I

MCS™-51 MACRO ASSEMBLER
USER’S GUIDE

Order Number: 9800937-02

Copyright © 1979, 1981 intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

L

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug-A-Bubble
CREDIT intl MCS PROMPT

i Intelevision Megachassis Promware
ICE Intellec Micromainframe RMX/80

iCS iRMX Micromap System 2000
im iSBC Multibus UPI

Insite iSBX Multimodule uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

[[A450/981/7K DD |

REV. REVISION HISTORY DATE
-001 Original issue. 12/79
Change 1 Add Macro Processing Language facility and 3/80
correct minor errors. .
002 Add several new directives and the concepts of 9/81

relocatable object code and intermodule linkage.

Correct errors.

iii

PREFACE

This manual describes how to program the MCS™-51 single-chip microcompute‘rs in
assembly language. It also describes the operating instructions for the MCS-51
Macro Assembler.

The term ““MCS-51"’ refers to an entire family of single-chip microcomputers, all of
which have the same basic processor design. They include:

e 8051—the 8x51 processor with 4K bytes ROM. It is manufactured by Intel with
ROM memory pre-programmed.

¢ 8031—the 8x51 processor with no ROM on-chip.

® 8751—the 8x51 processor with 4K bytes EPROM. The 8751 can be programmed
and erased many times by the user.

Throughout this manual when we wish to refer to a specific chip, but also point out
something that applies to the entire family, we speak of the 8051. For software pur-
poses, these processors are equivalent.

This book is intended as a reference, but it contains some instructional material as
well. It is organized as follows:

¢ Chapter 1—Introduction, describes assembly language programming and
provides an overview of the 8051 hardware.

e Chapter 2—Operands and Expressions, describes each operand class and
discusses absolute and relocatable expressions.

o. Chapter 3—Instruction Set, completely describes the operation of each
instruction in alphabetical order.

e Chapter 4—Directives, describes how to define symbols and how to use all
directives.

¢ Chapter 5—Macros, defines and describes the use of the Macro Processing
Language.

* Chapter 6—Assembler Operation and Control, describes how to invoke the
assembler and how to control assembler operation.

¢ Chapter 7—Assembler Output: Error Messages and Listing File Format,
describes how to interpret error messages and the listing file.

Before you program one of the MCS-51 microcomputers, you should read the
MCS-51 User’s Manual, Order Number 121517.

Related Literature

To help you use this manual, you should familiarize yourself with the following
manuals:

o MCS-51 Utilities User’s Guide, Order Number 121737 (describes the RLS51
Relocator and Linker process)

® MCS-51 Family of Single-Chip Microcomputers User’s Manual, Order Number
121517

e ISIS-II User’s Guide, Order Number 9800306

® MCS-51 Macro Assembly Language Pocket Reference, Order Number
9800935

vi

MCS-51 Assembler and Utilities Pocket Reference, Order Number 121817

ICE-51 In-Circuit Emulator Operating Instructions for ISIS-1I Users, Order
Number 9801004

Universal PROM Programmer User’s Manual, Order Number 9800819 -
Universal PROM Programmer Reference Manual, Order Number 9800133

PN

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION
Whatis an Assembler?cu..... 1-1
How to Developa Program 1-1
The Advantages of Modular Programming 1-2
Efficient Program Development 1-2
Multiple Use of Subprograms 1-2
Ease of Debugging and Modifying 1-2
MCS-51 Modular Program Development Process . 1-2
Segments, Modules, and Programs 1-2
ProgramEntryand Edit 1-3
Assembly ..., 1-3
ObjectFilecciiiiiiiiiiinn... 1-3
ListingFilettt 14
Relocation and Linkage 1-4
Conversion to Hexadecimal Format 14
Keeping Track of Files et 14
Writing, Assembling, and Debugging an
MCS-51Programccccovun... 14
HardwareOverviewc.ccoo.... 1-6
Memory Addressesciiiiiiiiiannn. 1-8
DataUnitscoiiiiiiiiiiiiiiiiiinnnn, 1-9
Arithmetic and Logic Functions 1-10
General-Purpose Registers 1-11
TheStack ..ot 1-11
Symbolically Addressable Hardware Registers ... 1-12
Bit Addressingt 1-13
The Program Status Word 1-13
TimerandCountercccoevvenn... 1-14
I/OPOIts ..o i 1-14
Serial I/OPOrt ...t i 1-15
Interrupt Control, 1-15
Reset .. i 1-17
CHAPTER 2
OPERANDS AND EXPRESSIONS
Operandsoiiiii i e e e e e 2-1
Special Assembler Symbols 2-2
Indirect Addressingciiiiiiiiean.. 2-3
ImmediateData, 2-3
Data Addressingciiiiiiiiiiinnn... 2-4
Bit Addressingciiiiiiiiiiiitn 2-5
Code Addressingc.ccoviiiiiinnnnnnnnn 2-7
Relative Jump (SJMP) and Conditional
Jumps ... 2-8
In Block Jumps and Calls (AJMP and
ACALL) ..ttt 2-8
Long Jumps and Calls (LJMP and LCALL) ... 2-8
Generic Jump and Call JMP and CALL) 29
Assembly-Time Expression Evaluation 29
Specifying Numberso..... 29
ASM51 Number Representation 2-10
Character Strings in Expressions 2-10
Useof Symbolsiviiiiiiiine.... 2-11

PAGE
Using Operators in Expressions 2-13
Arithmetic Operators 2-13
Logical Operators 2-13
Special Assembler Operators 2-14
Relational Operators 2-14
Operator Precedence 2-15
Segment Typing in Expressions 2-15
Relocatable Expression Evaluation 2-16
Simple Relocatable Expressions 2-16
General Relocatable Expressions 2-16
CHAPTER 3
INSTRUCTION SET
Introduction i, 3-1
NOtES « ittt ittt ittt 3-142
CHAPTER 4
ASSEMBLER DIRECTIVES
Introduction, 4-1
The LocationCounter 4-2
SymbolNames e, 4-2
StatementLabels 4-2
Symbol Definition 4-3
SEGMENT Directivecccovvnnn.... 4-3
EQUDirectivecciiiiiiiiiiiinnnnnnnn. 4-4
SETDirective ...oovvvniiiiiiniiiinnnnnnn.. 4-5
BITDirectivecciiiiiiiiiiiinnnnn... 4-5
DATADirectivecciiiiiiiiinnnnnnn. 4-6
XDATADirectivecciiiiiiininnn.. 4-6
IDATA DIrective «....uuuneeeeernnnnnnnnnnn.. 4-6
CODEDirective cooiiiiiiiinenn... 4-7
Storage Initialization and Reservation 4-7
DSDirectivecooviiii ... 4-7
DBIT Directiveuiiiinnnniinninnnn.. 4-7
DBDirective 4-8
DWDirectivecoiiiiiiiiiiiiii... 4-8
Program Linkage 4-9
PUBLIC Directiveccciiiunn... 4-9
EXTRNDirectiveccivvivie... 4-9
NAME Directiveoiiiiiiiii... 4-10
Assembler State Controls 4-10
ENDDirective iiiiiiiiiininnnn.. 4-10
ORGDirectiveccovviiiiiniiinnnnnnnn.. 4-11
Segment Selection Directives 4-11
USING Directivecoiiiiiininnnnn.. 4-12
CHAPTER 5
THE MACRO PROCESSING LANGUAGE
Introduction i, 5-1
Macro Processor Overview 5-1
Introduction to Creating and Calling Macros 5-2
Creating Simple Macros 5-2
Macros with Parameters 5-5

vii

CONTENTS (Cont’d.)

PAGE
LOCAL SymbolsListcociiiieiiiant. 5-6
The Macro Processor’s Built-in Functions 5-7
Comment, Escape, Bracket and METACHAR
Built-in Functionsco0 i, 5-8
Comment Functioncccivuian. 5-8
Escape Functionccooiaa. 5-9
Bracket Functioncc.ieiieininnnn. 5-9
METACHARFunction 5-10
Numbers and Expressionsin MPL 5-10
N3 2 B, £ 163 o X 5-11
EVALMaACIO .. .oiiiiiiiiniiiiiiiennnnannn 5-11
Logical Expressions and String Comparisons
INMPL ... e 5-12
Control Flow Functions 5-13
IFFunctioncoiiiiiiiiiinrenennnnnn 5-13
WHILE Functionccciiiiieiinnnn., 5-14
REPEATFunctioncccivuiiiiinnnn... 5-15
EXITFunctioncciiiiiiiiiennnnann, 5-15
String Manipulation Built-in Functions 5-16
LENFunctionciiiiiuiennennnn. 5-16
SUBSTR Function e 5-16
MATCHFunctionciiiiiieiiinnnnn 5-17
Console 1/0Built-in Functions 5-18
Advanced MPL Concepts cooveevennnnn. 5-18
Macro Delimiterscoiiiiiennennn.. 5-18
Implied Blank Delimiters 5-19
Identifier Delimitersccc.u.... 5-19
Literal Delimiterscccevuiinnn.. 5-20
Literal vs. NormalModec.cainn. 5-21
Algorithm for Evaluating Macro Calls 5-22
CHAPTER 6
ASSEMBLER OPERATION
AND CONTROLS
How to Invoke the MCS-51 Macro Assembler 6-1
AssemblerControls, 6-2
CHAPTER 7

ASSEMBLER OUTPUT: ERROR
MESSAGES AND LISTING FILE FORMAT

Error Messages and Recovery 7-1
Console Error Messagescoviienenann. 7-1
I/JOEImors ..ottt iiiiiinennannns 7-1
ASMS1 Internal Errors ..., 7-2
Invocation Line Errors 7-2

viii

Listing File Error Messages 7-4
Source File Error Messages 7-4
Macro Error Messages 7-10
Control Error Messages 7-13
Special Assembler Error Messages 7-14
Fatal Error Messages 7-15

Assembler Listing File Format 7-15
Listing FileHeading 7-18
Source Listing iiiiiia... 7-18
Format for Macros and INCLUDE Files 7-19
SymbolTable ..., 7-20
Listing File Trailer 7-21

APPENDIX A
ASSEMBLY LANGUAGE
BNF GRAMMAR

APPENDIX B
INSTRUCTION SET SUMMARY

APPENDIX C
ASSEMBLER DIRECTIVE SUMMARY

APPENDIX D
ASSEMBLER CONTROL SUMMARY

APPENDIX E
MPL BUILT-IN FUNCTIONS

APPENDIX F
RESERVED SYMBOLS

APPENDIX G
SAMPLE PROGRAM

APPENDIX H
REFERENCE TABLES

APPENDIX J
ERROR MESSAGES

APPENDIX K
CHANGING ABSOLUTE PROGRAMS
TO RELOCATABLE PROGRAMS

TABLES

TABLE TITLE PAGE TITLE PAGE
1-1 Register Bank Selection 1-11 2-6 Predefined Data Addresses for 8051 2-12
-2 Symbolically Addressable Hardware 2-7 Arithmetic Assembly-Time Operators 2-13
Registers for the 8051 1-12 2-8 Logical Assembly-Time Operators 2-13
1-3 State of the 8051 after Power-up 1-17 2-9 Special Assembly-Time Operators 2-14
2-1 Special Assembler Symbols 2-2 2-10 Relational Assembly-Time Operators 2-14
2-2 Predefined Bit Addresses for 8051 2-7 3-1 Abbreviations and Notations Used 3-3
2-3 Assembly Language Number 6-1 Assembler Controls 6-2
Representation0ooe.n. 2-9 B-1 Instruction Set Summary B-2
2-4 Examples of Number Representation 29 B-2 Instruction Opcodes in Hexadecimal B-9
2-5 Interpretations of Number C-1 Assembler Directives C-1
Representation 2-10 D-1 Assembler Controls D-1
FIGURE - TITLE PAGE FIGURE TITLE PAGE
1-1 Assembler and Linker/Relocator Hardware Register Address Area
OUtPULS « ittt 1-3 for8051 2-4
1-2 MCS-51 Program Development Process ... 1-5 Bit Addressable BytesinRAM 2-6
1-3 Sample Program Listing 1-5 Bit Addressable Bytes in Hardware
1-4 8051 Block Diagram 1-7 Register Address Area for 8051.......... 2-6
1-5 MCS-51 Code Address Space and External Format For Instruction Definitions 3-2
Data AddressSpace, 1-8 Macro Processor versus Assembler—
1-6 MCS-51 Data Address Space and Bit Two Different Views of a Source File 5-1
AddressSpaceiiiiiiiiinn.n 1-9 Example Listing File Format 7-15
1-7 MCS-S1 DataUnits™c..oa.. 1-10 Example Heading 7-18
1-8 Bit Descriptions of Program Status Example Source Listing 7-18
Word ... 1-13 Examples of Macro Listing Modes 7-19
1-9 Bit Descriptions of TCON 1-14 Example Symbol Table Listing 7-21
1-10 Bit Descriptions for Port3 eeeas 1-15 Sample Relocatable Program G-1
1-11 Bit Descriptions for Serial Port Control ... 1-15 Sample Absolute Program K-1
1-12 Bit Descriptions for Interrupt Enable and
Interrupt Priority e 1-16

ix

CHAPTER 1
INTRODUCTION

This manual describes the MCS™-51 Macro Assembler and explains the process of
developing software in assembly language for the MCS-51 family of processors. The
8051 is the primary processor described in this manual.

Assembly language programs translate directly into machine instructions which
instruct the processor as to what operation it should perform. Therefore the
assembly language programmer should be familiar with both the microcomputer
architecture and assembly language. This chapter presents an overview of the
MCS-51 Macro Assembler and how it is used, as well as a brief description of the
8051 architecture and hardware features.

What is an Assembler?

An assembler is a software tool—a program—designed to simplify the task of
writing computer programs. It performs the clerical task of translating symbolic
code into executable object code. This object code may then be programmed into
one of the MCS-51 processors and executed. If you have ever written a computer
program directly in machine-recognizable form, such as binary or hexadecimal
code, you will appreciate the advantages of programming in a symbolic assembly
language.

Assembly language operation codes (mnemonics) are easily remembered (MOV for
move instructions, ADD for addition). You can also symbolically express addresses
and values referenced in the operand field of instructions. Since you assign these
names, you can make them as meaningful as the mnemonics for the instructions.
For example, if your program must manipulate a date as data, you can assign it the
symbolic name DATE. If your program contains a set of instructions used.as a tim-
ing loop (a set of instructions executed repeatedly until a specific amount of time
has passed), you can name the instruction group TIMER__LOOP.

The assembly program has three constituent parts:
Machine instructions
Assembler directives

Assembler controls

A machine instruction is a machine code that can be executed by the machine.
Detailed discussion of the machine instructions is presented in Chapter 3.

Assembler directives are used to define the program structure and symbols, and
generate non-executable code (data, messages, etc.). See Chapter 4 for details on all
of the assembler directives.

Assembler controls set the assembly modes and direct the assembly flow. Chapter 6
contains a comprehensive guide to all the assembler controls.

How to Develop a Program

ASMS51 enables the user to program in a modular fashion. The following paragraphs
explain the basics of modular program development.

Introduction

The Advantages of Modular Programming

Many programs are too long or complex to write as a single unit. Programming
becomes much simpler when the code is divided into small functional units. Modular
programs are usually easier to code, debug, and change than monolithic programs.

The modular approach to programming is similar to the design of hardware which
contains numerous circuits. The device or program is logically divided into “*black
boxes’’ with specific inputs and outputs. Once the interfaces between the units have
been defined, detailed design of each unit can proceed separately.

Efficient Program Development

Programs can be developed more quickly with the modular approach since small
subprograms are easier to understand, design, and test than large programs. With
the module inputs and outputs defined, the programmer can supply the needed input
and verify the correctness of the module by examining the output. The separate
modules are then linked and located into one program module. Finally, the com-
pleted module is tested.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular programming
allows these sections to be saved for future use. Because the code is relocatable,
saved modules can be linked to any program which fulfills their input and output
requirements. With monolithic programming, such sections of code are buried
inside the program and are not so available for use by other programs.

Ease of Debugging and Modifying

Modular programs are generally easier to debug than monolithic programs. Because
of the well-defined module interfaces of the program, problems can be isolated to
specific modules. Once the faulty module has been identified, fixing the problem is
considerably simpler. When a program must be modified, modular programming
simplifies the job. You can link new or debugged modules to the existing program
with the confidence that the rest of the program will not be changed.

MCS-51 Modular Program Development Process

This section is a brief discussion of the program development process with the
relocatable MCS-51 assembler (ASM51), Linker/Relocator (RL51), and code con-
vertion programs.

Segments, Modules, and Programs

In the initial design stages, the tasks to be performed by the program are defined,
and then partitioned into subprograms. Here are brief introductions to the kinds of
subprograms used with the MCS-51 assembler and linker/relocator.

A segment is a block of code or data memory. A segment may be relocatable or
absolute. A relocatable segment has a name, type, and other attributes. Segments
with the same name, from different modules, are considered part of the same seg-
ment and are called ‘‘partial segments.”” Partial segments are combined into
segments by RL51. An absolute segment has no name and cannot be combined with
other segments.

MCS-51

MCS-51

A module contains one or more segments or partial segments. A module has a name
assigned by the user. The module definitions determine the scope of local symbols.
An object file contains one or more modules. You can add modules to a file by
simply appending another object file to that file (e.g., COPY filet,file2 TO file3).

A program consists of a single absolute module, merging all absolute and
relocatable segments from all input modules.

Program Entry and Edit

After the design is completed, the source code for each module is entered into disk
file using a text editor. When errors are detected in the development process, the text
editor may be used to make corrections in the source code.

Assembly

The assembler (ASMS51) translates the source code into object code. The assembler
produces an object file (relocatable, when at least one input segment is relocatable,
or absolute), and a listing file showing the results of the assembly. (Figure 1-1 sum-
marizes the assembly and the link and relocate outputs.) When the ASM51 invoca-
tion contains the DEBUG control, the object file also receives the symbol table and
other debug information for use in symbolic debugging of the program.

Object File. The object file contains machine language instructions and data that
can be loaded into memory for execution or interpretation. In addition, it contains
control information governing the loading process.

The assembler can produce object files in relocatable object code format. However,
if the module contains only absolute segments and no external references, the object
file resulting from assembly is absolute. It can be loaded without the need of the
RL51 pass.

ABSOLUTE
OBJECT
FILE

RL51

LINK & .
LOCATE
SOURCE ASM51
PROGRAM . ASSEMBLER i
FILE PROGRAM
Figure 1-1. Assembler and Linker/Relocator Outputs 937-1

Introduction

1-3

Introduction

14

Listing File. The listing file provides a permanent record of both the source pro-
gram and the object code. The assembler also provides diagnostic messages in the
listing file for syntax and other coding errors. For example, if you specify a 16-bit
value for an instruction that can only use an 8-bit value, the assembler tells you that
the value exceeds the permissible range. Chapter 7 describes the format of the listing
file. In addition, you can also request a symbol table to be appended to the listing.
The symbol table lists all the symbols and their attributes.

Relocation and Linkage

After assembly of all modules of the program, RL51 processes the object module
files. The RL51 program assigns absolute memory locations to all the relocatable
segments, combining segments with the same name and type. RL51 also resolves all
references between modules. RL51 outputs an absolute object module file with the
completed program, and a summary listing file showing the results of the
link/relocate process.

Conversion to Hexadecimal Format

The absolute object code produced by RL51 can be programmed into memory and
executed by the target processor without further modification. However, certain
MCS-51 support products (such as SDK-51) require the hexadecimal object code
format. For use with these products, the absolute object file must be processed by
the OBJHEX code conversion program. Refer to the ISIS-1I System User’s Guide
(9800306).

Keeping Track of Files

It is convenient to use the extensions of filenames to indicate the stage in the process
represented by the contents of each file. Thus, source code files can use extensions
like .SRC or .AS51 (indicating that the code is for input to ASMS1). Object code files
receive the extension .OBJ by default, or the user can specify another extension.
Executable files generally have no extension. Listing files can use .LST, the default
extension given by the assembler. RLS51 uses .M51 for the default summary listing
file extension.

Use caution with the extension .TMP, as many ISIS-II utilities create temporary files
with this extension. These utilities will overwrite your file if it has the same name and
extension as the temporary files they create.

Writing, Assembling, and Debugging an MCS-51 Program

There are several steps necessary to incorporate an MCS-51 microcomputer in your
application. The flow chart in Figure 1-2 shows the steps involved in preparing the
code. If you are developing hardware for your application in addition to the soft-
ware, consult the MCS-51 User’s Manual.

Figure 1-3 shows an assembly listing of a sample program. The assembler was
invoked by:

-ASM51 :F1:DEMO.A51
ISIS-1l MCS-51 MACRO ASSEMBLER, V2.0

ASSEMBLY COMPLETE, NO ERRORS FOUND

MCS-51

s

MCS-51

Introduction

TEXT SOURCE sgsum uak?n/ “35.‘,’:8{‘ FA-cAthnv ROM
EDITO! MODULES ASSEMBLER WOBJECT (LINKER/ Onxect VERSION
(FOR ABSOLUTE PROGRAMS)
PROM
P"TPROGRAMMER VERSION
ICE-51
>4 IN-CIRCUIT
EMULATOR
LEGEND
INTEL DEVELOPMENT TOOLS
AND OTHER PRODUCTS
SDK-51
OBJHEX HEX
USER-CODED SYSTEM
O SOFTWARE | conversion MODULE DESIGN
Figure 1-2. MCS-51 Program Development Process 937-2
MCS=51 MACRD ASSZIMBLER 2051-3ASED MONITOR
ISIS-II MCS-51 MACRO ASSEMBLER v2.0
JBJECT MODULE PLACED IN :F1:DEMD.03J
ASSEMBLER INVOKED SY: ASMS1 :F1:D:-M0.4S51
LoC 084 LINE SOURCE
1 $STITLEZC(8051~BASED MONITOR)
2 ;The main module of an 8051-based monitor
3
&4 ;Symbol definitions
S PROG_S SEGMENT CODE sContains the exectutable program
6 TABLE_S SEGMENT CODE sContains tables and other constant data
0000 7 CR EQU 13 sCarriage-Return character (ASCII)
000a 8 LF EQu 10 sLine-Feed character (ASCII)
9 EXTRN CCOECCONSOL_OUT, MONITOR) s0efined elsewhere
10
1 sThe main program
—— 12 CSEG AT O 7sSkip interrupt vectors if any
0000 020000 F 13 JMpP START
14
-—— 15 RSEG PROG_S
16 START:
0000 900000 F 17 MOV DPTR,#SIGNON sPrint signon message
0003 120000 F 18 CALL CONSOL_OuT
0006 020000 F 19 JMp MONITOR ;Enter the monitoring loop
20
——— 21 RSEG TABLE_S
0000 1a 22 SIGNON: DB LEN,“8051-BASED MONITOR, V1.0°, CR, LF
0001 38303531
0005 20424153
0009 45442040
0000 &4F4EL954
0011 &4F522C20
0015 S56312E30
0019 0D
001a 0A
001a 23 LEN EQu $-SIGNON-1 ;Compute message length
24
25 END

Figure 1-3. Sample Program Listing

1-5

Introduction

MCS-51

MCS=51 MACRD ASSEMBLER 8051-BASED MONITOR

SYMBOL TABLE LISTING

N A ME

CONSOL_DUT
CR o« o &
LEN. . .
LF o . .
MONITOR.
PROG_S .
SIGNON .
START. .
TABLE_S.

TYPE VALUE ATTRIBUTES

C ADDR ——— EXT
NUMB oooon
NUMB 0014AH
NUMB 000AH A

> >

C ADDR ——— EXT

C SEG 0009+ REL=UNIT

C ADDR 0000H R SEG=TABLE_S
C ADDR 0000H R SEG=PROG_S
C SEG 0013H REL=UNIT

REGISTER BANK(S) USED: O, TARGET MACHINE(S): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 1-3. Sample Program Listing (Cont’d.)

Figure 1-3 shows the listing file of a simple module which is part of a larger program
not shown here. A larger example is provided in Appendix H.

