
MCS™-S1 MACRO ASSEMBLER
USER'S GUIDE

Order Number: 9800937-02

Copyright © 1979, 1981 Intel Corporation
L-_____ --J1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 . IL...-_____ --J

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or bl/ any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug·A.Bubble
CREDIT inlel MCS PROMPT
i lntelevision Meaadlassis Promware
ICE Intelle<: Micromainframe RMX/BO
iCS iRMX Micromap Syslem2000
im iSBC Mulribus UPI
lnsite iSBX Multimodule ,&ope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

!A450/981/7K DO !

REV. REVISION HISTORY DATE

-001 Original issue. 12179

Change 1 Add Macro Processing Language facility and 3/80
correct minor errors.

-002 Add several new directives and the concepts of 9/81
relocatable object code and intermodule linkage.
Correct errors.

:

iii

PREFACE I

This manual describes how to program the MCS™-51 single-chip microcomputers in
assembly language. It also describes the operating instructions for the MCS-51
Macro Assembler.

The term "MCS-51" refers to an entire family of single-chip microcomputers, all of
which have the same basic processor design. They include:

• 8051-the 8x51 processor with 4K bytes ROM. It is manufactured by Intel with
ROM memory pre-programmed.

• 8031-the 8x51 processor with no ROM on-chip.

• 8751-the 8x51 processor with 4K bytes EPROM. The 8751 can be programmed
and erased many times by the user.

Throughout this manual when we wish to refer to a specific chip, but also point out
something that applies to the entire family, we speak of the 8051. For software pur­
poses, these processors are equivalent.

This book is intended as a reference, but it contains some instructional material as
well. It is organized as follows:

• Chapter I-Introduction, describes assembly language programming and
provides an overview of the 8051 hardware.

• Chapter 2-0perands and Expressions, describes each operand class and
discusses absolute and relocatable expressions .

• ,- Chapter 3-Instruction Set, completely describes the operation of each
instruction in alphabetical order.

• Chapter 4-Directives, describes how to define symbols and how to use all
directives.

• Chapter 5-Macros, defines and describes the use of the Macro Processing
Language.

• Chapter 6-Assembler Operation and Control, describes how to invoke the
assembler and how to control assembler operation.

• Chapter 7-Assembler Output: Error Messages and Listing File Format,
describes' how to interpret error messages and the listing file.

Before you program one of the MCS-51 microcomputers, you should read the
MCS-5J User's Manual, Order Number 121517.

Related Literature

To help you use this manual, you should familiarize yourself with the following
manuals:

• MCS-5J Utilities User's Guide,Order Number 121737 (describes the RL51
Relocator and Linker process)

• ,MCS-5J Family of Single-Chip Microcomputers User's Manual, Order Number
121517

• ISIS-II User's Guide, Order Number 9800306

• MCS-5J Macro Assembly Language Pocket Reference, Order Number
9800935

v

vi

• MCS-51 Assembler and Utilities Pocket Reference, Order Number 121817

• ICE-51 In-Circuit Emulator Operating Instructions for ISIS-ll Users, Order
Number 9801004

• Universal PROM Programmer User's ManuaJ~ Order Number 9800819

• Universal PROM Programmer Reference Manual, Order Number 9800133

CHAPTER 1
INTRODUCTION

PAGE

What is an Assembler? I-I
How to Develop a Program I-I

The Advantages of Modular Programming 1-2
Efficient Program Development 1-2
Multiple Use of Subprograms 1-2
Ease of Debugging and Modifying 1-2

MCS-51 Modular Program Development Process. 1-2
Segments, Modules, and Programs.. 1-2
Program Entry and Edit 1-3
Assembly 1-3

Object File 1-3
Listing File 1-4

Relocation and Linkage 1-4
Conversion to Hexadecimal Format 1-4
Keeping Track of Files•.............. 1-4

Writing, Assembling, and Debugging an
MCS-51 Program 1-4

Hardware Overview 1-6
Memory Addresses 1-8
Data Units 1-9
Arithmetic and Logic Functions 1-10
General-Purpose Registers I-II
TheStack ...•............................... I-II
Symbolically Addressable Hardware Registers ... 1-12
Bit Addressing 1-13
The Program Status Word 1-13
Timer and Counter 1-14
110 Ports 1-14
Serial 110 Port. 1-15
Interrupt Control 1-15
Reset 1-17

CHAPTER 2
OPERANDS AND EXPRESSIONS
Operands 2-1

Special Assembler Symbols 2-2
Indirect Addressing 2-3
Immediate Data 2-3
Data Addressing 2-4
Bit Addressing 2-5
Code Addressing 2-7

Relative Jump (SJMP) and Conditional
Jumps 2-8

In Block Jumps and Calls (AJMP and
ACALL) 2-8

Long Jumps and Calls (LJMP and LCALL) ... 2-8
Generic Jump and Call (JMP and CALL) 2-9

Assembly-Time Expression Evaluation 2-9
Specifying Numbers 2-9
ASM51 Number Representation 2-10
Character Strings in Expressions 2-10
Use of Symbols 2-11

CONTENTS

PAGE
U sing Operators in Expressions ..•............. 2-13

Arithmetic Operators 2-13
Logical Operators :.............. 2-13
Special Assembler Operators 2-14
ReiationalOperators 2-14

Operator Precedence 2-15
Segment Typing in Expressions 2-15
Relocatable Expression Evaluation 2-16

Simple Relocatable Expressions 2-16
General Relocatable Expressions 2-16

CHAPTER 3
INSTRUCTION SET
Introduction.. 3-1
Notes .. " " 3-142

CHAPTER 4
ASSEMBLER DIRECTIVES
Introduction .".".............................. 4-1

The Location Counter 4-2
Symbol Names .. "........................... 4-2
Statement Labels 4-2

Symbol Definition 4-3
SEGMENT Directive 4-3
EQU Directive ... ".......................... 4-4
SET Directive " "...................... 4-5
BIT Directive 4-5
DATA Directive 4-6
XDATADirective 4-6
IDA T A Directixe 4-6
CODE Directive .. "......................... 4-7

Storage Initialization and Reservation 4-7
DS Directive 4-7
DBIT Directive ."........................... 4-7
DB Directive 4-8
DW Directive ... "........................... 4-8

Program Linkage 4-9
PUBLIC Directive 4-9
EXTRN Directive 4-9
NAME Directive 4-10

Assembler State Controls 4-10
END Directive "" "." 4-10
ORG Directive" ... " '" 4-11

Segment Selection Directives 4-11
USING Directive 4-12

CHAPTERS
THE MACRO PROCESSING LANGUAGE
Introduction ".................. 5-1
Macro Processor Overview 5-1
Introduction to Creating and Calling Macros 5-2

Creating Simple Macros 5-2
Macros with Parameters 5-5

vii

PAGE

LOCAL Symbols List 5-6
The Macro Processor's Built-in Functions 5-7

Comment, Escape, Bracket and MET ACHAR
Built-in Functions 5-8

Comment Function 5-8
Escape Function 5-9
Bracket Function 5-9
METACHAR Function 5-10

Numbers and Expressions in MPL 5-10
SET Macro 5-11
EVAL Macro 5-11

Logical Expressions and String Comparisons
in MPL 5-12

Control Flow Functions 5-13
IF Function 5-13
WHILE Function 5-14
REPEAT Function 5-15
EXIT Function 5-15

String Manipulation Built-in Functions 5-16
LEN Function 5-16
SUBSTR Function 5-16
MATCH Function 5-17

Console I/O-Built-in Functions 5-18
Advanced MPL Concepts 5-18

Macro Delimiters 5-18
Implied Blank Delimiters 5-19
Identifier Delimiters 5-19
Literal Delimiters 5-20

Literal vs. Normal Mode 5-21
Algorithm for Evaluating Macro Calls 5-22

CHAPTER 6
ASSEMBLER OPERATION
AND CONTROLS
How to Invoke the MCS-51 Macro Assembler 6-1
Assembler Controls. 6-2

CHAPTER 7
ASSEMBLER OUTPUT: ERROR
MESSAGES AND LISTING FILE FORMAT
Error Messages and Recovery 7-1

Console Error Messages 7-1
I/O Errors 7-1
ASM51 Internal Errors 7-2
Invocation Line Errors 7-2

viii

CONTENTS (Cont'd.) I

PAGE

Listing File Error Messages 7-4
Source File Error Messages 7-4
Macro Error Messages 7-10
Control Error Messages 7-13
Special Assembler Error Messages 7-14
Fatal Error Messages 7-15

Assembler Listing File Format 7-15
Listing File Heading 7-18
Source Listing 7-18
Format for Macros and INCLUDE Files 7-19
Symbol Table 7-20
Listing File Trailer 7-21

APPENDIX A
ASSEMBL Y LANGUAGE
BNFGRAMMAR

APPENDIXB
INSTRUCTION SET SUMMARY

APPENDIXC
ASSEMBLER DIRECTIVE SUMMARY

APPENDIXD
ASSEMBLER CONTROL SUMMARY

APPENDIXE
MPL BUILT-IN FUNCTIONS

APPENDIXF
RESERVED SYMBOLS

APPENDIXG
SAMPLE PROGRAM

APPENDIXH
REFERENCE TABLES

APPENDIXJ
ERROR MESSAGES

APPENDIXK
CHANGING ABSOLUTE PROGRAMS
TO RELOCA TABLE PROGRAMS

TABLE

I-I
1-2

1-3
2-1
2-2
2-3

2-4
2-5

TITLE PAGE

Register Bank Selection 1-11
Symbolically Addressable Hardware

Registers for the 8051 1-12
State of the 8051 after Power-up 1-17
Special Assembler Symbols 2-2
Predefined Bit Addresses for 8051 2-7
Assembly Language Number

Representation 2-9
Examples of Number Representation 2-9
Interpretations of Number

Representation 2-10

FIGURE TITLE PAGE

1-1

1-2
1-3
1-4
1-5

1-6

1-7
1-8

1-9
1-10
1-11
1-12

Assembler and Linker IRelocator
Outputs 1-3

MCS-51 Program Development Process ... 1-5
Sample Program Listing 1-5
8051 Block Diagram 1-7
MCS-51 Code Address Space and External

Data Address Space 1-8
MCS-51 Data Address Space and Bit

Address Space 1-9
MCS-51 Data Units' 1-10
Bit Descriptions of Program Status

Word 1-13.
Bit Descriptions of TCON 1-14
Bit Descriptions for Port 3 ' 1-15
Bit Descriptions for Serial Port Control ... 1-15
Bit Descriptions for Interrupt Enable and

Interrupt Priority 1-16

TABLE

2-6
2-7
2-8
2-9
2-10
3-1
6-1
B-1
B-2
C-I
D-I

TABLESi

TITLE PAGE

Predefined Data Addresses for 8051 2-12
Arithmetic Assembly-Time Operators 2-13
Logical Assembly-Time Operators 2-13
Special Assembly-Time Operators 2-14
Relational Assembly-Time Operators 2-14
Abbreviations and Notations Used 3-3
Assembler Controls 6-2
Instruction Set Summary B-2
Instruction Opcodes in Hexadecimal B-9
Assembler Directives C-l
Assembler Controls D-l

ILLUSTRATIONS

FIGURE TITLE PAGE

2-1

2-2a
2-2b

3-1
5-1

7-1.
7-2
7-3
7-4
7-5
0-1
K-l

Hardware Register Address Area
for 8051 2-4

Bit Addressable Bytes in RAM 2-6
Bit Addressable Bytes in Hardware

Register Address Area for 8051. 2-6
Format For Instruction Definitions 3-2
Macro Processor versus Assembler-

Two Different Views of a Source File. . .. 5-1
Example Listing File Format 7-15
Example Heading 7-18
Example Source Listing 7-18
Examples of Macro Listing Modes 7-19
Example Symbol Table Listing 7-21
Sample Relocatable Program 0-1
Sample Absolute Program K-I

ix

"

CHAPTER 1
INTRODUCTION

This manual describes the MCS™-Sl Macro Assembler and explains the process of
developing software in assembly language for the MCS-Sl family of processors. The
8051 is the primary processor described in this manual.

Assembly language programs translate directly into machine instructions which
instruct the processor as to what operation it should perform. Therefore the
assembly language programmer should be familiar with both the microcomputer
architecture and assembly language. This chapter presents an overview of the
MCS-Sl Macro Assembler and how it is used, as well as a brief description of the
8051 architecture and hardware features.

What is an Assembler?

An assembler is a software tool-a program-designed to simplify the task of
writing computer programs. It performs the clerical task of translating symbolic
code into executable object code. This object code may then be programmed into
one of the MCS-Sl processors and executed. If you have ever written a computer
program directly in machine-recognizable form, such as binary or hexadecimal
code, you will appreciate the advantages of programming in a symbolic assembly
language.

Assembly language operation codes (mnemonics) are easily remembered (MOY for
move instructions, ADD for addition). You can also symbolically express addresses
and values referenced in the operand field of instructions. Since you assign these
names, you can make them as meaningful as the mnemonics for the instructions.
For example, if your program must manipulate a date as data, you can assign it the
symbolic name DATE. If your program contains a set of instructions used. as a tim­
ing loop (a set of instructions executed repeatedly until a specific amount of time
has passed), you can name the instruction group TIMER_LOOP.

The assembly program has three constituent parts:

Machine instructions
Assembler directives
Assembler controls

A machine instruction is a machine code that can be executed by the machine.
Detailed discussion of the machine instructions is presented in Chapter 3.

Assembler directives are used to define the program structure and symbols, and
generate non-executable code (data, messages, etc.). See Chapter 4 for details on all
of the assembler directives.

Assembler controls set the assembly modes and direct the assembly flow. Chapter 6
contains a comprehensive guide to all the assembler controls.

How to Develop a Program

ASMSI enables the user to program in a modular fashion. The following paragraphs
explain the basics of modular program development.

1-1

Introduction

1-2

The Advantages of Modular Programming

Many programs are too long or complex to write as a single unit. Programming
becomes much simpler when the code is divided into small functional units. Modular
programs are usually easier to code, debug, and change than monolithic programs.

The modular approach to programming is similar to the design of hardware which
contains numerous circuits. The device or program is logically divided into "black
boxes" with specific inputs and outputs. Once the interfaces between the units have
been defined, detailed design of each unit can proceed separately.

Efficient Program Development

Programs can be developed more quickly with the modular approach since small
subprograms are easier to understand, design, and test than large programs. With
the module inputs and outputs defined, the programmer can supply the needed input
and verify the correctness of the module by examining the output. The separate
modules are then linked and located into one program module. Finally, the com­
pleted module is tested.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular programming
allows these sections to be saved for future use. Because the code is relocatable,
saved modules can be linked to any program which fulfills their input and output
requirements. With monolithic programming, such sections of code are buried
inside the program and are not so available for use by other programs.

Ease of Debugging and Modifying

Modular programs are generally easier to debug than monolithic programs. Because
of the well-defined module interfaces of the program, problems can be isolated to
specific modules. Once the faulty module has been identified, fixing the problem is
considerably simpler. When a program must be modified, modular programming
simplifies the job. You can link new or debugged modules to the existing program
with the confidence that the rest of the program will not be changed.

MCS-S1 Modular Program Development Process

This section is a brief discussion of the program development process with the
relocatable MCS-Sl assembler (ASMSl), Linker/Relocator (RLSl), and code con­
verdon programs.

Segments, Modules, and Programs

In the initial design stages, the tasks to be performed by the program are defined,
and then partitioned into subprograms. Here are brief introductions to the kinds of
subprograms used with the MCS-Sl assembler and linker/relocator.

A segment is a block of code or data memory. A segment may be relocatable or
absolute. A relocatable segment has a name, type, and other attributes. Segments
with the same name, from different modules, are considered part of the same seg­
ment and are called "partial segments." Partial segments are combined into
segments by RLSI. An absolute segment has no name and cannot be combined with
other segments.

MCS-SI

MeS-51

A module contains one or more segments or partial segments. A module has a name
assigned by the user. The module definitions determine the scope of local symbols.
An object file contains one or more modules. You can add modules to a file by
simply appending another object file to that file (e.g., COPY file1,file2 TO file3).

A program consists of a single absolute module, merging all absolute and
relocatable segments from all input modules.

Program Entry and Edit

After the design is completed, the source code for each module is entered into disk
file using a text editor. When errors are detected in the development process, the text
editor may be used to make corrections in the source code.

Assembly

The assembler (ASM51) translates the source code into object code. The assembler
produces an object file (relocatable, when at least one input segment is relocatable,
or absolute), and a listing file showing the results of the assembly. (Figure I-I sum­
marizes the assembly and the link and relocate outputs.) When the ASM51' invoca­
tion contains the DEBUG control, the object file also receives the symbol table and
other debug information for use in symbolic debugging of the program.

Object File. The object file contains machine language instructions and data that
can be loaded into memory for execution or interpretation. In addition, it contains
cpntrol information governing the loading process.

The assembler can produce object files in relocatable object code format. However,
if the module contains only absolute segments and no external references, the object
file resulting from assembly is absolute. It can be loaded without the need of the
RL51 pass.

ASM51
ASSEMBLER

PROGRAM

RL51
LINK&

LOCATE

Figure 1-1. Assembler and Linker/Relocator Outputs 937-1

Introduction

1-3

Introduction

1-4

Listing File. The listing file provides a permanent record of both the source pro­
gram and the object code. The assembler also provides diagnostic messages in the
listing file for syntax and other coding errors. For example. if you specify a 16-bit
value for an instruction that can only use an 8-bit value. the assembler tells you that
the value exceeds the permissible range. Chapter 7 describes the format of the listing
file. In addition. you can also request a symbol table to be awended to the listing.
The symbol table lists all the symbols and their attributes.

Relocation and Linkage

After assembly of all modules of the program, RL51 processes the object module
files. The RL51 program assigns absolute memory locations to all the relocatable
segments, combining segments with the same name and type. RL51 also resolves all
references between modules. RL51 outputs an absolute object module file with the
completed program, and a summary listing file showing the results of the
link/ relocate process.

Conversion to Hexadecimal Format

The absolute object code produced by RL51 can be programmed into memory and
executed by the target processor without further modification. However, certain
MCS-51 support products (such as SDK-51) require the hexadecimal object code
format. For use with these products, the absolute object file must be processed by
the OBJHEX code conversion program. Refer to the ISIS-II System User's Guide
(9800306).

Keeping Track of Files

It is convenient to use the extensions of filenames to indicate the stage in the process
represented by the contents of each file. Thus. source code files can use extensions
like .SRC or .A51 (indicating that the code is for input to ASM5I). Object code files
receive the extension .OBJ by default, or the user can specify another extension.
Executable files generally have no extension. Listing files can use .LST, the default
extension given by the assembler. RL51 uses .M51 for the default summary listing
file extension.

Use caution with the extension .TMP, as many ISIS-II utilities create temporary files
with this extension. These utilities will overwrite your file if it has the same name and
extension as the temporary files they create.

Writing, Assembling, and Debugging an MCS-51 Program

There are several steps necessary to incorporate an MCS-51 microcomputer in your
application. The flow chart in Figure 1-2 shows the steps involved in preparing the
code. If you are developing hardware for your application in addition to the soft­
ware, consult the MCS-5J User's Manual.

Figure 1-3 shows an assembly listing of a sample program. The assembler was
invoked by:

-ASM51 :F1:DEMO.A51
ISIS-II MCS-51 MACRO ASSEMBLER, V2.0

ASSEMBLY COMPLETE, NO ERRORS FOUND

MCS-Sl

MeS-51 Introduction

TEXT
EDITOR

LEGEND

D INTEL DEVELOPMENT TOOLS
AND OTHER PRODUCTS

O USER-CODED
SOFTWARE

MCS-51 MACRO ~SS=~SLE~

AS .. S1
ASSE .. BLER

Rl51
LINKER I

LOCATOR

(FOR ABSOLUTE PROGRA .. S)

FACTORY
"ASK

PRO"
OGRA ER

ICE-51
IN-CIRCUIT
EMULATOR

OBJHEX
CODE

CONVERSION

Figure 1-2. MCS-Sl Program Development Process

a051-3ASED MONITOR

ISIS-II MC5-51 MACRO ASSEM8LER v2.0
OBJECT ~ODULE PLACED IN :Fl:DEM~.03J

ASSEMBLER INVdKED SY: ASMS1 :~1:D~~O.A51

LOC OBJ

0000
OOOA

0000 020000

0000 900000
0003 120000
0006 020000

0000 1&
0001 38303531
0005 20424153
0009 45442040
0000 4F4E4954
0011 4F522C20
0015 56312E30
0019 00
001A OA

OOU

F

F
F
F

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25

SOURCE

$TITLE(80S1-BASEO MONITOR)
iTh& m~in module of an 8051-based Monitor

iSymbol
PRDG_S
TASLE_S
CR
LF

d&finitions
SEGMENT CODE iContains the e.ectutable program
SEGMENT CODE iContains tables and other constant
EQu 13 iCarriage-Return character (ASCII)
EQU 10 iLine-Feed character (ASCII)
EXTRN COOE(CONSOL_OUT, MONITOR) iOefined else.here

iTh& main program

START:

SIGNON:

LEN

CSEG AT a
JMP START

RSEG

HOV
CALL
JMP

RSEG
OS

EQU

EIilO

PROG_S

oPTR,IISIGNOIil
CONSOL_OUT
MONITOR

TABLE_S
LEN,"8051-BASED

S-SIGNON-l

;Skip interrupt vectors if any

iPrint signon .essage

;enter the .onitoring loop

MONITOR, Y1.0·, CR, LF

Figure 1-3. Sample Program Listing

SDK-51
SYSTEM
DESIGN

KIT

937-2

1-5

Introduction

MCS-51 MACRO A$SEM8LER 8051-8ASEO MONITOR

SYMBOL TABLE LISTING

N.A .. E

'ONSOl_OUT
CR • • • •
LEN ••••
LF • • • •
MONITOR.
PROG_S • •
SIGNON • •
START. • •
TABLE_S ••

T Y P E V A L U E

C AOOR
NUMB
NUM8
NUMB

C AOOI!
C SEG
C AOOR
C AOOR
C SEG

OOOOH
001AH
OOOAH

0009H
OOOOH
OOOOH
0018H

A
A
A

R
R

EXT

EXT

A T T R I 8 UTE S

R!:LaUNIT
S!:G=TA8LE_S
SEG=PROG_S
REl=UNIT

REGISTER BANKCS) USED: 0, TARGET MACHINECS): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

1-6

Figure 1-3. Sample Program Listing (Cont'd.)

Figure 1-3 shows the listing file of a simple module which is part of a larger program
not shown here. A larger example is provided in Appendix H.

The next step after the program is assembled by ASM51 is to combine all modules
into one program using RL51. RL51 produces a summary listing file consisting of a
memory map and a symbol table. (Refer to the MCS-5J Utilities User's Guide,
J21737.)

The next step in debugging your code is to program it into an EPROM 8751 and test
it in a prototype environment. (Further testing could be done via ICE-51.) To pro­
gram your code into an 8751, you must have a UPP connected to your Intellec
system. For a complete description of how to use UPP and UPM, see Universal
PROM Programmer Reference Manual, order number 9800133 and Universal
PROM Programmer User's ManuaJ, order number 9800819.

Hardware Overview
The 8051 is a high-density microcomputer on a single chip. Its major features are:

• Resident 4K bytes of ROM or EPROM program memory (no program memory
resident on 8031), expandable to 64K bytes

• Resident 128 bytes of RAM memory, which includes four banks of 8
general-purpose registers and a stack for subroutine and interrupt routine calls

·64K bytes of external RAM address space

• 16-bit Program Counter giving direct access to 64K byte~ of memory

• 8-bit stack pointer that can be set to any address in on-chip RAM

• Two programmable 16-bit timers/counters

• Programmable full duplex serial 110 ports

• Four 8-bit bidirectional parallel I/O ports

• Timer and I/O interrupts with two levels of priority

• 111 instructions with 51 basic functions (including memory to memory move)

• Boolean functions with 128 software flags, numerous hardware flags, and 12
bit-operand instructions

MeS-51

MeS-51 Introduction

PABl

• One microsecond instruction cycle time
• Arithmetic and logic unit that includes add, subtract, multiply, and divide

arithmetic functions, as well as and, or, exclusive or, and complement logic
functions.

Figure 1-4 is a block diagram of the 8051 processor. It shows the data paths and
principal functional units accessible to the programmer.

ALU

TMOD IP

no INTERRUPT

SERIAL THO CONTROL

PORT TLl

THl

TIMER
CONTROL

Figure 1-4. 8051 Block Diagram 937-3

1-7

Introduction

1-8

Memory Addresses

The 8051 has five address spaces:

• Code address space-64K, of which 4K are on-chip (except for the 8031 which
has no on-chip ROM).

• . Directly addressable internal data address space-128 bytes of RAM (Q - 127)
and 128-byte hardware register address space (128 - 255, only 20 addresSes are
used); accessible by direct addressing.

• Indirectly addressable internal data address space-128 bytes (0 - 127), all of
which is accessible by indirect addressing.

• External data address space-up to 64K of off-chip memory added by the user.

• Bit address space-shares locations accessible in the data address space;
accessible by direct addressing.

The code address space, internal data address space (including both the directly and
indirectly addressable space and the bit address space), and external data space cor­
respond to three physically distinct memories, and are addressed by different
machine instructions. This is an important distinction that is a key to understanding
how to program the 8051.

When you specify in an operand to an instruction a symbol with the wrong attribute,
ASM-51 generates an error message to warn you of the inconsistency. Chapters 2
and 3 show what segment type attribute is expected in each instruction, and Chapter
4 describes how to define a symbol with any of the segment type attributes.

Figure 1-5 shows the code address space (usually ROM), and the external data
address space (usually RAM). Off-chip ROM and RAM can be tailored to use all or
part of the address space to better reflect the needs of your application. You can
access data in ROM and off-chip RAM with the MOVC and MOVX instructions
respectively.

...-----""65.535

OFF-CHIP
ROM

ON·CHIP
ROM

4095

...... ____ 0

CODE
ADDRESS

SPACE

...-----... 65.535

OFF-CHIP
RAM

_____ ... 0

EXTERNAL DATA
ADDRESS SPACE

Figure 1-5. MeS-S 1 Code Address Space and
External Data Address Space 937--4

MeS-51

MCS-Sl

To the programmer, there is no distinction between on-chip and off-chip code. The
16-bit program counter freely addresses on- and off-chip code memory with no
change in instruction fetch time.

Figure 1-6 shows the data address space containing the bit address space. The data
address space contains four banks of general-purpose registers in the low 32 bytes (0
- IFH). In addition to the 128 bytes of RAM, the 8051 's hardware registers are map­
ped to data addresses. The addresses from 128 to 255 are reserved for these registers,
but not all of those addresses have hardware registers mapped to them. These
reserved addresses are unusable.

When programming the 8051 and using indirect addressing, the user can access
on-chio RAM from 0 to 127.

,.
DIRECTLY IINDIRECTL Y

ADDRESSABLE
ON-CHIP

RAM

DIRECT
ADDRESSING

HARDWARE
REGISTER
MAPPING

:
I
I
I
I
I

INDIRECT
ADDRESSING

NOT
AVAILABLE

FORTHE
8051

ON-CHIP RAM

RAM BIT ADDRESS
SPACE

4 REGISTER BANKS

255

127

47

31

8-. STACK DEFAULT

o

Figure 1-6. MCS-51 Data Address Space and
Bit Address Space

Data Units

937-5

The 8051 manipulates data in four basic units-bits, nibbles (4 bits), bytes, and
words (16 bits)_

The most common data unit used is a byte; all of the internal data paths are 8 bits
wide, and the code memory, the data memory, and the external data memory store
and return data in byte units. However, there are many instructions that test and
manipulate single bits_ Bits can be set, cleared, complemented, logically combined
with the carry flag, and tested for jumps. The nibble (BCD packed digit) is less
commonly used in the 8051, but BCD.arithmetic can be performed without con­
version to binary representation.

Introduction

1-9

Introduction

1-10

BIT

0
4-BIT NIBBLE

I I
3 0

a-BIT BYTE

I I
7 0

16-BIT WORDS

I
15 8 7 0

Figure 1-7. MCS-Sl Data Units 93Hl

Instructions that use 16-bit addresses deal with the Data Pointer (DPTR, a 16-bit
register) and the Program Counter (jumps and subroutine calls). However, with the
add with carry (ADDC) and subtract with borrow (SUBB) instructions, software
implementation of 16-bit arithmetic is relatively easy.

Arithmetic and Logic Functions

The arithmetic functions include:

• ADD-signed 2's complement addition

• ADDC-signed 2's complement addition with carry

• SUBB-signed 2's complement subtraction with borrow

• DA-adjust 2 packed BCD digits after addition

• MUL-unsigned integer multiplication

• DIV-unsigned integer division

• INC-signed 2's complement increment

• DEC-signed 2's complement decrement

The accumulator receives the result of ADD, ADDC, SUBB, and DA functions. The
accumulator receives partial result from MUL and DIV. DEC and INC can be
applied to all byte operands, including the accumulator.

The logical functions include:

• ANL-Iogical and on each bit between 2 bytes or 2 bits
• CPL-Iogicalcomplement of each bit within a byte or a single bit

• ORL-Iogicalor on each bit between 2 bytes or 2 bits

• XRL-Iogical exclusive or on each bit between 2 bytes

MeS-51

MeS-51

The accumulator usually receives the result of the byte functions, and the carry flag
usually receives the result of the bit functions, but some instructions place the result
in a specified byte or bit in the data address space.

The instructions shown above are described in Chapter 3.

General-Purpose Registers

The 8051 has four banks of eight I-byte general-purpose registers. They are located
in the first 32 bytes of on-chip RAM (OOH - 1 FH). You can access the registers of the
currently active bank through their special assembler symbols (RO, Rl, R2, R3, R4,
R5, R6, and R7). To change the active bank you modify the register bank select bits
(RSO and RSl) contained in the program status word (pSW, described in table 1-3).
Table 1-1 below shows the bank selected for all values' of RSO and RSI.

Table 1-1. Register Bank Selection

RS1 RSO Bank Memory Locations

0 0 0 00H-07H
0 1 1 OBH-OFH
1 0 2 10H-17H
1 1 3 1BH-1FH

Registers RO and Rl can be used for indirect addressing within the on-chip RAM.
Each register is capable of addressing 256 bytes but the indirect addressing is limited
by the physical range of the internal RAM. RO and Rl also can address the external
data space.

The Stack

The stack is located in on-chip RAM. It is a last-in-first-out storage mechanism used
to hold the Program Counter during interrupts and subroutine calls. You can also
use it to store and return data, especially the PSW, with the PO P and PUSH instruc­
tions. The Stack Pointer contains the address of the top of the stack.

The Stack Pointer (SP) is an 8-bit register that may contain any address in on-chip
RAM memory. However, on the 8051 it should never exceed 127. If it does, all data
pushed is lost. A pop, when the SP is greater than 127, returns invalid data.

The SP always contains the address of the last byte pushed on the stack. On power­
up (Reset) it is set to 07H, so the first byte pushed on the stack after reset will be at
location 08H. This location is compatible with the 8048's stack. Most programs
developed for the 8051 will reset the bottom of the stack by changing the contents of
the SP before using the stack, because 08H-IFH is the area reserved for several of
the 8051 's general-purpose-regrster banks. The following instruction causes the next
byte pushed on the stack to be placed at location 100.

MOV SP,lt99 ; Initialize stack to start at location 100
; The hardware increments the SP
; BEFORE a push

Introduction

1-1]

Introduction

1-12

Symbolically Addressable Hardware Registers

Each programmable register is accessible through a numeric data address, but the
assembler supplies a predefined symbol that should be used instead of the register's
numeric address. Table 1-2 identifies each hardware register, its numeric address,
and its predefined symbol.

Table 1-2. Symbolically Addressable Hardware Registers for the 8051

Predefined Data
Meaning Symbol Address

ACC EOH ACCUMULATOR (Data address of A)

B FOH MULTIPLICATION REGISTER

DPH 83H DATA POINTER (high byte)

DPL 82H DATA POINTER (low byte)

IE A8H INTERRUPT ENABLE

IP B8H INTERRUPT PRIORITY

PO SOH PORTO

P1 90H PORT 1

P2 AOH PORT2

P3 BOH PORT3

PSW DOH PROGRAM STATUS WORD

SBUF 99H SERIAL PORT BUFFER

SCON 98H SERIAL PORT CONTROLLER

SP 81H STACK POINTER

TCON 88H TIMER CONTROL

THO SCH TIMER 0 (high byte)

TH1 8DH TIMER 1 (high byte)

TLO 8AH TIMER 0 (low byte)

TL1 8BH TIMER 1 (low byte)

TMOD 89H TIMER MODE

The predefined symbols given in table 1-2 stand for the on-chip data addresses of the
hardware registers. In many cases the only access to these registers is through these
data addresses. However, some of the registers have an identity both as a special
assembler symbol and as a data address symbol (e.g., both "ACC" and "A" stand
for the accumulator), but even though these symbols may be semantically the same,
they are syntactically different. For example,

ADDA,I27

is a valid instruction· to add 27 to the contents of the accumulator, but

ADD ACC,I27

is invalid and will cause an error, because there is no form of ADD taking a data
address as the destination (ACC specifies a data address). The differences become
even more subtle in some assembly instructions where both symbols are valid but
assemble into different machine instructions:

MOVA,127
MOVACC,I27

; assembles into a 2 byte instruction
; assembles into a 3 byte instruction

MeS-51

MeS-51

Chapter 2 describes the syntax for all instruction operands, and Chapter 3 describes
the operands expected in each instruction.

Because the hardware registers are mapped to data addresses, there is no need for
special 110 or control instructions. For example,

MOV A,P2

moves a copy of the input data at Port 2 to the accumulator. To output a character
on the Serial 110 port (after preparing SCON), simply move the character into the
Serial port buffer (SBUF):

MOV SBUF,#'?'

Bit Addressing

Many of the hardware control registers are also bit addressable. The flags contained
in them can be accessed with a bit address as well as through the byte address shown
above. One way to do this is through the bit selector (". "). For example, to access
the 0 bit in the accumulator, you might specify ACC.O.

Bit addressing allows the same simplicity in testing and modifying control and status
flags as was shown above with addressable registers. For example, to start Timer 0
running, set the run flag to 1 via its bit address (SETB TCON.4).

Throughout the remainder of this chapter, several programmable. features, includ­
ing predefined bit addresses of status and control flags, are discussed. To use these
features, you simply modify the corresponding address as if it were a RAM location.

The Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the state of
the 8051. Figure 1-8 shows the predefined bit address symbol, the bit position, and
meaning of each bit in the PSW.

I Cy I AC I FO I RSl I RSO I ov I
PSW.7=J CARRY FLAG RECEIVES CARRY OUT

FROM BIT 7 OF ALU OPERANDS

PSW.6
AUXILIARY CARRY FLAG RECEIVES

CARRY OUT FROM BIT 3 OF
ADDITION OPERANDS

PSW.S -----'
GENERAL PURPOSE STATUS FLAG

PSW.4 ------'
REGISTER BANK SELECT BIT 1

L PSW.o
PARITY OF ACCUMULATOR SET
BY HARDWARE TO llF IT CONTAINS
AN ODD NUMBER OF l's; OTHERWISE
ITiS RESET TO 0

PSW.l
USER DEFINABLE FLAG

L...-___ PSW.2
OVERflOW FLAG SET BY
ARITHMETIC OPERATIONS

L..------PSW.3
REGISTER BANK SELECT BIT 0

Figure 1-8. Bit Descriptions of Program Status Word 937-7

Introduction

1-13

Introduction

1-14

Timer and Counter

The 8051 has two independently programmable timers. They feature a 16-bit
counter and are controlled by 2 registers, timer mode (TMOD) and timer control
(TCON). Figure 1-9 shows the predefined bit address symbols, the positions and
meanings of the bits in TCON. (For a complete description of the timer see the
MCS-5J User's Manual.)

TCON.? ~~l I TRl I TFO ITRO IIEl IIT~l 1IEl:=0 II~ TCON.O

TIMER 1 OVERFLOW FLAG INTERRUPT 0 TYPE CONTROL BIT

TCON.6 TCON.l
TIMER 1 RUN CONTROL BIT INTERRUPTO EDGE FLAG

TCON.S TCON.2
TIMER 0 OVERFLOW FLAG INTERRUPT 1 TYPE CONTROL BIT

TIMER 0 RUN CONT~g~~i~ -------' '------- itfT~~'~UPT 1 EDGE FLAG

Figure 1-9. Bit Descriptions of TeON 937·8

1/0 Ports

The 8051 has 4 8-bit lIO ports; each bit in the ports corresponds to a specific pin on
the chip. All four ports are buffered by a port latch, and they are addressable
through a data address (as a byte) or 8 bit addresses (as a set of bits). As noted
earlier, this removes the need for special lIO instructions. The numeric data address
and the predefined symbol for each port is shown below:

Port
Predefined Data

Symbol Address

0 PO SOH
1 P1 90H
2 P2 AOH

3 P3 BOH

Port 0 and Port 2 are used for external program and external data addressing. Port 0
also receives the input data from off-chip addressing. If off-chip memory is not
implemented, then ports 0 and 2 are bidirectional I/O ports. Port 1 is a general pur~
pose bidirectional lIO port.

Port 3 contains the external interrupt pins, the external timer, the external data
memory read and write enables, and the serial I/O port transmit and receive pins.
The bits that correspond to these pins are individually addressable via predefined bit
address symbols. Figure 1-10 shows the meaning of each bit, its position in Port 3,
and its predefined bit address symbol.

If the external interrupts, external data addressing, and serial lIO features of the
8051 are not used, Port 3 can function as a bidirectional lIO port.

MCS-Sl

MCS-Sl

P3'7~~D jWRj Tlj TO jINT1jIN~TOjTXL=DjR~P30
READ DATA FOR EXTERNAL MEMORY SE'RIAL PORT RECEIVE PIN

P3.6 P3.1
WRITE DATA FOR EXTERNAL MEMORY SERIAL PORT TRANSMIT PIN

P3.S P3.2
TIMER/COUNTER 1 EXTERNAL FLAG INTERRUPT 0 INPUT PIN

P3.4 _____ --l L..-_____ P3.3

TIMER/COUNTER 0 EXTERNAL FLAG INTERRUPT 1 INPUT PIN

Figure 1-10. Bit Descriptions for Port 3 937-9

Serial 1/0 Port

The serial 110 port permits 110 expansion using UART protocols. The serial 110
port is controlled by Serial Port Controller (SCON), a register that is both bit
addressable and byte addressable. Figure I-II shows the predefined bit address
symbols, positions and meanings of the bits in SCON. For complete details of Serial
110 port control see the MCS-5J User's Manual.

SCON'7~ ~ISMOlsM t1ISM2IRENITB8IR~B81 TL=I I ~ SCON.O

SERIAL MODE CONTROL BIT 0 ~ RECEIVE INTERRUPT FLAG

SCON.S SCON.1
SERIAL MODE CONTROL BIT 1 TRANSMIT INTERRUPT FLAG

SCON.S SCON.2
SERIAL MODE CONTROL BIT 2 RECEIVE BIT 8

SCON.4 --------1
RECEIVER ENABLE

L..-_____ SCON.3

TRANSMIT BIT 8

Figure I-II. Bit Descriptions for Serial Port Control

Interrupt Control

937-10

There are two registers that control timer and 110 interrupts and priorities. They are
IE (Interrupt Enable) and IP (Interrupt Priority). When the interrupt enable bit for
a device is 1, it can interrupt the processor. The 8051 does not respond to an
interrupt until the instruction being executed has been completed (this can be as long
as 4 cycles).

When it does respond, the 8051' s hardware disables interrupts of the same or lesser
priority and makes a subroutine call to the code location designated for the inter­
rupting device. Typically, that location contains a jump to a longer service routine.

Introduction

1-15

Introduction

1-16

The instruction RET! must be used to return from a service routine, in order to
re-enable interrupts. The reserved locations, the predefined labels, and the
associated interrupt devices are listed below. These labels may be used to aid the
placement of I/O routines in code memory.

Predefined
Label

RESET
EXTIO
TIMERO
EXTI1
TIMER1
SINT

Location

OOH
03H
OBH
13H
1BH
23H

Interrupting Device

Power on Reset (First instruction executed on power up.)
External interrupt 0
TimerO
External interrupt 1
Timer1
Serial 1/0 port

The 8051 has two levels of interrupt priority (0 and 1). Figure 1-12 shows the
predefined bit address symbol, the position and the device associated with each bit
contained in IE and IP. A level 1 priority device can interrupt a level 0 service
routine, but a level 0 interrupt will not affect a level 1 service routine. Interrupts on
the same level are disabled.

1111 PS I PT11 pX11 PTO I Pc

IP'7~-.J ~IP'O RESERVED ~ L PRIORITY OF EXTERNAL INTERRUPT 0

IP.6 IP.l
RESERVED PRIORITY OF TIMER 0 INTERRUPT

IP.S IP.2
RESERVED PRIORITY OF EXTERNAL INTERRUPT 1

IP.4 _____ ---1 L-_____ IP.3

PRIORITY OF SERIAL PORT INTERRUPT PRIORITY OF TIMER 1 INTERRUPT

Interrupt Priority

I EA II··· I ES I Ell I EXl I ETO I EXO I
IE.7.-1· ttl t L IE.O

ENABLE ALL INTERRUPTS ~ L ENABLE EXTERNAL INTERRUPT 0

IE.e ----' I I L- 1£.1
RESERVED ~ L-. ENABLE TIMER o INTERRUPT

IE.S IE.2
RESERVED ENABLE EXTERNAL INTERRUPT 1

. IE.4 _____ ---1
L------IE.3

ENABLE SERIAL PORT INTERRUPT ENABLE TIMER 1 INTERRUPT

Interrupt Enable

937-11

Figure 1-12. Bit Descriptions for Interrupt Enable and Interrupt Priority

MCS-Sl

MeS-51

Reset

On reset all of the registers in the 8051 assume an initial value. Table 1-3 shows these
initial values. This will always be the state of the chip when your code begins
execution. You can use these initial values or reinitialize them as necessary in your
program.

Table 1-3. State of the 8051 after Power-up

Register Value

Accumulator OOH
Multiplication Register OOH
Data Pointer OOOOH
Interrupt Enable OOH
Interrupt Priority OOH
PortO OFFH
Port 1 OFFH
Port 2 OFFH
Port 3 OFFH
Program Counter OOOOH
Program Status Word OOH
Serial Port Control OOH
Serial 110 Buffer undefined
Stack Pointer 07H
Timer Control OOH
Timer Mode OOH
Timer 0 Counter OOOOH
Timer 1 Counter OOOOH

NOTE

The PC is always set to 0 on reset, thus the first instruction executed in a
program is at ROM location O. The contents of RAM memory is unpre­
dictable at reset.

Introduction

1-17

CHAPTER 2
OPERANDS AND EXPRESSIONS

This chapter discusses the operand types used by ASM51. It describes their use and
some of the ways you can specify them in your program. The latter part .of the
chapter deals with expressing numbers and using expressions.

There are two terms used throughout this chapter that require some definition:
Assembly-time expressions and RL-time expressions. Assembly-time expressions are
those expressions evaluated at assembly; they are absolute expressions. RL-time
expressions are those evaluated at the time of relocation; they are relocatable expres­
sions that are made absolute by RL51.

Operands

The general form of all instruction lines is as follows:

[label:) Mnemonic [operand) [,operand) [,operand) [;comment)

The number of operands and the type of operands expected depend entirely on the
mnemonic. Operands serve to further define the operation implied by a mnemonic,
and they identify the parts of the machine affected by the instruction.

All operands fall into one of six classes:

• Special Assembler Symbols .. - Indirect Addresses

• Immediate Data

• Data Addresses (on-chip)

• Bit Addresses

• Code Addresses

A special assembler symbol is a specific reserved word required as the operand in an
instruction.

Indirect addresses use the contents of a register to specify a data address.

The remaining operand types (immediate data, data addresses, bit addresses, and
code addresses) are numeric expressions. They may be specified symbolically, but
they must evaluate to a number. If the expression can be evaluated completely at
assembly time, it is called an absolute expression; if not, it is called a relocatable
expression. The range permitted for a numeric operand depends on the instruction
with which it is used. The operand can be made up of predefined or user-defined
symbols, numbers, and assembly-time operators.

As described in Chapter I, there are five address spaces on the 8051. The
corresponding segment type is given in parentheses.

• Directly addressable data address space (DATA)

• Bit address space (BIT)

• External data address space (XDA T A)

• Code address space (CODE)

• Indirectly addressable data space (IDA TA)

2-1

Operands and Expressions

2-2

In some cases the same numeric value is a valid address for all five address spaces.
To help avoid logic errors in your program, ASMSI attaches a segment type and per­
forms type checking for instruction operands (and arguments to assembler direc­
tives), that address these segments. For example, in jump instructions the assembler
checks that the operand, the target address, has a segment type CODE. Possible seg­
ment types are DATA, BIT, CODE, XDATA, and IDATA. Chapter 4 describes
how to define symbols with different segment types.

Special Assembler Symbols

The assembler reserves sevenil symbols to designate specific registers as operands. A
special assembler symbol is encoded in the opcode byte, as opposed to a data address
which is encoded in an operand byte. Table 2-1 lists these symbols and describes the
hardware register each represents.

If the definition of an instruction requires one of these symbols, only that special
symbol can be used. However, you can, with the SET and EQU directives, define
other symbols to stand for the accumulator (A) or the working registers (RO, ... R7).
Symbols so defined may not be forward referenced in an instruction operand. You
cannot use a special assembler symbol for any other purpose in an instruction
operand or directive argument. Several examples of instructions that use these sym­
bols are shown below.

INC DPTR ;increment the entire 16-bit contents of the Data Pointer by 1

SETB C ;set the Carry flag to 1

JMP @A+ DPTR ;add the contents of the accumulator to the contents of the data
;pointer and jump to that address

In addition to these symbols, the assembler also recognizes the location counter sym­
bol ($), described in Chapter 4, and the register address symbols ARO, ARI, ... ,
AR 7, described with the USING directive in Chapter 4. .

Table 2-1. Special Assembler Symbols

Special Symbol Meaning

A Accumulator

RO, R1, R2, R3, Stands for the 8 general registers in the currently active bank (4
R4,R5,R6,R7 register banks available)

DPTR Data pointer: a 16-bit register used for addressing in the code
address space and the external address space

PC Program counter: a 16-bit register that contains the address of the
next Instruction to be executed

C Carry flag receives ALU carry out and borrow from bit 7 of the
operands

AB Accumulator/B register pair used in MUL and DIV instructions

MeS-51

MeS-51 Operands and Expressions

Indirect Addressing

An indirect address operand identifies a register that contains the address of a
memory location to be used in the operation. The actual location affected will
depend on the contents of the register when the instruction is executed. In most
instructions indirect addresses affect on-chip RAM. However, the MOVe and
MOVX instructions use an indirect address operand to address code memory and
external data memory, respectively.

In on-chip indirect addressing (the IDAT A space), either register 0 or register I of
the active register bank can be specified as an indirect address operand. The com­
mercial at sign (@) followed by the register's special symbol (RO or RI), or a symbol
defined to stand for the register's special symbol, indicates indirect addressing. On
the 8051 the address contained in the specified indirect address registers must be
between 0 and 127 (since you cannot access hardware registers through indirect
addressing.) If an indirect address register contains a value greater than 127 when it
is used for on-chip addressing, the program continues with no indication of the
error. If it is a source operand, a byte containing undefined data is returned. If it is a
destination operand, the data is lost.

The following examples show several uses of indirect addressing.

ADDA,@R1

INC@RO

MOVX@DPTR,A -

Immediate Data

;add the contents of the on-Chip RAM location addressed by
;register 1 to the accumulator

;increment the contents of the on-chip RAM location addressed
;by register 0

;move the contents of the accumulator to the off-chip memory
;Iocation addressed by the data pOinter

An immediate data operand is a numeric expression that, when assembled, is
encoded as part of the machine instruction. The pound sign (#) immediately before
the expression indicates that it is an immediate data operand. The numeric expres­
sion must be a valid assembly-time expression or RL-time expression.

The assembler represents aU" numeric expressions in 16 bits, and converts to the
appropriate form for instruction encoding.

Most instructions require the value of the immediate data to fit into a byte. The low
order byte of the assembler's 16-bit internal representation is used. The assembler
permits a numeric expression range of values from -256 to +255. These values all
have a homogeneous high order byte (i.e., all ones or all zeroes) when represented in
16 bits. The low order byte of the assembler's 16-bit internal representation is used.
Note that since only the lower order byte is taken as the result of the expression, the
sign information, i.e., the higher order byte, is lost.

The immediate data operands that accept a 16-bit value can use any value represent­
able by the assembler. Immediate data operands do not require any specific segment
type. XDAT A and IDA T A type operands can be specified only as immediate
operands; i.e., you have to load these addresses first into a register and then access
them.

2-3

Operands and Expressions

2-4

The following examples show several ways of specifying the immediate data
operand.

MOVA,.OEOH

MOV DPTR,tlOA14FH

ANLA,'128

MOV RO,IIDATA_SYM

Data Addressing

;place the hex constant EO in the accumulator

;this is the only instruction that uses a 16-bit immediate data
;operand

;mask out all but the high order bit of the accumulator
;(128-base 10) = 10000000 (base 2)

;Load RO with IDATA symbol for later access

The data address operand is a numeric expression that evaluates to one of the first
128 on-chip byte addresses or one of the hardware register addresses. The low-order
byte of the assembler's 16-bit internal representation is used. This permits a range
from -256 to +255. Note that since only the lower order byte is taken as the result of
the expression, the sign information (i.e., the higher order byte) is lost. Instructions
that use the data address operand require that the symbol or expression specified be
either of segment type DATA or be a typeless number. (Symbols are discussed below
under expression evaluation.)

The direct data addresses from 0 to 127 access the 8051 's on-chip RAM space, while
the addresses from 128 to 255 access the hardware registers. Not air of the addresses
in the hardware register space are defined. The illustration below (figure 2-1) shows
the meaningful addresses and their predefined data address names.

If you read from a reserved address, undefined data will be returned. If you write to
a reserved address, the data will be lost. Using these pecularities in your program
may result .in incompatibility with future versions of the chip. Note that using
indirect addressing for locations above 127 will access lDAT A space rather than
hardware register space.

HIGH
ORDER
DIGIT
OF C
ADDRESS +,.,........,.+'"'''''+~..,...+''''"'!~+-"""+....,.+--+

B

A

o 2 456789ABCDEF

LOW ORDER DIGIT OF ADDRESS

Figure 2-1. Hardware Register Address Area for 80S 1 937-12

MeS-51

MCS-Sl Operands and Expressions

The following examples show several ways of specifying data addresses.

MOV P1,A

ORL A,20*5

INC COUNT

INC32

;move the contents of the accumulator to the predefined data address 90
;(base 16) port 1

;Iogical OR of accumulator with location 100 (base 10) uses an
;assembly-time operator multiply

;increment the location identified by the symbol COUNT

;increment location 32(base 10) in memory

Bit Addressing

A bit address represents a bit-addressable location either in the internal RAM (bytes
32 through 47) or a hardware bit. There are two ways to represent a bit address in an
operand.

1. You can specify the byte that contains the bit with a DATA type address, and
single out the particular bit in that byte with the bit selector ("." period)
followed by a bit identifier (0-7). For example, FLAGS.3, 40.5, 2IH.0 and
ACC.7 are valid uses of the bit selector. You can use an assembly-time expres­
sion to express the byte address or the bit identifier. The assembler will translate
this to the correct absolute or relocatable value. Note that only certain bytes in
the on-chip address space are bit addressable. If the data address is specified by
a relocatable expression, the referenced segment must have
BIT ADDRESSABLE relocation type (see Chapter 6 for segments). The expres­
sion that specifies the bit address must be absolute.

