This is a separate 
flag because of the variety of ways the list macros are used. Often, lists are sentences that 
should be included in the analysis. The user must determine how lists are used in the docu­
ment to be analyzed. 

Both STYLE and DICTION call DEROFF before they look at the text. The user should 
supply the -ml flag if the document contains many lists of non-sentences that should be skipped. 

/ "-
, 

'",- j 

c 



- 11-

7.2. Details ofDICTlON 

The program DICTION is based on the string matching program FGREP. FGREP takes as 
input a file of patterns to be matched and a file to be searched and outputs each line that contains 
any of the patterns with no indication of which pattern was matched. The following changes have 
been added to FGREP: 

1. The basic unit that DICTION operates on is a sentence rather than a line. Each sentence 
that contains one of the patterns is output. 

2. Upper case letters are mapped to lower case. 

3. Punctuation is replaced by blanks. 

4 All pattern matches in the sentence are found and surrounded with "[" "l" . 
5. A method for suppressing a string match has been added. Any pattern that begins with ..-" 

will not be matched. Because the matching algorithm finds the longest substring, the 
suppression of a match allows words in some correct contexts not to be matched while allow­
ing the word in another context to be found. For example, the word "which" is often 
incorrectly used instead of "that" in restrictive clauses. However, "which" is usually correct 
when preceded by a preposition or ",". The default pattern file suppresses the match of the 
common prepositions or a double blank followed by "which" and therefore matches only the 
suspect uses. The double blank accounts for the replaced comma. 

8. Conclusions 

A system of writing tools that measure some of the objective characteristics of writing style 
has been developed. The tools are sufficiently general that they may be applied to documents on 
any subject with equal accuracy. Although the measurements are only of the surface structure of 
the text, they do point out problem areas. In addition to helping writers produce better docu­
ments, these programs may be useful for studying the writing process and finding other formulae 
for measuring readability. 



- 12-

References 

1. L. L. Cherry, "PARTS - A System for Assigning Word Classes to English Text," submitted 
Oommunicationa of tile AOM. 

2. B. W. Kernighan and J. R. Mashey, "The UNIX Programming Environment," Software -
Practice S Experience, 9, 1-15 (1979). 

3. G. R. Klare, "Assessing Readability," Reading Reaearcla Quarterl" 1974-1975,10 ,62-102. 

4. E. A. Smith and P. Kincaid, "Derivation and validation of the automated readability index 
for use with technical materials," Human F4ctora, 1970, 12,457-464. 

5. J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, "Derivation of new reada­
bility formulas (Automated Readability Index, Fog count, and Flesch Reading Ease Formula) 
for Navy enlisted personnel," Navy Training Command Research Branch Report 8-75, Feb., 
1975. 

6. M. Coleman and T. L. Liau, "A Computer Readability Formula Designed for Machine Scor-
ing," Journal of Applied Pa,claolog" 1975,60,283-284. 

7. R. Flesch, "A New Readability Yardstick," Journal of Applied Paychoiogy, 1948,32,221-233. 

8. E. U. Coke, private communication. 

9. D. W. Ewing, Wn'ting for Ruulta, John Wiley & Sons, Inc., New York, N. Y. (1974). 

10. G. Leggett, C. D. Mead and W. Charvat, Prentice-Hall Handbook for Writera, Seventh Edi­
tion, Prentice-Hall Inc., Englewood Cliffs, N. J. (1978). 

11. E. B. Coleman, "Learning of Prose Written in Four Grammatical Transformations," Journal 
of Applied Psychology, 1965, vol. 49, no. 5, pp. 332-341. 

12 A. V. Abo and M. J. Corasick, "Efficient String Matching: an aid to Bibliographic Search," 
Oommunications of the AOM, 18, (6), 333-340, June 1975. 

13. Bell Laboratories, "UNIX TIME·SHARING SYSTEM: UNIX PROGRAMMER'S 
MANUAL, "Seventh Edition, Vol. 1 (January 1979). 

o 



- 13-

Appendix 1 

( STYLE Abbreviations 

a. d. 
A.M. 
a.m. 
b. c. 
Ch. 
ch. 
ckts. 
dB. 
Dept. 
dept. 
Depts. 
depts. 
Dr. 
Drs. 
e. g. 
Eq. 
eq. 
et aI. 
etc. 
Fig. 
fig. 
Figs. 

( 
figs. 
ft. 
i. e. 
in. 
Inc. 
Jr. 
jr. 
mi. 
Mr. 
Mrs. 
Ms. 
No. 
no. 
Nos. 
nos. 
P.M. 
p.m. 
Ph.D. 
Ph. d. 
Ref. 
ref. 
Refs. 
refs. 
St. 
VB. 

yr. 

C , 



- 14-

Appendix 2 

Default DICTION Patterns C 
a INM dell of _fer paI'$kID SIIIrfuIlbat ID \he Ibrm of 
a IIrp Jl1IIIlber of c:bedIlDk) I!w ID 1I1imb1ir III \he illAllloeof 
a)o$of c:bedI 011 lie ..-..r.Y III $lie IDIerim 
amtlOli$yf1I c:bedI up 01\ IIIIIl CDqIieUeIl ID \he Iart IIIaQIsls 
aJadtor drde UOIIIId lIIIIl_cIIDc III \he Dlt.er of 
a Jl1IIIlber f1l dole pnIIIIdty IIIIIl CIIRalI!le ID $lie _ future 

a parUc:uIar pnilnBce tor ~&optIaer 1IIIIl~ III \he IId&bborbood of 
a pnilnBoe tor CDIIeI:$~ III\IlIJe III $lie IIOt k)o dlsta.nt future 
a..u 1I1imb1ir of CDDIbIDe~ IIDd 1\ ID ___ k) m- ID $lie prmdmItyof 
a &4DdIIIQ' k) _k)1II111d _aDd~ ID $lie JUlIe of 
aIIo?emeIIlIoDed _oe -lIeCbmIDP ID $lie .me wa,y IS desaibed 
abIoI1Mb' 1lO!q)1e$e _aaaard blDl&Ja&ed ID \he IIbape of 
abIoI1Mb' _UII. fDIqNIIAlIOII IIa\)' ID lhe "'dIIlty of 
aalOIqIlIshed ClDlq)I5e\Y dIIdDUed IIIkIw II\er ID &Ills cue 
IIImI'IIInCb' CDIq)I!Ie IIIIowIIIIIIt« ID YIew of tbe 
aISIYMe ~ IIr lhe pIII'pCIIe f1l III vIol»loD f1l 
.anal -nC:& IIII1\wH1p11011 or IIr \he _ lbat lII&1m.lCDIS 
addecIlDCI'IIIDeDU CDI\Iec:&IIN IIr \he IllqlJe_lbat IDdIcaIe 
adIqWe eIIOucb CDIIIIIIe& up Ibr&bls_ lIId1ca&1ve of 
advsIt 

_ f1lop1DlcG 
IIr JOUI' IDI'orII5IoD IDItlallle 

dII'd III opponUll1ty ~'lWIIIt hill Ibe paID' or YIew or IDItIate 
IIIIftPw IlOIIICIIIdUe~ run aDd IlO!q)Ie$e lQIuriOUI k) 
aD of 1lOIIIInIc:& .-allY acrwl lllqu1Je 
aD IIIroQlhout C»1It11q11Me pod IIId IDo1deof 
110111 $lie IlDe _llDueOIl pk) IDItItuwa 
IIIlndlcatloD of IDlltlDue k) ftIIDIID PI*UIk)1II InleDtII IIId purposes 
ualYatloD CDIIId f1l ..-17 IIUIInUe ID~ 
aDd .e IlOlIIItup lBdup ImprdJe!s 
aDd or c»upJe&optlaer IIIIpbUS II deftned &I 

UIOther IdditloDal cIebaIe about IIdpe In ,be pIOduc:&loD or II '-' k) IlOlItrol 
~ IIId all decide 011 bopeful IIwbeD 
urlw" a cIdeIeriolll 6c:& II' IIId wIleD IIwbft 
u a matler of lacS -- II' 1& all paElble 1\ IllDeumbeDt 
u ametbodof dllmJllan.le IJq)ad 1\ _III k) I'IIUOII 

IS &DOd or '*fer thaD deprecll&e In value IJq)lImIDt 1\ .... DOted tbl& If 
IS ofD<IW dIIIerYID& of ~'_$IaIt joint aoope'1.tIon 
uper dllalrable buiIIlB ~tb' joint pvloersbip (~ 
u ftIPI'ds dIl8Ilous ot In , IIrp .-ure JIIIt t!lOClly 
u!elaled k) dlllfnDt $hili In a pclBUIOD to IdDd of ~j 
uto dIsaIIItlnue In acoordaDoe lIDow about 
~oe dllUSWty In advllloe of bat but not 1east 
Ullstliloe k) divide up In apwnml with lMeron 
Ullstliloe k) doubt but Inall_ ieavllll out of consldontlon 

UBUIdDc $h" duek) ID back of liable 

"alat.er dUe dulynoWd In bebalfof lIDkup 

" about durIDI ,be 11m! \bI& In beblDd Ut.eraIly 

at above eadlllld f!IMY In,*_ U\\Je doubt that 

at all \Imes .ny bCIDDIDP Incase iaaeout 011 

" III .ny date etrec:&UI&e ID cIaae proJdIdty Jots of 

" below 
tn1)t.Ionai feelIDp ID ccdlG. with IIIIID _tI&ls 

IIllbep_t fIllI\yout In CDIIjunelioll wltb make, 

" $lie time when lllciaaed herdJl In CIIIIIIIIc:&IoII with make IdjllltlIBllB to 

" \his point In 11m! lllciaaed IInwIth In rac:& make an 
,,&Ills time IIId ftIIU!\ In IIrp meuure make appllcatlon to 

III which time IIIdup InJIaItYCUIlI make CODt&C$ wltb 

at 10Ul e&I'Ik$ C:OIIWlllence 
_ de&vor In II1II\ _ make IIBltloD or 

"borlzMlOII 1IIt.er In III Q' oplDloD I \hIDk make out , lilt of 

awful 1IIt.er 1Dk) In order \0 make \be IeqUllntllloe ot 
bIIIe fuDdameD1.Us III$hUlell 

In ..... _ make \be Idjus\mellt 

bIIIc:aIly . e\lrtbr CDIq)lete ID nltnaoe to -be ClllDlaDt of equIb' &DOd u Innprd \0 IIUImIm paElble 

IIIIIDc • -'IaIIy 1IInprd1 k) IIII&IIIDcful 
bUclbat _tUl&e III nPiIoII with maupwltb 

IIriIII' In dur&tlOll .., DOW and IbeD In fhon II1PJIly IJIIjt down 

brIDe to , c»Ddwdoll IDClly IdIIItlc&l 111_ DUUP 

bUS tIIat IKJ)II'IIIIcq dIlIIculty In t.erIIII f1l IIII&bocIolocY 

bUSwbM ~rlcMe In &be UllDUDt of JDcb~or 

by_of I'ce up to In \he case of JdIIInUe IS far IS possible 

bylbe UIe of IIdI1tMe In \be_of IdDor \IqIort.llloe 

CIn)' out erpel!milltII tad8 and IIcuNB In \heMDl !dis oul on 
__ aboUS I'u\ In IdIen In \be IIeId ot JPICWlcatlon __ III'OIIIICI 

Mrfulof 

C 



- 15-

_ preren.b\e _appanut ~whI\e 

IIIlRUDI~ 
.ad I. __ c:MIaD 

would of 
IIIISI or Ibar& 811M! of \!me IDe beb&vIor ( .. ,- amtu&! c:oopen&loo IIIIauld or wile 
.-alY rfJIIIIIs"e IIDc\e 1l1li\ - wblc:b 
1IfICSSI\&1e ~ -lIbomwblen 
Deed tor 10.\0 - Iller wblen 
Dice lCI'lor - »whlc:b 
110\ be un _0m - '*-1wb1d1 
110\ In & posItiOD \0 II1II ClllSiDue • bywblc:b 
DOt of & bIgb order ot acauaq II1II ftIIIIID - Illwblen 
110\ un IIlIacpDt - !tanwblen 
IIO\wI~hst.a.DdiDI IllbaIDUaI\Y In ...-t . -ID wblen 
of coosldenb\e IIIICDitucie IIICDSIID - lD\owblen 
oftbat IQIPIIIYe of - otwblen 
of tbe oplDloD til» IIUpfI'Icr tbIIl - III wblen 
off or IIIn'OlIDdIDc drc:uIIINDClIII - III wblen 
OD a few occuIolI8 &Ike IPPropria&e -_wblen 
OD ICa)UD~ of &Ike qDiaDce or - *"UIh wblc:b 
OD bebal1' of &Ike IDto cooslcln&loo • \owhlc:b 
OD Ibe grounds Ib» &enmdu -aD'" wblen 
OD \be occasion ItndDa&e - 1IpaII wblen 
OD \be part of WIdDIlIoo - wllb wblen 
oneoftbe \be aulbor - wIIbou.t wbldl 
opeD up Ibe&lllbon - dDc:Icw\Ie 
open.\e! \0 ClD~ IbeCMe \bill -1IkewIIe 
outside of \be tid -~ 

_with \be fOftlOiDl 
cmnIl \be ro.-b\e Mure 
past hIstol)' \be tuIIest poasIb\e fIiIWIIt 
ptroepUve of tbe maJority of 
p«fonn a IIJeISUMJlIIlt \be1lMure 
p«fonn t.he IIIIIIBII!'erDet \be IIfICSSIty or 
permta t.he reduCSlOD or \be oDly dIffereoce beIDC Ibat 
pmooalille \be order of 
ptrta!n1Dg to \be point lbat 
pbyslcal silIe \betrulb Is 
plan ahead IbIft are DOt DIlDY 
plan for the Mure \broUlh tbe medium or 
plan In advance \broUlh \be use of 
plan OD \broUChout \be IIItlre 
present a ClDDduslon \!me 1n&ll'Val 

( present a report to IUDUIIlDe tbe above 
presently Io&al 6ct or all this 
prior to tcQ))'Y 
prioritize tn.DspIre 
proceed to true fKU 
procure tI)' and 
produCSlve or altlnatemd 
prolong ,be duration UDder a ..,arate cow:r 
protrude out from UDder date of 
provided that un ... ~ CCMlI' 

puJ'BUaIltto under \be ~ty to 
put to use In under\YIDI p1Jl'PClE 
range all the wa.v from IIDdertake a study 
rasDD Is because UDIto~ CDDIIsIent 
rasDn why UDI'P' 
recur again IIDtIlSUc:b time 18 
reduce dawD up \0 ibis \!me 
ftIer back u)l8bot 
ftlermre to ibis utilize 
ftiIIectlve or ~ 

recardiDI ~ ClDlq)ieIe 
ncrettul ~UDI'P' 
nInItlal.e $11 
re1aUve to whlen 
rtpeat again wllbI.~to 

I'I!PnBllltlllve or wllb ntermoe to 
rsu1ta.nt Sleet wllb recard to 
ftI1IlII! again wllb \be exception or 
"'reat bade wllb \be objeCS or 
",urn again wllb \be rsu1t ,bat 
",urn bad: wllb this In JdDd, It Is dIsr tbat 
!'MIt bacIi: wllbID \be rslm of poaIbW~ 
aloft' wIIbout fUrIbIr deIJ,y 

C: 



o 



( 

Introduction 

NROFF /TROFF User's Manual 

Joseph F. Ossanna 

Bell Laboratories 
Murray Hill, New Jersey 07974 

NROFF and TROFF are text processors under the PDP-ll UNIX Time-Sharing System! that format text for 
typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept. lines of 
text interspersed with lines of format control information and format the text into a printable, paginat.ed 
document having a user-designed style. NROFF and TROFF offer unusual freedom in document st.yling, 
including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic sequence 
numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size control; arbi­
trary horizontal and vertical local motions at any point; and a family of automatic overstriking, bracket 
construction, and line drawing functions. 

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare 
input acceptable to both. Conditional input is provided that enables the user to embed input expressly 
destined for either program. NROFF can prepare output directly for a variety of terminal types and is 
capable of utilizing the full resolution of each terminal. 

Usage 

The general form of invoking NROFF (or TROFF) at U1\1X command level is 

nroft' opt£ons files (or troft' options files) 

where opt£ons represents any of a number of option arguments and files represents the list of files contain­
ing the document to be formatted. An argument consisting of a single minus (-) is taken to be a file name 
corresponding to the standard input. If no file names are given input is taken from the standard input. 
The options, which may appear in any order 50 long as they appear before the files, are: 

Option Effect 

-aNst Print only pages whose page numbers appear in list, which consists of comma­
separated numbers and number ranges. A number range has the form N-M and 
means pages N through AI; a initial -N means from the beginning to page N; and a 
final N- means from Nto the end. 

-nN Number first generated page N. 

-sN Stop every N pages. NROFF will halt prior to every N pages (default N 1) to allow 
paper loading or changing, and will resume upon receipt of a newline. TROFF will 
stop the phototypesetter every N pages, produce a trailer to allow changing cassettes, 
and will resume after the phototypesetter START button is pressed. 

-mname Prepends the macro file /usr/lib/tmae.name to the input files. 

-raN Register a (one-character) is set to N. 

-i Read standard input after the input files are exhausted. 

-q Invoke the simultaneous inpu~output mode of the rd request. 

- 1 -



NROFF jTROFF User's Manual 
October 11, 1976 

NROFF Onl, 

-Tname Specifies the name of the output terminal type. Currently defined names are 37 for 
the (default) Model 37 Teletype~, tn300 for the GE TermiNet 300 (or any terminal 
without half-line capabilities), 300S for the DASI-300S, 300 for the DASI-300, and 
450 for the DASI-450 (Diablo Hyterm). 

-e Produce equally-spaced words in adjusted lines, using full terminal resolution. 

TROFF Only 

-t Direct output to the standard output instead of the phototypesetter. 

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run. 

-w Wait until phototypesetter is available, if currently busy. 

-b TROFF will report whether the phototypesetter is busy or available. No text process-
ing is done. 

-a Send a printable (ASCII) approximation of the results to the standard output. 

-pN Print all characters in point size N while retaining all prescribed spacings and 
motions, to reduce phototypesetter elasped time. 

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct it 
to the standard output. 

Each option is invoked as a separate argument; for example, 

nroft' -04,8-10 -T900S -mabc fiJel fiJe2 

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named fiJe1 and file 2, 
specifies the output terminal as a DASI-300S, and invokes the macro package abc. 

Various pre- and post-processors are available for use with NROFF and TROFF. These include the equation 
preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table-construction preproces­
sor TBL3. A reverse-line postprocessor COL4 is available for multiple-column NROFF output on terminals 
without reverse-line ability; COL expects the Model 37 Teletype escape sequences that NROFF produces by 
default. TK4 is a 37 Teletype simulator postprocessor for printing NROFF output on a Tektronix 4014. 
TCAT4 is phototypesetter-simulator postprocessor for TROFF that produces an approximation of photo­
typesett,er output on a Tektronix 4014. For example, in 

tbl fiJes I eqn I troft' -t options I teat 

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output to 
TROFF's input; and the third indicates the piping of TROPP's output to TCAT. GCAT4 can be used to 
send TROPF (-g) output to the Murray Hill Computation Center. 

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the index; 
and a set of Tutorial Examples. Another tutorial is [5J. 

Joseph F. Ossanna 

References 

il] K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975). 

[2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laborat.ories 
internal memorandum. 

[3J M. E. Lesk, Tbl - A Program to Format Tables, Bell Laboratories internal memorandum. 

[4] Internal on-line documentation, on UNIX. 

[5] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum. 

- 2-



( 

NROFF /TROFF User's Manual 
October 11, 1976 

SUMMARY AND INDEX 

II No Request 
Form 

Initial 
Value- Argament Note3# E:qlanation 

1. General Explanation 

2. Font and Character Size Control 

.ps ±N 10 point 

.8. N 12/36 em 

.csF NM off 

.bd F N off 

.bd SF N off 

.tt FRoman 

.tp N F R,I,B,S 

3. Page Control 

.pl±N 11 in 

.bp ±N N=l 

.pn ±N N=l 

.po ±N 0; 26/27 in 
• ne N 
.mk R none 
. rt ±N none 

previous 
ignored 

previous 
ignored 

11 in 

ignored 
previous 
N=lV 
internal 
internal 

E 
E 
P 
P 
P 
E 

v 
B;,v 

v 
D,v 
D 
D,v 

4. Text Filling, Adjusting, and Centering 

.br B 

.li fill 

.nr fill 

.ad c adj,both 

.na adjust 

.ce N off 

5. Vertical Spacing 

• vs N 1/6in;12pts 
.Is N N=1 
• sp N 
.svN 
• os 
.ns 
.rs 

space 

adjust 

N=l 

previous 
previous 
N=lV 
N=lV 

6. Line Length and Indenting 

B,E 
B,E 
E 
E 
B,E 

E,p 
E 
B,v 
v 

D 
D 

Point size; also \s±N. t 
Space-~haracter size set to N/36 em.t 
Constant character space (width) mode (font F}.t 
Embolden font Fby N-l units.t 
Embolden Special Font when current font is F. t 
Change to font F = X, xx, or 1-4. Also \lx, \f(xx, \fN. 
Font named F mounted on physical position 1~N~4. 

Page length. 
Eject current page; next page number N. 
Next page number N. 
Page offset. 
Need N vertical space (V = vertical spacing) . 
Mark current vertical place in register R. 
Return (upward only) to marked vertical place . 

Break. 
Fill output lines. 
No filling or adjusting of output lines. 
Adjust output lines with mode c. 
No output line adjusting. 
Center following N input text lines. 

Vertical base line spacing (Y) . 
Output N-l Vs after each text output line. 
Space vertical distance N in either direction . 
Save vertical distance N. 
Output saved vertical distance . 
Turn no-space mode on. 
Restore spacing; turn no-space mode off. 

.11 ±N 6.5 in previous E,m Line length . 
• in ±N N=O previous B,E,m Indent . 
• ti ±N ignored B,E,m Temporary indent. 

7. Macros, Strings, Diversion, and Position Traps 

.de xx yy .1111=.. Define or redefine macro xx; end at call of 1IY· 

.am xx 1111 .1111=.. Append to a macro . 
• ds xx string - ignored Define a string xx containing string . 
. as xx string - ignored Append string to string xx. 

·Values separated by";" are for NROFF and TROFF respectively. 

*Notes are explained at the end of this Summary and Index 

tNo effect in NROFF. 
:!:The use of" ," as control character (instead of ".") suppresses the break function. 

- 3-



NROFF /TROFF User's Manual 
October 11, 1976 

Requut Initial 11 No 
Form Value Ar,wment Note. Eqlanation 

.rm xx 

.rn xx 1/1/ 

.di xx 

.da xx 

.wh Nxx 

.eh xx N 

.dt Nxx 
• it N xx 
• em xx none 

8. Number Registers 

ignored 
ignored 
end 
end 

oft' 
oft' 
none 

.m R±N M- u 

. at R c arabic 
• 1'1' R 

9. Tabs, Leaders, and Fields 

• ta Nt ... 0.8; 0.5in none 
.tc c 
.Ic c 
.fc a h 

none 

oft' 

none 
none 
off 

D 
D 
v 
v 
D,v 
E 

Remove request, macro, or string. 
Rename request, macro, or string xx to yy. 
Divert output to macro xx. 
Divert and a.ppend to xx. 
Set location trap; negative is w.r.t. page bottom. 
Change trap location. 
Set a diversion trap . 
Set an input-line count trap. 
End macro is xx . 

Define and set number register R; auto-increment by M. 

E,m 
E 
E 

Assign format to register R (c=l, i, I, a, A) . 
Remove register R . 

Tab settings; left type, unless t-R(right), C(centered) . 
Tab repetition character. 
Leader repetition character. 
Set field delimiter a and pad character b. 

10. Input and Output Conventions and Character Translations 

• ec c \ 
.eo on 
.Ig N -ion 
• ul N oft' 
.cu N off 
.uf F Italic 
• cc c 

\ 

on 
N=1 
N=l 
Italic 

E 
E 

Set escape character . 
Turn off escape character mechanism. 
Ligature mode on if N>O. 
Underline (italicize in TROFF) N input lines . 
Continuous underline in f'.."TROFF; like ul in TROFF. 
Underline font set to F (to be switched to by ul). 

E Set control character to c . 
.c2 c E Set nobreak control character to c . 
• tr abed.... none 0 Translate a to h, etc. on output. 

11. Local Horizontal and Vertical Motions, and the Width Function 

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions 

13. Hyphenation • 

• nh hyphenate 
.hy N hyphenate hyphenate 
.hc c \% \% 
• hw wordl ... ignored 

14. Three Part Titles. 

• tl 'left' center 'right' 
.pc c % 
• It ±N 6.5 in 

off 
previous 

15. Output Line Numbering. 

.nm ±N M S I off 

.nn N N=l 

E 
E 
E 

No hyphenation. 
Hyphenate; N = mode. 
Hyphenation indicator character c. 
Exception words . 

Three part title . 
Page number character. 

E,m Length of title . 

E 
E 

Number mode on or off, set parameters. 
Do not number next N lines. 

16. Conditional Acceptance of Input 

.if c anything If condition c true, accept anything as input, 
for multi-line use \{anything\}. 

- 4 -

o 

~. j 

o 



( 

NROFF /TROFF User's Manual 
October 11, 1976 

Request 
Form 

Initial 
Value 

• if ! c anything 
.if N anything 
• if !N anything 

II No 
Argument 

• if 'stringl ',tring!! ' anything 
.if! ',tringl ',tring!! ' anything 
• ie c anything 
.el anything 

17. Environment Switching. 

• ev N N=O previous 

Note, Eq/anation 

If condition c false, accept anything . 
u If expression N > 0, accept anytMng . 
u If expression N::; 0, accept anything. 

If stringl identical to string!!, accept anything . 
If stn'ngl not identical to string!!, accept anything. 

u If portion of if-else; all above forms (like if) . 
Else portion of if-else. 

Environment switched (push down) . 

18. Insertions from the Standard Input 

.rd prompt - prompt-BEL-
• ex 

19. Input/Output File Switching 

• so filename 
• nx filename 
• pi program 

20. Miscellaneous 

.mc eN 

end-of-file 

E,m 

Read insertion. 
Exit from NROFF /TROFF . 

Switch source file (push down) . 
Next file . 
Pipe output to program (!\TROFF only) . 

Set margin character c and separat.ion N. 
• tm string 
• ig Y1l 
.pm t 

off 
newline 
·1IY= .. 
all 

Print string on terminal (UNIX standard message output.) . 
Ignore till call of 1IY . 
Print macro names and sizes; 

. n B 
if t present, print only total of sizes. 
Flush output buffer . 

21. Output and Error Messages 

Notes-

B Request. normally causes a break. 
D Mode or relevant parameters associated with current diversion level. 
E Relevant parameters are a part of the current environment. 
0 Must stay in effect until logical output. 
P Mode must be still or again in effect at the time of physical output. 

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored. 

Alphabetical Request and Section Number Cross Reference 

ad 4 cc 10 d5 7 fe 9 ie 16 11 6 Dh 13 pi 19 rn 7 
af 8 ce 4 dt 7 Ii 4 if 16 Is 5 nm 15 pi 3 rr 8 
am 7 ch 7 ee 10 II 20 ig 20 It 14 DD 15 pm 20 rs 5 
as 7 cs 2 el 16 fp 2 in 6 me 20 Dr 8 PD 3 rt 3 
bd 2 eu 10 em 7 rt 2 it 7 mk 3 DS 5 po 3 so 19 
bp 3 da 7 eo 10 he 13 Ie 9 Da 4 DX 19 ps 2 sp 5 
br 4 de 7 ev 17 hw 13 Ig 10 De 3 os 5 rd 18 55 2 
c2 10 di 7 ex 18 by 13 Ii 10 Dr 4 pc 14 rm 7 sv 5 

- 5-

ta 9 VB 5 
tc 9 wh 7 
ti 6 
tl 14 
tm 20 
tr 10 
uf 10 
ul 10 



NROFF /TROFF User's Manual 
October 11, 1976 

Escape Sequences for Characters, Indicators, and Functions 

Section Escape 
Reference Seq.ence 

10.1 \\ 
10.1 \e 
2.1 \' 
2.1 \' 
2.1 \-
7 \. 

11.1 \(space) 
11.1 \0 
11.1 \1 
11.1 \. 
4.1 \& 

10.6 \! 
10.7 \" 
7.3 \$N 

13 \% 
2.1 \(xx 
7.1 \*x, \*(xx 
9.1 \a 

12.3 \b'abc ... ' 
4.2 \c 

11.1 \d 
2.2 \lx,V( xx,VN 

11.1 \b'N' 
11.3 \kx 
12.4 \1 'Nc' 
12.4 \L 'Ne ' 

8 . \nx,\n(xx 
12.1 \0 'abc ... ' 
4.1 \p 

11.1 \r 
2.3 \sN, \s±N 
9.1 \t 

11.1 \u 
11.1 \v'N' 
11.2 \w 'string' 
5.2 \x'N' 

12.2 \ze 
16 \{ 
16 \} 
10.7 \(newline) 

\X 

Meanin, 

\ (to prevent or delay the interpretation of \) 
Printable version of the current escape character. 
, (acute accent); equivalent to \(aa 
, (grave accent); equivalent to \(ga 
- Minus sign in the current font 
Period (dot) (see de) 
Unpaddable space-size space character 
Digit width space 
1/6 em narrow space character (zero width in NROFF) 
1/12 em half-narrow space character (zero width in NROFF) 
Non-printing, zero width character 
Transparent line indicator 
Beginning of comment 
Interpolate argument 1$N$9 
Default optional hyphenation character 
Character named xx 
Interpolate string x or xx 
Non-interpreted leader character 
Bracket building function 
Interrupt text processing 
Forward (down) 1/2 em vertical motion (1/2 line in NROFF) 
Change to font named x or xx, or position N 
Local horizontal motion; move right N (negative left) 
Mark horizontal input place in register x 
Horizontal line drawing function (optionally with c) 
Vertical line drawing function (optionally with c) 
Interpolate number register x or xx 
Overstrike characters a, b, e, ... 
Break and spread output line 
Reverse 1 em vertical motion (reverse line in NROFF) 
Point-size change function 
Non-interpreted horizontal tab 
Reverse (up) 1/2 em vertical motion (1/2 line in JI.'ROFF) 
Local vertical motion; move down N (negative up) 
Interpolate width of string 
Extra line-space function (negative before, positive after) 
Print c with zero width (without spacing) 
Begin conditional input 
End conditional input 
Concealed (ignored) newline 
X, any character not listed above 

The escape sequences \\, \., \", \$, \*, \a, \n, \t, and \(newline) are interpreted in copy mode (§7.2). 



(-

( 

o 

NROFF /TROFF User's Manual 
October 11, 1976 

Predefined General Number Registers 

Section Register 
Reference Name Deacription 

3 % Current page number. 
11.2 ct Character type (set by width function). 
7.4 dl Width (maximum) of last completed diversion. 
7.4 dn Height (vertical size) of last completed diversion. 

dw Current day of the week (1-7). 
dy Current day of the month (1-31). 

11.3 hp Current horizontal place on input line. 
15 In Output line number. 

mo Current month (1-12). 
4.1 nl Vertical position of last printed text base-line. 

11.2 sb Depth of string below base line (generated by width function). 
11.2 st Height of string above base line (generated by width function). 

yr Last two digits of current year. 

Predefined Read-Only Number Registers 

Section Register 
Reference Name 

7.3 .$ 
.A 

11.1 . H 
. T 

11.1 .V 
5.2 .a 

• C 

7.4 .d 
2.2 • f' 
4 • h 
6 .i 
6 • 1 
4 .n 
3 .0 

3 .p 
2.3 .s 
7.5 .t 
4.1 .u 
5.1 .v 

11.2 .w 
• X 
• y 

7.4 .z 

Description 

Number of arguments available at the current macro level. 
Set to 1 in TROFF, if -& option used; always 1 in l\TROFF . 
Available horizontal resolution in basic units. 
Set to 1 in NROFF, if -T option used; always 0 in TROFF . 
Available vertical resolution in basic units. 
Post-line extra line-space most recently utilized using \x'N'. 
Number of lines read from current input file . 
Current vertical place in current diversion; equal to nI, if no diversion. 
Current font as physical quadrant (1-4) . 
Text base-line high-water mark on current page or diversion . 
Current indent. 
Current line length . 
Length of text portion on previous output line. 
Current page offset. 
Current page length. 
Current point size. 
Distance to the next trap. 
Equal to 1 in fill mode and 0 in nofill mode. 
Current vertical line spacing. 
Width of previous character. 
Reserved version-dependent register . 
Reserved version-dependent register . 
Name of current diversion. 

-7-



NROFF /TROFF User's Manual 
October 11, 1976 

1. General Explanation 

REFERENCE MANUAL 

1.1. Form of input. Input consists of text line8, which are destined to be printed, interspersed with control 
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a control 
character-normally. (period) or ' (acute accent)-followed by a one or two character name that specifies a 
basic request or the substitution of a user-defined macro in place of the control line. The control character 
, suppresses the break function-the forced output of a partially filled line--caused by certain requests. 
The control character may be separated from the request/macro name by white space (spaces and/or tabs) 
for esthetic reasons. Names must be followed by either space or newline. Control lines with unrecognized 
names are ignored. 

Various special functions may be introduced anywhere in the input by means of an escape character, nor­
mally \. For example, the function \nR causes the interpolation of the contents of the number register R 
in place of the function; here R is either a single character name as in \nx, or left-parenthesis-introduced, 
two-character name as in \n( xx. 

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic 
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of 1/144 
inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the horizontal 
and vertical resolutions of various typewriter-like output devices. TROFF rounds horizontal/vertical 
numerical parameter input to the actual horizontal/vertical resolution of the Graphic Systems typesetter. 
NROFF similarly rounds numerical input to the actual resolution of the output device indicated by the -T / '\ 
option (default Model 37 Teletype). 

1.9. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale 
indicators shown in the following table, where S is the current type size in points, V is the current vertical 
line spacing in basic units, and 0 is a nominal character width in basic units. 

Scale Number of basic units 
Indicator Meaning TROFF NROFF 

i Inch 432 240 
c Centimeter 432XSO/127 240XSO/127 
P Pica = 1/6 inch 72 240/6 
m Em = Spoints 6XS 0 
n En = Em/2 3xS 0, same as Em 
p Point = 1/72 inch 6 240/72 
u Basic unit 1 1 
v Vertical line space V V 

none Default see below 

In NROFF, both the em and the en are taken to be equal to the 0, which is output-device dependent; com­
mon values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same and con­
structed characters such as - > (-) are often extra wide. The default scaling is ems for the horizontally­
oriented requests and functions 11, in, ti, ta, It, po, me, \h, and \1; Vs for the vertically-oriented requests 
and functions pi, wh, ch, dt, sp, sv, ne, n, \v, \x, and \L; p for the VB request; and u for the requests 
nr, if, and ie. All other requests ignore any scale indicators. When a number register containing an 
already appropriately scaled number is interpolated to provide numerical input, the unit scale indicator u 
may need to be appended to prevent an additional inappropriate default scaling. The number, N, may be 

-8-

0 ' .,:: -



(~ 

( 

(j 

NROFF /TROFF User's Manual 
October 11, 1976 

specified in decimal-fraction form but the parameter finally stored is rounded to an integer number of basic 
units. 

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical 
or horizontal place N. For vertically-oriented requests and functions, I N becomes the distance in basic 
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For all 
other requests and functions, I N becomes the distance from the current horizontal place on the input line to 
the horizontal place N. For example, 

osp ISo2c 

will space in the required direction to 3.2 centimeters from the top of the page. 

1..4. Numen'cal expressions. Wherever numerical input is expected an expression involving parentheses, the 
arithmetic operators +, -, I, *, % (mod), and the logical operators <, >, <=, >=, = (or ==), 
& (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is left-to­
right; there is no operator precedence. In the case of certain requests, an initial + or - is stripped and 
interpreted as an increment or decrement indicator respectively. In the presence of default scaling, the 
desired scale indicator must be attached to every number in an expression for which the desired and default 
scaling differ. For example, if the number register x contains 2 and the current point size is 10, then 

oll (4.25i+\nxP+S)/2u 

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points. 

1. 5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the argu­
ment may take the forms N, +N, or -N and that the corresponding effect is to set the affected parameter 
to N, to increment it by N, or to decrement it by N respectively. Plain N means that an initial algebraic 
sign is not an increment indicator, but merely the sign of N. Generally, unreasonable numerical input is 
either ignored or truncated to a reasonable value. For example, most requests expect to set parameters to 
non-negative values; exceptions are sp, wh, ch, nr, and if. The requests ps, ft, po, VS, ls, 11, in, and It 
restore the previous parameter value in the absence of an argument. 

Single character arguments are indicated by single lower case letters and one/two character arguments are 
indicated by a pair of lower case letters. Character string arguments are indicated by multi-character 
mnemonics. 

2. Font and Character Size Control 

2.1. Oharacter set. The TROFF character set consists of the Graphics Systems Commercial II character set 
plus a Special Mathematical Font character set--each having 102 characters. These character sets are 
shown in the attached Table I. All ASCII characters are included, with some on the Special Font. With 
three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input in the 
form \(xx where xx is a two-character name given in the attached Table II. The three ASCII exceptions are 
mapped as follows: 

ASClI Input Printed by TROFF 
Character Name Character Name 

, 
acute accent 

, 
close quote 

, 
grave accent I open quote 

- minus - hyphen 

The characters " ", and - may be input by \', \", and \- respectively or by their names (Table II). The 
ASCII characters @, #, ", " " <, >, \, {, }, -, A, and _ exist only on the Special Font and are printed as 
a I-em space if that Font is not mounted. 

NROFF understands the entire TROFF character set, but can in general print only ASCII characters, addi­
tional characters as may be available on the output device, such characters as may be able to be con­
structed by overstriking or other combination, and those that can reasonably be mapped into other print­
able characters. The exact behavior is determined by a driving table prepared for each device. The charac­
ters " ", and _ print as themselves. 

- 9-



NROFF7TROFFUser;s Manual 
October 11, 1976 

t.t. Fonu. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and the 
Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These fonts are 
used in this document. The current font, initially Roman, may be changed (among the mounted fonts) by 
use of the It request, or by imbedding at any desired point either \lx, \£(xx, or \lNwhere x and xx are the 
name of a mounted font and N is a numerical font position. It is not necessary to change to the Special 
Cont; characters on that font are automatically handled. A request for a named but not-mounted font is 
ignored. TROFF can be informed that any particular font is mounted by use of the f'p request. The list of 
known fonts is installation dependent. In. the subsequent discussion of font-related requests, F represents 
either a one/two-character font name or the numerical ,font position, 1-4. The current font is available (as 
numerical position) in the read-only number register .f. 

NROFF understands font control and normally underlines Italic characters (see §10.5). 

t.9. Character 8ize. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10, 11, 
12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is used to 
change or restore the point size. Alternatively the point size may be changed between any two characters 
by imbedding a \sN at the desired point to set the size to N, or a \s±N (1~N~9) to increment/decrement 
the size by N; \50 restores the previous size. Requested point size values that are between two valid sizes 
yield the larger of the two. The current size is available in the .s register. NROFF ignores type size con­
trol. 

Request 
Form 

.ps±N 

.55 N 

Initial 
Value 

10 point 

12/36 em 

.esF NM off 

.bd F N off 

.bd SF N off 

II No 
Argfllment Note8* Eqlanation 

previous E 

ignored E 

P 

P 

p 

Point size set to ±N. Alternatively imbed \sN or \s±N. 
Any positive size value may be requested; if invalid, the 
next larger valid size will result, with a maximum of 36. A 
paired sequence +N, -N will work because the previous 
requested value is also remembered. Ignored in NROFF. 

Space-character size is set to N/36 ems. This size is the 
minimum word spacing in adjusted text. Ignored in 
NROFF. 

Constant character space (width) mode is set on for font F 
(if mounted); the width of every character win be taken to 
be N/36 ems. If M is absent, the em is that of the 
character's point size; if M is given, the em is M-points. 
All affected characters are centered in this space, including 
those with an actual width larger than this space. Special 
Font characters occurring while the current font is Fare 
also so treated. If N is absent, the mode is turned off. The 
mode must be still or again in effect when the characters 
are physically printed. Ignored in NROFF. 

The characters in font F will be artificially emboldened by 
printing each one twice, separated by N-1 basic units. A 
reasonable value for N is 3 when the character size is in the 
vicinity of 10 points. If N is missing the embolden mode is 
turned off. The column heads above were printed with 
.bd I 3. The mode must be still or again in effect when 
the characters are physically printed. Ignored in NROFF. 

The characters in the Special Font will be emboldened 
whenever the current font is F. This manual was printed 
with .bd S B 3. The mode must be still or again in effect 
when the characters are physically printed. 

·Notes are explained at the end of the Summary and Index above. 

- 10-



( 

c 

NROFF /TROFF User's Ma.nual 
October 11, 1976 

.rtF Roma.n previous 

• fpNF R,I,B,S ignored 

3. Page control 

E Font cha.nged to F. Alternatively, imbed \fF. The font 
name P is reserved to mean the previous font . 

Font position. This is a statement that a font named F is 
mounted on position N (1-4). It is a fatal error if F is not 
known. The phototypesetter has four fonts physically 
mounted. Each font consists of a film strip which can be 
mounted on a numbered quadra.nt of a wheel. The default 
mounting sequence assumed by TROFF is R, I, B, and S on 
positions 1, 2, 3 and 4. 

Top and bottom margins are not automatically providedj it is conventional to define two macros and to set 
traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 a.nd Tutorial Examples 
§T2. A pseudo-page transition onto the first page occurs either when the first break occurs or when the first 
non-diverted text processing occurs. Arrangements for a trap to occur at the top of the first page must be 
completed before this transition. In the following, references to the current diversion (§7.4) mean that the 
mechanism being described works during both ordinary and diverted output (the former considered as the 
top diversion level). 

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about 
1/2i inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on NROFF 
output are output-device dependent. 

Request Initial If No 
Form Value Argument Notes Ezplanation 

.pl ±N 11 in 11 in 

• bp ±N N=1 

.pn ±N N=1 ignored 

.po ±N OJ 26/27 int previous 

.ne N N=1 V 

.mkR none internal 

v Page length set to ±N. The internal limitation is about 
75 inches in TROFF and about 136 inches in NROFF. The 
current page length is available in the .p register . 

B* ,v Begin page. The current page is ejected and a new page is 
begun. If ±N is given, the new page number will be ±N. 
Also see request DS. 

v 

D,v 

D 

Page number. The next page (when it occurs) will have 
the page number ±N. A pn must occur before the initial 
pseudo-page transition to effect the page number of the 
first page. The current page number is in the % register. 

Page offset. The current left margin is set to ±N. The 
TROFF initial value provides about 1 inch of paper margin 
including the physical typesetter margin of 1/27 inch. In 
TROFF the maximum (line-length )+(page-offset) is about 
7.54 inches. See §6. The current page offset is available in 
the .0 register. 

Need N vertical space. If the distance, D, to the next trap 
position (see §i .5) is less than N, a forward vertical space 
of size D occurs, which will spring the trap. If there are no 
remaining traps on the page, D is the distance to the bot­
tom of the page. If D < V, another line could still be out­
put a.nd spring the trap. In a diversion, D is the distance 
to the diversion trap, if any, or is very large. 

Mark the current vertical place in an internal register (both 
associated with the current diversion level), or in register 

·The use of" ." as control character (instead of ".") suppresses the break function. 

tValues separated by "j" are for NROFF and TROFF respectively. 

- 11 -



NROFF /TROFF User's Manual 
October 11, 1976 

R, if given. See rt request . 

.rt ±N none internal D,v Return upward only to a marked vertical place in the 
current diversion. If ±N(w.r.t. current place) is given, the 
place is ±N from the top of the page or diversion or, if N 
is absent, to a place marked by a previous mk. Note that 
the sp request (§5.3) may be used in all cases instead of I't 
by spacing to the absolute place stored in a explicit regis­
ter; e. g. using the sequence .mk R ... .sp l\nRu. 

4:. Text Filling, Adjusting, and Centering 

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a output 
text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to assem­
ble a part of it into the output line. The spaces between the words on the output line are then increased to 
spread out the line to the current line length minus any current indent. A word is any string of characters 
delimited by the space character or the beginning/end of the input line. Any adjacent pair of words that 
must be kept together (neither split across output lines nor spread apart in the adjustment process) can be 
tied together by separating them with the unpaddable space character "\ .. (backslash-space). The adjusted 
word spacings are uniform in TROFF and the minimum interword spacing can be controlled with the 5S 

request (§2). In NROFF, they are normally nonuniform because of quantization to character-size spaces; 
however, the command line option -e causes uniform spacing with full output device resolution. Filling, 
adjustment, and hyphenation (§13) can all be prevented or controlled. The text length on the last line out­
put is available in the .n register, and text base-line position on the page for this line is in the nl register. 
The text base-line high-water mark (lowest place) on the current page is in the .h register. 

An input text line ending with ., !, or ! is taken to be the end of a sentence, and an additional space char­
acter is automatically provided during filling. Multiple inter-word space characters found in the input are 
retained, except for trailing spaces; initial spaces also cause a break. 

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the 
word and have the resulting output line spread out to fill the current line length. 

A text input line that happens to begin with a control character can be made to not look like a control line 
by prefacing it with the non-printing. zero-width filler character \&. Still another way is to specify output 
translation of some convenient character into the control character using tr (§10.5). 

4.e. Interrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by terminating 
the partial line with a \c. The next encountered input text line will be considered to be a continuation of 
the same line of input text. Similarly, a word within filled text may be interrupted by terminating the 
word (and line) with \c; the next encountered text will be taken as a continuation of the interrupted word. 
If the intervening control lines cause a break, any partial line will be forced out along with any partial 
word. 

Request 
Form 

.bl' 

.n! 

.ad c 

Initial 
Value 

fill on 

fill on 

adj,both 

II No 
Argument Notes Ezplanation 

B 

B,E 

B,E 

adjust E 

Break. The filling of the line currently being collected is 
stopped and the line is output without adjustment. Text 
lines beginning with space characters and empty text lines 
(blank lines) also cause a break. 

Fill subsequent output lines. The register .u is 1 in fill 
mode and 0 in nofill mode. 

Nofill. Subsequent output lines are neither filled nor 
adjusted. Input text lines are copied directly to output 
lines without regard for the current line length. 

Line adjustment is begun. If fill mode is not on, adjust­
ment will be deferred until fill mode is back on. If the type 
indicator e is present, the adjustment type is changed as 

- 12-



( 

o 

NROFF /TROFF User's Manual 
October 11, 1976 

.na adjust 

.ee N off N=1 

o. Vertical Spacing 

E 

B,E 

shown in the following table. 

Indicator Adjust Type 

1 adjust left margin only 
r adjust right margin only 
e center 

born adjust both margins 
absent unchanged 

Noadjust. Adjustment is turned off; the right margin will 
be ragged. The adjustment type for ad is not changed. 
Output line filling still occurs if fill mode is on. 

Center the next N input text lines within the current (line­
length minus indent). If N=O, any residual count is 
cleared. A break occurs after each of the N input lines. If 
the input line is too long, it will be left adjusted. 

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be set 
using the VB request with a resolution of 1/144 inch == 1/2 point in TROFF, and to the output device resolu­
tion in NROFF. V must be large enough to accommodate the character sizes on the affected output lines. 
For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater than the 
point size; TROFF default is 100point type on a 12-point spacing (as in this document). The current V is 
available in the .V register. Multiple-V line separation (e. g. double spacing) may be requested with Is. 

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it 
to have extra vertical space before and/or after it, the extra-line-space function \x 'N I can be imbedded in 
or attached to that word. In this and other functions having a pair of delimiters around their parameter 
(here '), the delimiter choice is arbitrary, except that it can't look like the continuation of a number 
expression for N. If N is negative, the output line containing the word will be preceded by N extra vertical 
space; if N is positive, the output line containing the word will be followed by N extra vertical space. If 
successive requests for extra space apply to the same line, the maximum values are used. The most 
recently utilized post-line extra line-space is available in the .a register. 

5.S. Blocks 01 vertical space. A block of vertical space is ordinarily requested using sp, which honors the 
no-space mode and which does not space past a trap. A contiguous block of vertical space may be reserved 
using sv. 

Request Initial 
Form Value 

.vsN 1/6in;12pts 

.lsN N=1 

.sp N 

.sv N 

II No 
Argument Notes 

previous E,p 

previous E 

N==IV B,v 

N==lV V 

Explanation 

Set vertical base-line spacing size V. Transient extra verti­
cal space available with \x 'N I (see above). 

Line spacing set to ±N. N-l Vs (blank lines) are 
appended to each output text line. Appended blank lines 
are omitted, if the text or previous appended blank line 
reached a trap position. 

Space vertically in either direction. If N is negative, the 
motion is backward (upward) and is limited to the distance 
to the top of the page. Forward (downward) motion is 
truncated to the distance to the nearest trap. If the no­
space mode is on, no spacing occurs (see ns, and rs below). 

Save a contiguous vertical block of size N. If the distance 
to the next trap is greater than N, N vertical space is out­
put. No-space mode has no effect. If this distance is less 

- 13-



l"HO.t<·.t<·/~ROFF USer'S Manu~ _u 
October 11, 1976 

.DS space 

.rs space 

Blank text line. 

8. Line Length and Indenting 

D 

D 

B 

than N, no vertical space is immediately output, but N is 
remembered for later output (see os). Subsequent sv 
requests will overwrite any still remembered N. 

Output saved vertical space. No-space mode has no effect. 
Used to finally output a block of vertical space requested 
by an earlier sv request. 

No-space mode turned on. When on, the no-space mode 
inhibits sp requests and bp requests without a next page 
number. The no-space mode is turned off when a line of 
output occurs, or with rs. 

Restore spacing. The no-space mode is turned off. 

Causes a break and output of a blank line exactly like 
sp 1. 

The maximum line length for fill mode may be set with n. The indent may be set with in; an indent 
applicable to only the next output line may be set with ti. The line length includes indent space but not 
page offset space. The line-length minus the indent is the basis for centering with ceo The effect of 11, in, 
or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the length of 
text on an output line is less than or equal to the line length minus the indent. The current line length 
and indent are available in registers .1 and .i respectively. The length of three-part titles produced by tl 
(see §14) is independently set by It. 

Requed Initial If No 
Form Value Argument Note, Ezplanation 

.11 ±N 6.5 in previous E,m Line length is set to ±N. In TROFF the maximum (line­
length)+(page-offset) is about 7.54 inches. 

.in ±N N=O previous 

• ti ±N ignored 

B,E,m Indent is set to ±N. The indent is prepended to each out­
put line . 

B,E,m Temporary indent. The next output text line will be 
indented a distance ±N with respect to the current indent. 
The resulting total indent may not be negative. The 
current indent is not changed. 

7. Macros, Strings, Diversion, and Position Traps 

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or wit.h a 
trap. A string is a named string of characters, not including a newline character, that may be interpolated 
by name at any point. Request, macro, and string names share the ,ame name list. Macro and string 
names may be one or two characters long and may usurp previously defined request, macro, or string 
names. Any of these entities may be renamed with rn or removed with rm. Macros are created by de and 
di, and appended to by am and da; di and da cause normal output to be stored in a macro. Strings are 
created by ds and appended to by as. A macro is invoked in the same way as a request; a control line 
beginning .xx will interpolate the contents of macro xx. The remainder of the line may contain up to nine 
argument,. The strings x and xx are interpolated at any desired point with \u and \*(xx respectively. 
String references and macro invocations may be nested. 

7.t. Copy mode input interpretation. During the definition and extension of strings and macros (not by 
diversion) the input is read in copy mode. The input is copied without interpretation except that: 

• The contents of number registers indicated by \n are interpolated. 
• Strings indicated by \* are interpolated. 
• Arguments indicated by \$ are interpolated. 
• Concealed newlines indicated by \(newline) are eliminated. 
• Comments indicated by \" are eliminated. 

- 14-

o 



( 

( 

NROFF jTROFF User's Manual 
October 11, 1976 

• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9). 
• \\ is interpreted as \. 
• \. is interpreted as ".". 

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \ \n will 
copy as \n which will be interpreted as a number register indicator when the macro or string is reread. 

7.9. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to 
nine arguments. The argument separator is the space character, and arguments may be surrounded by 
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in double­
quoted arguments to represent a single double-quote. If the desired arguments won't fit on a line, a con­
cealed newline may be used to continue on the next line. 

When a macro is invoked the input level is pushed down and any arguments available at the previous level 
become unavailable until the macro is completely read and the previous level is restored. A macro's own 
arguments can be interpolated at any point within the macro with \$N, which interpolates the Nth argu­
ment (I:::;N:::;9). If an invoked argument doesn't exist, a null string results. For example, the macro xx 
may be defined by 

.de xx \ "begin definition 
Today is \\$1 the \\$2. 

\ "end definition 

and called by 

.xx Monday 14th 

to produce the text 

Today is Monday the 14th. 

Note that the \$ was concealed in the definition with a prepended \. The number of currently available 
arguments is in the .$ register. 

No arguments are available at the top (non-macro) level in this implementation. Because string referencing 
is implemented as a input-level push down, no arguments are available from within a string. No argu­
ments are available within a trap-invoked macro. 

Arguments are copied in copy mode onto a stack where they are available for reference. The mechanism 
does not allow an argument to contain a direct reference to a long string (interpolated at copy time) and it 
is advisable to conceal string references (with an extra \) to delay interpolation until argument reference 
time. 

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing 
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing of 
pages or columns. A single diversion trap may be set at a specified vertical position. The number registers 
dn and dl respectively contain the vertical and horizontal size of the most recently ended diversion. Pro­
cessed text that is diverted into a macro retains the vertical size of each of its lines when reread in nofill 
mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is diverted can be 
reread correctly only if these modes are again or still in effect at reread time. One way to do this is to 
imbed in the diversion the appropriate es or bd requests with the transparent mechanism described in 
§10.6. 

Diversions may be nested and certain parameters and registers are associated with the current diversion 
level (the top non-diversion level may be thought of as the Oth diversion level). These are the diversion 
trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the current 
vertical place (.d register), the current high-water text base-line (.h register), and the current diversion 
name ( .r; register). 

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input-line­
count trap. Macro-invocation traps may be planted using wh at any page position including the top. 
This trap position may be changed using eh. Trap positions at or below the bottom of the page have no 
effect unless or until moved to within the page or rendered effective by an increase in page length. Two 

- 15-



NROFF jTROFF User's Manual 
October 11, 1976 

traps may be planted at the ,arne position only by first planting them at different positions and then mov­
ing one of the traps; the first planted trap will conceal the second unless and until the first one is moved 
(see Tutorial Examples §TS). If the first one is moved back, it again conceals the second trap. The macro 
associated with a page trap is automatically invoked when a line of text is output whose vertical size 
reaches or sweeps pa8t the trap position. Reaching the bottom of a page springs the top-of-page trap, if 
any. provided there is a next page. The distance to the next trap position is available in the .t register; if 
there are no traps between the current position and the bottom of the page, the distance returned is the 
distance to the page bottom. 

A macro-invocation trap effective in the current diversion may be planted using dt. The.t register works 
in a diversion; if there is no subsequent trap a large distance is returned. For a description of input-line­
count traps, see it below. 

Request Initial 
Form V.I.e 

.de :e:e '11'11 

• am xx yy 

.ds xx string -

.as :e:e string -

.rm xx 

.rn x:r yy 

.di xx 

.da x:r 

.wh Nxx 

.eh xx N 

.dt Nxx 

11 No 
Arg.ment 

·11'11=" 

.'11'1= •• 

ignored 

ignored 

ignored 

ignored 

end 

end 

off 

Note, Esp/.nation 

D 

D 

v 

v 

D,v 

Define or redefine the macro u. The contents of the macro 
begin on the next input line. Input lines are copied in COP'll 
mode until the definition is terminated by a line beginning 
with .1/'11, whereupon the macro 1/Y is called. In the absence 
of '11'11, the definition is terminated by a line beginning with 
....... A macro may contain de requests provided the ter­
minating macros differ or the contained definition termina­
tor is concealed. " •• " can be concealed as \\ •• which will 
copy as \ •• and be reread as " •• ". 

Append to macro (append version of de) . 

Define a string :ex containing string. Any initial double­
quote in string is stripped off to permit initial blanks. 

Append string to string xx (append version of ds). 

Remove request, macro, or string. The name xx is removed 
from the name list and any related storage space is freed. 
Subsequent references will have no effect. 

Rename request, macro, or string xx to '11'11. If '11'11 exists, it is 
first removed. 

Divert output to macro x:r. Normal text processing occurs 
during diversion except that page offsetting is not done. 
The diversion ends when the request di or da is encoun­
tered without an argument; extraneous requests of this 
type should not appear when nested diversions are being 
used. 

Divert, appending to xx (append version of di). 

Install a trap to invoke xx at page position N; a negative N 
will be interpreted with respect to the page bottom. Any 
macro previously planted at N is replaced by xx. A zero N 
refers to the top of a page. In the absence of xx, the first 
found trap at N, if any, is removed. 

Change the trap position for macro xx to be N. In the 
absence of N, the trap, if any, is removed. 

Install a diversion trap at position N in the current diver­
sion to invoke macro x:r. Another dt will redefine the 
diversion trap. If no arguments are given, the diversion 
trap is removed. 

- 16-



(', 

( 

o 

NROFF jTROFF User's Manual 
October 11, 1976 

.it N xx off 

• em xx none none 

8. Number Registers 

E Set an input-lim~·count trap to invoke the macro xx after N 
lines of text input have been read (control or request lines 
don't count). The text may be in-line text or text interpo­
lated by inline or trap-invoked macros. 

The macro xx will be invoked when all input has ended . 
The effect is the same as if the contents of xx had been at 
the end of the last file processed. 

A variety of parameters are available to the user as predefined, named number registers (see Summary and 
Index, page 7). In addition, the user may define his own named registers. Register names are one or two 
characters long and do not conflict with request, macro, or string names. Except for certain predefined 
read-only registers, a number register can be read, written, automatically incremented or decremented, and 
interpolated into the input in a variety of formats. One common use of user-defined registers is to 
automatically number sections, paragraphs, lines, etc. A number register may be used any time numerical 
input is expected or desired and may be used in numerical expressions (§1.4). 

Number registers are created and modified using nr, which specifies the name, numerical value, and the 
auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence. If the 
registers x and xx both contain N and have the auto-increment size M, the following access sequences have 
the effect shown: 

Effect on Value 
Sequence Register Interpolated 

\nx none N 
\n(xx none N 
\n+x x incremented by M N+M 
\n-x x decremented by M N-M 
\n+(xx xx incremented by M N+M 
\n-(xx xx decremented by M N-M 

When interpolated, a number register is converted to decimal (default), decimal with leading zeros, lower­
case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic 
according to the format specified by af. 

Request 
Form 

Initial 
Value 

.nr R ±NM-

.af R c arabic 

II No 
Argument Notes Explanation 

u The number register R is assigned the value ±N with respect to the 
previous value, if any. The increment for auto-
incrementing is set to M. 

Assign format c to register R. The available formats are: 

Numbering 
Format Sequence 

1 0,1,2,3,4,5, ... 
001 000,001,002,003,004,005, ... 

i O,i,ii,iii,iv ,v, ... 
I O,I,n,nI,IV,V, ... 
a O,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ... 
A OAB C ... ZAA.AB ... ZZAM. ... 

An arabic format having N digits specifies a field width of 
N digits (example 2 above). The read-only registers and 
the width function (§11.2) are always arabic. 

- 17 -



NROFF /TROFF User's Manual 
October 11, 1976 

.rrR ignored 

g. Tabs, Leaders, and Fields 

Remove register R. If many registers are being created 
dynamically, it may become necessary to remove no longer 
used registers to recapture internal storage space for newer 
registers. 

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the 
leader character) can both be used to generate either horizontal motion or a string of repeated characters. 
The length of the generated entity is governed by iIiternal tab 8top8 specifiable with tao The default 
difference is that tabs generate motion and leaders generate a string of periods; tc and Ie offer the choice of 
repeated character or motion. There are three types of internal tab stops-left adjusting, right adjusting, 
and centering. In the following table: D is the distance from the current position on the input line (where a 
tab or leader was found) to the next tab stop; next-string consists of the input characters following the tab 
(or leader) up to the next tab (or leader) or end of line; and W is the width of next-string. 

Tab Length of motion or Location of 
~ype repeated characters next-string 

Left D Following D 
Right D-W Right adjusted within D 

Centered D-W/2 Centered on right end of D 

The length of generated motion is allowed to be negative, but that of a repeated character string cannot 
be. Repeated character strings contain an integer number of characters, and any residual distance is 
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as next­
string terminators. 

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and 
leader respectively, and are equivalent to actual tabs and leaders in copy mode. 

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings 
separated by padding indicator characters. The field length is the distance on the input line from the posi­
tion where the field begins to the next tab stop. The difference between the total length of all the sub­
strings and the field length is incorporated as horizontal padding space that is divided among the indicated 
padding places. The incorporated padding is allowed to be negative. For example, if the field delimiter is 
# and the padding indicator is A, # A xxx A right # specifies a right-adjusted string with the string ux cen­
tered in the remaining space. 

Request Initial If No 
Form Value Argument Notes Explanation 

.ta Nt ... 0.8; 0.5in none E,m Set tab stops and types. t=R, right adjusting; t=C, 
centering; t absent, left adjusting. TROFF tab stops are 
preset every O.5in.; NROFF every O.8in. The stop values 
are separated by spaces, and a value preceded by + is 
treated as an increment to the previous stop value. 

.tc c none none 

.Ic c none 

Sc a h off off 

E 

E 

The tab repetition character becomes c, or is removed 
specifying motion. 

The leader repetition character becomes c, or is removed 
specifying motion. 

The field delimiter is set to aj the padding indicator is set 
to the space character or to h, if given. In the absence of 
arguments the field mechanism is turned off. 

10. Input and Output Conventions and Character Translations 

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1. The 
ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed elsewhere. 

- 18-

o 



c 

NROFF /tROFF User's Manual 
October 11, 1976 

The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, and may be 
used as delimiters or translated into a graphic with tr (§10.5). All others are ignored. 

The eilcape character \ introduces eilcape ilequenee&-eauses the following character to mean another char­
acter, or to indicate some function. A complete list of such sequences is given in the Summary and Index 
on page 6. \ should not be confused with the ASCII control character ESC of the same name. The escape 
character \ can be input with the sequence \\. The escape character can be changed with ee, and all that 
has been said about the default \ becomes true for the new escape character. \e can be used to print what­
ever the current escape character is. If necessary or convenient, the escape mechanism may be turned off 
with eo, and restored with ec. 

Request Initial II No 
Form Value Argument Note. Esplanation 

• ec c \ \ Set escape character to \, or to c, if given . 

• eo on Tum escape mechanism off . 

10.t. Ligatures. Five ligatures are available in the current TROFF character set - ft, fl, ft, fli, and fR. 
They may be input (even in NROFF) by \(n, \(n, \(f'f', \(Fi, and \(FI respectively. The ligature mode is 
normally on in TROFF, and automatically invokes ligatures during input. 

Request Initial II No 
Form Value Argument Notu E:qlanation 

.Ig N off; on on Ligature mode is turned on if N is absent or non-zero, and 
turned off if N=O. If N=2, only the two-character liga­
tures are automatically invoked. Ligature mode is inhi­
bited for request, macro, string, register, or file names, and 
in copy mode. No effect in NROFF. 

10.9. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is 
replaced by a backward horizontal motion having the width of the space character. Underlining as a form 
of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1. 

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on font 
position 2 (normally Times Italic, see §2.2). In addition to ft and \fF, the underline font may be selected 
by ul and cu. Underlining is restricted to an output-device-dependent subset of reailonable characters. 

Request Initial II No 
Form Value Argument Notee Esplanation 

.ul N off N=l E Underline in NROFF (italicize in TROFF) the next N input 
text lines. Actually, switch to underline font, saving the 
current font for later restoration; other font changes within 
the span of a ul will take effect, but the restoration will 
undo the last change. Output generated by tl (§14) is 
affected by the font change, but does not decrement N. If 
N> 1, there is the risk that a trap interpolated macro may 
provide text lines within the span; environment switching 
can prevent this . 

• cu N off 

.uf F Italic 

N=l 

Italic 

E A variant of ul that causes every character to be under­
lined in NROFF. Identical to ul in TROFF. 

Underline font set to F. In NROFF, F may not be on posi­
tion 1 (initially Times Roman). 

10.4- Control characters. Both the control character. and the no-break control character ' may be changed, 
if desired. Such a change must be compatible with the design of any macros used in the span of the 
change, and particularly of any trap-invoked macros. 

- 19-



NROFF /TROFF User's Manual 
October 11, 1976 

Requellt 
Form 

Initi.l 
V.lue 

II No 
Argument Notell Eql.nation 

.ce c E The basic control character is set to c, or reset to "." . 

• c2 c E The nollreak control character is set to e, or reset to .. "'. 

10.5. Output tranll/ation. One character can be made a stand-in for another character using tr. All text 
. processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to 
have the width of the final character. The graphic translation occurs at the moment of output (including 
diversion). 

Requellt 
Form 

Initial 
V.lue 

.tr abed.... none 

IJNo 
Argument Notell Eql.natioa 

o Translate a into II, e into d, etc. If an odd number of char­
acters is given, the last one will be mapped into the space 
character. To be consistent, a particular translation must 
stay in effect from input to output time. 

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently 
output (without the initial \!); the text processor is otherwise unaware of the line's presence. This mechan­
ism may be used to pass control information to a post-processor or to imbed control lines in a macro 
created by a diversion. 

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g. a 
string definition, or nofilled text) can be split into many physical lines by ending all but the last one with 
the escape \. The sequence \(newline) is always ignored-except in a comment. Comments may be imbed­
ded at the end of any line by prefacing them with \N. The newline at the end of a comment cannot be con­
cealed. A line beginning with \" will appear as a blank line and behave like .sp 1; a comment can be on a 
line by itself by beginning the line with .\". 

11. Local Horizontal and Vertical Motions, and the Width Function 

11.1. Local Motions. The functions \v'N' and \h'N' can be used for local vertical and horizontal motion 
respectively. The distance N may be negative; the positive directions are rightward and downward. A loeal 
motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary that the 
net vertical local motion within a word in filled text and otherwise within a line balance to zero. The 
above and certain other escape sequences providing local motion are summarized in the following table. 

Vertical Effect in Horizontal Effect in 
Local Motion TROFF NROFF Local Motion TROFF NROFF 

\v'N' Move distance N \h'N' Move distance N 
\(space) Unpaddable space-size space 

\u lh em up lh line up \0 Digit-size space 
\d lh em down lh line down 
\r 1 em up 1 line up \1 1/6 em space ignored 

\" 1/12 em space ignored 

As an example, E2 could be generated by the sequence E\s-2\v'-O.4m '2\v'O.4m \s+2; it should be 
noted in this example that the 0.4 em vertical motions are at the smaller size. 

11.t. Width Function. The width function \w'string' generates the numerical width of string (in basic 
units). Size and font changes may be safely imbedded in atring, and will not affect the current environ­
ment. For example, .ti -\ w'l. 'u could be used to temporarily indent leftward a distance equal to the size 
of the string "I. ". 

The width function also sets three number registers. The registers st and sb are set respectively to the 
highest and lowest extent of string relative to the baseline; then, for example, the total height of the string 
is \n(stu-\n(sbu. In TROFF the number register et is set to a value between 0 and 3: 0 means that all of 

- 20-

\ "j 



c 

NROFF /TROFF User's Manual 
October 11, 1976 

the characters in 8tring were short lower case characters without descenders (like e); 1 means that at least 
one character has a descender (like y); 2 means that at least one character is tall (like H); and 3 means that 
both tall characters and characters with descenders are present. 

11.9. Mark horizontal place. The escape sequence \kz will cause the current horizontal position in the input 
line to be stored in register z. As an example, the construction \kxword\h' \\nxu+2u 'word will embol­
den word by backing up to almost its beginning and overprinting it, resulting in word. 

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions 

It.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over· 
8trike function \0' 8tring'. The characters in 8tn·ng overprinted with centers aligned; the total width is that 
of the widest character. 8tring should not contain local vertical motion. As examples, \0 'e\ " produces e, 
and \0 \(mo\(sl' produces i.. 
It.f. Zero-width characters. The function \zc will output c without spacing over it, and can be used to 
produce left-aligned overstruck combinations. As examples, \z\(ei\(pl will produce (f) and 
\(br\z\(rn\( ul\(br will produce the smallest possible constructed box D. 
It.9. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces 
( ( l ) J { } I L J r 1 ) that can be combined into various bracket styles. The function \b '8tn·ng , may be 
used to pile up vertically the characters in 8tring (the first character on top and the last at the bottom); the 
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current baseline 

(~ line in NROFF). For example, \b '\(lc\(Ir 'E\ I\b '\(rc\(rr '\x' -O.5m '\x 'O.5m' produces [E ]. 

12.4. Line drawing. The function \ 1 'Nc ' will draw a string of repeated c's towards the right for a dis­
tance N. (\1 is \(lower case L). If c looks like a continuation of an expression for N, it may insulated 
from N with a \&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If N 
is negative, a backward horizontal motion of size N is made before drawing the string. Any space resulting 
from N /(size of c) having a remainder is put at the beginning (left end) of the string. In the case of char­
acters that are designed to be connected such as baseline-rule _, underrule _, and root-en -, the remainder 
space is covered by over-lapping. If N is less than the width of c, a single c is centered on a distance N. 
As an example, a macro to underscore a string can be written 

.de us 
\\$1\1 'IO\(ul' 

or one to draw a box around a string 

.de bx 
\(br\ 1\\$1\ 1\(br\1 'IO\(rn\1 'IO\(ul' 

such that 

.ul "underlined words" 

and 

.bx "words in a box" 

yield underlined words and Iwords jn a box I. 
The function \L' Nc ' will draw a vertical line consisting of the (optional) character c stacked vertically 
apart 1 em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continuous 
line. The default character is the box rule I (\(br); the other suitable character is the bold vertical I 
(\(bv). The line is begun without any initial motion relative to the current base line. A positive N 
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn 
no compensating motions are made; the instantaneous baseline is at the end of the line. 

- 21 -



NROFF(I'ROFF User7s~anual 
October 11, 1976 

The horizontal and vertical line drawing Cunctions may be used in combination to produce large boxes. 
The zero-width box-rule and the %-em wide underru/e were de8igned to Corm comers when using I-em verti­
cal spacings. For example the macro 

.de eb 

.sp -1 \ "compensate for next automatic base-nne spacing 

.nf \ "avoid possibly overflowing word buffer 
\h '-.5n \L' 1\ \nau-1 \1 \ \n(.lu+1n\(ul \L '-1\ \nau+1 \1' IOu-.5n\(ul' \ "draw box 
.fi 

will draw a box around some text whose beginning vertical place was saved in number· register a (e. g. 
i l1!1:1nl:" .Tn 1c A' A..4I! linn,. tnT" thi!l: "' ............. nh 

13. Hyphenation. 

The automatic hyphenation may be switched off and on. When switched on with hy, several variants may 
be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphenation 
points, or may be prepended to suppress hyphenation. In addition, the user may specify a small exception 
word list. 

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic strings 
are considered candidates for automatic hyphenation. Words that were input containing hyphens (minus), 
em-dashes (\(em), or hyphenation indicator characters-such as mother-in-Iaw-are a/ways subject to split­
ting after those characters, whether or not automatic hyphenation is on or oft'. 

Request Initial If No 
. Form Value Argument 

.nh 

.hyN 

.he c 

hyphenate 

on,N I 

\% 

.hw wordl ... 

14. Three Part Titles. 

on,N-1 

\% 

ignored 

Note. E:rplanation 

E Automatic hyphenation is turned oft'. 

E 

E 

Automatic hyphenation is turned on for N~I, or off for 
N- O. H N- 2, last lines (ones that will cause a trap) are 
not hyphenated. For N- 4 and 8, the last and first two 
characters respectively of a word are not split off. These 
values are additive; i. e. N-14 will invoke all three restric­
tions. 

Hyphenation indicator character is set to c or to the 
default \%. The indicator does not appear in the output. 

Specify hyphenation points in words with imbedded minus 
signs. Versions of a word with terminal s are implied; i. e. 
dig-it implies dig-its. This list is examined initially and 
after each suffix stripping. The space available is small­
about 128 characters. 

The titling function tl provides for automatic placement of three fields at the left, center, and right of a 
line with a title-length specifiable with It. tl may be used anywhere, and is independent of the normal text 
collecting process. A common use is in header and footer macros. 

Requed Initi,,' If No 
Form V"lue Argument Notee E:rplcnation 

.tl 'left' center 'right' The strings left, center, and right are respectively left­
adjusted, centered, and right-adjusted in the current title­
length. Any of the strings may be empty, and overlapping 
is permitted. H the page-number character (initially %) is 
found within any of the fields it is replaced by the current 
page number having the format assigned to register %. 
Any character may be used as the string delimiter. 

- 22-

o 



c 

NROFF jTROFF User's Manual 
October 11, 1976 

.pc c % off 

• It ±N 6.5in previous 

15. Output Line Numbering. 

The page number character is set to c, or removed. The 
page--number register remains % . 

E,m Length of title set to ±N. The line--length and the title-­
length are independent. Indents do not apply to titles; 
page--offsets do. 

Automatic sequence numbering of output lines may be requested with nm. When in effect, a three­
digit, arabic number plus a digit-space is prepended to output text lines. The text lines are thus offset 

3 by four digit-spaces, and otherwise retain their line length; a reduction in line length may be desired to 
keep the right margin aligned with an earlier margin. Blank lines, other vertical spaces, and lines gen­
erated by tl are not numbered. Numbering can be temporarily suspended with nn, or with an .nm 

6 followed by a later .nm +0. In addition, a line number indent I, and the number-text separation S 
may be specified in digit-spaces. Further, it caD. be specified that only those line numbers that are 
multiples of some number M are to be printed (the others will appear as blank number fields). 

Request Initial II No 
Form Value Argument Notes Eqlanation 

.nm±NM SI off 

• nn N N-l 

E 

E 

Line number mode. If ±N is given, line numbering is 
turned on, and the next output line numbered is numbered 
±N. Default values are M-l, S= 1, and 1=0. Parame­
ters corresponding to missing arguments are unaffected; a 
non-numeric argument is considered missing. In the 
absence of all arguments, numbering is turned off; the next 
line number is preserved for possible further use in number 
register In . 

The next N text output lines are not numbered. 

9 As an example, the paragraph portions of this section are numbered with M- 3: .nm 1 3 was placed 
at the beginning; .nm was placed at the end of the first paragraph; and .nm +0 was placed in front 
of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by \ w '0000 'u) 

12 to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on numbering wit.h the 
line number of the next line to be 5 greater than the last numbered line, with M- 5, with spacing S 
untouched, and with the indent 1 set to 3. 

16. Conditional Acceptance of Input 

In the following, c is a one--character, built-in condition name, ! signifies not, N is a numerical expression, 
stringl and string!! are strings delimited by any non-blank, non-numeric character not in the strings, and 
anything represents what is conditionally accepted. 

Request Initial II No 
Form Value Argument Notes E%planation 

.if e anything 

• if !e anything 

• if N anything u 

• if !N anything u 

• if 'stringl' stringt ' anything 

• if! 'stringl 'stringt' anything 

• ie e anything u 

• el anything 

If condition c true, accept anything as input; in multi­
line case use \{anything\}. 

If condition e false, accept anything . 

If expression N > 0, accept anything . 

If expression N::;; 0, accept anything . 

If stn'ngl identical to stringt, accept anything . 

If stn'ngl not identical to stn'ngt, accept anything . 

If portion of if-else; all above forms (like if) . 

Else portion of if-else . 

- 23-



NROFF /TROFF User's Manual 
October 11, 1976 

The built-in condition names are: 

Condition 
Name 

0 

e 
t 
n 

True If 
Current page number is odd 
Current page number is even 
Formatter is TROFF 
Formatter.is NROFF 

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically 
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi­
tion, number, or string comparison, the sense of the acceptance is reversed. 

Any spaces between the condition and the beginning of anything are skipped over. The anything can be 
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the 
first line must begin with a left delimiter \{ and the last line must end with a right delimiter \}. 

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent and 
matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested. 

Some examples are: 

.if e .tl 'Even Page %'" 

which outputs a title if the page number is even; and 

.ie \n%>1 \{\ 
'sp O.5i 
.tl 'Page %'" 
'sp 11.2i \} 
.el .sp 12.5i 

which treats page 1 differently from other pages. 

17. Environment Switching. 

A number of the parameters that control the text processing are gathered together into an environment, 
which can be switched by the user. The environment parameters are those associated with requests noting 
E in their Notes column; in addition, partially collected lines and words are in the environment. Every­
thing else is global; examples are page-oriented parameters, diversion-oriented parameters, number regis­
ters, and macro and string definitions. All environments are initialized with default parameter values. 

Request Initial If No 
Form Value Argument Notea Esplanation 

.ev N previous Environment switched to environment O::;N::;2. Switching 
is done in push-down fashion so that restoring a previous 
environment must be done with .ev rather than specific 
reference. 

18. Insertions from the Standard Input 

The input can be temporarily switched to the system standard input with rd, which will switch back when 
two newlines in a row are found (the extra blank line is not used). This mechanism is intended for inser­
tions in form-letter-like documentation. On UNIX, the standard input can be the user's keyboard, a pipe, or 
a file. 

Request 
Form 

Initi.' 
Val"e 

.rd prompt -

If No 
A,.,ument Note. Eql.nation 

prompt-BEL- Read insertion from the standard input until two newlines 
in a row are found. If the standard input is the user's key­
board, prompt (or a BEL) is written onto the user's 

- 24-

o 

o 



(' 

NROFF /TROFF User's Manual 
October 11, 1976 

.ex 

terminal. rd behaves like a macro, and arguments may be 
placed after prompt. 

Exit from NROFF /TROFF. Text processing is terminated 
exactly as if all input had ended. 

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, the 
command line option -q will turn off the echoing of keyboard input and prompt only with BEL. The regu­
lar input and insertion input cannot simultaneously come from the standard input. 

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the 
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke 
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file. 

19. Input/Output File Switching 

Request Initial If No 
Form Value Argument Note. E:rplanation 

.so filename 

• nx filename end-of-file 

.pi program 

20. Miscellaneous 

Reque8t Initial If No 
Form Value Argument 

.mc eN off 

.tm string newline 

.ig yy .yy= .. 

.pm t all 

.n 

21. Output and Error Messages. 

Note. 

E,m 

B 

Switch source file. The top input (file reading) level is 
switched to filename. The effect of an so encountered in a 
macro is not felt until the input level returns to the file 
level. When the new file ends, input is again taken from 
the original file. 80'S may be nested . 

Next file is filename. The current file is considered ended, 
and the input is immediately switched to filename. 

Pipe output to program (NROFF only). This request must 
occur before any printing occurs. No arguments are 
transmitted to program. 

E:rplanation 

Specifies that a margin character c appear a distance N to 
the right of the right margin after each non-empty text line 
(except those produced by tl). If the output line is too­
long (as can happen in nofill mode) the character will be 
appended to the line. If N is not given, the previous N is 
used; the initial N is 0.2 inches in I\TROFF and 1 em in 
TROFF. The margin character used with this paragraph 
was a 12-point box-rule. 

After skipping initial blanks, string (rest of the line) is read 
in copy. mode and written on the user's terminal. 

Ignore input lines. ig behaves exactly like de (§7) except 
that the input is discarded. The input is read in copy 
mode, and any auto-incremented registers will be affected. 

Print macros. The names and sizes of all of the defined 
macros and strings are printed on the user's terminal; if tis 
given, only the total of the sizes is printed. The sizes is 
given in blocks of 128 characters. 

Flush output buffer. Used in interactive debugging to force 
output. 

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto 
UNIX's 8tandard me8sage output. The latter is different from the 8tandard output, where NROFF formatted 

- 25-



NROFF /l'ROFF User's Manual 
October 11, 1976 

output goes. By default, both are written onto the user's terminal, but they can be independently 
redirected. 

Various error conditions may occur during the operation of NROFF and TROFF. Oertain less serious errors 0 
having only local impact do not cause processing to terminate. Two examples are word overflow, caused by-. . 
a word that is too large to fit into the word buffer (in fill mode), and line o1Jerflow, caused by an output 
line that grew too large to fit in the line buffer; in both cases, a message is printed, the offending excess is 
discarded, and the affected word or line is marked at the point of truncation with a * in NROFF and a '0 

in TROFF. The philosophy is to continue processing, if possible, on the grounds that output useful for 
debugging may be produced. If a serious error occurs, processing terminates, and an appropriate message is 
printed. Examples are the inability to create, read, or write files, and the exceeding of certain internal lim-
its that make future output unlikely to be useful. 