The next step after the program is assembled by ASM51 is to combine all modules
into one program using RL51. RL51 produces a summary listing file consisting of a
memory map and a symbol table. (Refer to the MCS-51 Utilities User’s Guide,
121737))

The next step in debugging your code is to program it into an EPROM 8751 and test
it in a prototype environment. (Further testing could be done via ICE-51.) To pro-
gram your code into an 8751, you must have a UPP connected to your Intellec
system. For a complete description of how to use UPP and UPM, see Universal
PROM Programmer Reference Manual, order number 9800133 and Universal
PROM Programmer User’s Manual, order number 9800819.

Hardware Overview

The 8051 is a high-density microcomputer on a single chip. Its major features are:

® Resident 4K bytes of ROM or EPROM program memory (no program memory
resident on 8031), expandable to 64K bytes

® Resident 128 bytes of RAM memory, which includes four banks of 8
general-purpose registers and a stack for subroutine and interrupt routine calls

® 64K bytes of external RAM address space

® 16-bit Program Counter giving direct access to 64K bytes of memory

* 8-bit stack pointer that can be set to any address in on-chip RAM

* Two programmable 16-bit timers/counters

®* Programmable full duplex serial 170 ports

® Four 8-bit bidirectional parallel I/0 ports

¢ Timer and I/0 interrupts with two levels of priority

* 111 instructions with 51 basic functions (including memory to memory move)

* Boolean functions with 128 software flags, numerous hardware flags, and 12
bit-operand instructions

P

MCS-51 Introduction
® One microsecond instruction cycle time
e Arithmetic and logic unit that includes add, subtract, multiply, and divide
arithmetic functions, as well as and, or, exclusive or, and complement logic
functions.
Figure 1-4 is a block diagram of the 8051 processor. It shows the data paths and
principal functional units accessible to the programmer.
D P
4L tlo
128x8
RAM ¢ o ::H Y
[Ccl2
L H
olf
e L TO PO LATCH
TIT
1]c
| l
| IR
|
= B PLA
|
| l l
| CONTROL
|
|
: ALY
|
| L1 A,
I ov FO c AC
L____‘__J‘___-———l——r:sw I
y r] i
PAB POLATCH SCON TCON IE P3LATCH
! PORT 0 SBUF (REC) TMOD » PORT 3
SBUF (XMIT) TLo INTERRUPT | |
SERIAL Tho CONTROL
PORT ™
TH1
TIMER
CONTROL
Figure 1-4. 8051 Block Diagram 937-3

Introduction

1-8

Memory Addresses

The 8051 has five address spaces:

¢ Code address space—64K, of which 4K are on-chip (except for the 8031 which
has no on-chip ROM).

* Directly addressable internal data address space—128 bytes of RAM (0 - 127)
and 128-byte hardware register address space (128 - 255, only 20 addresses are
used); accessible by direct addressing.

® Indirectly addressable internal data address space—128 bytes (0 - 127), all of
which is accessible by indirect addressing.

e External data address space—up to 64K of off-chip memory added by the user.

* Bit address space—shares locations accessible in the data address space;
accessible by direct addressing.

The code address space, internal data address space (including both the directly and
indirectly addressable space and the bit address space), and external data space cor-
respond to three physically distinct memories, and are addressed by different
machine instructions. This is an important distinction that is a key to understanding
how to program the 8051.

When you specify in an operand to an instruction a symbol with the wrong attribute,
ASM-51 generates an error message to warn you of the inconsistency. Chapters 2
and 3 show what segment type attribute is expected in each instruction, and Chapter
4 describes how to define a symbol with any of the segment type attributes.

Figure 1-5 shows the code address space (usually ROM), and the external data
address space (usually RAM). Off-chip ROM and RAM can be tailored to use all or
part of the address space to better reflect the needs of your application. You can
access data in ROM and off-chip RAM with the MOVC and MOVX instructions
respectively.

65,535 65,535
OFF-CHIP OFF-CHIP
ROM RAM
4095
ON-CHIP
ROM
0 0
CODE EXTERNAL DATA
ADDRESS ADDRESS SPACE
SPACE

Figure 1-5. MCS-51 Code Address Space and
External Data Address Space 9374

MCS-51

MCS-51

To the programmer, there is no distinction between on-chip and off-chip code. The
16-bit program counter freely addresses on- and off-chip code memory with no
change in instruction fetch time.

Figure 1-6 shows the data address space containing the bit address space. The data
address space contains four banks of general-purpose registers in the low 32 bytes (0
- 1FH). In addition to the 128 bytes of RAM, the 8051’s hardware registers are map-
ped to data addresses. The addresses from 128 to 255 are reserved for these registers,
but not all of those addresses have hardware registers mapped to them. These
reserved addresses are unusable.

When programming the 8051 and using indirect addressing, the user can access
on-chio RAM from 0 to 127.

DIRECT INDIRECT
ADDRESSING ADDRESSING
T 255
!
1
NOT
HARDWARE 1
REGISTER | AVAILABLE
MAPPING . 8051
1
]
(127
ON-CHIP RAM
:
ON.CHIP < RAM B;;:ggness
RAM
31
4 REGISTER BANKS
8- STACK DEFAULT
- 0

Figure 1-6. MCS-51 Data Address Space and
Bit Address Space 9375

Data Units

The 8051 manipulates data in four basic units—bits, nibbles (4 bits), bytes, and
words (16 bits).

The most common data unit used is a byte; all of the internal data paths are 8 bits
wide, and the code memory, the data memory, and the external data memory store
and return data in byte units. However, there are many instructions that test and
manipulate single bits. Bits can be set, cleared, complemented, logically combined
with the carry flag, and tested for jumps. The nibble (BCD packed digit) is less
commonly used in the 8051. but BCD -arithmetic can be performed without con-
version to binary representation.

Introduction

1-9

Introduction

1-10

BIT

4-BIT NIBBLE
3 0
8-BITBYTE
7 0

16-BIT WORDS
! |
15 87]

Figure 1-7. MCS-51 Data Units 937-6

Instructions that use 16-bit addresses deal with the Data Pointer (DPTR, a 16-bit
register) and the Program Counter (jumps and subroutine calls). However, with the
add with carry (ADDC) and subtract with borrow (SUBB) instructions, software
implementation of 16-bit arithmetic is relatively easy.

Arithmetic and Logic Functions

The arithmetic functions include:

[)

ADD—signed 2’s complement addition
ADDC—signed 2’s complement addition with carry
SUBB-—signed 2’s complement subtraction with borrow
DA—adjust 2 packed BCD digits after addition
MUL—unsigned integer multiplication

DIV—unsigned integer division

INC—signed 2’s complement increment

DEC—signed 2’s complement decrement

The accumulator receives the resuit of ADD, ADDC, SUBB, and DA functions. The
accumulator receives partial result from MUL and DIV. DEC and INC can be
applied to all byte operands, including the accumulator.

The logical functions include:

ANL—logical and on each bit between 2 bytes or 2 bits
CPL—Ilogical complement of each bit within a byte or a single bit
ORL—logical or on each bit between 2 bytes or 2 bits
XRL—logical exclusive or on each bit between 2 bytes

MCS-51

S

MCS-51

Introduction

The accumulator usually receives the result of the byte functions, and the carry flag
usually receives the result of the bit functions, but some instructions place the result
in a specified byte or bit in the data address space.

The instructions shown above are described in Chapter 3.

General-Purpose Registers

The 8051 has four banks of eight 1-byte general-purpose registers. They are located
in the first 32 bytes of on-chip RAM (00H - 1FH). You can access the registers of the
currently active bank through their special assembler symbols (RO, R1, R2, R3, R4,
RS, R6, and R7). To change the active bank you modify the register bank select bits
(RSO and RS1) contained in the program status word (PSW, described in table 1-3).
Table 1-1 below shows the bank selected for all values of RS0 and RS1.

Table 1-1. Register Bank Selection

RS1 RSO Bank Memory Locations
0 0 0 00H—07H
0 1 1 08H—OFH
1 0 2 10H—17H
1 1 3 18H—1FH

Registers RO and R1 can be used for indirect addressing within the on-chip RAM.
Each register is capable of addressing 256 bytes but the indirect addressing is limited
by the physical range of the internal RAM. RO and R1 also can address the external
data space.

The Stack

The stack is located in on-chip RAM. It is a last-in-first-out storage mechanism used
to hold the Program Counter during interrupts and subroutine calls. You can also
use it to store and return data, especially the PSW, with the POP and PUSH instruc-
tions. The Stack Pointer contains the address of the top of the stack.

The Stack Pointer (SP) is an 8-bit register that may contain any address in on-chip
RAM memory. However, on the 8051 it should never exceed 127. If it does, all data
pushed is lost. A pop, when the SP is greater than 127, returns invalid data.

The SP always contains the address of the last byte pushed on the stack. On power-
up (Reset) it is set to 07H, so the first byte pushed on the stack after reset will be at
location 08H. This location is compatible with the 8048’s stack. Most programs
developed for the 8051 will reset the bottom of the stack by changing the contents of
the SP before using the stack, because 08H-1FH is the area reserved for several of
the 8051’s general-purpose-register banks. The following instruction causes the next
byte pushed on the stack to be placed at location 100.

MOV SP,#99 ; Initialize stack to start at location 100
; The hardware increments the SP
; BEFORE a push

Introduction

1-12

Symbolically Addressable Hardware Registers

Each programmable register is accessible through a numeric data address, but the
assembler supplies a predefined symbol that should be used instead of the register’s
numeric address. Table 1-2 identifies each hardware register, its numeric address,
and its predefined symbol. :

Table 1-2. Symbolically Addressable Hardware Registers for the 8051

Predefined Data .
Symbol Address Meaning
ACC EOH ACCUMULATOR (Data address of A)
B FOH MULTIPLICATION REGISTER
DPH 83H DATA POINTER (high byte)
DPL 82H DATA POINTER (low byte)
IE A8H INTERRUPT ENABLE
P B8H INTERRUPT PRIORITY
PO 80H PORT 0
P1 90H PORT 1
P2 AOH PORT 2
P3 BOH PORT 3
PSW DOH PROGRAM STATUS WORD
SBUF 99H SERIAL PORT BUFFER
SCON 98H SERIAL PORT CONTROLLER
SP 81H STACK POINTER
TCON 88H TIMER CONTROL
THO 8CH TIMER 0 (high byte)
TH1 8DH TIMER 1 (high byte)
TLO 8AH TIMERO0 (low byte)
T 8BH TIMER 1 (low byte)
TMOD 89H TIMER MODE

The predefined symbols given in table 1-2 stand for the on-chip data addresses of the
hardware registers. In many cases the only access to these registers is through these
data addresses. However, some of the registers have an identity both as a special
assembler symbol and as a data address symbol (e.g., both ““ACC”’ and ‘“A”’ stan
for the accumulator), but even though these symbols may be semantically the same,
they are syntactically different. For example,

ADD A, #27
is a valid instruction to add 27 to the contents of the accumulator, but

ADD ACC,#27

is invalid and will cause an error, because there is no form of ADD taking a data
address as the destination (ACC specifies a data address). The differences become
even more subtle in some assembly instructions where both symbols are valid but
assemble into different machine instructions:

MOV A #27 ; assembles into a 2 byte instruction
MOV ACC,#27 , assembles into a 3 byte instruction

MCS-51

MCS-51

Chapter 2 describes the syntax for all instruction operands, and Chapter 3 describes
the operands expected in each instruction.

Because the hardware registers are mapped to data addresses, there is no need for
special 1/0 or control instructions. For example,

MOV A,P2

moves a copy of the input data at Port 2 to the accumulator. To output a character
on the Serial 1/0 port (after preparing SCON), simply move the character into the
Serial port buffer (SBUF):

MOV SBUF #'?’

Bit Addressing

Many of the hardware control registers are also bit addressable. The flags contained
in them can be accessed with a bit address as well as through the byte address shown
above. One way to do this is through the bit selector (‘*.”’). For example, to access
the 0 bit in the accumulator, you might specify ACC.0.

Bit addressing allows the same simplicity in testing and modifying control and status
flags as was shown above with addressable registers. For example, to start Timer 0
running, set the run flag to 1 via its bit address (SETB TCON.4).

Throughout the remainder of this chapter, several programmable. features, includ-
ing predefined bit addresses of status and control flags, are discussed. To use these
features, you simply modify the corresponding address as if it were a RAM location.

The Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the state of
the 8051. Figure 1-8 shows the predefined bit address symbol, the bit position, and
meaning of each bit in the PSW.

e]
Lpso

ICYIAC I Fo IleRsolovJ
I y

PSW.7 W.
CARRY FLAG RECEIVES CARRY OUT PARITY OF ACCUMULATOR SET
FROM BIT 7 OF ALU OPERANDS BY HARDWARE TO 1 IF IT CONTAINS

AN ODD NUMBER OF 1's; OTHERWISE
ITISRESETTOO

PSW.1

PSW.6

AUXILIARY CARRY FLAG RECEIVES
CARRY OUT FROM BIT 3 OF
ADDITION OPERANDS

PSW.5
GENERAL PURPOSE STATUS FLAG

PSW.4
REGISTER BANK SELECTBIT 1

Figure 1-8. Bit Descriptions of Program Status Word

USER DEFINABLE FLAG

PSW.2
OVERFLOW FLAG SET BY
ARITHMETIC OPERATIONS

PSW.3
REGISTER BANK SELECTBITO

937-7

Introduction

Introduction

Timer and Counter

The 8051 has two independently programmable timers. They feature a 16-bit
counter and are controlled by 2 registers, timer mode (TMOD) and timer control
(TCON). Figure 1-9 shows the predefined bit address symbols, the positions and
meanings of the bits in TCON. (For a complete description of the timer see the
MCS-51 User’s Manual.)

[151 ITR1J RO [TROl €1 | im1 | ieo | o |
11 b

TCON.7 TCON.O
TIMER 1 OVERFLOW FLAG INTERRUPT 0 TYPE CONTROL BIT

TCON.6 oo e TCON.1
TIMER 1 RUN CONTROL BIT INTERRUPT 0 EDGE FLAG
TCONS oo _____J TCON.2
TIMER 0 OVERFLOW FLAG INTERRUPT 1 TYPE CONTROL BIT
TCON.4 TCON.3
TIMER 0 RUN CONTROL BIT INTERRUPT 1 EDGE FLAG
Figure 1-9. Bit Descriptions of TCON 937-8

1/0 Ports

The 8051 has 4 8-bit I/0 ports; each bit in the ports corresponds to a specific pin on
the chip. All four ports are buffered by a port latch, and they are addressable
through a data address (as a byte) or 8 bit addresses (as a set of bits). As noted
earlier, this removes the need for special I/0 instructions. The numeric data address
and the predefined symbol for each port is shown below:

Port Predefined Data
Symbol Address
0 PO 80H
1 P1 90H
2 P2 AOH
3 P3 BOH

Port 0 and Port 2 are used for external program and external data addressing. Port 0
also receives the input data from off-chip addressing. If off-chip memory is not
implemented, then ports 0 and 2 are bidirectional 1/0 ports. Port 1 is a general pur-
pose bidirectional I/0 port.

Port 3 contains the external interrupt pins, the external timer, the external data
memory read and write enables, and the serial 170 port transmit and receive pins.
The bits that correspond to these pins are individually addressable via predefined bit
address symbols. Figure 1-10 shows the meaning of each bit, its position in Port 3,
and its predefined bit address symbol.

If the external interrupts, external data addressing, and serial 1/0O features of the
8051 are not used, Port 3 can function as a bidirectional 1/0 port.

MCS-51

MCS-51

Introduction

[rofwrfi] o [mnjmroltxolnxﬂ
- _f A 4 A L

P3. P3.0
READ DATA FOR EXTERNAL MEMORY SERIAL PORT RECEIVE PIN
P3.6 —m - P3.1
WRITE DATA FOR EXTERNAL MEMORY SERIAL PORT TRANSMIT PIN
P3.5 —P3.2
TIMER/COUNTER 1 EXTERNAL FLAG INTERRUPT 0 INPUT PIN
P3.4 P3.3
TIMER/COUNTER 0 EXTERNAL FLAG INTERRUPT 1 INPUT PIN
Figure 1-10. Bit Descriptions for Port 3 937-9

Serial 1/0 Port

The serial 170 port permits 1/0 expansion using UART protocols. The serial 1/0
port is controlled by Serial Port Controller (SCON), a register that is both bit
addressable and byte addressable. Figure 1-11 shows the predefined bit address
symbols, positions and meanings of the bits in SCON. For complete details of Serial
170 port control see the MCS-51 User’s Manual.

[smo]sm1|smz]ren| tes [res [1 [wi]

‘ bt b
SCON.7 —J 1 1 SCON.0
SERIAL MODE CONTROL BIT O RECEIVE INTERRUPT FLAG
ON.6 ——— SCON.1

SCON.
SERIAL MODE CONTROL BIT 1 TRANSMIT INTERRUPT FLAG
SCON.5 ———————— ——— SCON.2
SERIAL MODE CONTROL BIT 2 RECEIVEBITS
SCON.4 SCON.3
RECEIVER ENABLE TRANSMITBITS
Figure 1-11. Bit Descriptions for Serial Port Control 937-10

Interrupt Control

There are two registers that control timer and 1/0 interrupts and priorities. They are
IE (Interrupt Enable) and IP (Interrupt Priority). When the interrupt enable bit for
a device is 1, it can interrupt the processor. The 8051 does not respond to an
interrupt until the instruction being executed has been completed (this can be as long
as 4 cycles).

When it does respond, the 8051°s hardware disables interrupts of the same or lesser
priority and makes a subroutine call to the code location designated for the inter-
rupting device. Typically, that location contains a jump to a longer service routine.

Introduction

1-16

MCS-51

The instruction RETI must be used to return from a service routine, in order to
re-enable interrupts. The reserved locations, the predefined labels, and the
associated interrupt devices are listed below. These labels may be used to aid the
placement of 1/0 routines in code memory.

Predefined
Label Location Interrupting Device
RESET 00H Power on Reset (First instruction executed on power up.)
EXTIO 03H External interrupt 0
TIMERO 0BH Timer 0
EXTH 13H External interrupt 1
TIMER1 1BH Timer 1
SINT 23H Serial 1/0 port

The 8051 has two levels of interrupt priority (0 and 1). Figure 1-12 shows the
predefined bit address symbol, the position and the device associated with each bit
contained in IE and IP. A level 1 priority device can interrupt a level 0 service
routine, but a level 0 interrupt will not affect a level 1 service routine. Interrupts on
the same level are disabled.

I | 1]rs]emi]exifero]exo]

y rr
1.7 iP.0
RESERVED PRIORITY OF EXTERNAL INTERRUPT 0
1P.6 o L P
RESERVED PRIORITY OF TIMER 0 INTERRUPT
w5 ————d e P2
RESERVED PRIORITY OF EXTERNAL INTERRUPT 1
P.4 P.3
PRIORITY OF SERIAL PORT INTERRUPT PRIORITY OF TIMER 1 INTERRUPT

Interrupt Priority

IEA[l st lETlIEX1lETO]EXO|
3 A 1 A A

1E.7 —f IE.0
ENABLE ALL INTERRUPTS ENABLE EXTERNAL INTERRUPT 0
1E.6 ————d e |E.1
RESERVED ENABLE TIMER O INTERRUPT
IE.5 ————e] e Sl | 34
RESERVED ENABLE EXTERNAL INTERRUPT 1
IE.4 IE.3
ENABLE SERIAL PORT INTERRUPT ENABLE TIMER 1 INTERRUPT
Interrupt Enable
937-11

Figure 1-12. Bit Descriptions for Interrupt Enable and Interrupt Priority

MCS-51

Introduction

Reset

On reset all of the registers in the 8051 assume an initial value. Table 1-3 shows these
initial values. This will always be the state of the chip when your code begins
execution. You can use these initial values or reinitialize them as necessary in your
program.

Table 1-3. State of the 8051 after Power-up

Register Value
Accumulator 00H
Multiplication Register 00H
Data Pointer 0000H
Interrupt Enable 00H
Interrupt Priority 00H
Port0 OFFH
Port 1 OFFH
Port 2 OFFH
Port 3 OFFH
Program Counter 0000H
Program Status Word 00H
Serial Port Control 00H
Serial I/O Buffer undefined
Stack Pointer 07H
Timer Control 00H
Timer Mode 00H
Timer 0 Counter 0000H
Timer 1 Counter 0000H

NOTE

The PC is always set to 0 on reset, thus the first instruction executed in a
program is at ROM location 0. The contents of RAM memory is unpre-
dictable at reset.

CHAPTER 2
OPERANDS AND EXPRESSIONS

This chapter discusses the operand types used by ASM51. It describes their use and
some of the ways you can specify them in your program. The latter part of the
chapter deals with expressing numbers and using expressions.

There are two terms used throughout this chapter that require some definition:
Assembly-time expressions and RL-time expressions. Assembly-time expressions are
those expressions evaluated at assembly; they are absolute expressions. RL-time
expressions are those evaluated at the time of relocation; they are relocatable expres-
sions that are made absolute by RLS1.

Operands
The general form of all instruction lines is as follows:
[label:] Mnemonic [operand] [,operand] [,operand] [;comment]

The number of operands and the type of operands expected depend entirely on the
mnemonic. Operands serve to further define the operation implied by a mnemonic,
and they identify the parts of the machine affected by the instruction.

All operands fall into one of six classes:
¢ Special Assembler Symbols

¢ Indirect Addresses

¢ Immediate Data

e Data Addresses (on-chip)

® Bit Addresses

e Code Addresses

A special assembler symbol is a specific reserved word required as the operand in an
instruction.

Indirect addresses use the contents of a register to specify a data address.

The remaining operand types (immediate data, data addresses, bit addresses, and
code addresses) are numeric expressions. They may be specified symbolically, but
they must evaluate to a number. If the expression can be evaluated completely at
assembly time, it is called an absolute expression; if not, it is called a relocatable
expression. The range permitted for a numeric operand depends on the instruction
with which it is used. The operand can be made up of predefined or user-defined
symbols, numbers, and assembly-time operators.

As described in Chapter 1, there are five address spaces on the 8051. The
corresponding segment type is given in parentheses.

¢ Directly addressable data address space (DATA)
¢ Bit address space (BIT)

¢ External data address space (XDATA)

e Code address space (CODE)

e Indirectly addressable data space (IDATA)

Operands and Expressions

2-2

In some cases the same numeric value is a valid address for all five address spaces.
To help avoid logic errors in your program, ASM51 attaches a segment type and per-
forms type checking for instruction operands (and arguments to assembler direc-
tives), that address these segments. For example, in jump instructions the assembler
checks that the operand, the target address, has a segment type CODE. Possible seg-
ment types are DATA, BIT, CODE, XDATA, and IDATA. Chapter 4 describes
how to define symbols with different segment types.

Special Assembler Symbols

The assembler reserves several symbols to designate specific registers as operands. A
special assembler symbol is encoded in the opcode byte, as opposed to a data address
which is encoded in an operand byte. Table 2-1 lists these symbols and describes the
hardware register each represents.

If the definition of an instruction requires one of these symbols, only that special
symbol can be used. However, you can, with the SET and EQU directives, define
other symbols to stand for the accumulator (A) or the working registers (RO,...R7).
Symbols so defined may not be forward referenced in an instruction operand. You
cannot use a special assembler symbol for any other purpose in an instruction
operand or directive argument. Several examples of instructions that use these sym-
bols are shown below.

INCDPTR ;increment the entire 16-bit contents of the Data Pointer by 1
SETBC ;set the Carry flagto 1

JMP @A +DPTR ;add the contents of the accumulator to the contents of the data
;pointer and jump to that address

In addition to these symbols, the assembler also recognizes the location counter sym-
bol ($), described in Chapter 4, and the register address symbols ARO, ARI, ...,
AR7, described with the USING directive in Chapter 4.

Table 2-1. Special Assembler Symbols

Special Symbol Meaning

A Accumulator

RO, R1, R2, R3, Stands for the 8 general registers in the currently active bank (4

R4, RS, R6, R7 register banks available)

DPTR Data pointer: a 16-bit register used for addressing in the code
address space and the external address space

PC Program counter: a 16-bit register that contains the address of the
next instruction to be executed

C Carry flag receives ALU carry out and borrow from bit 7 of the
operands

AB Accumulator/B register pair used in MUL and DIV instructions

MCs-51

MCS-51

Operands and Expressions

Indirect Addressing

An indirect address operand identifies a register that contains the address of a
memory location to be used in the operation. The actual location affected will
depend on the contents of the register when the instruction is executed. In most
instructions indirect addresses affect on-chip RAM. However, the MOVC and
MOVX instructions use an indirect address operand to address code memory and
external data memory, respectively.

