
ICE-86ATM MICROSYSTEM
IN-CIRCUIT. EMULATOR

OPERATING INSTRUCTIO·NS
FOR ISIS-II USERS

OrderNumber: 162554-001

..

Copyright © 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

PRINT HISTORY

Rev. Revision History Date

-01 Original Issue 5/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any Circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used. only to identify Intel
products:

BXP Intelevision Multibus
CREDIT Intellee Multimodule
i iRMX Plug-A-Bubble
ICE iSBC PROMPT
iCS iSBX Promware
im Library Manager RMX/SO
Insite MCS System 2000
Intel Megachassis UPI
intet Micromap ~Scope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A362/5811 3K DO

PREFACE I

This document describes the purpose and the use of the ICE-86A In-Circuit
Emulator for the Intel 8086 microprocessor.

The ICE-86A module is an optional addition to the Intellec Microcomputer
Development System. The ICE-86A module aids in testing and modification of the
hardware and software for new products designed around the 8086 microprocessor.

Chapter 1 describes the mission of the ICE-86A emulator as a development aid for
system designs based on Intel's iAPX-86 microprocessor.

Chapter 2 gives step-by-step instructions for installing the ICE-86A hardware in the
Intellec chassis and connecting the ICE-86A emulator to the user prototype system.

Chapter 3 presents a hands-on debugging session with the ICE-86A emulator.

Chapter 4 describes the elements of the ICE-86A command language, the notation,
conventions, and the syntactic rules used in this manual.

Chapter 5 defines the operands, operators, and expressions used in the ICE-86A
commands.

Chapter 6 contains discussions and specifications of the emulation and trace control
commands.

Chapter 7 contains discussions and specifications of the interrogation and utility
commands.

Chapter 8 contains discussions and specifications of the compound and macro com­
mands used in the ICE-86A emulator.

Appendix A is a list of all ICE-86A keywords (literals), and their abbreviations, in
alphabetical order.

Appendix B is a list of ICE-86A error and warning messages with interpretations.

Appendix C contains a syntactic summary of the ICE-86A commands.

Appendix D presents the electrical and physical characteristics of the ICE-86A
emulator.

Appendix E presents the 8086 assembler instructions in hexadecimal order.

Appendix F contains the iSBC 86/12 and iSBC 86/12A fix.

Appendix G explains the use of the CLOCK, RDY, and RWTIMEOUT.

Appendix H provides installation procedures for the ICE-86 upgrade.

Appendix I explains the use of the Floating Point Macros with the ICE-86A
emulator.

Appendix J contains schematic drawings for reference.

iii

iv

To use this manual effectively, you need to understand the 8086 architecture and
techniques of programming and debugging. The following publications contain
detailed information related to this manual:

ISIS-II User's Guide
808018085 Assembly Language Programming Manual
ISIS-II 808018085 Macro Assembler Operator's Manual
A Guide To InteJJec Microcomputer Development Systems
The 8086 Family User's Manual
8086 Family Utilities Users Guide
The 8086 Family User's Manual Numerics Supplement
80861808718088 Macro AssembJy Language Reference Manual
80861808718088 Macro Assembler Operating Instructions
PLIM-86 User's Guide
8089 Real-Time Breakpoint Facility Operating Instructions for

ICE-86AI88A In-Circuit Emulator Users

9800306
9800301
9800292
9800558
9800722
9800639

121586
121623
121624
121636

162490

A complete list of publications for use with the InteUec Series III Microcomputer
Development System is provided in the following manual:

InteJJec Series III Microcomputer Development System Product
Overview 121575

CHAPTERl
INTRODUCTION TO THE
ICE-86A EMULATOR

PAGE

ICE-86A In-Circuit Emulator 1-1
The ICE-86 and ICE-86A Emulators•. 1-2
Integrated Hardware/Software Development 1-3
ICE-86A In-Circuit Emulation 1-4

User Program Execution Control 1-4
Memory Mapping 1-4
Symbolic Debugging 1-5
Display 1-6
Operating Modes 1-6

Emulation 1-6
Interrogation and Utility 1-8

Macro and Compound Commands 1-9
ICE-86A Architecture 1-10

ICE-86A Software 1-10
ICE-86A Firmware 1-11
ICE-86A Hardware I-II
Ruffer Box Signals 1-11

Generalized Development Cycle with the
ICE-86A Emulator 1-13

A Generalized Emulation Session 1-14

CHAPTER 2
ICE-86A INSTALLATION PROCEDURES
ICE-86A Components 2-1
Required and Optional Hardware 2-1
Hardware Installation Procedures 2-2

Installation Procedures for lntellec Model
.800 ·and 888•. 2-2

Installation Procedures for Intellec Series II
Model 220, 225, and 230, and Intellec
Series HI Model 286 2-4

Acceessing External Buffer Box Signals and
Ground Pin•................. 2-5

Confidence Testing 2-6

CHAPTER 3
SAMPLE ICE-86A SESSIONS
ATTBE TERMINAL
How To Use This Chapter 3-1
Analysis of the Sample Program 3-2
ICE-86A Hands-On Demonstration. 3-5

Session 1 3-6
Session 2 3-12

CHAPTER 4
ELEMENTS OF THE ICE-86A
COMMAND LANGUAGE
Introduction 4-1
Notation and Conventions Used in This Manual 4-3
Syntactic Rules Used in the Manual 4-4
Character Set•..•......................... 4-6

CONTENTS I

PAGE

Introduction to Tokens 4-6
Keywords 4-7

Reference Keywords 4-7
Registers 4-7
Status Registers 4-9
8086 Pin References 4-11
Emulation Registers 4-11

Command Keywords 4-11
Simple Commands 4-12
Compound Commands 4-13
Macro Commands 4-13
Utility Command Keywords 4-13
Number Base and Radix Commands 4-14
Memory Mapping Command Keywords 4-14
Hardware Register Command Keywords 4-14
Memory and Port Contents Command

Keywords 4-15
Symbol Table and Statement Number Table

Command Keywords 4-15
Emulation Control Command Keywords 4-16
Trace Control Commands 4-16

User Names 4-17
Symbols 4-17
Statement Numbers : 4-17

Special Tokens 4-18
Entering Commands at the Console 4-18

CHAPTERS
EXPRESSIONS
Operands•................... 5~2·

Numeric Constants 5-2
Masked Constants 5-3
Keyword References 5-3
Symbolic References 5-4
Statement Number Reference 5-4
Memory References 5-5
Typed Memory Reference 5-6
Port References•... 5-7
String Constants 5-7
Parenthesized Expressions 5-7

Operators•.. 5-7
Classes of Operators 5-8
Arithmetic Operators 5-8
Content Operators 5-11
Relational Operators 5-11
Logical Operators 5-11

Arithmetic and Logical Semantic Rules 5-13
How Expressions are Evaluated 5-14

"Case Studies" in Evaluating Expressions 5-14
Command Contexts 5-21

y

CHAPTER 6 PAGE
EMULATION AND TRACE
CONTROL COMMANDS
Emulation Control Commands 6-1

Discussion 6-2
Execution Match Condition 6-4
Non-Execution Match Condition 6-5

Address Match Range 6-6
Match Status List 6-7
Data Match Range 6-7
Segment Register Usage 6-8
Match Condition Restrictions 6-8

Breakpoint Restrictions 6-9
Setting The Go-Register 6-12
Setting Tracepoint Registers 6-13
Command Signal Timeout 6-13
Emulation Timer 6-13
Set Breakpoint Register Command 6-15
Set Tracepoint Register Command 6-17
Go Command 6-18
Set GO-Register (GR) Command 6-20
STEP Command 6-21
Display Emulation Register Command 6-22
Set CLOCK Command 6-23
Display CLOCK Command 6-23
Set RWTIMEOUT Command 6-24
Display RWTIMEOUT Command 6-24
ENABLE/DISABLE RDY Command 6-25

Trace Control Command 6-26
Discussion 6-26
Trace Display Mode 6-27
Moving the Buffer Pointer 6-27
Displaying Trace Data 6-28

Trace Data Display Restrictions 6-28
Trace Display Formats 6-29
Display of Trace Data in Frames Mode 6-29
Display of Trace Data in Instructions Mode 6-30
Operand Fields 6-30

Display of Cycles in Instruction Mode 6-32
Gaps in Trace in Instruction Mode 6-32

Extended Example of Trace Displays 6-33
Set TRACE Display Mode Command 6-35
ENABLE/DISABLE TRACE Command 6-36
Display TRACE Command 6"37
MOVE, OLDEST, and NEWEST Commands ... 6-38
PRINT Command 6-39

CHAPTER 7
INTERROGATION AND UTILITY
COMMANDS
Utility Commands Involving ISIS-II 7-2

Discussion 7-2
ICE86 Command 7-5
EXIT Command 7-6

VI

CONTENTS (Cont'd.)

PAGE
LOAD Command
SAVE Command
LIST Command

Number Bases and Radix Commands
Discussion
Console Input Radixes: SUFFIX Command
Console Output Radixes: BASE Command
Set or Display Console Input Radix Commands ..
Set or Display Console Output Radix Commands .

Hardware Register Commands
Discussion
Set Register Command
RESET HARDW ARE Command
Set or Display RQGT Command
Display BUS Command

Memory Mapping Commands
Discussion
MAP DISK Command
MAP INTELLEC Command
Set MAP Status Command
Display MAP Status Command
RESET MAP Command

Set Memory and Port Contents Commands
Discussion

Memory Content References
Setting Memory Contents
Port Content References

Set Memory Command
Set Input/Output Port Contents Command

Symbol Table and Statement Number Table
Commands

7-7
7-8
7-9

7-10
7-10
7-10
7 -11
7-12
7-13
7-14
7-14
7-20
7-21
7-22
7-23
7-24
7-24
7-28
7-29
7-30
7-32
7-33
7-34
7-34
7-34
7-37
7-40
7-43
7-44

7-45
Discussion 7-45
DEFINE Symbol Command 7-51
Display Symbols Command 7-52
Display Statement Numbers Command 7-53
Display Modules Command 7-54
Change Symbol Command•............. 7-55
REMOVE Symbols Command 7-56
TYPE Command 7-57
Set DOMAIN Command 7-58
RESET DOMAIN Command 7-59
ENABLE/DISABLE SYMBOLICALLY

Command 7-60
Display Commands 7-61

Discussion 7-61
Registers 7-61
Status Register 7-63
Pin References 7-65

General Formats for Numeric Values 7-65
The Display NESTING Command 7-78
The EVALUATE Command 7-78
The Disassembly Command 7-80
The DEFINE DASM Command 7-80

PAGE
Display Processor and Status Registers

Command 7-81
Display Memory Command 7-82
Display I/O Command 7-83
Display STACK Command 7-84
Display Boolean Command 7-85
Display NESTING Command 7-86
EVALUATE Command 7-87
DASM Command 7-88
DEFINE DASM Command 7-89

CHAPTER 8
ICE-86A ENHANCEMENTS
Compound Commands 8-1

REPEAT Command 8-1
COUNT Command.......................... 8-3
IF Command 8-5
Nesting Compound Commands 8-6

Macro Commands 8-8
Defining and Invoking Macros 8-8
Local and Global Defaults 8-9
Formal and Actual Parameters 8-10
Details on Macro Expansion 8-12
The ENABLE/DISABLE EXP ANSION

Command 8-12
Macro Table Commands 8-12
Saving Macros 8-14
Further Examples 8-14
Off-line Facilities 8-16

INCLUDE Command ' 8-16
WRITE Command 8-17

TABLE TITLE PAGE

I-I Summary of ICE-86A Emulation
Commands 1-7

1-2 Summary of Basic ICE-86A Interrogation
and Utility Commands 1-8

3-1 Key Addresses in CARS Logic 3-16

CONTENTS (Cont'd.)

APPENDIX A
ICE-86A KEYWORDS AND
THEIR ABBREVIATIONS

APPENDIXB
ERROR MESSAGES

APPENDIXC
ICE-86A COMMAND
SYNTAX SUMMARY

APPENDIXD
ELECTRICAL AND PHYSICAL
CHARACTERISTICS OF THE
ICE-86A EMULATOR

APPENDIXE
INSTRUCTIONS IN
HEXADECIMAL ORDER

APPENDIXF
iSBC 86/12 AND iSBC 86/12A FIX

APPENDIXG
GUIDELINES FOR USE OF
CLOCK, READY, AND RWTIMEOUT

APPENDIXH
INSTALLING UPGRADE KIT

APPENDIX I
8087 DEBUGGING SUPPORT

APPENDIXJ
REFERENCE SCHEMATICS

TABLESi

TABLE

4-1
4-2
4-3
5-1

TITLE PAGE

Definition of GO Command Functions 4-2
Notational Symbols 4-3
Classes of Hardware Elements 4-7
Elements of Numeric Constants 5-3

vii

TABLE

5-2

5-3
5-4
5-5
5-6
5-7
5-8
5-9
7-1
7-2
7-3

I
TITLE PAGE

ASCII Printing Characters and CODES
(20H-7EH) .•...............•.......

ICE Operators
Classes of Operators
Content Operators
Arithmetic and Logical Semantic Rules .. .
Representative Cases of Expressions
Conditions and Notation for Examples .. .
Command Contexts•
8086 General Registers •................
Pointer Registers
Index Registers

I

5-8
5-9

5-10
5-11
5-13
5-16
5-17
5-22
7-14
7-15
7-15

FIGURE TITLE PAGE

1-1
1-2
1-3

2-1
3-1
3-2
4-1.
5-1
6-1
7-1

F-I

viii

8086 CPU Functional Block Diagram 1-1
ICE-86A Functional Block Diagram. 1-12
Typical Development Cycle with ICE

Module 1-14
Orientation of Circuit Boards 2-3
CARS Module Listing 3-3
DELAY Module Listing 3-4
Example of a GO Command 4-1
A Simple Model of Evaluation 5-15
Non-Execution Match Condition 6-10
REAL, DREAL, and TREAL Memory

Types 1-36
Piggyback Circuits Locations A45, A46,

A69 of iSBC 86/12 and iSBC 86/12A ... F-2

TABLE

7-4
7-5
7-6
7-7
7-8

7-9
7-10
7-11
8-1
G-l

TABLES (Cont!do
'
l

TITLE PAGE

Segment Registers 7-15
Status Registers 7-lS
Pin References• 7-16
Flag References 7-16
Symbolic References and Statement

References 747
Classes of Hardware Elements 7-62
Numeric Value Display Formats 7-66
Display Values Per Line 7-70
Tracking a COUNT Command•... ·8-4
CLOCK and ENABLE/DISABLE RDY

Commands G-4

ILLUSTRATIONS I

FIGURE TITLE PAGE

F-2
F-3
F-4
F-5
G-l
1-1
1-2
1-3
1-4
1-5
1-6
1-7

Typical Application of IC Test Clips F-3
iSBC 86/12A Parts Location Diagram ...• F-4
iSBC 86/12A Schematic Diagram F-5
iSBC 86/12A Schematic Diagram F-6
Source of 8086 READY Input•.... G-2
Status Block•....... 1-2
Register Bytes Format 1-2
Block Bytes Format 1-3
Control Word Format ,... I~4
Status Word Format•.....•.. ;.. 1-4
Tag Word Format 1-5
Exception Pointers Format• ,. 1-5

CHAPTER 1
INTRODUCTION TO THE

ICE-86ATM EMULATOR

This manual presents the operation of the In-Circuit Emulator for the Intel 8086
microprocessor, or ICE-86A emulator. As an introduction to the use of this
microprocessor design aid, this chapter contains an overview of the product and its
relationship to other products and contains a brief discussion of integrated
hardware/software development, in-circuit emulation, and ICE-86A architecture.
Also a generalized development cycle with the ICE-86A emulator and a generalized
ICE-86A emulation session are presented.

ICE-86A In-Circuit Emulator
The ICE-86A emulator provides in-circuit emulation for 8086 microprocessor-based
systems. Figure 1-1 shows the functional block diagram of the 8086 CPU. The
ICE-86A module consists of three circuit boards which reside in the IntelJec Micro­
computer Development System. A cable and buffer box connect the InteJlec to the
user system by replacing the user's 8086. In this manner the InteJlec debug functions
are extended into the user system. Using the ICE-86A module, the designer can
execute prototype software in continuous or single-step mode and can substitute
IntelJec equivalents for user devices, such as memory.

(RAX)

(RBX)

(RCX)

(ROX)

INTR

NMI

RESET

READY

TEST

REGISTER
FILE

RAH RAL
RBH RBL

RCH RCL

ROH ROL
SI

01
BP

SP

16-BIT AlU

PSW

..

..

..
f

(PC)

t t

RELOCATION
REGISTER

FILE

ES

CS

SS

OS

IP

BUS
INTERFACE

UNIT

---+
INSTRUCTION

QUEUE

"" ~

CONTROL, TIMING
ANOSTATUS

LOGIC

t t t

4

~ 16

I" 3

3

t t t
RQ/GTO HOLD ClK GND +5V

RQ/GT1 H.lDA MK/MX

f----
2 "},,,

3 r -,

Figure 1-1. 8086 CPU Functional Block Diagram

BHE/S7

A16/S3-A19/S6

AD1S-ADO

INTA, WR, RD

DT IR, DEN, ALE

QSO, QS1

SO,51, 52

162554-2

i-I

Introduction to the ICE-86A Emulator

1-2

The 8086 CPU can be used with the 8087 NDP (Numeric Data Processor) and/or
with the 8089 lOP (Input/Output Processor). The 8087 NDP is capable of expand­
ing the 8086 CPU's arithmetic abilities to include floating point calculations. (See
The 8086 Family User's Manual Numerics Supplement, Manual Order Number
121586, for information on the use of the 8087 NDP as a coprocessor.)

The ICE-86A emulator provides extended capabilities to allow debugging of systems
using the 8086 CPU with the 8087 NDP. Coprocessor debugging is aided by the
following ICE-86A features:

• Three real number types for memory content references

• Four external buffer box signals to aid in coordinating the user system with the
ICE-86A emulator

• RQGT and BUS commands for the operation of the 8086 RQGT lines

• DASM and DEFINE DASM commands for disassembling 8087 instructions

• Emulation timer for optimizing coprocessor code

The 8089 lOP allows for more efficient handling of processor 110. (See The 8086
Family User's Manual, Manual Order Number 9800722, for information on the use
of the 8089 lOP.)

The 8089 Real-Time Breakpoint Facility (RBF-89) is a software superset of the
ICE-86 emulator Version 1.2, a previous 8086 emulator. RBF~89 includes most of
the ICE-86A features (see below for exceptions) plus the following features that aid
in designing systems based on an 8086 CPU used with an 8089 lOP:

• Commands to initialize the 8089 lOP

• Commands to control program execution on the 8089 lOP

• Commands to disassemble 8089 instructions

RBF-89 software runs on ICE-86 or ICE-86A hardware but does not include the
following ICE-86A features:

• External buffer bus signals are not available.

• ENABLE/DISABLE SYMBOLICALLY commands are not available.

• DASM and DEFINE DASM for disassembling 8087 instructions commands are
not available.

• ENABLE/DISABLE EXPANSION commands are not available.

• The SELECTING modifier for the LOAD command is not available.

• The one-byte CAUSE register is returned rather than the string associated with
various conditions.

• The three real number types (REAL, DREAL, and TREAL) are not available.

See 8089 Real-Time Breakpoint Facility Operating Instructions for ICE-86A/88A
In-Circuit Emulator Users, Manual Order Number 162490, for instructions on the
use of RBF-89.

The ICE-86 and ICE-86A Emulators

The following features are supported in the ICE-86A emulator (Version 2.0), but are
not included in the ICE-86 emulator (Version 1.2), the previous 8086 emulator:

• RQGTlines
• External control of emulation

• A hardware reset signal to the user system

ICE-86A

ICE-86A Introduction to the ICE-86A Emulator

• A signal indicating emulation status

• A signal indicating when a breakpoint condition has been met

• ENABLE/DISABLE SYMBOLICALLY commands

• RQGT and BUS commands

• DASM and DEFINE DASM commands

• ENABLE/DISABLE EXPANSION commands

• The SELECTING modifier for the LOAD command

• A string is returned from the display of the CAUSE register

• Three real data types (REAL, DREAL, and TREAL)

ICE-86 emulator (Version 1.2) users consulting this manual for operating instruc­
tions should note the differences listed above. When reading this manual, ICE-86
emulator (Version 1.2) users should keep in mind that these enhanced features only
work with the ICE-86A emulator (Version 2.0).

Additionally, some users may wish to run the ICE-86A (Version 2.0) software on
ICE-86 (Version 1.2) hardware, for example, before they have upgraded their
ICE-86 (Version 1.2) hardware.

The following features require the ICE-86A hardware and are not supported in a
configuration using ICE-86 hardware with ICE-86A software:

• RQGTlines
• External control of emulation break

• A hardware reset signal for the user system

• A signal indicating emulation status

• A signal indicating when a breakpoint condition has been met

• RQGTand BUS commands

• DASM and DEFINE DASM commands

Integrated Hardware/Software Development

The ICE-86A emulator allows hardware and software development to proceed con­
currently. This is more)effective than the traditional method of independent hard­
ware and software development followed by a system integration phase. With the
ICE-86A emulator, prototype hardware can be added to the system as it is designed.
The software and hardware can be used to test each other as the product is
developed.

Conceptually, the ICE-86A emulator can be viewed as assisting three stages of
development:

1. The ICE-86A emulator can be operated without being connected to the user's
system, so its debugging"capabilities can be used to facilitate software develop­
ment before any of the user's hardware is available.

2. To begin integration of software and hardware development efforts, the user's
prototype need consist of no more than an 8086 CPU socket. Through ICE-86A
mapping capabilities, Intellec system equivalents (such as Intellec memory) can
be substituted for missing prototype hardware. As each section of the user's
hardware is completed, it can be added to the prototype, replacing the Intellec
equivalent. Thus each section of the hardware and software can be "system"
tested as it becomes available.

1-3

Introduction to the ICE-86A Emulator

1-4

3. When the user's prototype is complete, it can be tested using the system
software which will drive the final product. The ICE-86Aemulator can be used
for real time emulation of the 8086 to debug the system as a complete unit.

Thus the ICE-86A emulator provides the user with the ability to debug a prototyp.e
or production system at any stage in its development without introducing extraneous
hardware or software test tools.

ICE-86A In-Circuit Emulation

The ICE-86A In-Circuit Emulator is a diagnostic tool that is used for testing and
debugging the hardware and software of user-designed 8086 microcomputer-based
systems. Such testing may begin during the early phases of user system development
and may continue throughout the life cycle of the user's system.

The interface between the in-circuit emulator and the user system is implemented at
the connector pins of the user system microprocessor chip. These pins carry the
information that establishes the characteristics and status of the user system. The
interface makes it possible for the in-circuit emulator to continually monitor user
operations and to provide control of these operations. More specifically, the
in-circuit emulator monitors execution of the user program and controls the condi­
tions under which the user program execution is initiated and terminated.

User Program Execution Control

Starting and stopping execution of the user program at predefined points or condi­
tions is an essential task of the in-circuit emulator as it is often not feasible or
desirable to execute the entire user program. For example, a single routine may be
executed because either other routines have not yet been coded or because a fault
(bug) has been isolated to that routine.

The starting address for execution is readily established by loading a known value
into the program counter of the user processor while the processor is inactive. Ter­
mination of execution is a more involved procedure which requires the in-circuit
emulator to halt the processor when a predetermined multi-condition state exists at
the 8086 pins. This process requires prior storage of state values within the in-circuit
emulator hardware and dynamic comparison of these values with the states of
specified data, address and/or status pins of the processor. The point at which the
user program execution is terminated is known as the breakpoint.

A breakpoint may be specified to cause the user program to halt execution when a
given memory location is addressed during a processor fetch (i.e., loaded into the
8086 execution queue). However, very often the operator is more interested in the
data value of a memory location or an I/O port. In the latter cases both the type of
instruction (read, write, input, or output) and the data value are prespecified and are
dynamically compared with the processor pin states. It is also possible to specify
"don't care" comparisons with the data pins and thereby halt execution whenever
the designated type of instruction is extracted from the queue for execution.

A wide range of breakpoint conditions are possible through comparison of the pro­
cessor chip states with predesignated values. The full range of breakpoint conditions
that may be specified by the operator are presented in subsequent chapters.

Memory Mapping

Memory for the user system can be resident in the user system or "borrowed" from
the Intellec system through ICE-86A's mapping capability.

ICE-86A

ICE~86A Introduction to the ICE-86A Emulator

The ICE-86A emulator allows 1 megabyte of user memory to be addressed by the
8086. This user memory space consists of 1024 lK byte segments that can be mapped
in lK blocks to:

1. Physical memory in the user's system,

2. Either of two lK blocks of ICE-86A high speed memory,

3. Intellec expansion memory,

4. A random access diskette file.

The first 64K of Intellec RAM memory is dedicated to Intellec system software.
Therefore the RAM boards within the Intellec system that are used by the ICE-86A
emulator to store the user program employ effective addresses beyond the 64K byte
memory accessible to Intellec system software.

Mapping consists of specifying where each "logical" memory block that the 8086
addresses will physically exist within various physical memories. During emulation
the memory map is used to determine the existence and physical location of the
logical memory space being referenced by the user program.

If a logical segment of addresses is not activated by associating the segment with a
physical memory, the segment is "guarded." A guarded segment is logically non­
existent and any reference to the segment by the user program results in an error.
Thus the ICE-86A emulator can trap memory accesses outside the intended memory
for program and data. All blocks are initially guarded following system reset and
any segment may be guarded on command after its initial activation.

Mapping enables the user to allocate segments of user memory space to physical
memories other than the RAM/ROM of the user system. This feature permits
testing of the user program prior to installation of user memory and also provides a
convenient means of executing modified code in "borrowed" memory while the
bulk of user program is resident within the user system.

Symbolic Debugging

Symbols and PL/M statement numbers may be substituted for numeric values in
any of the ICE-86A commands. This allows the user to make symbolic references to
I/O ports, memory addresses, and data in a user program. Thus the user need not
search listings for addresses of variables or program subroutines.

Symbols can be used to reference variables, procedures, program labels, and source
statements. Thus a variable can be displayed or changed by referring to it by name
rather than by its absolute location in memory. Using symbols for statement labels,
program labels, and procedure names allows the user to set breakpoints or disassem­
ble a section of code into its assembly mnemonics much more easily.

Furthermore, each symbol may have associated with it one of the types BYTE,
WORD, INTEGER, SINTEGER (for short, 8-bit integer), POINTER, REAL,
DREAL, or TREAL. Thus when the user examines or modifies a variable from the
source program, he doesn't need to rem.ember its type. For example, the command
"!VAR" displays the value in memory of variable VAR in a format appropriate to
its type, while the command "IV AR = !VARl" assigns the value of VARI to VAR.

The user symbol table generated along with the object file during a PLlM-86 com­
pilation or by the 8086 Assembler is loaded into the ICE-86A emulator along with
the user program which is to be emulated. The user may add to this symbol table any
additional symbolic values for memory addresses, constants, or variables that are
found to be useful during system debugging.

1-5

Introduction to the ICE-86A Emulator

1-6

In addition, the ICE-86A emulator provides access to all the 8086 registers and flags
through mnemonic reference. The READY, NMI, TEST, HOLD, RESET, INTR,
and MN/MX pins can also be read.

Display

. Three basic types of data are available for display: trace data, 8086 termination con­
ditions, and test parameters. Trace data is collected from the 8086 pins during execu­
tion of the user program. Trace data collection can be continuous or selective.
Tracepoints allow the user to selectively turn trace off and on as desired during
emulation. The tracepoints are stored by the ICE-86A hardware on command prior
to emulation. If trace data collected exceeds the capacity of the trace buffer, the
older trace data is overwritten by current data. Trace buffer pointers entered by the
operator permit selection of the trace information for display.

The 8086 termination conditions are the status values of the 8086 processor that are
accessible following termination of user program execution. The 8086 termination
conditions include the values of registers, flags, input pins, 1/0 ports, status
information, and the contents of the logical user memory space locations currently
activated by the memory map. Some of this information is the same as that collected
in the trace buffer. All 8086 termination conditions are displayed by console entry of
the memory or port address or the name of the register, flag, or input pin.

Hardware resident test parameters are entered by the operator and stored within the
ICE-86A hardware. Such information includes breakpoints, tracepoints, the
memory map, and the tracepointer used for control of trace data display. The
operator displays this information to verify the correct entry or to determine the
values of test parameters that were previously entered.

Software resident test parameters are entered by the operator and stored within
ICE-86A software. These parameters are used to establish values that effect hard­
ware only upon entry of other commands. For example the symbol manipulation
commands establish the relationship between the object code of the user program
and symbols, statement numbers, and module names that are used by the operator
to reference the user program code and data symbolically.

Operating Modes

The ICE-86A software is a development system-based program which provides the
user with easy-to-use commands for defining breakpoints, initiating emulation, and
interrogating and altering user status recorded during emulation. The ICE-86A com­
mands are configured with a broad range of modifiers which provide the user with
maximum flexibility in describing the operation to be performed.

There are two distinct phases of operation when the ICE-86A emulator is used for
debugging. The interval when the user program is being executed is referred to as the
emulation phase. The interval when the operator establishes and modifies test
parameters and displays (or prints) test results is the interrogation phase.

Emulation

Emulation commands to the ICE-86A emulator control the process of setting up and
running an emulation of the user's program and examining the results of the emula­
tion. Breakpoints and tracepoints enable the ICE-86A emulator to haIt and provide
a detailed trace in any part of the user's program. A summary of the emulation com­
mands is shown in table 1-1.

ICE-86A

ICE-86A Introduction to the ICE-86A Emulator

Table 1-1. Summary of ICE-86ATM Emulation Commands

GO

STEP

GR

Command

ENABLE/DISABLE TRACE

TRACE

OLDEST

NEWEST

MOVE

PRINT

CLOCK

RWTIMEOUT

ENABLE/DISABLE RDY

Description

Initializes emulation and allows the user to specify the
starting point and breakpoints. Example:

GO FROM .ST ART TILL. DELAY EXECUTED

where START and DELAY are statement labels.

Allows the user to single-step through the program.

Sets the GO-register to a set of one or more breakpoint
conditions or causes the display of the current
GO-register settings.

Turn trace data collection on or off.

Set trace display mode to display trace data in frame or
instruction format or display current trace display
mode.

Move trace buffer pOinter to top of trace buffer.

Move trace buffer pointer to bottom of trace buffer.

Move trace buffer pointer forward or backwards in
buffer a specified number or buffer entries.

Display one or more entries from the trace data buffer.

Specify system clock as internal (ICE emulator
provided) or external (user-provided) or cause current
clock setting to be displayed.

Allows the user to time out READ/WRITE command
signals based on the time taken by the 8086 to access
expansion Intellec memory or disk-based memory.

Allows the user to enable or disable the user-ready
signal for accessing Intellec resident memory or disk
memory.

Breakpoints-the ICE-86A emulator has two breakpoint registers which allow the
user to halt emulation when a specified condition is met. The breakpoint registers
may be set up as execution or non-execution breakpoints. An execution breakpoint
consists of a single address which causes a break whenever the 8086 executes an
instruction byte which was obtained from that address. A non-execution breakpoint
causes an emulation break when a specified condition other than an instruction exe­
cution occurs. This condition can contain up to four parts:

1. A set of address values,

2. A particular status of the 8086 bus (one or more of memory or 1/0 read or
write, instruction fetch, halt, or interrupt acknowledge),

3. A set of data values,

4. A segment register (break occurs when the register is used in an effective address
calculation) .

Break on a set of address values has three capabilities:

1. To break on a single address.

2. To set any number of breakpoints within a limited range (1024 bytes beginning
at an even address) of memory.

1-7

Introduction to the ICE-86A Emulator

1-8

3. To break in an unlimited range. Execution is halted on any memory access to an
address greater than or equal to (or less than or equal to) the breakpoint.

An external break input exists at the buffer box. It causes a break when a high to low
transition occurs. An external breakpoint match output for user access is provided
on the buffer, which allows synchronization of other test equipment when a break
occurs.

Tracepoints-the ICE-86A emulator has two tracepoint registers which establish
match conditions to conditionally start and stop trace collection. The trace informa­
tion is gathered at least twice per bus cycle, first when the address signals are valid
and second when the data signals are valid. Trace information is also collected each
CPU cycle during which the execution queue is active.

Each trace frame contains the 20 address/data line values and detailed information
on the status of the 8086. The trace memory can store up to 1023 frames, or an
average of about 300 bus cycles, of trace data. The trace memory contains the last
1023 frames of trace data collected, even if this spans several separate emulations.
The user has the option of displaying each frame of the trace data or displaying by
instruction in actual 8086 Assembler mnemonics. The trace data is always available
after an emulation.

Interrogation and Utility

Interrogation and utility commands give the user convenient access to detailed
information about the program and the state of the 8086 which is useful in debug­
ging hardware and software. Changes can be made in both user program memory
and the state of the 8086. Commands are also provided for various utility operations
such as loading and saving program files, defining symbols and macros, setting up
the memory map, and returning control to ISIS-II. A summary of the basic inter­
rogation and utility commands is shown in table 1-2.

During the Interrogation and Utility mode, the ICE-86A emulation processor will
not respond to an NMI or RESET signal generated by the user system. However, it
will respond to RQGT and HOLD signals from the user system.

Table 1-2. Summary of Basic ICE-86ATM Interrogation and Utility Commands

Command

Memory 1 Register Commands

Memory Mapping Commands

DASM

LOAD

SAVE

LIST

EVALUATE

Description

Display or change the contents of:

• Memory
• 8086 Registers
• ICE-8M Pseudo-Registers
• 8086 Status flags
• 8086 Input pins
• 80861/0 ports

Display, declare, set, or reset the ICE-8M memory
mapping.

Disassembles the memory into 8086 assembler
mnemonics.

Fetches user symbol table and object code from the
input file.

Sends user symbol table and object code to the output
file.

Sends a copy of aft output (including prompts, input
line echos, and error messages) to the chosen output
device (e.g., disk, printer) as well as the console.

Displays the value of an ex.pression in binary, octal,
decimal, hexadecimal, and ASCII..

ICE-86A

ICE-86A Introduction to the ICE-86A Emulator

Table 1-2. (Cont'd.)

Command Description

ROGT Sets or displays the status of the Request/Grant
facility which enables the ICE-86A emulator to share
the system bus with coprocessors.

BUS Displays which device is currently master of the
system bus.

CAUSE Displays a mnemonic indicating the cause of the most
recent emulation halt.

DEFINE DASM Informs the ICE-86A emulator of the configuration of
the user system; i.e., whether the 8087 chip or the 8087
emulator exists.

Symbol Manipulation Commands These commands allow the user to:

TYPE

SUFFIX/BASE

Display any or all symbols, program modules, and pro­
gram line numbers and their associated values (loca­
tions in memory).

Set the domain (choose the particular program
module) for the line numbers.

Define new symbols as they are needed in debugging.

Remove any or all symbols, modules, and program
statements.

Change the value or type of any symbol.

Enable or disable symbolic display.

Assigns or changes the type of any symbol in the
symbol table.

Establishes the default base for numeric values in
input text/output display (binary, octal, decimal, or
hexadecimal). _

Macro and Compound Commands
The ICE-86A software allows the user. to program the operation of the ICE-86A
hardware by using macros and compound commands.
A macro consists of a set of ICE-86A commands with up to ten command
parameters and is typically used to perform any task that is required frequently.
Commands are provided to define, display, and delete macros, to invoke macros
with an optional list of arguments, and to save macros in a diskette file or to load
previously created macros from a diskette file.

As an example, the following macro may be used to emulate a user program from a
start address until a breakpoint is encountered, then to continue until a condition is
satisfied:

DEFINE MACRO GO

EM

IP = OFFSET %0
CS =SEGMENT %0
REPEAT

GO TILL %1
:DISPLAY

UNTIL %2
ENDR

;DISPLACEMENTOF START ADDRESS
;BASE OF START ADDRESS

;EMULATE TO BREAKPOINT
;INVOKE MACRO TO DlSPLA Y

VARIABLES OF INTEREST
;CONTINUE UNTILSOME CONDITION

:GO .START, #20 EXECUTED OR .A LEN 10TREAD,!FLAG =0

Introduction to the ICE-86A Emulator

1-10

The symbols START, A, FLAG, and #20 are from the user program.

The last line invokes macro GO, causing emulation to begin at label START, to
break whenever statement #20 is executed or any element of a 10-byte array A is
read, and then to continue unless the variable FLAG has a value of zero.

Compound commands are control structures to either conditionally execute other
commands (IF), or to execute other commands until some condition is met or the
commands have been executed a certain number of times (COUNT, REPEAT).

For example, the following compound command is used to repeat a set of com­
mands until a condition is met:

IP = OFFSET .START
CS = SEGMENT .START
REPEAT

UNTIL IP = 1000H
STEP

ENDR

;DISPLACEMENT OF START ADDRESS
;BASE OF START ADDRESS

;BREAK CONDITION
;SINGLE STEP

In this command the condition IP = lOOOH is tested every STEP. If the sequence of
STEPs reaches IP = 1000H, the loop will terminate.

ICE-86A Architecture

This section contains a brief description of the software, firmware and hardware
that compose the ICE-86A emulator. The information serves as an introduction to
more detailed information presented in the remaining chapters of this manual.

ICE-86A Software

The ICE-86A software together with ISIS-II and the user program symbol table is
resident within the 64K byte memory of the Intellec system. None of this space is
available to user program code. User program address space mapped to Intellec
resides in RAM boards (i.e., extended Intellec memory) whose physical addresses
are above the reserved 64K byte address range.

The functions performed by the ICE-86A software are dependent on the ICE-86A
operating mode. In the interrogation mode, the ICE-86A software provides.
arithmetic and logical conversions as necessary to establish compatibility between
the ICE-86A hardware and the operator. This task includes conversion of operator'
commands to a form usable by the firmware and the evaluation of symbolic entries
as necessary to provide absolute address and data values to the hardware. The
ICE-86A software also reconverts hardware supplied information (trace data, error
codes, map data, etc.) to forms that are meaningful to the operator. In the emula­
tion mode, the ICE-86A software supports the accessing of user code from the
diskette. In this mode the software also terminates emulation when directed by the
hardware (breakpoint) or the operator (ESCape key).

Firmware commands are hardware related commands that are sent to the ICE-86A
firmware to initiate a specific action. In general, each ICE-86A (operator-entered)
command is an element of higher level language that is converted to a specific series
of lower level firmware commands (assuming that the ICE-86A command requires a
hardware action). Thus, while the ICE-86A LOAD command merely specifies
loading of a user program into uSer address space, the actual process requires
reading of the memory map and writing of the user code into user, ICE, Intellec, or
diskette memory as indicated by the map. Not only are multiple firmware com­
mands required but the set of firmware commands issued is dependent on the
parameters included within the ICE-86A command.

ICE-86A

ICE-86A Introduction to the ICE-86A Emulator

ICE-86A Firmware

ICE-86A firmware consists of a 12K-byte ROM-resident program that is executed by
an 8080 "ICE processor" of the ICE-86A hardware. The firmware performs three
major functions. During start-up or system reset, the firmware resets all hardware
test parameters and performs a series of go/no-go tests to ensure proper operations
of the ICE-86A hardware. In the interrogation mode, the firmware decodes the
firmware commands and initiates the specified hardware operations including the
sequencing of data transfers to and from the ICE-86A software. In the emulation
mode, the firmware supports user program activities that require use of Intellec
resources such as the transfer of user code from diskette or extended Intellec
memory.

ICE-86A Hardware

ICE-86A hardware consists of five circuit boards and four cables. Three of the cir­
cuit boards plug into the Intellec chassis:

• FM Controller Board

• 86 Controller Board

• Trace Board

Two smaller circuit boards are housed within the ICE-86A buffer box assembly:

• Buffer Board 1

• Buffer Board 2

The buffer box cable assembly interconnects the user hardware and the ICE-86A cir­
cuit boards within the Intellec chassis. Connection to the user system is made by this
cable via the 40-pin socket that normally contains the 8086 user processor. When the
ICE-86A emulator is thus connected to the user system, the functions of the user
processor are assumed by an 8086 located within the buffer box assembly. The 8086
in the buffer box assembly is called the user processor within this manual. The buf­
fer box assembly is located near the user end of this cable assembly.

'X' and 'Y' cables interconnect the buffer box and two circuit boards in the Intellec
chassis. The 'T' cable provides direct connection between the 86 Controller Board
and Trace Board.

A block diagram of the ICE-86A hardware is shown in figure 1-2.

Buffer Box Signals

The buffer box has four external signal lines and a ground pin provided to help coor­
dinate user's hardware with the ICE-86A emulator.

These lines are: INITOUT/, EMUL, BRKEXT, and (MATCHO OR MATCH1)/.
Below is a brief user description of each line; signal characteristics are given in
Appendix D. See Chapter 2 for installation of cables.

The INITOUT I line supports an output-only initialization signal that can reset user
hardware working in conjunction with the 8086 CPU (such as the 8087 Numeric
Data Processor or the 8089 Input/Output Processor). The signal is issued as part of
the response to the RESET HARDWARE command (see Chapter 7); the pulse
width is 550 microseconds and active low.

I-II

Introduction to the ICE-86A Emulator

INTEL Lee

(BACKPLANE
CONNECTIONS)

I0IO DATA LINES

u ... _
CABLE

,...-...1-...,

IUFFER
.~2

ICE-8"

BLIFFER
CONlROL

TRACE
DATA

F.CONtROlLER BOARD II CONTROLLER BOARD TRACE BOARD

1-12

Figure 1-2. ICE-86ATM Functional Block Diagram

The EMUL line carries an active high signal that indicates when the ICE-86A
emulator is in emulation mode. The signal goes active 4 clock cycles before the first
instruction fetch in emulation and terminates 7 clock cycles following the last 8086
cycle emulated.

The BRKEXT line allows an external signal to break emulation (such a signal may
come from a coprocessor, a peripheral, etc.). The signal must change from high to
low to break emulation; the break occurs on the instruction during which the break
is initiated (i.e., the last instruction that is executed before leaving emulation mode).
Emulation cannot be resumed through this line.

NOTE

In order for the BRKEXT facility to function, a jumper wire must be in
place on the 86 Controller board, connecting 12 (the 'X' cable terminal), pin
40, to RPI (a resistor pack), pin 5. New ICE-86A products are shipped with
this wire already installed. The user may be required to have this wire
attached on upgrades to previously existing ICE-86 emulators. Before
attempting to use the BRKEXT facility, the operator should examine the 86
Controller board to determine if this jumper wire is in place.

The (MATCHO or MATCHl)/ line can provide a trigger signal whenever a break­
point register condition is fulfilled. (See Chapter 6 for the setting of breakpoint
registers.) The signal is active low and one clockcycle in duration. The user should
be aware that a pulse from the (MATCHO orMATCHI)/line is not synonymous
with a break in emulation; the ICE-86A emulatoris capable of going out of emula­
tion mode only when a breakpoint register condition is met and that register has
been enabled by either the GO or GR commands. .

162554·3

ICE-86A Introduction to the ICE-86A Emulator

NOTE
When the system CLOCK is set to INTERNAL, the logic of the ICE-S6A
emulator causes the (MATCHO or MATCHI)/ signal to be held high. In
general, this means that when the emulator is not connected to user hard­
ware, there is no external signal available to indicate when a breakpoint
condition has been met. (See Chapter 6 for the CLOCK commands.)

NOTE
If the user connects an ICE-SSA buffer box to an ICE-S6A system, the
following error will be generated:

WARN C2:HARDWARE MISSING

The ICE-86A system will not function in this configuration.

Generalized Development Cycle with the
ICE-86A Emulator

Figure 1-3 diagrams a generalized product development cycle using the ICE-S6A
emulator as a design aid. The sequence of events in developing a new product using
the Intellec system with the ICE-S6A emulator is approximately as follows:

• Complete the specifications for the prototype hardware design, software control
logic, and integrated system performance.

• Organize both the hardware and software designs into logical blocks that are
readily understandable, have well-defined inputs and outputs, and are easy to
test. Breaking down the design is an interactive process, but is extremely
valuable in reducing the time required for prototyping, programming, testing,
and modification.

• Program the software modules in PL/M-S6 and/or in ASM-S6 assembly
language, naming and storing the programmed modules as files under ISIS-I~.
Compile or assemble the modules, linking and loading the combinations you are
ready to test, creating an object-code (machine language) version. Desk-check
each module as it is completed.

• As software modules are ready for testing, load them into the ICE emulator,
Intellec system, or diskette and emulate them via the ICE processor, using the
ICE-S6A emulator in the 'software' mode. The ICE-S6A system allow~ you to
use ICE-supplied memory as part of the 'prototype' system. The advantages of
this feature to software development include:

1. You do not have to be concerned about overflowing your prototype system
memory in the initial stages of software development. You have the
freedom to test the program and compact it later without having to make
room for extra memory in your prototype.

2. You may test your program in RAM memory, and make patches quickly
and easily without having to erase and reprogram PROM memory. In later
test phases, the ICE module can control program execution from PROM or
ROM in your prototype. The ICE module can map RAM memory to ICE­
supplied memory to replace prototype memory in set increments, to test out
software changes before reprogramming.

• As software modules pass initial stages of check-out, they can be loaded in the
2K of ICE-S6A memory for emulation and testing in 'real-time'.

• Hardware prototyping can begin with just a SOS6 CPU socket. Through
ICE-S6A mapping capabilities, ICE-supplied equivalents can be substituted for
missing prototype hardware. As each module of the user's hardware becomes

1-13

Introduction to the ICE-86A Emulator

1-14

SCOPEOF INTELtEC DEVELOPMENT SYSTEM WITH AN ICE MODULE

Figure 1-3. Typical Development Cycle with the ICE™ Module

available, it can be added to the prototype, replacing the ICE-supplied
equivalent. In this way, modules of software and hardware can be system tested
as they become available.

• You can use memory in ICE-supplied system to check the interaction of
prototype hardware and proven software. The ability to map memory is helpful
in isolating system problems. You can exercise all prototype memory from a
program residing initially in ICE-supplied memory, and reassign memory block­
by-block to the user's system as code is verified. Hardware failures can then be
isolated quickly; because interactions between prototype parts occur only at
your command. You do not have to use the prototype to debug itself.

• The debugging/testing process can proceed through each hardware and
software module, using ICE-86A commands to control execution and check
that each module gets data or control information from the correct locations,
and places correct data or other signals in the proper cells or output locations
for subsequent modules to use.

• Eventually, you test all hardware and software together. The program can
reside in RAM or PROM in your system, or in RAM in the Intellec system. All
other hardware can be in the prototype. The ICE-86A emulator, connected to
the system through the microprocessor socket, can emulate, test, and trace all
the operations of the system.

• After the prototype has been completely tested, the ICE-86A emulator can be
used to verify the product in production test. The test procedures you developed
for the final prototype testing can serve as the basis for production test routines,
running the program from metal-masked ROM in the production system.

A Generalized Emulation Session

This section describes the main steps in an emulation session. You may not always
perform all the procedures given here in every emulation session, but the main
outline is the same in all sessions. The discussion emphasizes some of the features of
the ICE-86A emulator that have not been presented earliet. For the details of the
command language, see Chapters 4 through 8.

1. Install the ICE-86A hardware in the Intellec chassis (see Chapter 2).

2. If you are using any prototype hard,,rare, remove socket protector and attach
the cable that connects the user hardware to the ICE-86A circuit boards to the
prototype via the 40-pin socket. Otherwise leave socket protector attached to the
cable.

ICE-86A

162554-4

ICE-86A Introduction to the ICE-86A Emulator

3. Boot the system, and obtain the hyphen prompt from the ISIS-II system. Enter
the ICE86 command, and obtain the asterisk prompt from the ICE-86A
emulator.

4. From the software to be tested, determine how many memory addresses in the
Intellec system are required to perform the current emulation. For example, if
your program presently uses 3K of memory but your prototype has only I K
installed, you need to "borrow" 2K of memory from the ICE-86A emulator.

ICE-86A system memory is available from three sources: 2K of "real-time"
ICE memory, extended Intellec RAM memory, and diskette memory. This
memory is available for user program mapping and is organized in blocks of IK
(1024) bytes of contiguous memory. 1024 such blocks are logically available; the
amount that is physically available depends upon what you have installed in the
Intellec.

The ICE memory provides you with 2K of RAM memory that enables you to
run object code at approximately real-time speed.

lntellec memory is capable of providing 960 1 K blocks of logical address space.
The lntellec system software occupies the lowest 64K of Intellec RAM memory.
Therefore, any Intellec memory available to the user programs must be mapped
to addresses above 64K (extended lntellec memory). The amount of lntellec
memory physically available is dependent upon the number of card slots
available in the Intellec system and the memory physically installed. (Do not use
016 memory boards). If diskette memory is used, the full range of 1024 blocks
of logical memory is available to the user program up to the size of the diskette.

Typically, your program occupies logical locations in low memory. If you
intend to use Intellec memory for this emulation, you must map the memory
space used by your program into extended Intellec memory. The ICE-86A
emulator stores the mapping in its memory map, and refers each memory
reference in your program to the proper physical location in Intellec memory.
For example, suppose your code requires absolute addresses OOOOH to OFFFH
(the "H" means hexadecimal radix), or 4096 contiguous locations beginning at
location 0, the lowest address in memory. To map these addresses into the
beginning of extended Intellec memory, the mapping command would be:

MAP INTELLEC = 64 LENGTH 62

This command declares that 62K of RAM memory is physically available in
extended lntellec memory starting at the lower boundary of extended memory.

MAP 0 LENGTH 4 = INTELLEC

This command maps the logical memory required by your program to address
the address space in lower lntellec extended memory.

5. Load your program from diskette into the memory locations you have mapped,
using the LOAD command.

·6. The ICE-86A emulator has three modes of operation: interrogation, continuous
emulation, and single-step emulation. The asterisk prompt signals that the
ICE-86A emulator is in the interrogation mode, ready to accept any command.

7. In the interrogation mode, prepare the system for emulation by defining
symbols and setting emulation breakpoints and tracepoints.

ICE-86A software provides keywords for all 8086 registers and flags. In addi­
tion, you may use symbols to refer to memory locations and contents. The user
symbol table is generated along with the object file during PL/M compilation or
ASM assembly. This table can be loaded into Intellec memory when the user
program is loaded.

You are encouraged to add to this symbol table any additional symbolic values
for memory addresses, constants, or variables that you may find useful during
system debugging. Symbols may be substituted for numeric values in any of the
ICE-86A commands.

1-15

Introduction to the ICE-86A Emulator

. 1-16

Symboiicreference is a great advantage to the designer. You do not need to
recall or look up the addresses of key locations in your program, as they change
with each .assembly; you can use meaningful symbols from your source program
instead. This facility is especially valuable for high-level language debugging.
You can completely debug a program written in PL/M by referencing symbols
defined in the source code. You do not need to become involved with the
machine level code generated by the compiler. For example, the ICE-86A
command:

GO FROM .START TILL .RSL T WRITTEN

begins real-time emulation of the program at the address referenced by the label
START in the designer's PL/M-86 program. The command also specifies that
the program is to break emulation when the SOS6 microprocessor writes to the
memory location referenced by RSL T. You do not have to be concerned with
the physical locations of START and RSLT. The ICE~S6A software supplies
them automatically from information stored in the symbol table.

S. Enter a GO command to begin real-time emulation. The lCE-S6A emulator uses
a pseudo-register called the GO-register to contain the halting conditions that
you have specified, either in the GO command or previously.

9. When emulation halts, you display the trace data collected during that
emulation. The ICE-S6A emulator loads trace data into a trace buffer. Using
ICE-S6A commands, you can position the trace buffer pointer to the informa­
tion that you desire to review, and display one, several, or all the entries in the
buffer. You can set the display mode to one frame per line or one instruction per
line of display.

10. To control emulation more precisely and to obtain more detailed trace data than
with continuous emulation, you can command the ICE-S6A emulator to execute
single-step emulation. After each step emulated, you can display the current
entry in the trace buffer and the current settings of the 80S6 registers and pins.

11. You can examine and change memory locations, SOS6 registers and flags, and
110 ports, to provide you with valuable information on program operation.
You may alter data or register values to observe their effect on the next emula­
tion, or you can patch in changes to your program code itself. You can display
and change symbolic values in the symbol table and breakpoint and tracepoint
values.

12. Alternate between interrogation and emulation until you have checked
everything you want to check. .

13. At the end of the emulation session, you can save your debugged code on an
ISIS-II diskette file, using the ICE-S6A SAVE command. The operation can be
specified to save program code, symbol tables, and (for PLiM programs) the
source code line number table.

You can start another session immediately, resetting all parameters to their
initial values with a few simple commands, or you can exit to ISIS-II to ter­
minate the session.

This introduction is intended to show you some of the scope and power of the
ICE-S6A emulator in operation,and to suggest how this integratedsoftwarel
hardware design aid can fit into your development cycle. Chapter 2 contains installa­
tion instructions. Chapter 3 contains a hands-on tutorial involving a sample pro­
gram to be debugged. Chapter 4 describes the meta-notation used in this manual to
specify command syntax and semantics. Chapter 5 presents a detailed rlescriptionof
expressions used in this manual. The remaining chapters present the details of the
command language in a fQrmatandsequence designed for reference •.

ICE-86A

CHAPTER 2
ICE-86ATM INSTALLATION

PROCEDURES

This chapter provides step-by-step instructions for installing ICE-86A hardware in
an lntellec Microcomputer Development System.

ICE-86A Components

The following items are included in the ICE-86A package.

• FM Controller board: A circuit board that plugs into the lntellec chassis. The
FM Controller contains the 8080 ICE processor, 12K-byte firmware ROM, and
3K-bytes of scratchpad RAM

• 86 Controller board: A circuit board that plugs into the lntellec chassis. The 86
Controller contains the 2K-bytes of ICE RAM, the lK by 6-bit MAP memory,
and 512 bytes of 2-Port memory.

• lCE-86A Trace board: A circuit board that plugs into the lntellec chassis. The
lCE-86A Trace board contains RAM for trace data, tracepoints, and
breakpoints.

• lCE-86A Buffer Box Assembly: A cable assembly that contains the lCE-86A
Buffer Box Assembly. The Buffer Box contains two small circuit boards that
contain the 8086 user processor and gating and control logic forcommunica­
tions with the user system, MAP RAM, ICE RAM, 2-Port RAM, and Trace
RAM. The cable assembly also contains the user cable that plugs into the 40-pin
socket that normally houses the user's 8086, the "X" cable that attaches to the
86 Controller board, and the "Y" cable that attaches to the FM Controller
board.

• lntellec Model 800 Triple Auxiliary Connector and lntellec Series II Triple
Auxiliary Connector: Each connector consists of a set of three parallel circuit
board connectors that provide electrical interconnection between the FM
Controller, lCE-86A Trace board and the 86 Controller when they are installed­
in the lntellec chassis.

• The "T" cable that connects the Trace board to the 86 Controller board.

• Ground Cable: A cable that provides signal ground to the lCE-86A Buffer Box
Assembly from the user system.

• Software files on the ICE-86A diskette:

• ICE86 • ICE86.0V7 • RBF89 • RBF89.0V7
• ICE86.0VO • ICE86.0V8 • RBF89.0VO • RBF89.0V8
• ICE86.0Vl • ICE86.0V9 • RBF89.0Vl • RBF89.0VB
• ICE86.0V2 • ICE86.0V A • RBF89.0V2 • RBF89.0VC
• ICE86.0V3 • ICE86.0VE • RBF89.0V3 • RBF89.0VD
• ICE86.0V4 • 8087.MAC • RBF89.0V4 • RBF89.0VE
• ICE86.0V5 • 8087.HLP • RBF89.0Y5
• ICE86.0V6 • ERROR.MAC • RBF89.0V6

These files provide the software to support design of systems using the 8086, the
8087, and the 8089 chips.

Required and Optional Hardware
The ICE-86A emulator requires one of the following hardware configurations:

• Inte11ec model 800 with:
CRt

ICE-86A Installation Procedures

2-2

Microcomputer Development System 2DS or DDS

64KofRAM

3 adjacent card slots available on the motherboard

• Intellec model 888 with 64K of RAM and 3 adjacent card slots available on the
motherboard.

• Intellec Series II, model 220, 225, or 230, or Intellec Series III model 286 with:

3 adjacent card slots available in the expansion chassis and 64K of RAM

The following are optional enhancements to an ICE-86A system:

• Teletypewriter or line printer for hard-copy output

• One or more boards of Intellec expansion memory. If Intellec expansion
memory is to be used for emulating 8086 program memory, additional card slots
are needed for iSBC 032 or iSBC 064 memory boards. If lntellec expansion
memory is used, it is recommended that allintellec memory consist of iSBC 032
and/or iSBC 064 memory boards. iSBC 016 memory boards decode only 16 bits
of address. Therefore, if any iSBC 016 boards are present when expansion
memory is being used, each 16K RAM board will be duplicated on each 64K
page of addressable memory making these duplicated areas unusable for pro­
gram storage.

NOTE

The Monitor in the Intellec model 800 and 888 occupies the upper
2K of the first 64K of lntellec memory. This address space will be
duplicated on each 64K page of lntellec expansion memory used
and therefore unusable for user program storage.

Hardware Installation Procedures

Installation procedures are presented in the next two sections as follows: the pro­
cedure for Intellec model 800 and 888; the procedure for Intellec Series II model 220,
225,230, and the Intellec Series III model 286.

Installation Procedures for Intellec Model 800 and 888

1. Inspect the ICE-86A assemblies for damage.

2. Disconnect power cords from the Intellec chassis and the user system.

3. Remove the top cover from the Intellec chassis.

4. Ensure that shorting plug PIon the FM Controller board connects jumper posts
EI-2, setting the ICE-86A dev~<:(!code to O. Ensure that shorting plug P2 on the
FM Controller board connect~.jMmper posts E7-E8, selecting the Multibus inter­
face -lOY power source~~).th~1board's -5Y supply.

5. Insert the P2 edge connector of the ICE-86A Trace board into the middle slot of
the Intellec model 800 Triple Auxiliary connector.

6. Install the Trace board (with Triple Auxiliary Connector attached) into an even
numbered slot in the Intelleccatd¢,age so that there is an empty card slot on each
side of the Trace board, .. ~.,;

7. Install the FM Controll~fb~ard next to the Trace board in the odd slot with the
number lower than the Trace board. For example, when the Trace board is in
slot 10, the FM Controller board is placed in slot 9.

8. Install the 86 Contr()ner!:~91ird next to the Trace board in the slot with the
number higher than tbe1¥ace board. Figure 2-1 shows the proper order of the
boards in the carctcage.

ICE-86A

ICE-86A ICE-86A Installation Procedures

TRIPLE
AUXILIARY
CONNECTOR

.----..--r- COMPONENT SIDE

Y

X

Figure 2-1. Orientation of Circuit Boards

NOTE
The Triple Auxiliary Connector can be bolted to the motherboard
if permanent installation of the ICE-86A Module is desired. The
bottom cover of the Intellec chassis must be removed to gain access
to the mounting holes (mounting hardware is supplied with the
connector).

9. Attach the 'T' cable to the 'T' connectors on the Trace board and the FM
Controller board, ensuring that the missing pin on the connectors mates prop­
erly to the blocked hole in the cable receptacles.

lO. Attach the ribbon cable marked 'X' from the Buffer Box Assembly to the 'X'
connector on the 86 Controller board, ensuring that the missing pin on the con­
nector mates properly to the blocked hole in the cable receptacle.

11. Attach the ribbon cable marked 'Y' from the Buffer Box Assembly to the 'Y'
connector on the FM Controller board, ensuring that the missing pin on the
connector mates properly to the blocked hole in the cable receptacle.

12. Install expansion RAM in the Intellecchassis as required for user software.
13. If a user prototype is to be connected, remove the Socket Protector As~embly

from the user end of the lCE-86A Buffer Box Assembly and insert the4~pin
cable terminal into the 8086 socket on the user system. The Socket Protector
Assembly guards the terminal pins from damage and inadvertent grounding.

E2&1
Ensure that pin 1 of the terminal connector is aligned to pin 1 of the
40-pin user system CPU socket. Damage to ICE components may
result when the connector is improperly installed.

T

T

162554-18

2-3

ICE-86A Installation Procedures

2-4

14. Mount the male plug of the Ground Connector into the female receptacle of the
Terminal Pin at the user end of the cable assembly.

15. Mount the clip end of the Ground Connector to an appropriate point in the user
system to provide signal ground. .

Failure to observe proper grounding· techniques between the ter­
minal connector ground lead and the user system may result in
ICE-86A failures.

16. Route the 'X' and 'Y' cables out the back of the chassis, over the top lip on the
rear panel.

17. Replace the top cover on the Intellec chassis. The cover fits snugly over the two
ICE cables at the back of the chassis.

18. Connect the power cords to the Intellec chassis and the user system.

Installation Procedures for Intellec Series" Model 220, 225,
and 230, and Intellec Series III Model 286

I. Inspect the ICE-86A assemblies for damage.

2. Disconnect power cords from the Intellec chassis, the expansion chassis, and the
user system.

3. Remove the front panel from the expansion chassis.

4. Ensure that shorting plug PIon the FM Controller board connects jumper posts
EI-2, setting the ICE-86A device code to O. Ensure that shorting plug P2 on the
FM Controller board connects jumper posts E8-E9, selecting the Multibus inter­
face -I2V power source as the boards -5V supply.

5. Insert the P2 edge connector of the ICE-86A Trace board into the middle slot of
the Intellec Series II Triple Auxiliary Connector.

6. Install the Trace board (with Triple Auxiliary Connector attached) into the
expansion chassis so that there is an empty card slot on each side of the Trace
board.

7. Install the FM Controller board in the expansion chassis slot immediately above
the Trace board.

8. Install the 86 Controller board in the expansion chassis slot immediately below
the Trace board. Figure 2-1 shows the proper order of the boards in the expan­
sion chassis.

NOTE
The Triple Auxiliary Connector can be bolted to the expansion
backplane if permanent installation of the ICE-86A Module is
desired. The top cover of the expansion chassis must be removed to
gain access to the mounting holes (mounting hardware is supplied
with the connector).

9. Attach the 'T' cable to the 'T' connectors on the Trace board and the FM
Controller board, ensuring that themissingpin in the connectors mates properly
to the blocked hole in the cable receptacles.

10. Attach the ribbon cable marked 'X' from the Buffer Box Assembly to the 'X'
connector onthe 86 Controller board, ensuring that the missing pin on the con­
nector mates properly to the blocked hole in the cable receptacle.

ICE-86A

ICE-86A ICE-86A Installation Procedures

11. Attach the ribbon cable marked 'Y' from the Buffer Box Assembly to the 'Y'
Connector on the FM Controller board, ensuring that the missing pin on the
connector mates properly to the blocked hole in the cable receptacle.

12. Install expansion RAM in the lntellec mainframe or expansion chassis as
required for user software.

13. If a user prototype is to be connected, remove the Socket Protector Assembly
from the user end of the ICE-86A Buffer Box Assembly and insert the 40-pin
cable terminal into the 8086 socket on the user system. The Socket Protector
Assembly guards the terminal pins from damage and inadvertent grounding.

Ensure that pin 1 of the terminal connector is aligned to pin 1 of the
40-pin user system CPU socket. Damage to ICE components may
result when the connector is improperly installed.

14. Mount the male plug of the Ground Connector into the female receptacle of the
Terminal Pin at the user end of the cable assembly.

15. Mount the clip end of the Ground Connector to an appropriate point in the user
system to provide signal ground.

Failure to observe proper grounding techniques between the ter­
minal connector ground lead and the user system may result in
ICE-86A failures.

16. Replace the front cover of the expansion chassis, routing the ribbon cable out
the opening at the left side of the front panel.

17. Connect the power cords to the lntellec mainframe and expansion chassis and
user system.

NOTE
Keep the Socket Protector Assembly mounted on the end of the
ICE Buffer Box Assembly terminal cable whenever the terminal is
not attached to a user system to prevent pin damage.

When removing the Socket Protector Assembly from the end of the
ICE Buffer Box Assembly, use care to prevent pin damage.

Accessing External Buffer Box Signals
and Ground Pin

As detailed in Chapter 1, the ICE-86A buffer box has four external signal lines­
INITOUT/, (MATCHO OR MATCHl), EXTBRK, and EMUL-as well as a
ground pin, to aid in coordinating user's hardware with the ICE-86A emulator. One
horizontal side of the buffer box has been left exposed to provide easy access to
these signal lines and the ground pin; the user may make connections to external
hardware with any appropriate-sized electrical clips. For operator's convenience, the
lines and ground have been labeled 1 through 5 on the buffer box~ 1 for
INITOUTI, 2 for (MATCHO OR MATCHl)/, 3 for GND, 4 for EXTBRK, and 5
for EMUL.

2-5

ICE-86A InstaUation Procedures

2-6

Confidence Testing

The DIAG86 Confidence Test program verifies operation of the ICE-86A Module
after installation or whenever problems with the ICE Module itself are suspected.
The DIAG86 program resets and invokes the ICE-86A emulator, executes a set of
hardware confidence tests, and terminates by returning a "PASS" or "FAIL"
display message. Execute the following sequence to run the confidence tests:

• Boot the system to run under ISIS-II and wait for the hyphen prompt (-) from
the ISIS-II system.

• Enter the command CONF and wait for the asterisk prompt (*).

• Enter the command INIT DIAG86.CON and wait for the asterisk prompt (*).

• Enter the command TEST to cause DIAG86 to execute the confidence tests.
Wait for the test message displays. DIAG86 will display a "PASS/FAIL"
message for each diagnostic test contained in DIAG86. If any displayed test
message denotes a "FAIL", the installed hardware is not operating properly.
Inspect the hardware for improper installation and rerun DIAG86. If all the
displayed test messages denote "PASS", the hardware has been installed cor­
rectly and is operating properly.

• Enter the command EXIT to return control to the ISIS-II system.

ICE-86A

I

• n
I

CHAPTER 3
SAMPLE ICE-86ATM SESSIONS

AT THE TERMINAL

This chapter introduces a few useful ICE-86A commands and provides hands-on
experience with the ICE-86A emulator. To reduce the need for cross-reference, this
chapter includes brief discussions of the commands used in the examples. The user
program to be simulated is a simple traffic light controller. The user pr()gram logic is
described before the hands-on session to help you understand what is going on.

How To Use This Chapter

• To use this program as a hands-on tutorial, you must enter the source code for
the two modules using the ISIS text editor on your system. Omit the line number
and nesting information that is on the listing; these values are assigned by the
compiler and assembler.

• Compile the CARS module with the PLlM-86 compiler program. Assuming
that the source file is named "CARS.SRC", the compile step could look like:

-PLM86 :F1:CARS.SRC PRINT(:F1:CARS.PRT) DEBUG

The object file created by PLM86 is named CARS.OBJ. (The DEBUG control
generates the symbol table for use by ICE-86A.)

• Assemble the DELAY module with the ASM86 assembler. Assuming that the
source file is named "DELAY .SRC", the assemble step could look like:

-ASM86 :F1 :DELAY .SRC PRINT(:F1 :DELAY .PRT) OBJECT(:F1 :DELA Y .OBJ) DEBUG

As indicated, the object module is named DELAY .OBJ.

• Link and Locate CARS and DELAY using the iAPX-86 utilities L1NK86 and
LOC86. The command we used looks like:

-L1NK86 :F1:CARS.OBJ, :F1:DELAY.OBJ TO :F1:CARS.LNK

The L1NK86 command displays two warning messages when modules in
DELA Y .OBJ are combined. The output CARS.LNK must be located
absolutely in memory using the LOC86 Command.

-LOC86 :F1 :CARS.LNK

The file created by LOC86 is named CARS. This file will be the input used
during the ICE86A session.

• For further information on the procedures for editing, compiling, assembling,.
linking, and locating programs under iAPX-86, refer to the following manuals:

Text Editor: ISIS-II System User's Guide

PLlM-86 Compiler: PL/M-86 User's Guide

ASM-86 Assembler 8086/8087/8088 Macro Assembly Language Reference
Manual

8086/8087/8088 Macro Assembler Operating
Instructions

L1NK86 and LOC86 8086 Family Utilities User's Guide

• Study the logic of CARS, the program to be emulated. The material includes
text discussion and program listings.

• Install the ICE-86A hardware following the procedure given in Chapter 2.
Leave the socket protector on to protect the pins at the end of the cable.

• Insert an ISIS-II system diskette in drive 0, boot ISIS.

• Copy CARS to the diskette containing the ICE-86A program. Insert this
diskette in drive 1.

3-1

Sample ICE~86A Sessions atthe Terminal

3-2

• Enter the command

:F1:ICE86

to load the ICE software and start it executing. The ICE-86A emulator signals
readiness to accept commands by displaying an asterisk prompt (*).

• Enter the ICE-86A commands as shown, and obtain the results shown in the
listing.

Analysis of the Sample Program

The application presented is a simple traffic light controller. Imagine an intersection
of a main street and a side street. The desired operation is that the light should stay
green on the main street until a decision involving the number of cars waiting on the
side street and the amount of time they have been waiting has been satisfied. We
suppose that there is a sensor in the pavement on the side street that sends an inter­
rupt to the computer when a car arrives. We do not include the control of a yellow
light on either street.

Refer to the following figures:

Figure 3-1. CARS Module Listing
Figure 3-2. Delay Module Listing

Associated with each street is a time called the cycle length. In the program, the
variable named SIDE$CYCLE$LENGTH controls the fixed length of time the light
is green on the side street when that cycle is called into action. Even though the light
stays green on the main street until the decision rule is satisfied, we need a variable
MAIN$CYCLE$LENGTH that is involved in the decision rule.

The decision rule is as follows. The side street gets a green light if either of the
following two conditions is satisfied.

I. Two or more cars are waiting on the side street, and the main street has had
the green light for a period of time greater than or equal to the variable
MAIN$CY CLE$LENGTH.

2. One car is waiting on the side street, and the main street has had the green
light for a period of time equal to or greater than two times the variable
MAIN$CYCLE$LENGTH.

The system has orie input and one output. The input is a signal that a car has arrived
on the side street since the last time we sampled the input. The variable
CARS$WAITING contains the number of cars waiting on the side street. The out­
put goes to the traffic light controller. We assume that sending the controller a 1
makes the light on the main street green and the light on the side street red; sending it
a 0 makes the light on the main street red and the light on the side street green. The
variable LIGHT$ST A TUS represents this output.

The program is initialized with constants and variables set as follows.

MAIN$CYCLE$LENGTH = 8 seconds
SIDE$CYCLE$LENGTH = 5 seconds
MAIN$TIME = 0 (Time since last change to MAIN GREEN, SIDE RED)
SIDE$TIME = not set yet. (Time since last change to SIDE GREEN)
LlGHT$STATUS = 1 (MAIN GREEN, SIDE RED)
CARS$WAITING == 0

The CARS program contains a procedure CYCLE to change the lights back and
f6rth .. CYCLE holds the side stteet light green (main red) until its counter,
SIDETlME,exceedstbe SIDECYCLELENGtH(nominaBy 5 seconds).

ICE-86A

ICE-86A

2
3
4
5
6

7 1

8 2
9 2

10 1

11 2
12 2

13 1

14 2
15 2
16 2

17 2

18 2
19 2
20 2
21 3
22 3
23 3
24 3
25 2
26 2

27 1
28 1
29 1
30 1
31 2
32 2
33 2
34 2

35 2
36 3
37 3
38 3
39 3
40 2

41 1

Sample ICE-86A Sessions at the Terminal

/' TRAFFIC LIGHT CONTROLLER PROGRAM '/

CARS:
DO;

DECLARE (MAIN$TIME, SIDE$TIME) BYTE;
DECLARE MAIN$CYCLE$LENGTH BYTE DATA(8), SIDE$CYCLE$LENGTH BYTE DATA(5);
DECLARE CARS$WAITING BYTE;
DECLARE L1GHT$STATUS BYTE;
DECLARE FOREVER LITERALLY 'WHILE 1';

SIDE$STREET$CAR:
PROCEDURE;

CARS$WAITING ~ CARS$WAITING + 1;
END SIDE$STREET$CAR;

/' FOLLOWING PROCEDURE CODED IN ASSEMBLY LANGUAGE AND LINKED IN '/
DELAY:
PROCEDURE(TIME$HUNDREDTHS) EXTERNAL;

DECLARE TIME$HUNDREDTHS BYTE;
END DELAY;

DISPLAY:
PROCEDURE (CYCLE$TIME);

DECLARE CYCLE$TIME BYTE;
L1GHT$STATUS ~ L1GHT$STATUS;

END DISPLAY;

CYCLE:
PROCEDURE;

L1GHT$STATUS ~ 0; /' MAIN RED, SIDE GREEN '/
SIDE$TIME ~ 0;
DO WHILE SIDE$TlME <~ SIDE$CYCLE$LENGTH;

CALL DISPLAY(SIDE$TIME);
CALL DELAY(100);
SIDE$TIME ~ SIDE$TIME + 1;

END;
L1GHT$STATUS ~ 1; /' MAIN GREEN, SIDE RED '/

END CYCLE;

/' MAIN PROGRAM - EXECUTION BEGINS HERE '/

LlGHT$STATUS ~ 1; /' START WITH MAIN GREEN '/
CARS$WAITING = 0;
MAIN$TIME ~ 0;
DO FOREVER;

CALL DISPLAY(MAIN$TIME);
CALL DELAY(100);
MAIN$TIME ~ MAIN$TIME + 1;
IF (CARS$WAITING >= 2) AND (MAIN$TIME >= MAIN$CYCLE$LENGTH)

DO;
OR (CARS$WAITING = 1) AND (MAIN$TIME >= 2 ' MAIN$CYCLE$LENGTH) THEN

CALL CYCLE;
CARS$WAITING ~ 0;
MAIN$TIME = 0;

END;
END;

END CARS;

Figure 3-1. CARS Module Listing

1-3

Sample ICE-86A Sessions at the Terminal ICE-86A

LaC OBJ LINE SOURCE

1 CGROUP GROUP ABS_O,CODE,CONST,DATA,STACK,MEMORY
2 DGROUP GROUP ABS_O,CODE,CONST, DA TA,STACK,MEMORY
3 ASSUME DS:DGROUP,CS:CGROUP,SS:DGROUP
4 CONST SEGMENT WORD PUBLIC 'CONST'
5 CONST ENDS
6 DATA SEGMENT WORD PUBLIC 'DATA'
7 DATA ENDS
8 STACK SEGMENT WORD STACK 'STACK'

0000 9 STACK_BASE LABEL BYTE
10 STACK ENDS
11 MEMORY SEGMENT WORD MEMORY 'MEMORY'

0000 12 MEMORY _LABEL LABEL BYTE
13 MEMORY ENDS
14 ABS_O SEGMENT BYTEATO

0000 15 M LABEL BYTE
16 ; TIME DELAY SUBROUTINE
17
18 ABS_O ENDS
19 CODE SEGMENT WORD PUBLIC 'CODE'
20 PUBLIC DELAY

0000 5B 21 DELAY: POP BX ;POP RETURN AD DR. OFFSTACK
0000 59 22 POPCX ;POP ARGUMENT OFF STACK INTO CX REG.
0002 53 23 PUSH BX ;REPLACE RETURN ADDR. ON STACK
0003 8ACl 24 MOV AL,CL ; PLI M LINKAGE CONVENTION
0005 B5FF 25 MOV CH,255
0007 8ACD 26 LAB1: MOV CL,CH
0009 FEC9 27 LAB2: DEC CL
OOOB 891E2300 R 28 MOV TEMP,BX ; WASTE
OOOF 891E2300 R 29 MOV TEMP,BX ; DITTO
0013 891E2300 R 30 MOV TEMP,BX
0017 891E2300 R 31 MOV TEMP,BX
001B 90 32 NOP
001C 75EB 33 JNZ LAB2
001E FEC8 34 DEC AL
0020 75E5 35 JNZ LABl
0022 C3 36 RET

37
0023 38 TEMP LABEL WORD
0023 02 39 DB 2

40 CODE ENDS
41 END

Figure 3-2. DELAY Module Listing

3-4

ICE-86A Sample ICE-86A Sessions at the Terminal

The lCE-86A test suite includes commands that simulate the arrival of cars on the
side street, and that display the values of the program variables involved in the light
change logic. The procedure SIDESTREETCAR represents the nucleus of the inter­
rupt routine that would handle the sensor interrupts in a real traffic light controller
program. The interrupt-enabling logic is omitted for simplicity. Procedure
DISPLA Y is a 'vestige' of a previous version of CARS. CARS also calls DELAY
when a 'one-second' timer is required.

ICE-86A Emulator Hands-On Demonstration

This demonstration involves the one program CARS. The version we ran did not
have any serious logic errors, so that the effects of the lCE-86A commands could be
clearly seen. The length of the delay produced by the DELAY routine is longer than
desired; you may adjust the calling parameter if you desire a "true" one-second
delay.

The material represents two separate sessions at the terminal. The beginning and end
of each session is clearly indicated. By using two sessions we can demonstrate the use
of the PUT and INCLUDE commands.

The pair of sessions is organized as follows-session 1 shows how to define and save
macros on file; the macros defined in this session are of two kinds: general purpose
MCS-86 utilities (PUSH86, POP86, SETIP) and macros that are particular to
CARS, the demonstration program.

The demonstration emphasizes the ICE-86A macro facility, showing how four basic
ICE operations (initialize, emulate, display, change) can be organized into named
blocks-the building blocks of test sequences.

The define macro command has the syntax:

DEFIN E MACRO macro-name cr

[command cr] ...

EM

The commands inside a macro definition (including calls to other macros) are
not examined or executed by the ICE-86A emulator until the macro is invoked. A
macro call has the format: :macro-name. More details on commands are given in the
following discussion.

3-5

Sample ICE-86A Sessions at the Terminal

3-6

Session 1

o We begin the session by entering :FI :ICE86 to ISIS-II (hyphen prompt), and
receive the ICE-86A sign-on message and asterisk prompt. To record the
ICE- 86A session on diskette file, we enter a LIST command with the drive and
filename that is to contain the output of the ICE-86A operations (including
error messages if any).

Many of the commands include comments. A comment is preceded by a
semicolon (;) to separate it from the command.

The discussion is keyed to the listing by margin numbers.

Macro PUSH86 simulates the iAPX-86 PUSH instruction. SP is the stack
pointer; SS is the base address of the stack segment.

POP86 is the reverse procedure, simulating the iAPX-86 POP instruction.

The parameter 0700 in both PUSH86 and POP86 lets us "push" or "pop" any
register (or expression, etc.) as long as it can be expressed as a WORD-type
quantity.

2 Macro SETIP resets the instruction pointer CS:IP to the address (symbol,
expression, etc.) passed as a parameter when the macro is invoked. CS is the
base of the code segment and IP is the instruction pointer relative to CS. Like
PUSH86 and POP86, SETIP is a useful macro for restarting emulation at a
desired point (without 'softwiring' start addresses into your emulation macros).

3 Macro TYPES demonstrates how to set up to use typed memory references. A
symbol that stands for the address of a variable (not a procedure name) can be
defined or assigned a memory-type. Examples of memory-types are BYTE,
WORD, and POINTER. In our CARS program, all the key variables are of
type BYTE. Since the symbols are loaded with the program rather than being
DEFINED, we assign types to the variable with the commands of the form:

TYPE .symbol-name = memory-type

Then, as shown later on (e.g., in macro VARIABLES, step 6 of session I) we
can refer to the contents of any typed variable with a typed memory reference of
the form

!symbol-name

The contents produced by a typed memory reference are automatically of the
type assigned or declared.

See Chapter 7 for more details on memory types.

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

o -:F1 :ICE86
ISIS-IlICE-86/86A, V2.0 ,
'LIST :F1:DEC10.LOG ;SESSION ONE

1 'DEFINE MACRO PUSH86
.'SP = SP - 2T ;MOVE POINTER TO NEW TOP OF STACK
.'WORD SS:SP = %0_ ;PUSH PARAMETER ON STACK
.'EM ;END OF MACRO PUSH86

'DEFINE MACRO POP86
·'%0 = WORD SS:SP
·'SP= SP + 2T
·'EM

2 'DEFINE MACRO SETIP
·'CS = SEG (%0)
·'IP = OFF (%0)

;POP PARAMETER OFF STACK
;MOVE POINTER TO NEW TOP OF STACK
;END OF MACRO POP86

·'EM ;END OF MACRO SETIP

3 'DEFINE MACRO TYPES
.'TYPE .MAINTIME = BYTE ;FROM PLM LISTING
·'TYPE .SIDETIME = BYTE ;FROM PLM LISTING
·'TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
.'TYPE .SIDECYCLELENGTH = BYTE ;FROM PLM LISTING
·'TYPE .CARSWAITING = BYTE ;FROM PLM LISTING
·'TYPE .LlGHTSTATUS = BYTE ;FROM PLM LISTING
·'EM ;END OF MACRO TYPES

3-7

Sample ICE-86A Sessions at the Terminal

3-8

4 We define a macro lNIT to handle the map and load steps for our program,
CARS.

In the macro INIT, the command MAP 0 LENGTH 2 = ICE 0 assigns two
memory blocks (lK segments) to ICE memory. The CARS program was
LOCATed at ORIGIN 0 (LOC86 step discussed above) to facilitate mapping to
ICE memory. .

INIT defines a useful symbol, .START = CS:IP. After LOAD, CS:IP points to
the first executable instruction in the user program. CS is the base of the code
segment and IP is the instruction pointer (relative to CS).

Then, INIT calls the TYPES macro defined in step 3. This macro will become
part of INIT whenever INIT is called. Until INIT is called, however, the call to
TYPES is not executed.

Finally, INIT displays the symbol and statement number tables, to verify that
the LOAD step has been completed, and that the TYPES macro has executed.

5 Macro EXAM is designed to test the logic that controls the light change.
Basically, the macro block is an indefinite REPEAT loop (the block beginning
with REPEAT and ending with ENDREPEAT). On each iteration a single step
is emulated (one instruction). Following that, we use an IF command to look for
certain addresses and take appropriate actions. The action taken in all cases is to
display the PL/M statement or an equivalent message using the WRITE com­
mand (see step 6 for more on the WRITE command). In addition, we skip both
DELA Y and DISPLAY by popping the return address and call parameter off
the stack.

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

4 *DEFINE MACRO INIT
·*MAP 0 LENGTH 2 = ICE 0 ;MEMORY SPACE FOR CARS PROGRAM
.*MAP 0 LENGTH 2 ;DISPLA Y WHAT WE MAPPED
.*LOAD :F1:CARS
.*DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
.*:TYPES ;MACRO FOR TYPE DEFINITIONS
·*SYMBOLS
.*L1NES ;DISPLAY SYMBOL AND LINE NUMBER TABLES
.*EM ;END OF MACRO INIT

5 *DEFINE MACRO EXAM
·*REPEAT
·*STEP
.*IF CS = SEG(.DlSPLAY) AND IP = OFF(.DISPLAY) THEN
·*WRITE 'CALL DISPLAY'
·*:POP86lp· ;RESTORERETURN ADDRESS
·*SP = SP + 2T ;DISCARD PARAMETER
·*ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
·*WRITE 'CALL DELAY'
·*:POP86IP
·*SP=SP + 2T
·*ORIF CS = SEG(.. CARS#30) AND IP = OFF(.. CARS#30) THEN
·*WRITE 'STARTING MAIN LOOP'
·*ORIF CS = SEG(.. CARS#34) AND IP = OFF(.. CARS#34) THEN
.*WRITE 'START OF IF TEST'
·*:VARIABLES
.*ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN
·*WRITE 'CALL CYCLE'
·*ENDIF
·*ENDREPEAT
·*EM ;END OF MACRO EXAM

3-9

Sample ICE-86A Sessions at the Terminal

3-10

6 Macro VARIABLES employs the WRITE command to display the key program
variables with identifiers. The general syntax of WRITE is:

WRITE element [, element] ...

The elements to be "written" (displayed at the console) can be strings (e.g.,
'SIDETIME') enclosed in single quotes, expressions, or constants of the form
BOOL expression. Two or more elements can be combined by listing them in
the order you desire, separated by commas. The strings in our commands serve
to label the displays.

V ARIABLES also uses typed memory references; they have the format:

!symbol-name

Note that each of the symbol names in VARIABLES must be assigned a type
(by macro TYPES) before LOOK can be called. Then, the typed reference pro­
duces the contents of the given address. For example, if symbol .A is the address
of a variable of type BYTE, !A means the same thing as BYTE.A; if .A is a
WORD-type variable, however, !A means WORD.A.

The display produced by VARIABLES is shown in session 2 below.

7 Macro TEST combines several macros and simple commands in a test suite.
First we initialize the system by executing GO FROM START TILL .. CARS#30
EXECUTED. Statement #30 in the beginning of the main loop.

Next, TEST uses a parameter to assign a value to CARSW AITING. When we
call TEST, we supply any value we wish as a parameter.

Last, TEST calls EXAM to single step through the program displaying any calls
that occur.

8 The DIR MAC command produces a display of the titles of all the macros we
defined, in the order they were defined.

9 To display the definition of any macro, use a command with the form:

MACRO macro-name

U sing this command, we display the definition of macro SETIP.

10 We save our macro definition on a permanent file for use in later sessions.

11 The EXIT command closes all files and returns us to ISIS-II (hyphen prompt).

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

6 • DEFIN E MACRO VARIABLES
··WRITE 'LiGHTSTATUS = ',!LlGHTSTATUS,', CARSWAITING = ',!CARSWAITING
··WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME = ',!MAINTIME
··WRITE 'SIDECYCLELENGTH = ',!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME
··EM ;END OF MACRO VARIABLES

7 'DEFINE MACRO TEST
··GO FROM .STARtTILL .. CARS#30 EXECUTED
··!CARSWAITING = %0
.' :VARIABLES
··:EXAM
·'EM ;END OF MACRO TEST

8 'DIR MAC
PUSH86
POP86
SETIP
TYPES
INIT
EXAM
VARIABLES
TEST

9 'MACRO SETIP
DEFINE MACRO SETIP
CS = SEG (%0)
IP = OFF (%0)
EM ;END OF MACRO SETIP

10 'PUT :F1:TEST.INC MACRO

11 'EXIT

3-1 I

Sample ICE-86A Sessions at the Terminal

3-12

Session 2

o We call up the ICE-86A program and specify a LIST file as before.

