ICE-86A™ MICROSYSTEM
~ IN-CIRCUIT EMULATOR
OPERATING INSTRUCTIONS
FOR ISIS-IIl USERS

Order Number: 162554-001

Copyright © 1981 Intel Corporation -

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 {

PRINT HISTORY

Rev. Revision History Date

-01 Original Issue 5/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by an‘y means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products: -

BXP Intelevision Multibus
CREDIT . Intellec Multimodule

i iRMX Plug-A-Bubble
ICE iSBC PROMPT

iCS iSBX Promware

im Library Manager RMX/80
Insite . MCS System 2000
Intel Megachassis UPI

intgl Micromap uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

[A362/581/ 3K DD |

PREFACE

This document describes the purpose and the use of the ICE-86A In-Circuit
Emulator for the Intel 8086 microprocessor.

The ICE-86A module is an optional addition to the Intellec Microcomputer
Development System. The ICE-86A module aids in testing and modification of the
hardware and software for new products designed around the 8086 microprocessor.

Chapter 1 describes the mission of the ICE-86A emulator as a development aid for
system designs based on Intel’s iIAPX-86 microprocessor.

Chapter 2 gives step-by-step instructions for installing the ICE-86A hardware in the
Intellec chassis and connecting the ICE-86A emulator to the user prototype system.

Chapter 3 presents a hands-on debugging session with the ICE-86A emulator.

Chapter 4 describes the elements of the ICE-86A command language, the notation,
conventions, and the syntactic rules used in this manual.

Chapter 5 defines the operands, operators, and expressions used in the ICE-86A
commands.

Chapter 6 contains discussions and specifications of the emulation and trace control
commands.

Chapter 7 contains discussions and specifications of the interrogation and utility
commands.

Chapter 8 contains discussions and specifications of the compound and macro com-
mands used in the ICE-86A emulator.

Appendix A is a list of all ICE-86A keywords (literals), and their abbreviations, in
alphabetical order.

Appendix B is a list of ICE-86A error and warning messages with interpretations.
Appendix C contains a syntactic summary of the ICE-86A commands.

Appendix D presents the electrical and physical characteristics of the ICE-86A
emulator.

Appendix E presents the 8086 assembler instructions in hexadecimal order.
Appendix F contains the iSBC 86/12 and iSBC 86/12A fix.

Appendix G explains the use of the CLOCK, RDY, and RWTIMEOUT.
Appendix H provides installation procedures for the ICE-86 upgrade.

Appendix 1 explains the use of the Floating Point Macros with the ICE-86A
emulator.

Appendix J contains schematic drawings for reference.

iii

iv

To use this manual effectively, you need to understand the 8086 architecture and
techniques of programming and debugging. The following publications contain
detailed information related to this manual:

ISIS-11 User’s Guide 9800306
8080/8085 Assembly Language Programming Manual 9800301
ISIS-11 8080/8085 Macro Assembler Operator’s Manual 9800292
A Guide To Intellec Microcomputer Development Systems 9800558
The 8086 Family User’s Manual 9800722
8086 Family Ultilities Users Guide 9800639
The 8086 Family User’s Manual Numerics Supplement 121586
8086/8087/8088 Macro Assembly Language Reference Manual 121623
8086/8087/8088 Macro Assembler Operating Instructions 121624
PL/M-86 User’s Guide 121636
8089 Real-Time Breakpoint Facility Operating Instructions for

ICE-86A/88A In-Circuit Emulator Users 162490

A complete list of publications for use with the Intellec Series 111 Microcomputer
Development System is provided in the following manual:

Intellec Series III Microcomputer Development System Product
Overview 121575

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION TO THE
ICE-86A EMULATOR
ICE-86A In-Circuit Emulator 1-1
The ICE-86 and ICE-86A Emulators 1-2
Integrated Hardware/Software Development 1-3
ICE-86A In-Circuit Emulation 1-4
User Program Execution Control 1-4
Memory Mappingooveiineinineniins 1-4
Symbolic Debugging 1-5
Display ... 1-6
OperatingModescciiiiiiiiian... 1-6
Emulation 1-6
Interrogation and Utility 1-8
Macro and Compound Commands 1-9
ICE-86A Architecturecovvvinveenan.. 1-10
ICE-86A Softwareccovvieiinunnnn.. 1-10
ICE-86A Firmware 1-11
ICE-86A Hardwareccou.... 1-11
Buffer Box Signals 1-11
Generalized Development Cycle with the
ICE-86A Emulatorcovvvun.... 1-13
A Generalized Emulation Session 1-14
CHAPTER 2
ICE-86A INSTALLATION PROCEDURES
ICE-86A COMPONENtScouvvuneennnnnnnn. 2-1
Required and Optional Hardware 2-1
Hardware Installation Procedures 2-2
Installation Procedures for Intellec Model
- 800and888 ...l 2-2
Installation Procedures for Intellec Series I1
Model 220, 225, and 230, and Intellec
Series Il Model 286 2-4
Accessing External Buffer Box Signals and
GroundPin i 2-5
Confidence Testingcvvviiiiennnne .. 2-6
CHAPTER 3
SAMPLE ICE-86A SESSIONS
AT THE TERMINAL
How To Use This Chapter 3-1
Analysis of the Sample Program 3-2
ICE-86A Hands-On Demonstration 3-5
SeSSION 1 .+ vvt ittt i e 3-6
SESSION 2 ittt i e e 3-12
CHAPTER 4
ELEMENTS OF THE ICE-86A
COMMAND LANGUAGE
Introduction ...t 4-1
Notation and Conventions Used in This Manual 4-3
Syntactic Rules Used in the Manual 4-4
Character Setviviin ettt ien e 4-6

PAGE
Introductionto Tokens 4-6
Keywords ... i 4-7
Reference Keywords 4-7
Registersooiveeia i 4-7
Status Registers 49
8086 Pin References 4-11
Emulation Registers 4-11
Command Keywords 4-11
Simple Commands 4-12
Compound Commands 4-13
MacroCommands 4-13
Utility Command Keywords 4-13
Number Base and Radix Commands 4-14
Memory Mapping Command Keywords 4-14
Hardware Register Command Keywords 4-14
Memory and Port Contents Command
Keywords, 4-15
Symbol Table and Statement Number Table
Command Keywords 4-15
Emulation Control Command Keywords 4-16
Trace Control Commands 4-16
UserNames i, 4-17
Symbols 4-17
Statement Numbers 4-17
Special Tokens cciuivieoi... 4-18
Entering Commands at the Console 4-18
CHAPTERS
EXPRESSIONS
Operandsc.ciiiiiriiiierninianeaan, 5-2
Numeric Constantsccoevuenn... 5-2
Masked Constantsccovvvveennnnnn.. 5-3
Keyword Referencescn.... 5-3
Symbolic Referencescoovii.... 5-4
Statement Number Reference 5-4
Memory Referencescciviiiinn.n. 5-5
Typed Memory Reference 5-6
Port Referencescciiiiiiit. 5-7
String Constantsc.c.eiiiiininaan.n. 5-7
Parenthesized Expressions 5-7
OPETALOTS © v v vttt ieeiieeeneiineeeennnennnnes 5-7
Classes of Operatorscceveeeeeennn. 5-8
Arithmetic Operatorsccevveeenn. 5-8
Content Operators ceeieneeeeesn. 5-11
Relational Operatorscoevuuuunn.. 5-11
Logical Operatorsccovvuieennennnnn. 5-11
Arithmetic and Logical Semantic Rules 5-13
How Expressions are Evaluated 5-14
““Case Studies’’ in Evaluating Expressions 5-14
Command Contextseeeeunnnneainnnns 5-21

CONTENTS (Cont’d.)

CHAPTER 6 PAGE PAGE
EMULATION AND TRACE LOAD Command cee. 747
CONTROL COMMANDS SAVECommandc.oovvviueinennnenn.. 7-8
Emulation Control Commands 6-1 LISTCommandc..cciiienninnn.. 7-9
Discussioniiiiiiiii i 6-2 Number Bases and Radix Commands 7-10
Execution Match Condition 6-4 Discussiont 7-10
Non-Execution Match Condition 6-5 Console Input Radixes: SUFFIX Command 7-10
AddressMatchRange 6-6 Console Output Radixes: BASE Command 7-11
Match Status List 6-7 Set or Display Console Input Radix Commands .. 7-12
DataMatchRange 6-7 Set or Display Console Output Radix Commands . 7-13
Segment Register Usage 6-8 Hardware Register Commands 7-14
Match Condition Restrictions 6-8 Discussioniiiiiii i 7-14
Breakpoint Restrictions 6-9 Set Register Command 7-20
Setting The Go-Register 6-12 RESET HARDWARE Command 7-21
Setting Tracepoint Registers 6-13 Set or Display RQGT Command 7-22
Command Signal Timeout 6-13 Display BUS Command 7-23
Emulation Timer 6-13 Memory Mapping Commands 7-24
Set Breakpoint Register Command 6-15 DiSCUuSSION ...ttt e e e 7-24
Set Tracepoint Register Command. 6-17 MAPDISK Command 7-28
GoCommandiiiiiiiiin... 6-18 MAP INTELLEC Command 7-29
Set GO-Register (GR) Command 6-20 Set MAP Status Command 7-30
STEP Commandccoiiieeennn... 6-21 Display MAP Status Command 7-32
Display Emulation Register Command 6-22 RESETMAP Command 7-33
Set CLOCK Command 6-23 Set Memory and Port Contents Commands 7-34
Display CLOCK Command 6-23 DiSCUSSION .. vvttn ittt i et e 7-34
Set RWTIMEOUT Command 6-24 Memory Content References 7-34
Display RWTIMEOUT Command 6-24 Setting Memory Contents 7-37
ENABLE/DISABLE RDY Command 6-25 Port Content References 7-40
Trace Cantrol Command 6-26 Set Memory Command 7-43
Discussioni i 6-26 Set Input/Output Port Contents Command 7-44
Trace DisplayModeccoiiin.n. 6-27 Symbol Table and Statement Number Table
Moving the Buffer Pointer 6-27 Commandscoveveinmeennnnennnnnn. 7-45
Displaying Trace Data 6-28 DiSCUSSIONt 7-45
Trace Data Display Restrictions 6-28 DEFINE Symbol Command 7-51
Trace Display Formats 6-29 Display Symbols Command 7-52
Display of Trace Data in Frames Mode 6-29 Display Statement Numbers Command 7-53
Display of Trace Data in Instructions Mode 6-30 Display Modules Command 7-54
Operand Fields * oo, 6-30 Change Symbol Command 7-55
Display of Cycles in Instruction Mode 6-32 REMOVE Symbols Command 7-56
Gaps in Trace in Instruction Mode 6-32 TYPECommandcciiiuinnnnnn.. 7-57
Extended Example of Trace Displays 6-33 Set DOMAIN Command 7-58
Set TRACE Display Mode Command 6-35 RESET DOMAIN Command 7-59
ENABLE/DISABLE TRACE Command 6-36 ENABLE/DISABLE SYMBOLICALLY
Display TRACE Command 6-37 Commandcoiiiiiiiiiiii..n 7-60
MOVE, OLDEST, and NEWEST Commands ... 6-38 Display Commandscooieiuiiann... 7-61
PRINTCommand, 6-39 DiSCUSSION ...ttt e e e 7-61
Registerscoviuiiiiiiiiiiiiniennn.. 7-61
CHAPTER 7 Status Registercouiniiianin... 7-63
INTERROGATION AND UTILITY Pin Referencesooveeuuuonenennnn.. 7-65
COMMANDS General Formats for Numeric Values 7-65
Utility Commands Involving ISIS-II 7-2 The Display NESTING Command 7-78
Discussion T 7-2 The EVALUATE Command 7-78
ICE86 Command ouoeroneeaennnn, 7-5 The Disassembly Command 7-80
EXITCommandc..ooviuinannnn.. 7-6 The DEFINE DASM Command 7-80

vi

CONTENTS (Cont’d.)

PAGE APPENDIX A
Display Processor and Status Registers ICE-86A KEYWORDS AND
Commandcoeviiiiiiiiinnn... 7-81 THEIR ABBREVIATIONS
Display Memory Command 7-82
Display /O Command 7-83 APPENDIX B
Display STACK Command 7-84 ERROR MESSAGES
Display Boolean Command 7-85
Display NESTING Command 7-86 APPENDIX C
EVALUATE Command 7-87 ICE-86A COMMAND
DASM Commandoovnieunannn.. 7-88 SYNTAX SUMMARY
DEFINE DASM Command 7-89
APPENDIX D
ELECTRICAL AND PHYSICAL
CHARACTERISTICS OF THE
ICE-86A EMULATOR
CHAPTER 8
ICE-86 A ENHANCEMENTS APPENDIX E
Compound Commands oeeveuannn. 8-1 INSTRUCTIONS IN
REPEATCommandcocovevnenn.. 8-1 HEXADECIMAL ORDER
COUNTCommandcovuievneueennennns 8-3
IFCommandooovvveninennnnannnnnn. 8-5 APPENDIXF
Nesting Compound Commands 8-6 iSBC 86/12 AND iSBC 86/12A FIX
MacroCommandsc.oiiiiniiniiaean.n 8-8
Defining and Invoking Macros 8-8 APPENDIX G
Local and Global Defaults 8-9 GUIDELINES FOR USE OF
Formal and Actual Parameters 8-10 CLOCK, READY, AND RWTIMEOUT
Details on Macro Expansion 8-12
The ENABLE/DISABLE EXPANSION APPENDIX H
Commandoiiiiiiiiiiiiain. 8-12 INSTALLING UPGRADEKIT
Macro Table Commands 8-12
Saving Macroseeveiiiiniaiiaanann. 8-14 APPENDIX 1
Further Examplesc.ccviireniinnnn... 8-14 8087 DEBUGGING SUPPORT
Off-line Facilitiescviiiiiin... 8-16
INCLUDE Commandc.oevevnneennnnn. 8-16 APPENDIX J
WRITE Commandcovevnvnennnnnn.. 8-17 REFERENCE SCHEMATICS
- TABLES
TABLE TITLE PAGE TABLE TITLE PAGE
1-1 Summary of ICE-86A Emulation 4-1 Definition of GO Command Functions ... 4-2
Commandscoovvvnnennnnnnn. 1-7 4-2 Notational Symbols 4-3
1-2 Summary of Basic ICE-86A Interrogation 4-3 Classes of Hardware Elements 4-7
and Utility Commands 1-8 5-1 Elements of Numeric Constants 5-3

3-1 Key Addresses in CARS Logic 3-16

vii

TABLES (Cont’d.)|

TABLE TITLE PAGE TABLE TITLE PAGE
5-2 ASCII Printing Characters and CODES 7-4 Segment Registers 7-15
QROH-TEH)oiiiiiiiinnnnn. 5-8 7-5 Status Registersceveiun.... 7-15
5-3 ICEOperatorsc..ccivieiiunn. 5-9 7-6 Pin References 7-16
5-4 Classes of Operators 5-10 7-7 Flag References 7-16
5-5 Content Operators ouu.n 5-11 7-8 Symbolic References and Statement
5-6 Arithmetic and Logical Semantic Rules ... 5-13 Referencescccciviinnn... 7-47
5-7 Representative Cases of Expressions 5-16 7-9 Classes of Hardware Elements 7-62
5-8 Conditions and Notation for Examples ... 5-17 7-10 Numeric Value Display Formats 7-66
5-9 Command Contexts 5-22 7-11 Display Values Per Line 7-70
7-1 8086 General Registers 7-14 8-1 Trackinga COUNT Command 8-4
7-2 Pointer Registers 7-15 G-1 CLOCK and ENABLE/DISABLE RDY
7-3 Index Registers 7-15 Commands T G4
ILLUSTRATIONS
FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 8086 CPU Functional Block Diagram 1-1 F-2 Typical Application of IC Test Clips F-3
1-2 ICE-86A Functional Block Diagram 1-12 F-3 iSBC 86/12A Parts Location Diagram F-4
1-3 Typical Development Cycle with ICE F-4 iSBC 86/12A Schematic Diagram F-5
Module il 1-14 F-5 iSBC 86/12A Schematic Diagram F-6
2-1 Orientation of Circuit Boards 2-3 G-1 Source of 8086 READY Input G-2
3-1 CARS Module Listing 3-3 I-1 StatusBlockcciiiiiiiiiiie.., I-2
3-2 DELAY Module Listing 3-4 I-2 Register Bytes Format I-2
4-1. Example of a GO Command 4-1 I3 Block Bytes Format I-3
5-1 A Simple Model of Evaluation 5-15 1-4 Control Word Format R O)
6-1 Non-Execution Match Condition 6-10 I-5 Status Word Format 1-4
7-1 REAL, DREAL, and TREAL Memory I-6 TagWord Format I-5
TYPeS e e e 7-36 I-7 Exception Pointers Format I-5
F-1 Piggyback Circuits Locations A45, A46, :
A69 of iSBC 86/12 and iSBC 86/12A ... F-2

viii

CHAPTER 1
INTRODUCTION TO THE
ICE-86A™ EMULATOR

This manual presents the operation of the In-Circuit Emulator for the Intel 8086
microprocessor, or ICE-86A emulator. As an introduction to the use of this
microprocessor design aid, this chapter contains an overview of the product and its
relationship to other products and contains a brief discussion of integrated
hardware/software development, in-circuit emulation, and ICE-86A architecture.
Also a generalized development cycle with the ICE-86A emulator and a generalized
ICE-86A emulation session are presented.

ICE-86A In-Circuit Emulator

The ICE-86A emulator provides in-circuit emulation for 8086 microprocessor-based
systems. Figure 1-1 shows the functional block diagram of the 8086 CPU. The
ICE-86A module consists of three circuit boards which reside in the Intellec Micro-
computer Development System. A cable and buffer box connect the Intellec to the
user system by replacing the user’s 8086. In this manner the Intellec debug functions
are extended into the user system. Using the ICE-86A module, the designer can
execute prototype software in continuous or single-step mode and can substitute
Intellec equivalents for user devices, such as memory.

RELOCATION
REGISTER REGISTER
FILE FILE
(RAX) RAH RAL ES
(RBX) RBH RBL Cs
(RCX) RCH RCL SS
(RDX) RDH RDL DS
S| (PC) P
DI
BP
SP

BHE/S7
A16/S3-A19/S6

BuS s
INTERFACE AD15-ADp
UNIT

INTA, WR, RD

16-BIT ALU

PSW DT/R, DEN, ALE

INSTRUCTION
QUEUE
INTR ’ b——— LOCK
NM > CONTROL, TIMING
RESET — | ANIB gg}gus 2l 050, OS1
READY —————» [5 o
TEST ————— 0,51, 52
RQ/GTO HOLD CLK __ GND +5V
RQ/GTH HLDA MN/MX
Figure 1-1. 8086 CPU Functional Block Diagram 162554-2

1-1

Introduction to the ICE-86A Emulator

The 8086 CPU can be used with the 8087 NDP (Numeric Data Processor) and/or
with the 8089 I0P (Input/Output Processor). The 8087 NDP is capable of expand-
ing the 8086 CPU’s arithmetic abilities to include floating point calculations. (See
The 8086 Family User’s Manual Numerics Supplement, Manual Order Number
121586, for information on the use of the 8087 NDP as a coprocessor.)