In on-chip indirect addressing (the IDATA space), either register 0 or register 1 of
the active register bank can be specified as an indirect address operand. The com-
mercial at sign (@) followed by the register’s special symbol (RO or R1), or a symbol
defined to stand for the register’s special symbol, indicates indirect addressing. On
the 8051 the address contained in the specified indirect address registers must be
between 0 and 127 (since you cannot access hardware registers through indirect
addressing.) If an indirect address register contains a value greater than 127 when it
is used for on-chip addressing, the program continues with no indication of the
error. If it is a source operand, a byte containing undefined data is returned. If it is a
destination operand, the data is lost.

The following examples show several uses of indirect addressing.

ADD A,@Rt ;add the contents of the on-chip RAM location addressed by
;register 1 to the accumulator

INC @R0O ;increment the contents of the on-chip RAM location addressed
;by register 0

MOVX @DPTR,A - ;move the contents of the accumulator to the off-chip memory
;location addressed by the data pointer

Immediate Data

An immediate data operand is a numeric expression that, when assembled, is
encoded as part of the machine instruction. The pound sign (#) immediately before
the expression indicates that it is an immediate data operand. The numeric expres-
sion must be a valid assembly-time expression or RL-time expression.

The assembler represents all numeric expressions in 16 bits, and converts to the
appropriate form for instruction encoding.

Most instructions require the value of the immediate data to fit into a byte. The low
order byte of the assembler’s 16-bit internal representation is used. The assembler
permits a numeric expression range of values from -256 to +255. These values all
have a homogeneous high order byte (i.e., all ones or all zeroes) when represented in
16 bits. The low order byte of the assembler’s 16-bit internal representation is used.
Note that since only the lower order byte is taken as the result of the expression, the
sign information, i.e., the higher order byte, is lost.

The immediate data operands that accept a 16-bit value can use any value represent-
able by the assembler. Immediate data operands do not require any specific segment
type. XDATA and IDATA type operands can be specified only as immediate
operands; i.e., you have to load these addresses first into a register and then access
them.

2-3

Operands and Expressions

The following examples show several ways of specifying the immediate data
operand.

MOV A #0E0H ;place the hex constant E0 in the accumulator

MOV DPTR #0A14FH ;this is the only instruction that uses a 16-bit immediate data
;operand '

ANL A #128 ;mask out all but the high order bit of the accumulator

;(128-base 10) = 10000000 (base 2)

MOV RO,#IDATA__SYM ;Load RO with IDATA symbol for later access

Data Addressing

The data address operand is a numeric expression that evaluates to one of the first
128 on-chip byte addresses or one of the hardware register addresses. The low-order
byte of the assembler’s 16-bit internal representation is used. This permits a range
from —256 to +255. Note that since only the lower order byte is taken as the result of
the expression, the sign information (i.e., the higher order byte) is lost. Instructions
that use the data address operand require that the symbol or expression specified be
either of segment type DATA or be a typeless number. (Symbols are discussed below
under expression evaluation.)

The direct data addresses from 0 to 127 access the 8051’s on-chip RAM space, while
the addresses from 128 to 255 access the hardware registers. Not all of the addresses
in the hardware register space are defined. The illustration below (figure 2-1) shows

the meaningful addresses and their predefined data address names.

If you read from a reserved address, undefined data will be returned. If you write to
a reserved address, the data will be lost. Using these pecularities in your program
may result in incompatibility with future versions of the chip. Note that using
indirect addressing for locations above 127 will access IDATA space rather than
hardware register space.

O
ADDRESS

LOW ORDER DIGIT OF ADDRESS

Figure 2-1. Hardware Register Address Area for 8051 937-12

MCS-51

MCS-51

Operands and Expressions

The following examples show several ways of specifying data addresses.

MOV P1,A ;move the contents of the accumulator to the predefined data address 90
;(base 16) port 1
ORL A,20*5 ;logical OR of accumulator with location 100 (base 10) uses an

,assembly-time operator multiply

INC COUNT ;increment the location identified by the symbol COUNT
INC 32 ;increment location 32(base 10) in memory
Bit Addressing

A bit address represents a bit-addressable location either in the internal RAM (bytes
32 through 47) or a hardware bit. There are two ways to represent a bit address in an
operand.

1. You can specify the byte that contains the bit with a DATA type address, and
single out the particular bit in that byte with the bit selector (‘‘.”’ period)
followed by a bit identifier (0-7). For example, FLAGS.3, 40.5, 21H.0 and
ACC.7 are valid uses of the bit selector. You can use an assembly-time expres-
sion to express the byte address or the bit identifier. The assembler will translate
this to the correct absolute or relocatable value. Note that only certain bytes in
the on-chip address space are bit addressable. If the data address is specified by
a relocatable expression, the referenced segment must have
BITADDRESSABLE relocation type (see Chapter 6 for segments). The expres-
sion that specifies the bit address must be absolute.

2. You specify the bit address explicitly. The expression now represents the bit
address in the bit space (it must have a BIT segment type). Note that bit
addresses 0 through 127 map onto bytes 32 through 47 of the on-chip RAM, and
bits 128 through 255 map onto the bit addressable locations of the hardware
register space (not all the locations are defined).

If the bit address is used in the context of BIT directive, then the first expression

must be an absolute or simple relocatable expression. If used in a machine instruc-

tion where a bit address is expected, then a general relocatable expression is also

allowed. i

Figures 2-2a and 2-2b show the bits assigned to each numeric bit address.

The following éxamples show several ways of specifying bits.

SETB TR1 ;set the predefined bit address TR1 (timer 1 run flag)
SETB ALARM ;setthe userdefined bit ALARM

SETB 88H.6 ;Set bit 6 of location 88H (timer 1 run flag)
CPLFLAGS.ON ;complement the bit ON of the byte FLAGS
SETB8EH ;set the bit address 8E(base 16) (timer 1 run flag)

As with data addresses, there are several bit addresses that are predefined as symbols

that you can use in an operand. Table 2-2 shows these predefined bit addresses. You

can also define your own bit address symbols with the BIT directive described in
Chapter 4, Assembler Directives.

2-5

Operands and Expressions MCS-51

BITPOSITIONf7 6 5 4 3 2 1 0 53>
7F|7e{ 7D|7C]78]7A] 79] 78 (3
77| 76|75 | 78| 73| 72[71| 70 o2
6F|6E| 6D|6C|6B|6A] 69| €8] 7%
67|66} 65 |64} 63| 62 61| 60 5
sF|se|sp|5c|sBsa] 5958 o RAM
57| 56 55 [54 53] 52 51 50 5> f A DRESS
aF|aE|aDjac|aB{aA]a9]as 5> SPACE
a7 4a6]45 [44]a3[4a2][41{40 5y
3F|3E| aD|3C|3B| 3A| 39 38 £
37|36|35 34| 33[32|31{30 >
2F|2E{2D|2C|2B|2A] 29] 28 e
27| 26|25 |24} 23} 22| 21|20)
1F[1e[1D]1C|1B[1A] 19]18 2
17}16}15 [14}13[12]11]10 2 J
oF|oe|opjoc|os|oa]0sfos 5
07| 06|05 |0a}03|02{01{oo0
NOT
BITADDRESSABLE
BIT w°
ADDRESS
Figure 2-2a. Bit Addressable Bytes in RAM 937-13
RESERVED
7654321 76 543210
8 FOH [F7|F6 [F5|F4|F3|F2|Fi|FO| N\ |FF{FE[FD|FC|FB]|FA| F9|F8] FaH
acc eoH [e7|es[es[eaEalE2[E1[E0] "\ £F |Ee{EDjECiEB{EA|E9]ER] EBH

PSW DOH |D7|D6{D5|D4/D3|D2[D1|DO|

Y
con [crjcsics{ealcaiczjerice]
{
AN

N\ [o¢|oejoopc]os]oalpsios] e
/ [crice|colccicsicalcs|ca] cen
vd 8F8EiBo|BC|BB[BA|B9[BS] BBH 1P
AN

aF|ae|ap|ac|as/aalas|as] asH 1E

P3 BOH |B7|B6{B5|B4|B3|B2(B1|B0
P2 AOH JA7|A6 [AS| A4|A3[A2{A1|AD
P1 90H]97}96}95| 941939291} 90 \ \ 9F|9E|9D{9C|9B|9A|99|98] 98H SCON
PO 80H |87|86{85/8483|82(81|80 \ \ 8F|8E|8D[8C|8B[8A|89}88] 88H TCON

Figure 2-2b. Bit Addressable Bytes in Hardware
Register Address Area for 8051 937-14

2-6

MCS-51

Operands and Expressions

Table 2-2. Predefined Bit Addresses for 8051

Bit Bit .

Symbol Position Address Meaning

CcY PSW.7 D7H Carry Fiag

AC PSW.6 D6H Auxiliary Carry Flag

FO PSW.5 D5H Flag 0

RS1 PSW.4 D4H Register Bank Select Bit 1

RS0 PSW.3 D3H Register Bank Select Bit 0

ov PSW.2 D2H Overflow Flag

P PSW.0 DOH Parity Flag

TH TCON.7 8FH Timer 1 Overflow Flag

TR1 TCON.6 8EH Timer 1 Run Control Bit

TFO TCON.5 8DH Timer 0 Overflow Flag

TRO TCON.4 8CH Timer 0 Run Control Bit

IE1 TCON.3 8BH Interrupt 1 Edge Flag

IT1 TCON.2 8AH Interrupt 1 Type Control Bit

IEO TCON.1 89H Interrupt 0 Edge Flag

ITO TCON.0 88H Interrupt 0 Type Control Bit

SMO SCON.7 9FH Serial Mode Control Bit 0

SM1 SCON.6 9EH Serial Mode Control Bit 1

SM2 SCON.5 9DH Serial Mode Control Bit 2

REN SCON 4 9CH Receiver Enable

TB8 SCON.3 9BH Transmit Bit 8

RB8 SCON.2 9AH Receive Bit 8

TI SCON.1 99H Transmit Interrupt Flag

RI §CON.0 98H Receive Interrupt Flag

EA IE.7 AFH Enable All Interrupts

ES IE.4 ACH Enable Serial Port Interrupt

ETH IE.3 ABH Enable Timer 1 Interrupt

EX1 IE.2 AAH Enable External Interrupt1

ETO IE.1 A9H Enable Timer 0 Interrupt

EX0 IE.O A8H Enable External Interrupt 0

RD . P3.7 B7H Read Data for External Memory

WR P3.6 B6H Write Data for External Memory

T1 P3.5 B5H Timer/Counter 1 External Flag

T0 P3.4 B4H Timer/Counter 0 External Flag

INT1 P3.3 B3H Interrupt 1 Input Pin

INTO P3.2 B2H Interrupt 0 Input Pin

TXD P3.1 B1H Serial Port Transmit Pin

RXD P3.0 BOH Serial Port Receive Pin

PS IP.4 BCH Priority of Serial Port Interrupt

PT1 IP.3 BBH Priority of Timer 1 Interrupt

PX1 IP.2 BAH Priority of External Interrupt 1

PTO P B9H Priority of Timer 0

PX0 IP.0 B8H Priority of External Interrupt0
Code Addressing

Code addresses are either absolute expressions whose values are within 0 to 65,535,
or relocatable expressions with a segmet type of CODE. There are three types of
instructions that require a code address in their operands. They are relative jumps,

in-block (2K page) jumps or calls, and long jumps or calls.

2-7

Operands and Expressions

2-8

The difference between each type is the range of values that the code address
operand may assume. All three expect an expression which evaluates to a CODE
type address (an absolute expression between 0 and 65,535 or a relocatable
operand), but if you specify a relative jump or an in-block jump, only a small subset
of all possible code addresses is valid. Instructions that use the code address operand
require that the symbol or expression specified be either of segment type CODE or a
typeless number. (Symbols and labels are discussed below under absolute expression
evaluation.)

Relative Jumps (SJMP and Conditional Jumps)

The code address in a relative jump must be close to the relative jump instruction
itself. The range is from -128 to +127 bytes from the first byte of the instruction that
follows the relative jump.

The assembler takes the specified code address and computes a relative offset that is
encoded as an 8-bit 2’s complement number. That offset is added to the contents of
the program counter (PC) when the jump is made; but since the PC is always incre-
mented to the next instruction before the jump is executed, the range is computed
from the succeeding instruction.

When you use a relative jump in your code, you must use an expression that
evaluates to the code address of the jump destination. The assembler does all the
offset computations. If the address is out of range, the assembler will issue an error
message.

In-Block Jumps and Calls (AJMP and ACALL)

The code address operand to an in-block jump or call is an expression that is

s¢valuated and then encoded in the instruction. The low order 11 bits of the destina-

tion address are placed in the opcode byte and the operand byte. When the jump or
call is executed, the 11-bit page address replaces the low order 11 bits of the program
counter. This permits a range of 2048 bytes, or anywhere within the current block.
The current block is thus determined by the high order 5 bits of the address of the
next instruction. If the operand is not in the current block, this is an assembler {or
RL51) error.

Note that if the in-block jump or call is the last instruction in a block, the high order
bits of the program counter change when incremented to address the next instruc-
tion; thus the jump will be made within that new block.

Long Jumps and Calls (LJMP and LCALL)

The code address operand to a long jump or call is an expression that will be
evaluated and then encoded as a 16-bit value in the instruction by the assembler, or,
if the expression is relocatable, by RL51. All 16 bits of the program counter are
replaced by this new value when the jump or call is executed. Since 16 bits are used,
any value representable by the assembler will be acceptable (0 - 65,535).

The following examples show each type of instruction that calls for a code address.

SJMP LABEL ;Jump to LABEL (relative offset LABEL must be within =128 and +127
;of instruction that follows SUMP

ACALL SORT ;Call subroutine labelled SORT (SORT must be an address within the
;eurrent 2K page)

LJMP EXIT ;Long jump; the label or symbol EXIT must be defined somewhere in
;the program.

MCS-51

P

MCS-51

Operands and Expressions

Generic Jump and Call (JMP and CALL)

The assembler provides two instruction mnemonics that do not represent a specific
opcode. They are JMP and CALL. JMP may assemble to ACALL or LCALL.
These generic mnemonics will always evaluate to an instruction, not necessarily the
shortest, that will reach the specified code address operand.

This is an effective tool to use during program development, since sections of code
change drastically in size with each development cycle. (See Chapter 3 for a complete
description of both generic jumps.) Note that the assembler decision may not be
optimal. For example, if the code address is a forward reference, the assembler will
generate a long jump although an in-block or short jump may be possible.

Assembly-Time Expression Evaluation

An expression is a combination of numbers, character strings, symbols, and
operators that evaluate to a single 16-digit binary number. Except for some direc-
tives, all expressions can use forward references (symbols that have not been defined
at that point in the program) and any of the assembly-time operators.

Specifying Numbers

You can specify numbers in hexadecimal (base 16), decimal (base 10), octal (base 8),
and binary (base 2). The default representation, used when no base designation is
given, is decimal. Table 2-3 below shows the digits of each numbering system and
the base designation character for each system (upper- and lowercase characters are
permitted).

The only limitation to the range of numbers is that they must be representable within
16 binary digits.

Table 2-4 gives several examples of number representation in each of the number
systems.

Table 2-3. Assembly Language Number Representation

Number System Base Designator Digits in Order of Value
Binary B 0, 1
Octal OorQ 0,1,2 3, 45,6,7
Decimal D or (nothing) 0,1, 2, 3, 4,5,6,7, 89
Hexadecimal H 0,1, 2, 3, 4,5,6, 7,

8 9, A,B,C,D,E,F

Table 2-4. Examples of Number Representation

base 16 base 10 base 8 base 2
50H 80 120Q@ 010100008
0ACH* 172D 254Q 101011008
01h 1 1Q 1B
10H 16d 20Q 100008

*A hexadecimal number must start with a decimal digit; 0 is used here.

Operands and Expressions

2-10

ASM51 Number Representation

Internally, ASMS51 represents all numeric values with 16 bits. When ASMS5I1
encounters a number in an expression, it immediately converts it to 16-bit binary
representation. Numbers cannot be greater than 65,535. Appendix H describes con-
version of positive numbers to binary representation.

Negative numbers (specified by the unary operator ‘‘—’’) are represented in 2’s
complement notation. There are two steps to converting a positive binary number to
a negative (2’s complement) number.

0000 0000 0010 0000B =20H

1111 1111 1101 1111 = Not 20H 1. Complement each bit in the number.

1111 1111 1110 0000 = (Not 20H) +1 2. Add 1tothe complement.

1111 1111 1110 0000B = -20H
To convert back simply perform the same two steps again.
Although 2’s complement notation is used, ASMS51 does not convert these numbers
for comparisons. Therefore, large positive numbers have the same representation as

small negative numbers (e.g., =1 = 65,535). Table 2-5 shows number interpretation
at assembly-time and at program execution-time.

Table 2-5. Interpretations of Number Representation

Number Characteristic Assembly-Time Program Execution

Expression Evaluation Arithmetic
Base Representation Binary, Octal, Decimal, Binary, Octal, Decimal,

or Hexadecimal or Hexadecimal
Range 0-65,535 User Controlled
Evaluates To: 16 Bits User Interpretation
Internal Notation Two’s Complement Two’s Complement
Signed/Unsigned Unsigned User Interpretation
Arithmetic

Character Strings in Expressions

The MCS-51 assembler allows you to use ASCII characters in expressions. Each
character stands for a byte containing that character’s ASCII code. (Appendix H
contains a table of the ASCII character codes.) That byte can then be treated as a
numeric value in an expression. In general, two characters or less are permitted in a
string (only the DB directive accepts character strings longer than two characters). In
a one character string the high byte is filled with 0’s. With a two character string, the
first character’s ASCII value is placed in the high order byte, and the second
character’s value is placed in the low order byte.

All character strings must be surrounded by the single quote character (’). To
incorporate the single quote character into the string, place two single quote
characters side-by-side in a string. For example, ‘2’’’ is a string of two characters: a
lower case ““Z’’ and the single quote character.

MCS-51

=

MCS-51

Operands and Expressions

The ability to use character strings in an expression offers many possibilities to
enhance the readability of your code. Below, there are two examples of how
character strings can be used in expressions.

TEST: CINE A #X’,SKIP ;If A contains ‘X’ then fall through

JMP FOUND ; Otherwise, jump to skip and
SKIP: MOV A,@R1 ; Move next character into accumulator
INCR1 ; Change R1 to point to next character
DJNZ R2,TEST ; JUMP to TEST if there are still more

; characters to test
MOV A,SBUF ; Move character in serial port buffer

; to accumulator
SUBB A#'0’ ; Subtract ‘0’ from character just read

; this returns binary value of the digit

"NOTE

A corollary of this notation for character strings is the null string—two
single quotes surrounding no characters (side-by-side). When the null
character string is used in an expression it evaluates to 0, but when used as
an item in the expression list of a DB directive it will evaluate to nothing and
will not initiate memory. (See Chapter 4 for an example.)

Use of Symbols

The assembler has several kinds of symbols available to the programmer. They may
stand for registers, segments, numbers,and memory addresses. They allow a pro-
grammer to enhance the readability of his code.

Symbols are defined by four attributes:

Type—register, segment, number, address
Segment Type—DATA, BIT, XDATA, CODE, IDATA
Scope—Ilocal, public, external

Value—register name, segment base address, constant value, symbol address
(depending on type)

Not all of these four attributes are valid combinations.

The type attribute provides a common classification to the symbols:

Register—indicates symbols which were defined as such by EQU or SET
directives

Segment—indicates symbols which were designated as relocatable segments

Number—indicates that the symbol represents a pure number and can be used in
any expression. (It has no segment type.)

Address—indicates that the symbol represents a memory address.

The segment type specifies, for segment symbols, the address space where the seg-
ment resides. For address type symbols, it specifies the way the symbol may be used
(asa DATA address, BIT address, etc.). Usually it is identical to the address space in
which the owning segment was defined. The only exception is for symbols defined as
bits within a BITADDRESSABLE DATA type segment (see the Bit directive in
Chapter 4). Such symbols have a BIT type.

The scope attribute is valid for number and address type symbols. It specifies
whether the symbol is local, public, or external.

2-11

Operands and Expressions

2-12

The value attribute is defined with respect to the type of the symbol:
® Register—the value is the name (in ASCII) of the register

® Segment—the value is the base address (computed at RL-time)
¢ Number—the value of the constant

e Address—for an absolute symbol, the value is the absolute address within the
containing address space. For a relocatable address symbol, the value is the off-
set (in bits or bytes depending on the segment type) from the base of its owning
segment.

Once you have defined a symbol anywhere in your program (some expressions
require that no forward references be used), you can use it in any numeric operand
in the same way that you would use a constant, providing you respect segment type
conventions. The segment type required for each numeric operand is described
above. The creation of user-defined symbols is completely described in Chapter 4.

Besides the user-defined symbols, there are severa!l predefined addresses available
for the hardware registers and flags. Table 2-6 shows all of the predefined data
address symbols and the values they represent. The bit address symbols have been
listed earlier in this chapter. (See Table 2-2.)

Remember that these symbols evaluate to a data address and cannot be used in
instructions that call for a special assembler symbol.

ADD A,#5 ; This is a valid instruction. A is the special
; assembler symbol required for this operand
ADD ACC,#5 ; This is an invalid instruction and will generate

;an error message. ACC is an address and not
; the special symbol required for the instruction

There is an additional symbol that may be used in any numeric operand, the location
counter ($). When you are using the location counter in an instruction’s operand, it

Table 2-6. Predefined Data Addresses for 8051

Hexadecimal .
Symbol Address Meaning
ACC EO Accumulator
B FO Multiplication Register
DPH 83 Data Pointer (high byte)
DPL 82 Data Pointer (low byte)
IE A8 Interrupt Enable
IP B8 Interrupt Priority
PO 80 Port0
P1 90 Port1
P2 A0 Port2
P3 BO Port3
PSW DO Program Status Word
SBUF 99 Serial Port Buffer
SCON 98 Serial Port Controller
SP 81 Stack Pointer
TCON 88 Timer Control
THO 8C Timer 0 (high byte)
TH1 8D Timer 1 (high byte)
TLO 8A Timer 0 (low byte)
TL 8B Timer 1 (low byte)
TMOD 89 Timer Mode

MCS-51

freea-N

MCS-51

Operands and Expressions

will stand for the address of the first byte of the instruction currently being encoded.
You can find a complete description of how to use and manipulate the location
counter in Chapter 4, Assembler Directives.

Using Operators in Expressions

There are four classes of assembly-time operators: arithmetic, logical, special, and
relational. All of them return a 16-bit value. Instruction operands that require only 8
bits will receive the low order byte of the expression. The distinction between each
class of operators is loosely defined. Since they may be used in the same expression,
they work on the same type of data, and they return the same type of data.

Arithmetic Operators
Table 2-7 contains a list of all the arithmetic operators.

Table 2-7. Arithmetic Assembly-Time Operators

Operator Meaning

+ Unary plus or add

- Unary minus or subtract

* Multiplication
/ Integer division (discard remainder)
MOD Modular division (discard quotient)

The following examples all produce the same bit pattern in the low order byte
(0011 0101B):

+53

27+26

-203

65-12

225+3 multiplication is always executed before the addition

160/3

153 MOD 100

Note that the MOD operator must be separated from its operands by at least one
space or tab, or have the operands enclosed in parentheses.

Logical Operators

Table 2-8 contains a list of all logical operators. The logical operators perform their
operation on each bit of their operands.

Table 2-8. Logical Assembly-Time Operators

Operator Meaning

OR Full 16-bit OR

AND Full 16-bit AND

XOR Full 16-bit exclusive OR
NOT Full 16-bit complement

The following examples all produce the same 8-bit pattern in the low order byte
(0011 0101B):

00010001B OR 00110100B
01110101B AND 10110111B
11000011B XOR 11110110B

NOT 110010108

2-13

Operands and Expressions

MCS-51

Note that all logical operators must be separated from their operand by at least one
space or tab, or have the operands enclosed in parentheses.