2. You specify the bit address explicitly. The expression now represents the bit
address in the bit space (it must have a BIT segment type). Note that bit
addresses 0 through 127 map onto bytes 32 through 47 of the on-chip RAM, and
bits 128 through 255 map onto the bit addressable locations of the hardware
register space (not all the locations are defined).

If the bit address is used in the context of BIT directive, then the first expression
must be an absolute or simple relocatable expression. If used in a machine instruc­
tion where a bit address is expected, then a general relocatable expression is also
allowed.

Figures 2-2a and 2-2b show the bits assigned to each numeric bit address.

The following examples show several ways of specifying bits.

SETB TR1 ;set the predefined bit address TR1 (timer 1 run flag)

SETB ALARM ;set the user defined bit ALARM

SETB BBH.6 ;Set bit 6 of location B8H (timer 1 run flag)

CPL FLAGS.ON ;complement the bit ON of the byte FLAGS

SETB8EH ;set the bit address 8E(base 16) (timer 1 run flag)

As with data addresses, there are several bit addresses that are predefined as symbols
that you can use in an operand. Table 2-2 shows these predefined bit addresses. You
can also define your own bit address symbols with the BIT directive described in
Chapter 4, Assembler Directives.

2-5

Operands and Expressions

2-6

NOT
BIT ADDRESSABLE

BIT POSITION t-:-.-:-.-:-r=-.-:-r:-r=-r:-.....
7F 7E 70 7C 7B 7A 79 78

NOT
BITADDRESSABLE

BIT
ADDRESS

RAM
BIT
ADDRESS
SPACE

Figure 2-2a. Bit Addressable Bytes in RAM

765 4 3 21 0

ACC EOH E7 E6 E5 E4 E3 E2 E1 EO

PSW DOH 07 06 05 04 03 02 01 DO

COH Ct(:6 C' ~C3 C2 (:1 CO:

P3 BOH B7 B6 B5 B4 B3 B2 B1 BO

P2 AOH A7 A6 AS A4 A3 A2 A1 AO

P1 90H 97 96 95 94 93 92 91 90

PO BOH 87 86 85 84 83 82 81 80

" "-
~ "-L
~
"-

\.. " .'" '"

76543210

ff FE FDFC FB FA F9F8

IF EE ED.EC EB EA E9 £8

DF tn, Dt DC DB DA 09 08

OF CE CD CC CB CA C9 C8

.BF BE BD BC BB BA B9 B8

AI' AS AD AC AB AA A9 A8

91' 9E 9D9C 9B 9A 99 98

8F 8E 808C 8B 8A 89 88

Figure 2-2b. Bit Addressable Bytes in Hardware
Register Address Area for 8051

MCS-Sl

937-13

F8H

E8H

08H

C8H

B8H IP

A8H IE

98H SCON

88H TCON

937-14

MeS-51 Operands and Expressions

Table 2-2. Predefined Bit Addresses for 8051

Symbol
Bit Bit

Meaning Position Address

CY PSW.7 D7H Carry Flag
AC PSW.S DSH Auxiliary Carry Flag
FO PSW.5 D5H Flag 0
RS1 PSW.4 D4H Register Bank Select Bit 1
RSO PSW.3 D3H Register Bank Select Bit 0
OV PSW.2 D2H Overflow Flag
P PSW.O DOH Parity Flag

TF1 TCON.7 8FH Timer 1 Overflow Flag
TR1 TCON.S 8EH Timer 1 Run Control Bit
TFO TCON.5 8DH Timer 0 Overflow Flag
TRO TCON.4 8CH Timer 0 Run Control Bit
IE1 TCON.3 8BH Interrupt 1 Edge Flag
IT1 TCON.2 8AH Interrupt 1 Type Control Bit
lEO TCON.1 89H Interrupt 0 Edge Flag
ITO TCON.O 88H Interrupt 0 Type Control Bit

SMO SCON.7 9FH Serial Mode Control Bit 0
SM1 SCON.S 9EH Serial Mode Control Bit 1
SM2 SCON.5 9DH Serial Mode Control Bit 2
REN SCON.4 9CH Receiver Enable
TB8 SCON.3 9BH Transmit Bit 8
RB8 SCON.2 9AH Receive Bit 8
TI SCON.1 99H Transmit Interrupt Flag
RI SCON.O 98H Receive Interrupt Flag -
EA IE.7 AFH Enable All Interrupts
ES IE.4 ACH Enable Serial Port Interrupt
ET1 IE.3 ABH Enable Timer 1 Interrupt
EX1 IE.2 AAH Enable External Interrupt 1
ETO IE.1 A9H Enable Timer 0 Interrupt
EXO IE.O A8H Enable External Interrupt 0

RD P3.7 B7H Read Data for External Memory
WR P3.B BBH Write Data for External Memory
T1 P3.5 B5H Timer /Counter 1 External Flag
TO P3.4 B4H Timer/Counter 0 External Flag
INT1 P3.3 B3H Interrupt 1 Input Pin
INTO P3.2 B2H Interrupt 0 Input Pin
TXD P3.1 B1H Serial Port Transmit Pin
RXD P3.0 BOH Serial Port Receive Pin

PS IP.4 BCH Priority of Serial Port Interrupt
PT1 IP.3 BBH Priority of Timer 1 Interrupt
PX1 IP.2 BAH Priority of External Interrupt 1
PTO IP.1 B9H Priority of Timer 0
PXO IP.O B8H Priority of External Interrupt 0

Code Addressing

Code addresses are either absolute expressions whose values are within 0 to 65,535,
or relocatable expressions with a segmet type of CODE. There are three types of
instructions that require a code address in their operands. They are relative jumps,
in-block (2K page) jumps or calls, and long jumps or calls.

2-7

Operands and Expressions

2-8

The difference between each type is the range of values that the code address
operand may assume. All three expect an expression which evaluates to a CODE
type address (an absolute expression between 0 and 65,535 or a relocatable
operand), but if you specify a relative jump or an in-block jump, only a small subset
of all possible code addresses is valid. Instructions that use the code address operand
require that the symbol or expression specified be either of segment type CODE or a
typeless number. (Symbols and labels are discussed below under absolute expression
evaluation.)

Relative Jumps (SJMP and Conditional Jumps)

The code address in a relative jump must be close to the relative jump instruction
itself. The range is from -128 to +127 bytes from the first byte of the instruction that
follows the relative jump.

The assembler takes the specified code address and computes a relative offset that is
encoded as an 8-bit 2's complement number. That offset is added to the contents of
the program counter (PC) when the jump is made; but since the PC is always incre­
mented to the next instruction before the jump is executed, the range is computed
from the succeeding instruction.

When you use a relative jump in your code, you must use an expression that
evaluates to the code address of the jump destination. The assembler does all the
offset computations. If the address is out of range, the assembler will issue an error
message.

In-Block Jumps and Calls (AJMP and ACALL)

The code address operand to an in-block jump or call is an expression that is
"evaluated and then encoded in the instruction. The low order 11 bits of the destina­
tion address are placed in the opcode byte and the operand byte. When the jump or
call is executed, the II-bit page address replaces the low order 11 bits of the program
counter. This permits a range of 2048 bytes, or anywhere within the current block.
The current block is thus determined by the high order 5 bits of the address of the
next instruction. If the operand is not in the current block, this is an assembler (or
RU1) error.

Note that if the in-block jump or call is the last instruction in a block, the high order
bits of the program counter change when incremented to address the next instruc­
tion; thus the jump will be made within that new block.

Long Jumps and Calls (LJMP and LCALL)

The code address operand to a long jump or call is an expression that will be
evaluated and then encoded as a 16-bit value in the instruction by the assembler, or,
if the expression is relocatable, by RU1. All 16 bits of the program counter are
replaced by this new value when the jump or call is executed. Since 16 bits are used,
any value representable by the assembler will be acceptable (0 - 65,535).

The following examples show each type of instruction that calls for a code address.

SJMP LABEL

ACALLSORT

LJMPEXIT

;Jump to LABEL (relative offset LABEL must be within -128 and + 127
;of instruction that follows SJM P

;Call subroutine labelled SORT (SORT must be an address within the
;current 2K page)

;Long jump; the label or symbol EXIT must be defined somewhere in
;the program.

MCS-51

MCS-Sl Operands and Expressions

Generic Jump and Call (JMP and CALL)

The assembler provides two instruction mnemonics that do not represent a specific
opcode. They are JMP and CALL. JMP may assemble to ACALL or LCALL.
These generic mnemonics will always evaluate to an instruction, not necessarily the
shortest, that will reach the specified code address operand.

This is an effective tool to use during program development, since sections of code
change drastically in size with each development cycle. (See Chapter 3 for a complete
description of both generic jumps.) Note that the assembler decision may not be
optimal. For example, if the code address is a forward reference, the assembler will
generate a long jump although an in-block or short jump may be possible.

Assembly-Time Expression Evaluation

An expression is a combination of numbers, character strings, symbols, and
operators that evaluate to a single 16-digit binary number. Except for some direc­
tives, all expressions can use forward references (symbols that have not been defined
at that point in the program) and any of the assembly-time operators.

Specifying Numbers

You can specify numbers in hexadecimal (base 16), decimal (base 10), octal (base 8),
and binary (base 2). The default representation, used when no base designation is
given, is decimal. Table 2-3 below shows the digits of each numbering system and
the base designation character for each system (upper- and lowercase characters are
perm i tted) .

The only limitation to the range of numbers is that they must be representable within
16 binary digits.

Table 2-4 gives several examples of number representation in each of the number
systems.

Table 2-3. Assembly Language Number Representation

Number System Base Designator Digits in Order of Value

Binary B O~ 1

Octal OorO 0, 1, 2, 3, 4, 5, 6, 7

Decimal o or (nothing) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Hexadecimal H 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, A, B, C, 0, E, F

Table 2-4. Examples of Number Representation

base 16 base 10 baseS base 2

50H 80 120G 01010000B

OACH' 1720 254Q 10101100B

01h 1 10 1B

10H 16d 200 10000B

'A hexadecimal number must start with a decimal digit; 0 is used here.

2-9

Operands and Expressions

2-10

ASM51 Number Representation

Internally, ASM51 represents all numeric values with 16 bits. When ASM51
encounters a number in an expression, it immediately converts it to 16-bit binary
representation. Numbers cannot be greater than 65,535. Appendix H describes con-
version of positive numbers to binary representation. .

Negative numbers (specified by the unary operator "-") are represented in 2's
complement notation. There are two steps to converting a positive binary number to
a negative (2's complement) number.

0000 0000 0010 OOOOB = 20H

1111 1111 1101 1111 = Not 20H 1. Complement each bit in the number.

1111 1111 1110 0000 = (Not 20H) +1

1111 1111 1110 OOOOB = -20H

2. Add 1 to the complement.

To convert back simply perform the same two steps again.

Although 2's complement notation is used, ASM51 does not convert these nl,lmbers
for comparisons. Therefore, large positive numbers have the same representation as
small negative numbers (e.g., -1 = 65,535). Table 2-5 shows number interpretation
at assembly-time and at program execution-time.

Table 2-5. Interpretations of Number Representation

Number Characteristic Assembly-Time Program Execution
Expression Evaluation Arithmetic

Base Representation Binary, Octal, Decimal, Binary, Octal, Decimal,
or Hexadecimal or Hexadecimal

Range 0-65,535 User Controlled

Evaluates To: 16 Bits User Interpretation

Internal Notation Two's Complement Two's Complement

Signed/Unsigned Unsigned User Interpretation
Arithmetic

Character Strings in Expressions

The MCS-51 assembler allows you to use ASCII characters in expressions. Each
character stands for a byte containing that character's ASCII code. (Appendix H
contains a table of the ASCII character codes.) That byte can then be treated as a
numeric value in an expression. In general, two characters or less are permitted in a
string (only the DB directive accepts character strings longer than two characters). In
a one character string the high byte is filled with O's. With a two character string, the
first character's ASCII value is placed in the high order byte, and the second
character's value is placed in the low order byte.

All character strings must be surrounded by the single quote character ('). To
incorporate the single quote character into the' string, place two single quote
characters side-by-side in a string. For example, 'z'" is a string of two characters: a
lower case "Z" and the single quote character.

MeS-51

MeS-51 Operands and Expressions

The ability to use character strings in an expression offers many possibilities to
enhance the readability of your code. Below, there are two examples of how
character strings can be used in expressions.

TEST: CJNE A,II'X',SKIP
JMPFOUND
SKIP: MOVA,@R1
INCR1
DJNZ R2,TEST

MOV A,SBUF

SUBB A,II'O'

; If A contains 'X' then fall through
; Otherwise, jump to skip and
; Move next character into accumulator
; Change R1 to point to next character
; JUMP to TEST if there are still more
; characters to test

; Move character in serial port buffer
; to accumulator
; Subtract '0' from character just read
; this returns binary value of the digit

NOTE

A corollary of this notation for character strings is the null string-two
single quotes surrounding no characters (side-by-side). When the null
character string is used in an expression it evaluates to 0, but when used as
an item in the expression list of a DB directive it will evaluate to nothing and
will not initiate memory. (See Chapter 4 for an example.)

Use of Symbols

The assembler has several kinds of symbols available to the programmer. They may
stand for registers, segments, numbers,and memory addresses. They allow a pro­
grammer to enhancelhe readability of his code.

Symbols are defined by four attributes:

• Type-register, segment, number, address

• Segment Type-DATA, BIT, XDATA, CODE, IDATA

• Scope-local, public, external

• Value-register name, segment base address, constant value, symbol address
(depending on type)

Not all of these four attributes are valid combinations.

The type attribute provides a common classification to the symbols:

• Register-indicates symbols which were defined as such by EQU or SET
directives

• Segment-indicates symbols which were designated as relocatable segments

• Number-indicates that the symbol represents a pure number and can be used in
any expression. (It has no segment type.)

• Address-indicates that the symbol represents a memory address.

The segment type specifies, for segment symbols, the address space where the seg­
ment resides. For address type symbols, it specifies the way the symbol may be used
(as a DATA address, BIT address, etc.). Usually it is identical to the address space in
which the owning segment was defined. The only exception is for symbols defined as
bits within a BIT ADDRESSABLE DATA type segment (see the Bit directive in
Chapter 4). Such symbols have a BIT type.

The scope attribute is valid for number and address type symbols. It specifies
whether the symbol is local, public, or external.

2-11

Operands and Expressions

2-12

The value attribute is defined with respect to the type of the symbol:

• Register-the value is the name (in ASCII) of the register

• Segment-the value is the base address (computed at RL-time)

• Number-the value of the constant

• Address-for an absolute symbol, the value is the absolute address within the
containing address space. For a relocatable address symbol, the value is the off­
set (in bits or bytes depending on the segment type) from the base of its owning
segment.

Once you have defined a symbol anywhere in your program (some expressions
require that no forward references be used), you can use it in any numeric operand
in the same way that you would use a constant, providing you respect segment type
conventions. The segment type required for each numeric operand is described
above. The creation of user-defined symbols is completely described in Chapter 4.

Besides the user-defined symbols, there are several predefined addresses available
for the hardware registers and flags. Table 2-6 shows all of the predefined data
address symbols and the values they represent. The bit address symbols have been
listed earlier in this chapter. (See Table 2-2.)

Remember that these symbols evaluate to a data address and cannot be used in
instructions that call for a special assembler symbol.

ADD A,1I5

ADD ACC,1I5

; This is a valid instruction. A is the special
; assembler symbol required for this operand
; This is an invalid instruction and will generate
; an error message. ACC is an address and not
; the special symbol required for the instruction

There is an additional symbol that may be used in any numeric operand, the location
counter ($). When you are using the location counter in an instruction's operand, it

Table 2-6. Predefined Data Addresses for 8051

Symbol Hexadecimal Meaning
Address

ACC EO Accumulator
8 FO Multiplication Register
DPH 83 Data Pointer (high byte)
OPl 82 Data POinter (low byte)
IE A8 Interrupt Enable
IP 88 Interrupt Priority
PO 80 PortO
P1 90 Port 1
P2 AO Port 2
P3 80 Port 3
PSW DO Program Status Word
S8UF 99 Serial Port Buffer
SCON 98 Serial Port Controller
SP 81 Stack Pointer
TCON 88 Timer Control
THO 8C Timer 0 (high byte)
TH1 80 Timer 1 (high byte)
TlO 8A Timer 0 (low byte)
Tl1 88 Timer 1 (low byte)
TMOD 89 Timer Mode

MeS-51

MeS-51 Operands and Expressions

will stand for the address of the first byte of the instruction currently being encoded.
You can find a complete description of how to use and manipulate the location
counter in Chapter 4, Assembler Directives.

Using Operators in Expressions
There are four classes of assembly-time operators: arithmetic, logical, special, and
relational. All of them return a 16-bit value. Instruction operands that require only 8
bits will receive the low order byte of the expression. The distinction between each
class of operators is loosely defined. Since they may be used in the same expression,
they work on the same type of data, and they return the same type of data.

Arithmetic Operators

Table 2-7 contains a list of all the arithmetic operators.

Table 2-7. Arithmetic Assembly-Time Operators

Operator Meaning

+ Unary plus or add

- Unary minus or subtract
, Multiplication

1 Integer division (discard remainder)

MOD Modular division (discard quotient)

The following examples all produce the same bit pattern in the low order byte
(0011 OlOIB):

+53
27+26
-203
65-12
2'25+3 multiplication is always executed before the addition
160/3
153 MOD 100

Note that the MOD operator must be separated from its operands by at least one
space or tab, or have the operands enclosed in parentheses.

Logical Operators

Table 2-8 contains a list of all logical operators. The logical operators perform their
operation on each bit of their operands. .

Table 2-8. Logical Assembly-Time Operators

Operator Meaning

OR Full 16·bit OR

AND Full 16·bit AN.D

XOR Full 16·bit exclusive OR

NOT Full 16·bit complement

The following examples all produce the same 8-bit pattern in the low order byte
(001101OIB):

00010001B OR 00110100B
01110101 BAND 10110111 B
11000011B XOR 11110110B

NOT 11001010B

2-13

Operands and Expressions

2-14

Note that all logical operators must be separated from their operand by at least one
space or tab, or have the operands enclosed in parentheses.

Special Assembler Operators
Table 2-9 contains a list of all special operators:

Table 2-9. Special Assembly-Time Operators

Operator Meaning

SHR 16-bit shift right

SHL 16-bit shift left

HIGH Select the high order byte of operand

LOW Select the low order byte of operand

() Evaluate the contents of the parenthesis first

The following examples all produce the same 8-bit pattern in the low order byte
(0011 0101B):

01AFH SHR3

HIGH (1135H SHL 8)

LOW 1135H

Bits are shifted out the right end
and 0 is shifted into the left.

Parenthesis is required since HIGH
has a greater precedence than SHL.
Bits are shifted out the left and
o is shifted in the right.

Without using the LOW operator.
the high order byte would have
caused an error in an 8-bit
operand.

Note SHR, SHL, HIGH and LOW must be separated from their operands by at
least one space or tab, or have the operands enclosed in parentheses.

Relational Operators

The relational operators differ from all of the other operators in that the result of a
relational operation will always be either 0 (False) or OFFFFH(True). Table 2-10
contains a list of all the relational operators:

Table2-10. Relational Assembly-Time Operators

Operator Meaning

EQ == Equal

NE <> Not equal

LT < Less than

LE <= Less than or equal to

GT > Greater than

GE >= Greater than or equal to

MCS-Sl

MCS-51. Operands and Expressions

The following examples all will return TRUE (OFFFFH):

27H EQ 390
27H <>270
33 LT 34
7>5
16 GE 10H

Note that the two-letter (mnemonic) form of the relational operator must be
separated from their operands by at least one space or tab; the symbolic form does
not. If the space or tab is not used, the operand must be enclosed in parentheses.

Operator Precedence

Every operator is given a precedence in order to define which operator is evaluated
first in an expression. ,For example, the expression 3* 5+ 1 could be interpreted as 16
or 18 depending on whether the + or the * is evaluated first. The following list shows
the precedence of the operators in descending order.

• Parenthesized expression ()

• HIGH, LOW
• *, I, MOD, SHL, SHR

• +, - unary and binary forms

• EQ,NE,LT,LE,GT,GE,=,<>,<,<=,>,>=

• NOT
• AND

• OR,XOR

All operators on the same precedence level are evaluated from left to right in the
expression.

Segment Typing in Expressions

Most expressions formed with assembly-time operators do not have a segment type,
but some operations allow the expression to assume the segment type of a symbol
used in the expression. The rules for expressions having a segment type are listed
below.

1. The result of a unary operation (+, -, NOT, LOW, HIGH) will have the same
segment type as that of its operand.

2. The result of all binary operations except plus (+) and minus (-) will have no
segment type (Le., NUMBER).

3. For a binary plus or minus operation, if only one of the operands has a segment
type, then the result will have that segment type. If not, the result will have no
segment type.

This means that only memory address plus or minus a number (or a number plus or
minus a number) gives a memory address. All other combinations produce a typeless
value. For example, code-address + (data_address_l - data_address_2) pro­
duces a value which is a CODE address; (data_address_l - dat~address_2) has
no segment type.

2-15

Operands and Expressions

2-16

Relocatabl"e Expression Evaluation
A relocatable expression is an expression that contains a relocatable or external
reference, called the "relocatable symbol." Such an expression cannot be com­
pletely evaluated at assembly time. The Relocator and Linker program (RL51)
finalizes such expressions using its additional knowledge; i.e., where the relocatable
segments and the public symbols are located.

A relocatable expression may usually contain only one relocatable symbol.
However, when subtracting ("-") or comparing (">", EQ, etc.) relocatable symbols
which refer to the same relocatable segment, the result is absolute quantity, and
these symbols are not counted as relocatable.

The relocatable symbol may be modified by adding or subtracting an absolute quan­
tity (called offset). Thus the following forms result in valid relocatable expressions:

relocatable_symbol + absolute_expression
relocatable_symbol - absolute_expression
absolute_expression + relocatable_symbol

There are two types of relocatable expressions: simple relocatable expressions which
can be used for symbol definition and code generation; and general r~locatable
expressions which can be used only in code generation. '

Simple Relocatable Expressions

In simple relocatable expressions the relocatable symbol can only represent an
address in a relocatable segment. External and segment symbols are not allowed.

Simple relocatable expressions can be used in three contexts:

1. As an operand to the ORG statement.

2. As an operand to the following symbol definition directives: EQU, SET,
CODE, XDAT A, IDAT A, BIT or the DATA directives.

3. As an operand to a machine instruction or a data initialization directive (DB or
DW).

Examples:

VALID

REL1 + ABS1*10
REL2-ABS1
REL 1 + (REl2- REL3) ... assuming REL2 and REL3 refer to the same segment

INVALID

(REL1 + ABS1)*10 ... relocatable quantity may not be multiplied
EXT1- ABS1 ... this is a general relocatable expression
REL1 + REL2- REL3 ... you cannot add relocatable symbols (REL1, REL2)

General Relocatable Expressions

General relocatable expressions can be used only in statements which generate code;
i.e., as operands to machine instructions, or as items in a DB or DW directive.

In this case the relocatable symbol may be a simple relocatable symbol (representing
an address in a relocatable segment). a segment symbol (representing the base
address of a relocatable segment), or an external symbol.

MeS-51

MCS-51 Operands and Expressions

In addition, the relocatable expression may be prefixed by the LOW or the HIGH
operator.

Examples

VALID

REL1 + ABS1*10
EXT1 - ABS1
LOW (SEG1 + ABS1)

INVALID

(REL1 + ABS1)*10 , .. relocatable quantity may not be multiplied
EXT1 - REL 1 ... you can add I subtract only absolute quantities
LOW SEG1 + ABS1 ... LOW I HIGH may be applied only to the final relocatable expression

(or to an absolute expression); the expression here is equ ivalent to
(LOW SEG1) + ABS1

2-17

CHAPTER 3
INSTRUCTION SET

This chapter contains complete documentation for all of the 8051 instructions. The
instructions are listed in alphabetical order by mnemonic and operands.

Introduction

This chapter is designed to be used as a reference. Each instruction is documented
using the same basic format. The action performed by an instruction is defined in
three ways. First, the operation is given in a short notation; the symbols used and
their meanings are listed in the table below. The operation is then defined in a few
sentences in the description section. Finally, an example is given showing all of the
registers affected and their contents before and after the instruction.

NOTE
The only exception is that the program counter (PC) is not always shown.
All instructions increment the PC by the number of bytes in the instruction.
The "Example:" entry for most instructions do not show this increment by
the PC. Only those instructions that directly affect the PC (e.g., JMP,
ACALL, or RET) show the contents of the PC before and after execution.

The list of notes that appears at the bottom of some instructions refer to side-effects
(flags set and cleared and limitations of operands). The numbers refer to the notes
tabulated on page 3-143/3-144. You can unfold that page for easier reference while

.. you are studying the instruction set.

The "Operands:" entry for each instruction briefly indicates the range of values and
segment type permitted in each operand. For a complete description of the limits of
any operand see Chapter 2. In general, the operand's name will identify what section
to consult.

With one exception, the operands to 3 byte instructions are encoded in the same
order as they appear in the source. Only the "Move Memory to Memory" instruc­
tion is encoded with the second operand preceding the first.

3-1

Instruction Set

3-2

The illustration below (figure 3-1) describes the meaning of each section of the
instruction documentation.

ADD
Add Immediate Data

Mnemonic: ADO

Operands:

Format:

A
data

ADD A,faata

Accumulator
-256 <= data <= + 255

Bit Pattern: I 00100100 IlmmediateDatal
o 7

Operation: tA) -tAl + aata

Byle.: 2
Cycles: I

Flags: C AC FO AS1 AS(I OV

1-1-1 I I I-I I-I
PSW

Description; This inSlrllction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

Example: ADD A,132H ; Add 32H to accumulator

Encoded Instruction:

1001001001001100101

7 0 7 0

Before

Accumulator

1001001101

o
Notes: 4, 5,6.7

After

Accumulator

1010110001

7 0

Figure 3-1. Format For Instruction Definitions

Mnemonic: shows opcode mnemonic. It is shown in upper case, but upper or
lower case characters are permitted.

Operands: indicates range and type of operands permitted.

Format: shows the format of the instruction, including the order of operands
on the source line.

Bit Pattern: indicates bit pattern in opcode and position of operands when
encoded. Letters in the opcode's bit pattern vary with operand specified.

Operation: symbolically defines the operation performed by the instruction.
The symbols used in this entry are defined in table 3-1.

Bytes and Cycles: shows the number of bytes of code and the number of
machine cycles used by the instruction.

Flags: indicates any status flag that may be changed during the execution of
the instruction.

Description: is a brief prose description of the operation performed by the
instruction.

Example: shows an example instruction as it would appear in the source. It
also shows the bit pattern of the encoded instruction, and the contents of all
registers affected by the instruction, immediately before and after the instruc­
tion is executed.

The PC is incremented by all instructions, but only instructions that affect the
PC as part of their operation show its contents in the example.

Notes: indicates the notes on page 3-142 that pertain to the instruction.

MeS-51

MeS-51

Table 3-1. Abbreviations and Notations Used

A
AB
B
bit address
page address
relative offset
C
code address
data
data address
DPTR
PC
Rr
SP
high
low
i-j
.n

AND
NOT
OR
XOR
+

(X)

«X))

<>
<
>

Accumulator
Register Pair
Multiplication Register
8051 bit address
II-bit code address within 2K page
8-bit 2's complement offset
Carry Flag
Absolute code address
Immediate data
On-chip 8-bit RAM address
Data pointer
Program Counter
Register(r=O-7)
Stack pointer
High order byte
Low order byte
Bits i through j
Bitn

Logical AND
Logical complement
Logical OR
Logical exclusive OR
Plus
Minus
Divide
Multiply
The contents of X
The memory location addressed by (X)

(The contents of X)
Is equal to
Is not equal to
Is less than
Is greater than
Is replaced by

Instruction Set

l·3

3-4

Absolute Call Within 2K Byte Page

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

ACALL

code address

ACALL code address

aaa10001 I aaaaaaaa I
7 0 7 0

(PC) +- (PC) + 2
(SP) +- (SP) + 1
«SP)) +- (PC low)
(SP) +- (SP) + 1
«SP)) +- (PC high)
(PC) 0-10 +- page address

C AC FO RS1 RSO OV p

PSW

Description: This instruction stores the incremented contents of the program
counter (the return address) on the stack. The low-order byte of the
program counter (PC) is always placed on the stack first. It replaces
the low-order 11 bits of the PC with the encoded II-bit page
address. The destination address specified in the source must be
within the 2K byte page of the instruction following the ACALL.

The 3 high-order bits of the ll-bit page address form the 3 high­
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

MCS-Sl

MCS-Sl

Example: ORG35H
ACALL SORT ; Call SORT (evaluates to page

; address 233H)

ORG233H
SORT: PUSH ACC ; Store Accumulator

RET ; Return from call

Encoded Instruction:

101010001 100110011

7 o 7 o
Before After

Program Counter Program Counter

I 00000000 I 00110101 I 00000010 I 00110011

15 8 7 0

Stack Pointer

100100110 I
'7 0

(27H)

I 00000000 I
7 0

(28H)

I 00000000 I
7 0

Notes: 2,3

15 8 7

Stack Pointer

100101000 I
7 0

(27H)

100110111 I
7 0

(28H)

I 00000000 I
7 0

o

ACALL

3-5

ADD

3-6

Add Immediate Data

Mnemonic: ADD

Operands: Accumulator A
data -256 <= data <= + 255

Format: ADD A,#data

Bit Pattern:
I 001 001 00 Ilmmediate Datal

7 o 7 o

Operation: (A) - (A) + data

Bytes: 2
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

Example: ADD A,#32H

Encoded Instruction:

100100100 100110010

707 0

Before

Accumulator

I 00100110 I
7 0

Notes: 4, 5, 6, 7

; Add 32H to accumulator

After

Accumulator

01011000

7 '0

MeS-51

MeS-51

Add Indirect Address

Mnemonic: ADD

Operands:

Format:

A
Rr

ADD A,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern:
1 0010011r I

7 0

Operation: (A) +- (A) + «Rr))

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the contents of the data memory location
addressed by register r to the contents of the accumulator. It places
the result in the accumulator.

Example: ADDA,@R1

Encoded Instruction:

100100111 I
7 o

Before

Accumulator

1 1 0000110 I
7 o

Register 1

00011100

7 o
(1CH)

101100010 I
7 0

Notes: 5,6,7, 15

; Add indirect address to accumulator

After

Accumulator

111101000 1

7 o
Register 1

100011100 I
7 o

(1CH)

101100010

7 0

ADD

3-7

ADD

3-8

Add Register

Mnemonic: ADD

Operands:

Format:

Bit Pattern:

A
Rr

ADD A,Rr

100101rrr

7 0

Accumulator
Register 0 <= r <= 7

Operation: (A) - (A) + (Rr)

Bytes: 1
Cycles: 1

Flags: C AC FO AS1 ASO OV p

PSW

Description: This instruction adds the contents of register r to the contents of
the accumulator. It places the result in the accumulator.

Example: ADD A,R6

Encoded Instruction:

100101110 1

7 o
Before

Accumulator

10111,01101

7 o
Register 6

110000101

7 0

Notes: 5, 6, 7

; Add R6 to accumulator

After

Accumulator

111111011

7 o
RegisterS

110000101

7 0

MeS-51

MeS-51

Add Memory

Mnemonic: ADD

Operands: A Accumulator
data address 0 <= data address <= 255

Format: ADD A,data address

Bit Pattern: I 00100101 I Data Address I
7 0 7 0

Operation: (A) +- (A) + (data address)

Bytes: 2
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the contents of the specified data address to
the contents of the accumulator. It places the result in the
accumulator.

Example: ADD A,32H

Encoded Instruction:

I 00100101

7 0

Before

Accumulator

100100110 I
7 o

(32H)

101010011

7 0

Notes: 5,6,7,8

00110010

7 0

After

; Add the contents of
; 32H to accumulator

Accumulator

101111001

7 o
(32H)

101010011

7 0

ADD

3-9

ADDC

3-10

Add Carry Plus Immediate Data to Accumulator

Mnemonic: ADDC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

Accumulator
-256 <= data <= + 255

ADDC A,#data

0011 01 00 Ilmmediate Datal

7 0 7 0

(A) +- (A) + (C) + data

C AC FO RS1 RSO OV P

1-1-1 I-I I-I
PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The 8-bit immediate data value is
added to that intermediate result, and the carry flag is updated. The

" accumulator and carry flag reflect the sum of all three values.

Example: ADDC A,#OAFH ; Add Carry and OAFH to accumulator

Encoded Instruction:

00110100

7 0

Before

Accumulator

01110001

7 0

Carry

QJ
Notes: 4, 5, 6, 7

10101111

7 0

After

Accumulator

00100001

7 0

Carry

QJ

Mes-sl

MCS-Sl ADDC
Add Carry Plus Indirect Address to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

ADDC

A
Register

ADDC A,@Rr

0011011r

7 0

Accumulator
0<=r<=1

(A) +- (A) + (C) + «Rr))

C AC FO RS1 RSO OV p

1-1- I
PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of data memory at the
location addressed by register r is added to that intermediate result,
and the carry flag is updated. The accumulator and carry flag
reflect the sum of all three values.

3-11

ADDC
Example: ADDC A,@R1

Encoded Instruction:

100110111 I
7 0

Before

Accumulator

111101000 I
7 0

Register 1

101101001 I
7 0

(69H)

100011000 I
7 0

Carry

IT]
Notes: 5,6, 7, 15

3-12

After

; Add carry and indirect address to
; accumulator

Accumulator

I 00000000 I
7 0

Register 1

1011010011

7 0

(69H)

1000110001

7 0

Carry

m

MeS-51

MCS-Sl ADDC
Add Carry Plus Register to Accumulator

Mnemonic: ADDC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A
Register

ADDC A,Rr

00111rrr

7 0

Accumulator
0<=r<=7

(A) +- (A) + (C) + (Rr)

C AC FO RS1 RSO OV P

1-1-1 I-I I-I
PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator at bit o. The contents of register r is
added to that intermediate result, and the carry flag is updated. The
accumulator and carry flag reflect the sum of all three values.

Example: ADDC A,R7

Encoded Instruction:

00111111

7 0

Before

Accumulator

00110000

7 0

Register 7

100001010

7 0

Carry

CD
Notes: 5, 6, 7

After

; Add carry and register 7
; to accumulator

Accumulator

00111011

7 0

Register 7

00001010

7 0

Carry

m

3-13

ADDC

3-14

Add Carry Plus Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ADDC

A Accumulator
data address 0 <= data address <= 255

ADDC A,data address

I 0011 01 01 I Data Address I
7 0 7 0

(A) (A) + (C) + (data address)

C AC FO RS1 RSO OV P

1-1-1 I-I I-I
PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of the specified data
address is added to that intermediate result, and the carry flag is
updated. The accumulator and carry flag reflect the sum of all
three values.

Example: ADDC A,25H

Encoded Instruction:

100110101
7 0

Before

Accumulator

10101110

7 0

(25H)

I 00000111

7 o
Carry

m
Notes: 5,6, 7,8

00100101

7 0

After

; Add carry and contents of 25H to
; accumulator

Accumulator

110110101

7 0

(25H)

I 00000111

7 o
Carry

m

MeS-51

MeS-51 AJMP
Absolute Jump within 2K Byte Page

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

AJMP

code address

AJMP code address

I aaa00001 I aaaaaaaa I
7 0 7 0

(PC) +- (PC) + 2
(PC) 0-10 +- page address

C AC FO RS1RSO OV p

PSW

Description: This instruction replaces the low-order 11 bits of the program
counter with the encoded ll-bit address. The destination address
specified in the source must be within the 2K byte page of the
instruction following the AJMP .

Example:

The 3 high-order bits of the ll-bit page address form the 3 high­
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

ORGOE80FH
TOPP: MOV A,R1

ORGOEADCH
AJMPTOPP ; Jump backwards to TOPP

; at location OE80FH

Encoded Instruction:

00000001 00001111

7 0 7 0

Before After

Program Counter Program Counter

11101010 11011100 I 111101000 100001111

15 8 7 0 15 8 7 0

Notes: None

3-15

ANL

3-16

Logical AND Immediate Data to Accumulator

Mnemonic: ANL

Operands:

Format:

Bit Pattern:

A
data

ANL A.'data

Accumulator
-256 <= data <= + 255

I 0101 01 00 Ilmmediate Datal

7 o 7 o
Operation: (A) - (A) AN 0 data

Bytes: 2
Cycles: 1

Flags: C AC FO AS1 ASO OV p

PSW

Description: This instruction ANDs the 8-bit immediate data value to the
contents of the accumulator. Bit n of the result is 1 if bit n of each
operand is 1; otherwise bit n is O. It places the result in the
accumulator.

Example: ANL A,IO0001000B ; Mask out all but bit 3

Encoded Instruction:

I 01010100 I 00001000 I
707 0

Before

Accumulator

101110111

7 o
Notes: 4.5

After

Accumulator

I 00000000 I
7 o

MCS-Sl

Mes-sl

Logical AND Indirect Address to Accumulator

Mnemonic: ANL

Operands:

Format:

A
Rr

ANL A,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern:
I 0101011r I

7 0

Operation: (A) - (A) AND «Rr))

Bytes: 1
Cycles: 1

Flags:
C AC FO RS1 RSO OV P

I-I
PSW

Description: This instruction ANDs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of each operand is 1;
otherwise bit n is O. It places the result in the accumulator.

Example: ANL A,@RO

Encoded Instruction:

101010110 I
7 o

Before

Accumulator

100111111

7 o
Register 0

101010010 I
7 o

(52H)

100001111

7 o
Notes: 5,15

After

; AND indirect address with
; accumulator

Accumulator

100001111

7 o

Register 0

101010010 I
7

(52H)

7

o

o

ANL

3-17

ANL

3-18

Logical AN 0 Register to Accumulator

Mnemonic: ANL

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Rr

Accumulator
0<=Rr<=7

ANL A,Rr

101011rrr

7 0

(A) +- (A) AND (Rr)

C AC FO RS1 RSO ov p

PSW

Description: This instruction ANDs the contents of register r to the contents of
the accumulator. Bit n of the result is 1 if bit n of each operand is 1;

,. otherwise bit n is O. It places the result in the accumulator.

Example: MOV R4,#10000000B ; Move mask to R4
ANL A,R4 ; AND register 4 with accumulator

Encoded Instruction:

101011100 1

7 o
Before

Accumulator

10011001

7 o

Register 4

10000000

7 o

Note: 5

After

Accumulator

110000000 1

7 o
Register 4

10000000

7 o

MCS-51

MeS-51

Logical AND Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ANL

A Accumulator
data address 0 <= data address <= 255

AN L A,data address

1 01 0 1 01 01 I Data Address I
7 0 7 0

(A) +- (A) AND (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the contents of the specified data address to
the contents of the accumulator. Bit 11 of the result is 1 if bit n of
each operand is also 1; otherwise bit n is O. It places the result in the
accumulator.

Example: ANL A,37H

Encoded Instruction:

101010101 00110111

7 o 7

Before

Accumulator

101110111

7 o
(37H)

111110000 1

7 0

Notes: S,8

o

After

; AND contents of 37H with
; accumulator

Accumulator

101110000 I
7 o

(37H)

111110000 I
7 0

ANL

3-19

ANL

3-20

Logical AN D Bit to Carry Flag

Mnemonic: ANL

Operands: C Carry Flag
bit address 0 <= bit address <= 255

Format: ANL C,bitaddress

Bit Pattern:
I 1 000001 0 I Bit Address I
707 0

Operation:

Bytes: 2
Cycles: 1

Flags:

(C) - (C) AND (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the contents of the specified bit address to
the contents of the carry flag. If both bits are 1, then the result is 1;
otherwise, the result is O. It places the result in the carry flag.

Example: ANL C,37.3

Encoded Instruction:

\10000010 100101011

7 0 7

Before

Carry Flag

IT]
(37)

100101110 I
730

Notes: None

0

; AN 0 bit 3 of byte 37 with Carry

After

Carry Flag

IT]
(37)

\ 00101110

7 3 0

MeS-51

Mes-sl

Logical AN D Complement of Bit to Carry Flag

Mnemonic: AN L

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

C Carry Flag
bit address 0 <= bit address <= 255

ANL C,lbitaddress

10110000 Bit Address

7 0 7 0

(C) +- (C) AND NOT (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the complemented contents of the specified
bit address to the contents of the carry flag. The result is 1 when the
carry flag is I and the contents of the specified bit address is O. It
places the result in the carry flag. The contents of the specified bit
address does not change.

Example: ANL C,!40.5

Encoded Instruction:

10110000

7 0

Before

Carry Flag

IT]
(40)

101011000

750

Notes: None

01000101

7 0

After

; Complement contents of 40.5
; then AND with Carry

Carry Flag

IT]
(40)

101011000

750

ANL

3-21

ANL

3-22

Logical AN D Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

ANL

data address 0 <=data address <= 255
data -256 <= data <= + 255

AN L data address ; #da ta

01010011 I Data Address Ilmmediate Datal

7 07 07 0

(data address) +- (data address) AND data

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the 8-bit immediate data value to the
contents of the specified data address. Bit n of the result is 1 if bit n
of each operand is also 1; otherwise, bit n is o. It places the result in

" data memory at the specified address.

Example: MOV 57H,PSW
ANL 57H,#01H

Encoded Instruction:

01010011 01010111

7 0 7 0

Before

(57H)

; Move PSW to 57H
; Mask out all but parity bit
; to check accumulator parity

00000001

7 0

After

(57H)

101110111 I 00000001

7 0 7 0

Notes: 4,9

MCS-51

MeS-51

Logical AND Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ANL

data address 0 <= data address <= 255
A Accumulator

ANL dataaddress,A

I 0 1 0 1 0 0 1 0 I Data Add ress I
7 o 7 o

(data address) +- (data address) AND A

C AC FO RS1 RSO ov p

PSW

Description: This instruction ANDs the contents of the accumulator to the
contents of the specified data address. Bit n of the result is 1 if bit n
of each operand is also 1; otherwise, bit n is O. It places the result
in data memory at the specified address.

Example: MOV A,#1 0000001 B ; Load mask into accumulator
ANL 10H,A ; Mask out all but bits 0 and 7

Encoded Instruction:

I 01010010 I 00010000 I
7 o 7

Before

Accumulator

10000001

7 0

(10H)

100110001

7 o
Note: 9

o
After

Accumulator

110000001

7 0

(10H)

1 00000001

7 o

ANL

3-23

CALL

3-24

Generic Call

Mnemonic: CALL

Operands: code address

Format: CALL code address

Bit Pattern: Translated to ACALL or LCALL as needed

Operation: Either ACALL or LCALL

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction is translated to ACALL when the specified code
address contains no forward references and that address falls
within the current 2K byte page; otherwise; it is translated to
LCALL. This will not necessarily be the most efficient representa­
tion when a forward reference is used. See the description for
ACALL and LCALL for more detail.

Example: ORG 80DCH
CALL SUB3 ; Call SUB3 (SUB3 is a forward

; reference so LCALL is encoded
; even though ACALL would work in
; this case.)

SUB3: POP 55H ; Address 8233H
Encoded Instruction:

00010010 10000010

7 0 7 0

Before

Program Counter

10000000 11011100

707 0

Stack Pointer

01100100

7 o
(65H)

I 00000000

7 0

(66H)

I 00000000

7 0

Notes: 1, 2, 3

00110011

7 0

After

Program Counter

1 110000010100110011

15 8 7 0

Stack Pointer

101100110

7 o
(65H)

111011111

7 0

(66H)

110000000

7 0

MeS-51

MCS-Sl CJNE
Compare Indirect Address to Immediate Data,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

CJNE

Rr Register 0 <= r <= 1
data -256 <= data <= + 255
code address

CJNE @Rr,#data,codeaddress

I 1 011 011 r Ilmmediate Data I ReI. Offset

7 0 7 0 7 0

(PC) - (PC) + 3
IF ((Rr» < > data
THEN

(PC) - (PC) + relative offset
IF ((Rr» < data
THEN

ELSE
(C) -1

(C)-O

C AC FO RS1 RSO OV

PSW

p

Description: This instruction compares the immediate data value with the
memory location addressed by register r. If they are not equal, con­
trol passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the· immediate data value is greater than the contents of the
specified data address, then the carry flag is set to 1; otherwise, it is
reset to O.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-25

CJNE

3-26

Example: CJNE @R1,#01,SCAB; Jump if contents of
; indirect address do
; not equal 1

SCAB: MOV C,FO ; 5AH bytes from the
;beginning of CJNE

Encoded Instruction:

110110111 100000001 101010111

7 0 7 0 7 0

Before After

Register 1 Register 1

101010011 101010011

7 0 7 0

(53H) (53H)

1111000011 111100001

7 0 7 0

Carry Flag Carry Flag

OJ [IJ
Program Counter Program Counter

100000000 111011100 I 00000001 1 00110110 I
15 8 7 0 15 8 7 0

Notes: 4,10,11,12,15

MCS-Sl

MCS-Sl

Compare Immediate Data to Accumulator,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

CJNE

A Accumulator
data -256 <= data <= + 255
code address

CJNE A,#data,codeaddress

1 0110100 llmmediate Data I ReI. Offset

7 0 7 0 7 0

(PC) +- (PC) + 3
IF (A) < > data
THEN

(PC) +- (PC) + relative offset
IF (A) < data
THEN

ELSE
(C) +-1

(C) +- 0

C AC FO RS1 RSO ov

PSW

p

Description: This instruction compares the immediate data value with the
contents of the accumulator. If they are not equal, control passes to
the specified code address. If they are equal, then control passes to
the next sequential instruction.

If the immediate data value is greater than the contents of the
accumulator, then the carry flag is set to 1; otherwise, it is reset
toO.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

CJNE

3-27

CJNE

3-28

Example: ORG 10DCH
CJNE A,'10H,NEXT ; Jump if accumulator does not equal

; 10H

NEXT: INCA ; location 1136H

Encoded Instruction:

110110100

7 0

Before

Accumulator

101010000 I
7 0

Carry Flag

[JJ

00010000

7 0

01010111

7 0

After

Accumulator

1010100001

7 0

Carry Flag

0]
Program Counter Program Counter

100010000 111011100 I 100010001 100110110 I
15 8 7 0 15 8 7 0

Notes: 4, to, 11, 12

MCS-Sl

MCS-Sl CJNE
Compare Memory to Accumulator,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
~ycles: 2

Flags:

CJNE

A Accumulator
data address 0 <= data address <= 255
code address

CJN E A,data address ,code address

1 011 01 01 I Data Address I ReI. Offset

7 0 7 0 7 0

(PC) - (PC) + 3
IF (A) < > (data address)
THEN

(PC) - (PC) + relative offset
IF (A) < (data address)
THEN

ELSE
(C) +-1

(C) -0

C AC FO RS1 RSO OV

PSW

p

Description: This instruction compares the contents of the specified memory
location to the contents of the accumulator. If they are not equal,
control passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the contents of the specified memory location is greater than the
contents of the accumulator, then the carry flag is set to 1; other­
wise, it is reset to O.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented. program counter, and the instruction at that address is
executed.

3-29

CJNE

3-30

Example: CJNE A, 37H, TEST, Jump if 37H and accumulator
; are not equal

TEST: INCA ; 4FH bytes from CJNE

Encoded Instruction:

110110101 100110111 101001100 1

7 o 7 o 7 o
Before After

(37H) (37H)

101111110 I 101111110 I
7 0 7 0

Accumulator Accumulator

100100110 I 100100110 I
7 0 7 0

Carry Flag Carry Flag

IT] QJ
Program Counter Program Counter

t 00000000 1110111 00 I I 00000001 I 00110110 I
15 8 7 0 15 8 7 0

Notes: 8, 10, II, 12

MeS-51

MCS-Sl

Compare Immediate Data to Register,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
9ycles: 2

Flags:

CJNE

Rr
data

Register 0 <= r <= 7
-256 <= data <= + 255

code address

CJNE Rr,#data,codeaddress

1 0111 r r r Ilmmediate Data I ReI. Offset

7 0 7 0 7 0

(PC) +- (PC) + 3
IF (Rr) < > data
THEN

(PC) +- (PC) + relative offset
IF (Rr) < data
THEN

ELSE
(C) +-1

(C) +- 0

C AC FO RS1 RSO OV

PSW

p

Description: This instruction compares the immediate data value with the
contents of register r. If they are not equal, control passes to the
specified code address. If they are equal, then control passes to the
next sequential instruction.

If the immediate data value is greater than the contents of the
specified register, then the carry flag is set to 1; otherwise, it is reset
toO.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

CJNE

3-31

CJNE

3-32

Example: CJNE R5,#32H,SKIP10 ; Jump if register 5 does not
; equal32H

SKIP10: MOV R5,PO ;13 bytes from CJNE

Encoded Instruction:

110111101110000000 1000010101

7 o 7 o 7 o

Before After

Register 5 Register 5

I 00000001 I 00000001

7 0 7 0

Carry Flag Carry Flag

OJ OJ
Program Counter Program Counter

I 00000000 111011100 I I 00000000 111101001

15 8 7 o 15 8 7 o
Notes: 4, 10, 11, 12

MeS-51

MeS-51

Clear Accumulator

Mnemonic: CLR

Operands: A Accumulator

Format: CLR A

Bit Pattern:
111100100 I

7 0

Operation:

Bytes: 1
Cycles: 1

(A)-O

Flags: C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction resets the accumulator to o.

Example: CLR A

,!:ncoded Instruction:

111100100 I
7 0

Before

Accumulator

100111111

7 o

Note: S

; Set accumulator to 0

After

Accumulator

I 00000000 I
7 o

CLR

3-33

CLR MCS-Sl

Clear Carry Flag

Mnemonic: CLR

Operands: C Carry Flag

Format: CLR C

Bit Pattern:
111000011

7 0

Operation: (C) +- 0

Bytes:
Cycles:

Flags: C AC FO RS1 RSO ov p

PSW

Description: This instruction resets the carry flag to O.

Example: CLR C ; Set carry flag to 0

Encoded Instruction:

1110000111

7 o
Before After

Carry Flag Carry Flag

QJ W
Notes: None

3-34

MeS-51 CLR
Clear Bit

Mnemonic: CLR

Operands: bit address 0 <= bit address <= 255

Format: CLR bit address

Bit Pattern:
1 11 00001 0 1 Bit Address 1

7 o 7 o
Operation: (bit address) +- 0

Bytes: 2
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction resets the specified bit address to o.

Example: CLR40.5 ; Set bit 5 of byte 40 to 0

Encoded Instruction:

111000010 01000101

7 0 7 0

Before After

(40) (40)

100100110 I 100000110 I
7 5 o 7 5 o

Notes: None

3-35

CPL

3-36

Complement Accumulator

Mnemonic: CPL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A Accumulator

CPL A

111110100 1

7 0

(A) +- NOT (A)

C AC FO RS1 RSO OV p

PSW

Description: This instruction resets each 1 in the accumulator to 0, and sets each
o in the accumulator to 1.

Example: CPL A

Encoded Instruction:

1111100111

7 o
Before

Accumulator

100110101

7 0

Notes: None

; Complement accumulator

After

Accumulator

11001010

7 0

MCS-51

MCS-Sl

Complement Carry Flag

Mnemonic: CPL

Operands: C Carry flag

Format: CPL C

Bit Pattern:
110110011

7 0

Operation: (C) - NOT (C)

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction sets the carry flag to 1 if it was 0, and resets the
carry flag to 0 if it was 1.