The ICE-86A emulator provides'extended capabilities to allow debugging of systems
using the 8086 CPU with the 8087 NDP. Coprocessor debugging is aided by the
following ICE-86A features:

® Three real number types for memory content references

* Four external buffer box signals to aid in coordinating the user system with the
ICE-86A emulator

* RQGT and BUS commands for the operation of the 8086 RQGT lines
* DASM and DEFINE DASM commands for disassembling 8087 instructions
¢ Emulation timer for optimizing coprocessor code

The 8089 IOP allows for more efficient handling of processor 1/0. (See The 8086
Family User’s Manual, Manual Order Number 9800722, for information on the use
of the 8089 IOP.)

The 8089 Real-Time Breakpoint Facility (RBF-89) is a software superset of the
ICE-86 emulator Version 1.2, a previous 8086 emulator. RBF-89 includes most of
the ICE-86A features (see below for exceptions) plus the following features that aid
in designing systems based on an 8086 CPU used with an 8089 IOP:

e Commands to initialize the 8089 IOP
e Commands to control program execution on the 8089 IOP
® Commands to disassemble 8089 instructions

RBF-89 software runs on ICE-86 or ICE-86A hardware but does not include the
following ICE-86A features:

e External buffer bus signals are not available.
e ENABLE/DISABLE SYMBOLICALLY commands are not available.

e DASM and DEFINE DASM for disassembling 8087 instructions commands are
not available.

¢ ENABLE/DISABLE EXPANSION commands are not available.
¢ The SELECTING modifier for the LOAD command is not available.

e The one-byte CAUSE register is returned rather than the string associated with
various conditions.

e The three real number types (REAL, DREAL, and TREAL) are not available.

See 8089 Real-Time Breakpoint Facility Operating Instructions for ICE-86A/88A
In-Circuit Emulator Users, Manual Order Number 162490, for instructions on the
use of RBF-89.

The ICE-86 and ICE-86A Emulators

The following features are supported in the ICE-86A emulator (Version 2.0), but are
not included in the ICE-86 emulator (Version 1.2), the previous 8086 emulator:

* RQGT lines
¢ External control of emulation
® A hardware reset signal to the user system

ICE-86A

ICE-86A

Introduction to the ICE-86A Emulator

e A signal indicating emulation status

¢ A signal indicating when a breakpoint condition has been met
¢ ENABLE/DISABLE SYMBOLICALLY commands

¢ RQGT and BUS commands

¢ DASM and DEFINE DASM commands

e ENABLE/DISABLE EXPANSION commands

¢ The SELECTING modifier for the LOAD command

e A string is returned from the display of the CAUSE register

e Threereal data types (REAL, DREAL, and TREAL)

ICE-86 emulator (Version 1.2) users consulting this manual for operating instruc-
tions should note the differences listed above. When reading this manual, ICE-86
emulator (Version 1.2) users should keep in mind that these enhanced features only
work with the ICE-86A emulator (Version 2.0).

Additionally, some users may wish to run the ICE-86A (Version 2.0) software on
ICE-86 (Version 1.2) hardware, for example, before they have upgraded their
ICE-86 (Version 1.2) hardware.

The following features require the ICE-86A hardware and are not supported in a
configuration using ICE-86 hardware with ICE-86A software:

¢ RQGT lines

¢ External control of emulation break

e A hardware reset signal for the user system

e Assignal indicating emulation status

* Assignal indicating when a breakpoint condition has been met
¢ RQGT and BUS commands

¢ DASM and DEFINE DASM commands

Integrated Hardware/Software Development

The ICE-86A emulator allows hardware and software development to proceed con-
currently. This is more effective than the traditional method of independent hard-
ware and software development followed by a system integration phase. With the
ICE-86A emulator, prototype hardware can be added to the system as it is designed.
The software and hardware can be used to test each other as the product is
developed.

Conceptually, the ICE-86A emulator can be viewed as assisting three stages of
development:

1. The ICE-86A emulator can be operated without being connected to the user’s
system, so its debugging capabilities can be used to facilitate software develop-
ment before any of the user’s hardware is available.

2. To begin integration of software and hardware development efforts, the user’s
prototype need consist of no more than an 8086 CPU socket. Through ICE-86A
mapping capabilities, Intellec system equivalents (such as Intellec memory) can
be substituted for missing prototype hardware. As each section of the user’s
hardware is completed, it can be added to the prototype, replacing the Intellec
equivalent. Thus each section of the hardware and software can be ‘‘system”’
tested as it becomes available.

1-3

Introduction to the ICE-86A Emulator

1-4

3. When the user’s prototype is complete, it can be tested using the system
software which will drive the final product. The ICE-86A emulator can be used
for real time emulation of the 8086 to debug the system as a complete unit.

Thus the ICE-86A emulator provides the user with the ability to debug a prototype
or production system at any stage in its development without introducing extraneous
hardware or software test tools.

ICE-86A In-Circuit Emulation

The ICE-86A In-Circuit Emulator is a diagnostic tool that is used for testing and
debugging the hardware and software of user-designed 8086 microcomputer-based
systems. Such testing may begin during the early phases of user system development
and may continue throughout the life cycle of the user’s system.

The interface between the in-circuit emulator and the user system is implemented at
the connector pins of the user system microprocessor chip. These pins carry the
information that establishes the characteristics and status of the user system. The
interface makes it possible for the in-circuit emulator to continually monitor user
operations and to provide control of these operations. More specifically, the
in-circuit emulator monitors execution of the user program and controls the condi-
tions under which the user program execution is initiated and terminated.

User Program Execution Control

Starting and stopping execution of the user program at predefined points or condi-
tions is an essential task of the in-circuit emulator as it is often not feasible or
desirable to execute the entire user program. For example, a single routine may be
executed because either other routines have not yet been coded or because a fault
(bug) has been isolated to that routine.

The starting address for execution is readily established by loading a known value
into the program counter of the user processor while the processor is inactive. Ter-
mination of execution is a more involved procedure which requires the in-circuit
emulator to halt the processor when a predetermined multi-condition state exists at
the 8086 pins. This process requires prior storage of state values within the in-circuit
emulator hardware and dynamic comparison of these values with the states of
specified data, address and/or status pins of the processor. The point at which the
user program execution is terminated is known as the breakpoint.

A breakpoint may be specified to cause the user program to halt execution when a
given memory location is addressed during a processor fetch (i.e., loaded into the
8086 execution queue). However, very often the operator is more interested in the
data value of a memory location or an I/0 port. In the latter cases both the type of
instruction (read, write, input, or output) and the data value are prespecified and are
dynamically compared with the processor pin states. It is also possible to specify
““‘don’t care’’ comparisons with the data pins and thereby halt execution whenever
the designated type of instruction is extracted from the queue for execution.

A wide range of breakpoint conditions are possible through comparison of the pro-
cessor chip states with predesignated values. The full range of breakpoint conditions
that may be specified by the operator are presented in subsequent chapters.

Memory Mapping

Memory for the user system can be resident in the user system or ‘‘borrowed’’ from
the Intellec system through ICE-86A’s mapping capability.

ICE-86A

ICE-86A

Introduction to the ICE-86A Emulator

The ICE-86A emulator allows 1 megabyte of user memory to be addressed by the
8086. This user memory space consists of 1024 1K byte segments that can be mapped
in 1K blocks to:

1. Physical memory in the user’s system,

2. Either of two 1K blocks of ICE-86A high speed memory,
3. Intellec expansion memory,

4. Arandom access diskette file.

The first 64K of Intellec RAM memory is dedicated to Intellec system software.
Therefore the RAM boards within the Intellec system that are used by the ICE-86A
emulator to store the user program employ effective addresses beyond the 64K byte
memory accessible to Intellec system software.

Mapping consists of specifying where each ‘‘logical’”” memory block that the 8086
addresses will physically exist within various physical memories. During emulation
the memory map is used to determine the existence and physical location of the
logical memory space being referenced by the user program.

If a logical segment of addresses is not activated by associating the segment with a
physical memory, the segment is ‘‘guarded.’”’” A guarded segment is logically non-
existent and any reference to the segment by the user program results in an error.
Thus the ICE-86A emulator can trap memory accesses outside the intended memory
for program and data. All blocks are initially guarded following system reset and
any segment may be guarded on command after its initial activation.

Mapping enables the user to allocate segments of user memory space to physical
memories other than the RAM/ROM of the user system. This feature permits
testing of the user program prior to installation of user memory and also provides a
convenient means of executing modified code in ‘‘borrowed’’ memory while the
bulk of user program is resident within the user system.

Symbolic Debugging

Symbols and PL/M statement numbers may be substituted for numeric values in
any of the ICE-86A commands. This allows the user to make symbolic references to
170 ports, memory addresses, and data in a user program. Thus the user need not
search listings for addresses of variables or program subroutines.

Symbols can be used to reference variables, procedures, program labels, and source
statements. Thus a variable can be displayed or changed by referring to it by name
rather than by its absolute location in memory. Using symbols for statement labels,
program labels, and procedure names allows the user to set breakpoints or disassem-
ble a section of code into its assembly mnemonics much more easily.

Furthermore, each symbol may have associated with it one of the types BYTE,
WORD, INTEGER, SINTEGER (for short, 8-bit integer), POINTER, REAL,
DREAL, or TREAL. Thus when the user examines or modifies a variable from the
source program, he doesn’t need to remember its type. For example, the command
“IVAR”’ displays the value in memory of variable VAR in a format appropriate to
its type, while the command ‘‘!VAR = !VAR1"”’ assigns the value of VARI to VAR.

The user symbol table generated along with the object file during a PL/M-86 com-
pilation or by the 8086 Assembler is loaded into the ICE-86A emulator along with
the user program which is to be emulated. The user may add to this symbol table any
additional symbolic values for memory addresses, constants, or variables that are
found to be useful during system debugging.

1-5

Introduction to the ICE-86A Emulator

1-6

In addition, the ICE-86A emulator provides access to all the 8086 registers and flags
through mnemonic reference. The READY, NMI, TEST, HOLD, RESET, INTR,
and MN/MX pins can also be read.

Display

-Three basic types of data are available for display: trace data, 8086 termination con-

ditions, and test parameters. Trace data is collected from the 8086 pins during execu-
tion of the user program. Trace data collection can be continuous or selective.
Tracepoints allow the user to selectively turn trace off and on as desired during
emulation. The tracepoints are stored by the ICE-86A hardware on command prior
to emulation. If trace data collected exceeds the capacity of the trace buffer, the
older trace data is overwritten by current data. Trace buffer pointers entered by the
operator permit selection of the trace information for display.

The 8086 termination conditions are the status values of the 8086 processor that are
accessible following termination of user program execution. The 8086 termination
conditions include the values of registers, flags, input pins, I/O ports, status
information, and the contents of the logical user memory space locations currently
activated by the memory map. Some of this information is the same as that collected
in the trace buffer. All 8086 termination conditions are displayed by console entry of
the memory or port address or the name of the register, flag, or input pin.

Hardware resident test parameters are entered by the operator and stored within the
ICE-86A hardware. Such information includes breakpoints, tracepoints, the
memory map, and the tracepointer used for control of trace data display. The
operator displays this information to verify the correct entry or to determine the
values of test parameters that were previously entered.

Software resident test parameters are entered by the operator and stored within
ICE-86A software. These parameters are used to establish values that effect hard-
ware only upon entry of other commands. For example the symbol manipulation
commands establish the relationship between the object code of the user program
and symbols, statement numbers, and module names that are used by the operator
to reference the user program code and data symbolically.

Operating Modes

The ICE-86A software is a development system-based program which provides the
user with easy-to-use commands for defining breakpoints, initiating emulation, and
interrogating and altering user status recorded during emulation. The ICE-86A com-
mands are configured with a broad range of modifiers which provide the user with
maximum flexibility in describing the operation to be performed.

There are two distinct phases of operation when the ICE-86A emulator is used for
debugging. The interval when the user program is being executed is referred to as the
emulation phase. The interval when the operator establishes and modifies test
parameters and displays (or prints) test results is the interrogation phase.

Emulation

Emulation commands to the ICE-86A emulator control the process of setting up and
running an emulation of the user’s program and examining the results of the emula-

tion. Breakpoints and tracepoints enable the ICE-86A emulator to halt and provide

a detailed trace in any part of the user’s program. A summary of the emulation com-
mands is shown in table 1-1.

ICE-86A

ICE-86A Introduction to the ICE-86A Emulator

Table 1-1. Summary of ICE-86A™ Emulation Commands

Command Description

GO Initializes emulation and allows the user to specify the
starting point and breakpoints. Exampie:

GO FROM .START TILL. DELAY EXECUTED

where START and DELAY are statement labels.

STEP Allows the user to single-step through the program.

GR Sets the GO-register to a set of one or more breakpoint
conditions or causes the display of the current
GO-register settings.

ENABLE/DISABLE TRACE Turn trace data collection on or off.

TRACE Set trace display mode to display trace data in frame or
instruction format or display current trace display
mode.

OLDEST Move trace buffer pointer to top of trace buffer.

NEWEST Move trace buffer pointer to bottom of trace buffer.

MOVE Move trace buffer pointer forward or backwards in
buffer a specified number or buffer entries.

PRINT Display one or more entries from the trace data buffer.

CLOCK Specify system clock as internal (ICE emulator

provided) or external (user-provided) or cause current
clock setting to be displayed.

RWTIMEOUT Allows the user to time out READ/WRITE command
signals based on the time taken by the 8086 to access
expansion Intellec memory or disk-based memory.

ENABLE/DISABLE RDY Allows the user to enable or disable the user-ready
signal for accessing Intellec resident memory or disk
memory.

Breakpoints—the ICE-86A emulator has two breakpoint registers which allow the
user to halt emulation when a specified condition is met. The breakpoint registers
may be set up as execution or non-execution breakpoints. An execution breakpoint
consists of a single address which causes a break whenever the 8086 executes an
instruction byte which was obtained from that address. A non-execution breakpoint
causes an emulation break when a specified condition other than an instruction exe-
cution occurs. This condition can contain up to four parts:

1. A set of address values,

2. A particular status of the 8086 bus (one or more of memory or 1/0 read or
write, instruction fetch, halt, or interrupt acknowledge),

3. A set of data values,

4. A segment register (break occurs when the register is used in an effective address
calculation).

Break on a set of address values has three capabilities:
1. To break on a single address.

2. To set any number of breakpoints within a limited range (1024 bytes beginning
at an even address) of memory.

Introduction to the ICE-86A Emulator ICE-86A

3. Tobreak in an unlimited range. Execution is halted on any memory access to an
address greater than or equal to (or less than or equal to) the breakpoint.

An external break input exists at the buffer box. It causes a break when a high to low
transition occurs. An external breakpoint match output for user access is provided
on the buffer, which allows synchronization of other test equipment when a break
occurs.

Tracepoints—the ICE-86A emulator has two tracepoint registers which establish
match conditions to conditionally start and stop trace collection. The trace informa-
tion is gathered at least twice per bus cycle, first when the address signals are valid
and second when the data signals are valid. Trace information is also collected each
CPU cycle during which the execution queue is active.

Each trace frame contains the 20 address/data line values and detailed information
on the status of the 8086. The trace memory can store up to 1023 frames, or an
average of about 300 bus cycles, of trace data. The trace memory contains the last
1023 frames of trace data collected, even if this spans several separate emulations.
The user has the option of displaying each frame of the trace data or displaying by
instruction in actual 8086 Assembler mnemonics. The trace data is always available
after an emulation.

Interrogation and Utility

Interrogation and utility commands give the user convenient access to detailed
information about the program and the state of the 8086 which is useful in debug-
ging hardware and software. Changes can be made in both user program memory
and the state of the 8086. Commands are also provided for various utility operations
such as loading and saving program files, defining symbols and macros, setting up
the memory map, and returning control to ISIS-II. A summary of the basic inter-
rogation and utility commands is shown in table 1-2.

During the Interrogation and Utility mode, the ICE-86A emulation processor will
not respond to an NMI or RESET signal generated by the user system. However, it
will respond to RQGT and HOLD signals from the user system.

Table 1-2. Summary of Basic ICE-86A™ Interrogation and Utility Commands

Command Description
Memory/Register Commands Display or change the contents of:
* Memory
s 8086 Registers
¢ |CE-86A Pseudo-Registers
e 8086 Status flags
e 8086 Input pins
e 80861/0 ports
Memory Mapping Commands Display, declare, set, or reset the ICE-86A memory
mapping.
DASM Disassembles the memory into 8086 assembler
mnemonics.
LOAD Fetches user symbol table and object code from the
input file.
SAVE Sends user symbol table and object code to the output
file.
LIST Sends a copy of all output (including prompts, input

line echos, and error messages) to the chosen output
device (e.g., disk, printer) as well as the console.

EVALUATE Displays the value of an expression in binary, octal,
decimal, hexadecimal, and ASCII.

1-8

ICE-86A

Introduction to the ICE-86 A Emulator

Table 1-2. (Cont’d.)

Symbol Manipulation Commands

TYPE

SUFFIX/BASE

Command Description

RQGT Sets or displays the status of the Request/Grant
facility which enables the ICE-86A emulator to share
the system bus with coprocessors.

BUS Displays which device is currently master of the
system bus.

CAUSE Displays a mnemonic indicating the cause of the most
recent emulation halt.

DEFINE DASM Informs the ICE-86A emulator of the configuration of

the user system; i.e., whether the 8087 chip or the 8087
emulator exists.

These commands allow the user to:

Display any or all symbols, program modules, and pro-
gram line numbers and their associated values (loca-
tions in memory).

Set the domain (choose the particular program
module) for the line numbers.

Define new symbols as they are needed in debugging.

Remove any or all symbols, modules, and program
statements.

Change the value or type of any symbol.
Enable or disable symbolic display.

Assigns or changes the type of any symbol in the
symbol table.

Establishes the default base for numeric values in
input text/output display (binary, octal, decimal, or
hexadecimal).

Macro and Compound Commands

The ICE-86A software allows the user to program the operation of the ICE-86A

hardware by using macros and compound commands.

A macro consists of a set of ICE-86A commands with up to ten command
parameters and is typically used to perform any task that is required frequently.
Commands are provided to define, display, and delete macros, to invoke macros
with an optional list of arguments, and to save macros in a diskette file or to load

previously created macros from a diskette file.

As an example, the following macro may be used to emulate a user program from a
start address until a breakpoint is encountered, then to continue until a condition is

satisfied:

DEFINE MACRO GO
IP = OFFSET %0
CS = SEGMENT %0
REPEAT
GO TILL %1
:DISPLAY

UNTIL %2
ENDR
EM

;DISPLACEMENT OF START ADDRESS
;BASE OF START ADDRESS

;EMULATE TO BREAKPOINT

;INVOKE MACRO TO DISPLAY
VARIABLES OF INTEREST

;CONTINUE UNTIL SOME CONDITION

:GO .START, #20 EXECUTED OR .A LEN 10T READ, !FLAG =0

1-9

Introduction to the ICE-86A Emulator

1-10

The symbols START, A, FLAG, and #20 are from the user program.

The last line invokes macro GO, causing emulation to begin at label START, to
break whenever statement #20 is executed or any element of a 10-byte array A is
read, and then to continue unless the variable FLAG has a value of zero.

Compound commands are control structures to either conditionally execute other
commands (IF), or to execute other commands until some condition is met or the
commands have been executed a certain number of times (COUNT, REPEAT).

For example, the following compound command is used to repeat a set of com-
mands until a condition is met:

IP=OFFSET .START ;DISPLACEMENT OF START ADDRESS
CS = SEGMENT .START ;BASE OF START ADDRESS
REPEAT
UNTIL IP =1000H ;BREAK CONDITION
STEP ;SINGLE STEP
ENDR .