Special Assembler Operators

Table 2-9 contains a list of all special operators:

Table 2-9. Special Assembly-Time Operators

Operator Meaning

SHR 16-bit shift right

SHL 16-bit shift left

HIGH Select the high order byte of operand

LOW Select the low order byte of operand

() Evaluate the contents of the parenthesis first

The following examples all produce the same 8-bit pattern in the low order byte

(0011 0101B):

01AFH SHR3

HIGH (1135H SHL 8)

LOW 1135H

Bits are shifted out the right end
and 0 is shifted into the left.

Parenthesis is required since HIGH

has a greater precedence than SHL.

Bits are shifted out the leftand

0is shifted in the right. @

Without using the LOW operator,
the high order byte would have
caused an error in an 8-bit
operand.

Note SHR, SHL, HIGH and LOW must be separated from their operands by at
least one space or tab, or have the operands enclosed in parentheses.

Relational Operators

The relational operators differ from all of the other operators in that the result of a
relational operation will always be either 0 (False) or OFFFFH(True). Table 2-10
contains a list of all the relational operators:

Table 2-10. Relational Assembly-Time Operators

" Operator Meaning
EQ = Equal
NE <> Not equal
LT < Less than
LE <= Less than or equal to
GT > Greater than
GE >= Greater than or equal to @

2-14

MCS-51 Operands and Expressions

The following examples all will return TRUE (OFFFFH):

27H EQ 39D
27H <> 27D
33 LT 34
7>5

16 GE 10H

Note that the two-letter (mnemonic) form of the relational operator must be
separated from their operands by at least one space or tab; the symbolic form does
not. If the space or tab is not used, the operand must be enclosed in parentheses.

Operator Precedence

Every operator is given a precedence in order to define which operator is evaluated
first in an expression. ‘For example, the expression 3*5+1 could be interpreted as 16
or 18 depending on whether the + or the * is evaluated first. The following list shows
the precedence of the operators in descending order.

¢ Parenthesized expression ()

e HIGH, LOW

e * /,MOD, SHL, SHR

e +, —unary and binary forms

e EQ,NE,LT,LE,GT,GE, =<>,<,<=>>=

e . NOT
e AND
* OR, XOR

All operators on the same precedence level are evaluated from left to right in the
expression.

Segment Typing in Expressions

Most expressions formed with assembly-time operators do not have a segment type,
but some operations allow the expression to assume the segment type of a symbol
used in the expression. The rules for expressions having a segment type are listed
below.

1. The result of a unary operation (+, -, NOT, LOW, HIGH) will have the same
segment type as that of its operand.

2. The result of all binary operations except plus (+) and minus (-) will have no
segment type (i.e., NUMBER).

3. For a binary plus or minus operation, if only one of the operands has a segment
type, then the result will have that segment type. If not, the result will have no
segment type.

This means that only memory address plus or minus a number (or a number plus or
minus a number) gives a memory address. All other combinations produce a typeless
value. For example, code-address + (data__address__1 - data__address__2) pro-
duces a value which is a CODE address; (data__address__1 - data__address__2) has
no segment type.

2-15

Operands and Expressions

2-16

Relocatable Expression Evaluation

A relocatable expression is an expression that contains a relocatable or external
reference, called the ‘‘relocatable symbol.”” Such an expression cannot be com-
pletely evaluated at assembly time. The Relocator and Linker program (RLS51)
finalizes such expressions using its additional knowledge; i.e., where the relocatable
segments and the public symbols are located.

A relocatable expression may usually contain only one relocatable symbol.
However, when subtracting (‘‘->’) or comparing (‘‘>”’, EQ, etc.) relocatable symbols
which refer to the same relocatable segment, the result is absolute quantity, and
these symbols are not counted as relocatable.

The relocatable symbol may be modified by adding or subtracting an absolute quan-
tity (called offset). Thus the following forms result in valid relocatable expressions:

relocatable__symbol + absolute__expression
relocatable__symbol — absolute__expression
absolute__expression + relocatable__symbol

There are two types of relocatable expressions: simple relocatable expressions which
can be used for symbol definition and code generation; and general relocatable
expressions which can be used only in code generation.

Simple Relocatable Expressions

In simple relocatable expressions the relocatable symbol can only represent an
address in a relocatable segment. External and segment symbols are not allowed.

Simple relocatable expressions can be used in three contexts:
1. Asan operand to the ORG statement.

2. As an operand to the following symbol definition directives: EQU, SET,
CODE, XDATA, IDATA, BIT or the DATA directives.

3. Asan operand to a machine instruction or a data initialization directive (DB or
DW).
Examples:

VALID

REL1 + ABS1*10

REL2- ABS1

REL1 + (REL2-REL3)... assuming REL2 and REL3 refer to the same segment
INVALID

(REL1 + ABS1)*10 ...relocatable quantity may not be multiplied

EXT1- ABS1 ...this is a general relocatable expression
REL1 + REL2-REL3...you cannot add relocatable symbols (REL1, REL2)

General Relocatable Expressions

General relocatable expressions can be used only in statements which generate code;
i.e., as operands to machine instructions, or as items in a DB or DW directive.

In this case the relocatable symbol may be a simple relocatable symbol (representing
an address in a relocatable segment), a segment symbol (representing the base
address of a relocatable segment), or an external symbol.

MCS-51

AT

MCS-51 Operands and Expressions

In addition, the relocatable expression may be prefixed by the LOW or the HIGH
operator.

Examples
VALID

REL1 + ABS1*10
EXT1-ABS1
LOW (SEG1 + ABS1)

INVALID

(REL1 + ABS1)*10 ...relocatable quantity may not be multiplied

EXT1-REL1 ...youcanadd/subtractonly absolute quantities

LOW SEG1 + ABS1 ...LOW/HIGH may be applied only to the final relocatable expression
(or to an absolute expression); the expression here is equivalent to
(LOW SEG1) + ABSt

2-17

CHAPTER 3
INSTRUCTION SET

This chapter contains complete documentation for all of the 8051 instructions. The
instructions are listed in alphabetical order by mnemonic and operands.

Introduction

This chapter is designed to be used as a reference. Each instruction is documented
using the same basic format. The action performed by an instruction is defined in
three ways. First, the operation is given in a short notation; the symbols used and
their meanings are listed in the table below. The operation is then defined in a few
sentences in the description section. Finally, an example is given showing all of the
registers affected and their contents before and after the instruction.

NOTE

The only exception is that the program counter (PC) is not always shown.
All instructions increment the PC by the number of bytes in the instruction.
The ‘“Example:”’ entry for most instructions do not show this increment by
the PC. Only those instructions that directly affect the PC (e.g., JMP,
ACALL, or RET) show the contents of the PC before and after execution.

The list of notes that appears at the bottom of some instructions refer to side-effects
(flags set and cleared and limitations of operands). The numbers refer to the notes
tabulated on page 3-143/3-144. You can unfold that page for easier reference while
you are studying the instruction set.

The ““Operands:”’ entry for each instruction briefly indicates the range of values and
segment type permitted in each operand. For a complete description of the limits of
any operand see Chapter 2. In general, the operand’s name will identify what section
to consult.

With one exception, the operands to 3 byte instructions are encoded in the same
order as they appear in the source. Only the ‘““Move Memory to Memory’’ instruc-
tion is encoded with the second operand preceding the first.

3-1

Instruction Set

3-2

The illustration below (figure 3-1) describes the meaning of each section of the

instruction documentation.

ADD

Add Immediate Data

Mnemonic: ADD

Accumulator

Operands: A
data —256 <= data <= + 255

Format: ADD A, #data
Bit Pattern:

[00100100 Jimmediate Data)
7 07 0

Operation: (A) = (A) + data

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0O OV P
[eTe] T T Jef Je]
PSW

Description: This instruction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

Example: ADD A #32H ; Add 32H to accumulator
Encoded Instruction:

[oo100100 [o00110010 |

7 o 7 0
Before After
Accumulator Accumulator
00100110 01011000
7 0 7 0

Notes: 4,5,6,7

Figure 3-1. Format For Instruction Definitions

Mnemonic: shows opcode mnemonic. It is shown in upper case, but upper or
lower case characters are permitted.

Operands: indicates range and type of operands permitted.

Format: shows the format of the instruction, including the order of operands
on the source line.

Bit Pattern: indicates bit pattern in opcode and position of operands when
encoded. Letters in the opcode’s bit pattern vary with operand specified.

Operation: symbolically defines the operation performed by the instruction.
The symbols used in this entry are defined in table 3-1.

Bytes and Cycles: shows the number of bytes of code and the number of
machine cycles used by the instruction.

Flags: indicates any status flag that may be changed during the execution of
the instruction.

Description: is a brief prose description of the operation performed by the
instruction.

Example: shows an example instruction as it would appear in the source. It
also shows the bit pattern of the encoded instruction, and the contents of all
registers affected by the instruction, immediately before and after the instruc-
tion is executed.

The PC is incremented by all instructions, but only instructions that affect the
PC as part of their operation show its contents in the example.

Notes: indicates the notes on page 3-142 that pertain to the instruction.

MCS-51

Table 3-1. Abbreviations and Notations Used

Instruction Set

A

AB

B

bitaddress
page address
relative offset
(o}

code address
data

data address
DPTR

PC

Rr

SP

high

low

i+

.n

AND
NOT
OR

Accumulator

Register Pair
Multiplication Register
8051 bit address

11-bit code address within 2K page
8-bit 2’s complement offset
Carry Flag

Absolute code address
Immediate data

On-chip 8-bit RAM address
Data pointer

Program Counter
Register(r=0-7)

Stack pointer

High order byte

Low order byte

Bits i through j

Bitn

Logical AND

Logical complement

Logical OR

Logical exclusive OR

Plus

Minus

Divide

Multiply

The contents of X

The memory location addressed by (X)
(The contents of X)

Is equal to

Is not equal to

Is less than

Is greater than

Is replaced by

34

Absolute Call Within 2K Byte Page

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

ACALL
code address

ACALL code address

[aaa10001 [aaaaaaaa
7 0 7 0

(PC) < (PC) + 2

(SP) < (SP) + 1

((SP)) < (PC low)

(SP) < (SP) + 1

((SP)) < (PC high)

(PC) 0-10 < page address

C AC FO0O RS1RS0 OV P

HEEEEEEE

This instruction stores the incremented contents of the program
counter (the return address) on the stack. The low-order byte of the
program counter (PC) is always placed on the stack first. It replaces
the low-order 11 bits of the PC with the encoded 11-bit page
address. The destination address specified in the source must be
within the 2K byte page of the instruction following the ACALL.

The 3 high-order bits of the 11-bit page address form the 3 high-
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

MCS-51

Example: ORG 35H
ACALL SORT ;Call SORT (evaluates to page
; address 233H)
ORG 233H

SORT: PUSH ACC ; Store Accumulator

RET. ; Return from call
Encoded Instruction:

[o01010001 | 00110011 |
7 0 7 0

Before After

Program Counter Program Counter
[00000000 | 00110101 | [o00000010 | 00110011

15 8 7 0 15 8 7 0
Stack Pointer Stack Pointer
[00100110 | [00101000 |
7 0 7 0
(27H) (27H)
{ 00000000 | [00110111
7 0 7 0
(28H) (28H)
[00000000 | [00000000
7 0 7 0
Notes: 2,3

ACALL

3-5

A D D MCS-51

Add Immediate Data

Mnemonic: ADD

Operands: A Accumulator

data —256 <= data <= + 255
Format: ADD A, #data
Bit Pattern:

[00100100 [Immediate Data|
7 07 0

Operation: (A) < (A) + data

Bytes: 2
Cycles: 1
Flags: C AC FO0 RS1RS0 OV P
[ofef [| [o] [o]
PSW

Description: This instruction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

'Example: ADD A, #32H ; Add 32H to accumulator

Encoded Instruction:

| 00100100 | 00110010

7 0 7 0
Before After
Accumulator Accumulator
[00100110 | [01011000 |
7 0 7 0

Notes: 4,5,6,7

PN

gy

MCS-51

Add Indirect Address
Mnemonic: ADD
Operands: A Accumulator
Rr Register 0<=r<=1
Format: ADD A,@Rr
Bit Pattern:
[0010011 |
7 0
Operation: (A) < (A) + ((Rr))
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
(ofe] [| [o] [e]
PSW
Description: This instruction adds the contents of the data memory location
addressed by register r to the contents of the accumulator. It places
the result in the accumulator.
Example: ADD A,@R1 ; Add indirect address to accumulator

Encoded Instruction:

[00100111 |
7 0
Before

Accumulator
[10000110 |
7 0

Register 1
[00011100 |
7 0

(1CH)
[01100010 |
7 0

Notes: 5,6,7,15

After

Accumulator
[11101000
7 0

Register 1
| 00011100 |
7 0

(1CH)
[01100010 |
7 0

ADD

3-7

ADD

Add Register
Mnemonic: ADD
Operands: A Accumulator

Rr Register 0<=r<=7
Format: ADD A,Rr
Bit Pattern:

{ 00101rrr |

7 0

Operation: (A) < (A) + (Rn)
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

[ofe] | [Jof Je]

PSW

Description: This instruction adds the contents of register r to the contents of

the accumulator. It places the result in the accumulator.
Example: ADD A,R6 ; Add R6 to accumulator

Encoded Instruction:

[00101110 |

7 0

Before

Accumulator

After

Accumulator

[01110110 | [11111011 |
7 0 7 .0
Register 6 Register 6

[10000101 | | 10000101 |
7 0 7 0

Notes: 5,6,7

MCS-51

A

MCS-51 A D D

Add Memory

Mnemonic: ADD

Operands: A Accumulator

data address 0<=data address <= 255
Format: ADD A,data address
Bit Pattern:

[00100101 |DataAddress |
7 0 7 0

Operation: (A) < (A) + (data address)

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
[ole] [| [o] [o]
PSW

Description: This instruction adds the contents of the specified data address to
the contents of the accumulator. It places the result in the
accumulator.

Example: ADD A,32H ; Add the contents of
; 32H to accumulator

Encoded Instruction:

[00100101 | 00110010

7 0 7 0
Before After
Accumulator Accumulator
[00100110 | [01111001
7 0 7 0
(32H) (32H)
[01010011 | [01010011
7 0 7 0

Notes: 5,6,7, 8

ADDC

Add Carry Plus Immediate Data to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

MCS-51

ADDC
A Accumulator
data —256 <= data <= +255

ADDC A, #data

[00110100 [Immediate Datal
7 07 0

(A) < (A) + (C) + data

C AC F0 RS1RS0 OV P

[efe] [| o Je]

PSW

This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The 8-bit immediate data value is
added to that intermediate result, and the carry flag is updated. The
accumulator and carry flag reflect the sum of all three values.

ADDC A,#0AFH ; Add Carry and 0AFH to accumulator

Encoded Instruction:

[00110100 | 10101111

7 0o 7 0
Before After
Accumulator Accumulator
| 01110001 | | 00100001
7 0 7 0
Carry Carry

Notes: 4,5,6,7

MCS-51

Add Carry Plus Indirect Address to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

ADDC

A Accumulator
Register 0<=r<=1
ADDC A,@Rr

[0011011r |
7 0

(A) < (A) + (C) + ((Rn))

C AC F0 RS1RS0 OV P

[ofe] [| [of Tej

PSW

ADDC

This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of data memory at the
location addressed by register r is added to that intermediate result,
and the carry flag is updated. The accumulator and carry flag

reflect the sum of all three values.

ADDC

3-12

Example: ADDC A,@R1

Encoded Instruction:

[00110111
7 0
Before

Accumulator

[11101000 |
7 0

Register1

[01101001 |
7 0

(69H)

[00011000
7 0

Carry

[o]

Notes: §,6,7, 15

; Add carry and indirect address to
; accumulator

After

Accumulator
[00000000
7 0

Register1
[01101001
7 0

(69H)
{ 00011000 |
7 0

Carry

[1]

MCS-51

MCS-51 A D D C

Add Carry Plus Register to Accumulator

Mnemonic: ADDC

Operands: A Accumulator
Register 0<=r<=7
Format: ADDC A,Rr
Bit Pattern:
[00111rrr |
7 0

Operation: (A) < (A) + (C) + (Rn)

Bytes: 1
Cycles: 1
Flags: C AC FO0 RSt RS0 OV P
[ofe] [[[o] |o]
PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator at bit 0. The contents of register r is
added to that intermediate result, and the carry flag is updated. The
accumulator and carry flag reflect the sum of all three values.

Example: ADDC A,R7 ; Add carry and register 7
; to accumulator

Encoded Instruction:

{00111111 |

7 0
Before After
Accumulator Accumulator
[00110000 | [00111011 |
7 0 7 0
Register7 Register7
{ 00001010 | [00001010 |
7 0 7 0
Carry Carry

[o]

Notes: 5,6,7

3-13

ADDC

3-14

Add Carry Plus Memory to Accumulator

Mnemonic: ADDC

Operands: A

data address 0<=dataaddress <= 255

Accumulator

Format: ADDC A,data address

Bit Pattern:

| 00110101 [Data Address|

Operation: (A) < (A) + (C) + (dataaddress)

0 7 0

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of the specified data
address is added to that intermediate result, and the carry flag is
updated. The accumulator and carry flag reflect the sum of all
three values.

Example: ADDC A,25H

Encoded Instruction:

PSW

; Add carry and contents of 25H to
;accumulator

00100101 |

00110101
7 0
Before

Accumulator

[10101110 |
7 0

(25H)

[00000111 |
7 0

Carry

[o]

Notes: 5,6,7,8

After

Accumulator

[10110101
7 0

(25H)

[00000111 |
7 0

Carry

[o]

MCS-51

Pr=N

MCS-51

AJMP

Absolute Jump within 2K Byte Page

Mnemonic: AJMP

Operands: code address
Format: AJMP code address
Bit Pattern:

[aaa00001 [aaaaaaaa|
7 0 7 0

Operation: (PC) < (PC) + 2
(PC) 0-10 < page address

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
HEEEEEEE
PSW

Description: This instruction replaces the low-order 11 bits of the program
counter with the encoded 11-bit address. The destination address
specified in the source must be within the 2K byte page of the
instruction following the AJMP.

The 3 high-order bits of the 11-bit page address form the 3 high-
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

Example: ORG OE80FH
TOPP: MOV A,R1

ORG 0EADCH
AJMP TOPP ; Jump backwards to TOPP
; atlocation 0E80FH

Encoded Instruction:

[00000001 | 00001111 |

7 0 7 0
Before After
Program Counter Program Counter
[11101010 | 11011100 | [11101000 [00001111
15 8 7 0 15 8 7 0
Notes: None

ANL

3-16

Logical AND Immediate Data to Accumulator

Mnemonic: ANL

Operands: A Accumulator

data —256 <= data <= + 255
Format: ANL A #data
Bit Pattern:

[01010100 [Immediate Datal
7 0 7 0

Operation: (A) < (A) AND data

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
LI L LT 11 [e]
PSW

Description: This instruction ANDs the 8-bit immediate data value to the
contents of the accumulator. Bit n of the result is 1 if bit n of each
operand is 1; otherwise bit n is 0. It places the result in the
accumulator.

Example: ANL A,#00001000B ; Mask out all but bit 3
Encoded Instruction:

[01010100 | 00001000 |

7 0 7 0
Before After
Accumulator Accumulator
[01110111 | [00000000
7 0 7 0
Notes: 4,5

MCS-51

T~

MCS-51

Logical AND Indirect Address to Accumulator

Mnemonic: ANL
Operands: A Accumulator
Rr Register0<=r<=1
Format: ANL A,@Rr
Bit Pattern:
[o0101011/ |
7 0
Operation: (A) < (A) AND ((Rr))
Bytes: 1
Cycles: 1
Flags:
C AC F0 RS1 RS0 OV P

PSW

Description: This instruction ANDs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of each operand is 1;
otherwise bit n is 0. It places the result in the accumulator.

Example: ANL A,@R0

Encoded Instruction:

01010110 |
7 0
Before

Accumulator
[00111111 |
7 0

Register 0
[01010010 |
7 0

(52H)
[00001111 |
7 0

Notes: 5, 15

; AND indirect address with
; accumulator

After

Accumulator
[00001111
7 0

Register 0
[01010010 |
7 0

(52H)
[00001111 |
70

ANL

3-17

ANL

3-18

Logical AND Register to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

ANL

A Accumulator
Rr 0<=Rr<=7
ANL A,Rr

[01011rrr |

7 0

(A) < (A) AND (Rr)

C AC FO0 RSt RS0 OV P

HEEEREED
PSW

This instruction ANDs the contents of register r to the contents of
the accumulator. Bit n of the result is 1 if bit n of each operand is 1;
otherwise bit nn is 0. It places the result in the accumulator.

MOV R4,#10000000B ; Move mask to R4
ANL A,R4 ; AND register 4 with accumulator

Encoded Instruction:

[01011100
7 0
Before

Accumulator

After

Accumulator

[10011001 | [10000000 |
7 0 7 0

Register 4 Register 4

[10000000 | | 10000000
7 0 7 0

Note: 5

MCS-51

MCS-51

Logical AND Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ANL

A Accumulator
data address 0 <= dataaddress <= 255

ANL A,data address

[01010101 |Data Address|
7 0 7 0

(A) < (A) AND (data address)

C AC F0 RS1 RS0 OV P

HEEEEEED

PSW

This instruction ANDs the contents of the specified data address to
the contents of the accumulator. Bit n of the result is 1 if bit n of
each operand is also 1; otherwise bit n is 0. It places the result in the
accumulator.

ANL A,37H ; AND contents of 37H with
; accumulator

Encoded Instruction:

[01010101 | 00110111

7 0 7 0
Before After
Accumulator Accumulator
[01110111 | [01110000 |
7 0 7 0
(37H) (37H)
[11110000 | [11110000 |
7 0 7 0
Notes: 5,8

ANL

3-19

ANL

3-20

Logical AND Bit to Carry Flag

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ANL

C Carry Flag
bitaddress 0 <= bitaddress <= 255

ANL C,bitaddress

[10000010 | BitAddress |
7 0 7 0

(C) < (C) AND (bit address)

C AC F0 RS1RS0 OV P

lef [1 T P 7]

PSW

This instruction ANDs the contents of the specified bit address to
the contents of the carry flag. If both bits are 1, then the result is 1;
otherwise, the result is 0. It places the result in the carry flag.

ANL C,37.3 ; AND bit 3 of byte 37 with Carry

Encoded Instruction:

| 10000010 [00101011 |

7 0 7 0

Before After

Carry Flag Carry Flag

(37) (37

[00101110 | [00101110 |
7 3 0 7 3 0
Notes: None

MCS-51

MCS-51

Logical AND Complement of Bit to Carry Flag

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

ANL

C Carry Flag
bitaddress 0 <= bitaddress <= 255

ANL C,/bitaddress

[10110000 | BitAddress |
7 0 7 0

(C) < (C) AND NOT (bit address)

C AC F0 RS1RS0 OV P
lef I TP 11T |
PSW

This instruction ANDs the complemented contents of the specified
bit address to the contents of the carry flag. The result is 1 when the
carry flag is 1 and the contents of the specified bit address is 0. It
places the result in the carry flag. The contents of the specified bit
address does not change.

ANL C,/40.5 ; Complement contents of 40.5
; then AND with Carry

Encoded Instruction:

[10110000 | 01000101 |

7 0 7 0
Before After
Carry Flag Carry Flag
(40) (40)
[01011000 [01011000 |
75 0 75 0
Notes: None

ANL

3-21

ANL

3-22

MCS-51

Logical AND Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

Example:

ANL

data address 0<=dataaddress <= 255
data —256 <= data <= + 255

ANL data address #data

[01010011 |Data Address [Immediate Data|
7 0 7 07 0

(data address) < (data address) AND data

C AC FO0 RS1RS0 OV P

HEEEEEEE

PSW

This instruction ANDs the 8-bit immediate data value to the
contents of the specified data address. Bit n of the resultis 1 if bit n
of each operand is also 1; otherwise, bit n is 0. It places the result in
data memory at the specified address.

