

To order Intel literature write or call:

Intel Literature Sales
P.O. Box 58130

LITERATURE

Toll Free Number:
(800) 548-4725*

Santa Clara, CA 95052-8130

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
customers outside the U.S. Prices are subject to change.

1988 HANDBOOKS

Product line handbookS contain data sheets, application notes, article reprints and other design information:

NAME

COMPLETE SET OF 8 HANDBOOKS
Save $50.00 off the retail price of$175.00

AUTOMOTIVE HANDBOOK
(Not included in handbook Set)

COMPONENTS QUALITY/RELIABILITY HANDBOOK
(Available in July)

EMBEDDED CONTROLLER HANDBOOK
(2 Volume Set)

MEMORY COMPONENTS HANDBOOK

MICROCOMMUNICATIONS HANDBOOK

MICROPROCESSOR AND PERIPHERAL HANDBOOK
(2 Volume Set)

MILITARY HANDBOOK
(Not included in handbook Set)

OEM BOARDS AND SYSTEMS HANDBOOK

PROGRAMMABLE LOGIC HANDBOOK

SYSTEMS QUALITY/RELIABILITY HANDBOOK

PRODUCT GUIDE
Overview of Intel's complete product lines

DEVELOPMENT TOOLS CATALOG

INTEL PACKAGING OUTLINES AND DIMENSIONS
Packaging types, number of leads, etc.

LITERATURE PRICE LIST
List of Intel Literature

'Good in the U.S. and Canada

ORDER NUMBER

231003

231792

210997

210918

210830

231658

230843

210461

280407

296083

231762

210846

280199

231369

210620

'-PRICE IN
u.S. DOLLARS

$125.00

$20.00

$20.00

$23.00

$18.00

$22.00

$25.00

$18.00

$18.00

$18.00

$20.00

N/C

N/C

N/C

N/C

"These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

About Our Cover:

A piano keyboard is deceptively simple. Essentially an array of on-off switches, with the application of human
intelligence it can produce an infinite variety of sound Embedded controllers provide the "hidden intelligence"

found in thousands of products we use everyday.

In t e IlI..L it era t u c:I
" ,,:..II? rv i ~te ======~~

Get Intel's Latest Technical
Literature, Automatically!

Exclusive, Intel Literature Update Service

Take advantage of Intel's year-long, low cost Literature Update Service and you will receive
your first package of information followed by automatic quarterly updates on all the latest
product and service news from Intel.

Choose one or all five product categories update
Each product category update listed below covers in depth, all the latest Handbooks,
Data Sheets, Application Notes, Reliability Reports, Errata Reports, Article Reprints,
Promotional Offers, Brochures, Benchmark Reports, Technical Papers and much more ...

I""" 1. Microprocessors

Product line handbooks on Microprocessors, Embedded Controllers and Component
Quality/Reliability, Plus, the Product Guide, Literature Guide, Packaging Information
and 3 quarterly updates. $70.00 Order Number: 555110

I""" 2. Peripherals ---------------------~
Product line handbooks on Peripherals, Microcommunications, Embedded Controllers,
and Component Quality/Reliability, Plus, the Product Guide, Literature Guide,
Packaging Information and 3 quarterly updates. $50.00 Order Number: 555111

I""" 3. Memories ----------------------....
Product line handbooks on Memory Components, Programmable Logic and
Components Quality/Reliability, Plus, the Product Guide, Literature Guide, Packaging
Information and 3 quarterly updates. $50.00 Order Number: 555112

,... 4. OEM Boards and Systems----------------~

Product line handbooks on OEM Boards & Systems, Systems Quality/Reliability, Plus,
the Product Guide, Literature Guide, Packaging Information and 3 quarterly updates.

$50.00 Order Number: 555113

.. 5.SoHwa~----------------------~

Product line handbooks on Systems QualitylReliability, Development Tools Catalog,
Plus, the Product Guide, Literature Guide, Packaging Information and 3 quarterly
updates. $35.00 Order Number: 555114

To subscribe, rush the Literature Order Form in this handbook,
or call today, toll free (800) 548-4725. *

Subscribe by March 31, 1988 and receive a valuable free gift.

The charge for this service covers our printing, postage and handling cost only.

Please note: Product manuals are not included in this offer.

Customers outside the U.S. and Canada should order directly from the U.S. • "

Offer expires 12131/88. Int _,
'Good in the U.S. and Canada. I I-e-

inter
LITERATURE SALES ORDER FORM

NAME: __ _

COMPANY: __ ___

ADDRESS: ______________________ ~--------~--------------------~

CITY: _' ____________________ ~ _________ STATE: ________ ZIP: ________ _

COUNTRY: ________________________________ ~ __________________ ___

PHONE NO.: (~_--.!.. _____________________ ___.:.

ORDER NO.

I

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other)

TITLE QTY. PRICE TOTAL

____ ,' X _____ = -,-__ _

____ x _____ = ____ _

____ X _____ = ____ _

____ X ____ _

____ X _____ =;..-" ____ _

____ X _____ = ____ _

"_, ___ X _____ = ____ _

____ X _____ = ____ _

__ " __ X ____ ~

____ 'X ___ _

Subtotal ______ __

Must Add Your
Local Sales Tax _____ __

---------------------+J Posmge ______ __

Total _____ __

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable
, t9 Intel Literature Sales. Allow 2·4 weeks for delivery.
o Visa 0 MasterCard 0 American Express Expiration Date ________ __
AccountNo. __ ~ ________________________________ ------~----__ ---------

Signature: __ -,--,-____________ ----------------__.-----------,------------

~all To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052·8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.
European Literature Order Form in back of book.

Call'TolI Free: (800) 548·4725 for phorie orders '
Prices good 'until 12/31/88.

Source HB

inter
Intel the Microcomputer Company:

When Intel invented the microprocessor in 1971, it created the era of
microcomputers. Whether used as microcontrol/ers in automobiles or microwave

ovens, or as personal computers or supercomputers, Intel's microcomputers
have always offered leading-edge technology. In the second half of the 1980s, Intel

architectures have held at least a 75% market share of microprocessors at 16 bits and above.
Intel continues to strive for the highest standards in memory, microcomputer components,

modules, and systems to give its customers the best possible competitive advantages.

EMBEDDED CONTROLLER
HANDBOOK

1988

inter

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document· nor does it· make a· commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products: .

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH,
GENIUS, i, t ICE, iCEL, iCS, iDBP, iDIS, 121CE, iLBX, im, iMDDX, iMMX,
Inboard, Insite, Intel, intel, intelBOS, Intel Certified, Intelevision,
inteligent Identifier, inteligent Programming, Intellec, Intellink, iOSP,
iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME,
MUL TIBUS, MULTICHANNEL, MUL TIMODULE, MultiSERVER, ONCE,
OpenNET, OTP, PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Quick-Pulse Programming, Ripplemode, RMX/80, RUPI,
Seamless, SLD, SugarCube, SupportNET, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS@ is a registered
trademark of Mohawk Data Sciences Corporation. .

°MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

@INTELCORPORATION 1987

Table of Contents

Alphanumeric Index viii

8-BIT PRODUCTS
MCS®-48 FAMILY
Chapter 1

MCS®-48 Single Component System ; . 1-1
Chapter 2 --

MCS®-48 Expanded System _ -........... -... 2-1
Chapter 3

MCS®-48 Instruction Set .. ". 3-1
Chapter 4

DATA SHEETS
8243 MCS®-48InputiOutput Expander...................................... 4-1
P87 48H/P87 49H/8048AH/8035AHL/8049AH/8039AHLl8050AH/8040AHL

HMOS Single-Component 8-Bit Production Microcontroller 4-8
D8748H/8749H HMOS-E Single-Component 8-Bit Microcomputer " . " 4-21
MCS®-48 Express ". 4-33

MCS®-48 INDEX. 4-36
MCS®-51 FAMILY
Chapter 5 "

MCS®-51 Architectural Overview.. 5-1
Chapter 6 _

Hardware Description of the 8051, 8052 and 80C51•........ 6-1
Chapter 7

Hardware Description of the 83C51 FA (83C252) 7-1
Chapter 8

Hardware Description of the 83C152 ~ 8-1
Chapter 9

MCS®-51 Programmer's Guide and Instruction Set ~ ; 9-1
Chapter 10 -

DATA SHEETS
8031/8051 /8031 AH/8051 AH/8032AH/8052AH/8751 H/8751 H-8 8-Bit HMOS

and HMOS EPROM Microcontrollers ; .. _ 10-1
8051 AHP 8-Bit Control-Oriented Microcontroller with Protected ROM 10-15
8031 AH/8051 AH/8032AH/8052AH/8751 H/8751 H-8 Express , 10-25
8751 BH 8-Bit HMOS EPROM Microcontroller " , ; 10-27
8032BH/8052BH 8-Bit HMOS Microcontrollers ... ;-; 10-38
8752BH 8-Bit HMOS EPROM Microcontroller 10-46
80C31 BH/80C51 BH 8-Bit CHMOS Microcontrollers ;... 10-57
80C31 BH/80C51 BH Express ; 10-69

- 87C51 8-Bit CHMOS EPROM Microcontroller................................. 10-71
87C51 Express " , 10-84
87C51 FA (87C252) CHMOS Single-Chip 8-Bit Microcontroller. 10-87
83C152A180C152A Universal Communications Controller 10-102
80C152JAl83C152JAl80C152JB Universal Communications Controller 10-117
27C64/87C64 64K (8K x 8) CHMOS Production and UV Erasable PROMs 10-133
87C257 256K (32K x 8) CHMOS UV Erasable PROM ; : 10-146
UPITM-452 CHMOS Programmable I/O Processor 10-157

APPLICATION NOTES
AP-70 Using the Intel MCS®-51 Boolean Processing Capabilities 10-;211
AP-125 Designing MicroGontroller Systems for Electrically, Noisy Environments 10-256
AP-155 Oscillators for Microcontrollers ' 10-278

-v

Table of Contents (Continued)

AP-252 Designing with the 80C51 BH .. 10-310
AP-281 UPITM-452 Accelerates iAPX 286 Bus Performance 10-334

ARTICLE REPRINTS
AR-409 Increased Functions in Chip Result in Lighter, Less Costly Portable

Computer . 1 0-354
AR-517 Using the 8051 Microcontroller with Resonant Transducers 10-359

DEVELOPMENT SUPPORT TOOLS
8051 Software Packages. • 10-364
iDCX 51 Distributed Contr:>1 Executive 10-372
ICETM 5100/252 In-Circuit Emulator for the MCS®-51 Family 10-380

MCS®-51 INDEX .. 10-390
80C152 INDEX .. 10-392

THE RUPITM FAMILY
Chapter 11

The RUPITM-44 Family '. 11-1
Chapter 12

8044 Architecture . 12-1
Chapter 13

8044 Serial Interface .. 13-1
Chapter 14

8044 Application Examples. 14-1
Chapter 15

DATA SHEET
8044AH/8344AH/8744H High Performance 8-Bit Microcontroller with On-Chip

Serial Communication Controller . 15-1
APPLICATION NOTE

AP-283 Flexibility in Frame Size with the 8044. .. 15-27
ARTICLE REPRINT

AR-307 Microcontroller with Integrated High Performance Communications
Interface. .. 15-57

DEVELOPMENT SUPPORT TOOLS
ICETM51 00/044 In-Circuit Emulator for the RUPITM-44 Family 15-66

MCS®·80/85 FAMILY
Chapter 16

DATA SHEETS
8080Al8080A-1 /8080A-2 8-Bit N-Channel Microprocessor. 16-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors -.. 16-11
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and

Timer .. , 16-31
8185/8185-21024 x 8-Bit Static RAM for MCS®-85............................ 16-45
8224 Clock Generator and Driver for 8080A CPU. 16-50
8228 System Controller and Bus Driver for 8080A CPU. .. 16-55
8755A 16,384-Bit EPROM with I/O ; 16-59

16·BIT PRODUCTS
MCS®·96 FAMILY
Chapter 17

MCS®-96 Architectural Overview.. 17-1
Chapter 18

MCS®-96 Instruction Set ;............................... 18-1
Chapter 19

MCS®-96 Hardware Design Information.............. 19-1

vi

Table of Contents (Continued)

Chapter 20
80C196KA Architectural Overview. 20-1

Chapter 21
DATA SHEETS

809XBH/839XBH/879XBH with 8 or 16-Bit External Bus. 21-1
809XBH-10 Advanced 16-Bit Microcontroller with 8 or 16-Bit External Bus , 21-44
809X-90, 839X-90•.. , , 21-59
809XBH/839XBH/879XBH Express :................... 21-78
809X-90, 839X-90 Express. .. 21-87

. 80C196KA 16-Bit High Performance CHMOS Microcontroller 21-92
APPLICATION NOTES

AP-248 Using the 8096 .. 21-119
AP-275 An FFT Algorithm for MCS®-96 Products Including Supporting Routines

and Examples " " 21-222
DEVELOPMENT SUPPORT TOOLS

MCS®-96 Software Development Packages 21-297
iDCX 96 Distributed Control Executive 21-307
iSBE-96 Development Kit Single Board Emulator and Assembler for MCS®-96 21-315
VLSiCE-96 In-Circuit Emulator for the 8X9X Family of Microcontrollers 21-323
ICETM-196PC Real-Time Transparent 80C196 In-Circuit Emulator 21-333

MCS®-96 INDEX .. 21-335
80C196 INDEX•.. : ~ ; : 21-341

80186 FAMILY
Chapter 22

DATA SHEETS
80186 High Integration 16-Bit Microprocessor. 22-1
80C186 High Integration 16-Bit Microprocessor 22-53
80188 High Integration 16-Bit Microprocessor ..•............. , 22-111
80C188 High Integration 16-Bit Microprocessor•...... 22-165
82188 Integrated Bus Controller for 8086, 8088, 80186, 80188 Processors 22-225

APPLICATION NOTES .
AP-186 Introduction to the 80186 Microprocessor 22-241
AP-258 High Speed Numerics with the 80186, 80188. and 8087 22-316

". AP-286 80186/188 Interface to Intel Microcontrollers 22-332
DEVELOPMENT SUPPORT TOOLS ,

8086/80186 Software Packages " 22-362
.. VAXIVMS Resident 8086/8088/80186 Software Development Package.s 22-383

8087 Support Library , .. 22-391
80287 Support Library ... 22-395
iPAT Performance Analysis Tool•............................ 22-399
121CETM Integrated Instrumentation and In-Circuit Emulation System 22-412
ICETM-186 In-Circuit Emulator .. 22-424

vii

Alphanumeric Index

27C64/87C64 64K (8K x 8) CHMOS Production and UV Erasable PROMs 10·133
80C152JAl83C152JAl80C152JB Universal Communications Controller 10·117
80C186 High Integration 16·Bit Microprocessor••... " 22·53
80C188 High Integration 16·Bit Microprocessor 22·165
80C196KA Architectural Overview .. 20·1
80C196KA 16·Bit High PerformanceCHMOS Microcontroller. 21·92
80C31 BH/80C51 BH Express ..•...•. 10·69
80C31 BH/80C51 BH 8·Bit CHMOS Microcontrollers : 10·57
80186 High Integration 16·Bit Microprocessor ,... 22·1
80188 High Integration 16·Bit Microprocessor 22·111
80287 Support Library : ~ : . 22·395
8031/8051/8031AH/8051AH/8032AH/8052AH/8751H/8751 H·8 8·Bit HMOS and HMOS

EPROM Microcontrollers ~ , , • 10·1
8031AH/8051 AH/8032AH/8052AH/8751 H/8751 H·8 Express. .. 10·25
8032BH/8052BH 8·Bit HMOS Microcontrollers 10·38
8044 Application Examples ... 14·1
8044 Architecture•.......... " 12·1
8044 Serial Interface . • 13·1
8044AH/8344AH/8744H High Performance 8·Bit Microcontroller with On·Chip Serial

Communication Controller " " 15·1
8051 Software Packages ... ;..... 1 0·364
8051 AHP 8·Bit Control·Oriented Microcontroller with Protected ROM " 10·15
8080Al8080A·1 /8080A·2 8·Bit N·Channel Microprocessor. 16·1
8085AH/8085AH·2/8085AH·1 8·Bit HMOS Microprocessors " 16·11
8086/80186 Software Packages ... 22·362
8087 Support Library ; .. 22·391
809X·90, 839X·90 .. ;.............. 21·59
809X·90, 839X·90 Express. ; ' ' ; .. 21·87
809XBH·10 Advanced 16·Bit Microcontroller with 80r 16·Bit External Bus.. 21·44
809XBH/839XBH/879XBH with 8 or 16·Bit External Bus :......... 21·1
809XBH/839XBH/879XBH Express.. 21·78
8155H/8156H/8155H·2/8156H·2 2048·Bit Static HMOS RAM with I/O Ports and Timer.. 16·31
8185/8185·21024 x 8·Bit Static RAM fortvlC$®·85 :.................... 16·45
82188 Integrated Bus Controller for 8086, 8088, 80186, 80188 Processors 22·225
8224 Clock Generator and Driver for 8080A CPU. • .. 16·50
8228 System Controller and Bus Driver for 8080A CPU '........................... 16·55
8243 MCS®·48 Input/Output Expander ; ; 4·1
83C152A180C152A Universal Communications Controller 10·102
87C257 256K (32K x 8) CHMOS UV Erasable PROM ; ' 10·146
87C51 Express. 10~84
87C518·Bit CHMOS EPROM Microcontroller.. 10·71
87C51 FA (87C252) CHMOS Single·Chip 8·Bit Microcontroller ... ; ;............... 10·87
8751 BH 8·Bit HMOS EPROM Microcontroller ; ; 10·27
8752BH 8·Bit HMOS EPROM Microcontroller " " 10·46
8755A 16,384·Bit EPROM with I/O. .. 16·59
AP~275 An FFT Algorithm for MCS®·96 Products Including Supporting Routines and

Examples ... 21·222
Ap·125 Designing Microcontroller Systems for Electrically Noisy Environments 10·256
Ap·155 Oscillators for Microcontrollers ... 10·278
Ap·186 Introduction to the 80186 Microprocessor ; .. 22·241
Ap·248 Using the 8096 ... , 21·119
Ap·252 Designing with the 80C51BH ... 10·310
Ap·258 High Speed Numerics with the 80186, 80188 and 8087 22·316
Ap·281. UPITM·452 Accelerates iAPX 286 Bus Performance 10·334

viii

Alphanumeric Index (Continued)

AP-283 Flexibility in Frame Size with the 8044 15-27
AP-286 80186/188 Interface to Intel Microcontrollers 22-332
AP-70 Using the Intel MCS®-51 Boolean Processing Capabilities 10-211
AR-409 Increased Functions in Chip Result in Lighter, Less Costly Portable Computer 10-354
AR-307 Microcontroller with Integrated High Performance Communications Interface. 15-57
AR-517 Using the 8051 Microcontroller with Resonant Transducers 10-359
D8748H/8749HHMOS-E Single-Component 8-Bit Microcomputer. 4-21
Hardware Description of the 8051 , 8052 and 80C51 6-1
Hardware Description of the 83C152 8-1
Hardware Description of the 83C51 FA (83C252) . 7-1
121CETM Integrated Instrumentation and In-Circuit Emulation System 22-412
iDCX 51 Distributed Control Executive .. 10-372
iDCX 96 Distributed Control Executive .. 21-307
iPAT Performance Analysis Tool ... 22-399
iSBE-96 Development Kit Single Board Emulator and Assembler for MCS®-96 21-315
ICETM 5100/252 In-Circuit Emulator for the MCS®-51 Family 10-380
ICETM-186 In-Circuit Emulator ... 22-424
ICETM-196PC Real-Time Transparent 80C196 In-Circuit Emulator 21-333
ICETM51001044 In-Circuit Emulator for the RUPITM-44 Family 15-66
MCS®-48 Expanded System.. 2-1
MCS®-48 Express ... 4-33
MCS®-48 Instruction Set. ; 3-1
MCS®-48 Single Component System. 1-1
MCS®-51 Architectural Overview ... : 5~1
MCS®-96 Architectural Overview .. 17-1
MCS®-96 Hardware Design Information.. 19-1
MCS®-96 Instruction Set.. 18-1
MCS®-96 Software Development Packages ... 21-297
P87 48H/P87 49H/8048AH/8035AH L/8049AH/8039AH L/8050AH/8040AHL HMOS

Single-Component 8-Bit Production Microcontroller 4-8
The RUPITM-44 Family ... 11-1
UPITM-452 CHMOS Programmable 1/0 Processor 10-157
VAXIVMS Resident 8086/8088/80186 Software Development Packages 22-383
VLSiCE-96 In-Circuit Emulator for the 8X9X Family of Microcontrollers 21-323

ix

CUSTOMER SUPPORT
CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices. '

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer's expectations. Such support requires an interna­
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel's customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and conswting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and SUbscription service (product-specific troubleshooting guides and COMMENTS Maga­
zine). Basic support includes updates and the SUbscription service. Contracts are sold in environments which repre-
sent product groupings (Le., iRMX environment). '

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. Y ouean use,
our systems engineers in a variety of ways ranging from assistance in using a new product; developing an application,
personalizing training, and customizing or tailoring an Intel product to providing technical and management con­
sulting. Systems Engineers are well versed in technical areas such as microcommunications, 'real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work­
ing together we, can help you get a successful product to market in, the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single, workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.

x

MCS®.-96 Architectural 17
Overview

inter
MCS®-96 ARCHITECTURAL OVERVIEW

There are two groups of parts within the MCS®-96
family: the standard 8X9X parts and the 8X9XBH
parts. There are several enhancements on the 8X9XBH
parts that are not on the 8X9X parts. This manual is
written about the 8X9XBH parts, generically referred
to as an 8096BH. Where the standard 8X9X parts dif­
fer .from the 8096BH, notations will be made.

The 8096BH can be separated into several sections for
the purpose of describing its operation. There is a 16-bit
CPU; a programmable High Speed I/O Unit, an analog
to digital converter, a serial port, and a Pulse Width
Modulated (PWM) output for digital to analog conver­
sion. In addition to these functional units, there are
some sections which support overall operation of the
chip such as the clock generator. The CPU and the
programmable I/O make the 8096BH very different
from any other microcontroller. Let us first examine
the CPU.

1.0 CPU OPERATION

The major components of the CPU on the 8096BH ar~
the Register File and the RALU. Communication with
the outside world is done through either the Special
Function Registers (SFRs) or the Memory Controller.
The RALU (Register/Arithmetic Logic Unit) does not
use an accumulator, it operates directly on the 256-byte
register space made up of the Register File and the
SFRs.Efficient I/O operations are possible by directly
controlling the I/O through the SFRs. The main bene­
fits of this structure are the ability to quickly change
context, the absence of accumulator bottleneck, and
fast throughput and I/O times.

1.1 CPU Buses

A "Control Unit" and two busses connect the Register
File and RALU. Figure 1 shows the CPU with its

POWER FREQUENCY
VREF ANGND

PORT 0 PORT 1

DOWN REFERENCE

------i1-:~:~-~------;;-~;;---1
GEN EPROM 879 X BH I

A-BUS 8 L.."'T'-.....,r-~ :
I
I

I CONTROL

PORT 2
ALT FUNCTIONS

HIGH
SPEED

I/O

HSI HSO

Figure 1. Block Diagram

17-1

16

--------_.

SIGNALS

PORT 3

]
ADDR
DATA
BUS

PORT 4

270250-1

MCS®-96 ARCHITECTURAL OVERVIEW

major bus connections. The two buses are the "A-Bus"
which is 8-bits wide, and the "D-Bus" which is 16-bits
wide. The D-Bus transfers data onl¥ between the
RALU and the Register File or Special Function Regis­
ters (SFRs). The A-Bus is used as the address bus for
the above transfers or as a multiplexed address/data
bus connecting to the "Memory Controller". Any ac­
cesses of either the internal ROM or external memory
are done through the Memory Controller:

Within the memory controller is a slave program coun­
ter (Slave PC) which keeps track of the PC in the CPU.
By having most program fetches from memory refer­
enced to the slave PC, the processor saves time. as ad­
dresses seldom have to be sent to the memory control­
ler. If the address jumps sequence then the slave PC is
loaded with a new value and processing continues.
Data fetches from memory are also done through the
memory controller, but the slave PC is bypassed for
this operation.

1.2 CPU Register File

The Register File contains 232 bytes of RAM which
can be accessed as bytes, words, or double-words. Since
each of these locations can be used by the RALU, there
are essentially 232 "accumulators". The first word in

UPPER WORD REGISTEIIISHIFTER .

LOWER WoRD REGliTERJaHl'TER

the Register File is reserved for use as the stack pointer
so it can not be used for data when stack manipulations
are taking place. Addresses for accessing the Register
File. and SFRs are temporarily stored in two 8-bit ad­
dress registers ?y the CPU hardware.

1.3 RALU Control

Instructions to the RALU are taken from the A-Bus
and stored temporarily in the instruction register. The
Control Unit decodes the instructions and generates the
correct sequence of signals to have the RALU perform
the desired function. Figure 1 shows the instruction
register and the control unit.

1.4 RALU

Most calculations performed by the 8096BH take place
in the RALU. The RALU, shown in Figure 2, contains
a 17-bit ALU, ·the Program Status Word (pSW), the
Program Counter (PC), a loop counter, and three tem­
porary re/listers. All of the registers are 16-bits or
17-bits (16+ sign extension) wide. Some of the regis­
ters have the ability to perform simple operations to off­
load the ALU.

1-----...."t:..:;11~----I-i .. 1EIIPOIWIY REGISTER •

270250-2

Figure 2. RALU Block Diagram

17-2

inter MCS®-96 ARCHITECTURAL OVERVIEW

A separate incrementor is used for the PC; however,
jumps must be handled through the ALU. Two of the
temporary registers have their own shift logic. These
registers are used for the operations which require logi­
cal shifts, including Normalize, Multiply, and Divide.
The "Lower Word" register is used only when double­
word quantities are being shifted, the "Upper Word"
register is used whenever a shift is performed or as a
temporary register for many instructions. Repetitive
shifts are counted by the 5-bit "Loop Counter".

A temporary register is used to store the second oper­
and of two operand instructions. This includes the mul­
tiplier during multiplications and the divisor during
divisions. To perform subtractions, the output of this
register can be complemented before being placed into
the "B" input of the ALU.

The DELAY shown in Figure 2 is used to convert the
l6-bit bus into an 8-bit bus. This is required as all ad­
dresses and instructions are carried on the 8-bit A-Bus.
Several constants, such as 0, 1 and 2 are stored in the
RALU for use in speeding up certain calculations.
These come in handy when the RALU needs to make a

, 2's complement number or perform an increment or
decrement instruction.

1.5 Internal Timing

The 8096BH requires an input clock frequency of be­
tween 6.0 MHz and 12 MHz to function. This frequen­
cy can be applied directly to XTAL 1. Alternatively,
since XTALI and XTAL2 are inputs and outputs of an
inverter, it is also possible to use a crystal to generate '
the clock. A block diagram of the oscillator section is
shown in Figure 3. Details of the circuit and sugges­
tions for its use can be found in Section 1 of the Hard­
ware Design chapter.

XTAL 1

PHASE A
(CLOCKOUT)

The crystal or external oscillator frequency is divided
by 3 to generate the three internal timing phases as
shown in Figure 4. Each of the internal phases repeat
every 3 oscillator periods: 3 oscillator periods are re­
ferred to as one "state time", the basic time measure­
ment for 8096BH operations. Most internal operations
are synchronized to either Phase A, B or C, each of
which have a 33%,duty cycle. Phase A is represented
externally by CLKOUT, a signal available on the
68-pin part. Phases Band C are not available external­
ly. The relationships ofXTALl, CLKOUT, and Phases
A, B, and C are shown in Figure 4. It should be noted
that propagation delays have not been taken into ac­
count in this diagram. Details on these and other tim­
ing relationships can be found in the Hardware Design
chapter.

INTERNAL
CIRCUITRY

8096

270250-3

Figure 3. Block Diagram of Oscillator

The RESET line can be used to start the 8096BH at an
exact time to provide for synchronization of test equip­
ment and niultiple chip systems. Use of this feature is
fully explained under RESET, Section 13.

PHASE B r---1 r---1 r --~I I~~~I I~ __ ~

PHASE C -,, r---1
~. --~I I~ __ ~I I~ __

270250-4

Figure 4. Internal Timings Relative to XTAL 1

17-3

inter MCS®-96 ARCHITECTURAL OVERVIEW

2.0 MEMORY SPACE

The addressable memory space on the 8096BH consists
of 64K bytes, most of which is available to the user for
program or data memory. Locations which have special
purposes are OOOOH through OOFFH and IFFEH
through 2080H. All other locations can be used for ei­
ther program or data storage or for memory mapped
peripherals. A memory map is shown in Figure 5.

2.1 Register File

Locations OOH through OFFH contain the Register File
and Special Function Registers, (SFRs). No code can

OFFH

OFOH

OEFH

lAH

19H

lSH

17H

16H

15H

14H

13H

12H

l1H

10H

OFH

OEH

ODH

OCH

OBH

OAH

09H

OSH

07H

06H

05H

04H

03H

02H

01H

OOH

NOTE:

POWER-DOWN
RAM

INTERNAL
REGISTER FILE

(RAM)

STACK POINTER STACK POINTER

PWM CONTROL

10Sl 10Cl

10SO lOCO

RESERVED RESERVED

SP_STAT SP CON

10 PORT 2 10 PORT 2

10 PORT 1 10 PORT 1

10 PORT 0 BAUD_RATE

Tlt.4ER2 (HI)

TlMER2 (LO) RESERVED

TIMERl (HI)

TIMERl (LO) WATCHDOG

INLPENDING INT PENDING

INLMASK INLMASK

SBUF (RX) SBUF (TX)

HSLSTATUS HSO_COMt.4AND

HSUIt.4E (HI) HSO_ TIME (HI)

HSUIME (LO) HSO_TIt.4E (LO)

AD_RESULT (HI) HSLMODE

AD_RESULT (LO) AD_COMMAND

RO (HI) RO (HI)

RO (LO) RO (LO)

(WHEN READ) (WHEN WRITTEN)

255 -,

240

239

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

S

7

6

5

4

3

2

1

0

be executed from this internal RAM section. If an at­
tempt to execute instructions from locations OOOH
through OFFH is made, the instructions will be fetched
from external memory. This section of external memo­
ry is reserved for use by Intel development tools. Exe­
cution of a nonmaskable interrupt (NMI) will force a
call to external location OOOOH, therefore, the NMI in­
struction is also reserved for Intel development tools.

The RALU can operate on any of the 256 internal reg­
ister locations. Locations OOR through 17H are used to
access the SFRs. Locations ISH and 19H contain the
stack pointer. These are not SFRs, and may be used as
standard· RAM if stack operations are not being per­
formed. The stack pointer must be initialized by the

EXTERNAL MEMORY
OR I/o

INTERNAL PROGRAM
STORAGE ROM/EPROM

OR
EXTERNAL MEMORY

RESERVED

· SECURITY KEY

RESERVED

· SELF JUMP OPCODE (27H FEH)

RESERVED

· CHIP CONFIGURATION BYTE

RESERVED

INTERRUPT VECTORS

PORT 4

PORT 3

EXTERNAL MEMORY
OR I/O

L-
INTERNAL RAM
REGISTER FILE

STACK POINTER
SPECIAL FUNCTION REGISTERS

(WHEN ACCESSED AS DATA MEMORY)

FFFFH

4000H

20S0H

2030H - 207FH

2020H - 202FH

201 CH - 201 FH

201AH-201BH

2019H

201SH

201 2H - 201 7H

20eOH

lFFFH

lFFEH

01eOH

OOFFH

OOOOH

270250-5

• Registers marked by an asterisk are not present on 8X9X devices

Figure 5. Memory Map
17-4

inter MCS®-96 ARCHITECTURAL OVERVIEW

user program and can point anywhere in the 64K mem­
ory space. The stack builds down. There are no restric­
tions on the use of the remaining 230 locations except
that code cannot be executed from them.

2.2 Special Function Registers

All of the 110 on the 8096BH is controlled through the
SFRs. Many of these registers serve two functions; one
if they are read from, the other if they are written to.
Figure 5 shows the locations and names of these regis­
ters. A summary of the capabilities of each of these
registers is shown in Figure 6, with complete descrip­
tions reserved for later sections.

There are several restrictions on using special function
registers.

Neither the source or destination addresses of the Mul­
tiply and Divide instructions can be a writable special
function register.

These registers may not be used as base or index regis­
ters for indirect or indexed instructions.

These registers can only be accessed as bytes unless
otherwise specified in Figure 6. Note that some of these
registers can only be accessed as words, and not as
bytes.

Within the SFR space are several registers labeled
"RESERVED". These registers are reserved for future
expansion and test purposes. Operations should not be
performed with these registers as reads from them and
writes to them may produce unexpected results. For
example, in some versions of the 8096 writing to loca­
tion OCH will set both timers to OFFFXH. This may
not be the case in future products, so it should not be
used as a feature.

2.3 Power Down

The upper 16 RAM locations (OFOH through OFFH)
receive their power from the VpD pin. If it is desired to
keep the memory in these locations alive during a pow­
er down situation, one need only keep voltage on the

17-5

VPD pin. The current required to keep the RAM alive
is approximately 1 milliamp (refer to the data sheet for
the exact specification). Both Vee and VPD must have
power applied for normal operation. If VPD is not ap­
plied the power down RAM will not function properly,
even if Vee is applied.

To place the 8096BH into a power down mode, the
RESET pin is pulled low. Two state times later the part
will be in reset. This is necessary to prevent the part
from writing into RAM as the power goes down. The
power may now be removed from the Vee pin, the
VpD pin must remain within specifications. The
8096BH can remain in this state for any amount of time
and the 16 RAM bytes will retain their values.

To bring the 8096BH out of power down, RESET is
held low while Vee is applied. Two state times after the
oscillator has stabilized, the RESET pin can be pulled
high. On the 8X9X devices the back-bias generator must
also stabilize. This requires approximately 1 millisecond.
The 8096BH will begin to execute code at location
02080H 10 state times after RESET is pulled high. Fig­
ure 7 shows a timing diagram of the power down se­
quence. To ensure that the 2 state time minimum reset
time (synchronous with CLKOUT) is met, it is recom­
mended that 10 XTALI cycles be used. Suggestions for
actual hardware connections are given in the Hardware
Design Chapter. Reset is discussed in Section 13.

To determine if a reset is a return from power down or
a complete cold start a "key" can be written into pow­
er-down RAM while the part is running. This key can
be checked on reset to determine which type of reset
has occurred. In this way the validity of the power­
down RAM can be verified. The length of this key de­
termines the probability that this procedure will work, .
however, there is always a statistical chance that the
RAM will power up with a replica of the key.

Under most circumstances, the power-fail indicator
which is used to initiate a power-down condition must
come from the unfiltered, unregulated section of the
power supply. The power supply must have sufficient
storage capacity to operate the 8096BH until it has
completed its reset operation.

inter MCS@·96 ARCHITECTURAL OVERVIEW

Register Description Section

RO Zero Register -Always reads as a zero, useful for a base when 3
indexing and a,~ a constant for calculations and compares.

AD_RESULT 'AID Result Hi/Low -'- Low and high order Results of the A/D 8
converter (byte read only)

AD_COMMAND AID Command Register - Controls the AID 8
HSI_MODE HSI Mode Register - Sets the mode of the High Speed Input unit. 6
HSI_TIME HSI Time Hi/Lo- Contains the tilTle at which the High Speed 6

Input unit was triggered. (word read only)
HSO_TIME HSO Time Hi/Lo - Sets the time or count for the High Speed 7

Output to execute the command in the Command Register. (word
write only)

HSO_COMMAND HSO Command Register - Determines what will happen at the 7
time loaded into the HSO Time registers.

HSLSTATUS HSI Status Registers - Indicates which HSI pins were detected at ' 6
the time in the HSI Time registers and the current state of the pins.

, SBUF(TX) Transmit buffer for the serial port, holds contents to be outputted. 9
SBUF(RX) Receive buffer for the serial port, holds the byte just received by 9

the serial port.
I NT_MASK Interrupt Mask Register":"" Enables or disables the individual 4:

interrupts.
INT _PENDiNG , Interrupt Pending Register -Indicates that an interrupt signal has 4

occurred on one of the sources and has not been serviced.
WATCHDOG Watchdog Timer Register - Written to periodically to hold off 12

automatic reset every 64K state times.
TIMER1 Timer 1 Hi/Lo - Timer 1 high and low bytes. (word read only) 5
TIMER2 ' Timer 2 Hi/Lo -,- Timer 2 high and low bytes. (word read only) 5
10PORTO Port 0 Register - Levels on pins of port O. 10
BAUD_RATE Register which determines the baud rate, this register is loaded 9

sequentially.
IOPORT1 Port 1, Register - Used to read Qr write'to Port 1. 10
IOPORT2 Port 2 Register - Used to read or write to Port 2. 10
SP_STAT Serial Port Status - Indicates the status of the serial port. 9
SP_CON Serial Port Control - Used to set the mode of the serial port. 9
10SO I/O Status Register 0 - Contains information on the HSO status 11
IOS1 I/O Status Register 1 - Contains information qn the status of the 11

timers and of the HSI.
lOCO I/O Control Register 0 - Controls alternate,functions of HSI pins, 11

Timer 2 reset sources and Timer 2 clock sources.
IOC1 I/O Control Register 1 - Controls alternate functions of Port 2 11

pins, timer interrupts and HSI interrupts.
PWM_CONTROL Pulse Width Modulation Control Register - Sets the duration of 8

the PWM pulse.

Figure 6. SFR Summary

17-6

inter MCS®-96 ARCHITECTURAL OVERVIEW

VCC----------------------------~

VPD-----------------------t-------1 ~----___ r_-----------------
= 5=.5V

RESET---,

XTALl lHHIUUlnmUlHP
10 XTALl CYCLES CLOCK NOT NECESSARY 10 XTALl CYCLES

AFTER CLOCK IS STABLE
270250-6

Figure 7. Power Down Timing

2.4 Reserved Memory Spaces

A listing of locations with special significance is shown
in Figure S. The locations marked "Reserved" are re­
served by Intel for use in testing or future products.
They must be filled with the Hex value FFH to insure
compatibility with future parts.

Locations IFFEH and IFFFH are reserved for Ports 3
and 4 respectively. This is to allow easy reconstruction
of these ports if external memory is used in the system.
An example of reconstructing the I/O ports is given in
section 7 of the Hardware Design chapter. If ports 3
and 4 are not going to be reconstructed, these locations
can be treated as any other external memory location.

The 9 interrupt vectors are stored in locations 2000H
through 2011H. The 9th vector is used by Intel devel­
opment systems, as explained in Section 4.

Locations 2012H through 2017H are reserved for fu­
ture use. Location 20lSH is the Chip Configuration
byte which will be discussed in the next section. The
]ump-To-Self opcodes at locations 20lAH and 20IBH
are provided for EPROM programming as detailed in
the Hardware Design chapter. Locations 2020H
through 202FH are the security key used with the
ROM Lock feature which will be discussed in the next
section. All unspecified addresses in locations 2000H
through 207FH, including those marked Reserved,
should be considered reserved for use by Intel.

Resetting the S096BH causes instructions to be fetched
starting from location 20S0H. This location was chosen
to allow a system to have up to SK of RAM continuous
with the register file. Further information on reset can
be found in Section 13.

17-7

OOOOH- 0017H Register Mapped 1/0 (SFRs)
0018H- 0019H Stack Pointer
1FFEH- 1FFFH Ports 3 and 4
2000H- 2011H Interrupt Vectors
2012H- 2017H Reserved
2018H Chip Configuration Byte
2019H Reserved
201AH- 201BH "Jump to Self" Opcode (27H FEH)
201CH- 201FH Reserved
2020H- 202FH Security Key
2030H- 207FH Reserved
2080H Reset Location

Figure 8. Registers with Special Significance

2.5 Internal ROM and EPROM

When a ROM part is ordered, or an EPROM part is
programmed, the internal memory locations 20S0H
through 3FFFH are user specified, as are the interrupt
vectors, Chip Configuration Register and Security Key
in locations 2000H through 202FH.

Instruction and data fetches from the internal ROM or
EPROM occur only if the part has a ROM or
EPROM, EA is tied high, and the address is between
2000H and 3FFFH. At all other times data is accessed
from either the internal RAM space or external memo­
ry and instructions are fetched from external memory.
The EA pin is latched on RESET rising. Information
on programming EPROMs can be found in Section 10
of the Hardware Design chapter.

Do not execute code out of the last three locations of
internal ROM/EPROM.

MCS®·96 ARCHITECTURAL OVERVIEW

2.6 Memory Controller
The RALU talks to the memory (except for the loca­
tions in the register file and SFR space) through the
memory controller which is connected to the RALU by
the A-Bus and several control lines. Since the A-Bus is
eight bits wide, the memory controller uses a Slave Pro­
gram Counter to avoid having to always get the instruc­
tion location from the RALU. This slave PC is incre­
mented after each fetch. When a jump or call occurs,
the slave PC must be loaded from the A-Bus before
instruction fetches can continue.

In addition to holding a slave PC, the memory control­
ler contains a 3 byte queue to help speed execution.
This queue is transparent to the RALU and to the user
unless wait states are forced during external bus cycles.­
The instruction execution times shown in Section 14.8
show the normal execution times with no wait states
added and the l6-bit bus selected. Reloading the slave
PC and fetching the first byte of the· new instruction
stream takes 4 state times. This is reflected in the jump
taken/not-taken times shown in the table.

2.7 System Bus
There are several operating modes on the 8096BH. The
standard bus mode uses a 16-bit multiplexed address/
data bus. Other bus modes include an 8-bit mode and a
mode in which the bus size can dynamically be

PHASE A
(CLKOUT)

PHASE B

PHASE C

switched between 8-bits and 16-bits. In addition, there
are several options available on the type of control sig­
nals used by the bus. 8X9X devices only operate in the
standard mode.

In the standard mode, external memory is addressed
through lines ADO through AD1S which form a 16-bit
multiplexed (address/data) data bus. These lines share
pins with I/O Ports 3 and 4. The falling edge of the
Address Latch Enable (ALE) line is used to· provide a
clock to a transparent latch (74LS373) in order to de­
multiplex the bus. A typical circuit and the required
timings are shown in Section 7 of the Hardware Design
chapter. Since the 8096BH's external memory can be
addressed as either bytes or words, the decoding is con­
trolled with two lines, Bus High Enable (BHE) and
Address/Data Line 0 (ADO). On the 8X9X devices the
BHE line must be transparently latched, just as the ad­
dresses are.

To avoid confusion during the explanation of the mem­
ory system it is reasonable to give names to the demulti­
plexed address/ data signals. The address signals will be
called MAO through MA1S (Memory Address), and
the data signals will be called MDO through MD1S
(Memory Data).

When BHE is active (low), the memory connected to
the high byte of the data bus. should be selected. When
MAO is low the memory connected to the low byte of

RUDY \SS\\~\S\\\\\

ALE .~\... _____ C\ ->--__

NOTES:

Rii \I... ___ ...J'

\ __ --<11.11'

ADDRESS/DATA ~"""'D-Al-A-'OU~T-,rHI;~)>-TA..,.I_N __ _

BHE, INST ~,--_IN_V_A_Ll_D.;...(2),--_~
'IF ALE IS HIGH

1. These sections are not valid on 8X9X devices (16-bit Mode)
2. BHE/INST are valid for the entire bus cycle on the 8096BH

Figure 9. External Memory Timings

17-8

270250-7

inter MCS®-96 ARCHITECTURAL OVERVIEW

the data bus should be selected. In this way accesses to
a 16-bit wide memory can be to the low (even) byte
only (MAO=O, BHE= I), to the high (odd) byte only
(MAO = 1, BHE=O), or to both bytes (MAO = 0,
BHE = 0). When a memory block is being used only for
reads, BHE and MAO need not be decoded.

TIMINGS

Figure 9 shows the idealized waveforms related to the
following description of external memory manipula­
tions. For exact timing specifications please refer to the
latest data sheet. When an external memory fetch be­
gins, the address latch enable (ALE) line rises, the ad­
dress is put on ADO-ADIS and BHE is set to the re­
quired state. ALE then falls, the address is taken off the
pins, and the RD (Read) signal goes low. When RD
falls, external memory should present its data to the
8096BH.

READ

The data from the external memory must be on the bus
and stable for a minimum of the specified set-up time
before the rising edge of RD. The rising edge of RD
latches the information into the 8096BH. If the read is
for data, the INST pin will be low when the address is
valid, if it is for an instruction the INST pin will be
high' during this time. The 48-lead part does not have
the INST pin. The INST pin will be low for the Chip
Configuration Byte and Interrupt Vector fetches.

WRITE

Writing to external memory requires timings that are
similar to those required when reading from it. The
main difference is that the write (WR) signal is used
instead of the RD signal. The timings are the same until
the falling edge of the WR line. At this point the
8096BH removes the address and places the data on the
bus. When the WR line goes high the data should be
latched to the external memory. In systems which can
write to byte locations, the ADO and BHE lines must be
used to decode WR into WRite to Low byte (WRL)
and WRite to High byte (WRH) signals. INST is al­
ways low during a write, as instructions carinot be writ­
ten. The exact timing specifications for memory access­
es can be found in the data sheet.

READY

A ready line is available on the 8096BH to extend the
width of the RD and WR pulses in order to allow ac­
cess of slow memories or for DMA purposes. If the
READY line is low by the specified time after ALE
falls, the 8096BH will hold the bus lines to their values
at the falling edge of CLKOUT. When the READY
line rises the bus cycle will continue with the next fall­
ing edge of CLKOUT.

17-9

Since the bus is synchronized to CLKOUT, it can be
held only for an integral number of state times. If more
than TYL YH nanoseconds are added the processor will
act unpredictably.

There are several set-up and hold times associated with
the READY signal. If these timings are not met, the
part may not respond with the proper number of wait
states, .

For falling edges of READY, sampling is done inter­
nally on the falling edge of Phase A. Since Phase A
generates CLKOUT, (after some propagation delay)
the sample will be taken prior to CLKOUT falling. The
timing specification for this is given as TLL YV, the
time between when ALE falls and READY must be
valid. If READY changes between TLL YV max and
the falling edge of CLKOUT (TLL YH MIN on 48-lead
devices) it would be possible to have the READY sig­
nal transitioning as it is being sampled.

This situation could cause a metastable condition
which could make the device operate unpredictably.

For the rising edge of READY, sampling is done inter­
nally on' the rising edge of Phase A. The rising edge
logic is fully synchronized, so it is not possible to cause
a metastable condition once the device is in a valid not­
ready condition. To cause one wait state to occur the
rising edge of READY must occur before TLL YH
MAX after ALE falls. If the signal is brought up after
this time two wait states may occur. If two wait states
are desired, READY should be brought high within the
TLL YH specification + 3 Tosc. Additional wait states
can be caused by adding additional state times to the
READY low time. The maximum amount of time that
a device may be held not-ready is specified as TYL YH.

The 8096BH has the ability to internally limit the num­
ber of wait states to 1, 2, or 3 as determined by the
value in the Chip Configuration Register, (CCR). Us­
ing the CCR for ready timing is discussed at the end of
this section. If a ready limit is set, the TLL YH MAX
specification is not used. The 8X9X devices do not have
internal ready control.

OPERATING MODES

The 8096BH supports a variety of options to simplify
memory systems, interfacing requirements and ready
control. Bus flexibility is provided by allowing selection
of bus control signal definitions and runtime selection
of the external bus width. In addition, several ready
coritrol modes are available to simplify the external
hardware requirements for accessing slow devices. The
Chip Configuration Register (CCR) is used to store the
operating mode information.

intJ MCS®·96 ARCHITECTURAL OVERVIEW

Since there is no CCR on 8X9X devices. they can only be
configured in the standard mode. This is the mode the
8096BH will run in if the CCR is loaded with OFFH.

CHIP CONFIGURATION REGISTER (CCR)

Configuration inforniation is stored in the Chip Config­
uration Register (CCR). Four of the bits in the register
specify the bus control mode and ready control mode.
Two bits also govern the level of ROM/EPROM pro­
tection and one bit is NANDed with the BUSWIDTH
pin every bus cycle to determine the bus size. The CCR
bit map is shown in Figure 10. The functions associated
with each bit are described in this section.

17 16 15 14 131211101
[

~

~

CHIP CONFIGURATION REGISTER

RESERVED (Set to 1 fo~
compatibility with future
parts)

BUS WIDTH SELECT
(1 6 - BIT BUS /'';-8 ---=BIT'"B"'U"'S)

WRITE STROBE MODE SELECT
(WR AND BHE/WRL AND WRH)

ADDRESS VALID STROBE SELECT
(ALE/ADV)

(lRCO) } INTERNAL READY
(IRC1) CONTROL MODE

(LOCO)} PROGRAM LOCK
(LOC1) MODE

270250-8

Figure 10. Chip Configuration Register

The CCR is loaded on reset with the Chip Configura­
tion Byte, located at address 2018H. The CCR register
is a non-memory mapped location that can only be
written to during the reset sequence; once it is loaded it
cannot be changed until the next reset occurs. The
8096BH will correctly read this location in every bus
mode.

If the EA pin is set to a logical 0, the access to 2018H
comes from external memory. If EA is a logical 1, the
access comes from internal ROM/EPROM. If EA is
+ 12.5V, the CCR is loaded with a byte from a separate
non-memory-mapped location called PCCB (Program­
ming CCB). The Programming mode is described in
Section 10 of the Hardware Design chapter,

The CCR is not present on 8X9X devices. but the Chip
Configuration Byte at location 2018H should contain the
hex value OFF:H to provide future compatibility. 8X9X
devices do not access location 2018H on reset.

BUS WIDTH

The 8096BH external bus width can be run-time config­
ured to operate as a standard 16-bit multiplexed ad­
dress/data bus, or as an 8051 style 16-bit address/8-bit
data bus.

During 16-bit bus cycles, Ports 3 and 4 contain the
address multiplexed with data using ALE to latch the
address. In 8-bit bus cycles, Port 3 is multiplexed ad­
dress/data while Port 4 is address bits 8 through 15.
The address bits on Port 4 are valid throughout an 8-bit
bus cycle. Figure 11 shows the two options.

The bus width can be changed each bus cycle and is
controlled using bit 1 of the CCR with the. BUS­
WIDTH pin. If either CCR.l or BUSWIDTH is a 0,
external accesses will be over a 16-bit address/8-bit
data bus. If both CCR.I and BUSWIDTH are Is, ex­
ternal accesses will be over a 16-bit address/16-bit data
bus. Internal accesses are always 16-bits wide.

The bus width can be changed every external bus cycle
if a I was loaded into CCR bit I at reset. If this is the
case, changing the value of the BUSWIDTH pin at run­
time will dynamically select the bus width. For exam­
ple, the user could feed the INST line into the BUS­
WIDTH pin, thus causing instruction accesses to be
word wide from EPROMs while data accesses are byte
wide to and from RAMs. A second example would be
to place an inverted version of Address bit 15 on the
BUSWIDTH pin. This would make half of external
memory word wide, while half is byte wide.

Since BUSWIDTHis sampled after address decoding
has had time to occur, even more complex memory
maps could be constructed. See the timing specifica­
tions for an exact description of BUSWIDTH timings.
The bus width will be determined by bit 1 of the CCR
alone on 48-pin parts since they do not have a BUS­
WIDTH pin.

When using an 8-bit bus, some performance degrada­
tion is to be expected. On the 8096BH, instruction exe­
cution times with an 8-bit bus will slow down if any of
three conditions occur. First, word writes to external
memory will cause the executing instruction to take
two extra state times to complete. Second, word reads
from external memory will cause a one state time exten­
sion of instruction execution time. Finally, if the pre­
fetch queue is empty when an instruction fetch is re­
quested, instruction execution is lengthened by one
state time for each. byte that must be externally ac­
quired (worst case is the number of bytes in the instruc-
tion minus one.) -

17-10

MCS®-96 ARCHITECTURAL OVERVIEW

8X9XBH

PORT 4

PORT 3

BUS CONTROL

270250-9

16-Bit Bus

BUS CONTROL

8X9XBH

8-BIT
PORT 4 LATCHED

ADDRESS HIGH

PORT 3

270250-10

a-Bit Bus

Figure 11. Bus Width Options

BUS CONTROL

Using the CCR, the 8096BH can be made to provide
bus control signals of several types. Three control lines
have dual functions designed to reduce external hard­
ware. Bits 2 and 3 of the CCR specify the functions
performed by these control lines. Figures 12-15 show
the signals which can be modified by changing bits in
the CCR, all other lines will operate as shown in Figure 9.

ALE Jl""--__ --"rL

BHE VALID

ADO -15 --1 ADDR DATA OUT I-
270250-11

16·Bit Bus Cycle

Standard Bus Control

If CCR bits 2 and 3 are Is, then the standard 8096BH
control ~als WR, BHE and ALE are provided (Fig­
ure 12). WR will come out for every write. BHE will be
valid throughout the bus cycle and can be combined
with WR and address line 0 to form WRL and WRH.
ALE will rise as the address starts to come out, and will
fall to provide the signal to externally latch the address.
The control signals on 8X9X devices are similar, but not
identical to those shown here. Figure 9 shows the 8X9X
timings.

ALE Jl ______ ----IrL

u
ADD -7 --1ADDR LOwl DATA OUT I-

AD8 -15 --1 ADDRESS HIGH I-
270250-12

a·BIt Bus Cycle

Figure 12. Standard Bus Control

17-11

inter MCS®·96 ARCHITECTURAL OVERVIEW

Write Strobe Mode

The Write Strobe Mode eliminates the necessity to ex­
ternally decode for odd or even byte writes. If CCR bit
2 is a 0, and the bus is in a 16-bit cycle, WRL and
WRH signals are provided in place of WR andBHE
(Figure 13). WRL will go low for all byte writes to an
even address and all word writes. WRH will go low for
all byte writes to an odd address and all word writes.

WRL is provided for all 8-bit bus write cycles.

ALE Jl rL
WRL VALID

WRH VALID I
ADO -15 --I ADDR DATA OUT ~

270250-13

16·Bit Bus Cycle

Address Valid Strobe Mode

If CCR bit 3 is a 0, then an Address Valid strobe is
provided in the place of ALE (Figure 14). When the
address valid mode is selected, ADV will go low after
an external address is set up. It will stay low until the
end of the bus cycle, where it will go inactive high; This
can be used to provide a chip select for externiu memory.

ALE

WRL

ADO -7 -1ADDR LOW I DATA OUT ~
AD8 -15 -1 ADDRESS HIGH ~

270250-14

a-Bit Bus Cycle

Figure 13. Write Strobe Mode

ADV I ADV

WR r- WR U
SHE VALID ADO-7 --1ADDR LOwl DATA OUT ~

ADO -15 ---1 ADDR I DATA OUT ~ AD8-15 ---1 ADDRESS OUT HIGH ~
270250-15 270250-16

16·Blt Bus Cycle a·Bit Bus Cycle

Figure 14. Address Valid Strobe Mode

17·12

MCS®·96 ARCHITECTURAL OVERVIEW

WRL VALID WRL

WRH I VALID ADO -7 -1 ADDR LOW I DATA OUT ~

ADO -15 --1. ADDR DATA OUT ~ AD8 -15 --f1. __ A_D_D_RE_S_S_H_IG_H __ ~
270250-17 270250-18

16·Blt Bus Cycle 8·Blt Bus Cycle

Figure 15. Write StrQbe with Address Valid Strobe

Address Valid with Write Strobe

If both CCR bits 2 and 3 are Os, both the Address Valid
strobe and the Write Strobes will be provided for bus
control. Figure 15 shows these signals.

READY CONTROL

To simplify ready control, four modes of internal ready
control logic have been provided. The modes are cho­
sen by properly configuring bits 4 and 5 of the CCR.-

The internal ready control logic can be used to limit the
number of wait states that slow devices can insert into
the bus cycle. When the READY pin is pulled low,
wait states will be inserted into the bus cycle until the
READY pin goes high, or the number of wait states
equals the number specified by CCR bits 4 and 5,
whichever comes first. Table 1 shows the number of
wait states that can be selected. Internal Ready control
can be disabled by loading 11 into bits 4 and 5 of the
CCR.

Table 1. Internal Ready Control

IRC1 IRCO Description

o
o

o
1
o
1

Limit to 1 Wait State
Limit to 2 Wait States
Limit to 3 Wait States
Disable Internal Ready Control

This feature provides for simple ready control. For ex­
ample, ·every slow memory chip select line could be
ORed together and be connected to the READY pin
with CCR bits 4- and 5 programmed to give the desired
number of wait states ~o the slow devices.

. ROM/EPROM LOCK

Four modes of program memory lock are available on
the 839XBH and 879XBH parts. CCR bits 6 and 7
(LOCO, LOCI) select whether internal program memo­
ry can be read (or written in EPROM parts) by a pro­
gram executing from .external memory. The modes are
shown in Table 2 .. Internal ROM/EPROM addresses
2020H through 3FFFH are protected from reads while
2000H through 3FFFH are protected from writes, as
set by the CCR.

Table 2_ Program Lock Modes

LOC 1 LOCO Protection

o
o
1
1

o
1
o

_ 1

Read and Write Protected
Read Protected
Write Protected
No Protection

Only code executing from internal memory can read
protected internal memory, while a write protected
memory can not be written to, even from internal exe­
cution. As a result of 8096BH prefetching of instruc­
tions, however, accesses to protected memory are not
allowed for instructions located above 3FFAH. This is
because the lock protection mechanism is gated off of
the Memory Controller's slave program counter and
not the CPU program counter. If the bus controller
receives a request to perform a read of protected memo­
ry, the read sequence occurs with indeterminate data
being returned to the CPU. Note that the interrUpt vec­
tors and the CCR are not protected.

To provide verification and testing when the program
lock feature is enabled, the 839XBH and 879XBH veri­
fy the security key before programming or test modes
are allowed to read from protected memory. Before
protected memory can be read, the chip reads external
memory locations 4020H through 402FH and com-

17-13

inter MCS®-96 ARCHITECTURAL OVERVIEW

pares the values found to the internal security key lo­
cated from 2020H through 202FH. Only when the val­
ues exactly match will accesses to protected memory be
allowed. The details of ROM/EPROM accessing are
discussed in Section 10 of the Hardware Design chap­
ter.

3.0 SOFTWARE OVERVIEW

This section provides information on writing programs
to execute in the 8096BH. Additional information can
be found in the following documents:

MCS®-96 MACRO ASSEMBLER USER'S GUIDE
Order Number 122048 (Intel Systems)
Order Number 122351 (DOS Systems)

MCS®-96 UTILITIES USER'S GUIDE
Order Number 122049 (Intel Systems)
Order Number 122356 (DOS Systems)

PL/M·96 USER'S GUIDE
Order Number 122134 (Intel Systems)
Order Number 122361 (DOS Systems)

Throughout this section, short sections of code are used
to illustrate the operation of the device. For these sec­
tions it has been assumed that a set of temporary regis­
ters have been predeclared. The names of these registers
have been chosen as follows:

AX, BX, CX, and DX are 16-bit registers.

AL is the low byte of AX, AH is the high byte.

BL is the low byte of BX

CL is the low byte of CX

DL is the low byte of DX,

These are the same as the names for the general data
registers used in the 8086BH. It is important to note,
however, that in the 8096, these are not dedicated regis­
ters but merely the symbolic names assigned by the
programmer to an eight byte region within the onboard
register file.

3.1 Operand Types

The MCS®-96 architecture provides support for a vari­
ety of data types which are likely to be useful in a con­
trol application. In the discussion of these operand
types that follows, the names adopted by the PLM-96
programming language will be used where appropriate.
To avoid confusion, the name of an operand type will
be capitalized. A "BYTE" is an unsigned eight bit vari­
able; a "byte" is an eight bit unit of data of any type.

BYTES

BYTES are unsigned 8-bit variables which can take on
the values between 0 and 255. Arithmetic and relational

operators can be applied to BYTE operands but the
result must be interpreted in modulo 256 arithmetic.
Logical operations on BYTES are applied bitwise. Bits
within BYTES are labeled from 0 to 7, with 0 being the
least significant bit. There are no alignment restrictions
for BYTES; so they may be placed anywhere in the
MCS-96 address space.

WORDS

WORDS are unsigned 16-bit variables which can take
on the values between 0 and 65535. Arithmetic and
relational operators can be applied to WORD operands
but the result must be interpreted modulo 65536. Logi­
cal operations on WORDS are applied bitwise. Bits
within words are labeled from 0 to 15 with 0 being the
least significant bit. WORDS must be aligned at even
byte boundaries in the MCS-96 address space. The least
significant byte of the WORD is in the even byte ad­
dress and the most significant byte is in the next higher
(odd) address. The address of a word is the address of
its least significant byte. Word operations to odd ad­
dresses are not guaranteed to operate' in a consistent
manner.

SHORT-INTEGERS

SHORT-INTEGERS are 8-bit signed variables which
can take on the values between -128 and + 127.
Arithmetic operations which generate results outside of
the range ofa SHORT-INTEGER will set the overflow
indicators in the program status word. The actual nu­
meric result returned will be the same as the equivalent
operatiqn on BYTE variables. There are no alignment
restrictions on SHORT-INTEGERS so they may be
placed anywhere in the MCS-96 address space.

INTEGERS

INTEGERS are 16-bit signed variables which can take
on the values between -32,768 and 32,767. Arithmetic
operations which generate results outside of the range
of an INTEGER will set the overflow indicators in the
program status word. The actual numeric result re­
turned will be the same as the equivalent operation on
WORD variables. INTEGERS conform to the same
alignment and addressing rules as do WORDS.

BITS

BITS are single-bit operands which can take on the
Boolean values of true and false. In addition to the nor­
mal support for bits as components of BYTE and
WORD operands, the 8096 provides for the direct test­
ing of any bit in the internal register file. The MCS-96
architecture requires that bits be addressed as compo­
nents of BYTES or WORDS, it does not support the
direct addressing of bits that can occur in the MCS-51
architecture.

17-14

intJ MCS®·96 ARCHITECTURAL OVERVIEW

DOUBLE·WORDS

DOUBLE-WORDS are unsigned 32-bit variables
which can take on the values between 0 and
4,294,967,295. The MCS-96 architecture provides di­
rect support for this operand type only for shifts and as
the dividend in a 32 by 16 divide and the product of a
16 by 16 multiply. For these operations a DOUBLE­
WORD variable must reside in the on-board register
file of the 8096 and be aligned at an address which is
evenly divisible by 4. A DOUBLE-WORD operand is
addressed by the address of its least significant byte.
DOUBLE-WORD operations which are not directly
supported can be easily implemented with two WORD
operations. For consistency with Intel provided soft­
ware the user should adopt the conventions for address­
ing DOUBLE-WORD operands which are discussed in
Section 3.5.

3.2 Operand Addressing

Operands are accessed within the address space of the
8096 with one of six basic addressing modes. Some of
the details of how these addressing modes work are
hidden by the assembly language. If the programmer is
to take full advantage of the architecture, it is impor­
tant that these details be understood. This section will
describe the addressing modes as they are handled by
the hardware. At the end of this section the addressing

REGISTER·DIRECT REFERENCES

The register-direct mode is used to directly access a
register from the 256 byte on-board register file. The
register is selected by an 8-bit field within the instruc­
tion and register address and must conform to the

Examples

LONG·INTEGERS

LONG-INTEGERS are 32-bit signed variables which
can take on the values between -2,147,483,648 and
2,147,483,647. The MCS-96 architecture provides di­
rect support for this data type only for shifts and as the
dividend in a 32 by 16 divide and the product of a 16 by
16 multiply.

LONG-INTEGERS can also be normalized. For these
operations a LONG-INTEGER variable must reside in
the onboard register file of the 8096 and be aligned at
an address which is evenly divisible by 4. A LONG-IN­
TEGER is addressed by the address of its least signifi­
cant byte.

LONG-INTEGER operations which are not directly
supported can be easily implemented with two INTE­
GER operations. For consistency with Intel provided
software, the user should adopt the conventions for ad­
dressing LONG operands which are discussed in Sec­
tion 3.5.

modes will be described as they are seen through the
assembly language. The six basic address modes which
will be described are termed register-direct, indirect, in­
direct with auto-increment, immediate, short-indexed,
and long-indexed. Several other useful addressing oper­
ations can be achieved by combining these basic ad­
dressing modes with specific registers such as the
ZERO register or the stack pointer.

alignment rules for the operand type. Depending on the
instruction, up to three registers can take part in the
calculation.

ADD AX,BX,CX
MUL AX,BX
INCB CL

AX:=BX+CX
AX:=AX*BX
CL:=CL+l

INDIRECT REFERENCES

The indirect mode is used to access an operand by plac­
ing its address in a WORD variable in the register file.
The calculated address must conform to the alignment
rules for the operand type. Note that the indirect ad­
dress can refer to an operand anywhere within the ad­
dress space of the 8096, including the register file. The

Examples

register which contains the indirect address is selected
by an eight bit field within the instruction. An instruc­
tion can contain only one indirect reference and the
remaining operands of the instruction (if any) must be
register-direct references.

LD AX, [AX]
ADDB AL,BL,[CX]
POP [AX]

AX:=MEM_WORD(AX)
AL:=BL+MEM_BYTE(CX)
MEM_WORD(AX) :=MEM_WORD(SP) ; SP:=SP+2

17-15

intJ MCS®'·96 ARCHITECTURAL OVERVIEW

INDIRECT WITH AUTO-INCREMENT REFERENCES

This addressing mode is the same as the indirect mode
except that the WORD variable which contains the in­
direct address is incremented after it is used to address
the operand. If the instruction operates on BYTES or

Examples

SHORT-INTEGERS the indirect address variable will
be incremented by one, if the instruction operates on
WORDS or INTEGERS the indirect address variable
will be incremented by two.

LD AX, [BX]+
ADDB AL,BL,[CX]+
PUSH [AX] +

AX:=MEM_WORD(BX) ; BX:=BX+2
AL:=BL+MEM_BYTE(CX) ; CX:=CX+1
SP:=SP-2; .

MEM_WORD(SP) :=MEM_WORD(AX)
AX:=AX+2

IMMEDIATE REFERENCES

This addres~ing· mode allows an operand to be taken
directly from a. field in the instruction. For·operations
on BYTE or 'SHORT-INTEGER operands this field is
eight bits wide, for operations OIi WORD' or INT~

Examples
AX:::::AX+340

GER operands the field is 16 bits wide. An instruction
.can contain only one immediate reference and the re­
maining operand(s) must be register-direct references.

ADD AX,#340
PUSH #1234H
DIVB AX,#10

SP :=SP-2; MEM_WORD(SP) :=1234H
AL :=AX/10; AH:::::AX MOD 10

SHORT·INDEXED REFERENCES

In this addressing mode an eight bit field in the instruc­
tion selects a WORD variable in the register me which
is assumed to' contain an address. A second eight bit
field in the instruction stream is sign-extended and
summed with the WORD variable to form the address
of the operand which will take part in the calculation.

Since the eight bit field is sign-extended, the effective
address can be up to 128 bytes before the address in the
WORD variable -and up to 127 bytes. after it. An in­
struction can contain only olle short-indexed reference
and the remaining operand(s) must be register-direct
references.

Examples
LDAX;12[BX]
MULB AX,BL,3[CX]

AX:=MEM_WORD(BX+12)
AX:=BL*MEM_BYTE(CX+3)

LONG·INDEXED REFERENCES

This addressing mode is like the short-indexed mode
except that a J6-bit field is taken from the instruction
and added to the WORD variable to form the address
ofthe operand. No sign extension is necessary. An in-

Examples
AND AX,~X,TABLE[CX]
ST AX,TABLE[BX]
ADDB AL,BL,LOOKUP[CX]

struction can contain only one long-indexed reference
and the remaining operand(s) must be register-direct
references ..

AX:=BX AND MEM_WORD(TABLE+CX)
MEM_WORD(TABLE+BX) :::::AX
AL:=BL+MEM_BYTE(LOOKUP+CX)

17-16

inter MCS®-96 ARCHITECTURAL OVERVIEW

ZERO REGISTER ADDRESSING

The first two bytes in the register file are fixed at zero
by the 8096 hardware. In addition to providing a fixed
source of the constant zero for calculations and com­
parisons, this register can be used as the WORD vari-

Examples

able in a long-indexed reference. This combination of
register selection and address mode allows any location
in memory to be addressed directly.

ADD AX,1234[0]
POP 5678[0]

AX:=AX+MEM_WORD(1234)
MEM_WORD(5678) :=MEM_WORD(SP)

SP:=SP+2

STACK POINTER REGISTER ADDRESSING

The system stack pointer in the 8096 can be accessed as
register 18H of the internal register file. In addition to
providing for convenient manipulation of the stack
pointer, this also facilitates the accessing of operands in
the stack. The top of the stack, for example, can be

accessed by using the stack pointer as the WORD vari­
able in an indirect reference. In a similar fashion, the
stack pointer can be used in the short-indexed mode to
access data within the stack.

Examples
PUSH ESP]
LD AX,2[SP]

DUPLICATE TOP_OF_STACK
AX:=NEXT_TO_TOP

ASSEMBLY LANGUAGE ADDRESSING MODES

The 8096 assembly language simplifies the choice of
addressing modes to be used in several respects:

Direct Addressing. The assembly language will choose
between register-direct addressing and long-indexed
with the ZERO register depending on where the oper­
and is in memory. The user can simply refer to an oper­
and by its symbolic name; if the operand is in the regis­
ter file, a register-direct reference will be used, if the
operand is elsewhere in memory, a long-indexed refer­
ence will be generated.

Indexed Addressing. The assembly language will
choose between short and long indexing depending on
the value of the index expression. If the value can be
expressed in eight bits then short indexing will be used,
if it cannot be expressed in eight bits then long indexing
will be used.

The use of these features of the assembly language sim­
plifies the programming task and should be used wher­
ever possible.

3.3 Program Status Word

The program status word (PSW) is a collection of Hool­
ean flags which retain information concerning the state
of the user's program. The format of the PSW is shown
in Figure 16. The information in the PSW can be bro­
ken down into two basic categories; interrupt control
and condition flags. The PSW can be saved in the sys­
tem stack with a single operation (PUSHF) and re­
stored in a like manner (POPF).

< Interrupt Mask Reg>

Figure 16. PSW Register

17-17

inter MCS®·96 ARCHITECTURAL OVERVIEW

INTERRUPT FLAGS

The lower eight bits ofthePSW are used to individual­
ly mask the various sources of interrupt to the 8096. A
logical 'I' in these bit positions enables the servicing of
the corresponding interrupt. These mask bits can be
accessed as an eight bit byte (INT_MASK-address
8) in the on-board register file. Bit 9 in the PSW is the
global interrupt disable. If this bit is cleared then all
interrupts will be locked out except for the Non Maska­
ble Interrupt (NMI). Note that the various interrupts
are collected in the INT_PENDING register even if
they are locked out. Execution of the corresponding
service routines will procede according to their priority
when they become enabled. Further information on the
interrupt structure of the 8096 can be found in Section 4.

CONDITION FLAGS

The remaining bits in the PSW are set as side effects of
instruction execution and can be tested by the condi­
tional jump instructions.

Z. The Z (Zero) flag is set to indicate that the operation
generated a result equal to zero. For the add-with-carry
(ADDC) and subtract-with-borrow (SUBC) operations
the Z flag is cleared if the result is non-zero but is never
set. These two instructions are normally used in con­
junction with the ADD and SUB instructions to per­
form multiple precision arithmetic. The operation of
the Z flag for these instructions leaves it indicating the
proper result for the entire multiple precision calcula­
tion.

N. The N (Negative) flag is set to indicate that the
operation generated a negative result. Note that the N
flag will be set to the algebraically correct state even if
the calculation overflows. When the NEGB instruction
is performed on a byte register containing 80H, or the
NEG instruction is performed on a word register con­
taining 8000H, the Nflag is set.

V. The V (overflow) flag is set to indicate that the oper­
ation generated a result which is outside the range that
can be expressed in the destination data type. For the
SHL, SHLB and SHLL instructions, the V flag will be
set if the most significant bit of the operand changes. at
any time during the shift.

VT. The VT (oVerflow Trap) flag is set whenever the V
flag is set but can only be cleared by an instruction
which explicitly operates on it such as the CLRVT or
JVT instructions. The operation of the VT flag allows
for the testing for a possible overflow condition at the
end of a sequence of related arithmetic operations. This

is normally more efficient than testing the V flag after
each instruction.

C. The C (Carry) flag is set to indicate the state of the
arithmetic carry from the most sig~ificant bit of the
ALU for an arithmetic operation or the state of the last
biJ shifted out of the operand for a shift. Arithmetic
Borrow after a subtract operation is the complement of
the C flag (i.e. if the operation generated a borrow then
C = 0).

ST. The ST (STicky bit) flag is set to indicate that dur­
ing a right shift a I has been shifted first into the C flag
and then been shifted out. The ST flag is undefined
after a multiply operation. The ST flag can be used
along with the C flag to control rounding after a right
shift. Consider multiplying two eight bit quantities and
then scaling the result down to 12 bits:

MULUB
SHR

AX, CL, DL ·;AX :=CL*DL
AX,#4 ;Shift right 4 places

If the C flag is set after the shift, it indicates that the
bits shifted off the end of the operand were greater-than
or equal-to one half the least significant bit (LSB) of the
result. If the C flag is clear after the shift, it indicates
that the bits shifted off the end of the operand were less
than half the LSB of the result. Without the ST flag,
the rounding decision must be made on the basis of this
information alone. (Normally the result would be
rounded up if the C flag is set.) The ST flag allows a
finer resolution in the rounding decision:

CST Value of the Bits Shifted Off

00 Value = 0

01 o < Value < % LSB

10 Value = %LSB

1 1 Value >%LSB

Figure 17. Rounding Alternatives

Imprecise rounding can be a major source of error in a
numerical calculation; use of the ST flag improves the
options available to the programmer.

3.4 Instruction Set

The MCS-96 instruction set contains a full set of arith­
metic and logical operations for the 8-bit data types
BYTE and SHORT INTEGER and for the 16-bit data
types WORD and INTEGER. The DOUBLE-WORD
and LONG data types (32 bits) are supported for the
products of 16 by 16 multiplies and the dividends of 32

17-18

MCS®·96 ARCHITECTURAL OVERVIEW

by 16 divides and for shift operations. The remaining
operations on 32-bit variables can be implemented by
combinations of 16-bit operations. As an example the
sequence:

ADD AX,CX
ADDC BX,DX

performs a 32-bit addition, and the sequence

SUB AX,eX
SUBC BX,DX

performs a 32-bit subtraction. Operations on REAL
(Le. floating point) variables are not supported directly
by the hardware but are supported by the floating point
library for the 8096 (FPAL-96) which implements a
single precision subset of the proposed IEEE standard
for floating point operations. The performance of this
software is significantly improved by the 8096
NORML instruction which normalizes a 32-bit vari­
able and by the existence of the ST flag in the PSW.

In addition to the operations on the various data types,
the 8096 supports conversions between these types.
LDBZE (load byte zero extended) converts a BYTE to

a WORD and LDBSE (load byte sign extended) con­
verts a SHORT-INTEGER into an INTEGER.
WORDS can be converted to DOUBLE-WORDS by
simply clearing the upper WORD of the DOUBLE­
WORD (CLR) and INTEGERS can be converted to
LONGS with the EXT (sign extend) instruction.

The MCS-96 instructions for addition, subtraction, and
comparison do not distinguish between unsigned words
and signed integers. Conditional jumps are provided to
allow the user to treat the results of these operations as
either signed or unsigned quantities. As an example, the
CMPB (compare byte) instruction is used to compare
both signed and unsigned eight bit quantities. A JH
(jump if higher) could be used following the compare if
unsigned operands were involved or a JGT (jump if
greater-than) if signed operands were involved.

Table 3 summariz~s the operation of each of the in­
structions. Complete descriptions of each instruction
and its timings can be found in the Instruction Set
chapter. A summary of instruction opcodes and timing
is included in the quick reference section at the end of

. this chapter. Examples of using the instruction set of
the MCS-96 family can be found in Application Note
AP-248, "Using the 8096", included in this handbook.

17-19

MCSIfil·96 ARCHITECTURAL OVERVIEW

Table 3. Instruction Summary

Mnemonic Oper· Operation (Note 1) Flags Notes ands Z N C V VT ST
ADD/ADDB 2 D+-D+A t -
ADD/ADDB 3 D+-B+A t -
ADDC/ADDCB 2 D+-D+A+C J. t -
SUB/SUBB 2 D+-D-A t -
SUB/SUBB 3 D+-B-A t -
SUBC/SUBCB 2 D+-D-A+C-1 J. t -
CMP/CMPB 2 D-A t -
MULIMULU 2· 0,0 + 2 +- D'A - - - - - ? 2
MULIMULU 3 .D,D+2+-B·A -:- - - - - ? 2

. MULB/MULUB 2 0,0+ 1 ...:.... D' A - -.,. - - - ? 3

MULB/MULUB 3 0,0+ 1 +- B' A - - - - - ? 3
DIVU 2 o +- (0,0 + 2)/A, 0'+ 2 +- remainder - - - ... t - 2
DIVUB 2 o +- (0,0 + 1)/A, 0 + 1 +- remainder - - - ... t - 3

DIV 2 o +- (0,0 + 2)/A, 0 + 2. +- remainder - - - ? t -
DIVB 2 o +- (0,0 + 1)/A,D + 1 +- remainder - - - ? t ,-
AND/ANDB 2 o +- DandA 0 0 - -
AND/ANDB 3 o +- BandA 0 0 - -
OR/ORB 2 o +- DorA 0 0 - -
XOR/XORB 2 o +- 0 (excl. or) A 0 0 - -
LD/LDB 2 D+-A - - - - - -
ST/STB 2 A+-D - - - - - -
LDBSE 2 D+-A;D+1 +- SIGN(A) - - - - - - 3,4

LDBZE 2 o +- A;D+ 1 +-0 - - - - - - 3~4

PUSH 1 SP +- SP - 2; (SP) +- A - - - - - -
POP 1 A+- (SP);SP +- SP + 2 - - - - - -
PUSHF 0 SP +- SP - 2; (SP) +- PSW; 0 0 0 ,0 0 0

PSW +- OOOOH I+-O

POPF 0 PSW +- (SP); SP +- SP + 2; I+-
SJMP 1 PC +- PC + 11·bit offset - - - - - - 5
LJMP 1 PC +- PC + 16·bit offset - - - - - - 5
BR [Indirect] 1 PC +- (A) - - - - - -
SCALL 1 SP +- SP - 2; (SP) +- PC; - - - -:- - - 5

PC +- PC + 11·bit offset

LCALL 1 SP +- SP - 2; (SP) +- PC; - - - - - - 5
PC +- PC + 16·blt offset

RET 0 PC +- (SP); SP +- SP + 2 - - - - - -
J (conditional) 1 PC +- PC + B·bit offset (if taken) - - - - - - 5
JC 1 JumpifC = 1 - - - - - - 5
JNC 1 Jump If C = 0 - - - - - - 5
JE 1 JumpifZ = 1 - - - - - - 5

NOTES:
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation Is done. Operands 0, B, and A
must conform to the alignment rules for the required operand type. 0 and B are locations in the register file; A can be
located anywhere in memory.
2. 0, 0 +2 are consecutive WORDS in memory; 0 is DOUBLE·WORD aligned.
3. 0, 0 + 1 are consecutive BYTES in memory; 0 is WORD aligned.
4. Changes a byte to a word. '
5. Offset is a 2's complement number.

17·20

MCS®·96 ARCHITECTURAL OVERVIEW

Table 3. Instruction Summary (Continued)

Mnemonic
Oper- Operation (Note 1)

Flags
Notes

ands Z N C V VT ST

JNE 1 JumpifZ = 0 - - - - - - 5

JGE 1 Jump if N = 0 - - - - - - 5

JLT 1 Jump if N = 1 - - - - - - 5

JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5

JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5

JH 1 Jump if C = 1 and Z = 0 - - - - - - 5

JNH 1 Jump if C = 0 or Z = 1 - - - - - - 5

JV 1 Jump if V = 1 - - - - - - 5

JNV 1 Jump if V = 0 - - - - - - 5

JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5

JST 1 Jump ifST = 1 - - - - - - 5

JNST 1 Jump ifST = 0 - - - - - - 5

JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6

OJNZ 1 o - 0 - 1; if 0 "" 0 then
PC - PC + S-bit offset - - - - - - 5

OEC/OECB 1 0-0-1 "" "" "" "" t -
NEG/NEGB 1 0-0-0 "" "" "" "" t -
INC/INCB 1 0- 0+ 1 "" "" "" "" t -
EXT 1 o - D; 0 + 2 - Sign (D) "" "" 0 0 - - 2

EXTB 1 o - 0; 0 + 1 - Sign(D) "" "" 0 0 - - 3

NOTiNOTB 1 D - Logical Not (D) "" "" 0 0 - -
CLR/CLRB 1 0-0 1 0 0 0 - -
SHLlSHLB/SHLL 2 C - msb-----Isb - 0 "" ? "" "" t - 7

SHRISHRB/SHRL 2 0- msb-----Isb - C "" ? "" 0 - "" 7

SHRAISHRAB/SHRAL 2 msb - msb-----Isb - C "" "" "" 0 - "" 7

SETC 0 C-1 - - 1 - - -
CLRC 0 C-O - - 0 - - -
CLRVT 0 VT - 0 - - - - 0 -
RST 0 PC - 20S0H 0 0 0 0 0 0 S

01 0 Disable All Interrupts (I - 0) - - - - - -
EI 0 Enable All Interrupts (I - 1) - - - - - -
NOP 0 PC-PC+1 - - - - - -
SKIP 0 PC-PC+2 -. - - - - -
NORML 2 Left shift till msb = 1; 0 - shift count "" ? 0 - - - 7

TRAP 0 SP - SP - 2; (SP) - PC
PC - (2010H) - - - - - - 9

NOTES:
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands 0, B and A
must conform to the alignment rules for the required operand type. 0 and B are locations in the register file; A can be
located anywhere in memory.
5. Offset is a 2's complement number.
6. Specified bit is one of the 204S bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
S. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at
20S0H.
9. The assembler will not accept this mnemonic.

17-21

inter MCS®·96 ARCHITECTURAL OVERVIEW

3.5 Software Standards and
Conventions

For a software project of any size it is a good idea to
modularize the program and to establish standards
which control the communication between these mod­
ules. The nature of these standards will vary with the
needs of the final application. A common component of
all of these standards, however, must be the mechanism
for passing parameters to procedures and returning re­
sults from procedures. In the absence of some overrid­
ing consideration which prevents their use, it is suggest­
ed that the user conform to the conventions adopted by
the PLM-96 programming language for procedure link­
age. It is a very usable standard for both the assembly
language and PLM-96 environment and it offers com­
patibility between these environments. Another advan­
tage is that it allows the user access to the same floating
point arithmetics library that PLM-96 uses to operate
on REAL variables.

REGISTER' UTILIZATION

The MCS-96 architecture provides a 256 byte register
file. Some of these registers are used to control register­
mapped I/O devices and for other special functions
such as the ZERO register and the stack pointer. The
remaining bytes in the register file, some 230' of them,
are available for allocation by the programmer. If these
registers are to be used effectively, some overall strategy
for their allocation must be adopted. PLM-96 adopts
the simple and effective strategy of allocating the eight
bytes between addresses ICH and 23H as temporary
storage. The starting address of. this region' is called
PLMREG. The remaining area in the register file is
treated as a segment of memory which is allocated as
required.

ADDRESSING.32-BIT OPERANDS

These operands are formed from two adjacent 16-bit
words in memory. The least significant word of the
double word is always in lower address, even when the
data is in the stack (which means that the most sig­
nificant word must be pushed into the stack first). A
double word is addressed by the address of·its least
significant byte. Note that the hardware supports some
operations on double words (e.g. normalize and divide).
For these operations the double word must be in the
internal register file and must have an address which is
evenly divisible by four.

SUBROUTINE LINKAGE

Parameters are passed to subroutines in the stack. Pa­
rameters are pushed into the stack in the order that
they are encountered in the scanning of the source text.
Eight-bit parameters (BYTES or SHORT-INTE­
GERS) are pushed into the stack with the high order

byte undefined. Thirty-two bit parameters (LONG­
INTEGERS, DOUBLE-WORDS, and REALS) are
pushed into the stack as two 16-bit values; the most
significant. half of the parameter is pushed into the
stack first.

As an example, consider the following PLM-96 proce­
dure:

example_procedure: PROCEDURE
(param 1,param2,param3);

DECLARE paraml BYTE,
param2 DWORD,
param3 WORD;

When this procedure is entered at run time the stack
will contain the parameters in the following order:

?????? : pararn1

high word of pararn2

low word of pararn2

pararn3

return address - StacLpointer

Figure 18. Stack Image

If a procedure'returns a value to the calling code (as
opposed to modifying more global variables) then the
result is returned in the variable PLMREG. PLMREG
is viewed as either an 8~,16- or 32'bit variable depend­
ing on the type of the procedure.

The standard calling convention adopted by PLM-96
has several key features:

a) Procedures can always assume that the eight bytes of
register file memory starting at PLMREG can be
used as temporaries within the body of the proce­
dure.

b) Code which calls a procedure must assume that the
eight bytes of register file memory starting at
PLMREG are modified by the procedure.

c) The Program Status Word (PSW-see Section 3.3) is
not saved and restored by procedures so the. calling
code must assume that the condition flags (Z, N, V,
VT, C, and ST) are modified by the procedure.

d) Function results from procedures are always re­
turned in the variable PLMREG.

PLM-96 allows the definition of INTERRUPT proce­
dures which are executed when a predefined interrupt
occurs. These procedures do not conform to the rules of
a normal procedure. Parameters cannot be passed to
these procedures and they cannot return results. Since
they can execute essentially at any time (hence the term
interrupt), these procedures must save the PSW and
PLMREG when they are entered and restore these val­
ues before they exit.

17-22

intJ MCS®-96 ARCHITECTURAL OVERVIEW

4.0 INTERRUPT STRUCTURE

There are 21 sources of interrupts on the 8096BH.
These sources are gathered into 8 interrupt types as
indicated in Figure 19. The I/O control registers which
control some of the sources are indicated in the figure.
Each of the eight types of interrupts has its own inter­
rupt vector as listed in Figure 20. In addition to the 8
standard interrupts, there is a TRAP instruction which
acts as a software generated interrupt. This instruction
is not currently supported by the MCS-96 Assembler
and is reserved for use in Intel development systems.

PSW which contains a global disable bit. A block dia­
gram of the system is shown in Figure 21. The tran­
sition detector looks for 0 to I transitions on any of the
sources. External sources have a maximum transition
speed of one edge every state time. If this is exceeded
the interrupt may not be detected.

The programmer must initialize the interrupt vector ta­
ble with the starting address of the appropriate inter­
rupt service routine. It is suggested that any unused
interrupts be vectored to an error handling routine. The
error routine should contain recovery code that will not
further corrupt an already erroneous situation. In a de­
bug environment, it may be desirable to have the rou­
tine lock into a jump to self loop which would be easily
traceable with emulation tools. More sophisticated rou­
tines may be appropriate for production code recover­
ies.

Vector

Software
Extint
Serial Port
Software

Timers
HSI,O
High Speed

Outputs
HSI Data

Available
AID Conversion

Complete
Timer Overflow

Vector Location

(High (Low Priority

Byte) Byte)

2011 H 2010H Not Applicable
200FH 200EH 7 (Highest).
200DH 200CH 6
200BH 200AH 5

2009H 2008H 4
2007H 2006H 3

2005H 2004H 2

2003H 2002H 1

2001H 2000H o (Lowest)

Three registers control the operation of the interrupt
system: Interrupt Pending, Interrupt Mask, and the

Figure 20. Interrupt Vector Locations

NOTE:

SOURCE INTERRUPT

,..---IOC1.l

EXTINT ~"'-------EXTINT
ACH.7 ~

TI FLAG =-oJ --,-------- SERIAL PORT

RI FLAG ,.. ___ HSO_COMMAND.4

SOFTWARE TIMER 0 ~...,j"
SOFTWARE TIMER 1
SOFTWARE TIMER 2
SOFTWARE TIMER 3

RESET TIMER 2'

START AlD CONVERSION'

SOFTWARE TIMER

HSI.O--------- HSI.O

,..--- HSCU:OMMAND.4

ANY HSO OPERATION ---0 ...,j,,"'------- HIGH SPEED OUTPUTS

,..---IOC1.7
RFOISFULL~

HOLDING REGISTER LOADED ----0 HSI DATA AVAILABLE

AiD CONVERSION COMPLETE --------- AID CONVERSION COMPLETE

~
--IOC1.2

TIMER1 OVERFLOW _ "'-----,.-- TIMER OVERFLOW

TIMER2 OVERFLOW - !'c.~~----'

L--IOC1.3

·Only when initiated by the HSO unit.

Figure 19. All Possible Interrupt Sources

17-23

270250-20

inter

EXTINT

MCS®~96 ARCHITECTURAL OVERVIEW

SERIAL PORT

SOFTWARE

TIMERS HSI.O

TRANSITION
DETECTOR

HSI
TIMER

OVERFLOW

o

INTERRUPT MASK REG.

I bit
(PSW.9)

PRIORITY ENCODER

GLOBAL DISABLE

INTERRUPT
GENERATOR

D-BUS CONTROL
UNIT

Figure 21. Block Diagram of Interrupt System

17·24

270250-21

MCS®-96 ARCHITECTURAL OVERVIEW

4.1 Interrupt Control

Interrupt Pending Register

When the hardware detects one of the eight interrupts
it sets the corresponding bit in the pending interrupt
register (lNT_PENDING-09H). When the interrupt
vector is taken, the pending bit is cleared. This register,
the format of which is shown in Figure 22, can be read
or modified as a byte register. It can be read to deter­
mine which of the interrupts are pending at any given
time or modified to either clear pending interrupts or
generate interrupts under software control. Any soft­
ware which modifies the INT_PENDING register
should ensure that the entire operation is indivisible.
The easiest way to do this is to use the logical instruc­
tions in the two or three operand format, for example:

ANDB INT_PENDING,#llllllOlB
; Clears the AID Interrupt

ORB INT_PENDING,#OOOOOOlOB
; Sets the AID Interrupt

Caution must be used when writing to the pending reg­
ister to clear interrupts. If the interrupt has already
been acknowledged when the bit is cleared, a 4 state
time "partial" interrupt cycle will occur. This is be­
cause the 8096BH will have to fetch the next instruc­
tion of the normal instruction flow, instead of proceed­
ing with the interrupt processing as it was going to. The
effect on the program will be essentially that of an extra
NOP. This can be prevented by clearing the bits using a
2 operand immediate logical, as the 8096BH holds off
acknowledging interrupts during these "read/modify/
write" instructions.

(LOCATION 09H)

17161514131211101

III I I ~ :~~:i:~~£E"
HSO EVENT
HSI BIT 0
SOFlWARE TIMERS

L-________ SERIAL I/O
L-_________ EXTERNAL INTERRUPT

270250-19

Figure 22. Interrupt Pending Register

Interrupt Mask Register

Individual interrupts can be enabled or disabled by set­
ting or clearing bits in the interrupt mask register
(INT_MASK-08H). The format of this register is the
same as that of the Interrupt Pending Register shown
in Figure 22. .

The INT_MASK register can be read or written as
byte register. A one in any bit position will enable the
corresponding interrupt source and a zero will disable
the source. The hardware will save any interrupts that
occur by setting bits in the pending register, even if the
interrupt mask bit is cleared. The INT_MASK regis­
ter also can be accessed as the lower eight bits of the
PSW so the PUSHF and POPF instructions save and
restore the INT_MASK register as well as the global
interrupt lockout and the arithmetic flags.

GLOBAL DISABLE

The processing of all interrupts can be disabled by
clearing the I bit in the PSW. Setting the I bit will
enable interrupts that have mask register bits which are
set. The I bit is controlled by the EI (Enable Interrupts)
and DI (Disable Interrupts) instructions. Note that the
I bit only controls the actual servicing of interrupts.
Interrupts that occur during periods of lockout will be
held in the pending register and serviced on a priori­
tized basis when the lockout period ends.

4.2 Interrupt Priorities

The priority encoder looks at all of the interrupts which
are both pending and enabled, and selects the one with
the highest priority. The priorities are shown in Figure
20 (7 is highest, 0 is lowest). The interrupt generator
then forces a call to the location in the indicated vector
location. This location would be the starting location of
the Interrupt Service Routine (ISR).

This priority selection controls the order in which
pending interrupts are passed to the software via inter­
rupt calls. The software can then implement its own
priority structure by controlling the mask register
(INT_MASK). To see how this is done, consider the
case of a serial I/O service routine which must run at a
priority level which is lower than the HSI data.avail­
able interrupt but higher than any other source. The
"preamble" and exit code for this interrupt service rou­
tine would look like this:

serial_io_isr:
PUSHF

LDB
EI

I
POPF
RET

Save the PSW
(Includes INT_MASK)

INT_MASK,#OOOOOlOOB
; Enable interrupts again

Service the interrupt

Restore the PSW

17-25

infef MCS®-96 ARCHITECTURAL OVERVIEW

Note that location 200CH in the interrupt vector table
would have to be loaded with the value of the label
serial_io_isr and the interrupt be enabled for this
routine to execute.

There is an interesting chain of instruction side-effects
which makes this (or any other) 8096 interrupt service
routine execute properly:

a) After the hardware decides to proces~ an interrupt, it
generates and executes a special interrupt-call in­
struction, which pushes the current program counter
onto the stack and then loads the program counter
with the contents of the vector table entry corre­
sponding to the interrupt. The hardware will not al­
low another interrupt to be serviced immediately fol­
lowing the interrupt-call. This guarantees that once
the interrupt-call starts, the first instruction of the
interrupt service routine will execute.

b) The PUSHF instruction, which is now guaranteed to
execute, saves the PSW in the stack and then clears
the PSW. The PSW contains, in addition to the
arithmetic flags, the INT_MASK register and the
global disable flag (I). The hardware will not allow
an interrupt following a PUSHF instruction and, by
the time the LD instruction starts, all of the inter­
rupt enable flags will be cleared. Now there is guar­
anteed execution of the LD INT_MASK instruc­
tion.

c) The LD INT_MASK instruction enables those in­
terrupts that the programmer chooses to allow to
interrupt the serial I/O interrupt service routine. In
this example only the HSI data available interrupt
will be allowed to do this but any interrupt or combi­
nation of interrupts could be enabled at this point,
even the serial interrupt. It is the loading of the
INT_MASK register which allows the software to
establish its own priorities for interrupt servicing in­
dependently from those that the hardware enforces.

d) The EI instruction reenables the processing of inter­
rupts.

e) The actual interrupt service routine executes within
the priority structure established by the software.

f) At the end of the service routine the POPF instruc­
tion restores the PSW to its state when the interrupt­
call occurred. The hardware will not allow interrupts
to be processed following a POPF instruction so the
execution of the last instruction (RET) is guaranteed
before further interrupts can occur. The reason that
this RET instruction must be protected in this fash­
ion is that it is quite likely that the POPF instruction
will reenable an interrupt which is already pending.
If this interrupt were serviced before the RET in­
struction, then the return address to the code that
was executing when the original interrupt occurred
would be left on the stack. While this does not pres­
ent a problem to the program flow, it could result in
a stack overflow if interrupts are occurring at a high
frequency. The POPF instruction also pops the

INT_MASK register (part of the PSW), so any
changes made to this register during a routine which
ends with a POPF will be lost.

Notice that the "preamble" and exit code for the inter­
rupt service routine does not include any code for sav­
ing or restoring registers. This is because it has' been
assumed that the interrupt service routine has been al­
located its own private set of registers from the on­
board register file. The availability of some 230 bytes of
register storage makes this quite practical.

4.3 Critical Regions

Interrupt service routines must share some data with
other routines. Whenever the programmer is coding
those sections of code which access these shared pieces
of data, great care must be taken to ensure that the
integrity of the data is maintained. Consider clearing a
bit in the interrupt pending register as part of a non-in­
terrupt routine:

LDB
ANDB
5TB

AL,INT_PENDING
AL,#biLmask
AL,INT_PENDING

This code works if no other routines are operating con­
currently, but will cause occasional but serious prob­
lems if used in a concurrent environment. (All pro­
grams which make use of interrupts must be considered
to be part of a concurrent environment.) To demon­
strate this problem, assume that the INT_PENDING
register contains 0000llllB and bit 3 (HSO event in­
terrupt pending) is to be reset. The code does work for
this data pattern but what happens if an HSI interrupt
occurs somewhere between the LDB and the STB in­
structions? Before the LDB instruction INT_PEND­
ING contains OOOOll1lB and after the LDB instruc­
tion so does AL. If the HSI interrupt service routine
executes at this point then INTJENDING will
change to OOOOlOlIB. The ANDB changes AL to
00000111B and the STB changes INT_PENDING to
0000011IB. It should be 0OOOOOlIB. This code se­
quence has manged to generate a false HSI interrupt
The same basic process can generate an amazing assort-
~ment of problems and headaches. These problems can

be avoided by assuring mutual exclusion which basical­
ly means that if more than one routine can change a
variable, then the programmer must ensure exclusive
access to the variable during the entire operation on the
variable.

In many cases the instruction set of the 8096 allows the
variable to be -modified with a single instruction. The
code in the above example can be implemented with a
single instruction.

ANDB

17-26

inter MCS®-96 ARCHITECTURAL OVERVIEW

Instructions are indivisible so mutual exclusion is en­
sured in this case. Changes to the INT_PENDING
register must be made as a single instruction, since bits
can be changed in this register even if interrupts are
disabled. Depending on system configurations, several
other SFRs might also need to be changed in a single
instruction for the same reason.

When variables must be modified without interruption,
and a single instruction can not be used, the program­
mer must create what is termed a critical region in
which it is safe to modify the variable. One way to do
this is to simply disable interrupts with a DI instruc­
tion, perform the modification, and then re-enable in­
terrupts with an EI instruction. The problem with this
approach is that it leaves the interrupts enabled even if
they were not enabled at the start. A better solution is
to enter the critical region with a PUSHF instruction
which saves the PSW and also clears the interrupt en­
able flags. The region can then be terminated with a
POPF instruction which returns the interrupt enable to
the state it was in before the code sequence. It should be
noted that some system configurations might require
more protection to form a critical region. An example
is a system in which more than one processor has ac­
cess to a common resource such as memory or external
I/O devices.

4.4 Interrupt Timing

Interrupts are not always acknowledged immediately.
If the interrupt signal does not occur prior to 4 .state­
times before the end of an instruction, the interrupt will
not be acknowledged until after the next instruction has
been executed. This is because an instruction is fetched
and prepared for execution a few state times before it is
actually exe,cuted.

STATE TIMES 432 1 42

There are 6 instructions which always inhibit interrupts
from being acknowledged until after the next instruc­
tion has been executed. These instructions are:

EI, DI - Enable and Disable Interrupts

POPF, PUSHF- Pop and Push Flags

SIGND - Prefix to perform signed multiply

TRAP

and divide (Note that this is not an
ASM-96 Mnemonic, but is used for
signed multiply and divide)

- Software interrupt

When an interrupt is acknowledged, the interrupt
pending bit is cleared, and a call is forced to the loca­
tion indicated by the specified interrupt vector. This
call occurs after the completion of the instruction in
process, except as noted above. The procedure of get­
ting the vector and forcing the call requires 21 state
times. If the stack is in external RAM an additional 3
state times are required.

The maximum number of state times required from the
time an interrupt is generated (not acknowledged) until
the 8096 begins executing code at the desired location is
the time of the longest instruction, NORML (Normal­
ize - 42 ,state times), plus the 4 state times prior to the
end of the previous instruction, plus the response time
(21 to 24 state times). Therefore, the maximum re­
sponse time is 70 (42 + 4 + 24) state times. This does
not include the 12 state times required for PUSHF if it
is used as the first instruction in the interrupt routine or
additional latency caused by having the interrupt
masked or disabled. Refer to Figure 22A, Interrupt Re­
sponse Time, to visualize an example of worst case sce­
nario.

.'---21---';':;~3~;:~::~12:--'::~?7~~~
S 'ENDING I'NORML' « END 1 CALL IS ({ IF STACK 'PUSHF' ~

",-.;;IN.;.;S;.;.T;.;.RU.;.C.;.T,;,IO;.;.N';'&' __ ...JJ. "'" /_'N_O_R_M_L_' ~:-F_O_RC_E_D_./l EXTERNAL ~
EXECUTION

EXTINT~ 1
PENDING Ir"S~ET=-----------;1 CLEARED

BIT ~ •

INTERRUPT ROUTINE

RESPONSE TIME ""1.>---------70 STATE TIMES----------i

270250-60

Figure 22A. Interrupt Response Time

17-27

intJ MCS®·96 ARCHITECTURAL OVERVIEW

Interrupt latency time can be reduced by careful selec­
tion of instructions in areas of code where interrupts
are expected. Using 'EI' followed immediately by a
long instruction (e.g. MUL, NORML, etc.) will in­
crease the maximum latency by 4 state times, as an
interrupt cannot occur between EI imd the instruction
following EI. The "DI", "PUSHF", "POPF" and
"TRAP" instructions will also cause the same situa­
tion. Typically the PUSHF, POPF and TRAP instruc­
tions would only effect latency when one interrupt
routine is already in process, as these instructions are
seldom used at other times.

5.0 TIMERS

Two 16-bit timers are available for use on the 8096. The
first is designated "Timer 1", the second, "Timer 2".
Timer 1 is used to synchronize events to real time,
while Timer 2 can be clocked ex~ernally and synchro­
nizes events to external occurrences.

5.1 Timer 1

Timer 1 is clocked once every eight state times and can
be cleared only by executing a reset. The only other
way to change its. value is by writing to OOOCH but this
is a test mode which sets both timers to OFFFXH and
should not be used in programs.

5.2 Timer 2

Timer 2 can be incremented by transitions (one count
each transition, rising and falling) on either T2CLK or
HSI.l. The multiple functionality of the timer is deter­
mined by the state of 1/0 Control Register 0, bit 7
(IOCO.7). To ensure that all CAM entries are checked
each count of Timer 2, the maximum transition speed is
limited to once per eight state times. Timer 2 can be
cleared by: executing a reset, by setting lOCO. 1, by trig­
gering HSO channel OEH, or by pulling T2RST or
HSI.O high. The HSO and CAM are described in Sec­
tion 7 and 8. IOCO.3 and ICOO.5 control the resetting
of Timer 2. Figure 23 shows the different ways of ma­
nipulating Timer 2.

10CO.S
270250-22

Figure 23. Timer 2 Clock and Reset Options

5.3 Timer Interrupts

Both Timer 1 and Timer 2 can be used to trigger a
timer overflow interrupt and set a flag in the 1/0 Status
Register 1 (IOS 1). The interrupts are controlled by
IOC1.2 and IOC1.3 respectively. The flags are set in
IOS1.5 and IOS1.4, respectively.

Caution must be used when examining the flags, as any
access (including Compare and Jump on Bit) of 10Sl
clears bits 0 through 5 including the software timer
flags. It is, therefore, recommended to write the byte to
a temporary register before testing bits. The general en­
abling and disabling of the timer interrupts are con­
trolled by the Interrupt Mask Register bit O. In all cas­
es, setting a bit enables a function, while clearing a bit
disables it.

5.4 Timer Related Sections

The High Speed 1/0 unit is coupled to the timers in
that the HSI records the value on Timer 1 when tran­
sitions occur and the HSO causes transitions to occur
based on value~ of either Timer 1 or Timer 2. The baud

17-28

inter MCS®-96 ARCHITECTURAL OVERVIEW

rate generator can use the T2CLK pin as input to its
counter. a complete listing of the functions of 10Sl,
lOCO, and lOCI are in Section 11.

Timer 1. There are 4 lines (HSI.O through HSI.3)
which can be used in this mode and up to a total of 8
events can be recorded. HSI.2 and HSI.3 are bidirec­
tional pins which can also be used as HSO.4 and
HSO.5. The I/O Control Registers (lOCO and lOCI)
are used to determine the functions of these pins. A
block diagram of the HSI unit is shown in Figure 24.

6.0 HIGH SPEED INPUTS

The High Speed Input Unit (HSI), can be used to rec­
ord the time at which an event occurs with respect to

HSI Trigger Options

HI TO LO

LO TO HI

HI OR LO

EVERY EIGHTH POSITIVE
TRANSITION

FIFO

270250-41

INTERRUPT

II< 11 lTsliR 1 CONTROL LOGIC

4 7x20 BIT
FIFO

HSLMODE

Figure 24. High Speed Input Unit

17-29

. 270250-23

inter MCS®-96 ARCHITECTURAL OVERVIEW

6.1 HSI Modes·

There are 4 possible modes of operation for each of the
HSI pins. The HSI mode register is used to control
which pins will look for what type of events. The ii-bit
register is set up as shOwn in Figure 25.

High and low levels each need to be held for at least 1
state time to ensure proper operation. The maximum
input speed is 1 event every 8 state times except when
the 8 transition mode is used, in which case it is 1
transition per state time. The divide by eight counter
can only be zeroed in mid-coUnt by performing a hard­
ware reset on the 8096BH. The 8X9X counter cannot
be zeroed.

17 6 1 S

HSLMode (03H)

413 211 101

LI HSI.O MODE

HSI.l MODE

HSI.2 MODE

HSI.3 MODE

WHERE EACH 2 - BIT MODE CONTROL fiELD
DEfiNES ONE Of 4 POSSIBLE MODES: .

00 8 POSITIVE TRANSITIONS
01 EACH POSITIVE TRANSITION
10 EACH NEGATIVE TRANSITION
11 EVERY TRANSITION

(POSITIVE AND NEGATIVE)
270250-24

Figure 25. HSI Mode Register Diagram

The HSI lines can be individually enabled and disabled
using bits in lOCO, at location 0015H. Figure 26 shows
the bit locations which control the HSIpins. If the pin
is disabled, transitions will not be entered in the FIFO.

T2RST ~ • - - 10CO.S

~ I ~---""T2 RESET
._- IOCO.3

; -- 10CO.0

HSI.O ~------- HSI

;-~ IOCO.2
. roO "-0....;.. ;.;, .. --.;.;.-.;.;.-- HSI

HSI.l ~ . TIMER2
T2CLK ~ l_-IOCO.7 CLOCK

; -- IOCO.4

HSI.2 ~"-o_------ HSI

• - - IOCO.6

HSI.3 ~""-o ------HSI
270250-25

Figure 26. lOCO Control of HSI Pin Functions

6.2 .HSI FIFO

When an HSI event occurs, Ii 7 X 20 FIFO stores the 16
bits of Timer 1 and the 4 bits indicating which pins had
events. It can take up to 8 state times for this informa­
tion to reach the holding register. For this reason, 8
state times must be allowed between consecutive reads
of HSLTIME. When the FIFO is full, one additional
event, for a total of 8 events, can be stored by consider­
ing the holding register part of the FIFO. If the FIFO
and holding register are full, any additional events will
not be recorded.

6.3 HSllnterrupts

Interrupts can be generated by the HSI unit in three
ways; two FIFO related interrupts and 0 to 1 tran­
sitions on the HSI.O pin. The HSI.O pin can generate
interrupts even if it is not enabled to the HSI FIFO.
Interrupts generated by this pin cause a vector through
location 2008H. The FIFO related interrupts are con­
trolled by bit 7 ofI/O Control Register 1, (IOCl.7). If
the bit is a 0, then an interrupt will be generated every
time a value is loaded into the holding register. If it is a
1, an interrupt will only be generated when the FIFO,
(independent of the holding register), has six entries in'
it. Since all interrupts are rising edge triggered, if
IOCl. 7 = 1. the processor will not be re-interrupted .
until the FIFO first contains 5 or less records, then
contains six or more.

6.4 HSI Status

Bits 6 and 7 of the I/O Status register 1 (lOS 1) indicate
the status of the HSI FIFO. If bit 6 is a 1, the FIFO
contains at least six entries. If bit 7 is a 1; the FIFO
contains at least 1 entry and the HSI holding register
has data available to be read. the FIFO may be read
after verifying that it contains valid data. Caution must
be· used when reading or testing bits in 10SI, as this
action clears bits 0-5, including the software and hard­
ware timer overflow flags. It is best to store the byte
and then test the stored value. See Section ·11.

Reading the HSI is done in two steps. First, the HSI
status ·register is read to obtain the current state of the
HSI pins and which pins had changed at the recorded
time. The format of the HSLSTATUS Register is
shown in Figure 27. Second, the HSI Time register is
read. Reading the Time register unloads one level of the
FIFO, so if the Time register is read before the Status
register, the event inforplation in the Status .register will
be lost. The HSI Status register is at location 06H and
the HSI Time registers are in locations 04H and 05H .

If the HSI_TIME register is read· without the holding
register being loaded, the returned value will be indeter­
minate. Under the same conditions, the four bits in

17-30

MCS®·96 ARCHITECTURAL OVERVIEW

HSI_STATUS indicating which events have occurred
will also be indeterminate. The four HSI_ST A TUS
bits. which indicate the current state of the pins will
always return the correct value.

It should be noted that many of the Status register con­
ditions are changed by a reset, see Section 13. A com­
plete listing of the functions of roso, ros I, and roc I
can be found in Section II.

7.0 HIGH SPEED OUTPUTS

The High Speed Output unit, (HSO), is used to trigger
events at specific times with minimal CPU overhead.
These events include: starting an A to D conversion,
resetting Timer 2, setting 4 software flags, and switch­
ing 6 output lines (HSO.O through HSO.5). Up to eight
events can be pending at one time and interrupts can be
generated whenever any of these events are triggered.
HSO.4 and HSO.5 are bidirectional pins which can also
be used as HSI.2 and HSI.3 respectively. Bits 4 and 6 of
I/O Control Register 1, (IOCI.4, roCI.6), enable
HSO.4 and HSO.5 as outputs.

The HSO unit can generate two types of interrupts. The
HSO execution interrupt (vector = (2006H» is gener­
ated (if enabled) for HSO commands which operate one
or more of the six output pins. The other HSO inter­
rupt is the software timer interrupt (vector =

(200BH» which is generated (if enabled) by any other
HSO command, (e.g. triggering the A/D, resetting
Timer 2 or generating a software time delay).

t

7.1 HSO CAM

A block diagram of the HSO unit is shown in Figure
28. The Content Addressable Memory (CAM) file is
the center of control. One CAM register is compared
with the timer values every state time, taking 8 state
times to compare all CAM registers with the timers.
This defines the time resolution of the HSO to be 8
state times (2.0 microseconds at an oscillator frequency
of 12 MHz).

HSI Status Register (HSI_Status)
LOCATION 06H

HSI.O STATUS

'-----HSI.l STATUS

L-_____ HSI.2 STATUS

'---------- HSI.3 STATUS
270250-26

Where for each 2-bit status field the lower bit indicates
whether or not an event has occurred on this pin at the
time in HSI_ TIME and the upper bit indicates the cur­
rent status of the pin.

Figure 27. HSI Status Register Diagram

Each CAM register is 23 bits wide. Sixteen bits specify
the time at which the action is to be carried out and 7
bits specify both the nature of the action and whether
Timer 1 or Timer 2 is the reference. The format of the

T2CLK

T2RST

8 EQUAL r------,
1----23 8ITS---.. -1 ~ L-="""""E~~~

16
6

HIGH SPEED OUTPUT CONTROL
• 6 OUTPUT PINS
• 4 SOFTWARE TIMERS
• INITIATE AID CONVERSION
• RESET TIMER 2

PORT PINS

Figure 28. High Speed Output Unit

17-31

270250-27

inter MCS®-96 ARCHITECTURAL OVERVIEW

command to the HSO unit is shown in Figure 29. Note
that bit 5 is ignored for command channels 8 through
OFH.

To 'enter a command into the CAM file, write the 7-bit
"Command Tag" into location 0OO6H followed by the
time at which the action is to be carried out into word
address 0OO4H. The typical code would be:

LDB HSO_COMMAND,#what_to_do
ADD HSO_TIME,TIMERl,#when_to_do_it

Writing the time value loads the HSO Holding Register
with both the time and the last written command tag.
The command does not actually enter the CAM file
until an empty CAM register becomes available.

Commands in the holding register will not execute even
if their time tag is reached. Commands must be in the
CAM for this to occur. Commands in the holding regis­
ter can also be overwritten. Since it can take up to 8
state times for a command to move from the holding
register to the CAM, 8 states must be allowed between

. successive writes to the CAM.

To provide proper synchronization, the minimum time
that should be loaded to Timer 1 is Timer 1 + 2.
Smaller values' may cause the Timer match to occur
65,636 counts later than expected. A similar restriction
applies if Timer 2 is used.

Care must be taken when writing the command tag for
the HSO. If an interrupt occurs during the time be­
tween writing the command tag and loading the time
value, and the interrupt service routine writes to the
HSO time register, the command tag used in the inter­
rupt routine will be written to the CAM at both the
time specified by the interrupt routine and the time
specified by the main program. The command tag from
the main program will not be executed. One way of
avoiding this problem would be to disable interrupts
when writing commands and times to the HSO unit.
See also Section 4.5.

CHANNEL:

BIT:
0-5 HSO.O - HSO.5

7 HSO.2 AND HSO.3

8-B SOFTWARE TIMERS

2 E RESET TIMER2

]

6 HSO.O AND HSO.l

3 F START A/D CONVERSION

4 INTERRUPT / NO INTERRUPT

5 SET /CLEAR

6

7

TIMER 2/ TIMER 1

X

270250-28

Figure 29. HSO Command Tag Format

7.2 HSO Status

Before writing to the HSO, it is desirable to ensure that
the Holding Register is empty. If it is not, writing to the
HSO will overwrite the value in the Holding Register.
110 Status Register 0 (IOSO) bits 6 and 7 indicate the
status of the HSO unit. This register is described in
Section 11. If ISOO.6 equals 0, the holding register is
empty and at least one CAM register is empty. If
IOSO.7 equals 0, the holding register is empty.

The programmer should carefully decide which of these
two flags is the best to use for each application.

7.3 Clearing the HSO

All 8 CAM locations of the HSO are compared before
any action is taken. This allows a pending external
event to be cancelled by simply writing the opposite
event to the CAM. However, once an entry is placed in
the CAM, it cannot be removed until either the speci­
fied timer matches the written value or the chip is reset .
If, as an example, a command has been issued to set
HSO.I when TIMER I = 1234, then entering a second
command which clears HSO.l when TIMER I = 1234
will result in no operation on HSO.1. Both commands
will remain in the CAM until TIMER I = 1234.

Internal events are not synchronized to Timer I, and
therefore cannot be cleared. This includes events on
HSO channels 8 through F and all interrupts. Since
interrupts are not synchronized it is possible to have
multiple interrupts at the same time value.

7.4 Using Timer 2 with the HSO

Timer I is incremented only once every 8 state-times.
When it is being used as the reference timer for an HSO
action, the comparator has a chance to look at all 8
CAM registers before Timer I changes its value. Fol-'
lowing the same reasoning, Timer 2 has been synchro­
nized to allow it to change at a maximum rate of once
per 8 state:times. Timer 2 increments on both edges of
the input signal.

When using Timer 2 as the HSO reference, caution
must be taken that Timer 2 is not reset prior to the
highest value for a Timer 2 match in the CAM. This is
because the HSO CAM will hold an event pending until
a time match occurs, if that match is to a time value on
Timer 2 which is never reached, the event will remain
pending in the CAM until the part is reset.

Additional caution must be used when Timer 2 is being
reset using the HSO unit, since resetting Timer 2 using
the HSO is an internal event and can therefore happen
at any time within the eight-state-time window. This
situation arises when the event is set to occur when

17-32

infef MCS®-96 ARCHITECTURAL OVERVIEW

Timer 2 is equal to zero. If HSI.O or the T2RST pin is
used to clear Timer 2, and Timer 2 equal to zero trig­
gers the event, then the event may not occur. This is
because HSI.O and T2RST clear Timer 2 asynchro­
nously, and Timer 2 may then be incremented to one
before the HSO CAM entry can be read and acted
upon. This can be avoided by setting the event to occur
when Timer 2 is equal to one. This method will ensure
that there is enough time for the CAM entry recogni­
tion.

The same asynchronous nature can affect events sched­
uled to occur at the same time as an internal Timer 2
reset. These events should be logged into the CAM
with a Timer 2 value of zero. When using this method
to make a programmable modulo counter, the count
will stay at the maximum Timer 2 value only until the
Reset T2 command is recognized. The count will stay
at zero for the transition which would have changed the
count from "N" to zero, and then changed to a one on
the next transition.

7.5 Software Timers

The HSO can be programmed to generate interrupts at
preset times. Up to four such "Software Timers" can be
in operation at a time. As each preprogrammed time is
reached, the HSO unit sets a Software Timer Flag. If
the interrupt bit in the command tag was set then a
Software Timer Interrupt will also be generated. The
interrupt service routine can then examine I/O Status
register I (IOSI) to determine which software timer
expired and caused the interrupt. When the HSO resets
Timer 2 or starts an A to D conversion, it can also be
programmed to generate a software timer interrupt but
there is no flag to indicate that this has occurred.

If more than one software timer interrupt occurs in the
same time frame it is possible that multiple software
timer interrupts will be generated.

Each read or test of any bit in IDS 1 will clear bits 0
through 5. Be certain to save the byte before testing it
unless you are only concerned with 1 bit. See also Sec­
tion 11.5.

A complete listing of the functions ofIOSO, IDS 1, and
lOCI can be found in Section 11. The Timers are de­
scribed in Section 5 and the HSI is described in Section 6.

8.0 ANALOG INTERFACE

The 8096H can easily interface to analog signals using
its Analog to Digital Converter and its Pulse-Width­
Modulated (PWM) output and HSO Unit. Analog in­
puts are accepted by the 8-input, lO-bit A to D convert­
er. The PWM and HSO units provide digital signals
which can be filtered for use as analog outputs.

8.1 Analog Inputs

A to D conversion is performed on one of the 8 inputs
at a time using successive approximation with a result
equal to the ratio of the input voltage divided by the
analog supply voltage. If the ratio is 1.00, then the re­
sult will be all ones. The AID converter is available on
selected members of the MCS-96 family. See Section 14
for the device selection matrix.

Each conversion on the 8096BH requires 88 state-times
(22 /-Ls at 12 MHz) independent of the accuracy desired
or value of input voltage. The input voltage must be in
the range of 0 to VREF, the analog reference and sup­
ply voltage. For proper operation, VREF (the reference
voltage and analog power supply) must be held nomi­
nallyat 5V. The A/D result is calculated from the for­
mula:

1023 x (input voltage-ANGNO)/(VREF-ANGNO)

It can be seen from this formula that changes in VREF
or ANGND effect the output of the converter. This can
be advantageous if a ratiometric sensor is used since
these sensors have an output that can be measured as a
proportion of VREF.

ANGND must be tied to VSS (digital ground) in order
for the 8096BH to operate properly. This common con­
nection should be made as close to the chip as possible,
and using good bulk and high frequency by-pass capaci­
tors to decouple power supply variations and noise
from the circuit. Analog design rules call for one and
only one common connection between analog and digi­
tal returns to eliminate unwanted ground variations.

17-33

MCS®·96 ARCHITECTURAL OVERVIEW

A sample and hold is provided on the AID converter of
the 8X97BH and 8X95BH. The sampling window is
open for 4 state times which are included in the 88
state-time conversion period. The exact timings of the
AID converter can be found in Section '3 of the Hard­
ware Design chapter.

The 8X9X devices dO.not have a sample and hold, so the
input voltage must be held constant through. the entire
conversion. The conversion time is 168 state times (42 JLs
at 12 MHz) on the 8X9X devices.

8.2 AID Commands

Analog signals can be sampled by anyone of the 8
analog input pins (ACHO through ACH7) which are
shared with Port O. ACH7 can also be used as an exter­
nal interrupt if IOCl.l is set (see Sections 4 and 11).
The AID Command Register, at location 02H, selects
which channel is to be converted and whether the con­
version should start immediately or when the HSO
(Channel #OFH) triggers it. The AID command regis-

AID Command Register

(LOCATION 02H)

ter must be written to for each conversion, even if the
HSO is used as the trigger. A to D commands are for­
matted as shown in Figure 30.

The command register is double buffered so it is possi­
ble to write a command to start a conversion triggered
by the HSO while one is still in progress. Care must be
taken when this is done since if anew conversion is
started while one is already in progress, the conversion
in progress is cancelled and the new one is started.
When a conversion is started, the result register is
cleared. For this reason the result register must be read
before a new conversion is started or data will be lost.

8.3 AID Results

Results of the analog conversions are read from the
AID Result Register at locations 02H and 03H. Al­
though these addresses are on a word boundary, they
must be read as individual bytes. Information in the
AID Result register is formatted as shown in Figure
31. Note that the status bit may not be set until 8 state

CHANNEL /I SELECTS WHICH OF THE 8 ANALOG INPUT
CHANNELS IS TO BE CONVERTED TO DIGITAL FORM;

L-_____ GO INDICATES WHEN THE CONVERSION IS TO BE

INITIATED (GO = 1 MEANS START NOW, GO = 0
. MEANS THE CONVERSION IS TO BE INITIATED

BY THE HSO UNIT AT A SPECIFIED TIME).

Figure 30. AID Command Register

AID RESULT REGISTER

(LOCATION 03H) (LOCATION 02H)

AID CHANNEL NUMBER

1---- STATUS
o = AID CURRENTLY IDLE
1 = CONVERSION IN PROCESS

AID RESULT: 1-------- LEAST SIGNIFICANT 2 BITS
MOST SIGNIFICANT BYTE

Figure 31. AID Result Register

17-34

270250-29

270250-30

inter MCS®-96 ARCHITECTURAL OVERVIEW

times after the go command, so it is necessary to wait 8
state times before testing it. Information on using the
HSO is in Section 7.

8.4 Pulse Width Modulation Output
(D/A)

Digital to analog conversion can be done with the Pulse
Width Modulation output; a block diagram of the cir­
cuit is shown in Figure 32. The 8-bit counter is incre­
mented every state time. When it equals 0, the PWM
output is set to a one. When the counter matches the
value in the PWM register, the output is switched low.
When the counter overflows, the output is once again
switched high. A typical output waveform is shown in

OVERFLOW

Figure 33. Note that when the PWM register equals 00,
the output is always low. Additionally, the PWM regis­
ter will only be reloaded from the temporary latch
when the counter overflows. This means that the com­
pare circuit will not recognize a new value to compare
against until the counter has expired the remainder of
the current 8-bit count.

The output waveform is a variable duty cycle pulse
which repeats every 256 state times (64 p.s at 12 MHz).
Changes in the duty cycle are made by writing to the
PWM register at location 17H. There are several types
of motors which require a PWM waveform for most
efficient operation. Additionally, if this waveform is in­
tegrated it will produce a DC level which can be
changed in 256 steps by varying the duty cycle.

PWM/P2.5
PIN

270250-31
• PWM Period (XTAL = 12 MHz) = 64 ,,"s, Frequency = 15.625 KHz
• Duty Cycle Programmable in 256 Steps

Figure 32. Pulse Width Modulated (01 A) Output

DUTY PWM CONTROL
CYCLE REGISTER VALUE OUTPUT WAVEFORM

0% 00
HI
La

10% 25 ~~Jl n n
50% 128 HI

La

HI ...J U 90"4 230 U La

HI
99.6% 255

LO

270250-32

Figure 33. Typical PWM Outputs

17-35

infef MCS®-96 ARCHITECTURAL OVERVIEW

Details about the hardware required for smooth, accu­
rate D/ A conversion can be found in Section 4 of the
Hardware Design chapter. Typically, some form of
buffer and integrator are needed to obtain the most use­
fulness from this feature.

The PWM output shares a pin with Port 2, pin 5 so
that these two features cannot be used at the same time.
IOC1.0 equal to 1 selects the PWM function instead of
the standard port function. More information on lOCI
is in Section 11.

8.5 PWM Using the HSO

The HSO unit can be used to generate PWM wave­
forms with very little CPU overhead. If the HSO is not
being used for other purposes, a 4 line PWM unit can
be made by loading the on and off times into the CAM
in sets of 4. The CAM would then always be loaded and
only 2 interrupts per PWM period would be needed.
An example of using the HSO in this manner can be
found AP-248, "Using The 8096". This application
note is included in the MCS-96 Application Notes
chapter. . .

9.0 SERIAL PORT

The serial port on the 8096BH has 3 asynchronous and
one synchronous mode. The asynchronous modes are
full duplex, meaning they can transmit and receive at
the same time. The receiver is double buffered so that
the reception of a second byte can begin before the first
byte has been read. The port is functionally compatible

with the serial port on the MCS-51 family of microcon­
trollers, although the software used to control the ports
is different.

Control of the serial port is handled through the Serial
Port Control/Status Register at location IIH. Figure
37 shows the layout of this register. The details of using it
to control the serial port will be discussed in Section 9.2.

Data to and from the serial port is transferred through
SBUF (rx) and SBUF (tx), both located at 07H. Al­
though these registers share the same address, they are
physically separate, with SBUF (rx) containing the data
received by the serial port and SBUF (tx) used to hold
data ready for transmission. The program cannot write
to SBUF (rx) or read from SBUF (tx).

The baud rate at which the serial port operates is con­
trolled by an independent baud rate generator. The in­
puts to this generator can be either the XTALI or the
T2CLK pin. Details on setting up the baud rate are
given in Section 9.~.

9.1 Serial Port Modes

MODE 0

Mode 0 is a synchronous mode which is commonly
used for shift register based I/O expansion. In this
mode the TXD pin outputs a set of 8 pulses while the
RXD pin either transmits or receives data. Data is
transferred 8 bits at a time with the LSB first. A dia­
gram of the relative timing of these signals is shown in
Figure 34. Note that this is the only mode which uses
RXD as an output.

TXD "'lJ "'lJ "'lJ ''If "'lJ "'lJ "'lJ "'U
RXD(oul)

RXD (In) ~y~""'y~"'yQr-\yQ "'yQ"'yQ "'yQ"'yQr­
-JI....JI....JI....JI....JI....JI....JI....JI....J\....JI....JI..-JI....JI....JI....JI......../\--

270250-34

Figure 34. Serial Port Mode 0 Timing

17-36

inter MCS®-96 ARCHITECTURAL OVERVIEW

Although it is not possible to transmit and receive at
the same time using this mode, two external gates and a
port pin can be used to time-multiplex the two func­
tions. An example of multiplexing transmit and receive
is discussed in Section 6.1 of the Hardware Design
chapter.

MODE 1

Mode 1 is the standard asynchronous communications
mode. The data frame used in this mode is shown in
Figure 35. It consists of 10 bits; a start bit (0), 8 data
bits (LSB first), and a stop bit (1). If parity is enabled,
(the PEN bit is set to a 1), an even parity bit is sent
instead of the 8th data bit and parity is checked on
reception.

MODE 2

Mode 2 is the asynchronous 9th bit recognition mode.
This mode is commonly used with Mode 3 for multi­
processor communications. Figure 36 shows the data
frame used in this mode. It consists of a start bit (0), 9
data bits (LSB first), and a stop bit (I). When transmit­
ting, the 9th bit can be set to a one by setting the TB8
bit in the control register before writing to SBUF (tx).
The TB8 bit is cleared on every transmission, so it must
be set prior to writing to SBUF (tx) each time it is
desired. During reception, the serial port interrupt and
the Receive Interrupt (RI) bit will not be set unless the
9th bit being received is set. This provides an easy way
to have selective reception on a data link. Parity cannot
be enabled in this mode.

MODE 3

Mode 3 is the asynchronous 9th bit mode. The data
frame for this mode is identical to that of Mode 2. The
transmission differences between Mode 3 and Mode 2
are that parity can be enabled (PEN = 1) and cause the
9th data bit to take the even parity value. The TB8 bit
can still be used if parity is not enabled (PEN = 0).
When in Mode 3, a reception always causes an inter­
rupt, regardless of the state of the 9th bit. The 9th bit is
stored if PEN = 0 and can be read in bit RB8. If
PEN = 1 then RB8 becomes the Receive Parity Error
(RPE) flag.

9.2 ContrOlling the Serial Port

Control of the serial port is done through the Serial
Port Control (SP _CON) and Serial Port Status
(SP_STAT) registers shown in Figure 37. Writing to
location IIH accesses SP _CON while reading it access
SP _STAT. Note that reads of SP _STAT will return
indeterminate data in the lower 5 bits and writing to the
upper 3 bits of SP _CON has no effect on chip func­
tionality. The TB8 bit is cleared after each transmission
and both TI and RI are cleared whenever
SP_STAT (not SP_CON) is accessed. Whenever the
TXD pin is used for the serial port it must be enabled
by setting IOC1.5 to a I. lOCI is discussed further in
Section 11.3. Information on the hardware connections
and timing of the serial port is in Section 6 of the Hard­
ware Design chapter.

STOP

.. /
270250-35

Figure 35. Serial Port Frame-Mode 1

STOP

PROGRAMMABLE 9TH BIT ___ ...I

I- II-BIT FRAME

270250-36

Figure 36. Serial Port Frame Modes 2 and 3

17-37

intJ MCS®"96 ARCHITECTURAL OVERVIEW

LOCATION 1,H

SP_STAT SP_CON
(READ ONLy) (WRITE ONLy)

I RB'~RPE I 6 I 5 4 3 1 2 I 1 I a J RI TI TB. REN PEN M2 Ml

~ I
L M2,Ml SPECIFIES THE MODE

NOTE:
TI and RI are cleared when SP _STAT is read.

-PEN

REN

TBI

TI

RI

RB.

0,0 = MODE a
0,1 = MODEl
1,0 = MODE 2
1,1 = MODE 3

ENABLE THE PARITY

ENABLES THE RECEI

PROGRAMS THE 9TH
TRANSMISSION;

FUNCTION (EVEN PARITY);

VE FUNCTION;

IS THE'TRANSMIT INT

DATA BIT (IF NOT PARITY) ON

ERRUPT FLAG;

IS THE RECEIVE'INTE RRUPT FLAG;

IS THE 9TH DATA BIT RECEIVED (IF NOT PARITY);
RPE IS THE "ARITY ERROR INDICATOR (IF PARITY ACTIVE).

270250-33

Figure 37. Serial Port Control/Status Register

In Mode 0, if REN = 1, writing to SBUF (tx) will start
a transmission. Causing a rising edge on REN, or clear­
ing RI with REN = 1, will start a reception. Setting
REN = 0 will stop a reception in progress and inhibit
further receptions. To avoid a partial or complete unde­
sired reception, REN must be set to zero before RI is
cleared. This can be handled in an interrupt environ­
ment by using software flags or in straight-line code by
using the Interrupt Pending register to signal the com­
pletion of a reception.

In the asynchronous modes, writing to SBUF (tx) starts
a transmission. A falling edge on RXD will begin a
reception if REN is set to I. New data placed in SBUF
(tx) is held and will not be transmitted until the end of
the stop bit has been sent.

In all modes, the RI flag is set after the last data bit is
sampled approximately in the middle of the bit time.
Also for all modes, the TI flag is set after the last data
bit (either 8th or 9th) is sent, also in the middle of the
bit time. The flags clear when SP_STAT is read, but
do not have to be clear for the port to receive or trans­
mit. The serial port interrupt bit is set as a logical OR
of the RI and TI bits. Note that changing modes will
reset the Serial Port and abort any transmission or re­
ception in progress on the channel.

9.3 Determining Baud Rates

Baud rates in all modes are determined by the contents
of a 16-bit register at location OOOEH. This register
must be loaded sequentially with 2 bytes (least signifi­
cant byte first). The serial port will not function be­
tween the loading of the first and second bytes. The
MSB of this register selects one of two sources for the
input frequency to the baud rate generator. If it is a 1,
the frequency onthe XTALI pin is selected, if not, the
external frequency from the T2CLK pin is used. It
should be noted that the maximum speed of T2CLK is
one transition every 2 state times, with a minimum pe-

. riod of 16 XTALI cycles. This provides the needed
synchronization to the internal serial port clocks.

The unsigned integer represented by the lower 15 bits
of the baud rate register defines a number B, where B
has a maximum value of 32767. The baud rate for the
four serial modes using either XT ALl or T2CLK as
the clock source is given by:

Using XTALl:

. 8aud _ XT AL 1 frequency. 8 "" 0
Mode O. Rate - 4 * (8 + 1) ,

17-38

MCS®-96 ARCHITECTURAL OVERVIEW

Baud XT AL 1 frequency
Others: Rate = 64 • (B + 1)

Using T2CLK:

Mode 0: Baud - T2CLK frequency. B * 0
Rate - B '

Others: Baud T2CLK frequency
Rate 16' B

Note that B cannot equal 0, except when using XT ALl
in other than mode O. .

Common baud rate values, using XTALl at 12 MHz,
are shown below.

Baud Baud Register Value

Rate Mode 0 Others

9600 8137H 8013H
4800 8270H 8026H
2400 84E1H 804DH
1200 89C3H 809BH
300 A70FH 8270H

The maximum baud rates are 1.5 Mbaud synchronous
and 187.5 Kbaud asynchronous with 12 MHz on
XTAL1.

9.4 Multiprocessor Communications

Mode 2 and 3 are provided for multiprocessor commu­
nications. In Mode 2 if the received 9th data bit is not
1, the serial port interrupt is not activated. The way to
use this feature in multiprocessor systems is described
below.

When the master processor wants to transmit a block of
data to one of several slaves, it first sends out an ad­
dress frame which identifies the target slave. An ad­
dress frame will differ from a data frame in that the 9th
data bit is 1 in an address frame and 0 in a data frame.
No slave in Mode 2 will be interrupted by a data frame.
An address frame, however, will interrupt all slaves so
that each slave can examine the received byte and see if
it is being addressed. The addressed slave switches to
Mode 3 to receive the coming data frames, while the
slaves that were not addressed stay in Mode 2 and go
on about their business.

10.0 1/0 PORTS

There are five 8-bit I/O ports on the 8096. Some of
these ports are input only, some are output only, some

are bidirectional and some have alternate functions. In
addition to these ports, the HSI/O unit can be used to
provide extra I/O lines if the timer related features of
these lines are not needed.

Input ports connect to the internal bus through an in­
put buffer. Output ports connect through an output
buffer to an internal register that hold the bits to be
output. Bidirectional ports consist of an internal regis­
ter, an input buffer, and an output buffer.

Port 0 is an input port which is also used as the analog
input for the A to D converter. Port 1 is a quasi-bidi­
rectional port. Port 2 contains three types of port lines:
quasi-bidirectional, input and output. The input and
output lines are shared with other functions in the
8096BH as shown in Table 4. Ports 3 and 4 are open­
drain bidirectional ports which share their pins with the
address/data bus.

Table 4. Port 2 Alternate Functions

Port Function
Alternate Controlled
Function by

P2.0 Output TXD (Serial Port IOC1.5
Transmit)

P2.1 Input RXD (Serial Port N/A
Receive)

P2.2 Input EXTINT IOC1.1
(External Interrupt)

P2.3 Input T2CLK (Timer IOCO.7
2 Input)

P2.4 Input T2RST (Timer IOCO.5
2 Reset)

P2.5 Output PWM IOC1.0
(Pulse-Width
Modulation)

P2.6 Quasi-Bidirectional
P2.7 Quasi-Bidirectional

Section 2 of the Hardware Design chapter contains ad­
ditional information on the timing, drive capabilities,
and input impedances of I/O pins.

10.1 Input Ports

Input ports and pins can only be read. There are no
output drivers on these pins. The input leakage of these
pins is in the microamp range. The specific values can
be found in the data sheet for the device being consid­
ered.

In addition to acting as a digital input, each line of Port
o can be selected to be the input of the A to D converter
as discussed in Section 8. The pins on Port 0 are tested

17-39

infef MCS®~96ARCHITECTURAL OVERVIEW

to have D.C. leakage of 3 microamps or less, as speci­
fied in the data sheet for the device being considered.
The capacitance on these pins is approximately 5 pF
and will instantaneously increase by around 5 pF when
the pin is being sampled by the A to D converter.

The 8096BH samples the input to the AID for 4 state
times at the beginning of the conversion. The 8X9X
devices sample the AID pin 10 times during a conver­
sion. Details on the A to D converter can be found in
Section 8 of this chapter and in Section 3 of the Hard­
ware Design chapter.

10.2 Quasi-Bidirectional Ports

Port I, Port 2.6 and Port 2.7 are quasi~bidirectional
ports. "Quasi-bidirectional" means that the port pin
has a weak internal pullup that is always active and an
internal pulldown which can be on to output a 0, or off
to output a 1. If the internal pull down is left off (by
writing a 1 to the pin), the pin's logic level can be con­
trolled by an external pull down. If the external pull­
down is on, it will input a 0 to the 8096BH, if it is off, a
1 will be input. From the user's point of view, the main
difference between a quasi-bidirectional port and 'a
standard input port is that the quasi-bidirectional port
will source current if externally pulled low. It will also
pull itself high if left unco":nected.

In parallel with the weak. internal pullup is a much
stronger internal pullup that is activated for one state
time when the pin is internally driven from 0 to I. This
is done to speed up the O-to-I transition time. When
this pullup is on the pin can typically source 30 milli­
amps to Vss.

When the processor writes to the pins of a quasi-bidi­
rectional port it actually writes into a register which in
turn drives the port pin. When the processor reads
these ports, it senses the status of. the pin directly. Ifa
port pin is to be used as an input then the software
should write a one to its associated SFR bit, this will
cause the low-impedance pull-down device to turn off
and leave the pin pulled up with a relatively high im-

pedance pullup device which can be easily driven down
by the device driving the input.

If some pins of a port are to be used as inputs and some
are to be used as outputs the programmer should be
careful when writing to the port.

Particular care should be exercised when using XOR
opcodes or any opcode which is a read-modify-write
instruction. It is possible for a Quasi-Bidirectional .Pin
to be written as a one, but read back as a zero if an
external device (i.e., a transistor base) is pulling the pin
below VIH. See the Hardware Design Chapter Section
2.2 for further details on using the Quasi-Bidirectional
Ports.

10.3 Output Ports

Output pins include the bus control lines, the HSO
lines, and some of Port 2. These pins can only be used
as outputs as there are no input buffers connected to
them. It is not possible to use immediate logical instruc­
tions such as XOR PORT2, #00111B to toggle these
pins. The output currents on these ports is higher than
that of the quasi-bidirectional ports.

10.4· Ports 3 and 4/ADO-15

These pins have two functions. They are either bidirec­
tional ports with open-drain outputs or ·System Bus
pins which the memory controller uses when it is acces­
ing off-chip mem~ry. If the EA line is low, the pins
always act as the System Bus. Otherwise they act as bus
pins only during a memory access: If these pins are
being used as ports and bus pins, ones must be written
to them prior to bus operations.

Accessing Port 3 and 4 as I/O is easily done from inter­
nal registers. Since the LD and ST instructions require
the use of internal registers, it may be necessary to first
move the port information into an internal location be­
fore utilizing the data. If the data is already internal,
the LD is unnecessary. For instance, to write a word
value to Port 3 and 4

LD intreg, portdata register - data
not needed if already internal

STintreg,lFFEH register ~ Port 3 and 4

17-40

inter MCS®-96 ARCHITECTURAL OVERVIEW

To read Port 3 and 4 requires that "ones" be written to the port registers to first setup the input port configuration
circuit. Note that the ports are reset to this input condition, but if zeroes have been written to the port, then ones
must be re-written to any pins which are to be used as inputs. Reading Port 3 and 4 from a previously written zero
condition is as follows ...

LD intregA, #OFFFFH setup port change mode pattern

ST intregA, lFFEH register ~ Port 3 and 4
LD & ST not needed if previously
written as ones

LD intregB, lFFEH register ~ Port 3 and 4

Note that while the format of the LD and ST instructions are similar, the source and destination directions change.

When acting as the system bus the pins have strong
drivers to both Vee and Vss. These drivers are used
whenever data is being output on the system bus and
are not used when data is being output by Ports 3 and
4. Only the pins and input buffers are shared between
the bus and the ports. The ports use different output
buffers which are configured as open-drain, and require
pullup resistors. (open-drain is the MOS version of
open-collector.) The port pins and their system bus
functions are shown in Table 5.

Table 5. P3,4/ADO-15 Pins

Port Pin
System Bus

Function

P3.0 ADO
P3.1 AD1
P3.2 AD2
P3.3 AD3
P3.4 AD4
P3.5 AD5
P3.6 AD6
P3.7 AD7
P4.0 AD8
P4.1 AD9
P4.2 AD10
P4.3 AD11
P4.4 AD12
P4.5 AD13
P4.6 AD14
P4.7 AD15

17-41

11.0 STATUS AND CONTROL
REGISTERS

There are two I/O Control registers, lOCO and lOCI.
lOCO controls Timer 2 and the HSI lines. lOCI con­
trols some pin functions, interrupt sources and 2 HSO
pins.

Whenever input lines are switched between two sourc­
es, or enabled, it is possible to generate transitions on
these lines. This could cause problems with respect to
edge sensitive lines such as the HSI lines, Interrupt line,
and Timer 2 control lines.

11.1 1/0 Control Register 0 (lOCO)

lOCO is located at 0015H. The four HSI lines can be
enabled or disabled to the HSI unit by setting or clear­
ing bits in lOCO. Timer 2 functions including clock and
reset sources are also determined by lOCO. The control
bit locations are shown in Figure 38.

HSI.O INPUT ENABLE I DISABLE

TIMER 2 RESET EACH WRITE

HSl.l INPUT ENABLE I DISABLE

TIMER 2 EXTERNAL RESET ENABLE I DISABLE

HSI.2 INPUT ENABLE I DISABLE

TIMER 2 RESET SOURCE HSI.O I T2RST

6 HSI.3 INPUT ENABLE I DISABLE

7 TIMER 2 CLOCK SOURCE HSl.l I T2CLK

270250-37

Figure 38. I/O Control Register 0 (lOCO)

intJ MCS®-96 ARCHITECTURAL OVERVIEW

11.2 I/O Control Register 1 (IOC1)

lOCI is used to select some pin functions and enable or
disable some interrupt sources. Its location is OOI6H.
Port pin P2.S can be selected to be the PWM output
instead of a standard output. The external interrupt
source can be selected to be either EXTINT (same pin
as P2.2) or Analog Channel 7 (ACH7, same pin as
PO.7). Timer I and Timer 2 overflow interrupts can be
individually enabled or disabled. The HSI interrupt can
be selected to activate either when there is I FIFO en­
try or 7. Port pin P2.0 can be selected to be the TXD
output. HSO.4 and HSO.S can be enabled or disabled
to'the HSO unit. More information on interrupts is
available in Section 4. The positions of the lOCI con­
trol bits are shown in Figure 39.

11.3 1/0 Status Register 0 (1050)

There are two I/O Status registers, IOS0 and lOS 1.
10SO, located at OOISH, holds the current status of the
HSO lines and CAM. The status bits of 10SO are
shown in Figure 40.