Example: CPL C ; Complement Carry flag

Encoded Instruction:

110110011 I
7 0

Before After

Carry Flag Carry Flag

OJ CD
Notes: None

CPL

CPL

3-38

Complement Bit

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

CPL

bit address 0 <= bit address <= 255

CPL bit address

1 1 011 001 0 I Bit Address I
7 o 7 o

(bit address) ... NOT (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction sets the contents of the specified bit address to 1 if
it was 0, and resets the contents of the bit address to 0 if it was 1.

Example: CPL33.7 ; Set bit 7 of byte 33 to 0

Encoded Instruction:

110110010 100001111

707 0

Before After

(33) (33)

1 1 01 0011 0 100100110

7 0 7 0

Notes: None

MCS-51

MCS-Sl

Decimal Adjust Accumulator

Mnemonic: DA

Operands:

Format:

Bit Pattern:

A

DA A

11010100

7 0

Accumulator

Operation: (See description below.)

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adjusts the contents of the accumulator to
correspond to packed binary coded decimal (BCD) representation,
after an add of two BCD numbers. If the auxiliary carry flag is 1,
or the contents of the low order nibble (bits 0-3) of the
accumulator is greater than 9, then 6 is added to the accumulator.
If the carry flag is set before or after the add or the contents of the
high order nibble (bits 4-7) is greater than 9, then 60H is added to
the accumulator. The accumulator and the carry flag contain the
final adjusted value.

Example: ADD A,R1
DA A

Encoded Instruction:

11010100

7 0

Before

Accumulator

10011011

7 0

Carry Flag

IT]
Auxiliary Carry Flag

IT]
Notes: 5,6

; Adjust the Accumulator after add

After

Accumulator

00000001

7 0

Carry Flag

OJ
Auxiliary Carry Flag

IT]

DA

3-39

DEC

3-40

Decrement Indirect Address

Mnemonic: DEC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Rr Register 0 <= r <= 1

DEC@Rr

10001011rl

7 0

((Rr» 4- ((Rr)) -1

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of the memory location
addressed by register r by 1. It places the result in the addressed
location.

Example: DEC@RO

Encoded Instruction:

100010110 1

7 o
Before

Register 0

I 001101,11

7 0

(37H)

111011101 I
7 0

Note: 15

; Decrement counter

After

Register 0

100110111

7 0

(37H)

111011100 I
7 0

Mes-sl

MCS-Sl

Decrement Accumulator

Mnemonic: DEC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A Accumulator

DEC A

00010100

7 0

(A) +- (A)-1

C AC FO RS1 RSO OV

PSW

p

Description: This instruction decrements the contents of the accumulator by 1.
It places the result in the accumulator.

Example: DEC A ; Decrement accumulator

Encoded Instruction:

00010100

7 o

Before

Accumulator

11010000

7 0

Note: 5

After

Accumulator

11001111

7 0

DEC

3-41

DEC

3-42

Decrement Register

Mnemonic: DEC

Operands:

Format:

Bit Pattern:

Rr

DEC Rr

00011rrr

7 0

Operation: (Rr) 4- (Rr) -1

Bytes: 1
Cycles: 1

Register 0 <= r <= 7

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of register r by 1. It places
the result in the specified register.

Example: DEC Rl

~ncoded Instruction:

100011111 I
7 o

Before

Register 7

10101011

7 0

Notes: None

; Decrement register 7

After

Register 7

10101010

7 0

MCS-Sl

MeS-51

Decrement Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

DEC

data address 0 <= data address <= 255

DEC data address

1 0001 01 01 1 Data Address 1

7 0 7 0

(data address) ~ (data address \ -1

C AC FO RS·, '" OV p

PSW

Description: This instruction decrements the contents of the specified data
address by 1. It places the result in the addressed location.

Example: DEC 37H ; Decrement counter

Encoded Instruction:

1 00010101 00110111

7 0 7 0

Before After

(37H) (37H)

111011110 111011101

7 0 7 0

Note: 9

DEC

3-43

DIV

3-44

Divide Accumulator by B

Mnemonic: OIV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 4

Flags:

AB Register Pair

OIV AB

10000100

7 0

(AB) +- (A) I (B)

C AC FO RS1 RSO OV p

I-I I. I-I I-I
PSW

Description: . This instruction divides the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned integers. The accumulator contains the quo­
tient; the multiplication register contains the remainder.

The carry flag is always cleared. Division by 0 sets the overflow
flag; otherwise, it is cleared.

Example: MOVB,'5
DIV AB

Encoded Instruction:

10000100

7 o
Before

Accumulator

01110110

7 0

Multiplication Register (B)

I 00000101 I
7 0

Note: 5

; Divide accumulator by 5

After

Accumulator

100010111

7 0

Multiplication Register (B)

I 00000011 I
7 0

MeS-51

MCS-Sl

Decrement Register and Jump if Not Zero

Mnemonic:
Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

DJNZ
Rr Register 0 <= r <= 7
code address

DJNZ Rr,codeaddress

I 1 1 0 11 r r r I ReI. Offset

7 0 7 0
(PC) +- (PC) + 2
(Rr) +- (Rr) -1
IF (Rr) <>0
THEN

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of register r by 1, and
places the result in the specified register. If the result of the decre­
ment is 0, then control passes to the next sequential instruction;
otherwise. control passes to the specified code address.

The Program Counter is incremented to the next instruction. If the
decrement does not result in O. then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

Example: LOOP1: ADD A,R7

.
DJNZ R7,LOOP1
INCA

Encoded Instruction:

111011111

7 0
Before

Register 7

100000010 I
7 o

11110001

7 0
After

Register 7

I 00000001

7 o

; ADD index to accumulator

; Decrement register 7 and
; jump to LOOP1 (15 bytes
; backward from INC
; instruction)

Program Counter Program Counter

100000100 111011100 I 100000100 111001111

15 8 7 0 15 8 7 0

Notes: 10, II, 12

DJNZ

3-45

DJNZ

3-46

Decrement Memory and Jump if Not Zero

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2,

Flags:

DJNZ

data address 0 <= data address <= 255
code address

DJNZ data address ,code address

11 01 01 01 I Data Address I ReI. Offset

7 0 7 0 7 0

(PC) - (PC) + 3
(data address) - (data address) -1
IF (data address) < > 0
THEN

(PC) - (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of the specified data
address by 1, and places the result in the addressed location. If the
result of the decrement is 0, then control passes to the next sequen~
tial instruction; otherwise, control passes to the specified code
address.

The Program Counter is incremented to the next instruction. If the
decrement does not result in 0, then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

MCS~51

MeS-51

Example: LOOP 3: MOV R7,57H ; Store loop index in register 7

Encoded Instruction:

DJNZ 57H,LOOP3 ; Decrement 57H and jump
INC A ; backward to LOOP3 (51 bytes

; backwards from the INC A
; instruction)

111010101101010111 111001010 1

7 0 7 0 7 0

Before After

(57H) (57H)

101110111 101110110 1

7 0 7 0

Program Counter Program Counter

1 00000000 111011100 1 1 00000000 110101001

15 8 7 o 15 8 7 o
Notes: 9, 10, 11, 12

DJNZ

3-47

INC

3-48

Increment Indirect Address

Mnemonic: INC

Operands: Rr Register 0 <= r <= 1

Format: INC@Rr

Bit Pattern:
1 0000011r 1

7 0

Operation: «Rr)) +- «Rr» + 1

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the contents of the memory location
addressed by register r by 1. It places the result in the addressed
location.

Example: INC@RO

Encoded Instruction:

100000110 I
7 0

Before

RegisterO

100110010 I
7 0

(32H)

111011101

7 0

Note: 15

; Increment counter

After

Register 0

100110010 I
7 0

(32H)

11011110

7 0

MeS-51

MeS-51

Increment Accumulator

Mnemonic: INC

Operands: A Accumulator

Format: INC A

Bit Pattern:
I 00000100 I

7 0

Operation:

Bytes: 1
Cycles: 1

(A) -(A) + 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the contents of the accumulator by 1. It
places the result in the accumulator.

Example: INC A

Encoded Instruction:

I 00000100 I
7 0

Before

Accumulator

11010000

7 0

Note: 5

; Increment accumulator

After

Accumulator

11010001

7 0

INC

3-49

INC

3·50

Increment Data Pointer

Mnemonic: INC

Operands: DPTR Data Pointer

Format: INC DPTR

Bit Pattern:
110100011

7 0

Operation: (DPTR) +- (DPTR) + 1

Bytes: 1
Cycles: 2

Flags: C AC FO RS1 RSO OV

PSW

p

Description: This instruction increments the 16-bit contents of the data pointer
by I. It places the result inthe data pointer.

Example: INC DPTR ; Increment data pOinter
"

Encoded Instruction:

1101000111

7 °
Before After

Data Pointer Data Pointer

1 000 ° 1 001 1 11111111 1 1-1 _00_0_0_1_0_1 _0 1_o_o_0_0 _00_0_0--,1

15 8 7 ° 15 8 7 0

Notes: None

MeS-51

Mes-sl

Increment Register

Mnemonic: INC

Operands: Rr Register 0 <= r <= 7

Format: INC Rr

Bit Pattern:
1 00001rrr 1

Operation:

Bytes: 1
Cycles: 1

Flags:

7 0

(Rr) - (Rr) + 1

C AC Fa RS1 RSO OV p

PSW

Description: This instruction increments the contents of register r by 1. It places
the result in the specified register.

Example: INC R7
j,~

Encoded Instruction:

1000011111

7 0

Before

Register 7

110101011

7 o
Notes: None

; Increment register 7

After

Register 7

110101100 I
7 o

INC

3-51

INC

3-52

Increment Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: I

Flags:

INC

data address 0 <= data address <= 255

INC data address

100000101 1 Data Address I
7 0 7 0

(data address) - (data address) + 1

C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the contents of the specified data
address by 1. It places the result in the addressed location.

Example: INC 37H ; Increment 37H
it

Encoded Instruction:

100000101 100110111

7 o 7 o
Before After

(37H) (37H)

111011110 I 111011111

7 0 7 0

Note: 9

MeS-51

MCS-Sl

Jump if Bit Is Set

Mnemonic: JB

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

bit address 0 <= bit address <= 255
code address

JB bit address ,code address

00100000 Bit Address

7 0 7 0

(PC) +- (PC) + 3
IF (bit address) = 1
THEN

ReI. Offset

7 0

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the specified bit address. If it is I, control
passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JB

3-53

JB

3-54

Example: JB 39.6, EXIT ; Jump if bit 6 of byte 39 is 1

SJMPTOP
EXIT: MOV A,39 ; Move 39 to accumulator (EXIT label

; is 5 bytes from jump statement) ..

Encoded Instruction:

I 00100000 I 00111110 I 00000010 I
7 o 7 o 7 o

Before After

(39) (39)

101110111 101110111

76 o 76 o
Program Counter Program Counter

1 00000000 111011100 I I 00000000 111100001

15 8 7 0 15 8 7 0

Notes: 10, 11, 12

MeS-51

MeS-51

Jump and Clear if Bit Is Set

Mnemonic: JBC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

bit address 0 <= bit address <= 255
code address

J BC bit address ,code address

00010000 Bit Address

7 0 7 0

(PC) +- (PC) + 3
IF (bit address) = 1
THEN

(bit address) +- 0

Rei. Offset

7 0

(PC) +- (PC) + relative offset

C AC FO RS1 RSO ov p

PSW

Description: This instruction tests the specified bit address. If it is I, the bit is
cleared, and control passes to the specified code address. Other­
wise, control passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JBC

3-55

JBC

3-56

Example: ORGODCH
JBC 4B.1,OUT3 ; Test bit 1 of byte 46

; jump and clear if 1

ORG136H
OUT3: INCR7

Encoded Instruction:

100010000 101110001 101010111

70707 0

Before After

(46) (46)

101110111 I 101110101

7 10 7 10

Program Counter Program Counter

100000000 111011100 I 1 00000001 I 00110110 I
15 8 7 0 15 8 7 0

Notes: 10,11,12

MeS-51

MCS-Sl

Jump if Carry Is Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JC

code address

JC code address

01000000 Rei. Offset

7 0

(PC) +- (PC) + 2
IF (C) = 1
THEN

7 0

(PC) +- (PC) + relative code

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the contents of the carry flag. If it is 1, then
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JC

3-57

JC

3-58

Example: FIXUP: CLR C ; Clear carry

JCFIXUP ; If carry is 1 go to FIXUP

Encoded Instruction:

101000000111001101

7 o 7 o
Before

Carry Flag

[TI

After

; 49 bytes backwards from the JC
; instruction

Carry Flag

[TI
Program Counter Program Counter

1000001011110111001 100000101110101011

15 8 7 o 15 8 7 o

Notes: 10, 11, 12

MeS-51

MeS-51

Generic Jump

Mnemonic: JMP

Operands: code address 0 <= code address <= 65,535

Format: JMP code address

Bit Pattern: Translated to AJMP, LJMP, or SJMP, as needed

Operation: Either AJMP, SJMP or LJMP

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction will be translated to SJMP if the specified code
address contains no forward references and that address falls
within -128 and +127 of the address of the next instruction. It will
be translated to AJMP if the code address contains no forward
references and the specified code address falls within the current 2K
byte page. Otherwise, the JMP instruction is translated to LJMP.
If forward references are used to specify the jump destination, then
it will not necessarily be the most efficient representation. See the
descriptions for SJMP, AJMP, and LJMP for more detail.

Example: JMPSKIP ; Jump to SKIP
; Increment A FF: INCA

SKIP: INCRS ; Increment register 5

Encoded Instruction:

00000010 00000100 10101011

7 o 7 o 7 o

Before

Program Counter

00000100 10100111

15 8 7 0

Notes: None

After

Program Counter

I 100000100 10101011

15 8 7 0

JMP

3-59

JMP

3-60

Jump to Sum of Accumulator and Data Pointer

Mnemonic: JMP

Operands:

Format:

Bit Pattern:

A
DPTR

Accumulator
Data Pointer

JMP@A+DPTR

101110011 ,

7 0

Operation: (PC) +- (A) + (DPTR)

Bytes: 1
Cycles: 2

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the contents of the accumulator with the
contents of the data pointer. It transfers control to the code address
formed by that sum.

Example: JMP@A+DPTR ; Jump relative to the accumulator

Encoded Instruction:

101110011 ,

7 o
Before

Accumulator

101110110 I
7 o

After

Accumulator

101110110 I
7 o

Data Pointer Data Pointer

1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 I '-1 -0 0-0-0-0-0-1 -0 -r"1-1-0-1-0 -1 0-0-0--',

15 8 7 o 15 8 7 o
Program Counter Program Counter

111001101 100001101 I 100000011100011110 I
15 8 7 0 15 8 7 o

Notes: None

MCS-Sl

MeS-51

Jump if Bit Is Not Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

JNB

bit address
code address

JNB bitaddress,codeaddress

00110000 Bit Address

7 0 7 0

(PC) +- (PC) + 3
IF (bit address) = 0
THEN

Rei. Offset

7 0

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the specified bit address. If it is 0, control
passes to specified code address. Otherwise, control passes to the
next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNB

3-61

JNB MCS-51

Example: ORGODCH
JNB 41.6, EXIT ; If bit 6 of byte 41 is 0 go to EXIT

EXIT: ADD A,41 ; At location 136H

Encoded Instruction:

100110000 101001110 101010111

7 o 7 o 7 o
Before After

(41) (41)

100110111 100110111

76 o 76 o
Program Counter Program Counter

100000000111011100 I 100000001 100110110 I
15 8 7 o 15 8 7 o

Notes: 10, 11, 12

3-62

MeS-51

Jump if Carry Is Not Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JNC

code address

JNC code address

01010000 Rei. Offset

7 0 7 0

(PC) - (PC) + 2
IF (C) = 0
THEN

(PC) - (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the contents of tile carry flag. If it is 0, control
passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNC

3-63

JNC

3-64

Example: FIXUP: MOV A,R5

Encoded Instruction:

JNC FIXUP ; Jump to FIXUP if carry is 0
; (51 bytes backwards)

101010000 111001101

7

Before

Carry Flag

IT]

o 7 o
After

Carry Flag

IT]
Program Counter Program Counter

I 000111 00 1 11 0111 00 1 I 000111 00 1 1 01 01 011

15 8 7 0 15 8 7 0

Notes: 10, 11, 12

MeS-51

MCS-Sl

Jump if Accumulator Is Not Zero

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JNZ

code address

JNZ code address

01110000 Rei. Offset

7 0 7 0

(PC) +- (PC) + 2
IF (A) < > 0
THEN

(PC) +- (PC) + relative offset

C AC FO RS1 RSO ov p

PSW

Oescription: This instruction tests the accumulator. If it is not equal to 0,
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is not 0, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNZ

3-65

JNZ

3-66

Example: JNZTEST ; Jump if accumulator is not 0
; n bytes forward

TEST: MOV R3,A

Encoded Instruction:

101110000 101001101

7 o 7

Before

Accumulator

101110111 I
7 8

o

After

Accumulator

101110111

7 0

Program Counter Program Counter

1 00000000 111011100 1 1 00000001 1 00101011

15 8 7 0 15 8 7 0

Notes: 10,11,12

MeS·51

MCS-51

Jump if Accumulator Is Zero

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JZ

code address

JZ code address

01100000 ReI. Offset

7 0 7 0

(PC) -- (PC) + 2
IF (A) = 0
THEN

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the accumulator. If it is 0, control passes to
the specified code address. Otherwise, control passes to the next
sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is 0, then tht relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JZ

3-67

JZ

3-68

Example: JZ EMPTY ; Jump to EMPTY if accumulator is 0

EMPTY: INCA

Encoded Instruction:

101100000 100010111

707 0

Before

Accumulator

101110110 1

7 o

; 25 bytes from JZ instruction

After

Accumulator

101110110 1

7 o
Program Counter Program Counter

100001111 111011100 1 100001111 111011110 1

15 8 7 o 15 8 7 o

Notes: 10,11,12

MeS-51

(
~

MeS-51 LCALL
Long Call

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

LCALL

code address 0 <= code address <= 65,535

LCALL code address

I 00010010 \COde Addr. highlCode Addr.low I
7 07 07 0

(PC) - (PC) + 3
(SP) 4- (SP) + 1
((SP)) 4- (PC low)
(SP) 4- (SP) + 1
((SP)) +- (PC high)
(PC) 4- code address

C AC FO RS1 RSO OV p

PSW

Description: This instruction stores the contents of the program counter (the
return address) on the stack, then transfers control to the 16-bit
code address specified as the operand.

3-69

lCAll

3-70

Example: SERVICE: INC A ; Resides at location 233H

RETI

ORG80 DCH
LCALL SERVICE ; Call SERVICE

Encoded Instruction:

I 00010010 I 00000010 I 00110011

7 o 7 o 7 o
Before After

Program Counter Program Counter

1100000001110111001 100000010 00110011

15 8 7 0 15 8 7 0

Stack Pointer

1001010001

7 0

(29H)

1011101111

7 o
(2AH)

100000000 1

7 0

Notes: 1,2, 3

Stack Pointer

100101010 1

7 0

(29H)

1110111111

7 o
(2AH)

1 1 0000000 1

7 0

MCS-51

.. ~

MCS-Sl

Long Jump

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

LJMP

code address 0 <= code address <= 65,535

LJMP code address

I 0000001 0 FOde Addr. highlCode Addr.low I
7 0 7 07 0

(PC) +- code address

C AC FO RS1 RSO OV p

PSW

Description: This instruction transfers control to the 16-bit code address
specified as the operand.

Example: ORG 800H
LJMPFAR

FAR: INCA

Encoded Instruction:

I 00000010 10000010

7 0 7 0

Before

; Jumpto FAR

; Current code location (8233H)

00110011

7 0

After

Program Counter Program Counter

00001000 I 00000000 I 110000010 1 00110011

15 8 7 0 15 8 7 0

Notes: None

LJMP

3-71

MOV

3-72

Move Immediate Data to Indirect Address

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Rr
data

Register 0 <= r <= 1
-256 <= data <= + 255

MOV @Rr,#data

0111 011 r Ilmmediate Datal

7 0 7 0

((Rr» +- data

C AC FO RS1 RSO ov p

P$W

Description: This instruction moves the 8-bit immediate data value to the
memory location addressed by the contents of register r.

Example: MOV @R1,#01H ; Move 1 to indirect address

Encoded Instruction:

I 01110111 00000001

7 o 7

Before

Register 1

00010011

7 0

(13H)

101110111

7 0

Notes: 4,15

o
After

Register 1

I 00010011

7 0

(i3H)

00000001

7 0

MCS-Sl

MeS-51

Move Accumulator to Indirect Address

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

Rr
A

MOV@Rr,A

11111011r

7 0

((Rr» +- (A)

Register 0 <= r <= 1
Accumulator

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to the
memory location addressed by the contents of register r.

,Example: MOV@RO,A

Encoded Instruction:

111110110 1

7 0

Before

Register 0

00111000

7 0

(38H)

110011001

7 0

Accumulator

01001100

7 0

Note: 15

After

; Move accumulator to indirect
; address

Register 0

00111000

7 0

(38H)

1010011001

7 0

Accumulator

1010011§ij

7 0

MOV

3-73

MOV

3-74

Move Memory to Indirect Address

Mnemonic: MOV

Operands: Rr Register 0 <= r<= 1
data address 0 <= data address <= 255

Format: MOV @Rr,dataaddress

Bit Pattern:
\ 1 01 0011 r \ Data Address I

7 o 7 o

Operation: ((Rr)) ~ (data address)

Bytes: 2
Cycles: 2

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the specified data address to
the memory location addressed by the contents of register r.

Example: MOV@R1,77H

Encoded Instruction:

\10100111

7 0

Before

Register 1

100001000 I
7 0

(08H)

\ 00110011

7 0

(77H)

111111110

7 0

Notes: 8,15

01110111

7 0

After

; Move the contents of 77H to indirect
; address

Register 1

1 00001000 I
7 0

(08H)

111111110

7 0

(77H)

111111110

7 0

MeS-51

MCS-Sl

Move Immediate Data to Accumulator

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

MOV A,#data

Accumulator
-256 <= data <= + 255

I 0111 01 00 Ilmmediate Datal
7 0 7 0

(A) +- data

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the 8-bit immediate data value to the
accumulator.

~xample: MOVA,#01H

Encoded Instruction:

101110100

7 0

Before

Accumulator

00100110

7 0

Notes: 4,5

00000001

7 0

; Initialize the accumulator to 1

After

Accumulator

00000001

7 0

MOV

3-75

MOV

3-76

Move Indirect Address to Accumulator

Mnemonic: MOV

Operands:

Format:

A
Rr

MOVA,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern:
11110011r 1

7 0

Operation: (A) +- «Rr»

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the data memory location
addressed by register r to the accumulator.

Example: MOVA,@R1

Encoded Instruction:

111100111 I
7 o

Before

Accumulator

110000110 I
7 o

Register 1

100011100 I
7 0

(1CH)

111101000 I
7 0

Notes: 5,15

After

; Move indirect address to
; accumulator

Accumulator

111101000 I
7 o

Register 1

100011100 I
7 0

(1CH)

111101000 I
7 0

MCS-Sl

MeS-51

Move Register to Accumulator

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

A
Rr

MOV A,Rr

111101rrr

7 0

(A) +- (Rr)

Accumulator
Register 0 <= r <= 7

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of register r to the
accumulator.

Example: MOV A,R6

Encoded Instruction:

111101110 I
7 0

Before

Accumulator

100101110 I
7 o

Register 6

110000101

7 0

Note: 5

; Move R6 to accumulator

After

Accumulator

110000101

7 o
Register 6

10000101

7 0

MOV

3-77

MOV

3-78

Move Memory to Accumulator

Mnemonic: MOV

Operands: A Accumulator
data address 0 <= data address <= 255

Format: MOV A,data address

Bit Pattern: I 111 00 1 01 I Data Address I
7 o 7 o

Operation: (A) - (data address)

Bytes: 2
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of data memory at the specified
address to the accumulator.

Example: MOVA,P1

Encoded Instruction:

; Move the contents of Port 1 to
; accumulator

111100101110010000 I
7 o 7

Before

Accumulator

[00100110 I
7 0

Port I (90H)

101111001 I
7 o

Notes: 5,8

o
After

Accumulator

J 01111001

7 0

Port I (90H)

101111001

7 o

MeS-51

MCS-Sl

Move Bit to Carry Flag

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

C Carry Flag
bit address 0 <= bit address <= 255

MOV C,bit address

1 1 01 0001 0 1 Bit Address 1

707 0

(C) .- (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the specified bit address to
the carry flag.

Example: MOVC,TXD

Encoded Instruction:

110100010

7 0

Before

Port 3 (BOH)

1001000101

76 0

Carry Flag

OJ
Notes: None

10110110

7 0

After

; Move the contents of TXD to Carry
; flag

Port 3 (BOH)

1001000101

76 0

Carry Flag

IT]

MOV

3-79

MOV

3-80

Move Immediate Data to Data Pointer

Mnemonic: MOV

Operands: Data Pointer
data 0 <= data <= 65,535

Format: MOV DPTR,ldata

Bit Pattern:
1 1 001 0000 llmm. Data high 1 Imm. Data low I

Operation:

Bytes: 3
Cycles: 2

Flags:

7 0 7 0 7 0

(DPTR) - data

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the 16-bit immediate data value to the data
pointer.

Example: MOV DPTR,IOF4FH ; Initialize the data pOinter to OF4FH

Encoded Instruction:

110010000 100001111 01001111

7 o 7 o 7 o
Before After

Data Pointer Data Pointer

100000000 111011100 I 100001111 101001111

15 8 7 o 15 8 7 o
Notes: None

MeS-51

(
\;

MCS-Sl

Move Immediate Data to Register

Mnemonic: MOV

Operands:

Format:

Rr
data

MOV Rr,Idata

Register 0 <= r <= 7
-256 <= data <= + 255

Bit Pattern:
I 01111 r r r Ilmmediate Datal

7 0 7 0

Operation:

Bytes: 2
Cycles: 1

(Rr) -data

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the 8-bit immediate data value to register r.

~xample: MOVR5,101H

Encoded Instruction:

I 0 111 \11 0 1 I 0 0 0 0 0 0 0 1

7 ' 0 7 0

Before

Register 5

I 00010011

7 o
Note: 4

; Initialize register 1

After

Register 5

I 00000001

7 o

MOV

3-81

MOV

3-82

Move Accumulator to Register

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Rr
A

MOVRr,A

111111(rr

7 0

(Rr) +- (A)

Register 0 <= r <= 7
Accumulator

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to register I.

-Example: MOVR7,A

Encoded Instruction:

1111111111

7 o
Before

Register 7

111011100 I
7 o

Accumulator

100111000)

7 o
Notes: None

; Move accumulator to register 7

After

Register 7

00111000

7 o
Accumulator

100111000 J

7 o

MeS-51

MeS-51

Move Memory to Register

Mnemonic: MOV

Operands: Rr Register 0 <= r <= 7
data address 0 <= data address <= 255

Format: MOV Rr,data address

Bit Pattern:
1 1 0 1 0 1 r r r 1 Data Address 1

7 o 7 o

Operation: (Rr) - (data address)

Bytes: 2
Cycles: 2

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the specified data address to
register T.

Example: MOVR4,69H

Encoded Instruction:

110101100101101001

7 o 7

Before

Register 4

100001010 1

7 o
(69H)

111011000 I
7 o

Note: 8

o

; Move contents of 69H to register 4

After

Register 4

111011000 1

7 o
(69H)

IT1'-0-1-1 -0 0-0--'1

7 o

MOV

3-83

MOV

3-84

Move Carry Flag to Bit

Mnemonic: MOV

Operands: bit address 0 <= bit address <= 255

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

C Carry Flag

MOV bitaddress,C

110010010 1 Bit Address I
707 0

(bit address) - (C)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the carry flag to the
specified bit address.

Example: MOV2FH.7,C ; Move C to bit address 7FH

Encoded Instruction:

110010010 101111111

7 o 7 o
Before After

(2FH) (2FH)

100100110 I 110100110 1

7 o 7 o
Carry Flag Carry Flag

I 1 I I i I
Notes: None

MeS-51

MCS-Sl

Move Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

MOV

data address 0 <= data address <= 255
data -256 <= data <= + 255

MOV data address ,*data

I 01110101 I Data Address Ilmmediate Datal

7 07 07 0

(data address) - data

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the 8-bit immediate data value to the
specified data address.

Example: MOV TMOD,#01 H ; Initialize Timer Mode to 1

Encoded Instruction:

I 01110101 110001001 I 00000001

7 0 7 0 7 0

Before After

TMOD(89H) TMOD(89H)

101110111 I 00000001

7 0 7 0

Notes: 4,9

MOV

3-85

MOV

3-86

Move Indirect Address to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

MOV

data address 0 <= data address <= 255
Rr Register 0 <= r <= 1

MOV data address ,@Rr

11000011 r . 1 Data Address I
7 0 7 0

(data address) +- «Rr))

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of memory at the location
addressed by register r to the specified data address.

Example: MOV11H,@R1

Encoded Instruction:

110000111 I 00010001

7 o 7 o
Before

(11H)

110100101

7 o
Register 1

1 010110001

7 o
(58H)

(10010110 I
7 0

Notes: 9,15

; Move indirect address to 11H

After

(11 H)

110010110 I
7 o

Register 1

101011000 I
7 o

(58H)

110010110 I
7 0

MCS-Sl

MCS-Sl

Move Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

MOV

data address 0 <= data address <= 255
A Accumulator

MOV data address ,A

11 1 1 0 1 0 1 1 Data Address 1

7 0 7 0

(data address) +- (A)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to the
specified data address.

Example: MOV45H,A

Encoded Instruction:

111110101 01000101

7 o 7

Before

(45H)

110111101

7 0

Accumulator

110011001

7 o
Note: 9

o

; Move accumulator to 45H

After

(45H)

110011001

7 0

Accumulator

110011001

7 o

MOV

3-87

MOV

3-88

Move Register to Memory

Mnemonic: MOV

Operands: data address 0 <= data address <= 255
Rr Register 0 <= r <= 7

Format: MOV data address, Rr

Bit Pattern:
1 10001 r r r I Data Address 1

Operation:

Bytes: 2
Cycles: 2

Flags:

7 0 7 0

(data address) +- (Rr)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of register r to the specified
data address.

Example: MOV7EH,R3 ; Move R3 to location 7EH

Encoded Instruction:

110001011 101111110 1

7 o 7

Before

(7EH)

111110111

7 0

Register 3

110010110 1

7 o
Note: 9

o
After

(7EH)

110010110 1

7 0

110010110 I
7 o

MCS-Sl

MCS-Sl

Move Memory to Memory

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

data address1
data address2

0<= data address1 <= 255
0<= data address2 <= 255

MOV data address 1 ,data address2

1 10000101 IData Address21Data Address11

7 0 7 07 0

(data address1) +- (data address2)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the source data address
(data address2) to the destination data address (data addressJ).

Example: MOVB,12H ; Move the contents of 12H to B (FOH)

Encoded Instruction:

110000101 00010010 11110000

7 0 7 0 7 0

Before After

(12H) (12H)

111100101 111100101

7 0 7 0

(FOH) (FOH)

101011101 111100101

7 0 7 0

Note: 16

MOV

3-89

Move

3-90

Move Code Memory Offset from Data Pointer
to Accumulator

Mnemonic: MOVe

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

A
DPTR

Accumulator
Data Pointer

Move A,@A+DPTR

1100100111

7 0

(A) - «A) + (DPTR))

C AC FO RS1 RSO OV

PSW

p

Description: This instruction adds the contents of the data pointer with the
contents of the accumulator. It uses that sum as an address into
code memory and places the contents of that address in the
accumulator.

The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port o.

Example: MOVe A,@A + DPTR ; Look up value in table

Encoded Instruction:

110000011 I
7 0

Before

Accumulator

00010001

7 o
Data Pointer

100000010111110001

15 8 7 0

(0302H)

100011110 I
7 0

Notes: 5

After

Accumulator

100011110 I
7 o

Data Pointer

1 1 00000010 1

15 8

(0302H)

100011110 I
7 0

11110001

7 0

MCS-Sl

MeS-51 Move
Move Code Memory Offset from Program
Counter to Accumulator

Mnemonic: MOVC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

A
PC

Accumulator
Program Counter

MOVCA,@A+PC

10000011

7 0

(PC) - (PC) + 1
(A) - «A) + (PC»

C AC FO RS1 RSO OV

PSW

p

I-I

Description: This instruction adds the contents of the incremented program
counter with the contents of the accumulator. It uses that sum as an
address into code memory and places the contents of that address
in the accumulator.

The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port O.

3-91

Move
Example: MOVCA,@A+PC ; Look up value in table

3-92

Encoded Instruction:

110000011 I
7 0

Before

Accumulator

101110110 I
7 o

Program Counter

1 00000010 1 00110001

15 8 7 0

(02A8H)

101011000 I
7 0

Notes: 5,12

After

Accumulator

101011000 I
7 o
Program Counter

1 00000010 I 00110010 I
15 8 7 0

(02A8H)

101011000 I
7 0

MeS-51

MCS-Sl MOVX
Move Accumulator to External Memory
Addressed by Data Pointer

Mnemonic: MOVX

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

DPTR
A

Data Pointer
Accumulator

MOVX @DPTR,A

111110000 1

7 0

«DPTR» - (A)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to the
off-chip data memory location addressed by the contents of the
data pointer.

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port O.

Example: MOVX @DPTR,A ; Move accumulator at data pointer

Encoded Instruction:

111110000 1

7 o
Before

Data Pointer

1 00110000 1 00110011

15 8 7 0

(3033H)

111111001

7 o
Accumulator

101001100 1

7 0

Notes: None

After

Data Pointer

100110000 100110011

15 8 7

(3033H)

1010011001

7 o
Accumulator

1010011001

7 0

o

3-93

MOVX

3-94

Move Accumulator to External.Memory
Addressed by Register

Mnemonic: MOVX

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

Rr
A

MOVX@Rr,A

1111001r

7 0

«Rr» - (A)

Register 0 <= r <= 1
Accumulator

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to the off­
chip data memory location addressed by the contents of register r,
and special function register P2. P2 holds the high order byte of the
address and register r holds the low order byte.

Example: MOV P2,IO
MOVX@RO,A ; Move accumulator to indirect

; address

MeS-51

MeS-51

Example: MOV P2,#0
MOVX@RO,A

Encoded Instruction:

\11100010 \

7 0

Before

Register 0

110111000 I
7 0

(00B8H)

110011001 I
7 0

Accumulator

101001100 I
7 0

Notes: None

After

; Move accumulator to indirect
; address

Register 0

110111000 I
7 0

(00B8H)

101001100 I
7 0

Accumulator

101001100 I
7 0

MOVX

3-95

MOVX

3-96

Move External Memory Addressed by
Data Pointer to Accumulator

Mnemonic: MOVX

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

A
DPTR

Accumulator
Data Pointer

MOVX A.@DPTR

111100000 I
7 0

(A) - «DPTR»

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the off-chip data memory
location addressed by the data pointer to the accumulator.

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port o.

Example: MOVX A,@DPTR ; Move memory at DPTR to
; accumulator

Encoded Instruction:

111100000 I
7 0

Before

Accumulator

110000110 I
7 o

After

Accumulator

111101000)

7 o
Data Pointer Data Pointer

101110011 111011100 I 101110011 111011100 I
15 8 7 0 15 8 7 0

(73DCH) (73DCH)

111101000 I 111101000 I
7 0 7 0

Notes: 5

MCS-Sl

MCS-Sl MOVX
Move External Memory Addressed by
Register to Accumulator

Mnemonic: MOVX

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1

Cycles: 2

Flags:

A
Rr

MOVXA.@Rr

1110001r

7 0

(A) +- «Rr))

Accumulator
Register 0 <= r <= 1

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the off chip data memory
location addressed by register r, and special function register P2 to
the accumulator. P2 holds the high order byte of the address and
register r holds the low order byte.

3-97

MOVX

3-98

Example: MOV P2, #55H
MOVXA,@R1

Encoded Instruction:

111100011 I
7 o

Before

Accumulator

101010100 I
7 0

Register 1

100011100 I
7 o

(551CH)

I 00001000 I
7 o

Notes: 5

; Move memory at R1 to accumulator

After

Accumulator

I 00001000 I
7 0

Register 1

100011100 I
7 o

(551CH)

I 00001000 I
7 o

MeS-51

MeS-51

Multiply Accumulator by B

Mnemonic: MUL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 4

Flags:

AB

MULAB

Multiply/Divide operand

10100100

7 0

(A B) - (A) * (B)

C AC FO RS1 RSO OV

PSW

p

Description: This instruction mUltiplies the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned values. It places the low-order byte of the result
in the accumulator, and places the high-order byte of the result in
the multiplication register.

The carry flag is always cleared. If the high-order byte of the prod­
uct is not 0, then the overflow flag is set; otherwise, it is cleared.

MUL

3-99

MUL

3-100

Example: MOV B,I10
MULAB

Encoded Instruction:

1101001001

7 o
Before

Accumulator

100011111

7 o

Multiplication Register (B)

100001010 I
7 o

Overflow Flag

IT]
Notes: 5

After

; Move 10 to multiplication register
; Multiply accumulator by 10

Accumulator

100110110 1

7 o
Multiplication Register (B)

I 00000001 I
7 o

Overflow Flag

IT]

MCS-SI

MCS-Sl

No Operation

Mnemonic: NOP

Operands: None

Format: NOP

Bit Pattern:
00000000

7 0

Operation: No operation

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV P

PSW

Description: This instruction does absolutely nothing for one cycle. Control
passes to the next sequential instruction.

Example: NOP ; Pause one cycle

Encoded Instruction:

I 00000000 I
7 0

Notes: None

NOP

3-101

ORL

3-102

Logical OR Immediate Data to Accumulator

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

Accumulator
-256 <= data <= + 255

ORL A,lIdata

I 01000100 I Immediate Datal

7 0 7 0

(A) +- (A) OR data

C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the 8-bit immediate data value to the contents
of the accumulator. Bit n of the result is 1 if bit n of either operand
is 1; otherwise bit n is O. It places the result in the accumulator.

Example: ORL A,#00001000B ; Set bit 3 to 1

Encoded Instruction:

I 01000100 I 00001000 I
7 o 7

Before

Accumulator

01110111

7 0

Notes: 4,5

o
After

Accumulator

01111111

7 0

MeS-51

MCS-Sl

Logical OR Indirect Address to Accumulator

Mnemonic: ORL

Operands:

Format:

A
Rr

ORL A,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern: I 0100011r I
7 0

Operation: (A) - (A) OR ((Rr))

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of either operand is 1;
otherwise bit n is o. It places the result in the accumulator.

Example: ORL A,@RO ; Set bit 0 to 1

Encoded Instruction:

101000110 I
7 0

Before After

Accumulator Accumulator

100101000 I I 00101001

7 0 7 0

Register 0 Register 0

101010010 101010010 I
7 0 7 0

(52H) (52H)

I 00000001 00000001

7 0 7 0

Notes: 5, 15

ORL

3-103

ORL

3-104

Logical OR Register to Accumulator

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

A
Rr

ORL A,Rr

101001rrr

7 0

Accumulator
Register 0 <= r <= 7

Operation: (A) - (A) OR (Rr)

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of either operand is 1;
otherwise bit n is O. It places the result in the accumulator.

Example: ORL A,R4

Encoded Instruction:

1010011001

7 0

Before

Accumulator

110010001

7 o
Register 4

1100010001

7 0

Note: 5

; Set bits 7 and 3 to 1

After

Accumulator

110011001

7 o
Register 4

1100010001

7 0

MeS-51

MCS-51

Logical OR Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ORL

A Accumulator
data address 0 <= data address <= 255

ORL A,data address

1 01000101 1 Data Address I
707 0

(A) -- (A) OR (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the contents of the specified data address to
the contents of the accumulator. Bit n of the result is 1 if bit n of
either operand is 1; otherwise bit n is o. It places the result in the
accumulator.

Example: ORL A,37H

Encoded Instruction:

101000101100110111

7 o 7

Before

Accumulator

101110111

7 o
(37H)

110000000 I
7 0

Notes: 5,8

o

; OR 37H with accumulator

After

Accumulator

111110111

7 o
(37H)

110000000

7 0

ORL

3-105

ORL

3·106

Logical OR Bit to Carry Flag

Mnemonic: ORL

Operands: C Carry Flag
bit address 0 <= bit address <= 255

Format: ORL C,bit address

Bit Pattern: I 0111 001 0 I Bit Address I
7 o 7 o

Operation: (C) +- (C) OR (bit address)

Bytes: 2
Cycles: 2

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the contents of the specified bit address with
the contents of the carry flag. The carry flag becomes 1 when either
the carry flag or the specified bit address is 1; otherwise, it is O. It
places the result in the carry flag.

Example: ORLC,46.2

Encoded Instruction:

101110010

7 0

Before

Carry Flag

IT]
(46)

100100110 I
720

Notes: None

01110010

7 0

; OR bit 2 of byte 46 with Carry

After

Carry Flag

[i]
(46)

I 00100110

720

MeS-51

MeS-51

Logical OR Complement of Bit to Carry Flag

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

"

Example:

C Carry Flag
bit address 0 <= bit address <= 255

ORL C, I bit address

I 1 01 00000 I Bit Address I
707 0

(C) +- (C) OR NOT bit address

C AC FO RS1 RSO OV p

I-I
PSW

This instruction ORs the complemented contents of the specified
bit address to the contents of the carry flag. The carry flag is 1
when either the carry flag is already 1 or the specified bit address is
O. It places the result in the carry flag. The contents of the specified
bit address is unchanged.

ORL C,I25H.5 ; Complement contents of bit 5 in
; byte 25H then OR with Carry

Encoded Instruction:

110100000

7 0

Before

Carry Flag

IT]
(25H)

1000001101

7 5 o
Notes: None

00101101

7 0

After

Carry Flag

m
(25H)

1000001101

7 5 o

ORL

3-107

ORL

3-108

Logical OR Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

ORL

data address 0 <= data address <= 255
data -256 <= data <= + 255

ORL data address ,#data

I 01000011 I Data Address I Immediate Datal

7 07 07 0

(data address) +- (data address) OR data

C AC FO RS1 RSO ov p

I
PSW

Description: This instruction ORs the 8-bit immediate data value to the contents
of the specified data address. Bit n of the result is 1 if bit n of either
operand is 1; otherwise bit n is O. It places the result in memory at
the specified address.

Example: ORL 57H,#01H ; Set bit 0 to 1

Encoded Instruction:

101000011 101010111 00000001

707 0 7 0

Before After

(57H) (57H)

101110110 I 101110111

7 0 7 0

Notes: 4,9

MCS-Sl

MeS-51

Logical OR Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ORL

data address 0 <= data address <= 255
A Accumulator

ORL data address ,A

o 1 0 0 0 0 1 0 I Data Address I
7 0 7 0

(data address) +- (data address) OR A

C AC FO RS1 RSO OV p

PSW

This instruction ORs the contents of the accumulator to the
contents of the specified data andress. Bit n of the result is 1 if bit n
of either operand is 1; otherwise bit n is O. It places the result in
memory at the specified address.

ORL 10H,A ; OR accumulator with the contents
; of 10H

Encoded Instruction:

01000010 I 00010000 I
707 0

Before

Accumulator

11110000

7 0

(10H)

I 00110001

7 o
Note: 9

After

Accumulator

11110000

7 0

(10H)

(11110001

7 o

ORL

3-109

POP

3·110

Pop Stack to Memory

Mnemonic: POP

Operands:

Format:

data address 0 <= data address <= 255

POP data address

Bit Pattern:
1 11 01 0000 I Data Address I

7 o 7 o
Operation: (data address) - «SP))

(SP) - (SP) -1

Bytes: 2
Cycles: 2

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction places the byte addressed by the stack pointer
at the specified data address. It then decrements the stack pointer
by 1.

Example: POPPSW ; Pop PSW parity is not affected.

Encoded Instruction:

111010000111010000 I
7 0 7 0

Before After

Accumulator Accumulator

111010101 111010101

7 0 7 0

PSW (ODOH) PSW (ODOH)

110101011 I 111110011 I
7 0 7 0

Stack Pointer Stack Pointer

100010000 I 100001111 I
7 0 7 0

(10H) (10H)

111110010 I 111110010 I
7 0 7 0

Notes: 2, 8, 17

MCS-Sl

MeS-51

Push Memory onto Stack

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

PUSH

data address 0 <= data address <= 255

PUSH data address

1 11 000000 1 Data Address 1

7 0 7 0

(SP) +- (SP) + 1
((SP)) +- (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the stack pointer, then stores the
contents of the specified data address at the location addressed by
the stack pointer.

Example: PUSH4DH ; Push one byte to the stack

Encoded Instruction:

111000000 101001101

7 o 7 o
Before After

(4DH) (4DH)

110101010 1 110101010 I
7 0 7 0

Stack POinter Stack Pointer

1 00010000 I 1 00010001 I
7 o 7 o

(11 H) (11 H)

1 00000000 I 110101010 I
7 o 7 o

Notes: 2, 3, 8

PUSH

3-111

RET

3-112

Return from Subroutine (Non-interrupt)

Mnemonic: RET

Operands: None

Format: RET

Bit Pattern:
00100010

7 0

Operation: (PC high) +- «SP»
(SP) ... (SP) -1
(PC low) +- «SP»
(SP) ... (SP) -1

Bytes: 1
Cycles: 2

Flags: C AC FO RS1 RSO ov P

PSW

Description: This instruction returns from a subroutine. Control passes to the
location addressed by the top two bytes on the stack. The high­
order byte of the return address is always the first to come off the
stack. It is immediately followed by the low-order byte.

MeS-51

MCS-51

Example: RET ; Return from subroutine

Encoded Instruction:

100100010 I
7 0

Before After

Program Counter Program Counter

I 00000010 I 01010101 I I 00000000 I 01110011

15 8 7 0 15 8 7 0

Stack Pointer

100001010 I
7 o

(OAH)

I 00000000 I
7 o

(09H)

101110011 I
"7 0

Notes: 2,17

Stack Pointer

I 00001000 I
7 o

(OAH)

I 00000000 I
7 o

(09H)

101110011 I
7 0

RET

3-113

RETI

3-114

Return from Interrupt Routine

Mnemonic: RETI

Operands: None

Format: RETI

Bit Pattern:
00110010

7 0

Operation: (PC high) +- ((SP))
(SP) +- (SP) -1
(PC low) +- ((SP))
(SP) +- (SP) -1

Bytes: 1
Cycles: 2

Flags: C AC FO RS1 RSO OV P

PSW

Description: This instruction returns from an interrupt service routine, and
reenables interrupts of equal or lower priority. Control passes to
the location addressed by the top two bytes on the stack. The high­
order byte of the return address is always the first to come off the
stack. It is immediately followed by the low-order byte.

MeS-51

MCS-51

Example: RET! ; Return from interrupt routine

Encoded Instruction:

1001100101

7 o

Before After

Program Counter Program Counter

1000010101 1 01010101 100000000111110001

15 8 7 0 15 8 7 0

Stack Pointer

1000010101

7 o
(OAH)

1 00000000 1

7 o

(09H)

1111100011

7 0

Notes: 2,17

Stack Pointer

100001000 1

7 o
(OAH)

1 00000000 1

7 o
(09H)

1111100011

7 0

RETI

3-115

RL

3-116

Rotate Accumulator Left

Mnemonic: RL

Operands: A

Format: RLA

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

00100011

7 0

C

o

Accumulator

ACCUMULATOR

Flags: C AC FO RSl RSO ov p

PSW

Description: This instruction rotates each bit in the accumulator one position to
the left. The most significant bit (bit 7) moves into the least signifi­
cant bit position (bit 0).

Example: RLA

Encoded Instruction:

100100011 I
7 0

Before

Accumulator

111010000 I , ,

7 0

Notes: None

; Rotate accumulator left one positon.

After

Accumulator

110100001

7 0

MCS-51

MCS-S1

Rotate Accumulator and Carry Flag Left

Mnemonic: RLC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

A

RLCA

00110011

7 0

Accumulator

ACCUMULATOR

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction rotates each bit in the accumulator one position to
the left. The most significant bit (bit 7) moves into the Carry flag,
while the previous contents of Carry moves into the least significant
bit (bit 0).

Example: RLCA

Encoded Instruction:

100110011 I
7 o

Before

Accumulator

I 00011001

7 0

Carry Flag

IT]
Note: 5

After

; Rotate accumulator and carry left
; one positon.

Accumulator

00110011

7 0

Carry Flag

[JJ

RLC

3-117

RR

3-118

Rotate Accumulator Right

Mnemonic: RR

Operands: A

Format: RR A

Bit Pattern:

Operation:

Bytes:
Cycles:

00000011

7 0

C

D

Accumulator

ACCUMULATOR

Flags: C AC FO RS1 RSO OV p

PSW

'Description: This instruction rotates each bit in the accumulator one position to
the right. The least significant bit (bit 0) moves into the most
significant bit position (bit 7).

Example: RRA

Encoded Instruction:

1 00000011 I
7 0

Before

Accumulator

11010001

7 0

Notes: None

After

; Rotate accumulator right one
; positon.

Accumulator

111101000 I
7 0

MeS-51

MeS-51

Rotate Accumulator and Carry Flag Right

Mnemonic: RRC

Operands: A Accumulator

Format: RRCA

Bit Pattern:
00010011

7 0

Operation: C ACCUMULATOR

Ef ~I- 1- 1 - 1- 1 - 1- 1 - 1 -0 1
7

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction rotates each bit in the accumulator one position to
the right. The least significant bit (bit 0) moves into the Carry flag,
while the previous contents of Carry moves into the most signifi­
cant bit (bit 7).

Example: RRCA

Encoded Instruction:

00010011

7 0

Before

Accumulator

10011000

7 0

Carry Flag

[JJ
Note: 5

After

; Rotate accumulator and carry right
; one positon.

Accumulator

11001100

7 0

Carry Flag

IT]

RRC

3-119

SETB

3-120

Set Carry Flag

Mnemonic: SETB

Operands: C Carry Flag

Format: SETBC

Bit Pattern:
111010011

7 0

Operation: (C) -1

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO ov p

PSW

Description: This instruction sets the carry flag to 1.

Example: SETBe

Encoded Instruction:

111010011 I
7 o

Before

Carry Flag

IT]
Notes: None

; Set Carry to 1

After

Carry Flag

OJ

MeS-51

MeS-51

Set Bit

Mnemonic: SETB

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

bit address 0 <= bit address <= 255

SETB bit address

I 1 1 0 1 0 0 1 0 I Bit Add ress 1

707 0

(bit address) 1

C AC FO RS1 RSO OV p

PSW

Description: This instruction sets the contents of the specified bit address to 1.

Example: SETB41.5

Encoded Instruction:

111010010 01001101

7 o 7

Before

(41)

1010001101

750

Notes: None

o
After

(41)

; Set the contents of bit 5 in byte 41
; to 1

101100110

750

SETB

3-121

SJMP

3-122

Short Jump

Mnemonic: SJMP

Operands: code address

Format: SJMP code address

Bit Pattern:
10000000 Rei. Offset

Operation:

Bytes: 2
Cycles: 2

Flags:

7 0 7 0

(PC) +- (PC) + 2
(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction transfers control to the specified code address. The
Program Counter is incremented to the next instruction, then the
relative offset is added to the incremented program counter, and
the instruction at that address is executed.

Example: SJMP BOTTOM ; Jump to BOTTOM
FF:INCA

BOTTOM: RRA

Encoded Instruction:

10000000 00001111

7 0 7 0

Before After

; (15 bytes ahead from the INC
; instruction)

Program Counter Program Counter

1110100011011100 1 111101000 11101101

15 8 7 0 15 8 7 0

Notes: lO, 11, 12

MCS-Sl

MCS-Sl SUBB
Subtract Immediate Data from
Accumulator with Borrow

Mnemonic: SUBB

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

Accumulator
-256 <= data <= +255

SUBB A,#data

1 100101 00 Ilmmediate Datal

7 o 7 o
(A) ..- (A) - (C) - data

C AC FO RS1 RSO OV p

PSW

Description: This instruction subtracts the contents of the Carry flag and the
immediate data value from the contents of the accumulator. It
places the result in the accumulator.