In this command the condition IP = 1000H is tested every STEP. If the sequence of
STEPs reaches IP = 1000H, the loop will terminate.

ICE-86A Architecture

This section contains a brief description of the software, firmware and hardware
that compose the ICE-86A emulator. The information serves as an introduction to
more detailed information presented in the remaining chapters of this manual.

ICE-86A Software

The ICE-86A software together with ISIS-II and the user program symbol table is
resident within the 64K byte memory of the Intellec system. None of this space is
available to user program code. User program address space mapped to Intellec
resides in RAM boards (i.e., extended Intellec memory) whose physical addresses
are above the reserved 64K byte address range.

The functions performed by the ICE-86A software are dependent on the ICE-86A

operating mode. In the interrogation mode, the ICE-86A software provides.

arithmetic and logical conversions as necessary to establish compatibility between

the ICE-86A hardware and the operator. This task includes conversion of operator"

commands to a form usable by the firmware and the evaluation of symbolic entries
as necessary to provide absolute address and data values to the hardware. The
ICE-86A software also reconverts hardware supplied information (trace data, error
codes, map data, etc.) to forms that are meaningful to the operator. In the emula-
tion mode, the ICE-86A software supports the accessing of user code from the
diskette. In this mode the software also terminates emulation when directed by the
hardware (breakpoint) or the operator (ESCape key).

Firmware commands are hardware related commands that are sent to the ICE-86A
firmware to initiate a specific action. In general, each ICE-86A (operator-entered)
command is an element of higher level language that is converted to a specific series
of lower level firmware commands (assuming that the ICE-86A command requires a
hardware action). Thus, while the ICE-86A LOAD command merely specifies
loading of a user program into user address space, the actual process requires
reading of the memory map and writing of the user code into user, ICE, Intellec, or
diskette memory as indicated by the map. Not only are multiple firmware com-
mands required but the set of firmware commands issued is dependent on the
parameters included within the ICE-86A command.

ICE-86A

ICE-86A

Introduction to the ICE-86A Emulator

ICE-86A Firmware

ICE-86A firmware consists of a 12K-byte ROM-resident program that is executed by
an 8080 “ICE processor” of the ICE-86A hardware. The firmware performs three
major functions. During start-up or system reset, the firmware resets all hardware
test parameters and performs a series of go/no-go tests to ensure proper operations
of the ICE-86A hardware. In the interrogation mode, the firmware decodes the
firmware commands and initiates the specified hardware operations including the
sequencing of data transfers to and from the ICE-86A software. In the emulation
mode, the firmware supports user program activities that require use of Intellec
resources such as the transfer of user code from diskette or extended Intellec
memory.

ICE-86A Hardware

ICE-86A hardware consists of five circuit boards and four cables. Three of the cir-
cuit boards plug into the Intellec chassis:

e FM Controller Board
e 86 Controller Board
e Trace Board

Two smaller circuit boards are houséd within the ICE-86A buffer box assembly:
e Buffer Board 1
e Buffer Board 2

The buffer box cable assembly interconnects the user hardware and the ICE-86A cir-
cuit boards within the Intellec chassis. Connection to the user system is made by this
cable via the 40-pin socket that normally contains the 8086 user processor. When the
ICE-86A emulator is thus connected to the user system, the functions of the user
processor are assumed by an 8086 located within the buffer box assembly. The 8086
in the buffer box assembly is called the user processor within this manual. The buf-
fer box assembly is located near the user end of this cable assembly.

‘X’ and ‘Y’ cables interconnect the buffer box and two circuit boards in the Intellec
chassis. The ‘T’ cable provides direct connection between the 86 Controller Board
and Trace Board.

A block diagram of the ICE-86A hardware is shown in figure 1-2.

Buffer Box Signals

The buffer box has four external signal lines and a ground pin provided to help coor-
dinate user’s hardware with the ICE-86A emulator.

These lines are: INITOUT/, EMUL, BRKEXT, and (MATCHO OR MATCH1)/.
Below is a brief user description of each line; signal characteristics are given in
Appendix D. See Chapter 2 for installation of cables.

The INITOUT/ line supports an output-only initialization signal that can reset user
hardware working in conjunction with the 8086 CPU (such as the 8087 Numeric
Data Processor or the 8089 Input/Output Processor). The signal is issued as part of
the response to the RESET HARDWARE command (see Chapter 7); the pulse
width is 550 microseconds and active low.

Introduction to the ICE-86A Emulator ICE-86A

BUFFER BUFFER
BD1 | 802
| sVarem | 8080
ADDRESSES
| userR —| |
| CABLE |
| }
l PROCESSOR sWieH I ConTROL
080 | togic BUFFER BOX CABLE |
‘Aunnzsses | |
BUFFER DISK, :
TIMER | BOXCABLE EXP' | STATUS
ﬁm“ 8080 DATA LINES BUFFER BOX CABLE ™ MEM |
[— -l S
| 85 ADDR |
8086 PIN STATES
| st 85PROGRAM | ——j——————l
| FIRMWARE | |
PoRT ' |
INT L Reexe 080 & T | wap ICE wonr | || VY [IASEe| tmace |BMK
LOGIC PROCESSOR| BUS ss | Lo Rl R comr, AN
CONTROL ADDAE: _’ CONTR °L| |
- | |
| uew L5 EoNTROL |
sovrcont R | il
— | l T
INTEL wah m‘_s
LEC 1 sus
/ CONTROL 3080 DATALINES ! l
1 T
CONTROL CONTROL
CONRECTIONS) | STATUS | STATUS
I 8080 I 8080
| ADDRESSESA | g5 cONT BD MATCH ADDRESSES TRACE BD
| CONTROL | CONTROL
| |
| [
FM CONTROLLER BOARD | 85 CONTROLLER BOARD | TRACE BOARD
| |
. ™ . .
Figure 1-2. ICE-86A™ Functional Block Diagram 162554-3

The EMUL line carries an active high signal that indicates when the ICE-86A
emulator is in emulation mode. The signal goes active 4 clock cycles before the first
instruction fetch in emulation and terminates 7 clock cycles following the last 8086
cycle emulated.

The BRKEXT line allows an external signal to break emulation (such a signal may
come from a coprocessor, a peripheral, etc.). The signal must change from high to
low to break emulation; the break occurs on the instruction during which the break
is initiated (i.e., the last instruction that is executed before leaving emulation mode).
Emulation cannot be resumed through this line.

NOTE

In order for the BRKEXT facility to function, a jumper wire must be in
place on the 86 Controller board, connecting J2 (the ‘X’ cable terminal), pin
40, to RP1 (a resistor pack), pin 5. New ICE-86A products are shipped with
this wire already installed. The user may be required to have this wire
attached on upgrades to previously existing ICE-86 emulators. Before
attempting to use the BRKEXT facility, the operator should examine the 86
Controller board to determine if this jumper wire is in place.

The (MATCHO or MATCH1)/ line can provide a trigger signal whenever a break-
point register condition is fulfilled. (See Chapter 6 for the setting of breakpoint
registers.) The signal is active low and one clock cycle in duration. The user should
be aware that a pulse from the (MATCHO or MATCH1)/ line is not synonymous
with a break in emulation; the ICE-86A emulator is capable of going out of emula-
tion mode only when a breakpoint register condition is met and that register has
been enabled by either the GO or GR commands.

1-12

ICE-86A

Introduction to the ICE-86A Emulator

NOTE

When the system CLOCK is set to INTERNAL, the logic of the ICE-86A
emulator causes the (MATCHO or MATCHI1)/ signal to be held high. In
general, this means that when the emulator is not connected to user hard-
ware, there is no external signal available to indicate when a breakpoint
condition has been met. (See Chapter 6 for the CLOCK commands.)

NOTE

If the user connects an ICE-88A buffer box to an ICE-86A system, the
following error will be generated:

WARN C2:HARDWARE MISSING

The ICE-86A system will not function in this configuration.

Generalized Development Cycle with the
ICE-86A Emulator

Figure 1-3 diagrams a generalized product development cycle using the ICE-86A
emulator as a design aid. The sequence of events in developing a new product using
the Intellec system with the ICE-86A emulator is approximately as follows:

¢ Complete the specifications for the prototype hardware design, software control
logic, and integrated system performance.

® Organize both the hardware and software designs into logical blocks that are
readily understandable, have well-defined inputs and outputs, and are easy to
test. Breaking down the design is an interactive process, but is extremely
valuable in reducing the time required for prototyping, programming, testing,
and modification.

* Program the software modules in PL/M-86 and/or in ASM-86 assembly
language, naming and storing the programmed modules as files under ISIS-Ik
Compile or assemble the modules, linking and loading the combinations you are
ready to test, creating an object-code (machine language) version. Desk-check
each module as it is completed.

¢ As software modules are ready for testing, load them into the ICE emulator,
Intellec system, or diskette and emulate them via the ICE processor, using the
ICE-86A emulator in the ‘software’ mode. The ICE-86A system allows you to
use ICE-supplied memory as part of the ‘prototype’ system. The advantages of
this feature to software development include:

1. You do not have to be concerned about overflowing your prototype system
memory in the initial stages of software development. You have the
freedom to test the program and compact it later without having to make
room for extra memory in your prototype.

2. You may test your program in RAM memory, and make patches quickly
and easily without having to erase and reprogram PROM memory. In later
test phases, the ICE module can control program execution from PROM or
ROM in your prototype. The ICE module can map RAM memory to ICE-
supplied memory to replace prototype memory in set increments, to test out
software changes before reprogramming.

* As software modules pass initial stages of check-out, they can be loaded in the
2K of ICE-86A memory for emulation and testing in ‘real-time’.

e Hardware prototyping can begin with just a 8086 CPU socket. Through
ICE-86A mapping capabilities, ICE-supplied equivalents can be substituted for
missing prototype hardware. As each module of the user’s hardware becomes

Introduction to the ICE-86A Emulator

ICE-86A

PROTOTYPE
HARDWARE
VERIFICATION

PROTOTYPE .
HARDWARE
CONSTRUCTION

SPECIFY DESIGN PRODUCTION
PRODUCT PRODUCT TEST

SYSTEM CODE
VERIFICATION

CODE CODE
PREPARATION TRANSLATION

‘SCOPE OF INTELLEC DEVELOPMENT SYSTEM WITH AN ICE MODULE

Figure 1-3. Typical Development Cycle with the ICE™ Module

162554-4

available, it can be added to the prototype, replacing the ICE-supplied
equivalent. In this way, modules of software and hardware can be system tested
as they become available.

®* You can use memory in ICE-supplied system to check the interaction of
prototype hardware and proven software. The ability to map memory is helpful
in isolating system problems. You can exercise all prototype memory from a
program residing initially in ICE-supplied memory, and reassign memory block-
by-block to the user’s system as code is verified. Hardware failures can then be
isolated quickly, because interactions between prototype parts occur only at
your command. You do not have to use the prototype to debug itself.

e The debugging/testing process can proceed through each hardware and
software module, using ICE-86A commands to control execution and check
that each module gets data or control information from the correct locations,
and places correct data or other signals in the proper cells or output locations
for subsequent modules to use.

* Eventually, you test all hardware and software together. The program can
reside in RAM or PROM in your system, or in RAM in the Intellec system. All
other hardware can be in the prototype. The ICE-86A emulator, connected to
the system through the microprocessor socket, can emulate, test, and trace all
the operations of the system.

e After the prototype has been completely tested, the ICE-86A emulator can be
used to verify the product in production test. The test procedures you developed
for the final prototype testing can serve as the basis for production test routines,
running the program from metal-masked ROM in the production system.

A Generalized Emulation Session

This section describes the main steps in an emulation session. You may not always
perform all the procedures given here in every emulation session, but the main
outline is the same in all sessions. The discussion emphasizes some of the features of
the ICE-86A emulator that have not been presented earlier. For the details of the
command language, see Chapters 4 through 8.

1. Install the ICE-86A hardware in the Intellec chassis (see Chapter 2).

2. If you are using any prototype hardware, remove socket protector and attach
the cable that connects the user hardware to the ICE-86A circuit boards to the
prototype via the 40-pin socket. Otherwise leave socket protector attached to the
cable.

ICE-86A

Introduction to the ICE-86A Emulator

3. Boot the system, and obtain the hyphen prompt from the ISIS-II system. Enter

the ICE86 command, and obtain the asterisk prompt from the ICE-86A
emulator.

. From the software to be tested, determine how many memory addresses in the

Intellec system are required to perform the current emulation. For example, if
your program presently uses 3K of memory but your prototype has only 1K
installed, you need to ‘‘borrow’’ 2K of memory from the ICE-86A emulator.

ICE-86A system memory is available from three sources: 2K of “‘real-time”’
ICE memory, extended Intellec RAM memory, and diskette memory. This
memory is available for user program mapping and is organized in blocks of 1K
(1024) bytes of contiguous memory. 1024 such blocks are logically available; the
amount that is physically available depends upon what you have installed in the
Intellec.

The ICE memory provides you with 2K of RAM memory that enables you to
run object code at approximately real-time speed.

Intellec memory is capable of providing 960 1K blocks of logical address space.
The Intellec system software occupies the lowest 64K of Intellec RAM memory.
Therefore, any Intellec memory available to the user programs must be mapped
to addresses above 64K (extended Intellec memory). The amount of Intellec
memory physically available is dependent upon the number of card slots
available in the Intellec system and the memory physically installed. (Do not use
016 memory boards). If diskette memory is used, the full range of 1024 blocks
of logical memory is available to the user program up to the size of the diskette.

Typically, your program occupies logical locations in low memory. If you
intend to use Intellec memory for this emulation, you must map the memory
space used by your program into extended Intellec memory. The ICE-86A
emulator stores the mapping in its memory map, and refers each memory
reference in your program to the proper physical location in Intellec memory.
For example, suppose your code requires absolute addresses 0000H to OFFFH
(the ““H”’ means hexadecimal radix), or 4096 contiguous locations beginning at
location 0, the lowest address in memory. To map these addresses into the
beginning of extended Intellec memory, the mapping command would be:

MAP INTELLEC =64 LENGTH 62

This command declares that 62K of RAM memory is physically available in
extended Intellec memory starting at the lower boundary of extended memory.

MAPOLENGTH 4 =INTELLEC

This command maps the logical memory required by your program to address
the address space in lower Intellec extended memory.

. Load your program from diskette into the memory locations you have mapped,

using the LOAD command.

‘6. The ICE-86A emulator has three modes of operation: interrogation, continuous

emulation, and single-step emulation. The asterisk prompt signals that the
ICE-86A emulator is in the interrogation mode, ready to accept any command.

. In the interrogation mode, prepare the system for emulation by defining

symbols and setting emulation breakpoints and tracepoints.

ICE-86A software provides keywords for all 8086 registers and flags. In addi-
tion, you may use symbols to refer to memory locations and contents. The user
symbol table is generated along with the object file during PL/M compilation or
ASM assembly. This table can be loaded into Intellec memory when the user
program is loaded.

You are encouraged to add to this symbol table any additional symbolic values
for memory addresses, constants, or variables that you may find useful during
system debugging. Symbols may be substituted for numeric values in any of the
ICE-86A commands.

1-15

Introduction to the ICE-86A Emulator

1-16

10.

11.

12.

13.

Symbolic reference is a great advantage to the designer. You do not need to
recall or look up the addresses of key locations in your program, as they change
with each assembly; you can use meaningful symbols from your source program
instead. This facility is especially valuable for high-level language debugging.
You can completely debug a program written in PL/M by referencing symbols
defined in the source code. You do not need to become involved with the
machine level code generated by the compiler. For example, the ICE-86A
command:

GO FROM .START TILL .RSLT WRITTEN

begins real-time emulation of the program at the address referenced by the label
START in the designer’s PL/M-86 program. The command also specifies that
the program is to break emulation when the 8086 microprocessor writes to the
memory location referenced by RSLT. You do not have to be concerned with
the physical locations of START and RSLT. The ICE-86A software supplies
them automatically from information stored in the symbol table.

. Enter a GO command to begin real-time emulation. The ICE-86A emulator uses

a pseudo-register called the GO-register to contain the halting conditions that
you have specified, either in the GO command or previously.

. When emulation halts, you display the trace data collected during that

emulation. The ICE-86A emulator loads trace data into a trace buffer. Using
ICE-86A commands, you can position the trace buffer pointer to the informa-
tion that you desire to review, and display one, several, or all the entries in the
buffer. You can set the display mode to one frame per line or one instruction per
line of display.

To control emulation more precisely and to obtain more detailed trace data than
with continuous emulation, you can command the ICE-86A emulator to execute
single-step emulation. After each step emulated, you can display the current
entry in the trace buffer and the current settings of the 8086 registers and pins.

You can examine and change memory locations, 8086 registers and flags, and
170 ports, to provide you with valuable information on program operation.
You may alter data or register values to observe their effect on the next emula-
tion, or you can patch in changes to your program code itself. You can display
and change symbolic values in the symbol table and breakpoint and tracepoint
values.

Alternate between interrogation and emulation until you have checked
everything you want to check.

At the end of the emulation session, you can save your debugged code on an
ISIS-II diskette file, using the ICE-86A SAVE command. The operation can be
specified to save program code, symbol tables, and (for PL/M programs) the
source code line number table.

You can start another session immediately, resetting all parameters to their
initial values with a few simple commands, or you can exit to ISIS-II to ter-
minate the session.

This introduction is intended to show you some of the scope and power of the
ICE-86A emulator in operation, and to suggest how this integrated software/
hardware design aid can fit into your development cycle. Chapter 2 contains installa-
tion instructions. Chapter 3 contains a hands-on tutorial involving a sample pro-
gram to be debugged. Chapter 4 describes the meta-notation used in this manual to
specify command syntax and semantics. Chapter 5 presents a detailed description of
expressions used in this manual. The remaining chapters present the details of the
command language in a format and sequence designed for reference.

ICE-86A

CHAPTER 2
ICE-86A™ INSTALLATION
PROCEDURES

This chapter provides step-by-step instructions for installing ICE-86A hardware in
an Intellec Microcomputer Development System.

ICE-86A Components

The following items are included in the ICE-86A package.

FM Controller board: A circuit board that plugs into the Intellec chassis. The
FM Controller contains the 8080 ICE processor, 12K-byte firmware ROM, and
3K-bytes of scratchpad RAM

86 Controller board: A circuit board that plugs into the Intellec chassis. The 86
Controller contains the 2K-bytes of ICE RAM, the 1K by 6-bit MAP memory,
and 512 bytes of 2-Port memory.

ICE-86A Trace board: A circuit board that plugs into the Intellec chassis. The
ICE-86A Trace board contains RAM for trace data, tracepoints, and
breakpoints.

ICE-86A Buffer Box Assembly: A cable assembly that contains the ICE-86A
Buffer Box Assembly. The Buffer Box contains two small circuit boards that
contain the 8086 user processor and gating and control logic for communica-
tions with the user system, MAP RAM, ICE RAM, 2-Port RAM, and Trace
RAM. The cable assembly also contains the user cable that plugs into the 40-pin
socket that normally houses the user’s 8086, the ‘‘X’’ cable that attaches to the
86 Controller board, and the ‘“Y’’ cable that attaches to the FM Controller
board.

Intellec Model 800 Triple Auxiliary Connector and Intellec Series II Triple
Auxiliary Connector: Each connector consists of a set of three parallel circuit
board connectors that provide electrical interconnection between the FM
Controller, ICE-86A Trace board and the 86 Controller when they are installed ™
in the Intellec chassis.