SELECT PWM / SELECT P2.5

EXTERNAL INTERRUPT ACH7 / EXTINT

TIMER 1 OVERFLOW INTERRUPT ENABLE / DISABLE

TIMER 2 OVERFLOW INTERRUPT ENABLE / DISABLE

HSO.4 OUTPUT ENABLE / DISABLE

SELECT TXD / SELECT P2.0

HSO.5 OUTPUT ENABLE / DISABLE

HSI INTERRUPT
FIFO FULL / ;oHO"'L"D"'IN"'G"R"'E""GI"'ST"E"'R'L"O"'AD"'E"'D

270250~3B

Figure 39.1/0 Control Register 1 (IOC1)

HSO.O CURRENT STATE

HSO.l CURRENT STATE

HSO.2 CURRENT STATE

HSO.3 CURRENT STATE

HSO.4 CURRENT STATE

HSO.5 CURRENT STATE

CAMQB HOLDING REGISTER IS FULL

HSO HOLDING REGISTER IS FULL

270250-39

Figure 40. 1/0 Status Register 0 (1050)

o SOnwARE TIMER 0 EXPIRED

SOFTWARE TIMER 1 EXPIRED

SOnwARE TIMER 2 EXPIRED

SOnwARE TIMER 3 EXPIRED

TIMER 2 HAS OVERFLOW

TIMER 1 HAS OVERFLOW

HSI FIFO IS FULL

HSI HOLDING REGISTER DATA AVAILABLE

. 270250-40

Figure 41. HSIO Status Register 1 (1051)

11.4 1/0 Status Register 1 (iOS1)

10SI is located at 016H. It contains status bits for the
timers and the HSVO. The positions of these bits are
shown in Figure 41.

Whenever the processor reads this register all of the
time-related flags (bits S through 0) are cleared. This
applies not only to explicit reads such as:

LDB AL,10S1

but also to implicit reads such as:

JB 10S1. 3, s.omewhere_e1se

which jumps to somewhere_else if bit 3 of lOS I is set.
In most cases this situation can best be handled by hav­
ing a byte in the register file which is used to maintain
an image of lower five bits of the register. Any time a
hardware timer interrupt or a HSO software timer in­
terrupt occurs the byte can be updated:

ORB 10SLlmage,10S1

leaving IOSLJmage containing all the flags that were
set before plus all ,the new flags that were read and
cleared from 10SI. Any other routine which needs to
sample the flags can safely check 10SLJmage. Note
that if these routines need to clear the flags that they
have acted on, then the modification of 10SLJmage
must be done from inside a critical region (see Section
4.4).

17-42

infef MCS®-96 ARCHITECTURAL OVERVIEW

12.0 WATCHDOG TIMER

The WatchDog Timer (WDT) provides a means to re­
cover gracefully from a software upset. When the
watchdog is enabled it will initiate a hardware reset
unless the software clears it every 64K state times.

The WDT is implemented as an 8-bit timer with an'
8-bit prescaler. The prescaler is not synchronized, so
the timer will overflow between 65280 and 65535 state
times after being reset. When the timer overflows it
pulls down the RESET pin for at least two state times,
resetting the 8096BH and any other devices tied to the
RESET line. If a large capacitor is connected to the
line, the pin may take a long time to go low. This will
effect the length of time the pin is low and the voltage
on the pin when it is finished falling. Section 1.4 of the
Hardware Design chapter contains more information
about reset hardware connections.

The WDT is enabled the first time it is cleared. Once it
is enabled, it can only be disabled by resetting the
8096BH. The internal bit which controls the watchdog
can typically maintain its state through power glitches
as low as VSS and as high as 7.0V for up to one millisec­
ond.

The 8X9X devices do not have the extra glitch protection
on the WDT enable bit.

Enabling and clearing the WDT is done by writing a
"OlEH" followed by a "OElH" to the WDT register at
location OAH. This double write is used to help prevent
accidental clearing of the timer.

12.1 Software Protection Hints

Glitches and noise on the PC board can cause software
upsets, typically by changing either memory locations
or the program counter. These changes can be internal
to the chip or be caused by bad data returning to the
chip.

There are both hardware and software solutions to
noise problems, but the best solution is good design
practice and a few ounces of prevention. The software
can be designed so that the watchdog times out if the
program does not progress properly. The watchdog will
also time-out if the software error was due to ESD
(Electrostatic Discharge) or other hardware related
problems. This prevents the controller from having a
malfunction for longer than 16 milliseconds if a 12
MHz oscillator is used.

When using the WDT to protect software it is desirable
to reset it from only one place in code. This will lessen '
the chance that an undesired WDT reset will occur.
The section of code that resets the WDT should moni­
tor the other code sections for proper operation. This

can be done by checking variables to make sure they
are within reasonable values. Simply using a software
timer to reset the WDT every 15 milliseconds will not
provide much protection against minor problems.

It is also recommended that unused areas of code be
filled with NOPs and periodic jumps to an error routine
or RST (reset chip) instructions. This is particularly
important in the code around lookup tables, since if
lookup tables are executed undesired results will occur.
Wherever space allows, each table should be surround­
ed by 7 NOPs (the longest 8096 instruction has 7 bytes)
and a RST or jump to error routine instruction. Since
RST is a one-byte instruction, the NOPs are not needed
if RSTs are used instead of jumps to an error routine.
This will help to ensure a speedy recovery should the
processor have a glitch in the program flow. Since RST
instruction has an opcode of OFFH, pulling the data
lines high with resistors will cause an RST to be execut­
ed if unimplemented memory is addressed.

12.2 Disabling The Watchdog

The watchdog should be disabled by software not ini­
tializing it. If this is not possible, such as during pro­
gram development, the watchdog can be disabled by
holding the RESET pin at 2.0V to 2.5V. Voltages over
2.5V on the pin could quickly damage the part. Even at
2.5V, using this technique for other than debugging
purposes is not recommended, as it may effect long
term reliability. It is further recommended that any
part used in this way for more than several seconds, not
be used in production versions of products. Section 1.6
of the Hardware Design chapter has more information
on disabling the Watchdog Timer.

13.0 RESET

13.1 Reset Signal

As with all processors, the 8096BH must be, reset each
time the power is turned on. This is done, by holding the
RESET pin low for at least 2 state times after the power
supply is within tolerance and the oscillator has stabi­
lized.

On 8X9X devices the RESET pin must be held low long
enough for the power supply, oscillator and back-bias
generator to stabilize. Typically, the back-bias generator
requires one millisecond to stabilize.

After the RESET pin is brought high, a ten state reset
sequence is executed. During this time, the Chip Con­
figuration Byte (CCB) is read from location 2018H and
written to the 8096BH Chip Configuration Register
(CCR). If the voltage on the EA pin selects the inter-

17-43

MCS®·96 ARCHITECTURAL OVERVIEW

nal/external execution mode the CCB is read from in­
ternal ROM/EPROM. If the voltage on the EA pin
selects the external execution only mode the CCB is
read from external memory.

The 8096BH can be reset using a capacitor, I-shot, or
any other method capable of providing a pulse of at
least 2 state times longer than required for Vee and the
oscillator to stabilize.

For best functionality, it is suggested that the reset pin
be pulled low with an open collector device. In this
way, several reset sources can be wire ORed together.
Remember, the RESET pin itself can be a reset source
when the RST instruction is executed or when the
Watchdog Timer overflows. Details of hardware sug­
gestions for reset can be found in Section 1.4 of the
Hardware Design chapter.

13.2 Reset Status

The I/O lines and control lines of the 8096BH will be
in their reset state within 2 state times after reset is low,
with Vee and the oscillator stabilized. Prior to that
time, the status of the I/O lines is indeterminate. After
the 10 state time reset sequence, the Special Function
Registers will be set as follows:

Register Reset Value

Port 1 111111118
Port 2 110XXXX18
Port 3 111111118
Port 4 111111118
PWM Control OOH
Serial Port (Transmit) undefined
Serial Port (Receive) undefined
8aud Rate Register undefined
Serial Port Control XXXXOXXX8
Serial Port Status XOOXXXXX8
AID Command undefined
AID Result undefined
Interrupt Pending undefined
Interrupt Mask 000000008
Timer 1 OOOOH
Timer 2 OOOOH
Watchdog Timer OOOOH
HSI Mode 111111118
HSI Status undefined
10SO 000000008
IOS1 000000008
lOCO XOXOXOX08
IOC1 XOXOXXX18
HSI FIFO empty
HSOCAM empty
HSO lines 0000008
PSW OOOOH
Stack Pointer undefined
Program Counter 2080H

Figure 42. Register Reset Status

Other conditions following a reset are:

Pin Reset Value

RD high
WR/WRL high
ALE/ADV high
8HE/WRH low
INST high
ALE (8X9X) low

Figure 43. Bus Control Pins Reset Status

It is important to note that the Stack Pointer and Inter­
rupt Pending Register are undefined, and need to be
initialized in software. The Interrupts are disabled by
both the mask register and PSW.9 after a reset.

13.3 Reset Sync Mode

The RESET line can be used to start the 8096BH at an
exact state time to provide for synchronization of test
equipment and multiple chip systems. RESET is active
low. To synchronize parts, RESET is brought high on
the rising edge of XTAL1. Complete details on syn­
chronizing parts can be found in Section 1.5 of the
Hardware Design chapter.

It is very possible that parts which start in sync may
not stay that way. The best example of this would be
when a "jump on I/O bit" is being used to hold the
processor in a loop. If the line changes during the time
it is being tested, one processor may see it as a one,
while the other sees it as a zero. The result is that one
processor will do an extra loop, thus putting it several
states out of sync with the other.

14.0 QUICK REFERENCE

14.1 Pin Description

On the 48-pin parts the following pins are not bonded
out: Port!, PortO (Analog In) bits 0-3, T2CLK (P2.3),
T2RST (P2.4), P2.6, P2.7, CLKOUT, INST, NMI,
BUSWIDTH (TEST on 8X9X devices).

17-44

MCS®-96 ARCHITECTURAL OVERVIEW

PIN DESCRIPTIONS
Symbol Name and Function

Vee Main supply voltage (SV).

Vss Digital circuit ground (OV).

VPD RAM standby supply voltage (SV). This voltage must be present during normal operation. In
a Power Down condition (Le. Vee drops to zero), if RESET is activated before Vee drops
below spec and VPD continues to be held within spec., the top 16 bytes in the Register File
will retain their contents. RESET must be held low during the Power Down and should not
be brought high until Vee is within spec and the oscillator has stabilized. See Section 2.3.

VREF Reference voltage for the AID converter (SV). VREF is also the supply voltage to the analog
portion of the AID converter and the logiC used to read Port o. See Section 8.

ANGND Reference ground for the AID converter. Should be held at nominally the same potential as
Vss. See Section 8.

VPP Programming voltage for the EPROM parts. It should be + 12. 7SV when programming and
Vss(8X9X) will float to SV otherwise. It should not be above S.SV on other than EPROM parts. This pin

is Vss on 8X9X parts. Systems that have t~is pin connected to ANGND through a
capacitance (required on 8X9X parts) do not need to change.

XTAL1 Input of the oscillator inverter and of the internal clock generator. See Section 1.S.

XTAL2 Output of the oscillator inverter. See Section 1.S.

CLKOUT Output of the internal clock generator. The frequency of CLKOUT is % the oscillator
frequency. It has a 33% duty cycle. See Section 1.S

RESET Reset input to the chip. Input low for at least 2 state times to reset the chip. The subsequent
low-to-high transition re-synchronizes CLKOUT and commences a 10-state-time sequence
in which the PSW is cleared, a byte read from 2018H loads CCR, and a jump·to location
2080H is executed. Input high for normal operation. RESET has an internal pullup. (The
read from 2018H is not done on 8X9X parts). See Section 13.

BUSWIDTH Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus
TEST(8X9X) cycle in progress. If BUSWIDTH is a 1, a 16-bit bus cycle occurs. If BUSWIDTH is a 0 an

8-bit cycle occurs. If CCR bit 1 is a 0, the bus is always an 8-bit bus. This pin is the TEST pin
on 8X9X parts. Systems with TEST tied to Vee do not. need to change. If this pin is left
unconnected, it will rise to Vee. See Section 2.7.

NMI A positive transition causes a vector to external· memory location OOOOH. External memory
from OOH through OFFH is reserved for Intel development systems.

INST Output high during an external memory read indicates the read is an instruction fetch. INST
is valid throughout the bus cycle.

EA Input for memory select (External Access). EA equal to a TTL-high causes memory
accesses to locations 2000H through 3FFFH to be directed to on-chip ROM/EPROM. EA
~ual to a TTLciow causes accesses to these locations to be directed to off-chip memory.
EA = + 12.SV causes execution to begin in the Programming mode on EPROM parts. EA
has an internal pulldown, so it goes to 0 unless driven otherwise.

ALE/ADV Address Latch Enable or Address Valid output, as selected by CCR. Both pin options __
provide a latch to demultiplex the Ej.ddress from the address/data bus. When the pin is ADV,
it goes inactive high at the end of the bus cycle. ADV can be used as a chip select for __
external memory. ALE/ ADV is activated only during external memory accesses. (The ADV
function is not available on 8X9X parts). See Section 2.7.

RD Read signal output to external memory. RD is activated only during external memory reads.

17-4S

intJ MCS®·96 ARCHITECTURAL OVERVIEW

PIN DESCRIPTIONS (Continued)

Symbol Name and Function

WR/WRL Write and Write Low output to external memory, as selected by theCCR. WR will go low for
every external write, while WRLwili go low only for external writes where an even byte is
being written. WR/WRL is activated only during external memory writes. (The WRL function
is not available on aX9X parts). See Section 2.7.

SHE/WRH Sus High Enable or Write i'lighoutput to external memory, as selected by the CCA. SHE =
o selects the bank of memory that is connected to the high byte of the data bus. AO = 0
seiects the bank of memory that is connected to the low byte of the data bus. Thus
accesses to a 16·bit wide memory can be to the low byte only (AO = 0, SHE = 1), to the
high byte only. (AO = 1, SHE # =0), or both bytes (AO =0, SHE = 0). If the WRH function
is selected, the pin will go low if the bus cycle is writing to an odd memory location. (The
WRH function is notavailable on aX9X parts). See Section 2.7.

READY Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory,
or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin
is low prior to the falling edge of CLKOUT, the Memory Controller goes into a wait mode
until the next positive transition in CLKOUT occurs with READY high. The bus cycle can be
lengthened by up to 1 JLs. When the external memory is not being used, READY has no
effect. Internal control of the number of wait states inserted into.a bus cycle held not ready
is available through configurationof CCR. READY has a weak internal pullup, so it goes to 1
unless externally pulled low. (Internal control of the number of wait states is not available on
aX9X parts). See Section 2.7.

HSI Inputs to High Speed Input Unit. Four HSI pins are available: HSLO, HSI: 1, HSI.2, and HSI.3.
Two of them (HSI.2 and HSI.3) are shared with the HSO Unit. The HSI pins are also used as
inputs by EPROM parts in Programming mode. See Section 6.

HSO Outputs from High Speed Output Unit. Six HSO pins are available: HSO.O, HSO.1, HSO.2,
HSO;3, HSO.4, and HSO.S. Two of them (HSO.4 and HSO.S) are shared with the HSI Unit.
See Section 7.

PortO a·bit high impedance input-only port. These pins can be used as digital inputs and/or as
analog inputs to the on,chipAlD converter. These pins are also a mode input to EPROM
parts in the Programming mode:See Section 10.

Port 1 a·bit quasi·bidirectionall/O port. See Section 10 ...

Port 2 a·bit multi-func;:tional port. Six of its pins are shared with other functions in the a096SH, the
remaining 2 are quasi-bidirectional. These pins are also used to input and output control
Signals on EPROM parts in Programming Mode. See Section 10.

Ports 3 and 4 a-bit bi-directionall/O ports with open drain outputs. These pins are shared with the·
multiplexed address/data bus which has strong internal pullups. Ports 3 and 4 are also used
as a command, address and data path by EPROM parts operating in the programming
mode. See Sections 2.7 and 10.

17-46

inter MCS®-96 ARCHITECTURAL OVERVIEW

14.2 Pin List

The following is a list of pins in alphabetical order.
Where a pin has two names it has been listed under
both names, except for the system bus pins, ADO­
AD15, which are listed under Port 3 and Port 4.

Name
58-Pin 58-Pin 48·Pin
PLCC PGA DIP

ACHO/PO.O 6 4 -
ACH1/PO.1 5 5 -
ACH2/PO.2 7 3 -
ACH3/PO.3 4 6 -
ACH4/PO,4/MOD.0 11 67 43
ACH5/PO.5/MOD.1 10 68 42
ACH6/PO.6/MOD.2 8 2 40
ACH7 IPO.7 IMOD.3 9 1 41
ALE/ADV 62 16 34
ANGND 12 66 44
BHE/WRH 41 37 15
BUSWIDTH (TEST) 64 14 -
CLKOUT 65 13 -
EA 2 8 39
EXTINT IP2.2/PROG 15 63 47
HSI.O 24 54 3
HSI.1 25 53 4
HSI.2/HSO,4 26 52 5
HSI.3/HSO.5 27 51 6
HSO.O 28 50 7
HSO.1 29 49 8
HSO.2 34 44 9
HSO.3 35 43 10
HSt),4/HSI.2 26 52 5
HSO.5/HSI.3 27 51 6
INST 63 15 -
NMI 3 7 -
PWM/P2.5/PDO 39 39 13
PALE/P2.1/RXD 17 61 1
PROG/P2.2/EXTNT 15 63 47
PVER/P2.0/TXD 18 60 2
PO.O/ACHO 6 4 -
PO.1/ACH1 5 5 -
PO.2/ACH2 7 3 -
PO.3/ACH3 4 6 -
P0,41 ACH4/MOD.0 11 67 43
PO.51 ACH5/MOD.1 10 68 42
PO.61 ACH6/MOD.2 8 2 40
PO. 7 I ACH7 IMOD.3 9 1 41
P1.0 19 59' -
P1.1 20 58 -
P1.2 21 57 -
P1.3 22 56 -
P1,4 23 55 -
P1.5 30 48 -

Name
58-Pin 58-Pin 48-Pin
PLCC PGA DIP

P1.6 31 47 -
P1.7 32 46 -
P2.0/TXDINER 18 60 2
P2.1/RXD/PALE 17 61 1
P2.2/EXTINT 15 63 47
P2.3/T2CLK 44 34 -
P2,4/T2RST 42 36 -
P2.5/PWM/PDO 39 39 13
P2.6 33 45 -
P2.7 38 40 -
P3.0/ADO 60 18 32
P3.1/AD1 59 19 31
P3.2/AD2 58 20 30
P3.3/AD3 57 21 29
P3,4/AD4 56 22 28
P3.5/AD5 55 23 27
P3.6/AD6 54 24 26
P3.7/AD7 53 25 25
P4.0/AD8 52 26 24
P4.1/AD9 51 27 23
P4.2/AD10 50 28 22
P4.3/AD11 49 29 21
P4,4/AD12 48 30 20
P4.5/AD13 47 31 19
P4.6/AD14 46 32 18
P4.7/AD15 45 33 17
RD 61 17 33
READY 43 35 16
RESET 16 62 48
RXD/P2.1 17 61 1
SALE/PVER/P2.0 18 60 2
SPROG/PDO/P2.5 39 39 13
TXD/P2.0 1.8 60 2
T2CLK/P2.3 44 34 -
T2RST/P2,4 42 36 -
VBB 37 41 12
VCC 1 9 38
VPD 14 64 46
VREF 13 65 45
VSS 68 10 11
VSS 36 42 37
WR/WRL 40 38 14
WRH/BHE 41 37 15
XTAL1 67 11 36
XTAL2 66 12 35

The Following pins are not bonded out in the 48-pin
package:

PLO through Pl.7, PO.O through PO.3, P2.3, P2.4, P2.6,
P2.7 CLKOUT, INST, NMI, TEST, T2CLK (P2.3),
T2RST (P2.4).

17-47

MCS®·96 ARCHITECTURAL OVERVIEW

14.3 Packaging

The MCS-96 products are available in 48-pin and 68-pin packages, with and without AID, and with and without on­
chip ROM or EPROM. The MCS-96 numbering system is shown below. Section 14.4 shows the pinouts for the 48-
and 68-pin packages. The 48-pin version is offered in a Dual-In-Line package while the 68-pin versions come in a
Plastic Leaded Chip Carrier (pLCC), a Pin Grid Array (PGA) or a Type "B" Leadless Chip Carrier.

The MCS®·96 Family Nomenclature

Without AID With AID

48 Pin
C8095BH - Ceramic DIP

ROMless P8095BH - Plastic DIP
809XBH A8096BH - Ceramic PGA A8097BH - Ceramic PGA

68 Pin
N8096BH - PLCC , N8097BH - PLCC

48 Pin
C8395BH - Ceramic DIP

ROM P8395BH - Plastic DIP
839XBH A8396BH - Ceramic PGA A8397BH - Ceramic PGA

68 Pin
N8396BH - PLCC N8397BH - PLCC

EPROM
48 Pin C8795BH - Ceramic DIP

879XBH 68 Pin
A8796BH - Ceramic PGA A8797BH - Ceramic PGA
R8796BH - Ceramic LCC R8797BH - Ceramic LCC

48 Pin
C8095-90 - Ceramic DIP

ROMless P8095-90 - Plastic DIP
8096 A8096-90 - Ceramic PGA A8097-90 - Ceramic PGA

68 Pin
N8096-90 - PLCC N8097-90 - PLCC

48 Pin
C8395-90 - Ceramic DIP

ROM P8395-90 - Plastic DIP
8396 A8396-90 - Ceramic PGA A8397-90 - Ceramic PGA

68P!n
N8396-90 - PLCC N8397 -90 - PLCC

Transistor Count MTBF Calculations'

Device Type

839X/879X

809)(

#MOSGates

120,000

50,000

3.8 X 107 bevice Hours @ 55°C

1.7 x 107 DeviceHours@70°C
'MTBF data was obtained through calculations based upon the actu­
al average junction temperatures under stress at 55'C and 70'C
ambient.

Thermal Characteristics

TeASE Package Type 8Ja 8Jc
COMM'L EXPRESS

85°C 100°C PGA 35°C/W WC/W

85°C 100°C PLCC 37°C/W 10°C/W

LCC 28°C/W -
Plastic DIP 38°C/W -

79.75°C 94.75°C Ceramic DIP 26°C/W 6.5°C/W

17-48

intJ MCS®-96 ARCHITECTURAL OVERVIEW

14.4 Package Diagrams

RXO/P2.1 RESET

TXO/P2.0 EXTINT/P2.2

HSIO VpD

HSI1 VREF'

HSI2/HS04 ANGND

HSI3/HSOS ACH4/PO.4

HSOO ACHS/PO.S

HS01 ACH7/PO.7

HS02 ACH6/PO.6

HS03 EA
VSS Vce

Vpp Vss
PWM/P2.S XTALl

WRL;WR XTAL2

WRH/BHE ALE/ADV

READY iID
AD.S/P4.7 ADO/Pl.O

ADI4/P4.6 AD./P3.'

AD'3/P4.S AD2/P3.2

AD'2/P4.4 AD3/P3.3

ADII/P4.3 AD4/P3.4

AD.O/P4.2 ADS/P3.S

AD9/P4.' AD6/P3.6

ADS/P4.0 AD7/P3.7

270250-42

48-Pin Package

Pins Facing Down

.7 1513 11 9 " 1819 .614 12 10 4 68

2021
MCS(Rl-96

6766

2223
68 PIN

6S 64

2425 GRID ARRAY 6362

2627 61 60

2829 TOP VIEW 5958
LOOKING DOWN ON

3031 COMPONENT SIDE 5756

3233 OF PC BOARD 5554

34 36 38 40 42 44 46 48 50 53 52

35 37 39 41 43 45 47 49 51

270250-44

58-Pin Package
(Pin Grid Array - Top View)

ACHS/PO.S

ACH4/PO.4

ANGND

VREF

VpD

EXTINT/P2.2

RESET

·RXD/P2.1

TXD/P2.0

P1.0

P1.1

Pl.2

P1.3

P • .4

HSIO

HSII

HSI2/HS04

""';: ~ "! ~ . to'!
o 0 0 000

~~~~~~ 
~ ~ ~ ~ ~ ~ ~l~ 

on 0 0 "1 "! 0 0 

'" II) II) 0: 0: :>: :>: :>: 

~ 
II) 
:>: 

"': 
0: 

MCS(Rl-96 
68 PIN 
PLCC 

TOP VIEW 
LOOKING DOwN ON 
COMPONENT SIDE 

OF PC BOARD 

.. .. '" '" ..... 
N 0 0 '" .. . 
Do. II) II) > > ~ 

:>: :>: 
~ I~I~ ~ 
Do. ,Do. 

'I~I:J: ~ ~ 3: ~ ~ 
I-

58-Pin Package (PLCC - Top View) 

>-
0 
;:l 
0: 

1 2 3 4 5 6 7 8 9 .0 11 .2.3 .4 'S .6 .7 

~ 18 

67 

66 

65 

64 

63 

62 

61 

60 

59 

58 

57 

56 

55 

54 

53 

MCS(Rl-96 
68 PIN 

LEADLESS CHIP CARRIER 
TYPE "B" 

(EPROM ONLY) 

TOP VIEW 
LOOKING DOWN ON 
COMPONENT SIDE 

OF PC BOARD 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

52 34 
~~~~Q~~"aG~~~~n~~ 

58-Pin Package (LCC - Top View)

17-49

ADO/P3.0

AD1/P3.1

AD2/P3.2

AD3/P3.3

AD4/P3.4

AD5/P3.5

AD6/P3.6

AD7/P3.7

AD8/P4.0

AD9/P4.1

AD10/P4.2

ADI1/P4.3

ADI2/P4.4

ADI3/P4.S

ADI4/P4.6

AD'5/P4.7

T2CLK/P2.3

270250-43

270250-45

intJ MCS®·96 ARCHITECTURAL OVERVIEW

14.5 PGA, PLCC and LCC Function Pinouts

PGAI PLCC Description
PGAI PLCC Description

PGAI
PLCC Description LCC LCC LCC

1 9 ACH7 IPO.7 IPMOD.3 24 54 AD6/P3.6 47 31 P1.6

2 8 ACH6IPO.6IPMOD.2 25 53 AD71P3.7 48 30 P1.5

3 7 ACH2/PO.2 26 52 AD8/P4.0 49 29 HSO.1

4 6 ACHO/PO.O 27 51 AD9/P4.1 50 28 HSO.O

5 5 ACH1/PO.1 28 50 AD10/P4.2 51 27 HSO.5/HSi.3

6 4 ACH3/PO.3 29 49 AD11/P4.3 52 26 HSO.4/HSi.2

7 3 NMI 30 48 AD12/P4.4 53 25 HSI.1

8 2 EA 31 47 AD13/P4.5 54 24 HSI.O

9 1 VCC 32 46 AD14/P4.6 55 23 P1.4

10 68 VSS 33 45 AD15/P4.7 56 22 P1.3

11 67 XTAL1 34 44 T2CLK/P2.3 57 21 P1.2

12 66 XTAL2 35 43 READY. 58 20 P1.1

13 65 CLKOUT 36 42 T2RST IP2.4 . 59 19 P1.0

14 64 SUSWIDTH 37 41 SHE/WRH 60 18 TXD/P2.0/PVERISALE

15 63 INST 38 40 WR/WRL 61 17 RXD/P2.1/PALE

16 62 ALE/ADV 39 39 PWM/P2.5/PDO/SPROG 62 16 RESET

17 61 RD 40 38 P2.7 63 15 EXTINT/P2.2/PROG

18 60 ADO/P3.0 41 37 VPP 64 14 VPD

19 59 AD1/P3.1 42 36 VSS 65 13 VREF

20 58 AD2/P3.2 43 35 HSO.3 66 12 ANGND

21 57 AD3/P3.3 44 34 HSO.2 67 11 ACH4/PO.4/PMOD.0

22 56 AD4/P3.4 45 33 P2.6 68 10 ACH5/PO.5/PMOD.1

23 55 AD5/P3.5 46 32 P1.7

17-50

MCS®-96 ARCHITECTURAL OVERVIEW

14.6 Memory Map

FFFFH

1-__________________________ -1 4000H

1--________________________ -1 2080H
1-__________________________ -I2030H-207FH

1-______________ ~-----------I2020H-202FH
1-______ ----_______ :-" ____ -----1 201 CH - 201 FH

1-______________ ...;.......; __ ...;.. ____ -1 201 AH - 201 BH

1--________________________ -1 2019H

1-__________________________ -1 2018H

1-__________________________ -1 2012H - 2017H

1-__________________________ -I0l00H

OOFFH

__________ ~----~--------------------------~OOOOH

270250-5

NOTE:
'Registers marked by an asterisk are not present on 8X9X devices

17-51

MCS®-96 ARCHITECTURAL OVERVIEW

14.7 Instruction Summary

Mnemonic
·Oper-

Operation (Note 1) Flags Notes ands Z N C V VT ST
ADD/ADDB 2 D..-D+A " " " " i -
ADD/ADDB 3 D..-B+A " " " " i -
ADDC/ADDCB 2 D..- D+A+C -l. " " " i -
SUB/SUBB 2 D..-D-A " " " " i -
SUB/SUBB 3 D..-B-A " " " " i -
SUBC/SUBCB 2 D..- D-A+C-1 -l. " " " i -
CMP/CMPB 2 D-A " " " " i -
MUL/MULU 2 D, D + 2 ..- D' A - - - - - ? 2

MULIMULU ~ D, D + 2 ..- B' A - - - - - ? 2

MULB/MULUB 2 D, D + 1 ..- D' A - - - - - ? 3
MULB/MULUB 3 . D, D + 1 ..- B' A - - - - - ? 3
DIVU 2 D ..- (D, D + 2)/ A, D + 2 ..- remainder - - - " i - 2

DIVUB 2 D ..- (D, D + 1)/A, D + 1 ..- remainder - - - " i - 3

DIV 2 D ..- (D, D + 2)/ A, D + 2 ..- remainder - - - ? i -
DIVB 2 D ..- (D, D + 1)/A, D + 1 ..- remainder - - - ? i -
AND/ANDB 2 D ..- DandA " " 0 0 - -
AND/ANDB 3 D ..- BandA " " 0 0 - -
OR/ORB 2 D ~ DorA " " 0 0 - -
XOR/XORB 2 D ..- D (excl. or) A " " 0 0 - -
LD/LDB 2 D..-A - - - - - -
ST/STB 2 A..-D - - - - - -
LDBSE 2 D..-A;D+1 ..- SIGN(A) - - - - - - 3,4

LDBZE 2 D..- A;D+ 1..-0 - - - - - - 3,4

PUSH 1 SP ..- SP - 2; (SP) ..- A - - - - - -
POP 1 A ..- (SP); SP ..- SP + 2 - - - - - -
PUSHF 0 SP ..- SP - 2; (SP) ..- PSW; 0 0 0 0 0 0

PSW ..- OOOOH 1..- 0

POPF 0 PSW ..- (SP); SP ..- SP + 2; I ..- " " " " " " " SJMP 1 PC ..- PC + 11·bit offset - - - - - - 5

LJMP 1 PC ..- PC + 16·bit offset - - - - - - 5
BR [indirect] 1 PC ..- (A) - - - - - -
SCALL 1 SP ..- SP - 2; (SP) ..- PC; - - - - - - 5

PC ..- PC + 11·bit offset

LCALL 1 SP ..- SP - 2; (SP) ..- PC; - - - - - - 5
PC ..- PC + 16·bit offset

RET 0 PC ..- (SP); SP ..- SP + 2 - - - - - -
J (conditional) 1 PC ..- PC + 8·bit offset (if taken) - - - - - - 5
JC 1 Jump ifC = 1 - - - - - - 5
JNC 1 Jump ifC = 0 - - - - - - 5
JE 1 Jump if Z = 1 - - - - - - 5

NOTES:
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A
must conform to the alignment rules for the required operand type. D and B are locations in the Register File; A can be
located anywhere in memory.
2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE·WORD aligned.
3. D, D + 1 are consecutive BYTES in memory; D is. WORD aligned.
4. Changes a byte to a word.
5. Offset is a 2's complement number.

17·52

inter MCS®~96 ARCHITECTURAL OVERVIEW

Mnemonic Oper- Operation (Note 1) Flags Notes ands Z N C V VT ST

JNE 1 Jump if Z = 0 - - - - - - 5
JGE 1 Jump if N = 0 - - - - - - 5

JLT 1 Jump if N = 1 - - - - - - 5
JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5

JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5
JH 1 Jump if C = 1 and Z = 0 - - - - - - 5

JNH 1 Jump if C = 0 or Z = 1 - - - - - - 5
JV 1 Jump if V = 1 - - - - - - 5

JNV 1 Jump if V = 0 - - - - - - 5
JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5
JST 1 Jump if ST = 1 - - - - - - 5
JNST 1 Jump ifST = 0 - - - - - - 5
JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6

DJNZ 1 D ~ D - 1; if D 9'= 0 then
PC ~ PC + a-bit offset - - - - - - 5

DEC/DECB 1 D ~ D-1 '" '" '" '" i -
NEGINEGB 1 D ~ O-D '" '" '" '" i -
INC/INCB 1 D ~ D + 1 '" '" '" '" i -
EXT 1 D ~ D; D + 2 ~ Sign (D) '" '" 0 0 - - 2

EXTB 1 D ~ D; D + 1 ~ Sign(D) '" '" 0 0 - - 3
NOT/NOTB 1 D ~ Logical Not (D) '" '" 0 0 - -
CLR/CLRB 1 D ~ 0 1 0 0 0 - -
SHLlSHLB/SHLL 2 C ~ msb-----Isb ~ 0 '" ? '" '" i - 7

SHRISHRB/SHRL 2 0- msb-----Isb - C '" ? '" 0 - '" 7

SHRA/SHRAB/SHRAL 2 msb - msb-----Isb - C '" '" '" 0 - '" 7

SETC 0 C~1 - - 1 - - -
CLRC 0 C~O - - 0 - - -
CLRVT 0 VT ~ 0 - - - - 0 -
RST 0 PC ~ 20aOH 0 0 0 0 0 0 a

DI 0 Disable All Interrupts (I ~ 0) - - - - - -
EI 0 Enable All Interrupts (I ~ 1) - - - - - -
NOP 0 PC~PC+1 - - - - - -
SKIP 0 PC~PC+2 - - - - - -
NORML 2 Left shift till msb = 1; D ~ shift count '" ? 0 - - - 7

TRAP 0 SP ~ SP - 2; (SP) ~ PC
PC ~ (2010H) - - - - - - 9

NOTES:
1. If the mnemonic ends in "8", a byte operation is performed, otherwise a word operation is done. Operands D, 8 and A
must conform to the alignment rules for the required operand type. D and 8 are locations in the Register File; A can be
located anywhere in memory.
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at
2080H.
9. The assembler will not accept this mnemonic.

17-53

intJ MCS®-96 ARCHITECTURAL OVERVIEW

14.8 Opcode and State Time Listing

DIRECT IMMEDIATE
INDIRECT@ INDEXED@

NORMAL AUTO-INC. SHORT LONG

(.) 0
Z Q

8@ z W W W 8 0 8 0
W 8@ 0 c Q 0 W0

Q 0 W0
Q 0 0 Q 0 -0 0 -0

::E a: 0 w 0 w 0 W Ww w Ww 0 w Ww w Ww
W W (.) !;: ~W (.) !;: ~w (.) !;: ~::E !;: ~::E (.) !;: ~:Ii !;: ~::E z Q. Q. I-'~ Q. I-'::E Q.

~~ ~~ Q.
~~ ~~ ::E 0 0 ID 0~ 0 ID 0~ 0 ID ID 0 ID ID

ARITHMETIC INSTRUCTIONS
ADD 2 64 3 4 65 4 5 66 3 6/11 3 7/12 67 4 6/11 5 7/12

ADD 3 44 4 5 45 5 6 46 4 7/12 4 8/13 47 5 7/12 6 8/13

ADDB 2 74 3 4 75 3 4 76 3 6/11 3 7/12 77 4 6/11 5 7/12

ADDB 3 54 4 5 55 4 5 56 4 7/12 4 8/13 57 5 7/12 6 8/13

ADDC 2 A4 3 4 A5 4 5 A6 3 6/11 3 7/12 A7 4 6/11 5 7/12

ADDCB 2 B4 3 4 B5 3 4 B6 3 6/11 3 7/12 B7 4 6/11 5 7/12

SUB 2 68 3 4 69 4 5 6A 3 6/11 3 7/12 6B 4 6/11 5 7/12

SUB 3 48 4 5 49 5 6 4A 4 7/12 4 8113 4B 5 7/12 6 8/13

SUBB 2 78 3 4 79 3 4 7A 3 6/11 3 7/12 7B 4 6/11 5 7/12

SUBB 3 58 4 5 59 4 5 5A 4 7/12 4 8/13 5B 5 7/12 6 8/13

SUBC 2 A8 3 4 A9 4 5 AA 3 6/11 3 7/12 AB 4 6/11 5 7/12

SUBCB 2 B8 3 4 B9 3 4 BA 3 6/11 3 7/12 BB 4 6/11 5 7/12'

CMP 2 88 3 4 89 4 5 8A 3 6/11 3 7/12 8B 4 6/11 5 7/12

CMPB 2 98 3 4 99 3 4 9A 3 6/11 3 7/12 9B 4 6111 5 7/12

MULU 2 6C 3 25 60 4 26 6E 3 27/32 3 28/33 6F 4 27/32 5 28/33

MULU 3 4C 4 26 40 5 27 4E 4 28/33 4 ·29/34 4F 5 28/33 6 29/34

MULUB 2 7C 3 17 70 3 17 7E 3 19/24 3 20/25 7F 4 19/24 5 20/25

MULUB 3 5C 4 18 50 4 18 5E 4 20125 4 21/26 5F 5 20/25 6 21/26

MUL 2 ® 4 29 ® 5 30 ® 4 31/36 4 32/37 ® 5 31/36 6 32/37

MUL 3 ® 5 30 ® 6 31 ® 5 32137 5 33/38 ® 6 32/37 7 33/38

MULB 2 ® 4 21 ® 4 21 ® 4 23128 4 24/29 ® 5 23/28 6 24/29

MULB 3 ® 5 22 ® 5 22 ® 5 24/29 5 25/30 ® 6 24/29 7 25130

DlVU 2 8C 3 25 80 4 26 8E 3 28/32 3 29/33 8F 4 28/32 5 29/33

DlVUB 2 9C 3 17 90 3 17 9E 3 20/24 3 21/25 9F 4 20/24 5 21125

DlV 2 ® 4 29 ® 5 30 ® 4 32/36 4 33/37 ® 5 32/36 6 33/37

DIVB 2 ® 4 21 ® 4 21 ® 4 24/28 4 25/29 ® 5 24/28 6 25/29

270250-46

NOTES:
·Long indexed and Indirect + instructions have identical opcodes with Short indexed and Indirect modes, respectively. The
second byte of instructions using any Indirect or indexed addressing mode specifies the exact mode used. If the second
byte is even, use Indirect or Short indexed. If it is odd, use Indirect + or Long indexed. In all cases the second byte of the
instruction always specifies an even (word) location for the address referericed.
Q) Number of state times shown for internal/external operands.
® The opcodes for signed multiply and divide are the opcodes for the unsigned fUnctions with an "FE" appended as a
prefix.
®State times shown for 16·bit bus.

17-54

intJ MCS®·96 ARCHITECTURAL OVERVIEW

DIRECT IMMEDIATE
INDIRECTC!)

NORMAL AUTO-INC.

0 en
Z Q

11.1 11.1 11.1 z 11.1 Sen Sen 0 c Q en wen Q en Q en en Q
~ 0 0 wen 0 11.111.1 11.111.1 0 II: 11.1 ~II.I 11.1 ~II.I 11.1 ~~ ~ ~~ 11.1 11.1 0 ~ 0 ~ 0

~
0 z ~ ~ ... ! ~ ... ! ~ ~F= ... - ~

~ 0 0 ID en!- 0 ID en!- 0 ID ID en!- 0

LOGICAL INSTRUCTIONS

AND 2 60 3 4 61 4 5 62 3 6/11 3 7/12 63

AND 3 40 4 5 41 5 6 42 4 7/12 4 8/13 43

ANDB 2 70 3 4 71 3 4 72 3 6/11 3 7/12 73

ANDB 3 50 4 5 51 4 5 52 4 7/12 4 8113 53

OR 2 80 3 4 81 4 5 82 3 6/11 3 7/12 83

ORB 2 90 3 4 91 3 4 92 3 6/11 3 7/12 93

XOR 2 84 3 4 85 4 5 86 3 6/11 3 7/12 87

XORB 2 94 3 4 95 3 4 96 3 6/11 3 7/12 97

DATA TRANSFER INSTRUCTIONS

lO 2 AO 3 4 AI 4 5 A2 3 6/11 3 7/12 A3

LDB 2 BO 3 4 BI 3 4 B2 3 6/11 3 7/12 B3

ST 2 CO 3 4 - - - C2 3 7/11 3 8/12 C3

. STB 2 C4 3 4 - - - C6 3 7/11 3 8/12 C7

lOBSE 2 BC 3 4 BD 3 4 BE 3 6/11 3 7/12 BF

lOBZE 2 AC 3 4 AD 3 4 AE 3 6/11 3 7/12 AF

STACK OPERATIONS (Internal stack)·

PUSH I C8 2 8 C9 3 8 CA 2 11/15 2 12/16 CB

POP I CC 2 12 - - - CE 2 14/18 2 14/18 CF

PUSHF 0 F2 I 8

POPF 0 F3 I 9

STACK OPERATIONS (external stack)

PUSH I C8 2 12 C9 3 12 CA 2 15119 2 16/20 CB

POP I CC 2 14 - - - CE 2 16120 2 16/20 CF

PUSHF 0 F2 I 12

POPF 0 F3 I 13

JUMPS AND CALLS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE
UMP E7 3 8 LCALL

SJMP 20-27@ 2 8 SCALL

DRI I E3 2 8 RET

TRAPQ)

NOTES:
(l) Number of state times shown for internal! external operands.
@ The assembler does not accept this mnemonic.

EF

28-2F@

FO

F7

INDEXEDC!)

SHORT LONG

S~ e@
en en -en

11.111.1 11.111.1 11.1 !c~ 11.1 !c~ ~ ~ ... - ... -
ID en!- ID en!-

4 6/11 5 7/12

5 7/12 6 8/13

4 6/11 5 7/12

5 7/12 6 8113

4 6111 5 7/12

4 6/11 5 7/12

4 6/11 5 7/12

4 6/11 5 7/12

4 6111 5 7/12

4 6/11 5 7tl2

4 7/11 5 8/12

4 7/11 5 8/12

4 6/11 5 7/12

4 6/11 5 7/12

3 11115 4 l2Ii6

3 14/18 4 14/18

3 15119 4 16120

3 16/20 4 16/20

BYTES STATES
3 13/1~

2 13/16(5)

I 12116(5)

I 21/24

270250-47

@ The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an 11-bit, 2's complement,
offset for the relative call or jump.
® State times for stack located internall external.
@ State times shown for 16-bit bus.

17-55

intJ MCS®·96 ARCHITECTURAL OVERVIEW

CONDITIONAL JUMPS
All conditional jumps are 2. byte instructions. Theyrequire B state times if the jump is taken, 4 if it is not.(8)

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE

JC DB JE OF JGE 06 JGT 02

JNC 03 JNE 07 JLT DE JLE OA

JH 09 JV DO JVT DC JST DB

JNH 01 JNV· 05 JNVT 04 JNST DO

JUMP ON BIT CLEAR OR BIT SET
These instructions are 3-byte instructions. They require 9 state times if the jump is taken, 5 if it is not.(8)

BIT NUMBER

MNEMONIC 0 1 2 3 4 5 6. 7

JBC 30 31 32· 33 34 35 36 37

JBS 3B 39 3A 3B 3C 3D 3E 3F

LOOP CONTROL
MNEMONIC OPCODE BYTES STATE TIMES

OJNZ EO 3 5/9 STATE TIME (NOT TAKEN/TAKEN)(B)

SINGLE REGISTER INSTRUCTIONS
MNEMONIC OPCODE BYTES STATES(S) MNEMONIC OPcODE BYTES· STATES(S)

DEC 05 2 4 EXT 06 2 4

OECB 15 2 4 EXTB 16 2 4

NEG 03 2 4 NOT 02 2 4

NEGB 13 2 4 NOTB 12 2 4

INC 07 2 4 CLR 01 2 4

INCB 17 2 4 CLRB . 11 2 4

SHIFT INSTRUCTIONS
INSTR WORD INSTR BYTE INSTR DBLWD STATE TIMES(S)

MNEMONIC OP B MNEMONIC OP B MNEMONIC OP B

SHL 09 3 SHLB 19 3 SHLL 00 3 7 + 1 PER SHIFT(7)

SHR OB 3 SHRB 1B 3 SHRL OC 3 7 + 1 PER SHIFT(7)

SHRA OA 3 SHRAB 1A 3 SHRAL OE 3 7 + 1 PER SHIFT(7)

SPECIAL CONTROL INSTRUCTIONS
MNEMONIC OPCODE BYTES STATES(S) MNEMONIC OPCODE·· BYTES STATES(sj·

SETC F9 1 4 01 FA 1 4

CLRC FB 1 4 Ei FB . 1 4

CLRVT FC 1 4 Nap FO 1 4

RST(6) FF 1 166 SKIP 00 2 4

NORMALIZE
MNEMONIC STATE TIMES

NORML 11 + 1 PER SHIFT

NOTES: .. .
6. This instruction takes 2 states to pull RESET low, then holds it low for 2 states to initiate a reset. The reset takes 12
states, at which time the program restarts at location 20BOH. If a capacitor is tied to RESET, the pin may take longer to go
low and may never reach the VOL specification.
7. Execution will take at least B states, even for 0 shift.
B. State times shown for 16-bit bus.

17-56

inter MCS®-96 ARCHITECTURAL OVERVIEW

14.9 SFR Summary

AID Result LO (02H)

: 1 A/D CHANNEL NUMBER

I-- STATUS:
3 - a = A/D CURRENTLY IDLE

I-- 1 = CONVERSION IN PROCESS
~ -x

r-
7
: -} :/0 RESULT:

LEAST SIGNIFICANT 2 BITS

.....

17

270250-48

HSI_Mode (03H)

6 I 5 41 3 1211 1 0 1

I L HSI.O MODE

HSI.I MODE

HSI.2 MODE

HSI.3 MODE

WHERE EACH 2 - BIT MODE CONTROL FIELD
DEFINES ONE OF 4 POSSIBLE MODES:

00 8 POSITIVE TRANSITIONS
01 EACH POSITIVE TRANSITION
10 EACH NEGATIVE TRANSITION
11 EVERY TRANSITION

(POSITIVE AND NEGATIVE)

HSO Command (06H)

CHANNEL:
0-5 HSO.O - HSO.5

7 HSO.2 AND HSO.3
8-B SOFTWARE TIMERS

E RESET TIMER2

270250-49

BIT: 0] 6 HSO.O AND HSO.l

3 F START A/D CONVERSION

4 INTERRUPT / NO INTERRUPT'

5 SET /CLEAR

TIMER 2/TiMER 1

7 X

270250-50

17-57

AID Command (02H)

1 ANALOG INPUT CHANNELS IS TO BE
CONVERTED TO DIGITAL FORM. ~l CHANNEL # SELECTS WHICH OF THE B

~ GO INDICATES WHEN THE CONVERSION IS TO
BE INITIATED (GO = 1 MEANS START NOW,
GO = 0 MEANS THE CONVERSION IS TO BE
INITIATEO BY THE HSO UNIT AT A SPECIFlfjMI~2'51

SPCON/SPST AT (11 H)

-;} BIT1, BITO SPECIFY THE MODE
W 00 = MODE 0 10 = MODE 2
R ...2.. 01 = MODE l' 11 = MODE 3

I 2 - PEN ENABLE THE PARITY FUNCTION
T
E 3 - REN ENABLES THE RECEIVE FUNCTION

4 - TB8 PROGRAMS 'HE 9TH DATA BIT

5 -TI -A.!... -RI

IS THE TRANSMIT INTERRUPT FLAG

IS THE RECEIVE INTERRUPT FLAG

o 7 - RBB
'--

IS THE 9TH DATA RECEIVED
(IF NOT PARITY)

RPE IS THE PARITY ERROR INDICATOR
(IF PARITY ACTIVE)

270250-52

Baud Rate Calculations

Using XTAL1:

Baud XTAL 1 frequency
Mode 0: Rate = 4'(B + 1) ;B*O

Others: Baud = XTAL 1 frequency
Rate 64' (B + 1)

Using T2CLK:

Baud T2CLK frequency
Mode 0: Rate = B ;B*O

A h . Baud _ T2CLK frequency. B .
t ers. Rate - 16'B ,oF 0

Note that B cannot equal 0, except when using
XTALI in other than Mode O.

HSI_Status (06H)

17 6 I 5 41 3 I 2 11 I a 1

I LHSl.o STATUS

HSI.l STATUS

HSI.2 STATUS

HSI.3 STATUS

WHERE FOR EACH 2 - BIT STATUS FIELD THE LOWER
BIT INDICATES WHETHER OR NOT AN EVENT HAS
OCCURED ON THIS PIN AND THE UPPER BIT INDICATES
THE CURRENT STATUS OF THE PIN.

270250-53

MCS®-96 ARCHITECTURAL OVERVIEW

o

2

lOCO (15H)

HSI.O INPUT ENABLE / DISABLE

TIMER 2 RESET EACH WRITE

HSI.l INPUT ENABLE / DISABLE

TIMER 2 EXTERNAL RESET ENABLE / DISABLE

HSI.2 INPUT ENABLE / DISABLE

TIMER 2 RESET SOURCE HSI.O / T2RST

HSI.3 INPUT ENABLE / DISABLE

TIMER 2 CLOCK SOURCE HSI.l /T2CLK

270250-54

lOCO (15H)

T2RST --0 • _. IOCO.5

I~ --0---- T2 RESET
~ .

• _. IOCO.3
• _. IOCO.O

HSI.O ~_------ HSI

.-. IOCO.2

r>"-o------- HSI

HSI.l ~ TIMER2
T2CLK --0 ! _. IOCO.7 CLOCK

• _. lOCO A

HSI.2 --0 "-0------- HSI

·-·IOCO.6

HSI.3 --0 "-0------- HSI
270250-55

IOSO (15H)

HSO.O CURRENT STATE

HSO.l CURRENT STATE

HSO.2 CURRENT STATE

HSO.3 CURRENT STATE

4 HSO.4 CURRENT STATE

5 HSO.5 CURRENT STATE

6 CAM QB HOLDING REGISTER IS FULL

7 HSO HOLDING REGISTER IS FULL

270250-56

17·58

IOC1 (16H)

SELECT PWM / SELECT P2.5

EXTERNAL INTERRUPT ACH7/ EXTINT

TIMER 1 OVERFLOW INTERRUPT ENABLE / DISABLE

TIMER 2 OVERFLOW INTERRUPT ENABLE / DISABLE

HSO.4 OUTPUT ENABLE / DISABLE

SELECT TXD / SELECT P2.0

HSO.5 OUTPUT ENABLE / DISABLE

HSI INTERRUPT
FIFO FU LL / "HO"'L"'D"'IN"'G'"'R""E""GI;';S""TE"'R'L"O"'AD"'E"'D

270250-57

Vector Location
Vector (High (Low Priority

Byte) Byte)

Software 2011H 2010H Not Applicable
Extint 200FH 200EH 7 (Highest)
Serial Port 200DH 200CH 6
Software 200BH 200AH 5

Timers
HSI.O 2009H 2008H 4
High Speed 2007H 2006H 3

Outputs
HSI Data 2005H 2004H 2

Available
AID Conversion 2003H 2002H 1

Complete
Timer Overflow 2001H 2000H o (Lowest)

IOS1 (16H)

SOFTWARE TIMER 0 EXPIRED

SOFTWARE TIMER 1 EXPIRED

SOFTWARE TIMER 2 EXPIRED

3 SOFTWARE. TIMER 3 EXPIRED

4 TIMER 2 HAS OVERFLOW

5 TIMER 1 HAS OVERFLOW

6 HSI FIFO IS FULL

7 HSI HOLDING REGISTER DATA AVAILABLE

270250-58

inter MCS®·96 ARCHITECTURAL OVERVIEW

Chip Configuration

17161514131211101 CHIP CONFIGURATION REGISTER

L

-
'---

RESERVED (Set to 1 for
compatibility with future
parts)

BUS WIDTH SELECT
(16 - BIT BUS / """8 -'""""B"'"IT"""B"'"U'""'S)

WRITE STROBE MODE SELECT
(WR AND BHE/WRL AND WRH)

ADDRESS VALID STROBE SELECT
(ALE/ ADV)

(lRCO) } INTERNAL READY
(IRC1) CONTROL MODE

(LOCO)} PROGRAM LOCK
(LOCI) MODE

270250-59

Internal Ready Control

IRC1 IRCO Description

o 0 Limit to 1 Wait State
o
1

1
o

Limit to 2 Wait States
Limit to 3 Wait States
Disable Internal Ready Control

Program Lock Modes

LOC1 LOCO Protection

o
o

o
1
o
1

Read and Write Protected
Read Protected
Write Protected
No Protection

17-59

Programming Function PMODE Values

PMODE Programming Mode

0-4 Reserved

5 Slave Programming

6-0BH Reserved

OCH Auto Programming Mode

ODH Program Configuration Byte

OEH-OFH Reserved

Slave Programming Mode Commands

P4.7 P4.6 Action

0 0 Word Dump
0 1 Data Verify
1 0 Data Program
1 1 Reserved

8X9XBH Signature Word

Device Signature Word

879XBH 896FH
839XBH B96EH
B09XBH Undefined

Port 2 Pin Functions

Port Function Alternate Function

P2.0 Output TXD (Serial Port Transmit)
P2.1 Input RXD (Serial Port Receive)
P2.2 Input EXTINT (External Interrupt)
P2.3 Input T2CLK (Timer 2 Clock)
P2.4 Input T2RST (Timer 2 Reset)
P2.5 Output PWM (Pulse Width Modulation)

MCS®-96 Instruction Set 18

MCS®-96 INSTRUCTION SET

OVERVIEW

This chapter of the manual gives a description of each
instruction recognized by the 8096. The instructions are
sorted alphabetically by the mnemonic used in the as­
sembly language for the 8096. A summary of the in­
struction set is included in Section 14 of the MCS®-96
Architecture chapter.

The instruction set descriptions in the following sec­
tions do not always show the effect on the program
counter (PC). Unless otherwise specified, all instruc­
tions increment the PC by the number of bytes in the
instruction.

A set of acronyms are used to make the instruction set
descriptions easier to read, their definitions are listed
below:

aa. A two bit field within an opcode which selects the
basic addressing mode user. This field is only present in
those opcodes which allow address mode options. The
encoding of the field is as follows:

aa Addressing mode

00 Register direct

01 Immediate

10 Indirect

11 Indexed

The selection between indirect and indirect with auto­
increment or between short and long indexing is done
based on the least significant bit of the instruction byte
which follows· the opcode. This type selects the 16-bit
register which is to take part in the address calculation.
Since the 8096 requires that words be aligned on even
byte boundaries this bit would be otherwise unused.

breg. A byte register in the internal register file. When
confusion could exist as to whether this field refers to a
source or a destination register it will be prefixed with
an US" or a "D".

baop. A byte operand which is addressed by any of the
address modes discussed in Section 3.2 of the MCS-96
Architecture chapter.

bitno. A three bit field within an instruction op-code
which selects one of the eight bits in a byte.

18-1

wreg. A word register in the internal register file. When
confusion could exist as to whether this field refers to a
source register or a destination register it will be pre­
fixed with an "S" or a "D".

waop. A word operand which is addressed by any of the
address modes discussed in Section 3.2 of the MCS-96
Architecture chapter.

Lreg. A 32-bit register in the internal register file.

BEA. Extra bytes of code required for the address
mode selected.

CEA. Extra state times (cycles) required for the address
mode selected.

caddo An address in the program code.

Flag Settings. The modification to the flag setting is
shown for each instruction. A checkmark ("") means
that the flag is set or cleared as appropriate. A hyphen
means that the flag is not modified. A one or zero (I) or
(0) indicates that the flag will be in that state after the
instruction. An up arrow (i) indicates that the in­
struction may set the flag if it is appropriate but will
not clear the flag. A down arrow (.!) indicates that the
flag can be cleared but not set by the instruction. A
question mark (?) indicates that the flag will be left in
an indeterminant state after the operation.

Generic Jumps and Calls. The assembler for the
MCS-96 family provides for generic jumps and calls.
For all of the conditional jump instructions a "B" can
be substituted for the "J" and the assembler will gener­
ate a code sequence which is logically equivalent but
can reach anywhere in the memory. A JH can only
jump about 128 locations from the current program
counter; a BH can jump anywhere in memory. In a like
manner a BR will cause a SJMP or LJMP to be gener­
ated as appropriate and a CALL will cause a SCALL
or LCALL to be generated. The assembler user's guide
should be consulted for the algorithms used by the as­
sembler to convert these generic instructions into actual
machine instructions.

Indirect Shifts. The indirect shift operations use regis­
ters 24 through 255 (18H-OFFH), since 0-15 are di­
rect operators and registers 16 through 23 are Special
Function Registers. Note that indirect shifts through
SFRs are illegal operations.

The maximum shift count is 31 (IFH). Count values
above this will be truncated to the 5 least significant
bits.

inter MCS®·96 INSTRUCTION SET

1. ADD (Two Operands)-ADD WORDS

Operation: The sum of the two word operands is stored into the destination (leftmost)
operand.

(DEST) +- (DEST) + (SRC)

Assembly Language Format: DST SRC
ADD wreg, waop

Object Code Format: [011001 aa I [waop I [wreg I

Bytes: 2 + BEA
States: 4 + CEA

ST

2. ADD (Three Operands) - ADD WORDS

Operation: The Sum of the second and third word operands is stored into the destination
(leftmost) operand.

(DESn +- (SRC1) + (SRC2)

Assembly Language Format: DST SRC1 SRC2
ADD Dwreg, Swreg, waop

Object Code Format: [010001 aa I [waop I [Swreg I [Dwreg I

Bytes: 3 + BEA
States: 5 + CEA

ST

18-2

inter MCS®·96 INSTRUCTION SET

3. ADDB (Two Operands) - ADD BYTES

Operation: The sum of the two byte operands is stored into the destination (leftmost)
operand.

(DEST) +- (DEST) + (SRC)

Assembly Language Format: DST SRC
ADDB breg, baop

Object Code Format: [011101 aa I [baop I [breg I

Bytes 2 + BEA
States: 4 + CEA

Flags Affected

z I N I C I V I VT I ST

"" I "" I "" I "" I i 1-

4. ADDB (Three Operands) - ADD BYTES

Operation: The sum of the second and third byte operands is stored into the destination
(leftmost) operand.

(DEST) +- (SRC1) + (SRC2)

Assembly Language Format: DST SRC1 SRC2
ADDB Dbreg, Sbreg, baop

Object Code Format: [010101aa I [baop I [Sbreg I [Dbreg I

Bytes: 3 + BEA
States 5 + CEA

Flags Affected

z I N I C I V I VT I ST

"" I "" I "" I "" I i 1-

18-3

MCS®-96 INSTRUCTION SET

5. ADDC - ADD WORDS WITH CARRY

Operation: The sum of the two word operands and the carry flag (0 or 1) is stored into the
destination (leftmost) operand.

(DEST) -- (DEST) + (SAC) + C

Assembly Language Format: DST SAC
ADDC wreg, waop

Object Code Format: [101001 aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + BEA

Flags Affected

z 1 N 1 C 1 V 1 VT 1 ST

.J.. 1,.....1,.....1,.....1 t 1-

6. ADDCB - ADD BYTES WITH CARRY

Operation: The sum of the two byte operands and the carry flag (0 or 1) is stored into the
destination (leftmost) operand.

(DEST) -- (DEST) + (SAC) + C

Assembly Language Format: DST SAC
ADDCB breg, baop

Object Code Format: [101101aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

z 1 N 1 C 1 V 1 VT 1 ST

.J..j ,.....1 ,.....1 ,.....1 t 1 -

18-4

MCS®-96 INSTRUCTION SET

7. AND (Two Operands) - LOGICAL AND WORDS

Operation: The two word operands are ANDed, the result having a 1 only in those bit
positions where both operands had a 1, with zeroes in all other bit positions.
The result is stored into the destination (leftmost) operand.

(DEST) ~ (DEST) AND (SRC)

Assembly Language Format: DST SRC
AND wreg, waop

Object Code Format: [011000aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States 4 + CEA

Z ST

8. AND (Three Operands) - LOGICAL AND WORDS

Operation: The second and third word operands are ANDed, the result having a 1 only in
those bit positions where both operands had a 1, with zeroes in all other bit
positions. The result is stored into the destination (leftmost) operand.

(DEST) ~ (SRC1) AND (SRC2)

Assembly Language Format: DST SRC1 SRC2
AND Dwreg, Swreg, waop

Object Code Format: [010000aa 1 [waop 1 [Swreg 1 [Dwreg 1

Bytes: 3 + BEA
States: 5 + CEA

Z ST

18-5

MCS®-96 INSTRUCTION SET

9. AN DB (Two Operands) - LOGICAL AND BYTES

Operation: The two byte operands are ANDed, the result having a 1 only in those bit
positions where both operands had a 1, with zeroes in all other bit positions.
The result is stored into the destination (leftmost) operand.

(DEST) - (DEST) AND (SAC)

Assembly Language Format: DST SAC
AN DB breg, baop

Object Code Format: [011100aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

Z ST

10. ANDB (Three Operands) - LOGICAL AND BYTES

Operation: The second and third byte operands are ANDed, the result having a 1 only in
those bit positions where both operands had a 1, with zeroes in all other bit
positions. The result is stored into the destination (leftmost) operand.

Assembly Language Format:

(DEST) - (SAC1) AND (SAC2)

DST SAC1
AN DB Dbreg, Sbreg,

SAC2
baop

Object Code Format: [010100aa 1 [baop 1 [Sbreg 1 [Dbreg 1

Bytes: 3 + BEA
States: 5 + CEA

Z ST

18-6

inter MCS®-96 INSTRUCTION SET

11. BR (Indirect) - BRANCH INDIRECT

Operation: The execution continues at the address specified in the operand word regis­
ter.

PC -- (DEST)

Assembly Language Format: BR [wreg

Object Code Format: [11100011 1 [wreg 1

Bytes: 2
States: 8

Z ST

12. CLR - CLEAR WORD

Operation: The value of the word operand is set to zero.

(DEST) -- 0

Assembly Language Format: CLR wreg

Object Code Format: [00000001 1 [wreg 1

Bytes: 2
States: 4

Flags Affected

Z 1 N 1 C 1 V 1 VT 1 ST

11 0 10 10 1-1-

18-7

inter MCS®·96 INSTRUCTION SET

13. CLRB - CLEAR BYTE

Operation: The value of the byte operand is set to zero.

(DEST) - 0

Assembly Language Format: CLRB breg

Object Code Format: [00010001 1 [breg 1

Bytes: 2
States: 4

Flags Affected

zlNlclvlvTlsT
11 0 1 0 1 0 1-1-

14. CLRC - CLEAR CARRY FLAG

Operation: The value of the carry flag is set to zero.

c-o

Assembly Language Format: CLRC

Object Code Format: [11111000

Bytes: 1
States: 4

Z ST

18-8

infef MCS®-96 INSTRUCTION SET

15. CLRVT - CLEAR OVERFLOW TRAP

Operation: The value of the overflow-trap flag is set to zero.

VT ~ 0

Assembly Language Format: CLRVT

Object Code Format: [11111100

Bytes: 1
States: 4

Flags Affected

ZINICIVIVTIST

7"1-1-1-101-

16. CMP - COMPARE WORDS

Operation: The source (rightmost) word operand is subtracted from the destination (left­
most) word operand. The flags are altered but the operands remain unaffect­
ed. The carry flag is set as complement of borrow.

(DEST) - (SRC)

Assembly Language Format: DST SRC
CMP wreg, waop

Object Code Format: [10001 Oaa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

ZINICIVIVTIST

v-Iv-Iv-Iv-I t 1-

18-9

inter MCS®-96 INSTRUCTION SET

17. CMPB - COMPARE BYTES

Operation: The source (rightmost) byte oPElrand is subtracted from the destination (left­
most) byte operand. The flags are altered but the operands remain unaffected.
The carry flag is set as complement of borrow.

(DEST) - (SRC)

Assembly Language Format: DST SRC
CMPB breg. baop

Object Code Format: [10011 Oaa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

z I N I C I V I VT 1- ST

l'" Il'" Il'" Il'" I i 1-

18. DEC - DECREMENT WORD

Operation: The value of the word operand is decremented by one.

(DEST) ~ (DEST) - 1

Assembly Language Format: DEC wreg

Object Code Format: [00000101 1 [wreg 1

Bytes: 2
States: 4

Flags Affected

zlNlclVIVTlsT

l'" Il'" Il'" Il'" I i 1-

18-10

inter MCS®-96 INSTRUCTION SET

19. DECB - DECREMENT BYTE

Operation: The value of the byte operand is .decremented by one.

(OEST) (OEST) - 1

Assembly Language Format: OECB breg

Object Code Format: [00010101 1 [breg J

Bytes: 2
States: 4

Z ST

20. DI- DISABLE INTERRUPTS

Operation: Interrupts are disabled. Interrupt-calls will not occur after this instruction.

Interrupt Enable (PSW.9) 0

Assembly Language Format: 01

Object Code Format: [11111010

Bytes: 1
States: 4

Z ST

18-11

intJ MCS®-96 INSTRUCTION SET

21. DIV - DIVIDE INTEGERS

Operation: This instruction divides the contents of the destination LONG-INTEGER oper­
and by the contents of the INTEGER word operand, using signed arithmetic.
The low order word of the destination (Le., the word with the lower address)
will contain the quotient; the high order word will contain the remainder.

Assembly Language Format:

(low word DEST) +- (DEST) /(SRC)
(high word DEST) +- (DEST) MOD (SRC)
The above two statements are performed concurrently.

DIV
DST
Ireg,

SRC
waop

Object Code Format: [11111110][100011 aa I [waop I [Ireq I

Bytes: 2 + BEA
States: 29 + CEA

Flags Affected

z I N I C IvlVTIST

-1-1-1?lil-

22. DiVe - DIVIDE SHORT-INTEGERS

Operation: This instruction divides the contents of the destination INTEGER operand by
the contents of the source SHORT-INTEGER operand, using signed arithme­
tic. The low order byte of the destination (Le. the byte with the lower address)
will contain the quotient; the high order byte will contain the remainder.

(low byte DEST) +- (DEST) / (SRC)
(high byte DEST) +- . (DEST) MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIVB wreg, baop

Object Code Format: [11111110 I [100111 aa I [baop I [wreg I

Bytes: 2 + BEA
States: 21 + CEA

Flags Affected

z I N I C IvlVTIST

-I-I-I?I i 1-

18-12

inter MCS®-96 INSTRUCTION SET

23. DIVU - DIVIDE WORDS

Operation: This instruction divides the content of the destination DOUBLE-WOAD oper­
and by the contents of the source WOAD operand, using unsigned arithmetic.
The low order word will contain the quotient; the high order WOAD will contain
the remainder.

Assembly Language Format:

(low word DEST) +- (DEST) / (SAC)
(high word DEST) +- (DEST) MOD (SAC)
The above two statements are performed concurrently.

DIVU
DST
Ireg,

SAC
waop

Object Code Format: [100011 aa 1 [waop 1 [Ireq 1

Bytes: 2 + BEA
States: 25 + CEA

Z ST

24. DIVUB - DIVIDE BYTES

Operation: This instruction divides the contents of the destination WOAD operand by the
contents of the source BYTE operand, using unsigned arithmetic. The low
order byte of the destination, (i.e., the byte with the lower address) will contain
the quotient; the high order byte will contain the remainder.

(low byte DEST) +- (DEST) / (SAC)
(high byte DEST) +- (DEST) MOD (SAC)
The above two statements are performed concurrently.

Assembly Language Format: DST SAC
DIVUB wreg, baop

Object Code Format: [1 00111 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 17 + CEA

Z ST

18-13

MCS@·96 INSTRUCTION SET

25. DJNZ - DECREMENT AND JUMP IF NOT ZERO

.Operatlon: The "alueof the byte operand is decremented by 1. If the result is not equal to
0, the distance from the end of this instruction to the target label is added to
the program counter, effecting the jump. The offset from the end of this in­
struction to the target label must be in the range of -128 to + 127. If the
result of the decrement is zero then control passes to the next sequential
instruction.

(COUNT) +- (COUNT) - 1
if (COUNT) < > 0 then

PC +- PC + disp (sign-extended to 16 bits)

end_if

Assembly Language Format: DJNZ breg,cadd

Object Code Format: [11100000 1 [breg 1 [disp

Bytes: 3
States: Jump Not Taken: 5

Jump Taken: 9

Flags Affected

ZINlclvlVTlsT

-1-1-1-1-1-

26. EI - ENABLE INTERRUPTS

Operation: Interrupts are enabled following the execution of the next statement. Interrupt­
calls cannot occur immediately following this instruction.

Interrupt Enable (PSW.9) +- 1

Assembly Language Format: EI

Object Code Format: [11111011

Bytes: 1
States: 4

Z ST

18-14

inter MCS®-96 INSTRUCTION SET

27. EXT - SIGN EXTEND INTEGER INTO LONG-INTEGER

Operation: The low order word of the operand is sign-extended throughout the high order
word of the operand.

if (low word DEST) < 8000H then
(high word DEST) ~ 0

else
(high word DEST) ~ OFFFFH

end_if

Assembly Language Format: EXT Ireg

Object Code Format: [00000110 1 [Ireg 1

Bytes: 2
States: 4

Z ST

28. EXTB - SIGN EXTEND SHORT-INTEGER INTO INTEGER

Operation: The low order byte of the operand is sign-extended thro!J9hout the high order
byte of the operand.

if (low byte DEST) < 80H then
(high byte DEST) ~ 0

else
(high byte DEST) ~ OFFH

end_if

Assembly Language Format: EXTB wreg

Object Code Format: [00010110 1 [wreg 1

Bytes: 2
States: 4

Flags Affected

Z 1 N lei V 1 VT .1 ST

"'1"'10101-1-

18-15

inter MCS®-96 INSTRUCTION SET

29. INC -INCREMENT WORD

Operation: The value of the word operand is incremented by 1.

(DEST) +- (DEST) + 1

Assembly Language Format: INC wreg

Object Code Format: [00000111 1 [wreg 1

Bytes: 2
States: 4

Z ST

30. INCB - INCREMENT BYTE

Operation: The value of the byte operand is incremented by 1.

(DEST) +- (DEST) + 1

Assembly Language Format: INCB breg

Object Code Format: [00010111] [breg 1

Bytes: 2
States: 4

Z ST

18-16

inter MCS@·96 INSTRUCTION SET

31. JBC-JUMP IF BIT CLEAR

Operation: The specified bit is tested. If it is clear (i.e., 0), the distance from the end of this
instruction to the target label is added to the program counter, effecting the
jump. The offset from the end of this instruction to the target label must be in
the range of -128 to + 127. If the bit is set (i.e., 1), control passes to the next
sequential instruction.

if (specified bit) = 0 then
PC +- PC + disp (sign-extened to 16 bits)

Assembly Language Format: JBC breg,bitno,cadd

Object Code Format: [00110bbb 1 [breg 1 [disp 1
where bbb is the bit number within the specified register.

Bytes:
States:

z

3
Jump Not Taken: 5
Jump Taken: 9

ST

18-17

intJ MCS®·96 INSTRUCTION SET

32. JBS - JUMP ·IF BIT SET

Operation: The specified bit is tested. If it is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter, effecting the
jump. The offset from the end of this instruction to the target label must be in
the range of -128 to + 127. If the bit is clear (i.e., 0), control passes to the.
next sequential instruction.

if (specified bit) = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JBS breg,bitno,cadd

Object Code Format: [00111 bbb 1 [breg 1 [disp 1
where bbb is the bit number within the specified register.

Bytes: 3
States: Jump Not Taken: 5

Jump Taken: 9

Z ST

33. JC - JUMP IF CARRY FLAG IS SET

Operation: If the carry flag is set (i.e., 1), the. distance from the end of this instruction to
the target label is added to the program counter, effecting the jump. The offset
from the end of this instruction to the target label must be in the range of
-128 to + 127. If the carry flag is clear (i.e., 0), control passes to the next
sequential instruction.

ifC=1then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JC cadd

Object Code Format: [11011011 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

. Jump Taken: 8

Z ST

18-18

inter MCS®-96 INSTRUCTION SET

34. JE - JUMP IF EQUAL

Operation: If the zero flag is set (I.e., 1), the distance from the end of this instruction to the
target label is added to the program counter, effecting the jump. The offset
from the end of this instruction to the target label must be in the range of
-128 to + 127. If the zero flag is clear (I.e., 0), control passes to the next
sequential instruction.

if Z = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JE cadd

Object Code Format: [11011111 1 [disp 1

Bytes:
States:

2
Jump Not Taken: 4
Jump Taken: 8

Flags Affected

zlNICIVIVTIST

-1-1-1-1-1-

35. JGE - JUMP IF SIGNED GREATER THAN OR EQUAL

Operation: If the negative flag is clear (I.e., 0), the distance from the end of this instruction
to the target label is added to the program counter, effecting the jump. The
offset from the end of this instruction to the target label must be in the range
of -128 to + 127. If the negative flag is set (I.e., 1), control passes to the next
sequential instruction.

if N = 1 then
PC +- PC +. disp (sign-extended to 16 bits)

Assembly Language Format: JGE cadd

Object Code Format: [11010110 1 [disp 1

Bytes:
States:

z

2
Jump Not Taken: 4
Jump Taken: 8

ST

18-19

MCS®-96 INSTRUCTION SET

36. JGT-JUMP IF SIGNED GREATER THAN

Operation: If both the negative flag and the zero flag are clear (i.e., 0), the distance from
the end of this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to the target
label must be in the range of -128 to· + 127. If either the negative flag or the
zero flag are set (Le., 1,) control passes to the next sequential instruction.

if N = 0 AND Z = 0 then
PC - PC + disp (sign-extended to 16 bits)

Assembly Language Format: JGT cadd

Object Code Format: [11010010 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

Flags Affected

Z 1 N 1 C 1 V ·1 VT 1 ST

-1-1-1-1-1-

37. JH - JUMP IF HIGHER (UNSIGNED)

Operation: If the carry flag is set (Le., 1), but the zero flag is not, the distance from the end
of this instruction to the target label is added to the program counter, effecting
the jump. The offset from the end of this instruction to the target label must be
in the range of -128 to + 127. If either the carry flag is clear or the zero flag is
set, control passes to the next sequential instruction.

if C = 1 AND Z = 0 then
PC - PC + disp (sign-extended to 16 bits)

Assembly Language Format: JH cadd

Object Code Format: [11011001 1 [disp 1

Bytes: 2
States: Jump NotTaken: 4

Jump Taken: 8

Z ST

18-20

inter MCS®·96 INSTRUCTION SET

38. JLE - JUMP IF SIGNED LESS THAN OR EQUAL

Operation: If either the negative flag or the zero flag are set (i.e., 1), the distance from the
end of this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to the target
label must be in the range of -128 to + 127. If both the negative flag and the
zero flag are clear (i.e., 0), control passes to the next sequential instruction.

if N = 1 OR Z = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JLE cadd

Object Code Format: [11011010 1 [disp 1

Bytes:
States:

Z

2
Jump Not Taken: 4
Jump Taken: 8

ST

39. JL T - JUMP IF SIGNED LESS THAN

Operation: If the negative flag is set (i.e., 1), the distance from the end of this instruction
to the target label is added to the program counter, effecting the jump. The
offset from the end of this instruction to the target label must be in the range
of -128 to + 127. If the negative flag is clear (i.e., 0), control passes to the
next sequential instruction.

if N = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JL T cadd

Object Code Format: [11011110 1 [disp 1

Bytes:
States:

Z

2
Jump Not Taken: 4
Jump Taken: 8

ST

18-21

MCS®·96 INSTRUCTION SET

40. JNC - JUMP IF CARRY FLAG IS CLEAR

Operation: If the carry flag is clear (Le., 0), the distance from the erid of this instruction to
the target label is added to the program counter, effecting the jump. The offset
from the end of this instruction to the target label·must be in the range of
-128 to + 127. If the carry flag is set (Le., 1), control passes to the next
sequential instruction.

if C = 0 then
PC- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNC cadd

ObJectCodeFormat: [11010011][disp]

Bytes:
States:

2
Jump Not Taken: 4
Jump Taken: 8

Flags Affected

zlNlclvlVTlsT

-1-1-1-1-1-

41. JNE - JUMP IF NOT EQUAL

Operation: If the zero flag is clear (Le., 0), the distance from the end of this instruction to
the target label is added to the program counter, effecting the jump. The offset
from the end of this instruction to the target label must be in the range of
-128 to + 127. If the zero flag is set (Le., 1), control passes to the next
seq~ential instruction.

ifZ=Othen
PC - PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNE cadd

Object Code Format: [11010111 [disp]

Bytes:
States:

Z

2
Jump Not Taken: 4
Jump Taken: 8

ST

18-22

MCS®·96 INSTRUCTION SET

42. JNH - JUMP IF NOT HIGHEF\ (UNSIGNED)

Operation: If either the carry flag is clear (i.e., 0), or the zero flag is set (i.e., 1), the
distance from the end of this instruction to the target label is added to program
counter, effecting the jump. The offset from the end of this instruction to the
target label must be in the range of -128 to + 127. If the carry flag is set (i.e.,
1) and the zero flag is not, control passes to the next sequential instruction.

if C = 0 OR Z = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNH cadd

Object Code Format: [11010001 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

Z ST

43. JNST - JUMP IF STICKY BIT IS CLEAR

Operation: If the sticky bit flag is clear (i.e., 0), the distance from the end of this instruction
to the target label is added to the program counter, effecting the jump. The
offset from the end of this instruction to the target label must be in the range
of -128 to + 127. If the sticky bit flag is set (i.e., 1), control passes to the next
sequential instruction.

if ST = 0 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNST cadd

Object Code Format: [11010000 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

Z ST

18-23

inter MCS®-96 INSTRUCTION SET

44. JNV - JUMP IF OVERFLOW FLAG IS CLEAR

Operation: If the overflow flag is clear (Le., 0), the distance from the end of this instruction
to the target label is added to the program counter, effecting the jump. The
offset from the end of this instruction to the target label must be in the range
of -128 to + 127. If the overflow flag is set (Le., 1), control passes to next
sequential instruction.

if V = 0 then
PC +-- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNV cadd

Object Code Format: [11010101 1 [disp 1

Bytes:
States:

2
Jump Not Taken: 4
Jump Taken: 8

Flags Affected

z 1 N 1 C 1 V 1 VTI ST

-1-1-1-1-1-

45. JNVT - JUMP IF OVERFLOW TRAP IS CLEAR

Operation: If the overflow trap flag is clear (Le., 0), the distance from the end of this
instruction to the target label is added to the program counter, effecting the
jump. The offset from the end of this instruction to the target label must be in
the range of -128 to + 127. If the overflow trap flag is set (Le., 1), control
passes to the next sequential instruction. The VT flag is cleared.

if VT = 0 then
PC +-- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNVT cadd

Object Code Format: [11010100 1 [. disp 1

Bytes:
States:

z

2
Jump Not Taken: 4
Jumps Taken: 8

ST

18-24

inter MCS®·96 INSTRUCTION SET

46. JST - JUMP IF STICKY BIT IS SET

Operation: If the sticky bit flag is set (i.e., 1), the distance from the end of this instruction
to the target label is added to the program counter, effecting the jump. The
offset from the end of this instruction to the target label must be in the range
of -128 to + 127. If the sticky bit flag is clear (i.e., 0), control passes to the
next sequential instruction.

if ST = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JST cadd

Object Code Format: [11011000 1 [disp 1

Bytes: 2
State: Jump Not Taken: 4

Jump Taken: 8

z ST

47. JV - JUMP IF OVERFLOW FLAG IS SET

Operation: If the overflow is set (i.e., 1), the distance from the end of this instruction to the
target label is added to the program counter, effecting the jump. The offset
from the end of this instruction to the target label must be in the range of
-128 to + 127. If the overflow flag is clear (i.e., 0), control passes to the next
sequential instruction.

if V = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JV cadd

Object Code Format: [11011101 1 [. disp 1

Bytes:
States:

2
Jump Not Taken: 4
Jump Taken: 8

Flags Affected

z 1 N 1 C 1 V .1 VT 1 ST

-1-1--1-1-1-

18-25

MCS®-96 INSTRUCTION SET

48. JVT - JUMP IF OVERFLOW TRAP IS SET

Operation: If the overflow trap flag is set (i.e., 1), the distance from the end of this instruc­
tion to the target label is added to the program counter, effecting the jump.
The offset from the end of this instruction to the target label must be in the
range of -128 to +127. If the overflow trap flag is clear (i.e., 0), control
passes to the next sequential instruction. The VT flag is cleared.

if VT = 1 then
PC -- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JVT . cadd

Object Code Format: [11011100 1 [disp 1

Bytes:
States:

2
Jump NotTaken: 4
Jump Taken: 8

z ST

49. LCALL - LONG CALL

Operation: The contents of the program counter (the return address) is pushed onto the
stack. Then the distance from the end of this instruction to the target label is
added to the program counter, effecting the call. The operand may be any
address in the entire address space.

SP -- SP - 2
(SP) -- PC
PC -- PC + disp

Assembly Language Format: LCALL cadd

Object Code Format: [11101111 1 [disp-Iow 1 [disp-hi 1

Bytes:
States:

z

Onchip stack:
Offchip stack:

18-26

3
13
16

ST

inter MCS®-96 INSTRUCTION SET

50. LD - LOAD WORD

Operation: The value of the source (rightmost) word operand is stored into the destination
(leftmost) operand.

(DEST) +- (SRC)

Assembly Language Format: DST SRC
LD wreg, waop

Object Code Format: [101 OOOaa 1 [waop 1 [wreg 1

51. LDB - LOAD BYTE

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

z 1 N 1 C 1 V 1 VT 1 ST

-1-1-1-1-1-

Operation: The value of the source (rightmost) byte operand is stored into the destination
(leftmost) operand.

(DEST) +- (SRC)

Assembly Language Format: DST SRC
LDB breg, baop

Object Code Format: [1011 OOaa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

Z ST

18-27

MCS®,,96 INSTRUCTION SET

52. LDBSE - LOAD INTEGER WITH SHORT-INTEGER

Operation: The value of the source (rightmost) byte operand is sign-extended and stored
into the destination (leftmost) word operand.

(low byte DESn +- (SRC)
if (SRC) < 80H then

(high byte DEST) +- 0
else

(high byte DEST) +- OFFH
end_if

Assembly Language Format: DST SRC
LDBSE wreg, baop

Object Code Format: [1 01111 aa] [baop]. [wreg

Bytes: 2 + BEA
States: 4 + CEA

Z ST

53. LDBZE - LOAD WORD WITH BYTE

Operation: The value of the source (rightmost) byte operand is zero-extended and stored
into the destination (leftmost) word operand.

(low byte DEST) +- (SRC)
(high byte DEST) +- 0

Assembly Language Format: DST SRC
LDBZE wreg, baop

Object Code Format: [i 01 011 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

Z ST

18-28

inter MCS®-96 INSTRUCTION SET

54. LJMP - LONG JUMP

Operation: The distance from the end of this instruction to the target label is added to the
program counter, effecting the jump. The operand may be any address in the
entire address space.

PC ~ PC + disp

Assembly Language Format: LJMP cadd

Object Code Format: [11100111 1 [disp-Iow 1 [disp-hi 1

Bytes: 3
States: 8

Z ST

55. MUL (Two Operands) - MULTIPLY INTEGERS

Operation: The two INTEGER operands are multiplied using signed arithmetic and the 32-
bit result is stored into the destination (leftmost) LONG-INTEGER operand.
The sticky bit flag is undefined after the instruction is executed.

Assembly Language Format:

(DEST) ~ (DEST) • (SRC)

MUL
DST
Ireg,

SRC
waop

Object Code Format: [11111110 1 [011011aa 1 [waop 1 [Ireg 1

Bytes: 3 + BEA
States 29 + CEA

Flags Affected

zlNICIVIVTIST

-1-1-1-1-1 ?

18-29

inter MCS®-96 INSTRUCTION SET

56. MUL (Three Operands) - MULTIPLY INTEGERS

Operation: The second. and third INTEGER operands are multiplied using signed arithme­
tic and the 32-bit result is stored into the destination (leftmost) LONG INTE­
GER operand. The sticky bit flag is undefined after the instruction is executed.

(DEST) +- (SRC1)· (SRC2)

Assembly Language Format: DST SRC1
MUL Ireg, wreg,

SRC2
waop

Object Code Format: [11111110 1 [010011 aa 1 [waop 1 [wreg 1 [Ireg 1

Bytes: 4 + BEA
States: 30 + CEA

Flags Affected

zlNlclvlvTlsT

-1-1-1-1-1 ?

57. MULB (Two Operands)-MULTIPLY SHORT-INTEGERS

Operation: The two SHORT-INTEGER operands are multiplied using signed arithmetic
and the 16-bit result is stored into the destination (leftmost) INTEGER oper­
and. The sticky bit flag is undefined after the instruction is executed.

(DEST) +- (DEST) • (SRC)

Assembly Language Format: DST SRC
MULB wreg, baop

Object Code Format: [11111110 1 [011111 aa 1 [baop 1 [wreg 1

Bytes: 3 + BEA
States: 21 + CEA

Z ST

?

18-30

inter MCS®·96 INSTRUCTION SET

58. MULB (Three Operands) - MULTIPLY SHORT-INTEGERS

Operation: The second and third SHORT-INTEGER operands are multiplied using signed
arithmetic and the 16-bit result is stored into the destination (leftmost) INTE­
GER operand. The sticky bit flag is undefined after the instruction is executed.

(DEST) -- (SRC1) • (SRC2)

Assembly Language Format: DST SRC1
MULB wreg, breg

SRC2
baop

Object Code Format: [11111110 1 [010111 aa 1 [baop 1 [breg 1 [wreg 1

Bytes: 4 + BEA
States: 22 + CEA

Z ST

?

59. MULU (Two Operands) - MULTIPLY WORDS

Operation: The two WORD operands are multiplied using unsigned arithmetic and the 32-
bit result is stored into the destination (leftmost) DOUBLE-WORD operand.
The sticky bit flag is undefined after the instruction is executed.

(DEST) -- (DEST)' (SRC)

Assembly Language Format: DST SRC
MULU Ireg, waop

Object Code Format: [011011 aa 1 [waop 1 [Ireg 1

Bytes: 2 + BEA
States: 25 + CEA

Z ST

?

18-31

MCS®-96 INSTRUCTION SET

60. MULU (Three Operands) - MULTIPLY WORDS

Operation: The second and third WORD operands are multiplied using unsigned arithme­
tic and the 32-bit result is stored into the destination (leftmost) DOUBLE­
WORD operand. The sticky bit flag is undefined after the instruction is execut­
ed.

(DEST) +- (SRC1)' (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULU Ireg, wreg, waop

Object Code Format: [010011aa 1 [waop 1 [wreg 1 [Ireg 1

Bytes: 3 -f: BEA
States: 26 + CEA

Z ST

?

61. MULUB (Two Operands) - MULTIPLY BYTES

Operation: The two BYTE operands are multiplied using unsigned arithmetic and the
WORD result is stored into the destination (leftmost) operand. The sticky bit
flag is undefined after the instruction is executed.

(DEST) +- (DEST) • (SRC)

Assembly Language Format: DST SRC
MULUB wreg, baop

Object Code Format: [011111 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 17 + CEA

Flags Affected

zlNICIVIVTIST

-I-I-I-I-I?

18-32

infef MCS®"96 INSTRUCTION SET

62. MULUB (Three Operands) .-.- MULTIPLY BYTES

Operation: The second and third BYTE operands are multiplied using unsigned arithmetic
and the WORD result is stored into the destination (leftmost) operand. The
sticky bit flag is undefined after the instruction is executed.

(DEST) ~ (SRC1) • (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULUB wreg, breg, baop

Object Code Format: [010111 aa 1 [baop 1 [breg 1 [wreg 1

Bytes: 3 + BEA
States: 18 + CEA

Z ST

?

63. NEG - NEGATE INTEGER

Operation: The value of the INTEGER operand is negated.

(DEST) ~ - (DEST)

Assembly Language Format: NEG wreg

Object Code Format: [00000011 1 [wreg 1

Bytes: 2
States: 4

Z ST

18-33

MCS®·96 INSTRUCTION SET

64. NEGB - NEGATE SHORT-INTEGER

Operation: The value of the SHORT-INTEGER operand is negated.

(DEST) - - (DEST)

Assembly Language Format: NEGB breg

Object Code Format: [00010011 1 [breg 1

Bytes: 2
States: 4

Flags Affected

ZINlclVIVTIST

"'1",1"'1"'1 i 1-

65. NOP - NO OPERATION

Operation: Nothing is done. Control passes to the next sequential instruction.

Assembly Language Format: NOP

Object Code Format: [11111101

Bytes: 1
States: 4

Flags Affected

ZINlclvlvTlsT

-1-1-1-1-1-

18-34

inter MCS®·96 INSTRUCTION SET

66. NORML - NORMALIZE LONG·INTEGER

Operation: The LONG-INTEGER operand is normalized; i.e., it is shifted to the left until its
most significant bit is 1. If the most significant bit is still 0 after 31 shifts, the
process stops and the zero flag is set. The number of shifts actually performed
is stored in the second operand.

(COUNT) +- 0
do while (MSB(DEST) = 0) AND «COUNT) < 31)

(DEST) +- (DEST) • 2
(COUNT) +- (COUNT) + 1

end_while

Assembly Language Format: NORML Ireg,breg

Object Code Format: [00001111 1 [breg 1 [Ireg 1

Bytes: 3
States: 11 + No. of shifts performed

Flags Affected

ZINlclvlVTlsT

1"'1?lol-I-I-

67. NOT - COMPLEMENT WORD

Operation: The value of the WORD operand is complemented: each 1 is replaced with a
0, and each 0 with a 1.
(DEST) +- NOT (DEST)

Assembly Language Format: NOT wreg

Object Code Format: [00000010 1 [wreg 1

Bytes 2
States: 4

Flags Affected

zJNICIVIVTlsT

I'" II'" 10 I 0 I - I -

18-35

intJ MCS®-96 INSTRUCTION SET

68. NOTB - COMPLEMENT BYTE

Operation: The vaule of the BYTE operand is complemented: each 1 is replaced with a 0,
and each 0 with a 1. .

(DEST) +- NOT (DEST)

Assembly Language Format: NOTB breg

Object Code Format: [00010010) [breg)

Bytes: 2
States: 4

Flags Affected

ZINlclvlvTlsT

.... 1 10101 - 1 -

69. OR - LOGICAL OR WORDS

Operation: The source (rightmost) WORD is ORed with the destination (leftmost) WORD
operand. Each bit is set to 1 if the corresponding bit in either the source
operand or the. destination operand is 1. The result replaces the original desti­
nation operand.

(DEST) +- (DEST) OR (SRC)

Assembly Language Format: DST SRC
OR wreg, waop

Object Code Format: [100000aa) [waop) [wreg)

Bytes: 2 + BEA
States: 4 + CEA

·Z ST

18-36

infef MCS®·96 INSTRUCTION SET

70. ORB - LOGICAL OR BYTES

Operation: The source (rightmost) BYTE operand is ORed with the destination (leftmost)
BYTE operand. Each bit is set to 1 if the corresponding bit in either the source
operand or the destination operand was 1. The result replaces the original
destination operand.

(DEST) ~ (DEST) OR (SRC)

Assembly Language Format: ORB breg,baop

Object Code Format: [1001 OOaa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

ZINlclvlVTI ST

vlvloJoJ-J -

·71. POP - POP WORD

Operation: The word on top of the stack is popped and placed at the destination operand.

(DEST) ~ (SP)
SP ~ SP + 2

Assembly Language Format: POP waop

Object Code Format: [110011 aa 1 [waop

Bytes
States: Onchip Stack:

Offchip Stack:

Flags Affected

1 + BEA
12 + CEA
14 + CEA

ZINJclvlvTJST

-I-I~I-I-I-

18-37

MCS®·96 INSTRUCTION SET

72. POPF - POP FLAGS

Operation: The word on top of the stack is popped and placed in the PSW. Interrupt calls
cannot occur immediately following this instruction.

(PSW) - (SP)
SP - SP + 2

Assembly Language Format: POPF

Object Code Format: [11110011

Bytes: 1
States: Onchip Stack: 9

Offchip Stack: 13

Flags Affected

z I N I C I V I VT I ST

'" I '" I '" I '" I '" I '"

73. PUSH - PUSH WORD

Operation: The specified operand is pushed onto the stack.

SP - SP - 2
(SP) - (DEST)

Assembly Language Format: PUSH waop

Object Code Format: [11001 Oaa I [waop

Bytes:
States: On chip Stack:

Offchip Stack:

z

18-38

1 + BEA
8 + CEA

12 + CEA

ST

intJ MCS®·96 INSTRUCTION SET

74. PUSHF - PUSH FLAGS

Operation: The PSw. is pushed on top of the stack, and then set to all zeroes. This implies
that all interrupts are disabled. Interrupt-calis cannot occur immediately follow­
ing this instruction.

SP +- SP - 2
(SP) +- PSW
PSW +- 0

Assembly Language Format: PUSHF

Object Code Format: [11110010

Bytes: 1
States: Onchip Stack: 8

Offchip Stack: 12

Flags Affected

ZINlclvlvTlsT
01010101010

75. RET - RETURN FROM SUBROUTINE

Operation: The PC is popped off the top of the stack.

PC +- (SP)
SP +- SP + 2

Assembly Language Format: RET

Object Code Format: [11110000

Bytes: 1
States: Onchip Stack: 12

Offchip Stack: 16

z ST

18-39

inter MCS®-96 INSTRUCTION SET

76. RST - RESET SYSTEM

Operation: The PSW is initialized to zero, and the PC is initialized to 20S0H. The 1/0
registers are set to their initial value. Executing this instruction will cause a
pulse to appear on the reset pin of the S096.
PSW-O '
PC - 20S0H

Assembly Language Format: RST

Object Code Format: [11111111

Bytes: 1
States: 16

Flags Affected

zlNlclvlvrlsT
01010101010

77. SCALL-SHORT CALL

Operation: The contents of the program counter (the 'return address) is pushed onto the
stack. Then the distance from the end of this instruction to the target label is
added to the program counter, effecting the call. The offset from the end of
this instruction to the target label must be in the range of -1024 to + 1023
inclusive.

SP - SP - 2
(SP) - PC
PC - PC + disp (sign-extended to 16 bits)

Assembly Language Format: SCALL cadd

Object Code Format: [00101 xxx 1 [disp-Iow 1
where xxx holds the three high-order bits of displacement.

Bytes: 2
States Onchip Stack: 13

Offchip Stack: 16

z ST

1S-40

inter MCS®-96 INSTRUCTION SET

78. SETC - SET CARRY FLAG

Operation: The carry flag is set.

C~1

Assembly Language Format: SETC

Object Code Format: [11111001

Bytes: 1
States: 4

Flags Affected

z IN Ici V IVTIST

-1-111-1-1-

79. SHL - SHIFT WORD LEFT

Operation: The destination (leftmost) word operand is shifted left as many times as speci­
fied by the count (rightmost) operand. The count may be specified either as an
immediate value in the range of 0 to 15 (OFH) inclusive, or as the content of
any register. Details on indirect shifts can be found in the Overview. The right
bits of the result are filled with zeroes. The last bit shifted out is saved in the
carry flag.

Assembly Language Format:

Object Code Format:

Temp ~ (COUNT)
do while Temp < > 0

C ~ High order bit of (DEST)
(DEST) ~ (DEST)' 2
Temp ~ Temp - 1

end_while

SHL wreg,#count
or

SHL wreg,breg

00001001 I [cntlbreg I [wreg

By1es: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Flags Affected

z I N I C I V I VT I ST

.... 1 ? 1 1 1 t 1-

18-41

MCS®-96 INSTRUCTION SET

80. SHLB - SHIFT BYTE LEFT

Operation: The destination (leftmost) byte operand is shifted left as many times as speci­
fied by the count (rightmost) operand. The count may be specified either as an
Immediate value in the range of 0 to 15 (OFH) inclusive, or as the content of
any register. Details on indirect shifts can be found in the Overview. The right
bits of the result are filled with zeroes. The last bit shifted out is saved in the
carry flag.

Assembly Language Format:

Temp +- (COUNT)
do while Temp < > 0

C +- High order bit of (DEST)
(DEST) +- (DEST) • 2
TEMP +- Temp - 1

end_while

SHLB breg,#count
or

SHLB breg,breg

Object Code Format: 00011001 1 [cntlbreg 1 [breg

Bytes 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Z ST

18-42

inter MCS®-96 INSTRUCTION SET

81. SHLL - SHIFT DOUBLE-WORD LEFT

Operation: The destination (leftmost) double-word operand is shifted left as many times
as specified by the count (rightmost) operand. The count may be specified
either as an immediate value in the range of 0 to 15 (OFH) inclusive, or as the
content of any register. Details on indirect shifts can be found in the Overview.
The right bits of the result are filled with zeroes. The last bit shifted out is
saved in the carry flag.

Assembly Language Format:

Object Code Format:

Temp ~ (COUNT)
do while Temp < > 0

C ~ High order bit of (DEST)
(DEST) ~ (DEST) • 2
Temp ~ Temp - 1

end_while

SHLL Ireg, # count
or

SHLL Ireg, breg

00001101 1 [cntlbreg 1 [Ireg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Flags Affected

z I N I c I V I VT I ST

,.... I ? 1,....1,....1 t 1-

18-43

intJ MCS®-96 INSTRUCTION SET

82. SHR - LOGICAL RIGHT SHIFT WORD

Operation: The destination (leftmost) word operand is shifted right as many times as
specified by the count (rightmost) operand. The count may be specified either
as an immediate value in the range of 0 to 15 (OFH) inclusive, or as the
content of any register. Details on indirect shifts can be found in the Overview.
The left bits of the result are filled with zeroes. The last bit shifted out is saved
to the carry. The sticky bit flag is cleared at the beginning of the instruction,
and set if at any time during the shift a 1 is shifted first into the carry flag, and a
further shift cycle occurs.

Assembly Language Format:

Object Code Format:

Temp ~ (COUNT)
do while Temp < > 0

C ~ Low order bit of (DEST)
(DEST) ~ (DEST) / 2 where / is unsigned division
Temp ~ Temp - 1

end_while

SHR wreg,#count
or

SHR wreg,breg

00001000 I [cntlbreg I [wreg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Flags Affected

z I N I c I V I VT I ST

"" I 0 I ,.... 10 I - I ,....

18-44

intJ MCS®-96 INSTRUCTION SET

83. SHRA - ARITHMETIC RIGHT SHIFT WORD

Operation: The destination (leftmost) word operand is shifted right as many times as
specified by the count (rightmost) operand. The count may be specified either
as an immediate value in the range of 0 to 15 (OFH) inclusive, or as the
content of any register. Details on indirect shifts can be found in the Overview.
If the original high order bit value was 0, zeroes are shifted in. If the value was

Assembly Language Format:

Object Code Format:

. 1, ones are shifted in. The last bit shifted out is saved in the carry. The sticky
bit flag is cleared at ·the beginning of the instruction, and set if at any time
during the shift a 1 is shifted first into the carry flag, and a further shift cycle
occurs.

Temp +- (COUNT)
do while Temp < > 0

C +- Low order bit of (DEST)
(DEST) +- (DEST) / 2 where / is signed division
Temp +- Temp - 1

end_while

SHRA wreg, # count
or

SHRA wreg,breg

00001010 1 [cntlbreg 1 [wreg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Flags Affected

ZINlclvlvTlsT

,..,1,..,1,..,101 - 1 ,..,

18-45

intJ MCS®-96 INSTRUCTION SET

84. SHRAB - ARITHMETIC RIGHT SHIFT BYTE

Operation: The destination (leftmost) byte operand is shifted right as many times as spec­
ified by the count (rightmost) operand. The count may be specified either as
an immediate value in the range of 0 to 15 (OFH) inclusive, or as the content of
any register. Details on indirect shifts can be found in the Overview. If the
original high order bit value was 0, zeroes are shifted in. If that value was 1,
ones are shifted in. The last bit shifted out is saved in the carry. The sticky bit
flag is .cleared at the beginning of the instruction, and set if at any time during
the shift a 1 is shifted first into the carry flag, and a further shift cycle occurs.

Assembly Language Format:

Object Code Format:

Temp +- (COUNT)
do while Temp < > 0

C, = Low order bit of (DEST)
(DEST) +- (DESn / 2 where / is signed division
Temp +- Temp - 1

end_while

or
SHRAB

SHRAB

breg,#count

breg,breg

00011010 1 [cntlbreg 1 [breg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Flags Affected

zJNlclvlVTlsT
,....1,....1,....101 - 1 ,....

18-46

intJ MCS®-96 INSTRUCTION SET

85. SHRAL - ARITHMETIC RIGHT SHIFT DOUBLE-WORD

Operation: The destination (leftmost) double-word operand is shifted right as many times
as specified by the count (rightmost) operand. The count may be specified
either as an immediate value in the range of 0 to 15 (OFH) inclusive, or as the
content of any register. Details on indirect shifts can be found in the Overview.
If the original high order bit value was 0, zeroes are shifted in. If the value was
1, ones are shifted in. The sticky bit is cleared at the beginning of the instruc­
tion, and set if at any time during the shift a 1 is shifted first into the carry flag,
and a further shift cycle occurs.

Assembly Language Format:

Object Code Format:

Temp - (COUNT)
do while Temp < > 0

C - Low order bit of (DEST)
(DEST) - (DEST) I 2 where I is signed division
Temp - Temp - 1

end_while

or
SHRAL

SHRAL

Ireg, # count

Ireg,breg

00001110 J [cnt/breg J [Ireg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Z ST

18-47

intJ MCS®·96 INSTRUCTION SET

86. SHRB - LOGICAL RIGHT SHIFT BYTE

Operation: The destination (leftmost) byte operand is shifted right as many times as spec­
ified by the count (rightmost) operand. The count may be specified either as
an immediate value in the range of 0 to 15 (OFH) inclusive, or as the content of
any register. Details on indirect shifts can be found in the Overview. The left
bits of the result are filled with zeroes. The last bit shifted out is saved in the
carry. The sticky bit flag is cleared at the beginning of the instruction, and set if
at any time during the shift a 1 is shifted first into the carry flag, and a further
shift cycle occurs.

Assembly Language Format:

Object Code Format:

Temp ~ (COUNT)
do while Temp < > 0

C ~ Low order bit of (DEST)
(DEST) ~ (DEST) / 2 where / is unsigned division
Temp ~ Temp - 1

end_while

SHRB breg, #count
or

SHRB breg,breg

00011000 I [cntlbreg I [breg

Bytes: 3 .
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Z ST

18-48

inter MCS®·96 INSTRUCTION SET

87. SHRL - LOGICAL RIGHT SHIFT DOUBLE·WORD

Operation: The destination (leftmost) double-word operand is shifted right as many times
as specified by the count (rightmost) operand. The count may be specified
either as an immediate value in the range of 0 to 15 (OFH) inclusive, or as the
content of any register. Details on indirect shifts can be found in the Overview.
The left bits of the result are filled with zeroes. The last bit shifted out is saved
in the carry. The sticky bit flag is cleared at the beginning of the instruction,
and set if at any time during the shift a 1 is shifted first into the carry flag, and a
further shift cycle occurs.

Assembly Language Format:

Object Code Format:

Temp ~ (COUNT)
do while Temp < > 0

C ~ Low order bit of (DEST)
(DSET) ~ (DEST) / 2 where / is unsigned division
Temp ~ Temp - 1

end_while

SHRL Ireg,#count
or

SHRL Ireg,breg

00001100 I [cntlbreg I [Ireg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

Z ST

18-49

MCS®·96 INSTRUCTION SET

88. SJMP - SHORT JUMP

Operation: The distance from the end of this instruction to the target label is added to the
program counter, effecting the jump. The offset from the end of this instruction
to the label must be in the range of -1024 to + 1023 inclusive.

PC - PC + disp (sign-extended to 16 bits)

Assembly Language Format: SJMP cadci

Object Code Format: [00100xxx· I [disp-Iow I
where xxx holds the three high order bits of the displacement.

Bytes: 2
States: 8

Z ST

89. SKIP - TWO BYTE NO·OPERATION

Operation: Nothing is done. This is actually a two-byte NOP where the second byte can
be any value, and is simply ignored. Control passes to the next sequential
instruction.

Assembly Language Format: SKIP \ breg

Object Code Format: [00000000 I [breg I

Bytes: 2
States: 4

Z ST

18-50

inter MCS®-96 INSTRUCTION SET

90. ST - STORE WORD

Operation: The value of the leftmost word operand is stored into the rightmost operand.

(DEST) +- (SAC)

Assembly Language Format: SAC DST
ST wreg, waop

Object Code Format: [110000aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

zlNICIVIVTIST

-1-1-1-1-1-

91. STB-STORE BYTE

Operation: The value of the leftmost byte operand is stored into the rightmost operand.

(DEST) +- (SAC)

Assembly Language Format:
STB

SAC
breg,

DST
baop

Object Code Format: [110001 aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

z I N l C 1 V JVTIST
-1-1-1-1-1-

18-51

infef MCS®-96 INSTRUCTION SET

92. SUB (Two Operands) - SUBTRACT WORDS

Operation: The source (rightmost) word operand is subtracted from the destination (left­
most) word operand, and the result is stored in the destination. The carry flag
is set as complement of borrow.

(DEST) oE- (DEST) - (SRC)

Assembly Language Format: DST SRC
SUB wreg, waop

Object Code Format: [01101 Oaa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

Z ST

93. SUB (Three Operands) - SUBTRACT WORDS

Operation: The source (rightmost) word operand is subtracted from the second word
operand, and the result is stored in the destination (the leftmost operand). The
carry flag is set as complement of borrow.

Assembly Language Format:

(DEST) oE- (SRC1) - (SRC2)

. DST SRC1
SUB wreg, wreg,

SRC2,
waop

Object Code Format: [01001 Oaa 1 [waop 1· [Sweg 1 [Dwreg 1

Bytes: 3 + BEA
States: 5 + CEA

18-52

inter MCS®·96 INSTRUCTION SET

94. SUBB (Two Operands) - SUBTRACT BYTES

Operation: The source (rightmost) byte is subtracted from the destination (leftmost) byte
operand, and the result is stored in the destination. The carry flag is set as
complement of borrow.

(DEST) +- (DEST) - (SRC)

Assembly Language Format: DST SRC
SUBB breg, baop

Object Code Format: [011110aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States 4 + CEA

Flags Affected

ZINICIVIVTIST

,..., I,..., I,..., I,..., I t 1-

95. SUBB (Three Operands) - SUBTRACT BYTES

Operation: The source (rightmost) byte operand is subtracted from the second byte oper­
and, and the result is stored in the destination (the leftmost operand). The
carry flag is set as complement of borrow.

Assembly Language Format:

(DEST) +- (SRC1) - (SRC2)

SUBB
DST
breg,

SRC1
Sbreg

SRC2
baop

Object Code Format: [01011 Oaa 1 [baop 1 [Sbreg 1 [Dbreg 1

Bytes: 3 + BEA
States: 5 + CEA

Z ST

18-53

inter MCS®·96 INSTRUCTION SET

96. SUBC - SUBTRACT WORDS WITH BORROW

Operation: The source (rightmost) word operand is subtracted from the destination (left­
most) word operand. If the carry flag was clear, 1 is subtracted from the above
result. The result replaces the orignal destination operand. The carry flag is
set as complement of borrow.

(DEST) ~ (DEST) - (SRC) - (1-C)

Assembly Language Format: DST SRC
SUBC wreg, waop

Object Code Format: [10101 Oaa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

Z INlclvlvTlsT
,1.1~1~1~ltl-

97. SUBCB - SUBTRACT BYTES WITH BORROW

Operation: The source (rightmost) byte operand is subtracted from the destination (left­
most) byte operand. If the carry flag was clear, 1 is subtracted from the above
result. The result replaces the original destination operand. The carry flag is
set as complement of borrow.

(DEST) ~ (DEST) - (SRC) - (1-C)

Assembly Language Format: DST SRC
SUBCB breg, baop

Object Code Format: [10111 Oaa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States 4 + CEA

Z ST

,1.

18-54

MCS®-96 INSTRUCTION SET

98. TRAP - SOFTWARE TRAP

Operation: This instruction causes an interrupt-call which is vectored through location
2010H. The operation of this instruction is not effected by the state of the
interrupt enable flag in the PSW (I). Interrupt-calls cannot occur immediately
following this instruction. This instruction is intended for use by Intel provided
development tools. These tools will not support user-application of this in­
struction.

SP +- SP - 2
(SP) +- PC
PC +- (2010H)

Assembly Language Format: This instruction is not supported by revision 1.0 of the 8096 assembly lan­
guage.

Object Code Format: [11110111

Bytes: 1
21
24

States Onchip Stack:
Offchip Stack:

Flags Affected

zlNICIVIVTIST

-1-1-1-1-1-

99. XOR - LOGICAL EXCLUSIVE-OR WORDS

Operation: The source (rightmost) word operand is XOAed with the destination (leftmost)
word operand. Each bit is set to 1 if the corresponding bit in either the source
operand or the destination operand was 1, but not both. The result replaces
the original destination operand.

(DEST) +- (DEST) XOA (SAC)

Assembly Language Format: DST SAC
XOA wreg, waop

Object Code Format: [100001 aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

Z ST

18-55

intJ MCS®-96 INSTRUCTION SET

100. XORB - LOGICAL EXCLUSIVE-OR BYTES

Operation: The source (rightmost) byte operand is XORed with the destination (leftmost)
byte operand. Each bit is set to 1 if the corresponding bit in either the source
operand or the destination operand was 1, but not both. The result replaces
the original destination operand.

(DEST) ~ (DEST) XOR (SRC)

Assembly Language Format: DST SRC
XORB breg, baop

Object Code Format: [1001.01 aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

Flags Affected

zlNICIVIVTlsT

"'1"'1 0 10 1-1-

18-56

MCS® .. 96 Hardware Design 19
Information

MCS®-96 HARDWARE DESIGN INFORMATION

OVERVIEW

This Chapter of the manual is devoted to the hardware
engineer. All of the information you need to connect
the correct pin to the correct external circuit is provid­
ed. Many. of the special function pins have different
characteristics which are under software control, there­
fore, it is necessary to define the system completely be­
fore the hardware is wired-up.

Frequently within this chapter a specification for a cur­
rent, voltage, or time period is referred to; the values
provided are to be used as an approximation only. The
exact specification can be found in the latest data sheet
for the particular part and temperature range that is
being used.

1.0 REQUIRED HARDWARE
CONNECTIONS

Although the 8096BH is a single-chip microcontroller,
it still requires several external connections to make it
work. Power must be applied, a clock source provided,
and some form of reset circuitry must be present. We
will look at each of these areas of circuitry separately.
Figure 6 shows the connections that are needed for a
single-chip system.

1.1 Power Supply Information

Power for the 8096BH flows through six pins; they are:.
three positive voltage pins-Vee (digital), VREF (Port
o digital I/O and AID power), VPD (power down
mode); and three common returns-two Vss pins and
one ANGND pin. All six of these pins must be con­
nected on the 8096BH for normal operation. The Vee
pin, VREF pin and VpD pin should be tied to 5 volts.
The two Vss pins and the ANGND pin must be
grounded. When the analog to digital converter is being
used it may be desirable to connect the VREF pin to a
separate power supply, or at least a separate power sup­
ply line.

The three common return pins should be connected at
the chip with as short a lead as possible to avoid prob­
lems due to voltage drops across the wiring. There
should be no measurable voltage difference between
VSSI and VSS2. The two Vss pins and the ANGND pin
must all be nominally at 0 volts. The maximum current
drain of the 8096BH is around 180 rnA, with all lines
unloaded.

19-1

When the analog converter is being used, clean, stable
power must be provided to the analog section of the
chip to assure highest accuracy. To achieve this, it may
be desirable to separate the analog power supply from
the digital power supply. The VREF pin supplies the
digital circuitry in the A/D converter and provides the
5 volt reference to the analog portion of the converter.
VREF and ANGND must be connected even if the
A/D converter is not used. More information on the
analog power supply is in Section 3.1.

1.2 Other Needed Connections

Several other connections are needed to configure the
8096BH. In normal operation the following pins should
be connected to the indicated power supply.

Pin Power Supply

8X9XBH 8X9X

NMI NMI Vee
TEST Vee

EA EA Vee (to allow internal execution)
VSS (to force external execution)

Although the EA pin has an internal pulldown, it is
best to tie this pin to the desired level. This will prevent
induced noise from disturbing the system. With the ex­
ception of 8X9X devices, raising EA to + 12.75 volts
will place an 8096BH in a special operating mode de­
signed for programming and program memory verifica­
tion (see Section 10).

1.3 Oscillator Information

The 8096BH requires a clock source to operate. This
clock can be provided to the chip through the XT ALl
input or the on-chip oscillator can be used. The fre­
quency of operation is from 6 MHz to 12 MHz.

The on-chip circuitry for the 8096BH oscillator is a
single stage linear inverter as shown in Figure 1. It is
intended for use as a crystal-controlled, positive reac­
tance oscillator with external connections as shown in
Figure 2. In this application, the crystal is being operat­
ed in its fundamental response mode as an inductive

inter MCS®-96 HARDWARE DESIGN INFORMATION

reactance in parallel resonance with shunt capacitance
external to the crystal.

The crystal specifications and capacitance values (Cl
and C2 in Figure 2) are not critical. Thirty pF can be
used in these positions at any frequency with good
quality crystals. For 0.5% frequency accuracy, the
crystal frequency can be specified at series resonance or

TO DIVIDER CIRCUITRY
VCC

~
SUBSTRATE

XTAL1

270246-1

Figure 1. 8096BH Oscillator Circuit

DIVIDER CIRCUITRY

vcc Q3

Q1

XTAL2

30 pf .". 30pf

270246-2

Figure 2. Crystal Oscillator Circuit

19-2

for parallel resonance with any load capacitance. (In
other words, for that degree of frequency accuracy, the
load capacitance simply doesn't matter.) For 0.05%
frequency accuracy the crystal frequency should be
specified for parallel resonance with 25 pF load capaci­
tance, if Cl and C2 are 30 pF.

A more in-depth discussion of crystal specifications and
the selection of values for Cl and C2 can be found in
the Intel Application Note, AP-155, "Oscillators for
Microcontrollers."

To drive the 8096BH with an external clock source,
apply the external clock signal to XTALland let
XT AL2 float. An example of this circuit is shown in
Figure 3. The required voltage levels on XTALI are
specified in the data sheet. The signal on XTALI must
be clean with good solid levels.

It is important that the minimum high and low times
are met to avoid having the XTALI pin in the tran­
sition range for long periods. of time. The longer the
signal is in the transition region, the higher the proba­
bility that an external noise glitch could be seen by the
clock generator circuitry. Noise glitches on the 8096BH
internal clock lines will cause unreliable operation.

The clock generator provides a 3 phase clock output
from the XTALI pin input. Figure 4 shows the wave­
forms of the major internal timing signals.

DIVIDER CIRCUITRY

vcc

vee
XTAL1

5K

74S04

XTAL2

FLOAT

270246-3

Figure 3. External Clock Drive

MCS®·96 HARDWARE DESIGN INFORMATION

XTAL1

PHASE A
(CLKOUT)

PHASE B

PHASE C

PHASE B-C

270246-4

Figure 4. Internal Timings

1.4 Reset Information

In order for the 8096BH to function properly it must be
reset. This is done by holding the RESET pin low for at
least 2 state times after the power supply is within toler­
ance and the oscillator has stabilized.

On 8X9X devices the RESET pin must be held low long
enough for the power supply, oscillator and back-bias
generator to stabilize. Typically, the back-bias generator
requires one millisecond to stabilize.

After the RESET pin is brought high, a ten state reset
sequence is executed. During this time, the Chip Con­
figuration Byte (CCB) is read from location 2018H and
written to the 8096BH Chip Configuration Register
(CCR). If the voltage on the EA pin selects the inter­
nal/external execution mode the CCB is read from in-

ternal ROM/EPROM. If the voltage on the EA pin
selects the external execution only mode the CCB is
read from external memory. See Figure 5.

On 8X9X devices, the eeB read does not occur, and
ALE is high while RESET is held low.

There are several ways to provide a good reset to an
8096BH, the simplest being just to connect a capacitor
from the reset pin to ground. The capacitor should be
on the order of 2 microfarads for every millisecond of
reset time required. This method will only work if the
rise time of Vee is fast and the total reset time is less
than around 50 milliseconds. It also may not work if
the RESET pin is to be used to reset other parts on the
board. An 8096BH with the minimum required connec­
tions is shown in Figure 6.

ALE/ ADV
\ ""~rn----p;:m,"

ADBUS------------------~

U U
CHIP

CONFIGURATION
BYTE

Figure 5. Reset Sequence

19-3

THE BYTE(B-BIT BUS),
OR WORD(16-BIT BUS).

AT 20BOH
270246-5

MCS®-96 HARDWARE DESIGN INFORMATION

+5 VOLTS

SEPARATE Vee TRACE (2)

VpD

(1)
VREF

0.1 J.'F TEST

ANGND EA

SEPARATE .01 J.'F Vee.
GROUND 0.1

TRACE (1) V •• TO

(2) 1.0 J.'F
Vss'
Vss2

RESET
XTAlI

C,

47 J.'F + NMI
TO C2'

25 J.'F 8X9X XTAL2

C,=C2=30 pF

(a) 270246-6

NOTES:
1. These capacitors are needed only if A to D is used.

0.1 J.'F

IF A/D USED
SEPARATE Vee TRACE

t---IANGND

.-+---1 RESET

NMI

8X9XBH

(b)

+5 VOLTS

270246-7

2. VREF & ANGND may be connected to the same traces as the digital power supply if the A to D is not used.

Figure 6. Minimum Hardware Connections

Vee

(,)
lOOK

NOTE:

8096BH

'/.74SL06
OR

'/2 7406

OTHER
CIRCUITRY

270246-8

1. The diode will provide a faster cycle time repetitive power-on-resets.

Figure 7. Multiple Chip Reset Circuit

The 8096BH RESET pin can be used to allow other
chips on the board to make use of the Watchdog Timer
or the RST instruction. When this is done the reset '
hardware should be a one-shot with an open collector
output. The reset pulse going to the other parts may
have to be buffered and lengthened with a one-shot,
since the RESET low duration is only two state times.
If this is done, it is' possible that the 8096BH will be
reset and start running before the other parts on the
board are out of reset. The software must account for
this possible problem.

19-4

A capacitor directly connected to RESET cannot be
used to reset the part if the pin is to be used as an
output. If a large capacitor is used, the pin will pull­
down more slowly than normal. It will continue to pull­
down until the 8096BH is reset. It could fall so slowly
that it never goes below the internal switch point of the
reset signal (I to 1.5 volts), a voltage which may be
above the guaranteed switch point of external circuitry
connected to the pin. A circuit example is shown in
Figure 7.

inter MCS®-96 HARDWARE DESIGN INFORMATION

1.5 Sync Mode

If RESET is brought high at the same time as or just
after the rising edge of XT AL I, the part will start exe­
cuting the 10 state time RST instruction exactly 6'1.
XTALI cycles later. This feature can be used to syn­
chronize several MCS-96 devices. A diagram of a typi­
cal connection is shown in Figure 8. It should be noted
that parts that start in sync may not stay that way, due
to propagation delays which may cause the synchroniz­
ed parts to receive signals at slightly different times.

1.6 Disabling the Watchdog Timer

The Watchdog Timer will pull the RESET pin low
when it overflows. See Figure 9. If the pin is being
externally held above the low going threshold, the pull­
down transistor will remain on indefinitely. This means
that once the watchdog overflows, the part must be
reset or RESET must be held high indefinitely. Just

XTALI

resetting the Watchdog Timer in software will not clear
the flip-flop which keeps the RESET pulldown on.

The pulldown is capable of sinking on the order of 30
milliamps if it is held at 2.0 volts. This amount of cur­
rent may cause some long term reliability problems due
to localized chip heating. For this reason, parts that
will be used in production should never have had the
Watchdog Timer over-ridden for more than a second or
two.

Whenever the reset pin is being pulled high while the
pulldown is on, it should be through a resistor that will
limit the voltage on RESET to 2.5 'volts and the current
through the pin to 40 milliamps.

If it is necessary to disable the, Watchdog Timer for
more than a brief test the software solution of never
initiating the timer should be used. See Section 14 in
the Architecture Chapter.

270246-9

Figure 8. Reset Sync Mode

B096BH CHIP
RESET

WATCHDOG TIMER
OVERFLOW

RESET INSTRUCTION
(OFFH)

Figure 9. Reset Logic

19-5

RESET
PIN

270246-10

inter MCS®-96 HARDWARE DESIGN INFORMATION

1.7 Power Down Circuitry

Battery backup can be provided on the 8096BH with a
1 rnA current drain at 5 volts. This mode will hold
locations OFOH through OFFH valid as long as the
power to the VPD pin remains on. The required timings
to put the part into power-down and an overview of
this mode are given in Section 4;2 in the MCS-96 Ar­
chitecture Chapter.

A 'key' can be written into power-down RAM while
the part is running. This key can be checked on reset to
determine if it is a start-up from power-down or a com­
plete cold start. In this way the validity of the power­
down RAM can be verified. The length of this key de­
termines the probability that this procedure will work,
however, there is always a statistical chance that the
RAM will power up with a replica of the key.

Under most circumstances, the power-fail indicator
which is used to initiate a power-down condition must
come from the unfiltered, unregulated section of the
power supply. The power supply must have sufficient
storage capacity to operate the 8096BH until it has
completed its reset operation.

2.0 DRIVE AND INTERFACE LEVELS

There are five types of 1/0 lines ori the 8096BH. Of
these, two are inputs and three are outputs. All of the
pins of the same type have the same current/voltage
characteristics. Some of the control input pins, such as
XTALl and RESET, may have slightly different char­
acteristics. These pins are discussed in Section 1.

While discussing the characteristics of the 1/0 pins
some approximate current or voltage specifications will
be given. The exact specifications are available in the
lastest version of the data sheet that corresponds to the
part being used.

2.1 Quasi-Bidirectional Ports

The Quasi-Bidirectional pins of Port 1, Port 2.6, and
Port 2.7 have both input and output port configura­
tions. They have three distinct states; low impedance
current sink (Q2), low impedance current source (Ql),
and high impedance current source (Q3). As a low im­
pedance current sink, the pin has specification of sink­
ing up to around 0.5 rnA, while staying below 0.45
volts. The pin is placed in this condition by writing a '0'
to the SFR (Special Function Register) controlling the
pin.

Examine Figure 10. When a '1' is written to the SFR
location controlling the pin, Ql (a low impedance
MOSFET pullup) is turned on for one state time, then
it is turned off and the depletion pullup holds the line at

19-6

a logical '1' state. The low-impedance pullup is used to
shorten the rise time of the pin, and has current source
capability on the order of 100 times that of the deple­
tion pullup.

While the depletion mode pullup is the only device on,
the pin may be used as an input with a leakage of
around 100 microamps from 0.45 volts to VCC. It is
ideal for use with TTL or CMOS chips and may even
be used directly with switches. However if the switch
option is used, certain precautions should be taken. It is
important to note that any time the pin is read, the
value returned will be the value on the pin, not the
value placed in the control register. This could cause
logical operations made directly on these pins to inda­
vertently write a 0 to pins being used as inputs. In order
to perform logical operations on a port where a quasi­
bidirectional pin is an input, it is necessary to guarantee
that the bit associated with the input pin is always a one
when writing to the port.

2.2 Quasi-Bidirectional Hardware
Connections

When using the quasi-bidirectional ports as inputs tied
to switches, series resistors may be needed if the ports
will be written to internally after the part is initialized.
The amount of current sourced to ground from each
pin is tyically 20 rnA or more. Therefore, if all 8 pins
are tied to ground, 160 rnA will be sourced. This is
equivalent to instantaneously doubling the power used
by the chip and may cause noise in some applications.

This potential problem can be solved in hardware or
software. In software, never write a zero to a pin being
used as an input.

In hardware, a lK resistor in series with each pin will
limit current to a reasonable value without impeding
the ability to override the high impedance pullup. If all
8 pins are tied together a 1200. resistor would be rea­
sonable. The problem is not quite as severe when the
inputs are tied to electronic devices instead of switches,
as most external pulldowns will not hold 20 rnA to 0.0
volts.

Writing to a Quasi-Bidirectional Port with electronic
devices attached to the pins requires special attention.
Consider using PI.O as an input and trying to toggle
PI. 1 as an output:

ORB IOPORTl, #OOOOOOOlB

XORB IOPORTl, #OOOOOOlOB

Set Pl.O
for input
Complement
Pl.l

The first instruction will work as expected but two
problems can occur when the second instruction exe­
cutes. The first is that even though PUis being driven

inter MCS®·96 HARDWARE DESIGN INFORMATION

NOTE:

PORT 1
PORT 2.6, PORT 2.7

READ
PORT

LOW IMPEDANCE
PULLUP

VOH

ONE
STATE
DELAY

LATCH

INTERNAL
CLOCK

04

HIGH IMPEDANCE
PULLUP

-160 p.A

TYPICAL

:r -90 p.A
.!}

-3D p.A

OV
VOH

270246-11

LOW IMPEDANCE
PULLDOWN

SOmA

e~ ... 3D rnA
.!}

lOrnA

OV 2V 4V
VOL

270246-12

These graphs show typical pin capabilities, they are not guaranteed specifications

Figure 10. Quasi·Bidirectional Port

high by the 8096 it is possible that it is being held low
externally. This typically happens when the port pin is
used to drive the base of an NPN transistor which in
turn drives whatever there is in the outside world which
needs to be toggled. The base of the transistor will
clamp the port pin to the transistor's Vbe above
ground, typically 0.7V. The 8096 will input this value
as a zero even if a one has been written to the port pin.
When this happens the XORB instruction will always
write a one to the port pin's SFR and the pin will not
toggle.

The second problem, which is related to the ftrst, is that
if P1.0 happens to be driven to a zero when Port 1 is
read by the XORB instruction, then the XORB will
write a zero to P1.0 and it will no longer be useable as
an input.

The ftrst situation can best be solved by the external

19-7

driver design. A series resistor between the port pin and
the base of the transistor often works by bringing up
the voltage present on the port pin. The second case can
be taken care of in the software fairly easily:

LDB AL, IOPORTl
XORB AL, #OlOB
ORB AL, #OOlB
STB AL, IOPORTl

A software solution to both cases is to keep a byte in
RAM as an image of the data to be output to the port;
any time the software wants to modify the data on the
port it can then modify the image byte and copy it to
the port.

If a switch is used on a long line connected to a quasi­
bidirectional pin, a pullup resistor is recommended to
reduce the possibility of noise glitches and to decrease

MCS®-96 HARDWARE DESIGN INFORMATION

the rise time of the line. On extremely long lines that
are handling slow signals, a capacitor may be helpful in
addition to the resistor to reduce noise.

2.3 Input Only Ports

The high impedance input pins on the 8096BH have an
input leakage of a few microamps and are predominant­
ly capacitive loads on the order of 10 pF:

Port 0 pins are special in that they may individually be .
used as digital inputs, or as analog inputs. A Port 0 pin
being used as a digital input acts as the high impedance
input ports just described. However, Port 0 pins being
used as analog inputs are required to provide current to
the internal sample capacitor when a conversion begins.
This means that the input characteristics of a pin will
change if a conversion is being done on that pin. See
Section 3 .. ln either case, if Port 0 is to be used as analog
or digital I/O, it will be necessary to provide power to
this port through the V REF pin.

Port 0 pins on 8X9X devices being used as analog inputs
are required to provide current to an internal capacitor

DATA
IN

BUS OUTPUT
ENABLE

PORT ENABLE

PORT DATA

VCC

multiple times while a conversion is in progress. This
means that the input characteristics of a Port 0 pin will
change if a conversion is being done on that pin. See
Section 3.

2.4 Open Drain Ports

Ports 3 and 4 on the 8096BH are open drain ports.
There is no pullup when these pins are used as I/O
ports. These pin~ have different characteristics when
used as bus pins as described in the next section. A
diagram of the output buffers connected to Ports 3 and
4 and the bus pins is shown in Figure 11.

When Ports 3 and 4 are to be used as inputs, or as bus
pins, they must first be written with a '1'. This will put
the ports in a high impedance mode. When they are
used as outputs, a pullup resistor must be used external­
ly. The sink capability of these pins is on the order of
0.4 milliamps so the total pullup current to the pin
must be less than this. A 15K pullup resistor will
source a maximum of 0.33 miiliamps, so it would be a
reasonable value to choose if no other circuits with
pullups were connected to the pin.

.--PORT 3,4 OPEN DRAIN
DRIVER

270246-19

BUSPULLUP
BUS

BUS PULLDOWN
BUS,Pl,P2

PORT PULLDOWN
BUS, Pl, P2

50mA Cy-TVPICAL
... 30mA

.9

l0mA

.9

2SmA

ri' lSmA

SmA

OV

NOTE:

2V
VOL

4V

These graphs show tYpical pin capabilities, they are not guaranteed specifications.

Figure 11. Bus and Port 3 and 4 Pins

19-8

OV 2V 4V
VOL

270246-20

inter MCS®-96 HARDWARE DESIGN INFORMATION

2.5 HSO Pins, Control Outputs and
Bus Pins

The control outputs and HSO pins have output buffers
with the same output characteristics as those of the bus
pins. Included in the category of control outputs are:
TXD, RXD (i~ode 0), PWM, CLKOUT, ALE;
BHE, RD, and WR. The bus pins have 3 states: output
high, output low, and high impedance input. As a high
output, the pins are specified to source around 200 JLA
to 2.4 volts, but the pins can source on the order of ten
times that value in order to provide the fast rise times.
When used as a low output, the pins can sink around
2 rnA at 0.45 volts, and considerably more as the volt­
age increases. When in the high impedance state, the
pin acts as a capacitive load with a few microamps of
leakage. Figure II shows the internal configuration of a
bus pin.

3.0 ANALOG INPUTS

The on-chip AID converter of the 8096BH can be used
to digitize analog inputs while analog outputs can be

VREF

NOTE:
1. Sample and hold not on 8X9X devices.

generated with either the chip's PWM output or HSO
unit. This section describes the analog input sugges­
tions. See Section 4 for analog output.

The 8096BH's Integrated AID converter includes an
eight channel analog multiplexer, sample-and-hold cir­
cuit and lO-bit analog to digital converter (Figure 12).
The 8096BH can therefore select one of eight analog
inputs to convert, sample-and-hold the input voltage
and convert the voltage into a digital value. Each con­
version takes 22 microseconds, including the time re­
quired for the sample-hold (with XTALl = 12 MHz).
The method of conversion is successive approximation.

Section 3.6 contains the definitions of numerous terms
used in connection with the AID converter.

The AID converter of 8X9X devices does not contain a
Sample-and-Hold and has a conversion time of 42 JLs
(12 MHz on XTALJ). Section 3.5 discusses the differ­
ences.

START
CONVERSION

HSO CO~~ANO "F"
270246-13

Figure 12. AID Converter Block Diagram

19-9

inter MCS@·96 HARDWARE DESIGN INFORMATION

3.1 AID Overview
The conversion process is initiated by the 'execution of
HSO command OFH, or by writing a one to the GO Bit
in the AID Control Register. Either activitY causes a
start conversion signal to be sent to the AID converter
control logic. If an HSO command was used, the con­
version process will begin when Timer 1 increments.
This aids applications attempting to approach spectral­
ly pure .sampling, since successive samples spaced by
. equal TImer 1 delays will occur with a· variance of
about ±50 ns (assuming a stable clock on XTALl).
However, conversions initiated by writing a one to the
ADCON register GO Bit will start within three state
times after the instruction has completed execution re­
sulting in a variance of about 0.75 ,...s(XTALI =
12 MHz).

Once the AID unit receives a start conversion signal,
there is a one state time delay before sampling (sample
delay) while the successive approximation register is re­
set and the proper multiplexer channel is selected. Af­
ter the sample delay, the multiplexer output is connect­
ed to the sample capacitor and remains connected for
four state times (sample time). After this four state time
"sample window" closes, the input to the sample capac­
itor is disconnected from the multiplexer so that chang­
es on the input pin will not alter the stored charge while
the conversion is in progress. The comparator is then
auto-zeroed and the conversion begins. The sample de­
lay and sample time uncertainties are each approxi­
mately ± 50 ns, independent of clock speed.

To perform the actual analog-to-digital conversion the
8096BH implements a successive approximation algo­
rithm. The converter hardware consists of a 256-resis­
tor ladder, a comparator, coupling capacitors and a
lO-bit successive approximation register (SAR) with'
logic that guides the process. The resistor ladder pro­
vides 20 mV steps (VREF =5.12y), while capacitive
coupling is used to create 5 mVsteps within the 20·mV
ladder voltages. Therefore, 1024 internal reference volt­
ages are available for comparison against the analog
input to generate a 10-bit conversion result.

A successive approximation conversion is performed by
comparing a sequence of reference voltages, to the ana­
log input, in a· binary search for the reference voltage
that most closely matches the input. The Yo full scale
reference voltage is the first tested. This corresponds to
a lO-bit result where the most significant bit is zero,
and all other bits are ones (0111.1111.11b). If the ana­
log input was less than the test voltage, bit 10 of the
SAR is left a zero, and a new test voltage of 11. full scale
(00 11.1111.11 b) is tried. If this test voltage was lower
than the analog input, bit 9 of the SAR is set and bit 8
is cleared for the next test (0101.1 111.lIb). This binary
search continues until 10 tests have occurred, at which
time the valid 1O-bit conversion result resides in the
SAR where it can be read by software.

The total nu~berof state times required.is 88 for a
10-bit conversion. Attempting to short-cycle the 1O-bit
conversion process by reading AID results before the
done bit is set is not recommended.

3.2 . AID Interface Suggestions

The external interface circuitry to an analog input is
highly dependent upon the application, and can impact
converter characteristics. In the external circuit's de­
sign, important factors such as input pin leakage, sam­
ple capacitor size and multiplexer series resistimce from
the input pin to the sample capacitor must be consid­
ered.

For the 8096BH, these factors are idealized in Figure
13. The external input circuit must be able to charge a
sample capacitor (Cs) through a series resistance (RI)
to an accurate voltage given a D.C. leakage (10. On the
8096BH, Cs is around 2 pF, RI is around 5 Kfi and IL
is specified as 3 ,...A maximum. In determining the nec­
essary source impedance Rs, the value of V BIAS is not
important.. .

270246-14

Figure 13.ldeall;Eed AID Sampling Circuitry

External circuits with source impedances of I Kfi or
less will be able to maintain an input voltage within a
tolerance of about ±0.61 LSB (1.0 Kfi X 3.0 ,...A
= 3.0 mY) given the D.C. leakage. Source impedances
above 2 Kfi can result in an external error of at least
one LSB due to the voltage drop caused by the I ,...A
leakage. In addition, source impedances above 25 Kfi
may degrade converter accuracy as a result of the inter­
nal sample capacitor not being fully charged during the
1 ,...S (12 MHz clock) sample window.

It is· important to note that source impedance require­
ments relax if an external capacitor of sufficient size is
attached directly to the analog input pin. Since the in­
ternal sample capacitor is around 2.0 pF, an external
0.005 ,...F capacitor (2048 X 2.0 pF) should provide an
accurate input voltage to ±0.5 LSB. If there is leakage
on the capacitor, the value of the capacitor must be
increased to compensate for the leakage. For example,
assuming just the 3 ,...A D.C. leakage caused by the
8096BH, 0.6 mV (less than 0.15 LSB) will be lost from
a 0.005 ,...F capacitor in 1 ,...s. Therefore, the capacitor

19-10

MCS®-96 HARDWARE DESIGN INFORMATION

connected externally to the pin should be at least 0.005
p.F if the source impedance is too large to provide the
needed accuracy on its own. However, if the external
signal changes slowly, it is recommended that the larg­
est acceptable capacitance be used, given the input sig­
nal frequency.

Placing an external capacitor on each analog input will
also reduce the sensitivity to noise, as the capacitor
combines with series resistance in the external circuit to
form a low-pass filter. In practice, one should include a
small series resistance prior to the external capacitor on
the analog input pin and choose the largest capacitor
value practical, given the frequency of the signal being
converted. This provides a low-pass filter on the input,
while the resistor will also limit input current during
over-voltage conditions.

Figure 14 shows a simple analog interface circuit based
upon the discussion above. The circuit in the figure also
provides limited protection against over-voltage condi­
tions on the analog input. Should the input voltage in­
appropriately drop significantly below ground, diode
D2 will forward bias at about 0.8 DCV. Since the speci­
fication of the pin has an absolute maximum low volt­
age rating of -0.3 DCV, this will leave about 0.5 DCV
across the 270n resistor, or about 2.0 rnA of current.
This should limit current to a safe amount. However,
before any circuit is used in an actual application, it
should be thoroughly analyzed for applicability to the
specific problem at hand.

VREF

ANALOG
FROM USER CIRCUIT>--1I---..JVII'v--.-g INPUT PIN

ANGND
270246-15

Figure 14. Suggested AID Input Circuit

3.3 Analog References
Reference supply levels strongly influence the absolute
accuracy of the conversion. For this reason, it is recom­
mended that the ANGND pin be tied to the two Vss
pins as close to the chip as possible with minimum trace
length. Bypass capacitors should also be used between
VREF and ANGND. ANGND should be within about
a tenth of a volt VSS. VREFShould be well regulated
and used only for the AID converter. The VREF supply
can be between 4.5V and 5.5V and needs to be able to
source around 5 rnA. Figure 6 shows all of these con­
nections.

Note that if only ratiometric information is desired,
VREF can be connected to Vee. In addition, VREF

19-11

and ANGND must be connected even if the AID con­
verter is not being used. Remember that Port a receives
its power from the VREF and ANGND pins even when
it is used as digital 1/0.

3.4 The AID Transfer Function
The conversion result is a lO-bit ratiometric representa­
tion of the input voltage, so the numerical value ob­
tained from the conversion will be:

INT [1023 x (VIN - ANGND)/(VREF - ANGND)J.

This produces a stair-stepped transfer function when
the output code is plotted versus input voltage (see Fig­
ure 15). The resulting digital codes can be taken as
simple ratiometric information, or they can be used to
provide information about absolute voltages or relative
voltage changes on the inputs. The more demanding
the application is on the AID converter, the more im­
portant it is to fully understand the converter's opera­
tion. For simple applications, knowing the absolute er­
ror of the converter is sufficient. However, closing a
servo-loop with analog inputs necessitates a detailed
understanding of an AID converter's operation and er­
rors.

The errors inherent in an analog-to-digital conversion
process are many: quantizing error; zero offset; full­
scale error; differential non-linearity; and non-linearity.
These are "transfer function" errors related to the AID
converter. In addition, converter temperature drift,
Vee rejection, sample-hold feedthrough; multiplexer
off-isolation, channel-to-channel matching and random
noise should be considered. Fortunately, one "Absolute
Error" specification is available which describes the
sum total of all deviations between the actual conver­
sion process and an ideal converter. However, the vari­
ous sub-components of error are important in many
applications. These error components are described in
Section 3.5 and in the text below where ideal and actual
converters are compared.

An unavoidable error simply results from the conver­
sion of a continuous voltage to an integer digital repre­
sentation. This error is called quantizing error, and is
always ± 0.5 LSB. Quantizing error is the only error
seen in a perfect AID converter, and is obviously pres­
ent in actual converters. Figure 15 shows the transfer
function for an ideal 3-bit AID converter (i.e. the Ideal
Characteristic). .

Note that in Figure 15 the Ideal Characteristic possess­
es unique qualities: it's first code transition occurs when
the input voltage is 0.5 LSB; it's full-scale code tran­
sition occurs when the input voltage equals the full­
scale reference minus 1.5 LSB; and it's code widths are
all exactly one LSB. These qualities result in a digitiza­
tion without offset, full-scale or linearity errors. In oth­
er words, a perfect conversion.

."
iQ"
c ..
CD
!II
ii
CD

Q

..... e!.

~):0
"-

N C
0
::r
III ..
III
() ..
CD

aJ" ..
(i"

7

6

5

4

3

2

FINAL CODE TRANSITION OCCURS
WHEN THE APPLIED VOLTAGE IS
EQUAL TO (Vref - 1 1/2 (LSB»" .

H -.- FIRST CODE TRAN. SITION OCCURS I
WHEN THE APPLIED VOLTAGE IS

EQUAL TO 1/2 LSB.

r

~ THE VOLTAGE CHANGE
BETWEEN ADJACENT CODE
TRANSITIONS (THE "CODE

WIDTH") IS = 1 LSB.

O~---L---.--------'--------'--------'---~~--r--------.----r---'---------r
1/2 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)
270246-16

l

iii: o en
@)

cD
Q)

:::t
:J>
:xl
C

~
:xl
m
C
m en
i5 z
Z
"TI o
:xl
iii:

~ o z

."
~'
c .,
CD
.....
!»
>-
() ..
c
!!!. Q
1\1 :J

~ a.
Co) a:

CD
!!!.
0
::r
1\1
Dl
()

;-.,
iii' ..
(;'
1/1

7

6

5

4

3

2

--+ f---F;-~-OFF~~ I

IDEAL
CHARACTERISTIC

- -{!UL-L sC~~~Ro;-l

r '~,"rr '"'' ~ N
ACTUAL I

. - CHARACTERISTIC

I o I I I I I I I I
1/2 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)
270246-17

l

3:
o en
® .

<0
Ol

:::t »
lJ
C

~
lJ
m
C
m en
C5 z
Z
"T1 o
lJ
3:
~ o z

!!
(Q
c::
iil
:-J
ii1
~.
:;,

..... !!!.
'P m
.... III
.j>. III

:l
o
:::J'
III

~
iD
::::!.

~
n

a

7

6

5

4

3

2

o 1/

1/2

IDEAL FULL-SCALE CODE
TRANSITION

ACTUAL
FULL -SCALE CODE

TRANSITION

ACTUAL
CHARACTERISTIC

r '" .J TERMINAL BASED
CHARACTERISTIC

NON-LINEARITY

IDEAL CODE WIDTH

IDEAL FIRST TRANSITION

2 3 4 5 6 61/2 7 B

INPUT VOLTAGE (LSBs)
270246-18

l

s:: o en
®
I co en

::I:
l>
:::c
C

~
:::c
m
c
m en
i5 z
Z
"TI o
:::c s::
l>
~

6 z

intJ MCS®-96 HARDWARE DESIGN INFORMATION

Figure 16 shows an Actual Characteristic of a hypo­
thetical 3-bit converter, which is not perfect. When the
Ideal Characteristic is overlaid with the imperfect char­
acteristic, the actual converter is seen to exhibit errors
in the location of the first and final code transitions and
code widths. The deviation of the first code transition
from ideal is called "zero offset", and the deviation of
the final code transition from ideal is "full-scale error".
The deviation of the code widths from ideal causes two
types of errors. Differential Non-Linearity and Non­
Linearity. Differential Non-Linearity is a local linearity
error measurement, whereas Non-Linearity is an ov·er­
all linearity error measure.