The ENA EXP command enables the display of the macros so we can see the
block of commands making up each macro. The expansion is disabled when the
ICE-86A emulator is first invoked.

The INCLUDE command causes the ICE-86A emulator to read commands
from a file rather than from the console. The form of this command is just:

INCLUDE :drive: filename

In our case, the file :FI :TEST.INC contains the macro definitions from
session I. Thus, when we enter the command:

INCLUDE :F1 :TEST.INC

The ICE-86A emulator reads in all the macro definitions from PUSH86 through
TEST, then returns control to the console.

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

o -:F1 :ICE86
ISIS-IlICE-86/86A, V2.0 .
• LIST :F1:DEC11.LOG ;SESSION TWO
·ENA EXP
·INCLUDE :F1:TEST.INC
·DEFINE MACRO PUSH86
.·SP = SP - 2T ;MOVE POINTER TO NEW TOP OF STACK
.·WORD SS:SP = %0 ;PUSH PARAMETER ON STACK
.·EM ;END OF MACRO PUSH86
·DEFINE MACRO POP86
.·%0 = WORD SS:SP ;POP PARAMETER OFF STACK
.·SP = SP + 2T ;MOVE POINTER TO NEW TOP OF STACK
.·EM ;END OF MACRO POP86
·DEFINE MACRO SETIP
··CS = SEG (%0)
.·IP = OFF (%0)
.·EM ;END OF MACRO SETIP
·DEFINE MACRO TYPES
.·TYPE .MAINTIME = BYTE ;FROM PLM LISTING
.·TYPE .SIDETIME BYTE ;FROM PLM LISTING
.·TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
.·TYPE .SIDECYCLELENGTH = BYTE ;FROM PLM LISTING
··TYPE .CARSWAITING = BYTE ;FROM PLM LISTING
.·TYPE .L1GHTSTATUS = BYTE ;FROM PLM LISTING
··EM ;ENDOFMACROTYPES
·DEFINE MACRO INIT
.·MAP 0 LENGTH 2 = ICE 0 ;MEMORY SPACE FOR CARS PROGRAM
.·MAP 0 LENGTH 2 ;DISPLAY WHATWE MAPPED
.·LOAD :F1 :CARS
··DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
.·:TYPES ;MACRO FOR TYPE DEFINITIONS
··SYMBOLS
··L1NES ;DISPLAY SYMBOL AND LINE NUMBER TABLES
··EM ;END OF MACRO INIT
·DEFINE MACRO EXAM
··REPEAT
··STEP
··IF CS = SEG(.DISPLAY) AND IP = OFF(.DISPLAY) THEN
··WRITE 'CALL DISPLAY'
··:POP86IP ;RESTORE RETURN ADDRESS
··SP = SP + 2T ;DISCARD PARAMETER
··ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
.·WRITE 'CALL DELAY'
··:POP86IP
··SP = SP + 2T
··ORIF CS = SEG(..CARS#30) AND IP = OFF(.. CARS#30) THEN
.·WRITE 'STARTING MAIN LOOP'
··ORIF CS = SEG(.. CARS#34) AND IP = OFF(.. CARS#34) THEN
··WRITE 'START OF IF TEST'
•• :VARIABLES
··ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN
.·WRITE 'CALL CYCLE'
··ENDIF
·*ENDREPEAT
·*EM ;END OF MACRO EXAM
·DEFINE MACRO VARIABLES
··WRITE 'L1GHTSTATUS = '.!LlGHTSTATUS,', CARSWAITING = ',!CARSWAITING
··WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME = ',!MAINTIME
··WRITE 'SIDECYCLELENGTH =' ,!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME
··EM ;END OF MACRO VARIABLES
·DEFINE MACRO TEST
··GO FROM .STARTTILL .. CARS#30 EXECUTED
··!CARSWAITING = %0
··:VARIABLES
··:EXAM
··EM ;END OF MACRO TEST

3-13

Sample ICE-86A Sessions at the Terminal

3-14

2 We invoke macro INIT with a macro call of the form:

: macro-name

In our example, the call is:

:INIT

First, the macro is "expanded" to form a block of executable commands. The
expansion is displayed since we previously enabled the display. The expansion
of INIT involves expanding the macro TYPES at the point that TYPES is called
within INIT (see the definition of INIT on the previous page). As INIT is
expanded, each command is checked for syntax; any error here would abort the
macro call. However, no errors occur and we reach the EM token marking the
end of the macro expansion.

3 The commands in INIT now execute. The MAP commands allocate space in
ICE memory for our code and display the resulting map (T indicates decimal
radix):

OOOOT=ICE OOOOT OOOH=ICE OOOH

The SYMBOLS command displays the symbol table; the listing shows the sym­
bol names and corresponding addresses. We see that .START is present in an
unnamed module at the head of the table, and other symbols are listed in the
order they appear within the two program modules, .. CARS and .. DELAY.
Note the type specifications on the program variables named in the macro
TYPES.

The LINES command displays the statement numbers and corresponding
addresses from CARS. DELAY has no line numbers because the assembler does
not produce a line number table.

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

2 ":INIT
-"MAP 0 LENGTH 2 = ICE 0 ;MEMORY SPACE FOR CARS PROGRAM
--MAP 0 LENGTH 2 ;DISPLAY WHATWE MAPPED
-"LOAD :F1 :CARS
-"DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
-":TYPES ;MACRO FOR TYPE DEFINITIONS
""TYPE .MAINTIME = BYTE ;FROM PLM LISTING
""TYPE .SIDETIME '"' BYTE ;FROM PLM LISTING
""TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
""TYPE .SIDECYCLELENGTH BYTE ;FROM PLM LISTING

• ""TYPE .CARSWAITING = BYTE ;FROM PLM LISTING
""TYPE .LlGHTSTATUS = BYTE ;FROM PLM LISTING
""EM ;END OF MACRO TYPES
--SYMBOLS
--LINES ;DISPLAY SYMBOL AND LINE NUMBER TABLES
-"EM ;END OF MACRO INIT

3 OOOOT=ICE OOOOT 0001T=ICE 0001T
-CODE=0020:0000H
-CON ST =002F:000CH
-DATA=002F:000EH
-STACK=0030:0002H
-MEMORY=0031 :OOOOH
-??SEG=0031 :OOOOH
-ABS_O=OOOOH
-CGROUP=OOOOH
-DGROU P=OOOOH
-START=0202H
MODULE .. CARS
-MEMORY=0310H
-MAINTIME=02FEH OF BYT
-SIDETIME=02FFH OF BYT
-MAINCYCLELENGTH=02FCH OF BYT
-SIDECYCLELENGTi't=02FDH OF BYT
-CARSWAITING=0300H OF BYT
-LiGHTSTATUS=0301H OF BYT
-SIDESTREETCAR=028DH
-DISPLA Y=0296H
-CYCLE=02A5H
MODULE .. DELAY
-DELAY=02D8H
-LAB1=02DFH
-LAB2=02E1 H
-M=OOOOH
-MEMORY _LABEL=0031 :OOOOH
eST ACK_BASE=0030:000CH
-TEMP=0020:00FBH
MODULE .. CARS
#1=028DH
#2=028DH
#3=028DH
#4=028DH
#5=028DH
#6=028DH
#7=028DH
#8=0290H
#9=0294H
#10=0296H
#11=0296H
#12=0296H
#13=0296H
#14=0299H
#15=0299H
#16=02A1H
#17=02A5H
#18=02A8H
#19",02AOH
#20"'02B2H
#21 ",02BFH
#22=02C3H
#23=02C9H
'24=02CDH
#25-=0200H

Sample ICE-86A Sessions at the Terminal

3-16

4 We now invoke macro TEST to exercise the program logic. We wish to
demonstrate that the code will branch to CYCLE when either of the following
two conditions is true:

1) CARSWAITING = 1 AND MAINTIME >= 16 seconds

2) CARSWAITING >= 2 AND MAINTIME >= 8 seconds

In the definition of TEST (look back at step 1) the second command is: ..

!CARSWAITING = %0

The parameter %0 lets us set the contents of CARSW AITING to any BYTE
quantity we require. Thus wetest condition.! by our command:

TEST1

This results in the expansion:

!CARSWAITING = 1

The expansion of TEST involves the expansion of the macros VARIABLES and
EXAM at the point each is called in the body of TEST.

Macro TEST now begins to execute. To help us follow the displays, we can iden­
tify some key addresses in the portions of code we are checking, as shown in
table 3-1.

Table 3-1. Key Addresses in CARS Logic

ADDRESS (IP)
LlNE# PLACE IN

NUMBER CARS CODE

0002H #27 START OF MAIN PROGRAM (.START)

021 FH #30,31 START OF MAIN 'DO' BLOCK

0236H #34 START OF IF.TEST

0276H #35,36 START OF CONDITIONAL 'DO' BLOCK

027EH #37 POINT OF RETURN FROM 'CALL CYCLE'

0288H #39,40 END OF BOTH CONDITIONAL AND MAIN 'DO' BLOCKS

0296H #13 BEGINNING OF DISPLAY (SKIPPED)

02A5H #17 BEGINNING OF CYCLE

02D5H #26 END OF CYCLE

02D8H (#17) BEGINNING OF DELAY (SKIPPED)

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

i/26=02D5H
i/27=0202H
i/28=0215H
i/29=021AH
i/30=021FH
i/31=021FH
i/32=0226H
i/33=022CH
i/34=0236H
i/35=027BH
1136=027BH
i/37=027EH
i/38=0283H
i/39=0288H
i/40=0288H
i/41=028BH
MODULE .. DELAY

4 ':TEST 1
.·GO FROM .ST ART TILL .. CARSi/30 EXECUTED
.·!CARSWAITING = 1
··:VARIABLES
···WRITE 'LiGHTSTATUS = ',!LlGHTSTATUS,', CARSWAITING = ',!CARSWAITING
,,'WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME = ',!MAINTIME
,,'WRITE'SIDECYCLELENGTH =' ,!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME
"'EM ;ENDOF MACRO VARIABLES
··:EXAM
···REPEAT
····STEP
... ·IF CS = SEG(.DISPLAY) AND IF = OFF(.DISPLAY) THEN
•••• ·WRITE 'CALL DISPLAY'
.... ·:POP86IP ;RESTORE RETURN ADDRESS
..... ·IP = WORD SS:SP ;POP PARAMETER OFF STACK
• ·SP = SP + 2T ;MOV POINTER TONEW TOP OF STACK
..... ·EM ;END OF MACRO POP86
.... ·SP = SP + 2T ;DISCARD PARAMETER
.... ·ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
• ... ·WRITE 'CALL DELAY'
.... ·:POP86IP
..... ·IP = WORD SS:SP
.... ··SP=SP + 2T
······EM
.... ·SP=SP + 2T

;POP PARAMETER OFF STACK
;MOVE POINTER TO NEW TOP OF STACK
;END OF MACRO POP86

.... ·ORIF CS = SEG(.. CARSi/30) AND IP = OFF(..CARSi/30) THEN
•••• ·WRITE 'STARTING MAIN LOOP'
.... ·ORIF CS = SEG(.. CARSi/34) AND IP = OFF(.. CARSi/34) THEN
•• •• ·WRITE 'START OF IF TEST'
·····:VARIABLES
••••• ·WRITE 'LiGHTSTATUS = ',!LlGHTSTATUS,', CARSWAITING = ',!CARSWAITING
······WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME = ',!MAINTIME
······WRITE 'SIDECYCLELENGTH = ',!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME
..... ·EM ;ENDOF MACRO VARIABLES
• .. ··ORIF CS =(.CYCLE) AND IP = OFF(.CYCLE) THEN
·····WRITE 'CALL CYCLE'
.... ·ENDIF
.. ··ENDREPEAT
,,'EM ;END OF MACRO EXAM
··EM ;END OF MACRO TEST

3-17

Sample ICE-86A Sessions at the Terminal

3-18

5 The messages 'EMULATION BEGUN' and 'EMULATION TERMINATED,
CS:IP = 0000:0223' are produced by the command 'GO FROM .START TILL
.. CARS#30 EXECUTED.'

6 The next three display lines are produced by macro VARIABLES. We see that
LIGHTST ATUS is 1 (main street green), and that CARSWAITING has
been set to 1 by the command '! CARSW AITING = l' in TEST.
MAINCYCLELENGTH and SIDECYCLELENGTH are constants at 8 and 5,
respectively. MAINTIME is zero.

7 This is the beginning of the REPEAT loop in macro EXAM. The first STEP
ends with address 0296H in the instruction pointer; this is the beginning of
DISPLAY and macro EXAM displays the 'CALL DISPLAY' message.

8 When the beginning of DELAY appears in CS:IP, EXAM displays 'CALL
DELAY'.

9 Address 0236H is the address of the first instruction generated by the IF
statement on line #34 of CARS. EXAM displays the message 'START OF IF
TEST', and also displays (via a call to macro VARIABLES) the values of the
variables involved in the IF condition. The only change since the last such
display is that MAINTIME has been incremented to 1.

ICE-86A

ICE·86A

5 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0223H

6 LlGHTSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0OO8H, MAINTIME = OOOOH
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H

7 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0296H
CALL DISPLAY ,
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0228H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0229H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02D8H

8 CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0230H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0232H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0236H

9 ST ART OF IF TEST
LlGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0001H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0240H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0244H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0245H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0249H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:024BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:024DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:024EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:024FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0251 H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0252H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0257H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0259H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:025DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0261H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0263H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0265H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P-=OOOO:0267H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0269H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026BH
EMULATION BEGUN
EMULA liON tERMINA lEO, CS:IP=OOOO:b260H
EMUl.ATtON BEGUN
E,MULA nON TERMINATED, CS:IPtdOOOO;()26E11

Sample ICE·86A Sessions at the Terminal

3·19

Sample ICE-86A Sessions at the Terminal

3-20

lO The previous thirty STEPs comprise the IF-test. Address 0278H is the end of the
IF test, and 0288H is the end of the main loop. Since address 027BH did not
appear, we know that the conditional loop did not execute.

II Here we are at the beginning of the main loop in CARS.

12 This time through the IF test, MAINTIME is 2. We omit most of the STEPs
through the test (address 023BH to 0278H) from the text; these are identical to
the series shown at step 9.

13 The start of the main loop again; still no light change.

ICE-86A

ICE-86A

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0271H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0272H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0274H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0276H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0278H

10 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0288H

11 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=00OO:021FH
STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0223H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0228H
EMULATION BEGUN
EM U LATION TERMINATED, CS:IP=0000:0229H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02D8H
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0230H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0232H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=00OO:0236H

12 START OF IF TEST
LlG HTST ATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0002H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023FH
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=0000:0276H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=00OO:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH

13 STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0223H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0228H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0229H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02D8H
CALL DELAY

Sample ICE-86A Sessions at the Terminal

3-21

Sample lCE-86A Sessions at the Terminal

3-22

14 MAINTIME equals 3; still a long way to go until MAINTIME equals 16. We
now omit all steps from the text except the beginning and end of the IF test, so
that we can concentrate on the value of MAINTIME.

15 MAINTIME equals 4.

16 MAINTIME equals 5.

ICE-86A

ICE-86A

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0230H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0232H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

14 LlGHTSTATUS = 000"1H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0003H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN

• · .
•

•
•
•
EMULATION TERMINATED, CS:IP=0000:0276H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EM U LATION TERMINATED, CS:IP=0000:021 FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

15 LlGHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0004H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:021FH
ST ARTING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=0000:0236H
ST ART OF IF TEST

16 LIGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0005H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN

•
•
•

Sample ICE-86A Sessions at the Terminal

3·23

Sample ICE-86A Sessions at the Terminal

3-24

17 MAINTlME equals 6.

18 MAINTlME equals 7.

19 MAINTlME equals 8.

ICE-86A

ICE-86A

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP
EMULAITON BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=0000:0236H
ST ART OF IF TEST

17 LlGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0006H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN

•
•
•

•
•
•
EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

18 LlGHTSTATUS = 0001 H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0007H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN

•
•

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EM U LATION TERMINATED, CS:IP=0000:021 FH
ST ARING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0236H
ST ART OF IF TEST

19 LlGHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0008H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

Sample ICE-86A Sessions at the Terminal

3-25

Sample ICE-86A Sessions at the Terminal ICE-86A

20 MAINiIME equals 9.

21 MAINTIME equals 10 (OAH).

3-26

ICE·86A

EMULATION TERMINATED, CS:IP=OOOO:023BH
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0236H
START OF IF TEST

20 LlGHTSTATUS = 0001H, CARSWAITING =0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0009H
SIDECYCLELENGTH = OOOSH, SIDETIME = 0070H
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0278H
EMULATION BEGUN .
EMULATION TERMINATED, CS:IP=OOOO:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0236H
START OF IF TEST

21 LlGHTSTATUS=0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOAH
SIDECYCLELENGTH = OOOSH, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023BH

• EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021 FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

Sample ICE·86A Sessions at the Terminal

3-27

Sample ICE-86A Sessions at the Terminal

3-28

22 MAINTIME equals 11 (OBH).

23 MAINTIME equals 12 (OCH).

24 MAINTIME equals 13 (ODH).

ICE-86A

ICE-86A

EMULATION TERMINATED, CS:IP=00OO:0236H
START OF IF TEST

22 L1GHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOBH
SIDECYCLELENGTH = 0005H, SIDETIME =OO70H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=00OO:023BH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=..oOOO:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

23 L1GHTSTATUS = 0001 H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOCH
SIDECYCLELENGTH = oo05H, SIDETIME = 0070H
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0236H
START OF IF TEST

24 L1GHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = OOODH
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023BH
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH
STARING MAIN LOOP
EMULATION BEGUN

Sample ICE-86A Sessions at the Terminal

3-29

Sample ICE-86A Sessions at the Terminal

3-30

25 MAINTIME equals 14 (OEH).

26 MAINTIME equals 15 (OFH).

27 Finally, MAINTIME equals 16 or two times MAINCYCLELENGTH. This
time the condition 'CARSW AITING = 1 AND MAINTIME >= 2 * MAIN­
CYCLELENGTH' is TRUE and we should see a call to CYCLE at the end of
the IF test.

ICE-86A

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0236H
START OF IF TEST

25 LlGHTSTATUS= 0OO1H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOEH
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=oOOO:023BH
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0236H
START OF IF TEST

26 LlGHtSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH= 0008H, MAINTIME = OOOFH
SIDECYCLELENGTIri-= OOOSH, SIDETIME = 0070H
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH
STARTING MAIN LOOP
EMULATION BEGUN

•
• .-
EMULATION TERMINATED, CS:IP=OOOO:0236H
START OF IF TEST

27 LlGHTSTATUS == 0001H, CARSWAITING =0001H
MAINCYCLELENGTH = 0008H, MAINTIME == 0010H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:023fH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0240H
EMULATION BEGUN
EMULATION TERMINATED, C$:IP=OOOO:0244H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0245H
EMULATION BEGUN
EMULATION TERMINATED, CS:I·P==OOOO:0249H
EMULATION BEGUN
EMULAtiON TERMINATED, CS:IP=OOOO:024BH

Sample ICE-86A Sessions at the Terminal

3-31

Sample ICE-86A Sessions at the Terminal

3-32

28 Address 027BH in the beginning of the conditional 'DO' loop.

29 Here is the beginning of CYCLE (OA 7H). CYCLE is a loop controlled by the
statement 'DO WHILE SIDETIME <= SIDECYCLELENGTH';
SIDECYCLELENGTH is 5, so the loop should exit when SIDETIME equals 6.
We could have included ICE-86A commands in macro EXAM to examine
CYCLE more clos.ely (LIGHTSTATUSshould be set to zero, and SIDETIME
should increment on each iteration). In our example, however, we simply wait
for CYCLE to return to the main program. The rest of the display on this page
shows two iterations of CYCLE. We have omitted the printout of the remaining
iterations.

ICE-86A

ICE-86A

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:024EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:024FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0251 H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0252H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0257H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0259H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:025CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:025DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0261H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0263H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0265H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0267H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0269H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0271H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0272H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0274H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0276H
EMULATION BEGUN

28 EMULATION TERMINATED, CS:IP = OOOO:027BH
EMULATION BEGUN

29 EMULATION TERMINATED, CS:IP=OOOO:02A5H
CALL CYCLE
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02A6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02A8H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02ADH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02B2H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02B6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02BAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02BFH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02COH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02C5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02C6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02D8H
CALL DELAY

Sample ICE-86A Sessions at the Terminal

3-33

Sample ICE~86A Sessions at the Tenninal IC1HI(iA

30 Address 02D5H is the end of CYCLE, Two steps later. 027EH is the return
address from the call to cycle, .

ICE-86A

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02CDH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02B2H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02B6H
EMULATION BEGUN '
EMULATION TERMINATED, CS:IP=0000:02BAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02BFH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02COH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02C5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02C6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02D8H
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02CDH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02B2H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02B6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02BAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02BFH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02COH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02C5H

•
•
•
EMULATION TERMINATED, CS:IP=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02C5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02C6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02D8H
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02CDH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02B2H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02B6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02BAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02BCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02DOH
EMULATION BEGUN

30 EMULATION TERMINATED, CS:IP=0000:02D5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02D6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:027EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0283H

Sample ICE-86A Sessions at the Terminal

3-35

Sample ICE-86A Sessions at the Terminal

3-36

31 Here we are back at the start of the main loop.

32 The display of variables shows LIGHTSTATUS at I and CARSWAITING at
zero. SIDETIME is 6 as we expected. MAINTIME is I and will continue to
increment as long as we allow the program to emulate.

33 We consider this test 'successful', and abort the emulation by pressing the ESC
key.

34 Now to test the second condition. The macro call 'TEST 2' produces an
expansion of macro TEST; this time CARSW AITING is set to 2. Otherwise, the
expansion produces an executable macro identical to 'TEST I' shown in step 4.

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:028BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:021 FH

31 STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0223H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:022BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0229H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02D8H
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0230H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0232H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

32 UGHTSTATUS = 0001 H, CARSWAITING = OOOOH
MAINCYCLELENGTH = OOOBH, MAINTIM E = 0001 H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023DH

33 PROCESSING ABORTED

34 ·:TEST2
.·GO FROM .STARTTILL .. CARS'30 EXECUTED
.·!CARSWAITING = 2
··:VARIABLES
"·WRITE 'UGHTSTATUS =',IUGHTSTATUS,', CARSWAITING = ',!CARSWAITING
.. ·WRITE 'MAINCYCLELENGTH =',IMAINCYCLELENGTH,', MAINTIME = ',IMAINTIME
"·WRITE 'SIDECYCLELENGTH =' ,ISIDECYCLELENGTH,', SIDETIME =' ,ISIDETIME
•• *EM ;END OF MACRO VARIABLES.
··:EXAM
··*REPEAT
.. ··STEP
... ·IF CS =SEG(.DISPLAY) AND IP = OFF(.DISPLA Y) THEN
.... *WRITE 'CALL DISPLAY'
.... ·:POP86IP . ;RESTORE RETURN ADDRESS
..... *IP = WORD SS:SP ;POP PARAMETER OFF STACK
..... *SP=SP + 2T ;MOVE POINTER TO NEWTOPOF STACK
..... *EM ;END OF MACRO POPB6
.... ·SP = SP + 2T ;DISCARD PARAMETER
.... ·ORIFCS= SEG(.DELAY) AND IP = OFF(.DELAY) THEN
•••• ·WRITE 'CALL DELAY'
• .. ··:POP86IP
.... ·*IP = WORD SS:SP
..... *SP=SP + 2T
·····*EM
.... ·SP=SP + 2T

;POP PARAMETER OFF STACK
;MOVE POINTER TO NEW TOP OF STACK
;END OF MACRO POPB6

.... ·ORIF CS = SEG(.. CARS'30) AND IP = OFF(.. CARS'30) THEN
•••• ·WRITE 'STARTING MAIN LOOP'
.... ·ORIF CS = SEG(.. CARS'34) AND IP = OFF(.. CARS'34) THEN
•••• ·WRITE 'START OF IF TEST'
·····:VARIABLES
••••• *WRITE 'UGHTSTATUS = ',ILlGHTSTATUS,', CARSWAITING = ',!CARSWAITING
••••• *WRITE 'MAINCYCLELENGTH = ',IMAINCYCLELENGTH,', MAINTIME = ',IMAINTIME
••••• *WRITE 'SIDECYCLELENGTH = ',ISIDECYCLELENGTH,', SIDETIME = ',ISIDETIME
..... *EM ;ENDOF MACRO VARIABLES
.... ·ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN
•••• ·WRITE 'CALL CYCLE'
·····ENDIF
·"*ENDREPEAT
"*EM ;END OF MACRO EXAM

3-37

Sample ICE-86A Sessions at the Terminal

3-38

35 We emulate to the start of the main loop, as before. Thistime CARSWAITING
is 2, and we should CALL CYCLE as soon as MAINTIME equals 8. We omit
the intermediate steps.

36 MAINTIME is 8, equal to MAINCYCLELENGTH.

ICE-86A

35 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0223H
LlGHTSTATUS = 0001H, CARSWAITING = 0002H
MAINCYCLELENGTH = OOOBH, MAINTIME = OOOOH
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0228H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0229H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=00OO:02DBH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0230H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0232H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST
LlGHTSTATUS = 0001H, CARSWAITING = 0002H
MAINCYCLELENGTH = OOOBH, MAINTIME = 0001 H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN

•
•

36 ST ART OF IF TEST
LlGHTSTATUS = 0001 H, CARSWAITING = 0002H
MAIN CYCLE LENGTH = OOOBH, MAINTIME = OOOBH
SIDECYCLELENGTH = OOOSH, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0240H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0244H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=QOOO:0245H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0249H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:024BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:024EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:024FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0251H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0252H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0257H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0259H
EMULATION BEGUN
EM"ULATION TERMINATED, CS:IP=OOOO:025BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:025CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:025DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0261H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=QOOO:0263H

Sample ICE-86A Sessions at the Terminal

3-39

Sample ICE-86A Sessions at the Terminal

3-40

37 And here's the beginning of CYCLE. Once more we omit the steps in CYCLE
from the text.

38 This is the end of CYCLE, and the return to the main program.

39 Back to the start of the main loop.

ICE-86A

ICE-86A

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0265H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0267H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0269H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:026FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0271H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0272H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0274H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0276H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:027BH
EMULATION BEGUN

37 EMULATION TERMINATED, CS:IP=OOOO:02A5H
CALL CYCLE
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:02B6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02BAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02BCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02DOH
EMULATION BEGUN

38 EMULATION TERMINATED, CS:IP=OOOO:02D5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02D6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:027EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0283H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:021FH

39 STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0223H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0298H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0228H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0229H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:02D8H
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0230H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0232H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0236H
START OF IF TEST

Sample lCE-86A Sessions at the Terminal

3-41

Sample ICE-86A Sessions at the Terminal

3-42

40 We consider this test 'successful', abort emulation, and exit from the ICE-86A
emulator back to ISIS-II (hyphen prompt).

ICE-86A

ICE-86A

40 LlGHTSTATUS = 0001 H, CARSWAITING == OOOOH
MAINCYCLELENGTH = 0008H, MAINTIME = 0001 H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN,
EMULATION TERMINATED, CS:IP=0000:023DH
PROCESSING ABORTED

-EXIT

Sample ICE-86A Sessions at the Terminal

3-43

CHAPTER 4
ELEMENTS OF THE ICE-86ATM

COMMAND LANGUAGE

Introduction

The ICE-86A software provides you with an easy-to-use English language command
set for controlling ICE-86A execution in a variety of functional modes.

The ICE-86A commands enable you to:

• Initialize the ICE-86A system, map your program to memory in your system,
ICE-86A memory, disk memory, or in the Intellec Microcomputer Development
System, and load your program from a diskette file.

• Specify starting and stopping conditions for emulation.

• Execute real-time emulation of your software (and hardware).

• Execute single-step emulation.

• Specify conditions for trace data collection.

• Collect and display trace data on conditions occurring during emulation.

• Display and alter 8086 registers, memory locations, and 110 ports.

• Copy the (modified) program from mapped memory to a diskette file, and exit
the ICE-86A system.

An example of one complete ICE-86A command, in this case one of the forms of the
GO command, is shown in figure 4-1. This command causes emulation to start and
specifies the conditions that will halt emulation. The command is made up of ten
separate "words" (character strings that are referred to as tokens): GO, FROM,
0123H, TILL, lOOOH, TO, l100H, READ, USING, and CS. Each of these tokens
provides a particular element of information necessary to inform the ICE-86A
emulator of the specific command functions (see table 4-1). The tokens also form
the following command components: the FROM clause, match-range, match-status,
segment-register-usage, match-condition, and TILL clause. This string of tokens
requests the ICE-86A emulator to start emulation at location 0123H and to continue
emulation until data is read from any memory location within the match-range (par­
tition) of addresses l000H through 1100H using the CS segment register in the effec­
tive address calculation. Every ICE-86A command is composed of one or more such
tokens.

GO FROM 0123H TILL 1000H TO 1100H READ USING CS

tokenl token2 token3 token4 token5 token6 token7 token8 token9 tokenl0

'---v----' ~----~y~------~ '-y-' y

match· segment-
status register-

FROM-clause match-range

usage

y

match-condition

~------------------~y~------------------~
TILL-clause

Figure 4-1. Example of a GO Command 162554-5

4-1

Elements of the ICE-86A Command Language

4-2

Token
Number

1

2

3

2,3

4

5

6

7

5,6,7

8

9

10

9,10

5 thru 10

4thru 10

Table 4-1. Definition of GO Command Functions

Name

GO

FROM

0123H

FROM clause

TILL

1000H

TO

1100H

match-range

READ

USING

CS

segment-register-usage

match-cond ition

TILL clause

Function

GO command specifier; requests and
initiates emulation.

Indicates that the next token or
expression is the starting addre.ss for
emulation.

Starting address in hexadecimal
radix.

FROM 0123H causes the instruction
pointer (lP) to be loaded with 0123H,
the starting address for emulation.
Also, the code segment register (CS)
is loaded with O.

Indicates that the breakpoint (halting)
parameters are to follow.

Specifies the lowest address of a
range of memory locations. This
parameter is the lower bound of a
memory partition.

Indicates that the upper bound
(address) of the range (partition) of
memory locations is to follow.

Specifies the highest address of the
range of memory locations.

Emulation is to halt if an access to any
memory location whose address falls
within the range of 1000H to 1100H.

Emulation is to halt if any olthe above
memory locations are read.

Indicates a segment register is to
follow.

The code segment register(CS) must
be us.ed in the effective address
calculation in order to match.

Emulation is to halt if the CS is used.

Emulation is to halt if data is read
from any memory location in the
match-range.

TILL 1000H TO 1100H READ USING CS
specifies that the emulation is to halt
whenever th.e match-condition is
met. This clause is also called the
'GO-register' in the ICE-86A
language.

Note: The match-condition consists of the three sub-conditions: match-range (tokens
5,6,7), match-status (token 8), and segment-register-usage (tokens 9,10). All
three of these conditions must be matched for emulation to halt.

As briefly indicated in figure 4-1, the ICE-86A commands are writte.rti{ an'ICBt86A
command language composed ·of a unique character set and vocabufarYbftekell.,s . . '. . 'f' ... •.
augmented by a particular set of syntactic rules. The.tokens are con~tn:lcte4 from fne .

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

character set and in turn are used to construct commands. The tokens consist of a set
of predefined literals augmented by user-defined literals that provide symbolic
references. Table 4-1 contains the definition of each token shown in figure 4-1.

The purpose of this chapter is to present a detailed specification of the ICE-86A
command language. The language consists of two parts, a vocabulary that is used to
convey elements of information to the ICE-86A emulator and a "grammar" (syn­
tactic rules) used to group command words into command constructs such as the
FROM clause shown in figure 4-1. The remainder of this chapter is devoted to the
presentation of the command language. The initial discussion deals with class-names
and the notation used to describe the language and will include a listing of the syn­
tactic rules that govern command construction. This will be followed by a presenta­
tion of the command literals (keywords) and a discussion of symbolic references.

Notation and Conventions Used in This Manual
This manual employs a set of notational symbols and conventions to describe the
structure of commands and other language constructs. The features of this notation
are described in the following paragraphs. Table 4-2 contains the notational symbols
used to define and describe the command structures.

Table 4-2. Notational Symbols

Symbol Meaning

- "is defined as"

.. Mutual exclusion ..

... May be repeated indefinitely

{ L. At least one entry must be selected. If more than one entry is
. selected, they may be selected in any order.

{ } One of the enclosed entries must be selected.

[] ... Selection of the enclosed entries is optional. If more than one entry is
selected, they may be selected in any order.

[] Selection of the enclosed entries is optional but only one entry may
be selected. If this symbol encloses only one entry, that entry is
optional.

In addition to the above notational symbols, a set of class-names are used to assist in
the definition and description of entities in the ICE-86A command language. Each
class-name is an identifier for a specific set of characters, mnemonics, or constructs
and is always shown in lower-case italics. Any character string not in lower-case
italics is a specific character, mnemonic or construct. For example, the class-name
segment-register refers to the entire class of segment registers. The character string
CS refers to the Code Segment Register, which is one of the four segment registers.

As shown in figure 4-1, the smallest meaningful unit of information contained
within a command is a mnemonic character string that is the equivalent of a word.
Examples are: GO, 0123H, and FROM. These mnemonics are assigned the class­
name: token. In addition to these basic elements, the tokens are combined
into multi-token forms such as the FROM clause and match-condition shown in
figure 4-1.

4-3

· Elements of the ICE-86A Command Language

4-4

The ICE-86A vocabulary is made up of two classes of mnemonics: tokens and
special-tokens:

token;: constant:: keyword:: symbol:: string:: operand
special-token;: operator:: punctuation-mark:: delimiter:: terminator

The notational symbol (::) specifies mutual exclusion. That is, a token is a constant,
or keyword or symbol or string or operand.

Each of the above classes of tokens and special-tokens is defined later in this chapter
or in the next chapter in the discussion of expressions.

Syntactic Rules Used in the Manual

This manual employs a set of conventions to describe the structure of commands
and other ICE-86A language forms. Items I and 2 below specify the use of class­
names and tokens, respectively. The features of this notation system are as follows:

1. A lower-case italicized entry in the description of a command is the class-name
for a set or class of tokens. To create an actual operable command, you must
enter a particular member of this class. A class-name never appears in an actual
operable command. For example, the lower-case entry:

breakpoint-register

means that the command will accept any of the three tokens: BRO, BRI or BR
(BR means BRO and BRI). Classes of tokens that have generalized usage, such
as the classes of reference keywords and command keywords, are explained and
assigned class-names in this chapter. Additional classes of tokens that appear in
the syntax descriptions of particular commands are explained in the discussion
of semantics that accompanies those commands.

2. An upper-case entry is a token that must be used literally as given. A valid
abbreviation of that token may substitute for the full token as given. The token
may be a command word, or it may be a particular member of a class of
references. For example, the upper-case entry

DEFINE

is a command word that must be used as given unless abbreviated. The
abbreviation DEF may be used in place of DEFINE. As another example, the
upper-case entry

BR1

means that breakpoint register 1 must be named as and where given.

3. A single required entry is shown without any enclosures, whereas a single
optional entry is denoted by enclosing in brackets. For example, in the com-
mand syntax . .

STEP [FROM address]

the token STEP is required. The significance of the brackets around the entry:
FROM address means that its selection is optional in this command.

4. Where only one entry must be selected from a menu of two or more entries, the
choices for the required entry are denoted by enclosing them in braces. For
example,

{ FRAME }
TRACE = INSTRUCTION

indicates that FRAME or INSTRUCTION must be selected; the tokens TRACE
and = are required as given.

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

5. An optional entry is enclosed in brackets []. For example,

STEP [FROM address 1
means that the command word STEP is required but the clause FROM .address
is optional in this command.

Where a choice exists for an optional entry, the choices are given in a vertical
arrangement enclosed in brackets. For example, the command

OF BYTE
OFWORD
OFSINTEGER

DEFINE [module-name] symbol = expr OF INTEGER

OF POINTER
OF REAL

means that DEFINE, symbol, =, and expr are required in this command and
module-name is optional. The brackets around the vertical arrangement of
memory type designators denotes that selection of a memory type designator is
optional but only one designator may be selected per DEFINE command.

6. A group of required inclusive choices is given in a vertical arrangement and
enclosed in braces () followed by a repeat symbol (...). "Inclusive" means
that more than one of the items can be entered in the same command, and items
can appear in any order; no item can be entered more than once. The menu of
inclusive items represents a required entry or entries. For example:

match-status-/ist ;:

READ
WRITTEN
INPUT
OUTPUT
FETCHED
HALT
ACKNOWLEDGE

This notation indicates that one or more items from the vertical list is required
to specify a match-status-list. If more than one item is used, they can be in any
order and must be separated by commas.

To complete the example:

WRITTEN, HALT, READ, FETCHED

is a valid match-status-list.

7. A group of optional inclusive choices is given in a vertical arrangement and
enclosed in brackets and followed by a repeat symbol (...). "Inclusive" means
that more than one of the items can be entered in the same command, and the
items can appear in any order; no item can be used more than once. The menu
of inclusive items represents an optional entry or entries. For example:

LOAD path-name r ~g~~~~OLJ
L~OLlNE

This notation indicates that none, one, or more than one choice of NOCODE,
NOSYMBOL, and/or NOLlNE may be included in one LOAD command; if
more than one is used, the entries can be in any order.

To complete the example:

LOAD :FO:TEST NOSYMBOL NOCODE NOLINE

is a valid command.

4-5

Elements of the ICE-86A Command Language

4-6

8. Where mutually exclusive entries can be shown on one line, the following
shorthand notation can be used:

SUFFIX =Y ::0:: 0:: T ::H

9. Where an entry can be repeated indefinitely at the user's option, the syntax
is notated by enclosing the repeatable entry in brackets [J followed by an
ellipsis '" . For example,

operand [operator operand 1 ...
indicates that operator operand can be repeated as many times as desired.

Character Set

The valid characters in the ICE-86A command language in.clude upper and lower
case alphabetic ASCII characters A through Z and the set of digits 0 through 9. The
space serves as a delimiter for tokens, and carriage-return/line-feed characters are
also valid, delimiting command lines. A question mark, ?, @ sign, and $ sign are
also valid in user-defined names entered in the command language.

The algebraic operators + and - (binary and unary), the asterisk (*), and slash (I),
relational operators (=, <, », the ampersand, semicolon, colon, period, paren­
theses, exclamation mark (!), pound sign (#), percent sign (0J0) and comma constitute
the only other valid ASCII characters for the ICE-86A emulator. Non-printing
characters are ignored; tabs, form feed, etc. are treated as spaces. Other characters
are errors.

alphabetic characters:

ABCDEFGHIJKLMNOPORSTUVWXYZabcdefghijklmnopqrstuvwxyz@?

numeric characters:

01 23456789 (A BCD E F: hexadecimal characters)

special characters:

+ - < = > $' &). (;* {/I!:, %

this character set is used to construct the vocabulary that constitutes the command
language.

Introduction to Tokens

A token in ICE-86A command language is roughly equivalent to a 'Word' in the
English language. It consists of a string of alphanumeric characters that may be
augmented by a one or two special character prefix that serves as a token identifier.
Tokens are divided into the following types: keywords, user-names, and special­
tokens. Examples 'are:

REGISTERS, .START, .. MODULE, .SAM, 0400, 123AH.

ICE·86A

ICE-86A Elements of the ICE-86A Command Language

Keywords
The ICE-86A emulator recognizes a general class of predefined tokens that are fixed
in the command language. They provide two functions. Reference keywords are
used to specify locations having unique predefined functions. Command keywords '
specify command type and sub functions within a command. The following sections
define and describe these keyword classes. Each class and associated keyword set is
presented in the following paragraphs. Appendix A contains a listing of ICE-86A
keywords and their abbreviations.

The reason for discussing the various classes and subsets here is to smooth the later
discussions of commands, where the class-names are used to show what elements
may appear in specific commands.

Reference Keywords

The command language contains a set of system defined mnemonic tokens that are
used to address system objects. Each device, such as the accumulator or a register, is
assigned a specific mnemonic that is to be used to address and access the contents of
that device. These identifiers are called reference keywords. Reference keywords are
used in ICE-86A commands to refer to 8086 processor registers and flags, emulation
registers, memory locations, and I/O ports.

The total set of reference keywords is subdivided by types, each of which is refer­
enced by a class name. Class names are always shown in lower case italics. For exam­
ple, the class name general-register denotes the set of four 16-bit general work
registers in the 8086 processor. A reference token is assigned to each element within
the given class and is always shown in upper case. For example, 'RAX' denotes the
contents of the accumulator (RAX register) of the general register set.

Registers

The register structure contains three files of four 16-bit registers, a set of
miscellaneous registers, and a set of four pseudo-registers. The three files of registers
are the general register file, the pointer and index file, and the segment register file
(see table 4-3). The miscellaneous set consists of the instruction pointer, flag
register, CAUSE register, OPCODE register, PIP register, TIMER register,
HTIMER register, and BUFFERSIZE register. The pseudo-register set consists of
the breakpoint and trace point registers. The miscellaneous register set and the
pseudo-registers provide a variety of functions to the ICE-86A emulator that are
described in the appropriate command sections of this manual. The register struc­
tures are described in the following paragraphs.

Table 4-3. Classes of Hardware Elements

Class Name Hardware Elements

general-register 8-bit and 16-bit work register
pointer-register 16-bit address register
index-register 16-bit address register
segment-register 16-bit segment reference register
status-register 8-bit and 16-bit status registers
emulation-register breakpoint and tracepoint registers

4-7

Elements of the ICE-86A Command Language

4-8

General Register File. The RAX, RBX, RCX, and RDX registers compose the
General Register File. These registers participate interchangeably in 8086 arithmetic
and logical operations. These registers are assigned the following mnemonics:

RAX: Accumulatof
RBX: Base Register
RCX: Count Register
RDX: Data Register

Note: These are the 8086 AX, BX, CX, DX
registers (i.e., the ICE-86A emulator
appends 'R' to the 8086 names).

The general registers are unique within the 8086 as their upper and lower bytes are
individually addressable. Thus, each of the general registers contains two 8-bit
register files called the H file and L file as illustrated below.

H File L File
15 8 7 o

RAX: RAH RAL
RBX: RBH RBL
RCX: RCH RCL
RDX: RDH RDL

Pointer and Index Register File

Pointer and Index Register File. The BP, SP, SI, and DI registers are called the
Pointer and Index Register File. The registers in this group are similar in that they
generally contain offset addresses used for addressing within a segment. They can
participate interchangeably in 16-bit arithmetic and logical operations and can also
be used in address computation. The mnemonics associated with these registers are:

SP: Stack Pointer
BP: Base Pointer
SI: Source Index
DI: Destination Index

The pointer and index registers are illustrated below.

15 0

~~:I: =============:1
General Register File

Segment Register File. The CS, DS, SS, and ES registers constitute the Segment
Register File. These registers provide a significant function in the memory address­
ing mechanisms of the 8086. They are similar in that they are used in all memory
address computations. The mnemonics associated with these registers are:

CS: Code Segment Register
DS: Data Segment Register
SS: Stack Segment Register
ES: Extra Segment Register

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

The contents of the CS register define the current code segment. All instruction
fetches are taken to be relative to CS using the instruction pointer (lP) as an offset.

The contents of the DS register define the current data segment. All data references
except those involving BP, SP, or DI in a string instruction are taken by default to
be relative to DS.

The contents of the SS register define the current stack segment. All data references
which implicitly or explicitly involve SP or BP are taken by default to be relative
to SS.

The contents of the ES register define the current extra segment. The extra segment
has no specific use, although it is usually treated as an additional data segment.

The segment registers are illustrated below.

15 0

Segment Register File

Status Registers

The instruction pointer, flag register, CAUSE register, OPCODE register, PIP
register, TIMER register, HTIMER register, BUFFERSIZE register, UPPER
register, and LOWER register constitute the status register set. These registers pro­
vide a variety of functions to the emulator. These registers are assigned the following
mnemonics:

IP: Instruction Pointer (8086)
RF: Flag Register (lCE-86A emulator)
CAUSE: CAUSE Register (ICE-86A emulator)
OPCODE: OPCODE Register (lCE-86A emulator)
PIP: Previous Instruction Register (lCE-86A emulator)
TIMER: TIMER Register (lCE-86A emulator)
HTIMER: HTIMER Register (lCE-86A emulator)
BUFFERSIZE: BUFFERSIZE Register (ICE-86A emulator)
UPPER: UPPER Register (lCE-86A emulator)
LOWER: LOWER Register (ICE-86A emulator)

The contents of the IP register define the offset to the CS register in instruction
address computations. The Flag Register contains the status flag values in the same
format as that pushed by the 8086 PUSHF instruction. The CAUSE register retains
the cause of the last break in emulation and the OPCODE register stores the opcode
fetched in the last instruction-fetch cycle in trace data. The Previous Instruction
Register stores the displacement part of the address of the last instruction-fetch in
trace data. TIMER contains the low-order 16 bits of the 2-MHz timer indicating
how long emulation has run (read only). HTIMER contains the high-order 16 bits of
the timer (read only). BUFFERSIZE contains the count (displayed in decimal only)
of frames of valid trace data collected in the trace buffer (16 bit, read only). The
UPPER register contains the highest address in ICE-86A workspace below the sym­
bol table. The LOWER register contains the lowest address in ICE-86 workspace
above the ICE-86A software.

4-9

Elements of the ICE-86A Command Language

4-10

The status registers are illustrated below.

15
IP: F---"';""'--""

RF: IL-__ ~--.,
CAUSE:

OPCODE: .----'-----1
PIP: ...--------1

TIMER: 1-_____ -\
HTiMER: 1-_____ -\

BUFFERSIZE: ...-------t
L~:~:: 1-------\

Status Registers

The Flag Register contains nine status bits. The following mnemonics are assigned
to each of the status values in the register:

AFL:
CFL:
DFL:
IFL:
OFL:
PFL:
SFL:
TFL:
ZFL:

Auxiliary carry out of low byte to high byte
Carry or borrow out of high bit
Direction of string manipulation instruction
Interrupt-enable (external)
Overflow flag is signed arithmetic
Parity
Sign of the result of an operation
Trap used to place processor in single step mode for debug
Zero indicates a zero value result of an instruction

AFL is set if an instruction caused a carry out of bit 3 and into bit 4 of a resulting
value. CFL is set if an instruction caused a carry or a borrow out of the high order
bit. DFL controls the direction of the string manipulation instructions. IFL enables
or disables external interrupts. OFL denotes an overflow condition in a signed
arithmetic operation. SFL indicates the sign of the result of an operation. TFL
places the processor in a single-step mode for program debugging. ZFL indicates a
zero valued result of an instruction. The positions of the status bits in the RF
Register are shown below.

15 14 13 12 11 10

OFL I OFL IIFL I TFL I SFL I ZFl

Flag Register

The one byte CAUSE Register stores the cause for the last break in emulation.

The byte returned by the "Read Break Cause" hardware command contains the
following bit values (if bit = 1, then the specified condition is true, otherwise false).
Each bit has associated with it a message that is displayed if the bit is true when the
software command CAUSE is entered.

Bit Position

o
1
2
3
4
5
6
7

Condition

Breakpoint 0 matched
Breakpoint 1 matched
Both breakpoints matched sequentially
Guarded memory access occurred
User aborted processing
Timeout on user READY
Timeout on user HOLD
External break signal

Display

'BRO'
'BR1'
'SEQ'
'GUARD'
'ABORT'
'RDYTO'
'HLDTO'
'EXTRN'

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

BRO and BR I occur when emulation is halted due to matching the condition set in
the corresponding break register. Use of the breakpoint registers is discussed in
Chapter 6. SEQ occurs when emulation is halted due to matching both breakpoint
registers during the same instruction. For example, BRO can be set for the address of
an instruction while BRI is set for the value at that address, i.e., the instruction
opcod@. Then, when the specified instruction is fetched from the specified address,
SEQ is the break condition displayed. GUARD occurs when memory that was NOT
mapped is accessed. Memory mapping is discussed in Chapter 7. ABORT occurs
when the user presses the escape key to halt emulation. RDYTO occurs when emula­
tion is halted because of a ready timeout error. See Chapter 6 and Appendix B.
HLDTO occurs when emulation is halted because of a hold timeout error. See
Appendix B. EXTRN occurs when the user halts emulation through the external
break line in the buffer box. See Chapter 1 for a description of this line.

8086 Pin References

The ICE-86A emulator provides access to eight 8086 pins. The pin names reference
I-bit values. Pin names are read-only references only. The following mnemonics are
assigned to reference the 8086 processor pins shown below.

Mnemonic 8086 Pin

ROY READY

NMI NMI
TEST TEST

HOLD HOLD
RST RESET

MN MN/MX
IR INTR
RQGT,BUS RQ/GTO,

RQ/GT1
(HOLD, HLDA)

Emulation Registers

Meaning

Acknowledgment from addressed memory or I/O
device that it has completed data transfer.
Non-maskable interrupt.
Used by the wait-for-signal instruction for processor
synchronization purposes.
Request for local bus "hold".
Causes processor to immediately terminate present
activity.
Specifies minimum/maximum configuration.
Maskable interrupt request.
Request/Grant pin

The emulation registers consist of the breakpoint registers and the trace registers.

Type Class Name Keywords

Breakpoint register break-reg BRO, BR1, BR
Trace point register trace-reg ONTRACE,

OFFTRACE
GO register go-reg GR

The term break-reg is the class name for the two breakpoint registers used to halt
emulation. The term trace-reg is the class name for the two registers that control
tracing. The term go-reg refers to the GO-register, an ICE-86A pseudo-register that
controls the breaking of real-time emulation.

Command Keywords

The command keywords specify command types and command functions to be exe­
cuted. ICE-86A commands are of three major types: simple commands, compound
commands, and macro commands. The following sections define the associated
command formats and illustrate the use of keywords in each of the command types.
Each of the formats is specified and illustrated by example using appropriate com­
mand keywords. The full vocabulary of command keywords is presented following
the command descriptions.

4-11

Elements of the ICE-86A Command Language

4-12

Simple Commands

Simple commands are one of three types:

• Set! change commands

• Display commands

• Execution commands

The following sections describe the formats and provide examples of each of these
simple commands.

Set/Change Commands. The set/change commands have the following format:

item-type [item-qualifier] ... = new-setting

where

item-type

item-qualifier

new-setting

Examples:

A keyword or user name of an alterable element.

A keyword, user name or value used to provide further
specification of the particular element that is to be set or
altered.

The value that the specified item is to be set to.

BRO = 1000H EXECUTED
BYTE 10FFH = 3AH
.. MOD1 .SYMBA .SYMBB = 10FFH

Display Commands. The display commands have the following format:

item-type [item-qualifier] ...

where

item-type

item-qualifier

Examples:

BRO
BYTE10FFH
.. MOD1.SYMBA.SYMBB
REGISTER
RAX
FLAG
STACK 10

A keyword or user name of a displayable element or set
of displayable elements.

A keyword, user name or value used to provide further
specification of the particular element(s) to be
displayed.

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

Execution Commands. The execution commands have the following format:

command-verb [command-parameter] ...

where

command-verb

command-parameter

Examples:

GO
GO FROM .START

A command keyword that describes an action that is
to be performed.

Keywords that specify the objects of the action
denoted by the command-verb.

GO FROM .STARTTILL 1000H EXECUTED
TRACE
PRINT ALL
PRINT 10
MOVE -10

Compound Commands

Complete description of the formats of the compound commands and the use of
keywords with these commands is contained in Chapter 8.

Macro Commands
Complete description of the formats of the macro commands and the use of
keywords with these commands is contained in Chapter 8.

Utility Command Keywords

The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating
system for the Intellec Microcomputer Development System. The ICE-86A emulator
runs under ISIS-II control, and can call upon ISIS-II for file management functions
through the utility commands. These commands employ the following command
keywords:

Keyword

ICE86
EXIT
LIST

LOAD

NOCODE
NOLINE

NOSYMBOL

SAVE
SELECTING

Function

Commands the ICE-86A program to load from diskette.
Commands control to be returned to ISIS-II.
Commands ICE-86A emUlation output to be copied to printer or
file.
Commands user program to load into memory accessed by
ICE-86A.
A Modifier specifying that program code is not to be saved.
A Modifier specifying that the line number table is not to be
saved.
A Modifier specifying that the symbol table is not to be saved to
diskette.
Commands user program to be saved on an external device.
A Modifier specifying that a range of modules whose symbols
are to be LOADed is to follow.

4-13

Elements of the ICE-86A Command Language

4-14

Number Base and Radix Commands

ICE-86A commands and displays involve several different number bases (radixes).
This section describes the command keywords and radixes used to control the
number base.

Keyword

BASE
SUFFIX
EVALUATE

H
o
Q

T
Y
ASCII

Function

Set or display console output radix.
Set or display console input radix.
Commands a numeric constant or expression to be displayed
in all five possible output radixes.
Hexadecimal (base 16).
Octal (base B).
Octal (base B).
Decimal (base 10).
Binary (base 2).

ASCII character code.

Memory Mapping Command Keywords

These commands display, declare, set or reset the ICE-86A memory mapping. The
ICE-86A emulator uses these maps to determine what memory is installed on a pro­
totype system and what memory resources are being "borrowed" from the Intellec
system and the ICE emulator for testing purposes. These commands employ the
following keywords:

Keyword

DISK
GUARDED

ICE
INTELLEC
MAP

NOVERIFY

RESET
USER

Function

Maps logical memory segments into a diskette file.
Declares memory segments to be guarded. Accesses to
addresses in these segments are error conditions.
Maps memory segments into ICE "real-time" memory.
Maps memory segments to expanded Intellec memory.
Commands the ICE-B6A emulator to display, declare, set, or
reset ICE-B6A memory mapping.
Specifies that the normal read-atter-write verification of data
loaded into memory be suppressed.
Resets the ICE-B6A memory mapping.
Maps logical segments into user's prototype memory.

Hardware Register Command Keywords

This section presents the keywords used in the ICE-86A emulator to specify and
modify hardware register commands.

Keyword

BUS

CLOCK

DISABLE

ENABLE

ERROR

EXTERNAL

Function

Command keyword indicating that the current master of the
bus is to follow.
Command keyword indicating that a system clock specification
is to follow.
Command keyword indicating that a command function is to be
disabled.
Command keyword indicating that a command function is to be
enabled.
Command modifier specifying that an error is to be reportecj
whenever the command signal Umes out.
ICE-B6A is to operate from an external (user-provided) clock.

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

FLAG
HARDWARE
INFINITE
INTERNAL
PIN
REGISTER

RQGT

RWTIMEOUT

Contents of the 9 flags are to be displayed.
Reset command modifier, causes a hardware reset.
Set command signal timeout to "infinite," disabling timeout.
ICE-86A is to operate from an internal (8086-provided) clock.
Contents of the six 8086-input pins are to be displayed.
Contents of the thirteen 16-bit 8086 registers and RF are to be
displayed.
Command keyword indicating that the methods of handling
requests for the bus in maximum mode is to be displayed or
set.
Used to enable or disable memory access timeout.

Memory and Port Contents Command Keywords

These commands give access to the content or current value stored in designated
memory locations or input/output ports.

Keyword

ABSOLUTE
BASE
BOOL
BYTE
INTEGER
LENGTH

DASM

DREAL
POINTER
PORT
REAL
SINTEGER
STACK
TREAL
WORD
WPORT

Function

Display all addresses as 20-bit numbers.
Display all addresses in base and displacement format.
Display expression as a boolean value.
1-byte, unsigned integer value.
2-byte, unsigned integer value.
Indicates that an integer value denoting the length of a partition
is to follow.
Indicates that a range of memory is to be disassembled into
8086 assembly language mnemonics.
8-byte, signed real value.
4-byte, pointer value.
Reference to 8-bit 1/0 ports.
4-byte, signed real value.
1-byte, signed integer value.
Indicates that words from the user's stack is to be displayed.
10-byte, signed real value.
2-byte, unsigned integer value.
Reference to 16-bit 1/0 ports.

Symbol Table and Statement Number Table Command Keywords

The ICE-86A emulator maintains a symbol table and source program statement
number table to enable the user to refer to memory addresses and other values by
using symbolic references and statement number references in ICE-86A commands.
The following are command keywords contained in these commands:

Keyword

DEFINE
DISABLE
DOMAIN

ENABLE
LINE

MODULE
OF
REMOVE
SYMBOL
SYMBOLICALLY
TYPE

Function

Command keyword indicating a symbol is being defined.
Command keyword used to disable a facility.
Keyword used to establish a default module for source
statement number references.
Command keyword used to enable a facility.
Specifies the display of all of the source statement number
table.
Specifies the display of all of the ICE-86A module table.
Specifies th.at a memory type designation is to follow.
Specifies that symbolic reference(s) islare to be deleted.
Specifies the display of the entire ICE-86A symbol table.
Specifies the symbolic display of values.
Indicates an assignment or change of memory type to a
symbolic reference.

4-15

Elements of the ICE-86A Command Language

4-16

Emulation Control Command Keywords
The emulation control commands permit the user to specify the starting address
where emulation is to begin, and to specify and display the software or hardware
conditions for halting emulation and returning control to the console for further
commands. These commands employ the following keywords:

Keyword

ACKNOWLEDGE
AND

DOWN
EXECUTED
FOREVER
FETCHED
FROM
GO
HALT
INPUT
LOCATION

OR

OBJECT

OUTPUT
READ
STEP
TILL
UP
USING
VALUE

WRITTEN

Function

Match on 8086 interrupt acknowledge.
Indicates a match on both breakpoint registers required to halt
emulation.
Less than or equal to the referenced address.
An instruction fetch out of the execution queue.
All break conditions disabled.
Memory read into the execution queue.
Keyword introducing a starting address.
Command keyword that starts emulation.
8086 processor halt.
I/O port read.
Denotes the following constant or expression to be an
address.
Indicates that a match on either breakpoint register will halt
emulation.
Indicates that a memory reference or typed memory reference
isto follow.
I/O port write.
Memory read.
Single-step emulation command.
A keyword introducing one or more match or halt conditions.
Greater than or equal to the referenced address.
Indicates that a segment register is to be specified.
Denotes the following constant or expression to be a data
value.
Memory write.

Trace Control Commands
The trace control commands allow the user to display or change the match condition
in either or both of two tracepoint registers and to establish a tracepoint to condi­
tionally start trace collection and a tracepoint to stop collection. These commands
employ the following keywords:

Keyword

ADDR
ALL

BHE
CONDITIONALLY

DMUX
EXTRADDR

FRAME

INSTRUCTION

MARK

Function

Low-order 16 address/data bits.
A function keyword indicating that the entire trace buffer
contents are to be displayed.
Byte High Enable.
Indicates trace is to be turned on when ONTRACE matches and
turned off when OFFTRACE matches.
Type of frame.
High-order 4 address bits (address frame) or 4 status bits (data
frame).
Indicates that a trace reference is to follow or that the trace
buffer is to be displayed frame by frame.
A function keyword indicating that data in the trace buffer'is to
be displayed in instruction format.
Equal 1 if trace was turned off before current frame or if
emulation broke before current frame.

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

MOVE
NEWEST
NOW
OFF
OLDEST
ON
PRINT

QDEPTH
QSTS
STS
TRACE

User Names

Command keyword· moves the trace buffer pointer.
Moves trace buffer pointer to bottom of buffer.
Indicates trace setting for beginning of next emulation.
Indicates trace turned off.
Moves trace buffer pointer to top of buffer.
Indicates trace turned on.
Command keyword calling for a display of one or more entries
from the trace data buffer.
Queue depth.
2 queue status bits, QS1, QSO.
3 status bits S2/, S1/, Sot.
Command keyword indicating that the mode of display for trace
data is to be set.

The command language permits the programmer and operator to employ symbolic
addressing through the use of user-generated tokens as opposed to system-generated
tokens (keywords). The language permits four types of user names: symbols,
module names, statement numbers and macro names (see Chapter 8).

Symbols

A symbol is a sequence of contiguous alphanumeric characters, prefixed by a period
(.), that references a location in a symbol table. The symbol has two uses. The
referenced table location always contains a number; it may be an address of an
instruction or variable in a program module, or it may be used directly as a
numerical value. In the first case, the symbol is an alternative method of program
addressing (symbolic as opposed to direct numeric addresses). In the second case, it
provides a method for storing and retrieving data values symbolically into/from the
table itself.

As an example, consider the symbol .BEGIN in module .. MAINLOOP. The entire
reference to this occurrence of .BEGIN is:

.. MAINLOOP.BEGIN

where

the double period (..) designates MAINLOOP as a module-name and
the single period (.) designates BEGIN as a symbol-name.

Statement Numbers
In the process of compiling a source module in DEBUG mode, the PLiM compiler
generates a set of (source) statement numbers, one for each sourcestalement in the
module. Each statement number is Hnked to the absolute address of the first
instruction generated by the PL/M compiler for the associated source statement in
the source program. Each compiled program will contain a table of statement
numbers and absolute addresses. Items (addresses) in the table are referenced by
entering the associated statement number.

4-17

Elements of the ICE-86A Command Language

4-18

'.

The form of reference is:

module-name # decimal-lO

where

is the 'number' sign; this designates the reference as a statement number and

decimal-lO is the (source) statement number (a numeric constant). The default
suffix of decimal-lO is always decimal.

For example,

.. MAINLOOP#123

#123 is statement number 123 in the source program .. MAINLOOP. This reference
would obtain the address of the first instruction generated by source statement 123
of module .. MAINLOOP.

Statement numbers are an alternative to program addressing, as opposed to labels in
the program.

Special Tokens

The command language contains two special token sets that provide special func­
tions: operators and punctuation.

Operators

Type

relational
plus
mult
logical

Punctuation

Type

punctuation

Class Name

ref-op
pfus-op
mufti-op
fog-op

Class Name

punct-op

Operators

=. < . >. <=;. < >. >=
+, -, (binary and unary)
., /, MOD
NOT, AND, OR, XOR

Punctuation Characters

, &. , ; : !)($ CR LF SP % # .. !!

The use of punctuation characters are defined in those sections that define command
formats.

Entering Commands at the Console

The ICE-86A emulator displays an asterisk prompt (*) at the left margin when it is
ready to accept a command from the console.

Each command is entered as a command line, which consists of one or more input
lines; the length of an input line is limited to the number of characters that one line
of the console display can contain.

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

The ICE-86A emulator recognizes the carriage return as the terminator for a com­
mand line. If it is necessary to use more than one input line to enter a command,
each intermediate input line should end with an ampersand (&). When the ICE-86A
emulator encounters the ampersand, it suppresses the interpretation of the com­
mand that would occur on encountering the carriage return that follows. After the
carriage return is executed, the ICE-86A emulator displays a double asterisk prompt
(**) to acknowledge the continuation of the command line.

Tokens in the command are separated by blanks, unless the construct requires
another form of separator. For example, tokens in a list are separated by commas;
in this case, blanks (spaces) may be inserted for clarity but are not required.

Any input line may include comments. The comments which are preceded by a
semicolon (;) must appear after any portion of the command that is on that input
line; in other words, if the first character in an input line is a semicolon (;), the entire
input line must consist of comments. Characters in a comment are not interpreted by
the ICE-86A emulator and are not stored internally except in a DEFINE MACRO
command. The main use of comments is to document an emulation session while it
is in progress.

Comments may not be continued from input line to input line. If an ampersand is
used to continue a command line that also contains comments, the ampersand must
come before the comment. An ampersand that is embedded in a comment is ignored
by the ICE-86A emulator.

You can use ISIS-II editing capabilities to correct errors in the current input line.
The line-editing characters are as follows:

Characters

RUBOUT

CTRLX

CTRLR

ESC

CRTLP

Carriage Return

Line Feed

Result

Delete last character entered in input line. The deleted
character is echoed immediately. The RUBOUT func­
tion can be repeated, deleting one character each time it
is pressed.

Delete entire input line. (CRTL Z gives the same result.)

Display entire input line as entered so far. This is useful
after a RUBOUT, to review which characters have been
deleted.

Cancel entire command being entered.

Input next character literally.

Terminate input line or command line.

Terminate input line

Once a line terminator (carriage return or line feed) has been entered, that line can
no longer be edited.

The dollar sign ($) is ignored by the ICE-86A emulator in identifiers. You can use it
as a separator when you want to combine two words into one token. For example,
suppose you wanted to combine the two system groups DATA and STS into one
symbol for your use. Instead of DATAANDSTS, you can use the $ character as a
separator: DA T AANDSTS.

4-19

CHAPTER 51
EXPRESSIONS

An expression is a formula that evaluates to a number. The formula can contain
operands, operators, and parentheses. Expressions and operands appear in the
ICE-86A emulator as command arguments to specify numeric values or boolean
conditions. Depending on the command context, the resulting number is interpreted
either as a numeric value or as a logical state (TRUE/FALSE). All expressions and
operands represent one of the following:

• Pointer: a pair of 16-bit unsigned integers. One integer is called the base (b) and
the other integer is called the displacement (d). This manual uses the
notation b:d to denote a pointer with a base b and displacement d.
The ':' operator is a base-displacement integer connector (see table
5-3). Pointers may be used as memory addresses; then the 20-bit
absolute address is 16*b + d.

• Integer: a single 16-bit unsigned integer treated modulo 65536. This is a special
case of a pointer, with the base value equal to O.

The ICE-86A emulator provides only unsigned-integer arithmetic on pointers and
integers. The arithmetic operations are always applied separately to bases and
displacements (i.e., integer arithmetic is always 16-bit and is always done on the 'd'
portion of 'b:d' address). Signed arithmetic is not provided. There are no arithmetic
operators for REAL, TREAL, or OREAL types. REAL, OREAL, and TREAL
cannot be EVALuated.

A few examples are all that is necessary to illustrate the concept of expressions.

1. The simplest form of an expression is a single value. That is, an expression that
contains only one operand and no operators or parentheses:

3
FFFFH
127Q

2. The following expressions contain both operands and operators:

2+3
1001110011101111Y -101Y
127/44
0100:00FFH

3. The following expressions contain operands, operators and parentheses:

2· (6 + 4)
(127 + 44)/20

4. The use of symbols to reference numeric values represents a significant
capability of the ICE-86A emulator. The following examples illustrate the use
of symbols in expressions:

.SYMBA OR .SYMBC
(!VAR1 + 10)/(!VAR2- .SYMBO)

This introduction to expressions is sufficient for the first reading of this manual or if
the reader has familiarity with previous ICE products. Therefore, you may skip the
remainder of this chapter and read the remaining chapters using the examples to
gain further familiarity with the use 9f expressions in ICE-86A commands. The
remainder of this chapter describes how expressions are constructed by representing
the types of operands and operators that can be used, and provides the rules and
some examples to explain how expressions are evaluated. The chapter also describes
numeric and logical (boolean) command contexts, and gives a condensed syntax
summary for expressions.

5-1

Expressions

5-2

Operands

All operands are composed of either pointers or unsigned integers. Operands can be
specified by any of the following references:

• numeric constant

• masked constant

• keyword reference

• symbolic reference

• statement number reference

• memory reference

• typed memory reference

• port reference

• string

• (expression)

The following paragraphs define and explain each of the above operand types and
formats.

Numeric Constants

A numeric constant produces a 16-bit integer value and is specified by a sequence
composed of decimal digits and the letters "A" through "F" (hexadecimal digits),
and, optionally, a suffix to specify explicitly the constant's radix:

numeric-constant;: digit ... [suffix 1

Where:

digit;: 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7:: 8 :: 9 :: A :: B :: C :: D :: E :: F

And:

suffix;: H :: T :: 0 :: Q :: Y

In the absence of a suffix, the default input radix for the current context is used. In
most cases this is the radix set by the SUFFIX command; however, some commands
may default their parameters to other radices. The allowed radices and their suffixes
are: hexadecimal ("H"), decimal ("T"), octal ("0" Or "Q"), and binary ("Y").
The radix determines which characters are valid in the constant. Numeric constants
represent fixed unsigned integer values. The elements of numeric constants are sum­
marized in table 5-1.

Examples:

1001111010100111Y
1234
1974T
A2EH
1770

ICE-86A

ICE-86A

Table 5-1. Elements of Numeric Constants

Number Base Valid Digits Explicit Radix Examples

Binary (base 2) 0,1 Y 1100111010110101 Y

Octal (base 8) 0-7 0,0 47260

Decimal (base 10) 0-9 T 397T

Hexadecimal (base 16) 0-9,A-F H 00FE3H

(multiple of 1024) 0-9 - 64

A numeric constant entered through the console with an explicit radix is interpreted
accordingly. If it contains any digits that are invalid for that radix, an error results.

A numeric constant entered from the console without an explicit radix is interpreted
according to the implicit radix that applies to the context. In most contexts, the
implicit radix is initially hexadecimal (H); in these contexts, the implicit radix can be
set to Y, Q, 0, Tor H by using the SUFFIX command.

Masked Constants

A masked constant is syntactically identical to a numeric constant except it may not
contain the "T" suffix and must contain one or more "X" characters. Each "X"
character represents a 'don't care' digit (1, 3, or 4 bits depending upon whether the
radix is binary, octal, or hexadecimal). The radix, either explicit or implicit (i.e.,
previously specified), must be binary, octal or hexadecimal. The following are
examples of masked constants:

10X1X01Y

3X40

6FX1H

(binary - 2 don't care bits shown explicitly)
(octal - 3 don't care bits implicit because each octal
numeral represents 3 bits; equivalent to OllXXXlOOY)

(hexadecimal - 4 don't care bits, implicit because each
hexadecimal numeral represents 4 bits; equivalent to
OllOllllXXXXOOOl Y)

Keyword References

Keyword references are used to gain access to all of the system variables, including
registers, status flags, input pins, and status information. When one is used in a
command, the value returned is a 16-bit integer and is the current contents of the
referenced object. Thus indirection through referenced variables is obtained. The
values of system variables may be used in boolean conditions in control structures.
A keyword reference may reference a value less than 16 bits. If the keyword
reference returns a value of less than 16 bits, the value is coerced to 16 bits by right­
justifying it and filling the high-order bits with zeroes. (Refer to Chapter 4 for a
listing and description of reference keywords.)

Examples:

SP= SP-2
RAX
TIMER
AFLOR OFL

(decrement the contents of the Stack Pointer)
(display the contents of the Accumulator)
(display the contents of the TIMER register)
("OR" Auxiliary-carry and Overflow flags)

Expressions

5-3

Expressions

5-4

Symbolic References

A symbolic reference points to an entry in the ICE-86A symbol table. Correspond­
ing to each symbol table entry is a pointer value that represents an address or a con­
stant. .when a symbol reference is entered as an operand, its corresponding value is
obtained from the referenced table location and used in the associated expression. A
symbolic reference is specified in the following format:

symbolic-ref:; [module-ref) symbol ...

Module references and symbols are both user-assigned. Module names are LOADed
with a program-they cannot be assigned from the ICE-86A emulator. Most sym­
bols are also LOADed. The module name identifies a particular symbol table that
contains the symbols associated with a particular program module. The symbol
table contains the symbols that are used by that program. Module names and sym­
bols are composed of user names and identifying prefixes. User names are composed
of character strings where each character may be an alphabetic character, digit,
"@," underscore (_), dollar sign ($), or "?" with the exception that the first
character in the string may not be a digit. The module name is prefixed by a double
period (" .. "):

module-ref == . . module-name

A symbol is identified by a single period prefix (" . "):

symbol == .symbol-name

Therefore the format for a symbolic reference can be shown as follows:

symbolic-ref:; [.. module-name) .symbol-name ...

If a module name is present, then only the referenced module's symbol table is
searched; otherwise all of the current symbol table is scanned for the referenced
symbol. If more that one symbol is referenced, the symbol table is scanned for the
occurrence of the first symbol in the list. Then the table is scanned for the first
occurrence of the second symbol following the entry for the first symbol. This is
repeated in sequence for all the symbols in the list. The value returned is the pointer
containing the base and displacement address values for the entry specified by the
symbolic reference.

The use of the symbol table provides you with considerable freedom in referencing
and retrieving user variables. The ability to assign symbolic names to variables, pro­
cedures, and module names allows you to assign them names that can be associated
with their functions and interrelations within the program. For example, assume
that the symbol .X represents a variable that is used in procedures PROCX,
PROCY, and PROCZ of module MODABLE. Then the value of variable X in
PROCY can be retrieved with the following symbolic reference:

.. MODABLE.PROCY.X

whereas the value of variable X in PROCZ is obtained by:

.. MODABLE. PROCZ.X

Statement Number Reference

A statement number reference points to the address of the first instruction generated
by the compiler for the source statement specified by the associated statement
number. Statement number information for each compiled program module is

ICE-86A

ICE-86A

stored in its statement number table. Therefore program locations can be referenced
symbolically via statement number. The LINK process can combine different
modules, each with its own set of statement numbers. Therefore, a statement
number reference may require a module reference in the same format as that used in
a symbolic reference. A statement number reference uses the following format:

source-statement-ref == [.. module-name 1 # statement-number

The statement number is an integer value that specifies the number of the source
statement. If the statement number does not have an explicit suffix, the default
suffix is decimal. If more than one program module is currently loaded into
ICE-86A memory, a module reference is required to distinguish the reference from
identical reference numbers in other modules. Examples are:

#45
.. TEST1 #12FH

The value returned is a pointer value that is the absolute address of the first instruc­
tion generated by the compiler for the source statement referenced by the statement
number.

Memory References

References to memory specify the type of reference as well as the memory location
(address) required. A memory reference uses the following format:

memory-ref=reference-type address

reference-type

BYTE

WORD

SINTEGER

INTEGER

POINTER

REAL

OREAL

TREAL

Definition

1-byte integer value at location "address".

2-byte integer value with low byte at "address" and high byte at
"address" + 1.

Same as BYTE.

Same as WORD.

4-byte pointer value located at "address" through "address" + 3.

4-byte real value located at "address" through "address" + 3.

a-byte real value located at "address" through "address" + 7.

10-byte real value located at "address" through "address" + 9.

When changing memory or referencing it in an expression, BYTE is equivalent to
SINTEGER and WORD to INTEGER. However, when displaying memory, the
format of the display is either unsigned (BYTE, WORD) or signed (SINTEGER,
INTEGER, REAL, DREAL, TREAL). (See Display Memory command,
Chapter 7.)

Examples:

BYTE 1000H
BYT 0100:0000H
WORD 101
INTEGER .ABLE
POINTER CS:IP
REAL 0110:1 OOOH
REAL 1000H
OREAL 1000 LEN 4
TREAL 100:10

Expressions

5-5

Expressions

5·6

Typed Memory Reference

A typed memory reference employs the symbols contained in the ICE·86A symbol
table toP obtain both location and type of memory reference. Each symbol has one of
the following types of memory references or has no type:

BYTE 1-byte integer value
WORD 2-byte integer value
SINTEGER Same as BYTE
INTEGER Same as WORD
POINTER 4-byte pOinter value
REAL 4-byte real value
OREAL 8-byte real value
TREAL 10-byte real value

If a symbol has a memory reference type, the symbol represents a memory reference.
If the symbol has no memory reference type, the symbol represents a label, pro­
cedure name, or a constant. If the source language translator generates type
information in the object file, then the type values are loaded with the symbols in the
ICE-86A emulator. The user may also specify memory reference type when defining
symbols or when using the ICE-86A TYPE command.

A typed memory reference is executed with the following format:

typed-mem-ref == [!!module-name J !symbol-name ...

Example:

Assume module table .. SAM contains:

Symbol

.X

.Y

.Z

.R

.0

.T

Also assume:

Therefore:

![SAM [X = 21

!!SAM !Y = 4321
!!SAM !Z = 8765:4321

Type Base Value

BYTE 100H
WORD 100H
POINTER 100H
REAL 100H
DREAL 100H
TREAL 100H

Memory Location

1000H
1001H
1002H
1003H
1004H
1005H
1006H
1007H
1008H
1009H

Displacement Value

Content

21
43
65
87
54
32
12
89
75
47

0
0
0
0
0
0

ICE-86A

ICE-86A

!!SAM !R = 1.72477726E-34
!!SAM !D = 5.6433128615079697E-265
!!SAM!T =9.93179129344306291E+574

Port References

The ICE-86A emulator supports a maximum of 64K 8-bit or 32K 16-bit 110 ports.
These ports are referenced in the following format:

port-ref ;aPORT address: :WPORT address

PORT references an 8-bit 110 port at location "address". WPORT references a
16-bit I/O port at location "address". The value of "address" must be an integer.
The port is read or written immediately when referenced.

Examples:

PORT 123
PORTRDX
WPORT1FFH

String Constants

Anyone of the ASCII characters (ASCII codes OOH through 7FH) can be entered as
a string constant by enclosing the character in single quotes. The operand value of a
string constant is a 16-bit integer with the high-order bits set to 0, and the 7-bit
ASCII code in the low-order seven bits. For example, the string constant 'A' has the
value 0000000001000001 Y (0041H).

In data communications usage, an ASCII-coded character consists of seven low­
order data bits (bits 0-6), and a parity bit (bit 7). Thus another way to describe the
operand value of an ASCII string constant is as a two-byte integer; the high byte is
all zeros and the low byte contains the 8-bit ASCII value with the parity bit set to O.

Table 5-2 gives the printing ASCII characters with their corresponding hexadecimal
codes (codes 20H through 7EH). Note that some console keyboards output upper
case ASCII characters only, or lack keys for some of the non-printing ASCII codes.

Parenthesized Expressions

(exp): an operand whose value is the value of the parenthesized expression, e.g.,
(I +2+3) = 6 (operand value).

Operators

An expression can contain any combination of unary and binary operators. Table
5-3 describes all the operators available under the ICE-86Aemulator. The operators
are ranked in order of precedence from'highest (I) to lowest (10). Other things being
equal, the operator with the highest precedence is evaluated first. The operators are
shown in the table as they are to be entered in expressions. The class content­
operators has too many details to fit the table; see table 5-5. The table identifies each
operator as unary or binary. A unary operator takes one operand, and a binary
operator takes two operands.

Expressions

5-7

Expressions

5-8

Table 5-2. ASCII Printing Characters and CODES (20H-7EH)

Character Hex Code Character Hex Code Character Hex Code

Space (SP) 20 @ 40 60
! 21 A 41 a 61
" 22 B 42 b 62
23 C 43 c 63
$ 24 D 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66 , 27 G 47 9 67
(28 H 48 h 68
) 29 I 49 i 69 . 2A J 4A j 6A
+ 2B K 4B k 6B
, 2C L 4C I 6C

- 2D M 4D m 6D
2E N 4E n 6E

I 2F 0 4F 0 6F
0 . 30 P 50 P 70
1 31 Q 10 q 71
2 32 R 52 r 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 Y 59 Y 79

3A Z 5A z 7A
, 3B 1 5B 7B
< 3C I 5C I 7C
= 3D [5D 7D
> 3E A (t) 5E 7E
? 3F - (+-) 5F

Classes of Operators

For discussion, the operators are classed as shown in table 5-4. Table 5-6 specifies
the arithmetic and logical semantic rules for operators.

Arithmetic Operators

The ICE scanner distinguishes unary "+" and "-" from binary "+" and "-" by
context. Unary "+" is superfluous, since it is a no-operation.

A unary "-" applied to an integer means "2's complement modulo 65536". In
other words, (-N) evaluates to (65536 - N). As the ICE-86A emulator uses only
unsigned arithmetic, unary "-" does not apply to pointers. The unary "-" is also
used in the MOVE and PRINT commands (see MOVE and PRINT commands in
Chapter 6).

Binary "+" applies to pointer and integer values only and results in the arithmetic
sum of its two operands. In the case of the sum of two integers, the result is treated
modulo 65536 (any high-order bits after the sixteenth bit are dropped). In the case of
the sum of a pointer and an integer, the displacement value of the pointer is summed
with the integer modulo 65536 and the base value of the pointer is unchanged.

Binary "-" applies to pointer and integer values only and results in the arithmetic
difference of the two operands. In the case of the difference of two integers, the
result is the 2's complement difference of the two integers; this result is also treated

ICE-86A

ICE-86A

modulo 65536, so that a "negative" result (-N) ends up as (65536 - N). An integer
may also be subtracted from a pointer. In this case, the result is the 2's complement
difference of the pointer displacement and the integer modulo 65536 and the base
value of the pointer remains unchanged. The "-" can be used to obtain the
arithmetic difference of two pointers but only if they have the same base value. In
this case the result is the 2's complement difference of the displacements modulo
65536 and the resulting base value is set equal to zero. An error occurs if the base
values of the pointers are not equal.

The operators "*", "/", "MOD", and "MASK" can be applied only to integer
operands and return only integer results.

Binary "*,, results in the multiplication of two integer operands, truncated to the
low-order 16 bits.

Binary" /" causes the first integer operand to be divided by the second. The result is
the integer quotient; the remainder, if any, is lost. Thus, (5/3) evaluates to (1).

Binary "MOD" returns the remainder after integer division as an integer result, and
the quotient part of the division is lost. Thus, (5 MOD 3) evaluates to (2), the
remainder of (5/3).

Binary "MASK" performs a bitwise logical AND on two integer operands. If both
are 1 's, the result has 1 in that bit; otherwise the result has 0 in that bit. MASK is
identical to the boolean "AND" operator, except that MASK has higher
precedence.

:, SEGMENT, OFFSET have the highest precedence of the arithmetic operators.
Binary "*", "/", and "MOD" have equal precedence, lower than unary "-".
Binary "+" and "-" have equal precedence, lower than "*", "/", and "MOD".
"MASK" has lowest precedence of the arithmetic operators (see table 5-3).

Precedence 1

2

3

4

5

6

Operator

OFFSET

SEGMENT

+

MOD

+

MASK

content­
operator"

Table 5-3. ICE™ Operators

Unary
Binary2

u

u

u

u

u

b

b

b

b

b

b

u

Effect3

Base, displacement integer connector for a pointer
(e.g., 1234:5678 or CS:IP).

Designates integer value that is the displacement of a
pointer (e.g., OFFSET 1234:5678 is 5678).

Designates integer value that is the base of a pointer
(e.g., SEGMENT 1234:5678 is 1234).

Unary plus.

Unary minus, (-N) means (65536-N), the 2's
complement of N, modulo 2"

Integer multiplication.

Integer division. The result is the integer quotient;
the remainder (if any) is lost.

Modulo reduction. The remainder after division,
expressed as an integer.

Addition.

Subtraction.

Bitwise AND. Higher precedence than identical
operation AND (see below).

Treats operand as memory or port address, returns
the content of that address.

Expressions

5-9

Expressions

5-10

Table 5-3 .. ICE™ Operators (Cont'd.)

Precedence 1 Operator Unary
Binary2 Effec.,3

7 = b Is equal to. Result is either TRUE (FFFFH) or FALSE
(0).

> b Is greater than. Result is TRUE or FALSE.

< b Is less than. Result is TRUE or FALSE.

<> b Is not equal to. Result is TRUE or FALSE.

>= b Is greater than or equal to. Result is TRUE or FALSE.

<= b Is less than or equal to. Result is TRUE or FALSE.

8 NOT u Unary Logical (1 's) complement. Bitwise 1 becomes
0, 0 becomes 1; TRUE becomes FALSE, FALSE
becomes TRUE.

9 AND b Bitwise AND. If both corresponding bits are 1's,
result has 1 in that bit; else O. TRUE AND TRUE yields
a TRUE result; any other combination is FALSE.

10 OR b Bitwise inclusive OR. If either corresponding bit is a
1, result has 1 in that bit; else O. If either operand is
TRUE, result is TRUE; else FALSE.

XOR b Bitwise exclusive OR. If corresponding bits are
different, result has 1 in that bit; else O. If one operand
is TRUE and the other is FALSE, result is TRUE; if
both are TRUE or both are FALSE, result is FALSE.

NOTES:

11 = highest precedence (evaluated first), 10 = lowest precedence.

2U = unary, b = binary.

3Refer to text for additional details.

4content-operator is one of the tokens BYTE, WORD, SINTEGER, INTEGER, POINTER,
REAL, PORT, orWPORT.

Table 5-4. Classes of Operators

Class Operators

(Numeric)
Arithmetic

unary +, -, SEGMENT OFFSET,
binary ., I, MOD, +, -, MASK,:

Content
unary content-operators

(Boolean)
Relational

binary =. >. <. <>. >=. <=
Logical

unary NOT
binary AND,OR,XOR

Unary +, -, SEGMENT, OFFSET,
content-operators,
NOT

Binary ., {,'MOD, +, -, MASK,:,
relationaJ-operators,
ANO,OR,XOR

ICE-86A

ICE-86A

Content Operators

Content operators are keywords that refer to the contents of memory locations and
I/O ports. In expressions, they function as unary operators with precedence
immediately below ':MASK". Table 5-5 summarizes the content operators for
the ICE-86A emulator.

Operator

BYTE

WORD

SINTEGER

INTEGER

POINTER

PORT

WPORT

REAL

OREAL

TREAL

Table 5-5. Content Operators

Content Returned

1-byte integer value from the addressed location in memory.

2-byte integer value from the addressed location in memory.

Same as BYTE.

Same as WORD.

4-byte pointer value from the addressed location in memory.

1-byte value from addressed 8-bit 1/0 port.

2-byte value from addressed 16-bit 1/0 port.

4-byte floating point number from the addressed location in memory.

8-byte floating point number from the addressed location in memory.

10-byte floating point number from the addressed location in
memory.

To be used in an expression, a content operator must precede a single operand that
can be interpreted as a valid address. A partition of addresses (using a keyword such
as TO or LENGTH) cannot be used in an expression. Furthermore, the address
giveri must be accessible (not GUARDED) if it uses the memory map (see MAP
commands in Chapter 7).

Relational Operators

A relational operator calls for a comparison of the values of its two operands. The
six possible relational operations are shown in table 5-4. Each comparison is either
true when the expression is evaluated, or it is false. The result is correspondingly
TRUE (FFFFH) or FALSE (0).