The ‘T’ cable that connects the Trace board to the 86 Controller board.

Ground Cable: A cable that provides signal ground to the ICE-86A Buffer Box
Assembly from the user system.

Software files on the ICE-86A diskette:

* ICE86 * ICE86.0V7 e RBF89 e RBF89.0V7
e ICE86.0V0 e ICE86.0V8 e RBF89.0V0 e RBF89.0V8
¢ ICE86.0V1 ¢ ICE86.0V9 ¢ RBF89.0VI e RBF89.0VB
¢ ICE86.0V2 e ICE86.0VA ¢ RBF89.0V2 e RBF89.0VC
* ICE86.0V3 e ICE86.0VE * RBF89.0V3 e RBF89.0VD
* ICE86.0V4 e 8087.MAC e RBF89.0V4 e RBF89.0VE
* ICE86.0V5 e 8087.HLP ¢ RBF89.0V5

e ICE86.0V6 ¢ ERROR.MAC ¢ RBF89.0V6

These files provide the software to support design of systems using the 8086, the
8087, and the 8089 chips.

Required and Optional Hardware

The ICE-86A emulator requires one of the following hardware configurations:

Intellec model 800 with:
CRT

2-1

ICE-86A Installation Procedures

2-2

Microcomputer Development System 2DS or DDS
64K of RAM
3 adjacent card slots available on the motherboard

Intellec model 888 with 64K of RAM and 3 adjacent card slots available on the
motherboard.

Intellec Series 11, model 220, 225, or 230, or Intellec Series 111 model 286 with:
3 adjacent card slots available in the expansion chassis and 64K of RAM

The following are optional enhancements to an ICE-86A system:

Teletypewriter or line printer for hard-copy output

One or more boards of Intellec expansion memory. If Intellec expansion
memory is to be used for emulating 8086 program memory, additional card slots
are needed for iSBC 032 or iSBC 064 memory boards. If Intellec expansion
memory is used, it is recommended that all Intellec memory consist of iSBC 032
and/or iSBC 064 memory boards. iSBC 016 memory boards decode only 16 bits
of address. Therefore, if any iSBC 016 boards are present when expansion
memory is being used, each 16K RAM board will be duplicated on each 64K
page of addressable memory making these duplicated areas unusable for pro-
gram storage.

NOTE

The Monitor in the Intellec model 800 and 888 occupies the upper
2K of the first 64K of Intellec memory. This address space will be
duplicated on each 64K page of Intellec expansion memory used
and therefore unusable for user program storage.

Hardware Installation Procedures

Installation procedures are presented in the next two sections as follows: the pro-
cedure for Intellec model 800 and 888; the procedure for Intellec Series 11 model 220,
225, 230, and the Intellec Series 111 model 286.

Installation Procedures for |ntellec Model 800 and 888

1. Inspect the ICE-86A assemblies for damage.

2. Disconnect power cords from the Intellec chassis and the user system.

3.

4. Ensure that shorting plug P1 on the FM Controller board connects jumper posts

Remove the top cover from the Intellec chassis.

E1-2, setting the ICE-86A device code to 0. Ensure that shorting plug P2 on the
FM Controller board connects jumper posts E7-E8, selecting the Multibus inter-
face —10V power source asithe’board’s =5V supply.

. Insert the P2 edge connector of the ICE-86A Trace board into the middle slot of

the Intellec model 800 Triple Auxiliary connector.

. Install the Trace board (with Triple Auxiliary Connector attached) into an even

numbered slot in the Intellec cardcage so that there is an empty card slot on each
side of the Trace board. ..

. Install the FM Controller board next to the Trace board in the odd slot with the

number lower than the Trace board. For example, when the Trace board is in
slot 10, the FM Controller board is placed in'slot 9.

. Install the 86 Controller;;board next to the Trace board in the slot with the

number higher than the Trace board. Figure 2-1 shows the proper order of the
boards in the cardcage.

ICE-86A

ICE-86A

" ICE-86A Installation Procedures

COMPONENT SIDE

TRIPLE
AUXILIARY
CONNECTOR

v
6 CONTROLLER BOARD

Figure 2-1. Orientation of Circuit Boards

g

162554-18

10.

1.

12.
13.

NOTE

The Triple Auxiliary Connector can be bolted to the motherboard
if permanent installation of the ICE-86A Module is desired. The
bottom cover of the Intellec chassis must be removed to gain access
to the mounting holes (mounting hardware is supplied with the
connector).

Attach the ‘T’ cable to the ‘T’ connectors on the Trace board and the FM
Controller board, ensuring that the missing pin on the connectors mates prop-
erly to the blocked hole in the cable receptacles.

Attach the ribbon cable marked ‘X’ from the Buffer Box Assembly to the ‘X’
connector on the 86 Controller board, ensuring that the missing pin on the con-
nector mates properly to the blocked hole in the cable receptacle.

Attach the ribbon cable marked ‘Y’ from the Buffer Box Assembly to the ‘Y’
connector on the FM Controller board, ensuring that the missing pin on the
connector mates properly to the blocked hole in the cable receptacle.

Install expansion RAM in the Intellec chassis as required for user software.

If a user prototype is to be connected, remove the Socket Protector Assembly
from the user end of the ICE-86A Buffer Box Assembly and insert the 40-pin
cable terminal into the 8086 socket on the user system. The Socket Protector
Assembly guards the terminal pins from damage and inadvertent grounding.

Ensure that pin 1 of the terminal connector is aligned to pin 1 of the
40-pin user system CPU socket. Damage to ICE components may
result when the connector is improperly installed.

2-3

ICE-86A Installation Procedures

24

14.

15.

16.

17.

18.

Mount the male plug of the Ground Connector into the female receptacle of the
Terminal Pin at the user end of the cable assembly.

Mount the clip end of the Ground Connector to an appropriate point in the user
system to provide signal ground.

Failure to observe proper grounding techniques between the ter-
minal connector ground lead and the user system may result in
ICE-86A failures.

Route the ‘X’ and ‘Y’ cables out the back of the chassis, over the top lip on the
rear panel.

Replace the top cover on the Intellec chassis. The cover fits snugly over the two
ICE cables at the back of the chassis.

Connect the power cords to the Intellec chassis and the user system.

Installation Procedures for Intellec Series Il Model 220, 225,
and 230, and Intellec Series IIl Model 286

1. Inspect the ICE-86A assemblies for damage.

. Disconnect power cords from the Intellec chassis, the expansion chassis, and the

user system.

3. Remove the front panel from the expansion chassis.

10.

Ensure that shorting plug P1 on the FM Controller board connects jumper posts
E1-2, setting the ICE-86A device code to 0. Ensure that shorting plug P2 on the
FM Controller board connects jumper posts E8-E9, selecting the Multibus inter-
face —12V power source as the boards —5V supply.

. Insert the P2 edge connector of the ICE-86A Trace board into the middle slot of

the Intellec Series II Triple Auxiliary Connector.

. Install the Trace board (with Triple Auxiliary Connector attached) into the

expansion chassis so that there is an empty card slot on each side of the Trace
board.

. Install the FM Controller board in the expansion chassis slot immediately above

the Trace board.

. Install the 86 Controller board in the expansion chassis slot immediately below

the Trace board. Figure 2-1 shows the proper order of the boards in the expan-
sion chassis.

NOTE

The Triple Auxiliary Connector can be bolted to the expansion
backplane if permanent installation of the ICE-86A Module is
desired. The top cover of the expansion chassis must be removed to
gain access to the mounting holes (mounting hardware is supplied
with the connector).

. Attach the ‘T’ cable to the ‘T” connectors on the Trace board and the FM

Controller board, ensuring that the missing pin in the connectors mates properly
to the blocked hole in the cable receptacles.

Attach the ribbon cable marked ‘X’ from the Buffer Box Assembly to the ‘X’
connector on the 86 Controller board, ensuring that the missing pin on the con-
nector mates properly to the blocked hole in the cable receptacle.

ICE-86A

ICE-86A ICE-86A Installation Procedures

11. Attach the ribbon cable marked ‘Y’ from the Buffer Box Assembly to the ‘Y’
Connector on the FM Controller board, ensuring that the missing pin on the
connector mates properly to the blocked hole in the cable receptacle.

12. Install expansion RAM in the Intellec mainframe or expansion chassis as
required for user software.

13. If a user prototype is to be connected, remove the Socket Protector Assembly
from the user end of the ICE-86A Buffer Box Assembly and insert the 40-pin
cable terminal into the 8086 socket on the user system. The Socket Protector
Assembly guards the terminal pins from damage and inadvertent grounding.

Ensure that pin 1 of the terminal connector is aligned to pin 1 of the
40-pin user system CPU socket. Damage to ICE components may
result when the connector is improperly installed.

14. Mount the male plug of the Ground Connector into the female receptacle of the
Terminal Pin at the user end of the cable assembly.

15. Mount the clip end of the Ground Connector to an appropriate point in the user
system to provide signal ground.

Failure to observe proper grounding techniques between the ter-
minal connector ground lead and the user system may result in
ICE-86A failures.

16. Replace the front cover of the expansion chassis, routing the ribbon cable out
the opening at the left side of the front panel.

17. Connect the power cords to the Intellec mainframe and expansion chassis and
user system.

NOTE

Keep the Socket Protector Assembly mounted on the end of the
ICE Buffer Box Assembly terminal cable whenever the terminal is
not attached to a user system to prevent pin damage.

When removing the Socket Protector Assembly from the end of the
ICE Buffer Box Assembly, use care to prevent pin damage.

Accessing External Buffer Box Signals
and Ground Pin

As detailed in Chapter 1, the ICE-86A buffer box has four external signal lines—
INITOUT/, (MATCHO OR MATCHI1), EXTBRK, and EMUL—as well as a
ground pin, to aid in coordinating user’s hardware with the ICE-86A emulator. One
horizontal side of the buffer box has been left exposed to provide easy access to
these signal lines and the ground pin; the user may make connections to external
hardware with any appropriate-sized electrical clips. For operator’s convenience, the
lines and ground have been labeled 1 through 5 on the buffer box—1 for
INITOUT/, 2 for (MATCHO OR MATCH1)/, 3 for GND, 4 for EXTBRK, and 5
for EMUL.

2-5

ICE-86A Installation Procedures

Confidence Testing

The DIAGS86 Confidence Test program verifies operation of the ICE-86A Module
after installation or whenever problems with the ICE Module itself are suspected.
The DIAGS86 program resets and invokes the ICE-86A emiulator, executes a set of
hardware confidence tests, and terminates by returning a ‘“PASS” or ‘“FAIL”
display message. Execute the following sequence to run the confidence tests:

Boot the system to run under ISIS-II and wait for the hyphen prompt (-) from
the ISIS-1I system.

Enter the command CONF and wait for the asterisk prompt (*).
Enter the command INIT DIAG86.CON and wait for the asterisk prompt (*).

Enter the command TEST to cause DIAGS86 to execute the confidence tests.
Wait for the test message displays. DIAG86 will display a ‘“‘PASS/FAIL”
message for each diagnostic test contained in DIAGS86. If any displayed test
message denotes a ‘‘FAIL’’, the installed hardware is not operating properly.
Inspect the hardware for improper installation and rerun DIAGS86. If all the
displayed test messages denote ‘‘PASS”’, the hardware has been installed cor-
rectly and is operating properly.

Enter the command EXIT to return control to the ISIS-1I system.

ICE-86A

CHAPTER 3
SAMPLE ICE-86A™ SESSIONS
AT THE TERMINAL

This chapter introduces a few useful ICE-86A commands and provides hands-on
experience with the ICE-86A emulator. To reduce the need for cross-reference, this
chapter includes brief discussions of the commands used in the examples. The user
program to be simulated is a simple traffic light controller. The user program logic is
described before the hands-on session to help you understand what is going on.

How To Use This Chapter

To use this program as a hands-on tutorial, you must enter the source code for
the two modules using the ISIS text editor on your system. Omit the line number
and nesting information that is on the listing; these values are assigned by the
compiler and assembler.

Compile the CARS module with the PL/M-86 compiler program. Assuming
that the source file is named ‘““CARS.SRC”’, the compile step could look like:

—PLM86 :F1:CARS.SRC PRINT(:F1:CARS.PRT) DEBUG

The object file created by PLM86 is named CARS.OBJ. (The DEBUG control
generates the symbol table for use by ICE-86A.)

Assemble the DELAY module with the ASM86 assembler. Assuming that the
source file is named ‘““DELAY.SRC”’, the assemble step could look like:

—~ASM86 :F1:DELAY.SRC PRINT(:F1:DELAY.PRT) OBJECT(:F1:DELAY.OBJ) DEBUG
As indicated, the object module is named DELAY.OBJ.

Link and Locate CARS and DELAY using the iAPX-86 utilities LINK86 and
LOC86. The command we used looks like:

—LINK86 :F1:CARS.OBJ, :F1:DELAY.OBJ TO :F1:CARS.LNK

The LINK86 command displays two warning messages when modules in
DELAY.OBJ are combined. The output CARS.LNK must be located
absolutely in memory using the LOC86 Command.

—LOCB86 :F1:CARS.LNK

The file created by LOCS86 is pamed CARS. This file will be the input used
during the ICE86A session.

For further information on the procedures for editing, compiling, assembling,
linking, and locating programs under iAPX-86, refer to the following manuals:

Text Editor: ISIS-11 System User’s Guide
PL/M-86 Compiler: PL/M-86 User’s Guide

ASM-86 Assembler 8086/8087/8088 Macro Assembly Language Reference
Manual

8086/8087/8088 Macro Assembler Operating
Instructions

LINK86 and LOC86 8086 Family Utilities User’s Guide

Study the logic of CARS, the program to be emulated. The material includes
text discussion and program listings.

Install the ICE-86A hardware following the procedure given in Chapter 2.
Leave the socket protector on to protect the pins at the end of the cable.

Insert an ISIS-II system diskette in drive 0, boot ISIS.

Copy CARS to the diskette containing the ICE-86A program. Insert this
diskette in drive 1.

3-1

Sample ICE-86A Sessions at the Terminal

32

* Enter the command
:F1:ICE86

to load the ICE software and start it executing. The ICE-86A emulator signals
readiness to accept commands by displaying an asterisk prompt (*).

¢ Enter the ICE-86A commands as shown, and obtain the results shown in the
listing.

Analysis of the Sample Program

The application presented is a simple traffic light controller. Imagine an intersection
of a main street and a side street. The desired operation is that the light should stay
green on the main street until a decision involving the number of cars waiting on the
side street and the amount of time they have been waiting has been satisfied. We
suppose that there is a sensor in the pavement on the side street that sends an inter-
rupt to the computer when a car arrives. We do not include the control of a yellow
light on either street.

Refer to the following figures:

Figure 3-1. CARS Module Listing
Figure 3-2. Delay Module Listing

Associated with each street is a time called the cycle length. In the program, the
variable named SIDESCYCLESLENGTH controls the fixed length of time the light
is green on the side street when that cycle is called into action. Even though the light
stays green on the main street until the decision rule is satisfied, we need a variable
MAINSCYCLESLENGTH that is involved in the decision rule.

The decision rule is as follows. The side street gets a green light if either of the
following two conditions is satisfied.

1. Two or more cars are waiting on the side street, and the main street has had
the green light for a period of time greater than or equal to the variable
MAINSCYCLESLENGTH.

2. One car is waiting on the side street, and the main street has had the green
light for a period of time equal to or greater than two times the variable
MAINSCYCLESLENGTH.

The system has one input and one output. The input is a signal that a car has arrived
on the side street since the last time we sampled the input. The variable
CARSSWAITING contains the number of cars waiting on the side street. The out-
put goes to the traffic light controller. We assume that sending the controller a 1
makes the light on the main street green and the light on the side street red; sending it
a 0 makes the light on the main street red and the light on the side street green. The
variable LIGHTS$STATUS represents this output.

The program is initialized with constants and variables set as follows.

MAINSCYCLESLENGTH = 8 seconds

SIDE$SCYCLESLENGTH = 5 seconds

MAINSTIME = 0 (Time since last change to MAIN GREEN, SIDE RED)
SIDESTIME = not set yet. (Time since last change to SIDE GREEN)
LIGHT$STATUS = 1 (MAIN GREEN, SIDE RED)

CARSSWAITING =0

The CARS program contains a procedure CYCLE to change the lights back and
forth. CYCLE holds the side street light green (main red) until its counter,
SIDETIME, exceeds the SIDECYCLELENGTH (nominally 5 seconds).

ICE-86A

ICE-86A

Sample ICE-86A Sessions at the Terminal

oo WwN

~

w oo

10

1
12

13

14
15
16

17

18
19
20
21
22
23
24
25
26

-

N

LV)

TRAFFIC LIGHT CONTROLLER PROGRAM */

CARS:

DECLARE (MAINSTIME, SIDESTIME) BYTE;

DECLARE MAINSCYCLESLENGTH BYTE DATA(8), SIDESCYCLESLENGTH BYTE DATA(5);
DECLARE CARSSWAITING BYTE;

DECLARE LIGHTS$STATUS BYTE;

DECLARE FOREVER LITERALLY ‘WHILE 1;

SIDESSTREET$CAR:
PROCEDURE;

CARSSWAITING = CARSSWAITING + 1;
END SIDESSTREETSCAR;

/* FOLLOWING PROCEDURE CODED IN ASSEMBLY LANGUAGE AND LINKED IN */
DELAY:
PROCEDURE(TIMESHUNDREDTHS) EXTERNAL;
DECLARE TIMESHUNDREDTHS BYTE;
END DELAY;

DISPLAY:
PROCEDURE (CYCLESTIME);
DECLARE CYCLESTIME BYTE;
LIGHT$STATUS = LIGHT$STATUS;
END DISPLAY;

CYCLE:
PROCEDURE;
LIGHT$STATUS =0; /* MAIN RED, SIDE GREEN */
SIDESTIME = 0;
DO WHILE SIDESTIME <= SIDESCYCLESLENGTH;
CALL DISPLAY(SIDESTIME);
CALL DELAY(100);
SIDESTIME = SIDESTIME +1;
END;
LIGHT$STATUS =1; /* MAIN GREEN, SIDE RED */
END CYCLE;

/* MAIN PROGRAM — EXECUTION BEGINS HERE */
LIGHT$STATUS =1; [* START WITH MAIN GREEN */

CARSSWAITING =0;
MAINSTIME =0;
DO FOREVER,;
CALL DISPLAY(MAINSTIME);
CALL DELAY(100); .
MAINSTIME = MAINSTIME +1;
IF (CARSSWAITING >=2) AND (MAINSTIME >= MAINSCYCLESLENGTH)
OR (CARSSWAITING =1) AND (MAINSTIME >= 2 * MAINSCYCLESLENGTH) THEN
DO;
CALL CYCLE;
CARSSWAITING =0;
MAINSTIME = 0;
END;
END;

END CARS;

Figure 3-1. CARS Module Listing

3-3

Sample ICE-86A Sessions at the Terminal

34

LOC

0000

0000

0000

0000
0000
0002
0003
0005
0007
0009
000B
000F
0013
0017
001B
001C
001E
0020
0022

0023
0023

oBJ

5B

59

53

8AC1
B5FF
8ACD
FEC9
891E2300
891E2300
891E2300
891E2300
90

75EB
FEC8
75E5

C3

02

TIDDD

LINE SOURCE
1 CGROUP GROUP
2 DGROUP GROUP
3 ASSUME
4 CONST SEGMENT
5 CONST ENDS
6 DATA SEGMENT
7 DATA ENDS
8 STACK SEGMENT
9 STACK__BASE

10 STACK ENDS

11 MEMORY SEGMENT
12 MEMORY__LABEL

13 MEMORY ENDS

14 ABS_0 SEGMENT
5 M LABEL

16

17

18 ABS_0 = ENDS
19 CODE SEGMENT

ABS__0,CODE,CONST,DATA,STACK,MEMORY
ABS__0,CODE,CONST,DATA,STACK,MEMORY
DS:DGROUP,CS:CGROUP,SS:DGROUP

WORD PUBLIC ‘CONST’

WORD PUBLIC ‘DATA’

WORD STACK ‘STACK’
LABEL BYTE

WORD MEMORY ‘MEMORY’
LABEL BYTE

BYTEATO
BYTE
; TIME DELAY SUBROUTINE

)

WORD PUBLIC ‘CODE’

20 PUBLIC DELAY

21 DELAY: POP BX ;POPRETURN ADDR. OFF STACK

22 POPCX ;POP ARGUMENT OFF STACK INTO CX REG.
23 PUSH BX ;REPLACE RETURN ADDR. ON STACK
24 MoV AL,CL ; PL/M LINKAGE CONVENTION
25 Mov CH, 255

26 LAB1: MOV CL,CH

27 LAB2: DEC CL

28 MoV TEMP,BX ; WASTE

29 Mov TEMP,BX ; DITTO

30 MOV TEMP,BX ;

31 Mov TEMP,BX ;

32 NOP ;

33 JNZ LAB2

34 DEC AL

35 JINZ LAB1

36 RET

37 ;

38 TEMP LABEL WORD

39 DB 2

40 CODE ENDS

41 END

Figure 3-2. DELAY Module Listing

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

The ICE-86A test suite includes commands that simulate the arrival of cars on the
side street, and that display the values of the program variables involved in the light
change logic. The procedure SIDESTREETCAR represents the nucleus of the inter-
rupt routine that would handle the sensor interrupts in a real traffic light controller
program. The interrupt-enabling logic is omitted for simplicity. Procedure
DISPLAY is a ‘vestige’ of a previous version of CARS. CARS also calls DELAY
when a ‘one-second’ timer is required.