Differential Non-Linearity is the degree to which actual
code widths differ from the ideal one LSB width. Dif­
ferential N on-Linearity gives the user a measure of how
much the input voltage may have changed in order to
produce a one count change in the conversion result.
Non-Linearity is the worst case deviation of code tran­
sitions from the corresponding code transitions of the
Ideal Characteristic. Non-Linearity describes how
much Differential Non-Linearities could add up to pro­
duce an overall maximum departure from a linear char­
acteristic. If the Differential Non-Linearity errors are
too large, it is possible for an AID converter to miss
codes or exhibit non-monotonicity. Neither behavior is
desireable in a closed-loop system. A converter has no
missed codes if there exists for each output code a
unique input voltage range that produces that code
only. A converter is monotonic if every subsequent
code change represents an input voltage change in the
same direction.

Differential Non-Linearity and Non-Linearity are
quantified by measuring the Terminal Based Linearity
Errors. A Terminal Based Characteristic results when
an Actual Characteristic is shifted and rotated to elimi­
nate zero offset and full-scale error (see Figure 17). The
Terminal Based Characteristic is similar to the Actual
Characteristic that would be seen if zero offset and full­
scale error were externally trimmed away. In practice,
this is done by using input circuits which include gain
and offset trimming. In addition, VREF on the
8096BH could also be closely regulated and trimmed
within the specified range to affect full-scale error.

Other factors that affect a real AID Converter system
include sensitivity to temperature, failure to completely
reject all unwanted signals, multiplexer channel dissim­
ilarities and random noise. Fortunately these effects are
small.

Temperature sensitivities are described by the rate at
which typical specifications change with a change in
temperature.

Undesired signals come from three main sources. First,
noise .on VCC-VCC Rejection. Second, input signal

changes on the channel being converted after the sam­
ple window has closed-Feed through. Third, signals
applied to channels not selected by the multiplexer­
Off-Isolation.

Finally, multiplexer on-channel resistances differ slight­
ly from one channel to the next causing Channel-to­
Channel Matching errors, and random noise in general
results in Repeatability errors.

3.5 8X9X AID Converter Differences

The 8X9X AID Converter does not have an internal
Sample-and-Hold, and the conversion time is 168 state
times (42 J.Ls with 12 MHz clock). These differences pri­
marily influence the interface circuitry and the rate at
which sampling can be done.

For the 8X9X the idealized circuit in Figure 13 is still
applicable. The only real difference is that the capacitor
labeled Cs has a smaller value on 8X9X devices, but it is
charged 10 times during a conversion. Since the actual
Cs on 8X9X parts is about 0.5 pF. an effective Cs of
5.0 pF (10 X 0.5 pF) can be used as the internal capaci­
tance that must be charged during a conversion. The
value of R I and h are nominally 5 kfl. and 3 }.LA respec­
tively.

Given these values, external circuits with source imped­
ances of 1 Kfl. or less will be able to maintain an input
voltage within a tolerance of about ± 0.6 LSB (1.0 Kfl.
X 3.0}.LA = 3.0 mV) given the D.G. leakage. Source
impedances above 2 Kfl. will induce an external error of
at least one LSB due to the voltage drop caused by the
3 }.LA leakage; In· addition, source impedances above
25 Kfl. may degrade converter accuracy as a result of
inadequate internal capacitor charging.

On 8X9X devices, the analog input is sampled 10 times
while a conversion is in progress. Therefore, the input
must remain stable so that conversion accuracy is not
affected. If the input signal could vary significantly
while a conversion is in progress, an external capacitor
attached directly to the analog input pin could be used as
a Sample-and-Hold. Since the internal capacitance is
around 5.0 pF. an external 0.01 J.LF capacitor (2048 X
5.0 pF) should provide an accurate input voltage to ± 0.5
LSB. If there is leakage on the capacitor, the value of the
capacitor must be increased to compensate for the leak­
age. For example, assuming just the 3 }.LA D. C leakage
caused by the 8X9X 1 m V (less than 0.25 LSB) will be
lost from a 0.15 J.LF capacitor in 42 J.LS. Therefore, the
capacitor connected externally to the pin should be at
least 0.2 J.LF. However, if the external signal changes
slowly relative to the conversion time (168 state times), it
is recommended that the largest acceptable capacitance
be used given the input signal frequency.

19-15

intJ MCS®-96 HARDWARE DESIGN INFORMATION

Figure 14 shows a simple interface which could be appli­
cable to 8X9X devices if the size of the capacitor attached
to the analog input pin is increased to a value greater
than 0.2 /loF. The circuit in the figure also provides limit­
ed protection against over-voltage conditions on the ana­
log inputs. However, before any circuit is used in an ac­
tual application, it should be thoroughly analyzed for
applicability to the specific problem at hand.

3.6 AID Glossary of Terms

Figures 15, 16 and 17 display many of these terms.

ABSOLUTE ERROR-The maximum.difference be­
tween corresponding actual and ideal code .. transitions.
Absolute Error accounts for all deviations of an actual
converter from an ideal converter.

ACfUAL CHARACfERISTIC-The characteristic of
an actual converter. The characteristic of a given con­
verter may vary over temperature, supply voltage, and
frequency conditions. An Actual Characteristic rarely
has ideal first and last transition locations or ideal code
widths. It may even vary over multiple conversion un­
der the same conditions.

BREAK·BEFORE·MAKE-The property of a multi­
plexer which guarantees that a previously selected
channel will be deselected before a. new channel is se­
lected. (e.g. the converter will not short inputs
together.)

CHANNEL·TO·CHANNEL MATCHING-The dif­
ference between corresponding code transitions of actu·
al characteristics taken from different channels under
the same temperature, voltage and frequency condi­
tions.

CHARACfERISTIC-A graph of input voltage ver­
sus the resultant output code for an AID converter. It
describes the transfer function of the AID converter.

CODE-The digital value output by the converter.

CODE CENTER-The voltage corresponding to the
midpoint between two adjacent code transitions.

CODE TRANSITION-The point at which the con­
verter changes from an output code of Q, to a code of
Q + I. The input voltage corresponding to a code tran­
sition is defined to be that voltage which is equally like­
ly to produce either of two adjacent codes.

CODE WIDTH-The voltage corresponding to the
difference between two adjacent code transitions.

CROSSTALK-See "Off-Isolation" ..

D.C. INPUT LEAKAGE-Leakage current to ground
from an analog input pin.

DIFFERENTIAL NON-LINEARITY-The differ­
ence between the ideal and actual code widths of the
terminal based characteristic of a converter.

FEEDTHROUGH-Attenuation of a voltage applied
on the selected channel of the AID converter after the
sample window closes.

FULL SCALE ERROR-The difference between the
expected and actual input voltage corresponding to the
full scale code transition.

IDEAL CHARACfERISTIC-A characteristic with
its first code transition at VIN = 0.5 LSD, its last code
transition at VIN = (VREF - 1.5 LSD) and all code
widths equal to one LSD.

INPUT RESISTANCE-The effective series resistance
from the analog input pin to the sample capacitor.

LSD-LEAST SIGNIFICANT BIT: The voltage value
corresponding to the full scale voltage divided by 2n,

where n is the number of bits of resolution of the con­
verter. For a IO-bit converter. with a reference voltage
of 5.12 volts, one LSD is 5.0 mY. Note that this is
different than digital LSDs, since an uncertainty of two
LSD, when referring to an AID converter, equals
10 mY. (This has been confused with an uncertainty.of
two digital bits, which would mean four counts, or
20 mV.)

MONOTONIC-The property of successive approxi­
mation converters which guarantees that increasing in­
put voltages produce adjacent codes of increasing value,
and that decreasing input voltages produce adjacent
codes of decreasing value.

NO MISSED CODES-For each and every output
code, there exists a unique input voltage range which
produces that code only.

NON·LINEARITY-The maximum deviation of code
transitions of the terminal based characteristic from the
corresponding code transitions of the ideal characteris­
tics.

19-16

MCS®-96 HARDWARE DESIGN INFORMATION

OFF·ISOLATION-Attenuation of a voltage applied
on a deselected channel of the AID converter. (Also
referred to as Crosstalk.)

REPEATABILITY-The difference between corre·
sponding code transitions from different actual charac·
teristics taken from the same converter on the same
channel at the same temperature, voltage and frequency
conditions.

RESOLUTION-The number of input voltage levels
that the converter can unambiguously distinguish be·
tween. Also defines the number of useful bits of infor·
mation which the converter can return.

SAMPLE DELAY-The delay from receiving the start
conversion signal to when the sample window opens.

SAMPLE DELAY UNCERTAINTY-The variation
in the Sample Delay.

SAMPLE TIME-The time that the sample window is
open.

SAMPLE TIME UNCERTAINTY-The variation in
the sample time.

SAMPLE WINDOW-Begins when the sample capac­
itor is attached to a selected channel and ends when the
sample capacitor is disconnected from the selected
channel.

SUCCESSIVE APPROXIMATION-An AID con­
version method which uses a binary search to arrive at
the best digital representation of an analog input.

TEMPERATURE COEFFICIENTS-Change in the
stated variable per degree centigrade temperature
change. Temperature coefficients are added to the typi­
cal values of a specification to see the effect of tempera­
ture drift.

8096BH BUFFER
TO MAKE

HSO OUTPUT
OR - SWING

PWM RAIL
TO

RAIL

TERMINAL BASED CHARACTERISTIC-An Ac­
tual Characteristic which as been rotated and translat­
ed to remove zero offset and full-scale error.

VCC REJECTION-Attenuation of noise on the VCC
line to the AID converter.

ZERO OFFSET-The difference between the expected
and actual input voltage corresponding to the first code
transition.

4.0 ANALOG OUTPUTS

Analog outputs can be generated by two methods, ei­
ther by using the PWM output or the HSO. Either
device will generate a rectangular pulse train that varies
in duty cycle and (for the HSO only) period. If a
smooth analog signal is desired as an output, the rec­
tangular waveform must be filtered.

In most cases this filtering is best done after the signal
is buffered to make it swing from 0 to 5 volts since both
of the outputs are guaranteed only to TTL levels. A
block diagram of the type of circuit needed is shown in
Figure 18. By proper selection of components, account­
ing for temperature and power supply drift, a highly
accurate 8-bit D to A converter can be made using ei­
ther the HSO or the PWM output. Figure 19 shows two
typical circuits. If the HSO is used the accuracy could
be theoretically extended to 16-bits, however the tem­
perature and noise related problems would be extreme­
ly hard to handle.

When driving some circuits it may be desirable to use
unfiltered Pulse Width Modulation. This is particularly
true for motor drive circuits. The PWM output can be
used to generate these waveforms if a fixed period on
the order of 64 J.Ls is acceptable. If this is not the case
then the HSO unit can be used. The HSO can generate
a variable waveform with a duty cycle variable in up to
65536 steps and a period of up to 131 milliseconds.
Both of these outputs produce TTL levels.

FILTER
(PASSIVE

OR
ACTIVE)

(OPTIONAL)

POWER
AMP

(OPTIONAL) - ANALOG
OUTPUT

270246-21

Figure 18. D/A Buffer Block Diagram

19-17

inter MCS®·96 HARDWARE DESIGN INFORMATION

Vcc

* 1/2 VQ3001P
6

270·
PWM----~~~----.

7 S.1K
~ ____ ~~ ____ ~.-____ ANALOG

OUT 8

270246-22
'This resistor limits rise time to reduce

spikes & high frequency noise.

8096BH
HSO R
OR

PWM
CD4048

HIGH
IMPEDANCE

±c
AMP

ANALOG
OUTPUT

Rand C are chosen for best
filtering at the user's frequency

270246':'23

Figure ·19. Buffer Circuits for 01 A

5.0 I/O TIMINGS

The I/O pins on the S096BH are sampled and changed
at specific times within an instruction cycle. The chang­
es occur relative to the internal phases shown in Figure
4. Note that the delay from XTALI to the internai
clocks range from about 30 ns to 100 ns over process
and temperature. Signals generated by internal phases
are further delayed by 5 ns to 15 ns. The timings shown
in this section are idealized; no propagation delay fac­
tors have been taken into account. Designing a system
that depends on an 110 pin to change within a window
of less than' 50 ns using the information in this section is
not recommended.

5.1 HSO Outputs

Changes in the HSO lines are synchronized to Timer 1.
All of the external HSO lines due to change at a certain
value of a timer will change just pior to the increment­
ing of Timer 1. This corresponds to an internal change

during Phase B every eight state times. From an exter­
nal perspective the HSO pin should change just prior to
the rising edge of CLKOUT and be stable by its falling
edge. Information from the HSO can be latched on the
CLKOUT falling edge. Internal events can occur any­
time during the 8 state time window.

Timer 2 is synchronized to increment no faster than
Timer I, so there will always be at least one increment­
ing of Timer 1 while Timer 2 is at a specific value.

5.2 HSllnput Sampling

The HSI pins are sampled internally once each state
time. Any value on these pins must remain stable for at
least 1 full state time to guarantee that it is recognized.
The actual sample occurs at the end of Phase A, which,
due to propagation delay, is just after the rising edge of
CLKOUT. Therefore, if information is to be synchro­
nized to the HSI it should be latched-in on CLKOUT

19-18

inter MCS®-96 HARDWARE DESIGN INFORMATION

falling. The time restriction applies even if the divide by
eight mode is being used. If two events occur on the
same pin within the same 8 state tiine window, only one
of the events will be recorded. If the events occur on
different pins they will always be recorded, regardless
of the time difference. The 8 state time window, (i.e. the
amount of time during which Timer I remains con­
stant), is stable to within about 20 ns. The window
starts roughly around the rising edge of CLKOUT,
however this timing is very approximate due to the
amount of internal circuitry involved.

5.3 Standard I/O Port Pins

Port 0 is different from the other digital ports in that it
is actually part of the A/D converter. The port is sam­
pled once every state time, however, sampling is not
synchronized to Timer 1. If this port is used, the input
signal on the pin must be stable one state time before
the reading of the SFR.

On 8X9X devices, Port 0 is sampled every eight state
times (the same frequency at which the comparator is
charged-up during an A/D conversion). This 8 state time
counter is not synchronized with Timer 1. If this port is
used, the input signal on the pin must be stable 8 state
times prior to reading the SFR.

Port 1 and Port 2 have quasi-bidirectional I/O pins.
When used as inputs the data on these pins must be
stable one state time prior to reading the SFR. This
timing is also valid for the input-only pins of Port 2 and
is similar to the HSI in that the sample occurs just after
the rising edge of CLKOUT. When used as outputs, the
quasi-bidirectional pins will change state shortly after
CLKOUT falls. If the change was from '0' to a 'I' the
low impedance pullup will remain on for one state time
after the change.

Ports 3 and 4 are addressed as off-chip memory­
mapped I/O. The port pins will change state shortly
after the rising edge of CLKOUT. When these pins are
used as Ports 3 and 4 they are open drains, their struc­
ture is different when they are used as part of the bus.
See Section 10.4 of the MCS-96 Architecture chapter.
Additional information on port reconstruction is avail­
able in Section 7.8 of this chapter.

6.0 SERIAL PORT TIMINGS

The serial port on the 8096BH was designed to be com­
patible with the 8051 serial port. Since the 8051 uses a
divide by 2 clock and the 8096BH uses a divide by 3,
the serial port on the 8096BH had to be provided with
its own clock circuit to maximize its compatibility with

the 8051 at high baud rates. This means that the serial
port itself does not know about state times. There is
circuitry which is synchronized to the serial port and to
the rest of the 8096BH so that information can be
passed back and forth.

The baud rate generator is clocked by either XTALl or
T2CLK. Because T2CLK needs to be synchronized to
the XT ALl signal its speed must be limited to '1,6 that
ofXTALI. The serial port will not function during the
time between the consecutive writes to the baud rate
register. Section 11.4 of the MCS-96 Architecture chap­
ter discusses programming the baud rate generator.

6.1 Mode 0

Mode 0 is the shift register mode. The TXD pin sends
out a clock train, while the RXD pin transmits or re­
ceives the data. Figure 20 shows the waveforms and
timing. Note that the port starts functioning when a 'I'
is written to the REN (Receiver Enable) bit in the serial
port control register. If REN is already high, clearing
the RI flag will start a reception.

In this mode the serial port can be used to expand the
I/O capability of the 8096BH by simply adding shift
registers. A schematic of a typical circuit is shown in
Figure 21. This circuit inverts the data coming in, so it
must be reinverted in software. The enable and latch
connections to the shift registers can be driven by de­
coders, rather than directly from the low speed I/O
ports, if the software and hardware are properly de­
signed.

6.2 Mode 1 Timings

Mode I operation of the serial port makes use of IO-bit
data packages, a start bit, 8 data bits and a stop bit. The
transmit and receive functions are controlled by sepa­
rate shift clocks. The transmit shift clock starts when
the baud rate generator is initialized, the receive shift
clock is reset when a 'I to 0' transition (start bit) is
received. The transmit clock may therefore not be in
sync with the receive clock, although they will both be
at the same frequency.

The TI (Transmit Interrupt) and RI (Receive Inter­
rupt) flags are set to indicate when operations are com­
plete. TI is set when the last data bit of the message has
been sent, not when the stop bit is sent. If an attempt to
send another byte is made before the stop bit is sent the
port will hold off transmission until the stop bit is com­
plete. RI is set when 8 data bits are received, not when
the stop bit is received. Note that when the serial port
status register is read both TI and RI are cleared.

19-19

inter MCS®·96 HARDWARE DESIGN INFORMATION

TXD

RXD(OUT) DO D1 D2 D3 D4 D5 D6 D7

RXD(IN)

EXPANDED:

XTAL1 ..JUlJ1JUl1UlJl~..IUL

TXD ~~-

RXD(OUT) -----(DO c:: D1 ~

DO D1

RXD (IN) --c:::J-----.r-------C:J--+-
270246-24

Figure 20. Serial Port Timings in Mode 0

CLOCK INHIBIT

,.-----..,::;::------1 PX.X

15K
DATA

;)O-t------""1 RXD

CLOCK
~--r---4r--""1TXD

INPUTS

OUTPUTS

ENABLE

a096BH

PX.X

270246-25

Figure 21. Mode 0 Serial Port Example .

Caution should be used when using the serial port to
connect more than two devices in half-duplex, (Le. one
wire for transmit and receive). If the receiving proces­
sor does not wait for one bit time after RI is set before
starting to transmit, the stop bit on the link could be
squashed. This could cause a problem for other devices
listening on the link.

6.3 Mode 2 and 3 Timings

Modes 2 and 3 operate in a manner similar to that of
Mode 1. The only difference is that the data is now
made up of 9 bits, so ll-bit packages are transmitted
and received. This means that TI and RI will be set on
the 9th data bit rather than the 8th. The 9th bit can be
used for parity or multiple processor communications
(see Section 11 of the MCS-96 Architecture chapter).

7.0 BUS TIMING AND MEMORY
INTERFACE

7.1 Bus Functionality

The 8096BH has a multiplexed (address/data) bus
which can be dynamically configured to have an 8-bit
or 16-bit data width. There are control lines to demulti­
plex the bus (ALE or ADV), indicate reads (RD), indi­
cate writes (WRL and WRH, or WR with BHE and
ADO), and a signal to indicate accesses that are for an
instruction fetch (INST). Section 3.5 of the MCS-96
Architecture chapter contains an overview of the bus
operation.

On 8X9X devices only the J6-bit multiplexed bus is
available. In addition. on 8X9X devices the WRL and
WRH signals are not available and the functionality of
the BHE and INST lines differs from the 8X9XBH de­
vices. See the data sheet of the device that you use.

19-20

infef MCS®-96 HARDWARE DESIGN INFORMATION

7.2 Timing Specifications

Figure 22 shows the timing of the bus signals and data
lines. Please refer to the latest data sheet for the exact
device you are using to ensure that your system is de­
signed to the proper specifications. The major timing
specifications are described in Figure 23.

XTAL1

CLOCKOUT

READY

7.3 READY Line Usage

When the processor has to address a memory location
that cannot respond within the standard specifications,
it is necessary to use the READY line to generate wait
states. When the READY line is 'held low, the proces­
sor waits in a loop for the line to come high or until the

•
'~---------

AD =£~~~~~!:=:::=:::=:::~:
WR. WRL, WRH \ .. _.

SHE. INST •
,...---:----:---------~--_f ... --------------

j.1.---TWLWH -----+j

AD8-15 J~1)L---~::::::::::::::::::::::V~A~L~ID~::::::::::::::::::~'E-:-:-:-:-:-:-:-~-~-~-~-:-::--'- - -- - --- - - -----
270246-26

NOTES:
1. When ALE function is selected. the signal is always high for TLHLL. When ADV function is selected. the signal is high
for at least TLHLL.
2. The dotted line applies for all a-bit bus writes and l6-bit bus writes with the write strobe mode selected.
3. a-bit bus only.

Figure 22. Bus Signal Timings

19-21

MCS®-96 HARDWARE DESIGN INFORMATION

number of inserted wait states is equal to the limit set in
the Chip Configuration Register (see Section 2 of the
MCS-96 Architecture chapter). There is a maximum
time that the READY line can be held low without
risking a processor malfunction due to dynamic nodes
that have not been refreshed during the wait states.
This time is shown as TYL YH in the data sheet.

In most cases the READY line is brought low after the
address is decoded and it is determined that a wait state
is needed. It is very likely that some addresses, such as
those addressing memory mapped peripherals, would
need wait states, and others would not. The READY
line must be stable within the TLL YV specification af- .
ter ALE falls or the processor could lock-up. There is
no requirement as to when READY may go high, as
long as the maximum READY low time (TYL YH) is
not violated. To ensure that only one wait state is in­
serted it is necessary to provide external circuitry which
brings READY high TLL YH after the falling edge of
ALE/ ADV, or program the Chip Configuration Regis­
ter to select a Ready Control limit of one.

Definitions of A. C. timing specifications differ slightly
on 8X9X devices. See the data sheet for the part you
are using for more information.

Tosc-Oscillator Period, one cycle time on XTALI.

Timings the Memory System Must
Meet

TLL YH-ALE/ ADV low to READY high:· Maxi­
mum time after ALE/ ADV falls until READY is
brought high to ensure no more wait states. If this
time is exceeded unexpected wait states may result.
Nominally 1 Tosc + 3 Tosc X number of wait states
desired.

TLLYV-ALE/ADV low to READY low: Maxi­
mum time after ALE/ ADV falls until READY must
be valid. If this time is exceeded the part could mal­
function necessitating a chip reset. Nomirially 2 Tosc
periods.

TCL YX-READY hold after CLOCKOUT low:
Minimum time that the value on the READY pin
must be valid after CLOCK OUT falls. The minimum
hold time is always zero nanoseconds.

TYL YH-READY low to READY high: Maximum
time the part can be in the not-ready state. If it is
exceeded, the 8096BH dynamic nodes which hold the
current instruction may 'forget' how to finish the in­
struction.

TAVDV-ADDRESS valid to DATA valid: Maxi­
mum time that the memory has to output valid data

Internally, the chip latches READY on the first falling
edge of Phase A after ALE/ ADV falls. Phase A is buff­
ered and brought out externally as CLOCKOUT, so
CLOCKOUT is a delayed Phase A. If a I is seen, the
bus cycle proceeds uninterrupted with no wait state in­
sertions. If a 0 is seen, one wait state (3 Tosc) is insert­
ed.

If a wait state is inserted, READY is internally latched
on the next rising edge of Phase A. If a I is found the
bus cycle resumes with the net impact being the inser­
tion of one wait state. If a 0 is seen, a second wait state
is inserted.

The READY pin is again latched on the next rising
edge of CLOCKOUT if two wait states were inserted.
If the chip sees a I, the bus cycle is resumed with the
result being an insertion of two wait states. If another 0
is seen, a third wait state is inserted in the bus cycle and

after the 8096BH outputs a valid address. Nominally,
a maximum of 5. Tosc periods.

TAVGV-ADDRESS valid to BUSWIDTH valid:
Maximum time after ADDRESS becomes valid until
BUSWIDTH must be valid. Nominally less than 2
Tosc periods.

TLLGV-ALE/ADV low to BUSWIDTH valid:
Maximum time after ALE/ADV is low until BU­
SWIDTH must be valid. If this time is exceeded the
part could malfunction necessitating a chip reset.
Nominally less thari 1 Tosc.

TLLGX-BUSWIDTH hold after ALE/ ADV low:
Minimum time that BUSWIDTH must be valid after
ALE/ ADV is low Nominally I Tosc.

TRLDV-READ low to DATA valid: Maximum
time that the memory has to output data after READ
goes low. Nominally, a maximum of 3 Tosc periods.

TRHDZ-READ high to DATA float: Time after
READ is. high until the memory must float the bus.
The memory signal can be removed as soon as READ
is not low, and must be removed within the specified
maximum time from when READ is high. Nominally
a maximum of 1 Tosc period.

TRHDX~DATA hold after READ goes high: Mini­
mum time that memory must hold input DATA valid
after RD is high. The hold time minimum is always
zero nanoseconds.

Figure 23. Timing Specification Explanations

19-22

MCS®-96 HARDWARE DESIGN INFORMATION

Timings the 8096 Will Provide

TOHCH-XTALI high to CLOCKOUT high: Delay
from the rising edge ofXTALl to the resultant rising
edge on CLOCKOUT. Needed in systems where the
signal driving XTALI is also used as a clock for ex­
ternal devices. Typically 50 to 100 nanoseconds.

TCHCH-CLKOUT high to CLKOUT high: The
period of CLKOUT and the duration of one state
time. Always 3 Tosc average, but individual periods
could vary by a few nanoseconds.

TCHCL-CLKOUT high to CLKOUT low: Nomi­
nally I Tosc period.

TCLLH-CLKOUT low to ALE high: A help in de­
riving other timings. Typically plus or minus 5 ns to
10 ns.

TCLVL-CLOCKOUT low to ALE/ ADV low: A
help in deriving other timings. Nominally I Tosc.

TLLCH-ALE/ ADV low to CLKOUT high: Used
to derive other timings, nominally I Tosc period.

TLHLL-ALE/ ADV high to ALE/ ADV low:
ALE/ ADV high time. Useful in determining ALE/
ADV rising edge to ADDRESS valid time. Nominal­
ly I Tosc period for ALE and I Tosc for ADV with
back-to-back bus cycles.

TAVLL-ADDRESS valid to ALE/ ADV low:
Length of time ADDRESS is valid before ALE/ ADV
falls. Important timing for address latch circuitry.
Nominally I Tosc period.

TLLAX-ALE/ ADV low to ADDRESS invalid:
Length of time ADDRESS is valid after ALE/ ADV
falls. Important timing for address latch circuitry.
Nominally I Tosc period.

TLLRL-ALE/ ADV low to READ or WRITE low:
Length of time after ALE/ ADV falls before RD or
WR fall. Could be needed to ensure that proper mem­
ory decoding takes place before it is output enabled.
Nominally I Tosc period.

TLLHL-ALE/ ADV low to WRL, WRH low: Min­
imum time after ALE/ ADV is low that the write
strobe signals will go low. Could be needed to ensure

that proper memory decoding takes place before it is
output enabled. Nominally 2 Tosc periods.

TRLRH-READ low to READ high: RD pulse
width, nominally I Tosc period.

TRHLH-READ high to ALE/ ADV high: Time be­
tween RD going inactive and next ALE/ ADV, also
used to calculate time between RD inactive and next
ADDRESS valid. Nominally I Tosc period.

TRHBX-READ high to INST, BHE, ADS-15 In­
. active: Minimum time that the INST and BHE lines
will be vaJid after RD goes high. Also the minimum
time that the upper eight address lines (S-bit bus
mode) will remain valid after RD goes high. Nomi­
nally I Tosc.

TWHBX-WRITE high to INST, BHE, ADS-15
Inactive: Minimum time that the INST and BHE
lines will be valid after WR goes high. Also the mini­
mum time that the upper eight address lines (S-bit bus
mode) will remain valid after WR goes high. Nomi­
nally I Tosc.

TWLWH-WRITE low to WRITE high: Write
pulse width, nominally 3 Tosc periods.

THLHH-WRL, WRH low to WRL, WRH high:
Write strobe signal pulse width. Nominally 2 Tosc
periods.

TQVHL-OUTPUT valid to WRL, WRH low: Min­
imum time that OUTPUT data is valid prior to write
strobes becoming active. Needed for interfacing to
memories that read data on the falling edge of write.
Nominally 1 Tosc.

TQVWH-OUTPUT valid to WRITE ...!!!gh: Time
that the OUTPUT data is valid before WR is high.
Nominally 3 Tosc periods.

TWHQX-WRITE high to OUTPUT not valid:
Time that the OUTPUT data is valid after WR is
high. Nominally I Tosc period.

TWHLH-WRITE high to ALE/ ADV high: Time
between write high and next ALE/ ADV, also used to
calculate the time between WR high and next AD­
DRESS valid. Nominally 2 Tosc periods.

Figure 23. Timing Specification Explanations (Continued)

the READY pin is again latched on the following rising
edge of CLOCKOUT. If internal Ready Control is not
used, the READY line must at this point be a I to
ensure proper operation.

On 8X9X devices there is no internal Ready Control.
therefore. external circuitry must completely con~rol the
insertion of wait states into 8X9X bus cycles.

19-23

inter MCS®·96 HARDWA~EDESIGN INFORMATION

7.4INSTLine Usage 7.6 Address Decoding

The INST (Instruction) line is high during'bus cycle~
that are for an instruction fetch and low for any other
bus cycle. The INST signal (not present on 48-pin ver­
sions) can be used with a logic analyzer to debug a
system. In this way it is possible to determine if a fetch
was for instructions or data, making the task of tracing
the program much easier. "

On 8X9X devices the INST [{ne is high during the output
of an address that is for an instruction fetch. It is low
during the same iime for any other memory access. At
any other time it is not valid.

7.5 BUSWIDTH Pin Usage

The BUSWIDTH pin is a control input which deter­
mines the width of the bus access in progress.
BUSWIDTH is sampled after the rising edge of the fir,st
CLOCKOUT after ALE/ ADY goes low. If a one is
seen, the bus access, progresses as a, 16-bit cycle. If ~
zero is seen, the bus access progresses as an 8-bit cycle.
The BUSWIDTH setup and hold timing requirements
appear in the data sheet.

The BUSWIDTH pin can be overridden by 'causing the
BUS WIDTH SELECT bit in the Chip Config~ration
Register (CCR) to be zero. This will permanently select
an 8-bit bus width. However, if the BUS WIDTH SE­
LECT bit in the CCR is a one, the BUSWIDTH pin
determines the bus width. See Section 3.5 of the
MCS-96 Architecture chapter. Since the BUSWIDTH
pin is not available on 48-pin parts, the BUS WIDTH
SELECT bit in the CCR determines bus width. '

On 8X9X devices, the 8-bit bus is not available. the eeR
does not exist and the BUSWIDT/f pin is named the
TEST pin. The TEST pin is used for testing purposes
and should be tied to vee in application circuits.

SHE --------10

The multiplexed bus of the 8096BH must be demulti­
plexed before it'can be used. This can be done with two
74LS373 transparent latches for an 8096BH in 16-bit
bus mode, or one 74LS373 for an 8096BH in' 8-bit bus
mode. As explained in Section 3.5 of the MCS-96 Ar~
chitecture chapter, the latched' address signals will be
referred to as MAO :through MA15 ,(Memory Address),
and the data lines will be called MDO through MD 15
(Memory Data).

Since the 8096BH can make accesses to memory for
either bytes or words, it is necessary to have a way of
determining the type of access desired when the bus is
16-bits wide. For write cycles, the signals Write Low
(WRL) and Write High (WRH) are provided. WRL
will go low during all word writes and during all byte
writes to an even location. Similarly; WRH will go low
during all word writes and during all byte writes to an
odd location. During read cycles, an 8096BH in 16-bit
bus mode will always do a word read' of an even loca­
tion. Ifonly one byte of the word is needed, the chip
discards the b~te it does not need. ,

Since 8096BH memory accesses over an 8-bit wide bus
are always bytes, only one write strobe is needed for
write cycles. For this purpose the WRL signal was
made, to go low for all write cycles during 8-bit, bus
accesses. When a word operation is requested, the, bus
controller performs two byte-wide bus cycles.

In many cases it may be desirable to have a write signal
with a longer pulse width than WRL/WRH. The Write
(WR) line of the 8096BH is an alternate control signal
that shares a pin with WRL and is only available in
16-bit bus mode. WR is nomi~ally one Tosc longer
than the WRL/WRH signals, but goes low for any
write cycle. Therefore it is necessary to decode for the
type of write (byte or word) desired.

The 'Byte High Enable (BHE) sigltal and MAO can be
used for this purpose. BHE is an alternate control sig-

Vee

01----0.""'1
WRITE HIGH

ALE ---.... ~~-~CK

74LS74
WR ------'--------'-----4__.CT""""'I

MAO

WRITE LOW

270246-27

Figure 24. Decoding WR and BHE to Generate WriteLow and Write High

19-?4

inter MCS®-96 HARDWARE DESIGN INFORMATION

nal that shares a pin with WRH. When BHE is low, the
high byte of the l6-bit bus is enabled. When MAO is
low, the lower byte is enabled. When MAO is low and
BHE is low, both bytes are enabled. Figure 24 shows
how to use WR, BHE and MAO to decode bus accesses.
It's important to note that this decoding inserts a delay
in the write signal which must be considered in a sys­
tem timing analysis.

On 8X9X devices, only the RD, WR and BHE signals
are available for bus control This means that discrimi­
nating between byte and word bus accesses must be done
by decoding WR, BHE and MAO as described above.

RD
ADS-IS

8X9XBH I r--
74LS

ADO-7 373

Further. the WR signal on 8X9X devices is nominally
the same width as the WRL and WRH signals.

,8X9XBH devices (2 Tosc), and the BHE signal must be
latched since it is valid only while the address is valid.
See Figure 24 and the data sheet of the device that you
use.

External memory systems for the 8096BH can be set up
in many ways. Figures 25 through 28 show block dia­
grams of' memory systems using an 8-bit bus with a
single EPROM, using an 8-bit bus with RAM and
EPROM, using a 16-bit bus with two external
EPROMs and using a 16-bit bus ina RAM and ROM
system.

DE
HIGH ADDRESS

DATA

EPROM
LOW ADDRESS

ADV "T"""-\ CS
\

OPTIONAL IF
LATCHED EPROM

IS USED

Figure 25. An 8-Bit Bus with EPROM Only

ADIS

ADS-IS ... _____ ----I DATA
8X9XBH EPROM

ADO-7 LOW ADDRESS

ADv'I---.J

Figure 26. An 8-Bit Bus with'EPROM ~nd RAM

19-25

270246-28

270246-29

intJ MCS@·96 HARDWARE DESIGN INFORMATION

cs
HIGH ADDRESS

EPROM

DATA

LOW ADDRESS

8X9XBH

~ ~ ____________ ~ __________ -J

270246-30

Figure 27. A 16·BII Bus with EPROM Only

ADO-7

8x9xBH

RAM

~ ~------------~--------~~----------~
WR

270246-31

Figure 28. Memory System with Dynamic Bus Width

7.7 System Verification Example·

To verify that a system such as the one in Figure 29 will
work with the 8096BH, it is necessary to check all of
the timing parameters. Let us eximrine this system one
parameter at a time using representative 8096BH speci­
fications. These specifications will be different for each
part number and temperature range, so the results of
this example must be modified based on the most recent
data sheet for the specific part to be used. .

The timings of signals that the processor and memory
use are affected by the latch arid buffer circuitry. The
timings of the signal provided by the processor are de­
layed by various amounts oftime. Similarly, the signals
coming back from the memory are also delayed. The
calculations involved in verifying this system follow:

·Address Valid·Delay-30 nanoseconds

The address lines are delayed by passing them through
the 74LS373s, this delay is specified at 18 ns after Ad­
dress is valid or 30 ns after ALE is high. Since the
signal may be limited by either the ALE timing or the
Address timing, these two cases must be considered.

If Limited by ALE

Minimum ALE pulse width = Tosc - 25
, (TLHLL)

Minimum Addr set-up to ALE falling = Tosc - 25
(TAVLL)

MCS®-96 HARDWARE DESIGN INFORMATION

MA8-MA15 8

ALE MA1-MA77

.£- AD-ASl A7-A14 sl
AO-AS A7-A14

A08-A015 8 74LS 8
373 UPPER LOWER

B096BH 7 BYTE OF BYTE OF
MEMORY MEMORY

AOO-A07 8 74LS 8
r+

(000
-+

(EVEN

373 MAO
LOCATIONS) LOCATIONS)

iID WRL WRH
8 8 1 WE OE WE OE

. .----. NC - ~
8

DiR 245 11.108-11.1015

°74LS 8
245 11.100-11.107

WRH OIR .

WRL

iID

27024S-32
'Required only in larger systems.

Figure 29. RAM/ROM Memory System

Therefore, in the worst case, ALE would occur 0 ns
before Address valid.

Total delay from 8096BH Address stable to MA (Mem­
ory Address) stable would be:

ALE delay from address - 0
. 74LS373 clock to output --.1Q

30 nanoseconds

If Limited by Address Valid

74LS373 Data Valid to Data Output = 18 nanosec­
onds

In the worst case, the delay in Address valid is con­
troled by ALE and has a value of 30 nanoseconds.

Delay of Data Transfer to/from Processor....,...12 nano­
seconds

The RD low to Data valid specification (TRLDV) is
3 Tosc - 50, (200 ns at 12 MHz). The 74LS245 is
enabled by RD and has a delay of 40ns from enable ..
The enable delay is clearly not a problem.

The 74LS245 is enabled for write, except during a read,
so there is no enable delay to consider for write opera­
tions.

The Data In to Data Out delay of the 74LS245 is 12 ns.

CHARACTERISTICS OF A 12 MHz 8096BH
SYSTEM WITH LATCHES

Required by system:

Address valid to Data in;

TAVDV
Address Delay
Data Delay

Read low to Data in:

TRLDV
Address Delay
Data Delay

Provided by system:

345.6 ns max. (5 Tosc - 70)
: - 30.0 ns maximum
: - 12.0 ns maximum

303.6 ns maximum

200.0 ns max. (3 Tosc - 50)
: - 00.0 ns maximum
: - 12.0 ns maximum

188.0 ns maximum

Address valid to Control;

TLLRL
TAVLL
Address Delay
WRDeiay

Write Pulse Width;

THLHH

63.3 ns min. (Tosc - 20)
158.3 ns min. (Tosc - 25)
30.0 ns maximum
00.0 ns minimum
91.6 ns minimum

146.6 ns min. (2 Tosc - 20)
146.6 ns minimum

19-27

inter MCS@·96 HARDWARE DESIGN INFORMATION

Data Setup to WR rising; 7.8 1/0 Port Reconstruction

TQVWH
Data Delay

Data Hold after WR;

TWHQX
Data Delay

200.0 ns min. (3 Tosc - 50)
. ,12.0 ns maximum

188.0 ns minimum

58.3 ns min. (Tosc - 25)
0.0 ns minimum (no spec)
58.3 ns minimum

The two memory devices which are expected to be used
most often with the 8096BH are the 2764 EPROM and
the 2128 RAM. The system verification for the 2764 is
simple.

2764Tac

(Address valid to Output) < Address valid to Data in
250 ns < ~03 ns O.K.

2764 Toe

(Output Enable to Output) < Read low to Data in
100 ns < 188 ns O.K.

These calculations assume no address decoder delays
and no delays on the RD (OE) line. If there are delays
in these signals the delays must be added to the 2764's
timing.

The read calculations for the 2128 are similar to those
for the 2764.

2128-20 Tac < Address valid to Data in
200 ns < 303 ns O.K.

2128-20 Toe < Read low to Data in
65 ns < 188 ns O.K.

The write calculation are a little more involved, but still
straight-forward ..

2128 Twp (Write Pulse) <Write Pulse Width
100 ns <: 146 ns O.K.

2128 Tds (Data Setup) < Data Setup to WR rising
65 ns < 188 ns O.K.

2128 Tdh (Data Hold) < Data Hold after WR
, 0 ns < 58 ns

All of the above calculations have been done assuming
that n<~ components are in the circuit except for those
shown in Figure 29. If additional components are a!1d­
ed, as may be needed for address decoding or memory
bank switching, the calculations must be updated to
reflect the actual circuit. '

When a single-chip system is being designed using a
multiple chip system as a prototype, it may be neces­
sary to reconstruct I/O Ports 3 and 4 using a memory­
mapped I/O technique. The circuit shown in Figure 30
provides this function. It can be attached to a 8096BH
system which has the required address decoding and
bus demultiplexing.

The output circuitry is basically just a latch that oper­
ates when IFFEH or IFFFH are placed on the MA
lines. The inverters surrounding the latch create an
open-collector output to emulate the open-drain output
found on the 8096BH. The 'reset' line is used to set the
ports to all l's when the 8096BH is reset. It should be
noted that the voltage and current characteristics of the
port will differ from those of the 8096BH, but the basic
functionality will be the same.

The input circuitry is just a bus transceiver that is ad­
dressed at IFFEH or IFFFH. If the ports are going to
be used for either input or output, but not both, some of
the circuitry can be eliminated.

8.0 NOISE PROTECTION TIPS

Designing controllers differs from designing other com­
puter equipment in the area of noise protection. A mi­
crocontroller circuit under the hood of a car, in a pho­
tocopier, CRT terminal, ora high speed printer is sub­
ject to many types of electrical noise. Noise can get to
the processor directly through the power supply, or it
can be induced onto the board by electromagnetic
fields. It is also possible for the PC board to find itself
in the path of electrostatic discharges. Glitches and
noise on the PC board can cause the pr~sor t6 act
unpredictably, usually by changing either the memory
locations or the program counter.

There are both hardware and software solutions to -
noise problems, but the best solution is good design
practice and a few ounces of prevention. The 8096BH
has a Watchdog Timer which will reset the part if it
fails to execute the software properly. The software
should be set up to take advantage of this feature.

It is also recommended that unused areas of code be
filled with NOPs and periodic jumps to 1m error routine
or RST (reset chip) instructions. This is particularly
important in the code around lookup tables, since if
lookup tables are executed all sorts of bad things can
happen. Wherever space allows, each table should be
surrounded by 7 NOPs (the longest 8096BH instruction
has 7 bytes) and a RST or jump to error routine in­
struction. This will help to ensure a speedy recovery
should the processor have a glitch in the program flow.

19-28

MCS®-96 HARDWARE DESIGN INFORMATION

WRL
OUTPUT

74LS
MDO-MD7 05 P3

(xl'nj

WRH

8 74LS
MD_D15 05 P4

(Xl'nj

AEffi INPUT

ADDR - P3, P4

RD 8 74LS

ADO-AD7

ADB-AD15 8

270246-33

Figure 30. 1/0 Port Reconstruction

Many hardware solutions exist for keeping PC board
noise to a minimum. Ground planes, gridded ground
and VCC structures, bypass capacitors, transient. ab­
sorbers and power busses with built-in capacitors can
al1 be of great help. It is much easier to design a board
with these features than to try to retrofit them later.
Proper PC board layout is probably the single most
important and, unfortunately, least understood aspect
of project design. Minimizing loop areas and induc­
tance, as wel1 as providing clean grounds are very im­
portant. More information on protecting against noise
can be found in the Application Note AP-125, "Design­
ing Microcontrol1er Systems for Noisy Environments".

9.0 PACKAGING

The MCS-96 family of products is offered in many ver­
sions. They are available in 48-pin or 68-pin packages,

ROMless

68-pin 48-pin

Without A to D 8096

With A to D 8097 8095

with or without on-chip ROM/EPROM and with or
without an AID converter. A summary of the available
options is shown in Figure 31.

The 48-pin versions are available in ceramic and plastic
48-pin Dual-In-Line package (DIP). The ceramic ver­
sions have part numbers with the prefix "C". The plas­
tic versions have the prefix UP".

The 68-pin versions are available in a ceramic pin grid
array (PGA), a plastic leaded chip carrier (PLCC) and
a Type B leadless chip carrier (LCC). PGA devices
have part numbers with the prefix "C". PLCC devices
have the prefix UN". LCC devices have the prefix "R".

Specifications for the various members of the MCS-96
family are contained in the next chapter.

With ROM With EPROM

68-pin 48-pin 68-pin 48-pin

8396 8796

8397 8395 8797 8795

Figure 31. The MCS®-96 Family of Products

19-29

intJ MCS®-96 HARDWARE DESIGN INFORMATION

10.0 EPROM PROGRAMMING
(8X9XBH ONLY)

The 879XBH contains 8K bytes of ultraviolet Erasable
and Electrically Programmable Read Only Memory
(EPROM) for internal. storage. This memory can be
programmed in a variety of ways-including at run­
time under software control. '

The EPROM is ma.E£.edinto memory locations 2000H
through 3FFFH if EA is a TTL high. However, apply­
ing + 12.75V to EA when the chip is reset will place
the 879XBH in EPROM Programming Mode. The
Programming Mode has been implemented to support
EPROM programming and verification.

When an 879XBH is in Programming Mode, special
hardware functions are available to the user. These
functions include algorithms for slave, gang and auto
EPROM programming.

10.1 Programming the 879XBH

Three flexible EPROM programming modes are avail­
able on the 879XBH-auto,slave and run-time. These
modes can be used to program 879XBHs in a gang,
stand alone or run-time environment. '

The Auto Programming Mode enables an 879XBH to
program itself, and up to IS other 879XBHs, with the
8K bytes of code beginning at address 4000H on its
external bus. The Slave Mode provides a standard in­
terface that eriables any number of 879XBHs to be pro­
grammed by a master device such as an EPROM pro­
grammer. The Run-Time ,Mode allows individual
EPROM locations to be programmed at run-time un­
der, compiete software control.

In the Programming Mode, some I/O pins have been
renamed. These new pin functions are used to deter­
mine the programming function that is performed, pro­
vide programming ALEs, provide slave ID numbers
and pass error 'information. Figure 33 shows how the

pins are renamed. Figure 34 describes each new pin
function.

While in Programming Mode, PMODE selects the pro­
gramming function that is performed (see Figure 32).
When not 'in the Programming Mode, Run-Time pro­
gramming can be done at any time.

PMODE Programming Mode

0-4 Reserved

5 Slave Programming

6-0BH Reserved

OCH Auto Programming Mode

OOH Program Configuration Byte

OEH-OFH Reserved

Figure 32. Programming Function PMODE Values

To guarantee proper execution, the pins of PMODE
and SID must be in their desired state before the
RESET pin is allowed to rise and reset the part. Once
the part is reset, it is in the selected mode and should
not be switched to another mode without a new reset
sequence.

When EA selects the Programming Mode, the chip re­
set sequence loads the CCR from the Programming
Chip Configuration Byte (PCCB). This is a separate
EPROM location that is not mapped under normal op­
eration. PCCB is only important when programming in
the Auto Programming Mode. In this mode, the
879XBH that is being programmed gets the data to tie
programmed from external memory over the system
b~s. Therefore, PCCR must correctly correspond to the
memory system in the programming setup, which is not
necessarily the memory organization of the application.

The following sections describe, 879XBH programming
in each programming mode.,

19-30

Name

PMODE

SID

PALE

PROG

PACT

PVER

PD~

SALE

SPROG

PORTS 3 and4

MCS®-96 HARDWARE DESIGN INFORMATION

ING
SELEC

PROGRAMM
1.10

TSL
DE _

EA

" PD.l
[PMODE PO.6

v PO.S
PO.4

HSI.O

" [SID HSI.l
HSI.2 v
HSI.3

t PROGRAMMING VOLTAGE

VPP A .11. PORT 4
PORT 3

ADDRESS COMMAND DATA PATH

" HSO.O PACT

P2.1 PALE

P2.2 PROG

P2.0 PVERjSALE

P2.S PDO jSPROG
879XBH

Figure 33. Programming Mode Pin Function

Function

270246-34

PROGRAMMING MODE SELECT: Determines the EPROM programming algorithm
that is performed. PM ODE is sampled after a chip reset and should be static while
the part is operating.

SLAVE ID NUMBER: Used to assign each slave pin of Port 3 or 4 to use for passing
programming verification acknowledgement. For example, if gang programming in
the Slave Programming Mode, the slave with SID = 0001 will use Port 3.1 to signal
correct or incorrect program verification.

PROGRAM~ING ALE INPUT: Accepted by an 879XBH that is in the Slave
Programming Mode. Used to indicate that Ports 3 and 4 contain a command/ .
address.

PROGRAMMING PULSE: Accepted by 879XBH that is in the Slave Programming
Mode. Used to indicate that Ports 3 and 4 contain the data to be programmed. A
falling edge on PROG signifies data valid and starts the programming cycle. A rising
edge on PROG will halt programming in the slaves.

PROGRAMMING ACTIVE: Used in the Auto-Programming Mode to indicate when
programming activity is complete.

PROGRAM VERIFIED: A signal outut after a programming operation by parts in the
Slave Programming Mode.

PROGRAMMING DURATION OVERFLOWED: A signal output by parts in the Slave
Programming Mode. Used to signify that the PROG pulse applied for a programming
operation was longer than allowed.

SLAVE ALE: Output signal from an 879XBH in the Auto Programming Mode. A
falling edge on SALE indicafes that Ports 3 and 4 contain valid address/command
information for slave 879XBHs that maybe attached to the master.

SLAVE PROGRAMMING PULSE: Output from an 879XBH in the Auto Programming
Mode. A falling edge on SPROG indictates that Ports 3 and 4 contain valid data for
programming into slave 879XBHs that may be attached to the master.

ADDRESS/COMMAND/DATA BUS: Used to pass commands, addresses and data
to and from slave mode 879XBHs. Used by chips in the Auto Programming Mode to
pass command, addresses and data to slaves. Also used in the Auto Programming
Mode as a regular system bus to access external memory. Each line should be
pulled up to VCC through a resistor.

Figure 34. Programming Mode Pin Definitions

19-31

MCS®-96 HARDWARE DESIGN .INFORMATION

10.2 Auto Programming Mode

The Auto Programming Mode provides the ability to
program the internal 879XBH EPROM without having
to use a special EPROM programmer. In this mode,
the 879XBH simply programs itself with the data found
at external locations 4000H through 5FFFH. All that is
required is that some sort of external memory reside at
these locations, that EA selects the programming mode
and that VPP is applied. Figure 35 shows a minimum
configuration for using an 8K x 8 EPROM to program
one 879XBH in the Auto Programming Mode. .

The 879XBH first reads a word from external memory,
then the Modified Quick-Pulse Programming™ Algo­
rithm (described later) is used to program the appropri­
ate EPROM location. Since the erased state of a byte is
OFFH, the Auto Programming Mode will skip loca­
tions where the data to be programmed is OFFH. When
a1l8K has been programmed,PACT goes high and the
part outputs a 0 on Port 3.0 if it programmed correctly
and a 1 if it failed.

10.2.1 GANG PROGRAMMING WITH THE AUTO
PROGRAMMING MODE

An 879XBH in the Auto Programming Mode can also
be used as a programmer for up to 15 other 879XBHs
that are configured in the Slave Programming Mode.

sv,~..L. __ .,

0.1-1.0
;.<F VSS 1

VSS2
,..-----.......... AGND

NMI

To accomplish this, the 879XBH acting as the master
outputs the slave command/data pairs on Ports 3 and 4

, necessary to program slave parts with the same data it
is programming itself with. Slave ALE (SALE) and
Slave PROG (SPRaG) signals are provided by the
master to the slaves to demultiplex the commands from
the data. Figure 36 is a block diagram of a gang pro­
gramming system using one 879XBH in the Auto Pro­
gramming Mode. The Slave Programming Mode is de­
scribed in the next section.

The master 879XBH first reads a word from the exter­
nal memory controlled by ALE, RD and WR. It then
drives Ports 3 and 4 with a Data Program command
using the appropriate address and alerts the slaves with
a falling edge on SALE.· Next, the data to be pro­
grammed is driven onto Ports 3 and 4 and slave pro­
gramming begins with a falling edge on SPRaG. At the
same time, the master begins to program its own
EPROM location with the data read in. Intel's Modi­
fied Quick-PulseProgramming™ Algorithm is used,
with Data Verify commillids being given to the slaves
after each programming pulse.

When programming is complete PACT goes high and
Ports 3 and 4 are driven with all Is if all parts pro­
grammed correctly. Individual bits of Port 3 and 4 will
be driven to 0 if the slave with that bit number as an
SID did not program correctly. The 879XBH used as
the master assigns itself an SID of O.

8796BH
OR

RDt---.,..-------J

NOTE:

8797Bfi
'''':;';' __,.,,-1 XTAL 1

L..". ,...--I XTAL 2

. ALE t----,...---I

BUSWIDTH

Ports 3 and 4 should have pullups to vee,

Figure 35. The Auto Programming Mode

19-32

270246-35

NOTE:

MCS®-96 HARDWARE DESIGN INFORMATION

5Vdc

0.1-1.0 JLF

+12.75 Vdc

vee
VREF
VPD

8796BH
OR

5Vdc

5V

8797BH RD t-+---~----:~:-----'
,.:-.... --1 XTAL 1

ALE t-+-+------I

~ -_4XTAL2

W(!)
--'0
<t",
"-,,-

SLAVE SLAVE SLAVE
879XBH 879XBH 879XBH

HSI HSI HSI
321 a 3 2 1 a 321 a

PORTS ~ g
3,4 <t '" "-,,-

•• SLAVE • 879XBH

HSI
321 a

SID = OFh

270246-36

EA and VPP on slaves must be at + 12.75 Vdc. Each slave's PMODE must equal 05H. Ports 3 and 4 should have
pullups to vee. Minimum configuration connections must also be made for slaves. A 10 MHz clock is recommended for
the slaves.

Figure 36. Gang Programming with the Auto Programming Mode

19·33

inter MCS@·96 HARDWARE DESIGN INFORMATION

10.3 Slave Programming Mode

Any number of 879XBHs can be programmed by a
master programmer through the Slave Programming
Mode.

The programming device uses Ports 3 and 4 of the parts.
being programmed as a command/data path. The
slaves accept signals on PALE (Program ALE) and
PROG (Program Enable) to demultiplex the com­
mands and data. The slaves also use PVER, PD~ and
Ports 3 and 4 to pass error information to the program­
mer. Support for gangprogramniing of up to 16
879XBHs is provided. If each part is given a: unique
SID (Slave ID Number) an 879XBH in the Auto Pro­
gramming Mode. can be used as a master to program
itself and up to 15 other slave 879XBHs. There is, how­
ever, no 879XBH dependent limit to the number of
parts that can be gang programmed in the slave mode.

It is important to note that the interface to an 879XBH
in the slave mode is similar to a multiplexed bus. At­
tempting to issue consecutive PALE pulses without a
corresponding PROG pulse will produ~xpe«ted
results. Similarly, issuing consecutive PROG pulses
without the corresponding PALE pulses immediately
preceding is equally unpredictable.

10.3.1 SLAVE PROGRAMMING COMMANDS

The commands sent to the slaves are 16-bits wide and
contain two fields. Bits 14 and 15 specify the action
that the slaves are to perform. Bits 0 through 13 specify
the address upon which the action is to take place:
Commands are sent via Ports 3 and 4 and are available
to cause the slaves io program a word, verify a word, or
dump a word (Table 1). The address part of the com­
mand senno the slaves ranges from 2000H to 3FFFH
and refers to the internal EPROM memory space. The
following sections describe each slave programming
mode command.

Table 1. Slave Programming
Mode Commands

P4.7 P4.6 Action

0 0 Word Dump
0 1 Data Verify
1 0 Data Program
1 1 Reserved

DATA PROGRAM COMMAND-After a Data Pro­
gram Command has been sent to the slaves, PROG
must be pulled low to cause the data on Ports 3 and 4
to be programmed into the location specified during the
command. The falling edge of PROG is not only used
to indicate data valid, but also triggers the hardware
programming of the word specified. The slaves will be"
gin programming 48 states after PROG falls, and will
continue to program the location until PROG rises.

After the rising edge of PROG, the slaves automatically
perform a verification of the address just programmed.
The result of this verification is then output on PVER
(Program Verify) and PD~ (Program Duration Over­
flowed). Therefore, verification information is available
following the Data Program Command for program­
ming systems that cannot use the Data Verify com­
mand ..

If PVER and PD~ of all slaves are Is after PROG rises
then the data program was successful everywhere. If
PVER is a 0 in any slave, then the data programmed
did not verify. correctly in that part. If PD~ is a 0 in
any slave, then the programming pulse in those parts
was terminated by an internal safety feature rather than
the rising edge of PROG. The safety feature prevents
over-programming in the slave mode. Figure 37 shows
the relationship of PALE, PROG, PVER and PD~ ·to
the Command/Data Path on Ports 3 and 4 for the Data
Program Command.

19-34

inter MCS®-96 HARDWARE DESIGN INFORMATION

PORTS 3,4 --{ ADDRESS/COMMAND ~_---------

PALE \"-__ -.-11
PROG

PVER VALID 7 \ VALID

PDO VALID 7 \ VALID
270246-37

Figure 37. Data Program Signals in Slave Programming Mode

PALE ~'-____ -JI

PORTS 3,4 -< DATA VERIFY COMMAND) (VERIFICATION BITS)-

PROG
270246-38

\\...... __ ..JI

Figure 38. Data Verify Command Signals

DATA VERIFY COMMAND-When the Data Verify
Command is sent, the slaves respond by driving one bit
of Port 3 and 4 to indicate correct or incorrect verifica­
tion of the previous Data Program. A I indicates cor­
rect verification, while a 0 indicates incorrect verifica­
tion. The SID (Slave ID Number) of each slave deter­
mines which bit of the command/data path is driven.
PROG from the programmer governs when the slaves
drive the bus. Figure 38 shows the relationship of Ports
3 and 4 to PALE and PROG.

This command is always preceded by a Data Program
Command in a programming system with as many as
16 slaves. However, a Data Verify Command does not
have to follow every Data Program Command.

WORD DUMP COMMAND-When the Word
Dump Command is issued, the 879XBH being pro­
grammed adds 2000H to the address field of the com­
mand and places the value found at the new address on
Ports 3 and 4. For example, sending the command
#0100H to a slave will result in the slave placing the
word found at location 2100H on Ports 3 and 4. PROG
from the programmer governs when the slave drives the
bus. The signals are the same as shown in Figure 22.

Note that this command will work only when just one
slave is attached to the bus, and that there is no restric­
tion on commands that precede or follow a Word
Dump Command.

10.3.2 GANG PROGRAMMING WITH THE
SLAVE PROGRAMMING MODE

Gang programming of 879XBHs can be done using the
Slave Programming Mode. There is no 879XBH based
limit on the number of chips that may be hooked to the
same Port 3/Port 4 data path for gang programming.

If more than 16 chips are being gang programmed, the
PVER and PD~ outputs of each chip could be used for
verification. The master programmer could issue a data
program command then either watch every chip's error
signals, or AND all the signals together to get a system
PVER and PD~.

If 16 or fewer 879XBHs are to be gang programmed at
once, a more flexible form of verification is available.
By giving each chip being programmed a unique SID,
the master programmer could then issue a data verify
command after the data program command. When a
verify command is seen by the slaves, each will drive
one pin of Port 3 or 4 with a 1 if the programming
verified correctly or a 0 if programming failed. The SID
is used by each slave to determine which Port 3, 4 bit it
is assigned. An 879XBH in the Auto Programming
Mode could be the master programmer if 15 or fewer
slaves need to be programmed (see Gang Programming
with the Auto Programming Mode).

19-35

intJ MCS®·96 HARDWARE DESIGN INFORMATION

10.4 Auto Configuration Byte
Programming Mode

The CCB (location 20I8H) can be treated just like any
other EPROM location, and programmed using any
programming mode. But to provide for simple pro­
gramming of the CCB when no other locations need to
be programmed, the Auto Configuration Byte Pro­
gramming Mode is provided. Programming in this
mode also programs PCCB. Figure 39 shows a block
diagram for using the Auto Configuration Byte Pro­
gramming Mode.

With PMODE = ODH and OFFH on Port 4, CCB and
PCCB will be programmed to the value on Port 3 when
a logic 0 is placed on PALE. After programming is
complete, PVER will be driven to a I if the bytes pro­
grammed correctly, and a 0 if the programming failed.

+12.75 Vdc

EA vPP

879XBH

PO.7
PO.S
PO.5

PO.4

This method of programming is the only way to pro­
gram PCCB. PCCB is a non-memory mapped EPROM
location that gets loaded into CCR during the reset
sequence when the voltage on EA puts the 879XBH in
Programming Mode. If PCCB is not programmed us­
ing the Auto Configuration Byte Programming Mode,
every time the 879XBH is put into Programming Mode
the CCR will be loaded with OFFH (the value of the
erased PCCB location).

However, if programming the CCB and PCCB is done
using this Programming Mode, the PCCB will take on
the value programmed into CCB. This means that until
the part is erased, programming activities that use the
system bus will employ the bus width and controls se­
lected by the user's CCB.

vee

mTmT-+vee

PALE ~Ito-IIM_

270246-39

NOTES:
1. Tie Port 3 to the value desired to be programmed into CCS, and PCCS.
2. Make all necessary minimum connections for power, ground and clock.

Figure 39. The Auto CCR Programming Mode

19-36

inter MCS®-96 HARDWARE DESIGN INFORMATION

10.5 Run-Time Programming

Run-Time Programming of the 879XBH is provided to
allow the user complete flexibility in the ways in which
the internal EPROM is programmed. That flexibility
includes the ability to program just one byte or one
word instead of the whole EPROM, and extends to the
hardware necessary to program. The only additional
requirement of a system is that a programming voltage
is ap~d to VPP. Run-Time Programming is done
with EA at TTL-high (normal operation-internal/ex­
ternal access).

To Run-Time program, the user writes a byte or word
to the location to be programmed. Once this is done,
the 879XBH will continue to program that location un­
til another data read from or data write to the EPROM
occurs. The user can therefore control the duration of
the programming pulse to within a few mircoseconds.
An intelligent algorithm should be implemented in soft­
ware. It is recommended that the Modified Quick-Pulse
Programming Algorithm be implemented.

After the programming of a location has started, care
must be taken to ensure that no program fetches (or

PROGRAM:

POP temp

POP address_temp
POP data_temp
PUSH temp

PUSHF
LDB
LDB
ADD

EI

int_mask , #enable_swt_only
HSO_COMMAND , #SWTO_ovf
HSO_TIME,TIMERl, #program_pulse

ST data'-temp, [address_temp]
CALL 20lAH
POPF
RET

swtO_expired:
POP 0
RET

pre-fetches) occur from internal memory. This is of no
concern if the program is executing from external mem­
ory. However, if the program is executing from internal
memory when the write occurs, it will be necessary to
use the built in "Jump to Self' located at 201AH.

"Jump to SeW' is a two byte instruction in the Intel test
ROM which can be CALLed after the user has started
programming a location by writing to it. A software
timer interrupt could then be used to escape from the
"Jump to Self' when the proper programming pulse
duration has elapsed. Figure 40 is an example of how to
program an EPROM location while execution is entire­
ly internal.

Upon entering the PROGRAM routine, the address
and data are retrieved from the STACK and a Software
Timer is set to expire one programming pulse later. The
data is then written to the EPROM location and a
CALL to location 20lAH is made. Location 20lAH is
in Intel reserved test ROM, and contains the two byte
opcode for a "Jump to Self'. The minimum interrupt
service routine would remove the 20lAH return ad­
dress from the STACK and return.

;take parameters from the
STACK

;save current status
;enable only swt interrups
;load swt command to interrupt
;when program pulse time
;has elapsed

Figure 40. Programming the EPROM from Internal Memory Execution

19-37

intJ MCS®·96 HARDWARE DESIGN INFORMATION

10.6 ROM/EPROM Program Lock

Protection mechanisms have been provided on the
ROM and EPROM versions· of the 8096BH to inhibit
unauthorized accesses of internal program memory.
However, there must always be a way to allow autho­
rized program memory dumps for testing purposes.
The following describes 839XBH, 879XBH program
lock features and the mode provided for authorized
memory dumps.

10.6.1 LOCK FEATURES

Write protection is provided for EPROM parts, while
READ protection is provided for both ROM and
EPROM parts.

Write protection is enabled by causing the LOCO bit in
the CCR to take the value O. When WRITE protection
is selected, the bus controller will cycle through the
write sequence, but. will not actually drive data to the
EPROM and will not enable YPP to the EpROM. This
protects the entire EPROM 2000H-3FFFH from inad­
vertant or unauthorized programming, and also pre­
vents writes to the EPROM from upsetting program
execution. If write protection is not enabled, a data
write to an internal EPROM location will begin pro­
gramming that location, and continue programming
the location until a data read of the internal EPROM is
executed. While programming, instruction fetches from
internal EPROM will not be successful.

READ protection is selected by causing the LOCI bit
in the CCR to take the value O. When READ protec­
tion is enabled, the bus controller will only perform a
data read from the address range 2020H-3FFFH if the
slave program counter is in the range 2000H-3FFFH.
Note that since the slave PC can be many bytes ahead
ofthe CPU program counter, an instruction that is lo­
cated after address 3FFAH may not be allowed to ac­
cess protected memory, even though the instruction is
itself protected.

If the bus controller receives a request to perform a
READ of protected memory, the READ sequence oc­
curs with indeterminant data being returned to the
CPU.

Other enhancements were also made to the 8096BH for·
program protection. For example, the value of EA is
latched on reset so that the device cannot be switched
from external to internal execution mode at run-time.
In addition, if READ protection is selected, an NMI
event will cause the device to switch to external only
execution mode. Internal execution can only resume by
resetting the chip.

10.6.2 AUTHORIZED ACCESS OF PROTECTED
MEMORY

To provide a method of dumping the internal
ROM/EPROM for testing purposes a "Security Key"
mechanism and ROM dump mode have been imple­
mented.

The security key is a 128 bit number, located in internal
memory, that must be matched before a ROM dump
will occur. The application code contains the security
key starting at location 2020H.

The ROM dump mode is entered just like any pro­
gramming mode (EA = 12.7SY), except that a special
PMODE strapping is used. The PMODE for ROM
dump is 6H (OllDB).

The ROM dump sequence begins with a security key
verification. Users must place at external locations
4020H-402FH the same 16 byte key that resides inside
the chip at locations 2020H-202FH. Before doing a
ROM dump, the chip checks that the. keys match.

After a successful key verification, the chip dumps data
to external locations I OOOH -II FFH and 4000H­
SFFFH. Unspecified data appears at the low addresses.

Internal EPROM/ROM is dumped to 4000H-SFFFH,
beginning with internal address 2000H.

If a security key verification is not successful, the chip
will put itself into an endless loop of internal execution.

NOTE:
Substantial effort has been expended to provide an ex­
cellent program protection scheme. However, Intel can­
not, and does not guarantee that the protection methods
that we have devised will prevent unauthorized access.

19-38

inter MCS®-96 HARDWARE DESIGN INFORMATION

10.7 Modified Quick-Pulse
Programming™ Algorithm

The Modified Quick-Pulse Programming Algorithm
calls for each EPROM location to receive 25 separate
100 /J-S (± 5 /J-s) program cycles. Verification of correct
programming is done after the 25 pulses. If the location
verifies correctly, the next location is programmed. If
the location fails to verify, the location has failed.

Once all locations are programmed and verified, the
entire EPROM is again verified.

Programming of 879XBH parts is done with VPP
12.75V ±0.25V and VCC = 5.0V ±0.5V.

10.8 Signature Word

The 8X9XBH contains a signature word at location
2070H. The word can be accessed in the slave mode by
executing a word dump command.

Table 2. 8X9XBH Signature Words

Device Signature Word

879XBH 896FH
839XBH 896EH
809XBH Undefined

10.9 Erasing the 879XBH EPROM

Initially, and after each erasure, all bits of the 879XBH
are in the "1" state. Data is introduced by selectively

programming "Os" into the desired bit locations. Al­
though only "Os" will be programmed, both "Is" and
"Os" can be present in the data word. The only way to
change a "0" to a "I" is by ultraviolet light erasure.

The erasure characteristics of the 879XBH are such
that erasure begins to occur upon exposure to light with
wavelengths shorter than approximately 4000 Ang­
stroms (A). It should be noted that sunlight and certain
types of flu!?rescent lamps have wavelengths in the
3000-4000 A range. Constant exposure to room level
fluorescent lighting could erase the typical 879XBH in
approximately 3 years, while it would take approxi­
mately I week to cause erasure when exposed to direct
sunlight. If the 879XBH is to be exposed to light for
extended periods of time, opaque labels must be placed
over the EPROM's window to prevent unintentional
erasure.

The recommended erasure procedure for the 879XBH
is exposure to shortwave ultraviolet light which has a
wavelength of 2537 A. The integrated dose (i.e., UV in­
tensity X exposure time) for erasure should be a mini­
mum of 15 Wsec/cm2. The erasure time with this dos­
age is approximately 15 to 20 minutes using an ultravi­
olet lamp with a 12000 /J-W/cm2 power rating. The
879XBH should be placed within 1 inch of the lamp
tubes during erasure. The maximum integrated dose an
879XBH can be exposed to without damage is
7258 Wsec/cm2 (1 week@ 12000 /J-W/cm2). Exposure
of the 879XBH to high intensity UV light for long peri­
ods may cause permanent damage.

19-39

soc 196KA Architectural
Overview

20

inter
80C196KA

ADVANCED CHMOS MICROCONTROLLER
ARCHITECTURAL OVERVIEW

1.0 INTRODUCTION

All of the features available on the 8096BH are present
on the 80C196KA including:

Register to Register Architecture

232 Bytes of Register File

22 Interrupt Sources With 8 Vector Locations

High Speed 16x16 Multiply

High Speed 32/16 Divide

Five 8-bit I/O Ports

Analog to Digital Converter (A/D Versions Only)

Pulse-Width-Modulated Output

Full Duplex Serial Port With Dedicated Baud Rate
Generator

16-bit Watchdog Timer

High Speed Subsystem. With
Up to 4 Time Capture Inputs
Up to 6 Time Triggered Outputs
2 16-bit Timer/Counters
4 Software Timers

In addition, the 80C196KA has:

Independent Capture of Timer2

Up and Down Counting on Timer2

2.33 fLs 16x16 Multiply vs 6.25 fLs on 8096BH

VREF ANGND

A/D PORT 0 PORT 1

4.0 p.s 32/16 Divide vs 6.25 p.s on 8096BH

6 Additional Interrupt Sources / 10 Additional Vectors

6 Additional Instructions

Power Down and Idle Modes for Power Savings

and many other feature enhancements. The 80C196KA
can be plugged into most 8096BH designs with only a
few minor software changes.

This document can be used as a stand-alone guide to
the features of the 80C196KA and as a programmer's
guide and user's manual by experienced 8096 program­
mers. For those people who are not familiar with the
details of programming an 8096, this manual should be
used in conjunction with the current edition of the Em­
bedded Controller Handbook.

2.0 ARCHITECTURAL OVERVIEW

For the purpose of describing its operation, the
80C196KA can be divided into three sections: the pro­
cessing unit, peripheral (I/O) devices, and support cir­
cuitry. The processing unit consists of the 16-bit CPU
with its register file, the interrupt controller and the
memory controller. Peripheral devices, a clock genera­
tor, and some miscellaneous support circuitry make up
the remainder of the chip. A block diagram of the
80C196KA is shown in Figure 1.

HSI HSO

CONTROL
SIGNALS

270418-1

Figure 1. 80C196KA Block Diagram

20-1

intJ 80C196KA ARCHITECTURAL OVERVIEW

2.1 INTERNAL TIMINGS

Internal operation of the chip is based on the oscillator
frequency divided by two, giving the basic operating
time unit, known as a "State Time". With a 12 MHz
oscillator, a state time is 167 nanoseconds. With an
8 MHz oscillator, a state time is 250 nanoseconds, the
same as that of an 8096 running with a 12 MHz oscilla­
tor. Since the 80C196KA will be run at many frequen­
cies, the times given throughout this overview will be in
state times or "states", unless otherwise specified.

Either a crystal or an external source can be used to
drive the on-chip oscillator. Figure 2 shows a circuit for
the oscillator connected to a crystal. When an external
source is used, it is connected to the XTALI pin leav­
ing the XT AL2 pin floating. The XT AL2 pin becomes
a weak output in this mode and must be left unconnect­
ed.

Two non-overlapping internal phases are created by the
clock generator: phase 1 and phase 2. Phase 2 is buff­
ered and output on the CLKOUT pin. This is not the
same as on the 8096, since it uses a three-phase clock.
Changing from a three-phase clock to a two-phase one
speeds up the operation of the chip for a set oscillator
frequency. It should cause no compatibility problems in
most designs, but does cause some differences in the
system bus timings. A detailed description of the bus
timing is included in the electrical characteristics sec­
tion of this document.

2.2 CPU

INTERNAL
CIRCUITRY

Figure 2. Oscillator

270418-2

The CPU on the 80c196KA is 16 bits wide and is con­
nected to the interrupt controller and the memory con­
troller by a 16-bit bus. In addition, there is an 8-bit bus
which is used to transfer opcodes from the memory
controller to the CPU. On the 8096 there is no 16-bit
bus between the CPU and memory controller, so the 8-
bit bus is used for both data and opcode transfers. All
of the peripheral devices on the 80C196KA are con­
nected to the CPU by a 16-bit bus.

20-2

A microcode engine controls the CPU, allowing it to
perform operations with any byte, word or double word
in the 232-byte Register File. Operations can also be
performed with any of the 1/0 Control Registers, also
called Special Function Registers (SFRs). With a flat
architecture, the programmer is not limited to a single
accumulator since all 256 bytes in the register me and
SFR space can be used as accumulators. This elimi­
nates accumulator bottleneck and allows the use of 3
operand instructions. The internal hardware of the
CPU is similar to that of the 8096, except that extra
hardware has been added to provide a faster multiply.

2.3 MEMORY MAP

64 Kbytes of addressable memory space are available
on the 80C196KA, most of which can be used for pro­
gram or data storage. The space from 100H through
OFFFFH contains a small block of reserved or special
function locations but is otherwise available to the user.
The reserved locations must contain OFFH. Resetting
the chip sets the program counter to location 2080H,
allowing 8 Kbytes of RAM contiguous with the inter­
nal RAM at location OFFH. The interrupt vectors, con­
figuration byte, and several reserved addresses are lo­
cated between 2000H and 207FH. Figure 3 shows a
memory map of the 80C196KA memory space.

OFFFFH
EXTERNAL MEMORY OR I/O

4000H

INTERNAL ROM/EPROM OR
EXTERNAL MEMORY'

20BOH

RESERVED
2040H

UPPER B INTERRUPT VECTORS
(NEW ON BOC196KA)

2030H

ROM/EPROM SECURITY KEY'
2020H

RESERVED
2019H

CHIP CONFIGURATION BYTE
201BH

RESERVED
2014H

LOWER B INTERRUPT VECTORS
PLUS 2 SPECIAL INTERRUPTS

2000H

PORT 3 AND PORT 4
1FFEH

EXTERNAL MEMORY OR I/O
0100H

INTERNAL DATA MEMORY· REGISTER FILE
(STACK POINTER, RAM AND SFRS)

EXTERNAL PROGRAM CODE MEMORY
OOOOH

'ROM/EPROM will be available on future versions of 80C196.

Figure 3. 80C196KA Memory Map

inter 80C196KA ARCHITECTURAL OVERVIEW

Between OH and OFFH program execution fetches will
always be from external memory, even if the chip has
an onboard ROM or EPROM. This area of external
memory is reserved for use by Intel development sys­
tems and should not be used in applications which will
require development tools. Data fetches will always
come from the on-chip register file and SFRs. The in­
ternal RAM from location OIAH (26 decimal) to
OFFH is the register file. This memory region, as well
as the status of the majority of the chip, is kept alive
while the chip is in the powerdown mode. (On the 8096
only the top 16 bytes of RAM were kept alive.) Details
on powerdown mode are discussed in a later section.

Locations 18H and 19H are considered part of the reg­
ister file although they are used as the stack pointer.
The stack can be located anywhere in memory, internal
or external, by using the 16-bit pointer. If the stack is
not being used, these two bytes can be used as regular
RAM.

Locations OOH through 17H are the I/O control regis­
ters or SFRs. As shown in Figure 4, two SFR windows
are provided on the 80C196KA. Selecting the active
window is done by using the Window Select Register
(WSR) at location 14H in all of the windows.

Only two values may be written to the WSR, 0 and 15.
Other values are reserved for use in future parts and
will cause unpredictable operation.

FFH

16H

14H

12H

10H

OEH

OCH

OAH

OSH

06H

04H

02H
OOH

WSR

INT MASKlIPENDI

TIMER2

INT MASK/PEND

ZERO REG

READ/WRITE
WSR = 0

Window 0, the register window selected with WSR = 0,
is a superset of the one used on the 8096. As depicted in
Figure 5, it has 24 registers, some of which have differ­
ent functions when read than when written. Registers
which are new to the 80C196KA or have changed func­
tions from the 8096 are indicated in the figure. Figure 6
contains brief descriptions of the registers. Detailed de­
scriptions are contained in the section which discusses
the peripheral device controlled by the register.

In register Window 15 (WSR= 15), the operation of
the SFRs is changed, so that those which were read­
only in the 8096 SFR space are write-only and vice
versa. The only exception to this is that TIMER2 is
read/write in Window 0, and T2 Capture is read/write
in Window 15. (TIMER2 was read-only on the 8096.)
Registers which can be read and written in Window 0
can also be read and written in Window 15. Details of
using Window 15 are discussed in the peripheral de­
scription section.

Caution must be taken when using the SFRs as sources
of operations or as base or index registers for indirect or
indexed operations. It is possible to not get the desired
results, since external events can change SFRs and
some SFRs clear when read. The potential for an SFR
to change value must be taken into account when oper­
ating on these registers. This is particularly important
when high level languages are used as they do not al­
ways make allowances for SFR-type registers.

16H

14H

12H

10H

OEH

OCH

OAH

OSH

06H

04H

02H
OOH

Listed registers
are present in
both windows

WSR

INT MASKlIPENDI

T2CAPTURE

INT MASK/PEND

ZERO REG

WRITE/READ
WSR = 15

Figure 4_ Multiple Register Windows

20-3

19H

18H

17H

16H

15H

14H

13H

12H

11H

10H

OFH

OEH

ODH

OCH

OBH

OAH

09H

08H

07H

06H

05H

04H

03H

02H

01H

DOH

STACK POINTER

'IOS2

IOS1

10SO

'WSR

'INT_MASK1

'INT_PEND1

'SP_STAT

PORT2

PORn

PORTO

TIMER2 (HI)

TIMER2(LO)

TIMER1 (HI)

TIMER1 (LO)

INT_PENDING

INT_MASK

SBUF(RX)

HSI~STATUS

HSL TIME (Hlj

HSI_ TIME (LO)

AD_RESULT (HI)

AD-RESULT (LO)

ZERO REG (HI)

ZERO REG (LO)

WHEN READ

80C196KA ARCHITECTURAL OVERVIEW

19H

18H

17H

16H

15H

14H

13H

12H

11H

10H

OFH

OEH

ODH

OCH

OBH

OAH

09H

08H

07H

06H

05H

04H

03H

02H

01H

DOH

WSR ~ 0

STACK POINTER

PWM_CONTROL

IOC1

lOCO

'WSR

'INT_MASK1

'INT_PEND 1

'SP_CON

PORT2

PORn

BAUD RATE

TIMER2 (HI)

TIMER2(LO)

'IOC2

WATCHDOG

INT _PENDING

INT_MASK

SBUF(TX)

HSO_COMMAND

HSO_TIME (HI)

HSO_TIME (LO)

HSI_MODE

AD_COMMAND

ZERO REG (HI)

ZERO REG (LO)

WHENWRITIEN

Figure 5, Special Function Registers

20-4

ODH

OCH

'T2 CAPTURE (HI)

'T2 CAPTURE (LO)

WSR ~ 15

OTHER SFRS IN WSR
15 BECOME READABLE
IF THEY WERE WRITABLE
IN WSR ~ 0 AND WRITABLE
IF THEY WERE READABLE
INWSR ~ 0

'NEW OR CHANGED
REGISTER FUNCTION

intJ 80C196KA ARCHITECTURAL OVERVIEW

Register Description

RO Zero Register - Always reads as a zero, useful for a base when indexing and as a
constant for calculations and compares.

AD_RESULT AID Result Hillow - low and high order results of the AID converter

AD_COMMAND AID Command Register - Controls the A/D

HSLMODE HSI Mode Register - Sets the mode of the High Speed Input unit.

HSI_TIME HSI Time Hilla - Contains the time at which the High Speed Input unit was triggered.

HSO_TIME HSO Time Hi/lo - Sets the time or count for the High Speed Output to execute the
command in the Command Register.

HSO_COMMAND HSO Command Register - Determines what will happen at the time loaded into the
HSO Time registers.

HSLSTATUS HSI Status Registers - Indicates which HSI pins were detected at the time in the HSI
Time registers and the current state of the pins.

SBUF(TX) Transmit buffer for the serial port, holds contents to be outputted.

SBUF(RX) Receive buffer for the serial port, holds the byte just received by the serial port.

INT_MASK Interrupt Mask Register - Enables or disables the individual interrupts. (also IMASK)

INT_PENDING Interrupt Pending Register - Indicates that an interrupt signal has occurred on one of
the sources and has not been serviced. (also IPEND)

WATCHDOG Watchdog Timer Register - Written to periodically to hold off automatic reset every
64K state times.

TIMER1 Timer 1 Hilla - Timer1 high and low bytes.

. TIMER2 Timer 2 Hilla - Timer2 high and low bytes .

10PORTO Port 0 Register - levels on pins of Port O.

BAUD_RATE Register which determines the baud rate, this register is loaded sequentially.

IOPORT1 Port 1 Register - Used to read or write to Port 1.

IOPORT2 Port 2 Register - Used to read or write to Port 2.

SP_STAT Serial Port Status - Indicates the status of the serial port.

SP_CON Serial Port Control - Used to set the mode of the serial port.

10SO I/O Status Register 0 - Contains information on the HSO status.

IOS1 I/O Status Register 1 - Contains information on the status of the timers and of the
HSI.

lOCO I/O Control Register 0 - Controls alternate functions of HSI pins, Timer 2 reset
sources and Timer 2 clock sources.

IOC1 I/O Control Register 1 - Controls alternate functions of Port 2 pins, timer interrupts
and HSI interrupts.

PWM_CONTROl Pulse Width Modulation Control Register - Sets the duration of the PWM pulse.

IPEND1 Interrupt Pending register for the 8 new interrupt vectors (also INT _PENDING1)

IMASK1 Interrupt Mask register for the 8 new interrupt vectors (also INT _MASK1)

IOC2 I/O Control Register 2 - Controls new 80C196KA features

IOS2 I/O Status Register 2 - Contains information on HSO events

WSR Window Select Register - Selects register window

Figure 6. Special Function Register Description

20-5

intJ 80C196KA ARCHITECTURAL OVERVIEW

2.4 MEMORY CONTROLLER·

All of the program memory and the external data mem­
ory are transferred to the CPU through the memory
controller. Within the memory controller is a slave pro­
gram counter, an instrnction queue, and a bus control­
ler.

The slave program counter keeps track of the program
counter in the CPU and requests the correct sequence
of instructions to be fetched by the bus controller and
stored in the queue.

Instruction Queue
A four byte instruction queue allows the CPU to run.
faster by keeping the next instruction byte almost al­
ways available. When the instruction flow changes, as
with a branch or call instruction, the queue is flushed
and refilled. The amount of time required to do this is
included in the instruction execution times which· are
listed in other sections of this document.

When debugging code using a logic analyzer, one mUst
be aware of the queue. It is not possible to determine
when an iustruction will begin executing by simply
watching when it is read since the queue is filled in
advance of instruction execution. In addition, the algo­
rithms which are used to keep the queue full may cause
instructions to be read into the 80C196KA multiple
times.

80C196KA

PORT 4.

PORT 3

BUS CONTROL

270418-3
(8) 16-Blt Bus

Bus Controller

Both S-bit and 16-bit bus modes are supported by the
bus controller. A block diagram of the two modes is
shown in Figure 7. E;lch mode has several variations,
all of which are controlled by the Chip Configuration
Register (CCR), shown in Figure S. This register is lit
an unmapped location within the SOCl96KA and.is
loaded from location 20lSH during the chip reset se­
quence.

Switching between 8 and 16-bit bus modes cim be done
using the buswidth pin if the CCR is set for a 16-bit
bus. Dynamically switching· between the two modes is
possible by changing this pin on the fly. A system using
.l6-bit wide program memory for speed, but only need­
ing one S-bit. RAM chip, could make use of this feature
to avoid the use of another RAM or the software need­
ed to convert word·wide data into data stored in every
other byte.

When CCR bits 2 and 3 are both set to 1 the standard
8096BH bus control signals are provided, as shown· m
Figure 9. WR will. come out for each write. BHE will
be valid throughout the bus cycle and can be combined
with the WR and address line 0 to form WRL (Write
Low byte) and WRH (Write High byte). ALE will rise
as the address starts to come out and will fall to provide
a signal to externally latch the address.

The Write Strobe mode eliminates the need to external­
ly decode WRL and WRH (See Figure 10). In 16-bit
bus modes, WRL and WRH are provided on the WR

80C196KA

8-BIT
PORT 4 LATCHED

ADDRESS HIGH

270418-4
(b) B-Blt Bus·

Figure 7. Bus Width Options

20-6

inter

ALE Jl
WRITE

SHE

ADO-15 ----1

ALE ~

WRL

WRH

ADO -15 -1

ADDR

80C196KA ARCHITECTURAL OVERVIEW

....... ,.....,...I....r" ,.....,...I..rI
CHIP CONFIGURATION REGISTER

ENABLE POWERDOWN FEATURE

BUS WIDTH SELECT
(16-BIT BUS/S:i---=B""IT"""B"'U"'S)

WRITE STROBE MODE SELECT
(WR AND SHE / WRL AND WRH)

'-----ADDRESS VALID STROBE SELECT

(ALE/ ADV)

(IRCO) } INTERNAL READY

'------(IRC1) CONTROL MODE

(LOCO) }PROGRAM .LOCK

'--------(LOC1) MODE

270418-5

Figure 8. Format of the Chip Configuration Register

rL ALE Jl

LJ WRITE LJ
VALID ADO-7 ----1ADDR LOWl DATA OUT

DATA OUT J- ADS-15 ----1 ADDRESS HIGH

270418-6
16·Bil Bus Cycle 8·Bil Bus Cycle

Figure 9. Standard Bus Control

rL ALE

VALID WR

VALID ADO -7 -1ADDR LOW l DATA OUT

ADDR DATA OUT J- ADS -15 -1 ADDRESS HIGH

270418-8
16·Bil Bus Cycle 8·Bil Bus Cycle

Figure 10. Write Strobe Mode

20-7

rL

J-
J-

270418-7

J-
J-
270418-9

inter 80C196KA ARCHITECTURAL OVERVIEW

ADV I ADV I
WRITE WRITE U

BHE VALID ADO-7 ---1ADDR LOWI DATA OUT r--
ADO-15 ---1 ADDR DATA OUT r-- AD8-15 ---1 ADDRESS OUT HIGH r--

270418-10 270418-11
16-Blt Bus Cycle 8-Blt Bus Cycle

Figure 11_ Address Valid Mode

ADV

WRITE LOW I VALID WRITE

WRITE HIGH I VALID, I AOO-7 -1 ADDR LOW I DATA OUT· r--
ADO -15 --1 AD DR DATA OUT r-- AD8 -15 -4L. __ A_D_D_RE_S_S_H_IG_H __ r--

270418-12 270418-13
16-Blt BUS' Cycle 8-Blt Bus Cycle

Figure 12_ Address Valid With Write Strobe Mode

and BHE lines, respectively. Both lines go low for word
writes, while only one line will go low for a byte write.
The WR line is provided for 8~bit bus modes and will
go low for. all writes. Clearing CCR bit 2 selects this
mode.

An Address Valid (ADV) strobe can be provided in
place of ALE if CCR bit 3 is cleared (See Figure 11). In
this mode, ADV will go low after an external address is
set up and stay low until the end of the bus cycle, at
which time it will go high. This signal can be used to
provide a chip select for external memory.

Both the Address Valid Strobe mode and the Write
Strobe Mode can be enabled at the same time providing
the signals shown in Figure 12.

The EA pin is used to determine whether program code
in the address range 2000H through 3FFFH is fetched
from internal memory or external memory. Since the
80C196KA does not have internal memory this pin

20-8

must be externally tied low. Future ROM and EPROM
parts, the 83C196KB and 87C196KB respectively, will
execute from internal memory if the pin is tied high.
The EA pin is latched on chip reset and cannot be
changed without resetting the chip.

A READY pin limit can be set with the CCR, deter­
mining the maximum number of wait states that will be
allowed when the READY pin is pulled low. This elim­
inates the need for external hardware to remove the
READY signal prior to the next bus cycle. The IRCO
and IRCI bits control wait states as follows:

IRC1 IRCO Description

0 0 Limit to one wait state
0 1 Limit to two wait states
1 0 Limit to three wait states
1 1 Wait states not limited internally

inter 80C196KA ARCHITECTURAL OVERVIEW

When internal program memory is used, the CCR can
set read and write protection using the LOCO and
LOCI bits (CCR bits 6 and 7). A zero on LOCO enables
read protections and a zero on LOCI enables write pro­
tection. Both read and write protection may be enabled
at the same time by clearing both bits.

so for the SOCI96KA to be compatible with S096 soft­
ware, which uses the NMI, location 203EH must be
loaded with OOOOH.

Opcode F7H, the TRAP instruction, causes an indirect
vector through location 201OH. All unimplemented op­
codes are mapped into a special interrupt vector
through location 2012H. They act as uninterruptable
instructions and take one more state time than the
TRAP instruction.

2.5 INTERRUPTS

Twenty-eight (2S) sources of interrupts are available on
the SOCI96KA. These sources are gathered into 15 vec­
tors plus special vectors for NMI, the TRAP instruc­
tion, and Unimplemented Opcodes. Figure 13 shows
the routing of the interrupt sources into their vectors as
well as the control bits which enable some of the
sources.

NMI, the external Non-Maskable Interrupt, is the
highest priority peripheral interrupt. It vectors indirect­
ly through location 203EH. For design symmetry, a
mask bit exists in INT_MASKI for the NMI. To pre­
vent accidental masking of an NMI, the bit does not
function and will not stop an NMI from occurring.
NMI on the S096 vectored directly to location OOOOH,

The interrupt sources in the SOCI96KA are arranged in
a fixed priority. Figure 14 shows the priorities (15 is
highest) of the interrupts and their vector locations. If
simultaneous interrupt requests are received, the high­
est priority source that is both pending and enabled will
get serviced. Software priorities can be provided by en­
abling and disabling different interrupts in different
routines. When an interrupt occurs, the SOCI96KA's
response is identical to that of the S096; it decrements
the stack pointer value by 2 and then stacks the pro­
gram counter value. Because of the additional 16-bit
internal bus, the SOC 196KA interrupt response takes
only 16/IS states compared with 21/24 states on the
S096 (states: stack internal/external).

SOURCES VECTORS

NON - MASKABLE INTERRUPT ---------- NMI

TIMER 2 CAPTURE ---------- TIMER 2 CAPTURE

4TH FIFO ENTRY ---------- HSI FIFO 4

UNIMPLEMENTED OPCODE ---------- UNIMPLEMENTED OPCODE

TRAP INSTRUCTION ---------- SOFTWARE TRAP

EXTINT ----.:~----- EXTINT PIN (NEW)
'\.IOC1.1

PORTO.? -----=----- EXTINT

TI FLAG ---.......... ::------ TI FLAG (NEW)
./'~------ SERIAL PORT

RI FLAG ---...... ----- RI FLAG (NEW)

SWT 0 - 3 ------T'"--- SOFTWARE TIMER
RESET TIMER 2 ------1

START A/D -----....

HSI.O PIN ---------- HSI.O PIN

HSO LINES 0 - 5 ---------- HIGH SPEED OUTPUT

HSI FIFO IS FULL ---~------HSI FIFO FULL(NEW)
'\.IOC1.?

HSI HOLDING REGISTER LOADED ------=~---- HSI DATA AVAILABLE

A/D CONVERSION COMPLETE A/D CONVERSION COMPLETE

TIMER 2 OVERFLOW (OOOOH OR BOOOH) TIMER 2 OVERFLOW (NEW)
'\.IOC1.3

TIMER 1 OVERFLOW - TIMER OVERFLOW

Figure 13. All Possible Interrupt Sources

20-9

270418-14

intJ 80C196KA ARCHITECTURAL OVERVIEW

80C196KAINTERRUPTS

Number Source
Vector

Priority
Location

INT15 NMI 203EH 15

INT14 HSI FIFO Full 203CH 14

INT13 EXTINTPin 203AH 13

INT12 TIMER2 Overflow 2038H 12

INT11 TIMER2 Capture 2036H 11

INT10 4th Entry into HSI FIFO 2034H 10

INT09 RI 2032H 9

INT08 TI 2030H 8

SPECIAL Unimplemented Opcode 2012H N/A

SPECIAL Trap 2010H N/A

INT07 EXTINT 200EH 7

INT06 Serial Port 200CH 6

INT05 Software Timer 200AH 5

INT04 HSI.O Pin 2008H 4

INT03 High Speed Outputs 2006H 3

INT02 HSI Data Available 2004H 2

INT01 AID Conversion Complete 2002H 1

INTOO Timer Overflow 2000H 0

Figure 14. Interrupt Vector Locations

The 8 lowest priority interrupts (INTO-INT7) and the
TRAP instruction are identical to the interrupts on the
8096. Many of the new interrupt vectors were created
by separating vectors which were formerly tied.to the
same interrupt. These include: Transmit Interrupt, Re­
ceive Interrupt, HSI FIFO Full, Timer2 Overflow and
EXTINT (as opposed to PO.7). The new interrupts add­
ed are:

1. HSI FIFO (not including holding register) has 4 or
more entries

2. Timer 2 Capture occurred (P2.7 rising edge).

7 6 5

IPEND1:
IMASK1:

NMI
FIFO EXT
FULL INT

7 6 5

IPEND: EXT SER SOFT
IMASK1: INT PORT TIMER

Processing of interrupts is controlled by the Interrupt
Pending Registers, the Interrupt Mask Registers, and
the Global Disable Bit. The Interrupt Pending Regis­
ters (shown in Figure 15) have one bit for each inter­
rupt vector. If a transition occurs to trigger a particular
interrupt, the associated bit in the pending register is
set. When a vector to an interrupt routine is taken, the
associated pending bit is cleared.

The Interrupt Mask Registers (IMASK, IMASKl)
have bits to correspond to each interrupt and are set up
identically to the Interrupt Pending Registers. Each
mask bit can be set or cleared in software to enable or
disable individual interrupts.· These registers are also
referred to as INT~SK and INT~ASKI.

PSW bit 9, the global Interrupt Disable Bit, controls
the entire interrupt structure. When it is cleared, all
interrupts are disabled except NMI, TRAP and unim­
plemented opcode. When it is set and an interrupt is
both pending imd unmasked (Ipend.x = 1, Imask.x = 1),
the interrupt service procedure begins. The highest pri­
ority interrupt which is pending and unmasked is the
first to occur. Interrupt servicing involves a call to the
address stored in the interrupt vector location and
. clearing of the interrupt pending bit.

4

The interrupt mask registers can be used to enable and
disable specific interrupts from occurring under soft­
ware control. By using this feature a programmer can
determine which interrupt sources can interrupt which
interrupt routines. There are 6 instructions which facili­
tate this by not allowing interrupts to occur immediate­
ly after them:

EI, DI - Enable and disable all interrupts by tog­
gling the global disable bit (pSW.9) ..

PUSHF - PUSH Flags pushes the PSW /IMASK
pair then clears it, leaving both IMASK
and PSW.9 clear.

POPF - POP Flags pops the PSW IIMASK pair
off the stack

3 2 1 0

T2 T2
HSI4 RI TI

OVF CAP

4 3 2 1 0

HSI.1 HSO HSI A2D TIMER
PIN PIN DATA NONE OVF

Figure 15. Interrupt Pending Registers

20-10

80C196KA ARCHITECTURAL OVERVIEW

PUSHA - PUSH All does a PUSHF, then pushes
the IMASKI/wSR pair and clears
IMASKI

POPA - POP All pops the IMASKI/WSR pair
and then does a POPF

Interrupts can also not occur immediately after execu­
tion of:

Unimplemented Opcodes

TRAP - The software trap instruction

SIGND - The signed prefix for multiply and divide
instructions

PUSHA, PUSHF, and DI disable interrupts until soft­
ware changes either the interrupt mask, PSW.9 or both.
POP A, POPF, and EI can enable interrupts and are
frequently used at the end of an interrupt routine, just
prior to a RETurn. By preventing interrupts from oc­
curring between these instructions and a RETurn, the
RET is always executed and the stack will not build up
needlessly.

Interrupts cannot occur immediately after unimple­
mented opcodes or the TRAP instruction, since the in­
terrupt routine for these operations must have time to
execute a PUSHF, PUSHA or D1. The SIGND prefix
and the associated multiply or divide instructions must
not be separated, so interrupts cannot occur after the
SIGND opcode.

Setting and clearing the IPEND and IPEND 1 registers
is simplified since new interrupts are stored in buffer
registers while read-modify- write operations are per­
formed on IPEND and IPEND!. To set and clear bits
in the pending registers the following sequences can be
used:

ANDB I PEND , #llllOlllB; Clear IPEND.3

ORB IPEND, #OOOOOOlOB; Set IPEND.l

Comparing the 80Cl96KA to the 8096, the interrupt
response time has been improved as follows:

External Internal
Stack Stack

8096 80C196KA 8096 80C196KA

States 24 18 21 16

8096 @ 12 MHz 6.00 - 5.25 -
80C196KA @ 8 MHz - 4.5 - 4.00

80C196KA @ 12 MHz - 3.0 - 2.67

Interrupt response time is measured as the elapsed time
from the end of the previous instruction to the begin­
ning of the first instruction of the interrupt service rou­
tine. It does not include the time needed to finish the
current instruction or to save values on the stack. 20-11

2.6 INSTRUCTION SET AND PSW

All the instructions in the 8096 exist in the 80Cl96KA
and perform the same function with two exceptions.
First, the PSW bits are set in a specific manner for
some operations where the 8096 PSW results were un­
defined. Second, some instructions execute in fewer
state times.

PSW Settings

The PSW bits on the 80C196KA are set as follows:

PSW: I : I ~ I ~ I v~ I ~ I ~ I I:T I
Z: The Zero flag is set to indicate that an operation

generated a result equal to zero. The instructions
SUBC(B) and ADDC(B) can only clear the Z flag
but can not set it. This makes it easier to perform
double word arithmetic, as a zero in the high word
will not set the zero flag.

N: The Negative flag is set to indicate that the opera­
tion generated a negative result. Note that the N
flag will be in the algebraically correct state even if
an overflow occurs. For shift operations, including
the normalize operation and all three forms (SHL,
SHR, SHRA) of byte, word and double word
shifts, the N flag will be set to the same value as
the most significant bit of the result. This will be
true even if the shift count is O.

V: The oVerflow flag is set to indicate that the opera­
tion generated a result which is outside the range
for the destination data type. For divide opera­
tions, the following conditions are set:

For the
operation: V is set if Quotient is:

UNSIGNED
BYTE DIVIDE> 255 (OFFH)

UNSIGNED
WORD DIVIDE> 65535 (OFFFFH)

SIGNED
BYTE
DIVIDE

SIGNED
WORD
DIVIDE

< -l27(8lH)
or
> l27(7FH)

< -32767(800lH)
or
> 32767 (7FFFH)

VT: The oVerflow Trap flag is set when the V flag is
set, but it is only cleared by the CLR VT, JVT and
JNVT instructions. This allows testing for over­
flows in a group of operations instead of after each
operation.

80C196KA ARCHITECTURAL OVERVIEW

C: The Carry flag is set to indicate the state of the
arithmetic carry from the most significant bit of
the ALU for an'arithmetic operation, or the state
of the last bit shifted out of an operand for a shift.
Arithmetic Borrow after a subtract operation is the
complement of the C flag (i.e. if the operation gen­
erated a borrow then C=O.)

Instruction Set Additions

Six instructions have been added to the 8096 instruc­
tion set to form the .80C196KA instruction set. The
added instructions are:

PUSHA - PUSHes the PSW, INT_MASK,
IMASKl, and WSR

X: Reserved for future. Should always. be cleared
when writing to the PSW for compatibility with
future products. '

POPA - POPs the PSW, INT_MASK, IMASKI,
and WSR

I: The global Interrupt disable bit disables all inter­
rupts except NMI when cleared.

ST: The STicky bit is set to indicate that during a right
shift a one has been shifted into the Carry flag and
then has been shifted out. This fl~g can be used
with the carry flag to determine rounding.

Descriptions of these new instructions follow:

IDLPD - Sets the part into IDLE. or Powerdown
mode

DJNZW - Decrement Jump Not Zero using a Word
counter

CMPL -,- Compare 2 long direct values

BMOV - Block move using 2 auto-incrementing
pointers and a counter

1. PUSHA (push all): This instruction is used instead of PUSHF to support the 8 additional interrupts. It is similar
to PUSHF, but pushes two words instead of one. The first word pushed is the same as for the PUSHF instruction,
PSW lINT_MASK. The second word pushed is formed by the IMASKI/WSR register pair. As a result of this
instruction the PSW, INT_MASK, and IMASKI registers are cleared, and the SP is decremented by 4. Inter­
rupts are disabled in two ways by this'instruction since both PSW.9 and the interrupt masks are cleared. Inter­
rupts cannot occur between this instruction and the one following it.

execution: SP +- SP - 2
(SP) +- PSW/INT_MASK
PSW/INLMASK +- 0
SP +- SP - 2
(SP) +- lMASK1/WSR
lMASKl +- 0

assembly language format: PUSHA
object code format: <11110100>

bytes: 1
states: on-chip stack:12

off-chip stack:18

PSW:

2. POPA (pop all): This instruction is used instead of POPF to support the 8 additional interrupts. It is similar to
POPF, but pops two words instead of one. The first word is popped into the IMASKI/wSR register pair, while
the second word is popped into the PSW lINT_MASK register pair. As a result of this instruction the SP is
incremented by 4. Interrupts can not occur between this instruction and the one following it.

execution: lMASK1/WSR +- (SP)
SP +- SP + 2
PSW/INT_MASK +-- (SP)
SP +- SP + 2

assembly language format: POPA
object code format: <11110101>

20-12

intJ 80C196KA ARCHITECTURAL OVERVIEW

bytes: 1
states: on-chip stack: 12
off-chip stack: 18

PSW:

(.... = changed)

3. IDLPD (idle/powerdown): This instruction is used for entry into the idle and powerdown modes. Selecting IDLE
or POWERDOWN is done using the key operand. If the operand is not a legal key, the part executes a reset
sequence. The bus controller will complete any prefetch cycle in progress before the CPU stops or resets.

execution: if KEY =.1 then enter IDLE
else if KEY = 2 then enter

POWERDOWN
else execute reset.

assembly language format: IDLPD #key (key is 8-bit value)
object code format: <11110110> <key>

bytes: 2
states: legal key: 8

illegal key: 25

PSW:

Legal Key
Illegal Key

Z

-
0

N

-
0

V VT C

- - -
0 0 0

x I ST

x - -
x 0 0

(- = Unchanged)

4. DJNZW (decrement and jump if not zero word): This instruction is the same as the DJNZ except that the count
is a word operand. A counter word is decremented; if the result is not zero the jump is taken. The range of the
jump is -128 to + 127.

execution: COUNT - COUNT - 1
if· COUNT' < > 0 then
PC - PC + disp (sign extended)

assembly language format: DJNZW wreg,cadd
object code format: <11100001> <wreg> <disp>

bytes: 3
states: jump not taken: 5

jump taken: 9

PSW:

20-13

inter 80C196KA ARCHITECTURAL OVERVIEW

5. CMPL (compare long): This instruction is used to compare the magnitudes of two double word (long) operands.
The operands are specified using the direct addressing mode. Five PSW flags are set following this operation, but
the operands are not affected.

execution: DST - SRC

DST SRC
assembly language format: CMPL Lreg,Lreg
object code format: <11000101> <src Lreg> <dst Lreg>

bytes: 3
states: 7

PSW:

6. BMOV (block move): This instruction is used to move a block of word data from one location in memory to
another. The source and destination addresses are calculated using the indirect. with auto- increment addressing
modes. A long register addresses the source and destination pointers which are stored in adjacent word registers.
The number of transfers is specified by a word register. The blocks of data can reside anywhere in memory but
should not overlap.

execution: COUNT ~ (CNTREG)
LOOP: SRCPTR ~ (PTRS)
DSTPTR ~ (PTRS + 2)
(DSTPTR) ~ (SRCPTR)
(PTRS) ~ SRCPTR + 2
(PTRS + 2) ~ DSTPTR + 2
COUNT ~ COUNT - 1
if COUNT < > 0 then go to LOOP

PTRS CNTREG
assembly language format: BMOV Lreg,wreg
obj ect code format: < 11000001> <wreg> <Lreg>

bytes: 3
states: internal/internal:

external/internal:
external/external:

Notes;

8 per transfer + 6
11 per transfer + 6
14 per transfer + 6

1. CNTREG does not get decremented during the instruction
2. It is easy to unintentionally create a very long un-interruptable operation with this instruction.

To provide an interruptable version of BLKMOV for large blocks, the BLKMOV instruction can be used with the
DJNZ(W) instruction. This is possible because the pointers are modified, but CNTREG is not. Consider the
example: '

LD PTRS, SRC ;Pointer to base of sources table
LD PTRS+2, DST ;Pointer to base of destination table
LD CNTREG, #COUNT;Number of words to move per set
LD CNTSET, #SETS ;Number of sets to move
BMOV PTRS, CNTREG ;Move one set
DJNZW CNTSET, MOVE ;Decrement set counters and move again

20-14

intJ 80C196KA ARCHITECTURAL OVERVIEW

Addressing Modes

The instructions on the 80C196KA can be divided into
4 groups: no operand, one operand, two operand, and
three operand. Two and three operand instructions, as
well as the PUSH and POP instructions, can use multi­
ple addressing modes, the remaining instructions can
operate on any of the bytes in the register file or SFR
space.

To indicate.the address range for the operands of each
instruction the letters "D", "B", and "A" are used.
"D" is the destination register and must be in the regis­
ter file or SFR space. "A" is the second operand. It is
addressed using one of the six addressing modes and
can be located anywhere in memory. "B" is the third
operand for three operand instructions and must be lo­
cated in the register file or SFR space. Three operand
instructions reduce the number of temporary variables
needed and therefore the number of move operations,
speeding up the code for many applications.

The address modes usable with "A" operands are listed
below:

Direct - The operand is specified by an 8-bit address
field in the instruction. The operand must be in the
Register File or SJi"R space.

Immediate - The operand itself follows the opcode in
the instruction stream as immediate data. The immedi­
ate data can be either 8 or 16 bits wide.

Indirect - An 8-bit address field in the instruction con­
tains the 7 -bit address of a word in the Register File
which contains the 16-bit address of the operand. The
operand can be anywhere in memory

Indirect With Auto-Increment - Same as indirect, ex­
cept that after the operand is referenced, the word reg­
ister which contained its address is incremented by one
if the operand is a byte or by two if it isa word.

Indexed (Long and Short) - The instruction contains an
8-bit address field and either an 8-bit or 16-bit displace­
ment field. The 8-bit address field gives the 7-bit ad­
.dress of a word in the Register Fiie which contains a
16-bit base address. The 8-bit or 16-bit displacement
field contains a signed displacement which is added to
the base address to produce the address of the operand.
The operand can be anywhere in memory.

NOTE:
The indexed address mode can be used with the Zero
Register to ·directly address any location in memory.
It can also be used with the Stack Pointer to address
variables on the stack.

The indexed and indirect modes of addressing on the
80C196KA operate in fewer state times than they do on
the 8096 because of the extra 16-bit internal bus.

Figures 16 and 17 show a summary of the instructions
available on the 80C196KA and the number of state
times each requires to execute. Timing values for
jumps, calls and returns include the time required to
flush the instruction queue and to fetch the opcode at
the destination address.

The instruction times listed are the minimum number
of state times required for execution. (A state time is 2
oscillator periods.) This number could increase if wait
states are used or if the opcode and its operands are not
prefetched and residing in the instruction queue when
they are needed. The instruction queue is almost never
empty when running in the 16-bit bus mode without
wait states, so the minimum number of state times is
almost always the correct execution time.

As would be expected, some performance degradation
occurs when using wait states or the 8-bit bus since the
queue may become. empty. It is very difficult to predict
the exact queue status at all times, so the instruction
timings can not be exactly predicted, only minimum
and worst case timings can be calculated.

When adding wait-states, the number of wait-states
used, multiplied by the number of instruction fetches
and data accesses occurring, must be added to the in­
struction .execution timing. This will provide the worst­
case timing for an instruction sequence, the actual tim­
ing will be between the minimum timing and the worst­
case timing.

In the 8-bit bus mode, the worst case timing, assuming
no wait-states, can be calculated by adding the follow­
ing to the minimum timings:

2 state times for each external word write

1 state time for each external word read

1 state time for each byte that is not in the queue
when needed (worst case is the number of bytes in
an instruction minus 1) .

Instruction execution in the 8-bit mode typically takes
20 to 30 percent longer than in the 16-bit mode.

20-15

80C196KA ARCHITECTURAL OVERVIEW

Instruction Summary

Mnemonic Operands Operation (Note 1)
Flags

Notes
Z N C V VT ST

ADD/ADDB 2 D +-D+A ", ,,,, ", ", t -
ADD/AD DB 3 D+-B+A ", ", ", ", t -
ADDC/ADDCB 2 D+- D+A+C !. ", ", ", t -
SUB/SUBB 2 D ~ D-A ", ", ", ", t -
SUB/SUBB 3 D+-B-A ", .", ", ", t -

SUBC/SUBCB 2 D+-D-A+C-1 !. ", ", ", t -
CMP/CMPB 2 D-A ", ", ", ", t -
MULIMULU 2 D,D + 2 +- D x A - - - - - - 2

MUL/MULU 3 D,D + 2 +- B x A - - - - - - 2

MULB/MULUB 2 D,D + 1+- D X A - - - - - - 3

MULB/MULUB 3 D,D + 1 +- B x A - - - - - - 3

DIVU 2 D +- (D,D + 2) / A,D + 2 +- remainder '- - - ", t - 2

DIVUB 2 o +- (D,O + 1) /A,D + 1 +- remainder - - - ", t - 3

DIV 2 D +- (D,D + 2) / A,D + 2 +- remainder - - _. ", t -

DIVB 2 D +-(D,D+ 1)/A,D+ 1 +- remainder - - - ", t -

AND/ANDB 2 D +- DANDA ", ", 0 0 - -

AND/ANDB 3 -0 +- BANDA ", ", 0 0 - -
OR/ORB 2' D +- DORA' ", ", 0 0 - -
XOR/XORB 2.' D +-0. (ecxl. or) A ", ", 0 0 - -
LD/LDB 2 D+-A - - - - - -
ST/STB 2· A+-D - - - - - -

LDBSE 2 o +:-A; D + 1 +- SIGN(A) - - - - - - 3,4

LDBZE 2 D.+:- A; D +1 +-0 - - - - - - 3,4

PUSH 1 SP: +- SP ~2; (SP) +-A - - - - - -
POP 1 A +- (SP); SP + 2 - - - - - -
PUSHF 0 SP +- SP - 2; (SP) +- PSW; 0 0 0 0 0 0

PSW +- OOOOH; I+-O

POPF 0 PSW +- ,(SP); SP +- SP + 2; I+-'" ", ", ", ", ", ",

SJMP 1 PC +- PC + 11-bit offset - - - - - - 5

WMP 1 PC +- PC + 16-bit offset - - - - - - 5

BR[indirect] 1 PC +- (A) - - - - - -

SCALL 1 SP +- SP - 2; - - - - - - 5
(SP) +- PC; PC +- PC + 11-bit offset

LCALL 1 SP +- SP - 2; (SP) +- PC; - - - - '- - 5
PC +- PC + 16-bit offset

Figure 16. Instruction Summary

20-16

inter 80C196KA ARCHITECTURAL OVERVIEW

Instruction Summary (Continued)

Mnemonic Operands Operation (Note 1)
Flags

Notes
Z N C V VT ST

RET 0 PC -- (SP); SP -- SP + 2 - - - - - -

J (conditional) 1 PC -- PC + a-bit offset (if taken) - - - - - - 5

JC 1 Jump if C = 1 - - - - - - 5

JNC 1 jump ifC = 0 - - - - - - 5

JE 1 jump if Z = 1 - - - - - - 5

JNE 1 Jump if Z = 0 - - - - - - 5

JGE 1 Jump if N = 0 - - - - - - 5

JLT 1 Jump if N = 1 - - - - - - 5

JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5

JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5

JH 1 Jump if C = 1 and Z = 0 - - - - - - 5

JNH 1 Jump if C = 0 or Z = 1 - - - - - - 5

. JV 1 Jump if V = 0 - - - - - - 5

JNV 1 Jump if V = 1 - - - - - - 5

JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5

JST 1 Jump ifST = 1 - - - - - - 5

JNST 1 Jump ifST = 0 - - - - - - 5

JBS 3 Jump if Specified Bit = 1 - -- - - - - 5,6

JBC· 3 Jump if Specified Bit = 0 - - - - - - 5,6

DJNZI 1 D -- D - 1; - - - - - - 5
DJNZW If D =1= 0 then PC -- PC + a-bit offset

DEC/DECB 1 D--D-1 ",. ",. ",. ",. i -
NEG/NEGB 1 D--O-D ",. ",. ",. ",. i -

INCIINCB 1 D--D+1 ",. ",. ",. ",. i -

EXT 1 D -- D; D + 2 -- Sign (D) ",. ",. 0 0 - - 2

EXTB 1 D -- D; D + 1 -- Sign (D) ",. ",. 0 0 - - 3

NOT/NOTB 1 D -- Logical Not(D) ",. ",. 0 0 - -

CLR/CLRB 1 D--O 1 0 0 0 - -

SHLlSHLB/SHLL 2 C -- msb - - - - - 19b -- 0 ",. ",. ",. ",. i - 7

SHRISHRB/SHRL 2 o - msb - - - - - 19b - C ",. ",. ",. 0 - ",. 7

SHRAlSHRAB/SHRAL 2 msb - msb - - - - - 19b - C ",. ",. ",. 0 - ",. 7

SETC 0 C--1 - - 1 - - -

CLRC 0 C--O - - 0 - - -

Figure 16. Instruction Summary (Continued)

20-17

80C196KAARCHITECTURAL OVERVIEW

Instruction Summary (Continued)

Mnemonic Operands . Operation (Note 1)
Flags

Notes
Z N C V VT ST

CLRVT 0 VT +- 0 - - - - 0 -
RST 0 PC +- 2080H 0 0 0 0 0 0 8

DI 0 Disable Allinterupts (I +- 0) - - - - - -
EI 0 Enable All Interupts (I +- 1) - - - - - -

NOP 0 PC +- PC + 1 - - - - - -

SKIP 0 PC +- PC + 2 - - - - - -
NORML 2 Left shift till msb = 1;D +- shift count ,;, ", 0 - - - 7

TRAP 0 SP +- SP - 2; - - - - - - 9
(SP) +- PC; PC +- (2010H)

PUSHA 1 SP +- SP-2; (SP) +- PSW; 0 0 0 0 0 0
PSW +- OOOOH; SP +- SP-2;
(SP) +- IMASK1/WSR; IMASK1 +- OOH

POPA 1 IMASK1/WSR +- (SP); SP +- SP+2 ", ", ", ", ", ",

PSW +- (SP); SP +- SP + 2

IDLPD 1 IDLE MODE IF KEY = 1; - - - - - -
POWERDOWN MODE IF KEY =2;
CHIP RESET OTHERWISE

CMPL 2 D-A ", ", ", ", t -

BMOV 2 [PTR_HI] + +- [PTR_LOW] + ; - - - - - -
UNTILCOUNT=O

NOTES:
1. If the mnemonic ends in "B" a byte operation is performed, otherwise a word operation is done. Operands is done. Operands D, B,

and A must conform to the alignment rules for the required operand type. D and B are locations in the Register File; A can be
located anywhere in memory.

2. D,D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.
3. D,D + I are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte to word.
5. Offset is a 2's complement number.
6. Specified· bit is one of the 2048 bits in the register tile.
7. The "V' (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H.
9. The assembler will not accept this mnemonic. .

Figure 16. Instruction Summary (Continued)

20-18

infef 80C196KA ARCHITECTURAL OVERVIEW

MNEMONIC DIRECT IMMED
INDIRECT INDEXED

NORMAL' A-INC' SHORT' LONG'

ADD (3-op) 5 6 7/9 8/10 7/9 8/10
SUB (3-op) 5 6 7/9 8/10 7/9 8/10
ADD (2-op) 4 5 6/8 7/9 6/8 7/9
SUB (2-op) 4 5 6/8 7/9 6/8 7/9
ADDC 4 5 6/8 7/9 6/8 7/9
SUBC 4 5 6/8 7/9 6/8 7/9
CMP 4 5 6/8 7/9 6/8 7/9
ADDB (3-op) 5 5 7/9 8/10 7/9 8/10
SUBB (3-op) 5 5 7/9 8/10 7/9 8/10
AD DB (2-op) 4 4 6/8 7/9 6/8 7/9
SUBB (2-op) 4 4 6/8 7/9 6/8 7/9
ADDCB 4 4 6/8 7/9 6/8 7/9
SUBCB 4 4 6/8 7/9 6/8 7/9
CMPB 4 4 6/8 7/9 6/8 7/9

MUL (3-op) 16 17 18/21 19/22 19/22 20/23
MULU (3-op) 14 15 16/19 17/20 17/20 18/21
MUL (2-op) 16 17 18/21 19/22 19/22 20/23
MULU (2-op) 14 15 16/19 17/20 17/20 18/21
DIV 26 27 28/31 29/32 29/32 30/33
DIVU 24 25 26/29 27/30 27/30 28/31
MULB (3-op) 12 12 14/17 15/18 15/18 16/19
MULUB (3-op) 10 10 12/15 12/16 12/16 14/17
MULB (2-op) 12 12 14/17 15/18 15/18 16/19
MULUB (2-op) 10 10 12/15 12/16 12/16 14/17
DIVB 18 18 20/23 21/24 21/24 22/25
DIVUB 16 16 18/21 19/22 19/22 20/23

AND (3-op) 5 6 7/9 8/10 7/9 8/10
AND (2-op) 4 5 6/8 7/9 6/8 7/9
OR (2-op) 4 5 6/8 7/9 6/8 7/9
XOR 4 5 6/8 7/9 6/8 7/9
ANDB (3-op) 5 5 7/9 8/10 7/9 8/10
ANDB (2-op) 4 4 6/8 7/9 6/8 7/9
ORB (2-op) 4 4 6/8 7/9 6/8 7/9
XORB 4 4 6/8 7/9 6/8 7/9

LD/LDB 4 5 517 6/8 6/8 7/9
ST/STB 4 5 517 6/8 6/8 7/9
LDBSE 4 4 517 6/8 6/8 7/9
LDBZE 4 4 517 6/8 6/8 7/9

BMOV 6+8 per word 6 + 11/14perword

PUSH (int stack) 6 7 9/12 10/13 10/13 11/14
POP (int stack) 8 - 10/12 11/13 11/13 12/14
PUSH (ext stack) 8 9 11/14 12/15 12/15 13/16
POP (ext stack) 11 - 13/15 14/16 14/16 15/17

'Times for (Internal/External) Operands

Figure 17a. Instruction Execution State Times

20-19

intJ 80C196KA ARCHITECTURAL OVERVIEW

MNEMONIC MNEMONIC

PUSHF (int stack) 6 PUSHF (ext stack) 8
POPF (int stack) 7 POPF (ext stack) 10
PUSHA (int stack) 12 PUSHA (ext stack) 18
POPA (int stack) 12 POPA(ext stack) 18

TRAP (int stack) 16 TRAP (ext stack) 18
LCALL (int stack) 11 LCALL (ext stack) 13
SCALL (int stack) 11 SCALL (ext stack) 13
RET (int stack) 11 RET (ext stack) 14

CMPL 7 OEC/OECB 3
CLR/CLRB 3 EXT/EXTB 4
NOTINOTB 3 INCIINCB 3
NEG/NEGB 3

LJMP 7
SJMP 7
BR [indirect] 7
JNST, JST 4/8 jump not taken/jump taken
JNH, JH 4/8 jump not taken/jump taken
JGT, JLE 4/8 jump not taken/jump taken
JNC, JC 4/8 jump not taken/jump taken
JNVT, JVT 4/8 jump not taken/jump taken
JNV, JV 4/8 jump not taken/jump taken
JGE, JLT 4/8 jump not taken/jump taken
JNE, JE 4/8 jump not taken/jump taken
JBC, JBS 5/9 jump not taken/jump taken

OJNZ 5/9 jump not taken/jump taken
OJNZW 5/9 jump not taken/jump taken

NORML 8 + 1 per shift (9 for 0 shift)
SHRL 7 + 1 per shift (8 for 0 shift)
SHLL 7 + 1 per shift (8 for 0 shift)
SHRAL 7 + 1 per shift (8 for 0 shift)
SHR/SHRB 6 + 1 per shift (7 for 0 shift)
SHL/SHLB 6 + 1 per shift (7 for 0 shift)
SHRAISHRAB 6 + J per shift (7 for 0 shift)

CLRC 2
SETC 2
01 2
EI 2
CLRVT 2

i . NOP 2
RST 15 (includes fetch of configuration byte)
SKIP 3
10LPO 8/25 (proper key/improper key)

Figure 17b. Instruction Execution State Times

20-20

intJ 80C196KA ARCHITECTURAL OVERVIEW

3.0 PERIPHERAL DESCRIPTION

3.1 OVERVIEW

There are five major peripherals on the 80C196KA: the
serial port, analog to digital converter, pulse-width­
modulated output, standard I/O ports and the high
speed I/O unit. With the exception of the high speed
I/O unit (HSIO), each of the peripherals is a single unit
that can be discussed without further separation. These
peripherals will be described after the HSIO unit.

Four individual sections make up the HSIO and work
together to form a very flexible timer/counter based
I/O system. Included in the HSIO are a 16-bit timer
(TIMER 1), a 16-bit up/down counter (TIMER2), a
programmable high speed input unit (HSI), and a pro­
grammable high speed output unit (HSO).

With very little CPU overhead the HSIO can measure
pulse widths, generate waveforms, and create periodic
interrupts. Depending on the application, it can per­
form the work of up to 18 timer/counters and capture/
compare registers. Timer! and Timer2 are used as the
time bases for the HSIO. After describing-their opera­
tion, the HSI and then the HSO will be discussed.

3.2 TIMERS

Timer1

Timer! is a free-running timer which is incremented
every eight state times, just as it is on the 8096. It can
be read and written, but care must be taken when writ­
ing to it if the. High Speed I/O (HSIO) Subsystem is
being used. The precautions necessary when writing to
Timer! are described in the HSIO section. Timer! can
cause an interrupt when it overflows from OFFFFH to
OOOOH if enabled by setting IOCI.2= 1.

Bit = 1

IOCO.1 Reset Timer2 each write

1090.3 Enable external reset

IOCO.5 HSI.O is ext. reset source

IOCO.7 HSI.1 is T2 clock source

IOC1.3 Enable Timer2 overflow int.

IOC2.0 Enable fast increment

IOC2.1 Enable downcount feature

P2.6 Count down if IOC2.1 = 1

IOC2.5 Interrupt on 7FFFH/SOOOH

Timer2

Timer2 on the 80C196KA has many enhancements
over Timer2 on the 8096. It counts transitions, both
positive and negative, on its input which can be either
the T2CLK pin or the HSl.l pin depending on the state
of IOCO.7. The maximum transition speed is once per
state time in the Fast Increment mode, and once every
8 states otherwise. Timer2 can be read and written and
can be reset by hardware, software or the HSO unit.

Interrupts can be generated if Timer2 crosses the
OFFFFH/OOOOH boundary or the 7FFFH/8000h
boundary in either direction. By having two interrupt
points it is possible to have interrupts enabled even if
Timer2 is counting up and down centered around one
of the interrupt points. The interrupt can be set to vec­
tor through location 2038H or 2000H using the inter­
rupt mask registers and IOCI.3.

The value in Timer2 can be captured into the
T2CAPture register by a rising edge on P2.7. T2CAP is
located at OCH in register plane 15. The interrupt gen­
erated by a capture vectors through location 2036H.

Timer2 can be placed in the Fast Increment mode by
setting IOC2.0. In this mode it is not synchronized to
the HSO unit and may not work properly with the
HSO if transitions occur faster than every 8 states. In
addition, HSO events based on Timer2 may not occur
as expected if a count transition occurs within 8 state
times-before or after the timer is reset by other than an
HSO event.

Timer2 can be made to count up or down based on the
Port 2.6 pin ifIOC2.1 = 1. However, caution must be
used when this feature is working in conjunction with
the HSO. If Timer2 does not complete a full cycle it is
possible to have events in the CAM which never match
the timer. These events would stay in the CAM until
the CAM is cleared or the chip is reset.

The following control/status bits are associated with
the Timer2: -

Bit = 0

No action

-_ Disable

T2RST is reset source

T2CLK is clock source

Disable overflow interrupt

Disable fast increment

Disable down count

Count up

Interrupt on OFFFFH/OOOOH

P2.7 Capture Timer2 into T2CAPture
on rising edge

20-21

intJ 80C196KA ARCHITECTURAL OVERVIEW

3.3 HIGH SPEED INPUTS (HSI)

The High Speed Input (HSI) unit can capture the value
of Timer1 when an event takes place on one of four
input lines. Four types of events can trigger a capture;
rising edges only, falling edges only, rising or falling
edges or every eighth rising edge. Whenever the every
eighth rising edge mode is entered the divide-by-8 coun­
ter is reset, allowing very fast pulses to be measured and
counted. The input lines are sampled for events during
every Phasel. A block diagram of this unit is shown in
Figure 18.

Each of the input lines can be individually programmed
to select the type of event to trigger on using the HSI_
MODE register (shown in Figure 19). Several bits of
the lOCO register enable and disable the HSI lines, as
well as control the inputs to Timer2. The function of
these bits is shown in Figure 20.

When events occur, the Timer! value and 4 status bits
indicating which line(s) had events get stored in a 7
level fifo. The next event ready to be unloaded from the
fifo is placed in the HSI Holding Register, so a total of
8 pieces of data can be stored in the fifo. If events occur
after the fifo is full they will not be recorded and the
fifo will contain the information gathered prior to the
overflow error condition.

HSI Trigger Options

HI TO LO

LO TO HI

HI OR LO

EVERY EIGHTH POSITIVE
TRANSITION

270418-15

Data is taken off the fifo by reading the HSI_ST ATUS
register, followed by reading the HSI_TIME register.
When the high byte of the time register is read the next
fifo location is loaded into the holding register, so read­
ing HSI_TIME before HSI_STATUS will result in
getting the wrong status information. For convenience
the HSI time register should be read as a word. The
HSI unit is synchronized to Timerl which increments
every 8 state times. For this reason it is required that 8
state times elapse between reading HSI_TIME and the
next HSI_ST A TUS. The HSI_ST A TUS register,
shown in Figure 21, also contains bits which indicate
the level of the HSI pins at the time that HSI_
STATUS is read.

The HSI can generate interrupt~ in three ways: each
time a value moves from the fifo into the holding regis­
ter; when the fifo (independent of the holding register)
has 4 or more events stored; when the fifo has 6 or
more events stored. The first case is called FIFO_
LOADED, the second is FIFO_4, and the last case is
called FIFO_FULL. Either the FIFO_LOADED or
the FIFO_FULL interrupts can be selected by IOCl.7
to vector through location 2004H. The FIFO_4 inter­
rupt vectors through location 2034H, and the FIFO_
LOADED interrupt vectors through location 203CH.
An additional interrupt can be generated by a rising
edge on the HSI.O pin, even if the pin is not enabled to
the HSI unit. This interrupt vectors through location
2008H.

HSI.O

HSI.l

HSI.2

HSI.3

TRIGGERED
CHANGE INPUT(S)

DETECTOR

8

16-BIT

270418-16

Figure 18. HSI Block Diagram

20-22

80C196KA ARCHITECTURAL OVERVIEW

1 7 6 1 S

HSLMode (03H)

41 3 211 101

L HSI.O MOOE

HSI.l MODE

HSI.2 MODE

HSI.3 MODE

WHERE EACH 2 - BIT MODE CONTROL FIELD
DEFINES ONE OF 4 POSSIBLE MODES:

00 8 POSITIVE TRANSITIONS
01 EACH POSITIVE TRANSITION
10 EACH NEGATIVE TRANSITION
11 EVERY TRANSITION

(POSITIVE AND NEGATIVE)

270418-17

Figure 19. HSI Mode Register

lOCO (ISH)

T2RST ---0 • - - 10CO.S

I~>----- T2 RESET

• - - IOCO.3
• - - 10CO.0

HSI.O ~I-------- HSI

• - - IOCO.2

r<' "'-01-------- HSI

HSI.l ~ TIMER2

T2CLK ---0 ! - - IOCO.7 CLOCK

• - - IOCO.4

HSI.2 ---0 "'-01-------- HSI

• - - IOCO.6

HSI.3 ---0 "'-0-------- HSI
270418-18

Figure 20. lOCO Control of the HSI

HSI_Status (06H)

17 6 I 5 413 2 11 I 0 1

L HSI.O STATUS

HSl.l STATUS

HSI.2 STATUS

HSI.3 STATUS

WHERE FOR EACH 2 - BIT STATUS FIELD THE LOWER
BIT INDICATES WHETHER OR NOT AN EVENT HAS
OCCURED ON THIS PIN AND THE UPPER BIT INDICATES
THE CURRENT STATUS OF THE PIN.

270418-19

Figure 21. HSI Status Register

3.4 HIGH SPEED OUTPUTS (HSO)

The High Speed Output (HSO) unit can generate events
at specified times or counts based on Timer! or Timer2.
A block diagram of the HSO unit is shown in Figure
22. Up to 8 pending events can be stored in the CAM
(Content Addressable Memory) of the HSO unit at one
time. Commands are placed into the HSO unit by first
writing to HSO_COMMAND with the event to oc­
cur, and then to HSO_TIME with the timer match
value. Although HSO_TIME is usually written as a
word, it is the writing of the high byte which sends the
command into the CAM. Since the HSO is synchroniz­
ed to Timer! and the HSI, 8 state times must elapse
between writing to HSO_TIME and writing the next
HSO_COMMAND.

Sixteen different types of events can be triggered by the
HSO: 8 external and 8 internal. There are two interrupt
vectors associated with the HSO. The one at 2006H is
used for external events, the one at 200AH, called the
Software Timer Interrupt, is used for internal events.
External events consist of switching up to 6 lines,
HSO.O through HSO.S. These lines switch during
Phase!. (Note that HSO.4 and HSO.S are shared with
HSI.2 and HSI.3.)

Internal events include setting up 4 Software Timers,
resetting Timer2, and starting an A to D conversion.
The software timers are flags that can be set by the
HSO and optionally cause interrupts. The format for
the HSO commands is shown in Figure 23. Note that
commands OC and OD will act as additional software
timer commands with no associated status bit. They are
useful only if the interrupt bit (bit4) is set in the HSO_
COMMAND.

20-23

intJ

CONTROL
LOGIC

2

80C196KA ARCHITECTURAL OVERVIEW

16-BIT 16-BIT

XTALI/16

16

HIGH SPEED OUTPUT CONTROLS
6 PINS

HSO_
COMMAND

7

CAM
LOCK

4 SOFTWARE TIMERS
2 INTERRUPTS
INITIATE AID CONVERSION
RESET TIMER2

Figure 22. HSO Block Diagram

6 5 4 3 I 2 I 1 I
TMR21 SETI INTI

CHANNEL
TMR1 CLEAR INT

1

CAM Lock - Locks event in CAM if this is enabled by IOC2.6 (EN~LOCK)

TMR/TMR1 - Events Based on Timer2 I Based on Timer1 if 0

SET ICLEAR - Set HSO line I Clear HSO line if 0

INT/INT - Cause Interrupt I No interrupt if 0

CHANNEL: 0-5: HSO lines 0-5

(in Hex): 6: HSO lines 0 and 1

7: HSO lines 2 and 3

8-B: Software Timers 0-4

C-D: Unflagged Events

E: Reset Timer2

F: Start A to D conversion

Figure 23. HSOCommand Register

270416-20

The CAM Lock bit (HSO_Command.7) can be set to
keep commands in the CAM, otherwise the commands
will' clear from the CAM as soon as they cause an
event. This feature is best used to generate periodic
events based on Timer2 and must be enabled by setting
IOC2.6. To clear locked events from the CAM, the en­
tire CAM must be clel;lred by writing a one to the CAM
clear bit IOC2.7. A chip reset will also clear the CAM.
It is possible to caricel individual external events by
writing the opposite. event to the CAM and setting it to

occur at the same time. Both of these events will then
remain in the CAM until the time tag is matched.

Since HSO events are dependent on exact matches of
the timers with the values in the CAM, it is important
to be very careful when using timers in any mode ex­
cept continuous counting in one direction. If Timer2 is
used in the Fast Count mode, the HSO should not be
used if counts could occur faster than once every 8 state
times.

20-24

80C196KA ARCHITECTURAL OVERVIEW

A status register, IOS2, has been added to the 80CI96KA to indicate which events have been generated by the HSO
unit. IOS2 is cleared whenever it is accessed (a jump on bit is considered an access). The correspondence between the
HSO events and the bits in the IOS2 is shown below.

IOS2:~--~----+----+----4---~----~----~--~

Bits 0 through 5 indicate that a command affecting the corresponding HSO pin was executed. Bits 6 and 7 indicate
occurrence of HSO_CMD_I4 and HSO_CMD_I5 respectively (Reset Timer2 and Start AJD Converter.) This
register clears on read.

The 10SO register contains the status of the HSO lines. When WSR= IS, writing to this register changes the values
on the HSO pins. However, the HSO can change this written value by executing a command. The 10SO register
format is shown below. .

IOSO:~--~----+----+----4---~r----r----r---~

Bits 0 through 5 indicate the state of the I/O line. Bits 6 and 7 indicate that a space is available in the CAM and a
space is available in the holding register, respectively.

3.5 SERIAL PORT

The serial port on the 80CI96KA has three full-duplex asynchronous modes and one synchronous mode. All of the
modes are compatible with the other MCS®-96 parts and members of the MCS®-51 product family. The synchro­
nous mode is called Mode 0, the asynchronous modes are called Modes I, 2 and 3. An independent baud rate
generator determines the baud rate for all 'of the modes. The baud rate value is different than that used for the 8096.

Mode 0

Mode 0 synchronous operation uses the RXD pin to input or output data 8 bits at a time. TXD is used to output the
clock signal. The low time of the clock is always two states except in the fastest mode. In the fastest mode, set by
entering a 800IH into the baud register, the low and high times of the clock are each one state time. Figure 24 shows
the relative timings of the serial port operating in Mode O.

Mode 1

Mode 1 is the standard asynchronous serial communication mode. A lO-bit frame (shown in Figure 25) is transmit­
ted or received using a start bit, 8 data b,its, and a stop bit. If parity is enabled by setting PEN = I, an even parity bit
is sent instead of the 8th data bit and parity is checked on reception.

Mode 2

Mode 2 is the 9th bit recognition mode and is frequently used with Mode 3 in interprocessor communication. In this
mode an II-bit frame (shown in Figure 25) consisting of a start bit, 9 data bits, and a stop bit are sent and received.
When transmitting, the 9th bit can be set using TB8. During reception the RI flag and interrupts will not be set
unless the 9th data bit is high. Parity cannot be enabled in this mode.

Mode 3

Mode 3 uses the same ll-bit frame as Mode 2. When transmitting, parity can be enabled,. providing 8 data bits and
an even parity bit in place of the 9th data bit. When receiving, the RI bit is always set and the RB8 bit contains the
value of the 9th data bit. If parity is enabled, (PEN = 1), the RB8/RPE bit will indicate a parity error if one occurs.

20-25

inter 80C196KA ARCHITECTURAL OVERVIEW

TXO "'u '''U '''U '''U "'U "'U "'lJ "'U
RXO (out)

RXO (In) ~v~"V~r-VA~/"\vQ /"\v~/"\vQ"vQ/"\vQr­
.....J\...J\...J\...J\...J\.....J\...J\.....J\.....J\...J\.......J\.......J\.......J\.......J\.....J\.....J~

270418-21

Figure 24. Serial Port Mode 0 Timings

STOP

270418-22
Serial Port Frame-Mode 1

STOP

PROGRAMMABLE 9TH BIT --~

tt·BIT FRAME

270418-23
Serial· Port Frame-Modes 2 and 3

Figure 25. Serial Port Frames, Modes 1,2 and 3

Baud Rates

Baud rates are generated based on either the T2CLK
pin or XTALI pin. The values used are different than
those used for the 8096 because the 80C196KA uses a
divide-by-2 clock instead of a divide-by-3 clock to gen­
erate the internal timings. Baud rates are calculated us­
ing the following formulas where BAUD_REG is the
value loaded into the baud rate register:

Asynchronous Modes 1, 2 and 3:

BAUD_REG = XTAL1 - 1 OR
Baud Rate' 16

T2CLK

Baud Rate' 8

Synchronous Mode 0:

BAUD_REG = B XTAL1 •. - 1 OR T2CLK
aud Rate 2 Baud Rate

The most significant bit in the baud register value is set
to a one to select XTALl as the source. If it is a zero
the T2CLK pin becomes the source. The following ta­
ble shows some typical baud rate values:

BAUD RATES AND BAUD REGISTER VALUES

BAUD XTAL1FREQUENCY
RATE 8.0 MHz 10.0 MHz 12.0 MHz

300 1666/ -0.02 2082/0.02 2499/0.00
1200 416/ -0.08 520/-0.03 624/0.00
2400 207/0.16 259/0.16 312/-0.16
4800 103/0.16 129/0.16 155/0.16
9600 51/0.16 64/0.16 77 / 0.16
19.2K 25/0.16 32/1.40 38/0.16

Baud Register Value I % error

A maximum baud rate of 750 Kbaud is available in the
asynchronous modes with 12MHz on XTALI. The
synchronous mode has a maximum rate of 3.0 Mbaud
with a 12 MHz clock. Location OEH is the Baud Regis­
ter. It is loaded sequentially in two bytes, with the low
byte being loaded first. This register may not be loaded
with zero in serial port Mode O.

20-26

inter 80C196KA ARCHITECTURAL OVERVIEW

Serial Port Control

Reading the serial port is done through the Serial
BUFfer receive (SBUF(RX» register at location 7. This
register is double buffered so data can continually be
received. Writing to the serial port is done through
SBUF(TX), also addressed at location 7. This register is
double buffered on the SOC196KA to allow two bytes
at a time to be written to the serial port.

Serial port control is done through the Serial Port
CONtrol (SP _CON) register at location IIH. This
register is write-only in Window 0 and has the follow­
ing format:

TBS - Sets the ninth data bit for transmission.
Cleared after each transmission. Not valid if
parity is enabled

REN - Enables the receiver

PEN - Enables the Parity function (even parity)

M2,M I - Sets the mode. ModeO = 00, Mode I = 0 I,
Mode2 = 10, Mode3 = 11

The status of the serial port is read through the bits in
the Serial Port STATus (SP _STAT) register, also at
location 11H. Figure 21 shows the status bits of this
register. On the SOC196KA the SP _STAT register
contains new bits to indicate receive Overrun Error
(OE), Framing Error (FE), and Transmiter Empty
(TXE). The bits which were also present on the S096
are the Transmit Interrupt (TI) bit, the Receive Inter­
rupt (RI) bit, and the Received Bit S (RBS) or Receive
Parity Error (RPE) bit. SP _STAT is read-only in
Window 0 and has the following format:

7 6 5 4 3 2 1 0

RSS/
RI TI FE TXE OE X X

RPE

RBS - Set if the 9th data bit is high on reception
(parity disabled)

RPE - Set if parity is enabled and a parity error
occurred

RI - Set at the end of the STOP bit reception

TI - Set at the beginning of the STOP bit trans-

FE

mission

- Set if no STOP bit is found at the end of a
reception

TXE - Set if two bytes can be sent to SBUF(TX)

OE - Set if a byte is lost because SBUF was not
read fast enough

The receiver on the SOC196KA checks for a valid stop
bit. When one is detected, the data in the receive shift
register is loaded into SBUF(RX). If a stop bit is not
found within the appropriate time the Framing Error
(FE) bit is set. In either case, the data in the receive
shift, register is loaded into SBUF(RX) and the RI bit is
set. If this happens before the previous byte in
SBUF(RX) is read, the Overflow Error (OE) bit is set.
The data in SBUF(RX) will always be the latest byte
received; it will never be a combination of the two
bytes. When the RI bit is set it can cause an interrupt
through the vectors at locations 200CH and 2032H.
The RI, OE, and FE bits are reset when SP _STAT is
read.

The Transmitter Empty (TXE) bit is set if the transmit
FIFO is empty and ready to take up to two characters
to be sent. TXE gets cleared as soon as a byte is written
to SBUF. Two bytes may be written consecutively to
SBUF if TXE is set. One byte may be written if TI
alone is set. By definition, if TXE has just been set, a
transmission has completed and TI will be set. When
the TI bit is set it can cause an interrupt through the
vectors at locations 200CH and 2032H. The user
should not mask off this interrupt when using the dou­
ble-buffered feature of the transmitter, as it could cause
a missed count in the number of bytes being transmit­
ted. The TI bit is reset when the CPU reads the SP_
STAT registers.

3.6 A-TO-O CONVERTER

The SOCI96KA A-to-D converter has 10 bits ofresolu­
tion and can be run in modes compatible with either the
S096-90 or the S096BH. Conversions can be performed
on one of eight channels, the inputs of which share pins
with port O. The A to D includes a switchable Sample
and Hold feature for the selected channel and does the
conversion in as little as 91 state times.