- 26-



NROFF /TROFF User's Manual 
October 11, 1976 

TUTORIAL EXAMPLES 

TI. Introduction 

Although NROFF and TROFF have by design a 
syntax reminiscent of earlier text processors* with 
the intent of easing their use, it is almost always 
necessary to prepare at least a small set of macro 
definitions to describe most documents. Such com­
mon formatting needs as page margins and foot­
notes are deliberately not built into NROFF and 
TROFF. Instead, the macro and string definition, 
number register, diversion, environment switching, 
page-position trap, and conditional input mechan­
isms provide the basis for user-defined implementa­
tions. 

The examples to be discussed are intended to be 
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit 
numerical parameters are used in the examples to 
make them easier to read and to illustrate typical 
values. In many cases, number registers would 
really be used to reduce the number of places 
where numerical information is kept, and to con­
centrate conditional parameter initialization like 
that which depends on whether TROFF or NROFF 
is being used. 

T2. Page Margins 

As discussed in §3, header and footer macros are 
usually defined to describe the top and bottom 
page margin areas respectively. A trap is planted 
at page position 0 for the header, and at -N (N 
from the page bottom) for the footer. The sim­
plest such definitions might be 

.de hd \"define header 
'sp li 

.de fo 
op 

.wh 0 hd 

.wh -11 fo 

\ "end definition 
\ "define tooter 

\"end definition 

which provide blank 1 inch top and bottom mar­
gins. The header will occur on the first page, only 
if the definition and trap exist prior to the initial 

·For example: P. A. Crisman, Ed., The CDmplitible Time· 
Shllring Sll8tem, MIT Press, 1965, Section AH9.01 (Description 
of RUNOFF program on MIT's CTSS system). 

pseudo-page transition (§3). In fill mode, the out-
o put line that springs the footer trap was typically 

forced out because some part or whole word didn't 
fit on it. If anything in the footer and header that 
follows causes a break, that word or part word will 
be forced out. In this and other examples, requests 
like bp and sp that normally cause breaks are 
invoked using the no-break control character ' to 
avoid this. When the header/footer design con­
tains material requiring independent text process­
ing, the environment may be switched, avoiding 
most interaction with the running text. 

A more realistic example would be 

.de hd \ "header 

.it t .tl '\(rn '\(rn' \ "troft' cut mark 

.it \\n%> 1 \{' 
'sp 10.5i-1 \Ntl base at O.5i 
.tl "- % -" \ "centered page number 
.ps ,"restore size 
.tt '''restore font 
.vs '} '''restore vs 
'sp 11.Oi \"space to l.Oi 
.ns '"turn on no-space mode 

.de to \ "tooter 

.ps 10 \ "set footer/header size 
oft R \ "set tont 
.vs 12p \"set base-line spacing 
.it\\n%=1 \{' 
'sp I\\n( .pu-O.5i-l \ "tl base 0.5i up 
.tl "- % -" \} \ "first page number 
op 

.wh 0 hd 

.wh -Ii to 
which sets the size, font, and base-line spacing for 
the header/footer material, and ultimately restores 
them. The material in this case is a page number 
at the bottom of the first page and at the top of 
the remaining pages. If TROFF is used, a cut mark 
is drawn in the form of root-en's at each margin. 
The sp's refer to absolute positions to avoid 
dependence on the base-line spacing. Another rea­
son for this in the footer is that the footer is 
invoked by printing a line whose vertical spacing 
swept past the trap position by possibly as much 
as the base-line spacing. The no-space mode is 

- 27-



NROFF /TROFF User's Manual 
October 11, 1976 

turned on at the end of hd to render ineffective 
accidental occurrences of sp at the top of the run­
ning text. 

The above method of restoring size, font, etc. 
presupposes that such requests (that set previous 
value) are not used in the running text. A better 
scheme is save and restore both the current and 
previous values as shown for size in the following: 

• de fo 
.nr sl \\n(.s \"current size 
.ps 
.nr s2 \\n(.s 
. --
.de hd 
. --
.ps \\n(s2 
.ps \ \n(sl 

\ "previous size 
\"rest ot footer 

\ "header stuff 
\"restore previous size 
\"restore current size 

Page numbers may be printed in the bottom mar­
gin by a separate macro triggered during the 
footer's page ejection: 

.de bn \"bottom number 

.tl "- % -" \"centered page number 

.wh -0.5i-1v bn \"tl base 0.5i up 

T3. Paragraphs and Headings 

The housekeeping associated with starting a new 
paragraph should be collected in a paragraph 
macro that, for example, does the desired prepara­
graph spacing, forces the correct font, size, base­
line spacing, and indent, checks that enough space 
remains for more than one line, and requests a 
temporary indent. 

.de pg \"paragraph 

.br \"break 

.ft R \"force font, 
• ps 10 \"size, 
.vs l2p \"spacing, 
.in 0 \"and indent 
.sp 0.4 \"prespace 
.ne l+\\n(.Vu \"want more than 1 line 
.ti 0.2i \"temp indent 

The first break in pg will force out any previous 
partial lines, and must occur before the vs. The 
forcing of font, etc. is partly a defense against 
prior error and partly to permit things like section 
heading macros to set parameters only once. The 
prespacing parameter is suitable for TROFF; a 
larger space, at least as big as the output device 

vertical resolution, would be more suitable in 
NROFF. The choice of remaining space to test for 
in the ne is the smallest amount greater than one 
line (the .V is the available vertical resolution). 

A macro to automatically number section headings 
might look like: 

.de sc \ "section 
• - \ "force font, etc • 
.sp 0.4 \"prespace 
.ne 2.4+\\n(.Vu \ "want 2.4+ lines 
.Ii 
\\n+S. 

.nr SOl \"init S 
The usage is .sc, followed by the section heading 
text, followed by .pg. The ne test value includes 
one line of heading, 0.4 line in the following pg, 
and one line of the paragraph text. A word con­
sisting of the next section number and a period is 
produced to begin the heading line. The format of 
the number may be set by af (§8). 

Another common form is the labeled, indented 
paragraph, where the label protrudes left into the 
indent space. 

.de Ip 

.pg 
\ "labeled paragraph 

.in 0.5i \"paragraph indent 

.ta 0.2i 0.5i \"Iabel, paragraph 

.ti 0 
\t\\$1\t\c \"flow into paragraph 

The intended usage is ".lp label"; label will begin 
at 0.2 inch, and cannot exceed a length of 0.3 inch 
without intruding into the paragraph. The label 
could be right adjusted against 0.4 inch by setting 
the tabs instead with .ta 0.4iR 0.5i. The last line 
of Ip ends with \c so that it will become a part of 
the first line of the text that follows . 

T4. Multiple Column Output 

The production of multiple column pages requires 
the footer macro to decide whether it was invoked 
by other than the last column, so that it will begin 
a new column rather than produce the bottom 
margin. The header can initialize a column regis­
ter that the footer will increment and test. The 
following is arranged for two columns, but is easily 
modified for more. 

.dehd 

. --

.nrel01 

.mk 

\"header 

\"init column count 
\ "mark top of text 

- 28-



( 

NROFF /TROFF User's Manual 
October 11, 1976 

.de fo \ "footer 

.ie \\n+(cI<2 \{\ 

.po +3.4i \"next column; 3.1+0.3 

.rt \"back to mark 

.DB \} \"no-space mode 

.el \{\ 

.po \ \nMu \"restore left margin 

· --
'bp \} 

.11 3.1i \"column width 

.nr M \\n(.o \"save left margin 

Typically a portion of the top of the first page 
contains full width text; the request for the nar­
rower line length, as well as another .mk would be 
made where the two column output was to begin. 

T5. Footnote Processing 

The footnote mechanism to be described is used by 
imbedding the footnotes in the input text at the 
point of reference, demarcated by an initial .fn 
and a terminal .ef: 

.fn 
Footnote text and controllines ... 
.ef 

In the following, footnotes are processed in a 
separate environment and diverted for later print­
ing in the space immediately prior to the bottom 
margin. There is provision for the case where the 
last collected footnote doesn't completely fit in the 
available space. 

.de hd 

· --
.nr x 0 1 
.nr y O-\\nb 
.ch fo -\ \nbu 
.if \\n( dn .fz 

.de fo 

.nr dn 0 

.if \\nx \{\ 

\"header 

\"init footnote count 
\"current footer place 
\"reset footer trap 
\"leftover footnote 

\"footer 
\"zero last diversion size 

.ev 1 \ "expand footnotes in evl 

.nf \ "retain vertical size 

.FN \ "footnotes 

.rIn FN \"delete it 

.if"\ \n(.z"fy" .di \ "end overflow diversion 

.Dr x 0 \ "disable fx 

.ev \} \"pop environment 

· -
'bp 

.de fx \"process footnote overflow 

.if \\nx .di fy \ "divert overflow 

.de fn \ "start footnote 

.da FN \"divert (append) footnote 

.ev 1 \ "in environment 1 

.if \\n+x=1 .rs \"if first, include separator 

.n \"fill mode 

.de ef \ "end footnote 

.br \ "finish output 

.nr z \\n(.v \ "save spacing 

.ev \"pop ev 

.di \"end diversion 

.nr y -\\n(dn \"new footer position, 

.if\\nx=1 .nr y -(\\n(.v-\\nz) \ 
\ "uncertainty correction 

.ch fo \\nyu \ "y is negative 

.if (\\n(nl+lv»( \\n(.p+\\ny) \ 

.ch fo \ \n(nlu+lv \"it didn't fit 

.de fs 
\1' 1i' 
.br 

.de f. 

.fn 

.nf 

.Iy 

.ef 

\"separator 
\"1 inch rule 

\"get leftover footnote 

\"retain vertical size 
\ "where fx put it 

.nr b l.Oi \ "bottom margin size 

.wh 0 hd \"header trap 

.wh 12i fo \"footer trap, temp position 

.wh -\ \nbu fx \"fx at footer position 

.ch fo -\ \nbu \"conceal fx with fo 

The header hd initializes a footnote count register 
x, and sets both the current footer trap position 
register y and the footer trap itself to a nominal 
position specified in register b. In addit.ion, if the 
register dn indicates a leftover footnote, fz is 
invoked to reprocess it. The footnote start macro 
fn begins a diversion (append) in environment 1, 
and increments the count x; if the count is one, the 
footnote separator fs is interpolated. The separa­
tor is kept in a separate macro to permit user 
redefinition. The footnote end macro ef restores 
the previous environment and ends the diversion 
after saving the spacing size in register z. y is 
then decremented by the size of the footnote, avail­
able in dn; then on the first footnote, y is further 
decremented by the difference in vertical base-line 
spacings of the two environments, to prevent the 
late triggering the footer trap from causing the last 
line of the combined footnotes to overflow. The 

- 29-



NROFF jTROFF User's. Manual 
October 11, 1976 

footer trap is then set to the lower (on the page) of 
y or the current page position (nl) plus one line, to 
allow for printing the reference line. If indicated 
by x, the footer fo rereads the footnotes from FN 
in nofill mode in environment 1, and deletes FN. 
If the .footnotes were too large to fit, the macro fx 
will be trap-invoked to redivert the overflow into 
ty, and the register dn will later indicate to the 
header whether fy is empty. Both fo and fx are 
planted in the nominal footer trap position in an 
order that causes fx to be concealed unless the fo 
trap is moved. The footer then terminates the 
overflow diversion, if necessary, and zeros x to dis­
able (x, because the uncertainty correction together 
with a not-too-Iate triggering of the footer can 
result in the footnote rereading finishing before 
reaching the fx trap. 

A good exercise for the student is to combine the 
multiple-column and footnote mechanisms. 

T6. The Last Page 

After the last input file has ended, NROFF and 
TROFF invoke the end macro (§7), if any, and 
when it finishes, eject the remainder of the page. 
During the eject, any traps encountered are pro­
cessed normally. At the end of this last page, pro­
cessing terminates unless a partial line, word, or 
partial word remains. If it is desired that another 
page be started, the end-macro 

.de en 
\c 
'bp 

.em en 

\ "end-macro 

will deposit a null partial word, and effect another 
last page. 

o 

o 



(' 

(\ 

NROFF jTROFF User's Manual 
October 11, 1976 

Table I 

Font Style Examples 

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non-alphanumeric 
characters separated by % em space, The Special Mathematical Font was specially prepared for Bell 
Laboratories by Graphic Systems, Inc, of Hudson, New'Hampshire, The Times Roman, Italic, and Bold are 
among the many standard fonts available from that company, 

Times Roman 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890 
!$%&()"*+-.,/:;=?[] 1 
.O--_%,%%fiflffffiffi 0 t' ¢®© 

Times Italic 

abcdefghiJ'klmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUV1VXYZ 
1234567890 
!$%f3()"*+-,,/:;=?[JI 
.O--_%,%%fififfffiffl °t' ¢®© 

Times Bold 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890 
!$%&()"*+-.,j:;=![] I 
.---_%lh%fiflffflifH 0 t' ¢®© 

Special Mathematical Font 

tI'\A _'- /< >{}#@+_=* 
Q /3,8 (. ~ 17 (1£ '" A J1- v f. 0 7r P (1 C; T V if> X 'I/J w 
r~eABn~T4>wn 
y'-><=-===#-++-t !x+±unc:JC:Jooo 
§ V'..., J oc 0 E + D" on 010 ( l )H ~ ILJ fll 

- 31 -



NROFF /TROFF Userts Manual 
October 11, 1976 

Table II 

Input Naming Conventions for " ",and -
and for Non-ABCn Special Characters 

Non-ASCII characters and min.8 on the standard fonta. 

Input Oharacter Input Oharacter 
Ohar Name Name Ohar Name Name 

close quote fi \(6 fi 
open quote fI. \(fI. fI. 

\(em 3/4 Em dash ft' \(ft' ft' 
hyphen or ffi \(Fi ffi 

\(hy hyphen fB \(FI fB 
\- current font minus \(de degree 

• \(bu bullet t \(dg dagger 
0 \(sq square \(fm foot mark 

\(ru rule ¢ \(ct cent sign 
lA \(14 1/4 QP \(rg registered 
lh \(12 1/2 " \(co copyright 

* \(34 3/4 

Non-ASCII characters and " ',_, +, -, =, and * on the special font. 

The ASCII characters @, #, ", " " <, >, \, {, }, -, ., and _ exist only on the special font and are printed 
as a I-em space if that font is not mounted. The following characters exist only on the special font except 
for the upper case Greek letter names followed by t which are mapped into upper case English lett.ers in 
whatever font is mounted on font position one (default Times Roman). The special math plus, minus, and 
equals are provided to insulate the appearance of equations from the choice of standard fonts. 

Input Oharacter Input Oharacter 
Ghar Name Name Ghar Name Name 

+ \(pl math plus ). \(*1 lambda 
\(mi math minus po \(*m mu 

= \(eq math equals v \(*n nu 
* \(** math star e \(*c xi 
§ \(sc section 0 \(*0 omicron 

\(aa acute accent 71' \(*p pi 
\(ga grave accent p \(*r rho 
\(ul underrule (f \(*s sigma 

/ \(sl slash (matching backslash) c;; \(ts terminal sigma 
Q' \(*a alpha l' \(*t tau 
p \(*b beta u \(*u upsilon 
"'I \(*g gamma ~ \(*f phi 
6 \(*d delta X \(*x chi 
(, \{*e epsilon t/J \(*q psi 

~ \(*z zeta w \(*w omega 

t'J \(*y eta A \(*A Alphat 
0 \(*h theta B \(*B Betat 
t \(*i iota r \(*0 Gamma 
Ie \(*k kappa !:1 \(*D Delta 

- 32-

o 

(-" 

~ , 
~ /' 

0 



NROFF /TROFF User's Manual 
October 11, 1976 

Input Character Input Claaracter 
Claar Name Name Claar Name Name 

(~-- E \(*E Epsilont 17 \(rh right hand 
Z \(*Z Zetat ~ \(Ih left hand 
H \(*Y Etat 0 \(bs Bell System logo 
e \(*H Theta I \(or or 
1 \(*1 lotat 0 \(d circle 
K \(*K Kappat ( \(It left top of big curly bracket 
A \(*L Lambda l· \(lb left bottom 
M \(*M Mut ) \(rt right top 
N \(*N Nut ) \(rb right bot .. \(*0 Xi ~ \(lk left center of big curly bracket 
0 \(*0 Omicront ~ \(rk right center of big curly bracket 
II \(*P Pi I \(bv bold vertical 
P \(*R Rhot L \(If left floor (left bottom of big 
E \(*S Sigma square bracket) 
T \(*T Taut J \(rf right floor (right bottom) 
T \(*U Upsilon r \(Ic left ceiling (left top) 
4? \(*F Phi 1 \(rc right ceiling (right top) 
X \(*X Ohit 
\If \(*Q Psi 
n \(*W Omega 
V \(sr square root - \(rn root en extender 
~ \(>= >= 
~ \«= <= 
- \( == identically equal 
::::: \c= approx = (-- \(ap approximates 
-:F \(!= not equal - \(-> right arrow - \«- left arrow 
t \(ua up arrow 
~ \(da down arrow 
X \(mu multiply 
. \(di divide 
± \(+- plus-minus 
U \(cu cup (union) 
n \(ca cap (intersection) 
C \(sb subset of 
:::> \(sp superset of 
~ \(ib improper subset 
~ \(ip improper superset 
00 \(if infinity 
a \(pd partial derivative 
V \(gr gradient 
.., \(no not 
J \(is integral sign 
oc \(pt proportional to 
0 \(es empty set 
E \(mo member of 
I \(br box vertical rule 
; \(dd double dagger 

C" 
- 33-



May 15,1977 

Options 

~h 

-z 

Old Requests 

.ad c 

.so name 

New Request 

.ab text 

. fzF N 

Summary of Changes to N/TROFF Since October 1976 Manual 

(Nroff only) Output tabs used during horizontal spacing to speed output as well as reduce 
output byte count. Device tab settings assumed to be every 8 nominal character widths. 
The default settings of input (logical) 'tabs is also initialized to every 8 nominal character 
widths. 

Efficiently suppresses formatted output. Only message output will occur .(from "tm"s and 
diagnostics). 

The adjustment type indicator "c" may now also be a number previously obtained from 
the ".j" register (see below). 

The contents of file "name" will be interpolated at the point the "so" is encountered. Pre­
viously, the interpolation was done upon return to the file-reading input level. 

Prints "text" on the message output and terminates without further processing. If "text" is 
missing, ''User Abort." is printed. Does not cause a break. The output buffer is flushed . 

forces tont "F" to be in siz.e N. N may have the form N, +N, or -N. For example, 
.fz 3 -2 

r'\ 

U 

will cause an implicit \s-2 every time font 3 is entered, and a corresponding \8+2 when it ,/ ", 
is left. Special font characters occurring during the reign of font F will have the same size 
modification. If special characters are to be treated differently ,~ __ j 

.fz S F N 
may be used to specify the size treatment of special characters during font F. For exam­
ple, 

.fz 3 -3 

.fz S 3-0 
will cause automatic reduction of font 3 by 3 points while the special characters would not 
be affected. Any ".fp" request specifying a font on some position must precede ".rz" 
requests relating to that position. 

New Predefined Number Registers. 

.k 

.j 

. P 

L 

c. 

Read-only. Contains the horizontal size of the text portion (without indent) of the current 
partially collected output line, if any, in the current environment. 

Read-only. A number representing the current adjustment mode and type. Can be saved 
and later given to the "ad" request to restore a previous mode. 

Read-only. 1 if the current page is being printed, and zero otherwise . 

Read-only. Contains the current line-spacing parameter ("Is"). 

General register access to the input line-number in the current input file. Contains the 
same value as the read-only ".c" register. 



( 

A TROFF Tutorial 

Brian W. Kernighan 

Typesetting 
Text formatting 

NROFF 

ABSTRAOT 

trofl' is a text-formatting program for driving the Graphic Systems photo­
typesetter on the UNIXt and GCOS operating systems. This device is capable of 
producing high quality text; this paper is an example of trofl' output. 

The phototypesetter itself normally runs with four fonts, containing roman, 
italic and bold letters (as on this page), a full greek alphabet, and a substantial 
number of special characters and mathematical symbols. Characters can be 
printed in a range of sizes, and placed anywhere on the page. 

trofl' allows the user full control over fonts, sizes, and character positions, as 
well as the usual features of a formatter - right-margin justification, automatic 
hyphenation, page titling and numbering, and so on. It also provides macros, 
arithmetic variables and operations, and conditional testing, for complicated for­
matting tasks. 

This document is an introduction to the most basic use of trofl'. It presents 
just enough information to enable the user to do simple formatting tasks like 
making view graphs, and to make incremental changes to existing pa.ckages of 
trofl' commands. In most respects, the UNIX formatter Droft' is identical to trofJ, 
so this document also serves as a tutorial on nroft'. 

September 17, 1986 

t UNIX is a trademark or Bell Laboratories. 



~\ 

U 

o 



o 

A TROFF Tutorial 

En'an W. Kernighan 

Typesetting 
Text formatting 

NROFF 

1. Introduction 

troff [IJ is a text-formatting program, writ­
ten by J. F. Ossanna, for producing high-quality 
printed output from the phototypesetter on the 
UNIX and GOOS operating systems. This docu­
ment is an example of troff output. 

The single most important rule of using 
troff is not to use it directly, but through some 
intermediary. In many ways, troff resembles an 
assembly language - a remarkably powerful and 
flexible one - but nonetheless such that many 
operations must be specified at a level of detail 
and in a form that is too hard for most people to 
use effectively. 

For two special applications, there are pro­
grams that provide an interface to troff for the 
majority of users. eqn [2J provides an easy to 
learn language for typesetting mathematics; the 
eqn user need know no troff whatsoever to 
typeset mathematics. tbl [3J provides the same 
convenience for producing tables of arbitrary com­
plexity. 

For producing straight text (which may well 
contain mathematics or tables), there are a 
number of 'macro packages' that define formatting 
rules and operations for specific styles of docu­
ments, and reduce the amount of direct contact 
with troff. In particular, the '-ms' [4J and 
PWB/MM [5J packages for Bell Labs internal 
memoranda and external papers provide most of 
the facilities needed for a wide range of document 
preparation. (This memo was prepared with 
'-ms'.) There are also packages for viewgraphs, for 
simulating the older roff formatters on UNIX and 
GOOS, and for other special applications. Typi­
cally you will find these packages easier to use 
than troiT once you get beyond the most trivial 
operations; you should always consider them first. 

In the few cases where existing packages 
don't do the whole job, the solution is not to write 
an entirely new set of troff instructions from 
scratch, but to make small changes to adapt pack­
ages that already exist. 

In accordance with this philosophy of letting 
someone else do the work, the part of troff 
described here is only a small part of the whole, 
although it tries to concentrate on the more useful 
parts. In any case, there is no attempt to be com­
plete. Rather, the emphasis is on showing how to 
do simple things, and how to make incremental 
changes to what already exists. The contents of 
the remaining sections are: 

2. Point sizes and line spacing 
3. Fonts and special characters 
4. Indents and line length 
5. Tabs 
6. Local motions: Drawing lines and characters 
7. Strings 
8. Introduction to macros 
9. Titles, pages and numbering 

10. Number registers and arithmetic 
11. Macros with arguments 
12. Conditionals 
13. Environments 
14. Diversions 

Appendix: Typesetter character set 

The troff described here is the C-Ianguage version 
running on UNIX at Murray Hill, as documented in 
[lJ. 

To use troff you have to prepare not only 
the actual text you want printed, but some infor­
mation that tells how you want it printed. 
(Readers who use roff will find the approach fami­
liar.) For troff the text and the formatting infor­
mation are often intertwined quite intimately. 
Most commands to troiT are placed on a line 
separate from the text itself, beginning with a 
period (one command per line). For example, 

Some text. 
.ps 14 
Some more text. 

will change the 'point size', that is, the size of the 
letters being printed, to '14 point' (one point is 
1/72 inch) like this: 



Some text. Some more text. 
Occasionally, though, something special 

occurs in the middle of a line - to produce 

Area = 1rr2 

you have to type 

Area = \( *p\fIr\fR\ 1\s8\u2\d\sO 

(which we will explain shortly). The ba.ckslash 
character \ is used to introduce troft" commands 
and special characters within a line of text. 

2. Point Sizes; Line Spacing 

.As mentioned above, the command .ps sets 
the point size. One point is 1/72 inch, so 6-point 
characters are at most 1/12 inch high, and 36-
point characters are ~ inch. There are 15 point 
sizes, listed below. 

o point: PICk DV' box w1t.b live 00_ Uquor Jup. 
7 point: Pack my box with live dOleD liquor jup. 
8 point: Pack my box with five dozen liquor jugs. 
9 point: Pack my box with five dozen liquor jugs. 
10 point: Pack my box with five dozen liquor 
11 point: Pack my box with five dozen 
12 point: Pack my box with five dozen 
14 point: Pack my box with five 

- 2· 

16 point 18 point 20 point 

22 24 28 36 
If the number after .ps is not one of these 

legal sizes, it is rounded up to the next valid value, 
with a maximum of 36. If no number follows .ps, 
troft' reverts to the previous size, whatever it was. 
tl'Oft' begins with point size 10, which is usually 
fine. This document is in 9 point. 

The point size can also be changed in the 
middle of a line or even a word with the in-line 
command \s. To produce 

UNIX runs on a PDP-ll/45 

type 

\s8UNIX\slO runs on a \s8PDP-\slOll/45 

.As above, \s should be followed by a legal point 
size, except that \sO causes the size to revert to its 
previous value. Notice that \51011 can be under­
stood correctly as 'size 10, followed by an U', if 
the size is legal, but not otherwise. Be cautious 
with similar constructions. 

Relative size changes are also legal and use-
ful: 

\&-2UNIX\s+2 

temporarily decreases' the size, whatever it is, by 
two points, then restores it. Relative size changes 
have the advantage that the size difference is 
independent of the starting size of the document. 
The amount of the relative change is restricted to 
a single digit. 

The other parameter that determines what 
the type looks like is the spacing between lines, 
which is set independently of the point size. Verti­
cal spacing is measured from the bottom of one 
line to the bottom of the next. The command to 
control vertical spacing is .VS. For running text, it 
is usually best to set the vertical spacing about 
20% bigger than the character size. For example, 
so far in this document, we have used "9 on 11", 
that is, 

.ps 9 

.vs Up 

If we changed to 

.ps 9 

.vs 9p 

the running text would look like this. After a few 
lines, you will agree it looks a little cramped. The 
right vertical spacing is partly a matter of taste, 
depending on how much text you want to squeeze 
into a given space, and partly a matter of tradi­
tional printing style. By default, troft' uses 10 on 
12. 

Point size and vertical spacing 
make a substantial difference in the 
amount of text per square inch. This 
is 12 on 14. 

PoInt IIIe ud \'!l'tlcalipadDc make a. lUbst.antlal cII1I'mnce In the 
IIJI)UDt of &en per 8qUaIII Inch. For 1!ICIIJ1I1e, 10 OD III U8!S about twice as 
InIdi spa.oe as 7 011 & 'IbIs Is 8 OD 7, wIllch Is evlll SII1IJJer. It P&eD a.iot 
ume 1IOIOI'ds per line, but you CIIl lID bllDd tl)'lDg to read It. 

When used without arguments, .ps and .vs 
revert to the previous size and vertical spacing 
respectively. 

The command .sp is used to get extra verti­
cal space. Unadorned, it gives you one extra blank 
line (one .vs, whatever that has been set to). Typ­
ically, that's more or less than you want, so .sp 
can be followed by information about how much 
space you want -

.sp 2i 

means 'two inches of vertical space'. 

.sp 2p 

means 'two points of vertical space'; and 

/\. 

\~,-j 

G 



o 

.sp 2 

means 'two vertical spaces' - two of whatever .vs 
is set to (this can also be made explicit with 
.sp 2v); troft' also understands decimal fractions in 
most places, so 

.sp LSi 

is a space of 1.5 inches. These same scale factors 
can be used after .VB to define line spacing, and in 
fact after most commands that deal with physical 
dimensions. 

It should be noted that 8011 size numbers are 
converted internally to 'machine units', which are 
1/432 inch (1/6 point). For most purposes, this is 
enough resolution that you don't have to worry 
about the accuracy of the representation. The 
situation is not quite so good vertically, where 
resolution is 1/144 inch (1/2 point). 

3. Fonts and Special Characters 

troft' and the typesetter allow four different 
fonts at anyone time. Normally three fonts 
(Times roman, italic and bold) and one collection 
of special characters are permanently mounted. 

abcdef ghij klmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTlNWXYZ 
abcdefghijklmnopqTstuvwxyz 0129456789 
ABCDEFGHlJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGIllJKLMNOPQRSTUVWXYZ 

The greek, mathematical symbols and miscellany 
of the special font are listed in Appendix A. 

trofl' prints in roman unless told otherwise. 
To switch into bold, use the .ft command 

.ft B 

and for italics, 

.ft I 

To return to roman, use .ft R; to return to the 
previous font, whatever it was, use either .ft P or 
just .ft. The 'underline' command 

.ul 

causes the next input line to print in italics. .ul 
can be followed by a count to indicate that more 
than one line is to be italicized. 

Fonts can also be changed within a line or 
word with the in-line command \f: 

boldface text 

is produced by 

\fBbold\fIface\fR text 

If you want to do this so the previous font, what-

-3-

ever it was, is left undisturbed, insert extra \fP 
commands, like this: 

\mbold\fP\fIface\fP\fR text\fP 

Because only the immediately previous font is 
remembered, you have to restore the previous font 
after each change or you can lose it. The same is 
true of .ps and .VB when used without an argu­
ment. 

There are other fonts available besides the 
standard set, although you can still use only four 
at any given time. The command .fp tells trofl' 
what fonts are physically mounted on the 
typesetter: 

.fp 3 H 

says that the Helvetica font is mounted on posi­
tion 3. (For a complete list of fonts and what they 
look like, see the trofl' manual.) Appropriate .fp 
commands should appear at the beginning of your 
document if you do not use the standard fonts. 

It is possible to make a document relatively 
independent of the actual fonts used to print it by 
using font numbers instead of names; for example, 
\f3 and .ft-3 mean 'whatever font is mounted at 
position 3', and thus work for any setting. Nor­
mal settings are roman font on 1, italic on 2, bold 
on 3, and special on 4. 

There is also a way to get 'synthetic' bold 
fonts by overstriking letters with a slight offset. 
Look at the .bd command in [lJ. 

Special characters have four-character names 
beginning with \(, and they may be inserted any­
where. For example, 

is produced by 

\(14 + \(12 = \(34 

In particular, greek letters are all of the form \( *-, 
where - is an upper or lower case roman letter 
reminiscent of the greek. Thus to get 

E(QX~) - 00 

in bare trofl' we have to type 

\(*S(\(*a\(mu\(*b) \(-> \(if 

That line is unscrambled as follows: 



\(.S E 
( ( 
\(.a ct. 

\(mu X 
\(.b fJ 
) ) 
\(-> -\(if 00 

A complete list of these special names occurs in 
Appendix A. 

In eqn (21 the same effect can be achieved 
with the input 

SIGMA ( alpha times beta) -> inf 

which is less concise, but clearer to the uninitiated. 

Notice that each four-character name is a 
single character as far as trotr is concerned - the 
'translate' command 

.tr \(mi\{em 

is perfectly clear, meaning 

.tr--

. that is, to translate - into-. 

Some characters are automatically 
translated into others: grave ' and acute 
accents (apostrophes) become open and close single 
quotes '-'; the combination of It ... " is generally 
preferable to the double quotes " ... ". Similarly a 
typed minus sign becomes a hyphen -. To print 
an explicit - sign, use \-. To get a backslash 
printed, use \e. 

4. Indents and Line Lengths 

trotr starts with a line length of 6.5 inches, 
too wide for 8~Xll paper. To reset the line 
length, use the .11 command, as in 

.11 6i 

As with .sp, the actual length can be specified in 
several ways; inches are probably the most intui­
tive. 

The maximum line length provided by the 
typesetter is 7.5 inches, by the way. To use the 
full width, you will have to reset the default physi­
cal left margin ("page offset"). which is normally 
slightly less than one inch from the left edge of the 
paper. This is done by the .po command. 

. poO 

sets the offset as far to the left as it will go. 

The indent command .in causes the left 
margin to be indented by some specified amount 
from the page offset. If we use .in to move the left 
margin in, and .11 to move the right margin to the 

-4-

left, we can make offset blocks of text: 

.in O.3i 

.U-O.3i 
text to be set into a block 
.11 +O.3i 
.in-o.3i 

will create a block that looks like this: 

Pater noster qui est in caelis 
sanctificetur nomen tuum; adveniat J;eg­
num tuum; fiat voluntas tua, sicut in 
caelo, et in terra. '" Amen. 

Notice the use of '+' and '-' to specify the 
amount of change. These change the previous set­
ting by the specified amount, rather than just 
overriding it. The distinction is quite important: 
.11 +li makes lines one inch longer; .11 Ii makes 
them one inch long. 

With .in, .II and .po, the previous value is 
used if no argument is specified. 

To indent a single line, use the 'temporary 
indent' command .ti. For example. all paragraphs 
in this memo effectively begin with the command 

.ti 3 

Three of what? The default unit for .ti, as for 
most horizontally oriented commands (.Il • .in, .po). 
is ems; an em is roughly the width of the letter 'm' 
in the current point size. (Precisely. a em in size p 
is p points.) Although inches are usually clearer 
than ems to people who don't set type for a living, 
ems have a place: they are a measure of size that is 
proportional to the current point size. If you want 
to make text that keeps its proportions regardless 
of point size, you should use ems for all dimen­
sions. Ems can be specified as scale factors 
directly, as in .ti 2.5m. 

Lines can also be indented negatively if the 
indent is already positive: 

.ti -O.3i 

causes the next line to be moved back three tenths 
of an inch. Thus to make a decorative initial capi­
tal, we indent the whole paragraph, then move the 
letter 'P' back with a .ti command: 

P ater noster qui est in caelis 
sanctificetur nomen tuum; adveni­
at regnum tuum; fiat voluntas 

tua, sicut in caelo, et in terra. . .. 
Amen. 

Of course, there is also some trickery to make the 
'P' bigger (just a '\s36P\sO'). and to move it down 
from its normal position (see the section on local 
motions). 

/" .. \ 

','-.. .. ) 

o 



(- --. 

--" 

( 

s. Tabs 

Tabs (the AScn 'horizontal tab' character) 
can be used to produce output in columns, or to 
set the horizontal position of output. Typically 
tabs are used only in unfilled text. Tab stops are 
set by default every half inch from the current 
indent, but can be changed by the .ta command. 
To set stops every inch, for example, 

.ta Ii 2i 3i 4i 5i 6i 

Unfortunately the stops are left-justified 
only (as on a typewriter), so lining up columns of 
right-justified numbers can be painful. If you have 
many numbers, or if you need more complicated 
table layout, don't use troft' directly; use the tbl 
program described in 13}. 

For a handful of numeric columns, you can 
do it this way: Precede every number by enough 
blanks to make it line up when typed. 

.nf 

.ta li 2i 3i 
1 tab 2 tab 3 

40 tab 50 tab 60 
700 tab 800 tab 900 
.fi 

Then change each leading blank into the string \0. 
This is a character that does not print, but that 
has the same width as a digit. When printed, this 
will produce 

1 
40 

700 

2 
50 

800 

3 
60 

900 

It is also possible to fill up tabbed-over 
space with some character other than blanks by 
setting the 'tab replacement character' with the .tc 
oommand: 

.ta l.Si 2.Si 

. tc \(ru (\(ru is "_") 
Name tab Age tab 

produces 
Name ______________ Age ________ _ 

To reset the tab replacement character to a blank, 
use . tc with no argument. (Lines can also be 
drawn with the \1 oommand, described in Section 
6.) 

troft' also provides a very general mechan­
ism called 'fields' for setting up complicated 
oolumns. (This is used by tbl). We will not go 
into it in this paper. 

- 5-

8. Local Motions: Drawing linea and eharae­
tel'll 

Remember 'Area = rr2, and the big 'P' in 
the Paternoster. How are they done? troft' pro­
vides a host of commands for placing characters of 
any size at any place. You can use them to draw 
special characters or to tune your output for a par­
ticular appearance. Most of these commands are 
straightforward, but messy to read and tough to 
type correctly. 

If you won't use eqn, subscripts and super­
scripts are most easily done with the half-line local 
motions \u and \d. To go back up the page half a 
point-size, insert a \u at the desired place; to go 
down, insert a \d. (\u and \d should always be 
used in pairs, as explained below.) Thus 

Area = \(*pr\u2\d 

produces 

Area = ,"2 

To make the '2' smaller, bracket it with \s-2 .. .\sO. 
Since \u and \d refer to the current point size, be 
sure to put them either both inside or both outside 
the size changes, or you will get an unbalanced 
vertical motion. 

Sometimes the space given by \u and \d 
isn't the right amount. The \v command can be 
used to request an arbitrary amount of vertical 
motion. The in-line command 

\v'(amount), 

causes motion up or down the-page by the amount 
specified in '(amount)'. For example, to move the 
'P' down, we used 

.in +0.6i (move paragraph in) 

.11 -O.3i (shorten lines) 

.ti -O.3i (move P back) 
\v'2\s36P\sO\v'-2'ater noster qui est 
in caelis ... 

A minus sign causes upward motion, while no sign 
or a plus sign means down the page. Thus \v/-2' 
causes an upward vertical motion of two line 
spaces. 

There are many other ways to specify the 
amount of motion -

\v'O.Ii' 
\v'3p' 
\v'-O.5m' 

and so on are all legal. Notice that the scale 
specifier i or p or m goes inside the quotes. Any 
character can be used in place of the quotes; this is 
also true of all other troff commands described in 
this section. 



Since t!'Off does not take within-the-line 
vertical motions into account when figuring out 
where it is on the page, output lines can have 
unexpected positions if the left and right ends 
aren't at the same vertical position. Thus \v, like 
\u and \d, should always balance upward vertical 
motion in a line with the same amount in the 
downward direction. 

Arbitrary horizontal motions are also avail­
able - \h is quite analogous to \ v, except that the 
default scale factor is ems instead of line spaces. 
AB an example, 

\h'-O.li' 

causes a backwards motion of a tenth of an inch. 
AB a practical matter, consider printing the 
mathematical symbol '> >'. The default spacing 
is too wide, so eqn replaces this by 

>\h'...().3m'> 

to produce ». 
Frequently \h is used with the 'width func­

tion' \w to generate motions equal to the width of 
some character string. The construction 

\w'thing' 

is a number equal to the width of 'thing' in 
machine units (1/432 inch). All troft' computa­
tions are ultimately done in these units. To move 
horizontally the width of an 'x', we can say 

\h \w'x'u' 

AB we mentioned above, the default scale factor 
for all horizontal dimensions is m, ems, so here we 
must have the u for machine units, or the motion 
produced will be far too large. troft' is quite 
happy with the nested quotes, by the way, so long 
as you don't leave any out. 

AB a Jive example of this kind of construc­
tion, all of the command names in the text, like 
.sp, were done by overstriking with a slight offset. 
The commands for .sp are 

. sp\h '-\w '.sp'u \h 'lu'.sp 

That is, put out '.sp', move left by the width of 
'.sp', move right 1 unit, and print '.sp' again. (Of 
oourse there is a way to avoid typing that much 
input for each command name, which we will dis­
cuss in Section 11.) 

There are also several special-purpose troft' 
oommands for local motion. We have already seen 
\0, which is an unpaddable white space of the 
same width as a digit. 'Unpaddable' means that it 
will never be widened or split across a line by line 
justification and filling. There is also \(blank), 
which is an unpaddable character the width of a 
space, \L which is half that width, \ A, which is one 

quarter of the width of a space, and \&, which has 
zero width. (This last one is useful, for example, 
in entering a text line which would otherwise begin 
with a'.'.) 

The command \0, used like 

\o'set of characters' 

causes (up to 9) characters to be overstruck, cen­
tered on the widest. This is nice for accents, as in 

syst\o"e\(ga "me t\o"e\( aa."l\o"e\( aa."phonique 

which makes 

systeme teJephonique 

The accents are \(ga and \(aa., or \' and \ '; 
remember that each is just one character to trotl'. 

You can make your own overstrikes with 
another special convention, \z, the zero-motion 
command. \zx suppresses the normal horizontal 
motion after printing the single character x, so 
another character can be laid on top of it. 
Although sizes can be changed within \0, it centers 
the characters on the widest, and there can be no 
horizontal or vertical motions, so \z may be the 
only way to get what you want: 

is produced by 

.sp 2 
\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq 

The .sp is needed to leave room for the result. 

AB another example, an extra-heavy semi­
colon that looks like 

; instead of ; or ; 

can be constructed with a big comma and a big 
period above it: 

\s+6\z,\v'-O.25m '.\v'O.25m \sO 
'0.25m' is an empirical constant . 

A more ornate overstrike is given by the 
bracketing function \b, which piles up characters 
vertically, centered on the current baseline. Thus 
we can get big brackets, constructing them with 
piled-up smaller pieces: 

by typing in only this: 

.sp 
\bl \(It\(lk\(lbl \bl \(lc\(W x \bl \(rc\(rfl \bl \( rt\(rk\( rb' 

o 



( 

( 

troff also provides a convenient facility for 
drawing horizontal and vertical lines of arbitrary 
length with arbitrary characters. \1' Ii' draws a 
line one inch long, like this: 
The length can be followed by the character to use 
if the _ isn't appropriate; \1' O.Si.' draws a half-
inch line of dots: ............... The construction \L is 
entirely analogous, except that it draws a vertical 
line instead of horizontal. 

7. Strings 

Obviously if a paper cOntains a large 
number of occurrences of an acute accent over a 
letter 'e', typing \o·e\" for each e would be a 
great nuisance. 

Fortunately, troff provides a way in which 
you can store an arbitrary collection of text in a 
'string', and thereafter use the string name as a 
shorthand for its contents. Strings are one of 
several troff mechanisms whose judicious use lets 
you type a document with less effort and organize 
it so that extensive format changes can be made 
with few editing changes. 

A reference to a string is replaced by what­
ever text the string was defined as. Strings are 
defined with the command .ds. The line 

.ds e \o"e\ '" 

defines the string e to have the value \o"e\" 

String names may be either one or two char­
acters long, and are referred to by \*x for one 
character names or \*(xy for two character names. 
Thus to get telephone, given the definition of the 
string e as above, we can say t\*el\*ephone. 

If a string must begin with blanks, define it 
as 

. ds xx " text 

The double quote signals the beginning of the 
definition. There is no trailing quote; the end of 
the line terminates the string. 

A string may actually be several lines long; 
if troff encounters a \ at the end of any line, it is 
thrown away and the next line added to the 
current one. So you can make a long string simply 
by ending each line but the last with a back~lash: 

.ds xx this \ 
is a very \ 
long string 

Strings may be defined in terms of other 
strings, or even in terms of themselves; we will dis­
cuss some of these possibilities later. 

-7-

8. Introduction to Macros 

Before we can go much further in troff, we 
need to learn a bit about the macro facility. In its 
simplest form, a macro is just a shorthand nota­
tion quite similar to a string. Suppose we want 
every paragraph to start in exactly the same way 
- with a space and a temporary indent of two 
ems: 

.sp 

.ti +2m 

Then to save typing, we would like to collapse 
these into one shorthand line, a troff 'command' 
like 

.PP 

that would be treated by troff exactly as 

.sp 

.ti +2m 

.PP is called a macro. The way we tell troft' what 

.PP means is to define it with the .de command: 

.dePP 

.sp 

.ti +2m 

The first line names the macro (we used' .PP' for 
'paragraph', and upper case so it wouldn't conflict 
with any name that troft' might already know 
about). The last line .. marks the end of the 
definition. In between is the text, which is simply 
inserted whenever troff sees the 'command' or 
macro call 

.PP 

A macro can contain any mixture of text and for­
matting commands . 

The definition of .PP has to precede its first 
use; undefined macros are simply ignored. Names 
are restricted to one or two characters. 

Using macros for commonly occurring 
sequences of commands is critically important. 
Not only does it save typing, but it makes later 
changes much easier. Suppose we decide that the 
paragraph indent is too small, the vertical space is 
much too big, and roman font should be forced. 
Instead of changing the whole document, we need 
only change the definition of .PP to something like 

.dePP 

.sp 2p 

.ti +3m 

.ft R 

\" paragraph macro 

and the change takes effect everywhere we used 
.PP. 



\" is a trotT command that causes the rest 
of the line to be ignored. We use it here to add 
comments to the macro definition (a wise idea once 
definitions get complicated). 

.As another example of macros, consider 
these two which start and end a block of offset, 
unfilled text, like most of the examples in this 
paper: 

.deBS 

.sp 

.nf 

.in +0.3i 

.deBE 

.sp 

.fi 

.in -0.3i 

\" start indented block 

\" end indented block 

Now we can surround text like 

Copy to 
John Doe 
Richard Roberts 
Stanley Smith 

by the commands .BS and .BE, and it will come 
out as it did above. Notice that we indented by 
.in +0.3i instead of .in 0.3i. This way we can nest 
our uses of .BS and BE to get blocks within 
blocks. 

If later on we decide that the indent should 
be 0.5i, then it is only necessary to change the 
definitions of .BS and .BE, not the whole paper. 

9. Titles, Pages and Numbering 

This is an area where things get tougher, 
because nothing is done for you automatically. Of 
necessity, some of this section is a cookbook, to be 
copied literally until you get some experience. 

Suppose you want a title at the top of each 
page, saying just 
----left top center top right top----

In roft', one can say 

.he 1eft top 'center top'right top' 

.fo 1eft bottom 'center bottom'right bottom' 

to get headers and footers automatically on every 
page. Alas, this doesn't work in troft', a serious 
hardship for the novice. Instead you have to do a 
lot of specification. 

You have to say what the actual title is 
(easy); when to print it (easy enough); and what to 
do at and around the title line (harder). Taking 
these in reverse order, first we define a macro .NP 
(for 'new page') to process titles and the like at the 
end of one page and the beginning of the next: 

-8-

.deNP 
'bp 
'sp O.Si 
.tl 1eft top 'center top'right top' 
'sp 0.3i 

To make sure we're at the top of a page, we issue 
a ~begin page' command I bp, which causes a skip 
to top-of-page (we'll explain the I shortly). Then 
we space down half an inch, print the title (the use 
of .tl should be self explanatory; later we will dis­
cuss parameterizing the titles), space another 0.3 
inches, and we're done. 

To ask for .NP at the bottom of each page, 
we have to say something like 'when the text is 
within an inch of the bottom of the page, start the 
processing for a new page.' This is done with a 
'when' command .wh: 

.wh -Ii NP 

(No '.' is used before NP; this is simply the name 
of a macro, not a macro call.) The minus sign 
means 'measure up from the bottom of the page', 
so '-li' means 'one inch from the bottom'. 

The .wh command appears in the input out­
side the definition of .NP; typically the input 
would be 

.deNP 

.wh -Ii NP 

Now w hat happens? .As text is actually 
being output, trotT keeps track of its vertical posi­
tion on the page, and after a line is printed within 
one inch from the bottom, the .NP macro is 
activated. (In the jargon, the .wh command sets a 
trap at the specified place, which is 'sprung' when 
that point is passed.) .NP causes a skip to the top 
of the next page (that's what the I bp was for), 
then prints the title with the appropriate margins. 

Why I bp and I sp instead of .bp and .sp? 
The answer is that .sp and .bp, like several other 
commands, cause a break to take place. That is, 
all the input text collected but not yet printed is 
flushed out as soon as possible, and the next input 
line is guaranteed to start a new line of output. If 
we had used .sp or .hp in the .NP macro, this 
would cause a break in the middle of the current 
output line when a new page is started. The effect 
would be to print the left-over part of that line at 
the top of the page, followed by the next input 
line on a new output line. This is not what we 
want. Using I instead of . for a command tells 
trotT that no break is to take place - the output 
line currently being filled should not be forced out 
before the space or new page. 



( 

The list of commands that cause a break is 
short and natura.!: 

.bp .br .ce .fi .nf .sp .in .ti 

All others cause no break, regardless of whether 
you use a . or a I . If you really need a break, add 
a .br command at the appropriate place. 

One other thing to beware of - if you're 
changing fonts or point sizes a lot, you may find 
that if you cross a page boundary in an unex­
pected font or size, your titles come out in that 
size and font instead of what you intended. 
Furthermore, the length of a title is independent of 
the current line length, so titles will come out at 
the default length of 6.5 inches unless you change 
it, which is done with the .It command. 

There are several ways to fix the problems 
of point sizes and fonts in titles. For the simplest 
applications, we can change .NP to set the proper 
size and font for the title, then restore the previous 
values, like this: 

.deNP 
'bp 
'sp 0.5i 
.It R \" set title font to roman 
.ps 10 \" and size to 10 point 
.It 6i \ " and length to 6 inches 
.t1 1eft'center'right' 
.ps '" revert to previous size 
.It P \ .. and to previous font 
'Sp O.Si 

This version of .NP does not work if the 
fields in the .t1 command contain size or font 
changes. To cope with that requires troff's 
'environment' mechanism, which we will discuss in 
Section IS. 

To get a footer at the bottom of a page, you 
can modify .NP so it does some processing before 
the 'bp command, or split the job into a footer 
macro invoked at the bottom margin and a header 
macro invoked at the top of the page. These vari­
ations are left as exercises. 

Output page numbers are computed 
automatically as each page is produced (starting at 
1), but no numbers are printed unless you ask for 
them explicitly. To get page numbers printed, 
include the character % in the .t1 line at the posi­
tion where you want the number to appear. For 
example 

.t1 "-%-" 

centers the page number inside hyphens, as on this 
page. You can set the page number at any time 
with either .bp n, which immediately starts a new 
page numbered n, or with .pn n, which sets the 

-9-

page number for the next page but doesn't cause a 
skip to the new page. Again, .bp +n sets the page 
number to n more than its current value; .bp 
means .bp +1. 

10. Number Registers and Arithmetic 

troW has a facility for doing arithmetic, and 
for defining and using variables with numeric 
values, called number registers. Number registers, 
like strings and macros, can be useful in setting up 
a document so it is easy to change later. And of 
course they serve for any sort of arithmetic com­
putation. 

Like strings, number registers have one or 
two character names. They are set by the .nr 
command, and are referenced anywhere by \nx 
(one character name) or \n(xy (two character 
name). 

There axe quite a few pre-defined number 
registers maintained by troff, among them % for 
the current page number; nl for the current verti­
cal position on the page; dy, mo and yr for the 
current day, month and year; and .8 and .f for the 
current size and font. (The font is a number from 
1 to 4.) Any of these can be used in computations 
like any other register, but some, like .s and .f, 
cannot be changed with .nr . 

.As an example of the use of number regis­
ters, in the -ms macro package 14], most 
significant parameters are defined in terms of the 
values of a handful of number registers. These 
include the point size for text, the vertical spacing, 
and the line a.nd title lengths. To set the point 
size and vertical spacing for the following para­
graphs, for example, a user may say 

.nr PS 9 

.nr VS 11 

The paragraph macro .PP is defined (roughly) as 
follows: 

.dePP 

.ps \\n(PS 

.vs \\n(VSp 

.ft R 

.sp 0.5v 

.ti +Sm 

, " reset size 
\" spacing 
\" font 
\ .. half a line 

This sets the font to Roman and the point size 
and line spacing to whatever values are stored in 
the number registers PS and VS. 

Why are there two backslashes? This is the 
eternal problem of how to quote a quote. When 
tl'off originally reads the macro definition, it peels 
off one backs lash to see what's coming next. To 
ensure that another is left in the definition when 
the macro is used, we have to put in two 
backslashes in the definition. If only one backslash 



is used, point size and vertical spacing will be 
frozen at the time the macro is defined, not when 
it is used. 

Protecting by an extra layer of backslashes 
is onlY needed for \n, \., \$ (which we haven't 
come to yet), and \ itself. Things like \5, \f, \h, 
\v, and so on do not need an extra backslash, 
since they are converted by troft' to an internal 
code immediately upon being seen. 

Arithmetic expressions can appear anywhere 
that a number is expected. AB a trivial example, 

.nr PS \ \n(PS-2 

decrements PS by 2. Expressions can use the 
arithmetic operators +, -, ., /, % (mod), the rela­
tional operators >, >=, <, <=, =, and != 
(not equal), and parentheses. 

Although the arithmetic we have done so far 
has been straightforward, more complicated things 
are somewhat tricky. First, number registers hold 
only integers. troft' arithmetic uses truncating 
integer division, just like Fortran. Second, in the 

. absence of parentheses, evaluation is done left-to­
right without any operator precedence (including 
relational operators). Thus 

7*-4+3/13 

becomes '-I'. Number registers can occur any­
where in an expression, and so can scale indicators 
like p, i, m, and so on (but no spaces). Although 
integer division causes truncation, each number 
and its scale indicator is converted to machine 
units (1/432 inch) before any arithmetic is done, so 
li/2u evaluates to O.5i correctly. 

The scale indicator u often has to appear 
when you wouldn't expect it - in particular, when 
arithmetic is being done in a context that implies 
horizontal or vertical dimensions. For example, 

.11 7/2i 

would seem obvious enough - 3~ inches. Sorry. 
Remember that the default units for horizontal 
parameters like .11 are ems. That's really '7 ems / 
2 inches', and when translated into machine units, 
it becomes zero. How about 

.11 7i/2 

Sorry, still no good - the '2' is '2 ems', so '7i/2' is 
small, although not zero. You must use 

.11 7i/2u 

So again, a safe rule is to attach a scale indicator 
to every number, even constants. 

For arithmetic done within a .Dr command, 
there is no implication of horizontal or vertical 
dimension, so the default units are 'units', and 

7i/2 and 7i/2u mean the same thing. Thus 

.nr ll7i/2 

.Il \\n(llu 

does just what you want, so long as you don't for­
get the u on the .11 command. 

11. M&cros with &rgurnents 

The next step is to define macros that can 
change from one use to the next according to 
parameters supplied as arguments. To make this 
work, we need two things: first, when we define 
the macro, we have to indicate that some parts of 
it will be provided as arguments when the macro is 
called. Then when the macro is called we have to 
provide actual arguments to be plugged into the 
definition. 

Let us illustrate ):>y defining a macro .SM 
that will print its argument two points smaller 
than the surrounding text. That is, the macro call 

.SM TROFF 

will produce TROFF. 

The definition of .8M is 

.deSM 
\s-2\\$1\s+2 

Within a macro definition, the symbol \\$n refers 
to the nth argument that the macro was called 
with. Thus \\$1 is the string to be placed in a 
smaller point size when .SM is called. 

.As a slightly more complicated version, the 
following definition of .SM permits optional second 
and third arguments that will be printed in the 
normal size: 

.deSM 
\\$3\s-2\\$I\s+2\\$2 

Arguments not provided when the macro is called 
are treated as empty, so 

.SM TROFF ), 

produces TROFF), while 

.SM TROFF ). ( 

produces (TROFF). It is convenient to reverse the 
order of arguments because trailing punctuation is 
much more common than leading. 

By the way, the number of arguments that 
a macro was called with is available in number 
register .$. 

The following macro .BD is the one used to 
make the 'bold roman' we have been using for 
troft' command names in text. It combines hor­
izontal motions, width computations, and argu-



( 

(~) 

ment rearrangement. 

.deBD 
\&\\$3\£1\ \$I\h '-\w ,\\$1 'u+lu \\$I\fP\\$2 

The \b and \ w commands need no extra 
backslash, as we discussed above. The \& is there 
in case the argument begins with a period. 

Two backslashes are needed with the "$n 
commands, though, to protect one of them when 
the macro is being defined. Perhaps a second 
example will make this clearer. Consider a macro 
called .SH which produces section headings rather 
like those in this paper, with the sections num­
bered automatically, and the title in bold in a 
smaller size. The use is 

.SH "Section title ... " 

(If the argument to a macro is to contain blanks, 
then it must be surrounded by double quotes, 
unlike a string, where only one leading quote is 
permitted.) 

Here is the definition of the .SH macro: 

. nr SH 0 \" initialize section number 

.deSH 

.sp O.3i 

.ft B 

.nr SH \\n(SH+l \" increment number 

. ps \\n(PS-l \" decrease PS 
\\n(SH. \\$1 \" number. title 
.ps \ \n(PS \" restore PS 
.sp O.3i 
.ft R 

The section number is kept in number register SH, 
which is incremented each time just before it is 
used. (A number register may have the same 
name as a macro without conflict but a string may 
not.) 

We used \\n(SH instead of \n(SH and 
\ \n(PS instead of \n(PS. If we had used \n(SH, we 
would get the value of the register at the time the 
macro was defined, not at the time it was used. If 
that's what you want, fine, but not here. Simi­
larly, by using \\n(PS, we get the point size at the 
time the macro is called. 

k an example that does not involve 
numbers, recall our .NP macro which had a 

.tI 1eWcenter'right' 

We could make these into parameters by using 
instead 

.tl \\*(LT\\*(CT\\.(RT' 

so the title comes from three strings called LT, CT 

- 11-

and RT. If these are empty, then the title will be 
a blank line. Normally CT would be set with 
something like 

.ds CT - %-

to give just the page number between hyphens (as 
on the top of this page), but a user could supply 
private definitions for any of the strings. 

12. Conditionals 

Suppose we want the .SH macro to leave 
two extra inches of space just before section 1, but 
nowhere else. The cleanest way to do that is to 
test inside the .SH macro whether the section 
number is 1, and add some space if it is. The.if 
command provides the conditional test that we 
can add just before the heading line is output: 

.if \ \n(SH= 1 .sp 2i \" first section only 

The condition after the .if can be any arith­
metic or logical expression. If the condition is logi­
cally true, or arithmetically greater than zero, the 
rest of the line is treated as if it were text - here 
a command. If the condition is false, or zero or 
negative, the rest of the line is skipped . 

It is possible to do more than one command 
if a condition is true. Suppose several operations 
are to be done before section 1. One possibility is 
to define a macro .SI and invoke it if we are about 
to do section 1 (as determined by an .if) . 

.de SI 
-- processing for section 1 ---

.de SH 

.if \\n(SH=1 .SI 

An alternate way is to use the extended 
form of the .if, like this: 

.if \ \n(SH=1 \{-- processing 
for section 1 --\} 

The braces \{ and \} must occur in the positions 
shown or you will get unexpected extra lines in 
your output. troll' also provides an 'if-else' con­
struction, which we will not go into here. 

A condition can be negated by preceding it 
with !; we get the same effect as above (but less 
clearly) by using 

.if !\ \n(SH> 1 .SI 

There are a handful of other conditions that 
can be tested with .if. For example, is the current 
page even or odd? 



.if e .tt "even page title" 

.if 0 .tl "odd page title" 

gives facing pages different titles when used inside 
an appropriate new page macro. 

Two other conditions are t and n, which tell 
you whether the formatter is troft' or Droft'. 

.if t troff stuff .. . 

.if n nroff stuff .. . 

Finally, string comparisons may be made in 
an .if: 

.if 'stringl 'string2' stuff 

does 'stuff' if atringJ is the same as &inngS. The 
character separating the strings can be anything 
reasonable that is not contained in either string. 
The strings themselves can reference strings with 
\*, arguments with \$, and so on. 

13. Environments 

As we mentioned, there is a potential prob­
lem when going across a page boundary: parame­
ters like size and font for a page title may well be 
different from those in effect in the text when the 
page boundary occurs. troft' provides a very gen­
eral way to deal with this and similar situations. 
There are three 'environments', each of which has 
independently settable versions of many of the 
parameters associated with processing, including 
size, font, line and title lengths, fill/noftll mode, 
tab stops, and even partially collected lines. Thus 
the titling problem may be readily solved by pro­
cessing the main text in one environment and titles 
in a separate one with its own suitable parameters. 

The command .ev n shifts to environment n; 
n must be 0, 1 or 2. The command .ev with no 
argument returns to the previous environment. 
Environment names are maintained in a stack, so 
calls for different environments may be nested and 
unwound consistently. 

Suppose we say that the main text is pro­
cessed in environment 0, which is where troft' 
begins by default. Then we can modify the new 
page macro .NP to process titles in environment 1 
like this: 

.deNP 

.ev 1 \ " shift to new environment 

.It 6i \ " set parameters here 

.ft R 

.ps 10 

... any other processing ... 

.ev \ " return to previous environment 

It is also possible to initialize the parameters for 
an environment outside the .NP macro, but the 

- 12-

version shown keeps all the processing in one place 
and is thus easier to understand and change . 

1.. Diversions 

There are numerous occasions in page layout 
when it is necessary to store some text for a period 
of time without actually printing it. Footnotes are 
the most obvious example: the text of the footnote 
usually appears in the input well before the place 
on the page where it is to be printed is reached. In 
fact, the place where it is output normally depends 
on how big it is, which implies that there must be 
a way to process the footnote at least enough to 
decide its size without printing it. 

troft' provides a mechanism called a diver­
sion for doing this processing. Any part of the 
output may be diverted into a macro instead of 
being printed, and then at some convenient time 
the macro may be put back into the input. 

The command .di xy begins a diversion -
all subsequent output is collected into the macro 
xy until the command .di with no arguments is 
encountered. This terminates the diversion. The 
processed text is available at any time thereafter, 
simply by giving the command 

.xy 

The vertical size of the last finished diversion is 
contained in the built-in number register dn. 

As a simple example, suppose we want to 
implement a 'keep-release' operation, so that text 
between the commands .KS and .KE will not be 
split across a page boundary (as for a figure or 
table). Clearly, when a .KS is encountered, we 
have to begin diverting the output so we can find 
out how big it is. Then when a .KE is seen, we 
decide whether the diverted text will fit on the 
current page, and print it either there if it fits, or 
at the top of the next page if it doesn't. So: 

.deKS 

.br 

.ev 1 

.ft . 

.diXX 

\" start keep 
\ " start fresh line 
\ " collect in new environment 
\" make it filled text 
\" collect in XX 

.de KE \" end keep 

.br \" get last partial line 

.di \" end diversion 

.if \\n(dn> \\n(.t .bp \" bp if doesn't fit 

.nf \" bring it back in no-fill 

.xx \" text 

.ev \" return to normal environment 

Recall that number register nl is the current posi­
tion on the output page. Since output was being 
diverted, this remains at its value when the diver- o 



sion started. dn is the amount of text in the 
diversion; .t (another built-in register) is the dis­
tance to the next trap, which we assume is at the 
bottom margin of the page. If the diversion is 
large enough to. go past the trap, the .if is 
satisfied, and a .bp is issued. In either case, the 
diverted output is then brought back with .xx. It 
is essential to bring it back in no-fill mode so troft' 
will do no further processing on it. 

This is not the most general keep-release, 
nor is it robust in the face of all conceivable 
inputs, but it would require more space than we 
have here to write it in full generality. This sec­
tion is not intended to teach everything about 
diversions, but to sketch out enough that you can 
read existing macro packages with some 
comprehension. 

Aeknowledgemente 

I am deeply indebted to J. F. Ossanna, the 
author of troft', for his repeated patient explana­
tions of fine points, and for his continuing willing­
ness to adapt troft' to make other uses easier. I 
am also grateful to Jim Blinn, Ted Dolotta, Doug 
McIlroy, Mike Leak and Joel Sturman for helpful 
comments on this paper. 

Referenees 

11\ J. F. Ossanna, NROFF/TROFF User's 
Manual, Bell Laboratories Computing Sci­
ence Technical Report 54, 1976. 

12] B. W. Kernighan, A System for Typesetting 
Mathematics - User's Guide (Second Edi­
tion), Bell Laboratories Computing Science 
Technical Report 17, 1977. 

(3\ M. E. Lesk, TBL - A Program to Format 
Tables, Bell Laboratories Computing Science 
Technical Report 49, 1976. 

(4] M. E. Lesk, Typing Documents on UNIX, 
Bell Laboratories, 1978. 

[5] J. R. Mashey and D. W. Smith, PWB/ MM 
- Programmer's Workbench Memorandum 
Macros, Bell Laboratories internal memoran­
dum. 

- 13-



- 14-

Appendix k Phototypeaetter Character Set 

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character name on 
the right. 

ft \(ft fi \(fi ft \(ft ffi \(Fi fli \(FI 
_ \(ru - \(em % \(14 ~ \(12 IJ(a \(34 
0 \(co . \(de t \(dg I \(fm ¢ \(ct 
• \(rg • \(bu c \(sq . - \(hy 

(In bold, \(sq is -.) 

The following are special-font characters: 

+ \(pl \(mi X \(mu + \(di 
\(eq E \(== ~ \(>= ::5 \«= 

" \(!= :i: \(+- .... \(no / \(sl 
\(ap ==' \c= ex \(pt V \(gr - \(-> - \«- t \(ua l \(da 

J \(is a \(pd 00 \(if V \(sr 
c \(sb :> \(sp u \(cu n \(ca 
f; \(ib ;2 \(ip E \(mo 0 \(es 

\(aa. \(ga 0 \(ci 0 \(bs 
§ \(sc 

* 
\(dd ~ \(Ih 17 \(rh 

( \(It ) \(rt r \(Ic 1 \(rc 
l \(lb J \(rb L \(If J \(rf 
{ \(Ik } \(rk I \(bv ~ \(ts 
I \(br I \(or \(ul - \(m 
• \( .. 

These four characters also have two-character names. The ' is the apostrophe on terminals; the' is the other 
quote mark. 

\' \' \- \-

These characters exist only on the special font, but they do not have four-character names: 

{ } < > \ # @ 

For greek, precede the roman letter by \(* to get the corresponding greek; for example, \(.30 is Q. 

abgdezyhiklmncoprstufxqw 
QP~6(r~'tn~pVeO"purv~x¢w 

ABGDEZYHIKLMNCOPRSTUFXQW 
ABrbEZHeIKAMNEonpETT~X.n 

~ 
\0 

// 
( 

'''--j 



Refer - A Bibliography System 

Bill Tu thil/ 

Computing Services 
University of-California 

Berkeley, CA 94720 

ABSTRACT 

Refer is a bibliography system that supports data entry, indexing, retrieval, sort­
ing, runoff, convenient citations, and footnote or endnote numbering. This document 
assumes you know how to use some Unix editor, and that you are familiar with the 
nroff/troff text formatters. 

The refer prognm is a preprocessor for nroff/troff, like eqn and tbl, except that 
it is used for literature citations, rather than for equations and tables. Given incomplete 
but sufficiently precise citations, refer finds references in a bibliographic database. The 
complete references are formatted as footnotes, numbered, and placed either at the bot­
tom of the page, or at the end of a chapter. 

A number of ancillary programs make refer easier to use. The addbib program is 
for creating and extending the bibliographic database; sortbib sorts the bibliography by 
author and date, or other selected criteria; and roflbib runs off the entire database, for­
matting it not as footnotes, but as a bibliography or annotated bibliography. 

Once a full bibliography has been created, access time can be improved by making 
an index to the references with indxbib. Then, the lookbib program can be used to 
quickly retrieve individual citations or groups of citations. Creating this inverted index 
will speed up refer, and lookbib will allow you to verify that a citation is sufficiently 
precise to deliver just one reference. 

September 18, 1986 



Table of Contents o 
Introduction 1 

Data Entry with Addbib ........................................................................................................ 2 

Printing the Bibliography ...................................................................................................... 3 

Citing Papers with Refer ........................................................................................................ 3 

Refer's Command-line Options ............................................................................................... 4 

Making an Index ............ ... ...................... .......... .................. ............ ............... ............ ............ 5 

Refer Bugs and Some Solutions ............. ........................................................ ................. ........ 6 

Internal Details of Refer ............................ :............................................................................ 6 

Changing the Refer Macros ...... ..... .......... ...... ............ ................. ........... ...... ....... ........... ......... 8 

Acknowledgements ....... .... ........ ........ ...... ...... .................... ........ ........ ............... ..... ............ ...... 9 

"'. 
) 



( 

( 

Refer - A Bibliography System 

Introduction 

Bill Tu thill 

Computing Services 
University of· California 

Berkeley, CA 94720 

Taken together, the refer programs constitute a database system for use with variable-length infor­
mation. To distinguish various types of bibliographic material, the system uses labels composed of upper 
case letters, preceded by a percent sign and followed by a space. For example, one document might be 
given this entry: 

o/oA Joel Kies 
%T Document Formatting on Unix Using the -ms Macros 
%1 Computing Services 
%C Berkeley 
%D 1980 

Each line is called a field, and lines grouped together are called a record; records are separated from each 
other by a blank line. Bibliographic information follows the labels, containing data to be used by the 
refer system. The order of fields is not important, except that authors should be entered in the same order 
as they are listed on the document. Fields can be as long as necessary, and may even be continued on the 
following line(s). 

The labels are meaningful to nroff/troff macros, and, with a few exceptions, the refer program itself 
does not pay attention to them. This implies that you can change the label codes, if you also change the 
macros used by nroff/troff. The macro package takes care of details like proper ordering, underlining the 
book title or journal name, and quoting the article's title. Here are the labels used by refer, with an indi­
cation of what they represent: 

%H Header commentary, printed before reference 
%A Author's name 
%Q Corporate or foreign author (unreversed) 
%T Title of article or book 
%S Series title 
%J Journal containing article 
%B Book containing article 
%R Report, paper, or thesis (for unpublished material) 
%V Volume 
%N Number within volume 
%E Editor of book containing article 
%P Page number(s) 
%1 Issuer (publisher) 
%C City where published 
%D Date of publication 
%0 Other commentary, printed at end of reference 
%K Keywords used to locate reference 
%L Label used by -k option of refer 
%X Abstract (used by roftbib, not by refer) 

Only relevant fields should be supplied. Except for o/oA, each field should be given only once; in the case of 



-2-

multiple authors, the senior author should eome first. The %Q is tor organizational authors, or authors 
with Japanese or Arabie names, in whieh eases the order ot names should be preserved. Books should be 
labeled with the %T, not with the %B, which is reserved tor books containing articles. The %J and %B C. .: 
fields should never appear together, although if they do, the %J will override the %B. It there is no 
author, just an editor, it is best to type the editor in the o/oA field, as in this example: 

o/oA Bertrand Bronson, ed. 

The %E field is used for the editor of a book (%B) eontaining an article, which has its own author. For 
unpublished material sueh as theses, use the %R field; the title in the %T field will be quoted, but the con­
tents ot the %R field will not be underlined. Unlike other fields, %H, %0, and %X should contain their 
own punctuation. Here is a modest example: 

o/oA Mike E. Lesk 
%T Some Applications of Inverted Indexes on the Unix System 
%B Unix Programmer's Manual 
%1 Bell Laboratories 
%C Murray Hill, NJ 
%D 1978 
%V 2a 
%K refer mkey inv hunt 
%X Difficult to read paper that dwells on indexing strategies, 
giving little practical advice about using \rBrefer\rP. 

Note that the author's name is given in normal order, without inverting the surname; inversion is done 
automatically, except when %Q is used instead of %A. We use %X rather than %0 for the commentary 
because we do not want the comment printed all the time. The %0 and %H fields are printed by both 
refer and roftbib; the %X field is printed only by roftbib, as a detached annotation paragraph. 

Data Entry with Addbib 

The addbib program is for creating and extending bibliographic databases. You must give it the "----./ 
filename of your bibliography: 

% addbib database 

Every time you enter addbib, it asks if you want instructions. To get them, type y; to skip them, type 
RETURN. Addbib prompts for various fields, reads from the keyboard, and writes records containing the 
refer codes to the database. After finishing a field entry, you should end it by typing RETURN. If a field is 
too long to fit on a line, type a backslash (\) at the end of the line, and you will be able to continue on the 
following line. Note: the backslash works in this capacity only inside addbib. 

A field will not be written to the database if nothing is entered into it. Typing a minus sign as the 
first character of any field will eause addbib to back up one field at a time. Backing up is the best way to 
add multiple authors, and it really helps if you forget to add something important. Fields not contained in 
the prompting skeleton may be entered by typing a backslash as the last character before RETURN. The 
following line will be sent verbatim to the database and addbib will resume with the next field. This is 
identical to the procedure for dealing with long fields, but with new fields, don't forget the % key-letter. 

Finally, you will be asked for an abstract (or annotation), which will be preserved as the %X field. 
Type in as many lines as you need, and end with a eontrol-D (hold down the CTRL button, then press the 
"dl! key). This prompting for an abstract can be suppressed with the -a command line option. 

Arter one bibliographic record has been completed, addbib will ask if you want to continue. If you 
do, type RETURN; to quit, type q or n (quit or no). It is also possible to use one of the system editors to 
correct mistakes made while entering data. After the "Continue?" prompt, type any of the following: 
edit, ex, vi, or ed - you will be placed inside the corresponding editor, and returned to addbib after­
wards, from where you ean either quit or add more data. 



{ 

( " ) 

-3-

If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too 
numerous, you can redefine the skeleton by constructing a promptfile. Create some file, to be named after 
the -p command line option. Place the prompts you want on the left side, followed by a single TAB 
(control-I), then the refer code that is to appear in the bibliographic database. Addbib will send the left 
side to the screen, and the right side, along with data entered, to the database. 

Printing the Bibliography 

Sortbib is for sorting the bibliography by author (o/oA) and date (%D), or by data in other fields. It 
is quite useful for producing bibliographies and annotated bibliographies, which are seldom entered in strict 
alphabetical order. It takes as arguments the names of up to 16 bibliography files, and sends the sorted 
records to standard output (the terminal screen), which may be redirected through a pipe or into a file. 

The -sKEYS flag to 80rtbib will sort by fields whose key-letters are in the KEYS string, rather 
than merely by author and date. Key-letters in KEYS may be followed by a '+' to indicate that all such 
fields are to be used. The default is to sort by senior author and date (printing the senior author last name 
first), but -sA+D will sort by all authors and then date, and -sATD will sort on senior author, then title, 
and then date. 

Roftbib is for running off the (probably sorted) bibliography. It can handle annotated bibliographies 
- annotations are entered in the %X (abstract) field. Roftbib is a shell script that calls refer -B and 
nroft" -mbib. It uses the macro definitions that reside in jusrjlibjtmacjtmac.bib, which you can redefine 
if you know nroft' and troff. Note that refer will print the %H and %0 commentaries, but will ignore 
abstracts in the %X field; roftbib will print both fields, unless annotations are suppressed with the -x 
option. 

The following command sequence will lineprint the entire bibliography, organized alphabetically by 
author and date: 

% sortbib database I roftbib I Jpr 

This is a good way to proofread the bibliography, or to produce a stand-alone bibliography at the end of a 
paper. Incidentally, roftbib accepts all flags used with nroff. For example: 

% 80rtbib database I roftbib -Tdte -81 

will make accent marks work on a DTC daisy-wheel printer, and stop at the bottom of every page for 
changing paper. The -n and -0 flags may also be quite useful, to start page numbering at a selected point, 
or to produce only specific pages. 

Roftbib understands four command-line number registers, which are something like the two-letter 
number registers in -ms. The -rNl argument will number references beginning at one (1); use another 
number to start somewhere besides one. The -rV2 flag will double-space the entire bibliography, while 
-rVl will double-space the references, but single-space the annotation paragraphs. Finally, specifying -rL6i 
changes the line length from 6.5 inches to 6 inches, and saying -rOli sets the page offset to one inch, 
instead of zero. (That's a capital a after -r, not a zero.) 

Citing Papers with Refer 

The refer program normally copies input to output, except when it encounters an item of the form: 

.[ 
partial citation 
.J 

The partial citation may be just an author's name and a date, or perhaps a title and a keyword, or maybe 
just a document number. Refer looks up the citation in the bibliographic database, and transforms it into 
a full, properly formatted reference. If the partial citation does not correctly identify a single work (either 
finding nothing, or more than one reference), a diagnostic message is given. If nothing is found, it will say 
"No such paper." If more than one reference is found, it will say "Too many hits." Other diagnostic 



~4-

messages can be quite cryptic; if you are in doubt, use checknr to verify that all your .['s have matching 
~~ . 

When everything goes well, the reference will be brought in from the database, numbered, and placed 
at the bottom of the page. This citation, for example, was produced by: 

This citation, 
.[ 
lesk inverted indexes 
.J 
for example, was produced by 

The .[ and .J markers, in essence, replace the .FS and .FE of the -ms macros, and also provide a numbering 
mechanism. Footnote numbers will be bracketed on the the lineprinter, but superscripted on daisy-wheel 
terminals and in troff. In the reference itself, articles will be quoted, and books and journals will be 
underlined in Droff, and italicized in troff. 

Sometimes you need to cite a specific page number along with more general bibliographic material. 
You may have, for instance, a single document that you refer to several times, each time giving a different 
page citation. This is how you could get "p. 10" in the reference: 

.[ 
kies document formatting 
%P 10 
.J 

. The first line, a partial citation, will find the reference in your bibliography. The second line will insert the 
page number into the final citation. Ranges of pages may be specified as "%P 56-78". 

When the time comes to run off a paper, you will need to have two files: the bibliographic database, 
and the paper to format. Use a command line something like one of these: 

% refer -p database paper I nroft' -ms 
% refer -p database paper I tbl I nroff -ms 
% refer -p database paper I tbl I neqn I Droff -ms 

If other preprocessors are used, refer should precede tbl, which must in tum precede eqn or neqn. The 
-p option specifies a "private" database, which most bibliographies are. 

Refer's Command-line Options 

Many people like to place references at the end of a chapter, rather than at the bottom of the page. 
The -e option will accumulate references until a macro sequence of the form 

.[ 
$LIST$ 
.J 

is encountered (or until the end of file). Refer will then write out all references collected up to that point, 
collapsing identical references. Warning: there is a limit (currently 2(0) on the number of references that 
can be accumulated at one time. 

It is also possible to sort references that appear at the end of text. The -sKEYS flag will sort refer­
ences by fields whose key-letters are in the KEYS string, and permute reference numbers in the text accord­
ingly. It is unnecessary to use -e with it, since -s implies -e. Key-letters in KEYS may be followed by a 
'+' to indicate that all such fields are to be used. The default is to sort by senior author and date, but 
-sA+D will sort on all authors and then date, and -sA+T will sort by authors and then title. 

Refer can also make citations in what is known as the Social or Natural Sciences format. Instead of 
numbering references, the -1 (letter ell) flag makes labels from the senior author's last name and the year of 
publication. For example, a reference to the paper on Inverted Indexes cited above might appear as 



-5-

[Lesk1978a]. It is possible to control the number of characters in the last name, and the number of digits 
in the date. For instance, the command line argument -16,2 might produce a reference such as [Kernig78c]. 

Some bibliography standards shun both footnote numbers and labels composed of author and date, 
requiring some keyword to identify the reference. The -k flag indicates that, instead of numbering refer­
ences, key labels specified on the %L line should be used to mark references. 

The -n flag means to not search the default reference file, located in jusrjdictjpapers/Rv7man. 
Using this flag may make refer marginally faster. The -an flag will reverse the first n author names, 
printing Jones, J. A. instead of J. A. Jones. Often -al is enough; this will reverse the names of only the 
senior author. In some versions of refer there is also the -f flag to set the footnote number to some 
predetermined value; for example, -f23 would start numbering with footnote 23. 

Making an Index 

Once your database is large and relatively stable, it is a good idea to make an index to it, so that 
references can be found quickly and efficiently. The indxbib program makes an inverted index to the 
bibliographic database (this program is called pubindex in the Bell Labs manual). An inverted index 
could be compared to the thumb cuts of a dictionary - instead of going all the way through your bibliog­
raphy, programs can move to the exact location where a citation is found. 

Indxbib itself takes a while to run, and you will need sufficient disk space to store the indexes. But 
once it has been run, access time will improve dramatically. Furthermore, large databases of several mil­
lion characters can be indexed with no problem. The program is exceedingly simple to use: 

% indxbib database 

Be aware that changing your database will require that you run indxbib over again. If you don't, you 
may fail to find a reference that really is in the database. 

Once you have built an inverted index, you can use lookbib to find references in the database. 
Lookbib cannot be used until you have run indxbib. When editing a paper, lookbib is very useful to 
make sure that a citation can be found as specified. It takes one argument, the name of the bibliography, 
and then reads partial citations from the terminal, returning references that match, or nothing if none 
match. Its prompt is the greater-than sign. 

% lookbib database 
> lesk inverted indexes 
%A Mike E. Lesk 
%T Some Applications of Inverted Indexes on the Unix System 
%J Unix Programmer's Manual 
%1 Bell Laboratories 
%0 Murray Hill, NJ 
%D 1978 
%V 2a 
%X Difficult to read paper that dwells on indexing strategies, 
giving little practical advice about using \ffirefer\fP. 
> 

If more than one reference comes back, you will have to give a more precise citation for refer. Experiment 
until you find something that works; remember that it is harmless to overspecify. To get out of the look­
bib program, type a control-D alone on a line; lookbib then exits with an "EOT" message. 

Lookbib can also be used to extract groups of related citations. For example, to find all the papers 
by Brian Kernighan found in the system database, and send the output to a file, type: 



-6-

% lookbib /usr/diet/papers/Ind > kern.refs 
> kernighan 
>EOT 
% eat kern.refs 

Your file, "kern.refs", will be full of references. A similar procedure can be used to pull out all papers of 
some date, all papers from a given journal, all papers containing a certain group of keywords, etc. 