Example: SUBBA,#OC1H ; Subtract OC1 H from accumulator

Encoded Instruction:

110010100 01100100

7 0 7 0

Before

Accumulator

1001001101

7 o
Carry Flag

OJ
Auxiliary Carry Flag

IT]
Overflow Flag

OJ
Notes: 4,5,6, 13, 14

After

Accumulator

101100100 I
7 o

Carry Flag

OJ
Auxiliary Carry Flag

OJ
Overflow Flag

IT]

3-123

SUBB

3-124

Subtract Indirect Address from
Accumulator with Borrow

Mnemonic: SUBB

Operands: A
Rr

Accumulator
Register 0 <= r <= 1

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

SUBBA,@Rr

\1001011r \

7 0

(A) +- (A) - (C) - «Rr»

C AC FO RS1 RSO OV p

PSW

Description: This instruction subtracts the Carry flag and the memory location
addressed by the contents of register r from the contents of the
accumulator. It places the result in the accumulator.

MCS-Sl

MCS-Sl

Example: SUBBA,@R1

Encoded Instruction:

1100101111

7 0

Before

Accumulator

1100001101

7 0

Register 1

100011100 1

7 0

(1CH)

101100010 1

7 0

Carry Flag

OJ
Auxiliary Carry Flag

IT]
Overflow Flag

IT]
Notes: 5,6, 13, 14, 15

After

; Subtract the indirect address from
; accumulator

Accumulator

100100100 1

7 0

Register 1

100011100 1

7 0

(1CH)

101100010 1

7 0

Carry Flag

IT]
Auxiliary Carry Flag

[JJ
Overflow Flag

[JJ

SUBB

3-125

SUBB

3-126

Subtract Register from Accumulator with Borrow

Mnemonic: SUBB

Operands:

Format:

Bit Pattern:

A
Rr

SUBBA,Rr

110011rrr I
7 0

Accumulator
Register 0 <= r <= 7

Operation: (A) - (A) - (C) - (Rr)

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV P

1-1-1 I-I I-I
PSW

Description: This instruction subtracts the contents of the Carry flag and the
contents of register r from the contents of the accumulator. It
places the result in the accumulator.

MeS-51

MeS-51

Example: SUBBA,R6

Encoded Instruction:

110011110 1

7 0

Before

Accumulator

101110110 1

7 0

R6

1100001011

7 o
Carry Flag

QJ
Auxiliary Carry Flag

CD
Overflow Flag

ED
Notes: 5, 6, 13, 14

; Subtract R6 from accumulator

After

Accumulator

111 1 10000 1

7 0

R6

110000101

7 o
Carry Flag

QJ
Auxiliary Carry Flag

QJ
Overflow Flag

QJ

SUBB

3-127

SUBB

3-128

Subtract Memory from Accumulator with Borrow

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

SUBB

A Accumulator
data address 0 <= data address <= 255

SUBB A,data address

1 001 01 01 I Data Address I
7 o 7 o

(A) +- (A) - (C) - (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction subtracts the contents of the Carry flag and the
contents of the specified address from the contents of the
accumulator. It places the result in the accumulator.

MCS-Sl

MeS-51

Example: SUBBA,32H

Encoded Instruction:

; Subtract 32H in memory from
; accumulator

110010101 100110010 I
7 o 7

Before

Accumulator

100100110 I
7 o

(32H)

101010011 I
7 o

Carry Flag

IT]
Auxiliary Carry Flag

IT]
Overflow Flag

IT]
Notes: 5,6, 8, 13, 14

o

After

Accumulator

111010010 I
7

(32H)

o

101010011

7 o

Carry Flag

IT]
Auxiliary Carry Flag

IT]
Overflow Flag

IT]

SUBB

3-129

SWAP

3-130

Exchange Nibbles in Accumulator

Mnemonic: SWAP

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

A

SWAPA

11000100

7 0

Accumulator

Flags: C AC FO RSO RS1 OV p

PSW

Description: This instruction exchanges the contents of the low order nibble
(0-3) with the contents of the high order nibble (4-7).

Example: SWAPA

Encoded Instruction:

111000100 I
7 0

Before

Accumulator

11010000

7 0

Notes: None

After

; Swap high and low nibbles in the
; accumulator.

Accumulator

00001101

7 0

MCS-Sl

MeS-51

Exchange Indirect Address with Accumulator

Mnemonic: XCH

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A
Rr

XCH A,@Rr

11100011r I
7 0

temp ~ «Rr))
«Rr)) ~ (A)
(A) +- temp

Accumulator
Register 0 <= r <= 1

C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction exchanges the contents of the memory location
addressed by the contents of register r with the contents of the
accumulator.

Example: XGHA,@RO

Encoded Instruction:

111000110 I
7 o

Before

Accumulator

100111111

7 o
Register 0

101010010 I
7 o

(52H)

100011101

7 0

Notes: 5,15

After

; Exchange the accumulator with
; memory

Accumulator

100011101

7 o

Register 0

101010010 I
7 o

(52H)

100111111

7 0

XCH

3-131

XCH

3-132

Exchange Register with Accumulator

Mnemonic: XCH

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

A
Rr

XCH AJRr

111001rrr

7 0

temp +- (Rr)
(Rr) +- (A)
(A) +- temp

Accumulator
Register 0 <= r <= 7

C AC FO RS1 RSO OV p

PSW

This instruction exchanges the contents of register r with the
contents of the accumulator.

XGHA,R6 ; Exchange register 6 with the
; accumulator

Encoded Instruction:

111001100 1

7 0

Before

Accumulator

10011001

7 o
Register 6

110000000

7 0

Note: 5

After

Accumulator

110000000 I
7 o

Register 6

10011001

7 0

MCS-Sl

MCS-Sl

Exchange Memory with Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

XCH

A Accumulator
data address 0 <= data address <= 255

XCH A,data address

111000101 I Data Address I
7 0 7 0

temp +- (data address)
(data address) +- (A)
(A) +- temp

C- AC FO RS1 RSO OV

PSW

p

Description: This instruction exchanges the contents of the specified data
address with the contents of the accumulator.

Example: XCHA,37H

Encoded Instruction:

111000101 100110111

7 o 7

Before

Accumulator

101110111

7 o
(37H)

111110000 I
7 0

Notes: 5.9

o
After

; Exchange accumulator with the
; contents of location 37H

Accumulator

111110000 I
7 o

(37H)

101110111

7 0

XCH

3-133

XCHD

3-134

Exchange Low Nibbles (Digits) of Indirect
Address with Accumulator

Mnemonic: XCHD

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A
Rr

Accumulator
Register 0 <= r <= 1

XCHDA,@Rr

11101011r I
7 0

temp «Rr)) 0-3
«Rr)) 0-3 (A) 0-3
(A) 0-3 temp

C AC FO RS1 RSO ov p

1-' PSW

Pescription: This instruction exchanges the contents of the low order nibble (bits
0-3) of the memory location addressed by the contents of register r
with the contents of the low order nibble (bits 0-3) of the
accumulator.

Mes-sl

MCS-Sl

Example: XGHDA,@RO

Encoded Instruction:

111010110 1

7 0

Before

Accumulator

100111111

7 o
Register 0

1010100101

7 o
(52H)

1000111011

7 o
Notes: 5,15

After

; Exchange the accumulator with
; memory

Accumulator

100111101

7 o
Register 0

[010100101

7 o
(52H)

100011111

7 o

XCHD

3-135

XRL

3-136

Logical Exclusive OR Immediate Data
to Accumulator

Mnemonic: XRL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

Accumulator
-256 <= data <= +255

XRLA,Idata

I 01100100 Ilmmediate Datal

7 0 7 0

(A) - (A) XOR data

C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction exclusive ORs the immediate data value to the
contents of the accumulator. Bit n of the result is 0 if bit n of the
accumulator equals bit n of the data value; otherwise bit n is I. It
places the result in the accumulator.

Example: XRLA,IOFH

Encoded Instruction:

101100100 100001111

707 0

Before

Accumulator

101110111

7 o
Notes: 4,5

; Complement the low order nibble

After

Accumulator

101111000 I
7 o

MCS-Sl

MCS-51

Logical Exclusive OR Indirect Address
to Accumulator

Mnemonic: XRL

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Rr

XRLA,@Rr

0110011r

7 0

Accumulator
0<= Rr<= 1

(A) +- (A) XOR ((Rr))

C AC FO RS1 RSO OV

PSW

p

Description: This instruction exclusive ORs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 0 if bit n of the accumulator
equals bit n of the addressed location; otherwise bit n is 1. It places
the result in the accumulator.

Example: XRLA,@RO

Encoded Instruction:

01100110

7 o

Before

Accumulator

00101000

7 0

Register 0

01010010

7 0

(52H)

I 00000001

7 0

Notes: 5, 15

After

; XOR indirect address with
; accumulator

Accumulator

00101001

7 0

Register 0

01010010

7 0

(52H)

I 00000001

7 0

XRL

3-137

XRL

3-138

Logical Exclusive OR Register to Accumulator

Mnemonic: XRL

Operands: A
Rr

Format: XRLA,Rr

Bit Pattern:
101101rrr

7 0

Accumulator
Register 0 <= r <= 7

Operation: (A) (A) XOR (Rr)

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction exclusive ORs the contents of register r to the
contents of the accumulator. Bit n of the result is 0 if bit n of the
accumulator equals bit n of the specified register; otherwise bit n is
1. It places the result in the accumulator.

Example: XRLA,R4

Encoded Instruction:

101101100 I
7 o

Before

Accumulator

10010001

7 0

Register 4

11100011

7 0

Note: 5

; XOR R4 with accumulator

After

Accumulator

101110010 1

7 0

Register 4

111100011

7 0

MeS-51

MeS-51

Logical Exclusive OR Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

XRL

A Accumulator
data address 0 <= data address <= 255

XRL A,data. address

1 011 001 01 I Data Address 1

7 0 7 0

(A) ~ (A) XOR (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction exclusive ORs the contents of the specified data
address to the contents of the accumulator. Bit n of the result is 0 if
bit n of the accumulator equals bit n of the addressed location;
otherwise bit n is 1. It places the result in the accumulator.

Example: XRLA,37H

Encoded Instruction:

01100101

7 0

Before

Accumulator

01111111

7 0

(37H)

110001000

7 0

Notes: 4,8

00110111

7 0

After

; XOR the contents of location 37H
; with accumulator

Accumulator

11110111

7 0

(37H)

110001000

7 0

XRL

3-l39

XRL

3-140

Logical Exclusive OR Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

XRL

data address 0 <= data address <= 255
data -256 <= data <= + 255

XRL data address ,'data

I 011 00011 I Data Address Ilmmediate Datal

7 07 07 0

(data address) - (data address) XOR data

C AC FO RS1 RSO OV p

PSW

Description: This instruction exclusive ORs the immediate data value to the
contents of the specified data address. Bit n of the result is 0 if bit n
of the specified address equals bit n of the data value; otherwise,
bit n is 1. It places the result in data memory at the specified
address.

Example: XRL P1,#51H

Encoded Instruction:

101100011

7 0

Before

Port 1 (90H)

101110110 I
7 0

Notes: 4,9

10010000

7 0

; XOR 51 H with the contents of Port 1

01010001

7 0

After

Port 1 (90H)

11100110

7 0

MeS-51

MCS-Sl

Logical Exclusive OR Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

XRL

data address 0 <= data address <= 255
A Accumulator

XRL data address ,A

o 1 1 00 0 1 0 1 Data Address 1

7 0 7 0

(data address) +- (data address) XOR A

C AC FO RS1 RSO OV p

I
PSW

Description: This instruction exclusive ORs the contents of the accumulator to
the contents of the specified data address. Bit n of the result is 0 if
bit n of the accumulator equals bit n of the specified address;
otherwise bit n is 1. It places the result in data memory at the
specified address.

Example: XRL 10H,A

Encoded Instruction:

01100010

7 0

Before

Accumulator

11110000

7 0

(10H)

100110001

7 0

Note: 9

00010000

7 0

After

; XOR the contents of 10H with the
; accumulator

Accumulator

11110000

7 0

(10H)

111000001

7 0

XRL

3-141

Instruction Set

3-142

Notes
1. The low-order byte of the Program Counter is always placed on the stack first,

followed by the high order byte.
2. The Stack Pointer always points to the byte most recently placed on the stack.

3. On the 8051 the contents of the Stack Pointer should never exceed 127. If the
stack pointer exceeds 127, data pushed on the stack will be lost, and undefined
data will be returned. The Stack Pointer will be incremented normally even
though data is not recoverable ..

4. The expression used as the data operand must evaluate to an eight-bit number.
This limits the range of possible values in assembly time-expressions to between
-256 and +255 inclusive.

5. The Parity Flag, PSW.O, always shows the parity of the accumulator. If the
number of l' s in the accumulator is odd, the parity flag is 1; otherwise, the
parity flag will be O.

6. All addition operations affect the Carry Flag, PSW. 7, and the Auxiliary Carry
flag, PSW.6. The Carry flag receives the carry out from the bit 7 position (Most
Significant Bit) in the accumulator. The Auxiliary Carry flag receives the carry
out from the bit 3 position. Each is either set or cleared with each ADD
operation.

7. The overflow flag (OV) is set when an operation produces an erroneous result
(i.e. the sum of two negative numbers is positive, or the sum of two positive
numbers is negative). OV is updated with each operation.

8. If one of the I/O ports is specified by the data address, then data will be taken
from the port input pins.

9. If orie of the 110 ports is specified by the data address, then data will be taken
from, and returned to, the port latch.

10. The code address operand must be within the range of -128 and +127 inclusive
of the incremented program counter's value.

11. The last byte of the encoded instruction is treated as a two's complement
number, when it is added to the program counter.

12. The Program Counter is always incremented before the add.

13. The auxiliary carry flag is set if there is a borrow from bit 3 of the accumulator;
otherwise, it is cleared.

14. The overflow flag (OV) is set when an operation produces an erroneous result
(i.e~ a positive number is subtracted from a negative number to produce a
positive result, or a negative number is subtracted from a positive number to
produce a negative result). OV is cleared with each correct operation.

15. On the 8051 the contents of the register used in the indirect address should not
exceed 127. When the contents of the register is 128 or greater, source operands
will return undefined data, and destination operands will cause data to be lost.
In either case, the program will continue with no change in execution time or
control flow.

16. If an I/O port is specified as the source operand, then the the port pins will be
read. If an 110 port is the destination operand, then the port latch will receive'
the data.

17. If the stack pointer is 128 or greater, then invalid data will be returned on a
POP or return.

Mes-sl

CHAPTER 4
ASSEMBLER DIRECTIVES

This chapter describes the assembler directives. It shows how to define symbols and
how to control the placement of code and data in program memory.

Introduction

The MCS-S 1 assembler has several directives that permit you to set symbol values,
reserve and initialize storage space, and control the placement of your code.

The directives should not be confused with instructions. They do not produce exe­
cutable code, and with the exception of the DB and DW directives, they have no
direct effect on the contents of code memory. What they do is change the state of the
assembler, define user symbols, and add information (other than pure object code)
to the object file (e.g., segment definitions).

The directives are divided into the following categories:

Symbol Definition
SEGMENT
EQU
SET
DATA
IDATA
XDATA
BIT
CODE

Storage Initialization/Reservation
DS
DB
DW
DBIT

Program Linkage
PUBLIC
EXTRN
NAME

Assembler State Control
ORG
END
Segment Selection Directives

RSEG
CSEG
DSEG
XSEG
ISEG
BSEG

USING

The MCS-SI assembler is a two-pass assembler. In the first pass, symbol values are
determined, and in the second, forward references are resolved, and object code is
produced. This structure imposes a restriction on the source program: expressions

4-1

Assembler Directives

4-2

which define symbol values (see Symbol Definition Directives) and expressions
which control the location counter (see ORO, OS, and DBIT directives) may not
have forward references.

The Location Counter

The location counter in ASM51 is a pointer to the address space of the active seg­
ment. When a segment is first activated, the location counter is 0 (unless a base
address was specified using the segment select directives). The location counter is
changed after each instruction by the length of the instruction. You can change its
value with the ORO directive, which sets a new program origin for statements that
follow it. The storage initialization and reservation directives (DS, DB, DW, and
DB IT) change the value of the location counter as statements are encountered within
a segment. If you change segments and later return to that segment, the location
counter is restored to its previous value. Whenever the assembler encounters a label,
it assigns to the label the current value of the location counter and the type of the
current segment.

The dollar sign ($) indicates the value of the active segment's location counter.
When you use the location counter symbol, keep in mind that its value changes with
each instruction, but only after that instruction has been completely evaluated. If
you use $ in an operand to an instruction or a directive, it represents the code
address of the first byte of that instruction.

MSG: DB MSG_LENGTH,'THIS IS A MESSAGE'
MSG_LENGTH EaU $-MSG-1 ;message length

'Symbol Names

A symbol name must begin with a letter or a special character (either? or _),
followed by letters, special characters, or digits.

You can use up to 255 characters in a symbol name, but only the first 31 characters
are significant. A symbol name may contain upper- or lower-case characters, but the
assembler converts to upper-case characters for internal representation. So, to
ASM51, "buffer" is the same as "BUFFER" and the name

is the same as the name

although the strings are different.

The instruction mnemonics, assembly-time operators, predefined bit and data
addresses, segment attributes, and assembler directives may not be used as user­
defined symbol names. For a complete list of these reserved words, refer to
Appendix F.

Statement Labels

A label is a symbol. All of the rules for forming symbol names apply to labels. A
statement label is the first field in a line, but it may be preceded by any number of
tabs or spaces. You must place a colon (:) after a label to identify it as a label. Only
one label is permitted per line. .

MeS-51

Mes-sl Assembler Directives

Labels are allowed only before empty statements, machine instructions, data initial­
ization directives (DB and DW), and storage reservation directives (DS and DBIT).
Simple names (without colons) can only precede symbol definition directives (EQU,
SET, CODE, DATA, IDATA, XDATA, BIT, and SEGMENT). All other
statements may not be preceded by labels or simple names.

When a label is defined, it receives a numeric value and segment type. The numeric
value will always be the current value of the location counter of the currently
selected segment at the point of use. The value of the label will be relocatable or
absolute depending on the relocatability of the current segment. The segment type
will be equivalent to the segment type of the current segment.

Several examples of lines containing labels are shown below:

LABEL1: OS 1
LABEL2: ;This line contains no instruction; it is an empty statement
LAB3: DB 27,33,'FIVE'
MOV_PROe: MOV DPTR,ILABEL3

You can use labels like any other symbol, as a memory address, or a numeric value
in an assembly-time expression. A label, once defined, may not be redefined.

Symbol Definition

The symbol definition directives allow you to create symbols that can be used to
represent segments, registers, numbers, and addresses. None of these directives may
be preceded by a label.

Symbols defined by these directives may not have been previously defined and may
not be redefined by any means. The SET directive is the only exception to this.

SEGMENT Directive

The format for the SEGMENT directive is shown below. Note that a label is not
permitted.

relocatable_segmenLname SEGMENT segmenLtype [relocation_type]

The SEGMENT directive allows you to declare a relocatable segment, assign a set of
attributes, and initialize the location counter to zero (0).

Although the name of a relocatable segment must be unique in the module, you can
define portions of the segment within other modules and let RL51 combine them.
When you do this, the segment type attributes must all be the same and the reloca­
tion types must either be the same or be of two types, one of which is UNIT (see
below). In the latter case, the more restrictive type will override.

The segment type specifies the address space where the segment will reside. The
allowable segment types are:

• CODE-the code space

• XDAT A-the external data space
• DAT A-the internal data space accessible by direct addressing (0 to 127)
• IDAT A-the entire internal data space accessible by indirect addressing (0 to

127)

• BIT -the bit space (overlapping locations 32 to 47 of the internal data space)

4-3

Assembler Directives

4-4

The relocation type, which is optional, defines the relocation possibilities to be
assigned by the RLSI. The allowable relocation types are:

• P AGE-specifies a segment whose start address must be on a 256-byte page
boundary. Allowed only with CODE and XDAT A segment types.

• IN PAGE-specifies a segment which must be contained in a 256-byte page.
Allowed only with CODE and XDA T A segment types.

• IN BLOCK-specifies a segment which must be contained in a 2048-byteblock.
Allowed only for CODE segments.

• BIT ADDRESSABLE-specifies a segment which will be relocated by RL5l
within the bit space on a byte boundary. Allowed only for DATA segments;
limited to a I6-byte maximum size.

• UNIT -specifies a segment which will be aligned on a unit boundary. This will
be a byte boundary for CODE, XDA T A, DATA, and IDA T A segments and a
bit boundary for BIT segments. This relocation type is the default value.

NOTE

When used in expressions, the segment symbol stands for the base
address of the combined segment.

Any DATA or IDA T A segments may be used as a stack (there is no explicit stack
segment).

For example,

STACK SEGMENT IDATA
RSEG STACK
DS 10H ;Reserve 16 bytes for stack

MOV SP,lfSTACK-1 ;Initialize stack pointer

EQU Directive

The format for the EQU directive is shown below. Note that a label is not permitted.

symbol_name EQU expression

or

symboL name EQU speciaLassembler_symbol

The EQU directive assigns a numeric value or special assembler symbol to a
specified symbol name. The symbol name must be a valid ASM5I symbol as
described above.

If you assign an expression to the symbol, it must be an absolute or simple
relocatable expression with no forward references. You can use the symbol as a data
address, code address, bit address, or external data address depending on the seg­
ment type of the expression, i.e., the symbol will have the segment type of the
expression. If the expression evaluates into NUMBER, the symbol will be con·
sidered as such and will be allowed to be used everywhere.

The special assembler symbols A, RO, RI, R2, R3, R4, R5, R6, and R7 can be
represented by user symbols defined with the EQU directive. If you define a symbol
to a register value, it will have a type "REG". It can only be used in the place of that
register in instruction operands.

MCS-Sl

MeS-51 Assembler Directives

A symbol defined by the EQU directive cannot be defined anywhere else.

The following examples show several uses of EQU:

ACCUM

N27
HERE

EOU

EOU
EOU

A

27
$

; define ACCUM to stand for A
; (the 8051 accumulator)
; set N27 to equal 27
; set HERE to current location counter
; value

DADDR1 EOU DADDRO + 1 ; Assuming DADDRO is a DATA address
; DADDR1 will also be a OAT A address

SET Directive

The format for the SET directive is shown below.

symbol_name SET expression

or

symboL name SET special_assembler_symbol

The SET directive operates similiar to EQU. The difference is that the defined sym­
bol can be redefined later, using another SET directive.

NOTE

You cannot set a symbol which was equated and you cannot equate a sym­
bol which was set.

The following examples show several uses of SET:

COUNT SET 0 ;Initialize absolute counter
COUNT SET COUNT+1 ;Increment absolute counter
HALF SET WHOLEl2 ;Give half of W!-lOLE to HALF

;the remainder is discarded
H2O SET 32 ;Set H20 to 32
INDIRECT SET Rl ;Set INDIRECT to Rl

BIT Directive

The format for the BIT directive is shown below.

symboL name BIT biLaddress

The BIT directive assigns a bit address to the specified symbol name.

Bit address format is described in Chapter 2. The symbol gets the segment type BIT.
A symbol defined as BIT may not be redefined elsewhere in the program.

The following examples show several uses of BIT:

CONTROL:

ALARM
OPEN_DOOR
RESET_BOARD

RSEG DATA_SEG
OS

BIT CONTROl.O
BIT ALARM+1
BIT 060H

;A relocatable bit addressable segment

;Bit in a relocatable byte
;The next bit
;An absolute bit

4-5

Assembler Directives

4-6

DATA Directive

The format for the DATA directive is shown below.

symbol_name DATA expression

The DATA directive assigns an on-chip data address to the specified symbol name.
The expression must be an absolute or simple relocatable expression. Absolute
expressions greater than 127 must specify a defined hardware register (see Chapter
1). The segment type of the expression must beeeither DATA or NUMBER. The
symbol gets the segment type DATA.

A symbol defined by the DATA directive may not be redefined elsewhere in the
program.

The following examples show several uses of DATA:

CONIN DATA

TABLE __ BASE DATA

REL_ T ABLE DATA

XDATA Directive

SBUF ;define CONIN to address
;the serial port buffer

70H ;define TABLE_BASE to be
;at location 70H

7FH ;define TABLE_END to be
;attop of RAM (7FH)

RELSTART +1 ; Define REL_TABLE to bea
;relocatable symbol (assuming
;RELST ART is)

The format for the XDA T A directive is shown below.

symboL name XDAT A expression

The XDA T A directive assigns an off-chip data address to the specified symbol
name. The expression must be an absolute or simple relocatable expression. If the
expression does not evaluate to a number, its segment type must be XDA T A. The
symbol gets the segment type XDA T A. A symbol defined by the XDA T A directive
may not be redefined elsewhere in the program.

The following examples show several uses of XDA T A:

RSEG XSEG1
ORG 100H

DATE: OS 5
TIME XDATA DATE+5
PLACE XDAT A TIME + 3

IDATA Directive

;Define DATE to 100H off XSEG1 base
;define TIME to be 5 bytes after DATE
;define PLACE to be 3 bytes after TIME

The format for the IDAT A directive is shown below.

symbol_name IDAT A expression

The IDA T A directive assigns an indirect internal data address to the specified sym­
bol name. The expression must be an absolute or simple relocatable expression.
Absolute expressions may not be larger than 127 for the 8051. The segment type of
the expression must be either IDATA or NUMBER. The symbol gets the segment
type IDA T A. A symbol defined by the IDA T A directive may not be redefined
elsewhere in the program.

MeS-51

MeS-51 Assembler Directives

The following examples show several uses of IDAT A:

BUFFER IDATA
BUFFER_LEN EQU
BUFFER_END IDATA

CODe Directive

60H
20H
BUFFER+ BUFFER_LEN-1

The format for the CODE directive is shown below.

symboL name CODE expression

The CODE directive assigns a code address to the specified symbol name. The
expression must be an absolute or simple relocatable expression. If the expression
does not evaluate to a number, its segment type must be CODE. The symbol gets a
segment type of CODE. A symbol defined by the CODE directive may not be
redefined elsewhere in the program.

The following examples show several uses of the CODE directive:

RESTART
INT_VECO
INT_VEC1
INT_VEC2

CODE OOH
CODE 03H
CODE OBH
CODE 1BH

~torage Initialization and Reservation

The storage initialization and reservation directives are used to initialize and reserve
space in either word, byte, or bit units. The space reserved starts at the point indi­
cated by the current value of the location counter in the currently active segment.
These directives may be preceded by a label.

OS Directive

The format of the DS directive is as follows:

[label:) OS expression

The DS directive reserves space in byte units. It can be used in any segment except a
BIT type segment. The expression must be a valid assembly-time expression with no
forward references and no relocatable or external references. When a DS statement
is encountered in a program, the location counter of the current segment is incre­
mented by the value of the expression. The sum of the location counter and the
specified expression should not exceed the limitations of the current address space,
or those set by the current relocation type.

OBIT Directive

The format of the DBIT directive is as follows:

[label:] OBIT expression

The DBIT directive reserves a space in bit units. It can be used only in a BIT type
segment. The expression must be a valid assembly-time expression with no forward
references. When the DBIT statement is encountered in a program, the location

4-7

Assembler Directives

4-8

counter of the current (BIT) segment is incremented by the value of the expression.
Note that in a BIT segment, the basic unit of the location counter is in bits rather
than bytes.

DB Directive

The format for a DB directive is shown below:

[label:) DB expression_list

The DB directive initializes code memory with byte values. Therefore, a CODE type
segment must be active. The expression list is a series of one or more byte values or
strings separated by commas(,). A byte value can be represented as an absolute or
simple relocatable expression or as a character string. Each item in the list (expres­
sion or character string) is placed in memory in the same order as it appears in the
list.

The DB directive permits character strings longer than 2 characters, but they must
not be part of an expression (i.e., you cannot use long character strings with an
operator, including parentheses). If you specify the null character string as an item
in the list (not as part of an expression), it generates no data. If the directive has a
label, the value of the label will be the address of the first byte in the list.

The following examples show several ways you can specify the byte value list in a DB
directive:

AGE: DB 'MARY' ,0,27, 'BILL' ,0,25, 'JOE' ,0,21, 'SUE' ,0,18
; This DB statement lists the names (character strings)
; and ages (numbers) that have been placed in a list (the label
; AGE will address the "M" in "MARY")

PRIMES: DB 1 ,2,3,5,7,11 ,13,17,19,23,29,31 ,37,41 ,43,47,53
; This DB lists the first 17 prime numbers.
; (PRIMES is the address of 1)

QUOTE: DB 'THIS IS A QUOTE'" ; This is an example of how to put the
; quote character in a character
; strlng.

OW Directive

The format for a DW statement is shown below:

[label:) OW expression_list

The DW directive initializes code memory with a list of word (l6-bit) values.
Therefore, a CODE type segment must be active. The expression list can be a series
of one or more word values separated by commas(,). Word values can be absolute or
simple relocatable expressions. If you use the location counter ($) in the list, it
evaluates to the code address of the word being initialized. Unlike the DB directive,
no more than two characters are permitted in a character string, and the null
character string evaluates to O.

Each item in the list is placed in memory in the same order as it appears in the list,
with the high order byte first, followed by the low order byte (unlike the way it is
handled by the ASM80/86). If the statement has a label, the value of the label will
address the first value in the list (i.e., the high order byte of the first word).

MeS-51

MCS-Sl Assembler Directives

The following examples show several ways you can specify the word value list in a
DW directive:

ARRIVALS: OW 710,'AM', 943, 'AM', 315,'PM' ,941 'PM'
; This OW lists several flight arrivals.
; The numbers and characters are encoded
; consecutively.

INVENTORY: OW 'F' ,27869, 'G' ,34524, 'X' ,27834
; This list of characters and numeric
; values will be encoded with the high
; order byte of each character string
; filled with zeros. INVENTORY will
; address a zero byte.

JUMP_TABLE OW GO_PROC,BREAK_PROC,OISPLAY_PROC
; A jump table is constructed by listing
; the procedure addresses

OW $, $-2, $-4, $-6 ; This OW statement initializes four
; words of memory with the same value.
; (The location counter is incremented
; by 2 for each item in the list.)

Program Linkage
program linkage directives allow the separately assembled modules to communicate
by permitting intermodule references and the naming of modules.

PUBLIC Directive

The format for the PUBLIC directive is shown below:

PUBLIC fisLoLnames

The PUBLIC directive allows symbols to be known outside the currently assembled
module. If more than one name is declared pUblic, the names must be separated by
commas (,). Each symbol name may be declared public only once in a module. Any
symbol declared PUBLIC must have been defined somewhere else in the program.
Predefined symbols and symbols defined as registers of segments (declared via the
SEGMENT directive) may not be specified as PUBLIC.

The following examples show several uses of the PUBLIC directive:

PUBLIC puLcrlf, puLstring, puLdat~str
PUBLIC ascbin, binasc
PUBLIC liner

EXTRNDirective

The format for the EXTRN directive is shown below:

EXTRN [segmenLtype (lisLoLsymbol_namesJ] , ...

The EXTRN directive lists symbols to be referenced in the current module· that are
defined in other ptodules. This directive may appear anywhere in the program.

4-9

Assembler Directives

4-10

The list of external symbols must have a segment type associated with each symbol
on the list. (The segment types are CODE, XDATA, DATA, IDATA, BIT, and
NUMBER, i.e., a typeless symbol.) The segment type indicates the way a symbol
may be used (e.g., a CODE type external symbol may be used as a target to a jump
instruction but not as the target of a move instruction). At link and locate time, the
segment type of the corresponding public symbol must match the segment type of
the EXTRN directive. This match is accomplished if either type is NUMBER or if
both types are the same.

The following examples show several uses of the EXTRN directive:

EXTRN CODE (puLcrlf, puLstring, geLnum), DATA (count,total)
EXTRN CODE (binasc, ascbin), NUMBER (table_size)

NAME Directive

The format for the NAME directive is shown below:

NAME module_name

The NAME directive is used to identify the current program module. All the rules
for naming apply to the module name. The NAME directive should be placed before
all directives and machine instructions in the module. Only comments and control
lines can precede the NAME directive.

If you choose not to use the name directive, the root (i.e., the file name without both
the drive and the extension identifiers) of the source filename is used as the default.

NOTE

When filename roots start with a digit and the NAME directive is not
specified, the module name cannot be used in the RL51 module list (such a
module name is illegal for RUI).

The symbol used in the NAME directive is considered undefined for the rest of the
program unless it is specifically defined later.

The following examples show several uses of the NAME directive:

NAME track
NAME compass
NAME chapter_45

Assembler State Controls

EN D Directive

Every program must have an END statement. Its format is shown below:

END

The END statement must not have a label, and only a comment may appear on the
line with it. The END statement should be the last line in the program; otherwise,
this will produce an error.

MCS-SI

MCS-Sl Assembler Directives

ORG Directive

The ORG directive is used to alter the assembler's location counter to set a new pro­
gram origin for statements that follow the directive.

The format for the ORG directive is shown below. Note that a label is not permitted.

ORG expression

The expression should be an absolute or simple relocatable expression referencing
the current segment and containing no forward references.

When the ORG directive is encountered in a program, the value of the expression is
computed as the new value of the location counter specifying the address at which
the next machine instruction or data item will be assembled in the current selected
segment. If the current segment is absolute, the value will be an absolute address in
the current segment; if the segment is relocatable, the value will be offset from the
base address of the instance of the segment in the current module.

The ORG directive modifies the location counter; it does not generate a new seg­
ment. That is, when the location counter is incremented from the current value, the
space between the previous and the current location counter becomes part of the cur­
rent segment.

In an absolute segment, the location counter must not be decremented to an address
below the beginning of that segment.

Examples:

ORG ($ + 10H)AND OFFFOH ; set location counter to next
; 16-byte boundary

ORG 50 ; set location counter to 50

Segment Selection Directives

The segment selection directives will divert the succeeding code or data into the
selected segment until another segment is selected by a segment selection directive.
The directives may select a previously defined relocatable segment, or optionally
create and select absolute segments.

The format for relocatable segment selection directives is shown below. Note that a
label is not permitted and that the name must be previously defined as a segment
name.

RSEG segment name

The format for absolute segment select directives is shown below. Note that a label is
not permitted here either.

/

CSEGj XSEG
DSEG
ISEG
BSEG

{AT absolute_address 1

CSEG, DSEG, ISEG, BSEG, and XSEG select an absolute segment within the code,
internal data, indirect internal data, bit, or external data address spaces, respec­
tively. If you choose to specify an absolute address (by including "AT absolute

4-11

Assembler Directives

4-12

address"), the assembler terminates the last absolute segment, if any. of the
specified segment type. and creates a new absolute segment starting at that address.
If you do not specify an absolute address. the last absolute segment of the specified
type is ~ontinued. If no absolute segment Of this type was selected and the absolute
address is omitted, a new segment is created starting at location o. You cannot use
any forward references and the start address must be an absolute expression.

Each segment has its own location counter; this location counter is always set to 0 in
the initial state. The default segment is an absolute code segment; therefore, the
initial state of the assembler is location 0 in the absolute code segment. When
another segment is chosen for the first time, the location counter of the former seg­
ment retains the last active value. When that former segment is reselected, the loca­
tion counter picks up at the last active value. You can use the ORG directive to
change the location counter within the currently selected segment.

DATA_SEG1
CODE_SEG1

SEGMENT DATA
SEGMENT CODE
BSEG AT70H

DECIMAL_MODE: OBIT
CHAR_MODE: OBIT

; A relocatable data segment
; A relocatable code segment
; Absolute bit segment
; Absolute bit

TOTAL1:
RSEG
OS
OS
OS

DATA_SEG1 ; Select the relocatable data segment
1

COUNT1: 1
COUNT_W: 2

RSEG CODE_SEG1 ; Select the relocatable code segment

USING Directive

The format for the USING directive is shown below. Note that a label is not
permitted.

USING expression

This directive notifies the assembler of the register bank that is used by the subse­
quent code. The expression is the number (between 0 and 3 inclusive) which refers to
one of four register banks.

The USING directive allows you to use the predefined symbolic register addresses
(ARO through AR7) instead of their absolute addresses. In addition, the directive
causes the assembler to reserve a space for the specified register bank.

Examples:

USING 3
PUSH AR2 ;Push register 2 of bank 3

USING 1
PUSH AR2 ;Push register 2 of bank 1

Note that if you equate a symbol (e.g., using EQU directive) to an ARi symbol, the
user-defined symbol will not change its value as a result of the subsequent USING
directive.

MCS-Sl

CHAPTER 5
THE MACRO PROCESSING LANGUAGE

Introduction
The Macro Processing Language (MPL) of ASM51 is a string replacement facility.
It permits you to write repeatedly used sections of code once and then insert that
code at several places in your program. If several programmers are working on the
same project, a library of macros can be developed and shared by the entire team.
Perhaps MPL's most valuable capability is conditional assembly-with all
microprocessors, compact configuration dependent code is very important to goo"d
program design. Conditional assembly of sections of code can help to achieve the
most compact code possible.

This chapter documents MPL in three parts. The first section describes how to
define and use your own macros. The second section defines the syntax and
describes the operation of the macro processor's built-in functions. The final section
of the chapter is devoted to advanced concepts in MPL.

The first two sections give enough information to begin using the macro processor.
However, sometimes a more exact understanding of MPL's operation is needed.
The advanced concepts section should fill those needs.

Don't hesitate to experiment. MPL is one of the most powerful and easy to use tools
available to programmers.

Macro Processor Overview
The macro processor views the source file in very different terms than the assembler.
Figure 5-1 illustrates these two different views of the input file. To the assembler, the
source file is a series of lines-control lines, instruction lines, and directive lines. To
the macro processor, the source file is a long string of characters.

The figure below shows these two views of the source file.

•
•
•

MOV A, #27
ADD A,@RO
MOV @RO,A

•
•
•

Figure 5-1. Macro Processor versus Assembler­
Two Different Views of a Source File 937·15

5-1

Macro Processing Language

5-2

All macro processing of the source file is performed before your code is assembled.
Because of this independent processing of macros and assembly of code, we must
differentiate between macro-time and assembly-time. At macro-time, assembly
language symbols-labels, SET and EQU symbols, and the location counter are not
known. Similarly, at assembly-time, no information about macros is known.

The macro processor scans the source file looking for macro calls. A macro call is a
request to the processor to replace the call pattern 'of a built-in or user-defined
macro with its return value.

When a macro call is encountered, the macro processor expands the call to its return
value. The return value of a macro is then placed in a temporary work file, and the
macro processor continues. All characters that are not part of a macro call are
copied into the temporary workfile.

The return value of a macro is the text that replaces the macro call. The return value
of some macros is the null string. (The null string is a character string containing no
characters.) In other words, when these macros are called, the call is removed from
the input stream, and the assembler never sees any evidence of its presence. This is
particularly useful for conditional assembly.

Introduction to Creating and Calling Macros
The macro processor is a character string replacement facility. It searches the source
file for a macro call, and then replaces the call with the macro's return value. A 0/0
signals a macro call. % is the default metacharacter. The metacharacter must
precede a macro call .. Until the macro processor finds a metacharacter, it does not
'process text. It simply passes the text from the source file to a work file, which is
eventually assembled.

Since MPL only processes macro calls, it is necessary to call a macro in order to
create other macros. The built-in function DEFINE creates macros. Built-in func­
tions are a predefined part of the macro language, so they may be called without
prior definition. The general syntax for DEFINE is:

% (*] DEFIN E(call-pattern)Iloca/-symbol-list](macro-body)

DEFINE is the most important MPL built-in function. This section of the chapter is
devoted to describing this built-in function. Each of the symbols in the syntax above
(call-pattern, local-symbol-list, and macro-body) are thoroughly described in the
pages that follow. In some cases we have abbreviated this general syntax to
emphasize certain concepts.

Creating Simple Macros

When you create a simple macro, there are two parts to a DEFINE call: the call pat­
tern and the macro body. The call pattern defines the name used when the macro is
called; the macro body defines the return value of the call.

The syntax of a simple macro definition is shown below:

%*DEFINE (call-pattern) (macro-body)

The '%' is the metacharacter that signals a macro call. The '.' is the literal
character. The literal character is normally used when defining macros. The exact
use of the literal character is discussed in the advanced concepts section of this
chapter.

MeS-51

MeS-51 Macro Processing Language

When you define a simple macro, the call-pattern is a macro identifier. It follows the
metacharacter, when you call the macro in the source file. The rules for macro iden­
tifiers are the same as ASM51 symbol names.

• The identifier must begin with an alphabetic character (A,B,C, ... ,Z or
a,b,c, ... ,z) or a special character (a question mark ? or an underscore
character{_» .

• The remaining characters may be alphabetic, special, or decimal digits
(0,1,2, ... ,9).

• Only the first 31 characters of a macro identifier are recognized as the unique
identifier name. Upper and lower case characters are not distinguished in a
macro identifier.

The macro-body is usually the return value of the macro call. However, the macro­
body may contain calls to other macros. If so, the return value is actually the fully
expanded macro body, including the calls to other macros. When you define a
macro using the syntax shown above, macro calls contained in the body of the
macro are not expanded, until you call the macro.

The syntax of DEFINE requires that left and right parentheses surround the macro­
body. For this reason, you must have balanced parenthesis within the macro body
(i.e., each left parenthesis must have a succeeding right parenthesis, and each right
parenthesis must have a preceding left parenthesis). We call character strings that
meet these requirements balanced-text.

To call a macro, you use the metacharacter followed by the call-pattern for the
macro. (The literal character is not needed when you call a user-defined macro.) The
macro processor will remove the call and insert the return value of the call. If the
macro body contains any call to other macros, they will be replaced with their return
value.

Once a macro has been created, it may be redefined by a second call to DEFINE.

The three examples below show several macro definitions. Their return values are
also shown.

Example 1:

Macro definition at the top of program:

%' DEFINE(MOVE) (

)

MOVA,@R1
MOV@RO,A
INCR1
INCRO

Macro call as it appears in program (* literal character is not needed when you call
the user-defined macro):

POPACC
MOV R1,A
POP Ace
MOVRO,A
%MOVE

5-3

Macro Processing Language

5-4

The program after the macro processor makes the expansion:

POPACC
MOVR1,A
POPACC
MOVRO,A

Example 2:

MOVA,@R1
MOV@RO,A
INCR1
INCRO

} this is the return value

Macro definition at the top of the program:

%"DEFINE (MULT)(

)

MULAB
JNBOV,($+6)
LCALL OVFLERR

The macro call as it appears in original program body:

MOVB,@R1
MOVA,@RO
%MULT
MOV@RO,A

The program after macro expansion:

MOVB,@R1
MOVA,@RO

MULAB } h' . h I JNB OV,($+6) t IS IS t e return va ue

LCALL OVFLERR
MOV@RO,A

Example 3:

Here is a macro that calls MUL T to mUltiply 5 bytes:

%"DEFINE(MULT_5)(
MOVR7,15
MOV RO,IADDR1
MOV R1,IADDR2

TOP: MOV B,@R1
MOVA,@RO
%MULT
MOV@RO,A
INCRO
INCR1
DJNZR7,TOP

MCS-SI

MCS-51 Macro Processing Language

This macro when called inserts the following code:

MOV R7,#5
MOV RO,#ADDR1
MOV R1,IIADDR2

TOP: MOV B,@R1
MOVA,@RO

MULAB
JNBOV,($+6)
LCALL OVFL_ERR

MOV@RO,A
INCRO
INC R1
DJNZR7,TOP

Macros with Parameters

}
this is the return
value of MULT

this is the return
value of MULT_5

If the only thing the macro processor could do was simple string replacement, then it
would not be very useful for most programming tasks. Each time we wanted to
change even the simplest part of the macro's return value, we would have to redefine
the macro. Parameters in macro calls allow more general purpose macros.

Parameters leave blanks or holes in a macro body that you will fill in when you call
the macro. This permits you to design a single macro that produces code for many
typical programming operations.

The term parameter refers to both the formal parameters that are specified when the
macro is defined (the blanks), and the actual parameters or arguments that are
specified when the macro is called (the fill-ins).

The syntax for defining macros with parameters is very similar to the syntax for sim­
ple macros. The call-pattern that we described earlier actually includes both the
macro-name and an optional parameter-list. With this addition, the syntax for
defining simple macros becomes:

% *DEFINE(macro-name [parameter-list)) (macro-body)

The '0,7o*DEFINE' is required for the same reasons described earlier.

The macro-name must be a valid macro identifier.

The parameter-Jist is a list of macro identifiers separated by macro delimiters. This
comprises the formal parameters used in the macro. The macro identifier for each
parameter in the list must be unique.

Typically, the macro delimiters are parentheses and commas. When using these
delimiters, you would enclose the parameter list in parentheses and separate each
formal parameter with a comma. When you define a macro using parentheses and
commas as delimiters, you must use those same delimiters, when you call that
macro. The Advanced Concepts section completely describes the use of macro
delimiters. For now we will use parentheses and commas when defining macros.

The macro-body must be a balanced-text string. To indicate the locations of
parameter replacement (the holes to be filled in by the actual parameters), place the
parameter's name preceded by the metacharacter in the macro body. The
parameters may be used any number of times and in any order within the macro
body. If a user-defined macro has the same macro identifier name· as one of the
parameters to the macro, the macro may not be called within the macro body,
because the parameter takes precedence.

5-5

Macro Processing Language

5-6

The example below shows the definition of a macro with three dummy parameters­
SOURCE, DESTINATION, and COUNT. The macro will produce code to copy
any number of bytes from one part of memory to another.

%' DEFINE(MOVE_BYTES(SOURCE,DESTINATION .COUNT)) (
MOV R7.'%COUNT
MOV R1.'%SOURCE
MOV RO.'%DESTINATION
MOVA.@Rl
MOV@RO,A
INCRl
INCRO
DJNZ R7,($-4)
)

To call the above macro, you must use the metacharacter followed by the macro's
name similar to simple macros without parameters. However, a list of the actual
parameters must follow. The actual parameters must be surrounded by parentheses,
and separated from each other by commas, as specified in the macro definition. The
actual parameters must be balanced-text and may optionally contain calls to other
macros. A simple call to the macro defined above might be:

%MOVE_BYTES(8,16.8)

The above macro call produces the following code:

MOVR7.'8
MOV Rl.'8
MOV RO,'16
MOVA.@Rl
MOV@RO,A
INCRl
INCRO
DJNZ R7.($-4)

The code above will copy the contents of register bank 2 to register bank 3. (We
hope the user knows which bank is active when he executes this code.)

LOCAL Symbols List

The DJNZ instruction above uses offset addressing ($-4). If we chose to use a label
for the jump destination, the macro could only be used once, since a second macro
call would cause a conflict in label definitions. We could make the label a parameter
and specify a different ASM51 symbol name each time we call the macro. The best
way is to put the label in a LOCAL list. The LOCAL list construct allows you to use
macro identifiers to specify assembly-time symbols. Each use of a LOCAL symbol
in a macro guarantees that the symbol will be replaced by a unique assembly-time
symbol.

The macro processor increments a counter each time your program calls a macro
that uses the LOCAL construct. The counter is incremented once for each symbol in
the LOCAL list. Symbols in the LOCAL list, when used in the macro body, receive a
two to five digit suffix that is the hexadecimal value of the counter. The first time
you call a macro that uses the LOCAL construct, the suffix is '00' .

MCS-51

Mes-sl Macro Processing Language

The syntax for the LOCAL construct in the DEFINE functions is shown below (This
is the complete syntax for the built-in function DEFINE):

% *DEFINE(macro-name[parameter-listJ) [LOCAL focaf-list] (macro-body)

The local-list is a list of valid macro identifiers separated by spaces. The LOCAL
construct in a macro has no affect on the syntax of a macro call.

The example below shows the MOVE_BYTES macro definition that uses a
LOCAL list:

% *DEFINE(MOVLBYTES(SOURCE, DESTINATION,COUNT)) LOCAL LABEL
(MOV R7,#%COUNT
MOV R1,#%SOURCE
MOV RO,#%DESTINATION

%LABEL: MOV A,@R1
MOV@RO,A
INCR1
INCRO
DJNZ R7, %LABEL
)

The following macro call:

%MOVE_BYTES(67,100,20)

might produce this code (if this is the eleventh call to a macro using a LOCAL list):

" MOV R7,f27
MOV R1,f67
MOV RO,f100

LABELOA: MOV A,@R1
MOV@RO,A
INCR1
INCRO
DJNZ R7,LABELOA

NOTE

Since macro identifiers follow the same rules as ASM51, you can use any
macro identifier in a LOCAL list. However, if you use long identifier names
(31 characters or more), the appended call number will be lost when the
assembler truncates the excess characters.

The Macro Processor's Built-in Functions
The macro processor has several built-in or predefined macro functions. These
built-in functions perform many useful operations that would be difficult or
impossible to produce in a user-defined macro. An important difference between a
user-defined macro and a built-in function is that user-defined macros may be
redefined, while built-in functions can not be redefined.

We have already seen one of these built-in functions, DEFINE. DEFINE creates
user-defined macros. DEFINE does this by adding an entry in the macro processor's
table of macro definitions. Each entry in the table includes the call-pattern for a
macro, and its macro body. Entries for the built-in functions are present when the
macro processor begins operation.

5-7

Macro Processing Language

5-8

Other built-in functions perform numerical and logical expression evaluation, affect
control flow of the macro processor, manipulate character strings, and perform
console 110.

Comment, Escape, Bracket and METACHAR Built-in
Functions

Comment Function

The Macro Processing Language can be very subtle, and the operation of macros
written in a straightforward manner may not be immediately obvious. Therefore, it
is often necessary to comment your macro definitions. Besides, it's just good
programming practice.

The macro processor's comment function has the following syntax:

% 'text'

or

% 'text end-ot-line

The comment function always evaluates to the null string. Two terminating
characters are recognized, the apostrophe and the ·end-oi-Jine (line feed character,
ASCII OAH). The second form of the call allows you to spread macro definitions
over several lines, while avoiding any unwanted end-ai-Jines in the return value. In
either form of the comment function, the text or comment is not evaluated for
macro calls.

The example below shows a commented macro definition:

%*OEFINE(MOVE_BYTES(SOURCE,OESTINATION,COUNT)) LOCAL LABEL
(

MOV R7,#%COUNT %' iteration argument %COUNT'
MOV R1,#%SOURCE %' source address argument %SOURCE
MOV RO,#%OESTINATION %' destination address argument'

%LABEL %' %LABEL is a local symbol that will be appended with a unique number
MOV A,@R1

MOV@RO,A
INCR1
INCRO
OJNZ R7,%LABEL %'This is the same local symbol and

%' receives the same unique 10

Call to above macro:

%MOVE_BYTES(27H ,37H ,5)

Return value from above call:

MOVR7,#5
MOV R1,#27H MOV RO,#37H

LABEL07: MOV A,@R1
MOV@RO,A
INCR1
INCRO
OJNZ R7,LABEL07

MeS-51

MeS-51 Macro Processing Language

Notice that the comments that were terminated with end-of-line removed the end-of­
line character along with the rest of the comment. Because of this, the second line
has two instuctions on it. That line will produce an error when assembled. However,
when the comment was removed from the line containing the label %LABEL, the
colon was raised to the same line making it a legal instruction.

Note that the metacharacter is not recognized as a call to the macro processor when
it appears in the comment function.

Escape Function

Occasionally, it is necessary to prevent the macro processor from processing text.
There are two built-in functions that perform this operation: the escape function
and the bracket function.