MOV 57H,PSW ; Move PSW to 57H
ANL 57H,#01H ; Mask out all but parity bit
; to check accumulator parity

Encoded Instruction:

[01010011 | 01010111 | 00000001

7 0 7 0o 7 0
Before After
(57H) (57H)
[01110111 [00000001 |
7 0 7 0
Notes: 4,9

MCS-51

Logical AND Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ANL

data address 0<=dataaddress <= 255
A Accumulator

ANL data address,A

[01010010 |Data Address|
7 0 7 0

(data address) < (data address) AND A

C AC F0 RS1 RS0 OV P

HEEEEEEE

PSW

This instruction ANDs the contents of the accumulator to the
contents of the specified data address. Bit n of the result is 1 if bit n
of each operand is also 1; otherwise, bit n is 0. It places the result
in data memory at the specified address.

MOV A,#10000001B ; Load mask into accumulator
ANL 10H,A ; Mask out all but bits0and 7

Encoded Instruction:

[01010010 | 00010000 |

7 0

Before

Accumulator

7 0
After

Accumulator

[10000001 | { 10000001 |
7 0 7 0

(10H) (10H)

[00110001 | { 00000001 |
7 0 7 0

Note: 9

ANL

3-23

CA L L MCS-51

3-24

Generic Call

Mnemonic: CALL

Operands: code address

Format: CALL code address

Bit Pattern: Translated to ACALL or LCALL as needed
Operation: Either ACALL or LCALL

Flags: C AC F0 RS1RS0 OV P

HEEEENEE

PSW

Description: This instruction is translated to ACALL when the specified code
address contains no forward references and that address falls
within the current 2K byte page; otherwise; it is translated to
LCALL. This will not necessarily be the most efficient representa-
tion when a forward reference is used. See the description for
ACALL and LCALL for more detail.

Example: ORG 80DCH
CALL SUB3 ;CallSUB3(SUB3is aforward
. ; reference so LCALL is encoded
; even though ACALL would work in
. ; this case.)
SUB3: POP 55H ; Address 8233H (

Encoded Instruction:

[0ooo10010 [10000010 | 00110011 |

7 0 7 0 7 0
Before After
Program Counter Program Counter
[10000000 [11011100 | [10000010 | 00110011
7 0 7 0 15 8 7 0
Stack Pointer Stack Pointer
{ 01100100 | { 01100110
7 0 7 0
(65H) (65H)
[00000000 | [11011111]
7 0 7 0
(66H) (66H)
[00000000 | [10000000 |
7 0 7 0

Notes: 1,2,3

MCS-51

CJNE

Compare Indirect Address to Immediate Data,

Jump if Not Equal
Mnemonic: CJNE
Operands: Rr Register0<=r<=1
data —256 <=data <= +255
code address
Format: CJUNE @Rr.#data,code address
Bit Pattern:
| 1011011 |Immediate Data| Rel. Offset |
7 0 7 0o 7 0
Operation: (PC)< (PC) + 3
IF ((Rr)) < > data
THEN
(PC) < (PC) + relative offset
IF ((Rr)) < data <
THEN _
(C) <1
ELSE
(C)<0
Bytes: 3
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
el [[[T T[]
PSW
Description: This instruction compares the immediate data value with the

memory location addressed by register r. If they are not equal, con-
trol passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the immediate data value is greater than the contents of the
specified data address, then the carry flag is set to 1; otherwise, it is
reset to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-25

CJNE

3-26

Example: CJNE @R1,#01,SCAB; Jump if contents of
;indirect address do

; notequal 1
SCAB: MO\} C,F0 ; 5AH bytes from the

;beginning of CUNE

Encoded Instruction:

[10110111 | 00000001 | 01010111

7 0o 7 0 7 0
Before After
Register 1 Register 1
[01010011 [01010011]
7 0 7 0
(53H) (53H)
[11100001 | [11100001
7 0 7 0
Carry Flag Carry Flag
[o]
Program Counter Program Counter
[00000000 [11011100 | [o00000001 00110110
15 8 7 0 15 8 7 0

Notes: 4,10,11,12,15

MCS-51

o

MCS-51

CJNE

Compare Immediate Data to Accumulator,

Jump if Not Equal

Mnemonic: CJNE

Operands: A Accumulator
data —256 <=data <= +255
code address

Format: CJUNE A, #data,code address

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

[10110100 [Immediate Data| Rel. Offset
7 0 7 0 7 0

(PC) < (PC) + 3
IF (A) < > data
THEN
(PC) < (PC) + relative offset
IF (A) < data
THEN
(C) <1
ELSE
(C)<0

C AC F0 RSt RS0 OV P

lef I T T [1 1]

PSW

This instruction compares the immediate data value with the
contents of the accumulator. If they are not equal, control passes to
the specified code address. If they are equal, then control passes to
the next sequential instruction.

If the immediate data value is greater than the contents of the
accumulator, then the carry flag is set to 1; otherwise, it is reset
to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-27

C J N E MCS-51

Example: ORG 10DCH
CJUNE A,#10H,NEXT ; Jump if accumulator does not equal
; 10H
NEXT: INCA : Location 1136H

Encoded Instruction:

[10110100 | 00010000 | 01010111 |

7 0 7 0o 7 0

Before After

Accumulator Accumulator

[01010000 | [01010000 |
7 0 7 0

Carry Flag Carry Flag

[o]

Program Counter Program Counter

[00010000 [11011100 | [00010001 [00110110
15 8 7 0 15 8 7 0

_Notes: 4,10,11, 12

3-28

MCS-51

CJNE

Compare Memory to Accumulator,

Jump if Not Equal

Mnemonic: CJNE

Operands: A Accumulator
data address 0<=dataaddress <= 255
code address

Format: CJUNE A.,data address,code address

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

[10110101 |DataAddress| Rel. Offset

7 0 7 0o 7 0
(PC)<(PC) + 3
IF (A) <> (data address)
THEN
(PC) < (PC) + relative offset
IF (A) < (data address)
THEN
(C) <1
ELSE
(C)<0
C AC F0 RS1 RS0 OV P
fel T T P 1T 1|
PSW

This instruction compares the contents of the specified memory
location to the contents of the accumulator. If they are not equal,
control passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the contents of the specified memory location is greater than the
contents of the accumulator, then the carry flag is set to 1; other-
wise, it is reset to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-29

CJNE

1330

Example: CJUNE A,37H,TEST, Jump if 37H and accumulator

; are not equal

TEST: INCA : 4FH bytes from CJNE
Encoded Instruction:

[10110101 [00110111 [01001100 |

7 0 7 0 7 0
Before After
(37H) (37H)
[01111110 | [01111110 |
7 0 7 0
Accumulator Accumulator
| 00100110 | [00100110
7 0 7 0
Carry Flag Carry Flag
[o]
Program Counter Program Counter
100000000 | 11011100 | [00000001 [00110110 |
15 8 7 0 15 8 7 0

Notes: 8, 10, 11, 12

MCS-51

PN

MCS-51

CJNE

Compare Immediate Data to Register,

Jump if Not Equal

Mnemonic: CJINE

Operands: Rr Register 0<=r<=7
data —256 <= data <= +255
code address

Format: CJNE Rr,#data,code address

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

| 10111rrr |Immediate Data| Rel.Offset |

7 0 7 0 7 0
(PC) < (PC) + 3
IF (Rr) < > data
THEN
(PC) < (PC) + relative offset
IF (Rr) < data
THEN
(C) <1
ELSE
(C)«<0
C AC F0 RS1RS0 OV P
lel [T T T T 1]
PSW

This instruction compares the immediate data value with the
contents of register r. If they are not equal, control passes to the
specified code address. If they are equal, then control passes to the
next sequential instruction.

If the immediate data value is greater than the contents of the
specified register, then the carry flag is set to 1; otherwise, it is reset
to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-31

CJ N E MCS-51

Example: CJNE R5,#32H,SKIP10 ; Jump if register 5 does not
; equal 32H
SKIP10£ MOV R5,P0 ;13 bytes from CUNE

Encoded Instruction:

[10111101 [10000000 [00001010 |

7 0 7 0 7 0

Before After

Register 5 Register 5 |

[00000001 [00000001 |
7 0 7 0

Carry Flag Carry Flag

Program Counter Program Counter

| 00000000 | 11011100 | [00000000 | 11101001 |
15 8 7 0 15 8 7 0

Notes: 4,10, 11, 12

3-32

s

MCS-51

Clear Accumulator

Mnemonic: CLR

Operands: A Accumulator
Format: CLR A

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

[11100100 |

7 0

(A)<0

€ AC FO RS1RSO OV P

LI T 1T 11 [[ef
PSW

This instruction resets the accumulator to 0.

CLR A ; Set accumulator to 0

Encoded Instruction:

[11100100 |
7 0
Before After
Accumulator Accumulator
[00111111 [00000000 |
7 0 7 0
Note: 5

CLR

3-33

CLR

3-34

Clear Carry Flag

Mnemonic: CLR

Operands: C Carry Flag
Format: CLR C
Bit Pattern:
[11000011 |
7 0

Operation: (C)<0

Bytes: 1
Cycles: 1
Flags: C AC FO0 RS1RS0 OV P
lef [[T T 0 1]
PSW

Description: This instruction resets the carry flag to 0.
Example: CLR C ; Setcarry flagto 0

Encoded Instruction:

[11000011 |

7 0
Before After
Carry Flag Carry Flag
[o]
Notes: None

MCS-51

MCS-51

Clear Bit

Mnemonic: CLR

Operands: bit address 0 <= bit address <= 255
Format: CLR bitaddress

Bit Pattern:

[11000010 | BitAddress
7 0 7 0

Operation: (bitaddress) <0

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
HEEEEEEE
PSW

Description: This instruction resets the specified bit address to 0.

Example: CLR40.5 ; Set bit 5 of byte 40to 0

Encoded Instruction:

[11000010 | 01000101

7 0 7 0
Before After
(40) (40)
[00100110 | { 00000110 |
75 0 75 0
Notes: None

CLR

3-35

CPL

3-36

MCS-51

Complement Accumulator

Mnemonic: CPL

Operands: A Accumulator
Format: CPL A
Bit Pattern:
[11110100 |
7 0

Operation: (A) <~ NOT (A)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
HEEEEEEN
PSW

Description: This instruction resets each 1 in the accumulator to 0, and sets each
0 in the accumulator to 1.

Example: CPL A ; Complement accumulator

Encoded Instruction:

[11110011
7 0
Before After
Accumulator Accumulator
[00110101 | [11001010 |
7 0 7 0
Notes: None

MCS-51 C P L

Complement Carry Flag

Mnemonic: CPL

Operands: C Carry flag
Format: CPL C
Bit Pattern:
[10110011 |
7 0

Operation: (C) < NOT (C)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

lef [T T P] T |

PSW

Description: This instruction sets the carry flag to 1 if it was 0, and resets the
carry flagto O if it was 1.

Example: CPL C ; Complement Carry flag

Encoded Instruction:

[10110011 |

7 0
Before After
Carry Flag Carry Flag
Notes: None

3-37

C P L MCS-51

Complement Bit

Mnemonic: CPL
Operands: bit address 0 <= bit address <= 255
Format: CPL bitaddress

Bit Pattern:

[10110010 | BitAddress |
7 0 7 0

Operation: (bit address) < NOT (bit address)

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
HEEEEEEE
PSW

Description: This instruction sets the contents of the specified bit address to 1 if
it was 0, and resets the contents of the bit address to 0 if it was 1.

Example: CPL 33.7 ; Set bit7 of byte 33t0 0

Encoded Instruction:

[10110010 | 00001111

7 0 7 0
Before After
(33) (33)
[10100110 [00100110 |
7 0 7 0
Notes: None

3-38

MCS-51

Decimal Adjust Accumulator

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

DA
A Accumulator

DA A

[11010100 |
7 0

(See description below.)

el [[[[1 [e]
PSW

This instruction adjusts the contents of the accumulator to
correspond to packed binary coded decimal (BCD) representation,
after an add of two BCD numbers. If the auxiliary carry flag is 1,
or the contents of the low order nibble (bits 0—3) of the
accumulator is greater than 9, then 6 is added to the accumulator.
If the carry flag is set before or after the add or the contents of the
high order nibble (bits 4—7) is greater than 9, then 60H is added to
the accumulator. The accumulator and the carry flag contain the
final adjusted value.

ADD A,R1
DA A ; Adjust the Accumulator after add

Encoded Instruction:

[11010100
7 0
Before

Accumulator

After

Accumulator

[10011011 | [00000001 |
7 0 7 0
Carry Flag Carry Flag

[o]

Auxiliary Carry Flag Auxiliary Carry Flag

[o]

Notes: 5,6

[o]

DA

3-39

DEC

3-40

Decrement Indirect Address

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

DEC
Rr Register0<=r<=1
DEC @Rr
[00010117 |
7 0

((Rr)) < ((Rr)) -1

C AC FO0 RS1RS0 OV P

HEEEEEEE

This instruction decrements the contents of the memory location
addressed by register r by 1. It places the result in the addressed
location.

DEC @R0 ; Decrement counter

Encoded Instruction:

{ 00010110 |
7
Before After
Register 0 Register 0
{00110111] { 00110111 |
7 7 0
(37H) (37H)
[11011101] (11011100 |
7 7 0
Note: 15

MCS-51

MCS-51

Decrement Accumulator
Mnemonic: DEC
Operands: A Accumulator
Format: DEC A
Bit Pattern:
[00010100 |
7 0
Operation: (A) < (A) -1
Bytes: 1
Cycles: 1
Flags: € AC F0 RS1 RS0 OV P
HEREEERD
PSW
Description: This instruction decrements the contents of the accumulator by 1.

Example:

It places the result in the accumulator.

DEC A ; Decrement accumulator

Encoded Instruction:

[00010100 |
7 0
Before

Accumulator

After

Accumulator

[11010000] [11001111]
7 0 7 0
Note: 5

DEC

341

D E C MCS-51

Decrement Register

Mnemonic: DEC

Operands: Rr Register0<=r<=7
Format: DEC Rr
Bit Pattern:
{00011rrr |
7 0

Operation: (Rr) < (Rr) -1

Bytes: 1
Cycles: 1
Flags: C AC FO0 RS1 RS0 OV P

HEEEENEE

PSW

Description: This instruction decrements the contents of register r by 1. It places
the result in the specified register.

Example: DEC R7 ; Decrementregister 7

Encoded Instruction:

[00011111 |

7 0
Before After
Register7 Register 7
[10101011 | [10101010 |
7 0 7 0
Notes: None

3-42

MCS-51

DEC

Decrement Memory

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

DEC
data address 0<=data address <= 255

DEC data address

[00010101 |DataAddress
7 0 7 0

(data address) < (data address) —1

C AC F0 RS: .w OV P

HEEEEEEE

PSW

This instruction decrements the contents of the specified data
address by 1. It places the result in the addressed location.

DEC 37H ; Decrement counter

Encoded Instruction:

[00010101 | 00110111 |

7 0o 7 0
Before After
(37H) (37H)
[11011110 | [11011101
7 0 7 0
Note: 9

343

DIV

3-44

Divide Accumulator by B

Mnemonic: DIV
Operands: AB Register Pair
Format: DIV AB
Bit Pattern:
{ 10000100 |
7 0
Operation: (AB) < (A) / (B)
Bytes: 1
Cycles: 4
Flags: C AC F0 RS1 RS0 OV P
[of [[[o] |e]
PSW
Description: This instruction divides the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned integers. The accumulator contains the quo-
tient; the multiplication register contains the remainder.
The carry flag is always cleared. Division by 0 sets the overflow
flag; otherwise, it is cleared.
Example: MOV B, #5
DIV AB ; Divide accumulator by 5

Encoded Instruction:

{ 10000100 |

7

Before

After

Accumulator
{ 01110110 |
7 0

Multiplication Register (B)
{ 00000101 |
7 0

Note: 5

Accumulator
{ 00010111 |
7 0

Multiplication Register (B)
| 00000011 |
7 0

MCS-51

[

MCS-51

DJNZ

Decrement Register and Jump if Not Zero

Mnemonic: DJNZ

Operands: Rr Register0<=r<=7
code address

Format: DJNZ Rr,code address

Bit Pattern:

[11011rrr | Rel. Offset |
7 0 7 0

Operation: (PC) < (PC) + 2
(Rr) < (Rr) 1

IF(Rr)<>0
THEN
(PC) < (PC) + relative offset
Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P

PSW

Description: This instruction decrements the contents of register r by 1, and
places the result in the specified register. If the result of the decre-
ment is 0, then control passes to the next sequential instruction;
otherwise, control passes to the specified code address.

The Program Counter is incremented to the next instruction. If the
decrement does not result in 0, then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

Example: LOOP1: ADD A,R7 ; ADD index to accumulator

DJNZ R7,LOOP1 ; Decrement register 7 and
INCA ; jump to LOOP1 (15 bytes
; backward from INC
; instruction)

Encoded Instruction:
[11011111 [11110001 |

7 0 7 0

Before _ After

Register 7 Register7

[00000010 | [00000001 |
7 0 7 0

Program Counter Program Counter

[00000100 [11011100] [00000100 [11001111]
15 8 7 0 15 8 7 0

Notes: 10,11, 12

3-45

DJNZ

Decrement Memory and Jump if Not Zero

3-46

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2.

Flags:

Description:

DJNZ

data address 0<=dataaddress <= 255
code address

DJUNZ data address,code address

[11010101 [Data Address| Rel.Offset |
7 07 0 7 0

(PC) <~ (PC) + 3
(data address) < (data address) —1
IF (data address)< >0
THEN
(PC) < (PC) + relative offset

C AC F0 RS1RS0 OV P

This instruction decrements the contents of the specified data
address by 1, and places the result in the addressed location. If the
result of the decrement is 0, then control passes to the next sequen-
tial instruction; otherwise, control passes to the specified code
address.

The Program Counter is incremented to the next instruction. If the
decrement does not result in 0, then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

MCS-51

MCS-51

Example: LOOP 3: MOV R7,57H ; Store loop index in register 7

DJNZ 57H,LOOP3 ; Decrement 57H and jump
INC A ; backward to LOOP3 (51 bytes
; backwards from the INC A
; instruction)

Encoded Instruction:

[11010101] 01010111 | 11001010 |

7 0 7 0 7 0

Before After

(57H) (57H)

[01110111 | [01110110 |

7 0 7 0

Program Counter Program Counter

| 00000000 | 11011100 | [00000000 [10101001 |
15 8 7 0 15 8 7 0

Notes: 9, 10, 11, 12

DJNZ

3-47

l N C MCS-51

Increment Indirect Address

Mnemonic: INC

Operands: Rr Register0<=r<=1
Format: INC @Rr
Bit Pattern:

[0000011r |
7 0

Operation: ((RN)) < ((Rr)) + 1

Bytes: 1
Cycles: 1
Flags: C AC FO0 RS1 RS0 OV P
HEEREEER
PSW

Description: This instruction increments the contents of the memory location
addressed by register r by 1. It places the result in the addressed
location.

Example: INC @R0 ; Increment counter

Encoded Instruction:

[00000110 |
0

7
Before After
Register 0 Register 0
[00110010 | [00110010 |
7 0 7 0
(32H) {(32H)
[11011101 | [11011110 |
7 0 7 0
Note: 15

3-48

MCS-51 I N C

Increment Accumulator
Mnemonic: INC
Operands: A Accumulator
Format: INC A
Bit Pattern:
{ 00000100 |
7 0

Operation: (A) < (A) + 1

Bytes: 1
Cycles: 1
Flags: C AC FO RS1RS0 OV P
LI [T 111 [e]
PSW

Description: This instruction increments the contents of the accumulator by 1. It
places the result in the accumulator.

Example: INC A ; Increment accumulator

Encoded Instruction:

{ 00000100 |
7 0
Before After
Accumulator Accumulator
[11010000 | [11010001 |
7 0 7 0
Note: 5

3-49

' N C MCS-51

Increment Data Pointer

Mnemonic: INC

Operands: DPTR Data Pointer
Format: INC DPTR
Bit Pattern:
[10100011 |
7 0

Operation: (DPTR) < (DPTR) + 1

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P

HEEEEEEE

PSW

Description: This instruction increments the 16-bit contents of the data pointer
by 1. It places the result in the data pointer.

Example: INC DPTR ; Increment data pointer

Encoded Instruction:

[10100011 |
7 0
Before After
Data Pointer Data Pointer
[00001001 [11111111] [00001010 [00000000 |
15 8 7 0 15 8 7 0
Notes: None

3-50

MCS-51 l N C

Increment Register

Mnemonic: INC
Operands: Rr Register0<=r<=7
Format: INC Rr

Bit Pattern:

[00001rrr |
7 0

Operation: (Rr) < (Rr) + 1

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
HEEEEEEE
PSW

Description: This instruction increments the contents of register r by 1. It places
the result in the specified register.

Example: INC R7 ; Increment register 7

Encoded Instruction:

[00001111 |

7 0
Before After
Register7 Register7
[10101011 | [10101100 |
7 0 7 0
Notes: None

3-51

l N C MCS-51

Increment Memory

Mnemonic: INC
Operands: data address 0<=dataaddress <= 255
Format: INC data address

Bit Pattern:

[00000101 |Data Address|
7 0 7 0

Operation: (data address) < (data address) + 1

Bytes: 2
Cycles: 1
Flags: C AC FO0 RS1RS0 OV P

HEEEEEER

PSW

Description: This instruction increments the contents of the specified data
address by 1. It places the result in the addressed location.

Example: INC 37H ; Increment 37H

Encoded Instruction:

[00000101 [00110111 |

7 0 7 0

Before After

(37H) (37H)

[11011110] [11011111
7 0 7 0

Note: 9

3-52

PrameeN

MCS-51

Jump if Bit Is Set
Mnemonic: JB
Operands: bitaddress 0<= bitaddress <= 255

code address
Format: JB bitaddress,code address
Bit Pattern:

[00100000 | BitAddress | Rel.Offset |

7 0 7 0o 7 0

Operation: (PC) < (PC) + 3

IF (bit address) =1

THEN

(PC) < (PC) + relative offset
Bytes: 3
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
PSW

vDescription: This instruction tests the specified bit address. If it is 1, control

passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JB

3-53

JB

3-54

MCS-51

Example: JB39.6,EXIT ;Jump if bit6 of byte 39 is 1
SJMP TOP
EXIT: MOV A,39 ; Move 39 to accumulator (EXIT label

; is 5 bytes from jump statement)

Encoded Instruction:

[00100000 | 00111110 | 00000010 |

7 0 7 0 7 0
Before After
(39) (39)
[01110111] [01110111]

76 0 76 0
Program Counter Program Counter

| 00000000 | 11011100 | [00000000 | 11100001

15 8 7 0 15 8 7

Notes: 10, 11, 12

0

MCS-51

Jump and Clear if Bit Is Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Déscription:

JBC

bit address 0 <= bitaddress <= 255
code address

JBC bitaddress,code address

[00010000 | BitAddress | Rel. Offset
7 0 7 0 7 0

(PC) < (PC) + 3
IF (bit address) =1
THEN
(bitaddress) < 0
(PC) < (PC) + relative offset

C AC FO0 RS1RSO0 OV P

HEEEEEEE

PSW

This instruction tests the specified bit address. If it is 1, the bit is
cleared, and control passes to the specified code address. Other-
wise, control passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JBC

3-55

JBC

3-56

Example: ORG ODCH
JBC 46.1,0UT3 ; Testbit1 of byte 46
. ; jump and clearif 1

ORG136H
OUT3: INCR?7
Encoded Instruction:

{ 00010000 [01110001 | 01010111 |

7 0o 7 0 7 0
Before After
(46) (46)
[01110111] [01110101 |

7 10 7 10
Program Counter Program Counter

MCS-51

[00000000 [11011100]| [00000001 [00110110 |

15 8 7 0 15 8 7

Notes: 10, 11,12

0

MCS-51

Jump if Carry Is Set
Mnemonic: JC

Operands: code address
Format: JC code address
Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

[01000000 | Rel. Offset |

7 0 7 0
(PC) « (PC) + 2

IF (C) =1

THEN

(PC) < (PC) + relative code

C AC F0 RSt RS0 OV P

HEEEEREE

PSW

This instruction tests the contents of the carry flag. If it is 1, then
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JC

3-57

JC

3-58

Example: FIXUP: CLR C ; Clear carry
JC FIXUP : If carry is 1 go to FIXUP |
; 49 bytes backwards from the JC
; instruction o
Encoded Instruction:
[01000000 | 11001101
7 0o 7 0
Before After
Carry Flag Carry Flag
Program Counter Program Counter
| 00000101 [11011100 | [00000101 [10101011 |
15 8 7 0 15 8 7 0

Notes: 10,11, 12

MCS-51

Pean=N

MCS-51

JMP

Generic Jump

Mnemonic: JMP

Operands: code address 0<=code address <= 65,535

Format: JMP code address

Bit Pattern: Translated to AUMP, LUIMP, or SUMP, as needed

Operation: Either AUMP, SUMP or LUMP

Bytes:

Cycles:

Flags: C AC FO RS1RS0 OV P

PSW

Description: This instruction will be translated to SJMP if the specified code
address contains no forward references and that address falls
within —128 and +127 of the address of the next instruction. It will
be translated to AJMP if the code address contains no forward
references and the specified code address falls within the current 2K
byte page. Otherwise, the JMP instruction is translated to LYMP.
If forward references are used to specify the jump destination, then
it will not necessarily be the most efficient representation. See the
descriptions for SJMP, AJMP, and LIMP for more detail.