ICE-86A Emulator Hands-On Demonstration

This demonstration involves the one program CARS. The version we ran did not
have any serious logic errors, so that the effects of the ICE-86A commands could be
clearly seen. The length of the delay produced by the DELAY routine is longer than
desired; you may adjust the calling parameter if you desire a ‘‘true’’ one-second
delay.

The material represents two separate sessions at the terminal. The beginning and end
of each session is clearly indicated. By using two sessions we can demonstrate the use
of the PUT and INCLUDE commands.

The pair of sessions is organized as follows—session 1 shows how to define and save
macros on file; the macros defined in this session are of two kinds: general purpose
MCS-86 utilities (PUSH86, POP86, SETIP) and macros that are particular to
CARS, the demonstration program.

The demonstration emphasizes the ICE-86A macro facility, showing how four basic
ICE operations (initialize, emulate, display, change) can be organized into named
blocks—the building blocks of test sequences.
The define macro command has the syntax:

DEFINE MACRO macro-name cr

[command cr]...

EM
The commands inside a macro definition (including calls to other macros) are
not examined or executed by the ICE-86A emulator until the macro is invoked. A

macro call has the format: :macro-name. More details on commands are given in the
following discussion.

3-5

Sample ICE-86A Sessions at the Terminal

3-6

Session 1

0 We begin the session by entering :F1:ICE86 to ISIS-II (hyphen prompt), and

receive the ICE-86A sign-on message and asterisk prompt. To record the
ICE- 86A session on diskette file, we enter a LIST command with the drive and
filename that is to contain the output of the ICE-86A operations (including
error messages if any).

Many of the commands include comments. A comment is preceded by a
semicolon (;) to separate it from the command.

The discussion is keyed to the listing by margin numbers.

Macro PUSHS86 simulates the iAPX-86 PUSH instruction. SP is the stack
pointer; SS is the base address of the stack segment.

POP86 is the reverse procedure, simulating the iAPX-86 POP instruction.

The parameter %0 in both PUSH86 and POP86 lets us ‘‘push’’ or ‘““pop’’ any
register (or expression, etc.) as long as it can be expressed as a WORD-type
quantity.

Macro SETIP resets the instruction pointer CS:IP to the address (symbol,
expression, etc.) passed as a parameter when the macro is invoked. CS is the
base of the code segment and IP is the instruction pointer relative to CS. Like
PUSHR86 and POP86, SETIP is a useful macro for restarting emulation at a
desired point (without ‘softwiring’ start addresses into your emulation macros).

Macro TYPES demonstrates how to set up to use typed memory references. A
symbol that stands for the address of a variable (not a procedure name) can be
defined or assigned a memory-type. Examples of memory-types are BYTE,
WORD, and POINTER. In our CARS program, all the key variables are of
type BYTE. Since the symbols are loaded with the program rather than being
DEFINED, we assign types to the variable with the commands of the form:

TYPE .symbol-name = memory-type
Then, as shown later on (e.g., in macro VARIABLES, step 6 of session 1) we
can refer to the contents of any typed variable with a typed memory reference of
the form

Isymbol-name

The contents produced by a typed memory reference are automatically of the
type assigned or declared.

See Chapter 7 for more details on memory types.

ICE-86A

ICE-86A

0

Sample ICE-86A Sessions at the Terminal

—:F1:ICE86
ISIS-Il ICE-86/86A, V2.0

*LIST :F1:DEC10.LOG ;SESSION ONE
*DEFINE MACRO PUSH86

o*SP =8P —2T ;MOVE POINTER TO NEW TOP OF STACK
**WORD SS:SP =%0. ;PUSH PARAMETER ON STACK

o*EM ;END OF MACRO PUSH86

*DEFINE MACRO POP86

**%0=WORD SS:SP ;POP PARAMETER OFF STACK
*SP=SP + 2T ;MOVE POINTER TO NEW TOP OF STACK
“EM ;END OF MACRO POP86

*

*DEFINE MACRO SETIP

**CS = SEG (%0)

**|P = OFF (%0)

**EM ;END OF MACRO SETIP

*DEFINE MACRO TYPES

«*TYPE .MAINTIME = BYTE ;FROM PLM LISTING

**TYPE .SIDETIME =BYTE ;FROM PLM LISTING

**TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
**TYPE .SIDECYCLELENGTH =BYTE ;FROM PLM LISTING
**TYPE .CARSWAITING =BYTE ;FROM PLM LISTING
**TYPE .LIGHTSTATUS =BYTE ;FROM PLM LISTING

**EM ;END OF MACRO TYPES

37

Sample ICE-86A Sessions at the Terminal

4 We define a macro INIT to handle the map and load steps for our program,

CARS.

In the macro INIT, the command MAP 0 LENGTH 2 = ICE 0 assigns two
memory blocks (1K segments) to ICE memory. The CARS program was
LOCATed at ORIGIN 0 (LOCS86 step discussed above) to facilitate mapping to
ICE memory. '

INIT defines a useful symbol, .START = CS:IP. After LOAD, CS:IP points to
the first executable instruction in the user program. CS is the base of the code
segment and IP is the instruction pointer (relative to CS).

Then, INIT calls the TYPES macro defined in step 3. This macro will become

part of INIT whenever INIT is called. Until INIT is called, however, the call to .

TYPES is not executed.

Finally, INIT displays the symbol and statement number tables, to verify that
the LOAD step has been completed, and that the TYPES macro has executed.

Macro EXAM is designed to test the logic that controls the light change.
Basically, the macro block is an indefinite REPEAT loop (the block beginning
with REPEAT and ending with ENDREPEAT). On each iteration a single step
is emulated (one instruction). Following that, we use an IF command to look for
certain addresses and take appropriate actions. The action taken in all cases is to
display the PL/M statement or an equivalent message using the WRITE com-
mand (see step 6 for more on the WRITE command). In addition, we skip both
DELAY and DISPLAY by popping the return address and call parameter off
the stack.

ICE-86A

ICE-86A

*DEFINE MACRO INIT

Sample ICE-86A Sessions at the Terminal

**MAP 0 LENGTH2=ICEO0 ;MEMORY SPACE FOR CARS PROGRAM

**MAP O LENGTH 2 ;DISPLAY WHAT WE MAPPED
**LOAD :F1:CARS

**DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
**:TYPES ;MACRO FOR TYPE DEFINITIONS

**SYMBOLS

**LINES ;DISPLAY SYMBOL AND LINE NUMBER TABLES

**EM ;END OF MACRO INIT
*DEFINE MACRO EXAM

**REPEAT

**STEP

**|F CS = SEG(.DISPLAY) AND IP = OFF(.DISPLAY) THEN
**WRITE ‘CALL DISPLAY’

**:POP86 IP N ;RESTORE RETURN ADDRESS
**SP=SP + 2T ;DISCARD PARAMETER

**ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
**WRITE ‘CALL DELAY’

**:POP86 IP

**SP=SP + 2T

**ORIF CS = SEG(..CARS#30) AND IP = OFF(..CARS#30) THEN
**WRITE ‘STARTING MAIN LOOP’

**ORIF CS = SEG(..CARS#34) AND IP = OFF(..CARS#34) THEN
**WRITE ‘START OF IF TEST’

**:VARIABLES

**ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN
**WRITE ‘CALL CYCLE’

**ENDIF
**ENDREPEAT
**EM ;END OF MACRO EXAM

Sample ICE-86A Sessions at the Terminal

3-10

6 Macro VARIABLES employs the WRITE command to display the key program

variables with identifiers. The general syntax of WRITE is:
WRITE element [, element]...
The elements to be ‘‘written’’ (displayed at the console) can be strings (e.g.,
‘SIDETIME?’) enclosed in single quotes, expressions, or constants of the form
BOOL expression. Two or more elements can be combined by listing them in
the order you desire, separated by commas. The strings in our commands serve
to label the displays.
VARIABLES also uses typed memory references; they have the format:
tsymbol-name
Note that each of the symbol names in VARIABLES must be assigned a type
(by macro TYPES) before LOOK can be called. Then, the typed reference pro-
duces the contents of the given address. For example, if symbol .A is the address
of a variable of type BYTE, !A means the same thing as BYTE.A; if .A is a
WORD-type variable, however, !A means WORD.A.
The display produced by VARIABLES is shown in session 2 below.
Macro TEST combines several macros and simple commands in a test suite.
First we initialize the system by executing GO FROM START TILL ..CARS#30
EXECUTED. Statement #30 in the beginning of the main loop.

Next, TEST uses a parameter to assign a value to CARSWAITING. When we
call TEST, we supply any value we wish as a parameter.

Last, TEST calls EXAM to single step through the program displaying any calls
that occur. .

The DIR MAC command produces a display of the titles of all the macros we
defined, in the order they were defined.

To display the definition of any macro, use a command with the form:
MACRO macro-name

Using this command, we display the definition of macro SETIP.

We save our macro definition on a permanent file for use in later sessions.

The EXIT command closes all files and returns us to ISIS-II (hyphen prompt).

ICE-86A

ICE-86A

10
1

*DEFINE MACRO VARIABLES

**WRITE ‘LIGHTSTATUS =",ILIGHTSTATUS,‘, CARSWAITING =',/CARSWAITING
**WRITE ‘MAINCYCLELENGTH =",IMAINCYCLELENGTH,‘, MAINTIME =',IMAINTIME
**WRITE ‘SIDECYCLELENGTH =",!SIDECYCLELENGTH,, SIDETIME =",!SIDETIME
*“EM ;END OF MACRO VARIABLES

*DEFINE MACRO TEST

**GO FROM .START TILL ..CARS#30 EXECUTED

**ICARSWAITING = %0
**:VARIABLES

o EXAM

*EM ;END OF MACRO TEST
*DIR MAC

PUSH86

POP86

SETIP

TYPES

INIT

EXAM

VARIABLES

TEST

*MACRO SETIP

DEFINE MACRO SETIP

CS =SEG (%0)

IP = OFF (%0)

EM ;END OF MACRO SETIP

*PUT :F1:TEST.INC MACRO
*EXIT

Sample ICE-86A Sessions at the Terminal

3-11

Sample ICE-86A Sessions at the Terminal

3-12

Session 2

0 Wecall up the ICE-86A program and specify a LIST file as before.

1

The ENA EXP command enables the display of the macros so we can see the
block of commands making up each macro. The expansion is disabled when the
ICE-86A emulator is first invoked.

The INCLUDE command causes the ICE-86A emulator to read commands
from a file rather than from the console. The form of this command is just:

INCLUDE :drive: filename

In our case, the file :F1:TEST.INC contains the macro definitions from
session 1. Thus, when we enter the command:

INCLUDE :F1:TEST.INC

The ICE-86A emulator reads in all the macro definitions from PUSH86 through
TEST, then returns control to the console.

ICE-86A

ICE-86A

0

Sample ICE-86A Sessions at the Terminal

—:F1:ICE86
ISIS-II ICE-86/86A, V2.0

*LIST :F1:DEC11.LOG ;SESSION TWO
*ENA EXP

*INCLUDE :F1:TEST.INC

*DEFINE MACRO PUSH86

'SP =SP —2T ;MOVE POINTER TO NEW TOP OF STACK
**WORD SS:SP = %0 ;PUSH PARAMETER ON STACK
*EM ;END OF MACRO PUSH86

*DEFINE MACRO POP86

**%0 = WORD SS:SP ;POP PARAMETER OFF STACK
**SP=SP + 2T ;MOVE POINTER TO NEW TOP OF STACK
**EM ;END OF MACRO POPS86

*DEFINE MACRO SETIP

**CS = SEG (%0)

**|P = OFF (%0)

**EM ;END OF MACRO SETIP

*DEFINE MACRO TYPES

**TYPE .MAINTIME = BYTE ;FROM PLM LISTING

**TYPE .SIDETIME BYTE ;FROMPLM LISTING

**TYPE .MAINCYCLELENGTH =BYTE ;FROM PLM LISTING
**TYPE .SIDECYCLELENGTH =BYTE ;FROM PLM LISTING
**TYPE .CARSWAITING = BYTE ;FROM PLM LISTING
**TYPE .LIGHTSTATUS =BYTE ;FROM PLM LISTING

**EM ;END OF MACRO TYPES

*DEFINE MACRO INIT

**MAPOLENGTH2=ICEO0 ;MEMORY SPACE FOR CARS PROGRAM
**MAPOLENGTH 2 ;DISPLAY WHAT WE MAPPED

**LOAD :F1:CARS

**DEFINE .START =CS:IP ;HANDY SYMBOL FOR RESTARTING
**:TYPES ;MACRO FOR TYPE DEFINITIONS
**SYMBOLS

**LINES ;DISPLAY SYMBOL AND LINE NUMBER TABLES
*EM ;END OF MACRO INIT

*DEFINE MACRO EXAM

**REPEAT

**STEP

**IF CS = SEG(.DISPLAY) AND IP = OFF(.DISPLAY) THEN
**WRITE ‘CALL DISPLAY’

**:POP86 IP ;RESTORE RETURN ADDRESS
o*SP=SP + 2T ;DISCARD PARAMETER
**ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
**WRITE ‘CALL DELAY’

**:POP86 IP

e*SP=SP + 2T

**ORIF CS = SEG(..CARS#30) AND IP = OFF(..CARS#30) THEN
**WRITE ‘STARTING MAIN LOOP’

**ORIF CS = SEG(..CARS#34) AND IP = OFF(..CARS#34) THEN
«*WRITE ‘START OF IF TEST’

**:VARIABLES

**ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN
«*WRITE ‘CALLCYCLFE’

**ENDIF
«*ENDREPEAT
**EM ;END OF MACRO EXAM

*DEFINE MACRO VARIABLES

**WRITE ‘LIGHTSTATUS ="_ILIGHTSTATUS,‘, CARSWAITING ="', ICARSWAITING
**WRITE ‘MAINCYCLELENGTH =",IMAINCYCLELENGTH,*, MAINTIME =" ,!MAINTIME
**WRITE ‘SIDECYCLELENGTH =",ISIDECYCLELENGTH,*, SIDETIME =",!SIDETIME
**EM ;END OF MACRO VARIABLES

*DEFINE MACRO TEST

**GO FROM .START TILL ..CARS#30 EXECUTED

**ICARSWAITING = %0

**:VARIABLES

**:EXAM

**EM ;END OF MACRO TEST

*

3-13

Sample ICE-86A Sessions at the Terminal

3-14

2 Weinvoke macro INIT with a macro call of the form:

:macro-name
In our example, the call is:

ANIT

First, the macro is ‘‘expanded’’ to form a block of executable commands. The
expansion is displayed since we previously enabled the display. The expansion
of INIT involves expanding the macro TYPES at the point that TYPES is called
within INIT (see the definition of INIT on the previous page). As INIT is
expanded, each command is checked for syntax; any error here would abort the
macro call. However, no errors occur and we reach the EM token marking the
end of the macro expansion.

The commands in INIT now execute. The MAP commands allocate space in
ICE memory for our code and display the resulting map (T indicates decimal
radix):

0000T=ICE 0000T 0001T=ICE 0001T

The SYMBOLS command displays the symbol table; the listing shows the sym-
bol names and corresponding addresses. We see that .START is present in an
unnamed module at the head of the table, and other symbols are listed in the
order they appear within the two program modules, ..CARS and ..DELAY.
Note the type specifications on the program variables named in the macro
TYPES.

The LINES command displays the statement numbers and corresponding
addresses from CARS. DELAY has no line numbers because the assembler does
not produce a line number table.

ICE-86A

ICE-86A

2

Sample ICE-86A Sessions at the Terminal

“:INIT

**MAPOLENGTH2=ICE0 ;MEMORY SPACE FOR CARS PROGRAM
**MAP 0 LENGTH 2 ;DISPLAY WHAT WE MAPPED

**LOAD :F1:CARS

**DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
*“:TYPES ;MACRO FOR TYPE DEFINITIONS

**TYPE .MAINTIME = BYTE ;FROM PLMLISTING

**TYPE .SIDETIME =BYTE ;FROM PLMLISTING

**TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
*¢*TYPE .SIDECYCLELENGTH BYTE ;FROM PLM LISTING
*o*TYPE .CARSWAITING = BYTE ;FROM PLM LISTING
*o*TYPE .LIGHTSTATUS =BYTE ;FROM PLM LISTING

ee’EM ;END OF MACRO TYPES

**SYMBOLS

**LINES ;DISPLAY SYMBOL AND LINE NUMBER TABLES
*EM ;END OF MACRO INIT

0000T=ICE 0000T 0001T=ICE 0001T
*CODE=0020:0000H
*CONST=002F:000CH
*DATA=002F:000EH
*STACK=0030:0002H
*MEMORY=0031:0000H
*??SEG=0031:0000H
*ABS__0=0000H
*CGROUP=0000H
*DGROUP=0000H
*START=0202H

MODULE ..CARS
*MEMORY=0310H
*MAINTIME=02FEH OF BYT
*SIDETIME=02FFH OF BYT
*MAINCYCLELENGTH=02FCH OF BYT
*SIDECYCLELENGT#=02FDH OF BYT
*CARSWAITING=0300H OF BYT
*LIGHTSTATUS=0301H OF BYT
*SIDESTREETCAR=028DH
*DISPLAY=0296H
*CYCLE=02A5H

MODULE ..DELAY
*DELAY=02D8H

*L AB1=02DFH

*LAB2=02E1H

*M=0000H
*MEMORY__LABEL=0031:0000H
*STACK__BASE=0030:000CH
*TEMP=0020:00FBH

MODULE ..CARS

#1=028DH

#2=028DH

#3=028DH

#4=028DH

#5=028DH

#6=028DH

#7=028DH

#8=0290H

#9=0294H

#10=0296H

#11=0296H

#12=0296H

#13=0296H

#14=0299H

#15=0299H

#16=02A1H

#17=02A5H

#18=02A8H

#19=02ADH

#20=02B2H

#21=02BFH

#22=02C3H

#23=02C9H

#24=02CDH

#25=02D0H

Sample ICE-86A Sessions at the Terminal ICE-86A

4 We now invoke macro TEST to exercise the program logic. We wish to
demonstrate that the code will branch to CYCLE when either of the following
two conditions is true:

1) CARSWAITING =1 AND MAINTIME >= 16 seconds
2) CARSWAITING >=2 AND MAINTIME >= 8 seconds
In the definition of TEST (look back at step 1) the second command is: .