The escape function interrupts the processor from its normal scanning of text. The
syntax for this function is shown below:

"Ion text-n-characters-Iong

The metacharacter followed by a single decimal digit designates that the specified
number of characters (maximum is 9) shall not be evaluated. The escape function is
useful for inserting a metacharacter as text, adding a comma as part of an argument,
or placing a single parenthesis in a character string that requires balanced
parentheses.

Several examples of the escape function are shown below:

Before Macro Expansion

; COMPUTE 10%1% OF SUM

%MACCALL(JANUARY 23%1,1980,
MARCH 15%1, 1980,
APRIL 9% 1,1980)

%MACCALL(1%1) ADD INPUTS,
2%1) DIVIDE BY INPUT COUNT,
3%1) GET INPUTS)

Bracket Function

After Macro Expansion

; COMPUTE 10% OF SUM

JANUARY 23,1980
MARCH 15, 1980
APRIL 9, 1980
actual parameters

1) ADD INPUTS
2) DIVIDE BY INPUT COUNT
3) GET INPUTS
actual parameters

The other built-in function that inhibits the macro processor from expanding text is
the bracket function. The syntax of the bracket function is shown below:

% (balanced-text)

The bracket function inhibits all macro processor expansion of the text contained
within the parentheses. However, the escape function, the comment function, and
parameter substitution are still recognized. Since there is no restriction for the length
of the text within the bracket function, it is usually easier to use than the escape
function. However, since balanced text is required and the metacharacter is inter­
preted, often this is not sufficient, and the escape function must be used.

Consider the following example of the bracket function.

%*DEFINE(DW(LlST,LBL)) (
%LBL: DW %LIST
)

5-9

Macro Processing Language

5-10

The macro above will add OW statements to the source file. It uses two parameters:
one for the statement label and one for the OW expression list. Without the bracket
function we would not be able to use more than one expression in the list, since the
first comma would be interpreted as the delimiter separating the macro parameters.
Bracket function permits more than one expression in the LIST argument:

%DW(%(198H, 3DBH, 163BH),PHONE) - PHONE: OW 198H, 3DBH, 163BH

In the example above, the bracket function prevents the character string '198H,
30BH, 163BH' from being evaluated as separate parameters.

METACHAR Function
The built-in function METACHAR allows you to redefine the metacharacter (0/0).
Its syntax is shown below:

%MET ACHAR(balanced-text)

The balanced-text argument may be any number of characters long. However, only
the first character in the string is taken to be the new metacharacter. Extreme cau­
tion should be taken when using MET ACHAR, since it can have catastrophic
effects. Consider the example below:

%METACHAR(&)

In this example, MET ACHAR defines the space character to be the new meta­
character, since it is the first character in the balanced-text string!

Numbers and Expressions in MPL

Many of the built-in functions recognize and evaluate numerical expressions in their
arguments. The macros use the same rules for representing numbers as ASMS1:

• Numbers may be represented in base 2 (B suffix), base 8 (0 or Q suffix), base 10
(0 suffix or no suffix), and base 16 (H suffix).

• Internal representation of numbers is 16 bits (OOH to OFFFFH).

• All ASMSI operators are recognized, except the symbolic forms of the
relational operators (i.e., <, >, =, <>, >=, <=). The operators recognized by
the macro processor and their precedence is shown in the list below:

1. o.
2. HIGH,LOW
3. " I, MOD, SHL, SHR
4. + , - unary and binary forms
S. EO, NE, LE, L T, GE, GT
6. NOT
7. AND
8. OR,XOR

Although assembly-time and macro-time expressions use the same operators, the
macro processor cannot access the assembler's symbol table. The values of labels
and SET and EQU symbols are not known during macro-time expression evalua­
tion. Any attempt to use assembly-time symbols in a macro-time expression
generates an error. However, you can define macro-time symbols with the pre­
defined macro SET.

MeS-51

MeS-51 Macro Processing Language

SET Macro
The SET predefined macro permits you to define macro-time symbols to values.
SET takes two arguments: a valid MPL identifier, and a macro-time numeric
expression.

SET has the following syntax:

%SET(macro-id ,expression)

SET assigns the value of the numeric expression to the identifier, macro-id.
macro-id must follow the same syntax conventions used for macro identifiers.

• The first character must be a letter of the alphabet or a question mark or an
underscore.

• The remaining characters may be digits, letters, question marks, or underscores.

• Only the first 31 characters are recognized as the identifier name. Upper and
lower case letters are not distinguished.

The SET macro call affects the macro-time symbol table only; when it is
encountered in the source file, the macro processor replaces it with the null string.
Symbols defined by SET can be redefined by a second SET call, or defined as a
macro by a DEFINE call.

The following examples show several ways to use SET:

Before Macro Expansion

%SET(COUNT,O)
%SET(OFFSET,16)
MOV R1 ,II%COUNT + %OFFSET
MOV R4,II%COUNT

After Macro Expansion

null string
null string
MOV R1,IIOOH + 10H
MOV R4,IIOOH

The SET symbol may be used in the expression that defines its own value.

%SET(COUNT,%COUNT + %OFFSET)
%SET(OFFSET, %OFFSET • 2)
MOV R2,II%COUNT + %OFFSET
MOV R5,II%COUNT

null string
null string
MOV R2,1I10H + 20H
MOVR5,1I10H

In the example above, macro-time symbols are used rather than assembly-time
symbols because their value is shown wherever they are used. With assembly-time
symbols, you must look in the symbol table for its value.

SET is a predefined macro, not a built-in function; as such it may be redefined, but
we don't advise it.

EV AL Function
The built-in function EV AL accepts an expression as its argument and returns the
expression's value in hexadecimal. The syntax for EV AL is:

% EVAL(expression)

The expression argument must be a legal macro-time expression.

5-11

Macro Processing Language

5-12

The return-value from EV AL follows ASM51 's rules for representing hexadecimal
numbers (it has an 'H' suffix and when the leading digit is 'A', 'B', 'C', '0', 'E', or
'F', it is preceded by 0). EVAL always returns at least 3 characters even when the
argument evaluates to a single digit. The following examples show the return-value
from EVAL:

Before Macro Expansion After Macro Expansion

MOV A.'%EVAL(1 +1); move two to A. MOV A.'02H; move two toA.

COUNT EOU %EVAL(33H + 15H + OFOOH) COUNT EOU OF48H

ADD A.'%EVAL(10H-((13 + 6)·2) + 7) ADD A.'OFFOBH

%SET(NUM1,44)
%SET(NUM2,25H)
ANL A,'%EVAL(%NUM1 LE %NUM2) - ANL A,'OOH

Logical Expressions and String Comparisons in MPL

Several built-in functions return a logical value when they are called. Like relational
operators that compare numbers and return true or false (OFFFFH or OOH), these
built-in functions compare character strings. If the function evaluates to 'TRUE,'
then it returns the character string 'OFFF~H' (this represents a 16-bit value contain­
ing all ones). If the function evaluates to 'FALSE,' then it returns '~OH' (this
represents a 16-bit value containing all zeros).

The built-in functions that return a logical value compare two balanced-text string
arguments and return a logical value based on that comparison. The list of string
comparison functions below shows the syntax and describes the type of comparison
made for each. Both arguments to these functions may contain macro calls (the calls
are expanded before the comparison is made).

%EOS(arg1,arg2)

%NES(arg1,arg2)

%L TS(arg1 ,arg2)

% LES(arg1 ,arg2)

%GTS(arg1,arg2)

%G ES(arg1 ,arg2)

True if both arguments are identical

True if arguments are different in any way

True if first argument has a lower value than second argument

True if first argument has a lower value than second argument or if
both arguments are identical

True if first argument has a higher value than second argument

True if first argument has a higher value than second argument, or
if both arguments are identical

Before these funCtions perform a comparison, both arguments are completely
expanded. Then the ASCII value of the first character in the first string is compared
to the ASCII value of the first character in the second string. If they differ, then the
string with the higher ASCII value is greater. If the first characters are the same.
then the process continues with the second character in each string, and so on. Two
strings of equal length that contain the same characters in the same order are equal.

MeS-51

MCS-Sl Macro Processing Language

The examples below show several calls to these macros:

Before Macro Expansion

%EOS(ABC, ABC)

%L TS(CBA,cba)

%GTS(11H,16D)

%GES(ABCDEFG,ABCDEFG)

After Macro Expansion

OOH the space after the comma is part
false of the second argument

OFFFFH the lower-case characters have a
true higher ASCII value than upper­

case

OOH
false

~OH

false

these macros compare strings not
numerical values ASCII '6' is
greater ASCII '1'

the space at the end of the second
argument makes the second
argument greater than the first

As with any other macro, the arguments to the string comparison macros can be
other macros.

%*DEFINE(DOG) (CAT)
%*DEFINE(MOUSE) (%DOG)
%EOS(%DOG, %MOUSE)

Control Flow Functions

OFFFFH

true

Some built-in functions accept logical expressions in their arguments. Logical
expressions follow the same rules as numeric expressions. The difference is in how
the macro interprets the 16-bit value that the expression represents. Once the expres­
sion has been evaluated to a 16-bit value, MPL uses only the low-order bit to deter­
mine whether the expression is TRUE or FALSE. If the low-order bit is a one (the
16-bit numeric value is odd), the expression is TRUE. If the low-order bit is a zero
(the 16-bit value is even), the expression is FALSE.

Typically, you will use either the relational operators (EQ, NE, LE, L T, GT, or GE)
or the string comparison functions (EQS, NES, LES, L TS, GTS, or GES) to specify
a logical value. Since these operators and functions always evaluate (0 OFFFFH (all
ones) or OOH (all zeros), you needn't worry about the single bit test. But remember,
all numeric expressions are valid, and regardless of the value of the other 15 bits,
only the least significant bit counts.

IF Function
The IF built-in function evaluates a logical expression, and based on that expression,
expands or witholds its text arguments. The syntax for the IF macro is shown below:

• %IF (expression) THEN (balanced-text1) [ELSE (balanced-text2)] FI

IF first evaluates the expression, if the low order bit is one, then balanced-textl is
expanded; if the low order bit is zero and the optional ELSE clause is included in the
call, then balanced-text2 is expanded. If the low order bit is zero and the ELSE
clause is not included, the IF call returns the null string. FI must be included to ter­
minate the call.

5-13

Macro Processing Language

5-14

IF calls can be nested; when they are, the ELSE clause refers to the most recent IF
call that is still open (not terminated by FI). FI terminates the most recent IF call
that is still open.

Several examples of IF calls are shown below:

This is the simple form of the IF call with an ELSE clause.

%IF (%EOS(ADD,%OPERATION)) THEN (ADD A,R1) ELSE (SUBB A,R1) FI

This is an example of several nested IF calls.

open first IF
open second IF

%IF (%EOS(ADD,%OPERATION)) THEN (ADD A,R1
)ELSE (%IF (%EOS(SUBTRACT,%OPERATlON)) THEN (SUBB A,R1

)ELSE(MOV B,R1
open third IF %IF (%EOS(MULTIPLY,%OPERATION)) THEN (MUL AB

)ELSE (DIV AB
close third IF
close second IF
close first IF

WHILE Function

)FI

) FI
)FI

The IF macro is useful for implementing one kind of conditional assembly­
including or excluding lines of code in the source file. However, in many cases this is
not enough. Often you may wish to perform macro operations until a certain condi­
tion is met. The built-in function WHILE provides this facility.

The syntax of the WHILE macro is shown below:

%WHILE (expression) (balanced-text)

WHILE first evaluates the expression. If the least significant bit is one, then the
balanced-text is expanded; otherwise, it is not. Once the balanced-text has been
expanded, the logical argument is retested and if the least significant bit is still one,
then the balanced-text is again expanded. This continues until the logical argument
proves false (the least significant bit is 0).

Since the macro continues processing until expression is false, the balanced-text
should modify the expression, or else WHILE may never terminate.

A call to the built-in function EXIT will always terminate a WHILE macro. EXIT is
described below.

The following examples show two common uses of the WHILE macro:

%SET(COUNTER,5)
%WHILE(%COUNTER GT 0)
(RRA
%SET(COUNTER, %COUNTER -1)

)

%WHILE(%LOC_COUNTER L T OFFFFH) (NOP
%SET(LOC_COUNTER, %LOC_COUNTER + 1))

These examples use the SET macro and a macro-time symbol to count the iterations
of the WHILE macro.

MeS-51

MeS-51 Macro Processing Language

REPEAT Function
MPL offers another built-in function that will perform the counting automatically.
The built-in function REPEAT expands its balanced-text a specified number of
times. The general form of the call to REPEAT is shown below:

%REPEAT (expression) (balanced-text)

Unlike the IF and WHILE macros, REPEAT uses the expression for a numerical
value that specifies the number of times the balanced-text will be expanded. The
expression is evaluated once when the macro is first called, then the specified
number of iterations is performed.

The examples below will perform the same text insertion as the WHILE examples
above.

%REPEAT (5) (RR A
)

%REPEAT (OFFFFH - %LOC_COUNTER) (NOP
)

EXIT Function

The EXIT built-in function terminates expansion of the most recently called
REPEAT, WHILE or user-defined macro. It is most commonly used to avoid
infinite loops (e.g., a WHILE expression that never becomes false, or a recursive
user-defined macro that never terminates). It allows several exit points in the same
macro.

The syntax for EXIT is:

%EXIT

Several examples of how you might use the EXIT macro follow:

This use of EXIT terminates a recursive macro when an odd number of bytes are
being added.

%*DEFINE (MEM_ADD_MEM (SOURCE,DESTIN,BYTES))
(

MOVA,%SOURCE
ADDC A, %DESTIN
MOV %DESTIN,A
IF (%BYTES EQ 1) THEN (%EX1T) FI
MOV A,%SOURCE + 1
ADDC A, %DESTIN + 1
MOV %DESTIN + 1, A
IF (%BYTES GT 2) THEN (
%MEM_ADD_MEM(%SOURCE + 2, %DESTIN + 2, %BYTES -2» FI

)

This EXIT is a simple jump out of a recursive loop.

%*DEFINE(UNTIL (CONDITION, BODY»
(%BODY

%IF (%CONDITION) THEN (%EXIT)
ELSE (%UNTIL(%CONDITION,%BODY» FI

5-15

Macro Processing Language

5-16

String Manipulation Built-in Functions

The purpose of the Macro Processor is to manipulate character strings. Therefore,
there are several built-in functions that perform common character string manipula­
tion functions.

LEN Function

The built-in function LEN takes a character string argument and returns the length
of the character string in hexadecimal (the same format as EV AL). The character
string argument to LEN is limited to 256 characters.

The syntax of the LEN macro call is shown below:

%LEN(balanced-text)

Several examples of calls to LEN and the hexadecimal numbers returned are shown
below:

Before Macro Expansion After Macro Expansion

%LEN(ABCDEFGHIJKLMNOPQRSTUVWXYZ)

%LEN(A,B,C)

%LEN()

%*DEFINE(CHEESE)(MOUSE)
%*DEFINE(DOG)(CAT)
%LEN(%DOG %CHEESE)

A the space after G is counted
as part of the length

SUBSTR Function

1AH

OSH commas are counted

OOH

... 09H

The built-in function SUBSTR returns a substring of its text argument. The macro
takes three arguments: a character string to be divided and two numeric arguments.
The syntax of the macro call to SUBSTR is shown below:

%SU BSTR(balanced-text ,expression 1 ,expression2)

balanced-text is described above. It may contain macro calls.

expression! specifies the starting character of the substring.

expression2 specifies the number of characters to be included in the substring.

If expression! is zero or greater than the length of the argument string, then
SUBSTR returns the null string.

If expression2 is zero, then SUBSTR returns the null string. If expression2 is greater
than the remaining length of the string, then all characters from the start character
to the end of the string are included.

MeS-51

MCS-Sl

~

Macro Processing Language

The examples below show several calls to SUBSTR and the value returned:

Before Macro Expansion After Macro Expansion

%SUBSTR(ABCDEFG,8,1) null

%SUBSTR(ABCDEFG,3,0) null

%SUBSTR(ABCDEFG,5,1) E

%SU BSTR(ABCDEFG ,5,100) EFG

%SUBSTR(123(56)890,4,4) (56)

MATCH Function

The built-in function MATCH searches a character string for a delimiter character,
and assigns the substrings on either side of the delimiter to the identifiers. The syn­
tax of the MATCH call is shown below:

%MATCH(identifier1 delimiter identifier2) (balanced-text)

identifier 1 and identifier2 are valid MPL identifiers.

delimiter is the first character to follow identifierl . Typically, a space or comma is
used, but any character that is not a macro identifier character may be used. You
can find a more complete description of delimiters in the Advanced Concepts section
at the end of the chapter.

balanced-text is as described earlier in the chapter. It may contain macro calls.

MATCH searches the balanced-text string for the specified delimiter. When the
delimiter character is found, then all characters to the left of it are assigned to iden­
tifier 1 and all characters to the right are assigned to identifier2. If the delimiter is
not found, the entire balanced-text string is assigned to identifierl and the null
string is assigned to identifier2 .

The following example shows a typical use of the MATCH macro.

%MATCH(NEXT,LlST) (10H, 20H, 30H)
%WHILE(%LEN(%NEXT) NE 0) (

MOVA,%NEXT
ADDA,1#22H
MOV%NEXT,A
%MATCH(NEXT , LlST)(% LIST)

Produces the following code:

first

}
MOVA,10H

iteration ADDA,1#22H
of WHILE MOV10H,A

second } MOVA, 20H
iteration ADDA,1#22H
of WHILE MOV 20H,A

third

}
MOVA,30H

iteration ADDA,1#22H
of WHILE MOV 30H,A

5-17

Macro Processing Language

5-18

Console 1/0 Built-in Functions

There are two built-in functions that perform console I/O when expanded: IN and
OUT. Their names describe the function each performs. IN outputs a greater than
character '>' as a prompt to the console, and returns the next line typed at the con­
sole. OUT outputs a string to the console; .a call to OUT is replaced by the null
string. The syntax of both macros is shown below: '

%IN

%OUT(balanced-text)

Several examples of how these macros can be used are shown below:

%OUT(ENTER NUMBER OF PROCESSORS IN SYSTEM?)
%SET(PROC_COUNT, %IN)
%OUT(ENTER THIS PROCESSOR'S ADDRESS?)

ADDRESS EOU %IN
%OUT(ENTER BAUD RATE?)
%SET(BAUD, %IN)

The following lines would be displayed at the console:

ENTER NUMBER OF PROCESSORS IN SYSTEM?>userresponse
ENTER THIS PROCESSOR'S ADDRESS?>user response
ENTER BAUD RATE?>userresponse

Advanced M PL Concepts
For most programming problems, the Macro Processing Language syntax described
above is sufficient. However, in some cases a more complete description of the
macro processor's function is necessary.

However, it is impossible to describe all of the subtleties of the macro processor in a
single chapter. With the rules described in this section, you should be able to discern,
with a few simple tests, the answer to any specific question about MPL. ,

Macro Delimiters

When we discussed the syntax for defining macros, we showed one type of delimiter.
The parameter-list was surrounded by parentheses, and parameters were separated
by commas. Because we used these delimiters to define a macro, a call to the macro
required that these same delimiters be used. When we discussed the MATCH func­
tion, we mentioned that a space could be used as a delimiter. In fact the macro' pro­
cessor permits almost any character or group of characters to be used as a delimiter.

Regardless of the type of delimiter used to define a macro, once it has been defined,
only the delimiters used in the definition can be used in the macro call. Macros
defined with parentheses and commas require parentheses and commas in the macro
call. Macros defined with spaces (or any other delimiter), require that delimiter
when called.

Macro delimiters can be divided into three classes: implied blank delimiters. iden­
tifier (or id) delimiters. and literal delimiters.

MeS-51

MCS-Sl Macro Processing Language

Implied Blank Delimiters

Implied blank delimiters are the easiest to use and contribute the most readability
and flexibility to macro calls and definitions. An implied blank delimiter is one or
more spaces, tabs or new lines (a carriage-return/linefeed pair) in any order. To
define a macro that uses the implied blank delimiter, simply place one or more
spaces, tabs, or new lines surrounding the parameter list and separating the formal
parameters.

When you call the macro defined with the implied blank delimiter, each delimiter
will match a series of spaces, tabs, or new lines. Each parameter in the call begins
with the first non-blank character, and ends when a blank character is found.

An example of a macro defined using implied blank delimiters is:

%*DEFINE(SENTENCE SUBJECT VERB OBJECT) (THE %SUBJECT %VERB %OBJECT.)

All of the following calls are valid for the above definition:

Before Macro Expansion

%SENTENCE TIME IS RIPE
%SENTENCE CATS

EAT
FISH

%SENTENCE
PEOPLE

After Macro Expansion

- THE TIME IS RIPE

- THECATSEATFISH

LIKE FREEDOM - THE PEOPLE LIKE FREEDOM

Identifier Delimiters

Identifier (ld) delimiters are legal macro identifiers designated as delimiters. To
define a macro that uses an id delimiter in its call pattern, you must prefix the
delimiter with the commercial at symbol (@). You must separate the id delimiter
from the macro identifiers (formal parameters or macro name) by a blank character.

When calling a macro defined with id delimiters, an implied blank delimiter is
required to precede the id delimiter, but"none is required to follow the id delimiter.

An example of a macro defined with id delimiters is:

%*DEFINE(ADD P1 @TOP2@ANDP3)(
MOVA~%P1
ADDA,%P2
MOV%P2,A
MOVA,%P1
ADDA,%P3
MOV%P3,A

5-19

Macro Processing Language

5-20

The following call (note that no blank character follows the id delimiters TO and
AND):

%ADD ATOM TOMOLECULE ANDCRYSTAL

returns this code when expanded:

MOVA,ATOM
ADD A,MOLECULE
MOV MOLECULE,A
MOVA,ATOM
ADD A,CRYSTAL
MOV CRYST AL,A

Literal Delimiters

The delimiters used when we documented user-defined macros (parentheses and
commas) were literal delimiters. A literal delimiter can be any character except the
metacharacter.

When you define a macro using a literal delimiter, you must use exactly that
delimiter when you call the macro. If you do not include the specified delimiter
character as it appears in the definition, it will generate a macro error.

When defining a macro, you must literalize the delimiter string, if the delimiter you
wish to use meets any of the following conditions:

,. uses more than one character,

• uses a macro identifier character (A-Z, 0-9, _, or 7),

• uses a commercial at (@),

• uses a space, tab, carriage-return, or linefeed,

You can use the escape function (%n) or the bracket function (%(» to literalize the
delimiter string. Several examples of definitions and calls using a variety of literal
delimiters are shown below:

This is the simple form shown earlier:

Before Macro Expansion

%*DEFINE(MAC(A,B» (%A %B)
%MAC(4,5)

After Macro Expansion

- null string
- 4 5

In the following example brackets are used instead of parentheses. The commercial
at symbol separates parameters:

% *DEFINE(MOV[A %(@)B]) (MOV %A, %B)
%MOV[PO@Pt]

..... null string

..... MOVPO,P1

In the next two examples, delimiters that could be id delimiters have been defined as
literal delimiter (the differences are noted):

%*DEFINE(ADD (A%(AND)B»(ADD %A,%B)
%ADD#27H)

null string
ADDA,127H

Spaces around AND are considered as part of the argument string.

MeS-51

MCS-Sl Macro Processing Language

To illustrate the differences between between id delimiters and literal delimiters,
consider the following macro definition and call. (A similar macro definition is dis­
cussed with id delimiters):

%*DEFINE(ADD P1(TO)P2 %AND) P3) (
MOVA,%P1
ADD A,%P2
MOV%P2,A
MOVA,%P1
ADD A,%P3
MOV%P3,A

The following call:

%ADD ATOM TOMOLECULE ANDCRYSTAL

returns this code when expanded (the TO in ATOM is recognized as the delimiter):

MOVA,A
ADD A,M TOMOLECULE
MOV M TOMOLECULE,A
MOVA,A
ADD A,CRYSTAL
MOV CRYSTAL,A

Literal vs. Normal Mode

In normal mode, the macro processor scans text looking for the metacharacter.
When it finds one, it begins expanding the macro call. Parameters are substituted
and macro calls are expanded. This is the usual operation of the macro processor,
but sometimes it is necessary to modify this mode of operation. The most common
use of the literal mode is to prevent macro expansion. The literal character in
DEFINE prevents the expansion of macros in the macro-body until you call the
macro.

When you place the literal character in a DEFINE call, the macro processor shifts to
literal mode while expanding the call. The effect is similar to surrounding the entire
call with the bracket function. Parameters to the literalized call are expanded, the
escape, comment, and bracket functions are also expanded, but no further process­
ing is performed. If there are any calls to other macros, they are not expanded.

If there are no parameters in the macro being defined, the DEFINE built-in function
can be called without the literal character. If the macro uses parameters, the macro
processor will attempt to evaluate the formal parameters in the macro-body as
parameterless macro calls.

The following example illustrates the difference between defining a macro in literal
mode and normal mode:

%SET(TOM ,1)
%*DEFINE(AB) (%EVAL(% TOM))
%DEFINE(CD) (%EVAL(% TOM))

5-21

Macro Processing Language

5-22

When AB and CD are defined, TOM is equal to 1. The macro body of AB has not
been evaluated due to the literal character, but the macro body of CD has been com­
pletely evaluated, since the literal character is not used in the definition. Changing
the value of TOM has no effect on CD, but it changes the return value of AB, as
illustrated below:

Before Macro Expansion

%SET(TOM,2)
%AB
%CD

After Macro Expansion

02H
- 01H

The macros themselves can be called with the literal character. The return value
then is the unexpanded body:

%*CD
%*AB

- 01H
%EVAL(%TOM)

The literalized calls to AB and CD show that CD evaluates to 01H, while AB con­
tains a macro call to EV AL with 070 TOM as its parameter.

Algorithm for Evaluating Macro Calls

The Algorithm the macro processor uses for evaluating the source file can be seen in
6 steps:

1. Scan source until metacharacter is found.

2. Isolate call pattern. See note below.

3. If macro has parameters, expand each parameter from left to right (initiate step
one on actual parameter), before expanding next parameter.

4. Substitute actual parameters for formal parameters in macro body.

S. If literal character is not used, initiate step one on macro body.

6. Insert result into output stream.

NOTE

When isolating the call pattern, the macro processor is actually scann­
ing input for the specified delimiter. All text found between delimiters
is considered the actual parameter. For this reason Id delimiters need
not be terminated by spaces in a call, and the 'TO' in 'ATOM' satisfied
the literal delimiter, when the 'M TOMOLECULE 'became the second
parameter.

The terms 'input stream' and 'output stream' are used, because the return value of
one macro may be a parameter to another. On the first iteration, the input stream is
the source file. On the final iteration, the output stream is the temporary workfile
that passes to the assembler.

The examples below illustrate the macro processor's evaluation algorithm:

%SET(TOM,3)
% *DEFINE(STEVE)(%SET(TOM;% TOM-1) % TOM)
%*DEFINE(ADAM(A,B» (
DB %A, %B, %A, %B, %A, %B
)

Mes-sl

Mes-sl Macro Processing Language

Here is a call ADAM in the normal mode with TOM as the first actual parameter
and STEVE as the second actual parameter. The first parameter is completely
expanded before the second parameter is expanded. After the call to ADAM has
been completely expanded, TOM will have the value 02H.

Before Macro Expansion After Macro Expansion

%ADAM(% TOM, %STEVE) - DB 03H, 02H, 03H, 02H, 03H, 02H

Now reverse the order of the two actual parameters. In this call to ADAM, STEVE
is expanded first (and TOM is decremented) before the secolld parameter is
evaluated. Both parameters have the same value.

%SET(TOM,3)
%ADAM(%STEVE, % TOM) - DB 02H, 02H, 02H, 02H, 02H, 02H

Now we will literalize the call to STEVE when it appears in the first actual
parameter. This prevents STEVE from being expanded until it is inserted in the
macro body, then it is expanded for each replacement of the formal parameters.
Tom is evaluated before the substitution in the macro body.

%SET(TOM,3)
%ADAM(% ·STEVE, % TOM) - DB 02H, 03H, 01H, 03H, OOH, 03H

5·23

CHAPTER 6
ASSEMBLER OPERATION

AND CONTROLS

This chapter describes how to invoke the MCS-Sl Macro Assembler from your
Intellec System running under the ISIS operating system. The assembler controls are
also fully described.

How to Invoke the MeS-51 Macro Assembler

The command to invoke the assembler is shown below:

[:Fn:]ASM51 [:Fn:]sourcefile[.extension] [controls]

You must specify the filename of the assembler ([:Fn:]ASMSl) and the filename of
your source code ([:Fn :]sourcefile[.extension]. The controls are optional.

ASMSI normally produces two output files. One contains a formatted listing of
your source code. Unless you specify a particular filename with the PRINT control,
it will have the same name as your source file, but with the extension 'LST'. The
format for the listing file and how to change that format will be described in Chapter
7. The other file produced by the assembler is the object file. Unless you specify a
particular filename with the OBJECT control, it will also have the same name as
your source file, but its extension will be 'OBJ'.

For example note the assembler invocation below.

-ASM51 PROG.SRC

If there were no controls in PROG.SRC that changed the default output files,
ASMSI would produce two files. The listing file will be :FO:PROG.LST, and the
object file will be :FO:PROG.OBJ.

In addition to the output files, ASMSI uses intermediate files named
ASMSlx.TMP. They will be deleted before the assembler completes execution.
Normally these files will be created on the same drive as your source program;
however, you can specify the drives to be used with the WORKFILES control.

Any control (except INCLUDE) can be used in the invocation line.

You can continue the invocation line on one or more additional lines by typing an
ampersand (&) before you type a carriage return. ASMSI prompts for the remainder
of the invocation line by issuing a double asterisk followed by a blank (**). Since
everything following an ampersand on a line is echoed, but ignored, you can com­
ment the invocation line; these comments are echoed in the listing heading. (See
Chapter 7 for an example.) Note the example below:

-ASM51 PROG.SRC DATE(9-30-B1) & Comment
•• TITLE(COMPLETE PROJECT REV. 3.0) & Comment
•• GEN

Errors detected in the invocation line are considered fatal and the assembler aborts
without processing the source program.

6-1

Assembler Operation and Controls

6-2

Assembler Controls
Assemble controls may be entered in the invocation line as described above or on a
control line in your source code. The general format for control lines is shown
below:

S Control List [; Comment]

The dollar sign ($) must be the first character on the line. The control list is zero or
more controls separated by one or more spaces or tabs. The comment is optional.

ASM51 has two classes of controls: primary and general. The primary controls are
set in the invocation line or the primary control lines and remain in effect
throughout the assembly. For this reason, primary controls may only be used in the
invocation line or in a control line at the beginning of the program. Only other
control lines (that do not contain the INCLUDE control) may precede a line con­
taining a primary control. The INCLUDE control terminates processing of primary
controls.

If a Primary Control is specified in the invocation line and in the primary control
lines, the first time counts. This enables the programmer to override primary con­
trols via the invocation line.

The general controls are used to control the immediate action of the assembler.
Typically their status is set and modified during an assembly. Control lines contain­
ing only general controls may be placed anywhere in your source code.

Table 6-1 lists all of the controls, their abbreviations, their default values, and a
'brief description of each.

Table 6-1. Assembler Controls

Name
Prlmaryl

Default Abbrev. Meaning General

DATE(date) P DATE() DA Places string in header (max
9 characters)

DEBUG P NODEBUG DB Outputs debug symbol
Information to object file

NODE BUG P NODB Symbol information not
placed in object file

EJECT G Not Applicable EJ Continue listing on next
page

ERRORPRINT[(FILE)] P NOERRORPRINT EP Designates a file to receive
error messages in addition
to the listing file defaults to
:co:

NOERRORPRINT P NOEP Designates that error mes-
sages will be printed in
listing file only

GEN G GENONLY GE Generates a full listing of the
macro expansion pr~ess
including macro calls In the
listing file

GENONLY G GO List only the fully expanded
source as if all lines gen-
erated by a macro call were
already In source file

MCS-Sl Assembler Operation and Controls

Table 6-1. Assembler Controls (Cont'd.)

Name Primaryl Default Meaning
General Abbrev.

NOGEN G GENONLY NOGE List only the original source
text in listing file

INCLUDE(FILE) G Not Applicable IC DeSignates a file to be
included as part of the
program

LIST G LIST LI Print subsequent lines of
source in listing file

NOLIST G NOLI Do not print subsequent
lines of source in listing file

M ACRO[(mempercent)] P MACRO(50) MR Evaluate and expand all
macro calls. Allocate
percentage of free memory
for macro processing

NOMACRO P NOMR Do not evaluate macro calls

OBJECT[(FILE)] P OBJECT(source .OBJ) OJ Designate file to receive
object code

NOOBJECT P NOOJ DeSignates that no object
file will be created

PAGING P PAGING PI Designates that listing will
be broken into pages and
each will have a header

NOPAGING P NOPI DeSignates that listing will
contain no page breaks

PAGELENGTH(n) P PAGELENGTH(60) Pl Sets maximum number of
lines in each page of listing
file (maximum = 65,535)
(minimum = 10)

PAGEWIDTH(n) P PAGEWIDTH(120) PW Sets maximum number of
characters in each line of
listing file (maximum = 132;
minimum = 80)

PRINT[(FILE)] P PRINT(source. LST) PR DeSignates file to receive
source listing

NOPRINT P NOPA DeSignates that no listing
file will be created

SAVE G Not Applicable SA Stores current control set-
ting for LIST and GEN

RESTORE G RS Restores control setting
from SAVE stack

REGISTERBANK(rb, ...) P REGISTERBANK(O) RB Indicates one or more banks
rb = 0,1, 2, 3 used in program module

NOREGISTERBANK P NORB Indicates that no banks are
used.

SYMBOLS P SYMBOLS SB Creates a formatted table of
all symbols used in program

NOSYMBOLS P NOSB No symbol table created

TITLE(string) G TITLE() TT Places a string in all sub-
sequent page headers
(maximum 60 characters)

WORKFILES(:Fn:[,:Fm:]) P same drive as WF DeSignates alternate drives
source file for temporary workfiles

XREF P NOXREF XR Creates a cross reference
listing of all symbols used in
program

NOXREF P NOXR No cross reference list
created

6-3

Assembler Operation and Controls

6-4

Control Definitions

Control Switch Name: DATE

Abbreviation: DA

Arguments: (string) (Nine characters maximum)

Control Class: Primary

Default:

Definition:

Example:

(Spaces inserted)

The assembler takes the character string specified as the argument
and inserts it in the header. I f you specify less than 9 characters,
then it will be padded with blanks. If more than 9 characters are
specified, then the character string will be truncated to the first
nine characters. DATE is overridden by NOPRINT.

NOTE

Any parentheses in the DATE string must be balanced.

$TITLE(PROJECT S.W.B. REV. 27)

(Header will/ook like this)

DATE(S-1S-S1)

MCS-S1 MACRO ASSEMBLER PROJECT S.W.B. REV. 27 8-18-81 PAGE 1

Control Switch Name: DEBUG/NODEBUG

Abbreviation: DB/NODB

Arguments: None

Control Class: Primary

Default:

Definition:

Example:

NODE BUG

Indicates whether debug symbol information shall be output to
object file. If DEBUG is in effect the debug information will be
output. This control must be used if you wish to.run the program
with an ICE-51.

DEBUG is overridden by NOOBJECT.

$DEBUG

MCS-Sl

MCS-51 Assembler Operation and Controls

Control Switch Name: EJECT

Abbreviation: EJ

Arguments: None

Control Class: General

Default:

Definition:

Example:

(New page started when PA GEL ENG TH reached)

Inserts formfeed into listing file, after the control line containing
the EJECT, and generates a header at top of the next page. The
control is ignored if NO PAGING , NOPRINT, or NOLIST is in
effect.

$EJECT

Control Switch Name: ERROR PRINT INOERRORPRINT

Abbreviation: EP/NOEP

Arguments: (Filename) (Indicates file to receive error messages-argument
optional.)

Control Class: Primary

Default:

Definition:

Example:

NOERRORPRINT

When ERRORPRINT is in effect, indicates that all erroneous
lines of source and the corresponding error message shall be out­
put to the specified file. This will not inhibit errors from being
placed in listing file. If no argument is specified to
ERRORPRINT, then erroneous lines and error messages will be
displayed at the console.

$ERRORPRINT

6-5

Assembler Operation and Controls

6-6

Control Switch Name: GEN/GENONLY/NOGEN

Abbreviation: GE/GO/NOGE

Arguments: None

Control Class: General

Default:

Definition:

Example:

GENONLY

NOGEN indicates that only the contents of the source file shall be
output to the listing file with macro call expansion not shown.
Expansion will take place, but source lines generated will not be
displayed in listing file, only the macro call.

GENONL Y indicates that only the fully expanded macro calls will
appear in the listing. The listing file appears as if the expanded
text was originally in the source file with no macro calls. The
macro calls will not be displayed, but the source lines generated by
the calls will be in the listing file.

GEN indicates that each macro call shall be expanded showing
nesting of macro calls. The macro call and the source lines
generated by the macro call will be displayed in the listing file.

These controls are overridden by NOPRINT and NOLIST. (See
Chapter 7 for examples of a macro calls listed with GEN,
GENONLY and NOGEN in effect.)

$NOGEN

Control Switch Name: INCLUDE

Abbreviation: IC

Arguments: (Filename) (Identifies file to be included into program)

Control Class: General

Default:

Definition:

Example:

Not applicable.

Inserts the contents of the file specified in the argument into the
program immediately following the control line. INCLUDE files
may be nested.

The INCLUDE control may not appear in the invocation line,
and it terminates processing of primary controls in the source.

$INCLUDE(:F1 :IOPACK.SRC)

MCS-51

MCS-Sl Assembler Operation and Controls

Control Switch Name: LIST INOLIST

Abbreviation: Ll/NOLI

Arguments: None

Control Class: General

Default:

Definition:

Example:

LIST

Indicates whether subsequent lines of source text shall be
displayed in listing file. A LIST control following a NOLIST will
not be displayed, but listing will continue with the next sequential
line. NOPRINT overrides LIST.

NOTE

Lines causing errors will be listed when NOLIST is in
effect.

$NOLIST

C~ntrol Switch Name: MACRO I NOMACRO

Abbreviation: MR/NOMR

Arguments: (mempercent) (Optional. Indicates the percentage of the free
memory to be used for macro processing.)

Control Class: Primary

Default:

Definition:

Example:

MACRO(50)

Indicates whether macro calls shall be expanded. If NOMACRO
is specified all macro calls will not be processed as macros. The
NOMACRO control will free additional symbol table space for
user-defined symbols.

$NOMACRO
$MACRO(30)

6-7

Assembler Operation and Controls

6-8

Control Switch Name: OBJECT/NOOBJECT

Abbreviation: OJ I NOOJ

Arguments: (Filename) (Indicates file to receive object code-argument
optional.)

Control Class: Primary

Default:

Definition:

Example:

OBJECT(sourcefile.OBJ)

Indicates whether object code shall be generated, and if so, the
file that will receive it. If you do not specify the argument, the
object file will be sourcefile.OBJ.

$OBJECT(:F1 :FINAL.REV)

Control Switch Name: PAGING/NOPAGING

Abbreviation: PI/NOPI

Arguments: None

Control Class: Primary

Default:

Definition:

Example:

PAGING

Indicates whether page breaks shall be included in listing file. If
NOPAGING, then there will be no page breaks in the file, and
lines will appear listed consecutively. A single header will be
included at the top of the file. EJECT and PAGELENGTH
controls will be ignored.

If PAGING, a form feed and a page header will be inserted into
the listing file whenever the number of lines since the last page
break equals the PAGELENGTH value, or an EJECT control is
encountered. The header includes the assembler designation, the
name of the source file, the TITLE and DATE strings (if
specified), and the page number.

$ NOPAGING

MCS-51

MCS-51 Assembler Operation and Controls

Control Switch Name: PAGELENGTH

Abbreviation: PL

Arguments: (n) (Decimal number greater than 9.)

Control Class: Primary

Default:

Definition:

Example:

PAGELENGTH(60)

Indicates the maximum number of printed lines on each page of
the listing file. This number includes the page heading. The
minimum value for PAGELENGTH is 10. Values less than 10 will
be treated as 10. The maximum value permitted in the argument is
65,535.

$ PAGELENGTH(132)

Control Switch Name: PAGEWIDTH

Abbreviation: PW

Arguments: (n) (Number indicates maximum characters per line.)

Control Class: Primary

Default:

Definition:

Example:

PAGEWIDTH(120)

Indicates the maximum number of characters printed on a line in
the listing file. The range of values permitted is from 80 to 132;
values less than 80 are set to 80; values greater than 132 are set to
132.

Listing lines that exceed the P AGEWIDTH value will be wrapped
around on the next lines in the listing, starting at column 80.

$ PAGEWIDTH(80)

Assembler Operation and Controls

6-10

Control Switch Name: PRINT / NOPRINT

Abbreviation: PR/NOPR

Arguments: (Filename) (Indicates file to receive assembler listing-
argument optional.)

Control Class: Primary

. Default:

Definition:

Example:

PRINT(sourcefile. LST)

Indicates whether formatted source listing shall be generated,
and, if so, what file will receive it. If you do not specify the argu­
ment, the listing file will be sourcefile.LST. NOPRINT indicates
no listing file will be made.

-ASM51 PROG.SRC PRINT(:LP:) & print listing at line printer
**

Control Switch Name: SAVE/RESTORE

'Abbreviation: SA/RS

Arguments: None

Control Class: General

Default:

Definition:

Example:

Not applicable

Permits you to save and restore the state of the LIST and GEN
controls. SA VE stores the setting of these controls on the SAVE
stack, which is internal to the assembler. RESTORE restores the
setting of the controls to the values most recently saved, but not
yet restored. SAVEs can be nested to a depth of 8.

NOTE
SA VE uses the values that were in effect on the line prior
to the SAVE control line. Therefore, if the LIST control
is in effect and the assembler encounters a control line
containing NOLIST and SAVE (in any order on the line),
the status LIST is saved on the stack. (The lines following
the control line are not listed until a LIST or RESTORE
is encountered.)

$save

MCS-Sl

MCS-Sl Assembler Operation and Controls

Control Switch Name: REGISTERBANK / NOREGISTERBANK

Abbreviation: RB / NORB

Arguments: (rb, ...)
rb=O,1,2,or3

(One or more of the permissabJe bank
numbers separated by commas.)

Control Class: Primary

Default:

Definition:

Example:

REGISTERBANK(O)

Indicates the register banks used in the program module. This
information is transferred to the RLS I and used for allocation of
register bank memory. NORB specifies that no memory is initially
reserved for register banks. Note that the USING directive also
reserves register banks.

REGISTERBANK(O,1)

Control Switch Name: SYMBOLS/NOSYMBOLS

Abbreviation: SB/NOSB

Argument: None

Control Class: Primary

Default:

Definition:

Example:

SYMBOLS

Indicates whether a symbol table shall be listed. NOSYMBOLS
indicates no symbol table. SYMBOLS causes the table to be
listed. NOSYMBOLS is overridden by XREF. SYMBOLS is over­
ridden by NOPRINT. (See Chapter 7 for an example symbol table
listing.)

$NOSYMBOLS

6-11

Assembler Operation and Controls

6-12

Control Switch Name: TITLE

Abbreviation: IT

Arguments: (string) (Up to 60 characters.)

Control Class: General

Default:

Definition:

Example:

(Spaces Inserted)

Permits you to include a title for the program. It will be printed in
the header of every subsequent page. Titles longer than 60
characters will be truncated to the first 60 characters. (See
Chapter 7 for an example of the title in the header.)

NOTE
Any parentheses in the TITLE string must be balanced.

$TITLE(Final Production Run)

Control Switch Name: WORKFILES

Abbreviation: WF

Arguments: (:Fm:[,:Fn:]) (Drives to use for temporary work files-second
argument optional.)

Control Class: Primary

Default:

Definition:

Example:

Drive that contains source file.

Indicates drives to be used to contain temporary workfiles. If two
drives are specified, the work files are split between them roughly
equally. If only one drive is specified, then all work files will be
placed on that drive. All work files are deleted before normal
termination.

-ASM51 :F1:BIGPR.SRC WORKFILES(:F4:,:F5:)

MCS-Sl

MCS-Sl Assembler Operation and Controls

Control Switch Name: XREF/NOXREF

Abbreviation: XR I NOXR

Arguments: None

Control Class: Primary

Default:

Definition:

Example:

NOXREF

Indicates that a cross reference table of the use of symbols shall be
added to the symbol table. Each cross reference table will list the
line numbers of the lines that define the value of a symbol, and all
of the lines that reference the symbol. A hash mark (#) follows the
numbers of the lines that define the symbols value. XREF is over­
ridden by NOPRINT. (See Chapter 7 for an example of a symbol
table listing with XREF.)

$XREF

6-\3

CHAPTER 7
ASSEMBLER OUTPUT: ERROR

MESSAGES AND LISTING FILE FORMAT

This chapter discusses the meaning of error messages issued by ASM51. The format of the
listing file is also described.

Error Messages and Recovery
All error messages issued by ASM51 are either displayed on the console or listed in the
listing file. Fatal errors, such as invocation line errors, are listed at the console and cause
ASM51 to abnormally terminate. Errors detected in the source file do not cause the
assembler to abort and usually allow at least the listing to continue.

Console Error Messages
Upon detecting certain catastrophic conditions with the system hardware, or in the invo­
cation line or one of the primary control lines, ASM51 will print an informative message
at the console and abort processing.

These errors fall into three broad classes: I/O errors, internal errors and invocation line
errors.

A list of these fatal control error messages and a description of the cause of each is shown
below.

1/0 Errors
I/O error messages print with the following format:

ASM51 110 ERROR­
FILE: file type
NAME: file name
ERROR: ISIS error number and brief description

ASM51 TERMINATED

The list of possible file types is:

SOURCE
PRINT
OBJECT
INCLUDE
ERRORPRINT
ASM51 WORKFILE
ASM51 OVERLAY number

The list of possible error numbers is:

4-ILLEGAL PATH NAME
5-ILLEGAL OR UNRECOGNIZED DEVICE IN PATH
9-DIRECTORY FULL

12-ATTEMPTTO OPEN ALREADY OPEN FILE
13-NO SUCH FILE
14-WRITE PROTECTED FILE
22-0UTPUT MODE IMPOSSIBLE FOR SPECIFIED FILE
23-NO FILENAME SPECIFIED FOR A DISK FILE
2S-NULL FILE EXTENSION

7-1

Assembler Output: Error Messages and Listing File Format

7-2

ASM51 Internal Errors

The ASM5l internal errors indicate that an internal consistency check failed. A
likely cause is that one of the files containing the assembler's overlays was corrupted
or that a hardware failure occurred. If the problem pers(sts, contact Intel Corpora­
tion via the Software Problem report.

These messages print in the following format:

•••• ASM51 INTERNAL ERROR: message

Be sure to include the exact text of the message on the problem report.

Invocation Line Errors
The invocation line error messages print in the following format:

ASM51 FATAL ERROR­
error message

The possible error messages are:

NO SOURCE FILE FOUND IN INVOCATION

If ASM5l scans the invocation line and cannot find the source file name, then this
error will be issued and assembly aborted.

UNRECOGNIZABLE SOURCE FILE NAME

If the first character after "ASM5l" on the invocation line is not an "&" or a file
character (Le., ":", letter, digit, ". "), then ASM5l issues this error and aborts.

ILLEGAL SOURCE FILE SPECIFICATION

If the source file is not a legal file name (does not conform to the ISIS-II rules for a
path name), then this error is issued.

SOURCE TEXT MUST COME FROM A FILE

The source text must always come from a file, not devices like :TI: or :LP:.

NOT ENOUGH MEMORY

If there is not enough memory in your SERIES-II or MDS 800, then this error
message will print out and ASM5l will abort.

If identical files are specified:

_ AND _ FILES ARE THE SAME

where the "_" can be any of SOURCE, PRINT, OBJECT, and ERRORPRINT. It
doesn't make sense for any of these files to be the same.

BAD WORKFILES COMMAND

If a WORKFILES control has no parameters (Le., devices) or a device specification
is incorrect, this error message is issued.

BAD WORKFILES SYNTAX

MeS-51

MCS-Sl Assembler Output: Error Messages and Listing File Format

If ASM51 encounters anything other than a "," or a ")" when it is looking for the
next work file, then this error is issued.

BAD PAGELENGTH
BAD PAGEWIDTH

The parameter to pagelength and pagewidth must be a decimal number. The number
may have leading and trailing blanks, but if there are any other extra characters in
the parameter, then this error will be issued.

PAGElENGTH MISSING A PARAMETER
PAGEWIDTH MISSING A PARAMETER
DATE MISSING A PARAMETER

These commands require parameters. If there is nO parameter, then assembly is
aborted.

CANNOT HAVE INCLUDE IN INVOCATION

The INCLUDE command may appear only in the source text. Don't forget that
command lines in the source file can contain primary commands, but only if they are
the very first lines in the file. Also, if One of these lines has an INCLUDE on it, then
that ends the primary command lines.

EOl ENCOUNTERED IN PARAMETER

A parameter in the ill vocation line is missing a right parenthesis.

COMMAND TOO lONG

A command word longer than 128 characters-very unlikely.

IllEGAL CHARACTER IN INVOCATION

There was an illegal character in the invocation line-usually a typing error. (See
error 403.)

UNRECOGNIZED COMMAND: <control-name>

This message is issued if a problem occurs in the invocation.

NO PARAMETER AllOWED WITH control

The control specified may not be associated with the parameter.

TITLE MISSING A PARAMETER

The TITLE control was specified without the title string itself as a parameter.

TOO MANY RESTORES

More RESTORE controls encountered than the respective SAVE controls.

NO PARAMETER GIVEN FOR "REGISTERBANKS"

The REGISTERBANKS control was specified without the register bank numbers
as parameters.

ERROR IN PARAMETER LIST FOR "REGISTERBANKS"

The parameter list of the REGISTERBANKS control contains an error.

7-3

Assembler Output: Error Messages and Listing File Format

7-4

Listing File Error Messages

ASM51 features an advanced error~reporting mechanism. Some messages pinpoint
the symbol or character at which the error was detected. Error messages printed in
the source file are inserted into the listing after the lines on which the errors were
detected.

They are of the following format:

••• ERROR lIeee, LINE 11//1 (Ppp) , message

where:

eee is the error number
//I is the number of the line on which the error occurred
ppp is the line containing the last previous error
message is the English message corresponding to the error number

If the error is detected in pass 2, the clause "(PASS 2)" precedes the message.
"(MACRO)" precedes the message for macro errors; "(CONTROL)" precedes the
message for control errors.

Errors which refer to character or symbol in a particular line of the source file do so
by printing a pointer to the first item in the line that is not valid; e.g.:

A

The up arrow or vertical bar points to the first incorrect character in the line.

Error messages that appear in the listing file are given numbers. The numbers corres­
pond to classes of errors. The classes of errors and the numbers reserved for these
classes is shown in the list below:

o - 99 Source File Errors
300 - 399 Macro Errors
400 - 499 Control Errors
800 - 899 Special Assembler Errors
900 - 999 Fatal Errors

Errors numbered less than 800 are ordinary. non-fatal errors. Assembly of the error
line can usually be regarded as suspect, but subsequent lines will be assembled. If an
error occurs within a macro definition, the definition does not take place.

Source File Error Messages

There follows a list of the error messages generated by ASM51, ordered by error
number .

••• ERROR 111 SYNTAX ERROR

This message is preceded by a pointer to the character at which the syntax error
was detected.