Logical Operators

The "NOT" logical operator results in ai's com[llement of an operand; a 16-bit
operand is assumed. The following are examples of "NOT" logical operations:

Operand Operation Result

0 NOT FFFFH
NOT FFFEH

11110110Y NOT 1111111100001001Y
FFFFH NOT 0
FFFEH NOT

Expressions

5-11

Expressions

5-12

ANDing two operands results in the following values depending upon bit pair
values:

bit 1 bit 2 Result

o
o

Examples:

o o
o

o 0

Logical Operation

OANDO
1010Y AND 1001Y
FFFFH AND 0

FFFFH AND FFFFH

1 ANDO

Result

0
1000Y

0
FFFFH

0

ORing two operands results in the following values depending upon bit pair values:

bit 1 bit 2 Result

o o
o 1

o

Examples:

o

Logical Operation

OORO
10RO
1010Y OR 1001Y
FFFFH ORO
FFFFH OR FFFFH

Result

o

1011Y

FFFFH
FFFFH

The result of an "XOR" operation is as follows:

bit 1 bit 2 Result

0 0 0
0 1

0 1

0

Examples:

Logical Operation Result

OXORO 0
1 XORO
1010Y XOR 1001Y 11Y
FFFFH XORO FFFFH

FFFFH XOR FFFFH 0

ICE-86A

ICE-86A

Arithmetic and Logical Semantic Rules

Table 5-6 provides a summary of the semantic rules that apply to arithmetic and
logical operations. The table specifies the function performed by each type of
arithmetic and logical operation, the input required, and the result of the operation
(output).

Table 5-6. Arithmetic and Logical Semantic Rules

Operation Operators Input Output Function

logical AND, OR, XOR, MASK 2 integers integer Bitwise conjunction or disjunction of integers.

not NOT integer integer One's complement of an integer.

relational <, >, <=, >=, <>, = (1) 2 pointers, same integer Logical test of relational expression. If the displace-
base ment integer values satisfy relational operation (true),

(2) 2 integers integer then the output integer value = FFFFH. If the displace-
ment integer values do not satisfy the realtional opera-
tion (false), the output integer = O. If the base values of
the input pointers are not equal, an error occurs.

arithmetic ',I,MOD 2 integers integer Unsigned product ('), quotient(l), or remainder(MODI
of two integers.

memory- BYTE, WORD, INTEGER, pointer or integer Fetches content of memory location addressed by
content SINTEGER integer input value.

memory- POINTER pointer or pointer Fetches content of memory location addressed by
content integer input value.

1/0- PORT,WPORT integer integer Fetches content of 110 port (8-bit or 16-bit) addressed
content by input value.

+(binary) + (1) pointer, integer pointer Sum of the displacement values, same base as the
(2)integer, integer integer pointer. Sum of the integers.

-(binary) - (1) 2 pointers with integer Two's complement difference of displacement values.
= base values Error occurs if base values are unequal.

(2) pointer & pointer Two's complement difference of pOinter displacement
integer value and integer input, same base as the pointer.

-(unary) - integer integer Two's complement of the input integer.

+(unary) + All types same No change.
•

override (11 integer & pointer pointer Replaces current base value of pointer with input
basel integer value.
construct (2) 2 integers pointer Constructs new pointer with base value set to first
painter input integer value and displacement set to second

integer.
offset OFFSET pointer integer Generates integer value whose value is the displace-

ment value of the input pointer.

segment SEGMENT painter integer Generates integer whose value is the base value of the
input pointer.

Expressions

5-13

Expressions

5-14

How Expressions are Evaluated
This section provides a simple conceptual model of how the ICE-86A emulator
evaluates an expression. The model involves a loop that scans the expression
iteratively (figure 5-1). The loop terminates in either of two ways:

crtblthe expression resolves to a single numeric value.

• When a syntax error (or other error) occurs.

The ICE-86A emulator goes through the scan loop once for each operator in the
expression. On each scan, the operator (unary or binary) that must be applied next is
identified.

The next operator is always:

• the leftmost operator

• with highest precedence (table 5-3)

• that is enclosed in the innermost pair of parentheses.

If this next operator is unary and has a numeric operand, the operation is performed
on the operand to produce a numeric result. If the next operator is binary and has a
pair of operands, the operation is performed on the pair of operands to produce a
numeric result. If the next operator does not have the required number of numeric
operands, a syntax error results, and the loop terminates.

A pair of parentheses is "cleared" when it contains just a single numeric value;
that is:

(numeric-value) - numeric-value

After performing any operation, the numeric result becomes an operand for the next
scan. Parentheses are cleared before the next scan begins.

"Case Studies" in Evaluating Expressions

Here are some representative cases of expressions showing how they are evaluated
by the ICE-86A emulator. In some examples, the steps in evaluation are shown, but
most show just the overall result. Table 5-7 summarizes the cases. The EVALUATE
(EV A) command used in these examples performs the evaluation and displays the
result in the four numeric radixes (Y, Q, T, and H), plus the ASCII printing
equivalent (if any) in single quotes. The examples in this section assume the initial
condition& shown in table 5-8. This table also describes the special notation used in
some of the examples. The examples also assume SUFFIX = T; that is, any number
without an explicit radix is decimal.

Case 1: EVALUATE operand

An expression can be composed of just a single operand, requiring at most a lookup
to produce a numeric result.

Examples:

"EVA 10
1010Y 120 10T AH "

"EVA IP
1000000000000Y 10000Q4096T 1000H "

ICE-86A

ICE-86A

YES

PERFORM THE
OPERATION;

RESULT IS
ANUMBER

Figure 5-1. A Simple Model of Evaluation

Expressions

162554-6

5-15

Expressions

5-16

'EVA.AA
10000000000000Y 200000 8192T 2000H "

'EVA 1234:5678H
t234:5678H 179B8H

Case 2: EV ALVA TE unary-operator operand

A unary operator with a single primary operand evaluates to a number.

Examples:

'EVA-2
1111111111111110Y 177760 65534T FFFEH 't'

'EVA BYTE .AA
100011 Y 430 35T 23H '#'

'EVA NOT IP
1110111111111111Y 1677770 61439T EFFFH '0'

Table 5-7. Representative Cases of Expressions

Case Expression Precedence
Result of Lookup

Plus One Scan

1 operand None number

2 unary-operator operand Any number

3 operand binary-operator operand Any number

4 operand b1 operand b2 operand b1 »= b2 number b2 number (case 3)
b2» b1 number b1 number (case 3)

5 operand b1 (operand b2 operand) b2» b1 number b1 number (case 3)
b1 »= b2 number b1 number (case 3)

6 u1 operand b1 operand u1 »b1 number b1 number (case 3)
b1 »u1 u1 number (case 2)

7 operand b1 u1 operand u1 »b1 number b1 number (case 3)
b1 »u1 ERROR (See case 8)

8 operand b1 (u1 operand) u1 »b1 number b1 number (case 3)
b1 »u1 number b1 number (case 3)

>

9 u1 u2 operand u2» u1 u1 number (case 2)
u1 »= u2 ERROR (See case 10)

10 u1 (u2 operand) u2» u1 u1 number (case 2)
u1 »= u2 u1 number (case 2)

Case 3: EV ALVA TE operand binary-operator operand

The binary operator is applied to its two operands to produce a numeric result.

Examples:

'EVA 10+ 20
11110Y 360 30T 1EH "

'EVA.AA>10
1111111111111111 Y 1777770 65535T FFFFH "

ICE-86A

ICE-86A

"EVA.AAORIP
11000000000000Y 30000Q 12288T 3000H '0'

"EVA0100:0010H + .AA
0100:2010H 03010H

Table 5-8. Conditions and Notation for Examples

Conditions

All memory locations are accessible (none are GUARDED).
SUFFIX = T (implicit radix is decimal).
IP = 1000H
DEFINE .AA = 2000H
DEFINE. BB = FFFFH
BYTE 1000H = 3EH
BYTE 2000H = 23H

Notation

» has higher precedence than.
»= has higher or equal precedence.
u1.u2 •... unary operators
b1.b2 •... binary operators

Case 4: EVALUATE operand bI operand b2 operand

The binary operator with the highest precedence is evaluated first. If they have equal
precedence, bi (the leftmost) is evaluated first.

A. b1 »=b2

Examples:

"EVA 10 + .AA -IP
1000000001010Y 10012Q 4106T 100AH "

"EVA 10" .AA -IP
11000000000000Y 30000Q 12288T 3000H '0'

"EVA IP = .AA OR .BB
1111111111111111Y 177777Q 65535T FFFFH "

"EVA1+2-3
OY OQ OT OH "

"EVA 3 "2+1
111Y 7Q 7T 7H "

B. b2»b1

Examples:

"EVA2+3"4
1110Y 16Q 14T EH "

"EVA .BB OR .AA AND IP
1111111111111111Y 177777Q 65535T FFFFH "

"EVA 1 OR2AND3
11Y 3Q 3T 3H "

Expressions

5-17

Expressions

5-18

Case 4 also fits expressions of any length that use only binary operators. Here is an
example showing the steps in the evaluation.

Step Operation Result

0 Expression .BB OR IP = .AA AND AFAFH XOR .AA MOD 277
1 Lookup FFFFH OR 1000H = 2000H AND AFAFH XOR 2000H MOD 277
2 MOD FFFFH OR 1000H = 2000H AND AFAFH XOR 9FH
3 FFFFH OR 0 AND AFAFH XOR 9FH
4 AND FFFFH OR 0 XOR 9FH
5 OR FFFFH XOR 9FH
6 XOR FF60H

More examples:

*EVA 2 XOR 3 MASK 41 MOD 33
1020 2T 2H "

* EVA 2 * 3 + 5 1 3 1 + 7
1101Y 150 13T DH "

* EVA 2 + 3 * 5 + 7
11000Y 300 24T 18H "

Case 5: EVALUATE operand bl (operand b2 operand)

Binary operator b2 is evaluated first, even if it has lower precedence than b 1. Use
parentheses when b2 must be evaluated before bl.

Examples:

EVA2(3+5)
10000Y 20 16T 10H "

*EVA .BB 1 (.AA MASK AFAFH)
111Y 70 7T 7H "

This case can be generalized to include any number of binary operators and any
arrangement of parentheses. For example:

Step Operation Result

0 Expression 10 * (44 + (17 * 15 - 6) 1 7)
1 2nd* 10* (44 + (255-6) 17)
2 10 * (44 + (249) 1 7)
3 Clear (1) 10 * (44 + 24917)
4 1 10 * (44 + 35)
5 + 10 * (79)
6 Clear 0 10 * 79
7 1st* 790

Case 6: EVALUATE ul operand bl operand

Precedence decides which operator is evaluated first.

ICE-86A

ICE·86A

A. u1» b1

Examples:

-EVA -10 + 22
1100Y 140 12T CH "

-EVA BYTE .AA OR .BB
1111111111111111Y 1777770 65535T FFFFH "

-EVA NOT .BB AND AFAFH
OY 00 OT OH "

B. b1» u1

Examples:

-EVA BYTE .AA -1000H
111110Y 760 62T 3EH "

-EVA NOT .BB/23
1111010011011110Y 1723360 626B6T F4DEH 'Tt'

Case 7: EVALUATE operand bl ul operand

The unary operator must have higher precedence than the binary operator.

A. u1» b1 is valid.

Examples:

-EVA10--2
1111111111101100Y 1777540 65516T FFECH 'L'

-EVA .AA AND NOT .BB
OY 00 OT OH "

B. b1» u1

This produces an error. The operator bl must be evaluated next, and requires two
numeric operands, but ul operand has not yet been evaluated to a numeric result.

Examples:

-EVA 10 + BYTE .AA
ERR BO:SYNTAX ERROR

-EVA .AA MASK NOT .BB
ERR BO:SYNTAX ERROR

Case 8: EVALUATE operand bl (ul operand)

Unary operator ul is evaluated first, even if it has lower precedence than binary
operator b 1. Parentheses must be used when u 1 has lower precedence than b 1.

Examples:

-EVA 10 + (BYTE .AA)
101101Y 550 45T 2DH '-'

Expressions

5-19

Expressions

5-20

'EVA .AA MAKE (NOT .BB)
OY 00 OT OH "

Case 9:. EVALUATE ul u2 operand

Unary operator u2 must have higher precedence than ul to evaluate without an
error.

A. u1» u1 is valid.

Examples:

'EVA BYTE - EFFFH
10000000Y 2000 128T 80H "

'EVA NOT BYTE .AA
11111111110111100Y 1777340 65500T FFDCH "

B. u1 »= u2

Examples of this case shown below result in an error.

Examples:

'EVA BYTE NOT .AA
ERR 80:SYNTAX ERROR

'EVA - BYTE .AA
ERR 80:SYNT AX ERROR

'EVA BYTE BYTE 1000H
ERR 80:SYNT AX ERROR

'EVA--5
ERR 80:SYNTAX ERROR

Case 10: EVALUATE ul (u2 operand)

Unary operator u2 is evaluated first, even if it has lower precedence than ul. Paren­
theses must be used when u2 has lower precedence than u 1.

Examples:

'EVA BYTE (NOT .AA)
111101Y 750 6H 3DH '='

'EVA - (BYTE .AA)
11111111110111101Y 1777350 6550H FFDDH ']'

'EVA BYTE (BYTE 1000H)
11111110Y 3760 254T FEH 't'

'EVA - (- 5)
101Y 50 5T 5H "

Two other "cases" can be diagrammed as:

operand b1 b2 operand
operand u1 b2 operand

ICE-86A

ICE-86A

Both forms produce an error no matter which operator has higher precedence, and
no arrangement of parentheses can resolve the error.

These examples show the basic ways to control evaluation with and without paren­
theses. Parentheses must be used when two operators are concatenated and the sec­
ond operator has lower precedence than the first.

Command Contexts

All expressions produce numeric values as results. The interpretation or use of the
result depends upon the command that contains the expression. The term numeric­
expression means an expression in a numeric (;ommand context. Numeric command
contexts treat the result as a numeric value; all bits are significant.

The term boolean-expression means an expression in a boolean command con­
text. Only integer values may be used in boolean contexts. Boolean command con­
texts test only the least-significant bit (LSB) of the result, to obtain a TRUE or
FALSE value. The result of a boolean expression is TRUE if its LSB is 1 , FALSE if
its LSB is O. Thus, any number can have a boolean interpretation.

The BaaL command can be used instead of the EVALUATE command to display
the evaluation of an expression as TRUE or FALSE.

A boolean expression uses relational and logical operators to manipulate
TRUE/FALSE values. When a relational operator is evaluated, the result is always
either 0 (FALSE) or FFFFH (TRUE). These results can have a numeric interpreta­
tion, but relational operators have limited usefulness in numeric contexts.

When logical operators are applied to TRUE/FALSE values, the results are also
boolean. Specifically:

NOT: NOT FALSE -+ TRUE
NOT TRUE -+ FALSE

AND: TRUE AND TRUE -+ TRUE
TRUE AND FALSE -+ FALSE
FALSE AND TRUE -+ FALSE
FALSE AND FALSE -+ FALSE

OR: TRUE OR TRUE --+ TRUE
TRUE OR FALSE -+ TRUE
FALSE OR TRUE -+ TRUE
FALSE OR FALSE --+ FALSE

XOR: TRUE XORTRUE -+ FALSE
TRUE XOR FALSE --+ TRUE
FALSE XOR TRUE --+ TRUE
FALSE XOR FALSE -+ FALSE

In addition to numeric and boolean contexts, there are several other contexts that
control the interpretation or use of a number or expression. These contexts are sum­
marized in table 5-9 for reference.

Expressions

5-21

Expressions

5-22

Table 5-9. Command Contexts

Type 01 Entry

Numeric expression

Contexts

Set and change
commands, etc.

Boolean expression BOOl, IF,
UNTil,
WHilE

Address FROM,
content·
operator, parti·
tion, SAVE

Decimal number statement·
number, MOVE,
PRINT

Interpretation

16-bit unsigned
number; bit size
may be reduced to
fit destination.

lSB = 0 - FALSE
lSB= 1-TRUE

Pointer to
memory or
16-bit (or fewer)
address in
memory or 1/0.

positive number

Limitations

All operands and operators
allowed. Numeric constant
without suffix is interpreted
in current default radix.

Examples of Use

IP = .AA'256T + 10FFFH

All operands and operators.AA AND .BB AND NOT .CC
allowed. Numeric constants
without suffix are interpreted
in current default radix.

Only arithmetic operators are GO FROM .BB + 10
allowed outside of the outer·
most parentheses. Constant
without suffix are interpreted
in the current default radix.

No operators are allowed
outside the outermost paren·
theses. All constants without
suffix are decimal.

ICE-86A

CHAPTER 6
EMULATION AND TRACE

CONTROL COMMANDS

Chapter 6 contains discussions, examples, and syntax summaries for each of the
ICE-86A emulation and trace control commands.

The following brief outline of Chapter 6 shows how the emulation and trace control
commands have been classified.

Emulation Control Commands

Set Breakpoint Register Comm.and

Set Tracepoint Register Command

GO Command

GRCommand

STEP Command
Display Emulation Register Command

Set CLOCK Command

Display CLOCK

Set RWTlMEOUT Command

Display R WTlMEOUT Command

ENABLE/DISABLE RDY Command

Trace Control Commands

Set TRACE Display Com.mand

ENABLE/DISABLE TRACE Command

Display TRACE

MOVE, OLDEST, and NEWEST Commands

PRINT Command

Emulation Control Commands

The ICE-86A emulator contains an 8086 as the emulation processor. During emula­
tion, this processor executes the instructions in the user program that have been
mapped and loaded into the ICE-86A system. The operations of the user system can
be monitored through the 8086 processor signals. The commands in this section
allow you to specify the starting address where emulation is to begin, and to specify
and display the software or hardwar.e conditions for halting emulation and returning
control to the console for further commands.

6-1

Emulation and Trace Control Commands

6-2

The commands in this section are as follows:

COMMAND

Set Breakpoint-Register

Set Tracepoint-Register

GO command

GRcommand

STEP command

Display Emulation Register

Set CLOCK

Display CLOCK

Set RWTlMEOUT

Display RWTIMEOUT

ENABLE/DISABLE RDY

Discussion

PURPOSE

Set match condition for halting emulation.

Set match condition for starting or halting trace data
collection.

Begin real-time emulation.

Enable or set and enable breakpoint registers to
halt emulation.

Execute single-step emulation.

Display GO-register, breakpoint and tracepoint
register settings.

Designate system clock.

Display clock setting.

Enable or disable halting of emulation and error
message on memory access timeout.

Display current setting of memory access timeout.

Enable or disable user-ready signal for memory
access.

The emulation control commands tell the ICE-86A emulator where to start emula­
tion and when to halt emulation.

To initialize for emulation, you map the locations in prototype and ICE-supplied
memory that are to be accessible to the ICE-86A emulator, and load your program
code into mapped locations. After the code has been loaded, the ICE-86A emulator
initializes for emulation as follows:

• The instruction pointer (lP) and code segment register (CS) are loaded with the
address of the first executable instruction in your program.

• The GO-register (GR) is set to FOREVER. The setting of GR identifies the
combination of factors that are enabled to halt emulation. The setting
FOREVER means no factors are enabled.

• Both breakpoint registers (BRO and BRI) are set to don't care and initially
disabled.

Now you can begin emulation by entering the command GO, followed by a carriage
return. At the command GO, the following occurs:

• Emulation begins with the instruction at the address that is in the IP and CS;
this is the first executable instruction in your program.

• External signal EMUL is set high (1) to tell an external device that emulation is
occurring.

• The message EMULA nON BEGUN is displayed at the console.

• Emulation continues until you press the ESC key, or until a fatal error occurs.
(See Appendix B for error messages.)

Now, if you press the ESC key, the following happens:

• The ICE-86A emulator completes executing the current instruction.

ICE-86A

ICE-86A Emulation and Trace Control Commands

• Emulation halts; the IP and CS contain the address of the next instruction to be
executed.

• The message EMULATION TERMINATED, CS:IP=bbbb:ddddH is
displayed. The value displayed is the address of the next instruction to be
executed.

• The message PROCESSING ABORTED is displayed, acknowledging the user
abort (ESC key).

This is the simplest case of starting and stopping emulation. When the GO-register is
set to FOREVER, you can enter the command GO to start emulation at the current
CS:IP address, and press the ESC key to halt emulation.

Instead of starting wherever the CS:IP happens to be, you may specify the address
you want for each GO command. There are two ways to do this. First, you can set
the CS:IP directly to any desired address with commands of the form CS = expr, IP
= expr, then enter the GO command to start emulation at that address. Second, you
can specify the starting address as part of the GO command; this form of the GO
command is as follows:

GO [FROM address 1

The meta-term address means the following type of entry:

numeric-expression A numeric expression is evaluated to give the address
(see Chapter 5). (Table 5-9 specifies restrictions.)

For example, to start emulation with the instruction at memory location 3000H, you
could enter:

CS=O
IP=3000H
GO

Or, you can enter:

GO FROM 3000H

The effect is the same either way.

The following form of the GO command is also valid:

GO [FROM address 1 FOREVER

This form of the GO command enables you to optionally select the starting address
and to disable the factors that halt emulation. For example, to start emulation with
the instruction at memory location 3000H and to set the GO-register to FOREVER,
you can enter:

GO FROM 3000H FOREVER

The effect of this command is to start emulation with the instruction at location
3000H. Emulation will stop only when you abort processing.

The ICE-86A emulator has two breakpoint registers, BRO and BRI. Each of these
registers can be set to hold a "match condition" that can be used to halt real-time
emulation when the register is enabled. A second form of the GO command can be
used to both load and enable breakpoint registers. This form of the GO command is:

6-3

Emulation and Trace Control Commands

6-4

GO [FROM address 1 [TILL match-condition [{ ~~D} match-condition II

This command loads the match-conditions into the breakpoint registers and enables
the registers to halt emulation on the desired set of system conditions contained in
these match-conditions. Match conditions are of two types:

h d Ot' = {eXecution-match-cOnditiOn }
~~~M/~- , " 

non-executlOn-match-condltlOn 

The breakpoint registers may be set to contain either type of match-condition. 

Execution Match Condition 

An execution-match-condition consists of a single, 20-bit field plus the keyword 
EXECUTED, where each address bit can take anyone of three values: 0, I, or 
"don't care." An execution match condition is examined when the 8086 CPU exe­
cutes an instruction byte, that is, when the byte is fetched from the 8086 instruction 
queue. The condition "matches" when the executed instruction byte was obtained 
from a memory location whose 20-bit address matches the contents of the selected 
breakpoint register. 

, , , {addreSs EXECUTED } 
executlOn-match-condltlon;: marked-const EXECUTED 

Entering an address causes all 20 bits of the match condition to be loaded with 
O-and I-bit values. The address contains a base and displacement (e.g., .X or 
50:3000H); note that a single constant is evaluated module 65536 (e.g., I2345H is 
the same as 2345H-use 1234:5H to get all 20 bits), Entering a masked-constant 
causes the 20-bit field to contain 0, I, or "don't care" values. The "don't care" 
values are ignored. The masked-constant can be 20 bits in length. 

The following examples illustrate the use of this form of the GO command. The 
examples assume that the initial contents of the breakpoint registers are as shown 
below: 

BRO = XXXXXH (all bits set to "don't care") 

BR1 = XXXXXH (all bits set to "don't care") 

Also, in these examples, the address of .START is 0000:0002H, .DELA Y is at 
OOOO:OODEH, and .DISPLAY is at 0000:0098H. The examples will list a GO com­
mand followed by the contents of the breakpoint registers as set by the command. 

I. Go from .ST ART until the first instruction byte in .. DELA Y is executed. 

GO FROM ,START TILL ,DELAY EXECUTED 

BRO = OOODEH E (OOODEH is the 20-bit address of . DELA Y, the last E specifies 
"EXECUTE.D") 

BR1 = XXXXXH (BR1 is unchanged) 

This command loads BRO with the given match condition: ". DELA Y 
EXECUTED"). 

2. Go from .ST ART until address 0200H is executed. 

GO FROM ,START TILL 0200H EXEC 

BRO = 00200H E 

BR1 = XXXXXH 

This command loads the numeric address and "executed" status into BRO and 
leaves BRI unchanged. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

3. Go from .START until address lOO:0200H is executed. 

GO FROM .START TILL 100:0200H EXEC 

BRO = 01200H E 

BR1 =XXXXXH 

The pointer address lOO:0200H and "executed" status are loaded into BRO, and 
BRI is unchanged. 

4. Go from .START until an address in an address range specified by a masked 
constant is executed. 

GO FROM .STARTTILL 10XXH EXECUTED 

BRO = 010XXH E 

BR1 =XXXXXH 

The masked constant address loaded into BRO specifies a range of addresses: 
OlOOOH through OlOFFH. BRO remains unchanged. 

5. Load two execution match conditions, one in each breakpoint register, and 
'OR' the conditions. 

GO FROM .START TILL .DELAY EXEC OR .DISPLAY EXEC 

BRO = OOODEH E (Halt when .DELAY is executed.) 

BR1 = 00098H E (Halt when .DISPLAY is executed.) 

This command sets emulation to halt when either the instruction located at loca­
tion OOODEH (.DELAY) or location 00098H (.DISPLAY) is executed. 

6. Load two execution match conditions and 'AND' them. 

GO FROM .STARTTILL .DELAY EXEC AND .DISPLAY EXEC 

BRO = OOODEH E 

BR1 = 00098H E 

(Halt when .DELAY is executed.) 

(Halt when .DISPLAY is executed.) 

ERR AE:INVALID "AND" IN GO-REG(Error message generated by this command) 

This command sets emulation to halt when the instruction located at location 
OOODEH (.DELAY) 'AND' the instruction located at location 00098H (.DISPLA Y) 
are executed. Execution of two separate instructions cannot occur at the same time. 
Therefore an error message is generated by this command, and the command is not 
executed. 

Non-Execution Match Condition 

The non-execution-match-condition must contain one or more of four types of 
fields: a set of addresses, a list of bus status types, a set of data values, and a seg­
ment register designation. A non-execution-match-condition matches whenever a 
breakpoint that contains a set of one or more of the above fields matches corre­
sponding state values in the user system during real-time or single-step emulation. 

{ 

address-match-range } 
. . . match-status-list 

non-executlOn-match-condltlOn == d h ... 
ata-matc -range 

segment-register-usage 

Address-match-range, match-status-list, data-match-range, and segment-register­
usage must be used in the order shown. At least one of these fields must be entered in 
a given command to establish a non-execution match condition. 

6-5 



Emulation and Trace Control Commands 

6-6 

Address Match Range 

An address-match-range may consist of a single address or masked constant, an 
"unlimited" range of addresses, or a set of match partitions. If an "unlimited" 
range of addresses are to be entered, an address value modified by the mnemonic UP 
or DOWN is entered. UP implies any address value equal to or greater than the 
stated address. DOWN implies any address value equal to or less than the stated 
address. The match partition may be any of three types: partitions, memory 
references, and/or typed memory refe.rences. If the address-match-range contains 
more than one partition, all partitions must have the sarpe base and their 
displacements must lie within a lK-byte range that begins at an even address. If there 
is only a single partition, it must lie within a lK-byte range to be contained in a single 
breakpoint register. If the partition does not lie within a lK range, two registers are 
required to hold the partition. Therefore an address-match-range can be defined as: 

addres-match-range E 

address:: masked-const 

address UP ::address DOWN 

[
partition ] 
OBJECT memory-reference 
OBJECT typed-memory-reference 

All references to a "1 K-byte range" should begin at an even address. For example, 
'BRO =1000:20 LEN lK' is valid, but 'BRO';"1OOO:21 LEN lK' is not valid. 

By expanding the definition of partitions and memory reference to their component 
parts, the definition of address-match range becomes: 

address-match-range == 

address:: masked-const 

address UP:: address DOWN 

address TO address 
address LENGTH address 
OBJECT BYTE address . 
OBJECT WORD address 
OBJECT SINTEGER address 
OBJECT INTEGER address 
OBJECT POINTER address 
OBJECT REAL address 
OBJECT DREALaddress 
OBJECT TREALaddress 
OBJECT typed-memory-ref 

For example, an address-match-range of a single address would be 3000H, whereas 
using the masked constantJOXXH would result in a match range of 3000H through 
30FFH. Two examples of the use of partitions in a match range are: 

4000 TO 4100 

and 

4000 LENGTH 101 

Both of these partition specifications result in the range of addresses, 4000 through 
4100. 

A sequence of discontinuous addresses can be specified by: 

OBJECT BYTE 4000, OBJECT WORD 3188, OBJECT !!MOD1 !SYMSAM, ... 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

This would result in a string of discontinuous match addresses, the third address in 
the above string being specified by a typed memory reference. OBJECT indicates a 
partition beginning at the low address of the memory object and whose length is the 
length of the object. In the above example, 'OBJECT BYTE 4000' specifies a one­
byte partition whose address is 4000. 'OBJECT WORD 3188' specifies a two-byte 
partition starting at 3188 and ending at 3189. 'OBJECT .. MODI .SYMSAM' 
specifies a partition starting at the address given in the symbol table for! !MODI 
!SYMSAM and whose length is specified by the memory type of symbol .SYMSAM. 
For example if .SYMSAM is type WORD, the partition will be two bytes in length. 

OBJECT REAL 4000, OBJECT DREAL 5000, OBJ ECT TREAL 6000 

In the above example, 'OBJECT REAL 4000' specifies a four-byte partition at 
address 4000. 'OBJECT DREAL 5000' specifies an eight-byte partition at address 
5000, and 'OBJECT TREAL 6000' specifies a ten-byte partition at address 6000. 

Match Status List 

The match-status-Iist field matches whenever the 8086 bus status is any of those 
listed in the match status list: 

READ 

WRITTEN 

INPUT 

OUTPUT 

FETCHED 

HALT 

ACKNOWLEDGE 

match on memory read other than an instruction fetch. 

match on memory write. 

match on an I/O read. 

match on an 1/0 write. 

match on a memory read into the execution queue. 

match on 8086 halt. 

match on 8086 interrupt acknowledge. 

A match-status-list may consist of one or more of the above bus status types and 
they may be listed in any order: 

READ 
WRITTEN 
INPUT 

match-status-/ist == OUTPUT 
. FETCHED 

HALT 
ACKNOWLEDGE 

An example of a match-status-list would be: 

FETCHED, READ, HALT, WRITTEN, ACKNOWLEDGE 

Data Match Range 

The data-match-range field can be used to specify data values. The syntax is similar 
to address-match-range, except the OBJECT form is not allowed. In this case, the 
values specified by address will be treated as data values and used to match against 
values on the 8086 address/data lines at data time. 

[
address:: masked-const J 

data-match-range =VALUE address UP ::address DOWN 
partition, ... 

6-7 



Emulation .and Trace Control Commands 

6-8 

Data values must be integers. All data references in the 8086 are on even byte boun­
daries; therefore data match conditions must be used with caution. 

• A 16-bit data value matches if that value is accessed on an even-byte boundary 
(i.e., low-order'byte of data at an even address). 

• An 8-bit data value must be specified as either an even byte (by giving 8 "don't 
care" bits in the high-order byte) or an odd byte (by giving 8 "don't care" bits 
in the low-order byte). 

Segment Register Usage 

The segment-register-usage field is used to specify one of the four segment registers. 
A match occurs whenever the segment register used in an effective address calcula­
tion is the one specified in the segment-register-usage field. Segment register usage 
occurs at data time. 

[.SINGS~ , USING CS 
segment-register-usage :; USING DS 

USING ES 

Match Condition Restrictions 

Figure 6-1 illustrates a detailed specification of the non-execution-match-condition. 
The following examples illustrate a set of restrictions that must be observed in the 
use of match conditions in emulation commands. 

Data values, bus status, and segment register usage come out of the 8086 at data­
time. Address values and bus status are available at address-time. The following 
restrictions apply to match conditions: 

• Breakpoint register BRO cannot contain data-time values at the same time 
breakpoint register BR I contains address-time values if the two registers are 
ANDed (the reverse is permissible). 

• Neither BRO nor BRI may contain an execution-match-condition if they are to 
ANDed. 

A warning message is issued after a Set BR command or a Set OR command if the 
command results in either of the above conditions. An Error is issued on a 00 com­
mand if the command results in either of the above conditions. 

• If a match-condition specifies both address and data or segment register usage, 
the match condition requires both breakpoint registers; hence this match­
condition cannot OR/ AND with another match-condition. 

All partitions in a multi-partition match condition must have the same base value. 
For example, the following command generates the error message shown: 

GO FROM ,START Till 0:0000 lEN 1, 100:1000H 2 READ 
ERR AD:DIFFERING BASIS (error message) 

All the displacement values must be within a IK-byte range (beginning on an even 
address) to be contained in a single breakpoint register. Displacements may exceed 
1 K only if there is a single partition. 

The following match condition cannot be contained in one breakpoint register: 

GO FROM .START Till 0:0000 lENGTH 2048T WRITTEN 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

The above command would require both breakpoint registers as the partition is 2K­
bytes in length. 

The following command would generate an error as two partitions are specified and 
the displacements exceed IK. 

GO FROM .START TILL 0, 2048T WRITTEN 

The following command would generate an error as the partition requires both 
breakpoint registers. Therefore the partition' .BEGIN' cannot be entered. 

GO FROM .STARTTILL 0 LEN 2048T, .BEGIN W 

Segment register usage can only be used in conjunction with a single match value as 
illustrated in the example below. 

GO FROM .DELAY TILL .MAINTIME READ USING DS 

The last form of the GO command is in the following format: 

GO [FROM address J[TILL break-reg [{ ~~D } break-regl] 

where break-reg references breakpoint register BRO, BRI, or BR. This command 
form is used when the breakpoint registers have been set prior to the entering of this 
command. The command enables the referenced breakpoint register but does not set 
its contents. The Set Breakpoint command, GR command, or a previous GO com­
mand must be used to set the required breakpoint registers. Care is required in 
ANDing two breakpoint registers in this command. Only two non-execution-match­
conditions can be "ANDed". An error results if either of the conditions described 
below occur. 

• BRO contains data values or segment register usage, and BRI contains address 
values. 

• Either of the breakpoint registers contains an execution-match-condition. 

NOTES 

During the first cycle of emulation, the ICE-86A emulator fetches 
the word at absolute memory location eight. The word is 
immediately flushed from the queue; it is never executed. The ICE 
emulator user should be aware that these memory operations are 
part of the normal operation of the emulator and that they do not 
impact successful application of the ICE-86A emulator. 

The user may experience excessive response times for external bus 
requests while setting breakpoints. The ICE-86A firmware loads 
the breakpoint registers; there are 4096 steps involved in loading 
these registers. Each step takes up to 500 microseconds to com­
plete. In between each step there are periods of inactivity (break­
points not being loaded) of approximately equal length, about 
several hundred microseconds in duration. While each of the 
breakpoint-loading steps is being executed, the Request/Grant 
response capabilities of the ICE-86A emulator are temporarily 
disabled. (During the inactive periods, the response capabilities are 
enabled.) Hence, external bus requests may not be answered as 
quickly as under normal circumstances. 

Breakpoint Restrictions 
There are two cases in which an interrupt request is not recognized until after the 
following instruction. A MOY (move) to segment register instruction or a POP seg-

6-9 



9' -o 

address: : masked-const 

address UP :: address DOWN 

address TO address 
address LENGTH address 

OBJECT BYTE address 
OBJECT WORD address 
OBJECT SINTEGER address 
OBJECT INTEGER address 
OBJECT POINTER address 

OBJECT typed-mem-ref 

, ... 
READ 
WRITTEN 
INPUT 
OUTPUT 
FETCHED 
HALT 
ACKNOWLEDGE 

, ... 

VALUE address:: VALUE masked-const 

VALUE address UP 
VALUE address DOWN 

VALUE [address TO address ] 
address LENGTH address , ... 

~SINGSU USING CS 
USING OS 
USING ES 

I I (match- I I (segment- I ........ I---(address-match-range) --..... ~It-o ... .----- status-------I~~ ....... I-----(data match-range) ----t~~ ~ reglster-~ 
list) usage) 

Note: (address-match-range), (match-status-Ilst) , (data-match-range), and (segment­
register-usage) must be used In the order shown. At least one of these fields must be 
entered In a given command and no field may be repeated in the command. 

Figure 6-1. Non-Execution Match Condition 162554-7 

Q 
I 

00 
01 
;I> 



ICE-86A Emulation and Trace Control Commands 

ment instruction will cause interrupt recognition to be inhibited until the following 
instruction has been executed. This mechanism protects a program that is changing 
to a new stack (by updatil}g SS and SP). If an interrupt were recognized after SS had 
been changed, but before SP had been altered, the processor would push the flags, 
CS and IP, into the wrong area of memory. It should be noted that whenever a seg­
ment register and another value must be updated together, the segment register 
should be changed first, followed immediately by the instruction that changes the 
other value. 

If your code contained the following sequence of instructions: 

MOY DS,DATASEG 
MOY ES,EXTRASEG 
MOY SS,STACKSEG 
MOY SP ,ST ACKPOIN.TER 
JMP START 

No interrupts will be recognized until the MaY SP instruction has completed. 

Similarly, if your code contained the following sequence of instructions: 

POP DS,DATASEG 
POP ES,EXTRASEG 
POP SS,STACKSEG 
POP SP ,ST ACKPOINTER 
JMP START 

No interrupts will be recognized until the POP SP instruction has completed. Nor­
mally the single step mode will generate a type 1 interrupt after each instruction. A 
breakpoint is recognized by a type 3 interrupt. The MaY and POP instructions 
described above will cause these interrupts to be inhibited until the instruction 
following the MaYor POP has been executed. 

Since the ICE-86A emulator uses the NMI to effect breakpoints for SINGLE/STEP 
and GO emulation, the break will be inhibited as long as the interrupt protection 
feature is in effect, i.e., an attempt to break at the MaY ES,EXTRASEG instruc­
tion will actually break when the MaY SP instruction has completed, resulting in 
the IP pointing to the JMP START instruction. 

A third case in which program execution does not terminate at the specified break­
point occurs due to 8086 queue operations. Execution breakpoints are complicated 
by the necessity to trace the 8086 queue operations, and thus, there is no guarantee 
that execution will be terminated immediately after the instruction specified. 

If the instruction requires only two clock cycles to execute, then (depending on the 
current queue depth) the emulator may slip past the requested breakpoint by one 
instruction. Due to the complexities of the breakpoints and the exact timing uncer­
tainties, the ICE module will not detect such a slip. 

The user may determine this type of slip, however, by examining the trace data and 
comparing the next to last instruction in the trace data to the potential break 
conditions. 

6-11 



Emulation and Trace Control Commands 

6-12 

Setting The Go-Register 

To enable either (or both using BR) of the breakpoint registers as a halt condition, 
you can use a set GR command of the form: 

GR = halt-go-condition 

The meta-term halt-go-condition means any of three exclusive types of halt 
conditions: 

h,/t-go-condUion' J ~:::~::-,.g [{ ~~D} b,.,k-,.gJ I 1 TILL match-cond [{ ~~D} match-cond] 

Using the FOREVER condition in the Go-Register command: 

GR= FOREVER 

would disable both breakpoint registers. 

The following command would enable BRI, once BRI had been set using the Set 
Breakpoint Command. 

GR = TILL BR1 

Both registers can be enabled and ORed with the following command: 

GR = TILL BR1 OR BRO 

Both registers can be set within a limited range and then combined to expand that 
range. 

If BRO were set to 800 UP and BRI were set to FFEFF DOWN the command: 

GR = BRO AND BR1 

would break between 800 and FFEFF. 

BRa would be loaded with a match condition and enabled with the following 
command: 

GR = TILL 3000H WRITTEN, FETCHED 

The following command would load BRa with the first match condition and BRI 
with the second stated match condition: 

GR = TILL3000H WRITTEN, FETCHED OR INPUT VALUE 0123 USING OS 

BRa would contain the match condition 3000H WRITTEN, FETCHED and BRI 
would contain the match condition INPUT VALUE 0123 USING DS and both 
registers would be enabled and ORed. 

The following command would require both breakpoint registers to contain the 
match condition: 

GR == TILL .DELAY FETCHED OR READ VALUE .MAINTIME USING OS 

ICE-86A 



Emulation and Trace Control Commands 

BRO would contain the match condition .DELAY FETCHED and BRI would con­
tain the match condition READ VALUE .MAINTIME USING DS. 

The following command would require both breakpoint registers to contain match 
conditions that are "ANDed": 

GR = TILL !SIDETIME READ AND VALUE 8 

BRO would contain the condition .SlDETIME READ and BRI would contain the 
match condition VALUE 8 . These conditions are ANDed. 

Setting Tracepoint Registers 

The ICE-86 emulator has two tracepoint registers, ONTRACE and OFFTRACE. A 
tracepoint register may only contain a non-execution match condition. Also the 
match range may only contain an address, masked constant, or data, and segment 
register usage may not be used with an address condition. For example, the follow­
ing commands are valid: 

ONT = 3000H WRITTEN, FETCHED 
OFF =INPUT VALUE 0123 USING OS 

However, the commands: 

OFFTRACE = 3000H EXECUTED 
ONTRACE = 3000H READ USING CS 

are invalid as EXECUTED is invalid in a tracepoint, and the segment register CS is 
specified with an address condition. 

Command Signal Time.out 

When the 8086 accesses INTELLECor DISK mapped memory, a command signal 
timer starts counting. If the access is not completed before it times out, the ICE-86A 
emulator will cause the READ and WRITE command signals to go inactive to the 
user system. The RWTIMEOUT commands are used to set and display the current 
setting of the command signal timer. 

Emulation Timer 

An emulation timer is enabled when emulation is running. The timer can be used to 
determine how long it takes the ICE-86A emulator to emulate a given segment of 
code. The timer is a 2-MHz clock (i.e., counts are intervals of 500 ns), derived from 
the crystal on the Control board. 

The timer starts when the GO command is entered, starting emulation. The timer 
starts counting at the first T3 state of the first instruction emulated. HTIMER stops 
counting where a maximum count of approximately 33 minutes is reached. TIMER 
continues counting modulo 65536. 

The timer is reset to 0 (before starting to count) when the GO command is entered 
with a FROM clause or when CS:IP is changed or when ENABLE/DISABLE 
TRACE. If you want to reset the timer without changing the current program 
counter, enter a command such as GO FROM CS:IP. 

6-13 



Emulation and Trace Control Commands 

6-14 

After emulation halts, you can display the value of the timer in the current output 
radix. The display command TIMER displays the low 16 bits of the timer value; the 
command HTIMER displays the high 16 bits of the timer value. The tokens TIMER 
and HTIMER can also be used as keyword references in commands and expressions. 

With the timer, you can measure the real elapsed time required to emulate a given 
code sequence. The elapsed time can then be compared to the calculated time based 
on the number of clock states in each instruction and the speed of the system clock. 
Note that code mapped to user runs aneal-time; the timer value for code mapped to 
prototype memory is the real-time value. 

A special application of the emulation timer is optimization of coprocessor code. 
When the emulated 8086 CPU is configured, for example, in local mode with an 
8087 NDP (Numeric Data Processor), then the two microchips can execute instruc­
tions in parallel. In general, the 8087 coprocessor fetches its instructions out of the 
8086 instruction stream and begins to perform a floating point calculation; the 8086 
will continue executing additional code while the 8087 proceeds with this calcula­
tion. The 8086 will execute aWAIT instruction when it can no longer execute code 
without the result of the 8087 calculation (inserted in code by user or compiler), and 
will continue when the 8087 finishes executing and releases the TEST pin. Optimiza­
tion, then, consists of reducing the amount of time the 8086 processor spends 
waiting for the 8087 NDP to complete its instructions. By using the emulation timer, 
the operator can determine the amount of time floating point instructions take to 
execute in the 8087 coprocessor, and plan the 8086 code to execute in approximately 
the same length of time. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

Set Breakpoint Register Command 

(1) break-reg = address EXECUTED::masked-const EXECUTED 

(2) break-reg = [address-match-range] [match-status-list] [data-match-range][ seg-reg-usage] 

NOTE 
Form (2) requires that the address-match-range, match-status-list, 
data-match-range, and seg-reg-usage fields be used in the order 
shown. At least one field is required in a given command and no 
field may be repeated in the command. Restriction: the fields 
selected must fit in one breakpoint register. 

Examples: 

BRO = 1 XXXH EXECUTED 
BR1 = 3000H UP WRITTEN 
BR = 3000H TO 30FFH READ USING CS 
BR = 3000H LENGTH FEH, OBJECT !VAR WRITTEN 

break-reg 

address 

masked-const 

EXECUTED 

address-match-range 

match-status-list 

data-match-range 

seg-reg-usage 

The name of one of the breakpoint registers (BRO, BRI) 
or BR to set both registers to the same match condition. 

The assignment operator. 

The address of the memory location or I/O port, or a 
data value. 

A masked constant used to define a range of memory 
locations or data values. 

Denotes that the match condition is the execution (CPU 
fetch of the instruction byte from the instruction queue) 
of the instruction byte whose address is given by address 
or masked-const. 

A set of one or more addresses. (See Address Match 
Range in Chapter 6.) 

A set of bus status conditions to be used as match 
parameters. (See Match Status List in Chapter 6.) 

A set of data values to be used as match parameters. (See 
Data Match Range in Chapter 6.) 

A specification of one of the segment registers to be used 
as a match parameter. (See Segment Register Usage in 
Chapter 6.) 

NOTES 
See Breakpoint Restrictions (Chapter 6) for breakpoint interrupt 
restrictions. 

Execution breakpoints are complicated by the need to trace the 8086 queue 
operations, and thus do not guarantee that execution will be terminated 
immediately after the specified instruction. The ICE emulator may slip past 

6-15 



Emulation and Trace Control Commands 

6.-16 

the breakpoint instruction and stop at the next instruction. This slippage is 
dependent on the current depth of the queue When the breakpoint instruc­
tion requires only two clock cycles for execution. Due to the complexity of 
the breakpoints and exact timing uncertainties, the ICE emulator will not 
detect this slip. The user may determine that the slippage has occurred by 
examining the trace data and comparing the next-to-Iast instructions exe­
cuted to the potential break conditions. 

ICE-86A 



ICE-86A 

• 

Emulation and Trace Control Commands 

Set Tracepoint Register Command 

READ 

~ddress J 
trace-reg = 

masked-canst 

WRITTEN 
INPUT 
OUTPUT 
FETCHED 
HALT 
ACKNOWLEDGE 

~ J~SINGS~ VALUE address USING CS 

, ... USING DS 
VALUE masked-canst USING ES 

(address­
match) 
range) 

(match­
status­
list) 

NOTE 

(data-match-range) (segment­
register­
usage) 

The address-match-range , match-status-Iist, data-match-range, and 
segment-register-usage fields must be used in a command in the order 
shown. At least one field is required in a given command and no field may 
be repeated in the command. A segment-register-usage field or data-match­
range may not be used with an address condition (address-match-range 
field); you cannot mix address-time fields with data-time fields. 

Examples: 

ONTRACE = 2340 READ, ACKNOWLEDGE 
OFFTRACE = INPUT, OUTPUT VALUE 1234H 
ONTRACE = !X FETCHED 
ONTRACE = R, W VALU E 40XX USING ES 
OFFTRACE = USING ES 

trace-reg 

address 

masked-canst 

match-status-list 

da ta-ma tc h-ra nge 

segment-register-usage 

The name of one of the tracepoint registers, ONTRACE 
or OFFTRACE. 

The assignment operator. 

The address of the memory location or 110 port, or a 
data value (see Data Match Range). 

A masked constant used to define a range of memory 
locations or data values. 

See Match Status List. (Chapter 6.) 

See Data-Match Range. (Chapter 6.) 

See Segment Register Usage. (Chapter 6.) 

6-17 



Emulation and Trace Control Commands 

6-18 

GO Command 

FROM address 

FOREVER 

[ {~~D} break-reg] GO TILL break-reg 

TILL match-cond 
[ {~~D} match-cond ] 

Examples: 

GO 

GO 
GO FROM 3000H 
GO FROM .ST ART TILL BRO 
GO FROM 3000H TILL 3000H EXECUTED 
GO TILL INPUT VALUE 1000 
GO FROM 1000H TILL 3000H TO 30FFH READ USING OS 
GO FROM 3000H TILL OBJECT POINTER .START READ 

Command keyword that starts emulation, subject to the 
current start and halt conditions. 

FROM Keyword introducing a starting address. 

address The address of the memory location of the first 
instruction to emulate, i.e., the start address. 

FOREVER Disables all breakpoint conditiollls,; emulation can be 
stopped only by user aborting processing. 

TILL A keyword introducing one or more match or halt 
conditions. 

break-reg One of the breakpoint registers (BRO, BRl), or BR to set 
both registers to the same match setting. 

match-cond One of the following forms of breakpoint register 
settings. 

1. execution-match-condition. (See Execution Match 
Condition in Chapter 6.) 

2. non-execution-match-condition. (See Non-Execution 
Match Condition in Chapter 6.) 

NOTES 

The ICE-86A emulator cannot enter GO or STEP with the 8086 Trap Flag 
(TFL) set. Therefore a warning message will be issued whenever GO or 
STEP commands are executed with TFL =1 , and TFL will be set to O. The 
Trap Flag is ignored during single step mode and on the first instruction 
step during emulation. 

If either breakpoint register contains a match range other than a single 
match-value and the breakpoint register has changed since the last GO com­
mand, the message "LOADING RANGE BREAKPOINTS" is issued, and 
it takes approximately 10 seconds to load breakpoints and hardware before 
emulation begins. 

See Breakpoint Restrictions (Chapter 6) for breakpoint interrupt 
restrictions. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

Execution breakpoints are complicated by the need to trace the 8086 queue 
operations, and thus do not guarantee that execution will be terminated 
immediately after tbe specified instruction. The ICE emulator may slip past 
the breakpoint instruction and stop at the next instruction. This slippage is 
dependent on the current depth of the queue when the breakpoint instruc­
tion requires only two clock cycles for execution. Due to the complexity of 
the breakpoints and exact timing uncertanties, the ICE emulator will not 
detect this slip. The user may determine that the slippage has occurred by 
examining the trace data and comparing the next-to-last instructions exe­
cuted to the potential break conditions. 

Upon normal termination of code execution containing string operations, 
the ICE-86A emulator appears to hang (no prompt) immediately after 
display of CS:IP. It may take up to 40 seconds for the prompt to appear. 
No such hanging occurs when trace collection is disabled. The cause of this 
hanging is connected to the repetitive nature of string operations and the 
size of the trace buffer. The maximum 1021 allowed frames of trace 
information in the trace buffer can easily be surpassed when collecting trace 
information during execution of string instructions. The original opcode 
fetch of the string instruction is beyond the 1021 frames of trace informa­
tion. Trace collection and CPU operation are out of sync. The trace buffer 
may be full, but there is no trace. This is the normal trace operation for 
string operations. 

6-19 



Emulation and Trace Control Commands 

6-20 

Set GO-Register (GR) Command 

FOREVER 

GR= TlLLbreak-reg 

TILL match-cond [ { ~~ D } match-cond ] 

Examples: 

GR= FOREVER 
GR =TILL BR1 
GR = TILL BRO OR BR1 
GR = TILL OBJECT !ABLE1 
GR = TILL OBJECT POINTER 0123 READ, WRITTEN VALUE 3000 USING DS 

GR 

FOREVER 

TILL 

break-reg 

match-cond 

Command keyword referring to the GO-register (halting 
conditions for emulation). 

The assignment operator. 

Disables all breakpoint conditions; emulation can be 
stopped only by user aborting processing. 

A keyword introducing one or more match or halt 
conditions. 

One of the breakpoint registers, BRO or BRI (or BR to 
denote both breakpoint registers) that is to be enabled. 

One of the following forms of breakpoint register 
settings: 

1. execution-match-condition. (See Execution Match 
Condition in Chapter 6.) 

2. non-execution-match-condition. (See Non-Execution 
Match Condition in Chapter 6.) 

NOTE 

See Breakpoint Restrictions (Chapter 6) for breakpoint restrictions. 

ICE-86A 



ICE·86A Emulation and Trace Control Commands 

STEP Command 

STEP [FROM address] 

Examples: 

STEP 
STEP FROM 1 FFFH 
STEP FROM .. MOD .GO 
STEP FROM !PTR 
STEP FROM #123 + 10 
STEP FROM CS:(WORD .X) ;SHORT JUMP INDIRECT THROUGH .X 

STEP 

FROM 

address 

A command keyword that causes the ICE-86A emulator 
to execute a single step of emulation. 

A function keyword introducing the address where a 
single step of emulation is to be executed. 

See address. (See Set Breakpoint Register Command in 
Chapter 6.) 

The STEP command causes the ICE-86A emulator to execute one single step of 
emulation. If FROM address is not included in the command, the emulation step is 
executed from the current address. If FROM address is included in the command, 
the value of the address is loaded into the CS and IP and the step is executed from 
this location. 

NOTES 

The STEP command is very useful in repeat loops and macros, (see Chap­
ter 8) where terminating condition can be given (UNTIL or WHILE) and 
system status and values can be displayed after each step. However, the user 
is cautioned that a hardware reinitialization occurs intermittently with a 
reset timeout when the RESET pin is pulsed during a repeat of the STEP 
command. 

See Breakpoint Restrictions (Chapter 6) for step mode interrupt 
restrictions. 

Trace data does not display byte reads of absolute memory locations 08H 
through OBH following single step execution. Absolute memory locations 
08H through OBH contain the NMI vector for Interrupt 2. During single­
step mode, which is the execution of single instructions halted via an Inter­
rupt 2, the ICE-S6A emulator accesses locations OSH and 09H to enter and 
exit emulation. The ICE software masks these reads out to conserve space in 
the trace buffer. The software does not distinguish between ICE emulator 
reads and user reads of these locations. As a result, user code reading these 
locations during the single-step mode is also masked out. The instructions 
are executed but do not appear in the trace data. 

6-21 



Emulation and Trace Control Commands 

6-22 

Display Emulation Register Command 

GR 

break-reg 

trace-reg 

[ ABSOLUTE] 
BASE [exprj 

[ ABSOLUTE] 
BASE [exprj 

Examples: 

GR 

GR 
BR1 
BRO BASE CS 
BRO BASE CS SYM BOLICALL Y 
BR BASE 
OFFTRACE 
OFF ABSOLUTE 
ONTBASE OS 
ONTRACE BASE OSSYM 

A command keyword that causes the content of the 
GO-register (factors enabled to halt emulation) to be 
displayed. 

break-reg One of the breakpoint register keywords BRO or BR I, to 
obtain a display of the register setting, or the keyword BR 
to cause the display of the settings of both breakpoint 
registers. 

trace-reg One of the tracepoint register keywords ONTRACE or 
OFFTRACE to command the display of the content of 
the designated register. 

ABSOLUTE Display all addresses as 20-bit numbers (this is the 
default). 

BASE Display all addresses in base and displacement format 
(e.g., 0000: lOOOH). If no expr is given, display with the 
base that was used to set the register. 

expr An integer value that specifies that all addresses are to be 
displayed as their displacement from (expr)* 16. An error 
occurs if an address needs a displacement of less than 0 or 
greater than 65535 from the base (expr ). Typically expr 
will be a segment register name; thus 'BRO BASE CS' 
displays the displacements of the addresses in BRO using 
the current code segment register. If no expr is given, use 
the base that the register was set with. 

NOTE 

Data values are always displayed as 16-bit numbers, masked-constants as 
16-bit or 20-bit strings with XS (in hexadecimal if possible, or else in 
binary). 

Internal to the ICE-86A emulator, match addresses are stored as 20-bit 
numbers. Thus "GO TILL 20:8 R" breaks whenever 208H is read, even if it 
is read as 1O:108H. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

Set CLOCK Command 

{ INTERNAL} 
CLOCK = EXTERNAL 

Examples: 

CLOCK = INTERNAL 
CLOCK = EXTERNAL 

CLOCK 

INTERNAL 

EXTERNAL 

This command keyword enables the user to designate the 
type of clock being used in the system: user-provided or 
ICE-provided. 

The assignment operator. 

Designates that an ICE-provided clock is being selected. 
This is necessary whenever the cable is not plugged into 
user system. When clock is set to Internal. the ICE-86A 
emulator is operated in stand-alone mode. The Socket 
Protector should be mounted on user cable in this mode 
of operation. 

Designates the clock to be user supplied. This is desirable 
whenever the cable is plugged into a user system. with 
user supplied clock. Not specifying CLD = EXT when a 
user clock is available could cause non-synchronization 
of user hardware with the ICE emulator. 

NOTE 
Further information on use of the CLOCK command is provided in 
AppendixG. 

Display CLOCK Command 

CLOCK 

Examples: 

CLOCK 

CLOCK A command keyword that causes the display of the clock 
setting. 

6-23 



Emulatioll and Trace Control Command$> 

Set RWTlMEOUT Command 

{
INFINITE }' 

RWTIMEOUT =: expr-1'O [E,RROR] " 

; expr-10 NOERROR ' 

Examples: 

RWTIMEOUT = INFINITE ;DfSABLE RIIVTIMEOUT 

RWTIMEOUT = 500 ERROR ;SET TIMEOUT TO HALT EMULATION WiTH REPORT 

RWTlMEout = 500 ;HAL T EMULATIONWITH ERROR REPORT 

RWTIMEOUT = 1500 NOERROR ;$ET TIMER BUT DO NOT HALT EMULATION WHEN IT 
;TIMESOUT 

RWTIMEOUT 

INFINITE 

expr-10 

ERROR 

NOERROR 

A command keyword denoting that a command signal 
timeout function is to be set. If not set by the user, the 
RWTIMEOUT is set to its default value of 1000 
microseconds. 

Denotes that the command is a set signal timeout 
command. 

Sets command signal timeout to "inffnite/~ effectively 
disabling the timeout. 

An integer value that specifies the timeout value in 
mkroseconds. The integer value must be greater than 0 
and less than 32K, and the default suffix: when evaluating 
expr-IO is decimal. The default value is 1000 
(microseconds). 

Specifies that error is to bee reported whenever command 
signaf times out. This is the default setting. 

Specifies that comm'and signal timeout is not to' halt 
emulation. 

NOTES: 
Byte,Word j and Port commanu's respond with J)ONE timeoufs if 
RWtlMEOV1 == INFINl1E and: n<1 user' ready occurs for 15 seconds'. The 
8086 is still <l'Ctlve on' the' user bus, however'f until the RES:ET HAROWARE: 
command is entered:' 

Further iltfol'mation 6n use of tne, aW'ffME001 command' is provided' in:' 
Appendix; O. 

n::'s'lftl:..u, 1!i.'\'A't"l:'IiIi,.e:I!'\~' I~ iIfi.'III._,' "'m'" "",,"'lOt"':' 1#1' J!r 8';,.' n:w' Ii t:m~r:.v" I:' ~W·.··.I" cn:I·Ui 

€ausesthe: current; setting6,"the'co:mmartdl signai1 timeout 
to: be disl11ayed':. 



ICE-86A Emulation and Trace Control Commands 

ENABLE/DISABLE RDY Command 

{ ENABLE} 
. DISABLE· 

ROY 

ENABLE A command keyword denoting that an ICE-86A element 
is to be enabled. 

DISABLE A command keyword denoting that an ICE-86A element 
is to be disabled. 

ROY A reference keyword specifying the user-ready signal for 
memory access. 

The ICE-86A emulator allows the user to enable and disable the user-ready signal. If 
ROY is enabled, the ready signal to the 8086 is a local ready (generated by the 
ICE-86A emulator) ANO user ready; otherwise ready to the 8086 is either the local 
ready when mapped to local memory or user ready when mapped to user memory. 
ROY is initially enabled. 

NOTES 

When emulating in the user memory with DISABLE ROY invoked, the user 
ready pin must be active to continue emulation. Since all I/O Ports are in 
the user system, an access to a port requires a user Ready to continue 
emulation. 

Further information on use of the ENABLE/DISABLE ROY command is 
provided in Appendix G. 

6-25 



Emulation and TraaControl Commands 

6-26 

Trace Control Commands 

The ICE-86A emulator can record program execution through the collection of trace 
data in a trace buffer during real-time and single-step emulation. The commands in 
this section allow you to specify the conditions for enabling and disabling trace data 
collection during emulation and to control the display of trace data. 

The commands in this section are as follows: 

COMMAND PURPOSE 

Set TRACE Display Mode Establishes trace data that will be displayed as 
frames or instructions. 

ENABLE/DISABLE TRACE Enables or disables the col/ection of trace data. 

Display TRACE Mode 

MOVE, OLDEST, NEWEST 

PRINT 

Causes the display of the current display mode. 

Set trace buffer pointer to entry to be displayed. 

Display one or more entries from the trace buffer. 

Discussion 

The unit of ICE-86A emulation is the instruction. During real-time and single-step 
emulation, the ICE-86A emulator traces program execution twice per 8086 bus 
cycle: first when the address signals are valid and then when the data signals are 
valid. It also traces each CPU clock cycle during which the execution queue is active. 

The ICE-86A emulator contains a trace buffer used to collect trace data (frames) 
during real-time and single-step emulation. The trace buffer holds a total of 1023 
frames or approximately 300 bus cycles of trace information. Each entry in the buf­
fer is a frame, and is either half a bus cycle or contains queue status, or both. Each 
frame contains: 

bit-size 

20 
3 
2 
3 
2 

Addressldata 
Bus status (SOl, S1 I, S2!) 
Queue Status (QSO, QS1) 
Queue depth 

purpose 

Frame type indicator: address, data, or queue status 
Start/stop trace marker for conditional trace 
Byte High Enable (BHEI) 

Trace is initially unconditionally on and the buffer is initially empty. The buffer is 
cleared whenever the user changes the IP or CS, either by a FROM clause on a GO 
or STEP command or by a Change command. Otherwise new trace data is appended 
to the end of existing trace data and the most recent 1023 frames are retained in the 
buffer. Similarly, the TIMER and HTIMER registers are reset to zero each time the 
user changes the IP or CS register. Also, whenever the user issues an enable/disable 
trace command, the trace buffer is cleared to empty and TIMER and HTIMER are 
reset to zero when the user next enters emulation. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

The user can control the collection of trace data using the tracepoint registers. The 
enable/ disable trace command enables trace conditionally and unconditionally or 
disables trace unconditionally: 

ENABLE TRACE 
I 

ENABLE TRACE r. {ON }] 
CONDITIONALLY ~OW OFF 

Turns trace on unconditionally during 
subsequent emulations. 

Trace will be turned on whenever the 
register matches and turned off whenever 
the OFFTRACE register matches. 

NOW ON indicates that trace is turned on for the beginning of the next emulation; 
NOW OFF indicates it is off; if neither is present the trace is left in its current state. 

DISABLE TRACE Turns trace off unconditionally during 
subsequent emulations. 

The trace display command allows the user to examine collected trace data displayed 
in one of two modes: as "raw" data or disassembled with instructions appearing as 
8086 assembler mnemonics. 

Instructions in the trace buffer are counted by occurrences of queue status indicating 
"first instruction byte out of queue" (i.e., QSO=l and QSI =0). Since the 8086 
defines instruction prefix bytes as well as the first non-prefix byte as "first instruc­
tion bytes", an 8086 instruction with one prefix byte counts as two instructions 
when using the MOVE or PRINT commands. However, if a PRINT command 
prints the requested number of instructions and ends up after a prefix byte but 
before the non-prefix instruction, it completes printing the entire non-prefix instruc­
tion. When the user switches from frames to instructions mode, if the buffer pointer 
is not at the oldest or newest frame, then the pointer is moved to a "first byte out of 
queue" frame if it is not already pointing at one before beginning to MOVE or 
PRINT the requested number of instructions. 

Trace Display Mode 
The trace display mode controls the type of an entry to be displayed or located in the 
trace buffer. An entry can be a frame or an instruction. The initial trace display 
mode is INSTRUCTION. To set the trace display mode, use one of the following 
commands. 

TRACE = FRAME 
TRACE = INSTRUCTION 

To display an entry from the buffer, move the pointer to the desired entry and enter 
a PRINT command. However, it is not necessary to move the pointer if you use a 
PRINT ALL or PRINT -decimal command. . 

Moving the Buffer Pointer 

The pointer movement commands are MOVE, OLDEST, and NEWEST. 

The command OLDEST (followed by carriage return) moves the pointer to. the top 
of the buffer, in any trace display mode. The NEWEST command moves the pointer 
to the bottom of the buffer (i.e., after the last instruction or frame). "Top" refers to 
the oldest trace data, "bottom" refers to the newest trace data. 

The MOVE command has the following form: 

MOVE [[+ :: -] decimal] 

6-27 



Emulation and Trace Control Commands 

The ffl;eta-term decimal means any numeric quantity; if noex.plicit inptlt-ra(iix. is 
given, the ICE-86A emulator assumes decimal radix. The value ofdecjmal is the 
number of entries between the current pointer position and the desired position. 
Movement in a plus (+) direction is toward tht: bottom (newest point) of the buffer; 
if neither (+) nor (-) is entered, a foreward movement is assumed as the default. 
Movement in a minus (-) direction is toward the top (oldest point) of the buffer. 
The size of the move does not count the entry under the pointer when the MOVE 
command is given. 

For example, assuming FRAME mode, if the pointer is pointing at frame 100 and 
you issue the command 'MOVE 10', the pointer is moved to point to frame 110. 
Under the same initial conditions, if you issue the command 'MOVE -10', the 
pointer is moved to point to frame 90. If decimal-number is larger than the number 
of entries between the current pointer location and the bottom (for '+') or top (for 
'-'), the pointer is moved only to the bottom or top, respectively. In short, you 
cannot move the pointer outside the range of buffer locations. 

If the MOVE command has no number following it, 'MOVE l' is executed. 

The trace display mode in effect controls the size of each move. Under FRAME 
mode, the command MOVE 10 moves down ten frames; under instruction, the same 
command moves down ten instructions. 

Displaying Trace Data 

The PRINT command displays one or more entries from the buffer. This command 
has the form: 

PRINT[[+ ::-jdecima/j::PRINTALL 

With (+) or no sign, decimal entries lower (toward the bottom) than the current 
pointer position are displayed. With (-), decimal entries above (toward the top) the 
current pointer position are displayed. The command PRINT without a decimal 
modifier is equivalent to PRINT 1 (one entry is displayed). 

The PRINT command displays the number of entries requested, then moves the 
pointer to point to the next entry just past the last one displayed. As an illustration, 
the commands: 

OLDEST 
PRINT10 
PRINT10 

are equivalent to the commands 

OLDEST 
PRINT20 

The command PRINT ALL displays the entire trace buffer; PRINT ALL is 
equivalent to the commands: 

OLDEST 
PRINT 1022 

Trace Data Display Restrictions. Trace data does not contain byte reads from 
absolute memory locations 08H through OBH during Single Step Emul<ttion. Re<tds 
from these locations are masked out of the trace buffer during Single Step Mode 
because, when single-stepping, emulation is halted via Interrupt 2; and absolute 

ICE-:86A 



ICE-86A Emulation and Trace Control Commands 

locations 08H through OBH contain the NMI Vector for Interrupt 2. Thus, during 
Single Step Emulation, the ICE-86A emulator must access locations 08H through 
OBH to enter and exit emulation. The ICE-86A software masks any reads from these 
locations so the system data will not take up room in the trace buffer. Consequently, 
user code which reads from these locations will also be masked from the trace buffer 
during Single Step Mode. 

TRACE Display Formats 

Display of Trace Data in Frames Mode 

The display has one frame per line. The header at the top of display has the follow­
ing format (one line of display shown also): 

FRAME AD DR SHE! STS OSTS OOEPTH DMUX MARK 
0000: 0002CH 0 F N 0 A 0 

How to interpret the Frames mode display: 

Header entry Meaning 

FRAME Frame number; decimal number from 0000 to 1022. The colon 
separates the frame number from the next entry (ADDR). 

ADDR The 20-bit address in Hexadecimal radix (five digits plus suffix H) 
when DMUX = A (address frame). When DMUX = D (data 
frame), the last 4 digits (16 bits) of this number are data, and the 
first digit is status: S6, S5, S4, S3 (MSB to LSB). Bits S4 and S3 are 
the segment register used in effective address calculation: 

S4 S3 Segment Register 

0 0 ES 
0 1 SS 
1 0 CS or none 
1 1 DS 

BHEI Not Byte High Enable (displays "0" if high byte enabled, or "1" if 
not-note reverse logic as on 8086 pin). 

STS A one-character display of processor action, as follows: 

A Interrupt Acknowledge 
F Instruction Fetch 
H Halt 
I Input 
o Output 
R Read (Memory) 
W Write (Memory) 
? Passive State 

STS is valid on ADDR and DATA frames only (DMUX = A or D). 

QSTS Queue status; a one-character display, as follows: 

E Empty the queue 
F First byte ofopcode executed out of queue 
N Nothing coming out of qu.eue 
S Subsequent byte ofopcode executed out of queue 

6-29 



Emulation and Trace Control Commands 

6-30 

QDEPTH Number of bytes in queue (decimal number). Valid on ADDR 
frames only (DMUX = A). 

DMUX 

MARK 

Type of frame; a one-character display as follows: 

A Address 
D Data 
Q Queue 
S Stop emulation 

Displays a "1" if trace was turned off, then on again just before 
this frame (using tracepoint registers); otherwise displays "0". 

Display of Trace Data in Instructions Mode 

The display shows the disassembled instruction mnemonic and any operands, and 
any succeeding cycles. Each instruction combines several frames of trace data. 
Machine cycles after the instruction fetch are displayed four cycles per display line, 
using as many lines as necessary. 

First, we discuss the header and the instruction display. Display of cycles is discussed 
later on. The headers apply to the first line of the display entry-the line with the 
frame numbers. The Instructions mode header has the following format (two 
instructions are also shown): 

FRAME ADDR PREFIX MNEMONIC OPERANDS COMMENTS 
0006: 000E7H DEC CL 
0010: 000E9H MOV WORD PTR [0101H],BX 

00101H-W- 2CH-DS 00102H-W- OOH-DS 

Header entry Meaning 

FRAME The (decimal) number of the frame where the first byte (or prefix) 
of the instruction came out of the 8086 execution queue. 

ADDR Address of first byte (or prefix) of instruction; 20-bit number in 
Hexadecimal radix (five Hex digits plus suffix H). 

PREFIX Prefix other than segment-override (LOCK, REPE, REPNE) if 
specified in assembly language, else blank. 

MNEMONIC MCS-86 assembler mnemonic for the instruction. 

OPERANDS Zero, one, or two operands separated by commas. The formats for 
the operand fields are discussed below. 

COMMENTS The word ";SHORT" for a JMP or CALL instruction to an 
address within the same segment of field bytes that contains the 
instruction's address, or the word ";LONG" for a branch to a dif­
ferent segment, or the characters ";1" for an opcode value that 
does not correspond to a valid instruction. 

Operand Fields 

1. Registers: the iAPX-86 register identifiers are displayed: 

RAL,RAH,RBL,RBH,RCL,RCH,RDL,RDH, 
RAX, RBX, RCX, RDX 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

Example (comments field omitted): 

FRAME ADDR PREFIX MNEMONIC OPERANDS 
AL,BYTE PTR [OOOOH] 0003: 00206H MOV 

00200H-R- 34H-DS 

2. Memory operands have the following display format: 

[{
CS}] {BYTE} [,{BX}, J [ '{DI , '}][ '{XXXXXH}' J DS: WORD PTR [ BP] [51] [ ] 
ES DWORD +xxH . 
~? ~H 

. Example: the display ES:BYTE PTR [BX] [SI] [+ 01 H] represents the operand 
BYTE ES:(BX + SI + 1) 

More examples showing memory operand display. 

FRAME ADDR PREFIX MNEMONIC OPERANDS 

0000: FF380H ADD ES:BYTE PTR [BX] [51], AL 

0025: FF480H ADD ES:BYTE PTR [BX] [51] [ + 01 H], AL 

0050: FF580H MOV AL, BYTE PTR [0001 H] 

Notes on the memory operand format: 

• The first field is the segment register field. It is only displayed if the 
instruction has a segment-override prefix. 

• In the second field, an entry"? PTR" means that the type of the pointer 
cannot be determined from the context. 

Example: LEA AX,? PTR [34AOH] 

• The base register (BX, BP) and index register (01, SI) fields are not 
displayed for direct memory operands. When these fields are displayed, 
they are enclosed in brackets (shown as '[' and']' in the format given 
earlier). 

• The last field is either a 16-bit unsigned (word) number, or a signed 8-bit 
(byte) number. The entry is displayed enclosed in brackets. 

• At least one of the last three fields (base register, index register, number) is 
displayed for any memory operand. 

3. Immediate data is displayed as a byte or word number, without brackets. 

Example: 

FRAME AD DR PREFIX MNEMONIC OPERANDS 
0932: FF391 H TEST AL, 07H 

4. Labels for the JUMP and CALL instructions: 

• Within l28 bytes of current address-$ ± xxH 

Example: 

0934: FF393H JE $-06H 

• Within same 64K segment as current address-$ + xxxx H 

Example: 

0000: FFOOOH JMP $+1005H 

• To a different segment-base:displacement 

Example: 
0978: FFFFOH JMP FFOO:0096H 

Note: the first two labels represent "SHORT" (intra-segment) branches, the third is 
a "LONG" (inter-segment) branch. 

6-31 



Emulation and Trace Control Commands 

6-32 

Display of Cycles in Instruction Mode. After the instruction mnemonic and 
operands are displayed, the display shows succeeding cycles performed by the cur­
rent instruction. Four cycles are shown per line of display; the display Ilses as many 
lines as needed to show all cycles. 

The general format for cycles display is: 

address-status-data-segment 

Examples: 

• Read/Write: 

• 

• 

12345H-R- 34H-DS (8-bit read of data 34H from address 12345H using OS) 
45100H-W-7000H-SS (16-bit write of data 7000H to address 45100H using SS) 

Input/Output: (no segment register; 16-bit address) 

F FOOH -1-01 H (8-bit input of data 01 H from port FFOOH) 
FFDAH-O-1234H (16-bit output of data 1234H to port FFDAH) 

Interrupt Acknowledge: no address field, "A" for "acknowledge" status, 8-bit 
interrupt type. 

Example: 

FRAME AD DR PREFIX MNEMONIC OPERANDS COMMENTS 
0980: FF391 H TEST AL,07H 
0982: FF393H JE $-06H ; SHORT 
0990: FF38DH MOV DX,FFEAH 
0996: FF390H IN AL,DX 

FFEAH-Ic OOH 

A- FFH 
A-FFH 003FCH-R-OOOOH-CS 003FEH-R-FFFFH-CS OOOBAH-W-F246 

H-SS 
OOOB8H-W-FFOOH-SS 

Note that: 

00086H-W-0391 H-SS 

a. The I cycle is part of the IN instruction; the rest of the cycles are the 
interrupt. 

b. The "A" cycle is traced twice; ignore the first one. 

c. Interrupt is type OFFH 

d. The five cycles after the "A" cycle are as follows: 

Read IP of interrupt vector 
Read CS of interrupt vector 
W rite flags to stack 
Write oldCS to stack 
Write old IP to stack 

• Fetch cycles do not appear as cycles; they are used to display the opcode 
mnemonic and operands. 

• Halt cycles never appear as cycles; they appear as the mnemonic HLT. 

Gaps iIi Trace in Instruction Mode. In Instruction mode, a gap in trace data is 
shown as three asterisks (***). A gap in trace is produced by tracepoints or by buffer 
overflow. 

Agapintrace data also is reflected by a MARK == 1 in Frames mode. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

Extended Example of Trace Displays 

The following example (from SDK-86 Monitor) shows most of the features of trace 
displays discussed in this section: 

'ONTRACE=FFOO:96 
'OFFTRACE=FFFF:O 
'ONT 
ONT=FF096H A,I,O,H,F,R,W 
'OFFT 
OFFT=FFFFOH A,I,O,H,F,R,W 
'ENABLE TRACE CONDITIONALLY NOW ON 
'GO TILL FFOO:9E EXECUTED 
EMULATION BEGUN 
EMULATION TERMINATED, CS:IP=FFOO:00A1H 
'BUF 
BUF=03FDH 
'P-20 
FRAME ADDR PREFIX MNEMONIC OPERANDS COMMENTS 
0928: FF390H IN AL,DX 

FFEAH-I- OOH 
0932: FF391H TEST AL,07H 
0934: FF393H JE $-06H ; SHORT 
0942: FF38DH MOV DX,FFEAH 
0948: FF390H IN AL,DX 

FFEAH-I- OOH 
0952: FF391 H TEST AL,07H 
0954: FF393H JE $-06H ; SHORT 
0962: FF38DH MOV DX,FFEAH 
0968: FF390H IN AL,DX 

FFEAH-I- OOH 
0972: FF391H TEST AL,07H 
0974: FF393H JE $-06H ; SHORT 
0982: FF38DH MOV DX,FFEAH 
0988: FF390H IN AL,DX 

FFEAH-I- OOH 
0992: FF391H TEST AL,07H 
0994: FF393H JE $-06H ; SHORT 

1004: FF098H MOV SS,WORD PTR [0092H] 
FF092H-R~0007H-CS 

1012: FF09CH MOV SP,0050H 
1015: FF09FH MOV BP,SP 
';TRACE TURNED OFF AT FFFF:O, BACK ON AT FFOO:96, BREAK AT FFOO:9E 
*BRO 
BRO=FF09EH E 
*ONT 
ONT=FF096H A,I,O,H,F,R,W 
'OFFT 
OFFT=FFFFOH A,I,O,H,F,R,W 
*TRA=FRA 
*P-25 
FRAME ADDR BHEI STS QSTS QDEPTH DMUX MARK 
0996: BF398H 0 ? E 0 Q 0 
0997: FFFFOH 0 F N 0 A 0 
0998: 22EFAH 0 F N 2 D 1 
0999: FF098H 0 F N 2 A 0 
1000: 2168EH 0 F F 2 Q 0 
1001: 2168EH 0 F N 3 D 0 
1002: 2168EH 0 F F 2 Q 0 
1003: FF09AH 0 F N 2 A 0 
1004: 20092H 0 F F 2 Q 0 
1005: 20092H 0 F S 2 D 0 
1006: FF09CH 0 F N 2 A 0 
1007: 250BCH 0 F S 2 Q 0 
1008: 250BCH 0 F S 2 D 0 
1009: FF092H 0 R N 2 A 0 
1010: 20007H 0 R N 2 D 0 
1011 : FF09EH 0 F N 2 A 0 
1012: 28BOOH 0 F F 3 D 0 
1013: FFOAOH 0 F S 2 A 0 

6-33 



Emulation and Trace Control Commands lCE-86A 

1014: 22EECH 0 F S 2 Q 0 
1015: 22EECH 0 F F 2 0 0 
1016: FFOA2H 0 F N 2 A 0 
1017: 21E8EH 0 F S 2 Q 0 
1018: 21E8EH 0 F N 3 0 0 
1019: FFOA4H 0 F N 3 A 0 
1020: 20094H 0 F N 5 0 0 

6-34 



ICE-86A Emulation and Trace Control Commands 

Set TRACE Display Mode Command 

TRACE = {FRAME } 
INSTRUCTION 

Examples: 

TRACE = FRAME 
TRACE = INSTRUCTION 

TRACE 

FRAME 

INSTRUCTION 

A command keyword indicating that the mode of display 
for trace data is to be set. 

A function keyword indicating that data in the trace 
buffer is to be displayed frame by frame. 

A function keyword indicating that data in the trace 
buffer is to be displayed by instruction. Each instruction 
is equivalent to one or more machine cycles. 

In the FRAME mode, trace data is displayed one frame per line, with fields for 
frame number, address/data, bus status, queue status, queue depth, type of frame 
(address, data or queue) and start/stop trace marker. 

In the INSTRUCTION mode, trace is disassembled with instructions appearing as 
8086 assembler mnemonics. All other cycle data other than instruction fetches, the 
address, status and data of the cycle are displayed. Memory fetches into the execu­
tion queue and queue activity are not shown explicitly. Instead, they are used to find 
the instruction bytes that were executed when the instruction is taken from the 
queue. Whenever it is impossible to disassemble frames, immediately before or after 
a frame with the START/STOP trace marker set, the gap is indicated by a line con­
taining three asterisks ("***"). In either mode, status appears as "F", "R", "W". 
"I", "0", "H", or "A" corresponding to the match status(es) set in the tracepoint 
register, and addresses are displayed as 20-bit numbers is the displacement of the 
address from that base. 

6-35 



Emulation and Trace Control Commands 

6-36 

ENABLElDISABLE TRACE Command 

{ ENABLE} [ TRACE CONDITIONALLY 
DISABLE .. 

[ NOW ON J.] 
NOW OFF 

Examples: 

ENABLE TRACE 
ENABLE TRACE CONDITIONALLY 
ENABLE TRACE CONDITIONALLY NOW ON 
ENABLE TRACE CONDITIONALLY NOW OFF 
DISABLE TRACE 

ENABLE 

DISABLE 

CONDITIONALL Y 

NOWON 

NOWOFF 

TRACE 

A command keyword that causes trace data collection to be 
conditionally or unconditionally enabled. 

A command keyword that causes trace data collection to be 
disabled. 

A command modifier that specifies that trace will be turned on 
whenever the ONTRACE register matches and turned off 
whenever the OFFTRACE register matches. 

Indicates that trace is turned on for the beginning of the next 
emulation (see Note). 

Indicates that trace is turned off for the beginning of the next 
emulation {see Note). 

Command modifier denoting that trace is to be 
enabledl disabled. 

NOTES 

If ENABLE TRACE CONDITIONALLY, the tracepoints will inadver­
tently match and turn trace on or off when entering emulation if the trace­
point is set to match on a Fetch at address 00008 or 00009, and when exiting 
emulation if the tracepoint is set to match on a Read at address 00008 or 
00009. Conditional trace should not be setup ONTRACE/OFFTRACE 
tracepoints at memory locations 00008 or 00009, as the ICE-86A emulator 
uses these two memory locations when emulation is broken. 

If neither NOW ON or NOW OFF is selected (i.e., ENABLE TRACE 
CONDITIONALL Y), trace is left in its current state. 

Upon normal termination of code execution with string operations, the 
ICE-86A emulator appears to hang (no prompt) immediately after display 
of CS:IP. It may take up to 40 seconds for the prompt to appear. No such 
hanging occurs when trace collection is disabled. The cause of this hanging 
is connected to the repetitive nature of string operations and the size of the 
trace buffer. The maximum 1021 allowed frames of trace information in the 
trace buffer can easily be surpassed when collecting trace information dur­
ing execution of string instructions. The original opcode fetch of the string 
instruction is beyond the 1021 frames of trace information. Trace collection 
and CPU operation are out of sync. The trace buffer may be full, but there 
is no trace. This is the normal trace operation for string operations. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

Display TRACE Command 

TRACE 

Example: 

TRACE 

TRACE 
A command keyword that, if entered from the keyboard as a 
single token, causes the current TRACE mode (FRA for 
FRAME or INS for INSTRUCTIONS) to be displayed. 

NOTES 
Execution breakpoints are complicated by the need to trace the 8086 queue 
operations, and thus do not guarantee that execution will be terminated 
immediately after the specified instruction. The ICE emulator may slip past 
the breakpoint instruction and stop at the next instruction. This slippage is 
dependent on the current depth of the queue when the breakpoint instruc­
tion requires only two clock cycles for execution. Due to the complexity of 
the breakpoints and exact timing uncertainties, the ICE emulator will not 
detect this slip. The user may determine that the slippage has occurred by 
examining the trace data and comparing the next-to-Iast instructions exe­
cuted to the potential break conditions. 

Trace data does not display byte reads of absolute memory locations 08H 
through OBH following single-step execution. Absolute memory locations 
08H through OBH contain the NMI vector for Interrupt 2. During single­
step mode, which is the execution of single instructions halted via an Inter­
rupt 2, the ICE-86 emulator accesses locations 08H and 09H to enter and 
exit emulation. The ICE software masks these reads out to conserve space in 
the trace buffer. The software does not distinguish between ICE emulator 
reads and user reads of these locations. As a result, user code reading these 
locations during the single-step mode is also masked out. The instructions 
are executed but do not appear in the trace data. 

6-37 



Emulation and Trace Control Commands 

MOVE, OLDEST, and NEWEST Commands 

6-38 

MOVE [[ +: :-jdecima/j 
OLDEST 
NEWEST 

Example: 

MOVE 
MOVE +6 
MOVE -11 
OLDEST 
NEWEST 

MOVE 

+ 

decimal 

OLDEST 

NEWEST 

A command keyword that moves the buffer pointer one 
or more entries forward (toward the most recent entries) 
or backward (toward the earliest entries). An entry is a 
frame or instruction, depending on the TRACE mode in 
effect. 

A unary operator specifying a forward movement. Plus is 
the default. 

A unary operator specifying a backward movement. 

A number, evaluated in decimal radix (if no explicit 
suffix is given), that gives the number of entries to be 
included in the MOVE. 

A command keyword that moves the pointer to the 
earliest entry in the buffer. 

A command keyword that moves the pointer to the latest 
entry in the buffer. 

ICE-86A 



ICE-86A Emulation and Trace Control Commands 

PRINT Command 

PRINT { ALL } 
[[ + ::-)decima/) 

Example: 

PRINT 
PRINT ALL 
PRINT +5 
PRINT 5 
PRINT-10 

PRINT 

ALL 

+ 

decimal 

A command keyword calling for a display of one or more 
entries from the trace data buffer. The entries are 
displayed as frames or instructions, depending on the 
current trace mode. 

A function keyword indicating that the entire trace buffer 
contents are to be displayed. 

A unary operator directing the display of decimal entries 
below (entered later then) the current buffer pointer loca­
tion. See DISCUSSION for details. Plus is the default. 

A unary operator directing the display of 
decimal-number entries above (entered earlier than) the 
current buffer pointer location. See DISCUSSION for 
details. 

A numeric constant, evaluated in decimal suffix, giving 
the number of entries to be displayed. 

6-39 





CHAPTER 7 
INTERROGATION AND 

UTILITy COMMANDS 

Chapter 7 contains discussions, examples, and syntax summaries for each of the 
ICE-86A interrogation and utility commands. 

The following brief outline of Chapter 7 shows how the interrogation and utility 
commands have been clasified. 

Utility Commands Involving ISIS-II 

ICE86 Command 
EXIT Command 
LOAD Command 
SAVE Command 
LIST Command 

Number Bases and Radix Commands 

Set or Display Console Input Radix Commands 
Set or Display Console Output Radix Commands 

Hardware Register .Commands 

Set Register Command 
RESET HARDWARE Command 
Set or Display RQ/GT Command 
Display BUS Command 

Memory Mapping Commands 

MAP DISK Command 
MAP INTELLEC Command 
Set MAP Status Command 
Display MAP Status Command 
RESET MAP Command 

Set Memory and Port Content Commands 

Set Memory Command 
Set Input/Output Port Command 

Symbol Table and Statement Number Table Commands 

DEFINE Symbol Command 
Display Symbols Command 
Display Statement Numbers Command 
Display Modules Command 
Change Symbol Command 
REMOVE Symbols Command 
REMOVE Modules Command 
TYPE Command 
Set DOMAIN Command 
ENABLE/DISABLE SYMBOLICALL YCommand 

7-1 



Interrogation and Utility Commands 

7-2 

Display Commands 

Display Processor and Status Registers Command 
Decode CAUSE Command 
Display Memory Command 
Disassembly Command 
Display I/O Command 
Display STACK Command 
Display Boolean Command 
Display NESTING Command 
Evaluate Command 

Utility Commands Involving ISIS-II 

The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating 
system for the Intellec Microcomputer Development System. The ICE-86A emulator 
runs under ISIS-II control and can call upon ISIS-II for file management function. 

The following commands are included in this section: 

Command 

ICE86 
EXIT 
LOAD 
SAVE 
LIST 

Discussion 

Purpose 

Load ICE-86A program from diskette. 
Return control to ISIS-II. 
Load user program into memory accessed by the ICE-86A emulator. 
Copy user program from memory onto diskette. 
Copy ICE-86A emulation output to printer or file. 

ICE-86A commands can use ISIS-llpathnames to direct ISIS-II to a deSIred disk file 
or other output device. 

For disk files, the format of pathname is as follows. 

:drive:filename 

The entry :drive: stands for one of the references to ISIS disk drives, in the form: 

:Fn: where n is the drive number from 0-9. 

Refer to the ISIS-II User's Guide for the various configurations allowed for dif­
ferent kinds of disk drives. 

The entry filename must follow the second colon (after drive) without any interven­
ing spaces. A filename has the following components. 

identifier [.extension] 

The entry identifier is a name assigned by the user, and is made up of one to six 
alphanumeric characters. The extension is an optional part of the filename, con­
sisting of one to three alphanumeric characters preceded by a single period. The 
extension must be used if it is present in the directory listing of the file on the 
diskette. If used, the extension follows the identifier without any spaces. Some 
extensions (e.g., .BAK) are assigned by system processors; others can be assigned at 
the desire of the user. An extension provides a second level of file identification; it 
can be used to identify different versions of the same program, or to give sup­
plemental information about the file (e.g., author, data, version). 

ICE-86A 



ICE-86A Interrogation and Utilfty Commands 

Fully compiled or assembled programs ready to run (emulate) do not have system­
assigned extensions, although they may have extensions assigned by the user. 

For devices other than disk files, the format of pathname is as follows: 

:device: 

The following devices are commonly accessed in ICE-86A commands: 

:Device: 

:LP: 
:HP: 
:TO: 
:CO: 

Output Device 

Line printer 
High-speed tape punch 
Teletypewriter printer 
Console display 

For more information on ISIS-II filenames and device codes, refer to the ISIS-Jl 
System User's Guide. 

The ICE86 command, entered after an ISIS-II prompt, directs ISIS-II to load the 
ICE-86A program from the specified diskette drive into a reserved area in Intellec 
memory. The ICE-86A emulator begins operation as soon as it is loaded, initializing 
its hardware and program variables, and signaling readiness to accept ICE-86A 
commands by displaying an asterisk prompt. 

The EXIT command ends the emulation session and returns control to ISIS-II. The 
command issues a hardware reset before exiting. 

The LOAD command loads the object code from the named file and drive into the 
areas of memory specified by the memory map. Modules are loaded in the order of 
their appearance in the source file. The modules' names, symbols, and statement 
numbers are placed in reserved areas of Intellec memory. Symbols and statement 
numbers are grouped into tables by module in the order in which they appear. Both 
a base value and a displacement value are loaded for all symbols and statement 
numbers. Any symbol that has no type information is given no type specification in 
the symbol table. If no exclude modifiers are included in the command, module 
names are loaded into the ICE-86A module table in the order in which they appear 
following any module names already in the table, symbols and their types (if pre­
sent) local to each module are loaded into that module's symbol table in the order in 
which they appear, and statement numbers local to each module are loaded into that 
module's statement table (for PL/M 86 programs) in the order in which they appear. 

The command can include one or more modifiers to control what is to be loaded. No 
modifier may be named twice in the same load command. If NOCODE is included, 
the program code is omitted from the load, e.g., it is already in ROM. If NOLINE is 
included, the program statement number table is not loaded. If NOSYMBOL is 
included, the program symbol table is not loaded. Any combination of one, two, or 
three of these modifiers may be included, although the command with all three 
modifiers represents a "null" command. 

NOCODE, NOSYMBOL, and NOLINE can be followed by the SELECTING 
modifier. The SELECTING modifier is intended to aid those users who are unable 
to fit their entire symbol table in memory. The user is allowed to specify which 
modules' symbols are to be loaded. The SELECTING keyword must be followed by 
a module-name, one or more module-ranges (module-name TO module-name), or 
one or more module-ranges followed by a module-name. When a module-name is 
given, the ICE-86A emulator begins loading symbol information (symbol names, 
addresses, and type specifications) when it reads from this module, and continues 
until end of file. When a module range is given, the ICE-86A emulator begins 

7-3 



Interrogation and Utility Commands 

7-4 , 

loading symbol information when it reads from the first module in the range, and 
continues through the last module in the range. A warning is issued if the ICE-86A 
emulator reads an end -of file before encountering the end of a range. The 
SELECTING modifier does not affect the loading of object code. 

The SAVE command copies the user program currently loaded from memory onto 
the specified file and drive. If the diskette installed on the given drive does not have 
the named file in its directory, ISIS-II creates the file and opens it for write. If the 
named file does exist on the diskette, the file is overwritten and the previous contents 
are lost. If no explicit drive number is given, drive 0 is assumed. 

The command can include one or more modifiers to control what is to be saved. If 
NOSYMBOL is included, the symbol table is not copied from memory to diskette. If 
NOLINE is included, the statement number table (for PLlM-86 programs) is not 
saved. The modifiers NOCODE and partition are mutually exclusive: if one is used, 
the other may not be included. If NOCODE is included, the program object code is 
not copied to diskette. If partitions are included, only the code stored in the memory 
addresses in the partitions (ranges of addresses) are saved. If neither NOCODE nor 
Partition appears in the command, any code between the lower and highest 
addresses in each lK segment that has been previously loaded is saved. If no code 
has been loaded, no code is saved. When more than one modifier is used, separate 
them with spaces. No modifier may be used twice in the same SAVE command. The 
SA VE operation does not alter the program code, symbol table, or statement 
number table in memory. 

The LIST command saves a record of the emulation session, including high-volume 
data such as trace data, on a hard-copy device or on a diskette file in addition to 
sending it to the console. Only one device or file other than the console can be 
specified (active) at a given time. 

The initial device is :CO:, output to the console. Other devices that can be specified 
are a line printer (:LP:), high-speed paper tape punch (:HP:), and teletypewriter 
printer (:TO:). 

Instead of a hard-copy device, a diskette file can be specified. If the output is to a 
diskette file, the file is opened when the LIST command is invoked, and output is 
stored from the beginning of the file, writing over any existing data. Specifying a 
new file or device in a later LIST command closes any existing open file and avoids 
over-writing any more data. Specifying the same file in a later LIST causes the delete 
of the file and starting over. 

When LIST is in effect (with a device or file other than :CO:), all output from the 
ICE-86A emulator, including system prompts, commands, and error messages, is 
sent both to the named device or file and to the console display. To restore output to 
the console only (no other device), use the command LIST :CO:. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

ICE86 Command 

[:drive]ICE86 [WORKFILES(:alt. drive:)] 

Example: 

:F1:ICE86 
:F1 :ICE86 WORKFILES(:F2:) 

:drive: 

ICE86 

WORKFILES 

:alt. drive: 

The number of the diskette drive containing the ICE-86A software 
diskette. The number is preceded by the letter F and enclosed in 
colons. This drive is also the default drive for the ICE temporary 
workfile. 

The name of the lCE-86A program file under ISIS-II. The filename 
follows the second colon without any intervening spaces. 

Control keyword specifying that an alternate disk drive is to be 
used for the ICE temporary workfile. 

The number of the diskette drive containing the diskette where the 
temporary work file is to be stored. The number is preceded by the 
letter F and enclosed in colons. 

NOTE 
Inspect the diskette containing the ICE-86A program prior to loading into 
the diskette drive. If the WORKFILES control is specified, the diskette con­
taining the ICE-86A program may be write protected. If the WORKFILES 
control is not specified, the diskette containing the ICE-86A program must 
not be write protected or an ISIS ERR24 (write protect) will result. Ensure 
that the diskette has a write-enable tab covering the write protect slot on the 
square plastic diskette housing. 

7-5 



Interrogation and Utility Commands 

7-6 

EXIT Command 

EXIT 

Example: 

EXIT 

EXIT A command keyword that returns control from the ICE-86A 
emulator to ISIS-II. The command issues a hardware reset before 
exiting, and leaves the file used for DISK-mapped memory intact. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

LOAD Command 

LOAD[:drive:]filename { NOCODE } 
NOSVMBOL 
NOLINE 

... [SELECTING module-partition [, module-partition] ... ] 

module-partition;; { module-name } 
module-name TO module-name 

Examples: 

LOAD :FO:TEST.VR1 
LOAD :F1:MVPROG NOLINE 
LOAD :F2:COUNT. ONE NOCODE NOLINE 
LOAD :F3:NEWCOD NOSVMBOL 
LOAD :FO:TEST.VRI SELECTING ONE TO FIVE, SEVEN 

LOAD A command keyword that loads the software on the given file and 
drive into the combination of prototype and Intellec memory 
specified by a previous MAP command. 

:drive: The diskette drive (:FO:, :FI:, :F2:, or :F3:) that contains the target 
file. If no drive is given, :FO: (drive 0) is the default. 

filename The name of the desired program as compiled or assembled, linked, 
and located. The filename follows the second colon with no 
intervening spaces. 

NOCODE A modifier specifying that program code is not to be loaded. 

NOSVMBOL A modifier specifying that the program symbol table is not to be 
loaded. 

NOLINE A modifier specifying that the program line number table (for 
PL/M-86 programs) is not to be loaded. 

SELECTING A modifier that denotes that a range of modules whose symbols are 
to be loaded is to follow. 

module-name A sequence of continuous alphanumeric characters that references 
a program module. 

TO A connector that denotes that a module name is to follow that 
defines the end of a range of modules. 

NOTE 
In this command, module-name is not preceded by two periods as it is in 
other cases. 

When compiling, linking and locating PLlM-86 programs on a Series III 
8086 based development system (as opposed to running under ISIS-II on an 
8085) the NOIC option must be used on the LOCATE command line. 
Otherwise, the LOCATE program produces a block of initialization code 
which is understood by the Series III monitor but not by the ICE-86A 
emulator. This initialization code will prevent ICE-86A from LOADing the 
program. 

7-7 



Interrogation and Utility Commands 

7-8 

SAVE Command 

SAVE [:drive:]filename [ ..• NOCODE j •. [partitiOn[,partifion n 
NOSYMBOL 
NOUNE 

Examples: 

SAVE :F1:TEST 
SAVE :FO:MYPROG 0800 TO OFFF NOLINE 
SAVE :F2:COUNT.TWO NOLINE NOSYMBOL 
SAVE :F3:NEWSYM NOCODE NOLINE 
SAVE :Fl:TEST #1 TO #50, .. SUBR #1 TO .. SUBR #20 

SAVE 

:drive: 

filename 

NOCODE 

partition 

NOSYMBOL 

NOLINE 

The command keyword that directs the ICE-86A emulator to write 
the designated software elements to the indicated file and drive. 

The diskette drive (:FO:, :FI:, :F2:, :F3:) holding the diskette that is 
to contain the saved software. If no explicit drive number is given, 
drive 0 is the default. 

The name of the file that is to receive the saved information. The 
name of the file, including the extension if present, must follow the 
rules for naming files under ISIS-II. The filename immediately 
follows the second colon. If the filename does not exist on the 
designated diskette, ISIS-II creates the file and opens it for write. If 
it does exist, the current file is destroyed. 

A modifier specifying that program code is not to be saved. 

A construct specifying a range of one or more contiguous locations 
in memory; the contents of the specified locations are saved, but 
code in other locations is not copied. 

A modifier specifying that the symbol table is not to be saved to 
diskette. 

A modifier specifying that the line number table (for PLlM-86 
programs) is not to be saved. 

ICE-86A 



lCE-86A Interrogation and Utility Commands 

LIST Command 

LIST { :device: } 
. (:drive: lfilename 

Examples: 

LIST :LP: 
LIST :CO: 
LIST :F1 :ICEFIL 

LIST 

:device: 

:drive: 

filename 

The command keyword directing all ICE-86A output to be sent to 
the specified device or file, and to the console. 

An ISIS-II device code, indicating a hard-copy output device to 
receive the output. 

The diskette drive holding the diskette on which output is to be 
written. If no explicit drive is given, drive 0 is assumed. 

The name of the file on the target diskette. The filename 
immediately follows the second colon without intervening spaces. 

7-9 



Interrogation and Utility Commands 

7-10 

Number Bases and Radix Commands 

ICE-86A commands and displays involve several different number bases (radixes). 
This section describes the various radixes used by the ICE-86A emulator and the 
commands used to control some of them. Most radixes are set by the ICE-86A 
emulator and cannot be changed, but others are under your control: 

This section gives details on the following commands: 

Command 

SUFFIX 
BASE 

Discussion 

Purpose 

Set or display console input radix. 
Set or display console output radix. 

The commands given in detail in this section refer to the radixes used for console 
input and console output. 

Console Input Radixes: SUFFIX Command 

Any number entered from the console can include an explicit input radix. An 
explicit input radix consists of one of the following alphabet characters appended 
directly to the number as entered. 

Explicit Example Radix Specified 
Radix 

Y 1001Y Binary (base 2) 
0,0 110 Octal (base 8) 

T 9T Decimal (base 10) 
H 9H Hexadecimal (base 16) 
K 3K Multiple of 1024 decimal 

The implicit input radix is the base used by the ICE-86A emulator to interpret 
numbers entered from the console without an explicit radix. 

To display the current implicit input radix, enter the command token SUFFIX 
followed by a carriage return. The implicit input radix can be Y, Q, 0, T, or H, as 
defined earlier. The initial implicit radix is hexadecimal. 

You can change the implicit input radix by entering a command with the form 
SUFFIX = suffix, where suffix is any of the characters Y, Q, T, or H. This 
SUFFIX command can be used where several numbers are to be entered in the same 
radix. 

Note that K (multiple of 1O~4) cannot be specified as an explicit input radix. 

For some kinds of entries from the console, the implicit input radix is always 
decimal (T). Entries with implicit decimal radix ate: 

• Numbers entered after MOVE and PRINT keywords .. 

• Program statement numbers. 

• Value in COUNT command. 

• Timeout value in R WTIMEOUT 

• Segment numbers in MAP. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

An explicit radix always takes precedence over the implicit radix. If the digits in the 
number entered cannot be interpreted in either the explicit or the implicit radix, an 
error message is displayed. 

Console Output Radixes: BASE Command 

Numeric information, such as memory and register contents, and data, is displayed 
in the current console output radix. The console output radix can be one of the 
following. 

Output 
Radix 

y 

0,0 
T 
H 

ASCII 

Radix Specified 

Binary 
Octal 
Decimal 
Hexadecimal 
ASCII character for each byte 

The initial output radix is hexadecimal (H). 

To display the current console output radix, enter the command token BASE 
followed by carriage return. The display consists of a single character, Y, Q, 0, T, 
H, or A (for ASCII). 

You can change the console output radix by entering a command with the form 
BASE = base, where base is one of the single characters Y, Q, 0, T, or H, or the 
token ASCII. Once the radix is set with a BASE command, it stays in effect until 
another BASE command is entered. 

7-11 



Interrogation and Utility Commands 

7-12 

Set or Display Console Input Radix Commands 

SUFFIX 

SUFFIX = Y::O::O::T::H 

Examples: 

SUFFIX _ 

SUFFIX = Y 

SUFFIX 

Y 

0,0 

T 

H 

A command keyword referring to the implicit console input radix. 
The token SUFFIX alone displays the current setting (Y, Q, T, or 
H). 

The assignment operator, indicating that the new setting is to 
follow. 

Binary radix. 

Octal radix. 

Decimal radix. 

Hexadecimal radix. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Set or Display Console Output Radix Commands 

BASE 

BASE = Y::O::O::T::H::ASCII 

Examples: 

BASE 

BASE = 0 

BASE 

Y 

0,0 

T 

H 

ASCII 

A command keyword referring to the system console output radix. 
The token BASE alone displays the current setting (Y, Q, T, H, 
or A). 

The assignment operator, indicating that the new setting is to 
follow. 

Binary radix. 

Octal radix. 

Decimal radix. 

Hexadecimal radix. 

Each byte represented by its corresponding ASCII character, 
without separators. 

7-13 



Interrogation and Utility Commands 

7-14 

Hardware Register Commands 
This section presents the keywords used in the ICE-86A emulator to refer to the 
following types of hardware registers and signals. 

• 8086 Processor Register 

• 8086 Status Flags 

• ICE-86A Status Registers 

• 8086 Pin Signals 

The following commands that refer to hardware registers and signals are discussed 
in this section: 

Command 

Set Register 

Purpose 

Set (change) the contents of any of the writeable 8086 
registers. 

RESET HARDWARE Reset ICE-86A hardware to initial state. 

Set or Display RQGT Specifies whether Request/Grant lines operate continuously 
or only during emulation time. 

Display BUS Command Displays current master of the system bus. 

Discussion 

Tables 7-1 through 7-6 show the tokens used to refer to any 8086 8-bit register, 16-bit 
register, or pin signal. 

Meta-term Class of tokens 

general-register 16-bit and 8-bit work registers 

pointer-register 16-bit pointer registers 

index-register 16-bit index registers 

segment-register 16-bit segment reference registers 

status-register 8- and 16-bit status registers 

pin-reference 8086 pin signals 

flag-reference 8086 status flags 

Table 7-1. 8086 General Registers 

reference 8086 Register and Interpretation 

RAX 16-bit Accumulator 
RAH High 8 bits of Accumulator 
RAL Low 8 bits of Accumulator 
RBX 16-bit Base Register 
RBH High 8 bits of Base Register 
RBL Low 8 bits of Base Register 
RCX 16-bit Count Register 
RCH High 8 bits of Count Register 
RCL Low 8 bits of Count Register 
RDX 16-bit Data Register 
RDH High 8 bits of Data Register 
RDL Low 8 bits of Data Register 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Table 7-2. Pointer Registers 

reference 8086 Register and Interpretation 

SP 16-bit Stack Pointer 

BP 16-bit Base Pointer 

Table 7-3. Index Registers 

reference 8086 Register and Interpretation 

SI 16-bit Source Index 

01 16-bit Destination Register 

Table 7-4. Segment Registers 

reference 8086 Register and Interpretation 

CS 16-bit Code Segment Register 

OS 16-bit Data Segment Register 

SS 16-bit Stack Segment Register 

ES 16-bit Extra Segment Register 

Table 7-5. Status Registers 

reference Register and Interpretation 

IP 16-bit Instruction Pointer Register 

RF 16-bit Flag Register 

CAUSE (Read only) 8-bit Cause of last break in emulation 

OPCODE (Read only) 8-bit Previous opcode executed 

PIP (Read only) 16-bit Previous Instruction Pointer Register 

TIMER (Read only) Low 16 bits of emulation timer 

HTIMER (Read only) High 16 bit of emulation timer 

BUFFERSIZE (Read only) 16-bit trace buffer size Register 
(Displayed in decimal only) 

UPPER (Read only) Highest available address in ICE-86A 
workspace 

LOWER (Read only) Lowest available address in ICE-86A 
workspace 

7-15 



Interrogation and Utility Co.mmands 

7·16 

Table 7-6. Pin References 

reference 8086 Pin (Read only) 

ROY READY 

NMI f:-lMI 

TEST TEST 

HOLD HOLD 

RST RESET 

MN MN/MX (minimum/maximum configuration) 
g 

IR INTR 

RQGT, BUS RQ/GTO, RQ/GT1 (HOLD, HLDA) 

Table 7-7 Flag References 

reference Flag 

AFL Auxiliary-carry out of low byte to high byte 

CFL Carry or borrow out of high byte 

DFL Direction of string manipulation instruction 

IFL Interrupt-enable (external) 

OFL Overflow flag in signed arithmetic 

PFL Parity 

SFL Sign of the result of an operation 

TFL Trap used to place processor in single step 
mode for debug 

ZFL Zero indicates a zero value result of an 
operation 

To set (change) the content of one of the processor registers, use a command with 
the form: 

reference = expr 

Where expr is a numerical constant or numerical expression giving the desired new 
contents. Each of the registers that can be changed with this command has a definite. 
size (16, 8, or 1 bits). If the new contents represents fewer bits than the destination 
register, the bits are right-justified in the register, and the remaining bits are set to 
zero. In other words the ICE-86A emulator assumes that the quantity represents the 
lowest-order bits, and sets any unspecified high-order bits to zero. 

The RESET HARDWARE command is used to restore the ICE-86A hardware to 
the initial program load condition. One use for this command might be to reset the 
hardware when reconfiguring. The EXIT command includes the RESET 
Hf\RDW ARE function. 



ICE-86A Interrogation and Utility Commands 

When a RESET HARDWARE command is issued, the ICE-86A emulator attempts 
to reset the hardware without disturbing any mternal controls or user-specified setup 
(breakpoints, map, or enable/disable trace conditionally). If this attempt is suc­
cessful, the ICE-86A emulator returns a prompt to the user immediately: 

'CLOCK = INTERNAL 
'RESET HARDWARE ;This reset will not encounter any problems. 

;Prompt appears immediately, no internal 
;setup affected. 

The user may now continue his processing. 

If, however, this attempt is unsuccessful, the ICE-86A emulator will warn the user 
that it is beginning to reinitialize the hardware. It then attempts to reset the hard­
ware by using initialization procedures and then restoring internal controls and 
setup to the pre-reset state (trace, however, cannot be restored to its previous state, 
and will be enabled unconditionally). Although no internal registers or flags are 
changed, the integrity of user memory, ICE memory, and current disk-mapped 
memory cannot be guaranteed. If this attempt to reset the hardware is successful, 
the ICE-86A emulator will return a warning to the user that the hardware has been 
initialized followed by a prompt. The user may then examine memory for integrity, 
reload memory or continue processing. 

NOTE 

If the above reinitialization is successful, the ICE-86A emulator may 
require up to approximately 30 seconds to fully restore the map. 

If the ICE-86A emulator detects an error during this attempt, it will return an error 
message and a prompt to the user. No warning that the hardware has been 
reinitialized will be returned. The user should attempt to resolve the error condition 
and MUST reissue the RESET HARDWARE command. The ICE-86A emulator 
will then go through the reinitialization as described above. The following example 
illustrates the procedures required to respond to error conditions: 

'CLOCK = EXTERNAL ;This command forces an error condition. 
ERR 40:NO USER CLOCK 
'RESET HARDWARE 
WARN C8:REINITIALIZING - FAULT 

;Error response. 
;Not able to reset, tries to reinitialize. 

ERR 40:NO USER CLOCK ; Reports an error and no warning that hardware 
;was reinitialized; thus, reinitialization was not 
;able to complete. The user must clear the 
;error condition and then reset the hardware 
;again in order to get the hardware into a 

'CLO = INT ;known state. Clears the error condition, must 
'RESET HARDWARE ;reset again. This reset must clear the 

;incomplete reset from above. 
WARN C8:REINITIALIZING - FAULT 
WARN C6:HARDWARE REINITIALIZED ;Note that the user is informed that the 

;hardware has been reinitialized and that the 
;user specified setup (map, breakpoints, etc.) 
;has been restored. Memory contents (ICE 
;memory, user memory, and current disk­
;mapped memory) cannot be guaranteed. The 
;user must verify the contents or reload his 
;code and data. 

/WARNINGI 

The RESET HARDWARE signal pulse may be cut short by an emulation 
halt, with undefined results. The reset pulse should be a minimum of four 
clock cycles in duration. If an emulation begins or stops while the reset 

7-17 



Interrogation and Utility Commands 

7-18 

signal level is being changed, there is no guarantee to the user as to the 
validity of the register contents or flags. RESET HARDWARE signal 
pulses are not saved when an emulation halt occurs, and are not resyn­
chronized when emulation recontinues. Frequent emulation halts in con­
junction with Reset Pin level changes, of course, will heighten the chance of 
entering this undefined state, and should be avoided. (There is a four clock 
cycle window while entering or exiting emulation during which the Reset 
Pin should be stable to assure predictable behavior.) 

The INITOUT / line on the ICE-86A buffer box is activated by the RESET 
HARDW ARE command. This signal (active low) can be used to reset user hardware 
working with the 8086 such as the 8087 NDP or the 8089 lOP. See the section on 
"Buffer Box Signals" in Chapters 1 and 2 for more information. 

The 8086 processor can operate in minimum or maximum mode. In minimum mode, 
requests for the bus are made through the HOLD and HLDA lines. In maximum 
mode, these lines are relabeled RQ/GTO and RQ/GTl, respectively (referred to 
together as the "Request/Grant lines"), and are used to support coprocessor 
requests for the bus. 

Typical applications of the Request/Grant lines would be expansion of the 8086 pro­
cessor's arithmetic abilities to include floating point calculations by sharing the bus 
with an 8087 Numeric Data Processor, or providing more efficient handling of 110 
by sharing the bus with an 8089 Input/Output Pr~cessor. See The 8086 Family 
User's Manual Numerics Supplement, Manual Order Number 121586, for material 
on the use of the 8087 NDP as a coprocessor. The RBF-89 Real-Time Breakpoint 
Facility is a software superset of the ICE-86 emulator that aids in designing applica­
tion systems based on an 8086 CPU used in combination with an 8089 lOP . See the 
8089 Real-Time Breakpoint Facility Operating Instructions, Manual Order Number 
162490, for material on this facility.) 

NOTE 

The request/ grant operation is a three-phase sequence. First, the 
coprocessor desiring the bus pulses a request/grant line, either RQ/GTO or 
RQ/GTl. Second, the 8086 CPU returns a pulse on the same line indicating 
that it is relinquishing the bus to the querying device. Third, when the 
coprocessor has finished with the bus, it sends a pulse to the 8086 CPU 
indicating that it may resume control. For the physical 8086 processor, 
these signals are recognized 85 ns. into their clock cycles; for the emulated 
8086 processor (that is, the ICE-86A module), however, these signals are 
recognized after 100 ns. 

The Set RQGT Command allows the user to specify whether the Request/Grant 
lines operate continuously in maximum mode or only when the ICE-86A emulator is 
performing emulation. The syntax of the command is 

RQGT = CONTINUOUS 
EMULATIONTIME 

If RQGT is set to CONTlNUOUS, then the ICE-86A emulator can respond to bus 
requests from coprocessors whether in Emualation mode or Interrogation and 
Utility mode. If RQGT is set to EMULATIONTIME, then the emulator will not 
respond to bus requests unless it is in Emulation mode. Pending requests are 