Conversions are started by loading the AD_COM­
MAND register at location 02H with the channel num­
ber. The conversion can be started immediately be set­
ting the GO bit to a one. If it is cleared the conversion
will start when the HSO unit triggers it. The AD_
COMMAND register has the following format:

ATOD.....:.
COMMAND:

7

X

6 5

X X

4 3 2 I 1 I 0

X GO CHANNEL
NUMBER

20-27

inter 80C196KA ARCHITECTURAL OVERVIEW

The A-to-D converter can cause an interrupt to ~ccur through the vector at location 2002H when it completes a
conversion. !tis also possible to use a polling method by checking the Status (S) bit in the lower byte of the AD_
RESULT register, also at location 02H. The status bit will be a 1 while a conversion is in progress. It takes 8 state
times to set this bit after a conversion is started. The upper byte of the result register contains the most significant 8
bits of the conversion. The lower byte format is shown belmy:

ATOD_
RESULT_
LO:

7 I 6

LOWEST 2
RESULT

BITS

5

X

4 3 2 J 1 I 0

CHANNEL
X S NUMBER

At high crystal frequencies, more time is needed to allow the comparator to settle. For this reason IOC2.4 is
provided to adjust the speed of the A-to-D conversion by disabling/enabling a clock prescaler. At low frequencies the
leakage currents cause the sample and hold not to work, so IOC2.3 is provided to turn the sample and hold feature
off.

A summary of the conversion time for the four options is shown below. The numbers represent the number of state
times required for conversion, e.g., 91 states is 22.7 J.los with an 8 MHz XTALl (providing a 250 ns state time.)

IOC2.3 1/0 = Sample and Hold off/on

IOC2.4 1/0 = A to D Clock Prescaler off/on
10 MHz XT AL 1 maximum with prescaler off

Clock Prescaler On
IOC2.4=0

IOC2.3=0 158 states
withS&H 26.33 J.los @ 12 MHz

OC2.3= 1 293 states
withoutS&H 48.83 fts @ 12 MHz

3.7 PULSE-WIDTH-MODULATION
OUTPUT (PWM)

The PWM output unit is an 8-bit counter which incre­
ments every state time. When the counter equals zero
the output is set high, when it equals the value in the
PWM register (location 17H) the output goes low. This
provides an approximation to an analog output for
driving motors and other similar .devices. A block dia­
gram of the PWM unit and examples of PWM wave­
forms are shown in Figures 26 and 27 respectively. The
80CI96KA PWM unit has aprescaler bit (divide by 2)
which is enabled by setting IOC2.2 = 1. This allows the
counter to have a period of 512 state times instead of
256. The PWM frequencies are as follows:

XTAL1 = 8MHz 10 MHz 12MHz

IOC2.2=0 15.6 KHz 19.6 KHz 23.6 KHz
IOC2.2=1 7.8 KHz 9.8 KHz 11.8 KHz

Clock Prescaler Off
IOC2.4=1

91 states 91 states
22.75 J.los @ 8 MHz 18.2 fts @ 10 MHz

163 states 163 states
40.75 fts @ 8 MHz 32.6 fts @ 10 MHz

• Duty Cycle Programmable in 256 Steps

PWM
OUTPUT

STATE TIME CLOCK
F(XTAL1)/2

270418-24

Figure 26. PWM Block Diagram

20-28

inter 80C196KA ARCHITECTURAL OVERVIEW

DUTY PWM CONTROL
CYCLE REGISTER VALUE OUTPUT WAVEFORM

D% 00
HI
LO

10% 25 ~~Jl n n
50% 128

HI
LO

HI -1 90% 230 U U LO

HI
99.6% 255

LO

270418-25

Figure 27. PWM Waveforms

3.8 STANDARD 1/0 PORTS

Five (5) 8-bit 1/0 ports are available on the
80C196KA. Port 0 (location OEH) is an input only port
which shares its pins with the A to D converter. Port I
(location OFH) is a quasi-bidirectional port. Port 2 (lo­
cation lOH) has multiple functions on its pins as shown
in Figure 28.

Quasi-bidirectional pins can be used as input and out­
put pins without the need for a data direction register.
They output a strong low value and a weak high value.
The weak high value can be externally pulled low pro­
viding an input function. Figure 29 shows the configu­
ration of a CHMOS quasi-bidirectional port. Note that
it is not identical to the NMOS version.

Outputting a 0 on a quasi-bidirectional pin turns on the
strong pull-down and turns ofT all of the pull-ups.
When a I is output the pull-down is turned ofT and 3
pull-ups (strong-PI, weak-P3, very weak-P2) are turned
on. Each time a pin switches from 0 to I transistor PI
turns on for two state times. P2 remains on until a zero
is written to the pin. P3 is used as a latch, so it is turned
on whenever the pin is above the. threshold value
(around 2 volts).

To reduce the amount of current which flows when the
pin is externally pulled low, P3 is turned ofT when the
pin voltage drops below the threshold. The current re­
quired to pull the pin from a high to a low is at its
maximum just prior to the pull-up turning ofT. An ex­
ternal driver can switch these pins easily. The maxi­
mum current required occurs at the threshold voltage
and is approximately 700 microamps.

Ports 3 and 4 are open drain 1/0 ports which share
their pins with the System Bus. The port 3 and 4 pins
will act as port pins if the EA pin is set for internal
access and external memory is not being accessed. In all
other cases the ports must be reconstructed with exter­
nal hardware since the system bus uses the pins. Since
external memory is always required with the
80C196KA, these ports must be reconstructed by plac­
ing latches at addresses IFFE and IFFFH in external
memory. Future ROM and EPROM parts will be able
to use the on-chip ports. By using the port reconstruc­
tion feature it is possible to build a multi-chip system
which is exactly software compatible with a single-chip
system.

PIN FUNC.
ALTERNATE CONTROL
FUNCTION REG.

2.0 Output TXO (Serial Port Transmit) IOC1.5

2.1 Input RXO (Serial Port Receive) SPCON.3

2.3 Input T2CLK (Timer2 Clock & Baud) IOCO.7

2.4 Input T2RST (Timer2 Reset) IOCO.5

2.5 Output PWM Output IOC1.0

2.6 QBO' Timer2 up/down select IOC2.1

2.7 QBO' Timer2 Capture N/A

'QBO = Quasi-bidirectional
Figure 28. Port 2 Multiple Functions

20-29

inter 80C196KA ARCHITECTURAL OVERVIEW

Q
FROM PORT

LATCH

Vcc

INPUTQ-__ <
DATA

READ
PORT PIN

Vcc Vcc

270418-26
CHMOS Configuration. pFET 1 is turned on for 2 osc. periods after Q makes a 1-to-O transition. During this time, pFET 1
also turns on pFET 3 through the inverter to form a.latch which holds the 1. pFET 2 is also on.

Figure 29. CHMOS Quasi-bidirectional Port Circuit

3.9 USING THE ALTERNATE REGISTER WINDOW (WSR = 15)

I/O register expansion on the new CHMOS members of the MCS-96 family has been provided by making two
register windows available. Switching between these windows is done using the Window Select Register (WSR). The
PUSHA and POPA instructions can be used to push and pop the WSR and second interrupt mask when entering or
leaving interrupts, so it is easy to change between windows.

On the 80CI96KA only Window 0 and Window IS are active. Window 0 is a true superset ofthe standard 8096 SFR
space, while Window IS allows the read-only registers to be written and write-only registers to be read. The only
major exception to this is the Timer2 register which is the Timer2 capture register in Window IS. The writeable
register for Timer2 is in Window o. There are also some minor changes and cautions. The descriptions of the
registers which have different functions in Window 15 than in Window 0 are listed below:

AD_COMMAND (02H) - Read the last written command

AD_RESULT (02H, 03H) - Write a value into the result register

HSI_MODE (03H) - Read the value in HSI_MODE

HSI_TIME (04H,05H) - Write to FIFO Holding register

HSO_TIME (04H,05H) - Read the last value placed in the holding register

HSI_STATUS (06H) - Write to status bits but not to HSI pin bits. (Pin bits are 1,3,5,7).

HSO~COMMAND (06H) - Read the last value placed in the holding register

SBUF(RX) (07H) - Write a value into the receive buffer

SBUF(TX) (07H)

WATCHDOG(OAH)

TIMERI (OAH,OBH)

TIMER2 (OCH,ODH)

IOC2 (OBH)

BAUD_RATE (OEH)

PORTO (OEH)

SP _STAT (l1H)

- Read the last value written to the transmit buffer

- Read the value in the upper byte of the WDT

- Write a value to Timerl

- Read/Write the Timer2 capture register.
(Timer2 read/write is done with WSR = 0)

- Last written value is readable, except bit 7 (note I)

- No function, cannot be read

- No function, no output drivers on the pins

- Set the status bits, TI and RI can be set, but it will not cause an interrupt

20-30

inter 80C196KA ARCHITECTURAL OVERVIEW

- Read the current control byte SP_CON(11H)

10SO (ISH)

lOCO (1SH)

10SI (16H)

- Writing to this' register controls the HSO pins. Bits 6 and 7 are inactive for writes.

- Last written value is readable, except bit 1 (note I)

- Writing to this register will set the status bits, but not cause interrupts. Bits 6 and 7
are not functional

lOCI (16H) - Last written value is readable

IOS2 (17H) - Writing to this register will set the status bits, but not cause interrupts.

PWM_CONTROL (17H) - Read the duty cycle value written to PWM_CONTROL

Note:
1. IOC2.7 (CAM CLEAR) and lOCO. I (T2RST) are not latched and will read as a I (precharged bus) .

Being able to write to the read-only registers and vice-versa provides a lot of flexibility. One of the most useful
advantages is the ability to set the timers and HSO lines for initial conditions other than zero.

3.10 SFR BIT SUMMARY

A summary of the SFRs which control I/O functions has been included in this section. The summary is separated
into a list of those SFRs which have changed on the 80CI96KA and a list of those which have remained the same.

The following 80C196KA SFRs are different than those on the 8096BH:

(The Read and Write comments indicate the register's function in Window 0 unless otherwise specified.)

SBUF(TX) - Now double buffered
07h
write

BAUD RATE - Uses new Baud Rate Values
OEh
write

llh
read

IPENDl:
IMASKl:

12h,13h
read/write

7 6 5 4 3 2

RBS/
RI TI FE TXE OE RPE

RPE: Receive Parity Error

RI: Receive Indicator

TI: Transmit Indicator

FE: Framing Error

TXE: Transmitter Empty

OE: Receive Overrun Error

7 6 5 4 3 2

NMI
FIFO EXT T2 T2 HSI4
FULL INT OVF CAP

NMI : Non-Maskable Interrupt

FIFO FULL: HSIO FIFO full

EXTINT:

T20VF:

T2CAP:

External Interrupt Pin

Timer2 Overflow

Timer2 Capture

1

X

1

RI

HSI4 :

RI:

HSI has 4 or more entries in FIFO

Receive Interrupt

TI: Transmit Interrupt

20-31

0

X

0

TI

intJ

W5R:

14h

read/write

1052:

17h
read

IOC2:

OBh
write

80C196KA ARCHITECTURAL OVERVIEW

7 6 5 4 3 2

x x x x W W W

WWWW = 0 : SFRs function like a superset of 8096 SFRs

WWWW = 15 : Exchange read/write registers

WWWW=OTHER : Undefined, do not use

o
W

XXXX=OOOOB: These bits must always be written as zeros to provide compatibility
with future products.

7 6 5 4 3 2 1 0

START T2
HSO.5 HSO.4 HSO.3 HSO.2 HSO.1 HSO.O

A2D RESET

Indicates which HSO event occured

START A2D : HSO_CMD 15, start A to D

T2RESET: HSO_CMD 14, Timer 2 reset

HSO.0-5 : Output pins HSO.O through HSO.5

7 6 5 4 3 2 1 0

CLEAR ENA T2ALT A2D
NOSH

SLOW T2UD FAST
CAM LOCK INT CPD PWM ENA T2EN

CLEA~CAM: Clear Entire CAM

ENA_LOCK : Enable lockable CAM entry feature

T2AL TINT: Enable T2 Alternate Interrupt at 8000H

A2D_CPD: Clock Prescale Disable for low XTAL frequency (A to D conversion in
fewer state times)

NOSH: Disable AID Sample 'and Hold

SLOW _PWM: Tum on divide by 2 Prescaler on PWM

T2UD ENA : Enable Timer 2 as up/down counter

FAST_T2EN: Enable Fast increment of T2; once per state time.

The following registers are the same on the 80C196KA as they were on the 8096BH:

:]
3

4

AID Result LO (02H)

A/D CHANNEL NUMBER

STATUS:
o = A/D CURRENTLY IDLE
1 = CONVERSION IN PROCESS

X

X

A/D RESULT:
LEAST SIGNIFICANT 2 BITS

270418-27

20-32

AID Command (02H) I] CHANNEL # SELECTS WHICH OF THE 8
1 ANALOG INPUT CHANNELS IS TO BE

CONVERTED TO DIGITAL FORM.

: GO INDICATES WHEN THE CONVERSION IS TO
BE INITIATED (GO = 1 MEANS START NOW,
GO = 0 MEANS THE CONVERSION IS TO BE
INITIATED BY THE HSO UNIT AT A SPECIFIED TIME).

270418-30

inter 80C196KA ARCHITECTURAL OVERVIEW

Chip Configuration (2108H)

117161514131211 10 ICHIP CONFIGURATION REGISTER

~~OWERDOWN MODE ENABLE"

BUS WIDTH SELECT
(16- BIT BUS/B- BIT BUS)

---WRITE STROBE MODE SELECT
(WR AND BHE/WRL AND WRH)

ADDRESS VALID STROBE SELECT

(ALE/ ADV)

(iRCO) } INTERNAL READY CONTROL

(IRC1) MODE

(LOCO) }
() PROGRAM LOCK MODE
LOCI

270418-29
'Minor Change

HSLStatus (06H)

L-------HSI.2 STATUS

L---------HSI.3 STATUS

WHERE FOR EACH 2 - BIT STATUS FIELD THE LOWER
BIT INDICATES WHETHER OR NOT AN EVENT HAS
OCCURED ON THIS PIN AND THE UPPER BIT INDICATES
THE CURRENT STATUS OF THE PIN.

o

2
W
R 3
I
T
E

7

270418-31

SPCON(11H)

BIT.l. BIT.O SPECIFY THE MODE
0.0 = MODE 0 1.0 = MODE 2
0.1 = MODE 1 1.1 = MODE 3

. PEN ENABLE THE PARITY FUNCTION

REN ENABLES THE RECEIVE FUNCTION:

TBB PROGRAMS THE 9TH DATA BIT

270418-33

20-33

17 6 I 5

HSLMode (03H)

41 3 2 11 I 0 I
L HSI.O MODE

HSI.l MODE

HSI.2 MODE

HSI.3 MODE

WHERE EACH 2 - BIT MODE CONTROL FIELD
DEFINES ONE OF 4 POSSIBLE MODES:

00 8 POSITIVE TRANSITIONS
01 EACH POSITIVE TRANSITION
10 EACH NEGATIVE TRANSITION
11 EVERY TRANSITION

(POSITIVE AND NEGATIVE)

HSO Command (06H)

CHANNEL:
0-5 HSO.O - HSO.5

7 HSO.2 AND HSO.3

8-B SOFTWARE TIMERS

2 E RESET TIMER2

270418-28

BIT: 0]6 HSO.O AND HSO.l

3 F START A/D CONVERSION

'Minor Change

4 INTERRUPT / NO INTERRUPT

5 SET /CLEAR

6 TIMER 2/TIMER 1

7 LOCK CAM'

10SO (15H)

HSO.O CURRENT STATE

HSO.l CURRENT STATE

HSO.2 CURRENT STATE

HSO.3 CURRENT STATE

HSO.4 CURRENT STATE

270418-32

5 HSO.5 CURRENT STATE

6 CAM QR HOLDING REGISTER IS FULL

7 HSO HOLDING REGISTER IS FULL

270418-34

inter 80C196KA ARCHITECTURAL OVERVIEW

o

o

2

3

o

2

lOCO (15H)

HSI.O INPUT ENABLE / DISABLE

TIMER 2 RESET EACH WRITE

HSI.1 INPUT ENABLE / DISABLE

TIMER 2 EXTERNAL RESET ENABLE / DISABLE

HSI.2 INPUT ENABLE / DISABLE

TIMER 2 RESET SOURCE HSI.O /T2RST

HSI.3 INPUT ENABLE / DISABLE

TIMER 2 CLOCK SOURCE HSI.1 / T2CLK

270418-35

10Sl (16H)

SOFTWARE TIMER 0 EXPIRED

SOFTWARE TIMER 1 EXPIRED

SOFTWARE TIMER 2 EXPIRED

SOFTWARE TIMER 3 EXPIRED

TIMER 2 HAS OVERFLOW

TIMER 1 HAS OVERFLOW

HSI FIFO IS FULL

HSI HOLDING REGISTER DATA AVAILABLE

270418-36

IOCl (16H)

SELECT PWM / SELECT P2.5

EXTERNAL INTERRUPT ACH7 / EXTINT

TIMER 1 OVERFLOW INTERRUPT ENABLE / DISABLE

TIMER 2 OVERFLOW INTERRUPT ENABLE / DISABLE

HSO.4 OUTPUT ENABLE / DISABLE

SELECT TXD / SELECT P2.0

HSO.5 OUTPUT ENABLE / DISABLE

HSI INTERRUPT
FIFO FU LL / ;'H;'O L"D"'IN"'G"""RE"'G"'IS"T"'"ER"'L"OA"D'"E"'D

270418-37

4.0 OPERATING MODES

4.1 IDLE MODE

When the IDLE mode is entered, using the instruction
"IDLPD # I", the CPU stops executing. The CPU
clocks are frozen at logic state zero, but the peripheral

clocks and CLKOUT continue to be active. CLKOUT
logically equals the Phase2 signal that is supplied to the
peripherals. System bus control signals ALE, RD, WR,
INST. and BHE go to their inactive states and the bus
becomes high impedance unless it was being used as
ports 3 and 4. Power consumption in this mode is about
40% of that in the normal mode, since only the periph­
erals are running.

The interrupt controller and all peripherals, except
Ports 3 and 4, continue to function during IDLE mode.
If the chip was executing out of internal memory, Ports
3 and 4 will retain the data present in their data latches,
otherwise these pins will be high impedance and their
input buffers will be turned off. (See the Standard I/O
Port section for more information about Ports 3 and 4.)

It is important to note that the Watchdog Timer con­
tinues to operate in the IDLE mode (if it was enabled
after reset). This means the chip must wake up the
CPU approximately every 64K state times (16 millisec­
onds at 8 MHz XTALI) in order to reset this timer.

The CPU can be awakened by any enabled interrupt
source or a hardware reset. Since all of the peripherals
are running, this interrupt can be generated by the HSI,
HSO, timer overflow, serial port, extint, or other simi­
lar interrupts. If an interrupt brings the CPU out of
IDLE mode, the first action taken will be to place the
program counter on the stack and jump to the interrupt
service routine. When the interrupt service routine is
done, the instruction executed is the one following
IDLPD instruction which put the chip in the IDLE
mode.

4.2 POWER DOWN MODE

When the POWERDOWN mode is entered, using the
instruction "IDLPD #2", all internal clocks are frozen
at logic state zero and the oscillator is turned off. All
registers and most peripherals hold their values if Vee
is not removed from the part. The bus control signals
go to their inactive states, and power is reduced to just
the device leakage.

All the bidirectional or output-only port pins (including
HSO, PWM, serial port, etc.) will assume values pres­
ent in their respective data latches, except Ports 3 and
4. In this way the user controls the logic state of the
port pins. The Port 3 and 4 pins will have values of the
port latches if the chip was executing out of internal
memory (future ROM and EPROM parts only), other­
wise the pins will be in a high-impedance state with
input buffers shut off.

All peripherals should be in an inactive state before
putting the chip in powerdown. If the A to D converter
is in the middle of a conversion it is aborted. The

20-34

80C196KA ARCHITECTURAL OVERVIEW

HSIO, timers (Timerl and Timer2), and the serial port
stop in POWERDOWN mode. If the chip comes out of
POWERDOWN by· an external interrupt, the serial
port will continue from where it left off with a chance
of erroneous data transmitted or received. Therefore,
the user must shut off the transmitter (not write any­
thing to it) and the receiver (REN=O) before putting
the chip in POWERDOWN.

When the chip is in Powerdown, it is impossible to time
out the Watchdog Timer or detect oscillator failure.
Therefore, systems which will use Powerdown should
not enable the Watchdog Timer and the systems using
the Watchdog Timer should not go into Powerdown,
unless the Watchdog is always reset immediately before
entering and after exiting Powerdown.

To prevent accidental entry into Powerdown, the Pow­
erdown feature can be disabled at reset by clearing bit 0
of the Chip Configuration Register (CCR). Since the
default value of the Configuration Byte is OFFH, Pow­
erdown is normally enabled.

When in Powerdown, almost the entire state of the
80CI96KA will be preserved, not just the most signifi­
cant 16 bytes of register file. The Vee (not V PD) is used
to supply power to the chip, so it must remain within
specifications if the chip status is to be maintained. Cer­
tain SFRs, may contain incorrect information when the
chip .comes out of Powerdown. SFRs which could do
this are the AID result and serial port registers since
the functions of these registers are real-time dependent
and CPU-time stops in Powerdown mode. AID com­
mands in progress are aborted when coming out of
Powerdown. It is the users responsibility to handle the
serial port.

XTALI

CLKOUT

PHI

INTERNAL'
POWERDOWN :

SIGNAL i-. --i---+--+---i-......

The Powerdown mode can be exited using either
RESET or an external interrupt pin. If the RESET pin
is used, it must externally be held low long enough for
the oscillator to stabilize, plus 4 states for the reset se­
quence.

When exiting Powerdown using an external interrupt, a
positive level on the pin mapped to INT7 (either

. EXTINT pin or PortO.7 pin) will bring the part out of
Powerdown mode. This procedure is not affected by
either the interrupt disable bit or the interrupt mask
register. An internal timing circuit is used to ensure
that the oscillator has stabilized before the internal
clocks are turned on. Figure 30 shows the power down
and powerup sequence in such a case.

During normal operation, before the chip goes into
powerdown, the Vpp pin will rise to Vee through an
internal pullup. The user must connect a capacitor be­
tween Vpp and Vss. A positive level on the pin mapped
to INT7 (external interrupt) will start discharging this
capacitor if the chip was in Powerdown when this edge
occurred. The internal current source used to discharge
this capacitor is approximately 100 /LA. A threshold
detector will detect 1 V or lower on the Vpp pin and
mark the end of the time-out period. A I /LF capacitor
will provide about 4 ms startup time.

If the external interrupt is used to bring the part out of
Powerdown, that bit will be set in the interrupt pending
register when the chip starts to run. If the interrupt is
not masked off, the first section of code executed will be
the interrupt service routine, otherwise execution will
begin with the code following the IDLPD instruction.
If the interrupt is not serviced the interrupt pending bit
will remain set.

EXTINT ,..: - -..,....-...... -...---;-.-...--..,...-... '.,1 rSl"--------..;.--..;.-.....;.-....
Vpp :

,

TIMEOUT _: -----------------i' 1 t---I

Figure 30. Powerdown/Up Sequence
20-35

270418-38

80C196KA ARCHITECTURAL OVERVIEW

4.3 RESET SEQUENCE AND STATUS

The reset sequence on the 8OC196KA is slightly differ­
ent than that of the 8096BH. Figure 31 shows the se­
quence used on the 8OC196KA.

As soon as the RESET line is pulled low the I/O and
control lines wiII go. into their reset condition. The state
of these lines is shown below:

Pin Multiplexed Value of the
Name Port Pins Pin on Reset

RESET Mid-sized Pullup

ALE Weak Pullup

RD Weak Pullup

SHE Weak Pullup

WR Weak Pullup

INST Weak Pull-up

EA Undefined Input *
READY Undefined Input *
NMI Undefined Input *
SUSWIDTH Un.defined Input *
CLKOUT Phase 2 of Clock

System Bus P3.0-P4.? Weak Pullups

The weak pullups and pulldowns are sufficient to hold
a line in· one position or another. Pins listed as unde­
fined inputs (*) must be tied or driven externally, other­
wise the part may not function properly. Reset must be
held low for 4 state times.

In order for the part to function, the following pins
must be connected:

Vee. VSSb VSS2, VREP,ANGND,XTALl,XTAL2

Pin Multiplexed Value of the
Name Port Pins Pinon Reset

ACHO-? PO.O-PO.? Undefined Input •

PORT1 P1.0-P1.? Weak Pullups

TXD P2.0 Weak Pull up

RXD P2.1 Undefined Input *
EXTINT P2.2 Undefined Input·

T2CLK P2.3 Undefined Input *
T2RST P2.4 Undefined Input *
PWM P2.S Weak Pull down

- P2.6-P2.? Weak Pullups

HSIO-HSI1 Undefined Input •

HSI2/HS04 Undefined Input •

HSI3/HSOS Undefined Input *
HSOO-HS03 Weak pulldown

Minimum Connections for 16·Bit Bus Mode

r ~
-=

+5V XTALZ +5V

Vee VREF

+5V
ANGND

-= +5V

BUSWIDTH

READY
RESET

BUS

.3: CONTROL

RXD ADO-AD15

EXTINT
TZCLK PO.O- PO;7
TZRST
HSI.O - HSI.3 EA
NMI
CDE -

80C196KA

• MUST BE DRIVEN HIGH OR LOW
270418-45

!!
CQ
C .,
CD
Co)

:-"
I\) ::0
0 CD
~ 1/1

CD -..I ..
en
CD
.a
c
CD
:::I
n
CD

OSC

RESET
PIN

CASE I.
PHI

CASE II.
PHI

LLLJ

INTERNAL \.

80C196KA Reset Sequence

RESET '~~. __ _

----,

ALE I1JJ rlL-__ _

~ r
CON FIG. 20B 1 H

O~~~ (201BH >--C:) (20BOH >---0< OR >--C:)
PHASES AND RESET BYTE 20B2H

SYNCHRONISED

27041B-39

i

CD
o o
CQ
0)

" ~
~
::tJ o
::I:
::::j
m
o
-I
c:
::tJ
~
r-
o
< m
::tJ
:::;
m
:E

intJ 80C196KA ARCHITECTURAL OVERVIEW

After the reset sequence, the internal registers are at the
following values:

REGISTER NAME VALUE

AD_RESULT OOOOH

HSLSTATUS xOxOxOx08

S8UF(RXj OOH

INT_MASK 000000008

INT_PENDING 000000008

TIMER1 OOOOH

TIMER2 OOOOH

IOPORT1 111111118

IOPORT2 110000018

SP _STAT /SP _CON 000000008

IMASK1 000000008

IPEND1 000000008

WSR XXXXOOO08

HSI_MODE 111111118

IOC2 XOOOOOO08

lOCO 000000X08

IOC1 001000018

PWM_CONTROL OOH

IOPORT3 111111118

IOPORT4 111111118

10SO 000000008

IOS1 000000008

IOS2 000000008

4.4 PROGRAM PROTECTION
FEATURES

Software protection

Several features to assist in recovery from hardware
and software errors are available on the 80C196KA.
Protection is also provided against executing unimple­
mented opcodes by making use of the unimplemented
opcode interrupt. In addition, the hardware reset in­
struction (RST) can be used in software to cause a reset
if the program counter goes out of bounds. This in­
struction has an opcode of OFFH, so if the processor

reads in bus lines which have been pulled high it will
reset itself.

Clock Failure Detect

A clock failure detection circuit is provided to recover
from hardware problems. When triggered by too slow
ofa clock on XTALl, it pulls the RESET line low. The
switch frequency is Vee dependent. At aVec of 6
volts, detection occurs at some point below 250KHz.
When Vee is at 4 volts, the detection point is below
28KHz. This feature can be disabled by holding the
CDEpin (Clock Detect Enable) at a low level. It
should be disabled when using the Powerdown mode.
CDE uses the same pin as VPD on the 8096 since the
VPD pin function is not needed for the 80C196KA.

Watchdog Timer

The Watchdog Timer can be enabled to cause a hard­
ware reset every 64K state times unless the timer is
cleared periodically. The timer is started by writing the
sequence "IEh", "EIh" to the Watchdog Register.
Once started it can only be turned off by resetting the
chip. To clear the watchdog the sequence "IEh",
"Elh" must be written to the register.

When any of the protection methods are used to reset
the chip, the external RESET line will be pulled low by
an internal pulldown transistor. It will keep pulling the
line down until the part resets itself. Writing to the
watchdog timer will not turn the transistor off. The
RESET line can also be used as an output to reset other
circuitry. If a capacitor is used on the RESET line for
reset timing, the line may never be pulled below 0.8
volts. This could cause other external circuitry not to
be reset.

4.5 ONCETM AND TEST MODES

Test modes are entered on the 80C196KA by externally
holding ALE, INST or RD in their active state while
the RESET pin is taken high. By using combinations of
pins different test modes can be selected. The only test
mode which is not reserved for Intel use is ONCE. This
mode is entered by driving ALE high and RD and
INST low while RESET is taken high.

ONCE is the ON~Circuit-Emulation mode. In this
mode all of the pins, except XTALI and XTAL2, are
floated. Some of the pins are not truly high impedance
as they have weak pull ups or pulldowns.

20-38

80C196KA ARCHITECTURAL OVERVIEW

5.0 DIFFERENCES BETWEEN THE
80C196KA AND THE 8096BH

5.1 CONVERTING FROM OTHER
MCS®-96 PRODUCTS TO THE
80C196KA

The following list of suggestions for designing an
8X9XBH system will yield a design that is easily con·
verted to the 80C196KA.

1. Do not base critical timing loops on instruction or
peripheral execution times.

2. Use equate statements to set all timing parameters,
including the baud rate.

3. Do not base hardware timings on CLKOUT or
XTAL1. The timings of the 80Cl96KA are different
than those of the 8X9XBH, but they will function
with standard ROM / EPROM / Peripheral type
memory systems.

4. Make sure all inputs are tied high or low and not left
floating.

5. On the 8X9XBH, the WRL/WR and WRH/BHE
signals both go low for byte writes to odd addresses
in eight bit write strobe mode. On the 80Cl96KA,
only the WRH/BHE signal goes low for this type of
operation. .

6. Indexed and indirect ope'rations relative to the stack
pointer (SP) work differently on the 80Cl96KA than
on the 8096. On the 8096, the address is calculated
based on the un·updated version of the stack pointer.
The 80Cl96KA uses the updated version. The offset
for PUSH[SPI. POP[SPI. PUSH nn[SP] and
POP nn[SP] instructions may need to be changed by
a count of 2.

5.2 NEW FEATURE SUMMARY

CPU FEATURES

Divide by 2 instead of divide by 3 clock for 1.5X per·
formance

Faster instructions, especially indexed/indirect data op·
erations

2.33 fLSec 16X 16 multiply with 12MHz clock (was
6.25 p.Sec)

Faster interrupt response (almost twice as fast)

Different Reset Sequence

Powerdown and Idle Modes

Clock Failure Detect

6 new instructions including Compare Long and Block
Move

8 new interrupt vectors

PERIPHERAL FEATURES

SFR Window switching allows read·only registers to be
written and vice· versa

Timer2 can count up and down by external selection

Timer2 has an independent capture register

HSO lines which transitioned are saved

HSO lines can be written directly

HSO has CAM Lock and CAM Clear commands

A to D has a selectable sample and hold and speed
control

New Baud Rate values are needed for serial port, high·
er speeds possible in all modes

Double buffered serial port transmit register

Serial Port Receive Overrun and Framing Error Detec·
tion

PWM has a Divide·by·2 Prescaler

20·39

inter 80C196KA ARCHITECTURAL OVERVIEW

6.0 PACKAGES, PINOUTS, PIN DEFINITIONS
PGAI

PLCC Description
PGAI

PLCC Description
PGAI

PLCC Description
LCC LCC LCC

1 9 ACH7/PO.7 24 54 AD6/P3.6 47 31 P1.6
2 8 ACH6/PO.6 25 53 AD7/P3.7 48 30 P1.5
3 7 ACH2/PO.2 26 52 AD8/P4.0 49 29 HSO.1
4 6 ACHO/PO.O 27 51 AD9/P4.1 50 28 HSO.O
5 5 ACH1/PO.1 28 50 AD10/P4.2 51 27 HSO.5/HSL3
6 4 ACH3/PO.3 29 49 AD11/P4.3 52 26 HSO.4/HSL2
7 3 NMI 30 48 AD12/P4.4 53 25 HSL1
8 2 EA 31 47 AD13/P4.5 54 24 HSLO
9 1 Vee 32 46 AD14/P4.6 55 23 P1.4

10 68 Vss 33 45 AD15/P4.7 56 22 P1.3
11 67 XTAL1 34 44 T2CLK/P2.3 57 21 P1.2
12 66 XTAL2 35 43 READY 58 20 P1.1
13 65 CLKOUT 36 42 . T2RST/P2.4 59 19 P1.0
14 64 BUSWIDTH 37 41 BHE/WRH 60 18 TXD/P2.0
15 63 INST 38 40 WR/WRL 61 17 RXD/P2.1/PALE
16 62 ALE/ADV 39 39 PWM/P2.5 62 16 RESET
17 61 RD 40 38 P2.7/T2CAPTURE 63 15 EXTINT /P2.2
18 60 ADO/P3.0 41 37 Vpp 64 14 CDE
19 59 AD1/P3.1 42 36 Vss 65 13 VREF
20 58 AD2/P3.2 43 35 HSO.3 66 12 ANGND
21 57 AD3/P3.3 44 34 HSO.2 67 11 ACH4/PO.4
22 56 AD4/P3.4 45 33 P2.6/T2UP-DN 66 10 ACH5/PO.5
23 55 AD5/P3.5 46 32 P1.7

PGA packages will be available on future parts.

20-40

80C196KA ARCHITECTURAL OVERVIEW

Pins Facing Down
~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 L

17 1513 11 9 7 5 3 1 '\

18 19 16 14 12 10 8 6 4 2 68

2021

2223

2425

2627

2829

3031

3233

MCS<ID-96
68 PIN

GRID ARRAY

TOP VIEW
LOOKING DOWN ON
COMPONENT SIDE

OF PC BOARD

6766

6564

6362

61 60

5958

5756

5554

34 36 38 40 42 44 46 48 50 53 52

35 37 39 41 43 45 47 49 51

270418-40

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

MCS®-96
68 PIN

LEADLESS CHIP CARRIER
TYPE "8"

TOP VIEW
LOOKING DOWN ON
COMPONENT SIDE

OF PC BOARD

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
, 51 5049 48 47 46 45 44434241 403938373635 I'"

270418-44

ACH5/PO.5 10

ACH4/PO.4 11

ANGND 12

VREF 13

CDE 14

EXTINT/P2.2 15

RESET 16

RXD/P2.1

TXD/P2.0

PLO

PLI

PL2

PL3

PL4

HSIO

HSII

HSI2/HS04

"- '" N 0 '" ci ci ci ci ci ci :I: Q. Q. Q. Q. Q. Q. I~ e

""" :; N :::l
~ "- '" N 0

:I: :I: :I: :I:
u u u u

i '" :I:
u u ~ 1L:'i " "' ... " '" > > x

MCS®-96
68 PIN
PLCC

...J 0

~ '" ...J
x u

TOP VIEW
LOOKING DOWN ON
COMPONENT SIDE

OF PC BOARD

.... ' III

~ ~I~ :::l
CD

2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

"' 0

" "l "! ~ '" N '" (I) a.. r... It) Ie::: ILaJ >-
0 0 '" 0 0 (l)a. •.• ~:r. 0
en en en n: n: n: Q. III en »~~ ~~ L:'i :I: :I: :I: , :I: :I: ,

Z rL ~1~1:r ~ '" '" e ~ 3: 3: ~ ~ iii I
:I: Q. N Q. N

:::l
~

20-41

ADO/P3.0

AD1/P3.1

AD2/P3.2

AD3/P3.3

AD4/P3.4

AD5/P3.5

AD6/P3.6

AD7/P3.7

AD8/P4.0

AD9/P4.1

AD10/P4.2

AD11/P4.3

ADI2/P4.4

ADI3/P4.5

AD14/P4.6

AD15/P4.7

T2CLK/P2.3

270418-41

80C196KA ARCHITECTURAL OVERVIEW

PIN DESCRIPTIONS
Symbol Name and Function

Vee Main supply voltage (5V).

Vss Digital circuit ground (OV). There are two VSS pins, both of which must be connected.

CDE Clock Detect Enable - When pulled high enables the clock failure detection circuit. IHhe
XTAL 1 frequency falls below a specified limit the RESET pin will be pulled low. This pin was
the VPD pin on the 8096.

VREF Reference voltage for the AID converter (5V). VREF is also the supply voltage to the analog
portion of the AID converter and the logic used to read Port O. Must be connected for AID
and Port 0 to function.

ANGND Reference ground for the AID converter. Must be held at nominally the same potential as
Vss·

Vpp Timing pin for the return from powerdown circuit. Connect this pin with a 1 JLF capacitor to
VSS and a 1 mO resistor to Vee. If this function is not used Vpp may be tied to Vee. This pin
was VBB on the 8X9X-90 parts and will be programming voltage on future EPROM parts.

XTAL1 Input of the oscillator inverter and of the internal clock generator.

XTAL2 Output of the oscillator inverter.

CLKOUT Output of the internal clock generator. The frequency of CLKOUT is % the oscillator
frequency. It has a 50% duty cycle.

RESET Reset input to the chip. Input low for at least 4 state times to reset the chip. The subsequent
low-to-high transition re- synchronizes CLKOUT and commences a 10-state-time sequence in
which the PSW is cleared, a byte read from 2018H loads CCR, and a jump to locations 2080H
is executed. Input high for normal operation. RESET has an internal pullup.

BUSWIDTH Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus
cycle in progress. If BUSWIDTH is a 1, a 16-bit bus cycle occurs. If BUSWIDTH is a 0 an 8-bit
cycle occurs. If CCR bit 1 is a 0, the bus is always an 8-bit bus. This pin is the TEST pin on
8X9X-90 parts. Systems with TEST tied to Vee do not need to change.

NMI A positive transition causes a vector through 203EH.

INST Output high during an external memory read indicates the read is an instruction fetch. INST is
valid throughout the bus cycle. INST is activated only during external memory accesses.

EA Input for memory select (External Access). EA equal to a TTL-high causes memory accesses
to locations 2000H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a
TTL-low causes accesses to these locations to be directed to off-chip memory.

ALE/ADV Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide
a latch to demultiplex the address from the address/data bus. When the pin is ADV, it goes
inactive high at the end of the bus cycle. ADV can be used as a chip select for external
memory. ALEI ADV is activated only during external memory accesses.

RD Read signal output to external memory. RD is activated only during external memory reads.

WR/WRL Write and Write Low output to external memory, as selected by the CCA. WR will go low for
every external write, while WRL will go low only for external writes where an even byte is
being written. WR/WRL is activated only during external memory writes.

20-42

80C196KA ARCHITECTURAL OVERVIEW

PIN DESCRIPTIONS (Continued)

Symbol Name and Function

SHE/WRH Sus High Enable or Write High output to external memory, as selected by the CCR. SHE = 0
selects the bank of memory that is connected to the high byte of the data bus. AO = 0
selects the bank of memory that is connected to the low byte of the data bus. Thus accesses.
to a 16-bit wide memory can be to the low byte only (AO = 0, SHE = 1), to the high byte only
(AO = 1, SHE = 0), or both bytes (AO = 0, SHE = 0). If the WRH function is selected, the
pin will go low if the bus cycle is writing to an odd memory location. SHE/WRH is valid only
during 16-bit external memory write cycles.

READY Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory,
or for bus ~haring. If the pin is high, CPU operation continues in a normal manner. If the pin is
low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the
next positive transition in CLKOUT occurs with READY high. When the external memory is
not being used, READY has no effect. Internal control of the number of wait states inserted
into a bus cycle held not ready is available through configuration of CCA.

HSI Inputs to High Speed Input Unit. Four HSI pins are available: HSLO, HSL1, HSL2, and HSL3.
Two of them (HSL2 and HSL3) are shared with the HSO Unit. The HSI pins are also used as
inputs by future EPROM parts in Programming Mode.

HSO Outputs from High Speed Output Unit. Six HSO pins are available: HSO.O, HSO.1, HSO.2,
HSO.3, HSO.4, and HSO.5. Two of them (HSO.4 and HSO.5) are shared with the HSI Unit.

Port 0 8-bit high impedance input-only port. These pins can be used as digital inputs and/or as
analog inputs to the on-chip AID converter. These pins are also a mode input to future
EPROM parts in the Programming Mode.

Port 1 8-bit quasi-bidirectional I/O port.

Port 2 8-bit multi-functional port. All of its pins are shared with other functions in the 80C196KA.

Ports 3 and 4 8-bit bi-directionall/O ports with open drain outputs. These pins are shared with the
multiplexed address/data bus which has strong internal pullups. Available only on future
ROM and EPROM parts.

20-43·

MCS®,.96 Data Sheets,
Application Notes,
Development Support
Tools and Index

21

•
•
•
•
•
•
•
•

MCS®-96
809XBH, 839XBH, 879XBH

ADVANCED 16-BIT MICROCONTROLLER
WITH 8- OR 16-BIT EXTERNAL BUS

• 879XBH: an 809XBH with 8K Bytes of On-Chip EPROM
• 839XBH: an 809XBH with 8K Bytes of On-Chip ROM

232 Byte Register File • High Speed I/O Subsystem

Register-to-Register Architecture • Full Duplex Serial Port

10-Bit AID Converter with S/H • Dedicated Baud Rate Generator

Five 8-Bit I/O Ports • 6.25 J-Ls 16 x 16 Multiply

20 Interrupt Sources • 6.25 J-Ls 32/16 Divide

Pulse-Width Modulated Output • 16-Bit Watchdog Timer

ROM/EPROM Lock • Four 16-Bit Software Timers

Run-Time Programmable EPROM • Two 16-Bit Counter/Timers

The MCS®-96 family of 16-bit microcontrollers consists of many members, all of which are designed for high­
speed control functions. The MCS-96 family members produced using Intel's HMOS-III process are described
in this data sheet.

The CPU supports bit, byte, and word operations. Thirty-two bit double-words are supported for a subset of the
instruction set. With a 12 MHz input frequency the 8096BH can do a 16-bit addition in 1.0 /Ls and a 16 x 16-bit
multiply or 32/16 divide in 6.25 /Ls. Instruction execution times average 1 to 2 /Ls in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed
pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can
simultaneously perform software timer functions. Up to four 16-bit software timers can be in operation at once.

The on-chip AID converter includes a .Sample and Hold, and converts up to 8 multiplexed analog input
channels to 1O-bit digital values. With a 12 MHz crystal, each conversion takes 22 /Ls. This feature is only
.available on the 8X95BHs and 8X97BHs, with the 8X95BHs having 4 multiplexed analog inputs.

Also provided on-chip are a serial port, a Watchdog Timer, and a pulse-width modulated output signal.

PORT 0 PORT 1

POWER

PORT 2 HSI HSO
ALl fUNCTIONS

CONTROL
SIGNALS

PORT 3

I)~~~:
I!'----~ BUS
\;---..,(

PORT 4

Figure 1. MCS®-96 Block Diagram

21-1

270090-50

November 1987
Order Number: 270090-003

inter 8X9XBH

FUNCTIONAL OVERVIEW

The following section is an overview of the 8X9XBH
devices, generally referred to as the 8096BH. Addi­
tional information is available in the Embedded Con­
troller Handbook, order number 210918.

CPU Architecture

The 8096BH uses the same address space for both
program and data memory, except in the address
range from OOH through OFFH. Data fetches· in this
range are always to the Register File, while instruc­
tion fetches from these locations are directed to ex­
ternal memory. (Locations OOH through OFFH in ex­
ternal memory are reserved for Intel development
systems).

Within the Register File, locations OOH through 17H
are register mapped 1/0 control registers, also re­
ferred to as Special Function Registers (SFRs). The
rest of the Register File (018H through OFFH) con­
tains 232 bytes of RAM, which can be referenced as
bytes, words, or double-words. This register space
allows the user to keep the most frequently-used
variables in on-chip RAM, which can be accessed
faster than external memory. Locations OFOH
through OFFH can be preserved during power down
via a separate power down pin (Vp'o).

Outside of the Register File, program memory, data
memory, and peripherals can be intermixed. The ad­
dresses with special significance are:

OOOOH- 0017H Register Mapped 1/0 (SFRs)
0018H- 0019H Stack Pointer
1FFEH- 1FFFH Ports 3 and 4
2000H- 2011H Interrupt Vectors
2012H- 2017H Reserved
2018H Chip Configuration Byte
2019H Reserved
201AH- 201BH "Jump to Self" Opcode (27 FE)
201CH- 201FH Reserved
2020H- 202FH Security Key
2030H- 207FH Reserved
2080H Reset Location

The 839XBH carries 8K bytes of ROM, while the
879XBH has 8K bytes of EPROM. With ROM and

21-2

EPROM parts, the internal program memory occu­
pies addresses 2000H through 3FFFH. Instruction or
data fetches from these addresses access the on­
chip memory if the EA pin is externally held at 5V. If
the E;A pin is at OV, these addresses access off-chip
memory. On the 879XBH parts, holding .EA at
+ 12. 75V puts the part in Programming Mode, which
is described in the EPROM Characteristics Section
of this data sheet.

A memory map for the MCS-96 product family is
shown in Figure 2.

The RALU (Register I ALU) section consists of a 17-
bit ALU, the Program Status Word, the Program
Counter, and several temporary registers. A key fea­
ture of the 8096BH is that it does not use an accu­
mulator. Rather, it operates directly on any register
in the Register File. Being able to operate directly on
data in the Register File without having to move it
into and out of an accumulator results in a significant
improvement in execution speed.

In addition to the normal arithmetic and logical func­
tions, the MCS-96 instruction set provides the fol­
lowing special features:

6.25 I-I-s Multiply and Divide
Multiple Shift Instruction
3 Operand Instructions
Normalize Instruction
Software Reset Instruction

All operations on the 8096BH take place in a set
number of "State Times." The 8096BH uses a three
phase internal clock,so each state time is 3 oscilla­
tor periods. With a 12 MHz clock, each state time
requires 0.25 I-I-s, based on a T osc of 83 ns.

Operating Modes

The 8096BH supports a variety of options to simplify
memory systems, interfacing requirements and
ready control. Bus flexibility is provided by allowing
selection of bus control signal definitions and run­
time selection of the external bus width. In addition,
several ready control modes are available to simplify
the external hardware requirements for accessing
slow devices. The Chip Configuration Register is
used to store the operating mode information.

infef 8X9XBH

OFFH 255 -,
POWER-DOWN

OFOH
RAM

240

OEFH
INTERNAL

239

REGISTER FILE
(RAM)

lAH 26

FFFFH
19H 25

STACK POINTER STACK POINTER
EXTERNAL MEMORY 18H 24

OR I/O
17H PWM_CONTROL 23

16H 1051 10Cl 22
4000H

15H 1050 lOCO 21 INTERNAL PROGRAM

14H 20
STORAGE ROM/EPROM

OR

13H RESERVED RESERVED 19 EXTERNAL MEMORY
2080H

12H 18
RESERVED 2030H - 207FH

llH SP_STAT SP_CON 17
SECURITY KEY 2020H - 202FH

10H 10 PORT 2 10 PORT 2 16
RESERVED 201 CH - 201 FH

OFH 10 PORT 1 10 PORT 1 15
SELF JUMP OPCODE (27H FEH) 201AH-201BH

OEH 10 PORT 0 BAUD_RATE 14
RESERVED 2019H

ODH TIMER2 (HI) 13
CHIP CONFIGURATION BYTE 2018H

OCH TIMER2 (LO) RESERVED 12
RESERVED 2012H - 2017H

OBH TIMERl (HI) 11

OAH TIMERl (LO) WATCHDOG 10
INTERRUPT VECTORS

09H INLPENDING INLPENDING 9

OSH INLMASK INLMASK 8 2000H

07H SBUF (RX) SBUF (TX) 7 PORT 4 1 FFFH

06H HSLSTATUS HSO_COMMAND 6 PORT 3 1 FFEH

05H HSUIME (HI) HSO_TIME (HI) 5 EXTERNAL MEMORY

04H HSUIME (LO) HSO_TIME (LO) 4 OR I/o
0100H L--

03H AD_RESULT (HI) HSU.tODE 3
INTERNAL RAM OOFFH

02H AD_RESULT (LO) AD_COMMAND 2 REGISTER FILE
STACK POINTER

01H RO (HI) RO (HI) 1 SPECIAL FUNCTION REGISTERS

OOH RO (La) RO (La) 0
(WHEN ACCESSED AS DATA MEMORY)

OOOOH

(WHEN READ) (WHEN WRITTEN)

270090-6

Figure 2. Memory Map

21-3

inter 8X9XBH

CHIP CONFIGURATION REGISTER (CCR)

Configuration information is stored in the Chip Con­
figuration Register (CCR). Four of the bits in the reg­
ister specify the bus control mode and ready control
mode. Two bits also govern the level of
ROM/EPROM protection and one bit is NANDed
with the BUSWIDTH pin every bus cycle to deter­
mine the bus size. The CCR bit map is shown in
Figure 3, and the functions associated with each bit
are described later.

17161514T3T2T1T01 CHIP CONFIGURATION REGISTER

L RESERVED (Set to 1 for
compatibility with future
parts)

'--I BUS WIDTH SELECT
(16- BIT BUS /8- BIT BUS)

-, WRITE STROBE MODE SELECT
(ViR AND BHE/WRL AND WRH)

ADDRESS VALID STROBE SELECT
(ALE/ ADV)

(

(

IRCO) } INTERNAL READY
IRC1) CONTROL MODE

(LOCO)} PROGRAM LOCK
(LOCI) MODE

270090-7
Figure 3. Chip Configuration Register

The CCR is loaded on reset with the Chip Configura­
tion Byte, located at address 2018H. The CCR regis­
ter is a non-memory mapped location that can only
be written to during the reset sequence; once it is
loaded it cannot be changed until the next reset oc­
curs. The 8096BH will correctly read this location in
every bus mode.

In order to work properly with an 8-bit only system, it
is necessary to hold the upper address byte on the
address bus throughout the CCB read cycle since an
address latch may not be present. However, in a 16-
bit system, the 8X9XBH must float the high half of
the bus to avoid contention with the high data byte
during the CCB read. To accomplish a correct read
on either 8- or 16-bit buses, the upper address lines
are current sensed (during CCB read only) and will
be floated if a current of approximately 1 mA or more
is detected, indicating a bus contention.

If the EA pin is set to a logical 0, the access to
2018H comes from external memory. If EA is a logi­
cal 1 , the access comes from internal
ROM/EPROM. If EA is + 12.5V, the CCR is loaded
with a byte from a separate non-memory-mapped
location called PCCB (Programming CCB). The Pro­
gramming Mode is described in the EPROM Charac­
teristics Section.

21-4

BUS WIDTH

The 8096BH external bus width can be run-time
configured to operate as a standard 16-bit multi­
plexed address/data bus, or as an 8088 minimum
mode type 16-bit address/ 8-bit data bus.

During 16-bit bus cycles, Ports 3 and 4 contain the
address multiplexed with data using ALE to latch the
address. In 8-bit bus cycles, Port 3 is multiplexed
address/data while Port 4 is address bits 8 through
15. The address bits on Port 4 are valid throughout
an 8-bit bus cycle. Figure 4 shows the two options.

The bus width can be changed each bus cycle and
is controlled using bit 1 of the CCR with the BUS­
WIDTH pin. If either CCR.1 or BUSWIDTH is a 0,
external accesses will be over a 16-bit address/8-bit
data bus. If both CCR.1 and BUSWIDTH are 1s, ex­
ternal accesses will be over a 16-bit address/16-bit
data bus. Internal accesses are always 16-bits wide.

The bus width can be changed every external bus
cycle if a 1 was loaded into CCR bit 1 at reset. If this
is the case, changing the value of the BUSWIDTH
pin at run,time will dynamically select the bus width.
For example, the user could feed the INST line into
the BUSWIDTH pin, thus causing instruction access­
es to be word wide from EPROMs while data ac­
cesses are byte wide to and from RAMs. A second
example would be to place an inverted version of
address bit 15 on the BUSWIDTH pin. This would
make half of external memory word wide, while half
is byte wide.

Since BUSWIDTH is sampled after address decod- .
ing has had time to occur, even more complex
memory maps could be constructed. See the timing
specifications for an exact description of BUS­
WIDTH timings. The bus width will be determined by
bit 1 of the CCR alone on 48-pin parts since they do
not have a BUSWIDTH pin.

When using an 8-bit bus, some performance degra­
dation is to be expected. On the 8096BH, instruction
execution times with an 8-bit bus will slow down if
any of three conditions occur. First, word writes to
external memory will cause the executing instruction
to take two extra state times to complete. Second,
word reads from external memory will cause a one·
state time extension of instruction execution time.
Finally, if the prefetch queue is empty when an in­
struction fetch is requested, instruction execution is
lengthened by one state time for each byte that
must be externally acquired (worst case is the num­
ber of bytes in the instruction minus one).

infef

8X9XBH

PORT 4

PORT 3

BUS CONTROL

8X9XBH

BUS CONTROL

270090-8

1S-Bit Bus

Figure 4. Bus Width Options

BUS CONTROL

8X9XBH

8-BIT
PORT 4 LATCHED

ADDRESS HIGH

PORT 3

270090-9

a-Bit Bus

The 8096BH can be made to provide bus control signals of several types. Three control lines have dual
functions designed to reduce external hardware. Bits 2 and 3 of the GGR specify the functions performed by
these control lines.

Standard Bus Control

If GGR bits 2 and 3 are 1 s, then the standard 8096BH control signals WR, BHE and ALE are provided (Fi~
5). WR will come out for every write. BHE will be valid throughout the bus cycle and can be combined with WR
and address line 0 to form WRL and WRH. ALE will rise as the address starts to come out, and will fall to
provide the signal to externally latch the address.

ALEJl IL ALE Jl IL
WR WR U

BHE VALID ADO -7 ---1ADDR LOwl DATA OUT ~
ADO -15 ---1 AD DR DATA OUT ~ ADS -15 ---1 ADDRESS HIGH ~

270090-10 270090-11

1S-Bit Bus Cycle 8-Bit Bus Cycle

Figure 5. Standard Bus Control

21-5

intJ 8X9XBH

Write Strobe Mode

The Write Strobe Mode eliminates the necessity to externally decode for odd or even byte writes. If GGR bit 2
is a 0, and the bus is in a 16-bit cycle, WRL and WRH signals are provided in place of WR and SHE (Figure 6).
WRL will go low for all byte writes to an even address and all word writes. WRH will go low for all byte writes to
an odd address and all word writes.

In an a-bit bus cycle WRL will go active for all writes.

ALE n n ...JI __ 'L ALE

VALID

VALID ADO -7 ~ADDR LOW I DATA OUT ~

ADO -15 --1 ADDR DATA OUT ~ ADS -15 ~ .. __ A_DD_R ... ES_S_H_IG_H __ ... ~
270090-12 270090-13

16-Bit Bus Cycle 8-Bit Bus Cycle

Figure 6. Write Strobe Mode

21-6

inter 8X9XBH

Address Valid,Strobe Mode

If GGR bit 3 is a 0, then an Address Valid Strobe is provided in the place of ALE (Figure 7). When the Address
Valid Mode is selected, ADV will go low after an external address is set up. It will stay low until the end of the
bus cycle, where it will go inactive high. This can be used to provide a chip select for external memory.

ADV I
WR 1 I u

BHE VALID ADO -7 --1ADDR LOwl DATA OUT I---
ADO '-15 --1 ADDR 1 DATA OUT ADS -.15 --1 ADDRESS OUT HIGH

270090-1.4 270090-15

16-Bit Bus Cycle 8-Blt Bus Cycle

Figure 7. Address Valid Strobe Mode

Address Valid with Write Strobe

If both GGR ,bits 2 and 3 are Os, both the Address Valid Strobe and the Write Strobes will be provided for bus
control. Figure 8 shows these signals.

WRL ,I VALID

WRH 'I VALID

ADO '-15 --1 ADDR DATA OUT I---
270090-16

16-Bit Bus Cycle

WRL

ADO -7 -1 ADDR LOW 1 DATA OUT I---

ADS -15 -1L ..;..._A_DD_R_ES_S_H_IG_H __ · ... 1---
270090-17

8-Bit Bus Cycle

Figure 8. Write Strobe with Address Valid Strobe

21-7

inter 8X9XBH

READY CONTROL

To simplify ready control, four modes of internal
ready control logic have been. provided. The modes
are chosen by properly configuring bits 4 and 5 of
the CCA.

The internal ready control logic can be used to limit
the number of wait states that slow devices can in­
sert into the bus cyCle. When the READY pin is
pulled low, wait states will be inserted into the bus
cycle until the READY pin goes high, or the number
of wait statasequals the number specified by CCR
bits 4 and 5, whichever comes first. Table 1 shows
the number of wait states that can be selected. In­
ternalready control can. be disab'led by loading 11
into bits 4.and 5 of the CCA.

IRC1

o
o

Table 1. Internal Ready Control

IRCO Description

o Limit to 1 Wait State
1 Limit to 2 Wait States
o Limit to 3 Wait States
1 Disable Internal Ready Control

This feature provides for simple ready control. For
example, every slow memory chip select line could
be ORed together and be connected to the READY
pin with CCR bits 4 and 5 programmed to give the
proper number of wait states to the slow devices. '

ROM/EPROM LOCK

Four modes of program memory lock are available
on the 839XBH and 879XBH parts. CCR bits 6 and 7
(LOCO, LOC1) select whether internal program
memory can be read (or written in EPROM parts) by
a program executing from external memory. The
modes are shown in Table 2. Internal ROM/EPROM
addresses. 2020H through 3FFFH are protected
from reads while 2000H through 3FFFH are protect­
ed from writes, as set by the CCR.

Table 2. Program Lock Modes

LOC1 LOCO Protection

o
o

o
1
o

Read and Write Protected
Read P.rotected
Write Protected
. No Protection

Only code executing from·internal memory can read
protected internal memory, while a write protected
memory can not be written to, even from internal
execution. As a result of 8096BH prefetching of in­
structions, however, accesses to protected memory
are not. allowed for instructions located above
3FFAH. Note that the interrupt vectors and the CCR
are not protected.

To provide ROM/EPROM lock while allowing verifi­
cation and testing, the 839XBH and 879XBH require
security key verification before programming or test
modes are allowed to read protected memory. More
information on ROM/EPROM Lock can be found in
the EPROM Characteristics section.

, High Speed 1/0 Unit (HSIO)

The HSIO unit consists of the High Speed Input Unit
. (HSI), the High Speed Output Unit (HSO), one coun­
ter and one timer. "High Speed" denotes that the
units can perform functions' related to the timers
without CPU intervention. The HSI records times
when events occur and the HSO triggers events at
pre-programmed times.

All actions within the HSIO unit are synchronized to
the timers. The two 16-bit timer/counter registers in
'the HSIO unit are cleared on chip reset and can be
programmed to generate an interrupt on overflow.
The Timer 1 register is automatically incremented
every 8 state times (every 2.0 ,""S, with a 12 MHz
clock):. The Timer 2 register can be programmed to
count transitions on either the T2CLK pin or HSI.1
pin. It is increm'ented on both positive and negative
edges of the selected input line. In addition to being
cleared by reset, Timer 2 can also be qleared in soft­
ware or by Signals from input pins T2RST or HSI.O.
Neither of these timers is required for either the
Watchdog Timer or the serial port.

21-8

The High Speed Input (HSI) unit can detect tran­
sitions on any of its 4 input lines. When one occurs it
records the time (from Timer 1) and which input lines
made the transition. This information is recorded
with 2 ,""s (12 MHz system) resolution and stored in
an 8-level' FIFO. The unit can be programmed to
look for four typeS of events, as shown in Figure 9. It
can activate the HSI Data Available interrupt either
when ,the HoldirigRegi~ter is loaded or the 6th FIFO
entry has been made. Each input line can be individ­
ually enabled or disabled to the HSI unit by software .

inter 8X9XBH

HSI Trigger Options

~ HITOI..O

~ LOTOHI

~JORL~

EVERY EIGHTH POSITIVE
TRANSITION

270532-6

FIFO
INTERRUPT

& 1~,T6IMER CONTROL LOGIC ~

4 7x20 BIT
FIFO

270532-7

Figure 9. High Speed Input Unit

The High Speed Output (HSO) unit is shown in Fig­
ure 10. It can be programmed to set or clear any of
its 6 output lines, reset Timer 2, trigger an AID con­
version, or set one of 4 Software Timer flags ata
programmed time .. An interrupt can be enabled for
any of these events. Either Timer 1 or Timer 2 can
be referenced for the programmed time value and
up to 8 commands for preset actions can be stored

PORT PINS

in the CAM (Content Addressable Memory) file at
anyone time. As each action is carried out at its
preset time that command is removed from the CAM
making space for another command. HSO.4 and
HSO.5 are shared with the HSI unit as HSI.2 and
HSI.3, and can be individually enabled or disabled as
outputs.

16

T2CLK

~_--''''''- T2RST

High Speed Oulput Controls
6 Pins
4. Software Timers
2 Interrupts
Initiate AID Conversion
Reset Timer 2

270090-20

Figure 10. High Speed Output Unit

21-9

8X9XBH

Standard 1/0 Ports

There are 58-bit I/O ports on the 8096BH in addi­
tion to the High Speed I/O lines.

Port 0 is an input-only port which shares its pins with
the analog inputs to the AID converter. The port can
be read digitally and/or, by writing to the A/D Com~
mand Register, one of the lines can be selected as
the input to theA/D converter. Port 0 is ,also used to
input mode information on EPROM parts operating
in the Programming Mode.

Port 1 is a quasi-bidirectional I/O port. "Quasi-bidi­
rectional" means the port pin has a weak internal
pullup that is always active and an internal pulldown
which can either be on (to output a 0) or off (to out­
put a 1). This configuration allows the pin to be used
as either an input or an output without using a data
direction register. In parallel with the weak internal
pullup is a much stronger internal pullup that is acti­
vated for one state time when the pin is internally
driven from 0 to 1. This is done to speed up the O-to-
1 transition time.

Port 2 isa mUlti-functional port. Two of the pins
(P2.6, 2.7) are quasi-bidirectional while the remain­
ing six are shared with other functions in the
8096BH, as shown in Table 3. Port 2 is also used for
control signals by EPROM parts operating in the
Programming Mode.

Table 3_ Port 2 Pin Functions

Port Function Alternate Function

P2.0 Output TXD (Serial Port Transmit)
P2.1 Input RXD (Serial Port Receive)
P2.2 Input EXTINT (External Interrupt)
P2.3 Input T2CLK (Timer 2 Clock)
P2.4 Input T2RST (Timer 2 Reset)
P2.5 Output PWM (Pulse Width Modulation)

Ports 3 and 4 are bi-directional I/O ports with open
drain outputs. These pins are also used as the multi­
plexed address/data bus when accessing eXternal
memory, in which case they have strong internal
pull ups. The internal pullups are only used during
external memory read or write cycles when the pins
are outputting address or data bits. At any other
time, the internal pull ups are disabled. When used
as a system bus, Ports 3 and 4 can be configured to
be either a multiplexed 16-bit address/data bus or a
multiplexed 16-bit address/ 8-bit data bus. EPROM
parts also use Ports 3 and ,4 to pass programming
commands, addresses, data and status.

Serial Port

The serial port is compatible with the MCS-51 family,
(8051, 8031 etc.), serial port. It is full duplex, and
double-buffered on receive. There are 3 asynchro­
nous modes and 1 synchronous mode of operation
for the serial port. The asynchronous modes allow
for 8 or 9 bits of data with even parity optionally
inserted for one of the data bits. Selective interrupts
based on the 9th data bit are available to support
interprocessor communication.

Baud rates in all modes are determined by an inde­
pendent 16-bit on-chip baud rate generator. Either
the XT AL 1 pin or the T2CLK pin can be used as the
inputto the baud rate generator. The maximum baud
rate in the asynchronous mode is 187.5 KBaud. The
maximum baud rate in the synchronous mode is 1.5
MBaud.

Pulse Width Modulator (PWM)

The PWM output shares a pin with port bit P2.5.
When the PWM output is selected, this pin outputs a
pulse train having a fixed period of 256 state times,
and a programmable width of 0 to 255 state times.
The width is programmed by loading the desired
value, in state times, to the PWM Control Register.

AID Converter with Sample and Hold

The analog-to-digital converter is a 10-bit, succes­
sive approximation converter' with internal sample
and hold. It has a fixed conversion time of 88 state
times which includes the 4 state acquisition time of
the internal Sample/Hold. With a 12 MHz clock, the
conversion takes 22 f-ts, including the 1 f-ts sample
for the Sample and Hold. The Sample acquisition
begins 4 state times after the conversion is trig­
gered. A 2 pF capacitance is charged from the input
signal during acquisition.

The analog input must be in the range of 0 to VREF
(nominally, VREF = 5V). This input can be selected
from 8 analog input lines, which connect to the same
pins as Port O. A conversion can be initiated either
by setting a control bit in the AID Command register,
or by programming the HSO unit to trigger the con­
version at some specified time.

Interrupts

The 8096BH has 20 interrupt sources which vector
through 8 interrupt vectors. A 0-to-1 transition from

21-10

8X9XBH

any of the sources sets a corresponding bit in the
Interrupt Pending register. The content of the Inter­
rupt Mask register determines if a pending interrupt
will be serviced or not. If it is to be serviced, the CPU
pushes the current Program Counter onto the stack
and reloads it with the vector corresponding to the
desired interrupt. The interrupt vectors are located in
addresses 2000H through 2011 H, as shown in Fig­
ure 11.

Vector Location
Vector (High (Low Priority

Byte) Byte)

Software 2011H 2010H Not Applicable
Extint 200FH 200EH 7 (Highest)
Serial Port 200DH 200CH 6
Software 200BH 200AH 5

Timers
HSI,O 2009H 2008H 4
High Speed 2007H 2006H 3

Outputs
HSI Data 2005H 2004H 2

Available
AID Conversion 2003H 2002H 1

Complete
Timer Overflow 2001H 2000H o (Lowest)

Figure 11. Interrupt Vectors

At the end of the interrupt routine the RET instruc­
tion pops the program counter from the stack and
execution continues where it left off. It is not neces­
sary to store and replace registers during interrupt

21-11

routines as each routine can be set up to use a dif­
ferent section of the Register File. This feature of
the architecture provides for very fast context
switching. While the 8096BH has a single priority
level in the sense that any interrupt may itself be
interrupted, a priority structure exists for resolving
simultaneously pending interrupts, as indicated in
Figure 11. Since the interrupt pending and interrupt
mask registers can be manipulated in software, it is
possible to dynamically alter the interrupt priorities to
suit the users software.

Watchdog Timer

The Watchdog Timer is a 16-bit counter which, once
started, is incremented every state time. If not
cleared before it overflows, the RESET pin will be
pulled down for two state times, causing the system
to be reinitialized. In a 12 MHz system, the Watch­
dog Timer overflows after 16 ms.

This feature is provided as a means of graceful re­
covery from a software upset. The counter must be
cleared by the software before it overflows, or else
the system assumes an upset has occurred and acti­
vates RESET. Once the Watchdog Timer is started it
cannot be turned off by software. The flip-flop which
enables the Watchdog Timer has been designed to
maintain its state through Vee glitches to as low as
OV or as high as 7V for 1 fLs to.1 ms.

To start the Watchdog Timer, or to clear it, one
writes 1 EH followed by OE1 H to the WDT address
(OOOAH). The Watchdog cannot be stopped once it
is started unless the system is reset.

8X9XBH

PACKAGING

The 8096BH is available in 48-pin and 68-pin packages, with and without AID, and with and without on-chip
ROM or EPROM. The MCS-96 numbering system is shown in Figure 12. Figures 13-17 show the pinouts for
the 48- and 68-pin packages. The 48-pinversion is offered in a Dual-In-Line package while the 68-pin versions
come in a Plastic Leaded Chip Carrier (PLCC), a Pin Grid Array (PGA) or a Type "B" Leadless Chip Carrier.

Without AID With AID

48 Pin
C8095CH - Ceramic DIP
P8095BH - Plastic DIP

ROMless A8096BH - Ceramic PGA A8097BH - Ceramic PGA

ROM

EPROM

PGA/ PLCC
LCC

1 9

2 8

3 7

4 6

5 5

6 4

7 3

8 2

9 1

10 68

11 67

12 66

13 65

14 64

15 63

16 62

17 61

18 60

19 59

20 58

21 57

22 56

23 55

68 Pin
N8096BH - PLCC N8097BH - PLCC

48 Pin
C8395BH - Ceramic DIP
P8395BH - Plastic DIP

A8396BH - Ceramic PGA A8397BH - Ceramic PGA
68 Pin

N8396BH - PLCC N8397BH - PLCC

48 Pin C8795BH - Ceramic DIP

A8796BH - Ceramic PGA A8797BH - Ceramic PGA
68 Pin

R8796BH - Ceramic LCC R8797BH - Ceramic LCC

Figure 12. The MCS-96® Family Nomenclature

Description·
PGAI

PLCC Description
PGA/

PLCC Description LCC LCC

ACH7/PO.7/PMOD.3 24 54 AD6/P3.6 47 31 P1.6

ACH6/PO.6/PMOD.2 25 53 AD7/P3.7 48 30 P1.5

ACH2/PO.2 26 52 AD8/P4.0 49 29 HSO.1

ACHO/PO.O 27 51 AD9/P4.1 50 28 HSO.O

ACH1/PO.1 28 50 AD10/P4.2 51 27 HSO.5/HSI.3

ACH3/PO.3 29 49 AD11/P4.3 52 26 HSO,4/HSI.2

NMI 30 48 AD12/P4,4 53 25 HSI.1

EA 31 47 AD13/P4.5 54 24 HSI.O

VCC 32 46 AD14/P4.6 55 23 P1,4

VSS 33 45 AD15/P4.7 56 22 P1.3

XTAL1 34 44 T2CLK/P2.3 57 21 Pl.2

XTAL2 35 43 READY 58 20 P1.1

CLKOUT 36 42 T2RST/P2,4 59 19 Pl.0

SUSWIDTH 37 41 SHE/WRH 60 18 TXD/P2.0/PVERISALE

INST 38 40 WR/WRL 61 17 RXD/P2.1/PALE

ALE/ADV 39 39 PWM/P2.5/PDO/SPROG 62 16 RESET

RD 40 38 P2.7 63 15 EXTINT IP2.2/PROG

ADO/P3.0 41 37 VPP 64 14 VPD

AD1/P3.1 42 36 VSS 65 13 VREF

AD2/P3.2 43 35 HSO.3 66 12 ANGND

AD3/P3.3 44 34 HSO.2 67 11 ACH4/PO,4/PMOD.0

AD4/P3,4 45 33 P2.6 68 10 ACH5/PO.5/PMOD.l

AD5/P3.5 46 32 Pl.7

Figure 13. PGA, PLCC and LCC Function Pinouts

21-12

inter 8X9XBH

RXD/P2.1 RESET

TXD/P2.0 EXTINT/P2.2

HSIO VpD

HSl1 VREF

HSI2/HS04 ANGND

HSI3/HS05 ACH4/PO.4

HSOO ACH5/PO.5

HS01 ACH7/PO.7

HS02 ACH6/PO.6

HS03 EA

Vss Vee

Vpp Vss

PWM/P2.5 XTAL1

WRL/WR XTAL2

WRH/BHE ALE/ADV

READY RD

AD15/P4.7 ADO/P3.0

AD14/P4.6 AD1/P3.1

AD13/P4.5 AD2/P3.2

AD12/P4.4 AD3/P3.3

AD11/P4.3 AD4/P3.4

AD10/P4.2 AD5/P3.5

AD9/P4.1 AD6/P3.6

AD8/P4.0 AD7/P3.7

270090-2

Figure 14. 48-Pin Package

ACH5/PO.5

ACH4/PO . .4 11

ANGND

"'REf'
Vpo

EXTINT/P2.2 15

RESET 16

RXD/P2.1

TXDjP2.0 18

P1.0 19

Pl.l

P1.3

P1.4

HSIO

HSII

HSIZ/HS04

'B765'.2 l~"H~MU~~

MCS®-96
68 PIN
PLCC

TOP VIEW
LOOKING DOWN ON
COMPONENT SIDE

OF PC BOARD

AOO/P3.0

AOljP3.1

A02/P3.2

AD3/P3.3

AD4/P3.4

ADSjP3.5

AD6/P3.6

AD7/P3.7

AD8/P4.0

AD10/P4.2

ADII/P4.3

ADI2/P4.4

AOI3/P4.5

A014/P4.6

A01S/P4.?

T2CLK/P2.3

270090-3

Figure 15. 68-Pin Package (PLCC - Top View)

21-13

/1
68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

Pins Facing Down

17 1513 11 9 7 5 3

18 19 16 14 12 10 8 6 4 2 68

2021
MCS®-96

6766

2223 68 PIN
6564

2425 GRID ARRAY 6362

2627 61 60

2829 TOP VIEW 5958
LOOKING DOWN ON

3031 COMPONENT SIDE 5756

3233 OF PC BOARD 5554

34 36 38 40 42 44 46 48 50 53 52

35 37 39 41 43 45 47 49 51

270090-4

Figure 16. 68-Pin Package
(Pin Grid Array - Top View)

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 L

18

19

20

21

MCS®-96 22

68 PIN 23

LEADLESS CHIP CARRIER 24

TYPE "B" 25

(EPROM ONLY) 26

TOP VIEW
27

LOOKING DOWN ON 28

COMPONENT SIDE 29

OF PC BOARD 30

31

32

~ ~

52 34
., 51 5049 48 47 46 45 44 43 42 41 4039 38 37 36 35 r-

270090-5

Figure 17. 68-Pin Package (LCC - Top View)

inter 8X9XBH

PIN DESCRIPTIONS
Symbol Name and Function

Vee Main supply voltage (5V).

Vss Digital circuit ground (OV). There are two VSS pins, both of which must be connected.

VPD RAM standby supply voltage (5V). This voltage must be present during normal operation. In a Power
Down condition (i.e. Vee drops to zero), if RESET is activated before Vee drops below spec and VPD
continues to be held within spec., the top 16 bytes in the Register File will retain their contents. RESET
must be held low during the Power Down and should not be brought high until Vee is within spec and
the oscillator has stabilized.

VREF Reference voltage for the AID converter (5V). VREF is also the supply voltage to the analog portion of
the AID converter and the logic used to read Port O. Must be connected for AID and Port 0 to function.

ANGND Reference ground for the AID converter. Must be held at nominally the same potential as Vss.

VPP Programming voltage for the EPROM parts. It should be + 12.75V for programming. This pin is Vss on
8X9X-90 parts. Systems that have this pin connected to ANGND through a capacitance (required on
8X9X-90 parts) do not need to change. Otherwise, tie to Vee.

XTAL1 Input of the oscillator inverter and of the internal clock generator.

XTAL2 Output of the oscillator inverter.

GLKOUT ' Output of the internal clock generator. The frequency of GLKOUT is % the oscillator frequency. It has a
33% duty cycle.

RESET Reset input to the chip. Input low for at least 2 state times to reset the chip. The subsequent low-to-high
transition re-synchronizes GLKOUT and commences a 10-state-time sequence in which the PSW is
cleared, a byte read from 2018H loads GGR, and a jump to location 2080H is executed. Input high for
normal operation. RESET has an internal pullup.

BUSWIDTH Input for bus width selection. If GGR bit 1 is a one, this pin selects the bus width for the bus cycle in
progress. If BUSWIDTH is a 1, a 16-bit bus cycle occurs. If BUSWIDTH is a 0 an 8-bit cycle occurs. If
GGR bit 1 is a 0, the bus is always an 8-bit bus. This pin is the TEST pin on 8X9X-90 parts. Systems with
TEST tied to Vee do not need to change. If this pin is left unconnected, it will rise to Vee.

NMI A positive transition causes a vector to external memory location OOOOH. External memory from OOH
through OFIi'H is reserved for Intel development systems.

INST Output high during an external memory read indicates the read is an instruction fetch. INST is valid
throughout the bus cycle. INST is activated only during external memory accesses.

EA Input for memory ~elect (External Access). EA equal to a TIL-high causes memory accesses to
locations 2000H through 3FFFH to be directed to on-Chip ROM/EPROM. EA equal to a TIL-low causes
accesses to these locations to be directed to off-chip memory. EA = + 12.5V causes execution to
begin in the Programming Mode. EA has an internal pull down, so it goes to 0 unless driven otherwise.
EA is latched at reset.

ALE/ADV Address Latch Enable or Address Valid output, as selected by GGR. Both pin options provide a latch to
demultiplex the address from the address/data bus. When the pin is ADV, it goes inactive high at the
end of the bus cycle. ADV can be used as a chip select for external memory. ALE/ ADV is activated only
during external memory accesses.

RD Read Signal output to external memory. RD is activated only during external memory reads.

WR/WRL Write and Write Low output to external memory, as selected by the GGR. WR will go low for every
external write, while WRL will go low only for external writes where an even byte is being writ1en.
WR/WRL is activated only during external memory writes.

BHE/WRH Bus High Enable or Write High output to external memory, as selected by the GGR. BHE = 0 selects
the bank of memory that is connected to the high byte of the data bus. AO = 0 selects the bank of
memory that is connected to the low byte of the data bus. Thus accesses to a 16-bit wide memory can
be to the low byte only (AO = 0, BHE = 1), to the high byte only (AD = 1, BHE = 0), or both bytes
(AO = 0, BHE = 0). If the WRH function is selected, the pin will go low if the bus cycle is writing to an
odd memory location. BHE/WRH is activated only during external memory writes.

21-14

infef 8X9XBH

PIN DESCRIPTIONS (Continued)

Symbol Name and Function

READY Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or
for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low
prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next
positive transition in CLKOUT occurs with READY high. The bus cycle can be lengthened by up
to 1 ",s. When the external memory is not being used, READY has no effect. Internal control of
the number of wait states inserted into a bus cycle held not ready is available through
configuration of CCR. READY has a weak internal pull up, so it goes to 1 unless externally pulled
low.

HSI Inputs to High Speed Input Unit. Four HSI pins are available: HSI.O, HSI.1, HSI.2, and HSI.3. Two
of them (HSI.2 and HSI.3) are shared with the HSO Unit. The HSlpins are also used as inputs by
EPROM parts in Programming Mode.

HSO Outputs from High Speed Output Unit. Six HSO pins are available: HSO.O, HSO.1, HSO.2, HSO.3,
HSO.4, and HSO.S. Two of them (HSO.4 and HSO.S) are shared with the HSI Unit.

PortO 8-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog
inputs to the on-Chip AID converter. These pins are also a mode input to EPROM parts in the
Programming Mode.

Port 1 8-bit quasi-bidirectional I/O port.

Port 2 8-bit multi-functional port. Six of its pins are shared with other functions in the 8096BH. the
remaining 2 are quasi-bidirectional. These pins are also used to input and output control signals
on EPROM parts in Programming Mode.

Ports 3 and 4 8-bit bi-directionall/O ports with open drain outputs. These pins are shared with the multiplexed
address/ data bus which has strong internal pullups. Ports 3 and 4 are also used as a command,
address and data path by EPROM parts operating in the Programming Mode.

INSTRUCTION SET

The 80968H instruction set makes use of six ad­
dressing modes as described below:

DIRECT-The operand is specified by an 8-bit ad­
dress field in the instruction. The operand must be in
the Register File or SFR space (locations OOOOH
through OOFFH).

IMMEDIATE-The operand itself follows the op­
code in the instruction stream as immediate data.
The immediate data can be either 8-bits or 16-bits as
required by the opcode.

INDIRECT-An 8-bit address field in the instruction
gives the word address of a word register in the
Register File which contains the 16-bit address of
the operand. The operand can be anywhere in mem­
ory.

INDIRECT WITH AUTO-INCREMENT -Same as
Indirect, except that, after the operand is referenced,
the word register that contains the operand's ad­
dress is incremented by 1 if the operand is a byte, or
by 2 if the operand is a word.

INDEXED (LONG AND SHORT)-The instruction
contains an 8-bit address field and either an 8-bit or
a 16-bit displacement field. The 8-bit address field
gives the word address of a word register in the
Register File which contains a 16-bit base address.
The 8- or 16-bit displacement field contains a signed
displacement that will be added to the base address
to produce the address of the operand. The operand
can be anywhere in memory.

The 80968H contains a zero register at word ad­
dress OOOOH (and which contains OOOOH). This reg­
ister is available for performing comparisons and for
use as a base register in indexed addressing. This
effectively provides direct addressing to all 64K of
memory.

In the 80968H, the Stack Pointer is at word address
0018H in the Register File. If the 8-bit address field
contains 18H, the Stack Pointer becomes the base
register. This allows direct accessing of variables in
the stack.

The following tables list the MCS-96 instructions,
their opcodes, and execution times.

21-15

8X9XBH

nstructlon s ummary

Mnemonic Oper-
Operation (Note 1)

Flags
Notes ands Z N C V VT ST

ADD/ADDB 2 0- D+A v v' v v i -
ADD/ADDB ·3 0- B+A v v v v i -
ADDC/ADDCB 2 0- 0 +A + C t v v v i -
SUB/SUBB 2 0- D-A v v v v i -
SUB/SUBB 3 0- B-A v v v v t -
SUBC/SUBCB 2 0- D-A+C-1 t v v v i -
CMP/CMPB 2 D-A v v v v t -
MUL/MULU 2 0,0+ 2 - 0* A - - - - - ? 2

MUL/MULU 3 0,0+ 2 - B*A - - - - - ? 2

MULB/MULUB 2 0,0+1 - D*A - - - - - ? 3

MULB/MULUB 3 0,0+ 1 - B' A - - - - - ? 3

DIVU 2 o - (0, 0 + 2)/ A, 0 + 2 - remainder - - - v i - 2

DIVUB 2 o - (0,0+ 1)/A, 0 + 1 - remainder - - - v t - 3

DIV 2 o - (0, 0 + 2)/ A, 0 + 2 - remainder - - - ? t -
DIVB .·2 o _ (0,0+ 1)/A, 0 + 1 - remainder - - - ? t -
ANO/ANDB 2 o - OandA v v 0 0 - -
ANO/ANOB 3 0- BandA v v 0 0 - -
OR/ORB 2 o - OorA v v 0 0 - -
XOR/XORB 2 o - 0 (excl. or) A v v 0 0 - -
LO/LOB 2 O-A - - - - - -
ST/STB 2 A+-:-O - - - - - -
LDBSE 2 0_ A;O + 1 - SIGN(A) - - - - - - 3,4

LOBZE 2 0- A;O + 1 -0 - - - - - - 3,4

PUSH 1 SP - SP - 2; (SP) - A - - - - - -
POP 1 A - (SP);SP ~ SP +2 - - - - - -
PUSHF 0 SP- SP - 2; (SP) - PSW; 0 0 0 0 0 0

PSW - OOOOH 1- 0

POPF 0 PSW - (SP); SP - SP + 2; I_v v v v v v v

SJMP 1 PC - PC + 11-bit offset - - - - - - 5

LJMP 1 PC - PC + '16-bit offset - - - - - - 5
BR [indirect] 1 PC -(A) - - - - - -
SCALL 1 SP - SP -2; (SP) - PC; - - - - - - 5

PC - PC + 11-bit offset

LCALL 1 SP - SP - 2; (SP) - PC; - - - - - - 5
PC - PC + 16-bit offset

RET 0 PC - (SP);SP - SP + 2 - - - - - -
J (conditional) 1 PC - PC + a-bit offset (if taken) - - - - - - 5

JC 1 Jump ifC =1 - - - - - - 5

JNC 1 Jump ifC = 0 - - - - - - 5
JE 1 Jump if Z = 1 - - - - - - 5

NOTES:
1. If the mnemonic ends in "8", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A
must conform to the alignment rules for the required operand type. D and B are locations in the Register File; A can be
located anywhere in memory.
2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.
3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte to a word, .
5. Offset is a 2's complement number.

21-16

infef 8X9XBH

nstructlon s ummary (Continued)

Mnemonic Oper- Operation (Note 1) Flags Notes
ands Z N C V VT ST

JNE 1 Jump ifZ = 0 - - - - - - 5

JGE 1 Jump if N = 0 - - - - - - 5

JLT 1 Jump if N = 1 - - - - - - 5

JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5

JLE 1 Jump if N = 1 or.Z= 1 - - - - - - 5

JH 1 Jump if C = 1 and Z = 0 - - - - - - 5

JNH 1 Jump if C = 0 or Z = 1 - - - - - - 5

JV 1 Jump if V = 1 - - - - - - 5

JNV 1 Jump if V = 0 - - - - - - 5

JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5

JST 1 Jump ifST = 1 - - - - - - 5

JNST 1 Jump if ST = 0 - - - - - - 5

JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6

DJNZ 1 D - D - 1; if D * 0 then
PC - . PC + 8-bit offset - - - - - - 5

DEC/DECB 1 D - D-1 '" '" '" '" t -

NEGINEGB 1 D - 0- D '" '" '" '" t -
INC/INCB 1 D - D+ 1 '" '" '" '" t -
EXT 1 D- D; D + 2 - Sign (D) '" '" 0 0 - - 2

EXTB 1 D - D;D + 1 - Sign(D) '" '" 0 0 - - 3

NOTINOTB 1 D - Logical Not (D) '" '" 0 0 - -

CLR/CLRB 1 D - 0 1 0 0 0 - -

SHL/SHLB/SHLL 2 C - msb-----Isb - 0 '" ? '" '" t - 7

SHRISHRB/SHRL 2 0- msb-----Isb - C '" ? '" 0 - '" 7

SHRAISHRAB/SHRAL 2 msb - msb-----Isb - C '" '" '" 0 - '" 7

SETC 0 C-1 - - 1 - - -
CLRC 0 C - 0 - - 0 - - -
CLRVT 0 VT - 0 - - - - 0 -
RST 0 PC - 2080H 0 0 0 0 0 0 8

DI 0 Disable All Interrupts (I - 0) - - - - - -

EI 0 Enable All Interrupts (I
_ 1) - - - - - -

NOP 0 PC-PC+1 - - - - - -

SKIP 0 PC-PC+2 - - - - - -
NORML 2 Left shift till msb = 1; D - shift count '" ? 0 - - - 7

TRAP 0 SP - SP - 2; (SP) - PC
PC .- (2010H) - - - - - - 9

NOTES:
1. If the mnemonic ends in "8", a byte operation is performed, otherwise a word operation is done. Operands D, B and A
must conform to the alignment rules for the required operand type. D and 8 are locations in the Register File; A can be
located anywhere in memory. .
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file,
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at
2080H.
9. The assembler will not accept this mnemonic.

21-17

inter 8X9XBH

Opcode and State Time Listing

DIRECT IMMEDIATE
INDIRECT@ INDEXED@

NORMAL AUTO-INC. SHORT LONG

(,) rn
Z Q

e@> e@> z W W W ern W 0 C Q rn Q rn Q rn rn ern Q rn -rn rn -rn
:IE ex: 0 W wrn 0 w wrn 0 w Ww w ~~ 0 w Ww w Ww w lew ,",w le:IE le:& !;(::I w (,)

~
(,)

~ ~::I
(,)

~ ~
(,) ~ ~ Z A- A- ... ::1 A- A- t)i= t)i= A- t)i= t)J: ::I 0 0 III rni= 0 III rnJ: 0 III III 0 III III

ARITHMETIC INSTRUCTIONS
ADD 2 64 3 4 65 4 5 66 3 6/11 3 7/12 67 4 6/11 5 7/12

ADD 3 44 4 5 45 5 6 46 4 7/12 4 8/13 47 5 7/12 6 8/13

ADDB 2 74 3 4 75 3 4 76 3 6/11 3 7/12 77 4 6/11 5 7/12

ADDB 3 54 4 5 55 4 5 56 4 7/12 4 8/13 57 5 7/12 6 8/13

ADDC 2 A4 3 4 A5 4 5 A6 3 6/11 3 7/12 A7 4 6/11 5 7/12

ADDCB 2 B4 3 4 B5 3 4 B6 3 6/11 3 7/12 B7 4 6/11 5 7/12

SUB 2 68 3 4 69 4 5 6A 3 6/11 3 7/12 6B 4 6/11 5 7/12

SUB 3 48 4 5 49 S 6 4A 4 7/12 4 8/13 4B 5 7/12 6 8/13

SUBB 2 78 3 4 79 3 4 7A 3 6/11 3 7/12 7B 4 6/11 5 7/12

SUBB 3 58 4 5 59 4 5 5A 4 7/12 4 8/13 5B 5 7/12 6 8/13

SUBC 2 A8 3 4 A9 4 5 AA 3 6/11 3 7/12 AB 4 6/11 5 7/12

SUBCB 2 B8 3 4 B9 3 4 BA 3 6/11 3 7/12 BB 4 6/11 5 7/12

CMP 2 88 3 4 89 4 5 8A 3 6/11 3 7/12 8B 4 6/11 5 7/12

CMPB 2 98 3 4 99 3 4 9A 3 6/11 3 7/12 9B 4 6/11 5 7/12

MULU 2 6C 3 25 60 4 26 . 6E 3 27/32 3 28/33 6F 4 27/32 5 28/33

MULU 3 4C 4 26 40 5 27 4E. 4 28/33 4 29/34 4F 5 28/33 6 29/34

MULUB 2 7C 3 17 70 3 17 7E 3 19/24 3 20125 7F 4 19/24 5 20/25

MULUB 3 5C 4 18 5D 4 18 5E 4 20/25 4 21/26 5F 5 20/25 6 21/26

MUL 2 <2l 4 29 <2l 5 30 <2l 4 31/36 4 32137 ® 5 31/36 6 32137

MUL 3 <2l 5 30 <2l 6 31 <2l 5 32/37 5 33/38 ® 6 32137 7 33/38

MULB 2 <2l 4 21 ® 4 21 <2l 4 23/28 4 24/29 ® 5 23/28 6 24/29

MULB 3 <2l 5 22 <2l 5. 22 <2l 5 24/29 5 25/30 <2l 6 24/29 7 25/30

DIVU 2 8C 3 25 80 4 26 8E 3 28/32 3 29/33 8F 4 28/32 5 29/33

DIVUB 2 9C 3 17 90 3 17 9E 3 20/24 3 21/25 9F 4 20/24 5 21/25

DIV 2 <2l 4 29 <2l 5 30 <2l 4 32/36 4 33/37 <2l 5 32/36 6 33/37

DlVB 2 <2l 4 21 <2l 4 21 <2l 4 24/28 4 25/29 <2l 5 24/28 6 25/29

270090-45

NOTES:
'Long indexed and Indirect + instructions have identical opcodes with Short indexed and Indirect modes, respectively. The
second byte of instructions using any Indirect or indexed addressing mode specifies the exact mode used. I(the second
byte is even, use Indirect or Short indexed. lfit is odd, use Indirect + or Long indexed. In all cases the second byte of the
instruction always specifies an even (word) location for the address referenced.
<D Number of state times shown for internal/external operands.
® The opcodes for signed multiply and divide are the opcodes for the unsigned functions with an "FE" appended as a
prefix.
® State times shown for 16-bit bus.

21-18

inter 8X9XBH

Opcode and State Time Listing (Continued)

DIRECT IMMEDIATE
INDIRECT<!>

NORMAL AUTO-INC.

(.) (/)

Z 0
W W W z W e(/) e(/) 0 4(0 (/) WI/) 0 (/) 0 (/) (/) 0

::::IE 0 0 W(/) 0 Ww Ww 0 II: W !;iw W !;iw W
!;i::::E

W
!;i::::IE W W (.) !; (.) !; (.) !; !; (.)

Z Do Do ~ Do ~ Do tit=: tit=: Do
::::IE 0 0 m (/)1- 0 m (/)1- 0 m m 0

LOGICAL INSTRUCTIONS

AND 2 60 3 4 61 4 5 62 3 6/11 3 7/12 63

AND 3 40 4 5 41 5 6 42 4 7112 4 8/13 43

ANDB 2 70 3 4 71 3 4 72 3 6/11 3 7/12 73

ANDB 3 50 4 5 51 4 5 52 4 7112 4 8113 53

OR 2 80 3 4 81 4 5 82 3 6/11 3 7112 83

ORB 2 90 3 4 91 3 4 92 3 6/11 3 7112 93

XOR 2 84 3 4 85 4 5 86 3 6111 3 7/12 87

XORB 2 94 3 4 95 3 4 96 3 6/11 3 7/12 97

DATA TRANSFER INSTRUCTIONS

LD 2 AO 3 4 AI 4 5 A2 3 6/11 3 7112 A3

LDB 2 BO 3 4 BI 3 4 B2 3 6/11 3 7/12 B3

ST 2 CO 3 4 - - - C2 3 7111 3 8/12 C3

STB 2 C4 3 4 - - - C6 3 7111 3 8/12 C7

LDBSE 2 BC 3 4 BD 3 4 BE 3 6111 3 7/12 BF

LDBZE 2 AC 3 4 AD 3 4 AE 3 6/11 3 7/12 AF

STACK OPERATIONS (Internal stack)

PUSH 1 C8 2 8 C9 3 8 CA 2 11/15 2 12/16 CB
. POP I CC 2 12 - - - CE 2 14/18 2 14/18 CF

PUSHF 0 F2 1 8

POPF 0 F3 1 9

STACK OPERATIONS (external stack)

PUSH I C8 2 12 C9 3 12 CA 2 15/19 2 16/20 CB

POP I CC 2 14 - - - CE 2 16/20 2 16/20 CF

PUSHF 0 F2 I 12

POPF 0 F3 I 13

JUMPS AND CALLS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE
UMP E7 3 8

SJMP 20·27® 2 8

BRI J E3 2 8

NOTES:
<D Number of state times shown for internal/external operands.
@ The assembler does not accept this mnemonic.

LCALL EF

SCALL 28·2F®

RET FO

TRAPIID F7

INDEXED<!>

SHORT LONG

!

e@ e@
(/)

-(/)
(/)

-(/)
Ww Ww W
!;i::::IE

W
!;i::::E !; !; - -

m (/)1- m (/)1-

4 6/11 5 7/12

5 7/12 6 8/13

4 6/11 5 7/12

5 7/12 6 8/13

4 6/11 5 7/12

4 6111 5 7/12

4 6/11 5 7112

4 6/11 5 7/12

4 6/11 5 7/12

4 6111 5 7/12

4 7111 5 8/12

4 7/11 5 8/12

4 6/11 5 7/12

4 6/11 5 7/12

3 11/15 4 12/16

3 14/18 4 14/18

3 15119 4 16/20

3 16/20 4 16/20

BYTES STATES
3 13/16<2>

2 13/16<2>

I 12/16(5)

I 21/24

270090-46

@) The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an 11-bit, 2's complement,
offset for the relative call or jump.
® State times for stack located internal/external.
® State times shown for 16·bit bus.

21-19

inter 8X9XBH

CONDITIONAL JUMPS

All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is noU8)

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE

JC DB JE DF JGE D6 JGT D2

JNC D3 JNE D7 JLT DE JLE DA

JH D9 JV DD JVT DC JST D8

JNH D1 JNV D5 JNVT D4 JNST DO

JUMP ON BIT CLEAR OR BIT SET

These instructions are 3-byte instructions. They require 9 state times if the jump is taken, 5 if it is not. (8)

BIT NUMBER

MNEMONIC 0 1 2 3 4 5 6 7

JBC 30 31 32 33 34 35 36 37

JBS 38 39 3A 3B 3C 3D 3E 3F

LOOP CONTROL

MNEMONIC OPCODE STATE TIMES

DJNZ EO 5/9 STATE TIME (NOT TAKEN/TAKEN)(8)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES(8) MNEMONIC OPCODE BYTES STATES(8)

DEC 05 2 4 EXT 06 2 4

DECB 15 2 4 EXTB 16 2 4

NEG 03 2 4 NOT 02 2 4

NEGB 13 2 4 NOTB 12 2 4

INC 07 2 4 CLR 01 2 4

INCB 17 2 4 CLRB 11 2 4

SHIFT INSTRUCTIONS

IN5TR WORD INSTR BYTE INSTR DBLWD STATE TIMES(8)
MNEMONIC OP B MNEMONIC OP B MNEMONIC OP B

SHL 09 3 SHLB 19 3 SHLL OD 3 7 + 1 PER SHIFT(7)

SHR 08 3 SHRB 18 3 SHRL OC 3 7 + 1 PER SHIFT(7)

SHRA OA 3 SHRAB 1A 3 SHRAL OE 3 7 + 1 PER SHIFT(7)

SPECIAL CONTROL INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES(8) MNEMONIC OPCODE BYTES STATES(8)

SETC F9 1 4 DI FA 1 4

CLRC F8 1 4 EI FB 1 4

CLRVT FC 1 4 NOP FD 1 4

RST(6) FF 1 166 SKIP 00 2 4

NORMALIZE

MNEMONIC STATE TIMES

NORML 11 + 1 PER SHIFT

NOTES:
6. This instruction takes 2 states to pull RESET low, then holds it low for 2 states to initiate a reset. The reset takes 12
states, at which time the program restarts at location 2080H. If a capacitor is tied to RESET, the pin may take longer to go
low and may never reach the VOL specification.
7. Execution will take at least 8 states, even for 0 shift.
8. State times shown for 16-bit bus.

21-20

AID Result LO (02H)

: 1 A/D CHANNEL NUMBER

f-- STATUS:
3 - 0 =A/D CURRENTLY IDLE

t-:;'" _ X 1 = CONVERSION IN PROCESS

rs -x
t-c!.-B } A/D RESULT:
_ LEAST SIGNIFICANT 2 BITS

270090-21

HSI_Mode (03H)

I 7 B I 5 4 I 3 2 l' 10 I
L HSI.O MODE

HSI.l MODE

HSI.2 MODE

HSI.3 MODE

WHERE EACH 2 - BIT MODE CONTROL FIELD
DEFINES ONE OF 4 POSSIBLE MODES:

(7

00 8 POSITIVE TRANSITIONS
01 EACH POSITIVE TRANSITION
10 EACH NEGATIVE TRANSITION
11 EVERY TRANSITION

(POSITIVE AND NEGATIVE)

HSO Command (06H)

CHANNEL:
0-5 HSO.O - HSO.5

7 HSO.2 AND HSO.3
8-B SOFTWARE TIMERS
E RESET TIMER2

270090-22

BIT: 0 16 HSO.O AND HSO.l

3 F START A/D CONVERSION

4 INTERRUPT / NO INTERRUPT

SET /CLEAR

7

615

TIMER 2/ TIMER 1

X

270090-23

HSI_Status (06H)

41 3 21' 10 1
L HSI.O STATUS

HSI.l STATUS

HSI.2 STATUS

HSI.3 STATUS

WHERE FOR EACH 2 - BIT STATUS FIELD THE LOWER
BIT INDICATES WHETHER OR NOT AN EVENT HAS
OCCURED ON THIS PIN AND THE UPPER BIT INDICATES
THE CURRENT STATUS OF THE PIN.

270090-25

8X9XBH

21-21

AID Command (02H)

11 CHANNEL # SELECTS WHICH OF THE a
1 ANALOG INPUT CHANNELS IS TO BE

CONVERTED TO DIGITAL roR~.

: GO INDICATES WHEN THE CONVERSION IS TO
BE lNITIATED(GO:; 1 Io4EANS START NOW,
GO;::; 0 MEANS THE CONVERSION IS TO BE
INITIATED BY THE HSO UNIT AT A SPECIFIED TIME).

270090-24

SPCON/SPSTAT (11H)

'o} Bill. BITO SPECIFY THE MODE
W OO=MOOE 0 10;:: lAO DE 2
R r2- 01 =MODE 1 11 =MODE 3

I 2 '-- PEN ENABLE THE PARITY FUNCTION

~ 3 ~ REN ENA8LES THE RECEIVE fUNCTION

4 '-- TBa PROGRAMS THE 9TH DATA BIT

R 5 ~TI

! rs ~RI IS THE TRANSMIT INTERRUPT FLAG

IS THE RECEIVE INTERRUPT FLAG

IS THE 9TH DATA RECEIVED o '7 ~ RBa
'--

Using XTAL 1:

RPE
(IF NOT PARITY)
IS THE PARITY ERROR INDICATOR
(IF PARITY ACTIVE)

270090-26

Baud Rate Calculations

M d o· Baud = XTAL 1 frequency. B =F 0
o • . Ral. 4'(6 + 1) •

o h . Baud _ XTAL 1 frequency
t ers. Rate - 64. (8 + 1)

Using T2CLK:

Mode 0: ~~~: = T2CLK '~eqUency ; B =F 0

Others: ~~~: = T2CLK1~:;uency; B =F 0

Note that B cannot equatO, except when using XTAl.lln other
than Mode O.

Chip Configuration

.... J.T.I-i..L..-Li-I-i;.L.......,O CHIP CONFIGURATION REGISTER

RESERVED (Set to 1 for
compatibility with future
ports)

BUS WIDTH SELECT
(16-BIT BUS/a-BIT BUS)

WRITE STROBE MODE SELECT
(Wii AND BHE/WRL AND WRH)

ADDRESS VALID STROBE SELECT
(ALE/ ADV)