Refer Bugs and Some Solutions 

The refer program will mess up if there are blanks at the end of lines, especially the o/oA author line. 
Addbib carefully removes trailing blanks, but they may creep in again during editing. Use an editor com­
mand - g/ *$/s/ / / - to remove trailing blanks from your bibliography. 

Having bibliographic fields passed through as string definitions implies that interpolated strings (such 
as accent marks) must have two backslashes, so they can pass through copy mode intact. For instance, the 
word "telephone" would have to be represented: 

te\\ * 1e\ \* 'phone 

in order to come out correctly. In the %X field, by contrast, you will have to use single backslashes 
instead. This is because the %X field is not passed through as a string, but as the body of a paragraph 
macro. 

Another problem arises from authors with foreign names. When a name like ''Valery Giscard 
d'Estaing" is turned around by the -a option of refer, it will appear as "d'Estaing, Valery Giscard," 
rather than as "Giscard d'Estaing, Valery." To prevent this, enter names as follows: 

%A Vale\\*'ry Giscard\Od'Estaing 
o/oA Alexander Csoma\Ode\OKo\ \*:ro\ \*:s 

o 

(The second is the name of a famous Hungarian linguist.) The backslash-zero is an nroff/troff request (/ .. 
meaning to insert a digit-width space. It will protect against faulty name reversal, and also against mis- ~ ... / 
sorting. 

Footnote numbers are placed at the end of the line before the .[ macro. This line should be a line of 
text, not a macro. As an example, if the line before the .[ is a .R macro, then the .R will eat the footnote 
number. (The.R is an -ms request meaning change to Roman font.) In cases where the font needs chang­
ing, it is necessary to do the following: 

VIet al.\ffi 
.[ 
awk aho kernighan weinberger 
.J 

Now the reference will be to Aho et al. The \IT changes to italics, and the \ffi changes back to Roman 
font. Both these requests are nroff/troff requests, not part of -ms. If and when a footnote number is 
added after this sequence, it will indeed appear in the output. 

Internal Details of Refer 

You have already read everything you need to know in order to use the refer bibliography system. 
The remaining sections are provided only for extra information, and in ease you need to change the way 
refer works. 

The output of refer is a stream of string definitions, one for each field in a reference. To create 
string names, percent signs are simply changed to an open bracket, and an IF string is added, containing 
the footnote number. The o/oX, %Y and %Z fields are ignored; however, the annobib program changes 
the %X to an .AP (annotation paragraph) macro. The citation used above yields this intermediate output: 



.ds [F 1 

.]-

.ds [A Mike E. Lesk 

-7-

.ds [T Some Applications of Inverted Indexes on the Unix System 

.ds [J Unix Programmer's Manual 

.ds [I Bell Laboratories 

.ds [C Murray Hill, NJ 

.ds [D 1978 

.ds [V 2a 

.nr [T 0 

.nr [A 0 

.nr [00 

.J[ 1 journal-article 

These string definitions are sent to nroff, which can use the -ms macros defined in /usr/libfmxftmac.xref 
ro take care of formatting things properly. The initializing macro .]- precedes the string definitions, and 
the labeled macro .][ follows. These are changed from the input .[ and .J so that running a file twice 
through refer is harmless. 

The .][ macro, used to print the reference, is given a type-number argument, which is a numeric label 
indicating the type of reference involved. Here is a list of the various kinds of references: 

Field Value Kind of Reference 

%J 1 
%B 3 
%R%G4 
%1 2 
%M 5 
none 0 

Journal Article 
Article in Book 
Report, Government Report 
Book 
Bell Labs Memorandum (undefined) 
Other 

The order listed above is indicative of the precedence of the various fields. In other words, a reference that 
has both the %J and %B fields will be classified as a journal article. If none of the fields listed is present, 
then the reference will be classified as "other." 

The footnote number is flagged in the text with the following sequence, where number is the footnote 
number: 

\ *{[.numbe1\ *(.J 
The \*([. and \*{.J stand for bracketing or superscripting. In nroffwith low-resolution devices such as the 
lpr and a crt, footnote numbers will be bracketed. In troff, or on daisy-wheel printers, footnote numbers 
will be superscripted. Punctuation normally comes before the reference number; this can be changed by 
using the -P (postpunctuation) option of refer. 

In some cases, it is necessary to override certain fields in a reference. For instance, each time a work 
is cited, you may want to specify different page numbers, and you may want to change certain fields. This 
citation will find the Lesk reference, but will add specific page numbers to the output, even though no page 
numbers appeared in the original reference . 

. [ 
lesk inverted indexes 
%P 7-13 
%1 Computing Services 
%0 UNX 12.2.2 . 
. J 

The %1 line will also override any previous publisher information, and the %0 line will append some com­
mentary. The refer program simply adds the new %P, %1, and %0 strings to the output, and later 



-8-

strings definitions cancel earlier ones. 

It is also possible to insert an entire citation that does not appear in the bibliographic database. This 
reference, for example, could be added as follows: 

.[ 
o/oA Brian Kernighan 
%T A Troff Tutorial 
%1 Bell Laboratories 
%D 1978 
.J 

This will cause refer to interpret the fields exactly as given, without searching the bibliographic database. 
This practice is not recommended, however, because it's better to add new references to the database, so 
they can be used again later. 

If you want to change the way footnote numbers are printed, signals can be given on the o[ and oj 
lines. For example, to say "See reference (2)," the citation should appear as: 

See reference 
.[( 
partial citation 
·n, 

Note that blanks are significant on these signal lines. If a permanent change in the footnote format is 
desired, it's best to redefine the [0 and oj strings. 

Changing the Refer Macros 

This section is provided for those who wish to rewrite or modify the refer macros. This is necessary 
in order to make output correspond to specific journal requirements, or departmental standards. First 
there is an explanation of how new macros can be substituted for the old ones. Then several alterations 
are given as examples. Finally, there is an annotated copy of the refer macros used by roftbib. 

The refer macros for nroft"/troff supplied by the -ms macro package reside in 
/usr/lib/mx/tmac.xref; they are reference macros, for producing footnotes or endnotes. The refer macros 
used by roftbib, on the other hand, reside in /usr/lib/tmac/tmac.bib; they are for producing a stand-alone 
bibliography. 

To change the macros used by roftbib, you will need to get your own version of this shell script into 
the directory where you are working. These two commands will get you a copy of roftbib and the macros 
it uses: t 

% cp /usr/lib/tmac/tmacobib bib mac 

You can proceed to change bibmac as much as you like .. Then when you use roftbib, you should specify 
your own version of the macros, which will be substituted for the normal ones 

% roftbib -m bibmac filename 

where filename is the name of your bibliography file. Make sure there's a space between -m and bibmac. 

If you want to modify the refer macros for use with nroft" and the -ms macros, you will need to get 
a copy of "tmac.xrer': 

% ep /usr/lib/ms/soref refmae 

These macros are much like "bibmac", except they have .FS and .FE requests, to be used in conjunction 
with the -ms macros, rather than independently defined .XP and .AP requests. Now you can put this line 
at the top of the paper to be formatted: 

.so refmac 

------ ~---~--- .----~~ 

C) 

o 



- 9-

Your new refer macros will override the definitions previously read in by the -ms package. This method 
works only if "refmac" is in the working directory. 

Suppose you didn't like the way dates are printed, and wanted them to be parenthesized, with no 
comma before. There are five identical lines you will have to change. The first line below is the old way, 
while the second is the new way: 

.if !'\\*([O" .. , \\*([O\c 

.if !'\\ *([0 .... \& (\\ *([D)\c 

In the first line, there is a comma and a space, but no parentheses. The "\c" at the end of each line indi­
cates to nroft' that it should continue, leaving no extra space in the output. The "\&" in the second line is 
the do-nothing character; when followed by a space, a space is sent to the output. 

If you need to format a reference in the style favored by the Modern Language Association or Chi­
cago University Press, in the form (city: publisher, date), then you will have to change the middle of the 
book macro [2 as follows: 

\& (\c 
.if !'\\ *([C .... \\ *([C: 
\ \*([I\c 
.if !'\\*([O" .. , \\*([O\c 
)\c 

This would print (Berkeley: Computing Services, 1982) if all three strings were present. The first line 
prints a space and a parenthesis; the second prints the city (and a colon) if present; the third always prints 
the publisher (books must have a publisher, or else they're classified as other); the fourth line prints a 
comma and the date if present; and the fifth line closes the parentheses. You would need to make similar 
changes to the other macros as well. 

Acknowledgements 

Mike Lesk of Bell Laboratories wrote the original refer software, including the indexing programs. Al 
Stangenberger of the Forestry Oepartment wrote the first version of addbib, then called bibin. Greg 
Shenaut of the Linguistics Oepartment wrote the original versions of sortbib and roftbib. All these con­
tributions are greatly appreciated. 



o 



(" 

o 

Some Applications of Inverted Indexes on the UNIX System 

M. E. Leak 

ABSTRACT 

I. Some Applications of Inverted Indexes - Overview 

This memorandum describes a set of programs which make inverted indexes 
to UNIX* text files, and their application to retrieving and formatting citations 
for documents prepared using troff. 

The indexing and searching programs make keyword indexes to volumes of 
material too large for linear searching. Searches for combinations of single words 
can be performed quickly. The programs for general searching are divided into 
two phases. The first makes an index from the original data; the second searches 
the index and retrieves items. Both of these phases are further divided into two 
parts to separate the data-dependent and algorithm dependent code. 

The major current application of these programs is the trolf preprocessor 
re/er. A list of 4300 references is maintained on line, containing primarily papers 
written and cited by local authors. Whenever one of these references is required in 
a paper, a few words from the title or author list will retrieve it, and the user need 
not bother to re-enter the exact citation. Alternatively, authors can use their own 
lists of papers. 

This memorandum is of interest to those who are interested in facilities for 
searching large but relatively unchanging text files on the UI"-I1X system, and those 
who are interested in handling bibliographic citations with UNIX troff. 

n. Updating Publication Lists 

This section is a brief note describing the auxiliary programs for managing 
the updating processing. It is written to aid clerical users in maintaining lists of 
references. Primarily, the programs described permit a large amount of individual 
control over the content of publication lists while retaining the usefulness of the 
files to other users. 

m. Manual Pages 

This section contains the pages from the UNIX programmer's manual deal­
ing with these commands. It is useful for reference. 

* UNIX is a Trademark of Bell Laboratories. 



-2-

1. Introduction. 

The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ... ) to search through 
files of text, but most of them are based on a linear scan through the entire file, using some deter­
ministic automaton. This memorandum discusses a program which uses inverted indexesl and can 
thus be used on much larger data bases. 

As with any indexing system, of course, there are some disadvantages; once an index is made, 
the files that have been indexed can not be changed without remaking the index. Thus applica­
tions are restricted to those making many searches or relatively stable data. Furthermore, these 
programs depend on hashing, and can only search for exact matches of whole keywords. It is not 
possible to look for arithmetic or logical expressions (e.g. "date greater than 1970") or for regular 
expression searching such as that in lex. 2 

Currently there are two uses of this software, the refer preprocessor to format references, and 
the lookall command to search through all text files on the UNIX system. 

The remaining sections of this memorandum discuss the searching programs and their uses. 
Section 2 explains the operation of the searching algorithm and describes the data collected for use 
with the lookall command. The more important application, refer has a user's description in sec­
tion 3. Section 4 goes into more detail on reference files for the benefit of those who wish to add 
references to data bases or write new troD' macros for use with refer. The options to make refer 
collect identical citations, or otherwise relocate and adjust references, are described in section 5. 
The UNIX manual sections for refer, lookall, and associated commands are attached as appendices. 

2. Searching. 

The indexing and searching process is divided into two phases, each made of two parts. 
These are shown below. 

A. Construct the index. 

(1) Find keys - turn the input files into a sequence of tags and keys, where each tag 
identifies a distinct item in the input and the keys for each such item are the strings 
under which it is to be indexed. 

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys, the 
appropriate item tags can be found quickly. 

B. Retrieve an item in response to a query. 

(3) Search - Given some keys, look through the files prepared by the hashing and sorting 
facility and derive the appropriate tags. 

(4) Deliver - Given the tags, find the original items. This completes the searching pro-
cess. 

The first phase, making the index, is presumably done relatively infrequently. It should, of course, 
be done whenever the data being indexed change. In contrast, the second phase, retrieving items, 
is presumably done often, and must be rapid. 

An effort is made to separate code which depends on the data being handled from code which 
depends on the searching procedure. The search algorithm is involved only in programs (2) and 
(3), while knowledge of the actual data files is needed only by programs (1) and (4). Thus it is 
easy to adapt to different data files or different search algorithms. 

To start with, it is necessary to have some way of selecting or generating keys from input 
files. For dealing with files that are basically English, we have a key-making program which 

t UNIX is a tra.dema.rk or Bell Labora.tories. 
1 D. Knuth, TAe Art oJ Computer Progromming: Vol. 9, Sorting ond SeorcAing, Addison-Wesley, Reading, 

Ma.ss., 1077. See section 6.5. 
2 M. E. Lesk, "Lex - A Lexical Analyzer Genera.tor," Compo Sci. Tech. Rep. No. 30, Bell Labora.tories, Mur­

ray Hill, New Jersey, October 1075. 

o 



( 

(j 

-3-

automatically selects words and passes them to the hashing and sorting program (step 2). The for­
mat used has one line for each input item, arranged as follows: 

name:start,length (tab) keyl key2 key3 ... 

where name is the file name, .tart is the starting byte number, and length is the number of bytes 
in the entry. 

These lines are the only input used to make the index. The first field (the file name, byte 
position, and byte count) is the tag of the item and can be used to retrieve it quickly. Normally, 
an item is either a whole file or a section of a file delimited by blank lines. After the tab, the 
second field contains the keys. The keys, if selected by the automatic program, are any 
alphanumeric strings which are not among the 100 most frequent words in English and which are 
not entirely numeric (except for four-digit numbers beginning 19, which are accepted as dates). 
Keys are truncated to six characters and converted to lower case. Some selection is needed if the 
original items are very large. We normally just take the first n keys, with n less than 100 or so; 
this replaces any attempt at intelligent selection. One file in our system is a complete English dic­
tionary; it would presumably be retrieved for all queries. 

To generate an inverted index to the list of record tags and keys, the keys are hashed and 
sorted to produce an index. \Vbat is wanted, ideally, is a series of lists showing the tags associated 
with each key. To condense this, what is actually produced is a list showing the tags associated 
with each hash code, and thus with some set of keys. To speed up access and further save space, a 
set of three or possibly four files is produced. These files are: 

File Contents 
entry Pointers to posting file 

for each hash code 
posting Lists of tag pointers for 

each hash code 
tag Tags for each item 
key Keys for each item 

(optional) 

The posting file comprises the real data: it contains a sequence of lists of items postf>d under each 
hash code. To speed up searching, the entry file is an array of pointers into the posting file, one 
per potential hash code. Furthermore, the items in the lists in the posting file are not referred to 
by their complete tag, but just by an address in the tag file, which gives the complete tags. The 
key file is optional and contains a copy of the keys used in the indexing. 

The searching process starts with a query, containing several keys. The goal is to obtain all 
items which were indexed under these keys. The query keys are hashed, and the pointers in the 
entry file used to access the lists in the posting file. These lists are addresses in the tag file of 
documents posted under the hash codes derived from the query. The common items from all lists 
are determined; this must include the items indexed by every key, but may also contain some items 
which are false drops, since items referenced by the correct hash codes need not actually have con­
tained the correct keys. Normally, if there are several keys in the query, there are not likely to be 
many false drops in the final combined list even though each hash code is somewhat ambiguous. 
The actual tags are then obtained from the tag file, and to guard against the possibility that an 
item has false-dropped on some hash code in the query, the original items are normally obtained 
from the delivery program (4) and the query keys checked against them by string comparison. 

Usually, therefore, the check for bad drops is made against the original file. However, if the 
key derivation procedure is complex, it may be preferable to check against the keys f(>d to program 
(2). In this case the optional key file which contains the keys associated with each item is gen­
erated, and the item tag is supplemented by a string 

;start ,length 

which indicates the starting byte number in the key file and the length of the string of keys for 



-4-

each item. This file is not usually necessary with the present key-selection program, since the keys 
always appear in the original document. 

There is also an option (-On) for coordination level searching. This retrieves items which 
match all but n of the query keys. The items are retrieved in the order of the number of keys that 
they match. Of course, n must be less than the number of query keys (nothing is retrieyed unless 
it matches at least one key). 

AB an example, consider one set of 4377 references, comprising 660,000 bytes. This included 
51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the 
expense of time); 995 of 997 possible hash codes were Used. The total set of index files (no key file) 
included 171,000 bytes, about 26% of the original file size. It took 8 minutes of processor time to 
hash, sort, and write the index. To search for a single query with the resulting index took 1.9 
seconds of processor time, while to find the same paper with a sequential linear search using grep 
(reading all of the tags and keys) took 12.3 seconds of processor time. 

We have also used this software to index all of the English stored on our UNIX system. This 
is the index searched by the lookall command. On a typical day there were 29,000 files in our user 
file system, containing about 152,000,000 bytes. Of these 5,300 files, containing 32,000,000 bytes 
(about 21%) were English text. The total number of 'words' (determined mechanically) was 
5,100,000. Of these 227,000 were selected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 
possible) different hash codes. The resulting inverted file indexes used 845,000 bytes, or about 
2.6% of the size of the original files. The particularly small indexes are caused by the fact that 
keys are taken from only the first 50 non-common words of some very long input files. 

Even this large lookall index can be searched quickly. For example, to find this document by 
looking for the keys "lesk inverted indexes" required 1.7 seconds of processor time and system 
time. By comparison, just to search the 800,000 byte dictionary (smaller than even the inverted 
indexes, let alone the 27,000,000 bytes of text files) with grep takes 29 seconds of processor time. 
The lookall program is thus useful when looking for a document which you believe is stored on­
line, but do not know where. For example, many memos from our center are in the file system, 
but it is often difficult to guess where a particular memo might be (it might have several authors, 
each with many directories, and have been worked on by a secretary with yet more directories). 
Instructions for the use of the lookall command are given in the manual section, shown in the 
appendix to this memorandum. 

The only indexes maintained routinely are those of publication lists and all English files. To 
make other indexes, the programs for making keys, sorting them, searching the indexes, and 
delivering answers must be used. Since they are usually invoked as parts of higher-level com­
mands, they are not in the default command directory, but are available to any user in the direc­
tory /u8r/lib/refer. Three programs are of interest: mkell, which isolates keys from input files; 
inv, which makes an index from a set of keys; and hunt, which searches the index and delivers the 
items. Note that the two parts of the retrieval phase are combined into one program. to avoid the 
excessive system work and delay which would result from running these as separate processes. 

These three commands have a large number of options to adapt to different kinds of input. 
The user not interested in the detailed description that now follows may skip to section 3, which 
describes the refer program, a packaged-up version of these tools specifically oriented towards for­
matting references. 

Make Keys. The program mket/ is the key-making program corresponding to step (1) in 
phase A. Normally, it reads its input from the file names given as arguments, and if there are no 
arguments it reads from the standard input. It assumes that blank lines in the input delimit 
separate items, for each of which a different line of keys should be generated. The lines of keys are 
written on the standard output. Keys are any alphanumeric string in the input not among the 
most frequent words in English and not entirely numeric (except that all-numeric strings are 
acceptable if they are between 1900 and 1999). In the output, keys are translated to lower case, 
and truncated to six characters in length; any associated punctuation is removed. The following 
flag arguments are recognized by mkell: 



(, 

( 

G 

-e flame 
-f name 

-1 char8 

-kn 
-In 
-nm 

-. 
-ow 

-5-

Name of file of common words; default is IU8rllibleign. 
Read a list of files from name and take each as an input argu­
ment. 
Ignore all lines which begin with '%' Collowed by any character in 
char8. 
Use at most n keys per input item. 
Ignore items shorter than n letters long. 
Ignore as a key any word in the first m words of the list oC com­
mon English words. The default is 100. 
Remove the labels (file:8tart,/ength) from the outputj just give the 
keys. Used when searching rather than indexing. 
Each whole file is a separate itemj blank lines in files are 
irrelevant. 

The normal arguments for indexing references are the deCaults, which are -c I u8rl libl e,:gn , 
-nl00, and -19. For searching, the -8 option is also needed. When the big lookall index of all 
English files is run, the options are -w, -k50, and -1 (file/ut). When running on textual input, 
the mkey program processes about 1000 English words per processor second. Unless the -k option 
is used (and the input files are long enough for it to take effect) the output of mkey is comparable 
in size to its input. 

Hash and invert. The inti program computes the hash codes and writes the inverted files. 
It reads the output of mkey and writes the set of files described earlier in this section. It exp~('ts 
one argument, which is used as the base name for the three (or four) files to be written. Assuming 
an argument of Index (the default) the entry file is named Index.ia, the posting file Index.ib, the 
tag file Index.ic, and the key file (if present) Index.id. The inti program recognizes the following 
options: 

-a Append the new keys to a previous set of inverted files, making 
new files if there is no old set using the same base name. 

-d Write the optional key file. This is needed when you can not 
check for false drops by looking for the keys in the original 
inputs, i.e. when the key derivation procedure is complicated and 
the output keys are not words from the input files. 

-hn The hash table size is n (default 997); n should be prime. Mak­
ing n bigger saves search time and spends disk space. 

-i[u] name Take input from file name, instead of the standard input; if u is 
present name is unlinked when the sort is started. Using this 
option permits the sort scratch space to overlap the disk space 
used for input keys. 

-n Make a completely new set of inverted files, ignoring previous 
files. 

-p 

-v 

Pipe into the sort program, rather than writing a temporary 
input file. This saves disk space and spends processor time. 
Verbose modej print a summary of the number of keys which 
finished indexing. 

About half the time used in int) is in the contained sort. Assuming the sort is roughly linear, 
however, a guess at the total timing for int) is 250 keys per second. The space used is usually of 
more importance: the entry file uses four bytes per possible hash (note the -h option), and the tag 
file around 15-20 bytes per item indexed. Roughly. the posting file contains one item for each key 
instance and one item for each possible hash code; the items are two bytes long if the tag file is less 
than 65336 bytes long, and the items are four bytes wide if the tag file is greater than 65536 bytes 
long. Note that to minimize storage, the hash tables should be over-full; for most of the files 
indexed in this way, there is no other real choice, since the entry file must fit in memory. 



-6-

Searching and Retrieving. The Aunt program retrieves items from an index. It com­
bines, as mentioned above, the two parts of phase (B): search and delivery. The reason why it is 
efficient to combine delivery and search is partly to avoid starting unnecessary processes, and 
partly because the delivery operation must be a part of the search operation in any ease. Because 
of the hashing, the search part takes place in two stages: first items are retrieved which have the 
right hash codes associated with them, and then the actual items are inspected to determine false 
drops, i.e. to determine if anything with the right hash codes doesn't really have the right keys. 
Since the original item is retrieved to check on false drops, it is efficient to present it immediately, 
rather than only giving the tag as output and later 'retrieving the item again. If there were a 
separate key file, this argument would not apply, but separate key files are not common. 

Input to Aunt is taken from the standard input, one query per line. Each query should be in 
mkell -4 output format; all lower case, no punctuation. The hunt program takes one argument 
which specifies the base name of the index files to be searched. Only one set of index files can be 
searched at a time, although many text files may be indexed as a group, of course. If one of the 
text files has been changed since the index, that file is searched with !grep; this may occasionally 
slow down the searching, and care should be taken to avoid having many out of date files. The 
following option arguments are recognized by Aunt: 

-& 
-On 

-F[ynd] 

-g 

-i 8tring 
-I n 

Give all output; ignore checking for false drops. 
Coordination level n; retrieve items with not more than n terms 
of the input missing; default 00, implying that each search term 
must be in the output items. 
"-Fy" gives the text of all the items found; "-Fn" suppresses 
them. "-Fd" where d is an integer gives the text of the first d 
items. The default is -Fy. 
Do not use !grep to search files changed since the index was 
made; print an error comment instead. 
Take 8tring as input, instead of reading the standard input. 
The maximum length of internal lists of candidate items is n,' 
default 1000. 

-0 8tring Put text output ("-Fy") in 8tn'ng; of use only when invoked 
from another program. 

-p Print hash code frequencies; mostly for use in optimizing hash 
table sizes. 

-T[ynd] "-Ty" gives the tags of the items found; "-Tn" suppresses them. 
"-Td" where d is an integer gives the first d tags. The default is 
-Tn. 

-t 8tn'ng Put tag output ("-Ty") in 8tring; of use only when invoked from 
another program. 

The timing of Aunt is complex. Normally the hash table is overfull, so that there will be 
many false drops on any single term; but a multi-term query will have few false drops on all 
terms. Thus if a query is underspecified (one search term) many potential items will be examined 
and discarded as false drops, wasting time. If the query is overspecified (a dozen search terms) 
many keys will be examined only to verify that the single item under consideration has that key 
posted. The variation of search time with number of keys is shown in the table below. Queries of 
varying length were constructed to retrieve a particular document from the file of references. In 
the sequence to the left, search terms were chosen so as to select the desired paper as quickly as 
possible. In the sequence on the right, terms were chosen inefficiently, so that the query did not 
uniquely select the desired document until four keys had been used. The same document was the 
target in each case, and the final set of eight keys are also identical; the differences at five, six and 
seven keys are produced by measurement error, not by the slightly different key lists. 

o 



(~/ 

( 

c 

- 7-

Efficient Keys Inefficient Keys 
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time 

(in cl. false) Documents (seconds) (incl. false) Documents (seconds) 

1 15 3 1.27 1 68 55 5.96 
2 1 1 0.11 2 29 29 2.72 
3 1 1 0.14 3 8 8 0.95 
4 1 1 0.17 4 1 1 0.18 
5 1 1 0.19 5 1 1 0.21 
6 1 1 0.23 6 1 1 0.22 
7 1 1 0.27 7 1 1 0.26 
8 1 1 0.29 8 1 1 0.29 

As would be expected, the optimal search is achieved when the query just specifies the answer; 
however, overspecification is quite cheap. Roughly, the time required by hunt can be approxi­
mated as 30 milliseconds per search key plus 75 milliseconds per dropped document (whether it is a 
false drop or a real answer). In general, overspecification can be recommended; it protects the user 
against additions to the data base which turn previously uniquely-answered queries into ambiguous 
queries. 

The careful reader will have noted an enormous discrepancy between these times and the ear­
lier quoted time of around 1.9 seconds for a search. The times here are purely for the search and 
retrieval: they are measured by running many searches through a single invocation of the hunt 
program alone. The normal retrieval operation involves using the shell to set up a pipeline 
through mke1l to hunt and starting both processes; this adds a fixed overhead of about 1.7seconds 
of processor time to any single search. Furthermore, remember that all these times are processor 
times: on a typical morning on our PDP 11/70 system, with about one dozen people logged on, to 
obtain 1 second of processor time for the search program took between 2 and 12 seconds of real 
time, with a median of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved 
in a single search may be only 200 milliseconds, after you add the 1.7 seconds of startup processor 
time and then assume a 4:1 elapsed/processor time ratio, it will be 8 seconds before any response is 
printed. 

3. Selecting and Formatting References for TROFF 

The major application of the retrieval software is refer, which is a trolf preprocessor like 
eqn.3 It scans its input looking for items of the form 

.[ 
imprecise citation 
.J 

where an imprecise citation is merely a string of words found in the relevant bibliographic citation. 
This is translated into a properly formatted reference. IT the imprecise citation does not correctly 
identify a single paper (either selecting no papers or too many) a message is given. The data base 
of citations searched may be tailored to each system, and individual users may specify their own 
citation files. On our system, the default data base is accumulated from the publication lists of the 
members of our organization, plus about half a dozen personal bibliographies that were collected. 
The present total is about 4300 citations, but this increases steadily. Even now, the data base cov­
ers a large fraction of local citations. 

For example, the reference for the eqn paper above was specified as 

a B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. A880C. Compo Mach., 
vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey, Mareh Ig75. 



preprocessor like 
.I eqn . 
. [ 
kernighan cherry aem 1975 
.J 
It scans its input looking for items 

This paper was itself printed using refer. 
tbl and troJJ by the command 

refer memo-fiJe 1 tbll troJJ -m8 

-8-

The above input text was processed by refer as well as 

and the reference was automatically translated into a correct citation to the ACM paper on 
mathematical typesetting. 

The procedure to use to place a reference in a paper using refer is as follows. First, use the 
lookbib command to check that the paper is in the data base and to find out what keys are neces­
sary to retrieve it. This is done by typing lookbib and then typing some potential queries until a 
suitable query is found. For example, had one started to find the eqn paper shown above by 
presenting the query 

Slookbib 
kernighan cherry 
(EOT) 

lookbib would have found several items; experimentation would quickly have shown that the query 
given above is adequate. Overspecifying the query is of course harmless. A particularly careful 
reader may have noticed that "acm" does not appear in the printed citation; we have supple­
mented some of the data base items with common extra keywords, such as common abbreviations 
for journals or other sources, to aid in searching. 

If the reference is in the data base, the query that retrieved it can be inserted in the text, 
between .[ and .1 brackets. If it is not in the data base, it can be typed into a private file of refer­
ences, using the format discussed in the next section, and then the -p option used to search this 
private file. Such a command might read (if the private references are called myfiJe) 

refer -p mllfiJe document I tbl 1 eqn I troJJ -m8 ... 

where tbl and/or eqn could be omitted if not needed. The use of the -m8 macros4 or some other 
macro package, however, is essential. Refer only generates the data for the references; exact for­
matting is done by some macro package, and if none is supplied the references will not be printed. 

By default, the references are numbered sequentially, and the -m8 macros format references 
as footnotes at the bottom of the page. This memorandum is an example of that style. Other 
possibilities are discussed in section 5 below. 

". Reference Files. 
A reference file is a set of bibliographic references usable with refer. It can be indexed using 

the software described in section 2 for fast searching. What refer does is to read the input docu­
ment stream, looking for imprecise citation references. It then searches through reference files to 
find the full citations, and inserts them into the document. The format of the full citation is 
arranged to make it convenient for a macro package, such as the -m8 macros, to format the refer­
ence for printing. Since the format of the final reference is determined by the desired style of out­
put, which is determined by the macros used, refer avoids forcing any kind of reference appear­
ance. All it does is define a set of string registers which contain the basic information about the 

.. M. E. Lesk, T,Iping Document, on UNIX lind GCOS: The·"", MItro, lor TrDJf, 1977. 



( .. 

( 

-9-

reference; and provide a macro call which is expanded by the macro package to format the refer­
ence. It is the responsibility of the final macro package to see that the reference is actually 
printed; if no macros are used, and the output of refer fed un translated to troD, nothing at all will 
be printed. 

The strings defined by refer are taken directly from the files of references, which are in the 
following format. The references should be separated by blank lines. Each reference is a sequence 
of lines beginning with % and followed by a key-letter. The remainder of that line, and successive 
lines until the next line beginning with %, contain the information specified by the key-letter. In 
general, refer does not interpret the information, but merely presents it to the macro package for 
final formatting. A user with a separate macro package, for example, can add new key-letters or 
use the existing ones for other purposes without bothering refer. 

The meaning of the key-letters given below, in particular, is that assigned by the -ms mac­
ros. Not all information,· obviously, is used with each citation. For example, if a document is 
both an internal memorandum and a journal article, the macros ignore the memorandum version 
and cite only the journal article. Some kinds of information are not used at all in printing the 
reference; if a user does not like finding references by specifying title or author keywords, and 
prefers to add specific keywords to the citation, a field is available which is searched but not 
printed (K). 

The key letters currently recognized by refer and -ms, with the kind of information implied, 
are: 

Key 
A 
B 
C 
D 
E 
G 
I 
J 
K 
L 
M 

Information specified 
Author's name 
Title of book containing item 
City of publication 
Date 
Editor of book containing item 
Government (NTIS) ordering number 
Issuer (publisher) 
Journal name 
Keys (for searching) 
Label 
Memorandum label 

For example, a sample reference could be typed as: 

%T Bounds on the Complexity of the Maximal 
Common Subsequence Problem 
%Z ctr127 
o/oA A. V. Aho 
o/oA D. S. Hirschberg 
o/oA J. D. Ullman 
%J J. ACM 
%V23 
%Nl 
%P 1-12 
%M abcd-78 
%D Jan. 1976 

Key 
N 
o 
P 
R 
T 
V 

x 
y 
Z 

Information specified 
Issue number 
Other information 
Page(s) of article 
Technical report reference 
Title 
Volume number 

or 
or 
Information not used by refer 

Order is irrelevant, except that authors are shown in the order given. The output of refer is a 
stream of string definitions, one for each of the fields of each reference, as shown below. 



- 10-

.J-

.ds [A authors' names ••• 
• ds [T title ••• 
• ds [J journal ••• 

• J [ type-number 

The special macro .]- precedes the string definitions and the special macro .J [follows. These are 
changed from the input .[ and .] so that running the same file through refer again is harmless. 
The .J- macro can be used by the macro package to initialize. The.J [ macro, which should be 
used to print the reference, is given an argument type-number to indicate the kind of reference, as 
follows: 

Value 
1 
2 
3 
4 
5 
o 

Kind of reference 
Journal article 
Book 
Article within book 
Technical report 
Bell Labs technical memorandum 
Other 

The reference is flagged in the text with the sequence 

\* ([.number\* (.J 
where number is the footnote number. The strings [. and.] should be used by the macro package 
to format the reference flag in the text. These strings can be replaced for a particular footnote, as 
described in section 5. The footnote number (or other signal) is available to the reference macro 
.] [ as the string register [F. 

In some cases users wish to suspend the searching, and merely use the reference macro for­
matting. That is, the user doesn't want to provide a search key between .[ and .J brackets, but 
merely the reference lines for the appropriate document. Alternatively, the user can wish to add a 
few fields to those in the reference as in the standard file, or override some fields. Altering or 
replacing fields, or supplying whole references, is easily done by inserting lines beginning with %; 
any such line is taken as direct input to the reference processor rather than keys to be searched. 
Thus 

.[ 
key! key2 key3 ... 
%Q New format item 
%R Override report name 
.J 

makes the indicates changes to the result of searching for the keys. All of the search keys must be 
given before the first % line. 

If no search keys are provided, an entire citation can be provided in-line in the text. For 
example, if the eqn paper citation were to be inserted in this way, rather than by searching for it 
in the data base, the input would read 

o 



( 

( ""'\ 
. / 

preprocessor like 
.I eqn . 
. [ 
o/oA B. W. Kernighan 
o/oA L. L. Cherry 

- 11-

%T A System for Typesetting Mathematics 
%JComm.ACM 
%V 18 
%N3 
%P 151-157 
%D March 1975 
.J 
It scans its input looking for items 

This would produce a citation of the same appearance as that resulting from the file search. 

As shown, fields are normally turned into troff strings. Sometimes users would rather have 
them defined as macros, so that other troff commands can be placed into the data. When this is 
necessary, simply double the control character % in the data. Thus the input 

.[ 
%V23 
%%M 
Bell Laboratories, 
Murray Hill, N.J. 07974 
.J 

is processed by refer into 

.ds [V 23 

.de [M 
Bell Laboratories, 
Murray Hill, N.J. 07974 

The information after %%M is defined as a macro to be invoked by .[M while the information 
after %V is turned into a string to be invoked by \*([V. At present -rns expects all information 
as strings. 

5. Collecting References and other Refer Options 

Normally, the combination of reler and -rns formats output as troff footnotes which are 
consecutively numbered and placed at the bottom of the page. However, options exist to place the 
references at the end; to arrange references alphabetically by senior author; and to indicate refer­
ences by strings in the text of the form [Namel975aJ rather than by number. Whenever references 
are not placed at the bottom of a page identical references are coalesced. 

For example, the -e option to reler specifies that references are to be collected; in this case 
they are output whenever the sequence 

.[ 
SLISTS 
.J 

is encountered. Thus, to place references at the end of a paper, the user would run refer with the 
-e option and place the above SLISTS commands after the last line of the text. Refer will then 
move all the references to that point. To aid in formatting the collected references, reler writes 
the references preceded by the line 



.]< 
and followed by the line 

.]> 

- 12-

to invoke special macros before and after the references. 

Another possible option to refer is the -8 option to specify sorting of references. The 
default, of course, is to list references in the order presented. The -8 option implies the -e option, 
and thus requires a . 

. [ 
SUSTS 
0) 

entry to call out the reference list. The -8 option may be followed by a string of letters, numbers, 
and '+' signs indicating how the references are to be sorted. The sort is done using the fields 
whose key-letters are in the string as sorting keys; the numbers indicate how many of the fields are 
to be considered, with '+' taken as a large number. Thus the default is -sAD meaning "Sort on 
senior author, then date." To sort on all authors and then title, specify -8A+T. And to sort on 
two authors and then the journal, write -sA2J. 

Other options to refer change the signal or label inserted in the text for each reference. Nor­
mally these are just sequential numbers, and their exact placement (within brackets, as super­
scripts, etc.) is determined by the macro package. The -I option replaces reference numbers by 

, strings composed of the senior author's last name, the date, and a disambiguating letter. If a 
number follows the 1 as in -13 only that many letters of the last name are used in the label string. 
To abbreviate the date as well the form -1m, n shortens the last name to the first m letters and the 
date to the last n digits. For example, the option -13,2 would refer to the eqn paper (reference 3) 
by the signal Ker75a , since it is the first cited reference by Kernighan in 1975. 

A user wishing to specify particular labels for a private bibliography may use the -k option. 
Specifying -kx causes the field x to be used as a label. The default is L. If this field ends in -, 
that character is replaced by a sequence letter; otherwise the field is used exactly as given. 

If none of the refer-produced signals are desired, the -b option entirely suppresses automatic 
text signals. 

If the user wishes to override the -ms treatment of the reference signal (which is normally to 
enclose the number in brackets in nrolf and make it a superscript in trolf) this can be done easily. 
If the lines o[ or oj contain anything following these characters, the remainders of these lines are 
used to surround the reference signal, instead of the default. Thus, for example, to say "See refer­
ence (2)." and avoid "See reference.2" the input might appear 

See reference 
o[ ( 
imprecise citation ... 
o Do 

Note that blanks are significant in this construction. If a permanent change is desired in the style 
of reference signals, however, it is probably easier to redefine the strings [0 and oj (which are used 
to bracket each signal) than to change each citation. 

Although normally refer limits itself to retrieving the data for the reference, and leaves to a 
macro package the job of arranging that data as required by the local format, there are two special 
options Cor rearrangements that can not be done by macro packages. The -c option puts fields 
into all upper case (CAPs-SMALL CAPS in trolf output). The key-letters indicated what informa­
tion is to be translated to upper case follow the e, so that -eAJ means that authors' names and 
journals are to be in caps. The -a option writes the names of authors last name first, that is A. 
D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of the Journal of the ACM, for exam­
ple, would require both -eA and -a options. This produces authors' names in the style 

(~ 

U 

o 



- 13-

KERNIGHAN, B. W. AND OHERRY, L. L. for the previous example. The -a option may be followed 
by a number to indicate how many author names should be reversed; -a1 (without any -e option) 
would produce Kernighan, B. W. and L. L. Oherry, for example. 

Finally, there is also the previously-mentioned -p option to let the user specify a private file 
of references to be searched before the public files. Note that refer does not insist on a previously 
made index for these files. IT a file is named which contains reference data but is not indexed, it 
will be searched (more slowly) by refer using fgrep. In this way it is easy for users to keep small 
files of new references, which can later be added to the public data bases. 



.. ) 
"'--j 

(r'\. 
0' 



( 

o 

Updating Publication Lists 

M. E. Leak 

1. Introduction. 

This note describes several commands to update the publication lists. The data base consist­
ing of these lists is kept in a set of files in the directory /uar/dict/paperB on the Version 7 UNIXt 
system. The reason for having special commands to update these files is that they are indexed, 
and the only reasonable way to find the items to be updated is to use the index. However, altering 
the files destroys the usefulness of the index, and makes further editing difficult. So the recom­
mended procedure is to 

(1) Prepare additions, deletions, and changes in separate files. 

(2) Update the data base and reindex. 

Whenever you make changes, etc. it is necessary to run the "add & index" step before logging off; 
otherwise the changes do not take effect. The next section shows the format of the files in the data 
base. After that, the procedures for preparing additions, preparing changes, preparing deletions, 
and updating the public data base are given. 

2. Publication Format. 

The format of a data base entry is given completely in "Some Applications of Inverted 
Indexes on UNIX" by M. E. Lesk, the first part of this report, (also TM 77-1274-17) and is sum­
marized here via a few examples. In each example, first the output format for an item is shown, 
and then the corresponding data base entry. 

Journal article: 
A. V. Aho, D. J. Hirschberg, and J. D. Ullman, "Bounds on the Complex­
ity of the Maximal Common Subsequence Problem," J. Assoc. Compo 
Mach., vol. 23, DO. 1, pp. 1-12 (Jan. 1976). 

%T Bounds on the Complexity of the Maximal Common 
Subsequence Problem 
o/oA A. V. Aho 
o/oA D. S. Hirschberg 
o/oA J. D. Ullman 
%J J. Assoc. Comp. Mach. 
%V23 
%Nl 
%P 1-12 
%D Jan. 1976 
%M TM 75-1271-7 

t UNIX is a trademark or Bell Laboratories. 



-2-

Conference proceedings: 

Book: 

B. Prabhala and R. Sethi, "Efficient Computation of Expressions with 
Common SubexpressioDS," Proc. 5th AOM S1lmp. on Principles of Pro­
,ramming lAngUtl,e8, pp. 222-230, Tucson, Ariz. (January 1978). 

o/oA B. Prabhala 
o/oA R. Sethi 
%T Efficient Computation of Expressions with­
Common SUbexpressions 
%J Proc. 5th ACM Symp. on Principles 
of Programming Languages 
%C Tucson, Ariz. 
%0 January 1978 
%P 222-230 

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 
Reading, Mass. (1976). 

%T Software Tools 
o/oA B. W. Kernighan 
%A P. J. Plauger 
%1 Addison-Wesley 
%C Reading, Mass. 
%01976 

Article within book: 
J. W. de Bakker, "Semantics of Programming Languages," pp. 173-227 in 
Advances in Information Systems Science, Vol. e, ed. J. T. Tou, Plenum 
Press, New York, N. Y. (1969). 

o/oA J. W. de Bakker 
%T Semantics of programming languages 
%E J. T. Tou 
%B Advances in Information Systems Science, Vol. 2 
%1 Plenum Press 
%C New York, N. Y. 
%01969 
%P 173-227 

Technical Report: 
F. E. Allen, "Bibliography on Program Optimization," Report RC-5767, 
IDM T. J. Watson Research Center, Yorktown Heights, N. Y. (1975). 

o/oA F. E. Allen 
%01975 
%T Bibliography on Program Optimization 
%R Report RC-5767 
%1 IDM T. J. Watson Research Center 
%C Yorktown Heights, N. Y. 

"'--. / 

c 



( 

-3-

Technical Memorandum: 
A. V. Aha, B. W. Kernighan and P. J. Weinberg, "AWK - Pattern Scan­
ning and Processing Language", TM 77-1271-5, TM 77-1273-12, TM 77-
3444-1 (1977). 

%T A WK - Pattern Scanning and Processing Language 
o/oA A. V. Aha 
o/oA B. W. Kernighan 
o/oA P. J. Weinberger 
%M TM 77-1271-5, TM 77-1273-12, TM 77-3444-1 
%D 1977 

Other forms of publication can be entered similarly. Note that conference proceedings are entered 
as if journals, with the conference name on a %1 line. This is also sometimes appropriate for 
obscure publications such as series of lecture notes. When something is both a report and an arti­
cle, or both a memorandum and an article, enter all necessary information for both; see the first 
article above, for example. Extra information (such as "In preparation" or "Japanese transla­
tion") should be placed on a line beginning %0. The most common use of %0 lines now is for 
"Also in ... " to give an additional reference to a secondary appearance of the same paper. 

Some of the possible fields of a citation are: 

Letter Meaning Letter Meaning 
A Author K Extra keys 
B Book including item N Issue number 
C City of publication 0 Other 
D Date P Page numbers 
E Editor of book R Report number 
I Publisher (issuer) T Title of item 
J Journal name V Volume number 

Note that %B is used to indicate the title of a book containing the article being entered; when an 
item is an entire book, the title should be entered with a %T as usual. 

Normally, the order of items does not matter. The only exception is that if there are multi­
ple authors (o/oA lines) the order of authors should be that on the paper. If a line is too long, it 
may be continued on to the next line; any line not beginning with % or . (dot) is assumed to be a 
continuation of the previous line. Again, see the first article above for an example of a long title. 
Except for authors, do not repeat any items; if two %J lines are given, for example, the first is 
ignored. Multiple items on the same file should be separated by blank lines. 

Note that in formatted printouts of the file, the exact appearance of the items is determined 
by a set of macros and the formatting programs. Do not try to adjust fonts, punctuation, etc. by 
editing the data base; it is wasted effort. In case someone has a real need for a differently­
formatted output, a new set of macros can easily be. generated to provide alternative appearances 
of the citations. 

3. Updating and Re-indexing. 

This section describes the commands that are used to manipulate and change the data base. 
It explains the procedures for (a) finding references in the data base, (b) adding new references, (c) 
changing existing references, and (d) deleting references. Remember that all changes, additions, 
and deletions are done by preparing separate files and then running an 'update and reindex' step. 

Ohecking what', there now. Often you will want to know what is currently in the data base. 
There is a special command ·Iookbib to look for things and print them out. It searches for articles 
based on words in the title, or the author's name, or the date. For example, you could find the 
first paper above with 



-4-

lookbib aho ullman maximal subsequence 1976 

or 

look bib aho ullman hirschberg 

If you don't give enough words, several items will be found; if you spell some wrong, nothing will 
be found. There are around 4300 papers in the public file; you should always use this command to 
check when you are not sure whether a certain paper ~ there or not. 

Addition,. To add new papers, just type in, on one or more files, the citations for the new 
papers. Remember to check first if the papers are already in the data base. For example, if a 
paper has a previous memo version, this should be treated as a change to an existing entry, rather 
than a new entry. If several new papers are being typed on the same file, be sure that there is a 
blank line between each two papers. 

Change,. To change an item, it should be extracted onto a file. This is done with the com­
mand 

pub.chg key! key2 key3 ... 

where the items key!, key2, key3, etc. are a set of keys that will find the paper, as in the lookbib 
command. That is, if 

look bib johnson yacc cstr 

will find a item (to, in this case, Computing Science Technical Report No. 32, ''YACC: Yet 
, Another Compiler-Compiler," by S. C. Johnson) then 

pub.chg johnson yacc cstr 

will permit you to edit the item. The pub. chg command extracts the item onto a file named 
"bibxxx" where "xxx" is a 3-digit number, e.g. "bib234". The command will print the file name 
it has chosen. If the set of keys finds more than one paper (or no papers) an error message is 
printed and no file is written. Each reference to be changed must be extracted with a separate 
pub. chg command, and each will be placed on a separate file. You should then edit the "bibxxx" 
file as desired to change the item, using the UNIX editor. Do not delete or change the first line of 
the file, however, which begins %# and is a special code line to tell the update program which 
item is being altered. You may delete or change other lines, or add lines, as you wish. The 
changes are not actually made in the public data base until you run the update command pub.run 
(see below). Thus, if after extracting an item and modifying it, you decide that you'd rather leave 
things as they were, delete the "bibxxx" file, and your change request will disappear. 

Deletions. To delete an entry from the data base, type the command 

pub.del key! key2 key3 ... 

where the items key!, key2, etc. are a set of keys that will find the paper, as with the lookbib com­
mand. That is, if 

lookbib Aho hirsch berg ullman 

will find a paper, 

pub.del aho hirschberg ullman 

deletes it. Note that upper and lower case are equivalent in keys. The pub.del command will 
print the entry being deleted. It also gives the name of a "bibxxx" file on which the deletion com­
mand is stored. The actual deletion is not done until the changes, additions, etc. are processed, as 
with the pub.chg command. If, after seeing the item to be deleted, you change your mind about 
throwing it away, delete the "bibxxx" file and the delete request disappears. Again, if the list of 
keys does not uniquely identify one paper, an error message is given. 

o 



( 

- 5-

Remember that the default versions of the commands described here edit a public data base. 
Do not delete items unless you are sure deletion is proper; usually this means that there are dupli­
cate entries for the same paper. Otherwise, view requests for deletion with skepticism; even if one 
person has no need for a particular item in the data base, someone else may want it there. 

If an item is correct, but should not appear in the "List of Publications" as normally pro­
duced, add the line 

%KDNL 

to the item. This preserves the item intact, but implies "Do Not List" to the to the commands 
that print publication lists. The DNL line is normally used for some technical reports, minor 
memoranda, or other low-grade publications. 

Update and reindex. When you have completed a session of changes, you should type the 
command 

pub.run filel file2 .. . 

where the names "fileI", ... are the new files of additions you have prepared. You need not list the 
"bibxxx" files representing changes and deletions; they are processed automatically. All of the new 
items are edited into the standard public data base, and then a new index is made. This process 
takes about 15 minutes; during this time, searches of the data base will be slower. 

Normally, you should execute pub. run just before you logoff after performing some edit 
requests. However, if you don't, the various change request files remain in your directory until you 
finally do execute pub. run. When the changes are processed, the "bibxxx" files are deleted. It is 
not desirable to wait too long before processing changes, however, to avoid conflicts with someone 
else who wishes to change the same file. If executing pub. run produces the message "File bibxxx 
too old" it means that someone else has been editing the same file between the time you prepared 
your changes, and the time you typed pub. run. You must delete such old change files and re-enter 
them. 

Note that although pub. run discards the "bibxxx" files after processing them, your files of 
additions are left around even after pub.run is finished. If they were typed in only for purposes of 
updating the data base, you may delete them after they have been processed by pub. run. 

Example. Suppose, for example, that you wish to 

(1) Add to the data base the memos "The Dilogarithm Function of a Real Argument" by R. 
Morris, and "UNIX Software Distribution by Communication Link," by M. E. Lesk and A. 
S. Cohen; 

(2) Delete from the data base the item "Cheap Typesetters", by M. E. Lesk, SIGLASH 
Newsletter, 1973; and 

(3) Change "J. Assoc. Compo Mach." to "Jour. ACM" in the citation for Aho, Hirschberg, and 
Ullman shown above. 

The procedure would be as follows. First, you would make a file containing the additions, here 
called "new.I", in the normal way using the UNIX editor. In the script shown below, the com­
puter prompts are in italics. 



Sed new.l 
f 
a 

-6-

%T The Dilogarithm Function oC a Real Argument 
o/oA Robert Morris 
%M TM 78-1271-1 
%D 1978 

%T UN1X SoCtware Distribution by Communication Link 
o/oA M. E. Lesk 
o/oA A. S. Cohen 
%M TM 78-1274-1,78-8234-1 
%D 1978 
w new.1 
199 
q 

Next you would specify the deletion, which would be done with the pub.del command: 

$ pub.del lesk cheap typesetters siglash 
to which the computer responds: 

Will delete: (file b;6178) 

%T Cheap Type&etter8 
%AM. E. Le8k 
%J ACM SIGLASH New81etter 
%V6 
%N4 
%P 14-16 
%D October 1979 

And then you would extract the Aho, Hirschberg and Ullman paper. The dialogue involved is 
shown below. First run pub.chg to extract the paper; it responds by printing the citation and 
inCorming you that it was placed on file bib129. That file is then edited. 

o· 



() 

$ pub.chg aho hirsch berg ullman 
Extracting a8 file 6i6129 

- 7-

%T Bound8 on the Complexity 0/ the Maximal 
Common Su68equenee Pr06/em 
%A A. V. Aho 
%A D. S. Hir8ch6erg 
%A J. D. Ullman 
%J J. A&9oc. Compo Mach. 
%V29 
%N1 
%P 1-12 
%M TM 75-1271-7 
%DJan.1976 

$ ed bib!23 
912 
/Assoc/s/ J/ Jour/p 
%J Jour. A8S0C. Compo Mach. 
s/Assoc.* /A0M/p 
%J Jour. ACM 
!,$p 
%# /usr/ dict/papers/p76 299 245 change 
%T Bounds on the Complexity 0/ the Maximal 
Common Subsequence Problem 
%AA. V. Aha 
%A D. S. Hirschberg 
%A J. D. Ullman 
%J Jour. ACM 
%V29 
%N1 
%P 1-12 
%M TM 75-1271-7 
%D Jan. 1976 

w 
292 
q 
$ 

Finally, execute pub. run , making sure to remember that you have prepared a new file "new.!": 

$ pub.run new.! 

and about fiCteen minutes later the new index would be complete and all the changes would be 
included. 

4. Printing a Publication List 

There are two commands Cor printing a publication list, depending on whether you want to 
print one person's list, or the list oC many people. To print a list Cor one person, use the p1Jb.indiv 
command: 

pub.indiv M Lesk 

This runs off the list Cor M. Lesk and puts it in file "output". Note that no '.' is given aCter the 
initial. In case oC ambiguity two initials can be used. Similarly, to get the list Cor group oC people, 
say 



-8-

pub.org xxx 

which prints all the publications or the members or organization uz, taking the names ror the list 
in the file / vlr/ diet/ paper,/ centliltl uz . This command should normally be run in the back­
ground; it takes perhaps 15 minutes. Two options are available with these commands: 

pub.indiv -p M Lesk 

prints only the papers, leaving out unpublished notes, patents, etc. Also 

pub.indiv -t M Lesk I gcat 

prints a typeset copy, instead or a computer printer copy. In this case it has been directed to an 
alternate typesetter with the 'gcat' command. These options may be used together, and may be 
used with the pub.org command as well. For example, to print only the papers ror all or organiza­
tion zzz and typeset them, you could type 

pub.center -t -p zzz I gcat & 

These publication lists are printed double column with a citation style taken rrom a set of publica­
tion list macros; the macros, or course, can be changed easily to adjust the rormat or the lists. 



Tbl - A Program to Format Tables 

M. E. Leak 

ABSTRAOT 

Tbl is a document formatting preprocessor for troff or nroff which makes 
even fairly complex tables easy to specify and enter. It is available on the UNIXt 
system and on Honeywell 6000 GOOS. Tables are made up of columns which may 
be independently centered, right-adjusted, left-adjusted, or aligned by decimal 
points. Headings may be placed over single columns or groups of columns. A 
table entry may contain equations, or may consist of several rows of text. Hor­
izontal or vertical lines may be drawn as desired in the table, and any table or ele­
ment may be enclosed in a box. For example: 

1970 Federal Budget Transfers 
tin billions of dollars' 

State Taxes Money 
Net 

collected spent 
New York 22.91 21.35 -1.56 
New Jersey 8.33 6.96 -1.37 
Connecticut 4.12 3.10 -1.02 
Maine 0.74 0.67 -0.07 
California 22.29 22.42 +0.13 
New Mexico 0.70 1.49 +0.79 
Georgia 3.30 4.28 +0.98 
Mississippi 1.15 2.32 +1.17 
Texas 9.33 11.13 +1.80 

Introduction. 

Tbl turns a simple description of a table into a troff or nroff II} program (list of commands) 
that prints the table. Tbl may be used on the UNIX 12] system and on the Honeywell 6000 GOOS 
system. It attempts to isolate a portion of a job that it can successfully handle and leave the 
remainder for other programs. Thus tbl may be used with the equation formatting program eqn 13] 
or various layout macro packages [4,5,6], but does not duplicate their functions. 

This memorandum is divided into two parts. First we give the rules for preparing tbl input; 
then some examples are shown. The description of rules is precise but technical, and the beginning 
user may prefer to read the examples first, as they show some common table arrangements. A sec­
tion explaining how to invoke tbl precedes the examples. To avoid repetition, henceforth read troff 
as "troff or nroff. " 

The input to tbl is text for a document, with tables preceded by a ". TS" (table start) com­
mand and followed by a ". TE" (table end) command. Tbl processes the tables, generating troff 
formatting commands, and leaves the remainder of the text unchanged. The". TS" and ". TE" 
lines are copied, too, so that troff page layout macros (such as the memo formatting macros 14]) 

t UNIX is a trademark of Bell Laboratories. 



USD:28-2 Tbl - A Program to Format Tables 

can use these lines to delimit and place tables as they see fit. In particular, any arguments on the 
" • TSu or ". TE" lines are copied but otherwise ignored, and may be used by document layout 
macro commands. 

The format of the input is as follows: 

text 
.TS 
table 
.TE 
text 
.TS 
table 
.TE 
text 

where the format of each table is as follows: 

.TS 
options; 
format. 
data 
.TE 

Each table is independent, and must contain formatting information followed by the data to be 
. entered in the table. The formatting information, which describes the individual columns and 

rows of the table, may be preceded by a few options that affect the entire table. A detailed 
description of tables is given in the next section. 

Input commands. 

As indicated above, a table contains, first, global options, then a format section describing 
the layout of the table entries, and then the data to be printed. The format and data are always 
required, but not the options. The various parts of the table are entered as follows: 

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this 
line must follow the • TS line immediately and must contain a list of option names separated 
by spaces, tabs, or commas, and must be terminated by a semicolon. The allowable options 
are: 

center 

expand 

- center the table (default is left-adjust); 

- make the table as wide as the current line length; 

box - enclose the table in a box; 

allbox - enclose each item in the table in a box; 

doublebox - enclose the table in two boxes; 

tab (:c) - use :c instead of tab to separate data items. 

linesize (n) - set lines or rules (e.g. from box) in n point type; 

delim (:C1l) - recognize :c and 11 as the eqn delimiters. 

The tbl program tries to keep boxed tables on one page by issuing appropriate "need" (.ne) 
commands. These requests are calculated from the number of lines in the tables, and if there 
are spacing commands embedded in the input, these requests may be inaccurate; use normal 
trolf procedures, such as keep-release macros, in that case. The user who must have a multi­
page boxed table should use macros designed for this purpose, as explained below under 
'Usage.' 

o 



Tbl - A Program to Format Tables USD:28-3 

2} FORMAT. The format section of the table specifies the layout of the columns. Each line in 
this section corresponds to one line of the table (except that the last line corresponds to all 
following lines up to the next. T&, if any - see below), and each line contains a key-letter 
for each column of the table. It is good practice to separate the key letters for each column 
by spaces or tabs. Each key-letter is one of the following: 

L or I to indicate a left-adjusted column entry; 

R or r to indicate a right-adjusted column entry; 

Cor c to indicate a centered column entry; 

Nor n to indicate a numerical column entry, to be aligned with other numerical entries 
so that the units digits of numbers line up; 

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on the 
left, and positioned so that the widest is centered within the column (see example 
on page 12); 

S ori s to indicate a spanned heading, i.e. to indicate that the entry from the previous 
column continues across this column (not allowed for the first column, obviously); 
or 

to indicate a vertically spanned heading, i.e. to indicate that the entry from the 
previous row continues down through this row. (Not allowed for the first row of 
the table, obviously). 

When numerical alignment is specified, a location for the decimal point is sought. The right­
most dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining a 
digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is 
centered in the column. However, the special non-printing character string \& may be used 
to override unconditionally dots and digits, or to align alphabetic data; this string lines up 
where a dot normally would, and then disappears from the final output. In the example 
below, the items shown at the left will be aligned (in a numerical column) as shown on the 
right: 

13 
4.2 
26.4.12 
abc 
abc\& 
43\&3.22 
749.12 

13 
4.2 

26.4.12 
abc 

abc 
433.22 

749.12 

Note: If numerical data are used in the same column with wider L or r type table entries, 
the widest number is centered relative to the wider L or r items (L is used instead of I for 
readability; they have the same meaning as key-letters). Alignment within the numerical 
items is preserved. This is similar to the behavior of a type data, as explained above. How­
ever, alphabetic subcolumns (requested by the a key-letter) are always slightly indented rela­
tive to L items; if necessary, the column width is increased to force this. This is not true for 
n type entries. 

Warning: the n and a items should not be used in the same column. 

For readability, the key-letters describing each column should be separated by spaces. The 
end of the format section is indicated by a period. The layout of the key-letters in the for­
mat section resembles the layout of the actual data in the table. Thus a simple format 
might appear as: 

c s s 
Inn. 

which specifies a table of three columns. The first line of the table contains a heading cen­
tered across all three columns; each remaining line contains a left-adjusted item in the first 



USD:28-4 Tbl - A Program to Format Tables 

column followed by two columns of numerical data. A sample table in this format might be: 

Overall title 
Item-a 34.22 9.1 
Item-b 12.65 .02 
Items: c,d,e 23 5.8 
Total 69.87 14.92 

There are some additional features of the key-letter system: 

Horizontal lines 
- A key-letter may be replaced by '_' (underscore) to indicate a horizontal line in place 
of the corresponding column entry, or by '=' to indicate a double horizontal line. If an 
adjacent column contains a horizontal line, or if there are vertical lines adjoining this 
column, this horizontal line is extended to meet the nearby lines. If any data entry is 
provided for this column, it is ignored and a warning message is printed. 

Vertical lines 
- A vertical bar may be placed between column key-letters. This will cause a vertical 
line between the corresponding columns of the table. A vertical bar to the left of the 
first key-letter or to the right of the last one produces a line at the edge of the table. If 
two vertical bars appear between key-letters, a double vertical line is drawn. 

Space between columns 
- A number may follow the key-letter. This indicates the amount of separation 
between this column and the next column. The number normally specifies the separa­
tion in ens (one en is about the width of the letter 'n').* If the "expand" option is used, 
then these numbers are mUltiplied by a constant such that the table is as wide as the 
current line length. The default column separation number is 3. If the separation is 
changed the worst case (largest space requested) governs. 

Vertical spanning 
- Normally, vertically spanned items extending over several rows of the table are cen­
tered in their vertical range. If a key-letter is followed by t or T, any corresponding 
vertically spanned item will begin at the top line of its range. 

Font changes 
- A key-letter may be followed by a string containing a font name or number pre­
ceded by the letter £ or F. This indicates that the corresponding column should be in a 
different font from the default font (usually Roman). All font names are one or two 
letters; a one-letter font name should be separated from whatever follows by a space or 
tab. The single letters B, b, I, and i are shorter synonyms for £B and £1. Font change 
commands given with the table entries override these specifications. 

Point size changes 
- A key-letter may be followed by the letter p or P and a number to indicate the 
point size of the corresponding table entries. The number may be a signed digit, in 
which case it is taken as an increment or decrement from the current point size. If 
both a point size and a column separation value are given, one or more blanks must 
separate them. 

Vertical spacing changes 
- A key-letter may be followed by the letter v or V and a number to indicate the 
vertical line spacing to be used within a multi-line corresponding table entry. The 
number may be a signed digit, in which case it is taken as an increment or decrement 
from the current vertical spacing. A column separation value must be separated by 
blanks or some other specification from a vertical spacing request. This request has no 
effect unless the corresponding table entry is a text block (see below). 

* More precisely, an en is a number of points (1 point = 1/72 incb) equal to half the current type size. 

(\ 
0 

o 



(-

( 

Tbl - A Program to Format Tables USD:28-5 

3) 

Column width indica.tion 
- A key-letter may be rollowed by the letter w or W and a width value in 
parentheses. This width is used as a minimum column width. H the largest element in 
the column is not as wide as the width value given after the w, the largest element is 
assumed to be that wide. H the largest element in the column is wider than the 
specified value, its width is used. The width is also used as a default line length for 
included text blocks. Normal troO' units can be used to scale the width value; if none 
are used, the default is ens. H the width specification is a unitless integer the 
parentheses may be omitted. H the width'value is changed in a column, the Ia.st one 
given controls. 

Equal width columns 
- A key-letter may be followed by the letter e or E to indicate equal width columns. 
All columns whose key-letters are followed by e or E are made the same width. This 
permits the user to get a group of regularly spaced columns. 

Note: 
The order of the above features is immaterial; they need not be separated by spaces, 
except as indicated above to avoid ambiguities involving point size and font changes. 
Thus a numerical column entry in italic font and 12 point type with a minimum width 
of 2.5 inches and separated by 6 ens from the next column could be specified as 

npI2w(2.5i}fI 6 

Alternative notation 
- Instead of listing the format of successive lines of a table on consecutive lines of the 
format section, successive line formats may be given on the same line, separated by 
commas, so that the format for the example above might have been written: 

c s s, Inn 0 

Default 
- Column descriptors missing from the end of a format line are assumed to be L. The 
longest line in the format section, however, defines the number of columns in the table; 
extra columns in the data are ignored silently. 

DATA. The data for the table are typed after the format. Normally, each table line is typed 
as one line of data. Very long input lines can be broken: any line whose last character is \ is 
combined with the following line (and the \ vanishes). The data for different columns (the 
table entries) are separated by tabs, or by whatever character has been specified in the option 
tabs option. There are a few special cases: 

TroO' commands within tables 
- An input line beginning with a ' 0' followed by anything but a number is assumed to 
be a command to troO' and is passed through unchanged, retaining its position in the 
table. So, for example, space within a table may be produced by "osp" commands in 
the data. 

Full width horizontal lines 
- An input line containing only the character _ (underscore) or = (equal sign) is 
taken to be a single or double line, respectively, extending the full width of the table. 

Single column horizontallinu 
- An input table entry containing only the character _ or = is taken to be a single or 
double line extending the full width of the column. Such lines are extended to meet 
horizontal or vertical lines adjoining this column. To obtain these characters explicitly 
in a column, either precede them by \& or follow them by a space before the usual tab 
or newline. 

Short hon·zonta/lines 
- An input table entry containing only the string \_ is taken to be a single line as 
wide as the contents of the column. It is not extended to meet adjoining lines. 



USD:28-6 Tbl - A Program to Format Tables 

Vertically spanned items 
- An input table entry containing only the character string \ A indicates that the table 
entry immediately above spans downward over this row. It is equivalent to a table for­
mat key-letter of 'A'. 

Ted blocks 
- In order to include a block of text as a table entry, precede it by T{ and follow it by 
T}. Thus the sequence 

••• T{ 
block of 
text 
T} ••• 

is the way to enter, as a single entry in the table, something that cannot conveniently 
be typed as a simple string between tabs. Note that the T} end delimiter must begin a 
line; additional columns of data may follow after a tab on the same line. See the 
example on page 11 for an illustration of included text blocks in a table. If more than 
twenty or thirty text blocks are used in a table, various limits in the troff program are 
likely to be exceeded, producing diagnostics such as 'too many string/macro names' or 
'too many number registers.' 

Text blocks are pulled out from the table, processed separately by troff, and replaced in 
the table as a solid block. If no line length is specified in the block of text itself, or in 
the table format, the default is to use LXC /(N+l) where L is the current line length, 
C is the number of table columns spanned by the text, and N is the total number of 
columns in the table. The other parameters (point size, font, etc.) used in setting the 
block of text are those in effect at the beginning of the table (including the effect of the 
". TS" macro) and any table format specifications of size, spacing and font, using the 
p, v and f modifiers to the column key-letters. Commands within the text block itself 
are also recognized, of course. However, 'roff commands within the table data but not 
within the text block do not affect that block. 

Warnings: 
- Although any number of lines may be present in a table, only the first 200 lines are 
used in calculating the widths of the various columns. A multi-page table, of course, 
may be arranged as several single-page tables if this proves to be a problem. Other 
difficulties with formatting may arise because, in the calculation of column widths all 
table entries are assumed to be in the font and size being used when the ". TS" com­
mand was encountered, except for font and size changes indicated (a) in the table for­
mat section and (b) within the table data (as in the entry \s+3\fldata\rP\sO). There­
fore, although arbitrary troff requests may be sprinkled in a table, care must be taken 
to avoid confusing the width calculations; use requests such as '.ps' with care. 

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many similar 
lines, as with sub-headings or summarizations, the" .T&" (table continue) command can be 
used to change column parameters. The outline of such a table input is: 

C" i 
, ' 



( 

Tbl - A Program to Format Tables 

.TS 
optionIJ ; 
format. 
data 

.T& 
format. 
data 
.T& 
format. 
data 
.TE 

USD:28-7 

as in the examples on pages 10 and 13. Using this procedure, each table line can be close to 
its corresponding format line. 

Warning: it is not possible to change the number of columns, the space between columns, the 
global options such as bo%, or the selection of columns to be made equal width. 

Usage. 

On UNIX, tbl can be run on a simple table with the command 

tbl input-file I troft' 

but for more complicated use, where there are several input files, and they contain equations and 
ms memorandum layout commands as well as tables, the normal command would be 

tbl file-1 file-2 ••• I eqn I troft' -ms 

and, of course, the usual options may be used on the trolf and eqn commands. The usage for nrolf 
is similar to that for troff, but only TELETYPEi!Il Model 37 and Diablo-mechanism (DASI or GSI) ter­
minals can print boxed tables directly. 

For the convenience of users employing line printers without adequate driving tables or post­
filters, there is a special -TX command line option to tbl which produces output that does not 
have fractional line motions in it. The only other command line options recognized by tbl are -ms 
and -mm which are turned into commands to fetch the corresponding macro files; usually it is 
more convenient to place these arguments on the trolf part of the command line, but they are 
accepted by tbl as well. 

Note that when eqn and tbl are used together on the same file tbl should be used first. If 
there are no equations within tables, either order works, but it is usually faster to run tbl first, 
since eqn normally produces a larger expansion of the input than tbl. However, if there are equa­
tions within tables (using the delt'm mechanism in eqn), tbl must be first or the output will be 
scrambled. Users must also beware of using equations in n-style columns; this is nearly always 
wrong, since tbl attempts to split numerical format items into two parts and this is not possible 
with equations. The user can defend against this' by giving the dtlim{xx) table option; this 
prevents splitting of numerical columns within the delimiters. For example, if the eqn delimiters 
are $$, giving dtlim($$) a numerical column such as "1245 $+- 16$" will be divided after 1245, 
not after 16. 

Th/ limits tables to twenty columns; however, use of more than 16 numerical columns may 
fail because of limits in troff, producing the 'too many number registers' message. Trolf number 
registers used by thl must be avoided by the user within tables; these include two-digit names from 
31 to 99, and names of the forms #x, z+, z L AZ, and %-, where z is any lower case letter. The 
names ##, #-, and #A are also used in certain circumstances. To conserve number register 
names, the n and a formats share a register; hence the restriction above that they may not be used 
in the same column. 



USD:28-8 Tbl - A Program to Format Tables 

For aid in writing layout macros, tbl defines a number register TW which is the table width; 
it is defined by the time that the ". TE" macro is invoked and may be used in the expansion of 
that macro. More importantly, to assist in laying out multi-page boxed tables the macro T# is 
defined to produce the bottom lines and side lines of a boxed table, and then invoked at its end. 
By use of this macro in the page footer a multi-page table can be boxed. In particular, the ms 
macros can be used to print a multi-page boxed table with a repeated heading by giving the argu­
ment H to the" • TS" macro. If the table start macro is written 

.TSH 
a line of the form 

.TH 
must be given in the table after any table heading (or at the start if none). Material up to the 
" • TH" is placed at the top of each page of table; the remaining lines in the table are placed on 
several pages as required. Note that this is not a feature of tbl, but of the mslayout macros. 

Examples. 

Here are some examples illustrating features of tbl. The symbol ® in the input represents a 
tab character. 

Input: 

.TS 
box; 
e c c 
Ill. 
Language ® Authors ® Runs on 

Fortran ® Many ® Almost anything 
PLII ® IBM ® 360/370 
C ®BTL ® 11/45,H6000,370 
BLISS ® Carnegie-Mellon ® PDP-lO,l1 
IDS ® Honeywell ® H6000 
Pascal ® Stanford ® 370 
.TE 

Input: 

.TS 
allbox; 
c s s 
c c c 
n n n. 
AT&T Common Stock 
Year ® Price ® Dividend 
1971 ® 41-54 ® $2.60 
2 ® 41-54 ® 2.70 
3 ® 46-55 ® 2.87 
4® 40-53® 3.24 
5 ® 45-52 ® 3.40 
6 ® 51-59 ® .95* 
.TE 
* (first quarter only) 

Output: 

Language Authors 

Fortran 
PLII 
C 
BLISS 
IDS 
Pascal 

Output: 

Many 
mM 
BTL 
Carnegie-Mellon 
Honeywell 
Stanford 

AT&T Common Stock 
Year Price Dividend 
1971 41-54 $2.60 

2 41-54 2.70 
3 46-55 2.87 
4 40-53 3.24 
5 45-52 3.40 
6 51-59 .95* 

* (first quarter only) 

Runs on 

Almost anything 
360/370 
11/45,H6oo0,370 
PDP-lO,l1 
H6000 
370 



( 

Tbl - A Program to Format Tables 

Output: Input: 

.TS 
box; 
css 

Maior New York BridlZes 

c I c I c 
I 11 In. 
Major New York Bridges 
= 
Bridge ® Designer ® Length 

Brooklyn ® J. A. Roebling ® 1595 
Manhattan ® G. Lindenthal ® 1470 
Williamsburg ® L. L. Buck ® 1600 

Queensborough ® Palmer & ® 1182 
® Hornbostel 

® ®1380 
Triborough ® O. H. Ammann ® _ 
® ®383 

Bronx Whitestone ® O. H. Ammann ® 2300 
Throgs Neck ® O. H. Ammann ® 1800 

Bridlte 
Brooklyn 
Manhattan 
Williamsburlt 
Queensborough 

Triborough 

Bronx Whitestone 
Throl!;s Neck 
George Washington 

George Washington ® O. H. Ammann ® 3500 
.TE 

Input: Output: 

.TS Stack 
c c 1 46 
np-2 I n I. 2 23 
®Stack 

3 15 
®-

6.5 1®46 4 

®- 5 2.1 
2®23 
®-
3® 15 
®-
4®6.5 
®-
5®2.1 
®-
.TE 

Desimer 
J. A. Roebling 
G. Lindenthal 
L. L. Buck 
Palmer & 

Hornbostel 

O.H.Ammann 

O.H.Ammann 
O. H.Ammann 
O. H. Ammann 

USD:28-9 

Length 
1595 
1470 
1600 
1182 

1380 

383 
2300 
1800 
3500 



USD:28-10 

Input: 

.TS 
box; 
LLL 
LL_ 
LL ILB 
LL_ 
LLL. 
january <!:> february <!:> march 
april®may 
june ® july ® Months 
august <!:> september 
october <!:> november ® december 
.TE 

Input: 

.TS 
box; 
cm s s s. 
Composition of Foods 

.T& 
c I c S 5 

C I c S 5 

C Ic Ic Ic. 
Food ® Percent by Weight 
\A®_ 
\ A ® Protein ® Fat ® Carbo­
\ A ® \ A ® \ A ® hydrate 

.T& 
I I n I n In. 
Apples ® .4 ® .5 ® 13.0 
Halibut ® 18.4 ® 5.2 ® ..• 
Lima beans®7.5® .8@22.0 
Milk ®3.3 ®4.0® 5.0 
Mushrooms®3.5® .4(96.0 
Rye bread®9.0® .6®52.7 
.TE 

Output: 

january 
april 
june 
august 
october 

Output: 

Tbl- A Program to Format Tables 

february march 

may l 
july Months 
september 
november december 

Com~sition or Foods 
Percent 1rr Weight 

Food 
Protein Fat 

Carbo-
hydrate 

Apples .4 .5 13.0 
Halibut 18.4 5.2 ... 
Lima beans 7.5 .8 22.0 
Milk 3.3 4.0 5.0 
Mushrooms 3.5 .4 6.0 
Rye bread 9.0 .6 52.7 

c 

o 



( _. 

... 

( 

Tbl - A Program to Format Tables USD:28-11 

Input: Output: 

.TS 
allboxj 
cn s s 

New York Area Rocks 

c cw(li) cW(1i) 
Ip9 Ip9 Ip9. 
New York Area Rocks 
Era ® Formation ® Age (years) 
Precambrian ® Reading Prong ® > 1 billion 
Paleozoic ® Manhattan Prong ® 400 million 
Mesozoic ® T { 
.na 
Newark Basin, incl. 
Stockton, Lockatong, and Brunswick 
formationsj also Watchungs 
and Palisades. 
T} ® 200 million 
Cenozoic ® Coastal Plain ® T{ 
On Long Island 30,000 yearsj 
Cretaceous sediments redeposited 
by recent glaciation • 
• ad 
T} 
.TE 

Input: 

.EQ 
delim $$ 
.EN 

Era 
Precambrian 
Paleozoic 
Mesozoic 

Cenozoic 

Output: 

Name 

Gamma 

Sine 

Error 

Formation 
Readinlt Pronlt 
Manhattan Prong 

Newark Basin, 
incl. Stockton, 
Lockatong, and 
Brunswick forma.-
tions; also 
Watchungs and 
Palisades. 
Coastal Plain 

Definition 

00 

r(z)= 10 tz-1e-t dt 
1· . 

sin(x)= 2/e,z-e-'Z) 

2 Z 1/ 
erf(z)=-::-?-J, e-t dt 

V1r 0 

Age (years) 

> 1 billion 
400 million 
200 million 

On Long Island 
30,000 years; Cre-
taceous sediments 
redeposited by 
recent glaciation. 

.TS 
doublebox; 
c c Bessel 

1 ,.. 
Jo(z)=-L cos(zsinfJ)dfJ 

1r 0 
00 II. 

Name ® Definition 
• sp 
.vs +2p 

Zeta sis)= :Ek-· (Re s >1) 
So . 