remembered and granted when the ICE-86A emulator next performs emulation. 
Initially, RQGT is set to EMULATlONTIME. 

NOTE 

The ICE-86A emulator's response to bus requests is delayed by 
one clock cycle, whether RQGT is set to CONTINUOUS or 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

EMULATlONTlME. There will always be a minimum of one clock cycle 
between the Request and Grant signals for the emulator, whereas the 8086 
processor alone could drive the signals back to back. This can be critical to 
user's design. Also, the ICE-86A emulator tristates (surrenders the bus) one 
cycle earlier than the 8086 processor, thereby reducing the possibilty of bus 
contention. 

When in minimum configuration, the HOLD and HLDA lines are always enabled. 
That is, they are capable of receiving and responding to requests for the bus whether 
the ICE-86A emulator is in Emulation or Interrogation and Utility mode. 

The user can display the state of RQGT by typing that keyword. The user can also 
display the current holder of the bus by typing the command BUS. The system will 
respond by displaying the characters 'BUS=8086,' 'BUS=HLDA,' or 'BUS=CH 0' 
or 'BUS=CH 1,' which correspond, respectively, to either the 8086 processor con­
trolling the system bus, the device connected to the HOLD line controlling the 
system bus (only in minimum mode), or one of the devices on either of the 
Request/Grant channels controlling the system bus (only in maximum mode). 

/WARNINGI 

The physical 8086 interrupt acknowledge sequence consists, in part, of two 
INT A bus cycles separated by two idle clock cycles; the address/ data bus 
floats from Tl of the first bus cycle until T2 of the second bus cycle. The 
emulated 8086 CPU-that is, the ICE-86A module-does not precisely 
follow this sequence. The address/data bus is active for 20 to 30 
nanoseconds at approximately the end of the first bus cycle and the start of 
the second bus cycle. Therefore, the operator should avoid trying to access 
the address/data bus with any other device during this time period. 

Due to the capacitive loading factor on the RQGT pin, a load exceeding 15 
picofarad cannot be placed on the pin, i.e., no more than one logic probe 
can be placed on the pin. If a problem is detected with the RQGT pin in 
local mode (using an 8087), a 3k ohm pull-up resistor should be put on the 
RQGT line to solve the problem. 

7-19 



Interrog~ti<)Q ~nd Utilit), COPJlPpdl! 

Set Register Command 
reference = qontent~ 

Examples: 

RAX =OQQOH 
IP= F~3AH 
IP= IP + 1 
RDL= FFH 
GS = WORP ,SAM 

reference 

contents 

The kcyword namc of any of the writable registers, as follows: 

general registers (see Table 7-1), 
POinter registers (see Table 7"2). 
index registers (see Table 7-3). 
scgmentregisters (see Table 7-4). 
status registers (see Table 7-5). 

The assignment operator. 

A numeri~ expression. 



ICE-86A Interrogation and Utility Commands 

RESET HARDWARE Command 
RESET HARDWARE 

Example: 

RESET HARDWARE 

RESET 

HARDWARE 

A command keyword restoring its object to a reset condition. 

A function keyword restoring ICE-86A hardware to the reset 
condition that occurs after the initiallCE-86A invocation. 

NOTE 
The INITOUT / line on the ICE-86A buffer box is activated by the RESET 
HARDW ARE command. This line can be used to reset user hardware 
working with the 8086, such as the 8087 NDP or the 8089 lOP. See the sec­
tion on "Buffer Box Signals" in Chapters 1 and 2 for more information. 

7-21 



Interrogation and Utility Commands 

7-22 

Set or Display RQGT Command 

RQGT = [{ CONTINUOUS }] 
EMULATIONTIME 

Examples: 

RQGT 
RQGT= EMULATIONTIME 
RQGT = CONTINUOUS 
RQGT 
RQGT = CONTINUOUS 

RQGT A command keyword indicating that the method of handling 
requests for the bus in maximum mode is to be displayed or set. 

The assignment operator. 

CONTINUOUS Requests for the bus in maximum mode are responded to 
whether or not the ICE-86A emulator is in Emulation mode. 

EMULATIONTIME Requests for the bus in maximum mode are responded to only 
when the ICE-86A emulator is in Emulation mode. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Display BUS Command 

BUS 

Examples: 

BUS 

BUS 
BUS=8086 

A command keyword indicating that the current master of the 
bus is to be displayed. 

7-23 



Interrogation and Utility Commands 

7-24 

Memory Mapping Commands 

The commands in this section control ICE-86A memory map. The ICE-86A 
emulator uses the map to identify what user memory is installed and what types and 
sizes of memory are being "borrowed" from the ICE-86A emulator for testing 
purposes. 

This section gives details on the following commands. 

Command 

MAP DISK 

MAP INTELLEC 

Set MAP Status 

Display MAP Status 

RESET MAP 

Discussion 

Purpose 

Declare which disk file is available for mapping to. 

Declare which physical Intellec segments are available for 
mapping memory to. 

Assign up to 10241 K segments of memory locations to USER, 
ICE, INTELLEC, DISK, or GUARDED status. 

Display status of one or more memory segments. 

Restore the memory map to its initial condition, all 
GUARDED. 

A maximum of 1M byte (megabyte or 1,048,576 bytes) locations are accessible with 
the 20-bit addressing scheme used by the 8086 processor. The MAP commands allow 
this 1M logical address space to be mapped in lK-byte segments (on lK boundaries) 
to any of five locations: (1) physical memory in the user's system, (2) either of two 
lK-byte segments of ICE-86A "real-time" memory, (3) a random-access disk file, 
(4) any lK-byte segment in expansion Intellec memory (addresses at 64K or above), 
or (5) as guarded (i.e., the logical addresses do not physically exist). 

The ICE-86A module supplies 2K bytes of high-speed static memory which may be 
mapped for "real-time" execution. The speed of this memory will allow near real­
time operation. The 2K bytes may be mapped in lK-byte segments into appropriate 
address space within the 8086's 1M-byte address space. 

Disk-based memory and expansion Intellec memory both provide substantially 
slower execution speeds since all accesses to these memories are processed by the 
ICE-86A processor. The first 64K of Intellec memory is reserved for system and 
ICE-86A software. Therefore, any memory assigned to the user must reside in 
expansion Intellec memory above 64K. 

The MAP commands are used to declare, set, display, and reset the ICE-86A 
memory mapping. The ICE-86A emulator has 1M logical addresses divided into 
1024 logical address segments, each starting on a lK boundary and representing lK 
bytes of memory. Each segment is addressed by a decimaisegment number, n. The 
value of n is an integer value between 0 and 1023. For any given segment n, that seg­
ment contains addresses nK through nK + 1023. For example, the lowest logical seg­
ment in memory space contains addresses 0 through 1023 (OK through OK + 1023). 
In a like manner, logical segment 10 would contain addresses 10240 through 11263 
(10K through 10K + 1023). All partitions used in MAP commands must contain seg­
ment numbers whose values lie between 0 and 1023. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

If the diskette is to be used for user memory, the MAP DISK command must be used 
to declare the disk file to be used. The syntax of the MAP DISK command is: 

MAP DISK = [:drive: j filename 

The command opens the ISIS-II file specified by filename, checks how many 
physical segments will fit on the diskette, and reports this number to you. MAP 
DISK may only be declared initially and once following each RESET MAP 
command. 

If Intellec memory is to be used for user memory, the MAP INTELLEC command 
must be used to specify the physical memory segments in extended Intellec memory 
to be used by user programs. The syntax of the MAP INTELLEC command is: 

MAP INTELLEC = partition [, partition j ... 

where partition is defined as: 

tF {Physical-segment-number [TO physical-segment-numberj } 
par I IOn:= physical-segment-number LENGTH physical-segment-Iength 

This command declares physical memory segments in expanded Intellec memory 
and checks that the memory physically exists by writing to it and reading back. An 
error occurs if any partitions extend below 64K, as extended Intellec memory exists 
only at addresses 64K or above. Therefore the range of physical-segment-number 
values is 64-1023 (inclusive), the range of physical-segment-length values is 1-960 
(inclusive). A warning is issued if the memory does not exist. INTELLEC declara­
tions are cumulative between RESET MAP commands. Logical memory segments 
may not be set to the Intellec system or disk until the associated MAP INTELLEC 
or MAP DISK commands have been entered. 

NOTE 

When mapping to Intellec memory on the Model-800 or the Model22x with 
the 1001194 IPB, the monitor prom circuitry does not decode the four high 
order bits of a 20-bit address. Therefore, addresses of the 20-bit form 
XXXX 1111 lXXX XXXX XXXX (where X is don't care) will be over­
shadowed by the monitor and should not be used as addresses to be 
mapped. This does not occur on the Model-225 with the IPC or on the 
Model-22x with the 1002321 IPB. 

The Set MAP Status command is then used to map logical memory segments to 
physical segments. The syntax of the Set MAP Status command is: 

USER [NOVERIFYj !GUARDED I 
MAP partition = ICE [physical-segment-numberj [NOVERIFYj 

INTELLEC [physical-segment-numberj [NOVERIFYj 
DISK physical-segment-number [NOVERIFYj 

where 

t"t" = {/OgiCal-Segment-number [TO IOgiCal-Segment-number]} 
par I IOn - logica/-segment-number LENGTH /ogica/-segment-/ength 

The Set MAP Status command sets the memory map by assigning logical segments 
to physical addresses in memory: 

USER The logical segments specified are set to exist in the user's memory 
at the same physical addresses as those specified in the logical 
segments. 

7-25 



Interrogation and Utility Commands 

7-26 

ICE 

INTELLEC 

DISK 

GUARDED 

NOVERIFY 

The logical segments specified are set to exist in ICE-86A 
"real-time" memory. The partition specified may only contain a 
maximum of two segments and the physical-segment-number value 
must be 0 or 1, if one is given. 

The logical segments specified in the partition are set to exist in 
extended Intellec memory starting in the physical segment specified 
by thephysical-segment-number in the command, if one is given. 

The logical segments specified in the partition are set to exist on the 
disk file starting at the physical segment specified by the physical­
segment-number in the command, if one is given. 

All accesses to memory addresses in the segments specified by the 
input parameter, partition are error conditions. All memory is 
initially GUARDED. 

Specifies that write-verification will not be performed when using 
the ICE-86A CHANGE command to change the contents of 
memory. This is useful when memory-mapped I/O is being used. 
Whenever a logical memory segment is mapped USER, ICE, 
INTELLEC, or DISK, it is write-verified unless explicitly 
NOVERIFY. 

When mapping to ICE memory, INTELLEC memory, or DISK memory, if a 
physical-segment-number is given in the command, the first logical segment 
specified in the partition is set to the physical segment specified by the physical­
segment-number and subsequent logical segments are set at subsequent physical 
segments. If more logical segments are specified than physical segments available, 
logical segments will be assigned to available physical segments and an error message 
is displayed indicating that the remaining logical segments are unassigned. If 
physical-segment-number is omitted in the command, the ICE emulator assigns 
from unassigned physical segments in the designated memory. If Intellec or disk 
memory is specified, an error occurs if the resulting physical segment is not one of 
those previously declared by a MAP INTELLEC or MAP DISK command. An 
error also occurs if there are insufficient physical segments unassigned to map the 
specified logical segments. 

The Display MAP Status command displays the current setting of the map for the 
unguarded memory segments specified by partition, if given. If a partition is not 
given, all the unguarded segments for the entire range from 0 to 1023 are displayed. 
The display is to the following format. The segments are displayed, four segments 
per line, each of the form: 

logical-segment = type physical-segment [N] 

where: 

logical-segment'" four decimal digits with T suffix 

type'" ICE:: USE:: INT:: DIS 

physical-segment = four decimal digits with T suffix for ICE, INT, DIS and four 
physicalsegment = blanks for USE 

Example 1. 

MAPOT03 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Display: 

OOOOT = USE ooon = ICE OOOOT 0002T = INT 0064T 0003 = DIS OOOOT 

Example 2. 

MAP 

Display: 

OOOOT = USE ooon = ICE OOOOT 0002T = INT 0064T 0003 = DIS OOOOT 
0004T = DIS ooon 0004T = DIS 0002T 0006T = USE 0007 = USE 

1023T = DIS 

The RESET MAP sets the memory map to its initial condition, all GUARDED, and 
"undeclares" the DISK and INTELLEC memory available. Multiple logical 
segments may be mapped to the same physical segment. Reassignment of a logical 
segment to a different physical segment causes the physical segment originally 
mapped- to become "guarded," or unused, and reassignable, providing no other 
logical segment is currently mapped to it. 

7-27 



Interrogation and Utility Commands 

7·28 

MAP DISK Command 
MAP DISK = [:drive: Jfilename 

Examples: 

MAP DISK = :FO: MYPROG 
MAP DISK == :F1:TEST1 
MAP DIS == TEST2 

MAP 

DISK 

:drive: 

filename 

A command keyword referring to some operation on the ICE-86A 
map. 

A command modifier that specifies that an ISIS·Il disk file is to be 
opened and available for mapping user memory to. 

The diskette drive (:FO:,:Fl:,:F2:,or :F3:) that contains the target 
file. If no drive is specified, :FO: (drive 0) is the default. 

The name of the desired disk file that is to be opened. The filename 
follows the second colon with no intervening spaces. 

The assignment operator. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

MAP INTELLEC Command 

MAP INTELLEC = { segmentno [TO segmentno 1 } [, segmentno [TO segmentno 1 ] 
segmentno LENGTH segment/en , segmentno LENGTH segment/en ... 

Examples: 

MAP 

MAP INTELLEC = 1023 
MAP INTELLEC = 100 TO 123 

MAP INT = 100 LENGTH 23 
MAP INT = 65, 68 TO 76, 100 LEN 23, 200 TO 250, 260 

A command keyword referring to some operation on the ICE-86A 
map. 

INTELLEC A command modifier specifying Intellec memory. 

segmentno 

TO 

LENGTH 

segment/en 

A segment number (64 to 1023) that specifies a physical memory 
segment in Intellec memory. It is used to map lntellec memory in 
one of the following ways: 

• As the address of a single physical segment in lntellec memory. 

• As the address of the first physical segment in Intellec memory 
of a partition of physical segments being mapped. 

• As the address of the last physical segment in lntellec memory 
of a partition of physical segments being mapped. 

A connector keyword that denotes that a segment number is to 
follow that defines the upper bound of a memory partition. 

A connector keyword that denotes that a segment length value is to 
follow. 

A segment length value (l to 960) that defines the length of a 
partition of memory. 

The assignment operator. 

NOTE 
All mapping to lntellec memory is contingent upon the amount of expanded 
lntellec memory a user has in his system. 

7-29 



Interrogation and Utility Commands 

7-30 

Set MAP Status Command 

(

GUARDED I 
USER [NOVERIFY) 

MAP {/OgSegmentno [TO /ogsegmentno) } = ICE [ph se mentno ) [NOVERIFY) 
/ogsegmentno LENGTH segment/en INTEL~C ~hYSegmentno) [NOVERIFYj 

DISK [physegmentno) [NOVERIFYj 

Examples: 

MAP 457 = ICE 0 NOVERIFY 
MAP 100 TO 200 = USER 
MAP 201 LEN 62 = INT 65 NOV 
MAP 263 LENGTH 87 = DISK 100 
MAP 351 TO 400 = DIS NOV 
MAP 401 TO 456 = GUARDED 
MAP 458 TO 1023 GUA 

MAP 

/ogsegmentno 

TO 

LENGTH 

segment/en 

GUARDED 

USER 

ICE 

INTELLEC 

DISK 

A command keyword referring to some operation on the ICE-86A 
map. 

A logical segment number (0 to 1023) that specifies a segment in 
logical address space. It is used to set the ICE-86A map in one of 
the following ways: 

• As the address of a single segment of logical addresses. 

• As the address of the first segment of a partition of logical 
addresses. 

• As the address of the last segmeot of a partition of logical 
addresses. 

A connector keyword that denotes that a logical segment number is 
to follow that defines the upper bound of a partition of logical 
segments. 

A connector keyword that denotes that a logical segment length 
value is to follow defining a partition of logical segments . 

. A segment length (1 to 1024) that defines the length of partition of 
memory. 

The assignment operator 

The initial state of all memory segments. Any reference to a 
guarded address causes an error message. In the emulation mode, 
accesses to a guarded location will cause emulation to terminate 
upon completion of the current instruction. In the interrogation 
mode, no access to the given location will be made. 

Refers to locations in user prototype memory. 

Refers to locations in ICE-86A memory_ 

Refers to locations in Intellec memory. 

Refers to locations in diskette memory. 

ICE-86A 



ICE-86A Interrogation and UtiHty Commands 

physegmentno A physical segment number (0 to 1023) that specifies a physical 
segment of memory locations. Intellec expanded memory physical 
segment numbers are limited to a range of 1-960. If present in the 
command, the first logical segment in the partition is s~t equal to 
the value of physegmentno and the subsequent logical segments are 
set equal to the subsequent physical segment number values. If no 
physegmentno is entered, the ICE-86A emulator assigns physical 
segments from those declared but not yet mapped to. 

NOVERIFY A function keyword that suppresses the normal read-after-write 
verification of data loaded into the designated memory. 

7-31 



Interrogation and Utility Commands 

7-32 

Display MAP Status Command 

MAP { fogsegmentno [TO fOgSegm. entno 1 } 
fogsegmentno LENGTH logsegmentfen 

Examples: 

MAP 

MAP 
MAP OT0100 
MAP 123 LENGTH 200 
MAP 300 LEN 400 

A command keyword referring to some operation on the ICE-86A 
map. 

fogsegmentno A segment number (0 to 1023) that specifies a segment of addresses 
in logical address space. It is used in the following ways: 

• As the address of a single segment of logical addresses. 

• As the address of the first logical segment of a partition of 
logical segments. 

• As the address of the last logical segment of a partition of 
logical segments. 

TO A connector keyword that denotes the following segment number 
defining the upper bound of a partition of logical segments. 

LENGTH A connector keyword that denotes the segment length value 
defining the length of a partition of logical segments. 

fogsegmentfen A segment length (l to 1024) that defines the length of a partition 
of memory. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

RESET MAP Command 
RESET MAP 

Example: 

RESET MAP 

RESET 

MAP 

A command keyword that restores its object to its initial state, as 
after an initial ICE-86A invocation. 

As the object of RESET, the token MAP causes the memory map 
to be set to its initial condition, all GUARDED. The available 
DISK and INTELLEC memory is deleted from the map. 

7-33 



Interrogation and Utility Commands 

7-34 

Set Memory and Port Content Commands 

The commands in this section set new values or change the current content stored in 
designated memory locations or input/output ports. The commands discussed in 
this section are as follows. The purpose of each command is indicated by its title. 

Command 

Set Memory Contents 

Set'lnput/Output Port Contents 

Discussion 

Memory Content References 

A memory content reference has the form: 

memory-type address 
[!!mod-name 1 !symbol-name ... 

The meta-term memory-type means one of the following 'content-of' modifiers for 
memory locations. 

BYTE 

WORD 

SINTEGER 

INTEGER 

POINTER 

REAL 

The content of a single byte (8-bit) memory'lucation. The address 
following BYTE is treated as a logical address; the physical address 
whose content is referenced is determined by look-up in the 
ICE-86A memory map (see Memory and I/O Port Mapping 
Commands). 

The content of two adjacent bytes in memory. The most-significant 
byte is located in the high address of the address pair; the least­
significant byte is stored in the low address of the pair. The address 
following WORD is treated as a logical address; the ICE-86A 
memory map is consulted to find the physical address whose con­
tent is referenced. 

The same as BYTE except when displaying. 

The same as WORD except when displaying. 

The content of four adjacent bytes in memory, interpreted as a base 
and displacement. The displacement is located at the low 2 bytes of 
the 4, and the base is at the high 2 bytes. The address following 
POINTER is treated as a logical address; the ICE-86A ~emory 
map is consulted to find the physical address whose content is 
referenced. 

(Also called "Short Real" in some manuals.) The content of four 
adjacent bytes in memory, interpreted as a real number. The 
address following REAL is treated as a logical address; the 
ICE-86A memory map is consulted to find the physical address 
whose content is referenced. The highest bit of the highest byte con­
tains the sign field. The exponent field stretches from the second­
highest bit of the highest byte through the highest bit of the second­
highest byte (eight bits). The remaining twenty-three bits are 
dedicated to storing the significand field. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

DREAL 

TREAL 

(Also called "Long Real" in some manuals.) The content of eight 
adjacent bytes in memory, interpreted as a real number. The 
address following DREAL is treated as a logical address; the 
I CE-86A memory map is consulted to find the physical address 
whose content is referenced. The highest bit of the highest byte con­
tains the sign field. The exponent field stretches from the second­
highest bit in the highest byte through the fourth-highest bit in the 
second highest byte (eleven bits). The remaining fifty-two bits are 
dedicated to storing the significand field. 

(Also called "Temporary Real" in some manuals.) The content of 
ten adjacent bytes in memory, interpreted as a real number. The 
address following TREAL is treated as a logical address; the 
ICE-86A memory map is consulted to find the physical address 
whose content is referenced. The highest bit of the highest­
addressed byte contains the sign field. The exponent field stretches 
from the second-highest bit of the highest byte to the lowest bit of 
the second-highest byte (fifteen bits). The remaining sixty-four bits 
are dedicated to storing the significand field. 

Real numbers (type REAL, OREAL, or TREAL) are stored in three "fields": the 
number's significant digits are held in the significand field, the exponent field 
locates the binary point within the significant digits, and the sign field indicates 
whether the number is positive or negative. The most significant digits of each field 
are stored in the highest addresses. See figure 7-1 for the format of these types in 
memory. 

See The 8086 Family User's Manual Numerics Supplement, Manual Order Number: 
121586, for further details on the storage of real values. 

The meta-term address means one of the following types of entries. 

numeric-expression The forms for numeric expressions are presented in Chap­
ter 5. The result obtained when the expression is evaluated 
becomes an address modulo 64K. 

(mem-type address) A memory content reference with a form such as BYTE 
(WORD 1000) represents an indirect reference. The content 
of the address or address-pair inside the parentheses is treated 
as the address for the mem-type outside the parentheses. 

To obtain the content of bytes, words, or pointers in a range of addresses, use the 
form: 

memory-type partition 

Apartition can be a single address or one of the following types of constructs: 

address TO address 

address LENGTH number-ot-bytes (for BYTE and SINTEGER) 

address LENGTH number-ot-words (for WORD and INTEGER) 

address LENGTH number-dt-doub/e-words (for POINTER) 

• 
The first form of partition uses the keyword TO. The address on the right of the 
keyword TO must be greater than or equal to the one on the left. With BYTE and 
SINTEGER, this form allows you to access the content of each byte location in the 

7-35 



Interrogation and Utility Commands 

7-36 

+3 
1M 
lsi 
lEI 

L M 
Sisl +2 
EISJ 

+1 

IL 
+0 IS 

IS 

7 o 
+9 

IMI 

sisl 
. lEI 

REAL 

+8 

+7 
IMI 

sisl 
lEi 

ILIM; 
Isis 
,ElSj 

+6 

+5 1 

+7 

+6 

+5 

~I 
SI 

UI w 
UI 

+4 UI +4 w 
cr: 
Q 
Q 

+3 011: +3 cr: 
w 
J: 
C) 

+2 :i: +2 

+1 +1 

+0 
IL 
Is 
IS 

+0 

7 o 7 
OREAL 

S: Sign bit 
MSE/LSE: Mosllieast significant exponent bit 
MSS/LSS: Mostlleast significant significand bit 

IL 
Is 
IE 

IL 
Is 
IS 

o 
TREAL 

Figure 7-1. REAL, DREAL and TREAL Memory Types 162554-8 

range; the range includes both the first and last address in the partItIon. With 
WORD or INTEGER, the first address is treated as the low address of the first 
address pair in the range; subsequent pairs of addresses are accessed until the second 
address is reached. If the second address is the low address of a pair, the word 
formed from the content of that address and the next consecutive higher address is 
accessed; if the second address is not the low address of a pair (that is, if it turns out 
to be the high address of a pair already accessed in the range), the access ends after 
the last complete pair has been accessed. Word-length accesses can begin on either 
an even-numbered or an odd-numbered address. With POINTER, the first address 
is treated as the low address of the first address quadruple in the range; subsequent 
quadruples of addresses are .accessed until the second address is reached. If the 
second address is thd.ow address of a quadruple, the pointer formed from the con­
tent of that address and the next three consecutive higher addresses is accessed; if the 
second address is not the low address of the quadruple, the access ends after the last 
quadruple has been accessed. Pointer-length accesses can begin on either an even­
numbered or an odd-numbered access. 

lCE-86A 



ICE-86A Interrogation and Utility Commands 

The second, third and fourth forms use the keyword LENGTH. The address 
preceding the keyword LENGTH is the starting address in the range, as with the first 
form (using TO). The number or expression following the keyword LENGTH gives 
the number of addresses (when the controlling memory-type is BYTE or 
SINTEGER), the number of address pairs (for WORD or INTEGER), or the 
number of addresses quadruples (for POINTER). (Must be an integer value.) 

Setting Memory Contents 

To assign a new content to a byte, sinteger, word, integer, pointer or reallocation, 
use a command with the form: 

{ mem-type address = new-content} 
[!lmod-name 1 !symbol-name ... 

The meta-terms mem-type and address represent the types of entries discussed 
earlier in this section. 

The meta-term new-content represents one of the following types of entries (for 
single addresses, setting the content of a range of addresses will be discussed later 
on). ' 

numeric-expression A numeric expression evaluated by the ICE-86A emulator to 
a single number. 

If mem-type is a POINTER, new-content must be a pointer value. Otherwise, new­
content must be an integer value. 

When a single byte address is to be set, the ICE-86A emulator treats the new-content 
as an 8-bit quantity. If new-content has more than eight bits, the least-significant 
eight bits in the quantity are used as the new content, and the other (higher) bits are 
lost. If new-content has fewer than eight bits, the bit values in the quantity are right­
justified (placed in the low-order bits in the address), and the remaining (high) bits in 
the location are set to zeroes. 

Here are some examples of setting byte contents. The first line of each example 
shows the command that sets the new contents; the second line gives a command 
that produces a display of the contents just set; the third line shows the resulting 
display. The output radix is assumed to be H (hexadecimal). 

*BYTE 1000H = FFH 
*BYTE 1000H 

BYT 0000:1000H=FFH 

*BYTE 1010H = RAL + 1 
*BYTE 1010H 

BYT 0000:1010H=F1 H 

*BYTE 1020H = FF11H 

"BYTE 1020H 
BYT 0000:1020H=11 H 

*BYTE 1030H = 1Y 
"BYTE 1030H 

BYT 0000:1030H=01 H 

*BYTE 1040H = 'A' 
*BYTE 1040H 
BYT 0000:1 040H=41 H 

(or)*BYTE 0100:0000 = FFH 

"BYTE 0100:0000 
BYT 01 OO:OOOOH=FFH 

(or)*BYT 100:10H = RAL + 1 
"BYT100:10H 
BYT 0100:0010H=F1 H 

(or)*BYTE 100:20 = FF11H 

*BYTE 100:20 
BYT 0100:0020H=11 H 

(or)*BYT 103:0 = 1Y 

*BYT103:0H 
BYT 0103:0000H=01 H 

(or)*BYT104:0= 'A' 
*BYT 100:40 

BYT 01 00:0040H=41 H 

7-37 



Interrogation and Utility Commands 

7-38 

'BYTE 1050H = BYTE 1000H 
'.BYTE 1050H 
BYT 0000:1050H=FFH 

(or)'BYTE 100:50H = BYT100:0H 
'BYT105:0 

BYT 0100:0050=FFH 

You can change the radix used to display the contents using the Set Output Radix 
(BASE) command. 

When a single word address is to be set, the ICE-86A emulator treats the new­
content as a pair of bytes. The least-significant byte is loaded into the low address in 
the pair, and the most-significant byte is loaded into the high address in the pair. If 
new-content has fewer than 16 bits, the bit values are loaded starting with the low 
address and right-justified. The remaining (high) bits in the address pair are set to 
zeroes. The following examples demonstrate some of the possibilities for the setting 
address pairs: 

'WORD 1000H = 1122H 

'WORD1000H 
WOR 0000:1000H=1122H 

'WORD 1010H = FFH 
'WORD10l0H 
WOR 0000:1010H=00FFH 

'WORD 1030H = WORD 1000H 
'WORD1030H 

WOR 0000:1030H=1122H 

(or)'WORD 0:1000H = 1122H 

'WOR 0:1000H 

WOR 0000:1000H=1122H 

(or)'WOR 101 :OH =FFH 
'WORD101:0 
WOR 0101 :OOOOH=OOFFH 

(or)'WORD 0:1030H = WOR 0:1000H 

'WOR 103:0 
WOR 0103:0000H=1122H 

When a single pointer is to be set, the ICE-86A emulator treats the new-content as a 
displacement and base. The least-significant byte is loaded into the low address in 
the quadruple, and most-significant byte is loaded into the high address. The follow­
ing examples demonstrate some of the possibilities for setting pointers: 

'POINTER 1000H = 1122:3344H 
'POINTER 10000H 

POI0000:1000H=1122:3344H 

(or)! POll 00:0 = 1122:3344H 

'POI0:1000H 
POI0000:1000H=1122:3344H 

Assume that X and Y refer to any symbol name. A command of the form BYTE X = 
BYTE Y copies the content of the address Y to the content 'of address X where 
addresses X and Yare either integer or pointer values as shown in the examples 
above. A command of the form WORD X = WORD Y copies the content of address 
Y to location X, and the content of address (Y+1) to location (X+l). A command of 
the form POINTER X = POINTER Y copies the content of location Y through 
(Y+3) to locations X through (X+3) respectively. A command of the form BYTE X 
= WORD Y copies the content of address Y to location X; the content of location 
(X!1) is unchanged. A command of the form WORD X = BYTE Y copies the con­
tent of address Y to location X; the content of location (X+l) is set to a byte of 
zeroes. POINTER X = BYTE Y copies (Y) to (X) zeroes in (X) + I to (X) + 3. 

This also works for REALs of the same type. A command of the form DREAL X = 
DREAL Y copies the content of the address Y to the content of address X. 

The commands used to set a range of addresses differ in some details. 

One way to set a range of addresses is with the command of the form: 

mem-type address =list of new-content values 

With this form the address on the left side of the equals sign gives the starting loca­
tion, and the number of values in the list to the right of the equals sign tells the 
ICE-86A emulator how many consecutive addresses to load. Consecutive locations 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

are changed to the values of the new-contents in left-to-right order. The list of new 
content values can consist of expressions, multi-character strings, and memory 
partitions. 

Here are some examples showing the use of this form of the set memory contents 
command. 

"BYTE 1000H = 11 H, 22H, 33H, 44H, 55H, 66H, 'AB' 
"BYT 1000H LEN 8T 
BYTOOOO:1000H=11H 22H 33H 44H 55H 66H 41H 42H 

"WOR 200:0H = FFFFH, WORD 100:0H 
"WOR 2OO:0H LENGTH 2T 
WOR 0200:0000H=FFFFH 2211 H 

"POI4000:20H = 1122:3344H, WOR 1002H, BYT 1002 
"POI4000:2OH LEN 3T 
POI4000:0020H=1122:3344 0000:4433 0000:0033 

*REAL1ooH = -9.9, 44.3E12 
*REAL100 LEN 2 
REAL OOOO:0100H = -9.89999962E + 0 + 4.42999998E + 13 

"TRE 2000 = 1.0, 2.0, 3.0, 4.1 E-5 
"TRE 2000 LEN 4 
TRE OOOO:2000H= + 1.00000000000000000E + 0 
TRE 0000:2014H= + 3.0oo00000000000000E + 0 

+ 2.0000000000000000000E + 0 
+ 4.1 OOOOOOOOOOOOOOOOOOE- 5 

To set a range of addresses all to the same new value, use a command of the form: 

mem-type partition = new-content 

The forms of partition are discussed above in this section. All addresses in the parti­
tion are set to the single new-content value. The following examples show some of 
the possible results obtained with this command form: 

*BYT 1000H TO 1OO4H =FFH 
* BYTE 1oo0H LEN 5H 
BYT 00OO:1000H=FFH FFH FFH FFH FFH 

"WORD 200:0 LENGTH 6T = AAOOH 
"WOR 2OO:0H TO 200AH 
WOR 0200:00ooH=AAOOH AAOOH AAOOH AAOOH AAOOH AAOOH 

*POINTER 3000H LEN 3T = 1234:5678H 
POI 0:3OOOH TO 0:300BH 
WOR 0000:3000H=1234:56781234:56781234:5678 

*REA 2000 LEN 8 = 1.0, 2.0 
"REA 2000 LEN 8 
REA OOOO:2000H= + 1.00000000E + 0 + 2.00000000E + 0 
REA 0000:2008H= + 1.00000000E + 0 + 2.00000000E + 0 
REA OOOO:2010H= + 1.00000000E + 0 + 2.00000000E + 0 
REA OOoo:2018H= + 1.00000000E + 0 + 2,OOOOOOOOE + 0 

"DRE 2000 LEN 4=1.0E-10 
"DRE 2000 LEN 4 
DRE OOOO:2000H= + 1.0000000000000000E-1 0 + 1.0000000000000000E-1 0 
DRE OOOO:2010H= + 1.0000000000000000E-1 0 + 1.0000000000000000E-1 0 

7-39 



Interrogation and Utility Commands 

7-40 

The last form of the set memory contents command sets the contents of each address 
in a range (partition) to the corresponding new-content in a list of values. This form 
is as follows: 

mem-type partition =Iist of new-content values 

This form combines the two forms discussed above. The list of new-content values 
can consist of expressions, multi-character strings and memory partitions. 

If the number of locations in the partition is equal to the number of values in the 
new-content list, the addressed locations are set to the corresponding values in the 
list, in left-to-right order. 

If the number of locations in the range is greater than the number of new values in 
the list, the locations are filled with the values from left-to-right, repeating the 
values in left-to-right order as necessary to fiII all the locations. The maximum 
number of bytes that can be repeated is 128. With more than 128 bytes, the data is 
transferred but not repeated, and an error message is displayed. 

If the number of new values in the list is greater than the number of locations in the 
partition, the lowest location receives the first value, and successive locations in the 
range receive values in left-to-right order until all locations in the range have 
received values. The excess values are then detected by the ICE-86A emulator as an 
error condition, and an error message is displayed. The excess values are lost. 

Here are a few examples showing this form of command: 

'BYT 1000H TO 1004H = 'ABCDE' 

'BYT 1000H LEN 5T 

BYT 0000:1 000H=41 H 42H 43H 44H 45H 

'WORD 200:0H LENGTH 6T = 1122H, 'AB' 
'WOR 200:0H TO 200:AH 
WOR 0220:0000H=1122H 0041 H 0042H 1122H 0041 H 0042H 

'BYTE 1000H TO 1002H = 11H, 22H, 33H, FFH 
ERR 97: EXCESSIVE DATA 
• BYT 100:0 LEN 4T 

BYT 1000:0000=11 H 22H 33H 44H 

In the third example, note that the byte at location lO03H retains the value set in the 
first example in the group of examples (44H rather than the FFH given in the 
command.) 

Port Content References 
The set port contents commands parallel those of the set memory contents com­
mands with the exception of port addressing. There are a total of 65536 8-bit ports 
available for input/output in the ICE-86A emulator. The ports are referenced by the 
mnemonic PORT. These ports can be referenced as 16-bit ports by the mnemonic 
WPORT. Each port is referenced by a port-number that is an integer value in the 
range of 0 through 65535. 

To assign a new content to an 8-bit or 16-bit port, use the following command with 
the form: 

port-type port-number = new-content 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

The meta-terms port-type and port-number are used to specify individual ports. 

port-type Defines the port type and size: 

PORT An 8-bit port. 

WPORT A 16-bit port. 

port-number An integer value specifying a specific port. 

The following are examples of the use of this command form: 

PORT 123 = FFH 

WPORT 123= FFFFH 

One way of setting a range of ports is with the command of the form: 

port-type port-number =list of new-content values 

With this form the port-number on the left side of the equals sign gives the starting 
port location, and the list to the right of the equals sign tells the ICE-86A emulator 
how many consecutive ports to load. Consecutive ports are changed to the values of 
the new-contents in left-to-right order. 

Here are some examples showing the use of this form: 

PORT 1000H = 11,22, 33H, 44H, 55H, 66H 

WPORT 1000H = 1122H, 3344H, 5566H 

To set a range of ports all to the same new value, use a command of the form: 

port-type partition = new-content 

The following are examples of this form: 

PORT 1000H TO 1005 = FFH 

WPORT 2000H LENGTH 20H = FFFFH 

The last form of the set port contents sets the contents of each port in a range (parti­
tion) to the corresponding new-content in a list of values. This form is as follows: 

port-type partition = list of new-content values 

If the number of ports in the partition is equal to the number of values in the new­
content list, the addressed ports are set to the corresponding values in the list, in left­
to-right order. 

If the number of ports in the range is greater than the number of new values in the 
list, the ports are filled with the new values from left-to-right, repeating the values in 
left-to-right order as necessary to fill all the ports. 

If the number of new values in the list is greater than the number of ports in the par­
titian, the lowest numbered port receives the first value, and successive ports in the 
range receive values in left-to-right order until all ports in the range have received 
values. The excess values are then detected by the ICE-86A emulator as an error con­
dition, and an error message is displayed. The excess values are lost. 

7-41 



Interrogation and Utility Commands 

7-42 

Here are a few examples showing this form of command: 

PORT 1000 TO 1005H = 'ABCDE' 

WPORT 2000H LEN 6T = 1122H, 'AS' 

PORT1000H TO 1002H = 11H, 22H, 33H, FFH 

(an error message such as EXCESS VALUES is displayed) 

NOTE 

Byte, Word, and Port commands respond with DONE timeouts if 
RWTIMEOUT = INFINITE and no user ready occurs for 15 seconds. 
However, the 8086 is still active on the user bus until the RESET HARD­
WARE command is entered. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Set Memory Command 

mem-type partition =new-contentL new-content] ... 
typed-mem-ref = numeric-expression 

Examples: 

BYTE 0800H = FFH 
BYTE 7000H LENGTH 16T = OOH 
BYT0800T00805=12H, 34H, 56H, 78H, 9AH, BCH 
WORD 70FFH = IP 
WOR 7000H = PIP + 1 
POINTER8000H = ABCD:1234H 
BYTE0800H = 'ABCDE' 
POl7000H = POl4000H LEN 20H 
BYT #56 = FAH 
!VAR = 75 
!X =!X + 1 
!!MODA !PTR = SS:SP 
REA 1000H = -12345.6789E-5 

mem-type 

partition 

new-content 

One of the nine memory 'content-of' modifiers BYTE, WORD, 
SINTEGER, INTEGER, POINTER, REAL, OREAL, or TREAL. 

One or more contiguous locations in memory. 

One of the following types of entries, to be used as the new contents 
of the memory location: 

numeric-expression 
'string' 
mem-type partition 
port-type partition 

typed-mem-ref See Typed Memory Reference in Chapter 5. 

7-43 



Interrogation and Utility Commands 

7-44 

Set Input/Output Port Contents Command 

port-type partition = new-content [, new-content] ... 

Examples: 

PORT 0800H =FFH 

PORT 7000H LENGTH 16T = OOH 
POR 0880 TO 0885 = 12H, 34H, 56H, 78H, 9A, BCH 
WPORT 70FFH = IP 
WPO 7000H = PIP + 1 

PORT 0800H = 'ABCDE' 
PORH56 = FAH 

port-type 

partition 

new-content 

One of the two port 'content-of' modifiers PORT or WPORT. 

One or more contiguous ports (must be integers). 

One of the following types of entries, to be used as the new contents 
of the port: 

numeric-expression 
'string' 
mem-type partition 
port-type partition 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Symbol Table and Statement Number 
Table Commands 

The ICE-86A emulator maintains a symbol table and source program statement 
number table to allow you to refer to memory addresses and other values by using 
symbolic references and statement references in the ICE-86A commands. 

This section gives details on the following commands: 

Command 

DEFINE Symbol 
Display Symbols 
Display Statement Numbers 
Display Modules 
Change Symbol 
REMOVE Symbols 
REMOVE Module 
TYPE 
Set DOMAIN 
RESET DOMAIN 
ENABLEIDISABLE Symbolic Display 

Discussion 
The ICE-86A symbol table receives symbols from two sources; the symbol table 
associated with the user program can be copied to the ICE-86A symbol table when 
the program is loaded, and the user can define additional symbols for use during the 
emulation session. 

Corresponding to each symbol in the table is a number that you can interpret and 
use either as an address or as a numeric value (variable or constant). The next few 
paragraphs discuss the kinds of symbols that can appear in the table, and the inter­
pretation of the corresponding symbol table quantity (address or value). 

Instruction and statement labels are loaded with the program code. The symbol 
table gives the address of the instruction corresponding to the label. 

A program variable is a symbol for a quantity that can have its value changed as a 
result of an instruction in the program. Program variables are LOADed with the 
program code. The symbol table gives the address where the variable value is stored. 

A program constant is a symbol for a label set to a constant value (for example, 
using the assembler directive EQU or SET). Program constants are loaded into the 
symbol table when the program code is loaded. The symbol table gives the constant 
value associated with the symbol. 

A module name is the label of a simple DO block that is not nested in any other 
block (for PLlM-86), or a label that is the object of a NAME directive (in 8086 
assembly language). If no NAME directive is given, the module name is the same as 
the source file name without the extension. For example, if the source file name is 
":FI :MYPROG.A86", the module name will be "MYPROG". 

A module name itself does not have a corresponding address value in the symbol 
table. However, symbols contained in a module are considered to be 'local' to that 
module; the ICE-86A emulator thus allows you to reference multiple occurrences of 
the same symbol name in different modules, by using the module name as a modifier 
in the symbolic reference. 

7-45 



Interrogation and Utility Commands 

7-46 

The ICE-86A symbol table is organized to preserve the modular structure present in 
the program. Initially (before any code is loaded), the symbol table consists of one 
'unnamed' module. Any symbols defined without a specific module name are stored 
in the unnamed module in the order they were defined. The unnamed module is 
always the first module in the symbol table. Following the unnamed module, named 
modules are stored in the symbol table in the order that the modules were loaded 
into the ICE-86A emulator. Symbols local to each named module are stored in the 
order they appear in the m<?dule. 

In addition to the symbols stored when the program code is loaded, you can use the 
DEFINE Symbol command to define new symbols for your use during the emula­
tion session. The rules for user-defined symbols are as follows. 

The name of the new symbol (symbol-name) can be defined with a maximum of 122 
characters. However, the ICE-86A emulator truncates each symbol-name to the first 
31 characters. Thus, to be different, two symbols must be unique in the first 31 
characters. 

The first character in the new symbol-name must be an alphabetic character, or one 
of the two characters @, underscore (_), dollar sign ($), or ? The remaining 
characters after the first can be these characters or numeric digits. 

You can specify the module that is to contain the new symbol you define. Symbols· 
defined without a module are placed in the unnamed module at the head of the 
table, in the order they were defined. Symbols defined with an existing module name 
are placed in that module's section of the table; the module named must already 
exist in the table. 

The new symbol name cannot duplicate a symbol name already present in the 
module specified. You can, however, have two or more symbols of the same name in 
different modules. 

When you define a new symbol, you also specify the value corresponding to it in the 
table. You can treat the value you assign as an address or as a numeric value for use 
other than addressing. 

The DEFINE Symbol command has the following form: 

DEFINE symbolic-reference = address: : value [OF memory-type I 

The forms of symbolic-reference are shown in table 7-8. The meaning of each form 
is as follows. Not all forms can be used in a DEFINE Symbol command. 

A simple symbolic-reference has the form . symbol-name. The ICE-86A emulator 
.searches for this form of reference starting with the first symbol in the unnamed 
module. If the symbol is not in the unnamed module, the ICE-86A e!llulator 
searches through the named modules in the order they were loaded, and takes the 
first occurrence of the symbol in the first (earliest) module that contains it. 

When you define a symbol without a module, it is placed in the unnamed module. 

The symbolic-reference can include a module-reference. The module reference 
immediately precedes the symbol name; the module-name is identified by a prefix 
consisting of a double period ( .. ). When you define a symbol with a module 
reference, the symbol is added to the symbols under that module. A later reference 
to a symbol with a module name restricts the search to that module. 

The meta-term address/value as used in the DEFINE Symbol command means one 
of the forms of numeric expressions given in Chapter 4. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Table 7-8. Symbolic References and Statement References 

Type of 
Meta-notation Example Display DEFINE Change REMOVE 

Reference 

Symbolic .symbol-name .ABC YES YES YES YES 

Symbolic .. module.symbol-name .. MAIN.DEF YES, if module is already present in table . 

Symbolic .symbol-name.symbol-name .XX.YY YES NO YES YES 

Statement 'statement-number 1156 YES NO NO NO 

Statement .. module#stmt-number .. MAINII44 YES NO NO NO 

The meta-term memory-type is one of the following memory types: BYTE, WORD, 
SINTEGER, INTEGER, POINTER, REAL, OREAL, or TREAL. 

Once a symbol has been defined or loaded, any reference to that symbol is 
equivalent to supplying its corresponding address or value. 

To display the value from the symbol table corresponding to any symbol, enter the 
appropriate symbolic reference followed by a carriage return. The ICE-86A 
emulator displays the symbol table value on the next line. 

To display the entire ICE-86A symbol table, enter the command SYMBOL followed 
by a carriage return. Symbols are displayed module by module, starting with the 
unnamed module. The address/value corresponding to each symbol is also 
displayed. 

Example 1: 

'.SAM 
.SAM=0200:1 FE2H OF INT 

Example 2: 

, .. MYPROG .SAM 

.SAM=0200:1FE2H OF INT 

Example 3: 

'SYMBOL 
. TEM P=OOOO:0001 H 

MODULE .. MAIN 
.BEGIN= 0800:0050H 
.VAR=0800:0100H OF BYT 
MODULE .. SUBR 
. PROC=0800:0069H 
.X=0800:0101 H OF WOR 

(command) 
(display) 

(command) 
(display) 

(command) 
(display) 

The ICE-86A emulator also maintains a statement number table for user programs 
written in PL/M-86 source code. The statement numbers are assigned by the 
PL/M-86 compiler. Corresponding to each source statement number in the table is 
the address of the first instruction generated by that source statement. 

Table 7-8 shows the forms used to refer to statement number in the ICE-86A 
emulator. The simplest form is the statement-number prefixed by a number sign (#). 
A module-reference can precede the statement reference, since the statement 
number table preserves any modular structure in the program. Thus, two modules 
compiled separately can have the same statement numbers; the module reference 
tells the ICE-86A emulator which statement number to use. 

7-47 



Interrogation and Utility Commands 

7-48 

To display the address corresponding to a statement-number, enter the appropriate 
statement number reference followed by a carriage return. 

The ICE·86A emulator does not allow you to change the address corresponding to 
any existing statement number, to define any new statement numbers, or to delete 
(REMOVE) any statement numbers. 

To display the value from the statement number table of any statement number, 
enter the appropriate statement number reference followed by a carriage return. The 
ICE-86A emulator displays the statement number value on the next line. 

Example 1: 

*#1 
#1 =0800:0050H 

Example 2: 

* .. MAIN #2 

#2=0800:0057H 

(command) 
(display) 

(command) 
(display) 

To display the addresses of all the statement numbers in the statement number table, 
enter the keyword LINE. The ICE-86A emulator displays all the statement number 
addresses starting on the line following the command. 

Example: 

*L1NE 
MODULE .. MAIN 
#1 =0800:0050H 

#2=0080 :0057H 

MODULE .. SUBR 
#1=1140:0012H 

#2=1140:0037H 
#3=1140:00DFH 

(command) 
(display) 

To display the names of all the modules currently in the ICE-86A module table, 
enter the keyword MODULE. The ICE-86A emulator displays the names of all the 
modules currently in the table. 

Example: 

*MODULE 
MODULE .. MAIN 

MODULE .. SUBR 

(command) 
(display) 

You can change the address/value corresponding to an existing syrnbol by entering a 
command of the form: 

symbolic-reference=address: : value [OF memory-type J 

Any of the three forms of symbolic-reference shown in table 7-7 can be used to iden­
tify the symbol whose value is to be changed. The symbol must already exist as 
referenced. 

The forms of address: :value are discussed earlier in this section. Any of these forms 
may be used to change the value of an existing symbol. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Where multiple occurrences of the same symbol name exist in the table, the rules for 
table search given earlier determine which or Ine several instances of the symbol is to 
receive the new address value. 

To delete one or more symbols from the table, use a command of the form: 

REMOVE list of symbolic-references 

The symbolic-references in the list are separated by commas. The ICE-86A emulator 
searches the table for each reference using the search rules given earlier, deleting the 
first occurrence of each symbol name that fits the type of reference given. 

Note that deleting a symbol from the ICE-86A symbol table makes that symbol 
inaccessible to the ICE-86A emulator but does not affect the program code. 

To delete the entire ICE-86A symbol table and the statement number table, enter the 
command REMOVE SYMBOL. 

To delete one or more modules, enter the following command: 

REMOVE MODULE module-name [, module-name ] ... 

Removing a module removes all symbols and statement numbers in the module, but 
does not affect object code. 

Example 1: 

REMOVE MODULE .. MAIN 

Example 2: 

REM MOD .. MAIN, .. SUBR 

The TYPE command allows you to assign or change the memory type of any symbol 
in the symbol table. The TYPE command is entered in the following format: 

TYPE symbolic-reference = memory-type 

The referenced symbol is assigned the memory type entered in the command. 

Example: 

TYPE .. MYPROG .SAM = WORD 

The symbol .SAM now is memory type WORD. 

The Set DOMAIN command establishes a specified module as the default module 
for statement numbers. The RESET DOMAIN command establishes the first 
module in the module table after the unnamed module as the default for statement 
numbers, if there is a module other than the unnamed module; otherwise it 
establishes the unnamed module as the default. This is the initial domain. 

Setting the domain should be especially useful for avoiding having to use module 
names on statement numbers from a particular module while debugging that portion 
of the program. 

When symbolic display is enabled, the ICE-86A emulator attempts to display values 
in pointer format in terms of symbols stored in the symbol table and statement 
numbers stored in the statement number table. Given an address b:d to represent, 
the ICE-86A emulator linearly searches first the symbol table and then the statement 

7-49 



Interrogation and Utility Commands 

7-50 

number table for symbols or statement numbers associated with base b and the 
largest displacement less than or equal to d. If more than one such symbol or state­
ment number is found, then the ICE-86A emulator displays the first located item. 

The display is in the form: 

mOdUle-name{ symbol } 
#decimal-10 

+ remainder (if greater than 0) 

where remainder is the number of bytes difference between d and the displacement 
associated with the symbol or statement number. 

In the case of a memory display, only if an exact address match is found (remainder 
= 0) is the symbolic information displayed. The display occurs on the line immedi­
ately preceding the normal address reference. 

Example: 

'BYTE 100 = 05H 
'DEF .Z = 1 OOH OF WORD 
'BYTE 100 
.Z 
BYT 0000:0100H=05H 

In the case of a register display, an exact address match is not necessary (i.e., 
remainder does not have to equal 0). The symbolic information is displayed instead 
of the address. 

Example: 

'DEF .Z = 100H OF POI 
'GO 
EMULATION BEGUN <esc> 
EMULATION TERMINATED, CS:IP=.Z+053DH 

Observe that the symbolic display is not affected by whether or not the symbol or 
memory reference is of type pointer; symbolic display occurs whenever a value is to 
be displayed in pointer format. If no symbol or statement number can be found that 
has associated with it an address with base equal to b, then normal display occurs. 

Symbolic display is initially disabled. To enable symbolic display, type ENABLE 
SYMBOLICALL Y. To disable symbolic display again, type DISABLE 
SYMBOLICALLY. 

ICE-86A 



ICE-86A Interrogation and Utilify Commands 

DEFINE Symbol Command 

DEFINE [module-name 1 symbol = expression [OF memory-type 1 

Examples: 

DEFINE .. MAIN .BEGIN = F3H OF BYTE 
DEF .CAR = OOOO:OFOOH 

DEF .VAR = 123T OF WOR 
DEF .ENT1 = .VAR + 100FWOR 
DEF .CAT2 = 0700:0050H OF POI 

DEF .. SUBRA .CAT2 = OOOO:OOFOH OF POI 
DEF .RE = ooon OF REAL 

DEFINE A command keyword that tells the ICE-86A emulator to enter the 
new symbol in the appropriate module table, and assign the symbol 
the initial value given. 

module-name 

symbol 

expression 

OF 

memory-type 

A sequence of contiguous alphanumeric characters, prefixed by a 
pair of periods ( .. ) that references a program module. 

A sequence of contiguous alphanumeric characters, prefixed by a 
period (.) that references a location in a symbol table. 

The assignment operator. 

A numeric expression. 

A command modifier keyword denoting that a specification of 
memory type is to follow. 

A specification of the memory type of the symbol: BYTE, WORD, 
SINTEGER, INTEGER, POINTER, REAL, OREAL, or TREAL. 
If omitted, symbol has no type. 

7-51 



Interrogation and Utility Commands 

7-52 

Display Symbols Command 

SYMBOL 

[module-name] symbol [symbol] ... 

Examples: 

SYMBOL 
.TEMP=OOOO:0001 H 
MODULE .. MAIN 
. BEGIN=0800:0050H 

.VAR=0800:0100H OF BYT 

MODULE .. SUBR 
.PROG=0800:0069H 

.X=0800:01 01 H OF WOR 

SYMBOL 

module-name 

symbol 

A command keyword that tells the ICE-86A emulator to display 
the entire ICE-86A symbol table, module by module. 

A sequence of continuous alphanumeric characters, prefixed by a 
pair of periods ( .. ) that reference a program module. 

A sequence of contiguous alphanumeric characters, prefixed by a 
period (.) that references a location in a symbol table. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Display Statement Numbers Command 

LINE 

[module-name 1 #decimal-10 

Examples: 

LINE 
#54 
.. MAIN#44 

LINE 

module-name 

# 

decimal-10 

A command keyword that tells the ICE-86A emulator to display all 
statement numbers and associated absolute addresses in the current 
domain. 

A sequence of contiguous alphanumeric characters, prefixed by a 
pair of periods ( .. ) that reference a program module. 

The 'number' sign designating the reference as a statement number. 

The (source) statement number (a numeric constant). The default 
suffix is always decimal. 

7-53 



Interrogation and Utility Commands 

7-54 

Display Modules Command 

MODULE 

Example: 

MODULE 

MODULE A command keyword that tells the ICE-86A emulator to display 
the names of all the modules currently in the ICE-86A module 
table. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Change Symbol Command 

[module-name] symbol [symbol] ... = expression [OF memory-type] 

Examples: 

.ABC=2000H 

.. MAIN.DEF = AAFFH OF WOR 

.. SUBR.PARM = .ABC + 10 

.TEMP = .ABC + .. MAIN.DEF OF WORD 

.R = 1001 H OF REAL 

module-name 

symbol 

expression 

OF 

memory-type 

A sequence of contiguous alphanumeric characters, prefixed by a 
pair of periods (..) that references a program module. 

A sequence of alphanumeric characters, prefixed by a period (.) 
that references a location in the symbol table. 

The assignment operator. 

A numeric expression. 

A command modifier keyword denoting that a specification of 
memory type is to follow. 

A specification of the memory type of the changed symbol: BYTE, 
WORD, SINTEGER, INTEGER, POINTER, REAL, DREAL, or 
TREAL. If omitted, do not change symbol's type. 

7-55 



Interrogation and Utility Commands 

7-56 

REMOVE Symbols Command 

REMOVE [module-name] symbol [symbol] ... [, [module-name] symbol [symbol] ... ] ... 

REMOVE SYMBOL 

REMOVE MODULE module-name [,module-name] ... 

Examples: 

REMOVE .ABC 
REMOVE .. MAIN.DEF 
REMOVE .HIJ,.PARM1, .. MAIN.TWO,.CARS,.CARS1..SUBR.XX 
REMOVE SYMBOL 
REMOVE MODULE .. MAIN, .. SUBR, .. CALC 

REMOVE 

module-name 

symbol 

SYMBOL 

MODULE 

A command keyword causing the symbols that follow to be deleted 
from the ICE-86A symbol table. 

A sequence of alphanumeric characters, prefixed by a pair of 
periods ( .. ) that references a program module. 

A sequence of alphanumeric characters, prefixed by a period (.) 
that references a location in the symbol table. 

A command modifier that tells the ICE-86A emulator to delete the 
entire current ICE-86A symbol table. 

A command modifier that tells the ICE-86A emulator to delete all 
the symbols and lines of the named module from the ICE-86A 
tables but does not affect object code. 

ICE-86A 



lCE-86A Interrogation and Utility Commands 

TYPE Command 

TYPE [module-name] symbol [symbol] ... = memory-type 

Examples: 

TYPE .ABC = POINTER 
TYPE .. MAIN.DEF = WOR 
TYPE .. SUBR.PARM,.XX,.YY = BYT 
TYPE.R = REAL· 

TYPE 

module-name 

symbol 

memory-type 

A command keyword that allows the user to assign or change the 
memory type of any symbol in the symbol table. 

A sequence of alphanumeric characters, prefixed by a pair of 
periods ( .. ) that references a program module. 

A sequence of alphanumeric characters prefixed by a period (.) that 
references a location in the symbol table. 

The assignment operator. 

A specification of the memory type to be assigned to the referenced 
symbol: BYTE, WORD, SINTEGER, INTEGER, POINTER, 
REAL, DREAL, or TREAL. 

7-57 



Interrogation and Utility Commands 

7-58 

Set DOMAIN Command 

DOMAIN module-name 

Example: 

DOMAIN .. MAIN 

DOMAIN 

module-name 

A command keyword that causes the ICE-86A emulator to 
establish the named module as the default module for statement 
numbers. 

A sequence of alphanumeric characters prefixed by a pair of 
periods ( .. ) that references a program module. 

ICE-86A 



lCE-86A Interrogation and Utility Commands 

RESET DOMAIN Command 

RESET DOMAIN 

Example: 

RESET DOMAIN 

RESET 

DOMAIN 

A command keyword restoring its object to a reset condition. 

A modifier keyword that causes the ICE-86A emulator to establish 
the first module after the unnamed module as the default module 
for statement numbers. If there are no named modules, the 
unnamed module is established as the default module. 

7-59 



Interrogation and Utility Commands 

7-60 

ENABLEIDISABLE SYMBOLICALLY Command 

{ ENABLE } SYMBOLICALLY 
DISABLE 

Examples: 

ENABLE SYMBOLICALLY 
DISABLE SYMBOLICALLY 

ENABLE A command keyword that causes symbolic display to be enabled. 

DISABLE A command keyword that causes symbolic display to be disabled. 

SYMBOLICALLY Command modifier denoting that symbolic display is to be 
enabled/ disabled. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Display Commands 

This section presents the ICE-86A commands that allow you to reference and 
display the following systems elements: 

• 8086 Processor Registers 

• ICE-86A Status Registers 

• 8086 Pin Signals 

• Memory 

• Ports 

• Status Flags 

• RQGT and Bus Status 

The following commands are discussed in this section: 

Command 

Display Processor and 
Status Registers 

Display CAUSE 

Display Memory 

Display I/O 

Display STACK 

Display Boolean 

Display NESTING 

EVALUATE 

Display RQGT 

Display BUS 

Discussion 

Registers 

Purpose 

Display the current contents of any of the 8086 
processor registers and ICE-86A status registers. 

Display strings representing the state of the CAUSE 
register. 

Display the contents of a range of memory. 

Display the contents of a range of I/O locations. 

Display the contents of the user's stack. 

Display boolean values. 

Display the start and return address of all currently 
active procedures. 

Display numeric constant or expression in all five 
possible output radixes. 

Display whether Request/Grant lines operate 
continuously or only while in emulation mode. 

Display what device currently controls the system 
bus. 

The 8086 register structure contains three files of four 16-bit registers and a set of 
miscellaneous registers. The three files of registers are the general register file, the 
pointer and index file, and the segment register file. The miscellaneous set consists 
of the instruction pointer, flag register, CAUSE register, OPCODE register, PIP 
register, TIMER register, HTIMER register, and BUFFERSIZE register. The 
register structures are described in the following paragraphs. 

7-61 



Interrogation and Utility Commands 

7-62 

Table 7 -9. Classes of Hardware Elements 

Class Name Hardware Elements 

general-register 16-bit work register 
pOinter-register 16-bit address register 
index-register 16-bit address register 
segment-register 16-bit segment reference register 
status-reg ister 8- and 16-bit status registers 

General Register File. The RAX, RBX, ReX, and RDX registers compose the 
General Register File. These registers participate interchangeably in 8086 arithmetic 
and logical operations. These registers are assigned the following mnemonics: 

RAX: Accumulator 
RBX: Base Register 
RCX: Count Register 
RDX: Data Register 

The general registers are unique within the 8086 as their upper and lower bytes are 
individually addressable. Thus the general registers contain two 8-bit register files 
called the H file and L file as illustrated below: 

H File LFile 
15 87 o 

RAX: RAH RAL 
RBX: RBH RBL 
RCX: RCH RCL 
RDX: RDH RDL 

General Register File 

Pointer and Index Register File. The BP ,SP ,SI, and DI set of 16-bit registers is 
called the Pointer and Index Register File. The registers in this group are similar in 
that they generally contain offset addresses used for addressing within a segment. 
They can participate interchangeably in 16-bit arithmetic and logical operations. 
They are also used in address computation. The mnemonics associated with these 
registers are: 

SP: Stack Pointer 
BP: Base Pointer 
SI: Source Index 
01: Destination Index 

The pointer and index registers are illustrated below: 

15 0 

Pointer and Index Register File 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Segment Register File. The CS,OS,SS, and ES registers constitute the Segment 
Register File. These registers provide a significant function in the memory address­
ing mechanisms of the 8086. They are similar in that they are used in all memory 
address computations. The mnemonics associated with these registers are: 

CS: Code Segment Register 
OS: Data Segment Register 
SS: Stack Segment Register 
ES: Extra Segment Register 

The contents of the CS register define the current code segment. All instruction 
fetches are taken to be relative to CS using the instruction pointer (lP) as an offset. 

The contents of the OS register define the current data segment. All data references 
except those involving BP ,SP, or 01 in a string instruction, are taken by default to 
be relative to OS. 

The contents of the SS register define the current stack segment. All data references 
which implicitly or explicitly involve SP or BP are taken by default to be relative 
to SS. 

The contents of the ES register define the current extra segment. The extra segment 
has no specific use, although it is usually treated as an additional data segment. 

The segment registers are illustrated below: 

15 0 

Segment Register File 

Status Register 

The instruction pointer, flag register, CAUSE register, OPCODE register, PIP 
register, TIMER register, HTIMER register, BUFFERSIZE register, UPPER 
register, and LOWER register constitute the status register set. These registers pro­
vide a variety of functions to the emulator. These registers are assigned the following 
mnemonics: 

IP: Instruction Register 
RF: Flag Register 
CAUSE: CAUSE Register 
OPCODE: OPCODE Register 
PIP: Previous Instruction Register 
TIMER: TIMER Register 
HTIMER: HTIMER Register 
BUFFERSIZE: BUFFERSIZE Register 
UPPER: UPPER Register 
LOWER: LOWER Register 

The content of the IP register defines the offset to the CS register in instruction 
address computations. The Flag Register contains the status flag values. The 
CAUSE register is used to retain the cause of the last break in emulation. The 
OPCODE register stores the opcode fetched in the last instruction-fetch cycle in 
trace data. The Previous Instruction Register is used to store the displacement part 

7-63 



Interrogation and Utility Commands 

7-64 

of the address of the last instruction-fetch in trace data. TIMER contains the low­
order 16 bits of the 2-MHz timer indicating how long emulation has run (read only). 
HTIMER contains the high-order 16 bits of the timer (read only). BUFFERSIZE 
contains the count (displayed in decimal only) of frames of valid trace data collected 
in the trace buffer (16 bit, read only). The UPPER register contains the highest 
available address in ICE-86A workspace below the symbol table. The LOWER 
register contains the lowest address available in ICE-86A workspace above the ICE 
software. 

The status registers are illustrated below: 

15 7 o 
IP: I 

RF: I 
CAUSE: I 

OPCODE: I 
PIP: 

TIMER: 

HTIMER: 

BUFFERSIZE: 

UPPER: 

LOWER: 

Status Registers 

The Flag Register (RF) contains nine status values, each one a bit in length. The 
following mnemonics are assigned to each of the status values in the register: 

AFL: Auxiliary-carry 
CFL: Carry 
DFL: Direction 
IFL: Interrupt-enable 
OFL: Overflow 
PFL: Parity 
SFL: Sign 
TFL: Trap 
ZFL: Zero 

AFL is set if an instruction caused a carry out of bit 3 and into bit 4 of a resulting 
value. CFL is set if an instruction caused a carry or a borrow out of the high order 
bit. DFL controls the direction of the string manipulation instructions. IFL enables 
or disables external interrupts. OFL is used to denote an overflow condition in a 
signed arithmetic operation. SFL is used to indicate the sign of the result of an 
operation. TFL is used to place the processor in a single-step mode for program 
debugging. ZFL is used to indicate a zero valued result of an instruction. The posi­
tion of the status bits in the RF Register are shown below: 

15 14 13 12 11 10 9 

Flag Registers 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

The CAUSE Register is used to store the cause for the last break in emulation. The 
byte returned by the "Read Break Cause" nardware command contains the follow­
ing bit values: if bit = 1, then the specified condition is true, otherwise false. Each bit 
has associated with it a message that is displayed if the bit is true when the software 
command, CAUSE, is entered. 

Bit Position Condition String 

0 Breakpoint 0 matched 'BRO' 
1 Breakpoint 1 matched 'BR1' 
2 Both breakpoints matched sequentially 'SEQ' 
3 Guarded memory access occurred 'GUARD' 
4 User aborted processing 'ABORT' 
5 Timeout on user READY 'RDYTO' 
6 Timeout on user HOLD 'HLDTO' 
7 External Break 'EXTRN' 

BRO and BR1 occur when emulation is halted due to matching the condition set in 
the corresponding break register. Use of the breakpoint registers is discussed in 
Chapter 6. SEQ occurs when emulation is halted due to matching both breakpoint 
registers during the same instruction. For example, BRO can be set for the address of 
an instruction while BR1 is set for the value at that address, i.e., the instruction 
opcode. Then, when the specified instruction is fetched from the specified address, 
SEQ is the break condition displayed. GUARD occurs when memory that was not 
mapped is accessed. Memory mapping is discussed in Chapter 7. ABORT occurs 
when the user presses the escape key to halt emulation. RDYTO occurs when emula­
tion is halted because of a ready timeout error. See Chapter 6 and Appendix B. 
HLDTO occurs when emulation is halted because of a hold timeout error. See 
Appendix B. EXTRN occurs when the user halts emulation through the external 
break line in the buffer box. See Chapter 1 for a description of this line. 

Pin References 

In addition to the status registers, the ICE-86A emulator provides access to eight 
8086 pins. The following mnemonics are assigned to reference the 8086 processor 
pins shown below: 

Mnemonic 8086 Pin 

ROY READY 
NMI NMI 
TEST TEST 
HOLD HOLD 
RST RESET 
MN MN/MX 
IR INTR 
RQGT, BUS RQ/GTO, RQ/GT1 (HOLD, HLDA) 

General Formats for Numeric Values 

The ICE-86A emulator displays numeric values in a variety of formats depending 
upon the type of the numeric value. Table 7-10 defines the display formats for each 
of the non-real numeric types. 

7-65 



Interrogation and Utility Commands 

7-66 

Table 7-10. Numeric Value Display Formats 

Type Class Name Definition 

BYTE byte An 8-bit value displayed in the current base. 

SINTEGER sinteger sign byte-number (short integer number) 

WORD word A 16-bit value displayed in the current base. 

INTEGER integer sign word 

sign + "-

bit 0:: 1 

POINTER pointer base: displacement H 

base 4 hexadecimal digits (the base value of pointer) 

displacement 4 hexadecimal digits (the displacement value of pointer) 

If the high order bit of an INTEGER or SINTEGER is I, the numeric value is com­
plemented and the sign is set negative ("-"). For example, FFH is displayed as 
-OIH as SINTEGER and FOOOH is displayed as-OFFFH as INTEGER. 

In base ASCII, a pair of apostrophes enclose a single character in the case of a byte 
value or encloses two characters if a word value is to be displayed. In the case of a 
word, the high order byte appears on the left of the character pair. 

In the four numeric bases, the BYTE and WORD values have a suffix and sufficient 
leading zeroes to contain the following number ()f digits. 

Hexadecimal Decimal Octal Binary 

BYTE 2 3 3 8 

WORD 4 5 6 16 

The real numeric types are REAL, OREAL, and TREAL. In general, these types 
share the same characteristics. Any real value is entered in decimal base (no matter 
what the current base is), may be preceded by a sign, and must consist of at least a 
single digit followed by a decimal point. The decimal point may be followed, in 
order, by several more digits, the letter E (flagging the start of an exponent), a sign, 
and a few more digits representing the magnitude of the exponent. Signs are 
optional; their absence is interpreted as meaning a positive value. Exponent digits 
cannot be entered without the letter E preceding them, and the letter E cannot be 
entered without at least one digit preceding it and one digit directly following it. 

Examples: 

'REA 100H = 2., 52., 124341.23E27, -1.2307, +4.001172E·25, 123243.0E12 

The display of real values follows the same rules as their entry, with the added 
restrictions that only one digit precedes the decimal point, the maximum allowable 
number of digits directly follows the decimal point, and there is always a signed 
exponent value. . 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Example: 

"REA 100 LEN 6 
REA 00OO:0100H=+2.00000000E+0 
REA 0000:01 08H=+1.24341231 E+32 
REA OOOO:0110H=+4.00117203E-25 

+5.20000000E+l 
-1.23070002E+O 
+1.23243004E+17 

The real numeric types differ both in the precision and the magnitude of the absolute 
values they may represent. The maximum number of digits that may surround the 
decimal point and follow the letter E varies for each of the real types. Their format is 
displayed below: 

REAL == <sign> <digit> . <eight digits> E <sign> <two digits> 
OREAL == <sign> <digit> . <sixteen digits> E <sign> <three digits> 
TREAL == <sign> <digit> . <seventeen digits> E <sign> <four digits> 

The minimum positive and negative values (the values closest to zero) and the max­
imum positive and negative values (the values closest to infinity) are shown in the 
chart below in normalized form: 

Minimum Positive and Negative Values Maximum Positive and Negative Values 

REAL ± 1.17549435E-38 ±3.40282347E + 38 

OREAL ±2.2250738585072014E-308 ± 1. 7976931348623157E + 308 

TREAL ±3.36210314311209351E-4932 ± 1.18973149535723176E + 4932 

If the maximum values (positive or negative) are exceeded, an overflow error 
message is displayed: 

ERR BF:REAL NUMBER OVERFLOW 

However, if the minimum values (positive or negative) are exceeded, no error 
message is displayed and the value 0 is used. 

NOTE 
The ICE-86A emulator does not support expressions containing real values. 
While real values may be entered into memory or displayed from memory, 
no arithmetic can be performed involving them. 

The Display Processor and Status Register Command allows you to display any of 
the 8-bit and 16-bit registers, the status flags and 8086 pin values. All referenced 
items are displayed on one line separated by spaces. However, if any displayed value 
would extend beyond column 80, a new line of display is initiated. Each reference is 
displayed according to the appropriate format shown below. The names are trun­
cated to three characters. 

8-bit-register-name = byte 

16-bit-register-name = word 

status-flag-name = bit 

pin-name = bit 

Example 1: 

"RAX, RBH, SP, CAUSE, AFL, HTIMER, BUFFERSIZE 

7-67 



Interrogation and Utility Commands 

7·68 

Display: 

RAX=0001 H RBH=2FH SP=FFE7H CAU=NONE AFL=1 HTI=008EH BUF=D1A2H2H 

Example 2: 

"REGISTER 

Display: 

RAX=OOOOH RBX=OOA2H RCX=0001 H RDX=0010H SP=OOOAH BP= OOOOH SI=0123H DI=OOOOH 
CS=OOOOH DS=FF1EH SS=OOOOH ES=OOOOH RF=OOOOH IP=FABCH 

Example 3: 

FLAG 

Display: 

CLF=O PFL=O AFL=O ZFL=O SFL=O TFL=1 IFL=O DFL=O OFL=O 

Example 4: 

PIN 

Display: 

RDY=1 NMI=O TES=1 HOL=O RST=O MN=1 IR=O 

Example 5: 

UPPER 

Display: 

UPP= F680H 

In the case of the CAUSE register, the appropriate messages are displayed instead of 
the actual value stored in the register. (If CAUSE is typed prior to running emula­
tion, then the string 'NONE' is returned.) No more than one string can be displayed 
at any given time (there can be only one cause for emulation halt at any given time). 

Examples: 

CAUSE 
CAU=NONE 
GO 
EMULATION BEGUN <esc> 
EMULATION TERMINATED, CS:IP = <XXXX>+<XXXX>H 
CAUSE 
CAU=ABORT 

The CAUSE register, however, can still be used as part of expressions; in this con­
text, the actual value stored in the CAUSE register is accessed. 

Examples: 

CAU 
CAU=ABORT 

ICE·86A 



ICE-86A Interrogation and Utility Commands 

.TEST=CAU+0010H 

.TEST 

.TEST=0020H 

The Display Memory command enables you to display a range of one or more 
memory locations. When displaying memory, the format of the display depends 
upon the memory type, given either explicitly by a mem-type or implicity by the type 
of a symbol in a typed-memory-reference. For example, suppose that ten con­
secutive bytes of memory contain A5H, 8IH, 34H, OCOH, I5H, OFFH, 77H, 86H, 
45H, and 54H. The following are sample outputs in each of the four bases: hexa­
decimal, decimal, octal and binary: 

Memory Hexadecimal Decimal Octal Binary 
Type 

BYTE A5H 165T 2450 10100101 Y 
WORD 81A5H 33189T 1006450 1000000110100101 Y 
SINTEGER -5BH -91T -1330 -01011011 Y 
INTEGER -7E5BH -32347T -771330 -0111111001011011Y 
POINTER C034:81A5H 
REAL -2.82041287E+0 
OREAL -1.6921176799917261 E-277 
TREAL +2.32856759329006744E+1562 

In addition to displaying real numeric values, there are three character strings that 
may be displayed for real values under special circumstances. These are "++," 
"--," and" .. " which refer, respectively, to positive infinity, negative infinity, and 
not a number (NAN). 

The user cannot enter these character sym boIs (++, --, and .. ) directly as values for 
real numbers. However, infinity can be entered indirectly by typing the byte value of 
the representation of a floating point number that overflows the intended real 
numeric data type. The following examples illustrate how this can be done when 
REAL is the intended data type. The overflow value can be entered with the BYTE 
command. 

'BYTE 0 = 0, 0, 80, 7F 
'REAL 
REA OOOO:OOOOH=++ 

The result in this case is positive infinity. 

'BYTE 0003H=OFFH 
'REAL 
REAL OOOO:OOOOH=--

Changing the MSB to OFFH changes the sign to produce negative infinity. 

'BYTE OOOOH=OFFH, OFFH, OFFH, OFFH 
'REAL 
REA OOOO:OOOOH= .. 

Storing binary I in all four bytes results in NAN or not a number. 

Usually, these conditions occur when the 8087 NDP is used with the 8086. The 
8087 may return infinity as the overflow result of a computation or as the result 
of a divide by zero computation. A NAN may be generated by the 8087 as an 
indefinite result, for example, when an uninitialized variable is detected. 

7-69 



Interrogation and Utility Commands 

7-70 

These data types are discussed in detail in The 8086 Family User's Manual 
Numerics Supplement, Manual Order Number 121586. Further information on 
real data-type memory storage is also available in "Set Memory and Port Con­
tent Commands" in Chapter 7. 

The Display memory command permits you to display more than one line of 
memory values. Each line of display contains the memory address of the first value 
displayed on that line followed by a maximum number of values as indicated by 
table 7-11. 

Table 7-11. Display Values Per Line 

Hexadecimal Decimal Octal Binary ASCII 

BYTE 16 8 8 4 64 

WORD 8 8 8 2 32 

SINTEGER 8 8 8 4 32 

INTEGER 8 8 4 2 16 

POINTER 4 + + + + 

Table 7-1 refers only to non-real memory types. Real memory types-REAL, 
OREAL, and TREAL-display only in decimal base and always display a maximum 
of two values per line. 

REAL, OREAL, and TREAL values can be accessed and modified independent of 
the present base; BASE = T is always implied for REALs. 

Following are examples of memory display in all four bases. As displays of real 
numeric type memory will always appear in decimal format, no matter what the cur­
rent base is, examples of REAL, OREAL, and TREAL will be given only in the sec­
tion where BASE=T; this is not meant to imply that real values cannot be accessed 
when BASE is not set to T. 

Assume that the following memory locations contain the values shown below (in 
hexadecimal): 

Address Content 

OOOOOH OOH 41 H 42H 43H 45H 20H 30H 3DH 74H 68H 65H 72H 20H 43H 61 H 6CH 
00010H 69H 66H 6FH 72H 6EH 69H 61 H ODH OAH 20H 20H 20H 20H 20H 20H 20H 
00020H 20H 20H 20H 6CH 61 H 77H 20H 70H 72H 6FH 76H 69H 64H 65H 64H 20H 
00030H 66H 6FH 72H 20H 70H 72H 6FH 67H 72H 61H 6DH 73H 20H 6FH 66H 20H 
00040H 74H 68H 69H 73H 20H 73H 6FH 72H 74H 2EH 20H 20H 54H 68H 69H 73H 

The following commands display the above memory values with BASE = H: 

Example 1: 

BYTE 0000:0030 

Display: 

BYT 0000:0030H=66H 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Example 2: 

BYT 0:30 TO 0:3F 

Display: 

BYT 0000:0030H=66H 6FH 72H 20H 70H 72H 6FH 67H 72H 61 H 6DH 73H 20H 6FH 66H 20H 

Example 3: 

WORD 0000:30 

Display: 

WOR 0000:0030H=6F66H 

Example 4: 

WOR 0:30 LEN 10H 

Display: 

WOR 0000:0030H=6F66H 2072H 7270H 676FH 6172H 736DH 6F20H 2066H 
WOR 0000:0040H=6874H 7369H 7320H 726FH 2E74H 2020H 6854H 7369H 

Example 5: 

POINTER 0:30 

Display: 

POI0000:0030H=2072:6F66H 

Example 6: 

POI 0:30 TO 0:3C 

Display: 

POI0000:0030H=2072:6F66H 676F:7270 736D:6172H 2066:6F20H 

Example 7: 

POI 0:30 TO 0:50 

Display: 

POI0000:0030H=2072:6F66H 676F:7270H 736D:6172H 2066:6F20H 
POI0000:0040H=7369:6874H 726F:7320H 2020:2E74H 7369:6854H 
POI0000:0050H=756F:6420H 

The following examples illustrate display in decimal (BASE=T): 

Example 8: 

BYTE 0000:0030 

Display: 

BYT 0000:0030H=102T 

7-71 



Interrogation and Utility Commands 

7-72 

Example 9: 

BYT 0:30 TO 0:3f 

Display: 

BYTOOOO:0030H=102T 111T 114T 032T 112T 114T 11T 103T 
BYT 0000:0040H=114T 097T 109T 115T03.2T 111T 10.2T 032T 

Example 10: 

WORD 0:30 

Display: 

WOR 0000:0030H=28518T 

Example 11: 

WORD 00:30 TO 00:4E 

Display: 

WOR 0000:0030H=28518T08306T 29296T 26479T 24946T 29549T 28448T 08294T 
WOR 0000:0040H=26740T 29545T 29472T 29295T 11892T 08224T 26708T 29545T 

Example 12: 

POINTER 0:30 

Display: 

POI0000:0030H=2072:6F66H 

Example 13: 

POINTER 0:30 TO 0:3C 

Display: 

(same as Example 6.) 

Example 14: 

REAL 0:30 

Display: 

REA 0000:0030H=+2.05350560E-19 

Example 15: 

REAL 0:30 TO 0:3F 

Display: 

REA 0000:0030H=+2.05350560E-19 
REA 0000:0038H=+1.88072324E+31 

+1.13075659E+24 
+1.95185260E-19 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Example 16: 

DREAL 0:30 TO 0:3F 

Display: 

DRE OOOO:0030H=+1.7514059685946888E+190 +1.3385686327532207E-152 

Example 17: 

TREAL 0:30 TO 0:3F 

Display: 

TRE 0000:0030H=+0.42394727402142709E+2578 +0.11708909595879081 E +3963 

The following examples illustrate memory displays in octal (BASE=Q). 

Example 18: 

BYTE 0000:0030 

Display: 

BYT 0000:0030H=1460 

Example 19: 

BYT 0:30 LEN 10H 

Display: 

BYTOOOO:0030H=1460 1570 162Q 0400 1600 1620 570 1470 
BYTOOOO:0040H=1620 1410 1550 1630 0400 1570 1460 0400 

Example 20: 

WORO:30 

Display: 

WOR 0000:0030H=0675460 

Example 21: 

WORD 0:30 LEN 10H 

Display: 

WOR 0000:0030H=0675460 0201620 0711600 0635570 
WOR 0000:0038H=0605620 0715550 0674400 0201460 
WOR 0000:0040H=0641640 0715510 0714400 0711570 
WOR 0000:0048H=0271640 0200400 0641240 0715510 

Example 22: 

POINTER 0:30 LEN OD 

7-73 



Interrogation and Utility Commands 

7-74 

Display: 

(same as Example 6.) 

The following examples illustrate memory displays in binary (BASE=Y). 

Example 23: 

BYTE 0:30 

Display: 

BYT 0000:0030H=011 0010Y 

Example 24: 

BYTE 0:30 TO 0:3F 

Display: 

BYTOOOO:0030H=01100110Y 01101111Y 01110010Y 00100000Y 
BYTOOOO:0034H=01110000Y 01110010Y 01101111Y 01100111Y 
BYTOOOO:0038H=01110010Y 01100001Y 01101101Y 01110011Y 
BYTOOOO:003CH=00100000Y 01101111Y 01100110Y 00100000Y 

Example 25: 

WORO:30 

Display: 

WOR 0000:0030H=0110111101100110Y 

Example 26: 

WOR 0:30 LEN 10H 

Display: 

WOR 0000:0030H=0110111101100110Y 0010000001110010Y 
WOR 0000:0034H=0111001001110000Y 0110011101101111 Y 
WOR 0000:0038H=0110000101110010Y 0111001101101101Y 
WOR 0000:003CH=0110111100100000Y 0010000001100110Y 
WOR 0000:0040H=0110100001110100Y 0111001101101001Y 
WOR 0000:0044H=0111001100100000Y 0111001001101111Y 
WOR OOOO:0048H=0010111001110100Y 0010000000100000Y 
WOR 0000:004CH=0110100001010100Y 0111001101101001Y 

Example 27: 

POINTER 0:30 

Display: 

POI OOOO:0030H=2072:6F66H (Always displayed in hexadecimal.) 

The Display 110 command enables you to display byte ports (PORT) and word 
ports (WPORT) in a manner similar to the Display memory command. Single port 
contents or the contents of a range of ports may be displayed. However, only a 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

single integer is required to specify the port address. The following examples 
illustrate the Display I/O command. The implied suffix in these examples is H 
(hexadecimal) for address specification. 

Example 1: 

BASE=Y 
PORT 120H 

Display: 

POR 0129H=10111111Y 

Example 2: 

PORT 120 LEN 10 

Display: 

POR 0120H=10111111Y 10111111Y 10111111Y 01111111Y 
POR 0124H=10111111Y 10111111Y 10111111Y 01111111Y 
POR 0128H=10111111Y 10111111Y 10111111Y 01111111Y 
POR 012CH=1 0111111Y 10111111 Y 10111111Y 01111111 Y 

Example 3: 

BASE=O 
PORT 120 

Display: 

POR 0120H=2770 

Example 4: 

PORT 120 TO 12F· 

Display: 

POR 0120H=2270 1770 2770 1770 2770 1770 2770 1770 
POR 0128H=2770 1770 2770 1770 2770 1770 2770 1770 

Example 5: 

BASE=T 
POR 120 

Display: 

POR 0120H=191T 

Example 6: 

PORT 120 TO 12F 

Display: 

POR 0120H=191T 127T 191T 127T 191T 127T 191T 27T 
POR 0128H=191T 127T 191T 127T 191T 127T 191T 127T 

7-75 



lnterrogation and Utility Com:m.ands 

7-76 

Example 7: 

BASE=H 
PORT 120 

Display: 

POR 0120H=BFH 

Example 8: 

PORT 120 TO 12F 

Display: 

POR 0120H;BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH 

Example 9: 

BASE=Y 
WPORT 120 

Display: 

WPO 0120H=01111 01110111111 Y 

Example 10: 

WPORT 120 TO 12E 

Display: 

WPO 0120H=011110111 0111111Y 0111111110111111 Y 
WPO 0124H=011111111 0111111 Y 0111101110111111 Y 
WPO 0128H=0111111110111111Y 0111101110111111Y 
WPO 012CH=011110111 0111111Y 0111101110111111 Y 

Example 11: 

BASE=O 
WPORT120 

Display: 

WPO 0120H=0776770 

Example 12: 

WPORT120T013E 

Display: 

WP00120H=0776770 0776770 0776770 0756770 0756770· 0776770. 0756770 0776770 
WPO 0130H=0776770 0776770 0756770· 0776770 0756770 077677Q 0776770 0756770 

Example 13: 

BASE=T 
WPORT120 

ICE...sM 



ICE-86A Interrogation and Utility Commands 

Display: 

WPO 0120H=32703T 

Example 14: 

WPORT120T013E 

Display: 

WPO 0120H=32703T 32703T 32703T 31679T 31679T 32703T 31679T 32703T 

WPO 0130H=32703T 32703T 31679T 32703T 31679T 32703T 32703T 31679T 

Example 15: 

BASE= H 

WPORT 120 

Display: 

WPO 0120H=7FBFH 

Example 16: 

WPORT 120 TO 13E 

Display: 

WPO 0120H=7FBFH 7FBFH 7FBFH 7BBFH 7BBFH 7FBFH 7BBFH 7FBFH 
WPO 0130H=7FBFH 7FBFH 7BBFH 7FBFH 7BBFH 7FBFH 7FBFH 7BBFH 

The Display STACK causes the top n words of the user's stack (i.e., user memory 
pointed at by SS:SP) where n is an integer value in the command that specifies the 
number words in the stack to be displayed. 

Example: 

STACK 10 

Display: 

WOR 0000:0000H=41 OOH 4342H 2045H 3030H 6874H 265H 4320H 6C61 H 
WOR 0000:001 OH=6669H 726FH 696EH 0061 H 200AH 2020H 2020H 2020H 

The Display Boolean command is used to display the boolean value of an integer 
value contained in the command: 

Example: 

BOOL FFH 

Display: 

TRUE 

Example: 

BOOL!X =!Y 

7-77 



Interrogation and Utility Commands 

7-78 

Display: 

FALSE 

The Display NESTING Command 

The Display NESTING command enables you to display the starting and return 
addresses of all procedures that are currently active. The user is scanned for pro­
cedure starting and return addresses as follows (all references to stack manipulations 
are restricted to the scope of the nesting module only): 

1. Set b = CS 

2. Set d = SP (word at the top of the user stack). If the 5 bytes from (b,d-5) 
through (b,d-l) can be interpreted as a short call (direct or indirect) (2,3, or 4 
bytes), then b,d is assumed to be a return address. 

3. Set WORD temp$b:d = next word on the user stack. If the 5 bytes from 
(temp$b-d) through (temp$b,d-l) can be interpreted as a long call (direct or 
indirect) (2,3,4 or 5 bytes), INT (1 or 2 bytes), or INTO, then b,d (and the next 
word in the stack for INT and INTO) can be assumed to be a return address. 

4. The return address, type of call (i.e., short call direct), INT, or INTO, and the 
starting address (for direct only) are displayed. 

The above procedure is repeated until 16 iterations fail to find a return address or 
the stack memory enters guarded memory. Care should be taken in using this com­
mand as the above method is susceptible to error. 

The EVALUATE Command 

The EV ALUA TE command handles the arithmetic computation involved in 
translating integers from one radix to another and computes the 20-bit address of a 
pointer. This command has the form EVALUATE expr, where expr is any numeric 
constant or numeric expression. The expr can also be a predefined reference 
keyword such as UPPER or LOWER, or it can be an expression containing 
reference keywords. Upon receiving this command, the ICE-86A emulator evaluates 
any expression to a single number. If it is an integer, it displays the result in the four 
bases Y, Q, T, and H, and the corresponding ASCII characters, all on one line. For 
ASCII, the characters are enclosed in single quotes ('); printing characters are 
displayed (ASCII codes 20H through 7EH after bit 7 is masked off), while non­
printing characters are suppressed. 

When the EV ALUA TE command is followed by the keyword 'SYMBOLlCALL Y' 
(preceding the carriage return), the numeric value output by the command is 
displayed as a symbol or statement number plus a remainder. The ICE-86A symbols 
and statement numbers are searched to find the one with the same base whose value 
is closest to but not greater than the value being output. In the event that a symbol 
and a statement number have the same value, the symbol is used. The value is then 
displayed as either the selected symbol plus a numeric-constant or the selected state­
ment number plus a numeric-constant, where the numeric-constant is the remainder 
in the current output base. If no symbol or statement number has a value less than 
or equal to the number being output, the value is output as a numeric-constant. If 
the remainder is zero, the numeric constant is omitted. 

If the numeric expression has a non-zero base, the value is displayed as a pointer 
(base:disp). 

Here are several examples of the use of the EVALUATE command, with the display 
produced by each one. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Example 1: 

EVALUATE 123T 

Display: 

1111011Y 1730 123T 7BH '[' 

Example 2: 

EVA FFH + 256T 

Display: 

111111111Y 7770 511T 1FFH " 

Note that the addition was performed first, then the result was displayed in the four 
bases. The result contained only non-printing ASCII characters, displayed as empty 
quotes. 

Example 3: 

EVA 111:0222H SYMBOLICALLY 

Display: 

0111 :0222H 

This example assumes that no symbol or statement number match. 

Example 4: 

EVA 111:222H SYM 

Display: 

.. MOD1.SAM + 0021 H 

This example assumes that a matching symbol with an address at 111 :201 has been 
selected. 

Example 5: 

EVA UPPER-LOWER 

Display: 

1101100010111Y 1542400 6935T 1817H() 

This command will display the difference between UPPER and LOWER, which will 
be the total memory available for symbols and macro expansion. The display will be 
in all bases. 

NOTE 

The EVALUATE command does not process real values. That is, real 
numbers in decimal base cannot be translated by the ICE-86A emulator into 
binary, octal, or hexadecimal, or corresponding ASCII characters. 
Attempting to evaluate a real number produces an error message. 

7-79 



Interrogation and Utility Commands 

7-80 

The Disassembly Command 

The Disassembly Command allows the user to display instructions in memory in 
disassembled format. (See Display of Trace Data in Instruction Mode, Chapter 6, 
for definition of format.) The syntax of the command appears below: 

DASM address fro address ] 
L LENGTH length 

The user may specify a single address, or a partition of addresses, to be dis­
assembled and displayed. 

The DEFINE DASM Command 

The DEFINE DASM Command is intended to support disassembly of opcodes nor­
mally executed by an 8087 Numeric Data Processor. The command alerts the 
ICE-86A disassembler to the hardware/software configuration of the user prototype 
application system as it impacts floating point instruction handling. The syntax of 
the command is given below: 

DEFINE DASM {:~ } 

EMULATOR 

Initially, DASM is set to "86"; this indicates to the disassembler that no special 
floating point hardware or software exists with the 8086 processor, i.e., no special 
interpretation of 8086 ESCape or INTerrupt instructions is required of the 
disassembler in this setting. If the user combines an 8087 NDP with the 8086 CPU, 
then DASM should be defined as "87"; the disassembler then interprets ESCape 
instructions as floating point instructions. If the user combines the 8087 emulator 
software package with the 8086 CPU, then DASM should be defined as 
"EMULATOR"; the disassembler then interprets INTerrupt instructions as 
floating point instructions. 

NOTE 

The operator should not display trace when TRA=INS while DASM is 
defined as "EMULATOR" (i.e., the user's application system is based on 
an 8086 CPU in local mode with the software emulator for the 8087 NDP). 
The trace facility is not capable of interpreting INTerrupt instructions prop­
erly in this system configuration. That is, when the trace buffer is 
disassembled, it will show that an FP instruction has been executed but the 
operand values will be wrong and the trace will be out of synchronization 
with the actual instruction stream which can be misleading to the user. 

The user should also be aware that when DASM is defined as "87" (i.e., the 
user's application system is based on an 8086 CPU in local mode with the 
harware 8087 NDP), then the trace facility will not record bus activities 
while the 8087 NDP controls the system bus. (As a general principle, the 
trace facility is incapable of recording bus activities whenever a device other 
than the ICE-86A emulator controls the system bus.) 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Display Processor and Status Registers Command 

reference (,reference] ... 

REGISTER 

FLAG 

PIN 

Examples: 

UPPER 
RAX 
RBH, SI, AFL, HOL 
REGISTER 
R 
FLA 
PIN 
BUS 

reference 

REGISTER 

FLAG 

PIN 

Any of the reference keywords that reference processor registers, 
status registers, and pins. Also can include memory and I/O in list. 

A command keyword requesting the display of the thirteen 16-bit 
8086 registers and RF. 

A command keyword requesting the display of the nine status 
flags. 

A command keyword requesting the display of the contents of the 
seven input pins. 

7-81 



Interrogation and Utility Commands 

7-82 

Display Memory Command 

memory-designator address [TOaddress ] 

LENGTH length 

Examples: 

BYTE 1000:100H 
WOR 0:123 TO 0:200 
SIN 100:0 LENGTH 200 
INT 200:200 
POINTER 200:200 