(IRCD) } INTERNAL READY CONTROL

'-~~~-(IRC1) MODE

(LOCO) }
~~~~~~-(LOC1) PROGRAM LOCK MODE 

270090-32 



intJ 

o 

lOCO (15H) 

HSI.O INPUT ENABLE/DISABLE 

TIMER 2 RESET EACH WRITE 

HSI.l INPUT ENABLE / DISABLE 

TIMER 2 EXTERNAL RESET ENABLE / DISABLE 

'HSI.2 INPUT ENABLE / DISABLE 

TIMER 2 RESET SOURCE HSI.O / T2RST 

'HSI.3 INPUT ENABLE / DISABLE 

TIMER 2 CLOCK SOURCE HSI.l /T2CLK 

270090-30 

, lOCO (15H) 

T2RST --0 • - - IOCO.S 

I~~_---T2RESET " .• _- IOCO.3 
; -- IOCO.O , 

HSI.O ~ . HSI 

.-- IOCO.2 

ro"-o------- HSI 

HSI.l ~ .' ' TIMER2 
T2CLK --0 • - - IOCO.7 CLOCK 

• -- IOCO.4 

HSI.2 --0 "-o-~----- HSI 

;- - IOCO.6 

HSI.3 --0 "o-------"HSI 
270090-29 

1050 (15H) 

HSO.O CURRENT STATE 

HSO.l CURRENT STATE 

HSO.2 CURRENT STATE 

HSO.3 CURRENT STATE 

HSO.4 CURRENT STATE 

HSO.S CURRENT STATE 

CAM QB HOLDING REGISTER IS FULL 

HSO HOLDING REGISTER IS FULL 

270090-27 

8X9XBH 

IOC1 (16H) 

SELECT PWM !SELECT P2.S 

EXTERNAL INTERRUPT ACH7/EXTINT 

TIMER 1 OVERFLOW INTERRUPT ENABLE/DISABLE 

TIMER 2 OVERFLOW INTERRUPT ENABLE/DISABLE 

HSO.4 OUTPUT ENABLE/DISABLE 

SELECT TXD / SELECT P2.0 

HSO.S OUTPUT ENABLE/DISABLE 

HSI INTERRUPT 
FIFO FULL / IT.HO"'L"D"'IN"'G"R"'E"GI""ST"E"'R'L"oo;AD"'E"'D 

270090-31 

Vector Location 
Vector (High (Low Priority 

Byte) Byte) 

Software 2011H 2010H Not Applicable 
Extint 200FH 200EH 7 (Highest) 
Serial Port 200DH 200CH 6 
Software 200BH 200AH 5 

Timers 
HSI,O 2009H 2008H 4 
High Speed 2007H 20061-1 3 

Outputs 
HSI Data 2005H 2004H 2 

21-22 

Available 
AID Conversion 2003H 2002H 

Complete 
Timer Overflow 2001H 2000H 

1051 (16H) 

SOFTWARE TIMER 0 EXPIRED 

SOFTWARE TIMER 1 EXPIRED 

SOFTWARE TIMER 2 EXPIRED 

SOFTWARE TIMER 3 EXPIRED 

TIMER 2 HAS OVERFLOW 

TIMER 1 HAS OVERFLOW 

HSI FIFO IS FULL 

1 

o (Lowest) 

HSI HOLDING REGISTER DATA AVAILABLE 

270090-28 



intJ 8X9XBH 

ELECTRICAL CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias .... O°C to + 70°C 

Storage Temperature .......... -40°C to + 150°C 

Voltage from EA or Vpp 
to Vss or ANGND ............ -0.3V to + 13.0V 

Voltage from Any Other Pin to 
Vss or ANGND .............. -0.3V to + 7.0V· 

Average Output Current from Any Pin ....... 10 mA 

Power Dissipation .......................... 1.5W 
·This includes Vpp on ROM and CPU only devices. 

OPERATING CONDITIONS 
Symbol Parameter 

TA Ambient Temperature Under Bias 

Vee Digital Supply Voltage 

VREF Analog Supply Voltage 

fose Oscillator Frequency 

Vpo Power-Down Supply Voltage 

NOTE: 
ANGND and Vss should be nominally at the same potential. 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE- Specifications contained withi" the 
following tables are subject to change. 

Min Max Units 

0 +70 C 

4.50 5.50 V 

4.50 5.50 V 

6.0 12 MHz 

4.50 5.50 V 

D.C. CHARACTERISTICS (Test Conditions: VCC, VREF, VpD, Vpp, VEA = 5,OV ±0.5V; Fosc = 

6.0 MHz; T A = O°C to 70°C; VSS, ANGND = OV) 

Symbol Parameter Min Max Units Test Conditions 

IcC Vec Supply Current (O'C ,;; TA';; 70'C) 240 mA All Outputs 

ICC1 Vee Supply Current(T A = 70'C) 185 mA Disconnected. 

Ipo Vpo Supply Current 1 mA Normal operation 
and Power-Down. 

IREF VREF Supply Current 8 mA 

VIL Input Low Voltage (Except RESET) -0.3 +0.8 V 

VIL1 Input Low Voltage, RESET -0.3 +0.7 V 

VIH Input High Voltage (Except RESET, NMI, XTAL 1) 2.0 Vee +0.5 V 

VIH1 Input High Voltage, RESET Rising 2.4 Vee +0.5 V 

VIH2 Input High Voltage, RESET Falling Hysteresis 2.1 Vce +0.5 V 

VIH3 Input High Voltage; NMI, XTAL 1 2.2 Vee +0.5 V 

lu Input Leakage Current to each pin of HSI, P3, P4, and to P2.1. ±10 p.A Vin= OtoVce 

IU1 D.C. Input Leakage Current to each pin of PO +3 p.A Vin = o to Vee 

IIH Input High Current to EA 100 p.A VIH = 2.4V 

IlL Input Low Current to each pin of P1; -125 p.A VIL = 0.45V 
and to P2.6, P2.7. 

IIL1 Input Low Current to RESET -0.25 -2 mA VIL = 0.45V 

IIL2 Input Low Current P2.2, P2.3, P2.4, READY, BUSWIDTH -50 p.A VIL = 0.45V 

VOL Output Low Voltage on Quasi-Bidirectional 0.45 V IOL = 0.8 mA 
port pins and P3, P4 when used as ports (Note 1) 

VOL1 Output Low Voltage on Quasi-Bidirectional 0.75 V IOL = 2.0 mA 
port pins and P3, P4 when used as ports (Notes 1, 2, 3) 

VOL2 Output Low Voltage on Standard Output 0.45 V IOL = 2.0mA 
pins, RESET and Bus/Control Pins (Notes 1, 2, 3, 4) 

21-23 



intJ 8X9XBH 

D C CHARACTERISTICS (Continued) . 
Symbol Parameter Min Max Units Test Conditions 

VOH Output High Voltage on Quasi-Bidirectional 2.4 V .IOH = - 20 pA 
pins (Note 1) 

VOH1. Output High Voltage on Standard Output 2.4 V IOH = -200,..A 
pins and Bus/Control pins (Note 1) 

IOH3 . Output High Current on RESET -50 ,..A VOH:: 2AV 

Cs Pin Capacitance (Any Pin to Vss) 10 pF ITEST = 1.0 MHz 

NOTES: .. 
1. Quasi-bidirectional pins include those'on Pl, for P2.6 and P2.7. Standard Output Pins include TXD, RXD (Mode 0 only), 
PWM, and HSO pins. Bus/Control pins include CLKOUT, ALE, BHE, FID, WR, INST and ADO-15. 
2. Maximum current per pin must be externally limited to the following values if VOL is held above OA5V. 

IOL on quasi-bidirectional pins and Ports 3 and 4 when used as ports: 4.0 mA 
IOL on standard output pins and RESET: 8.0 rnA 
IOL on Bus/Control pins: 2.0 rnA 

3.During normal (non-transient) operation the following limits apply: 
Total IOL on Port 1 must not exceed 8.0 rnA.. ' 
TotalloL on P2.0, P2.6, RESET and all HSO pins must not exceed 15 rnA. 
TotailOL on Port 3 must not exceed 10 rnA. 
TotaiiOL on P2.5, P2.7, and Port 4 must not exceed 20 mA. 

4. IOL on HSO.X (X = 0, 4, 5) = 1.6 rnA @ O.SV. 

A.C. CHARACTERISTICS Vcc, VPD = 4.5 to 5.5V; TA = O'C to 70'C;fosc = 6.0 to 12,0 MHz 
Test Conditions: Load Capacitance on Output Pins = 80 pF . 

Oscillator Frequency = 10 MHz 

TIMING REQUIREMENTS (Other system components must meet these specs) 

Symbol Parameter Min Max Units 

TCLYX(4) READY Hold after CLKOUT Edge 0(1) ns' 

TLLYV End of ALE! ADV to READY Valid 2Tosc-70 ns 

TLLYI;f End of ALE! ADV to READY High 2Tosc+40 4Tosc-80 ns 

TYLYH Non-Ready Time '. tOOO ns 

TAVDV(6) Address Valid to Input Data Valid 5Tosc-120 ns 

TRLDV RD Active to Input Data Valid 3Tosc-100 ns 

TRHDX Data Hold after RD Inactive 0 ns 

TRHDZ RD Inactive to Input Data Float O. Tosc-25 ns 

T AVGV(4)(6) Address Valid to BUSWIDTH Valid 2 Tosc -125 ns 

YLLGX(4) BUSWIDTH Hold after ALE! ADV Low. Tosc +40 ns 

TLLGV(4) ALE! ADV Low to BUSWIDTH Valid Tosc -75 , ns 

NOTES: 
1. If the 48-pin part is being used then this timing can be generated by assuming that the CLKOUT falling edge has occurred 
at 2Tosc+55 (TLLCH(max) + TCHCL(max)) after the falling edge of ALE. 
4. Pins not bonded out on 48-pin parts. 
6. The term "Address Valid" applies to ADO-15, BHE and INST. 

21-24 



inter 8X9XBH 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES (MCS-96 parts meet these specs) 

Symbol Parameter Min Max Units 

FXTAL Oscillator Frequency 6.0 12.0 MHz 

Tosc Oscillator Period 83 166 ns 

TOHCH XT AL 1 Rising Edge to Clockout Rising Edge 0(4) 120(4) ns 

TCHCH(4) CLKOUT Period(3) 3Tosc(3) 3Tosc(3) ns 

TCHCL(4) CLKOUT High Time Tosc....,35 Tosc+ 10 ns 

TCLLH(4) CLKOUT Low to ALE High -20 +25 ns 

TLLCH(4) ALEI ADV Low to CLKOUT High Tosc-25 Tosc+45 ns 

TLHLL ALEI ADV High Time Tosc-30 Tosc+35(5) ns 

TAVLL(6) Address Setup to End of ALE I ADV Tosc-50 ns 

TRLAZ(7) RD or WR Low to Address Float 25 ns 

TLLRL End of ALE I ADV to RD or WR Active Tosc-40 ns 

TLLAX(7) Address Hold after End of ALEI ADV Tosc-40 ns 

TWLWH WR Pulse Width 3Tosc-35 ns 

TQVWH Output Data Valid toEpd of WR/WRL/WRH 3Tosc-60 ns 

TWHQX Output Data Hold after WR/WRL/WRH Tosc-50 ns 

TWHLH End of WR/WRL/WRH to ALEI ADV High Tosc-75 ns 

TRLRH RD Pulse Width 3Tosc-30 ns 

TRHLH End of RD to ALE I ADV High Tosc-45 ns 

TCLLL(4) CLOCKOUT Low to ALE I ADV Low Tosc-40 Tosc+35 ns 

TRHBX(4) RD High to INST, SHE, AD8-15 Inactive Tosc-25 Tosc+30 ns 

TWHBX(4) WR High to INST, SHE, AD8-15 Inactive Tosc-50 Tosc+ 100 ns 

THLHH WRL, WRH Low to WRL, WRH High 2Tosc-35 2Tosc+40 ns 

TLLHL ALEI ADV Low to WRL, WRH Low 2Tosc-30 2Tosc+55 ns 

TQVHL Output Data Valid to WRL, WRH Low Tosc-60 ns 

NOTES: 
2. If more than one wait state is desired, add 3Tosc for each additional wait state. 
3. CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3Tosc ± IOns if Tosc is constant and 
the rise and fall times on XT AU are less than IOns. 
4. Pins not bonded out on 48-pin parts. 
5. Max spec applies only to ALE. Min spec applies to both ALE and ADV. 
6. The term "Address Valid" applies to ADO-15, BHE and INST. 
7. The term" Address" in this definition applies to ADO-7 for 8-bit cycles, and ADO-15 for 16·bit cycles. 

21-25 



inter 8X9XBH 

WAVEFORM 

XTAL1 
i----TCHCH _ _ ~TLLCH~ 

CLOCKOUT .I \ \i 
_TCHCL ..... TCLLL ,,-1----'" 
~ TCLYX I, 

BHE, INST , VALID 1', 

"~-lT-AV-L-L .j-:---~I.::::::-TW-L-W-H-=--=--=--=----.j~f4----T-WH-B-X-f • ------------_. 
AD8-1S J(~lL) __ <t::::::::::::::~VA~L~ID~::::::::::::~~~~-~-~-~-~-~-~-~-~-~-:-:-~-~. 

- ,---------------

NOTES: 
(1) 8-bit bus only. 
(2) 8-bit bus; or when write strobe mode selected. 
(3) When ADV selected. 

270090-47 

21-26 



8X9XBH 

WAVEFORM-BUSWIDTH PIN 

XTALI 

CLKOUT 

BUSWIDTH 

-------+--~'r~--~'~------------------
ALE / ADV ___ --' 

ADDRESS/DATA ----(~~~)------{!D~A~TA~I~N}_-----.:..-
270090-35 

A.C. CHARACTERISTICS-SERIAL PORT -SHIFT REGISTER MODE 

SERIAL PORT TIMING-SHIFT REGISTER MODE 

Test Conditions· TA = O·C to +70·C· Vee = 5V ±10%· Vss = OV· Load Capacitance = 80 pF .. . . 
Symbol Parameter Min Max Units 

TXLXL Serial Port Clock Period 8Tase ns 

TXLXH Serial Port Clock Falling Edge to Rising Edge 4Tase - 50 4Tase + 50 ns 

TOVXH Output Data Setup to Clock Rising Edge 3Tase ns 

TXHOX Output Data Hold After Clock Rising Edge 2Tase - 50 ns 

TXHOV Next Output Data Valid After Clock Rising Edge . 2Tasc +50 ns 

TDVXH Input Data Setup to Clock Rising Edge 2Tase +200 ns 

TXHDX Input Data Hold After Clock Rising Edge 0 ns 

TXHOZ Last Clock Rising to Output Float 5Tase ns 

WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE 

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE 

270090-36 

21-27 



inter 8X9XBH 

EXTERNAL CLock DRIVE 

Symbol Parameter 

1/TOLOL . Oscillator Frequency 

TOHOX High Time 

TOLOX Low Time 

TOLOH Rise Tiine 

TOHOL Fall Time 

EXTERNAL CLOCK DRIVE WAVEFORMS 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

2.4=X >C 2.0> . <2.0 
. TEST POINTS 

0.45 • 0.8 0.8 • 

. 270090-49 
A.C. Testing inputs are driven at 2.4V for a Logic "1" and 0.45V 
for a Logic "0". Timing measurements are made at 2.0V for a 
Logic "1" and 0.8V for a LogiC "0". . 

Min Max Units 

6 12 MHz 

25 ns 

25 ns 

15 ns 

15 ns 

270090-48 

FLOAT WAVEFORM 

21-28 

. .' '. 270090-51 
For Timing Purposes aport Pin is no Longer Floating when a 100 
mV change from Load Voltage Occurs. and Begins to Float when 
a 100 mV change from the Loaded VOHIVOL Level occurs lOLl 
IOH"' ±15 mAo 



8X9XBH 

AID CONVERTER SPECIFICATIONS 

AID Converter operation is verified only on the 
8097BH, 8397BH, 8095BH, 8395BH, 8797BH, 
8795BH. 

The absolute conversion accuracy is dependent on 
the accuracy of VREF. The specifications given be­
low assume adherence to the Operating Conditions 
section of these data sheets. Testing is done at 
VREF = 5.120V. 

Parameter Typical·(1) 

Resolution 

Absolute Error 

Full Scale Error -0.5 ±0.5 

Zero Offset Error ±0.5 

Non-Linearity 

Differential Non-Linearity 

Channel-to-Channel Matching 

Repeatability ±0.25 

Temperature Coefficients: 
Offset 0.009 
Full Scale 0.009 
Differential Non-Linearity 0.009 

Off Isolation 

Feedthrough -60 

Vee Power Supply Rejection -60 

Input Resistance 

D.C. Input Leakage 

Sample Delay 

Sample Time 

Sampling Capacitor 

NOTES: 
• These values are expected for most parts at 25°C. 

OPERATING CONDITIONS 

Vee, VPD, VREF ..................... 4.5Vto 5.5V 

Vss, ANGND .............................. O.OV 

T A ................................. ODC to 70DC 

Fose ........................... 6.0 to 12.0 MHz 

Test Conditions: 
VREF ................................. 5.120V 

Minimum Maximum Units·' Notes 

1024 1024 Levels 
10 10 Bits 

0 ±4 LSBs 

LSBs 

LSBs 

0 ±4 LSBs 

0 ±2 LSBs 

0 ±1 LSBs 

LSBs 1 

LSB;oC 1 
LSB;oC 1 
LSB/DC 1 

-60 dB 1,2,4 

dB 1,2 

dB 1,2 

1K 5K n 1 

0 3.0 /LA 

3Tose - 50 3Tose + 50 ns 1,3 

12Tose - 50 12Tose + 50 ns 1 

2 pF 

"An "LSB", as used here, is defined in the glossary which follows and has a value of approximately 5 mY. 
1. These values are not tested in production· and are based on theoretical estimates and laboratory tests. 
2. DC to 1 00 KHz. 
3. For starting the AID with an HSO Command. 
4. Multiplexer Break-Before-Make Guaranteed. 

21-29 



intJ 8X9XBH 

AID GLOSSARY OF TERMS 

ABSOLUTE ERROR-The maximum' difference be­
tween corresponding actual and ideal code tran­
sitions. Absolute Error accounts for all deviations of 
an actual converter from an ideal converter. 

ACTUAL CHARACTERISTIC-The characteristic 
of an actual converter. The characteristic of a given 
converter may vary over temperature, supply volt­
age, and frequency conditions. An actual character­
istic rarely has ideal first and last transition locations 
!)r ideal code widths. It may even vary over niultiple 
conversions under the same conditions. 

BREAK-BEFORE-MAKE-The property of a multi­
plexer which guarantees that a previously selected 
channel will be deselected before a new channel is 
selected. (e.g., the converter will not short inputs to­
gether.) 

CHANNEL-TO-CHANNEL MATCHING-The differ­
ence between corresponding code transitions of ac­
tual characteristics taken from different channels un­
der the same temperature, voltage and frequency' 
conditions. 

CHARACTERISTIC-A graph of input voltage ver­
sus the resultant output code for an AID converter. 
It describes the transfer function of the AID convert­
er. 

CODE-The digital value output by the converter. ' 

CODE CENTER-The voltage corresponding to the 
'midpoint between two adjacent code transitions. 

CODE TRANSITION~ The point at which the con­
verter changes from an output code of a, to a code 
of a + 1. The input voltage corresponding to a code 
transition is defined to be that, voltage which is 
equally' likely to produce either of two adjacent· 
codes. 

CODE WIDTH-The voltage corresponding to the 
difference between two adjacent code transitions. 

CROSSTALK-See ','Off-Isolation'~. 

D.C. INPVT LEAKAGE-Leakage cu~rent to ground 
from an analog input pin. 

DIFFERENTIAL NON~LINEARITY-The difference 
between the ideal and actual code widths of theter­
minal based characteristic. 

FEEDTHROUGH.,...Attenuation of a voltage applied 
on the selected channel of the AID Converter after 
the sample window closes. 

FULL SCALE ERROR-The difference between the 
expected and actual input voltage corresponding to 
the full scale code transition. 

IDEAL CHARACTERISTIC-A characteristic with 
its first code transition at VIN = 0.5 LSB, its last 
code transition at VIN = (VREF - 1.5 LSB) and all 
code widths equal to one LSB. 

INPUT RESISTANCE-The effective series resist~ 
ance from the analog input pin to the sample capaci­
tor. 

LSB-Least Significant Bit: The voltage corre­
sponding to the full scale voltage divided by 2n, 
where n is the number of bits of resolution of the 
converter. For a1 O~bit converter with a reference 
voltage of 5.12V, one LSB is 5.0 mV~ Note thafthis 
is 'different than digital LSBs, since an uncertainty of 
two LSB, when referring to an AID converter, equals 
10 mY. (This has been confused with an uncertainty 
'of two digital bits, which would mean four' counts; or 
20mV.) , 

MONOTONIC-The property of successive approxi­
mation converters which guarantees that increasing 
input voltages produce adjacent codes of increasing 
value, and that decreasing input voltages produce 
adjacent codes of decreasing value~ 

NO MISSED CODES-For each and every output 
'code; there exists a unique input voltage range 
which produces that code only. 

NON-LiNEARITY-The maximum deviation of code 
transitions of the terminal-based characteristic from 
the corresPonding code transitions of the ideal char-
acteristic. ' ' , 

21-30 



8X9XBH 

OFF-ISOLATION-Attenuation of a voltage applied 
on a deselected channel of the AID converter. (Also 
referred to as Crosstalk.) 

REPEATABILITY-The difference between corre­
sponding code transitions from different actual char­
acteristics taken from the same converter on the 
same channel at the same temperature, voltage and 
frequency conditions. 

RESOLUTION-The number of input voltage levels 
that the converter can unambiguously distinguish 
between. Also defines the number of useful bits of 
information which the converter can return. 

SAMPLE WINDOW-Begins when the sample ca­
pacitor is attached to a selected channel and ends 
when the sample capacitor is disconnected from the 
selected channel. 

SUCCESSIVE APPROXIMATION-An AID conver­
sion method which uses a binary search to arrive at 
the best digital representation of an analog input. 

TEMPERATURE COEFFICIENTS-Change in the 
stated variable per degree centigrade temperature 
change. Temperature coefficients are added to the 
typical values of a specification to see the effect of 
temperature drift. 

SAMPLE DELAY-The delay from receiving the TERMINAL BASED CHARACTERISTIC-An actual 
start conversion signal to when the sample window / characteristic which has been rotated and translated 
opens. to remove zero offset and full scale error. 

SAMPLE DELAY UNCERTAINTY-The variation in 
the sample delay. 

SAMPLE TIME-The time that the sample window 
is open. 

SAMPLE TIME UNCERTAINTY-The variation in 
the sample time. 

21-31 

Vee REJECTION-Attenuation of noise on the Vee 
line to the AID converter. 

ZERO OFFSET-The difference between the ex­
pected and actual input voltage corresponding to 
the first code transition. 



inter .8X9XBH 

EPROM CHARACTERISTICS 

The 879XBH contains 8K bytes of ultraviolet Erasea­
ble and Electrically Programmable Read Only Mem­
ory (EPROM) for internal storage. This memory can 
be programmed in a variety of ways':-including at 
run-time under software control. 

The EPROM is mapped into memory locations 
2000H through 3FFFH if EA is a TTL high. However, 
applying + 12. 75V to EA when the chip is reset will 
place the 879XBH in EPROM Programming Mode~ 
The Programming Mode has been implemented to 
support EPROM programming and verification. 

When an 879XBH is in Programming Mode, special 
hardware functions are available to the user. These 
functions include algorithms for slave, gang and 
auto EPROM programming. 

Programming the 879XBH 

Three flexible EPROM programming modes are 
available on the 879XBH-auto, slave and run-time. 
These modes can be used to program 879XBHs in a 
gang, stand alone or run-time environment. 

The Auto Programming Mode enables an 879XBH to 
program itself, and up to 15 other 879XBHs, with the 
8K bytes of code beginning at address 4000H on its 
external bus. The Slave Mode provides a standard 
interface that enables any number of 879XBHs to be 
programmed by a master device such as an EPROM 
programmer. The Run~Time Mode allows individual 
EPROM locations to be programmed at run-time un­
der complete software control. 

In the Programming Mode, some 1/0 pins have been 
renamed. These new pin functions are used to de­
termine the programming function that is performed, 
provide programming ALEs, provide slave ID num-

bers and pass error information. Figure 19 shows 
how the pins·are renamed. Figure 20 describes each 
new pin function. 

While in Programming Mode, PM ODE selects the 
programming function that is performed (see Figure 
18). When not in the Programming Mode, Run-Time 
programming can be done at any time. 

PMODE Programming Mode 

0-4 Reserved 

5 Slave Programming 

6-0BH Reserved 

OCH. Auto Programming Mode 

OOH Program Configuration Byte 

OEH-OFH Reserved 

Figure 18. Programming Function PMODE Values 

To guarantee proper execution, the pins of PMODE 
and SID must be in their desired state before the 
RESET pin is allowed to rise and reset the part. 
Once the part is reset, it is in the selected mode and 
should not be switched to another mode without a 
new reset sequence. .. 

When EA selects the Programming Mode, the chip 
reset sequence loads the CCR from the Program­
ming Chip Configuration Byte (PCCB). This is a 
separate EPROM location that is not mapped under 
normal operation. PCCR is only important when pro­
gramming in the Auto Programming Mode. In this 
mode, the 879XBH that is being programmed gets 
the data to be programmed from external memory 
over the system bus. Therefore, PCCR must correct­
ly correspond to the memory system in the program­
ming setup, which is not necessarily the memory or­
ganization of the application. 

The following sections describe 879XBH program­
ming in each programming mode. 

21-32 



Name 

PMODE 

SID 

PALE 

PROG 

PACT 

PVER 

PD~ 

SALE 

SPROG 

PORTS 3 and4 

ING 
SELEC 

PROGRAMM 
MO 

TSL 
DE _ 

EA 

" PO.7 
[ PMODE PO.S 

v PO.5 
PO.4 

HSI.O 

" [ SID 
HSI.l 
HSI.2 V 
HSI.3 

8X9XBH 

t PROGRAMMING VOLTAGE 

VPP " PORT 4 ADDRESS COMMAND DATA PATH 
PORT 3 \j v 

HSO.O PACT 

P2.1 PALE 

P2.2 PROG 

P2.0 PVER/SALE 

P2.5 PDO ISPROG 

B79XBH 

Figure 19. Programming Mode Pin Functions 

Function 

270090-37 

Programming Mode Select. Determines the EPROM programming algorithm that is 
performed. PMODE is sampled after a chip reset and should be static while the part 
is operating. 

Slave 10 Number. Used to assign each slave a pin of Port 3 or 4 to use for passing 
programming verification acknowledgement. For example, if gang programming in 
the Slave Programming Mode, the slave with SID = 0001 will use Port 3.1 to signal 
correct or incorrect program verification. 

Programming ALE input. Accepted by an 879XBH that is in the Slave Programming 
Mode. Used to indicate that Ports 3 and 4 contain a command/address. 

Programming Pulse. Accepted by an 879XBH that is in the Slave Programming 
Mode. Used to indicate that Ports 3 and 4 contain the data to be programmed. A 
falling edge on PROG signifies data valid and starts the programming cycle. A rising 
edge on PROG will halt programming in the slaves. 

Programming Active. Used in the Auto Programming Mode to indicate when 
programming activity is complete. 

Program Verified. A signal output after a programming operation by parts in the Slave 
Programming Mode. 

Programming Duration Overflowed; A signal output by parts in the Slave 
Programming Mode. Used to signify that the PROG pulse applied for a programming 
operation was longer than allowed. 

Slave ALE. Output signal from an 879XBH in the Auto Programming Mode. A falling 
edge on SALE indicates that Ports 3 and 4 contain valid address/command 
information for slave 879XBHs that may be attached to the master. 

Slave Programming Pulse. Output from an 879XBH in the Auto Programming Mode. 
A falling edge on SPROG indicates that Ports 3 and 4 contain valid data for 
programming into slave 879XBHs that may be attached to the master. 

Address/Command/Data Bus. Used to pass commands, addresses and data to and 
from slave mode 879XBHs. Used by chips in the Auto Programming Mode to pass 
command, addresses and data to slaves. Also used in the Auto Programming Mode 
as a regular system bus to access external memory. Should have pull ups to 
Vee (15 K.!1). 

Figure 20. Programming Mode Pin Definitions 

21-33 



inter 8X9XBH 

AUTO PROGRAMMING MODE 

The Auto Programming Mode provides the ability to 
program the internal.879XBH EPROM without hav­
ing to use a special EPROM programmer: In this 
mode, the 879XBH simply programs itself with the 
data found at external locations 4000H through 
5FFFH. All that is required is that some sort of exter­
nal memory reside at these locations, that EA se­
lects the Programming Mode and that Vpp is ap­
plied. Figure 21 shows a minimum configuration for 
using an 8K x 8 EPROM to program one 879XBH in 
the Auto Programming Mode. 

The 879XBH first reads a word from external memo­
ry, then the Modified Quick-Pulse Programming™ 
Algorithm (described later) is used to program the 
appropriate EPROM location. Since the erased state 
of a byte is OFFH, the Auto Programming Mode 'will 
skip locations where the data to be programmed is 
OFFH. When all 8K has been programmed, PACT 
goes high and the part outputs a 0 on Port 2.0 if it 
programmed correctly and a 1 if it failed. 

Gang Programming with the 
Auto Programming Mode 

An 879XBH in the Auto Programming Mode can also 
be used as a programmer for up to 15 other 
879XBHs that are configured in the Slave Program-

0.1-1.0 
p.F 

SV ,....,~..&..._ ......... 

ming Mode. To accomplish this, the 879XBH acting 
as the master outputs the slave command/data 
pairs on Ports 3 and 4 necessary to program slave 
parts with the same data it is programming itself 
with. Slave ALE (SALE) and Slave PROG (SPROG) 
signals are provided by the master to the slaves to 
demultiplex the commands from the data. Figure 22 
is a block diagram of a gang programming system 
using one 879XBH in the Auto Programming Mode. 
The Slave Programming Mode is described in the 
next section. 

The master 879XBH first reads a word from the ex­
ternal memory controlled by ALE, RD and WR. It 
then driVeS Ports 3 and 4 with a Data Program com­
mand using the appropriate address and alerts the 
slaves with a falling edge on SALE. Next, the data to 
be programmed is driven onto Ports 3 and 4 and 
slave programming begins with a falling edge on 
SPROG. At the same time, the master begins to pro­
gram its own EPROM location with the data read in. 
Intel's Modified Quick-Pulse Programming™ Algo­
rithm is used, with Data Verify commands being giv­
en to the slaves after each programming pulse. 

When programming is complete, PACT goes high 
and Ports 3 and 4 are driven with all 1s if all parts 
programmed correctly. Individual bits of Port 3 and 4 
will be driven to 0 if the slave. with that bit number as 
an SID did not program correctly. The 879XBH used 
as the master assigns itself an SID of O. 

8796BH 
OR RDI-.....,.------' 

NOTE: 

8797BH 
":-~~=-I XTAL 1 

CSCE 
~~A~DB~-~AD~1~S~----~~~~A8-A12 

ALE 1---------.....,.-1 

AO-A7 
'-:-.... ---1 XTAL 2 

BUSWIDTH 2764 

'----/-------1 DO - 07 

Ports 3 and 4 should have pull ups to Vee 

Figure 21. The Auto Programming Mode 

21-34 

270090-40 



inter 

NOTE: 

5Vdc 

0.1-1.0 J.LF 

+12.75 Vdc 

vee 
VREF 
VPD 

VSS 1 
VSS 2 

,...----+--1AGND 
NMI 

8796BH 
OR 

8X9XBH 

5Vdc 

5V 

8797BH RD t-+--~~~-:-::---' 
,.:-.... --iXTAL 1 

ALE~+-+-----~ 

L-.. ..... --IXTAL2 

PORTS L'T' WI'" PORTS WI'" PORTS -'0 -'0 -'0 
3,4 ...; '" ~ g: 3,4 ...; '" 3,4 

0..0.. 0..0.. 

SLAVE SLAVE SLAVE 
879XBH 879XBH 879XBH 

HSI HSI HSI 
32 1 0 321 0 321 0 

PORTS WI'" -'0 
3,4 ...; '" 

0..0.. 

•• SLAVE • 879XBH 

HSI 
321 0 

SID = OFh 

270090-41 

EA and Vpp on slaves must be at + 12.75 Vdc. Each slave's PMODE must equal 05H. Ports 3 and 4 should have pullups 
to Vee. Minimum configuration connections must also be made for slaves. A 10 MHz clock is recommended for the 
slaves. 

Figure 22. Gang Programming with the Auto Programming Mode 

21-35 



inter 8X9XBH 

SLAVE PROGRAMMING MODE 

Any number of 879XBHs can be programmed by a 
master programmer through the Slave Programming 
Mode. 

The programming device uses Ports 3 and 4 of the 
parts being programmed as a command/data path. 
The slaves accept Signals on PALE (Program ALE) 
and PROG (Program Enable) to demultiplex the 
commands and data. The slaves also use PVER, 
PD~ and Ports 3 and 4 to pass error information to 
the programmer. Support for gang programming of 
up to 16 879XBHs is provided. If each part is given a 
unique SID (Slave 10 Number) an 879XBH in the 
Auto Programming· Mode can be used as a master to 
program itself and up to 15 other slave 879XBHs. 
There is, however, no 879XBH dependent limit to 
the number of parts that can be gang programmed 
in the slave mode. 

It is important to note that the interface to an 
879XBH in the slave mode is similar to a multiplexed 
bus. Attempting to issue consecutive PALE pulses 
without a corresponding PROG pulse will produce 
unexpected results. Similarly, issuing consecutive 
PROG pulses without the corresponding PALE puls­
es immediately preceding is equally unpredictable. 

Slave Programming Commands 

The commands sent to the slaves are 16-bits wide 
and contain two fields. Bits 14 and 15 specify the 
action that the slaves are to perform. Bits 0 through 
13 specify the address upon which the action is to 
take place. Commands are sent via Ports 3 and 4 
and are available to cause the slaves to program a 
word, verify a word, or dump a word (Table 4). The 
address part· of the command sent to the slaves 
ranges from 2000H to 3FFFH and refers to the inter­
nal EPROM memory space. The following sections 
describe each Slave Programming Mode command. 

Table 4. Slave Programming Mode Commands 

P4.7 P4.6 Action 

0 0 Word Dump 
·0 1 Data Verify 

1 0 Data Program 
1 1 Reserved 

DATA PROGRAM COMMAND-After a Data Pro­
gram Command has been sent to the slaves, PROG 
must be pulled low to cause the data on Ports 3 and 
4 to be programmed into the location specified dur~ 
ing the command. The falling edge of PROG is not 
only used to indicate data valid, but also triggers the 
hardware programming of the word specified. The 
slaves will begin programming 48 states after PROG 
falls, and will continue to program the location until 
PROG rises. 

After the rising edge of PROG, the slaves automati­
cally perform a verification of the address just pro­
grammed. The result of this verification is then out­
put on PVER (Program Verify) and PD~ (Program 
Duration Overflowed). Therefore, verification infor­
mation is available following the Data Program Com­
mand for programming systems that cannot use the 
Data Verify command. 

If PVER and PD~ of all slaves are 1 s after PROG 
rises then the data program was successful every- . 
where. If PVER is a O. in any slave, then the data 
~ammed did not verify correctly in that part. If 
PD~ is a 0 in any $Iave, then the programming pulse 
in those parts was terminated by an internal safety 
feature rather than the rising edge of PROG. The 
safety feature. prevents over-programming in the 
slave mode. Figure 23 shows the relationship of 
PALE, PROG, PVER and PD~ to the Command/ 
Data Path on Ports 3 and 4 for the Data Program 
Command. 

PORTS 3,4 --< ADDRESS/COMMAND ~~--------

PALE \. / '-._ ....... _-' 

\----_/ 
PVER VALID I \ VALID 

VALID I \ VALID 
270090-38 

Figure 23. Data Program Signals In Slave Programming Mode 

21-36 



intJ 8X9XBH 

DATA VERIFY COMMAND-When the Data Verify 
Command is sent, the slaves respond by driving one 
bit of Port 3 or 4 to indicate correct or incorrect verifi­
cation of the previous Data Program. A 1 indicates 
correct verification, while a 0 indicates incorrect veri­
fication. The SID (Slave 10 Number) of each slave 
determines which bit of the command/data path is 
driven. PROG from the programmer governs when 
the slaves drive the bus. Figure 24 shows the rela­
tionship of Ports 3 and 4 to PALE and PROG. 

This command is always preceded by a Data Pro­
gram Command in a programming system with as 
many as 16 slaves. However, a Data Verify Com­
mand does not have to follow every Data Program 
Command. 

WORD DUMP COMMAND - When the Word Dump 
Command is issued, the 879XBH being programmed 
adds 2000H to the address field of the command 
and places the value found at the new address on 
Ports 3 and 4. For example, sending the command 
#0100H to a slave will result in the slave placing the 
word found at location 2100H on Ports 3 and 4. 
PROG from the programmer governs when the 
slave drives the bus. The signals are the same as 
shown in Figure 24. 

Note that this command will work only when just one 
slave is attached to the bus, and that there is no 
restriction on commands that precede or follow a 
Word Dump Command. 

PALE ~\" ____ ..J/ 

PORTS 3,4 -{DATA VERIFY COMMAND) 

PROG 

Gang Programming with the 
Slave Programming Mode 

Gang programming of 879XBHs can be done using 
the Slave Programming Mode. There is no 879XBH 
based limit on the number of chips that may be 
hooked to the same Port 3/Port 4 data path for gang 
programming. 

If more than 16 chips are being gang programmed, 
the PVER and PD~ outputs of each chip could be 
used for verification. The master programmer could 
issue a data program command then either watch 
every chip's error signals, or AND all the signals to­
gether to get a system PVER and PD~. 

If 16 or fewer 879XBHs are to be gang programmed 
at once, a more flexible form of verification is avail­
able. By giving each chip being programmed a 
unique SID, the master programmer could then issue 
a data verify command after the data program com­
mand. When a verify command is seen by the 
slaves, each will drive one pin of Port 3 or 4 with a 1 
if the programming verified correctly or a 0 if pro­
gramming failed. The SID is used by each slave to 
determine which Port 3, 4 bit it is assigned. An 
879XBH in the auto programming mode could be the 
master programmer if 15 or fewer slaves need to be 
programmed (See Gang Programming with the Auto 
Programming Mode). 

( VERIFICATION BITS >-

\\".--_/ 
270090-39 

Figure 24. Data Verify Command Signals 

21-37 



8X9XBH 

AUTO CONFIGURATION BYTE 
PROGRAMMING MODE 

The CCB (location 2018H) can be treated just like 
any other EPROM location, and programmed using 
any programming mode. But to provide for simple 
programming of the CCB when no other locations 
need to be programmed, the Auto Configuration 
Byte Programming Mode is provided. Programming 
in this mode also programs PCCB. Figure 25 shows 
a block diagram for using the Auto Configuration 
Byte Programming Mode. 

With PMODE = ODH and OFF on Port 4, CCBand 
PCCB will be programmed the value on Port 3 when 
a logic 0 is placed on PALE. After programming is 
complete, PVER will be driven to a 1 if the bytes 
programmed correctly, and a 0 if the programming 
failed. 

+12.75 Vdc 

EAVPP 
PO.7 
PO.S 
PO.S 

PO.4 
879XBH 

PALE 

NOTE: 

This method of programming is the only way to pro­
gram PCCB. PCCI:! is a non-memory mapped 
EPROM location that gets loaded into CCR during 
the reset sequence when the voltage on EA puts the 
879XBH in Programming Mode. If PGGB is not pro­
grammed· using the Auto Configuration Byte Pro­
gramming Mode, .every time the 879XBH is put into 
Programming Mode the CCR will be loaded with 
OFFH (the value of the erased PCCB location). 

However, if programming of the GGB and PCGB is 
done using this programming mode, the PCCB will 
take on the value programmed into CCB. This 
means that until the part is erased, programming ac­
tivities that use the system will employ the bus width 
and controls selected by the user's CCB. 

vee 

270090-42 
Tie Port 3 to the value desired to be programmed into CRB, and pces. 
Make all necessary minimum connections for power, ground and clock. 

Figure 25. The Auto CCR Programming Mode· 

21-38 



inter 8X9XBH 

RUN·TIME PROGRAMMING 

Run-Time Programming of the 879XBH is provided 
to allow the user complete flexibility in the ways in 
which the internal EPROM is programmed. That flex­
ibility includes the ability to program just one byte or 
one word instead of the whole EPROM, and extends 
to the hardware necessary to program. The only 
additional requirement of a system is that a pro­
gramming voltage is applied to Vpp. Run-Time Pro­
gramming is done with EA at TTL-high (normal 
operation - internal/external access). 

To Run-Time program, the user writes a byte or 
word to the location to be programmed. Once this is 
done, the 879XBH will continue to program that lo­
cation until another data read from or data write to 
the EPROM occurs. The user can therefore control 
the duration of the programming pulse to within a 
few microseconds. An inteligent algorithm should be 
implemented in software. It is recommended that the 
Modified Quick-Pulse Programming™ Algorithm be 
implemented. 

After the programming of a location has started, 
care must be taken to insure that no program fetch­
es (or pre-fetches) occur from internal memory. 

PROGRAM: 
POP 
POP 
POP 
PUSH 

PUSHF 
LDB 

LDB 
ADD 

EI 

temp 
address_temp 
data--temp 
temp 

HSO_COMMAND ,#SWTO_ovf 
HSO_TlME,TlMERl,#program_pulse 

ST data_temp, [address_temp] 
CALL 20lAH 

POPF 
RET 

swtO_expired: 
POP 0 
RET 

This is of no concern if the program is executing 
from external memory. However, if the program is 
executing from internal memory when the write oc­
curs, it will be necessary to use the built in "Jump to 
Self" located at 201AH. 

"Jump to Self" is a two byte instruction in the Intel 
test ROM which can be CALLed after the user has 
started programming a location by writing to it. A 
software timer interrupt could then be used to es­
cape from the "Jump to Self" when the proper pro­
gramming pulse duration has elapsed. Figure 26 is 
an example of how to program an EPROM location 
while execution is entirely internal. 

Upon entering the PROGRAM routine, the address 
and data are retrieved from the STACK and a Soft­
ware Timer is set to expire one programming pulse 
later. The data is then written to the EPROM loca­
tion and a CALL to location 201 AH is made. Loca­
tion 201AH is in Intel reserved test ROM, and con­
tains the two byte opcode for a "Jump to Self." The 
minimum interrupt service routine would remove the 
201AH return address from the STACK and return. 

;take parameters from the STACK 

:save current status 
;enable only swt interrupts 

:load swt command to interrupt 
;when program pulse time 
;has elasped 

Figure 26. Programming the EPROM from Internal Memory Execution 

21-39 



8X9XBH 

ROM/EPROM PROGRAM LOCK 

Protection' mechanisms' have been provided on the 
ROM and EPROM versions of the 809XBHto inhibit 
unauthorized accesses of internal program memory. 
However, there must always be' a way to allow 
authorized program memory dumps for testing 
purposes. The following . describes 839XBH, 
8?9XBH program lock features and tht;! mode pro­
Vided for authorized memorY dumps. 

PROGRAM LOCK FEATURES 

Write protection is provided for EPROM parts, while 
READ protection is provided for. both ROM and 
EPROM parts. 

Write protection is enabled by causing the LOCO bit 
in the CCR to take the value o. When WRITE protec­
tion is. selected, the bus controller will cycle through 
the write sequence, but will not actually drive data to 
the EPROM and will not enable Vpp to the EPROM. 
This protects the entire EPROM 2000H-3FFFH from 
inadvertant or unauthorized programming. 

READ protection is selected by causing the LOC1 
bit in the CCR to take the value o. When READ pro­
,tection is enabled, the bus controller will only per­
form a data read from the address range 2020H-
3FFFH if the slave program counter is in the range 
2000H-3FFFH. Note that since the slave PC can be 
many bytes ahead of the CPU program counter, an 
instruction that is located after address 3FFAH may 
not be allowed to access protected memory, even 
through the instruction is itself protected. 

If the bus controller receives a reqiJest to perform a 
READ of protected memory, the READ sequence 
occurs with indeterminant data being returned to the 
CPU. ' ' 

Other enhancements were also made to the 
8096BH for program protection. For example, the 
value of EA is latched on reset so that the device 
cannot be switched from external to internal execu­
tion mode at run-time. In addition, if READ protec­
tion is selected, an NMI event will cause the device 
to switch to external only execution mode. Internal 
execution can only resume by resetting the chip. 

AUTHORIZED ACCESS OF PROTECTED 
MEMORY 

To provide a method of dumping the internal ROMI 
EPROM for testing purposes a ~'Security Key" 
mechanism and ROM dump mode have been imple-
mented. . , 

, The security key is a 128 bit number, located in inter­
nal memory, that' must be matched before a ROM 
dump will occur. The application cOQe contains the 
security key starting at location 2020H. 

The R<?M dump mode is entered just like any pro­
gramming mode (EA = 12.75V), except that a spe­
cial PMODE strapping is used. The PMODE for ROM 
dump is 6H (011 ~b). 

The ROM dump sequence begins with a security key 
verification. Users must place at external locations 
4020H-402FH the same 16 byte key that resides 
inside the chip at locations 2020H-202FH. Before 
doing a ROM dump, the chip checks that the keys 
match. . 

After a successful' key verification, the chip dumps 
data to external locations 1 OOOH-11 FFH and 4000H-
5FFFH. Unspecified data appears at the low ad­
dresses. Internal EPROM/ROM is dumped. to 
4000H-5FFFH beginning with internal address 
2000H. 

If a security key verification is not successful, the 
chip will put itself into an endless loop of· internal 
execution. 

NOTE: 
Substantial effort has been expended to provide an 
excellent program protection scheme. However, In­
tel cannot, and does not guarantee that the protec" 
tion methods that we have devised will prevent un­
authorized access. 

MODIFIED QUICK-PULSE 
PROGRAMMINGTM ALGORITHM 

The Modified Quick-Pulse Programming™ Algorithm 
calls for each EPROM location to receive 25 sepa­
rate .100 ,..,S (± 5 ,..,s) programming cycles. Verifica­
tion of correct programming is done after the 25 
pulses. If the location verifies correctly the next lo­
cation is programmed. If the . location f~ils to verify, 
the location has failed. 

Once all locations are programmed and verified the 
entire EPROM is again verified. ' , 

Programming of 879XBH parts is done with Vpp = 
12.75V IO.25V and Vee = 5.0V ±0.5V. 

21-40 



8X9XBH 

SIGNATURE WORD 

The 879XBH contains a signature word at location 
2070H. The word can be accessed in the slave 
mode by executing a word dump command. 

Table 5. 8X9XBH Signature Word 

Device Signature Word 

879XBH 896FH 
839XBH 896!=H 
809XBH Undefined 

Erasing the 879XBH EPROM 

Initially, and after each erasure, all bits of the 
879XBH are in the "1" state. Data is introduced by 
selectively programming "Os" into the desired bit 10· 
cations. Although only "Os" will be programmed, 
both "1 s" and "Os" can be present in the data word. 
The only way to change a "0" to a "1" is by ultravio· 
let light erasure. 

The erasure characteristics of the 879XBH are such 
that erasure begins to occur upon exposure to light 
with wavelengths shorter than approximately 4000 
Angstroms (1\). It should be noted that sunlight and 
certain types of fluorescent lamps have wavelengths 
in the 3000-4000 A range. Constant exposure to 
room level fluorescent lighting could erase the typi· 
cal 879XBH in approximately 3 years, while it would 
take approximately 1 week to cause erasure when 
exposed to direct sunlight. If the 879XBH is to be 
exposed to light for extended periods of time, 
opaque labels must be placed over the EPROM's 
window to prevent unintentional erasure. 

The recommended erasure procedure for the 
879XBH is exposure to shortwave ultraviolet light 
which has a wavelength of 2537 A. The integrated 
dose (Le., UV intensity x exposure time) for erasure 
should be a minimum of 15 Wsec/cm2. The erasure 
time with this dosage is approximately 15 to 20 min· 
utes using an ultraviolet lamp with a 12000 /LW/cm2 
power rating. The 879XBH should be placed within 1 
inch of the lamp tubes during erasure. The maximum 
integrated dose an 879XBH can be exposed to with­
out damage is 7258 Wsec/cm2 (1 week @ 12000 
/LW/cm2). Exposure of the 879XBH to high intensity 
UV light for long periods may cause permanent dam­
age. 

POWER SUPPL V SEQUENCE WHILE 
PROGRAMMING 

For any 879XBH that is in any programming mode, 
high voltages must be applied to the device. To 
avoid damaging the parts, the following rules must 
not be violated. 

RULE # 1-Vpp must not have a low impedance 
path to ground when Vee is above 
4.5V: 

RULE #2- Vee must be above 4.5V before Vpp 
can be higher than 5.0V. 

RULE #3- Vpp must be within 1Vof Vee while Vee 
is below 4.5V. 

RULE #4-AII voltages must be within tolerance 
and the oscillator stable before RESET 
rises. 

RULE #5- EA must be brought high to place the 
part in programming mode before Vpp 
is brought high. 

To adhere to these rules, the following power up and 
power down sequences can be followed. 

POWER UP 

RESET = 0; 
CLOCK ON; if using an external clock 

; instead of an oscillator 
Vee = Vpp = VEA = 5V; 
PALE= PROG = PORT 34 = VIH;* 
SID AND PMODE VALID; 
EA = 12.75V; 
Vpp = 12.75V; 
WAIT; wait for supplies and clock to 

; settle 
RESET = 5V; 
WAIT Tshll; See Data Sheet 
BEGIN; 

RESET = 0; 
Vpp = 5V; 
EA = 5V; 

POWER DOWN 

PALE = PROG = SID = PMODE = PORT34 = 
OV; 
Vee = Vpp =' VEA = OV; 
CLOCK OFF; 

·VIH = Logical "1", 2.4V Minimum 

One final note on power up, power down. The maxi­
'mum limit on Vpp must never be violated, even for 
an instant. Therefore, an RC rise to the desired Vpp 
is recommended. Vpp is also sensitive to instanta­
neous voltage steps. This also can be avoided by 
using an RC ramp on Vpp. 

21-41 



inter 8X9XBH 

EPROM SPECIFICATIONS 

A.C. EPROM PROGRAMMING CHARACTERISTICS, 

Operating Conditions: Load Capacitance = 1S0 pF, TA = 25"C ±SOC, vcc, vpo. VREF 0;= S.OV ± O.SV. vss. 
AGND = OV, vpp= 12.7SV ± 0.2SV. EA = 11V ± 2.0V. fose = 6.0 MHz 

Symbol Parameter Min Max Units 

TAVLL ADDRESS/COMMAND Valid to PALE Low 0 Tose 

TLLAX ADDRESS/COMMAND Hold After PALE Low 80 Tose 

TOVPL Output Data Setup Before PROG Low 0 Tose 

TpLDX Data Hold After PROG Falling 80 Tose 

TLLLH PALE Pulse Width 180 Tose 

TpLPH ~ Pulse Width 2S0Tose 100,...S + 
144 Tose 

TLHPL PALE High to PROG Low 2S0 Tose 

TpHLL PROG High to Next PALE Low 600 Tose 

'TpHOX Data Hold After PROG High 30 Tose 

TpHW PROG High to PVER/PDO Valid SOO Tose 

TLLVH PALE Low to PVER/PDO High 100 Tose 

TpLDV PROG Low to VERIFICATION/DUMP Data Valid 100 Tose 

TSHLL RESET High to First PALE Low (not shown) 2000 Tose 

NOTE: 
Run-time programming is done with Fosc = 6.0 MHz to 12.0 MHz, Vee, VPD, VREF = 5V ± 0.5V.TA = 25°C to ±5°C and 
Vpp = 12.75V ± 0.25V. For run-time programming over a full operating range. contact the factory. All windowed devices 
should be covered after programming. 

D.C. EPROM PROGRAMMING CHARACTERISTICS 
Symbol Parameter Min I Max Units 

Ipp VPP Supply Current (Whenever Programming) J 100 mA 

VPP Programming Supply Voltage 12.75 ±0.25 V 

VEA EA Programming Voltage 11 ±2.0 V 

NOTE: . 
Vpp must be within 1V of Vee while Vee < 4.5V. Vpp must not have a low impedance path to ground or Vss while 
Vee> 4.5V. 

21-42 



8X9XBH 

WAVEFORM-EPROM PROGRAMMING 

PORTS 3,4 

PALE--~ 

PROG---~---~~~ 

TAVLL 
J' :t TLLAX -I TpLDV 

PORTS 3,4 -< 6a6~~~~lr ) 
TLLVH--j 

PVER VALID ___ J 

PDO VALID ___ J 

Reserved location warning: Intel Reserved ad­
dresses can not be used by applications which use 
8X9XBH internal ROM/EPROM. The data read from 
a reserved location is not guaranteed, and a write to 
any reserved location could cause unpredictable re­
sults. When attempting to program Intel Reserved 
addresses, the data must be OFFFFH to ensure a 

EXTERNAL MEMORY 
OR I/O 

INTERNAL PROGRAM 
STORAGE ROM/EPROM 

OR 
EXTERNAL MEMORY 

RESERVED 

SIGNATURE WORD 

RESERVED 

SECURITY KEY 

RESERVED 

SELF JUMP CODE (27H FEH) 

RESERVED 

CHIP CONFIGURATION BYTE 

RESERVED 

INTERRUPT VECTORS 

VALID 

VALID 
270090-43 

harmless result. A memory map indicating reserved 
locations on the8X9XBH is shown in Figure 27. 

Intel Reserved locations, when mapped to external 
memory, must be filled with OFFFFH to ensure com­
patibility with future parts. 

FFFFH 

4000H 

2080H 
2072H-207FH 

2070H-2071 H 
, 

2030H-206FH 

2020H-202FH 

201 CH-201 FH 

201AH-201BH 

2019H 

2018H 

2012H-2017H 

2000H 

Figure 27. Reserved Locations 

21-43 



• 
• 
• 
• 
• 
• 
• 
• 

MCS®-96 
809XBH-10 

ADVANCED 16-BIT MICROCONTROLLER 
WITH 8- OR 16-BIT EXTERNAL BUS 

232 Byte Register File • Dedicated Baud Rate Generator 

Register-to-Register Architecture • Hardware 16x 16 Multiply, 32/16 Divide 

AID Converter with SIH • 16-Bit Watchdog Timer 

Five 8-Bit I/O Ports • Four 16-Bit Software Timers 

20 Interrupt Sources • Two 16-Bit Counter ITimers 

Pulse-Width Modulated Output • Available in 48-Pln Ceramic DIP and 68 

High Speed I/O Subsystem Pin Ceramic PGA 
(See Packaging Specification Order # 231369) 

Full Duplex Serial Port 

The MCS®'96 family of 16-bit microcontrollers consists of many members, all of which are designed for high­
speed control functions. The MCS-96 family members operating with 10 MHz clocks are described in this data 
sheet. . 

The CPU supports bit,byte, and word operations. Thirty-two bit double-words are supported for a subset of the 
instruction set. Hardware multiplication and division, along with three-operand instructions and flexible ad­
dressing modes provide for efficient use of the chip's 232 bytes of general purpose registers. 

Four high-speed trigger inputs are provided to record the times at which external events occur. Sixhigh"speed 
pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can 
simultaneously perform software timer functions. Up to four 16-bit software timers can be in operation at once. 

The on-chip AID converter includes a Sample and Hold, and converts up to 8 multiplexed analog input 
channels to digital values. This feature is only available on the 8X95BHs and 8X97BHs, with the 8X95BHs 
having 4 multiplexed analog inputs. 

Also provided on-chip are a serial port, a Watchdog Timer, and a pulse-width modulated output signal. 

The specifications in this datasheet supplement the information contained in the Embedded Controller Hand­
book (Order Number 210918) and pertain only to suffix -10 of the MCS-96 family. 

Figure 1. MCS®-96 Block Diagram 

21-44 

270278-1 

September 1987 
Order Number: 270278-001 



inter 809XBH·10 

PACKAGING 

The 809XBH-10 is available in 48-pin and 68-pin packages with AID. The MCS-96 numbering system is shown 
in Figure 2. Figures 3-5 show the pinouts for the 48- and 68-pin packages. The 48-pin version is offered in a 
Dual-In-Line package while the 68-pin version is in a Pin Grid Array (PGA). 

With AID 

ROMless I 48 Pin C8095BH-10 - Ceramic DIP 

I 68 Pin A8097BH-10 - Ceramic PGA 

Figure 2. The MCS®·96 Family Nomenclature 

PGA Description PGA Description PGA Description 

1 ACH7 IPO.? IPMOD.3 24 AD6/P3.6 4? P1.6 

2 ACH6/PO.6/PMOD.2 25 AD7/P3.7 48 P1.5 

3 ACH2/PO.2 26 AD8/P4.0 49 HSO.1 

4 ACHO/PO.O 27 AD9/P4.1 50 HSO.O 

5 ACH1/PO.1 28 AD10/P4.2 51 HSO.5/HSI.3 

6 ACH3/PO.3 29 AD11/P4.3 52 HSO.4/HSI.2 

7 NMI 30 AD12/P4.4 53 HSI.1 

8 EA 31 AD13/P4.5 54 HSI.O 

9 VCC 32 AD14/P4.6 55 P1.4 

10 VSS 33 AD15/P4.7 56 P1.3 

11 XTAL1 34 T2CLK/P2.3 57 P1.2 

12 XTAL2 35 READY 58 P1.1 

13 CLKOUT 36 T2RST/P2.4 59 P1.0 

14 BUSWIDTH 37 BHE/WRH 60 TXD/P2.0 

15 INST 38 WR/WRL 61 RXD/P2.1/PALE 

16 ALE/ADV 39 PWM/P2.5 62 RESET 

17 RD 40 P2.7 63 EXTINT IP2.2/PROG 

18 ADO/P3.0 41 VPP 64 VPD 

19 AD1/P3.1 42 VSS 65 VREF 

20 AD2/P3.2 43 HSO.3 66 ANGND 

21 AD3/P3.3 44 HSO.2 67 ACH4/PO.4/PMOD.0 

22 AD4/P3.4 45 P2.6 68 ACH5/PO.5/PMOD.1 

23 AD5/P3.5 46 P1.7 

Figure 3. PGA Function Pinouts 

21-45 



PALE/ RXD/P2.1 

TXD/P2.0 

HSIO 

HSl1 

HSI2/HS04 

HSI3/HS05 

HSOO 

HS01 

HS02 

HS03 

VSS 

Vpp 

PWM/P2.5 

WRL/WR 

WRH/BHE 

READY 

AD15/P4.7 

AD14/P4.6 

AD13/P4.5 

AD12/P4.4 

AD11/P4.3 

AD10/P4.2 

AD9/P4.1 

AD8/P4.0 

809XBH-10 

RESET 

EXTINT /P2.2/PROG 

VpD 

VREI" 

ANGND 

ACH4/PO.4/PMOD.0 

ACH5/PO.5/PMOD.1 

ACH7 /PO.7 /PMOD.3 

ACH6/PO.6/PMOD.2 

EA 
Vee 
Vss 
XTAL1 

XTAL2 

ALE/ADV 

RD 

ADO/P3.0 

AD1/P3.1 

AD2/P3.2 

AD3/P3.3 

AD4/P:5.4 

AD5/P3.5 

AD6/P3.6 

AD7/P3.7 

Figure 4. 48-Pln Package 

Pins Facing Down 

17 1513 11 9 7 5 3 1 " 1819 16 14 1210 8 6 4 2 68 

2021 
MCS<R>-96 

6766 

2223 68 PIN 
6564 

2425 GRID ARRAY 6362 

2627 61 60 

2829 TOP VIEW 5958 
LOOKING DOWN ON 

3031 COMPONENT SIDE 5756 

3233 01" PC BOARD 5554 

34 36 38 40 42 44 46 48 50 53 52 

35 37 39 41 43 45 47 49 51 
270278-4 

Figure 5. 68-Pln Package (Pin Grid Array-Top View) 

21-46 

270278-2 



809XBH-10 

PIN DESCRIPTIONS 
Symbol Name and Function 

Vee Main supply voltage (5V). 

Vss Digital circuit ground (OV). There are two Vss pins, both of which must be connected. 

VPD RAM standby supply voltage (5V). This voltage must be present during normal operation. In a Power 
Down condition (i.e. Vee drops to zero), if RESET is activated before Vee drops below spec and VPD 
continues to be held within spec., the top 16 bytes in the Register File will retain their contents. RESET 
must be held low during the Power Down and should not be brought high until Vee is within spec and 
the oscillator has stabilized. 

VREF Reference voltage for the AID converter (5V). VREF is also the supply voltage to the analog portion of 
the AID converter and the logic used to read Port O. Must be connected for AID and Port 0 to function. 

ANGND Reference ground for the AID converter. Must be held at nominally the same potential as Vss. 

VPP This pin is VBB on 8X9X-90 parts. VPP must be unconnected on 8X9XSH-10 parts. 

XTAL1 Input of the oscillator inverter and of the internal clock generator. 

XTAL2 Output of the oscillator inverter. 

GLKOUT Output of the internal clock generator. The frequency of GLKOUT is % the oscillator frequency. It has a 
33 % duty cycle. 

RESET Reset input to the chip. Input low for at least 2 state times to reset the chip. The subsequent low-to-high 
transition re-synchronizes GLKOUT and commences a 1 O-state-time sequence in which the PSW is 
cleared, a byte read from 2018H loads GGR, and a jump to location 2080H is executed. Input high for 
normal operation. RESET has an internal pullup. 

SUSWIDTH Input for bus width selection. If GGR Sit 1 is a one, this pin selects the bus width for the bus cycle in 
progress. If SUSWIDTH is high, a 16-bit bus cycle occurs. If SUSWIDTH is low, an 8-bit cycle occurs. If 
GGR bit 1 is a 0, the bus is always an 8-bit bus. This pin is the TEST pin on 8X9X-90 parts. Systems with 
TEST tied to Vee do not need to change. If this pin is left unconnected, it will rise to Vee. 

NMI A positive transition causes a vector to external memory location OOOOH. External memory from OOH 
through OFFH is reserved for Intel development systems. 

INST Output high during an external memory read indicates the read is an instruction fetch. INST is valid 
throughout the bus cycle. 

EA Input for memory select (External Access). EA equal to a TTL-high causes memory accesses to 
locations 2000H through 3FFFH to be directed to on-Chip ROM. EA equal to a TTL-low causes 
accesses to these locations to be directed to off-chip memory. EA = + 12.5V causes execution to 
begin in the Programming Mode. EA has an internal pulldown, so it goes low unless driven otherwise. 
EA is latched at reset. 

ALE/ADV Address Latch Enable or Address Valid output, as selected by GGA. Soth pin options provide a latch to 
demultiplex the address from the address/data bus. When the pin is ADV, it goes inactive high at the 
end of the bus cycle. ADV can be used as a chip select for external memory. ALE/ ADV is activated only 
during external memory accesses. 

RD Read signal output to external memory. RD is activated only during external memory reads. 

WR/WRL Write and Write Low output to external memory, as selected by the GGR. WR will go low for every 
external write, while WRL will go low only for external writes where an even byte is being written. 
WR/WRL is activated only during external memory writes. 

SHE/WRH Sus High Enable or Write High output to external memory, as selected by the GGA. SHE low selects the 
bank of memory that is connected to the high byte of the data bus. AO low selects the bank of memory 
,that is connected to the low byte of the data bus. Thus accesses to a 16-bit wide memory can be to the 
low byte only (AO low, SHE high), to the high byte only (AO high, SHE low), or both bytes (AO low, SHE 
low). If the WRH function is selected, the pin ~i11 go low if the bus cycle is writing to an odd memory 
location. SHE/WRH is activated only during external memory writes. 

21-47 



809XBH-10 

PIN DESCRIPTIONS (Continued) 
Symbol Name and Function 

READY Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or 
forbus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low 
prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next 
positive transition in CLKOUT occurs with READY high. The bus cycle can be lengthened by up 
to l' ,.,.S. When the external memory is not being used, READY has no effect. Internal control of 
the' number of wait states inserted into a bus cycle held not ready is available through 
configuration of eCA. READY has a weak intern.al pullup, so it goes high unless externally pulled 
low. 

HSI Inputs to High Speed Input Unit. Four HSI pins are available: HSI.O, HSI.1, HSI.2, and HSI.3. Two 
of them (HSI.2 arid HSI.3) are shared with the HSO Unit. The HSI pins are also used as inputs by 
EPROM parts in Programming Mode. 

HSO Outputs from High Speed Output Unit. Six HSO pins are available: HSO.O, HSO.1, HSO.2, HSO.3, 
HSO.4, and HSO.5. Two of them (HSO.4 and HSO.5) are shared with the HSI Unit. 

PortO 8-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog 
inputs to the on-chip AID converter. These pins are also a mode input to parts in the 
Programming Mode. ' 

Port 1 8-bit quasi-bidirectional 110 port. 

Port 2 8-bit multi-functional port. Six of its pins are shared with other functions, the remaining 2 are 
quasi-bidirectional. These pins are also used to input and output control signals on parts in 
Programming Mode. ' ' , , 

Ports 3 and 4 8-bit bi-directionalllO ports with open drain outputs. These pins are shared with the multiplexed 
address/data bus which has strong internal pullups. Ports 3 and 4 are also used as a command, 
address and data path by parts operati!1g in the Programming Mode. 

21-48 



inter 809XBH-10 

ELECTRICAL CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias .... ODC to + 70DC 

Storage Temperature .......... - 40DC to + 150DC 

Voltage from EA to VSS or ANGND .......... 13.0V 

Voltage from Any Other Pin to 
VSSorANGND ................ -0.3Vto +7.0V 

Average Output Current from Any Pin ....... 10 mA 

Power Dissipation .......................... 1.5W 

OPERATING CONDITIONS 
Symbol Parameter 

TA Ambient Temperature Under Bias 

Vee Digital Supply Voltage 

VREF Analog Supply Voltage 

fose Oscillator Frequency 

VPD Power-Down Supply Voltage 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE Specifications contained within the 
fol/owing tables are subject to change. 

Min Max Units 

0 +70 C 

4.75 5.25 V 

4.75 5.25 V 

6.0 10.0 MHz 

4.75 5.25 V 

NOTE: ANGND and Vss should be nominally at the same potential. 

D.C. CHARACTERISTICS (Test Conditions: VCC, VREF, VPD, Vpp, VEA = 5.0V ± 0.25V; Fosc = 6.0 to 
10.0 MHz; T A = ODC to 70DC; VSS, ANGND = OV) 

Symbol Parameter Min Max Units Test Conditions 

lee Vee Supply Current(O°C s T A s 70°C 200 mA All Outputs 

lee1 Vee Supply Current(T A = 70°C) 160 mA Disconnected. 

IpD VPD Supply Current 1 mA Normal operation 
and Power-Down. 

IREF VREF Supply Current 5 mA (Note 4) 

VIL Input Low Voltage (Except RESET) -0.3 +0.8 V 

VIL1 Input Low Voltage, RESET -0.3 +0.7 V 

VIH Input High Voltage (Except RESET, NMI, XTAL1) 2.0 Vee +0.5 V 

VIH1 Input High Voltage, RESET Rising 2.4 Vee +0.5 V 

VIH2 Input High Voltage, RESET Falling 2.1 Vee +0.5 V 

VIH3 Input High Voltage, NMI, XTAL 1 2.2 Vee +0.5 V 

III Input Leakage Current to each pin of HSI, P3, P4, and to P2.1. ±10 J.'A Vin = OtoVee 

ILl1 D.C. Input Leakage Current to each pin of PO +10 J.'A Vin = OtoVee 

IIH Input High Current to EA 100 J.'A VIH = 2.4V 

IlL Input Low Current to each pin of P1, -100 J.'A VIL = 0.45V 
and to P2.6, P2.7. 

IIL1 Input Low Current to RESET -0.3 -2 mA VIL = 0.45V 

IIL2 Input Low Current P2.2, P2.3, P2.4 -50 J.'A VIL = 0.45V 

IIL3 Input Low Current to READY -160 J.'A VIL = 0.45V 

IIL4 Input Low Current to BUSWIDTH -50 J.'A VIL = 0.45V 
(Note 4) 

VOL Output Low Voltage on Quasi-Bidirectional port pins 0.45 V IOL = 0.36 mA 
(Notes 1, 5) 

VOL2 Output Low Voltage on Standard Output pins, 0.45 V IOL = 2.0 mA 
RESET and Bus/Control Pins (Note 1) 

21-49 



inter 809XBH-10 

D.C. CHARACTERISTICS (Continued) 

Symbol Parameter Min Max Units Test Conditions 

VOH Output High Voltage on Quasi-Bidirectional 2.4 V IOH = -20",A 
pins (Note 1) 

VOH1 Output High Voltage on Standard Output 2.4 V IOH = -200 ",A 
pins and Bus/Control pins (Note 1) 

IOH3 Output High Current on RESET -50 ",A VOH = 2.4V 
(Note 4) 

Cs Pin Capacitance (Any Pin to Vss) 10 pF fTEST = 1.0 MHz 

NOTES: 
1. Quasi-bidirectional pins include those on Pl, for P2.6 and P2. 7. Standard Output Pins include RXD (Mode 0 only), TXD, 
PWM, and HSO pins .. Note 4 applies to RXD in Mode O. Bus/Control pins include CLKOUT, ALE, BHE, RD, WR, INST and 
ADO-1S. 
2. Maximum current per pin must be externally limited to the following values if VOL is held above 0.4SV. 

IOL on quasi-bidirectional pins: 4.0 mA 
IOL on standard output pins and RESET: 8.0 mA 
IOL on Bus/Control pins: 2.0 mA 

3. During normal (non-transient) operation the following limits apply: 
Total IOL on Port 1 must not exceed 4.0 mA. 
TotallOL on P2.0, P2.6, RESET and all HSO pins must not exceed 17.0 mAo 
Total IOL on P2.S and P2.7 must not exceed 4.0 mA. 

4. These values are not tested in production, and are based on theoretical estimates and/or laboratory tests. 
5. IOL is typically greater than 0.4 mA, but is tested to 0.36 mA. 

A.C. CHARACTERISTICS VCC, VPD = 5.0V ± 0.25V; T A = O°C to 70°C; 
fOSC = 6.0 MHz to 10.0 MHz 

Test Conditions: Load Capacitance on Output Pins = 80 pF 
Oscillator Frequency = 10 MHz 

TIMING REQUIREMENTS (Other system components must meet these specs.) 

Symbol Parameter Min 

TCLYX(4) READY Hold after CLKOUT Edge 0(1) 

TLLYV End of ALE/ ADV to READY Valid 

hLYH End of ALE/ ADV to READY High 2Tosc+40 

TYLYH Non-Ready Time 

TAVDV(6) Address Valid to Input Data Valid 

TRLDV RD Active to Input Data Valid 

TRHDX Data Hold after RD Inactive 0 

TRHDZ RD Inactive to Input Data Float 0 

T AVGV(4)(6) Address Valid to BUSWIDTH Valid 

TLLGX(4) BUSWIDTH Hold after ALE/ ADV Low Tosc +10 

TLLGV(4) ALE/ ADV Low to BUSWIDTH Valid 

NOTES: 

Max 

2Tosc-90 

4Tosc-50 

1000 

5Tosc-130 

3Tosc-100 

Tosc-20 

2 Tosc -135 

Tosc -70 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

1. If the 48-pin part is being used then this timing can be generated by assuming that the CLKOUT falling edge has occurred 
at 2Tosc+60 (TLLCH(max) + TCHCL(max» after the falling edge of ALE. 
4. Pins not bonded out on 48-pin parts. 
6. The term "Address Valid" applies to ADO-IS, BHE and INST. 

21-50 



intJ 809XBH·10 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES (MCS-96 parts meet these specs) 

Symbol Parameter Min Max Units 

FXTAL Oscillator Frequency 6.0 10.0 MHz 

Tosc Oscillator Period 100 166 ns 

TOHCH XT AL 1 Rising Edge to Clockout Rising Edge 0(4) 120(4) ns 

TCHCH(4) CLKOUT Period(3) 3Tosc(3) 3Tosc(3) ns 

TCHCL(4) CLKOUT High Time Tosc-20 Tosc+25 ns 

TCLLH(4) CLKOUT Low to ALE High -10 20 ns 

TLLCH(4) ALE/ ADV Low to CLKOUT High Tosc-20 Tosc+40 ns 

TLHLL ALE/ ADV High Time Tosc-35 Tosc+15(5) ns 

TAVLL(6) Address Setup to End of ALE/ ADV Tosc-65 ns 

TRLAZ(7) RD or WR Low to Address Float 25(8) ns 

TLLRL End of ALE/ ADV to RD or WR Active Tosc-20 ns 

hLAX(7) Address Hold after End of ALE/ ADV Tosc-20 ns 

TWLWH WR Pulse Width 3Tosc-35 ns 

TavWH Output Data Valid to End of WR/WRL/WRH 3Tosc-65 ns 

TWHax Output Data Hold after WR/WRLlWRH Tosc-30 ns 

TWHLH End of WR/WRLlWRH to ALE/ ADV High Tosc-55 ns 

TRLRH RD Pulse Width 3Tosc-30 ns 

TRHLH End of RD. to ALE/ ADV High Tosc-15 ns 

TCLLL(4) CLOCKOUT Low to ALE/ ADV Low Tosc-40(8) Tosc+20(8) ns 

TRHBX(4) RD High to INST, SHE, AD8-15 Inactive Tosc Tosc+30 ns 

TWHBX(4) WR High to INST, SHE, AD8-15 Inactive Tosc-45 Tosc+30 ns 

THLHH WRL, WRH Low to WRL, WRH High 2Tosc-35 2Tosc+20 ns 

TLLHL ALE/ ADV Low to WRL, WRH Low 2Tosc-20 2Tosc+55 ns 

TavHL Output Data Valid to WRL, WRH Low Tosc-60 ns 

NOTES: 
2. If more than one wait state is desired, add 3Tosc for each additional wait state. 
3. CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3Tosc ± 10 ns if Tosc is constant and 
the rise and fall times on XTAL1 are less than 10 ns. 
4. Pins not bonded out on 48-pin parts. 
5. Max spec applies only to ALE. Min spec applies to both ALE and ADV. 
6. The term "Address Valid" applies to ADO-15, BHE and INST. 
7. The term" Address" in this definition applies to ADO-7 for 8-bit cycles, and ADO-15 for 16-bit cyeles. 
8. Typical value. 

21-51 



inter 809XBH-10 

WAVEFORM 

XTAL1 

CLOCKOUT 

READY 

--~---------. , , 
----~-------. 

, 
'~-------_. 

SHE, INST 
~----~--~----------------~~---r~-------------. 
.-TAVLL..J f.ol.---'TWLWH-----+I 

ADS-IS J(~IL) ----(:::::::V~A~L~ID=::::::}'E·:-:-:-:-:-:-:-:-:-~-~·:-:=: .. - .. _----------_ .. 
NOTES: 
(1) 8-bit bus only. 
(2) 8-bit bus; or when write strobe mode selected. 
(3) When ADV selected. 

270278-6 

21-52 



intJ 809XBH-10 

WAVEFORM-BUSWIDTH PIN 

XTALI 

CLKOUT 

BUSWIDTH ----+--{ 

ALE / ADV ___ --' 

ADDRESS/DATA ----t~~~)------~D~A~TA~I~N}_------
270278-7 

A.C. CHARACTERISTICS-SERIAL PORT -SHIFT REGISTER MODE 

SERIAL PORT TIMING-5HIFT REGISTER MODE 

Test Conditions: TA = O°C to + 70°C; Vee = 5V ±5%; Vss = OV; Load Capacitance = 80 pF 

Symbol Parameter Min Max Units 

TXLXL Serial Port Clock Period 8Tose ns 

TXLXH Serial Port Clock Falling Edge to Rising Edge 4Tose - 50 4Tose + 50 ns 

TQVXH Output Data Setup to Clock Rising Edge 3Tose ns 

TXHQX Output Data Hold After Clock Rising Edge 2Tose - 50 ns 

TXHQV Next Output Data Valid After Clock Rising Edge 2Tose + 50 ns 

TDVXH Input Data Setup to Clock Rising Edge 2Tose +210 ns 

TXHDX Input Data Hold After Clock Rising Edge 0 ns 

TXHQZ Last Clock Rising to Output Float 4Tose + 100 ns 

WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE 

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE 

r-TXLXL -j TXD---U- ---U- ---U- ---U- ---U- ---U- ---U- ---U-
TQVXH --! I- TXLXH-I I- TXHQV I--j -I j-TXHQX TXHQZ-l I 

(O~;)---GJ("""-"""'X 2 X 3 X'--4-"""'X 5 X 6 X 7 >-
RXD 
(IN) 

I- -I j-TXHDX 

270278-8 

21-53 



809XBH~10 

EXTERNAL CLOCK DRIVE 
. Symbol Parameter 

1/TOlOl Oscillator Frequency 

TOHOX High Time 

TOlOX Low Time 

TOlOH Rise Time 

TOHOl FaUTime 

EXTERNAL CLOCK DRIVE WAVEFORMS 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

2.4~ 2.0> TEST POINTS < 2.0 V-
0.45'-/\ 0.8 0.8 A--

270278-10 

A.C. Testing inputs are driven at 2.4V for a Logic "1" and 0.045V 
for a Logic "0". Timing measurements are made at 2.0V for a 
Logic "1" and 0.8V for a Logic "0". 

Min Max Units 

6 10 MHz 

40 ns 

40 ns 

10 ns 

10 ns 

270278-9 

FLOAT WAVEFORM 

21-54 

270278-11 
For Timing Purposes a Port Pin is no Longer Floating when a 100 
mV change/rom Load Voltage Occurs, and Begins to Float when 
a 100 mV change from the Loaded VOHIVOL Level occurs lOLl 
IOH ;, .± 15 mAo 



809XBH-10 

AID CONVERTER SPECIFICATIONS 

AID Converter operation is verified only on the 
8097BH-10; 8095BH-10. 

The absolute conversion accuracy is dependent on 
the accuracy of VREF. The specifications given be­
low assume adherence to the Operating Conditions 
section of these data sheets. Testing is done at 
VREF = 5.120V. 

Parameter Typlcal'(1j 

Resolution 

Absolute Error 

Full Scale Error -0.5 ±0.5 

Zero Offset Error ±0.5 

Non-Linearity 

Differential Non-Linearity 

Channel-to-Channel Matching 

Repeatability ±0.25 

Temperature Coefficients: 
Offset 0.003 
Full Scale 0.003 
Differential Non-Linearity 0.003 

Off Isolation 

Feedthrough -60 

Vcc Power Supply Rejection -60 

Input Resistance 

D.C. Input Leakage 

Sample Delay 

OPERATING CONDITIONS 

Vcc, VPD, VREF .................... 5.0V ±O.25V 

Vss, ANGND .............................. O.OV 

TA ................................. O°C to 70°C 

Fosc 8X9XBH-10 ................ 6.0 to 10.0 MHz 

Test Conditions: 
VREF ................................. 5.120V 

Vcc ...................................... 5.0V 

Minimum Maximum Units" Notes 

256 256 Levels 
8 8 Bits 

0 ±1 LSBs 

LSBs 

LSBs 

0 ±1 LSBs 

0 ±0.5 LSBs 

0 ±0.1 LSBs 

LSBs 1 

LSB/oC 1 
LSB/oC 1 
LSBrC 1 

-60 dB 1,2,4 

dB 1,2 

dB 1,2 

1K 5K n. 1 

0 3 p.A 

3Tosc - 50 3Tosc + 50 ns 1,3 

Sample Time 12Tosc - 50 12Tosc + 50 ns 1 

Sample Capacitance 2 pF 1 

NOTES: { 
• These values are expected for most parts -at 25°C . 
•• An "LSBn , as used here, is defined in the glossary which follows and has a value of approximately 20 mV. 
1. These values are not tested in production and are based on theoretical estimates and/or laboratory tests. 
2. DC to 100 KHz. 
3. For starting the AID with an HSO Command. 
4. Multiplexer Break-Before-Make Guaranteed. 

21-55 



inter 809XBH-10 

AID GLOSSARY OF TERMS 

ABSOLUTE ERROR-The maximum difference be­
tween corresponding actual and ideal code tran­
sitions. Absolute Error accounts for all deviations of 
an actual converter from an ideal converter. 

ACTUAL CHARACTERISTIC-The characteristic 
of an actual converter. The characteristic of a given 
converter may vary over temperature, supply volt­
age, and frequency conditions. An actual character­
istic rarely has ideal first and last transition locations 
or ideal code widths. It may even vary over multiple 
conversions under the same conditions. 

BREAK-BEFORE-MAKE-The property of a mUlti­
plexer which guarantees that a previously selected 
channel will be deselected before a new channel is 
selected. (e.g. the converter will not short inputs to­
gether.) 

CHANNEL-TO-CHANNEL MATCHING-The differ­
ence between corresponding code transitions of ac­
tual characteristics taken from different channels un­
der the same temperature, voltage and frequency 
conditions. . 

CHARACTERISTIC-A graph of input voltage ver­
sus the resultant output code for an AID converter. 
It describes the transfer f\Jnction of the AID convert­
er. 

CODE-The digital value output by the converter. 

CODE CENTER-The voltage corresponding to the 
midpoint between two adjacent code transitions. 

CODE TRANSITION-The point at which the con­
verter changes from an output code of Q, to a code 
of Q + 1. The input voltage corresponding to a code 
transition is defined to be that voltage which is 
equally likely to produce either. of two adjacent 
codes. . 

CODE WIDTH-The voltage corresponding to the 
difference between two adjacent code transitions. 

CROSSTALK-See "Off-Isolation". 

D.C. INPUT LEAKAGE-Leakage current to ground 
from an analog input pin .. 

DIFFERENTIAL NON-LiNEARITV-The difference 
between the ideal and actual code widths of the ter­
minal based characteristic. 

FEEDTHROUGH-Atlenuation of a voltage applied 
on the selected channel of the AID Converter after 
the sample window closes. 

FULL SCALE ERROR-The difference between the 
expected and actual input voltage corresponding to 
the full scale code transition. 

IDEAL CHARACTERISTIC-A characteristic with 
its first code transition at VIN = 0.5 LSB, its last 
code transition at VIN = (VREF - 1.5 LSB) and all 
code widths equal to one LSB. 

INPUT RESISTANCE-The effective series resist­
ance from the analog input pin to the sample capaci­
tor. 

LSB-Least Significant Bit: The voltage corre­
sponding to the full scale voltage divided by 2n, 
where n is the number of bits of resolution of the 
converter. For anS-bit converter with a reference 
voltage of 5.12V, one LSB is 20 mY. Note thatthis is 
different than digital LSBs, since an uncertainty of 
two LSB, when referring to an AID converter, equals 
40 mY. (This has been confused with an uncertainty 
of two digital bits, which would mean four counts, or 
SO mV.) 

MONOTONIC-The property of successive approxi­
mation converters which guarantees that increasing 
input voltages produce adjacent Codes of increasing 
value, and that decreasing input voltages produce 
adjacent codes of decreasing value. 

NO MISSED CODES-For each and every output 
code, there exists a unique input voltage range 
which produces that code only. 

NON-LINEARITV-The maximum deviation of code 
transitions of the terminal based characteristic from 
the correspoilding code transitions of the ideal char-
acteristic. ' 

21-56 



809XBH-10 

OFF-ISOLATION-Attenuation of a voltage applied 
on a deselected channel of the AID converter. (Also 
referred to as Crosstalk.) 

REPEATABILITY-The difference between corre­
sponding code transitions from different actual char­
acteristics taken from the same converter on the 
same channel at the same temperature, voltage and 
frequency conditions. 

RESOLUTION-The number of input voltage levels 
that the converter can unambiguously distinguish 
between. Also defines the number of useful bits of 
information which the converter can return. 

SAMPLE DELAY-The delay from receiving the 
start conversion signal to when the sample window 
opens. 

SAMPLE DELAY UNCERTAINTY-The variation in 
the sample delay. 

SAMPLE TIME-The time that the sample window 
is open. 

SAMPLE TIME UNCERTAINTY-The variation in 
the sample time. 

SAMPLE WINDOW-Begins when the sample ca-' 
pacitor is attached to a selected channel and ends 
when the sample capacitor is disconnected from the 
selected channel. 

SUCCESSIVE APPROXIMATION-An AID conver­
sion method which uses a binary search to arrive at 
the best digital repre$entation of an analog input. 

TEMPERATURE COEFFICIENTS-Change in the 
stated variable per degree centigrade temperature 
change. Temperature coefficients are added to the 
typical values of a specification to see the effect of 
temperature drift. . 

TERMINAL BASED CHARACTERISTIC-An actual 
characteristic which has been rotated and translated 
to remove zero offset and full scale error. 

Vee REJECTION-Attenuation of noise on the Vee 
line to the AID converter. 

ZERO OFFSET-The difference between the ex­
pected and actual input voltage corresponding to 
the first code transition. 

21-57 



809XBH·10 

FUNCTIONAL DEVIATIONS 

Functional deviations from the 809XBH on the 
809XBH-10. 

CPU Section 
1. Indexed, 3 Operand Multiply-The displacement 

portion of an indexed, three operand multiply 
may not be in the range of 200H thru 17FFH 
inclusive, on 8X9XBH-10 parts. If you must use 
these displacements, do an indexed, two oper­
and multiply and a move if necessary. 

2. JBS, JBC-The JBS and JBC instructions should 
not be used directly on Port 2.1 or Port O. If it is 
necessary to test Port 2.1 or Port 0, the entire 
port should be loaded into a temporary register, 
and the bit tested there. 

3. STicky Flag-The STicky flag is not affected 
when a shift by 0 is executed 011 8X9XBH-10 
parts. 

4. Auto Increment Indirect, 3 Word Multiply-The 
use of these instructions may result in the loss of 
Special Function Register contents. Use an LD 
instruction and a 2 Word Multiply with Auto Indi­
rect Addressing Mode. 

5. High Current on Power Up. Icc may be up to 500 
rnA before the oscillator starts. 

21-58 



intJ 
MCS®-96 

809X-90, 839X-90 

• 839X: an 809X with 8 Kbytes of On- • Pulse-Width Modulated Output 
Chip ROM • 232 Byte Register File 

• High Speed Pulse 1/0 • Memory-to-Memory Architecture 

• 10-Bit AID Converter • Full Duplex Serial Port 

• 6.25 ,""S 16 x 16 Multiply • Five 8-Bit I/O Ports 

• 6.25 ,""S 32/16 Divide • Watchdog Timer 

• 8 Interrupt Sources • Four 16-Bit Software Timers 

The MCS®-96 family of 16-bit microcontroliers consists of many members, ali of which are designed for high­
speed control functions. Members with the "-90" suffix are described in this data sheet. 

The CPU supports bit, byte, and word operations. 32-bit double-words are supported for a subset of the 
instruction set. With a 12 MHz input frequency the 8096 can do a 16-bit addition in 1.0 /-Ls and a 16 x 16-bit 
multiply or 32116-bit divide in 6.25 /-Ls. Instruction execution times average 1 to 2 /-Ls in typical applications. 

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed 
pulse generator outputs are provided to trigger external events at present times. The high-speed output unit 
can simultaneously perform timer functions. Up to four such 16-bit Software Timers can be in operation at 
once. 

An on-chip AID Converter converts up to 4 (in the 48-pin version) or 8 (in the 68-pin version) analog input 
channels to 10-bit digital values. This feature is only available on the 8095-90/8395-90 and 8097-90/8397-90. 

Also provided on-chip are a serial port, a watchdog timer, and a pulse-width modulated output signal. 

POWER FREQUENCY 
VREF ANGND DOWN REFERENCE 

r---- ----- ----~::,-~----::::,-: 
GEN O~.~~IP I 

AID 
CONVERTER 

PORT 0 PORT 1 

232 
BYTE 

REGISTER 
FILE 

SERIAL 
PORT 

REGISTER 
ALU 

BAUD 
RATE 
GEN. HIGH 

SPEED 
10 

(8391i) I 
I 
I 
I CONTROL 

SIGNALS 

. }~~~: 
~~==~) BUS 

I I PORT 4 

I 
I 
I ____ .....1 

PORT 2 HSI HSO 
ALT FUNCTIONS 

Figure 1. Block Diagram 

21-59 

270014-1 

October 1987 
Order Number: 270014-004 



inter 

RXD/P2.1 
TXDIP2.0 

HSIO 
HSII 

HSI21HS04 
HSlJiHS05 

HSOO 
HSOI 
HS02 
HS03 

VSS 
VBB 

PWM/P2.5 
WR 

BHE 
READY 

ADI5/P4.7 
AD14/P4.6 
AD1JiP4.5 
ADI2/p4.4 
AD11/P4.3 
ADIO/P4.2 

AD9/P4.1 
AD8IP4.0 

48 
47 
46 
45 
44 
43 
42 
41 
40 

10 39 
11 38 
12 37 
13 36 
14 35 
15 34 
16 33 
17 32 
18 31 
19 30 
20 29 
21 28 
22 27 
23 26 
24 25 

809X-90, 839X-90 

RESET 
EXTINT P2.2 
VPD 
VREF 
ANGND 
ACH4IPO.4 
ACH5IPO.5 
ACH7IPO.7 
ACH6/PO.6 
EA 
VCC 
VSS 
XTAll 
XTAl2 
ALE 
AD 
ADO/P3.0 
AD1/P3.1 
ADziP3.2 
AD31P3.3 
AD4/P3.4 
AD5/P3.5 
AD6/P3.6 
AD7/P3.7 

270014-2 

Figure 1 shows a block diagram of the MCS-96 
parts, generally referred to as the 8096. The 8096 is 
available in 48-pin and 68-pin packages, with and 
without AID, and with and without on-chip ROM. 
The MCS-96 numbering system is shown below: 

Options 6S-Pin 48-Pln 

Digital ROMLESS 8096-90 
1/0 ROM 8396-90 

Analog ROMLESS 8097-90 8095-90 
and 
Digital ROM 8397-90 8395-90 
1/0 

Figures 2, 3 and 4 show the pinouts for the 48- and 
68-pin packages. The 48-pin version is offered in a 
Dual-In-Line package while the 68-pin version 
comes in a Plastic Leaded Chip Carrier and a Pin 
Grid Array. 

Figure 2. 48-Pin Package 

ACH5/PO.S 
ACH4JPO.4 

ANGND 
VREF 

VPD 
EXTlNTJP2.2 

RESET 
RXDJP2.1 
TXDJP2.0 

Pl.0 
P1.1 
Pl.2 
Pl.3 
P1.4 
HSIO 
HSII 

HSI2JHS04 

MCS~-96 

68-PIN 
PLCC 

TOP VIEW 
Looking Down on 
Component Side 

of PC Board 

Figure 3. 6S-Pin PLCC Package 

21-60 

ADOJP3.0 
AD1JP3.1 
AD21P3.2 
AD31P3.3 
AD4JP3.4 
ADSIP3.5 
AD6JP3.6 
AD7JP3.7 
ADBJP4.0 
AD9IP4.1 
AD101P4.2 
AD111P4.3 
ADI2JP4.4 
ADI3IP4.S 
ADl41P4.6 
AD1SJP4.1 
T2ClKlP2.3 

270014-3 



infef 809X-90, 839X-90 ~OO~I!J[MJDOO~OOW 

Pins Facing Down 

17 15 13 11 9 7 5 3 1" 
18 19 16 14 12 10 8 6 4 2 68 

20 21 67 66 

22 23 MCS®-96 65 64 

24 25 68-PIN 63 62 
GRID ARRAY 

26 27 61 60 

28 29 TOP VIEW 59 58 
Looking Down on 

30 31 Component Side 57 56 

32 33 of PC Board. 55 54 

34 36 38 40 42 44 46 48 50 53 52 
35 37 39 41 43 45 41 49 51 

270014-4 

Figure 4. Pin Grid Array 

PGA PLCC Description PGA PLCC Description PGA PLCC Description 

1 9 ACH7/PO.7 24 54 AD6/P3.6 47 31 P1.6 
2 8 ACH6/PO.6 25 53 AD7/P3.7 48 30 P1.5 
3 7 ACH2/PO.2 26 52 AD8/P4.0 49 29 HSO.1 
4 6 ACHO/PO.O 27 51 AD9/P4.1 50 28 HSO.O 
5 5 ACH1/PO.1 28 50 AD10/P4.2 51 27 HSO.5/HSL3 
6 4 ACH3/PO.3 29 49 AD11/P4.3 52 26 HSO.4/HSL2 
7 3 NMI 30 48 AD12/P4.4 53 25 HSL1 
8 2 EA 31 47 AD13/P4.5 54 24 HSLO 
9 1 VCC 32 46 AD14/P4.6 55 23 P1.4 
10 68 VSS 33 45 AD15/P4.7 56 22 P1.3 
11 67 XTAL1 34 44 T2CLK/P2.3 57 21 P1.2 
12 66 XTAL2 35 43 READY 58 20 P1.1 
13 65 CLKOUT 36 42 T2RST/P2.4 59 19 P1.0 
14 64 TEST 37 41 SHE 60 18 TXD/P2.0 
15 63 INST 38 40 WR 61 17 RXD/P2.1 
16 62 ALE 39 39 PWM/P2.5 62 16 RESET 
17 61 RD 40 38 P2.7 63 15 EXTINT IP2.2 
18 60 ADO/P3.0 41 37 VSS 64 14 VPD 
19 59 AD1/P3.1 42 36 VSS 65 13 VREF 
20 58 AD2/P3.2 43 35 HSO.3 66 12 ANGND 
21 57 AD3/P3.3 44 34 HSO.2 67 11 ACH4/PO.4 
22 56 AD4/P3.4 45 33 P2.6 68 10 ACH5/PO.5 
23 55 AD5/P3.5 46 32 P1.7 

21-61 



inter 809X-90, 839X-90 

FUNCTIONAL OVERVIEW 

The following section is an overview of the 8096, the 
generic part number used to refer to the entire 
MCS-96 product family. Additional information is 
available in the Microcontroller Handbook, order 
number 210918. 

CPU Architecture 

The 8096 has 64 Kbyte addressability and uses the 
same address space for both program and data 
memory, except in the address range from OOH 
through OFFH. Data fetches in this range are always 
to the Register File, while instruction fetches from 
these locations are directed to external memory. 
(Locations OOH through OFFH in external memory 
are reserved for Intel development systems.) 

Within the Register File, locations OOH through 17H 
are register mapped 1/0 control registers, also re-

OFFH 

OFOH 
OEFH 

'AJ 
10H 
1IH 

11H 

'.H 
'5H 

,CH 

'3H 
12H 

255 

POWER·DOWN 

RA" 24. ". 
INTERNAL 

REGISTER FILE 

{RAMI 

L. 
STACK POINTER STACK POINTER 

25 
2c 

PW.LCOHTROL 23 

1051 loe, 22 

1050 lOCO 21 

20 
RESERVED RESERVED ,. 

18 

SP STAT SP_COH 11 

10 PORT 2 10 PORT 2 I. 
10 PORT' 10 PORT ,I '5 

10 PORT 0 aAUD._AATE 'c 

TIMEA2 (HI) '3 

TIM£A2 (LO) RESERVED 12 

TlMERl (HII 

TIMER' (LO) WATCHDOG '0 

INT PENDING INT PENDING 

tHT_MASK INT ..... 51( 

SBUF (AX) saUF (lX) 

H5LSTATUS HSO COMMAND 

H$LTIME IHI, HSO TIME (HI) , 

"51_TIMe (LO) H50 TIME (lO) 

AD_RESULT (HI) H51 MODE 

AD RESULT (lO) AD COMMAND 

AO (HI) AO (HI) 

ferred to as Special Function Registers (SFRs). The 
rest of the Register File (018H through OFFH) con­
tains 232 bytes of RAM, which can be referenced as 
bytes, words, or double-words. This register space 
allows the user to keep the most frequently-used 
variables in on-chip RAM, which can be accessed 
faster than external memory. Locations OFOH 
through OFFH can be preserved during power down 
if power is applied to the VPD pin. 

Outside of the register file, program memory, data 
memory, and peripherals can be intermixed. The ad­
dresses with special significance are: 

0000H"-0017H 
0018H"-0019H 
1FFEH-1FFFH 
2000H-2011 H 
2012H-207FH 
2080H 

Register-mapped 1/0 (SFRs) 
Stack Pointer 

256 
255 

Ports 3 and 4 
Interrupt Vectors 
Factory Test Code 
Reset Location 

EXTERNAL MEMORY 
OR 
10 

INTERNAL PROGR ..... 

STORAGE ROM 

F ACTOAY TEST CODE 

1 
INTERRUPT 1 
VECTORS 0 

PORT" 
PORT 3 

EXTERNAL MEMORY 

OR 
10 

INTERNAL RAM 

REGISTER FILE 

STACK POINTER 

SPECIAL FUNCTION REGISTERS 
(WHEN ACCESSED AS 

('lATA MEMORY) 

FFFFH 

2OIOH. RESET 

2O~2H 

IFFEH 

O'DOH 
OOFFH 

11H 

'OH 

OFH 

OEH 

OOH 

OCH 

08H 

OAH 

09H 

OIH 

07H 

OIH 

05H 

OCH 

03H 

02H 

O'H 

OOH ROlLO) RO (LO) ------00 -(WHEN READ) (WHEN WRITTEN) 

270014-5 

Figure 5. Memory Map 

21-62 



809X-90, 839X-90 

The 839x carries 8 Kbytes of on-chip ROM, occupy­
ing addresses 2000H through 3FFFH. Instruction or 
data fetches from these addresses access the on­
chip ROM if the EA pin is externally held at a 
logical 1. If the EA pin is at a logical 0 these address­
es access off-chip memory. 

A memory map for the MCS-96 product family is 
shown in Figure 5. 

The RALU (Register/ ALU) section consists of a 17-
bit ALU, the Program Status Word, the Program 
Counter, and several temporary registers. A key fea­
ture of the 8096 is that it does not use an accumula­
tor. Rather, it operates directly on any register in the 
Register File. Being able to operate directly on data 
in the Register File without having to move it into 
and out of an accumulator results in a significant 
improvement in execution speed. 

In addition to the normal arithmetic and logical func­
tions, the MCS-96 instruction set provides the fol­
lowing special features: 

6.25 }Jos Multiply and Divide 
Multiple Shift Instructions 

3 Operand Instructions 
Normalize Instruction 
Software Reset Instruction 

All operations on the 8096 take place in a set num­
ber of "State Times." The 8096 uses a three-phase 

HSI TRIGGER opnONS 

L.HITOLO 

___ -'r LO TO HI 

J1..f1.I'lIU1.. 
EVERY EIGHTH POSmVE 

TIWISmoN 

270014-6 

internal clock, so each state time is 3 oscillator peri­
ods. With a 12 MHz clock, each state time requires 
0.25 microseconds. 

High Speed I/O Unit (HSIO) 

The HSIO unit consists of the High Speed Input Unit 
(HSI), the High Speed Output Unit (HSO), one coun­
ter and one timer. "High Speed" denotes that the 
units can perform functions related to the timers 
without CPU intervention. The HSI records times 
when events occur and the HSO triggers events at 
preprogrammed times. 

All actions within the HSIO unit are synchronized to 
the timers. The two 16-bit timer/counter registers in 
the HSIO unit are cleared on chip reset and can be 
programmed to generate an interrupt on overflow. 
The Timer 1 register is automatically incremented 
every 8 state times (every 2.0 microseconds, with a 
12 MHz clock). The Timer 2 register can be pro­
grammed to count transitions on either the T2CLK 
pin or HSI.1 pin. It is incremented on both positive 
and negative edges ofthe selected input line. In ad­
dition to being cleared by reset, Timer 2 can also be 
cleared in software or by signals from input pins 
T2RST or HS1.0. Neither of these timers is required 
for the watchdog timer or the serial port. 

The High Speed Input (HSI) unit can detect tran­
sitions on any of its 4 input lines. When one occurs it 
records the time (from Timer 1) and which input lines 

270014-11 

• Pulse measurement with 2.0 /Lsec resolution 
•. I nput transitions trigger the recording of the reference 

Timer (16-Bil) and triggered input(s) (4-Bit) 

Figure 6. High Speed Input Unit 

21-63 



intJ 809X-90, 839X-90 

CAM 
CONTROL LOGIC T2CLK 

T2RST 

t 
CAM 8 L~~-{~~~~ 

----23 BITS • ! 
High Speed Output Control 
• 6 Output Pins 
• 4 Software Timers 
• Initiate AID Conversion 
• Reset Timer 2 

PORT PINS 270014-7 

Figure 7. High Speed Output Unit 

made the transition. This information is recorded 
with 2 microsecond resolution and stored in an 8-
level FIFO. The unit can be programmed to look for 
four types of events, as shown in Figure 6. It can 
activate the HSI Data Available interrupt either when 
the Holding Registers is loaded or the 6th FIFO en­
try has been made. Each input line can be individual­
ly enabled or disabled to the HSI unit by software. 

The High Speed Output (HSO) unit is shown inFig­
ure 7. It can be programmed to set or clear any of its 
6 output lines, reset Timer 2, trigger an AID conver­
sion, or set one of 4 Software Timers flags at a pro­
grammed time. An interrupt can be enabled for any 
of these events. Either Timer 1 or Timer 2 can be 
referenced for the programmed time value and.up to 
8 commands for preset actions can be stored in the 
CAM (Content Addressable Memory) file at anyone 
time. As each action is carried out at its preset time 
that command is removed from the CAM making 
space for another command. HSO.4 and HSO.5 are 
shared with the HSI unit as HSI.2 and HSI.3, and can 
be individually enabled or disabled as outputs. 

Standard 1/0 Ports 
There are 58-bit I/O ports on the 8096 in addition to 
the High Speed I/O lines. 

Port 0 is an input-only port which shares its pins with 
the analog inputs to the AID Converter. The port 

can be read digitally and/or, by writing to the A/D 
Command Register, one of the lines can be selected 
as the input to the AID Converter. 

Port 1 is a quasi-bidirectional I/O port. "Quasi­
bidirectional" means the port pin has a weak internal 
pullup that is always active and an internal pulldown 
which can either be on (to output a 0) or off (to out­
put 'a 1). This configura:tion allows the pin to be used 
as either an input or an output without using a data 
direction register. In parallel with the weak internal 
pullup, is a much stronger internal pullup that is acti­
vated' for one state time when the pin is internally 
driven from 0 to 1. This is done to speed up the O-to-
1 transition time. 

Port 2 is multi-functional port. Two of the pins are 
quasi-bidirectional while the remaining six are 
shared with other functions in the 8096, as shown 
below: 

Port Function Aiternate Function 

P2.0 output TXD (serial port transmit) 
P2.1 input RXD (serial port receive) 
P2.2 input EXTINT (external interrupt) 
P2.3 input T2CLK (Timer 2 clock) 
P2.4 input T2RST (Timer 2 reset) 
P2.5 output PWM (pulse-width modulation) 

21-64 



809X-90, 839X-90 

Ports 3 and 4 are bi-directional I/O ports with open 
drain outputs. These pins are also used as the multi­
plexed address/data bus when accessing external 
memory, in which case they have strong internal 
pullups. The internal pullups are only. used during 
external memory read or write cycles when the pins 
are outputting· address or data bits. At any other 
time, the internal pull ups are disabled. 

Serial Port 

The serial port is compatible with the MCS®-51 fami­
ly (8051, 8031 etc.) serial port. It is full duplex, and 
receive-buffered. There are 3 asynchronous modes 
and 1 synchronous mode of operation for the serial 
port. The asynchronous modes allow for 8 or 9 bits 
of data with even parity optionally inserted for one of 
the data bits. Selective interrupts based on the 9th 
data bit are available to support interprocessor com­
munication. 

Baud rates in all modes are determined by an inde­
pendent 16-bit on-chip baud rate generator. Either 
theXTAL 1 pin or the T2CLK pin can be used as the 
input to the baud rate generator. The maximum baud 
rate in the asynchronous mode is 187.5 KBaud. 

Pulse Width Modulator (PWM) 

The PWM output shares a pin with port bit P2.5. 
When the PWM output is selected, this pin outputs a 
pulse train having a fixed period of 256 state times, 
and a programmable width of 0 to 255 state times. 
The width is programmed by loading the desired val­
ue, in state times, to the PWM Control Register. 

AID Converter 

The analog-to-digital converter is a 10-bit, succes­
sive approximation converter. It has a fixed conver­
sion time of 168 state times, (42 microseconds with 
a 12 MHz clock). The analog input must be in the 
range of 0 to VREF (normally, VREF = 5V). This 
input can be selected from 8 analog input lines, 
which connect to the same pins as Port O. A conver­
sion can be initiated either by setting a control bit in 
the A/D Command register, or by programming the 
HSO unit to trigger the conversion at some specified 
time. 

Interrupts 

The 8096 has 20 interrupt sources which vector 
through 8 locations. A 0-to-1 transition from any of 
the sources sets a corresponding bit in the Interrupt 

Pending register. The content of the Interrupt Mask 
register determines if a pending interrupt will be 
serviced or not. if it is to be serviced, the CPU 
pushes the current program counter onto the stack 
and reloads it with the vector corresponding to the 
desired interrupt. The interrupt vectors are located in 
addresses 2000H through 2011 H, as shown in Fig­
ure 8. 

Vector Location 

Source 
(High (Low Priority Byte) Byte) 

Software 2011 H 2010H Not Applicable 
Extint 200FH 200EH 7 (Highest) 
Serial Port 200DH 200CH 6 
Software 200BH 200AH 5 

Timers 
HSI.O 2009H 2008H 4 
High Speed 2007H 2006H 3 

Outputs 
HSI Data 2005H 2004H 2 

Available 
A/D Conversion 2003H 2002H 1 

Complete 
Timer Overflow 2001H 2000H o (Lowest) 

Figure 8. Interrupt Vectors 

At the end of the terminal routine the RET instruction 
pops the program counter from the stack and execu­
tion continues where it left off. It is not necessary to 
store and replace registers during interrupt routines 
as each routine can be set up to use a different sec­
tion of the register file. This feature of the architec­
ture provides for very fast context switching. 

While the 8096 has a single priority level in the 
sense that any interrupt may be itself be interrupted, 
a priority structure exists for resolving simultaneous­
ly pending interrupts, as indicated in Figure 8. Since 
the interrupt· pending and interrupt mask registers 
can be manipulated in software, it is possible to dy­
namically alter the interrupt priorities to suit the us­
ers' software. 

Watchdog Timer 

The watchdog timer is a 16-bit counter which, once 
started, is incremented every state time. After 16 
milliseconds, if not cleared, it will overflow, pulling 
down the RESET pin for two state times, causing the 
system to be reinitialized. This feature is provided as 
a means of graceful recovery from a software upset. 
The counter must be cleared by the software before 
it overflows, or else the system assumes an upset 
has occurred and activates RESET. 

21-65 



809X-90, 839X-90 

PIN DESCRIPTION 

VCC 
Main supply voltage (5V). 

VSS 
Digital circuit ground (OV). 

VPD 
RAM standby supply voltage (5V). This voltage must 
be present during normal operation. In a Power 
Down condition (Le., vee drops to zero), if RESET is 
activated before vee drops below spec and VPD 
continues to be held within spec, the top 16 bytes in 
the Register File will retain their contents. RESET 
must be held low during the Power Down and should 
not be brought high until vee is within spec and the 
oscillator has stablized. 

VREF 
Reference voltage for the AID converter (5V). VREF 
is also the supply voltage to the analog portion of 
the AID converter and the logic used to read Port 0 
as digital input. 

ANGND 
Reference ground for the AID converter. Should be 
held at nominally the same potential as VSS. 

vee 
Substrate voltage from the on-chip back-bias gener­
ator. This pin should be connected to ANGND 
through a 0.01.,...f capacitor (and not connected to 
anything else). 

XTAL1 
Input of the oscillator inverter and of the internal 
clock generator. 

XTAL2 
Output of the oscillator inverter. 

CLKOUT 
Output of the internal clock generator. The frequen­
cy of eLKOUT is Ya the oscillator frequency. It has a 
33% duty cycle. 

RESET 
Reset input to the chip. Input low for at least 2 state 
times to reset the chip. The subsequent low-to-high 
transition re-synchronizes eLKOUT and commenc­
es a 1 O-state-timesequence in which the PSW is 
cleared and a jump to address 2080H is executed. 
Input high for normal operation. RESET has an inter­
nal pullup. 

TEST 
Input low enables a factory test mode. The user 
should tie this pin to vee for normar operation. 

NMI 
A positive transition clears the watchdog timer, and 
causes a vector to external memory location OOOOH. 
External memory from OOH through OFFH is re­
served for Intel development systems. 

INST 
Output high during an external memory read indi­
cates the read is an instruction fetch. INST needs to 
be latched on the falling edge of ALE. 

Input for memory select (External Access). EA = 1 
causes memory accesses to locations2000H 
through 3FFFH to be directed to on-chip ROM. EA 
= 0 causes accesses to these locations to be di­
rected to off-chip memory. EA has an internal pull­
down, so it goes to 0 unless driven to 1. EA is not 

. latched internally during RESET. 

ALE 
Address Latch Enable output. ALE is activated only 
during external memory accesses. It is used to latch 
the address from the multiplexed address/data bus, 
and is placed in a low condition during reset. 

RD 
I 

Read signal output to external memory. RD is acti­
vated only during external memory reads. 

Write signal output to external memory. WR is acti­
vated only during external memory writes. 

21-66 



inter 809X-90, 839X-90 

Sus High Enable signal output to external memory. 
SHE = 0 selects the bank of memory that is con­
nected to the high byte of the data bus. AO = 0 
selects the bank of memory that is connected to the 
low byte of the data bust. Thus accesses to a 16-bit 
wide memory can be to the low byte only (AO = a, 
SHE = 1), to the high byte only (AO = 1, SHE = 0), 
or to both bytes (AO = 0, SHE = 0). SHE is activat­
ed only when required during accesses to external 
memory. SHE can be ignored during read opera­
tions. This pin must be latched on the falling edge of 
ALE. 

READY 

The READY input is used to lengthen external mem­
ory bus cycles, for interfacing to slow or dynamic 
memory, or for bus sharing. If the pin is high CPU 
operation continues in a normal manner. If the pin is 
low prior to the first rising edge of CLKOUT after 
ALE, the Memory Controller goes into a wait mode 
until the next negative transition in CLKOUT after 
ALE occurs with READY high. The bus cycle can be 
lengthened by up to 1 J.l-s. When the external memo­
ry bus is not being used, READY has no effect. 
READY has a weak internal pullup, so it goes to 1 
unless externally pulled low. 

HSI 

Inputs to High Speed Input Unit. Four HSI pins are 
available: HSLO, HSL1, HSL2, and HSL3. Two of 
them (HSL2 and HSL3) are shared with the HSO 
Unit. 

HSO 

Outputs from High Speed Output Unit. Six HSO pins 
are available: HSO.O, HSO.1, HSO.2, HSO.3, HSO.4, 
and HSO.5. Two of them (HSO.4 and HSO.5) are 
shared with the HSI Unit. 

PortO 

8-bit high impedance input-only port. These pins can 
be used as digital inputs and lor as analog inputs to 
the on-chip AID converter. 

Port 1 

8-bit quasi-bidirectional 1/0 port. 

Port 2 

8-bit multi-functional port. Six of its pins are shared 
with other functions in the 8096, the remaining 2 are 
quasi-bidirectional. 

Ports 3 and 4 

8-bit bi-directional 1/0 ports with open drain outputs. 
These pins are shared with the multiplexed address I 
data bus which has strong internal pull ups. 

INSTRUCTION SET 

The 8096 instruction set makes use of six address­
ing modes as described below: 

DIRECT-The operand is specified by an 8-bit ad­
dress field in the instruction. The operand must be in 
the Register File or SFR space (locations OOOOH 
through aOFFH). 

IMMEDIATE-The operand itself follows the op­
code in the instruction stream as immediate data. 
The immediate data can be either 8-bits or 16-bits as 
required by the opcode. 

INDIRECT-An 8-bit address field in the instruction 
gives the address of a word register in the Register 
File which contains the 16-bit address of the oper­
and. The operand can be anywhere in memory. 

INDIRECT WITH AUTO-INCREMENT-Same as 
Indirect, except that, after the operand is referenced, 
the word register that contains the operand's ad­
dress is incremented by 1 if the operand is a byte, or 
by 2 if the operand is a word. 

INDEXED-The instruction contains an 8-bit ad­
dress field and either an 8-bit or a 16-bit displace­
ment field. The 8-bit address field gives the address 
of a word register in the Register File which contains 
a 16-bit base address. The 8- or 16-bit displacement 
field contains a signed displacement that will be 
added to the base address to produce the address 
of the operand. The operand can be anywhere in 
memory. 

The 8096 contains a Zero Register at word address 
OaOOH (and which contains OOOOH). This register is 
available for performing comparisons and for use as 
a base register in indexed addressing. This effective­
ly provides direct addressing to all 64K of memory. 

In the 8096, the Stack Pointer is at word address 
0018H in the Register File. If the 8-bit address field 
in an indexed instruction contains 18H, the Stack 
Pointer becomes the base register. This allows di­
rect accessing of variables in the stack. 

The following tables list the MCS-96 instructions, 
their opcodes, and execution times. 

21-67 



intJ 809X-90, 839X-90 

Instruction Summary 

Mnemonic 
Oper-

Operation (Note 1) Flags Notes 
ands Z N C V VT ST 

ADD/AD DB 2 D - D+A '" '" '" '" t -
ADD/AD DB 3 D - B+A '" '" '" '" t -
ADDC/ADDCB 2 D - D+ A +C J, '" '" '" t -
SUB/SUBB. 2 D - D-A '" '" '" '" t -
SUB/SUBB 3 D - B-A '" '" '" '" t -
SUBC/SUBCB 2 D-D-A+C-l .J, '" '" '" t -
CMP/CMPB 2 D-A '" '" '" '" t -
MUlIMULU 2 D,D + 2- D'A - - - - - ? 2 

MUlIMULU 3 D,D + 2 - B' A - - - - - ? 2 

MULB/MULUB 2 D,D + 1 - D' A - - - - - ? 3 
MULB/MULUB 3 D, D + 1 - B' A - - - - - ? 3 

DIVU 2 D - (D, D + 2)1 A, D + 2 - remainder - - - '" t - 2 

DIVUB 2 D - (D, D + l)/A, D + 1 - remainder - - - '" t - 3 

DIV 2 D - (D, D + 2)1 A, D + 2 - remainder - - - ? t - 2 

DIVB 2 D - (D, D + 1)/ A, D + 1 - remainder - - - ? t - 3 

AND/ANDB 2 D - DandA '" '" 0 0 - -
AND/ANDB 3 D - BandA '" '" 0 0 - -
OR/ORB 2 D - DorA '" '" 0 0 - -
XOR/XORB 2 D - D(excLor)A '" '" 0 0 - -
LD/LDB 2 D-A - - - - - -
ST/STB 2 A-D - - - - - -
LDBSE 2 D-A;D+l - SIGN(A) - - - - - - 3,4 

LDBZE 2 D-A;D+l -0 - - - - - - 3,4 

PUSH 1 SP - SP - 2; (SP) - A - - - - - -
POP 1 A - (SP); SP - SP + 2 - - - - - -
PUSHF 0 SP - SP - 2; (SP) - PSW; 0 0 0 0 0 0 

PSW - OOOOH 1-0 

POPF 0 PSW - (SP); SP - SP + 2; 1-", '" '" '" '" '" '" 
SJMP 1 PC - PC + ll-bit offset - - - - - - 5 

WMP 1 PC - PC + 16-bit offset - - - - - - 5 

BR (indirect) 1 PC - (A) - - - - - -
SCALL 1 SP _ SP - 2; (SP) - PC; - - - - - - 5 

PC - PC + ll-bit offset 

LCALL 1 SP - SP - 2; (SP)· - PC; - - - - - - 5 
PC - PC + 16-bit offset 

RET 0 PC - (SP);SP - SP + 2 - - - - - -
J (conditional) 1 PC - PC + 8-bit offset (if taken) - - - - - - 5 

JC 1 JumpifC = 1 - - - - - - 5 

JNC 1 JumpifC = 0 - - - - - - 5 

JE 1 Jump if Z = 1 - - - - - - 5 

NOTES: 
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A 
must. conform to the alignment rules for the required operand type. D and B are locations in the register file; A can be 
located anywhere in memory. 
2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned. 
3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned. 
4. Changes a byte to a word. 
5. Offset is a 2's complement number. 

21-68 



inter 809X-90, 839X-90 

Instruction Summary (Continued) 

Mnemonic Oper-
Operation (Note 1) 

Flags 
Notes 

ands Z N C V VT ST 

JNE 1 Jump ifZ = 0 - - - - - - 5 

JGE 1 Jump ifN = 0 - - - - - - 5 

JLT 1 Jump if N = 1 - - - - - - 5 

JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5 

JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5 

JH 1 Jump if C = 1 and Z = 0 - - - - - - 5 

JNH 1 JumpifC= OorZ = 1 - - - - - - 5 

JV 1 Jump if V = 1 - - - - - - 5 

JNV 1 Jump if V = 0 - - - - - - 5 

JVT 1 Jump ifVT = 1; ClearVT - - - - 0 - 5 

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5 

JST 1 Jump ifST = 1 - - - - - - 5 

JNST 1 Jump ifST = 0 - - - - - - 5 

JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6 

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6 

OJNZ 1 o +- 0 - 1; if 0 "" 0 then 
PC +- PC + S-bit offset - - - - - - 5 

OEC/OECB 1 0+-0-1 " " " " i -
NEG/NEGB 1 0+-0-0 " " " " i -
INC/INCB 1 0+-0+1 " " " " i -
EXT 1 o +- 0; 0 + 2 +- Sign (D) " " 0 0 - - 2 

EXTB 1 o +- 0; 0 + 1 +- Sign (D) " " 0 0 - - 3 

NOT/NOTB 1 o +- Logical Not (D) " " 0 0 - -
CLR/CLRB 1 0+-0 1 0 0 0 - -
SHL/SHLB/SHLL 2 C +- msb-----Isb +- 0 " ? " " i - 7 

SHRISHRB/SHRL 2 0 ..... msb-----Isb ..... C " ? " 0 - " 7 

SHRAISHRAB/SHRAL 2 msb ..... msb-----Isb ..... C " " " 0 - " 7 

SETC 0 C+-1 - - 1 - - -
CLRC 0 C+-O - - 0 - - -
CLRVT 0 VT +- 0 - - - - 0 -
RST 0 PC +- 20S0H 0 0 0 0 0 0 S 

01 0 Disable All Interrupts (I +- 0) - - - - - -
EI 0 Enable All Interrupts (I +- 1) - - - - - -
Nap 0 PC +- PC + 1 - - - - - -
SKIP 0 PC +- PC + 2 - - - - - -
NORML 2 Left Shift Till msb = 1; 0 +- shift count " ? 0 - - - 7 
TRAP 0 SP +- SP - 2; (SP) +- PC 

PC +- (2010H) - - - - - - 9 

NOTES: 
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands 0, B, and A 
must conform to the alignment rules for the required operand type. 0 and B are locations in the register file; A can be 
located anywhere in memory. 
5. Offset is a 2's complement number. 
6. Specified bit is one of the 204S bits in the register file. 
7. The" L" (Long) suffix indicates double-word operation. 
S. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 
20S0H. 
9. The assembler will not accept this mnemonic. 

21-69 



intJ 809X-90, 839X-90 

DIRECT IMMEDIATE 
INDIRECT@ INDEXED@ 

NORMAL AUTO-INC. SHORT LONG 

u tn 
Z 0 z w w w w 0 c( 0 tn 0 tn 0 tn 8 tn tn 8 tn 0 tn 8 tn tn 8 tn 
~ IX 0 W Wtn 0 w Wtn 0 W Ww W Ww 0 w Ww W Ww 
W tc w tc w tc~ tc~ tc~ tc~ W u 1; ~. U 1; U 1; 1; U 1; 1; z a.. a.. .-- a.. I-"! a.. 1-"- ~i= a.. ~i= ~i= ~ 0 0 m tn ..... 0 m tn ..... 0 m tn ..... m 0 m m 

ARITHMETIC INSTRUCTIONS 

ADD 2 64 3 4 65 4 5 66 3 6/11 3 7/12 67 4 6/11 5 7/12 

ADD 3 44 4 5 45 5 6 46 4 7/12 4 8/13 47 5 7/12 6 8113 

ADDB 2 74 3 4 75 3 4 76 3 6/11 3 7/12 77 4 6/11 5 7/12 

ADDB 3 54 4 5 55 4 5 56 4 7/12 4 8/13 57 5 7/12 6 8113 

ADDC 2 A4 3 4 A5 4 5 A6 3 6/11 3 7/12 A7 4 6111 5 7112 

ADDCB 2 B4 3 4 B5 3 4 B6 3 6/11 3 7/12 B7 4 6/11 5 7/12 

SUB 2 68 3 4 69 4 5 6A 3 6111 3 7/12 6B 4 6111 5 7/12 

SUB 3 48 4 5 49 5 6 4A 4 7/12 4 8/13 4B 5 7/12 6 8/13 

SUBB 2 78 3 4 79 3 4 7A 3 6/11 3 7/12 7B 4 6111 5 7/12 

SUBB 3 58 4 5 59 4 5 5A 4 7/12 4 8/13 5B 5 7/12 6 8113 

SUBC 2 A8 3 4 A9 4 5 AA 3 6/11 3 7/12 AB 4 6/11 5 7/12 

SUBCB 2 B8 3 4 B9 3 4 BA 3 6/11 3 7/12 BB 4 6/11 5 7/12 

CMP 2 88 3 4 89 4 5 8A 3 6111 3 7/12 8B 4 6/11 5 7/12 

CMPB 2 98 3 4 99 3 4 9A 3 6/11 3 7/12 9B 4 6/11 5 7/12 

MULU 2 6C 3 25 6D 4 26 6E 3 27/32 3 28/33 6F 4 27/32 5 28/33 

MULU 3 4C 4 26 4D 5 27 4E 4 28/33 4 29/34 4F 5 28/33 6 29/34 

MULUB 2 7C 3 17 7D 3 I7 7E 3 19124 3 20/25 7F 4 19/24 5 20125 

MULUB 3 5C 4 18 5D 4 18 5E 4 20/25 4 21126 SF 5 20/25 6 21126 

MUL 2 ® 4 29 ® 5 30 ® 4 31/36 4 32/37 ® 5 31/36 6 32/37 

MUL 3 ® 5 30 ® 6 31 ® 5 32/37 5 33/38 ® 6 32/37 7 33/38 

MULB 2 ® 4 21 ® 4 21 ® 4 23128 4 24/29 ® 5 23128 6 24129 

MULB 3 ® 5 22 ® 5 22 ® 5 24/29 5 25/30 ® 6 24/29 7 25/30 

DIVU 2 8C 3 25 8D 4 26 8E 3 28/32 3 29/33 8F 4 28/32 5 29/33 

DIVUB 2 9C 3 17 9D 3 17 9E 3 20/24 3 21125 9F 4 20/24 5 21125 

DIV 2 ® 4 - 29 ® 5 30 ® 4 32/36 4 33/37 ® 5 32/36 6 33/37 

DIVB 2 ® 4 21 ® 4 21 ® 4 24/28 4 25/29 ® 5 24/28 6 25129 

270014-9 

NOTES: 
• Long indexed and Indirect + instructions have identical opcodes with Short indexed and Indirect modes, respectively. The 
second byte of instructions using any indirect or indexed addressing mode specifies the exact mode used. If the second byte 
is even, use Indirect or Short Indexed. If it is odd, use Indirect + or Long Indexed. In all cases the second byte of the 
instruction always specifies an even (word) location for the address referenced. 
1. Number of state times shown for internal/external operands. 
2. The opcodes for signed multiply and divide are the opcodes for the unsigned functions with an "FE" appended as a 
prefix. 
3. State times shown for 16-bit bus. 

21-70 



809X-90, 839X-90 

IMMEDIATE 
INDIRECT@ INDEXED@ 

DIRECT 
NORMAL AUTO-INC. SHORT LONG 

(.J CIl 
Z Q W Z W w 

8C1l 8C1l 
w 

8C1l 8 en 0 c Q en WCll Q CIl wen Q CIl en Q en CIl :IE IE: 0 0 0 Ww Ww 0 Ww Ww w !(W w !(W w !(:E w !(:E w !(:IE w !(:E w w (.J 
~ 

(.J 
~ 

(.J 
~ ~ 

(.J 
~ ~ Z 11. 11. .-ii! 11. .-ii! .11. t)F= t)F= 11. .-- .--:IE 0 0 III CIll- O III CIll- O III III 0 III CIlI- III CIlI-

LOGICAL INSTRUCTIONS 

AND 2 60 3 4 61 4 5 62 3 6/11 3 7/12 63 4 6/11 5 7/12 

AND 3 40 4 5 41 5 6 42 4 7/12 4 8/13 43 5 7/12 6 8/13 

ANDB 2 70 3 4 71 3 4 72 3 6/11 3 7/12 73 4 6/11 5 7/12 

ANDB 3 50 4 5 51 4 5 52 4 7/12 4 8/13 53 5 7/12 6 8/13 

OR 2 80 3 4 81 4 5 82 3 6/11 3 7/12 83 4 6/11 5 7/12 

ORB 2 90 3 4 91 3 4 92 3 6/11 3 7/12 93 4 6/11 5 7/12 

XOR 2 84 3 4 85 4 5 86 3 6/11 3 7/12 87 4 6/11 5 7/12 

XORB 2 94 3 4 95 3 4 96 3 6/11 3 7/12 97 4 6/11 5 7/12 

DATA TRANSFER INSTRUCTIONS 

LD 2 AO 3 4 AI 4 5 A2 3 6/11 3 7/12 A3 4 6/11 5 7/12 

LDB 2 BO 3 4 Bl 3 4 B2 3 6/11 3 7/12 B3 4 6/11 5 7/12 

ST 2 CO 3 4 - - -- C2 3 .7/11 3 8/12 C3 4 7/11 5 8/12 

STB 2 C4 3 4 - - -- C6 3 7/11 3 8/12 C7 4 7/11 5 8/12 

LDBSE 2 BC 3 4 BD 3 4 BE 3 6/11 3 7/12 BF 4 6/11 5 7/12 

LDBZE 2 AC 3 4 AD 3 4 AE 3 6/11 3 7/12 AF 4 6/11 5 7/12 
STACK OPERATIONS (Internal stack) 

PUSH 1 C8 2 8 C9 3 8 CA 2 11115 2 12/16 CB 3 11115 4 12/16 

POP 1 CC 2 12 - - -- CE 2 14/18 2 14118 CF 3 14/18 4 14/18 

PUSHF 0 F2 I 8 

POPF 0 F3 1 9 

STACK OPERATIONS (external stack) 

PUSH 1 C8 2 12 C9 3 12 CA 2 15/19 2 16/20 CB 3 15/19 4 16120 

POP 1 CC 2 14 - - -- CE 2 16/20 2 16/20 CF 3 16/20 4 16/20 
PUSHF 0 F2 1 12 

POPF 0 F3 1 13 

JUMPS AND CALLS 

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES 

UMP E7 3 8 LCALL EF 3 13/16<5> 

SIMP 20-27@ 2 8 SCALL 28-2F@ 2 13/16<5> 

BR[] E3 2 8 RET FO 1 12116@ 

TRAPG> F7 1 21/24 

270014-10 

NOTES: 
1. Number of state times shown for internal/external operands. 
3. The assembler does not accept this mnemonic. 
4. The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an 11-bit, 2's complement, 
offsei for the relative call or jump. 
5. State times for stack located internal/ex1ernal. 

21-71 



· 809X-90, 839X-90 

Conditional Jumps 
All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not. 

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode 

JC OB JE OF JGE 06 JGT 02 

JNC 03 JNE 07 JLT OE JLE OA 

JH 09 JV 00 JVT OC JST 08 

JNH 01 JNV 05 JNVT 04 JNST 00 

Jump on Bit Clear or Bit Set 
These instructions are 3-byte instructions. They require 9 state times if the jump is taken, 5 if it is not. 

Bit Number 

Mnemonic 0 1 2 3 4 5 6 7 

JBC 30 ' 31 32 33 34 35 36 37 

JBS 38 39 3A 3B 3C 3D 3E 3F 

LOOP CONTROL 
OJNZ _ OPCOOEEO; 3 BYTES; 5/9 STATE TIMES (NOTTAKEN/TAKEN) 

Single Register Instructions 
Mnemonic Opcode Bytes States Mnemonic Opcode Bytes States 

OEC 05 2 4 EXT 06 2 4 

OECB 15 2 4 EXTB 16 2 4 

NEG 03 2 4 NOT 02 2 4 

NEGB 13 2 4 NOTB 12 2 4 

INC 07 2 4 CLR 01 2 4 

INCB 17 2 4 CLRB 11 2 4 

Shift Instructions 
Instr Word Inslr Byte Inslr DBLWD Slate Times 

Mnemonic OP B Mnemonic OP B Mnemonic OP B 

SHL 09 3 SHLB 19 3 SHLL 00 3 7 + 1 PER SHIFT(7) 

SHR 08 3 SHRB 18 3 SHRL OC 3 7 + 1 PER SHIFT(7) 

SHRA OA 3 SHRAB 1A 3 SHRAL OE 3 7 + 1 PER SHIFT(7) 

Special Control Instructions 
Mnemonic Opcode Bytes Stales Mnemonic Opcode Byles Siaies 

SETC F9 1 4 01 FA 1 4 

CLRC F8 1 4 EI FB 1 4 

CLRVT FC 1 4 NOP FO 1 4 

RST(6) FF 1 166 SKIP 00 2 4 

Normalize 

Mnemonic Slate Times 

NORML 11 + 1 PER SHIFT 

NOTES: 
6. This instruction takes 2 states to pull RST low, then holds it low for 2 states to initiate a reset. The reset takes 12 states, 
at which time the program restarts at location 20BOH. 
7. Execution will take at leastB states, even for 0 shift. 

21-72 



809X-90, 839X-90 

FUNCTIONAL DEVIATIONS 

Functional deviations from the 809x and 839x on the 
809x-90 and 839x-90. 

CPU Section 

1. Indexed, 3 Operand Multiply-The displacement 
portion of an indexed, three word multiply may not 
be in the range of 200H thru 17FFH inclusive. 
This also applies to byte multiples that use 3 oper­
ands. 

2. Add or Subtract with carry-The zero flag is both 
set and cleared by these instructions. Zero check­
ing must be done after each operation. 

3. EXT-This instruction never sets theN flag, and 
always sets the Z flag. The EXTB works correctly. 
Check the flags before executing an EXT instruc­
tion. Additionally, having more than two wait 
states during an EXT (extend word only) instruc­
tion may cause the instruction to give an incorrect 
result. 

4. Read-Modify-Write on Interrupt Pending-A read­
modify-write instruction on the interrupt pending 
register may cause interrupts that occur during 
execution of the instruction to be missed. 

5. READY line-The READY line should not be 
brought low during the execution of an instruction 
that accesses HSI_TIME, SP_STAT or IOS1. It 
should also not be brought low for a data write 
during the instruction immediately preceding one 
of the above operations. Do not use wait states 
for program memory that holds these instructions. 
Also place a NOP between writes to slow memory 
and accesses to HSO_TIME, SP_STAT or 
IOS1. 

The READY 'Iine also should not be brought low 
for more than two state times when using the EXT 
(extend word) instruction. 

6. Signed Divide-The V and VT flags may indicate 
an overflow after a signed divide when no over­
flow has occurred. 

7. The sticky flag is not affected when a shift by zero 
is executed on an 8X9X-90. 

8. The JBS and JBC instructions should not be used 
directly on Port 2.1 or any pins of Port 0 if used as 
digital input. If it is necessary to test these pins, 
first LD the port data into a temporary register, 
and then test the bit there. 

HSI/HSO Section 

1. HSI Timing-An event occurring within 16 state 
times of a prior event on the same HSI line may 
not be recorded. Additionally, an event occurring 
within 16 state times of a prior event on another 
HSI line may be recorded with a time tag one 
count earlier than expected. Events are defined 
as the condition the line is set to trigger on. The 
effective resolution is increased to 4 fLs for such 
closely spaced events. 

2. HSI Divide by 8 Mode-If an event on a pin set to 
look for every eighth transition occurs less than 
16 state times after an event on any other pin, 
then the divide by 8 event will be recorded twice 
in the HSI FIFO. The time tag of the duplicate 
FIFO entry will be equal to that of the initial entry 
plus one. The programmer's software should de­
tect and discard the second entry. 

3. HSO Interrupts-Software timer interrupts cannot 
be generated by the HSO commands that reset 
Timer 2 or start an A to D conversion. 

4. The first few instructions of an interrupt service 
routine should check IOS1.7 and exit if the Hold­
ing Register is not loaded. This will successfully 
clear unwanted events. 

SeriallPort Section 

1. Serial Port Flags-Reading SP _STAT may not 
clear the TI or RI flag if that flag was set within 
two state times prior to the read. In addition, the 
parity error bit (RPE/RB8) may not be correct if it 
is read within two state times after RI is set. 

Use the following code to replace ORB sp_image, 
SP_STAT. 

SP_READ: 
LDB TEMP, SP_STAT 
ORB SP_IMAGE, SP_STAT 
JBS TEMP,5,SP_READ if TI bit is set 

then read again 
JBS TEMP,6,SP_READ if RI bit is set 

then read again 
ANDB SP_IMAGE,#7FH clear false 

RB8/RPE 
ORB SP_IMAGE,TEMP load correct 

RB8/RPE 
2. Serial Port Mode 0-The serial port is not tested 

in mode O. The receive function in this mode does 
not work correctly. The receive -function will not 
work unless the first bit shifted in is a one. 

21-73 



809X-90, 839X-90 

3. Serial Port Baud Value-Loading the baud rate 
register with 8000H (maximum baud rate, internal 
clock) may cause an 11 millisecond delay (at 
Fosc = 12 MHz) before the port is properly initial­
ized. After initialization the port works properly. In­
clude a 44000 state time delay after writing 
8000H to the Baud Rate Register. 

Standard 1/0 Section 

1. Ports 3 and 4 (Internal Execution Mode Only)-To 
be used as outputs, Ports 3 and 4 each must be 
addressed as words but written to as bytes. To 
write to Port 3 use "ST temp, 1ffeh", where the 
low byte of "temp" contains the data for the port. 

21-74 

To write to Port 4, use the DCB operator to gener­
ate the opcode sequence "OC3H, 001 H, OFFH, 
01 FH, {temp)", where the high byte of "temp" 
contains the data for the port. Ports 3 and 4 will 
not work as input ports. 

Also, when writing to Ports 3 and 4, the address of 
the port, (1 FFEH, 1 FFFH) will appear on the bus 
pins for 2 oscillator periods before the new data is 
presented to the pins. Since normal bus control 
signals (ALE, RD, etc.) are suppressed during 
writes to these addresses, there is no way to latch 
the data and prevent this address "glitch" to the 
outside world. If this presents a problem in an ap­
plication, port reconstruction must be done at an­
other address as described in the MCS-96 Hard­
ware Design Information Chapter. 



809X-90, 839X-90 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Ternperature Under Bias .... O°C to + 70°C 

Storage Temperature .......... -40°C to + 150°C 

Voltage from Any Pin to 
Vss or ANGND ............... -0.3V to + 7.0V 

Average Output Current from Any Pin ....... 10 mA 

Power Dissipation ...................... 1.5 Watts 

OPERATING CONDITIONS 
Symbol Parameter 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE' Specifications contained within the 
following tables are subject to change. 

Min Max Units 

TA Ambient Temperature Under Bias 0 +70 C 

Vee Digital Supply Voltage 4.50 5.50 V 

VREF Analog Supply Voltage 4.5 5.5 V 

fose Oscillator Frequency 6.0 12 MHz 

Vpo Power-Down Supply Voltage 4.50 5.50 V 
NOTE: 
VBB should be connected to ANGNO through a 0.01 ",F capacitor. ANGNO and Vss should be nominally at the same 
potential. 

D.C. CHARACTERISTICS 
Symbol Parameter Min Max Units Test Conditions 

VIL Input Low Voltage (Except RESET) -0.3 +0.8 V 

VILl Input Low Voltage, RESET -0.3 +0.7 V 

VIH Input High Voltage (Except RESET, NMI, XTAL 1) 2.0 Vee +0.5 V 

VIHl Input High Voltage, RESET Rising 2.4 Vee +0.5 V 

VIH2 Input High Voltage, RESET Falling 2.1 Vee +0.5 V 

VIH3 Input High Voltage, NMI, XTAL 1 2.4 Vee +0.5 V 

VOL Output Low Voltage 0.45 V (Note 1) 

VOH Output High Voltage 2.4 V (Note 2) 

lee Vee Supply Current 200 mA All Outputs 
Disconnected 

Ipo VPD Supply Current 1 mA Normal operation 
and Power-Down 

IREF VREF Supply Current 8 mA 

lu Input Leakage Current to all pins of HSI, ±10 /LA Yin = OtoVee 
P3, P4, and to P2.1 

IUl Input Leakage to Port 0 ±3 /LA VIN = Oto Vee 

IIH Input High Current to EA 100 /LA VIH = 2.4V 

IlL Input Low Current to all pins of P1, -100 /LA VIL = 0.45V 
and to P2.6, P2.7 

IILl Input Low Current to RESET 0.3 -2 mA VIL = 0.45V 

IIL2 Input Low Current P2.2, P2.3, P2.4, READY -50 /LA VIL = 0.45V 

Cs Pin Capacitance (Any Pin to Vss) 10 pF fTEST = 1.0 MHz 
NOTES: 
1. IOL = 0:4 rnA for all pins of Pl, for P2.6 and P2.7, and for all pins of P3 and P4 when used as porls. IOL = 2.0 rnA for 
TXD, RXD (in serial port mode 0), PWM, eLKOUT, ALE, BHE, RD, WR, and RESET and all pins of HSO and P3 and P4 
when used as external memory bus (ADO-AD15). 
2. IOH = -20 ~f~1I pins of Pl, for P2.6 and P2.7. IOH = -200 ",A for TXD, RXD (in serial port mode 0), PWM, 
eLKOUT, ALE, BHE, WR, and all pins of HSO and P3 and P4 when used as external memory bus (ADO-AD15). P3 and P4, 
when used as ports, have open-drain outputs. 

21-75 



intJ 809X-90, 839X-90 

AID CONVERTER SPECIFICATIONS Resolution ........................ ± 0.001 VREF 

AID Converter operation is verified only on the 
8097, 8397, 8095, 8395. 

Accuracy ......................... ±0.004 VREF 

Differential nonlinearity ......... ± 0.002 VREF max 

The absolute conversion accuracy is dependent on 
the accuracy of VREF. The specifications given be­
low assume adherence to the Operating Conditions 
section of these data sheets. Testing is done at 
VREF = 5.120V. 

Integral nonlinearity ............ ± 0.004 VREF max 

Channel-to-channel matching ............ ± 1 LSB 

Crosstalk (DC to 100 KHz) ........... - 60 dB max 

A.C. CHARACTERISTICS 
(VCC, VPD = 4.5 to 5.5 Volts; T A = O°C to 70°C; fosc = 6.0 to 12.0 MHz) 

Test Conditions: Load Capacitance on Output Pins = 80 pF 
Oscillator Frequency = 12.00 MHz 

TIMING REQUIREMENTS (Other system components must meet these specs.) 

Symbol Parameter Min Max Units 

TCLYX READY Hold after CLKOUT Edge 0 ns 

TLLYV End of ALE to READY Setup -Tosc 2Tosc-60 ns 

TLLYH End of ALE to READY High 2 Tosc+40 4Tosc-60(1) ns 

TYLYH Non-ready Time 1000 ns 

TAVDV Address Valid to Input Data Valid 5Tosc-90 ns 

TRLDV RDI Active to Input Data Valid 3Tosc-60 ns 

TRXDX Data Hold after RD/inactive(2) 0 ns 

TRXDZ RD/lnactive to Input Data Float(2) Tosc-20 ns 

TIMING RESPONSES (MCS-96 parts meet these specs.) 

Symbol Parameter Min Max Units 

FXTAL Oscillator Frequency 6.00 12.00 MHz 

Tosc Oscillator Period 83 166 ns 

TOHCH Oscillator High to CLKOUT High(3) 0 120 ns 

TCHCH CLKOUT Period(2) 3Tosc(3) 3Tosc(3) ns 

TCHCL CLKOUT High Time Tosc-20 Tosc+20 ns 

TCLLH CLKOUT Low to ALE High -25 20 ns 

TLLCH ALE Low to CLKOUT High Tosc-20 Tosc+40 ns 

TLHLL ALE Pulse Width Tosc-25 Tosc+ 15 ns 

TAVLL Address Setup to End of ALE Tosc-50 ns 

TLLRL End of ALE to RDI or WRI Active Tosc-20 ns 

TLLAX Address Hold After End of ALE Tosc-20 ns 

TWLWH WRI Pulse Width 2Tosc-35 ns 

TaVWX Output Data Setup to End of WRf 2Tosc-60 ns 

TWXaX Output Data Hold After End of WRI Tosc-25 ns 

TWXLH End of WRI to Next ALE 2Tosc-30 ns 

TRLRH RDI Pulse Width 3Tosc-30 ns 

TRHLH End of RDI to Next ALE Tosc-25 ns 

NOTES: 
1. If more than one wait state is desired, add 3Tosc for each additional wait state. 
2. This specification is nottested, but is verified by deSign analysis andf or derived from other tested parameters. 
3. CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3Tosc ± 10 ns if Tosc is constant and 
the rise and fall. times on XTAL 1 are less than 10 ns. CLKOUT is not bonded out on 48,pin parts. 

21-76 



309X-90, 339X-90 

WAVEFORM 

XTALI 

I I I 
TCHCH I I 

I I I 

CLK OUT .\ " 
I 

---J 
TCHCL 

TCLLH - if"''' DY \ VA~D- • 

i"--- --

REA 

TLLCH 
TLHLL TYLYH 

!.-TLLYV_ 

J \. \. - TLLYH ) 
ALE 

TLLRL .. TRLRH ~ TRHLH 

, "' TAVLL 
1\ 

TRXDZ 

TLLAX 

f-- ~TRLDV_ TRXDX 

AD ADDR OUT DATA IN \. , 
TAVDV 

TLLRL 

TWLWH TWXLH_ 

~ 
TAVLL 

TLLAX 
TWXOX 

f-TOVWX 

AD ADDR OUT ~ DATA OUT 

BHE. INST 

\ VALID 

270014-8 

Bus Signal Timings 

21-77 



MCS®-96 
809XBH1839XBH/879XBH 

Express 
• Extended Temperature Range 

( - 40°C to + 85°C) 
• Burn-In 

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-96 family of 
microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose 
operating requirements exceed commercial standards. 

The EXPRESS program includes the commercial standard temperature range with burn-in, and an extended 
temperature range with or without burn-in. 

With the commercial standard temperature range operational characteristics are guaranteed over the temper­
ature range of O·C to + 70·C. With the extended temperature range option, operational characteristics are 
guaranteed over the range of -40·C to + 85·C. 

The optional burn-in is dynamic, for a minimum time of 160 hours at 125°C with Vee = 5.5V ± 0.5V, following 
guidelines in MIL-STD-883, Method 1015. 

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The 
prefixes are listed in Table 1. 

This data sheet specifies the parameters for the extended temperature range option. The commercial temper­
ature range data sheets are applicable otherwise. 

POWER FREQUENCY 
VREF ANGND DOWN REFERENCE 

----- --------- ------~.-::~:-~------ii~i---i 
ROM I 

GEN 8 (8396): 
I 

CONTROL 
SIGNALS 

PORT 3 

DATA 
BUS . 

HIGH 
SPEED 

I/O 

]
ADDR 

: PORT 4 

PORTO PORT 1 PORT 2 HSI HSO 
ALT FUNCTIONS 

MCS®·96 Block Diagram 

21-78 

I 
I 
I 
I 
I 
I 
I 
I 

270433-1 

November 1987 
Order Number: 270433-001 



intJ 8X9XBH EXPRESS 

ELECTRICAL CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias • - 40·C to + 8S·C 

Storage Temperature .••••••••• -40·C to + 1S0·C 

Voltage from Vpp or EA 
to VSS or ANGND ............ ....: O.3V to + 13.0V 

Voltage from Any Other Pin to 
Vss or ANGND .............. -O.3V to + 7.0V· 

Average Output Current from Any Pin •••.••• 10 rnA 

Power Dissipation .••••••••••.•.•••••••••••• 1.SW 
·This includes Vpp on ROM and CPU deyices . 

.. , 

OPERATING CONDITIONS 
Symbol Parameter 

TA Ambient Temperature Under Bias 

Vee Digital Supply Voltage 

VREF Analog Supply Voltage 

fose Oscillator Frequency 

VPD Power-Down Supply Voltage 

NOTE: 
ANGND and Vss should be nominally at the same potential. 

• Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE' Specifications contained within the 
following tables are subject to change. 

Min Max Units 

-40 +85 C 

4.50 5.50 V 

4.50 5.50 V 

6.0 12 MHz 

4.50 5.50 V 

D.C. CHARACTERISTICS (Under listed operating conditions) 

Symbol Parameter Min Max Units Test Conditions 

lee Vee Supply Current (-40·C ,.;; TA ,.;; + 85·C) 270 mA All Outputs 

leel Vee Supply Cumint (T A = + 85·C) 185 mA Disconnected. 

IpD VPD Supply Current 1 mA Normal operation 
and Power-Down. 

IREF VREF Supply Current 10 mA 

VIL Input Low Voltage (Except RESEn -0.3 +0.8 V 

VILl Input Low Voltage, RESET -0.3 +0.7 V 

VIH Input High Voltage (Except RESET, NMI, XTAL 1) 2.0 Vee +0.5 V 

VIHl Input High Voltage, RESET Rising 2.4 Vee +0.5 V 

VIH2 Input High Voltage, RESET Falling Hysteresis 2.1 Vee +0.5 V 

VIH3 Input High Voltage, NMI, XTAL 1 2.3 Vee +0.5 V 

III Input Leakage Current to each pin of HSI, P3, P4, and to P2.1. ±10 jJ.A Yin = OtoVee 

ILil D.C. Input Leakage Current to each pin of PO +3 p.A Yin = o to Vee 

IIH Input High Current to EA 100 p.A VIH = 2.4V 

IlL Input Low Current to each pin of Pl, -150 p.A VIL = 0.45V 
and to P2.6, P2.7. 

IILl Input Low Current to RESET -0.25 -2 mA VIL = 0.45V 

11L2 Input Low Current P2.2, P2.3, P2.4, READY, BUSWIDTH -50 p.A VIL = 0.45V 

VOL Output Low Voltage on Quasi-Bidirectional 0.45 V IOL = 0.8mA 
port pins and P3, P4 when used as ports (Note 1) 

VOL1 Output Low Voltage on Quasi-Bidirectional 0.75 V IOL = 2.0mA 
port pins and P3, P4 when used as ports (Notes 1 , 2, 3) 

VOL2 Output Low Voltage on Standard Output 0.45 V IOL = 2.0mA 
pins, RESET and Bus/Control Pins (Notes 1, 2, 3, 4) 

21-79 



inter 8X9XBH EXPRESS 

D C CHARACTERISTICS (Continued) 

Symbol Parameter Min Max Units Test Conditions 

VOH Output High Voltage on Quasi-Bidirectional 2.4 V IOH = -20 p.A 
pins (Note 1) 

VOH1 Output High Voltage on Standard Output 2.4 V IOH = - 200 p.A 
pins and Bus/Control pins (Note 1) 

IOH3 Output High Current on RESET -50 p.A VOH = 2.4V 

Cs Pin Capacitance (Any Pin to Vss) 10 pF !TEST = 1.0 MHz 

NOTES: 
1. Quasi-bidirectional pins include those on Pl, for P2.6 and P2.7. Standard Output Pins include TXD, RXD (Mode 0 only), 
PWM, and HSO pins. Bus/Control pins include CLKOUT, ALE, BHE, RD, WR, INST and ADO-15. 
2. Maximum current per pin must be externally limited to the following values if Val is held above 0.45V. 

IOl on quasi-bidirectional pins and Ports 3 and 4 when used as ports: 4.0 mA 
IOl on standard output pins and RESET: 8.0 mA 
IOl on Bus/Control pins: 2.0 mA 

3.During normal (non-transient) operation the following limits apply: 
Total IOl on Port 1 must not exceed 8.0 mA. 
Total IOl on P2.0, P2.6, RESET and all HSO pins must not exceed 15 mA. 
Total IOl on Port 3 must not exceed 10 mAo 
TotallOl on P2.5, P2.7, and Port 4 must not exceed 20 mA. 

4. 10l on HSO.X (X = 0, 4, 5) = 1.6 mA @ 0.5V. 

A.C. CHARACTERISTICS (Under listed operating conditions) 
Test Conditions: Load Capacitance on Output Pins = 80 pF 

Oscillator Frequency = 10 MHz 

TIMING REQUIREMENTS (Other system components must meet these specs) 

Symbol Parameter Min 

TCLYX(4) READY Hold after CLKOUT Edge 0(1) 

TLLYV End of ALE/ ADV to READY Valid 

TLLYH End of ALE/ ADV to READY High 2Tosc+40 

TYLYH Non-Ready Time 

TAVDV(6) Address Valid to Input Data Valid 

TRLDV RD Active to Input Data Valid 

TRHDX Data Hold after RD Inactive 0 

TRHDZ RD Inactive to Input Data Float 0 

TAVGV(4)(6) Address Valid to BUSWIDTH Valid 

TLLGX(4) BUSWIDTH Hold after ALE/ ADV Low Tosc +40 

TLLGV(4) ALE/ ADV Low to BUSWIDTH Valid 

NOTES: 

Max 

2Tosc-70 

4Tosc-BO 

1000 

5Tosc-120 

3Tosc-100 

Tosc-25 

2Tosc-125 

Tosc -75 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

1. If the 48-pin part is being used then this timing can be generated by assuming that the CLKOUT falling edge has occurred 
at 2Tos(;+ 55 (TLLCH(max) + TCHCL(max)) after the falling edge of ALE. 
4. Pins not bonded out on 48-pin parts. 
6. The term "Address Valid" applies to ADO-15, BHE and INST. 

21-80 



inter 8X9XBH EXPRESS 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES (MCS-96 parts meet these specs) 

Symbol Parameter Min Max Units 

FXTAL Oscillator Frequency 6.0 12.0 MHz 

Tosc Oscillator Period 83 166 ns 

TOHCH XTAL 1 Rising Edge to Clockout Rising Edge 0(4) 120(4) ns 

TCHCH(4) CLKOUT Period(3) 3TosC(3) 3TosC(3) ns 

TCHCL(4) CLKOUT High Time Tosc-35 Tosc+ 10 ns 

TCLLH(4) CLKOUT Low to ALE High -20 +25 ns 

TLLCH(4) ALEI ADV Low to CLKOUT High Tosc-25 Tosc+45 ns 

TLHLL ALE/ ADV High Time Tosc-30 Tosc+35(5) ns 

TAVLL(6) Address Setup to End of ALEI ADV Tosc-50 ns 

T RLAZ(7) RD or WR Low to Address Float 25 ns 

hLRL End of ALE/ ADV to RD or WR Active Tosc-40 ns 

TLLAX(7) Address Hold after End of ALE/ ADV Tosc-40 ns 

TWLWH WR Pulse Width 3Tosc-35 ns 

TOVWH Output Data Valid to End of WR/WRL/WRH 3Tosc-60 ns 

TWHOX Output Data Hold after WR/WRL/WRH Tosc-50 ns 

TWHLH End of WR/WRLlWRH to ALEI ADV High Tosc-75 ns 

TRLRH RD Pulse Width 3Tosc-30 ns 

TRHLH End of RD to ALEI ADV High Tosc-45 ns 

TCLLL(4) CLOCK OUT Low to ALE/ ADV Low Tosc-40 Tosc+35 ns 

TRHBX(4) RD High to INST, SHE, AD8-15 Inactive Tosc-25 Tosc+30 ns 

TWHBX(4) WR High to INST, SHE, AD8-15 Inactive Tosc-50 Tosc+100 ns 

THLHH WRL, WRH Low to WRL, WRH High 2Tosc-35 2Tosc+40 ns 

hLHL ALEI ADV Low to WRL, WRH Low 2Tosc-30 2Tosc+55 ns 

TOVHL Output Data Valid to WRL, WRH Low Tosc-60 ns 

NOTES: 
2. If more than one wait state is desired, add 3Tosc for each additional wait state. 
3. CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3Tosc ± 10 ns if Tosc is constant and 
the rise and fall times on XT AL 1 are less than 10 ns. 
4. Pins not bonded out on 48-pin parts. 
5. Max spec applies only to ALE. Min spec applies to both ALE and ADV. 
6. The term "Address Valid" applies to ADO-15, BHE and INST. 
7. The term" Address" in this definition applies to ADO-7 for 8-bit cycles, and ADO-15 for 16-bit cycles. 

21-81 



inter 8X9XBH EXPRESS 

WAVEFORM 

XTAL1 

CLOCKOUT 

_TCHCH 

:+TLLCH~ 
TOHCH-i r- I-Tosc-I 

./~ / \i -
_TCHCL .... TCLLL 

TCLYX ~ +-===. 

ALE, ADV 

READY 'oVALlDV ------- ---- --------~-- .. _--------------------------
_(:)_\T~,:~: - _TLLYV .- • TYLYH 

\ -TLLYH - , --~.----------I ~. --- .' .. - - - - - - - . 
TLHLL -.. .. TLLRL .. 

TRLRH 
_TRHLH .... 

\ J \ 
-TAVLL .... ~ Ij+- TRLAZ 

TRLDV - .... rrTRHDX .---------
.... TRHDZ 

ADDR OUT "DATAiN'~ - - - - - - - - - ": 

I _II .. TRLAZ ~ r.:t---------· 
I T ~~ I-TWHLH 
_ !'..H! ___ .. :+-T HLHH----

I-TAVLL.... \ (2) -'o J \. __ 

AD 

~TLLRL .. 
I--TQVHL - ~ 

----------~ AD DR OUT C DATA OUT 
. . 
'- -------- _.# AD 

TLLAX I--' TQVWH ---II ;RHB~ 
BHE, INST 

ADB-15 

\ VALID 1/' .. ______________ 

~TAVLL...J I- TWLWH~ 
(1 ) 

VALID 
.------------_.-
'------------_.-

270433-2 

NOTES: 
(1) a-bit bus only. 
(2) a-bit bus; or when write strobe mode selected. 
(3) When ADV selected. 

21-82 



8X9XBH EXPRESS 

WAVEFORM-BUSWIDTH PIN 

XTALl 

CLKOUT 

BUSWIDTH 
-------+--~'~~---r 

ALE/ ADV ___ --I 

ADDRESS / DATA ----i~~~)_-----{!D~A~TA~I~N)_------
270433-3 

A.C. CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE 

SERIAL PORT TIMING-SHIFT REGISTER MODE 

Test Conditions: TA = O°C to + 70°C; Vee = 5V ± 10%; VSS = OV; Load Capacitance = 80 pF 

Symbol Parameter Min Max Units 

. TXLXL Serial Port Clock Period 8Tose ns 

TXLXH Serial Port Clock Falling Edge to Risill9 Edge 4Tose - 50 4Tose + 50 ns 

TOVXH Output Data Setup to Clock Rising Edge 3Tose ns 

TXHOX Output Data Hold After Clock Rising Edge 2Tose - 50 ns 

TXHOV Next Output Data Valid After Clock Rising Edge 2Tose +50 ns 

TDVXH Input Data Setup to Clock Rising Edge 2Tose +200 ns 

TXHDX Input Data Hold After Clock Rising Edge 0 ns 

TXHOZ Last Clock Rising to Output Float 5Tose ns 

WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE 

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE 

270433-4 

21-83 



inter 8X9XBH EXPRESS 

EXTERNAL CLOCK DRIVE 

Symbol Parameter 

1/TOlOl Oscillator Frequency 

TOHOX High Time 

TOlOX Low Time 

TOlOH Rise Time 

TOHOl Fall Time 

EXTERNAL CLOCK DRIVE WAVEFORMS 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

2.4==:>( 2.0>TESTPOINTS<2.0>C 
0.45 0.8 . 0.8 

270433-6 
A.G. Testing inputs are driven at 2.4V for a Logic "1" and 0.45V 
for a Logic "0". Timing measurements are made at 2.0V for a 
Logic "1" and a.sv for a Logic "0". 

Min Max Units 

6 12 MHz 

25 ns 

25 ns 

15 ns 

15 ns 

270433-5 

FLOAT WAVEFORM 

21-84 

270433-7 
For Timing Purposes a Port Pin is no Longer Floating when a 100 
mV change from Load Voltage Occurs, and Begins to Float when 
a 100 mV change from the Loaded VOHIVOL Level occurs lOLl 
IOH <: ±15 mA. 



8X9XBH EXPRESS 

AID CONVERTER SPECIFICATIONS 

AID Converter operation is verified only on the 
8097BH, 8397BH, 8095BH, 8395BH, 8797BH, 
8795BH. 

Parameter Typical"(1) 

Resolution 

Absolute Error 

Full Scale Error -0.5 ±0.5 

Zero Offset Error ±0.5 

Non-Linearity 

Differential Non-Linearity 

Channel-to-Channel Matching 

Repeatability ±0.25 

Temperature Coefficients: 
Offset 0.009 
Full Scale 0.009 
Differential Non-Linearity 0.009 

Off Isolation 

Feedthrough -60 

VCC Power Supply Rejection -60 

Input Resistance 

D.C. Input Leakage 

Sample Delay 

Sample Time 

Sampling Capacitor 

NOTES: 
• These values are expected for most parts at 25°C . 

The absolute conversion accuracy is dependent on 
the accuracy of VREF. The specifications given be­
low assume adherence to the Operating Conditions 
section of these data sheets. Testing is done at 
VREF = 5.120V. 

Minimum Maximum Units"" Notes 

1024 1024 Levels 
10 10 Bits 

0 ±4 LSBs 

LSBs 

LSBs 

0 ±4 LSBs 

0 ±2 LSBs 

0 ±1 LSBs 

LSBs 1 

LSBI"C 1 
LSBI"C 1 
LSB/oC 1 

-60 dB 1,2,4 

dB 1,2 

dB 1,2 

1K 5K .n 1 

0 3.0 /LA 

3Tosc - 50 3Tosc + 50 ns 1,3 

12Tosc - 50 12Tosc + 50 ns 1 

2 pF 

.. An "LSB", as used here, is defined in the glossary which follOWS and has a value of approximately 5 mY. 
1. These values are not tested in production and are based on theoretical estimates and laboratory tests. 
2. DC to 1 00 KHz. 
3. For starting the AID with an HSO Command. 
4. Multiplexer Break-Before-Make Guaranteed. 

21-85 



intJ 8X9XBH EXPRESS 

8096 BH Products 

Code 
AID 

Analog I/O 
Leads Product 

Memory Inputs Pins 

ROMless No 0 48 68 8096BH 

Yes 4 32 48 8095BH 

8 48 68 8097BH 

ROM No 0 48 68 8396BH 

Yes 4 32 48 8395BH 

8 48 68 8397BH 

EPROM Yes 4 32 48 8795BH 

8 48 68 8797BH 

Table 1. MCS®-96 Prefix Identification 

• A ~ Commercial/No Burn-In 68L Ceramic F6A 
N ~ Commercial/No Burn-In 68L PLCC 
C ~ Commercial/No Burn-In 48L DIP (Ceramic) 
P ~ Commercial/No Burn-In 48L DIP (Plastic) 

TX ~ Extended Temp/No Burn-In 
ax ~ Commercial/With Burn-In 
LX ~ Extended Temp/With Burn-In 

21-86 

Package' 

N 

P LP 

ALANLN 

ALA TAN LNTN 

P LPTP 

A LATA N LN TN 

CLC 

A LA R LR 



MCS®-96 
809X-90, 839X-90 

• Extended Temperature Range 
( - 40°C to + 85°C) 

Express 

• Burn-In 

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-96 family of 
microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose 
operating requirements exceed commercial standards. 

The EXPRESS program includes the commercial standard temperature range with burn-in, and an extended 
temperature range with or without burn-in. 

With the commercial standard temperature range operational characteristics are guaranteed over the temper­
ature range of O°C to 70°C. With the extended temperature range option, operational characteristics are 
guaranteed over the range of - 40°C to + 85°C. 

The optional burn-in is dynamic, for a minimum time of 160 hours at 125°C with Vee = 5.5V ±0.5V, following 
guidelines in MIL-STD-883, Method 1015. 

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The 
prefixes are listed in Table 1. 

This data sheet specifies the parameters for the extended temperature range option. The commercial temper­
ature range data sheets are applicable otherwise. 

POWER FREQUENCY 
VREF ANGND DOWN REFERENCE 

--------- ------~-~~~:-~------g~-~---j 
ROM I 

GEN 8 (8396): 

PORTO PORT 1 PORT 2 
ALT FUNCTIONS 

HIGH 
SPEED 

I/O 

HSI HSO 

MCS-96 Block Diagram 

21-87 

CONTROL 
SIGNALS 

PORT 3 

J
ADDR 
DATA 
BUS 

PORT 4 

270104-1 

November 1985 
Order Number: 270104-001 



MCS®-96, 809X-90, 839X-90 Express 

ELECTRICAL CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias. -40'C to. + 85'C 

Storage Temperature .......... - 40'C to + 150'C 

Voltage from Any Pin to 
VSS or ANGND ............... - 0.3V to + 7.0V 

Average Output Current from Any Pin •...... 10 mA 

Power Dissipation .....•.................... 1.5W 

OPERATING CONDITIONS 
Symbol Parameter 

TA Ambient Temperature Under Bias 

Vee Digital Supply Voltage 

VREF Analog Supply Voltage 

fose Oscillator Frequency 

VPD Power-Down Supply Voltage 

NOTE: 

• Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the. opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE: Specifications contained within the 
following tables are subject to change. 

Min Max Units 

-40 +85 'c 
4.5 5.5 V 

4.5 5.5 V 

6.0 12 MHz 

4.5 5.5 V 

VBB should be connected to ANGND through a 0.01 ,...F capacitor. ANGND and Vss should be nominally at the same 
potential. 

D.C. CHARACTERISTICS TA = -40'Cto +85'C 

Symbol Parameter Min Max Units Test Conditions 

VIL Input Low Voltage (Except RESET) -0.3 +0.8 V 

VILI Input Low Voltage, RESET -0.3 +0.7 V 

VIH Input High Voltage (Except RESET, NMI, XTAL 1) 2.0 Vee + 0.5 V 

VIHI Input High Voltage, NMI, XTAL 1, RESET 2.4 Vee +0.5 V 

VOL Output Low Voltage 0.5 V (Note 1) 

VOH Output High Voltage 2.4 V (Note 2) 

lee Vee Supply Current ·200 mA All Outputs 
Disconnected 

IpD VPD Supply Current 1 mA Normal Operation 
and Power-Down 

IREF VREF Supply Current 10 rnA 

III Input Leakage Current to All Pins of HSI, PO, P3, ±10 ,...A Vin = OtoVee 
P4, and to P2.1 

IIH Input High Current to EA 100 ,...A VIH = 2.4V 

IlL Input Low Current to All Pins of P1, and to P2.6, -100 ,...A VIL = 0.45V 
P2.7 

IILI Input Low Current to RESET -2 mA VIL = 0.45V 

IIL2 Input Low Current P2.2, P2.3, P2.4, READY -50 ,...A VIL = 0.45V 

Cs Pin Capacitance (Any Pin to Vss) 10 pF fTEST = 1 MHz 

NOTES: 
1. IOL = 0.4 rnA for all pins of P1, for P2.6 and P2.7, and for all pins of P3 and P4 when used as ports. IOL = 2.0 rnA for 
TXD, RSD (in serial port melde 0), PWM, CLKOUT, ALE, SHE, RD, WR, and all pins of HSO and P3 and P4 when used as 
external memory bus (ADO-AD15). 
2. IOH = -20 Afor all pins of P1, for P2.6 and P2.7. IOH = -200,...A for TXD, RXD(in serial port mode 0), PWM, 
CLKOUT, ALE, SHE. WR, and all pins of HSO and P3 and P4 when used as external memory bus (ADO-AD15). P3 and P4, 
when used as ports, have open-drain outputs. 

21-88 



MCS®-96, 809X-90, 839X-90 Express 

AID CONVERTER SPECIFICATIONS Resolution ........................ ±0.001 VREF 

AID Converter operation is verified only on the 
8097, 8397, 8095, 8395. 

Accuracy .......................... ±0.004 VREF 

Differential nonlinearity ......... ± 0.002 VREF max 

Integral nonlinearity ............ ± 0.004 VREF max 
The absolute conversion accuracy is dependent on 
the accuracy of VREF. The specifications given be­
low assume adherence to the Operating Conditions 
section of these data sheets. Testing is done at 
VREF = 5.120V. 

A.C. CHARACTERISTICS vcc, VPD = 4.5Vto 5.5V, T A = - 40°Cto + 85°C; fosc = 6.0 MHzto 12.0 MHz 
Test Conditions: Load capacitance on output pins = 80 pF 

Oscillator Frequency = 12.00 MHz 

TIMING REQUIREMENTS Other system components must meet these specs 

Symbol Parameter Min Max Units 

TCLYX READY Hold after CLKOUT Falling Edge o (Note 1) ns 

TLLYV End of ALE to READY Setup -Tosc 2Tosc - 60 ns 

TLLYH End of ALE to READY High 2Tosc + 60 4Tosc - 60 (Note 2) ns 

TYLYH Non-Ready Time 1000 ns 

TAVDV Address Valid to Input Data Valid 5Tosc - 90 ns 

TRLDV RD Active to Input Data Valid 3Tosc - 60 ns 

TRXDX Data Hold after RD Inactive (Note 3) 0 ns 

TRXDZ RD Inactive to Input Data Float (Note 3) Tosc - 20 ns 

TIMING RESPONSES MCS-96 parts meet these specs 

Symbol Parameter Min Max Units 

FXTAL Oscillator Frequency 6.00 12.00 MHz 

Tosc Oscillator Period 83 166 ns 

TCHCH CLKOUT Period (Note 3) 3Tosc (Note 4) 3Tosc (Note 4) ns 

TCHCL CLKOUT High Time Tosc - 20 Tosc + 20 ns 

TCLLH CLKOUT Low to ALE High -10 30 ns 

TLLCH ALE Low to CLKOUT High Tosc - 20 Tosc + 40 ns 

TLHLL ALE Pulse Width Tosc - 25 Tosc + 20 ns 

TAVLL Address Setup to End of ALE Tosc - 50 ns 

TLLRL End of ALE to RD or WR Active Tosc - 20 ns 

TLLAX Address Hold after End of ALE Tosc - 20 ns 

TWLWH WR Pulse Width 2Tosc - 35 ns 

TaVWX Output Data Setup to End of WR 2Tosc - 60 ns 

TWXaX Output Data Hold after End of WR Tosc - 25 ns 

TWXLH End of WR to Next ALE 2Tosc - 30 ns 

TRLRH RD Pulse Width 3Tosc - 30 ns 

TRHLH End of RD to Next ALE Tosc - 30 ns 

NOTES: 
1. If the 48-pin part is being used then this timing can be generated by assuming that the CLKOUT falling edge has occurred 
at 2Tosc + 60 (TLLCH(max) + TCHCL(max)) after the falling edge of ALE. 
2. If more than one wait state is desired, add 3Tosc for each additional wait state. 
3. This specification is not tested, but is verified by design analysis and/or derived from other tested parameters. 
4. CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3Tosc ± 1 0 ns if Tosc is constant and 
the rise and fall times on XTAL 1 are less than 10 ns. 

21-89 



inter MCS®-96, 809X-90, 839X-90 Express 

WAVEFORM 

XTAL1 

TCLLH ~ 
READY------------i-------------~~4----vA~_:f.~-T-CL-Y-X-------------------------

TYLYH 

ALE 

I.----TRLRH ----.... 

RD 

BHE, .NST 

, 270104-2 

Bus Signal Timings 

21-90 



MCS®-96, 809X-90, 839X-90 Express 

Table 1. MCS®-96 Prefix Identification 

Prefix Package Type Temperature Range Burn-In 

A Ceramic PGA-68L Commercial No 

N PLCC-68L Commercial No 

C Ceramic DIP-48L Commercial No 

TA Ceramic PGA-68L Extended No 

TN PLCC-68L Extended No 

TC Ceramic DIP-48L Extended No 

OA Ceramic PGA-68L Commercial Yes 

ON PLCC-68L Commercial Yes 

OC Ceramic DIP-48L Commercial Yes 

LA Ceramic PGA-68L Extended Yes 

LN PLCC-68L Extended Yes 

LC Ceramic DIP-48L Extended Yes 

EXAMPLES: 
AB097-90 indicates an B097-90 in a ceramic pin grid array package specified for commercial temperature without burn-in. 
LCB095-90 indicates an B095-90 in a ceramic DIP package specified for extended temperature range with burn-in. 

21-91 



• 
• 
• 
• 
• 
• 
• 
• 

80C196KA 
16-BIT HIGH PERFORMANCE CHMOS 

MICROCONTROLLER 
232 Byte Register File • Full Duplex Serial Port 

Register-to-Register Architecture • Dedicated Baud Rate Generator 

28 Interrupt Sources/16 Vectors • High Speed I/O Subsystem 

2.3 }.ts 16 x 16 Multiply • 16-Bit Timer 

4.0 }.ts 32/16 Divide • 16-Blt Up/Down Counter with Capture 

Powerdown and Idle Modes • Pulse-Width-Modulated Output 

Five 8-Bit I/O Ports • Four 16-Blt Software Timers 

16-Bit Watchdog Timer • 10-Bit A/D Converte.r with S/H 

• Dynamically Configurable 8-Bit or 16-Bit Buswidth 

The 80C196KA is the CHMOS upgrade for the 8096. It ispin-for-pin compatible and uses a true superset of the 
8096 instructions. At the same oscillator frequency the 80C196KA state time generator operates 1.5 times as 
fast as the 8096. In addition, many instruction execution times have been reduced providing up to twice the 
performance of a 12 MHz 8096 with a 12 MHz 80C196KA. Intel's CHMOS process provides a high perform­
ance processor along with low power consumption. To further reduce power requirements, the processor can 
be placed into Idle or Powerdown Mode. 

Bit, byte, word and some 32-bit operations are available on the 80C196KA. With a 12 MHz oscillator a 16-bit 
addition takes 0.66 }.ts, and the instruction times average 0.5 }.ts to 1.5 }.ts in typical applications. 

Four high-speed capture inputs are provided to record times which events occur. Six high-speed outputs are 
available for pulse or waveform generation. The high-speed output can also generate four software timers or 
start an A/D conversion. Events can be based on the timer or up/down counter. 

Also provided on-chip are an A/D converter, serial port, watchdog timer, and a pulse-width-modulated output 
signal. 

VREF ANGND 

AID PORT 0 PORT 1 

Figure 1. 80C196KA Block Diagram 

21-92 

HSI HSO 

CONTROL 
SIGNALS 

270428-1 



80C196KA 

ARCHITECTURE 

The 80C196KA is a member of the MCS®-96 family, and as such has the same architecture and uses the 
same instruction set as the 8096. Many new features have been added on the 80C196KA including: 

CPU FEATURES 

Divide by 2 instead of divide by 3 clock for 1.5X performance 

Faster instructions, especially indexed/indirect data operations 

2.33 fJ-s 16 x 16 multiply with 12 MHz ciock (was 6.25 fJ-s) 

Faster interrupt response (almost twice as fast) 

Powerdown and Idle Modes 

Clock Failure Detect 

6 new instructions including Compare Long and Block Move 

8 new interrupt vectors/6 new interrupt sources 

PERIPHERAL FEATURES 

SFR Window switching allows read-only registers to be written and vice-versa 

Timer2 can count up and down by external selection 

Timer2 has an independent capture register 

HSO line events are stored in a register 

HSO has CAM Lock and CAM Clear commands 

New Baud Rate values are needed for serial port, higher speeds possible in all modes 

Double buffered serial port transmit register 

Serial Port Receive Overrun and Framing Error Detection 

PWM has a Divide-by-2 Prescaler 

NEW INSTRUCTIONS 
PUSHA - PUSHes the PSW, IMASK, IMASK1, and WSR 

(Used instead of PUSHF when new interrupts and registers are used.) 

assembly language format: PUSHA 

object code format: < 1111 01 00 > 
bytes: 1 

states: on-chip stack: 12 
off-chip stack: 18 

21-93 



80C196KA 

POPA - POPs the PSW, IMASK, IMASK1, and WSA 

(Used instead of POPF when new interrupts and registers are used.) 

assembly language format:POPA 

object code format: < 1111 01 01 > 

bytes: 1 

states: on-chip stack: 12 
off-chip stack:18 

IDLPD - Sets the part into Idle or Powerdown Mode 

assembly language format: IDLPD # key (key:= 1 for Idle, key = 2 for Powerdown.) 

object code format: < 1111 011 0 > < key> 

bytes: 2 

states: legal key: 8 
illegal key: 25 

DJNZW - Decrement Jump Not Zero using a Word counter 

assembly language format: DJNZW wreg, cadd 

object code format: < 11100001> <wreg> <disp> 

bytes: 3 

states: jump not taken: 5 
jump taken: 9 

CMPL - Compare 2 long direct values 

assembly language format: 

CMPL 
DST SAC 
Lreg, Lreg 

object code format: <11000101> <src Lreg> <dst Lreg> 

bytes: 3 

states: 7 

BMOV - Block move using 2 auto-incrementing pointers and a counter 

assembly language format: 

PTAS CNTAEG 
BMOV Lreg, wreg 

object code format: < 11000001> <wreg> < Lreg> 

bytes: 3 

states: 
internal/internal: 8 per transfer + 6 
external/internal: 11 per transfer + 6 
external/ external: 14 per transfer + 6 

21-94 



intJ 80C196KA 

SFR OPERATION 

All of the registers that were present on the 8096 work the same way as they did, except that the baud rate 
value is different. The new registers shown in the memory map control new functions. The most important new 
register is the Window Select Register (WSR) which allows reading of the formerly write-only registers and 
vice-versa. Using the WSR is described later in this data sheet. 

PACKAGING 

The 80C196KA is available in 68-pin PLCC and LCC packages. Contact your local sales office to determine 
the exact ordering code for the part desired. 

LCC PLCC Description LCC PLCC Description LCC PLCC Description 

1 9 ACH7IPO.7 24 54 AD6/P3.6 47 31 P1.6 
2 8 ACH6/PO.6 25 53 AD7/P3.7 48 30 P1.5 
3 7 ACH2/PO.2 26 52 AD8/P4.0 49 29 HSO.1 
4 6 ACHO/PO.O 27 51 AD9/P4.1 50 28 HSO.O 
5 5 ACH1/PO.1 28 50 AD10/P4.2 51 27 HSO.5/HSL3 
6 4 ACH3/PO.3 29 49 AD11/P4.3 52 26 HSO.4/HSL2 
7 3 NMI 30 48 AD12/P4.4 53 25 HSL1 
8 2 EA 31 47 AD13/P4.5 54 24 HSLO 
9 1 Vee 32 46 AD14/P4.6 55 23 P1.4 

10 68 Vss 33 45 AD15/P4.7 56 22 P1.3 
11 67 XTAL1 34 44 T2CLK/P2.3 57 21 P1.2 
12 66 XTAL2 35 43 READY 58 20 P1.1 
13 65 CLKOUT 36 42 T2RST/P2.4 59 19 P1.0 
14 64 BUSWIDTH 37 41 BHE/WRH 60 18 TXD/P2.0 
15 63 INST 38 40 WR/WRL 61 17 RXD/P2.1 
16 62 ALE/ADV 39 39 PWM/P2.5 62 16 RESET 
17 61 RD 40 38 P2. 7/T2CAPTURE 63 15 EXTINT IP2.2 
18 60 ADO/P3.0 41 37 Vpp 64 14 CDE 
19 59 AD1/P3.1 42 36 Vss 65 13 VREF 
20 58 AD2/P3.2 43 35 HSO.3 66 12 ANGND 
21 57 AD3/P3.3 44 34 HSO.2 67 11 ACH4/PO.4 
22 56 AD4/P3.4 45 33 P2.6/T2UP/DN 68 10 ACH5/PO.5 
23 55 AD5/P3.5 46 32 P1.7 

Figure 2. Pin Definitions 

21-95 



ACH5/PO.5 

ACH4/PO.4 

ANGND 

VREF 

CDE 

EXTINTjP2.2 

RESET 

RXD/P2.1 

TXD/P2.0 

Pt.O 

Pt.l 

Pt.2 

Pt.3 

Pt.4 

HSIO 

HSII 

HSI2/HS04 

80C196KA 

.., '" N 0 "1 :I: 0 d d d d 0 

I~ D.. a.. 0.. Q... a.. n. l- t:; 
""" ~ 

:::> 3i " '" N 0 '" -' 0 i 1-' :I: :I: :I: :I: :I: 

~ I~ !:l ~;! ;; :s 1/1 

~ ~ I~ u u u u u u :::> « « « « « « > > x x U Ql 

MCS®-96 
68 PIN 
PLCC 

TOP VIEW 
LOOKING DOWN ON 
COMPONENT SIDE 

OF PC BOARD 

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

u') 0 a "l "! .., Z N '" V> "' ... ~ I~I~ ~ >-
0 0 c 0 0 ~ "'0: C 
III III III 0: 0: 0: I 1/1 III > i'! ~ :I: :I: :I: 11. :I: :I: 11. ,11. , :::> 11. ~latl:I: ~ 0: 

'" N « 
.t:::. 

u ~ ~ ~ ~ iii N 
:I: '" .t:::. l-

N 
11. " N 

11. 

51 

Figure 3. 58-Pin Package (PLCC-Top View) 

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 

68 18 

67 19 

66 20 

65 21 

64 MCS®-96 22 

63 68 PIN 23 

62 LEADLESS CHIP CARRIER 24 

61 TYPE "B" 25 

60 26 

59 
TOP VIEW 

27 

58 LOOKING DOWN ON 28 

57 COMPONENT SIDE 29 

56 OF PC BOARD 30 

55 31 

54 32 

53 33 

52 34 
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 

Figure 4. 58-Pin Package (LCe-Top View) 

21-96 

ADO/P3.0 

AD1/P3.1 

AD2/P3.2 

AD3/P3.3 

AD4/P3.4 

AD5/P3.5 

AD6/P3.6 

AD7/P3.7 

AD8/P4.0 

AD9/P4.1 

AD10/P4.2 

ADll/P4.3 

ADI2/P4.4 

ADI3/P4.5 

ADI4/P4.6 

ADI5/P4.7 

T2CLK/P2.3 

270428-2 

270428-4 



80C196KA 

PIN DESCRIPTIONS 
Symbol Name and Function 

Vee Main supply voltage (5V). 

Vss Digital circuit ground (OV). There are two Vss pins, both of which must be connected. 

CDE Clock Detect Enable - When pulled high enables the clock failure detection circuit. If the 
XTAL 1 frequency falls below a specified limit the RESET pin will be pulled low. 

VREF Reference voltage for the A/D converter (5V). VREF is also the supply voltage to the analog 
portion of the A/D converter and the logic used to read Port O. Must be connected for AID 
and Port 0 to function. 

ANGND Reference ground for the A/D converter. Must be held at nominally the same potential as 
Vss· 

Vpp Timing pin for the return from powerdown circuit. Connect this pin with a 1 J.l.F capacitor to 
Vss and a 1 Mn resistor to Vee. If this function is not used Vpp may be tied to Vee. This pin 
was VBS on the 8X9X-90 parts and will be the programming voltage on future EPROM parts. 

XTAL1 Input of the oscillator inverter and of the internal clock generator. 

XTAL2 Output of the oscillator inverter. 

CLKOUT Output of the internal clock generator. The frequency of CLKOUT is % the oscillator 
frequency. It has a 50% duty cycle. 

RESET Reset input to the chip. Input low for at least 4 state times to reset the chip. The subsequent 
low-to-high transition re- synchronizes CLKOUT and commences a 1 O-state-time sequence in 
which the PSW is cleared, a byte read from 2018H loads CCR, and a jump to location 2080H 
is executed. Input high for normal operation. RESET has an internal pull up. 

BUSWIDTH Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus 
cycle in progress. If BUSWIDTH is a 1, a 16-bit bus cycle occurs. If BUSWIDTH is a 0 an 8-bit 
cycle occurs. If CCR bit 1 is a 0, the bus is always an 8-bit bus. This pin is the TEST pin on 
8X9X-90 parts. Systems with TEST tied to Vee do not need to change. 

NMI A positive transition causes a vector through 203EH. 

INST Output high during an external memory read indicates the read is an instruction fetch. INST is 
valid throughout the bus cycle. INST is activated only during external memory accesses. 

EA Input for memory select (External Access). EA equal to a TTL-high causes memory accesses 
to locations 2000H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a 
TTL-low causes acccesses to these locations to be directed to off-chip memory. 

ALE/ADV Address Latch Enable or Address Valid output, as selected by CCA. Both pin options provide 
a latch to demultiplex the address from the address/data bus. When the pin is ADV, it goes 
inactive high at the end of the bus cycle. ADV can be used as a chip select for external 
memory. ALE/ ADV is activated only during external memory accesses. 

RD Read signal output to external memory. RD is activated only during external memory reads. 

WR/WRL Write and Write Low output to external memory, as selected by the CCR. WR will go low for 
every external write, while WRL will go low only for external writes where an even byte is 
being written. WR/WRL is activated only during external memory writes. 

BHE/WRH Bus High Enable or Write High output to external memory, as selected by the CCR. BHE = 0 
selects the bank of memory that is connected to the high byte of the data bus. AO = 0 
selects the bank of memory that is connec.ted to the low byte of the data bus. Thus accesses 
to a 16-bit wide memory can be to the low byte only (AO = 0, BHE = 1), to the high byte only 
(AO = 1, BHE = 0), or both bytes (AO = 0, BHE = 0). If the WRH function is selected, the 
pin will go low if the bus cycle is writing to an odd memory location. BHE/WRH is valid only 
during 16-bit external memory write cycles. 

21-97 



inter 80C196KA 

PIN DESCRIPTIONS (Continued) 

Symbol Name and Function 

READY Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, 
or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is 
low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the 
next positive transition in CLKOUT occurs with READY high. When the external memory is 
not being used, READY has no effect. Internal control of the number of wait states inserted 
into a bus cycle held not ready is available through configuration of CCA. 

HSI Inputs to High Speed Input UniLFour HSI pins are available: HSI.O, HSI.1, HSI.2, and HSI.3. 
Two of them (HSI.2 and HSI.3) are shared with the HSO Unit. The HSI pins are also used as 
inputs by future EPROM parts in Programming Mode. 

HSO Outputs from High Speed Output Unit. Six HSO pins are available: HSO.O, HSO.1, HSO.2, 
HSO.3, HSO.4, and HSO.5. Two of them (HSOA and HSO.5) are shared with the HSI Unit. 

Port 0 8-bit high impedance input-only port. These pins can be used as digital inputs and/or as 
analog inputs to the on-chip AID converter. These pins are also a mode input to future 
EPROM parts in the Programming Mode. 

Port 1 8-bit quasi-bidirectional I/O port. 

Port 2 8-bit multi-functional port. All of its pins are shared with other functions in the 80C196KA. 

Ports 3 and 4 8-bit bi-directionall/O ports with open drain outputs. These pins are shared with the 
multiplexed address/data bus which has strong internal pullups. Available only on future 
ROM and EPROM parts. 

21-98 



inter 80C196KA 

Instruction Summary 

Mnemonic Operands Operation (Note 1) 
Flags 

Notes 
Z N C V VT ST 

ADD/ADDB 2 D+-D+A V' V' V' V' i -

ADD/ADDB 3 O+-B+A V' V' V' V' i -

ADDC/ADDCB 2 o +- D+A+C ,l. V' V' V' i -

SUB/SUBB 2 D+-D-A V' V' V' V' i -

SUB/SUBB 3 D+-B-A V' V' V' V' i -

SUBC/SUBCB 2 o +- D-A+C-1 ,l. V' V' V' i -
CMP/CMPB 2 D-A V' V' V' V' i -
MULIMULU 2 0,0 + 2 +- 0 x A - - - - - - 2 

MULIMULU 3 0,0 + 2 +- B x A - - - - - - 2 

MULB/MULUB 2 0,0 + 1 +- 0 x A - - - - - - 3 

MULB/MULUB 3 0,0 + 1 +- B x A - - - - - - 3 

DIVU 2 o +- (0,0· + 2) I A,D + 2 +- remainder - - - V' i - 2 

DIVUB 2 o +- (0,0 + 1) I A,D + 1 +- remainder - - - V' i - 3 

DIV 2 o +- (0,0 + 2) I A,D + 2 +- remainder - - - V' i -

DIVB 2 o +- (0,0 + 1) I A,D + 1 +- remainder - - - V' i -

AND/ANDB 2 o +- DANDA V' V' 0 0 - -

AND/ANDB 3 o +- BANDA V' V' 0 0 - -

OR/ORB 2 o +- DORA V' V' 0 0 - -

XOR/XORB 2 o +- 0 (ecxl. or) A V' V' 0 0 - -
LD/LDB 2 D+-A - - - - - -

ST/STB 2 A+-D - - - - - -

LDBSE 2 D+- A; 0 + 1 +- SIGN(A) - - - - - - 3,4 

LDBZE 2 D+-A;D+1 +-0 - - - - - - 3,4 

PUSH 1 SP +- SP - 2; (SP) +- A - - - - - -

POP 1 A +- (SP); SP + 2 - - - - - -

PUSHF 0 SP +- SP - 2; (SP) +- PSW; 0 0 0 0 0 0 
PSW +- OOOOH; I+-O 

POPF 0 PSW +- (SP); SP +- SP +'2; I +- V' V' V' V' V' V' V' 

SJMP 1 PC +- PC + 11-bit offset - - - - - - 5 

LJMP 1 PC +- PC + 16-bit offset - - - - - - 5 

BR[indirect] 1 PC +- (A) - - - - - -
SCALL 1 SP +- SP - 2; - - - - - - 5 

(SP) +- PC; PC +- PC + 11-bit offset 

LCALL 1 SP +- SP - 2; (SP) +- PC; - - - - - - 5 
PC +- PC + 16-bit offset 

21-99 



intJ 80C196KA 

Instruction Summary (Continued) 

Mnemonic Operands Operation (Note 1) 
Flags 

Notes 
Z N C V VT ST 

RET 0 PC - (SP); SP - SILt- 2 - - - - - -

J (conditional) 1 PC - PC + a-bit offset (if taken) - - - - - - 5 

JC 1 JumpifC = 1 - - - - - - 5 

JNC 1 jumpifC = 0 - - - - - - 5 

JE 1 jump if Z = 1 - - - - - - 5 

JNE 1 JumpifZ = 0 - - - - - - 5 

JGE 1 Jump if N = 0 - - - - - - 5 

JLT 1 Jump if N = 1 - - - - - - 5 

JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5 

JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5 

JH 1 Jump if C = 1 and Z = 0 - - - - - - 5 

JNH 1 Jump if C = 0 or Z = 1 - - - - - - 5 

JV 1 Jump if V = 0 - - - - - - 5 

JNV 1 Jump if V == 1 - - - - - - 5 

JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5 

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5 

JST 1 Jump if ST = 1 - - - - - - 5 

JNST 1 Jump if ST = 0 - - - - - - 5 

JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6 

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6 

DJNZI .1 D - D -1; - - - - - - 5 
DJNZW If D =1= 0 then PC - PC + a-bit offset 

DEC/DECB 1 D - D-1 "" "" "" "" t -

NEG/NEGB 1 D - O-D "" "" "" "" t -

INC/INCB 1 D - D+ 1 "" "" "" "" t -
EXT 1 D - D; D + 2 - Sign (D) "" "" 0 0 - - 2 

EXTB 1 D - D; D + 1 - Sign (D) ", "" 0 0 - - 3 

NOT/NOTB 1 D - Logical Not (D) "" "" 0 0 - -

CLR/CLRB 1 D-O 1 0 0 0 - -
SHLlSHLB/SHLL 2 C - msb.-----Isb - 0 ."" "" "" "" t - 7 

SHRISHRB/SHRL 2 o -+ msb - - - - - Isb -+ C "" "" "" 0 - "" 7 

SHRAlSHRAB1SHRAL 2 msb -+ msb-----Isb -+ C "" "" "" 0 - "" 7 

SETC 0 C-1 - - 1 - - -
CLRC 0 C-O - - 0 - - -

21-100 



infef 80C196KA 

Instruction Summary (Continued) 

Mnemonic Operands Operation (Note 1) 
Flags 

Notes 
Z N C V VT ST 

CLRVT 0 VT +- 0 - - - - 0 -
RST 0 PC +- 2080H 0 0 0 0 0 0 8 

DI 0 Disable Allinterupts (I +- 0) - - - - - -
EI 0 Enable Allinterupts (I +- 1) - - - - - -

NOP 0 PC +- PC + 1 - - - - - -

SKIP 0 PC +- PC + 2 - - - - - -

NORML 2 Left shift till msb = 1;D +- shift count ~ ~ 0 - - - 7 

TRAP 0 SP +- SP - 2; - - - - - - 9 
(SP) +- PC; PC +- (2010H) 

PUSHA 1 SP +- SP-2; (SP) +- PSW; 0 0 0 0 0 0 
PSW +- OOOOH; SP +- SP-2; 
(SP) +- IMASK1/WSR; IMASK1 +- OOH 

POPA 1 IMASK1/WSR +- (SP); SP +- SP+2 ~ ~ ~ ~ ~ ~ 

PSW +- (SP); SP +- SP + 2 

IDLPD 1 IDLE MODE IF KEY= 1; - - - - - -
POWER DOWN MODE IF KEY = 2; 
CHIP RESET OTHERWISE 

CMPL 2 D-A ~ ~ ~ ~ i -
BMOV 2 [PTR_HI) + +- [PTR_LOW] + ; - - - - - -

UNTIL COUNT = 0 

NOTES: 
1. If the mnemonic ends in "B" a byte operation is performed, otherwise a word operation is done. Operands is done. 

Operands D, B, and A must conform to the alignment rules for the required operand type. D and B are locations in the 
Register File; A can be located anywhere in memory. 

2. D,D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned. 
3. D,D + 1 are consecutive BYTES in memory; D is WORD aligned. 
4. Changes a byte to word. . 
5. Offset is a 2's complement number. 
S. Specified bit is one of the 2048 bits in the register file. 
7. The "L" (Long) suffix indicates double-word operation. 
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H. 
9. The assembler will not accept this mnemonic. 

21-101 



80C196KA 

Instruction Execution State Times 

MNEMONIC DIRECT IMMED 
INDIRECT INDEXED 

NORMAL' A-INC' SHORT' LONG' 

ADD (3-op) 5 6 7/9 8/10 7/9 8/10 
SUB (3-op) 5 6 7/9 8/10 7/9 8/10 
ADD (2-op) 4 5 6/8 7/9 6/8 7/9 
SUB (2-op) 4 5 6/8 7/9 6/8 7/9 
ADDC 4 5 6/8 7/9 6/8 7/9 
SUBC 4 5 6/8 7/9 6/8 7/9 
CMP 4 5 6/8 7/9 6/8 7/9 
ADDB (3-op) 5 5 7/9 8/10 7/9 8/10 
SUBB (3-op) 5 5 7/9 8/10 7/9 8/10 
ADDB (2-op) 4 4 6/8 7/9 6/8 7/9 
SUBB (2-op) 4 4 6/8 7/9 6/8 7/9 
ADDCB 4 4 6/8 7/9 6/8 7/9 
SUBCB 4 4 6/8 7/9 6/8 7/9 
CMPB 4 4 6/8 7/9 6/8 7/9 

MUL (3-op) 16 17 18/21 19/22 19/22 20/23 
MULU (3-op) 14 15 16/19 17/20 17/20 18/21 
MUL (2-op) 16 17 18/21 19/22 19/22 20/23 
MULU (2-op) 14 15 16/19 17/20 17/20 18/21 
DIV 26 27 28/31 29/32 29/32 30/33 
DIVU 24 25 26/29 27/30 27/30 28/31 
MULB (3-op) 12 12 14/17 15/18 15/18 16/19 
MULUB (3-op) 10 10 12/15 12/16 12/16 14/17 
MULB (2-op) 12 12 14/17 15/18 15/18 16/19 
MULUB (2-op) 10 10 12/15 12/16 12/16 14/17 
DIVB 18 18 20/23 21/24 21/24 22/25 
DIVUB 16 16 18/21 19/22 19/22 20/23 

AND (3-op) 5 6. 7/9 8/10 7/9 8/10 
AND (2-op) 4 5 6/8 7/9 6/8 7/9 
OR (2-op) -4 5 6/8 7/9 6/8 7/9 
XOR 4 5 6/8 7/9 6/8 7/9 
ANDB (3-op) 5 5 7/9 8/10 7/9 8/10 
ANDB (2-op) 4 4 6/8 7/9 6/8 7/9 
ORB (2-op) 4 4 6/8 7/9 - 6/8 7/9 
XORB 4 4 6/8 7/9 6/8 7/9 

LD/LDB 4 5 5/7 6/8 6/8 7/9 
ST/STB 4 5 5/7 6/8 6/8 7/9 
LDBSE 4 4 5/7 6/8 6/8 7/9 
LDBZE 4 4 5/7 6/8 6/8 7/9 

BMOV 6+8 per word 6 + 11/14perword 

PUSH (int stack) 6 7 9/12 10/13 10/13 11/14 
POP (int stack) 8 - 10/12 11/13 11/13 12/14 
PUSH (ext stack) 8 9 11/14 12/15 12/15 13/16 
POP (ext stack) 11 - 13/15 14/16 14/16 15/17 

'Times for (Internal/External) Operands 

21-102 



80C196KA 

Instruction Execution State Times (Continued) . 

MNEMONIC MNEMONIC 

PUSHF (int stack) 6 PUSHF (ext stack) 8 
POPF (int stack) 7 POPF (ext stack) 10 
PUSHA (int stack) 12 PUSHA (ext stack) 18 
POPA (int stack) 12 POPA (ext stack) 18 

TRAP (int stack) 16 TRAP (ext stack) 18 
LCALL (int stack) 11 LCALL (ext stack) 13 
SCALL (int stack) 11 SCALL (ext stack) 13 
RET (int stack) 11 RET (ext stack) 14 

CMPL 7 OEC/OECB 3 
CLR/CLRB 3 EXT/EXTB 4 
NOTINOTB 3 INC/INCB 3 
NEG/NEGB 3 

LJMP 7 
SJMP 7 
BR [indirect] 7 
JNST, JST 4/8 jump not taken/jump taken 
JNH, JH 4/8 jump not taken/jump taken 
JGT,JLE 4/8 jump not taken/jump taken 
JNC, JC 4/8 jump not taken/jump taken 
JNVT, JVT 4/8 jump not taken/jump taken 
JNV, JV 4/8 jump not taken/jump taken 
JGE, JLT 4/8 jump not taken/jump taken 
JNE, JE 4/8 jump not taken/jump taken 
JBC,JBS 5/9 jump not taken/jump taken 

OJNZ 5/9 jump not taker/jump taken 
OJNZW 5/9 jump not taken/jump taken 

NORML 8 + 1 per shift (9 for 0 shift) 
SHRL 7 + 1 per shift (8 for 0 shift) 
SHLL 7 + 1 per shift (8 for 0 shift) 
SHRAL 7 + 1 per shift (8 for 0 shift) 
SHR/SHRB 6 + 1 per shift (7 for 0 shift) 
SHLlSHLB 6 + 1 per shift (7 for 0 shift) 
SHRAISHRAB 6 + 1 per shift (7 for 0 shift) 

CLRC 2 
SETC 2 
01 2 
EI 2 
CLRVT 2 
NOP 2 
RST 15 (includes fetch of configuration byte) 
SKIP 3 
10LPO 8/25 (proper key/improper key) 

21-103 



intJ 80C196KA 

MEMORY MAP 80C196KA INTERRUPTS 

Vector 
OFFFFH - Number Source Priority 

EXTERNAL MEMORY OR 1/0 Location 
4000H 

INT15 NMI 203EH 15 
INTERNAL ROM/EPROM OR 

EXTERNAL MEMORY' INT14 HSI FIFO Full 203CH 14 
2080H 

RESERVED INT13 EXTINTPin 203AH 13. 
,2040H 

INT12 TIMER2 Overflow 203BH 12 
UPPER 8 INTERRUPT VECTORS 

(NEW ON 80C196KA) INT11 TIMER2 Capture 2036H 11 
2030H 

ROM/EPROM SECURITY KEY' INT10 4th Entry into HSI FIFO 2034H 10 

2020H INT09 RI 2032H 9 
RESERVED 

2019H INTOB TI 2030H B 
CHIP CONFIGURATION BYTE SPECIAL Unimplemented Opcode 2012H N/A 

2018H 

RESERVED SPECIAL Trap 2010H N/A 
2014H 

LOWER 8 INTERRUPT VECTORS 
INTO? EXTINT 200EH ? 

PLUS 2 SPECIAL INTERRUPTS INT06 Serial Port 200CH 6 
2000H 

PORT 3 AND PORT 4 INT05 Software Timer 200AH 5 
lFFEH 

INT04 HSI.O Pin 200BH 4 
EXTERNAL MEMORY OR I/O 

0100H INT03 High Speed Outputs 2006H 3 
INTERNAL DATA MEMORY· REGISTER FILE 

INT02 (STACK POINTER, RAM AND SFRS) HSI Data Available 2004H 2 
EXTERNAL PROGRAM CODE MEMORY 

OOOOH INT01 AID Conversion Complete 2002H 1 

'ROM/EPROM will be available on future versions of 80C196. INTOO Timer Overflow 2000H 0 

19H 
STACK POINTER 

19H 
STACK POINTER 

18H 18H 

17H 'IOS2 17H PWM_CONTROL 

16H 10Sl 16H 10Cl 

15H 10SO 15H lOCO 

14H 'WSR 14H 'WSR 

13H 'INT MASK 1 13H 'INT MASK 1 

12H 'INT_PEND 1 12H 'INT_PENDl 

llH 'SP_STAT llH 'SP_CON 

10H PORT2 10H PORT2, , 

OFH PORTl OFH PORTl 

OEH PORTO OEH BAUD RATE 

ODH TIMER2 (HI) ODH TIMER2(HI) ODH I 'T2 CAPTURE (HI) I 
OCH TIMER2(LO) OCH TIMER2 (LO) OCH I 'T2 CAPTURE (La) I 
OBH TIMERl (HI) OBH 'IOC2 

WSR ~ 15 
OAH TIMERl (LO) OAH WATCHDOG 

09H INT PENDING 09H INT PENDING OTHER SFRS IN WSR 

08H INT MASK 08H INT MASK 15 BECOME READABLE 

SBUF(TX) 
IF THEY WERE WRITABLE 

07H SBUF(RX) 07H INWSR ~ o AND WRITABLE 
06H HSI_STATUS 06H HSO_COMMAND IF THEY WERE READABLE 

05H HSI_TIME (HI) 05H HSO_ TIME (HI) 
INWSR ~ 0 

04H HSI TIME (LO) 04H HSO TIME (LO) 

03H AD RESULT (HI) 03H HSI MODE 

02H AD_RESULT (LO) 02H AD COMMAND 'NEW OR CHANGED 

01H ZERO REG (HI) 01H ZERO REG (HI) REGISTER FUNCTION 

OOH ZERO REG (LO) OOH ZERO REG (LO) 

WHEN READ 
WSR ~ 0 

WHENWRITIEN 

21-104 



intJ 80C196KA 

USING THE ALTERNATE REGISTER WINDOW (WSR= 15) 

I/O register expansion on the new CHMOS members of the MCS-96 family has been provided by making two 
register windows available. Switching between these windows is done using the Window Select Register 
(WSR). The PUSHA and POPA instructions can be used to push and pop the WSR and second interrupt mask 
when entering or leaving interrupts, so it is easy to change between windows. 

On the 80C196KA only Window 0 and Window 15 are active. Window 0 is a true superset of the standard 8096 
SFR space, while Window 15 allows the read-only registers to be written and write-only registers to be read. 
The only major exception to this is the Timer2 register which is the Timer2 capture register in Window 15. The 
writeable register for Timer2 is in Window o. There are also some minor changes and cautions. The descrip­
tions of the registers which have different functions in Window 15 than in Window 0 are listed below: 

AD_COMMAND (02H) - Read the last written command 

AD_RESULT (02H, 03H) - Write a value into the result register 

:-lSI_MODE (03H) - Read the value in HSI_MODE 

HSI_ TIME (04H,05H) - Write to FIFO Holding register 

HSO_ TIME (04H,05H) - Read the last value placed in the holding register 

HSI_STATUS (06H) - Write to status bits but not to HSI pin bits. (Pin bits are 1,3,5,7). 

HSO_COMMAND (06H) - Read the last value placed in the holding register 

SBUF(RX) (07H) - Write a value into the receive buffer 

SBUF(TX) (07H) - Read the last value written to the transmit buffer 

WATCHDOG(OAH) - Read the value in the upper byte of the WDT 

TIMER1 (OAH,OBH) 

TIMER2 (OCH,ODH) 

IOC2 (OBH) 

BAUD_RATE (OEH) 

PORTO (OEH) 

SP _STAT (11 H) 

SP _CON (11 H) 

10SO (15H) 

lOCO (15H) 

IOS1 (16H) 

IOC1 (16H) 

IOS2 (17H) 

PWM_CONTROL (17H) 

- Write a value to Timer1 

- Read/Write the Timer2 capture register. 
Note that Timer2 read/write is done with WSR = o. 

- Last written value is readable, except bit 7 (note 1) 

- No function, cannot be read 

- No function, no output drivers on the pins 

- Set the status bits, TI and RI can be set, but it will not cause an interrupt 

- Read the current control byte 

- Writing to this register controls the HSO pins. Bits 6 and 7 are inactive for writes. 

- Last written value is readable, except bit 1 (note 1) 

- Writing to this register will set the status bits, but not cause interrupts. Bits 6 and 
7 are not functional 

- Last written value is readable 

- Writing to this register will set the status bits, but not cause interrupts. 

- Read the duty cycle value written to PWM_CONTROL 

NOTE: 
1. IOC2.7 (CAM CLEAR) and IOCO.1 (T2RST) are not latched and will read as a 1 (precharged bus) . 

Being able to write to the read-only registers and vice-versa provides a lot of flexibility. One of the most useful 
advantages is the ability to set the timers and HSO lines for initial conditions other than zero. 

21-105 



inter 80C196KA 

SFR BIT SUMMARY 

A summary of the SFRs which control I/O functions has been included in this section. The summary is 
separated into a list of those SFRs which have changed on the 80C196 and a list of those which have 
remained the same. 

The following 80C196 SFRs are different than those on the 8096BH: 

(The Read and Write comments indicate the register's function in Window 0 unless otherwise specified.) 

SBUF(TX): 
07h 
write 

BAUD RATE: 
OEh 
write 

SP_STAT: 

11 h 
read 

IPEND1: 
IMASK1: 

12h,13h 
read/write 

Now double buffered 

Uses new Baud Rate Values 

7 6 5 4 3 2 1 0 

RBB/ 
RI TI FE TXE OE X X RPE 

RPE: Receive Parity Error 

RI: Receive Indicator 

TI: Transmit Indicator 

FE: Framing Error 

TXE: Transmitter Empty 

OE: Receive Overrun Error 

7 6 5 4 3 2 1 0 

NMI FIFO EXT T2 T2 HSI4 RI TI 
FULL INT OVF CAP 

NMI : Non-Maskable Interrupt 

FIFO FULL 
HSIO FIFO full 

EXTINT : External Interrupt Pin 

T20VF : Timer2 Overflow 

T2CAP : Timer2 Capture 

HSI4 : HSI has 4 or more entries in FIFO 

RI : Receive Interrupt 

TI : Transmit Interrupt 

21-106 



inter 
W5R: 

14h 

read/write 

1052: 

17h 
read 

IOC2: 

OBh 
write 

80C196KA 

7 6 5 4 3 2 

x x x x W W W 

WWWW= 0 : SFRs function like a superset of 8096 SFRs 

WWWW=15 
Exchange read/write registers 

WWWW= OTHER: Undefined, do not use 

o 
W 

XXXX = OOOOB : These bits must always be written as zeros to provide compatibility 
with future products. 

7 6 5 4 3 2 1 

START T2 
HSO.5 HSO.4 HSO.3 HSO.2 HSO.1 

A2D RESET 

Indicates which HSO event occured 

START A2D : HSO_CMD 15, start A to D 

T2RESET : 

HSO.0-5 : 

HSO_CMD 14, Timer 2 reset 

Output pins HSO.O through HSO.5 

7 6 5 4 3 2 1 

CLEAR ENA T2ALT A2D 
NOSH 

SLOW T2UD 
CAM LOCK INT CPD PWM ENA 

CLEAR_CAM: Clear Entire CAM 

. EN~LOCK : Enable lockable CAM entry feature 

T2AL TINT: Enable T2 Alternate Interrupt at 8000H 

0 

HSO.O 

0 

FAST 
T2EN 

Clock Pre scale Disable for low XT AL frequency (A to D conversion in 
fewer state times) 

NOSH: Disable AID Sample and Hold 

SLOW_PWM: Turn on divide by 2 Prescaler on PWM 

T2UD ENA: Enable Timer 2 as up/down counter 

FAST_T2EN: Enable Fast increment of T2; once per state time. 

The following registers are the same on the 80C196 as they were on the 8096BH: 

AID Result LO (02H) 

: 1 
AID CHANNEL NUMBER 

STATUS: 
3 0= AID CURRENTLY IDLE 

1 = CONVERSION IN PROCESS 
x 

X 

AID RESULT: 
LEAST SIGNIFICANT 2 BITS 

270428-5 

21-107 

AID Command (02H) 

ml CHANNEL # SELECTS WHICH OF THE 8 
1 ANALOG INPUT CHANNELS IS TO BE 

CONVERTED TO DIGITAL FORM. 

~ . GO INDICATES WHEN THE CONVERSION IS TO 
BE INITIATED (GO = 1 MEANS START NOW, 
GO = 0 MEANS THE CONVERSION IS TO BE 
INITIATED BY THE HSO UNIT AT A SPECIFIED TIME). 

270428-6 



intJ 80C196KA 

Chip Configuration (2108H) 

17161514131211 10 ICHIP CONFIGURATION REGISTER 

"Minor Change 

L.: IPOWERDOWN MODE ENABLE· 

BUS WIDTH SELECT' 
(16 - BIT BUS /8 - BIT BUS) 

-WRITE STROBE MODE SELECT 
(WR AND BHE/WRL AND WRH) 

ADDRESS VALID STROBE SELECT 
(ALE/ ADV) 

(iRCO) }'NTERNAL READY CONTROL 

(lRC1) MODE 

(LOCO)} , 
(LOCO PROGRAM LOCK MODE 

270428-7 

HSI_Status (06H) 

HSI.O STATUS 

...... ---HSI.l STATUS 

1.---..,...--HSI.2 STATUS 

'---------.,...-HSI.3 STATUS 

WHERE FOR EACH 2 - BIT STATUS FIELD THE LOWER 
BIT INDICATES WHETHER OR NOT AN EVENT HAS 
OCCURED ON THIS PIN AND THE UPPER BIT INDICATES 
THE CURRENT STATUS OF THE PIN. 

W 
R 
I 
T 
E 

270428-9 

SPCON (11H) 

BIT. 1 , BIT.O SPECIFY THE MODE 
, O.O=MODEO 1.0=MOOE2 

0.1 = MODE 1 1.1 = MODE 3 

PEN ENABLE THE PARITY FUNCTION 

REN ENABLES THE RECEIVE FUNCTION: 

TB8 PROGRAMS THE 9TH DATA BIT 

270428-11 

~1-108 

HSI_Mode (03H) 

1.-------HSI.2 MODE 

1.-...,...-------HSI.3 MODE 

WHERE EACH 2 - BIT MODE CONTROL FIELO 
DEFINES ONE OF 4 POSSIBLE MODES: 

00 8 POSITIVE TRANSITIONS 
01 EACH POSITIVE TRANSITION 
10 EACH NEGATIVE TRANSITION 
11 EVERY TRANSITION 

, (POSITIVE AND NEGATIVE) 

HSO Command (06H) 

CHANNEL: 
0-5 HSO.O - HSO.5 

7 HSO.2 AND HSO.3 
8-B SOFTWARE TIMERS 
E RESET TIMER2 

270428-8 

BIT: 0]6 HSO.O AND HSO.l 

F START A/D CONVERSION 

"Minor Change 

INTERRUPT / NO INTERRUPT 

SET /CLEAR 

, TIMER 2/ TIMER 1 

LOCK CAM· 

IOSO(15H) 

HSO.O CURRENT STATE 

HSO.l CURRENT STATE 

HSO.2 CURRENT STATE 

HSO.3 CURRENT STATE, 

HSO.4 CURRENT STATE 

HSO.5 CURRENT STATE 

270428-10 

CAM QB HOLDING REGISTER IS FULL 

HSO HOLDING REGISTER IS FULL 

270428-12 



80C196KA 

lOCO (15H) 

HSI.O INPUT ENABLE / DISABLE 

TIMER 2 RESET EACH WRITE 

HSI.l INPUT ENABLE / DISABLE 

TIMER 2 EXTERNAL RESET ENABLE / DISABLE 

4 HSI.2 INPUT ENABLE / DISABLE 

5 TIMER 2 RESET SOURCE HSI.O / T2RST 

6 HSI.3 INPUT ENABLE/DISABLE 

7 TIMER 2 CLOCK SOURCE HSI.l / T2CLK 

270428-13 

10Sl (16H) 

o SOFTWARE TIMER 0 EXPIRED 

SOFTWARE TIMER 1 EXPIRED 

2 SOFTWARE TIMER 2 EXPIRED 

3 

4 

SOFTWARE TIMER 3 EXPIRED 

TIMER 2 HAS OVERFLOW 

TIMER 1 HAS OVERFLOW 

HSI FIFO IS FULL 

HSI HOLDING REGISTER DATA AVAILABLE 

270428-14 

10Cl (16H) 

SELECT PWM / SELECT P2.5 

EXTERNAL INTERRUPT ACH7 / EXTINT 

TIMER 1 OVERFLOW INTERRUPT ENABLE / DISABLE 

TIMER 2 OVERFLOW INTERRUPT ENABLE / DISABLE 

HSO.4 OUTPUT ENABLE / DISABLE 

SELECT TXD / SELECT P2.0 

HSO.5 OUTPUT ENABLE / DISABLE 

HSI INTERRUPT 
FIFO FULL / "HO""L"O"'IN"'G"R"E"'G"'IS"'TE'"R"L"O"A"'OE""O 

270428-15 

Port 2 Multiple Functions 

Pin Func. 
Alternative Control 
Function Reg. 

2.0 Output TXO (Serial Port IOC1.5 
Transmit) 

2.1 Input RXO (Serial Port SPCON.3 
Receive) 

2.3 Input T2CLK (Timer2 Clock IOCO.7 
& Baud) 

2.4 Input T2RST (Timer2 Reset) IOCO.5 

2.5 Output PWM Output IOC1.0 

2.6 OBO' Timer2 up/ IOC2.1 
down select 

2.7 OBO' Timer2 Capture N/A 

'QBD = Quasi-bidirectional 

Baud Rate Calculations 

Asynchronous Modes 1, 2 and 3: 

Baud_Reg = XTAL1 
Baud Rate x 16 

OR T2CLK 
Baud Rate x 8 

Synchronous Mode 0: 

Baud Re = XT AL 1 1 OR T2CLK 
- g Baud Rate x 2 Baud Rate 

Baud Rates and Baud Register Values 

Baud XT AL Frequency 
Rate 8.0 MHz 10.0 MHz 12.0 MHz 

300 1666/-0.02 2082/0.02 2499/0.00 
1200 416/-0.08 520/ -0.03 624/0.00 
2400 207/0.16 259/0.16 312/ -0.16 
4800 103/-0.16 129/0.16 155/0.16 
9600 51/-0.16 64/0.16 77 /0.16 
19.2K 25/0.16 32/1.40 38/0.16 

Baud Register Valuel% Error 

A maximum baud rate of 750 Kbaud is available in 
the asynchronous modes with 12 MHz on XT AL 1. 
The synchronous mode has a maximum rate of 3.0 
Mbaud with a 12 MHz clock. Location OEH is the 
Baud Register. It is loaded sequentially in two bytes, 
with the low byte being loaded first. This register 
may not be loaded with zero in serial port Mode O. 

21-109 



intJ 80C196KA 

.ELECTRICAL CHARACTERISTICS 

Absolute Maximum Ratings* 

Ambient Temperature 
Under Bias ...................... O·C to + 70·C 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. Storage Temperature .......... -65·C to + 150·C 

Voltage On Any Pin to Vss ........ -0.5V to + 7.0V 

Power Dissipation .......................... 1.5W 
NOTICE: Specifications contained within the 
following tables are subject to change. 

Operating Conditions 

Symbol Description Min Max Units 

TA Ambient Temperature Under Bias 0 +70 ·C 

Vee Digital Supply Voltage 4.5 5.50 V 

TREF Analog Supply Voltage 4.5 5.50 V 

fose Oscillator Frequency 3.5 12 MHz 

NOTE: 
ANGND and Vss should be nominally at the same potential. 

D.C. Characteristics (Over specified operating conditions) 

Symbol Description Min Max Units Test Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage (except XTAL 1) 0.2 Vee + 0.9 Vee + 0.5 V 

VIH1 Input High Voltage on XTAL 1 0.7 Vee Vee + 0.5 V 

VOL Output Low Voltage 0.3 V IOL = 200/LA 
0.45 V IOL = 3.2mA 
1.0 V IOL = 7mA 

VOH OutpLit High Voltage Vee - 0.3 V IOH = -200]LA 
(Standard Outputs) Vee - 0.7 V IOH = -3.2mA 

Vee - 1.5 V IOH = -7mA 

VOH1 Output High Voltage Vee - 0.3 V IOH = -10/LA 
(Quasi-bidirectional Outputs) Vee - 0.7 V IOH = -30]LA 

Vee- 1.5 V IOH = -60/LA 

III Input Leakage Current (Std. Inputs) ±10 ]LA o < VIN < Vee - 0.3V 

IU1 Input Leakage Current (Port 0) ±3 ]LA 0< VIN < VREF 

ITL 1 to 0 Transition Current (QBD Pins) -650 /LA VIN = 2.0V 

IlL Logical 0 Input Current (QBD Pins) -50 /LA VIN = 0.45V 

11L1 Logical 0 Input Current in Reset 
-500 /LA 

VIN = 0.45 V 
(ALE, RD, WR, BHE, INST, P2.0) 

21-110 



80C196KA 

D.C. Characteristics (Over specified operating conditions) (Continued) 

Symbol Description Min Max Units Test Conditions 

Icc Active Mode Current in Reset 60 mA XTAL1 = 12 MHz 

IREF AID Converter Reference Current 5 mA VCC = Vpp = VREF = 5.5V 

lidle Idle Mode Current 22 mA 

ICC1 Active Mode Current (Typical) 15 mA XTAL 1 = 3.5 MHz 

IpD Powerdown Mode Current TBD p,A Vcc = Vpp = VREF = 5.5V 

RRST Reset Pullup Resistor 6K 50K n 
Cs Pin Capacitance (Any Pin to VSS) 10 pF fTEST = 1.0 MHz 

NOTES: 
1. QSD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7. 
2. Standard Outputs include all bus pins (data and control), HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, 
TXD/P2.0, and RXD (in serial mode 0). The VOH specification is not valid for RESET. Ports 3 and 4 are open-drain outputs, 
which will be available on future ROM and EPROM parts. 
3. Standard Inputs include HSI pins, CDE, EA, READY, SUSWIDTH, NMI, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3, and 
T2RST IP2.4. 
4. Maximum current per pin must be externally limited to the following values if VOL is held above 0.45V or VOH is held 
below Vee - 0.7V: 

IOL on Output pins: 10 mA IOH on quasi-bidirectional pins: self limiting 
IOH on Standard Output pins: 10 mA 

5. Maximum current per bus pin (data and control) during normal operation is ±3.2 mAo 
6. During normal (non-transient) conditions the following total current limits apply to each group of pins: 

Port 1, P2.6 IOL: 29 mA IOH is self limiting 
HSO, P2.0, RXD, RESET IOL: 29 mA IOH: 26 mA 
P2.7, P2.5, WR, SHE IOL: 13 mA IOH: 11 mA 
ADO-AD15 IOL: 52 mA IOH: 52 mA 
RD, ALE, INST -CLKOUT IOL: 13 mA IOH: 13 mA 

A.C. Characteristics (Over specified operating conditions) 
These are ADVANCED specifications, the parameters may change before Intel releases the product 
for sale. 
Test Conditions: Capacitive load on all pins = 100 pF, Rise and fall times = 10 ns, fose = 12 MHz 

The system must meet these specifications to work with the 80C196: 

Symbol Description Min Max Units Notes 

TAVYV Address Valid to READY Setup 2Tosc - 55 ns 

hLYV ALE Low to READY Setup Tose - 55 ns 

TYLYH NonREADY Time No upper limit ns 

TCLYX READY Hold after CLKOUT Low 0 Tosc - 30 ns (Note 2) 

hLYX READY Hold after ALE Low Tose+ 5 2Tosc-40 ns (Note 2) 

TAVGV Address Valid to Buswidth Setup 2Tose - 55 ns 

TLLGV ALE Low to Buswidth Setup Tosc - 55 ns 

TCLGX Buswidth Hold after CLKOUT Low 0 ns 

TAVDV Address Valid to Input Data Valid 3Tosc - 60 ns 

TRLDV RD# Active to Input Data Valid Tosc - 25 ns 

TeLDV CLKOUT Low to Input Data Valid Tosc - 55 ns 

TRHDZ End of RD# to Input Data Float Tosc - 20 ns 

TRXDX Data Hold after RD# Inactive 0 ns 

NOTES: 
1. Typical specification, not guaranteed. 
2. If max is exceeded, additional wait states will occur. 

21-111 



80C196KA 

A.C. Characteristics (Over specified operating conditions) (Continued) 
These are ADVANCED specifications, the parameters may change before Intel releases, the product 
for sale. " 
Test Conditions: Capacitive load on all pins = 100 pF, Rise and fall times = 10 ns, fosc = 12 MHz 

The 80C196KA will meet these specifications: 

Symbol Description Min Max Units. Notes 

FXTAL Frequency on XT AL 1 3.5 12.0 MHz 

Tosc 1/FXTAL 83 286 ns 

TXHCH XT AL 1 High to CLKOUT High or Low 40 110 ns (Note 1) 

TCLCL CLKOUT Cycle Time 2Tosc ns 

TCHCL CLKOUT High Period Tosc - 10 Tosc+10 ns 

TCLLH CLKOUT Falling Edge to ALE Rising -10 10 ns 

TLLCH ALE Falling Edge to CLKOUT Rising -10 10 ns 

TLHLH ALE Cycle Time 4Tosc ns 

hHLL ALE High Period Tosc - 10 Tosc+10 ns 

TAVLL Address Setup to ALE Falling Edge Tosc - 25 ns 

TLLAX Address Hold after ALE Falling Edge Tosc- 15 ns 

TLLRL ALE Falling Edge to RD Falling Edge Tosc - 25 ns 
" 

TRLCL RD Falling Edge to CLKOUT Falling Edge 0 20 ns 

TRLRH RD Low Period Tosc- 5 ns 

TRHLH RD Rising Edge to ALE Rising Edge Tosc- 15 Tosc+ 15 n$ (Note 2) 

hLWL ALE Falling Edge to WR Falling Edge Tosc - 10 ns 

TCLWL CLKOUT Low to WR Falling Edge -5 15 ns 

TQVWH Data Stable to WR Rising Edge Tosc - 20 ns 

TCHWH CLKOUT Rising Edge to WR Rising Edge -10 10 ns 

TWLWH WR Low Period Tosc - 20 ns 

TWHQX Data Hold after WR Rising Edge Tosc -20 ns 

TWHLH . WR Rising Edge to ALE Rising Edge TOSC- 20 TosC+ 20 ns (Note 2) 

TWHBX BHE, INST HOLD after WR Rising Edge Tosc- 3O . ns 

NOTES: 
Tosc = 83.3 ns at 12 MHz; Tosc'= 125 ns at 8 MHz. 
1. Typical specification, not guaranteed. 
2. Assuming back-to-back bus cycles. 

21-112 



80C196KA 

System Bus Timings 

XTAL1 

CLKOUT 

ALE 

~+-- tLLRL --+-~ 

r-- tAVLL -~-

BUS -< ADDRESS OUT DATA OUT Xr--A-D-D-RE-S-S---

r'----------------------------~~ '-------------BHE.INST -<\.-________ VA_L_ID ____ ---:J--<-~ . 
270428-16 

XTAL1 

CLKOUT 

ALE 

READY f tAVYV 

~'J==i "" 
tLLGV ~};;} 

BUS WIDTH 

BUS -{ ADDRESS OUT . ) ( DATA >>> 

\~---------------------~~ 
270428-17 

21-113 



intJ 80C196KA 

EXTERNAL CLOCK DRIVE 
Symbol Parameter 

1/TXLXL Oscillator Frequency 

TXLXL Oscillator Period (T asel 

TXHXX High Time 

TXLXX Low Time 

TXLXH Rise Time 

TXHXL Fall Time 

EXTERNAL CLOCK DRIVE WAVEFORMS 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

2.4~ 2.0> TEST POINTS < 2.0: 

--1\ 0.8 O.B-A--. 
0.45 

270428-19 
A.C. Tes~ng inputs are driven at 2.4V for a Logic "1" and 0.45V 
for a Logic "0" Timing measurements are made at 2.0V for a 
Logic "1" and 0.8V for a Logic "0", 

EXPLANATION OF AC SYMBOLS 

Min Max Units 

3.5 12 MHz 

83 286 ns 

32 ns 

32 ns 

10 ns 

10 ns 

270428-18 

FLOAT WAVEFORM 

270428-20 
For Timing Purposes a Port Pin is no Longer Floatingwhen a 
100 mV change from Load Voltage Occurs and Begins to Float 
when a 100 mV change from the Loaded VOHIVOl Level occurs 
IOl/lOH = ±15 rnA. 

Each symbol is two pairs of letters prefixed by "T" for time. The characters in a pair indicate a signal and its 
condition, respectively. Symbols represent the time between the two signal/condition pOints. 

Conditions: Signals: 

H - High A - Address L - ALE/ ADV 

L - Low B 

V - Valid C 

X - No Longer Valid D 

Z - Floating G 

- BHE R - RD 

- CLKOUT 

- DATA 

- Buswidth 

21-114 

W - WR/WRH/WRL 

X - XTAL1 

Y - READY 



intJ 80C196KA 

A TO D CHARACTERISTICS 

There are four modes of AID operation. 

In Modes 2 and 3 the maximum XT AL 1 frequency is 
10.0 MHz. Accuracy will degrade at higher frequen­
cies. 

Clock Prescaler On 
IOC2.4 = 0 

IOC2.3 = 0 Mode 0-158 States 
with S&H 26.33 p.s @ 12 MHz 

IOC2.3 = 1 Mode 1-293 States 
withoutS&H 48.83 p.s @ 12 MHz 

Parameter Typical*(1) 

Resolution 

Absolute Error 

Full Scale Error -0.5 ±0.5 

Zero Offset Error ±0.5 

Non-Linearity 

Differential. Non-Linearity 

Channel-to-Channel Matching 

Repeatability ±0.25 

Temperature Coefficients: 
Offset 0.009 
Full Scale 0.009 
Differential Non-Linearity 0.009 

Off Isolation 

Feedthrough -60 

VCC Power Supply Rejection -60 

Input Resistance 

D.C. Input Leakage 

NOTES: 
• These values are expected for most parts at 25'C . 

AID CONVERTER SPECIFICATIONS 

The absolute conversion accuracy is dependent on 
the accuracy of VREF. The specifications given be­
low assume adherence to the Operating Conditions 
section of these data sheets. Testing is done at 
VREF = 5.120V, 10.0 MHz, AID Mode 2. 

Clock Prescaler Off 
IOC2.4 = 1 

Mode 2-91 States 91 States 
22.75 p.s @ 8 MHz 18.2 p.s @ 10 MHz 

Mode 3-163 States 163 States 
40.75 p.s @ 8 MHz 32.6 p.s @ 10 MHz 

Minimum Maximum Units" Notes 

256(5) 1024 Levels 5 
10 Bits 

0 ±4 LSBs 

LSBs 

LSBs 

0 ±4 LSBs 

0 ±2 LSBs 5 

0 ±1 LSBs 

LSBs 1 

LSBrC 1 
LSBrC 1 
LSBrC 1 

-60 dB 1,2,4 

dB 1,2 

dB 1,2 

1K 5K n 1 

0 3.0 p.A 

•• An "LSB". as used here. has a value of approximately 5 mY. 
1. These values are not tested in production and are based on theoretical estimates and laboratory tests. 
2. DC to 1 00 KHz. 
3. For starting the AID with an HSO Command. 
4. Multiplexer Break-Belore-Make Guaranteed. 
5. See functional deviations list. 

21-115 



inter 80C196KA 

AID GLOSSARY OF TERMS 

ABSOLUTE ERROR-The maximum difference be­
tween corresponding actual and ideal code tran­
sitions. Absolute Error accounts for all deviations of 
an actual converter from an ideal converter. 

ACTUAL CHARACTERISTIC-The characteristic 
of an actual converter. The characteristic of a given 
converter may vary over temperature, supply volt­
age, and frequency conditions. An actual character­
istic rarely has ideal first and last transition locations 
or ideal code widths. It may even vary over multiple 
conversions under the same conditions. 

BREAK-BEFORE-MAKE-The property of a multi­
plexer which guarantees that a previously selected 
channel will be deselected before a new channel is 
selected. (e.g. the converter will not short inputs to­
gether.) 

CHANNEL-TO-CHANNEL MATCHING-The differ­
ence between corresponding code transitions of ac­
tual characteristics taken from different channels un­
der the same temperature, voltage and frequency 
conditions. 

CHARACTERISTIC-A graph of input voltage ver­
sus the resultant output code for an AID converter. 
It describes the transfer function of the AID convert­
er. 

CODE-The digital value output by the converter. 

CODE CENTER-The voltage corresponding to the 
midpoint between two adjacent code transitions. 

CODE TRANSITION-The point at which the con­
verter changes from an output code of Q, to a code 
of Q + 1. The input voltage corresponding to a code 
transition is defined to be that voltage which is 
equally likely to produce either of two adjacent 
codes. 

CODE WIDTH-The voltage corresponding to the 
difference between two adjacent code transitions. 

CROSSTALK-See "Off-Isolation". 

D.C. INPUT LEAKAGE-Leakage current to ground 
from an analog input pin. 

DIFFERENTIAL NON-LiNEARITY-The difference 
between the ideal and actual code widths of the ter­
minal based characteristic. 

FEEDTHROUGH-Attenuation of a voltage applied 
on the selected channel of the AID Converter after 
the sample window closes. 

FULL SCALE ERROR-The difference between the 
expected and actual input voltage corresponding to 
the full scale code transition. 

IDEAL CHARACTERISTIC-A characteristic with 
its first code transition at VIN = 0.5 LSB, its last 
code transition at VIN = (VREF - 1.5 LSB) and all 
code widths equal to one LSB. 

INPUT RESISTANCE-The effective series resist­
ance from the analog input pin to the sample capaci­
tor. 

LSB-Least Significant Bit: The voltage corre­
sponding to the full scale voltage divided by 2n, 
where n is the number of bits of resolution of the 
converter. For an 8-bit converter with a reference 
voltage of 5.12V, one LSB is 20 mY. Note that this is 
different than digital LSBs, since an uncertainty of 
two LSB, when referring to an AID converter, equals 
40 mY. (This has been confused with an uncertainty 
of two digital bits, which would mean four counts, or 
80 mV.) 

MONOTONIC-The property of successive approxi­
mation converters which guarantees that increasing 
input voltages produce adjacent codes of increasing 
value, and that decreasing input voltages produce 
adjacent codes of decreasing value. 

NO MISSED CODES-For each and every output 
code, . there exists a unique input voltage range 
which produces that code only. 

NON-LINEARITY-The maximum deviation of code 
transitions of the terminal based characteristic from 
the corresponding code transitions of the ideal char­
acteristic. 

OFF-I SOLATION-Attenuation of a voltage applied 
on a deselected channel of the AID converter. (Also 
referred to as Crosstalk.) 

REPEATABILITY-The difference between corre­
sponding code transitions from different actual char­
acteristics taken from the same converter on the 
same channel at the same temperature, voltage and 
frequency conditions. 

21-116 



inter 80C196KA 

RESOLUTION-The number of input voltage levels 
that the converter can unambiguously distinguish 
between. Also defines the number of useful bits of 
information which the converter can return. 

SAMPLE DELAY-The delay from receiving the 
start conversion signal to when the sample window 
opens. 

SAMPLE DELAY UNCERTAINTY-The variation in 
the sample delay. 

SAMPLE TIME-The time that the sample window 
is open. 

SAMPLE TIME UNCERTAINTY-The variation in 
the sample time. 

SAMPLE WINDOW-Begins when the sample ca­
pacitor is attached to a selected channel and ends 
when the sample capacitor is disconnected from the 
selected channel. 

SUCCESSIVE APPROXIMATION-An AID conver­
sion method which uses a binary search to arrive at 
the best digital representation of an analog input. 

TEMPERATURE COEFFICIENTS-Change in the 
stated variable per degree centigrade temperature 
change. Temperature coefficients are added to the 
typical values of a specification to see the effect of 
temperature drift. 

TERMINAL BASED CHARACTERISTIC-An actual 
characteristic which has been rotated and translated 
to remove zero offset and full scale error. 

Vee REJECTION-Attenuation of noise on the Vee 
line to the AID converter. 

ZERO OFFSET-The difference between the ex­
pected and actual input voltage corresponding to 
the first code transition. 

80C196KA FUNCTIONAL DEVIATIONS 

The 80C196KA has the following problems. We are 
working on, or have already defined, silicon fixes for 
all these problems. 

1. Byte shifts on odd addresses do not work proper­
ly (SHRB and SHLB). Byte shifts can be done on 
even addresses, and word and long shifts work 
correctly. 

2. The Unsigned Divide operations (Byte and Word), 
may result in a quotient that is one count larger 
than the correct value (DIVU and DIVUB). This 
can only occur if the most significant bit of the 
divisor is a one. The problem will not always occur 
if the MSB is one, and determining if the problem 
will occur or not is very difficult. 

3. The current in the power down mode is on the 
order of 1 milliamp. 

4. The PUSHA instruction works properly with inter­
nal stack. When external stacl< is used, the PU­
SHA instruction will cause the data to be written 
into the location pointed to by the lower byte of 
the stack pointer. Since the PUSHA instruction is 
simply a fast way of doing a PUSHF, and pushing 
WSR/IMASK1 and clearing IMASK1, a macro can 
be written to work around this problem .. 

5. The AID converter differential non-linearity error 
becomes larger as Yin approaches Vref. This re­
sults in the potential for missed codes at 10-bit 
resolution. 

6. The reset pin must have a rise time less than 4 
state times. An External Schmitt trigger reset cir­
cuit is recommended. A capacitor only or RC cir­
cuit directly connected to the pin will not work reli­
ably. If a bad reset occurs, the chip will lock-up. A 
good reset will cause the part to work correctly; 
the chip does not have to be powered on and off. 

NOTE: 
Instruction bugs 1, 2, and 4 may prevent high level 
language compilers from generating code which 
works correctly. If a problem is suspected, generate 
an assembler code output of the high level lan­
guage and examine the listing for the above in­
structions. If any of the instructions are present, the 
code may have to be rewritten. 

21-117 



inter 80C196KA 

DIFFERENCES BETWEEN THE 
80C196KA AND THE 8096BH 

CONVERTING FROM OTHER 
MCS®-96 PRODUCTS TO THE 
80C196KA 

The following list of suggestions for designing an 
8X9XBH system will yield a design that is easily con­
verted to the 80C196KA. 

1. Do not base critical timing loops on instruction or 
peripheral execution times. 

2. Use equate statements to set all timing parame­
ters, including the baud rate. 

3. Do not base hardware timings on CLKOUT or 
XTAL 1. The timings of the 80C196KA are differ­
ent than those of the 8X9XBH, but they will func­
tion with standard ROM/EPROM/Peripheral type 
memory systems. 

4. Make sure all inputs are tied high or low and not 
left floating. . 

5. On the 8X9XBH, the WRL/WR and WRH/BHE 
signals both go low for byte writes to odd ad­
dresses in 8-bit write strobe mode. On the 
80C196KA, only the WRH/BHE signal goes low 
for this type of operation. 

6. Indexed and indirect operations relative to the 
stack pointer (SP) work differently. on the 
80C196KA than on the 8096. On the 8096, the 
address is calculated based on the un-updated 
version of the stack pointer. The 80C196KA uses 
the updated version. The offset for PUSH[SP], 
POP[SP], PUSH nn[SP] and POP nn[SP] instruc­
tions may need to be changed by a count of 2. 

NEW FEATURE SUMMARY 

CPU FEATURES 

Divide by 2 instead of divide by 3 clock for 1.5Xper­
formance 

Faster instructions, especially indexed/indirect data 
operations 

2.33 /Ls 16 x 16 multiply with 12 MHz clock (was 
6.25/Ls) 
Faster interrupt response (almost twice as fast) 

Different Reset Sequence 

Powerdown and Idle Modes 

Clock Failure Detect 

6 new instructions including Compare Long and 
Block Move 

8 new interrupt vectors 

PERIPHERAL FEATURES 

SFR Window switching allows read-only registers to 
be written and vice-versa 

Timer2 can count up and down by external selection 

Timer2 has an independent capture register 

HSO lines which, transitioned are saved 

HSO lines can be written directly 

HSO has CAM Lock and CAM Clear commands 

A to 0 has a selectable sample and hold and speed 
control 

New Baud Rate values are needed for serial port, 
higher speeds possible in all modes 

Double buffered serial port transmit register 

Serial Port Receive Overrun and Framing Error De-
tection . 

PWM has a Divide-by-2 Prescaler 

21-118 



intJ APPLICATION 
NOTE 

. Using The 8096 

IRA HORDEN 
MCO APPLICATIONS ENGINEER 

21-119 

AP-248 

September 1987 

Order Number: 270061-002 





AP-248 

1.0 INTRODUCTION 

High speed digital signals are frequently encountered in 
modern control applications. In addition, there is often 
a requirement for high speed 16-bit and 32-bit precision 
in calculations. The MCS®-96 product line, generically 
referred to as the 8096, is designed to be used in appli­
cations which require high speed calculations and fast 
I/O operations. 

The 8096 is a 16-bit microcontroller with dedicated 
I/O subsystems and a complete set of 16-bit arithmetic 
instructions including multiply and divide operations. 
This Ap-note will briefly describe the 8096 in section 2, 
and then give short examples of how to use each of its 
key features in section 3. The concluding sections fea­
ture a few examples which make use of several chip 
features simultaneously and some hardware connection 
suggestions. Further information on the 8096 and its 
use is available from the sources listed in the bibliogra­
phy. 

2.0 8096 OVERVIEW 

2.1. General Description 

Unlike microprocessors, microcontrollers are generally 
optimized for specific applications. Intel's 8048 was op­
timized for general control tasks while the 8051 was 
optimized for 8-bit math and single bit boolean opera­
tions. The 8096 has been designed for high speed/high 
performance control applications. Because it has been 
designed for these applications the 8096 architecture is 
different from that of the 8048 or 8051. 

There are two major sections of the 8096; the CPU 
section and the I/O section. Each of these sections can 
be subdivided into functional blocks as shown in Figure 
2-1. 

VPO )(TAl 1 XTAL 2 CLKOUT 

VREF 

ANGND 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I L __________ _ 

PO ACH 

--~~-7;;~-:::----------",i 
ON·CHIP 

••• ROM I 
8 A.BUS I 

REG. 
FilE 

RAlU 

INST. REG. 

I 
I 
I 
I 
I Ei 

ALE 
BHE 
Ro 
WR 
READY 

DATA 
~--~----~ __ ~ __ RESET 

P31 ADORIDATA 
BUS 

P. 

P1 P2/ALT. FUNCTIONS HS1 HSO 

270061-1 

Figure 2-1_ 8096 Block Diagram 

21-121 



infef AP-248 

2.1.1. CPU SECTION 

The CPU of the 8096 uses a 16-bit ALU which operates 
on a 256-byte register file instead of all accumulator. 
Any of the locations in the register file can be used for 
sources or destinations for most of .the instructions. 
This is called a register to register architecture. Many 
of the instructions can also use bytes or words from. 
anywhere in the 64K byte address space as operands. A 
memory map is shown in Figure 2-2. 

65535 

16384 

8320 

8210 

8192 

8190 

256 
255 

00 

EXTERNAL MEMORY 
OR 
1/0 

INTERNAL PROGRAM 
STORAGE ROM 

FACTORY TEST CODE 

8 
INTERRUPT' I 
VECTORS 0 

PORT 4 
PORT 3 

EXTERNAL MEMORY 
OR 
1/0 

INTERNAL RAM 
REGISTER FILE 

STACK POINTER 
SPECIAL FUNCTION REGISTERS 

(WHEN ACCESSED AS 
DATA MEMORY) 

In the lower 24 bytes of the register file are the register­
mapped I/O control locations, also called Special 
Function Registers or SFRs. These registers are used to 
control the. on-chip I/O features. The remaining 232 
bytes are general purpose RAM, the upper 16 of which 
can be kept ,alive using a low current power-down 
mode. 

FFFFH 

4000H 

2080H ~ RESET 

2012H 

2000H 

lFFEH 

0100H 
ooFFH 

OOOOH 

r----------------------,255 
EXTERNAL MEMORY RESERVED 
FOR USE BY INTEL DEVELOPMENT 
SYSTEMS 
(WHEN ACCESSED AS PROGRAM 
MEMORY) L-__________________ ~OO 

270061-2 

Figure 2-2. Memory Map 

21-122 



AP-248 

Figure 2-3 shows the layout of the register mapped 
I/O. Some of these registers serve two functions, one if 
they are read from and another if they are written 

to. More information about the use of these registers is 
included in the description of the features which they 
control. 

19H 
ISH 

17H 

16H 

15H 

14H 
13H 
12H 

llH 

10H 

OFH 

OEH 

ODH 

OCH 

OBH 

OAH 

09H 

OSH 

07H 

06H 

05H 

04H 

03H 

02H 

01H 

DOH 

OFFH 255 

POWER·DOWN 
RAM 

OFOH 240 
OEFH 239 

h INTERNAL 
h 

REGISTER FILE 

lAI 

(RAM) 

I6 
STACK POINTER STACK POINTER 

PWM_CONTROL 

lOS 1 lOCI 

10SO lOCO 

RESERVED RESERVED 

SP_STAT SP_CON 

10 PORT 2 10 PORT 2 

10 PORT 1 10 PORT 1 

10 PORT 0 BAUD_RATE 

TlMER2 (HI) 

TIMER2 (LO) RESERVED 

TIMER 1 (HI) 

TIMERI (LO) WATCHDOG 

INT_PENDING INT_PENDING 

INT_MASK INT_MASK 

SBUF (RX) SBUF (TX) 

HSLSTATUS HSO_COMMAND 

HSI_TIME (HI) HSO_TIME (HI) 

HSLTIME (LO) HSO_TlME (LO) 

AD_RESULT (HI) HSLMODE 

AD_RESULT (LO) AD_COMMAND 

RO (HI) RO (HI) 

RO (LO) RO (LO) 

(WHEN READ) ('NHEN WRITTEN) 

Figure 2-3: SFR Layout 

21-123 

25 
24 

23 

22 

21 

20 
19 
IS 

17 

16 

15 

14 

13 

12 

II 

10 

6 

o 

270061-3 



intJ Ap·248 

2.1.2. I/O FEATURES 

Many of the I/O features on the 8096 are designed to 
operate with little CPU intervention. A list of the major 
I/O functions is shown in Figure 2-4. The Watchdog 
Timer is an internal timer which can be used to reset 
the system if the software fails to operate properly. The 
Pulse-Width-Modulation (PWM) output can be used as 
a rough D to A, a motor driver, or for many other 
purposes. The A to D converter (ADC) has 8 multi­
plexed inputs and IO-bit resolution. The serial port has 
several modes and its own baud rate generator. The 
High Speed I/O section includes a 16-bit timer, a 16-bit 
counter, a 4-input programmable edge detector, 4 soft­
ware timers, and a 6-output programmable event gener­
ator. All of these features will be described in section 
2.3. 

2.2. The Processor Section 

2.2.1. OPERATIONS AND ADDRESSING MODES 

The 8096 has 100 instructions, some of which operate 
on bits, some on bytes, some on words and some on 
longs (double words). All of the standard logical and 
arithmetic functions are available for both byte and 
word operations. Bit operations and long operations are 
provided for some instructions; There are also flag ma­
nipulation instructions as well as jump and call instruc­
tions. A full set of conditional jumps has been included 
to speed up testing for various conditions. 

Bit operations are provided by the Jump Bit and Jump 
Not Bit instructions, as well as by immediate masking 
of bytes. These bit operations can be performed on any 
of the bytes in the register file or on any of the special 
function registers. The fast bit manipulation of the 
SFRs can provide rapid I/O operations. 

A symmetric set of byte and word operations make up 
the majority of the 8096 instruction set. The assembly 
language for the 8096 (ASM-96) uses a "B" suffix on a 
mnemonic to indicate a byte operation, without this 
suffix a word operation is indicated. Many of these op­
erations can have one, two or three operands. An exam­
ple of a one operand instruction would be: 

NOT Value1; Value1: = 1's complement (Value1) 

A two operand instruction would have the form: 

ADD Value2,Value1; Value2: = Value2 + Value1 

A three operand instruction might look like: 

MUL Value3,Value2,Value1; 
Value3 : = Value2' Value1 

The three operand instructions combined with the reg­
ister to register architecture almost eliminate the neces­
sity of using temporary registers .. This results in a faster 
processing time than machines that have equivalent in­
struction execution times, but use a standard architec­
ture. 

Long (32-bit) operations include shifts, normalize, and 
multiply and divide. The word divide is a 32-bit by 16-
bit operation with a 16-bit quotient and 16-bit remain­
der. The word multiply is a word by word multiply 
with a long result. Both of these operations can be done 
in either the signed or unsigned mode. The direct un­
signed modes of these instructions take only 6.5 micro­
seconds. A normalize instruction and sticky bit flag 
have been included in the instruction set to provide 
hardware support for the software floating point pack­
age (FP AL-96). 

Major I/O Functions 
High Speed Input Unit Provides Automatic Recording of Events 

High Speed Output Unit Provides Automatic Triggering of Events and Real-Time Interrupts 

Pulse Width Modulation Output to Drive Motors or Analog Circuits 

A to D Converter Provides Analog Input 

Watchdog Timer Resets 8096 if a Malfunction Occurs 

Serial Port Provides Synchronous or Asynchronous Link 

Standard I/O Lines Provide Interface to the External World when other Special Features 
are not needed 

Figure 2·4. Major I/O. Functions 

21-124 



AP-248 

Mnemonic 
Oper-

Operation (Note 1) 
Flags 

Notes 
ands Z N C V VT ST 

ADD/ADDB 2 o ~ D+A '" '" '" '" t -
ADD/AD DB 3 o ~ B+A '" '" '" '" t -
ADDC/ADDCB 2 o ~ 0 + A +C t '" '" '" i -
SUB/SUBB 2 o ~ D-A '" '" '" '" t -
SUB/SUBB 3 o ~ B-A '" '" '" '" t -
SUBC/SUBCB 2 D~D-A+C-1 t '" '" '" t -
CMP/CMPB 2 D-A '" '" '" '" t -
MULIMULU 2 0,0 + 2 ~ 0' A - - - - - ? 2 

MUL/MULU 3 0,0+ 2 ~ B' A - - - - - ? 2 

MULB/MULUB 2 0,0 + 1 ~ 0' A - - - - - ? 3 

MULB/MULUB 3 0,0+ 1 ~ B' A - - - - - ? 3 

DIVU 2 o ~ (0, 0 + 2)/ A. 0 + 2 ~ remainder - - - '" i - 2 

DIVUB 2 o ~ (0,0+ 1)/A, 0 + 1 ~ remainder - - - '" t - 3 

DIV 2 o ~ (0, 0 + 2)/ A, 0 + 2 ~ remainder - - - ? t - 2 

DIVB 2 o ~ (0,0 + 1)/A, 0 + 1 ~ remainder - - - ? t - 3 

AND/ANDB 2 o ~ DandA '" '" 0 0 - -
AND/ANDB 3 D ~ BandA '" '" 0 0 - -
OR/ORB 2 o ~ DorA '" '" 0 0 - -
XOR/XORB 2 o ~ 0 (exel. or) A '" '" 0 0 - -
LD/LDB 2 D~A - - - - - -
ST/STB 2 A~D - - - - - - ., 
LDBSE 2 D~A;D+1 ~ SIGN(A) - - - - - - 3,4 

LDBZE 2 o ~ A;D + 1 ~O - - - - - - 3,4 

PUSH 1 SP ~ SP - 2; (SP) ~ A - - - - - -
POP 1 A ~ (SP); SP ~ SP + 2 - - - - - -
PUSHF 0 SP ~ SP - 2; (SP) ~ PSW; 0 0 0 0 0 0 

PSW ~ OOOOH I ~ 0 

POPF 0 PSW ~ (SP); SP ~ SP + 2; I~'" '" '" '" '" '" '" SJMP 1 PC ~ PC + 11-bit offset - - - - - - 5 

LJMP 1 PC ~ PC + 16-bit offset - - - - - - 5 

BR (indirect) 1 PC ~ (A) - - - - - -
SCALL 1 SP ~ SP - 2; (SP) ~ PC; - - - - - - 5 

PC ~ PC + 11-bit offset 

LCALL 1 SP ~ SP - 2; (SP) ~ PC; - - - - - - 5 
PC ~ PC + 16-bit offset 

RET 0 PC ~ (SP); SP ~ SP + 2 - - - - - -
J (conditional) 1 PC ~ PC + 8-bit offset (il taken) - - - - - - 5 

JC 1 Jump ilC = 1 - - - - - - 5 

JNC 1 JumpilC = 0 - - - - - - 5 

JE 1 Jump ilZ = 1 - - - - - - 5 

Figure 2-5. Instruction Summary 

NOTES: 
1. II the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands 0, B, and A 
must conlorm to the alignment rules lor the required operand type. 0 and B are locations in the register lile; A can be 
located anywhere in memory. 
2. 0, 0 + 2~are consecutive WORDS in memory; 0 is DOUBLE-WORD aligned. 
3. 0, 0 + 1 are consecutive BYTES in memory; 0 is WORD aligned. 
4. Changes a byte to a word. 
5. Offset is a 2's complement number. 

21-125 



intJ AP-248 

Mnemonic 
Oper-

Operation (Note 1) Flags 
Notes 

ands i N C V VT ST 

JNE 1 JumpifZ = 0 - - - - - - 5 

JGE 1 Jump if N = 0 - - - - - - 5 

JLT 1 Jump if N = 1 - - - - - - 5 

JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5 

JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5 

JH 1 Jump if C = 1 and Z = 0 - - - - - - 5 

JNH 1 JumpifC'= OorZ = 1 -, - - - - - 5 

JV 1 Jump if V = 1 - - - - - - 5 

JNV 1 Jump if V = 0 - - - - - - 5 

JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5 

JNVT 1 Jump ifVT = 0; Clear VT - - - - 0 - 5 

JST 1 Jump if ST =1 - - - - - - 5 

JNST 1 JumpifST = 0 - - - - - - 5 

JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6 

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6 

DJNZ 1 D+- D - 1; if D "" 0 then 
PC +- PC + 8-bit offset - ...:.... - - - - 5 

DEC/DECB 1 D+-D-1 ., ., ., ., t -
NEG/NEGB 1 D+-O-D ., ., ., ., t -
INC/INCB 1 D+-D+1 ., ., ., ., t -
EXT 1 D +-'- D; D + 2 +- Sign (D) ., ., 0 0 - - 2 

EXTB 1 D +- D; D + 1 +- Sign (D) ., ., 0 0 - - 3 

NOTINOTB 1 D +- Logical Not (D) ., ., 0 0 - -
CLR/CLRB 1 D+-O 1 0 0 0 - -
SHL/SHLB/SHLL 2 C +- msb--'----Isb +- 0 ., ? ., ., t - 7 

SHRISHRB/SHRL 2 '0 - msb-'---'---Isb - C ., ? ., o· - ., 7 

SHRA/SHRAB/SHRAL 2 msb - msb-----Isb - C ., ., ., 0 - ., 7 

SETC 0 C+-1 - - 1 - - -
CLRC 0 C+-O - - 0 - - -
CLRVT 0, VT +- 0 - - - - 0 -
RST 0 PC +- 2080H 0 0 0 0 0 0 8 

DI 0 Disable All Interrupts (I +- 0) - - - - - -
EI 0 Enable All Interrupts (I +- 1) - - - - - -
NOP 0 PC +- PC + 1 - - - - - -
SKIP 0 PC +- PC + 2 - - - - - -
NORML 2 Left Shift Till msb = 1; D +- shift count ., ? 0 - - - 7 

TRAP 0 SP +- SP - 2; (SP) +- PC 
PC +- (2010H) - - - - - - 9 

Figure 2-5. Instruction Summary (Continued) 

NOTES: 
1, If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done, Operands D, B, and A 
must conform to the alignment rules for the required operand type, D and B are locations in the register file; A can be 
located anywhere in memory, 
5, Offset is a 2's complement number, 
6. Specified bit is one of the 2048 bits in the register file, 
7, The "L" (Long) suffix indicates double-word operation, 
S, Initiates a Reset by pulling RESET low, Software should re-initialize all the necessary registers with code starting at 
2080H, 
9, The assembler will r)ot accept this mnemonic, 

21-126 



AP-248 

One operand of most of the instructions can be used 
with anyone of six addressing modes. These modes 
increase the flexibility and overall execution speed of 
the 8096. The addressing modes are: register-direct, im­
mediate, indirect, indirect with auto-increment, and 
long and short indexed. 

The fastest instruction execution is gained by using ei­
ther register direct or immediate addressing. Register­
direct addressing is similar to normal direct addressing, 
except that only addresses in the register file or SFRs 
can be addressed. The indexed mode is used to directly 
address the remainder of the 64K address space. Imme­
diate addressing operates as would be expected, using 
the data following the opcode as the operand. 

Both of the indirect addressing modes use the value in a 
word register as the address of the operand. If the indi­
rect auto-increment mode is used then the word register 
is incremented by one after a byte access or by two after 
a word access. This mode is particularly useful for ac­
cessing lookup tables. 

Access to any of the locations in the 64K address space 
can be obtained by using the long indexed addressing 

mode. In this mode a 16-bit 2's complement value is 
added to the contents of a word register to form the 
address of the operand. By using the zero register as the 
index, ASM96 (the assembler) can accept "direct" ad­
dressing to any location. The zero register is located at 
OOOOH and always has a value of zero. A short indexed 
mode is also available to save some time and code. This 
mode uses an 8-bit 2's complement number as the offset 
instead of a 16-bit number. 

2.2.2. ASSEMBLY LANGUAGE 

The multiple addressing modes of the 8096 make it easy 
to program in assembly language and provide an excel­
lent interface to high level languages. The instructions 
accepted by the assembler consist of mnemonics fol­
lowed by either addresses or data. A list of the mne­
monics and their functions are shown in Figure 2-5. 
The addresses or data are given in different formats 
depending on the addressing mode. These modes and 
formats are shown in Figure 2-6. 

Additional information on 8096 assembly language is 
available in the MCS-96 Macro Assembler Users 
Guide, listed in the bibliography. 

Mnem Dest or Src1 
Mnem Dest, Src1 

; One operand direct 
; Two operand direct 

Mnem Dest, Src1, Src2 

Mnem #Src1 
Mnem Dest, #Src1 
Mnem Dest, Src1, #Src2 

Mnem [addrj 
Mnem [addrj + 
Mnem Dest, [addrj 
Mnem Dest, [addrj + 
Mnem Dest, Src1, [addrj 
Mnem Dest, Src1, [addrj + 

Mnem Dest, oils [addrj 
Mnem Dest, Src1, oils [addrj 

; Three operand direct 

; One operand immediate 
; Two operand immediate 
; Three operand immediate 

; One operand indirect 
; One operand indirect auto-increment 
; Two operand indirect 

Two operand indirect auto-increment 
; Three operand indirect 
; Three operand indirect auto-increment 

; Two operand indexed (short or long) 
; Three operand indexed (short or long) 

Where: "Mnem" is the instruction mnemonic 
"Dest" is the destination register 
"Src1", "Src2" are the source registers 
"addr" is a register containing a value to be used in computing the address of an operand 
"oils" is an ollset used in computing the address of an operand 

270061-83 

Figure 2-6. Instruction Format 

21-127 



AP-248 

SOURCE INTERRUPT 

.----IOC1.1 

EXTlNT ~o-------- EXTINT 
ACH.7 ~ 

n FLAG --~--------- SERIAL PORT 

RIFLAG~ 
.---- HSO_COMMAND.4 

~O-------- SOFTWARE TIMER 

SOFTWARE TIMER 0 ~ 
SOFTWARE TIMER 1 
SOFTWARE TIMER 2 
SOFTWARE TIMER 3 

RESET TIMER 2' 
START AID CONVERSION' 

HSI.D-----------'- HSI.O 

.---- HS<U:OMMAND.4 

ANY HSO OPERATION ---,() ~O-------- HIGH SPEED OUTPUTS 

.----IOC1.7 
FIFO IS FULL ~ HSI DATA AVAILABLE 

HOL~NG REGISTER LOADED _ . 

AID CONVERSION COMPLETE ----------- AID CONVERSION COMPLETE 

.---.,.IOC1.2 

nMERl OVERFLOW' _ ~O. -----y--- TIMER OVERFLOW 

nMER2 OVERFLOW _ ')0 
I 

'Only when InlU.ted by the HSO unit. L ___ IOC1.3 

Figure 2-7. Interrupt Sources 

2.2.3, INTERRUPTS 

The flexibility of the instruction set is carried through 
into the interrupt system. There are 20 different inter­
rupt sources that can be used on the 8096. The 20 
sources vector through 8 locations or interrupt vectors. 
The vector names and their sources are shown in Fig­
ure 2-7, with their locations listed in Figure 2-8. Con­
trol of the interrupts is handled through the Interrupt 
Pending Register (INT_PENDING), the Interrupt 
Mask Register (INT_MASK), and the I bit in the 
PSW (PSW.9). Figure 2-9 shows a block diagram of the 
interrupt structure. The INT_PENDING register 
contains bits which get set by hardware when an inter­
rupt occurs. If the interrupt mask register bit for that 
source is a 1 and PSW.9 = I, a vector will be taken to 
the address listed in the interrupt vector table for that 

Source 

Software 
Extint 
Serial Port 
Software Timers 
HSI,O 
High Speed 

Outputs 
HSI Data 

Available 
AID Conversion 

Complete 
Timer Overflow 

Vector. 
Location 

(High (Low 
Byte) Byte) 

2011H 2010H 
200FH 200EH 
200DH 200CH 
200BH 200AH 
2009H 200BH 
2007H 2006H 

2005H 2004H 

2003H 2002H 

2001H 2000H 

270061-4 

Priority 

Not Applicable 
7 (Highest) 
6 
5 
4 
3 

2 

1 

o (Lowest) 

Figure 2-8. Interrupt Vectors and Priorities 

21-12B 



infef AP-248 

source. When the vector is taken the INT_PENDING 
bit is cleared. If more than one bit is set in the INT_ 
PENDING register with the corresponding bit set in 
the INT_MASK register, the Interrupt with the high­
est priority shown in Figure 2-8 will be executed. 

The software can make the hardware interrupts work in 
almost any fashion desired by having each routine run 
with its own setup in the INT_MASK register. This 
will be clearly seen in the examples in section 4 which 
change the priority of the vectors in software. The 

EXTINT SERIAL PORT 

6 

SOFTWARE 

TIMERS 

I ___ --~ 
(PSW.9) 

HSI.O 

TRANSITION 
DETECTOR 

PRIORITY ENCODER 

D-BUS 

INTERRUPT 
GENERATOR 

CONTROL 
·UNIT 

HSI AID CONV. 
TIMER 

OVERFLOW 

o 

INTERRUPT MASK REG. 

Figure 2-9. Interrupt Structure Block Diagram 

21-129 

270061-5 



AP-248 

WHERE: 
Z is the zero flag. It is set when the result of an operation is zero. 

N is the negative flag. It is set to the algebraically correct sign of the result regardless of overflows. 

V is the overflow flag. It is set if an overflow occurs. 

VT is the overflow trap flag. It is set when the VT flag is set and cleared by JVT. JNVT. or CLRVT. 

C is the carry flag. It is set if a carry was generated by the prior operation. 

I is the global interrupt enable bit. 

ST is the sticky bit. It is set during a right shift if a one was shifted into and then Qut of the carry flag. 

tNT_MASK is the interrupt mask register and contains bits which individually enable the 8 interrupt vectors. 

Figure 2-10. The PSW Register 

PSW (shown in Figure 2-10), stores the INT_MASK 
register in its lower byte so that the mask register can 
be pushed and popped along with the machine status 
when moving in and out of routines. The action of 
pushing flags clears the PSW which includes PSW.9, 
the interrupt enable bit. Therefore, after a PUSHF in­
struction interrupts are disabled. In most cases an inter­
rupt service routine will have the basic structure shown 
below. 

INT VECTOR: 

PUSHF 
LDB INT_MASK, #xxxxxxxxB 
EI 

POPF 
RET 

;Insert service routine here 

The PUSHF instruction saves the PSW including the 
old INT_MASK register. The PSW, including the in­
terrupt enable bit are left cleared. If some interrupts 
need to be enabled while the service routine runs, the 
INT_MASK is loaded with a new value and inter­
rupts are globally enabled before the service routine 
continues. At the end of the service routine a POPF in-

struction is executed to restore the old PSW. The RET 
instruction is executed and the code returns to the de­
sired location. Although the POPF instruction can en­
able the interrupts the next instruction will always exe" 
cute. This prevents unnecessary building of the stack by 
ensuring that the RET always executes before another 
interrupt vector is taken. 

2.3. On-Chip 1/0 Section 

All of the on-chip I/O features of the 8096 can be ac­
cessed through the special function registers, as shown 
in Figure 2-3. The advantage of using register-mapped 
I/O is that these registers can be used as the sources or 
destinations of CPU operations. There are seven major 
I/O functions. Each one of these will be considered 
with a section of code to exemplify its usage. The first 
section covered will be the High Speed I/O, (HSIO), 
subsystem. This section includes the High Speed Input 
(HSI) unit, High Speed Output (HSO) unit, and the 
Timer/Counter section. 

2.3.1. TIMER/COUNTERS 

The 8096 has two time bases, Timer 1 and Timer 2. 
Timer 1 is a 16-bit free running timer which is incre­
mented every 8 state times. (A state time is 3 oscillator 
periods, or 0.25 microseconds with a 12 MHz crystal.) 

21-130 



inter J\P-248 

HSI TRIGGER OPTIONS 

L HI TO LO 

____ .... r LO TO HI 

HSI.O 
HSl.l 
HSI.2 
HSI.3 

CHANGE 
DETECTOR 

2.0 I'S CLOCK 

TRIGGERED 
INPUT(S) 

16 

~ 
HI OR LO 

EVERY EIGHTH POSITIVE 
TRANSITION 

CURRENT 

"' ___ 20 ___ '"1 

FIFO 

270061-6 
o Pulse measurement with 2.0 J.Lsec resolution 
• Input transitions trigger the recording of the reference 

Timer (16-bit) and triggered input(s) (4-bit) 

Figure 2-11. HSI Unit Block Diagram 

Its value can be read at any time and used as a refer­
ence for both the HSI section and the HSO section. 
Timer 1 can cause an interrupt when it overflows, and 
cannot be modified or stopped without resetting the 
entire chip. Timer 2 is really an event counter since it 
uses an external clock source. Like Timer 1, it is 16-bits 
wide, can be read at any time, can be used with the 
HSO section, and can generate an interrupt when it . 
overflows. Control of Timer 2 is limited to increment­
ing it and resetting it. Specific values can not be written 
to it. 

Although the 8096 has only two timers, the timer flexi­
bility is equal to a unit with many timers thanks to the 
HSIO unit. The HSI enables one to measure times of 
external events on up to four lines using Timer 1 as a 
timer base. The HSO unit can schedule and execute 
internal events and up to six external events based on 
the values in either Timer 1 or Timer 2. The 8096 also 
includes separate, dedicated timers for the baud rate 
generator and watchdog timer. 

2.3.2. HSI 

The HSI unit can be thought of as a message taker 
which records the line which had an event and the time 
.at which the event occurred. Four types of events can 
trigger the HSI unit, as shown in the HSI block dia­
gram in Figure 2-11. The HSI unit can measure pulse 
widths and record times of events with a 2 

LOCATION 03H 

HSI.O MODE 

..... ---HSl.l MODE 

...... ----- HSI.2 MODE 

..... --------HSI.3 MODE 

Where each 2-bit mode control field 
defines one of 4 possible modes: 

00 8 positive transitions 
01 Each positive transition 
10 Each negative transition 
11 Every transition (positive and negative) 

270061-7 

Figure 2-12. HSI Mode Register 

21-131 



AP-248 

microsecond resolution. It can look for one of four 
events on each of four lines simultaneously, based on 
the information in the HSI Mode register, shown in 
Figure 2-12. The information is then stored in a seven 
level FIFO for later retrieval. Whenever the FIFO con­
tains information, the earliest entry, is placed in the 
holding register. When the holding register is read, the 
next valid piece of information is loaded into it. Inter­
rupts can be generated by the HSI unit at the time the 

holding register is loaded or when the FIFO has six or 
more entries. 

STATUS 

CONTROL 
LOGIC 

2.3.3. HSO 

Just as the HSI can be thought of as a message taker, 
the HSO can be thought of asa message sender. At 
times determined by the software, the HSO sendsmes-

65432 0 

CHANNEL 0-5 HSO.O - HSO.5 
6 HSO.O AND HSO.l 
7 HSO.2 AND HSO.3 
8-8 SOFTWARE TIMERS 
E RESET TIMER 2 
F START AID CONVERSION 

'-------- INTERRUPT/NO INTERRUPT 
'--------- SET/CLEAR 

'----------- TIMER 2ITIMER 1 

Figure 2-13. HSO Command Register 

2.0 "S CLOCK 

270061-8 

HIGH SPEED OUTPUT CONTROLS 
6 PINS 
4 SOFTWARE TIMERS 
2 INTERRUPTS 
INITIATE AID CONVERSION 
RESET TIMER 2 

Figure 2-14. HSO Block Diagram 

21-132 

270061-9 



AP-248 

sages to various devices to have them turn on, turn off, 
start processing, or reset. Since the programmed times 
can be referenced to either Timer 1 or Timer 2, the 
HSO makes the two timers look like many. For exam­
ple, if several events have to occur at specific times, the 
HSO unit can schedule all of the events based on a 
single timer. The events that can be scheduled to occur 
and the format of the command written to the HSO 
Command register are shown in Figure 2-13. 

The software timers listed in the figure are actually 4 
software flags in I/O Status Register I (lOS 1). These 
flags can be set, and optionally cause an interrupt, at 
any time based on Timer 1 or Timer 2. In most cases 
these timers are used to trigger interrupt routines which 
must occur at regular intervals. A multitask process 
can easily be set up using the software timers. 

SP_STAT 
(READ ONLY) 

I RB8~RPE I 6 I 5 4 3 I RI TI TB8 REN 

,..J 

A CAM (Content Addressable Memory) file is the 
main component of the HSO. This file stores up to 
eight events which are pending to occur. Every state 
time one location of the CAM is compared with the 
two timers. After 8 state times, (two microseconds with 
a 12 MHz ciock), the entire CAM has been searched 
for time matches. If a match occurs the specified event 
will be triggered and that location of the CAM will be 
made available for another pending event. A block dia­
gram of the HSO unit is shown in Figure 2-14. 

2.3.4. Serial Port 

Controlling a device from a remote location is a simple 
task that frequently requires additional hardware with 
many processors. The 8096 has an on-chip serial port to 
reduce the total number of chips required in the system. 

SP_CON 
(WRITE ONLY) 

2 I 1 I 0 I PEN M2 M1 

I 
L M2,M1 SPECIFIES THE MOD E; 

NOTE: 
TI and RI are cleared when SP _CON is read. 

'--- PEN 

REN 

TB8 

TI 

RI 

RB8 

0,0 = MODE 0 
0,1 = MODE 1 
1.0= MODE 2 
1,1 = MODE 3 

ENABLE THE PARITY 

ENABLES THE RECEI 

PROGRAMS THE 9TH 
TRANSMISSION; 

FUNCTION (EVEN PARITY); 

VE FUNCTION; 

IS THE TRANSMIT INT 

DATA BIT (IF NOT PARITY) ON 

ERRUPT FLAG; 

IS THE RECEIVE INTE RRUPT FLAG; 

IS THE 9TH DATA BIT RECEIVED (IF NOT PARITY); 
RPE IS THE PARITY ERROR INDICATOR (IF PARITY ACTIVE). 

270061-10 

Figure 2-15. Serial Port Control/Status Register 

21-133 



Ap·248 

The serial port is similar to that on the MCS-51 prod­
uct line. It has one synchronous and three asynchro­
nous modes. In the asynchronous modes baud rates of 
up to 187.5 Kbaud can be used, while in the synchro­
nous-mode rates up to 1.5 Mbaud are available. The 
chip has a baud rate generator which is independent of 
Timer 1 and Timer 2, so using the serial port does not 
take away any of the HSI, HSO or timer flexibility or 
functionality. 

Control of the serial port is provided through the 
SPCON/SPSTAT (Serial Port CONtrol/Serial Port 
STATus) register. This register, shown in Figure 2-15, 
has some bits which are read only and others which are 
write only. Although the functionality of the port is 
similar to that of the 8051, the names of some of the 
modes and control bits are different. The way in which 
the port is used from a software standpoint is also 
slightly different since RI and TI are cleared after each 
read of the register. 

The four modes of the serial port are referred to as 
modes 0, I, 2 and 3. Mode 0 is the synchronous mode, 
and is commonly used to interface to shift registers for 
I/O expansion. In this mode the port outputs-a pulse 
train on the TXD pin and either transmits or receives 
data on the RXD pin. Mode 1 is the standard asyn­
chronous mode, 8 bits plus a stop and start bit are sent 
or received. Modes 2 and 3 handle 9 bits plus a stop and 
start bit. The difference between the two is, that in 
Mode 2 the serial port interrupt will not be activated 
unless the ninth data bit is a one; in Mode 3 the inter­
rupt is activated whenever a byte is received. These two 
modes are commonly used for interprocessor communi­
cation. 

Using XT AL 1 : 

, Baud _ XTAL1 frequency. B 
ModeO'Rate- 4'(B+l) , *0 

Baud XTAL1 frequency 
Others: Rate = 64'(B+l) 

Using T2CLK: 

, Baud _ T2CLK frequency, B 
Mode O. Rate - B ,* 0 

Baud T2CLK frequency 
Others: Rate = 16'B ; B * 0 

Note that B cannot equal 0, except when using 
XTAL 1 in other than mode O. 

Figure 2-16. Baud Rate Formulas 

Baud rates for all of the modes are controlled through 
the Baud Rate register. This is a byte wide register 
which is loaded sequentially with two bytes, and inter­
nally stores the value as a word. The least significant 
byte is loaded to the register followed by the most sig­
nificant. The most significant bit of the baud value de­
termines the clock source for the baud rate generator. If 
the bit is a one, the XTALI pin is used as the source, if 
it is a zero, the T2 CLK pin is used. The formulas 
shown in Figure 2-16 can be used to calculate the baud 
rates. The variable "B" is used to represent the least 
significant 15 bits of the value loaded into the baud rate 
register. 

The baud rate register- values for common baud rates 
are shown in Figure 2-17. These values can be used 
when XTALI is selected as the clock source for serial 
modes other than Mode O. The percentage deviation 
from theoretical is listed to help assess the reliability of 
a given setup. In most cases a serial link will work if 
there is less than a 2.5% difference between the baud 
rates of the two systems. This is based on the assump­
tion that 10 bits are transmitted per frame and the last 
bit of the frame must be valid for at least six-eights of 
the bit time. If.the two systems deviate from theoretical 
by 1.25% in opposite directions the maximum toler­
ance of 2.5% will be reached. Therefore, caution must 
be used when the baud rate deviation approaches 
1.25% from theoretical. Note that an XTALl frequen­
cy of 11.0592 MHz can be used with the table values 
for 11 MHz to provide baud rates that have 0.0 percent 
deviation from theoretical. In most applications,' how­
ever, the accuracy available when using an 11 MHz 
input frequency is sufficient. 

Serial port Mode I is the easiest mode to use as there is 
little to worry about except initialization and loading 
and unloading SBUF, the Serial port BUFfer. If parity 
is enabled, (i.e., PEN = 1), 7 bits plus even parity are 
used instead of 8 data bits. The parity calculation is 
done in hardware for even parity. Modes 2 and 3 are 
similar to Mode 1, except that the ninth bit needs to be 
controlled and read. It is also not possible to enable 
parity in Mode 2. When parity is enabled in Mode 3 the 
ninth bit becomes the parity bit. If parity is not enabled, 
(i.e., PEN = 0), the TB8 bit controls the state of the 
ninth transmitted bit. This bit must be set prior to each 
transmission. On reception, if PEN = 0, the RB8 bit 
indicates the state of the ninth received bit. If parity is 
enabled, (i.e., PEN = 1), the same bit is called RPE 
(Receive Parity Error), and is used to indicate a parity 
error. 

21-134 



AP-248 

XTAL 1 Frequency = 12.0 MHz 
Baud Rate Baud Register Value Percent Error 

19.2K 8009H +2.40 

9600 8013H +2.40 

4800 8026H -0.16 

2400 804DH -0.16 

1200 809BH -0.16 

300 8270H 0.00 

XTAL1 Frequency = 11.0 MHz 
19.2K 8008H +0.54 

9600 8011H +0.54 

4800 8023H +0.54 

2400 8047H +0.54 

1200 808EH -0.16 

300 823CH +0.01 

XTAL 1 Frequency = 10.0 MHz 
19.2K 8007H -1.70 

9600 800FH -1.70 

4800 8020H +1.38 

2400 8040H -0.16 

1200 8081H -0.16 

300 8208H +0.03 

Figure 2-17. Baud Rate Values for 10, 11, 12 MHz 

The software used to communicate between processors 
is simplified by making use of Modes 2 and 3. In a basic 
protocol the ninth bit is called the address bit. If it is set 
high then the information in that byte is either the ad­
dress of one of the processors. on the link, or a com­
mand for all the processors. If the bit is a zero, the byte 
contains information for the processor or processors 
previously addressed. In standby· mode all processors 
wait in Mode 2 for a byte with the address bit set. 
When they receive that byte, the software determines if 
the next message is for them. The processor that is to . 

receive the message switches to Mode 3 and receives 
the information. Since this information is sent with the 
ninth bit set to zero, none of the processors set to Mode 
2 will be interrupted. By using this scheme the overall 
CPU time required for the serial port is minimized. 

A typical connection diagram for the multi-processor 
mode is shown in Figure 2-18. This type of communica­
ton can be used to connect peripherals to a desk top 
computer, the axis of a multi-axis machine, or any oth­
er group of microcontrollers jointly performing a task. 

21-135 



AP-248 

TRAVEL TIMES ' 
{

' - CALCULATE COORDINATE TRANSFORMS 
- DETERMINE VECTOR ENDPOINTS AND 

.... __ ....,~___ '- PROVIDE USER INTERFACE ' 

8096 - CONTROL THE SERIAL LINK 
- MONITOR ENTIRE SYSTEM FOR FAULTS ..... _-,..----' 

{

' - CONVERT VECTORS TO INDIVIDUAL 
AXIS COMMANDS 

270061-11 

Figure 2-18. Multlprocel!sor Communication 

Mode 0, the synchronous mode, is typically used for 
,interfacing to' shift registers for I/O expansion. The 
software to control this mode involves ,the REN (Re­
ceiver ENable) bit, the clearing of the RI bit, and writ­
ing to SBUF. To transmit to a shift register, REN is set -
to zero and SBUF is loaded with the information. The 
information will be sent and then the TI flag will be set. 
There are two ways to cause a reception to begin. The 
first is by causing a rising edge to occur on the REN 
bit, the second is by clearing RI with REN ~ 1. In 
either case, RI is set again when the received byte is 
available in SBUF. 

2.3.5. A to D CONVERTER 

Analog inputs are frequently required in a microcon­
troller application. The 8097 has a lO-bit A to D con­
verter that can use anyone of eight input channels. The 
conversions are done using the successive approxima­
tion method, and require 168 state times (42 microsec­
onds with a 12 MHz clock.) 

The results are guaranteed monotonic by design of the 
converter. This means that if the analog input voltage 
changes, even slightly, the digital value will either stay 
the same or change in the same direction as the analog 

input. When doing process control algorithms, it is fi'e~ 
quently the changes in inputs that are required,not the 
abSolute accuracy of the vaille. For this reason, even if 
the absolute accuracy of a lO-bit converter is the same 
as that of an 8-bit converter, the lO-bit monotonic con­
verter is much more useful. 

Since, most of the analog htputs wh~ch ar~ mOnitored by 
a microcontroller change very slowly relative to the 42 
microsecond,conversion time, it is acceptable to use a 
capacitive filter on each input instead ,of a sample and 
hold. The 8097 does not have an internal sample and 
hold, so it is necessary to ensure, that the input signal 
does not change during the conversion time. The input 
to the AID must ,be between' ANGND and VREF. 
ANGND must be within a few millivolts of VSS and 
VREF must be within a few tenths of a volt of VCC. 

Using the A to D converter on the 8097 can be a very 
, low software overhead task because of the interrupt and 
HSO unit structure. The A to D can be started by the 
HSO 'unit at a preset time. When the conversion is com­
plete it is possible to generate an interrupt. By using 
these features the A to D can be run under complete 
interrupt control. The A to D can also be directly 

21-136 



AP-248 

AID Command Register 

(LOCATION 02H) 

I L CHANNEL" SELECTS WHICH OF THE 8 ANALOG INPUT 
~ CHANNELS IS TO BE CONVERTED TO DIGITAL FORM; 

GO INDICATES WHEN THE CONVERSION IS TO BE 
INITIATED (GO=1 MEANS START NOW, GO=O 
MEANS THE CONVERSION IS TO BE INITIATED 
BY THE HSO UNIT AT A SPECIFIED TIME). 

270061-12 

AID Result Register 

(LOCATION 03H) (LOCATION 02H) 

AID CHANNEL NUMBER 
L-___ STATUS 

o = AID CURRENTLY IDLE 
1 = CONVERSION IN PROCESS 

AID RESULT: 
L-____ ~__ LEAST SIGNIFICANT 2 BITS 

MOST SIGNIFICANT BYTE 
270061-13 

Figure 2-19. A to D Result/Command Register 

controlled by software flags which are located in the 
AD_RESULT/AD_COMMAND Register shown 
in Figure 2-19. ' 

2.3.6. PWM REGISTER 

Analog outputs are just as important as analog inputs 
when connecting to a piece of equipment. True digital 
to analog converters are difficult to make on a micro­
processor because of all of the digital noise and the 
necessity of providing an on chip, relatively high cur­
rent, rail to rail driver. They also take up a fair amount 
of silicon area which can be better used for other fea­
tures. Th~ A to D converter does use a D to A, but the 
currents Involved are very small. 

For many applications an analog output signal can be 
replaced by a Pulse Width Modulated (PWM) signal. 
This signal can be easily generated in hardware, and 

takes up much less silicon area than a true D to A. The 
signal is a variable duty cycle, fixed frequency wave­
f?rm that can be integrated to provide an approxima­
tion to an analog output. The frequency is fixed at a 
period of 64 microseconds for a 12 MHz clock speed. 
~ntrollin~ the PWM simply requires writing the de­
sired duty cycle value (an 8-bit value) to the PWM 
Register. Some typical output waveforms that can be 
generated are shown in Figure 2-20. 

Converting the PWM signal to an analog signal varies 
in difficulty, depending upon the requirements of the 
system. Some systems, such as motors or switching 
power supplies actually require a PWM signal, not a 
true analog one. For many other cases it is necessary 
only to amplify the signal so that it switches rail-to-rail, 
and then filter it. Switching rail-to-rail means that the 
output of the amplifier will be a reference value when 
the input is a logical one, and the output will 

21-137 



Ap·248 

be zero when the input is a logical zero. The filter can 
be a simple RC network or an active filter. If a large 
amount of current is needed a buffer is also required. 
For low output currents, (less than 100 microamps or 
so), the circuit shown in Figure 2-21 can be used. 

The RC network determines how quiet the output is, 
but the quieter the output, the slower it can change. 
The design of high accuracy voltage followers and ac­
tive filters is beyond the scope of this paper, however 
many books on the subject are available. 

DUTY PWMCONTROL 
CYCLE REGISTER VALUE OUTPUT WAVEFORM 

0% 00 
HI 
LO 

10% 25 ~~Jl ~ ____ ~n~ ____ ~n~ __ __ 

!50% 128 HI 
LO 

90% 230 HI ...J 
LO u u 

19.1% 255 
HI I LO 

270061-14 

Figure 2-20. PWM Output Waveforms 

VCC 

*1/2 VQ3001P 

270' t-____ ~5·V1K~----~-----ANALOG 
OUT PWM----~~~----. 

270061-15 
'This resistor limits Rise Time to reduce spikes and high ,requency noise. 

Figure 2-21. PWM to Analog Conversion Circuitry . 

21-138 



AP-248 

3.0 BASIC SOFTWARE EXAMPLES 

The examples in this section show how to use each I/O 
feature individually. Examples of using more than one 
feature at a time are described in section 4. All of the 
examples in this ap·note are set up to be used as listed. 
If run through ASM96 they will load and run on an 
SBE·96. In order to insure that the programs work, the 
stack pointer is initialized at the beginning of each pro· 
gram. If the programs are going to be used as modules 
of other programs, the stack pointer initialization 
should only be used at the beginning of the main pro· 
gram. 

To avoid repetItIve declarations the "include" file 
"DEM096.lNC", shown in Listing 3·1, is used. ASM· 
96 will insert this file into the code file whenever the 
directive "INCLUDE DEM096.INC" is used. The file 
contains the definitions for the SFRs and other vari· 
abies. The include statement has been placed in all of 
the examples. It should be noted that some of the lab· 

els in this file are different from those in the file 
8096.lNC that is provided in the ASM·96 package. 

3.1. Using the 8096's Processing 
Section 

3.1.1. TABLE INTERPOLATION 

A good way of increasing speed for many processing 
tasks is to use table lookup with interpolation. This can 
eliminate lengthy calculations in many algorithms. Fre· 
quently it is used in programs that generate sine wave· 
forms, use exponents in calculations, or require some 
non·linear function of a given input variable, Table 
lookup can also be used without interpolation to deter· 
mine the output state of I/O devices for a given state of 
a set of input devices. The procedure is also a good 
example of 8096 code as it uses many of the software 
features. Two ways of making a lookup table are de· 
scribed, one way uses more calculation time, the second 
way uses more table space. 

J •••• to 011 ........ oil- ...... 11 .. *_ .... II _ ••• _oil_oil .. oil .... " •• fl. fl ......... _oil .............. _ ..... *_ fl ... " 111._ •• 

: DEH096.INC - DEFINITION OF SYMBOLIC NAMES FOR THE I/O REGISTERS OF THE 8096 

J *_._ .. _ ............... * ••• _ .. _ •• ____ .... _ •••••• _ ...... _._ .................... _ ••••••••• 
, 
ZERO 
AD COMMAND 
AD-RESULT LO 
AD-RESULT=UI 
USI HODE 
HSO=TIME 
HSI TIME 
HSO-COMMAND 
HSI-STATUS 
SBUF 
INT MASK 
JNT-PENDING 
SPCON 
SPSTAT 
WATCHDOG 
TIMERl 
TIMER2 
PORT 0 
BAU 0 REG 
PORTi 
PORT2 
lOCO 
1050 
I OC 1 
1051 
PWH CONTROL 
SP -

RSEG ill t ICn 

EOU 
"OU 
"OU 
EOU 
"OU 
EOU 
EOU 
EOU 
"OU 
EOU 
EOU 
"OU 
EOU 
ROU 
EOU 
EOU 
EOU 
BOU 
BOU 
BOU 
BOU 
BOU 
BOU 
BOU 
"OU 
"OU 
"OU 

AX DSW 
ox DSW 
ax DSW 
cx DSW 

At 
AH 

BOU 
"OU 

OOh;WORD , R/W 
02H:BYTE W 
02HaBYTE , R 
03H~BYTE , R 
03H:BYTE W 
04H:HORD W 
04HIWORD , R 
06H:BYTE , M 
06H;8YTE R 
07H:BYTE RIM 
08HaBYTE , R/W 
09H,BYTE RIM 
llKIBYTE 
llnlBYTE 
DAH,DYTE , II WATCHDOG TIMER 
DAH ,WORD , R 
DeBIWORD , R 
OEH,BYTB , R 
OEH:BYTB M 
OFH:BYTE R/W 
lOH:8YTE RIM 
15H,BYTB W 
lSH:BYTE , R 
16H,BYTE M 
16H:BYTB , R 
I1HaBYTE , M 
18HIWORO RIM STACK POINTER 

AX :BYTE 
(AX+l) ,BYTE 

270061-16 

Listing 3-1. Include File DEMO.96.1NC 

21·139 



Ap·248 

In both methods the procedure is similar. Values of a 
function are stored in memory for specific input values. 
To compute the output function for an input that is not 
listed, a linear approximation is made based on the 
nearest inputs and nearest outputs. As an example, con­
sider the table below. 

If the input value was one of those listed then there 
would be no problein. Unfortunately the real world is 
never so kind. The input number will probably be 259 
or something similar. If this is the case linear interpola­
tion would provide a reasonable result. The formula is: 

. upperOutput·Lower Output 
Delta Out = Upper Input.Lower Input '(Actuallnput·Lower Input) 

Actual Output = Lower Output + Delta Out 
For the value of 259 the solution is: 

Delta Out = 900400 '(259-200) = 500 '59 = 5 ' 59 = 295 
300-200 100 

Actual Output = 400 + 295 = 695 

To make the algorithm easier, (and therefore faster), it 
is appropriate to limit the range and accuracy of the 
function to only what is needed. It is also advantageous 
to make the input step (Upper Input-Lower Input) 
equal to a power of 2. This allows the substitution of 
multiple right shifts for a divide operation, thus speed­
ing up throughput. The 8096 allows multiple arithmetic 
right shifts with a single instruction providing a very 
fast divide if the divisor is a power of two .. 

For the purpose of an example, a program with a 12-bit 
output and an 8-bit input has been written. An input 
step of 16 (2··4) was selected. To cover the input range 
17 words are needed, 255/16 + 1 word to handle val­
ues in the last 15 bytes of input range. Although only 
12 bits are required for the output, the 16-bit architec­
ture offers no penalty for using 16 instead of 12 bits. 

The program for this example, shown in Listing 3-2, 
uses the definitions and equates from Listing 3-1, only 
the additional equates and defmitions are shown in the 
code. 

Input Value Relative Table Address Table Value 

100 0001H 
200 0002H 
300 0003H 
400 0004H 

$TITLE(IINTERl.APTI Interpolation routine 1'. 
I rlJ.' I 1096 AS8~.bly code for table lookup and interpolation 

$INCLUD8(,Fl,DSM096.INCI 

RSSG at 228 

, Include de.o definlt~ona 

1 
1 
1 
1 

r Actual Input Value 

100 
400 
900 

1600 

IN V"L, 
,."iLB LON, 
TABLB-HIGH. 
IN Orr. 
IN-DIPB 
TAB DIP. 
OUT. 
RBSUL", 
OU'I'_DII'1 

dab 
dow 
dow 
dow 
equ 
dow 
dow 
dow 
dol 

IN DIP 
1 

• Up~er Input - Lower Input 
,byte 

, upper Output - Lover Output 
1 
1 
1 , Delta Out 

csse at 20808 

LD 8 •• '100B 

270061-17 

listing 3·2. ASM-96 Code for Table Lookup Routine 1 

21-140 



lookr 

no Inc: -

cseg 

table: 

END 

LDB 
SHRB 
ANDB 

LDBZE 
LD 

LD 

AL. 
AL. 
AL. 

IN VAL 
13-
1111111108 

AP-248 

J Load teap with Actual Value 
Divide the byte by 8 
Insure AL 1. a vord addr ••• 
Thi. effectively divide. AL by 2 
&0 AL - IN_VAL/16 

AX, AL I 
TABLE_LOW, TABLE 

Load byte AL to word AX 
(AX} J TABLE LOW 1. loaded with the value 

in the table at table location AX 

(TA8LE+2) (AXI I TABLE HIGH I. loaded with the 
• value tn the table at table 
I location AX+2 

(The next value in the table) 

SUB TAB_DIP, TABLE_HIGH, TABLE LOW 
I TAB_DIP-TABLE_HIGH-TABLE_LOW 

ANDB 

LOBZE 

SHRAL 

ADD 

SURA 

AODC 

ST 

BR 

AT 2100H 

DeW 
Dew 
Dew 
Dew 
Dew 

IN_DIPS, IN_VAL, fOPU 

IN_DIF, IN_DIF'S 

I IN DIPS-least significant 4 bits 
ot IN VAL 

I Load byte IN_DIPS to word IN DIP 

OUT DIP, 14 -
OUT, OUT DIF, 

OUT, 14 

OUT, 

OUT, RESULT 

look 

OOOOH, 2000H, 
SOOOR, 6AOOH, 
7BOOH, 7DOOH, 
5DOOH, 4 BOOR, 
1000H 

Output difference· 
Input-difference.Table difference 

I Dlvide-by 16 (2**4) 

TABLE_LOW, Add output difference to output 
generated with truncated IN VAL 
as input 

1 Round to 12-bit answer 

, Round up if Carry -

1 Store OUT to RESULT 

J Branch to -look;-

3400H, 4e OOH J A random function 
7200H, 7900H 
7600H, 6DOOH 
3400H, 2200H 

270061-16 

Listing 3-2. ASM-96 Code for Table Lookup Routine 1 (Continued) 

If the function is known at the time of writing the soft­
ware it is also possible to calculate in advance the 
change in the output function for a given change in· the 
input. This method can save a divide and a few other 
instructions at the expense of doubling the size of the 

lookup table. There are many applications where time 
is critical and code space is overly abundant. In these 
cases the code in Listing 3-3 will work to the same 
specifications as the previous example. 

$TITLB('INTER2.APTI Interpolation routine 2') 

III JIJI 
,rl III J 

B096 Assembly code for table lookup and interpolation 
U8ing tabled values in place of division 

$lNCLUDE(:FIIOEH096.INC) I Include demo definitions 

RSEG • t 24H 

IN VAL: 
TABLE LOW: -TABLE INC, 
IN DIPJ -IN DIPD 
OUT; 
RESULT; 
OUT DIP: -

dab 
dow 
dow 
d.w 
eq u IN DIP 
dow 1 
dow 1 
d., 1 

Ibyte 

I Actual Input Value 
J Table value for. function 
J Incremental change In function 
I Upper· Input - Lower Input 

I Delta Out 

270061-19 

Listing 3-3. ASM-96 Code For Table Lookup Routine 2 

21-141 



AP-248 

CSBa at 2010R 

LD BP, 'lOOR I Initlall.e BP to top of reg. ftle 

look. AL, IN VAL - ., Load t •• p .v' th Actual Value LDa 
SRRa 
ANDa 

AI., '] Divide the byte by I 
AI., , ll1l1110a ';gr~eet~ •• fi:er;r~i:f~':·IL by 2 

00 AI. - IN_VAL/16 
LDaUI 

LD 

LD 

AIIDB 

LDBIE 

AX, AL I Load 

IN_DIP8, IN_VAL~ 'OPH 

IN_DIP, IN_DIPIt 

byte AI. to word AX 

• TABLa LOM Ie loaded with the yalue 
In the value table at location AX 

YA8LB INC Ie 10a4ed with the value 
In, thi. lncre •• nt table at 

r location AX 

,< IN DIPB-le •• t .'9nlflcant 4 bitl 
• of IN VAL 

0' Load bite IN_DIF8 to word IN_orr 

MUL OUT_orr, IN_Dlr, TABLa INC 
J output difference· 

tnput:dlfference*lncremental change 

ADD OUT, OUT_DIP. TABLE_LOW r Add output dlfterence "to output 
generated with truncated IN VAL 
ali input . -

SHR OUT, ,. Round to 12-blt ansver 
ADDC OUT, aero Round up if Carry ~ 1 

no_Inc: 'S'I' 
aR 

aaeg AT 2100H 

val table: 

OUT, RBSULT 
look 

Store OUT to RESULT 
Branch to -look:-

- DCN 
DCN 
DCN 
DCII 
DCII 

OOOOH, 2000H, 3400H, 4eOOH J A randOM function 
5DOOR, IAOOR, 7200R, 7800H 
7BOOH, 7DOOR, '600H, 6000R 
5000H, 4B~OH, l4008, 2200H 
1000H' 

inc table: 