Example: JMP SKIP ; Jump to SKIP
FF: INCA ; Increment A
SKIP: INCR5 ;Increment register 5

Encoded Instruction:

[00000010 | 00000100 [10101011 |

7 0o 7 0 7 0

Before After

Program Counter Program Counter

[00000100 | 10100111] [00000100 [10101011 |
15 8 7 0 15 8 7 0

Notes: None

3-59

JMP

3-60

Jump to Sum of Accumulator and Data Pointer

Mnemonic: JMP

Operands: A Accumulator
DPTR ' Data Pointer
Format: JMP @A +DPTR
Bit Pattern:
{ 01110011 |
7 0

Operation: (PC) < (A) + (DPTR)

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P

HEEEEEEE

PSW

Description: This instruction adds the contents of the accumulator with the
contents of the data pointer. It transfers control to the code address

formed by that sum.

Example: JMP @A +DPTR ; Jump relative to the accumulator

Encoded Instruction:

01110011

7 0

Before After

Accumulator Accumulator

[01110110 | [01110110
7 0 7 0

Data Pointer Data Pointer

[00000010 | 10101000 | [00000010 [10101000 |
15 8 7 0 15 8

Program Counter Program Counter

[11001101 [00001101 | [00000011 [00011110 |
15 8 7 0 15 8

Notes: None

MCS-51

PN

MCS-51

Jump if Bit Is Not Set
Mnemonic: JNB
Operands: bitaddress
code address
Format: JNB bitaddress,code address
Bit Pattern:
[00110000 | BitAddress | Rel. Offset
7 0 7 0 7 0
Operation: (PC) < (PC) + 3
IF (bit address) =0
THEN
(PC) < (PC) + relative offset
Bytes: 3
Cycles: 2
Flags: C AC FO0 RS1 RS0 OV P
PSW
Description: This instruction tests the specified bit address. If it is 0, control

passes to specified code address. Otherwise, control passes to the
next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNB

3-61

JNB

3-62

MCS-51

Example: ORG 0DCH
JNB41.6,EXIT ;i bit6 of byte 41is 0 go to EXIT

EXIT: ADD A, 41 - At location 136H

Encoded Instruction:

[00110000 | 01001110 [01010111

7 0 7 0 7 0
Before After
(41) (41)
[00110111 | [o0110111]
76 0 76 0
Program Counter Program Counter
[00000000 [11011100] [00000001 [00110110
15 8 7 0 15 8 7 0

Notes: 10, 11, 12

MCS-51

Jump if Carry Is Not Set
Mnemonic: JNC
Operands: code address
Format: JNC code address
Bit Pattern:

[01010000 | Rel. Offset |

7 0o 7 0

Operation: (PC) < (PC) + 2

IF(C)=0

THEN

(PC) < (PC) + relative offset
Bytes: 2
Cycles: 2
Flags: C AC FO0 RS1RS0 OV P
PSW

Description: This instruction tests the contents of the carry flag. If it is 0, control

passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNC

3-63

JNC

Example: FIXUP: MOV A,R5

JNCFIXUP ; Jump to FIXUP if carry is 0
; (61 bytes backwards)

Encoded Instruction:

[01010000 [11001101 |

7 0o 7 0

Before After

Carry Flag Carry Flag

[o] [o]

Program Counter Program Counter

[00011100 | 11011100 | [00011100 [10101011]
15 8 7 0 15 8 7 0

Notes: 10, 11, 12

3-64

MCS-51

MCS-51

Jump if Accumulator Is Not Zero

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

JNZ
code address

JNZ code address

[01110000 | Rel. Offset |
7 0 7 0

(PC) < (PC) + 2
IF(A)<>0
THEN
(PC) < (PC) + relative offset

C AC F0 RS1 RS0 OV P

HEEEEEEE

PSW

This instruction tests the accumulator. If it is not equal to 0,
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is not 0, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNZ

3-65

JNZ

3-66

MCS-51

Example: JNZ TEST ; Jump if accumulator is not 0

; 77 bytes forward

TEST: MOV R3,A

Encoded Instruction:

[01110000 [01001101 |

7 0o 7 0
Before After
Accumulator Accumulator
[o01110111] [01110111 |

7 8 7 0
Program Counter Program Counter

[00000000 [11011100 | [00000001 [00101011 |

15 8 7 0 15

Notes: 10,11,12

0

=

MCS-51

Jump if Accumulator Is Zero

Mnemonic: JZ

Operands: code address

Format: JZ code address
Bit Pattern:
| 01100000 | Rel. Offset |
7 0 7 0
Operation: (PC) < (PC) + 2
IF(A)=0
THEN
(PC) < (PC) + relative offset
Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
PSW

Description: This instruction tests the accumulator. If it is 0, control passes to

the specified code address. Otherwise, control passes to the next
sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is 0, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JZ

3-67

JZ

3-68

Example: JZEMPTY ;Jumpto EMPTY ifaccumulatoris0

EMPTY: INC A ; 25 bytes from JZ instruction

Encoded Instruction:

[01100000 | 00010111 |

7 0 7 0

Before After

Accumulator Accumulator

[01110110 | [01110110 |
7 0 7 0

Program Counter Program Counter

[00001111 [11011100 | [00001111 [11011110 |
15 8 7 0 15 8 7 0

Notes: 10, 11,12

MCS-51

MCS-51

Long Call

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

LCALL
code address 0<=code address <= 65,535

LCALL code address

[00010010 [Code Addr. high{Code Addr. low |
7 0 7 07 0

(PC) < (PC) + 3

(SP) < (SP) + 1
((SP)) < (PC low)
(SP) < (SP) + 1
((SP)) < (PC high)
(PC) « code address

C AC FO0 RS1RS0 OV P

HEEEEEEN

LCALL

This instruction stores the contents of the program counter (the
return address) on the stack, then transfers control to the 16-bit

code address specified as the operand.

3-69

LCALL

Example: SERVICE: INCA ; Resides at location 233H
RETI
ORG 80 DCH

LCALL SERVICE ; Call SERVICE

Encoded Instruction:

00010010 I 00000010 | 00110011

7 0 7 0 7 0
Before After
Program Counter Program Counter
[10000000 [11011100 | [00000010 [00110011]
15 8 7 0 15 8 7 0
Stack Pointer Stack Pointer
[00101000 [00101010
7 0 7 0
(29H) (29H)
[01110111 | [11011111
7 0 7 0
(2AH) (2AH)
[00000000 [10000000
7 0 7 0
Notes: 1,2,3

3-70

MCS-51

MCS-51

Long Jump

Mnemonic: LJMP
Operands: code address 0<=code address <= 65,535
Format: LJMP code address

Bit Pattern:

| 00000010 [Code Addr. high|Code Addr. low |
7 0 7 07 0

Operation: (PC) < code address

Bytes: 3
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
HEREEEEN
PSW

Description: This instruction transfers control to the 16-bit code address
specified as the operand.

Example: ORG 800H
LJMP FAR ; Jump to FAR
FAR: INC A ; Current code location (8233H)

Encoded Instruction:

[00000010 | 10000010 | 00110011

7 0 7 0 7 0
Before After
Program Counter Program Counter
| 00001000 | 00000000 | [10000010 [00110011 |
15 8 7 0 15 8 7 0
Notes: None

LJMP

3-71

M O v MCS-51

Move Immediate Data to Indirect Address

Mnemonic: MOV

Operands: Rr Register0<=r<=1
data —256 <= data <= +255

Format: MOV @Rr,#data

Bit Pattern:

[01110117 [Immediate Data
7 0 7 0

Operation: ((Rr)) < data

Bytes: 2
Cycles: 1
Flags: C AC F0 RSt RS0 OV P
HEEEEEEE
PSW

Description: This instruction moves the 8-bit immediate data value to the
memory location addressed by the contents of register r.

Example: MOV @R1,#01H ; Move 1 to indirect address

Encoded Instruction:

[01110111 | 00000001 |

7 0 7 0
Before After
Register1 Register 1
{ 00010011 | [00010011 |
7 0 7 0
{i3H) (13H)
[01110111] [00000001 |
7 0 7 0
Notes: 4,15

3-72

MCS-51

MOV

Move Accumulator to Indirect Address

Mnemonic: MOV

Operands: Rr Register0<=r<=1

A Accumulator
Format: MOV @Rr,A
Bit Pattern:
[11110117 |
7 0
Operation: ((Rr)) < (A)
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
LI T TP T IT
PSW

Description: This instruction moves the contents of the accumulator to the
memory location addressed by the contents of register r.

Example: MOV @R0,A ; Move accumulator to indirect
; address

Encoded Instruction:
[11110110 |

7 0
Before After
Register 0 Register 0
[00111000 [00111000

7 0 7 0
(38H) (38H)
[10011001 [01001100

7 0 7 0

Accumulator
[01001100 |
7 0

Note: 15

Accumulator

[01001100 |
7 0

3-73

MOV

3-74

MCS-51

Move Memory to Indirect Address

Mnemonic: MOV
Operands: Rr Register0<=r<=1
data address 0<=dataaddress <= 255
Format: MOV @Rr,data address
Bit Pattern:
| 10100117 [DataAddress|
7 0 7 0
Operation: ((Rr)) < (data address)
Bytes: 2
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
PSW
Description: This instruction moves the contents of the specified data address to
the memory location addressed by the contents of register r.
‘Example: MOV @R1,77H : Move the contents of 77H to indirect
; address
Encoded Instruction:
[10100111 [01110111
7 0 7 0
Before After
Register 1 Register 1
| 00001000 | 00001000 |
7 0 7 0
(08H) (08H)
| 00110011 [11111110
7 0 7 0
(77H) (77H)
[11111110 11111110
7 0 7 0
Notes: 8,15

MCS-51

MOV

Move Immediate Data to Accumulator

Mnemonic: MOV

Operands: A Accumulator

data —-256 <= data <= +255
Format: MOV A, #data
Bit Pattern:

[01110100 |Immediate Data|
7 0 7 0

Operation: (A) < data

Bytes: 2

Cycles: 1

Flags: C AC F0 RS1RS0 OV P
HEEEEEED

PSW

Description: This instruction moves the 8-bit immediate data value to the
accumulator.

Example: MOV A, #01H ; Initialize the accumulator to 1

Encoded Instruction:

[01110100 | 00000001

7 0 7 0
Before After
Accumulator Accumulator
[00100110 { 00000001]
7 0 7 0
Notes: 4,5

3-75

MOV

3-76

Move Indirect Address to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

MOV

A Accumulator
Rr Register0<=r<=1

MOV A,@Rr

[1110011r |
7 0

(A) < ((Rn)

C AC F0 RS1RSO OV P
LI T T T 1 [ef
PSW

This instruction moves the contents of the data memory location
addressed by register r to the accumulator.

MOV A, @R1 ; Move indirect address to
; accumulator

Encoded Instruction:

[11100111]
7 0
Before

Accumulator

After

Accumulator

[10000110 | [11101000 |
7 0 7 0

Register 1 Register1

[00011100 | { 00011100 |
7 7 0

(1CH) (1CH)

[11101000 | [11101000 |
7 7 0
Notes: 5,15

MCS-51

MCS-51 M 0 v

Move Register to Accumulator

Mnemonic: MOV

Operands: A Accumulator

Rr Register0<=r<=7
Format: MOV A,Rr
Bit Pattern:

[11101rrr |
7 0

Operation: (A) < (Rr)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
LI T L [[[[e]
PSW
Description: This instruction moves the contents of register r to the
accumulator.
Example: MOV A,R6 ; Move R6 to accumulator

Encoded Instruction:

[11101110 |
7 0
Before After
Accumulator Accumulator
[00101110 | [10000101 |
7 0 7 0
Register 6 Register 6
[10000101 | 10000101
7 0 7 0
Note: 5

377

MOV

3-78

Move Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

MOV

A Accumulator
data address 0<=dataaddress <= 255

MOV A,data address

[11100101 |Data Address

7 0 7 0

(A) < (data address)

C AC F0 RS1RS0 OV P

HEEEREEEED
PSW

This instruction moves the contents of data memory at the specified
address to the accumulator.

MOV A,P1 ; Move the contents of Port 1 to
; accumulator

Encoded Instruction:

[11100101 [10010000 |
7 0 7 0
Before After

Accumulator

Accumulator

[00100110 | [01111001 |
7 0 7 0
Port | (90H) Port1(90H)

[01111001 | [01111001]
7 0 7 0
Notes: 5,8

MCs-51

s

MCS-51

Move Bit to Carry Flag
Mnemonic: MOV
Operands: C Carry Flag
bitaddress 0<=bitaddress <= 255
Format: MOV C,bit address
Bit Pattern:
[10100010 | Bit Address
7 0o 7 0
Operation: (C) < (bit address)
Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
lef [T L 0T 1T 1]
PSW
Description: This instruction moves the contents of the specified bit address to
the carry flag.
Example: MOV C,TXD ; Move the contents of TXD to Carry
; flag

Encoded Instruction:

[10100010 [10110110 |

7 0 7 0
Before After
Port 3 (BOH) Port 3 (BOH)
[00100010 | [00100010 |
76 0 76 0
Carry Flag Carry Flag
[o]
Notes: None

MOV

3-79

M 0 v MCS-51

Move Immediate Data to Data Pointer

Mnemonic: MOV

Operands: Data Pointer
data 0 <=data <= 65,535

Format: MOV DPTR,#data
Bit Pattern:

| 10010000 | Imm. Datahigh | Imm. Datalow |
7 0 7 07 0

Operation: (DPTR) < data

Bytes: 3
Cycles: 2
Flags: C AC F0 RSt RS0 OV P ~
PSW
Description: This instruction moves the 16-bit immediate data value to the data
‘ pointer.
Example: MOV DPTR,#0F4FH ; Initialize the data pointer to OF4FH <

Encoded Instruction:

{ 10010000 | 00001111 | 01001111 |

7 0o 7 0 7 0
Before After
Data Pointer Data Pointer
[00000000 [11011100 | [00001111 [01001111
15 8 7 0 15 8 7 0
Notes: None

MCS-51

Move Immediate Data to Register

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

MOV

Rr Register0<=r<=7
data —256 <= data <= + 255
MOV Rr #data

[011117 rr |[Immediate Datal

7 0 7 0
(Rr) < data
C AC FO0 RS1RS0 OV P
HEEEEEEE
PSW

This instruction moves the 8-bit immediate data value to register r.

MOV R5,#01H ; Initialize register1

Encoded Instruction:

Y
[011111101 | 00000001 |
1

7 ‘ 0 7 0
Before After
Register 5 Register 5
[00010011 | [00000001]
7 0 7 0
Note: 4

MOV

3-81

MOV

Move Accumulator to Register

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

£Example:

MOV

Rr Register0<=r<=7
A Accumulator
MOV Rr,A

[11111777 |

7 0

(Rr) < (A)

C AC F0 RS1RS0 OV P
HEEEEREE

This instruction moves the contents of the accumulator to register r.

MOV R7,A ; Move accumulator to register 7

Encoded Instruction:

3-82

[11111111
7 0
Before After
Register7 Register7
[11011100 | [00111000 |
7 0 7 0

Accumulator
{ 00111000 |
7 0

Notes: None

Accumulator

[00111000 |
7 0

MCS-51

paaeN

MCS-51

Move Memory to Register

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

MoV

Rr Register0<=r<=7
data address 0<=dataaddress <= 255

MOV Rr,data address

[10101 rr |Data Address|

7 0 7 0

(Rr) < (data address)

C AC FO0 RS1RS0 OV P

HEEEEEEE
PSW

This instruction moves the contents of the specified data address to
register r.

MOV R4,69H ; Move contents of 69H to register 4

Encoded Instruction:

[10101100 | 01101001
7 0o 7 0

Before After

Register 4 Register 4

[00001010 | - | 11011000 |
7 0 7 0

(69H) (69H)

[11011000 | [11011000 |
7 0 7 0
Note: 8

MOV

3-83

M O v MCS-51

Move Carry Flag to Bit

Mnemonic: MOV

Operands: bitaddress 0<= bitaddress <= 255
C Carry Flag

Format: MOV bitaddress,C
Bit Pattern:

[10010010 | BitAddress |
7 0 7 0

Operation: (bit address) < (C)

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
PSW
Description: This instruction moves the contents of the carry flag to the
specified bit address.
Example: MOV 2FH.7,C ; Move C to bit address 7FH

Encoded Instruction:

[10010010 | 01111111 |

7 0 7 0
Before After
(2FH) (2FH)
[00100110 | [10100110 |
7 0 7 0
Carry Flag Carry Flag
Notes: None

3-84

MCS-51 M OV

Move Immediate Data to Memory

Mnemonic: MOV

Operands: dataaddress 0<=dataaddress <= 255
data —-256 <= data <= + 255

Format: MOV data address ,#data

Bit Pattern:

| 01110101 [Data Address [Immediate Data|
7 0 7 07 0

Operation: (data address) < data

Bytes: 3
Cycles: 2
Flags: C AC FO0 RS1 RS0 OV P
PSW
Description: This instruction moves the 8-bit immediate data value to the
specified data address.
Example: MOV TMOD, #01H ; Initialize Timer Mode to 1

Encoded Instruction:

[01110101 [10001001 [00000001

7 0 7 0 7 0
Before After
TMOD (89H) TMOD (89H)
[01110111 | [00000001 |
7 0 7 0
Notes: 4,9

3-85

MOV

3-86

Move Indirect Address to Memory

Mnemonic: MOV

Operands: data address 0<=dataaddress <= 255

Rr Register0<=r <=1
Format: MOV data address,@Rr
Bit Pattern:

[1000011r |DataAddress|

7 0 7 0
Operation: (data address) < ((Rr))
Bytes: 2
Cycles: 2
Flags: C AC FO0 RS1 RS0 OV P
PSW

Description: This instruction moves the contents of memory at the location
addressed by register r to the specified data address.

Example: MOV 11H,@R1 ; Move indirect address to 11H

Encoded Instruction:

[10000111 | 00010001 |

7 0 7 0
Before After
(11H) (11H)
[10100101 | [10010110
7 0 7 0
Register1 Register 1
[01011000 [01011000
7 0 7 0
(58H) (58H)
[10010110 | [10010110 |
7 0 7 0
Notes: 9,15

MCS-51

e

MCS-51

MOV

Move Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

MOV

data address 0<=dataaddress <= 255
A Accumulator

MOV data address,A

[11110101 [Data Address

7 0 7 0
(data address) < (A)
C AC F0 RS1RS0 OV P
HEEEEEERR
PSW

This instruction moves the contents of the accumulator to the
specified data address.

MOV 45H,A ; Move accumulator to 45H

Encoded Instruction:

[11110101 | 01000101
7 0 7 0
Before After
(45H) (45H)
[10111101 | [10011001 |
7 0 7 0
Accumulator Accumulator
10011001 | [10011001 |
7 0 7 0
Note: 9

3-87

MOV

3-88

Move Register to Memory

Mnemonic: MOV

Operands: dataaddress 0<=dataaddress <= 255
Rr Register0<=r<=7

Format: MOV data address,Rr

Bit Pattern:

[100017 rr |DataAddress|
7 0 7 0

Operation: (data address) < (Rr)

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
PSW
Description: This instruction moves the contents of register r to the specified
data address.
Example: MOV 7EH,R3 ; Move R3 to location 7EH

Encoded Instruction:

[10001011 [01111110 |

7 0o 7 0
Before After
(7EH) (7EH)
[11110111 | [10010110 |
7 0 7 0
Register 3 Register 3
[10010110 [10010110]
7 0 7 0
Note: 9

MCS-51

PN

MCS-51

Move Memory to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

Example:

MOV

data address1 0 <=data address1 <= 255
data address2 0 <=data address2 <= 255

MOV data address1,data address2

[10000101 |Data Address2|Data Addressi|
7 0 7 07 0

(data address1) < (data address2)

C AC FO0 RS1RS0 OV P

HEEEEEEE

PSW

This instruction moves the contents of the source data address
(data address2) to the destination data address (data addressl).

MOV B, 12H ; Move the contents of 12H to B (FOH)

Encoded Instruction:

| 10000101 | 00010010 [11110000
7 0 7 0 7 0

Before After

(12H) (12H)

[11100101 | [11100101]
7 0 7 0

(FOH) (FOH)

[01011101] [11100101 |
7 0 7 0

Note: 16

MOV

3-89

MOVC

Move Code Memory Offset from Data Pointer

3-90

to Accumulator
Mnemonic: MOVC
Operands: A Accumulator
DPTR Data Pointer
Format: MOVC A,@A +DPTR
Bit Pattern:
[10010011 |
7 0
Operation: (A) < ((A) + (DPTR))
Bytes: 1
Cycles: 2
Flags: C AC FO0 RS1RS0 OV P
LI T T 1 01 [e]
PSW
Description: This instruction adds the contents of the data pointer with the
contents of the accumulator. It uses that sum as an address into
code memory and places the contents of that address in the
accumulator.
The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port 0.
Example: MOVCA,@A+DPTR ; Look up value in table

Encoded Instruction:

[10000011 |
7 0
Before

Accumulator

After

Accumulator

NNANaNnAN

iuuuuuuﬁ‘l} i00011110i

7 0

Data Pointer

7 0

Data Pointer

[00000010 | 11110001 | [00000010 [11110001 |

15 8 7 0 15 8 7 0
(0302H) (0302H)
[00011110 | [00011110]

7 0 7 0

Notes: 5

MCS-51

MCS-51

MOVC

Move Code Memory Offset from Program
Counter to Accumulator

Mnemonic: MOVC

Operands: A Accumulator
PC Program Counter
Format: MOVC A,@A+PC
Bit Pattern:
{ 10000011 |
7 0

Operation: (PC) < (PC) + 1
(A) = ((A) + (PC))

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
HEEEEEED
PSW

Description: This instruction adds the contents of the incremented program
counter with the contents of the accumulator. It uses that sum as an
address into code memory and places the contents of that address
in the accumulator.

The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port 0.

3-91

M O V C MCS-51

Example: MOVCA,@A+PC ; Look up value in table

Encoded Instruction:

[10000011 |
7 0
Before After
Accumulator Accumulator
[01110110 | { 01011000 |
7 0 7 0
Program Counter Program Counter
[00000010 [00110001 | [00000010 Joo110010 |
15 8 7 0 15 8 7 0
(02A8H) (02A8H)
[01011000 | [01011000 |
7 0 7 0
Notes: 5, 12

3-92

<z

MCS-51

MOVX

Move Accumulator to External Memory
Addressed by Data Pointer

Mnemonic: MOVX

Operands: DPTR Data Pointer
A Accumulator
Format: MOVX @DPTR,A
Bit Pattern:
[11110000 |
7 0

Operation: ((DPTR)) < (A)

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
LI T 111 1]
PSW

Description: This instruction moves the contents of the accumulator to the
off-chip data memory location addressed by the contents of the
data pointer.

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port 0.