MeS-51

MeS-51 Assembler Output: Error Messages and Listing File Format

ASM51 contains an internally-encoded grammar of the MCS-51 assembly
language and requires your program to conform to that grammar. The syntax
error is recognized at the item indicated in the error message; e.g.,

... TEMPSER10
A

gives a syntax error at the S. "SER" is unrecognized. However, sometimes the
error is not detected until one or more characters later; e.g.,

... SETBEQU 1
A

gives a syntax error at "EQU" . The error is that SETB is already defined as an
instruction. The assembler interprets the line as a SETB instruction with
"EQU 1" as the operand field. Since the keyword "EQU" is not a legal
operand the "EQU" is flagged, even though the "SETB" is the user's
mistake.

ASM51 discards the rest of the line when it finds a syntax error .

••• ERROR 112 SOURCE LINE LISTING TERMINATED AT 255 CHARACTERS

Listing of the source line was stopped at 255 characters. The entire line was
interpreted, only the listing is incomplete .

••• ERROR.3 ARITHMETIC OVERFLOW IN NUMERIC CONSTANT

This error is reported whenever the value expressed by a constant exceeds the
internal representation of the assembler (65,535) .

••• ERROR .4 ATTEMPT TO DIVIDE BY ZERO

This error occurs when the right hand side of a division or MOD operator
evaluates to zero .

••• ERROR.5 EXPRESSION WITH FORWARD REFERENCE NOT ALLOWED

Forward references are permitted only in the expression argument to DB, DW,
and machine instructions. Change the expression to remove the forward
reference, or define the symbols earlier in the program .

••• ERROR.6 TYPE OF SET SYMBOL DOES NOT ALLOW REDEFINITION

This error occurs when the symbol being defined in a SET directive is a
predefined assembler symbol or has been previously defined not using SET
directive. For example, the following lines would cause this error on the
second line.

SKIP_1:ADDA,R1
SKIP _1 SET 22D

••• ERROR'7 SYMBOL ALREADY DEFINED

This message is given when the symbol has already been defined. To correct
this error, use a different symbol name .

••• ERROR '8 ATTEMPT TO ADDRESS NON-BIT -ADDRESSABLE BIT

7-5

Assembler Output: Error Messages and Listing File Format

7-6

This error is caused when the left hand side of the bit selector (.) is not one of
the bit addressable bytes. (See errors 40 and 9.) Figure 2-2 shows all bit­
addressable bytes. Several examples of lines that would cause this type of error
are shown below.

JB 10H.5,LOOP
CLR7FH.0
MOV C,OAFH.3

••• ERROR 19 BAD BIT OFFSET IN BIT ADDRESS EXPRESSION

This error is caused when the right hand side of the bit selector (.) is out of
range (0-7). The assembler uses 0 in its place. The byte address, if correct,
remains the same. (See errors 8, and 40.) Several examples of lines that would
generate this error are shown below.

CLR25H.10
SETB 26H.5 + 4
CPLPSW.-1

••• ERROR '10 TEXT FOUND BEYOND END STATEMENT -IGNORED

This is a warning-there are no ill effects. The extra text appears in the listing
file, but it is not assembled .

••• ERROR 111 PREMATURE END OF FILE (NO END STATEMENT)

There are no ill effects from omitting the END statement, other than this
message .

••• ERROR '12 ILLEGAL CHARACTER IN NUMERIC CONSTANT

Numeric constants begin with decimal digits, and are delimited by the first
non-numeric character. The set of legal characters for a constant is determined
by the base:

1. Base 2: 0,1, and the concluding B.
2. Base 8: 0-7, and the concluding Q or O.
3. Base 10: 0-9, and the concluding 0 or null.
4. Base 16: 0-9, A-F, and the concluding H .

••• ERROR '13 ILLEGAL USE OF REGISTER NAME IN EXPRESSION

This error is caused by placing a forward reference symbol, defined as a
register, in a numeric expression. An example of this type of error is shown
below:

DBREGO
REGOEQU RO

••• ERROR '14 SYMBOL IN LABEL FIELD ALREADY DEFINED

You can define a label only once in your program. If the symbol name has
been defined anywhere else in the program this error will be generated .

••• ERROR '15 ILLEGAL CHARACTER

This message is preceded by a pointer to the illegal character.

MeS-51

MeS-51 Assembler Output: Error Messages and Listing File Format

A character that is not accepted by ASM51 was found in the input file. Either
it is an unprintable ASCII character, in which case it is printed as an up arrow
e'), or it is printable but has no function in the assembly language. Edit the
file to remove the illegal character .

••• ERROR 116 MORE ERRORS DETECTED, NOT REPORTED

After the ninth source file Error on a given source line, this message is given
and no more errors are reported for that line. Normal reporting resumes on the
next source line. (See errors 300 and 400.)

••• ERROR 117 ARITHMETIC OVERFLOW IN LOCATION COU NTER

This error is reported whenever the DS, DBIT, or ORG directive attempts to
increase the location counter beyond the limits of the current address space.
This may occur, for example, in CSEG when instructions cause the location
counter to increment above 65,535 .

••• ERROR #18 UNDEFINED SYMBOL

This error is reported when an undefined symbol occurs in an expression. Zero
is used in its place-this may cause subsequent errors .

••• ERROR 119 VALUE WILL NOT FIT INTO A BYTE

This error is issued whenever the expression used for a numeric operand that is
" encoded as a single byte is not in the range -256 to +255 .

••• ERROR 120 OPERATION INVALID IN THIS SEGMENT

This error will occur if you use the DBIT directive not in a BIT type segment;
or a DS directive in a BIT type segment, or if you attempt to initialize memory
(use DB, DW, or a machine instruction) in a segment with different type than
CODE .

••• ERROR #21 STRING TERMINATED BY END-OF-LiNE

All strings must be completely contained on one line .

••• ERROR 122 STRING LONGER THAN 2 CHARACTERS NOT ALLOWED IN THIS CONTEXT

Outside of the DB directive all strings are treated as absolute numbers; hence,
strings of 3 or more characters are overflow quantities. If this error occurs in a
DW directive, you probably should be using DB .

••• ERROR 123 STRING, NUMBER, OR IDENTIFIER CANNOT EXCEED 255 CHARACTERS

The maximum length of a character string (including surrounding quotes), a
number, or an identifier is 255 characters .

••• ERROR 124 DESTINATION ADDRESS OUT OF RANGE FOR IN BLOCK REFERENCE

This error is caused by specifying an address that is outside the current 2K byte
block. The current block is defined by the five most significant bits of the
address-of the next instruction.

7-7

Assembler Output: Error Messages and Listing File Format

7-8

••• ERROR 125 DESTINATION ADDRESS OUT OF RANGE FOR RELATIVE REFERENCE

A relative jump has a byte range (-128 to +127) from the instruction that
follows the jump instruction. Any address outside of this range will generate
this error. You can correct this error in one of two ways: if the jump has a
logical complement (e.g., JC and JNC), the following change could be made:

JCTOP to JNCSKIP
JMPTOP

SKIP:

If the instruction has no logical complement, then the following change could
be made

DJNZRO, TOP to DJNZ RO, SKIP_1
JMPSKIP_2

SKIP_1: JMPTOP
SKIP-2:

••• ERROR 126 SEGMENT SYMBOL EXPECTED

The error occurs when the symbol specified by the RSEG directive is not a seg­
ment symbol, i.e., is not defined previously using the SEGMENT directive .

••• ERROR 127 ABSOLUTE EXPRESSION EXPECTED

The error occurs when the operand to the following directives is not absolute:
OS, OBIT, USING, CSEG, XSEG, OSEG, BSEG, and ISEG. In addition, the
bit-offset in a byte. bit form should also be absolute .

••• ERROR 128 REFERENCE NOT TO CURRENT SEGMENT

The error occurs in two cases: if a relocatable expression in an ORG directive
does not specify the current active segment; or if the absolute expression speci­
fying the base address in a segment select directive is not of the correct segment
type.

Examples

RSEG CODE_SEG1
CODE_SYM1: DB 1

RSEG DAT A_SEG1
ORG CODE_SYMB1

CODLSYMB2 CODE 200H

;error'28

DSEG AT CODE_SYM2 ;error 128

••• ERROR 129IDATA SEGMENT ADDRESS EXPECTED

The symbol specified on the left hand side of the bit selector(.) is not segment
type OAT A, or not in a bit-addressable relocatable type segment. The nuDn!ric
value is used if possible, but may cause other errors. (See errors 37 and 8.)

••• ERROR 130 PUBLIC ATIRIBUTE NOT ALLOWED FOR THIS SYMBOL

Occurs if the user attempts to define as public either segment symbols, external
symbols, or predefined symbols .

••• ERROR 131 EXTERNAL REFERENCE NOT ALLOWED IN THIS CONTEXT

MCS-Sl

MeS-51 Assembler Output: Error Messages and Listing File Format

••• ERROR 132 SEGMENT REFERENCE NOT ALLOWED IN THIS CONTEXT

Occurs if an external/segment symbol appears in a symbol definition directive
(EQU, SET, DATA, etc.); or in contexts when absolute expressions are
required (see error #27) .

••• ERROR 1133 TOO MANY RELOCAT ABLE SEGMENTS

The maximum number of relocatable segments has been exceeded .

••• ERROR 134 TOO MANY EXTERNAL SYMBOLS

The maximum;number of relocatable segments has been exceeded .

••• ERROR 1135 LOCATION COUNTER MAY NOT POINT BELOW SEGMENT BASE

Occurs if the user attempts, using the ORG directive, to set the location
counter below the beginning of the current absolute segment.

Example

CSEG AT 200H
ORG 1FFH

;starts an absolute segment at 200H
;error 1135

••• ERROR #36 CODE SEGMENT ADDRESS EXPECTED

••• ERROR #37 DATA SEGMENT ADDRESS EXPECTED

••• ERROR 1138 XDATA SEGMENT ADDRESS EXPECTED

••• ERROR 1139 BIT SEGMENT ADDRESS EXPECTED

These errors are caused by specifying a symbol with the wrong segment type in
an operand to an instruction. The numeric value of that symbol is used, but it
may cause subsequent errors (e.g., error 17) .

••• ERROR 1140 BYTE OF BIT ADDRESS NOT IN BIT ADDRESSABLE DATA SEGMENT

The symbol specified on the left hand side of the bit selector (.) is not segment
type DATA, or not in a bit-addressable relocatable type segment. The numeric
value is used if possible, but may cause other errors. (See errors 37 and 8.)

••• ERROR 1141 INVALID HARDWARE REGISTER

The data address specified in the expression points to an unidentified location
in the hardware register space (128 to 255) .

••• ERROR #42 BAD REGISTER BANK NUMBER

The register bank number specified for the USING directive should be in the
range of 0 to 3 .

••• ERROR #43 INVALID SIMPLE RELOCATABLE EXPRESSION

Symbol definition directives such as EQU, SET, DATA, CODE, etc., require
a simple relocatable expression (or a special register symbol in the EQU/SET
case). See Chapter 2 .

••• ERROR #44 INVALID RELOCATABLE EXPRESSION

The relocatable expression specified violates the rules of relocatable expres­
sions as given in Chapter 2.

7-9

Assembler Output: Error Messages and Listing File Format

7-10

••• ERROR ##45INPAGE RELOCATED SEGMENT OVERFLOW
••• ERROR ##46INBLOCK RELOCATED SEGMENT OVERFLOW
••• ERROR ##47 BITADDRESSABLE RELOCATED SEGMENT OVERFLOW

The relocatability of the current active segment specifies a limited segment
size: INPAGE = maximum 256 bytes; INBLOCK = 2048 bytes;
BITADDRESSABLE = 16 bytes. .

••• ERROR ##48 ILLEGAL RELOCATION FOR SEGMENT TYPE

The segment type and relocatability of the defined segment is an invalid com­
bination. See Chapter 4 on segment definition directive.

Macro Error Messages

Error messages with numbers in the 300's indicate macro call/expansion errors.
Macro errors are followed by a trace of the macro call/expansion stack-a series of
lines which print out the nesting of macro calls, expansions, INCLUDE files, etc.

Processing resumes in the original source file, with all INCLUDE files closed and
macro calls terminated .

••• ERROR ##300 MORE ERRORS DETECTED, NOT REPORTED

After 100 Macro or Control Errors on a given source line, this message is given
and no more errors are reported for that line. Normal reporting resumes on the
next source line. If the last error reported is a Macro Error, then this' message
will be issued. (See errors 16 and 400.)

••• ERROR ##301 UNDEFINED MACRO NAME

The text following a metacharacter (070) is not a recognized user function name
or built-in function. The reference is ignored and processing continues with the
character following the name .

••• ERROR ##302 ILLEGAL EXIT MACRO

The built-in macro "EXIT" is not valid in this context. The call is ignored. A
call to "EXIT" must allow an exit through a user function, or the WHILE or
REPEA T built-in functions .

••• ERROR ##303 FATAL SYSTEM ERROR

Loss of hardware and/or software integrity was discovered by the macro
processor. Contact Intel Corporation .

••• ERROR ##304 ILLEGAL EXPRESSION

A numeric expression was required as a parameter to one of the built-in
macros EVAL, IF, WHILE, REPEAT, and SUBSTR. The built-in function
call is aborted, and processing continues with the character following the
illegal expression .

••• ERROR #305 MISSING "FI" IN "IF"

The IF built-in function did not have a FI terminator. The macro is processed,
but may not be interpreted as you intended.

MeS-51

MCS-Sl Assembler Output: Error Messages and Listing File Format

••• ERROR '306 MISSING "THEN" IN "IF"

The IF built-in macro did not have a THEN clause following the conditional
expression clause. The call to IF is aborted and processing continues at the
point in the string at which the error was discovered .

••• ERROR '307 ILLEGAL ATTEMPT TO REDEFIN E MACRO

It is illegal for a built-in function name or a parameter name to be redefined
(with the DEFINE or MATCH built-ins). Also, a user function cannot be
redefined inside an expansion of itself .

••• ERROR '308 MISSING IDENTIFIER IN DEFINE PATTERN

In DEFINE, the occurrence of "@" indicated that an identifier type delimiter
followed. It did not. The DEFINE is aborted and scanning continues from the
point at which the error was detected .

••• ERROR '309 MISSING BALANCED STRING

A balanced string "(...)" in a call to a built-in function is not present. The
macro function call is aborted and scanning continues from the point at which
the error was detected .

••• ERROR #310 MISSING LIST ITEM

In a built-in function, an item in its argument list is missing. The macro func­
tion call is aborted and scanning continues from the point at which the error
was detected .

••• ERROR #311 MISSING DELIMITER

A delimiter required by the scanning of a user-defined function is not present.
The macro function call is aborted and scanning continues from the point at
which the error was detected.

This error can occur only if a user function is defined with a call pattern con­
taining two adjacent delimiters. If the first delimiter is scanned, but is not
immediately followed by the second, this error is reported .

••• ERROR #312 PREMATURE EOF

The end of the input file occurred while the call to the macro was being
scanned. This usually occurs when.a delimiter to a macro call is omitted, caus­
ing the macro processor to scan to the end of the file searching for the missing
delimiter.

Note that even if the closing delimiter of a macro call is given, if any preceding
delimiters are not given, this error may occur, since the macro processor
searches for delimiters one at a time.

"'ERROR #313 DYNAMIC STORAGE (MACROS OR ARGUMENTS) OVERFLOW

Either a macro argument is too long (possibly because of a missing delimiter),
or not enough space is available because of the number and size of macro
definitions. All pending and active macros and INCLUDE's are popped and
scanning continues in the primary source file. Increase the mempercent
parameter of the MACRO control to overcome this error.

7·11

Assembler Output: Error Messages and Listing File Format '

7-12

u. ERROR .314 MACRO STACK OVERFLOW

The macro context stack has overflowed. This stack is 64 deep and contains an
entry for each of the following:
1. Every currently active input file (primary source plus currently nested

INCLUDE's).

2. Every pending macro call, that is, all calls to macros whose arguments are
still being scanned.

3. Every active macro call, that is,all macros whose values or bodies are
currently being read. Included in this category are various temporary
strings used during the expansion of some built-in macro functions.

The cause of this error is excessive recursion in macro calls, expansions, or
INCLUDE's. All pending and active macros and INCLUDE's are popped and
scanning continues in the primary source file .

••• ERROR .315 INPUT STACK OVERFLOW

The input stack is used in conjunction with the macro stack to save pointers to
strings under analysis. The cause and recovery is the same as for the macro
stack overflow .

••• ERROR .317 PATTERN TOO LONG

An element of a pattern, an identifier or delimiter, is longer than 31
characters, or the total pattern is longer than 255 characters. The DEFINE is
aborted and scanning continues from the point at which the error was
detected .

••• ERROR .318 ILLEGAL METACHARACTER: "char"

The MET ACHAR built-in function has specified a character that cannot
legally be used as a metacharactet: a blank, letter, digit, left or right paren­
thesis, or asterisk. The current metacharacter remains unchanged .

••• ERROR .319 UNBALANCED ")" IN ARGUMENT TO USER DEFINED MACRO

During the scan of a user-defined macro, the parenthesis count went negative,
indicating an unmatched right parenthesis. The macro function call is aborted
and scanning continues from the point at which the error was detected .

••• ERROR .320 ILLEGAL ASCENDING CALL

Ascending calls are not permitted in the macro language. If a call is not com­
plete when the end of a macro expansion is encountered, this message is issued
and the call is aborted. A macro call beginning inside the body of a user­
defined or built-in macro was incompletely contained inside that body,
possibly because of a missing delimiter for the macro call.

MCS-Sl

MCS-Sl Assembler Output: Error Messages and Listing File Format

Control Error Messages
Control error messages are issued when something is wrong with a control line in the
source file. Command language errors, when they occur in the invocation line or in a
primary control line, are fatal. However, the errors listed below are not considered
fatal. (See INVOCATION LINE ERRORS, described above.)

••• ERROR .400 MORE ERRORS DETECTED, NOT REPORTED

After 100 Macro or Control Errors on a given source line, this message is given
and no more errors are reported for that line. Normal reporting resumes on the
next source line. If the last error reported is a Control Error, then this message
will be issued. (See errors 16 and 300.)

••• ERROR .401 BAD PARAMETER TO CONTROL

What appears to be the parameter to a control is not correctly formed. This
may be caused by the parameter missing a right parenthesis or if the paren­
theses are not correctly nested .

••• ERROR .402 MORE THAN ONE INCLUDE CONTROL ON A SINGLE LINE

ASM51 allows a maximum of one INCLUDE control on a single line. If more
than one appears on a line, only the first (leftmost) is included, the rest are
ignored .

••• ERROR .403 ILLEGAL CHARACTER IN COMMAND
"

When scanning a command line, ASM51 encountered an invalid character.

This error can be caused for a variety of reasons. The obvious one is that a
command line was simply mistyped. The following example is somewhat less
obvious:

$TITLE(,1)-GO')

The title parameter ends with the first right parenthesis, the one after the digit
1. The title string is '" 1". The next character "-" is illegal and will get error
403. The next two characters, "GO", form a valid command (the abbreviation
for GENONL Y) which will cause the listing mode to be set. The final two
characters "')" will each receive error 403 .

••• ERROR .406 TOO MANY WORKFILES - ONLY FIRST TWO USED

This error occurs when you specify more than two devices in the parameters to
the WORKFILES control. Only the first two are used and the remaining list of
devices is ignored until the next right parenthesis .

••• ERROR .407 UNRECOGNIZED CONTROL OR MISPLACED PRIMARY CONTROL: <control-name>

The indicated control is not recognized as an ASM51 control in this context. It
may be misspelled, mistyped, or incorrectly abbreviated.

A misplaced primary control is a likely cause of this error. Primary control
lines must l:?e· at the .start of the source file, preceding all non-control lines
(even comments and blank lines).

7-13

Assembler Output: Error Messages and Listing File Format

'·14

••• ERROR .408 NO TITLE FOR TITLE CONTROL

This error is issued if the title control has no parameter. The resulting title will
be a string of blanks .

••• ERROR .409 NO PARAMETER ALLOWED WITH ABOVE CONTROL

The following controls do not have parameters:

EJECT NOOBJECT NOMACRO
SAVE NOPRINT PAGING
RESTORE NOPAGING SYMBOLS
LIST DEBUG NOSYMBOLS
NOLIST NODEBUG XREF
GENONLY NOERRORPRINT NOXREF
GEN NOGEN

If one is included, then this error will be issued, and the parameter will be
ignored .

••• ERROR .410 SAVE STACK OVERFLOW

The SAVE stack has a depth of eight. If the program tries to save more than
eight levels, then this message will be printed .

••• ERROR .411 SAVE STACK UNDERFLOW

If a RESTORE command is executed and there has been no corresponding
SAVE command, then this error will be printed.

••• ERROR '413 PAGEWIDTH BELOW MINIMUM, SET TO 80

The minimum pagewidth value is 80. If a pagewidth value less than 80 is given,
80 becomes the new pagewidth .

••• ERROR '414 PAGELENGTH BELOW MINIMUM, SET TO 10

The minimum number of printed lines per page is 10. If a value less than 10 is
requested, 10 becomes the new pagelength .

••• ERROR 1415 PAGEWIDTH ABOVE MAXIMUM, SET TO 132

The maximum pagewidth value is 132. If a value greater than 132 is requested
then, 132 becomes the new pagewidth.

Special Assembler Error Messages

Error messages in the 800's should never occur. If you get one of these error
messages, please notify Intel Corporation via the Software Problem Report included
with this manual. All of these errors are listed below:

••• ERROR '800 UNRECOGNIZED ERROR MESSAGE NUMBER
••• ERROR 1801 SOURCE FILE READING UNSYNCHRONIZED
••• ERROR '802 INTERMEDIATE FILE READING UNSYNCHRONIZED
••• ERROR '803 BAD OPERAND STACK POP REQUEST
••• ERROR 1804 PARSE STACK UNDERFLOW
••• ERROR .805 INVALID EXPRESSION STACK CON FIGURATION

MeS-51

c ,

MeS-51 Assembler Output: Error Messages and Listing File Format

Fatal Error Messages

Errors numbered in the 900's are fatal errors. They are marked by the line

" ••• FATAL ERROR ••• "

preceding the message line. Assembly of the source code is halted. The remainder of
the program is scanned and listed, .but not assembled .

••• ERROR '900 USER SYMBOL TABLE SPACE EXHAUSTED

You must either eliminate some symbols from your program, or if you don't
use macros, the NOMACRO control will free additional symbol table space .

••• ERROR '901 PARSE STACK OVERFLOW
••• ERROR #902 EXPRESSION STACK OVERFLOW

This error will be given only for grammatical entities far beyond the complica­
tion seen in normal programs .

••• ERROR #903 INTERMEDIATE FILE BUFFER OVERFLOW

This error indicates that a single source line has generated an excessive amount
of information for pass 2 processing. In practical programs, the limit should
be reached only for lines with a gigantic number of errors - correcting other
errors should make this one go away .

••• ERROR #904 USER NAME TABLE SPACE EXHAUSTED

This error indicates that the sum of the number of characters used to define the
symbols contained in a source file exceeds the macro processor's capacity. Use
shorter symbol names, or reduce the number of symbols in the program.

Assembler Listing File Format

The MCS-51 assembler, unless overridden by controls, outputs two files: an object
file and a listing file. The object file contains the machine code. The listing file con­
tains a formatted copy of your source code with page headers and, if requested
through controls (SYMBOL or XREF), a symbol table.

MCS-51 MACRO ASSEM5LER SAMPLE

ISIS-II MCS-51 MACRO ASSEM5LER V2.0
JBJ:CT MODULE PLACEn IN :F1:SAMP1.0BJ
ASSEMBLER INVOKED BY: ASM51 :F1:SAMP1.A51 nESUG

LOC ~3J

0000
;)000 758920
0003 758003
OC06 75~8DA

LINE

1
2
3
4
5
/)

7
B ..,

10
11
12

S:JURCE

NAME SA"!?L~

=XT~N ~ode (put_~rlf, put_string, put_data_str, get_num)
EXTRN ~ode (bin~s~, ascbin)

,
CSEG
; This is the initializing section. Execution always
; st~rts at address 0 on power-up_
ORG a
m~v T,,!OO,~C0100000B ; set timer mode to auto-reload
mov TH1,#(-253) ; set timer for 110 BAUD
~ov SCON,#11011010B ; prepare the Serial Port

Figure 7-1. Example Listing File Format

PAGE

7-15

Assembler Output: Error Messages and Listing File Format

"CS·51 MACRO ASSEM8LER

LOC 08J

0009 028:

0006 900000 F
OilOE 120000 F
0011 120000 F

0014 90JOOO F
0017 120000 F
001A 120000 F
0010 7800 F
001F 120000 F
0022 120000 F

0025 900000 F
0020 120000 ;:
0026 120000 F
002E 7800 F
0030 120000 ;:
J033 120000 F

0036 7900 F
0038 120000 F
0038 7900 F
0030 120000 F

0040 e500 F
0042 2500 F
0044 F500 F

0046 7900 F
0048 120000 F

0048 900000 F
004E 120000 F
0051 7900 F
0053 7A04
0055 120000 F
0058 8081

0008

0000
0004
0008

0000 54595045
0004 205E5820
0008 544F2052
OOOC 45545950
0010 45204120
0014 4E554042
0018 4552
001A 00

7-16

LINE

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
01
62
63
64
05
66
67
68
69
70

SAMPLE

SOURCE

setb TII1 ; sta,.t clock

; This is the main p,.og"am. It"s an infinite loop,
; whe,.e each ite,.ation P,.o.pts the console fo,. 2
; input numoe,.s and types out thei" sum.
START:
; type .essage explaining how to co,.,.ect a typo
moy OPT~,.typo.msg

call put.st,.ing
call put.crlf
; ~et fi,.st numbe" f,.om console
mov JPTR,.num'.msg
call put.string
call put.crlf
mov RO,/Jnum1
call get.num
call put.c,.lf
; get second numbe,. f,.om console
moy O~TR"num2.ms;
call put.st,.ing
call put.c,.lf
moy RO,'num2
call get.num
call put.c,.lf
; convert the ASCII nUllbe,.s to bina,.y
IIOY Rl"nulI'
call ascbin
moy Rl,'nu .. 2
call ascbin
; add the 2 numbers, and sto,.e the ,.esults in SUM
moy a,nu .. 1
add a,num2
"oy SUIl, ..
; ~onve,.t SUM f,.o .. bina,.y to ASCII
moy R,,'sum
call binasc
; output sum t9 console
moy DPTR,"sum.ms;
call put.st,.ing
.ov R1"sum
IIOV R2,.4
call put.data.st,.
j.p sta,.t

DSEG .t 8
STACK: ds 8 ; at po.e,.·up the stack point.,. il

;initl.lized to point he,..

OATA.AREA segment DATA
~ONSTANT_AREA segment CODE
•
RSEG
NUM1:
NUM2:
SUM:

data.a,.e.
ds 4
ds 4
ds 4

RSEG constant.a,.ea
TYPO."SG: db "TYPE ·X TO RETYPE A NUMBER",OOH

Figure 7·1. Example Listing File Format (Cont'd.)

MCS-Sl

MeS-51 Assembler Output: Error Messages and Listing File Format

MC5·51 MACRO ASSEMBLER

0016 54595045 71
OOH 20494E20
0023 46495253
0027 54204E55
002B 40424552
Jil2F 3A20
:lJ31 00
:l032 54595045 72
0036 20494E20
003A 53 .. 5434"
J03E 4E442J4E
0042 55404245
0046 523A20
0049 00
JJ4A 54484520 73
004: 53554020
0052 495320
OJ55 00

74
75

SYMBOL TABLE LISTING

N A M E

ASCBIN.
BINASC.
CONSTANT.AR:A
OATA.AQEA
GeT.NUM •
NUM1.MSG.
NUM1 •••
NUM2.MSG.
NUMl •••
PUT.CRLF •••
PUT .OAT A.S TR.
PUT.STRING.
SAMPLE ••
SCON. • •
STACK ••
START • •
SUM.MSG •
SuM • • •
TM1 • • •
TMOO. •
TR1 • •
TYPO.MSG.

.. T Y P E

C ADOQ
C AOOR
C SEG
o SEG
C AOOR
C AOOR
o AOOR
C AilOR
o AOOIl
C AOC~
C AOOR
C AOOq

o AOOR
o AO:lR
C AoOR
C ADDIl
o AOOR
il AODR
o AOOR
B ADDR
C AOJR

SAMPLE

NUM1.MSG:

NU'l2_MSG:

SUM.MSG:

ENO

V A L U E

0056H
OOOCH

0010H R
OilOOH R
0032H R
0004H R

00~8H A
0008H A
0006H A
004AH R
0008H R
COSDH A
0089H A
0088H.6 A
OOOOH R

EXT
!:XT

EXT

EXT
EXT
EXT

db 'TYPE IN FIRST NUMBER:

db 'TYPE I~ SECOND NUMBER:

db 'THE SUM IS ',OOH

A T T RIB UTE S

REL=UNIT
REL=UNIT

SEG=CONSTANT.AREA
SEG=OATA.AREA
SEG=CONSTANT.AREA
SEG=OATA.AREA

SEG=CONSTANT.AREA
SEG=DATA.AREA

~EGISTER BANKeS) USED: 0, TARGET MACHIN!:eS): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

',OOH

',OOH

Figure 7·1. Example Listing File Format (Cont'd.)

7-17

Assembler Output: Error Messages and Listing File Format

Listing File Heading

Every page has a header on the first line. It contains the words "MCS-51 MACRO
ASSEMBLER" followed by the title, if specified. If the title is not specified, then
the module name is used. It is derived from the NAME directive (if specified), or
from the root of the source filename. On the extreme right side of the header, the
date (if specified) and the page number are printed. .

In addition to the normal header, the first page of listing includes a heading shown
in figure 7-2. In it the assembler's version number is shown, the file name of the
object file, if any, and the invocation line. The entire invocation line is displayed
even if it extends over several lines.

MCS-51 MACRO ASSEMBLER SAMPLE

ISIS-II MCS-51 MACRO ASSEMBLER V2.0
OBJECT MODULE PLACED IN :F1 :SAMP1.0BJ
ASSEMBLER INVOKED BY: :F1:ASM51 :F1:SAMP1.A51 DEBUG

Figure 7-2. Example Heading

Source Listing

The main body of the listing file is the formatted source listing. A section of for­
,platted source is shown in figure 7-3.

LOC OBJ

0000
0000 758920
0003 758003
0006 7598DA
0009 D28E

7-18

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

SOURCE

NAME SAMPLE

EXTRN code (put_crlf, put_string,put_data_str)
EXTRN code (get_num, binasc, ascbin) . ,

CSEG
~ This is the initializing
~ always starts at addr~ss

section. Execution
o on power-up.

ORG 0
MOV TMOD,#00100000B
MOV TH1,#(-253)
MOV SCON,#11011010B
SETB TR1 . ,

Set timer to auto-reload
Set timer f~r 110 BAUD
Prepare the Serial Port
Start clock

~ This is the main program. It's an infinite loop,
; where each iteration prompts the console for 2
; input numbers and types out their sum.
START:

Figure 7-3. Example Source Listing

Mes-sl

PAGE 1

MCS-51 Assembler Output: Error Messages and Listing File Format

The format for each line in the listing file depends on the source line that appears on
it. Instruction lines contain 4 fields. The name of each field and its meaning is shown
in the list below:

• LOC shows the location relative or absolute (code address) of the first byte of
the instruction. The value is displayed in hexadecimal.

• OBJ shows the actual machine code produced by the instruction, displayed in
hexadecimal.

• If the object that corresponds to the printed line is to be fixed up (it contains
external references or is relocatable), an "F" is printed after the OBJ field. The
object fields to be fixed up contain zeroes.

• LINE shows the INCLUDE nesting level, if any, the number of source lines
from the top of the program, and the macro nesting level, if any. All values in
this field are displayed in decimal numbers.

• SOURCE shows the source line as it appears in the file. This line may be
extended onto the subsequent lines in the listing file.

DB or DW directives are formatted similarly to instruction lines, except the OBJ
field shows the data values placed in memory. All data values are shown. If the
expression list is long, then it may take several lines in the listing file to display all of
the values placed in memory. The extra lines will only contain the LOC and OBJ
fields.

The directives that affect the location counter without initializing memory (e.g.,
ORG, DBIT, or DS) do not use the OBJ field, but the new value of the location
counter is shown in the LOC field.

The SET and EQU directives do not have a LOC or OBJ field. In their place the
a,ssembler lists the value that the symbol is set to. If the symbol is defined to equal
one of the registers, then 'REG' is placed in this field. The remainaer of the directive
line is formatted in the same way as the other directives.

Format for Macros and INCLUDE Files
The format for lines generated by a macro call varies with the macro listing mode
(GEN, GENONLY, or NOGEN). Figure 7-4 shows the format of the call macro
calls listed with each of these modes in effect. In all three calls the same instructions
are encoded, the only difference is in the listing of the macro call. Note that the
macro nesting level is shown immediately to the right of the line number.·

3 .1 .GEt.!

• hdd16(DPH, DPL,,(HIGH $) .'(LOW $) ,DPH, DPL)
5 .1
6 .1 MOV A, ULOW

0388 E582 7 .2 ope
8 .1 ADD A,nLOW'

OlEA 24£A 9 .2 '(LOW .$)
10 +1 MOV SSUHL,OV

a3EC F582 11 .2 DPL,!
12 +1 MOV ",URIGH

03EE ES83 13 +2 OPH
14 ... , ADDC A,URIGH

03FO 3403 15 +2 I(HIGH $)
16 .1 MOV SSllMaIGH

03F2 FS8, 17 +2 DPR,!
18 .,
19
20
21
22 +1 $GENOHLY
23 .,

03FI(E582 24 +2 MOY A, DPL
03F6 24F6 25 +2 ADD A,t(LOW $)
03f'8 F582 26 +2 MOV DPL,"
03F. E583 21 +2 MOV A,DPR
03FC 3403 28 +2 ADDC A,'(HIGH $)
03FE F583 29 +2 MOV DPH.!

30 +1
31
32
33
34 +1 ,MOGEN
35 Jadd16(DPH. DP!... Ie HIGH $) I ,< LOW' $). DPH, DPL)

'3

Figure 7-4. Examples of Macro Listing Modes

7-19

Assembler Output: Error Messages and Listing File Format

7-20

General control lines that appear in the source are interpreted by ASM5l 's macro
processor and, as such, they are given a macro nesting level value. It is displayed
immediately to the right of the line number. Lines added to the program as a result
of the INCLUDE control are formatted just as if they appeared in the original
source file, except that the INCLUDE nesting level is displayed immediately to the
left of the line number.

The control line shown below has both an INCLUDE nesting level and a macro
nesting level. The INCLUDE nesting level is preceded by a equal sign '=', and the
macro nesting level is preceded by a plus sign '+' .

LOC OBJ LINE SOURCE

=1 101 +1 $ SAVE NOLIST

Symbol Table

The symbol table is a list of all symbols defined in the program along with the status
information about the symbol. Any predefined symbols used will also be listed in the
symbol table. If the XREF control is used, the symbol table will contain information
about where the symbol was used in the program.

The status information includes a NAME field, a TYPE field, a VALUE field, and
an ATTRIBUTES field.

f

The TYPE field specifies the type of the symbol: ADDR if it is a memory address,
NUMB if it is a pure number (e.g., as defined by EQU), SEG if it is a relocatable
segment, and REG if a register. For ADDR and SEG symbols, the segment type is
added to the type:

• C -CODE

• D-DATA

• X-XDATA

• I - IDATA

• B - BIT

The VALUE field shows the value of the symbol when the assembly was completed.
For REG symbols, the name of the register is given. For NUMB and ADDR sym­
bols, their absolute value (or if relocatable, their offset) is given, followed by A
(absolute) or R (relocatable). For SEG symbols, the segment size is given here. Bit
address and size are given by the byte part, a period (.), followed by the bit part. The
scope attribute, if any, is PUB (public) or EXT (external). These are given after the
VALUE field.

For the module name symbol, the TYPE and the VALUE fields contain dashes
(-----).

The ATTRIBUTES field contains an additional piece of information for some sym­
bols: relocation type for segments, segment name for relocatable symbols.

If the XREF control is used, then the symbol table listing will also contain all of the
line numbers of each line of code that the symbol was used. If the value of the sym­
bol was changed or defined on a line, then that line will have a hash mark <I) follow­
ing it. The line numbers are displayed in decimal.

MeS-51

MeS-51 Assembler Output: Error Messages and Listing File Format

SYMBOL TAdlE lISTING

N A M E

ASC6IN.
ilINASC.
C:lNSTANT_AI1:A
:lATA_AqeA
GET _NUM •
NUM1_MSG.
p;~M1. • •
NUM2_MSG.
NUMl •••
PuT _CRlF •••
PUT_OATA_STq.
?JT _STiUNG.
SAMPL:.
SCON •••
STACK •
STA~T •
SUM_IISG •
SJM •
11'11 • • •
TM:lD •••
TR1 ••
TYPO_HSG.

T Y " !:

C ADOq
C AJO~
C SEG
D S::G
C A::JJR
C AD::JR
;) ADDi<
C AJDq
o A:l:Jq
C AOC~
C ADDq
C A:JOq

:J ADD ~
o A:J:JiI
C ADDR
C ADDII
il A:JD~

D AODR
o Ai:lDiI
a ADoq
C AilJR

SAM?lE

V A l. U E

COlO'" R
OJJOH •
OJ32H iI
OJJ4ri R

OJyol1 A
000811 A
00061'1 A
004AI'1 •
0005rl R
OJSOrl A
005911 A
0033 6 A
OOOOH i<

'EXT
EXT
!:XT

A T T •

ilEL=UNIT
R:l=UNIT

!I UTE S

SEG=CJNSTANT_AREA
SEG=:JATA_AREA
SEG=CDNSTANT_AIIEA
SEG=OATA_AiI!:A

SEG=CONSTANT_AREA
SeG=JATA_A.EA

~cGIST=R BANK(S) USE): 0, TA~GET MAerlINE(S): S051

Figure 7-5. Example Symbol Table Listing

If an inordinate number of symbol references are generated by your program, it may
be impossible for the assembler to produce a complete XREF table for your entire
program. In that event, the following warning message is issued at the head of the
symbol table:

•• * WARNING, XREFS ABANDONED AT LINE 'line

The XREF listing will be valid up to the specified line.

Listing File Trailer

At the end of the listing, the assembler skips two lines and prints a two-line message
in the following format:

[NO] REGISTER BANK(S) USED [: r r r r], TARGET MACHINE(S): 8051
ASSEMBLY COMPLETE, n ERRORS FOUND (I)

Where r's are the numbers of the register banks used, and n and I are just like the
console message.

7-21

i
• n APPENDIX A

ASSEMBLY LANGUAGE BNF GRAMMAR

This appendix contains a Backus-Naur Form (BNF) grammar for all of the MCS-Sl
Assembly Language Constructions. It does not include the grammar for the macro facil­
ity. (See Chapter S and Appendix F.) Although BNF grammar is designed to define only
syntax, the metasymbols and language breakdown have been selected to show the seman­
tics of the language.

To simplify the grammar presented here, we have not defined all of the nuances of the
language as rigorously as a complete BNF grammar would require. These exceptions are
listed below.

• There are two types of controls, primary and general. A control line containing
a primary control must be the first line in a program, or only preceded by other
control lines.

• Some assembler directives may be used only while certain segment modes are in
effect (e.g., the bit segment must be active when a DBIT directive is used).

• Operator precedence in expressions has not been defined.

• Symbol typing conventions are not identified.

• In some of the definitions we have used a few words of description, contained in
double quotes.

• The ASCII string argument to the TITLE and DATE controls must either
contain balanced parentheses or no parentheses at all.

• There has been no attempt to show the logical blanks (spaces or tabs) that
separate the fields on a line.

• The symbol NULL is used to show that a meta-symbol may evaluate to nothing.

• Except within character strings, ASMSI makes no distinction between upper
and lower case characters. All terminal symbols have been shown in upper case,
but you can use upper or lower case in your source code (including within hex
constants).

• The NAME statement may be preceded only by a control or empty lines. A
comment line is considered an empty line.

• List of terms, e.g., <expression list>, unless defined explicitly implies a
sequence of items separated by commas (,).

• Square brackets are used to enclose optional items.

A-I

Assembly Language BNF Grammar MCS-Sl

A-2

<Assembly Language Program> ::= <StatementList> <End Statement>

<Statement List> ::= <Statement> <Statement List> I NULL

<End Statement> ::= END <Comment> <CRLF>

<Statement> ::= <Control Line> I <instruction Line> I

<Control Line>

<Control List>

<Control>

<regbank>

<instruction Line>

<Label>

<Comment>

<instruction>

<Directive Line>

::= $ <Control List> <CRLF>

::= <Control> <Control List> I NULL

::= DATE(<ASCIIStrlng» I DA(<ASCIIString» I
DEBUG I DE I
NODEBUG I NODE I
EJECT I EJ I
ERRORPRINT«Filename» I EP(<Filename» I ERRORPRINT I EP I
NOERRORPRINT , NOEP I
GENONLY I GO I
NOGEN t NOGE I
GEN I GE I
INCLUDE«Filename» ,IC«Filename» I
UST t L11

NOLIST I NOLI I
MACRO [(constant)] I MR [«constant»]

NOMACRO I NOMR I
OBJECT(<Filename» I OJ«Filename» , OBJECT I OJ I
NOOBJECT I NOOJ I
PAGING I Pit

NOPAGING I NOPI I
PAGELENGTH«Constant» I PL«Constant» I
PAGEWIDTH«Constant» I PW«Constant» I
PRINT«Filename» I PR«Filename» I PRINT I PR I
NOPRINT I NOPR ,

REGISTERBANK«regbank_list» I RB«regbank_'ist» I
NOREGISTERBANK I NORB I
SAVE I SA I
RESTORE I RS I
SYMBOLS I SB I
NOSYMBOLS I NOSB I
TlTLE(<ASCIiString» I TT(<ASCIIString» I
WORKFILES(<Drive name>.<Drive name» I WORKFILES«Drive name » I
WF(<Drivename>.<Drivename» I WF«Drivename» I
XREF I XR I
NOXREF I NOXR

::= 0 11 I 2 I 3

::= <Label> <Instruction> <Comment> <CRLF>

::= <Symbol Name>: I
NULL

::= ;<ASCII String> I NULL

::= <Arithmetic Instruction> I
<Multiplication Instruction> I
<Logic Instruction> 1
<Data Move Instruction> I
<Jump Instruction> I
<Subroutine Instruction> I
<Special Instruction > I
NULL

MeS-51 Assembly Language BNF Grammar

<Arithmetic Instruction>

<Arithmetic Mnemonic>

<Multiplication Instruction>

<Logic Instruction>

::= <Arithmetic Mnemonic> <Accumulator>, <Byte SOurce>

::= ADD I

ADDC t
SUBB

::= DIVAB I

MULAB

::= <Accumulator Logic Instruction> I
<Data Address Logic Instruction> I
<Bit Logic Instruction>

<Accumulator Logic Instwction> ::= <Logic Mnemonic> <Accumulator>, <Byte Source>

<Data Address Logic Instruction> ::- <Logic Mnemonic> <Data Address>, <Accumulator> I
<Logic Mnemonic> <Data Address>, <Immediate Data>

<Logic Mnemonic>

<Bit Logic Instruction>

<Data Move Instruction>

"fBit Move Instruction>

<Byte Move Instruction>

<Indirect Address Move>

<Data Address Move>

<Register Move>

<External Move Instruction>

<Code Move Instruction>

<Exchange Instruction>

<Data Pointer Load>

<Jump Instruction>

::= ANL I

ORLI

XRL

::= ANLC,<BltAddress> I
ANL C,l<Bit Address> I
ORLC,<BitAddress> I .
ORL C,I <Bit Address>

::= <Bit Move Instruction> I
<Byte Move Instruction> I
<External Move Instruction> I
<Code Move Instruction> I
<Exchange Instruction> I
<Data Pointer Load>

::= MOVC,<BitAddress> I
MOV <Bit Address> ,C

::= MOV <Accumulator>,<Byte Source> I

<Indirect Address Move> I
<Data Address Move> I
<8egister Move>

::= MOV <Indirect Address>, <Accumulator> I

MOV <Indirect Address>, <Immediate Data> I

MOV <Indirect Address>, <Data Address>

::= MOV <Data Address>, <Accumulator> I

MOV <Data Address>, <Byte Source>

::= MOV <Register>,<Accumulator> I

MOV <Reglster>,<lmmediate Data> I

MOV <Register>, <Data Address> I

::= MOVX <Accumulator>, <Indirect Address> I

MOVX <Indirect Address>, <Accumulator> I

MOVX <Accumulator>,@DPTR I

MOVX @DPTR,<Accumulator>

::= MOVC<Accumulator>,@A+PC I
MOVC <Accumulator>,@A+DPTR

::= XCHD <Accumulator>,<lndirect Address> I

XCH <Accumulator>, <Byte Destination>

::= MOV DPTR,<lmmediate Data>

:: .. <Decrement Jump> I
<Compare Jump> I
<TestJump> I
<Always Jump>

A-3

Assembly Language BNF Grammar

A-4

<Decrement Jump>

<Compare Jump>

<rest Jump>

<Always Jump>

<Subroutine Instruction >.

<Cal/lnstruction>

<Return Instruction>

<Special Instruction >

<Increment Instruction>

<Decrement Instruction>

::= DJNZ <Register> ,<Code Address> I
DJNZ <Data Address>, <Code Address>

::= CJNE <Accumulator>,<lmmediate Data, <Code Address> I
CJN E <Accumulator>, <Data Address>, <Code Address> I
CJNE <Indirect Address>, <Immediate Data >, <Code Address> I
CJ N E <Register>, <Immediate Data>, <Code Address>

::= JC <Code Address> I
JNC <Code Address> I
JZ <Code Address> I
JNZ <Code Address> I
JB <Bit Address>, <Code Address> I
JBC <Bit Address > ,<Code Address> I
JNB <Bit Address>, <Code Address>

::= SJ M P <Code Address> I
AJMP <Code Address> I
LJMP <Code Address> I
JMP <Code Address> I
JMP@A+DPTR

::= <Cal/lnstructlon> I
<Return Instruction>

::= ACALL <Code Address> I
LCALL <Code Address> I
CALL <Code Address>

::= RET I
RETI

::= <Incrementlnstruction> I
<Decrement Instruction> I
<Accumulator Modify Instruction> I
<Bit Modify Instruction> I
<Stack Instruction> I
NOP

::= INC <Accumulator> I
INC DPTR I
INC <Byte Destination>

::= DEC <Accumulator> I
DEC <Byte Destination>

<Accumulator Modify Instruction> ::= <Accumulator Modify Mnemonic> <Accumulator>

<Accumulator Modify Mnemonic> ::= CLR I
CPL I
DA I
SWAP I
RL I

<Bit Modify Instruction>

<Bit Modify Mnemonic>

<Stack Instruction>

<Directive Line>

RR I
RLC I
RRC

::= <Bit Modify Mnemonic> <Bit Destination>

::= SETB I
CLR I
CPL

::= POP <Data Address> I
PUSH <Data Address>

::= <Directive Statement><Comment><CRLF>

MCS-51

MCS-51

<Directive Statement>

<Org Statement>

<Using Statement>

<Symbol Definition Statement>

<Segment type>

<Relocatability>

<External definition statement>

<external definition>

<Usage type>

<Public definition statement>

<Name statement>

<Segment Select Statement>

<Absolute segment select>

<Absseg>

<Base address>

<Relocatable segment select>

<Space Allocation Statement>

::; <Org Statement> ,

<Using Statement>

<Symbol Definition Statement> ,

<Segment Select Statement> ,

<Label><Space Allocation Statement> ,

<Label><Memory Initialization Statement>

::; ORG <Expression>

::; USING <Expressions>

::; <Symbol> EQU <Expression> ,

<Symbol> EQU <Symbol Register> ,

<Symbol> SET <Expression> ,

<Symbol> SET <Symbol Register> ,

<Symbol> DATA <Expression> ,

<Symbol> XDATA <Expression> ,

<Symbol> BIT <Bit Address> ,

<Symbol> CODE <expression> ,

<Symbol> IDATA <expression> ,

Assembly Language BNF Grammar

<Symbol> SEGMENT <segment types> <relocatability> ,

<External definition statement> ,

<Public definition statement> ,

<NAME statement> ,

::; CODE, XDATA ,IDATA , BIT, DATA

::; UNIT, PAGE, IN PAGE , IN BLOCK , BITADDRESSABLE ,

NULL

::; EXTRN <External definition list>

::; <Usage type> {<symbol list»

> <Segmenttype> , NUMBER

::; PUBLIC <symbol list>

:> NAME <symbol>

::; <absolute segment select> , <relocatable segment select>

::; <abs seg> <base address>

::; CSEG , DSEG , BSEG , XSEG , ISEG

::; AT <expression> , NULL

::; RSEG <symbol>

::; DS <Expression> ,

DBIT <Expression>

<Memory Initialization Statement> ::; DB <Expression List>

<Filename>

<Drive name>

<ASCII String>

<Constant>

<Decimal Digit>

<CRLF>

"ASCII character strings, as items in a DB expression list,

may be arbitrarily long."

DW <Expression List>

"ASCII character strings, as items in a DW expression list,

must be no more than two characters long."

::; "ISIS-II Filename"

::; "ISIS-II Drive Identifier"

::; ., Any Printable ASCII Character"

::; <Decimal Digit> ,

<Decimal Digit><Constant>

::; 0 , 1 , 2 , 3 I 4 , 5 , 6 , 7 , 8 , 9

::; "ASCII Carriage Return Line Feed Pair"

A-5

Assembly Language BNF Grammar

A-6

<Byte Source>

<Indirect Address>

<Data Address>

<Immediate Data>

<Register>

<Byte Destination>

<Accumulator>

<Symbol Register>

<Symbol>

<Alphabet>

<Special Char>

<Alphanumeric List>

,<Alphanumeric>

<Bit Destination>

<Bit Address>

<Code Address>

<Expression List>

<Expression>

<Operator>

<Number>

::= <Indirect Address > I
<Data Address> I
<Immediate Data> I
<Register>

::~ @RD I @R1 I
@<Symbol>

::= <Expression>

::= .<Expression>

::= RD I R1 I R2 I R3 I R4 I R5 I R6 I R7 I
<Symbol>

::= <Indirect Address> I
<Data Address> I
<Register>

::= A I <Symbol>

::= <Accumulator> I <Register>

::= <Alphabet><Alphanumeric List> I <Special Char> <Alphanumeric List>

::= A I B I C I 0 I ElF I G I H I I I
J IKILIMIN IOIPIQIRI
SITIUIV IWIXIYIZ
alblcldlelflglhlil
j Ikll Imln lolplqlr I
sit lulv Iwlxlylzl

::= _ "Underscore" I
?

::= <Alphanumeric><Alphanumeric List> I
NULL

::= <Alphabet> I
<Decimal Digit> I
<Special Char>

::= C I
<Bit Address>

::= <Expression> I
<Expression>. <Expression>

::= <Expression>

::= <Expression> I
<Expression>. <Expression List>

::= <Symbol> I
<Number> I
<Expression ><Operator><Expression > I
«Expression» I
+ <Expression> I
-<Expression> I
HIGH <Expression> I
LOW <Expression>

::= + I - I I I MOD I SHL I SHR I
EQ I = I NE I < > I L T I < I LE I
<= I GT I > I GE I >= I AND I OR I XOR

::'" <Hex Number> I
<Decimal Number> I
<Octal Number> I
<Binary Number>

MeS-51

MCS-51

<Hex Number>

<Hex Digit String>

<Hex Digit>

<Decimal Number>

<Decimal Digit String>

<Octal Number>

<Octal Digit String>

<Octal Digit>

<Binary Number>

<Binary Digit String>

<Binary Digit>

::= <Decimal Digit><Hex Digit String> H

::= <Hex Digit><Hex Digit String> I
NULL

::= 0 I 1 1 2 I 3 I 4 1 5 I 6 I 7 1

8191 AIBICIDIEIF

::= <Decimal Digit String> D I
<Decimal Digit String>

::= <Decimal Digil > 1
<Decimal Digit><Decimal Digit String>

::= <Octal Digit String> 0 1

<Octal Digit String> 0

::= <Octal Digit> 1

<Octal Digit><Octal Digit String>

::= 0 I 1 1 2 1 3 I 4 I 5 I 6 I 7

::= <Binary Digit String> B

::= <Binary Digit> 1

<Binary Digit><Binary Digit String>

::=011

Assembly Language BNF Grammar

A-7

APPENDIX B
INSTRUCTION SET SUMMARY

This appendix contains two tables: the first identifies all of the 8051 's instructions in
alphabetical order; the second table lists the instructions according to theirhexa­
decimal opcodes and lists the assembly language instructions that produced that
opcode. .