ICARSWAITING = %0

The parameter %0 lets us set the contents of CARSWAITING to any BYTE
quantity we require. Thus wetest condition 1 by our command:

TEST1
This results in the expansion:
ICARSWAITING =1

The expansion of TEST involves the expansion of the macros VARIABLES and
EXAM at the point each is called in the body of TEST.

Macro TEST now begins to execute. To help us follow the displays, we can iden-
tify some key addresses in the portions of code we are checking, as shown in

table 3-1.
Table 3-1. Key Addresses in CARS Logic
LINE # PLACE IN
ADDRESS(IP) | \ymBER CARS CODE
0002H #27 START OF MAIN PROGRAM (.START)
021FH #30, 31 START OF MAIN ‘DO’ BLOCK
0236H #34 START OF IF.TEST
0276H #35, 36 START OF CONDITIONAL ‘DO’ BLOCK
027EH #37 POINT OF RETURN FROM ‘CALL CYCLE’
0288H #39, 40 END OF BOTH CONDITIONAL AND MAIN ‘DO’ BLOCKS
0296H #3 BEGINNING OF DISPLAY (SKIPPED)
02A5H #7 BEGINNING OF CYCLE
02D5H #26 END OF CYCLE
02D8H #17) BEGINNING OF DELAY (SKIPPED)

3-16

ICE-86A

4

Sample ICE-86A Sessions at the Terminal

#26=02D5H
#27=0202H
#28=0215H
#29=021AH
#30=021FH
#31=021FH
#32=0226H
#33=022CH
#34=0236H
#35=0278BH
#36=027BH
#37=027EH
#38=0283H
#39=0288H
#40=0288H
#41=028BH
MODULE ..DELAY

*

*:TESTA1

**GO FROM .START TILL ..CARS#30 EXECUTED

o*ICARSWAITING =1

*:VARIABLES

oo*WRITE ‘LIGHTSTATUS =",ILIGHTSTATUS,, CARSWAITING =",ICARSWAITING
eo*WRITE ‘MAINCYCLELENGTH =" IMAINCYCLELENGTH,*, MAINTIME =",IMAINTIME
*«*WRITE ‘SIDECYCLELENGTH =" !SIDECYCLELENGTH,, SIDETIME =",!SIDETIME
ee*EM ;END OF MACRO VARIABLES

**:EXAM

ee*REPEAT

eee*STEP

eee*|F CS = SEG(.DISPLAY) AND IF = OFF(.DISPLAY) THEN -

eeee*WRITE ‘CALL DISPLAY’

eeee*:POP86 IP ;RESTORE RETURN ADDRESS
eseee*|P = WORD SS:SP ;POP PARAMETER OFF STACK
eeeee*SP =SP + 2T ;MOV POINTER TO NEW TOP OF STACK
essse*EM ;END OF MACRO POP86

eeee*SP=SP + 2T ;DISCARD PARAMETER

sese*ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
sess*WRITE ‘CALL DELAY’
eese*:POPSE IP

sseee*|P = WORD SS:SP ;POP PARAMETER OFF STACK
seeee*SP =5SP + 2T ;MOVE POINTER TO NEW TOP OF STACK
eecce*ENM ;END OF MACRO POP86

sese*SP=SP + 2T
sese*ORIF CS = SEG(..CARS#30) AND IP = OFF(..CARS#30) THEN

eese*WRITE ‘STARTING MAIN LOOP’

sese*ORIF CS = SEG(..CARS#34) AND IP = OFF(..CARS#34) THEN

eese*WRITE ‘START OF IF TEST’

eees*:VARIABLES

eeese*WRITE ‘LIGHTSTATUS =, ILIGHTSTATUS,, CARSWAITING =’,/CARSWAITING
eeese*WRITE ‘MAINCYCLELENGTH =',IMAINCYCLELENGTH,*, MAINTIME = *,IMAINTIME
eeess*WRITE ‘SIDECYCLELENGTH =,!SIDECYCLELENGTH,*, SIDETIME = ,!SIDETIME
seses’EM ;END OF MACRO VARIABLES

ees*ORIF CS =(.CYCLE) AND IP = OFF(.CYCLE) THEN

eese*WRITE ‘CALL CYCLE’

eese*ENDIF

eee*ENDREPEAT

oe*EM ;END OF MACRO EXAM

o EM ;END OF MACRO TEST

3-17

Sample ICE-86A Sessions at the Terminal

3-18

The messages ‘EMULATION BEGUN’ and ‘EMULATION TERMINATED,
CS:IP = 0000:0223’ are produced by the command ‘GO FROM .START TILL
..CARS#30 EXECUTED.’

The next three display lines are produced by macro VARIABLES. We see that
LIGHTSTATUS is 1 (main street green), and that CARSWAITING has
been set to 1 by the command ‘!/CARSWAITING = 1’ in TEST.
MAINCYCLELENGTH and SIDECYCLELENGTH are constants at 8 and 5,
respectively. MAINTIME is zero.

This is the beginning of the REPEAT loop in macro EXAM. The first STEP
ends with address 0296H in the instruction pointer; this is the beginning of
DISPLAY and macro EXAM displays the ‘CALL DISPLAY’ message.

When the beginning of DELAY appears in CS:IP, EXAM displays ‘CALL
DELAY’.

Address 0236H is the address of the first instruction generated by the IF
statement on line #34 of CARS. EXAM displays the message ‘START OF IF
TEST’, and also displays (via a call to macro VARIABLES) the values of the
variables involved in the IF condition. The only change since the last such
display is that MAINTIME has been incremented to 1.

ICE-86A

ICE-86A

EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0223H
LIGHTSTATUS = 0001H, CARSWAITING = 0001H

MAINCYCLELENGTH = 0008H, MAINTIME = 0000H

SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:iP=0000:0296H
CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0228H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0229H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D8H
CALL DELAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0230H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0232H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

LIGHTSTATUS =0001H, CARSWAITING = 0001H

MAINCYCLELENGTH = 0008H, MAINTIME = 0001H

SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:023DH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023FH
EMULATION BEGUN

EMULATION TERMINATED, CS:|P=0000:0240H
EMULATION BEGUN

EMULATION TERMINATED, CS:|P=0000:0244H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0245H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0249H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:024BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:024DH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:024EH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:024FH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0251H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0252H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0257H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0259H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:025DH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0261H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0263H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0265H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0267H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0269H
EMULATION BEGUN

EMULATION TERMINATED, CS:I1P=0000:026BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:026DH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:026EH

Sample ICE-86A Sessions at the Terminal

Sample ICE-86A Sessions at the Terminal

10 The previous thirty STEPs comprise the IF-test. Address 0278H is the end of the
IF test, and 0288H is the end of the main loop. Since address 027BH did not
appear, we know that the conditional loop did not execute.

11 Here we are at the beginning of the main loop in CARS.

12 This time through the IF test, MAINTIME is 2. We omit most of the STEPs
through the test (address 023BH to 0278H) from the text; these are identical to
the series shown at step 9. ' '

13 The start of the main loop again; still no light change.

3-20

ICE-86A

ICE-86A

10

1"

12

13

EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:026FH
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0271H
EMULATION BEGUN
EMULATION TERMINATED, CS:iP=0000:0272H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000.0274H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0276H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0288H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0223H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0296H
CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0228H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0229H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D8H
CALL DELAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0230H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0232H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

LIGHTSTATUS = 0001H, CARSWAITING = 0001H

MAINCYCLELENGTH = 0008H, MAINTIME = 0002H

SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023DH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:023FH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0276H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000: 021 FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0223H
EMULATION BEGUN

EMULATION TERMINATED, CS:iP=0000:0296H
CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0228H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0229H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D8H
CALL DELAY

Sample ICE-86A Sessions at the Terminal

3-21

Sample ICE-86A Sessions at the Terminal ICE-86A

14 MAINTIME equals 3; still a long way to go until MAINTIME equals 16. We
now omit all steps from the text except the beginning and end of the IF test, so
that we can concentrate on the value of MAINTIME.

15 MAINTIME equals 4.

16 MAINTIME equals 5.

3-22

ICE-86A

14

15

16

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0230H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0232H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
STARTOF IF TEST

LIGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0003H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

.

L]

[]

EMULATION TERMINATED, CS:1P=0000:0276H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

LIGHTSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0004H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

LIGHTSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0005H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

Sample ICE-86A Sessions at the Terminal

3-23

Sample ICE-86A Sessions at the Terminal ICE-86A

17 MAINTIME equals 6.
18 MAINTIME equals 7.

19 MAINTIME equals 8.

3-24

ICE-86A Sample ICE-86A Sessions at the Terminal

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP

EMULAITON BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

17 LIGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0006H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

18 LIGHTSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0007H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

19 LIGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0008H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

3-25

Sample ICE-86A Sessions at the Terminal ICE-86A

20 MAINTIME equals 9.

21 MAINTIME equals 10 (OAH).

3-26

ICE-86A

20

pAl

EMULATION TERMINATED, CS:|P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:iP=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST
LIGHTSTATUS =0001H, CARSWAITING = 0001H

MAINCYCLELENGTH = 0008H, MAINTIME = 0009H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN -

EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

L]
L]
L]

EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST
LIGHTSTATUS = 0001H, CARSWAITING = 0001H

MAINCYCLELENGTH = 0008H, MAINTIME = 000AH
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H

EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

Sample ICE-86A Sessions at the Terminal

3-27

Sample ICE-86A Sessions at the Terminal . ICE-86A

22 MAINTIME equals 11 (OBH).
23 MAINTIME equals 12 (OCH).

24 MAINTIME equals 13 (ODH).

3-28

ICE-86A

22

23

24

EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

LIGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 000BH
SIDECYCLELENGTH = 0005H, SIDETIME =0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

LIGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 000CH
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

LIGHTSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 000DH
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN .

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARING MAIN LOOP

EMULATION BEGUN

Sample ICE-86A Sessions at the Terminal

3-29

Sample ICE-86A Sessions at the Terminal ICE-86A

25 MAINTIME equals 14 (OEH).

26 MAINTIME equals 15 (OFH).

27 Finally, MAINTIME equals 16 or two times MAINCYCLELENGTH. This
time the condition ‘CARSWAITING = 1 AND MAINTIME >= 2 * MAIN-

CYCLELENGTH?’ is TRUE and we should see a call to CYCLE at the end of
the IF test.

3-30

ICE-86A Sample ICE-86A Sessions at the Terminal

]
L[]
L]

EMULATION TERMINATED, CS:IP=0000:0236H
START OF IF TEST

25 LIGHTSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 000EH
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

26 LIGHTSTATUS =0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 000FH
SIDECYCLELENGTH:= 0005H, SIDETIME = 0070H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0278H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0288H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:021FH
STARTING MAIN LOOP

EMULATION BEGUN

L]
-

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

27 LIGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0010H
SIDECYCLELENGTH = 0005H, SIDETIME = 0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN ,
EMULATION TERMINATED, CS:1P=0000:023DH
EMULATION BEGUN ,
EMULATION TERMINATED, CS:1P=0000:023FH
EMULATION BEGUN ,
EMULATION TERMINATED, CS:1P=0000:0240H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0244H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0245H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0249H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:024BH

3-31

Sample ICE-86A Sessions at the Terminal ICE-86A

28 Address 027BH in the beginning of the conditional ‘DO’ loop.

29 Here is the beginning of CYCLE (0A7H). CYCLE is a loop controlled by the
statement ‘DO WHILE SIDETIME <= SIDECYCLELENGTH’;
SIDECYCLELENGTH is 5, so the loop should exit when SIDETIME equals 6.
We could have included ICE-86A commands in macro EXAM to examine
CYCLE more closely (LIGHTSTATUS should be set to zero, and SIDETIME
should increment on each iteration). In our example, however, we simply wait
for CYCLE to return to the main program. The rest of the display on this page
shows two iterations of CYCLE. We have omitted the printout of the remaining
iterations.

3-32

ICE-86A

28

29

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:024EH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:024FH
EMULATION BEGUN

EMULATION TERMINATED, CS:|P=0000:0251H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0252H
EMULATION BEGUN

EMULATION TERMINATED, CS:|P=0000:0257H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0259H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:025CH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:025DH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0261H
EMULATION BEGUN

EMULATION TERMINATED, CS:P=0000:0263H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0265H
EMULATION BEGUN

EMULATION TERMINATED, CS:|P=0000:0267H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0269H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:026BH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:026EH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:026FH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0271H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0272H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0274H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0276H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP = 0000:027BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02A5H
CALLCYCLE

EMULATION BEGUN

EMULATION TERMINATED, CS:I1P=0000:02A6H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02A8H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02ADH
EMULATION BEGUN

EMULATION TERMINATED, CS:|P=0000:02B2H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02B6H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02BAH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02BFH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02C0H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0296H

CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02C5H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02C6H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D8H
CALL DELAY

Sample ICE-86A Sessions at the Terminal

3-33

Sample ICE-86A Sessions at the Terminal ICE-86A

30 Address 02D5H is the end of CYCLE. Two steps later, 027EH is the return
address from the call to cycle.

3-34

ICE-86A

30

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02CDH
EMULATION BEGUN
EMULATION TERMINATED, CS:|P=0000:02B2H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:02B6H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02BAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:02BFH

- EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02C0H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0296H

CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02C5H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02C6H
EMULATION BEGUN

EMULATION TERMINATED, CS:P=0000:02D8H
CALL DELAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02CDH
EMULATION BEGUN :

EMULATION TERMINATED, CS:1P=0000:02B2H
EMULATION BEGUN

EMULATION TERMINATED, CS:I1P=0000:02B6H
EMULATION BEGUN :

EMULATION TERMINATED, CS:IP=0000:02BAH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02BFH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02C0H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0296H

CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02C5H

EMULATION TERMINATED, CS:1P=0000:0296H

CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02C5H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02C6H
EMULATION BEGUN

EMULATION TERMINATED, CS:|P=0000:02D8H
CALL DELAY

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02CDH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02B2H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02B6H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02BAH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02BCH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D0H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D5H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D6H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:027EH

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0283H

Sample ICE-86A Sessions at the Terminal

3-35

Sample ICE-86A Sessions at the Terminal

3-36

31

32

33

34

Here we are back at the start of the main loop.

The display of variables shows LIGHTSTATUS at 1 and CARSWAITING at
zero. SIDETIME is 6 as we expected. MAINTIME is 1 and will continue to
increment as long as we allow the program to emulate.

We consider this test ‘successful’, and abort the emulation by pressing the ESC
key.

Now to test the second condition. The macro call ‘TEST 2’ produces an
expansion of macro TEST; this time CARSWAITING is set to 2. Otherwise, the
expansion produces an executable macro identical to ‘TEST 1° shown in step 4.

ICE-86A

ICE-86A Sample ICE-86A Sessions at the Terminal

EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0288H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:021FH
31 STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0223H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0296H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0228H
EMULATION BEGUN
EMULATION TERMINATED, CS:iP=0000:0229H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:02D8H
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:iP=0000:0230H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0232H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST
32 LIGHTSTATUS =0001H, CARSWAITING = 0000H
MAINCYCLELENGTH = 0008H, MAINTIME = 0001H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:023DH
33 PROCESSING ABORTED

34 *:TEST2
*GO FROM .START TILL ..CARS#30 EXECUTED
**ICARSWAITING =2
**:VARIABLES
ee*WRITE ‘LIGHTSTATUS =" ILIGHTSTATUS,*, CARSWAITING =",!\CARSWAITING
ee*WRITE ‘MAINCYCLELENGTH =’,!MAINCYCLELENGTH,‘, MAINTIME =",!MAINTIME
ee*WRITE ‘SIDECYCLELENGTH =’,ISIDECYCLELENGTH,, SIDETIME =",!SIDETIME
eo*EM ;END OF MACRO VARIABLES .
o*:EXAM
eo*REPEAT
ese*STEP
eee*|F CS =SEG(.DISPLAY) AND IP = OFF(.DISPLAY) THEN
esee*WRITE ‘CALL DISPLAY’

esee*:POPB6 IP - ;RESTORE RETURN ADDRESS
sesee*|P = WORD SS:SP ;POP PARAMETER OFF STACK

eeeee*SP =GP + 2T ;MOVE POINTER TO NEW TOP OF STACK
sesce*EM ;END OF MACRO POP86

eeee*SP =GP 4+ 2T ;DISCARD PARAMETER

eeee*ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN

eeee*WRITE ‘CALL DELAY’

eeee*:POPS6 IP

**|P = WORD SS:SP ;POP PARAMETER OFF STACK

eeeee*SP=SP + 2T ;MOVE POINTER TO NEW TOP OF STACK

eecee*EM ;END OF MACRO POP86

eeee*SP =GP + 2T

eeee*ORIF CS = SEG(..CARS#30) AND IP = OFF(..CARS#30) THEN

eeee*WRITE ‘STARTING MAIN LOOP’

eeee*ORIF CS = SEG(..CARS#34) AND IP = OFF(..CARS#34) THEN

eesee*WRITE ‘START OF IF TEST’

**:VARIABLES

eeeee*WRITE ‘LIGHTSTATUS =", ILIGHTSTATUS,‘, CARSWAITING =",!\CARSWAITING
eeeee*WRITE ‘MAINCYCLELENGTH =",!MAINCYCLELENGTH,‘, MAINTIME =" ,IMAINTIME
seeee*\WRITE ‘SIDECYCLELENGTH =",!ISIDECYCLELENGTH,*, SIDETIME =",ISIDETIME
eseee*EM ;END OF MACRO VARIABLES

eeee*ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN

eeee*WRITE ‘CALLCYCLFE’

eeee*ENDIF

eee*ENDREPEAT

s EM ;END OF MACRO EXAM

3-37

Sample ICE-86A Sessions at the Terminal ICE-86A

35 We emulate to the start of the main loop, as before. This time CARSWAITING
is 2, and we should CALL CYCLE as soon as MAINTIME equals 8. We omit
the intermediate steps.