Gamma ® $GAMMA (z) = int sub 0 sup inf t sup {z-l} e sup -t dt$ 
Sine ® $sin (x) = 1 over 2i ( e sup ix - e sup -ix )$ 
Error ® $ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$ 
Bessel ® $ J sub 0 (z) = lover pi int sub 0 sup pi cos ( z sin theta) d theta $ 
Zeta®$ zeta (s) = sum from k=1 to inf k sup -s --( Re-s > 1)$ 
.vs -2p 
.TE 



USD:28-12 

Input: 

.TS 
box, tab( : ); 
eb 5555 

ep-2 5 5 5 S 

ellclclclc 
cllclclclc 
r2 "n2 I n2 I n2 In. 
Readability of Text 
Line Width and Leading for 100Point Type 

Line: Set: I-Point: 2-Point : 4-Point 
Width: Solid: Leading: Leading: Leading 

-
9 Pica: \-9.3: \-6.0: \-5.3 : \-7.1 
14 Pica: \-4.5: \-0.6: \-0.3: \-1.7 
19 Pica: \-5.0: \-5.1: 0.0: \-2.0 
31 Pica: \-3.7: \-3.8: \-2.4: \-3.6 
43 Pica: \-9.1: \-9.0: \-5.9: \-8.8 
.TE 

Tbl - A Program to Format Tables 

Output: 

Readability of Text 
Line Width a.nd Leadinll for 10-Point Tvpe 

Line Set I-Point 2-Point 4-Point 
Width Solid Leading Leading Leading 
9 Pica -9.3 -6.0 -5.3 -7.1 

14 Pica -4.5 -0.6 -0.3 -1.7 
19 Pica -5.0 -5.1 0.0 -2.0 
31 Pica -3.7 -3.8 -2.4 -3.6 
43 Pica -9.1 -9.0 -5.9 -8.8 



( 

Tbl - A Program to Format Tables 

Input: 

.TS 
cs 
cip-2 s 
I n 
an. 
Some London Transport Statistics 
(Year 1964) 
Railway route miles ® 244 
Tube@66 
Sub-surface ® 22 
Surface ® 156 
.sp .5 
.T& 
I r 
a r. 
Passenger traffic \- railway 
Journeys @ 674 million 
Average length @ 4.55 miles 
Passenger miles ® 3,066 million 
.T& 
I r 
a r. 
Passenger traffic \- road 
Journeys @ 2,252 million 
Average length@2.26 miles 
Passenger miles @ 5,094 million 
.T& 
In 
an. 
.sp .5 
Vehicles@ 12,521 
Railway motor cars ® 2,905 
Railway trailer cars @ 1,269 
Total railway ® 4,174 
Omnibuses @ 8,347 
.T& 
In 
an • 
• sp .5 
Staff@ 73,739 
Administrative, etc. @ 5,582 
Civil engineering@5,134 
Electrical eng. ® 1,714 
Mech. eng. \- raiIway@4,310 
Mech. eng. \- road@ 9,152 
Railway operations ® 8,930 
Road operations ® 35,946 
Other ® 2,971 
.TE 

USD:28-13 

Output: 

Some London Transport Statistics 
(Year 196.1) 

Railway route miles 244 
Tube 66 
Sub-surface 22 
Surface 156 

Passenger traffic - railway 
Journeys 
Average length 
Passenger miles 

Passenger traffic - road 
Journeys 
Average length 
Passenger miles 

Vehicles 
Railway motor cars 
Railway trailer cars 
Total railway 
Omnibuses 

Staff 
Administrative, etc. 
Civil engineering 
Electrical eng. 
Mech. eng. - railway 
Mech. eng. - road 
Railway operations 
Road operations 
Other 

674 million 
4.55 miles 

3,066 million 

2,252 million 
2.26 miles 

5,094 million 

12,521 
2,905 
1,269 
4,174 
8,347 

73,739 
5,582 
5,134 
1,714 
4,310 
9,152 
8,930 

35,946 
2,971 



USD:28-14 

Input: 

.ps 8 

.vs lOp 

.TS 
center box; 
css 
ci s S 

c c c 
IDI n. 
New Jersey Representatives 
(Democrats) 
.sp .5 
Name (!) Office address (!) Phone 
.sp .5 

Tbl- A Program to Format Tables 

James J. Florio (!) 23 S. White Horse Pike, Somerdale 08083 ~ 609-627-S222 
William J. Hughes (!) 2920 Atlantic Ave., Atla.ntic City 08401 ® 609-345-4844 
James J. Howard ® 801 Bangs Ave., Asbury Park 07712 ® 201-774-1600 
Frank Thompson, Jr. (!) 10 Rutgers Pl., Trenton 0861S ® 609-599-1619 
Andrew Maguire ® 115 W. Passaic St., Rochelle Park 07662 ® 201-S43-0240 
Robert A. Roe®U.S.P.O., 194 Ward St., Paterson 07510 ® 201-523-5152 
Henry Helstoski (!) 666 Paterson Ave., East Rutherford 07073 ® 201-939-9090 
Peter W. Rodino, Jr. (!)Suite 1435A, 970 Broad St., Newark 07102 ® 201-645-3213 
Joseph G. Minish ® 308 Main St., Orange 07050 ® 201-645-6363 
Helen S. Meyner®32 Bridge St., Lambertville 08530 ® 609-397-1S30 
Dominick V. Daniels ® 895 Bergen Ave., Jersey City 07306 ® 201-659-7700 
Edward J. Patten (!) Natl. Bank Bldg., Perth Amboy 08861 ® 201-826-4610 
.sp .5 
.T& 
ei 5 S 

1B I n. 
(Republicans) 
.sp .5v 
Millicent Fenwick ® 41 N. Bridge St., Somerville 08876 ® 201-722-8200 
Edwin B. Forsythe® 301 Mill St., Moorestown 08057 ® 609-235-6622 
Matthew J. Rinaldo (!) 1961 Morris Ave., Union 07083 ® 201-687-4235 
.TE 
.ps 10 
.vs 12p 

o 



( 

c 

Tbl - A Program to Format Tables USD:28-15 

Output: 

New Jersey Representa.tives 
(DemocrlJt,) 

Name Office a.ddress Phone 

James J. Florio 23 S. White Horse Pike, Somerda.le 08083 609-627-8222 
WIlliam J. Hughes 2920 Atia.ntie Ave., Atla.ntic City 08401 609-34&-4844 
James J. Howard SOl Ba.ngs Ave., Asbury Pa.rk 07712 201-774-1600 
Frank Thompson, Jr. 10 Rutgers Pl., Trentoll 08618 609-599-1619 
Andrew Maguire 115 W. Pa.ssa.ic St., Rochelle Pa.rk 07662 201-843-0240 
Robert A. Roe U.S.P.O., 194 Wa.rd St., Pa.terson 07510 201-523-5152 
Henry Helstoskl 666 Pa.terson Ave., Ea.st Rutherrord 07073 201-939-9090 
Peter W. Rodino, Jr. Suite 14.35A, 970 Broa.d St., Newa.rk 07102 201-64&-3213 
Joseph G. Minish 308 Main St., Ora.nge 07050 201-64.&-6363 
Helen S. Meyner 32 Bridge St., Lambertville 08530 609-397-1830 
Dominick V. Daniels 895 Bergen Ave., Jersey City 07306 201-659-7700 
Edward J. Patten Na.tl. Ba.nk Bldg., Perth Amboy 08861 201-82&-4.610 

(RepubliclJn,) 

Millicent Fenwick 41 N. Bridge St., Somerville 08876 201-722-8200 
Edwin B. Forsythe 301 Mill St., Moorestown 08057 609-23&-6622 
Matthew J. Rinaldo 1961 Morris Ave., Union 07083 201-687-4235 

This is a paragraph of normal text placed here only to indicate where the left and right margins 
are. In this way the reader can judge the appearance of centered tables or expanded tables, and 
observe how such tables are formatted. 

Input: 

.TS 
expand; 
c s s s 
c c c c 
11 n n. 
Bell Labs Locations 
Name ® Address ® Area Code ® Phone 
Holmdel ® Holmdel, N. J. 07733 ® 201 ® 949-3000 
Murray Hill ® Murray Hill, N. J. 07974 ® 201 ® 582-6377 
Whippany ® Whippany, N. J. 07981 ® 201 ® 386-3000 
Indian Hill ® Naperville, lllinois 60540 ® 312 ® 690-2000 
.TE 

Output: 

Name 
Holmdel 
Murray Hill 
Whippany 
Indian Hill 

Bell Labs Locations 
Address 

Holmdel, N. J. 07733 
Murray Hill, N. J. 07974 
Whippany, N. J. 07981 
Naperville, lllinois 60540 

Area Code 
201 
201 
201 
312 

Phone 
949-3000 
582-6377 
386-3000 
690-2000 



USD:28-16 

Inputl 

.TS 
box; 
cb 5 8 S 

c Ic Ic 8 
Itiw(li) Iltw(2i) IlpSllw(I.5i)p8. 
Some Interesting Places 

Name (E) Description (E) Practical Information 

T{ 
American Museum of Natural History 
T}(E) T{ 
The collections flll 11.5 acres (Michelin) or 25 acres (MTA) 
of exhibition halls on four floors. There is a full-sized replica 
or a blue whale and the world's largest star sapphire (stolen in 1964). 
T}(E)Hours(E) 10-5, ex. Sun 11-5, Wed. tog 
,- ® ,- (E) Location 6') T { 
Central Park West &~9t)j St. 
T} \" i ,-i Admission Q:) Donation: $1.00 asked 
\" '" Subway(E) AA to Slst St. 
'" '" TelephoneQ:) 212-873-4225 

Bronx Zoo(E) T{ 
About a mile long and .6 mile wide, this is the largest zoo in America. 
A lion eats 18 pounds 
of meat a day while a sea lion eats 15 pounds of fish. 
T} (E) Hours Q:) T { 
10-4:30 winter, to 5:00 summer 
T} , 
,- (E) ,- (E) Location(D T{ 
185th St. & Southern Blvd, the Bronx. 
T} '" i ,-i Admission Q:) $1.00, but TU,We,Th free 
\" '" Subway(E) 2,5 to East Tremont Ave. 
\" \" TelephoneQ:) 212·933-1759 

Brooklyn Museum(E) T{ 
Five floors of galleries contain American and ancient art. 
There are American period rooms a.nd a.rchitectural ornaments saved 
from wreckers, such as a classical figure from Pennsylvania Station. 
T}(!) Hours® Wed-Sat, 10-5, Sun 12-5 
\" ® \" (E) Location 6') T{ 
Eastern Parkway & WashlDgton Ave., Brooklyn. 
T} '" i '" i Admission Q:) Free \" '" Subway® 2,3 to Eastern Parkway. 
'" '" TelephoneQ:)718-638-5000 

T{ 
New-York Historical Society 
T}®T{ 
All the original paintings for Audubon's 
.1 
Birds of America 
.R 
are here, as are exhibits or American decorative arts, New York history, 
Hudson River school paintings, carriages, and glass paperweights. 
T} (E) Hours (E) T { 
Tues-Fri & Sun, 1-5; Sat 10-5 
T} 

'" ® '" ® Location 6') T{ Central Park West &~7tli St. 
T} '" i ,-i Admission (E) Free 
,- \" Subway® AA to 81st St. 
'" '" Telephone(E) 212-873-3400 
.TE 

Tbl - A Program to Format Tables 

o 

C' --''',', , ! 



(-

( 

Tbl - A Program to Format Tables USD:28-17 

Output: 

~ Interesting Places 

Name Description Practical Information 
Amen'can Muse- The collections fill 11.5 acres Hours 10-5, ex. Sun 11-5, Wed. to 9 

um of Natural (Michelin) or 25 acres (MTA) of Location Central Park West &. 79th St. 

History exhibition halls on four Boors. Admission Donation: $1.()0 asked 

There is a rull-sized replica of a Subway AA to 81st St. 

blue whale and th~ world's larg-" Telephone :Uo-S78-4225 

est star sapphire (stol~ in 
1964l. 

Bronx Zoo About a mile long and .6 mile Hours lM:SO winter, to 5:00 sum-

wide, this is the largest zoo in mer 

America. A lion eats 18 pounds Location 185th St. &: Southern Blvd, 

of meat a day while a sea lion the Bronx. 

eats 15 pounds of fish. Admission $1.00, but TU,We,Th free 

Subway 2,5 to East Tremont Ave. 

Telephone 212·933-1759 

Brooklyn Museum Five floors of galleries contain Hours Wed·Sat, 10-5, Sun 12-5 

AmeIi<:a.n and ancient art. Location .Eastern Parkway &. Washing-

There are American period loa Ave., Brooklyn. 

rooms and .architectural orna- Admission Free 

ments saved from wreckers, such Subway 2,3 to Eastern Parkway. 

as a classical figure from Telephone 718-638-5000 

Pennsylvania Station. 
New- York Histor- All ~ original paintings for Hours Tues-Fri &. Sun, 1-5; Sat 10-5 

ical Society Audubon's Biru 0/ Ammec are Location CflItraJ Park West &. 77th St. 

here, as are exhibits of .American Admission ~ 
decorative arts, New York hist~ Subway AA to Slst St. 

ry, Hudson River school paint- Telephone 212-873-3400 

ings, carriages, and glass paper-
weights. 

Acknowledgments. 

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted 
with the design of the progrllDl. He has also written many of the more intelligible sentences in this 
document and helped edit all of it. All pho~tting programs on UNIX are dependent on the 
work of J. F. Ossanna, whose assistance with this program in particular has been most helpfill. 
This program is patterned on a table format~ Originally written by J. F. Gimpel. The assistance 
of T. A. Dolotta, B. W. Kernighan, and J. N. Stunnan is gratefully acknowledged. 

References. 

[1] J. F. Ossanna, NROFF/TROFF U8er'8 Mllau1, Computing Scienee -z'eehnical Report No. 54, 
Bell Laboratories, 1976. 

[2] K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Oomm. ACM. 17, pp. 
365-75 (1974). 

[3] B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. ACM. 
18, pp. 151-57 (1975). 

[4] M. E. Lesk, Typing Docvment8 on UNIX, Ben Laboratories internal memorandum. 

[5] M. E. Lesk and B. W_ Kernighan, Oompdn T,Ipe8etting of Tedmical Journals on u.'wx, 
Computing Science Technical Report No. "' Bell Laboratories, Jaly 1976. 



USD:28-18 Tbl - A Program to Format Tables 

[6] J. R. Mashey and D. W. Smith, PWB/MM - Programmer's Workbench Memorandum Macros, 
Bell Laboratories memorandum. 

List of Tbl Command Characters and Words 

Oommand Meaning Section 
aA Alphabetic subcolumn 2 
allbox Draw box around all items 1 
bB Boldface item 2 
box Draw box around table 1 
eO Centered column 2 
center Center table in page 1 
doublebox Doubled box around table 1 
eE Equal width columns 2 
expand Make table full line width 1 
fF Font change 2 
iI Italic item 2 
IL Left adjusted column 2 
nN Numerical column 2 
nnn Column separation 2 
pP Point size change 2 
rR Right adjusted column 2 
88 Spanned item 2 
tT Vertical spanning at top 2 
tab (x) Change data separator character 1 
T{ T} Text block 3 
vV Vertical spacing change 2 
wW Minimum width value 2 
.xx Included troff command 3 
I Vertical line 2 
II Double vertical line 2 

Vertical span 2 
\" Vertical span 3 
- Double horizontal line 2,3 

Horizontal line 2,3 
\- Short horizontal line 3 

o 

/-~ 

"'J 



(/ A System tor Typesetting Mathematics 

Brian W. Kernighan and Lorinda L. ChefT'1J 

ABSTRACT 

This paper describes the design and implementation of a system for typesetting 
mathematics. The language has been designed to be easy to learn and to use by people 
(for example, secretaries and mathematical typists) who know neither mathematics nor 
typesetting. Experience indicates that the language can be learned in an hour or so, for it 
has few rules and fewer exceptions. For typical expressions, the size and font changes, 
positioning, line drawing, and the like necessary to print according to mathematical con­
ventions are all done automatically. For example, the input 

sum from i=O to infinity x sub i = pi over 2 

produces 
00 

:Ez.-!!'" .-<1 2 

The syntax of the language is specified by a small context-free grammar; a 
compiler-compiler is used to make a compiler that translates this language into typesetting 
commands. Output may be produced on either a phototypesetter or on a terminal with 
forward and reverse half-line motions. The system interfaces directly with text formatting 
programs, so mixtures of text and mathematics may be handled simply. 

This paper is a revision of a paper originally published in CACM, March, 1975. 

1. Introduction 

"Mathematics is known in the trade as 
difficult, or penalty, copy because it is slower, more 
difficult, and more expensive to set in type than 
any other kind of copy normally occurring in 
books and journals." [I] 

One difficulty with mathematical text is the 
multiplicity of characters, sizes, and fonts. An 
expression such as 

lim (tan z'F 2s - 1 
s_/2 

requires an intimate mixture of roman, italic and 
greek letters, in three sizes, and a special character 
or two. ("Requires" is perhaps the wrong word, 
but mathematics has its own typographical con­
ventions which are quite different from those of 
ordinary text.) Typesetting such an expression by 
traditional methods is still an essentially manual 
operation. 

A second difficulty is the two dimensional 
character of mathematics, which the superscript 
and limits in the preceding example showed in its 

simplest form. This is carried further by 

61 
40+-----:;.:----

62 
41+ ba 

and still further by 

42+--"-;--
48+· .. 

These examples also show line-drawing, built-up 
characters like braces and radicals, and a. spectrum 
of positioning problems. (Section 6 shows what a 
user has to type to produce these on our system.) 



2. Photocompo8ition 

Photocomposition techniques can be used to 
solve some of the problems of typesetting 
mathematics. A phototypesetter is a device which 
exposes a piece of photographic paper or film, plac­
ing characters wherever they are wanted. The 
Graphic Systems phototypesetter[2! on the UNIX 
operating system!3! works by shining light through 
a character stencil. The character is made the 
right size by lenses, and the light beam directed by 
fiber optics to the desired place on a piece of pho­
tographic paper. The exposed paper is developed 
and typically used in some form of photo-offset 
reproduction. 

On UNIX, the phototypesetter is driven by a 
formatting program called TROFF !4J. TROFF was 
designed for setting running text. It also provides 
all of the facilities that one needs for doing 
mathematics, such as arbitrary horizontal and 
vertical motions, line-drawing, size changing, but 
the syntax for describing these special operations is 
difficult to learn, and difficult even for experienced 
users to type correctly. 

For this reason we decided to use TROFF as 
, an "assembly language," by designing a language 

for describing mathematical expressions, and com­
piling it into TROFF. 

3. Language Design 

The fundamental principle upon which we 
based our language design is that the language 
should be easy to use by people (for example, 
secretaries) who know neither mathematics nor 
typesetting. 

This principle implies several things. First, 
"normal" mathematical conventions about opera­
tor precedence, parentheses, and the like cannot be 
used, for to give special meaning to such charac­
ters means that the user has to understand what 
he or she is typing. Thus the language should not 
assume, for instance, that parentheses are always 
balanced, for they are not in the half-open interval 
(II, b J. Nor should it assume that that v"Q:j:'b can 
be replaced by (lI+b)lII, or that 1/(1-%) is better 

written as _1_ (or vice versa). 
1-% 

Second, there should be relatively few rules, 
keywords, special symbols and operators, and the 
like. This keeps the language easy to learn and 
remember. Furthermore, there should be few 
exceptions to the rules that do exist: if something 
works in one situation, it should work everywhere. 
If a variable can have a subscript, then a subscript 
can have a subscript, and so on without limit. 

Third, "standard" things should happen 
automatically. Someone who types "x-y+z+l" 
should get "%-y+z+l". Subscripts and super-

-2-

scripts should automatically be printed in an 
appropriately smaller size, with no special inter­
vention. Fraction bars have to be made the right 
length and positioned at the right height. And so 
on. Indeed a mechanism for overriding default 
actions has to exist, but its application is the 
exception, not the rule. 

We assume that the typist has a reasonable 
picture (a two-dimensional representation) of the 
desired final form, as might be handwritten by the 
author of a paper. We also assume that 'the input 
is typed on a computer terminal much like an 
ordinary typewriter. This implies an input alpha­
bet of perhaps 100 characters, none of them spe­
cial. 

A secondary, but still important, goal in our 
design was that the system should be easy to 
implement, since neither of the authors had any 
desire to make a long-term project of it. Since our 
design was not firm, it was also necessary that the 
program be easy to change at any time. 

To make the program easy to build and to 
change, and to guarantee regularity ("it should 
work everywhere"), the language is defined by a 
context-free grammar, described in Section 5. The 
compiler for the language was built using a 
compiler-compiler. 

A priori, the grammar/compiler-compiler 
approach seemed the right thing to do. Our subse­
quent experience leads us to believe that any other 
course would have been folly. The original 
language was designed in a few days. Construction 
of a working system sufficient to try significant 
examples required perhaps a person-month. Since 
then, we have spent a modest amount of addi­
tional time over several years tuning, adding facili­
ties, and occasionally changing the language as 
users make criticisms and suggestions. 

We also decided quite early that we would 
let TROFF do our work for us whenever possible. 
TROFF is quite a powerful program, with a macro 
facility, text and arithmetic variables, numerical 
computation and testing, and conditional branch­
ing. Thus we have been able to avoid writing a 
lot of mundane but tricky software. For example, 
we store no text strings, but simply pass them on 
to TROFF. Thus we avoid having to write a 
storage management package. Furthermore, we 
have been able to isolate ourselves from most 
details of the particular device and character set 
currently in use. For example, we let TROFF com­
pute the widths of all strings of characters; we 
need know nothing about them. 

A third design goal is special to our environ­
ment. Since our program is only useful for 
typesetting mathematics, it is necessary that it 
interface cleanly with the underlying typesetting 

/ 
( 

o 



language for the benefit of users who want to set 
intermingled mathematics and text (the usual 
case). The standard mode of operation is that 
when a document is typed, mathematical expres­
sions are input as part of the text, but marked by 
user settable delimiters. The program reads this 
input and treats as comments those things which 
are not mathematics, simply passing them through 
untouched. At the same time it converts the 
mathematical input into the necessary TROFF 
commands. The resulting ioutput is passed 
directly to TROFF where the comments and the 
mathematical parts both become text and/or 
TROFF commands. 

(. The Language 

We will not try to describe the language 
precisely here; interested readers may refer to the 
appendix for more details. Throughout this sec­
tion, we will write expressions exactly as they are 
handed to the typesetting program (hereinafter 
called "EQN"), except that we won't show the del­
imiters that the user types to mark the beginning 
and end of the expression. The interface between 
EQN and TROFF is described at the end of this 
section. 

As we said, typing x=y+z+l should pro­
duce x-y+z+l, and indeed it does. Variables are 
made italic, operators and digits become roman, 
and normal spacings between letters and operators 
are altered slightly to give a more pleas!ng appear­
ance. 

Input is free-form. Spaces and new lines in 
the input are used by EQN to separate pieces of 
the input; they are not used to create space in the 
output. Thus 

x Y 
+z+l 

also gives x-=y+z+l. Free-form input is easier to 
type initially; subsequent editing is also easier, for 
an expression may be typed as many short lines. 

Extra white space can be forced into the 
output by several characters of various sizes. A 
tilde " - " gives a space equal to the normal word 
spacing in text; a circumflex gives half this much, 
and a tab charcter spaces to the next tab stop. 

Spaces (or tildes, etc.) also serve to delimit 
pieces of the input. For example, to get 

I (t )-2'" J sine wt )dt 

we write 

I(t) = 2 pi int sin ( omega t )dt 

Here spaces are necessary in the input to indicate 
that sin, pi, int, and omega are special, and poten­
tially worth special treatment. EQN looks up each 

- 3-

such string of characters in a table, and if 
appropriate gives it a translation. In this case, pi 
and omega become their greek equivalents, int 
becomes the integral sign (which must be moved 
down and enlarged so it looks "right"), and sin is 
made roman, following conventional mathematical 
practice. Parentheses, digits and operators are 
automatically made roman wherever found. 

Fractions are specified with the keyword 
over: 

a+b over c+d+e = 1 

produces 

a+b 
-c"";+-d:'-+-e-- 1 

Similarly, subscripts and superscripts are 
introduced by the keywords sub and sup: 

x'+y'-z' 

is produced by 

x sup 2 + y sup 2 = z sup 2 

The spaces after the 2's are necessary to mark the 
end of the superscripts; similarly the keyword sup 
has to be marked off by spaces or some equivalent 
delimiter. The return to the proper baseline is 
automatic. Multiple levels of SUbscripts or super­
scripts are of course allowed: "x sup y sup z" is 
x". The construct "something sub something sup 
something" is recognized as a special case, so "x 
sub i sup 2" is z.' instead of x, '. 

More complicated expressions can now be 
formed with these primitives: 

is produced by 

a'l x' y' 
--~­az2 a2 62 

{partial sup 2 f} over {partial x sup 2} = 
x sup 2 over a sup 2 + Y sup 2 over b sup 2 

Braces {} are used to group objects together; in 
this case they indicate unambiguously what goes 
over what on the left-hand side of the expression. 
The language defines the precedence of sup to be 
higher than that of over, so no braces are needed 
to get the correct association on the right side. 
Braces can always be used when in doubt about 
precedence. 

The braces convention is an example of the 
power of using a recursive grammar to define the 
language. It is part of the language that if a con­
struct can appear in some context, then any 
expression in braces can also occur in that context. 

There is a sqrt operator for making square 
roots of the appropriate size: "sqrt a+b" produces 
v'ii+"b. and 



x- {-b +- sqrt{b sup 2 -4ac}} over 2a 

is 

-6:.t:V 62-4ac 
z-.....;~~-.;.;..;... 

24 

Since large radicals look poor on our typesetter, 
.grt is not useful for tall expressions. 

Limits on summations, integrals and similar 
constructions are specified with the keywords Irom 
and to. To get 

we need only type 

sum from i-O to inf x sub i - > 0 

Centering and making the E big enough and the 
limits smaller are all automatic. The Irom and to 
parts are both optional, and the central part (e.g., 
the E) can in fa.ct be anything: 

lim from {x - > pi /2} ( tan -x) = inf 

is 

lim (tan Z )-00 
.-1</2 

Again, the braces indicate just what goes into the 
Irom part. 

There is a facility for making bra.ces, brack­
ets, parentheses, and vertical bars of the right 
height, using the keywords left and right: 

left [ x+y over 280 right r =-1 

makes 

[x~Y ]_ 1 

A left need not have a corresponding right, as we 
shall see in the next example. Any characters may 
follow left and right, but generally only various 
parentheses and bars are meaningful. 

Big brackets, etc., are often used with 
another facility, called pile8,which make vertical 
piles of objects. For example, to get 

.ign(z) liE .{ ~ 
-1 

we can type 

sign (x) ---- left { 

if z>O 
if z-o 
if z<O 

rpile {I above 0 above -I} 
- -Ipile {if above if above if} 
--Ipile {x>O above x-O above x<O} 

The construction "left {" makes a left brace big 
enough to enclose the "rpile { ... }", which is a 

- 4-

right-justified pile of "above ... above ... ". "lpile" 
makes a left-justified pile. There are also centered 
piles. Because of the recursive language definition, 
a pile can contain any number of elements; any 
element of a pile can of course contain piles. 

Although EQN makes a valiant attempt to 
use the right sizes and fonts, there are times when 
the default assumptions are simply not what is 
we.nted. For instance the italic mgn in the previ­
ous example would conventionally be in roman. 
Slides and transparencies often require larger char­
acters than normal text. Thus we also provide size 
and font changing commands: "size 12 bold 
{A -x-= -y}" will produce A X = y. Size is fol­
lowed by a number representing a character size in 
points. (One point is 1/72 inch; this paper is set 
in 9 point type.) 

If necessary, an input string can be quoted 
in " ... ", which turns off grammatical significance, 
and any font or spacing changes that might other­
wise be done on it. Thus we can say 

lim - roman "sup" -x sub n = 0 

to ensure that the supremum doesn't become a 
superscript: 

lim sup z.-O 

Diacritical marks, long a problem in tradi­
tional typesetting, are straightforward: 

i+x+v+k + Y-z+Z 
is made by typing 

x dot under + x hat + y tilde 
+ X hat + Y dotdot = z+Z bar 

There are also facilities for globally changing 
default sizes and fonts, for example for making 
viewgraphs or for setting chemical equations. The 
language allows for matrices, and for lining up 
equations at the same horizontal position. 

Finally, there is a definition facility, so a 
user can say 

define name " ... " 

at any time in the document; henceforth, any 
occurrence of the token "name" in an expression 
will be expanded into whatever was inside the dou­
ble quotes in its definition. This lets users tailor 
the language to their own specifications, for it is 
quite possible to redefine keywords like 8Up or 
over. Section 6 shows an example of definitions. 

The EQN preprocessor reads intermixed text 
and equations, and passes its output to TROFF. 
Since TROFF uses lines beginning with a period as 
control words (e.g., ".ce" means "center the next 
output line"), EQN uses the sequence ".EQ" to 
mark the beginning of an equation and ".EN" to o 



c~ 

mark the end. The II .EQ" and II .EN" are passed 
through to TROFF untouched, so they can also be 
used by a knowledgeable user to center equations, 
number them automatically, etc. By default, how­
ever, II .EQ" and II .EN" are simply ignored by 
TROFF, so by default equations are printed in-line. 

II .EQ" and II .EN" can be supplemented by 
TROFF commands as desired; for example, a cen­
tered display equation can be produced with the 
input: 

.ce 

.EQ 
x sub i = y sub i ... 
.EN 

Since it is tedious to type II .EQ" and II .EN" 
around very short expressions (single letters, for 
instance), the user can also define two characters 
to serve as the left and right delimiters of expres­
sions. These characters are recognized anywhere in 
subsequent text. For example if the left and right 
delimiters have both been set to ",*", the input: 

Let ,*X sub i,*, *y* and *alpha# be positive 

produces: 

Let x" 11 and Q be positive 

Running a preprocessor is strikingly easy on 
UNIX. To typeset text stored in file '" ", one issues 
the command: 

eqn' I trofI 

The vertical bar connects the output of one pro­
cess (EQN) to the input of another (TROFF). 

5. Language Theory 

The basic structure of the language is not a 
particularly original one. Equations are pictured 
as a set of "boxes," pieced together in various 
ways. For example, something with a subscript is 
just a box followed by another box moved down­
ward and shrunk by an appropriate amount. A 
fraction is just a box centered above another box, 
at the right altitude, with a line of correct length 
drawn between them. 

The grammar for the language is shown 
below. For purposes of exposition, we have col­
lapsed some productions. In the original grammar, 
there are about 70 productions, but many of these 
are simple ones used only to guarantee that some 
keyword is recognized early enough in the parsing 
process. Symbols in capital letters are terminal 
symbols; lower case symbols are non-terminals, 
i.e., syntactic categories. The vertical bar I indi­
cates an alternative; the brackets I 1 indicate 
optional material. A TEXT is a string of non­
blank characters or any string inside double 

-5-

quotes; the other terminal symbols represent literal 
occurrences of the corresponding keyword. 

eqn : box 'eqn box 

box : text 
I{ eqn } 
, box OVER box 
,SQRT box 
I box SUB box 'box SUP box 
, [ L I C I R lPILE { list} 
'LEFT text eqn [ RIGHT text 1 
I box I FROM box 1 [TO box 1 
'SIZE text box 
'[ROMAN 'BOlD I ITALIC] box 
I box IHAT IBAR IDOT I DOTDOT I TILDE] 
I DEFINE text text 

list : eqn I list ABOVE eqn 

text: TEXT 

The grammar makes it obvious why there 
are few exceptions. For example, the observation 
that something can be replaced by a more compli­
cated something in braces is implicit in the pro­
ductions: 

eqn : box I eqn box 
box : text I { eqn } 

Anywhere a single character could be used, any 
legal construction can be used. 

Clearly, our grammar is highly ambiguous. 
What, for instance, do we do with the input 

a over b over c ., 

Is it 

{a over b} over c 

or is it 

a over {b over c} ., 

To answer questions like this, the grammar 
is supplemented with a small set of rules that 
describe the precedence and associativity of opera­
tors. In particular, we specify (more or less arbi­
trarily) that oller associates to the left, so the first 
alternative above is the one chosen. On the other 
hand, ItLb and sup bind to the right, because this is 
closer to standard mathematical practice. That is, 
we assume x" is x(">, not (x·)6. 

The precedence rules resolve the ambiguity 
in a construction like 

a sup 2 over b 

We define sup to have a higher precedence than 
2 

over, so this construction is parsed as T instead 
2 

of a·. 



Naturally, a user can always force a particu­
lar parsing by placing braces around expressions. 

The ambiguous grammar approach seems to 
be quite useful. The grammar we use is small 
enough to be easily understood, for it contains 
Done of the productions that would be normally 
used for resolving ambiguity. Instead the supple­
mental information about precedence and associa­
tivity (also small enough to be understood) pro­
vides the compiler-compiler with the information it 
needs to make a fast, deterministic parser for the 
specific language we want. When the language is 
supplemented by the disambiguating rules, it is in 
fact LR(l) and thus easy to parsel5j. 

The output code is generated as the input is 
scanned. Any time a production of the grammar 
is recognized, (potentially) some TROFF commands 
are output. For example, when the lexical 
analyzer reports that it has found a TEXT (i.e., a 
string of contiguous characters), we have recog­
nized the production: 

text : TEXT 

The translation of this is simple. We generate a 
local name for the string, then hand the name and 
the string to TROFF, and let TROFF perform the 
storage man3€;ement. All we save is the name of 
the string, its height, and its baseline. 

.As another example, the translation associ­
ated with the production 

is: 

box : box OVER box 

Width of output box = 
slightly more than largest input width 

Height of output box = 
slightly more than sum of input heights 

Base of output box = 
slightly more than height of bottom input box 

String describing output box = 
move down; 
move right enough to center bottom box; 

- 6-

draw bottom box (i.e., copy string for bottom box); 
move up; move left enough to center top box; 
draw top box (i.e., copy string for top box); 
move down and left; draw line full width; 
return to proper base line. 

Most of the other productions have equally simple 
semantic actions. Picturing the output as a set of 
properly placed boxes makes the right sequence of 
positioning commands quite obvious. The main 
difficulty is in finding the right numbers to use for 
esthetically pleasing positioning. 

With a grammar, it is usually clear how to 
extend the language. For instance, one of our 
users suggested a TENSOR operator, to make con­
structions like 

, k i 
fliT. ., 

Grammatically, this is easy: it is sufficient to add a 
production like 

box : TENSOR { list} 

Semantically, we Deed only juggle the boxes to the 
right places. 

8. Experience 

There are really three aspects of 
interest-how well EQN sets mathematics, how 
well it satisfies its goal of beingUeasy to use," and 
how easy it was to build. 

The first question is easily addressed. This 
entire paper has been set by the program. Readers 
can judge for themselves whether it is good enough 
for their purposes. One of our users commented 
that although the output is not as good as the best 
hand-set material, it is still better than aver3€;e, 
and much better than the worst. In any case, who 
cares? Printed books cannot compete with the 
birds and flowers of illuminated manuscripts on 
esthetic grounds, either, but they have some clear 
economic advantages. 

Some of the deficiencies in the output could 
be cleaned up with more work on our part. For 
example, we sometimes leave too much space 
between a roman letter and an italic one. If we 
were willing to keep track of the fonts involved, 
we could do this better more of the time. 

Some other weaknesses are inherent in our 
output device. It is hard, for instance, to draw a 
line of an arbitrary length without getting a per­
ceptible overstrike at one end. 

.As to ease of use, at the time of writing, the 
system has been used by two distinct groups. One 
user popUlation consists of mathematicians, chem­
ists, physicists, and computer scientists. Their 
typical reaction has been something like: 

(1) It's easy to write, although I make the fol­
lowing mistakes ... 

(2) How do I do ... ? 

(3) It botches the following things .... Why don't 
you fix them? 

(4) You really need the following features ... 

The learning time is short. A few minutes 
gives the general flavor, and typing a page or two 
of a paper generally uncovers most of the miscon­
ceptions about how it works. 

The second user group is much larger, the 
secretaries and mathematical typists who were the 
original target of the system. They tend to be 
enthusiastic converts. They find the language easy 
to learn (most are largely self-taught), and have 

\~ 

c 



( 

little trouble producing the output they want. 
They are of course less critical of the esthetics of 
their output than users trained in mathematics. 
After a transition period, most tind using a com­
puter more interesting than a regular typewriter. 

The main difficulty that users have seems to 
be remembering that a blank is a delimiter; even 
experienced users use blanks where they shouldn't 
and omit them when they are needed. A common 
instance is typing 

f(x sub i) 

which produces 

instead of 

Since the EQN language knows no mathematics, it 
cannot deduce that the right parenthesis is not 
part of the subscript. 

The language is somewhat prolix, but this 
doesn't seem excessive considering how much is 
being done, and it is certainly more compact than 
the corresponding TROFF commands. For exam­
ple, here is the source for the continued fraction 
expression in Section 1 of this paper: 

a sub 0 + b sub lover 
{a sub 1 + b sub 2 over 

{a sub 2 + b sub 3 over 
{a sub 3 + ... }}} 

This is the input for the large integral of Section 1; 
notice the use of definitions: 

define emx "{e sup mx}" 
define mab "{m sqrt ab}" 
define sa "{sqrt a}" 
define sb "{sqrt b}" 
int dx over {a emx - be sup -mx} -=­
left { lpile { 

lover {2 mab} -log-
{sa emx - sb} over {sa emx + sb} 

above 
lover mab - tanh sup -1 ( sa over sb emx ) 

above 

-7-

-lover mab - coth sup -1 ( sa over sb emx ) 
} 

.As to ease of construction, we have already 
mentioned that there are really only a few person­
months invested. Much of this time has gone into 
two things-tine-tuning (what is the most estheti­
cally pleasing space to use between the numerator 
and denominator of a fraction?), and changing 
things found deficient by our users (shouldn't a 
tilde be a delimiter?). 

The program consists of a number of small, 
essentially unconnected modules for code genera-

tion, a simple lexical analyzer, a canned parser 
which we did not have to write, and some miscel­
lany associated with input files and the macro 
facility. The program is now about 1600 lines of C 
16]. a high-level language reminiscent of BCPL. 
About 20 percent of these lines are "print" state­
ments, generating the output code. 

The semantic routines that generate the 
actual TROFF commands can be changed to 
acCommodate other formatting languages and dev­
ices. For example, in less than 24 hours, one of us 
changed the entire semantic package to drive 
NROFF, a variant of TROFF, for typesetting 
mathematics on teletypewriter devices capable of 
reverse line motions. Since many potential users 
do not have access to a typesetter, but still have 
to type mathematics, this provides a way to get a 
typed version of the final output which is close 
enough for debugging purposes, and sometimes 
even for ultimate use. 

7. Conclusions 

We think we have shown that it is possible 
to do acceptably good typesetting of mathematics 
on a phototypesetter, with an input language that 
is easy to learn and use and that satisfies many 
users' demands. Such a package can be imple­
mented in short order, given a compiler-compiler 
and a decent typesetting program underneath. 

Defining a language, and building a compiler 
for it with a compiler-compiler seems like the only 
sensible way to do business. Our experience with 
the use of a grammar and a compiler-compiler has 
been uniformly favorable. If we had written 
everything into code directly, we would have been 
locked into our original design. Furthermore, we 
would have never been sure where the exceptions 
and special cases were. But because we have a 
grammar, we can change our minds readily and 
still be reasonably sure that if a construction 
works in one place it will work eveyY1o\'here. 

Acknowledgements 

We are deeply indebted to J. F. Ossanna, 
the author of TROFF, for his Willingness to modify 
TROFF to make our task easier and for his con­
tinuous assistance during the development of our 
program. We are also grateful to A V. Aho for 
help with language theory, to S. C. Johnson for 
aid with the compiler-compiler, and to our early 
users A V. Aho, S. I. Feldman, S. C. Johnson, R. 
W. Hamming, and M. D. McIlroy for their con­
structive criticisms. 

References 

[1] A Manual of Style, 12th Edition. University 
of Chicago Press, 1969. p 295. 



[2] Model C/A/T Phototypesetter. Graphic Sys­
tems, Inc., Hudson, N. H. 

[3] Ritchie, D. M., and Thompson, K. L., "The 
UNIX time-sharing system." Comm. ACM 
17, 7 (July 1974), 365-375. 

[4] Ossanna, J. F., TROFF User's Manual. Bell 
Laboratories Computing Science Technical 
Report 54, 1977. 

15] Abo, A. V., and Johnson, S. C., "LR Pars­
ing." Compo Surt). 6, 2 (June 1974), 99-124. 

16] B. W. Kernighan and D. M. Ritchie, The C 
Programming Language. Prentice-Hall, Inc., 
1978. 

-8-

o 

//--\ 
: I 

~._/ 

c 



( 

Typesetting Mathematics - User's Guide 
(Second Edition) 

Brian W. Kernighan and Lon'nda L. Oherry 

ABSTRAOT 

This is the user's guide Cor a system Cor typesetting mathematics, using the phototypesetters 
on the UNIXt and GOOS operating systems. 

Mathematical expressions are described in a language designed to be easy to use by people 
who know neither mathematics nor typesetting. Enough oC the language to set in-line expressions 
like lim (tan x )Iin 26 = 1 or display equations like 

11-"/2 

( ) [ Sit zlr] S zk /Ir G (z) = e ID G z = exp E -- = IT e k 
Ir~l k Ir~l 

= [1+S1Z+ S~;2 + ... ][1+ S~z2 + !!.;~ + ... ] ... 

can be learned in an hour or so. 

The language interCaces directly with the phototypesetting language TROFF, so mathematical 
expressions can be embedded in the running text oC a manuscript, and the entire document pro­
duced in one process. This user's guide is an example oC its output. 

The same language may be used with the UNIX formatter NROFF to set mathematical expres­
sions on DASI and GSI terminals and Model 37 teletypes. 

September 15, 1986 

t UNlX is a trademark or Bell Laboratories. 





c 

Typesetting Mathematics - User's Guide 
(Second Edition) 

BriaR W. Kemighan and Lorinda L. Cherry 

1. Introduction 

EQN is a program Cor typesetting 
mathematics on the Graphics Systems photo­
typesetters on UNIX and GCOS. The EQN 
language was designed to be easy to use by 
people who know neither mathematics nor 
typesetting. Thus EQN knows relatively little 
about mathematics. In particular, mathemat­
ical symbols like +, -, X, parentheses, and so 
on have no special meanings. EQN is quite 
happy to set garbage {but it will look good}. 

EQN works as a preprocessor Cor the 
typesetter formatter, TROFF[1], so the normal 
mode oC operation is to prepare a document 
with both mathematics and ordinary text 
interspersed, and let EQN set the mathematics 
while TROFF does the body oC the text. 

On UNIX, EQN will also produce 
mathematics on DASI and OSI terminals and 
on Model 37 teletypes. The input is identical, 
but you have to use the programs NEQN and 
NROFF instead of EQN and TROFF. Of course, 
some things won't look as good because ter­
minals don't provide the variety of characters, 
sizes and fonts that a typesetter does, but the 
output is usually adequate for proofreading. 

To use EQN on UNIX, 

eqn files I troff 

GCOS use is discussed in section 26. 

2. Displayed Equations 

To tell EQN where a mathematical 
expression begins and ends, we mark it with 
lines beginning EQ and .EN. Thus if you type 
the lines 

.EQ 
x=y+z 
.EN 

your output will look like 

The .EQ and .EN are copied through 
untouched; they are not otherwise processed 
by EQN. This means that you have to take 
care of things like centering, numbering, and 
so on yourself. The most common way is to 
use the TROFF and NROFF macro package 
package '-ms' developed by M. E. Lesk[3], 
which allows you to center, indent, left-justify 
and number equations. 

With the '-ms' package, equations are 
centered by deCault. To left-justify an equa­
tion, use .EQ L instead of .EQ. To indent it, 
use .EQ I. Any of these can be followed by an 
arbitrary 'equation number' which will be 
placed at the right margin. For example, the 
input 

.EQ I {3.1a} 
x = f(y/2} + y/2 
.EN 

produces the output 

:t = f {y /2)+y /2 {3.1a} 

There is also a shorthand notation so 
in-line expressions like 1rt~ can be entered 
without .EQ and .EN. We will talk about it in 
section 19. 

3. Input spaces 

Spaces and newlines within an expres­
sion are thrown away by EQN. (Normal text 
is left absolutely alone.) Thus between .EQ 

and .EN, 

and 

and 

x=y+z 

x=y + z 

x = y 
+z 

and so on all produce the same output 



s-==,+z 

You should use spaces and newlines freely to 
make your input equations readable and easy 
to edit. In particular, very long lines are a 
bad idea, since they are often hard to fix if 
you make a mistake. 

4. Output spaces 

To force extra spaces into the output, 
use a tilde" - " for each space you want: 

x-=-y-+-z 

gives 

z==,+z 

You can also use a circumflex "A", which 
gives a space half the width of a tilde. It is 
mainly useful for fine-tuning. Tabs may also 
be used to position pieces of an expression, 
but the tab stops must be set by TROFF com­
mands. 

. 5. Symbols, Special Names, Greek 

EQN knows some mathematical symbols, 
some mathematical names, and the Greek 
alphabet. For example, 

x=2 pi int sin ( omega t)dt 

produces 

z==211' fsin(wt)dt 

Here the spaces in the input are necessary to 
tell EQN that int, pi, ain and omega are 
separate entities that should get special treat­
ment. The ain, digit 2, and parentheses are 
set in roman type instead of italic; pi and 
omega are made Greek; and int becomes the 
integral sign. 

When in doubt, leave spaces around 
separate parts oC the input. A tlery common 
error is to type /(pi) without leaving spaces on 
both sides oC the pi. As a result, EQN does 
not recognize pi as a special word, and it 
appears as / (pi) instead of / (11'). 

A complete list of EQN names appears in 
section 23. Knowledgeable users can also use 
TROFF Cour-character names Cor anything EQN 

doesn't know about, like \{ba for the Bell Sys­
tem sign 0. 

-2-

8. Spaces, Again 

The only way EQN can deduce that 
some sequence of letters might be special is if 
that sequence is separated from the letters on 
either side of it. This can be done by sur­
rounding a special word by ordinary spaces 
(or tabs or newlines), as we did in the previ­
ou~ section. 

You can also make special words stand 
out by surrounding them with tildes or 
circumflexes: 

x-= -2-pi-inC sin - r omega - t -r dt 

is much the same as the last example, except 
that the tildes not only separate the magic 
words like ain, omega, and so on, but also 
add extra spaces, one space per tilde: 

z == 2 11' I sin ( w t ) dt 

Special words can also be separated by 
braces { } and double quotes ....... , which have 
special meanings that we will see soon . 

7. Subscripts and Superscripts 

Subscripts and superscripts are obtained 
with the words sub and sup. 

x sup 2 + Y sub k 

gives 

Z2+,. 

EQN takes care of all the size changes and 
vertical motions needed to make the output 
look right. The words ad and sup must be 
surrounded by spaces; z aub2 will give you 
zsub 2 instead of Z2' Furthermore, don't for­
get to leave a space (or a tilde, etc.) to mark 
the end of a subscript or superscript. A com­
mon error is to say something like 

y = (x sup 2)+1 

which causes 

1I==(Z2)+1 

instead of the intended 

1I==(z2)+1 

Subscripted subscripts and superscripted 
superscripts also work: 

x sub i sub 1 

is o 



( 

( 

(~\ 

%; 
1 

A subscript and superscript on the same thing 
are printed one above the other if the sub­
script comes fir8t: 

x sub i sup 2 

is 

Other than this special case, "ub and "tiP 
group to the right, so z "tiP 11 "ub z means Z'I, 
notz'z· 

8. Braces tor Grouping 

Normally, the end of a subscript or 
superscript is marked simply by a blank (or 
tab or tilde, etc.) What if the subscript or 
superscript is something that has to be typed 
with blanks in it? In that case, you can use 
the braces { and } to mark the beginning and 
end of the subscript or superscript: 

e sup {i omega t} 

is 

Rule: Braces can alway" be used to force EQN 
to treat something as a unit, or just to make 
your intent perfectly clear. Thus: 

15 

x sub {i sub I} sup 2 

Zj2 
1 

with braces, but 

x sub i sub 1 sup 2 

is 

which is rather different. 

Braces can occur within braces if neces­
sary: 

e sup {i pi sup {rho +1}} 

15 

The general rule is that anywhere you could 
use some single thing like x, you can use an 
arbitrarily complicated thing if you enclose it 

-3-

in braces. EQN will look after all the details 
of positioning it and making it the right size. 

In all cases, make sure you have the 
right number of braces. Leaving one out or 
adding an extra will cause EQN to complain 
bitterly. 

Occasionally you will have to print 
braces. To do this, enclose them in double 
quotes, like "{to. Quoting is discussed in more 
detail in section 14. 

9. Fractions 

To make a fraction, use the word over: 

a+b over 2c =1 

gives 

a+b =1 
2c 

The line is made the right length and posi­
tioned automatically. Braces can be used to 
make clear what goes over what: 

{alpha + beta} over {sin (x)} 

is 

Ot+fJ 
sin(z) 

What happens when there is both an over and 
a "tiP in the same expression? In such an 
apparently ambiguous case, EQN does the "'Up 
before the over, so 

-b sup 2 over pi 

_b2 2 
is -- instead of -b ft' The rules which 

1r 

decide which operation is done first in cases 
like this are summarized in section 23. When 
in doubt, however, use braces to make clear 
what goes with what. 

10. Square Roots 

To draw a square root, use sqrt: 

sqrt a+b + lover sqrt {ax sup 2 +bx+c} 

is 

v'4-i=b+ 1 
Vax2+hz+c 

Waming - square roots of tall quantities 
look lousy, because a root-sign big enough to 
cover the quantity is too dark and heavy: 



-4-

sqrt {a sup 2 over b sub 2} 

is 

Big square roots are generally better written 
as something to the power '4: 

(42/6 2)'" 

which is 

(a sup 2 /b sub 2 ) sup half 

11. Summation, Integral, Etc. 

Summations, integrals, and similar con­
structions are easy: 

sum from i=O to {i= inf} x sup i 

produces 

Notice that we used braces to indicate where 
the upper part i -00 begins and ends. No 
braces were necessary for the lower part i =0, 
because it contained no blanks. The braces 
will never hurt, and if the from and to parts 
contain any blanks, you must use braces 
around them. 

The from and to parts are both 
optional, but if both are used, they have to 
occur in that order. 

Other useful characters can replace the 
sum in our example: . 

int prod union inter 

become, respectively, 

J II u n 
Since the thing before the from can be any­
thing, even something in braces, from-to can 
often be used in unexpected ways: 

lim from {n - > inf} x sub n =0 

IS 

12. Size and Font Changes 
By deCault, equations are set in 100point 

type (the same size as this guide), with stan-

dard mathematical conventions to determine 
what characters are in roman and what in 
italic. Although EQN makes a valiant 
attempt to use esthetically pleasing sizes and 
Conts, it is not perfect. To change sizes and 
fonts, use size ft and rOm4ft, it4lic, 60ld and 
/4t. Like su6 and sup, size and font changes 
affect only the thing that follows them, and 
reVert to the normal situation at the end of it. 
Thus 

is 

and 

gives 

bold x y 

xy 

size 14 bold x = y + 
size 14 {alpha + beta} 

X-y +o:+f3 
As always, you can use braces if you want to 
affect something more complicated than a sin­
gle letter. For example, you can change the 
size of an entire equation by 

size 12 { ... } 

Legal sizes which may follow size are 6, 
7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 
36. You can also change the size 6y a given 
amount; for example, you can say size +f to 
make the size two points bigger, or size -9 to 
make it three points smaller. This has the 
advantage that you don't have to know what 
the current size is. 

If you are using fonts other than roman, 
italic and bold, you can say font X where X is 
a one character TROFF name or number for 
the font. Since EQN is tuned for roman, italic 
and bold, other fonts may not give quite as 
good an appearance. 

The fat operation takes the current font 
and widens it by overstriking: fat grad is V 
and fat {x sub ,} is Xi' 

If an entire document is to be in a non­
standard size or font, it is a severe nuisance to 
have to write out a size and font change for 
each equation. Accordingly, you can set a 
"global" size or font which thereafter affects 
all equations. At the beginning of any equa­
tion, you might say, for instance, 

o 



( 

( 

EQ 
gsize 16 
gfont R 

EN 

to set the size to 16 and the Cont to roman 
therealter. In place oC R, you can use any oC 
the TROFF font names. The size alter ,8ize 
can be a relative change with + or -. 

Generally, ,8ize and 'font will appear at 
the beginning oC a document but they can 
also appear thoughout a document: the global 
font and size can be changed as often as 
needed. For example, in a Cootnote* you will 
typically want the size oC equations to match 
the size oC the Cootnote text, which is two 
points smaller than the main text. Don't Cor­
get to reset the global size at the end of the 
Cootnote. 

13. Diacritical Marks 

To get funny marks on top oC letters, 
there are several words: 

x dot % 

x dotdot % 

x hat i 
x tilde i 
x vec Y 
x dyad y 
x bar X-
x under :r. 

The diacritical mark is placed at the right 
height. The bar and under are made the right 
length for the entire construct, as in x+y+z; 
other marks are centered. 

14. Quoted Text 

-5-

Any input entirely within quotes ( " ... ") 
is not subject to any of the Cont changes and 
spacing adjustments normally done by the 
equation setter. This provides a way to do 
your own spacing and adjusting if needed: 

italic "sin{x)" + sin (x) 

is 

~ike this one, in which we have a few random ex­
pressions like z, and ,,2. The sizes (or these were set 
by the comma.nd ,size -to 

Quotes are also used to get braces and 
other EQN keywords printed: 

"{ size alpha }" 

is 

{ 8ize alpha } 

and 

roman "{ size alpha }" 

is 

{ size alpha} 

The construction "" is often used as a 
place-holder when grammatically EQN needs 
something, but you don't actually want any­
thing in your output. For example, to make 
2Jie, you can't just type 8Up e roman He 
because a 8Up has to be a superscript on some­
thing. Thus you must say 

"to sup 2 roman He 

To get a literal quote use "\"". TROFF 
characters like Vb8 can appear unquoted, but 
more complicated things like horizontal and 
vertical motions with \h and \ tI should always 
be quoted. (If you've never heard oC \h and 
\ tI, ignore this section.) 

15. Lining Up Equations 

Sometimes it's necessary to line up a 
series of equations at some horizontal posi­
tion, often at an equals sign. This is done 
with two operations called mark and lineup. 

The word mark may appear once at any 
place in an equation. It remembers the hor­
izontal position where it appeared. Successive 
equations can contain one occurrence of the 
word lineup. The place where lineup appears 
is made to line up with the place marked by 
the previous mark if at all possible. Thus, Cor 
example, you can say 

.EQI 
x+y mark = z 
.EN 
.EQI 
x lineup = 1 
.EN 

to produce 

%+y=z 

%=1 



For reasons too complicated to talk about, 
when you use EQN and '-ms', use either EQ I 
or EQ L. mark and lineup don't work with 
centered equations. Also bear in mind that 
mark doesn't look ahead; 

x mark =1 

x+y lineup =z 

isn't going to work, because there isn't room 
Cor the z+lI part after the mark remembers 
where the z is. 

16. Big Brackets, Etc. 

To get big brackets [], braces {}, 
parentheses ( ), and bars II around things, use 
the left and right commands: 

is 

left { a over b + 1 right } 
-=- left ( cover d right) 
+ left [ e right] 

The resulting brackets are made big enough 
to cover whatever they enclose. Other charac­
ters can be used besides these, but the are not 
likely to look very good. One exception is the 
floor and ceiling characters: 

left floor x over y right floor 
<= left ceiling a over b right ceiling 

produces 

Several warnings about brackets are in 
order. First, braces are typically bigger than 
brackets and parentheses, because they are 
made up of three, five, seven, etc., pieces, 
while brackets can be made up of two, three, 
etc. Second, big leCt and right parentheses 
often look poor, because the character set is 
poorly designed. 

The right part may be omitted: a "left 
something" need not have a corresponding 
"right something". Ir the right part is omit­
ted, put braces around the thing you want 
the left bracket to encompass. Otherwise, the 
resulting brackets may be too large. 

If you want to omit the left part, things 
are more complicated, because technically you 

-6-

can't have a right without a corresponding 
left. Instead you have to say 

leCt not ••••• right ) 

Cor example. The left '"' means a "left noth­
ing". This satisfies the rules without hurting 
your output. 

1'1. Piles 
There is a general Cacility for making 

vertical piles oC things; it comes in several 
flavors. For example: 

A -=- left [ 
pile { a above b above c } 
- - pile { x above y above z } 

right 1 
will make 

The elements oC the pile (there can be as 
many as you want) are centered one above 
another, at the right height for most pur­
poses. The keyword above is used to separate 
the pieces; braces are used around the entire 
list. The elements of a pile can be as compli­
cated as needed, even containing more piles. 

Three other forms of pile exist: /pile 
makes a pile with the elements left-justified; 
rpiJe makes a right-justified pile; and cpile 
makes a centered pile, just like pile. The 
vertical spacing between the pieces is some­
what larger for 1-, r- and cpiJes than it is for 
ordinary piles. 

roman sign (xr =­
left { 

lpile {I above 0 above -I} 
-- Ipile 
{irx>O above if-x=O above ir-x<O} 

makes 

sign( z) == {~ 
-1 

if z>O 
if z==O 
if z<O 

Notice the left brace without a matching right 
one. 

18. Matrices 

It is also possible to make matrices. For 
example, to make a neat array like 



( 

you have to type 

matrix { 

} 

ccol { x sub i above y sub i } 
ccol { x sup 2 above y sup 2 } 

This produces a matrix with two centered 
columns. The elements of the columns are 
then listed just as for a pile, each element 
separated by the word above. You can also 
use lcol or rcol to left or right adjust columns. 
Each column can be separately adjusted, and 
there can be as many columns as you like. 

The reason for using a matrix instead of 
two adjacent piles, by the way, is that if the 
elements of the piles don't all have the same 
height, they won't line up properly. A matrix 
forces them to line up, because it looks at the 
entire structure before deciding what spacing 
to use. 

A word of warning about matrices -
each column must have the same number of 
elements in it. The world will end if you get 
this wrong. 

19. Shorthand for In-line Equations 

In a mathematical document, it is neces­
sary to follow mathematical conventions not 
just in display equations, but also in the body 
of the text, for example by making variable 
names like x italic. Although this could be 
done by surrounding the appropriate parts 
with .EQ and .EN, the continual repetition of 
.EQ and .EN is a nuisance. Furthermore, with 
'-ms', .EQ and .EN imply a displayed equa­
tion. 

EQN provides a shorthand for short in­
line expressions. You can define two charac­
ters to mark the left and right ends of an in­
line equation, and then type expressions right 
in the middle or text lines. To set both the 
left and right characters to dollar signs, for 
example, add to the beginning of your docu­
ment the three lines 

.EQ 
delim SS 
.EN 

Having done this, you can then say things 
like 

- 7 -

Let .alpha sub is be the primary 
variable, and let 'betaS be zero. 
Then we can show that Sx sub 1$ is 
$>=0$. 

This works as you might expect - spaces, 
newlines, and so on are significant in the text, 
but not in the equation part itself. Multiple 
equations can occur in a single input line. 

Enough room is lert before and arter a 
line that contains in-line expressions that 

• 
something like Ex; does not interfere with 

i-I 
the lines surrounding it. 

To turn off the delimiters, 

.EQ 
delim off 
.EN 

Warning: don't use braces, tildes, 
circumflexes, or double quotes as delimiters -
chaos will result. 

20. Definitions 

EQN provides a racility so you can give 
a frequently-used string of characters a name, 
and thereafter just type the name instead of 
the whole string. For example, if the 
sequence 

x sub i sub 1 + y sub i sub 1 

appears repeatedly throughout a paper, you 
can save re-typing it each time by defining it 
like this: 

define xy , x sub i sub 1 + y sub i sub l' 

This makes X1l a shorthand for whatever char­
acters occur between the single quotes in the 
definition. You can use any character instead 
of quote to mark the ends of the definition, so 
long as it doesn't appear inside the definition. 

Now you can use z1llike this: 

.EQ 
f{x) = xy ... 
.EN 

and so on. Each occurrence of :t1J will expand 
into what it was defined as. Be careful to 
leave spaces or their equivalent around the 
name when you actually use it, so EQN will be 
able to identify it as special. 

There are several things to watch out 
for. First, although definitions can use previ-



ous definitions, as in 

. EQ 
define xi I x sub i I 
define xiI I xi sub 1 I 
.EN 

don't define something in terms of itself' A 
favorite error is to say 

define X I roman X' 

This is a guaranteed disaster, since X is now 
defined in terms of itself. If you say 

define X I roman "X" I 

however, the quotes protect the second X, and 
everything works fine. 

EQN keywords can be redefined. You 
can make / mean over by saying 

define / ' over' 

or redefine over as / with 

define over ' /' 

If you need different things to print on a 
terminal and on the typesetter, it is some­
times worth defining a symbol differently in 
NEQN and EQN. This can be done with 
ndefine and tdefine. A definition made with 
ndefine only takes effect if you are running 
NEQN; if you use tdefine, the definition only 
applies for EQN. Names defined with plain 
define apply to both EQN and NEQN. 

21. Local Motions 

Although EQN tries to get most things 
at the right place on the paper, it isn't per­
fect, and occasionally you will need to tune 
the output to make it just right. Small extra 
horizontal spaces can be obtained with tilde 
and circumflex. You can also say back n and 
fwd n to move small amounts horizontally. n 
is how far to move in 1/100's of an em (an 
em is about the width of the letter 'm'.) Thus 
back 50 moves back about half the width of 
an m. Similarly you can move things up or 
down with up n and down n. As with sub or 
sup, the local motions affect the next thing in 
the input, and this can be something arbi­
trarily compl.icated if it is enclosed in braces. 

22. A Large Example 

Here is the complete source for the three 
display equations in the abstract of this 

-8-

guide . 

EQI 
G(zrmark =- e sup {In - G(z) } 
-==- exp left ( 
sum from k>=l {S sub k z sup k} over k right) -=- prod from k>=l e sup {S sub k z sup k Ik} 
EN 
EQI 
lineup = left ( 1 + S sub 1 z + 
{S sub 1 sup 2 z sup 2 } over 2! + ... right) 
left ( 1+ { S sub 2 z sup 2 } over 2 
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 edot 2! } 
+ ... right) ... 
EN 
EQI 
lineup""" sum from m>-O left ( 
sum (rom 
pile {k sub 1 .k sub 2, .... k sub m >=0 
above 
k sub 1 +2k sub 2 + '" +mk sub m =m} 
{S sub 1 sup {k sub I} lover {I sup k sub 1 k sub I!}' 
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2! } . 

{S sub m sup {k sub m} } over {m sup k sub m k sub IT! ~ 1 
right) z sup m 
.EN 

23. Keywords, Precedences, Etc. 

If you don't use braces, EQN will do 
operations in the order shown in this list. 

dyad vee under bar tilde hat dot dotdot 
fwd back down up 
fat roman italic bold size 
8t1 b 8t1p sqrt over 
from to 

These operations group to the left: 

over sqrt left n'ght 

All others group to the right. 

Digits, parentheses, brackets, punctua­
tion marks, and these mathematical words are 
converted to Roman font when encountered: 

sin cos tan sinh cosh tanh arc 
max min lim log In exp 
Re 1m and if for det 

These character sequences are recognized and 
translated as shown. 

>= ~ 
<= ~ 
== == 
1= F-
+- ::!:: 
-> -



-9-

<- -
(~ « « 

» » 
inf 00 

partial {) 

half ~ 

prime 
approx ~ 

nothing 
cdot 
times X 
del V 
grad V 

, ... , , ... , 
sum E 
int f 
prod IT 
union U 
inter n 

To obtain Greek letters, simply spell 
them out in whatever case you want: 

DELTA tl iota L 

GA.,\1MA r kappa K, 

( L.A11BDA A lambda ). 

OMEGA n mu J.l 
PHI 4> nu v 
PI n omega w 
PSI 111 omicron 0 

SIGMA E phi tP 
THETA e pi 11' 

UPSILON T psi ,p 
XI - rho - p 
alpha (l' sigma (f 

beta ~ tau T 

chi X theta 9 
delta C upsilon tJ 

epsilon t Xl e 
eta fJ zeta r 
gamma 'Y 

These are all the words known to EQN 

(except for characters with names), together 
with the section where they are discussed. 

above 17, 18 Ipile 17 
back 21 mark 15 
bar 13 matrix 18 
bold 12 ndefine 20 

(~~~, 
ccol 18 over 9 
col 18 pile 17 

cpile 17 rcol 18 
define 20 right 16 
delim 19 roman 12 
dot 13 rpile 17 
dotdot 13 size 12 
down 21 sqrt 10 
dyad 13 sub 7 
fat 12 sup 7 
font 12 tdefine 20 
from 11 tilde 13 
fwd 21 to 11 
gfont 12 under 13 
gsize 12 up 21 
hat 13 vee 13 
italic 12 , 4, 6 
lcol 18 {} 8 
left 16 It .. 8, 14 
lineup 15 

24. Troubleshooting 

If you make a mistake in an equation, 
like leaving out a brace (very common) or 
having one too many (very common) or hav­
ing a BUP with nothing before it (common), 
EQN will tell you with the message 

B1/ntax error between lineB x and 1/, file z 

where x and 1/ are approximately the lines 
between which the trouble occurred, and z is 
the name of the file in question. The line 
numbers are approximate - look nearby as 
well. There are also self-explanatory messages 
that arise if you leave out a quote or try to 
run EQN on a non-existent file. 

If you want to check a document before 
actually printing it (on UNIX only), 

eqn files> /dev /null 

will throwaway the output but print the 
messages. 

If you use something like dollar signs as 
delimiters, it is easy to leave one out. This 
causes very strange troubles. The program 
checkeq (on GCOS, use ./ checkeq instead) 
checks for misplaced or missing dollar signs 
and similar troubles. 

In-line equations can only be so big 
because of an internal buffer in TROFF. If you 
get a message "word overflow", you have 
exceeded this limit. If you print the equation 
as a displayed equation this message will usu­
ally go away. The message "line overflow" 



indicates you have exceeded an even bigger 
buffer. The only cure for this is to break the 
equation into two separate ones. 

On a related topic, EQN does not break 
equations by itself - you must split long 
equations up across multiple lines by yourself, 
marking each by a separate EQ ... .EN 
sequence. EQN does warn about equations 
that are too long to fit on one line. 

25. Use on UNIX 
To print a document that contains 

mathematics on the UNIX typesetter, 

eqn files I troft' 

If there are any TROFF options, they go after 
the TROFF part of the command. For exam­
ple, 

eqn files I troft' -ms 

To run the same document on the GCOS 

typesetter, use 

- 10-

eqn files I troft' -g (other options) I gcat 

A compatible version of EQN can be 
used on devices like teletypes and DASI and 
GSI terminals which have half-line forward 
and reverse capabilities. To print equations 
on a Model 37 teletype, for example, use 

neqn files I nroff 

The language for equations recognized by 
NEQN is identical to that of EQN. although of 
course the output is more restricted. 

To use a GSI or DASI terminal as the 
output device, 

neqn files I nroft' -Tz 

where z is the terminal type you are using, 
such as 900 or 900S. 

EQN and NEQN can be used with the TBL 
program[2} for setting tables that contain 
mathematics. Use TBL before [NJEQN, like 
this: 

tbl files I eqn I troff 
tbl files I neqn I nroft' 

28. Acknowledgments 

Weare deeply indebted to J. F. 
Ossanna, the author of TROFF, for his willing­
ness to extend TROFF to make our task easier, 
and for his continuous assistance during the 

development and evolution of EQN. We are 
also grateful to A. V. Aho for advice on 
language design, to S. C. Johnson for assis­
tance with the YACC compiler-compiler, and 
to all the EQN users who have made helpful 
suggestions and criticisms. 

References 

[1} J. F. Ossanna, "NROFF/TROFF User's 
Manual", Bell Laboratories Computing 
Science Technical Report #54, 1976. 

[2] M. E. Lesk, "Typing Documents on 
UNIX", Bell Laboratories, 1976. 

[3] M. E. Lesk, "TBL - A Program for Set­
ting Tables", Bell Laboratories Comput­
ing Science Technical Report #49, 1976. 

c 

o 



( 

( 

UNIX Programming - Second Edition 

Brian W. Kernighan 

Denni3 M. Ritchie 

ABSTRACT 

This paper is an introduction to programming on the UNIXt system. The 
emphasis is on how to write programs that interface to the operating system, 
either directly or through the standard I/O library. The topics discussed include 

• handling command arguments 

• rudimentary I/O; the standard input and output 

• the standard I/O library; file system access 

• low-level I/O: open, read, write, close, seek 

• processes: exec, fork, pipes 

• signals - interrupts, etc. 

There is also an appendix which describes the standard I/O library in detail. 

November 18, 1986 

t UN]){ is a trademark of Bell Laboratories. 





UNIX Programming - Second Edition 

1. INTRODUCTION 

Brian W. Kernighan 

Denni& M. Ritchie 

This paper describes how to write programs that interface with the UNIX operating system 
in a non-trivial way. This includes programs that use files by name, that use pipes, that invoke 
other commands as they run, or that attempt to catch interrupts and other signals during execu­
tion. 

The document collects material which is scattered throughout several sections of The UNIX 
Programmer'8 Manual [1] for Version 7 UNIX. There is no attempt to be complete; only generally 
useful material is dealt with. It is assumed that you will be programming in C, so you must be 
able to read the language roughly up to the level of The 0 Programming Language [2]. Some of 
the material in sections 2 through 4 is based on topics covered more carefully there. You should 
also be familiar with UNIX itself at least to the level of UNIX for Beginner8 [3]. 

2. BASICS 

2.1. Program Arguments 

When a C program is run as a command, the arguments on the command line are made 
available to the function main as an argument count argc and an array argy of pointers to char­
acter strings that contain the arguments. By convention, argv[O] is the command name itself, so 
argc is always greater than O. 

The following program illustrates the mechanism: it simply echoes its arguments back to the 
terminal. (This is essentially the echo command.) 

main(argc, argyl 
int argc; 
mar -argyD; 
{ 

int i; 

/- echo arguments - / 

for (i = 1; i < argc; H+) 
printf'("%s%c", argv[i], (i<argc-l) ! ' , : '0); 

} 
argy is a pointer to an array whose individual elements are pointers to arrays of characters; each 
is terminated by \0, so they can be treated as strings. The program starts by printing argY[I] 
and loops until it has printed them all. 

The argument count and the arguments are parameters to main. If you want to keep them 
around so other routines can get at them, you must copy them to external variables. 

2.2. The "Standard Input" and "Standard Output" 

The simplest input mechanism is to read the "standard input," which is generally the user's 
terminal. The function getehar returns the next input character each time it is called. A file may 
be substituted for the terminal by using the < convention: if prog uses getehar, then the com­
mand line 



- 2-

prog <file 

causes prog to read file instead of the terminal. prog itself need know nothing about where its 
input is coming from. This is also true if the input comes from another program via the pipe 
mechanism: 

otherprog I prog 

provides the standard input for prog from the standard output of otherprog. 

getchar returns the value EOF when it encounters the end of file (or an error) on whatever 
you are reading. The value of EOF is normally defined to be -1, but it is unwise to take any 
advantage of that knowledge. As will become clear shortly, this value is automatically defined for 
you when you compile a program, and need not be of any concern. 

Similarly, putchar(c) puts the character c on the "standard output," which is also by 
default the terminal. The output can be captured on a file by using>: if prog uses putchar, 

prog > outfile 

writes the standard output on outfile instead of the terminal. outflle is created if it doesn't exist; 
if it already exists, its previous contents are overwritten. And a pipe can be used: 

prog lotherprog 

puts the standard output of prog into the standard input of otherprog. 

The function printf, which formats output in various ways, uses the same mechanism as 
putehar does, so calls to printf and putchar may be intermixed in any order; the output will 
appear in the order of the calls. 

Similarly, the function scant provides for formatted input conversion; it will read the stan­
dard input and break it up into strings, numbers, etc., as desired. scant uses the same mechanism 
as getchar, so calls to them may also be intermixed. 

Many programs read only one input and write one output; for such programs I/O with 
getehar, putchar, scant, and printf may be entirely adequate, and it is almost always enough 
to get started. This is particularly true if the UNIX pipe facility is used to connect the output of 
one program to the input of the next. For example, the following program strips out all ASCII 
control characters from its input (except for newline and tab). 

#include <stdio.h> 

mainO /* eestrip: strip non-graphic characters * / 

The line 

{ 

} 

int e; 
while «c = getcharO)!= EOF) 

exit(O); 

if«c >=" && c < 0117) IIc ==" IIc == '0) 
putchar( c); 

#inelude <Btdio.h> 

should appear at the beginning of each source file. It causes the C compiler to read a file 
/ usr/ inc/ude/ stdio.h ) of standard routines and symbols that includes the definition of EOF. 

If it is necessary to treat multiple files, you can use cat to collect the files for you: 

eat filel file2 ••• I cestrip >output 

and thus avoid learning bow to access files from a program. By the way, the call to exit at the 
end is not necessary to make the program work properly, but it assures that any caller of the pro­
gram will see a normal termination status (conventionally 0) from the program when it completes. 
Section 6 discusses status returns in more detail. 

(\ 
~) 



( 

( 

(~) 

-3-

3. THE STANDARD I/O LmRARY 
The "Standard I/O Library" is a collection of routines intended to provide efficient and port­

able I/O services for most C programs. The standard I/O library is available on each system that 
supports C, so programs that confine their system interactions to its Cacilities can be transported 
Crom one system to another essentially without change. 

In this section, we will discuss the basics of the standard I/O library. The appendix contains 
a more complete description oC its capabilities. 

3.1. File Access 

The programs written so far have all read the standard input and written the standard out­
put, which we have assumed are magically pre-defined. The next step is to write a program that 
accesses a file that is flot already connected to the program. One simple example is we, which 
counts the lines, words and characters in a set of files. For instance, the command 

we x.e y.e 

prints the number of lines, words and characters in x.e and y.e and the totals. 

The question is how to arrange Cor the named files to be read - that is, how to connect the 
file system names to the I/O statements which actually read the data. 

The rules are simple. Before it can be read or written a file has to be opened by the standard 
library function topen. topen takes an external name (like x.e or y.e), does some housekeeping 
and negotiation with the operating system, and returns an internal name which must be used in 
subsequent reads or writes of the file. 

This internal name is actually a pointer, called a file pointer, to a structure which contains 
inCormation about the file, such as the location of a buffer, the current character position in the 
buffer, whether the file is being read or written, and the like. Users don't need to know the details, 
because part of the standard I/O definitions obtained by including stdio.h is a structure definition 
called FILE. The only declaration needed for a file pointer is exemplified by 

FILE ·tp, ·topenO; 

This says that fp is a pointer to a FILE, and topen returns a pointer to a FILE. FILE is a type 
name, like int, not a structure tag. 

The actual call to topen in a program is 

tp = topen(name, mode}; 

The first argument oC topen is the name of the file, as a character string. The second argument is 
the mode, also as a character string, which indicates how you intend to use the file. The only 
allowable modes are read "r"), write "w"), or append "a"). 

If a file that you open Cor writing or appending does not exist, it is created (if possible). 
Opening an existing file for writing causes the old contents to be discarded. Trying to read a file 
that does not exist is an error, and there may be other caUses of error as well (like trying to read a 
file when you don't have permission). If there is any error, topen will return the null pointer 
value NULL (which is defined as zero in stdio.h). 

The next thing needed is a way to read or write the file once it is open. There are several 
possibilities, oC which lete and pute are the simplest. lete returns the next character Crom a file; 
it needs the file pointer to tell it what file. Thus 

e = gete(tp) 

places in e the next character from the file referred to by tp; it returns EOF when it reaches end 
of file. pute is the inverse of gete: 

pute(e, tp) 

puts the character e on the file fp and returns e. lete and pute return EOF on error. 

When a program is started, three files are opened automatically, and file pointers are pro­
vided Cor them. These files are the standard input, the standard output, and the standard error 



-4-

output; the corresponding file pointers are called stdin, stdout, and stderr. Normally these are 
all connected to the terminal, but may be redirected to files or pipes as described in Section 2.2. 
stdin, stdout and etderr are pre-defined in the I/O library as the standard input, output and 
error filesj they may be used anywhere an object of type FILE - can be. They are constants, how­
ever, not variables, so don't try to assign to them. 

With some of the preliminaries out of the way, we can now write we. The basic design is 
one that has been found convenient for many programs: if there are command-line arguments, they 
are processed in order. If there are no arguments, the, standard input is processed. This way the 
program can be used stand-alone or as part of a larger process. 

#inelude <stdio.h> 

maine arse, argv) 
int arge; 

/- we: count lines, words, ehars - / 

char -argvD; 
{ 

} 

int e, i, inword; 
FILE -fp, -fopenO; 
long linect, wordct, eharet; 
long tlineet = 0, twordet = 0, teharet = 0; 

i = 1; 
fp = stdin; 
do { 

if (arge > 1 && (fp=fopen(argv[i), "1'''» == NULL) { 
fprintf(stden, "we: ean't open %sO, argv[i])i 
continue; 

} 
lineet = wordet = eharet = inword = 0; 
while «e = getc(fp» 1= EOF) { 

charct++; 

} 

if(e == '0) 
linect++; 

if(e ==" lie ==" lie == '0) 
inword = 0; 

else if (inword == 0) { 
inword = 1; 
wordct++; 

} 

printf("%7Id %71d %7Id", linect, wordet, charet); 
printf(arge > 11" %sO : "0, argv[i»; 
fclose(fp); 
tlineet += lineet; 
twordet += wordet; 
teharet += charet; 

} while (++i < arge); 
if (arge > 2) 

printf("%7Id %71d %71d totalO, tlineet, twordet, tcharct); 
exit(O); 

The function fprintf is identical to printf, save that the first argument is a file pointer that 
specifies the file to be written. 

C) 



-5-

The function fdose is the inverse or fopenj it breaks the connection between the file pointer 
and the external name that· was established by fopen, rreeing the file pointer for another file. 
Since there is a limit on the number of files that a program may have open simultaneously, it's a 
good idea to free things when they are no longer needed. There is also another reason to call 
fdose on an output file - it flushes the buffer in which putc is collecting output. fclose is called 
automatically ror each open file when a program terminates normally.) 

3.2. Error Handling - Stderr and Exit 

stderr is assigned to a program in the same way that stdin and stdout are. Output writ­
ten on stderr appears on the user's terminal even if the standard output is redirected. we writes 
its diagnostics on stderr instead of stdout so that if one of the files can't be accessed for some 
reason, the message finds its way to the user's terminal instead of disappearing down a pipeline or 
into an output file. 

The program actually signals errors in another way, using the function exit to terminate 
program execution. The argument of exit is available to whatever process called it (see Section 6), 
so the success or failure or the program can be tested by another program that uses this one as a 
sub-process. By convention, a return value of 0 signals that all is well; non-zero values signal 
abnormal situations. 

exit itself calls fclose for each open output file, to flush out any buffered output, then calls a 
routine named _exit. The function _exit causes immediate termination without any buffer flush­
ing; it may be called directly if desired. 

3.3. Miscellaneous I/O Functions 

The standard I/O library provides several other I/O functions besides those we have illus­
trated above. 

Normally output with putc, etc., is buffered (except to stderr)j to force it out immediately, 
use ftlush(fp). 

'seam is identical to scam, except that its first argument is a file pointer (as with fprintf) 
that specifies the file from which the input comes; it returns EOF at end of file. 

The functions sscam and sprintf are identical to fseant and fprintf, except that the first 
argument names a character string instead of a file pointer. The conversion is done from the string 
for sseam and into it for sprintf. 

fgets(but, sille, fp) copies the next line from fp, up to and including a newline, into buf; at 
most size-1 characters are copied; it returns NULL at end of file. fputs(buf, fp) writes the 
string in but onto file fp. 

The function ungete(c, fp) "pushes back" the character c onto the input stream fp; a sub­
sequent call to gete, fseam, etc., will encounter c. Only one character of pushback per file is per­
mitted. 

4. LOW-LEVEL I/O 

This section describes the bottom level of I/O on the system. The lowest level of I/O in pro­
vides no buffering or any other services; it is in fact a direct entry into the operating system. You 
are entirely on your own, but on the other hand, you have the most control over what happens. 
And since the calls and usage are quite simple, this isn't as bad as it sounds. 

4.1. File Descriptors 

In the UNIX operating system, all input and output is done by reading or writing files, 
because all peripheral devices, even the user's terminal, are files in the file system. This means that 
a single, homogeneous interface handles all communication between a program and peripheral dev­
ICes. 



-6-

In the most general case, before reading or writing a file, it is necessary to inform the system 
of your intent to do so, a process called "opening" the file. If you are going to write on a file, it 
may also be necessary to create it. The system cheeks your right to do so (Does the file exist? Do 
you have permission to access it?), and if all is well, returns a small positive integer called a file 
tle,criptor. Whenever I/O is to be done on the file, the file descriptor is used instead of the name 
to identify the file. (This is roughly analogous to the use of READ(5, ... ) and WRITE(6, ... ) in For­
tran. All information about an open file is maintained by the system; the user program refers to 
the file only by the file descriptor. 

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descrip­
tors are more fundamental. A file pointer is a pointer to a structure that contains, among other 
things, the file descriptor for the file in question. 

Since input and output involving the user's terminal are so common, special arrangements 
exist to make this convenient. When the command interpreter (the "shell") runs a program, it 
opens three files, with file descriptors 0, 1, and 2, called the standard input, the standard output, 
and the standard error output. All of these are normally connected to the terminal, so if a pro­
gram reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O without wor­
rying about opening the files. 

If I/O is redirected to and from files with < and >, as in 

prog < infile > outfUe 

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the 
named files. Similar observations hold if the input or output is associated with a pipe. Normally 
file descriptor 2 remains attached to the terminal, so error messages can go there. In all cases, the 
file assignments are changed by the shell, not by the program. The program does not need to 
know where its input comes from nor where its output goes, so long as it uses file 0 for input and 1 
and 2 for output. 

4.2. Read and Write 

All input and output is done by two functions called :read and write. For both, the first 
argument is a file descriptor. The second argument is a buffer in your program where the data is 
to come from or go to. The third argument is the number of bytes to be transferred. The calls are 

n....read = read(fd, buf, n}; 

JLwritten = write(fd, buf, n); 

Each call returns a byte count which is the number of bytes actually transferred. On reading, the 
number of bytes returned may be less than the number asked for, because fewer than n bytes 
remained to be read. (When the file is a terminal, :read normally reads only up to the next new­
line, which is generally less than what was requested.) A return value of zero bytes implies end of 
file, and -1 indicates an error of some sort. For writing, the returned value is the number of bytes 
actually written; it is generally an error if this isn't equal to the number supposed to be written. 

The number of bytes to be read or written is quite arbitrary. The two most common values 
are 1, which means one character at a time ("unbuffered"), and 512, which corresponds to a physi­
cal blocksize on many peripheral devices. This latter size will be most efficient, but even character 
at a time I/O is not inordinately expensive. 

Putting these facts together, we can write a simple program to copy its input to its output. 
This program will copy anything to anything, since the input and output can be redirected to any 
file or device. 

#define BUFSIZE 512/· best .ize for PDP-11 UNIX • / 

mainO /. copy input to output • / 
{ 

char buf[BUFSIZE); c 



( 

} 

-7-

int n; 

while ((n = read(O, but, BUFSIZE» > 0) 
write(1, but, D); 

exit(O); 

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to 
be written by write; the next call to read after that will return zero. 

It is instructive to see how read and write can be used to construct higher level routines like 
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered input. 

#define CMASK 0377/* ror making char's > 0 * / 

getchar() 
{ 

/* unbuffered single character input • / 

char c; 

return(read(O, It:.c, 1) > 0) 1 c It:. CMASK : EOF); 
} 

c must be declared char, because read accepts a character pointer. The character being returned 
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it 
negative. (The constant 0377 is appropriate for the PDP -11 but not necessarily for other 
machines.) 

The second version of getchar does input in big chunks, and hands out the characters one at 
a time. 