POI 200:200 TO 200:2FE 

memory-designator 

address 

TO 

LENGTH 

length 

One of the following keywords that specify the size and type 
of memory referenced: 

BYTE 

WORD 

SINTEGER 

INTEGER 

POINTER 

REAL 

OREAL 

TREAL 

A I-byte (8-bit) integer value. 

A 2-byte (l6-bit) integer value. 

A I-byte (8-bit) short integer number. 

A 2-byte (l6-bit) integer value. 

A 4-byte (two I6-bit integer) value. 

A 4-byte (32-bit real) value. 

An 8-byte (64-bit real) value. 

A lO-byte (80-bit real) value. 

A pointer value containing a base and a displacement that 
together specify an address of a memory location. 

A partition keyword that denotes that an address is to follow. 
This address defines the upper bound of the required range of 
addresses in the partition. 

A partition keyword that denotes that a length value is to 
follow. 

An integer value specifying the number of addresses to be 
contained in the partition (bytes, words or pairs of words, 
depending on memory-designator). 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Display I/O Command 

{
PORT } address 

[
TO address ] 

WPORT 

Examples: 

PORT FF12H 
POR FFOO TO FFFF 
POR 1000 LEN 200 
WPORT123H 
WPO 100 TO 200 

LENGTH length 

WPO 100 LENGTH 101 

PORT 

WPORT 

address 

TO 

LENGTH 

length 

Keyword reference to 8086 8-bit I/O port(s). 

Keyword reference to 8086 16-bit 1/0 port(s). 

An integer value that specifies the address of an 8086 port. 

A partition keyword that denotes that an address is to follow. 
This address defines the upper bound of the required range of 
port addresses in the partition. 

A partition keyword that denotes that a length value is to 
follow. 

An integer value specifying the number of port addresses 
(byte or word ports) to be contained in the partition. 

7-83 



Interrogation and Utility Commands 

7-84 

Display STACK Command 

STACK expression 

STACK 10H 
STA .SAM 
STACK .SAM + 20 

STACK 

expression 

A command keyword that requests the display of the contents of 
the user's stack. The stack is located in user memory referenced by 
the pointer value SS:SP. 

An integer expression. The value of this expression defines the 
number of words at the top of the STACK that are to be displayed. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

Display Boolean Command 

BOOL expression 

Examples: 

BOOLFFH 
BOO CS=DS AND IP > 50 
BOO BYTE .X = F2H 
BOOL !SAM 
B002CFL 

BOOL 

expression 

A command keyword requesting the display of the boolean value 
(TRUE, FALSE) of the input value, expression . 

A boolean expression. The value of this expression is evaluated to a 
boolean value. If the least significant bit of the expression = 1, the 
boolean value is TRUE, otherwise the boolean value is FALSE. 

7-85 



Interrogation and Utility Commands 

7-86 

Display NESTING Command 

NESTING 

Example: 

NESTING 

NESTING A command keyword that causes the display of each CALL, INT, 
and INTO instruction that is currently active. 

ICE-86A 



ICE-86A Interrogation and Utility Commands 

EVALUATE Command 

EVALUATE numeric-expression [SYMBOLICALL Yl 

Examples: 

EVALUATE UPPER-LOWER 

EVALUATE 123T 

EVALUATE 4142H 

EVALUATE FFH + 256T 

EVALUATE A command keyword that directs the ICE-86A emulator to 
evaluate the expression and display the result in all four number 
bases and ASCII. 

numeric A numeric expression, numeric constant, predefined reference 
expression keyword, or an expression containing such a keyword. 

SYMBOLICALLY This keyword causes each numeric value output by the command to 
be displayed as a symbol or source statement number plus a 
remainder. The ICE-86A symbols and source statement numbers 
are searched for the one with the same base whose value is closest to 
but not greater than the value being output. In: case a symbol and a 
statement number have the same value, the symbol is used. The 
value is then displayed as either a symbolic reference plus a numeric 
constant or a source statement number plus a numeric constant 
where the numeric constant is the remainder in the current output 
base. If no symbol or statement number has a value less than or 
equal to the number being output, then the value is output as a 
numeric constant. If the remainder is zero, the numeric constant is 
omitted. 

7-87 



Interrogation and Utility Commands 

7-88 

Disassembly Command 

DASM address rro address ] 
U-ENGTH length 

Examples: 

DASM 1000:123 
DASM 1000:123 TO 1000:400 
DASM 2000:0000 LEN 100 

DASM 

address 

TO 

LENGTH 

length 

A command keyword specifying the display of instructions in 
disassembled format. 

A pointer value containing a base and displacement that together 
specify an address of a memory location. 

A partition keyword that denotes that an address is to follow. This 
address defines the upper bound of the required range of addresses 
in the partition. 

A partition keyword that denotes that a length value is to follow. 

An integer value specifying the number of addresses to be 
contained in the partition (bytes, several bytes in succession, words. 
or pairs of words, depending on memory type). 

lCE-86A 



ICE-86A Interrogation and Utility Commands 

DEFINE DASM Command 

DEFINE DASM {~~ } 

EMULATOR 

Examples: 

DEFINE DASM B6 
DEF DASM B7 

DEF DASM EMULATOR 

DEFINE 

DASM 

B6 

B7 

EMULATOR 

Command keyword that informs the ICE-86A emulator that the 
value of the following facility is to be set. 

Command keyword that indicates the mode of disassembly. 

Indicates that the user's application system consists of an 8086 
processor without hardware or software support of floating point 
arithmetic. 

Indicates that the user's application system consists of an 8086 
processor in local configuration with an 8087 NOP. 

Indicates that the user's application system consists of an 8086 
processor equipped with the software package that emulates the 
8087 NOP. 

7-89 





CHAPTER 81 
ICE-86ATM ENHANCEMENTS 

The command features described in this chapter enhance the operation of the 
ICE-86A emulator by extending the power of the simple ICE-86A commands. 

ICE-86A emulator enhancements are of two kinds: compound commands and 
macro commands. These features are as follows. 

Compound commands 

REPEAT command 
COUNT command 
IF command 

Macro commands 

DEFINE MACRO command 
Invoke macro command 
Display macro command 
ENABLE/DISABLE EXPANSION command 
Macro directory command 
REMOVE MACRO command 
PUT MACRO command 

Please note that the examples in this chapter are independent of each other. The 
introduction to each example gives the initial conditions for that example, and does 
not assume any results or conditions from any previous examples. 

Compound Commands 

A compound command is a control structure that contains zero or more commands. 
The compound commands discussed in this chapter are the REPEAT, COUNT, and 
IF commands; the DEFINE MACRO command is also a type of compound com­
mand. As the command titles indicate, REPEAT and COUNT are looping com­
mands, and IF establishes conditional execution, and DEFINE MACRO establishes 
a named command block. All compound commands can have a "local" setting for 
the default SUFFIX (console input radix), as described under Local and Global 
Defaults in this chapter. 

REPEAT Command 

The REPEAT command ex.ecutes zero or more ICE commands in a loop; the loop 
can also contain zero or more logical conditions for termination. 

The REPEAT command consists of the REPEAT keyword, zero or more com­
mands of any type, zero or more exit conditions using WHILE or UNTIL, and the 
keyword END. Enter each of these elements on its own line of the console display; 
terminate each input line with an intermediate carriage return (shown as cr in the 
command syntax). The syntax for REPEAT can be shown as follows: 

REPEATer 

[
command er ] 
WHILE boolean-expression cr 
UNTIL boolean-expression er 

END 

8-1 



ICE-86A Enhancements 

8-2 

After each intermediate carriage return, the ICE emulator begins the next line with a 
period (giving an indented appearance), then the asterisk prompt to signal readiness 
to accept the next element. After the END keyword, enter a final carriage return to 
begin the sequence of execution. The final carriage return after END is not shown in 
the syntax, since all commands terminate with a final carriage return. The END 
keyword can be entered as ENDR or ENDREPEAT; the characters after END serve 
as a form of "comment" to indicate which loop is being terminated. 

The elements to be repeated are shown in brackets in the syntax. Each element can 
be a command, a WHILE clause, or an UNTIL clause. You can mix these elements 
in any order, using any number of each type of element. 

Each command is executed when it is encountered on each iteration. After the com­
mand has been completely executed, the loop proceeds to the next element. 

The WHILE and UNTIL keywords introduce exit clauses. The WHILE clause ter­
minates execution of the loop when its boolean-expression evaluates FALSE. The 
UNTIL clause terminates the loop when its boolean-expression evaluates TRUE. 

In both the WHILE and UNTIL clauses, the boolean-expression is evaluated each 
time the clause is encountered; that is, once per iteration. Evaluation at each itera­
tion involves looking up the values of any references in the expression. Thus, the 
result can change with each evaluation. Refer to Chapter 5 for an explanation of 
how expressions are evaluated. 

The choice of WHILE or UNTIL is usually a matter of convenience-there is always 
a way to convert one into the other. For example, "WHILE bool-expr" is 
equivalent to "UNTIL NOT (bool-expr)". 

NOTE 

To terminate execution of a REPEAT (or COUNT) loop, press the ESC key 
at the console. The ICE command currently executing halts wherever it hap­
pens to be; if you are emulating, the current instruction is completed before 
the break. The ICE emulator responds to the ESC with the asterisk prompt. 

Here are some brief examples of the REPEA T command. 

Example 1: Generate an ASCII table similar to Table 5-2. 

DEFINE .TEMP = 40H 
REPEAT 

WHILE .TEMP <= 7EH 
EVALUATE .TEMP 
.TEMP = .TEMP + 1 

EN DR 

Example 2: Single-step through the user program and display the trace data col­
lected for each instruction until a repetitious routine (.DELAY) is reached. 

TRACE = INSTRUCTIONS 
CS = SEG .ST ART 
IP = OFF .START 
REPEAT 

UNTIL CS:IP = .DELAY 
STEP 
PRINT-1 

ENDR 

ICE-86A 



ICE-86A ICE-86A Enhancements 

Example 3: Using a complex combination of conditions in the boolean expression. 

REPEAT 
UNTIL (CS:IP > .END XOR !VAR1 = 0) AND (.TEMP > 0 XOR !VAR2 = 1) 
STEP 
REGISTER 

ENDR 

Example 4: Emulate from the start of the program (.ST ART) until a breakpoint 
(.END EXECUTED) is reached, display status registers, then continue emulating, 
halting, and displaying status until a terminating condition (BYTE. V AR = 2) is 
reached. 

CS = SEG .ST ART 
IP = OFF .ST ART 
REPEAT 

GO TILL .END EXECUTED 
REGISTER 
UNTIL !VAR = 2 

ENDR 

COUNT Command 

Like REPEAT, the COUNT command sets up a loop. In addition to the WHILE 
and UNTIL clauses discussed under REPEAT, COUNT includes a loop counter that 
terminates the loop if no exit condition is met before the counter runs out. 

The COUNT command has the form: 

COUNT arithmetic expression cr 

[
command cr ] 
WHILE boolean-expression cr 
UNTIL boolean-expression cr 

END 

The arithmetic-expression after COUNT controls the (maximum) number of itera­
tions to be performed. If a numeric constant is used (for example, COUNT 10), the 
ICE emulator interprets it in implicit decimal radix; in other words, any number 
entered after COUNT without an explicit radix is interpreted as a decimal number. 

If the entry after COUNT is an arithmetic-expression, it is evaluated to give the 
number of iterations. The COUNT expression is evaluated once, before any loop 
elements are encountered. It is not evaluated again on any interation. The COUNT 
expression uses the values of any references it contains as they stand at the time of 
evaluation. For example, consider the following command sequence: 

DEFINE .XX = 2 
COUNT .XX 

.xX = .XX +1 
END 

This loop goes through two iterations, although .XX has value 4 when the loop 
terminates. 

The loop terminates when the number oJ iterations given by the COUNT expression 
has been performed or when an exit condition is tested and causes exit, whichever 
comes first. The following example illustrates this concept: 



ICE-86A Enhancements 

DEFINE .XX = 1 
COUNT5 

.XX= .XX +1 
WHilE .XX<5 

END 

To show that the loop terminates on the WHILE condition before the COUNT 
expression is exhausted, we can "track" the loop in operation. Table 8-1 shows the 
track. 

Table 8-1. Tracking a COUNT Command 

Iteration .XX .XX<5 

1 2 TRUE 
2 3 TRUE 
3 4 TRUE 
4 5 FALSE 

The loop terminates during the fourth iteration, when .XX < 5 becomes FALSE. 

Conversely, the COUNT expression specifies the maximum number of iterations to 
be performed in case no exit clause produces an exit on any iteration. For example: 

TRACE = INSTRUCTION 
CS = SEG .ST ART 
IP = OFF .ST ART 
COUNT10 

UNTil CS:IP = . DELAY 
STEP 
PRINT-1 

END 

In this command, the COUNT expression specifies a maximum of ten STEPs, in 
case the first instruction at .DELA Y. is not reached during any iteration. 

With a REPEAT command or with a COUNT command that includes one or more 
clauses, there may be no direct way to tell how many iterations occurred before the 
loop terminated. For these cases, you can insert a loop counter as a loop element. 
For example, to obtain table 8-1 as a display (or LIST file output), you could use the 
following sequence: 

BASE=T 
DEFINE. ITER = 0 
DEFINE. XX = 1 
COUNT10 

.XX= .XX +1 

.ITER = .ITER + 1 

.ITER 

.XX 
BOOl.XX<5 
WHilE .XX<5 

END 

The command BaaL .XX < 5 produces a display of TRUE or FALSE. 

The following example emulates to a breakpoint, displays status registers, then con­
tinues emulating, breaking, and displaying status for a definite number of iterations: 

CS = SEG .START 

ICE-86A 



ICE-86A lCE-86A Enhancements 

IP = OFF .ST ART 
COUNT10 

GOTILL .PAUSE EXECUTED 
REGISTER 

END 

IF Command 

The IF command permits conditional execution in a command sequence. The IF 
command has the form: 

IF boolean-expression [THEN] cr 
[command cr] ... 

rORIF boolean-expression [THEN] crJ 
l [command cr] ... 

rELSEcr ] 
l [command cr] ... 

END 

The command must have the IF clause; the OR IF and ELSE clauses are optionaL 
The command can include as many ORIF clauses as desired. The IF and ORIF 
clauses each contain a single condition (boolean expression). Any clause can contain 
none, one, or more commands. A clause with no commands simply produces an exit 
when its condition is TRUE. 

The ICE emulator examines each boolean expression in turn, clause by clause, look­
ing for the first TRUE condition. If a TRUE condition is found, the commands in 
that clause are executed and the IF command terminates. If none of the conditions is 
TRUE, the commands in the ELSE clause are executed and the IF command ter­
minates. If the ELSE clause is omitted and no condition is TRUE, the IF command 
terminates with no commands executed. 

The END keyword is required to close off the IF command; it can be written as 
ENDlF to clarify nesting. 

Here is an example of the IF command: 

BASE=T 
IP=1 
IFIP<1 

EVALUATE 1 
ORIFIP<2 

EVALUATE 2 
ORIFIP<3 

EVALUATE 3 
ELSE 

EVALUATE 4 
END 

This example displays the result of EVALUATE 2 and then terminates. The first 
condition (IF IP < 1) is FALSE, so EVALUATE I is skipped. The second condition 
(ORIF IP < 2) is TRUE, so EVALUATE 2 is executed and the IF command ter­
minates. The third condition (ORIF IP < 3) is not tested, even though it happens to 
be TRUE. 

8-5 



ICE-86A Enhancements 

8-6 

In practice, however, the IF command is useful when it is nested in a REPEAT or 
COUNT loop rather than appearing at the "top" level. The reason for this is that 
you want to test conditions that can change (due to other commands in the loop), 
whereas at the top level the TRUE or FALSE state of any condition is known, or can 
be determined with the BOOL command. Thus, the result from the previous exam­
ple can be obtained with fewer steps: 

BOOl IP < 1 (Displays FALSE) 
BOOl IP < 2 (Displays TRUE) 
EVALUATE 2 

Nesting Compound Commands 

The REPEAT, COUNT, and IF commands can be nested to provide a variety of 
control structures. 

Each nested compound command must have its own END keyword. When entering 
a nested command sequence, you may wish to use the keywords ENDR, ENDC, and 
ENDIF, to help you keep straight which command you intend to close off. The ICE 
emulator does not check nesting levels at entry, and if an END is omitted, the 
resulting error makes it necessary to enter the entire command again. 

Each nested REPEAT or COUNT command can contain its own exit clauses 
(WHILE or UNTIL). Each such exit clause can terminate the loop that contains it, 
but has no effect on any outer loops or commands. 

As an example of nesting, suppose you want to STEP through a program with trace 
display, but skip a repetitive timeout routine, .DELA Y, that is called with an 8086 
short-call instruction several times during program execution. One way to achieve 
this effect is with the following command sequence: 

TRACE = INSTRUCTION 
CS = SEG .START 
IP = OFF .ST ART 
REPEAT 

IF CS:IP = .DElAY 
IP = WORD SS:SP 
SP = SP + 2 

ENDIF 
STEP 
PRINT -1 

ENDR 

At each call to .DELA Y in the program, the displacement of the return address for 
the call is pushed on the stack. The keyword SP refers to the stack pointer, and SS is 
the stack segment register; SS:SP is the address of the top Of the stack where the 
return address is stored. The effects of the commands IP = WORD SS:SP and SP = 
SP + 2 are to load the return address back into IP and reset the stack pointer just as 
if the return instruction at the end of .DELAY had been executed. 

As another example of nesting, suppose the user code at statements #21 and #22 is 
incorrect or not written yet. The following sequence emulates to the point where 
substitute code is to be inserted, inserts the code (equivalent to IF MARK> 0 THEN 
PTR = PTR + 2 in PUM), then continues emulating beginning with statement #23 
(the insertion is made any time emulation reaches statement #21): 

GO FROM .START Till #21 EXECUTED 
REPEAT 

ICE-86A 



ICE-86A ICE-86A Enhancements 

IF !MARK >0 
!PTR = !PTR + 2 

ENDIF 
GO FROM #23 

ENDR 

An exit can be made only when a condition is tested, not when it occurs. To cause an 
exit, the test must be placed at the point in the loop where the condition occurs. For 
example, consider the following command sequence: 

CS = SEG .START 

IP = OFF .ST ART 

REPEAT 
UNTIL IP = 1000H 
STEP 

ENDR 

In this command the condition IP = lOOOH is tested after every STEP. If the 
sequence of STEPs reaches IP = lOOOH as the next instruction, the loop will ter­
minate. By contrast, consider this example: 

CS = SEG .START 
IP = OFF .ST ART 

REPEAT 
UNTIL IP = 1000H 
COUNT 10 

STEP 
ENDC 

ENDR 

In the second example, the condition IP = lOOOH is tested after every ten STEPs. 
The loop exits only if IP = lOOOH occurs at the end of some group of ten instruc­
tions. If IP = lOOOH occurs during one of the groups of ten STEPs, the loop does 
not terminate because that condition is changed by subsequent STEPs before the test 
can be made. 

If the command has more than one exit clause, each exit clause is tested when it is 
encountered. If the result at the moment of the test causes an exit, the loop ter­
minates; otherwise, the loop proceeds to the next element. 

The loop exits only when the current test causes it, even though some other clause in 
the loop would cause an exit if it could be tested at that moment. Consider this 
(artificial) example: 

DEFINE .ZZ = 0 
CS=O 
IP =0 
REPEAT 

UNTIL IP > 10H 
COUNT5 
STEP 
ENDC 
PRINT -10 

WHILE .ZZ=O 
.zZ = .ZZ + 1 

ENDR 

Assume for this example that the code being emulated (with STEP) contains only 
two-byte instructions. Then, after the first time through the loop, IP = OAH (lOT) 
and .ZZ = 1. On the second iteration, the test IP > lOH is FALSE when it is 

8-7 



ICE-86A Enhancements 

8-8 

encountered, so the STEP and PRINT commands are executed again. At this point, 
IP > lOH is TRUE but since it is not tested, no exit occurs. Instead, the condition 
.ZZ = 0 is tested, found to be false, and the loop exits. 

Macro Commands 

A macro is a block of commands. When a block of commands is defined as a macro, 
it is stored on diskette so that it can be executed more than once without having to 
enter the commands each time. The macro commands described in this chapter 
allow you to perform the following functions: 

• Define a macro, specifying the macro name, the command block, and any 
formal parameters (points where text can be filled in at the time of the macro 
call) . 

• Invoke (call) a macro by name, giving actual parameters to fill in the blank 
fields in the macro definition, to begin the execution of the command block. 

• Display the text of any macro as it was defined. 

• Enable or disable the display of the text of macros when they are invoked. 

• Display the names of all macros currently defined. 

• Remove one or more macros. 

• Save one or more macro definitions on an ISIS-II file. 

In addition, the off-line facility (INCLUDE command) allows you to enter macro 
definitions from diskette files for use in the current test sequence. 

Defining and Invoking Macros 

Each macro is defined once in the test session. The syntax of the DEFINE MACRO 
(DEF MAC) command is as follows: 

DEF MAC macro-name cr 
[commandcr] ... 

EM 

Once it is defined, you can invoke (call) a macro as often as desired. The syntax of a 
macro call is: 

:macro-name [actual-para meter-list 1 

The macro definition command causes the macro name and block of commands to 
be stored in a table of macro definitions in a temporary ISIS-II file named 
MAC. TMP. (This file is removed by the ICE EXIT command). 

/WARNINGI 

If you have a file on the ICE diskette named MAC. TMP, it will be lost 
when you enter the ICE-86A emulator. 

A macro-name must begin with an alphabet letter, or with one of the character "?" 
or "@" . The characters after the first character can be alphabet letters, "?", "@", 
or numeric digits. The macro name must not duplicate a previously-defined macro 
name. 

A macro definition may not appear within any other command (REPEAT, 
COUNT, IF, or another macro definition). The command block in the macro defini­
tion can include any command except another DEF MAC command or a REMOVE 
MACRO command. 

ICE-86A 



ICE-86A ICE-86A Enhancements 

The macro name in the macro invocation must be the name of a previously-defined 
macro. The form of actuaJ-parameter-list is discussed later in this chapter. 

Here is a simple macro definition: 

DEFMACGOER 
REPEAT 

GO FROM .ST ART TILL BRO 
END 

EM 

To invoke this macro and cause its command block to begin executing, enter the 
macro name preceded by a colon (:). For example: 

:GOER 

A macro definition can include calls to other macros, but a macro cannot call itself 
recursively. Any macros called from within a macro must have been defined when 
the calling macro is invoked. Macro calls can be nested; i.e., one macro calls 
another, which calls another, and so on. The level of nesting is limited only by the 
memory space required to contain the macro expansions and "stack" the macro 
calls. 

When a macro is called as an outer level command, the following operations occur: 

• System default (SUFFIX) is saved in case a new default is set inside the macro. 

• The text of each actual parameter in the call is substituted for the corresponding 
formal parameter in the definition. 

• The expanded command block is executed if all commands are valid as 
expanded. 

• When the last command has finished, the former system default is restored. 

• The macro exits. Control returns to the console (asterisk prompt). 

The next several sections provide details on these operations, including the treatment 
of nested macro calls. 

Local and Global Defaults 

The system default can have a "local" setting within a macro; this default is as 
follows: 

Default Refers to: 

SUFFIX Default radix for console input. 

When a macro is called (or any compound command is executed), the current 
"global" setting of SUFFIX is saved so that it can be restored after the macro 
finishes executing its commands. The global default continues in effect within the 
macro unless and until a new (local) default is set with a SUFFIX command in the 
macro. Defaults other than SUFFIX are changed globally when they are set within a 
macro. 

When the macro finishes executing its command block, the previous SUFFIX 
default is restored. Thus, any SUFFIX default that is set within a macro has no 
effect after that macro has exited. 

il-

8-9 



lCE-86A Enhancements 

8-10 

Here is an (artificial) example of a macro with a local default: 

DEF MACSETO 
SUFFIX = H 
BYTE 0 TO 10 = 0 

EM 

Without the local SUFFIX command, the range of addresses to be set would depend 
on the global SUFFIX in effect when the macro SETO is called. The global SUFFIX 
is restored after SETO exits. 

Formal and Actual Parameters 

A formal parameter marks a place in an ICE command where vadable text can be 
"filled in" when the macro is called. A formal parameter can represent part of a 
token or a field of one or more tokens. A macro definition can contain up to ten for­
mal parameters. A formal parameter has the form: 

%n 

where n is a decimal digit, 0 to 9. 

Formal parameters can appear in the macro definition in any order, and each one 
can appear any number of times. In most cases, the formal parameters form a com­
plete numeric sequence with 0700 as the lowest numbered parameter (even if % is not 
the first parameter to appear). However, one or more parameters can be omitted 
from the sequence; the effect of omitting a formal parameter from the sequence is to 
ignore the actual parameter in the call that corresponds to the omitted formal 
parameter. 

The macro call can contain as many actual parameters as desired. Enter multiple 
parameters as a list, with entries separated by commas. The first actual parameter in 
the list is substituted at all points that %0 appears in the macro definition; the 
second parameter substitutes for % 1, and so on. 

An actual parameter can be "null", causing the ICE emulator to substitute a null 
for the formal parameter to which it corresponds. You can pass a null parameter to 
a macro in two ways: 

• Enter no actual parameter between consecutive commas. 

• Omit one or more parameters from the end of the list. 

If too few actual parameters are entered, the ICE emulator supplies nuBs for the 
extra formal parameters. If too many actual parameters are entered, the extra actual 
parameters are ignored. 

If any actual parameter contains a carriage return, a comma, or a single quote mark, 
the entire parameter must be enclosed in single quotes to identify it as a single actual 
parameter. In other words, parameters with these characters must be entered as 
strings. A single quote within a string is entered as ("). 

Here are some examples to demonstrate the use of formal and actual parameters: 

Example 1: 

DEFMACMEM 
%OINTEGER%1 

EM 

ICE-86A 



ICE-86A ICE-86A Enhancements 

In the call to this macro, parameter OJoO can become "S" or null. Parameter OJo 1 can 
be any valid address or partition. Examples of calls to this macro: . 

Macro call 

:MEM S, 1000H 
:MEM, 1000H TO 100FH 

Example 2: 

DEF MAC RPT 
REPEAT 

%0 
%1 
%2 
%3 
%4 
%5 
%6 
%7 
%8 
%9 

END 
EM 

Expansion 

SINTEGER 1000H 
INTEGER 1000H TO 100FH 

Macro RPT can accept up to ten commands to be repeated. For example: 

:RPT GO TILL BRO, PRINT -1, REGISTERS, GO TILL BR1, PRINT -10 

If fewer than ten commands are given, as in the example above, the extra formal 
parameters are ignored (treated as nulls). This shows how to do REPEAT on one 
line with no end required. 

Example 3: 

DEFMAC BRS 
BR%0=%1 

EM 

Use of macro BRS may require parameters entered as strings, since some ways to set 
breakpoints involve embedded commas. For example: 

:BRS 0, 1000H EXECUTED 

This parameter is vali~, but this one: 

BRS 0, FFH, .START LEN l00H 

. results in the expansion: 

BR\}= FFH 

To obtain the correct expansion, make the parameter a string: 

:BRSO, 'FFH, .STARH_EN100H' . 
This results in the expansion: 

BRQ:= FFH, .. START LEN:100H 

8-11 



ICE-86A Enhancements 

8-12 

Details on Macro Expansion 

The syntax and semantics of commands in a macro block are ignored at the point of 
definition; they are not determined until invocation, and may be different on each 
invocation through the use of formal parameters. 

When a macro is called, its definition is expanded by adding the text of any actual 
parameters in the call at the points indicated by formal parameters in the definition. 
If the expanded macro contains any calls to other macros, the text of any such 
macros is also expanded, forming in effect one overall block of commands. Expan­
sion continues until the last EM is reached. If the expansion results in a set of 
complete, valid commands, the commands are executed. An error results if any 
command is incomplete or invalid after expansion. 

A macro invoked in a REPEAT, COUNT, or IF command is expanded immediately 
after the macro call command is entered. Thus, a macro called in a REPEAT or 
COUNT command is expanded only once, and a macro called in an IF command is 
expanded whether the condition in the IF or ORIF clause that contains the macro 
call is TRUE or FALSE. 

The ENABLE/DISABLE EXPANSION Command 

The ENABLE/DISABLE EXPANSION command controls the display of macros 
after they have been called. If EXPANSION is enabled, the fully-expanded macro is 
displayed when it is invoked. If EXPANSION is disabled, then no display occurs. A 
macro that is not displayed when it is invoked is termed a "silent" macro. 

EXPANSION is initally disabled. The state of EXPANSION does not affect the 
execution of macros, i.e., execution occurs if there are no syntax errors, regardless 
of whether EXPANSION is enabled or disabled. The syntax of the command is: 

ENABLE 
DISABLE 

Examples: 

EXPANSION 

'ENABLE EXPANSION 
'DISABLE EXPANSION 

Macro Table Commands 

The macro table contains the name and text of all macros currently defined. The text 
is stored as it is defined, and does not contain any expansions. 

The DEFINE MACRO (DEF MAC) command adds the macro defined to the end of 
the table. The syntax of this command appears earlier in this chapter. The DEF 
MAC command may not appear with any other command. 

The REMOVE MACRO (REM MAC) command removes one or more macro 
definitions from the table. The syntax of this command is: 

REM MAC [macro-name [,macro-name] ... ] 

If the list of macro-names is omitted, all macros are removed. The REM MAC com­
mand may not appear within any other command. 

ICE-86A 



lCE-86A ICE-86A Enhancements 

The display macro command displays the name and definition of one or more 
macros from the macro table. The syntax is: 

MAC [macro-name),macro-name) ... ) 

If the list of macro-names is omitted the definitions of all macros in the table are 
displayed. 

The macro directory command displays the names of all macros in the table. The 
syntax is: 

DIRMAC 

Here are some examples of these commands (assume that the table contains all the 
macro examples defined thus far in this chapter): 

Example 1: 

*DIR MAC 
GOER 
SETO 
MEM 
RPT 
BRS 

Example 2: 

*MACGOER 
DEFMACGOER 
REPEAT 
GO FROM .ST ART TILL BRO 
END 
EM 

Example 3: 

REM MACBRS 

Example 4: 

*DIR MAC 
GOER 
SETO 
MEM 
RPT 

ExampleS: 

*DEF MAC NULL 
"EM 

Example 6: 

*DIR MAC. 
GOER 
SETO 
MEM 
RPT 
NULL 

(command) 
(display) 

(command) 
(display) 

(command) 

(command) 

(command) 

(command) 
(display) 

8-13 



ICE-86A Enhancements 

8-14 

Saving Macros 

The PUT MACRO (PUT MAC) command causes one or more macro definitions to 
be copied from table to an ISIS-II diskette file. The syntax is: 

PUT [:drive:] filename MACRO [macro-name [,macro-name] ... ] 

If any macro names are entered, those macro definitions are saved. If no list of 
macro names is given, all macros in the table are saved. The definitions in the macro 
table are not affected by the operation. 

The file containing the saved macro can later be edited or brought into another ses­
sion with the INCLUDE command, discussed later in this chapter. 

If the named file does not exist, it is created by the PUT command. If the file does 
exist on the diskette, the file is opened for input and the macros in the list are written 
on the file, destroying the previous contents of that file. 

Further Examples 

Here are a few more examples of macros. These macros simulate stack operations, 
calis, and returns in the ICE-86A emulator. 

A stack is an area of memory, indexed (addressed) by a register called the stack 
pointer (SP) and stack segment register (SS). The stack is used to save status 
information required for an orderly return from a procedure call. 

In the ICE-86A emulator, the stack is in mapped memory. The bottom (first 
available location) is the highest address in the stack area; the stack expands as 
needed into successively lower addresses. The stack pointer points to the address 
(word) at the top of the stack; this address contains the last item pushed on the 
stack. As each new word is pushed on the stack, SP is decremented to point to the 
new top address. Most of the values that need to be saved on the stack are 16-bit 
values. The high byte is stored in the address pointed to by (SS:SP -- 1), and the low 
byte is stored in the next lower address (equivalent to SS:SP - 2). 

The MCS-86 assembly language PUSH rp instruction sets SP to the next available 
word, then stores the content of the given register pair rp in adjacent addresses at 
that position. We can simulate this action with a macro, as follows: 

DEF MAC PUSH86 
SP = SP - 2T 

WORD SS:SP =%0 
EM 

;decrement SP 
;Iow byte in low address, high byte in 
high address. 

The formal parameter 0,100 lets us use PUSH86 to save any register pair or other 
16-bit value; for example: 

:PUSH86IP 
:PUSH86 RAX 
:PUSH86 RBX 
:PUSH86 RCX 

;save instruction register 
;save RAX 
;save RBX 
;save RCX 

The complementary MCS-86 POP rp instruction copies the contents of the two top 
bytes back into the given register pair, then increments SP to the new top of the 
stack. A macro for this function is: 

DEF MAC POP86 
%0 = WORD SS:SP 

ICE-86A 



ICE-86A ICE-86A Enhancements 

SP=SP + 2T 
EM 

Here are some calls to POP86, corresponding to the PUSH86 calls given earlier: 

:POP86 RCX 
:POP86 RBX 
:POP86 RAX 
:POP86IP 

Here are some macros that use PUSH86 and POP86. 

I. Macro to "call" (short-call) a procedure: 

EM 

DEF MAC CALL86 
:PUSH86IP 
GO FROM CS:%O 

This macro can be invoked with or without a halt condition: 

:CALL86 .PROC or 
:CALL86 .PROC TILL BRO 

2. Macro to "call" (long-call) a procedure: 

DEF MAC LCALL86 
:PUSH86CS 
:PUSH86IP 
GO FROM "/00 

EM 

To invoke this macro: 

: LCALL86 .PROC or 
:LCALL86 .PROC TILL BR1 

3. Macro to "return" (short-return) from a procedure: 

DEF MAC RET86 
:POP86IP 
GO%O 

EM 

To invoke this macro: 

:RET86 or 
:RET86 TILL BRO 

4. Macro to "return" (long-return) from a procedure: 

DEF MAC LRET86 
:POP86IP 
:POP86CS 
GO%O' 

EM 

To invoke this macro: 

:lRET86or 
:LRET86 TILL BRO 

5. Macro to single-step through user code, skipping over a specified procedure 
whenever that procedure is called from the user program, and printing the 
instruction just executed each time. 

DEF MACRO SKIP 
REPEAT 

IFCS:IP=%O 
:POP86Ip· 

ENDIF 
(short-called procedure) 

8-15 



ICE-86A Enhancements 

8-16 

STEP 
PRINT-1 

ENDR 
EM 

DEF MACRO LSKIP 
REPEAT 

IFCS:IP=%O 
:POP86IP 
:POP86CS 

ENDIF 
STEP 
PRINT-1 

ENDR 
EM 

(long-called procedure) 

Suppose the user program contains a respective timer routine named DELAY that is 
called from several places in the program. The following macro invocation causes 
the ICE emulator to step through the program without emulating the timer routine: 

:SKIP .DELAY 

Off-line Facilities 

In addition to the compound and macro commands described above, the INCLUDE 
command allows you to access macro definitions stored in diskette files and to cause 
them to be executed from these files rather than the console. 

INCLUDE Command 

The INCLUDE command causes input to be taken from the file specified until the 
end-of-file, at which point input continues to be taken from the previous source, 
normally the console. 

The syntax of the INCLUDE command is: 

INCLUDE { l:dri~e:l filename} 
:devlce: 

Nesting of INCLUDE command is permitted. For example: 

IP= .START 
REPEAT 

UNTIL IP = .HALT 
INCLUDE PROGA.lNC 

INCLUDE PROGB.INC 
ENDR 

The console (:CI:) may be given as the filename, in which cases control-Z must be 
used as end-of-file. The files are echoed on the console. 

As macros can be complex and editing may be required on the macro definition, the 
INCLUDE command allows you to access offline macro definitions and to create 
online macros, which combine to form the macro suite for a particular debugging 
session. However, command lines may appear in the INCLUDE file, not just macro 
definitions. 

ICE-86A 



ICE-86A ICE-86A Enhancements 

Write Command 

The WRITE command writes one or more list elements to the console and to the list 
file at run time. 

The syntax of the WRITE command is: 

WRITE list-element [,list-element] 

where 

list-element;: string:: expr :: BOOl expr 

For example: 

WRITE $CTIME, 'SECONDS SINCE LIGHT CHANGE' 

would output a message showing the time in seconds (in CARS2) (see Chapter 3) 
since the traffic light changed. 

This command writes the list-element (s) to the console all on the same line except 
when the nest-element will not fit into the remaining character space on the current 
line. In this event, a carriage return and a line feed will be inserted. If the list-element 
is a string, it will be displayed. If the list-element is an expr, the value of the expres­
sion is displayed in the current base. A single character string is displayed as a string. 
When a single character string is used in an expression, its corresponding hexa­
decimal value is used in evaluating the expression, and the value of the expression is 
displayed. 

If the list-element is BOOL expr, the ICE emulator displays the boolean value 
TRUE when the least-significant bit (LSB) of the result is 1, FALSE when the LSB is 
0; no spaces are provided either before or after the boolean value. 

The WRITE command can also be used to display values which are typed as REAL, 
DREAL, or TREAL. 

For example: 

• REA 2010 = 1.23E-5 

'WRITE REA 2010 
+ 1.23000000E-5 

8-17 





ABSOLUTE ........... ABS 
ACKNOWLEDGE ..... ACK 
ADDR ................ ADD 
AFL .................. AFL 
ALL .................. ALL 
AND ................. AND 
ASCII ................. ASC 
ASM ................. ASM 
BASE ................. BAS 
BHE .................. BHE 
BOOL ................ BOO 
BP ..................... BP 
BR ..................... BR 
BRO ................... BRO 
BRI ................... BRI 
BUFFERSIZE .......... BUF 
BUS ................... BUS 
ByTE ................. BYT 
CAUSE ............... CAU 
CFL. .................. CFL 
CLOCK ............... CLO 
CONDITIONALLY .... CON 
CONTINUOUS ........ CON 
COUNT ............ COU.C 
CS ..................... CS 
DASM .............. DASM 
DEFINE ............... DEF 
DFL .................. DFL 
DI ...................... DI 
DIR ................... DIR 
DISABLE .............. DIS 
DISK .................. DIS 
DMUX ............... DMU 
DOMAIN ............. DOM 
DOWN ............... DOW 
DREAL ............... DRE 
DS ..................... DS 
ELSE .................. ELS 
EM .................... EM 
EMULATIONTIME .... EMU 
EMULATOR .......... EMU 
ENABLE .............. ENA 
END .................. END 
ERROR ............... ERR 
ES ...................... ES 
EVALUATE ........... EVA 
EXECUTED ......... EXE.E 
EXIT .................. EXI 
EXPANSION .......... EXP • 
EXT ADDR ............ EXT 
EXTERNAL ........... EXT 
FETCHED ............. FET 
FLAG ................. FLA 
FOREV~R ............. FOR 
FRAME ............... FRA 
FROM .............. FRO.F 
GO ...................... G 
GR ...................... G 
GUARDED ........... GUA 
H ....................... H 
HALT .............. HAL.H 
HARDW ARE ......... HAR 

APPENDIX A 
ICE-86ATM KEYWORDS 

AND THEIR ABBREVIATIONS 

HOLD ................ HOL RAL .................. RAL 
HTIMER .............. HTI RAX ................. RAX 
ICE ................... ICE RBH .................. RBH 
IF ....................... IF RBL .................. RBL 
IFL .................... IFL RBX .................. RBX 
INCLUDE ............. INC RCH ................. RCH 
INFINITE .............. INF RCL .................. RCL 
INPUT ............... INP.I RCX .................. RCX 
INSTRUCTION ... " .... INS RDH ................. RDH 
INTEGER .............. INT RDL .................. RDL 
INTELLEC ............ INT RDX ................. RDX 
INTERNAL ............ INT RDY .................. RDY 
IP ...................... IP READ .............. REA.R 
IR ...................... IR REAL ................. REA 
LENGTH .............. LEN REGISTER .......... REG.R 
LINE .................. LIN REMOVE ............. REM 
LIST ................... LIS REPEAT .............. REP 
LOAD ................ LOA RESET ................ RES 
LOWER .............. LOW RF ..................... RF 
MACRO .............. MAC RQGT ............... RQGT 
MAP ................. MAP RST ................... RST 
MARK ............... MAR RWTIMEOUT ......... RWT 
MASK ................ MAS SAVE ................. SAV 
MATCH .............. MAT SEGMENT ............ SEG 
MN .................... MN SELECTING ........... SEL 
MOD ................. MOD SFL ................... SFL 
MODULE ............ MOD SI ....................... SI 
MOVE ............. MOV.M SINTEGER ............. SIN 
NESTING ............. NES SP ...................... SP 
NEWEST ........... NEW.N SS ...................... SS 
NMI .................. NMI STACK ................ STA 
NOCODE ............. NOC STEP ................ STE.S 
NOERROR ............ NOE STS ................... STS 
NOLINE .............. NOL SUFFIX ............... SUF 
NOSYMBOL. .......... NOS SyMBOL ............. SYM 
NOT .................. NOT SYMBOLICALL Y ...... SYM 
NOVERIFY ........... NOV T ........................ T 
NOW ................ NOW TEST .................. TES 
OBJECT ............... OBJ TFL ................... TFL 
OF ..................... OF THEN ................ THE 
OFF ................... OFF TILL ................ TIL.T 
OFFSET ............... OFF TIMER ................ TIM 
OFFTRACE ........... OFF TO ..................... TO 
OFL .................. OFL TRACE ............... TRA 
OLDEST ............ OLD.O TREAL ............... TRE 
ON .................... ON TyPE ................. TYP 
ONTRACE ............ ONT UNTIL. ............... UNT 
OPCODE ............. OPC UP ..................... UP 
o R UPPER ............... UPP 
ORIF .................. ORI USE ................... USE 
OUTPUT ........... OUT.O USER ................. USE 
PFL. .................. PFL VALUE ............... VAL 
PIN ................... PIN WHILE ............... WHI 
PIP .................... PIP WORD ............... WOR 
POINTER .............. POI WPORT .............. WPO 
PORT ................. POR WRITE ............... WRI 
PRINT ............... PRI.P WRITTEN .......... WRI.W 
PUT .................. PUT XOR ................. XOR 
Q ....................... Q Y ........................ Y 
QDEPTH ............. QDE ZFL ................... ZFL 
QSTS ................. QST 86 ....... , ............... 86 
RAH ................. RAH 87 ....................... 87 

A-I 





APPENDIX B 
ERROR MESSAGES 

The following is a list of error messages. 

ERR 10:RSLTS BLK INACCESSIBLE 
A bus timeout was detected on an attempt to write the results block. 

ERR 11:XMIT BLK INACCESSIBLE 
A bus timeout was detected on an attempt to read the transmit block. 

ERR 16:DVC CD FORMAT ERROR 
The format byte of device code table was determined to be non-zero. 

ERR 17:DVC NOTIN DVC CD TABLE 
A device code corresponding to this ICE was not found in the device code table. 

ERR 21 :COMMAND NOT ALLOWED NOW 
The command code in the parameter block cannot be processed at this time. 

NOTE 

This error can occur after pressing the ESC key if the buffer box is 
not properly grounded to the user system via the buffer box 
grounding cable. 

ERR 30:PGM MEMORY FAILURE 
Data read back from program memory did not agree with data written. 

ERR 31:DATA MEMORY FAILURE 
Data read back from data memory did not agree with data written. 

ERR 32:BREAKPOINT MEM FAILURE 
Data read back from breakpoint memory did not agree with data written. 

ERR 33:MEMORY MAP FAILURE 
Data read back from memory map did not agree with data written. 

ERR 34:CABLE FAILURE 
Cable diagnostic program detected a failure in the cable. 

ERR 35:CONTROL CIRCUIT FAILURE 
Control diagnostic program detected a failure in the control circuitry (see 
note 1). 

ERR 36:PAGE FAULT 
Not an error. Access was made to disk mapped memory and firmware doesn't 
have page containing that location. 

ERR 37:INTELLEC MEMORY FAILURE 
Intellec memory does not verify when written to: it may be missing, non­
writable, or bad memory. 

ERR 40:NO USER CLOCK 
In external clock mode, the CPU clock is not present. 

ERR 41 :NO USER VCC 
In external clock mode, the user V cc is not present. 

B-1 



Error Messages 

8"2 

ERR 42:GUAROED ACCESS 
Access was made to a guarded memory or 110 location. 

ERR 43:PROCESSOR NOT RUNNING 
In external clock mode, the user ready signal is not present. 

ERR 48:READY TIMEOUT 
In external clock mode with timeout on ready selected, a command timeout 
occurred. 

ERR 49:HOLD SEQUENCE ERROR 
A hold request was initiated and removed before hold ACK became active (see 
note 2). 

ERR 4A:HOLD TIMEOUT 
Cannot exit emulation or examine user memory because hold is inactive too 
long in the user system (see note 1). 

ERR 4B:RESET TIMEOUT 
Cannot exit emulation because reset is inactive (see note 1). 

ERR 80:SYNTAX ERROR 
The token flagged is not one that is allowed in the current context. 

ERR 81 :INVALID TOKEN 
The token flagged does not follow the rules for a well-formed token. 

ERR 82:NO SUCH LINE NUMBER 
The specified line number does not exist in the current module. 

ERR 83:INAPPROPRIATE NUMBER 
The value is not appropriatein the current context. 

ERR 84:PARTITION BOUNDS ERROR 
The partition values entered in a command are not correct. Either the left part 
of the partition is greater than the right part, or the values of the partition 
extremes are out of range in the current context. 

ERR 85:ITEM ALREADY EXISTS 
The item entered in a define command is currently defined in the symbol table. 

ERR 86:ITEM DOES NOT EXIST 
The item printed on the preceding line does not reside in the symbol table. 

ERR 87:DUPLICATE CHANNEL 
The channel specified appears more than once in a channel list. 

ERR 88:MACRO PARAMETER ERROR 
Too many macro parameters or macro parameter too long. 

ERR 89: MISSING CR-LF IN FILE 
Include file doesn't end in carriage-return line-feed. 

ERR 8A:FORMAT ALREADY EXISTS 
The format specified in a define command is already defined. 

ERR8B:FORMAT DOES NOT EXIST 
The format specified has not been defined. 

lCE-86A 



ICE-86A Error Messages 

ERR 8C:CO'MPARE MODE NOT ACTIVE 
Find command was issued while compare trace mode was not active. 

ERR 8D:EMPTY TRACE BUFFER 
Trace buffer is uninitialized. 

ERR 8E:INVALID TRACE REFERENCE 
Trace reference made while trace buffer uninitialized. 

ERR 8F:NON-NULL STRING NEEDED 
A null string was used where a non-null string is required. 

ERR 90:MEMORY OVERFLOW 
Memory requirements of all dynamic tables exceed the amount of memory 
available. 

ERR 91 :ST ACK OVERFLOW 
The capacity of a statically allocated stack internal to the diagnostic program 
has been exceeded. 

ERR 92:COMMAND TOO LONG 
The capacity of the statically allocated intermediate code buffer has been 
exceeded. 

ERR 93:MODULE DOES NOT EXIST 
Module specified does not exist in symbol table. 

ERR 94:NON-CHANGEABLE ITEM 
An attempt was made to change an item that may not be changed. 

ERR 95:INVALID OBJECT FILE 
File specified in a load command is not a valid object file. 

ERR 96:INVALID WITHIN ACTIVATE 
The command is not valid within an activate block. 

ERR 97:EXCESSIVE DATA 
The amount of data attempted to be inserted into a partition exceeded the size 
of the partition. 

ERR 98:MORE THAN 16 CHANNELS 
More than 16 channels specified in a channel list. 

ERR 99:EXCESSIVE ITERATED DATA 
The amount of data to be repeated throughout a range of memory exceeds the 
size of the buffer allocated to hold such data. 

ERR 9A:TOO MANY GROUPS 
Number of groups defined by user may not exceed 43. 

ERR 9B:TOO MANY CHANNELS 
Number of channels defined by user may not exceed 128. 

ERR 9C:UNSUITABLE EXECUTE FILE 
The file referenced in an execute command either contains code that is out-of­
bounds for the execute command, or it is a main module. 

ERR 9D:LlNE TOO LONG 
Command line was longer than 122 characters. 

B-3 



Error Messages 

B-4 

ERR 9E:HOST-ONLY COMMAND 
The command issued is not allowed in an activation list. 

ERR 9F:PROCESS ALREADY ACTIVE 
Attempt made to activate a process that was already active. 

ERR AO:TOO MANY PARTITIONS 
Number of partitions or single breakpoints in a breakpoint register exceed max­
imum permissible value. 

ERR A1 :PARTITION CROSSES PAGE 
Breakpoint partition was not contained on a single page. 

ERR A2:ILLEGAL CLOCK VALUE 
Value specified for clock is not a permissible value. 

ERR A3:PROCESS ALREADY DORMANT 
Attempt made to suspend or terminate a dormant process. 

ERR A4:MACRO FILE FULL 
Macro file contains more than 64K characters. 

ERR A7:INAPPROPRIATE TYPE 
The type and value entered are inconsistent. Note: Error A7 displayed the string 
"POINTER VALUE REQUIRED" in previous 8086 emulators. 

ERR A8:INTEGERVALUE REQUIRED 
A non-integer (i.e., pointer with non-zero base) value was used in a context that 
must use an integer. 

ERR A9:CANNOT REDECLARE MAP 
An attempt was made to declare the disk map after it was already declared-the 
map must be reset in order to redeclare. 

ERR AA:MEMORY UNAVAILABLE 
The Intellec or disk memory explicitly given in a set-map command was never 
declared, or no explicit memory was given and there is no more Intellec, disk, or 
ICE memory available for ICE-86A to assign. 

ERR AC:TAKES TOO MANY BRS 
A match condition was given that requires more breakpoint registers than is 
allowed in the current context; either it required more than one register in a set 
breakpoint command, or required more than two registers in a till clause. 

ERR AD:DIFFERING BASES 
Two pointers with different bases were used in a context where they must have 
the same base, e.g., the lower and upper bounds of a partition. 

ERR AE:INVALID "AND" IN GO-REG 
The GO-register is "TILL BRO AND BRI" during a GO command, but either 
(1) BRO or BRI contains an execution-type match condition, or (2) BRO con-
tains a data-time condition and BRI contains an address-time condition. ~ 

ERR B2:INVALID BASE 
The base used in the display breakpoint/tracepoint command is out of range for 
part or all of the addresses in the register (e.g., "BRO BASE 0" when BRO con­
tains address 10000H). 

ERR B3:SYMBOL HAS NO TYPE 
A symbol being used in a typed memory reference (e.g., "!X") has no type. 

ICE-86A 



ICE-86A Error Messages 

ERR B5:BLOCK IS EMPTY 

ERR BB:INVALID REAL NUMBER 
The syntax of the real number is incorrect. 

ERR BC:REAL NUMBER TOO LONG 
The real number had greater than 30 digits of mantissa without an exponent or 
greater than 25 digits of mantissa with an exponent. . 

ERR BD:EXPONENT TOO LARGE 
The exponent generated for a real number was greater than the 4 digits allowed. 

ERR BE:MIXED REAL TYPES 
REAL, DREAL, and TREAL values were mixed illegally, e.g., REA 1000 = 
TRE2000. 

ERR BF:REAL NUMBER OVERFLOW 
A real number that was not in the allowed range for reals was generated by the 
system or entered by the operator. The memory is not modified if this error 
occurs. 

WARN CO:UNSATISFIED EXTERNALS 
The program just loaded contains externals which were not satisfied at link 
time. The program was loaded correctly except for references to the unsatisfied 
externals. 

WARN C1:MAPPING OVER SYSTEM 
The user has modified the map so that part of his address space includes either 
the ISIS system or the GID software package. 

WARN C2:HARDWARE MISSING 
An attempt was made to initialize the device whose generic device code number 
is printed on the previous line but no device responded. A generic device code is 
the first of four consecutive device codes reserved for a specific type of device. 

WARN C3:MUL TIPLE HARDWARE 
An attempt was made to initialize the device whose device code number is 
printed on the previous line but more than one device responded. 

WARN C4:INVALID "AND" IN GR 
The GO-register is as described for ERR AE after GR, BRO or BRI was 
changed. 

WARN C5:INTELLEC MEM FAILURE 
The Intellec memory whose physical segment number is on previous line does 
not verify when written to: it may be missing, non-writable, or bad memory. 

WARN C6:HARDWARE REINITIALIZED 
The hardware has been reinitialized, setting trace buffer to 0, i.e., no data is in 
the trace buffer. 

WARN C7:CLEARING TFL TO 0 

WARN C8:REINITIALIZING-FAUL T 
The hardware is being reinitialized 

ERR E7:ILLEGAL FILENAME [4] 

B-5 



Error Messages 

B-6 

ERR E8:ILLEGAL DEVICE [5] 
Illegal or unrecognized device in filename. 

ERR E9:FILE OPEN FOR INPUT [6] 
Attempt to write to a file open for input. 

ERR EB:FILE OPEN FOR OUTPUT [8] 

ERR EC:DIRECTORY FULL [9] 

ERR EE:FILE ALREADY IN USE [11] 

ERR EF:FILE ALREADY OPEN [12] 
Attempted to open a file that was already open. 

ERR FO:NO SUCH FILE [13] 
The file specified does not exist. 

ERR F1 :WRITE-PROTECTED FILE [14] 
Attempt to open a write-protected file for the purposes of writing data into it. 

ERR F3:CHECKSUM ERROR [16] 
A checksum error in a hex object file was encountered during loading. 

ERR F6:DISK FILE REQUIRED [19] 
Attempt to use a non-diskette file where a diskette file was required. 

ERR F9:ILLEGAL ACCESS [22] 
Attempt to open a read-only file for the purposes of storing data (i.e., specify­
ing :CI: as the list device) or a write-only file as a source of data (i.e., :LP: in a 
load command). 

ERR FA:NO FILENAME [23] 
No filename specified for a diskette file (i.e., no filename following :FI :). 

ERR FD:"DONE" TIMED OUT 
The device whose device code number is printed on the preceding line was 
invoked but failed to return done within 5 seconds. 

ERR FE:"ACKNOWLEDGE" TIMED OUT 
ICE-86A software attempted to pass information to ICE-86A hardware, but the 
hardware did not respond by setting the acknowledge flag of the parameter 
block within 5 milliseconds. Specifically, ICE-86A firmware did not 
acknowledge receipt of the command in time. 

ERR FF:NULL FILE EXTENSION [28] 
A file was specified so as to contain an extension but no extension was specified. 

Note I. If error 35, 4A, or 4B occurs during emulation, hardware will be reset as if a 
RESET HARDWARE was executed. The emulation will not be recoverable 
as all registers will be set to the values they contained at the beginning of 
emulation. Warning message C6 may be issued. 

Note 2. Error 49 will cause emulation to exit properly and warning message C6 will 
be issued. 

Note 3. Bracketed number following error message refers to the ISIS error 
identified by this number. 

ICE-86A 



lCE~A Error Messages 

Note 4. Error messages other than those documented in this list should not occur . If 
you encounter suchan error, please report it to Intel Corporation, 3065 
Bowers Avenue, Santa Clara, CA 95051 MCSD, Customer Marketing, or 
your local Field Application Engineer. 

B-7 





APPENDIX C 
ICE-86ATM COMMAND SYNTAX SUMMARY 

Command Summary 

debug session'" [top-level command cr] ... 

top-level command'" define macro command:: remove macro command:: command 

command'" compound command:: simple command 

compound command'" if command:: repeat command:: count command:: write command 

simple command'" display break/trace command:: set break/trace command:: 
go command:: step command:: go-register command:: 
enable/disable trace command:: trace command:: oldest command:: 
newest command:: print command:: move command:: clock command:: 
command signal timeout command:: enable/disable ready command:: 
display command:: change command:: define command:: 
display symbols command:: display lines command:: 
display modules command:: change symbol command:: 
remove symbols command:: set domain command:: 
reset domain command:: display map command:: 
declare map command:: set map command:: reset map command:: 
load command:: save command:: suffix command:: base command:: 
evaluate command:: list command:: exit command:: 
reset hardware command:: display macro command:: 
put macro command:: dir command:: include command 
enable/disable symbolically command :: enable/disable expansion command:: 
disassembly command:: define dasm command:: set/display rqgt command:: display 
bus command:: display cause command 

Expressions 

expr == boolean term [or-op boolean term] ... 

or-op == OR :: XOR 

boolean term ==boolean factor [AND boolean factor) ... 

boolean factor == [NOT] boolean primary 

boolean primary == arith expr [rel-op arith expr] 

rel-op == < :: > :: <= :: >= :: <> :: = 

arith expr == memory reference:: port name:: address 

address == arith term [MASK arith term] ... 

arith term == term [plus-op term) ... 

plus-op'" + ::-

term == factor [mult-op factor] ... 

mu/t-op ==':: I:: MOD. 

factor == [plus-op] [segment-op] primary 

segment-op == primary: :: OFFSET:: SEGMENT 

primary == (expr) :: numeric constant:: source statement number:: string:: 
symbolic reference:: keyword reference 

symbolic reference == [module name] symbol [symbol] ... 

C-l 



ICE86A Command Syntax Summary 

C-2 

module name;;;; . .identifier 

symbol:; .identifier 

source statement number E [module name] # primary-1 0 

primary-10 :; primary 

keyword reference:; register name:: flag name:: pin name:: typed memory reference 

partition:; address [TO address] :: address LENGTH address 

Keyword Operators 
register name ;;;; RAL:: RAH:: RBL:: RBH:: RCL:: RCH:: RDL:: RDH:: RAX:: RBX:: RCX:: 

RDX :: SP:: BP :: SI :: 01 :: SS :: OS:: ES :: IP :: CAUSE:: OPCODE :: RF :: PIP:: 
TIMER:: HTlMER:: BUFFERSIZE:: UPPER:: LOWER 

flag name;;;; AFL:: CFL:: DFL:: IFL:: OFL:: PFL:: SFL:: TFL:: ZFL 

pin name:; ROY:: NMI:: TEST:: HOLD:: RST:: MN :: IR 

port name:; PORT address:: WPORT address 

memory reference:; memory-designation address 

memory-designation:; BYTE:: WORD:: SINTEGER:: INTEGER:: POINTER:: REAL:: OREAL:: 
TREAL 

typed memory reference:; [I! identifier] ! identifier [! identifier] ... 

Emulation Controls and Commands 
display break/trace command:; break/trace reg [display break/trace mode] 

set break/trace command:; break/trace reg = match-cond 

break/trace reg;;;; break reg:: trace reg 

break reg:; BR :: BRO :: BR1 

trace reg:; ONTRACE :: OFFTRACE 

display break/trace mode:; ABSOLUTE:: BASE [expr] 

match-cond :; execution match code:: non-execution match cond 

execution match cond :; match value EXECUTED 

non-execution match cond:; address match range [match status list] [data match range] 
[segment register usage] :: match status list [data match range 1 
[segment register usage] :: data match range 
[segment register usage 1 :: segment register usage 

match value:; address:: masked constant 

address match range:; match range 

data match range;;;; VALU E match range 

match range:; match value:: match partition [, match partition 1 ... :: address up/down 

match partition:; partition:: OBJECT memory reference:: OBJECT typed memory reference 

up/down:; UP:: DOWN 

match status list:; match status [, match status 1 ... 

match status;;;; READ:: WRITTEN:: INPUT:: OUTPUT:: FETCHED:: HALT:: ACKNOWLEDGE 

segment register usage:; USING segment register name 

segment register name:; SS :: CS :: OS :: ES 

go command:; GO [FROM address] [go-register] 

ICE-86A 



ICE·86A ICE·86A Command Syntax Summary 

step command;: STEP [FROM address) 

go-register command;: GR [= go-register) 

go-register;: FOREVER:: TILL break 

break;: break reg [and/or break reg) :: match-cond [and/ormatch-cond) 

and/or;: AND:: OR 

enable/disable trace command;: ENABLE TRACE [CONDITIONALLY [NOW initial trace )) :: 
DISABLE TRACE 

initial trace;: ON :: OFF 

trace command;: TRACE [= trace mode) 

trace mode;: FRAME:: INSTRUCTION 

oldest command;: OLDEST 

newest command ;: NEWEST 

print command;: PRINT [ [plus-op) primary-10) :: PRINT ALL 

move command;: MOVE [ [plus-op] primary-10) 

clock command;: CLOCK [= clock setting] 

clock setting;: INTERNAL:: EXTERNAL 

command signal timeout command;: RWTlM EOUT [= new signal) 

new signal:; INFINITE:: expr-10 [ERROR):: expr-10 NOERROR 

expr-10;: expr 

enable/disable ready command;: ENABLE RDY :: DISABLE RDY 

Interrogation and Utility Commands 

display command;: reference [, reference) ... :: mem or i/o partition:: ASM partition:: 
REGISTER:: FLAG:: PIN:: STACK expr:: BOOLexpr 

mem or i/o;: memory-designaltion :: PORT:: WPORT 

change command:; reference = expr:: mem or i/o partition = change exp [, change exp) ... 

change exp ;: mem or i/o partition:: expr:: string 

define command:; DEFINE [module name] symbol = expr [OF type) 

display symbols command;: SYMBOL:: symbolic reference 

display lines command;: LINE:: source statement number 

display modules command;: MODULE 

change symbol command;: symbolic reference = expr [OF type) 

remove symbols command;: REMOVE symbolic reference [, symbolic reference] ... :: 
REMOVE SYMBOL:: 
REMOVE MODULE module name [, module name] ... 

type;: memory desig 

set domain command;: DOMAIN module name 

reset domain command;: RESET DOMAIN 

cause command;: CAUSE 

enable/disable symbolically command;: {ENABLE } SYMBOLICALLY 
DISABLE 

display map command;: MAP [partition] 

C-3 



ICE-86A Command SyntaxSuinmary 

C-4 

declare map command: MAP DISK = file name:: MAP INTELLEC = partition [, partition] ... 

set map command: MAP partition = new memory map 

reset map command: RESET MAP 

new memory map: GUARDED:: USER [NOVERIFY] :: ICE [address] [NOVERIFY] :: 
INTELLEC [address] [NOVERIFY]:: DISK [address] [NOVERIFY] 

load command == LOAD path name ~ NOCODE j 
NOSYMBOL ... [SELECTING module partition [,module partition ] ... ] 

NOLINE 

module partition: {mOdule name } 
module name TO module name 

save command: SAVE path name [save code ] 
NOSYMBOL 
NOLINE 

save code: NOCODE :: partition [, partition] ... 

suffix command: SUFFIX [= suffix] 

base command: BASE [= base] 

suffix: Y :: 0 :: Q :: T :: H 

base : suffix :: ASCII 

evaluate command: EVALUATE expr [SYM BOLICALL Y] 

disassembly command : DEFINE DASM I~; } 
EMULATOR 

list command: LIST path name 

exit command == EXIT 

reset hardware command: RESET HARDWARE 

set/display rqgt command: RQGT [= {CONTIN UOUS }] 
EMULATIONTIME 

display bus command :BUS 

cr : carriage-return line-feed 

IF Command 

if command : IF expr [THEN] crtrue-list 
[ORIF expr [THEN] cr true-list] ... 
[ELSE cr false-list] 

true-list: [command cr] .. . 

false-list: [commander] .. . 

end if: END 

Looping Commands 

repeat command: REPEAT cr loop-list end-repeat 

end-repeat: END 

count command : COUNTexpr-1 0 cr loop-list end-count 

expr-10 : expr 

end-count : END 

ICE-86A 



ICE-86A 
-

ICE-86A Command Syntax Summary 

loop-list == [loop elementcr) ... 

loop element == command:: loop exit 

loop exit == WHILE EXPR :: UNTILexpr 

Macro Definition Command 
define macro command == DEFINE MACRO macro name cr macro body EM 

macro name == identifier 

macro body == [command cr] ... 

Macro Invocation Command 
macro invocation command == macro name:: [actual parameter list] 

actual parameter list == actual parameter [, actual parameter] ... 

actual parameter == [limited token] ... :: string 

limited token == any token except cr, string or "," 

Remove Macro Command 
remove macro command == REMOVE MACRO [macro list] 

macro list == macro name [, macro name] ... 

Display Macro Command 
display macro command == MACRO [macro list] 

Enable/Disable Expansion Command 
enable/disable expansion command == {ENABLE} EXPANSION 

DISABLE 

Put Macro Command 
put macro command == PUT file name MACRO [macro list) 

Directory Command 
dir command == DIR directory 

directory == MACRO 

Include Command 
include command == INCLU DE file name 

Write Command 
write command == WRITE list element [, list element] ... 

list element == string:: expr :: BOOL expr 

c-s 





APPENDIX D 
ELECTRICAL AND PHYSICAL 

CHARACTERISTICS OF ICE-86ATM 

DC Characteristics of ICE-86A User Cable 

1. Output Low Voltages VoL(Max) 10L(Max) 

ADO-AD15 0.4V 12mA 
0.5V 24mA 

A16/S3-A19/S7, BHE/S7, RD, LOCK, OSO, OS1, SO, Sl, O.4V 8mA 
S2, WR, MilO, DT/R, DEN, ALE, INTA 0.5V 16mA 

EMUL 0.4V 16mA 

HLDA O.4V 7mA 

INITOUT 0.25V 8mA 

MA TCHO OR MATCHl 0.4V 16mA 

RO/GT 0.4V 16mA 

2. Output High Voltages VoL(Min) 10H(Max) 

ADO-AD15 2.4V - 3mA 

A16/S3-A19/S7, BHE/S7, RD, LOCK, OSO, OSl, SO, Sl, 
2.4V -2.6 mA 

S2, WR, MilO, DT/R, DEN, ALE, INTA 

EMUL 4.5V 250mA 

HLDA 2.4V -3.0 mA 

INITOUT 3.1V 2.6mA 

MATCHO OR MATCHl 2.4V -O.B mA 

RQ/GT 4.5V 250mA 

3. Input Low Voltages VIL(Max) IIL(Max) 

ADO-AD15 O.BV -0.2 mA 

BRKEXT 0.4V 0.4mA 

NMI, CLK O.BV -0.4 mA 

READY O.BV -O.B mA 

INTR, HOLD, TEST, RESET O.BV -1.4 mA 

MN/MX (0.1 fit to GND) O.BV -3.3 mA 

4. Input High Voltages VIH(Min) IlL (Max) 

ADO-AD15 2.0V BOfiA 

BRKEXT 2.7V 20mA 

NMI, CLK 2.0V 20 fiA 

READY 2.0V 40 fiA 

INTR, HOLD, TEST, RESET 2.0V -0.4 mA 

MN/MX 2.0V -1.1 mA 

D-l 



Electrical and Physical Characteristics of the ICE-86A Emulator 

D-2 

Specifications 
ICE-86A Operating Environment 

Required Hardware: 
Intellec Microcomputer Development System with: 

1. Three adjacent slots for ICE-86A 
2. 64K of Intellec Memory. If expansion memory is desired, no more than 32K may be 16K 

RAM boards. 
System Console 
Intellec Diskette Operating System 
ICE-86A Module 

Required Software: 
System Monitor 
ISIS-II, Version 3.4 or subsequent 
ICE-86A Software 

Equipment Supplied 
Printed Circuit Boards (3) 
Interface Cable and Emulation Buffer Module 
Operator's Manual 
ICE-86A Software 

Emulation Clock 
User system clock up to 5 MHz or 2 MHz internal clock in stand-alone mode. 

Physical Characteristics 

Printed Circuit Boards: 

Width 
Height 
Depth 
Packaged Weight 

Electrical Characteristics 

Vcc = +5V +5% -1% 
Icc = 16A maximum; 11A typical 
V DD = + 12V ±5% 
IDD = 120 mA maximum; 80 mA typical 
V BB = -10V ±5% or -12V ± 5% (optional) 
IBB = 15 mA maximum; 12 mA typical 

Environmental Characteristics 
Operating Temperature: 0° to 40°C 

12.00 in 
6.75 in 
0.50 in 

(30.48cm) 
(17.15 cm) 
( 1.27cm) 

Operating Humidity: Up to 95% relative humidity without condensation. 

NOTE 

The timing parameter TCL AZ has an actual transition of 85 ns for ICE-86A instead of 
80ns, as for the 8086 chip. 

The timing parameter TCL GH has an actual maximum value of 100 ns for ICE-86A 
instead of 85ns, as for the 8086 chip. 

All other timing parameters are as specified for the 8086 chip. 

HOLD/HOLDA Timing 
The diagrams below show the timing for the HOLD and HOLDA signals when the 
ICE-86A Module is in different modes of operation. During reset, byte/word/port 
commands and breakpoint loading, the worst case HOLDA response time is 1 
millisecond. Breakpoints are loaded at the beginning of each emulation that 
specifies a new break condition. 

During an emulation break, up to 1 millisecond may elapse before the ICE Module 
response to a HOLD input with a HOLDA signal. 

At no time does the ICE-86A Module truncate a user HOLD in progress. 

lCE-86A 



lCE-86A Electrical and Physical Characteristics of the ICE-86A Emulator 

HOLD/HLDA TIMING 

1. ICE NOT IN EMULATION (INTERROGATION MODE): 

USER HOLD-------' 

HLDA 

2. ICE IN EMULATION: 

CPUCLOCKnY 

s; S; SO NUSERWAITSTATES 

HLDA 

3. DURING TIMES WHICH ICE REQUIRES EXCLUSIVE USE OF THE CPU TO EXECUTE ICE 
FUNCTIONS; I.E., RESET HARDWARE, BYTE/WORD/PORT COMMANDS, AND BREAK· 
POINT LOADING: 

USER HOLDn n I 

HLDA n n I. 800~SEC 
MAXIMUM 

L 

.r 
162554·19 

D-3 





00 00000000 MOD REGR/M ADD EA,REG 
01 00000001 MOD REGR/M ADD EA,REG 
02 00000010 MOD REGR/M ADD REG,EA 
03 00000011 MOD REGR/M ADD REG,EA 
04 00000100 ADD AL,DATA8 
05 00000101 ADD AX,DATA16 
06 00000110 PUSH ES 
07 00000111 POP ES 
08 00001000 MOD REGR/M OR EA,REG 
09 00001001 MOD REGR/M OR EA,REG 
OA 00001010 MOD REGR/M OR REG,EA 
OB 00001011 MOD REGR/M OR REG,EA 
OC 00001100 OR AL,DATA8 
OD 00001101 OR AX,DATA16 
OE 00001110 PUSH CS 
OF 00001111 (not used) 
10 00010000 MOD REGR/M ADC EA,REG 
11 00010001 MOD REGR/M ADC EA,REG 
12 00010010 MOD REGR/M ADC REA,EA 
13 00010011 MOD REGR/M ADC REG,EA 
14 00010100 ADC AL,DATA8 
15 00010101 ADC AX,DATA16 
16 00010110 PUSH SS 
17 00010111 POP SS 
18 00011000 MOD REGR/M SBB EA,REG 
19 00011001 MOD REGR/M SBB EA,REG 
1A 00011010 MOD REGR/M SBB REG,EA 
1 B 00011011 MOD REGR/M SBB REG,EA 
1C 00011100 SBB AL,DATA8 
1D 00011101 SBB AX,DATA16 
1E 00011110 PUSH DS 
1 F 00011111 POP DS 
20 00100000 MOD REGR/M AND EA,REG 
21 00100001 MOD REGR/M AND EA,REG 
22 00100010 MOD REGR/M AND REG,EA 
23 00100011 MOD REGR/M AND REG,EA 
24 00100100 AND AL,DATA8 
25 00100101 AND AX,DATA16 
26 00100110 ES: 
27 00100111 DAA 
28 00101000 MOD REGR/M SUB EA,REG 
29 00101001 MOD REGR/M SUB EA,REG 
2A 00101010 MOD REGR/M SUB REG,EA 
2B 00101011 MOD REGR/M SUB REG,EA 
2C 00101100 SUB AL,DATA8 
2D 00101101 SUB AX,DATA16 
2E 00101110 CS: 
2F 00101111 DAS 
30 00110000 MOD REGR/M XOR EA,REG 
31 00110001 MOD REGR/M XOR EA,REG 
32 00110010 MOD REGR/M XOR REG,EA 
33 00110011 MOD REGR/M XOR REG,EA 
34 00110100 XOR AL,DATA8 
35 00110101 XOR AX,DATA16 
36 00110110 SS: 
37 00110111 AAA 
38 00111000 MOD REGR/M CMP EA,REG 
39 00111001 MOD REGR/M CMP EA,REG 
3A 00111010 MOD REGR/M CMP REG,EA 
3B 00111011 MOD REGR/M CMP REG,EA 
3C 00111100 CMP AL,DATA8 
3D 00111101 CMP AX,DATA16 
3E 00111110 DS: 
3F 00111111 AAS 
40 01000000 INC AX 
41 01000001 INC CX 

APPENDIX E 
INSTRUCTIONS IN 

HEXADECIMAL ORDER 

BYTE ADD (REG) TO EA 
WORD ADD (REG) TO EA 
BYTE ADD (EA) TO REG 
WORD ADD (EA) TO REG 
BYTE ADD DATA TO REG AL 
WORD ADD DATA TO REG AX 
PUSH (ES) ON STACK 
POP STACK TO REG ES 
BYTE OR (REG) TO EA 
WORD OR (REG) TO EA 
BYTE OR (EA) TO REG 
WORD OR (EA) TO REG 
BYTE OR DATA TO REG AL 
WORD OR DATA TO REG AX 
PUSH (CS) ON STACK 

BYTE ADD (REG) WI CARRY TO EA 
WORD ADD (REG) WI CARRY TO EA 
BYTE ADD (EA) WI CARRY TO REG 
WORD ADD (EA) W I CARRY TO REG 
BYTE ADD DATAW/CARRYTO REG AL 
WORD ADD DATA W I CARRY TO REG AX 
PUSH (SS) ON STACK 
POP STACK TO REG SS 
BYTE SUB (REG) WI BORROW FROM EA 
WORD SUB (REG) WI BORROW FROM EA 
BYTE SUB (EA) WI BORROW FROM REG 
WORD SUB (EA) WI BORROW FROM REG 
BYTE SU B DATA WI BORROW FROM REG AL 
WORD SUB DATA WI BORROW FROM REG AX 
PUSH (DS) ON STACK 
POP STACK TO REG DS 
BYTE AND (REG) TO EA 
WORD AND (REG) TO EA 
BYTE AND (EA) TO REG 
WORD AND (EA) TO REG 
BYTE AND DATA TO REG AL 
WORD AND DATA TO REG AX 
SEGMENT OVERIDE WI SEGMENT REG ES 
DECIMAL ADJUST FOR ADD 
BYTE SUBTRACT (REG) FROM EA 
WORD SUBTRACT (REG) FROM EA 
BYTE SUBTRACT (EA) FROM REG 
WORD SUBTRACT (EA) FROM REG 
BYTE SUBTRACT DATA FROM REG AL 
WORD SUBTRACT DATA FROM REG AX 
SEGMENT OVERIDE W I SEGMENT REG CS 
DECIMAL ADJUST FOR SUBTRACT 
BYTE XOR (REG) TO EA 
WORD XOR (REG) TO EA 
BYTE XOR (EA) to REG 
WORD XOR (EA) TO REG 
BYTE XOR DATA TO REG AL 
WORD XOR DATA TO REG AX 
SEGMENT OVERIDE WI SEGMENT REG SS 
ASCII ADJUST FOR ADD 
BYTE COMPARE (EA) WITH (REG) 
WORD COMPARE (EA) WITH (REG) 
BYTE COMPARE (REG) WITH (EA) 
WORD COMPARE (REG) WITH (EA) 
BYTE COMPARE DATA WITH (AL) 
WORD COMPARE DATA WITH (AX) 
SEGMENT OVERIDE WI SEGMENT REG DS 
ASCII ADJUST FOR SUBTRACT 
INCREMENT (AX) 
INCREMENT (CX) 

E-1 



Instructions in Hexadecimal Order 

E-2 

42 01000010 
43 01000011 
44 01000100 
45 01000101 
46 01000110 
47 01000111 
48 01001000 
49 01001001 
4A 01001010 
4801001011 
4C 01001100 
4001001101 
4E 01001110 
4F 01001111 
50 01010000 
51 01010001 
52 01010010 
53 01010011 
54 01010100 
55 01010101 
56 01010110 
57 01010111 
58 01011000 
59 01011001 
5A 01011010 
5801011011 
5C 01011100 
5001011101 
5E 01011110 
5F 01011111 
60 01100000 
61 01100001 
62 01100010 
63 01100011 
64 01100100 
65 01100101 
66 01100110 
67 01100111 
68 01101000 
69 01101001 
6A 01101010 
6801101011 
6C 01101100 
6001101101 
6E 01101110 
6F 01101111 
70 01110000 
71 01110001 
72 01110010 
73 01110011 
74 01110100 
75 01110101 
76 01110110 
77 01110111 
78 01111000 
79 01111001 
7A 01111010 
7801111011 
7C 01111100 
7001111101 
7E 01111110 
7F 01111111 
80 10000000 MOD 000 RIM 
80 10000000 MOD 001 RIM 
80 10000000 MOD 010 RIM 
80 10000000 MOD 011 RIM 
80 10000000 MOD 100 RIM 
80 10000000 MOD 101 RIM 
80 10000000 MOD 110 RIM 
80 10000000 MOD 111 RIM 
81 10000001 MOD 000 RIM 
81 10000001 MOD 001 RIM 

INC OX 
INC 8X 
INC SP 
INC 8P 
INC SI 
INC 01 
DEC AX 
DEC CX 
DEC OX 
DEC BX 
DEC SP 
DEC BP 
DEC SI 
DEC 01 
PUSH AX 
PUSH CX 
PUSH OX 
PUSH BX 
PUSH SP 
PUSH 8P 
PUSH SI 
PUSH 01 
POP AX 
POP CX 
POP OX 
POP BX 
POP SP 
POP BP 
POP SI 
POP 01 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
JO DISP8 
JNO DISP8 
JB/JNAE DISP8 
JNB/JAE DISP8 
JE/JZ DISP8 
JNE/JNZ DISP8 
JBE/JNA DISP8 
JNBE/JA DISP8 
JS DISP8 
JNS DISP8 
JP/JPE DISP8 
JNP/JPO DISP8 
JLlJNGE DISP8 
JNLlJGE DISP8 
JlE/JNG DISP8 
JNLE/JG DISP8 
ADD EA,DATA8 
OR EA,DATA8 
ADC EA,DATA8 
SBB EA,DATA8 
AND EA,DATA8 
SUB EA,DATA8 
XOR EA,DATA8 
CMP EA,DATA8 
ADD EA,DATA16 
OR . EA,DATA16 

INCREMENT (OX) 
INCREf'AENT (BX) 
INCREMENT (SP) 
INCREMENT (BP) 
INCREMENT (SI) 
INCREMENT (01) 
DECREMENT (AX) 
DECREMENT (CX) 
DECREMENT (OX) 
DECREMENT (BX) 
DECREMENT (SP) 
DECREMENT (BP) 
DECREMENT (SI) 
DECREMENT (01) 
PUSH (AX) ON STACK 
PUSH (CX) ON STACK 
PUSH (OX) ON STACK 
PUSH (BX) ON STACK 
PUSH (SP) ON STACK 
PUSH (BP) ON STACK 
PUSH (SI) ON STACK 
PUSH (01) ON STACK 
POP STACK TO REG AX 
POP STACK TO REG CX 
POP STACK TO REG OX 
POP STACK TO REG BX 
POP STACK TO REG SP 
POP STACK TO REG BP 
POP STACK TO REG SI 
POP STACK TO REG 01 

JUMPON OVERFLOW 
JUMP ON NOT OVERFLOW 
JUMP ON BELOW/NOT ABOVE OR EQUAL 
JUMP ON NOT BELOW/ABOVE OR EQUAL 
JUMP ON EQUALIZERO 
JUMP ON NOT EQUAL/NOT ZERO 
JUMPON BELOW OR EQUAL/NOT ABOVE 
JUMP ON NOT BELOW OR EQUAL/ A80VE 
JUMPONSIGN 
JUMP ON NOT SIGN 
JUMP ON PARITY /PARITY EVEN 
JUMP ON NOT PARITY IPARITY ODD 
JUMP ON LESS/NOT GREATER OR EQUAL 
JUMP ON NOT LESS/GREATER OR EQUAL 
JUMP ON LESS OR EQUALINOT GREATER 
JUMP ON NOT LESS OR EQUAL/GREATER 
BYTE ADD DATA TO EA 
BYTE OR DATATOEA 
BYTE ADD DATA W / CARRY TO EA 
BYTE SUB DATA W/ BORROW FROM EA 
BYTE AND DATA TO EA 
BYTE SUBTRACT DATA FROM EA 
BYTE XOR DATA TO EA 
BYTE COMPARE DATA WITH (EA) 
WORD ADD DATA TO EA 
WORD OR DATA TO EA 

ICE-86A 



ICE-86A Instructions in Hexadecimal Order 

81 10000001 MOD 010 RIM ADC EA,DATA16 WORD ADD DATA WI CARRY TO EA 
81 10000001 MOD 011 RIM SBB EA,DATA16 WORD SUB DATA WI BORROW FROM EA 
85 10000001 MOD 100 RIM AND EA,DATA16 WORD AND DATA TO EA 
81 10000001 MOD 101 RIM SUB EA,DATA16 WORD SUBTRACT DATA FROM EA 
81 10000001 MOD 110 RIM XOR EA,DATA16 WORD XOR DATA TO EA 
81 10000001 MOD 111 RIM CMP EA,DATA16 WORD COMPARE DATA WITH (EA) 
82 10000010 MOD 000 RIM ADD EA,DATA8 BYTE ADD DATA TO EA 
82 10000010 MOD 001 RIM (not used) 
82 10000010 MOD 010 RIM ADC EA,DATA8 BYTE ADD DATA WI CARRY TO EA 
82 10000010 MOD 011 RIM SBB EA,DATA8 BYTE SUB DATA WI BORROW FROM EA 
82 10000010 MOD 100 RIM (not used) 
82 10000010 MOD 101 RIM SUB EA,DATA8 BYTE SUBTRACT DATA FROM EA 
82 10000010 MOD 110 RIM (not used) 
82 10000010 MOD 111 RIM CMP EA,DATA8 BYTE COMPARE OAT A WITH (EA) 
83 10000011 MOD 000 RIM ADD EA,DATA8 WORD ADD DATA TO EA 
83 10000011 MOD 001 RIM (not used) 
83 10000011 MOD 010 RIM ADC EA,DATA8 WORD ADD DATA WI CARRY TO EA 
83 10000011 MOD 011 RIM SBB EA,DATA8 WORD SUB DATA WI BORROW FROM EA 
83 10000011 MOD 100 RIM (not used) 
83 10000011 MOD 101 RIM SUB EA,DATA8 WORD SUBTRACT OAT A FROM EA 
83 10000011 MOD 110 RIM (not used) 
83 10000011 MOD 111 RIM CMP EA,DATA8 WORD COMPARE DATA WITH (EA) 
84 10000100 MOD REGR/M TEST EA,REG BYTE TEST (EA) WITH (REG) 
85 10000101 MOD REGR/M TEST EA,REG WORD TEST (EA) WITH (REG) 
86 10000110 MOD REGR/M XCHG REG,EA BYTE EXCHANGE (REG) WITH (EA) 
87 10000111 MOD REGR/M XCHG REG,EA WORD EXCHANGE (REG) WITH (EA) 
88 10001000 MOD REGR/M MOV EA,REG BYTE MOVE (REG) TO EA 
89 10001001 MOD REGR/M MOV EA,REG WORD MOVE (REG) TO EA 
8A 10001010 MOD REGR/M MOV REG,EA BYTE MOVE (EA) TO REG 
8B 10001011 MOD REGR/M MOV REG,EA WORD MOVE (EA) TO REG 
8C 10001100 MOD OSA AIM MOV EA,SR WORD MOVE (SEGMENT REG SR) TO EA 
8C 10001100 MOD 1-- RIM (not used) 
8010001101 MOD REGR/M LEA REG,EA LOAD EFFECTIVE ADDRESS OF EA TO REG 
8E 10001110 MOD OSR RIM MOV SR,EA WORD MOVE (EA) TO SEGMENT REG SR 
8E 10001110 MOD -- RIM (not used) 
8F 10001111 MOD 000 RIM POP EA POP STACK TO EA 
8F 10001111 MOD 001 RIM (not used) 
8F 10001111 MOD 010 RIM (not used) 
8F 10001111 MOD 011 RIM (not used) 
8F 10001111 MOD 100 RIM (not used) 
8F 10001111 MOD 101 RIM (not used) 
8F 10001111 MOD 110 RIM (not used) 
8F 10001111 MOD 111 RIM (not used) 
90 10010000 XCHG AX,AX EXCHANGE (AX) WITH (AX), (NOP) 
91 10010001 XCHG AX,CX EXCHANGE (AX) WITH (CX) 
92 10010010 XCHG AX,DX EXCHANGE (AX) WITH (OX) 
93 10010011 XCHG AX,BX EXCHANGE (AX) WITH (BX) 
94 10010100 XCHG AX,SP EXCHANGE (AX) WITH (SP) 
95 10010101 XCHG AX,BP EXCHANGE (AX) W!TH (BP) 
96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI) 
97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (01) 
98 10011000 CBW BYTE CONVERT (Al) TO WORD (AX) 
99 10011001 CWO WORD CONVERT (AX) TO DOU BlE WORD 
9A 10011010 CALL DISP16,SEG16 DIRECT INTER SEGMENT CALL 
9B 10011011 WAIT WAIT FOR TEST SIGNAL 
9C 10011100 PUSHF PUSH FLAGS ON STACK 
9010011101 POPF POP STACK TO FLAGS 
9E 10011110 SAHF STORE (AH) INTO FLAGS 
9F 10011111 LAHF LOAD REG AH WITH FLAGS 
AD 10100000 MOV AL,ADDR16 BYTE MOVE (ADDR) TO REG AL 
A110100oo1 MOV AX,ADDR16 WORD MOVE (ADDR) TO REG AX 
A210100010 . MOV ADDR16,AL BYTE MOVE (Al) TO ADDR 
A31010oo11 MOV ADDR16,AX WORD MOVE (AX) TO ADDR 
A410100100 MOVS DST8SRC8 BYTE MOVE, STRING OP 
A510100101 MOVS DST16,SRC16 WORD MOVE, STRING OP 
A610100110 CMPS SIPTR,DIPTR COMPARE BYTE, STRING OP 
A710100111 CMPS SIPTR,DIPTR COMPARE WORD, STRING OP 
A810101000 TEST AL,DATA8 BYTE TEST (Al) WITH DATA 
A910101001 TEST AX,DATA16 WORD TEST (AX) WITH DATA 
AA10101010 STOS DST8 BYTE STORE, STRING OP 
AB10101011 STOS DST16 WORD STORE, STRING OP 
AC10101100 LODS SRC8 BYTE LOAD, STRING OP 

E-3 



Instructions in Hexadecimal Order ICE-86A 

AD10101101 LODS SRC16 WORD lOAD, STRING OP 
AE10101110 SCAS DIPTRB BYTE SCAN, STRING OP 
AF10101111 SCAS DIPTR16 WORD SCAN, STRING OP 
BO 10110000 MOV Al,DATAB BYTE MOVE OAT A TO REG Al 
B110110001 MOV Cl,DATAB BYTE MOVE OAT A TO REG CL 
B210110010 MOV Dl,DATAB BYTE MOVE DATA TO REG DL 
B310110011 MOV Bl,DATAB BYTE MOVE DATA TO REG Bl 
B410110100 MOV AH,DATAB BYTE MOVE OAT A TO REG AH 
B510110101 MOV CH,DATAB BYTE MOVE OAT A TO REG CH 
B610110110 MOV DH,DATAB BYTE MOVE OAT A TO REG DH 
B710110111 MOV BH,DATAB BYTE MOVE OAT A TO REG BH 
BB10111000 MOV AX,DATA16 WORD MOVE OAT A TO REG AX 
B910111001 MOV CX,DATA16 WORD MOVE OAT A TO REG CX 
BA 10111010 MOV DX,DATA16 WORD MOVE DATA TO REG OX 
BB10111011 MOV BX,DATA16 WORD MOVE OAT A TO REG BX 
BC10111100 MOV SP,DATA16 WORD MOVE OAT A TO REG SP 
BD10111101 MOV BP,DATA16 WORD MOVE OAT A TO REG BP 
BE10111110 MOV SI,DATA16 WORD MOVE OAT A TO REG SI 
BF10111111 MOV DI,DATA16 WORD MOVE OAT A TO REG 01 
CO 11000000 (not used) 
C111000001 (not used) 
C211000010 RET DATA16 INTRA SEGMENT RETURN, ADD DATA TO REG SP 
C311000011 RET INTRA SEGMENT RETURN 
C411000100 MOD REGR/M lES REG,EA WORD lOAD REG AND SEGMENT REG ES 
C511000101 MOD REGRIM LOS REG,EA WORD LOAD REG AND SEGMENT REG OS 
C611000110 MOD 000 RIM MOV EA,DATAB BYTE MOVE OAT A TO EA 
C611000110 MOD 001 RIM (not used) 
C611000110 MOD 010 RIM (not used) 
C611000110 MOD 011 RIM (not used) 
C611000110 MOD 100 RIM (not used) 
C611000110 MOD 101 RIM (not used) 
C611000110 MOD 110 RIM (not used) 
C611000110 MOD 111 RIM (not used) 
C711000111 MOD 000 RIM MOV EA,DATA16 WORD MOVE OAT A TO EA 
C711000111 MOD 001 RIM (not used) 
C711000111 MOD 010 RIM (not used) 
C711000111 MOD 011 RIM (not used) 
C711000111 MOD 100 RIM (not used) 
C711000111 MOD 101 RIM (not used) 
C711000111 MOD 110 RIM (not used) 
C711000111 MOD 111 RIM (not used) 
CB11001000 (not used) 
C911001001 (not used) 
CA 11001010 RET DATA16 INTER SEGMENT RETURN, ADD DATA TO REG SP 
CB11001011 RET INTER SEGMENT RETURN 
CC11001100 INT 3 TYPE 3 INTERRUPT 
CD11001101 INT TYPE TYPED INTERRUPT 
CE11001110 INTO INTERRUPT ON OVERFLOW 
CF11001111 IRET RETURN FROM INTERRUPT 
DO 11010000 MOD 000 RIM ROL EA,1 BYTE ROTATE EA LEFT 1 BIT 
DO 11010000 MOD 001 RIM ROR EA,1 BYTE ROTATE EA RIGHT 1 BIT 
DO 11010000 MOD 010 RIM RCl EA,1 BYTE ROTATE EA lEFT THRU CARRY 1 BIT 
DO 11010000 MOD 011 RIM RCR EA,1 BYTE ROTATE EA RIGHTTHRU CARRY1 BIT 
DO 11010000 MOD 100 RIM SHl EA,1 BYTE SHIFT EA LEFT 1 BIT 
DO 11010000 MOD 101 RIM SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT 
DO 11010000 MOD 110 RIM (not used) 
DO 11010000 MOD 111 RIM SAR EA,1 BYTE SHIFT SIGNED EA RIGHT 1 BIT 
0111010001 MQD 000 RIM ROl EA,1 WORD ROTATE EA lEFT 1 BIT 
0111010001 MOD 001 RIM ROR EA,1 WORDROTATEEARIGHT1 BIT 
0111010001 MOD 010 RIM RCl EA,1 WORD ROTATE EA lEFT THRU CARRY 1 BIT 
0111010001 MOD 011 RIM RCR EA,1 WORD ROTATE EA RIGHT THRU CARRY 1 BIT 
0111010001 MOD 100 RIM SHl EA,1 WORD SHIFT EA lEFT 1 BIT 
0111010001 MOD 101 RIM SHR EA,1 WORD SHIFT EA RIGHT 1 BIT 
0111010001 MOD 110 RIM (not used) 
0111010001 MOD 111 RIM SAR EA,1 WORD SHIFT SIGNED EA RIGHT 1 BIT 
0211010010 MOD 000 RIM ROl EA,Cl BYTE ROT ATE EA LEFT (Cl) BITS 
0211010010 MOD 001 RIM ROR EA,Cl BYTE ROT ATE EA RIG HT (Cl) BITS 
0211010010 MOD 010 RIM RCl EA,Cl BYTE ROTATE EA LEFTTHRU CARRY (Cl) BITS 
0211010010 MOD 011 RIM RCR EA,CL BYTE ROTATE EA RIGHTTHRU CARRY (CL) BITS 
0211010010 MOD 100 RIM SHl EA,Cl BYTE SHIFTEA lEFT (Cl) BITS 
0211010010 MOD 101 RIM SHR EA,Cl BYTE SHIFT EA RIGHT (Cl) BITS 
0211010010 MOD 110 RIM (not used) 
0211010010 MOD 111 RIM SAR EA,Cl BYTE SHIFT SIGNED EA RIGHT (CLI BITS 

E-4 



ICE-86A Instructions in Hexadecimal Order 

0311010011 MOD 000 RIM ROl EA,Cl WORD ROTATE EA lEFT (Cl) BITS 
0311010011 MOD 001 RIM ROR EA,Cl WORD ROTATE EA RIGHT (Cll BITS 
0311010011 MOD 010 RIM RCl EA,Cl WORD ROT ATE EA lEFT THRU CARRY (Cl) BITS 
0311010011 MOD 011 RIM RCR EA,Cl WORD ROTATE EA RIGHTTHRU CARRY (Cl) BITS 
0311010011 MOD 100 RIM SHl EA,Cl WORD SHIFT EA lEFT (Cl) BITS 
0311010011 MOD 101 RIM SHR EA,Cl WORD SHIFT EA RIGHT (el) BITS 
0311010011 MOD 110 RIM (not used) 
0311010011 MOD 111 RIM SAR EA,Cl WORD SHIFT SIGNED EA RIGHT (Cl) BITS 
0411010100 00001010 AAM ASCII ADJUST FOR MUl TIPl Y 
0511010101 00001010 ADD ASCII ADJUST FOR DIVIDE 
0611010110 (not used) 
0711010111 XlAT tABLE TRANSLATE USING (BX) 
DB11011- MOD --- RIM ESC EA ESCAPE TO EXTERNAL DEVICE 
EO 11100000 lOOPNZ/lOOPNE DISPB lOOP (CX) TIMES WHilE NOT ZERO/NOT EQUAL 
E111100001 lOOPZI lOOPE DISPB lOOP (CX) TIMES WHilE ZERO/EQUAl 
E211100010 lOOP DISPB lOOP (CX) TIMES 
E311100011 JCXZ DISPB JUMPON (CX)=O 
E411100100 IN Al,PORT BYTE INPUT FROM PORT TO REG Al 
E511100101 IN AX,PORT WORD INPUT FROM PORT TO REG AX 
E611100110 OUT PORT,Al BYTE OUTPUT (Al) TO PORT 
E711100111 OUT PORT,AX WORD OUTPUT (AX) TO PORT 
EB11101000 CAll DISP16 DIRECT INTRA SEGMENT CAll 
E911101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP 
EA 11101010 JMP DISP16,SEG16 DIRECT INTER SEGMENT JUMP 
EB11101010 JMP DISPB DIRECT INTRA SEGMENT JUMP 
EC11101010 IN Al,DX BYTE INPUT FROM PORT (OX) TO REG Al 
ED11101010 IN AX,DX WORD INPUT FROM PORT (OX) TO REG AX 
EE 11101010 OUT DX,Al BYTE OUTPUT (Al) TO PORT (OX) 
EF 11101010 OUT DX,AX WORD OUTPUT (AX) TO PORT (OX) 
FO 11110000 lOCK BUS lOCK PREFIX 
F1 11110001 (not used) 
F211110010 REPNZ REPEAT WHilE (CX)*O AND (ZF)=O 
F311110011 REPN REPEAT WHilE (CX)*O AND (ZF)=1 
F4 11110100 HlT HALT 
F511110101 CMC COMPLEMENT CARRY FLAG 
F611110110 MOD 000 RIM TEST EA,DATAB BYTE TEST (EA) WITH OAT A 
F611110110 MOD 001 RIM (not used) 
F611110110 MOD 010 RIM NOT EA BYTE INVERT EA 
F611110110 MOD 011 RIM NEG EA BYTE NEGATE EA 
F611110110 MOD 100 RIM MUl EA BYTE MUl TlPl Y BY (EA), UNSIGNED 
F6 11110110 MOD 101 RIM IMUl EA BYTE MULTIPLY BY (EA)., SIGNED 
F611110110 MOD 110 RIM DIV EA BYTE DIVIDE BY (EA), UNSIGNED 
F611110110 MOD 111 RIM IDIV EA BYTE DIVIDE BY (EA), SIGNED 
F7 11110111 MOD 000 RIM TEST EA,DATA16 WORD TEST (EA) WITH DATA 
F711110111 MOD 001 RIM (not used) 
F711110111 MOD 010 RIM NOT EA WORD INVERT EA 
F711110111 MOD 011 RIM NEG EA WORD NEGATE EA 
F7 11110111 MOD 100 RIM MUl EA WORD MULTIPLY BY (EA), UNSIGNED 
F7 11110111 MOD 101 RIM IMUl EA WORD MULTIPLY BY (EA), SIGNED 
F711110111 MOD 110 RIM DIV EA WORD DIVIDE BY (EA), UNSIGNED 
F7 11110111 MOD 111 RIM IDIV EA WORD DIVIDE BY (EA), SIGNED 
FB 11111000 ClC CLEAR CARRY FLAG 
F911111001 STC SET CARRY FLAG 
FA 11111010 CLI CLEAR INTERRUPT FLAG 
FB11111011 STI SET INTERRUPT FLAG 
FC 11111100 ClD CLEAR DIRECTION FLAG 
FD 11111101 STD SET DIRECTION FLAG 
FE 11111110 MOD 000 RIM INC EA BYTE INCREMENT EA 
FE 11111110 MOD 001 RIM DEC EA BYTE DECREMENT EA 
FE 11111110 MOD 010 RIM (not used) 
FE 11111110 MOD 011 RIM (not used) 
FE 11111110 MOD 100 RIM (not used) 
FE 11111110 MOD 101 RIM (not used) 
FE 11111110 MOD 110 RIM (not used) 
FE 11111110 MOD 111 RIM (not used) 
FF 11111111 MOD 000 RIM INC EA WORD INCREMENT EA 
FF 11111111 MOD 001 RIM DEC EA WORD DECREMENT EA 
FF 11111111 MOD 010 RIM CAll EA INDIRECT INTRA SEGMENT CAll 
FF 11111111 MOD 011 RIM CAll EA INDIRECT INTER SEGMENT CAll 
FF 11111111 MOD 100 RIM JMP EA INDIRECT INTRA SEGMENT JUMP 
FF 11111111 MOD 101 RIM JMP EA INDIRECT INTER SEGMENT JUMP 
FF 11111111 MOD 110 RIM PUSH EA PUSH (EA) ON STACK 
FF 11111111 MOD 111 RIM (not used) 

E-5 



Instructions in Hexadecimal Order ICE-86A 

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE: 

16-BIT (W=l) 8-BIT(W=O) SEGMENT REG 

000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 OX 010 DL 10 SS 
011 BX 011 BL 11 OS 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 DH 
111 01 111 BH 

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS) 

00 000 (BX) + (SI) OS 
00 001 (BX) + (01) OS 
00 010 (BP)+(SI) SS 
00 011 (BP) + (01) SS 
00 100 (SI) OS 
00 101 (01) OS 
00 110 DISP16 (DIRECT ADDRESS) OS 
00 111 (BX) OS 
01 000 (BX) + (SI) + DISP8 OS 
01 001 (BX) + (01) + DISP8 OS 
01 010 (BP)+(SI)+DISP8 SS 
01 011 (BP) + (01)+ DISP8 SS 
01 100 (SI) + DISP8 OS 
01 101 (01) + DISP8 OS 
01 110 (BP)+DISP8 SS 
01 111 (BX)+ DISP8 OS 
10 000 (BX)+(SI)+DISP16 OS 
10 001 (BX)+(DI)+DISP16 OS 
10 010 (BP)+(SI)+DISP16 SS 
10 011 (BP)+(DI)+DISP16 SS 
10 100 (SI)+DISP16 OS 
10 101 (DI)+DISP16 OS 
10 110 (BP) + DISP16 SS 
10 111 (BX)+DISP16 OS 
11 000 REG AX I AL 
11 001 REG CX I CL 
11 010 REG OX I DL 
11 011 REG BX I BL 
11 100 REG SP I AH 
11 101 REG BP I CH 
11 110 REG SI I DH 
11 111 REG 01 I BH 

FLAGS REGISTER CONTAINS: 

X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

E-6 



ICE4I6A 

8086 INSTRUCTION 

Lo 
Hi 0 I 2 3 4 5 6 

0 ADO ADO ADO ADO ADO ADO PUSH 
b.t.r/m w.f.r/m b.t.r/m w.t.r/m b.la w.la ES 

I AOC ADC ADC ADC AOC AOC PUSH 
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i W.I 55 

2 AND AND AND ANO AND ANO SEG 
b.t.r/m w.t.r/m b.t.rlm w.t.r/m b.i w.i ES 

3 XOR XOR XOR XOR XOR XOR SEG 
b.f.r/m w.t.r/m b.t.rlm w.t.r/m b.i w.i 55 

4 INC INC INC INC INC INC INC 
AX CX OX BX SP BP 51 

5 PUSH PUSH PUSH PUSH PUSH PUSH PUSH 
AX CX OX BX SP BP 51 

6 

7 JD JNO JBI JNBI JEI JNEI JBEI 
JNAE JAE JZ JNZ JNA 

8 Immed Immed Immed Immed TEST TEST XCHG 
b.r/m w.r/m b.rlm is.rlm b.r/m w.r/m b.r/m 

9 XCHG XCHG XCHG XCHG XCHG XCHG XCHG 
AX CX OX BX SP BP 51 -. 

A MOV MOV MOV MOV MOVS MOVS CMPS m ~AL m -AX AL - m AX - m 

8 MOV MOV MOV MOV MOV MOV MOV 
I ~ AL i - GL i - DL i - BL i - AH i- GH i - DH 

C RET. RET LES LOS MOV 
\i.SP) b.i.r/m 

0 Shift Shift Shift Shift 
AAM MO b w b.v W.V 

E LOOPNZI LOOPZI LOOP JGXZ IN IN OUT 
LOOPNE LOOPE b w b 

F LOCK REP REP HLT CMG 
Grp 1 

Z b.r/m 

where 

modOr/m 000 001 010 011 100 101 110 

Immed ADD OR ADC SBB AND SUB XOR 

Shift RDl ROR RCl RCR SHLlSAl SHR -
Grpl TEST - NOT NEG MUl IMUL DlV 

Grp2 INC DEC CALL CAll JMP JMP PUSH 
,d Lid id Lid 

L 
7 Hi 

POP 0 
ES 

POP I 
55 

OAA 2 

AM 3 

INC 4 
DI 

PUSH 5 
DI 

6 

JNBEI 7 
JA 

XCHG 8 
w.r/m 

XCHG 
01 9 

CMPS A 

MDV B 
i ~ BH 

MOV C 
w.i.r/m 

XLAT 0 

OUT E 
w 

Grp 1 F 
w.r/m 

111 

CMP 

SAR 

IDIV 

-

Instructions in Hexadecimal Order 

SET MATRIX 

0 
8 9 A 

OR OR OR 
b.t.r/m w.t.r/m b.t.r/m 

SBB SBB SBB 
b.t.r/m w.t.r/m b.t.r/m 

SUB SUB SUB 
b.t.r/m w.t.r/m b.t.r.'m 

GMP CMP CMP 
b.f.r/m w.f.r/m b.t.r/m 

OEC DEC DEC 
AX CX OX 

POP POP POP 
AX CX OX 

JS JNS JPI 
JPE 

MOV MOV MOV 
b.f.r/m w.t.r/m b.l.r/m 

CBW CWO CALL 
I.d 

TEST TEST STOS b,i ,8 w,i,a 

MOV MOV MOV 
I - AX i - CX i-OX 

RET. 
l.(i·SP) 

ESC ESC ESC 
0 1 2 

CALL JMP JMP 
d d I.d 

CLC STC CLI 

b = byte operation 
d = direct 
t = trom CPU reg 
i = immediate 
ia = immed. to accum. 
id = indirect 

8 
OR 

w.t.r/m 

SBB 
w.t.r/m 

SUB 
w.t.r/m 

CMP 
w.t.r/m 

DEC 
BX 

POP 
BX 

--

JNPI 
JPO 

MOV 
w.t.rim 

WAIT 

STOS 

MOV 
i - BX 

RET 
I 

ESC 
3 

JMP 
sl.d 

STI 

is = immed. byte. sign ext. 
I = long ie. intersegment 

C 0 E 
OR OR PUSH 
b.1 W.I CS 

SBB SBB PUSH 
b.1 W.I OS 

SUB SUB SEG 
b.1 W.I CS 

GMP CMP SEG 
b.1 W.I OS 

DEC DEC DEC 
SP BP SI 

POP POP POP 
SP BP SI 

JLI JNLI JLEI 
JNGE JGE JNG 

MOV LEA MOV 
sr,t,r/m sr,t,r/m 

PUSHF POPF SAHF 

LOOS LOOS SCAS 

MOV MOV MOV 
I - SP 1- BP I -- SI 

INT INT INTO 
Type 3 (Anyl 

ESC ESC ESC 
4 5 6 
IN IN OUT 
v,b V,W v,b 

CLO STD 
Grp 2 
b.rlm 

m = memory 
rim = EA is second byte 
si = short intrasegment 
sr = segment regisler 
t = to CPU reg 
v = variable 
W = word operation 
z = zero 

F 

POP 
OS 

OAS 

AAS I 
OECI 

01 I 

POP 
01 

JNLEI 
JG 

POP 
rim 

LAHF 

SCAS 

MOV 
I - 01 

IRET 

ESC 
7 

OUT 
v,w 

Grp 2 
w.r/m 

E-7 





APPENDIX F 
iSBC 86/12TM AND iSBC 86/12ATM FIX 

ICE-86A may produce an error in reading a single byte when ICE-86A is used with 
an iSBC 86/12 or iSBC 86/12A Single Board Computer. A spurious error can occur 
in a data byte read from an odd memory location in the iSBC 86/12 or iSBC 
86/12A. The error is caused by a change in the even byte signals while the read signal 
is active at the interface between ICE-86A and iSBC 86/12. As a result the lower 
byte and upper byte data lines may cross-couple in the ICE-86A user cable during a 
single byte read operation. A similar error condition exists for I/O operations. 

The noise interference during the reading of odd memory locations can be 
eliminated by locating 10K ohm resistors on the iSBC 86/12 or the iSBC 86/12A. 
These resistors guarantee that the even byte data lines will be in a stable logic state. 
To eliminate the read interference, it is recommended that a 10K ohm resistor pack 
be mounted to pins 1 through 8 of a 20 pin I.C. test clip with pin 20 wired to the 
resistor pack as a +5V source as shown in figure F-2. Attach the test clip to the 8287 
Octal Bus Transceiver at A69 (see figures F-l(a), F-3, and F-4). This will pull up the 
lower data lines during read operations of upper data bytes. 

To eliminate noise interference during 110 cycles, two solutions are recommended. 
The first solution can be used with either the iSBC 86/12 or an iSBC 86/12A that 
does not contain an iSBC 340 Multimodule EPROM Expansion Board. Mount a 
10K ohm resistor pa€k on a 20 pin I.C. test clip, pins 1 through 8 with pin 20 wired 
to the resistor pack as a +5V source as shown in figure F-2. Attach the test clip to the 
8286 Octal Bus Transceiver located at A45 (see figures F-l(b), F-3, and F-4). 

The second solution to 110 noise interference must be used with an iSBC 86/12A 
containing an iSBC 340 module EPROM Expansion Board. Mount 10K resistors on 
a 24 pin I.C. test clip, pins 9, 10, 11, and pins 13 through 17 with the resistors wired 
to pin 24 as a +5V source. Attach the test clip to the EPROM located at A46 on the 
iSBC 340 (see figures F-l(b), F-3, and F-5). 

By adding these two test chips to the iSBC board, the floating data lines will be 
pulled up and the cross-coupling between even and odd byte data lines will be 
eliminated. 

NOTE 
This problem does not exist when ICE-86A is used with other user circuits, 
or when iSBC 86/12 or iSBC 86/12A is used without ICE-86A. 

F-I 



iSBC 86/12 and iSBC 86/12A Fix 

F-2 

(a) (b) 

+5V +5V 

10K 10K 

OM7 A69-1 DBB A4S-1, OR 
A46-9 

10K 10K 

DM6 A69-2 DB9 A4S-2, OR 
A46-10 

10K 10K 

OMS A69-3 DBA A4S-3, OR 
A46-11 

10K 10K 

DM4 A69-4 DBB A4S-4, OR 
A46-13 

10K 10K 

DM3 A69-5 DBC A4S·S, OR 
A46-14 

DM2 A69-6 DBD A4S-6, OR 
A46-1S 

10K 10K 

DM1 A69-7 DBE A4S-7, OR 
A46-16 

10K 10K 

OMO A69-8 DBF A4S-8, OR 
A46-17 

Figure F -1. The Piggyback Circuits Locations A45, A46, A69 of 
iSBC 86/12TM and iSBC 86/12ATM 

ICE-86A 

162554-1 



ICE-86A iSBC 86/12 and iSBC 86/12A Fix 

Figure F-2. Typical Application of I.C. Test Clips 162554-17 

F-3 



00 
t:I:I 
(") 
00 
C7I 
"'--N 
~ 
::I 
Q. 

Vi 
t:I:I 

D (") 
00 
C7I 
"'--> 
"'lj 
~. 

c 

B 

A A 

I ~'::>8C.&iF2.A 
N();IASSY , ~ , 

8 7 6 5 t 4 :1 

Figure F-3. iSBC86/12NM Parts Location Diagram 162554-22 



D 

c 

I 

A 

7 6 s. 4 

'So\-\"a ADell-AD7, AOB-ADF [U-- -------------r------~ 
SI-I'2. AcS-ADA [0-----1 

S\-It.\l 

S,"G:=o ""'-M¢ ~--

~""e LOc:,.c...I...I.I>...I"i,a,... ~.----+---=----~= 

"""" .,,,, ... 

• 7 6 

8281 

s 4 

Figure F-4. iSBC 86/12NM Schematic Diagram 

3 

D 

c 

I 

A 

3 

162554-21 



D 

c 

• 

A 

5HZ 

5H2 

ASI 

AB2 

7 

., 

6 

6 

5 

5 

4 3 

~ ,} , 

~ "'" ~ Ir c" ~-·ie20-L---"'Ie.~,r 

-~ ~ 
~ <I 

.... '80= HIe:.\-\. SVi~ 
ceo-OF< 

' ... 
~1,.=!>2..= 

f:.OI< "bDRI!:::'!I!> 
i..Oc."""\O~'!:J, 

--------'~::..:---.;:~"'-, ------:-----« J,,·I ~C."'411 
",,>,, 

~SI~ 

. .....,~~ :O • .CIo.c:.IC/ 

. _1_~;;;·2·Ya>;··,,12~ ______________ ~~ 
2Y II-,!1 - -.-----.~ 

----""'~i2.B 2,,(2Q 19 u--j'e;a. 
-----~2~ 2Y3~-'. --.~. 

e.2.o;~ CSI 

e2.':>~ C."5.1 
.'Z.'!;.~C.~I 

e.2~1 CSt 

4 3 

Figure F-S. iSBC 86112A™ Schematic Diagram 

Vi 
= n 
00 
~ 
"--N 
III 

6-
Vi = D n 
00 
~ 
"--
~ 
'"rj s;;. 

c 

8 

A 

162554-20 



APPENDIX G 
GUIDELINES FOR USE OF 

CLOCK, READY, AND RWTIMEOUT 

This appendix provides detailed information on use of the CLOCK, READY, and 
RWTlMEOUT commands. In this appendix, the term "Intel memory" refers to 
memory mapped to ICE RAM, Intellec expansion RAM, and/or disk storage. 

Set CLOCK Command 

The 8086 requires a clock signal input to provide a timing reference for all CPU 
activities. The ICE-86A emulator allows the clock signal to be supplied by either the 
user system or the ICE hardware. The source of the clock signal is determined by the 
set CLOCK command (CLOCK = INTERNAL or CLOCK = EXTERNAL). 

The command CLOCK = EXTERNAL is entered to select the user system clock 
signal to the 8086. An active user system clock must be present once this command is 
entered or the 8086 will not function. 

The 8086 read/write commands, which are generated for each bus cycle, are sent out 
to the user system when an external clock is selected. Therefore CLOCK must be set 