36 MAINTIME is 8, equal to MAINCYCLELENGTH.

3-38

ICE-86A

35

36

EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:0223H
LIGHTSTATUS = 0001H, CARSWAITING = 0002H

MAINCYCLELENGTH = 0008H, MAINTIME = 0000H

SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0296H
CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0228H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0229H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02D8H
CALL DELAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0230H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0232H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0236H
START OF IF TEST

LIGHTSTATUS =0001H, CARSWAITING = 0002H

MAINCYCLELENGTH = 0008H, MAINTIME = 0001H

SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:023BH
EMULATION BEGUN

START OF IF TEST
LIGHTSTATUS = 0001H, CARSWAITING = 0002H

MAINCYCLELENGTH = 0008H, MAINTIME = 0008H

SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:023DH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0240H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0244H
EMULATION BEGUN

EMULATION TERMINATED, CS:iP=0000:0245H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0249H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:024BH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:024EH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:024FH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0251H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0252H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0257H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0259H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:025BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:025CH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:025DH
EMULATION BEGUN

EMULATION TERMINATED, CS:iP=0000:0261H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0263H

Sample ICE-86A Sessions at the Terminal

Sample ICE-86A Sessions at the Terminal ’ ICE-86A

37 And here’s the béginning of CYCLE. Once more we omit the steps in CYCLE
from the text.

38 Thisis the end of CYCLE, and the return to the main program.

39 Back to the start of the main loop.

3-40

ICE-86A

37

38

39

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0265H
EMULATION BEGUN :
EMULATION TERMINATED, CS:IP=0000:0267H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0269H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:026BH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:026DH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:026EH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:026FH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0271H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0272H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0274H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0276H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000.027BH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02A5H
CALLCYCLE

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02B6H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02BAH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02BCH
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02D0H
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:02D5H
EMULATION BEGUN :
EMULATION TERMINATED, CS:1P=0000:02D6H
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:027EH
EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0283H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0288H

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:021FH

STARTING MAIN LOOP

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0223H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0298H

CALL DISPLAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0228H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0229H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:02D8H
CALL DELAY

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0000:0230H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0232H

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0000:0236H

START OF IF TEST

Sample ICE-86A Sessions at the Terminal

3-41

Sample ICE-86A Sessions at the Terminal ICE-86A

40 We consider this test ‘successful’, abort emulation, and exit from the ICE-86A
emulator back to ISIS-II (hyphen prompt).

ICE-86A Sample ICE-86A Sessions at the Terminal

40 LIGHTSTATUS =0001H, CARSWAITING = 0000H
MAINCYCLELENGTH = 0008H, MAINTIME = 0001H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:1P=0000:023BH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:023DH
PROCESSING ABORTED

*EXIT

3-43

CHAPTER 4
ELEMENTS OF THE ICE-86A™
COMMAND LANGUAGE

Introduction

The ICE-86A software provides you with an easy-to-use English language command
set for controlling ICE-86A execution in a variety of functional modes.

The ICE-86A commands enable you to:

e Initialize the ICE-86A system, map your program to memory in your system,
ICE-86A memory, disk memory, or in the Intellec Microcomputer Development
System, and load your program from a diskette file.

® Specify starting and stopping conditions for emulation.

* Execute real-time emulation of your software (and hardware).

e Execute single-step emulation.

e Specify conditions for trace data collection.

® Collect and display trace data on conditions occurring during emulation.
e Display and alter 8086 registers, memory locations, and 1/0 ports.

¢ Copy the (modified) program from mapped memory to a diskette file, and exit
the ICE-86A system.

An example of one complete ICE-86A command, in this case one of the forms of the
GO command, is shown in figure 4-1. This command causes emulation to start and
specifies the conditions that will halt emulation. The command is made up of ten
separate ‘‘words’’ (character strings that are referred to as tokens): GO, FROM,
0123H, TILL, 1000H, TO, 1100H, READ, USING, and CS. Each of these tokens
provides a particular element of information necessary to inform the ICE-86A
emulator of the specific command functions (see table 4-1). The tokens also form
the following command components: the FROM clause, match-range, match-status,
segment-register-usage, match-condition, and TILL clause. This string of tokens
requests the ICE-86A emulator to start emulation at location 0123H and to continue
emulation until data is read from any memory location within the match-range (par-
tition) of addresses 1000H through 1100H using the CS segment register in the effec-
tive address calculation. Every ICE-86A command is composed of one or more such
tokens.

GO FROM 0123H TILL 1000H T0 1100H READ USING cs
tokent token2 token3 ken4 token5 L token7 tokens8 token9 token10
ﬁ__J N ~v / “‘Y—J ﬁ,___/
FROM-clause match-range match- segment-
status register-
usage
N J
~

match-condition

~
TiLL-clause

Figure 4-1. Example of a GO Command . 1625545

Elements of the ICE-86A Command Language

42

Table 4-1. Definition of GO Command Functions

Token
Number

Name

Function

1

2,3

5,6,7

10

9,10
5thru10

4thru 10

GO

FROM

0123H

FROM clause

TILL
1000H
TO

1100H

match-range

READ

USING

Cs

segment-register-usage

match-condition

TILL clause

GO command specifier; requests and
initiates emulation.

Indicates that the next token or
expression is the starting address for
emulation.

Starting address in hexadecimal
radix.

FROM 0123H causes the instruction
pointer (IP) to be loaded with 0123H,
the starting address for emulation.
Also, the code segment register (CS)
is loaded with 0.

Indicates that the breakpoint (halting)
parameters are to follow.

Specifies the lowest address of a
range of memory locations. This
parameter is the lower bound of a
memory partition.

Indicates that the upper bound
(address) of the range (partition) of
memory locations is to follow.

Specifies the highest address of the
range of memory locations.

Emulation is to halt if an access to any
memory location whose address falls
within the range of 1000H to 1100H.

Emulation is to halt if any of the above
memory locations are read.

Indicates a segment register is to
follow.

The code segment register(CS) must
be used in the effective address
calculation in order to match.

Emulation is to halt if the CS is used.

Emulation is to halt if data is read
from any memory location in the
match-range.

TILL 1000H TO 1100H READ USING CS
specifies that the emulation is to halt
whenever the match-condition is
met. This clause is also called the
‘GO-register’ in the ICE-86A
language.

Note: The match-condition consists of the three sub-conditions: match-range (tokens
5,6,7), match-status (token 8), and segment-register-usage (tokens 9,10). All
three of these conditions must be matched for emulation to halt.

As briefly indicated in figure 4-1, the ICE-86A commands are written in an ICE-86A
command language composed of a unique character set and vocabulary of tokens
augmented by a particular set of syntactic rules. The tokens are constructed from the

ICE-86A

ICE-86A

Elements of the ICE-86A Command Language

character set and in turn are used to construct commands. The tokens consist of a set
of predefined literals augmented by user-defined literals that provide symbolic
references. Table 4-1 contains the definition of each token shown in figure 4-1.

The purpose of this chapter is to present a detailed specification of the ICE-86A
command language. The language consists of two parts, a vocabulary that is used to
convey elements of information to the ICE-86A emulator and a ‘‘grammar’’ (syn-
tactic rules) used to group command words into command constructs such as the
FROM clause shown in figure 4-1. The remainder of this chapter is devoted to the
presentation of the command language. The initial discussion deals with class-names
and the notation used to describe the language and will include a listing of the syn-
tactic rules that govern command construction. This will be followed by a presenta-
tion of the command literals (keywords) and a discussion of symbolic references.

Notation and Conventions Used in This Manual

This manual employs a set of notational symbols and conventions to describe the
structure of commands and other language constructs. The features of this notation
are described in the following paragraphs. Table 4-2 contains the notational symbols
used to define and describe the command structures.

Table 4-2. Notational Symbols

Symbol Meaning

‘‘isdefined as”’
Mutual exclusion
May be repeated indefinitely

{ .. At least one entry must be selected. If more than one entry is
selected, they may be selected in any order.

{2 One of the enclosed entries must be selected.

[].. Selection of the enclosed entries is optional. If more than one entry is
selected, they may be selected in any order.

[Selection of the enclosed entries is optional but only one entry may
be selected. If this symbol encloses only one entry, that entry is
optional.

In addition to the above notational symbols, a set of class-names are used to assist in
the definition and description of entities in the ICE-86A command language. Each
class-name is an identifier for a specific set of characters, mnemonics, or constructs
and is always shown in lower-case italics. Any character string not in lower-case
italics is a specific character, mnemonic or construct. For example, the class-name
segment-register refers to the entire class of segment registers. The character string
CS refers to the Code Segment Register, which is one of the four segment registers.

As shown in figure 4-1, the smallest meaningful unit of information contained
within a command is a mnemonic character string that is the equivalent of a word.
Examples are: GO, 0123H, and FROM. These mnemonics are assigned the class-
name: token. In addition to these basic elements, the tokens are combined
into multi-token forms such as the FROM clause and match-condition shown in
figure 4-1.

" Elements of the ICE-86A Command Language

4-4

The ICE-86A vocabulary is made up of two classes of mnemonics: tokens and
special-tokens:

token = constant .. keyword ::symbol .. string .. operand
special-token = operator . punctuation-mark .. delimiter . terminator

The notational symbol (::) specifies mutual exclusion. That is, a token is a constant,
or keyword or symbol or string or operand .

Each of the above classes of tokens and special-tokens is defined later in this chapter
or in the next chapter in the discussion of expressions.

Syntactic Rules Used in the Manual

This manual employs a set of conventions to describe the structure of commands
and other ICE-86A language forms. Items 1 and 2 below specify the use of class-
names and tokens, respectively. The features of this notation system are as follows:

1.

A lower-case italicized entry in the description of a command is the class-name
for a set or class of tokens. To create an actual operable command, you must
enter a particular member of this class. A class-name never appears in an actual
operable command. For example, the lower-case entry:

breakpoint-register

means that the command will accept any of the three tokens: BRO, BR1 or BR
(BR means BRO and BR1). Classes of tokens that have generalized usage, such
as the classes of reference keywords and command keywords, are explained and
assigned class-names in this chapter. Additional classes of tokens that appear in
the syntax descriptions of particular commands are explained in the discussion
of semantics that accompanies those commands.

An upper-case entry is a token that must be used literally as given. A valid
abbreviation of that token may substitute for the full token as given. The token
may be a command word, or it may be a particular member of a class of
references. For example, the upper-case entry

DEFINE

is a command word that must be used as given unless abbreviated. The
abbreviation DEF may be used in place of DEFINE. As another example, the
upper-case entry

BR1
means that breakpoint register 1 must be named as and where given.

A single required entry is shown without any enclosures: whereas a single
optional entry is denoted by enclosing in brackets. For example, in the com-
mand syntax

STEP [FROM address]

the token STEP is required. The significance of the brackets around the entry:
FROM address means that its selection is optional in this command.

Where only one entry must be selected from a menu of two or more entries, the
choices for the required entry are denoted by enclosing them in braces. For
example,

TRAGE = { FRAME l

INSTRUCTION

indicates that FRAME or INSTRUCTION must be selected; the tokens TRACE
and = are required as given.

ICE-86A

ICE-86A

Elements of the ICE-86A Command Language

An optional entry is enclosed in brackets []. For example,
STEP [FROM address]

means that the command word STEP is required but the clause FROM address
is optional in this command.

Where a choice exists for an optional entry, the choices are given in a vertical
arrangement enclosed in brackets. For example, the command

OF BYTE

OF WORD

OF SINTEGER
OF INTEGER
OF POINTER
OF REAL

means that DEFINE, symbol, =, and expr are required in this command and
module-name is optional. The brackets around the vertical arrangement of
memory type designators denotes that selection of a memory type designator is
optional but only one designator may be selected per DEFINE command.

DEFINE [module-name] symbol = expr

A group of required inclusive choices is given in a vertical arrangement and
enclosed in braces () followed by a repeat symbol (...). ‘‘Inclusive’’ means
that more than one of the items can be entered in the same command, and items
can appear in any order; no item can be entered more than once. The menu of
inclusive items represents a required entry or entries. For example:

READ

WRITTEN

INPUT
match-status-list = OUTPUT) s

FETCHED

HALT

ACKNOWLEDGE

This notation indicates that one or more items from the vertical list is required
to specify a match-status-list. If more than one item is used, they can be in any
order and must be separated by commas.

To complete the example:
WRITTEN, HALT, READ, FETCHED
is a valid match-status-list.

A group of optional inclusive choices is given in a vertical arrangement and
enclosed in brackets and followed by a repeat symbol (...). ‘‘Inclusive’’ means
that more than one of the items can be entered in the same command, and the
items can appear in any order; no item can be used more than once. The menu
of inclusive items represents an optional entry or entries. For example:

NOCODE
LOAD path-name | NOSYMBOL
' NOLINE

This notation indicates that none, one, or more than one choice of NOCODE,
NOSYMBOL, and/or NOLINE may be included in one LOAD command; if
more than one is used, the entries can be in any order.

To complete the example:
LOAD :FO:TEST NOSYMBOL NOCODE NOLINE
is a valid command.

Elements of the ICE-86A Command Language

8. Where mutually exclusive entries can be shown on one line, the following
shorthand notation can be used:

SUFFIX=Y:0:QuT:H
This example is equivalent to
Y
(0]
SUFFIX=4 Q

T
H

9. Where an entry can be repeated indefinitely at the user’s option, the syntax
is notated by enclosing the repeatable entry in brackets [] followed by an
ellipsis For example,

operand [operator operand] ..
indicates that operator operand can be repeated as many times as desired.

Character Set

The valid characters in the ICE-86A command language include upper and lower
case alphabetic ASCII characters A through Z and the set of digits 0 through 9. The
space serves as a delimiter for tokens, and carriage-return/line-feed characters are
also valid, delimiting command lines. A question mark, ?, @ sign, and $ sign are
also valid in user-defined names entered in the command language.

The algebraic operators + and — (binary and unary), the asterisk (*), and slash (/),
relational operators (=, <, >), the ampersand, semicolon, colon, period, paren-
theses, exclamation mark (!), pound sign (#), percent sign (%) and comma constitute
the only other valid ASCII characters for the ICE-86A emulator. Non-printing
characters are ignored; tabs, form feed, etc. are treated as spaces. Other characters
are errors.
alphabetic characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz@?
numeric characters:
0123456789 (ABCDE F: hexadecimal characters)
special characters:

+ -<=>8"&).(;*1#:,%

This character set is used to construct the vocabulary that constitutes the command
language.

Introduction to Tokens

A token in ICE-86A command language is roughly equivalent to a ‘word’ in the
English language. It consists of a string of alphanumeric characters that may be
augmented by a one or two special character prefix that serves as a token identifier.
Tokens are divided into the following types: keywords, user-names, and special-
tokens. Examples are:

REGISTERS, .START, ..MODULE, .SAM, 0400, 123AH.

ICE-86A

ICE-86A

Elements of the ICE-86A Command Language

Keywords

The ICE-86A emulator recognizes a general class of predefined tokens that are fixed
in the command language. They provide two functions. Reference keywords are
used to specify locations having unique predefined functions. Command keywords
specify command type and subfunctions within a command. The following sections
define and describe these keyword classes. Each class and associated keyword set is
presented in the following paragraphs. Appendix A contains a listing of ICE-86A
keywords and their abbreviations.

The reason for discussing the various classes and subsets here is to smooth the later
discussions of commands, where the class-names are used to show what elements
may appear in specific commands.

Reference Keywords

The command language contains a set of system defined mnemonic tokens that are
used to address system objects. Each device, such as the accumulator or a register, is
assigned a specific mnemonic that is to be used to address and access the contents of
that device. These identifiers are called reference keywords. Reference keywords are
used in ICE-86A commands to refer to 8086 processor registers and flags, emulation
registers, memory locations, and 1/0 ports.

The total set of reference keywords is subdivided by types, each of which is refer-
enced by a class name. Class names are always shown in lower case italics. For exam-
ple, the class name general-register denotes the set of four 16-bit general work
registers in the 8086 processor. A reference token is assigned to each element within
the given class and is always shown in upper case. For example, ‘RAX’ denotes the
contents of the accumulator (RAX register) of the general register set.

Registers

The register structure contains three files of four 16-bit registers, a set of
miscellaneous registers, and a set of four pseudo-registers. The three files of registers
are the general register file, the pointer and index file, and the segment register file
(see table 4-3). The miscellaneous set consists of the instruction pointer, flag
register, CAUSE register, OPCODE register, PIP register, TIMER register,
HTIMER register, and BUFFERSIZE register. The pseudo-register set consists of
the breakpoint and trace point registers. The miscellaneous register set and the
pseudo-registers provide a variety of functions to the ICE-86A emulator that are
described in the appropriate command sections of this manual. The register struc-
tures are described in the following paragraphs.

Table 4-3. Classes of Hardware Elerpents

Class Name Hardware Elements
general-register 8-bit and 16-bit work register
pointer-register 16-bit address register
index-register 16-bit address register
segment-register 16-bit segment reference register
status-register 8-bit and 16-bit status registers
emulation-register breakpoint and tracepoint registers

4-7

Elements of the ICE-86A Command Language

4-8

General Register File. The RAX, RBX, RCX, and RDX registers compose the
General Register File. These registers participate interchangeably in 8086 arithmetic
and logical operations. These registers are assigned the following mnemonics:

RAX: Accumulator Note: These are the 8086 AX, BX, CX, DX
RBX: Base Register registers (i.e., the ICE-86A emulator
RCX: Count Register appends ‘R’ to the 8086 names).

RDX: Data Register

The general registers are unique within the 8086 as their upper and lower bytes are
individually addressable. Thus, each of the general registers contains two 8-bit
register files called the H file and L file as illustrated below.

HFile L File

15 87 0
RAX: RAH RAL
RBX: RBH ___RBL
RCX: RCH RCL
RDX: RDH RDL

Pointer and Index Register File

Pointer and Index Register File. The BP, SP, SI, and DI registers are called the
Pointer and Index Register File. The registers in this group are similar in that they
generally contain offset addresses used for addressing within a segment. They can
participate interchangeably in 16-bit arithmetic and logical operations and can also
be used in address computation. The mnemonics associated with these registers are:

SP: Stack Pointer
BP: Base Pointer
SI: Source Index
DI: Destination Index

The pointer and index registers are illustrated below.

15 0

SP:
BP:
Sl

DI:

General Register File

Segment Register File. The CS, DS, SS, and ES registers constitute the Segment
Register File. These registers provide a significant function in the memory address-
ing mechanisms of the 8086. They are similar in that they are used in all memory
address computations. The mnemonics associated with these registers are:

CS: Code Segment Register
DS: Data Segment Register

SS: Stack Segment Register
ES: Extra Segment Register

ICE-86A

ICE-86A

Elements of the ICE-86A Command Language

The contents of the CS register define the current code segment. All instruction
fetches are taken to be relative to CS using the instruction pointer (IP) as an offset.

The contents of the DS register define the current data segment. All data references
except those involving BP, SP, or DI in a string instruction are taken by default to
be relative to DS.

The contents of the SS register define the current stack segment. All data references
which implicitly or explicitly involve SP or BP are taken by default to be relative
to SS.

The contents of the ES register define the current extra segment. The extra segment
has no specific use, although it is usually treated as an additional data segment.

The segment registers are illustrated below.