The alphabetical listing also includes documentation of the bit pattern, flags
affected, number of machine cycles per execution and a description of the instruc­
tions operation and function. The list below defines the conventions used to identify
operation and bit patterns.

I

A
AB
B
bit address
page address
relative offset
C
code address
data
data address
DPTR
PC
Rr
SP
high
low
i-j
.n
aaa aaaaaaaa
bbbbbbbb
dddddddd

""'"' mmmmmmmm
00000000

r orrrr
AND
NOT
OR
XOR

+

(X)

«X))

<>
<
>

Abbreviations and Notations Used

Accumulator
Register Pair
Multiplication Register
8051 bit address
11-bit code address within 2K page
S-bit 2' s complement offset
Carry Flag
Absolute code address
Immediate data
On-chip 8-bit RAM address
Data pointer
Program Counter
Register (r=0-7)
Stack pointer
High order byte
Low order byte
Bits i through j
Bit n
Absolute page address encoded in instruction and operand byte
Bit address encoded in operand byte
Immediate data encoded in operand byte
One byte of a 16-bit address encoded in operand byte
Data address encoded in operand byte
Relative offset encoded in operand byte
Register identifier encoded in operand byte
Logical AND
Logical complement
Logical OR
Logical exclusive OR
Plus
Minus
Divide
Multiply
The contents of X
The memory location addressed by (Xl (The contents of X)
Is equal to
Is not equal to
Is less than
Is greater than
Is replaced by

B-1

Instr\1ction Set Summary MeS-51

Table B-1. Instruction Set Summary

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

ACALL code addr 2 aaa10001 Push PC on stack,
(PC) <- (PC) + 2 aaaaaaaa and replace low
(SP) <- (SP) + 1 order 11 bits with
«SP» <- (PC) low low order 11 bits of
(SP) <- (SP) + 1 code address.
«SP» <- (PC) high
(PC) 0-10 <- page address

ADD A,ldata 1 00100100 P OV AC C Add immediate
(A) <- (A) + data dddddddd data to A

ADD A,@Rr 1 0010011r P OV AC C Add contents of
(A) <- (A) + «Rr» indirect address to

A

ADD A,Rr 1 00101rrr P OV AC C Add register to A
(A) <- (A) + (Rr)

ADD A,data addr 1 00100101 P OV AC C Add contents of
(A) <- (A) + (data address) mmmmmmmm data address to A

ADDC A,ldata 1 00110100 P OV AC C Add Cand
(A) <- (A) + (C) + data dddddddd immediate data to

A

ADDC A,@Rr 1 0011011r P OV AC C Add C and contents
(A) <- (A) + (C) + «Rr» of indirect address

to A

ADDC A,Rr 1 00111rrr P OV AC C Add C and reg ister
(A) <- (A) + (C) + (Rr) toA

ADDC A,data addr 1 00110101 P OV AC C Add C and contents
(A) <- (A) + (C) + (data address) mmmmmmmm of data address to

A

AJMP codeaddr 2 aaaOOO01 Replace low order
(PC) 0-10 <- code address aaaaaaaa 11 bits of PC with

low order 11 bits
code address

ANL A,ldata 1 01010100 P Logical AND
(A) <- (A) AND data dddddddd immediate data to

A

ANL A,@Rr 1 0101011r P Logical AND
(A) <- (A) AND «Rr» contents of indirect

address to A

ANL A,Rr 1 01011rrr P Logical AND
(A) <- (A) AND (Rr) register to A

ANL A,data addr 1 01010101 P Logical AND
(A) <- (A) AND (data address) mmmmmmmm contents of data

address to A

ANL C,bitaddr 2 10000010 C Logical AND bit to
(C) <- (C) AND (bit address) bbbbbbbb C

ANL C,lbitaddr 2 10110000 C Logical AND
(C) - (C) AND NOT (bit address) bbbbbbbb complement of bit

toC

ANL data addr,ldata 2 01010011 Logical AND
(data address) <- mmmmmmmm immediate data to

(data address) AN D data dddddddd contents of data
address

ANL dataaddr,A 1 01010010 Logical AND A to
(data address) <- mmmmmmmm contents of data

(data address) AN D A address

B-2

MCS-Sl Instruction Set Summary

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

CJNE @Ar,ldata,codeaddr 2 1011011r C If immediate data
(PC) - (PC) + 3 dddddddd and contents of
IF «Ar)) < > data 00000000 indirect address
THEN are not equal, jump
(PC) - (PC) + relative offset to code address

IF «Ar)) <data
THEN(C)-l
ELSE(C)-O

CJNE A,ldata,codeaddr 2 10110100 C If immediate data
(PC) - (PC) + 3 dddddddd and Aare not
IF (A) < > data 00000000 equal, jump to code
THEN address
(PC) - (PC) + relative offset

IF (A) <data
THEN (C)-l
ELSE(C)-O

CJNE A,dataaddr,codeaddr 2 10110101 C If contents of data
(PC) - (PC) + 3 mmmmmmmm address and A are
IF (A) < > (data address) 00000000 not equal, jump to
THEN code address
(PC) - (PC) + relative offset

IF (A) < (data address)
THEN(C)-l
ELSE(C)-O

CJNE Ar,lIdata,codeaddr 2 10111rrr C If immediate data
(PC) - (PC) + 3 dddddddd and register are not
IF (Ar) < > data 00000000 equal, jump to code
THEN address
(PC) - (PC) + relative offset

IF (Ar) < data
THEN(C)-l
ELSE(C)-O

CLR A 1 11100100 P Set A to zero (0)
(A)-O

CLR C 1 11000011 C Set C to zero (0)
(C)-O

CLR bitaddr 1 11000010 Set bit to zero (0)
(bit address) - 0 bbbbbbbb

CPL A 1 11110100 P Complements each
(A)-NOT(A) bit in A

CPL C 1 10110011 C Complement C
(C)-NOT(C)

CPL bltaddr 1 10110010 Complement bit
(bIt address) - bbbbbbbb

NOT (bit address)

DA A 1 11010100 P C Adjust A aiter a
(See description in Chapter 3) BCD add

DEC @Ar 1 00010111 Decrement
«Ar))- «Ar)) -1 contents of indirect

address

DEC A 1 00010100 P Decrement A
(A)-(A)-l

DEC Ar 1 00011rrr Decrement register
(Ar) - (Ar) -1

DEC data addr 1 00010101 Decrement
(data address) - mmmmmmmm contents of data

(data address) - 1 address

DIV AB 4 10000100 P OV C Divide A by B
(AB) - (A) I (B) (multiplication

register)

B-3

Instruction Set Summary MeS-51

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

DJNZ Ar,codeaddr 2 1 1011rrr Decrement
(PC) - (PC) + 2 00000000 register, if not zero
(Ar) - (Rr)·1 (0), then jump to
IF (Rr) < >0 code address
THEN
(PC) - (PC) + relative offset

DJNZ data addr ,code addr 2 11010101 Decrement data
(PC) - (PC) + 3 mmmmmmmm address, if zero (0),
(data address) - 00000000 then jump to code

(data address) - 1 address
IF (data address) = 0
THEN
(PC) - (PC) + relative offset

INC @Rr 1 0000011r Increment contents
«Rr» - «Rr» + 1 of indirect address

INC A 1 000-00100 P Increment A
(A) -(A) +1

INC DPTR 1 10100011 Increment 16-bit
(DPTR) - (DPTR) + 1 data pointer

INC Rr 1 00001rrr Increment register
«R) - (Rr) + 1

INC data addr 2 00000101 Increment contents
(data address) - mmmmmmmm of data address

(data address) + 1

JB bit addr,code addr 2 00100000 If bit is one, n jump
(PC) - (PC) + 3 bbbbbbbb to code address
IF (bit address) = 1 00000000
THEN
(PC) - (PC) + relative offset

J BC bit addr ,code addr 2 00010000 If bit is one, n clear
(PC) - (PC) + 3 bbbbbbbb bit and jump to
IF (bit address) = 1 00000000 code address
THEN
(PC) - (PC) + relative offset
(bit address) - 0

JC codeaddr 2 01000000 If C is one, then
(PC) - (PC) + 2 00000000 jump to code
IF (C) = 1 address
THEN
(PC) - (PC) + relative offset

JMP @A+DPTR 2 01110011 Add A to data
(PC) - (A) + (DPTR) pOinter and jump to

that code address

IN B bit addr ,code addr 2 00110000 If bit is zero, n jump
(PC) - (PC) + 3 bbbbbbbb to code address
IF (bit address) = 0 00000000
THEN
(PC) - (PC) + relative offset

JNC codeaddr 2 01010000 If C is zero (0), n
(PC) + (PC) + 2 00000000 jump to code
IF(C)=O address
THEN
(PC) - (PC) + relative offset

JNZ codeaddr 2 01110000 If A is not zero (0), n
(PC) - (PC) + 2 00000000 jump to code
IF(A) < >0 address
THEN
(PC) - (PC) + relative offset

8-4

MCS-Sl Instruction Set Summary

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

JZ codeaddr 2 01100000 If A is zero (0), then
(PC) - (PC) + 2 00000000 jump to code
IF(A)=O address
THEN
(PC) - (PC) + relative offset

LCALL code addr 2 00010010 Push PC on stack
(PC) - (PC) + 3 I I I I I I I It and replace entire
(SP) - (SP) + 1 I I I I I I I It PC value with code
«SP)) - «PC)) low address
(SP) - (SP) + 1
«SP)) - (PC) high
(PC) - code address

LJMP codeaddr 2 00000010 Jumpto code
(PC) - code address I I I I I I I It address

I I I I I I I It

MOV @Rr,#data 1 0111011r Move immediate
«Rr)) -data dddddddd data to indirect

address

MOV @Rr,A 1 1111011r Move A to indirect
«Rr))-(A) address

MOV @Rr,dataaddr 2 1010011r Move contents of
«Rr)) - (data address) mmmmmmmm data address to

indirect address

MOV A,#data 1 01110100 P Move immediate
(A) -data dddddddd data to A

MOV A,@Rr 1 1110011r P Move contents of
(A)-«Rr)) indirect address to

A

MOV A,Rr 1 11101rrr P Move register to A
(A)-(Rr)

MOV A,data addr 1 11100101 P Move contents of
(A) - (data address) mmmmmmmm data add ress to A

MOV C,bit addr 1 10100010 C Move bit toC
(C) - (bit address) bbbbbbbb

MOV DPTR,#data 2 10010000 Move two bytes of
(DPTR) - data d d d d d d d dt immediate data

d d d d d d d dt pOinter

MOV Rr,#data 1 01111rrr Move immediate
(Rr)-data dddddddd data to register

MOV Rr,A 1 1 1 1 1 1 r r r Move A to register
(Rr)-(A)

MOV Rr,dataaddr 2 1 0 1 0 1 r r r Move contents of
(Rr) - (data address) mmmmmmmm data address to

register

MOV bitaddr,C 2 10010010 Move Cto bit
(bftaddress) - (C) bbbbbbbb

MOV data addr ,#data 2 01110101 Move immediate
(data address) -data mmmmmmmm data to data

dddddddd address

MOV data addr,@Rr 2 1000011r Move contents of
(data address) - «Rr)) mmmmmmmm indirect address to

data address

MOV dataaddr,A 1 11110101 Move A to data
(data address) - (A) mmmmmmmm address

t The high order byte of the 16-bit operand is in the first byte following the opcode. The low order byte is
in the second byte following the opcode.

B-S

Instruction Set Summary MeS-51

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

MOV data addr, Ar 2 10001rrr Move register to
(data address) - (Ar) mmmmmmmm data address

MOV data addr1 ,data addr2 2 100D0101 Move contents of
(data address 1) - mmmmmmmm* second data

(data address2) mmmmmmmm* address to first
data address

MOVC A,@A+DPTR 2 10010011 P Add A to DPTR and
(A) - «A) + (DPTR» move contents of

that code address
with A

MOVC A,@A+PC 2 10000011 P Add A to PC and
(A) - «A) + (PC» move contents of

that code address
with A

MOVX @DPTR,A 2 11110000 Move A to external
«DPTR)) - (A) data location

addressed by
DPTR

MOVX @Rr,A 2 1111001r Move A to external
«Rr)) - (A) data location

addressed by
register

MOVX A,@DPTR 2 11100000 P Move contents of
(A) - «DPTR» external data loca-

tion addressed by
DPTR to A

MOVX A,@Ar 2 1110001r P Move contents of
(A) - «Rr)) external data loca"

tion addressed by
I
\,

register to A

MUL AB 4 10100100 P OV C Multiply A by B
(AB) - (A) '(B) (multiplication

register)

NOP 1 00000000 Do nothing

ORL A,ldata 1 01000100 P Logical OR
(A) - (A) OR data dddddddd immediate data to

A

ORL A,@Ar 1 0100011r P Logical OR
(A) - (A) OR «Rr)) contents of indirect

address to A

ORL A,Rr 1 01001rrr P Logical OR register
(A) - (A) OR (Ar) toA \

ORL A,data addr 1 01000101 P Logical OR
(A) - (A) OR (data address) mmmmmmmm contents of data

address to A

ORL C,bit addr 2 01110010 C Logical OR bit to C
(C) -(C) OR (bit address) bbbbbbbb

ORL C,lbitaddr 2 10100000 C Logical OR
(C) -(C) OR NOT (bit address) bbbbbbbb complement of bit

toC

ORL da.ta addr ,#data 2 01000011 Logical OR
(data address) - mmmmmmmm immediate data to

(data addreSs) OR data dddddddd data address

ORL dataaddr ,A 1 01000010 Logical OR A to
(data address) - mmmmmmmm data address

(data address) OR A

* The source data address (second data address) is encoded In the first byte following the opcode. The
destination data address is encoded in the second byte following the opcode.

B-6

MeS-51 Instruction Set Summary

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

POP data addr 2 11010000 Place top of stack
(data address) - «SP)) mmmmmmmm at data address and
(SP) - (SP) -1 decrement SP

PUSH data addr 2 11000000 Increment SP and
(SP) - (SP) + 1 mmmmmmmm place contents of
«SP)) - (data address) data address at top

of stack

RET 2 00100010 Return from
(PC) high - «SP)) subroutine call
(SP) - (SP) -1
(PC) low - «SP))
(SP) - (SP) - 1

RETI 2 00110010 Return from
(PC) high - «SP)) interrupt routine
(SP) - (SP) -1
(PC) low - «SP))
(SP) (SP) -1

RL A 1 00100011 Rotate A left one
(See description in Chapter 3) position

RLC A 1 00110011 P C Rotate A through C
(See description in Chapter 3) left one position

RR A 1 00000011 Rotate A right one
(See description in Chapter 3) position

RRC A 1 00010011 P C Rotate A through C
(See description in Chapter 3) right one position

-SETS C 1 11010011 C SetC to one (1)
(C)-l

SETS bit addr 1 11010010 Set bit to one (1)
(bit address) - 1 bbbbbbbb

SJMP codeaddr 2 10000000 Jumptocode
(PC) (PC) + relative offset 00000000 address

SUSS A,lkiata 1 10010100 P OV AC C Subtract immediate
(A)"" (A) - (C) -data dddddddd data from A

SUSS A,@Ar 1 1001011r P OV AC C Subtract contents
(A) - (A) - (C) - «Ar)) of indirect address

from A

SUSS A,Ar 1 10011rrr P OV AC C Subtract register
(A) - (A) - (C) - (Ar) from A

SUSS A,data addr 1 10010101 P OV AC C Subtract contents
(A) - (A) - (C) - (data address) mmmmmmmm of data address

from A

SWAP A 1 11000100 Exchange low
(See description in Chapter 3) order nibble with

high order nibble in
A

XCH A,@Ar 1 1100011r P Move A to indirect
temp - «Ar)) address and vice
«Ar))-(A) versa
(A)-temp

XCH A,Ar 1 11001rrr P Move A to register
temp -(Ar) and vice versa
(Rr)-(A)
(A)-temp

XCH A,data addr 1 11000101 P Move A to data
temp - (data address) mmmmmmmm address and vice
(data address) - (A) versa
(A) temp

B-7

Instruction Set Summary MeS-51

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

XCHD A,@Rr 1 1 1 01011r P Move low order of
temp - «Rr)) 0-3 A to low order
«Rr)) 0-3 - (A) 0-3 nibble of indirect
(A) 0-3 - temp address and vice

versa

XRL A,lIdata 1 01100100 P Logical exclusive
(A) - (A) XOR data dddddddd OR immediate data

toA

XRL A,@Rr 1 0110011r P Logical exclusive
(A) - (A) XOR «Rr)) OR contents of

indirect address to
A

XRL A,Rr 1 01101rrr P Logical exclusive
(A) - (A) XOR (Rr) OR register to A

XRL A,data addr 1 01100101 P Logical exclusive
(A) - (A) XOR (data address) mmmmmmmm OR contents of data

address to A

XRL data addr ,lIdata 2 01100011 Logical exclusive
(data address) - mmmmmmmm OR immediate data

(data address) XOR data dddddddd to data address

XRL data addr,A 1 01100010 Logical exclusive
(data address)- mmmmmmmm OR A to data

(data address) XOR A address

B-8

MeS-51 Instruction Set Summary

Table B-2. Instruction Opcodes in Hexadecimal

Hex Number Mnemonic Operands
Code of Bytes

00 1 NOP
01 2 AJMP codeaddr
02 3 LJMP codeaddr
03 1 RR A
04 1 INC A
05 2 INC dataaddr
06 1 INC @RO
07 1 INC @R1
08 1 INC RO
09 1 INC R1
OA 1 INC R2
OB 1 INC R3
OC 1 INC R4
00 1 INC R5
OE 1 INC R6
OF 1 INC R7
10 3 JBC bit addr ,code addr
11 2 ACALL codeaddr
12 3 LCALL codeaddr
13 1 RRC A
14 1 DEC A
15 2 DEC dataaddr
16 1 DEC @RO
17 1 DEC @R1
18 1 DEC RO
19 1 DEC R1
1A 1 DEC R2
1B 1 DEC R3
1C 1 DEC R4
10 1 DEC R5
1E 1 DEC R6
1F 1 DEC R7
20 3 JB bit addr ,code addr
21 2 AJMP codeaddr
22 1 RET
23 1 RL A
24 2 ADD A,#data
25 2 ADD A,dataaddr
26 1 ADD A,@RO
27 1 ADD A,@R1
28 1 ADD A,RO
29 1 ADD A,R1
2A 1 ADD A,R2
2B 1 ADD A,R3
2C 1 ADD A,R4
20 1 ADD A,R5
2E 1 ADD A,R6
2F 1 ADD A,R7
30 3 JNB bit addr ,code addr
31 2 ACALL codeaddr
32 1 RETI
33 1 RLC A
34 2 ADDC A,ldata
35 2 ADDC A,dataaddr
36 1 ADDC A,@RO
37 1 AD DC A,@R1
38 1 ADDC A,RO
39 1 ADDC A,R1
3A 1 ADDC A,R2
38 1 ADDC A,R3

B-9

Instruction Set Summary MeS-51

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands

Code of Bytes

3C 1 ADDC A,R4
3D 1 ADDC A,R5
3E 1 ADDC A,R7
3F 1 ADDC A,R7
40 2 .,IC codeaddr
41 2 AJMP codeaddr
42 2 ORL data addr, A
43 3 ORL data addr,#data
44 2 ORL A,tldata
45 2 ORL A,dataaddr
46 1 ORL A,@RO
47 1 ORL A,@R1
48 1 ORL A,RO
49 1 ORL A,R1
4A 1 ORL A,R2
48 1 ORL A,R3
4C 1 ORL A,R4
40 1 ORL A,R5
4E 1 ORL A,R6
4F 1 ORL A,R7
50 2 JNC codeaddr
51 2 ACALL codeaddr
52 2 ANL data addr, A
53 3 ANL data addr,tldata
54 2 ANL A ,lIdata
55 2 ANL A,dataaddr
56 1 ANL A,@RO
57 1 ANL A,@R1
58 1 ANL A,RO
59 1 ANL A,R1
5A 1 ANL A,R2
58 1 ANL A,R3
5C 1 ANL A,R4
50 1 ANL A,R5
5E 1 ANL A,R6
5F 1 ANL A,R7
60 2 JZ codeaddr
61 2 AJMP codeaddr
62 2 XRL dataaddr,A
63 3 XRL data addr,lIdata
64 2 XRL A,lIdata
65 2 XRL A,dataaddr
66 1 XRL A,@RO
67 1 XRL A,@R1
68 1 XRL A,RO
69 1 XRL A,R1
6A 1 XRL A,R2
68 1 XRL A,R3
6C 1 XRL A,R4
60 1 XRL A,R5
6E 1 XRL A,R6
6F 1 XRL A,R7
70 2 JNZ codeaddr
71 2 ACALL codeaddr
72 2 ORL C,bitaddr
73 1 JMP @A+DPTR
74 2 MOV A ,#da ta
75 3 MOV data addr ,lIdata
76 2 MOV @RO,lIdata
77 2 MOV @R1,#data

B-I0

MeS-51 Instruction Set Summary

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands Code of Bytes

78 2 MOV RD,itdata
79 2 MOV R1,itdata
7A 2 MOV R2,itdata
7B 2 MOV R3,itdata
7C 2 MOV R4,itdata
70 2 MOV R5,itdata
7E 2 MOV R6,itdata
7F 2 MOV R7,itdata
80 2 SJMP codeaddr
81 2 AJMP codeaddr
82 2 ANL C,bitaddr
83 1 MOVC A,@A+PC
84 1 OIV AB
85 3 MOV data addr,data addr
86 2 MOV data addr,@RO
87 2 MOV data addr,@R1
88 2 MOV data addr, RD
89 2 MOV data addr, R1
8A 2 MOV data addr, R2
8B 2 MOV data addr, R3
8C 2 MOV data addr,R4
80 2 MOV data addr, R5
8E 2 MOV data addr,R6
8F 2 MOV data addr,R7
90 3 MOV OPTR,itdata
91 2 ACALL codeaddr
92 2 MOV bitaddr,C
93 1 MOVC A,@A+OPTR
94 2 SUBB A ,itdata
95 2 SUBB A,dataaddr
96 1 SUBB A,@RO
97 1 SUBB A,@R1
98 1 SUBB A,RD
99 1 SUBB A,R1
9A 1 SUBB A,R2
9B 1 SUBB A,R3
9C 1 SUBB A,R4
90 1 SUBB A,R5
9E 1 SUBB A,R6
9F 1 SUBB A,R7
AD 2 ORL C,lbitaddr
A1 2 AJMP codeaddr
A2 2 MOV C,bitaddr
A3 1 INC OPTR
A4 1 MUL AB
A5 reserved
A6 2 MOV @RD,dataaddr
A7 2 MOV @R1 ,data addr
A8 2 MOV RD,data addr
A9 2 MOV R1 ,data addr
AA 2 MOV R2,data addr
AB 2 MOV R3,data addr
AC 2 MOV R4,data addr
AD 2 MOV R5,data addr
AE 2 MOV R6,data addr
AF 2 MOV R7,data addr
BO 2 ANL C,lbitaddr
B1 2 ACALL codeaddr
B2 2 CPL bitaddr
B3 1 CPL C

B-l1

Instruction Set Summary MeS-51

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands Code of Bytes

B4 3 CJNE A,#data ,code addr
B5 3 CJNE A,data addr ,code addr
B6 3 CJNE @RO,#data,codeaddr
B7 3 CJNE @R1 ,#data ,code addr
B8 3 CJNE RO,#data ,code addr
B9 3 CJNE R1 ,#data ,code addr
BA 3 CJNE R2,#data ,code addr
BB 3 CJNE R3,#data ,code addr
BC 3 CJNE R4,#data ,code addr
BO 3 CJNE R5,#data ,code addr
BE 3 CJNE R6,#data ,code addr
BF 3 CJNE R7,#data ,code addr
CO 2 PUSH dataaddr
C1 2 AJMP codeaddr
C2 2 CLR bitaddr
C3 1 CLR C
C4 1 SWAP A
C5 2 XCH A,dataaddr
C6 1 XCH A,@RO
C7 1 XCH A,@R1
C8 1 XCH A,RO
C9 1 XCH A,R1
CA 1 XCH A,R2
CB 1 XCH A,R3
CC 1 XCH A,R4
CO 1 XCH A,R5
CE 1 XCH A,R6
CF 1 XCH A,R7
DO 2 POP dataaddr
01 2 ACALL codeaddr
02 2 SETB bitaddr
03 1 SETB C
04 1 OA A
05 3 OJNZ data addr ,code addr
06 1 XCHO A,@RO
07 1 XCHO A,@R1
08 2 OJNZ RO,code addr
09 2 OJNZ R1 ,code addr
OA 2 OJNZ R2,code addr
DB 2 OJNZ R3,code addr
DC 2 OJNZ R4,codeaddr
DO 2 OJNZ R5,code addr
DE 2 OJNZ R6,code addr
OF 2 OJNZ R7,codeaddr
EO 1 MOVX A,@OPTR
E1 2 AJMP codeaddr
E2 1 MOVX A,@RO
E3 1 MOVX A,@R1
E4 1 CLR A
E5 2 MOV A,dataaddr
E6 1 MOV A,@RO
E7 1 MOV A,@R1
E8 1 MOV A,RO
E9 1 MOV A,R1
EA 1 MOV A,R2
EB 1 MOV A,R3
EC 1 MOV A,R4
ED 1 MOV A,R5
EE 1 MOV A,R6
EF 1 MOV A,R7

B-12

MeS-51 Instruction Set Summary

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands Code of Bytes

FO 1 MOVX @DPTR,A
F1 2 ACALL codeaddr
F2 1 MOVX @RO,A
F3 1 MOVX @R1,A
F4 1 CPL A
F5 2 MOV dataaddr,A
F6 1 MOV @RO,A
F7 1 MOV @R1,A
Fa 1 MOV RO,A
F9 1 MOV R1,A
FA 1 MOV R2,A
FB 1 MOV R3,A
FC 1 MOV R4,A
FD 1 MOV R5,A
FE 1 MOV R6,A
FF 1 MOV R7,A

B-13

APPENDIX C
ASSEMBLER DIRECTIVE SUMMARY

Table C-llists all the MCS-SI Macro Assembly Language directives. The format for
each directive is shown along with a brief description of its operation. Complete
descriptions of all directives are given in Chapter 4.

Directive

BIT

BSEG

CODE

CSEG

DATA

DB

OBIT

DS

DSEG

OW

END

EQU

EXTRN

IDATA

ISEG

NAME

ORG

PUBLIC

RSEG

Table C-l. Assembler Directives

Format

symboL name BIT bit address

BSEG [AT absolute_address]

symbol_name CODE expression

CSEG [AT absolute __ address]

symboL name DATA expression

[label:] DB expression_list

[label:] OBIT expression

[label:] OS expression

Description

Defines a bit address in bit data space.

Defines an absolute segment within the
bit address space.

Assigns a symbol name to a specific
address in the code space.

Defines an absolute segment within the
code address space.

Assigns a symbol name to a specific
on-chip data address.

Generates a list of byte values.

Reserves a space in bit units in a BIT type
segment.

Reserves space in byte units; advances
the location counter of the current
segment.

DSEG [AT absolute_address] Defines an absolute segment within the
indirect internal data space.

[label:] DWexpression_list Generates a list of word values.

END Indicates end of program.

symbol_name EQU expression Set symbol value permanently.
or

symbol name EQU special_assembler_symbol

EXTRN segmenLtype (symbol_names_list) Defines symbols referenced in the
current module that are defined in other
modules.

symboL name IDA T A expression Assigns a symbol name to a specific
indirect internal address.

ISEG [AT absolute_address] Defines an absolute segment within the
internal data space.

NAME module_name Specifies the name of the current module.

ORG expression Sets the location counter of the current
segment.

PUBLIClisf_of_names Identifies symbols which can be used
outside the current module.

RSEG segment_name Selects a reloeatable segment.

SEGMENT symboLname SEGMENT segmenLtype
reloeatability

Defines a relocatable segment.

SET symbol_name SET expression Sets symbol vallie temporarily.
or

symbol_name SET speciaLassembler_symbol

C-l

Assembler Directive Summary MeS-51

Table Col. Assembler Directives (Cont'd.)

Directive Format Description

USING USING expression Sets the predefined symbolic register
address and causes the assembler to
reserve space for the specified register
bank.

XDATA symboLname XDAT A expression Assigns a symbol name to a specific
off-chiD data address.

XSEG XSEG [AT absolute_address] Defines an absolute segment within the
external data address space.

C-2

· " APPENDIX D
ASSEMBLER CONTROL SUMMARY n

The table below contains all of the MCS-51 Macro assembler controls, their mean­
ing, their defaults and their abbreviations. The table also defines whether the control
is primary or general. (Primary controls must only appear at the head of the
program or in the invocation lines; general controls may appear anywhere in the
program.)

Table D-l. Assembler Controls

Name Primary/
General Default Abbrev. Meaning

DATE(date) P DATE() DA Places string in header (max
9 characters)

DEBUG P NODEBUG DB Outputs debug symbol
information to object file

NODEBUG P NODB Symbol information not
placed in object file

EJECT G Not Applicable EJ Continue listing on next
page

ERRORPRINT[(FILE)] P NOERRORPRINT EP Designates a file to receive
error messages in addition
to the listing file. File
defaults to :co:

NOERRORPRINT P NOEP Designates that error mes-
sages will be printed in
listing file

GEN G GENONLY GE Generates a full listing of the
macro expansion process
including macro calls in the
listing file

GENONLY G GO List only the fully expanded
source as if all lines gen-
erated by a macro call were
already in source file

NOGEN G NOGE List only the original source
text in listing file

INCLU DE(FILE) G Not Applicable IC Designates a file to be
included as part of the
program

LIST G LIST LI Print subsequent lines of
source in listing file

NOLIST G NOLI Do not print subsequent
lines of source in listing file

MACRO [(mempercent)] P MACRO(50) MR Evaluate and expand all
macro calls. Allocate
percentage of free memory
for macro processor

NOMACRO P NOMR Do not evaluate macro calls

OBJECT[(FILE)] P OBJECT(source .OBJ) OJ Designate file to receive
object code

NOOBJECT P NOOJ Designates that no object
file will be created

PAGING P PAGING PI Designates that listing will
be broken into pages and
each will have a header

NOPAGING P NOPI Designates that listing will
contain no page breaks

PAGELENGTH(n) P PAGELENGTH(60) PL Sets maximum numberof
lines in each page of listing
file (maximum = 65,535)
(minimum = 10)

PAGEWIDTH(n) P PAGEWIDTH(120) PW Sets maximum number of
characters in each line of
listing file (maximum = 132;
minimum = 80)

D-1

Assembler Control Summary MCS-51

Table D-l. Assembler Controls (Cont'd.)

Name Primary I
General Default Abbrev. Meaning

PRINT[(FILE)] P PRINT(source. LST) PR Designates file to receive
source listing

NO PRINT P NOPR Designates that no listing
file will be created

SAVE G Not Applicable SA Stores current control set-
ting for LIST and GEN

RESTORE G RS Restores control setting
from SAVE stack

REGISTERBANK(rb •...) P REGISTERBAN K(O) RB Indicates one or more banks
rb = 0, 1. 2. 3 used in program module

NOREGISTERBANK P NORB Indicates that no banks are
used.

SYMBOLS P SYMBOLS SB Creates a formatted table of
all symbols used in program

NOSYMBOLS P NOSB No symbol table created

TITLE(string) G TlTLE() TT Places a string in all sub-
sequent page headers
(maximum 60 characters)

WORKFILES(:Fn:[,:F m:]) P same drive as
source file

WF Designates alternate drives
for temporary workfiles

XREF P NOXREF XR Creates a cross reference
listing of all symbols used in
program

NOXREF P NOXR No cross reference list
created

D-2

APPENDIX E
MPL BUILT-IN FUNCTIONS

The following is a Jist of all MPL built-in functions.

% 'text end-ot-line or % 'text'

% (balanced-text)

% * DEFIN E(call-pattern)[/ocal-symbol-list j(macro-body)

% *DEFINE(macro-name [parameter-list)) [LOCAL local-list] (macro-body)

%n text-n-characters-Iong

%EQS(arg1,arg2)

% EV A L(expression)

%EXIT

%GES(arg1,arg2)

%GTS(arg1,arg2)

%IF (expression) THEN (balanced-test1) [ELSE (balanced-text2)] FI

%IN

% LEN(balanced-text)

%LES(arg1,arg2)

%L TS(arg1 ,arg2)

%MATCH(identitier1 delimiter identitier2) (balanced-text)

%MET ACHAR(balanced-text)

%NES(arg1,arg2)

%OUT(balanced-text)

%REPEAT (expression) (balanced-text)

%SET(macro-id ,expression)

%SU BSTR(balanced-text,expression 1 ,expression2)

%WHILE (expression) (balanced-text)

E-J

APPENDIX F I
RESERVED SYMBOLS

The following is a list of all of the MCS-51 Macro Assembly Language reserved sym­
bols. They can not be used as symbol names or for any other purpose in your
program.

.'

AND
EQ
GE

ACALL
ADD
ADDC
AJMP
ANL
CJNE
CLR
CPL
DA

A
AB
AC
ACC
B
C
CY
DPH
DPL
DPTR
EA
ES
ETO
ET1
EXO
EX1
EXTIO

ARO
AR1

BIT
BSEG
CODE
CSEG
DATA

GT
HIGH
LE

DEC
DIV
DJNZ
INC
JB
JBC
JC
JMP
JNB

EXTI1
FO
IE
lEO
IE1
IP
INTO
INT1
ITO
IT1
OV
P
PO
P1
P2
P3
P4

AR2
AR3

DB
OBIT
OS
DSEG
OW

Operators

LOW
LT
MOD

Opcodes

JNC
JNZ
JZ
LCALL
LJMP
MOV
MOVC
MOVX
MUL

Operands

PC
PS
PSW
PTO
PT1
PXO
PX1
RO
R1
R2
R3
R4
R5
R6
R7
RB8

NE
NOT
OR

NOP
ORL
POP
PUSH
RET
RETI
RL
RLC
RR

RD
REN
RESET
RI
RSO
RS1
RXD
SBUF
SCON
SINT
SMO
SM1
SM2
SP
TO
T1

Symbolic Register Addresses

AR4 AR6
AR5 AR7

Directives

END NAME
EQU ORG
EXTRN PUBLIC
IDATA RSEG
ISEG SEGMENT

SHL
SHR
XOR

RRC
SETB
SJMP
SUBB
SWAP
XCH
XCHD
XRL

TB8
TCON
TFO
TF1
THO
TH1
TI
TIMERO
TIMER1
TLO
TL1
TMOD
TRO
TR1
TXD
WR

SET
USING
XDATA
XSEG

F-l

APPENDIX G I
SAMPLE PROGRAM

The following is a fully expanded listing file of an MCS-51 Macro Assembly
Language program. This example includes three modules and their associated sym­
bol table listings.

MCS-S1 MACRJ ASSEMSLER SAMPLE

ISIS-II MCS-51 MACRO ~SSEM~LER v2.0
JaJ"CT MCDU~E ?LACEiJ IN : "1: SAM?1 .caJ
ASSEMSLER INVOKED BY: ASM;1 :~1 :S""I 0 1 .A51 ;::EBUG

LOC ::3J

OJOO
::loot 753120
,J:03 753JC3
OCJ6 75..JbwA
ODD. J2,,=

JOO:l 9QOCOD
')JOE 1~OO::0
o u 1 1 12 OC Gu

0014 ~'JCOJG
JC17 12000J
GJ1A 120000
0010 ?~CO
,) 0 1 F 1200:;0
0022 1~OQJO

002; 90JOQJ
0026 120000
0023 120000
OOZE nOD
JJ3J 128000
J033 120000

:)030 7YO~
ona 120000
0036 HOO
0030 12000J

0040 E5JO
0042 2500
;)044 F500

0046 7900
0043 120000

0046 900000

~

~

F
,

~

~

F
F

F
F
F

F
F

F

S:U~CE

1
2
3
4

5
o
7

EXTQN code (put_crlf, put_string, put_d~t~_str,
EXTRN code (oin~sc, ?sc~in)

8
; This is the initi~lizin~ section.
; st~rts ~t ~~dress 0 on co~er-up.
;:~~ 0

Execution alw~ys

.,
1 G
11
12
13
14
15
1 0
17
10
19

mov TM~D,~C01~OOOOS

~ov TH1,#(-253)
set tim~r mode to ~uto-reload
set timer for 110 6~U~

~DV SCCN,=11J110103
seto TR1

prep~re the Seri~l ~ort

start clock

This is t~a m~in progr~m. It·5 an infinite loop,
~here e?ch iter~tion pr~~pts the console for 2
incut "~~~ers and types out th~ir sum.

21
22

STA'<T:
; type m~ss~ge expl?ini~; how to correct a typo
mov DOT~,ety?o_msg

c"ll ::lut_strll'9
c?ll put_crlf

23 ; ;et first nu~Dar fr~m consol~
24 ~ov JPTR"num1_~SQ

25 c~ll put_s:rin,
26 call cut c~lf
27 mcv RQ,.num1
28 C~!! ;et_nu~
29 c~ll put_crlf
3~ ; get s~cond n~~ber fro~ console
31 :nov ':;>T~,:'nu'T12 ms;:
32 colI put_string
33 call put_crlf
34 mov ~J,~~u~2

35 call :~t_num
36 c?ll put_crlf
37 ; convert t~e ASCII numbers to binary
38 mov R1,#num1
39 c?ll ascbin
~O mov ~1,#num2

41 c~ll ~scbin

42 ; ~dd t~e 2 numbers, and store th~ results in SUM
43 mov ~,nu~1

44 sdd a,num2
45 mov sum,~

46 ; ronvert SUM from binary to ASCII
47 mov R1,~sum

43 c~ll bin~sc
49 ; output sum ~o console
50 mov ~~TR,~sum_ms~

Figure G-l. Sample Relocatable Program

PAGE

G-I

Sample Program MeS-51

MC s- 51 MACRO ASSEMSLER SAMPLE PAGE 2

LOC OSJ LINE SDURCE

OOH 120000 F 51 c .. ll put_string
0051 HOD F 52 mov R1,#5um
0053 7A04 53 mov RZ,#4
0055 120000 F 54 c<llll put_d<1tc'_str
0053 8061 55 jmp stClrt

56
57 DSEG at 8

0008 58 STACK: ds 8 ; Clt power-up the stack pointer is
59 ; initiCllized to point here
60
01 :loHA_AR:A segment DATA
62 CDNSHNT _ A~EA s~~ment CODe
63
64 ~SEG data_area

0000 05 NUM1 : ds 4
0004 06 NUM2: (15 4
0008 67 SUM: cis 4

6S
69 RSEG constant_Elr"eCl

0000 54595045 70 TYPO.MSG: dl) , TY!>E AX TO QETYPE A NUMB:R',OOH
JODI. 20SES820
OJ:J8 544F2052
OOOC 45545-'S0
0010 45204120
0014 4ES54042
0018 4552
001A 00
0016 54595045 71 NU~11_MS~: db 'TY"E IN FIRST NUMBER: , ,DOH
001F 20494EZO
0023 46495253
0027 54204ES5
0028 40424552
002F 3A20
0031 00
;)032 54595045 72 NLI'12_MSG: db 'TYPE IN SECOND NUMBER: , ,OOH
0036 .20494E20
003A 5345434 c
003E 4;442Q4E
0042 55404245
0046 52 3A 20
0049 00
a04A 54484520 73 SUM_MSG: db 'THE SUM IS , ,DOH
004: 53554D20
0052 495320
0055 00

74
75 END

FigureG-l. Sample Relocatable Program (Cont'd.)

G-2

MCS-Sl

MCS-51 MACRO ASSEMBLER

SYMSOL TABLE LISTING

N A M E

ASCSIN.
BINASC.
CONSTANT _AR!:A
DATA_AQEA
GET_NUM •
NUM1_MSG.
NUM 1. • •
NUM2_MSG.
NUM2. • •
PUT_CRLF.
PUT_OAT A_S TR.
?uT_STRING.
SAMPLE.
scaN. •
STACK •
STUT •
SUM_MSG •
SUM •
TH1 • • •
TMOD. •
TR1 ••
TYPO_MSG.

T Y P E

C ADOQ
C ADOR
C SEG
D SEG
C ADOR
C ADDR
~ AOOR
C AiJOQ
o ADDR
C ADCR
C ALlOR
C A::lOR

D ADOR
iJ Aon
C ADDR
C ADOR
o ADD,
i) AOOR
D ADDR
B ADDR
C AiJJR

SAMPLe

V A L U E

OD56H
aaOCH

C010H R
oaDOH R
OD32H R
Oa04rl R

OD~SH A
ODD8H A
OOOBH A
004AH R
OC08H R
OJ5DH A
0089H A
0033t<.6 A
OOOOH R

EXT
:XT

EXT

EXT
En
EXT

A T T RIB UTE S

REL=UNIT
REL=UNIT

SEG=C~NSTANT AREA
SEG=DATA_AREA
SEG=CGNSTANT_AREA
SEG=OATA_AR:A

SeG=CONSTANT_AREA
SE:;=OATA_AREA

SEG=CONSTANT_AREA

.cGISTER BANKeS) USED: 0, TARGET MACHIN=(S): 8051

ASSEMBLY COMPLETE, NJ eRRORS FOUND

Figure 0-1. Sample Relocatable Program (Cont'd.)

Sample Program

PAGE 3

0-3

Sample Program

MCS-51 MACRO ASSEMBLER

ISIS-II MCS-51 MACRO ASSEMBLER V2.0
OBJECT MOOULE PLACED I~ :F1:SAMP2.0BJ
ASSEMBLER INVOKED BY: ASM51 :F1:SAMP2.A51 DESUG

LOC OilJ

0000
OOOA

::ooa 7400
0002 120000
0005 740A
0007 120000
0004 22

OOOS E4
oooe 93
0000 6006
ooaF 120000
0012 A3
0013 SOF6

0015 22

0016 E7
0017 120000
001A 09
001S DAF9
0010 22

001E 3099FO
0021 C299
0023 F599
0025 22

0-4

F

F

F

F

LINE

1
2
3
4
5
6
7
8
'1

1a
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

SOURCE

10_ROUTINES S2gment COOE
RSEG ID_RCUTINES

This is the console 10 routine cluster.
PUBLIC put_crlf, put_string, put_data_str, get_nu.
USING a

This routine outputs a Carriage Return and
; a Line Feed
PUT CRLF:
CR ;qU OOH carrillge return
L" aqu OAH line feed

mov A,lIcr
call put_char
mov A,tllf
call put_char
rat

~outine outputs a null-terminated strino locllted
in CODe memory, whose ~ddress is given in DPTR.

PUT_STRING:
clr A
movc A,~A+OPTR

j.. exit
call put_char
inc OPTR
jmp put_string

EXIT :
ret

Routine outputs lO string located in DATA .e.ory,
whose address is in R1 and its length in R2.

PUT_DATA_STR:
mov A,;ilR1
call put_char
inc R1
djnz R2,put_data_str
ret

This routine outputs .. single character to console.
The ch~racter is given in A.

PUT_CHAI!:
jnb TI,S
clr TI
mov SBUF,A
ret

This routine gets a 4 character string fro. console

Figure 0-1. Sample Relocatable Program (Cont'd.)

MeS-51

PAGE

MeS-51

MCS-51 MACRO

LOC OBJ

0026 7A04
0028 A900

002A 120000

0020 C2E7
002F 841805
0032 120000
0035 BOEF

0037 F7
0038 09
0039 DAEF
003B 22

OOlC 3098FD
003F C298
0041 E599
0043 22

"C5-51 MACRO

SYMB:lL TABLE

N A 1'1 E

Ace •••
ARO •••
CO"lSOLE_IO
CR • • •
EXIT ••
GET_CHAR
GET _lOOP
GET _NUM.
GO_ON ••
IC_ROUHNES.
LF ••••
PWT_CriA~ ••
PUT_CRLF ••
puT _oATA_STK
PUT_STRING.
KI.
SSUF • •
TI •••

ASSEMBLER

LINE

F

F

ASSEMS~ER

LISTING

T Y P E

o Ao::lR
o AoDR

NUMil
C ADDR
C ADOR
C ADDR
C AClDR
C ADoR
C SEG

NUMS
C A::lDQ
C ADDR
C AoDR
C ADDR
B ADJR
D ADDR
a "oDR

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

CONSOLE_IO

SOURCE

; lind stores it in .. e .. ory at the address given in RD.
; If a "X is received, routine starts over again.
GET_NUM:

"ov R2,1/4 set UP string length as 4
IIOV R1,ARO ; RO value lIay be needed for restart

GET_LOOP:
call get_chllr

Next 4 instructions handle "X- the routine st.rts
over if received

clr ACC.7 cle.r the parity bit
cjne A,/l18H,GO_ON if not "x- go on
call put_crlf
jmp get_null

GO_ON:
mov QR1,A
inc R1
djnz R2,gat_loop
ret

This routine gets a single character fro .. console.
The character is returned in

GET_CHAR:
jnb 111,$
clr RI
mov A,SBUF
ret

END

CONSOLE_IO

V A L U E A T T RIB UTE 5

OO~OH

OOOOH

OOODH
0015H
D03CH
OJ2AH
0026H
003711
0044~

A
R
~

R
R pus

OO:lA 11 A
001EH R
0000'1 R PUB
001M+ R "US
OOaSH R PUS
00,>811.0 A
0099H A
0096'1.1 A

SEG=IO_ROUTINES
SEG=IO_R:JUTINES
SEG=IO_ROUTINES
SEG=IO_ROUTINES
SEG=IO_ROUTlIliES
~EL=UNIT

SEG=IO_ROUTINES
SEG=Io_R:JUTINES
SEG=IO_ROUTI"lES
SEG=!D_R:lUTINES

A.

REGISTER BANKeS) USED: C, TARGET MACHINEeS): 8051

ASSEMBLY CoMPlET=, Nw EKRCRS FOUND

Figure 0-1. Sample Relocatable Program (Cont'd.)

Sample Program

PAGE 2

PAGE 3

G-5

Sample Program

MCS-51 MACRO ASSEMBLER

ISIS-II MCS-51 MACRO ASSEMBLER V2.0
OaJECT MOOUlE PLACED IN :F1:SAMP3.0SJ
ASSEMBLER I~VOK:O BY: ASM51 :F1:SAMP3.A51 OEeUG

lOC OSJ

0030
002e
0020

0000 A801

REG
OJ02 08
0003 Eo
0004 C3
0005 9430
0007 75F064
OOOA A4
0005 FS

OOOC 08
0000 Eo
OOOE 9430
0010 75FOOA
0013 A4

0014 2e
0015 Fa

0016 08
0017 E6
0018 C3
0019 9430
0018 28
001C FS

0-6

LINE

1
2
3
4
5
6
7
8
9

10
11
1 2
13 ,..
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49"
50

SOURCE

NUM_~OUTIN:S segment coo:
~SEG NUM_ROUTINES

This module h~nd1e5 conversion from ASCII to binary
and back. The bin8ry numbers are signed one-byte
integars, i.e. their range is -128 to +127. Their
ASCII represant~tion is always 4 characters 10ng­
i.e. a sign followed by 3 digits.

puBLIC asc~in, binasc
USING a

ZE~:J eeu 'a'
PLUS EQU '.'
MINUS eeu '-'

This routine converts ASCII to binary.
INPUT- a 4 character string pointed at by R1. The

number range must be -128 to +127, and the
string must have 3 digits preceded by a sign.

OUTPUT- a Signed one-byte integer, located where
the input string started (pointed at by R1).

ASCaIN:
mOil ~O,AR1

; Comput:! first
TEMP equ 113

inc ~O
mov A,SlRO
clr C
subb A,#zero
mOil !l,"100
mu1 AS
mOil TEMP, A

; R1 original lIa1ue is needed later
di9it lIalue, and store it in TEMP

Compute the second digit lIalue
inc RO
mOil A,SlRO
subb A,lIzero
mOil B,1I10
mul AB

Add the value of the second digit to num.
add A, TEMP
mOil TeMP,A

get third digit and its value to total
inc RO
mOil A,SlRO
c1r C
subb A,'zero
add A, TEMP
mOil TEMP,A

test the sign, and comple.ent the nu.ber if the
sign is a minus

Figure 0-1. Sample Relocatable Program (Cont'd.)

MeS-51

PAGE

MeS-51

MCS-51 MACRO ASSEMBLER

LJC OBJ

0010 E7
001E B42004

0021 EB
0022 Flo
0023 D4
0024 FB

0025 E6
0026 F7
0027 22

00E7

J:J28 E7
J02.,1 7725

o,ns 3JE7J4

OJ2E 7720
,)030 14
0031 "4

0032 09
;JOB 7SF004
0036 64
0037 2430
0039 F7

003A 09
JOSS ESFO
0030 75FOOA
0040 84
0041 2430
0043 F7

0044 09
0045 E5FO
0047 2430
0049 F7

004A 22

L.INE SOURCE

51
52
53

mov A,~~1

cjne A,~minus,pos

54 mov A,TEMP
55 cpl A
56 lnc A
57 mov TEMP, A
58

;skip the next 4 instructions
;if the nUMber is positive

59 epilogue- store the result ~nd exit
60 pc 5:
61 mov A,TEMP
62 mov '~1,A

03 ret
04
05 Tnis routine convarts bin?ry to ASCII.
bo ;NPUT- ~ signed one-byte integer, pointed at by R1
07 GUT PUT- a 4 char~cter string, located mhere the
63 input nu~bar ~~5 (pointed at by R1).
69 SINASC:
70 SI~N bit ACe.7
71 Get ~he numbar, find its sign and store its sign
72 mov A,i~1

73 mov @~1,#plus ;store a plus sign (over-
74 ;written by minus if needed)
75 jno si;n,;0_on2 ;test the sign bit
76 Next 3 instructions handle negative numbers
77 mov ~R1,#minus ;store a minus sign
78 dec A
7.,1 cpl A
3C Factor Out tne first dlgit
81 GC_ON2:
32 lnc R1
83 mov a,~100

54 Cliv A3
35 add A,~z~ro

86 mov :lR1,A ;store the first digit
37 F~ctor out the second digit
38 inc ~1
3, mov A,a
90 mov B,#10
91 div AS
92 add A,#zero
.,3 mov »R1,A ;store the second digit
94 Store tha t~ird digit
95 inc R1 "0 mov A,B
97 add A,#zero
98 ,"ov ilR1,A ; store the third digit
99 note that we return without restoring R1

100 ret
101
102 END

Figure 0-1. Sample Relocatable Program (Cont'd.)