#define 
#deflne 

CMASK 
BUFSIZE 

0377/* tor making char's > 0 * / 
512 

getchar() 
{ 

/* buffered version * / 

} 

static char 
static char 
static int 

but[BUFSIZE]; 
*bufp = buf; 
n =0; 

if (n == 0) { /* buffer is empty * / 
n = read(O, but, BUFSIZE); 
butp = but; 

} 
return«-n >= O)! *bufp++ It:. CMASK: EOF); 

4.3. Open, Creat, Close, Unlink 

Other than the default standard input, output and error files, you must explicitly open files 
in order to read or write them. There are two system entry points for this, open and creat [sic]. 

open is rather like the topen discussed in the previous section, except that instead of return­
ing a file pointer, it returns a file descriptor, which is just an into 

int rd; 

rd = open(name, rwmode); 

As with ropen, the name argument is a character string corresponding to the ext.ernal file name. 
The access mode argument is different, however: rwmode is 0 for read, 1 for write, and 2 for read 
and write access. open returns -1 if any error occurs; otherwise it returns a valid file descriptor. 



- 8-

It is an error to try to open a file that does not exist. The entry point creat is provided to 
create new files, or to re-write old ones. 

fd = creat(name, pmode); 

returns a file descriptor if it was able to create the file called name, and -1 if not. Ir the file 
already exists, ereat will truncate it to zero length; it is not an error to creat a file that already 
exists. 

Ir the file is brand new, creat creates it with the protection mode specified by the pmode 
argument. In the UN1X file system, there are nine bits' of protection information associated with a 
file, controlling read, write and execute permission for the owner of the file, ror the owner's group, 
and for all others. Thus a three-digit octal number is most convenient for specifying the permis­
sions. For example, 0755 specifies read, write and execute permission for the owner, and read and 
execute permission for the group and everyone else. 

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one 
file to another. (The main simplification is that our version copies only one file, and does not per­
mit the second argument to be a directory.) 

*detine NULL 0 
*detine BUFSIZE 512 
*deflne PMODE 0644 /. RW for owner, R for group, others • / 

maln{ argc, argv) 
int argc; 

/. cp: copy fl to 12 • / 

char ·argvO; 
{ 

} 

int fl, 12, n; 
char but[BUFSIZE); 

if (argc != 3) 
error("U8age: ep from to", NULL); 

if «fl = open(argv[I], 0» == -1) 
error("cp: can't open %8", argv[I]); 

if «£2 = creat(argv[2], PMODE» == -1) 
eI'I'Or("cp: can't create %s", argv(2]); 

while «n = I'ead(fl, buf, BUFSIZE» > 0) 
if (write(f2, buf, n) != n) 

error("cp: write error", NULL); 
exit(O); 

error{81, 52) /. print errol' message and die • / 
char ·81, ·52; 
{ 

} 

printt(sl, s2); 
printt(ttO); 
exit(I); 

As we said earlier, there is a limit (typically 15-25) on the number of files which a program 
may have open simultaneously. Accordingly, any program which intends to process many files 
must be prepared to re-use file descriptors. The routine close breaks the connection between a file 
descriptor and an open file, and frees the file descriptor for use with some other file. Termination 
of a program via exit or return from the main program closes all open files. 

The function unlink(fUename) removes the file filename from the file system. 

/ 

o 



(~/ 

( 

-9-

4.4. Random Access - Seek and Leek 

File I/O is normally sequential: each read or write takes place at a position in the file right 
alter the previous one. When necessary, however, a file can be read or written in any arbitrary 
order. The system calliseek provides a way to move around in a file without actu;d'-' reading or 
writing: 

Iseek(fd, offset, origin); 

forces the current position in the file whose descriptor is fd to move to position offset, which is 
taken relative to the location specified by origin. Subsequent reading or writing will begin at that 
position. offset is a. long; fd and origin are int's. origin can be 0, 1, or 2 to specify that offset 
is to be measured from the beginning, from the current position, or from the end of the file respec­
tively. For exa.mple, to a.ppend to a. file, seek to the end before writing: 

Iseek(fd, OL, 2); 

To get back to the beginning ("rewind"), 

Iseek(fd, OL, 0); 

Notice the OL argument; it could also be written as (long) O. 

With lseek, it is possible to treat files more or less like large arrays, at the price of slower 
access. For example, the following simple function reads any number of bytes from any arbitrary 
place in a file. 

get(fd, pos, buf, n) j. read n bytes from position pos • / 
int fd, n; 
long pos; 
char ·buf; 
{ 

Iseek(fd, pos, 0); /. get to pos • / 
return(read(rd, buf, n»; 

} 

In pre-version 7 UNIX, the basic entry point to the I/O system is called seek. seek is ident­
ical to Iseek, except that its offset argument is an int rather than a long. Accordingly, since 
PDP -11 integers have only 16 bits, the offset specified for seek is limited to 65,535; for this rea­
son, origin values of 3, 4, 5 cause seek to multiply the given offset by 512 (the number of bytes in 
one physical block) and then interpret origin as if it were 0, 1, or 2 respectively. Thus to get t.o 
an arbitrary place in a large file requires two seeks, first one which selects the block, then one 
which has origin equal to 1 and moves to the desired byte within the block. 

4.5. Error Processing 

The routines discussed in this section, and in fact all the routines which are direct entries 
into the system can incur errors. Usually they indicate an error by returning a value of -1. Some­
times it is nice to know what sort of error occurred; for this purpose all these routines, when 
appropriate, leave an error number in the external cell ermo. The meanings of the various error 
numbers are listed in the introduction to Section n of the UNIX Programmer '8 Manual, so your 
program can, for example, determine if an attempt to open a file failed because it did not exist or 
because the user lacked permission to read it. Perhaps more commonly, you may want to print 
out the reason for failure. The routine perror will print a message associated with the value of 
ermo; more generally, sys..ermo is an array of character strings which can be indexed by errno 
and printed by your program. 

5. PROCESSES 

It is often easier to use a program written by someone else than to invent one's own. This 
section describes how to execute a program from within another. 



- 10-

S.l. The "System" Function 

The easiest way to execute a program rrom another is to use the standard library routine 
~m. aystem takes one argument, a command string exactly as typed at the terminal (except 
ror the newline at the end) and executes it. For instance, to tim~stamp the output or a program, 

mainO 
{ 

system("date"); 
/* rest of processing * / 

} 

If the command string has to be built rrom pieces, the in-memory rormatting capabilities or 
sprintf may be userul. 

Remember that getc and putc normally buffer their input; terminal I/O will not be properly 
synchronized unless this buffering is defeated. For output, use mush; ror input, see setbuf in the 
appendix. 

S.2. Low-Level Process Creation - Execl and Exeev 

If you're not using the standard library, or if you need finer control over what happens, you 
will have to construct calls to other programs using the more primitive routines that the standard 
library's system routine is based on. 

The most basic operation is to execute another program without returning, by using the rou­
tine exeel. To print the date as the last action of a running program, use 

exeel("/bin/date", "date", NULL); 

The first argument to exeel is the file name of the command; you have to know where it is found 
in the file system. The second argument is conventionally the program name (that is, the last 
component of the file name), but this is seldom used except as a plac~holder. If the command 
takes arguments, they are strung out after this; the end of the list is marked by a NULL argu­
ment. 

The exeel call overlays the existing program with the new one, runs that, then exits. There 
is no return to the original program. 

More realistically, a program might fall into two or more phases that communicate only 
through temporary files. Here it is natural to make the second pass simply an exec) call from the 
first. 

The one exception to the rule that the original program never gets control back occurs when 
there is an error, for example if the file can't be found or is not executable. If you don't know 
where date is located, say 

exeelC"/bin/date", "date", NULL); 
exeel("/usr/bin/date", "date", NULL); 
fPrintf(stderr, "Someone stole 'date'O); 

A variant of execl called execv is useful when" you don't know in advance how many argu­
ments there are going to be. The call is 

exeev(fiIename, argp); 

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL 
so execv can tell where the list ends. As with exee1, filename is the file in which the program is 
round, and argp[O] is the name of the program. (This arrangement is identical to the argv array 
ror program arguments.) 

Neither of these routines provides the niceties or normal command execution. There is no 
automatic search or multiple directories - you have to know precisely where the command is 
located. Nor do you get the expansion of metacharacters like <, >, *, 1, and 0 in the argument 
list. If you want these, use exeel to invoke the shell sh, which then does all the work. Construct 
a string eommandline that contains the complete command as it would have been typed at the o 



( 

( 

c\ 

- 11-

terminal, then say 

execl("/bin/sh", "sb", "-c", commandline, NULL); 

The shell is assumed to be at a fixed place, /bin/sb. Its argument -c SIIY" to treat the next argu­
ment as a whole command line, so it does just what you want. The onl~ problem is in construct­
ing the right information in commandline. 

O.S. Control of Processes - Fork and Wait 

So far what we've talked about isn't really all that useful by itself. Now we will show how 
to regain control after running a program with execl or execv. Since these routines simply over­
lay the new program on the old one, to save the old one requires that it first be split into two 
copies; one of these can be overlaid, while the other waits for the new, overlaying program to 
finish. The splitting is done by a routine called fork: 

proc_id = forkO; 

splits the program into two copies, both of which continue to run. The only difference between the 
two is the value of proc_id, the "process id." In one of these processes (the "child"), proc_id is 
zero. In the other (the "parent"), proc_id is non-zero; it is the process number of the child. Thus 
the basic way to call, and return from, another program is 

if (forkO == 0) 
execICtI/bin/sb", "sh", "_c", cmd, NULL);/· in child • / 

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the pro­
gram. In the child, the value returned by fork is zero, so it calls exeel which does the command 
and then dies. In the parent, fork returns non-zero so it skips the execl. (If there is any error, 
fork returns -1). 

More often, the parent wants to wait for the child to terminate before continuing itself. This 
can be done with the function wait: 

int status; 

if (forkO == 0) 
exec1( ••• ); 

wait( &status); 

This still doesn't handle any abnormal conditions, such as a failure of the exeel or fork, or the 
possibility that there might be more than one child running simultaneously. (The wait returns the 
process id of the terminated child, if you want to check it against the value returned by fork.) 
Finally, this fragment doesn't deal with any funny behavior on the part of the child (which is 
reported in status). Still, these three lines are the heart of the standard library's system routine, 
which we'll show in a moment. 

The status returned by wait encodes in its low-order eight bits the system's idea of the 
child's termination status; it is 0 for normal termination and non-zero to indicate various kinds of 
problems. The next higher eight bits are taken from the argument of the call to exit which caused 
a normal termination of the child process. It is good coding practice for all programs to return 
meaningful status. 

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up point­
ing at the right files, and all other possible file descriptors are available for use. When this pro­
gram calls another one, correct etiquette suggests making sure the same conditions hold. Neither 
fork nor the exec calls affects open files in any way. If the parent is buffering output that must 
come out before output from the child, the parent must flush its buffers before the execl. Con­
versely, if a caller buffers an input stream, the called program will lose any information that has 
been read by the caller. 



- 12-

6.4. Pipes 

A pipe is an I/O channel intended ror use between two cooperating processes: one process 
writes into the pipe, while the other reads. The system looks after buffering the data and syn­
chronizing the two processes. Most pipes are created by the shell, as in 

Islpr 

which connects the standard output or Is to the standard input or pro Sometimes, however, it is 
most convenient ror a process to set up its own plumbing; in this section, we will illustrate how the 
pipe connection is established and used. 

The system call pipe creates a pipe. Since a pipe is used Cor both reading and writing, two 
file descriptors are returned; the actual usage is like this: 

int fd[2J; 

stat = pipe(fd); 
If (stat == -1) 

/* there was an error ••• * / 

fd is an array oC two file descriptors, where fd[O] is the read side or the pipe and fd[ll is Cor writ­
ing. These may be used in read, write and close calls just like any other file descriptors. 

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes 
into a pipe which is too Cull, it will wait until the pipe empties somewhat. If the write side of the 
pipe is closed, a subsequent read will encounter end or file. 

To illustrate the use oC pipes in a realistic setting, let us write a Cunction called 
popen(cmd, mode), which creates a process cmd (just as system does), and returns a file 
descriptor that will either read or write that process, according to mode. That is, the call 

fout = popen("pr", WRITE); 

creates a process that executes the pr command; subsequent write calls using the file descriptor 
fout will send their data to that process through the pipe. 

popen first creates the the pipe with a pipe system call; it then forks to create two copies of 
itself. The child decides whether it is supposed to read or write, closes the other side of the pipe, 
then calls the shell (via exeel) to run the desired process. The parent likewise closes the end of the 
pipe it does not use. These closes are necessary to make end-of-file tests work properly. For exam­
ple, if a child that intends to read Cails to close the write end of the pipe, it will never see the end 
of the pipe file, just because there is one writer potentially active. 

#inelude <stdio.h> 

#define 
#define 
#define 
static int 

READ 0 
WRITE 
tst(a, b) 
popelLpid; 

popen( emd, mode) 
char *cmd; 
int mode; 
{ 

int p[2J; 

1 
(mode == READ! (b): (a» 

If (pipe(p) < 0) 
return(NULL ); 

If «popelLpid = forkO) == 0) { 
elose(tst(p[WRITE], p[READ])); 
elose(tst(O, 1»; 
dup(tst(p[READ], p[WRITE])); 

o 

o 



( 

( 

} 

} 

- 13-

cloee(tet(p[READ), p[WRITE))); 
exeel(tI/bin/sb", "shIt, "-c", cmd, 0); 
_exit(I); /* disaster bas occurred if we get bere */ 

if (popen..pid == -1) 
return(NULL ); 

close(tst(p[READ), p[WRITE])); 
return(tet(p[WRITE], p[READ»); 

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child pro­
cess that will read data from the parent. Then the first close closes the write side of the pipe, 
leaving the read side open. The lines 

close(tst(O, 1»; 
dup(tst(p[READ], p[WRITE]»; 

are the conventional way to associate the pipe descriptor with the standard input of the child. 
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns a 
duplicate of an already open file descriptor. File descriptors are assigned in increasing order and 
the first available one is returned, so the effect of the dup is to copy the file descriptor for the pipe 
(read side) to file descriptor 0; thus the read side of the pipe becomes the standard input. (Yes, 
this is a bit tricky, but it's a standard idiom.) Finally, the old read side of the pipe is closed. 

A similar sequence of operations takes place when the child process is supposed to write from 
the parent instead of reading. You may find it a useful exercise to step through that case. 

The job is not quite done, for we still need a function pelose to close the pipe created by 
popen. The main reason for using a separate function rather than dose is that it is desirable to 
wait for the termination of the child process. First, the return value from pelose indicates 
whether the process succeeded. Equally important when a process creates several children is that 
only a bounded number of unwaited-for children can exist, even if some of them have terminated; 
performing the wait lays the child to rest. Thus: 

#include < signal.b > 

pelose(fd) 
int fd; 

/* dose pipe fd * / 

{ 

} 

register r, (*bstat)O, (*istat)O, (*qstat)O; 
int status; 
extern int popen..pid; 

close(fd); 
istat = signal(SIGINT, SIGJGN); 
qstat = signal(SIGQUIT, SIGJGN); 
hstat = signal(SIGHUP, SIGJGN); 
while «r = wait(&status» != popen..pid && r != -1); 
if (r == -1) 

status = -1; 
signal(SIGINT, istat); 
signal(SIGQUIT, qstat); 
signal(SIGHUP, hstat); 
return( status); 

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is the 
topic of the next section. 



- 14-

The routine as written has the limitation that only one pipe may be open at once, because of 
the single shared variable popen..pid; it really should be an array indexed by file descriptor. A 
popen function, with slightly different arguments and return value is available as part of the stan­
dard I/O library discussed below. As currently written, it shares the same limitation. 

8. SIGNALS - INTERRUPTS AND ALL THAT 

This section is eoncerned with how to deal gracefully with signals from the outside world 
(like interrupts), and with program faults. Since there's nothing very useful that can be done from 
within C about program faults, which arise mainly from illegal memory references or from execu­
tion of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which is sent 
when the DEL character is typed; quit, generated by the FS character; hangup, caused by hanging 
up the phone; and terminate, generated by the kill eommand. When one of these events occurs, 
the signal is sent to all processes which were started from the corresponding terminal; unless other 
arrangements have been made, the signal terminates the process. In the quit case, a core image file 
is written for debugging purposes. 

The routine which alters the default action is called signal. It has two arguments: the first 
specifies the signal, and the second specifies how to treat it. The first argument is just a number 
code, but the second is the address is either a function, or a somewhat strange eode that requests 
that the signal either be ignored, or that it be given the default action. The include file signal.h 
gives names for the various arguments, and should always be included when signals are used. 
Thus 

#include <signal.h> 

signal(SIGINT, SIGJGN); 

causes interrupts to be ignored, while 

signal(SIGINT, SIGJ)FL); 

restores the default action of process termination. In all cases, signal returns the previous value of 
the signal. The second argument to signal may instead be the name of a function (which has to 
be declared explicitly if the compiler hasn't seen it already). In this case, the named routine will be 
called when the signal occurs. Most commonly this facility is used to allow the program to clean 
up unfinished business before terminating, for example to delete a temporary file: 

#include <signal.h> 

mainO 
{ 

} 

int onintrO; 

it (signal(SIGINT, SIG_IGN) 1= SIGJGN) 
signal(SIGINT,onintr); 

/* Process ••• * / 

exit(O); 

onintrO 
{ 

} 

unlink( tempflle); 
exit(l); 

Why the test and the double call to signal? Recall that signals like interrupt are sent to all 
processes started from a particular terminal. Accordingly, when a program is to be run non-

//." 

i i 
',,-_,/ 

o 



c 

- 15-

interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter­
rupts intended for foreground processes. If this program began by announcing that all interrupts 
were to be sent to the onintr routine regardless, that would undo the shell's effort to protect it 
when run in the background. 

The solution, shown above, is to test the state of interrupt handling, and to continue to 
ignore interrupts if they are already being ignored. The code as written depends on the fact that 
signal returns the previous state of a particular signal. If signals were already being ignored, the 
process should continue to ignore them; otherwise, they should be caught. 

A more sophisticated program may wish to intercept an interrupt and int.erpret it as a 
request to stop what it is doing and return to its own command-processing loop. Think of a text 
editor: interrupting a long printout should not cause it to terminate and lose the work already 
done. The outline of the code for this case is probably best written like this: 

#inelude <signal.h> 
#inelude <aetjmp.h> 
jmp_buf sjbuf; 

mainO 
{ 

} 

int (*istat)O, onintrO; 

istat = signal(SIGINT, SIGJGN);/* save original status * / 
setjmp(sjbuf); /* save eurrent staek position * / 
if (istat != SIGJGN) 

signal(SIGINT,onintr); 

/* main proeessing loop * / 

onintrO 
{ 

printf'(·'OnterruptO); 
longjmp(sjbuf); /* return to saved state * / 

} 

The include file setjmp.h declares the type jmp_buf an object in which the state can be saved. 
sjbuf is such an object; it is an array of some sort. The setjmp routine then saves the state of 
things. When an interrupt occurs, a call is forced to the onintr routine, which can print a mes­
sage, set flags, or whatever. longjmp takes as argument an object stored into by aetjmp, and 
restores control to the location after the call to setjmp, so control (and the stack level) will pop 
back to the place in the main routine where the signal is set up and the main loop entered. Notice, 
by the way, that the signal gets set again after an interrupt occurs. This is necessary; most signals 
are automatically reset to their default action when they occur. 

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for 
example in the middle of updating a linked list. If the routine called on occurrence of a signal sets 
a flag and then returns instead of calling exit or longjmp, execution will continue at the exact 
point it was interrupted. The interrupt flag can then be tested later. 

There is one difficulty associated with this approach. Suppose the program is reading the 
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. 
If it were really true, as we said above, that "execution resumes at the exact point it was inter­
rupted," the program would continue reading the terminal until the user typed another line. This 
behavior might well be confusing, since the user might not know that the program is reading; he 
presumably would prefer to have the signal take effect instantly. The method chosen to resolve 
this difficulty is to terminate the terminal read when execution resumes after the signal, returning 
an error code which indicates what happened. 



- 16-

Thus programs which catch and resume execution alter signals should be prepared for 
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads from 
a terminal, wait, and pause.) A program whose onintr program just sets intfiag, resets the 
interrupt signal, and returns, should usually include code like the following when it. reads the stan­
dard input: 

if (getcharO == EOF) 
if (intftag) 

/* EOF caused by interrupt * / 
else 

/* true end-of-fUe * / 

A final subtlety to keep in mind becomes important when signal-catching is combined with 
execution of other programs. Suppose a program catches interrupts, and also includes a method 
(like "!" in the editor) whereby other programs can be executed. Then the code should look some­
thing like this: 

if (forkO == 0) 
execl( ••• ); 

signal(SIGINT, SIGJGN); /* ignore interrupts * / 
wait{&status);/* until the child is done */ 
signal(SIGINT,onintr); /* restore interrupts * / 

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call catches 
its own interrupts. If you interrupt the subprogram, it will get the signal and return to its main 
loop, and probably read your terminal. But the calling program will also pop out of its wait for 
the subprogram and read your terminal. Having two processes reading your terminal is very 
unfortunate, since the system figuratively flips a coin to decide who should get ea.ch line of input. 
A simple way out is to have the parent program ignore interrupts until the child is done. This 
reasoning is reflected in the standard I/O library function system: 

#include <signal.h> 

system(s) 
char ·s; 

/* run command string s • / 

{ 

} 

int status, pid, w; 
register int (*istat)O, (*qstat)O; 

if «pid = forkO) == 0) { 
lett/b' / h" " hit "" 0) exec In s , s ,-e, s, ; 

_exit(127); 
} 
istat = aignal(SIGINT, SIGJGN); 
qatat = aignal(SIGQUIT, SIGJGN); 
while «w = wait(&status» != pid && w != -1) 

; 
if(w ==-1) 

status = -1; 
8ignal(SIGINT, istat); 
8ignal(SIGQUIT, qstat); 
return(status); 

As an aside on declarations, the function 8ignal obviously has a rather strange second argu­
ment. It is in fact a pointer to a function delivering an integer, and this is also the type of the sig­
nal routine itself. The two values SIGJGN and SIGJ)FL have the right type, but are chosen 
so they coincide with no possible actual functions. For the enthusiast, here is how they are defined 



( 

( 

- 17-

Cor the PDP-llj the definitions should be sufficiently ugly and nonportable to encourage use of the 
include file. 

#deflne 
#deflne 

References 

SIGJ)FL 
SIGJGN 

(int (*)0)0 
(int (*)0)1 

11J K. L. Thompson and D. M. Ritchie, The UNIX Programmer'a Manual, Bell Laboratories, 
1978. 

[2J B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc., 1978. 

[3J B. W. Kernighan, "UNJX for Beginners - Second Edition." Bell Laboratories, 1978. 



- 18-

Appendix - The Standard I/O Library 

D. M. Ritchie 

The standard I/O library was designed with the following ~oals in mind. 

1. It must be as efficient as possible, both in time and in SP,ll'C, so that there will be no hesita­
tion in using it no matter how critical the application. 

2. It must be simple to use, and also free of the m~gic numbers and mysterious calls whose use 
mars the understandability and portability of many programs using older packages. 

3. The interface provided should be applicable on all machines, whether or not the programs 
which implement it are directly portable to other systems, or to machines other than the 
PDP-ll running a version of UNIX . 

1. General Usage 

Each program using the library must have the line 

#inelude < stdio.h > 
which defines certain macros and variables. The routines are in the normal C library, so no special 
library argument is needed for loading. All names in the include file intended only for internal use 
begin with an underscore _ to reduce the possibility of collision with a user name. The names 
intended to be visible outside the package are 

stdin 

stdout 

stderr 

EOF 

The name of the standard input file 

The name of the standard output file 

The name of the standard error file 

is actually -1, and is the value returned by the read routines Oil pnd-of-file or error. 

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an 
error 

FILE expands to struet _iob and is a useful shorthand when declaring pointers to streams. 

BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user. See 
setbut, below. 

gete, getchar, pute, putehar, teot, terror, tileno 
are defined as macros. Their actions are described below; they are mentioned here to 
point out that it is not possible to redeclare them and that they are not actually func­
tions; thus, for example, they may not have breakpoints set on them. 

The routines in this package offer the convenience of automatic buffer allocation and output 
flushing where appropriate. The names stdin, stdout, and stderr are in effect constants and may 
not be assigned to. 

2. Calls 

FILE *topen(filename, type) ehar *filename, *typej 
opens the file and, if needed, allocates a buffer for it, filename is a character string specify­
ing the name. type is a character string (not a single character). It may be "r", "w", or "a" 
to indicate intent to read, write, or append. The value returned is a file pointer. Ir it is 
NULL the attempt to open failed. 

FILE *freopen(filename, type, ioptr) ehar *6.1ename, *type; FILE *ioptr; 
The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. Ir the 
attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the new 
file. Often the reopened stream is stdin or stdout. 

int gete(ioptr) FILE *ioptr; 

o 

C
~~\ 

' .. ~ 



(-

( 

- 19-

returns the next character from the stream named by ioptr, which is a pointer to a file such 
as returned by fopen, or the name stdin. The integer EOF is returned on end-of-file or 
when an error occurs. The null character \0 is a legal character. 

int fgetc(ioptr) Fn.E *ioptr; 
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an 
argument, etc. 

putc(c, ioptr) Fn.E *ioptr; 
pute writes the character e on the output stream named by ioptr, which is a value returned 
frolll ropen or perhaps stdout or aden. The character is returned as value, but EOF is 
ret,umed on error. 

fputc(c, ioptr) Fn.E *ioptr; 
acts like putc but is a genuine function, not a macro. 

fclose(ioptr) Fn.E *ioptr; 
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated by 
the I/O system is freed. fclose is automatic on normal termination of the program. 

ftlush(ioptr) Fn.E *ioptr; 
Any buffered information on the (output) stream named by ioptr is writ.ten out. Output. 
files are normally buffered if and only if they are not directed to the terminal; however, 
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is reo­
pened. 

exit( erreode); 
terminates the process and returns its argument as status to the parent. This is a special 
version of the routine which calls mush for each output file. To terminate without flushing, 
use _exit. 

feof(ioptr) Fn.E *ioptr; 
returns non-zero when end-of-file has occurred on the specified input stream. 

ferror(ioptr) Fn.E *ioptr; 
returns non-zero when an error has occurred while reading or writing the named stream. The 
error indication lasts until the file has been closed. 

getcharO; 
is identical to getc(stdin). 

putchar( c); 
is identical to pute(c, stdout). 

char *fgets(s, n, ioptr) char *s; Fn.E *ioptr; 
reads up to n-l characters from the stream ioptr into the character pointer s. The read ter­
minates with a newline character. The newline character is placed in the buffer followed by a 
null character. fgets returns the first argument, or NULL if error or end-of-file occurred. 

fputs(s, ioptr) char *s; Fn.E *ioptr; 
writes the null-terminated string (character array) s on the stream ioptr. No newline is 
appended. No value is returned. 

ungetc( c, ioptr) Fn.E *ioptr; 
The argument character c is pushed back on the input stream named by ioptr. Only one 
character may be pushed back. 

printt'(format, aI, ... ) char *format; 
fPrintt'(ioptr, format, aI, ... ) Fn.E *ioptr; char *format; 
aprintf(s, format, aI, ... }char *s, *format; 

printt writes on the standard output. 'print' writes on the named output stream. sprint! 
puts characters in the character array (string) named by s. The specifications are as 
described in section printf(3) of the UNIX Programmer's Manual. 



aeanf(format, ai, ... ) char -format; 
fscanf'(ioptr, format, ai, ••• ) FILE -ioptr; char -format; 
8Scanf'{s, format, ai, ••• ) char -s, -format; 

aeanl reads from the standard input. fscant reads from the named input stream. _canf 
reads from the character string supplied as s. scant reads characters, interprets them 
according to a format, and stores the results in its arguments. Each routine expects as argu­
ments a control string format, and a set of arguments, each 0/ which must be a pointer, 
indicating where the converted input should be stored. 

aeant' returns as its value the number of succtssfully matched and assigned input items. 
This can be used to decide how many input items were found. On end of file, .EOF is 
returned; note that this is different from 0, which means that the next input character does 
not match what was called for in the control string. 

fread(ptr, sbseot(-ptr), nitems, ioptr) FILE *ioptr; 
reads nitems of data beginning at ptr from file ioptr. No advance notification that binary 
I/O is being done is required; when, for portability reasons, it becomes required, it will be 
done by adding an additional character to the mode-string on the fopen call. 

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE -ioptr; 
Like head, but in the other direction. 

rewind(ioptr) Fn.E -loptr; 
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound 
output file is still open only for output . 

. system(string) char *string; 
The string is executed by the shell as if typed at the terminal. 

getw(ioptr) FD.E *ioptr; 
returns the next word from the input stream named by ioptr. EOF is returned on end-of­
file or error, but since this a perfectly good integer feof and ferror should be used. A 
"word" is 16 bits on the 

putw(w, ioptr) Fn.E *ioptr; 
writes the integer w on the named output stream. 

setbuf(ioptr, bur) FILE ·ioptr; char ·but; 
setbuf may be used after a stream has been opened but before I/O has started. If but is 
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must 
be a character array of sufficient size: 

char but[BUFSIZ]; 

fileno(ioptr) FD.E *ioptr; 
returns the integer file descriptor associated with the file. 

fseek(ioptr, offset, ptrname) Fn.E *ioptr; long offset; 
The location of the next byte in the stream named by ioptr is adjusted. offset is a long 
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is 
1, the offset is measured from the current read or write pointer; if ptrname is 2, the offset is 
measured from the end of the file. The routine accounts properly for any buffering. (When 
this routine is used on systems, the offset must be a value returned from !tell and the 
ptrname must be 0). 

long fteU(ioptr) FILE -ioptr; 
The byte offset, measured from the beginning of the file, associated with the named stream is 
returned. Any buffering is properly accounted for. (On systems the value of this call is use­
ful only for handing to fseek, so as to position the file to the same place it was when ttell 
was called.) 

getpw( uid, bur) char *but; 

c 



( 

- 21-

The password file is searched for the given integer user ID. It an appropriate line is found, it 
is copied into the character array but, and 0 is returned. It no line is found corresponding to 
the user ID then 1 is returned. 

char *maUoc{num); 
allocates Dum bytes. The pointer returned is sufficiently well aligned to be usable for any 
purpose. NULL is returned if no space is available. 

char *calloc{num, size); 
allocates space for Dum items each of size size .. The space is guaranteed to be set to 0 and 
the pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no 
space is available . 

efree(ptr) ehar *ptr; 
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not 
obtained from calloe. 

The following are macros whose definitions may be obtained by including < ctype.h > . 
isalpha(e) returns non-zero if the argument is alphabetic. 

isupper( e) returns non-zero if the argument is upper-case alphabetic. 

islower(e) returns non-zero if the argument is lower-case alphabetic. 

isdigit(c) returns non-zero if the argument is a digit. 

isspaee(e) returns non-zero if the argument is a spacing character: tab, newline, carriage return, 
vertical tab, form feed, space. 

ispunet(c) returns non-zero if the argument is any punctuation character, i.e., not a space, letter, 
digit or control character. 

isalnum(e) returns non-zero if the argument is a letter or a digit. 

isprint(e) returns non-zero if the argument is printable - a letter, digit, or punctuation character. 

isentrl(c) returns non-zero if the argument is a control character. 

isaseii(e) returns non-zero if the argument is an ascii character, i.e., less than octal 0200. 

toupper( e) returns the upper-case character corresponding to the lower-case letter c. 

tolower(e) returns the lower-case character corresponding to the upper-case letter c. 



c 



(

0," 

,I 

,j 

Make - A Program for Maintaining Computer Programs 

S. I. Feldman 

ABSTRACT 

In a programming project, it is easy to lose track of which files need to be 
reprocessed or recompiled after a change is made in some part of the source. 
Make provides a simple mechanism for maintaining up-to-date versions of pro­
grams that result from many operations on a number of files. It is possible to tell 
Make the sequence of commands that create certain files, and the list of files that 
require other files to be current before the operations can be done. Whenever a 
change is made in any part of the program, the Make command will create the 
proper files simply, correctly, and with a minimum amount of effort. 

The basic operation of Make is to find the name of a needed target in the 
description, ensure that all of the files on which it depends exist and are up to 
date, and then create the target if it has not been modified since its generators 
were. The description file really defines the graph of dependencies; Make does a 
depth-first search of this graph to determine what work is really necessary. 

Make also provides a simple macro substitution facility and the ability to 
encapsulate commands in a single file for convenient administration. 

August 15, 1978 



/ .. < 
i , 
~~. 

c 



( 

(:~ 

Make - A Program for Maintaining Computer Programs 

S. I. Feldman 

Introduction 

It is common practice to divide la.rge programs into smaller, more manageable pieces. The 
pieces may require quite different treatments: some may need to be run through a macro processor, 
some may need to be processed by a sophisticated program generator (e.g., Yacc[l] or Lex[2]). The 
outputs of these generators may then have to be compiled with special options and with certain 
definitions and decla.rations. The code resulting from these transformations may then need to be 
loaded together with certain libra.ries under the control of special options. Related maintenance 
activities involve running complicated test scripts and installing validated modules. Unfor­
tunately, it is very easy for a programmer to forget which files depend on which others, which files 
have been modified recently, and the exact sequence of operations needed to make or exercise a new 
version of the program. After a long editing session, one may easily lose track of which files have 
been changed and which object modules are still valid, since a change to a decla.ration can obsolete 
a dozen other files. Forgetting to compile a routine that has been changed or that uses changed 
decla.rations will result in a program that will not work, and a bug that can be very ha.rd to track 
down. On the other hand, recompiling everything in sight just to be safe is very wasteful. 

The program described in this report mechanizes many of the activities of program develop­
ment and maintenance. If the information on inter-file dependences and command sequences is 
stored in a file, the simple command 

make 

is frequently sufficient to update the interesting files, regardless of the number that have been 
edited since the last "make". In most cases, the description file is easy to write and changes infre­
quently. It is usually easier to type the make command than to issue even one of the needed 
operations, so the typical cycle of program development operations becomes 

think - edit - make - test '" 

Make is most useful for medium-sized programming projects; it does not solve the problems 
of maintaining multiple source versions or of describing huge programs. Make was designed for 
use on Unix, but a version runs on GOOS. 

Basic Features 

The basic operation of make is to update a ta.rget file by ensuring that all of the files on 
which it depends exist and a.re up to date, then creating the target if it has not been modified since 
its dependents were. Make does a depth-first search of the graph of dependences. The operation of 
the command depends on the ability to find the date and time that a file was last modified. 

To illustrate, let us consider a simple example: A program named prog is made by compiling 
and loading three C-Ianguage files z.c, 'I/.C, and z.c with the IS library. By convention, the output 
of the 0 compilations will be found in files named Z.o, '1/.0, and z.o. Assume that the files z.c and 
'1/. c share some decla.rations in a file named deJ8, but that z. c does not. That is, z. c and '1/. c have 
the line 

#include "defs" 

The following text describes the relationships and operations: 



·2-

prog: x.o y.o z.o 
cc X.O y.o z.o -IS -0 prog 

X.O y.o: defs 

It this information were stored in a file named makefile, the command 

make 

would perform the operations needed to recreate pro, after any changes had been made to any of 
the four source files z.e, ,.e, z.e, or delB. 

Make operates using three sources of information: a user-supplied description file (as above), 
file names and "last-modified" times from the file system, and built-in rules to bridge some of the 
gaps. In our example, the first line says that pro, depends on three". ot! files. Once these object 
files are current, the second line describes how to load them to create pro,. The third line says 
that z.o and ,.0 depend on the file delB. From the file system, make discovers that there are three 
" . e" files corresponding to the needed ". ot! files, and uses built-in information on how to generate 
an object from a source file (i.e., issue a "cc _ct! command). 

The following long-winded description file is equivalent to the one above, but takes no 
advantage of make's innate knowledge: 

prog: x.o y.o z.O 
cc x.o y.o z.o -IS -0 prog 

x.o: x.c defs 
cc -c x.c 

y.o: y.c defs 
cc -c y.c 

z.o: z.c 
cc -c z.c 

It none of the source or object files had changed since the last time prog was made, all of the 
files would be current, and the command 

make 

would just announce this fact and stop. It, however, the dels file had been edited, z.c and 1I.C (but 
not z. c) would be recompiled, and then pro, would be created from the new ". ot! files. If only the 
file y.e had changed, only it would be recompiled, but it would still be necessary to reload prog. 

It no target name is given on the make command line, the first target mentioned in the 
description is created; otherwise the specified targets are made. The command 

make x.o 

would recompile :r.O if z.e or delB had changed. 

It the file exists after the commands are executed, its time of last modification is used in 
further deCisions; otherwise the current time is used. It is often quite useful to include rules with 
mnemonic names and commands that do not actually produce a file with that name. These entries 
can take advantage of make's ability to generate files and substitute macros. Thus, an entry 
"save" might be included to copy a certain set of files, or an entry "cleanup" might be used to 
throwaway unneeded intermediate files. In other cases one may maintain a zero-length file purely 
to keep track of the time at which certain actions were performed. This technique is useful for 
maintaining remote archives and listings. 

Make has a simple macro mechanism for substituting in dependency lines and command 
strings. Macros are defined by command arguments or description file lines with embedded equal 
signs. A macro is invoked by preceding the name by a dollar sign; macro names longer than one 
character must be parenthesized. The name of the macro is either the single character after the 
dollar sign or a name inside parentheses. The following are valid macro invocations: 

c 

o 



(
'<. ". 

. / 

S(CFLAGS) 
$2 
Sexy) 
sz 
S(z) 

-3-

The last two invocations are identical. .. is a dollar sign. All of these macros are assigned values 
during input, as shown below. Four special macros change values during the execution of the com­
mand: S., S@, S1, and S<. They will be discussed later. The following fragment shows the use: 

OBJECTS = x.O y.o z.o 
LIBES =-IS 
prog: S(OBJECTS) 

cc S(OBJECTS) S(LIDES) -0 prog 

The command 

make 

loads the three object files with the IS library. The command 

make ''LIDES= -11 -IS" 

loads them with both the Lex ("-ll") and the Standard ("-IS") libraries, since macro definitions on 
the command line override definitions in the description. (It is necessary to quote arguments with 
embedded blanks in UNIXt commands.) 

The following sections detail the form of description files and the command line, and discuss 
options and built-in rules in more detail. 

Description Files and Substitutions 

A description file contains three t.ypes of information: macro definitions, dependency informa­
tion, and executable commands. There is also a comment convention: all characters after a sharp 
(#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp are tot.ally 
ignored. H a non-comment line is too long, it can be continued using a backslash. H the last char­
acter of a line is a backslash, the backslash, newline, and following blanks and tabs are replaced by 
a single blank. 

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The 
name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are 
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs are 
stri pped.) The following are valid macro definitions: 

2 =xyz 
abc = -11 -ly -IS 
LIDES= 

The last definition assigns LIDES the null string. A macro that is never explicitly defined has the 
null string as value. Macro definitions may also appear on the make command line (see below). 

Other lines give information about target files. The general form of an entry is: 

target! [target2 ... J :[:J [dependentl ... J [; commands] [# ... ] 
[(tab) commands] [# ... ] 

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, 
periods, and slashes. (Shell metacharacters "." and "1" are expanded.) A command is any string 

t UNIX is a trademark or Bell Laboratories, 



of characters not including a sharp (except in quotes) or newline. Commands may appear either 
after a semicolon on a dependency line or on lines beginning with a tab immediately following a 
dependency line. 

A dependency line may have either a single or a double colon. A target name may appear on 
more than one dependency line, but all of those lines must be of the same (single or double colon) 
type. 

1. 

2. 

For the usual single-colon ease, at most one of these dependency lines may have a command 
sequence associated with it. H the target is out of date with any of the dependents on any of 
the lines, and a command sequence is specified (even a null one following a semicolon or tab), 
it is executed; otherwise a default creation rule may be invoked. 

In the double-colon case, a command sequence may be associated with each dependency line; 
if the target is out of date with any of the files on a particular line, the associated commands 
are executed. A built-in rule may also be executed. This detailed form is of particular value 
in updating archive-type files. 

H a target must be created, the sequence of commands is executed. Normally, each command 
line is printed and then passed to a separate invocation of the Shell after substituting for macros. 
(The printing is suppressed in silent mode or if the command line begins with an @ sign). Make 
normally stops if any command signals an error by returning a non-zero error code. (Errors are 
ignored if the "_i" flags has been specified on the make command line, if the fake target name 
".IGNORE" appears in the description file, or if the command string in the description file begins 
with a hyphen. Some UNIX commands return meaningless status). Because each command line is 
passed to a separate invocation of the Shell, care must be taken with certain commands (e.g., cd 
and Shell control commands) that have meaning only within a single Shell process; the results are 
forgotten before the next line is executed. 

Before issuing any command, certain macros are set. $@ is set to the name of the file to be 
"made". $1 is set to the string of names that were found to be younger than the target. If the 
command was generated by an implicit rule (see below), $< is the name of the related file that 
caused the action, and $* is the prefix shared by the current and the dependent file names. 

If a file must be made but there are no explicit commands or rele~ant built-in rules, the com­
mands associated with the name ".DEFAULT" are used. If there is no such name, make prints a 
message and stops. 

Command Usage 

The make command takes four kinds of arguments: macro definitions, flags, description file 
names, and target file names. 

make [ flags 1 [macro definitions 1 [targets 1 
The following summary of the operation of the command explains how these arguments are inter­
preted. 

First, all macro definition arguments (arguments with embedded equal signs) are analyzed 
and the assignments made. Command-line macros override corresponding definitions found in the 
description files. 

Next, the flag arguments are examined. The permissible flags are 

-i Ignore error codes returned by invoked commands. This mode is entered if the fake target 
name" .IGNORE" appears in the description file. 

-s Silent mode. Do not print command lines before executing. This mode is also entered if the 
fake target name" .sILENT" appears in the description file. 

-r Do not use the built-in rules. 

-n No execute mode. Print commands, but do not execute them. Even lines beginning with an 
"@" sign are printed. o 



(/ 

( 

-5-

-t Touch the tuget files (causing them to be up to date) rather than issue the usual commands. 

-q Question. The make command returns a zero or non-zero status code depending on whether 
the target file is or is not up to date. 

-p Print out the complete set of macro definitions and target descriptions 

-d Debug mode. Print out detailed information on files and times examined. 

-f Description file name. The next argument is assumed to be the name of a description file. A 
file name of "-" denotes the standard input. If there are no "-f" arguments, the file named 
makefile or MakefiJe in the current directory is -read. The contents of the description files 
override the buil~in rules if they are present). 

Finally, the remaining arguments are assumed to be the names of targets to be made; they 
are done in left to right order. If there are no such arguments, the first name in the description 
files that does not begin with a period is "made". 

Implicit Rules 

The make program uses a table of interesting suffixes and a set of transformation rules to 
supply default dependency information and implied commands. (The Appendix describes these 
tables and means of overriding them.) The default suffIX list is: 

.0 Object file 

.C C source file 

.e Efl source file 

.r Ratfor source file ., Fortran source file 

.8 Assembler source file 

. ., Yacc-C source grammar 

. .,r Yacc-Ratfor source grammar 

. .,e Yacc-Efl source grammar 

.1 Lex source grammar 

The following diagram summarizes the default transformation paths. If there are two paths con­
necting a pair of suffiXes, the longer one is used only if the intermediate file exists or is named in 
the description. 

.0 

.C .r .e ., .8 • ., • .,r .re .I .d 

. ., .I .1/r • .,e 

If the file z.o were needed and there were an z. c in the description or directory, it would be 
compiled. If there were also an z.l, that grammar would be run through Lex before compiling the 
result. However, if there were no z.c but there were an z.l, make would discard the intermediate 
C-language file and use the direct link in the graph above. 

It is possible to change the names of some of the compilers used in the default, or the flag 
arguments with which they are invoked by knowing the macro names used. The compiler names 
are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command 

make CC=newcc 

will cause the "newcc" command to be used instead of the usual C compiler. The macros 
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be 



issued with optional flags. Thus, 

make "CFLAGS= -0" 

causes the optimizing C compiler to be used. 

Example 

-6-

.As an example of the use of make, we will present the description file used to maintain the 
make command itself. The code for make is spread over a number of C source files and a Yacc 
grammar. The description file contains: 

:# Description file for the Make command 

P = und -3 I opr -r2 :# send to GCOS to be printed 
Fll..ES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c 
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o 
LIBES= -IS 
LINT = lint -p 
CFLAGS =-0 

make: '(OBJECTS) 
cc $(CFLAGS) $(OBJECTS) $(LIDES) -0 make 
size make 

'(OBJECTS): defs 
gram.o: lex.c 

cleanup: 
-rm *.0 gram.c 
-du 

install: 
@size make /usr /bin/make 
cp make /usr/bin/make ; rm make 

print: '(Fll..ES) :# print recently changed files 
pr $? I $P 

test: 

touch print 

make -dp I grep -v TIME > lzap 
/usr/bin/make -dp I grep -v TIME >2zap 
diff lzap 2zap 
rm lzap 2zap 

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c 
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c 
rm gram.c 

arch: 
ar uv /sys/source/s2/make.a $(FILES) 

gram.y lex.c gcos.c 

Make usually prints out each command before issuing it. The following output results from typing 
the simple command 

make 

in a directory containing only the source and description file: 



(-

( 

- 7-

cc -c version.c 
cc -c main.c 
cc -c doname.c 
cc -c misc.c 
cc -c files.c 
cc -c dosys.c 
yacc gram.y 
mv y.tab.c gram.c 
cc -c gram.c 
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS -0 make 
13188+3348+3044 = 19580b = 046174b 

Although none of the source files or grammars were mentioned by name in the description file, 
make found them using its sutrlX rules and issued the needed commands. The string of digits 
results from the "size make" command; the printing of the command line itself was suppressed by 
an @ sign. The @ sign on the ,ize command in the description file suppressed the printing of the 
command, so only the sizes are written. 

The last few entries in the description file are useful maintenance sequences. The "print" 
entry prints only the files that have been changed since the last "make print" command. A zero­
length file print is maintained to keep track of the time of the printing; the $1 macro in the com­
mand line then picks up only the names of the files changed since print was touched. The printed 
output can be sent to a different printer or to a file by changing the definition of the P macro: 

make print t'P = opr -sp" 
or 

make print ''P= cat >zap" 

Suggestions and Warnings 

The most common difficulties arise from make's specific meaning of dependency. If file x. c 
has a "#include "defs"" line, then the object file x.o depends on de/s; the source file x.c does not. 
(If deJs is changed, it is not necessary to do anything to the file x.c, while it is necessary to recreate 
x.o.) 

To discover what make would do, the "-n" option is very useful. The command 

make -n 

orders make to print out the commands it would issue without actually taking the time to execute 
them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition to an 
include file), the "-til (touch) option can save a lot of time: instead of issuing a large number of 
superfluous recompilations, make updates the modification times on the affected file. Thus, the 
command 

make -ts 

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary, since 
this mode of operation subverts the intention of make and destroys all memory of the previous 
relationships. 

The debugging Bag ("-d") causes make to print out a very detailed description of what it is 
doing, including the file times. The output is verbose, and recommended only as a last resort. 

Acknowledgments 

I would like to thank S. C. Johnson for suggesting this approach to program maintenance 
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs 
during development of make. 



-8-

References 
1. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler", Bell Laboratories Computing Sci­

ence Technical Report #32, July 1978. 

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator", Computing Science Technical Report 
#39, October 1975. 



-9-

Appendix. Suffixes and Transformation Rules 

The make program itself does not know what file name suffIXes are interesting or how to 
transform a file with one suffIX into a file with another SuffIX. This information is stored in an 
internal table that has the form of a description file. IC the "-r" flag is used, this table is not used. 

The list of suffIXes is actually the dependency list for the name" .SUFFIXES"; make looks for 
a file with any of the suffixes on the list. IC such a file exists, and if there is a transformation rule 
for that combination, m4ke acts as described earlier. The transformation rule names are the con­
catenation of the two suffIXes. The name of the rule tp transform a ". r" file to a ".0" file is thus 
".r.o". IC the rule is present and no explicit command sequence has been given in the user's 
description files, the command sequence for the rule" .r.o" is used. IC a command is generated by 
using one of these suffIXing rules, the macro S. is given the value of the stem (everything but the 
suffix) of the name of the file to be made, and the macro S< is the name of the dependent that 
caused the action. 

The order of the suffIX list is significant, since it is scanned from left to right, and the first 
name that is formed that has both a file and a rule associated with it is used. IC new names are to 
be appended, the user can just add an entry for ".SUFFIXES" in his own description file; the 
dependents will be added to the usual list. A" .SUFFIXES" line without any dependents deletes 
the current list. (It is necessary to clear the current list if the order of names is to be changed). 

The following is an excerpt from the default rules file: 

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s 
YACC=yacc 
YACCR yacc-r 
YACCE-yacc -e 
YFLAGS= 
LEX=lex 
LFLAGS= 
CC=cc 
AS=as -
CFLAGS= 
RC=ec 
RFLO\GS= 
EC=ec 
EFLAGS= 
FFLAGS= 
.c.o: 

S( CC) S( CFLAGS) -c S < 
.e.o .r.o .f.o : 

.s.o: 

.y.o : 

.y.e: 

'(EC) S(RFLAGS) $(EFLAGS) $(FFLAGS) -c $< 

S(AS) -0 S@ S< 

S(YACC) S(YFLAGS) $< 
S(CC) S{CFLAGS) -c y.tab.e 
rm y.tab.e 
mv y.tab.o $@ 

S(YACC)S(YFLAGS)$< 
mv y.tab.e $@ 



o 



( 

SYSTEMV/68 

ASSEMBLER USER'S GUIDE 

Motorola Corporation makes no representation or. warranties with respect to the contents 
of this manual and disclaims any impled warranties or fitness for any particular applica­
tion. Motorola Corporation reserves the right to revise this manual without obligation of 
Motorola Corporation to notify any person or organization of such revision. 

Third Edition 

© Copyright 1985 by Motorola Inc. All rights reserved 
worldwide. No part of this publication may be reproduced 

without the express written permission of Motorola Corporation. 

First Edition June 1984 
Second Edition November 1984 

Portions of this document are reprinted 
from copyrighted documents by permission of 

AT&T Technologies, Incorporated, 1983. 

This manual is reprinted in its entirety by ICON INTERNATIONAL 
with permission of Motorola Inc., 1987 

The information in this document has been carefully checked and is believed to be 
entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, 
ICON II\TTERNATIONAL reserves the right to make changes to any products herein to 
improve reliability, function, or design. ICON INTERNATIONAL does not assume any 
liability arising out of the application or use of any product or circuit described herein; 
neither does it convey any license under its patent rights or the rights of others. 

Trademarks 
UNIX is a registered trademark of AT&T. 

EXORmacs, EXORterm, and SYSTEM V /68 are trademarks of Motorola, Inc. 

VAX is a trademark of Digital Equipment Corporation. 





c~) 

1. INTRODUCTION 

This is a reference manual for the MPS/UX resident assembler, as. Programmers familiar 
with the M68000 family of processors should be able to program in as by referring to 
this manual, but this is not a manual for the processor itself. Details about the effects of 
instructions, meanings of status register bits, handling of interrupts, and many other 
issues are not dealt with here. This manual, therefore, should be used in conjunction 
with the following reference manuals: 

• M68000 16/32-Bit Microprocessor Programmer's Reference Manual, Fourth Edition; 
Englewood Cliffs, NJ: PRENTICE-HALL, 1984. This manual is also available from 
the Motorola Literature Distribution Center, P.O. Box 20912, Phoenix, AZ 85036, 
part number M68000UM. 

• MC68020 32-Bit Microprocessor User's Manual; Englewood Cliffs, NJ: PRENTICE­
HALL, 1984. This manual is also available from the Motorola Literature Distribu­
tion Center, part number MC68020UM. 

• M68000 Family Resident Structured Assembler Reference Manual, part number 
M68KMASM. 

• SYSTEM V /68 User's Manual, part number M68KUNUM. 

• SYSTEM V /68 VM04 System Manual, part number M68KVM4SYS. This document 
includes user manual pages to support the MC68881 floating point co-processor pro­
vided in SYSTEM V /68 Release 2, Version 2 from Motorola Corp. 

This guide also contains information for users of the SGS M68020 Cross Compilation 
System. For these users, references to as(l) and cc(l) should be read as as!'O(l) and 
cc!'O(I). Information about these commands is provided in the SGS M68020 Cross Com­
pilation System Reference Manual, part number M68KUNASX. 

2. WARNINGS 

A few important warnings to the as user should be emphasized at the outset. Though 
for the most part there is a direct correspondence between as notation and the notation 
used in the documents listed in the preceding section, several exceptions exist that could 
lead the unsuspecting user to write incorrect code. In addition to the exceptions 
described in the following paragraphs, refer also to sections 10 and 11 for information 
about address mode syntax and machine instructions. 

2.1. Comparison Instructions 
First, the order of the operands in compare instructions follows one convention in the 
M68000 Programmer's Reference Manual and the opposite convention in as. Using the 
convention of the M68000 Programmer's Reference Manual, one might write 

CMP.W D5,D3 Is D3 less than D5? 
BLE IS..LESS Branch if less. 

Using the as convention, one would write 

cmp.w %d3,%d5 
ble is_less 

# Is d3 less than d5? 
# Branch if less. 



- 2-

As follows the convention used by other assemblers supported in the UNIXQ!) operating 
system (both the 3B20S and the VAX follow this convention). This convention makes 
for straightforward reading of compare-and-branch instruction sequences, but does 
nonetheless lead to the peculiarity that if a compare instruction is replaced by a subtract 
instruction, the effect on the condition codes will be entirely different. This may be 
confusing to programmers who are used to thinking of a comparison as a subtraction 
whose result is not stored. Users of as who become accustomed to the convention will 
find that both the compare and subtract notations make sense in their respective con­
texts. 

2.2. Overloading or Opcodes 
Another issue that users must be aware of arises from the M68000 processors' use of 
several different instructions to do more or less the same thing. For example, the 
M68000 Programmer's Reference Manual lists the instructions SUB, SUBA, SUBI, and 
SUBQ, which all have the effect of subtracting their source operand from their destina­
tion operand. As provides the convenience of allowing all these operations to be specified 
by a single assembly instruction sub. On the basis of the operands given to the sub 
instruction, the as assembler selects the appropriate M68000 operation code. The danger 
created by this convenience is that it could leave the misleading impression that all forms 
of the SUB operation are semantically identical. In fact, they are not. The careful reader 
of the M68000 Programmer's Reference Manual will notice that whereas SUB, SUBI, 
and SUBQ all affect the condition codes in a consistent way, SUBA does not affect the 
condition codes at all. Consequently, the as user must be aware that when the destina­
tion of a sub instruction is an address register (which causes the Bub to be mapped into 
the operation code for SUBA), the condition codes will not be affected. 

3. USE OF THEASSE:MBLER 

The SYSTEM V /68 command as invokes the assembler and has the following syntax: 

as [ -0 output J file 

\\7ben as is invoked with the -0 output flag, the output of the assembly is put in the file 
output. If the -0 flag is not specified, the output is left in a file whose name is formed by 
removing the .s suffix, if there is one, from the input filename and appending a .0 suffix. 

The M68020 cross assembler, as20(1), is invoked with the same syntax as as(l). For 
information about additional options for these commands, refer to the SYSTEM V/68 
User's A1anual for as(l) and the SGS M68020 Cross Compilation System Reference 
Manual for 0820(1). 

UNIX is a. registered trademark of AT&T. 

r-\ 
, I 

~ 

c 



<- / 

( 

- 3-

4. GENERAL SYNTAX RULES 

4.1. Format of Assembly Language Line 

Typical lines of as assembly code look like these: 

# Clear a block of memory at location %a3 

loop: 

init2: 

text 
move.w 
elr.l 
dbf 

2 
&const,%dl 
(%a3)+ 
%dl,loop # go back for const 

# repetitions 

elr.l count; elr.l credit; elr.l debit; 

These general points about the example should be noted: 

An identifier occurring at the beginning of a line and followed by a colon (:) is a 
label. One or more labels may precede any assembly language instruction or 
pseudo-operation. Refer to Section 5.2, "Location Counters and Labels." 

A line of assembly code need not include an instruction. It may consist of a com­
ment alone (introduced by #), a label alone (terminated by:), or it may be entirely 
blank. 

It is good practice to use tabs to align assembly language operations and their 
operands into columns, but this is not a requirement of the assembler. An opcode 
may appear at the beginning of the line, if desired, and spaces may precede a label. 
A single blank or tab suffices to separate an opcode from its operands. Additional 
blanks and tabs are ignored by the assembler. 

It is permissible to write several instructions on one line separating them by semi­
colons. The semicolon is syntactically equivalent to a newline character; however, a 
semicolon inside a comment is ignored. 

4.2. Comments 

Comments are introduced by the character # and continue to the end of the line. Com­
ments may appear anywhere and are completely disregarded by the assembler. 

4.3. Identifiers 
An identifier is a string of characters taken from the set a-z, A-Z, _, -, %, and 0-9. 
The first character of an identifier must be a letter (uppercase or lowercase) or an under­
score. Uppercase and lowercase letters are distinguished; for example, con3S and 
CON3S are two distinct identifiers. 

There is no limit on the length of an identifier. 

The value of an identifier is established by the set pseudo-operation (refer to Section 8.2, 
"Symbol Definition Operations") or by using it as a label. Refer to Section 5.2, ''Location 
Counters and Labels". 

The tilde character C) has special significance to the assembler. A - used alone, as an 
identifier, means "the current location". A - used as the first character in an identifier 



-4-

becomes a period (.) in the symbol table, allowing symbols such as .eos and .Ofake to 
be entered into the symbol table, as required by the Common Object File format 
(COFF). Information about file formats is provided in the SYSTEM V/68 User's 
Manual, Section 4. 

4.4. Register Identifiers 
A register identifier is an identifier preceded by the character %, and represents one of 
the MC68000 processor's registers. The predefined register identifiers are; 

%dO 
%dl 
%d2 
%d3 

%d4 
%d5 
%d6 
%d7 

%&0 
%al 
%a2 
%a3 

%a4 
%&5 
%a6 
%a7 

%acc 
%pc 
o/osp 
o/osr 

%usp 
%fp 

Note: The identifiers %a7 and %sp represent the same machine register. Likewise, 
%a6 and %fp are equivalent. Use of both %a7 and %sp, or %a6 and %fp, in the 
same program may result in confusion. 
The current version of the assembler will correctly assemble instructions intE'nded for the 
M68010. There will be a warning message issued. The following additions will be 
flagged with warnings: 

REGISTERS ADDED FOR THE MC68010 
NAME DESCRIPTION 
%sfc Source Function Code Re~ister 
%dfc Destination Function Code Register 
%vbr Vector Base Register 

The entire register set of the MC68000 and MC68010 is included in the MC68020 register 
set. The following are new control registers for the MC68020: 

MC68020 REGISTERS 
NAME DESCRIPTION 
%caar Cache Address Register 
%cacr Cache Control Register 
%isp Interrupt Stack Pointer 
%msp Master Stack Pointer 



( 

- 5-

The following are suppressed registers (zero registers) used in various MC68020 address­
ing modes: 

MC68020 ZERO REGISTERS 
SUPPRESSED SUPPRESSED SUPPRESSED 
ADDRESS REGISTERS DATA REGISTERS PROGRAM COUNTER 

%zaO %zdO %zpc 
%zal %zdl 
%za2 %zd2 
%za3 %zd3 
%za4 %zd4 
%za5 %zd5 
%za6 %zd6 
%za7 %zd7 

4.5. Constants 

As deals only with integer constants. They may be entered in decimal, octal, or hexade­
cimal, or they may be entered as character constants. Internally, as treats all constants 
as 32-bit binary two's complement quantities. 

4.5.1. Numerical Constants. A decimal constant is a string of digits beginning with 
a non-zero digit. An octal constant is a string of digits beginning with zero. A hexade­
cimal constant consists of the characters Ox or OX followed by a string of characters 
from the set 0-9, a-f, and A-F. In hexadeximal constants, uppercase and lowercase 
letters are not distinguished. 

Examples: 

set const,35 
moY.w &035,%dl 
set const, Ox35 
moY.w &Oxff, %dl 

# Decimal 35 
# Octal 35 (decimal 29) 
# Hex 35 (decimal 53) 
# Hex ff (decimal 255) 

4.5.2. Character Constants. An ordinary character constant consists of a single-quote 
character (') followed by an arbitrary ASCII character other than the backslash (\). The 
value of the constant is equal to the ASCII code for the character. Special meanings of 
characters are overridden when used in character constants; for example, if '# is used, 
the # is not treated as introducing a comment. 

A special character constant consists of '\ followed by another character. All the special 
character constants and examples of ordinary character constants are listed in the follow­
ing table. 



- 6-

CONSTANT VALUE MEANING 

'\ b Ox08 Backspace 
'\ t Oz09 Horizontal Tab 
'\ n OxOa Newline (Line Feed) 
'\ v OxOb Vertical Tab 
'\f OxOc Form Feed 
'\ r OxOd Carriage Return 
'\\ Ox5c Backslash , , 

Ox27 Single Quote 
'0 Ox30 Zero 
'A Ox41 Uppercase A 
'a Ox61 Lowercase a 

4.6. Other Syntactic Details 

A discussion of expression syntax appears in Section 7 of this guide. Information about 
the syntax of specific components of as instructions and pseudo-operations is given in 
Sections 8, 9, and 10. 

5. SEGMENTS, LOCATION COUNTERS, AND LABELS 

5.1. Segments 

A program in as assembly language may be broken into segments known as text, data 
and bss segments. The convention regarding the use of these segments is to place 
instructions in text segments, initialized data in data segments, and uninitialized data in 
bss segments. However, the assembler does not enforce this convention; for example, it 
permits intermixing of instructions and data in a text segment. 

Primarily to simplify compiler code generation, the assembler permits up to four separate 
text segments and four separate data segments named 0, 1, 2, and 3. The assembly 
language program may switch freely between them by using assembler pseudo-operations 
(refer to Section 8.3, ''Location Counter Control Operations"). When generating the 
object file, the assembler concatenates the text segments to generate a single text seg­
ment, and the data segments to generate a single data segment. Thus, the object file 
contains only one text segment and only one data segment. There is always only one bss 
segment and it maps directly into the object file. 

Because the assembler keeps together everything from a given segment when generating 
the object file, the order in which information appears in the object file may not be the 
same as in the assembly language file. For example, if the data for a program consisted 
of 

data 1 # segment 1 
short Ox1111 
data 0 # segment 0 
long Oxff ff ff ff 
data 1 # segment 1 
byte Oxff 

o 

o 



( 

( 

- 7-

then equivalent object code would be generated by 

data 
long 
short 
byte 

o 
Oxfl'fI'ffff 
Oxllll 
Oxfl' 

5.2. Location Counters and Labels 
The assembler maintains separate location counters for the bss segment and for ~ach of 
the text and data segments. The location counter for a given segment is incremented by 
one for each byte generated in that segment. 

The location counters allow values to be assigned to labels. When an identifier is used as 
a label in the assembly language input, the current value of the current location counter 
is assigned to the identifier. The assembler also keeps track of which segment the label 
appeared in. Thus, the identifier represents a memory location relative to the beginning 
of a particular segment. Any label relative to the location counter should be within the 
text segmen t. 

6. TYPES 
. Identifiers and expressions may have values of different types. 

In the simplest case, an expression (or identifier) may have an absolute value, such 
as 29, -5000, or 262143. 

An expression (or identifier) may have a value relative to the start of a particular 
segment. Such a value is known as a relocatable value. The memory location 
represented by such an expression cannot be known at assembly time, but the rela­
tive values of two such expressions (i.e., the difference between them) can be known 
if they refer to the same segment. 

Identifiers which appear as labels have relocatable values. 

If an identifier is never assigned a value, it is assumed to be an undefined external. 
Such identifiers may be used with the expectation that their varnes will be defined 
in another program, and therefore known at load time; but the relative values of 
undefined externals cannot be known. 

7. EXPRESSIONS 
For conciseness, the following abbreviations are useful: 

aba absolute expression 
reI relocatable expression 
ext undefined external 

All constants are absolute expressions. An identifier may be thought of as an expression 
having the identifier's type. Expressions may be built up from lesser expressions using 
the operators +, -, ., and /, according to the following type rules: 



abs + abe -= abe 
abs + reI -= reI + aba -= reI 
abs + ext -= ext + abs -= ext 

abs - aba -= abs 
reI - abs -= reI 
ext - aba -= ext 
reI - reI = abs (provided that 

-8-

the two relocatable expressions are relative to the same segment) 

abs * abs -= abs 

abs / abs = abs 

-abs =abs 
Note: reI - reI expressions are permitted only within the context of a switch state­
ment (refer to Section 8.5, "Switch Table Operation".) Use of a reI - reI expression is 
dangerous, particularly when dealing with identifiers from text segments. The problem is 
that the assembler will determine the value of the expression before it has resolved all 
questions concerning span-dependent optimizations. 

The unary minus operator takes the highest precedence; the next highest precedence is 
given to * and /, and lowest precedence is given to + and -. Parentheses may be used 
to coerce the order of evaluation. 

IT the result of a division is a positive non-integer, it will be truncated toward zero. If 
the result is a negative non-integer, the direction of truncation cannot be guaranteed. 

8. PSEUDO·OPERATIONS 

8.1. Data Initialization Operations 

byte abs, abs, ... 
One or more arguments, separated by commas, may be given. The values of the 
arguments are computed to produce successive bytes in the assembly output. 

ahort abs,abs, ... 

One or more arguments, separated by commas, may be given. The values of the 
arguments are computed to produce successive 16-bit words in the assembly output. 

long expr, expr, ... 

One or more arguments, separated by commas, may be given. Each expression may 
be absolute, relocatable, or undefined external. A 32-bit quantity is generated for 
each such argument (in the case of relocatable or undefined external expressions, the 
actual value may not be filled in until load time). 

Alternatively, the arguments may be bit-field expressions. A bit-field expression has 
the form 

n: value 

where both n and value denote absolute expressions. The quantity n represents a 
field width; the low-order n bits of value become the contents of the bit-field. 



( 

( 

- 9 -

Successive bit-fields fill up 32-bit long quantities starting with the high-order part. 
Ir the sum of the lengths of the bit-fields is less than 32 bits, the assembler creates a 
32-bit long with zeroes filling out the low-order bits. For example, 

long 4: -1, 16: Ox7f, 12:0, 5000 

and 

long 

are equivalent to 

long 

4: -1, 16: Ox7f, 5000 

Oxf007fOOO, 5000 

Bit-fields may not span pairs of 32-bit longs. Thus, 

long 24: Oxa, 24: Oxb, 24:0xe 

yields the same thing as 

long OxOOOOOaOO, OxOOOOObOO, OxOOOOOeOO 

space abs 

The value of abs is computed, and the resultant. number of byt.es of zero data is gen­
erated. For example, 

space 

is equivalent to 

byte 

6 

0,0,0,0,0,0 

8.2. Symbol Definition Operations 

set identifier, expr 

The value of identifier is set equal to expr, which may be absolute or relocatable. 

comm identifier,abs 

The named identifier is to be assigned to a common area of size abs bytes . .If 
identifier is not defined by another program, the loader will allocate space for it. 

lcomm identifier, abs 
The named identifier is assigned to a local common of size abs bytes. This results in 
allocation of space in the bss segment. 

The t.ype of identifier becomes relocatable. 

glo bal identifier 

This causes identifier to be externally visible. If identifier is defined in the current 
program, then declaring it global allows the loader to resolve references to identifier 
in other programs. 

If identifier is not defined in the current program, the assembler expects an external 
resolution; in this case, therefore, identifier is global by default. 



.. 10-

8.3. Loeation Counter Control Operations 
data ab8 

text ab8 

org expr 

even 

The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the 
number oC the data segment into which assembly is to be directed. If no 
argument is present, assembly is directed into data segment o. 

The argument, if present, must eva.luate to 0, 1, 2, or 3; this indicates the 
number oC the text segment into which assembly is to be directed. If no 
argument is present, assembly is directed into text segment o. 
BeCore the first text or data operation is encountered, assembly is by 
default directed into text segment o. 

The current location counter is set to expr. Expr must represent a value 
in the current segment, and must not be less than the current location 
counter. 

The current location counter is rounded up to the next even value. 

8.4. Symbolic Debugging Operations 
The assembler allows Cor symbolic debugging information to be placed into the object 
code file with special pseudo-operations. The information typically includes line numbers 
and inCormation about C language symbols, such as their type and storage class. The C 
compiler (cc(l)) generates symbolic debugging information when the -g option is used. 
Assembler programmers may also include such information in source files. 

8.4.1. file and In. The file pseudo-operation passes the name of the source file into the 
object file symbol table. It has the form 

file filename 

where filename consists of one to 14 characters enclosed in quotation marks. 

The In pseudo-operation makes a line number table entry in the object file. That is, it 
associates a line number with a memory location. Usually the memory location is the 
current location in text. The format is 

In line[, value] 
where line is the line number. The optional value is the address in text, data, or b88 to 
associate with the line number. The default when value is omitted (which is usually the 
case) is the current location in text. 

c 



- 11 -

8.4.2. Symbol Attribute Operations. The basic symbolic testing pseud<roperations 
are def and endef. These operations enclose other pseudo-operations that assign attri­
butes to a symbol and must be paired. 

def name 

endef 

# Attribute 
# Assigning 
# Operations 

NOTES 

• def does not define the symbol, although it does create a symbol table entry. 
Because an undefined symbol is treated as external, a symbol which appears in a 
def, but which never acquires a value, will ultimately result in an error at link edit 
time. 

• to allow the assembler to calculate the sizes of functions for other tools, each 
def/endef pair that defines a function name must be matched by a def/endef 
pair after the function in which a storage class of -1 is assigned. 

The paragraphs below describe the attribute-assigning operations. Keep in mind that all 
of these operations apply to symbol name which appeared in the opening def pseud<r 
operation. 

val expr 

Assigns the value expr to name. the type of the expression expr determines with 
which section name is associated. If value is -, the current location in the text sec­
tion is used. 

sel expr 

Declares the C language type of name. The expression expr must yield an ABSO­
LUTE value that corresponds to the C compiler's internal representation of a storage 
class. The special value -1 designates the physical end of a function. 

type expr 

Declares the C language type of name. The expression expr must yield an ABSO­
LUTE value that corresponds to the C compiler's internal representation of a basic 
or derived type. 

tag str 

Associates name with the structure, enumeration, or union named str which must 
have already been declared with a def/endef pair. 

nne expr 

Provides the line number of name, where name is a block symbol. The expression 
expr should yield an ABSOLUTE value that represents a line number. 



- 12-

size expr 

Gives a size for name. The expression apr must yield an ABSOLUTE value. 
When name is a structure or an array with a predetermined extent, expr gives the 
size in bytes. For bit fields, the size is in bits. 

dim exprl,expr2, ... 

Indicates that name is an array. Each of the expressions must yield an ABSOLUTE 
value that provides the corresponding array dimension. 

8.5. Switch Table Operation 

The C compiler generates a compact set of instructions for the C language switch con­
struct. An example is shown below. 

sub.l &l,%dO 
cmp.l %dO,&4 
bhi L%21 
add.w %dO,%dO 
mov.w lO(%pc, %dO.w), %dO 
jmp 6(%pc,%dO.w) 
swbeg &5 

L%22: 
short L%15-L%22 
short L%21-L%22 
short L%16-L%22 
short L%21-L%22 
short L%17-L%22 

The special swbeg pseudo-operation communicates to the assembler that the lines fol­
lowing it contain reI-reI subtractions. Remember that ordinarily such subtractions are 
risky because of span-dependent optimization. In this case, however, the assembler 
makes special allowances for the subtraction because the compiler guarantees that both 
symbols will be defined in the current assembler file, and that one of the symbols is a 
fixed distance away from the current location. 

The swbeg pseudo-operation takes an argument that looks like an immediate operand. 
The argument is the number of lines that follow swbeg and that contain switch table 
entries. Swbeg inserts two words into text. The first is the ILLEGAL instruction code. 
The second is the number of table entries that follow. The disassembler dis (I) needs the 
ll..LEGAL instruction as a hint that what follows is a switch table. Otherwise, it would 
get confused when it tried to decode the table .entries, differences between two symbols, 
as instructions. 

9. SPAN-DEPENDENT OPTIMIZATION 
The assembler makes certain choices about the object code it generates based on the dis­
tance between an instruction and its operand (s). Span-dependent optimization occurs 
most obviously in the choice of object code for branches and jumps. It also occurs when 
an operand may be represented by the program counter relative address mode instead of 
as an absolute 2-word (long) address. The span-dependent optimization capability is 
normally enabled; the -n command line flag disables it. When this capability is disabled, 

j 



( 

() 

- 13-

the assembler makes worst-case assumptions about the types of object code that must be 
generated. Span-dependent optimizations are performed only within text segment O. 
Any reference outside text segment 0 is assumed to be worst-case. 

The C compiler (cc(l)) generates branch instructions without a specific offset size. When 
the optimizer is used, it identifies branches which could be represented by the short form, 
and it changes the operation accordingly. The assembler chooses only between long and 
very-long representations for branches. 

For the MC68000 and MC68010 processors, branch instructions, e.g., bra, bar, or bgt, 
can have either a byte or a word pc-rela.tive address operand. A byte or word size 
specification should be used only when the user is sure that the address intended can be 
represented in the byte or word allowed. The assembler will take one of these instruc­
tions with a size specifica.tion and generate the byte or word form of the instruction 
without asking questions. 

Although the largest offset specification allowed for the M68000 and M68010 is a word,* 
large programs could conceivably have need for a branch to location not reachable by a 
word displacement. Therefore, equivalent long forms of these instructions might be 
needed. When the Assembler encounters a branch instructions without a size 
specification, it tries to choose between the long and very-long forms of the instruction. 
If the operand can be represented in a word, then the word form of the instruction will 
be generated. Otherwise, the very-long form will be generated. For unconditional 

. branches, e.g., br, bra, and bsr, the very-long form is just the equivalent jump ( jmp 
and jsr ) with an absolute address operand (instead of pc-relative). For conditional 
branches, the equivalent very-long form is a conditional branch around a jump, where 
the conditional test has been reversed. 

The following table summarizes span-dependent optimizations. The assembler chooses 
only between the long form and the very-long form, while the optimizer chooses between 
the short and long forms for branches (but not bsr). 

ASSEMBLER SPAN-DEPENDENT OPTIMIZATIONS 
Instruction Short Form Long Form Very-Long Form 

br, bra, bsr byte offset word offset (See jmp or jar with 
footnote for in for- absolute long ad-
mation about dress 
:M68020.) 

conditional branch byte offset word offset (See short conditional 
footnote for infor- branch with re-
mation about versed condition 
M68020.) around jmp with 

absolute long ad-
dres 

jmp, jar pc-relative address absolu te long ad-
dress 

lea.!, pea.} pc-relative address absolute long ad-
dress 

• The M68020 allows long word offset, as shown by tlle syntax for the branch instructions. 



- 14-

For the MC68020 processor, branch instructions can have either a byte, word, or long 
pc-relative address operand. The assembler still chooses between word and long 
representations for branches if no byte size specification is given; however, the long form 
is replaced by a branch long with pc-relative address instead of a jump with absolute 
long address. 

10. ADDRESS MODE SYNTAX 
The following table summarizes the as syntax for MC68000, MC6801O, and MC68020 
addressing modes. New addressing modes for the MB68020 are shown with ''MC68020 
Only" in parentheses beneath the MC6800 notation; modes not specified in this way are 
for all three processors. 

In the table, the following abbreviations are used: 

an Address register, where n is any digit from 0 through 7. 

dn Data register, where n is any digit from 0 through 7. 

ri Index register i may be any address or data register with an optional size designa­
tion (i.e., ri.w for 16 bits or ri.l for 32 bits); default size is .w. 

sel Optional scale factor that may be multipled time index register in some modes. 
Values for sci are 1, 2, 4, or 8; default is 1. 

bd Two's complement base displacement that is added before indirection takes place; 
size can be 16 or 32 bits. 

od Outer displacement that is added as a part of effective address calculation after 
memory indirection; size can be 16 or 32 bits. 

d Two's complement or sign-extended displacement that is added as part of effective 
address calculation; size may be 8 or 16 bits; when omitted, assembler uses value of 
zero. 

pc Program counter 

[] Grouping characters used to enclose an indirect expression; required characters. 
Addressing arguments can occur in any order within the brackets. 

() Grouping characters used to enclose an entire effective address; required characters. 
Addressing arguments can occur in any order within the parentheses. 

{ } Indicate that a scale factor is optional; not required characters. 

It is important to note that expressions used for the absolute addressing modes need 
not be absolute expressions in the sense described in Section 6. Although the addresses 
used in those addressing modes must ultimately be filled in with constants, that can be 
done later by the loader. There is no need for the assembler to be able to compute them. 
Indeed, the Absolute Long addressing mode is commonly used for accessing undefined 
external addresses. 



- 15 -

EFFECTIVE ADDRESS MODES 

( 
M68000 as Effective Address Mode 
Familv Notation Notation 
Dn %dn Data Register Direct 
An %an Address Register Direct 
(An) (%an) Address Regist.er Indirect 
(An)+ (%an)+ Address Register Indirect 

With Postincrement 
-(An) -(%an) Address Register Indirect 

With Predecrement 
d(An) d(%an) Address Register Indirect 

With Displacement (d 
signifies a signed 16-bit 
absolute displacement) 

d(An,Ri) d(%an,%ri.w) Address Register Indirect 
d(%an,%ri.l) With Index Plus Dis-

placement (d signifies a 
signed 8-bit absolute dis-
placement) 

(bd,An,Ri{*scl}) (bd,%an,%ri{*ri}) Address Register Direct 
(MC68020 Only) With Index Plus Base 

Displacement 
([bd,An,Ri{*scl }],od) (bd, %an, %ri{*scl }j,od) Memory Indirect \Vith 
(MC68020 Only) Preindexing Plus Base 

and Outer Displacement 
([bd,Anj,Ri{*scl },od) ([bd, %an j, %ri{*scl }j,od) Memory Indirect With 
(MC68020 Only) Postindexing Plus Base 

and Outer Displacement 
d(PC) d(%pc) Program Counter 

Indirect With Displace-
ment (d signifies 16-bit 
displacement) 

d(PC,Ri) d(%pc,%rn.l) Program Counter Direct 
d(%pc,%rn.w) With Index and Dis-

placemen t (d signifies 8-
bit displa.cement) 

(bd,PC,Ri{*scl}) (bd, %pc, %ri{*scl}) Program Counter Direct 
(MC68020 Only) With Index and Base 

Displacement 
([bd,PCj,Ri{*scl},od) ([bd,%pcj,%ri{*scl},od) Program counter 
(MC68020 Only) Memory Indirect With 

Postindexing Plus Base 
and Outer Displacement 

([bd,PC,Ri{*scl }],od) ([bd, %pc, %ri{*scl }J,od) Program Counter 
(MC68020 Only) Memory Indirect With 

Preindexing Plus Base 
and Outer Displacement 

c 



- 16-

EFFECTIVE ADDRESS MODES 
M68000 as Effective Address Mode 
Family Notation Notation 
d,PC,Ri*scl],od) d,pc,ri*scl],od) Program Counter 
(MCC68020 Only) Memory Indirect With 

Preindexing Plus Base 
and Outer Displace-
ment 

xxx.W xxx Absolute Short 
Address (%XX signifies 
an expression yielding 
a 100bit memory 
address) 

xxx.L xxx Absolute Long Address 
(xxx signifies an expres-
sion yielding a 32-bit 
memorv address) 

#XXx &xxx Immediate Data (xxx 
signifies an absolute 
constant expression) 

In the table above, the index register notation should be understood as ri.8ize*scale, 
where both size and scale are optional. Refer to Chapter 2 of the M68000 Family 
Resident Structured Assembler Reference Manual for additional information about 
effective address modes. Section 2 of the MC68020 S2-Bit Microprocessor User's Manual 
also provides information about generating effective addresses and assembler syntax. 

Note that suppressed address register %zan can be used in place of %an, suppressed 
PC register %zpc can be used in place of %pc, and suppressed data register %zdn can 
be used in place of %dn, if suppression is desired. 
The new address modes for the MB68020 use two different formats of extension. The 
brief format provides fast indexed addressing, while the full format provides a number of 
options in size of displacement and indirection. The assembler will generate the brief for­
mat if the effective address expression is not memory indirect, value of displacement is 
within a byte, and no base or index suppression is specified; otherwise, the assembler will 
generate the full format. 

Some source code variations of the new modes may be redundant with the MC68000 
address register indirect, address register indirect with displacement, and program 
counter with displacement modes. The assembler will select the more efficient mode 
when redundancy occurs. For example, when the assembler sees the form (An), it will 
generate address register indirect mode (mode 2). The assembler will generate address 
register indirect with displacement (mode 5) when seeing any of the following forms (as 
long as bd fits in 16 bits or less): 

bd(An) 
(bd,An) 
(An,bd) 

c 



- 17 -

11. MACmNE INSTRUCTIONS 

( 11.1. Instructions For The MC68000/MC68010/MC68020 

( 

c 

The following table shows how MC68000/MC68010/MC68020 instructions should be 
written in order to be understood correctly by the as assembler. The entire instruction 
set can be used for the MC68020. Instructions that are MC68010/MC68020-0nly or 
MC68020-0nly are noted as such in the "OPERATION" column. 