to external (and an active user system clock signal must be present) whenever any 
block of logical memory is mapped to the user system to ensure that the 8086 com­
mand signals reach the memory components in the user system. 

Since the ICE-86A emulator assumes that all referenced 110 ports exist in the user 
system, CLOCK must be set to EXTERNAL (and an active user clock signal must be 
present) for 110 operations to ensure that the 8086 commands reach the port 
devices. This is true whether I/O ports are accessed directly or when emulating user 
code. 

There are some situations when it is desirable to set CLOCK to EXTERNAL even 
though all logical memory is mapped to Intel memory. Hardware debugging of a 
malfunctioning user system is one case where this combination of clock selection 
and memory mapping may be useful. The 8086 can execute code stored in Intel 
memory while the command signals can be observed in the malfunctioning user 
system. The only part of the user system that must be functioning properly during 
this debugging is the clock circuit. 

Near real time emulation of user code is another case where it may be useful to select 
an external clock even though all logical memory is mapped to Intel memory. Since 
the only part of the user system that must be present during this emulation is the 
clock circuit, software debugging at near real time speeds can begin before a com­
plete user system is available. 

The command CLOCK = INTERNAL is entered to select the 2-MHz ICE-86A 
emulator clock signal to the 8086. The 8086 command signals are not available to the 
user system and no user clock signal is required when the internal clock is selected. 

The internal emulator clock is typically selected when the ICE-86A emulator is used 
as a standalone software debugger or when all logical memory is mapped to Intel 
memory. It should be noted, however, that emulation with the 2-MHz ICE emulator 
clock signal may execute more slowly than with the faster clock signal usually found 
in a user system. 

G-l 



Guidelines for use of CLOCK, R.EADY, and RWTlMEOUT 

0·2 

ENABlEIDISABl,EROY·Comm.and 

The READY input to the 8086 allows interfacing tbe CPU to memory or 110 where 
the access time of the memory or 110 is .slower than the CPU buscyc1e. 

The ready signal is typically generated by acknowledge circuitry after an address has 
been decoded, but before the addressed location has been acc.essed. The 8086 CPU 
samples its READY input midway during each bus cycle. The processor proceeds 
with the bus cycle if an active ready signal is available at this sample time. However, 
if the ready signal is not active at sample time, the 8086 injects wait states into the 
bus cycle indefinitely until an active ready signal is detected. These wait states allow 
the 8086 CPU to be synchronized to slower memory or 1/0. 

The ENABLEIDISABLE RDY command allows the user of the ICE-86Aemulator 
to enable or disable the ready signal generated by the user system during read/write 
operations to Intel memory. The ·difference between the two modes of operation 
(ENABLE RDY and DISABLE RDY) is shown in simplified logic in figureG-l. 

In the ENABLE RDY mode, the ICE-86A emulator logically ANDs the user system 
ready signal with the ready signal from Intel memory for all memory operations. In 
the DISABLE RDY mode, the ready signal is provided by the emulator alone when 
accessing Intel memory; the emulator continues to AND the user system ready signal 
with the ready signal from Intel memory when accessing user system memory. 

The ENABLE RDY mode should be used during normal operation. In this mode, 
the 8086 CPU waits for both the user ready signal and the ICE emulator ready signal 
for all memory operations. Waiting for the user ready signal is necessary to avoid 
problems that may arise when user system memory is slower than Intel memory or is 
implemented with dynamic RAM devices. The following example describes such a 
problem. 

Assume two back-to-back memory cycles where the first cycle is to Intel memory 
and the second access is to user system memory. If the DISABLE RDY mode is 
used, the 8086 can complete the first cycle to Intel memory and begin the second 
cycle to user memory independent of the user ready signal. If the user memory is 
much slo·wer than Intel memory or is in a refresh cycle, it may not have responded 
tol recovered from the first cycle when the second cycle begins. 

MEMORY ACCESS ENABLE ROY DISABLE ROY 

USER USER 

USER SYSTEM ~8086 ~8086 MEMORY ACCESS 
ICE READY ICE READY 

USER ~oooo INTEL 
MEMORY ACCESS ~8086 (ICE, INTELLEC, ICE :READY ICE READY 

OR DISK) 

Figure 0-1. Source of 8086 READY Input 162554-9 

ICE-'&6A 



ICE-86A Guidelines for use of CLOCK, READY, and RWTIMEOUT 

If the ENABLE RDY mode is used, the second cycle cannot begin until both Intel 
memory and user memory are ready. 

The ICE-86A emulator is in the ENABLE RDY mode at initialization. 

The DISABLE RDY mode is typically selected (1) when the ICE-86A emulator is 
used as a standalone software debugger (no user system present); or (2) when the 
user system is being designed/debugged (no ready signal is being generated by the 
user system and/or a portion of program memory is mapped to Intel memory). In 
the DISABLE RDY mode, the ICE-86A emulator does not wait for the user ready 
signal for memory cycles to Intel memory. 

Set RWTIMEOUT Command 

In emulation mode, an 8086 bus cycle to Intel memory may take up to a few 
milliseconds, although it may take longer when a disk access is required. (The 2K of 
ICE-86A emulator RAM, however, is very fast.) The read/write command signals 
are active for approximately the entire cycle. When CLOCK is set to EXTERNAL, 
the read/write commands are also active in the user system for the same period of 
time. This may cause problems with user system dynamic RAM devices such as 
2117s and 2118s. These RAM devices require a complete refresh cycle every 2 
milliseconds to guarantee data retention. The devices may lose their data if a refresh 
cycle is delayed due to command signals that are active on the user system for over 2 
milliseconds. 

The RWTIMEOUT command is used to deactivate the read/write command signals 
to the user memory after a time limit specified by the user of the ICE-86A emulator. 
This time limit allows the user memory refresh circuitry to proceed as required. 

The default value of RWTIMEOUT is 1000 microseconds, but can be changed by 
the ICE emulator user to any value greater than 0 and less than 32,000 or 
INFINITE. The command RWTIMEOUT = 500, for example, deactivates the 
read/write command signals to user memory 500 microseconds after a memory cycle 
begins, even though the cycle to Intel memory is still in progress. 

~ 
Dynamic RAM devices with a 2 millisecond refresh cycle specification will 
typically hold data for much longer periods of time without refresh; 
sometimes for several seconds. Therefore an ICE-86A emulator user may 
set RWTIMEOUT = INFINITE and still observe no problems in user 
memory, even when accessing memory mapped to disk (5 milliseconds is 
typical for disk access, but some disk operations may take several seconds). 
However, not all RAM devices will hold data past the 2 millisecond limit. 
Loss of data may result when this limit is exceeded. It is recommended that 
RWTIMEOUT never exceed 10 milliseconds. 

If ERROR is specified in the RWTIMEOUT command, the ICE-86A emulator 
checks the user system ready signal and reports timeouts to the user. For example, if 
the command RWTIMEOUT = 1000 ERROR is entered, a ready timeout is reported 
during emulation if no user ready is received within 1000 microseconds of the start 
of a memory cycle. RWTIMEOUT = 1000 ERROR is a useful setting when Intellec 
and disk memory are not accessed. 

If Intellec and/or disk memory are used, the recommended setting is RWTIMEOUT 
= 1000 NOERROR. Read/write commands to the user system are terminated 1000 
microseconds after the start of a memory cycle, but the emulator does not report 
ready time-outs which may otherwise occur during access to Intellec or disk 
memory. 

G-3 



Guidelines for use of CLOCK. READY. and RWTlMEOUT 

0-4 

Summary of CLOCK, READY, and RWTIMEOUT 

Table G-I illustrates the possible combinations of the CLOCK and 
ENABLE/DISABLE RDY commands for various memory mappings. The discus­
sion below summarizes the guidelines for using CLOCK, READY. and 
RWTIMEOUT. 

Table G-l. CLOCK and ENABLE/DISABLE RDY Commands 

User Cable Socket 
Connected User System Protector 

to: Assembly 

Logical Memory User Intel User and Intel 
Mapped to: Memory Memory Intel Memory 

Only Only Memory Only 

CLOCK set EXT EXT EXT tNT to: 'INT 

RDY set 'ENA 'ENA *ENA DIS to: DiS DiS DiS 

'Recommended 

I. In standalone mode, ICE-86A is not connected to a user system. CLOCK must 
be set to INTERNAL and the DISABLE RDY mode must be used. 

2. When accessing user memory, CLOCK must be set to EXTERNAL and the 
ENABLE RDY mode should be used. 

3. RWTIMEOUT = 1000 NOERROR is the recommended setting when accessing 
Intellec and disk memory. 

ICE-86A 



APPENDIX H 
INSTALLING UPGRADE KIT 

The Upgrade Kit converts an ICE-86 emulator to an ICE-86A emulator. The follow­
ing instructions detail procedures for installing the Upgrade Kit for the Intellec 
Model 800 and 888 Systems OT the Intellec Series II System. 

Installation Procedure for the Intellec 
Model 800 and 888 Systems 

1. Disconnect the power cords of the lntellec chassis and user system. 

2. Inspect the ICE-86U assemblies for damage. 

3. Remove the top cover of the Intellec chassis. 

4. The ICE-86 circuit boards consist of an FM Controller board, an ICE-86 Trace 
board, and an 86 Controller board. The ICE-86 buffer box is connected by two 
cables to the 86 Controller board and the FM Controller board at terminals_on 
the boards marked "X" and "Y," respectively. Disconnect these cables from 
the circuit boards. 

5. On the side of the ICE-86 buffer box opposite to that which the circuit board 
cables are attached to, there is a "user cable" ending in a forty-prong plug. If 
the user cable is attached to the user's prototype application system, then 
disconnect it. 

6. Also at the end of the user cable is a black plug receptacle. Inserted into this 
receptacle should be the male plug end of the ICE-86 Ground Connector; the 
other end of the Ground Connector should be clipped to system ground. Unclip 
the system ground end of the Ground Connector. 

7. Set aside the ICE-86 buffer box. 

8. Remove the FM Controller board from its chassis slot. 

9. The ICE-86 firmware consists of six PROM's on the FM Controller board at 
locations labeled A2 through A7 on the board. Remove and set aside the ICE-86 
firmware. 

10. The ICE-86A firmware consists of six PROM's labeled A2 through A7. Attach 
these PROM's to the FM Controller board at the locations formerly occupied 
by the ICE-86 firmware, making sure to match the labels on the tops of the 
PROM's with the labels on the board. 

11. Examine the newly-installed firmware to be sure all pins have made contact with 
the FM Controller board. 

12. Re-insert the FM Controller board into the chassis slot it previously occupied. 

13. The ICE-86 Trace board and the 86 Controller board are connected by a "T 
cable"; this cable is attached to the boards at terminals labeled "T." Remove 
theT cable. 

14. Remove the 86 Controller board. 

15. In order to enable External Break, examine the solder side of the 86 Controller 
board for continuity from pin 40 of J2 (the X cable terminal) to pin 5 of RPI (a 
resistor pack). Continuity exists between the two points if 0 ohms is detected 
between the points or if the 86 Controller board part number is 1001879-03 

H-l 



Installing Upgrade Kit 

H-2 

y 

v 

v 

Rev. F or later. If continuity exists, then proceed to instruction #16. If the wire 
is not in place, then the user can make the connection or can contact Intel 
service for assistance. 

[WARNING I 
the user should avoid applying excessive heat to the 86 Controller 
board while soldering; the traces on the back of the board will 
detach themselves if exposed to enough heat. A soldering iron with 
a maximum power of 15 to 20 watts is recommended. After solder­
ing has been completed, the uSer should check for solder splashes 
that can short parts of the board. The user should also examine the 
wire to be sure good physical contact has been made with the pins. 

16. Re-insert the 86 Controller board into the chassis slot it previously occupied. 

17. Reattach the T cable to the ICE-86 Trace board and the 86 Controller board, 
making sure to mate the blocked inserts on the cable receptacles with the missing 
pins on the board terminals. 

18. The ICE-86 buffer box has a pair of cables coming out of one side contained 
within a rubber zipper tube. At the end of each cable is a 40-pin receptacle; one 
receptacle is marked "X" and one is marked "Y" (corresponding to the circuit 
board cables of the ICE-86 buffer box). Attach the buffer box cable receptacle 
marked "X" to the 86 Controller board terminal marked "X," making sure to 
mate the missing pin on the board terminal with the blocked ipsert on the cable 
receptacle. 

19. Attach the buffer box cable receptacle marked "Y" to the FM Controller board 
terminal marked "Y," making sure to mate the missing pin on the board ter­
minal with the blocked insert on the cable receptacle. 

20. If a user prototype application system is to be connected, remove the Socket 
Protector assembly from the user cable of the ICE-86 buffer box and insert the 
40-pin cable terminal into the 8086 socket on the user system. The Socket 
Protector assembly guards the terminal pins from damage and inadvertent 
grounding. 

21. At the end of the ICE-86A buffer box user cable is a black plug receptacle 
corresponding to the one at the end of the ICE:86 buffer box user cable. Insert 
into this receptacle the male plug end of the ICE-86A Ground Connector, and 
clip the other end of the Ground Connector to system ground. 

22. Replace the top cover of the Intellec chassis. 

23. Re-insert the power cords of the Intellec chassis, the Expansion Chassis, and 
user system into their power sources. 

Installation Procedure for the Intellec Series II Systems 

1. 

2. 
3. 

Disconnect the power cords of the lntellec chassis and user system. 

Inspect the ICE-86U assemblies for damage. 

Remove the front cover of the expansion chassis housing the ICE-86 circuit 
boards. 

v 4. The ICE-86 circuit boards consist of an FM Controller board, an ICE-86 trace 
board, and an 86 Controller board. The ICE-86 buffer box is connected by two 
cables to the 86 Controller board and the FM Controller board at terminals on 
the boards marked "X" and "Y," respectively. Disconnect these cables from 
the circuit boards. 

ICE-86A 



ICE-86A Installing Upgrade Kit 

......-5. On the side of the ICE-86 buffer box opposite to that which the circuit board 
cables are attached to, there is a "user cable" ending in a forty-prong plug. If 
the user cable is attached to the user's prototype application system, then 
disconnect it. 

7 6. Also at the end of the user cable is a black plug receptacle. Inserted into this 
receptacle should be the male plug end of the ICE-86 Ground Connector; the 
other end of the Ground Connector should be clipped to system ground. Unclip 
the system ground end of the Ground Connector . 

......- 7. Set aside the ICE-86 buffer box. 

/8. Remove the FM Controller board from its chassis slot. 

.....- 9. The ICE-86 firmware consists of six PROM's on the FM Controller board at 
locations labeled A2 through A 7 on the board. Remove and set aside the ICE-86 
firmware. 

-to. The ICE-86A firmware consists of six PROM's labeled A2 through A 7. Attach 
these PROM's to the FM Controller board at the locations formerly occupied 
by the ICE-86 firmware, making sure to match the labels on the tops of the 
PROM's with the labels on the board . 

...-"} 1. Examine the newly-installed firmware to be sure all pins have made contact with 
the FM Controller board . 

....--r2. Re-insert the FM Controller board into the chassis slot it previously occupied. 

---13. The ICE-86 Trace board and the 86 Controller board are connected by a "T 
cable"; this cable is attached to the boards at terminals labeled "T." Remove 
the T cable. 

14. Remove the 86 Controller board. 

vI5. To enable External Breaks, examine the solder side of the 86 Controller board 
for continuity from pin 40 of 12 (the X cable terminal) to pin 5 of RP 1 (a 
resistor pack). Continuity exists between the two points if 0 ohms is detected 
between the points or if the 86 Controller board part number is 1001879-03 
Rev. F or later. If continuity exists, then proceed to instruction #16. If the wire 
is not in place, then the user can make the connection or can contact Intel serv­
ice for assistance. 

I WARNING I 
The user should avoid applying excessive heat to the 86 Controller 
board while soldering; the traces on the back of the board will 
detach themselves if exposed to enough heat. A soldering iron with 
a maximum power of 15 to 20 watts is recommended. After solder­
ing has been completed, the user should check for solder splashes 
that can short parts of the board. The user should also examine the 
wire to be sure good physical contact has been made with the pins. 

/ 16. Re-insert the 86 Controller board into the chassis slot it previously occupied. 

v17. Reattach the T cable to the ICE-86 Trace board and the 86 Controller board, 
making sure to mate the blocked inserts on the cable receptacles with the missing 
pins on the board terminals. 

-18. The ICE-86 buffer box has a pair of cables coming out of one side contained 
within a rubber zipper tube. At the end of each cable is a 40-pin receptacle; one 
receptacle is marked "X" and one is marked "Y" (corresponding to the circuit 
board cables of the ICE-86 buffer box). Attach the buffer box cable receptacle 
marked "X" to the 86 Controller board terminal marked "X," makiogsure to 
mate the missing pin 00 the board terminal with the blocked insert on the cable 
receptacle. 

H-3 



Installing Upgrade Kit 

H-4 

&--19. Attach the buffer box cable receptacle marked "Y" to the FM Controller board 
terminal marked "Y, "making sure to mate the missing pin on the board ter­
minal with the blocked insert on the cable receptacle. 

~. If a user prototype application system is to be connected, remove the Socket 
Protector assembly from the user cable of the ICE-86 buffer box and insert the 
40-pin cable terminal into the 8086 socket on the user system. The Socket 
Protector assembly guards the terminal pins from damage and inadvertent 
grounding. 

? 21. At the end of the ICE-86A buffer box user cable is a black plug receptacle 
corresponding to the one at the end of the ICE-86 buffer box user cable. Insert 
into this receptacle the male plug end of the ICE-86A Ground Connector, and 
clip the other end of the Ground Connector to system ground. 

22. Replace the front cover of the expansion chassis housing the ICE-86 circuit 
boards. 

23. Re-insert the power cords of the Intellec chassis, the Expansion Chassis, and 
user system into their power sources. 

ICE-86A 



APPENDIX II 
8087 DEBUGGING SUPPORT 

Introduction 

When an 8087 NDP (Numeric Data Processor) shares a system bus with an 8086 
CPU, the arithmetic abilities of the 8086 processor are expanded to include floating 
point calculations. The ICE-86A emulator can be used as a debugging tool for the 
8087 chip or the 8087 software emulator. To debug floating point operations in user 
software, a file of Floating Point MACROS has been added to the ICE-86A system 
disk; the name of the file is 8087.MAC. The details of these MACROS are given 
below. For further information concerning the 8087 NDP in general, the user should 
consult The 8086 Family Users Manual Numerics Supplement, Manual Order 
Number 121586. 

NOTE 

ICE-86A hardware is not equipped to monitor the system bus while another 
device, such as the 8087 NDP, is in control. Therefore, the emulator's 
breakpoint capabilities are not available when it is not the system bus 
master. Hence, ICE-86A support for the 8087 NDP can be best character­
ized as a software debug aid, rather than, as it is for the 8086 processor, a 
system design tool. 

The MACROS are merely sets of ICE-86A commands like those entered at 
the console. They are intended to be very general and are therefore fairly 
slow in execution. Users may model their own 8087 debugging aids on these 
macros. 

The Floating Point Macros use four ICE variables named: 

.?Z1 .?Z2 .?Z3 .?Z4 

If the user has created any variables with these names, they will conflict 
when running the Floating Point Macros. 

The Status Block 

Almost all of the floating point MACROS access 108-byte blocks of memory termed 
"status blocks." These status blocks contain: 

1. status and variables used by the MACROS, 

2. code for execution, 

3. temporary 8086 register values, 

4. 8087 or emulated 8087 register values. 

When using the 8087 chip, status blocks can only be stored in user memory; that is, 
the memory used for those macros must be mapped to user memory. Because of 
8087 control of the system bus, it is impossible to transfer information to Intellec, 
disk, or ICE memory. This does not occur when using the software emulator for the 
8087; since the software is stored in the 8086 CPU, the emulated 8087 
microprocessor has access to the same memory space as the 8086 microprocessor. 

The FLAG byte of a status block (byte 0) indicates whether the 8087 chip or the 8087 
emulator is being used. 

1-1 



8087 Debugging Support 

107 106 

The COMMAND bytes (bytes I through 5) are a workspace area where the called 
MACRO writes commands for the controlling device to execute. 

The REGISTER bytes (bytes 6 through 13) are used as a save area for 8086 registers. 
The CS, IP, DS, and DI 8086 registers are temporarily stored in these bytes during 
the execution of theGETBLK and PUTBLK MACROS. These MACROS overwrite 
the 8086 registers as part of their status information transferal procedures. The 8086 
registers are restored after execution has been completed. 

The BLOCK bytes (bytes 14 through 107) contain the actual NDP status informa­
tion. This information includes the Command, Status, and Tag Words, as well as 
the NDP stack. It also contains the last instruction address, the last operation, and 
the last operand address if the operation referred to an operand. 

See figures I-I through 1-7 for illustrations of these formats. 

Floating Point Macro Side Effects 

Most of the floating point MACROS contain a DISABLE EXPANSION Com­
mand. That is, they suppress the display of MACRO code prior to execution. This is 
done for user convenience. To restore display, use the ENABLE EXPANSION 
Command. (See Chapter 8 for the ENABLE/DISABLE EXPANSION Command.) 

The GETBLK and PUTBLK MACROS temporarily disable TRACE. This is done 
to prevent status block information transferal instructions from being recorded in 
the TRACE registers. Under normal circumstances, the loading and unloading of 
status blocks has no relation to the process being emulated. 

The TRACE facility is enabled following execution of either the GETBLK 
or PUTBLK MACROS regardless of the facility's state prior to the 
MACRO invocation. If the user desires that TRACE be disabled after call­
ing either of these MACROS, then the user must enter the DISABLE 
TRACE Command (see Chapter 6). 

The GO and Breakpoint registers are also altered. These registers are used in the 
transferal of status block information. 

16 15 14 13 

BYTES 

12 11 10 

REGISTER 
BYTES 

8 7 6 5 3 2 

COMMAND 
BYTES 

ICE-86A 

o 

C BLOCK 

~------------~------------------------------~------------------~--~ 

Figure 1-1. Status Block 162554-10 

13 12 11 10 8 7 6 

Figure 1-2. Register Bytes Format 162554-11 

1-2 



ICE-86A 

INSTRUCTION { 
POINTER 

OPERAND { 
POINTER 

TOP STACK J 
ELEMENT:ST 1 

NEXT STACK J 
ELEMENT:ST(l) 1 

LASTSTACK J 
"'M'"""", 1 

NOTES: 
S = Sign 

INCREASING ADDRESSES OFFSET BY 14 

15 ° 
CONTROL WORD +0 

STATUS WORD +2 

TAG WORD +4 

IP15-O +6 

IP19-16 101 OPCODE +8 

OP15-O +10 

OP19-161 ° +12 

SIGNIFICAND 15-0 +14 

SIGNIFICAND 31-16 +16 

SIGNIFICAND 47-32 +18 

SIGNIFICAND 63-48 +20 
A 

SI EXPONENT 14-0 +22 

SIGNIF1CAND 15-0 +24 

SIGNIFICAND 31-16 +26 

SIGNIFICAND 47-32 +28 

SIGNIFICAND 63-48 +30 
A 

SI EXPONENT 14-0 +32 

" " r 
SIGNIFICAND 15-0 +84 

SIGNIFICAND 31-16 +86 

SIGNIFICAND 47-32 +88 

SIGNIFICAND 63-48 +90 , 
SI EXPONENT 14-0 +92 

Bit ° of each field is rightmost, least significant bit of corresponding 
register field. 
Bit 63 of significand is integer bit (assumed binary point is immediately 
to the right). 

Figure 1-3. Block Bytes Format 

8087 Debugging Support 

162554-12 

1-3 



8087 Debugging Support ICE-86A 

1-4 

15 

I I 

15 

ST 
I I 

I I 
-,...- --

7 

1 0 

@ 

(1) Interrupt-Enable Mask: 
o = Interrupts Enabled 

EXCEPTION MASKS (1 = EXCEPTION IS MASKED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT-ENABLE MASK(l) 

PRECISION CONTROL(2) 

ROUNDING CONTROL(3) 

INFINITY CONTROL(4) 

(RESERVED) 

1 = Interrupts Disabled (Masked) 
(2) Precision Control: 

00 = 24 bits 
01 = (reserved) 
10 = 53 bits 
11 = 64 bits 

(3) Roundil19 Control: 
00 = Round to Nearest or Even 
01 = Round Down (toward -00) 
10 = Round Up (toward +00) 
11 = Chop (Truncate Toward Zero) 

(4) Infinity Control: 
o = P~ective 
1 = Affine 

Figure 1-4_ Control Word Format 

o 

162554-13 

I C21 Cl I CO IIR I I PE I UE I OE I ZE I DE liE I 

@ 
EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERODIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST 

CONDITION CODE(l) 

STACK TOP POINTER(2) 

L-----------------------------------------BUSY 

(1) See descriptions of compare, test, examine and remainder instructions in section S.7 for 
condition code interpretation. 

(2) ST values: 
000 = register 0 is stack top 
001 = register 1 is stack top . 
111 = register 1 is stack top 

Figure 1-5. Status Word Format 162554-14 



ICE-86A 8087 Debugging Support 

Tag values: 
00 = Valid (Normal or Unnormal) 
01 = Zero (True) 
10 = Special (Not-AcNumber,~, or D_) 
11 = Empty 

Figure 1-6_ Tag Word Format 

I OPERAND ADDRESSI') 

I INSTRUCTION OPCODE(2) 

I INSTRUCTION ADDRESS(') 

10 
(1) 20·bit physical address 

o 

(2) 11 least significant bits of opcode; 5 most significant bi1s are always 8087 hook (110118) 

Figure 1-7. Exception Pointers Format 

The Define Block Macro 

SYNTAX :DEFBLK symbol ,pointer-address ,ndp 

where ndp == 8087: :87: :87E 

162554-15 

162554-16 

RESULT Defines a status block at a given location in memory to be 
accessed by the MACROS and assigns it a symbolic value. 
"8087" and "87" both refer to the 8087 NDP; "87E" indicates 
the 8087 software emulator. The pointer-address is the beginning 
address of the block (in user memory if using the 8087 chip). 

SIDE EFFECTS None. 

Example: 

:DEFBlK .ONE,O:2000,87 

The Get Block Macro 

SYNTAX :GETBLK symbol 

RESULT Reads the NDP status into the selected status block. 

SIDE EFFECTS MACRO expansion disabled. TRACE temporarily disabled. 8086 
registers temporarily stored in REGISTER bytes. The Go and 
Breakpoint registers are altered. 

Example: 

:GETBLK .ONE 
••• TRACE now off'" 
EMULATION BEGUN 
EMULATION TERMINATED, CS:IP=OOOO:2006H 
••• TRACE now on •• * 

1-5 



8Q87 Debugging Support 

1-6 

The Put Block Macro 

SYNT AX :PUTBLK symbol 

RESUL T Writes the status block to the NDP. 

SIDE EFFECTS MACRO expansion disabled. TRACE temporarily disabled. 8086 
registers temporarily stored in REGISTER bytes. If the 8087 soft­
ware emulator is executing the MACRO commands, then the Go 
and Breakpoint registers are altered. 

Example: 

:PUTBLK .ONE 
EMULATION BEGUN 
EMULATIONTERMINATED, CS:IP=0000:2006H 
•• , TRACE now on , .. 

The Remove Block Macro 

SYNTAX :REMBLK symbol 

RESULT Releases the 108 bytes in memory associated with the status block 
name and removes the status block name from the symbol table. 

SIDE EFFECTS None. 

Example: 

':REMBLK .ONE 

The Display Stack Macro 

:STACK symbol SYNTAX 

RESULT Displays NDP stack elements and their associated tags in 
hexadecimal format. 

SIDE EFFECTS MACRO expansion disabled. Display base becomes hexadecimal. 

Example: 

':STACK .ONE 

REGISTER VALUE TAG -----
(hi) (10) 

ST(OOH) 3FH FFH 80H OOH OOH 00 H OOH 00 H 00 H OOH 03H 

ST(01H) 40H OOH 80H 00 H OOH 00 H OOH 00 H 00 H OOH 02H 
ST(02H) 40H 00 H C7H DFH 3BH 64 H 5AH 1CH ACH 08H 01H 

ST(03H) 40H OCH COH E6H B7H 31 H 8FH C5H 04 H 81 H OOH 
ST(04H) BFH BCH BAH 90 H 08H 4AH 15H 89 H EDH FOH 03H 

ST(05H) 50 H 02H A8H 85 H 04H B9H o 3.H 30 H DB.H E2H 02H 

ST(06H) 40 H 31 H 8.CH 4DH B7H F3H 40H 3EH 40H 00 H 01H 

ST(07H) 40H 02H 80H 00 H OOH 00 H 00 H OOH OOH 00 H OOH 

ICE-8(jJ\ 



ICE-86A 8087 Debugging Support 

The Evaluate Stack Macro 

:EV ALSTK symbol SYNTAX 

RESULT Displays NDP stack elements in decimal format and 
disassembled. 

SIDE EFFECTS MACRO expansion disabled. 

Example: 

*:EVALSTK .ONE 
REGISTER 

ST(OOH) 
ST(01H) 
ST(02H) 
ST(03H) 
ST(04H) 
ST(05H) 
ST(06H) 
ST(07H) 

VALUE 

+ 1.00000000000000000E + 0 
+ 2.00000000000000000E + 0 
+ 3 .12300000000000000E + 0 
+ 1.23456789000000000E + 4 
- 9.87654321 OOOOOOOOOE -21 
+ 1 .1 OOOOOOOOOOOOOOOOE + 1234 
+ 1.23412341234123400E + 15 
+ 8.00000000000000000E + 0 

The Display Status Macro 

SYNTAX :STATUS symbol 

TAG 

FREE 
NaN liN FIN ITEI DENORMAL 
ZERO 
VALID 
FREE 
NaN IINFINITEIDENORMAL 
ZERO 
VALID 

RESULT Displays the Status, Control, and Tag Words, and their 
associated bit maps. It also displays the last instruction address, 
the last operation, and the last operand address 

SIDE EFFECTS MACRO expansion disabled. 

Example: 

*STATUS .ONE 
CONTROL WORD: 
BIT MAP = I x I x I x I AC I RC(2) I PRE(2) III M I x I MP I MU I MO I MQ I MD I Mil 

WOR OOOO:200EH=0000001011111111 Y 

STATUS WORD: 
BIT MAP = I BIZ I TOP(3) I C I A I Sill N I x I PI U I 0 I Q I Dill 

WOR OOOO:2010H=0100000100000000Y 

TAG WORD: 
BIT MAP = I T7(2) I T6(2) I T5(2) I T4(2) III T3(2) I T2(2) I T1(2) I TO(2) I 
NOTE: Tags are mapped to absolute registers, they are not stack relative 

WOR OOOO:2012H=0001101100011011 Y 

INSTRUCTION ADDRESS: (pseudo base-displacement) 
FOOO:C9DEH 

LAST OPERATION: (8087 format) 
CDH1CH 

OPERAND ADDRESS: (pseudo base-displacement) 
OC04H 

1-7 



8087 Debugging Support 

1-8 

The Evaluate Status Macro 
SYNTAX 

RESULT 

:EVALSTATsymbol 

Evaluates Control and Status Words and displays information to 
the user. Displayed are the infinity arithmetic, rounding, and 
precision formats, masked bits, the state of the ZERO and BUSY 
flags, the pointer to the top of the NDP stack, the state of error­
handling flags, and error warning messages for standard types of 
errors. 

SIDE EFFECTS MACRO expansion disabled. 

Example: 

*:EVALSTAT .ONE 
CONTROL WORD: 
CLOSURE = PROJECTIVE 
ROUNDING = NEAREST/EVEN 
DOUBLE PRECISION 
MASK=TRUE 
MASK BITS SET: 

PRECISION ERROR 
UNDERFLOW ERROR 
OVERFLOW ERROR 
DIVIDE BY ZERO ERROR 
DENORMALIZATION ERROR 
INVALID ERROR 

STATUS WORD: 
BUSY = FALSE 
C3(ZERO) = TRUE 
TOP = REGISTER OOH 
C2 = FALSE 
C1 = FALSE 
CO(SIGN) = 01 H 
INTERRUPT = FALSE 
ERROR FLAGS SET: 

The Evaluate Control Word Macro 
SYNTAX 

RESULT 

:EV ALCW symbol 

Evaluates Control Word and displays information to user. 
Displayed are infinity arithmetic, rounding, and precision for­
mats, masked bits, and error warning messages for standard types 
of errors. 

SIDE EFFECTS MACRO expansion disabled. 

Example: 

:EVALCW.ONE 
CONTROL WORD: 

CLOSURE=PROJECTWE 
ROUNDING = NEAREST/EVEN 
DOUBLE PRECISION 
MASK=TRUE 
MASK BITS SET: 

PRECISION ERROR 
UNDERFLOW ERROR 
OVERFLOW ERROR 
DIVIDE BY ZERO ERROR 
DENORMALIZATION ERROR 
INVALID ERROR 

ICE-86A 



ICE-86A 8087 Debugging Support 

The Evaluate Status Word Macro 

SYNTAX :EVALSW symbol 

RESULT Evaluates Status Word and displays information to user. 
Displayed are the state of the ZERO and BUSY flags, the pointer 
to the top of the NDP stack, the state of error-handling flags, and 
error warning messages for standard types of errors. 

SIDE EFFECT MACRO expansion disabled. 

Example: 

:EVALSW.ONE 
STATUS WORD: 

BUSY = FALSE 
C3(ZERO) = TRUE 
TOP = REGISTER OOH 
C2 = FALSE 
C1 = FALSE 
CO(SIGN) =01 H 
INTERRUPT = FALSE 
ERROR FLAGS SET: 

The Display or Change Control Word Macro 

SYNTAX 

RESULT 

:CW symbol [,=word-value] 

Display or change of the Control Word in the current base. If 
:CW symbol is entered, then the value of the Control Word is 
displayed. If :CW symbol,=word value is entered, then display is 
suppressed and the value of the Control Word is changed to 
word-value. 

I WARNING I 
Bits 6,13, 14, and 15 of the Control Word are unassigned 
and reserved. The operator should avoid altering the 
value of these bits, as this may lead to an incompatibility 
with the ICE-86A module. 

SIDE EFFECTS None. 

Examples: 

*:CW.ONE,=2FF 

*:CW.ONE 
WOR 0000:200EH=02FFH 

The Display or Change Status Word Macro 

SYNTAX 

RESULT 

:SW symbol ['=word-value] 

Display or change of the Status Word in the current base. If :SW 
symbol is entered, then the value of the Status Word is displayed. 
If :SW symbol,=word-value is entered, then display is suppressed 
and the value of the Status Word is changed to word-value. 

1-9 



8087 Debugging Support 

1-10 

SIDE EFFECTS None. 

Examples: 

*:SW.ONE,=4100 

*:SW.ONE 
WOR OOOO:2010H=4100H 

The Display or Change Tag Word Macro 

SYNTAX 

RESULT 

:TW symbol [, = word-value 1 

Display or change of the Tag Word in the current base. If :TW 
symbol is entered, then the value of the Tag Word is displayed. If 
:SW symbol,=word-vaJue is entered, then display is suppressed 
and the value of the Tag Word is changed to word-value. 

SIDE EFFECTS None. 

Examples: 

*:TW .ONE,=1 B1 B 

*:TW.ONE 
WOR OOOO:2012H=1 B1 BH 

The Display or Change Stack Macro 

SYNTAX 

RESULT 

:STK symbol,offset [,=real-value 1 

where offset is an integer from 0 to 7 representing the distance of 
an element from the top of the NDP stack. 

Display or change of individual NDP stack elements in decimal 
format. If :STK symbol,offset is entered, then the offset-th of the 
stack is displayed. If :STK symbol ,offset ,=real-value is entered, 
then display is suppressed and the value of the offset-th element 
of the stack is changed to real- value. 

SIDE EFFECTS MACRO expansion disabled. 

Examples: 

*:STK .ONE,0,=1.0 

*:STK .ONE,7,=8. 

*:STK .ONE,O 
TRE 0000:201 CH= + 1.00000000000000000E + 0 

*:STK .ONE,? 
TRE OOOO:2062H= + 8.00000000000000000E + 0 

ICE-86A 



ICE-86A 8087 Debugging Support 

The Display Stack Address Macro 

SYNTAX 

RESULT 

:STKADDR symbol ,offset 

where offset is an integer from 0 to 7 representing the distance of 
an element from the top of the NDP stack. 

Displays the memory location of a particular NDP stack element 
so that the user may access the individual bytes of the stack. The 
display occurs in all four bases-binary, octal, decimal, and 
hexadecimal-and also includes the corresponding ASCII· 
characters. (The STKADDR MACRO is based on the 
EVALUATE command; see Chapter 7 for details.) The hexa­
decimal value refers to the lowest byte in logical memory where 
the stack element is stored; the stack element is contained in ten 
consecutive bytes, starting at the byte listed. (In the example given 
below, for instance, "20lCH" means that the stack element is 
stored in bytes 20lCH through 2025H in logical memory.) 

SIDE EFFECTS MACRO EXPANSION disabled. 

Example: 

*:STKADDR .ONE,O 
10000000011100Y 20034Q 8220T 201CH ' , 

1-11 



8087 Debugging Support 

The following is a listing of the Floating Point Macros with comments. It is con­
tained in the file 8087.HLP on the ICE-86A diskette. 

:8087 SUPPORT MACROS C INTF-L 1981 
, 
.******************************************************** , 

DEFINE LOCAL SYMBOLS (VARIABLES) 

DEFINE .?Zl=O 
DEFI"lE .?Z2=0 
DEFINE .?Z3=0 
DEFINE .?Z4=0 
, 
.*********************************************** , 

DEFINE MACRO DEFBLK 
DISABLE EXPANSION 
IF (OFFSET (%1) + 10BT) < OFFSET (%1) THEN 
;THE OFFSET SELECTED MUST BE ABLE TO REACH THE 108 BYTES OF THE DATA BLOCK 
WRITE ' OFFSET VALUE TOO HIGH - TRY AGAIN' 
ELSE 
DEFINE %.0 = %1 
IF %2H = BOB7n 
BYTE %l=OFFH 
ORIF %2H == 87H 
BYTE %1 OFFH 

;SYMBOL GETS ADDRESS VALOE 
TI1EN 

;TRUE FOR 8087 
T~IEN 

ELSE 
BYTE %1 
ENDIF 
ENDIF 
EM 

o 

;87 == 8087 

;FALSE FOR 87 EMULATOR 

, 
.******************************************** , 

DEFINE MACRO GETBLK 
DISABLE EXPANSION ;DISABLE THE MACRO EXPANSION 
DISABLE TRACE 
1-1RITE ' *** TRACE 
WORn %0+6T = CS 
1-1ORD %0+8T = IP 
WORD %0+10T = OS 

;DON'T TRACE THE FLOATING POINT EXECUTION 
now off ***' 

;SAVE CURRENT EXECUTION LOCATION 

;SAVE POINTERS 
~10RD %0+12T = DI 
OS SEGMENT(%O) ;SEGMENT ADDRESS OF USER-DEFINED BLOCK 
01 = OFFSET(ZO+14T) ;SET OFFSET TO BEGINNING OF R087 EXTERNAL REGISTER AREA 
IF (BYTE %0) THEN ;IF 8087 THEN ••• 

ICE-86A 

BYTE %0+1 = 9BH,DDH,35H,9BH,F4H ;WAIT, SAVE ALL OF AOA7 REGISTERS, WAIT, HALT 
GO FROM %0+1 TILL flAI,T ;I'AIT, EXECUTE THE FSAVE, l!AIT, AND HALT 
ELSE ;IF A7 EM THEN ••• 
BYTE %0+1 = CDH,lDH,35H,F4H ;CET ALL STATUS FRO~ AlE" 
GO FROM %0+1 TILL flALT 
WRITE '*** GR and BR registers altered ***' 
ENDIF 
CS (WORD %0+6T) ;RESTORE B086 REGISTERS 
IP (WORD %0+8T) 
OS (WORD %0+10T) 
01 (WORn %0+12T) 
ENABLE TRACE ;AND TRACE 
WRITE "*** TRACE now on ***' 
Etl 
, 
;~************************************** 

DEFINE MACRO PUTBLK 
DISABLE EXPANSION 
DISABLE TRACE 

1-12 

;DISABLE MACRO EXPANSION 
;OOH'T TRACE THE FLOATING POI~T EXECUTION 



ICE-86A 8087 Debugging Support 

WORD %0+6T - CS ;SAVE CURRENT EXECUTION LOCATION 
WORD %0+8T = IP 
WORD %0+10T = DS ;SAVE DATA SEGMENT AN OFFSET POINTERS 
WORD %0+12T = DI 
DS SEGMENT(%O) ;SEGMENT ADDESS OF USER-DEFINED BLOCK 
01 = OFFSET(%0+14T) ;POINT TO DATA AREA HOLDING ALL OF 8087 ENVIRONMENT 
IF (BYTE %0) THEN ;IF 8087 THEN ••• 
BYTE %0+1 = 9BH,DDH,25H,9BH,F4H ;WAIT, RESTORE 8087 ENVIRONMENT, WAIT, HALT 
GO FROM %0+1 TILL HALT ;WAIT, EXECUTE THE FRSTOR, WAIT, AND HALT 
ELSE ;IF 87 EM THEN ••• 
BYTE %0+1 = CDH,IDH,25H,F4H ;RESTORE STATUS TO 87EM 
GO FROM %0+1 TILL HALT 
WRITE ,*** 
ENDIF 

GR and BR registers altered ***, 

CS (\-IORD 
IP (WORD 
DS (WORD 
DI (WORD 

%0+6T) 
%0+8T) 
%0+10T) 
%0+12T) 

;RESTORE 8086 REGISTERS 

ENABLE TRACE ;AND TRACE 
WRITE '*** TRACE now on ***' 
EM 
; 
.**************************************** , 

DEFINE MACRO REMBLK 
REMOVE %0 ;REMOVE BLOCK FROM SYMBOL TABLE 
EH 

.**************************************** , 

DEFINE MACRO STATUS 
;DISPLAY THE STATUS WORD, CONTROL WORD, TAG WORD, AND THE LAST INSTRUCTION 
;ADDRESS, OPCODE, AND OPERAND TYPE. 
DISABLE EXPANSION 
BASE = Y 
WRITE 'CONTROL WORD:' 
WRITE' BIT MAP = IxlxlxIACIRC(2)IPRE(2)I/IMlxIMPIHUIMOIMQIHDIHII' 
:CW %0 
WRITE 
WRITE 'STATUS WORD:' 
WRITE' BIT MAP = IBIZITOP(3)ICIAISI/INlxIPIUIOIQIDIII' 
:SH %0 
WRITE 
WRITE 'TAG HORD:' 
WRITE' BIT I1AP = IT7(2)IT6(2)IT5(2)IT4(2)I/IT3(2)IT2(2)IT1(2)IT0(2)I' 
WRITE' NOTE: Tags are mapped to absolute registers, they are not stack relative' 
:TW %0 
BASE = H 
WRITE 
WRITE 
WRITE 'INSTRUCTION ADDRESS: (pseudo base-displacement)' 
WRITE «(BYTE %0+23T)/16T*4K):(WORD %0+20T») ;GET UPPER 4 BITS OF 20 BIT 
;ADDRESS, MAKE IT INTO A SEGMENT VALUE. PRINT THE LOWER 16 BITS AS OFFSET. 
WRITE 
WRITE 'LAST OPERATION: (8087 format)' 
WRITE C8H+«BYTE %0+23T) AND 07H),' ',BYTE %0+22T 
WRITE ' , 
HRITE 'OPERAND ADDRESS: (pseudo base-displacement)' 
WRI «(BYTE %0+27T)/16T*4K):(WORD %0+24T» 
E}t 
, 
.**************************************** , 

DEFINE MACRO STACK 
DISABLE EXPANSION 
BASE = H 
WRITE 'REGISTER VALUE TAG' 

1-13 



8087 Debugging Support 

WRITE '-------- (hi) (lo-) 
.?Zl = 0 
COUNT 8T 

;USED FOR PASSING VALUE TO MACRO TAG AND FOR LOCAL COUNTER 
;8 - 80 BIT STACK REGISTERS IN 8087 

:TAG %O,(.?Zl) ;PASSES BACK .?Z4 
.?Z2 = .?Zl*lOT 
WRITE 'ST(',.?Zl,') 

BYTE %0+.?Z2+36T,' 
BYTE %0+.?Z2+34T,' 
BYTE %0+.?Z2+32T,' 
BYTE %0+.?Z2+30T,' 
BYTE %0+.?Z2+28T,' 

.?Zl .?z1+1 
END 
EH 

, , BY T E % 0+ • ? Z 2 + 3 7 T " ',& 
, , BY T E % 0+ • ? Z 2 + 35 T " " & 
',BYTE %0+.?Z2+33T,' ',& 
',BYTE %O+.?Z2+31T,' ',& 
',BYTE %0+.?Z2+29T,' ',& 

, , • ? Z 4 

, 
.**************************************** , 

DEFINE MACRO EVALSTK 
DISABLE EXPANSION 
WRITE 'REGISTER 
WRITE ,--------

VALUE TAG' 

.?Zl = 0 ;USED FOR PASSING VALUE TO MACRO TAG AND FOR LOCAL COUNTER 
COUNT 8T ;ONCE FOR EACH STACK ELEMENT 
:TAG %O,.?Zl ;PASSES BACK .?Z4 
.?Z2 = (%0+(.?Zl*10T)+28T) 
IF .?Z4 = 0 THEN ;TEST TAG 
ImITE'ST(',.?Zl,') ',TREAL .?Z2,' VALID' 
ORIF .?Z4 = 1 THEN 
WRITE'ST(',.?Zl,') ',TREAL .?Z2,' ZERO' 
ORIF .?Z4 = 2T THEN 
WRITE 'ST(',.?Zl,') ',TREAL .?Z2,' NaN/INFINITE/DENORMAL' 
ORIF .?Z4 = 3T THEN 
WRITE 'ST(',.?Zl,') 
ENDIF 

',TREAL .?Z2,' FREE' 

.?Zl = .?Zl + 1 
END 
EH 

;ALL POSSIBLE TAG VALUES COVERED 

, 
;**************************************** 
; 
DEFINE MACRO EVALSTAT 
DISABLE EXPANSION 
:EVALCW %0 
:EVALS\~ %0 
EN 
, 
.************************************************************************** , 

DEFINE MACRO EVALCW 
DISABLE EXPANSION 
WRITE 'CONTROL WORD:' 
IF «WORD %O+14T)/4K) THEN 
WRITE' CLOSURE AFFINE' 
ELSE 
WRITE' CLOSURE PROJECTIVE' 
ENDIF 
.?Zl = «(WORD %0+14T)/lK) AND 030) 
IF .?Zl = 0 THEN 
WRITE' ROUNDING = NEAREST/EVEN' 
ORIF .?Zl = 1 THEN 
WRITE' ROUNDING = DOWN' 
ORIF .?Zl = 2 THEN 
WRITE' ROUNDING = UP' 
ORIF .~Zl - 3 THEN 
WRITE' ROUNDING = TRUNCATE' 
ENDIF 
.?Zl = «(WORD %O+14T)/256T) AN.D 03H) 

1-14 

ICE-86A 



8087 Debugging Support 

IF .?7.1 .. 0 THEN 
WRITE' SINGLE PRECISION' 
ORIF .?7.1 = 2 THEN 
WRITE' DOUBLE PRECISION' 
ORIF .?ZI - 3 THEN 
WRITE' TRMPORARY PRECISION' 
ENDIF 
WRITE' MASK = '.BOOL«WORD %0+14T)/128T) 
WRITE' MASK BITS SET:' 
.?7.1 .. (WORD %0+14T) 
IF .?Zl/32T THEN 
WRITE' PRECISION ERROR' 
ENDIF 
IF .1Z1/16T THEN 
WRITE' UNDERFLOW ERROR' 
ENDIF 
IF .?7.l/8T THEN 
WRITE' OVERFLOW ERROR' 
ENDIF 
IF .?ZI/4T THEN 
WRITE' DIVIDE BY ZERO ERROR' 
ENDIF 
IF .?Zl/2T THEN 
WRITE' DENORMALI7.ATION ERROR' 
ENDIP 
IF .?Zl TJ.{EN 
WRITE' INVALID ERROR' 
ENDJF 
EM 
; 
.*************************************************************************** 

DEFINE MACRO EVALSW 
DISABLE RXPANSION 
WRITE 'STATUS WORD:' 
.17.1 .. (WORn %0+16T) 
WRITE' BUSY = '.BOOL(.?7.1/32K) 

;CONDITION WRITE' CO(ZERO) = '.BOOL(.?Zl/16K) 
WRITE' TOP = REGISTER '.(.?ZI/2K) AND 
WRITE' C2 = ',BOOL(.?7.I/IK) 
WRITE' Cl = ',BOOL(.?Zl/5l2T) 

07n 
;CONDITION 
;CONDITION 
;CONDITION WRITE' ca(SIGN) = ',(.?Zl/256T) AND OlH 

WRITE' INTERRUPT = '.BOOL(.?ZI/128T) 
WRITR' ERROR FLAGS SET:' 
IF (.?ZI/32T) THEN 
WRITE' PRECISION ERROR' 
ENDIF 
IF (.?ZI/16T) TUEN 
WRITE' UNDERFLOW ERROR' 
ENDlF 
IF (.?Zl/8T) TUEN 
WRITE' OVERFLOW ERROR' 
ENDIP 
IF (.?Zl/4T) THEN 
WRITE' DIVIDE BY ZERO ERROR' 
ENOl? 
IF (.?Zl/2T) THEN 
HRITE' flENORrlALI7.ATION ERROR' 
ENDIF 
IF (.?Zl) THEN 
WRITE' INVALID ERROR' 
END 
EM 
; 
;**************************************** 
; 
DEFINE }lACRO Cly 

CODE BIT 14 

CODE BIT 10 
CODE BIT 9 
CODE BIT 8 

1-15 



8087 Debugging Support 

WORD (%0+14T) %1 
Ell 
; 
;**************************************** 

DEFINE MACRO SIl 
WORD (%0+16T) %1 
EM 
; 
;**************************************** 
; 
DEFINE MACRO TW 
WORD (%O+IBT) %1 
EM 
; 
;**************************************** 

DEFINE MACRO STI{ 
DISABLE EXPANSION 
TRE (%0+28T+%1*10T) %2 
EM 

• 
.**************************************** • 
DEFINE MACRO STKADDR 
DISABLE EXPANSION 
IF %1 > 7T THEN 
WRITE 'STACK OFFSET TOO LARGE' 
ELSE 
EVALUATE %0+28T+%1*10T 
ENDIF 
EM 
; 
;********************************************** 
; 
DEFINE MACRO TAG jTAG IS USED INTERNALLY 
.?Z3 = 1 
COUNT ««WORD %0+16T)/2K) AND 07H)+%I) MOD 8T 
.?Z3 (.?Z3)*4T 
END 
.?Z4 «WORD %O+IBT)/(.?Z3» AND 0311 
JIT IS REQUIRED BECAUSE THE TAG WORD IS NOT IN THE SAME ORDER (STACK 
jRELATIVE) AS THE STACK REGISTER FILE. IT PLACES THE SELECTED TAG I~TO 

jBYTE 5 OF THE STATUS BLOCK. THE TAG IS COMPUTRD THUS: 
; TOP (- (status word/2K) AND 0711 
; INDEX (- (TOP + offset select) MOD R 
; TAG (- (tag word/(4**INDEX» AND 03H 
EM -

• 
.******************************************** • 

1-16 

ICE-86A 



APPENDIX J 
REFERENCE SCHEMATICS 

This appendix contains the following schematic drawings, for user reference: 

TITLE NUMBER 

86 Controller Schematic (12 sheets) 162411 

FM Controller Schematic (8 sheets) 162416 

ICE 86/88 Trace Schematic (10 sheets) ......................... . 162485 

Buffer Board 1 Schematic (8 sheets) 123022 

Buffer Board 2 Schematic (8 sheets) 123025 

NOTE 
The documents in this appendix are for general reference only. 

J-1 



D 

_ iZ.2AZ. !NHCLK 

c 

PI 

+1'" 7~ I 
+IZV @2}--J 

PI 

+~v "3 4 <:::. c, 
51 aL 53 54r-

'"" +~v Z3 24 2:c, 2:8 

PI 

GIVD I Z. II Ie: 

CS 31 
.iJJi 

8 7S 7e, 5<::' 5G:.j--

A 

PZ 
Gt>JD Z3 2.7 37 ;:'9 

'"I 
GND I 2.534 37 4G'l 

'"" GtJD~ 

"3 CAPACITANCE VALUES ARE IN MICROFARADS. 

2.. eESISTANCE VALUE.S AleE. IN OHMS. 

THIS DOCUMDJT ICEFLECTS AIi:TWORIc: 1:1: IG'2-409 

NOTE=': (UNLESS OTHE.I<:'WISE SPECIFIED) 

8 7 I 

,------------------ CLKA S"L05; G,ZCb) 7Z Db ,9ZAb 

CI,33.34 
Zc.UF 

REV LEVEL A 

6 

£Y!~I Rvr 
RPI RPI 
IK IK 

I I 

ICPt3 3 
RPI'2.. 4 
!CPll Z 
RP7 
RPC, 

RP3 

"P" 
ICESISTOIC. TYPE em 

SPAI1:ES 

I 

i<:VCC3 "l4 ff:, RP9 
IK 

I 

74 S 74 ABfo 
7474 A2 
.,-<: S 1"5 /24 

7456f, AIO 
74L5~~B ' AI'" 
74L53b7 AI5 

74LS3" 7 AS" 2 
74l'S3w5 A7 3 
74L'53G.7 AG" " 74537 A35 Z 
74532. A59 I 
74505 A7e. 
74'510 A78 
745i75 A25 2 
74SQl4 An 4 
74'5<1l4 A95 " 74S([}4 A"e, 2 
74'S(])4 AI8 3 
74S<Ilm AG,o z. 
7410)9 A50 
74'574 A~5 I 

TYPE. REFOES aTY 
SPA~E GATE'S 

5 i 

Rvr, 
IK 

I 

"" A9"O 

~P14 

C07 

'"" 

1PI0 IK 

LAST USED NOT USED 
!2E.F D['::)IGNATIONS 

4 

("'2410 SJE DIS_O(E 

I~E~:~-I;\1Du~~Co: 9 

3 

,\','1 
/',,! 

A3i£,.31 

",..0>6 ~O~ 70 71 35 
AC,0 &'7 n D 
48 9 
':"75 

<\31,33 ,1:35)30 

488 51 '0)3 ">"' 
5C 

Alili 

A23 24 2" 
--\121555,::>4 r,L,'?. ";,:7 
AI 10 

A32 
A 5e. 

AI':I.27 39 41.47 59 
AI 44 4E> ,011 1~ 
A <5 

A3 "' Z2 42 
A55 

A211J 2k, 78 
AB5 
AlB 2B 77,84 5" 
A 2~ AiD 

A""-5 4<, 4(9,G5 82 6:5!'!Ii:l 

AA~ 13m 
A~ 17 21 57 58 01 "3 

IC'E~_ DES. 

SCAlf t-JONC 

2 

f/!, c Jc:,7~, 

II 14 
ZIZ"=:,AL 

LI14-~ 

LIII ~ 
74SIG:,9 

74L51G,IA 
8311)48 

~.374 

373 
74SBGo 

74~!7':'::, 

14L53,:;'7 

74 L':> ~c,e 

74LS!74 

-'4LS1:jb 
745:::'Z 

74~'LE. 

14537 
745112 

745139 

74'::11.1) 

74'541]) 

74 ':!(]) 4 

74StDZ 

74574 
74109 

74 SiD (1) 

DEVICE 

"fiZ 

2~ 
14 
1(0 

18 

18 

Ie. 
Ie;, 

LQ) 
2Q) 

"'" 
'Go 
'G 
'G, 

!("" 

14 

Ie; 

'G 

'4 

14 

14 
Ie; 

TGTAL 
PlfJS 

10-----;--~0 

-, 
8 

" " " "" 'm 
lell 

7 

" ['0 

5 

5 

7 

7 

'5 

5 

Gt~::; 

18 

16 

II;' 

Ie, 

2iD 
LQ) 
Zeb 
14 

IC, 

'" Ie; 
,~ 

IG 

'Go 

G, 

+'Oy 

lO6S_IItAIIt 
SANTACLOIlIo 
CAU',9-5051 

'0 I~"'I'- , 

I 

162554-23 

D 

C 

A 



c 

B 

A 

ICZlZCI, 
112BI 

ICZlZCI, 
IIZAI 

II'LDI 

~~it~;~1 

D0-P 
Ol-P 

OZ.-P 
{ 

D3-P 
D4-P 
DS-P 
DG:.~P 

D7-P { 
D5~P 

Oct-I" 
D1CD-P 

Oll-P 
OIZ.-P 
DI3~P 

DI4-P 
DI5~P t 

FMWTG, 

I ALE 
MWT7 

4cC 

IIZ.OJ F 
IIllZ.BI 8GTW MICWDAT 

8 

II , , 

" 9 

7 6 5 

",po, +",y "pz. +",y 

'2. K 'Z.K 

, , I I I , I I , I I J 
, 

'" G, 34 7 2. 4 S 2 " 7 
~ 9 e 

9 AI7 

~5 
74SQ)aJ 

12 

13 

AI7 

" 
74SCDClI 

1 6 5 

4 3 

B3@4B 19 
Dlie. E~ 

5 A7 B7 iZ. 
, A~ Bo; 19 

e:, AS B'5 14 

7 AG, Be; 13 

" A2. Be. 17 
Z. A' 51 15 

" A4 54 '" 
4 A3 B~ 10, 

~ 
IZ. 5 A7 B7 

I A~ B<Zl 19 
G, A5 B5. 14 
7 AGo Be, 13 
4 A3 53 Ie:, 

'5 A4 B4 IS 
2. AI BI Ie 

'3 AZ B2. 17 
.",y 

~] 
I t I , , , , I 

~ 
J:P14 R'Plffi 
L.Zt.:: 2..2.K 

~ZD ZG'=:o "" 7 " ~ 2 '" 
4 3 

7 3D 3Q C, 

5 40 4Q 9 
"3 10 IQ Z. 
!7 70 7Gl IG:. 
18 60 5Q 19 
13 50 '5 12-

14 G:.D G:.Q1'=:l 
II ENG A5Q) 

.....!-c OUT CONna 

'----- t ~ 
18 BD 15G.:9 

7 30 3Q ~ 
4 20 20> 0, 

3 10 10> 2. 
14 G:.D G:.Gl. 1S 
17 70 
13 '::10 
e 4D 

7Q len 
'SQ1z. 
4Q 9 

II EtJG 

I 
AS2. 

OUT CONT~Ol 

4 3 

2 

~':'l M< 

5EE SHE 

",P3 ·">v 
Z.ZK +o,v 

I I , , , , , 
"P4 
Z.,ZK 

lID 5 4 
" 7 

9 S 

ET I 

AOal-X 3-z.CO 
AOI-X 

ADZ.-X 
A03-)(, 

A04-X 

ADS-X 

ADG,-X 
AD7-X 

AD5~X 320e:. 

AD9 ~X 

ADlaJ-X 
AOtl-X 
AOIZ-X 
AOI3-X 

AOI4-X 

ADI'::.-X 

AID-P '::>2A5,(,.,ZA5,1(!)-z.08 

AI-P lenz.OE! 
A2-P ez.B5,IIDZ.D5 
A3-P 

A4-P 

A'S-P 

AGo-P 
A7-P 

A8-P 

A9-P 

AII-P 

Imz.D5 

AIZ-P 9Z.D5 

AI<1l~P} 
AI3-P 

AI4-P 
Al~-P 

162554-24 

o 

c 

A 



o 

C 

B 

A 

8 

2.2CI {~~In 
AOII-X 

ADIQl·)(' 
AD9-X 
ADO-X 

Z:z..DI {~~n 
AD'3-X 
AOZ.·X 
ADI-X 
ADIZl-X 

ADm-x 

Ani-X 

AD2·X 

AD:'-X 

AD4-X 

AD~-X 

AOc.,-X 

A07-X 

AGEJ-X 

A09-X 

ADHD-x 

ADII-X 

AOIc.-X 

AOI3-X 

AOI4-)( 

AD 15-X 

AIG.-X 

An-x 

8 

7 6 

~ i 
~ 

"4" 
~ 

:§: 

to 

7 

e 

w"-
~ 

Hll 

II 

1"-

'13' 

0 

WZ 
,'" 
,e;, 

II7l-

'Ie' 
~ 

§ 

21" 

1 

7 6 

5 4 2 

'5E.E. SHE.E.T I 

o 

AI"-
i4LS~CA7 .:;!.., 4 ." 

Z "4;-
..E.... 

-G 
I(!)~ 
~:4-

~ 

14~ 
Co 

7 

IZ.~ -IOl 
AI:!J ~ 

AOCZl-T 

ACI-, 

AD2.·i C 

A03-T 

,lI.04-T 

AD~-T 

74l'::l'SG,7 ~ wi 
4"", 9 

z.~ Hll 

IQ)~ -(Ii] 
,,~ 

-ill 
14~ '13' 

ADG,-T 

AD7-T 

ADe-T 

AD9-T 

ADI(D.T 

IC.~ 
14 

"l!2...... ~ 

AI4 

AOII-T 

74L'::.~c.,7 ~ wi 
4 '" '''' z.~ r;G;' 

I(T)~ 
~ 

'i7 

c.,~ 
~ 

-@ 
14~ 
12:~ 

[l3] 

"1.!.L 
ZOJ 

AOIZ-T 

AOI=:'-T 

AOI4-T 

ADI~-T 

AIi,-T 
A 

AI7-T 

~ 

AI7-X 

AIG:.-X 

5 4 3 

162554-25 



8 I 7 I 6 I 5 + 4 I 3 I 2 I 1 

r~~1 
S(l)-X 7zce .~ 

'51-X 7l.C8 
,n M_D M' ~. .... 

52.-X 7ZC8 5E.f. -::01-4E.E.T I 
+"'v ';;i\' -::;\' "c;V 

I I I I I 
",P4 1 "". t' t, 

4~~ 
~. i I ,0,< 

3l.A2. A1G.-X 
Z..ZK 1 .... 21( ,?,c,,> 

D ",D IGlft:::::;' " .. '" .. ICD 
,to , D 

3ZAZ. AI7·X ... ,0.-1 " .. ... "4 AI"7- P 

Ale-x ~ " 4D "Go " A'8·P ·'H.De, -- .. ~ 
A\9-X z:z. 7 "'D 36> '" Al~-P 

BHE.-x <-
13 5D "' 

IZ 
"'HE I!llZC8 

sm:x 2.5 18 eD OQ 19 SCDLI-I 5'Z.A8,IClrl.BO 
sr:x 2.7 1770 7Q.1G> '5LLH ':-!ZAO 

52.·X~ 14 G.D GoG. I'!:! Sz'Ll-{ 5Z.A~,9Z.C8 

14- 50373 - 12.2.B2. IF"MTWMMOD 
I 

QUTCONUIl -
AS" 

7ZCI ACTIVE 13 

" 11 ENG IZ 72Cl TIQ)'Z. 
74'5:!1z' -

ALE Z"Z.B8 
AIS 

'3 A44 
74L53G.7 wi 

llDI A(TIYE '" 7 ~5m-T 
C iHH TID'll 10 • 4~ C 

1+,)08 

z~ 
~'5I-T 

~ 
&2.. S2.-T 

12. 11 -@AIO-T 

'fu.... 
14 15 z.z. AL9-T 

-+ ~ +-
~ 

AI'" 
74L'5~c;,e wi 
'" ~ 7 ~ALt-T 
Im~ 

u~ ~~ 
-!IJBHE-T 

B ~o;"'.x~ ~Q~<Z:I-T B 

~ .. ~ ~Q""-T Q~I·' ~ 
"li-

+T 
+~v 

rr~ll I ~ 

E!F'I'! Q.SQ)·)c' ~'Z.ee,r.'Z.DO 

,,~ 
I~ II( Q51-x ':l'Z.BO 

Ii!;CS'TA.X~ .. .. --+ .,.--- ~ A\7 - ~ ---A: I'~~: 4 '" 8G.20C.MD Zl.08 -
..,~tZll F'I..TXeUS-~Jb .J..c ~4~1~~z. ~ O(QWTMC IZl.SZ U"MTWMiII10C 1:D'Z.B8 

7z.el "'T'4(ST 4 A44 A.'5~ 1'f3;2..r 

~ o CD - ~ 
7ZAI T4Q)2T 

~~ 
~45a)(D I A.8'::1 7"'Tsa:.e 

q A~a 
f!lZ.~1 BG:!TWMMOC 

'" e 
1 12 IZ Pie. 9 ; '" F"LTADBU5 Z:Z.DEI 

A ctZ-C.1 ME.~T 2 DAG:.'!lG. 
0:, 1454(1) A 

7451'" r 74574 Q ~ II ClK. 74-.5(1)0 
7'Z.CI T2mz 

F"Z O(QTWMME~TC I(ZZ-CO 
rz.D4 Cll(A 

~ T ~A~°Co ~eCoTWMME.Iii!TC-L 13 +,v 
4 RP9 I 74'5CD4 

~ 

IK ~··l;'l-~ p.: SNm4Of!4:. D H i<.a2411 

8 I 7 I 6 I 5 f 4 T 3 I 2 I 1 

162554-26 



7 6 5 

0 12'..2t2:. Icue 

Il.04 CLKA :rv ePI 
7 I K. 

10 

Sl.At OIb£MlMOD 
1'2. PI<. 

l 
rt~ A2 

Q '" 
II CL~ 7414 QI B 

~,,'- ~'D r 4 AZal 
, to 

IZZ,BZ 15HJFL& 

C 

S 

~r ~el IK 

-"" 74511c. 

~91 

'¥ 3 4 ,elK. Q. 7 

ALB clie RVCCI 
74SQ)4 14 t 

c..201 MHBYT(l} 
£<,Z.CI MHBYT I 

lAse 
"- ." 

74-=.a.(l} 

1204 CLt:A 

B 
42BI Q.5 I -X 

4ZBl Q.5(l)-X 

TZ.DI T3Q:.1 

7201 TZ.C2l1 

Z1.CI AI1).P 

72.01 1:: CD I 
9ZA.\~ 

TR~ 391ZlS2 

JOV'Qi!5 ~ ;:~aH2. 47~SZ. ~ Cc ~ 

-= Az.e 74-S!lJrn 

1:'z T ',<:: z. 

~~tO 
47m2 74504 

~ 4 AG, AC::. 
'::. ~ 2. 3 12.. AG:, 7455(;0 

~. 
13 II 

74Sm(l} 
4 A47 

" to 
9 AG:, 74S5c:. 

ICll 5 

A 
4Z01 SCZlU4 
41..01 SILH 

4Z.DI S"Z.LH 

74s{ZHD 
IOAI~ AZ.9 
9 B ~'3 14532 

14Sm2. 
13 IZ. 

v ALe 74'5(1)4 

8 7 6 5 

4 3 2 

~lm9 
" PR 

~JAe:.I]JG~ 
~ IL 

elK 

A~K Q 
9 

II 

1m 5 T 9 15 

74SIQl 5 RP9 

A7 IK 
74L53(b,5 

"- 3 

'1L 
4 s 

~ 
~ 7 

~ 
~ 

z.~ 
9 LOAD 

A9 
z.- 1451«'9 

f'o<" 3 A GA 14 
'3 A2.9 

4 B 05 15 4 B 4A"\,~2' IS C QC Ie. '" , QB 1"3 

G, 0 GlD~ p;; QC Ie. 5 

ICll E.NT RIP ~ I UP! aD II 14':13Z: 
_ CAll:: -::- DOWN ~ 
- 9 LOAD OUT ~E.NP RIP 

7451(;,9 
lID CAR 

I 
UP/OOWI\) r~ 

J 7 

I ~ 

4 3 

+'Ov 

I t 

JI 

-ITrJ 
-.]1 

-@J 

.§ 

A77 
II lill 

145(1)4 

QCTE.teR: 112B6 

G2A6 

ENBK.PT ~Zt,","ZB:',"''''1 
MA5K. MAP ~Z.C.B 

QCTa> Go2C5 

o 

c 

GeT I c;,2D6 B 

A 

CACCE.SS ~Z.B5, 
1Cl:l2B5 

162554-27 



8 I 
42E.1 QSCD-X 

':::,7.51 GCTI 

o 1l."Z.D~ lE>KIDCZl 

I~LD~ IB<::.I(1lA 

IcZ.O~ I ElK.(l)1 

-
1<:'202. fB'KTi 

c C:02BI nCT(JJ 
1Z.2Cz.. IENNMll 

TZ.Bl STBMH 

1204 CLKA 

7 

/4'53Z. 
A41 

L.!..S-- II 
rio I ) 

I 6 

74511.12-

3 A4(D 

z~ 1 

~~ A4G'l IS 

'S A4aJ 

------------H~~W-~~ 

I 4 I 3 I 2 I 

~4CCIIC. 

PR ~ 

~J Q~~----~---+-----~-~~-------------U~B¥'m 
I A41 ~ C~~L 
,. )-=='-H+-""1k: Q ~ 
i453Z ~ R~CCI 

~ 

':'JLBE. 

L~================~=tt=====================~====~~=====t=======t=====+=t==================MATCHI-l ~2Db MATCHQl-L 52=5 

5~7 4~~ o G 
~ 

elK 

o 

c 

rCLK 
AZ.~ Q.p 

~3 ~ 
Q~~---+4-~---------~-+---~-+---+-----+---++----------5TBMHFF BLeB 

.~ j.-

B 

-

A 

5ZCI EiJBKPT 

~ 
L ___ -I---,-,-II J :: Q ~ 

12D4 CL~A ___ -+ _____ 4-______________________ 4-~~------------------~+_----~+_~~~------------~~~IO~~LK 
+5V ~ K Gip2-

52AI cAccE5s----t~-t-l -3-r-F~j~t.4~~t;--~~=~~4[:=jr:~l~~I~~74r:~lm~5~B--~ 
~~,~3 G 

7 Z. B I f4'Cl), ----+--'-1 <> elK 

z. K 5 Go 

-::- CLR 74SIIc 

I'" 
52C I FLSHGt ..... ----+----+---------!----------1 

C'-ZCI AQ)-P ----+-------------' 

8 I 7 I 6 I 

z.. EI~'3 -::- ~~ ,45112:. 

r-;::===++=====++=t====================~========== Gl. M H 2JLJ I 1(.55 GMHCI 112BEl 

L-~~~~'-----------______ -+ ___________ ~ATCHm S2C5 

12--+------1------------ 8M H 1:11 11255 

~l---~~~~~----======+=====~--------___ MATCHI 5255 
~--------f------------ OM H I i I 1255 

2 I 1 

162554-28 

A 

.... 
(j 
trI 
I 

00 
0'\ 

> 



o 

c 

B 

A 

7 6 5 4 3 2 

~==@~[A=~)'>8~ __________________________________________________ ~~:~~CLKA_L 
i4'5(11QJ T'Z/l)1 

r~~~---= __ ----------~:;;;;;;:==========::::::::====:::T~m' 5Ze~ - I - 174L'5~("7 T3CZlI OZ.C819Z.A8\~2Ae::. 
13~1':J 12.~ICD Co 7 ~ ---'-'" D "- I'-"------+-------""-\D Q r"------4:-:'1>"'----------------{ ~,~~~ T3<D I-L 

~ 9 ~1' 
CLKA -------------t-------~--~r1~,;: """ r-",:::'!" Q~"-----------------------------------T3QJI ~ZA~,e~CO 

L-£L~ I 
12.04 

______ ~~~A~<~ r---------------+----~======================~--------------------------------------------ACTIVE 41(8 4Z0Z. 5(2)-X 
42 C Z. ~ ------=~;-J .. ~P-""''---H ,----j----------------------______ ---:-::-:--___________________________________ T 102/ 4 ~C8 
4Z0Z. 52~X 74510 R\JCrCC AG,I 

~'~ ~II~----------------------~~~~D~TADD~-L 

a'LCI 

8 

:: ~ _ TI~Z 745(llCll 
~D 1'~Q~~~~~~~--~----~------------~~------1_---------------------Tlmz. 42C5 

~ ~ _, ~p-~~-_+---1_-----------------------TZ.CDc 4ZAB,5ZBB,9ZAB l~ 7~~CK,y~, Q"'-------' ~D'C4LSK;"~' "" 
----------~~+~~--+_----------_t--~ A'S ~~14~T~Z~~~Z~ __ + 1204 CLKA '- UoI.t-' CLR 

I 

ACTIVE 

.-------------~--------~ 

A77 
13 12 

1,-----------------r-----~-----------------------------~p~2~~ 4ZC5 

... ------.,--,=2:-tr"=-==:-=-:c::--r------+-------------------------------l c4 BUS ACTIVE- L 
AC<>211 74l':l3G,7 

2:. AGo I '3 -

L2J TDATA-L 

7~ 
L-___ +~,.~~~0C~)-----------t_--------------------t_--_+~---------------------------------T4CDI 4Z.AOJ~ZBO 

+-______ +_' ~J_t~l~:30 Q 

~4"'4 Qpt 
CL~::. ~G, 2, AI '5 

Lf1_-------t------' r-------------+------~-~~~~·~=t,r_}2 )------------------5TeM~ ~Z.C5 
ACTNMre~ ________________ ~t_------+---------_t----------_;t_-----~I------------1_----------,4-S-"'-"'-----'~we 

----Jt::.-- A G, 2. p 2. 
~ D::~ Qj-"'''--____ .... __ +::--:-:-:c::-:..::4'-t;--''''''--___________________________ .gZ.'4 T4aJ2.T-L . 1 i4L~3(47 ~~ II 

~------+---------~------------r--"=tCLK * 
i4~i4 Gp.£4 ~~_;-------------------------------------~ 4'Z.A.5} e1.5e 

'5 ~1-7,__+--__ ::=;-"E--,CL~ ~~tC~ 
~------~------------~~~~~LK Q 1~::::::~----~L------------------------------------------T4"'Z '<Dz~e 

A2.5 cs. '" ~ 

Cl~ ~2. O:4~mQI-9~--------+-----~IA_D'e~<~---------------------------{~~~;~~ 
II Cll( 74'51114 

":' 74574 Q. 8 
OLR 

'" 'r.'.~~~~~~~----~ 

7 6 5 4 3 

162554-29 

o 

c 

B 

A 

f 
f. 
'" 

-g , 
00 

~ 



8 7 

1Z.2CZ.~ 

IZroZ. IBI(CZlD 

0 MATCHGH. 
MATCH I ~ L 

,,"2el MATCloIm-L 
,",zel MATCHI-L 

~ A~" 
9 04 
1<1l 

e, 

~ 
I r 74'5'::1Z 

I~'Z.OZ. IBKBD 

12.2D2. fBm5 

G.Z.CI ~ 
12.2CZ. IEIoJNM[2. 

.qZAI ~ 
(DIel ACTIJMll 

~ GB 40 
Iz'ZB2. IENN.M! 

RVCC4 

C 
4 

t..l.el MATCH(l) 
2. PR: '5 

D .4.63 Q 

71.01 na;T '3 eLK 

14":174 Q. c. 
CLe 

1 
52C[ ENBKPT 

CoZAI MATCH I 
72.0..1 T4(l)ZT 

12:.ZC2. IE.NNM13 

7ZCI T2.CZl2. 

t'ZZc.z IPRE584Fl& 

2.2[1 A.Z,.p 

B {SV ePI~ I 

~ 
IK 

'" 8 

12'.2D2. HJSOUTEML 

~ ~ 0 PI? Q g 

11 ct~3 r 74574 Q e, 

~ '" 
IZ.:Z.Bl. IF"MTWMMOO 

12.2B2. l'5INF'LG 

I 
I 

A 

8 7 

6 4 2 

74552 
J~V 

,~ m 

A~9 SEt. SHE 

I " 
ePI 

:A~~m '" I. 

4 74'5112. 

'3 Pi! ~ 

~s~: ~4~Q elK 
z. K Q c.. 

~ CL~ 
A39 '''' Ii; II 

74'532. 

~'m 
~Ae~ I"c--pr 9 

'" B 
D ABc.:. Q. 

13 II c:u::: 

~74S4(7) 74'574 1i '" 

~ '" 

411.2.7 l i4S(lJ4 

~ ~c. II '''' 

~" L A54 2.. 
14'5:'2 

4 2. J A4Z Q 

74SQ)B 13 eLI( AB4 

iZ. K Q. 7 

':' Cl~ 

I. 

r---~ ,41(D9 

~ J A4':! Q ~ 
CLK 

#bOET84FL6 
CLR 7 

AC,4 I 1m 
B 

~"I 
AB4 

9 "' ... C. 

74';lQl5 74SeD4 

Kh5 

'" '" 
~4SI(7) 1 

~e PZ 
1 I~ 

A~ 1 A8. 
~ 

~ G:. 7451t:n 9 .. 
74SCDI1l '7451Zl4 .,," P' ~ 1m 

& 

6 5 4 3 

ET 1 

~ IIZB8 

ACTNMIB",AD IIZ.BO 

ACTNMIBG.AD IIZCe. 

ACTNMIElGO-L 

ACTNM1~ 11Z.58 

CL~SP I(!lZCO 

B.:bT NMMOD 42A8, 
HDZ-B8 

OUTEML 92C5 

OG:.EMLMQO-L 

162554-30 

o 

c 

B 

i 
f 
~. o 
'" 



o 

8 I 7 1 6 I 

I 
IIZOI DQ)~L 

11201 DI-L 
11201 nz.·L 
Ilzer D3-L 

117..01 FMWTMAP 

CO D AII- P 

AIZ.-P 
Z.7.BI 

AI3-P 
AI4-P 

AI'S-P 

IArG.-P 
AI7-P 

4/01 1 AIEl-P 
Alg-P 

- B"ZAI B6>EI...ILMwD :,<.'" fr" SITH 4201 

+ 5V t 74S(J)(J) 74~<L6 I ' -
.P9 

<K 

I2.ZBZ 
____ C 
FMMAPFLG 

C 
OUT EML 

1'2. ~44 
B"IAI J!!--5Z-CI MASI(MAP <3 

74me, 

1c.2B"L DAUSEI(:F"LG --. 

B 

~-

lZ.2BZ DA6UMEM I 
I 

S:Z.CI [Ne:,t:PT I ~'4Im9 - PR 

4 AGA e J Q.ICL 
6.,4':, 

Tl.CI TcWc, 

" 
G - 12. eLK 

SZ.CI ACTNM15(", 
7"lSClJEI ~ K Q 8 

ClR 
RVCC3 IS 

A 
7201 T3(]1 

IZ.04 CLk'.A 

!Z.\JCC.5 

t 
8 I 7 I 6 I 

5 • 4 j 3 
Ao" 1741 53G7 

0 

II :~ 
4 r;;;--

~P7 +'">v 4~ Z A~ 
is A9 A3"j 

W' z.~ c" A I 2.li4:3 

7 
AZ "£1 I ::> /\4 

'4 2. 4 (, 5 
17 Ai liD 

I ACn ::~~ :~ 
A~4 

::, A(J; II:m~c,; Ie;, AS lI04 " 
~ WE co~ a C5 

Iffi~ ~ 

11~Z.12:::'AL ~ 
13 A9 A3G, 

Ie. A5 

lill AG 

: AS 

+l~p" ~ AS 

SAl 

" Am AS; A;B 
Go ;K 

~3 4 A4 7 Z 
9 [', 

~ 
AZ COUT 

74504 WE 74S(]J(]j 

~ CS 
GIN 

II r----
I'" A7 A37 2:rc.SAL 
~ A9 

12 AS 
1(1) AG 

9 AS +'">v 
5 AS 

::. AI r~p" Z Am 
CoM 

I< 

3 
4 AC DOUT 7 

-4< WE 

~ cc, 
DIN 
'---

i<:VC::::A 

---
~D5 MEM 

~ AG,l 

~'(]) 
7 p~ len 9 ,- 0 Q. os 

12.. Pi'::' 9 

3~ 74LS3G,7 l 1 

"~ I 74'574 G. (., 

I 
74'574 Q 5 ClR 

ClR I 

t 13 

5 t 4 I 3 

j 2 I 1 
RfYlSlOtlS 

n" llOOSC~'PT'ON '" 1 '"" I'''" 
SEE SHE~T I 

~P4 
+'Ov 

+sv 
z.z:~ 

I I I 
",P6 
Z.l.K 

7 9 7 
MUcTO laJZ05,IIl.CB 

Pc 
~ME!y1EXP-L 

' ALl.q 
~ ~,-, 

MEn 4LA~)IIllZC.Bj IfLce 

74ffi6 

Pc 
2:15 USEICFL(j-L 

U'SEf'FlG 112ea 

GUMEM Ilzes 
I 

I 
ACTNMTA- I3Z.C5,IIZB5 

~D5MEM IIZC5 

rEMD~-~l 
1.....-..1 ITI~E.Dl..\T 1l.'IC.2. 

T3!D7. DJD 5'Z~e, 

~~;rTW<"" SHHT90FIL D '-1 1(,2411 [: 
I 2 I 1 

162554-31 

D 

-

c 

.-

B 

-

A 

() 
m 
I 

00 

> 



8 I 7 I 6 I 

rp 
Ac.-F 

2.ZCI - A"'=>-P 
A4·P 
A'S-P 

JACO'P 
0 c..7.BI A7-P L Ae-p 

A'4-P 
q'lOI M[IeTO 

AU 

ZZCI Aill~P 12. Ii 

~z. 
- An 

9 
"12'::'1 ME.JeT 

I," ~ 42AI 5GTWMMEli:.TC 
74532-

AU 

4201 BHE 
-h;3 

74532. 
C A74 

~ 74 LS3G:,7 

7LA T4CZl2 Z. elk: Q.D I 4 S 

RP:1 +11 A A7S z.~ I 4 El Ie. 
EPli ~ C GC 

IQ~ I< 
I A7ec, IKe ~ ~AD 

CLR5P =-
QB 13 

5Z.BI 

2."3 ~ ~~~ QA 14 ~~ --. 1Z.2B2. lCL~ 
7450B 

L~f2< ~ 
SZAB SQlU-! 

Z A5':J 
3 

Sl.At CACC.ES5 I 
74532 

'~AI~ " az.BI 8" TWMMO 12 

74532 4 A46 
42AI 5G,WTMC r--B " 145mB j Me 

IIZOI FMTWMWT 
1(1) 7 3 

IIZAZ. FMR'DDA, 
9 }1L-

A47 A7 AI 
74'511)5 ~B I 

A46 ~ R/W 
IIZAI [t-JFMBYTL :CD ~~ 15 eEl 

14'532 

l 74505 

- I 
A47 

~ ~ ~ fE-< 
e/w 

f4S3Z. 
eEl 

447 
A4B 

~ nil \::/w 

~II 15 eEl 
13 

;2 
IIZAI ENFM5YTf.I 

7453Z. 
14508 

A 

~ RIW 

~ eEl 

on CE2. 

P'O 
8 I 7 I 6 I 

';-' --

5 .. 4 I 

l71i" L I", 
AZ. A3 A' AB C" 

B 

L~ 
es 
WE AGb 

ZIIA_=: 

~ CS 
WE A"9 

;> 114-3 

5 CS 

l ~ 
WE A7(]) 

2::.114-3 

~ es 
A7 I WE 

2.114 -3 

A"S 
13 I~ 

745Q)4 

'5 G ~ I 4 17 

A5 AG Ac A3 AI]) A4 

1/0-::: 
13 

A"7 I/O 1 II 

ZillA 1I0z. 
12 
14 

[104 

13 
[/03 

14 AGO, [/04 
II 

ZillA tiD I 

" TIOZ. 

IZ 
A73 

ilOZ 
14 [/04 Z.I!I A " TiOI 
13 

1103 

1/03 " A7~ II04 
14 

Z.IIIA 110e:. 
IZ 

TIn, " 

5 t 4 I 

3 

", 17 I " ~ 

ACD A7 A~ "4 A~ 

1/02- '3 
!i 

!/04 
1I03 

,e 

"c: 14 

14 
1101 
[tOL 

,3 

T/04 " 
]103 

I~ 

ilOZ. 
'3 

IiO~ 
,2' 

II04 " 
[lSI 

14 

" fiOc:. 
,4 

1101 

[/03 Ie 

1104 " 

3 I 

2 I 1 

tfui .~'n~ 
SEE SrlE[T i 

"£VIS""'~ 

-~~F 

C~} DI-P 

Cz.-p 
03-P 

2:.2SE. 
04 _ P ~ 3, 

:J'S-P 
OCc,-p 

:27-P 

""] 
G9-P 

GI[).P 

ull- P 

2.ZC6 
elc-p ,,:'111 
OI3-P 

CI4-P 

=-I'=:,-P 

:::P3A IILAB 

5CoTWMICWCAT 

ZZ.Bb 

SP I A LCB 

SPZA II ZCB 

~ 0 r~1~·M:~ 4 j":' 
2 I 1 

162554-32 

0 

-

C 

~ 

B 

i----

A 

.... 
hi 

I 
00 
0'1 

> 



8 I 7 I 6 I 5 ... 4 I 3 I 2 I 1 I "e" 

+'Sy +'Sy .~ UK[, I r-: I 74L'S13B ,," oncflll"r1OH ~ ~. ,~. 

RP8 ,----
c..~K A'SG y~ 

1'0 
FMWTCTUD Ic'Z.AB SEE S~_E..ET I 

14 
~ c.34 9 'S G, 

I A 
YI 

13 
FMWTCTll lC.zca 

AI-L 45 Y2 FMBI:::'5ETUF> lc.l.Oe 
Ac.-L 4i' " B YO 

12 
5ETMAPAD 1c.2B8 

A3-L 47 3 C Y4 " FMTWMWT Imz.Be o SELWT-l ~ 4 Gc.A V'S 
IQ) 

FMWTMAP 9208 D 
A~-L 49 ~ SZ.B YG, 

9 
~MWT~ e.2B8 

A(G-l~ G, GI Y7 7 FMWT7 C::Z.B8 

I,A9'S 2 'S AI9 

-- 1'2~ll 

+l ~'m 
74l53~ 

RP4 13 B 2Y3 9 
rcPI4 +'Sy 

DaJ-L} P2 ~.C.K 
74'S(])4 ~G, I'S~ L.cK 14L53~1 DI-L 

SElI20-L@ AS'S ZYI II 
14~'\~ Dc.-L 91.08)IZ205 

- 74'532:. 

!~ 
I I I I I I I -

74'S1~9 

---.JIS 
03-L 

102.BI 5PZA '- r--::::- D A - L 12:.205 

B C, 9 4 'S L 3 
Pi' 

MDSMEM 
4", "":. 74LS3Gi 

~DQ)-L 9ZAI 
A67"'91 

IIZlZBI SPIA 
IQ) 9 

8 01 - L 
AB7 ~ I 

'42C.1 ME-JeT 
Ii' " 53 DZ-L 

C AB71.1':l C 
9201 MEIi:TQ 

G, 7 
~4 D3-L 

A87 "? I 

9ZC I USt:EFLG 
14 13 

~:.s D4-L 
A57 "9 1'::> 

92BI GUMEM i' 3 
'::Ie£. OS-L 

A87 "? I 

erel ACTNMI5"AD 14 13 
'::07 D(.,-L ..... AS=' "915 

1 -~D7-L +-
5201 Q.CTEI~R 

1C._h II 

A'::.3 "? 15 

~ 
I~D'S-L} 

B304 B g~=~ IcZ.De, 
taZ.CI ACTNMTI 14 u,D CDa 15 

""~13 8201 ACTNMIl (5 40 4Q "'! 00] 5Z.CI ACTNMr~ 7 30 5Q (C, e3 A7 87 12. DI-P 
9ZAI ACTNMr4 13 '=:.0 SQ IZ G, AS t'!lS 14 DZ,-P B 
&.2AI a.MHIi2 42:.0 co. ~ I A~ BIZ 19 

03-P 2:.1.08 1021::11 B 
c.,ZAI QMHII 17 70 7Q. 10: 4 A3 B3 Ie., 04.P I 

u,Z.BI QMHl.a 18 4D 4Q 19 '5 A4 84 1':1 os-p 
Co2BI Q.~HZ.I 5 10 IQ 2: Z. AI BI 15 OC,,-P 

ACHJMI5G:.AD II eLK A59 '3 A2. 52. 17 D7-P 
8ZCI r~ ~ DI~ A55 

r----'< ENG 

7~1~ =} - IQ)Zf)1 5P3A 8 A7 57 1'2: D9-P -
~ AS B'S 14 DI<D-P 

+'Oy I A(l, BIZ 19 DII-P 
4 A'S 8'3 IG:. DIl.-P 2ZC5\IOLCI· 

t 
':':. A4 54 lOS DI3-P 

RPB Z. AI Ed I~ DI4-P 

P2 ~.ZK A9'O :3 Al e2 17 DIS-P 

AW-L 44 "" 111) 74SQ)Q) ~DIICA9CZl 
A 9 A7Co A7G:, 74SaJ4 I 9 

A'S7 I~ A 
~elz. II I III 

e 
ENF"MBYTL 1(1)2B5 

~ I 5 A57 1 IZ: II 745(1)6 

13 AS7 
4 G, (IIJF"MBYTI-I I(L2AB 

74'5Q)(1) 
FM~DDAT 

laJZB5 ~Dr~;T"A~C:;4) I !'A 
8 I 7 I 6 I 5 , 4 I 3 I 2 I 1 

162554-33 



7 6 5 

74 'S~74 

11201 OQl-L 
11201 Ol-L 

0 IIZ.OI OZ-L 
112el 03-L 
112el 04-L 
112BI OS-L 
112BI DCQ-L 
II"Z.BI D7-L 

7~~ 
13 ~o SQ 12. 
14 CQO ~Q. I'::> 

e 40 40. 9 
17 70 70. IG, 

4 LO ZQ '=:. 
15 BO 8Q 19 

:3 ID 10. I::. 

11201 FMBKSE:TUP 
II cue A94 

rOUT COIJH'Ol 
7 L_ 

c 
IIZ.Dc:. FMWTCTLI 

7~~ 
13 '=>0 50. 12. 
14 c,,0 c"Q. Ie::. 

5 40 4Q. 9 
17 70 7Q IG, 

42.a 2.a '5 

I~ ~DD ~:~ 
II eLK A93 

rOUT CONTE?OL 
7-

~ 
7 3D 3Q Go 
13 50 5Q II::. 

14 GoD G.Q 1'5 
8 40 4Q 9 
17 70 7Q IG, 

42.0 2.Q 5 

I~ ~g ~~~ 

B 

11201 II CLK A91 

I~ 
74L5174 I 

13~12. 

~ ~~ ~~~ 
1140 4Gl 1Cll 

3 ID IQ 2. 
14 CaD G.G1 1'5 

IILO? FMWTCTU!I 
9 

}~Pll r~ 
P~ '" ., 
19 

A 

8 7 6 5 

4 3 

AI" 
3 4 

7:SCZl4 

A54 
74LS3G7 
I~ II ~ 31 

115 
~ 

4 3 

IE.I(1l'L ~ZC6 

1 Bl(ffi I '"ZDb 
IBI(Ifl)A (,,2D5 
IBy.11 u,Z.::5 
tBK'llD e,"Z.:::;'e. 

IBKIO c"Z.Dt3 
IBKBD "'l.oe. 
IN5CJUT(ML 52B6 

IACTIJM:':J e2[..e 
IEI·J!JMI I :D2CB 
lENNMTZ. 52C8 
IE.NNMI3 57-BF', 

IENTEML BZAe, 

IPf2.ESEl4'lG;, 8Z5B 

ITIMEOOT '!J7.A.l.. 

AIG.-P 92Ce. 
PI7_ P 9206 
Ale-p 9205 
AI9-P 9ZC.5 
DAUSE.RFLG 92Ce:. 
OAGUMEM 9ze.e 

~ 9Z.C.e. 

IFMTWMMOD 42.Ce 

IFMTWMIAOD 42AB,B2"-5 

tENt;M{ BZC5 
reU2 '=>205,1:LZ.C5 
I'SINFLG 5Z.A6, 5Zc.e 
INHCLK 1205 

0 

C 

A 

162554-34 



8 I 7 I 6 I 5 ~ 4 I 3 2 I 1 ---"' T 
~ ,m """"'- _1UIII:_IYoTt 

(~ 
R" no . 

A F-.CO 14 

., ~ 
SPARE 5-' 

14:-::~ 
5."'''' , .. ~ 3,9 l.. SA r;.o:z:, V'ili>Q 

PINS V14el4 

~ 11 

"ZA.I GI01HTSQI Gl 6'2 

0 

f 
A0 .. \4 ~/>.. Iio'l' 13 A-~- .. 

AIll-~, AH" 2l.Be,37.D8,47.08, D 
l).,\ 24. 12 'SA '5Y 11 Al-H 5ZCo,5ZM,6ZSB 

2125 0:2 '27 IQJ 4A AV ~ .2 H (t..'2.-'-d-(I>.G,-H) USB,31 08, 

" 
A3 '2'" "' .. ,y' A3-~ '5ZSB, bISB FQWEk! AND c"ROUNO LOCATOR C. .... A.RT SPA..JC.E 6roIo.TES 

333S -r 1-101..0 (;,4 50 4 2 • 2Y S A4~H 
NO.OF POW!!,",- "IN'S DE~ICE. .. F QlY 

VI A'=> 3\ 2 Ii:.. Ale IY 3 A'5-H DEVICE REI=' ces """ DE, 
'" IBMt-I.Z 

i'(PE. JI~ (:,I<JO -1-'3 -s +12 

59 

O~C3' 
~ 2114 AI" 24 16 '" 16 140'2 All I 

2,'Ca A7.- , 24 12 24 H02 A,. 2 

l 
10PF >'-" TN-TE: 

93417 A,q,Be; I'" 6 I'" /4.;17<1- A8' L 
is% SCJIiI" A7':'1,~"l,:'6, 

~ 13 14 '" ~ "1400 4 1,SW 14 -, 14 74.~':>174 AGS 2 -
XTALZ 'fTA.L 1 ~\ 62- 147.8 A1+ 2 

¢\ 1\ 22. 1>\ Aw 32 \4 ~A.. G,'1' ,~ Mo-I-\ 14500 AS'" 14 , 14 

~ ~'2.I(I 15 $'2 A"1 33 12 SA. 5'1' \1 A7 " A7-\-\ 21:69, ~Z08, .'" '"I4L'5Ql0 ""'''' 14 -, 14 .43' .. , I 
2 14 "1 

~' .. '.,~ --' 12 R!:SET AS 34 IQl 4 A. 4' q 
ABwJ-\ 

AB-H,Ag-H 2l86,3ID8, 
""140Z Ali,'3c:1 14 

3 T4l ":lOD RE"O'1 4 2.3 RE~"I' .0.9 3~ Z 1~ IY 3 ./I."J-1-< 4Ie8,~ZB8 '"'7403 "roc. 14- "1 I" 745111. '" I 

11C3 ~ \ AIJ'I 1'3 AVI :3 ROYI)"! osc~ .. \0 I 4 ,~ ,y 5 A10-1-! 
A10.-J.1 zzaa,3IOB,41B8,SZIl8,!..lBB 

,.q..04 A2"1 I" -, I" l4L'5%1 " , 
'S181 AOEN8f1 Z ~2~ H T~j( ~ AI! 40 "s.o. An "V • 

A\\ H AII-H 1288,31oo,4188,IoZ66 
"14~~.q.. ~IZ 1"1- "1 14 

"ML"'" ... Z 

7408 A43/5~, 14 "1 14 

C neE 2.3 I 
"34 

~ u.I,i'.Dr 
C PI A4-<D -r4L":>08 "AS 14 -, I" 

"",I = ~ 8"4-
BOBOt>. ,426 AI4 14 "1 14 r'YNC 

RE" DES 

!lZ~IL -ryTB 
I "T432 AI3,33, 14 "1 I" LAST USEtl NO, ""'" 
<01 1J,3,~4 

ASS 
AI2 31 1~ 1Y" AI'2.-1-\ rAt:Hl)-(AI4-1-!) ZZI!:8,3ZDB_ "45~Z A<'6 14 ., 

I" 
A30,31, 

."~ 
.0.13 36 42A 2'('" ,1,1"3->1 "1453'1 I>.S"1 1"1- ., 14 

5B)75 

llCI ISP<.lONMOD AI4 3" ~ ... ,,'1 AI4-H 
.0.\5,'32,44, 

r~ 
-;;;A~ '" '" AI~-I-! 14"14 

?4,I.DO;4L 
14 -, '" R41 

/l..!5-H 22.88,'::'l04- C"'Z 

~ + C~&, " 1400 b..IS 3CD ~. 
~I" 1 5 "145"'74 A~1,"1 14 .., 14 RP5 

-0 5 A~1 ,., 13 5 l\ ~ " +-c .. ~ rles,3'Z.DB,5ZC.+ "l4L~14 A<'2 14 "1 14 PZ 

~ 'z.F 14LS~ AU '1404 
tin. 

~~ 
,4511-2 .0.1'2./1'3 1(, S I'" J I 

+5V i>HiT ,"v (t-n'l, ,4 L"51 3S AI,SO,SI 1(, e 10> "' ~ (34-C44, 
0101 11 

..I 
'4LS\~ A"~ 1(, e I'" Ell 

~ 
C41-C.'SI, 14L':.06 
C~3-C55, WR I '4L,::;,1!l1 "5" I~ 6 1(" 
C'51-C5'J 

"LOA I J ,41"14 A4"1,48 I'" S 1(, 
~ .. , 

21 
=;PAR'i.: 

{ PI-1 "'1~.Y ,:iV +iV 
14LS\14 A52.,G;.S 

"" e I'" 1/00,31,53,75 
+I'Z.V PI-e +ti~l 14 RPt 12K HLOA. WR DB\N RPS IZ"-

SA 

"'" lNTA~ 8304B AIG'I,BI,BZ 7" "' 70 

B Pi=T 
t10" 

tt I ""0 l"'\L~3(.,1 
A8,9,U:,,-IB,25, 110 e I'" B 

~ ,,~'" 11 ~ (DO-HHO:;'"' 
2w>,~,5?',BS 

ri +C4., B"ZZ6 '4l'S;G::> A"1"1,'8 I'" e I,. 
WI.F 00 I" e " . I 2 , 

I'!> Del DB0 13 '2 o0-1-! ZZ.Blf~ICI,41C'Z., 

§ llOr.. 
01 • 

11 DI OBI 1(0 
, DI·H 5ZC4,'5!CB,lICI '4LS314 A"l"'/e~ 20 '" Z0 

PI -1 I -10 sa", ... A"'" 40 , '20 11 2B 
<45 D2 B 12 02 DBl II 4 OZ-\-\ 

e'Z18 A74 28 14 '28 SPARE RESiSTOR "- iT~~15V D. '1 I O. DBS CJ 5 D3-\-\ 
822.4 A4'" I'" " ~ 04 3 "04 '" • D4-1-1 I'" ~ RPI I ~ ,5,10 

" -12 DB 8228 A,S Z6 14 za RP2 9 12K 
05 .. I" D5 Ie '1 1)5-1-1 

GoNO ~ RI. DB B253 .. ,'" ,4 1Z 24 RP3 13 

" _1'Z0-~ ",,5 ZI QG, DB'" 20' 6 Db-H - ~ • 60 9 
DIo-H,DH~ 2161,31(\,<l-ZC2, gaz'5 I>."2l 14 \,14- RP' 1,8,9 I • 

0'1 '" 
,. D. DBl1 .. " _ 2L;~:".3lt~~4ZC8 

~ 1fT 5YNC~ .5f -~~K Z4 
74LSI15 A2e "" 6 I. RPS I 12K 

"~ e '2 
MEMR MEMR 52C4, SZDB 745174 AB5 16 B 16 

~ 
0.1 41 ---",--- A'2.1V"404 

6U~Et.l MEMW 

~ 
MEMW 3IC8,HC8/;IC4,5ZD 

I/OR 

l~r ~ 
I ST~TB !/ow R'0 

~ T ElOvJ "2.;ZI::. 
41'ZTTL 4'I.CB 

"2" JI 

{T:'9' - :(~E7 Z.ZK. 3~ ~2.TTL-'r' 'i:f -~- -, ,.,T [j - RIS _101( QUNrnrf PER DASH 1'10. -co< A 
USED 1_ 510 ~, NONE -- ~n Del' ---@J-5VOLTS STRAPPIN6 OPTIONS: OIItIlIYl::,A .. r,;;.o. ... ').1\&1> --{~ ~ 

,~ ,~ - -,-
-t0V FORMDS .lUMPER E.ITQE81FOREMDSEBTCeo~. 

J~2572 $1f.ME143 OOA 
/" /" ,/ ~!Ya&.h In'/ ~ 

~~ 2. ALL CA.PA-CrTAI>lC.E Wo.LUES IN UO;;;, +80%,-20%,25'\1. [SJ ..JSFD O~ >"ART NO. 1(,;2415 ON LV. IG:>2<;.72. MDS;C~ ~-~ 
SC'-lEMA..T\C 

_1"2V{ Pl-'" TI4I-:, QOCUMU,jT n'FL£c..TS A.12.TWOIZ.k: 1c;,Z.41-z, - d: .~'J fill CONTRCLLER 
I. A..LL R.'E'SISTA..Nc.E VA.,LUE<5. IN OHM~~ 1: '5%, \/4 WA.iT. 4, ?1(MSf!'; 8(,.0, 

l~ t..lo. IG2.414 E:E\I L.£ .... E.L..B. 1G,2415 MDS iCE &A 

----------
~ft ";I-t-~ l; NOTES ~ UNLESS, OTI-IER'N\SE SPEC.I \=16.0 .. 

~~ -.~ -, _n I .S D 1(., 2.4-1 G:. 
,,-tilA I 7 I 6 I 5 T 4 3 I 2 I 1 ---• 

162554-35 



8 

D 

C 

B 

I 

A.0-1-\ 

A"2.-1-1 

A~-I-I 

A4-1-1 

A5-1-1 

A~ " 

A6-1-1. 

A"'-I-I 
Aii!l-H 

,.1,14-14 

,1,15-14 

7 

I~ 

1432 i0A'3 14-'32-
I1D3 (A0-H)-CAIS-H) --

_ IZ.A.~ ~ --------' 

A 

8 I 7 

I 

I 

6 I 5 4 I 3 I 

~ 
vpp C'5 "{YRlId I(PP C5 I'OI?6M VP? CS PDIP&101 V!'P (S PD/P6M vpp Cs ~ ",fOP (5 

8 ~. 
1 AI 
~ AZ 
~ ~ .. 
4 ~4 41 
3 ~'5 '2rl(P 
"A~ [5] 
I A1 

23 A.S 
2 ~., 

1"'106..10 

0001CR.030405()(oOl 
"1101113141511,,11 

6 

Oil 01020304 05 Ob 01 
~ II 11 13 \~ IS 16 11 

I 5 

AS 

L."I~ 

[5] 

.o0DIO'2.0300\-050brJ7 
~ I II \~ !4 IS I" 11 

"3 
Z llG:> ZL\{O 

[SI 

0001 02 03 04-050b 07 
"'11011 a 14 IS \ 11 

4 I 3 I 

2 I 

SEE 51-\EET \ 

2 I 1 --

162554·36 

D 

-

c 

A 

() 
ttl 
I 

00 
0-
;I> 



~ n 
(;' .. 
n 
~ n 

3 2 til 
(") 7 6 5 4 

=-
51 
II' 

~ ~'ZC8, '22.B2 ... 
~iLeutl.. ~Z86 i'j' 
~ "''Z8e,51ee '" ~ "'te8 D 

J J J J J 
C5 cs CS cs CS 

'2\14 2114 '2114 21\4- 2\\4 

AU AZ0 AB AZI AN 

c 

B B 

.... g 
I 

00 

162554-37 ~ 



Illl' III' 
1,I'ili 
-til' D~ 

-

c 

B 

-

A 

• 

• 

D 

-

c 

{ llrl!-H ==:j:~=1j3~p.1:r-----f--+--+-----------------------------+----+-- IN<;\J.LDOF~ nae 
rz.03 A."-H e 'I'/i)~ 

Ae-H ~4li;~~ :;~ 

~G~ 'l'3~\~2====~~t---t---~================================================~----t--- ~ lZCB ~ZD:~D:E:~:: ===:===:::~h 
RD5TBr I B 

J 
___ . __________________________ . ____ ~--- ---- --- ~I::MLMO\)-l 5Z:84-, BIA~ A 

r: 
I 7 I 6 I 5 4 I 3 I 2 I I 

162554-38 



..... . -00 

1IIIi 
I~;II 
I' ill -q' o.b1 

c 

B 

A 

8 I 7 I 6 I 5 

[MEMR '2 

ItA3 ~~~~Z 
l ;;m;;w H-JAB:1!3Z 

Dfl-H 
01-\-1 

D2-H 
D3-1-1 
D4-14 

I 

05-\4 
Dw-H 

0"1-" 

IIB3 (DI!I-l .. I)-ctl1-l .. n ------++----< I 
61 

D"'-Y 
D\-Y 

OZ-Y 

03-'1' 

04·'1' 
OS-y 
DiC-Y 

0.,·"'( 

_____ -++_-+ ____ -"14 ;"4~~3(O~ 5 ~~ A.0-"f 

ILO?! {~~_-~ till.. 1'1','---[2,5 AI-"-

00-\-\ 

I 
01-\-1 

D?-I-l 
D'3-14 
04-H 

DS-H 

lXD-" 
01-H 

~~43Z. 
~ <3 A33 8432 

8 I 7 I 6 

P2 
42 

n 

A.Ql-L 

AI-L 

AZ-L 

A3-L 
A4-L 

AS-L 

~L 

---@] ~L 

1 5 

4 I 3 I 2 I 
I~ 13 

HBI 

+sv 

U4 RP2 
12K 

5 

I 

-tSV 4PR ~5 AI4 4, 'I t R\\d. ~/142el~ 
14 II 2. D ':iz4 Qf'5'---+--~~'Z.B--~ B"iEST-'f 

~LBI lPUl5TE5T - _____ --'"'_"----43 CcK Q (P 

4 1 

CLR 
I 

3 ·1 2 
1 ' 

162554-39 

o 

c 

B 



D 

-

C 

B 

-

A 

• I 

31.,/>.'O CD0-U- CD1-U 

3ZB\ WTI-lb.DR 
5"Z.BI .t>.DEN80 

.SV 

14 

AII-H. 

57..CI 

~ 
lim., ~ 

~Z81 1.WffNTrn 
5101 BeLKA 

B 

A\0-\\ 

A'i-H 

~ 
A1-\-I 

Aio-H 

I 

7 

RP3 
IK 

3 
5 

CD 

7 

I 6 I 

I 

I 

4 

I 15 
61 GZ 

B 2 
" " I. 14 (at>.. ~~ 

II 4'A 2~ . 1121 4,c" 4" , 
~3A ,~ 

12 1'2 5A A-'B ':iY 
~ 

I 6 

g 
I 

00 

> 
5 4 I 3 I 2 I 

D 

I-

~ llDRII ~ 41 A.DR1Ql 

~ 
A5RCj 

~ = 
5Z AOR"1 

c 
51 ~ 

~ A:Ors 54 

~ AOQ:a. 
% ~ 

~ = 
~ .6:5"R\ 
51 AOla0 

3 AtJR'5 
IJ = 
5 ADR3 
9 => 
7 ADRI 
II ~ 

o:.lt.lli 52.D4,7ZBB B 

~ ?R 
2 14LS14 5 

r;C~':1 .">v 
RE'5IN lICe 

CL~ 
~10 

I IK , f--
~B 

'l4QlS 

~t!~ 
, PR 

, "'4L~"4 
1'2 0 A~Z Q q 
II CU::. iJ e GID1W.1N 1208 

CLR 
13 A 

I 2 T 1 .-....... -

162554·40 



• I 7 I 
·ov 

J R40 
470 

6 I 2 I I I s 4 3 

SEe: 'S~EET \ 

D 
.alAI I N5CLRH'~D 

HOLD-Y '" 
l 

JI iR41 7S0 

D 

-

c c 

B 8 

-

A A 

8 I 7 I 6 I 5 4 I 3 I 2 I 1 .-...... -

162554·41 



7 

D 

C :aZAI lPULSROY 

51 ... 1 lEN1N~"'''' P2 
~I.. ~ 

iZ" lCLRPUL5 

B 

I 

CL' 
D~~L 14\14-

10 IQ 
Ol-L 4 20 2. 5 

C00-U-COS-U ----1--~.L-~ 

02-L ~ '0 " .. ' 03-L 1140 4Q \0 
D4-L 13 'SD Seltz. 
05-L 14 "'D ~Q 1'5 

q ... , 

A 

..... 
N -

6 5 

IN"'~ l ISE.LRtl'f1 

ISELRP'f'l 1lCB 
IEt-I1UR\:)'( 
ICLRRUN.I=LC::! 
l::'P&r.i2.E 

ar.,RUNI=L6 41.A8 

4 

4 

B~CL\(-L 

MAiCI-IO-L 

Mb.iCI-II-I .. 

CLKA-L. 

Pl 

3 

D 

,~'v +5v 

,----t----~ 3261 

c 

t..--------- PUlLUPI 7201 

VATC.I-IOI-Y 

'-_IV'v-~+--------- PULLUP1. 11.08 

f---t1~ElP''--r.Ji~~8l):/LL. ________ CLKA 41.08 ,lAB 
~:::.a 

A 

3 

162554-42 



• I 1 I 0 I 5 '~ 4 I 3 I 2 I 1 

~~-5 
7Z.e.Z. CLI(MUX 

........ 
1m ~-

SIQfIo\T\If1(NtDo.o.n 

9Z.CI ILOMUX 
on CHIl _ 

~<::~~~'7..\ it:.- " I ~ ,,,,"r ','", "-"-
W5 cUr: 

91.01 D\o04CZlA 'Al QA I,~ BHE.-A z.z.Ce,':l2De,c",ZD8 
qZ.DI OH1A '& QB 13 ADQl-A c:.Z.C8,S2DEl,G.2DO 

0 9201 DH2.A 'cz q:; IL 
AOI-A c:.z.co, 520.5,(;'l.00 0 

c:rz.DI OH3A .e» QD A02:-A ZZCe,5205,G:.205 

SIJ,£.-T ~ 3 Al 

At:I/lI-T 3 4 I:lI A";, 

.a..CI-T t:[} :0 CI 74lSZ<::B 

A.OZ-T OS 7~ 

9Z01 Of.l4A L~l~ AD3-A c..7..08, S2C~,CoZ.D.5 
9201 OHSA I BZ Qe:4 AD4-A l-l.OO,52CO,G:.lD5 

- 9ZDl DHf.,A 5 C2 QC'~ AD~-A L205,5z.Ce,c,,205 r-
""Z.OI DI-I7A (, DZ QD IZ AD("'-A ZZ.05,S2C5,l.:.ZOB 

ffi ~ AI b.D~-T (., 

A,OA·i 7 ~ ~ 74L~')8 
ACS-T e 
ADt..·T m- 7 DI 

~ } 92(1 DM'" 
2~1~ AD7-A Z.Z05, S"LC05, G,ZCO 

C +1----<> ClZ.CI DMI I BZ Qe. 14 AD8-A Z.Z.08, 52(5, ("2C5 C 
+f-----o 92.(1 DM' 5 Cz. QC I~ AD9-A 2.7..00, 52C5, c.,ZCB 

TI-~ 9ZCI DM3 6 0 z. GD 12 ADIr])-A ZZ.DO,S2C5,c"LC8 
,l1., ~ Al 

*~ 'SBI,I2t.:<.:. 
toC'-T ~ 

~ B.I 74L~~~ A.OB-'T II 

~I----<> At::l~-T " 7 CI 

:ttl----<> AOIO-' ~ DI 

~ ~ ~:~ ADII-A Z.ZDB,Sz.Ce,G,7...A15 A"!>lt> 7432 ,4- ,4- --=, -.... -+- -----ic ~~ ~ I~ ADll'.-A Z.ZD5, 5ZC5 ,c"IA5 447 
--------

7+174 I" 
-

I" f:.~-

4- ~ AOI3-A 2.z.05,52C8, c..2A5 A44 -4b, 5'8.99 14L374 Z~ 20 10 

i 
ADII -1 rft, ~ DZ QD 1'2.. ADI4-A Z.Z05, S2BO,c;.ZAO All., ~O~1\75,5-: .'.:,5 74l ~1 I. I. B 

~ " AI A",-IO 14l ~ I. I_ B AOI'l.'l'.~ 4-

~: 74l~~ ~ ~ 
1l.'3e.~,SB 14 I'" I. I" 8 

~ 
AD\~-T Ie;. 

7 A4D bO 7'1,80 74L 138 16 I" 8 

~ 
ADI4-; L'2J" DI 

"5 141!Zl3 I" I, B 
'- ~ 

A~I 4~ 100 7. 7, 14 I' 7 
~I BHE-T I(z)ZCB All 74 40 14 14 i-
T 8 

L~ 
I . +5V ADQl-' 1!1l2DB ", 74$37 I. 14 7 8 i"- ADI-T IIZIZOB AI 74'S='2 14- 14 7 -;t- . AOl'.-T I<1lL08 411 74S~lZl 14 14 7 -iT C6B CI-CZS 2.'5 'L7, AD3-T ICllZ08 A.1'2'2. 14Lc;:,Zl 14 14 7 fO Z2UF L2lJF ~~&Iu~~r~~ 7~APS) AD4-T ICZlZ05 1\.\\ 43 7' 0. I' 14 7 ""it 15V 15' 

~ 
ADS-T 1(1)208 A~\4":li'~~ 1~ 15 !l2 74'504 14 14 7 
ADc,,-' lenLOe A" 74'5IrJ2 I' 14 7 

~ >-----< AD7-T l(ZlZDe A71 7. 151 I" I", 8 

i 
ADe-T I(,l}Z08 1~jr1~IF("1 -otN' 31(Zl1 16 16 " - ~ 
A09·T IQl208 A2~ Z4 '2.147 18 18 3 -

27 AOlm-, 11Zl2CB "5.2" 21lS I. Ib B '7 ADtt-T I(llZC5 ':.1, /1"1 2115 I. I~ R 

"'" AD1~-T Il2)ZC5 !Q~. DE.'S VIC +5V GUD 

-¥ AD1:"J-T 1<2lZ.C5 

"k- AOI4-T 1(lJ'LCB 

~ 
~ ';If -- ......... 

A ~ QUANTTTYIUIlASHI'IO. -~ A 
~ -, !\JOIIJE -- ~n inteI 5~=AIL 

~ 
,~ ,~ -, -III'J,~C,anJo' ",; 

(72 /' ./ ./ a«~ /?~. ~ 

" ~::..---
5CI-IEMATIC 

2. All CAPACITAKE VALl~~ ARE IAJ UF.,IOOOY, 2D"l~. ~R" ,4-114 4<' I 1001849 ICE-8B -, ICE 130,/58 TRACE 
I. ALL RE5I5TMCE VALU£5 ARE lK Ql.jMS, :t.S"'I .. , 1/4 W. A~J 7t.. 74.!>D4 A~0- • 100la49 SI(MU5'tE~6 

."-,,., 
~OTE~; UtuL£5S OT ... ERWtSE <;.PECIFI[D LAST uor U5{ TYPE REF DE~ OTY 1001849 MDS./CE 8" -.....---- ~p o I ~ ~~l ~~~i62~85 f:\ 

EF llA I M os ~- -~ - _I wilD 
9I-J5'3A I 7 I 6 I 5 4 I 3 I 2 I 1 8 

162554-43 



D 

c 

B 

A 

IZ.B3 
IZ.B3 

2M 
ilB3 
12C3 
I1..C~ 

I1..C3 
IZ-C3 
IZC~ 

I1..C:"I 

IZQ'3 
11..03 
I1..O~ 

12D3 

1203 
1203 

-A ADI4 

AOl3 
ADIc. 

ADlj­

AOI(l) 
AD"!­

ADe 
AD?­
ADG-­
AD':::.­

AD4-
ADo 
AD,. 
ADI­

AD<lJ 

"HE 

-A 

-A 

A 
-A 

A 
-A 

A 
A 

A 
A 

-A 

-A 

A 
-A 

-A 

7 

"!ZCl IENADDR CT 745m2'_ :I; l~cZ ~ 
A~-l 

,... l?i:.' PP517~(l)4 ~ 
4 ~ 3 A14 

A7" 
74S(l)4 

eZDZ-

ezoz. 

ez.cz. 

ez.cz. 

eZCz. 

ez.cl. 

oz.c?. 

lOr-- ,,: " M 
II 

':> AT~4 
M " 

:~: III1 
10 

M 
9 
6 

M 
5 
4 

~~B8 ,---i M 

5r!:.":;Z~ ~ M 

1_,;;"t'Q) 
M 

A9 

A8 

A7 

A4 

A3 

ez.ez. 

ez.ez. 

ez.ez. 

3~'37..4 
M 

\~p:"Z,z. 
M 

I ~~'Z'Z. ... 
AI 

At. 
OLe?. w-

9l.AI ROME 

74S04. 

I EI 

MI 

8 7 

6 

1, 
IS I IS 

C5 DIN CS DIN 

A, 
AB 
A7 

"" No4 '"' AS 
A4 ZI1SAl- 'L115AL-Z 

A, 
A, 
AI 

NJJ 
WE 

OOUT DOUT 

>------< 10 ,PI, 
I 

~ IZ 11 

74A(1,~, 

6 

5 

1. IS I IS 1. IS I IS 1. IS I IS 
CS DIN CS DIN LS DIN cs OHJ cs nlN cs DIN 

M,~ Mco, -. ARb ,,"7 "'7 

'W5AL-1. '2USAL-1. lIlSt>.L-'2 Z_HSt>.L-Z '-L1l5J:>.l-l 2.1ISA>.L-: 

DOUT DOUT DOUT OOUT DOUT DOUT 
7 7 7 7 7 

~4 ~5 ~ 
ReB Re8 RP~ 

I , , 

~ ~ 4 14 I~ 14 I~ " ~ 
A"lS A~o A"J" 

74L5~7 74-LS:y.,7 74L~~7 

5 

4 3 2 

o 

CS1' 4ZCf5, 

-

1. 1. 1. 1. 

CSI 4LC5,S 

->5 

~; " 
, , , , , 

IS I I:::" IS I I"> 1-0 I IS IS 
of 'f1 n1 (" fO'l ,0 '" ~ ~ I 15 a. II Q. a. ~ ~ 

CS [)IN CS Olt..! CS DIN CS DIN C-::' DIN es DIN C5 DIN CS Olt.! a:: C! & <r 0: oc oc 8- & 
'" I~ 10 '-, JI, , 

. ., 5 A ::: ? 

A IL 

A~I A7~ 
I>£B PM A"' '''" A10 A'lO A7L 

A '" 

ZD5,Co2CB C 

'2.lISAL_2. '2115AL'1 '2IlSt'>.L-'2 '21':"AL-2 'L11~'Ai...-2 'lIISA:"'-~ 'l11~AL 1 II'5AL-2 A4 (Q 

5 
4 

A, " 
AI 

""z 
WE 14 1<:.17 "5V 

DQUT DOUT DOUT DOUT DOUT DOUT [)OUT COUT 
7 7 7 7 7 7 7 7 

>---- '" ~o >---- 7 >------; B ~Z4 
47. 

HP'3 I.F~ p,pe, 'P' ~ +5V 

8 

I , I J +1" 
1k 

' , , I , I 
~ dO ~ dO dO dO I, of, x: 
~ ~ ~ ~ ~ ~ ~ ~ N 

0JI 7 

~ ~ 
::- ,:;rI. flo:. 

a: n:: N 

~ ~ ~ 
b 4 I(l) 

12. II 4 '=-' I "l 
07-

A,,)o A")-o f4~~'~7 ~~ 
74-LS3~7 74LS3.107 74LS::.c..7 DG.-

DS-
D4-
D3-
De-
DI-

0'" 
A 

4 3 

162554-44 



7 o 

QZ.Cl lLDMUX 

D 
~Z.Dl DH4A 
~z.nl D~'::IA 

9l.01 I1HG,A 
9l.01 DH7A 

AOIS-T 
A \1.>-1 
A n-1 
A 15-1 

~ '" 

~ 
9ZCI DMQl 
qZCI DMI 
9ZCI DM< 
91.CI DM3 

A 1'3-1 rfu 
QB0-T 31 
~f 
QBi7t till 33 

C 

"5.0-1 
o5T=i 
;;-'[:1" 

JI 

~ 
Iffi ~ 

7Z.CZ. BEG TRACE. 

TAOcli-1.. 
~,;{:L 

~ 
B ~ 

~ 
tp: 
JI 

~ ,,,-

I 

A 

B 7 6 

5 

I' '~ 

t5~ " 
390\ 

1"" ~ 470 

? ~., ell( I'" 
I ~ (~A 14 

~ ;',; ;: :; 
U( til) 

; AI 

,,1'\1 AI 

" 
/41 ',I',:,)p, 

I" 

rt-; 
,I B2 ~ 14 
) ('"I (~f I~ 

DZ QI) 11. 

~.., AI 

~f>I-,lt~~p, 
7 [I 

01 

~ ~I~ 
h B? re 14 

~ ~~ ;~-L:l. k, 

.~ AI 

4 [:',1 AC) 
9 ('I 74L~J2.:::e 

I Dl 

, ~I~ 
~ B2 GiB 

--t CZ Gc 13 
Dl' aD 1'1 

'!I AI 

~ ~II 141~~~H 
7 DI 

-

5 

4 3 

_,'>v 

4 3 

2 

1-.1)1',-/\ 4l.05,·,l.f',f",tb ZAe 
At)lt,,-A 4Loe.,'-,'lBh,r .. l.At:.. 
A[)ll-A 4ZLJe.,~'lbe,r...z.A,o::, 

A[)IE.-A 4Z.lJe.,~~Zt.e.,rL.ZAe 

'-'(jIg-A 4Z.0e.,c.,I~E:.,rbz.A"" 

n f',QJ A 4l.0e. 
(~f;I-:'-A 4llJE:. 

(1E'.Z-:'" 4Z Ge. 

' ..... (b·A 

sr:A. 
'::o~-A 

4l.01!., o:..ZA~ 

4ZUO, ~ .. lAe 
4Z0B, ':lZAe. 

1ADD~-A 4Z.DB,':lZAB 
TDA1A-A 41D8,':.ZA8 
G51ll-A 4!.D8 
~ 4l.08 

ADI':l-T IIDLeS 
ADIc..-T I~z.ce 

ADI7-T h2lZCe 
ADle-T IGr!ZCB 
AOI9-T ICZlz.Ce 
sm-,. II1I'Z.ce 
':)1_1 ICllZCB 
S"Z-T I()Z.CB 
TADDR-L 7ZBO 
TDATA-l 7l.BO 
aSI1l-" 7l.B8 
Q'5.1-1 7z.~e 

o 

c 

A 

162554-45 



• 
~l.!!.z.~ 
3l.az. Q'Sm-A 
31.82 TOATA 
3Zaz.~ 
~1.Cz. l":.ECilTR 
"zet. ~ 

-A 
-
A-A 

D ~ICZ. sr:A 
3lCl. 5m.A 
'3Zcz.~ 
'3ZCt. GBI-A 
'3ZCz.~ 
3ZCZ. ADI9-A 
3Z0Z. AOle-A 
3Z.0l. ADI7"A 
!ll.Cz. ADI"'-A 
31.0Z. AOI~-A 

t.Z.CI ~ 
C Z.ZCI B1 

e'Zoz. "q" 
elCZ "/!1M 

e1.Cz. "7M 

O'Z.Cz. M.M 

ez.cz. A'>M 

e.2CZ. "4M 

8 OZ.CZ. A"M 

ez.c.z. At.M 

OZ.Cz. AIM 

8"Z.CZ. AIllM 

C!.IZCZ. WEt. 
~ 

A 

A75 
;4'504 
I!>" I!. 

I AI:)!. 

';:': IIII 
~ A4!l4 

5 A"';.~" 

II A'5'I(2) 

~ A'S~4 

1~A.r:;.&.JIZ. 

1t::"Z. 
74S04 

7 

L,. I IS 

CS DIN CS DIN 
I~ 

M I 
'6 II 
'7 I~ Ab A'O AZS 

~ A5111U1.-'l. 7.fl5A1..-'l 

" A, 
5 
4 A" 

~ A2 
AI 

~ "" WE 
DOU1 DOUT 

H~ ~P' 
I ¥4 

'14:5~~7 

7 

6 5 

1, ~ I 15 
1, 

" I I; 1,,5 I " CS DIN C":I DIN C~ OIN ('5 DIN C'::I DIN CS DIN 

Asa> A'" AZ~ AS2 A';JI) AS"' 
'Z1I~Or.i.·'2 'l1l'SAL-'2. '11l5~-'l. '2I15j1o,.L_'l '2..11'Sb..L-'2. 'Z.IISA,L-'Z, 

DOUT 00U1 DOUT DOUT DOUT DOUT 

H~ ~P4 H~ ~P4 H: ~P4 
¥~4 

'14L~~c..'1 

~4 
i4l5~c.." ""14L53G..7 9 

5 

4 3 2 

I'-I - -1-
>lot ,Htel """ 

D 

,5V 

1 1, J 1, 
!".bee< 
~rnUf I I I I I I I I 

15 I 15 I; I IS IS I 1-, IS 
115 Aitr l t ~ N N N N 

C'!I DIN C"5 DIN cs DIN C"5 DIN C"l DIN C":I DIN C'.':;. DIN C'!I DIN ':' ~ §: :t:: a:: III :i & ~ [i & 
I~ !?l e 7 e. ') -! Z .:i. e 

, 12 

c 

,,, 
A;7 AS" ASS A54 A~2. A'::''':) A"A A~ A IQ) 

'Z.11SA..l.-'2. 111S,jIo,.L-'Z, :"11'[,.jIo,.L·'Z. 1L5A.1.-'l 1115A.L-Z 'Z.1\~·1 '2.\\~.Al.: 'Z.I1S.o.L-'Z.", ~ 

""s 
~ 4 

AI ~ 
wE. 14 

OOUT DOUT OOUT OOUT DOUT DOUT DOUT DOUT Lr H: 7 7 H; H~ 
.7 

~ 3CJ~ 

~Pb 
2. 10 

7RP4--t5V RP. ~P4 
, I ~" 

47'" 

~77 ~ ~ 
lZ~S />..77 

= 

OHl 74L'::I~~i '4L~~r..7 74Lc::.~G,"'1 
14LS~G.7 

O(.,-L 

OS,-L 

D4-L 91.05 
D3-L 
DZ.~L 

DI-L 

OQl-L 

A 

4 3 

162554-46 



'-
N 
0\ 

7 6 

9ZCI OM" 
'=t'Lel DM~ 
9ZCI DM' 

D 
9Z.CI DMCll 

rz.o~ BI-IE-A 
IZ.D~ ADID-A 

11:03 AOI-A 
11.0'3 AOZ.-A 
2.LCI ~ 

9ZCI WRAMQ) 

IZ.O~ AD3-A 
IZO~ AD4-A 
IZC3 AD':!-A 
IZC~ AOG.-A 
ZZCI = 
IZ.C~ AD7-A 
I-ZC3. ADO-A 

C IZ.C~ AO'9-A 
lZC3 ADIQ}-A 

9261 WRAMI 

1263 AOII-A 
12B3 AOI~-A 
1263 ADI3-A 

9ZBl W\i:!AMl. 

IZB3 AOI4-A 
3Z0Z. ADI~-A 
3-ZDZ. ADlG:.-A 
5Z0l. ADI7-A 

B 
'31.0z. AOI8-A 
3ZCZ. ADlq-A 

C54::r-
.OOIUF* 

ClZBI W~AM~ 

3ZCZ. 5<D-A 

3ZCZ. 51-A 
31.(Z. '5z:A 

9Z.BI W!2AM4 

31:e2 TAbOR-A 

A 3Zez. TDATA-A 

c,ei 
.OOIUF" ":" 

"'\-ZBI ~ 

• 7 6 

5 

4 I. I,m I,z 
D' m: 03 04 

l~ ~(D Ol~ 
14 A.I 

"<03 
oz~1-

"z 0, 
1.3 A~ 311lJIA D> II 

~' ~~ 
, 

Am Ol~ 
'5 
'4 

A, Dl ,.."..-

" 
AZ AC,- 0, 

II 
A, 3101A D4 Z 

~ 
cs 
we 

, Ol+-IS A(f) 
14 AI Dc ",.-t-< 
13 ~.; 

A,,] 0, 
" 31Q)1", 0, 

, cs 
'" WE 

~ S 
Am 0, 7 

" 
A, Dc "> A, A5' 0, 

13 
A, C':>11ll1A. 

04 
II 

2 cs 
3 WE 

, 
A0 

S 

'5 
0, 7 

" 
A, 0, 

"l 
A, ABZ 0, 13 
A, 

?>IUlIIl. 
04 

II 

~-t:1 cs 
WE , 014-'5 
A0 
A, Ol~ 

~ p A, AM 
3>1 (ll I Po. 0,,, 

A3 D4 

- z 
'-----i< cs 

we 
, 

A(lJ 0, S 

'S A, 0, 
7 ,. Az A4' 0, " C A, 

::>I(DIA 
04 " 

- z cs 
3 we 
I 

"0 OJ+-
'5 

+1'" '4 
AI Ot~ 

Re [IS Az 1\41:::. 
03 II '3.lrhlA 

Z 
,~ 04 

3 
cs 
WE 

5 

4 3 

4 3 

MH3HI Go2DO,7ZCEI 
&.ZAB,7zce 

MH(1)c. &,2ce 

MHIl. &.ZBEl 

IvIH314l. GoZDe, 7zce 
MH4H2. GoZAEl,7ZCe 

MH(D3 Go7..oe 
Mi-I13 GoZB5 

o 

c 

A 

162554-47 



a I 7 I 6 I 5 

1~-'==h~1 ~ZAI eDM~1 

':>'ZAZ. MHQ)3 

'51.0z. MI-I3HI 
5ZBZ MH~HZ 
9ZBI = -15 0 9l.BI W!i1':AN(., 

5 
WE WE 

rZ.D~ BHE~A '..,. 
1203 Aom-A Z A, 

IZ.D~ AOI-A 3" 
rz.D~ ADZ-A . " 
120'3- AD3~A 5 .. 
IZO'3 AD4-A I~-~L~~~ ""-, 

ZJ47-::';> 

- IZC~ AOSa-A 
lZ.C~ AOc.,·A Ib "'7 

IZ.C~ ADi·A '5 .... 

12C=' AD~-A " .... 
I'Z.C~ AD9·A 1310.10 

IZ.C3 AOltD-A IZ AI\ 

QZCI OM'" II DIN 

Z.Z.CI C5i ' CS 
DOUT DOUT 

C I' 
7 

Ml-liQl 

+r "' MHClHD 

~z.cz. MI-I(l)?. 

... 
t;tZCI lNSMHO 
9Z.BI WE:'AMICll 

I RP' 

5ZCZ. MHIZ. 2 

a c:rz.BI WR:AMjl 
~ZAZ. MHI3 

I 9Zf:!1 WRAM8 
9l.BI \lIUJJ1'i L. ).14 I WE WE 

'------$ D'N 
~ C5 

~ AQl 
Il.B3 ADII-A 

3 A, - 11.53 AOIZ.-A 
4 

Az. .as "'-'0 
IZ83 AOI3-A 

5 A~ 2.IZ,5Al ZI2.5AL 
~ 

I'Z.B3 AOI4-A 

'" 
A4 

3202. ADI~·A 
10 A5 

~Z.DZ ADlG.-A 

" 
Afo 

31.02- ADl7-A 
IZ A7 

3'Z.0Z. AD Ie-A AB 
3ZCz. ADI~-A 

, 
Ao 

A DOUT DOUT 

I' 7 

5Z0Z MI-!4HI 
~ZBZ. MI-I41-lZ 
crz.AI iffiMi:i!. 

a I 7 I 6 I 5 

• 4 I 3 1 

1 AI'3 
f4LS3~1 

Iv\~ 
A'''' 

4~ 14 LS:!,rol 

h~ 
A'~ 

741-5''>(,1 

'''''' I(n~ 14L'::.~7 
An 

It~ 
74L:::,::,c.l 

A'''' 
141~ 14'LS~1 

A"S 

4~ "l4LS:::/..7 

7~ 74tS~iC-7 

74L~~c.,I£ +SV 
~~ 14L~7~ctJ,,~ " , 

~ 
v 

,- S RPb I 
~31 

4',,':1l 0 
MHI7>I '5 

ND 0, 
b-Z MHmz. ,. A, C, 

~ 
A.7JlJ 

AZ 0, 14LS-~'~ 

" ,,~ AI4 0It 
4 D\3Ul.llt\ 

Iv\HIH 741lfj211~ 

~ D2 
74-L~S{£71'l\~ ii Do 

~ D4 J Z 
WE 14L~}!ta'l~ 
C5 RPb 

'-5 s 14'5=:'7 '. 15~ -:,2 ~B 
\4 AL ;:::i 74L~~-I,l~ 

r.A~ AI3 :>-ll 
14tZ~114\~ 4 D ~!0IA 

6 ' ~DZ. 
~D~ 
~D. 

WE 
~C5 
7 "------

R~ +,v 
'0 , 

MHII 

t 4 [ 3 I 

2 I 1 
..-

.~ - ~ ~ -SEE SHlE-T Ot-,l .. 

OCl'!-L 9ZU/J 

lll-L 9ZD05 

\'(' 

~MAT(H(D.L 

D('-L 9l.D5 

D3-L9Z0lJ 

D4-L 9205 

OS-I. 9ZDEl p, 
~G, MATCH.I-L 

DG:.-L,9ZD.5 

07-\' 9ZD5 

~DI:~~~r~G2465 J~ 
2 I 1 

162554-48 

0 

I-

C 

~ 

B 

I-

A 

n 
trI 
I 

00 
01 

> 



'-
N 
00 

D 

c 

B 

A 

oqZ.DI ~ 

ENTIUo.C.E~\" 

9Z01 lDl'SMH34 

SZOe Mf.l3HI 
'::l2BZ. MH'3HZ. 

9Z01 IDrSTRA 

5200::. M~4HI 

SZBc MH4HZ. 

9l.Al IClRSTPTR. 

eZ-03 WE.3 

7 

~+sv 
PC 

"' 
+ ",V +",V 

, , 
RP' RPI , . 

IZ'4~CDe:. 
I~ All II 

+'OV +'OV 
R::) R' 

74-;'(1)8 

~A4~ b 

I I I I 
QPI RFI RPI IWI 

':'l 10 W 1 
32Al. QS(l) _T 

+T +l +5V +",V 

, 3ZAZ. aSI .. 
3Z,AZ. TADDR-
3l.AZ. TQATA-

l 
L 

eu.c.U:::-T 4-
~ 

/0z.ez. ADDC.LK 

ID"Z.01..~ 

8 

+1' A4 
39'" 

lR2 -:- 470 

7 

6 

,~ IZ PR '.) 

rt;b (1$ 14 7~ 8 

CL~ AI~ +':lV 

2~b 

" 
']. K 141(2l~ "'1 

K Q 
ClR 

I 

,~ 12. PR ';'l 

~ 
K ·f4??4 

rLR Q~ 
13 

6 

5 4 3 2 

-'- 5fE SHH.T OfJE 

D 

I "'14-;lCZl5 
1m 

') All f'l r RI'O .~ PH 
3~O 

~ 13>' 14 ~ .~ 

iR'~ K 'l 
"'0 Clk 

+:'>V 
IS Flf-'I 

, I 

MAtCH3 e.ZAO 

E.t.JADDI?CT 9zce 

BE6TRACE 3zce,8lA8 

MATCH4 eZA8 

13 14~,4.(] 4 
IL 

B L D p" 
'3 Air ~ 5 f.NMAC T eZOB 

"'> t--2 L~ 7~~j4 
1p2-

~ 
"'74~(£~ 

~'"' fV 
/4SV'.c:, A !.'~, ,.",) 

14~:S-:',7 
; All (. II Ie (.L;<-'L; 

I" II 1\ 

l~' 
l..I:t.j '" , 

~ " elK. BZ 
v 

4 ,0..12 

CLlCMUX IZD7 J 3Z0B,I(211A8 

5G;.CLI(.-L 

14'540 A 

5 4 3 

162554-49 



8 I 7 I 6 I 5 

tf;lj 9ZAj ICLR:(WF 

lIi!11 ,r--" 
9ZLl flMQ) ,; ,.. r~A j~"'" 

'Iii 97Ll I1MI f', f\"~ q~ , 

''I' 91,(1 nMt Zr: 74:'1'''l(~~~ 
Db!! r.T i ' q( 

9z.nl fC"DMA'Ci' ' LOAD 

+f~ RI7 -: I (t.R. ~'~ .t:y 
-::. ~- /)lJT 

nBc. UJMACT 
7 

~ ~II' 

(' (LK 

~~ 
-

_~~14 9I.01 DH4A 
9Z.DI 01-1 71 A ~"",;~ I~ 
9ZDI DHG.A :.J C 74:'1~ (~I, 

9ZDl DH7A (r, D II 

HlOAO RIP~ 
Helle L~ 

FNP ou 
Z. elK 

C 
r~ 

9Z01 DH£ZlA 3~14 
9Z01 OHIA q. Eo A~",) Qe, I ~ 
9ZDI OH£:.A 5 C74S11D~Q:::: ll. 

9Z:01 DI-I~A ~ D Qo:~ .... +SV f~ ~~~;D ~~r-.23 
PZ 390 74212 ~ENT OUT 

.,' 2CJ 1'~ ~ , ~ ~~: 
~ 

I ~B 

2p(,,'": ~ 
10l.CI JNI-fWRTMEM " 12 

B ~II 

-

7Z0Z. MATC.H 3 

A 7ZCZ. MATCI-I4 

7Z.CZ. BEGTRACE 
91..6.1 ~ 
"IZAI fl5MA1 

8 I 7 I 6 I 5 

.. 4 I 3 I 
- ,,, I 

.. 
._---

~ • 
I'R 

2 [. r,:'" 

~ I r, t~~ 
<1 

(I h 

I 

1 
Ad 

I~~ 
fll'1~ 

-
~r,-

o I 

AI~ 

\I~)~ 

A'i~~ 

A~_r 
AI~~ 

f\1,~ 

r4~~ ,',,, 
f\~I~ 

AIPl~~ 

"~Ql~ 
A~21:t11 

A~,\I~ 

A~41:t0 

AI':)~ 

f 4 I 3 I 

2 

IB 

IYJI 

Af'M 

II.'IM 

MM 

- /I' ,M 
I\(,.M 

AIM 
. 

WI, 

WI I 
/\.-'1M 

",'M 
AIM 

!\I7IM 

I,(/)·L 

I) I -L 

n7 -L 

LJ3-L 

rVl-L 

nr\.L 

nr,,-L 

117-L 

2 

I 1 -" ....... ~ ~ -'_'_'1"1 I ·'tll .. 

" : .. "1', " 
.' " 

(/1~h,41f">f'l 

,'/I-<O"',4/!::',P, 

;'11',f",4/Be:. 
,"/I',f', ,47 F',,',,) 

-17 p,,., 
,'? t'.h 

r!tV",,47!'1'" 
,'! t"'{"147Pl~ 

,'llj{'" 41 f'I!;I 

('7 f'lf'l,4ZI".5 

-'1i'.I)M 

~DI~~~~rt~'2~8? fA' 
I 1 

162554-50 

D 

f-

C 

... 

8 

r-

A 

?l m 
I 

00 
0'\ 
:> 



I I 7 l 6 I 5 .. 4 I 3 I 2 I , -
5~' 'ft ~-~ ~, '" ,~" 

2.2.AI,4ZAI ,Go2.C 1,82.CZ. ,1<ZlZCZ om·L 

III 
1-1 ~EE ::HE.E.T DIJE. ~ 

Z.ZA1,4Z.AI,G.z.CIJeZC~,ICllZCZ Ol-L,. 4 lD l.Q S 

Z:Z.AI,4ZAI,GoZ.CI,82BZ,UZlZCZ. OZ.-L 73D " 
Z.2.AI, 4'Z.AI,{ ... ZCI,8Z. 8Z.,ICZlZC Z. D3-L B 4D 4 ~ 

D~a>A II.07, eZC5 
I 

Z.Z.AI,4!A I ,Caz.BI,er ez.,IQlz.CZ. n4-L.. 
14~~ SQ" 

III 
OHIA 12. 07 J Bzce 

D Z.ZAI, 4l.AI,u,Z 8I,Oz.ez.,u:nzcz. D5-<. 6Q 1'5 OHLA IZ07,5zce 0 
Z:Z.AI ,41A 1>GoZ.~1,8Z BZ,IIZl"Z.C Z. Oc,,'L 17 70 7Q If, OH3A 1207,52.e5 
z.z.el ,4tBI,c..'Z.BI ,82.B2.,ICZlZC Z. 07-L Ie. 60 00 1~ DH4A 1207,3ZD5,5lCb 

~CLI( AO,8 Il DH5A rz 07, 32.05,82C6 

~OUT -: ,5,1 .. - OHG.A 12e7, :'lZ05,EYlCb 

n _ ICOtJUOL 
Of47A I'lC7, ~ZD5J5ZC5 

D£b-l ~ - .:, ID IQ '2 IDlSTJ:A 72(8 
Ol-l SZ ;cD LOS IHJii<':':A 7Z0El 
01-!. ~ 3D "'l" IDJ'5MH?,4 7Z00 

- 03-L 54 8 40 4 ~ ILDMACT 820e c-o.·L 5"> I::' ':::.0 5QHi-
.~ ··---INSMHO 4>Z68 

05-l i* 
14 ~D 6Q I'::. I(I'JADD~CT 'L1.ce 

DI.>·t 57 111D 7Q~---~.----- -- ISELClK 1.1) zA=--, 

D1~L. ~ II~ BD 1'::\ ILDMUX 1202, SLOB 

Al. r--7- CL.I( A'!l~ 
TZ.CZ. DJADD~CT ,4L$3G>7 ~ OUT 745374 

6r, -=-~ 
DM!> 1"[(7, S2C5,'::.2D5,r..;Z.C b.6Z Db 

C 4~ C 
DMI 12C 7. ~2ce,'SZ D5,bZ De 

+5V z~ 

~ 
DM~ IlC7,3"ZCB,'::."ZDf.l,I3LD5 

J: I]: I 

I I 
RP7 RP7 RP7 R" "'" DM3 12C7, 32C6, '.)"Z05 

PI 1.llo':- l.U'- Z2< U, l.ri!. 

Ir;---; .o..(l)-L~ 7 9 
, . 15 

WRAMm ~::.Z.D6 ... t>.\-L..~ Z B YI 14 WRAMI SZ.C5 ~ 'c y, " WRAM'C. SH~B .A.'Z.-L~ 

" 
I' WRAM3 ::'Z.e.b A7~ II 

JY[ 
4 

74L~~ Y4 
111> 

WRAM4 SZA5 
~EL\NT~L 4CZl 1A YO W!?AM'::. S"Z.A5 

A(. ... ~ GlO Y 3 
WRAMG:, G:.Z05 

" GI T7 7 
W!?AM7 &O"lO5 

o-----!; r--- IS 
A " 

WICAMB [""l55 

8 --{ B YI I' WI?AM9 enz.BEl 
10 B 

]' 
-2 c yz 

IZ 
WICAMIQ'J fDZ.B5 

I>&b " II WD..,;) .... T 
WRAMII G:.z..5b 

74L;)1?JB Y4 
RP7 4 ZA YO 111> WT'TL..=> HZl70 

A.S..L~ 
'.l~ 5 Glli Y. ~ TSTCLK ! /,2.:>:;-' 

0 
• GI Y7 7 WFMC1' .. 

~ 

I----
H A YO 15 i?OADtZl 1(l)Z.05 

] H B YI 
14 

ROADI 1(l)"lC5 - r--2 c Yl 
Ie, 

RDAOZ'. I(J)ZC5 c-
",7 ~ 2" A~'(l) 't3 

Wa;J PZ 
4 4 

74L$13B Y4 

~ ':lEL20-L 4' ". 
L~2A Y5 
G'2.B Yf, TCLRSTPTR 7Z8e.. 

'---". GI Y7 7 
ICLROVF 520b 

---+ r---~ A Y. 

A '----J B " 
I' ..:.:DME.MI E.2BB A 
I'" ~ C " IZ 

i::DMEMZ. 4Z.b5 
MlZl n II ROMAI Bz..Ab 

74L$I~ '(4 
110 

RDMAL 57.Af5 
A7'; 4 G2A Y5 ~DMHI 1'.01.05 

74';llD4 GZe, Y. e> RDMHl. fL:."'l...A5 

~2=~1 " 8 GI Y7 7 
LI48G:>DAT ICZl"z'B8 

'--- ~DI~~~tr~~2485 J~ 
I 1 7 I 6 I 5 t 4 I 3 I 2 I 1 

162554~51 



D D 

-

c c 

B 

-

A A 

!rZ.C.I L~El.CLK. 

8 I 7 I 6 I 5 4 I 3 I 2 I 1 

162554-52 



• I 7 I 6 I 5 • 4 I 3 I 

pB~!til 
RINISIONS 

:.rill- M' tI~t·'~"'O"l ~T t>O~( ,:/ .. ( Wo.TE "'VflI>IO..,. 
C1T " ~~_PE Itt. ''K)4, ... 

+-sv~ 
~.,. ... c.. s 

" C EW 14·0043 PRE-PILOT f'iFi FASE M,e;, -Zt,. rm , ..... , i7Ii " 
J\ TP~ T~b ¥7 ~3Z rf~:~2~';G: u '" lIN "N-!u~ :1, 

.sv 10 113 "21 B2~ lC'.C ''lI'" " ·U 
7A 1/,.1" 

D 
+?V~ 

D 

J1 
.;y 

" "SV 
+ f;C •• 19 IX' ,t CI,2,fB,,,·\o. 20,27 

J'j 
22,I5V Q.1,'JI!JV O.oI,SiJ'J 

.. 80'1.-201. ~BO" -"lO~ 
GNO~ 

t J; 

- OND I , ? 6 13 34 36 40 f--
J& 

uND I , S 1 B 9 1\ I*-' ~WE.R ~ROUND AND SPARE :;ATE LO,-ATER 
14 I':> 17 19 2.1 2Z B 2.'5 "lEI=, DEVIC.E. ';)Q'NE.R P:NS 
2(027 2<:j 30 3) 3? 3'541 Db TYPE S"lD .. 5V "",7.1 

41 4'; 4':l 47 48 4~ U'" 2~ 
., 

ll~+---J7 w,9 ,40'2. 7 

GND I , S 7 • II 12. 1~1- ~.-~ 7404 7 :: -~:=-1':1 n I~ 2.\ 22 B 2; 2.~ l~aB -, 
C 2.1 2<:j ~ I ".,r, '37 ," 401---

~-. 
~1~ 7 14t-4==~" c 

~ ~:3b~- -~r '14+ .. 
J2 un 14~O4 7 14 .-

OND , 4 & e 10 11 I~ 2.01- ~- I'\S09 7 14 

~ 
UI-, 74S31 7 ;5+'- .. -

JI L.J':l,o:.,e,9 6:'048 '0 

GNO 7 IS 2.8 ~ 37 3q 41 4~ ,-22 2.'3 1.<:lCS74,6t., 1 14 

~ U" 74L.<:;'1c;,1 B 1& .. 

.... ::~ 
UI4,IS,32 74LSZS7 e I~ 

8::Will::: 40 U(g II 12.110 16,~ 74L':;'-~~7 8 I" 
. -

J, U1O,2.1C 7'4L..'::l'3lOe i5 .~%-
.12V @] 

~ 1 C.IO 

__ +r2.V ~. 74L,=,?74 U. eo§~ ~ 40 --J. Z.2,I'='V 

J& 
SPA RES 

• GV'":rl TYPE REF. DES QTY j-- . • IK RES. PACK RPIO,I2. 5 
os TEST POINB TP IB·24 7 

J7 0.1 '50V 
6\15'5 4 1 .... 00'" •. z.o,,- 7438 U30 3 --_ ... -

7400 U25 ... 
74L574A U23 I 
7432 U21 I 

74S0~ U20 , .. ~ 
5.I<lK ~ES. PACK RP(o)APII 14 

- 7402- U," f 
74lS%7 UI8 \ 
12K RES, PACK RP5 I 
74537 JI3 I 
74L531oB ulO 21.:, 5 

NOTt:~; JNlE':lS O,ERWI':lE SPEFII=\EO 2.2K RES, PACK RPI RP4 RP7 RP~ RPl3 7 

I. CAPJt,.CITP-NC£.' 'JA.WE~ ,Il.,RE IN MIC.AOFA.RAtr.. lOr, )\O;V, ITt~ P~RT MUM8[~ DESCRIPTION 

" 
2. ~e:co\~T~NC.e: VA.LUE'S ARE IN OI-iMS 5 % (/.;/1". CI!.IIlNTITY'E#lDASMMQ. PARTS LIST 

A 
.,. 

o~<;,\C. 

I~ 
&IQNATU~£ ~~ inteI· lIIMlIOWE.,AV£, A 

L. ...... T u~t> N01 UIoIO lH!IONSAREININCII!S DRN I~ II e::l'NtM , ~I~A~, 
U. UI 

UIA lL ...... RPEDGU. ". ...., 
"ru 

"'''I~ C , DO NOT O"AWING. SC~E.MATIC, 

C"' TOI.tJWICES ~ BUFFE.R 80ARD - I 
J1 AMlLES .. 2' .~, ., •• m Djl~e 01 '1 120022- j~ 
""' . .,. .. Il~02.0 '" 

m",.OIO 

"mASSY USEOOfI SU.FACl~INISH 1 - SMUT I "e _ .. 
• I 7 I 6 I 5 4 3 1 I 1 

162554-53 



D 

c 

I 

A 

7 

+'SV +5V 

RP' 
'2..2K 

RPI 
2.2K 

6 

Ull 

5 4 

i4LS;"(.,' 

'" 

3 

7ee 
,------''-C",...----+-> :I,..KA, J',. ~5 

3AI, QW-BG. [g]e----------------------------------~'1)>?__-+-----------------------> ']'SO-)(, .le:,-,5 

3AI! G.S\-8(,,~--_,;<,"v,-----,-<~?v-;-------------- ------------------» 0.'='1-)(, J:;'. 3(0 

J'3·I'8 > R.CN-Y / 
J7·(,,! READY-ul 

t~ik VPiK 74.37 
<---4"----ii"----------"-"1I2.~"',,----------------------------------------Q ",-E"'DY' Sb.:J(.O 

+SV I"? 

RP9 
1.2K 

74L~~(., , 
UI' 

....... ---'U----,---=-------------------------""-'~.>7_-------------------------> JRE.J!>,.D"'-Y/,J:::·\~ 

~ 
•• V 

I RP3 

Ji.20 , NMI-U/ <-' _____ -'.l.~L_._LK _ _;i-:<:"i."'v~---------------------7-'_\:?.!.lllt{"~I~\'------1 __ 

I ~P~ ~ 74l"Ji; 
J(".r.o I TE,<;i-U! <-,-4-_-,-,.= ____ -'",,__________ -----"""'I:;"':~c----f----------.---~------.-.---~ urE.~I-""/ J~ IS 

--------------i» llNMl·"f'/, . .J::'-4. 

'1A'~"%l 
u,9 

Jc;,.~ 1M,'! M)(-lf <---2,>----t------=,-------------------r"''''-[;''''"c--'-------------
I ~~J 50V l' Sf V 

------------.~ VlN M'I-/ J2.-\6 

":" .. w'" ·Z.C'II. ~'i<. '-----07;;;"-,<;"',z.o,.-----------------------[Og] MN M'l(-U/,JA$,~ee. 

IC.I , \-\Ol.D RQ~iO-U/ 0 ____________ • ______________________ -""-'C"',."'"-"-2b=------------------=,----------;> ... ':::,_0·....,/ B·I", 

<.v 

I !Z~~IO "14 LS'31.:>8 ~~ t:-J\\N7)'{C,/,"':JC'6 ,lC8 
U-I..ic> I':'> 

J3-17)H~~~ •• -----i~.~~~---------·------------------~~~;~1~3---------~_--------~~HLD~~@\.~l(' 

• 
~TP"2.B I, r::~'K l4L"'i';:-6 W" 

J7·2 I INTR-U _ .l -_ 4 ~~.'---------------------------» NiRI/_'2·-; 

8 7 6 5 4 3 

D 

c 

I 

A 

162554-54 



D 

-

c 

B 

-

A 

_. 

• I 7 I 

2.DI , elK .6(.r;;LlieR::===;:;=======i'"~ C LK 
2CI J READY-6~~ +'5V n RE,6.,OY 

~ It~;IVO 
J;-2. ) NMI&,-Y/ ~.~~Z'-l)J;_~I-2-'_-----"-'jl NMi 

7.<lLS'?!c8 

J2.. t I IN1R/ oE-, __ -c----cc ___ CJ4,"'..>-,:2--S'U_'"_-"'!161NIR J+?V '4-i 
RP3 14lS3101 

J3- 14 e"1E'=>1_y/<'-_---'z~Z-.Z-K---","'~>,J-ILu-'z-~2 TE5T 'to 

lCi, RQGTI-P/@[§:f-----------"'i 

eel J RESET·P !!RJf------------

74L5:'''1 

i~2 9 5 7432 
Xl J RQGTO - Ff l.!::U"" 

14504 ~" U27 

2~1 , "'" "" -4'[[1- 13 12 

• I 7 I 

6 I 5 

LOCK 29 

Q5ril 
OSI '-

I 
6 I 5 

4 I 3 

D 

~ '.0 - 44 
"';(.,-40 

I--J7 32 

J7 30 
,- -:'u 

- -:<1 

% 
:5 

J7-42 

c 

. TP" . TP30 

P 

-----------;Jo 52-
) S', JI-4c" 

~so 

--~S\ 
)\- 11 

- 5C6 

5e6 

B 

:me ,5L'2> 

------:'7 ASI(P- U, JI.> -3,", 

A 

I~~ 
J$SlJ£l;; 

f 4 I 3 I 

162554-55 



D 

c 

B 

A 

7 4 3 !1III:iHQ. 123022 SH ~'" 
4 E 6 5 

SEE SHEE._T_'_ 

D 

-

JI-(", ro-y <-:===========+(=j:+q±:'====t===-~---"=- ~I-"~-+-H-H-+-+-e--~._---------------------_) AD5-)( _C,:I JI-4, DI-Y -E- --.l>l.SD eo 19 ) .:>.Do,-)(, __ _ 

JI-1, DL-'i ~ -~ID 7Q Itt -----? "CI0-X,.S ~ 
JI-5, D'?-Y <E- -"--~7..D ZQ" ;.,O,\-X,JS-;,,\ 

JI-!l , OA.-'! it] H (,,0 GoQ I ) ADI2-x, J~-I,? 

JI~~l',~~~~ ~ D ~~ ~'- ) ADi~-X,JJS,;:.I~l 
lBI, D~-Y "'~--~4D "1Q"l JI?-IS 

J2,,:l,I, IN5DtI."TH/ ~--------------------+-_---'Jjll eLK 

~Bll '::lELlCEBG:./ "~~"l----'~'~ r.+"'5"V-:--------------~._~.lf:'i:~7':~'_11 I OUI CONTROL 

RP3 RPI ~ 
7.2.K 2. 2K 

J\ ~O, FLTt>.DX ~~~=~4'-===============~=~===;:i::t~l J\-L.'~,'FWRT ~ 
3D",ADl2-8{'-AI5-8{' [2] q 

~ E.~~WL-r-
~A' B21'2--1-- , 
~A~ B3!u.., I ' 

~A4 ?Ai 1 I 
~AS 6'5'\- i 