DCII 
DCII 
DCII 
DCII 

0200H, 
OODOR, 

00020H, 
OrEBOR, 

0140H, 0110H, 0110H 
0080B, 0060B, OO]OH 

OFFIOH, OFF70H, OFFOOR 
OrB908, OFB80R, OFB80R 

Table of 'ncre_ental 
differences 

END 

270061-20 

Listing 3-3. ASM-96 Code for Table Lookup Routine 2 (Continued) 

By making use of the second lookup table, one word of 
RAM was saved and 16 state times. In most cases this 
time savings would not make much' of a differeJice, but 
when pushing the processor to the limit, microseconds 
can make or break a design. 

3.1.2. PL/M-96 

Intel provides high level hmguage support for most of 
its micro processors and microcontrollers in the form of 
PL/M. Specifically, PL/M refers to a family of lan­
guages, each similar in syntax, but specialized for the 
device for which it generates code. The PL/M syntax is 
similar to PL/l, and is easy to learn. PLM-96 is the 
version of PL/M used for the 8096. It is very code 
efficient as it was written specifically for 'the MCS-96 
family. PLM-96 most closely resembles PLM-86, al­
though it has bit and I/O functions similar to·PLM-51. 
One line of PL/M-code can take the place of many 

lines of assembly code. This is advantageous to the pro­
grammer, since code can usually be written at a set 
number of lines per hour, so the less lilIes of code that 
need to be written, the faster the task can be completed .. 

If the first example of interpolation is considered, the 
PLM-96 code would be written as shown in Listing 3-4. 
Note that version 1.0 of PLM-96 does not support 32-
bit results of 16 by 16 multiplies, so the ASM-96 proce­
dure "DMPY" is used. Procedure DMPY, shown in· 
Listing 3-5, must be aSsembled and linked with the 
compiled PLM-96 program using RL-96, the relocator 
and linker. The command line to be used is: 

RL96 PLMEX1.0BJ, DMPY.OBJ, PLM96.LIB & 
to PLMOUT.OBJ ROM (2080H-3FFFH) 

21-142 



AP-248 

1* PLM-96 CODE FOR TABLE LOOK-UP AND INTERPOLATION *' 
PLMEX: DO, 

DECLARE IN VAL 
DECLARE TABLE LOW -DECLARE TABLE HIGH -DECLARE TABLE DIP -DECLARE OU,. 
DECLARE RESULT 
DECLARE OU" DIP 
DECLARE TEMP 

DECLARE TABLECl'. 
OOOOH, 2000H, 
50008, 6AOOH, 
7800H, 1000H, 
5DOOB. 480Dn, 
1000H), 

WORD PUBLIC, 
INTEGER PUBLIC, 
IN,.SGER PUBLIC, 
IN,.EGER PUBLIC, 
INTBGER PUBLIC, 
INTEGER PUBLIC, 
LONG IN,. PUBLIC, 
WORD PUBLIC, 

INTEGER DA'2'A 
3400H, teaDH, 
7200H, 7800R, 
7600H, 60DOR, 
3400H, 2200H, 

'* A rando. function *' 

DMPY; PROCBDURE (A,B) LONGINT EXTERNAL, 
DBCLARB (A,B) INTEGER. 

END DMPYr 

LOOP, 
TEMP-SHRIIN VAL,C), 1* T£NP La the Domt significant 4 bit. of IN_VAL */ 

TABLE LOW-,.ABLE(TEMP), 
TABLE=HIGH-TABLE(TEMP+l), 

/* If -TBMp· val replaced by ·SHR(IN VAL,t)­
,- The code would work but the 8096 would 
1* do tvo ohlftD 

0/ 
./ 
./ 

OUT_Dlp-DMPY (TABLB_DIP,SIGNED,," VAL AlID OFH)) /16, 

OUT-SAR{(TABLB_LOW+OUT_DIP),4)J /. BAR pertor •• an arith.etic right shitt, 
in this c~se 4 places are Bhlfte~ ./ 

IF CARRY-O THEN RESULT-OUT, /* Uoing the hardware flags .uat be done */ 
ELSE RESULT-OUT+IJ /. with care to ensure the flag ia tested */ 

/. in the desired lnotructlon sequence ./ 
GOTO LOa P J 

/. END OF PLH-96 COCE ./ 

ENOl 

Listing 3-4. PLM-96 Code For Table Lookup Routine 1 

$TITLE('HULT.APT: 16*16 Dultipiy procedure tor PLH-96') 

rseg 

DMPY: 

BND 

SP 

EXTRN 

PUBLIC 

POP 
POP 
MUL 

BR 

EOU l8H ""ord 

PLMRBG Ilong 

DMPY 

PLMRBG+4 
PLNRSG 
PLNRBG, (sPI+ 

(PLHRBG+41 

I Multiply two in~eger8 and return a 
I longlnt result In AX, DX registers 

I Load return address 
I Load one operand 

I Load aecond operand and Incre •• nt SP 

I Return to PLM code. 

Listing 3-5. 32-Bit Result Multiply Procedure For PLM-96 

21-143 

270061-21 

270061-22 



Ap·248 

Using PLM, code requires less lines, is much faster to 
write, and easier to maintain, but may take slightly 
longer to run. For this example, the assembly code gen­
erated by the PLM-96 compiler takes 56.75 microsec­
onds to run instead of 30.75 microseconds. If PLM-96 
performed the 32-bit result multiply instead of using 
the ASM-96 routine the PLM code would take 41.5 
microseconds to run. The actual code listings are 
shown in Appendix A. 

3.2. Using the 1/0 Section 

3.2.1. USING THE HSI UNIT 

One of the most frequent uses of the HSI is to measure 
the time between events. This can be used for frequency 
determination in lab instruments, or speed/acceleration 
information when connected to pulse type encoders. 
The code in Listing 3-6 can be used to determine the 
high and low times of the signals on two lines. This 
code can be easily expanded to 4 lines and can also be 
modified to work as an interrupt routine. 

Frequently it is also desired to keep track of the num­
ber of events which have occurred, as well as how often 
they are occurring. By using a software counter this 
feature can be added to the above code. This code de­
pends on the software responding to the change in line 
state before the line changes again. If this cannot be 
guaranteed then it may be necessary to use 2 HSI lines 
for each incoming line. In this case one HSI line would 
look for falling edges while the other looks for rising 
edges. The code in Listing 3-7 includes both the counter 
feature and the edge detect feature. 

The uses for this type of routine are almost endless. In 
instrumentation it can be used to determine frequency 
on input lines, or perhaps baud rate for a self adjusting 
serial port. Section 4.2 contains an example of making a 
software serial port using the HSI unit. Interfacing to 
some form of mechanically generated position informa­
tion is a very frequent use of the HSI. The applications 
in this category include motor control, precise position­
ing (print heads, disk drives, etc.), engine control and 

$TITLE('PULSE.APTa Measuring pulses using the HSI unit') 

$INCLUOE(OEH096.INCI 

[seg 

caeq 

"al t I 

contina 

hBl~lOI 

h.1 hi. -

at 28H 

HIGH TIME1 d ... 
LOW ilMEs d ... 
PERIOD; dB .. 
HI -LO -

at 

LD 
LD8 
L08 

ADD 
J8S 
JBC 

LD8 

LD 

J8S 

87 
SUB 
Ba 

87 
SUB 
BR 

BND 

EDGEI dB .. 
EDGE, dB" 

2080H 

SP, 'lOOH 
lOCO, '000000018 
BSI_HODB, .000011118 

• Bnable HSI 0 
• RSJ 0 look fot elther. edge 

PERIOD, HIGH TIMB, LOW ~IM8 
10Sl, 6, contin , If rIPO Is full 
IOS1, " walt ,Walt while no pulse 1. entered 

• Load ItatuB, Note that r •• 4Ing 
RBI_7IMB c1e ••• HSI_S7A7US 

ax, H91_TIM8 

AL, 1, hal_hi 

ax, LO BDGB 

r Load the HBI_TIMS 

I J u. P If H St .0 I. hi 9 h 

HIGH TiME. LO BOGB, HI BDGB 
,,.It-

8X, HI BDGB 
LOW TIME, HI BOOB, LO_BDGB 
wait 

Listing 3-6. Measuring Pulses Using The HSI Unit 

21-144 

270061-23 



AP-248 

transmission control. The HSI unit is used extensively 
in the example in section 4.3. 

HSO line not change so quickly that it changes twice 
between consecutive reads of I/O Status Register 0, 
(IOS0). 

3.2.2. USING THE HSO UNIT 

Although the HSO has many uses, the best example is 
that of a multiple PWM output. This program, shown 
in Listing 3-8, is simple enough to be easily understood, 
yet it shows how to use the HSO for a task which can 
be complex. In order for this program to operate, an­
other program needs to set up the on and off time vari­
ables for each line. The program also requires that a 

A very eye catching example can be made by having the 
program output waveforms that vary over time. The 
driver routine in Listing 3-10 can be linked to the above 
program to provide this function. Linking is accom­
plished using RL96, the relocatable linker for the 8096. 
Information for using RL96 can be found in the 
"MCS-96 Utilities Users Guide", listed in the bibliogra­
phy. In order for the program to link, the register dec-

$~I~LB ('BNNSI.AP~. ENNANCBD 8S1 PULSB ROU~INB') 

$INCLUDB(DBM09&.INC) 

RSBG A'r 28N 

cBeg 

t nl t I 

",at t. 

'rIME. OSN 
LAS'r_RISB. DSN 
LAST .ALL. 'DIM 
RSI SO.' OSB 
1051 BAK. DSB 
PBRIOD. DSN 
LOW ~IM., DSN 
HIGH ~IMB. DSN 
COUNT. DSN 

at 2080N 

LO SP.1l00N 

LOB IOC1.100100l01B r Oiaabl. NSO ••• NSO.5, USI IN'r-flrot, 
• 8n'.ble PWN,TXD,TIMBR1_ovirLOW_INT 

LOB 
LOB 

ANDB 

HSI MOOB,Il00ll0018 
'I OC jj, 1000001111 

r' •• t hoLl -r hoLO + 
• Bnable hal 0,1 

72 CLOCI.~ZCLI, T2RST-T2RST 
Cl.ar tl •• ,2 

, Cl.ar IOSI 81.1.7 
ORB 

10Sl BAK,IOlll11118 
10Sl::BU,IOSl J Store Into-te.p to avoid cl •• ring 

I other flag8 ~htch •• y be needed 
3BC 

ANDB 
LO 

3BS 
3BS 
BR 

a rlae: SUB - SUB 
LD 
BR 

• fall. SUB - SUB 
LD 

'nere.enta 
INC 

no en t I BR -
END 

IOSl_BAIt,7,valt If hat 1. not triggered then 
ju.ptowalt 

HSI SO,HSI S'rA'rUS,1010l0l018 
TIMi, RSI_iIMS 

BSJ SO,O',a r18. 
HSI-SO,2,.-tall 
no_cnt -

LOW TIMB, TIMB, LAST PALL 
PBRIOO, TIMB,LAST Rli8 
LAS'r RISB, 'rIMB -
lnere •• nt 

HIGH 71MB, TIMB, LAST RISB 
PBRIOD,,7IMI,LAST PALL 
LAST_PALL, ~IMB -

COUN'r 

wal t· 

Listing 3-7. Enhanced HSI Pulse Measurement Routine 

21-145 

270061-24 



AP-248 

$TITLE C'HSOPWM.APTf 8096 EXAMPLE PROGRAM POR PMM OUTPUTS') 

I Thl. prograM viii provide ) ~~H out~ut. on NSO pins 0-2 
Th~ Input par •• etera paa.ed to the prog, •• are, 

HSO ON H 
Nso:orr_N 

NSO O~ tiM. for pin N 
HSO '~ff ttM. f~r pin N 

Where I Tl_ •• are In,·ti •• rl cycle. 
N takea values frOM 0 to 1 

111"'" ,,, """",.""""", , •• "rl'" ","'111 r." IJIII I 

$INCLUDECDBN096.INC) 

RSEG U' 28N 

USO ON 0, DSM 
NSO-OFF O. DSN 
NSO-ON i • DSN 
HSO:OFF 1 • DSN 
OLD 8TAi. dob 
NBW:S'I'ATa dab 

AT 2080H 

va' t I 

LD 
LD 
LD 
LD 
LD 
ANDB 
XOaB 

JBS 
NOP 

atore atat, 
- ANDB 

CMPB 
JB 
XORB 

check 0: 
JBC 
JBS 

aet_on 01 
LOB 
ADD 
Ba 

set_off 0, 
LOB 
ADD 

check I, 
JBC 
JBS 

aet_on I, 
LOB 
ADD 
BR 

aet_off I, 
LOB 
~DD 

check done. 
LOB 

8P,I100B 
HSO ON 0, ,100B 
HSO-OPF 0, .. OOH 
HSO-ON i, '280H 
HSO-OPr 1, '280B 
OLD-STAi, 1080, 'OPH 
OLD:STAT, 10PH 

I Set tnltial valu ••. 
Note that tt •• s .uat be lon', enouCJh 
to allow the ro~tlne to run .fter each 

r line chanqe. 

1050, " walt , LOOp until HSO holdl~9 register 
I Is e. p t,y 

, For opperatlon with interrupts 'store stat:' would be the 
entry po'~t of the, routine. -
Mote 'that a DI or PUSHP .lght have to be added. 

NEN S~A~, 10SO, 'OPH 
OLD-STAT, NEN_STAT 
walt 
OLD_STAT, NBN_STAT 

OLD STA~, 0, check 1 
NBW:STAT, 0, eet_olf 

HSO COMMAND, 1001100008 
HSO-TIMB, TIMERI, HSO_OFF~O 
check_l 

HSO COMMAND, '000100008 
HSO:TIME, TIMERI, HSO_ON 

OLD STAT, 1, check done 
NEW:STAT, 1, .et_olf_l 

HSO COMMAND, 100110001B 
HSO-TIMB, TIMBRl, RSO opp 
check_done -

HSO COMMAND, 1000100011 
HSO:TIME, TIMBal, H80_0B 

, Bto,re new atatua of HSO 

I If atatuB haen't changed 

Set IISO for tl.erl,· .et pin 0 
71ae to set pin· T"aerl value 

+ TIMe for pln tn b~ low 

Set HSO for tl.erl, clear pIn 0 
71.e to clear pin. Tia.rl value 

+ Tim. for pIn to be high 

I Set H&O for ti •• rl, •• t pin I 
I Tia. to .et pin - Tt •• rl value 

I s.t H80 for t1 •• r~, cl.ar pin 1 
Ti.e to cl •• r pin. T1 •• r1 value 

+ 71 •• for pin to b. high 

I Store current atatua and 
• walt for interrupt flag 

Bit walt 

IND 

" uee .BT If ·walt· ,. called fro. another routine 

Listing 3-8. Generating a PWM with the HSO 

21-146 

270061-25 



AP-248 

laration section (i.e., the section between "RSEG" and 
"CSEG") in Listing 3-8 must be changed to that in 
Listing 3-9. 

quency twice that of the first one. A slightly different 
driver routine could easily be the basis for a switching 
power supply or a variable frequency/variable voltage 
motor driver. The listing of the driver routine is shown 
in Listing 3-10. The driver routine simply changes the duty cycle of the 

waveform and sets the second HSO output to a fre-

HSEG 

cseg 

NOTE: Use this file to replace the declaration section of 
the nso PWM program froN -$INCLUDE(DEH096.INC)- through 
the line prior to the label ·walt-. Alao change the last 
branch in the program to a -RET-. 

D STATI DSB 1 
extrn HSO ON 0 lword . HSO Opp 0 :word - - - -extrn HSO ON 1 :word HSO Opp 1 :word 
extrn HSO -TIME :word HSO -COMMAND ibyte . 
exten TIMERl Iword IOSO :byte 
extrn SP ; wo.( d 

public OLD STAT 
OLD STAT: - dab 
NEW:STATI dab 

PUBLIC wait 

listing 3-9. Changes to Declarations for HSO Routine 

$TITLE(IHSODRV.AP~: Driver Module for HSO PWM program'» 

HSODRV MODULE MAIN, STACKSIZE(8) 

PUBLIC HSO ON 0 , HSO OFF 0 
PUBLIC HSO-ON-l, HSO-OFP-l 
PUBLIC HSO-TIME, HSO-COMMAND 
PUBLIC SP: TIMERI , 1050 

$INCLUDEIDEM096.INC) 

['S8g at 288 

EX'I'RN abyte 

USO ON 01 dow 
HSO-OP~ oi dew 
HSO-ON II dew 
HSO-OPP_lz dew 
COUntl dab 

CRag at 20,80H 

EXTRN va it len try 

strt: DI 
SP. '100H LD 

ANDB 
XORB 

OLD S'f'A'I' , IOSO, '01'8 
OLD:STA'I', IOrH 

in 1 t 1 a 1 I 

LD 

loopi LD 
SUB 
LD 

CX. '0100H 

AX, '10008 
BX, AX, ex 
AX, ex 

ST AX~ RSO ON 0 
ST BX. HSO:OPP_o 

270061-26 

270061-27 

Listing 3-10. Driver Module for HSO PWM Program 

21-147 



inter Ap·248 

SHR 
SRR 
ST 
ST 

AX ,11 
ax, II 
IIX, HSO ON 1 
ax, Hso:orr_l 

CALL' ".tt 

CX UC 
CM. 
aliI 

CX, IOOPOOH 
loop 

aR Inl tlol 

SliD 
270061-28 

Listing 3-10. Driver Module for HSO PWM Program (Continued) 

Since the 8096 needs to keep track of events which of­
ten repeat at set intervals it is convenient to be able to 
have Timer 2 act as a programmable modulo counter. 
There are several ways of doing this. The first is to 
program the HSO to reset Timer 2 when Timer 2 
equals a set value. A software timer set to interrupt at 
Timer 2 equals zero could be used to reload the CAM. 
This software method takes up two locations in the 
CAM and does not synchronize Timer 2 to the external 
world. 

'To synchronize Timer 2 externally the T2 RST (Timer 
2 ReSeT) pin can be used. In this way Timer 2 will get 
reset on each rising edge of T2 RST. If it is desired to 
have an interrupt generated and time recorded when 
Timer 2 gets reset, the signal for its reset can be taken 
from HSI.O instead of T2RST. The HSI.O pin has its 
own interrupt vector which functions independently of 
the HSI unit. 

Another option available is to use the HSI.l pin to 
clock Timer 2. By using this approach it is possible to 
use the HSI to measure the period of events on the 
input to Timer 2. If both of the HSI pins are used 
instead of the T2RST and T2CLK pins the HSIO unit 
can keep track of speed and position of the rotating 
device with very little software overhead. This type of 
setup is ideal for a system like the one shown in Figure 
3-1, and similar to the one used in section 4.3. 

In this system a sequence of events is required based on 
the position of the gear which represents any piece of 
rotating machinery. Timer 2 holds the count of the 
number of tooth edges passed since the index mark. By 
using HSI.l as the input to Timer 2, instead of T2 
CLK, it is possible to determine tooth count and time 
infornmtion through the HSI. From this information 
instantaneous velocity and acceleration can be calculat­
ed. Having the tooth edge count in Timer 2 means 

HSI.1 OR T2CLK 

TIMER 2 HOLDS TOOTH COUNT 

HSI MEASURES PULSE PERIOD 

LJ--<E::------HSI.O OR T2RST 

RESETS TIMER 2 AND/OR 
CAUSES INTERRUPT 

Figure 3-1. Using the HSIO to Monitor Rotating Machinery 

21-148 

270061-29 



AP-248 

that the HSO unit can be used to initiate the desired 
tasks at the appropriate tooth count. The interrupt rou­
tine initiated by HSI.O can be used to perform any soft­
ware task required every revolution. In this system, the 
overhead which would normally require extensive soft­
ware has been done with the hardware on the 8096, 
thus making more software time available for control 
programs. 

3.2.3. USING THE SERIAL PORT IN MODE 1 

Mode I of the serial port supports. the basic asynchro­
nous 8-bit protocol and is used to interface to most 
CRTs and printers. The example in Listing 3-11 shows 
a simple routine which receives a character and then 

transmits the same character. The code is set up so that 
minor modifications could make it run on an interrupt 
basis. Note that it is necessary to set up some flags as 
initial conditions to get the routine to run properly. If it 
was desired to send 7 bits of data plus parity instead of 
8 bits of data the PEN bit would be set to a one. Inter­
processor communication, as described in section 2.3.4, 
can be set up by simply adding code to change RB8 and 
the port mode to the listing below. The hardware 
shown in Figure 3-2 can be used to convert the logic 
level output of the 8096 to ± 12 or 15 volt levels to 
connect to a CRT. This circuit has been found to work 
with most RS-232 devices, although it does not con­
form to strict RS-232 specifications. If true RS-232 
conformance is required then any standard RS-232 
driver can be used. 

STITLE('SP.APTI SERIAL PORT DEMO PROGRAM') 

$INCLUDE(DEM096.INCI 

[seg at 20H 

CHR; dab 
SPTEHP; dab 
TEMPO, dab 
TEMPI; dab 
ReV_FLAG, dab 

C8e9 at 20aCH 

cseg at 2080H 

LO SP, ,100H 

LD8 

BAUD HIGH 
BAUO=LOW 

IOC1, '001000008 J Set P2.0 to TKO 

, Baud rate. input frequency / (6'*baud val) 
, baud_val • (input frequencY/'t) / baud rate 

equ 

equ 
equ 

39 I 39 - (12,OOO,OOO/61)/laOO baud 

((baud val-1)/256) OR 80H 
(baud_val-1) MOD 256 

, Set MBB to 1 

LDB BAUD REG, 'BAUD LOW 
Loa BAUD=REG, .BAUO:HIGH 

loopt 

LDD 

ST8 
LD8 

LD8 
01 
DR 

ser port lntl 
- PUSH' 

rd aga1nl 
- L08 

OR8 
AKOB 
JNE 

SPCOK, '010010018 J Enable recetver, Mode 1 

, The serIal port 18 now initialized 

SOUP, eRR 
TBMPO, 1001000008 

, Clear .er1al Port 
I Set TI- te.p 

INT_MASK, 1010000008 I Bnable SerIal Port Interrupt 

loop , Wait for .erlal port interrupt 

SPTEMP, S'S'fA'l" 
TBMPO, SPTEMP 
SPTBMP,I01100000B 

This section of code can be replaced 
with ·ORB TEMPO, SP STAT- when the 

J aerial port TI and RI bug. are fixed 

rd_agaln I Repeat until TI and RI are properly cleared 

Listing 3-11. Using the Serial Port in Mode 1 

21-149 

270061-30 



intJ 
get_byte; 

JBC 
9TB 
ANOB 
LOB 

put byte: 
JBC 
JBC 
LOB 
ANOB 

ANOB 
CMPB 
JNE 
LOB 
DR 

el< rev; 
eLAS 

continue; 
POPP 
RET 

ENO 

AP-248 

TEMPO, 6, put byte 
saup, CHR -
TEMPO, 110111111D 
RCV_FLAG, 'OFFH 

Rev FLAG, 0, continue 
TEMPO, S, continue 
S.BUF, CHR 
TEMPO, 111011111B 

CHR, 1011111118 
CHR,tODH 
clr rev 
CHR-; 10AH 
conti nue 

J If RI-teMp is not set 
Store byte 
eLR RI-tellp 

I Set bit-received flag 

It receive flag Is cleared 
If TI was not set 

I Send byte 
I eLR TI-teap 

I This section of code append. 
I an LF after a eR la sent 

I Clear bit-received flag 

Listing 3-11. Using the Serial Port in Mode 1 (Continued) 

RXD~----------------------------------------------______ --, 

Vee 

R2 

TXD .-Yv ..... - ..... --I T1 
2N2907 

R4 

D2 

D2, D3 = 1N914 
R2-R6 = 1800 n 

(TO RS232 PIN 3) 

RS 

Rev DATA 
(FROM RS232 PIN 2) 

D1 

Vee 

R6 

T2 
2N2222 

SIGNAL GROUND (RS232 PIN 7) 

Figure 3-2. Serial Port Level Conversion 

21·150 

270061-31 

270061-32 



intJ Ap·248 

3.2.4. USING THE A TO 0 

The code in Listing 3-12 makes use of the software flags 
to implement a non-interrupt driven routine which 
scans A to D channels 0 through 3 and stores them as 
words in RAM. An interrupt driven routine is shown in 
section 4.1. When using the A to D it is important to 
always read the value using the byte read commands, 
and to give the converter 8 state times to start convert­
ing before reading the status bit. 

Since there is no sample and hold on the A to D con­
verter it may be desirable to use an RC filter on each 
input. A lOOn resistor in series with a 0.22 uf capacitor 
to ground has been used successfully in the lab. This 
circuit gives a time constant of around 22 microseconds 
which should be long enough to get rid of most noise, 
without overly slowing the A to D response time. 

4.0 ADVANCED SOFTWARE 
EXAMPLES 

Using the 8096 for applications which consist only of 
the brief examples in the previous section does not 

really make use of its full capabilities. The following 
examples use some of the code blocks from the previous 
section to show how several I/O features can be used 
together to accomplish a practical task. Three examples 
will be shown. The first is simply a combination of sev­
eral of the section 3 examples run under an interrupt 
system. Next, a software serial port using the HSIO 
unit is described. The concluding example is one of in­
terfacing the HSI unit to an optical encoder to control a 
motor. 

4.1. Simultaneous 1/0 Routines under 
Interrupt Control 

A four channel analog to PWM converter can easily be 
made using the 8096. In the example in Listing 4 ana­
log channels are read and 3 PWM waveforms are gen­
erated on the HSO lines and one on the PWM pin. 
Each analog channel is used to set the duty cycle of its 
associated output pin. The interrupt system keeps the 
whole program humming, providing time for a back­
ground task which is simply a 32 bit software counter. 
To show which routines are executing and in which 

$TITLE('ATOD.APTI SCANNING THE A TO 0 CHANNELS·) 

$IHCLUOE(OEM096.INC) 

RSEG ot 2BH 

BL EOU BX;BYTE 
OL EOU DX;BYTB 

RESULT TABLE: 
RESULT 1. dBW -RESULT 2. dBW -RESUL'I' 3. dBW -RESULT 4, dB .. -

cseg at 2080H 

start; LO SP, 'lOOH 
BX 

I Set Stack Pointer 
CLR 

n ex t: ADDB AD_COMMAND,BL, '1000B J Start converaLon on channel 
I indicated by BL register 

NOP 
HOP 

check: JBB 

LOB 
LOB 

AD DB 
LDBZE 
ST 

, Wait tor conversion to start 

AD RBSULT_LO, 3, check J Malt while A to 0 is busy 

AL, AD_RESUL"!' LO 
AH, AD_RESULT:"I 

CL, BL, Bt 
OX, DL 
AX, RESULT TABLB(OXI 

Load low order result 
Load high or4er result 

, Store result indexed by BL.2 

INca BL I Incr.Dent BL .odulo .. 
AN DB BL, 1038 

BR next 

END 

Listing 3-12. Scanning the A to 0 Channels 

21-151 

270061-33 



inter AP-248 

order, Port 1 output pins are used to indicate the cur­
rent status of each task. The actual code listing is in­
cluded in Appendix B. 

be waited between consecutive loads of the HSO. If this 
is not done it is possible to overwrite the'contents of the 
CAM holding register. An AID interrupt is forced by 
setting the bit in the Interrupt Pending register. This 
causes the first AID interrupt to occur just after the 
Interrupt Mask register is set and interrupts are en­
abled. 

The initialization section, shown in Listing 4-la, clears 
a few variables and then loads the first set of on and off 
times .to the HSO unit. Note that 8 state times must 

Listing 4-1. Using Multiple I/O Devices 

$TITL! ('8096 EXAMPLE PROGRAM FOA PWM OUTPUTS FAOM A TO D INPIJTS' J 
$P.GENIOTH (130) 

J This progra.- will provide) PWM outputs on n50 pins 0-2 
r and on the PWM. 

The PHM valuea are deter.ined by the input to the AID converter. 

, I J r , I J I J I I I I I II I , J r I , I I I , I I J , J I " , J' I I " , I r I I I I I I I J I I I I I I I I 

$INCLUOEIOEM096.INC) 

ASEG .T 28H 

OL EOU DXIBYTE 

ON TIME: 
PWM "lIMB 1. OSII -HSO ON O. OSII - -HSO ON 1. OSW - -HSO ON 2. OSW - -

RESULT TABLBI 
RESULT O. OSII -RESU LT 1. OSII -RESULT 2. OSW -RE SU L'I' 3. OSII -
NX'I' ON T. OSII -NXT orr o. OSII - -NXT or, 1. OSII - -NXT or, 2. OSII 
COUNT. - DSL 
.0 NUM, OSII , Channel being converted 
TM'I OSII 
HSO PERI OSII 
L.sT LOADJ OS8 -

cseg .T 2000H 

Dew etart I Tt.er_ovf_lnt 
Dew Atod done tnt 
DeW atart I nSI_dato_1nt 
Dew HSO_eKec_lnt 

cse9 AT 2080H 

atartl LO SP, ,100H .. , Set Stack Pointer 

Wilt t: 
CLR 
DEC 
JNB 

CLR8 

LO 
LO 
LD 
LO 
LD 

'X 
"al t 

, ".1 t approx. 0.2 second. for 
I SBE to finish co •• unlc.tlona 

PMH TIME 1, 'OaOH 
HSO-PER, -'lOOK 
HSO-ON 0, l040H 
HSO-ON-l, ,080H 
HSO=ON=2, lOCOH 

Listing 4-1a.lnitializing the A to D to PWM Program 

21-152 

270061-34 



AP-248 

LDB 
LD 
NOP 
NOP 
LOB 
ADD 

HSO COMMAND, 100110110B 
HSO:TIMB, NXT_ON_~ 

HSO COMMAND, '001000108 
HSO:TIMB, NXT_ON_T 

LAST LOAD, IDOOOOIIIB 

J Set HSO for tl.erl, Bet pin 0,1 
• with interrupt 

Set HSO for tl •• rl, 8et pin 2 
without interrupt 

ORB 
LDB 
LDB 
EX 

INT MASK, 100001010B 
INT=PBNDING, 100001010B , 

Laat loaded value waa 8et all pina 
Enable "HSO and AID tnterrupts 
rake an AID and RSO interrupt 

loopi ORB 
ADD 
AODC 
ANDB 
BR 

Portl, 1000000018 
COUNT, 101 
CQUNT+2,lero 
portl, 111111110B 
loop 

••• t Pl.0 

,clear Pl.0 

Listing 4-1a. Initializing the A to D to PWM program (Continued) 

270061-35 

',1" ""11""11 111""""""""" IIII '" 11,.,1 "JI"""""" IIIII JII. J 111"""""'11 HSO EXBCUTBD INTBRRUPT JIII"'IJ.,1"'.,"" 
, , I I I ,. , , I , , J I J J J I J J I r , J J I , I J , , , r, , r I , J , I I , , J , I J , r I I , J' I , I J , J J J J I , J I J J , J I J J J I 

H50 exec tntl 
- PU SH F 

ORB Portl, 100000010B 

SUB TMP,TJMBR1, NX~ ON_~ 

eMP ~MP,IBRO -
JLT set_off_times 

, Set pl.l 

set_on ti •• sl 
·ADD 
LDB 
LD 
NOP 
HOP 
LDB 
LD 

NXT ON T, HSO PIR 
HSO-COMMAND, 100110110B 
HSO:TJMB, NXT_ON_T 

• Set HSO for tt.erl, eet pin 0,1 

ORB 

HSO COMMAND, 100100010B 
HSO:TJMB" NXT_ON~T 

LAST_LOAD, 100000111B 

Set HSO for tr.erl, eet pin 2 

• L •• t.loaded value v •• all one a 

• Nov ie aa good. tt.e a. any 
, 'to update the PWM reg 

set_off tt.e,al 
-JBC LAS~_LOAD, 0, check_done 

ADD NXT OPF' O",NXT ON T, H50_0N_O 
LDB HSO-COMMAND, 'O'OOI0000B • Set HSO for ttserl, clear pin 0 
LD HSO=TIMB, NXT_OPP_D 

HOP 
ADD NXT OPF 1, NXT ON T, HSO ON 1 
LOB HSO-COMMAND, ,'000100018' - -. Set HSO for tiller}, clear pin 1 
LO HSO:TIMB, NXT_OPP_l 

NOP 
ADD NXT OP' 2" NXT ON T, HSO ON 2 
LOB HSO-COMMAND, ,0'00100108 - - J Set HSO for tillerl. clear pin 2 
LO HSO:TJMB, NXT_OP,_2 

ANoB 

check done: 
ANDB 
POPF 
RET 

LAST_LOAD, 1111110008 I Laat loaded value was all Os 

Portl, 111111101B I Clear Pl.l 

Listing 4-1b.lnterrupt Driven HSO Routine 

21·153 

270061-36 



inter AP-248 

rlll""""""""""""""""""""""""""""""""""'1"1 1"'" I ,', J' r II" A TO 0 COMPLB'I'B JM'fBRRUP'I' , " J J J' J I J J II J' J r J' 
111""11"'"""""""""""",."", """""""""""",.""," II 
ATOD done lntr 

- POSRP 
ORB portl. '00000100B I Set P1.2 

AND8 
LOB 
ADDB 
LDBIB 
ST 

AL. 
AR. 
DL. 
OX. 
AX. 

AD RESULT LO.'110000008 
AD-RESULT-HI 
AD-lIUM, AD NUM 
DL - -

J Load low order r •• ult 
J Load high order r •• ult 
, oL- AD_HUM *2 

RBSULT_TA8LB(DXI J Store result Indexed by ox 

CM.B AL. '01000000B 
3MB no r nel J Round up 1 f needed 
eMPB AS;.OPPB , Doni t fRar ••• nt if AR-Or"a 
JB no rnd 
INCB AR-

no_rndl LDB 
CLR8 
S.T 

AL, AH r Allgn,byte an4 change to word 

INC8 
AND8 

Aft 
AX. ON_TIMB (OX I 

AD NUM 
AO:NUM, 10lH • keep AD_HUM between 0 and 1 

n.,x t I ADD8 AD_COMMAND, AD_NUM, '10008 , Start converalon on channel 
, lndlcated by AD NUM register 

Portl, '111110118 , Clear Pl.2 -ANDB 
popr 
RET 

END 

270061-37 

Listing 4-1c.lnterrupt Driven A to D Routine 

The HSO routine shown in Listing 4-1 b is slightly dif­
ferent than the one in section 3. All of the HSO lines 
turn on at the same time, only the turn-ofT-time is var­
ied between lines. This action is what is most common­
ly required for multiple PWM outputs and simplifies 
the software. A comparison is made between Timerl 
and the next HSO turn on time at the beginning of the 
routine. If the next turn on time has passed, then the 
on-times are loaded into the CAM, otherwise the ofT 
times are loaded. 

The maximum number of events in the CAM at any 
given time is 7. This occurs when the first line to turn 
ofT does so, causing the ofT-times for all of the. lines to 
be loaded. For two of the lines there will be an otTtime, 
an on-time. and thejust loaded ofT-time. The other line 
(the'one that just turned off) will have only the on-time 
and the just loaded ofT-time. . , 

AID conversions are performed by the code in Listing 
4-lc about every 60 microseconds, 42 for the conver­
sion, the rest for overhead. The AID routine sets up the 
HSO and PWM on and ofT times. Since the AID 

has a ten bit output, the most significant 8 bits are 
rounded up or down based on the least significant two 
bits. 

4.2. Software Serial Port Using the 
HSIOUnit 

There are many systems whic~ require more than one 
serial port, an example is a system which must commu­
nicate with other computers and have an additional 
port for a local console. If the on-board UART is being 
used as an inter~processor link, the HSIO unit can be 
used to interface the 8096 to an additional asynchro-
nous line. ' 

Figure 4-1 shows the format of a standard 10-bit asyn­
chronous frame. The start bit is used to synchronize the 
receiver to the transmitter; at the leading edge of the 
START bit the receiver must set up its timing logic to 
sample the incoming line in the center of each bit. Fol­
lowing the start bit are the eight data bits which are 
transmitted least significant bit first. The STOP bit is 
set to the opposite state of the START bit to guar-

21-154 



AP-248 

STOP 

270061-38 

Figure 4-1. 10-bit Asynchronous Frame 

antee that the leading edge of the START bit will cause 
a transition on the line; it also provides for a dead time 
on the line so that the receiver can maintain its syn­
chronization. 

3. Transmit ISR. This routine runs as an ISR (interrupt 
service routine) in response to an HSO interrupt in­
terrupt. Its function is to serialize the data passed to 
it by the interface routines. 

The remainder of this section will show how a full-du­
plex asynchronous port can be built from the HSIO 
unit. There are four sections to this code: 

4. Receive ISRs. There are two ISRs involved in the 
receive process. One of them runs in response to an 
HSI interrupt and is used to synchronize the receive 
process at the leading edge of the start bit. The sec­
ond receive ISR runs in response to an HSO generat­
ed software timer interrupt, this routine is scheduled 
to run at the center of each bit and is used to deseri­
alize the incoming data. 

1. Interface routines. These routines provide a proce­
dural interface between the interrupt driven core of 
the software serial port and the remainder of the ap­
plication software. 

2. Initialization routine. This routine is called during 
the initialization of the overall system and sets up the 
various variables used by the software port. 

The routines share the set of variables that are shown in 
Listing 4-2. These variables should be accessed only by 
the routines which make up the software serial port. 

VARIABLES NEEDED BY THE SOFTWARE SERIAL PORT 

cseg 

(eve state: 
rxrdy 
rxovecrun 
rip 

[eve buf: -['eve teg: 
sample_ till e I 

seri al out: -

btlud count: -

txd tIll e : -
char: 

dBb 
equ 
eq u 
eq u 
d.b 
dsb 
d ... 1 

d ... 1 

dB .. 1 

dB .. 

d.b 1 

J indicates receive done 
J indicates receive overflow 

receive In progreso flag 
used to double bufter receive data 

I used to deserialize receive 
I records last receive aDmple time 

I Holde the output charollctectframing (start and 
stop bits) for trans.it process. 

Holds the period of one bit In units 
of Tl ticks. 

Transition tl.e of last Txd bit that was 
sent to the CAM 

, for test only 

COMMANDS ISSUED TO THE HSO UNIT 

mark co.mand equ 
space co •• and equ 
sa.Ple_co •• and equ 

$eject 

OllOlOlb 
OOlOlOlb 
OOllOOOb 

J tl.erl,sot,lnterrupt on 
tl.erl,elr,lnterrupt on 
software tl.er 0 

Listing 4-2. Software Serial Port Declarations 

21-155 

270061-39 



inter AP-248 

The table also shows the declarations for the com­
mands issued to the HSO unit. In this example HSI.2 is 
used for receive data and HSO.5 is used for transmit 
data, although other HSI and HSO lines could have 
been used. 

The interface routines are shown in Listing 4-3. Data is 
passed to the port by pushing the eight-bit character 
into the stack and calling char_out, which waits for 
any in-process transmission to complete and stores the 
character into the variable serial_out. As the data is 

stored the START and STOP bits are added to the data 
bits. The routine char-in is called when the applica­
tion software requires a character from the port. The 
data is returned in the ax register in conformance to 
PLM 96 calling conventions. The routine csts can be 
called to determine if a character is available at the port 
before calling char _in. (If no character is available 
char _in will wait indefinitely). 

The initialization routine is shown in Listing 4-4. This 
routine is called with the required baud rate in the 

I 
char outl 
I Output character to the software aerial port 

pop 
pop 
ldb 
add 

ex 
bx 
(bx+l) .,Olb 
b.,bx 

I the return addres8 
the character for output 
add the start and atop bits 

to the char and leave 48 16 bit 
wait for ._itl 

CniP 
bne 

aerial out,D 
walt for xMit 
bx,se·rlal out 

I waLt for 8erlal out-O (it will be cleared by 
the hac Intertupt proces.) 

at 
b. [ex) -

put the for •• tted character In aerial_out 
I return to caller 

cata, 
I Returns -true- (8.<>0) if char_in haa a character. 
I 

c 1 r a. 
bbe rcve_Btate,O,c.t8_exlt 
1 nc ax 

csts exl tl 
.et 

I 
char inl 
J Get a character frOM the software •• rlal port 

bbc 
pushf 
.ndb 
1dbz. 
popf 
ret 

, wait for 
reve atlte,O,char In 

- ,-.et up I 

rcve atate,lnot(rxrdy) 

character ready 

ceiticil region 

ai, reve_but 
, leave the critical region 

Listing 4-3. Software Serial Port Interface Routines 

setup aerill port: 
Called on .yste. re8et to intilte the Boftware Berlal port. 

pop 
pop 
ld 
ld 

ex , the return addreBs 
J the blud rate (in decl.ll) 
J 4xla.:-500,000 '18BU •• 8 12 Mhz cryatal) 

270061-40 

eli vu 

bx 
dx.I0007h 
ax,tOA120h 
a.,b. , calculate the baud count (SOO.OOO/baud.ate) 

at 
8t 
ldb 
bb. 

add 
ldb 
ld 
clrb 
clrb 
clrb 
call 
b. 

clear 8erial out 
Bnable R80.5 and Txd 

a.,baud count 
O,.erill out 
loel.IOlioooOOb 
i080,6,$ , Wait for rooa In the R80 CAM 

J and 188ue I MARK co ••• nd. 
txd tl.e,ti.e~1,20 
hao-eo •• lnd,I •• rk co •• and 
h.o~ti •• ,t.d ti.e-
rcvi_bu~ - J clear out the receiVe variable. 
rcve re, 
reve-Btate 
init-reeeive 
[cx)-

, .etup to detect. Btlrt bit 
J return 

Listing 4·4. Software Serial Port Initialization Routine 

21-156 

270061-41 



inter AP-248 

stack; it calculates the bit time from the baud rate and 
stores it in the variable baud_count in units of 
TIMER! ticks. An HSO command is issued which will 
initiate the transmit process and then the remainder of 
the variables owned by the port are initialized. The rou­
tine in it_receive is called to setup the HSI unit to look 
for the leading edge of the START bit. 

nificant bit is output and the register shifted right one 
place. The framing information (START and STOP 
bits) are· appended to the actual data by the interface 
routines. Note that this routine will be executed once 
per bit time whether or not data is being transmitted. It 
would be possible to use this routine for additional low 
resolution timing functions with minimal overhead. 

The transmit process is shown in Listing 4-5. The HSO 
unit is used to generate an output command to the 
transmit pin once per bit time. If the serial_out regis­
ter is zero a MARK (idle condition) is output. If the 
serial_out register contains data then the least sig-

The receive process consists of an initialization routine 
and two interrupt service routines, hsi_isr and 
software_timer _Isr. The listings of these routines are 
shown in Listings 4-6a,4-6b, and 4-6c respectively. The 

, 
hao ler: 
1 Fields the haa interrupts ~nd performa the serialization of the data. 
, Note: this routine would be incorporated Into the haa service strategy for an 

actual system. 

cscg 
dew 

cscg 
pushf 
add 
emp 
be 
shr 
be 

send space: 
ldb 
ld 
br 

send Cftarka 
ldb 
ld 

hso_lsc exit: 
popf 
ret 

Seject 

, 

, Set up vector 

txd time,baud count 
serIal out,O - I if character Is done send a mark 
send .. ark 
scrlal out"l I else send bit 0 of serlal out and shift 
send_mirk aerial_out left one place. 

hao command,'apace co •• and 
hao-tlme,txd ti.e -
hso:lsc_cxlt-

hac command,l.ark cOII.ond 
hso=timc,txd_tlme 

Listing 4-5. Software Serial Port Transmit Process 

Listing 4-6. Receive Process 

Lnit receive: 

270061-42 

Called to prepare the aerial input process to find the leadin9 edqe ot 
is start bit. 

ldb 
ldb 

flush fifo, 
orb 
bbe 
ldb 
ld 
andb 
br 

flush fifo done, 

iocO,IOOOOOOOOb 
hsi_mode"OOlOOOOOb 

disconnect Change detector 
negative edges on 091.2 

10el save,ioal 
losl-aave,7,tluah fifo done 
al,hal status -
ax,hsL-ti.e trash the fifo entry 
iool save,lnot(80h) clear bit 7. 
flush fifo 

ldb loeO.'OOOlOOOOb J connect HSI.2 to detector 
ret 

Listing 4-6a. Software Serial Port Receive Initialization 

21-157 

270061-43 



Ap·248 

, 
h 8 i 1s r : 

,relds interrupts from t~e H5I unit, used to detect the leading edge 
, of the START bit 
J Note: this rputine would be incorporated into the USI strategy of an actual 

aye tem. 

cseg at 2004h 
dew hal_lac J setup the interrupt vector 

cseg 
push! 
P U8 h 
ldb 
ld 
bbc 
bb. 
ld 

a. 
al,ha! status 
aample-tlme,hai time 
sl,4,exit hal 
1080,7,$ - wait for rooa 1n USO hpldlng reg 
8x,baud count send out sample command in 1/2 
8x,'l - J bit time 
sample tiae,ax 
haa coa.andrlaa.Ple co.mand 
aample ti.e,hao time 

shr 
add 
ldb 
st 
ldb locO,tOOOOOOOOb- I disconnect hsl.2 from change detector 

exithsl: 
pop ax 
popf 
ret 

270061-44 

Listing 4-6b. Software Serial Port Start Bit Detect 

software timer 1sr: 
, Fields-the software tl.er interrupt, used to deserialize the IncoMNlng data. 

Note: this routine would be incorporated into the softw'are timer stategy 
in an actual system. 

cseg at 200ah 
dew ~oftware timer_lsr f setup vector 

J clear bit 0 

c8eg 
pushf 
orb 
andb 
andb 

iosl aave,ioal 
ioal-aave,'not(Olh} 
O,rcve 8tate,'Ofch 
proceas data 

, All blta except rxrdy and overrun-O 
bne 

process start 
bbc 
call 
br 

bi t I -

start okl 

hai statuB,5,start ok 
lnit receive 
softvare_tl.er_exlt 

orb reve state,'rlp J set receive In progress flag 
br schedule_sample 

process data: 
bb. 
shrb 
bbc 
orb 

datazero: 
addb 
br 

check stopbit: 
bbc 
ldb 
orb 
andb 
call 
br 

schedule sample: 

reve state,7,check atopblt 
rcve-reg,'l 
hal atatus,S,datazero 
rcve_reg,'80h ,set the new data bit 

reve state,'lOh • incre.ent bit count 
Bchedllle_s4mple 

hai statua,5,$ ,DEBUG ONLY 
reve buf,reve reg 
reve-state,lrxrdy 
rcve-state,'03h , Clear all but ready and overrun bits 
lnit-receive 
software_timer_exit 

bbs 10aO,7,$ J wait for holding reg e.pty 
Idb hso co •• and,'saaple co •• and 
add sample tlme,baud count 
at sample=tlme,hso_tlme 

software timer exit: 
popf 
ret 

Listing 4·6c. Software Serial Port Data Reception 

21·158 

270061-45 



Ap·248 

start is detected by the hsi_isr which schedules a soft­
ware timer interrupt in one-half of a bit time. This first 
sample is used to verify that the START bit has not 
ended prematurely (a protection against a noisy line). 
The software timer service routine uses the variable 
reve_state to determine whether it should check for a 
valid START bit, deserialize data, or check for a valid 
STOP bit. When a complete character has been re­
ceived it is moved to the receive buffer and init_reeeive 
is called to set up the receive process for the next char­
acter. This routine is also called when an error (e.g., 
invalid START bit) is detected. 

Appendix C contains the complete listing of the rou­
tines and the simple loop which was used to initialize 
them and verify their operation. The test was run for 
several hours at 9600 baud with no apparent malfunc­
tion of the port. 

4.3. Interfacing an Optical Encoder to 
the HSI Unit 

Optical encoders are among one of the more popular 
devices used to determine position of rotating equip­
ment. These devices output two pulse trains with edges 
that occur from 2 to 4000 times a revolution. 

Frequently there is a third line which generates one 
pulse per revolution for indexing purposes. Figure 4-2 
shows a six line encoder and typical waveforms. As can 
be seen, the two waveforms provide the ability to deter­
mine both position and direction. Since a microcontrol­
ler can perform real time calculations it is possible to 
determine velocity and acceleration from the position 
and time information. 

Interfacing to the encoder can be an interesting prob­
lem, as it requires connecting mechanically generated 
electrical signals to the HSI unit. The problems arise 
because it is difficult to obtain the exact nature of the 
signals under all conditions. 

The equipment used in the lab was a Pittman 9400 se­
ries gearmotor with a 600 line optical encoder from 
Vemitech. The encoder has to be carefully attached to 
the shaft to minimize any runout or endplay. Fortu­
nately, Pitmann has started marketing their motors 
with ball bearings and optical encoders already in­
stalled. It is recommended that the encoder be mounted 
to the motor using the exact specifications of the encod­
er manufacturer and/or a good machine shop. 

CLOCKWISE 

PHASEA~ 
PHASEB~ 

COUNTERCLOCKWISE 

PHASEA~ 
PHASEB~ 

270061-46 
Inside track generates Phase A. Outside track generates Phase B. 

. Figure 4·2. Optical Encoder and Waveforms 

21-159 



inter AP-248 

Digital filtering external to the 8096 is used on the en­
coder signals. The idealized signals coming from the 
encoder and after the digital filter are shown in Figure 
4-3. The circuitry connecting the encoder to the 8096 
requires only two chips. A one-shot constructed· of 
XOR gates generates pulses on each edge of each sig­
nal. The pulses generated by Phase A are used to clock 
the signal from Phase B and vice versa. The hardware is 
shown in Figure 4-4. CMOS parts are used to reduce 
loading on the encoder so that buffers are not needed. 
Note that T2CLK is clocked on both edges of both 
filtered. phases. 

By using this method repetitive edges on a single phase 
without an edge on the other phase will not be passed 
on to the 8096. Repetitive edges on a phase can occur 
when the motor is stopped and vibrates or when it is 
changing direction. The digital filtering technique caus­
es a little more delay in the signal at slow speeds than 
an analog filter would, but the simplicity trade off.is 
worthwhile. The net effect of digital filtering is losing 
the ability to determine the first edge after a direction 
change. This does not affect the count since the first 
edge in both directions is lost. 

FORWARD 

PHASE A 

PHASE B 

PHASE A' 

PHASE B' SiL-__ "" 

If it is desired to determine when each edge occurs be­
fore filtering, the encoder outputs can be attached di­
rectly to the 8096. As these would be input signals, Port 
o is the most likely choice for connection. It would not 
be required to connect these lines to the HSI unit, as 
the information on them would only be needed when 
the motor is going very slowly. 

The motor is driven using the PWM output pin for 
power control and a port pin for direction control. The 
8096 drives a 7438 which drives 2 opto-isolators. TjIese 
in turn drive two VFETs. A MOV (Metal Oxide Varis­
tor, a type of transient absorber) is used to protect the 
VFETs; and a capacitor filters the PWM to get the best 
motor performance. Figure 4-5 shows the driver cir­
cuitry. To avoid noise getting into the 8096 system, the 
± 15 volt power supply is isolated from the 8096 logic 
power supply. 

This is the extent of the external circuitry required for 
this example. All of the counting and direction· detec­
tion are done by the 8096. There are two sections to the 
example: driving the motor and interfacing to the en­
coder, rhe motor driver uses proportional control with 

REVERSE 

PHASEA' --------------------------------~_, 
XOR PHASE B 

NOTES: 
Phase A' is Phase A clocked by Phase S 
Phase S' is Phase S clocked by Phase A 

Figure 4-3. Filtered Encoder Waveforms 

21-160 

270061-47 



AP·248 

some modifications and a braking algorithm. Since the 
main point of this example is I/O interfacing, the mo­
tor driver will be briefly described at the end of this 
section. 

PHASE A 

PHASEB 

In order to interface to the encoder it is necessary to 
know the types of waveforms that can be expected. The 
motor was accelerated and decelerated many times us­
ing different maximum voltages. It was found that the 

0 

Q 
PHASE B' 
HSIO,l 

D-T2CLK 

0 

Q 
HS12,3 

PHASE A' 

270061-48 

Figure 4-4. Schematic of Optical Encoder to 8096 Interface 

PWM 

(POWER) 

P2.7 

·1/47438 

+15V 

75 S P = IR9533 
HEXFET .A----.... ~__, 0 

OC2 
HllAl 

Figure 4-5. Motor Driver Circuitry 

21-161 

o 

-15V 

O.l,..F 

N = IR533 
HEXFET 

270061-49 



inter AP·248 

motor would decelerate smoothly until the time be­
tween encoder edges was around 100 microseconds. At 
this point the motor would either continue to decelerate 
slowly, or would suddenly stop and reverse. The latter 
case is the one that was most problematic. 

After a brief overview, each section of the program will 
be described separately, with the complete listing in­
cluded in the Appendix D. In order to make debugging 
easier, as well as to provide insight into how the pro­
gram is working, I/O port 1 is used to indicate the 
program status. This information consists of which rou­
tine the program is in and under which mode it is oper­
ating. The main program sections are: Main loop, HSI 
interrupt, Timer 2 check, and Motor drive. There are 
also minor seCtions such as initialization, timer over­
flow handling, and software timer handling. Tying ev­
erything together is some overhead and glue. Where the 
glue is not obvious it will be discussed, otherwise it can 
be derived from the listings. ' 

The program is a main loop which does nothing except 
serve as a place for the program to go when none of the 
interrupt routines are being run. All of the processing is 
done on an interrupt basis. 

There are three basic software modeS which are in­
voked depending on the speed of the motor. The modes 
,refelTed to as,O, I, and 2, in order from slowest to fastest 
operation. When the program is running the operating 

mode is indicated, by the lower 2 bits of Port I, with the 
following coding: 

P1.0 P1.1 Mode Description 

0 0 0 HSI looks at every edge 
1 0 1 HSllooks at Phase A edges only 
0 1 2 Timer 2 used instead of HSI 
1 1 2 ' (alternate form of above) 

The example is easiest to see if mode 2 is described first, 
followed by mode 1 then mode O. In mode 2 Timer 2 is 
used to count edges on the incoming signal. A software 
timer routine, which is actually run using HSO.O, uses 
the Timer 2 value to update a LONG (32-bit) software 
counter labeled POSITION. The HSO routine runs ev­
ery 260 microseconds. The HSO.O interrupt is used in­
stead of an actual software timer because of the ability 
to easily unmask it while other software timer routines 
are running. 

In the code in Listing 4-7, the mode is first determined. 
For the first pass ignore the code starting with the label 
in_mode_I. Starting with in_mode~ the counter is 
incremented or decremented based on bit zero of DI­
RECT. If DIRECT.O = 0 the motor is going back­
ward, if it is a 1 the motor is going forward. Next the 
count difference is checked to see if it is slow enough to 
go into mode 1. If not the routine returns to the code it 
was running when the interrupt occurred. 

1"""""""'."""""""""""""""""'"Jr.,.,.,r"",.,. I"',"', I.'.', SOFTWARE TIMER ROUTINB 0 II"""J" 
""" NOW USING H80.0 TO TRIGGBR rJI'~'J'JI' 

1"I",."rJ""""""""""""",.,.""""".,Jr""","""",""'" 
CSBa Po,. 2280B 

.USHF 
ldb 
add 

orb 
ld 
iba 

In aodel, 
- 8ub 

c.p 
ih 

eet .odeO. 
- ibc 

.ndb 
ldb 
ldb 
br 

, Check .ode - Updete po.itl'on in .ode 2 

RSO COMMAND,I30R 
HSO:,.IMB,,.IMBR1,HSOO_dly 

portl,I00100000B 
.. i •• r '2,'I'IMBR2 
,ortl;1,in_.ode2 

tapl,71 •• r 2,old t2 
t.pl,12 - -
end_s"tO 

Portl,O,enel ."to 
'ortl,lllllilOOB 
I OC 0 ,I 010101011 
l •• t stet, •• ro 
end_iwtl 

I .et .1.5 

J Check count difference In tapl 

if alr •• dy in aode 0 
Cle •• Pl.D, .1.1 '.et .ode 0) 
enabla all RBI 

Listing 4·7. Motor Control HSO.O Timer Routine 

21-162 

270061-50 



infef Ap·248 

in_mode2: 
sub 
ld 

delta p,timer 2,t.r2 old 
tmr2_o1d,timer_2 -

jbc direct,O,in_rev 

addc 
br 

chk_mode: 
sub 
cmp 
jgt 

Bet model: 
andb 

poeitlon,delta p 
poal tion+2,zero 
chk mode 

position,delta p 
poaltion.f.2,zero 

tmpl,Timer 2,old t2 
tmpl,IS -
end_6wtO 

Portl,'llllllOlB 
Portl,IOOOOOOOlB 
IOCO.I00000101B 
z.ero, "SI TIME 

r get timer2 count difference 

Check count difference in t~pl 

set model if count Ls too low 
, count <- S 

I Clear PI.I, set PI.D (set mode 1) 

, enable "SI 0 and 1 
orb 
ldb 
ld 
sub lastl time,TimerI,min hail 

- I set up 60 (tlme-last2_tlme»min_hsil on next R5I 
clr hai: 

1 d 
andb 
orb 
jb. 

end swtO: 
ld 
andb 
PQPF 
ret 

ZERO, USI TIME 
ios1 bak,iOlllllllB 
iosl-bak,iosl 
iosl-bak,1,clr hsl 

old t2,TIMER 2 
portl,'llOllll18 

; clear bit 7 

If hsl i~ triggered then clear hsl 

I cleG[ Pl.5 

270061-51 

Listing 4·7. Motor Control HSO.O Timer Routine (Continued) 

If the pulse rate is slow enough to go to mode I, the 
transition is made by enabling HSI.O and HSI.1. Both 
of these lines are connected to the same encoder line, 
with HSI.O looking for rising edges and HSI.l looking 
for falling edges. The HSI_TIME register is read to 
speed up clearing the HSI FIFO and the LASTl_ 
TIME value is set up so the mode 1 routine does not 
immediately put the program into another mode. The 
HSI FIFO is then cleared, the Timer 2 value used 
throughout this routine is saved, and the routine re­
turns. 

This routine still runs in modes 0 and I, but in an 
abbreviated form. The section of code starting with the 
label in_model checks to see if the pulses are coming 
in so slowly that both HSI lines can be checked. If this 
is the case then all of the HSIs' are enabled and the 
program returns. This routine is the secondary method 
for going from mode I to mode 0, the primary method 
is by checking the time between edges during the HSI 
routine, which will be described later. 

The HSO routine will enable mode 0 from mode I if 
two edges are not received every 260 microseconds. The 
primary method, (under the HSI routine), can only 

enable mode 0 after an edge is received. This could 
cause a problem if the last 2 edges on Phase A before 
the encoder stops were too close to enable mode O. If 
this happened, mode 0 would not be enabled until after 
the encoder started again, resulting in missed edges on 
Phase B. Using the HSO routine to switch from mode 1 
to mode 0 eliminates this problem. 

Figure 4-6 shows a state diagram of how the mode 
switching is done. As can be seen, there are two sources 
for most of the mode decisions. This helps avoid prob­
lems such as the one mentioned above. 

When either Mode 1 or Mode 0 is enabled the HSI 
interrupt routine performs the counting of edges, while 
the HSO routine only ensures that the correct mode is 
running. The routines for modes 0 and 1 share the same 
initialization and completion sections, with the main 
body of code being different. 

The initialization routine is similar to many HSI rou­
tines. The flags are checked to ensure that the HSI 
FIFO data is valid, and then the FIFO is read. Next, 
the main body of code (for either mode 0 or mode 1) is 

21-163 



NOTES: 
Mode 0: HSI Examines edges on Phase A and B 
Mode 1: HSI Examines edges on Phase A only 
Mode 2: TIMER 2 stores edgecount 

Ap·248 

Figure 4·6. Mode State Diagram 

270061-52 

r I J , I J I I I , , J J , J r I , , , J , J J I , J J J If' I I J , J J J I J J J J J J J J , , J , , J J J J , , J J J J ~ , I J J , J J I , I I I I 
111" H51 DATA AVAILABLE INTERRUPT ROUTINE 1111"",;", 
J J I J' I J I J Jill J f I I J J' j I J , I J I J' J , '" II J , J II J J r 11'111 J J Jill J" II , I J II J, JI J J I J I J I 

This routine keeps track 01 the current tiMe and position of the motor. 
The uppe~ word of inforMatlon 1s provided by the timer overflow routine. 

CSBG AT HOOH 
nov mode It 
no_lntl;-

hal_data inti 
or b' 
.ndb 
orb 
jbc 

get valu.a1 
1d 
andb 
1d 

jb. 

br 
br 

pU8hf 
portl.,OlOOOOOOB 
1001. bak.,OlllllllB 
lOBl-ball,lOBl 
lOBl=bak",no~lntl 

tlaer 2,"J'tMIR2 

, used to save execution time for 
, worst case loop 

, set Pl.6 
, Cleat 10Bl bak.1 

, If hal t. not ttl~geted then 
, j-uap to no_lnt 

hol .~.HSI STATUS •• 0101010IB 
title, HBt_TIMB 

J II' , , I" II. J' II " 

, J J I J' I J' J J J I '" J J 
J JIl,' I" J J r f 1'" J 

INSERT BODY or ROUTINB 

lo.~ lasta: 
- 1d 

no_cnt: andb 
orb 
jbc 

agatnl br 

$EJECT 

andb 
popf 
ret 

t.t2 old,tl.et 2 
1001-bak •• 0111I111B 
lOBl-bak,loal 
1~.l-b.k,1,no tnt 
get_values -

port1.,10111111B 

,clrblt·1 

r Cleat Pl.6 

, end of hal data lntettupt routine 
r Routine for .o~e 1 follows and then 

listing 4·8. Motor Control HSI Data Available Routine 

21·164 

270061-53 



AP-248 

run. At the end time and count values are saved and the 
holding register is checked for another event. Listing 4-
8 contains the initialization and completion sections of 
the HSI routine. 

Listing 4-9 is the main body of the Mode 1 routine. 
Before any calculations are done in Mode 1, the incom­
ing pulse period is measured to see if it is too fast or too 
slow for mode 1. The time period between two edges is 
used so that the duty cycle of the waveform will not 
affect mode switching. If it is determined that Mode 2 
should be set, Port 1.1 is set, all of the HSI lines are 
disabled, and the HSI fifo is cleared. If Mode 0 is to be 
set all of the HSI lines are enabled and the variable 
LAST _STAT is cleared. LAST_STAT = 0 is used as 
a flag to indicate the first HSI interrupt in Mode 0 after 
Mode 1. After the mode checking and setting are com­
plete the incremental value in Timer 2 is used to update 

POSITION. The program then returns to the comple­
tion section of the routine. 

There is a lot more code used in Mode 0 than in Mode 
1, most of which is due to the multiple jump statements 
that determine the current and previous state of the 
HSI pins. In order to save execution time several blocks 
of code are repeated as can be seen in Listing 4-10. The 
first determination is that of which edge had occurred. 
If a Phase A edge was detected the LASTI_TIME and 
LAST2_TIME variables are updated so a reference to 
the pulse frequency will be available. These are the 
same variables used under Mode 1. A test is also made 
to see if the edges are coming fast enough to warrant 
being in Mode 1, if they are, the switch is made. If the 
last edge detected was on Phase B, the information is 
used only to determine direction. 

I n mode 1: ; mode 1 HSI routine 

andb 
j n. 

cmp time: 

til P 1 I h s 1 :5 0 , I 01010000 B 
no cot -

Id last2 time,lastl time 
Id lastl:tlae,tlme 

em p 11 Bub 
ClOp 

j h 

set mode 2; 
orb 
Idb 

IIlt_hsL: Id 
andb 
orb 
jbB 
br 

check mAX times 
sub 
ClOp 

t.pl,tlae,last2 time 
tlApl ,al n hall -
check_lIax_tllle 

Portl"OOOOOOlOB 
IOCO"ODOOOOOOB 
zeto,hsl tLJlle 
ios1 bak~'Ollllll18 
lost-bak,iosl 
losl-bak,7,mt hal 
done=chk -

tlllpl,tllle,laat2 
tmpl,max_hall 

till e 

j nh done chk 

set mode 0: 
andb 
Idb 
Idb 

done chk: 

add_fwd; 

• ub 
jbc 

Portl,'llllllOOB 
IOCO,IOIOIOIOIB 
last_stat,zero 

del tap, till e r 2, tm r 2 0 1 d 
direct,O,add_rev 

add positlon,detta p 
addc position+2,zero 

add rev: 

$eject 

br load lasts 

• ub 
subc 
br 

position,delta p 
posltion+2,zero 
load_lasts 

Procedute which seta mode 1 also 
sets times to pass the testa 

• Set Pl.l (in .ode 2) 
J Disable all HSI 
J e.pty the hai flfo 

J clear bit 1 

I If hal is triggered then clear hal 

I max hal· addition 
I total time 

clear PI.D,1 set mode 0) 
Enable all HSI 

! or 

I get tlraer2 count difference 

270061-54 

Listing 4-9. Motor Control Mode 1 Routines 

21-165 



intJ 

In IIode 0: 
- - j b a 

j ba 
jba 
jba 
br 

a [.18 e: 1 d 
Id 
aub 
c.p 
j h 

;aet IIo'del-
orb 
Idb 

tst atate: 
- j ba 

jba 
jb. 
CII pb 
j. 
br 

lII_f all: 1 d 
Id 
a ub 
c~p 

j h 
,lIet lIodel-

orb 
ldb 

tit atatf: 
- j ba 

j ba 
jba 
clllpb 
j. 
br 

b_'ise; jba 
j b8 
j b. 
cllpb 
je 
br 

b_fall; jba 
jb. 
jb. 
cmpb 
je 
br 

fir 5 t t t III e : 
.tb 
br 

i np err; 
- br 

goin9 fwd: 
- orb 

ldb 
odd 
addc 
br 

901n9 rev; 
andb 
ldb 
sub 
aubc 

tit atat: 
atb 

AP-248 

hal sO,O,. rIa. 
hal-aO,2,a-'all 
hat-.O,4,b-rla. 
hal:.O,6,b:'all 
no_cnt 

1 •• t2 tle.,1 •• t1 tl •• 
1 •• tl-tle.,tlll. 
tlee,1 •• t2 tl •• 
tlee,eln hal 
tat_Btatr 

Portl,'000000018 I Set Pl.0 (In aode 1) 
IDeO,IOOOOOIOIB I Enable HSI 0_ and 1 

1 •• t 81:"t,6,901n9 fwd 
last-.tat,4,golnq-rev 
1 •• t=.tat,2,change_dir 
1 •• t atet,zero 
fl rat tie. I (I rat ti •• 1 n aodeO 
lnp_err 

18at2 tie.,l •• tl tl •• 
18atl-tlll., till. 
tll1.,I •• t2 ~l.e 
tll1e,.ln hill 
tat statl 

port1,,000000018 , Set PI.O (1n .ode 1) 
IOCO,IOOOOOIOIB I Bnable Hsr 0 end 1 

laet atat,C,going fwd 
laet-atat,6,going-rev 
laat-stat,O,change dir 
laat-stat,zero -
fi est tille , fi rat ti.e in aodeO 
1 np_err 

loot stat,O,going fwd 
last-.tat,2,going-rev 
laat-atat,6,chanqe die 
laat-atat,zero -
fi rst tl.e I fi rat ti.e In aodeO 
inp_er:-r 

last at.t,2,going fwd 
last-stat.,O,qolng-rev 
last-stat,4,ch.nge die 
last-atat,zero -
first till. ; firat ti •• in aodeO 
i np_err 

hai sO.last stat 
done chk add delta po.si tion 

no in t 

di rect 
direct,O,goLng rev 

PORT2,IOIOOOOOOB 
dire:et,IOI 
poal tton, 101 
poaltion+2,zero 
at_stat 

PORT2,fIOlllllIB 
direct,fOO 
poat tton,IOl 
poai tion+2 ,zero 

eet ·P2.6 
direction· forward 

clear P2.' 
direction· revera. 

Listing 4·10. Motor Control Mode 0 Routines 

21-166 

270061-55 



inter AP-248 

After mode correctness is confirmed and the LASTx_ 
TIME values are updated the LASTJTAT (Last 
Status) variable is used to determine the current direc­
tion of travel. The POSITION value is then updated in 
the direction specified by the last two edges and the 
status is stored. Note that the first time in Mode 0 after 
being in Mode I, the Mode 1 done_chk routine is used 
to update POSITION, instead of the routines going_ 
fwd and going_rev from the Mode 0 section of code. 
The completion section of code is then executed. 

Providing the PWM value to drive the motor is done by 
a routine running under Software Timer 1. The first 
section of code, shown in Listing 4-11a, has to do with 
calculating the position and timer errors. Listing 4-11b 
shows the next section of code where the power to be' 
supplied to the motor is calculated. First the direction 
is checked and if the direction is reverse the absolute 
value of the error is taken. If the error is greater than 
64K counts, the PWM routine is loaded with the maxi­
mum value. The next check is made to see if the motor 

is close enough to the desired location that the power to 
it should be reversed, (Le., enter the Braking mode). If 
the motor is very close to the position or has slowed to 
the point that is likely to tum around, the Hold_Posi" 
tion mode is entered. 

The determination of which modes are selected under 
what conditions was done empirically. All of the pa­
rameters used to determine the mode are kept in RAM 
so they can be easily changed on the fly instead of by 
re-assembling the program. The parameters in the list­
ing have been selected to make the motor run, but have 
not been optimized for speed or stability. A diagram of 
the modes is shown in Figure 4-7. 

Iii. the HoldJositiori mode power is eased onto the 
motor to lock it into position. Since the motor could be 
stopped in this mode, some integral control is needed, 

,as proportional control alone does not work well when 
the error is small and the load is large. The BOOST 
variable provides this integral control by increasing the 
output a fixed amount every time period in which the 

listing 4-11. Motor Control Software Timer 1 Routine 

IIIIJIII JI" IIIIIIJI 11""""'1""" JIll """",·"""",,1 """""'" J 
J II I I I SOFTWARE TIMBR ROU~INB 1 ."., JIII" 
'" 11'" , II III.,II'J,JII""""""""" I ""'" ","IJIII tIl IIIIII II 111,', 

CSBG AT 2600H 

"1" . "" 
••• IJ 

, "" , J J II 
•• , II 

puahf 
orb 

ldb 

portl.110000000D I Bet pOttl.? 

J enable HSt, Tovf, USO 

ldb USO COMMANO.13'H 
add HSO:TIMB,TIMBRl,Bwtl dly 

Id ti •• err+Z,~ea ~1.e+2 I Calculate t~.e , pOSition error 
Id paB ~rr+2.de8 p08t2 
Bub ti.; err,des tiae,tla. , valuea are Bet 
subc tla.-err+2,time+2 
8ub poa err,deB POB,position 
8ubc poa:err+2,po8itlon+2 

EI 

sub 
ld 

sub 
ld 

ti.~ delta,laat tiae arr,tia. err 
laat:tiae_err,tr.e_err -

POB delta, last pos err,pos err 
laat_poa_err,po8_err -

Tia. err ~ Deaired tia. to finiah - current ~i.e 
P08 err • De.ired position to finish - current position 
Poa-delta • Last position error - Curent position error 
Tlme delta • Last ti.e error - Current tiae error 

n~te ~hat eriora should ge't aMaller 80 deltas will be 
positive for forward .oti~n (ti •• i"s always forward) 

Listing 4-11a. Motor Control Software Position Counter 

21-167 

270061-56 



inter 

90 backward1 
neg 
ldb 
e.p 
jne 

'br 

.90 forward': 
- ldb 

e.p 
-j e 

Chlli_~rkl 
e.p 
jnh 
e.p 
jh 

br'.kln'g: 
e.p 
jg. 
neg 

chili deltal' 
e.p 
j nh 

beake; Idb 
ldb 
notb 
ldb 

P08 er r+ 2, •• r.o 
9 0 _ 'or "ar4. 

AP-248 

po~ err I .oa_err • ABa VAL (~o~_err.) 
,,,.-dlr.IOOh 
po.-.rr+2,I'ffrrH 
lei .I •• 
chk_brll 

p'". 41 r , • 01 H 
. pO.-.'1'+1, •• ,0 
chk:brk 

,,, •• w, , ••• PWI' 

,chk: •• nl ty -

.oeltloR_ITeor now • A.I(~O. err)' 
po. 81'1',,0. ,ftt , 
hol~_po.ltlin r Po.ltlo._.rror<~o.itlon_control_pot~~ 
po. "err ,br. pnt 
Id_i~.. - r po.ltlon_.rr~r'br.k._polnt 

poe_delta,.ero," 
chili delta 
pO.=delta 

po. delta,vel pnt 
hold_position 

pw. pWI' •••• ' bl'k 
tap;dlrect -
t.p 
•• a_ell r, tap 

, yeloclty • po. delta/ ••• ple tla. 
r j'a, If ABS(veioclty) < vel:pnt 

I If braking apply power in oppostte 
I direction. of current .otlon 

br ld_pvr 

Hold positionl I po.itlon hold .ode 
e.p 
jh 
elr 
elr 
BR 

calc outl 
.ulub 
aul u 
e.p 
Jne 
add 
add 
br 

no bstl clr 
cII:: •• x I cap 

jnh 
a.xeell lei 
outputl ldb 

chll: •• nltYI 
- br 

p2bkwell 

pUwd I 

ldb 
notb 
j b. 

01 
• ndb 
ldb 
BI 
br 
01 
orb 
ldb 
EI 

p08 err,'02 
.calc_out 
t.pt 2 
boost 
output 

, if po.ltlon error ~ 2 then turn off pover 

t.p, ••• hold,'2SS 
t.p,po.-.rr 
po._deltarlero 
no bat 
boost" •• 
t.p. 2, boo. t 
cll: • ax 
booat 
tap+2, ••• hollS 
output -
tap+2, ••• hold 
pv._pvr, tip+ 2 

rpvr,p". ,tlr 
rpvr 
p"._dlr,0,p2r,,~ 

'port2.IOlllllli • 
.pw._contr~~,rp"r 

portZ.110000000. 
pv._control~·rp"r 

, looet ls tntegra' control 
, 7M,.2 • MSI(poe_err •••• hold) 

Listing 4-11 b: Motor Control Power Algorithm 

21-168 

270061-57 



intJ AP-248 

FORWARD BRAKING 

+ 

POWER~-L------------~~-----t~~ 

DISTANCE 
270061-58 

Figure 4-7. Motor Control Modes 

error does not get smaller. Once the error does get 
smaller, usually because the motor starts moving, 
BOOST is cleared. 

A sanity check can be performed at this point to double 
check that the 8096 has proper control of the motor. In 
the example the worst that can happen is the proto-

J J J 

emp 
j 9 t 
b< 

time err.2,zero J do pOB_table when err 1s negative 
end p 
end=:p 

CaiP nxt pos,. (12+poa table) 
jlt get-Yals , JUIIlP if lower 
Id nxt-pos.'P08 table 
clr ttme+2 -

get vals: 

po. 

Id 
Id 
1 d 
Id 
Id 
add 
addc 
sub 

popf 
to t 

tab-I e : 

del 
dew 
del 
dew 
del 
dew 
del 
dew 

del 
dew 
del 
dew 
del 
dew 
del 
dew 

des POB, (nxt posit 
des-pos+2, (nxt posl+ 
des-time+2, (nxt pool + 
1ft8x-pwr,lnxt posIt 
.ax-brk,.ax pwr 
des-poa,offset 
des-pos+2,zero 
last_poB_err,deo pos,position 

portl,IOlllllllB , clear pI.7 

OOOOOOOOH J position 0 
0020H, 0080H next t 1. e , pover 
OOOOeOOOH position 1 
0040H, 0040H J next tlae, power 
OOOOOOOOH J position 2 
00608, DOeOH J next t 1,. e , pover 
OFFFFBOOOH position 3 
0080H, 0080H next ti me, pover 

00000800H J position 4 
00S8R, 0080H J neKt t ia e , power 
00003000H position S 
0070H, OOff H next t i.e, power 
OOOOOOOOH J position 6 
0090H, OOfOH J next ti.e, power 
000000008 J position 7 
00918, OOfOH J next t i rl e , power 

Listing 4-12. Motor Control Next Position Lookup 

21-169 

270061-59 



inter AP-248 

type will need to be reset, so the sanity check was not 
used: If one were desired, it could be as simple as 
checking a hardware generated direction indicator, or 
as complex as checking motor condition and other en­
vironmental factors. 

After all checks have been made, the power value is 
loaded to the RPWR register using a software inversion 
to compensate for the hardware inversion. Direction is 
determined next and the power and direction are 
changed in adjacent instructions with interrupts dis­
abled to prevent changing power without direction and 
vice versa. 

To exercise the program logic the desired position is 
changed based on the time value using the code and 
lookup table shown in Listing 4-12. 

The remaining sections of the program 'are relatively 
simple, but worth discussing briefly. The initialization 
routine initializes the 1/0 features and places several 
variables from ROM into RAM. Having these variables 
in RAM makes it easier to tweak the algorithm. Timer 
1 is expanded into a 32-bit timer by the interruptrou­
tine shown in Listing 4-13. 

Software timer overhead is handled by the routine 
shown in Listing 4-14. In this routine the status of each 
timer bit is checked in a shadow register. If any of the 
timers have expired the appropriate routine is called. 

J IJ" J J II II J JI J JJI, JII JIJIIIII", J , JIll "I'" J J ,; II I J II J Ii J J I; J J I; I ,,1 1,111111 
III11 J TIMER INTERRUPT SERVICE J" I II II J I , 
J J ,",,, II 11"11"" I11I1I III J' I r i,rlll J II J 1I11I1 "II J, III J III I JIll ",1 JIll J I 

eSEG AT 2200H 

timer ovf lnt: 
pusht 

orb 
chk_tl: jbc 

Inc 
andb 

tll[_lnt_gg~f: 

ret 

10al bak,IOSl 
losl-bak,5,t.r tnt_done 
time+2 
ioaI_bak"llOll111B I, clear bit 5 

I End of timer interrupt routine 

Listing 4·13. Motor Control Timer InterruptRoutine 

270061-60 

"" III ,,1 II1111I1I , "'111111""11111" ", 111I JIll J JIll I111I1I1 JIl" J I J , 
I1III SOFTWARE TIMER INTERRUPT SERVICE ROUTINE 11;11111' 
,,""" II 'JI", "111""'" ", """, ",JIIII' I1II II III IIII 11II II" 1II1 J 

CSEG AT 2220H 

80ft tJlllr Intl 
pushf 
orb 

chk ."to: 
- jbe 

andb 
thk 8vtli al1 

- j be 
andb 
call 

chk avt2r 
jbe 

~:n 
chk swtll 

jbc 
andb 
call 

.wt Lnt doner 
pop! 
ret 

$eject 

10s1 bak,O,chk awtl 
Loal-bak,'lllllllOB 
.wtO:expLred 
ioa1 bak,l,chk awt2 
loal-bak"1111I101B 
awt1:explred 

Losl bak,2,chk ewtl 

1~fi~~:~!11AllIOllB 

1081 bak,4,.wt. lnt done 

I Clear blt 0 - end awtO 

I Clear bl t 

, Clear bit 2 

lo.l-bak"llll~llli J Clear bit 3 
.8wt3:expi red 

J END or SOFTWARE TIMBR INTERRUPT ROUTINE 

Listing 4·14. Motor Control Software Timer Interrupt Handler 

21-170 

270061-82 



AP-248 

J J I I I , , I 1 J J I J JJ J I J J J , , J I J J I I I J I , I J J , J I I I J I J J I I , I J J J I I , I I j , I J J I J I J I I J , I I J I I I J 
JI"" SOFTWARE TIMER ROUTINE 2 I,;:'"",: 
11' J J I J I J I J , , I J I I J J , I J J , I J J I J J J J J , I J I , , I " I I J , J I I , , I J J , I J J I , , I J , , J I J rr , I J I j J ; 

CSEG AT 23808 

8wt2 expiredl 
pus h f 
ldb 
.dd 

hao co •• and"lAH I .at 8wt_2 
hso=tiae,tl.erl,avt2 dly 

orb 
c.p 
bnh 
ld 

pulainql 
jbc 

• t 
• t 

portl"OOOOOlOOB 
out pte,"ltH 
pUlalnl) 
out_ptr"lfOH 

poaition+2, (out ptrl+ 
poeltlon,(out_ptr)+ 

at direct, (out ptr)+ 
lit p"a_pwr,lout_ptr)+ 

.tlt2_done: 
sub t.pl,tl.erl,lastl ti.e 
cap tllpl,'1800H -

I eet port 1.2 

position hlqh, position low 

, etore· 8 bytes externally 

jnh stlt2_ret , keep {tlme_laat4_tl.e)<1000H 

add lastl_tlfte,llOOOH 
swt2 ret: 

andb 
popf 
ret 

poctl,,111110l18 , cleat poctl.2 

270061-61 

Listing 4-15: Motor Control Software Timer 2 Routine 

The last routine, shown in Listing 4-15, is the Software 
Timer 2 routine which outputs some variables to exter­
nal RAM. It also keeps LASTl_Time within 1800H 
of Timer! to prevent overflows from occurring when 
the Mode 0 and Mode 1 software check this variable. 

A complete listing of the program as it is used in our 
lab can be found in Appendix D. For a given motor or 
encoder it will probably be necessary to change some of 
the time constants on the first page of the listing. With 
the motor used in our experimentation, pulses are 
missed from time to time when direction changes 
quickly. If the motor were not as fast to tum around or 
the encoder were mounted better these problems should 
disappear. The missing pulses occur when switching 
from Mode 1 to Mode 0, other than that no anomalies 
were found in the lab. 

Prior to the version of code just discussed, several at­
tempts were made, one of which could be used under 
certain constraints. It is possible to use only modes 2 
and 0 to monitor the encoder, provided the encoder 

always operates smoothly and provides at least 200 mi­
croseconds between the last several edges of Phase A 
before reversing. This idea was originally tried because 
the motor was not characterized thoroughly at first, 
and caused problems because of the motors tendency to 
stop suddenly when its speed was low. 

If an encoder has a lower line count and therefore more 
time between output pulses the two mode solution can 
be used. The software for the two mode version can be 
easily extracted form the three mode version, so it will 
not be presented. 

5.0 HARDWARE EXAMPLE 

5.1. EPROM Only Minimum System 

The diagram in Figure 5-1 illustrates how to connect an 
8096 in a minimum configuration system. Either 2764s 
or 27128s can be used in the system. Note that the 
lower EPROM contains the even bytes while the upper 

21-171 



inter AP-248 

C7 C& 

+5V J 2PF 33~F 1 
35 

RDY 

NMI 

+5V 

-= 14 
TEST 

EA 

6( 

+5V 
VPD 

VCC 
RESET 

...L .01 

1N'*'" 33K 1:: 10 

G 
VSS 

VSS 
.". 62 

Rem 
63 

22 "F 
EXTINT 

3( 
T2CLK 

.". 36 
T2RST 

39 
PWM 

60 
TXD 

61 
RXD 

ACHO 

ACHl 

ACH2 

Vee +5V 
ACH7 

65 
~----------------------__ ~VREF 

r-------~~~ANGND 

VSS 
VB. 

one contains the odd bytes, and the addressing is not 
fully decoded. This means that the addressing on a 
2764 will be such that the lower 4K of each EPROM is 
mapped at OOOOH and 4000H while the upper 

12 

CLKOUT 
13 

.HE 
37 

WR 
38 

RD 
17 

RD 

ALE 
16 

ALE 

INST 
15 

33 
AD15 

AD14 
32 

AD13 
31 

30 
A012 

29 
AD11 

28 
AD10 

27 
AD9 

2& 
AD8 

AD7 
25 

AD6 
24 

ADS 
23 

22 
AD4 

8096 21 
AD3 

20 
AD2 

19 
ADl 

18 
ADO ADO-

AD15 

Pl.0 
59 

Pl.1 
56 

57 
Pl.2 

56 
Pl.3 

Pl.4 
55 

Pl.5 
48 

47 
Pl.& 

Pl.7 
46 

50 
HSO.O 

HSO.l 
49 

HSO.2 
44 

HSO.3 
43 

HSO.5 
HSI.3 

51 

270061-62 

4K is mapped at 2000H. If the program being loaded is 
16 Kbytes long the first half is loaded into the second 
half of the 2764s and vice versa. A similar situation 
exists when using 27128s. 

21·172 



inter AP-248 

Vee Vee Vee 

veeJ I 11 G 

• 27 PGII bl oe Vee 19 A015 

"* A01S 18 o.~ .. AU 26 A13 DB 07 
AD14 .7 Q7 16 IIA14 MA13 2 A'2 18 AD'4 

07 06 
AD13 •• DB 06 'S MA13 MAU 23 Al1 OS 

17 AD13 

4012 A012 13 '2 IIA12 MA11 21 AID 16 
OS OS .. 

A011 .lOU 8 • MA11 MA10 2' A. IS 
D' 04 03 

A010 7 6 MA10 IIA9 2S A8 13 A010 
03 03 02 

ADO • S IIA. IIAB 3 
A7 

.2 ADO 
02 02 01 

ADa 3 2 MAB IIA7 • AO 
11 AD8 

01 O. 00 

~ 
MA8 S AS 

20 
GND 74LS373 

liAS 6 eE 22 

* At DE r--MA. 7 
A3 

IIA3 B 
A2 

MA> • 
MAl '0 

AI 

VPP-';' 

AD 

VPP 2764 

~ 
GNO 27128 

RD 

vee 

1 
vee 

ALE T 11 J 28 G Vee Vee 
1 De 27 PGII 07 •• AD7 

-::1:-
AD7 18 08 •• MA7 MA1 .. 26 A13 06 18 ADB 

08 
ADB 17 07 '6 MA6 MA13 2 A12 OS 17 ADS 

07 
ADS ,. 

DB 'S liAS 11.'2 23 All 04 16 AD4 
06 

AD. .3 '2 IIA4 MA11 21 AID 03 'S AD3 
OS OS 

AD3 8 • IIA3 MA10 2' A. 02 13 AD2 
D4 04 

AD2 7 6 IIA2 IIA. 2S A8 01 12 • ADt 
D3 03 

AD. 4 S MA. IIA8 3 
A7 00 

11 Aoo 
D2 02 

ADO 3 2 IIAO MA7 4 
AO eE 20 D. D' 

~ 
MA6 S OE~ ~ GND 74LS373 AS 
MAS 0 

A4 
IIA. 7 

MA3 8 
A3 

IIA2 • A2 
AD = ADDRESS/DATA 

MA. .0 A' 
MA = MEMORY ADDRESS 

VPP~ 
AD 

vPP 2764 

~ GND 27128 

ADO-A015 
~ 

270061-63 

Figure 5-1 (2 of 2). 

This circuit will allow most of the software presented in 
this ap-note to be run. In a system designed for proto­
typing in the lab it may be desirable to buffer the I/O 
ports to reduce the risk of burning out the chip during 
experimentation. One may also want to enhance the 
system by providing RC filters on the A to D inputs, a 
precision VREF power supply, and additional RAM. 

5.2. Port Reconstruction 

If it is desired to fully emulate a 8396 then I/O ports 3 
and 4 must be reconstructed. It is easiest to do this if 

the usage of the lines can be restricted to inputs or 
outputs 'on a port by port rather than line by line basis. 
The ports are reconstructed by using standard memory­
mapped I/O techniques, (i.e., address decoders and 
latches), at the appropriate addresses. If no external 
RAM is being used in the system then the address de­
coding can be partial, resulting in less complex logic. 

The reconstructed I/O ports will work with the same 
code as the on chip ports. The only difference will be 
the propagation delay in the external circuitry. 

21-173 



intJ AP-248 

6.0 CONCLUSION 

An overview of the MCS-96 family has been presented 
along with several simple examples and a few more 
complex ones. The source code for all of these pro­
grams are available in the Insite Users Library using 
order code AE-16. Additional information on the 8096 
can be found in the Microcontrolier Handbook and it is 
recommended that this book be in your possession be­
fore attempting any work with the MCS-96 family of 
products. Your local Intel sales office can assist you in 
getting more information on the: 8096 and its hardware 
and software development tools. 

7.0 BIBlOGRAPHY 
1. MSC-96 Macro Assembler User's Guide, Intel Cor­

poration, 1983. 

Order number 122048-001. 

2. Microcontrolier Handbook (1985), Intel Corpora­
tion, 1984. 

Order number 210918-002. 

3. MSC-96 Utilities· User's Guide, Inter Corporation, 
1983. 

Order. number 122049-001. 

4. PL/M-96 User's Guide, Intel Corporation, 1983. 

Order number 122134-001. 

21-174 



» :.. 
-I 

I\) 
I» 
17 

~ 

CD . .... 
r -..j 

01 0 
0 
~ 
c:: 
'0 

SERIES-Ill MCS-96 MACRO ASSEMBLER. V! 0 

SOURCE FILE: F3: INTER! A96 
OBJECT FILE' : F3: INTER! OBJ 
CONTROLS SPEC IFIED IN IINOCATION COMMAND. NOSB 

ERR LaC OBJECT LINE 
1 
2 
3 
4 

~I :> 
~I :>3 

:>4 
0022 :>:> 

:>6 
0022 :>7 
0024 :>8 
0026 :>9 
0028 60 

0028 61 
002A 62 
002C 63 
002E 64 
0030 6:> 

66 
67 

2080 68 
69 

2080 AIOOOl18 70 
71 

2084 B0221C 72 
2087 18031C 73 
208A 71FEIC 74 

7:> 
76 
77 

208D ACICIC 78 
2090 A31D002124 79 

80 
81 

SOURCE STATEMENT 
$TITLE('INTERI A96: Interpolation routine 1') 

8096 Assembly code for table lookup and interpolatlon 

$]NCLUDE{:FO:DEM096. INC) • Include demo definitions 
$nolist Turn llstlng off for include file 

End of include file 

RSEG at 22H 

IN_VAL: dsb I· 
TABLE_LOW: dsw 
TABLE_HIGH: dsw 

Actual Input Value 

IN_DIF: dsw 1 Upper Input - Lower Input 
IN_DIFB e'lu 
TAB_DIF: d5W 
OUT: dsw 
RESULT: d5W 
OUT_DIF: dsl 

CSEG at 2080H 

LD 

look: LDB 
SHRB 
ANDB 

SP. 11100H 

AL. IN_VAL 
AL. .3 
AL. 1111111110B 

IN_DIF :byte 
1 Upper Output - Lower Output 

; Delta Out 

Load temp ~ith Actual Value 
Divide the byte by 8 
Insure AL is a word address 
This effectively divides AL by 2 
so AL ~ IN_VAL/16 

LDBlE 
LD 

AX, AL Load byte AL to word AX 
TABLE_LOW. TABLE [AX] TABLE_LOW 15 loaded with the value 

in the table at table location AX 

270061-64 

m » 
en -o 
en 
0» 
"T1"tJ 
-I"tJ :em »Z 
%JC m->< 
~» 
» s: 
"tJ 
r-m 
en 

( 

~ 
"D 
I 

N 

"" C» 



?> -. 

~ 
C' 
j;' 
r 

~ 
0 
0 , '" ..... C 

--J "t:I 
Q') 

'0 
0 
3-
5· 
C 
(1) 

S 

2095 A31D022126 82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

LD TABLE HIGH. (TABLE+2)[AX] ; TABLE HIGH is loaded with the 
- value in the table at table 

209A 4824262A 

209E 510F2228 

20A2 AC2828 

20A5 FE4C2A2830 

20AA OE0430 

20AD 4424302C 

20Bl OA042C 
20B4 A4002C 

20B7 C02E2C 

20BA 27C8 

2100 

2100 000000200034004C 
2108 005D006A00720078 
2110 007B007D0076006D 
2118 005D004B00340022 
2120 0010 

2122 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
11.3 
114 
115 
116 
117 
118 

SUB 

ANDB 

LDBZE 

MUL 

SHRAL 

ADD 

SHRA 
ADDC 

no inc: ST 

BR 

cseg AT 2100H 

table: DCW 

END 

DCW 
DCW 
DCW 
DCW 

ASSEMBLY COMPLETED. NO ERROR (S) FOUND. 

location AX+2 
(The next value in the tabl.) 

TAB_DIF. TABLE_HIGH. TABLE_LOW 
TAB_DIF=TABLE_HIGH-TABLE LOW 

IN_DIFB. IN_VAL. 1I0FH 

IN_DIF. IN_DIFB 

OUT_DIF. IN_DIF. TAB_DIF 

OUT_DIF. 114 

OUT. OUT_DIF. TABLE_LOW 

OUT. 114 
OUT, zero 

OUT. RESULT 

look 

i 

IN_DIFB=least significant 4 bits 
of IN_VAL 

Load byte IN_DIFB to word IN_DIF 

Output_difference 
Input_ difference*Table_difference 

D1v.ide by 16 (2**4) 

Add output difference to output 
generated with truncated IN_VAL 
as input 

Round to 12-bit answer 
Round up if Carry = 1 

Store OUT to RESULT 

Branch to "I oak: II 

OOOOH. 2000H. 3400H. 4COOH i A random function 
5DOOH. 6AOOH. 7200H. 7BOOH 
7BOOH. 7DOOH. 7600H. 6DOOH 
5DOOH. 4BOOH. 3400H. 2200H 
IOOOH 

270061-65 

l 

)­

l' 
N 
~ 
CD 



~ 
j.J 
-4 ... 

~ f ..... ..... r-..... 0 
0 
:10:' 
C 
"a 
N 

SERIES-III MCS-96 MACRO ASSEMBLER, VI 0 

SOURCE FILE F3 INTER2 A96 
OBJECT FILE F3 INTER2 OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND NOSB 

ERR LOC OBJECT LINE 
I 
2 
3 
4 
5 
6 

~I 7 
;1 55 

56 
0024 57 

58 
0024 59 
0026 60 
0028 61 
002A 62 

002A 63 
002C 64 
002E 65 
0030 66 

67 
68 

2080 69 
70 

2080 AIOOOl18 71 
72 

2084 B0241C 73 
2087 18031C 74 
208A 71FEIC 75 

76 
77 

2080 ACICIC 78 
79 

2090 A31D002126 80 
81 
82 

2095 A31D222128 83 
84 
85 
86 

SOURCE STATEMENf 
.TITLE( 'INT£R2 A96 Intl'rpolation routIne 2') 

,. i;,;. 
8096 Assembly code for table lookup dnd Interpolation 
USing tabled values In place of dIvISIon 

SINCLUDE( FO:DEM096. INC) • Include demo definitIons 
$nolist Turn listing off for Include file 

End of Include file 

RSEG at 24H 

IN_VAL dsb Actual Input Value 
TABLE_LOW: ds .. Table value for functIon 
TABLE INC: d ... Incremental change in functIon 
IN_DIF: d ... I Upper Input - LOUJer Input 
IN_DIFO equ IN_DIF byte 
OUT: d ... I 
RESULT: do .. 
OUT_DIF: dol Delta Out 

CSEG at 2080H 

LD 

look: LOB 
SHRB 
ANDO 

LDBZE 

LD 

LD 

SP. .IOOH 

AL. IN_VAL 
AL. .3 
AL. .11111110B 

AX. AL 

Initialize SP to top of reg file 

Load temp with Actual Value 
Divide the byte by 8 
Insure AL is a word address 
This effectively dlvides AL by 2 
50 AL ; IN._VAL/16 

; Load byte AL to word AX 

TABLE_LOW. VAL_TABLE[AXl TABLE_LOW 15 loaded with the value 
in the value table at locatIon AX 

TABLE_INC, INC_TABLE[AXl TABLE INC 15 loaded with the value 
In the lncrement table at 
locatIon AX+2 

270061-66 

l 

)10 
." . 
N 
~ c» 



_. 
209A 510F242A 87 ANDB IN_DIFB. IN_VAL. IIOFH ; IN_DIFB=least significant 4 bits 

I I t 88 of IN_VAL 
209E AC2A2A 89 LDBZE IN_DIF. IN_DIFB Load bvte IN_DIFB to word IN_DIF 

90 
20Al FE4C282A30 91 MUL OUT_DIF. IN_DIF. TABLE_INC 

92 I Output_difference 
93 Input_difference*Incremental_change 
94 

20A6 4426302C 9:5 ADD OUT. OUT_DIF. TABLE_LOW; Add output difference to output 
96 generated with truncated IN_VAL 
97 as input 

20AA 08042C 98 SHR OUT. 114 i Round to 12-bit answer 
20AD A4002C 99 ADDC OUT. zero Round up if Carrlj :;::; 1 

100 
20BO C02E2C 101 no - inc: ST OUT. RESULT Store OUT to RESULT 
20B3 27CF 102 BR look Branch to "look:" 

103 

1> 104 

~ 2100 105 cseg AT 2100H 

.... 106 
III 2100 107 val - table: 
C' 2100 00OOO0200034004C 108 DCW OOOOH. 2000H. 3400H. 4COOH i A random function 
Ii 2108 005D006A00720078 10>9 DCW 5DOOH. 6AOOH. 7200H. 7800H 
r 2110 007B007D0076006D 110 DCW 7BOOH. 7DOOH. 7600H. 6DOOH ):0 

~> 0 
DCW 5DOOH. 4BOOH. 2200H 0 2118 005D004B00340022 111 3400H. "tI , :0; 2120 0010 112 DCW 1000H . 

~ c ~ ...... '0 2122 113 inc - table: ~ Q) 
N 2122 0002400180011001 114 DCW 0200H. 0140H. 0180H. OllOH Table of incremental c» 
'0 2i2A 0000800060003000 115 DCW, OODOH. 0080H. 0060H. 0030H differences 
0 2132 200090FF70FFOOFF 116> DCW 00020H. OFF90H. OFF70H. OFFOOH 
::J 213A EOFE90FEEOFEEOFE 117 DCW OFEEOH. OFE90H. OFEEOH. OFEEOH ct. 
::J 118 c 

2142 119 END (1) 

S 
ASSEMBLY COMPLETED. NO ERROR(S) FOUND. 

270061-67 



I\) 
~ , 
~ 

...... 
co 

)0-

~ 

" .... 
f en 
o o 
Q. 
II 

:e 
;:;: 
:::T 

'" )( 
'tI 

'" :::I 
1/1 o· 
:::I 

SERIES-III PL/M-96 VI 0 COMPILATION OF MODULE PLMEX 
OBJECT MODULE PLACED IN :F3 PLMEXl.OBJ 
COMPILER INVOKED BY: PLM96.86· F.3 PLMEXI. P96 CODE 

2 
3 
4 
5 
6 
7 
8 
9 

10 

II 
12 
13 

14 

15 
16 

17 

18 

19 

I 
2 
2 

$TITLE( 'PLMEXI: PLM-96 E,ample Code for Table Lookup') 

1* PLM-96 CODE FOR TABLE LOOK-UP AND INTERPOLATION *1 

PLMEX DO; 

DECLARE IN_VAL WORD PUBLIC; 
DECLARE TABLE_Lm~ INTEGER PUBLIC; 
DECLARE TABLE_HIGH INTEGER PUBLIC; 
DECLARE TABLE_PIF INTEGER PUBLIC; 
DECLARE OUT INTEGER PUBLIC; 
DECLARE RESULT INTEGER PUBLIC; 
DECLARE OUT_DIF LONGINT PUBLIC; 
DECLARE TEMP WORD PUBLIC; 

DECLARE TABLE(17) INTEGER DATA 
OOOOH. 2000H. 3400H. 4COOH. 1* A random function *1 
5DOOH. 6AOOH. 7200H. 7800H. 
7BOOH. 7DOOH. 7600H. 6DOOH. 
5DOOH. 4BOOH. 3400H. 2200H. 
1000H); 

DMPY' PROCEDURE (A.B) LONGINT EXTERNAL; 
DECLARE (A.B) INTEGER; 

END DMPY; 

LOOP. 
TEMP=SHR(IN_VAL.4); 1* TEMP is the most significant 4 bits of IN_VAL *1 

TABLE_LOW=TABLE(TEMP); 
TABLE_HIGH=TABLE(TEMP+I); 

1* If "TEMP" ",as replaced by "SHR<IN_VAL. 4)" *1 
1* The code would work but the 8096 would *1 
1* do two shifts *1 

TABLE_DIF=TABLE_HIGH-TABLE_LOW; 

OUT_DIF=DMPY(TABLE_DIF.SIGNED(IN_VAL AND OFH» 116; 

OUT=SAR( (TABLE_LOW+OUT_DIF). 4)j 1* SAR performs an arithmetic right shift. 
in this case 4 places are shifted *1 

l 

I I 
l> 
." 

I 
I\) 

"" CO 

270061-68 



1-
!» 
'V 
r-
== cl:. 
Q) 

0 
0 a. 
CD 

~ ~. . :f .... 
'" <Xl 

0 >< 
'V 
II.) 
~ 
II) 

O· 
~ 

'0 
0 
3-
:5" 
c 
(1) 

.e. 

20 
22 

23 

24 

IF CARRY=O THEN RESULT=OUT, 1* Using the hardware flags must be done *1 
ELSE RESULT=OUT+l, 1* with care to ensure the flag is tested *1 

1* in the desired instruction sequence *1 
GOTO LOOP, 

1* END OF PLM-96 CODE *1 

END, 

PL/M-96 COMPILER PLMEXI: PLM-96 Example Code for Table Lookup 
ASSEMBLY LISTING OF OBJECT CODE 

.0.022 
0.022 AI0.o.o.o18 
.0.026' 
.0.026 A.o.oOl.o 
.0.029 .08.041.0 

.o.o2C 44101.oIC 
.0.03.0 A31DO.oOO02 

.0035 A31D0200.o4 

.o.o3A 48.0204.06 

003E C806 
.004.0 410FOO.o01C 
0.045 C8lC 
0.047 EF.oOO.o 
.o.o4A .oE.o41C 
.o.o4D A.oIEOE 
0.05.0 A.olC.oC 

.0.053 A.o.o22.o 

.0.056' .062.0 

.0.058 641C2.o 
O.o5B A41E22 
.o.o5E .oE.o420 
.0.061' A.o2.o.o8 

0.064 BIFFIC 
0.067 DB.o2 
0.069 l11C 
.o06B 

R 

R 
R 

R 
R 

R 

R 

R 
R 

E 

R 
R 

R 

R' 

PLMEX: 

LOOP: 

@O.o.o3: 

STATEMENT 14 

LD SP,.IISTACK 

LD TEMP. IN_VAL 
SHR TEMP.1I4H 

STATEMENT 15 
ADD 
LD 

TMP.o. TEMP. TEMP 
TABLE_LOW.TABLE(TMPOJ 

STATEMENT 16 
LD TABLE_HIGH.TABLE+2H(TMP.oJ 

STATEMENT 17 
SUB TABLE_DIF. TABLE_HIGH. TABLE_LOW 

STATEMENT 18 
PUSH TABLE_DIF 
AND TMP.o.IN_VAL.II.oFH 
PUSH TMPO 
CALL DMPY 
SHRAL TMPO.1I4H 

'LD OUT_DIF+2H.TMP2 
LD 'OUT_DIF.TMPO 

STATEMENT 19 
LD 
EXT 
ADD 
ADDC 
SHRAL 
LD 

TMP4.TABLE_LOW 
TMP4 

LDB 

TMP4.TMPO 
TMP6.TMP2 
TMP4.114H 
OUT.TMP4 

STATEMENT 
TMP.o.II.oFFH 

BC @.o.o.o3 
CLRB TMP.o 

2.0 

270061-69 

270061-70 

l 

» 
13 
N 

"" CO 



~ 
!" 
'U 
r-, 
ID 
01 
0 
0 a. 
CD 

~ 
~ 
;:;: . :::r 

~ 

~ IT! 
>c 

" III 
:J 
III 
0" 
:J 

'0 
0 
:::l 
!:!". 
:::l 
c: 
(J) 

.a, 

006B 9B1COO CMPB RO.TMPO 
006E D705 DNE @OOOI 

STATEMENT 21 
0070 A0200A R LD RESULT,TMP4 
0073 2005 DR @0002 

STATEMENT 22 
0075 @0001: 
0075 AOOBOA R LD RESULT, OUT 
007B 070A R INC RESULT 

STATEMENT 23 
007A @0002: 
007A 27AA BR LOOP 

STATEMENT 24 
END 

MODULE INFORMATION: 

CODE AREA SIZE 005AH 90D 
CONSTANT AREA SIZE 0022H 34D 
DATA AREA SIZE OOOOH 00 
STATIC REGS AREA SIZE OO12H lBD 

PL/M-96 COMPILER PLMEXI PLM-96 Example Code for Table Lookup 
ASSEMBLY LISTING OF OBJECT CODE 

OVERLAYABLE REGS AREA SIZE 
MAXIMUM STACK SIZE 
4B LINES READ 

PL/M-96 COMPILATION COMPLETE 

OOOOH 
0006H 

00 
60 

o WARNINGS. o ERRORS 

I I 

270061-71 

_. 
t 

» 
"0 
I 

N .,.. 
Q) 



~ 
~ 
'tI 
r-
s::: 
ch 
en 
0 
0 
CI. 
C1) 

~ 
~ 
;::;: . ..... :r 

CD m 
I\) >< 

'tI 
III :s 
III o· 
:s 
0 
0 :s 
!:!: 
:s 
c: 
(I) 
.e, 

MCS-96 MACRO ASSEMBLER MULT. APT· 16*16 multlply procedure for PLM- c/6 

SERIES-III MCS-96 MACRO ASSEMBLER, VI.O 

SOURCE FILE: :F3:MULT. A96 
OBJECT FILE: :F3:MULT.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB 

ERR LOC OBJECT LINE SOURCE STATEMENT 
$TITLEC'MULT APT: 16*lo.multiply procedure for PLM-96') 

2 
3 

0018 4 SP EGU 18H:word 
5 

0000 0 rseg 
7 EXTRN PLMREG : long 
8 

0000 9 cseg 
10 
11 PUBLIC DMPY Multiply two integers and return a 
12 longint result in AX, DX registers 
13 

0000 CC04 E 14 DMPY: POP PLMREG+4 , Load return address 
0002 CCOO E 15 POP PLMREG , Load one operand 
0004 FE6EI900 E 10 MUL PLMREG, [SP]+ Load second operand and increment SP 

17 
0008 E304 E 18 BR [PLMREG+4] , Return to PLM code. 
OOOA 19 END 

ASSEMBLY COMPLETED. NO ERRORCS) FOUND. 

270061-72 

l 

~ 
'tI 
~ 
.1:>0 
CO 



)0 

~I s:: 
ch 
CJ) 

0 
0 
Q. 
CD 

~ 
~ ;:;: . ::T .... 
00 m 
c.:> >< 

"'C 
DI 
~ 
1/1 
O· 
~ 

0 
0 a 
5' 
c 
<D 
S: 

SERIES-III MCS-96 RELOCATOR AND LINKER. V2.0 
Copyright 1983 Intel Corporation 

INPUT FILES: : F3: PLMEXI. OBJ. : F3: MULT. OBJ. PLM96. LIB 
OUTPUT FILE: :F3:PLMOUT.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: 

ROM (20BOH-3FFFH) 

INPUT MODULES INCLUDED: 
:F3:PLMEX1.0BJ(PLMEX) 12/25/B4 
·F3:MULT.OBJ(MULT) 12/25/B4 
PLM96,LIB(PLMREG) 11/02/B3 

SEGMENT MAP FOR :F3:PLMOUT.OBJ(PLMEX): 

TYPE BASE LENGTH 

**RESERVED* OOOOH 001AH 
*.* GAP *** 001AH 0OO2H 

REG 001CH OOOBH 
REG 0024H 0012H 
STACK 0036H 0OO6H 

it** GAP *** 003CH 2044H 
CODE 20BOH 0OO3H 

*** GAP *** 20B3H 0OO1H 
CODE 20B4H 007CH 
CODE 2100H OOOAH 

.*** GAP *** 210AH DEF6H 

ALIGNMENT 

ABSOLUTE 
WORD 
WORD 

ABSOLUTE 

WORD 
BYTE 

MODULE NAME 

PLMREG 
PLMEX 

PLMEX 

PLMEX 
MULT 

270061-73 

l 

l> 

" . N 
.,;:. 
Q) 



~ 
~ 

" ~ , 
0 
G» 
0 
0 
I:L 
CI 

~ !. 
, !i 
~ 

<XI m 
~ )C 

" III 
:I • 0-
:I 

'§ 
3-
:j" 
c: 
(1) 

.2: 

SYMBOL TABLE FOR :F3:PLMOUT. OB~(PLMEX). 

ATTRIBUTES VALUE NAME 
----------

'PUBLICS: 
REG WORD 0024H IN_VAL 
REG INTEGER 0026H TABLE_LOW 
REG INTEGER 0021iH TABLE_HIGH 
REG INTEGER 002AH TABLE_DIF 
REG INTEGER 002CH OUT 
REG INTEGER 002EH RESULT 
REG LONGINT 0030H OUT_DIF 
REG WORD 0034H TEMP 
CODE ENTRY 2100H DMPY 
REG LONG 00lCH PLMREG 
NULL NULL 003CH MEMORY 
NULL NULL lFC4H ?MEMORY_SIZE 

MODULE: PLMEX 

MODULE: MULT 

MODULE: PLMREG 

RL96 COMPLETED. o WARNING(S). o ERROR(S) 
270061-74 

( 

~ 

" N .. 
C» 



~I 
~ 
"U 
C 
iii' 

~ CD 
, :s::: 
~ CD <Xl AI 
01 !II 

C ... 
CD 
3 
CD 
::l -

SERIES-III MCS-96 MACRO ASSEMBLER. VI 0 

SOURCE FILE F3.PULSE A96 
OBJECT FILE. F3PULSE.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND· NOSB 

ERR LOC OBJECT LINE 

2 
3 

=1 4 
=1 52 

53 
0028 54 

55 
0028 56 
002A 57 
002C 5B 
002E 59 
0030 60 

61 
62 
63 

2080 64 
65 
66 

20BO AIOOOl18 67 
2084 810115 6B 
2087 BIOF03 69 

70 
20BA 442A282C 71 
20BE 3EI603 72 
2091 3716F6 73 

74 
2094 B0061C 75 

76 
77 

2097 A00420 7B 
79 

209A 391C09 BO 
Bl 

209D C03020 82 
20AO 4B2E302B 83 
20A4 27E4 B4 

85 
B6 

20A6 C02E20 B7 

SOURCE STATEMENT 
STITLE( 'PULSE. A96 Measuring pulses using the HSI unit') 

SINCLUDE(DEM096 INC) 
$nolist 

rseg 

(seg 

wait: 

contin: 

hsi 10: -

hsi hi: -

Turn listing off for include file 
End of include file 

at 28H 

HIGH_TIME: dsw 
LOW_TIME: dsw 
PERIOD: dsw 
HI_EDGE· dsw 
LO_EDGE: dsw 

at 2080H 

LD 
LDB 
LOB 

ADD 
JBS 
JBC 

LOB 

LD 

JBS 

ST 
SUB 
BR 

ST 

SP. IIIOOH 
lOCO. 11000000018 
HSI_MODE. IIOOOOIIIIB 

Enable HSI 0 
HSI 0 look for either edge 

PERIOD. HIGH_TIME. LOW_TIME 
IOSI. 6. contin If FIFO is full 
1051, 7, wait ; Wait while no pulse 15 entered 

AL. HSI_STATUS 

BX. HSI_TIME 

AL. I. hsi_hi 

BX. LO_EDGE 

Load status; Note that reading 
HSI_TIME clears HSI_STATUS 

Load the HSI_TIME 

Jump if HSI.O is high 

HIGH_TIME. LO_EDGE. HI_EDGE 
wait 

BX. HI_EDGE 

270061-75 

l 

» 
'U 
~ .... 
(XI 



intJ 

~ 
l-

i .. 
:I ... 
C .. 

oJ " 

III Q 
::>11:: Z 
UlI!I III 

ili 
l\l 
Ol!l 
MQ 
CD" ... ru 
O"Q 

~~ ruru 

~ 
IS 
II:: 
II:: 
III 

o 
Z 

~ 
I­
III 
...J 

~ o 
(J 

> 
...J 

~ 

~ 
" 

Ap·248 

A.4. Pulse·Measurement (Continued) 

21·186 



it-
!JI 
m 
:l 
:::r 
DI 
:l 
() 
CD 

~ 
a. 
." . c: 

~ 

iii" CO 
-..j CD 

iii: 
CD 
DI 
III 
c: , 
CD 
3 
CD 
:l -

S~RIES~lll MCS-96 MACRn AHSIMDI IN, VI (j 

SOURCE FIl.E F3 ENHSI A'I6 
OIlJECr FILE F3 [NilS] DB,) 
CONl ROLS SPEC I F I ED 1 N I NVIJCAf ION COMMAr,J) NOSB 

ERR LOC OBJECl LINE 
1 
2 
3 

=1 4 
=1 52 

53 
0028 54 

55 
0028 56 
002A 57 
002C 58 
002E 59 
002F 60 
0030 61 
0032 62 
0034 63 
0036 64 

65 
2080 66 

67 
2080 AIOOOl18 68 

69 
2084 1112516 70 

71 
72 

2087 B19903 73 
208A BI0715 74 

75 
76 
77 
78 

2080 717F2F 79 
2090 90162F 80 

81 
2093 372FF7 82 

83 
84 

2096 5155062E 85 
209A AOO428 86 

87 

SOURCE STATEMENr 
STITlE ('ENHSI A96 ENHANCED HSI PUl.SE ROUTINE') 

SINCLUOE(OEM096. INC) 
Snolist Turn listing off for include fIle 

End of" include fIle 

RSEG AT 28H 

cseg 

in it: 

wai t: 

TIME: OSW 
LAST_RISE: OSW 
LAST_FALL DSW 
HSl_SO: OSB 
10SI_BAK: DSB 
PER 10D: DSW 
LOW_TIME: OSW 
HIGH_TIME: OSW 
COUNT: OSW 

at 2080H 

LD SP.1I100H 

LOB 10C 1. 11001001018 Disable HSO. 4. HSO. 5. HSI INT='.rst. 
Enab I e PWM. TXO. TIMER 1 __ 0VRFLOW INT 

LDB 
LDB 

HSI_MOOE.1I10011001B 
IOCO.1I00DOOIIIB 

set hsi. 1 -j hsL 0 + 
Enable hsi 0,1 

ANOB 

T2 CLOCK=T2CLK. T2RST=T2RST 
Clear timer2 

Clear IOS1_BAK.7 
ORB 

JBC 

IOSI_BAK.1I01111111B 
10SI_BAK. 1051 

IOSI_BAK.7.wait 

Store into temp to avoid clearing 
other flags which may be needed 
If hsi is not triggered then 

ANDB 
LO 

Jump to wait 

HSI_SO. HSI_STATUS. 1I01010101B 
TIME. HSI_TIME 

270061-77 

l 

)I­
." • I\) 

"" (II) 



2090 382E05 
20AO 3A2EOF 
20A3 201A 

20A5 482C2832 
20A9 482A2830 
20AD A0282A 
20BO 200B 

20B2 482A2834 
20B6 482C2830 
20BA A0282C 

)0 

~ 
20BD 
20BD 0736 
20BF 27CC m 

:J 
:J' 20Cl 
DI 
:J 
() ASSEMBLY COMPLETED. 
CD a. 
'1J 
I: 
iii' 

~ 
CD 
iii: ... CD 

CO DI 
CO 1/1 

I: .. 
CD 
3 
CD 
:J -'§ 
a. 
:i" 
r::: 
CD .s 

88 JBS 
89 JBS 
90 BR 
91 
92 a_rise: SUB 
93 SUIl 
94 LD 
95 BR 
96 
97 a_fall: SUD 
98 SUD 
99 LD 

100 
101 increment: 
102 INC 
103 no_cot: BR 
104 
105 END 

NO ERROR(S) FOUND. 

HSI_SO, 0. a_ri se 
HSI_SO. 2. a_fall 
no_cnt 

LOW_TIME. TIME. LAST_FALL 
PERIOD. TIME. LAST_RISE 
LAST_RISE. TIME 
increment 

HIGH_TIME. TIME. LAST_RISE 
PERIOD. TIME. LAST_FALL 
LASTfALL. TIME 

COUNT 
wait 

270061-78 

( 

» 
"P 
PI) 

""' 01) 



l> a, 
=al 
::e 

~ 
3: 
c: 

..... (/) 

ex> S" 
CD CO -:T 

CD 
:J: en 
0 

SERIES-III MCS-96 MACRO ASSEMBLER. VI. 0 

SOURCE FILE: :F3:HSODRV.A96 
OBJECT FILE: :F3:HSODRV.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB 

ERR LOC OBJECT LINE 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

=1 12 
=1 60 

61 
0028 62 

63 
64 
65 

0028 66 
002A 67 
002C 68 
002E 69 
0030 70 

71 
2080 72 

73 
74 
75 

2080 FA 76 
2081 AI000118 77 
2085 510F1500 E 78 
2089, 950FOO E 79 

80 
208C 81 
208C AI000122 82 

83 
2090 AI00I0IC 84 
2094 48221C20 85 
2098 A0221C 86 

87 

SOURCE STATEMENT 
$TITLE('HSODRV.A96: Driver module for HSO PWM program') 

HSODRV MODULE MAIN, STACKSIZE(8) 

PUBLIC HSO_ON_O HSO_OFF_O 
PUBLIC HSO_ON_l HSO_OFF_l 
PUBLIC HSO_TIME HSO_COMMAND 
PUBLIC sp, TIMERI , 1050 

$INCLUDE(DEM096. INC) 
Snolist Turn listing off for include file 

End of include file 

rseg at 28H 

EXTRN 'OLD_STAT : byte 

HSO_ON_O: dsw 
HSO_OFF_O: dsw 
HSO ON 1: dsw 
HSO:OFF_l: dsw 
count: dsb 

cseg at 2080H 

strt: 

initial: 

loop: 

EXTRN 

DI 
LD 
ANDB 
XORB 

LD 

LD 
SUB 
LD 

wait : entry 

SP, III00H 
OLD_STAT, 1050, IIOFH 
OLD_STAT, IIOFH 

CX, IIOI00H 

AX, 1I1000H 
BX, AX, CX 
AX, CX 

270061-79 

l 

l> 

" I 
I\) 
.1:>0 
CXI 



~ 
P 
'11 

I 
c 
~ 

N 11:1 

! ;: 
<0 CD 
0 ::t 

~ 
l' 
:::J 
c!: 

.:::J 
~ 
(I) 

.s 

209B C02BIC 
209E C02A20 

20Al OBOllC 
20A4 OB0120 
20A7 C02CIC 
20AA C02E20 

20AD EFOOOO 

20BO 0722 
20B2 B9000F22 
20B6 D7DB 

2088 27D2. 

20BA 

ASSEMBLY COMPLETED. 

E 

BB 
89 
90 
91 
92 
93 
94 
95 
96 
97 
9B 
99 

100 
·101 
102 
103 
104 

NO ERROR(S) FOUND. 

ST 
ST 

SHR 
SHR 
ST 
ST: 

CALL 

INC 
CMP 
BNE 

BR 

END 

AX. HSO_ON_O 
BX. HSO_OFF_O 

AX. til 
BX.tll 
AX. H~O_ON_l 

BX. HSO_OFF_l. 

.. ait 

CX 
cx. 1I00FOOH 
loop 

ini tial . 

270061-80 

( 

)to 

Z : 



l> 
in 
"U 
:E 
iii: 
c 
1/1 
S' 

I\) III 
~ -, :r ~ III CO 
~ 

~I 
() 
0 
::l. 
:r 
c 
(!) 

S: 

SERIES-III MCS-96 MACRO ASSEMBLER, VI 0 

SOURCE FILE F3:HSOMOD. A96 
OBJECT FILE. F3:HSOMOD OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB 

ERR LOC OBJECT LINE 
I 
2 
3 
4 
~ 

6 
7 
8 
9 

10 
11 
12 
13 
14 
1~ 

16 
17 
18 
19 
20 

0000 21 
22 

0000 23 
24 
2~ 

26 
27 
28 
29 
30 

0001 31 
0002 32 

33 
34 

0000 3~ 

36 
37 

0000 3EOOFD E 38 
0003 FD 39 

40 
41 
42 
43 
44 

SOURCE STATEMENT 
$TITLE( 'HSOMOD. A96: 8096 PWM PROGRAM MODIFIED FOR DRIVER') 
$PAGEWIDTH(130) 

This program will provide 3 PWM outputs on HSO pins 0-2 
The input parameters passed to the program are. 

HSO_ON_N 
HSO_OFF_N 

HSO on time for pin N 
HSO off time for pin N 

Where: Times are in timer1 c~cles 

N takes values from 0 to 3 

;i;;;;;;; i;; jii;;;; i; j;;j; j iii iii;; j iii j;;; jj;;;;; iji iii iii; 

RSEG 

cseg 

NOTE: Use this file to replace the declaration section of 
the HSO PWM program from "$INCLUDE(DEM096. INC)" through 
the line prior to the label "wait", Also change the last 
branch in the program to a "RET" 

D_STAT: DSB 
BltTn HSD_DN_O :word HSO_DFF _0 : word 
extrn HSO ON 1 :word , HSO_OFF _I : word 
eltrn HSO::::TIME : word HSO_COMMAND : byte 
extTn TIMER 1 : word IOS0 :byte 
extrn SP : word 

public OLD STAT 
OLD_STAT: dsb 
NEW_STAT: dsb 

PUBLIC wait 

wat t: JBS 
NOP 

10SO, 6, wait Loop until HSO holding register 
is empty 

For opperation with interrupts 'store_stat.· would be the 
entry point of the routine. 
Note that a DI or PUSHF might have to be added 

270061-81 

( 

» 
11 
N 
",. 
CI 



_. 
0004 45 store_stat: 

I I ( 0004 510FOO02 E 46 AN DB NEW_STAT. 1050. IIOFH i Store new, status of HSO 
0008 980201 R 47 CMPB OLD_STAT. NEW_STAT 
OOOB DFF3 48 ,JE wait 
0000 940201 R 49 XORB OLD_STAT. NEW_STAT 

50 
51 

0010 52 check_O: 
0010 300113 R 53 ,JBC OLD_STAT. O. check I Jump if OLD._STAT(O)~NEW._STAT(O) 
0013 380209 R 54 ,JBS NEW_STAT. O. set_off _0 

55 
0016 56 set_cn_O: 
0016 BI3000 E 57 LOB HSO_COMMAND. 11001100000 Set HSO for timer1. set pin 0 
0019 44000000 E 58 ADD HSO_TIME. TIMERI. HSO_OFF_O Time to set pin:;::: Ti-merl value 
0010 2007 59 BR check - 1 + Time for pin to be low 

60 

~ 001F 61 set_off _0: 

in 001F 011000 E 62 LDO HSO _COMMAND. 1I000I0000B i Set HSO for timert. clear pin 0 
0022 44000000 E 63 ADD HSO_TIME. TIMERI. HSO_ON_O Time to clear pin = Timer! value 

'U 64 + "rime for pin to be high ::e 0026 65 chec k_l: i: 0026 310113 R 66 ,JBC OLD:"STAT. I. check done ,Jump if OLD_STAT(I)~NEW_STAT(I) c: 0029 390209 R 67 JBS NEW_STAT. 1. set_off _ 1 !I!. 68 :::I 

I I 
J> ~ CD 002C 69 5et~on_l : - 002C 813100 E 70 LOB HSO_COMMAND. 1I00I10001B Set HSO for timer 1, set pin 1 'U . :r , ..... 

(I) 002F 44000000 E 71 ADD HSO_TIME. TIMERt. HSO_OFF _1 . , Time to set pin ~ Timerl value N 
CO ~ I\) % 0033 2007 72 OR check_done 011 en 73 

0 0035 74 set_off _1: 
0 0035 011100 E 75 LOB HSO_COMMAND. 11000100018 Set HSO for timer 1, clear pin 1 
0 0038 44000000 E 76 ADD HSO_TIME. TIMERlo HSO_ON_I Time ta clear pin = Timer! value 
~ 77 + Time for pin to be high 
::J 003C 78 check_done: c:: 
<1l 003C B00201 R 79 LOB OLD,-STIH. NEW_STAT i Store current status and 
S: 80 wait For interrupt flag 

81 
003F FO 82 RET 

83 use tlBR u.ait" if this routine is used ,wi th the driver 
84 

0040 85 END 

ASSEMBLY COMPLETED. NO ERROR(S) FOUND. 

270061-82 



)0-
;... 

~ en , CD ..... :!. 
<0 !. (.oJ 

"11 
0 .. .. 

SER IES-I I I MCS-96 MACHO A~Sf.MDLER. VI 0 

SUURCE FILE 
OBJECT FILE 

F3 SP A96 
F3 SP ODJ 

CONTROLS SPECIFIED IN INVOCATION COMMAND NOSa 

ERR LOC OBJECT 

0028 

0028 
0029 
002A 
002B 
002C 

200C 

200C 9C20 

20BO 

20BO AIOOOllB 

2084 BI2016 

0027 

OOBO 
0026 

20B7 ll1260E 
20BA lllBOOE 

LINE 

2 
3 
4 

=1 5 
=1 53 

54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
6B 
69 
70 
71 
72 
73 
74 
75 
76 
77 
7B 
79 
80 
81 
82 
B3 
B4 
B5 

SOURCE STATEMENT 

STITLE( 'SP.A96: SERIAL PORT DEMO PROGRAM') 

SINCLUDE(DEM096. INC) 
_nolist Turn listing off for include file 

End of includ~ file 

rseg at 2BH 

CHR: dsb 
SPTEMP: dsb 
TEMPO: dsb 
TEMPI: dsb 
RCV_FLAG: dsb 

csey at 200CH 

DCW ser-9ort_int 

cseg at 20BOH 

LD SP, .IOOH 

LDB lOCI. .00100000B i Set P2.0 to TXD 

baud_v.1 

BAUD_HIGH 
BAUD_LOW 

LOll 
LOB 

Baud rat. 
baud_val 

input fr.quenc~ / (64*baud_val) 
(input frequenc~/64) 1 baud rate 

equ 39 i 39 (12, 000. 000/64)/4BOO baud 

equ 
equ 

«baud_val-l)/256) OR BOH 
(baud_val-I) MOD 256 

BAUD_REG. .BAUD_LOW 
BAUD_REG. .BAUD_HIGH 

i Set MSB to I 

270061-83 

l 

)10 

l' 
N .... 
C» 



2080 014911 

2090 C42807 
2093 BI202A 

2096 'B14008 
2099 FO 
209A 27FE 

209C 
209C F2 
2090 
2090 001129 
20AO 90292A 

~ 
20A3 716029 
20A6 07F5 

;-I 
en 20A8 
CD 20A8 362A09 ::!. 
e!. '20AO C42807 

I\) 
"0 20AE 71BF2A 

~ 

~ 
0 20Bl BIFF2C 

(0 :::. 
.j>. '0 2004 

0 2004 302CI8 
3- 20B7 352AI5 
5" 20BA B02807 c 
CD 20BO 710F2A .s 

20CO 717F28 
20C3 990028 
20C6 0705 
20C8 BIOA28 
20CB 2002 

20CO 
20CO 112C 

20CF 
20CF F3 
2000 FO 

2001 

ASSEMBLY COMPLETED. 

86 
87 
88 
89 
90 
91 
92 
93 

,94 
95 
96 
97 
98 
'19 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 

loop: 

LDB 

STO 
LOO 

LDB 
EI 
BR 

ser _port_lnt' 
PUSHF 

rd_agaln: 
LDO 
ORB 
ANOB 
JNE 

get_byte: 
JOC 
STB 
ANOB 
LDB 

put_byte: 

cIT_Tev: 

JBC 
JBC 
LDB 
ANOB 

AN DB 
CMPB 
JNE 
LOB 
BR 

CLRB 

continue: 
POPF 
RET 

END 

NO ERROR(S) FOUND, 

SPCON. 8010010010 Enable receiver. Mode 

; The serial port is now initialized 

SOUF. CHR 
TEMPO. 800100000B 

INT_MASK. 801000000B 

Clear serial Port 
Set TI-temp 

Enable Serial Port Interrupt 

loop j Wait for serial port interrupt 

This seLtion of code can be replaced 
SPTEMP. SPSTAT WI th "ORB c TEMPO. SP _STAT" "'hen the 
TEMPO, SPTEMP serial port TI and RI bugs arp fixed 
SPTEMP.801100000B 
rd_agaln , Repeat until TI and RI aTe prDperl~ cleared 

TEMPO. 6. put_byte 
SBUF. CHR 
TEMPO. 810111111B 
RCV_FLAG. 80FFH 

ReV_FLAG. O. continue 
TEMPO. 5, continue 
SBUF. CHR 
TEMPO. 811011111B 

CHR. 801111111B 
CHR.80DH 
clT_Tev 
CHR. !lOAH 
continue 

RCVJLAG 

If RI-temp 15 not set 
StoTe byte 
CLR RI-temp 
Set bit-received flag 

If receive flag is cleared 
If TI was not set 
Send byte 
CLR TI-temp 

This section of code appends 
an LF after a CR is sent 

i Clear bit-received flag 

270061-84 

l 

~ 
"P 
PI) ,.. 
CO 



~ 
!XI 
)10 .. 

~ 0 
, 0, ..... 

CO 0 
(11 0 

::::I 

II 

SERIES-III MCS-96 MACRO ASSEMBLER. VI 0 

SOURCE FILE: :F3:ATOD. ~96 
OBJECT FILE: :F3:ATOD.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB 

ERR LOC OBJECT 

0028 

0020 
001E 

0028 
0028 
002A 
002C 
002E 

2080 

2080 Al000118 
2084 0120 

2086 55082002 

208A FO 
208B FD 
20BC 3B02FD 

20BF B0021C 
2092 B0031D 

2095 542020lE 
2099 AC1E1E 
209C C31E2B1C 

20AO 1720 

. LINE 
1 
2 
3 

=1 4 
=1 52 

'53 
54 
55 
56 
57 
58 
59 

'60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

SOURCE STATEMENT 
$TITLE(·ATOD. A96: SCANNING THE A TO D CHANNELS') 

$INCLUDE(DEM096. INC) 
$nolist 'Turn listing off for include file 

End of include file 

RSEG at 28H 

BL 
DL 

EOU 
EOU 

BX:BYTE 
OX: BYTE 

RESULT_TABLE: 
RESULT_I dsw 
RESULT_2 dsw 
RESULT_3 dsw 
RESULT_4 dsw 

cseg at 20BOH 

start: LO SP, IIIOOH 
BX 

i Set Stack Pointer 
CLR 

next: ADDB 

NOP 
NOP 

check: JBS 

LOB 
LDB 

ADDB 
LDBZE 
ST 

INCB 

AD_COMMAND,BL, IIIOOOB Start conversion on channel 
indicated by BL register 

Wait for conversion to start 

AD_RESULT_LO. 3. check 

AL. AO_RESULT_LO 
AH. AO_RESULT_HI 

DL. BL. BL 
OX. OL 
AX. RESULT_TABLE[DXl 

Wait while A to 0 is busy 

Load low order result 
Load high order result 

DL=BL*2 

Store result indexed by BL*2 

BL Increment DL modulo 4 

270061-85 

l 

» ;e 
&>0 
011 



intJ 

J: 
M 
0 • .. 
j " " III C 

·111 
CI CI 
Z II: Z 
< III 11.1 

!ii8'!8i~O: 

0 
("of 

8 l!i 
;: "-nI 

N on "-< < < 
0 0 0 
("of nI ("of 

ci 
~ 
~ 
en 
lI:: c 
11:. 
II: 
11.1 

C z 

Q 
11.1 
I-
11.1 
..J. 

8 
u 
> 
..J 
III 
E 
11.1 
en 
en 
< 

AP·248 

A.S. A to D Converter (Continued) 

21-196 



I\) .... , .... 
CO ..... 

SERIES-III MCS-96 MAChO ASSEMBLER, Vl.0 

SOURCE FILE: F3:A2DHSO.A96 
OBJECT FILE:, F3:A2DHSO.OBJ 
CONTROLS SPEC FlED IN INVOCATION COMMAND: NOSB 

ERR LOC OBJECT 

.002B 

001E 

002B 
002B 
002A 
002C 
002E 

0030 
0030 
0032 
0034 
0036 

003B 
003A 
003C 
003E 
0040 
0044 
0046 
004B 
004A 

LINE 
1 
2 
3 
4 
5 
6 
7 
B 
9 

10 
=1 11 
=1 59 

60 
,61 
62 
63 
64 
65 
66 
67 
6B 
69 
70 
71 
72 
73 
74 
75 
76 
77 
7B 
79 
80 
Bl 
B2 
B3 
B4 
B5 
B6 

SOURCE STATEMENT 
STITLE ('A2DHSO.A96: GENERATING PWM OUTPUTS FROM A TO D INPUTS') 

This pTogTam ~ill pTovide 3 PWM outputs on HSO pins 0-2 
and one on the PWM. 

The PWM values aTe' deteTmined by the input to the AID conveTteT. 

;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;·;;;;';;;;;;; i i;;;;;i;;;;;;;;; 

SINCLUDE(DEM096. INC) 
Snolist TUTn listing off fOT include file 

End of include file 

RSEG AT 2BH 

DL EGU DX:BVTE 

ON_TIME: 
PWM_TIME 1: DSW 
HSO_ON_O: DSW 
HSD_ON_l: DSW 
HSO_ON_2: DSW 

RESULT_TABLE: 
RESULT_O DSW 
RESULT_l DSW 
RESULT_2 DSW 
RESULT _3 DSW 

NXT_ON_T: 
NXT_OFF_O: 
NXT_DFF _1: 
NXT_OFF_2: 
COUNT: 
AD_NUM: 

DSW 
DSW 
DSW 
DSW 
DSL 
DSW 
DSW 
DSW 
DSB 

Channel being conveTted 
TMP: 
HSOJ'ER: 
LAST_LOAD: 

270061-87 

:J: 

~ 
» z 
c 
» 
-I 
o 
C 
c:» 
Z"a 
C"a rnrn 
lJZ 

C --Z>< 
~m 
lJ 
lJ c: 
"a 
-I 
o 
o 
Z 
-I 
lJ o 
r 

l 

:I> 

~ 
"'" CD 



~ . .... 
<0 
ex> 

2000 

2000 
2002 
2004 
2006 

20BO 

B020 
1021 
8020 
CC20 

20BO AIOOOIIB 
20B4 OIIC 
20B6 051C 
2088 D7FC 

20BA 1144 

20BC AIB0002B 
2090 AIOOOl4B 
2094 AI40002A 
209B AIB0002C 
209C AIC0002E 

20AO 4500010A38 

20A5 BI3606 
20AB A03804 
20AB FD 
20AC FD 
20AD 8·12206 
2080 643804 

2083 91074A 
20116 1l10A08 
20B9 1l10A09 
20BC FB 

20BD 91010F 
20CO 65010040 
20C4 A40042 
20C7 71FEOF 
20CA 27FI 

B7 
BB 
B9 
90 
91 
92 
93 
94 
95 
96 
97 
9B 
99 

100 
101 
102 
103 
104 
105 
106 
107 
lOB 
109 
110 
III 
112 
113 
114 
115 
116 
117 
liB 
119 
120 
121 
122 
123 
124 
125 
126 
127 
12B 
129 
130 
131 

cseg 

.EJECT 

cseg 

start: 

",at t: 

loop: 

.EJECT 

AT 2000H 

DCW 
DCW 
DCW 
DCW 

start 
Atod_done_i nt 
start 
HSO_, .. ec_int 

Timer_ovf_int 

HSI_data_int 

AT 20aOH 

LD 
CLR 
DEC 
JNE 

CLRB 

LD 
LD 
LD 
LD 
LD 

SP. .IOOH 
AX 
AX 
wait 

AD_NUM 

PWM TIME I •• OBOH 
HSO=PER. -.100H 
HSO_ON_O. .040H 
HSO ON I. .OBOH 
HSO=ON=2. .OCOH 

Set Stack Pointer 

wait approx. 0.2 seconds for 
SHE to finish communications 

ADD NXT_ON_T. Timerl •• IOOH 

LOB 
LD 
NOP 
NOP 
LOB 
ADD 

ORB 
LOB 
LOB 
EI 

ORB 
ADD 
ADDC 
ANDB 
BR 

HSO_COMMAND •• 00110110B 
HSO_TIME. NXT_ON_T 

HSO_COMMAND. .00100010B 
HSO_TIME. NXT_ON_T 

LAST_LOAD •• 00000111B 
INT_MASK •• 00001010B 
INT_PENDING. .00001010B 

Portl. .00000001B 
COUNT. .01 
COUNT+2. zero 
Portl •• 11111110B 
loop 

Set HSO for timerl. set pin O. I 
with interrupt 

Set HSO for timerl. set pin 2 
without interrupt 

Last loaded value was set all pins 
I Enable HSO and AID interrupts 

Fake an AID and HSO interrupt 

set PI. 0 

I clear Pl.0 

270061-66 

l 

~ 
'V 
I 

I\) 
~ 
(XI 



132 
133 
134 
135 
136 

20CC 137 
20CC F2 138 
20CD 91020F 139 

140 
2000 48380A46 141 
2004 880046 142 
20D7 DE19 143 

144 
20D9 145 
20D9 644838 146 
20DC B13606 147 
20DF A03804 148 
20E2 FD 149 
20E3 FD 150 
20E4 B12206 151 
20E7 A03804 152 

153 
20EA 91074A 154 

155 
~ 20ED B02817 156 . 157 ..... 
CO 20FO 2026 158 
CO 159 

160 
20F2 161 
20F2 304A23 162 

163 
20F5 442A383A 164 
20F9 011006 165 
20FC A03A04 166 

167 
20FF FD 168 
2100 442C383C 169 
2104 011106 170 
2107 A03C04 171 

172 
210A FD 173 
2100 442E383E 174 
210F 011206 175 
2112 A03E04 176 

177 
2115 71F84A 178 

179 
2118 180 
2118 71FDOF 181 

;;;.;;;;;; j; j;;;; i; j i; j i; j j;;; i.; •• ;; i i; i;;; •• ; •• ,;;;. j.,;;;;, •• ;;;;; i;;,;; ,; 

,.;;;;;;;,;; .. ; ; HSO EXECUTED IN1ERRUPT .,;; i. i i.;; •• ;;;,; j •• 

j i j; i. i i; i j i j;;; j; i i;; j j; i; j j;;; iii; i;; i;; ; j. i;;;;;; i'j j;; j; ; i i;.;;. iii i;. i ; i; 

HSO exec_int 
PUSHF 
ORB 

SUO 
CMP 
JLT 

set_0o_times: 
ADD 
LDO 
LD 
NOP 
NOP 
LOB 
LD 

ORO 

LDB 

BR 

set off times: 

Portl, 800000010B 

TMP,TIMERl, NXT_ON_T 
TMP, ZERO 
set_oFf_times 

NXT_ON_T, HSO_PER 
HSO_COMMAND, 800110110B 
HSO_TIME, NXT_ON_T 

HSO_COMMAND, 8001000108 
HSO_TIME, NXT_ON_T 

LAST_LOAD, 800000111B 

PWM_CONTROL, PWM_TIME_l 

check_done 

; Se t pI. 1 

; Set HSO for timer1. set pin 0.1 

Set HSO for timerl. set pin 2 

Last loaded value was all ones 

Now is as good a time as any 
to update the PWM reg 

- -JBC LAST_LOAD, 0, check_done 

ADD NXT_OFF_O, NXT_ON_T, HSO_ON_O 
LDO HSO_COMMAND, 800010000B Set HSO for timerl, clear pin 0 
LD HSO_TIME, NXT_OFF_O 

NOP 
ADD NXT_OFF_l, NXT_ON_T, HSO_ON_l 
LDO HSO_COMMAND, 800010001B Set HSO for timerl, clear pin 1 
LD HSO_TIME, NXT_OFF_l 

NOP 
ADD NXT_OFF_2, NXT_ON_T, HSO_ON_2 
LDO 
LD 

ANDB 

check_done: 
ANDO 

HSO_COMMAND, 800010010B ; Set HSO for timerl, clear pin 2 
HSO_TIME, NXT_OFF_2 

LAST_LOAD, 811111000B ; Last loaded value was aliOs 

PortI, 8111111018 i Clear Pl. 1 

270061-89 

l 

)00 

" I 
I\) 
~ 
0) 



~ 
~ 
0 
0 

211B F3 
211C FO 

211D 
211D F2 
211E 91040F 

2121 51C0021C 
2125 B0031D 
212B 5444441E 
212C ACIEIE 
212F C31E301C 

2133 99401C 
2136 DI07 
213B 99FFlD 
213B DF02 
213D 171D 

213F BOIDIC 
2142 I11D 
2144 C31E281C 

2148 1744 
214A 710344 

214D 550B4402 

2151 71FBOF 
2154 F3 
2155 FO 

2156 

ASSEMBLY COMPLETED. 

182 
IB3 
IB4 
185 
186 

$E.JECT 

POPF 
RET 

187 
IBB 
189 
190 

;.;;; i;;;;,;;;;;;;;;; i; j;; i i j i; i;; i j i;; i;,;; i i;,;; j;;; i;; j i; i j;;;;; i j; J j; i;;;;;; 

;;;;; ; j j j;; ;,j;; j A TO D COMPLETE INTERRUPT ;;;; j;;;;; i; i;;i j;; 
; ; j ; ; -; ; i ; i j ; ; ; i ; ; ; ; ; ; i ; ; •. ; ; ;.i i ; ; i ; .; ; ; ; ; ; ; ; ; ; ; ; ,; ; ; ,; ; j- ; ; ; ; i ; ; ; ; ; ; .; ,; ,; ; ;., ; ,; ; ; j j ; ; 

191 
192 
193 
194 
195 
196 
197 
19B 
199 
200 
201 
202 
203 
204 
205 
206 
207 
20B 
209 
210 
211 
212 
213 

ATOD-,done_int: 
PUSHF 
ORB 

ANDB 
LDB 
ADDB 
LDBZE 
ST 

CMPB 
.JNH 
CMPB 
.IE 
INCB 

no_"nd: LDB 
CLRB 
ST 

INCB 
ANDB. 

214' n .. xt: 
215 

ADDB 

216 
217 
218 
219 
220 
221 

NO ERROR(S) FOUND. 

ANDB 
POPF 
RET 

END 

Portl •• 00000100B i Set PI. 2 

AL. AD RESULT LO •• 11000000B Load low order result 
AH. AD=RESULT=HI Load high ord .. r result 
DL. AD_NUM. AD_NUM DL= AD_NUM *2 
DX. DL 
AX. RESULT_TABLE[DXl Sto ......... sult ind .. xed by DX 

AL. .01000000B 
no_rnd 
AH •• OFFH 
no_rnd 
AH 

AL. AH 
AH 
AX. ON_TIME[DXl 

AD_NUM 
AD_NUM. .03H 

; Round up if needed 
i Don·t increment if AH=OFFH 

Align byt .. and chang .. to word 

K .... p AD_NUM betw .... n 0 and 3 

AD COMMAND. AD NUM •• 1000B i Start conversion on chann .. 1 
- - .i indicated by AD_NUM register 

Port! •• 11111011B i Clear PI. 2 

270061-90 

l 

~ 
l' 
N 
olio 
C» 



~ 
N 
0 
~ 

SERIES-III MCS-9b MACRO ASSEMBLER. VI 0 

SOURCE FILE: :F3:SWPORT.A9b 
OBJECT FILE: :F3:SWPORT.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB 

ERR LOC OBJECT LINE 
I 
2 
3 
4 
5 
b 
7 

=1 8 
=1 56 

57 
58 
59 
60 

0000 61 
62 

0000 63 
0001 64 

0001 6~ 

0002 66 
0004 67 

0002 68 
0003 69 
0004 70 

71 
0006 72 

73 
0008 74 

75 
OOOA 76 

77 
OOOC 78 

79 
80 
81 
82 

0035 83 
0015 84 
0018 85 

86 
87 

SOURCE STATEMENT 
$TITLE('SWPORT.A9b SOFTWARE IMPLEMENTED ASYNCHRONOUS SERIAL PORT') 

This module provides a software implemented asynchronous serial port 
for the 8096. H50.:'j is used for transmit data HSI.2 is used <for 
receive data. Note: the choice of HSO.5 and HSl. 2 is arbitrary>. 

SINCLUDE(DEM096. INC) 
$nolist Turn listing off for include file 

End of include file 

VARIABLES NEEDED BY THE SOFTWARE SERIAL PORT 

rse9 

ios1_save: 
rcve_state: 

rxrdy 
rlDverrun 
rip 

rcve_buf: 
rcve_reg: 
sample_time: 

serial out: -
baud_count: 

txd_time: 

char: 

dsb 
dsb 
equ 
equ 2 
equ 4 
dsb 
dsb 
dsw 

dsw 

d.w 

d.w 

d.b 

Used to save contents of iosl 

indicates receive done 
indicates receive overflow 
receive in progress flag 
used to double buffer receive data 
used to deserialize receive 
records last receive sample time 

Holds the output character+framing (start and 
stop bits) for transmit process. 

Holds the period of one bit in units 
of T:1 ticks. 

Transition time of last Txd bit that was 
sent to the CAM 

for test only 

COMMANDS ISSUED TO THE HSO UNIT 

mark_command equ 
space_command equ 
sample_command equ 

SeJect 

0110101b 
0010101b 
0011000b 

timer!. set. interrupt on 5 
timer!. ell'. interrupt on 5 
software timer 0 

270061-91 

CJ) 
o 
." 
-I 

:IE» »"U :o"U 
mm 
CJ)Z 
me 
:0-->< 
~o 
"U o 
:0 
-I 

( 

~ 
"tJ 
I 
I\) 
~ 
0) 



~ 
r\) 
o 
I\) 

2080 

2080 

2080 FA 
2081 AIFOOOl8 
2085 C9COl2 
2088 EFOOOO 
208B BI6C08 
208E FO 

208F 

0000 
208F OIOOOC 
2092 
2092 ACOCIC 
2095 C81C 
2097 EF3000 

209A 99000C 
2090 0706 
209F OIIC 
20Al 
20Al 071C 
20A3 07FC 
20A5 

20A5 170C 
20A7 
20A7 EF4400 
20AA 9800lC 
20AO OFE3 
20AF EF4COO 
2002 OOICOC 
2005 2700 

R 

R 

R 

R 

R 

R 

R 

R 
R 

88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 

cs"9 at 20BOh 

reset lac; 
The 8096 starts executing here on reset, the program will Initialize the 
the software serial port and run a simple test to excercize it. 

testl: 

di 
Id 
push 
call 
Idb 
ei 

sp.IIOfOh 
114800 
setup_seT ialJ or t 
int_mask.IIOII01100b 

A simple test of the serial -port 
While no characters are received 
serial output. When a character 
"Jumps" to the character receved 

CR e'lu OOH 
Idb chaT'.IICR 

testlloop: 

pause: 

nopause: 

test2: 

$eJect 

Idbze 
push 
call 

cmpb 
bne 
ciT' 

ax, char 
ax 
char _out 

chaT'.ItCR 
nopause 
ax 

inc ax 
bne pause 

incb char 

call 
cmpb 
be 
call 
Idb 
bT' 

csts 
al.O 
testlloop 
char _in 
cha"r, al 
testlloop 

; serial, SUIt, hso. hsi 

routines. 
an incrementing pattern is sent to the 
is received the incrementing patt.ern 
and proceeds from there. 

; Carriage return 

Pause on Carriage return 

char ready? 

loop if not 

270061-92 

l 

~ 
l' 
N 
oIlO 
011 



R 
R 

R 

R 
R 
R 
R 

R 

R 

R 

132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
14:; 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 

cseg 

setup_serial_port. 
Called ~n system reset to intiate the software serial port. 

cx the return address 
the baud rate (in decimal) 
dx:ax:=500.000 (assumes 12 Mhz crystal) 

pop 
pop 
Id 
Id 
divu 
st 
st 
ldb 
bbs 

bx 
dx.1I0007h 
ax.1I0A120h 
a x. b x calculate the baud count (SOO.OOO/baudrate) 

.eJect 

add 
ldb 
ld 
clrb 
clrb 
clrb 
call 
br 

char_out" 

ax, baud_count 
a,serial_out 
i oc 1. 1I01100000b 

clear serial out 
Enable HSO.5 and Txd 

iosO.6,. ; Wait for room in the HSO CAM 
; and issue a MARK command. 

txd_time,timerl,20 
hSD_command,_mark_command 
hSD_time, txd_time 
rcve_buf 
rcve_reg 
reve_state 
jnlt_receive 
[cx] 

clear out the receive variables 

setup to detect a start bit 
return 

Output character to the software serial port 

pop ex the return address 
pop b x the character for output 
ldb (bx+Il.1I01h add the start and stop bits 
add b x. b X to the char and leave as 16 bit 

wait_for - xmi t: 
cmp serial out.O wait for serial Dut:;;Q !it will be cleared 
bne wai t_for xmit the hso interrupt process) 
st bx,.serial _out put the formatted character in serial_out 
br [ex] return to caller 

csts: 
Returns "true" Cax<>O) if char in has a character. 

clr 
bbc 
inc 

csts_exit: 
ret 

char_in: 

ax 
reve_state. O. c5ts~_exit 
ax 

by 

270061-93 

i 

» 
'P 
I\,) 

"" CD 



~ 
~ o 
.j>. 

004C 3001FO 
004F F2 
0050 71FEOI 
0053 AC021C 
0056 F3 
0057 FO 

0056 

2006 
2006 5600 

0056 
0056 F2 
0059 64060A 
005C 660006 
005F OFOO 
0061 060106 
0064 0006 
0066 
0066 011506 
0069 AOOA04 
006C 200.6 
006E 
006E 813506 
0071 AOOA04 

0074 
0074 F3 
0075 FO 

0076 

0076 010015 
0079 012003 
007C 
007C 901600 
007F 370008 
0062 80061C 
0065 A0041C 

R 

R 
R 

R 

R 
R 

R 

R 

R 

R 
R 

161 
162 
163 
164 
165 
166 
167 
166 
169 

·190 
191 
192 
193 
194 
195 
196 
197 
196 
199 
200 
201 
202 
203 
204 
205 
206 
207 
206 
209 
210 
211 
212 
213 
214 
215 
216 
217 
216 
219 
220 
221 
222 
223 
224 
225 
226 
227 

.228 
229 
230 

; Get a character from the 50ftware serial port 

."Ject 

hso iST: 

bbc 
pushf 
andb 
Idb ... 
popf 
T .. t 

i wait for character read~ 
rcve_state.O,char_1n 

; set up a critical region 
rcv._5tate •• not(rxrd~) 
al,rcve_buf 

j leave t~e critical region 

Fields the hso interrupts and performs the serialization of the data. 
Note: t~is routine ~ould be incorporated into the hso service strateg~ 

for an actual syst~m. 

cseg 
dc," 

cs.eg 
pushf 
add 
cmp 
be 
ShT 
bc 

send_space: 
Idb 
Id 
bT 

s .. nd_maTk: 
Idb 
Id 

hso_isr _exit: 
pDpi' 
Tet 

....... ct 

inlt receive: 

at 2006h 
hso i Sf" ; Set up vee tor 

txd_time,baud_count 
serial_Gut, 0 if character is done send a mark 
send_mark 
serial_out,.1 
send_mark 

else send bit 0 of serial_out and shift 
serial_out left one place. 

hso_command •• space_command 
hso_time.txd_t~me 

hso_isT' _exit 

hso_command,_mark_command 
hso_time.txd_tim .. 

Called to prepare the serial input process to find the leading edge Qf 
j a start bit. 

Idb 
Idb 

flUSh_fifo: 
oTb 
bbc 
Idb 
Id 

iocO •• OOOOOOOOb 
hsi_mod .... 00l00000b 

iost_save, ios1 

disconnect change detector 
negative edges on HSI.2 

iost_save,7, flush_fifo_done 
ai, hSi_status 
a_, hsi_time , tTash the fifo entry 

270061-94 

l 

~ ;e 
A 
C» 



~ 
~ 
o 
U1 

0088 717FOO 
0086 27EF 
0080 
0080611015 
0090 FO 

0091 

2004 
2004 9100 

0091 
0091 F2 
0092 C81C 
0094 60061C 
0097 A00404 
009A 341CI5 
0090 3FI5FD 
OOAO A0081C 
00A3 08011C 
00A6 641C04 
00A9 611806 
OOAC C00404 
OOAF 610015 
0082 
0082 CCIC 
0064 F3 
0065 FO 

0066 

200A 
200A 6600 

0066 
00116 F2 
00117 901600 
006A 71FEOO 
0060 51FCOI00 
OOCI D70C 

R 

R 

R 

R 

R 

R 

R 

R 
R 
R 

231 
232 
233 
234 
235 
236 
237 
236 
239 
240 
241 
242 
243 
244 
245 
246 
247 
246 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
266 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 

andb 
br 

fl ush_f ifo_done: 

iosl_save"not<BOh) 
flush_fifo 

ldb iocO •• 000l0000b 
ret 

hSi_isr: 

; clear bit 7. 

i connect HSI.2 to detector 

Fields interrupts from the HSI unit. used to detect the leading edge 
of the START bit 
Note: this routine would be incorporated into the HSI strategy of an actual 
system. 

cseg at 2004h 
dCIaI hsi isT' i setup the interrupt vector 

cseg 
pushf 
push 
ldb 
ld 
bbc 
bbs 
Id 
shr 
add 
ldb 
st 
ldb 

ax 
al,hsi_statu5 
sample_time,hsi_time 
aJ,4,exit_hsi 
josO,7,$ 
ax,baud_count 
ax, .1 

wait for room in HSO holding reg 
send out sample command in 1/2 
bit time 

sample_time,ax 
hso_,ommand,.sample_command 
sample_time,hso_time 
iocO •• OOOOOOOOb i disconnect hsi.2 from change detector 

exit_hsi: 
pop ax 
popf 
ret 

SeJect 

software_timeT_isr. 
Fields the softWare timer interrupt. used to deserIalize' the Incomming data 
Note' thi~ routine would be incorpordted into the ~oftware tImer ~tategy 
in an actual system. 

cseg at 200ah 
dcw software_timer lsr 

cseg 
pushf 
orb 
andb 
andb 
bne 

iost_save, iost 
iosl_save •• notCOlh) 
O,rcve_state,.Ofch 
process_data 

setup vector 

; c I ear bi t 0 
All bits except rxrdy and overrun=O 

270061-95 

l 

» ;e 
.Do. 
CD 



00C3 
00C3 350604 
00C6 2FAE 
OOCB 2032 
OOCA 
OOCA 910401 
OOCD 2021 

OOCF 
OOeF 3FOIOE 
0002 IBOI03 
0005 350603 
OODB 91B003 
OODB 
OODB 751001 
OODE 2010 

OOEO 
OOEO 3506FD 
00E3 B00302 
00E6 910101 
00E9 710301 
OOEC 2F8B 
00EE200C 

I\) .... 
OOFO ro 

0 OOFO 3F15FD 
0'1 00F3 B11806 

00F6 640B04 
00F9 C00404 

OOFC 
OOFe F3 
OOFD FO 

OOFE 

ASSEMBLY COMPLETED. 

2Bl prote55~start_bit: ' 
2B2 bbt hsi_statusl 5, start_ok 
2B3 tall tnit_receive 
2B4 br software_timeT_exit 
2B5 5tart_ok: 

R 2B6 orb ,"eve_state,.rip i set receive in progress flag 
2B7 br 5c:hedule_silmple 
2BB 
2B9 process_data: 

R 290 bb5 rcve_state,7,check_stopbit 
R 291 shrb ... eve_reg •• t 

292 bbt hsi_status,5, datazero 
R 293 orb reve_reg._SOh set the ne~ data bit 

294 datarero: 
R 295 addb reve_stata,.lOh increment bit count 

296 br schedule_sample 
297 
29B thetk_"topbit: 
299 bbt hsi status,',. DEBUG ONLY 

R 300 ldb rcve_buf,rcve_reg 
R 301 orb reve_state/.TxrdV 
R 302 andb rcve_state, .• 03h ; Clear all but .readlJ and overrun bits 

303 tall init_receive 
304 br software_timer_exit 
305 
306 5chedul e_~amp Ie: 
307 bbs i050.7 •• i wait for holding reg empty 
308 Idb hso_command,.sample_command 

R 309 add sample_time, baud_count 
R 310 st sample_time.hso_time 

311 
312 software_timeT_exit: 
313 popf 
314 ret 
315 
316 
317 end 

NO ERROR(S) FOUND. 

270061-96 

l 

~ 
'P 
~ c» 



~ 
ro 
0 ..... 

SERIES-III MCS-96 MACRO ASSEMBLER, VI.O 

SOURCE FILE: :F3:MOTCON.A96 
OBJECT FILE: : F3: MOTCOI~. OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB 

ERR LaC OBJECT LINE 
1 
2 
3 
4 
5 
6 
7 

=1 B 
=1 56 

57 
5B 
59 

OOlE 60 
bl 

003C 62 
63 
64 

0069 65 
66 
67 
6B 

OObE 69 
70 
71 

OOFA 72 
OOFA 73 
OOFF 74 
OOFF 75 
0080 76 
0480 77 
0064 7B 
0010 79 

BO 
Bl 

0024 B2 
B3 

0024 B4 
0028 B5 

SOURCE STATEMENT 
$TITLE I'MOTCON.A96: Motor Control Example Program') 

USE WITH C-STEP or later parts 

December 20, 1984 

$INCLUDEIDEM096. INC) 
$nollst Turn listing off for include file 

End of include file 

J~;iiiJiiii· Initial Values 

mln_hsll_t equ 

min_hsi_t equ 

max_hsil_t equ 

HSOO_dl~-period equ 

swtl_dl~-period equ 
swt2_dl~-period equ 
rnaxJDwe,. altu 
mal_brake e~u 

maximum_hold aqu 
brake-pnt aqu 
pasition-pnt equ 
velocit~-,nt equ 

RSEG at 024H 

tmp: 
timer _2: 

30 , min period for PHA edges in model before mode2 

2*min_hsil_t , min period far PHA edges in modeO before model 

3*min_hsil_t + min_hsil_t/2 

110 

250 
250 
Offh 
Offh 
OBOH 
1200 
100 
16 

dsl 
dsl 

, max period for PHA edges in model before modeO 

dela~ fOT H5D timer 0 (timed count of pulses) 
min period for ~ T2 clocks before mode 1 

dela~ for software timer 1 
dela~ for software timer 2 

270061-97 

s: o 
d 
::rJ 
Ol> 
0"'0 z"'O 
-1m 
::rJZ 
00 
1)( 

~o 
o 
C) 
::rJ 
l> s: 

i 

~ 
"U 
N 
01=0 
011 





_. 
136 

I I t 0100 137 mode_view: dsb 
0102 138 c aunt_out: dsw 
0104 139 err _view: dsw 

140 
141 
142 $eJeet 
143 
144 PINII PORT FLAG USAGE 
145 
146 22 PI. 0 modeO 0 model I mod e~"'! 1 or 0 
147 23 PI I 0 0 I I 
148 24 PI. 2 software timer 2 routine enter/leave 
149 25 PI. 3 Main program toggle 
150 26 PI. 4 HSI overflow toggle 
151 37 PI. 5 software timer 0 routine enterlleave 
152 38 PI. 6 hsi int enterlleave 
153 39 PI. 7 software timer I routine enter/leave 
154 40 P2. 6 Input direction (O:::;;rever se. l=foTward) 
155 45 P2. 7 d i l"ec tlon O=rev. I=fwd 
156 

2000 157 cseg at 2000H 
2000 0022 158 dew timer _ovl - tnt 
2002 1020 159 dew atod_done int 

I I 
~ 2004 0424 160 dew hsi data tnt ):0 

dew h'so=exec_ int "a 
N 2006 8022 161 I 

0 2008 1020 162 dew hsi 0 tnt N 
CO 200A 2022 163 dew soft tmr int ~ 

CI) 
200e 1020 164 dew seT _port_ int 
200E 1020 165 dew external tnt -

166 
2010 167 atod _done _tnt: 
2010 168 h5i_O_int: 
2010 169 seT -port_tnt: 
2010 170 ellternal int: 

171 
2080 172 cseg at 2080H 

173 
2080 AIFOOOl8 174 intt: ld sp.1I0FOH 
2084 BIFF17 175 ldb pwm_control,*OFFH 

176 
2087 1168 177 cirb direct 
2089 A1701?5e 178 ld tmpl.1I6000 ; wait about 3 seconds for motor 
208D 055e 179 dela~: dec tmpl to come to a stop 
208F E068FD 180 dJnz direct, • ; wait O .. ~12 milliseconds 
2092 8B005C 181 cmp tmpl, zero 
2095 D2F6 IB2 Jgt dela~ 

183 
2097 DIFFOF 184 ldb portl.IIOFFH 
209A DIFFIO 185 ldb port2.1I0ffH 

270061-99 



~ 
~ 
o 

2090 B12516 

20AO 71FCOF 
20A3 BI9903 
20A6 BI5715 

20A9 A00400 
20AC 0140 
20AE 0142 
20BO 0128 
2082 012A 
2084 0130 
2086 0132 
2088 0154 
20BA 0134 
20BC 0136 
20BE 0144 
20CO 0146 
20C2 AOOA56 
20C5 4900085658 
20CA 1160 
20CC 1109 
20CE AIFOOl5E 
20D2 AI3C0082 
20D6 AIIE0084 
20DA AI690086 
20DE A16E007C 
20E2 AIFA007E 
20E6 A1FA0080 
20EA AIFF0070 
20EE A1FF0072 
20F2 A1800074 
20F6 A1B00478 
20FA AI64007A 
20FE AI100076 
2102 AI002962 
2106 B0006C 
2109 BI0169 

210C B12008 
210F B13006 
2112 447COA04 
2116 FD 
2117 FD 
2118 B13906 
211B 447EOA04 

186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
21~ 

216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 

$eJect 

Idb 

andb 
Idb 
ldb 

Id 
ell' 
ell' 
ell' 
ell' 
ell' 
ell' 
ell' 
ell' 
ell' 
ell' 
ell' 
ld 
sub 
ell'b 
ell'b 
Id 
Id 
ld 
Id 
Id 
Id 
Id 
Id 
ld 
Id 
Id 
ld 
Id 
ld 
Idb 
Idb 

Idb 
ldb 
add 
nop 
NOP 
Idb 
add 

IOC1."0010010IB Disable H50. 4. H50.~. H51 __ INT=fil'st. 
Enable PWM.TXD.TIMER1_0VRFLOW_INT 

Portl."11111100B 
HSI_mode ... l001100IB 
IOCO."010101118 

zero.hSl time 
time 
tlme+,2 
time"_2 
timer_2+2 
position 
position+2 
las t.JIOS 
desJlos 
des_po5+2 
des_time 

clear Pl. 0. 1 (set mode 0) 
set hsi. 1,3 -j hsi. 0.2 + 

Enable all hsl 
T2 CLOCK=T2CLK. T2RST=T2RST 

j Clear t1mer2 

des_time+2 
lastl_tlme;Timerl 
last2_time.lastl_time •• 800H 
ios l_ba. 
int_pending 
out_ptr •• lFOH 
min_hsi"min_hs!_t 
min_hsit •• min_hsl1_t 
mal_hs11,ttmax_hsil_t 
HSOO_dIV· .. HSOO_dIV.JIel'lod 
swtl_dIV··swtl_dIV.JIel'lod 
swt2_d IV' .. ( swt2_d.IV.JIel' lod) 
max-pwr,_maxJlower 
mall_bl"k. ttmax_brak_e 