Example: MOVX @DPTR,A ; Move accumulator at data pointer

Encoded Instruction:

[11110000 |
7 0
Before After
Data Pointer Data Pointer
[00110000 | 00110011 | [00110000 | 00110011
15 8 7 0 15 8 7 0
(3033H) (3033H)
[11111001 | [01001100 |
7 0 7 0
Accumulator Accumulator
{ 01001100 | [01001100 |
7 0 7 0

Notes: None

3-93

MOVX

3-94

Move Accumulator to External Memory
Addressed by Register

Mnemonic: MOVX

Operands: Rr Register0<=r<=1
A Accumulator
Format: MOVX @Rr,A

Bit Pattern:

[1111001 |
7 0

Operation: ((Rr)) < (A)

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P

HEEEEEEE

PSW

Description: This instruction moves the contents of the accumulator to the off-
chip data memory location addressed by the contents of register r,
and special function register P2. P2 holds the high order byte of the
address and register r holds the low order byte.

Example: MOV P2,#0
MOVX @R0,A ; Move accumulator to indirect
; address

MCS-51

MCS-51

Example: MOV P2,#0
MOVX @R0,A

Encoded Instruction:

[11100010 |
7 0

Before

Register 0

| 10111000 I

7 0

(00B8H)
[10011001 |
7 0

Accumulator

[01001100 |

7 0

Notes: None

; Move accumulator to indirect

; address

After

Register 0

[10111000 |
7 0

(00B8H)

[01001100 |
7 0

Accumulator

[01001100 |
7 0

MOVX

3-95

MOVX

396

Move External Memory Addressed by
Data Pointer to Accumulator

Mnemonic: MOVX

Operands: A Accumulator
DPTR Data Pointer

Format: MOVX A,@DPTR

Bit Pattern:

[11100000 |
7 0

Operation: (A) < ((DPTR))

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
LI TP T T 1 [ef
PSW

Description: This instruction moves the contents of the off-chip data memory
location addressed by the data pointer to the accumulator.

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port 0.

Example: MOVXA,@DPTR ; Move memory at DPTR to
; accumulator

Encoded Instruction:

[11100000 |
7 0
Before After
Accumulator Accumulator
[10000110] [11101000 |
7 0 7 0
Data Pointer Data Pointer
[01110011 | 11011100] [01110011 | 11011100 |
15 8 7 0 15 8 7 0
(73DCH) (73DCH)
[11101000 | [11101000 |
7 0 7 0
Notes: 5

MCS-51

MCS-51

MOVX

Move External Memory Addressed by
Register to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:
Bytes: 1
Cycles: 2
Flags:

Description:

MOVX

A Accumulator
Rr Register0<=r<=1

MOVXA,@Rr

[1110001 |
7 0

(A) = ((Rn)

C AC F0 RS1RS0 OV P

HEEEEEED

PSW

This instruction moves the contents of the off chip data memory
location addressed by register r, and special function register P2 to
the accumulator. P2 holds the high order byte of the address and
register r holds the low order byte.

3-97

MOVX

3-98

Example: MOV P2, #55H
MOVX A,@R1

Encoded Instruction:

[11100011]
7 0
Before

Accumulator

[01010100 |
7 0

Register 1

[00011100 |
7 0

(551CH)

[00001000 |
7 0
Notes: 5

: Move memory at R1 to accumulator

After

Accumulator
[00001000 |

7 0
Register1
[00011100 |
7 0
(551CH)
[00001000 |
7 0

MCS-51

MCS-51

Multiply Accumulator by B

Mnemonic: MUL

Operands: AB Multiply/Divide operand
Format: MUL AB
Bit Pattern:

[10100100 |
7 0

Operation: (AB) < (A) * (B)

Bytes: 1
Cycles: 4
Flags: C AC F0 RS1 RS0 OV P
(ol [[| [o] [e]
PSW

Description: This instruction multiplies the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned values. It places the low-order byte of the result
in the accumulator, and places the high-order byte of the result in
the multiplication register.

The carry flag is always cleared. If the high-order byte of the prod-
uct is not 0, then the overflow flag is set; otherwise, it is cleared.

MUL

MUL

3-100

Example: MOV B,#10
MUL AB

Encoded Instruction:

{ 10100100 |
7 0

Before

Accumulator
[00011111 |
7 0

Multiplication Register (B)

[00001010 |

7 0

Overflow Flag

[o]

Notes: 5

: Move 10 to multiplication register
: Multiply accumulator by 10

After

Accumulator

[00110110 |
7 0

Multiplication Register (B)
[00000001 |
7 0

Overflow Flag

[]

MCS-51

MCS-51 N 0 P

No Operation

Mnemonic: NOP

Operands: None

Format: NOP
Bit Pattern:
{ 00000000 |
7 0

Operation: No operation

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

HEEEEEEE

PSW

Description: This instruction does absolutely nothing for one cycle. Control
passes to the next sequential instruction.

Example: NOP ; Pause one cycle

Encoded Instruction:

[00000000 |
7 0

Notes: None

3-101

ORL

3-102

MCS-51

Logical OR Immediate Data to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ORL

A Accumulator

data —256 <= data <= + 255
ORL A,#data

[01000100 [Immediate Data

7 0 7 0
(A) ~ (A) OR data
C AC FO0 RS1 RS0 OV P
LI T T T 11 [e]
PSW

This instruction ORs the 8-bit immediate data value to the contents
of the accumulator. Bit n of the result is 1 if bit n of either operand
is 1; otherwise bit i is 0. It places the result in the accumulator.

ORL A,#00001000B ; Setbit3to1

Encoded Instruction:

| 01000100 [00001000 |

7 0 7 0
Before After
Accumulator Accumulator
[01110111 | [01111111 |
7 0 7 0
Notes: 4,5

MCS-51

Logical OR Indirect Address to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

ORL

A Accumulator

Rr Register0<=r<=1
ORL A,@Rr

[0100011 |

7 0

(A) = (A) OR (Rr)

C AC F0 RS1 RS0 OV P

LI T T [11 [e]
PSW

This instruction ORs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of either operand is 1;
otherwise bit n is 0. It places the result in the accumulator.

ORL A,@R0 ; SetbitOto1

Encoded instruction:

[01000110 |
7 0
Before

Accumulator
[00101000 |
7 0

Register 0
[01010010
7 0

(52H)

{ 00000001 |
7 0

Notes: 5,15

After

Accumulator
[00101001 |
7 0

Register 0
[01010010
7 0

(52H)

[00000001 |
7 0

ORL

3-103

ORL

Logical OR Register to Accumulator

Mnemonic: ORL
Operands: A Accumulator

Rr Register0<=r<=7
Format: ORL A,Rr
Bit Pattern:

[01001rrr |

7 0

Operation: (A) < (A)OR(Rr)
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

HEREEEED

PSW

Description: This instruction ORs the contents of register r to the contents of the

accumulator. Bit n of the result is 1 if bit n of either operand is 1;
_ otherwise bit n is 0. It places the result in the accumulator.
Example: ORL A,R4 ; Setbits7and 3to 1

Encoded Instruction:

3-104

{ 01001100 |
7 0
Before

Accumulator
[10010001 |
7 0

Register 4
{ 10001000 |
7 0

Note: 5

After

Accumulator
[10011001 |
7 0

Register 4
[10001000 |
7 0

MCS-51

MCS-51

Logical OR Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ORL

A Accumulator
data address 0<=data address <= 255

ORL A,data address

[01000101 |DataAddress|
7 0 7 0

(A) < (A) OR (data address)

C AC FO RS1RS0 OV P
HEREEEED
PSW

This instruction ORs the contents of the specified data address to
the contents of the accumulator. Bit n of the result is 1 if bit n of
either operand is 1; otherwise bit n is 0. It places the result in the
accumulator.

ORL A,37H ; OR 37H with accumulator

Encoded Instruction:

[01000101 | 00110111 |
7 0 7 0
Before After

Accumulator

Accumulator

[01110111 | [11110111 |
7 0 7 0
(37H) (37H)

{ 10000000 | [10000000 |
7 0 7 0
Notes: 5,8

ORL

3-105

ORL

3-106

Logical OR Bit to Carry Flag

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

ORL

C Carry Flag
bitaddress 0 <= bitaddress <= 255

ORL C,bitaddress

[01110010 | BitAddress |
7 0 7 0

(C) < (C) OR (bit address)

C AC F0 RS1 RSO0 OV P

lef [T 1 P |]|

PSW

This instruction ORs the contents of the specified bit address with
the contents of the carry flag. The carry flag becomes 1 when either
the carry flag or the specified bit address is 1; otherwise, it is 0. It
places the result in the carry flag.

ORL C,46.2 ; OR bit 2 of byte 46 with Carry

Encoded Instruction:

[01110010 | 01110010 |
7 0 7 0

Before After

Carry Flag Carry Flag

(46) (46)

{ 00100110 | [00100110 |
7 20 7 2.0
Notes: None

MCS-51

MCS-51

Logical OR Complement of Bit to Carry Flag

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

ORL

C Carry Flag
bit address 0<=bitaddress <= 255

ORL C,/bitaddress

[10100000 | BitAddress |
7 0 7 0

(C) < (C) OR NOT bitaddress

C AC F0 RS1 RS0 OV P

lef T T T P T T

PSW

This instruction ORs the complemented contents of the specified
bit address to the contents of the carry flag. The carry flag is 1
when either the carry flag is already 1 or the specified bit address is
0. It places the result in the carry flag. The contents of the specified
bit address is unchanged.

ORL C,/25H.5 ; Complement contents of bit5in
; byte 25H then OR with Carry

Encoded Instruction:

[10100000 [00101101 |
7 0 7 0
Before After
Carry Flag Carry Flag
(25H) (25H)
{ 00000110 | [00000110 |
75 0 75 0
Notes: None

ORL

3-107

ORL

3-108

MCS-51

Logical OR Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

Example:

ORL

data address 0<=dataaddress <= 255
data —-256 <= data <= + 255

ORL data address ,#data

[01000011 |Data Address [Immediate Data
7 0 7 07 0

(data address) < (data address) OR data

C AC F0 RS1RS0 OV P

HENEENEE

PSW

This instruction ORs the 8-bit immediate data value to the contents
of the specified data address. Bit n of the result is 1 if bit n of either
operand is 1; otherwise bit n is 0. It places the result in memory at
the specified address.

ORL 57H,#01H ; Setbit0to1

Encoded Instruction:

{ 01000011 [01010111 [00000001 |

7 0 7 0 7 0
Before After
(57H) (57H)
[01110110 | [01110111
7 0 7 0
Notes: 4,9

MCS-51

Logical OR Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ORL

data address 0<=dataaddress <= 255
A Accumulator

ORL data address,A

[01000010 [Data Address|
7 07 0

(data address) < (data address) OR A

C AC FO0 RS1RS0 OV P

HEEEEEEE

PSW

This instruction ORs the contents of the accumulator to the
contents of the specified data address. Bit n of the result is 1 if bit n
of either operand is 1; otherwise bit n is 0. It places the result in
memory at the specified address.

ORL 10H,A ; OR accumulator with the contents
; of 10H

Encoded Instruction:

{ 01000010 | 00010000
7 0 7 0
Before After

Accumulator

Accumulator

[11110000 | [11110000 |
7 0 7 0
(10H) (10H)

{ 00110001 | [11110001
7 0 7 0
Note: 9

ORL

3-109

POP

3-110

MCS-51
Pop Stack to Memory
Mnemonic: POP
Operands: data address 0<=dataaddress <= 255
Format: POP data address
Bit Pattern:
[11010000 [Data Address|
7 0 7 0
Operation: (data address) < ((SP))
(SP) < (SP) -1
Bytes: 2
Cycles: 2
Flags: C AC FO0 RS1RS0 OV P
PSW
Description: This instruction places the byte addressed by the stack pointer
at the specified data address. It then decrements the stack pointer
by 1.
Example: POP PSW ; Pop PSW parity is not affected.

Encoded Instruction:

[11010000 | 11010000 |
7 0 7 0

Before After

Accumulator Accumulator

[11010101 | [11010101 |
7 0 7 0

PSW (0DOH) PSW (0DOH)

[10101011 | [11110011 |
7 0 7 0

Stack Pointer Stack Pointer

[00010000 | [00001111 |
7 0 7 0

(10H) (10H)

[11110010 | [11110010 |
7 0 7 0

Notes: 2,8, 17

MCS-51

PUSH

Push Memory onto Stack

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

PUSH
data address 0<=dataaddress <= 255
PUSH data address

[11000000 |Data Address|

7 0 7 0

(SP) < (SP) + 1

((SP)) < (data address)

C AC FO0 RS1RS0 OV P

HEEEEEEN
PSW

This instruction increments the stack pointer, then stores the
contents of the specified data address at the location addressed by
the stack pointer.

PUSH 4DH ; Push one byte to the stack

Encoded Instruction:

[11000000 | 01001101 |

7 0 7 0

Before After

(4DH) (4DH)

[10101010 | [10101010 |
7 0 7 0

Stack Pointer Stack Pointer

| 00010000 | [00010001 |
7 0 7 0

(11H) (11H)

| 00000000 [10101010 |
7 0 7 0

Notes: 2,3,8

3-111

RET

3-112

Return from Subroutine (Non-interrupt)

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

Description:

RET
None

RET

[00100010 |
7 0

(PC high) < ((SP))
(SP) < (SP) —1
(PC low) < ((SP))
(SP) < (SP) —1

C AC F0 RS1RS0 OV P

HEEEEEEE

PSW

This instruction returns from a subroutine. Control passes to the
location addressed by the top two bytes on the stack. The high-
order byte of the return address is always the first to come off the
stack. It is immediately followed by the low-order byte.

MCS-51

MCS-51

Example: RET ; Return from subroutine

Encoded Instruction:

[00100010 |

7 0
Before After
Program Counter Program Counter
[00000010 [01010101 | [00000000 [01110011
15 8 7 0 15 8 7 0
Stack Pointer Stack Pointer
{ 00001010 | { 00001000 |
7 0 7 0
(0AH) (0AH)
[00000000 | [00000000 |
7 0 7 0
(09H) (09H)
[01110011 | [01110011 |
7 0 7 0
Notes: 2,17

RET

3-113

RETI

3-114

Return from Interrupt Routine

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

-Description:

RETI
None

RETI

[00110010 |
7 0

(PC high) < ((SP))
(SP) < (SP) -1
(PClow) < ((SP))
(SP) < (8P) -1

C AC FO0 RS1 RS0 OV P

LI TP TP T]

PSW

This instruction returns from an interrupt service routine, and
reenables interrupts of equal or lower priority. Control passes to
the location addressed by the top two bytes on the stack. The high-
order byte of the return address is always the first to come off the
stack. It is immediately followed by the low-order byte.

MCS-51

MCS-51

Example: RETI/ ; Return from interrupt routine

Encoded Instruction:

[00110010
7 0
Before After
Program Counter Program Counter
[00001010 | 10101010 | [00000000 [11110001
15 8 7 0 15 8 7 0
Stack Pointer Stack Pointer
[00001010 | [00001000 |
7 0 7 0
(0AH) (0AH)
[00000000 | [00000000 |
7 0 7 0
(09H) (09H)
[11110001 | [11110001 |
7 0 7 0
Notes: 2,17

RETI

3-115

RL

3-116

Rotate Accumulator Left

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

RL
A Accumulator
RLA
00100011 |
7 0
C ACCUMULATOR

O —|«|«|«-|«|«|«|«J«1«1
7 0

C AC F0 RS1 RS0 OV P

HEEEEEEE

This instruction rotates each bit in the accumulator one position to
the left. The most significant bit (bit 7) moves into the least signifi-
cant bit position (bit 0).

RLA ; Rotate accumulator left one positon.

Encoded Instruction:

[00100011 |
7 0
Before

Accumulator

After

Accumulator

[11010000 | Mo1000071 |

7 0

Notes: None

7 0

MCS-51 R L C

Rotate Accumulator and Carry Flag Left

Mnemonic: RLC

Operands: A Accumulator
Format: RLCA
Bit Pattern:
[00110011 |
7 0
Operation: ¢ ACCUMULATOR
D<___r<.l4_|._|..|<_|<_l<_l<_
7 0|
Bytes: 1
Cycles: 1
Flags: C AC FO0 RS1RS0 OV P
lof [[[[| [e]
PSW

Description: This instruction rotates each bit in the accumulator one position to
the left. The most significant bit (bit 7) moves into the Carry flag,
while the previous contents of Carry moves into the least significant

bit (bit 0).
Example: RLCA ; Rotate accumulator and carry left
; one positon.

Encoded Instruction:
{ 00110011 |

7 0
Before After
Accumulator Accumulator
[00011001 | [00110011 |

7 0 7 0
Carry Flag Carry Flag
Note: 5

3-117

RR

3-118

Rotate Accumulator Right

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

RR
A Accumulator
RRA
[00000011 |
7 0

ACCUMULATOR
I:l rl J*l*l*l*l»l*l*r-’
C AC F0 RS1 RS0 OV P
HEEEEEEN

PSW

This instruction rotates each bit in the accumulator one position to
the right. The least significant bit (bit 0) moves into the most
significant bit position (bit 7).

RRA ; Rotate accumulator right one
; positon.

Encoded Instruction:

| 00000011
7 0
Before After
Accumulator Accumulator
[11010001 | [11101000
7 0 7 0

Notes: None

MCS-51

Rotate Accumulator and Carry Flag Right

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

RRC
A Accumulator
RRC A
[00010011 |
7 0
C ACCUMULATOR
E_'I—»I*I*I*I*I*I*Pl*r]
A
7 0
C AC F0 RS1 RS0 OV P
o] [T T 1] Je]
PSW

This instruction rotates each bit in the accumulator one position to
the right. The least significant bit (bit 0) moves into the Carry flag,
while the previous contents of Carry moves into the most signifi-
cant bit (bit 7).

RRCA ; Rotate accumulator and carry right
; one positon.

Encoded Instruction:

[00010011 |
7 0
Before

Accumulator

After

Accumulator

[10011000 | [11001100 |

7 0 7 0
Carry Flag Carry Flag
[o]

Note: 5

RRC

3-119

SETB

3-120

Set Carry Flag

Mnemonic: SETB

Operands: C Carry Flag
Format: SETBC
Bit Pattern:
[11010011 |
7 0

Operation: (C) <1

Bytes: 1
Cycles: 1
Flags: C AC FO0 RS1 RS0 OV P
el [[[1T 1 1]
PSW

Description: This instruction sets the carry flag to 1.
Example: SETBC ; SetCarry to1

Encoded Instruction:

[11010011 |

7 0
Before After
Carry Flag Carry Flag
[o]
Notes: None

MCS-51

Pen

MCS-51

SETB

Set Bit

Mnemonic: SETB

Operands: bitaddress 0<=bitaddress <= 255
Format: SETB bitaddress

Bit Pattern:

[11010010 | BitAddress
7 0 7 0

Operation: (bitaddress) <1

Bytes: 2
Cycles: 1
Flags: C AC FO0 RS1RS0 OV P
HEEEEEEE
PSW

Description: This instruction sets the contents of the specified bit address to 1.

Example: SETB41.5 ; Set the contents of bit 5 in byte 41
- ;to1

Encoded Instruction:

[11010010 | 01001101 |

7 0 7 0

Before After

(41) (41)

{ 01000110 | [01100110 |
75 0 75 0

Notes: None

3-121

SJMP

3-122

Short Jump

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

SJMP
code address

SJUMP code address

[10000000 | Rel. Offset |
7 0 7 0

(PC) < (PC) + 2
(PC) < (PC) + relative offset

C AC FO0 RS1RS0 OV P

HEEEEEEE

This instruction transfers control to the specified code address. The
Program Counter is incremented to the next instruction, then the
relative offset is added to the incremented program counter, and
the instruction at that address is executed.

SJUMP BOTTOM ; Jump to BOTTOM
FF:INCA

BOTTOM: RRA : (15 bytes ahead from the INC
; instruction)

Encoded Instruction:

[10000000 | 00001111

7 7 0
Before After
Program Counter Program Counter

[11101000 ['11011100] [11101000 [11101101

15

7 0 15 8 7 0

Notes: 10, 11,12

MCS-51

P eeN

MCS-51

SUBB

Subtract Immediate Data from
Accumulator with Borrow

Mnemonic: SuBB

Operands: A Accumulator -
data —256 <= data <= +255

Format: SUBB A, #data

Bit Pattern:

[10010100 [iImmediate Datal
7 0 7 0

Operation: (A) < (A) — (C) —data

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
[ofe] [[[of [o]
PSW

Description: This instruction subtracts the contents of the Carry flag and the
immediate data value from the contents of the accumulator. It
places the result in the accumulator.

Example: SUBB A,#0C1H ; Subtract 0C1H from accumulator

Encoded Instruction:

[10010100 [01100100 |
7 0 7 0

Before

Accumulator
[00100110
7 0

Carry Flag

Auxiliary Carry Flag

[o]

Overflow Flag

Notes: 4,5,6, 13, 14

After

Accumulator

|01100100 |

7 0

Carry Flag

I

Auxiliary Carry Flag

'

Overflow Flag

g

3-123

SUBB

Subtract Indirect Address from
Accumulator with Borrow

3-124

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

SuUBB

A Accumulator
Rr Register0 <=r <=1

SUBB A,@Rr

[1001011 |
7 0

(A) < (A)=(C)-((Rr))

C AC F0 RS1 RSO0 OV P

[eje] | [[o] o]

PSW

This instruction subtracts the Carry flag and the memory location
addressed by the contents of register r from the contents of the
accumulator. It places the result in the accumulator.

MCS-51

MCS-51

Example: SUBBA,@R1

Encoded Instruction:

[10010111]
7 0
Before

Accumulator
| 10000110 |
7 0

Register1
[00011100 |
7 0

(1CH)
[01100010 |
7 0

Carry Flag

E

Auxiliary Carry Flag

=

Overflow Flag

g

Notes: 5,6, 13, 14, 15

; Subtract the indirect address from
; accumulator

After

Accumulator
[oot100100 |
7 0

Register 1
[00011100 |
7 0

(1CH)
[01100010 |
7 0

Carry Flag

[o]

Auxiliary Carry Flag

Overflow Flag

SUBB

3-125

‘SUBB

Subtract Register from Accumulator with Borrow

3-126

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

sSuBB

A Accumulator

Rr Register0<=r<=7
SUBB A,Rr

[10011rrr |
7 0

(A) < (A)=(C) - (Rr)

C AC F0 RSt RS0 OV P

PSW

This instruction subtracts the contents of the Carry flag and the
contents of register r from the contents of the accumulator. It
places the result in the accumulator.

MCS-51

MCS-51

Example: SUBB A,R6

Encoded Instruction:

[10011110 |
7 0
Before

Accumulator
[01110110 |
7 0

R6
[10000101 |
7 0

Carry Flag

Auxiliary Carry Flag

B

Overflow Flag

Notes: 5,6,13, 14

; Subtract R6 from accumulator

After

Accumulator
[11110000
7 0

R6
[10000101
7 0

Carry Flag

Auxiliary Carry Flag

Overflow Flag

SUBB

3-127

SUBB

Subtract Memory from Accumulator with Borrow

3-128

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

suBB

A Accumulator
data address 0<=dataaddress <=255

SUBB A,data address

[10010101 [Data Address|
7 0 7 0

(A) < (A) — (C) — (data address)

C AC FO0 RS1RS0 OV P

[efe] [| fo] [e]

PSW

This instruction subtracts the contents of the Carry flag and the
contents of the specified address from the contents of the
accumulator. It places the result in the accumulator.

MCS-51

MCS-51

SUBB A,32H ; Subtract 32H in memory from

; accumulator

Example:

Encoded Instruction:

{ 10010101 | 00110010 |
7 0 7 0

Before

Accumulator
[00100110 |
7 0

(32H)
[01010011 |
7 0

Carry Flag

[1]

Auxiliary Carry Flag

[o]

Overflow Flag

[o]

Notes: 5,6, 8, 13, 14

After

Accumulator
[11010010 |
7 0

(32H)

[01010011 |
7 0

Carry Flag

Auxiliary Carry Flag

Overflow Flag

[o]

SUBB

3-129

SWAP

Exchange Nibbles in Accumulator

3-130

Mnemonic: SWAP

Operands: A Accumulator
Format: SWAP A
Bit Pattern:
[11000100 |
7
Operation: { l
[hhhh 1]
Bytes: 1 L_.J
Cycles: 1
Flags: C AC F0 RSO RS1 OV P

L1 |

L1 7]

PSW

Description: This instruction exchanges the contents of the low order nibble
(0-3) with the contents of the high order nibble (4-7).