~~~ u? ~;t:~~lj : ~AO B¥-f-
30J,IDB-B(.,-Po,DI'S-I?" KI---_________________ ++--""'""'S?04B ~ i

~AI BI~h~'1---~AL Bl r---
~" B;~--+-
~~ ~~fi>',____I-------
~ Aw UB B",!,-,' ----1-------- j

I ~ Al B71'""~============~Ji ~~"'o BOfL2
8?04B~'R

"p, II g
I U2.!

,4,1

c

B

Jl-4') , AO-Y :=~=~=l===:) AO-'(,-.J?- 24

J2~4GoJA\-Y A:-'1,n-IS
J1.-4:;\5(lWT~Y! () ,:>E.LWT-Y!J3-'=>,? A

J3-22.,EWINSDA.T-Y! (;. E.NIN?DAl"-YI,.J!·~?>

8 7 6 5 4 3

162554-56

Q
I

00

>

D

c

B

7 6 5 4 3 1'2.'?O':Z.

V21

I---1--L __ ----"~ "'"EET L ____ L __

14

,
)

,

s ';' I
--,-~

,
- ._-------7

74 LS,1o 7 t
Ul "<'-

14~
LJI2 "<!L

~,..:: .
Ult ~

>

-------->

'AI, '"'"-."[D-ryn----------------"'-~"ri{__---'-1>4------------------ -------------------------------;>

"AI ,"11-•• m-[3~Q---------------mT---"C*4---------'-------------------------------­

74 LS 3G:.7
VI ~

~
UI

,.~)

•
>AI, '''le-''@[jw2}--------------''''---''-l>'---t--~

'3A.I,A<;)I"'.S"'::;:::livTl--------------""-"1f>'4--~

Ull "<'-
o 0-

Ull ~
.BI,B"~/~~-----------------~~~~~+_--~

-14LS3("1 ,
Vil ~

• 7 6 5 4 3

D

c

}~O-lJ, J("- 12...
OSI- U JIv-1O

BilE - wj, J(J, - ~w

'RO-uj, J7-'24

B

::'2-X~ .JS-2.g

51.y,./J5-2.7

3O-x/ JS- 2.-"3

A\(o-X 1 JS-I"'}

.\17-", J5,:'O

A.le-X, .,:<:'-2.\

A\~-X, J5 -22- A
eHE-X,j~~z..

162554-57

D

c

•

7 6 5 4 3 I 'Z.."JO'Z,:z.

J'!>- II , VLl'UBUS-Yj
J~·12, EMLMOD·Y/
J3· 20, U5E.R~~-Yj
J'3'2\ I TOUTuCMD8/

J3-23>, MATC~I-Y/ ~~~-====~~~~~~~=~ "" J3·31, 5ELRD-Y/ ---------»
JI- 27 , R~T.b..-)(/

JS·~3,TAI·X/ i+ OV

, F~
J'2.-I'5, ENUClI(-U ~,----------~O-L-- ----+~ EN.UC-I.-\-(- U, ~ -li.o

I ;.~~ i+'V

J2.-\~) ENURDY·U ",--------------"-6-----,.,-5"'1-,---» :c"lURPY-U, ~ B

'38\ \ 5SQ-8(.,/

~DI , DIRAO
JI-4e\ S2LH
J\-40 1 SOL-HI

T

l!4l"

I J\'~r. ~ ""KINi

8 7

RPlo RPO
IK l.LK.

" •

" -lEi

,
>.3 RP3
2.1K 2,2K 7t104

3 7 u31
IV Z

6 5 4

27~
LA

1--" 3.
'y.

A ,y
Ie
,6 ,yO

1°38
' .. ., I

I
I t:.'E.\..

Go

"
~

'"
--@]

-@

-- --{[]

-@

3

',2 MIN,!, 5(3

DIF'ADf-\P" ':','t'l\

SEI..\~EB(o(~.;.:e

:;E.LIC.EB~1. J: -', '3

162554-58

D

c

•

A

D

c

8

A

7 6

+w

JRP" 14S0<:l
"l Z.lK 5~l<o 74)8

u2S "')
~

JH I) RQGTOUTIj

Ip" 74'304 74",>5
1.lK C27 " " 4 , I cl"

"5V Jp, 74504
l.ZK U27 ,47>5

II 10 9
.JQjUZ6 e

+'5V

J2. - 24) GiOurtj

J'P9 74S04 74")6
2.2K U21

: U"ZB <0 ~. '" 4 v

+5V

J2-~ J BRKEXT/';'---'~--mUi9)<>'-____ A
'2D\, ClKP-.

8CI) ENURST
+SV

l.21-<

fplI
S.(PK

5

't RPB

JI-32 > ICLRFL6! "'D===========3~====== 8C\ I UR'OT/ ~

_.
8 7 6

5

74 LS3Coi
C19

~s

~"' to U1.9
I

74 L'3:'!.o1

- 1O g u1.'"

:t'

7"1L~3l<.1

'f>? ",9
1-'

+5V

4

---~- ~---~~

---~

3

RPIO
IK

12.!>022
SH AfV
7 ,

---. ~-- - ~-------7

~---- -----------':>

- - ~------

~ TPlIP

, HOLD RQ~'C'-u/

IJJHLDA R(;)lll;-U/

,

D

c

P----T-.""J-----I~Wi)~----~'---------------________';> £X1BRK-X/J5·40

5

14L33",7
UII

12 I
+ 5Y

RPo
Z 2K

--~Ds"'{,4C'a

74LS:,(o1
CII

t--------4"'~---------,,----- . ------7 SE-LRDO/, JZ.-4~

-- ---li:BJ D4 -"-() 4C\3

4 3

162554-59

D

c

•

A

7

J~-3\, RESIN-xl .. <------.+

Jl-IL, R5T1Nll (

6

r400

:112'3 B

5 4 3 ,7..-,01.'2...

-- -- r'~ ,.~--
------ --~ _L,JI T0UT I

...J1.:o - 2 \ RESET- U <---+-------4o-L-----.------f----------L 74~',"B " UI9 --

10 UtO ---7~4~S~04~------ ------;Ab] ~H,'.;oT/,__,Ao
1404 I uIl

7404 L ________ ,3~~>_'',102-----~------__'_;S 7-100 ~------~~E. ErA.!~ 1.0 1400

U~I --------v-'-' 4§>-'" ~ ,- - - - @E];;:E.-:::>E.T P ~cg
J\ - 31 > (NUR51/ <-<-----2r>"'------,~-4.".:9>-'--------------=--------------"-I

'----------------------- -- ------------------I~ ~NLl~ST ,~e3,SD6

• 7 6 5 4 3

D

c

•

A

162554-60

~
n -n g
o
n
en
g.
a
~. o
'"

8 I 7 I 6 I 5 ~ 4 I 3 I

I~~~I
REVlSlCWI

ZOf<EREII I)£SCIIlI'TlON DH OATE; ,." 0,.,1£ ~PPV ~AT<

• PROTOTYPE ., IZII3!1911

B •• V,A>o cS ht/fll'llJI! ' 1"(,.",
c E.CO 14-0043 FQE~PIWra<;~·2~.80ln7 ~/" ri;;';;
o aD 14-03?.1b ,£ 1'13gIJ~ n-', 1/-<1 1'('-(

D D

- l-

e POWER,(~ROVND,AND SPARE GATE LOCATOR (HART e
REF. Drs

DEVICE
TYPE: ~~4fv~

USlV~3 7400 7
" V"' 1408 7
"

+5V ~
U79)i'O 743Z 7

" '5V JIO- 29~5 2.}4

:J
U(i,9,86 7474 7

" i CH3,C'5

\"0 U.5 74174 a I.

~
+5V JII·'O)8)l.')23 .. 25

+lc44
-

U85 74115 8 I.
U., 14500 7

" +-

;r~'
U5Z,5491D,,"S,Tl 74'50Z 7

"
10,.. ISV -=-

U80,/09 74So04 7
"

liND J"- 7jIS,l8)34>57,3~
U5fD 70 14&08 7

"
JII-41)43,.5,47

V92 74~3l ,
" --US7 74~37 7
"

OND .110· 2,4}t>,8,1O)12.,JCo
U~055'O"l(,,4 7i8J 8' ~l 74S74 7 14

;110- 20,25,'8,40,48
US! 7450112 a I.
UTI7" 74L500 7

"
B

I
2

U" 74lSIO 7 I. B
J/O- 27,.35,3'.49 <!-- NC UIOI I

U98,0:, 741532 7
"

U\OO S
U5"1 fDol,834>5 74L&74 , 14

U91 I
V77 74L515 12 •

~II- e,3~6"O <!-- NC ue, U58 7't!.112 B I.
U u'a 74LS/38 8

" U 09. 74L.S1J9 B I.
~~

U ---t--+--
U •• 74LS~ e I.

Y.'ll ____ L US9 74LS174 8
" - ~~ _-=-;[1 ~ -.- Q!;~

U74.9+,100 74L~3£1 e
"

sr~J\m: CATES
VS' 14JB , I.
JBl 74L~e 7 ,.

REF, OESI6NAlIONS l~lM PA~T NUMBER Ol$(~IPTION

, LAn USED NOT VHC QUA~TIT'I' "l. 00\111 NO. pun LIlT

A VI09 JI-9

I~
SIGNATURE .. n

TI~~
3II1II IOWlU AVL A

NOT!i: t)HLES,s OTHERWISE SPECIFII!:D R8 1.11- .. '
lNllOJo!SARllfotlNCI'IES OR~ IV ~~A::~,

L tAPAC.lTANCE' VALUES ARE IN MICROF"ARAOa tID ... ·eO,.~i' 50\1. A" U75,U/OI-I08 UIA USIWtPlDIIES ".
~. RE515TANc.E" VALUE:& ARE. IN OHM! 1/4-'041" ~''''

C4S DO NOT DRAWING. {I", SCHEMATIC.
JII tou:R,lNC£S

..; BUFFER BD-2
ANGI.t$:l:2· mo
~.m DI~~ll'o~~tvLl~3025NO ~

1230B teE ..
• ... mol.SSY ,~~ SURFAC!FINIS~ 1 SCAlt NONE SHEET I • _ ..

8 I 7 I 6 I 5 t 4 3 I 1 I 1

162554-61

D

c

I

A

....
J,. -

JII· 44 52A1
JII-4" SiAl
""-42. BOAI

eel c.lI<B

302.. SllH I

•

~

f'

RPO
V

I •
IK

@}

P

7 6

uor
• 74L5/O U97
I • " 74L510

IS

~
4

2 PR 5
D us, ~[

&4(~'" "
~ !i RP,",

10
VIO'

L

U77
74LS,1S

, r----'i15
ZD 20

~'N. " un loG , - I.

t.!1
10' IQ
EN. I un tl1

~
- 10
.3D 31)

iA U77 ,5

~r;--:;;;f1.<
r~~~ .n~

'---

+sv

5

J

U07
3 74L~IO ~'K

12. D tl" a .,

PP" 74504

'~ J •
v (LR Q.

I RP'3 3
t6Y

lK U,.
10 7432.

A(KINTf t:::::ir>a

UO<

Jir.7~}~? 1~5
2: VI ~
3 c. YZ p.2. " ~ W 5 G2' '4 ~ 12. 741500

-=- U78 Y5 , 13 II +~ 7'fLSI36vr ..
' 'GJ Y7pt,
~~2 '---

7 6 5

4 1

-

u's .
II 74S02.

0~

10

~. UB,
7408

" " " CUI (l 8
(l"

L "
~~?--t5Vl

-
I
I

l'V', ! t5V
! ~ IK

i ~ 7." ~.
i

(LR RPb
I 8 I ,,-v

IK

,"
, -

4 3

+=---:
U7.

• e 10 r ~oo

U7'
I' 7432
~I!

~

U03
I 2 7400

t:±[Y

, , h.M :1/1-+8

CQ.:" !oM 3C~

.-.-- ,

0 T::/ .'!'JI·'4

'.

r,: n 021 .me

C T AZF 3U!I

T W Rf 5DB

0'" TIME 3[)S

v WTIMEt 4(8

----i> ''''TAI I/O-II

----------GVJ W"TIME DLYI 5e8

X HALTI 308

A,

,
~?i..JLLA2 SA-o

ACK INT!.JH-3Io

D

c

I

A

162554-62

D

c

B

A

261
2el

5cI
2(1

7 6 s

HALTI
TIOZ I

~--

TOUTUCMD-Y/ WI-==============::1:4
WTIME IB- 5D~:--;------''-1

7408

4 3

:.f I ~HI f [J

------------;:> DEN/ 310-30

------0:] SILH I

8C I (LK6 ~-------------~--------------~

JJI-20

6A1
SCI

2(/

ZDI 51LH ~r------------~
4 RP7 I

FLTUBUS-Y/ <E--------~-'-5V---_==:i1~~~-----JL----'--c~

U IO'!J
74';'04

~~---- ------j~FLTCMDI)I
~-------~>--------------________1~£j FLTCMDU

FLOATAD/ m--:::=============~ __________ J 66FLT lM}- U~9

5" cit!

'088

JII - 10 TA2F }-------7~R~P~7~1---~-------~U~7.~-------~r=~~Cu---J--=~;t:17~4~50~O~____ -~ ~'K +5V 74'2 - ~) flTADUBI}5

~~~-+-----r-~;~- ~iiiJ 4D6 

::,:~:: :::~:::o::~ <=:B =======±====:±~="====~ __ ::JC===~_-__ -_-_-_-: u~ "'''' __ ~~~-__ -_-_-~-~~~~_-_-_~~~-~-~_~~~---_-._-_-------@_.~ :L~:::F::5y I 4::R C' 6 

JII-2.& T/\/-X/ <E -- ~ -// 
74500 

~ ------------ FWRT /11-79 

D 

c 

SC 8 RODATI FlTADX J!l-~ B 

JI1-17 

5 RP7 I 

111-33 ENINSDAT-YI « ______ --4C"C>---_'~ ___ ~ ___ _ 

8 7 6 

1))09 

74-504 

___ ~~9~~e------_---+--

s 4 J 

------7) RDSTA-XI 311-27 

----_--'» INSDI .111-4'3 

A 

162554-63 



c 

B 

A 

3[.1 FLTADUBU5 

NNMXI 

JIO-? lNTR I 

J[.I DISURST 

d ,-

[AF}---u~ 

''L " - U74, 

~~' l'i,.I74 U03 
7400 

I 

~ 

I 

~ 
I 
! 
I 
I 
i 
I 
I 

2 B! WTIMEI 0-

aDI DO-Y 
BDI DI-,( 

BCI 02-Y 
8C1 D3- 'f 

JII-3 D4-Y 

311-1 05-'( 

JW-'F AO-Y 

JIO-4{' AI-Y 

]'10- 4~ SELWT-YI 

t5 

+5 

fR 
fm , , 

RP' 
v 1 5 

IK 

R5 
V 

IK 

II j 

U84 
l"fLS3(..7 

n II 

14~ 
7.¥L~~"~t!£.... 

" 1/ 

1 74t.Ul~,,~ 
~ 

U7' 
74L53"7 

14['. J3 

I ~5 

7 

6 

U.B 

I ~Z-
! L __ -

~------;;;'z 
-12D U952.<:( ; 

/4 !~74174 ~~~-~ 
:~5D 5Q;~ 
9 4D 4<2. 

'5V 
~ RP5 2. if- eLK 1 

CCR 
~-

2'--------' 4 , ::;:r--rY3 7 
U94 

1 
74L~13') 

~ 

140~J2 "-------13 2A 2'10 J I 

'5 2. 2Y~tiD 2. 

~ 74L513'" 

6 

5 

l'jV 

1"' '" 8 

1 
/() 

12. 0 0Z~ 0. 0 

1 l7474; i II ClK Q 8 

! r_ CcR 

L--.-I'3 

5 

4 3 

'-'~'L-~'"E.£ SI-IEET I 

UB' 
o H38 

-----_.---- --- -~--,)o"---- -
U'" 

74-S02-B 
9 12--

j 1 

~;'L 7q.S32. 

-

4 3 

+ro;v 

t ?7 

; ::: lK H'5 
--~ ....... _- _. -. -.------@ ~MJL 

II] INHRQGT 868 

, 
UJO'!I 

, ENURSTI -',1-31 

74504 
) INTR/ ]10-1 

~ rSALONMOD 3Bf'~,E(o.SD8 

rMA'!~'(S I 5C B 
) I(LRFlGI JII- 32 

@ ISINBUS AH 

F o IRESfTI eB8 

-------- AL 
~ 

----;, 

, 

W(MDI/5Ba 
INSDATLI 310 42. 
lAiSDATH I J10-4 I 

5ELRDOI 310-44-
3 ----0 SEt RDJ I Be 6 

162554-64 

D 

c 

B 

A 



D 

C 

• 

A 

7 6 

4C1 
381 

ISALONMOO ~ 
USERFLG·YI Ail 

un 
3 74S02. 

t=================~~~~ ~ 
~ 

2CI WR' T 

388 RDDAT! ~ 
:JIO-/7 TOUTUCMD-Y/ 

310-,8 MNMX/ 

I RP"t 7 
t5V 

IK 

5 

ueo 
" 74~04 

4 3 

:'EE SNEEr I 

·----------------------->3 ENUROY-U JIO-I'=' 

u90 

• 
7432 

--------------------'» ENUCU<>U JIO-15 

.-------------;.) WRMIN/ JIO-37 

RDCMDj J10-31 

("Bb, BeB 

4(1 rMA;I(~YSI 4J I-------+----------------~~-----~~,)~r_---:--------------------~-~) MINSYS/ JIO-2.1 

L-----:::'~::....-+_-----___c----------------__1 y TourUCMO-YI 3P8 

]70-f MATCHOI-YI 

8~ ____ +5V 
IK 

3(' PI5uR&T AG. 

2S1 WTIME DLlff W 

sea SEt ICE Sbl .A 

RP' 
",,_,,' AN"-S_++-,'1 

IK 

4C1 I$IN8U5 A 
3~1 PlTCMDU! AD 
~cl FlTCMDU • 
801 DO-Y 
eDI 
8CI 
8el 
461 

7 AP" I 

~(I c"TPULAI 

7(/ 6TPUL81 AO 3 un U72 
74L600 B 74-502-

HI TAI\PULA AP 9 10 

7BI TNlPlJLB All 

"81 CLRMA'q" AT 

_III-If., RE~ET AI 
861 PLJI..lA1 
BCI ClKB G 

"v 

Nt 

TpZ 
"-- -----@ MATC H 

-----~ 6GFLT 3ce 

--->-----------"~---------~)o rlTCMDZ JID-!3 

)t;~-__,-_1_r')1-------------_» FlTCMOI J)('H4 

-----i» PVI.L :JPCMD 1/ J/O- 9 
TP3 
~ (~NJ) 

~-------~------------------------~z FtOATADI 3cg 

~----------*------------------------__lAWRESET~/ SCo 

ZA( ~LLA2~A~U}_------------------------~L__====_==========================~====:;~==~====~~ __ ~ 
8 7 6 5 4 3 

162554-65 

D 

c 

• 

A 



.... 
I 

.l>­
V! 

D 

c 

8 

A 

7 6 5 4 3 

SET SH{;CT J 

861 RE'flINH @]f--------------fiJP'---.!.j 
OCt (LKB/nD~--------~-----~------~~ 

JIO-ZZ URGINOI 
r-~----_r--t__r--------------t>H M2A BDB 

GTOUTC)I .J/O- 33 
V80 

74504-

B:.! ClI(S [].D-1~====E=~=====i====!====!=~2=:t====t~==~~==fn======f~-----------------1ANl GTPULAI ~A8 

r-~-r----------------~QU MOAI 8L8 

JIO·'" CCR.y <----.., 
---~--- .--~.------------,--------30 ~D:(,TJUTO/ JrO"Z8 

}--_=:.::1:LY----4--------------+-----------

• 7 5 4 3 

162554-66 

D 

c 

B 

A 



o 

----------,GOMZB aDS 

c 

~~------.--------t::fJ MOB! Bce 

-----------» !«lC,TI)UTI/ 311-11 

----..[~Ql TMPUL 13 5A6 

-----l~_!l M f.1 L DAy· 8(. B 

B B 

A A 

7 6 5 4 3 

162554-67 



D Jll-'" INITOUTI 

BREAK- EXT I 

.DI M2A 

TOI "'" 

"'" R<"'-TA./ 

4., 5flRDII 

5(8 

C 

JH-35CU\A 

~(I 

7(1 

4(1 INHRQGT 

8 4£1 I1H&fTI 

A 

_. • 

7 6 5 4 3 

+5V ';lEE SHEET I 

t R8 
~ ________________________________________ -+1_'_·2_K ____________________________________________________________________ ~@' TNITDUTI 
( 

D 

TP", 

@' 

[i] 

~ 

~+5V 
5.r.,K 

UJOO 
74LS3,,7 

IO~~ 
74l534>r 
us. 

us. 
o 7 

t5V 

US7 RZ 

5RKEXTI ,nO-3 

DO-Y Jll-£' 

4CB,568 

01- t :-11- 4 

D2-Y Ill-2. 

4(8,5BB 

D3-Y J/J- 5 

c 

.,-------------rr===~============j-~------------~JEr=)J~----------tH'217=4)53~1~~------_1~'K~ ________ ___ 13 
-----------------j[§JCLI{B 2ce, ~':'8_ SAB., 

R4 0(.e>, 7CB 

r~====~------------t-------------- --'-.---. ----[QJCLKljIIDd ,,-,Db 

, 
ueo +5V REGINH "DB~ 708 

74504. 

• 8 u •• 
8~~ 8 
• t.------4>------+-t-------------------------------j t..V PULLAI SAB 

+5V 

R5TINT/ JI'-IZ 

7 6 5. 4 3 

162554-68 



, . ' 

n 

ABSOLUTE, 6-22 
ACKNOWLEDGE, 6-7, 6-17 
Actual Parameters, 8-10 
ADDR, 6-29, 6-30 
Address match range, 6-6 
AFL, 4-10, 7-16 
ALL, 6-28, 6-39 
AND, 5-10, 5-12, 5-13 
Arithmetic operators, 5-8 
ASCII, 4-14 
ASCII codes, 5-8 

Base, 7-11 
BASE, 4-14, 7-11, 7-13 
Base pointer, 4-8 
BHE, 6-26, 6-29, 7-65 
Binary operator, 5-7, 5-10 
BOOL,7-85 
BP,4-8,7-15 
Breakpoint registers, 4-11, 6-2, 6-4, 6-12 
Breakpoint restrictions, 6-9 
BR, 4-11, 6-4 
BRO, 4-11, 6-4 
BR1, 4-11, 6-4 
BRKEXT, 1-11,2-5 
Buffer Box error message, 1-13 
Buffer pointer, 6-27 
BUFFERSIZE, 7-15, 7-61, 7-63 
BUFFERSIZE register, 4-7, 4-9, 7-61, 7-63 
BYTE, 4-15,5-5,5-6,5-11,7-34,7-57,7-66,7-82 

CARS module listing, 3-3 
CAUSE, 4-9, 4-10,7-15,7-65,7-68 
CAUSE register, 4-10, 7-65 
CFL, 4-10, 7-16, 7-64 
Change Symbol command, 7-48, 7-55 
Character set, 4-6 
CLOCK, 4-14, 6-23, G-l 
Code segment register, 4-8,7-15,7-63 
Command contexts, 5-21 
Command keywords, 4-11 
Command signal timeout, 6-13 
COMMENTS, 6-30 
Compound commands, 8-1 
Console input radixes (SUFFIX), 7-10 
Console output radixes (BASE), 7-11 
Content operators, 5-11 
Coprocessor Support, 1-1,6-14,7-18,7-19,1-1 
CS, 4-9, 7-15, 7-63 
COUNT, 8-3, 8-6 
COUNT command, 8-3, 8-6 
CW Macro, 1-9 

DASM, 7-80, 7-89 
Data match range, 6-7 
Data segment register, 4-8, 7-15,7-63 
Decode CAUSE command, 7-1, 7-65, 7-68 
DEFBLK Macro, 1-5 
DEFINE DASM command, 7-80, 7-89 

INDEX 

DEFINE MACRO command, 8-8, 8-12 
DEFINE Symbol command, 7-46, 7-51 
DELA Y module listing, 3-4 
Destination index, 4-8, 7-15, 7-62 
Device, 7-2, 7-9 
DFL, 4-10,7-16, 7-64 
Dl, 4-8, 7-15, 7-62 
Digit, 5-2 
DlR,8-13 
DISK, 4-14, 7-24, 7-28 
DISABLE, 4-15, 7-50, 7-60 
Disassembly commands, 7-1, 7-80, 7-88 
Display, 1-6 
Display Boolean command, 7-77, 7-85 
Display BUS command, 7-\, 7-14, 7-19, 7-23 
Display commands, 4-12, 7-61 
Display Emulation Register command, 6-22 
Display I/O command, 7-74, 7-83 
Display MAP Status command, 7-26, 7-32 
Display Memory command, 7-69, 7-82 
Display Modules command, 7-47, 7-54 
Display Processor and Status Register command, 7-67, 

7-81 
Display RWTIMEOUT command, 6-24 
Display STACK command, 7-77, 7-84 
Display Statement Numbers command, 7-47, 7-53 
Display Symbols command, 7-47, 7-52 
Display TRACE command, 6-26, 6-37 
DMUX, 6-29, 6-33 
DOWN, 6-6, 6-7 
DREAL, 4-15,5-5,5-6,7-35,7-66,7-67,7-69,7-73 
Drive, 7-2, 7-7, 7-8, 7-9 
DS, 4-9, 7-15, 7-63 

ELSE, 8-5 
EM, 8-9 
EMUL, 1-11,2-5 
Emulation control keywords, 4-16 
Emulation control commands, 6-1 
Emulation timer, 6-13 
ENABLE, 4-15 
ENABLE/DISABLE EXPANSION command, 8-1, 8-12 
ENABLE/DISABLE RDY command, 6-25, G-l 
ENABLE/DISABLE SYMBOLICALLY command, 7-1, 

7-50,7-60 
ENABLE/DISABLE TRACE command, 6-27,6-36 
END, 8-2, 8-3 
ES, 4-9, 7-15, 7-63 
EV ALCW Macro, 1-8 
EV ALST A T Macro, 1-8 
EV ALSTK Macro, 1-7 
EV ALSW Macro, 1-9 
EVALUATE, 4-14, 7-78, 7-87 
EVALUATE command, 7-78, 7-87 
EXECUTED, 6-4 
Execution commands, 4-13 
Execution match condition, 6-4 
EXIT, 7-6 
EXIT command, 7-3, 7-6 

Index-l 



Index 

Explicit radix, 5-3, 7-10 
Expressions, 5~ 1 
Extra segment register, 4-9, 7-15, 7-63 
EXTERNAL,4-14 
External Buffer Box signals, 1-11, 2~5 

FETCHED, 6-7, 
Filename, 7-2, 7-7, 7-8, 7-9 
FLAG,4-15 
Flag references, 4-10,7-16,7-63 
Flag register, 4-10, 7-16, 7-63 , 
Floating Point Support, 7-34, 7-66, 7-67,1-1 
FOREVER, 6-2, 6-3, 6-5, 6-12 
Formal parameters, 8-10 
FRAME, 6-26, 6-28, 6-29 
Frames mode, 6-29 
FROM, 6-3, 6-4, 6-12 

General register file, 4-8,7-14,7-62 
General registers, 7-14 
Generalized Development Cycle with ICE-86, 1-13 
Generalized Emulation Session, 1-14 
GETBLK Macro, 1-5 
GO, 6-2, 6-18 
GO command, 6-2, 6-18 
GR, 6-2, 6-12 
GR register, 6-2, 6-12 
GUARDED,7-24 

H,4-14 
HALT,6-7 
HARDWARE,4-14 
Hardware installation procedures, 2-1 
Hardware register command keywords, 4-14 
HTIMER, 4-9, 6-13, 7-15, 7-63, 
HTIMER register, 4-9, 6-13, 7-15, 7-63 

ICE,7-25 
ICE-86 and ICE-86A Emulators, 1-2 
ICE-86A architecture, 1-10 
ICE-86A components, 2-1 
ICE-86A firmware, 1-11 
ICE-86A hardware, 1-11 
ICE-86A In-circuit emulation, 1-4 
ICE-86A In-circuit Emulator, 1-1 
ICE-86A software, 1-10 
ICE86 command, 7-3, 7-5 
IF,8-5 
IF command, 8-5, 8-6 
IFL, 4-10, 7-16, 7-64 
Implicit radix,7-1O 
INCLUDE,8-16 
INCLUDE command, 8-16 
Index registers, 4-8,7-15,7-62 
INITOUT, 1-11,2-5 
INPUT, 6-7, 6-8 
Inst;:\llation Procedure for Intellec Series n Model 220, 

225, and 230,2-3 
Installation Procedures for Intellec Series III Model 

286,2-3 
Installation Procedure for Intellec Model 800 and 888, 2-2 
INSTRUCTION,6-27 
Instruction mode, 6-27 
Instruction pointer,A-9, 7-15, 7-63 
Interrogation and Utility commands, 1-8 
Integer, 5-1 

Index-2 

INTEGER, 5-5, 5-6, 5-11,7-66 
INTELLEC, 7-24, 7-25 
INTERNAL,4-15 
INTR, 4-11, 7-16, 7-65 
Invoke Macro command, 8-8 
IP, 4-9, 7-15, 7-63 
IR, 4-11, 7-16,7-65 

Keyword references, 5-3 
Keywords, 4-7 

LENGTH,6-6 
LINE,7-53 
LIST, 7-4, 7-9 
LIST command, 7-4, 7-9 
LOAD, 7-3, 7-7 
LOAD command, 7-3, 7-7 
Local and global defaults, 8-9 
Logical operators, 5-11 
LOWER, 4-9, 7-15, 7-64 

MAC.TMP,8-8 
MACRO, 8-8 
Macro commands, 8-8 
Macro Directory command, 8-13 
Macro expansion, 8-12 
Macro table commands, 8-12 
MAP DISK command, 7-24, 7-28 
MAP INTELLEC command, 7-24, 7-29 
MARK,6-30 
MASK, 5-9, 5-13 
Masked constant, 5-3 
Match condition, 6-4 
Match condition restrictions, 6-8 
Match status list, 6-7, 6-8 
(MATCHOOR MATCH1)/, 1-11, 2-5 
Memory and port contents, 4-15 
Memory mapping, 4-14 
Memory mapping commands, 7-24 
Memory references, 5-5 
MN, 4-11, 7-16, 7-65 
MN/MX, 4-11, 7-16, 7-65 
MNEMONIC, 6-30 
MOD, 5-9, 5-13 
Module name, 7-45 
MOVE, 6-47,6-38 
MOVE command, 6-27, 6-38 

NESTING command, 7-78, 7-86 
Nesting compound command, 8-6 
NEWEST, 6-28, 6-38 
NEWEST command, 6-28, 6-38 
NMI, 4-11, 7-16, 7-65 
NOCODE,7-3 
NOLINE,7-3 
Non-execution match condition, 6-5, 6-10 
NOSYMBOL,7-3 
NOT, 5-10, 5-11, 5~13 

ICE-86A 

Notation and conventions used in this manual, 4-3 
Notational symbols, 4-3 
NOVERIFY, 7-25 
Number base, 5-2 
Number base and radix commands, 4-14, 7-10 
Numeric constant, 5-2 
Numeric value display formats, 7-65 



ICE-86A 

0,4-14 
OBJECT,6-6 
OF,7-46 
OFF,6-36 
OFFSET, 5-9, 5-13 
OFFTRACE,6-12 
OFL, 4-10, 7-16, 7-64 
OLDEST, 6-28, 6-38 
OLDEST command, 6-28, 6-38 
ON, 6-26 
ONTRACE,6-13 
OPCODE, 4-9, 7-15, 7-63 
OPCODE register, 4-9, 7-15, 7-63 
OPERANDS, 6-30 
Operands, 5-2 
Operating modes, 1-6 
Operators, 4-18, 5-8 
OR, 5-10, 5-12, 5-13 
ORIF,8-5 
OUTPUT, 6-7, 6-8 

Partition, 6-6, 7-25, 7-29, 7-30, 7-32, 7-35 
Parenthesized expressions, 5-7 
Pathname,7-2 
PFL, 4-10, 7-16, 7-64 
PIN,4-15 
Pin references, 4-11, 7-16, 7-65 
PIP, 4-9, 7-15, 7-63 
POINTER, 5-5, 5-11, 7-34, 7-66 
Pointer, 5-1 
Pointer and index file, 4-8, 7-15, 7-62 
Pointer registers, 4-8, 7-15, 7-62 
PORT, 5-7,5-11,7-40 
Port content references, 7-40 
Port reference, 5-11 
PREFIX, 6-30 
Previous instruction register, 4-9, 7-15, 7-63 
PRINT, 6-28, 6-39 
PRINT command, 6-28, 6-39 
Punctuation, 4-18 
PUT MACRO command, 8-14 
PUTBLK Macro, 1-6 

Q,4-14 
QDEPTH, 6-30, 6-33 
QSTS, 6-29, 6-33 

RAH, 4-8, 7-14, 7-62 
RAL, 4-8, 7-14, 7-62 
RAX, 4-8, 7-14, 7-62 
RBH, 4-8, 7-14, 7-62 
RBL, 4-8, 7-14, 7-62 
RBX, 4-8, 7-14, 7-62 
RCH, 4-8, 7-14, 7-62 
RCL, 4-8, 7-14, 7-62 
RCX, 4-8, 7-14, 7-62 
RDH, 4-8, 7-14, 7-62 
RDL, 4-8, 7-14, 7-62 
RDX, 4-8, 7-14, 7-62 
RDY, 4-11, 7-16, 7-65 
READ, 6-7 
READY, 4-11, 7-16,7-65 
REAL, 4-15,5-5,5-6,7-34,7-66,7-67,7-69,7-72 
Real data types, 4-15, 5-5, 5-6,7-34,7-66,7-67,7-69,7-72 
Reference keywords, 4-7 

REGISTER, 4-15 
Registers, 4-7,7-14,7-61 
Relational Operators, 5-11 
REMBLK Macro, 1-6 
REMOVE MACRO command, 8-12 
REMOVE MODULE command, 7-49, 7-56 
REMOVE Symbols command, 7-49, 7-56 
REPEAT command, 8-1, 8-6 
Required and optional hardware, 2-1 
RESET, 4-11, 7-16, 7-65 
RESET Domain command, 7-49, 7-59 
RESET HARDWARE command, 7-21 
RESET MAP command, 7-27, 7-33 
RF, 4-9, 7-15, 7-63 
RST, 4-11, 7-16, 7-65 
RWTIMEOUT, 4-15, 6-24, G-3 

SA VE command, 7-4, 7-8 
Saving macros, 8-14 
SEGMENT, 5-9, 5-13 
Segment register file, 4-9, 7-15, 7-63 
Segment register usage, 6-8 
Segment registers, 4-9, 7-15, 7-63 
Semantic rules, 4-4, 5-13 
Set Breakpoint Register command, 6-15 
Set! change commands, 4-12 
Set CLOCK command, 6-23, G-I 
Set Domain command, 7-49, 7-58 
Set GO-Register (GR) command, 6-12, 6-20 
Set Input/Output Port Contents command, 7-40 
Set Map Status command, 7-25, 7-30 
Set Memory command, 7-34, 7-43 
Set memory and Port Contents commands, 7-34 

Index 

Set or Display Console Input Radix commands, 7-12 
Set or Display Console Output Radix commands, 7-13 
Set or Display RQ/GT command, 7-1, 7-14, 7-18,7-20, 

7-65 
Set Register command, 7-20 
Set RWTIMEOUT command, 6-24, G-3 
Set TRACE Display Mode command, 6-27, 6-35 
Set Tracepoint Register command, 6-17 
Setting the GO Register, 6-12 
Setting memory contents, 7-34 
Setting tracepoint registers, 6-13 
SFL, 4-10, 7-16, 7-64 
SI, 4-8, 7-15, 7-62 
Simple commands, 4-12 
SINTEGER, 5-5, 5-11, 7-34, 7-66 
Source index, 4-8, 7_15, 7-62 
SP, 4-8, 1-i5; 7-62 
Special tokens, 4-18 
SS, 4-9, 7-15, 7-63 
STACK, 7-77, 7-84 
ST ACK Macro, 1-6 
Stack pointer, 4-8, 7-15, 7-62 
Stack segment register, 4-8, 7-15, 7-63 
Statement number reference, 5-4 
Statement number table, 4-15 
Statement numbers, 4-17 
Statement references, 7-45 
Status bits, 4-10, 7-16, 7-64 
STATUS Macro, 1-7 
Status registers, 4-9, 7-15, 7-63 
STEP command, 6-21 
STK Macro, 1-10 

Index-3 



Index 

STKADDR Macro, 1-11 
String constants, 5-7 
STS, 6-29, 6-33 
Suffix, 7-10 
SUFFIX, 4-14, 7-10, 7-12, 8-9 
SUFFIX command, 4-14, 7-10, 7-12, 8-9 
SW Macro, 1-9 
Symbolic debugging, 1-5 
Symbolic Display, 1-5,7-1,7-45 
Symbolic references, 7-45, 7-46 
Symbols, 4-17, 7-45 
Symbol table, 4-15 
Symbol Table and Statement Number Table 

commands, 4-15, 7-45 

T,4-14 
TEST, 4-11, 7-16, 7-65 
TFL, 4-10, 7-16, 7-64 
THEN,8-5 
TILL, 6-5, 6-12 
TIMER, 4-10, 6-13, 6-24, 7-15, 7-64 
TIMER register, 4-10, 6-13, 6-24, 7-15, 7-64 
TO, 6-6, 7-24 
Tokens, 4-6 
Trace buffer, 6-26 
Trace control, 4-16,6-26 
Trace control commands, 4-16, 6-26 
Trace display formats, 6-29 
Trace display mode, 6-27 
Trace display restrictions, 6-28 
Trace references, 6-27 
Tracepoint registers, 6-13 
TREAL, 4-15, 5-5, 5-6, 7-35, 7-66, 7-67, 7-69, 7-73 

Index-4 

TW Macro, 1-10 
TYPE command, 7-49,7-57 
Typed memory reference, 5-6 

Unary operators, 5-13 
UNTIL, 8-1, 8-2, 8-3 
UP, 6-7, 6-8 
UPPER, 4-9, 7-15, 7-64 
USER, 7-24, 7-25 
User names, 4-17 
USING CS, 6-8 
USING DS, 6-8 
USING ES, 6-8 
USING SS, 6-8 
Utility commands, 4-13, 7-2 

WHILE, 8-1, 8-2, 8-3 
WORD, 5-5, 5-6, 5-11, 7-66 
WPORT, 5-7, 5-11, 7-40 
WRITE,8-17 
WRITE command, 8-17 
WRITTEN, 6-7, 6-8 

XOR, 5-10, 5-12,5-13 

Y,4-14 

ZFL, 4-10, 7-16, 7-64 

8086 Pin references, 4-11, 7-15, 7-65 
8087 Support, 1-1,6-14,7-18,7-19,7-34,7-66, 

7-69, 7-80, I-I 
8089 Support, 1-2, 7-22, 7-23 

ICE-86A 



ICE-88A Microsystem In-Circuit Emulator Operating Instructions for ISIS-II Users 
162554-001 

REQUEST FOR READER'S COMMENTS 

The Microcomputer Division Technical Publications Department attempts to provide documents that meet 
the needs of all Intel product users. This form lets you participate directly in the documentation process~ 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of 
documents are needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. 

NAME ____________________________________________ DATE __________________ _ 
TITLE __________________________________________________________________ __ 

COMPANYNAME/DEPARTMENT ______________________________________________ __ 
ADDRESS ____________________________________________________ ~---------

CITY _________________________ _ STATE __________ __ ZIP CODE ___ ---'-______ __ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ••• 

This document Is one of a series describing Intel products. Your comments on the back of this form will 
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All 
comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 N.E. Elam Young Parkway 
Hillsboro, OR 97213 
DSO-N Technical Publications 

I "" NO POSTAGE 
NECESSARY 

IF MAILED 
IN U.S.A. 



inter 
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	7-70
	7-71
	7-72
	7-73
	7-74
	7-75
	7-76
	7-77
	7-78
	7-79
	7-80
	7-81
	7-82
	7-83
	7-84
	7-85
	7-86
	7-87
	7-88
	7-89
	7-90
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	J-17
	J-18
	J-19
	J-20
	J-21
	J-22
	J-23
	J-24
	J-25
	J-26
	J-27
	J-28
	J-29
	J-30
	J-31
	J-32
	J-33
	J-34
	J-35
	J-36
	J-37
	J-38
	J-39
	J-40
	J-41
	J-42
	J-43
	J-44
	J-45
	J-46
	J-47
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB
	xBack