15 0

CSs:
Ds:
SS:
ES:

Segment Register File

Status Registers

The instruction pointer, flag register, CAUSE register, OPCODE register, PIP
register, TIMER register, HTIMER register, BUFFERSIZE register, UPPER
register, and LOWER register constitute the status register set. These registers pro-
vide a variety of functions to the emulator. These registers are assigned the following
mnemonics:

IP: Instruction Pointer (8086)

RF: Flag Register (ICE-86A emulator)

CAUSE: CAUSE Register (ICE-86A emulator)

OPCODE: OPCODE Register (ICE-86A emulator)

PIP: Previous Instruction Register (ICE-86A emulator)
TIMER: TIMER Register (ICE-86A emulator)

HTIMER: HTIMER Register (ICE-86A emulator)
BUFFERSIZE: BUFFERSIZE Register (ICE-86A emulator)
UPPER: UPPER Register (ICE-86A emulator)

LOWER: LOWER Register (ICE-86A emulator)

The contents of the IP register define the offset to the CS register in instruction
address computations. The Flag Register contains the status flag values in the same
format as that pushed by the 8086 PUSHF instruction. The CAUSE register retains
the cause of the last break in emulation and the OPCODE register stores the opcode
fetched in the last instruction-fetch cycle in trace data. The Previous Instruction
Register stores the displacement part of the address of the last instruction-fetch in
trace data. TIMER contains the low-order 16 bits of the 2-MHz timer indicating
how long emulation has run (read only). HTIMER contains the high-order 16 bits of
the timer (read only). BUFFERSIZE contains the count (displayed in decimal only)
of frames of valid trace data collected in the trace buffer (16 bit, read only). The
UPPER register contains the highest address in ICE-86A workspace below the sym-
bol table. The LOWER register contains the lowest address in ICE-86 workspace
above the ICE-86A software.

Elements of the ICE-86A Command Language

4-10

The status registers are illustrated below.

BUFFERSIZE:

128 |

Re: |

CAUSE: I
OPCODE:

PIP:

TIMER:

HTIMER:

UPPER:

LOWER:

Status Registers

The Flag Register contains nine status bits. The following mnemonics are assigned

to each of the status values in the register:

AFL: Auxiliary carry out of low byte to high byte

CFL: Carry or borrow out of high bit

DFL: Direction of string manipulation instruction

IFL: Interrupt-enable (external)
OFL: Overflow flag is signed arithmetic

PFL: Parity

SFL: Sign of the result of an operation
TFL: Trap used to place processor in single step mode for debug

ZFL: Zero indicates a zero value result of an instruction

AFL is set if an instruction caused a carry out of bit 3 and into bit 4 of a resulting
value. CFL is set if an instruction caused a carry or a borrow out of the high order
bit. DFL controls the direction of the string manipulation instructions. IFL enables
or disables external interrupts. OFL denotes an overflow condition in a signed
arithmetic operation. SFL indicates the sign of the result of an operation. TFL
places the processor in a single-step mode for program debugging. ZFL indicates a
zero valued result of an instruction. The positions of the status bits in the RF

Register are shown below.

10

OFL

DFL

IFL TFL SFL | ZFL

AFL

PFL

CFL

Flag Register

The one byte CAUSE Register stores the cause for the last break in emulation.

The byte returned by the ‘“‘Read Break Cause’’ hardware command contains the
following bit values (if bit = 1, then the specified condition is true, otherwise false).
Each bit has associated with it a message that is displayed if the bit is true when the

software command CAUSE is entered.

Bit Position

NOODWN - O

Condition

Breakpoint 0 matched
Breakpoint 1 matched
Both breakpoints matched sequentially
Guarded memory access occurred
User aborted processing
Timeout on user READY
Timeout on user HOLD
External break signal

Display

‘BRO’
‘BR1’
‘SEQ’
‘GUARD’
‘ABORT’
‘RDYTO’
‘HLDTO’
‘EXTRN’

ICE-86A

ICE-86A

Elements of the ICE-86A Command Language

BRO and BR1 occur when emulation is halted due to matching the condition set in
the corresponding break register. Use of the breakpoint registers is discussed in
Chapter 6. SEQ occurs when emulation is halted due to matching both breakpoint
registers during the same instruction. For example, BRO can be set for the address of
an instruction while BR1 is set for the value at that address, i.e., the instruction
opcods. Then, when the specified instruction is fetched from the specified address,
SEQ is the break condition displayed. GUARD occurs when memory that was NOT
mapped is accessed. Memory mapping is discussed in Chapter 7. ABORT occurs
when the user presses the escape key to halt emulation. RDYTO occurs when emula-
tion is halted because of a ready timeout error. See Chapter 6 and Appendix B.
HLDTO occurs when emulation is halted because of a hold timeout error. See
Appendix B. EXTRN occurs when the user halts emulation through the external
break line in the buffer box. See Chapter 1 for a description of this line.

8086 Pin References

The ICE-86A emulator provides access to eight 8086 pins. The pin names reference
1-bit values. Pin names are read-only references only. The following mnemonics are
assigned to reference the 8086 processor pins shown below.

Mnemonic 8086 Pin Meaning

RDY READY Acknowledgment from addressed memory or |/O
device that it has completed data transfer.

NMI NMI Non-maskable interrupt.

TEST TEST Used by the wait-for-signal instruction for processor
synchronization purposes.

HOLD HOLD Request for local bus “‘hold’’. .

RST RESET Causes processor to immediately terminate present
activity.

MN MN/MX Specifies minimum/maximum configuration.

IR INTR Maskable interrupt request.

RQGT,BUS RQ/GTO, Request/Grant pin

RQ/GT1

(HOLD, HLDA)

Emulation Registers

The emulation registers consist of the breakpoint registers and the trace registers.

Type Class Name Keywords
Breakpoint register break-reg BRO, BR1, BR
Trace point register trace-reg ONTRACE,

OFFTRACE
GO register go-reg GR

The term break-reg is the class name for the two breakpoint registers used to halt
emulation. The term trace-reg is the class name for the two registers that control
tracing. The term go-reg refers to the GO-register, an ICE-86A pseudo-register that
controls the breaking of real-time emulation.

Command Keywords

The command keywords specify command types and command functions to be exe-
cuted. ICE-86A commands are of three major types: simple commands, compound
commands, and macro commands. The following sections define the associated
command formats and illustrate the use of keywords in each of the command types.
Each of the formats is specified and illustrated by example using appropriate com-
mand keywords. The full vocabulary of command keywords is presented following
the command descriptions.

Elements of the ICE-86A Command Language

4-12

Simple Commands

Simple commands are one of three types:
® Set/change commands

e Display commands)

¢ Execution commands

The following sections describe the formats and provide examples of each of these
simple commands.

Set/Change Commands. The set/change commands have the following format:

item-type litem-qualifier]... = new-setting

where
item-type A keyword or user name of an alterable element.
item-qualifier A keyword, user name or value used to provide further
specification of the particular element that is to be set or
altered.
new-setting The value that the specified item is to be set to.
Examples:

BRO = 1000H EXECUTED
BYTE 10FFH = 3AH
..MOD1 .SYMBA .SYMBB = 10FFH

Display Commands. The display commands have the following format:

item-type [item-qualifier]...

where
item-type A keyword or user name of a displayable element or set
of displayable elements.
item-qualifier A keyword, user name or value used to provide further
specification of the particular element(s) to be
displayed.
Examples:
BRO
BYTE 10FFH
..MOD1.SYMBA.SYMBB
REGISTER
RAX
FLAG
STACK 10

ICE-86A

ICE-86A

Elements of the ICE-86A Command Language

Execution Commands. The execution commands have the following format:

command-verb [command-parameter]...

where

command-verb

command-parameter

Examples:

GO
GO FROM .START

A command keyword that describes an action that is

to be performed.

Keywords that specify the objects of the action

denoted by the command-verb.

GO FROM .START TILL 1000H EXECUTED

TRACE
PRINT ALL
PRINT 10
MOVE -10

Compound Commands

Complete description of the formats of the compound commands and the use of

keywords with these commands is contained in Chapter 8.

Macro Commands

Complete description of the formats of the macro commands and the use of

keywords with these commands is contained in Chapter 8.

Utility Command Keywords

The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating
system for the Intellec Microcomputer Development System. The ICE-86A emulator
runs under ISIS-1I control, and can call upon ISIS-II for file management functions
through the utility commands. These commands employ the following command

keywords:

Keyword
ICE86
EXIT
LIST
LOAD

NOCODE
NOLINE

NOSYMBOL

SAVE
SELECTING

Function

Commands the ICE-86A program to load from diskette.
Commands control to be returned to ISIS-Il.

Commands ICE-86A emulation output to be copied to printer or
file.

Commands user program to load into memory accessed by
ICE-86A.

A Modifier specifying that program code is not to be saved.

A Modifier specifying that the line number table is not to be
saved.

A Modifier specifying that the symbol table is not to be saved to
diskette.

Commands user program to be saved on an external device.

A Modifier specifying that a range of modules whose symbols
are to be LOADed is to follow.

4-13

" Elements of the ICE-86 A Command Language

4-14

Number Base and Radix Commands

ICE-86A commands and displays involve several different number bases (radixes).
This section describes the command keywords and radixes used to control the
number base.

Keyword Function
BASE Set or display console output radix.
SUFFIX Set or display console input radix.
EVALUATE Commands a numeric constant or expression to be displayed

in all five possible output radixes.

H Hexadecimal (base 16).
(0] Octal (base 8).

Q Octal (base 8).

T Decimal (base 10).

Y Binary (base 2).

ASCII ASCII character code.

Memory Mapping Command Keywords

These commands display, declare, set or reset the ICE-86A memory mapping. The
ICE-86A emulator uses these maps to determine what memory is installed on a pro-
totype system and what memory resources are being ‘‘borrowed’’ from the Intellec
system and the ICE emulator for testing purposes. These commands employ the
following keywords:

Keyword Function

DISK Maps logical memory segments into a diskette file.

GUARDED Declares memory segments to be guarded. Accesses to
addresses in these segments are error conditions.

ICE Maps memory segments into ICE ‘‘real-time’ memory.

INTELLEC Maps memory segments to expanded Intellec memory.

MAP Commands the ICE-86A emulator to display, declare, set, or
reset ICE-86A memory mapping.

NOVERIFY Specifies that the normal read-after-write verification of data
loaded into memory be suppressed.

RESET Resets the ICE-86A memory mapping.

USER Maps logical segments into user’s prototype memory.

Hardware Register Command Keywords

This section presents the keywords used in the ICE-86A emulator to specify and
modify hardware register commands.

Keyword Function

BUS Command keyword indicating that the current master of the
bus is to follow.

CLOCK Command keyword indicating that a system clock specification
is to follow. :

DISABLE Command keyword indicating that a command function is to be
disabled.

ENABLE Command keyword indicating that a command function is to be
enabled. ‘

ERROR Command modifier specifying that an error is to be reported
whenever the command signal times out.

EXTERNAL ICE-86A is to operate from an external (user-provided) clock.

ICE-86A

ICE-86A

FLAG
HARDWARE
INFINITE
INTERNAL
PIN
REGISTER

RQGT

RWTIMEOUT

Elements of the ICE-86A Command Language

Contents of the 9 flags are to be displayed.

Reset command modifier, causes a hardware reset.

Set command signal timeout to ‘“‘infinite,”’ disabling timeout.
ICE-86A is to operate from an internal (8086-provided) clock.
Contents of the six 8086-input pins are to be displayed.
Contents of the thirteen 16-bit 8086 registers and RF are to be
displayed.

Command keyword indicating that the methods of handling
requests for the bus in maximum mode is to be displayed or
set.

Used to enable or disable memory access timeout.

Memory and Port Contents Command Keywords

These commands give access to the content or current value stored in designated

memory locations or input/output ports.

Keyword

ABSOLUTE
BASE
BOOL
BYTE
INTEGER
LENGTH

DASM

DREAL
POINTER
PORT
REAL
SINTEGER
STACK
TREAL
WORD
WPORT

Function

Display all addresses as 20-bit numbers.

Display all addresses in base and displacement format.

Display expression as a boolean value.

1-byte, unsigned integer value.

2-byte, unsigned integer value.

Indicates that an integer value denoting the length of a partition
is to follow.

Indicates that a range of memory is to be disassembled into
8086 assembly language mnemonics.

8-byte, signed real value.

4-byte, pointer value.

Reference to 8-bit 1/0 ports.

4-byte, signed real value.

1-byte, signed integer value.

Indicates that words from the user’s stack is to be displayed.
10-byte, signed real value.

2-byte, unsigned integer value.

Reference to 16-bit 1/O ports.

Symbol Table and Statement Number Table Command Keywords

The ICE-86A emulator maintains a symbol table and source program statement
number table to enable the user to refer to memory addresses and other values by
using symbolic references and statement number references in ICE-86 A commands.

The following are command keywords contained in these commands:

Keyword

DEFINE
DISABLE
DOMAIN

ENABLE
LINE

MODULE

OF

REMOVE
SYMBOL
SYMBOLICALLY
TYPE

Function

Command keyword indicating a symbol is being defined.
Command keyword used to disable a facility.

Keyword used to establish a default module for source
statement number references.

Command keyword used to enable a facility.

Specifies the display of all of the source statement number
table.

Specifies the display of all of the ICE-86A module table.
Specifies that a memory type designation is to follow.
Specifies that symbolic reference(s) is/are to be deleted.
Specifies the display of the entire ICE-86A symbol table.
Specifies the symbolic display of values.

Indicates an assignment or change of memory type to a
symbolic reference.

4-15

Elements of the ICE-86A Command Language

4-16

Emulation Control Command Keywords

The emulation control commands permit the user to specify the starting address
where emulation is to begin, and to specify and display the software or hardware
conditions for halting emulation and returning control to the console for further
commands. These commands employ the following keywords:

Keyword

ACKNOWLEDGE
AND

DOWN
EXECUTED
FOREVER
FETCHED
FROM

GO

HALT
INPUT
LOCATION

OR
OBJECT

OUTPUT
READ
STEP
TILL

up
USING
VALUE

WRITTEN

Function

Match on 8086 interrupt acknowledge.

Indicates a match on both breakpoint registers required to halt
emulation.

Less than or equal to the referenced address.

An instruction fetch out of the execution queue.

All break conditions disabled.

Memory read into the execution queue.

Keyword introducing a starting address.

Command keyword that starts emulation.

8086 processor halt.

1/0 portread.

Denotes the following constant or expression to be an
address.

Indicates that a match on either breakpoint register will halt
emulation.

Indicates that a memory reference or typed memory reference
is to follow.

110 port write.

Memory read.

Single-step emulation command.

A keyword introducing one or more match or halt conditions.
Greater than or equal to the referenced address.

Indicates that a segment register is to be specified.

Denotes the following constant or expression to be a data
value.

Memory write.

Trace Control Commands

The trace control commands allow the user to display or change the match condition
in either or both of two tracepoint registers and to establish a tracepoint to condi-
tionally start trace collection and a tracepoint to stop collection. These commands
employ the following keywords:

Keyword

ADDR
ALL

BHE
CONDITIONALLY

DMUX
EXTRADDR

FRAME
INSTRUCTION

MARK

Function

Low-order 16 address/data bits.

A function keyword indicating that the entire trace buffer
contents are to be displayed.

Byte High Enable.

Indicates trace is to be turned on when ONTRACE matches and
turned off when OFFTRACE matches.

Type of frame.

High-order 4 address bits (address frame) or 4 status bits (data
frame).

Indicates that a trace reference is to follow or that the trace
buffer is to be displayed frame by frame.

A function keyword indicating that data in the trace buffer'is to
be displayed in instruction format.

Equal 1 if trace was turned off before current frame or if
emulation broke before current frame.

ICE-86A

ICE-86A

Elements of the ICE-86A Command Language

MOVE Command keyword -moves the trace buffer pointer.

NEWEST Moves trace buffer pointer to bottom of buffer.

NOW Indicates trace setting for beginning of next emulation.

OFF Indicates trace turned off.

OLDEST Moves trace buffer pointer to top of buffer.

ON Indicates trace turned on.

PRINT Command keyword calling for a display of one or more entries
from the trace data buffer.

QDEPTH Queue depth.

QSTS 2 queue status bits, QS1, QS0.

STS 3 status bits S2/, S1/, S0/.

TRACE Command keyword indicating that the mode of display for trace

datais to be set.

User Names

The command language permits the programmer and operator to employ symbolic
addressing through the use of user-generated tokens as opposed to system-generated
tokens (keywords). The language permits four types of user names: symbols,
module names, statement numbers and macro names (see Chapter 8).

Symbols

A symbol is a sequence of contiguous alphanumeric characters, prefixed by a period
(), that references a location in a symbol table. The symbol has two uses. The
referenced table location always contains a number; it may be an address of an
instruction or variable in a program module, or it may be used directly as a
numerical value. In the first case, the symbol is an alternative method of program

addressing (symbolic as opposed to direct numeric addresses). In the second case, it

provides a method for storing and retrieving data values symbolically into/from the
table itself.

As an example, consider the symbol .BEGIN in module ..MAINLOOP. The entire
reference to this occurrence of .BEGIN is:

..MAINLOOP.BEGIN
where

the double period (..) designates MAINLOOP as a module-name and
the single period (.) designates BEGIN as a symbol-name.

Statement Numbers

In the process of compiling a source module in DEBUG mode, the PL/M compiler
generates a set of (source) statement numbers, one for each source statement in the
module. Each statement number is linked to the absolute address of the first
instruction generated by the PL/M compiler for the associated source statement in
the source program. Each compiled program will contain a table of statement
numbers and absolute addresses. Items (addresses) in the table are referenced by
entering the associated statement number.

4-17

Elements of the ICE-86 A Command Language

4-18

The form of reference is:
module-name # decimal-10
where
is the ‘number’ sign; this designates the reference as a statement number and

decimal-10 is the (source) statement number (a numeric constant). The default
suffix of decimal-10 is always decimal.

For example,

..MAINLOOP#123
#123 is statement number 123 in the source program ..MAINLOOP. This reference
would obtain the address of the first instruction generated by source statement 123

of module .. MAINLOOP.

Statement numbers are an alternative to program addressing, as opposed to labels in
the program. '

Special Tokens

The command language contains two special token sets that provide special func-
tions: operators and punctuation.

Operators
Type Class Name Operators
relational rel-op =,<,>,<=,< >, >=
plus plus-op +, —, (binary and unary)
mult multi-op *, /,MOD
logical log-op - NOT, AND, OR, XOR
Punctuation
Type Class Name Punctuation Characters
punctuation punct-op & ., ;i D(SCRLFSP%#.. 1!

The use of punctuation characters are defined in those sections that define command
formats.

Entering Commands at the Console

The ICE-86A emulator displays an asterisk prompt (*) at the left margin when it is
ready to accept a command from the console.

Each command is entered as a command line, which consists of one or more input
lines; the length of an input line is limited to the number of characters that one line
of the console display can contain.

ICE-86A

ICE-86A Elements of the ICE-86A Command Language

The ICE-86A emulator recognizes the carriage return as the terminator for a com-
mand line. If it is necessary to use more than one input line to enter a command,
each intermediate input line should end with an ampersand (&). When the ICE-86A
emulator encounters the ampersand, it suppresses the interpretation of the com-
mand that would occur on encountering the carriage return that follows. After the
carriage return is executed, the ICE-86A emulator displays a double asterisk prompt
(**) to acknowledge the continuation of the command line.

Tokens in the command are separated by blanks, unless the construct requires
another form of separator. For example, tokens in a list are separated by commas;
in this case, blanks (spaces) may be inserted for clarity but are not required.

Any input line may include comments. The comments which are preceded by a
semicolon (;) must appear after any portion of the command that is on that input
line; in other words, if the first character in an input line is a semicolon (;), the entire
input line must consist of comments. Characters in a comment are not interpreted by
the ICE-86A emulator and are not stored internally except in a DEFINE MACRO
command. The main use of comments is to document an emulation session while it
is in progress.

Comments may not be continued from input line to input line. If an ampersand is
used to continue a command line that also contains comments, the ampersand must
come before the comment. An ampersand that is embedded in a comment is ignored
by the ICE-86A emulator.

You can use ISIS-II editing capabilities to correct errors in the current in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>