Several abbreviations are used in the table: 

S The letter S, as in add.S, stands for one of the operation size attribute letters b, 
w, or 1, representing a byte, word, or long operation. 

A The letter A, as in add.A, stands for one of the address operation size attribute 
letters w or 1, representing a word or long operation. 

CC In the contexts bCC, dbCC, and sCC, the letters CC represent any of the follow­
ing condition code designations (except that f and t may not be used in the bCC 
instruction): 

cc carry clear Is low or same 
cs carry set It less than 
eq equal mi mmus 
f false ne not equal 
ge greater or equal pI plus 
gt greater than t true 
hi high vc overflow clear 
hs high or same (=cc) vs overflow set 
Ie less or equal 
10 low (=cs) 

EA This represents an arbitrary effective address. 

I An absolute expression, used as an immediate operand. 

Q An absolute expression evaluating to a number from 1 to 8. 

L A label reference, or any expression representing a memory address in the current 
segment. 

d Two's complement or sign-extended displacem~nt that is added as part of effective 
address calculation; size may be 8 by 16 bits; when omitted, assembler uses value of 
zero. 

%dx, %dy, %dn Represent data registers. 

%ax, %ay, %an Represent address registers. 

%rx, %ry, %rn Represent either data or address registers. 

%rc Represents control register (%sfc, %dfc, %cacr, %usr, %vbr, %caar, %msp, 
%isp). 
offset Either an immediate operand or a data register. 

width Either an immediate operand or a data register. 



- 18-

MC68000 INSTRUCTION FORMATS 
MNEM01\TJC ASSEMBLER S\ NTAX OPERATION 
ABCD abcd.d %dy, %dx Add Decimal with Extend 

-(%ay),-(%ax) 
ADD add.S EA,o/odn Add Binary 

%dn,EA 

ADDA add.A EA,%an Add Address 

ADDI add.8 &I,EA Add Immediate 

ADDQ add.S &Q,EA Add Quick 

ADDX addx.S %dy,%dx Add Extended 
~ __ -{%a}') ,-(%ax) 

AND and.S EA,%dn AND Logical 
%dn,EA 

Al"IU)I and.s &I,EA A1\1]) Immediate 

A1\1)1 and.b &I,%cc AND Immediate 
.to CCR to Condition Codes 

A1\1)1 and.w &I,%sr A1\1]) Immediate 
to SR to the Status Register 
ASL asl.S %dx,%dy Arithmetic Shift (Left) 

&Q,%dy 

als.w &l,EA 
als.w EA 

ASR asr.S %dx,%dy Arithmetic Shift (Right) 
&Q,%dy 

asr.w &l,EA 
asr.w EA 

Bcc bCC L Branch Conditionally 
(l6-bit Displacement) 

bCC.b L Branch Conditionally (Short) 
(8-bit Displacement) 

bCC.l L Branch Conditionally (Long) 
(32-bit Displacement) 
(MC68020 Onlv) 



- 19 -

MC68000 INSTRUCTION FORMATS 
MNEMONIO ASSEMBLER SYNTAX OPERATION 
BOHG bchg %dn,EA T(,~I a Bit and Change 

&I,EA 
NOTt:: hehg should be written 
with no suffix. If the second operand 
is a data register, .I is assumed; oth-
erwise .h is. 

BOLR belr %dn,EA Test a Bit and Clear 
&I,EA 

NOTE: heir should be written with 
no suffix. If the second operand is a 
data register, .1 is assumed; other-
wise .h is. 

BFCHG bfchg EA{offset:width} Complement Bit Field 
(M068020 Only) 

BFCLR bfclr EA{offset:width} Clear Bit Field 
(M068020 Only) 

BFEXTS bfexts EA {offset:wid th}, %dn Extract Bit Field (Signed) 
(MC68020 Only) 

BFEXTU bfextu EA {offset :wid th }, %d n Extract Bit Field (Unsigned) 

( (M068020 Only) 

BFFFO bfffo EA{offset:width},%dn Find First One in Bit Field 
(M068020 Only) 

BFINS bfins %dn ,EA {offset:wid th} Insert Bit Field 
(M068020 Only) 

BFSET bfset EA {offset:wid th} Set Bit Field 
(M068020 Only) 

BFTST bftst EA{offset:width} Test Bit Field 
(MC68020 Only) 

BKPT bkpt &1 Breakpoint 
(MC68020 Only) 

c 



MC68000 INSTRUCTION FORMATS 
. Ml'."EMQNIC ASSRMRT ,RR::s Il'IU,'AX OPERATION 
BRA bra L Branch Always 

o 
(16-bit Displacement) 

bra.b L Branch Always (Short) 
(8-bit Displacement) 

br.l L Branch Always (Long) 
(32-bit Displacement) 
(MC68020 Only) 

br L Same as bra 
br.b L Same as bra.b 

BSET bset o/odn,EA Test a Bit and Set 
&I,EA 

NOTE: bset should be written with 
no suffix. If the second operand is a 
data register, .1 is assumed; other-
wise .b is. 

BSR bsr L Branch to Subroutine 
(16-bit Displacement) 

bsr.b L Branch to Subroutine (Short) 
(8-bit Displacement) 

bsr.l L Branch to Subroutine (Long) 
(32-bit Displacement) 
(MC68020 OnlY) 

BTST btst %dn,EA Test a Bit and Set 
&I,EA 

NOTE: btst should be written with 
no suffix. If the second operand is a 
data register, .1 is assumed; other-
wise .b is. 

CALLM callm &I,EA Call Module 
(MC68020 Only) 

CAS cas %ds,%dy,EA Compare and Swap Operands 
(MC68020 Only) 

CAS 2 cas2 %dx:%dy ,%dx:%dy ,%rx:%ry Compare and Swap Dual 
Operands (MC68020 Onlv) 



(" 

( 

c'" 

- 21 -

MC88000 INSTRUCTION FORMATS 
Ml\TEMONIC ASSEMBLER SYNTAX OPERATION 
CHK chk.w EA,%dn Check Register Against Bounds 

chk.l EA,%dn Check Register Against Bounds 
(Long) (MC68020 Only) 

CHK2 chk2.S EA,%rn Check Register Against Bounds 
(MC68020 Only) 

CLR clr.S EA Clear an Operand 
CMP cmp.S %dn,EA Compare 

C11PA cmp.A %an,EA Compare Address 

CMPI cmp.S EA,&I Compare Immediate 

CMPM cmp.S (%ax)+,(%ay)+ Compare Memory 

CMP2 cmp.S %rn,EA Compare Register Against Bounds 
(MC68020 Only)* 

DBcc dbCC %dn,L Test Condition, Decrement, 
and Branch 

dbra %dn,L Decrement and Branch Always 

dbr %dn.L Same as dbra 
DIVS divs.w EA,%dx Signed Divide 

32/16 -. 32 

tdivs.l EA,%dx Signed Divide (Long) 
divs.l EA,%dx 32/32 -.32 

(MC68020 Only) 

tdivs.l EA,%dx:%dy Signed Divide (Long) 
32/32 -.32r:32q 
(MC68020 Only) 

divs.l EA,%dx:%dy Signed Divide (Long) 
64/32 -. 32r:32q 
(MC68020 Only) 

* Note: The order of operands in as is the reverse of that in the M68000 Programmer's Refer­
ence Manual. 



- 22-

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSRMHT ER SYl\1Pf AX OPERATION 
DIVU divu.w EA,o/odn Unsign('d Divide 

c 
32/16 - 32 

tdivu.l EA, o/od x Unsigned Divide (Long) 
divu.l EA,o/odx 32/32 -+ 32 

(MC68020 Only) 

tdivu.l EA,o/odx:%dy Unsigned Divide (Long) 
32/32 -+ 32r:32q 
(MC68020 Only) 

divu.l EA,%dx:%dy Unsigned Divide (Long) 
64/32 -+ 32r:32q 
(MC68020 Onlv) 

EOR eor.S %dn,EA Exclusive OR Logical 

EORI eor.S &I,EA Exclusive OR Immediate 

EORI eor.b &I,%cc Exclusive OR Immediate to 
to CCR Condition Code Register 

EORI eor.w &I,%sr Exclusive OR Immediate to 
to SR the Status Register 
EXG exg %rx %ry Exchange Registers 
EXT ext.w %dn Sign-Extend Low-Order Byte 

of Data to Word 

ext.l %dn Sign-Extend Low-Order Word 
of Data to Long 

extb.l %dn Sign-Extend Low-Order Byte 
of Data to Long 
(MC68020 Only) 

extw.l %dn Same as ext.l 
(MC68020 Only) 

JMP jmp EA Jump 

JSR isr EA Jump to Subroutine 
LEA lea.l EA%an Load Effective Address 
LINK link %an &I Link and Allocate 



- 23-

MC68000 INSTRUCTION FORMATS 

( MNEMONIC ASSEMRT .RR SYNTAX OPERAT1ON 
LSL Isl.8 %dx,%dy Logical Shift (Left) 

&Q,%dy 

lsl.w &l,EA 
lsl.w EA 

LSR lsr.S %dx,%dy Logical Shift (Right) 
&Q,&dy 

lsr.w &l,EA 
lsr.w EA 

MOVE mov.S EA,EA Move Data from Source 
to Destination 

NOTE: If the destination is an ad-
dress register, the instruction gen-
erated is MOVEA. 

MOVE mov.w EA,%cc Move to Condition Codes 
to CCR 

MOVE mov.w %cc,EA Move from Condition Codes 
from CCR (MC6801 O/MC68020 Only) 

MOVE mov.w EA,%sr Move to the Status Register 
to SR 

MOVE mov.w %sr,EA Move from the Status Register 
from SR 

MOVE mov.! %usp,%an Move User Stack Poin ter 
USP %an,%usp 

MOVEA mov.A EA,%an Move Address 

MOVEC mov.! %rn,%rc Move to Control Register 
toCCR (MC6801O/MC68020 Only) 

MOVEC mov.! %rc,%rn Move from Control Register 
from CCR (MC68010/MC68020 Only) 



- 24-

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSRMRl,RR SYNTAX OPERATION 
MOVEM movm.A &I,EA Move Multiple Registers* 

EA,&I (See footnote) 

MOVEP movp.A o/odx,d(%ay) Move Peripheral Data 
d(%ay),%dx 

MOVEQ mov.l &I,%dn Move Quick 

MOVES movs.S %rn,EA Move to/form Address Space 
movs.s EA%rn (MC68010/MC68020 Only) 

MULS muls.w EA,%dx Signed Multiply 
16*16 -+ 32 

tmuls.l EA,%dx Signed Multiply (Long) 
muls.l EA,%dx 32*32 -+ 32 

(MC68020 Only) 

muls.l EA,%dx:%dy Signed Multiply (Long) 
32*32 -+ 64 
(MC68020 Only) 

:MULU mulu.w EA,%dx Unsigned Multiply 
16*16 -+ 32 

tmulu.l EA,%dx Unsigned Multiply (Long) 
mulu.l EA,%dx 32*32 -+ 32 

(MC68020 Only) 

mulu.l EA,%dx:%dy Unsigned Multiply (Long) 
32*32-+ 64 
(MC68020 Only) 

l\TBCD nbcd.b EA Nel!:ate Decimal with Extend 
NEG neg.S EA Negate 
NEGX negx.S EA Negate with Extend 
NOP nop No Operation 
NOT not.S EA Logical Complement 

... The immediate operand is a mask designating which registers are to be moved to memory or 
which registers are to receive memory data. not all addressing modes are permitted, and the 
correspondence between mask bits and register numbers depends on the addressing mode used. 
Refer to the MC68000 Programmer's Reference Manual for details. 

./ , 
( \ 

i 
~ 

C) 



- 25-

( 
MC68000 INSTRUCTION FORMATS 

MNEMONIC ASSEMBLER SYNTAX OPERATION 
OR or.S EA,%dn Inclusive OR Logical 

%dn,EA 

ORI or.S &I,EA Inclusive OR Immediate 

OR! or.h &I,%cc Inclusive OR Immediate 
toCCR to Condition Codes 

OR! or.w &I,%sr Inclusive OR Immediate 
to SR to the Status Register 
PACK pack -(%ax),-(%ay),&I Pack BCD 

pack %dx %dv,&1 (MC68020 Only) 
PEA pea.l EA Push Effective Address 
RESET reset Reset External Devices 
ROL rol.S %dx,%dy Rotate (without Extend) 

&Q,%dy (Left) 

rol.w &l,EA 
rol.w EA 

ROR ror.S %dx,%dy Rotate (without Extend) 
&Q,%dy (Right) 

ror.w &l,EA 
ror.w EA 

ROXL roxl.S %dx,%dy Rotate with Extend (Left) 
&Q,%dy 

roxl.w &l,EA 
roxl.w EA 

ROXR roxr.S %dx,%dy Rotate with Extend (Righ t) 
&Q,%dy 

roxr.w &l,EA 
roxr.w EA 

RTD rtd &1 Return and Deallocate 
Parameters 
(MC68010jMC68020 Only) 

RTE rte Return from Exception 

RTM rtm %rn Return from Module 
(MC68020 Onlv) 



- 26-

MC68000 INSTRUCTION FORMATS 
M1\TEMONIC ASSRMRT ,RR SYNTAX OPERATION C) 
RTR rtr Return and Restore 

Condition Codes 

RTS rts Return from Subroutine 
SBCD sbcd.b %dy,%dx Subtract Decimal with Extend 

--(%ay),-{%ax) 
Scc sCC.b EA Set According to Condition 
STOP stop &1 Load Status Register and Stop 
SUB sub.S EA,%dn Subtract Binary 

%dn,EA 

SUBA sub.A EA,%an Subtract Address 

SUBI sub.8 &I,EA Subtract Immediate 

SUBQ sub.8 &Q,EA Subtract Quick 

SUBX subx.S %dy,%dx Subtract with Extend 
-(%av)-(%ax) 

SWAP swap.w %dn Swap Reltister Halves 
TAS tas.b EA Test and Set an Operand 
TRAP trap &1 Trap 

TRAPV trapv Trap on Overflow 

TRAPcc tCC Trap on Condition 
tpCC.A &1 (MC68020 Only) 

TST tst.S EA Test an Operand 
UNLK unlk %an Unlink 
U!\'PK unpk -(%ax),-{%ay),&1 Unpack BCD 

%dx %dY,&I (MC68020 Only) 

c 



( 

- 27-

11.2. Instructions For the MeS8881 

. The following table shows how the floating point co-processor (MC68881) instructions 
should be written to be understood by the as assembler. 

In the table, fpcc represents any of the following floating point condition code designa­
tions: 

TRAP ON UNORDERED 
fpcc MEANING 

ge greater than or equal 
gl greater or less than 
gle greater or less than or equal 
gt greater than 
Ie less than or equal 
It less than 
ngt not greater than 
nge not greater than or equal 
nIt not less than 
ngl not greater or less than 
nle not greater or less than or equal 
ngle not greater or less than or equal 
sneq not equal 
sf never 
seq equal 
st alwavs 

NO TRAP ON UNORDERED 
fpcc J..:1EANING 

eq equal 
oge greater than or equal 
ogl greater or less than 
ogt greater than 
ole less than or equal 
olt less than 
or ordered 
t always 
ule unordered or less or equal 
ult unordered less than 
uge unordered greater than or equal 
ueq unordered equal 
ugt unordered greater than 
un unordered 
neq unordered ore greater or less 
f never 



- 28-

The designation eee represents a. group of constants in M068881 constant ROM which 
have the following va.lues: 

eee VALUE 
00 pi 
OB logI0(2) 
OC e 
OD 10g2(e) 
OD logI0(e) 
OF 0.0 
10 logn(2) 
11 logn(10) 
12 10**0 
13 10**1 
14 10**2 
15 10**4 
16 10**8 
17 10**16 
18 10**32 
19 10**64 
lA 10**128 
IB 10**256 
10 10**512 
ID 10**1024 
IE 10**2048 
IF 10**4096 

Additional abbreviations used in the table are: 

EA 
L 

I 
%dn 
%fpm,%fpn,%fpq 
%control 
%status 
%iaddr 
SF 

A 
B 

represents and effective address 
a label reference or any expression representing a memory 
address in the current segment 
represents an absolute expression, used as an immediate operand 
represents data register 
represents floating point data registers 
represents floating point control register 
represents floating point status register 
represents floating point instruction address register 
represents source format letters: 
b byte integer 
w word integer 

long word integer 
5 single precision 
d double precision 
x extended precision 
p packed binary code decimal 

represents source format letters w or I 
represents source format letters b, w, I, 5, or p 

() 



( 

(~ 

- 29-

NOTE: The source format must be specified if more than one source format is permitted 
or a default source format x is assumed. Source format need not be specified if only one 
format is permitted by the operation. 

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSEMBLER SYNTAX OPERATION 
FABS fabs.SF EA,%fpn absolute value function 

fabs.x %fpm,%fpn 
fabs.x %fpn 

FACOS facos.SF EA,%fpn arccosine function 
facos.x %fpm,%fpn 
facos.x %fpn 

FADD fadd.SF EA,%fpn 80ating point add 
fadd.x %fpm,%fpn 

FASIN fasin.SF EA,%fpn arcsine function 
fasin.x %fpm,%fpn 
fasin.x %fpn 

FATAN fatan.SF EA,%fpn arctangent function 
fatan.x %fpm,%fpn 
fatan.x %fpn 

FATAl\T}I fatanh.SF EA,%fpn hyperbolic arctangen t 
fatanh.x %fpm,%fpn function 
fatanh.x %fpn 

FBfpcc fbfpcc.A L co-processor branch 
conditionally 

FC11P fcmp.SF %fpn,EA 80ating point compare 
fcmp.x %fpn,%fpm 

FCOS fcos.SF EA,%fpn cosine function 
fcos.x %fpm,%fpn 
fcos.x %fpn 

FCOSH fcosh.SF EA,%fpn hyperbolic cosine 
fcosh.x %fpm,%fpn function 
fcosh.x %fpn 

FDBfpcc fdbfpcc.w %dn,L decrement and branch 
on condition 

FDIV fdiv.SF EA,%fpn 80ating point divided 
fdiv.x %fpm %fpn 

-------_._-_._- -~-~-



- 30-

MC68000 INSTRUCTION FORMATS 
M1\TEMONIC ASSEMBLF.R SYNTAX OPERATION 
FETOX fetox.SF EA,%fpn e**x function 

fetox.x %fpm,%fpn 
fatan.x %fpn 

FETOXMI fetoxml.SF EA,%fpn e**x(x-l) function 
fetoxm1.x %fpm,%fpn 
fetoxml.x %fpn 

FGETEXP fgetexp.SF EA,%fpn get the exponent 
fgetexp.x %fpm,%fpn function 
Cgetexp.x %fpn 

FGETMAN Cgetman.SF EA,%fpn get the mantissa 
Cgetman.x %fpm,%fpn Cunction 
fgetman.x %fpn 

FINT fint.SF EA,%fpn integer part function 
fint.x %fpm,%fpn 
fint.x %fpn 

FLOG2 flog2.SF EA,%fpn binary log function 
flog2.x %fpm,%fpn 
flog2.x %fpn 

FLOGIO floglO.SF EA,%fpn common log function 
floglO.x %fpm,%fpn 
floglO.x %fpn 

FLOGN flogn.sF EA,%fpn natural log function 
flogn.x %fpm,%fpn 
flogn.x %fpn 

FLOGl'ol'1 flognp1.SF EA,%fpn natural log (x+l) 
flognp1.x %fpm,%fpn function 
flognp1.x %fpn 

FMOD fmod.SF EA,%fpn floating point module 
fmod.x %fom %fon 

c 



o 

- 31 -

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSEMBLER SYNTAX OPERATION 
FMOVE fmov.SF EA,%fpn move to Hoating point 

fmov.x %fpm,%fpn register 

fmov.SF %fpn,EA move from Hoating point 
fmov.p %fpn,EA{&I} register to memory 
fmov.p %fpn,EA{%dn} 

fmov.l EA,%control move from memory to 
fmov.l EA,o/ostatus special register 
fmov.l EA,%iaddr 

fmov.l %con trol,EA move to memory from 
fmov.l %statsu,EA special register 
fmov.l %iaddr,EA 

FMOVECR fmovcr.x &ccc,%fpn move a ROM-stored to a 
Hoating point register 

FMOVEM fmovm.x EA,&I move to multiple floating 
poin t register 

fmovm.x &I,EA move from multiple 
registers to memory 

fmovm.x EA,%dn move to a data register 

fmovrn.x %dn,EA move a data register 
to memory 

fmovrn.l EA, %con troljo/osta- move to special 
tus/%iaddr registers 

fmovm.l %con trol/%stat us / move from special 
%iaddr EA registers 

NOTE: The immediate operand is a mask designating which registers are to be moved 
to memory or which registers are to receive memory data. Not all addressing modes are 
permitted and the correspondence between mask bvits and register numbers depends on 
the addressing mode used. 



- 32-

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSRMRT .RR SYNTAX OPERATION 
FMUL fmul.SF EA,%fpn floating point multiply 

fmul.x %fpm,%fpn 

FNEG fneg.SF EA,%fpn negate function 
fneg.x %fpm,%fpn 
fneg.x %fpn 

FNOP fnop floating point no-op 

FREM frem.SF EA,%fpn floating point remainder 
frem.x %fpm,%fpn 

FRESTORE frestore EA restore internal state 
of co-processor 

FSAVE fsave EA co-processor save 

FSCALE fscale.SF EA,%fpn floating point scale 
fscale.x %fpm,%fpn exponent 

FSfpcc fsfpcc.b EA set on condition 

FSGLDIV fsgldiv.B EA,%fpn floating point single 
fsgldiv.x %fpm,%fpn precision divide 

FSGLMUL fsglmul.B EA,%fpn floating point single 
fsglmul.s %fpm,%fpn precision multiply 

FSIN fsin.SF EA,%fpn sine function 
fsin.x %fpm,%fpn 
fsin.x %fpn 

FSINCOS fsincos.SF EA,%fpn sine/ cosine function 
fsincos.x %fpm,%fpn:%fpq 

FSIl\1Ji fsinh.SF EA,%fpn hyperbolic sine 
fsinh.x %fpm,%fpn function 
fsinh.x %fpn 

FSQRT fsqrt.SF EA,%fpn square root function 
fsqrt.x %fpm,%fpn 
fSQrt.x %fpn 

o 



- 33-

MC68000 INSTRUCTION FORMATS 
MNEMONIC A ~~RMlU ER SYNTAX OPERATION 
FSUB fsub.SF EA,%fpn square root function 

fsub.x %fpm,%fpn 

FTAN ftan.SF EA,%fpn tangent function 
ftan.x %fpm,%fpn 
ftan.x %fpn 

FTANH ftanh.SF EA,%fpn hyperbolic tangent 
ftanh.x %fpm,%fpn function 
ftanh.x %fpn 

F TENT OX ftentox.SF EA,%fpn lO**x function 
ftentox.x %fpm,%fpn 
ftentox.x %fpn 

FTfpcc ftfpcc trap on condition 
without a parameter 

FTPfpcc ftpfpcc.A &1 trap on condition with 
a parameter 

FTST ftest.SF EA floating point test 

( 
ftest.x %fpm an operand 

FTWOTOX ftwotox.SF EA,%fpn 2**x function 
ftwotox.x %fpm,%fpn 
ftwotox.x %fpn 

FYTOX fytox.SF EA,%fpn floating point y**x 
fytox.x %fpm %fpn 



' , C"'· 



( 

Screen Updating and Cursor Movement Optimization: 
A Library Package 

Kenneth O. R. O. Arnold 

Computer Science Division 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, California 94720 

.ABSTRAOT 

This document describes a package of C library functions which allow the user to: 

• update a screen with reasonable optimization, 

• get input from the terminal in a screen-oriented fashion, and 

• independent from the above, move the cursor optimally from one point to another. 

These routines all use the /ete/termcap database to describe the capabilities of the ter­
minal. 

Acknowledgements 

This package would not exist without the work of Bill Joy, who, in writing his edit.or, creat­
ed the capability to generally describe terminals, wrote the routines which read this database, and, 
most. importantly, those which implement opt.imal cursor movement, which routines I have simply 
lifted nearly intact. Doug Merritt and Kurt Shoens also were extremely important, as were both 
willing to waste time listening to me rant and rave. The help and/or support of Ken Abrams, 
Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly appreciated. 



ScreeD. Package 

COldeR" 
(~ 

1 Overview .........................................................................•............................................... 1 0 
1.1 Terminology (or, Words You Can Say to Sound Brilliant) ................................ . 1 
1.2 Compiling Things ............................................................................................. . 1 
1.3 Screen Updating ................................................................................................ . 1 
1.4 Naming Conventions .......................................................................................... . 2 

2 Variables ........................................................................................................................ . 2 
3 Usage ............................................................................................................................. . 3 

3.1 Starting up ....................................................................................................... . 3 

3.2 The Nitty-Gritty ............................................................................................... . 3 
3.2.1 Output ................................................................................................ . 3 

3.2.2 Input ................................................................................................... . 4 

3.2.3 11iscellaneous ....................................................................................... . 4 

3.3 Finishing up ..................................................................................................... .. 4 

4 Cursor Motion Optimization: Standing Alone ................................................................. . 4 
4.1 Terminal Information ....................................................................................... . 4 

4.2 Movement Optimizations, or, Getting Over Yonder .......................................... . 5 

5 The Functions ................................................................................................................ . 5 

5.1 Output Functions ............................................................................................. . 5 
5.2 Input Functions ................................................................................................ . 9 

5.3 Miscellaneous Functions .................................................................................... . 10 
5.4 Details .............................................................................................................. . 12 

/c-'\ 
( , 

Apperulizt:& ",-~ 

Appendix A 14 
1 Capabilities from termcap ............................................................................................. .. 14 

1.1 Disclaimer ......................................................................................................... . 14 

1.2 Overview .......................................................................................................... .. 14 

1.3 'Tariables Set By settermO ............................................................................... .. 14 
1.4 Yariables Set By gettmode() ............................................................................. .. 15 

Appendix B ................................................................................................................... . 16 
1 The \VI1\uo\\r structure ................................................................................................ . 16 
Appendix C ................................................................................................................... . 17 
1 Examples ........................................................................................................................ . 17 
2 Screen Updating ..................................... ' ........................................................................ . 17 

2.1 Twinkle ............................................................................................................ . 17 
2.2 Life ................................................................................................................... . 19 

3 Motion optimization ....................................................................................................... . 22 
3.1 Twinkle ........................................................................................................... .. 22 

o 
-i-



( 

c 

Screen Package 

1. Ovel"View 

In making available the generalized terminal descriptions in /et,e/termeap, much informa­
tion was made available to the programmer, but little work was taken out of one's hands. The 
purpose of this package is to allow the C programmer to do the most common type of terminal 
dependent functions, those of movement optimization and optimal screen updating, without doing 
any of the dirty work, and (hopefully) with nearly as much ease as is necessary to simply print or 
read things. 

The package is split into three parts: (1) Screen updating; (2) Screen updating with user in­
put; and (3) Cursor motion optimization. 

It is possible to use the motion optimization without using either of the other two, and screen 
updating and input can be done without any programmer knowledge of the motion optimization, 
or indeed the database itself. 

1.1. Terminology (or, Words You Can Say to Sound Brlliiant) 

In this document, the following terminology is kept to with reasonable consistency: 

window: An internal representation containing an image of what a section of the terminal screen 
may look like at some point in time. This subsection can either encompass the entire termi­
nal screen, or any smaller portion down to a single character within that screen. 

termin"l: Sometimes called terminal .creen. The package's idea of what the terminal's screen 
currently looks like, i.e., what the user sees now. This is a special "creen: 

.creeR: This is a subset of windows which are as large as the terminal screen, i.e., they start at the 
upper left hand corner and encompass the lower right hand corner. One of these, ,tdBcr, is 
automatically provided for the programmer. 

1.2. Compiling Things 

In order to use the library, it is necessary to have certain types and variables defined. There­
fore, the programmer must have a line: 

#inelude < eurses.h > 
at the top of the program source. The header file <eurses.h> needs to include <sgtty.h> , 50 

the one should not do so oneselfl. Also, compilations should have the following form: 

ec [ flagB J file ... -leurses -Itermlib 

1.3. Screen Updating 

In order to update the screen optimally, it is necessary for the routines to know what the 
screen currently looks like and what the programmer wants it to look like next. For this purpose, 
a data type (structure) named WINDOW is defined which describes a window image to the rou­
tines, including its starting position on the screen (the (y, x) co-ordinates of the upper left hand 
corner) and its size. One of these (called cvr&cr for evrrent ,creen) is a screen image of what the 
terminal currently looks like. Another screen (called ,td,cr, for atandard ,creen) is provided by de­
fault to make changes on. 

A window is a purely internal representation. It is used to build and store a potential image 
of a portion of the terminal. It doesn't bear any necessary relation to what is really on the termi­
nal screen. It is more like an array of characters on which to make changes. 

When one has a window which describes what some part the terminal should look like, the 
routine re/re&h{} (or wre/re&h{) if the window is not "tther) is called. re/re&h{} makes the terminal, 

1 The screen pac:kage also uses the Standard 1/0 library, 10 <euneSoh> indudes <.tdlo.h>. It is redundant 
(but barmless) for the programmer to do it, too. 

-1-



Screen Package 

in the area covered by the window, look like that window .. Note, therefore, that changing some-
thing on a window doe, lID' c/uJftle the terminal. Actual updates to the terminal screen are made C· 
only by calling re/re,h(j or wre/re,h(j. This allows the programmer to maintain several different . J 
ideas of what a portion of the terminal screen should look like. Also, changes can be made to win-
dows in any order, without regard to motion efficiency. Then, at will, the programmer can 
effectively say "make it look like this," and let the package worry about the best way to do this. 

1.4. Naming Conventions 

As hinted above, the routines can use several windows, but two are automatically given: 
eur,er, which knows what the terminal looks like, and ,td,er, which is what the programmer wants 
the terminal to look like next. The user should never really access etlraer directly. Changes should 
be made to the appropriate screen, and then the routine re/ruh(j (or we/re,h{)) should be called. 

Many functions are set up to deal with ,td,cr as a default screen. For example, to add a 
character to ,trl,cr, one calls otldeh() with the desired character. If a different window is to be 
used, the routine tJ)addch() (for window-specific addeh{)) is provided2• This convention of prepend­
ing function names with a "w" when they are to be applied to specific windows is consistent. The 
only routines which do not do this are those to which a window must always be specified. 

In order to move the current (y, x) co-ordinates from one point to another, the routines 
move(] and wmotJe(j are provided. However, it is often desirable to first move and then perform 
some I/O operation. In order to avoid clumsyness, most I/O routines can be preceded by the 
prefix "mv" and the desired (y, x) eo-ordinates then can be added to the arguments to the func­
tion. For example, the calls 

move(y, x); 
addch(ch); 

can be replaced by 

mvaddch(y, x, ch); 

and 

""move(win, y, x); 
waddch(win, ch); 

can be replaced by 

mvwaddch(win, y, x, ch); 

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If such 
pointers are need, they are always the first parameters passed. 

2. Variahles 

Many variables which are used to describe the terminal environment are available to the pro­
grammer. They are: 

type 
WINDOW * 
WINDOW * 
char * 
bool 

char * 
int 

name 
curscr 
stdscr 
Def term 
My:term 

ttytype 
LINES 

description 
current version of the screen (terminal screen). 
standard screen. Most updates are usually done here. 
default terminal type if type cannot be determined 
use the terminal specification in Del term as terminal, 
irrelevant of real terminal type -
full name of the current terminal. 
number of lines on the terminal 

II Actually, .ddcA() is really a "o#define" mac:ro with arguments, as are most of the -runctions· which deal with ,Id,er 
as a default. 

-2-

G 



( 

c 

int 
int 
int 

COLS 
ERR 
OK 

Screen Package 

Dumber of columDs OD the terminal 
error flag returned by routines on a fail. 
error flag returned by routines when things go right. 

There are also several "#define" constants and types which are of general usefulness: 

reg 
bool 
TRUE 
FALSE 

storage class "register" (e.g., reg int i;) 
boolean type, actually a "char" (e.g., 6001 doneit;) 
boolean "true" flag (1). 
boolean "false" flag (0). 

3. Usage 

This is a description of how to actually use the screen package. In it, we assume all updat­
ing, reading, etc. is applied to .td.er. All instructions will work on any window, with changing 
the function name and parameters as mentioned above. 

3.1. Starting up 

In order to use the screen package, the routines must know about terminal characteristics, 
and the space for curlier and ,ltd,lcr must be allocated. These functions are performed by initllcr(). 
Since it must allocate space for the windows, it can overflow core when attempting to do so. On 
this rather rare occasion, initscr() returns ERR. initllerO must IIltDGrll be called before any of the 
routines which affect windows are used. If it is Dot, the program will core dump as soon as either 
curser or stdser are referenced. However, it is usually best to wait to call it until aft,er you are sure 
you will need it, like after checking for startup errors. Terminal status changing routines like nl() 
and ermode() should be called after initller(j. 

Now that the screen windows have been allocated, you can set them up for the run. If you 
want to, say, allow the window to scroll, use lIerollok(j. If you want the cursor to be left after the 
last change, use leaveok(j. If this isn't done, re/re8h() will move the cursor to the window's current 
(y, x) co-ordinates after updating it. New windows of your own can be created, too, by using the 
functions newwin() and lIubwin(}. delwin(j will allow you to get rid of old windows. If you wish to 
change the official size of the terminal by hand, just set the variables LINES and GOLS to be what 
you want, and then call initller{). This is best done before, but can be done either before or after, 
the first call to initser(), as it will always delete any existing .tdser and/or eur8er before creating 
new ones. 

3.2. The Nitty-Gritty 

3.2.1. Output 

Now'that we have set things up, we will want to actually update the terminal. The basic 
functions used to change what will go on a window are addeh() and move{j. addeh() adds a char­
acter at the current (y, x) co-ordinates, returning ERR if it would cause the window to illegally 
scroll, i.e., printing a character in the lower right-hand corner of a terminal which automatically 
scrolls if scrolling is not allowed. move(j c~anges the current (y, x) co-ordinates to whatever you 
want them to be. It returns ERR if you try to move off the window when scrolling is not allowed. 
As mentioned above, you can combine the two into mvaddeh() to do both things in one fell swoop. 

The other output functions, such as addstr(j and printw(j, all call addeh(j to add characters 
to the window. 

After you have put on the window what you want there, when you want the portion of the 
terminal covered by the window to be made to look like it, you must call re/relJh{j. In order to op­
timize finding changes, re/resh(j assumes that any part of the window not changed since the last 
re/relJh(j of that window has not been changed on the terminal, i.e., that you have not refreshed a 
portion of the terminal with an overlapping window. If this is not the case, the routine touehwin() 
is provided to make it look like the entire window has been changed, thus making re/resh(j check 
the whole subsection of the terminal for changes. 

-3-



Screen Paekage 

If you call wre/re,h{} with cur,er, it will make the screen look like eur,er thinks it looks like. 
This is useful for implementing a command which would redraw the screen in case it get messed 
up. 

8.2.2. Input 

Input is essentially a mirror image of output. The complementary function to addch() is 
,elch() which, if echo is set, will call addch{} to echo the character. Since the screen package needs 
to know what is on the terminal at all times, 'if characters are to be echoed, the tty must be in raw 
or cbreak mode. If it is not, ,elch{} sets it to be cbreak, and then reads in the character. 

3.2.3. Miscellaneous 

All sorts of fun functions exists for maintaining and changing information about the win­
dows. For the most part, the descriptions in section 5.4. should suffice. 

3.3. Finishing up 

In order to do certain optimizations, and, on some terminals, to work at all, some things 
must be done before the screen routines start up. These functions are performed in ,etttmode{} 
and ,etterm(), which are called by in itscr{). In order to clean up after the routines, the routine 
endwin() is provided. It restores tty modes to what they were when initscr() was first called. 
Thus, anytime after the call to initscr, endwin() should be called before exiting. 

4. Cursor Motion Optimization: Standing Alone 

It is possible to use the cursor optimization functions of this screen package without the over­
head and additional size oC the screen updating Cunctions. The screen updating Cunctions are 
designed for uses where parts of the screen are changed, but the overall image remains the same. 
This includes such programs as eye and vi3• Certain other programs will find it difficult to use 
these functions in this manner without considerable unnecessary program overhead. For such ap­
plications, such as some" crt hacks,,4 and optimizing cat{l rtype programs, all that is needed is 
the motion optimizations. This, therefore, is a description of what some of what goes on at the 
lower levels of this screen package. The descriptions assume a certain amount of familiarity with 
programming problems and some finer points of C. None of it is terribly difficult, but you should 
be forewarned. 

4.1. Terminal Information 

In order to use a terminal's features to the best of a program's abilities, it must first know 
what they areE>. The /etc/termcap database describes these, but a certain amount of decoding is 
necessary, a.nd there are, of course, both efficient and inefficient ways of reading them in. The al­
gorithm that the uses is taken from vi and is hideously efficient. It reads them in a tight loop into 
a set of variables whose names are two uppercase letters with some mnemonic value. For example, 
HO is a string which moves the cursor to the "home" position8• As there are two types of variables 
involving ttys, there are two routines. The first, ,ettmode(j, sets some variables based upon the 
tty modes accessed by gtty(2) and stty{2} The second, ,etterm(), a larger task by reading in the 
descriptions from the /ete/termcap database. This is the way these routines are used by in­
it,cr(j: 

I Eye actually uses these runctions, vi does not. 

4 Graphics programs designed to tun on character-oriented terminals. I could name many, but they come and go, so 
the list would be quickly out or date. Recently, there have been programs 8uch as rocket and gun. 

6 If" this eomes as any 8urprise to you, there's this tower in Paris they're thinking or junking that I can let you have 
for a song. 

e These names are identical to those variables used in the /ete/termeap database to describe each capability. See 
Appendix A ror a complete Jist or those read, and termeap(5) for a full description. 

-4-

--------~- .. ~----~-~- ~----- ~~ 



( 

if (isatty(O)) { 
gettmode(); 

} 
else 

if (sp=getenv("TERM"» 
setterm( sp ); 

setterm(I>ef __ term); 
__ puts(TI); 
__ puts(V5); 

Screen Package 

iaatty(j checks to see if file descriptor 0 is a terminal7. If it is, gettmode{} sets the terminal 
description modes from a gtty(2) getenv(j is then called to get the name of the terminal, and that 
value (if there is one) is passed to ,efterm{}, which reads in the variables from /etc/termcap as­
sociated with that terminal. (getenv(j returns a pointer to a string containing the name of the ter­
minal, which we save in the character pointer ,p.) If iaatt1l(j returns false, the default terminal 
Def_ term is used. The TI and VS sequences initialize the terminal C1}'Ut6(j is a macro which uses 
tPUt6() (see termcap(3)} to put. out a string). It is these things which endwin(j undoes. 

4.2. Movement Optimizations, or, Getting Over Yonder 

Now that we have all this useful information, it would be nice to do something with its. 
The most difficult thing to do properly is motion optimization. When you consider how many 
different features various terminals have (tabs, backtabs, non-destructive space, bome sequences, 
absolute tabs, ..... ) you can see that deciding bow to get from here to there can be a decidedly 
non-trivial task. The editor vi uses many of these features, and the routines it uses to do this take 
up many pages of code. Fortunately, I was able to liberate them with the author's permission, and 
use them here. 

After using gettmode(} and ,etterm(} to get the terminal descriptions, the function mvcur{) 
deals witb this task. It usage is simple: you simply tell it where you are now and where you want 
to go. For example 

mvcur(O, 0, LThTE5/2, COL5/2) 

would move the cursor from the home position (0,0) to the middle of the screen. If you wish to 
force absolute addressing, you can use the function tgolo{} from the termlib(7) routines, or you 
can tell mvcur(j that you are impossibly far away, like Cleveland. For example, to absolutely ad­
dress the lower left hand corner ot the screen from anywhere just claim that you are in the upper 
right hand corner: 

mvcut{O, COL5-1, LI1\TES-l, 0) 

5. The Functions 

In the following definitions, "t" means that the "function" is really a "#define" macro with 
arguments. This means that it will not show up in stack traces in the debugger, or, in the case of 
such functions as addch(), it will show up as it's "w" counterpart. The arguments are given to 
show the order and type of each. Their names are not mandatory, just suggestive. 

5.1. Output Functions 

7 i.lJttll() is defined in the default C library function routines. It does a gtty(2) on the deseriptor and cheeks the re­
turn value. 

8 Actually, it clJn be emotionally rulfilling just to get the inrormation. This is usually only true, however, if you 
have the sodallife of a kumquat. 

-5-



addch(ch) t 
char chi 

waddch(win, ch) 
WINDOW "win; 
char chi 

Screen Package 

Add the character ch on the window at'the current (y, x) co-ordinates. If the character is a 
newline (\n 1 the line will be cleared to the end, and the current (y, x) eo-ordinates will be 
changed to the beginning off the next line if newline mapping is on, or to the next line at the 
same x co-ordinate if it is off. A return (\rl will move to the beginning of the'line on the 
window. Tabs (\t 1 will be expanded into spaces in the norma) tabstop positions of every 
eight characters. This returns ERR if it would cause the screen to scroll illegally. 

addstr( str) t 
ellal *8tr; 

waddstr(win, atr) 
WINDOW ·win; 
char ·'ir; 

Add the string pointed to by 8ir on the window at the current (y, x) co-ordinates. This re­
turns ERR if it would cause the screen to scroll illegally. In this case, it will put on as much 
as it can. 

box (win , vert, hor) 
WINDOW ·win; 
char vert, hor; 

Draws a box around the window using vert as the character for drawing the vertical sides, 
and hor for drawing the horizontal lines. If scrolling is not allowed, and the window encom­
passes the lower right-hand corner of the terminal, the corners are left blank to avoid a 
scroll. 

clearO t . 

wc1ear(win) 
\lINDO W "win; 

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will 
cause a clear-screen sequence to be sent on the next relre6h(} call. This also moves the 
current (y, x) co-ordinates to (0, 0). 

cJearok(acr, boolt') t 
WINDO W ·8cr; 
6001 60011; 

Sets the clear flag for the screen 8Cr. If 60011 is TRUE, this will force a clear-screen to be 
printed on the next relre8h(}, or stop it from doing so if 6001! is FALSE. This only works on 
screens, and, unlike clearO, does not alter the contents of the screen. If ser is curser, the next 
rtlruh{} call will cause a clear-screen, even if the window passed to relre8h(} is not a screen. 

-8-

o 



.... 

( 

o 

clrtobotO t 

welrtobot(win) 
WINDOW "win; 

Screen Package 

Wipes the window clear (rom the current (y, x) co-ordinates to the bottom. This does not 
(orce a clear-screen sequence on the next refresh under any circumstances. This has no associ­
ated "my" command. 

clrtoeoJO t 

wclrtoeoJ( win) 
WINDO W "win; 

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This has 
no associated "my" command. 

delehO 

wdelch(win) 
VlINDO W "win; 

Delete the character at the current (y, x) co-ordinates. Each character after it on the line 
shifts to the left, and the last character becomes blank. 

deJetelnO 

wdeleteln( win) 
WINDOW "win; 

Delete the current line. Every line below the current one will move up, and the bottom line 
will become blank. The current (y, x) co-ordinates will remain unchanged. 

eraseO t . 

werase(win) 
WIN DO W "win; 

Erases the window to blanks without setting the clear flag. This is analagous to c1ear(}, ex­
cept that it never causes a clear-screen sequence to be generated on a re/resh{}. This has no 
associated "my" command. 

insch(e) 
char c· , 

winsch(win, e) 
WINDO W ·win,· 
char c· , 

-7-



..... Screen Package 

Insert e at the eUlTent Cy, x) eo-ordinates Each character alter it shifts to the right, and the 
last character disappears. This returns ERR if it would cause the screen to scroll illegally. ('\ 

insertlnO 

winaertln(win) 
WINDOW *win; 

Insert a line above the cunent one. Every line below the current line will be shifted down, 
and the bottom line will disappear. The CUlTent line will become blank, and the current 
(y, x) ~ordinates will remain unchanged. This returns ERR if it would cause the screen to 
scroll illegally. 

move(y, x) t 
int 1/, z; 

wmove(win, y, x) 
WINDOW *win; 
int 1/, z; 

Change the current (y, x) c~ordinates of the window to (11, x). This returns ERR if it would 
cause the screen to scroll illegally. 

overlay(winl, win2) 
WINDOW *win1, ·wine; 

Overlay win1 on wine. The contents of win1, insofar as they fit, are placed on wine at their 
starting (y, x) c~ordinates. This is done non-destructively, i.e., blanks on win1 leave the 
contents of the space on wine untouched. 

overwrite(winl, win2) 
li1NDOW -win 1 , ·wine; 

Overwrite win1 on wine. The contents of win1, insofar as they fit, are placed on wine at 
their starting (y, x) c~ordinates. This is done destructively, i.e., blanks on win1 become 
blank on wine. 

printw(fmt, argl, arg2, ••• ) 
ehar ·Imt; 

wprintw(win, fmt, argl, arg2, ••• ) 
WINDOW *win; 
char ·Imt; 

Performs a printlO on the window starting at the. current (y, x) c~ordinates. It uses addstrO 
to add the string on the ·window. It is often advisable to use the field width options of 
,rinllO to avoid leaving things on the window from earlier calls. This returns ERR if it 
would CaUse the screen to scroll illegally. 

-8-

U 

c 



( refreahO t 

wrefresh(win) 
WINDOW ·win; 

8cJ'een Package 

Synchronize the terminal screen with the desired window. If the window is not a screen, only 
that part covered by it is updated. This returns ERR if it would cause the screen to scroll 
illegally. In this case, it will update whatever it can without causing the scroll. 

standoutO t 

wstandout(win) 
»'INDO W ·win; 

5LandendO t 

wstandend(win) 
WINDO W ·win; 

Start and stop putting characters onto win in standout mode. atandout() causes any charac­
ters added to the window to be put in standout mode on the terminal (if it has that capabili­
ty). atandend() stops this. The sequences SO and SE (or US and UE if they are not defined) 
are used (see Appendix A). 

5.2. Input Functions 

crmodeO t 

nocrmode(} t 
Set or unset the terminal to/from cbreak mode. 

echoO t 

noechoO t 

Sets the terminal to echo or not echo characters. 

getchO t 

wgetch( win) 
WINDOW ·win; 

Gets a character from the terminal and (if necessary) ethos it on the window. This returns 
ERR if it would cause the screen to scroll illegally. Otherwise, the character gotten is re­
turned. If noeeho has been set, then the window is left unaltered. In order to retain control 
of the terminal, it is necessary to have one of noeeho, ebreak, or rawmode set. If you do not 
set one, whatever routine you call to read characters will set ebreak for you, and then reset to 
the original mode when finished. 

-Q-



getstr(str) f 
char -.'r; 

wgetstr(win, str) 
WINDOW -win; 
char -.tr; 

Screen Package 

Get a string through the window and put it in the location pointed to by .tr, which is as­
sumed to be large enough to handle it. It sets tty modes if necessary, and then calls ,elch() 
(or w,etck(winJ) to get the characters needed to fill in the string until a newline or EOF is 
encountered. The newline stripped off the string. This retums ERR if it would cause the 
screen to scroll illegally. 

rawOf 

norawO t 

Set or unset the terminal to/from raw mode. On version 7 UNIX' this also turns of newline 
mapping (see nl()). 

scanw(fmt, argl, arg2, ••• ) 
char IIlmt; 

wseanw(win, fmt, argl, arg2, ••. ) 
WINDOW IIwin; 
char IIlmt; 

Perform a 8canl() through the window using Imt. It does this using consecutive getch()'s (or 
wgetch(win),s). This returns ERR if it would cause the screen to scroll illegally. 

5.3. Miscellaneous Funetions 

delwin(win) 
WINDO~ IIwin; 

Deletes the window from existence. All resources are freed for future use by ealJoe(3). If a 
window has a 8ubwin{} allocated window inside of it, deleting the outer window t.he subwin­
dow is not affected, even though this does invalidate it. Therefore, subwindows should be 
deleted before their outer windows are. 

endwinO 

Finish up window routines before exit. This restores the terminal to the state it was before 
initscr(j (or gettmode() and 8etterm{)) was called. It should always be called before exit.ing. 
It does not exit. This is especially useful for resetting tty stats 'when trapping rubouts via 
signal(2). 

II VNIX is a trademark of Bell Laboratories. 

-10-

o 

c 



(" 

( 

Screen Package 

getyx(win, y, x) t 
WINDO W *win; 
int 1/, :t; 

Puts the current (y, x) co-ordinates of win in the variables 11 and %. Since it is a macro, not a 
function, you do not pass the address of 1/ and :t. 

inchO t 

winch(win) t 
WINDO W *win; 

Returns the character at the current (y, x) co-ordinates on the given window. This does not 
make any changes to the window. This has no associated "mv" command. 

initscrO 
Initialize the screen routines. This must be called beCore any oC the screen routines are used. 
It initializes the terminal-type data and such, and without it, none oC the routines can 
operate. If standard input is not a tty, it sets the specifications to the terminal whose name 
is pointed to by DeL term (initialy "dumb"). If the boolean M1/_ term is true, DeL term is al­
ways used. 

leaveok(win, boolf) t 
WINDOW *win; 
bool bool/,' 

Sets the boolean flag Cor leaving the cursor after the last cbange. If booll is TRUE, the cur­
sor will be leCt after the last update on the terminal, and the current (y, x) cc>ordinates Cor 
win will be changed accordingly. If it is FALSE, it will be moved to the current (y, x) co­
ordinates. This flag (initialy FALSE) retains its value until changed by the user. 

longname(termbuf, name) 
char -termbu/, -name; 

Fills'in name with the long (Cull) name oC the terminal described by the termcap entry in 
termbuj. It is generally oC little use, but is nice Cor telling the user in a readable Cormat what 
terminal we think he has. This is available in the global variable ttlltllpe. Termbul is usually 
set via the termlib routine tgetent(). 

mvwin(win, y, x) 
WINDO W -win; 
int 1/, Z; 

Move the home position of the window win Crom its current starting coordinates to (1/, x). If 
that would put part or all oC the window off the edge of the terminal screen, mvwin(j returns 
ERR and does not change anything. 

WINDOW-
newwin(lines, cols, begin _y, begin _x) 
int line8, CO/8, begin_fl, begin _:t; 

-11-



nl() t 

Screen Package 

Create a new window with line, lines and CO" columns starting at position 
(6egin_" 6egin_z). If either linea or col, is 0 (zero), that dimension will be set to (UNES - (\, 
6egin _,) or (OOLS - 6egin z) respectively. Thus, to get a new window of dimensions U 
LINES X OOLS, use newwinlO, 0, 0, 0). 

nonlO t 
Set or unset the terminal to/from nl mode, i.e., start/stop the system from mapping <RE­
TURN> to <LINE-FEED>. If the mapping is not done, relre,h(j can do more optimi­
zation, so it is recommended, but not required, to turn it off. 

scrollok(win, boolt) t 
WINDO W. ·win; 
6001 60011; 

Set the scroll flag for the given window. Ir 6001/ is FALSE, scrolling is not allowed. This is 
its default setting. 

touehwin(win) 
WINDOW ·win; 

Make it appear that the every location on the window has been changed. This is usually 
only needed for refreshes with overlapping windows. 

WINDOW * 
subwin(win, lines, eols, begin_y, begin_x) 
n 1NDO W *win; 
int linea, col8, 6egin_" 6egin _ %; 

Create a new window with linea lines and col8 columns starting at position 
(beg;n_1I, begin_x) in the middle of the window win. This means that any change made to 
either window in the area covered by the subwindow will be made on both windows. 
begin_y, begin_% are specified relative to the overall screen, not the relative (0, 0) of win. If 
either linea or cola is 0 (zero), that dimension will be set to (LINES - begin y) or (GOLS -
begin_x) respectively. -

unetrl(eh) t 
char ch; 

This is actually a debug function for the library, but it is of general usefulness. It returns a 
string which is a representation of ch. Control characters become their upper-case 
equivalents preceded by a ".". Other letters stay just as they are. To use unctrl(j, you must 
have "include <unetrl.h> in your file. 

5.4. Details 

gettmodeO 

Get the tty stats. This is normally called by in;t8cr(}. 

-12-



( 

Screen Package 

mvcur(laaty, lastx, Dewy, Dewx) 
int 14sty, 14stx, newy, "ewx; 

Moves the terminal's cursor from (/Gstll, 14st:r) to (newy, new:r) in an approximation of op­
timal fashion. This routine uses the functions borrowed from e:r version 2.6. It is possible to 
use this optimization without the benefit of the screen routines. With the screen routines, 
this should not be called by the user. motJe(j and re/resh(j should be used to move the cursor 
position, so that the routines know what's going on. 

scroll(win) 
lHNDOW "win; 

Scroll the window upward one line. This is normally not used by the user. 

savettyO t 

resettyO t 
savetty() saves the current tty characteristic flags. resetty() restores them to what savetty() 
stored. These functions are performed automatically by initscr() and endwin(). 

setterm( Dame) 
char "name; 

Set the terminal characteristics to be those of the terminal named name. This is normally 
called by in itur(}. 

tstpO 
If the new tty(4) driver is in use, this function will save the current tty state and then put 
the process to sleep. \Vhen the process gets restarted, it restores the tty state and then calls 
tL,re/resh{curscr) to redraw the screeD. initscr(} sets the signal SIGTSTP to trap to this rou­
tine. 

-13-



......... Appendix A 

1. OapabUitiee from termcap 

1.1. Di&elaimer 

The description of terminals is a difficult business, and we only attempt to summarize the 
capabilities here: for a full description see "he paper describing termcap. 

1.2. Overview 

Capabilities from termcap are of three kinds: string valued options, numeric valued options, 
and boolean options. The string valued options are the most complicated, since they may include 
padding information, which we describe now. 

Intelligent terminals often require padding on intelligent operations at high (and sometimes 
even low) speed. This is specified by a number before the string in the capability, and has mean­
ing for the capabilities which have a P at the front of their comment. This normally is a number 
of milliseconds to pad the operation. In the current system which has no true programmable de­
lays, we do this by sending a sequence of pad characters (normally nulls, but can be changed 
(specified by PC)). In some eases, the pad is better computed as some number of milliseconds 
times the number of affected lines (to the bottom or the screen usually, except when terminals have 
insert modes which will shift several lines.) This is specified as, e.g., 12*. before the capability, to 
say 12 milliseconds per affected whatever (currently always line). Capabilities where this makes 
sense say P*. 

1.3. Variables Set By settermO 

Tvpe Name 
char • AI.. 
bool AM 
char • BC 
bool BS 
char • BT 
bool CA 
char • CD 
char • CE 
char • CL 
char • CM 
char • DC 
char • DL 
char • DM 
char • DO 
char • ED 
bool EO 
char • EI 
char • HO 
bool HZ 
char • lC 
bool IN 
char • 1M 
char • JP 
char • LL 
char • M-\ 
bool MI 
bool NC 

variables set by ,etterm(j 

Pad Description 
p. Add new blank Line 

Automatic Margins 
Back Cursor movement 
BackSpace works 

P Back Tab 
Cursor Addressable 

p. Clear to end of Display 
P Clear to End of line 
p. CLear screen 
P Cursor Motion 
p. Delete Character 
p* Delete Line sequence 

Delete Mode (enter) 
DOwn line sequence 
End Delete mode 
can Erase Overstrikes with ' , 
End Insert mode 
HOme cursor 
HaZeltine - brain damage 

P Insert Character 
Insert-Null blessing 
enter Insert Mode (IC usually set, too) 

p. Pad after char Inserted using IM+IE 
quick to Last Line, column 0 
ctrl character MAp for cmd mode 
can Move in Insert mode 
No Or: \r sends \r\n then eats \n 

-14-

c 



(~/ 

c 

Type Name 
char * ND 
bool OS 
char PC 
char * SE 
char * SF 
char * SO 
char * SR 
char * TA 
char * TE 
char * TI 
char * UC 
char * UE 
bool UL 
char * UP 
char * US 
char * VB 
char * VE 
char * VS 
bool XN 

Appendix A 

variables set by ,etterm() 

Pad Description 
Non-Destructive space 
OverStrike works 
Pad Character 
Standout End (may leave space) 

P Scroll Forwards 
Stand Out begin (may leave space) 

P Scroll in Reverse 
P TAb (not "lor with padding) 

Terminal address enable Ending sequence 
Terminal address enable Initialization 
Underline a single Character 
Underline Ending sequence 
UnderLining works even though lOS 
UPline 
Underline Starting sequence10 

Visible Bell 
Visual End sequence 
Visual Start sequence 
a Newline gets eaten after wrap 

Names starting with X are reserved Cor severely nauseous glitches 

1.4. Variables Set By gettmodeO 

variables set by gettmode{} 

type 
bool 
bool 
boo 1 

name 
NO!\;'L 
GT 
UPPERCASE 

description 
Term can't hack linefeeds doing a CR 
Gtty indicates Tabs 
Terminal generates only uppercase letters 

10 US and UE, if they do not exist in the termeap entry, are copied rrom SO and SE in Betlerm(j 

-15-



,.. .. AppeDdix B 

1. 
The WINDOWatructure 

The WINDOW structure is defined as follows: *' derme WINDOW etruct win st 

struct win st { 
- siiort 

}; 

*' defiDe *' derme 
# derme 
# derme *' derme 

short 
short 
short 
bool 
bool 
boo} 
char 
short 
short 

_ cury, _cunei 
_ maxy, _max:xj . 

begy, begxj 
:nags; -
_clear; 

leave; 
:scroll; 
**_Yi 
* firstch; 
*:lastch; 

SUBWIN 
-ENDLINE 
-FULLWIN 
-SCROLLWIN 
: STANDOUT 

01 
02 
04 
010 
0200 

_ cury and _ CUr.l are the current (y, x) co-ordinates for the window. New characters added 
to the screen are added at this point. mazy and mazz are the maximum values allowed for 
L Ctlry, _ curx). _ begy and _ hegx are the starting (y:-x) co-ordinates on the terminal for the win-
dow, i.e., the window's home. cury, car.l, mazy, and man are measured relative to 
Lbegy, _begx), not the terminal's home. - - -

_ clear tells if a clear-screen sequence is to be generated on the next reJresh() call. This is 
only meaningful for screens. The initial clear-screen for the first reJresh() call is generated by ini­
tially setting clear to be TRUE for curscr, which always generates a clear-screen if set, irrelevant of 
the dimensions of the window involved. _leave is TRUE if the current (y, x) co-ordinates and the 
cursor are to be left after the last character changed on the terminal, or not moved if there is no 
change. _ 3croll is TRUE if scrolling is allowed. 

_y is a pointer to an array of lines which describe the terminal. Thus: 

_y[i] 

is a pointer to the ith line, and 

_y[iJ[j] 

is the jth character on the ith line. 

flags can have one or more values or'd into it. SUBWIN means that the window is a 
subwindow, which indicates to de/winO that the space fOr the lines is not to be freed. END­
LINE says that the end of the line for this window is also the end or a screen. FuLL WIN 
says that this window is a screen. SCROLL WIN indicates that the last character of this 
screen is at the lower right-hand corner of the terminal; i.e., if a character was put there, the ter­
minal would scroll. STANDOUT says that all characters added to the screen are in standout 
mode. -

11 All Vllia.bles not normally accessed directly by the user art na.med with a.n initial" .. to a.void eonnicts with the 
user's varia.bles. -

-18-
o 



( 

Appendix C 

1. Examples 

Here we present a few examples of how to use the package. They attempt to be representa­
tive, though not comprehensive. 

2. Screen Updating 

The following examples are intended to demonstrate the basic structure of a program using 
the screen updating sections of the package. Several of the programs require calculational sections 
which are irrelevant of to the example, and are therefore usually not included. It is hoped that the 
data structure dermitions give enough of an idea to allow understanding of what the relevant por­
tions do. The rest is left as an exercise to the reader, and will not be on the final. 

2.1. Twinkle 

This is a moderately simple program which prints pretty patterns on the screen that might 
even hold your interest for 30 seconds or more. It switches between patterns of asterisks, putting 
them on one by one in random order, and then taking them off in the same fashion. It is more ef­
ficient. to write this using only the motion optimization, as is demonstrated below. 

:# include < eurses.h > 
:# include <signal.h> 

/* * the idea lor this program was a product 01 the imagination 01 
* Kurt Schoens. Not responsible lor minds lost or stolen. 

*/ 
:# define 
:# define 
:# deC-me 

NOOLS 80 
~"LINES 24 
MAXP ATTERNS 

struct loes { 
char y, x; 

}; 

typeder struct locs LOOS; 

LOOS 

int 

mainO { 

Layout[NCOLS * NLThIESj; 

Pattern, 
Numstars; 

char 
int 

srand(getpid(»; 

initscrO; 
signal(SIGINT, die); 
noechoO; 
nonlO; 

*getenvO; 
dieO; 

leaveok(stdscr, TRUE); 
scrollok(stdscr, FALSE); 

for (;;) { 

4 

/* current board layout */ 

/* current pattern number */ 
/* number 01 stars in pattern *I 

/* initialize random sequence */ 

- 17-



} 
} 

1* 

makeboardO; 
puton('*1; 
puton(' 1j 

Appendix C 

1* make the hoard setup .; 
1* put on '*'s'; 
1* cotler up with' 's .; 

* On program ezit, motle the cursor to the lower le/t comer hy 
* direct addressing, .ince current location ia not guaranteed. 
* We lie and lJIJy we .aed to he at the upper right comer to ,uarantee 
* abaolute adtlre.,ing . 
.; 

die() { 

} 

I· 

signal(SIGINT, SIG_IGN); 
mvcur(O, eOLS-I, LINES-I, O)j 
endwinO; 
exit(O}; 

• Malee the current hoard setup. It picles a random pattern and 
• calls isonO to determine if the character is on that pattern 
• or not . 
.; 

makeboardO { 

} 

I· 

reg int 
reg Loes 

y, x; 
*lp; 

Pattern = randO % :MAXPATTERNS; 
Ip = Layout; 
for (y = 0; y < NLINES; y++) 

for (x = 0; x < NeOLS; x++) 
if (ison(y, x)) { 

} 
Numstars = Ip - Layout; 

Ip->y = y; 
Ip++->x = x; 

* Return TRUE i/ (y, z) is on the current pattern . 
.; 

ison(y, x) 
reg int y, x; { 

switch (Pattern) { 
case 0: 1* alternating linea .; 

return !(y & 01); 
case 1: 1* ho%'; 

if (x >= LINES && y >= NOOLS) 
return F ALSEj 

if(y < 3 lIy >= NLINES - 3) 

-18 -



o 

Appendix C 

return TRUE; 
return (x < 3 II x >== NOOLS - 3); 

} 

puton(ch) 
reg char 

} 

2.2. Lire 

case 2: j* hoi, pattern! *f 
... turn «x + y) & 01); 

case 3: j* bar Gcroaa center *j 
... turn (y >= 9 && y <= 15); 

} 
j* NOTREACHED *j 

reg LOCS 
reg iDt 
reg LOOS 
LOCS 

Chi { 

*lpi 
ri 
*endi 
tempi 

end == &Layout[NumstarsJ; 
for (lp = Layouti Ip < end; Ip++) { 

r == randO % Numstarsi 
temp == *Ipi 

} 

*lp == Layout[rJi 
Layout[rJ == tempi 

for (lp = Layouti lp < end; lp++) { 
mvaddch(lp->y, Ip->x, ch); 
refreshO; 

} 

This program plays the famous computer pattern game of life (Scientific American, May, 
1974). The calculational routines create a linked list of structures defining where each piece is. 
Nothing here claims to be optimal, merely demonstrative. This program, however, is a very good 
place to use the screen updating routines, as it allows them to worry about what the last position 
looked like) so you don't have to. It also demonstrates some of the input routines. 

# include < curses.h > 
# iDclude <signal.h> 

j* 
* Run a lile game. Thia ia a demonatration program lor 
* the Screen Updating section 01 the -lcursea curaor package. 

*! 

struet 1st st { 
-lnt 

etruet 1st st 
); 

typeder struet 1st _ st 

j* linked list element *f 
y, x; 
*next, *Iast; 

j* (1/, xl poaition 01 piece *j 
j* doubly linked *! 

LIST; 

-10-



Appendix C 

LIST 1* head of linked li8t *1 

main(ac, av) 
int 
char 

} 

/* 

ac; 
*avO; { 

int die(); 

evalargs(ac, av); 

initscr(); 
signal(SIGINT, die); 
crmode(); 
noechoO; 
non10; 

getstartO; 
for (;;) { 

} 

prboardO; 
updateO; 

* This is the routine which is called when rubout ill hit. 
* It resets the tty 8tats to their original values. This 
* is the normal way of leaving the program. 
*! 

dieO { 

} 

1* 

signal(SIGlNT, SIG_IGN); 
mvcur(O, COLS-I, L~'ES-l, 0); 
endwinO; 
exit(O)j 

1* evaluate arguments *1 

1* initialize 8creen package *! 
1* 8et to re8tore tty 8tat8 *1 
1* 8et for char-by-char *! 
1* 1* for optimization */ 

1* get 8tarting p08ition *1 

1* print out current board */ 
/* update board p08ition */ 

1* ignore rubouts .; 
1* go to bottom of 8creen */ 
1* Bet terminal to initial state */ 

* Get the 8tarting position from the user. They keys u, i, 0, j, I, 
* m, -" and. are used for moving their relative directions from the 
* k key. ThtJ.8, tI move diagonally tip to the left, , moves directly down, 
* etc. :t places a piece at the current position, " " takes it away . 
... The input can al80 be from a file. The li8t is built after the 
* board 8etup ill ready_ 

*/ 
getstartO { 

reg char 
reg int 

box(stdscr, '1', '_ }i 
move{l, I); 

do { 

c· , 
X,Yi 

1* box in the screen */ 
1* mot'e to upper left co.mer */ 

-20-

c 

o 



.... -

f 

o 

} 

/* 

Appendix C 

refreshO; /* print current position .; 

} 

if «e=geteh()) == 'q ') 
break; 

.. Itch (e) { 

} 

case 'u': 
case I': 
ease '0': 
case 'j': 
case 1': 
ease 'm': 
ease ',': 
ease ' '. 

case 'f': 

case 'x': 

, , 
case 

adjustyx(e); 
break; 

myaddstr(O, 0, ''File name: "); 
getstr(buf); 
readfile(buf); 
break; 

addch(Xl; 
break; 

addch(' 1; 
break; 

if (Head != NULL) 
dellist(Head); 

Head = malloc(sizeof (LIST»; 

/* 
* loop through the screen looking lor 'x's, and add a list 
* element lor each one 
.; 

for (y = 1; y < LINES - 1; y++) 
for (x = 1; x < COLS - 1; x++) { 

move(y, x); 

} 

it (inchO == 'x ') 
addlist(y, x); 

/* start new list */ 

'" Print out the current board position Irom the linked list 
.; 

prboardO { 

reg LIST 

eraseO; /* elear out last position */ 

-21-



} 

Appendix 0 

box(stdscr, '1', '_ l; 

1* * go through the lutadding each piece to the newly 
* blank board 
.; 

for (bp = Head; bp; bp = hp- > next) 
mvaddch(hp->.y, hp->x, "Xl; 

refreshO; 

3. Motion optimization 

The following example shows how motion optimization is written on its own. Programs 
which nit from one place to another without regard for what is already there usually do not need 
the overhead of both space and time associated with screen updating. They should instead use 
motion optimization. 

3.1. Twinkle 

The twinkle program is a good candidate for simple motion optimization. Here is how it 
could be written (only the routines that have been changed are shown): 

mainO { 

} 

reg char 
char 
int 

srand(getpid()) ; 

if (isaUy(O)) { 
gettmodeO; 

*sPi 
*getenvO; 
_putcharO, dieO; 

if (sp=getenv("TERM")) 
setterm(sp ); 

signal(SIGINT, die); 
} 
else { 

1* initialize random sequence *1 

printf("Need a terminal on %d\n", _tty _ ch); 
exit(l ); 

} 
_puts(TI); 
_puts(VS); 

noechoO; 
nonlO; 
tputs(CL, NUNES, _putchar); 
for (;;) { 

} 

makeboardO; 
puton( , * '}; 
puton(' l; 

-22-

1* make the board 3etup .; 
1* put on '* 's .; 
1* cotler up with' '3 .; 

C) 

/' "­/ . 
f 

~_/ 

o 



Appendix C 

/ . 
• _,,,"'char defined for tpuu() (and _put&()) 
.; 

_putcbar(c) 
reg char Cj { 

putchar(c)j 
} 

puton(ch) 
char chi { 

} 

Iftatic int 
reg LOeS 
reg int 
reg LOCS 
LOeS 

lasty, lastxj 
.lpj 
rj 
.endj 
temp; 

end = &Layout[Numstars]; 
for (lp = Layout; lp < endj lp++) { 

r = randO % Numstarsj 
temp = .Ip; 

} 

.Ip = Layout[rJ; 
Layout[rJ = temp; 

for (Ip = Layout; Ip < end; lp++) 
j* prevent &crolling .; 

if (!AM /I (lp->y < NLINES - 1 /I Ip->x < NeOLS - 1» { 
mvcur(lasty, lastx, Ip->y, Ip->x); 

} 

putchar( ch); 
lasty = Ip- >y; 
if ((lastx = Ip->x + 1) >= NeOLS) 

if (AM) { 

} 
else 

- 23-

lastx = 0; 
lasty++; 

lastx = NeOLS - 1; 





( 

o 

A Tutorial Introduction to ADB 

J. F. Maranzano 

S. R. Bourne 

ABSTRACT 

Debugging tools generally provide a wealth of information about the inner 
workings of programs. These tools have been available on UNIXt to allow users to 
examine "core" files that result from aborted programs. A new debugging pro­
gram, ADB, provides enhanced capabilities to examine "core" and other program 
files in a variety of formats, run programs with embedded breakpoints and patch 
files. 

ADB is an indispensable but complex tool for debugging crashed systems 
and/or programs. This document provides an introduction to ADB with examples 
of its use. It explains the various formatting options, techniques for debugging C 
programs, examples of printing file system information and patching. 

1. Introduction 

ADB is a new debugging program that is available on UNIX. It provides capabilities to look 
at "core" files resulting from aborted programs, print output in a variety of formats, patch files, 
and run programs with embedded breakpoints. This document provides examples of the more use­
ful features of ADB. The reader is expected to be familiar with the basic commands on UNIX with 
the C language, and with References 1, 2 and 3. 

2. A Quick Survey 

2.1. Invocation 

ADB is invoked as: 

adb objfile corefile 

where obifile is an executable UNIX file and corefile is a core image file. Many times this will look 
like: 

adb a.out core 

or more simply: 

adb 

where the defaults are a. out and core respectively. The filename minus (-) means ignore this argu­
ment as in: 

adb - core 

ADB has requests for examining locations in either file. The? request examines the contents 
of objfile, the / request examines the eorefile. The general form of these requests is: 

t UNIX is a trademark of Bell Laboratories. 



-2-

address? format 

or 

address / format 

2.2. Current Address 

ADB maintains a current address, called dot, similar in function to the current pointer in the 
UNIX editor. When an address is entered, the current l;Uidress is set to that location, so that: 

01261i 

sets dot to octal 126 and prints the instruction at that address. The request: 

.,10/d 

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item 
printed. When used with the? or / requests, the current address can be advanced by typing new­
line; it can be decremented by typing A. 

Addresses are represented by expressions. Expressions are made up from decimal, octal, and 
hexadecimal integers, and symbols from the program under test. These may be combined with the 
operators +, -, *, % (integer division), & (bitwise and), I (bitwise inclusive or), # (round up to the 
next multiple), and - (not). (All arithmetic within ADB is 32 bits.) When typing a symbolic 
address for a C program, the user can type name or _name; ADB will recognize both forms. 

2.3. Formats 

To print data, a user specifies a collection of letters and characters that describe the format 
of the printout. Formats are "remembered" in the sense that typing a request without one will 
cause the new printout to appear in the previous format. The following are the most commonly 
used format letters. 

b 
c 
o 
d 
f 
i 

one byte in octal 
one byte as a character 
one word in octal 
one word in decimal 
two words in fioating point 
PDP 11 instruction 

s a null terminated character string 
a the value of dot 
u one word as unsigned integer 
n print a newline 
r print a blank space 

backup dot 

(Format letters are also available for "long" values, for example, 'D' for long decimal, and 'F' for 
double floating point.) For other formats see the ADB manual. 

2.4. General Request Meanings 

The general form of a request is: 

address,count command modifier 

which sets 'dot' to address and executes the command count times. 

The following table illustrates some general ADB command meanings: 

Command Meaning 
? Print contents from a. out file 
/ Print contents from core file 

" ---"--"-- ----~. 

c 



( 

o 

= 

$ 

-3-

Print value or "dot" 
Breakpoint control 
Miscellaneous requests 
Request separator 
Escape to shell 

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q or 
SQ (or cntl-D) must be used to exit from ADB. 

3. Debugging C Programs 

3.1. Debugging A Core Image 

Consider the C program in Figure 1. The program is used to illustrate a common error made 
by C programmers. The object of the program is to change the lower case "tit to upper case in the 
string pointed to by charp and then write the character string to the file indicated by argument 1. 
The bug shown is that the character "T" is stored in the pointer charp instead of the string pointed 
to by charp. Executing the program produces a core file because of an out of bounds memory 
reference. 

ADB is invoked by: 

adb a.out core 

The first debugging request: 

$c 

is used to give a C backtrace through the subroutines called. .As shown in Figure 2 only one func­
tion (main) was called and the arguments argc and argv have octal values 02 and 0177762 respec­
tively. Both of these values look reasonable; 02 = two arguments, 0177762 = address on stack of 
parameter vector. 
The next request: 

$C 

is used to give a C backtrace plus an interpretation of all the local variables in each function and 
their values in octal. The value of the variable cc looks incorrect since cc was declared as a char­
acter. 

The next request: 

$r 

prints out the registers including the program counter and an interpretation of the instruction at 
that location. 

The request: 

Ie 

prints out the values of all external variables. 

A map exists Cor each file handled by ADB. The map Cor the a.out file is referenced by ? 
whereas the map Cor core file is referenced by /. Furthermore, a good rule of thumb is to use? for 
instructions and / Cor data when looking at programs. To print out inCormation about the maps 
type: 

1m 

This produces a report of the contents of the maps. More about these maps later. 

In our example, it is useful to see the contents of the string pointed to by charp. This is 
done by: 



-4-

-charp/s 

which says use charp as a pointer in the core file and print the information as a character string. 
This printout clearly shows that the character buffer was incorrectly overwritten and helps identify 
the error. Printing the locations around charp shows that the buffer is unchanged but that the 
pointer is destroyed. Using ADB similarly, we could print information about the arguments to a 
function. The request: 

main.argc/d 

prints the decimal core image value of the argument argc in the function main. 
The request: 

-main.argv,3/0 

prints the octal values of the three consecutive cells pointed to by argv in the function main. Note 
that these values are the addresses of the arguments to main. Therefore: 

0177770/s 

prints the ASCn value of the first argument. Another way to print this value would have been 

-"/s 
The" means ditto which remembers the last address typed, in this case main.argc ; the * instructs 
ADB to use the address field of the core file as a pointer. 

The request: 

.=0 
prints the current address (not its contents) in octal which has been set to the address of the first 
argument. The current address, dot, is used by ADB to "remember" its current location. It allows 
the user to reference locations relative to the current address, for example: 

.-IO/d 

3.2. Multiple Functions 

Consider the C program illustrated in Figure 3. This program calls functions I, g, and h 
until the stack is exhausted and a core image is produced. 

Again you can enter the debugger via: 

adb 

which assumes the names a. out and core for the executable file and core image file respectively. 
The request: 

$e 

will fill a page of backtrace references to f, g, and 11.: Figure 4 shows an abbreviated list (typing 
DEL will terminate the output and bring you back to ADB request level). 

The request: 

,5$0 

prints the five most recent activations. 

Notice that each function (J,g,h) has a counter of the number of times it was called. 

The request: 

tent/d 

prints the decimal value of the counter for the function f. Similarly gent and hent could be 
printed. To print the value of an automatic variable, for example the decimal value of :r in the 

o 

( ... ~ ... 

. / 



( 

-5-

last call of the function h, type: 

h.x/d 

It is currently not possible in the exported version to print stack frames other than the most recent 
activation of a function. Therefore, a user can print everything with $0 or the occurrence of a 
variable in the most recent call of a function. It is possible with the $0 request, however, to print. 
the stack frame starting at some address as address$O. 

3.3. Setting Breakpoints 

Consider the C program in Figure 5. This program, which changes tabs into blanks, 1S 

adapted from Software Tool8 by Kernighan and Plauger, pp. 18-27. 

We will run this program under the control of ADB (see Figure 6a) by: 

adb a.out-

Breakpoints are set in the program as: 

The requests: 

addresa:b [request] 

settab+4:b 
fopen+4:b 
gete+4:b 
tabpos+4:b 

set breakpoints at the start of these functions. C does not generate statement labels. Therefore it 
is currently not possible to plant breakpoints at locations other than function entry points without 
a knowledge of the code generated by the C compiler. The above addresses are entered as sym­
bol+4 so that they will appear in any C backtrace since the first instruction of each function is a 
call to the C save routine (C8V). Note that some of the functions are from the C library. 

To print the location of breakpoints one types: 

Sb 
The display indicates a count field. A breakpoint is bypassed count -1 times before causing a stop. 
The command field indicates the ADB requests to be executed each time the breakpoint is encoun­
tered. In our example no command fields are present. 

By displaying the original instructions at the function 8ettab we see that the breakpoint is set 
after the jsr to the C save routine. We can display the instructions using the ADB request: 

settab,5?ia 

This request displays five instructions starting at 8cttab with the addresses of each location 
displayed. Another variation is: 

settab,5!i 

which displays the instructions with only the starting address. 

Notice that we accessed the addresses from the a.out file with the? command. In general 
when asking for a printout of multiple items, ADB will advance the current address the number of 
bytes necessary to satisfy the request; in the above example five instructions were displayed and 
the current address was advanced 18 (decimal) bytes. 

To run the program one simply types: 

:r 

To delete a breakpoint, for instance the entry to the function 8ettab, one types: 

settab+4:d 



-6-

To continue execution of the program from the breakpoint type: 

:e 
Once the program has stopped (in this case at the breakpoint for lopen), ADB requests can 

be used to display the contents of memory. For example: 

SO 

to display a stack trace, or: 

tabs,3/So 

to print three lines of 8 locations each from the array called tabs. By this time (at location lopen) 
in the C program, 3ettab has been called and should have set a one in every eighth location of tabs. 

3.4. Advanced Breakpoint Usage 

We continue execution of the program with: 

:e 

See Figure 6b. Getc is called three times and the contents of the variable c in the function main 
are displayed each time. The single character on the left hand edge is the output from the C pro­
gram. On the third occurrence of getc the program stops. We can look at the full buffer of charac­
ters by typing: 

ibuf+6/20e 

When we continue the program with: 

:e 

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data. 

Several breakpoints of tabpo8 will occur until the program has changed the tab into 
equivalent blanks. Since we feel that tabpo8 is working, we can remove the breakpoint at that 
location by: 

tabpos+4:d 

If the program is continued with: 

:e 

it resumes normal execution after ADB prints the message 

a.out:running 

The UNIX quit and interrupt signals act on ADB itself rather than on the program being 
debugged. H such a signal occurs then the program being debugged is stopped and control is 
returned to ADB. The signal is saved by ADB and is passed on to the test program if: 

:e 

is typed. This can be useful when testing interrupt handling routines. The signal is not passed on 
to the test program if: 

:e 0 

is typed. 

Now let us reset the breakpoint at 3ettab and display the instructions located there when we 
reach the breakpoint. This is accomplished by: 

settab+4:b settab,5!ia * 
It is also possible to execute the ADB requests for each occurrence of the breakpoint but only stop 

• Owing to a bug in ea:ly versions or ADB (including the version distributed in Generic 3 UNIX) these state­
ments must be written as: 

c 



() 

( 

-7-

after the third occurrence by typing: 

gete+4,3:b main.dO * 
This request will print the local variable c in the function main at each occurrence of the break­
point. The semicolon is used to separate multiple ADB requests on a single line. 

Warning: setting a breakpoint causes the value of dot to be changed; executing the program 
under ADB does not change dot. Therefore: 

settab+4:b .,5?ia 
topen+4:b 

will print the last thing dot was set to (in the example fopen+4) not the current location (8ettab+-I) 
at which the program is executing. 

A breakpoint can be overwritten without first deleting the old breakpoint. For example: 

settab+4:b settab,5?ia; ptab/o * 
could be entered after typing the above requests. 

Now the display of breakpoints: 

$b 

shows the above request for the 8cttab breakpoint. When the breakpoint at 8ettab is encountered 
the ADB requests are executed. Note that the location at 8cttab+4 has been changed to plant the 
breakpoint; all the other locations match their original value. 