Sample Program

PAGE 2

G·7

Sample Program

MCS-51 MACRO ASSE~SLcR

SYMSOL TABLE LISTING

~ A M E

ACC ••
AR 1. • • •
ASCSIN
a. • . •
n'lASC
GO_ON2
MINUS.
NUM.C!JNVERSION
NUM.R:lUTINES •
PLUS
PJS ••
SIGN
TEMP
HRO

T Y P E

o AODR
DADO.
C AOOR
C AO;)K
C A!JO,
C AO:lR

NUMS

C S:G
NUMB

C ~D:lR
a Aon

q:G
NUMB

NUM.C!JNVERSIC'l

V A L U E

OOEOH
0001H
OOOJH
OOFOH
00281;
OD32H
002;)1;

0049"

A
A
R PUB
A
R PUB
q

A

002911 A
0025H II
OO'EOH.7 A
R3
0030H A

A T T RIB UTE S

SEG=NU~.R!JUTINES

SEG=NUM.R!JUTINES

REL=UNIT

SEG=NUM.ROUTINES

REGISTER SANK(S) USED: 0, TARGET MACHINE(S): 80S1

Figure G-l. Sample Relocatable Program (Cont'd.)

G-g

MCS-Sl

PAGE 3

APPENDIX H
REFERENCE TABLES

This appendix contains the following general reference tables:

• ASCII codes

• Powers of two

• Powers of 16 (in base 10)

• Powers of 10 (in base 16)

• Hexadecimal-decimal integer conversion

ASCII Codes

The 8051 uses the 7-bit ASCII code, with the high-order 8th bit (parity bit) always
reset.

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL)

NUL 00 + 2B V 56
SOH 01 2C W 57
STX 02 2D X 58
ETX 03 2E Y 59
EOT 04 2F Z 5A
ENO 05 0 30 [5B
ACK 06 31 \ 5C
BEL 07 2 32 1 5D
BS 08 3 33 1\ (t) 5E
HT 09 4 34 - {+-j 5F
LF OA 5 35 60
VT OB 6 36 61
FF OC 7 37 b 62
CR OD 8 38 63
SO OE 9 39 d 64
SI OF 3A e 65
DLE 10 3B 66
DCl (X-ON) 11 < 3C 9 67
DC2 (TAPE) 12 3D h 68
DC3 (X-OFF) 13 > 3E 69
DC4 ('FAf1E! 14 3F j 6A
NAK 15 @ 40 k 6B
SYN 16 A 41 6C
ETB 17 B 42 m 6D
CAN 18 C 43 n 6E
EM 19 D 44 0 6F
SUB lA E 45 p 70
ESC lB F 46 q 71
FS lC G 47 72
GS lD H 48 73
RS IE 49 74
us IF 4A u 75
SP 20 K 48 76

21 L 4C w 77
22 M 40 x 78

23 N 4E v 79
$ 24 0 4F 7A
% 25 P 50 { 7B
& 26 0 51 I 7C

27 R 52 : (ALT MODE) 7D
28 S 53 7E
29 T 54 DEL (RUB OUT) 7F
2A U 55

H-l

Reference Tables

POWERS OF TWO

2n n in
1 o 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
'2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0,000 000 029 802 322 387 695 312 5
67 108 864 26 0,000 000 014 901 161 193 847 656 25

134 217 728 27 a 000 000 007 450 580 596 923 828 125
268 435 456 28 0,000 000 003 725 290 298 461 914 062 5
536 870 912 29 0000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0 000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0,000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 4~4 747 350 886 464 "8 957 519 531 25
4 398 046 511 104 42 0000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
10 368 744 177 664 46 0000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 85B 711 242675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 lSI 231 257 827 021 181 583 404 541 015 625

MCS-Sl

36 028 797 018 963 968 55 0,000 000 000 000 000 027 755 575 615 628 913 510 590 791702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676 950 125
288 230 376 151 711 744 58 0,000 000 000000 000 003 469 446 951 953614 188 823848 962 783813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100886 801 ~90 560 173988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550443 400 745 280 086 994 171 142 578 125

H-2

MeS-51 Reference Tables

POWERS OF 16 (IN BASE 10)

16" "
16'"

1 0 0.10000 00000 00000 00000 x 10

16 1 0.62500 00000 00000 00000 X 10-1

256 2 0.39062 50000 00000 00000 ,x, 10-2

4 096 3 0.24414 06250 00000 00000 x 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

048 576 5 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 x 10-7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9

68 719 476 736 9 0.14551 91522 83668 51807 x 10- 10

1 099 511 627 776 10 0.90949 47017 72928 23792 x 10-12

17 592 186 044 416 11 0.56843 41886 08080 14870 x 10-13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10-14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10- 15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10- 16

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10- 18

POWERS OF 10 (IN BASE 16)

10" " 10'"

0 1.0000 0000 0000 0000

A 1 0.1999 9999 9999 999 A
64 2 0.28F5 C28F 5C28 F5C3 x 16- 1

3E8 3 0.4189 3748 C6A7 EF9E x 16-2

2710 4 0.6808 88AC 710C 8296 x 16-3

1 86AO 5 0.A7C5 AC47 1B47 8423 x 16-4

F 4240 6 0.10C6 F7AO B5EO 8037 x 16-4

98 9680 7 0.lA07 F29A BCAF 4858 x 16-5

5F5 E100 8 0.2AF3 10C4 6118 73BF x 16-6

3B9A CAOO 9 0.44B8 2FAO 9B5A 52CC x 16-7

2 540B E400 10 0.6oF3 7F67 SEF6 EAoF x 16-8

17 4876 ESOO 11 O.AFEB FFOB CB24 AAFF x 16-9

E8 o4A5 1000 12 0.1197 9981 20EA 1119 x 16-9

918 4E72 AOOO 13 0.lC25 C268 4976 81C2 x 16-10

5AF3 107A 4000 14 0.2009 3700 4257 3604 x 16- 11

3 807E AAC6 8000 15 0.480E BE7B 9058 5660 x 16-12

23 8652 6FCl 0000 16 0.734A CA5F 6226 FOAE x 16- 13

163 4578 50SA 0000 17 0.B877 AA32 36A4 B449 x 16-14

oEO B6B3 A764 0000 18 0.1272 5001 0243 ABAl x 16-14

8AC7 2304 89E8 0000 19 0.1083 C94F B602 AC35 x 16-15

H-3

Reference Tables MeS-51

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

H.xadecimal Decimal H.xad.cimal Decimal
01000 4096 20000 131 072
02000 8192 30000 196 608
03000 12288 40000 262144
04000 16384 50000 327680
05000 20480 60000 393216
06000 24576 70000 458 752
07000 28672 80000 524288
08000 32768 90 000 589824
09000 36864 AD 000 655360
OAOOO 40960 BO 000 720896
DB 000 45056 CO 000 786432
OCOOO 49152 00000 851968
00000 53248 EO 000 917504
DE 000 57344 FO 000 983040
OF 000 61 440 100000 1 048576
10000 65536 200 000 2 097 152
11000 69632 300 000 3 145728
12000 73728 400 000 4 194304
13 000 77 824 500 000 5242880
14 000 81 920 600 000 6291 456
15 000 86 016 700 000 7340032
16 000 90 112 800 000 8388608
17000 94208 900000 9437 184
18 000 98304 ADO 000 10 485760
19 000 102400 BOO 000 11 534336
lA 000 106 496 COO 000 12582912
lB 000 110 592 000 000 13631 488
lC 000 114688 EOO 000 14680 064
10 000 118 784 FDa 000 15728640
lE 000 122 880 1000 000 16777216
IF 000 126976 2 000 000 33554 432

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069. 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

H-4

MeS-51 Reference Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 038d 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0501 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
2tiO 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609, 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0301 OB02 0803 OB04 OB05 0806 0807 OBOB OB09 OB10 OB11 OB12 0813 0814 0815
330 0816 0817 0818 0819 OB20 0821 0822 OB23 0824 OB25 0826 0827 OB28 0829 0830 0831

340 0832 0833 0834 0835 0836 OB37 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 OB50 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 £1163
360 0864 0865 0866 0867 0868 0869 0870 OB71 OB72 OB73 0874 OB75 0876 0877 0878 0879
370 0880 0881 OB82 0883 0884 0885 0886 0887 OB88 0889 0890 OB91 0892 OB93 0894 0895

380 0896 0897 0898 OB99 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 10t4 1015 1016 1017 1018 1019 1020 1021 1022 1023

H-5

Reference Tables MCS-Sl
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 lOBO 1081 1082 1083 ,084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1.100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1191 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

.540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1317 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

seo 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

880 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
890 1880 1681 1882 1883 1684 1685 1886 1887 1688 1689 1690 1691 1692 1893 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

&CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1180 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
BFO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

H-6

MCS-Sl Reference Tables
HEXADECiMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 216f 2162 2163 2164 2165 2166 2167 2168 2169 2,170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

aco 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 . 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2~2 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
8AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
8DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
lEO 2628 2629 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
8FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

H-7

Reference Tables MeS-51
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 ~ A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 Z620 2621 2622 2623

MO 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
MO 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2106 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 '920 2921 2922 2923 2924 2925 2926 2927
B70 2928 29,29 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971. 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

(:40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
cao 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 31.89 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

ceo 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

H·8

MeS-51 Reference Tables
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
I 010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAD 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
000 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

Eoo 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
EJO 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697,,3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

Foo 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
FlO 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
FlO 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3971 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4071 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

H-9

APPENDIX J
ERROR MESSAGES

When the assembler is unable to correctly assemble a source file, it generates an
error message describing the trouble. If possible, it will continue execution. In some
cases the assembler is unable to continue (e.g., too many symbols in a program), and
it must abort execution. If your program should generate an error message, make
the necessary corrections and reassemble. The object file will probably not be
executable, and, if the error caused an abort, the list file may also be unreadable.

The general format for all errors listed in your code is shown below:

••• ERROR Iteee, LINE Itlll (Ppp), Message

where:

eee is the error number
III is the line causing the error
ppp is the line causing the lost error

Message is the error message.

(See Chapter 6 for a complete description of all error messages generated by the
assembler .)

J-1

Error Messages

J-2

Source File Error Messages
This type of error is caused by syntactic errors in your source code. They appear in
your listing file immediately following the source line that caused the error.

In attempting to further define the error, ASM51 may generate more than one
message for a single error. Since the assembler attempts to continue processing your
code, a single error may have side effects that cause subsequent errors.

A list of all Assembler Error messages is shown below:

Assembler Error Messages

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
1a
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

SYNTAX ERROR
SOURCE LINE LISTING TERMINATED AT 255 CHARACTERS
ARITHMETIC OVERFLOW IN NUMERIC CONSTANT
ATTEMPT TO DIVIDE BY ZERO
EXPRESSION WITH FORWARD REFERENCE NOT ALLOWED
TYPE OF SET SYMBOL DOES NOT ALLOW REDEFINITION
SYMBOL ALREADY DEFINED
A TTEM PT TO ADDRESS NON-BIT -ADDRESSABLE BIT
BAD BIT OFFSET IN BIT ADDRESS EXPRESSION
TEXT FOUND BEYOND END STATEMENT-IGNORED
PREMATURE END OF FILE (NO END STATEMENT)
ILLEGAL CHARACTER IN NUMERIC CONSTANT
ILLEGAL USE OF REGISTER NAME IN EXPRESSION
SYMBOL IN LABEL FIELD ALREADY DEFINED
ILLEGAL CHARACTER
MORE ERRORS DETECTED, NOT REPORTED
ARITHMETIC OVERFLOW IN LOCATION COUNTER
UNDEFINED SYMBOL
VALUE WILL NOT FIT INTO A BYTE
OPERATION INVALID IN THIS SEGMENT
STRING TERMINATED BY END-OF-LiNE
STRING LONGER THAN 2 CHARACTERS NOT ALLOWED IN THIS CONTEXT
STRING, NUMBER, OR IDENTIFIER CANNOT EXCEED 225 CHARACTERS
DESTINATION ADDRESS OUT OF RANGE FOR IN BLOCK REFERENCE
DESTINATION ADDRESS OUT OF RANGE FOR RELATIVE REFERENCE
SEGMENT SYMBOL EXPECTED
ABSOLUTE EXPRESSION EXPECTED
REFERENCE NOT TO CURRENT SEGMENT
IDATA SEGMENT ADDRESS EXPECTED
PUBLIC ATTRIBUTE NOT ALLOWED FOR THIS SYMBOL
EXTERNAL REFERENCE NOT ALLOWED IN THIS CONTEXT
SEGMENT REFERENCE NOT ALLOWED IN THIS CONTEXT
TOO MANY RELOCATABLE SEGMENTS
TOO MANY EXTERNAL SYMBOLS
LOCATION COUNTER MAY NOT POINT BELOW SEGMENT BASE
CODE SEGMENT ADDRESS EXPECTED
DATA SEGMENT ADDRESS EXPECTED
XDATA SEGMENT ADDRESS EXPECTED
BIT SEGMENT ADDRESS EXPECTED
BYTE OF BIT ADDRESS NOT IN BIT-ADDRESSABLE DATA SEGMENT
INVALID HARDWARE REGISTER
BAD REGISTER BANK NUMBER
INVALID SIMPLE RELOCAT ABLE EXPRESSION
INVALID RELOCATABLE EXPRESSION
IN PAGE RELOCATED SEGMENT OVERFLOW
INBLOCK RELOCATED SEGMENT OVERFLOW
BIT ADDRESSABLE RELOCATED SEGMENT OVERFLOW
ILLEGAL RELOCATION FOR SEGMENT TYPE

MeS-51

MeS-51 Error Messages

Macro Error Messages
Macro errors are caused by errors using the Macro Processing Language (MPL).
They are listed immediately following the line in which the error was recognized, and
is followed by a trace of the macro call/expression stack. This is not necessarily the
line that contains the error.

Since the Macro Processor attempts to define the error completely, several messages
may be generated. A macro error may be responsible for subsequent macro errors
and assembler errors.

All of the Macro Error messages are listed below:

Macro Error Messages

300 MORE ERRORS DETECTED, NOT REPORTED
301 UNDEFINED MACRO NAME
302 ILLEGAL EXIT MACRO
303 FATAL SYSTEM ERROR
304 ILLEGAL EXPRESSION
305 MISSING "FI" IN "IF"
306 MISSING "THEN" IN "IF"
307 ILLEGAL ATTEMPT TO REDEFINE MACRO
308 MISSING IDENTIFIER IN DEFINE PATTERN
309 MISSING BALANCED STRING
310 MISSING LIST ITEM
311 MISSING DELIMITER
312 PREMATURE EOF
313 DYNAMIC STORAGE (MACROS OR ARGUMENTS) OVERFLOW
314 MACRO STACK OVERFLOW
315 IN PUT STACK OVERFLOW
317 PATTERN TOO LONG
318 ILLEGAL METACHARACTER: <char>
319 UNBALANCED ")" IN ARGUMENTTO USER DEFINED MACRO
320 ILLEGAL ASCENDING CALL

J-3

Error Messages

J·4

Control Error Messages
Control errors are announced when something is wrong with the invocation line or a
control line in the source file. In general, command language errors are fatal, .caus­
ing ASM51 to abort assembly. However, the errors listed below are not considered
fatal.

Control Error Messages

400 MORE ERRORS DETECTED NOT REPORTED
401 BAD PARAMETER TO CONTROL
402 MORE THAN ONE INCLUDE CONTROL ON A SINGLE LINE
403 ILLEGAL CHARACTER IN COMMAND
406 TOO MANY WORKFILES-ONL Y FIRST TWO USED
407 UNRECOGNIZED CONTROL OR MISPLACED PRIMARY CONTROL: <control>
408 NO TITLE FOR TITLE CONTROL
409 NO PARAMETER ALLOWED WITH ABOVE CONTROL
410 SAVE STACK OVERFLOW
411 SAVE STACK UNDERFLOW
413 PAGEWIDTH BELOW MINIMUM, SETT080
414 PAGELENGTH BELOW MINIMUM, SET TO 10
415 PAGEWIDTH ABOVE MAXIMUM, SET TO 132

MeS-51

MCS-51

Special Assembler Error Messages

These error messages are displayed on the console. They are displayed immediately
before the assembler aborts operation. You should never receive one of these errors;
if you should encounter this type of error notify Intel Corporation via the Software
Problem Report included with this manual. The content of all output files will be
undefined. A list of all of the special assembler error messages is shown below:

Special Assembler Error Messages

800 UNRECOGNIZED ERROR MESSAGE NUMBER
801 SOURCE FILE READING UNSYNCHRONIZED
802 INTERMEDIATE FILE READING UNSYNCHRONIZED
M3 BAD OPERAND STACK POP REQUEST
804 PARSE STACK UNDERFLOW
805 INVALID EXPRESSION STACK CONFIGURATION

Error Messages

1-5

Error Messages

J-6

Fatal Error Messages

This type of error causes the assembler to cease normal processing and produce only
the listing.

900 USER SYMBOL TABLE SPACE EXHAUSTED
901 PARSE STACK OVERFLOW
902 EXPRESSION STACK OVERFLOW
903 INTERMEDIATE FILE BUFFER OVERFLOW
904 USER NAME TABLE SPACE EXHAUSTED

Invocation Line Error Messages

Invocation line errors cause the assembler to abort execution.

NO SOURCE FILE FOUND IN INVOCATION
UNRECOGNIZED SOURCE FILE NAME
ILLEGAL SOURCE FILE SPECIFICATION
SOURCE TEXT MUST COME FROM A FILE
NOT ENOUGH MEMORY
_AND_FILES ARE THE SAME
BAD WORKFILES COMMAND
BAD WORKFILES SYNTAX
BAD PAGELENGTH
BAD PAGEWIDTH
PAGELENGTH MISSING A PARAMETER
PAGEWIDTH MISSING A PARAMETER
DATE MISSING A PARAMETER
CANNOT HAVE INCLUDE IN INVOCATION
EOLENCOUNTEREDINPARAMETER
COMMAND TOO LONG
ILLEGAL CHARACTER IN INVOCATION
UNRECOGNIZED COMMAND: <control name>
NO PARAMETER ALLOWED WITH control
TITLE MISSING A PARAMETER
TOO MANY RESTORES
NO PARAMETER GIVEN FOR "REGISTERBANKS"
ERROR IN PARAMETER LIST FOR "REGISTERBANKS"

MCS-SI

APPENDIX K
CHANGING ABSOLUTE PROGRAMS

TO RELOCATABLE PROGRAMS

The program example on the following pages illustrates an absolute program written
to run on any member of the MCS-51 family of single-chip processors. This pro­
gram includes two simple ASCII-binary conversion routines and a set of output
routines.

The structure of this sample program can be examined and contrasted to the sample
modular program shown in Appendix G.

MCS-51 MACRO ASSEM6LcR

ISIS-II MCS-51 MACR~ ~SSEMBLER v1.0
NO OSJECT M:OULE REQUESTED
ASSEMBLER INVOKED SY: ASM51 :F1:SAMPLE.A51 NOOJ

LOC OSJ

ossa

JSSS 54595045
OBBC 205E5820
osco 544F2052
OSC4 45545950
OSC8 45204120
oacc 4E554D42
oaoo 4552
JilD2 OJ
O!l03 54595045
0807 20494E20
J!lDB 46495253
OSOF 54204E55
OB:3 40424552
J3E7 3A20
ilSE9 00
oacA 54595045
OSEe 2J494E20
JSF2 5345434F
03F6 4:44204E
il3FA 55404245
(lSFE 523A20
OCJ1 00
OC02 54484520
OC06 53554020
OCOA 495320
(lCOO 00

0000
0000 758920
00(l3 758003
0006 7S980A
0009 028E

OOOS 9008B8
GOOf 120065
0011 12005A

0014 900803

"

LINE SOURCE

1 CSEG
2 ORG 3000
3 ; STRING OEFINITIONS
4 TYPG_MSG: db 'TYPE ~x T~ RETYPE A NUMBER',OOH

5 NUM1_MSG: db 'TYPE IN FIRST NUMBER: ',DOH

6 NUM2_MSG: db 'TYPE IN SECOND NUMBER: ',OOH

7 SUM_MSG: db 'THE SUM IS ',COH

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

. 28

CSEG
; This is the initializing section. Execution al.ays
; starts ~t address 0 on power-up.
ORG 0
mov TMOO,.00100000S
moy TH1,#(-253)
moy SCON,"'0110'0S
setb TR1

set timer mode to auto-reload
; set timer for 110 BAUD

prepare the Serial Port
start clock

; This is the main program. It's an infinite loop,
; where each iteration prompts the console for 2
; input numbers and types out their sum.
START:
; type message explaining how to correct a typo
MOV OPTR,#tYPo_Msg
call put_string
call put.crl f
; get first number frOM console
MOV OPTR,.num'_msg

Figure K-l. Sample Absolute Program

PAGE

K-l

Changing Absolute Programs to Relocatable Programs

MCS·S1 MACQ~ ASSEMBLER

LDC OBJ LINE SOURCE

0017 120005
D01A 12005A
0010 7830
001F 120080
002Z 1Z005A

0025 900BEA
0028 120065
002~ 12005A
OOZe 7S34
003J 12008;)
0033 12005A

0036 7930
0038 120090
003t. 7934
003) 12009:)

0040 E530
0042 2534
0044 F538

0046 7938
0046 1200C5

0046 900C02
Q04c 120005
0051 H38
0053 7A04
0055 120070
0058 8061

0008
0008

0030
0030
0034
0038

0000
OOOA

005A .,400
005C 120078
005F 740A
0061 120078
0064 t'2

0065 E4
0066 93
0067 6000
0009 1 ZOJ7B
006C A3
0060 80F6

0001' 22

0070 E7

K·2

29
30
31
32
33
34
35
36
57
33
39
40
41
42
43
44
1t5
46
47
4$
49
50
:51
52
53
54
55
56
57
53
59
00
61
62
63
64
65
66
67
63
09
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
!IS
86
87
!IS
89
90
91
92
93
94
"5
96
97
95
99

100
101.
102

Cilll put. string
clill put_crlf
mov RO,l/num1
cilll ;et_num
cilll put.crlf
; ~et second number from consol~
mov DPT~,.num2_msg

tell Dut_string
cilll put_crlf
mov RO,lInum2
call get_num
call put_cdf
; convert the ASCII numbers to binary
mov R1,lInum1
c .. ll escbin
mov R1 ,,'num2
call ascbin
; add th~ 2 numbers, and store the results in SUM
mov a,num1
add a,num2
mav Sum,iI
; conv~rt SUM from binary to ASCII
mov R1,lIsum
call 1)1nasc
; outPut sum to console
mov O?T~,.sum.msg .
call put_string
mcv R1,#sum
mov R2,1I4
cClll put_data_str
jmp SH,rt

OSEG
ORG 8
STACK: ds 8

OSEG
DRG 30H
NUM1: ds 4
NUM2: ds 4
SUM: ds 4
;
cse ..

; CIt Dower-up the stack pOinter is
;initialized to point here

This is the console In routine cluster.

This routine outputs a Cllrriege Return end
ao Line Feed

PUT_CRLF:
CR eQu DOH ; cerriege retur",
L.!' eQu OAH line feed

mov A,#cr
cell put_Char
mov A,1I11
call put_chllr
ret

Routine outputs ao null-terminated string located
in CeDE memory, chose address is given in DPTR.

:>UT.STRING:
clr A
movc A,iA+OPTR
jz exit
call p"t.char
inc DPTQ
jmp put.strin;

EXIT:
ret

; Routine outputs a string located in DATA memory,
; whose ~ddress is in R1 ~nd its length in R2.
PUT_DAH_STQ:

mov A,"R1

Figure K-l. Sample Absolute Program (Cont'd.)

MCS-51

PAGE 2

MCS-Sl

MCS-51 MACRO ASSEMdLER

LOC 06J

0071 120078
0074 09
0075 OAF9
0077 22

0078 3099FO
0073 C2~9
0070 F599
007F 22

0080 H04
J082 A900

OOi!4 120095

0087 C2E7
0089 B41804
OOBC 115A
DOSE SOFO

0090 F7
0091 09
0092 OAFO
0094 22

00~5 30y8FO
0098 C298
009A E599
0;)9C 22

0030
0023
0020

0090 A801

REG
009F 08
OOAO Eo
OOAl C3
;)OA2 9430
DOh 75F064
00A7 A4
00A8 FB

00A9 08
OOAA Eo
00A6 9430
OOAO 7SFOOA
0080 A4

LINE

103
104
105
106
107
108
109
110
111
11 2
113
114
11 5
116
117
118
119
120
121
122
123
124
125
126
127
12~

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
14~

150
151
152
153
154
155
156
157
153
159
1,,0
101
152
163
164
165
166
167
BB
16;>
170
171
172
173
174
175
176

Changing Absolute Programs to Relocatable Programs

SOURCE

c~ll put.char
inc ~1
djnz R2,out_d~t~_str
rat

This routin~ outputs ~ single Ch~r~cter to console.
The character is given in A.

PUT_CHl!Q:
jnb T!,,)
clr TI
mov SSUF,A
ret

This routine gets ~ 4 char~cter string from console
and storas it in memory at the address given in RD.
If a AX is received, routine starts over again.

GET.NU'I:
mov R2,~4

mov R1,OOH
GET.LOO":

call get.char

set UP string length as 4
RO value may be needed for restart

Next 4 instructions handle AX· the routine starts
over if received

clr ACC.7

GO ON:

cjne A,~18H,GO.ON
call put_crlf
j .. p get.nu m

mov @Rl,A
inc Rl
djnz R2,get.loop
ret

clear the parity bit
if not AX· go on

This routine gets a single character from console.
The char~cter is returned in A.

GET.CHAR:
jnb RI,$
clr R I
mov A,SBUF
ret

This section h~ndles conversion from ASCII to binary
~nd back. The Din~ry numbers are signed one-byte
integers, i.e. their range is ·128 to +127. Their
ASCII represantation is always 4 Characters long·
l.e. a sign followed by 3 digits.

ZERC E'~U '0'
PLUS EQU '.'
:-1INUS EQU '.'

This routine converts ASCII to binary.
INPUT· a 4 character strinQ pointed at by Rl. The

number range must be ·128 to .127, and the
string must h~ve 3 digits preceded by a sign.

OUTPUT· a signed one-byte integer, located where
the input string started (pointed at by Rl).

~SCBIN:

mov RO,001H
; C.ompute first
TEMP equ 1<3

inc ,0
mov A,~RO

clr C
sub!:> A,#zero
mov 6,tllJO
mul AS
mov TE~P,A

; Rl original value is needed later
digit value, and store it in TEMP

Compute the second digit value
inc RO
mov A,'ilRO
sub':> A,#zero
mov 6,#10
mul AS

Figure K-l. Sample Absolute Program (Cont'd.)

"AGE 3

K-3

Changing Absolute Programs to Relocatable Programs

MCS-51 MACRO ASSEMBLER

LaC OBJ

OOSl 25
00B2 FB

00B3 08
00B4 E6
0085 C3
OOh 9430
00B8 2S
00B9 F8

OOiIA E7
008B 84ZD04

OOBE ea
OOBF F4
OOCO 04
00C1 FS

00C2 ES
000 F7
00e4 22

00E7

00C5 E7
OOCb 7723

00C8 30E704

OJCs 7720
OOCO 14
DaCE F4

OOCF 09
)000 75F064
0003 84
0004 2430
JOOb F7

0007 09
0008 ESFO
OOOA 75FOOA
0000 34
aOOE 2430
OOEO F7

OOEl 09
JOE2 ESFO
00:4 2430
OOE6 F7

OOE7 22

LINE

177
173
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
,." 5
196
1 97
He
1n
200
201
202
203
204
205
ZOb
207
20S
209
210
211
212
213
214
215
216
217
21tl
219
220
221
222
223
224
225
226
227
225
229
230
231
232
233
234
235
236
237
233
239
240

SOURCE

Add tne value of tne second digit to num.
add A,TEMP
mov TEMP,A

get tnird digit a"nd its value to total
inc RO
mov A,ilRO
clr C
subb A,lIzero
add A,TEMP
mov TEMP,A

test the sign, and comple.ent tne number if tne
sign is a minus

mov A,OlR1
cjne A,#minus,pos

mov A, TEMP
cpl A
inc A
mov TE"IP,A

;s~ip the next 4 instructions
;if the number is positive

epilogue- store the result and exit
pes:

mov A,TEM?
mov ilR1,A
ret

This rou,ine converts binary to ASCII.
INPUT- a signed one-byte integer, pointed at by ~~
OUTPUT- ~ 4 char~cter string, loc~ted ~here tne

input number was (pointed st by R1).
!3INASC:
SI~N bit Ace.7

~et the nurrtoal"',
mov A,ilR1

find its sign ~nd store its sign

:nov ;:Q1,/ilplus

jnb
Next

mov
dec
cpl

5i;:n,go_on2
3 1nstructions

w<1,</minu5
A
A

;store a plus sign (over­
;written by minuS if needed)
;test the sign bit

nendle negative numbers
;stor9 a minus sign

; "~actor out the first digit
Gw_LlN2:

inc R1
mov 8,.100
div AS
add A,I/zero
mov ~~1,A ;store the first digit

?actor out the second digit
1nc .1
:nov A,5
mov 5,.10
div A5
i!ldd A,#zero
mov iRl,A ;store the second digit

Store tne third digit
inc R1
mov A,g
i!ltid A,lIzero
mov ~R1,A ;stor. tne third digit

note thi!lt we return without restoring R1
ret

END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure K-l. Sample Absolute Program (Cont'd.)

K-4

MCS-51

PAGE 4

A (accumulator), 1-12,2-2
Absolute segments, 1-3
AC (auxiliary carry flag), 1-7, 1-13,2-7
ACAll code address, 3-4-3-5, B-2,

B-9-B-13
ACC (accumulator), 1-12, 1-13, 1-14
see a/so, CAll, 3-24
lCAll, 3-69, 3-70

ADD
Arithmetic Function, 1-10
A,lIdata, 3-6, B-2, B-9
A,@Rr, 3-7, B-2, B-9
A,Rr, 3-S, B-2, B-9
A,data address, 3-9, B-2, B-9

ADDC
Arithmetic function, 1-10
A,lIdata, 3-10, B-2, B-9
A,@Rr, 3-11, 3-12, B-2, B-9
A,Rr, 3-13, B-2, B-9
A,data address, 3-14, B-2, B-9, B-IO

Address, Data unit, 1-9, 1-10
AJMP code address, 3-15, B-2, B-9-B-12
see~/so, In-Block Jumps and calls, 2-S

JMP, 3-59
LJMP, 3-71
SJMP, 3-122

ANl "
logical function, 1-10
A,lIdata, 3-16, B-2, B-1O
A,@Rr, 3-17, B-2, B-IO
A,Rr, 3-1S, B-2, B-1O
A ,data address, 3-19, B-2, B-1O
C,bit address, 3-20, B-2, B-ll
C,Ibitaddress, 3-21, B-2, B-II
data address ,lIdata, 3-22, B-2, B-1O
data address ,A, 3-23, B-2, B-1O

Arithmetic and logic Unit, 1-7, 1-10
ASCII Characters
in strings, 2-10, 4-S
Codes, H-I

ASM51 invocation, 1-4-1-6
Assembler, 1-1
Assembler (ASM51), 1-3
Assembler controls, 1-1
Assembler directives, 1-1,4-1
Assembler State Controls 4-1,4-10
Assembly-time expressions, 2-1
ATTRIBUTES, 7-20

B (multiplication register), 1-7, 1-12
Binary numbers, expressing, 2-9
BIT ADDRESSABLE, 4-4
Bit addressing, 1-14,2·1,2-5-2-7
Bit address space, I-S, 1-9,2-6
Bit, Data unit, 1-7, 1-9
BIT directive, 2-1, 2-5, 2·11, 4-1, 4-5,

4-10, C-I

INDEX

Bit selector (" . "), 1-13, 2-5
BNF, A-I
Boolean Functions, 1-6
see a/so, ANl, 3-20, 3-21
ClR, 3-34, 3-35
CPl, 3-37, 3-3S
JB, 3-53, 3-54
JBC, 3-55, 3-56
JC, 3-57, 3-5S
JNB, 3-61, 3~62
JNC, 3-63, 3-64
MOV, 3-79, 3-S4
ORl, 3-106, 3-107
SETB, 3-120, 3-121

Bracket Function, 5-9, E-I
BSEG directive, 4-1, 4-11, C-l
Byte, Data unit, 1-7, 1-9

C,2-2
CAll code address, 3-24
see a/so ACAll, 3-4, 3-5
lCAll, 3-69, 3-70

calI-pattern, 5-2, 5-3, 5-5
Character strings in expressions, 2-10, 2-11,

4-S, 4-9
see a/so ASCII, H-I

CJNE
@Rr,lIdataaddress,3-25, 3-26, B"3, B-12
A,lIdata,codeaddress, 3-27, 3-2S, B-3,

B-12
A,data address ,code address, 3-29, 3-30,

B-3, B-12
Rr,lIdata ,code address, 3-31, 3-32, B-3,
B-12

ClR
A, 3-33, B-3, B-12
C, 3-34, B-3, B-12
bit address, 3-35, B-3, B-12

Code Addressing, 2-1, 2-7, 2-9
Code address space, I-S
CODE directive, 2-1, 2-11,4-1,4-3,4-7,

4-10
Comment Function, 5-S, E-I
commercial at sign @, 2·3
conditional assembly, 5-2
Console I/O built-in macro, 5-IS, E-I
Control line, 6-2, A-2
Conversion to Hexidecimal Format, 1-4
CPl
logical Function, 1-10
A, 3·36, B-3, B-13
C, 3-37, B-3, B-ll
bit address, 3-3S, B-3, B-ll

CSEG directive, 4-1, 4-11, C-l
CY (carry flag), 1·13,2-7

Index-I

Index

DA (control) see DATE control
DA
Arithmetic function, 1~1O
A, 3-39, B-3, B-12

.Data Addressing, 2-4, 2-5
on chip, 2-1

Data address space, I-S, 1-9
DATA directive, 2-1, 2-11, 4-1, 4-3, 4-6,

4-10, C·l
Data Pointer (DPTR), 1-10,2-2
DATE control, 6-2, 6-4, D-I
DB (control) see DEBUG control
DB directive, 4-1, 4-S, Col
DB IT directive, 4-1, 4-7, 4-S, C-l
DEBUG control, 1-3,6-2,6-4, D-I
Debugging, 1-2
DEC
Arithmetic function, 1-10
@Rr, 3-40, B-3, B-9
A, 3·41, B-3, B-9
Rr, 3-42, B-3, B-9
data address, 3-43, B-3, B-9

Decimal numbers, expressing, 2-9
DEFINE, 5-2-5-7, E-I
delimiters,5-1S-5-21
Directives
Assembler, 4-1-4-12, C-I
end of program, 4-10
location counter control, 4-7, 4-S
symbol definition, 4-3-4-7

DIV
Arithmetic function, 1-10
AB, 3-44, B-3, B-ll

DJNZ
Rr,codeaddress, 3-45, B-4, B-12
data address ,code address, 3-46,3-47,

B-4, B-12
dollar sign ($), 4-2
DPH, 1-7, 1-12
see also Data Pointer, 2-2

DPL, 1-7, 1-12
see also Data Pointer, 2-2

DPTRsee Data Pointer, 2-2
DS directive, 4-1, 4-7, C-I
DSEG directive, 4-1, 4-11, C-I
DW directive, 4-1, 4-S, 4-9, C-l

EA (Enable All Interrupts), 1-16,2-7
EJ see EJECT
EJECT control, 6-2, 6-5, D-I
END directive, 4-1, 4-10, C-I
EP see ERRORPRINT control
EQS built-in macro, 5-12, 5-13, E-I
EQU directive, 4-1, 4-4, 4-5, 4-12, C-I
Error messages
Console, printed at
Fatal,7-2
Internal, 7-2
1/0,7-1

Listing file, printed in, 7-4-7-15
control,7-13-7-14
Fatal,7-15

Index-2

macro, 7-10-7-12
source, 7-4-7-10
Special,7-14

ERRORPRINT control, 6-2, 6-5, D-I
ES (Enable Serial port interrupt), 1-16,2-7
ESCAPE macro function, 5-9, E-I
ETO (Enable Timer 0 interrupt). I-IS, 2-7
ETl (Enable Timer I interrupt), I-IS, 2-7
EVAL built-in macro, 5-11, 5-12, E·I
EXO (Enable external interrupt 0), I-IS, 2-7
EXI (Enable external interrupt I), 1-18,2-7
EXIT built-in macro, 5-15, E-I
EXTIO, 1-16
EXTIl,I-16
extensions of filenames, 1-4
External Data address space, 1-8
EXTRN directive, 4-1, 4-9, 4-10, C-I

FO, 1-7,1-13,2-7
function, built-in macro, 5-2

GEsee GEN
GEN
control, 6-2, 6-6, D-I

general relocatable expressions, 2-16
Generic call, 2-9
Generic jump, 2-9
GENONLY
control, 6-2, 6-6, D-I

GES built-in macro, 5-12, 5-13, E-I
grammar, language, A-I
GO see GENONL Y
GTS built-in macro, 5-12, 5-13, E-I
see also DATE, 6-4

TITLE,6-12

hardware, 1-6
Hexadecimal, 2-9

IC see INCLUDE control
IDATA Directive, 2-1, 2-4, 2-11, 4-1, 4-3,

4-6,4-10
IDATA space, 2-3
IE (Interrupt Enable), 1-7, 1-12, 1-15, 1-16,

1-18
lEO (Interrupt 0 Edge flag), 1-14,2-7
IEI (Interrupt 1 Edge flag), 1-14,2-7
IF (built-in macro), 5-13, 5-14, E-I
Immediate Data(#), 2-1,2-3
INBLOCK, 4-4
In-Block Jumps, 2-8
IN built-in macro, 5-18, E-I
INC
Arithmetic function, HO
@Rr, 3-48, B-4; B-9
A, 3-49, B-4, B-9
DPTR, 3-50, B-4, B-l1
Rr, 3-51, B-4, B-9
data address, 3-52, B-4, B-9

MCS-51

MCS-Sl

INCLUDE control, 6-3, 6-6, D-I
Indirect addressing (@), 1-9, 2-1, 2-2, 2-3
INPAGE,4-4
instruction cycle, 1-7
INTO (Interupt 0 input pin), 1-15,2-7
INTI (Interupt I input pin), 1-15,2-7
Internal data address space,
directly addressable, 1-8
indirectly addressable, 1-8

interrupt
control,I-15-1-17
priority, 1-6

invocation line, 6-1
invocation line errors, 7-1,7-2, 7-3
110 port, 1-6
IP (Interrupt Priority), 1-7, 1-12, I-IS, 1-16
ISEG, 4-1, 4-11
ITO (Interrupt 0 Type control bit), 1-14,2-7
IT! (Interrupt 1 Type control bit), 1-14,2-7

JB bit address ,code address, 3-53, 3-54,
B-4, B-9

lBC bit address ,code address, 3-55, 3-56,
B-4, B-9

JCcodeaddress, 3-57, 3-58, B-4, B-IO
JMP code address, generic, 3-59
JMP @A+DPTR, 3-60, B-4, B-lO
JNB bit address ,code address, 3-61,3-62,

B-4, B-9
JNC code address, 3-63, 3-64, B-4, B-lO
JNZ code address, 3-65, 3-66, B-4, B-lO
JZcodeaddress, 3-67, 3-68, B-5, B-lO

Label, 4-2, 4-3
LCALL code address, 3-69, 3-70, B-5, B-9
see also ACALL, 3-4, 3-5

CALL,3-24
LEN built-in macro, 5-16, E-I
LES, 5-12, 5-13, E-I
LIsee LIST
LIST control, 6-3, 6-7, D-I
listing file, 1-4
format, 7-15-7-17
heading, 7-18
literal character (*), 5-2, 5-21,5-22

listing file trailer, 7-21
LJMP code address ,3-71,3-72, B-5, B-9
see also AJMP, 3-15

JMP, 3-59
SJMP, 3-122

local-symbol-list, 5-2, 5-6, 5-7, E-I
location counter ($), 2-12,4-2
symbol,2-2

Long Jumps or Calls, 2-8
see also LCALL, 3-69, 3-70

LJMP, 3-71, 3-72
L TS, 5-12, 5-13, E-I

machine instructions, I-I
macro
arithmetic expressions in, 5-11, E-3
-body, 5-2, 5-3, 5-7
built-in, 5·2
delimiters, 5-18-5-21
expressions, 5-10
identifier, 5-3
listing format, 7-15-7-18
parameters, 5-5
-time, 5-2

MACRO control, 6-3, 6-7, D-I
MATCH built-in macro, 5-17, E-I
memory addresses, 1-8
METACHAR built-in macro, 5-10, E-I
metacharacter (tJ,Io), the, 5-2
Modular Programming, 1-2
module, 1-3
monolithic programs, 1-2
MOV

@Rr,#data, 3-72, B-5, B-lO
@Rr,A, 3-73, B-5, B-13
@Rr,dataaddress, 3-74, B-5, B-l1
A,#data, 3-75, B-5, B-lO
A,@Rr, 3-76, B-5, B-12
A,Rr, 3-77, B-5, B-12
A,data address, 3-78, B-5, B-12
C,bitaddress, 3-79, B-5, B-II
DPTR,#data, 3-80, B-5, B-11
Rr ,#data, 3-81, B-5, B-II
Rr, A, 3-82, B-5, B-13
Rr ,data address, 3-83, B-S, B-1 I
bit address, C, 3-84, B-5, B-II
data address ,#data, 3-85, B-5, B-lO
dataaddress,@Rr,3-86,B-5,B-II
data address, A, 3-87, B-S, B-13
data address ,Rr, 3-88, B-6, B-II
data address ,data address, 3-89, B-6, B-1 I

MOVC
A,@A+DPTR, 3-90, B-6, B-II
A,@A+PC, 3-91, 3-92, B-6, B-II

MOVX
@DPTR,A, 3-93, B-6, B-13
@Rr,A, 3-94-3-95, B-6, B-13
A,@DPTR, 3-96, B-6, B-12
A,@Rr, 3-97, 3-98, B-6, B-12

MPL,5-1
MR see MACRO control
MUL
Arithmetic function, 1-10
AB, 3-99, 3-100, B-6, B-II

NAME directive, 4-1, 4-10, 7-18, 7-20
NES, 5-12, 5-13, E-I
nibble, Data unit, 1-9
NODBsee NODEBUG control
NODEBUG control, 6-2, 6-4, D-I
NOEP see NOERRORPRINT control
NOERRORPRINT control, 6-2, 6-5, D-I
NOGE see NOGEN control

Index

Index-3

Index

NOGEN control, 6-2, 6-6, 0-1
listing format, 7-15-7-18

NOLI see NOLIST control
NOLIST control, 6-3, 6-7, 0-1
NOMACRO control, 6-3, 6-7,0-1
NOMR see NOMACRO control
NOOBJECT control, 6-3, 6-8, 0-1
NOOJ see NOOBJECT control
NOP, 3-101, B-6, B-9
NOPAGING control, 6-3, 6-8,0-1
NOPI see NOP AGING control
NOPR see NOPRINT control
NOPRINT control, 6-3, 6-10,0-2
NOREGISTERBANK, 6-3, 6-11, 0-2
NOSB see NOSYMBOLS control
NOSYMBOLS control, 6-3, 6-11,0-2
NOXR see NOXREF control
NOXREF control, 6-3, 6-13,0-2
null string

assembler, 2-11, 4-8
macro processor, 5-2

NUMBER, 4-10
Numbers
specifying, 2-9
representation of, 2-10

OBJECT control, 6-3, 6-8, 0-1
Object file, 1-3
OBJHEX Code conversion program, 1-4
Octal, 2-9
OJ see OBJECT control
Operands 1#
Operators, Assembly-time
Arithmetic, 2-13
Logical, 2-13
Relational, 2-14, 2-15
Special Assembler, 2-14

Operator Precedence, 2-15
Operators, macro, 5-10
ORG directive, 4-1, 4-2, 4-11, C-l
ORL

Logical function, 1-10
A,l#data, 3-102, B-6, B-IO
A,@Rr, 3-103, B-6, B-IO
A,Rr, 3-104, B-6, B-IO
A,data address, 3-105, B-6, B-lO
C,bit address, 3-106, B-6, B-IO
C,/bitaddress, 3-107, B-6, B-ll
data address , I#da ta ,3-108, B-6, B-lO
data address ,A, 3-109, B-6, B-lO

OUT built-in macro, 5-18, E-l
OV (overflow flag), 1-7, 1-13,2-7

P (parity flag), 1-7, 1-13, 2-7
PAGING control, 6-3, 6-8, 0-1
PAGELENGTH control, 6-3, 6-9,0-1
PAGEWIDTH control, 6-3, 6-9, 0-1
PC, 1-7, 1-11,2-2
see also, program counter, 2-2

PI see PAGING control
PL see P AGELENGTH control

Index-4

POP data address, 3-110, B-7, B-12
Port 0 (PO) see 110 Port, 1-6
Port I (P I) see 110 Port, 1-6
Port 2 (P2) see 110 Port, 1-6
Port 3 (P3), 1-14
see also 110 Port, 1-6

poundsign (1#), 2-3
PR see PRINT control
predefined bit addresses, 2-7
predefined symbolic register addresses
(ARO-AR7),4-12

PRINT control, 6-3, 6-10, 0-2
Program, 1-3
Program counter, 1-6, 1-9,2-2
Program linkage, 4-1, 4-9
Program memory, 1-8
Program Status Word (PSW), 1-13
PS (Priority of Serial Port Interrupt), 1-16,

2-7
PSW see Program Status Word, 1-13
PTO (Priority of Timer 0 Interrupt), 1-16,

2-7
PT! (Priority of Timer I Interrupt), 1-16,

2-7
PUBLIC directive, 4-1, 4-9
public symbols, 2-16
PUSH data address, 3-111, B-7, B-12
PW see P AGEWIDTH control
PXO (Priority of External Interrupt 0),

1-16,2-7
PXI (Priority of External Interrupt I),

1-16,2-7

RO, Rl, R2, R3, R4, R5, R6, R7, 1-11,2-2
see also, registers, General-purpose, I-II

RAM memory, 1-6
RD (Read Data external), 1-15,2-7
register
Banks, 1-11
General-purpose, 1-11
Program addressable, 1-12
value at reset, 1-17

register address symbols ARO-AR7, 2-2
REGISTERBANK, 6-3, 6-11
Relative Jumps, 2-8
Relative offset, 2-8
Relocatable Expression Evaluation, 2-16
relocatable object code, 1-3
relocatable segments, 2-16
relocatable symbol, 2-16
Relocation and Linkage, 1-4
relocation types, 4-3
REN (Receive Enable), 1-15,2-7
REPEAT built-in macro, 5-15, E-I
Reset, 1-17
RESTORE control, 6-3, 6-10, 0-2
RET, 3-112, 3-113, B-7, B-9
RET!, 3-114,3-115, B-7, B-9
return value, 5-2
RUI,I-4
RLA, 3-116, B-7, B-9
RLC A, 3-117, B-7, B-9

MCS-51

MCS-51

RL-time expressions, 2-1
RR A, 3-118, B-7, B-9
RRC A, 3-119, B-7, B-9
RS see RESTORE control
RSO(RegisterSelectBitO), 1-7, 1-11, 1-12

2-7
RSI (Register Select Bit 1),1-7,1-11,1-13,

2-7
RSEG,4-1,4-11
RXD (Serial Port Receive pin), 1-15, 2-7

SA see SAVE control
SAVE control, 6-3, 6-10
SB see SYMBOLS control
SBUF (Serial Port Buffer), 1-7, 1-12
SCON (Serial Port Control), 1-7, 1-12, 1-15
scope, 2-11
external, 2-11
local, 2-11
public, 2-11

segment, 1-2
SEGMENT directive, 4-1, 4-3
segment type, 2-1, 2-11,4-10
attributes, 4-3
BIT, 2-11
CODE, 2-11
conventions, 2-12
DA'fA,2-11
IDATA,2-11
in expressions, 2-15
of operands, 2-3-2-S, 2-8,2-9
of symbols, 4;4-4-6
XDATA,2-11

Segment Selection Directives, 4-1, 4-11
serial 110 Port, 1-6, 1-7, I-IS
SETB

C, 3-120, B-7, B-12
bit address, 3-121, B-7, B-12

SET built-in macro, 5-11, E-l
SET directive, 4-1, 4-S, C-l
simple relocatable expressions, 2-16
SINT,I-16
SJMPcodeaddress, 3-122, B-7, B-ll
SMO (Serial Mode Control bit 0), 1-15, 2-7
SMI (Serial Mode Control bit I), I-IS, 2-7
SM2 (Serial Mode Control bit 2), I-IS, 2-7
source listing, 7-18
SP (Stack Pointer), 1-12, 1-17, 1-19
see also stack, 1-11

Special Assembler symbols, 2-1, 2-2
see also EQU directive, 4-4, 4-S

Stack, 1-11
stack segment, 4-4
Statement Labels, 4-2
Storage Initialization/Reservation

directives (DS, DB, DW, DBIT), 4-1,
4-2,4-7-4-9

SUBB
Arithmetic function, 1-10
A,#data, 3-123, B-7, B-ll
A,@Rr, 3-124-3-12S, B-7, B-ll
A,Rr, 3-126,127, B-7, B-ll
A,data address, 3-128, 3-129, B-7, B-11

SUBSTR built-in macro, 5-16, 5-17, E-l
SWAP A, 3-130, B-7, B-12
symbol, 2-11,4-4
definition, 4-1, 4-2, 4-3
names, 4-2
see also BIT, 4-5

DATA,4-6
EQU, 4-4, 4-5
SET,4-5
XDATA,4-6

use of, 2-11, 2-12
SYMBOLS control, 6-3, 6-11, D-2

TITLE control, 6-3, 6-12, D-2
TO (Timer/counter 0 External flag), 1-15,

2-7
T1 (Timer/counter 1 External flag), 1-15,

2-7
TCON (Timer Control), 1-7, 1-12
TFO (Timer 0 Overflow Flag), 1-13, 2-7
TFI (Timer 1 Overflow Flag), 1-13,2-7
THO (Timer 0 high byte), 1 c 7, 1-12
THI (Timer 1 high byte), 1-7, 1-12
TIMERO,I-17
TIMERl,I-17
TLO(TimerO low byte), 1-7, 1-12
TLl (Timer I low byte), 1-7, 1-12
TMOD (Timer Mode), 1-7,1-12, 1-14
TRO (Timer 0 Run control bit), 1-14, 2-7
TRI (Timer 1 Run control bit), 1-14,2-7
TT see TITLE control
two-pass assembler, 4-1
TXD (Serial Port Transmit bit), 1-15,2-7
Type, 2-11
address, 2-11
number, 2-11
register, 2-11
segment, 2-11

TYPE,7-20
typeless symbol, 4-10
type "REG", 4-4

UNIT,4-4
UPM,I-6
UPP, 1-6
Use of symbols, 2-11
USING directive, 2-2, 4-1, 4-12

Value, 2-11
constant value, 2-11
register name, 2-11
segment base address, 2-11
symbol address, 2-11

VALUE,7-20

WF see WORKFILES control
WHILE built-in macro, S-14, E-l
words, Data Unit, 1-9
WORKFILES control, 6-3, 6-12, D-2
WR (write Data for External Memory),

1-15,2-7
Writing, Assembling, and Debugging an
MCS-51 Program, 1-4

Index

Index-S

Index

XCH
A,@Rr, 3-131, 8-7, 8-12
A,Rr, 3-132, 8-7, 8-12
A,dataaddress, 3-133, 8-7, 8-12

XCHD A,@Rr, 3-134, 3-135, 8-8, 8-12
XDATA directive, 2-1, 2-11, 4-1, 4-3, 4-6,

4-10
XR see XREF control
XREF control, 6-3, 6-13, 7-20, 7-21, D-2

Index-6

XRL
Logical function, 1-10
A,#data, 3-136, 8-8, 8-10
A,@Rr, 3-137, 8-8, 8-10
A,Rr, 3-138, 8-8, 8-10
A,dataaddress, 3-139, 8-8, 8-10
data address ,#data, 3-140, 8-8,B-1O
data address ,A, 3-141, 8-8, 8:10

XSEG directive, 4-1, 4-6, 4-11, C-2

MeS-51