Example: SWAP A

Encoded Instruction:

[11000100 |
7 0
Before

Accumulator
11010000 |
7 0

Notes: None

; Swap high and low nibbles in the
; accumulator.

After

Accumulator
[00001101 |
7 0

MCS-51

MCS-51

Exchange Indirect Address with Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

XCH

A Accumulator
Rr Register0<=r<=1

XCH A,@Rr

[1100011r |
7 0

temp < ((Rr))
((Rr)) < (A)
(A) < temp

C AC FO0 RS1RS0 OV P

LI T T T[] fe

PSW

This instruction exchanges the contents of the memory location
addressed by the contents of register r with the contents of the
accumulator. '

XCHA,@R0 ; Exchange the accumulator with
; memory

Encoded Instruction:

[11000110
7 0
Before

Accumulator

After

Accumulator

[00111111] { 00011101 |
7 0 7 0
Register 0 Register 0

[01010010 | { 01010010 |
7 0 7 0

(52H) (52H)

[00011101 | [00111111]
7 0 7 0

Notes: 5,15

XCH

3-131

XC H MCS-51

Exchange Register with Accumulator

Mnemonic: XCH

Operands: A Accumulator
Rr Register0<=r<=7
Format: XCH A,Rr
Bit Pattern:
[11001rrr |
7 0
Operation: temp < (Rr)
(Rr) < (A)
(A) < temp
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

HEEEEEED

PSW

Description: This instruction exchanges the contents of register r with the
’ contents of the accumulator.

Example: XCH A,R6 ; Exchange register 6 with the
; accumulator

Encoded Instruction:

[11001100 |
7 0
Before After
Accumulator Accumulator
[10011001 | [10000000
7 0 7 0
Register 6 Register 6
[10000000 | [10011001 |
7 0 7 0
Note: 5

3-132

MCS-51 XC H

Exchange Memory with Accumulator

Mnemonic: XCH

Operands: A Accumulator
data address 0<=dataaddress <= 255
Format: XCH A,data address
Bit Pattern:
[11000101 |Data Address|
7 0 7 0
Operation: temp <« (data address)
(data address) < (A)
(A) < temp
Bytes: 2
Cycles: 1
Flags: C- AC F0 RS1RS0 OV P
LI T I 1T 1 [[e]
PSW

Description: This instruction exchanges the contents of the specified data
address with the contents of the accumulator.

Example: XCH A,37H ; Exchange accumulator with the
; contents of location 37H

Encoded Instruction:

[11000101 [00110111 |

7 0 7 0
Before After
Accumulator Accumulator
[01110111] [11110000 |
7 0 7 0
(37H) (37H)
[11110000 | [01110111 |
7 0 7 0
Notes: 5,9

3-133

XCHD

Exchange Low Nibbles (Digits) of Indirect
Address with Accumulator

3-134

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

XCHD

A Accumulator

Rr Register0<=r<=1
XCHD A,@Rr

[1101011 |
7 0

temp < ((Rr)) 0-3
((Rr)) 0-3 < (A) 0-3
(A)0-3 < temp

C AC F0 RS1 RS0 OV P

HEREEEED

PSW

This instruction exchanges the contents of the low order nibble (bits
0-3) of the memory location addressed by the contents of register r
with the contents of the low order nibble (bits 0-3) of the
accumulator.

MCS-51

MCS-51

Example: XCHD A,@R0

Encoded Instruction:

[11010110 |
7 0

Before

Accumulator

[00111111
7 0

Register 0

[01010010 |
7 0

(52H)

[00011101 |
7 0

Notes: 5, 15

; Exchange the accumulator with
; memory

After

Accumulator
[00111101 |

7 0

Register 0

[01010010
7 0

(52H)

[00011111
7 0

XCHD

3-135

XRL

3-136

MCS-51

Logical Exclusive OR Immediate Data
to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

XRL

A Accumulator

data —256 <=data <= +255
XRL A,#data

[01100100 |immediate Data|

7 0 7 0
(A) < (A) XOR data
C AC F0 RS1RS0 OV P
HEEEEEED
PSW

This instruction exclusive ORs the immediate data value to the
contents of the accumulator. Bit n of the result is O if bit n of the
accumulator equals bit n of the data value; otherwise bit n is 1. It
places the result in the accumulator.

XRL A,#0FH ; Complement the low order nibble

Encoded Instruction:

[01100100 | 00001111 |

7 0 7 0
Before After
Accumulator Accumulator
{o01110111] 01111000 |
7 0 7 0
Notes: 4,5

MCs-51

Logical Exclusive OR Indirect Address
to Accumulator

Mnemonic: XRiL

Operands: A Accumulator
Rr 0<=Rr<=1

Format: XRLA,@Rr

Bit Pattern:

[0110011r |
7 0

Operation: (A) < (A) XOR ((Rr))

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
HEREREED
PSW

Description: This instruction exclusive ORs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is O if bit n of the accumulator
equals bit n of the addressed location; otherwise bit nn is 1. It places
the result in the accumulator.

Example: XRL A,@R0 ; XOR indirect address with
; accumulator

Encoded Instruction:

[01100110
7 0
Before After
Accumulator Accumulator
{ 00101000 | { 00101001 |
7 0 7 0
Register 0 Register 0
[01010010 | [01010010 |
7 0 7 0
(52H) (52H)
| 00000001 | | 00000001
7 0 7 0
Notes: 5,15

XRL

3-137

XRL

3-138

Logical Exclusive OR Register to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

XRL

A Accumulator

Rr Register0<=r<=7
XRL A,Rr

{01101rrr |

7 0
(A) « (A) XOR (Rr)
C AC FO0 RS1 RS0 OV P
LI T T 11T [e]
PSW

This instruction exclusive ORs the contents of register r to the
contents of the accumulator. Bit n of the result is 0 if bit n of the
accumulator equals bit n of the specified register; otherwise bit n is
1. It places the result in the accumulator.

XRL A,R4 ; XOR R4 with accumulator

Encoded Instruction:

[o01101100 |
7 0
Before

Accumulator

After

Accumulator

[10010001 | [01110010 |
7 0 7 0

Register 4 Register 4

[11100011 | [11100011 |
7 0 7 0
Note: 5

MCS-51

MCS-51

Logical Exclusive OR Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

XRL

A Accumulator
data address 0<=dataaddress <= 255

XRL A,data address

[01100101 [Data Address|
7 0 7 0

(A) < (A) XOR (data address)

C AC FO0 RSt RS0 OV P

LI T T T T 1] Jej

PSW

This instruction exclusive ORs the contents of the specified data
address to the contents of the accumulator. Bit n of the result is O if
bit n of the accumulator equals bit n of the addressed location;
otherwise bit n is 1. It places the result in the accumulator.

XRL A,37H ; XOR the contents of location 37H

; with accumulator

Encoded Instruction:

[01100101 [00110111 |
7 0 7 0
Before After
Accumulator Accumulator
[01111111 [11110111 |
7 0 7 0
(37H) (37H)
[10001000 | [10001000
7 0 7 0
Notes: 4,8

XRL

3-139

XRL

3-140

MCS-51

Logical Exclusive OR Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

Example:

XRL

data address 0<=dataaddress <= 255
data —256 <= data <= +255

XRL data address ,#data

| 01100011 [Data Address [Immediate Data|
7 07 07 0

(data address) < (data address) XOR data

C AC F0 RS1 RS0 OV P

HENEEEEE

PSW

This instruction exclusive ORs the immediate data value to the
contents of the specified data address. Bit n of the result is 0 if bit n
of the specified address equals bit n of the data value; otherwise,
bit n is 1. It places the result in data memory at the specified
address.

XRL P1,#51H ; XOR 51H with thé contents of Port 1

Encoded Instruction:

[01100011 | 10010000 | 01010001 |

7 7 0 7 0
Before After
Port 1 (90H) Port 1 (90H)
[o01110110 | { 11100110 |
7 7 0
Notes: 4,9

—

MCS-51

Logical Exclusive OR Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

XRL

data address 0 <=dataaddress <= 255
A Accumulator

XRL data address ,A

| 01100010 |Data Address|
7 07 0

(data address) < (data address) XOR A

C AC F0 RS1RSO0 OV P

HEEEEEEE

This instruction exclusive ORs the contents of the accumulator to
the contents of the specified data address. Bit n of the result is 0 if
bit n of the accumulator equals bit n of the specified address;
otherwise bit n is 1. It places the result in data memory at the

specified address.

XRL 10H,A ; XOR the contents of 10H with the

; accumulator

Encoded Instruction:

[01100010 | 00010000
7 0 7 0
Before After
Accumulator Accumulator
{ 11110000 | [11110000 |
7 0 7 0
(10H) (10H)
[00110001] [11000001 |
7 0 7 0
Note: 9

XRL

3-141

Instruction Set

3-142

Notes

1.

2.
3.

10.
11.

12.
13.

14.

15.

16.

17.

The low-order byte of the Program Counter is always placed on the stack first,
followed by the high order byte.

The Stack Pointer always points to the byte most recently placed on the stack.

On the 8051 the contents of the Stack Pointer should never exceed 127. If the
stack pointer exceeds 127, data pushed on the stack will be lost, and undefined
data will be returned. The Stack Pointer will be incremented normally even
though data is not recoverable.

. The expression used as the data operand must evaluate to an eight-bit number.

This limits the range of possible values in assembly time-expressions to between
—256 and +255 inclusive.

. The Parity Flag, PSW.0, always shows the parity of the accumulator. If the

number of 1’s in the accumulator is odd, the parity flag is 1; otherwise, the
parity flag will be 0.

. All addition operations affect the Carry Flag, PSW.7, and the Auxiliary Carry

flag, PSW.6. The Carry flag receives the carry out from the bit 7 position (Most
Significant Bit) in the accumulator. The Auxiliary Carry flag receives the carry
out from the bit 3 position. Each is either set or cleared with each ADD
operation.

. The overflow flag (OV) is set when an operation produces an erroneous result

(i.e. the sum of two negative numbers is positive, or the sum of two positive
numbers is negative). OV is updated with each operation.

. If one of the 170 ports is specified by the data address, then data will be taken

from the port input pins.

. If one of the 1/0 ports is specified by the data address, then data will be taken

from, and returned to, the port latch.

The code address operand must be within the range of —128 and +127 inclusive
of the incremented program counter’s value.

The last byte of the encoded instruction is treated as a two’s complement
number, when it is added to the program counter.

The Program Counter is always incremented before the add.

The auxiliary carry flag is set if there is a borrow from bit 3 of the accumulator;
otherwise, it is cleared.

The overflow flag (OV) is set when an operation produces an erroneous result
(i.e. a positive number is subtracted from a negative number to produce a
positive result, or a negative number is subtracted from a positive number to
produce a negative result). OV is cleared with each correct operation.

On the 8051 the contents of the register used in the indirect address should not
exceed 127. When the contents of the register is 128 or greater, source operands
will return undefined data, and destination operands will cause data to be lost.
In either case, the program will continue with no change in execution time or
control flow.

If an 170 port is specified as the source operand, then the the port pins will be
read. If an I/0 port is the destination operand, then the port latch will receive
the data.

If the stack pointer is 128 or greater, then invalid data will be returned on a
POP or return.

MCS-51

CHAPTER 4
ASSEMBLER DIRECTIVES

This chapter describes the assembler directives. It shows how to define symbols and
how to control the placement of code and data in program memory.

Introduction

The MCS-51 assembler has several directives that permit you to set symbol values,
reserve and initialize storage space, and control the placement of your code.

The directives should not be confused with instructions. They do not produce exe-
cutable code, and with the exception of the DB and DW directives, they have no
direct effect on the contents of code memory. What they do is change the state of the
assembler, define user symbols, and add information (other than pure object code)
to the object file (e.g., segment definitions).

The directives are divided into the following categories:

Symbol Definition
SEGMENT
EQU
SET
DATA
IDATA
XDATA
BIT
CODE

Storage Initialization/Reservation
DS
DB
DW
DBIT

Program Linkage
PUBLIC
EXTRN
NAME

Assembler State Control
ORG
END
Segment Selection Directives
RSEG
CSEG
DSEG
XSEG
ISEG
BSEG
USING

The MCS-51 assembler is a two-pass assembler. In the first pass, symbol values are

determined, and in the second, forward references are resolved, and object code is
produced. This structure imposes a restriction on the source program: expressions

4-1

Assembler Directives

which define symbol values (see Symbol Definition Directives) and expressions
which control the location counter (see ORG, DS, and DBIT directives) may not
have forward references.

The Location Counter

The location counter in ASMS1 is a pointer to the address space of the active seg-
ment. When a segment is first activated, the location counter is 0 (unless a base
address was specified using the segment select directives). The location counter is
changed after each instruction by the length of the instruction.You can change its
value with the ORG directive, which sets a new program origin for statements that
follow it. The storage initialization and reservation directives (DS, DB, DW, and
DBIT) change the value of the location counter as statements are encountered within
a segment. If you change segments and later return to that segment, the location
counter is restored to its previous value. Whenever the assembler encounters a label,
it assigns to the label the current value of the location counter and the type of the
current segment.

The dollar sign ($) indicates the value of the active segment’s location counter.
When you use the location counter symbol, keep in mind that its value changes with
each instruction, but only after that instruction has been completely evaluated. If
you use $ in an operand to an instruction or a directive, it represents the code
address of the first byte of that instruction.

MSG: DB MSG_LENGTH,'THIS IS A MESSAGE’
MSG__LENGTH EQU $-MSG-1 ;message length

‘Symbol Names

A symbol name must begin with a letter or a special character (either ? or __),
followed by letters, special characters, or digits.

You can use up to 255 characters in a symbol name, but only the first 31 characters
are significant. A symbol name may contain upper- or lower-case characters, but the
assembler converts to upper-case characters for internal representation. So, to
ASMS51, “buffer’’ is the same as “‘BUFFER’’ and the name

“_A_THIRTY_ONE_CHARACTER_STRING__"
is the same as the name
“_A_THIRTY_ONE_CHARACTER__STRING__PLUS__THIS.”
although the strings are different.
The instruction mnemonics, assembly-time operators, predefined bit and data
addresses, segment attributes, and assembler directives may not be used as user-

defined symbol names. For a complete list of these reserved words, refer to
Appendix F.

Statement Labels

A label is a symbol. All of the rules for forming symbol names apply to labels. A
statement label is the first field in a line, but it may be preceded by any number of
tabs or spaces. You must place a colon (:) after a label to identify it as a label. Only
one label is permitted per line.

MCS-51

<

MCS-51

Assembler Directives

Labels are allowed only before empty statements, machine instructions, data initial-
ization directives (DB and DW), and storage reservation directives (DS and DBIT).
Simple names (without colons) can only precede symbol definition directives (EQU,
SET, CODE, DATA, IDATA, XDATA, BIT, and SEGMENT). All other
statements may not be preceded by labels or simple names.

When a label is defined, it receives a numeric value and segment type. The numeric
value will always be the current value of the location counter of the currently
selected segment at the point of use. The value of the label will be relocatable or
absolute depending on the relocatability of the current segment. The segment type
will be equivalent to the segment type of the current segment.

Several examples of lines containing labels are shown below:

LABEL1: DS 1

LABEL2: ;This line contains no instruction; itis an empty statement
LAB3: DB 27,33,FIVE’

MOV__PROC: MOV DPTR,#LABEL3

You can use labels like any other symbol, as a memory address, or a numeric value
in an assembly-time expression. A label, once defined, may not be redefined.

Symbol Definition

The symbol definition directives allow you to create symbols that can be used to
represent segments, registers, numbers, and addresses. None of these directives may
be preceded by a label.

Symbols defined by these directives may not have been previously defined and may
not be redefined by any means. The SET directive is the only exception to this.

SEGMENT Directive

The format for the SEGMENT directive is shown below. Note that a label is not
permitted.

relocatable__segment__name SEGMENT segment__type [relocation__type]

The SEGMENT directive allows you to declare a relocatable segment, assign a set of
attributes, and initialize the location counter to zero (0).

Although the name of a relocatable segment must be unique in the module, you can
define portions of the segment within other modules and let RLS51 combine them.
When you do this, the segment type attributes must all be the same and the reloca-
tion types must either be the same or be of two types, one of which is UNIT (see
below). In the latter case, the more restrictive type will override.

The segment type specifies the address space where the segment will reside. The
allowable segment types are: :

¢ CODE—the code space
e XDATA—the external data space

DATA—the internal data space accessible by direct addressing (0 to 127)

* IDATA—the entire internal data space accessible by indirect addressing (0 to
127)

e BIT—the bit space (overlapping locations 32 to 47 of the internal data space)

4-3

Assembler Directives

The relocation type, which is optional, defines the relocation possibilities to be
assigned by the RL51. The allowable relocation types are:

* PAGE—specifies a segment whose start address must be on a 256-byte page
boundary. Allowed only with CODE and XDATA segment types.

* INPAGE—specifies a segment which must be contained in a 256-byte page.
Allowed only with CODE and XDATA segment types.

e INBLOCK—specifies a segment which must be contamed in a 2048- byte block.
Allowed only for CODE segments.

e BITADDRESSABLE—specifies a segment which will be relocated by RLS51
within the bit space on a byte boundary. Allowed only for DATA segments;
limited to a 16-byte maximum size.

¢ UNIT—specifies a segment which will be aligned on a unit boundary. This will
be a byte boundary for CODE, XDATA, DATA, and IDATA segments and a
bit boundary for BIT segments. This relocation type is the default value.

NOTE

When used in expressions, the segment symbol stands for the base
address of the combined segment.

Any DATA or IDATA segments may be used as a stack (there is no explicit stack
segment).

For example,

STACK SEGMENT IDATA

RSEG STACK
DS 10H ;Reserve 16 bytes for stack
MOV SP.#STACK-1 ;Initialize stack pointer

EQU Directive

The format for the EQU directive is shown below. Note that a label is not permitted.

J

symbol_name EQU expression
or
symbol_name EQU special__assembler__symbol

The EQU directive assigns a numeric value or special assembler symbol to a
specified symbol name. The symbol name must be a valid ASM51 symbol as
described above.

If you assign an expression to the symbol, it must be an absolute or simple
relocatable expression with no forward references. You can use the symbol as a data
address, code address, bit address, or external data address depending on the seg-
ment type of the expression, i.e., the symbol will have the segment type of the
expression. If the expression evaluates into NUMBER, the symbol will be con-
sidered as such and will be allowed to be used everywhere.

The special assembler symbols A, RO, R1, R2, R3, R4, R5, R6, and R7 can be
represented by user symbols defined with the EQU directive. If you define a symbol
to a register value, it will have a type ‘“‘REG”’. It can only be used in the place of that
register in instruction operands.

MCS-51

MCS-51 Assembler Directives

A symbol defined by the EQU directive cannot be defined anywhere else.

The following examples show several uses of EQU:

ACCUM EQU A ; define ACCUM to stand for A
; (the 8051 accumulator)

N27 EQU 27 ; set N27 to equal 27

HERE EQU $; set HERE to current location counter
; value

DADDR1 EQU DADDRO+1 ; Assuming DADDRO is a DATA address
; DADDR1 will also be a DATA address

SET Directive

The format for the SET directive is shown below.
symbol__name SET expression

or
symbol__name SET special__assembler_symbol

The SET directive operates similiar to EQU. The difference is that the defined sym-
bol can be redefined later, using another SET directive.

NOTE

You cannot set a symbol which was equated and you cannot equate a sym-
bol which was set.

The following examples show several uses of SET:

COUNT SET 0 ;Initialize absolute counter

COUNT SET COUNT+1 ;increment absolute counter

HALF SET WHOLE/2 ;Give half of WHOLE to HALF
;the remainder is discarded

H20 SET 32 ;Set H20 to 32

INDIRECT SET Rt ;Set INDIRECT to Rt

BIT Directive
The format for the BIT directive is shown below.
symbol_name BIT bit__address
The BIT directive assigns a bit address to the specified symbol name.

Bit address format is described in Chapter 2. The symbol gets the segment type BIT.
A symbol defined as BIT may not be redefined elsewhere in the program.

The following examples show several uses of BIT:

RSEG DATA_SEG ;A relocatable bit addressable segment

CONTROL: DS 1

ALARM BIT CONTROL.0 ;Bitin arelocatable byte
OPEN__DOOR BIT ALARM +1 ;The next bit
RESET_BOARD BIT 060H ;An absolute bit

4-5

Assembler Directives

4-6

DATA Directive
The format for the DATA directive is shown below.

symbol__name DATA expression
The DATA directive assigns an on-chip data address to the specified symbol name.
The expression must be an absolute or simple relocatable expression. Absolute
expressions greater than 127 must specify a defined hardware register (see Chapter
1). The segment type of the expression must be+either DATA or NUMBER. The
symbol gets the segment type DATA.

A symbol defined by the DATA directive may not be redefined elsewhere in the
program.

The following examples show several uses of DATA:

CONIN DATA SBUF ;define CONIN to address
;the serial port buffer

TABLE__BASE DATA 70H ;define TABLE__BASE to be
;atlocation 70H

TABLE_END DATA 7FH ;define TABLE__END to be
;attop of RAM (7FH)

REL_TABLE DATA REL_START+1 ;Define REL_TABLEtobea
;relocatable symbol (assuming
;REL__START is)

XDATA Directive
The format for the XDATA directive is shown below.

symbol_name XDATA expression
The XDATA directive assigns an off-chip data address to the specified symbol
name. The expression must be an absolute or simple relocatable expression. If the
expression does not evaluate to a number, its segment type must be XDATA. The
symbol gets the segment type XDATA. A symbol defined by the XDATA directive
may not be redefined elsewhere in the program.

The following examples show several uses of XDATA:

RSEG XSEG1
ORG 100H
DATE: DS 5 ;Define DATE to 100H off XSEG1 base
TIME XDATA DATE+5 ;define TIME to be 5 bytes after DATE
PLACE XDATA TIME+3 ;define PLACE to be 3 bytes after TIME
IDATA Directive

The format for the IDATA directive is shown below.
symbol__name IDATA expression

The IDATA directive assigns an indirect internal data address to the specified sym-
bol name. The expression must be an absolute or simple relocatable expression.
Absolute expressions may not be larger than 127 for the 8051. The segment type of
the expression must be either IDATA or NUMBER. The symbol gets the segment
type IDATA. A symbol defined by the IDATA directive may not be redefined
elsewhere in the program.

MCS-51

MCS-51

Assembler Directives

The following examples show several uses of IDATA:

BUFFER IDATA 60H

BUFFER_LEN EQU 20H

BUFFER_END IDATA BUFFER+ BUFFER__LEN-1
CODE Directive

The format for the CODE directive is shown below.
symbol_name CODE expression

The CODE directive assigns a code address to the specified symbol name. The
expression must be an absolute or simple relocatable expression. If the expression
does not evaluate to a number, its segment type must be CODE. The symbol gets a
segment type of CODE. A symbol defined by the CODE directive may not be
redefined elsewhere in the program.

The following examples show several uses of the CODE directive:

RESTART CODE 00H
INT_VECO CODE 03H
INT__VEC1 CODE 0BH
INT__VEC2 CODE 1BH

Storage Initialization and Reservation

The storage initialization and reservation directives are used to initialize and reserve
space in either word, byte, or bit units. The space reserved starts at the point indi-
cated by the current value of the location counter in the currently active segment.
These directives may be preceded by a label.

DS Directive
The format of the DS directive is as follows:
[label:] DS expression

The DS directive reserves space in byte units. It can be used in any segment except a
BIT type segment. The expression must be a valid assembly-time expression with no
forward references and no relocatable or external references. When a DS statement
is encountered in a program, the location counter of the current segment is incre-
mented by the value of the expression. The sum of the location counter and the
specified expression should not exceed the limitations of the current address space,
or those set by the current relocation type.

DBIT Directive
The format of the DBIT directive is as follows:
[/abel:] DBIT expression
The DBIT directive reserves a space in bit units. It can be used only in a BIT type

segment. The expression must be a valid assembly-time expression with no forward
references. When the DBIT statement is encountered in a program, the location

4-7

Assembler Directives

4-8

coun<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>