Using the functions, /, g and h shown in Figure 3, we can follow the execution of each func­
tion by planting non-stopping breakpoints. We call ADB with the executable program of Figure 3 
as follows: 

adb ex3-

Suppose we enter the following breakpoints: 

h+4:b 
g+4:b 
f+4:b 
:r 

hent/ d; h.hi/; h.hr / 
gent/d; g.gi/; g.gr/ 
fent/d; t.fl./; t.tr/ 

Each request line indicates that the variables are printed in decimal (by the specification d). Since 
the format is not changed, the d can be left off all but the first request. 

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint line 
are not examined until the program under test is run. That means any errors in those ADB 
requests is not detected until run time. At the location of the error ADB stops running the pro­
gram. 

The second point is the way ADB handles register variables. ADB uses the symbol table to 
address variables. Register variables, like ffr above, have pointers to uninitialized places on the 
stack. Therefore the message "symbol not found". 

as: 
Another way of getting at the data in this example is to print the variables used in the call 

t+4:b 
g+4:b 
:e 

fent/d; t.a/; f.b/; f.fl./ 
gent/d; g.p/; g.qf; g.gi/ 

lIt!ttab+4:b Ilettab,5!la;0 
gete+4,3:b maln.e!C;O 
eettab+4:b eettab,5!la; ptab/o;O 

Note that ;0 will set dot to zero and stop at the breakpoint. 



-8-

The operator I was used instead of? to read values from the eore file. The output for each func­
tion, as shown in Figure 7, has the same format. For the function /, for example, it shows the 
name and value of the ezterna/ variable fent. It also shows the address on the stack and value of 
the variables a, b and fi. 

Notice that the addresses on the stack will continue to decrease until no address space is left 
for program execution at which time (after many pages of output) the program under test aborts. 
A display with names would be produced by requests like the following: 

f+4:b fcnt/d; f.a/"a="d; f.bl"b="d; f.fi/"fi="d 

In this format the quoted string is printed literally and the d produces a decimal display of the 
variables. The results are shown in Figure 7. 

3.5. Other Breakpoint Facilities 

• Arguments and change of standard input and output are passed to a program as: 

:r aral arg2 ••• <infile >outfile 

This request kills any existing program under test and starts the a.out afresh. 

• The program being debugged can be single stepped by: 

:s 

If necessary, this request will start up the program being debugged and stop after executing 
the first instruction. 

• ADB allows a program to be entered at a specific address by typing: 

address:r 

• The count field can be used to skip the first n breakpoints as: 

,n:r 

The request: 

,n:c 

may also be used for skipping the first n breakpoints when continuing a program. 

• A program can be continued at an address different from the breakpoint by: 

address:c 

• The program being debugged runs as a separate process and can be killed by: 

:k 

4. Maps 

UNIX supports several executable file formats. These are used to tell the loader how to load 
the program file. File type 407 is the most common and is generated by a C compiler invocation 
such as cc pam.c. A 410 file is produced by a C compiler command of the form cc -n pam.c, 
whereas a 411 file is produced by cc -i pam.c. ADB interprets these different file formats and pro­
vides access to the different segments through a set of maps (see Figure 8). To print the maps 
type: 

Sm 

In 407 files, both text (instructions) and data are intermixed. This makes it impossible for 
ADB to differentiate data from instructions and some of the printed symbolic addresses look 

o 

c 



( 

( 

-9-

incorrect; Cor example, printing data addresses as offsets Crom routines. 

In 410 files (shared text), the instructions are separated Crom data and r· accesses the data 
part oC the 4.0ut file. The r· request tells ADB to use the second part of the map in the 4.out file. 
Accessing data in the core file shows the data after it was modified by the execution of the pro­
gram. Notice also that the data segment may have grown during program execution. 

In 411 files (separated I & D space), the instructions and data are also separated. However, 
in this case, since data is mapped through a separate set of segmentation registers, the base of the 
data segment is also relative to address zero. In this case since the addresses overlap it is necessary 
to use the r· operator to access the data space of the a.out file. In both 410 and 411 files the 
corresponding core file does not contain the program text. 

Figure 9 shows the display oC three maps Cor the same program linked as a 407, 410, 411 
respectively. The b, e, and f fields are used by ADB to map addresses into file addresses. The "fl" 
field is the length of the header at the beginning of the file (020 bytes for an a.out file and 02000 
bytes for a core file). The "f2" field is the displacement from the beginning of the file to the data. 
For a 407 file with mixed text and data this is the same as the length of the header; for 410 and 
411 files this is the length of the header plus the size of the text portion. 

The "b" and "e" fields are the starting and ending locations for a segment. Given an address, 
A, the location in the file (either a. out or core) is calculated as: 

bl~A~el =9 file address = (A-bl)+n 
b2~A~e2 =9 file address = (A-b2)+f2 

A user can access locations by using the ADB defined variables. The $v request prints the vari­
ables initialized by ADB: 

b 
d 
8 

t 
m 

base address or data segment 
length of the data segment 
length of the stack 
length of the text 
execution type (407,410,411) 

In Figure 9 those variables not present are zero. Use can be made of these variables by 
expressions such as: 

<b 

in the address field. Similarly the value of the variable can be changed by an assignment request 
such as: 

02000>b 

that sets b to octal 2000. These variables are useful to know if the file under examination is an 
executable or core image file. 

ADB reads the header of the core image file to find the values for these variables. If the 
second file specified does not seem to be a core file, or if it is missing then the header of the execut-
able file is used instead. . 

&. Advanced Usage 

It is possible with ADB to combine formatting requests to provide elaborate displays. Below 
are several examples. 

&.1. Formatted dump 

The line: 

<b,-1/404"SCn 

prints 4 octal words followed by their ASCII interpretation from the data space of the core image 



file. Broken down, the various request pieces mean: 

<b 

<b,-1 

The base address of the data segment. 

Print Crom the base address to the end of file. A negative count is 
used here and elsewhere to loop indefinitely or until some error condi­
tion (like end oC file) is detected. 

The format 404 A8Cn is broken down as follows: 

40 Print 4 octal locations. 

4 A Backup the current address 4 locations (to the original start of the 
field). 

80 Print 8 consecutive characters using an escape convention; each charac­
ter in the range 0 to 037 is printed as @ followed by the corresponding 
character in the range 0140 to 0177. An @ is printed as @@. 

n Print a newline. 

The request: 

<b,<d/404 A 8Cn 

could have been used instead to allow the printing to stop at the end of the data segment « d 
provides the data segment size in bytes). 

The Cormatting requests can be combined with ADB's ability to read in a script to produce a 
core image dump script. ADB is invoked as: 

adb a.out core < dump 

to read in a script file, dump, of requests. An example of such a script is: 

120$w 
4095$s 
$v 
=3n 
$m 
=3n"C Stack Backtrace" 
$0 
=3n"C External Variables" 
$e 
=3n "Registers" 
Sr 
O$s 
=3n"Data Segment" 
<b,-1/8ona 

The request 120$w sets the width of the output to 120 characters (normally, the width is 80 
characters). ADB attempts to print addresses as: 

symbol + offset 

The request 4095$8 increases the maximum permissible offset to the nearest symbolic address Crom 
255 (deCault) to 4095. The request = can be used to print literal strings. Thus, headings are pro­
vided in this dump program with requests of the form: 



- 11-

=3n"C Stack Backtrace" 

that spaces three lines and prints the literal string. The request tv prints all non-zero ADB vari­
ables (see Figure 8). The request O$s sets the maximum offset for symbol matches to zero thus 
suppressing the printing of symbolic labels in favor of octal values. Note that this is only done for 
the printing of the data segment. The request: 

<b,-I/Sona 

prints a dump from the base of the data segment to the end of file with an octal address field and 
eight octal numbers per line. 

Figure 11 shows the results of some formatting requests on the C program of Figure 10. 

5.2. Directory Dump 

As another illustration (Figure 12) consider a set of requests to dump the contents of a direc-
tory (which is made up of an integer inumber followed by a 14 character name): 

adb dir-
=nSt"Inum"St"Name" 
O,-I? uSt14cn 

In this example, the u prints the inumber as an unsigned decimal integer, the St means that ADB 
will space to the next multiple of 8 on the output line, and the 14c prints the 14 character file 
name. 

5.S. Ilist Dump 

Similarly the contents of the iiist of a file system, (e.g. /dev/src, on UNIX systems distri­
buted by the UNIX Support Group; see UNIX Programmer's Manual Section V) could be dumped 
with the following set of requests: 

adb /dev/src-
02000>b 
1m <b 
<b,-l?"fiags"Ston"links,uid,gid"StSbn",size"Stbrdn"addr"StSun"times"St2Y2na 

In this example the value of the base for the map was changed to 02000 (by saying 1m<b) since 
that is the start of an i/ist within a file system. An artifice (brd above) was used to print the 24 
bit size field as a byte, a space, and a decimal integer. The·last access time and last modify time 
are printed with the 2Yoperator. Figure 12 shows portions of these requests as applied t.o a direc­
tory and file system. 

5.4. Converting values 

ADB may be used to convert values from one representation to another. For example: 

072 = odx 

will print 

072 5S #Sa 

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is remem­
bered so that typing subsequent numbers will print them in the given formats. Character values 
may be converted similarly, for example: 

'a' = eo 

prints 

a 0141 

It may also be used to evaluate expressions but be warned that all binary operators have the same 



- 12-

precedence which is lower than that for unary operators. 

8. Patching 

Patching files with ADB is accomplished with the write, w or W, request (which is not like 
the cd editor write command). This is often used in conjunction with the locate, 1 or L request. In 
general, the request syntax Cor 1 and w are similar as follows: 

11 value 

The request 1 is used to match on two bytes, L is used for four bytes. The request w is used to 
write two bytes, whereas W writes four bytes. The value field in either locate or write requests is 
an expression. Therefore, decimal and octal numbers, or character strings are supported. 

In order to modify a file, ADB must be called as: 

adb -w tilel flle2 

When called with this option, fiJel and fiJet are created if necessary and opened for both reading 
and writing. 

For example, consider the C program shown in Figure 10. We can change the word "This" to 
"The" in the executable file for this program, ex7, by using the following requests: 

adb -w ex7-
11 'Th' 
1W 'The' 

The request 11 starts at dot and stops at the first match of "Th" having set dot to the address of 
the location found. Note the use of 1 to write to the a. out file. The form 1* would have been used 
for a 411 file. 

More frequently the request will be typed as: 

11 'Th'; 1s 

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB request 
will set dot to the address of the "Th" characters. 

As another example of the utility of the patching Cacility, consider a C program that has an 
internal logic Bag. The Bag could be set by the user through ADB and the program run. For 
example: 

adb a.out­
:s argl arg2 
:fiag/w 1 
:e 

The :s request is normally used to single step through a process or start a process in single step 
mode. In this ease it starts a.out as a subprocess with arguments argl and arg2. If there is a 
subprocess running ADB writes to it rather than to the file so the w request causes flag to be 
changed in the memory of the subprocess. 

'1. Anomalies 

Below is a list of some strange things that users should be aware of. 

1. Function calls and arguments are put on the stack by the C save routine. Putting break­
points at the entry point to routines means that the function appears not to have been called 
when the breakpoint occurs. 

2. When printing addresses, ADB uses ~.ither text or data symbols from the a. out file. This 
sometimes causes unexpected symbol names to be printed with data (e.g. savr5+0t2). This 
does not happen if 1 is used for text (instructions) and / for data. 

c 

C) 



- 13-

3. ADB cannot handle C register variables in the most recently activated function. 

( .• 8. Acknowledgements 

( 

The authors are grateful for the thoughtful comments on how to organize this document 
from R. B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes neces­
sary to accommodate tracing within ADB. He also participated in discussions during the writing of 
ADB. His earlier work with DB and CDB led to many of the features found in ADB. 

9. References 

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," CACM, July, 1974. 

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978. 

3. K. Thompson and D. M. Ritchie, UN1X Programmer's Manual - 7th Edition, 1978. 

4. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976. 



Figure 1: C program wit.h pointeI' bug 

struct buf { 
int tildes; 
int nleft; 
char *nextp; 
char bufJl512j; 
}bb; 

struct buf *obuf; 

char *charp "this is a sentence."; 

main(argc,argv) 
int argc; 
char **argv; 
{ 

char cc· , 

if(argc < 2) { 

- 14-

printf("Input file missing\n"); 
exit(8); 

} 

if«fcreat(argv[lj.obuf») < O){ 

} 

printf("%s : not found\n", argv[l]); 
exit(8); 

charp = 'T'; 
printf("debug 1 %s\n",charp); 

while( cc= *charp++) 
putc( cc,obuf); 

ffiush( obuf); 
} 

c 



( _ .... 

" _ .. " 

- 15-

Figure 2: ADB output for C program of Figure 1 

adb a.out core 
$c 
-main(02,OI77762) 
$C 
-main(02,OI77762) 

argc: 02 
argv: 0177762 
cc: 02124 

Sr 
ps 0170010 
pc 0204 -main+0152 
sp 0177740 
r5 0177752 
r4 01 
r3 0 
r2 0 
rl 0 
1'0 0124 
-main+0152: 
$e 
savr5: 0 
_obuf: 0 
_charp: 0124 
_errno: 0 
_fout: 0 
1m 
text map 'exl' 

mov _obuf,(sp) 

bl = 0 el = 02360 
b2 = 0 e2 = 02360 
data map 'corel' 
bi = 0 el = 03500 
b2 = 0175400 e2 = 0200000 

fl = 020 
f2 = 020 

fl = 02000 
f2 = 05500 

·charp/s 
0124: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTLx Nh@x &_ 

charp/s 
_charp: T 

_charp+02: this is a sentence. 

_charp+026: Input file missing 
main.arge/d 
0177756:2 
·main.argv /30 
0177762:01777700177776 0177777 
0177770/s 
0177770: a.out 
·main.argv /30 
0177762:017777001777760177777 
·"/s 
0177770: a.out 
...... 0 

.-IO/d 
0177756:2 
$q 

0177770 



- 16-

Figure 3: Multiple function C program for 8tack trace illustration 

int fcnt,gcnt,hcnt; 
h(x,y) 
{ 

int hi; register int hr; 
hi = x+l; 
hr = x-y+I; 
hcnt++ ; 
hj: 
f(hr,hi); 

} 

g(p,q) 
{ 

int gi; register int gr; 
gi = q-p; 
gr = q-p+l; 
gcnt++ ; 
gj: 
h(gr,gi); 

} 

f(a,b) 
{ 

int fi; register int fr; 
fi = a+2*b; 
fr = a+h; 
fcnt++ ; 
fj: 
g(fr,fi); 

} 

mainO 
{ 

f(I,I); 
} 

1\ 
!~ 

o 



- 17 -

Figure 4.: ADB output tor C program or Figure 3 

adb 
$e 
-h(04452,04451) 
-g(04453,01l124) 
-f(02,04451) 
-h(04450,04447) 
- g(04451,011120) 
-f(02,04447) 
-h(04446,04445) 
-g(04447,01 11 14) 
-f(02,04445) 
-h(04444,04443) 
InTDELKEY 
adb 
,5$C 
-h(04452,04451) 

x: 04452 
y: 04451 
hi: ? 

- g(04453,01l124) 
p: 04453 
~ 011124 
gi: 04451 
gf: ? 

-f(02,04451) 
a: 02 
b: 04451 
fi: 011124 
fr: 04453 

-h(04450,04447) 
x: 04450 
y: 04447 
hi: 04451 
hr 02 

-g(04451,011120) 
p: 04451 
q: 011120 
gl: 04447 
gr: 04450 

tcnt/d 
_fent: 1173 
gcnt/d 
-scnt: 1173 
hent/d 
J.cnt: 1172 
h.x/d 
022004: 2346 
$q 



Figure 5: C program to decode tabs 

#define MAXI.JNE 
#define YES 
#define NO 
#define TABSP 

char inputD "data"; 
char ibufl518J; 
int tabsIMAXLINEJ; 

mainO 
{ 

int col, *ptab; 
char c; 

ptab = tabs; 

80 
1 
o 
8 

- 18-

settab(ptab); /*Set initial tab stops */ 

} 

001 = 1; 
if(fopen(input,ibuf) < 0) { 

} 

printf("%s : not found\n",input); 
exit(8); 

while«c = getc(ibuf» != -1) { 
switch(c) { 

} 
} 

case' \t': /* TAB */ 
while(tabpos(col) != YES) { 

putchar(' '); /* put BLANK * / 
co1++ ; 

} 
break; 

case' \n' : /*NEWLlNE * / 

default: 

putchar(' \n' ); 
col = 1; 
break; 

putchar(c); 
col++ ; 

/* Tabpos return YES if col is a tab stop * / 
tabpos( col) 
int col; 
{ 

} 

if( col > MAXLlNE) 
return{YES); 

else 
return(tabs[co\)); 

/* Settab - Set initial tab stops * / 
settab( tabp ) 
int *tabp; 
{ 

int i; 

for(i = 0; i<= MAXLlNE; i++) 
(i%TABSP) 1 (tabsliJ = NO) : (tabs[iJ = YES); 

} 

o 

c 



(/ 

( 

- 19-

Figure 6a: ADB output tor 0 program ot Figure 5 

adb a.out­
aettab+4:b 
topen+4:b 
getc+4:b 
tabpos+4:b 
Sb 
breakpoints 
count bkpt 
1 - tabpos+04 
1 ..getc+04 
1 _fopen+04 
1 -settab+04 
aettab,5?ia -settab: jsr -settab+04: tst -settab+06: clr -settab+012: cmp -settab+020: bit -settab+022: 
aettab,5?i -settab: jsr 

tst 
clr 
cmp 
bit 

:r 
a.out: running 

command 

rS,csv 
-(sp) 
017777O(r5) 
S0120,0177770(r5) 

settab+076 

r5,csv 
-(sp) 
0177770(r5) 
$0120,OI77770(r5) 
settab+076 

breakpoint -settab+04: tst 
aettab+4:d 
:c 
a.out: running 

-(sp) 

breakpoint _fopen+04: mov 04( r5 ),nulstr+012 
$0 
_fopen(02302,02472) 
-main(0I,0177770) 

col: 01 
c: 0 
ptab: 03500 

tabs,3/80 
03500: 01 0 0 0 0 

01 0 0 0 0 
01 0 0 0 0 

0 0 0 
0 0 0 
0 0 0 



- 20-

Figure 8b: ADB output for C program of Figure 5 

Ie 
a..out: running 
breakpoint ..getc+04: mov 
ibuf+6/20e 
_cleanu+0202: This is 
:e 
a.out: running 
breakpoint -tabpos+04: cmp 
tabpos+4:d 
settab+4:b eettab,5Tia 
settab+4:b eettab,5Tia; 0 
gete+4,3:b main.eTC; 0 
eettab+4:b eettab,5!ia; ptab/o; 0 
Sb 
breakpoints 
count bkpt command 
1 • tabpos+04 
3 ..getc+04 main.c?C;O 
1 _fopen+04 

04(r5),rl 

a test of 

$0120,04(r5) 

1 • settab+04 settab,5?ia;ptab?o;0 
• settab: jsr 
·settab+04: bpt 
• settab+06: clr 
·settab+012: cmp 
• settab+020: bIt 
·settab+022: 
0177766:0177770 
0177744:@' 
T0177744: T 
h0177744: h 
i0177744: 
50177744: s 

r5,csv 

0177770(r5) 
$0120,0177770(r5) 
·settab+076 

o 

/' 
I 

1",- ,/ 



(/ 

o 

- 21 -

Figure 7: ADB output for C program with breakpoints 
adb ex3-
h+4lb bent/d; b.bl/; b.b1 
g+4:b gent/d; g.gl!; g.gr 
f+4:b fent/d; f.ft/; UrI 
:r 
ex3: running 
Jent: 0 
0177732: 214 
symbol not found 
f+4:b fent/d; f.a/; f.b/; f.ftl 
g+4:b gent/d; g.p!; g.q/; g.gll 
h+4:b bent/d; b.x/; h.y/; h.hl/ 
Ie 

ex3: running 
Jent: 0 
0177746: 1 
0177750: 1 
0177732: 214 
..gent: 0 
0177726: 2 
0177730: 3 
0177712: 214 
-.bent: 0 
0177706: 2 
0177710: 1 
0177672: 214 
Jcnt: 1 
0177666: 2 
0177670: 3 
0177652: 214 
..gent: 1 
0177646: 5 
0177650: 8 
0177632: 214 
HIT DEL 
f+4:b tcnt/d; t.a/"a = "d; t.b/"b = "d; f.ft/"fl = "d 
g+4:b gent/d; g.p/"p = "d; g.q/"q = "d; g.gl/"gl = "d 
h+4:b bent/d; h.x/"x = "d; h.y/"h = "d; h.hl/"hl ="d 
Ir 
ex3: running 
Jcnt: 0 
0177746: a = 1 
0177750: b = 1 
0177732: fi = 214 
..gent: 0 
0177726: p = 2 
0177730: q = 3 
0177712: gi = 214 
-.bent: 0 
0177706: x = 2 
0177710: y = 1 
0177672: hi = 214 
Jent: 1 
0177666: a = 2 
0177670: b = 3 
0177652: fi = 214 
HIT DEL 
$q 



- 22-

Figure 8: ADB address maps 

-107 files ('\ 

a.out hdr text+data \J 
I I 

0 D 

core hdr text+data stack 
I ...... I I 
0 D S E 

-110 files (shared text) 

a.out hdr text data 
1 1 1 

0 T B D 

core hdr data stack 
I ...... I I 

B D S E 

411 files (separated 1 and D space) 

a.out hdr text data 
I 1 I 

0 T 0 D 

core hdr data stack / 
- , 

I ...... I 1 
( \ 

I 

0 D S E ~_/ 

The following adb variables are set. 

407 410 411 

b base of data 0 B 0 
d length of data D D-B D 
s length of stack S S S 
t length of text 0 T T 

o 



- 23-

Figure 9: ADB output for maps 

(-
adb map407 core407 
Sm 
text map 'map407' 
bl = 0 el = 0256 fl = 020 
b2 =0 e2 = 0256 f2 = 020 
data map 'core407' 
bl == 0 el = 0300 fl = 02000 
b2 = 0175400 e2 == 0200000 f2 = 02300 
Sv 
variables 
d = 0300 
m = 0407 
s = 02400 
Sq 

adb map·nO core·nO 
Sm 
text map 'map410' 
bl = 0 el = 0200 fl = 020 
b2 = 020000 e2 = 020116 f2 = 0220 
data map 'core41O' 
bl = 020000 el = 020200 f1 = 02000 
b2 = 0175400 e2 = 0200000 f2 = 02200 
$v 
variables 
b = 020000 
d = 0200 
m = 0410 

( s = 02400 
t = 0200 
Sq 

adb map411 eore411 
Sm 
text map 'map411 ' 
bl = 0 el = 0200 fl = 020 
b2 = 0 e2 = 0116 f2 = 0220 
data map 'core411 ' 
bl = 0 el = 0200 fl = 02000 
b2 = 0175400 e2 = 0200000 f2 = 02200 
$v 
variables 
d = 0200 
m = 0411 
s = 02400 
t = 0200 
Sq 

() 



- 24-

Figure 10: Simple C program for illustrating formatting and patching 

char 
int 
int 
long 
float 
char 
mainO 
{ 

} 

strI[J 
one 
number 
Inum 
fpt 
str211 

one = 2; 

"This is a character string"; 
I-

I 

456; 
1234; 
1.25; 
"This is the second character string"; 

c 



(-) 

( 

- 25-

Figure 11: ADB output illustrating fancy formats 

adb map410 cordlO 
<b,-1/8ona 
020000: 0 064124 071551 064440 020163 

Jtrl+016: 061541 062564 020162 072163 064562 

020141 

063556 

064143071141 

o 02 

..number: 

..number: 0710 0 02322 

064164 

072143 

040240 

020145 

071145 

o 064124 071551 064440 

Jtr2+06: 020163 

Jtr2+026: 060562 

062563 

071440 

067543 

071164 

062156 

067151 

savr5+02: 0 o o o o o o o 
<b,20/404 'SCn 
020000: 0 064124 071551 064440 @'@'This i 

020163 020141 064143 071141 s a char 
061541 062564 020162 072163 acter st 
064562 063556 0 02 ring@'@'@b@' 

..number: 0710 0 02322 040240 H@a@'@'R@d @@ 
o 064124 071551 064440 @'@'This i 
020163 064164 
067543 062156 
060562 072143 
071164 067151 
0 0 0 0 
0 0 0 0 

data address not found 
<b,20/404 'St8cna 
020000: 0 064124 
.-Strl+06: 020163 020141 
_strl+016: 061541 062564 
.-Strl +026: 064562 063556 
..number: 
-llumber: 07100 02322 

020145 062563 s the se 
061440 060550 cond cha 
071145 071440 racter s 
0147 0 tring@'@'@' 
@'@'@'@'@'@'@'@' 
@'@'@'@'@'@'@'@' 

071551 064440 
064143 071141 
020162 072163 
0 02 ring 

040240 HR 

This i 
s a char 
acter st 

_fpt+02: 0 064124 071551 064440 This i 
Jtr2+06: 020163 064164 020145 062563 s the se 
.-Str2+016: 067543 062156 061440 060550 cond cha 
.-Str2+026: 060562 072143 071145 071440 racter 
.-Str2+036: 071164 067151 0147 0 tring 
savr5+02: 0 0 0 0 
savr5+012: 0 0 0 0 
data address not found 
<b,10/2b8t '2cn 
020000: 0 0 

.-Strt: 0124 0150 Th 
0151 0163 is 
040 0151 
0163 040 s 
0141 040 a 
0143 0150 ch 
0141 0162 ar 
0141 0143 ac 
0164 0145 te 

$Q 

s 

061440060550 

0147 0 



Figure 12: Directory and Inode dumps 

adb dir-
-nt'1node"t"Name" 
O,-lTutl4cn 

InodeName 
0: 652 . 

82 
5971 cap.c 
5323 cap 
o pp 

adb /dev/src-
02000>b 
Tm<b 
new map 

- 26-

bl = 02000 
b2 = 0 

'/dev Isrc' 
el = 0100000000 fl = 0 
e2 = 0 f2 = 0 

Iv 
variables 
b = 02000 
< b,-I ?"flags"Ston "Iinks,uid,gid"St3bn "size"Stbrdn "ad dr"StSun "times"St2Y2na 
02000: flags 073145 

links,uid,gid 0163 0164 0141 
size 0162 10356 
addr 28770 8236 25956 27766 25455 8236 25956 25206 
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15 

02040: flags 024555 
links,uid,gid 012 0163 0164 
size 0162 25461 
addr 8308 30050 8294 25130 15216 26890 29806 10784 
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51 

02100: flags 05173 
links,uid,gid 011 0162 0145 
size 0147 29545 
addr 25972 8306 28265 8308 25642 15216 2314 25970 
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44 

o 



( 

- 27-

ADBSummary 

Command Summary 

a) formatted printing 

! format print from a.out file according to for­
mat 

/ format print from core file according to for­
mat 

-format print the value of dot 

!w expr write expression into 4. out file 

/w expr write expression into core file 

!I expr locate expression in a. out file 

b) breakpoint and program control 

:b 
:c 
:d 
:k 
:r 
:s 

set breakpoint at dot 
continue running program 
delete breakpoint 
kill the program being debugged 
run a. out file under ADB control 
single step 

c) miscellaneous printing 

$b print current breakpoints 
$c C stack trace 
$e external variables 
$r floating registers 
Sm print ADB segment maps 
$q exit from ADB 
Sr general registers 
Ss set offset for symbol match 
Sv print ADB variables 
$w set output line width 

d) calling the shell 

call shell to read rest of line 

e) assignment to variables 

>name assign dot to variable or register name 

Format Summary 

a the value of dot 
b 
c 
d 
r 

o 
n 
r 
II 

nt 
u 
x 
y 

one byte in octal 
one byte as a character 
one word in decimal 
two words in floating point 
PDP 11 instruction 
one word in octal 
print a newline 
print a blank space 
a null terminated character string 
move to next n space tab 
one word as unsigned integer 
hexadecimal 
date 
backup dot 
print string 

Expression Summary 

a) expression components 

decimal integer e.g. 256 
octal integer e.g. 0277 
hexadecimal e.g. =#ff 
symbols e.g. flag JIlain main.argc 
variables e.g. <b 
registers e.g. <pc <rO 
(expression) expression grouping 

b) dyadic operators 

+ add 

• 
% 
& 
I 
=# 

subtract 
multiply 
integer division 
bitwise and 
bitwise or 
round up to the next multiple 

c) monadic operators 

not 
• contents of location 

integer negate 



o 

c 



( 

o 

An Introduction to the 
Source Code Control System 

Eric Allman 
Project Ingre8 

Univer8itg of Ca.lifornia a.t Berke/ev 

This document gives a quick introduction to using the Source Code Control System (seeS). 
The presentation is geared to programmers who are more concerned with what to do to get a task 
done rather than how it works; for this reason some or the examples are not well explained. For 
details of what the magic options do, see the section on "Further Inrormation". 

This is a working document. Please send any comments or suggestions to 
csva..'C:eric. 

1. Introduction 

sees is a source management system. Such a system maintains a record or versions or a sys­
tem; a record is kept with each set of changes of what the changes are, why they were made, and 
who made them and when. Old versions can be recovered, and different versions can be main­
tained simultaneously. In projects with more than one person, sees will insure that two people 
are not editing the same file at the same time. 

All versions of your program, plus the log and other information, is kept in a file called the 
Us-file". There are three major operations that can be performed on the s-file: 

(1) Get a file for compilation (not for editing). This operation retrieves a version of the file from 
the s-file. By default, the latest version is retrieved. This file is intended for compilation, 
printing, or whatever; it is specifically NOT intended to be edited or changed in any way; 
any changes made to a file retrieved in this way will probably be lost. 

(2) Get a file for editing. This operation also retrieves a version of the file from the s-file, but 
this file is intended to be edited and then incorporated back into the s-file. Only one person 
may be editing a file at one time. 

(3) Merge a file back into the s-file. This is the companion operation to (2). A new version 
number is assigned, and comments are saved explaining why this change was made. 

2. Learning the Lingo 

There are a number of terms that are worth learning before we go any farther. 

2.1. S-file 

The s-file is a single file that holds all the different versions of your file. The s-file is stored 
in differential formatj i.e., only the differences between versions are stored, rather than the entire 
text of the new version. This saves disk space and allows selective changes to be removed later. 
Also included in the s-file is some header information for each version, including the comments 
given by the person who created the version explaining why the changes were made. 

This is version 1.21 or this document. It was last modified on 12/S/8O. 

sees Introduction 1 



sees Introduction 2 

2.2. Deltas 

Each set or changes to the .. file (which is approximately [but not e.nctly!j equivalent to a 
version or the file) is called a ddta. Although technically a delta only includes the changes made, 
in practice it is usual ror each delta to be made with respect to all the deltas that have occurred 
before1• However, it is possible to get a nrsion or the file that has selected deltas removed out of 
the middle of the list or changes - equivalent to removing your changes later. 

2.3. SID's (or, version numbers) 

A SID (seeS Id) is a number that represents a delta. This is normally a two-part number 
consisting of a "release" number and a "level" number. Normally the release number stays the 
same, however, it is possible to move into a new release if some major change is being made. 

Since all past deltas are normally applied, the SID or the final delta applied can be used to 
represent a version number or the file as a whole. 

2.4. Id keywords 

\Vhen you get a version of a file with intent to compile and install it (i.e., something other 
than edit it.), some special keywords are e.,,<panded in line by sees. These ld Keywords can be used 
to include the current version number or other inFormation into the file. All id keywords are of the 
form %x%, where x is an upper case letter. For example, %1% is the SID of the latest delta 
applied, %W% includes the module name, SID, and a mark that makes it findable by a program, 
and %G% is the date of the latest delta applied. There are many others, most of which are of 
dubious usefulnc ;so 

When you get a file for editing, the id keywords are not expanded; this is so that after you 
put them back in to the s-file, they will be expanded automatically on each new version. But 
notice: if you were to get them expanded accidently, then your file would appear to be the same 
version forever more, which would of course defeat the purpose. Also, if you should install a ver-
sion of the program without e."<panding the id keywords, it will be impossible to tell what version "'_~ 
it is (since all it will have is "%W%" or whatever). 

3. Creating sees Files 

To put source files into sees format, run the following shell script from esh: 

mkdir sees save 
roreach i (*.[eh]) 

end 

sces admin -i$i $i 
mv $i saveJSi 

This will put the na.med files into s-files in the subdirectory "sees" The files will be removed 
from the current directory and hidden away in the directory "save", so the next thing you will 
probably want to do is to get all the files (described below). When you are convinced that sees 
h:lS correctly created the s-files, you should remove the directory "save". 

If you want to have id keywords in the files, it is best to put them in before you create the 
s-files. If you do not, atlmin will print "No Id Keywords (cm7)", which is a warning message only. 

4. Getting Files for Compilation 

To get a copy of the latest version or a file, run 

sces get prog.c 

sees will respond: 

IThis matches normal usage, where the previous changes are not saved at all, so all changes are automatically based 
on all other changes that have happened through history. o 



( 

o 

sees Introduction 3 

1.1 
87 lines 

meaning that version 1.1 was retrieved!! and that it has 87 lines. The file ,rag. e will be created in 
the current directory. The file will be read-only to remind you that you are not supposed to 
change it. 

This copy of the file should not be changed, since sees is unable to merge the changes back 
into the s-file. Ir you do make changes, they will be lost the next time someone does a get. 

5. Changing Files (or, Creating Deltas) 

5.1. Getting a copy to edit 

To edit a source file, you must first get it, requesting permission to edit itlS: 

sccs edit prog.c 

The response will be the same as with get except that it will also say: 

New delta 1.2 

You then edit it, using a standard text editor: 

vi prog.c 

5.2. Merging the changes back into the s-file 

\Vhen the desired changes are made, you can put your changes into the sees file using the 
delta command: 

sees delta prog.c 

. Delta will prompt you for "comments?" before it merges the changes in. At this prompt you 
should type a one-line description of what the changes mean (more lines can be entered by ending 
each line e."(cept the last with a backslash~). Delta will then type: 

1.2 
5 inserted 
3 deleted 
84 unchanged 

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84 lines 
unchangeds. The prog.c file will be removed; it can be retrieved using get. 

5.3. 'When to make deltas 

It is probably unwise to make a delta before every recompilation or test; otherw'ise, you tend 
to get a lot of deltas with comments like "fixed compilation problem in previous delta" or "fixed 
botch in 1.3". However, it is very important to delta everything before installing a module for 
general use. A good technique is to edit the files you need, make all necessary changes and tests, 
compiling and editing as often as necessary without making deltas. When you are satisfied that 
you have a working version, delta everything being edited, re-get them, and recompile everything. 

'Actually, the SID or the IIna! delta applied was 1.1. 

&fhe "edit" comma.nd is equivalent to using the -e flag to ,et, as: 

aces get. -t prog.c: 

Keep tbis in mind when reading other doc:umentation. 

"Yes, this is a. stupid derault. 

'Changes to a line are counted as a line deleted and a line inserted. 



sees Introduction 

5.4. What's going on: the into command 

To find out what files where being edited, you can use: 

sees inro 

4 

to print out all the files being edited and other information such as the name or the user who did 
the edit. Also, the command: 

sees check 

is nearly equivalent to the info command, except that it is silent ir nothing is being edited, and 
returns non-zero exit status if anything is being edited; it can be used in an "install" entry in a 
makefile to abort the install if anything has not been properly deltaed. 

If you know that everything being edited should be deltaed, you can use: 

sccs delta 'secs tell' 

The tell command is similar to info except that only the names or files being edited are output, one 
per line. 

All or these commands take a -b flag to ignore "branches" (alternate versions, described 
later) and the -u flag to only give files being edited by you. The -u flag takes an optional user 
argument, giving only files being edited by that user. For example, 

sees inro -ujohn 

gives a listing or files being edited by john. 

5.5. ID keywords 

Id keywords can be inserted into your file that will be expanded automatically by get. 
example, a line such as: 

static char SccsIdO = "%W%\t%G%"; 

will be replaced with something like: 

static char ScesldD = "@(#)prog.c 1.2 08/29/80"; 

For 

This tells you the name and version or the source file and the time the delta was created. The 
string "@(#)" is a special string which signals the beginning or an sees Id keyword. 

5.5.1. The what command 

To find out what version or a program is being run, use: 

sees what prog.c /usr /bin/prog 

which will print all strings it finds that begin with "@(#)". This works on all types of files, 
including binaries and libraries. For e."{ample, the above command will output something like: 

prog.c: 
prog.c 1.2 

/usr /bin/prog: 
prog.c 1.1 

08/29/80 

02/05/79 
From this I can see that the source that I have in prog.c will not compile into the same version as 
the binary in /usr/bin/prog. 

5.5.2. Where to put id keywords 

ID keywords can be inserted anywhere, including in comments, but Id Keywords that are 
compiled into the object module are especially userul, since it lets you find out what version or the 
object is being run, as well as the source. However, there is a cost: data space is used up to store 
the keywords, and on small address space machines this m:l.Y be prohibitive. 

When you put id keywords into header files, it is important that you assign them to different 
variables. For e."{ample, you might use: 



( 

o 

sees Introduction 

static char AccessSidO == "%W% 

in the file acce88.h and: 

static char OpsysSidD == "%W% 

5 

%G%"; 

%G%"; 
in the file OP8'118.h. Otherwise, you will get compilation errors because "Sccsld" is redefined. The 
problem with this is that if the header file is included by many modules that are loaded together, 
the version number of that header file is included in the object module many times; you may find 
it more to your taste to put id keywords in header files in comments. 

5.0. Keeping SID's consistent across files 

\Vith some care, it is possible to keep the SID's consistent in multi-file systems. The trick 
here is to always edit all files at once. The changes can then be made to whatever files are neces­
sary and then all files (even those not changed) are redeltaed. This can be done fairly easily by 
just specifying the name of the directory that the sees files are in: 

sces edit sees 
which will edit all files in that directory. To make the delta, use: 

sccs delta sees 
You will be prompted Cor comments only once. 

5.7. Creating new releases 

'Vhen you want to create a new release of a program, you can specify the release number you 
'vant to create on the edit command. For example: 

sces edit -r2 prog.c 

"ill cause the next delta to be in release two (that is, it will be numbered 2.1). Future deltas will 
automatically be in release two. To change the release number oC an entire system, use: 

sccs edit -r2 sees 

6. Restoring Old Versions 

6.1. Reverting to old versions 

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this intro­
duced a bug, so you made a delta 1.4 to correct it. But 1.4 was still buggy, and you decided you 
wanted to go back to the old version. You could revert to delta 1.2 by choosing the SID in a get: 

sees get -d.2 prog.c 

This ,,·m produce a version of prog. c that is delta 1.2 that can be reinstalled so that work can 
proceed. 

In some cases you don't know what the SID of the delta you want is. However, you can 
revert to the version of the program that was running as of a certain date by using the -c (cutoff) 
fiag. For e.xample, 

sees get -c8oo;22120000 prog.e 

will retrieve whatever version was current as oC July 22, 1980 at 12:00 noon. Trailing components 
can be stripped off (deCaulting to their highest legal value), and punctuation can be inserted in the 
obvious places; for example, the above line could be equivalently stated: 

sees get -c"SO/07/22 12:00:00" prog.c 

6.2. Selectively deleting old deltas 

Suppose that you later decided that you liked the changes in delta lA, but that delta. 1.3 
should be removed. You could do this by ezcluding delta. 1.3: 



sees Introduction 6 

sces edit -x1.3 prog.c 

\Vhen delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude the changes 
made in delta 1.3. You can exclude a range or deltas using a dash. For example, if you want to 
get rid of 1.3 and 1.4 you can use: 

sces edit -x1.3-1.4 prog.c 

which will exclude all deltas from 1.3 to 1.4. Alternatively, 

sces edit -xl.3-l prog.c 

will exclude a range of deltas from 1.3 to the current highest delta in release 1. 

In certain cases when using -x (or -i; see below) there will be conflicts between versions; for 
example, it may be necessary to both include and delete a particular line. If this happens, sees 
always prints out a message telling the range of lines effected; these lines should then be examined 
very carefully to see if the version sees got is ok. 

Since each delta (in the sense of "a set of changes") can be excluded at will, that this makes 
it most useful to put each semantically distinct change into its own delta. 

7. Auditing Changes 

7.1. The prt command 

When you created a delta, you presumably gave a reason for the delta to the "comments?" 
prompt. To print out these comments later, use: 

sces prt prog.c 

This will produce a report for each delta of the SID, time and date of creation, user who created 
the delta, number of lines inserted, deleted, and unchanged, and the comments associated with the 
delta. For example, the output of the above command might be: 

D 1.2 80/08/29 12:35:31 bill 2 1 00005/00003/00084 
removed "-q" option 

D 1.1 79/02/05 00:19:31 eric 1 0 0008i/OOOOO/OOOOO 
date and time created SO/06/10 00:19:31 by eric 

7.2. Finding why lines were inserted 

To find out why you inserted lines, you can get a copy of the file with each line preceded by 
the SID that created it: 

sees get -m prog.c 

You can then find out what this delta did by printing the comments using prt. 

To find out what lines are associated with a particular delta (e.g., 1.3), use: 

sces get -m -p prog.c I grep "1.3' 

The -p flag causes sees to output the generated source to the standard output rather than to a 
file. 

7.3. Finding what changes you have made 

When you are editing a file, you can find out what changes you have made using: 

sces dift's prog.c 

Most of the "diff" flags can be used. To pass the -e flag, use -C. 

To compare two versions that are in deltas, use: 

sces sccsdiff -r1.3 -r1.6 prog.c 

to see the differences between delta 1.3 and delta 1.6. 



( 

o 

sees Introduction 7 

8. Shorthand Notations 

There are several sequences of commands that get executed frequently. SCCIJ tries to make it 
easy to do these. 

8.1. Delget 

A Crequent requirement is to make a delta of some file and then get that file. This can be 
done by using: 

sccs delget prog.c 

which is entirely equivalent to using: 

sces delta prog.c 
sees get prog.c 

The "deledit" command is equivalent to "delget" except that the "edit" command is used instead 
of the "get" command. 

8.2. Fix 

Frequently, there are small bugs in deltas, e.g., compilation errors, for which there is no rea­
son to maintain an audit trail. To replace a delta, use: 

sccs fix -rI,4 prog.c 

This will get a copy of delta 1,4 of prog.c for you to edit and then delete delta 1.4 from the sees 
file. When you do a delta of prog.c, it will be delta 1.4 again. The -r flag must be specified, and 
the delta that is specified must be a leaf delta, i.e., no other deltas may have been made subse­
quent to the creation of that delta. 

8.3. Unedit 

If you found you edited a file that you did not want to edit, you can back out by using: 

sees unedit prog.c 

8.4. The -d flag 

If you are working on a project where the sees code is in a directory somewhere, you may 
be able to simplify things by using a shell alias. For example, the alias: 

alias syssccs sees -d/usr/src 

will allow you to issue commands such as: 

syssccs edit cmd/who.c 

which will look for the file "/usr/src/cmd/SCCS/who.c". The file "who.c" will always be created 
in your current directory regardless of the value of the -d flag. 

9. Using sees on a Project 

Working on a project with several people has its own set of special problems. The main 
problem occurs when two people modify a file at the same time. sees prevents this by locking an 
s-file while it is being edited. 

As a result, files should not be reserved Cor editing unless they are actually being edited at 
the time, since this will prevent other people on the project from making necessary changes. For 
e.umple, a good scenario for working might be: 



sees Introduction 

sees edit a.e g.e t.c 
vi a.e g.e t.e '* do testing of the (experimental) version 
sees delget a.c g.c t.c 
sces info '* should respond "Nothing being edited" 
make install 

8 

As a general rule, all source files should be deltaed before installing the program for general 
use. This will insure that it is possible to restore any version in use at any time. 

10. Saving Yourself 

10.1. Recovering a munged edit file 

Sometimes you may find that you have destroyed or trashed a file that you were trying to 
editG• Unfortunately, you can't just remove it and re-edit it; sees keeps track of the fact that 
someone is trying to edit it, so it won't let you do it again. Neither can you just get it using get, 
since that would expand the Id keywords. Instead, you can say: 

sccs get -k prog.c 

This will not expand the Id keywords, so it is safe to do a delta with it. 

Alternately. you can unedit and edit the file. 

10.2. Restoring the s-file 

In particularly bad circumstances,the sees file itself may get munged. The most common 
way this happenS is that it gets edited. Since sees keeps a checksum, you will get errors every 
time you read the file. To fix this checksum, use: 

sccs admin -z prog.c 

11. Using the Admin Command 
-

There are a number of parameters that can be set using the Gdmin command. The most 
interesting of these are flags. Flags can be added by using the -t flag. For example: 

sces admin -fd! prog.c 

sets the "d" flag to the value "1". This flag can be deleted by using: 

sccs admin -dd prog.c 

The most useful flags are: 

b Allow branches to be made using the -b flag to ed~·t. 

dSID Default SID to be used on a get or edit. If this is just a release number it constrains the 
version to a particular release only. 

Give a fatal error if there are no Id Keywords in a file. This is useful to guarantee that a 
version of the file does not get merged into the s-file that has the Id Keywords inserted as 
constants instead of internal forms. 

y The "type" of the module. Actually. the va.lue of this Bag is unused by sees except that 
it replaces the %Y% keyword. 

The -tfile Bag can be used to store descriptive text from file. This descriptive text might be 
the documentation or a design and implementation document. Using the -t flag insures that if the 
sees file is sent, the documentation will be sent also. If file is omitted, the descriptive text is 
deleted. To see the descriptive text, use "prt -t". 

'Or given up and decided to start over. c 



( 

o 

sees Introduction 9 

The admin command can be used safely any number of times on files. A file need not be got­
ten for admin to work. 

12. Maintaining Different Versions (Branches) 

Sometimes it is convenient to maintain an experimental version of a program for an extended 
period while normal maintenance continues on the version in production. This can be done using a 
"branch." Normally deltas continue in a straight line, each depending on the delta before. Creat­
ing a branch "Corks off" a version of the program. 

The ability to create branches must be enabled in advance using: 

sces admin -fb prog.c 

The -fb flag can be specified when the sees file is first created. 

12.1. Creating a branch 

To create a branch, use: 

sccs edit -b prog.c 

This will create a branch with (for example) SID 1.5.1.1. The deltas for this version will be num­
bered 1.5.1. n. 

12.2. Getting from a branch 

Deltas in a branch are normally not included when you do a get. To get these versions, you 
will have to say: 

sccs get -r1.5.1 prog.c 

12.3. Merging a branch back into the main trunk 

At some point you will have finished the e."<periment, and if it was successful you will want 
to incorporate it into the release version. But in the meantime someone may have created a delta 
1.6 that you don't want to lose. The commands: 

sccs edit -i1.5.1.1-1.5.1 prog.c 
sccs delta prog.c 

will merge all of your changes into the release system. If some of the changes conflict, get will 
print an error; the generated result should be carefully examined before the delta is made. 

12.4. A more detailed example 

The following technique might be used to maintain a different version of a program. First, 
create a directory to contain the new '.-ersion: 

mkdir .. /new,,"yz 
cd .. /newxyz 

Edit a copy of the program on a branch: 

sccs -d .. />.."Yz edit prog.c 

When using the old version, be sure to use the -b flag to info, check, tell, and clean to avoid con­
fusion. For example, use: 

sces info -b 

when in the directory "xyz". 

If you want to saYe a copy of the program (still on the branch) back in the s-file, you can 
use: 

sees -d .. /xyz deledit prog.c 

which will do Do delta on the branch and reedit it for you. 



sees Introduction 10 

When the experiment is complete, merge it back into the s-file using delta: 

sces -d .. /xyz delta prog.c 

At this point you must decide whether this version should be merged back into the trunk (i. c. the 
default version). which may have undergone changes. If so, it can be merged using the -i flag to 
edit as described above. 

12.5. A warning 

Branches should be kept to a minimum. After the 6rst branch from the trunk, SID's are 
assigned rather haphazardly. and the structure gets comple.'\: fast. 

13. Using sees with Make 

sees and make can be made to work together with a little care. A few sample makefiles for 
common applications are shown. 

There are a few basic entries that every makefile ought to have. These are: 

a.out 

install 

sources 

clean 

print 

(or whatever the makefile generates.) This entry regenerates whatever this makefile 
is supposed to regenerate. If the makefile regenerates many things. this should be 
called "all" and should in turn have dependencies on everything the makeflle can 
generate. 

Moves the objects to the final resting place. doing any special chmod's or ran/ib's 
as appropriate. 

Creates all the source files from sees files. 

Removes all cruft from the directory. 

Prints the contents of the directory. 

The examples shown below are only partial examples, and may omit some of these entries when 
they are deemed to be obvious. 

The clcan entry should Dot remove files that can be regenerated from the sees files. It is 
sufficiently important to have the source files around at all times that the only time they should be 
removed is when the directory is being mothballed. To do this. the command: 

sces clean 

can be used. This will remove all files for which an s-61e exists, but which is not being edited. 

13.1. To maintain single programs 

Frequently there are directories with severall3,rgely unrelated programs (such as simple com­
mands). These can be put into a single makefile: 

LDFLAGS= -i -s 

prog: prog.o 
S(CO) $(LDFLAGS) -0 prog prog.o 

prog.o: prog.c prog.h 

example: example.o 
$(CO) $(LDFLAGS) -0 example example.o 

example.o: example.c 

.DEFAULT: 
sces get $< 

The trick here is that the .DEFAULT rule is called every time something is needed that does not 
e.'l:ist, and no other rule e.'\:ists to make it. The explicit dependency of the .0 file on the .c file is 
important. Another way of doing the same thing is: 

c 



<.--

sees Introduction 

SRCS=prog.c prog.h example.c 

LDFLAGS= -i -s 

prog: prog.o 
S(CO) S(LDFLAGS) -0 prog prog.o 

prog.o: prog.h 

example: example.o 
S(CO) S(LDFLAGS) -0 example ~ample.o 

sources: S(SRCS) 
$(SROS): 

sces get $@ 

11 

There are a couple of advantages to this approach: (1) the explicit dependencies of the .0 on the .c 
files are not needed, (2) there is an entry called "sources" so if you want to get all the sources you 
can just say "make sources", and (3) the makefile is less likely to do confusing things since it 
won't try to get things that do not e.xist. 

13.2. To maintain a library 

Libraries that are largely static are best updated using explicit commands, sinee make doesn't 
know about updating them properly. Howeyer, libraries that are in the process of being developed 
can be handled quite adequately. The problem is that the .0 files have to be kept out of the 
library as well as in the library. 

# configuration information 
OBJS= 1..0 b.o C.o d.o 
SRCS=a.c b.c c.e d.s x.h y.h z.h 
TARG= lusr/lib 

# programs 
GET= secs get 
REL= 
AR= -ar 
~"\"LIB= ranlib 

lib.a: S(OBJS) 
S(AR) rvu lib.a S(OBJS) 
S(RA.."\'LIB) lib.a 

install: lib.a 
sees check 
cp lib.a $(TARG)/lib.a 
$(R-\;',\"LIB) $(TARG}Jlib.a 

sources: $(SRCS) 
S(SROS): 

$( GET) S(REL) $@ 

print: sources 
pr *.h *.les] 

clean: 
rm -f *.0 
rm -f core a.out S(LIB) 

The "S(REL)" in the get can be used to get old versions easily; for example: 

make b.o REL=-r1.3 

The in$tal/ entry includes the line "sces check" before anything else. This guarantees that all 
the s-files are up to date (i.e., nothing is being edited), and will abort the make if this condition is 
not met. 



sees Introduction 

13.3. To maintain a large program 

OBJS=a.o b.o c.o d.o 
SROS=a.c b.c c.y d.s x.h y.h z.h 

GET= sces get 
REL= 

a.out: S(OBJS) 
$(00) $(LDFLAGS) S(OBJS) $(LmS) 

sources: S(SRCS) 
S(SROS): 

$( GET) $(REL) $@ 

12 

(The print and clean entries are identical to the previous case.) This makefile requires copies of the 
source and object files to be kept during development. It is probably also wise to include lines of 
the form: 

a.o: x.h y.h 
b.o: z.h 
c.O: x.h y.h z.h 
z.h: x.h 

so that modules will be recompiled if header files change. 

Since make does not do transitive closure on dependencies, you may find in some makefiles 
lines like: 

z.h: x.h 
touch z.h 

This would be used in cases where file z.h has a line: 

#inc1ude "x.h" 

in order to bring the mod date of z.h in line with the mod date of x.h. When you have a ma.kefile 
such as above, the touch command can be removed completely; the equivalent effect will be 
achieved by doing an automatic get on z.h. 

14. Further In1'ormation 

The sees/ PWB U8er'8 Manual gives a deeper description of how to use sees. Of particular 
interest are the numbering of branches, the I-file, which gives a description of what deltas were 
used on a get, and certain other sees commands. 

The sees manual pages are a good last resort. These should be read by software managers 
a.nd by people who want to know everything about everything. 

Both of these documents were written without the 8CC8 front end in mind, so most of the 
e.xamples are slightly different from those in this document. 

o 

c 



( 

e', 

sees Introduction 13 

Quick Reference 

1. Commands 

The following commands should all be preceded with "sees". This list is not exhaustive; for 
more options see Further Information. 

get Gets files for compilation (not ror editing). Id keywords are expanded. 

-rSID Version to get. 

-p Send to standard output rather than to the actual file. 

-k Don't expand id keywords. 

-i/ist List or deltas to include. 

-x/ist List or deltas to exclude. 

-m Precede each line with SID of creating delta. 

-cdate Don't apply any deltas created after date. 

edit Gets files ror editing. ld keywords are not expanded. Should be matched with a delta 
command. 

-rSID Same as get. If SID specifies a release that does not yet exist, the highest num-
bered delta is retrieved and the new delta is numbered with SID. 

-b Create a branch. 

-ilist Same as get. 

-x/ist Same as get. 

delta . Merge a file gotten using edit back into the s-file. Collect comments about why this 
delta was made. 

unedit 

prt 

info 

check 

tell 

clean 

what 

ad min 

Remove a file that has been edited previously without merging the changes into the s­
file. 

Produce a report of changes. 

-t Print the descriptive text. 

-e Print (nearly) everything. 

Give a list of all files being edited. 

-b Ignore branches. 

-u[use~ 
Ignore files not being edited by user. 

Same as info, except that nothing is printed if nothing is being edited and e.xit status is 
returned. 

Same as info, except that one line is produced per file being edited containing only the 
file name. 

Remove all files that can be regenerated from the s-file. 

Find and print id keywords. 

Create or set parameters on s-files. 

-ifile Create, using file as the initial contents. 

-z Rebuild the checksum in case the file has been trashed. 

-rflag Turn on the flag. 



sees Introduction 14 

-dftag Turn oft' (delete) the fto.g. 

-tfile Replace the descriptive text in the s-file wi~h the contents or file. If file is omit-
ted, the text is deleted. Userul for storing documentation or "design & imple­
mentation" documents to insure they get distributed with the s-6Ie. 

Useful flags are: 

b Allow branches to be made ushg the -b flag to edit. 

dSID Defa.ult SID to be used on a get or edit. 

Cause "No Id Keywords" error message to be a fatal error rather than a warn­
ing. 

t The module "type"; the value of this flag replaces the %Y% keyword. 

6.'( Remove a delta and reedit it. 
delget Do a delto. followed by a get. 

deledit Do a delta followed by an edit. 

2. Id Keywords 

%Z% Expands to U@(#)" for the what command to find. 
%M% The current module name, e.g., "prog.c". 

%1% The highest SID applied. 

%W%A shorthand for "%Z%%M% <tab> %1%". 
%0% The date or the delta corresponding to the "%1%" keyword. 

%R% The current release number, i.e., the 6rst component or the "%1%" keyword. 
%Y% Replaced by the value of the t Bag (set by o.dmin). 



(~ 

( 

( ": 
/ 

A Guide to the Dungeons of Doom 

Michael C. Toy 
Kenneth C. R. C. Arnold 

Computer Systems Research Group 
Department or Electrical Engineering and Computer Science 

University or Calirornia 
Berkeley, California 94720 

ABSTRACT 

Rogue is a visual CRT based rantasy game which runs under the u1'-olXt timesharing sys­
tem. This paper describes how to play rogue, and gives a rew hints ror those who might 
otherwise get lost in the Dungeons or Doom. 

tUl\1X is a trademark or Bell Laboratories 



o 

~~~- -----------


(

()

A Guide to the Dungeons or DOOIn

1. Introduction

You have just finished your years as a student at the local fighter's guild. After much prac­
tice and sweat you have finally completed your training and are ready to embark upon a perilous
adventure. As a test of your skills, the local guildmasters have sent you into the Dungeons of
Doom. Your task is to return with the Amulet of Yendor. Your reward for the completion of this
task will be a full membership in the local guild. In addition, you are allowed to keep all the loot
you bring back from the dungeons.

In preparation for your journey, you are given an enchanted mace, a bow, and a quiver of
arrows taken from a dragon's hoard in the far off Dark Mountains. You are also outfitted with
elf-crafted armor and given enough food to reach the dungeons. You say goodbye to family and
friends for what may be the last time and head up the road.

You set out on your way to the dungeons and after several days of uneventful travel, you see
the ancient ruins that mark the entrance to the Dungeons of Doom. It is late at night, so you
make camp at the entrance and spend the night sleeping under the open skies. In the morning you
gather your weapons, put on your armor, eat what is almost your last food, and enter the
dungeons.

2. 'Vhat is going on here?

You have just begun a game of rogue. Your goal is to grab as much treasure as you can,
find the Amulet of Yendor, and get out of the Dungeons of Doom alive. On the screen, a map of
where you have been and what you have seen on the current dungeon level is kept. As you explore
more of the level, it appears on the screen in front of you.

Rogue differs from most computer fantasy games in that it is screen oriented. Commands
are all one or two keystrokes l and the results of your commands are displayed graphically on the
screen rather than being explained in words.2

. Another major difference between rogue and other computer fantasy games is that once you
have solved all the puzzles in a standard fantasy game, it has lost most of its excitement and it
ceases to be fun. Rogue, on the other hand, generates a new dungeon every time you play it and
even the author finds it an entertaining and exciting game.

3. What do all those things on the screen mean?

In order to understand what is going on in rogue you have to first get some grasp of what
rogue is doing with the screen. The rogue screen is intended to replace the "You can see
descriptions of standard fantasy games. Figure 1 is a sample of what a rogue screen might look
like.

3.1. The bottom line

At the bottom line of the screen are a few pieces of cryptic information describing your
current status. Here is an explanation of what these things mean:

Level This number indicates how deep you have gone in the dungeon. It starts at one and goes up
as you go deeper into the dungeon.

Gold The number of gold pieces you have managed to find and keep with you so far.

Hp Your current and maximum hit points. Hit points indicate how much damage you can take
before you die. The more you get hit in a fight, the lower they get. You can regain hit
points by resting. The number in parentheses is the ma.ximum number your hit points can
reach.

1 As opposed to pseudo English sentences.

2 A minimum screen size or 2-i lines by 80 columns is required. If the screen is larger, only the 24:'1:80 section will be
used ror the map.

-1-

A Guide to the Dungeons of Doom

+
. @. • . I

. B I
I

- - + - - - - - -

Level: 1 Gold: 0 Hp: 12(12) Str: 16(16) Ac: 6 Exp: 1/0

Figure 1

Str Your current strength and ma..ximum ever strength. This can be any integer less than or
equal to 31, or greater than or equal to three. The higher the number, the stronger you are.
The number in the parentheses is the maximum strength you have attained so far this
game.

Ac Your current armor class. This number indicates how effective your armor is in stopping
blows from unfriendly creatures. The lower this number is, the more effective the armor.

Exp These two numbers give your current experience level and experience points. .As you do
things, you gain experience points. At certain e.xperience point totals, you gain an experi­
ence level. The more experienced you are, the better you are able to fight and to withstand
magical attacks.

3.2. The top line

The top line of the screen is reserved for printing messages that describe things that are
impossible to represent visually. If you see a CI-More--" on the top line, this means that rogue
wants to print another message on the screen, but it wants to make certain that you have read the
one that is there first. To read the next message, just type a space.

3.3. The rest of the screen

The rest of the screen is the map of the level as you have explored it so far. Each symbol on
the screen represents something. Here is a list of what the various symbols mean:

@ This symbol represents you, the adventurer.

-I These symbols represent the walls of rooms.

+

•
)

1

?

=

A door to/from a room.

The floor of a room.

The floor of a passage between rooms.

A pile or pot of gold .

A weapon of some sort.

A piece of armor.

A flask containing a magic potion.

A piece of paper, usually a magic scroll.

A ring with magic properties

-2-

o

(

(

c

A Guide to the Dungeons of Doom

/ A magical staB' or wand

A trap, watch out for these.

% A staircase to other levels

A piece of food.

A-Z The uppercase letters represent the various inhabitants of the Dungeons of Doom. Watch
out, they can be nasty and vicious.

4. Commands

Commands are given to rogue by typing one or two characters. Most commands can be pre­
ceded by a count to repeat them (e.g. typing "lOs" will do ten searches). Commands for which
counts make no sense have the count ignored. To cancel a count or a prefix, type <ESCAPE>. The
list of commands is rather long, but it can be read at any time during the game with the "1" com­
mand. Here it is for reference, with a short explanation or each command.

1 The help command. Asks ror a character to give help on. Ir you type a "*", it will list all
the commands, otherwise it will e.'<plain what the character you typed does.

/ This is the "\Vhat is that on the screen?" command. A "/" followed by any character that
you see on the level, will tell you what that character is. For instance, typing "/@" will tell
you that the "@" symbol represents you, the player.

h, H,·H

j

k

y

u

b

n

t

f

m

z

Move left. You move one space to the left. If you use upper case "h", you will continue to
move left until you run into something. This works for all movement commands (e.g. "L"
means run in direction "I") If you use the "control" "h", you will continue moving in the
specified direction until you pass something interesting or run into a wall. You should exper­
iment with this, since it is a very useful command, but very difficult to describe. This also
works for all movement commands.

Move down.

Move up.

Move right.

Move diagonally up and left.

Move diagonally up and right.

Move diagonally down and left.

Move diagonally down and right.

Throw an object. This is a prefix command. When followed with a direction it throws an
object in the specified direction. (e.g. type "th" to throw something to the left.)

Fight until someone dies. When followed with a direction this will force you to fight the
creature in that direction until either you or it bites the big one.

Move onto something without picking it up. This will move you one space in the direction
you specify and, if there is an object there you can pick up, it won't do it.

Zap prefi.x. Point a staB' or wand in a given direction and fire it. Even non-directional
staves must be pointed in some direction to be used.

Identify trap command. If a trap is on your map and you can't remember what type it is,
you can get rogue to remind you by getting next to it and typing ce'" followed by the direc­
tion that would move you on top of it.

s Search for traps and secret doors. Examine each space immediately adjacent to you for the
existence of a trap or secret door. There is a large chance that even if there is somet.hing
there, you won't find it, so you might have to search a while before you find something.

> Climb down a staircase to the ne.xt level. Not surprisingly, this can only be done if you are
standing on staircase.

-3-

A Guide to the Dungeons of Doom

< Climb up a staircase to the level above. This can't be done without the Amulet of Yendor in
your possession.

*
I
q

r

e

w

W

T
P

R

d

c

Rest. This is the "do nothing" command. This is good for waiting and healing.

Inventory. List what you are carrying in your pack.

Selective inventory. Tells you ""'hat a single item in your pack is.

Quaff one of the potions you are carrying.

Read one of the scrolls in your pack.

Eat food from your pack.

Wield a weapon. Take a weapon out of your pack and carry it for use in combat, replacing
the one you are currently using (if any).

Wear armor. You can only wear one suit of armor at a time. This takes extra time.

Take armor off. You can't remove armor that is cursed. This takes extra time.

Put on a ring. You can wear only two rings at a time (one on each hand). If you aren't
wearing any rings, this command will ask you which hand you want to wear it on, otherwise,
it will place it on the unused hand. The program assumes that you wield your sword in your
right hand.

Remove a ring. If you are only wearing one ring, this command takes it off. If you are
wearing two, it will ask you which one you wish to remove,

Drop an object. Take something out of your pack and leave it lying on the Boor. Only one
object can occupy each space. You cannot drop a cursed object at all if you are wielding or
wearing it.

Call an object something. If you have a type of object in your pack which you wish to
remember something about, you can use the call command to give a name to that type of
object. This is usually used when you figure out what a potion, scroll, ring, or staff is after
you pick it up, or when you want to remember which of those swords in your pack you were
wielding.

D Print out which things you've discovered something about. This command will ask you
what type of thing you are interested in. If you type the character for a given type of object
(e.". "I" for potion) it will tell you which kinds of that type of object you've discovered
(i.e., figured out what they are). This command works for potions, scrolls, rings, and staves
and wands.

o Examine and set options. This command is further explained in the section on options.

"R Redraws the screen. Useful if spurious messages or transmission errors have messed up the
display .

• p Print last message. Useful when a message disappears before you cnn read it. This only
repeats the last message that was not a mistyped command so that you don't loose anything
by accidentally typing the wrong cha.racter instead of "P.

<ESCAPE>
Cancel a command, prefix, or count.

Escape to a shell for some commands.

Q Quit. Leave the game.

S Save the current game in a file. It will ask you whether you wish to use the default sa.ve file.
Oaveat: Rogue won't let you sta.rt up a copy of a saved game, and it removes the save file as
soon as you start up a restored game. This is to prevent people from saving a game just
before a. dangerous position and then restarting it if they die. To restore a saved game, give
the file name as an argument to rogue. As in

% rogue aave _fiJe

-4-

o

c

o

v

)

I
==
@

To restart from the default save file (see below), run
% rogue-r

Prints the program version number.

Print the weapon you are currently wielding

Print the armor you are currently wearing

Print the rings you are currently wearing

Reprint the status line on the message line

5. Rooms

A Guide to the Dungeons of Doom

Rooms in the dungeons are either lit or dark. If you walk into a lit room, the entire room
will be drawn on the screen as soon as you enter. If you walk into a dark room, it will only be
displayed as you explore it. Upon leaving a room, all monsters inside the room are erased from the
screen. In the darkness you can only see one space in all directions around you. A corridor is
always dark.

6. Fighting

If you see a monster and you wish to fight it, just attempt to run into it. Many times a
monster you find will mind its own business unless you attack it. It is often the case that discre­
tion is the better pa.rt of valor.

,
7. Objects you can find

When you find something in the dungeon, it is common to want to pick the object up. This
is accomplished in rogue by walking over the object (unless you use the "m" prefix, see above). If
you are carrying too many things, the program will tell you and it won't pick up the object, other­
wise it will add it to your pack and tell you what you just picked up.

Many of the commands that operate on objects must prompt you to find out which object
you want to use. If you change your mind and don't want to do that command after all, just type
an <ESCAPE> and the command will be aborted.

Some objects, like armor and weapons, are easily differentiated. Others, like scrolls and
potions, are given labels which vary according to type. During a game, any two of the same kind
of object with the same label are the same type. However, the labels will vary from game to game.

When you use one of these labeled objects, it its effect is obvious, rogue will remember what
it is for you. If it's effect isn't extremely obvious you will be asked what you want to scribble on
it so you will recognize it later, or you can use the "call" command (see above).

7.1. \Veapons

Some weapons, like arrows, come in bunches, but most come one at a time. In order to use a
weapon, you must wield it. To fire an arrow out of a bow, you must first wield the bow, then
throw the arrow. You can only wield one weapon at a time, but you can't change weapons if the
one you are currently wielding is cursed. The commands to use weapons are "w" (wield) and "t"
(throw).

7.2. Armor

There are various sorts of armor lying around in the dungeon. Some of it is enchanted, some
is cursed, and some is just normal. Different armor types have different armor classes. The lower
the armor class, the more protection the armor affords against the blows of monsters. Here is a list
of the various armor types and their normal armor class:

-5-

~~-~~ .. _ ~ .. ~~.~ ~ .. ~~ . _ --

A Guide to the Dungeons of Doom

Type
None
Leather armor
Studded leather / Ring ma.il
Scale mail
Chain ma.il
Banded mail / Sl>lint mail
Plate ma.i1

0las8
10
8
7
6
5
4
3

If a piece of armor is enchanted, its armor class will be lower than normal. If a suit of armor is
cursed, its armor class will be higher, and you will not be able to remove it. However, not all
armor with a class that is higher than normal is cursed.

The comm:l.Dds to use weapons are "W" (wear) and "T" (take off).

'1.3. Scrolls

Scrolls come with titles in anun1cnown tongues. After you read a scroll, it disappears from
your pack. The command to use a scroll is "r" (read).

'1.4. Potions

Potions are labeled by the color of the liquid inside the flask. They disappear after being
quaffed. The command to use a scroll is "q" (quaff).

7.5. _ Staves and 'Vands

Staves and wands do the same kinds of things. Staves are identified by a type of wood;
wands by a type of metal or bone. They are generally things you want to do to something over a
long distance, so you must point them at what you wish to affect to use them. Some staves are
not affected by the direction they are pointed, though. Staves come with multiple magi<: charges,
the number being random, and when they are used up, the staff is just a piece of wood or metal.

The command to use a wand or staff is "z" (zap)

'1.6. Rings

Rings are very useful items, sin~ they are relatively permanent magic, unlike the usually
fleeting effects of potions, scrolls, and staves. Of course, the bad rings are also more powerful.
Most rings also cause you to use up food more rapidly, the rate varying with the type of ring.
Rings are differentiated by their stone settings. The commands to use rings are "P" (put on) and
"R" (remove).

7.7. Food

Food is necessary to keep you going. If you go too long without eating you will faint, and
eventually die of starvation. The command to use food is "e" (eat).

8. Options

Due to variations in personal tastes and conceptions of the way rogue should do things, there
are a set of options you can set that cause rogue to behave in various different ways.

8.1. Setting the options

There are two ways to set the options. The first is with the "0" command of rogue; the

a Actually, it's a dialect spoken only by the twenty-seven members or a tribe in Outer Mongolia, but you're not sup­
posed to know that.

-6-

o

C" -. \

(
~

.-'

(- /

o

A Guide to the Dungeons of Doom

second is '\\ith the uROGUEOPTS" environment variable4 •

8.1.1. Using the '0' command

When you type "0" in rogue, it clears the screen and displays the current settings for all the
options. It then places the cursor by the value of the first option and waits for you to type. You
can type a <RETURN> which means to go to the next option, a U_" which means to go to the pre­
vious option, an <ESCAPE> which means to return to the game, or you can give the option a
value. For boolean options this merely involves typing "t" Cor true or '.'C" for false. For string
options, type the new value followed by a <RETURN>.

8.1.2. Using the ROGUEOPTS variable

The ROGUEOPTS variable is a string containing a comma separated list of initial values Cor
the various options. Boolean variables can be turned on by listing their name or turned oft' by
putting a "no" in front of the name. Thus to set up an environment variable so that jump is on,
terse is off, and the name is set to "Blue Meanie", use the command

% setenv ROGUEOPTS "jump,noterse,name Blue Meanie"6

8.2. Option list

Here is a list of the options and an explanation of what each one is for. The default value
Cor each is enclosed in square brackets. For character string options, input over fifty characters
will be ignored.

terse [noterse]
Useful for those who are tired of the sometimes lengthy messages of rogue. This is a useful
option for playing on slow terminals, so this option defaults to terse if you are on a slow
(1200 baud or under) terminal.

jump [nojump]
If this option is set, running moves will not be displayed until you reach the end of the
move. This saves considerable cpu and display time. This option defaults to jump if you are
using a slow terminal.

flush [noflush]
All typeahead is thrown away after each round of battle. This is useful for those who type
Car ahead and then watch in dismay as a Bat kills them.

seefloor [seefloor]
Display the floor around you on the screen as you move through dark rooms. Due to the
amount of characters generated, this option defaults to noseefloor if you are using a slow ter­
minal.

pusgo [nopassgo]
Follow turnings in passageways. If you run in a passage and you run into stone or a wall,
rogue will see if it can turn to the right or left. If it can only turn one way, it will turn that
way. If it can turn either or neither, it will stop. This is followed strictly, which can some­
times lead to slightly confusing occurrences (which is why it defaults to nopassgo).

tombstone [tombstone]
Print out the tombstone at the end if you get killed. This is nice but slow, so you can turn
it oft' if you like.

inven [olJerwn'le]
Inventory type. This can have one of three values: overwrite, slow, or clear. With overwrite

.. On Version 6 systems, there is DO equivalent or the ROGUEOPTS reature.

6 For those or you who use the bourne shell, the commands would be
$ ROGUEOPTS="jump,noterse,name=Blue Meanie"
S t."(port ROGUEOPTS

-7-

A Guide to the Dungeons of Doom

the top lines oC the map are overwritten with the list when inventory is requested or when
"Which item do you wish to ••• T If questions are answered with a "*n. However, iC the list
is longer than a screenCul, the screen is cleared. With ,low, lists are displayed one item at a
time on the top or the screen, and with clear, the screen is cleared, the list is displayed, and
then the dungeon level is re-displayed. Due to speed considerations, clear is the default for

. terminals without clear-to-end-of-line capabilities.

name [account name]
This is the name of your character. It is used iC you get on the top ten scorer's list.

fruit [,lime-mold]
This should hold the name oC a fruit that you enjoy eating. It is basically a whimsey that
rogue uses in a couple of places.

file r- /roguc.,avc]
The default file name ror saving the game. If your phone is hung up by accident, rogue will
automatically save the game in this file. The file name may start with the special character
"-,, which expands to be your home directory.

9. Scoring

Rogue usually maintains a list of the top scoring people or scores on your machine. Depend­
ing on how it is set up, it can post either the top scores or the top players. In the latter case, each
account on the machine can post only one non-winning score on this list. If you score higher than
someone else on this list, or better your previous score on the list, you will be inserted in the
proper place under your current name. How many scores are kept can also be set up by whoever
installs it on your machine.

If you quit the game, you get out with all oC your gold intact. If, however, you get killed in
the Dungeons of Doom, your body is forwarded to your next-oC-kin, along with 90% of your gold;
ten percent oC your gold is kept by the Dungeons' wizard as a feeS. This should make you consider
whether you want to take one last hit at that monster and possibly live, or quit and thus stop
with whatever you have. If you quit, you do get all your gold, but iC you swing and live, you
might find more.

If you just want to see what the current top players/games list is, you can type
% rogue-s

10.
Acknowledgements

Rogue was originally conceived of by Glenn \Vichman and :Michael Toy. Ken Arnold and
:Michael Toy then smoothed out the user interface, and added jillions of new features. We would
like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman, ~·Iark Horton, Daniel
Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and Scott Nelson Cor their
ideas and assistance; and also the teeming multitudes who graciously ignored work, school, and
social life to play rogue and send us bugs, complaints, suggestions, and just plain flames. And also
Mom.

IS The Dungeon's wizard is named Wally the Wonder Badger. Invocations should be accompanied by a sizabl~ dona-
tive.

-8-

--_ .. -~.--.--.. ~ ..

o

STAR TREK

c

STAR

TREK

Erie Allman
University of California

Berkeley

1

INTRODUCTION

Well, the federation is once again at war '\\itb the Klingon empire. It is up to you, as
captain of the U.S.S. Enterprise, to wipe out the invasion Beet and save the Federation.

For the purposes oC the game the galaxy is divided into 64 quadrants on an eight by
eight grid, Vtith qUadrant 0,0 in the upper leCt hand corner. Each quadrant is divided into 100 sec­
tors on a ten by ten grid. Each sector contains ODe object (e.g., the Enterprise, a KlingOD, or a
star).

Navigation is handled in degrees, with zero being straight up and nint.y being to the
right. Distances are measured in quadrants. One tenth quadrant. is one sector.

The galaxy contains starbases, at· which you can dock to refuel, repair damages, etc.
The galaxy also contains stars. Stars usually have a knack for get.ting in your way, but they can
be triggered into going nova by shooting a photon torpedo at one, thereby (hopefully) destroying
any adjacent Klingons. This is not· a good practice however, because you are penalized for dest.roy­
ing stars. Also, a star will sometimes go supernova, which obliterates an ent.ire quadrant. You
must never stop in a supernova quadrant, although you may "jump over" one.

Some starsystems have inllabited planets. Klingons can attack inhabit.cd planet.s and
enslave the populace, which they then put. to work building more Klingon battle cruisers.

o

o

(

STAR TRE1(3

STARTING UP THE GAME

To request the game, issue the command

/uar/g~es/trek

from the shell. If a filename is stated, a log of 1-he game is "''l'itten onto that file. If omitted, the
file is not ""ritten. If the "-a" flag is stated before the filename, thata file is appended to rather
than created.

The game will ask you what length game you would like. Valid responses are "short",
"medium", and "long". You may also type "restal·t.", which restarts a preyiously sayed game.
Ideally, the length of the game does not affect the difficulty, but currently the short.er games tend
to be harder than the longer ones.

You ""ill then be prompted for the skill, to which you must respond "novice", "fair",
"good", "expert", "commadore", or "impossible". You should start out with a novice and work up,
but if you really want to see how fast you can be slaughtered, sLart out wit.h an impossible game.

In general, throughout the game, if you forget what. is appropriate the game will tell
you what it expects if you just type in a question mark.

STAR TREK

ISSUING COMMANDS

If the game expects you to enter a command, it will say "Command: " and wait for
your respoDse. Most commands can be abbreviated.

At almost any time you can type more than' one thing on a line. For example, to move
straight up one quadrant, you can type

move 01
or you could just type

move
and the game would prompt you with

Course:
to which you could type

01
The "I" is the distance, '\I\·hich could be put on still another line. Also, the "move" c:ommand could
have been abbreviated "mov", "D10", or just. "m".

If you are partway through a command and you change your mind. you can usually
type "-I" to cancel the command.

Klingons generally cannot hit, you if you don't consume anything (e.g., time or energy).
80 some commands are considered "free". As soon as you consume anything though - Po\V!

o

(

STAR TREK

THE COMMANDS

Short Range Scan

Mnemonic: srscan
Shortest Appreviation: s
Full Commands: srscan

srscan yes/no
Consumes: Dothing

5

The short range scan gives you a picture of the quadrant you are in, and (if you say
"yes") a status report which tells you a whole bunch of interesting stuff. You can get a status re­
port alone by using the atld.a command. An example follows:

Short range sensor scan

0 1 2 3 4 5 6 7 8 9
0 • • 0 stardate 3702.16
1 E 1 condition RED
2 * 2 posit.ion 0,3/1,2
3 • # 3 warp fact.or 5.0
4 4 total energy 4376
5 • • 5 torpedoes 9
6 @ 6 shields down, 78%
7 7 I\lingons left 3
8 K 8 time left 6.43
9 • 9 life support damaged, reserves = 2.4

0 1 2 3 4 5 6 7 8 9

Distressed Starsystem Marcus XII

The east of characters is as follows:
E the hero
K the villain
the starbase
• stars
@ inhabited starsystem

empt.y flpace
a black hole

The Dame of the starsystem is listed underneath the short range scan. The word "dis­
tressed", it present, means that the starsystem is under attack.

Short range scans are absolutely free. They use no time, no energy, and they don't
give the Klingons another chance to hit you.

Status Report

Mnemonic: status
Shortest Abbreviation: st
Consumes: nothing

STAR TREK 6

This command gives you information about the current status of the game and your
ship, as follows:

Stardate - The current stardate.

Condition - as follows:
RED - in battle
YELLOW - low on energy
GREEN - norma) state
DOCKED - docked at starbase
CLOAKED - the cloaking device is activated

Position - Your current quadrant and sector.

\Varp Factor - The speed you will move at when you move under warp power (with the
move command).

Total Energy - Your energy resen'es. If they drop to zero, you die. Energy regenerates,
but the higher the skill of the game, the slower it regenerates.

Torpedoes - How many photon torpedoes you have lefL

Shields - Whether your shields are up or down, and bow effective they are if up (what
percentage of a hit they will absorb).

Klingons Left - Guess.

Time Left - How long the Federation can hold out if you sit on your fat ass and do noth­
ing. If you kill Klingons quickly, this number goes up, othenvise, it goes down.
If it hits zero, the Federat.ion is conquered.

Life Support - If "active",everytbillg is fine. If "damaged", your resen'es tell you how
long you have to repair your life support or get t.o a starbase before you st.arve,
suffocat.e, or something equally unpleasant.

Current Crew - The number of crew members left. This figures does not include officers.

Brig Space - The space left in your brig for Klingon captives.

Klingon Power - The number of units needed to kill a Klingon. Remember, as Klingons
fire at you they use up their own energy, so you probably need somewhat less
than this.

Skill, Length - The skill and length of the game you are playing.

Status inCormat.ion is absolutely free.

Long Range Scan

Mnemonic: lrscan
Shortest Abbreviation: 1
Consumes: nothing

t

o

c

(

STAR TREK 7

Long range scan gives you information about the eight quadrants that surround the
quadrant you're in. A sample long range scan follows:

LoD, r&II&e .can ror quadraDt 0,3

2 3 ..
• ! • ! • !

01 108 ! 6 I 10 !

1 I O! La! 8 !

The three digit numbers tell the number of objects in the quadrants. The units digit
tells the number of stars, the tens digit the number of starbases, and the hundreds digit is the
number of Klingons. " indicates the negative energy barrier at the edge of the galaxy, which you
cannot enter. "/ / /" means that that· is a supernova quadrant and must not, be entered.

Damage Report

Mnemonic: damages
Shortest Abbreviation: da
Consumes: not.hing

A damage report tells you what. devices are damaged and how Jong it. will take to
repair them. Repairs proceed faster when you are docked at a starbase,

Set Warp Faetor

Mnemonic: warp
Shortest Abbreviat.ion: w
Full Command: warp factor
Consumes: nothing

The 'warp factor tells the speed of your st.arship when you mo,'e under warp power
(with the .nove command). The higher the warp factor, the faster you go, and t,he more energy
you use.

The minimum warp factor is 1.0 and the maximum is 10,0, At speeds above warp 6
there is danger of the warp engines being damaged: The probability of this increases at higher
warp speeds. Above warp 9.0 there is a chance of entering a time warp.

Move Under Warp Power

Mnemonic: move
Shortest Abbreviation: m
Full Command: move course distance
Consumes: time and energy

This is the usual way of moving. The course is in degrees and t.he dist.ance is in qua­
drants. To move one sector specify a dist.ance of 0.1.

•

ST.&\R TREK 8

Time is consumed ptoportionately to t.he inverse of t.he 'warp factor squared, and
directly to t.he distance. Energy is consumed as the "'arp factor cubed, and directly to the dis­
tance. If you move "ith your shields up it doubles the amount of energy consumed.

When you move in a quadrant containing Klingons, they get a chance to attack you.

The computer detects navigation errors. II the computer is out, you run the .risk of
nmning into things.

The course is determined by the Space Inertial Navigation System [SINS]. As described
in Star Fleet Technical Order TO:02:06:12, the SINS is calibrat.ed, after which it becomes the base
for navigation. II damaged, navigation becomes inaccurate. When it is fixed. Spock recalibrates
it, however, it cannot be calibrated extremely accurately until you dock at starbase.

Move Under Impulse Po'Wer

Mnemonic: impulse
Shortest Abbreviation: i
Full Command: impulse course distance
Consumes: time and energy

The impulse engines give you a chance to maneuver when your warp engines are dam­
aged; however, they are incredibly slow (0.095 quadrants/stardate). They require 20 units of
energy to engage, and ten units per sector to move.

The same comments about thE' computer and the SINS apply as above.

There is no penalty to move under impulse power with shields up.

Deflector Shields

Mnemonic: shields
Shortest Abbreviation: sh
Full Command: shields up/down
Consumes: energy

Shields protect you from Klingon attack and nearby no,·as. As they prot.ect you, they
'Weaken. A shield which is 78% effective will absorb 78% of a hit and let 22% in to hurt you.

The Klingons have a chance to attack you every time you raise or lower shields.
Shields do not rise and lower instantaneously, so the hit you receive will be computed with the
shields at an intermediate effectiveness.

•
It t.akes energy to raise shields, but not to drop them.

Cloaking Device

c

o

STAR TREK

Mnemonic: cloak
Shortest Abbreviation: e1
Full Command: cloak up/do\\'n
Consumes: energy

9

""hen you are cloaked, Klingons cannot see you, and hence they do not. fire at you.
They are useful for entering a quadrant and selecting a -good position, however, weapons cannot be
fired through the c:loak due to the huge energy drain that it requires.

The cloak up command only stam the cloaking process; Klingons will continue to fire
at you until you do something which consumes time.

Fire Phasers

Mnmemonic: phasers
Shortest Abbreviation: p
Full Commands: phasers automatic amount

phasers manual amt! coursel spreadl ...
Consumes: energy

Phasers are energy weapons; the energy comes from your ship's reserves ("total energy"
on a srscan). It takes about 250 units or hits toO kill a Klingon. Hits are cumulative as long as you
stay in the quadrant.

Phasers become less effective the further from a KJingon you are. Adjacent Klingons
receive about 90% of what you fire, at, fi,'e sectors about 60%, and at ten sectors about 35%.
They have no effect outside or the quadrant..

Phasers cannot be fired while shields are up; to do so would fry you. They have no
effect on starbases or stars. "

In automatic mode the computer decides how to divide up the energy among the
Klingons present; in manual mode you do that yourself.

In manual mode firing you specify a direction, amount (number of unit.s to fire) and
spread (0 -> 1.0) Cor each oC the si.-x phaser banks. A zero amount terminates the manual input.

Fire Photon Torpedoes

Mnemonic: torpedo
Shortest Abbreviation: t
Full Command: torpedo course Iyes/no] Iburst angle]
Consumes: torpedoes

Torpedoes are projectile weapons - there are no partial hits. You either hit. your target.
or you don't. A hit on a Klingon destroys him. A hit on a starbase dest.roys that. starbase
(woops!). Hitting a star usually causes it to go nova, and occasionally supernova.

•

STAR TREK 10

Photon torpedoes cannot be aimed precisely. They can be fired with shields up, but
they let even more random as t.hey pass through the shields.

Torpedoes may be fired in bursts of three. If this is desired, t.he burst angle is the angle
between the three shots, which may vary from one to fifteen. The v,'ord "no" says tbat a burst is
not wanted; the word "yes" (which may be omitted if stated on the same line as the course) says
that a burst is wanted.

Photon torpedoes have no effect outside the quadrant.

Onboard Computer Request

Mnemonic: comput.er
Shortest Abbreviation: c
Full Command: computer request; request; ...
Consumes: nothing

The computer command gives you accl'SS to the facilities of the on board computer,
which allows you to do all sorts of fascinat.ing stuff. Computer requests are:

score - Shows your current score.

course quad/sect - Computes the course and distance from whereever you are to the
given location. If you type "course /x,y" you will be given the course to sector
x,y in the current quadrant.

move quad/seet - Identical to the course request, except that the move is executed.

chart - prints a chart of the known galaxy, i.e., everything that you have seen with a
long range sean. The format is the same as on a long range scan, except. that
" ... " means that you don't yet know what is there, and ".1." means that you
know that a starbase exists, but you don't know anything else. "S'$" mans the
quadrant that you are currently in.

trajectory - prints the course and distance to all t.he Klingolls in the quadrant.

v,'arpcost dist warpJactor - computes the cost in time and energy to move 'dist' qua­
drants at warp 'warpJactor'.

impcost dist - saDle as ,,'arpcost for impulse engines.

phefl' range - tells how effective your phasers are at a given range.

distress1ist - gives a Jist of currently distressed starbases and starsystems .

•
More than one request may be stated on a line by seperating them with semicolons.

Dock at Starbase

Mnemonic: dock
Shortest Abbreviation: do

c

c

(

STAR TREK 11

Consumes: nothing

You may dock at a starbase when you are in one of the eight adjacent sectors.

When you dock you are resupplied with energy, photon torpedoes, and life support
reserves. Repairs are also done faster at starbase. AIly prisoners you have taken are unloaded.
You do not recieve points for taking prisoners until this' time.

Starbases have their own deflector shields, so you are safe from attack while docked.

Undock from Starbase

'Mnemonic: undock
Shortest Abbreviation: u
Consumes: nothing

This just allows you to leave starbase so that you may proceed on your way.

Rest

'Mnemonic: rest
Shortest Abbre,iation: r
Full Command: rest time
Consumes: time

This command allows you to rest to repair d.lmages. It is not advisable to rest while
under atta.ck.

Call Starbase For Help

Mnemonic: help
Shortest Abbreviation: help
Consumes: nothing

You may call starbase for help via your subspace radio. Sta.rbase has long range tran­
sporter beams to get you. Problem is, they can't always rematerialize you.

You should avoid using this command unless absolutely necessary, for the above reason
and because it counts heavily against you in the scoring.

Capture Klingon

Mnemonic: capture
Shortest Abbreviation: ca
Consumes: time

•

You may request that a Klingon surrender to you. If he accepts. you get to take

STAR TREK 12

capth-es (but only as many as your brig can hold). It is good if you do this, because you get
points for ca.ptives. Also, it you ever get captured, you want to be sure that the Federation has
prisoners to exchange for you.

You must go to a starbase to turn over your prisoners to Federation authorities.

Visual Scan

Mnemonic: visual
Shortest. Abbreviation: v
Full Command: visual course
Consumes: time

\Vhen your short range scanners are out, you can still see what is out. "there" by doing
a visual scan. Unfortunately, you can only see three sectors at. one time, and it takes 0.005 star­
dates to perform.

The three sectors in the general direction o! the course specified are examined and
displayed.

Abandon Ship

Mnemonk abandon
Shortest Abbreviat.ion: abandon
Consumes: nothing

The officers escape the Enterprise in the shutdecra!t.. If the transporter is working and
there is an inhabitable starsystem in the area, the crew beams down, othenrise you leave them to
die. You are given an old but still usable ship, the Faire Queene.

Ram

Mnemonic: ram
Shortest Abbreviation: ram
Full Command: ram course distance
Consumes: time and energy

This command is identical to "move", except that the computer doesn't stop you from
making na\'igationerrors.

You get very nearly slaughtered if you ram anything.

Self Destruct

Mnemonic: destruct
Shortest Abbreviation: destruct
Consumes: everything

•

o

(

o

STAR TREK 13

Your starship is selt-destructed. Ohances are you will destroy any Klingons (and stars,
and starbases) left in your quadrant.

Terminate the Game

Mnemonic: terminate
Shortest Abbreviation: terminate
Full Oommand: terminate yes/no

Oancels the current game. No score is computed. If you answer yes, a new game will
be started, otherwise trek exits.

Call the Shell

Mnemonic: shell
Shortest Abbreviation: shell

Temporarily escapes to the shell. When you log out. of the shell you will return to the
game.

•

STAR TREK 14

SCORING

The scoring algorithm is ratber complicated. Basically, you get points for
each Klingon you kill, for your Klingon per stardate kill rate, and a bonus if you win the
game. You lose points for the number of Klingons left in the galaxy at the end of the
game, for getting killed, for each star, starbase, or inhabited starsystem you destroy, for
calling for help, and for each casualty you incur.

You will be promoted if you play very well. You will never get a promotion if
you call for help, abandon the Enterprise, get killed, destroy a starbase or inhabited star­
system, or destroy too many stars.

COMMAND SUMMARY

Command Requires Consumes

abandon shuttlecraft,
transporter

capture subspace radio time
cloak up/down cloaking device energy
computer request; ... computer
damages
destruct computer
dock
help subspace radio
impulse course distance impulse engines, time, energy

computer, SINS
lrscan L.R. sensors
move course distance warp engines, time, energy

computer, SINS
phasers automatic amount phasers, computer energy phasers manual

amtl course1 spread! .. , phasers energy
torpedo course (yes] angle/no torpedo tubes torpedoes
ram course distance warp engines, time, energy

computer, SINS
rest time time
shell
.melds up/down shields energy
srscan [yes/no] S.R. sensors
status
terminate yes/no
undock
visual course time
warp warpJactor

,/"
~j

c

(

A 4.2BSD Interprocess Communication Primer
DRAFT of September 15, 1986

Samuel J. Leffler

Robert S. Fabry

William N. J01l

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document provides an introduction to the interprocess communication
facilities included in the 4.2BSD release of the VAX* UNIX** system.

It discusses the overall model for interprocess communication and introduces
the interprocess communication primitives which have been added to the system.
The majority of the document considers the use of these primitives in developing
applications. The reader is expected to be familiar with the C programming
language as all examples are written in C.

* DEC and VAX are trademarks of Digital Equipment Corporation.
** UNIX is a Trademark of Bell Laboratories.

4.2BSD lPC Primer -2- Introduction

1. INTRODUCTION

One of the most important parts of 4.2BSD is the interprocess communication facilities. These
Cacilities are the result of more than two years of discussion and research. The facilities provided
in 4.2BSD incorporate many oC the ideas from current research, while trying to maintain the UNIX
philosophy of simplicity and conciseness. It is hoped that the interprocess communication facilities
included in 4.2BSD will establish a standard for UNIX. From the response to the design, it
appears many organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to the
4.2BSD facilities, the only standard mechanism which allowed two processes to communicate were
pipes (the mpx files which were part of Version 7 were experimental). Unfortunately, pipes are
very restrictive in that the two communicating processes must be related through a common ances­
tor. Further, the semantics of pipes makes them almost impossible to maintain in a distributed
environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction. The
majority of the problems have been related to the fact these facilities have been tied to the UNIX
file system; either through naming, or implementation. Consequently, the ipc Cacilities provided in
4.2BSD have been designed as a totally independent subsystem. The 4.2BSD ipc allows processes
to rendezvous in many ways. Processes may rendezvous through a UNIX file system-like name
space (a space where all names are path names) as well as through a network name space. In Cact,
new name spaces may be added at a Cuture time with only minor changes visible to users.
Further, the communication facilities have been extended to included more than the simple byte
stream provided by a pipe-like entity. These extensions have resulted in a completely new part of
the system which users will need time to familiarize themselves with. It is likely that as more use
is made of these facilities they will be refined; only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the new
system calls and the basic model of communication. Section 3 describes some of the supporting
library routines users may find useful in constructing distributed applicat.ions. Section 4 is con­
cerned with the client/server model used in developing applications and includes examples of the
two major types of servers. Section 5 delves into advanced topics which sophisticated users are
likely to encounter when using the ipc facilities.

DRAFT of September 15, 1986 Leffier /Fabry / Joy

C)

c

4.2BSD IPC Primer - 3- Basics

2. BASICS

The basic building block for communication is the 8ocket. A socket is an endpoint of com­
munication to which a name may be bound. Each socket in use has a type and one or more associ­
ated processes. Sockets exist within communication domain8. A communication domain is an
abstraction introduced to bundle common properties of processes communicating through sockets.
One such property is the scheme used to name sockets. For example, in the UNIX communication
domain sockets are named with UNIX path names; e.g.' a socket may be named "/dev/foo". Sock­
ets normally exchange data only with sockets in the same domain (it may be possible to cross
domain boundaries, but only if some translation process is performed). The 4.2BSD ipc supports
two separate communication domains: the UNIX domain, and the Internet domain is used by
processes which communicate using the the DARPA standard communication protocols. The
underlying communication facilities provided by these domains have a significant influence on the
internal system implementation as well as the interface to socket facilities available to a user. An
example of the latter is that a socket "operating" in the UNIX domain sees a subset oC the possible
error conditions which are possible when operating in the Internet domain.

2.1. Socket types

Sockets are typed according to the communication properties visible to a user. Processes are
presumed to communicate only between sockets of the same type, although there is nothing that
prevents communication between sockets of different types should the underlying communication
protocols support this.

Three types of sockets currently are available to a user. A stream socket provides for the
bidirectional, reliable, sequenced, and unduplicated flow of data without record boundaries. Aside
from the bidirectionality of data flow, a pair of connected stream sockets provides an interCace
nearly identical to that of pipes*.

A datagram socket supports bidirectional flow of data which is not promised to be sequenced,
reliable, or unduplicated. That is, a process receiving messages on a datagram socket may find
messages duplicated, and, possibly, in an order different from the order in which it was sent. An
important characteristic of a datagram socket is that record boundaries in data are preserved.
Datagram sockets closely model the facilities found in many contemporary packet switched net­
works such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which support
socket abstractions. These sockets are normally datagram oriented, though their exact characteris­
tics are dependent on the interface provided by the protocol. Raw sockets are not intended for the
general user; they have been provided mainly for those interested in developing new communica­
tion protocols, or for gaining access to some oC the more esoteric facilities oC an existing protocol.
The use of raw sockets is considered in section 5.

Two potential socket types which have interesting properties are the 8equenced packet socket
and the reliably delivered musage socket. A sequenced packet socket is identical to a stream socket
with the exception that record boundaries are preserved. This interface is very similar to that pro­
vided by the Xerox NS Sequenced Packet protocol. The reliably delivered message socket has simi­
lar properties to a datagram socket, but with reliable delivery. While these two socket types have
been loosely defined, they are currently unimplemented in 4.2BSD. As such, in this document we
will concern ourselves only with the three socket types for which support exists.

* In the UNIX domain, in ract, the semantics are identical and, &5 one might expect, pipes have been implement­
ed internally &5 simply a pair or connected stream sockets.

DRAFT of September 15, 1986 Leffler /Fabry / Joy

4.2BSD IPC Primer -4- Basics

1.1. Socket creation

To create a socket the .ocket system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified type.
A particular protocol may also be requested. It the protocol is left unspecified (a value of 0), the
system will select an appropriate protocol from those protocols which comprise the communication
domain and which may be used to support the requ,ested socket type. The user is returned a
descriptor (a small integer number) which may be used in later system calls which operate on sock­
ets. The domain is specified as one of the manifest constants defined in the file < 8Y8/ 8oclcet.h>.
For the UNIX domain the constant is AF_UNIX*; for the Internet domain AFJNET. The socket
types are also defined in this file and one of SOCILSTREAM, SOCKJ)GRAM, or SOCK..RA W
must be specified. To create a stream socket in the Internet domain the following call might be
used:

s = socket(AF_INET, SOCK..STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the under­
lying communication support. To create a datagram socket for on-machine use a sample call
might be:

s = socket(AF_UNIX, SOCKJ)GRAM, 0);

To obtain a particular protocol one selects the protocol number, as defined within the com­
munication domain. For the Internet domain the available protocols are defined in
< netinet/ in.h> or, better yet, one may use one of the library routines discussed in section 3, such
as getprotob,lname:

#include <sys/types.h>
#include < sys / socket.h>
#include <netinet/in.h>
#include <netdb.h>

pp = getprotobyname("tcp")i
s = socket(AF_INET, SOCK.SmEAM, pp->p_proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol (EPRO­
TONOSUPPORT), or a request for a type of socket for which there is no supporting protocol
(EPROTOTYPE).

2.3. Binding names

A socket is created without a name. Until a name is bound to a socket, processes have no
way to reference it and, consequently, no messages m~y be received on it. The bind call is used to
assign a name to a socket:

bind(s, name, namelen)j

The bound name is a variable length byte string which is interpreted by the supporting protocol(s).
Its interpretation may vary from communication domain to communication domain (this is one of
the properties which comprise the "domain"). In the UNIX domain names are path names while
in the Internet domain names contain an Internet address and port number. If one wanted to bind
the name "/devjfoo" to a UNIX domain socket, the following would be used:

• The manifest constants are named AF _whatever as they indicate the "address format" to use in interpreting
names.

DRAFT of September 15, 1986 LeIDer /Fabry / Joy

c

(I

4.2BSD IPC Primer -5- Basics

bind(s, "/dev /Coo", sizeoC ("jdev /foo") - 1);

(Note how the null byte in the name is not counted as part of the name.) In binding an Internet
address things become more complicated. The actual call is simple,

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr-in sin;

bind(s, &Sin, sizeof (sin));

but the selection of what to place in the address ,in requires some discussion. We will come back
to the problem of formulating Internet addresses in section 3 when the library routines used in
name resolution are discussed.

2.4. Connection establishment

With a bound socket it is possible to rendezvous with an unrelated process. This operation is
usually asymmetric with one process a "client" and the other a "server". The client requests ser­
vices from the server by initiating a "connection" to the server's socket. The server, when willing
to offer its advertised services, passively "listens" on its socket. On the client side the connect call
is used to initiate a connection. Using the UNIX domain, this might appear as,

connect(s, "server-name", sizeof ("server-name"));

while in the Internet domain,

struct sockaddr_in server;
connect(s, &Server, sizeof (server));

If the client process's socket is unbound at the time of the connect call, the system will automati­
cally select and bind a name to the socket; c.f. section 5.4. An error is returned when the connec­
tion was unsuccessful (any name automatically bound by the system, however, remains). Other­
wise, the socket is associated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was no
point in retrying the connection attempt any more. This usually occurs because the destina­
tion host is down, or because problems in the network resulted in transmissions being lost.

ECO~'REFUSED
The host refused service for some reason. When connecting to a host running 4.2BSD this is
usually due to a server process not being present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client host
by the underlying communication services.

ENET~~EACH~EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route
to the network or host is present), or because of status information returned by intermediate
gateways or switching nodes. Many times the status returned is not sufficient to distinguish
a network being down from a host being down. In these cases the system is conservative and
indicates the entire network is unreachable.

For the server to receive a client's connection it must perform two steps after binding its
socket. The first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

DRAFT of September 15, 1986 Leffler /Fabry / Joy

4.2BSD IPC Primer -6- Basics

The second parameter to the Iiaten call specifies the maximum number of outstanding connections
which may be queued awaiting acceptance by the server process. Should a connection be requested
while the queue is full, the connection will not be refused, but rather the individual messages which
comprise the request will be ignored. This gives a harried server time to make room in its pending
connection queue while the client retries the connection request. Had the connection been returned
with the ECONNREFUSED error, the client would be unable to tell if the server was up or not.
AB it is now it is still possible to get the ETIMEDOUT error back, though this is unlikely. The
backlog figure supplied with the listen call is limited by the system to a maximum of 5 pending
connections on anyone queue. This avoids the problem of processes hogging system resources by
setting an infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the server
wishes to find out who its client is, it may supply a buffer for the client socket's name. The
value-result parameter from/en is initialized by the server to indicate how much space is associated
with from, then modified on return to reflect the true size of the name. If the client's name is not
of interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is
available or the system call is interrupted by a signal to the process. Further, there is no way for
a process to indicate it will accept connections from only a specific individual, or individuals. It is

. up to the user process to consider who the connection is from and close down the connection if it
does not wish to speak to the process. If the server process wants to accept connections on more
than one socket, or not block on the accept call there are alternatives; they will be considered in
section 5.

2.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there are a
number of possible calls. With the peer entity at each end of a connection anchored, a user can
send or receive a message without specifying the peer. AB one might expect, in this case, then the
normal read and write system calls are useable,

write(s, buf, sizeof (buf»;
read(s, bUf, sizeof (buf»;

In addition to read and write, the new calls Bend and recti may be used:

send(s, buf, sizeof (buf), flags);
reeves, but, sizeof (buf), flags);

While Bend and recti are virtually identical to read and write, the extra flags argument is impor­
tant. The flags may be specified as a non-zero value if one or more of the following is required:

SOF_OOB
SOFYREVIEW
SOF -DONTROUTE

send/receive out of band data
look at data without reading
send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is
currently used only by the routing table management process, and is unlikely to be of interest to
the casual user. The ability to preview data is, however, of interest. When SOFYREVIEW is
specified with a recti call, any data present is returned to the user, but treated as still "unread".
That is, the next read or recti call applied to the socket will return the data previously previewed.

DRAFT of September 15, 1986 Leffier /Fabry / Joy

c

(

(

c

4.2BSD IPC Primer -7- Basics

2.8. Discarding sockets

Once a socket is no longer of interest, it may be discarded by applying a cloae to the descrip-
tor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a
close takes place, the system will continue to attempt to transfer the data. However, after a fairly
long period of time, if the data is still undelivered, it will be discarded. Should a user have no use
for any pending data, it may perform a ahutt/own on the socket prior to closing it. This call is of
the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or
2 if no data is to be sent or received. Applying shutdown to a socket causes any data queued to be
immediately discarded.

2.7. Conneetionless sockets

To this point we have been concerned mostly with sockets which follow a connection oriented
model. However, there is also support for connectionless interactions typical of the datagram facil­
ities found in contemporary packet switched networks. A datagram socket provides a symmetric
interface to data exchange. While processes are still likely to be client and server, there is no
requirement for connection establishment. Instead, each message includes the destination address.

Datagram sockets are created as before, and each should have a name bound to it in order
that the recipient of a message may identify the sender. To send data, the aent/to primitive is
used,

sendto{s, buf, bufien, flags, &to, tolen);

The a, buf, buflen, and flaga parameters are used as before. The to and tolen values are used to
indicate the intended recipient of the message. When using an unreliable datagram interface, it is
unlikely any errors will be reported to the sender. Where information is present locally to recog­
nize a message which may never be delivered (for instance when a network is unreachable), the call
will return -1 and the global value ermo will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is provided:

recvfrom{s, buf, bufien, flags, &from, &fromlen);

Once again, the from/en parameter is handled in a value-result fashion, initially containing the size
of the from buffer.

In addition to the two calls mentioned above, datagram sockets may also use the connect call
to associate a socket with a specific address. In this case, any data sent on the socket will
automatically be addressed to the connected peer, and only data received from that peer will be
delivered to the user. Only one connected address is permitted for each socket (i.e. no multi­
casting). Connect requests on datagram sockets return immediately, as this simply results in the
system recording the peer's address (as compared to a stream socket where a connect request ini­
tiates establishment of an end to end connection). Other of the less important details of datagram
sockets are described in section 5.

2.8. Input/Output multiplexing

One last facility often used in developing applications is the ability to mUltiplex i/o requests
among multiple sockets and/or files. This is done using the ae/ect call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Seltict takes as arguments three bit masks, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and one

DRAFT of September 15, 1986 LeIDer /Fabry / Joy

4.2BSD IPC Primer -8- Basics

for which exceptional conditions are pending. Bit masks are created by or-ing bits of the form "1
< < fd". That is, a descriptor Id is selected if a 1 is present in the ItI'th bit of the mask. The
parameter nlds specifies the range of file descriptors {i.e. one plus the value of the largest descrip­
tor} specified in a mask.

A timeout value may be specified if the selection is not to last more than a predetermined
period of time. U timeout is set to 0, the selection takes the form of a poll, returning immediately.
If the last parameter is a null pointer, the selection will block indefinitely"'. Select normally
returns the number of file descriptors selected. U the ,elect call returns due to the timeout expir­
ing, then a value of -1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous notification or output
completion, input availability, and exceptional conditions is possible through use of the SIGlO and
SIGURG signals described in section 5 .

• To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received by
the caller, interrupting the system call.

DRAFT of September 15,1986 Leffier/FabryjJoy

o

4.2BSD IPC Primer - 9- Network Library Routines

3. NETWORK LmRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the interprocess communication facilities in a distributed environment. To
aid in this task a number of routines have been added to the standard C run-time library. In this
section we will consider the new routines provided to manipulate network addresses. While the
4.2BSD networking facilities support only the DARPA standard Internet protocols, these routines
have been designed with flexibility in mind. As more 'communication protocols become available,
we hope the same user interrace will be maintained in accessing network-related address data bases.
The only difference should be the values returned to the user. Since these values are normally sup­
plied the system, users should not need to be directly aware of the communication protocol and/or
naming conventions in use.

Locating a service on a remote host requires many levels of mapping before client and server
may communicate. A service is assigned a name which is intended for human consumption; e.g.
"the login server on host monet". This name, and the name of the peer host, must then be
translated into network addresses which are not necessarily suitable for human consumption.
Finally, the address must then used in locating a physical location and route to the service. The
specifics of these three mappings is likely to vary between network architectures. For instance, it is
desirable for a network to not require hosts be named in such a way that their physical location is
known by the client host. Instead, underlying services in the network may discover the actual
location of the host at the time a client host wishes to communicate. This ability to have hosts
named in a location independent manner may induce overhead in connection establishment, as a
discovery process must take place, but allows a host to be physically mobile without requiring it to
notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network
names to network numbers, protocol names to protocol numbers, and service names to port
numbers and the appropriate protocol to use in communicating with the server process. The file
< netdb.h> must be included when using any of these routines.

3.1. Host names

A host name to address mapping is represented by the kostent structure:

struct hostent {
char
char
int
int
char

};

*h.-name;
**h.-aliases;
h.-addrtype;
lLlength;
*lLaddr;

1* official name of host *1
1* alias list * /
/* host address type * I
1* length of address *1
1* address * /

The official name of the host and its public aliases are returned, along with a variable length
address and address type. The routine getkostbyname(3N) takes a host name and returns a hostent
structure, while the routine gethostb1laddr{3N) maps host addresses into a hostent structure. It is
possible for a host to have many addresses, all having the same name. Getkostybllname returns the
first matching entry in the data base file / etc/hosts; if this is unsuitable, the lower level routine
getkostent(3N) may be used. For example, to obtain a hostent structure for a host on a particular
network the following routine might be used (for simplicity, only Internet addresses are con­
sidered):

DRAFT of September 15, 1986 Leffler /Fabry I Joy

4.2BSD IPC Primer - 10- Network Library Routines

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

struct hostent *
gethostbynameandnet(name, net)

char *namej

{
int net;

register struct hostent *hpj
register char **cpj

sethostent(O)j
while «hp = gethostent()) != NULL) {

if (hp- > lLaddrtype != AF JNET)
continue;

if (strcmp(name, hp->lLname» {
for (cp = hp->lLaliases; cp && *cp != NULL; cp++)

if (strcmp{name, *cp) == 0)

}

goto found;
continuej

}
found:

if (in..netof(*{struct ilLaddr *)hp->lLaddr» == net)
breakj

}
endhostent(O)j
return (hp);

(in_netoJ(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network names

As for host names, routines for mapping network names to numbers, and back, are provided.
These routines return a nefent structure:

/*
* Assumption here is that a network number
* fits in 32 bits - probably a poor one.
*/

struct netent {
char
char
int
int

}j

*n..namej
**lLaliasesj
lLaddrtypej
lLnetj

/* official name of net * /
/* alias list * /
/* net address type * /
/* network #- * /

The routines getnetb,name(3N), gelnetb,number{3N), and getnetent(3N) are the network counter­
parts to the host routines described above.

3.3. Protocol names

For protocols the protoent structure defines the protocol-name mapping used with the rou­
tines getprotobyname(3N), getprotob,number{3N), and getprotoent(3N):

DRAFT of September 15, 1986 LeIDer /Fabry / Joy

o

o

('

(

4.2BSD)PC Primer

struct

};

protoent {
char
char
int

S.4. Service names

·p.Jlame;
**p_aliases;
p_proto;

- 11- Network Library Routines

/. official protocol name • I
/. alias list ·1
/. protocol :# • I

Information regarding services is a bit more complicated. A service is expected to reside at a
specific "port" and employ a particular communication protocol. This view is consistent with the
Internet domain, but inconsistent with other network architectures. Further, a service may reside
on multiple ports or support multiple protocols. If either of these occurs, the higher level library
routines will have to be bypassed in favor of homegrown routines similar in spirit to the "gethost­
bynameandnet" routine described above. A service mapping is described by the 3ervent structure,

struct servent {
char

};

char
int
char

*s_name;
*·s_aliases;
s-port;
*s_proto;

1* official service name * /
/. alias list • /
/* port # ·1
1* protocol to use * /

The routine get8ervb3lname(3N) maps service names to a servent structure by specifying a service
name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname("telnet", (char *)0);

returns the service specification for a telnet server using any protocol, while the call

sp = getservbyname("teinettt , tttcp tt);

returns only that telnet server which uses the TCP protocol. The routines get8ervb3lport(3N) and
get8ervent(3N) are also provided. The get8ervbllPort routine has an interface similar to that pro­
vided by getservb3lname; an optional protocol name may be specified to qualify lookups.

3.5. Miscellaneous

With the support routines described above, an application program should rarely have to
deal directly with addresses. This allows services to be developed as much as possible in a network
independent fashion. It is clear, however, that purging all network dependencies is very difficult.
So long as the user is required to supply network addresses when naming services and sockets there
will always some network dependency in a program. For example, the normal code included in
client programs, such as the remote login program, is of the form shown in Figure 1. (This exam­
ple will be considered in more detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols and
addressing scheme we would be forced to add a layer of routines which masked the network depen­
dent aspects from the mainstream login code. For the current facilities available in the system this
does not appear to be worthwhile. Perhaps when the system is adapted to different network archi­
tectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines available
in the run-time library which are of interest to users. These are intended mostly to simplify mani­
pulation of names and addresses. Table 1 summarizes the routines for manipulating variable
length byte strings and handling byte swapping of network addresses and values.

The byte swapping routines are provided because the operating system expects addresses to
be supplied in network order. On a VAX, or machine with similar architecture, this is usually
reversed. Consequently, programs are sometimes required to byte swap quantities. The library
routines which return network addresses provide them in network order so that they may simply

DRAFT of September 15, 1986 LeIDer /Fabry / Joy

4.2BSD IPC Primer - 12- Network Library Routines

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)
char *argv[]j

{

}

Call

struct sockaddr_in sinj
struct servent *spj
struct hostent *hpj
int Sj

sp == getservbyname(,1oginlt, Ittcp")j
if (sp ==== NULL) {

}

fprintf(stderr, "rlogin: tcp/login: unknown service\nlt)j
exit(I);

hp == gethostbyname(argvll]);
if (hp == NULL) {

}

fprintf(stderr, Itrlogin: %s: unknown host\n", argvll]);
exit(2)j

bzero«char *)&sin, sizeof (sin»;
bcopy(hp->h-addr, (char *)&Sin.siD-addr, hp->h-Iength);
sin .siD-family = hp- > h-addrtypej
sin.siD-port = sp- >s..portj
s = socket(AF _INET, SOCK-STREAM, O)j
ir(s < O){

}

perror(ltrlogin: socket")j
exit(3)j

if (connect(s, (char *)&sin, sizeof (sin» < 0) {
perror(ltrlogin: connect");
exit(5);

}

Figure 1. Remote login client code.

Synopsis

bcmp(sl, s2, n) compare byte-strings; 0 if same, not 0 otherwise
bcopy(sI, s2, n) copy n bytes from sl to s2
bzero(base, n) zero-fill n bytes starting at base
htonl(val) convert 32-bit quantity from host to network byte order
htons(val} convert IS-bit quantity from host to network byte order
ntohl(val} convert 32-bit quantity from network to host byte order
ntohs(vai) convert 16-bit quantity from network to host byte order

Table 1. C run-time routines.

DRAFT of September 15, 1986 Leffier /Fabry / Joy

o

C"·
.. /

(

c

4.2BSD lPC Primer - 13- Network Library Routines

be copied into the structures provided to the system. This implies users should encounter the byte
swapping problem only when interpreting network addresses. For example, if an Internet port is to
be printed out the following code would be required:

printf("port number o/od\n", ntohs(sp->s_port));

On machines other than the VAX these routines are defined as null macros.

DRAFT of September 15, 1986 LeffierjFabry/Joy

4.2BSD lPC Primer - 14- Client/Server Model

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the
client/server model. In this scheme client applications request services from a server process. This
implies an asymmetry in establishing communication between the client and server which has been
examined in section 2. In this section we will look more closely at the interactions between client
and server, and consider some of the problems in devel<?ping client and server applications.

Client and server require a well known set of conventions before service may be rendered (and
accepted). This set of conventions comprises a protocol which must be implemented at both ends
of a connection. Depending on the situation, the protocol may be symmetric or asymmetric. In a
symmetric protocol, either side may play the master or slave roles. In an asymmetric protocol, one
side is immutably recognized as the master, with the other the slave. An example of a symmetric
protocol is the TELNET protocol used in the Internet for remote terminal emulation. An example
of an asymmetric protocol is the Internet file transfer protocol, FTP. No matter whether the
specific protocol used in obtaining a service is symmetric or asymmetric, when accessing a service
there is a "client process" and a "server process". We will first consider the properties of server
processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clogging the
system while remaining dormant most of the time. The Xerox Courier protocol uses the latter
scheme. When using Courier, a Courier client process contacts a Courier server at the remote host
and identifies the service it requires. The Courier server process then creates the appropriate server
process based on a data base and "splices" the client and server together, voiding its part in the
transaction. This scheme is attractive in that the Courier server process may provide a single con­
tact point for all services, as well as carrying out the initial steps in authentication. However,
while this is an attractive possibility for standardizing access to services, it does introduce a certain
amount of overhead due to the intermediate process involved. Implementat.ions which provide this
type of service within the system can minimize the cost of client. server rendezvous. The portal
notion described in the "4.2BSD System Manual" embodies many of the ideas found in Courier,
with the rendezvous mechanism implemented internal to the system.

4.1. Servers

In 4.2BSD most servers are accessed at well known Internet addresses or UNIX domain
names. When a server is started at boot time it advertises it services by listening at a well know
location. For example, the remote login server's main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login", "tcp")j
if (sp == NULL) {

}

fprintf(stderr, "rlogind: tcp/logiDl unknown service\nlf
);

exit(l)j

This definition is used in later portions of the code to define the Internet port at which it listens
for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its invoker. This is
important as the server will likely not want to receive signals delivered to the process group of the
controlling terminal.

Once a server has established a pristine environment, it creates a socket and begins accepting
service requests. The bind call is required to insure the server listens at its expected location. The
main body or the loop is fairly simple:

DRAFT of September 15, 1986 LeIDer /Fabry / Joy

(

(

4.2BSD IPC Primer - 15- Client/Server Model

main(argc, argv)

{

int argc;
char **argvj

int C;
struct sockaddr..in Crom;
struct servent *spj

8p = getservbyname('ogin", "tcp")j
if (sp == NULL) {

}

CprintC(stderr, "rlogind: tcp/login: unknown service\n");
exit(!);

#ifndeC DEBUG

#endiC

}

for (j;) {

< < disassociate server Crom controlling terminal> >

sin.sin_port = sp- >s_port;

f = 5Ocket(AF _INET, SOCK..STREAM, 0);

if (bind(f, (caddr_t)&sin, sizeof (sin» < 0) {

}

listen(f, 5);
Cor (;;) {

}

int g, len = sizeof (from);

g = accept(f, &from, &len)j
if (g < 0) {

}

if (errno != EINTR)
perror("rlogind: accept");

continuej

if (forkO == 0) {
close(f)j

}
close(g)j

doit(g, &from);

Figure 2. Remote login server.

int g, len = sizeof (from);

g = accept(f, &from, &len)j
if (g < 0) {

if (ermo != EINTR)
perror("rlogind: accept");

continue;

DRAFT of September 15, 1986 Leffler /Fabry / Joy

4.2BSD IPC Primer

}

}
if (forkO === 0) {

close(f);

}
close(g);

doit(g, &from);

- 16- Client/Server Model

An accept call blocks the server until a client reques~ service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5). There­
fore, the return value from accept is checked to insure a connection has actually been established.
With a connection in hand, the server then forks a child process and invokes the main body of the
remote login protocol processing. Note how the socket used by the parent for queueing connection
requests is closed in the child, while the socket created as a result of the accept is closed in the
parent. The address of the client is also handed the doit routine because it requires it in authenti­
cating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the
separate, asymmetric roles of the client and server clearly in the code. The server is a passive
entity, listening for client connections, while the client process is an active entity, initiating a con­
nection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the
server process the first step is to locate the service definition for a remote login:

sp == getservbyname(tllogin", "tcptl)j
if (sp == NULL) {

}

fprintf(stderr, "rlogin: tcp/login: unknown service\ntl};
exit(!};

Next the destination host is looked up with a gethostbyname call:

hp = gethostbyname{argv[l]}j
if (hp == NULL) {

}

fprintf(stderr, tlrlogin: 0/08: unknown host\ntl, argv[!])j
exit(2}j

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then filled in
with the Internet address of the foreign· host and the port number at which the login process
resides:

bzero«char *)&sin, sizeof (sin));
bcopy(hp->lLaddr, (char *)sin.siD-addr, hp->hJength);
sin.sinJamily = hJr > lLaddrtypej
sin.siD-port = sp- >s-port;

A socket is created, and a connection initiated.

DRAFT of September 15, 1986 Leffier IF abry / Joy

o

()

(

c

4.2BSD IPe Primer - 17-

s = socket(hp-> h..addrtype, SOCILSTREAM, 0);
if (s < 0) {

}

perror("rlogin: socket");
exit(3);

if (connect(s, (char *)&Sin, sizeof (sin» < 0) {
perror("rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Conneetionless servers

Client/Server Model

While connection-based services are the norm, some services are based on the use of datagram
sockets. One, in particular, is the "rwho tl service which provides users with status information for
hosts connected to a local area network. This service, while predicated on the ability to broadcast
information to all hosts connected to a particular network, is of interest as an example usage of
datagram sockets.

A user on any machine running the rwho server may find out the current status of a machine
with the ruptime(l) program. The output generated is illustrated in Figure 3.

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, o users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, o users, load 1,49, 1.43, 1.41
ear up 5+00:05, o users, load 1.51, 1.54, 1.56
ernie down 0:24
esvax down 17:04
ingres down 0:26
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11
matisse up 3+06:18, o users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19+15:37
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07
oz down 16:09
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

Status information for each host is periodically broadcast by rwho server processes on each
machine. The same server process also receives the status information and uses it to update a
database. This database is then interpreted to generate the status information for each host.
Servers operate autonomously, coupled only by the local network and its broadcast capabilities.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks
performed by the server. The first task is to act as a receiver of status information broadcast by
other hosts on the network. This job is carried out in the main loop of the program. Packets
received at the rwho port are interrogated to insure they've been sent by another rwho server pro­
cess, then are time stamped with their arrival time and used to update a file indicating the status
of the host. When a host has not been heard from for an extended period of time, the database

DRAFT of September 15, 1986 LeIDerfFabry/Joy

4.2BSD IPC Primer - 18- Client/Server Model

interpretation routines assume the host is down and indicate such on the status reports. This algo­
rithm is prone to error as a server may be down while a host is actually up, but serves our current
needs.

mainO
{

}

sp = getservbyname("who", "udp")j
net = getnetbyname("localnet")j .
sin.sin..a.ddr = ineLmakea.ddr(INADDR.ANY, net)j
sin.sin..port = sp->s..portj

s = socket(AF _INET, SOClLDGRAM, O)j

bind(s, &Sin, sizeof (sin»j

sigset(SIGALRM,onalrm)j
onalrmOj
for (jj) {

}

struct whod wdj
int cc, whod, len = sizeof (from)j

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &len);
if (cc <= 0) {

}

if (cc < 0 && errno != EINTR)
perror("rwhod: recv");

continue;

if (from.sin_port != sp- >s..port) {

}

fprintf(stderr, "rwhod: %d: bad from port\n",
ntohs(from .sin..port »;

continuej

if (!verify(wd.wd~ostname» {

}

fprintf(stderr, "rwhod: malformed host name from %x\n",
ntohl(from.sin..addr.s_addr»;

continue;

(void) sprintf(path, "o/os/whod.%s", RWHODffi, wd.wd~ostname);
whod = open(path, FWRONLYp!CREATErTRUNCATE, 0666);

(void) time(&wd. w~recvtime)j
(void) write(whod, (char *)&wd, cC)j
(void) close(whod);

Figure 4. rwho server.

The second task performed by the server is to supply information regarding the status of its
host. This involves periodically acquiring system status information, packaging it up in a message
and broadcasting it on the local network for other rwho servers to hear. The supply function is
triggered by a timer and runs oft' a signal. Locating the system status information is somewhat
involved, but uninteresting. Deciding where to transmit the resultant packet does, however, indi­
cates some problems with the current protocol.

DRAFT of September 15, 1986 LeIDer /Fabry / Joy

o

()

(

c\

4.2B50 IPC Primer - 19- Client/Server Model

Status information is broadcast on the local network. For networks which do not support
the notion of broadcast another scheme must be used to simulate or replace broadcasting. One
possibility is to enumerate the known neighbors (based on the status received). This, unfor­
tunately, requires some bootstrapping information, as a server started up on a quiet network will
have no known neighbors and thus never receive, or send, any status information. This is the
identical problem faced by the routing table management process in propagating routing status
information. The standard solution, unsatisfactory as it may be, is to inform one or more servers
of known neighbors and request that they always communicate with these neighbors. If each
server has at least one neighbor supplied it, status information may then propagate through a
neighbor to hosts which are not (possibly) directly neighbors. If the server is able to support net­
works which provide a broadcast capability, as well as those which do not, then networks with an
arbitrary topology may share status information*.

The second problem with the current scheme is that the rwho process services only a single
local network, and this network is found by reading a file. It is important that software operating
in a distributed environment not have any site-dependent information compiled into it. This
would require a separate copy of the server at each host and make maintenance a severe headache.
4.2BSO attempts to isolate host-specific information from applications by providing system calls
which return the necessary informationt. Unfortunately, no straightforward mechanism currently
exists for finding the collection of networks to which a host is directly connected. Thus the rwho
server performs a lookup in a file to find its local network. A better, though still unsatisfactory,
scheme used by the routing process is to interrogate the system data structures to locate those
directly connected networks. A mechanism to acquire this information from the system would be a
useful addition.

• One must, however, be concerned about "loops". That is, if a host is connected to multiple networks, it will
receive status information from itself. This can lead to an endless, wasteful, exchange of information.
t An example of such a system call is the ,ell.o,'nGme(2) caJl which returns the host's "official" name.

DRAFT of September 15, 1986 LeIDer /Fabry / Joy

4.2BSD JPC Primer - 20- Advanced Topics

5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the ipc the mechanisms
already described will suffiee in constructing distributed applications. However, others will find
need to utilize some of the features which we consider in this section.

6.1. Out or band data

The stream socket abstraction includes the notion of "out of band" data. Out of band data
is a logically independent transmission channel associated with each pair of connected stream sock­
ets. Out of band data is delivered to the user independently of normal data along with the
SIGURG signal. In addition to the information passed, a logical mark is placed in the data stream
to indicate the point at which the out of band data was sent. The remote login and remote shell
applications use this facility to propagate signals from between client and server processes. When
a signal is expected to flush any pending output from the remote process(es}, all data up to the
mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reliable
delivery of at least one out of band message at a time. This message may contain at least one
byte of data, and at least one message may be pending delivery to the user at anyone time. For
communications protocols which support only in-band signaling (i.e. the urgent data is delivered in
sequence with the normal data) the system extracts the data from the normal data stream and
stores it separately. This allows users to choose between receiving the urgent data in order and
receiving it out of sequenee without having to buffer all the intervening data.

To send an out of band message the SOF _OOB flag is supplied to a ,end or ,endto calls,
while to receive out of band data SOF _OOB should be indicated when performing a reevfrom or
recv call. To find out if the read pointer is currently pointing at the mark in the data stream, the
SIOCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out of
band data has arrived), the next read will provide data sent by the client prior to transmission of
the out of band signal. The routine used in the remote login process to flush output on receipt of
an interrupt or quit signal is shown in Figure 5.

0.2. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each soeket has an associated process
group (just as is done for terminals). This proeess group is initialized to the process group of its
creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

DRAFT of September 15, 1986 Leffier/FabryjJoy

c

(

4.2BSD IPC Primer - 21-

oobO
{

}

int out = 1+1;
char waste[BUFSIZ], mark;

signal(SIGURG,oob);
/* flush local terminal input and output * /
ioctl(l, TIOCFLUSH, (char *)&out);
ror (;;) {

}

ir (ioctl(rem, SIOCATMARK, &mark) < 0) (
perror("ioctl");
break;

}
ir{mark)

break;
(void) read (rem, waste, sizeor (waste»;

recv(rem, &mark, 1, SOF _OOB);

Figure 5. Flushing terminal i/o on receipt or out or band data.

ioctl(s, SIOCSPGRP, &pgrp);

Advanced Topics

A similar ioctl, SIOCGPGRP, is available ror determining the current process group of a socket.

5.3. Pseudo terminals

Many programs will not runction properly without a terminal ror standard input and output.
Since a socket is not a terminal, it is orten necessary to have a process communicating over the
network do so through a p8eudo terminal. A pseudo terminal is actually a pair of devices, master
and slave, which allow a process to serve as an active agent in communication between processes
and users. Data written on the slave side or a pseudo terminal is supplied as input to a process
reading from the master side. Data written on the master side is given the slave as input. In this
way, the process manipulating the master side of the pseudo terminal has control over the inrorma­
tion read and written on the slave side. The remote login server uses pseudo terminals for remote
login sessions. A user logging in to a machine across the network is provided a shell with a slave
pseudo terminal as standard input, output, and error. The server process then handles the com­
munication between the programs invoked by the remote shell and the user's local client process.
When a user sends an interrupt or quit signal to a process executing on a remote machine, the
client login program traps the signal, sends an out of band message to the server process who then
uses the signal number, sent as the data value in the out of band message, to perform a killpg(2) on
the appropriate process group.

5.4. Internet address binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communicating
processes are bound by an association. An association is composed of local and roreign addresses,
and local and roreign ports. Port numbers are allocated out of separate spaces, one ror each Inter­
net protocol. Associations are always unique. That is, there may never be duplicate <protocol,
local address, local port, roreign address, roreign port> tuples.

The bind system call allows a process to speciry haIr of an association, <local address, local
port>, while the connect and accept primitives are used to complete a socket's association. Since
the association is created in two steps the association uniqueness requirement indicated above could
be violated unless care is taken. Further, it is unrealistic to expect user programs to always know

DRAFT of September 15, 1986 Leffler/Fabry / Joy

4.2BSD IPe Primer - 22- Advanced Topics

proper values to use for the local address and local port since a host may reside on mUltiple net­
works and the set of allocated port numbers is not directly accessible to a user.

To simplify local address binding the notion of a ''wildcard'' address has been provided.
When an address is specified as INADDILANY (a manifest constant defined in <netinet/in.h»,
the system interprets the address as "any valid address". For example, to bind a specific port
number to a socket, but leave the local address unspecified, the following code might be used:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AFJNET, SOCK...STREAM, 0);
sin.sinJamily = AF JNET;
sin.siD-addr.s_addr = INADDR . .ANY;
sin.siD-port = MYPORT;
bind(s, (char *)&Sin, sizeof (sin»;

Sockets with wildcarded local addresses may receive messag~s directed to the specified port number,
and addressed to any of the possible addresses assigned a host. For example, if a host is on a net­
works 46 and 10 and a socket is bound as above, then an accept call is performed, the process will
be able to accept connection requests which arrive either from network 46 or network 10.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the
system will select an appropriate port number for it. For example:

sin.sin_addr.s_addr = MYADDRESS;
sin.siD-port = 0;
bind(s, (char *)&sin, sizeof (sin»;

The system selects the port number based on two criteria. The first is that ports numbered 0
through 1023 are reserved for privileged users (i.e. the super user). The second is that the port
number is not currently bound to some other socket. In order to find a free port number in the
privileged range the following code is used by the remote shell server:

struct sockaddr_in sin;

lport = IPPORT-RESERVED -1;
sin.siD-addr.s_addr = INADDR.ANY;

for (;;) {

}

sin.siD-port = htons«uJhort)lport);
if (bind(s, (caddr_t)&Sin, sizeof (sin» >= 0)

break;
if (elTllo 1= EADDRINUSE && elTllo 1= EADDRNOTAVAll..) {

perror("sockettl); .
break;

}
lport-;
if (lport == IPPORT-RESERVED /2) {

Cprintf(stderr, "socket: All ports in use\ntl);
break;

}

The restriction on allocating ports was done to allow processes executing in a "secure" environ·
ment to perform authentication based on the originating address and port number.

DRAFT of September 15, 1986 Leffier /Fabry / Joy

(

()

4.2BSD IPC Primer - 23- Advanced Topics

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for
an application. This is due to associations being created in a two step process. For example, the
Internet file transfer protocol, FTP, specifies that data connections must always originate from the
same local port. However, duplicate associations are avoided by connecting to different foreign
ports. In this situation the system would disallow binding the same local address and port number
to a socket if a previous data connection's socket were around. To override the default port selec­
tion algorithm then an option call must be performed prior to address binding:

setsockopt(s, SOL..50CKET, SO-REUSEADDR, (char *}O, 0);
bind(s, (char *)&Sin, sizeof (sin)); .

With the above call, local addresses may be bound which are already in use. This does not violate
the uniqueness requirement as the system still checks at connect time to be sure any other sockets
with the same local address and port do not have the same foreign address and port (if an associa­
tion already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a host is
on multiple networks. Logically, one would expect the system to bind the local address associated
with the network through which a peer was communicating. For instance, if the local host is con­
nected to networks 46 and 10 and the foreign host is on network 32, and traffic from network 32
were arriving via network 10, the local address to be bound would be the host's address on net­
work 10, not network 46. This unfortunately, is not always the case. For reasons too complicated
to discuss here, the local address bound may be appear to be chosen at random. This property of
local address binding will normally be invisible to users unless the foreign host does not understand
how to reach the address selected * .

5.5. Broadcasting and datagram sockets

By using a datagram socket it is possible to send broadcast packets on many networks sup­
ported by the system (the network itself must support the notion of broadcasting; the syst.em pro­
vides no broadcast simulation in software). Broadcast messages can place a high load on a net­
work since they force every host on the network to service them. Consequently, the ability to send
broadcast packets has been limited to the super user.

To send a broadcast message, an Internet datagram socket should be created:

s = socket(AF_INET, SOCICDGRAM, 0);

and at least a port number should be bound to the socket:

sin.sinJamily = AF ~T;
sin.sin_addr.s_addr = INADD1LANY;
sin.sin_port = MYPORT;
bind(s, (char *)&sin, sizeof (sin»;

Then the message should be addressed as:

dst.sinJamily = AF ~T;
dst.siILaddr.s_addr = INADD1LANY;
dst.siILport = DESTPORT;

and, finally, a sendto call may be used:

sendto(s, buf, buften, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagram sockets are
anchored before a message is allowed to go out).

• For example, if network 46 were unknown to the host on network 32, and the loeal address were bound to
that located on network 46, then even though a route between the two hosts existed through network 10, a eOD­

nection would fail.

DRAFT of September 15, 1986 Leftler /Fabry / Joy

4.2BSD]PC Primer - 24- Advanced Topics

6.8. Signals

Two new signals have been added to the system which may be used in conjunction with the
interprocess communication facilities. The SIGURG signal is associated with the existence of an
"urgent condition". The SIGIO signal is used with "interrupt driven i/o" (not presently imple­
mented). SIGURG is currently supplied a process when out of band data is present at a socket. If
multiple sockets have out of band data awaiting delivery, a select call may be used to determine
those sockets with such data.

An old signal which is useful when constructing server processes is SIGc:m.D. This signal is
delivered to a process when any children processes have changed state. Normally servers use the
signal to "reap" child processes after exiting. For example, the remote login server loop shown in
Figure 2 may be augmented as follows:

int reaperOi

sigset(SIGc:m.D, reaper)i
listen(f, 10);
for (;;) {

}

int g, len = sizeof (from);

g = accept(f, &from, &len, 0);
if (g < 0) {

}

if (errno != EINTR)
perror("rlogind: accept");

continue;

#include <wait.h>
reaperO
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

}

If the parent server process fails to reap its children, a large number of "zombie" processes
may be created.

DRAFT of September 15, 1986 Leffier /Fabry / Joy

o

(

Abstract

Reprinted from
Proceedings of the ACM SIGPLAN '82 Symposium on Compiler Construction

SIGPLAN Notices 17,6 (June 1982), pp 120-126t

gprof: a Call Graph Execution ProfUer1

by
Su,an L. Graham
Pete.,. B. Ke"/er

Mar,haJl K MeKUliek

Computer Science Division
Electrical Engineering and Computer Science Department

University of California, Berkeley
Berkeley, California 94720

Large complex programs are composed of many small routines that implement abstractions
for the routines that call them. To be useful, an execution profiler must attribute execution time
in a way that is significant for the logical structure of a program as well as for its textual decom­
position. This data must then be displayed to the user in a convenient and informative ~·ay. The
gprot profiler accounts for the running time of called routines in the running time of the routines
that call them. The design and use of this profiler is described.

1. Programs to be Profiled

Software research environments normally include many large programs both for production
use and for experimental investigation. These programs are typically modular, in accordance with
generally accepted principles of good program design. Often they consist of numerous small rou­
tines that implement various abstractions. Sometimes such large programs are ~'ritten by one pro­
grammer who has understood the requirements for these abstractions, and has programmed them
appropriately. More frequently the program has had multiple authors and has evolved over time,
changing the demands placed on the implementation of the abstractions without. changing the
implementation itself. Finally, the program may be assembled from a library of abstraction imple­
mentations unexamined by the programmer.

Once a large program is executable, it is often desirable to increase its speed, especially if
small portions of the program are found to dominate its execution time. The purpose of the gprot
profiling tool is to help the user evaluate alternative implementations of abstractions. We
developed this tool in response to our efforts to improve a code generator we were writing [Gra­
ham82J.

tcoPlright 1982 ACM 0-89791-ffl4-5/82/00fJ/0120 $00.75
Permission to copy wit.hout ree all or part or this material is grant.ed provided t.hat the copies are not made or distributed
ror direct commercial advantage, the ACM copyright Dotice and t.he title or the publication and its date appear, and notice
is given that copying is by permission or tbe Association ror Computing Macbinery. To copy otherwise, or to republish,
requires a fee and / or specific permission.

lThis work was supported by grant MCS80-OS144 rrom the National Scienee Foundation.

The sprof design takes advantage of the fact that the programs to be measured are large,
structured and hierarchical. We provide a profile in which the execution time for a set of routines
that implement an abstraction is collected and charged to that abstraction. The profile can be
used to compare and assess the costs of various implementations.

The profiler can be linked into a program without special planning by the programmer. The
overhead Cor using spl'Of is low; both in terms oC added execution time and in the volume of
profiling inrormation recorded.

2. Types of Profiling

There are several dilerent uses for program profiles, and each may require different inrorma­
tion Crom the profiles, or different presentation of the information. We distinguish two broad
categories or profiles: those that present counts or statement or routine invocations, and those that
display timing inCormation about statements or routines. Counts are typically presented in tabu­
lar Corm, often in parallel with a listing or the source code. Timing information could be similarly
presented; but more than one measure of time might be associated with each statement or routine.
For example, in the framework used by gprof each profiled segment would display two times: one
ror the time used by the segment itself, and another ror the time inherited from code segments it
invokes.

Execution counts are used in many different contexts. The exact number or times a routine
or statement is activated can be used to determine if an algorithm is performing as expect.ed. Cur­
sory inspection or such counters may show algorithms whose complexity is unsuited to the task at
hand. Careful interpretation of counters can orten suggest improvements to acceptable algorithms.
Precise examination can uncover subtle errors in an algorithm. At this level, profiling counters are
similar to debugging statements whose purpose is to show the number of times a piece of code is
executed. Another view of such counters is as boolean values. One may be interested that a por­
tion of code has executed at all, for exhaustive testing, or to check that one implementat.ion of an
abstraction completely replaces a previous one.

Execution counts are not necessarily proportional to the amount of time required to execute
the routine or statement. Further, the execution time of a routine will not be the same for all calls
on the routine. The criteria ror establishing execution time must be decided. H a routine imple­
ments an abstraction by invoking other abstractions, the time spent in the routine will not accu­
rately reflect the time required by the abstraction it implements. Similarly, if an abstraction is
implemented by several routines the time required by the abstraction will be distributed across
those routines.

Given the execution time of individual routines, gprof accounts to each routine the time
spent for it by the routines it invokes. This accounting is done by assembling a call graph with
nodes that are the routines of the program and directed arcs that represent calls from call sites to
routines. We distinguish among three different call graphs for a program. The complete call graph
incorporates all routines and all potential arcs, including arcs that represent calls to runctional
parameters or functional variables. This graph contains the other two graphs as subgraphs. The
atatic call graph includes all routines and all possible arcs that are not calls to runctional parame­
ters or variables. The dynamic call graph includes only those routines and arcs traversed by the
profiled execution of the program. This graph need not include all routines, nor need it include all
potential arcs between the routines it covers. It may, however, include arcs to runctional parame­
ters or variables that the static call graph may omit. The static call graph can be determined from
the (static) program text. The dynamic call graph is determined only by profiling an execution of
the program. The complete call graph for a monolithic program could be determined by data flow
analysis techniques. The complete call graph for programs that change during execution, by modi­
Cying themselves or dynamically loading or overlaying code, may never be determinable. Both the
static call graph and the dynamic call graph are used by gprot, but it does not search for the com­
plete call graph.

(:

c

8. Gathering Profile Data

Routine calls or statement executions can be measured by having a compiler augment the
code at strategic points. The additions can be inline increments to counters lJ<nuth71] [Sat­
t.erthwaite72] [Joy79] or calls to monitoring routines [Unix]. The counter increment overhead is
low, and is suitable for profiling statements. A call of the monitoring routine has an overhead
comparable with a call of a regular routine, and is therefore only suited to profiling on a routine
by routine basis. However, the monitoring routine solution has certain advantages. Whatever
counters are needed by the monitoring routine can be managed by the monitoring routine itself,
rather than being distributed around the code. In particular, a monitoring routine can easily be
called from separately compiled programs. In addition, different monitoring routines can be linked
into the program being measured to assemble different profiling data without having to change the
compiler or recompile the program. We have exploited this approach; our compilers for C, For­
tran77, and Pascal can insert calls to a monitoring routine in the prologue for each routine. Use of
the monitoring routine requires no planning on part of a programmer other than to request that
augmented routine prologues be produced during compilation.

We are interested in gathering three pieces of information during program execution: call
counts and execution times for each profiled routine, and the arcs of the dynamic caU graph
traversed by this execution or the program. By post-processing of this data we can build the
dynamic call graph ror this execution or the program and propagate times along the edges of this
graph to attribute times for routines to the routines that invoke them.

Gathering of the profiling information should not greatly interfere with the running or the
program. Thus, the monitoring routine must not produce trace output each time it is invoked.
The volume of data thus produced would be unmanageably large, and the time required to record
it would overv.·helm the running time of most programs. Similarly, the monitoring routine can not
do the analysis of the profiling data (e.g. assembling the call graph, propagating times around it,
discovering cycles, etc.) during program execution. Our solution is to gather profiling data in
memory during program execution and to condense it to a file as the profiled program exits. This
file is then processed by a separate program to produce the listing of the profile data. An advan­
tage of this approach is that the profile data for several executions of a program can be combined
by the post-processing to provide a profile of many executions.

The execution time monitoring consists of three parts. The first part allocates and initializes
the runtime monitoring data structures before the program begins execution. The second part is
the monitoring routine invoked from the prologue of each profiled routine. The third part con­
denses the data structures and writes them to a file as the program terminates. The monitoring
routine is discussed in detail in the following sections.

S.l. Execution Counts

The gprot monitoring routine counts the number of times each profiled routine is called.
The monitoring routine also records the arc in the call graph that activated the profiled routine.
The count is associated with the arc in the call graph raiher than with the routine. Call counts for
routines can then be determined by summing the counts on arcs directed into that routine. In a
machine-dependent fashion, the monitoring routine notes its own return address. This address is
in the prologue of some profiled routine that is the destination of an arc in the dynamic call graph.
The monitoring routine also discovers the return address for that routine, thus identifying the call
site, or source of the arc. The source or the arc is in the ctJI/er, and the destination is in the ctJIlee.
For example, if a routine A calls a routine B, A is the caller, and B is the callee. The prologue of
B will include a call to the monitoring routine that will note the arc from A to B and either initial­
ize or increment a counter for that arc.

One can not afford to have the monitoring routine output tracing information as each arc is
identified. Therefore, the monitoring routine maintains a table of all the arcs discovered, with
counts of the numbers of times each is traversed during execution. This table is accessed once per
routine call. Access to it must be as fast as possible so as not to overwhelm the time required to
execute the program.

.~~---,,-,--,.-.,-------

Our solution is to aceess the table through a hash table. We use the call site as the primary
key with the callee address being the secondary key. Since each call site typically calls only one
callee, we can reduce {usually to one} the number of minor lookups based on the callee. Another
alternative would use the caUee as the primary key and the call site as the secondary key. Such an
organization has the advantage of associating callers with callees, at the expense of longer lookups
in the monitoring routine. We are fortunate to be running in a virtual memory environment, and
(for the sake of speed) were able to allocate enough space for the primary hash table to allow a
one-to-one mapping from call site addresses to the primary hash table. Thus our hash function is
trivial to calculate and collisions occur only for call sites that call multiple destinations {e.g. func­
tional parameters and functional variables}. A one level hash function using both call site and cal­
lee would result in an unreasonably large hash table. Further, the number of dynamic call sites
and callees is not known during execution of the profiled program.

Not all callers and callees can be identified by the monitoring routine. Routines that were
compiled without the profiling augmentations will not call the monitoring routine as part of their
prologue, and thus no ares will be recorded whose destinations are in these routines. One need not
profile all the routines in a program. Routines that are not. profiled run at full speed. Certain rou­
tines, notably exception handlers, are invoked by non-standard calling sequences. Thus t.he moni­
toring routine may know the destination of an arc (the callee), but find it difficult or impossible to
determine the source of the arc (the caller). Often in these cases the apparent source of the arc is
not a call site at all. Such anomalous invocations are declared "spontaneous".

8.2. Execution Times

The execution times for routines can be gathered in at least two ways. One method measures
the execution time of a routine by measuring the elapsed time from routine entry to routine exit.
Unfortunately, time measurement is complicated on time-sharing systems by the time-slicing of the
program. A second method samples the value of the program counter at some interval, and infers
execution time from the distribution of the samples within the program. This technique is particu­
larly suited to time-sharing systems, where the time-slicing can serve as t.he basis for sampling the
program counter. Notice that, whereas the first method could provide exact timings, the second is
inherently a statistical approximation.

The sampling method need not require support from the operating system: all that is needed
is the abilit.y to set and respond to "alarm clock" interrupts that run relative to program time. It
is imperative that the intervals be uniform since the sampling of the program count.er rather than
the duration of the interval is the basis of the distribution. If sampling is done too often, the
interruptions to sample the program counter will overwhelm the running of the profiled program.
On the other hand, the program must run for enough sampled intervals that the distribution of
the samples accurately represents the distribution of time for the execution of the program. As
with routine call tracing, the monitoring routine can not afford to output information for each pro­
gram counter sample. In our computing environment, the operating system can provide a histo­
gram of the location of the program counter at the end of each clock tick (l/60th of a second) in
which a program runs. The histogram is assembled in memory as the program runs. This facility
is enabled by our monitoring routine. We have adjusted the granularity of the histogram so that
program counter values map one-to-one onto the histogram. We make the simplifying assumption
that all calls to a specific routine require the same amount of time to execute. This assumption
may disguise that some calls (or worse, some call sites) always invoke a routine such that its execu­
tion is faster (or slower) than the average time for that routine.

When the profiled program terminates, the arc table and the histogram of program counter
samples is written to a file. The arc table is condensed to consist of the source and destination
addresses of the arc and the count of the number of times the arc was traversed by this execution
of the program. The recorded histogram consists of counters of the number of times the program
counter was found to be in each of the ranges covered by the histogram. The ranges themselves
are summarized as a lower and upper bound and a step size.

o

)

~

c

(

(-

4. Post Proceasing

Having gathered the arcs of the call graph and timing information for an execution of the
program, we are interested in attributing the time for each routine to the routines that call it. We
build a dynamic call graph with arcs from caller to callee, and propagate time from descendants to
ancestors by topologically sorting the call graph. Time propagation is performed from the leaves
of the call graph toward the roots, according to the order assigned by a topological numbering
algorithm. The topological numbering ensures that all edges in the graph go from higher num­
bered nodes to lower numbered nodes. An exampl~ is given in Figure 1. If we propagate time
from nodes in the order assigned by the algorithm, execution time can be propagated from descen­
dants to ancestors after a single traversal of each arc in the call graph. Each parent receives some
fraction of a child's time. Thus time is charged to the caller in addition to being charged to the
callee.

Let Oe be the number of calls to some routine, e, and 0; be the number of calls from a
caller r to a callee e. Since we are assuming each call to a routine takes the average amount of
time for all calls to that routine, the caller is accountable for 0:; Ot of the time spent by the cal­
lee. Let the Be be the self time of a routine, e. The selCtime of a routine can be determined from
the timing information gathered during profiled program execution. The total time, T" we wish
to account to a routine r, is then given by the recurrence equation:

Or
T, =Br + E TeXCt

, CALLS e e

where r CALLS e is a relation showing all routines e called by a routine r. This relation is
easily available from the call graph.

However, if the execution contains recursive calls, the call graph has cycles that cannot be
topologically sorted. In these cases, we discover strongly-connected components in the call graph,
treat each such component as a single node, and then sort the resulting graph. We use a variation
of Tarjan's strongly-connected components algorithm that discovers strongly-connected com­
ponents as it is assigning topological order numbers ITarjan72j.

Time propagation within strongly connected components is a problem. For example, a self­
recursive routine (a trivial cycle in the call graph) is accountable for all the time it uses in all its
recursive instantiations. In our scheme, this time should be shared among its caU graph parents.
The arcs from a routine to itself are of interest, but do not participate in time propagation. Thus
the simple equation for time propagation does not work within strongly connected components.
Time is not propagated from one member of a cycle to another, since, by definition, this involves
propagating time from a routine to itself. In addition, children of one member of a cycle must be
considered children of all members of the cycle. Similarly, parents of one member of the cycle

8 9

3 7

2 5 6

1 4

~~-~ -- -------- -----------

Topological ordering
Figure 1.

must inherit all memhers of the cycle as descendants. It is for these reasons that we collapse con­
nected components. Our solution collects all members of a cyc:le together, summing the time and
call counts for all members. All calls into the cyc:le are made to share the total time of the cycle,
and all descendants of the cye1e propagate time into the cyc:le as a whole. Calls among the
members of the cycle do not propagate any time, though they are listed in the call graph profile.

Figure 2 shows a modified version of the call graph of Figure 1, in which the nodes labelled 3
and 7 in Figure 1 are mutually recursive. The topologically sorted graph after the cycle is col­
lapsed is given in Figure 3.

Since the technique described above only collects the dynamic eall graph, and the·program
typically does not eall every routine on each execution, different executions ean introduce different
cycles in the dynamic call graph. Since cyc:les often have a significant effect on time propagation,
it is desirable to incorporate the static eall graph so that cyc:les will have the same members
regardless of how the program runs.

The static call graph can be eonstructed from the source text of the program. However, dis­
covering the static eall graph from the source text would require two moderately difficult steps:
finding the source text for the program (which may not be available), and scanning and parsing
that text, which may be in anyone of several languages.

In our programming system, the static calling inrormation is also contained in the executable
version of the program, which we already have available, and which is in language-independent
rorm. One can examine the instructions in the object program, looking ror ealls to routines, and
note which routines can be called. This technique allows us to add arcs to those already in the

0 0

• •

0 0 0

0 0

Cycle to be collapsed.
Figure 2.

7 8

6 6

2 4 5

1 3

Topological numbering arter cycle collapsing.
Figure 3.

o

/ "
\~

J

(\
.~

.. (

(

c

dynamic call graph. If a statically discovered arc already exists in the dynamic call graph, no
action is required. Statically discovered arcs that do not exist in the dynamic call graph are added
to the graph with a traversal count of zero. Thus they are never responsible for any time propaga­
tion. However, they may affect the structure of the graph. Since they may complete strongly con­
nected components, the static call graph construction is done berore topological ordering.

&. Data Presentation
The data is presented to the user in two different formats. The first presentation simply lists

the routines without regard to the amount of time their descendants use. The second presentation
incorporates the call graph of the program.

&.1. The Flat Profile

The fiat profile consists of a list of all the routines that are called during execution of the
program, with the count of the number of times they are called and the number of seconds of exe­
cution time for which they are themselves accountable. The routines are listed in decreasing order
of execution time. A list of the routines that are never called during execution of the program is
also available to verify that nothing important is omitted by this execution. The fiat profile gives
a quick overview of the routines that are used, and shows the routines that are themselves respon­
sible for large fractions of the execution time. In practice, this profile usually shows that no single
function is overwhelmingly responsible for the total time of the program. Notice that for this
profile, the individual times sum to the total execution time.

&.2. The Call Graph Profile

Ideally, we would like to print the call graph of the program, but we are limited by the two­
dimensional nature of our output devices. We cannot assume that a call graph is planar, and even
if it is, that we can print a planar version of it. Instead, we choose to list each routine, together
with information about the routines that are its direct parents and children. This listing presents
a window into the call graph. Based on our experience, both parent information and child infor­
mation is important, and should be available without searching through the output.

The major entries of the call graph profile are the entries from the fiat profile, augmented by
the time propagated to each routine from its descendants. This profile is sorted by the sum of the
timt' for the routine itself plus the time inherited from its descendants. The profile shows which of
the higher level routines spend large portions of the total execution time in the routines that they
call. For each routine, we show the amount of time passed by each child to the routine, which
includes time for the child itself and for the descendants of the child (and thus the descendants of
the routine). We also show the percentage these times represent of the total time accounted to the
child. Similarly, the parents of each routine are listed, along with time, and percentage of total
routine time, propagated to each one.

called/total parents
index %time self descendants called+self name index

calledltotal children
0.20 1.20 4/10 CAlLERl 17J
0.30 1.80 6/10 CAlLER2 [1]

[2J 41.5 0.50 3.00 10+4 EXAMPLE !2J
1.50 1.00 20/40 SUB! < eyelel > [4]
0.00 0.50 1/5 SUB2 f~il 0.00 0.00 0/5 SUB3

Profile entry for EXAMPLE.
Figure 4.

Cycles are handled as single entities. The cycle as a whole is shown as though it were a sin­
gle routine, except that members of the cycle are listed in place of the children. Although the
number of calls of each member from within the cycle are shown, they do not afrect time propaga­
tion. When a child is a member of a cycle, the time shown is the appropriate fraction of the time
for the whole cycle. Self-recursive routines have their calls broken down into calls from the outside
and self-recursive calls. Only the outside calls afrect the propagation of time.

The following example is a typical fragment of a call graph.

CALLERl CAU.ER2

EXAMPLE

SUBl SUB2 SUB3

The entry in the call graph profile listing Cor this example is shown in Figure 4.

The entry is for routine EXAMPLE, which has the Caller routines as its parents, and the Sub
routines as its children. The reader should keep in mind that all information is given with re&pect
to EXAMPLE. The index in the first column shows that EXAMPLE is the second entry in the
profile listing. The EXAMPLE routine is called ten times, four times by CALLERl, and six times by
CAlLER2. Consequently 40% of EXAMPLE's time is propagated to CALLERl, and 60% of
EXAMPLE's time is propagated to CALLER2. The self and descendant fields of the parents show
the amount of self and descendant time EXAMPLE propagates to them (but not the time used by
the parents directly). Note that EXAMPLE calls itself recursively four times. The routine EXAM­
PLE calls routine SUBl twenty times, SUB2 once, and never calls SUB3. Since SUB2 is called a total
of five times, 20% of its self and descendant time is propagated to EXAMPLE's descendant time
field. Because SUBl is a member of Cllcle I, the self and descendant times and call count fraction
are those for the cycle as a whole. Since cycle 1 is called a total of forty times (not counting calls
among members of the cycle), it propagates 50% of the cycle's self and descendant time to
EXAMPLE's descendant time field. Finally each name is followed by an index that shows where on
the listing to find the entry for that routine.

8. Using the Profiles

The profiler is a useful tool for improving a set of routines that implement an abstraction. It
can be helpful in identifying poorly coded routines, and in evaluating the new algorithms and code
that replace them. Taking full advantage of the profiler requires a careful examination of the call
graph profile, and a thorough knowledge of the abstractions underlying the program.

The easiest optimizat.ion that can be performed is a small change to a control construct or
data structure that. improves the running time of the program. An obvious starting point is a rou­
tine that is called many times. For example, suppose an output routine is the only parent of a
routine that formats the data. If this format routine is expanded inline in the output routine, the
overhead of a function call and return can be saved for each datum that needs to be formatted.

The drawback to inline expansion is that the data abstractions in the program may become
less parameterized, hence less clearly defined. The profiling will also become less useful since the
loss of routines will make its output more granular. For example, if the symbol table runctions
"lookup", "insert", and "delete" are all merged into a single parameterized routine, it will be
impossible to determine the costs or anyone or these individual Cunctions rrom the profile.

Further potential for optimization lies in routines that implement data abstractions whose
total execution time is long. For example, a lookup routine might be called only a few times, but
use an inefficient linear search algorithm, that might be replaced with a binary search. Alter­
nately, the discovery that a rehashing function is being called excessively, can lead to a different

o

/-- -",

o

c

hash function or a larger hash table. Ir the data abstraction function cannot easily be speeded up,
it may be advantageous to cache its results, and eliminate the need to rerun it for identical inputs.
These and other ideas for program improvement are discussed in (Bentley81].

This tool is best used in an iterative approach: profiling the program, eliminating one
bottleneck, then finding some other part of the program that begins to dominate execution time.
For instance, we have used .prof on itself; eliminating, rewriting, and inline expanding routines,
until reading data files (hardly a target for optimization!) represents the dominating factor in its
execution time.

Certain types of programs are not easily analyzed by sprof. They are typified by programs
that exhibit a large degree of recursion, such as recursive descent compilers. The problem is that
most of the major routines are grouped into a single monolithic cycle. As in the symbol table
abstraction that is placed in one routine, it is impossible to distinguish which members of the cycle
are responsible for the execution time. Unfortunately there are no easy modifications to these pro­
grams that make them amenable to analysis.

A completely different. use of the profiler is to analyze the control flow of an unfamiliar pro­
gram. If you receive a program from another user that you need to modify in some small way, it
is often unclear where thE: change& need \0 be made. By running the program on an example and
then using gprof, you can get a view of the structure of the program.

Consider an example in which you need to change the output format of the program. For
purposes of this example suppose that the call graph of the output portion of the program has the
following structure:

CALC} CALC2 CALC3

FORMAT} FORMAT2

"v\ 'RI TE"

Initially you look through the gprot output for the system call "WRITE". The format routine
you will need to change is probably among the parents of the "WRITEH procedure. The next step
is to look at the profile entry for each of parents of "WRITE", in this example either "FORMATl"
or "FORMAT2", to determine which one to change. Each format routine will have one or more
parents, in this example "CALC}", "CALC2", and "CALC3". By inspecting the source code for
each of these routines you can determine which format routine generates the output that you wish
to modify. Since the gprot entry shows all the potential calls to the format routine you intend to
change, you can determine if your modifications will affect output that should be left alone. If you
desire to change the output of "CALC2", but not "CALC3", then formatting routine "FORM<\T2"
needs to be split into two separate routines, one of which implements the new format. You can
then retarget just the call by "CALC2" that needs the new format. It should be noted that the
static call information is particularly useful here since the test case you run probablY will not exer­
cise the entire program.

7. Conclusions

We have created a profiler that aids in the evaluation of modular programs. For each rou­
tine in the program, the profile shows the extent to which that routine helps support various
abstraction~, and how that routine uses other abstractions. The profile accurately assesses the cost
of routines at all levels of the program decomposition. The profiler is easily used, and can be com­
piled into the program without any prior planning by the programmer. It adds only five to thirty
percent execution overhead to the program being profiled, produces no additional output until after
the program finishes, and allows the program to be measured in its actual environment. Finally,

the profiler runs on a tim.sharing system using only the normal services provided by the operating
system and compilers.

8. References
(Bentley81]

Bentley, J. L., "Writing Efficient COden, Department of Computer Science, Carnegie.Mellon
University, Pittsburgh,-Pennsylvania, CMU-CS-81-116, 1981.'

(Graham82]
Graham, S. L., Henry, R. R., Schulman, R. A., "An Experiment in Table Driven Code Gen­
eration", SIGPLAN '82 Symposium on Compiler Construction, June, 1982.

[Joy79]
Joy, W. N., Graham, S. L., Haley, C. B. "Berkeley Pascal User's Manual", Version 1.1,
Computer Science Division University of California, Berkeley, CA. April 1979.

[Knuth71]
Knuth, D. E. "An empirical study or FORTRAN programs", Sortware - Practice and Experi­
ence, 1, 105-133. 1971

[Satterthwaite72]
Satterthwaite, E. "Debugging Tools for High Level Languages", Sortware - Practice and
Experience, 2, 197-217, 1972

{Tarjan72]
Tarjan, R. E., "Depth first search and linear graph algorithm," SIAM J. Computing 1:2,
146-160, 1972.

{Unix]
Unix Programmer's Manual, "prof command", section 1, Bell Laboratories, Murray Hill, NJ.
January 1979.

COMMENTS

(ICON/UXB REFERENCE MANUAL Volume 2 P /N 172-022-003

Your comments and suggestions are appreciated and will help us to provide you with the very best
in system and application documentation. Send your comments to the address at the bottom of this
page. Users who respond will be entitled to free updates of this manual for one year.

1. How would you ra.te this manual for CO:MPLETENESS? (Please Circle)
Excellent Poor

5 ------------- 4 -------------- 3 ------------- 2 -------------- 1 ------------- 0

2. Is there any information that you feel should be included or removed?

3. How would you rate this manual for ACCURACY? (Please Circle)
Excellen t Poor

5 ------------- 4 -------------- 3 ------------- 2 -------------- 1 ------------- 0

4. Indicate the page number and nature of any error(s) found in this manual.

(5. How would you rate this manual for USABILITY? (Please Circle)
Excellent Poor

5 ------------- 4 -------------- 3 ------------- 2 -------------- 1 ------------- 0

6. Describe any format or packaging problems you have experienced with this manual and/or
binder.

7. Do you have any general comments or suggestions regarding this publication or future
publications?

Your Name __ __
Company __ __

Address ____________________ Phone (--)-----

City & State Zip Code _____ _
Job Function __ _

Type of Equipment Installed: __ _

Icon International, Inc. A MEMBER OF THE SANYO GROUP P.O. Box 340 Orem, UT.84057-0340

c

Copyright «:l 1987 Icon International, Inc.

RevB 172-022-003