mal_hold,' .max imum_hold 
br • .JInt •• bra.e.JInt 
p.os.JInt. 'pos! ti on.JInt 
velJlnt.tlvelocity-pnt 
nxt_pos.tlpos_tabJe 
pwmJlllr, zerQ 
pwm_dir. tlOlh 

int_mas .... OOl0110IB 
hso_command,.30H 
hso_time.timerl.HSOO_dIV 

hSD command.tl39H 
hso:time,timerl,swtl_dly 

FORWARD 

Enable tmr_ov#. hsi. swt. HSO. interrupts 
set HSO_O 

set swt_1 

270061-AO 

l 

~ 
'P 
N .... 
C» 



211F FO 
.2120 FO-
2121 ElI3A06 
2124 44800A04 

2128 AOOA40 
2128 AOOC2C 
212E FD 

212F E7CE06 

2200 

"2200 
2200 F2 

~ 
2201 901660 
2204 356005 

N 2207 0742 
~ 2209 710F60 
~ 

220C 
220C F3 
2200 FO 

2220 

2220 
2220 F2 
2221 901660 
2224 
2224 306003 
2227 71FE6D 

222A 
222A 316006 
2220 71FD6D 

236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 $eJect 
0248 
249 
250 
251 

nap 
nap 
Idb 
add 

id 
id 
e I 

br 

hso_command. #3AH 
hso_time. timerl. swt2_dly 

time.TIMERI 
tmr2_old. timer2 

main_prog 

set swt 2 

TIMER INTERRUPT SERViCE 
252 •..••••••••••••••.•••.•....•...........•..•.•••..••••..•....•..••...........• 
253 
254 CSEG AT 2200H 
255 
256 tlmer_Dvf_int" 
257 pushf 
258 
259 
260 
261 
262 

orb 
chk tl: Jbc 

inc 
andb 

tmr _int_done" 
popf 
ret 

"iosl bak,1051 
iosl_bak,~. tmr lnt_done 
timet2 
losl_bak. IIIIOIIIIIB . clear bit 5 

; End of timer interrupt routine 

263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 

;;;;; j;; i;; j j; j;;;;;;;;;;;;;;; i; j;;;;;;;;;; j;;;;; i;; j;; j; j; j;;;; j;; j; j;;; 

; j j j i SOFTWARE TIMER INTERRUPT SERVICE ROUTINE ; j j j j i j i i 

i j;; j; j j j j; i;;;;;;;;; j; j; j; j;;;;;;; i; j;; j j; Ii j;;;;;;;;;;;;;; j;;;;; j j; j i ; j 

CSEG AT 2220H 

soft_tmt' _lnt" 
pushf 
orb 

c h k_swtO: 
Jbc 
andb 
call 

283 chk_swtl: 
284 
285 

Jbc 
andb 

iosl_bak.IOSI 

1os1_bak,O,chk_swtl 
iosl_bak.llllIIII10B 
swtO_expired 

iosl_bak. 1. chk_swt2 
iosl_bak.lll1lI110IB 

; Cleat' bit 0 - end swtO 

i Clear bit 1 

270061-A1 

t 

~ 
l' 
N 
.j:Io 
CO 



2230 EFCD03 
2233 
2233 326D06 
2236 71F06D 
2239 EF4401 
223C 
223C 346D03 
223F' 71F76D 

2242 
2242 F3 
2243 FO 

2280 

~ 
2280 

~ 2280 F2 
I\) 2281 013006 

2284 447COA04 

2288 91200F 
2280 AOOC28 
228E 390F18 

2291 
2291 4866285C 
2295 8902005C 
2299 D94C 
2290 
2290 300F49 
229E 71FCOF 
22Al 015515 
22A4 000060 
22A7 203E 

22A9 
22A9 482C283C 
22AD A0282C 

2200 306808 

296 
287 
288 
289 
290 
291 
292 
293 
294 
29~ 

call 
chk_s"'t2: 

Jbc 
andb 
call 

chk_s"'t3: 
Jbc 
andb 
call 

5wtl_elpired 

los1_bak,2,chk_swt3 
iosl_bak •• IIIIIOIIO i Clear bit 2 
swt2_e-.pired 

10s1 bak.4, s~t .int done 
iosl=bak •• IIIIOIIIB Clear bit 3 
sl&ft3_expired 

296 swt_int_done: 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 

popf 
r .. t i END OF SOFTWARE TIMER INTERRUPT ROUTINE 

.eJect 

.;;;;;;;;;;;;;;;.;;;; j;;;; j"j; ii;; ii;;;; i;;;;;;;;;;; i;;; i;;;;;.;.;;; •••• ;;;;i; 

,;;i; i 
; ii;i; 

50FTWARE TIMER ROUTINE () 
NOW USING H50.0 TO TRIGGER 

" I;';;;;;; 

;;.;;;;.;; ; 

;;;i ;';;;;;;;;;;;;;; i;;;;; i,;;;;;;;;;;;;;; ij;;;;;;;,;;;;;;;; ,';;;.;;;;;;;; i;; i; 

C5EG AT 2280H 

hso_e~ec_int; i Check mode - Update p05itio~ in mode '2 

PU5HF 
Idb HSO_COMMAND •• 30H 
add ·H50_TIME.TIMERI.H500_dly 

orb 
ld 
Jbs 

in_modet: 
sub 
cmp 
Jh 

s .. t_modeO: 
Jbc 
andb 
Idb 
Idb 
br 

in_moda2: 
sub 
Id 

Jbc 

portl •• OOIOOOOOB 
Tim .. r_2.TIMER2 
Portl, I. in_mode2 

tmpl.Tim .. r_2.old_t2 
tmpl •• 2 
and_s",tO 

Portl,O,end_swtO 
Portl •• 11111100B 
IOCO •• 01010I01B 
last_stat, zero 
.nd_s",tO 

delta-p.timer_2.tmr2_o1d 
tmr2_old.timer_2 

direct, 0, in_rev 

set Pl. 5 

Check count difference in tmpl 

if alread~ in mode 0 
i Clear PI. O. PI. I (set mode 01 

enable all H5I 

; get timer2 count difference 

270061-A2 

l 

» 
l 
.". 
CIt 



~ 
~ 
(,) 

22113 b43C30 
2211b A40032 
22119 200b 

22011 b83C30 
2211E A80032 

22CI 
22CI 48bb285C 
22C5 8905005C 
22C9 021C 

22CI1 
22CO 71FOOF 
22CE 91010F 
2201 010515 
2204 A00400 
2207 48840A5b 

220B 
220B A00400 
220E 717FbO 
22EI 90lbbO 
22E4 3FbOF4 

22E7 
22E7 A028bb 
22EA 710FOF 
22EO F3 
22EE FO 

2380 

2380 
2380 F2 
2381 B13AOb 
2384 44800A04 

2388 91040F 
238B 89FF075E 
238F 0104 
2391 AIFOO15E 

33b 
337 
338 
339 
340 
341 
342 
343 
344 
345 
34b 
347 
348 
349 
350 
351 
352 
353 
354 
355 
35b 
357 
358 
359 
3bO 
3bl 
3b2 
3b3 
3b4 
3b5 
3bb 
3b7 
3b8 
3b9 
370 
371 
372 
373 
374 
375 
37b 
377 
378 
379 
380 
381 
382 
383 
384 
38:1 

in_fwd: add 
addc 
br 

in_rev: sub 
subc 

chk_mode: 
sub 
cmp 
Jgt 

set_model: 
andb 
orb 
Idb 
ld 
sub 

$EJECT 

CIT'_hsi. 
Id 
andb 
orb 
Jbs 

end 5WtO: 
ld 
andb 
POPF 
ret 

pa5ition,d~lta_p 

pas i t i on+2, zero 
chk_mode 

position,delta-p 
position-f;'2, zero 

tmpl.Tlmer_2.0Id_t2 
tmpl.lI:1 
end_swtO 

Portl.1I11111101B 
Portl.1I00000001B 
IOCO.1I00000101B 
zero. HSI_TIME 
lastl_time,Timerl,min hsil 

Check count difference in tmpl 
set model if count is too low 
count <= :I 

Clear PI. b set Pl. 0 (set mode 1) 

enable HSI 0 and 1 

; ,set up so <time-last2_time»mio_hsil on nelt HSI 

ZERO. HSI_TIME 
iosl_bak.1I01111111B 
iosl_bak. iosl 
i051_bak,7.clr_hsi 

0Id_t2. TIMER_2 
portl.1I110111110 

; clear bit 7 

If hsi is triggered then clear hsi 

j clear PI. 5 

; i i; i i;;;;; i i;;;;;i j i;; i;;;;;; ii;;; i;;;;;; iii i i;; j;;; j j;;;;;; i; i i;;;;;;;; i;; 

; j ; ; Ii ........... .",.".,. , SOFTWARE TIMER ROUTINE 2 
; j;; iii;;; i; i;;;; Ii i;;;;; i;;;;;;;;; i; i;;;;;;;;'; i;;;;; j;;; i;;; j j j;;; j j;;; j j; j 

CSEG AT 2380H 

swt2_expired: 
pushf 
Idb 
add 

orb 
cmp 
bnh 
ld 

hso_command •• 3AH 
hoo_time. timerl.swt2_dl~ 

portl.1I00000100B 
outJltr.1I7ffH 
pulsing 
outJltr.1I1fOH 

set swt_2 

; set port 1. 2 

270061-A3 

l 

» 
l' 
N .c. 
C» 



386 
2395 387 
2395 306EOC 388 

389 
2398 C25F32 390 
2398 C25F30 391 

392 
239E C25F68 393 
23A1 C25F6C 394 

395 
396 

'397 
23A4 398 
23A4 48560A5C 399 
23A8 8900185C 400 
23AC DI04 401 

402 
23AE 65001056 403 
2382 404 
2382 71FBOF 405 
2385 F3 406 
2386 FO 407 

408 

~ 
409 
410 

ro 411 
~ 412 
.j:>. 

413 
414 
415 
416 

2400 417 
2400 20CE 418 
2402 20C7 419 

420 
2404 F2 421 
2405 91400F 422 
2408 717F6D 423 
240B 90166D 424 
240E 376DFI 425 

426 
2411 427 
2411 AOOC2B 428 
2414 5155066A 429 
2418 A00440 430 

431 
2418 380FE2 432 

433 
241E 434 
241E 386AOB 435 

pulsing: 
Jbc 

st 
st 

tr_col,O.swt2_done 

position+2, (out-ptr]+ 
position, Cout_ptrl+ 

st dir.ct. [out_ptr]+ 
st pwm_pwr, [out_ptr]+ 

51&1t2_done: 
sub tmpl, timerL lastt_time 
cmp. tmpl.81800H 

position high, position low 

; store B bytes externally 

Jnh swt2_r .. t ; k .... p (Tim .. rl-lastl_tim .. ><2000H 

add last1_tim ... 81000H 
s"'t2_ret: 

andb 
popf 
ret 

$EJECT 

portl.811111011B , clear portl. 2 

;;;;;;;;; i j; i;;; j i i j;;;;;;;;;;,;;;;;;;;;;;; i;;; i i;;;; i;.;;;;;;.;;;;.,; j i; i;;; 

;.;. ; HSI DATA AVAILABLE INTERRUPT ROUTINE ••• ;. Ii;;;;;; 

i;;;;;;,;;; i;;; i;;;;;;;; i;; j;;;;;;;; i;;;; i;;; oj;;;;;;;;;;;;;;;;;;; i;,;j;; j;;; 

This routine keeps track of the current time and position of the motor. 
The upper word of information is provided by the timer overflow routine. 

CSEG AT 2400H 
now_mode_I: 
no_intI: 

hSi_data_int: 
orb 
andb 
orb 
Jbc 

get_values: 
Id 
andb 
Id 

Jbs 

In_mod"_O: 

br 
br 

in_mode 
nO_int 

pushf 
portl.8010000008 
iosl_bak.801111111B 
iosl bak, iosl 
iost=bak,7,no intI 

tim .. r_2.TIMER2 

used to save execution time for 
; worst case loop 

set PI. 6 
CI .. ar iosl_bak.7 

If hsi is not trigg .. r .. d then 
Jump to no int 

hsi_sO. HSI_STATUS. 8010101018 
time. HSI~TIME 

portl,O,now_mode_I j Jump if 1n mode 1 

Jbs hai_sO,O,a_rise 

270061-A4 

( 

~ 

~ 
"" 01) 



--
2421 3A6A2C 436 Jb5 hsi - 50.2. a_fa 11 

I I cl 2424 3C6A4D 437 Jb5 hsi -50~ 4, b_Tise 
2427 3E6A5A 438 Jbs h5i sO.6.b - fall 
242A 2094 439 br no_cnt 

440 
242C A05658 441 a_rise: Id last2_time,lastl - time 
242F A04056 442 Id last1 tim~.tlme 
2432 685840 443 sub time, last2_time 
2435 888240 444 cmp time, min_hsi 
2438 0906 44' Jh tst statr 

446 iset model-
243A 91010F 447 orb Portl •• OOOOOOOIB Set PI.O (in mode I> 
2430 BI0515 448 Idb IOCO •• 00000IOI8 Enable HS1 0 and I 
2440 449 tst_statr: 
2440 3E6858 .450 Jbs last_stat.6.going_fwd 
2443 3C6867 451 Jbs last_stat. 4. going_rev 
2446 3A6850 452 Jbs last_stat,2. change_dir 
2449 980066 453 cmpb last stat. zero 
244C OF46 454 Je first_time , first time in medeO 
244E 2782 455 br no int1 

456 
2450 A05658 457 a_fall: Id last2_time,lastl time 
2453 A04056 458 Id last I time, time 
2456 685840 459 sub time. last2_time 

I I 

l> I\l 2459 888240 460 cmp time. min_hsi ..... "tI 
r\.:, 245C 0906 461 Jh tst_statf • II.) ..... 462 ; set model- ~ 01 245E 91010F 463 orb Portl •• 000000018 Set PI. 0 (in mode I > CI) 

2461 810515 464 Idb 1OCO •• 00000IOI8 Enable HS1 0 and I 
465 $EJECT 

2464 466 tst 5 tat f: 
2464 3C6837 467 Jbs last _stat.4. going_fwd 
2467 3E6843 468 Jbs las t _stat,b. going_rev 
246A 38682C 469 Jbs last _stat. O. change __ dir 
2460 980066 470 cmpb last stat, zero 
2470 OF22 471. Je first_tIme , first time in modeO 
2472 2057 472 br no int 

473 
2474 386827 474 b - Tl!ae: Jb s last _stat.Q.going_fwd 
2477 3A6833 475 Jbs last_stat,2. going_rev 
247A 3E681C 476 Jbs last _stat,b, change_dir 
2470 98006B 477 cmpb last stat, zero 
2480 OFI2 478 Je first time first time in mod eO 
2482 2047 479 br no int 

480 
2484 3A6817 481 b fa 11: Jbs last_stat, 2. going_fwd 
2487 386Il23 482 Jbs last _stat, 0, going_rev 
248A 3C680C 483 Jbs last_stat, 4, change_dir 
2480 98006B 484 cmpb last_stat, zero 
2490 OF02 485 Je first - time , first time in modeO 

270061-A5 



~ 

~ 
OJ 

2492 2037 

2494 
2494 C46B6A 
2497 2072 

2499 
2499 1268 
249B 30680F 

249E 
249E 914010 
24Al BI0168 
24A4 65010030 
24A8 A40032 
24AB 2000 
24AO 
24AO 71BFI0 
24BO BI0068 
24B3 69010030 
24B7 A80032 

24BA 
24BA C46B6A 
24BO 
24BO A0282C 
24CO 717F60 
24C3 901660 
24C6 376002 
24C9 2746 

24CB 711lFOF 
24CE F3 
24CF FO 

2400 

2400 51506A5C 
2404 07EA 
2406 

2406 A05658 
2409 A04056 

240C 4858405C 
24EO 88845C 

486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
:501 
502 
503 
504 
50~ 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 

br 

first_time: 
stb 
br 

change_dir: 
notb 

no inc: Jbc. 

going_fwd: 
orb 
Idb 
add 
addc 
br 

gOing_rev: 
andb 
ldb 
sub 
subc 

st_stat: 
stb 

I Dad_lasts: 
ld 

no_cnt: andb 
orb 
Jbc 

again: br 

no tnt: andb 
popf 
ret 

.EJECT 

In_mode 

andb 
Jne 

cmp_time: 

cmp 1: 

ld 
ld 

sub 
cmp 

no int 

hsi_sO. last_stat 
done_chk add delta position 

d i rec t 
direct,O,going_l"ev 

PORT2 •• 01000000B 
direct •• Ol 
position •• Ol 
posttion+2. zero 
st_stat. 

PORT2 •• 10111111B 
direct,.aO 
position. *'01 
position+"2. zero 

hsi_sO; last_stat 

tmr2_o1d. timel"_2 
iosl_bak •• Ol111111B 
iosl_bak, iosl 
iosl_bak.7.no tnt 
get_values 

portl.810111111B 

i set P2.6 
direction forward 

clear P2.6 
direction = reverse 

; e11" bit 7 

; Clear PI. 6 

end of hsi_data- interrupt routine 
Routine for mode 1 follows and then returns to "load_Iasts" 

mode 1 HSI routine 

tmpl.hsi_sO.801010000B 
no_cnt 

last2_time. lastl time 
lastl_time, time 

tmpl. time. last2_time 
tmpl,min_hsil -

Procedure which sets mode 1 also 
sets times to pass the tests 

270061-A6 

i 

:I> 
l' 
N 

"" 01) 



~ 

~ 
--.j 

24E3 0914 

24E5 
24E5 91020F 
24E6 010015 
24EO A00400 
24EE 717F60 
24Fl 901660 
24F4 3F60F4 
24F7 2012 

24F9 
24F9 4656405C 
24FO 68865C 

2500 0109 

2502 
2502 71FCOF 
2505 015515 
2508 OOO06B 

2500 
2500 482C283C 
250F 306808 
2512 
2512 643C30 
2515 A40032 
2518 27A3 
251A 
251A 683C30 
2510 A60032 
2520 2790 

2600 

2600 

2600 F2 
2601 91800F 

2604 IlIOO08 

2607 013906 
260A 447EOA04 

536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
546 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
566 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
582 
583 
:164 
58:1 

Jh 

set_mod&_2: 
orb 
Idb 

mt_hsi: ld 
andb 
orb 
Jbs 
br 

check_max_time: 

check_max_time 

Portl •• 00000010B 
IOCO •• OOOOOOOOB 
lero. hsi_time 
i.os l_bak •• 01111111B 
ios1_bale, iosl 
iosl_bak,7,mt_hsi 
done_chic 

Set Pl. 1 (in mode 2) 
Disable all HSI 
empty the hsi fifo 

• clear bit 7 

; If hsi is triggered thenrclear hsi 

sub tmpt,time.last2_time 
cmp tmpl, max_hsil max_hsi = addition to mi"i1_hsi for 

total time 
Jnh don,,_chk 

set_mode_O: 
andb 
Idb 
Idb 

done_chic : 
sub 
Jbc 

add_fwd: 

add_rev: 

$eJH t 

add 
addc 
br 

sub 
subc 
br 

Portl •• l11111001l clear PI. O. I set mode 00 
IOCO •• 010I0101B Enable all HSI 
last_stat. zero 

delta-p,timer_2, tmr2_o1d ; get timer2 counttdifference 
direct,O.add_rev 

position.delta-p 
position+2. zero 
load lasts 

position.delta_p 
pos1tion+2. zero 
I Dad_lasts 

; ; • ; ; j ; ; ; ; , ; i ; ; i ; ; i ~ i ; ; ; ; ; ; ; • ; ; ; • ; • ; ; ; ; ; ; • ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; •• ; ; i ; , i ; ; ; ; • ; i ; ; ; , 

,.;;; ; SOFTWARE TIMER ROUTINE I ,; •• ;;;,;; j 

;.;;;; i j, j i;;;;;;;;;;; i;;;;.; j;;;;;,;;;.;;;;;;;; ,;;; i i;;;.;;, ••• ,.",.,;; i; i i 

CSEG AT 2600H 

swtl_E!'xpirE!'d: 

pushf 
orb 

Idb 

ldb 
add 

portl •• lOOOOOOOB 

int_mask •• OOOOllOIIl 

HSO_COMMAND •• 39H 
HSO_TIME.TIMERI. swtl_dly 

set portl.7 

enable HSI. Tovf. HSO 

270061-A7 

l 

~ 
'U 
N 
"'" CICI 



~ 

~ 
<XI 

260E A0464A 
2611 A0363A 
2614 48404448 
2618 A8424A 
261B 48303438 
261F A8323A 

2622 FB 

2623 48484C'2 
2627 A0484C 

262A 48384E'0 
262E A0384E 

2631 
2631 88003A 
2634 0600 

2636 
2636 0338 
2638 BI0069 
263B 89FFFF3A 
263F 070A 
2641 2000 

2643 
2643 BI0169 
2646 88003A 
2649 OF05 

264B B0706C 
264E 2051 

2650 
2650 887A38 
2653 011E 
2655 887838 

586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
'606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
611' 
618 
6.19 
620 
621 
622 
623 
624 

;;;; ; 

;;;; .; 

;.;;; .; 

.;; j';; 

;; j; j 

;.; j j; 

ld 
ld 
sub 
subc 
sub 
subc 

EI 

sub 
ld 

sub 
ld 

chk_dir: 
cmp 
Jge 

go_bac kward: 
neg 
ldb 
cmp 
Jne 
br 

go_forward: 
ldb 
cmp 
Je 

625 $EJECT 
626 
627 
628 
629 
630 
631 
632 
633 

Id_max: Idb 

Chk_brk: 

b,r 

cmp 
Jnh 
cmp 

time_err+2,des_time+2 Calculate time & position error 
p05_err+2,des_pos+2 
time_err, des_time. time ; values are set 
time_err+2. time+2 
pos_err. des_pos,position 
pos_err+2,position+2 

time_delta, last_time_err, time_err 
last_time_err.time_err 

pos_delta.last_pos_err.pos_err 
last-pos_err,pos_err 

Time_err = Desired time to finish - current time 
Pos_err Desired pOSition to finish - current position 
Pos_delta Last position error - Curent pOSItion error 
Time_delta = Last time error - Current time error 

note that errors should get smaller so deltas will be 
positive for forward motion (time is always forward) 

pos_err+2, zero 
go_forward 

pas err Pos err - - ABS VAL (pas_err) 
pwm_dlr.1I00h 
p~s_err~2,.OffffH 

ld_max 
chk_brk 

pwm_dir,.OIH 
pos_err+2, zero 
chk_brk 

p~m_pl&lr.max_pwr 

chk_sanity 

pos_err, pos_pnt 
holdJJ.oSition 
pos_err. brk_pnt 

POSition_Error now ABS(pas_err) 

positioo_error<position_control_point 

270061-A8 

l 

)10 
'U 
I 

N 

"" Q) 



2658 09FI 634 Jh 
635 

265A 636 braking. 
265A 880050 637 cmp 
2650 0602 638 Jge 
265F 0350 639 neg 
2661 640 chk delta: -
2661 887650 641 cmp 
2664 0100 642 Jnh 

643 
2666 B0726C 644 brake: Idb 
2669 B06824 645 Idb 
266C 1224 646 notb 
266E B02469 647 Idb 

648 
2671 2030 649 br 

650 
2673 651 Hold_position: 
2673 89020038 652 cmp 
2677 0906 653 Jh 
2679 0126 654 clr 
2678 015A 655 clr 
2670 20lF 656 8R 

~ 
657 

267F 658 calc_out: 
N 267F 50FF7424 659 mulub 
...... 2683 6C3824 660 mulu 
CD 

2686 880050 661 cmp 
2689 0709 662 Jne 
268B 6504005A 663 add 
268F 645A26 664 add 
2692 2002 665 br 
2694 015A 666 no_bst: clr 
2696 887426 667 c k_max: cmp 
2699 0103 668 Jnh 
2698 A07426 669 rna x ed: Id 
269E B0266C 670 output: Idb 

671 
672 

26Al 673 chk_sanitlJ: 
26Al 2000 674 br 

675 ; ; 

676 i. 

677 $EJECT 
678 

26A3 679 Id _pwl' 
26A3 B06C64 680 Idb 
26A6 1264 681 natb 
26A8 38690A 682 Jbs 

683 

Id_max ; position_error~brake_pDint 

pos_delta. zero 
chk_delta 
pas_delta 

pos_delta.vel_pnt 
hold_position 

pwrn_p",r. max_brk 
tmp.direct 
tmp 
pwm_dir. tmp 

Id_pwr 

pas_err. tt02 
calc_out 
tmp+2 
boost 
output 

tmp,max_hold,*255 
tmp. pas_err 
pas_del ta, zero 

-no_b st 
boost,tt04 
tmp+2,boost 
c k_rnax 
boost 
tmp+2, rna x_hoI d 
output 
tmp+2.max..,:.hold 
pwm_pwr. tmp+2 

Id_pwr 

rpWT'.pwm_pwr 
rpwr 
pwm_dir,O,p2fwd 

velocit~ = pos_delta/sample_tlme 
JffiP if ABS(velocity) ~ vel_pnt 

If braking appl~ power In OpposIte 
direction of current motion 

position hold mode 

if position error < 2 then turn off power 

i Tmp pos_err * max_hold 

Boost is integral control 
TMP+2 ::;:: MSBCpos __ err*max_hold) 

270061-A9 

l 

l> 
"D 
I 

N 
~ 
01) 



~ 
r\, 
I\J 
0 

26AB FA 
26AC 717FI0 
26AF B06417 
26B2 FB 
26B3 200B 
26B5 FA 
26B6 91BOIO 
26B9 B06417 
26BC FB 

26BO 
2bBO BB004A 
26CO D225 

26C2 B9202962 
26C6 DE06 
26CB AI002962 
26CC 0142 
26CE 

26CE A26334 
26DI A26336 
26D4 A26346 
26D7 A26370 
26DA A07072 
26DD 646034 
26EO A40036 
26E3 4B30344E 

26E7 717FOF 

26EA F3 
26EB FO 

2BOO 

2BOO 
2BOO 90166D 
2B03 366D09 
2B06 71BF6D 

, 2B09 95100F 
2BOC EFF5FB 

6B4 
6B5 
6B6 
6B7 
6BB 
6B9 
690 
691 
692 
693 
694 
695 
696 
697 
69B 
699 
700 
701 
702 
703 
704 
705 
706 
707 
70B 
709 
710 
711 
712 
713 
714 
715 
716 
717 
71B 
719 
720 
721 
722 
723 
724 
725 
726 
727 
72B 
729 
730 
731 
732 
733 

p2b k .. d: 

p2fUld: 

plltrs .. t: 

DI 
"ndb 
Idb 
EI 
br 
DI 
orb 
Idb 
EI 

cmp 
Jgt 

; ; ; br 

'cmp 
Jlt 
Id 
clr 

get_v.I.: 

Id 
Id 
Id 
Id 
Id 

-add 
.ddc 
sub 

endJ: .ndb 

$E.JECT 

popf 
ret 

port2 •• 0111111IB i clear P2,7 
pwm_control,rpwr 

p",rset 

port2 •• 10000000B i set P2, 7 
pwm_control,rpwr 

timR_err+2, zero ; do pas_table when err is negative 
IIndJ 
IIndJ 

nlt_pos •• (32+pos_table) 
get_v.1s ; Jump if lo .. er 
nltJos •• pos_table 
time+2 

d •• JGS, CnxtJos],+ 
des-PDs+2. [nlt-pos ]+ 
des_time+2. Cnlt-pos1+ 
max-Plltr, [nlt-pos 1+ 
mal_brk'., m.IJ,.n" 
desJos,offset 
des""pos+2. zero 
lastJos_err, des-P05, position 

portl •• OlI1111IB clear PL 7 

i;;;;;; j; i; i;;;; i;;;;;;; i"j Ii;;;;;;;;;;;;;; i i; i; i; Ii i,;;;;,; i j;; ii;;;; j;;;;;;;;; ii 

i;;;;;;; Ii';;; i-j;;;;,;; i main program ;;i;; Ii;; i i;;;;;;;;; i i; 

;,; i;;;;;;i;;; i i ,i;;;; i;i;,;;i i; i;;;; i i.i; i;,;;;;;;;i;;,;;;,; i;; i;; i;;;;; i;;;;; i i j; i i 

CSEG at 2BOOH 

I1AIN_PROG: 
orb 
Jbc 
andb 
xorb 
call 

iosl_bak. iosl 
iosl_bak.6,·control 
iosl_bak •• 1011111IB 
Portl •• OOOIOOOOB 
HSI_DATA_INT 

clear iosl_bak.6 
; Compl Bit PI, 4 

prevent lockup 

270061-80 

cl 

» 
l' 
II.) 
~ c» 



_. 
280F 734 control: I IcC 280F 912D08 735 orb int_mask •• 00101101B enable hsi, hso. s",t, tovf interrupts 
2812 FD 736 nop 
2813 FD 737 nop 
2814 FD 738 nop 
2815 E06FFD 739 dJnz main~dl~.$ 
2818 FD 740 nop 
2819 95080F 741 Korb portl •• 00001000B compliment p1. 3 
281C 27E2 742 BR I'IAI NJ'ROG 

743 
744 

2900 745 CSEG AT 2900H 
746 

2900 747 pos_table: 
748 

2900 00000000 749 del OOOOOOOOH position 0 
2904 20008000 750 de .. 0020H. OoaOH ; next time, palller 
2908 OOCOOOOO 751 del OOOOeOOOH position 1 
290C 40004000 752 de .. 0040H. 0040H next time, pOllier 
2910 00000000 753 del OOOOOOOOH position 2 
2914 6000COOO 754 de .. 0060H. OOeOH next time, power 
2918 0080FFFF 755 del OFFFF8000H position 3 
291C 80008000 756 de .. 0080H. 0080H next time, pOlLler 

757 

I I 
~ ~ 2920 00080000 758 del 00000800H posi tion 4 "tI 

N 2924 58008000 759 de .. 0058H. 0080H next time, power I 
N 

~ 2928 00300000 760 del 00003000H position 5 "" 292C 7000FFOO 761 de .. 0070H. OOffH next time, power 01) 

2930 00000000 762 del OOOOOOOOH position 6 
2934 9000FOOO 763 de .. 0090H. OOfOH next time, power 
2938 00000000 764 del OOOOOOOOH position 7 
293C 9100FOOO 765 de .. 0091H. OOfOH ne x t time, power 

766 
767 

2940 768 END 

ASSEMBLY COMPLETED. NO ERROR IS) FOUND. 

270061-81 



inter APPLICATION 
NOTE 

AP-275 

April 1987 

An FFT Algorithm For MCS®-96 
Products Including Supporting 

Routines and Examples 

IRA HORDEN 
MCO APPLICATIONS ENGINEER 

Order Number: 270189-001 
21-222 



AP-275 

1.0 INTRODUCTION 

Intel's 8096 is a 16-bit microcontroller with processing 
power sufficient to perform many tasks which were pre­
viously done by microprocessors or special building 
block computers. A new field of applications is opened 
by having this much power available on a single chip 
controller. 

The 8096 can be used to increase the performance of 
existing designs based on 8051s or similar 8-bit control­
lers. In addition, it can be used for Digital Signal 
Processing (DSP) applications, as well as matrix ma­
nipulations and other processing oriented tasks. One of 
the tasks that can be performed is the calculation of a 
Fast Fourier Transform (FFT). The algorithm used is 
similar to that in many DSP and matrix manipulation 
applications, so while it is directly applicable to a spe­
cific set of applications, it is indirectly applicable to 
many more. 

FFTs are most often used in determining what frequen­
cies are present in an analog signal. By providing a tool 
to identify specific waveforms by their frequency com­
ponents, FFTs can be used to compare signals to one 
another or to set patterns. This type of procedure is 
used in speech detection and engine knock sensors. 
FFTs also have uses in vision systems where they iden­
tify objects by comparing their outlines, and in radar 
units to detect the dopier shift created by moving ob­
jects. 

This application note discusses how FFTs can be calcu­
lated using Intel's MCS®-96 microcontrollers. A re­
view of fourier analysis is presented, along with the spe­
cific code required for a 64 point real FFT. Throughout 
this application note, it is assumed that the reader has a 
working knowledge of the 8096. For those without this 
background the following two publications will be help­
ful: 

1986 Microcontroller Handbook 

Using the 8096, AP-248 

These books are listed in the bibliography, along with 
other good sources of information on the MCS-96 
product family and on Fast Fourier Transforms. 

2.0 PROGRAM OVERVIEW 

This application note contains program modules which 
are combined to create a program which performs an 
FFT on an analog signal sampled by the on-board 
ADC (Analog to Digital Converter) of the 8097. The 
results of the FFT are then provided over the serial 

channel to a printer or terminal which displays the re­
sults. In the applications listed in the previous section, 
the data from this FFT program would be used directly 
by another program instead of being plotted. However, 
the plotted results are used here to provide an example 
of what the FFT does. There are four program modules 
discussed in this application note: 

FFTRUN - Runs a 64 point FFT on its data buffer. It 
produces 32 14-bit complex output values 
and 32 14-bit output magnitudes. A fast 
square root routine and log conversion rou­
tine are included. 

A2DCON - Fills one of two buffers with analog values 
at a set sample rate. The sample time can 
be as fast as 50 microseconds using 
8x9xBH components. 

PLOTSP - Plots the contents of a buffer to a serially 
connected printer. Routines are provided 
for console out and hexadecimal to decimal 
conversion and printing; 

FTMAIN - The main module which controls the other 
modules. 

Each of the modules will be described separately. In 
order to better understand how the programs work to­
gether, a brief tutorial on FFTs will be presented first, 
followed by descriptions of the programs in the order 
listed above. 

The final program uses 64 real data points, taken from 
either a table or analog input 1. Each of the data points 
is a 16-bit signed number. The processing takes 12.5 
milliseconds when internal RAM is used as the data 
space. If external RAM is used, 14 milliseconds are 
required. Larger FFTs can be performed by slightly 
modifying the programs. A 256-point FFT would take 
approximately 65 milliseconds, and a 1024-point ver­
sion would require about 300 milliseconds. 

In the program presented, the analog sampling time is 
set for I sample every 100 microseconds, providing the 
64 samples in 6.4 milliseconds. The sampling time can 
be reduced to around 60 microseconds per point by 
changing a variable, and less than 50 microseconds by 
using the 8x9xBH series of parts, since they have a 22 
microsecond A to D conversion time. 

The programs are set up to be run in a sequence instead 
of concurrently. This provides the fastest operation 
if the sampling speed were reduced to the minimum 
possible. For the fastest operation above about 80 mi­
croseconds a sample, the programs could be run con­
currently, but thiswould require some minor modifica­
tions of the program. Figure 1 shows the timing of the 
program as presented. 

21-223 



intJ Ap·275 

~------~~------------------~.~~---+~------~ 
SAMPLE 
6.4ms 

(3 ms MINIMUM) 

PROCESS 
12-14ms 

OUTPUT SAMPLE 
6;4ms 

270189-1 

Figure 1. Timing of the FFT Program 

These programs have run in the Intel Microcontroller 
Operation Application's Lab and produced the results 
presented in this application note. Since the programs 
have not undergone any further testing, we cannot 
guarantee them to be bug proof. We, therefore, recom­
mend that they be thoroughly tested before being used 
for other than demonstration purposes. 

3.0 FOURIER TRANSFORMS 

A Fourier Transform is a useful analytical tool that is 
frequently ignored due to its mathematically oriented 
derivations. This is unfortunate, since Fourier trans­
forms can be used without fully understanding the 
mathematics behind them. Of course, if one under­
stands the theory behind these transforms, they become 
much more powerful. 

The majority of this application note deals with how a 
Fast Fourier Transform (FFT) can be used for spec­
trum analysis. This procedure takes an input signal and 
separates it into its frequency components. One can al­
most treat the FFT as a black box, which has as its 
output, the frequency components and magnitudes of 
the input signal, much like a spectrum analyzer. 

From a mathematical standpoint, Fourier Transforms 
change information in the time domain into the fre­
quency domain. The theory behind the Fourier trans­
form stems from Fourier analysis, also called frequency 
analysis. 

There are many books on the topic of Fourier analysis, 
several of which are listed in the bibliography. In this 
application note, only the pertinent formulas and uses 
will be presented, not their derivations. 

The main idea in Fourier analysis is that a function can 
be expressed as a summation of sinusoidal functions of 
different frequencies, phase angles, and magnitudes. 
This idea is represented by the Fourier Integral: 

H(f) =J: 00 h(t) e - j21Tft 

Where: H(f) is a function of frequency 
h(t) is a function oftime 

Since 

(1 ) 

e-jll = COS 0 - j SINO (2) 

H(f) = f: 00 h(t) (cos (21Tft) - j sin (21Tft)) dt (3) 

Figure 2 shows a rectangular pulse and its Fourier 
transform. Note that the results in the frequency do­
main are continuous rather than discrete. 

In a simplified case, the varying phase angles can be 
removed, and the integral changed to a summation, 
known as a Fourier Series. All periodic functions can 
be described.in this way. This series, as shown below, 
can help provide a more graphical understanding of 
Fourier analysis. 

00 

(t) = aO + '" [an cos (21Tnfot) + 
y 2 ~ bn sin (21Tnfot)1 

n = 1 
for n= 1 to 00 

1 
Where fo = To' the fundamental frequency. 

(4) 

21-224 



AP-275 

sin (27T T of) 
H(f) = T f 

27T 0 

+TO 
270189-3 

270189-2 b. 
a. 

Figure 2. Rectangular Pulse and Its Fourier Transform 

This formula can also be represented in complex form 
as: 

00 I. an e j1TnfOt (5) 

n= -00 

The Fourier series for a square wave is 

00 

~ sin ((2k + 1) 27Tfot) 

L..t (2k + 1) 
(6) 

K=O 
If these sinusoids are summed, a square wave will be 
formed. Figure 3 shows the graphical summation of the 
first 3 terms of the series. Since the higher frequencies 
contribute to the squareness of the waveform at the 
corners, it is reasonable to compare only the flatness of 
the top of the waveform. The sharpness or risetime of 
the waveform can be determined by the highest fre-

1.0 

O.B 

O.S 

0.4 

/ " L K ) "\ 
0.2 

0.0 

quency term being summed. With rise and fall times of 
10% of the period, the waveform generated by the first 
3 terms is within 20% of ideal. At 7 terms it is within 
10%, and at 20 terms it is within 5%. With a 5% 
risetime, it is within 20% of ideal after 5 terms, 10% 
after 13 terms and 5% after 32 terms. Figure 4 shows 
the resultant waveforms after the summation of 7, 15 
and 30 terms. 

Fourier analysis can be used on equation 4 to find the 
coefficients an and bn- To make this process easier to 
use with a computer, a discrete form, rather than a 
continuous one, must be used. The discrete Fourier 
transform, shown in Equation 7, is a good approxima­
tion to the continuous version. The closeness of the ap­
proximation depends on several conditions which will 
be discussed later. The input to this transform is a set of 
N equally spaced samples of a waveform taken over a 
period of NT. The period NT is frequently referred to 
as the "Sampling Window". 

1~ ~ ~--...... ~L ~ 
I /' V '\.... f./\ 1 
I J ~, 

~ ~ ..L ~ 
r , / f\ / l/""\ 

-0.2 ~ L \ / 1\ ' ~ \ "- ') L 
~ ./ "-~I 'v 
1 ~ I 
1 25;: r"-. / tx 1 

"- ~ :./ 
..... ", 

-0.4 

-O.S 

-O.B 

-1.0 
a .. 

270189-4 

Figure 3. Graphical Summation of Sinewaves 

21-225 



inter AP-275 

1.0 

1\ I" r'\ " " 1\ 
\,. v v v IV' ~, 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

( A A A A r"\ 
V v ~ '- v V 

-0.8 

-1.0 -.. o + .. 
7 TERMS SIN(X)/X 

270189-5 

1.0 

n" " "" "" I" " "I 'VV IVV vv IV~ vv V 0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

1/\ A 
VV vv IV V vv V v~ 

-0.8 

.1.0 -.. o + .. 
15 TERMS SIN(X)/X 

270189-6 

1.0 

0.8 
I" 

.. , 
0.6 

0.4 

0.2 

o 

-0.2 

-0.4 

-0.6 

-0.8 
la, •• 

-1.0 
o .. 

30 TERMS SIN(X)/X 
270189-7 

Figure 4. Square Wave from Sinusoids 

21-226 



AP-275 

N-l 

H (N"T) = I h(kT)e- j2'ITnk/N 

k=O 
"= 0,1, ... ,N-1 

Where: H(t) is a function of frequency 

h(t) is a function of time 

T is the time span between samples 

N is the number of samples in the window 

n =0,1,2 ... N-I 

(7) 

This transform is used for many applications, including 
Fourier Harmonic Analysis. This procedure uses the 
transform to calculate the coefficients used in Equation 
S. In order to do this, the factor TINT must be added 
to the transform as follows: 

N-l 

H (~) = ~ ~ h(kT) e- j2'ITnk/N 
NT (NT)L 

k=O 
"=0,1,2,3, ... , N-1 (8) 

The factor provides compensation for the number of 
samples taken. Note that the functions H(t) and h(t) are 
complex variables, so the simplicity of the equation can 
be misleading. Once the values of h(t) are known, (ie. 

0.7 

0.6 

0.5 

the value of the input at the discrete times (t», the 
Fourier Transform can be used to find- the magnitude 
and phase shift of the signal at the frequencies (t). 

A spectrum analyzer can provide similar information 
on an analog input signal by using analog filters to sep­
arate the frequency components. Regardless of its 
source, the information on component frequencies of a 
signal can be used to detect specific frequencies present 
in a signal or to compare one signal to another. Many 
lab experiments and product development tests can 
make use of this type of information. Using these meth­
ods, the purity of signals can be measured, specific har­
monics can be detected in mechanical equipment, and 
noise bursts can be classified. All of this information 
can be obtained while still treating the FFT process as a 
black box. 

Consider the discrete transform of a square wave as 
shown in Figure S. Note that the component magni­
tudes, as shown in the series of Equation 6, are shown 
in a mirrored form in the transform. This will happen 
whenever only real data is used as the FFT input, if 
both real and imaginary data were used the output 
would not be guaranteed to be symmetrical. For this 
reason, there is duplicate information in the transform 
for many applications. Later in this section a method to 
make the most of this characteristic is discussed. 

• 
I 
I 
I 

I 

I THEORETICAL FOURIER SERIES COEFFICIENTS 
I 
I 

0.4 

... 
c 

0.3 

50.2 
Q. 
:::E ... 

0.1 

0.0 

-0.1 

-0.2 

• I 

I I 

I REAL PART OF DISCRETE FOURIER TRANSFORM I . 
I 

N=32 
I 
I 

T=0.25 I 
I 

• • I 

I T 
I I 

~ • I I 

• I I I I I I 

1 t T . I , I I I I I 
I I 

• I 

I 
I 
I . 

o 2 4 6 B 10 12 14 16 1 B 20 22 24 26 28 30 31 -

r--+--~--r--+--~--+-~---~~~---+--~--~-+--~--~~­
o .25 .50 .75 1.00 1.25 1.50 1.75 -1.75 -1.50 -1.25 -1.00 -.75 -.50 -.25 -.125 

FREQUENCY (n/NT) 

270189-8 

Figure 5. Discrete Transform of a Square Wave 

21-227 



inter AP-275 

, If one looks at Equation 8, it can be seen that the calcu­
lation of it discrete Fourier transform requires N 
squared complex multiplications. If N is large, the' cal­
culation time can easily become unrealistic for real-time 
applications. For example, if a complex multiplication 
takes 40 microseconds, at N = 16, 10 milliseconds 
would be used for calculation, while at N = 128, over 
half a second would, be needed. A Fast Fourier Trans­
form is an algorithm which uses less multiplications, 
and is therefore faster. To calculate the actual time sav­
ings, it is first necessary to understand how a FFT 
works. 

4.0 THE FFT ALGORITHM 

The FFT algorithm makes use of the periodic nature of 
waveforms and some matrix algebra tricks to reduce 
the number of calculations needed for a transform. A 
more complete discussion of this is in Appendix A, 
however, the areas that need to be understood to follow 
the algorithm are presented here. This information 
need, not be read if the reader's intent is to use the 
program and not to understand the mathematical pro­
cess of the algorithm 

To simplify notation the following substitutions are 
made in Equation 8. 

W = e-j21T/N 

k = kT 

n 
n=-

NT 

The resultant equation being 
N-1 

x(n)";' L n(k)wnk 

k=O 
Expressed as a matrix operation 

[ ~1~l ]=[~~ ~ ~;... ~~ ] 
X(N-1) wo W(N'-1) W2(N-1) ..• W(N'-1)2 

(9) 

[ 
XO(O)] Xo(1) 
Xo(2) 

Xo(N~1) 
A brief review of matrix properties can be found in 
Appendix A. Because of the periodic nature of W the 
following is true: 

w nk MOD N = W nk (10) 

= COS (217 nk/N) - j SIN (217nk/N) 

WO = 1 therefore, if nk MOD N = 0 , wnk = 1 

This reduces the calculations as several of the W terms 
go to I and the highest power of W is N. All .of W 
values are complex, so most of the operations will have 
to be complex operations. We will continue to use only 
the W, X(n) and XO(k) symbols to represent these com­
plex quantities. 

The FFT algorithm we will use requires that N be an 
integral power of 2. Other FFT algorithms do not have 
this restriction, but they are more complex' to under­
stand and develop. Additionally, for the relatively small 
values of N we are using this restriction should not 
provide much of a problem. We will define EXPO­
NENT as log base 2 of N. Therefore, 

N = 2EXPONENT 

The magic of the FFT, (as detailed in Appendix A), 
involves factoring the matrix into EXPONENT matri­
ces, each of which has all zeros except for a 1 and a 
Wnk term in each row. When these matrices are multi­
plied together the result is the same as that of the multi­
plication indicated in Equation 9, except that the rows 
are interchanged and there are fewer non-trivial multi­
plications. To reorder the rows, and thus make the in­
formation useful, it is necessary to perform a procedure 
called "Bit Reversal". ' 

This process requires that N first be converted to a 
binary number. The least significant bit (Isb) is swapped 
with the most significant bit (msb). Then the next Isb is 
swapped with the next msb, and so on until all bits have 
been swapped once. For N = 8, 3 bits are used, and the 
values for N and their bit reversals are shown below: 

Number Binary Bit Decimal BR 
Reversal 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 

Recall that the FFT of real data provides a mirrored 
image output, but the FFT algorithm can accept inputs 
with both real and imaginary components. Since the 
inputs for harmonic analysis provided by a single A to 
D are real, the FFT algorithm is doing,a lot of calcula­
tions with one input term equal to zero. This is obvious­
ly not very efficient. More information for a given size 
transform can be obtained by using a few more tricks. 

21-228 



AP-275 

It is possible to perfonn the FFT of two real functions 
at the same time by using the imaginary input values to 
the FFT for the second real function. There is then a 
post processing perfonned on the FFT results. which 
separate the FFTs of the two functions. Using a similar 
procedure one can perform a transfonn on 2N real 
samples using an N complex sample transform. 

The procedure involves alternating the real sample val­
ues between the real and imaginary inputs to the FFT. 
If, as in our example, the input to the FFT is a 2 by 32 
array containing the complex values for 32 inputs, the 
64 real samples would be loaded into it as follows: 

N 00 01 02 03 04 05 06 07 ..... 30 31 

REAL 00 02 04 06 08 10 12 14 ..... 60 62 

IMAGINARY 01 03 05 07 09 11 13 15 ..... 61 63 

This procedure is referred to as a pre-weave. In order to 
derive the desired results, the FFT is run, and then a 
post-weave operation is perfonned. The formula for the 
post-weave is shown below: 

[ R(n) R(N-n)] 71'n [I(N) I(N - n)] 
Xr(n) = -2- + -2- + cos N "'2 + -2- -

. 71'n [R(n) R(N - n)] 
sinN ""2---2- n=0,1,oO.,N-1 

X(n) = [I(n) _ I(N - n)] _ sin 71'n [I(n) + I(N - n)] _ 
I 2 2 N 2 2 

COS :n [R~n) _R(N 2- n)] n =0,1, ... , N - 1 
(11) 

1.0 

11\ 11\ 1\ , \ , \ , \ 
0.8 , \ , \ , \ 

II \1' \ , \ 0.6 

II II I \ 

.. , , \ , \ 1\ .2 

/ / \ / \ \ 
0 

Y -......1 \1 \ /' ~ 
n-l n n+l 

270189-9 

(a.) Relative Power of Windows (Side Lobes of 
Side Bins Removed for Clarity). 

Where R(n) is the real FFT output value 

I(n) is the imaginary FFT output value 

Xr(n) is the real post-weave output 

Xi(n) is the imaginary post-weave output 

Note that the output is now one-sided instead of mir­
rored around the center frequency as it is in Figure 5. 
The magnitude of the signal at each frequency is calcu­
lated by taking the square root of the sum of the 
squares. The magnitude can now be plotted against fre­
quency, where the frequency steps are defined as: 

n 
NT n =; 0, 1, 2, 3, ... , N-1 

Where N is the number of complex samples (ie. 32 in 
this case) T is the time between samples 

A value of zero on the frequency scale corresponds to 
the DC component of the waveform. Most signal analy­
sis is done using Decibels (dB), the conversion is dB = 
10 LOG (Magnitude squared). Decibels are not used as 
an absolute measure, instead signals are compared by 
the difference in decibels. If the ratio between two sig­
nals is 1:2 then there will be a 3 dB difference in their 
power . 

5.0 USING THE FFT 

There are several things to be aware of when using 
FFTs, but with the proper cautions, the FFT output 
can be used just like that of a spectrum analyzer. The 

OdB 

/' """ 
r 

""" V ""'\ 

/ / \ / \ 1\ -10dS 

Ir 1 \ 1 \ 1'-.\ "'\. /' 

1/ \ I ~ /' "'\. /' "'\. -20dB 

f \ f \ 
-30dB 

n-l n n+l 

270189-73 

(b.) 10 Log Relative Power of Windows (Side 
Lobes of Side Bins Removed for Clarity). 

Figure 6. Bin Windows 

21-229 



intJ AP-275 

first precaution is that the FFT is a discrete approxima­
tion to a continuous Fourier Transform, so the output 
will seldom fit the theoretical values exactly, but it will 
be very close. 

Since the programs in this application note generate a 
one-sided transform with N = 32, the frequency granu­
larity is fairly course. Each of the frequency compo­
nents output from the FFT is actually the sum of all 
energy within a narrow band centered on that frequen­
cy. This band of sensitivity is referred to as a "bin". 
The reported magnitude is the actual magnitude multi­
plied by the value of the bin window at the actual fre­
quency. Figure 6 shows several bin windows. Note that 
these windows overlap, so that a frequency midway be­
tween the two center frequencies will be reported as 
energy split between both windows. Be careful not to 

confuse the sampling window NT with bin windows or 
with the windowing function. 

Another area of caution is the relationship of the sam­
pling window to the frequency of the waveform. For 
the best accuracy, the window should cover an exact 
multiple of the period of the waveform being analyzed. 
If it covers less than one period, the results will be 
invalid. Other variations from ideal will not produce 
invalid results, just additional noise in the output. 

If the sampling window does not cover an exact multi­
pIe of all of the frequency components of a waveform, 
the FFT results will be noisy. The reason for this is the 
sharp edge that the FFT sees when the edges of the 
window cut off the input waveform. Figure 7 shows a 
waveform that is an exact multiple of the window and 

SAMPLE WAVEFORM THAT FFT OUTPUT REFLECTS 
270189-10 

Figure 7. Waveform is a Multiple of the Window 

SAMPLE WAVEFORM THAT FFT OUTPUT REFLECTS 
270189-11 

Figure 8. Waveform is Not a Multiple of the Window 

21-230 



AP-275 

the periodic waveform that the FFT output reflects. In 
Figure 8, the waveform is not a multiple of the window 
and the waveform that the FFT output reflects has dis­
continuities. These discontinuities contribute to the 
noise in an FFT output. This noise is called "spectral 
leakage", or simply "leakage", since it is leakage be­
tween one frequency spectrum and another which is 
caused by digitization of an analog process. 

To reduce this leakage, a process called windowing is 
used. In this procedure the input data is multiplied by 
specific values before being used in the FFT. The term 
"windowing" is used because these values act as a win­
dow through which the input data passes. If the input 
window goes smoothly to zero at both endpoints of 

11 '" 11 
/ r-.... 

/ :". , 

V V 
270189-13 

(a). Original Signal and Hanning Window 

the sampling window, there can be no discontinuities. 
Figure 9 shows a Hanning window and its effect on the 
input to an FFT. The Hanning window was named af­
ter its creator, Julius Von Hann, and is one of the most 
commonly. used windows. More information on win­
dowing and the types of windows can be found in the 
paper by Harris listed in the bibliography. As expected, 
the results of the FFT are changed because of the input 
windowing, but it is in a very predictable way. 

Using the Hanning window results in bin windows 
which are wider and lower in magnitude than normal, 
as can be seen by comparing Figure 6 with Figure 10. 
For an input frequency which is equal to the center 
frequency of a window, the attenuation will be 6 dB on 
the cen.ter frequency. Since the bin windows are wider 

./ 
-11 III 

/n I'\. 
./ ft.~ 

/I' '\ 

-< I ~ 
\1 I " 

V 
\/ 

270189-74 

(b). Signal After Hanning Window 

Figure 9. Effect of Hanning Window on FFT Input 

1.0 OdB 

0.8 /' /' & / IS:.. '" -1DdB 

/ J /1\. I\. I\. 
0.6 I II ;1 \ \ \ 

"20 dB 

0.' I r\ \ 1\ 
I I I \ \ \ 

/" ....... ./ r--... ./ ....... 
-30 dB 

I I I \ \ \ 0.2 

/ / ~ / '\. ~ 
_.odsl/tt"\ I II \ \ r ~ \ ....- ....- ;;) ....... I-..... "I"-. 

0 
n-l n n+l n-l n n+l 

270189-12 270189-75 

(a.) Relative Power of Hanning Window (b.) 10 Log Power of Hanning Window (Side 
Lobes of Side Bin Window Removed 

Figure 10. Bin Windows after Using Hanning Input Window 

21-231 



infef AP·275 

than nonnal, the input frequency will also have energy 
which falls into the bins on either side of center. These 
side bins will show a reading of 6 dB below the center 
window. The disadvantage of this spreading is far less 
than the advantage of removing leakage from the FFI' 
output. 

A set of FFT output plots are included in the Appen­
dix. These plots show the effect of windowing on vari­
ous signals. There are examples of all of the cases de­
scribed above. A brief discussion of the plots is also 
presented. 

Applications which can make use of this frequency 
magnitude infonnation include a wide range of signal 
processing and detection tasks.· Many of these tasks use 
digital filtering and signature analysis to .match signals 
to a standard. This technique has been applied to anti­
knock sensors for automobile engines, object identifica­
tion for vision systems, cardiac arrhythmia detectors, 
noise separation and many other applications. The abil­
ity to do this on a single-chip computer opens a door to 
new products which would have not been possible or 
cost effective previously. 

The next four sections of this application' note cover the 
operation of the programs on aline by line basis. Sec­
tion 6 shows an implementation of the FFT algorithm 
in BASIC. This code is used as a template to write the 
ASM96 code in Section 7. Sections 8, 9, and 10 cover 
the code sections whiCh support the FFT module. After 
all of the code sections are discussed, an overview of 
how to use the program is presented in Section 11. 

6.0 BASIC PROGRAM FOR FFTS . 

The algorithm for this FFT is shown in the flowchart in 
Figure 11 and the BASIC program in Listing 1. There 
are four sections to this program: initialization, pre­
weaving, transform calculation, and post-weaving. The 
flowchart is generalized, however, the BASIC program 
has been optimized for assembly language conversion 
with 64 real samples. 

On the flowchart, the initialization and pre-weaving 
sections are incorporated as "Read in Data". The data 
to be read includes the raw data as well as the size of 
the array and the scaling factor. The details for pre­
weaving have been discussed earlier, and initialization 
varies froln computer to computer. LOOP COUNT 
keeps track of which of the factored matrices are being 
multiplied. SHIFT is. the shift count which is used to 
detennine the power of W (as. defined earlier) which 
. will be used in the loop. 

For each loop N calculations are perfonned in sets of 
two. Each calculation set is referred to as a butterfly 
and has the following fonn: 

MatrixL Matrix L + 1 

. X(k) =z. + --. X(k) 
*Wpl 

. *Wp2 
X(k+N2) + --. X(k+N2) 

Also Shown as: 

X(k):k . Wpl 

Wp2 
X{k+N2) . 

OR 

270189-15 

270189-16 

X1(k) = Xo (k+N2)*Wp1 + Xo(k) 

X1(k+N2) = Xo(k)*Wp2 + Xo(k+N2) 

In general, the W factors are not the same. However, 
for the case of this FFT algorithm, Wpl will always 
eqtia1 ( - Wp2). This is because of the way in which "p" 
is calculated, and the fact that W(x) is a sinusoidal 
function. 

The inner loop in the flowchart is perfonned N2 times. 
For LOOP = 1, N2=N/2 and if INCNT=N2 then 
k = N2 and k + N2 = N, so the first loop is done and 
parameters LOOP, N2, and SHIFT are updated. For 
the first loop, all N/2 sets of calculations are perfonned 
contiguously. As LOOP increases, the number of con­
tiguouscalculations. . are cut in half, until 
LOOP = EXPONENT. 

When LOOP=EXPONENT, N2= 1, the butterfly is . 
then performed on adjacent variables. Figure 12 shows 
the butterfly arrangement for Ii calculation where 
N=8, so that EXPONENT = 3. ' 

The BASIC program follows this flowchart, but opera­
tions have been grouped to make it easier to convert it 
to assembly language. Also not shown in the flowchart 
are several divide by 2 operations. There are five in the 
main section, one per loop. These provide the T /NT 
factor in equation 8 for N = 32 (25 = 32). There is also 
an extra divide by two in the post-weave section. It is 
required to prevent overflows when performing the 16-
bit signed arithmetic in the ASM96 program .. As a re­
sult of these operations, the input scale factor is ± 1 = 
± 32767 and the output scaling is ± 1· = ± 16384. 
Note, the maximum input values are ± 0.99997 . 

21-232 



inter 

INNER 
LOOP 

AP-275 

TMP = Wp• X(k + N2) 
X(k + N2) = X(k) - TMP 

X(k) = X(k) + TMP 

YES 

Figure 11. Flowchart of Basic Program 

21-233 

270189-14 



inter AP·275 

100' THIS IS FFT13, FEBRUARY 4, 1986 
105 ' 
110 
115 
120 ' 

, COPYRIGHT INTBL CORPORATION, 1985 
, BY IRA HORDBN, MCO APPLICATIONS 

125' THIS PROGRAM PBRFORMS A FAST FOURIBR TRANSFORM ON 64 RBAL DATA POINTS 
130 ' USING A 2N-POINTS WITH AN N-POINT TRANSFORM ALGORITHM. THB FIRST 
135 ' SBCTION OF THB PROGRAM PBRFORMS A STANDARD TRANSFORM ON DATA THAT HAS 
140 ' BBEN INTERLEAVBD BETWEEN THE REAL AND IMAGINARY INPUT VALUES. THE 
145 ' RBSULTS OF THAT TRANSFORM ARB THBN POST-PROCBSSED IN THE SECOND SBCTION 
150 ' OF THE PROGRAM TO PROVIDB THE 32 OUTPUT BUCKETS. THE OUTPUT VALUES ARB 
155 ' MULTIPLIBD BY "M" TO MAKB IT BASY TOCOMPARB WITH THB ASM-96 PROGRAM 
160 ' 
165 INPUT "NAMB OF LIST FILE"; LST$ 
170 PRINT 
175 OPBN LST$ FOR OUTPUT AS II 
180 ' 
200 
210 DIM XR(32),XI(32),WR(32),WI(32),BR(32) 

, SBT UP VARIABLES FOR BASIC 

220 M=16383 ' M=MULT. FACTOR FOR SCALING 
230 N=32 : Nl=31 : N2=N/2 ' N=NUMBER OF .DATA POINTS 
240 LOOP=l : K=O : BXPONBNT=5 : SHIFT=EXPONENT-l ' 2**B=N 
250 PI=3.1415926541 : TPN=2*PI/N : PIN=PI/N 
260 ' 
270 , RBAD IN CONSTANTS 
280 FOR P=O TO 31 
290 WR(P)=COS(PN) 
300 NEXT P 

PN=P*TPN 
WI(P)=-SIN(PN) RBAD BR(P) 

310 ' 
320 FOR K=O TO 31 
330 READ XR(K) 
350 NBXT K 

RBAD XI(K) 

, INITIALIZATION OF LOOP 
K=O 
IF LOOP>BXPONBNT THBN 700 
INCNT=O 

, RBAD IN DATA 

360 ' 
400 
410 
420 
430 
440 
445 ' 

, ACTUAL CALCULATIONS BBGIN HBRB 

450 INCNT=INCNT+l 
460 P=BR(INT(K/(2 A SHIFT») 

. 470 WRP=WR(P) : WIP=WI(P) : KN2=K+N2 
480 TMPR= (WRP*XR(KN2) - WIP*XI(KN2»/2 
490 TMPI= (WRP*XI(KN2) + WIP*XR(KN2»/2 
500 TMPRl=XR(K)/2 : TMPIl=XI(K)/2 

, WRP AND WIP ARB CONSTANTS BASBD ON 
, SINBS AND COSINBS OF BIT RBVBRSBD 
, VALUBS OF K SHIFTBD RIGHT S TIMBS 

510 XR(K+N2) = TMPRI - TMPR ' TMPR, TMPI ARB THB REAL AND IMAGINARY 
520 XI(K+N2) = TMPII - TMPI ' RESULTS OF A COMPLEX MULTIPLICATION 
530 XR(K) TMPRI + TMPR 
540 ~I(K) = ~MPII + TMPI 
550 
560 K=K+l 
570 IF INCNT(N2 THEN GOTO 450 
580 K=K+N2 ' SINCE THB ARRAY IS PROCBSSED 2 POINTS AT A TIME, 
590 IF K(NI THEN GOTO 430 'ONLY N/2 LOOPS NEED TO DE MADE. ON EACH PASS, 
600 LOOP=LOOP+l : N2=N2/2 'THB VALUE OF N2 CHANGBS AND SMALLBR CONSBCUTIVB 
605 SHIFT=SHIFT-l ' SECTIONS ARB PROCBSSED. 
610 GO TO 400 
620 '. 
690 ' 
691 ' 
692 ' 
693 ' 

270189-17 

Listing 1-BASIC FFT Program 

21-234 



694 ' 
695 ' 
696 ' 

Ap·275 

697 ' 
700 
710 ' 

, POST-PROCESSING AND REORDERING BEGIN HERE 

720 FOR K = 0 TO 31 
730 KPIN=K*PIN 
740 XRBRK=XR(BR(K» : XIBRK=XI(BR(K» 'CONDENSED FOR EASE OF ASM PROGRAMMING 
750 XRBRNK=XR(BR(N-K» : XIBRNK=XI(BR(N-K» 
760 TI = (XIBRK+XIBRNK)/2 
770 TR = (XRBRK-XRBRNK)/2 
780 XRT= (XRBRK+XRBRNK)/4 
790 XIT= (XIBRK-XIBRNK)/4 
800 OUTR= XRT + TI*COS(KPIN)/2 - TR*SIN(KPIN)/2 
810 OUTI= XIT - TI*SIN(KPIN)/2 - TR*COS(KPIN)/2 
820 ' 
830 MAGSQ = OUTR*OUTR+OUTI*OUTI 
840 MAG = SQR(MAGSQ) 

, THE ASM-96 PROGRAM USES A TABLE LOOK-UP 
, ROUTINE TO CALCULATE SQUARE ROOTS 

845 IF MAGSQ*M < .5 THEN DECIBEL=O 
847 DBFACT=M/2/32767*M 'M~2 / 64K 
850 DECIBEL=10*LOG(MAGSQ*DBFACT) 
860 DECIBEL=DECIBEL * .434294481' 
900 GOTO 930 

"; K, 

GOTO 900 

910 PRINT 'I, USING """" 
920 PRINT 'I, USING "\ \"; HEX$(M*OUTR), HEX$(M*OUTI), HEX$(M*MAG) 
930 ' GOTO 950 
942 PRINT 'I, USING 
943 PRINT 'I, USING 
945 PRINT 'I, USING 
947 PRINT 'I, USING 
950 NEXT K 
960 ' 

",_ "; K; ", .. ".,. "", ... , 
"II"'" 

"; OUTR,OUTI,MAG; 
It; DECIBEL; 
"; M*OUTR, M*OUTI, M*MAG 

970 IF LST$<>"SCRN:" THEN PRINT 'I, CHR$(12) 
999 END 
1000 END 
1010 
1020 DATA 
1030 DATA 
1040 
1050 DATA 
1060 DATA 
1070 DATA 
1080 DATA 

, DATA FOR BR(P) - BIT REVERSAL 
0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30 
1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31 

, DATA FOR XR,XI 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2 
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2 

Listing 1-BASIC FFT Program (Continued) 

21-235 

270189-18 



intJ AP-275 

Lines 165-175 set up the file for printing the data, this 
can be SCRN:, LPTI:, or any other file. 

X(O)~--~X(O)~X(o) ><: X(O) 

X(I) X(I) X(I) - X(I) 

X(2) X(2)X(2) ><: X(2) 

X(3) X(3) X(3) - X(3) 

X(4) X(4)~ X(4) ><: X(4) 

XeS) XeS) XeS) - XeS) 

X(6) X(6) X(6) ><: X(6) 

X(7) X(7) X(7) - X(7) 

270189-19 

Figure 12. Butterflies with N = 8 

Lines 200-310 set up the constants and calculate the 
WP terms which are stored in the matrices WR(P) and 
WI(p), for the real and imaginary component respec­
tively. 

Lines 320-350 read in the data, alternately placing it 
into the real and imaginary arrays. The data is scaled 
by 2 to make the data table simpler. 

Lines 410-430 initialize the loop and test for comple­
tion. 

Lines 450-620 perform the FFT algorithm. Note that 
all calculations are complex, with the suffixes "R" and 
"I" indicating real and imaginary components respec­
tively. 

The variables on line 470, TMPRI and TMPIl would 
normally not be used in a BASIC program as more 
than one operation can be performed on each line. 
However, indirect table lookups always use a separate 
line of assembly code, so separate lines have been used 
here. 

Lines 700-8lOperform the post-weave. This is not in 
the flowchart, but can be found in Equation II. Once 
again, table look-ups' are separated and additional vari­
ables are used for clarity. The variables BR(x) are the 
bit reversal values of x. 

Line 830 calculates the magnitude of the harmonic 
components. 

Lines 900-950 print the results of the calculations, with 
line 900 determining if the print-out should be in hex or 
decimal. 

Lines 1000-1080 are the data for the bit reversal values 
and input datapoints. The input waveform is one cycle 
of a square-wave. 

7.0 ASM96 PROGRAM FOR FFTS 

The BASIC program just presented has been used as an 
outline for the ASM96 program shown in Listing 2. 
There are many advantages to using the 
BASIC program as a model, the main ones being de­
bugging and testing. Since the BASIC program is so 
similar in program flow to the ASM96 program, it's 
possible to stop the ASM96 program at almost any 
point and verify that the results are correct. 

21-236 



r 
! :s. 
ea 
N 

! 
I\) rn 
~ 3: 
~ CD 
U) 0> 
-...J 

" " ..... 
"tI 
0 ea ... 
III 
3 

MeS-96 MACRO ASSEMBLER FFT_RUN 02/18/86 PAGE 

SERIES-III MeS-96 MACRO ASSEMBLER, Vl.O 

SOURCE FILE: : F2: FFTRUN. A96 
OBJECT FILE: :F2:FFTRUN.OBJ 
CONTROLS SPECIFIED IN INVOCATION C<MIAND: NOSB 

ERR LOC OBJECT LINE 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

SOURCll STATEMENT 
$pageleDgth(50) 

ITT_RUN MODULI! STACKSI2B(6) 

Intel CorporatioD, .January 24, 1986 
by Ira Honien. NCO ApplicatioDs 

This module performs a :fast fourier trensfoI1l (1Tl') on 64 real data 
points using a 2M-point a~gorithm. The algorithll involves using a standard 
FFT procedure for 32 real and 32 imaginary n1Dlbers. The real and illnginary 
arrays are filled alternately with real data points, and the output of the 
FFT is run through a post-processor. 'l'be reaul t is a ODe sided array with 32 
output buckets. The post processing' includes a table lookup algorithm for 
taking the square root of an unsigned 32-bit number.-

All of the calculations in the main FFT program are done using I6-bit 
signed integers. The Jl8Xaum value of any frequency ccmponent is therefore 
+/- 32K. (Note that a square wave of +/-32K has a fundamental component 
greater than +/- 40K). Wherever possible tables are used to increase the 
speed of math operations. The complete transfonD. including obtaining the 
absolute magnitude of each frequency component, executes in 12 
.illiseconds with internal variables, 14 lIS with external. 

The prograJI requires two 32-word input arrays. with the sample values 
alternated between the two. These start at XRRAL and XIMAG. The resultant 
magnitude will be placed in a 32-word array at FFl' OUT. These are all 
externally defined variables. The external conatMt SCALE FACTOR is used to 
divide the output when averaging will be used. Since the progru. averages 
its output, it is necessary to clear the array baaed at FFT_OUT before 
calling FFT_CALC to start the progrBII. 

The prograa was originally written in BASIC for testing purposes. The 
COlIIIIents include these BASIC statements to make it easier to follow the 
algorithm. 

$BJBCT 
270189-33 

l 

:to 
"U 
I 

N 
....... 
U1 



MCS-96 MACRO ASSBMBLBR FFT_RIlN 

ERR we OB.J\!CT LINE 
38 

0000 39 
40 
41 

0024 42 
0024 43 
0028 44 
002C 45 
0030 46 
0034 47 
0038 48 r 003C 49 iii' 0040 50 =: 0044 51 :::J 

Ia 0048 52 

I 
003C 53 
0040 54 
0040 55 

rn 0044 56 

i: 57 
CD 003C 58 
Q) 003E 59 

~ '11 0040 60 

N 
'11 0042 61 -I 0044 62 (,) -g 63 (l) ... 
0 004C 54 
Ia 004E 65 ... 

0050 86 III 
3 0052 67 

'0 0054 68 
0056 69 

0 0058 70 :::J - 004E 71 5" 0000 72 c: 
m 73 
.& 74 

75 
76 
77 
78 
79 

0000 80 
0040 81 

82 
83 
84 

02/18/86 PAGB 

SO\JHCE STATBMENT 

RSEG 
BXTIiN portI, zero, error 

OSBO at 24B 
'DIPR: dsl TESPOrary register. Real 
'lMP1: dsl Te.porary register. Imaginary 
'DIPRl: dsl Tesporary register I, Real 
'lMPIl: dsl T_rary re,loterl, Iaaginary 
XR'lMP: dsl TeIIPOrary data regiater, Real 
X1'IMP: dsl Tf!llP(Jrary data register, Iaaginary 
XRRK: dsl 
XRIINlt: dsl 
XIRK: dsl 
X1RNK: dsl 
diU equ xrrk :lODII Table difference for square root 
sqrt equ xrrnk : 10Dg Square root 
1011 equ xrrnk :lOD, 10 Log _itude~2 
nxtloc equ xirk :100, Next location in table 

WBP equ xrrk : word Multiplication i"actor, Real 
W1P equ xrrk+2 : word Mol tiplication factor. lIlaginary 
PWR equ xrrnk : word 
Iii CNT equ xrrnk+2 : word 
IIDIV2 equ xirk : word n divided by 2 (0 < D < Ii) *2 

KPTH: dsw K for counter *2 to index words 
KIi2: dsw KPTH + IIDIV2 
Ii_SUB_E: dsw N-K *2 to index words 
11K: ds" Bit reversed pointer of KPTR 
RNK: dsw Bit reversed pointer of N_SUB_K 
SBFT_CNT: dsw 
LOOP_CNT: dsb 
ptr equ kD2 : word Pointer for square root table 

DSBG 

BXTIiN FFT MODE FFT_MODE: mode for FFT input and graphiDIL 
EXTIiN XRE4. XIMAG KREll, XIMAG: Base addresses for 32 I6-bi t signed 

entries for real and imaginary numbers respectively. 
EXTIiN FFT_OUT FFT_OUT: Starting address for 32 word array 

of magnitude information. 

OUTR: dsw 32 Real cOIIponent of fft 
OUT1: dsw 32 Imaginary component of waveform 

PUBLIC OUTR,OUTI 

$BJECT 

2 

270189-34 

( 

» 
l' 
PI) 
-...I 
U1 



c: 
III -S" ea 
I\) 

L 
fI) 
s::: 
CQ 
Q) 

~ "II 

rU :!l 
Ul -a CO .. 

0 

eal OJ 
3 
0 
0 
3-
:'i" 
c: 
CD .s 

MCS-96 MACHO ASSEMBISH 

BRR LOC OBJBCT 

2280 

2280 
2280 1100 
2282 BI0I00 

2285 rc 
2285 BI0158 
2289 BI0466 

.22SC A1200044 

2290 
2290 950400 
2293 0140 

2295 990558 
2298 DA0220AS 

2200 
2200 0142 

229B 
2298 65020042 

22A2 A04C40 
22M 085640 
22A8 7lFB40 
22AB A341003840 

22BO A34144393C 
2285 A34185393B 
228A 44444C4B 

FFT_IIIJII 

·B 
B 

B 

LINE 
85 
88 
87 
88 
89 
90 
91 
92 
93 
84 
95 
98 
97 
98 . 
99 

100 
101· 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

SOURCE STATBMI!NT 

CSI!G at 22808 

02/18/86 PAGE 

PUBLIC f'ft_cole Starting point for FiT algorithm 

BXTRN scale_factor Shift factor used. to prevent overflow when averaging 
fft outputs 

FFT_CALC: 
elrb 
Idb 

clrvt 
Idb 
Idb 
Id 

OUT_LOOP: 
xorb 
elr 

cmpb 
bgt 

MID_LOOP: 

error 
portl,II00000001b 

loop_ent,#l 
shft_CDt," 
ndiv2,#32 

I ••• START FOURIRR CALCULATIONS 
400 'INITIALIZATION OF LOOP 

; **** Indication On ly 

410 K=O 

portl,tOOOOOlOOB ; **** Indication Only 
kptr 

, , , , 420 IF LOOP > BlIP TBBII 700 
loop_cot.'5 ; 32=2 .... 6 
IJNWI!AYB 

430 INCNT=O 
clr in_cnt 

IN LOOP: 
- add 

gw: 

$eject 

Id 
ohr 
andb 
Id 

Id 
Id 
add 

io_ent,t2 

pwr,kptr 
pwr,ohft_CDt 
pwr,#11111110B 
pwr,brev[pwr] 

wrp,wr[pwr] 
wip,wi[pwr] 
lm2,kptr,ndlv2 

440 'CALCULATIONS BEilIN HERR 

450 IIICIIT=INCNT+ 1 
f", 460 P=BH(INT(X/(2"SHIFT») 

i; Calculate 1IUltlplicatlon factors 

;;;; 4.70 liIiP=IiR(P) IIIP=III(P) KN2=K+N2 

3 

270169-35 

l 

):» 

" N 
-..J 
en 



_. 
MCS-96 MACRO ASSEMBLER FFT_RllN 02/18/86 PAGE 4 I t 
BRR toe OB.JJ!CT LINE SOURCB STATBMENT 

128 ;; COIIPlex multiplication follows 
129 
130 480 :oo'R= (WRP*XR(KN2) - HIP*XI(KN2»/2 

22B8 FB4F4FOOO03C24 E 131 gm: mul tmpr, wrp t xresl [1m2] 
22C5 FB4F4FOOO03B28 8 132 mul tmpl, wip, ximag[kn2] 
22CC 682A26 133 .ub tmpr+2, tmpi+2 

134 490 :00'1; (WRP*XI(KN2) + HIP*XR(KN2»/2 
22CF FB4F4FOOOO3C2C E 135 aul t~rl,wrp,ximag[kn2] 
22D6 FB4F4FOOO03B28 8 136 mul tmpi,wip,xreal[kn2J 
22DD 642B2A 137 add tlllPi+2,tmprl+2 

138 r 139 .. using the high. byte only _of a signed multiply 
iii' 140 .. provides an effective divide by two ... 
5' 141 

cg 2280 DC55 142 BYT 8RR1 ; Branch on error in complex: JlUltiplications 
N 143 

! 2282 A34DOOO02C 8 144 Id tmprl,xreal[kptrj "" 500 :oo'Rl;XR(K) /2 
22£7 OA012C 145 sbra ~rl,tl "" :oo'Il;XI(K)/2 

en 22EA A34DOOO030 £ 146 Id tmpll,xlmag[kptr] 

s:: 228F OA0130 147 .bra ~il,tl 

CD 148 
c» 149 510 XR(KN2) ; :oo>R1 - :oo>R 

I I 

):0 
~ ." 22F2 48262C34 150 gr2: sub xrtmp. tapr 1 t tmpr+2 

." 22F6 C34FOOO034 8 151 st xrtmp, xreal [Jm2] "tI 
N -I 152 ; 520 XI(KN2) ; :00'11 - :00'1 N .j>. 'tJ 

,," ...... 
0 .. 22FB 482A3038 153 gx2: sub xitmp,tmpl1, tmpi+2 

U1 0 22FF C34FOOO038 £ 154 .t xitmp,xlmag[kn2] 
cg 155 530 XR(K) ; :oo>Rl + :oo'R .. 
III 2304 44262C34 156 add xrtmp, taprI, tmpr+2 
3 2308 C34DOOOO34 B 157 .t xrtmp, xreal [kptr] 

0 158 540 XI(K) ; :oo'll + :00'1 
230D 442A3038 159 gx: add xitmp, tmpll, tmpi+2 

0 2311 C34DOOO038 8 ISO .t xitmp,ximag[kptr] 
3. 161 
5" 2316 DC23 162 BYT 8RR2 ; Branch on error in complex additions c: 
CD 163 
.9: 164 $eject 

270189-36 



foK:S-96 MACRO ASSEMBLER FFT_RUN 

ERR 100 08JI!CT LINE 
165 

2318 65020040 166 
167 
168 

231C 884442 169 
231F D6022778 170 

171 
172 

2323 64444C 173 
174 

C 
!!l. 

2326 893B004O 175 
232A D602276B 176 

177 
s-ec 

178 
232B 1758 179 

N 2330 OAOI44 180 

! 
C/I 

2333 1556 181 
182 

2335 2759 183 
3: 184 
CD 185 
en 2337 810100 B 186 

I\J "'1'1 .... "'1'1 
r\> -I 
::: " ... 

233A FO 187 
2338 BI0200 E 188 
233E FO 189 

190 
0 ec 191 
... 
III 
3 
?i 
0 
::l 
do 
::l 
C 
CD .e 

SOURCE STATI!MI!NT 

ik: add kptr.'2 

ClIp iD_CDt,odiv2 
bit III_LOOP 

add kptr,ndiv2 

cap kptr,'62 
bit MID_LOOP 

incb loop_cnt 
Bbra ndiv2,#1 
decb shft_eDt 

br OllT_LOOP 

ERRl: Idb error,'OI 
ret 

ERR2: Idb error,'02 
ret 

$EJECT 

02/18/86 

'1,. 560 K=K+l 

,I,t 570 IF INCNT<N2 THEN GOTO 450 

,.,, 580 K=K+N2 

II" 590 IF K(NI THEN GOTO 430 

.," 600 LOOP=LOOP+ 1 : N2=N2/2 

.," 605 SHIFT=SHIFT+ 1 

1,,1 610 GOTO 400 

overflow error. 1st Bet of calculations 

overflOW error J 2nd set of calculations 

PAGE 5 

270189-37 

l 

» 
"U . 
N 

""'" <J1 



_. 
"'::S-96 MACRO ASSBMBLBR FFT_RUN 02/18/86 PAGE 6 I t 
ERR LOC OBJBCT LINE SOIlliCl! STATBMBNT 

192 
193 1'" 700 POST-P1IOCIISING AIID RBORDBIIING STARTS BBIIB 

233F 194 llNIII!AYE: 
233F BI0200 E 196 Idb portl,taOOOOOlOb ;**** 

196 
197 "" 720 FOR K=O TO 31 

2342 0140 198 clr kptr 
2344 A1400050 199 Id D_Bub_k.t64 
2348 200 IllI_LOOP: 

201 I.tl 740 XIBRK=XI(BR(K» XRBRK=XB(BR(I) 
234B A34Doo3852 202 Id rk,brev[kptrJ r- 234D A353OO003O E 203 Id xrrk,xreal [rkJ in 2352 063C 204 ""t xrrk -S· 2354 A353000044 R 205 Id xirk,xt-g[rkJ 

10 2359 D644 206 ext xirk 

I 
207 

rnk. brev [D_Sub_k] I I I 

750 XIBRNE=XI(BR(N-I): XRBRNE=XB(BR(N-I) 
235B A351OO3854 208 Id 
2360 A355000040 E 209 Id xrmk,xreal [mkJ 

en 2365 0640 210 ext xrmk 
iii: 2357 A355oo0048 R 211 Id xtmk,xt-g[mkJ 
CD 236C 0648 212 ext ximk 
CD 213 

"" 
760 TI=(XIBRK + XIBRNE)/2 

I I 
J> 

~ "1'1 236E 44484428 214 ar: add blpi,xirk.xirDk 'U 
r\:, :!I 2372 A04A2A 215 Id bpi +2, ximk+2 . 

2375 A4462A 216 addc blpi+2.xirk+2 I'll 
.I>- ...... 
I\) 'V 23780R0128 217 8bra1 bpi,#! ; 16 bit ...... ult in bpi en a 218 

10 219 "" 770 TR=(XRBRK - XRBRNE)/2 
iil 237B 48403024 220 8ub blpr, xrrk. xrrnk 
3 237F A03E26 221 Id blpr+2 t xrrk+2 

0 2382 A84226 222 aubc tilpr+2,xrmk+2 
2385 OEOl24 223 abra! bpr,'l ; 16 bit result in blpr 

0 224 
~ 225 ,III 780 XBT= (XRBRK + XRBRNE)/4 
:::l 2388 44403034 226 add xrt.p, xrrk I xrrnk r::: 
(1) 238C A03E36 227 ld xrbIp+2,xrrk+2 
.S: 238F A44236 228 adele xrblp+2. xrmk+2 

2392 ODOB34 229 ahU xrt.p,'l4 32 bit result in xrt.p 
230 
231 "" 790 XIT= (XIBRK-XIBRNE)/4 

2395 48484438 232 sub xiblp,xirk,xirnk 
2399 A0463A 233 Id xit.p+2,xirk+2 
2300 A84A3A 234 aubc xiblp+2,ximk+2 
239F 000E38 235 ahU xibp,'14 32 bit result in xibp 

236 
237 $eject 

270189-38 



_. 

1Es-96 IIACIiII ASSBMBLBR FFT_RUN 02/18/86 PAGiI 7 I t 
BRR LOC OBJICT LIMB SOURCE STATBMBJIT 

238 i;;; i Multiply will provide effective divide by 2 
239 
240 II" 800 OUTll= (XRT + TUCOSfll(K)J2 - Tll*SINFN(K)/2) 
241 

23A2 F1!4F4D4038242C 242 111': 11111 tJaprl, tJapr,ainfD[kptr) 
23A9 Fll414DC2382830 243 ... 1 bopil,bopi,=-fD(kptr) 
23B0 643034 244 add xrtJap, tJapil 
23B3A43236 246 adele xrtJap+2, tllpil +2 
23B6682C34 246 .ub xrtIIp, tllpr1 
23B9 A82B36 247 eubc xrtllpi-2, tllprl+2 

c: 23BC C340000036 a 248 et xrtIIpi-2, outr(kptr) ;; OOTH = Real Output Values 
249 

I/) 250 !:!: 251 IIII 810 OIlTI= (XIT - TUSINFN(K)/2 - 1'R*COSfII(K)/2) ::J 
IQ 252 

t 
2301 FII4.4DC238242C 253 iii: IIIll tJapr1, tJapr,coafD(kptr) 
2308 F1!4'4D40382830 254 ... 1 tJapil, tlIpi,eiDfD(kptr) 
230F 683038 255 eub xltJap, tlIpil 

0 23D2 A8323A 256 eubc xi tllpi-2, tJapil +2 

iii: 2305 682C38 257 aub xl tJap, tllpr 1 
CD 23D8682B3A 258 eub xitllpi-2, tJaprl+2 
GI 23DB C34D40003A 8 259 et xitllpi-2,outi [kptr) i; OUTI = Imaginary Output values 

I I 

l> I\) ." 260 
"U ... :!l 261 ro I 

262 ."tt 830 MAG =SQR(OOTH*OOTH + OIlTI*OIlTI) ~ 
.j>. '1J ..... 
c.) ... 263 U'I 0 2310 264 GET_MAG: ; i Get Magnitude of Vector 

IQ 2310.1.03624 265 Id t.pr.xrt.p+2 
iii 23B3 A03A28 266 Id bopi, xl tllpi-2 
3 267 

'0 23B6 F1!6C2424 ·268 ..,1 bopr,tllpr tmpr = tllpl**2 + tllpr**2 
23BA F1!6C2828 269 au1 tllpi, bopi 

0 23BB 642824 270 add tllpr, tJapi ::J 
·ct 23Fl A42A26 271 addc tlIpr+2, bpi+2 
::J 272 r:::: 

23.4 32004C B 273 bbc FF'I'_MODI,2,CALC_SCIRT 11) 
.e, 274 

275 $eJect 
270189-39 



~ 

~ 

~ 
:::I 
fO 

~ 
~ 
I 
"11 

:!I 
"a 
(; 
fO 
ii1 
3 
g 
a 
:::I 
r::: 

.~ 

1ICS-96 IIACIiO ASSBMBLBR . rt'T_RllII 

BRR LOG OIIJI!CT 

231'7 
231'70156 
23F9 01'5624 
231C 990r56 
23" DA04 

2401 0140 
2403 2020 

2405 
2405 44566656 

2409 AC274B 
240C 44484l14li 
2410 65063A411 

2414 A24F40 
2417 A24B44 

24lA 664044 

241D AC263C 
2420 6C443C 

2423 0C083C 
2426 643C4O 
~ 0801540 

242C A7570A3C40 

2431 
2431 080040 
2434 A40040 
2437 6740000040 
243C C34OOOOO4O 

24412045 

II· 
II 
B 
B 

LIIIB 
276 
277 
279 
279 
290 

,281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 

.294 
296 
296 
287 . 
2911 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 

02/18/86 

SOOIiCB STATBMBIIT 

j j j j *** CALCDLATB 10 log ~tude"2 *** 
Output = 512*10*LOG{x) x=I,2,3 ••• 641[ 

CALC LOG: 
- c1r 

DOI'llI 
c:.pb 
Jle 

SIlft_CDt 
tIopr ,lIhft_ cnt 
abft_CDt,.15 
LOG_I1CIWIm! 

clr 10, 
br LOG_Si'ORB 

LOG IN IWIGI!: 

Ho ... lize and get Do .... lizatioD factor 

oJ.,... if SRlrT_CHT (= 15 

PAG1! 

- - add tihft_CIlt,8hrt_CIlt.8ht"t_CIlt Make sbift_CDt a poiDter 

Idbze 
add 
add 

ld 
Id 

sub 

ldbze 
blu 

1Ihr1 
add 
IIhr 

IIddc 

LOG S'!09B: 
- IIhr 

IIddc 
add 
at 

ptr, blpr+3 ; _t 8igoificaot I>¥te is table p.,iDter 
ptr,ptr,ptr i 
ptr,I LOG_TABLB-256 ; ptr= Table + oUset (oUaet=tIopr+3) 

log, [ptrJ+ 
DXtloc, [ptrJ 

oxtloc,log 

diU, tIopr+2 
diU,oxtloc 

diU,IB 
lo"diff 
10,,#5 . 

Use -256' si_ tIopr+3 ia UIfIIJII )= 128 

;; Linear IDterpolatiOD 

oxtloc = oext log - log 

diU+ 1 = oxtloc '" tapr+2 / 256 

log = log + diU/256 

8192/32 '" 2OLOG{x) = 256 '" 20LOG{x) 

log,lol..offset[lIhft_CDtJ add log of oomal1zatiOD factor 

;; Log <M*H) = Lo, M + Log H 

10g,#SCALB_FACroR 
log,zero 
10g,rt'T_OUT[kptrJ 
log,rt'T_OUT[kptrJ 

Divide to preveot overtl ... duriog 
averagtog of outputs 

DR DDL 
.eJect 

8 

270189-40 

l 

l> 
'P 
~ 



1IlS-96 MACRO ASSI!IIBLBR nT_R1III 

BRR LOC OB.Jl!CT LIN!! 
320 

2443 321 
322 

2443 0156 323 
2445 01'5624 324 

325 
2448 D705 326 
244A C04200 E 327 
244D 2029 328 

329 

r 2441" 
2441" AC274B iii" 2452 444B4B4B -

330 
331 
332 

S" 2456 65083948 333 
CO 334 
I\) 245A A24F40 

L 245D A24E44 

en 2460 684044 

335 
336 
337 
338 

iii: 
CO 2463 AC263C 

339-
340 

01 2466 6C443C 341 
~ "II 

r\, :!I 2469 AC3D3C 

""" " 
2460 643040 

01 ... 

342 
343 
344 
345 

0 2461" 44565656 
CO ... 

2473 6I"57C83840 DI 

346 
347 
348 

3 349 

0 
0 2478 ::!. 2478080042 :,-

2478 A40042 c: 
CD 2478 674DOOOO42 

350 
351 
352 

B 353 
B 354 
B 355 .s 2483 C34DOOO042 B 356 

357 
358 
359 
360 

2488 65020040 361 
248C 69020050 362 
2490 DF0226B4 363 

364 
2494 ro 365 

366 

30UBCB STATI!III!Nr 

CALC_SQII'l: 

elr shft __ cut 
DOrlll tllpr,ahft_CDt 

Jne 
at 
br 

SOIIT_IN_IIAIIGB 
zero,aqrt+-2 
SQRT_STON!! 

SQII'l IN IIAIIGB: 

02/18/86 

*** CALCULATE SQUARB ROOT *** 

Normalize 8Dd get normalization factor 

.JUIIP if' bopr ) 0 

- -ldbze ptr,t.pr+3 i Moat significant byte i8 table pointer 

PAGI! 

add 
add 

ptr,ptr.ptr . 
ptr,' SQ_TABLB-256 ; ptr= Table + offset (oUset=tJllpr+3) 

1d 
Id 

sub 

~qrt, [ptrJ+ 
nxtloc, [ptrJ 

DXtloc,sqrt 

Idbze diU, bopr+2 
1IU1u diff, nxtloc 

1dbze diU,d1U+1 
add sqrt, dtff 

Use -256 since tJIIpr+3 is always >= 128 

;; Linear InterpolatioD 

DXtloc = sqrt - next aqrt 

diU+ 1 = nxtloc * tJIIpr+2 / 256 

sqrt = sqrt + delta (diU < OFFH) 

add ahft_CIlt, Bhft_CIlt, shft_CDt 

:mJ.lu aqrt, tab_8qr[ahft_cut] i divide by D~naalizatiOD factor 

SQII'l_STOIIB: 
ala­
addc 
add 
st 

BNDL: add 

.eJect 

sub 
bne 

IIBT 

;; lIlUlu act. as divide since if tab2=OI'n'FB 
i i aqrt would re.aiD es8eDtialy unchanged 

sqrt+2,.SCALB_I"ACTOR 
sqrt+2. zero 
sqrt+2,I"FT_0UT[kptrJ 
sqrt+2,rFT_OUT[kptrJ 

Divide to prevent overflow duriDll 
averagiug of outputs 

*** BND or LOOP *** 
kptr,'2 
D_8ub_k,12 
lIIf_LOOP 

950 N!!XT I[ 

9 

270189-41 

i 

):. 

l' 
N .... 
UI 





_. 

I«:S-96 MACRO ASSEMBLER FIT_RUN 02/18/86 PAGE 11 I t 
ERR LOC OBJECT LINE SOURCE STATEMENT 

413 
414 

39C8 415 TAB_SQR: ; 65535/(square root of 2**SBFT_CNT) 0<=SBFT_CNT<32 
416 
417 1 2 4 8 16 32 64 128 

39C8 FFFF04B50080825A 418 DCli 65535, 46340, 32768, 23170, 16384, 11565, 8192, 5793 
419 
420 256 512 1024 2048 4096 8192 16384 32768 

3908 0010500BOO08A805 421 DCli 4096, 2896, 2048, 1448, 1024; 724, 512, 362 
422 
423 .. 65536, 131072, 262144, 524288, r 39E8 0001B50080005BOO 424 DCli 256, 181, 128, 91, 64, 45, 32, 23 iii' 39FB 10000BOOO8000600 425 DCli 16, 11, 8, 6, 4, 3, 2, 1 :::!: 

::s 426 
ca 427 
N 3A08 428 SQ_TABLE: ; square root of n * 2**24 N=128, 129, 130 255 

L 429 
3AOS 05B5BAB588B621B7 430 DCli 46341, 46522, 46702, 46881, 47059, 47237, 47415, 47591 

en 3A18 97BA46BBF5BBASBC 431 DCli 47767, 47942, 48117, 48291, 48465, 48637, 48809, 48981 
s: 3A28 00COAAC054CIFDC1 432 DCli 49152, 49322, 49492, 49661, 49830, 49998, 50166, 50332 
CD 3AS8 43C5E9C588C633C7 433 DCli 50499, 50665, 50830, 50995, 51159, 51323, 51486, 51649 
Q) 3A48 63CA04CBA6CB46CC 434 DCli 51811, 51972, 52134, 52294, 52454, 52614, 52773, 52932 

I I 
»-~ ." 3AS8 62CFOOD090D03ADl 435 DCli 53090, 53248, 53405, 53562, 53719, 53874, 54030, 54185 "0 

N ~ 3ASS 44D4DIlD477051106 436 DCli 54340, 54494, 54647, 54801, 54954, 55106, 55258, 55410 I 

3A78 09D9A00936DACCDA 437 DCli 55561, 65712, 55862, 66012, 56162, 58311, 56459, 56608 I\) 
.j>. 'tI '-.I 

"" .. 3A88 B4DD47DBDBDB6EDF 438 DCli 56756, 56903, 57051, 57198, 57344, 57490, 57636, 57781 UI 0 3A98 4882D7Il26783F783 439 DCli 57926, 58071, 58215, 58359, 58503, 58646, 58789, 58931 ca 3MB C1864FB7DDB76AB8 440 DCli 59073, 59215, 59357, 59498, 59639, 58779, 59819, 60059 .. 
III 3AB8 278BB2EB30BCC7EC 441 DCli 60199, 60338, 60477, 60615, 60754, 60891, 61029, 61166 
3 3AC8 77EFOOF088F010F1 442 DCli 61303, 61440, 61576, 61712, 61848, 61984, 62119, 62254 

0 3AD8 B4F33BF4CIF446F5 443 DCli 62388, 62523, 62657, 62790, 62924, 63057, 63190, 63323 
3AB8 DFF763F8E7F86AF9 444 DCli 63455, 63587, 63719, 63850, 63982, 64113, 64243, 64374 0 
3AF8 FBFE7AFCFEFC7DFD 445 DCli 64504, 64634, 64763, 64893, 65022, 65151, 65280, 65408 :::l 

!:t, 446 
:::l 447 $eJect c: 
m 
.& 

270189-43 



IIOS-96 MACRO ASSEMBLER FFT_RUN 02/18/86 

BRR LOC ODJECT LINE SOURCE STATBMBNT 
448 

3D08 449 LOG_TABLE: 16384*10*LOG(n/128) n~128,129,130 ," 256 
450 

3D08 00002A024F047006 451 Dew 0, 554, 1103, 1548, 2190, 2727, 3260, 3789 
3D18 DAI0B312B914BA16 452 Dew 4314, 4835, 5353, 5866, 6376, 6883, 7386, 7885 
3D28 DD20A92292247826 453 Dew 8381, 8873, 9362, 9848, 10330, 10810, 11286, 11758 
3838 C42F973186333335 454 Dew 12228, 12695, 13158, 13619, 14076, 14531, 14983, 15432 
3848 063BC13F7 A413043 455 Dew 15878, 16321, 16762, 17200, 17635, 18067, 18497, 18925 
3858 95483C4DOF4B8150 456 Dew 19349, 19772, 20191, 20609, 21024, 21436, 21846, 22254 
3D68 8458175AAB58365D 457 Dew 22660, 23063, 23464, 23862, 24259, 24653, 25045, 25435 
3D78 DB646066B0675D69 458 Dew 25822, 26208, 26592, 26973, 27353, 27730, 28106, 28479 r- 3D88 D370247294730275 459 Dew 28851, 29220, 29588, 29954, 30318, 30680, 31040, 31399 

![ 3D9B OD7C6B7DCF7B2F80 460 Dew 31755, 32110, 32463, 32815, 33165, 33512, 33859, 34203 
5' 3DA8 F2B647B89B89BDBA 461 Dew 34546, 34687, 35227, 35565, 35902, 36236, 36570, 36901 
ca 3DD8 7091DB92FF934595 462 Dew 37232, 37560, 37887, 38213, 38537, 38860, 39181, 39501 

r 3DC8 8B9BC89C049B3B9F 463 Dew 39819, 40136, 40452, 40766, 41079, 41390, 41700, 42009 
3DD8 4CA57BA6AFA7DBAB 464 Dew 42316, 42622, 42927, 43230, 43533, 43833, 44133, 44431 
3DB8 D9ABBOAF07Dl2CB2 465 Dew 44729, 45024, 45319, 45612, 45905, 46196, 46486, 46774 

(J) 3DF9 D6B7f488118A2DDB 466 Dew 47062, 41346, 47633, 47917, 48200, 46482, 48763, 49042 

3: 3008 A9CO 467 Dew 49321 
CD 468 
0) 3COA 469 LOG_OFFSBT: ; 512*10*LOG(2**(15-n» n; 0,1,2,3 ... 15 

~ ." 470 ; 512*10*LOG(0,5) n' 16,17,18 '" 31 
." 471 N -i 3eOA 4f5A4A54454B3F48 472 Dew 23119, 21578, 20037, 18495, 16954, 15413, 13871, 12330 

.l>- OU 30tA 252A20241AIB1518 473 Dew 10789, 9248, 7706, 6165, 4624, 3083, 1541, 0 <XI ... 
0 474 
ca 3e2A 475 BND ... 
III 
3 ASSBMBLY COMPLETeD, NO BRROR(S) FOUND, 

'0 
0 
3-
5' 
c: 
Ol ,e, 

PAGB 12 

270189-44 

( 

~ 
'U 
I 

I\) ..... 
U1 



AP-275 

The BASIC program is used as comments in the 
ASM96 program. Some of the variables in the ASM96 
program have slightly different names than their coun­
ter-parts in the BASIC program. This was to make the 
comments fit into the ASM96 code. Highlights in this 
section of code are a table driven square root routine 
and log conversion routine which can easily be adapted 
for use by any program. 

Both the square root routine and the log conversion 
routine use the 32-bit value .in the variable TMPR. The 
square root routine calculates the square root of that 
value in the variable SQRT + 2, a 16-bit variable. In 
this program, the square root value is averaged and 
stored in a table. 

The log conversion routine divides the value in TMPR 
by 65536 (2 16) and uses table lookup to provide the 
common log. The result is a 16-bit number with the 
value 512 • 10 Log (TMPR/65536) stored in the vari­
able LOG. This calculation is used to present the re­
sults of the FFT in decibels instead of magnitude. With 
an input of 63095, the output is 512 *48 dB. The graph 
program, (Section 10), prints the output value of the 
plot as INPUT/512 dB. 

The following descriptions of the ASM code point out 
some of the highlights and not-so-obvious coding: 

Lines 1-104 initialize the code and declare variables. 
The input and output arrays of the program are de­
clared external. Note that many of the registers are 

overIayable, use caution when implementing this rou­
tine with others with overIayable registers. 

Lines 116-124 calculate the power of W to be used. 
Note that KPTR is always incremented by 2. The mul­
tiple right shift followed by the AND mask creates an 
even address and the indirect look to the BR (Bit Re­
versal) table quickly calculates the power PWR. 

Lines 130-138 perform the complex multiplications. 
Since WIP and WRP range from - 32767 to + 32767, 
the multiplication is easy to handle. The automatic di­
vide by two which occurs when using the upper word 
only of the 32-bit result is a feature in this case. 

Lines 144-163 use right shifts for a fast divide, then add 
or subtract the desired variables and store them in the 
array. Note that the upper word of TMPR and TMPI 
is used, and the same array is used for both the input 
and output of the operations. 

Lines 165-189 update the loop variables and then check 
for errors on the complex multiplications and addi­
tions. If there are no overflows at this time the data will 
run smoothly through the rest of the program. 

Lines 200-212 load variables with values based on the 
bit reversed values of pointers. 

Lines 214-236 perform additions and subtractions to 
prepare for the next set of formulas. Note that XITMP 
and XRTMP are 32-bit. values. 

21-249 



inter AP-275 

Lines 240"260 perform multiplies and summations re­
sulting in 32-bit variables. This saves a bit or two of 
accuracy. The upper words are then stored as the re­
sults. 

Lines 263-272 generate the squared magnitude of the 
harmonic component as a 32-bit value. 

Lines 278-310 calculate 10 Log (TMPR/65536). The 
32-bit register TMPR is divided by 65536 so that the 
output range would be reasonable. 

First, the number is normalized. (It is shifted left until a 
1 is in the most significant bit, the number of shifts 
required is placed in SHFT_CNT.) If it had to be 
shifted more than 15 times the output is set to zero. 

Next, the most significant BYTE is used as a reference 
for the look-up table, providing a 16-bit result. The next 
most significant BYTE is then used to perform linear 
interpolation between the referenced table value and 
the one above it. The interpolated value is added to the 
directly referenced one. 

The 16-bit result of this table look-up and interpolation 
is then added to the Log of the normalization factor, 
which is also stored in a table. This table look-up ap­
proach works fast and only uses 290 bytes of table 
space. 

Lines 321-357 calculate the square root of the 32-bit 
register TMPR using a table look-up approach. 

First, the number is normalized. Next, the most signifi­
cant BYTE is used as a reference for the look-up table, 
providing a 16-bit result. The next most significant 
BYTE is then used to perform linear interpolation be­
tween the referenced table value and the one above it. 
The interpolated value is added to the directly refer­
enced one. 

The 16-bit result of this table look-up and interpolation 
is then divided by the square root of the normalization 
factor, which is also stored in a table. This table look­
up approach works fast and only uses 320 bytes of table 
space. The results are valid to near 14-bits, more than 
enough for the FFT algorithm. 

Lines 352-360 average the magnitude value, if multiple 
passes are being performed, and then store the value in 
the array. The loop-counters are incremented and the 
process repeats itself. 

This concludes the FFT routine. In order to use it, it 
must be called from a main program. The details for 
calling this routine are covered in the next section. 

8.0 BACKGROUND CONTROL 
PROGRAM 

The main routine is shown in Listing 3. It begins with 
declarations that can be used in almost any program. 
Note that these are similar, but not identical, to other 
8096 include files that have been published. Comments 
on controlling the Analog to Digital converter routine 
follow the declarations. 

21-250 



I\) 
~ 

r\:, 
~ 

r 
! s· 
ID 

i s: 
III s· 
::0 
o 
c ... s· 
ID 

MeS-96 MACHO ASSEMBLER FFT_MAIN_APNOTE 02/18/86 PAGE 

SERIES-III MeS-96 MACHO ASSEMBLER, VI-O 

SOURCE FILE: : F2: FTHAIN. A96 
OB.1l!CT FILE: : F2: FTHAIN.OB.J 
CONTROLS SPECIFIED IN INVOCATION C<M!AND: HOSB 

ERR toe OBJECT 

0000 
0002 
0002 
0003 
0003 
0004 
0004 
0006 
0006 
0007 
0008 
0009 
0011 
0011 
OOOA 

LINE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

=1 15 
=1 16 
=1 17 
=1 18 
=1 19 
=1 20 
=1 21 
=1 22 
=1 23 
=1 24 
=1 25 
=1 26 
=1 27 
=1 28 
=1 29 
=1 30 
=1 31 
=1 32 
=1 33 
=1 34 
=1 35 
=1 36 
=1 37 
=1 38 
=1 39 
=1 40 
=1 41 

SOURCE STATEMENT 
$pagelength (50) 

FFT_MAIN_APNOTE OODULll MAIN, STACKSIZE(6) 

Intel Corporation, January 24, 1986 
by Ira Horden, MeO Applications 

This progr8ll performs an FFT on real data and plots it on a printer. 
It uses the program modules A2DCON, PLOTSP, and FfTRUN. The adjustable 
parameters of each of the progra.s are set by this main module. 

$INCLUDE (:FO:DEM096.INC) j Include 8FR definitions 
i $nolist Turn listing off for include file 

; ******************************************************************************* 
Copyright 1985, Intel Corporation 
October 28,1985 
by Ira Horden, ~ Applications _ 

D&OO96. INC - DEFINITION OF S»IBOLIC NAMES FOR THE I/O REGISTERS OF THE 8096 

i ******************************************************************************* 
ZEHO EQU OOh:WORD R/W Zero Register 
AD _ CO!foIANIJ EQU 02H:BYTE W A to D command register 
AD_RESULT_LO EQU 02H:BYTE R Low byte of resul t and channel 
AD RESULT HI EQU 03H:BYTE R High byte of result 
HSI MODE - EQU 03H:BYTE W Controls HSI transition detector 
HSO=TIMIl EQU 04H:WORD W HSI time tag 
HSI TIMIl EQU 04H:WORD R HSO time tag 
HSO - C<M!AND EQU 06H:BYTE W HSO command tag 
HS(STATUS EQU 06H:BYTE R HSI status register (reads fifo) 
SBUF EQU 07H:BYTE R/W Serial port buffer 
INT MASK EQU 08H:BYTE R/W Interrupt mask register 
INT=PENDING EQU 09H:BYTE R/W Interrupt pending register 
SPCON EQU llH:BYTE W Serial port control register 
SPSTAT EQU llH:BYTE R Serial port status register 
WATCHDOG EQU OAH:BYTE W Watchdog timer 

270189-45 

l 

» 
"lJ 
I 

I\) 

'" en 



~ 
ro 
C11 
I\) 

r 
! 
S· 
co 

~ 
DI 
S' 
::u o 
c .. 
S· 
II 

'0 o 
:::J g. 
c: 

~ 

MCS-96 MACI/O ASSBMBLIlR 

I!RR LOC OJlJBCT 
OOOA 
OOOC 
OOOE 
OOOE 
OOOF 
0010 
0015 
0015 
0016 
0016 
0017 
0018 

0000 
OOOA 

001C 

001C 
OOlE 
0020 
0022 

001C 
0010 
0020 

0007 
0010 
0028 

0001 

FI'T_MAIN_APNOTE 02/18/86 PAGE 

LINII 
=1 42 
=1 43 
=1 44 
=1 45 
=1 46 
=1 47 
=1 48 
=1 49 
=1 50 
=1 51 
=1 52 
=1 53 
=1 54 
=1, 55 
=1 56 
=1 57 
=1 58 
=1 59 
=1 60 
=1 61 
=1 62 
=1 63 
=1 64 
=1 65 
=1 66 
=1 67 
=1 68 
=1 69 
=1 70 
=1 71 
=1 72 
=1 73 
=1 74 
=1 75 
=1 76 
=1 77 
=1 78 

79 
80 
81 
B2 
83 
84 
B5 
86 
87 
88 

SOURCE STATBMBNT 
TIIIBRI EQU OAR:WORD 
TD11!112 EQU OCR:WORD 
PORTO EIIU OBH:BYTE 
BAUD REG EQU OBH: BYTE 
PORTi: EQU OFR: BYTE 
PORTZ EQU 10R:BYTE 
lOCO EQU 15H: BYTE 
IOSO EQU 15H: BYTE 
lOCI EQU 168: BYTE 
IOSI EQU 168: BYTE 
PIlI CONTROL EQU l7H:BYTE 
SP - EQU 188: WORD 

00 
LF 

EQU ODH 
EQU OAR 

R Tmer 1 register 
R TiJler2 register 
R I/O port 0 

W Baud rate register 
R/lf I/O port 1 
R/lf I/O port 2 

W I/O control register 0 
R I/O status register 0 

If I/O control register 1 
R I/O status register 1 

w Nt control register 
R/lf Systelll stack poioter 

PUBLIC ZERO, AD _ COIfoL\lID, AD _RESULT_to, AD _RESULT_HI, HSI_IIlDE ,&SO_TIME, HSI_ TIME 
PUBLIC &SO _ COIfoL\lID 
PUBLIC HSI_STA~. SBur, !NT_MASK, IMT_P'ElfI;JIHG, WATCHDOG, TIMKRl. TIMER2 
PUBLIC BAUD_REG, POJ:ITO. PORT!, PORT2,SPSTAT,SPCON,IOCO,IOCI,IOSO,IOSl 
PUBLIC AIiM_CONTROL,SP,CB,LF 

RSEG at 100 

AX: 
DX: 
BX: 
CX: 

At 
AR 
BL 

DSW 
DSW 
DSW 
DSN 

EQU 
EIIU 
EQU 

AX 
(AX+l) 
BX 

: BYTE 
: BYTE 
: BYTE 

Teap registers used in con'fol'llBDce 
with PlM-96(tII) conventions. 

public ax, bx. cx, dx, al, ah. bi 

$liat Turn listing back on 
Bnd of include file 

A2D UTILITY C<MIANDS/RESPONSES FOR "CONTROL_A2D" _________ _ 

busy 
COD bO 
dtuIP _ bO J>_8 

AVR_IIIM 

equ 
equ 
equ 

equ 

7 
OOOlOOOOb;convert to BUFFO 
00101000b; download BUFFO as PAIRED SIGNIID deta 

Nullber of tiAes to average the wave:fona 
AVR_IIIM < 256 

2 

270189-46 

l 

):0 
'U . 
~ ..... 
UI 



r 
iii" -S" 

eQ 

Co) 

I 
:i: 
e!" 

~ :::I 
:lI 

'" 0 
U1 5-Co) 

S" 
ID 

0 
0 
::l 

g" 
c: 
(1) 

S 

MCS-96 MACRO ASSEMBLER 

ERR toe OBJECT 

0000 

0100 
0080 
9100 

0024 

0024 
0028 
ooze 
002E 

0000 
0000 
0001 
0002 

OOBO 
0080 
0080 

OOCO 

0200 

0200 
0200 
0240 
02CO 

FFT_MAIN_APNDTE 02/18/86 PAGB 

LINE 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
89 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
HO 
HI 
112 
113 
114 
115 
116 
H7 
H8 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

SOURCE STATEMENT 

SCALB]ACTOR equ o Number of rights shifts performed on 
output of FFT. Used to prevent overflow 
on s1DIIII8tion 

PLOT_RES 
PLOT_RES_2 
PLOT_MAX 

equ 
equ 
equ 

256 
plot_res/2 
plot res*145 

Number of input units per plot unit 

145 chrs/row 

PUBLIC scale_factor, plot_res, plot_res_2. plot_max 

OSEG at 248 COlJDOD oaeg area 

tmpreal: clsl 
tmpimag: clsl 
wndptr: dsw 
varptr: daw 

RSEG 
fft mode: clsb 
error: dab 
avr ent: dsb 

PUBLIC error I fft_mode 

EXTRN smapleJ>eriod, control_a2d 

DSEG at 80h 
XREAL: 
DEST BUFF BASE: DSW 64 
XIMAG equ - XREAL+64 

PUBLIC DEST_BUFF_BASE, XREAL, XIMAG 

DSEG AT 2008 

PLOT IN: 
FFT_OUT: 
BUFFO BASE: 
BUFFI=BASB: 

DSW 
DSW 
DSW 

32 
64 
64 

For FFT routine 
ror A2D routine 
For FlT routine 

For" rrr routine 
For A2D routine 
For A2D routine 

PUBLIC BUFFO_BASE, BUFFI_BASE, FFT_OUT, PLOT_IN 
$eject 

270189-47 

l 

» 
""tI 

I 
N ..... 
U1 



--
MCS-96 MACRO ASSBMBLER ITT':'MAIN_APIIOTII 02/18/86 PAGE 4 t 
8RR toe OBJBCT LINK 8OUIiCI! STA~ 

134 
2080 135 CSSO AT 2080H 

136 
137 SXTRN INIT_OUTPUT, DRAW_GHAPH, CON_OIlT For Plot Routine 
138 BXTRN FrT CALC For FFT routine 
139 BXTRN A2D=aurF_IlTIL For A2D routine 
140 

2080 AI000018 R 141 LD SP,tsTACB 
2084 A30100301C 142 LD AX,3000H 
2089 143 SBB_WAlT: 
2089 BOICI'D 144 dJnz aI, abe_wait WAIT FOR sal TO CLBAR SBRIAL PORT III1'I!RIItJP'1' 
20BC BOIDI'A 146 djnz D.abe_wait 

146 

Ii 208F BFOOOO I 147 B8OIN: CALL INIT_01lTP1lT Initialize serial port 
148 .. 2092 149 NBW_TRANSFOJIoCSBT: S" 2092 BI0000 R 150 Idb fft __ "ooOOB 

Bit" 0 - Real data / Tabled data' Ia 
151 Bit 1 - Windowed / UnwiD_ 

i 152 B1 t 2 - 101.,. Mag"2 / Macni tudet 
153 B1 t "3 - 256*db plot / Noreal Plott 

i: 2096 BI0I02 R 154 Idb avr_cut,'8Vr_DUII 
DI 2098 0120 155 clr bx l> ~ S" 209A C321000200 156 CLRRAM: st zero,ftt_out[bxl clear fft _1tude array 'tJ 

N ::D 2091' 65020020 157 add bx,f2 • 0 20A3 89400020 158 ClIP bx,t64 N 01 C .... ..,. .. 2OA7 DBrl 159 blt CLRRAM 
CI'I S· 180 

CD 20A9 300004 R 161 C_1oad: bbc fft __ ,O,do_tab Branch if real data is not used 

'0 20AC 2819 162 CALL LOAD_DATA 
0 20AB 2002 163 br C_win 

3- 164 
5" 20BO 2821'" 155 do_tab: CALL" TABLB_LOAD 
c: 166 
CD 2OB2 310002 R 167 C_win: bbc f'ft_.ade, 1. calc Branch it windowinr is not used .s 2085 2BCB 168 CALL DO _ WIIIIlOI! 

169 
2OB71FOOoo 8 170 CALC: CALL ITT_CALC 
20BA 980001 R 171 errtrp: CIIPb error, zero 
20BD D7FB 172 Jne errtrp 

173 
20BF 800205 R 174 Dmz a~_CDt, LOAD_DATA repeat for AVR_NIJiI counts 

175 
2002 EFOOOO E 176 CALL DRAW_GHAPH 

177 
2005 27CB 178 DR NBW_TRANSFOJIoCSBT 

179 $eJect 
270189-48 



_. 
~S-96 MACRO ASSBllBLER FFT_MAIN_APNOTE 02/18/86 PAGE 5 t 
BRR LOC OB.JBCT LINE SOURCE STATIlMBNT 

180 
2007 181 LOAD_DATA: IIII WAD DATA INTO R.IM 

182 
2007 BI000F 183 Idb portl,.f:OO ; **** FOR INDICATION ONLY 

184 
200A 185 SBT_A2D: 
20CA Bll000 8 186 Idb control_a2d,'coD_bO Set converter for bufferO 
200D 910100 E 187 orb control_a2d, tol Convert channel 1 
20DO A1320000 E 188 Id 8ample~riod,'50 100 us aaaple period. 

189 
20D4 EFOOOO 8 190 CALL a2d buff util Start the cODversion process 
20D7 3FOOFD 8 191 jbs cODtrol_82d, busy 1$ wait for all conversions to be done 

192 
r 20DA 193 Down_load: 

! 20DA Bl2800 B 194 Idb control_a2d,ldUlDP_bOy_s ; download bO paired/signed. 
S· 20DD BFOOOO E 195 CALL a2d_buff_util 

20BO FO 196 RET 1.0 
197 

i 198 
20El 199 TABLE_WAD: 

!i: 2081 0120 200 clr bx 
DI 20E3 AI02211C 201 Id ax,'DATAO Load tabled data for testing 

I I 

:t-~ 
S· 20E7 A21D22 202 load: Id ex, [ax]+ 

"tI 
N :u 20EA A21DIE 203 Id dx, [ax]+ . 

0 20ED C321800022 204 at cx t xreal[bx] I\) c.n c 20n C32lCOOOIB 205 at dx,ximag[bx] 
..., c.n .. en S· 20F7 65020020 206 add bX,#2 

(II 20FB 89400020 207 ClIp bx,#64 

0 20FF DEB6 208 bIt WAD 
0 2101 FO 209 RET 

::l. 210 

:i" 2102 211 DATAO: ; SQUARE WAYE 
C 212 
(1) 2102 FF7FFF7FFF7FFF7F 213 new 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767 
.9: 2112 FF7FFF7FFF7FFF7F 214 DeW 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767 

2122 FF7FFF7FFF7FFF7F 215 Dew 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767 
2132 FF7rrF7"F7"F7F 216 new 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767 
2142 0180018001800180 217 Dew -32767, -32767, -32767, -32767, -32767, -32767, -32767, -32767 
2152 0180018001800180 218 DeW -32767, -32767, -32767, -32767, -32767, -32767, -32767, -32767 
2162 0180018001800180 219 Dew -32767, -32767, -32767, -32767, -32767, -32767, -32767, -32767 
217¥ 0180018001800180 220 IJCW -32767, -32767, -32767, -32767, -32767, -32767, -32767, -32767 

221 
222 $eject 

270189-49 



~ 
N 
U1 
en 

r 
! 
S· 

IQ 

r s:: 
1\1 
S· 
::II 
o c .. 
S· 
CD 

'§ 
~ 
:i" 
c: 
(I) 

S 

11:8-96 MACRO AS8BMBLBR 

BRR LOC OBJl!CT 

2182 
2182 012C 
2184 012B 
2186 
2186 A320BB2llC 
2188 A32DC02120 
2190 1'I!4F2F80001C24 
2197 1'I!4F2FC0002028 
219B 000124 
21Al 000128 
21M C32F800026 
21A9 C32FC0002A 
21AB 6504002C 
21B2 6502002B 
21B6 8940002B 
21BA 07CA 
21BC FO 

21BB 

21BB 00004F003BOICI02 
21CB BFl266177llC0421 
210B 004045467C4C9352 
21BB 4060787136757078 
21FB FF7FB07FC47R3B70 
2208 406D996888632B58 
221B 0040BA3983336C20 
222B BFl2870BC90A8F07 
223B 0000 

FIT_MAIN _APNOTI! 02/18/86 PAGB 6 

( 
LINE SOURCB STATBMBNT 

223 ,-------------------
224 DO_WINDOW: ; ; ;; PlRFOSM BANNING WINDOW 
225 clr wndptr 
226 clr varptr WindowiDg provides an effective 
227 WINDOW: divide by 2 because of tbe multiply 
228 Id ax,hanning[wndptr) 
229 1d bx,hanning+2[wndptr) 
230 Dlul tmpreal, ax.xreal [varptr] 
231 au1 tmpimag, bx, ximag (varptr J 
232 shll tapreal,'l 
233 shU tmpimag,#l Ca.pensate for the divide by 2 
234 .t t~real +2, xreal [varptr J 
235 st tmphlag+2, ximag [verptr) 
236 add wndptr,'4 
237 add varptr,'2 
238 CDIP varptr,t64 
239 jne window 
240 RET 
241 
242 HANNING: ; Windowing fUDction 
243 
244 oew 0, 79, 315, 705, 1247, 1935, 2761, 3719 

I I 

» 245 Dew 4799, 5990, 7281, 8660, IOll4, U628, 13187, 14778 
'tI 246 Dew 16384, 17989, 19580, 21139, 22653, 24107, 25486, 26777 I 

247 oew 27968, 29048, 30006, 30832, 31520, 32062, 32452, 32688 I\) 

248 Dew 32767, 32688, 32452, 32062, 31520, 30832, 30006, 29048 
...., 

249 Dew 27968, 26777; 25486, 24107, 22653, 2U39, 19580, 17999 U1 

250 DCW 16384. 14778, 13187. 11628. 10114. 8660, 7281, 5990 
251 Dew 4799, 3719, 2761. 1935, 1247, 705. 315, 79 
252 Dew 0 
253 
254 $eject 

270189-50 



_. 

MCS-96 MACRO ASSIlMBLER FFT_MAIN_APNOTR 02/18/86 PAGE t 
ERR we OBJECT LINE SOURCE STATEMENT 

255 
3DOO 256 CSRG AT 3DOOH ; ADDITIONAL TABLES FOR TESTING 

257 ; SINE 7.0 X 
3DOO 258 DATAl: 
3DOO 00003351897DR270 259 Dew 0, 20787, 32137, 28898, 12539, -9512,-27245,-32609 
3DI0 7BA574F31C477C7A 260 Dew -23170, -3212, 18204, 31356, 30273, 15446, -6393,-25329 
3D20 01800F9D08B7563C 261 Dew -32767,-25329, -6392, 15446, 30273, 31356, 18204, -3212 
3D30 7BA59F809395D8DA 262 Dew -23170,-32609,-27245, -9512, 12539, 28898, 32137, 20787 
3D40 000OCDAB77821R8F 263 Dew -0, -20787, -32137, -28898, -12539, 9512, 27245, 32609 
3D50 825A8COCR4B88485 284 Dew 23170, 3212, -18204, -31356, -30273, -15446, 6393, 25329 
3D60 FF7FFl62F818AAC3 285 Dew 32767, 25329, 6392, -15446, -30273, -31356, -18204, 3212 
3D70 825A617F6D6A2825 266 Dew 23170, 32609, 27245, 9512, -12539, -28898, -32137, -20787 

267 
r 3D80 288 DATA2: ; SINE 7.5 X 

! 269 

S· 3D80 0000F555617FCF66 270 Dew 0, 22005, 32609, 26319, 6393, -16846, -31356,-29621 
3D90 05CFlF2BR270297C 271 Dew -12539, U039, 28898, 31785, 18204, -4808,-25329,-32728 ID 
3DAO 7BA5B8F933519C7E 272 Dew -23170, -1608, 20787, 32412, 27245, 7962,-15446,-30852 W 

I 3DBO BF8946C92825C96D 273 Dew -30273,-14010, 9512, 28105, 32137, 19519, -3212,-24279 
3DCO 018029A174F33F4C 274 Dew -32767,-24279, -3212, 19519, 32137, 28105, 9512,-14010 3: 3DDO BF887C87AAC3lA1F 275 Dew -30273, -30852, -15446, 7962, 27245, 32412, 20787, -1608 III 3DEO 7BA528B00F9D38BD 276 Dew -23170,-32728,-25329, -4808, 18205, 31785, 28898, U039 

I I 

~ ~ 
S· 

3DFO 05CF4BBC848533BE 277 Dew -12539, -29621, -31356, -16845, 6393, 26319, 32609, 22005 

" N II 278 I 
0 3EOO 279 DATA3: ; .707.SINE 7. 5X N en c ...... 

"'" .. 280 U1 S· 3EOO 000OC63COF5AAF48 281 DCW 0, 15558, 23055, 18607, 4520, -U910, -22169, -20942 
CD 3BI0 5FDD7ClBeF4FC857 282 DCW -8865, 7804, 20431, 22472, 12870, -3399,-17908,-23138 

0 3E20 03C08FFB69398459 283 Dew -16381, -U37, 14697, 22916, 19262, 5629, -10921, -21812 
0 3E30 65AC4FD9451A9R4D 284 Dew -21403, -9905, 6725, 19870, 22721, 13800, -2271,-17165 
:::l 3E40 82A5F3BC21F7E835 285 DClI -23166,-17165, -2271, 13800, 22721, 19870, 6725, -9905 do 3E50 65ACCCAA5805FD15 286 Dew -21403,-21812, -10920, 5629, 19262, 22916, 14696, -1137 :::l 
c: 3E60 03C09BA5OCBAB9F2 287 DCW -16381,-23138,-17908, -3399, 12871, 22472, 20431, 7804 
<D 3E70 5FDD32AB67A97ADl 288 DC\! -8865, -20942, -22169, -U910, 4520, 18607, 23055, 15557 S 289 

3E80 290 DATA4: ; .707*SINE(11x) /16 
291 

3E80 0000FD04B40472FF 292 DCW 0, 1277, 1204, -142, -1338, -1119, 282, 1386 
3E90 00045CFB74FA69FC 293 DClI 1024, -420, -1420, -919, 554, 1441, 804, -683 
3EAO 58FA55FD2403AI05 294 Dew -1448, -683, 804, 1441, 554, -919, -1420, -420 
3EBO 00046A05lAOIAIFB 295 DC\! 1024, 1386, 282, -lU9, -1338, -142, 1204, 1277 
3BeO 000003FB4CFB8B00 296 Dew -0, -1277, -1204, 142, 1338, lU9, -262, -1386 
3EDO 00FCA401BC059703 297 DC\! -1024, 420, 1420, 919, -554, -1441, -804, 683 
3EBO A805AB02DCFC5FFA 298 Dew 1448, 683, -804, -1441, -554, 919, 1420, 420 
3EFO 00FC96FAE6FE5F04 299 Dew -1024, -1386, -282, 1119, 1338, 142, -1204, -1277 

300 
3FOO 301 DATA5: ; .707*(SINE 7.5X + 1/16 SINE 11X) 

270189-51 



~ 
~ 
UI 
(J) 

r-
I 
:::J co 

r 
a::: 
III s-
~ c -s-
CD 

'§ 
__ ... 3-

:f 
c 
CD 
,e, 

1«:11-116 IWlIIIl ASSBllBLBR 

BRR LOO OB.JBCT 

3rGO 00000241C3512148 
3rl0 51IlDBIC434A3154 
3r20 58BAB5F88D3C245r 
3r30 6580891115rI83F49 
3F40 112A5t'6876D1'2'1636 
3r.1O 6501870ACB4DA9419 
3r60 ABC548AIIB8B6l8BD 
3r70 5FD9C8A84DA8IJ9D5 

3F8O 

FrT_MAIN_APIIO'l'B 02/18/86 

LINB 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 

SOOIICB STATBIIBNT 

DCW 0, 16834, 24259, 18465, 3182,-l3029,-21886,-19557 
DCW -7842, 7384, 19011, 21553, 13425, -1958,-17103,-23821 
DCW -17829, -1819, 15501, 24356, 19816, 4710,-12341,-22232 
DCW -20379, -8519, 7007, 18751, 21383, 13658, -1067,-15868 
DCW -23166,-18442, -3475, 13942, 24059, 20990, 6442,-11290 
DCW -22427,-21392, -9500, 6548, 18708, 21475, 13892, -454 
DCW -14933,-22456,-18712, -4840, 12317, 23391, 21851, 8225 
DCW -9889,-22328,-22451,-10791, 5857, 18749, 21851, 14281 

BND 

_LY OOIIPLIITBII, NO BRIIOR(8) FOUND. 

PAGB 8 

270189-52 

l 

:.. 
Z! 
...... en 



AP~275 

SERIES-III MCS-96 RELOCATOR AND LINERR, V2.0 
Copyright 1983 Intel Corporation 

INPUT FILES: : F2: FTMAIN.OBJ, : F2: FFTRllN.OBJ, : F2:PLOTSP.OBJ, : F2: A2DCON.OBJ 
OUTPUT FILE: : F2: FFTOUT 
CONTROLS SPECIFIED IN INVOCATION COIoMAND: 

IX 

INPUT MODULES INCLUDED: 
: F2: FTMAIN.OBJ(FFT_MAIN_APNOTK) 02/18/86 
: F2: FFTRllN.OBJ(FFT_RllN) 02/18/86 
: F2: PLOTSP.OBJ(PLOT_SERIAL) 02/18/86 
: F2: A2DCON.OBJ(A2D_BUFFERING_UTILITY) 02/18/86 

TYPE nASE LENGTH ALIGNMIlNT 

.*RESERVED* OOOOH OOIAI! 
REG OOIAII 00011! BYTIl _._ GAP _** 

OOIBI! 0001H 
REG OOICH OOOBil ABSOLUTE 
OVRLY 0024H 0035H ABSOLUTE 

**OVERLAP*_ OVRLY 0024H OOlon ABSOLUTE 
**OVERLAP_' OVRLY 0024H OOOCH ABSOLUTE 
'** GAP '** 0059R OOOlH 

OVRLY 005A11 000611 WORD 
REG 0060H OOOCH WORD 
REG OOSCH 0003H BYTIl 

*** GAP *** 006FR 00118 
DATA 0080H 0080H ABSOLUTE 
STACK OlOOR OOlER WORD 
DATA OllEH 0080H WORD 

*** GAP *** 019EH 0062H 
DATA 0200H 0140R ABSOLUTE 

*** GAP *** 0340H lCC28 
CODE 20028 00028 ABSOLUTE 

*** GAP *** 2004H 007CH 
CODE 2080H OlCOR ABSOLUTE 

*** GAP *** 2240H 0040H 
CODE 2280H 0215H ABSOLUTE 

**. GAP *** 24958 OOSHH 
CODE 2500H 016B11 ABSOLUTE 
CODE 26688 OOECH BYTE 

*** GAP *** 2754H 10ACH 
CODE 38008 042A11 ABSOLUTE 

*** GAP '** 3C2A/I OOD68 
CODE 3DOOH 0280H ABSOLUTE 

**. GAP *** 3F80H C080H 

MODULE NAME 
--------

PLOT_SERIAL 

FFT_MAIN_APNOTK 
FFT RUN 
PLOT SBRIAL 
FFTjiAIN_APNOTK 

A2D_BUFFERING_UTILITY 
A2D BUFFERING UTILITY 
FFT=MAIN_APNOTB 

FFT_MAIN_APNOTK 

FFT_RUN 

FFT_MAIN_APNOTK 

A2D_BUFFERING_UTILITY 

FFT_MAIN_APNOTK 

FFT_RUN 

PLOT SERIAL 
A2D_iiUFFERING_UTILITY 

FFT_RUN 

FFT_MAIN_APNOTK 

Listing 3-Main Routine (Continued) 

21-259 

270189-53 



Ap·275 

Several constants are then setup for other routines. The 
purpose of centrally locating these constants was the 
ease of modifying the operation of the routines. Note 
that AVR_NUM and SCALEJACTOR must be 
changed at the same time. SCALE_FACTOR is the 
shift count used to divide each FFT output value before 
it is added to the output array. A V~NUM must be 
less than 2"SCALE_FACTOR or an overflow could 
occur. Next, the public variables are declared for the 
arrays and a few other parameters. 

The program then begins by setting the stack pointer 
and waiting for the SBE-96 to finish talking to the ter­
minal. If this is not done, there may be serial port inter­
rupts occurring for the first twenty five milliseconds of 
program operation. 

Initialization of the plotter is next, followed by setting 
the FFT_MODE byte. This byte controls the graph­
ing, loading and magnitude calculation of the FFT 
data. Since FFT~ODE is declared PUBLIC in this 
module, and EXTERNAL in the PLOT module and 
FFTRUN module, the extra bits available in this byte 
can be used for future enhancements. 

The next step is to clear the FFT output array. Since 
the FFT program can be set to average its results by 
dividing the output before adding it to the magnitude 
array, the array must be cleared before beginning the 
program. 

Data is then loaded into into the FFT input array by 
the code at LOAD_DATA, or the code at TABLE_ 
LOAD, depending on the value of FFT._MODE bit o. 
The tabled data located at DAT AO is a square wave of 
magnitude 1. This waveform provides a reasonable test 
of the FFT algorithm, as many harmonics are generat­
ed. The results are also easy to check as the pattern 
contains half zeros, imaginary values which are always 
the same, and real values which decrease. Figure 13 
shows the output in fractions, hexadecimal and deci­
mal. The hexadecimal and decimal values are based on 
an output of 16384 being equal to 1.00. 

Note that the magnitude is 

SQR (REAL2 + IMAG2) 

and the dB value is 

10 LOG ( (REAL2 + IMAG2)/65536) 

The divide by 65536 is used for the dB scale to provide 
a reasonable range for calculations. If this was not 
done, a 32-bit LOG function would have been needed. 

After the data is loaded, the data is optionally win­
dowed, based on FFT_MODE bit 1, and the FFT pro­
gram is called. Once the loop has been performed 
A V~CNT times, the graph is drawn by the plot rou­
tine. 

Appended to the main routine is the FFTOUT.M96 
Listing. This is provided by the relocator and linker, 
RL96. With this listing and the main program, it is 
possible to determine which sections of code are at 
which addresses. 

Using the modular programming methods employed 
here, it is reasonably easy to debug code. By emulating 
the program in a relatively high level language, each 
routine can be checked for functionality against a 
known standard. The closer the high level implementa­
tion matches the ASM96 version, the more possible 
checkpoints there are between the two routines. 

Once all of the program routines (modules) can be 
shown to work individually, the main program should 
work unless there is unwanted interaction between the 
modules. These interactions can be checked by verify­
ing the inputs and outputs of each module. The assem­
bly language locations to perform the program breaks 
can be retrieved by absolutely locating the main mod­
ule. The other modules can be dynamically located by 
RL96. 

The more interactive program modules are, the more 
difficult the program becomes to debug. This is espe­
cially true when multiple interrupts are occurring, and 
several of the interrupt routines are themselves inter­
ruptable. In these cases, it may be necessary to use de-. 
bugging· equipment with trace capability, like the 
VLSiCE-96. If this type of equipment is not available, 
then using I/O ports to indicate the entering and leav­
ing of each routine may be useful. In this way it will be 
possible to watch the action of the program on an oscil­
loscope or logic analyzer. There are several places with­
in this code that I/O port toggling has been used as an 
aid to debugging the program. These lines of code are 
marked "FOR INDICATION ONLY." 

21-260 



AP-275 

K 
Fractional 

dB 
Decimal Hexadecimal 

REAL IMAG MAG2 REAL IMAG MAG2 REAL IMAG MAG2 

a 0.0000 0.0000 0.0000 0.000 a a a a a a -
1 0.0625 -1.2722 1.2738 38.225 1024 -20843 20868 400 AE95 5184 
2 0.0000 0.0000 0.0000 0.000 a a a a a a 
3 0.0625 -0.4213 0.4260 28.710 1024 -6903 6978 400 E509 1B42 
4 0.0000 0.0000 0.0000 0.000 a 0 0 0 a 0 
5 0.0625 -0.2495 0.2572 24.329 1024 -4088 4214 400 F008 1076 
6 0.0000 0.0000 0.0000 0.000 a 0 0 a a 0 
7 0.0625 -0.1747 0.1855 21.491 1024 -2862 3039 400 F402 BOF 
8 0.0000 0.0000 0.0000 0.000 a a 0 a 0 0 
9 0.0625 -0.1321 0.1462 19.421 1024 -2165 2395 400 F78B 95B 

10 0.0000 0.0000 0.0000 0.000 a 0 a 0 0 0 
11 0.0625 -0.1043 0.1216 17.820 1024 -1708 1992 400 F954 7G8 
12 0.0000 0.0000 0.0000 0.000 a a 0 a 0 0 
13 0.0625 -0.0843 0.1049 16.540 1024 -1381 1719 400 FA9B 6B7 
14 0.0000 0.0000 0.0000 0.000 0 0 0 a 0 0 
15 0.0625 -0.0690 0.0931 15.499 1024 -1130 1525 400 FB96 5F5 
16 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0 
17 0.0625 -0.0566 0.0844 14.645 1024 -928 1382 400 FG60 566 
18 0.0000 0.0000 0.0000 0.000 a 0 0 0 0 0 
19 0.0625 -0.0464 0.0778 13.944 1024 -759 1275 400 F009 4FB 
20 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0 
21 0.0625 -0.0375 0.0729 13.374 1024 -614 1194 400 F09A 4AA 
22 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0 
23 0.0625 -0.0296 0.0691 12.918 1024 -484 1133 400 FE1G 460 
24 0.0000 0.0000 0.0000 0.000 a 0 0 0 0 a 
25 0.0625 -0.0224 0.0664 12.564 1024 -366 1088 400 FE92 440 
26 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 a 
27 0.0625 -0.0157 0.0644 12.305 1024 -256 1056 400 FFOO 420 
28 0.0000 0.0000 0.0000 0.000 a 0 0 0 0 0 
29 0.0625 -0.0093 0.0632 12.135 1024 -152 1035 400 FF68 40B 
30 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0 
31 0.0625 -0.0031 0.0626 12.051 1024 -50 1025 400 .FFGE 401 

Figure 13. FFT Output for a Square Wave Input 

9.0 ANALOG TO DIGITAL 
CONVERTER MODULE 

The module presented in Listing 4 is a general purpose 
one which converts analog values under interrupt con­
trol and stores them in one of two buffers. These buffers 

can then be downloaded to another buffer, such as the 
input buffer to the FFf program. During downloading, 
this module can convert the data into signed or un­
signed formats, and fill a linear or a paired array. A 
paired array is like the one used in the FFf transform 
program. It requires N data points placed alternately in 
two arrays, one starting at zero and the other at N/2. 

21-261 



r 
iii" .. 
S' 

IC 
.... 
~ .. 
0 

~ c 
ro 0 
0> 0 
I\) :J 

< 
CD ... .. 
CD ... 
::u 
0 
c .. 
S' 
CD 

MCS-96 MACRO ASSBMBLER A2D_BUrYl!llIIIG_UTILITY 02/18/86 PAGI! 

SBRIBS-III MCS-96 MACRO ASSBMBLI!R, V1.0 

SOUIICI! FILE: : F2: A2DC0N, A96 
OIl.Jl!CT FILE: : F2: A2DCON, OBJ 
CO/ITIIOLS SPBCIFIBD IN INVOCATION COfoMAND: !IOSB 

BRR LOC OB.1BCT LIn 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

SOUllCl! STATBMBNT 
$pagelength(50) 

A2D_BufferiDILUtility 1IOdu1e stackaize(12) 

;; 

Intel Corporation, July 16, 1985 
by Dave RyaD, Intel Applications Bngineer 

This utility tills a -.ory bufter with AID conversion results. The 
conversions are done UDder interrupt control. and are initiated when 
A2D BUIT Util is called. The results of the .conversions are placed 
in One of two buffers, called BUFro and BUFrI. 

This utility provides options for the selection of the buffer lengths, data 
fOrllB.t, IISllpIe period. conversion channel and tiM- base. The utility also 
has a donwload routine that will load either buffer into a register file 
buffer. OUtput for-.ata can also be chosen for the dowuloaded buffer. The 
data can be' fOl'1llltted as signed or UDsigned linear or paried arrays. 

IIIlH-TIMI! OPTIONS 

Rather than use the STACK to pass controls. this utility gets its directions 
froll 2 control words in .. ory. The utility expects that ita control words 
are valid at the tt.e A2D_BUFF_Util is called and remain valid throughout 
AID interrupt executions and downloads. The control words are: 

Sa.ple_Period MmD The tiE between 8811plea in tiller COlDlts 
where the tiller used bas been specified 

Control_A2D BYTB Control infoniation for the utility: 
8IT# 

0-2 
3 
4 
5 

6 
7 

Channel N1mber 
Signed Result/llDaigned Resu1t# 
Convert/DownloBdt 
BUFFl/BUFro# for conversions 
BUFro/BUFF1# for dOWDloada 
Linear/Paired' 
Converter BUSY/IDLE' 

$II.JI!CT 
270189-54 

l 

» 
l' 
N ..... en 



I\) ..... 
~ m 
c.l 

r 
iii 
S-
ea 

t 
~ 

0 
c 
n 
0 :s 
< 
CD ... -CD ... 
:II 
0 
c:: -S" 
CD 

0 
0 
3-
5" 
c: 
<D .s 

I«:S-96 MACRO ASS_LER 

BRR LOC OBJECT 

A2D_BUFFRRING_IlTILITY 02/18/86 PAGB 

LINB 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

. 

SOURCl! STATEMENT 

The following is a table of equates that can be used to Bi~lify the 
bit diddling require.ents. If you are not running conversions concurrently 
with downloads, always LDB Control_A2D with the following ccamand then 
ORB Control_A2D with the channel mlllber you wish to convert if you are 
starting a conversion. 

Once the utility is called. care INSt be taken when Control_A2d is 
.odified. You can cause downloads to occur while cODversions are running, 
but you cannot start conversions duriog a download. To do this, ORB to the 
control byte with the appropriate bits set. Do NOT change the BUfr bit or 
the BUSY bit. Just set the download bit and set the data fOI1lElt bits to the 
correct values. 

The BUFF bit has opposite definitions for conversions and downloads. This 
allows conversions to be done into Burro while downloads come fra. BUfFl. BDd 
vice versa. 

A2D UTILITY C<HIAlIDS ______________________ _ 

jcoD_bO equ OOOlOOOOb; convert to BUFFO 
jcon_bl equ OOllOOOOb; BUFFl 

jdtmp_bO_I_u equ OllOOOOOb; download BUFFO as LlNBAR USIGNBD data 
;dlllllP_bl_l_u equ OlOOOOOOb; BUFFl 
;duIop_bO_p_u equ OOlOOOOOb; BUFFO .. PAlRBD 
;dlllllP_bly_u equ OOOOOOOOb; BUFFl .. 
;duJIp_bO_l_s equ OllOlOOOb; download BUFFO as LINBAR SIGNED data 
;dllllP_bl_l_s equ OlOOlOOOb; .. BUFFl .. 
;duIop_bOy_s equ OOlOlOOOb; BUFFO .. PAIRED 
; dUIIP _bly_s equ OOOOlOOOb; BUFFl .. 
i _____ 

$eJect 
270189-55 

l 

» 
" I 
N ..... 
CI1 



1«:8-96 MACRO AS81lMBLBR 

ERR LOC OBJI!CT 

Ii--s-
co 

t 
)0--0 
c 
0 
0 

~ ::J 
< 

~ ID 
0> i .j:>. .. 

::a:J 
0 
c s: 
ID 

0 
0 
::J g-
C 
(1) 

.e, 

A2D_BUFFl!RING_UTILITY 02/18/86 PAGE 

LINE 
75 
76 
77 
78 
79 
80 
Bl 
82 
B3 
84 
B5 
86 
B7 
BB 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
lOB 
109 
110 
III 
112 

SOllllCl! STATI!MI!NT 

ASSBMBLY-TIMI! OPTIONS 

The base addresses ad length of each conversion buffer and the destination 
buffer are DECLARBD BXTRNal in this utility. Other options such 88 selection 
of the timer used as a timebaae, the length of the buffer, and the effective 
nUliber of bits in the reported result are set at aasedlly tilDe through use 
of I!QUates in this 1IOdu1e. 

The following paraaeters need to be provided at asseably or link time. 
The buffer bases are declared EXTRllal by this utility, "hile the buffer 
length shift count and !ISO coaaands are BQUated. 

BUFFO BASI! 
BUFfl-BASB 
DESTjiUFf_BASB 

BUFF_LENGTH 

Shift_count 

CLOCK 

The starting address of BUFFO 
The starting address of BUFri 
The starting- address of the download 

i target buffer. 

The Dl.Dlber of SAMPLES that each 
; buffer must hold. must be >1 an~d (256 

The number of tbles that the cODversion result is 
to be iohifted riBbt from it. natural left justified 
position. Setting a shift co~t· greater than. 6 will 
result in lost bits to the right. Rounding is NOT 
done . 

Specify as either TIMRRl or T2CLK. This is the 
tillebaae used for conversions. 

Samples are stored as words in the buffers. The progrBJI stores 
conversions linearly in BUFfO 8D~ BUFFI. and linearly or paired i~ the 
destination buffer as selected. If, the doWnload is to be paired, the first 
s8llP1e is placed io location DBST BUFr BASE, the second sample is plac1!d. in 
location {DBST_BUFf_BASE + BUFF_LiNGTHl, the third in (DBST_BUFf_BASI! + 2), 
the fourth in (DEST_BUff_BASI! + 2 + BUFf_LENGTH), etc. 

$eject 

3 

270189-56 

cl 

» 
"1J 
N ..... 
C11 



MCS-96 MACRO ASSEMBLER 

ERR LOC OBJECT 

c: 
1/1 ... 
:5' 
IC 
.... 
~ 
0' 
c 
0 
0 

I\) ::I .... < 
r\:, CD ... 
0) ... 
01 CD ... 

::D 
0 
c 
~ 
::I 
CD 

'0 
0 
::J 
!:!: 
::J 
<: 
CD 
S 

A2D _BUFFl!RING_ UTILITY 02/18/86 PAGE 

LINE 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

SOURCE STATEMENT . 
; NOTES ON EXECUTION 

When a utility call directs the initiation of 8 set of A2D conversions, the 
first conversion is begun at approxill8.tely one sample time plus 50 state 
times from when the utility was called. This assumes that no interrupts are 
present. 

The conversion busy hit is set approximately 50 state times nfter a call 
to the utility, if the convert bit was set in the A2D_Control byte. The 
busy bit is cleared after all conversion results have been stored in the 
result buffer designated (BUFFO or BUrFl) , 

Take great care in modifying the A2D Control byte to do a domlload while 
conversions are taking place. You can never download a buffer that io 

; being converted into. The results would be invalid. 
$eject 

4 

270189-57 

cl 

:c­
"tI . 
N 
-.J 
UI 



r 
~ 
:::I 
cc 
~ 

~ 
0' 
c 
0 
0 

~ :::I 
< 

N ID .. 
0> 
0> iD .. 

:II 
0 
c 
S-
ID 

0 
0 
~ s· 
c: 
([) 

B 

MCS-96 MACRO ASSI!MBLIlR 

BRR we OBJECT 

0000 

0040 
0001 
OOOA 

OOOA 
OOOC 

0000 

OOOF 

0000' 

0020 

0000 

0002 
0004 
0006 
0008 

0009 
0003 
0004 
.0005 

0006 
0080 

A2D_BUFFERING_UTILITY 

SOllRCX STATl!MBNT 

RSBO 

KlITRN BUFFO_BASK, BlIFFl_BASB, DSST_BlIFF_BASB 
BXTRN acCCOIIDlDd, ad_resuIt_Io, ad_result_hi 
BXTRN bso_COBI8IId t hso_tille,sp 

BlIFF_LENGTH 
Shift_Count 
CLOCI[ 

BgU 
BOU 
BOU 

64 
1 
TIMBRI 

02/18/86 PAGE 

LINE 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 

Bet up hso cODIIands for correct tiller ********************************** 
TIMERI equ OAR 
T2CLE equ OCR 

MASK equ (10h*cLOCI[)AND (40h) 

Start_A2D equ (OOOOllllb)OR(MASK) 
jstart a2d based on timer 1. no interrupt 

1IS0_0_Low equ (OOooOOOOb )OR(MASK) 
j make MO.O low based on timerl no interrupt 

1IS0_0_High equ (00100000b )OR(MASK) 
j make MO.O hi based on timer! no interrupt 

set up storage ******************************************************* 
adudtempO: 

aductempO: 
aductempl: 
top_of'_buffer: 
sample_count: 

Control_A2D: 

$eject 

DSW Ij temp register for download calls 

DSW 1; temp registers for conversion calls 
DSW 1 
DSW 1 
DSB 1 

DSB Ii the byte that controls the utility execution 
DForm equ 
COD_Own equ 
BO_Bl equ 

Lin_Par equ 
Busy equ 

3 Signed/Unsigned. 
4 Convert/Download# 
5 Buffl/BuffOl for conversions 

BuffO/Buffl' for downloads 
6 ; Linear/Paired' 
10000000B ; Bit 8 

5 

270189-58 

l 

» 
"U 
I 
~ ..... en 



!I :i" 
IQ 

tl 
l0-
S' 
01 
0 
0 

I\) ~I ..... 
~ CII 
0> ~ 
--.j CII ... 

:u 
0 
c:: -5° 
CII 

0 
0 
~ :'i" 
r::: 
CD .a 

MCS-96 MACHO ASSIlMBLEft 

HRR LOO OBJECT 

OOOA 

0000 

0000 
0000 

0002 
0004 

2002 

2002 ACOO 

0000 

A20 _SDFFBRIIIG_llTILITY 02/18/86 PAG!! 

ft 

LINE 
175 
176 
177 
178 
179 
1110 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
196 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 

SOUIICB STATBMBNT 

SIIIIP1e_Period: DSW 1; the word that specifies the nUJlber of clock ticks 
that elapse between each BSllple 

PUBLIC Control_A2D, Saple_Period 

OSEG 

src_ptr: DSW Ii aa.e overlayable temp registers 
tmp set srcytr:I«>RD 

deatJ>tr: DSW 1 
loop_count: DSW 1 

CSHG at 2002h 

PUBLIC A20_DONE_ Vector 

DCW A2D_DOME_Vector 

CSHG 

PIlBLIC A20_SDFF_UtU 

Load_BSO_C...and MACHO var Macro to load HSO 

LDB bao cm.and, her 
LD bao:tme,aducte.pO 

BNDM 
$eject 

6 

270189-59 

( 

» 
"tI 

I 
I\,) 
~ en 



II:S-96 MACJiI) ASS_LBR 

IRR toe OJIJIICT 

0000 

0000 300962 
0003 
0003 AlOOOOOO 
0007 350904 

oooA 
~I OOOA Al000000 
iii" .. 
11 

0008 
0001 AI000002 
0012 B14004 
0015 31091D .. 

0 0018. 180104 
C 
0 0018 
0 0018 A20000 

~ :::J 0018 C20200 
< 0021 65400002 ro CD 

en ~ 
0025 A20000 CD It .. 0028 C20200 

:D 0028 69400002 
0 
C 

0021' B004B9 .. 
S' 
CD 0032 2BOD 

'0 0034 ro 
0 
:::J 

il 0035 
0035 A2OO00 
0038 020200 

0038 lOO4r7 

0038 2801 
0040 ro 

A2D_BtJJ'l'BllDIG_UTILITY 02/18/86 PAGB 

R 

B 
R 

I 

B 
R 
R 

R 

R 
R 
R 

R 
R 
R 

R 

R 
R 

R 

LIN!! 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 

SOURCB STATDmIIT 

A2D_BOJ'F_Util: 

JlS CODtrol_A2D. COD_DIm, Convert. i Select convert or download 
Doomload: 

W arc ptr, #BOJ'FI BASI 
DC cODtrol_A2D. 80_B1, Set_Data_Fol'IIB.t 

_load BUJ'I'O: 
W srcJtr,#BUJ'I'O_BASB 

Set_Data_Forwat: ; Choose linear or paired 
W deatJtr, #OBST_BOJ'F_BASI 
WB Joop_COlDlt,#BDI'F_LIIMlTII 
JBS CODtrol_A2D, LiD_Par, Linear_data_loop 

PAIRBD: SRRB loop _ COlDlt, #l 

Paired_Data_loop: 
W acludte.pO, [srcJtr)+ 
ST acludte.pO, [deatJtr) 
ADD deat_ptr,#BOJ'F_LBNGTB 

W 
ST 
SUB 

acludte.pO, [srcJtr)+ 
aciudte.pO, (deatj>tr)+ 
destJtr,IIBOJ'F_LBNGTB 

The paired data routiDe uses 1/2 
as _y loops as the UDpaired 

Move eveu word 

Length = II of ""rds = 1/2 II of byte. 

; Move odd word 

DJNZ loop _ COlDlt, Paired_Data_loop Loop UDtil dUDe 

CALL Convert_Data 
RBT 

LiDear_Data_loop: Move data liDearly 
W adudte.pO, [arcJtr)+ 
Sf adudte.pO, [deatJtr)+ 

DJNZ loop_COlDlt, Linear_Data_loop Loop UDtil done 

CALL CoDvert Data 
RBT -

$eject 

7 

270189-60 

l 

~ 
l' 
N ..., 
UI 



_. 
I«:S-96 MACRO ASSBllBLBR A2D _BUFFBRING_IlTILITY 02/18/86 PAGE 8 I l 
BRR LOC OBJECT LINB SOURCB STATBIIBNT 

251 
0041 252 Convert_Data: ; Convert the data in the deatinatiou buffer 

253 
0041 A1400004 R 254 LD loop_count,'BUIT_LBNGTB 
0045 &1000000 B 255 LD arc_ptr.'DIST_OUFF_BASB 

256 
0049 A20000 R 257 Agaio: LD adudteoopO. [arc_ptrJ 
004C 7lCOOO R 258 AliDB adudteoopO. tllOOOooOb 
004r 330909 R 259 JBC Control_A2D. Drol'll. UnaignecCResult 

C 260 
(/I 0052 261 Signed_Result: ... 0052 698071'00 R 262 SVB adudteoopO.t7feOH S' 00560AOI00 R 263 SHRA adudteoopO.tshlft_Count 
10 00592003 264 BR Replace _Suple 

t 265 
oo5B 266 lIDsigned_Resul t: 
005B 080100 R 267 SHR adudteoopO •• Shift_Count ... 268 

0 oo5B 269 Replace_SOIIPle: 
C 005B C20000 R 270 ST adudteopO. [arcJ>trJ+ 
0 0061 100485 R 271 DJHZ loop_count I Again Loop until done 
0 272 

I I 

» ~ :::I 0064 1'0 273 RBT < 'tI 
N CD 274 N .. 275 0> ... ...... CD CD 0065 276 CODVert: ;; Prepare to Start CODver&ioDB en .. 277 :u 0065 f2 278 PUSHf 0 279 C 

::!: 0066 918009 R 280 ORB Control_A2D, 'Busy aet converter busy hit 
:::I 281 
CD 0069 B131'08 R 282 LDB 8S11ple_count,'BUFF_LBNGTH - 1 

0 oo&:l AI00oo06 B 283 LD top_of_buffer.'BUFfO_BASB 
0 0070 Al800004 I 284 LD aductempl.'(BUFI'O_BASI! + 2*BUFF_LBNGTR} 

~ 285 
:::I 0074 350908 R 286 JBC Control_A2D, BO_Bl. Start_Conversions 
c: 0077 Aloooo06 B 287 LD top_of_buffer.'BUFFl_BASI! <D 0078 Al800004 B 288 LD aductOOlPl.'(BUFFl_BASB + 2*BUFf_LBNGTR} B 289 $eJect 

270189-61 



r 
~I 
~ 

(Q 

11 
C 
0 
0 

I\J ~ 
~ < 
N CD 
""-I ~ 
0 CD ... 

:II 
0 
C -S' 
CD 

0 
0 
:::l 

3-
c: 
CD 
.B 

MCS-96 MACRO ASSBMBLBR 

BRR LOC OBJECT 

007F 

007F 51070900 

0083 44OAOA02 

0080 CCOO 

0095 81020200 

0099 640A02 

00A2 C800 

OOAA f3 
OOAB ro 

A2D_BUFFBRINIUlTILITY 02/18/86 PAGI! 

SOlJRCB STATBMBNT 

Start_Conversions : 

B 

LINB 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
303 
304 
305 
306 
310 
311 
312 
313 
314 
315 
316 
320 
321 
322 
323 
324 
328 
329 
330 
331 

ANDB 

ADD 

ace COIEIIId, Control_A2D, tQOOOOlllb ; loed cbmmel D_r 

R 

R 

R 

R 

R 

.eject 

aductmpO,CLOCB,S_le]eriod 

Load_BSO_C-..:I Start_A2D 

pop t..p 

Load_BSO_C_d BSO_O_high 

OR t"'"P,lt202b 

ADD aductmpO,SllllPle_Period 

Load_BSO_C_d Start_A2D 

PUSH t-.p 

Load_BSO_C_d BSO_O_IOW 

POPF 
DT 

atart first converaion 
ODe __ Ie tiae f .... 

DOW 

start A2D at Tiae=aductmpO 

get a copy of tbe pew 

set hao,O high at coDvenion 
start tiae for external S/H 

enable a2d interrupts 

.tart second coDvertion ODe 
_Ie tiae trOll tba tint 

put pew back on .tack 

ilower hso.O for external SIB 

9 

270189-62 

l 

~ 
"D 
I 

N ..... 
(II 



r 
iii' .. 
S· 

CC 

"'" 
~ 
0" 
C 
0 
0 

~ ::l 
< 

r\l (\I 

::! ;::. 
(\I .. 
:u 
0 
S-
S· 
(\I 

0 a 
;:t 
5' 
I:: 
CD 
E-

MCS-96 MACRO ASSIlMBLER 

ERR LOC OB.JI!CT 
OOAC 

OOAC 
OOAC F2 

OOAD C60S00 
OOBO CSOSOO 
00B3 51070900 

00B7 E00809 
OOBA 1708 

OORC 880406 
OOBF DF26 
00C1 13 
OOC2 FO 

00C3 
00C3 640A02 
OOC6880406 

OOCF 30080B 

00D2 
00D2 FD 

00D9 DFOC 
OODB F3 
OODC FO 

DODD 

00E3 DF02 
00E5 F3 
00E6 FO 

00B7 
00E7 717F09 
OOEA 13 
OOBB FO 
OORC 

A2D_BUFFBRIIIG_UTILITY 02/18/86 PAGE 10 

B 
E 
B 

R 
R 

R 

R 
R 

R 

R 

LINE 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
357 
358 
359 
360 
361 
362 
366 
367 
368 
369 
370 
371 
372 
376 
377 
378 
379 
380 
381 
382 
383 
364 
385 

SOURCE STATBMBNT 
CSBG 

A2D DONE Vector: 
- PUSIIi' 

A/D INTBRRUPT ROUTINE 

STB 
STB 
ANnB 

ad_result_lo, [top_of_buffer]+ 
ad result hit (top of buffer]+ 
ad: command. Control_A2n. IOOOOOlllb 

DJNZ sample_count. Sample_Again 
INCH 88Jllple_count 

CMP top_of_buffer.aductempl 
BE Top_of_buffers 
POPF 
RET 

Smaple_Again: 
ADD aductempO I Sample_Period 
CMP top_of_buffer,sductempl 

Load_HSO_C"-"Dd Start_A2D 

JBC sample_count.O,Make_HSO_High 

; load channel nUllber 

Check top of buffer 

Set next sample time 
Check top of buffer 
for later jump 

Make_HSO_1ow: 
nop wait 8 states after lISa load 
Load_HSO_COIIII8l1d HSO_O_Low 

Load for change of HSO to trigger SIR 
BE Top_of_buffers 
POPF 
RET 

Make_HSO_high: 
Load_HSO_COIIIIII8IId HSO_O_Righ Load for change of HSO to trigger SIH 

BB Top_of_buffers 
POPF 
RET 

Clear converter BUSY bit 
Top of buffers: 

- - ANnB Contro1_A20.'NOT(Busy) 
POPF 
RET 

END 

ASSIlMBLY COMPLETBD. NO ERROR(S) FOUND. 
270189-63 

l 

» 
" I 
I\) ..... 
en 



intJ AP-275 

The listing contains a fairly complete description of 
what the program does. The block by block operations 
are shown below: 

Lines 1-198 describe the program, declare the variables 
and set up equates. Several of these variables are de­
clared as overlayable, so the user needs to be careful if 
using this module for other than the FFf program. 

Lines 205-210 declare a macro which is used to load the 
HSO unit. This will be used repeatedly through the 
code. 

Lines 212-253 determine whether a conversion or 
download has been requested. If a download has been 
requested, the data is downloaded to the destination 
array as either paired or linear data. Paired data ·has 
been described earlier. 

Lines 255-278 contain a subroutine which converts the 
destination array to either signed or unsigned numbers. 
The numbers are also shifted right to provide the de­
sired full-scale value as requested by SHIFT_ 
COUNT. 

Lines 279-334 initialize the conversion routine. HSO.O 
is toggled with the start of each routine so that an ex­
ternalsample and hold can be used. The instructions in 
lines 308, 316, and 326 have been interweaved with the 
Load~SO_Commands to provide the required 8 
state delays between HSO loadings. If this was not 
done, NOPs would have been needed. It is easier to 
understand the code if these lines are thought of as 
being gathered at line 326. 

Lines .337-353 are the actual AID interrupt routine. 
The AID results are placed BYTE by BYTE on the 
buffer, the AID is reloaded, and then the number of 
samples taken is compared to the. number needed. Note 
that the AID command register needs to be reloaded 
even if the channel does not change. INCB on line 348 
is used to insure that the DJNZ falls through on the 
next pass (if sample_count is not reset). 

Lines 355-396 complete the ro~tine. The HSOis set up 
to trigger the next conversion and provide the HSO.O 
toggle for an external sample and hold. Once again, the 
time between consecutive loads of the HSO is 8 states 
minimum. Note that this section of code has been opti­
mized for speed. by reducing branches to an absolute 
minimum and duplicating code where needed. 

This concludes the description of the A to D buffer 
. module. In the FFT program, this module is 'run, then 
the FFf transform module, then the plot module. This 
allows variables to be overlaid, saving RAM space. The 
time cost for this is not bad, considering the printer is . 
the limiting factor in these conversions. If more RAM 

was provided, and the FFT. was run with its data in 
external RAM, this module could be run simultaneous­
ly with the other modules. 

10.0 DATA PLOTTING MODULE 

The plot module is relatively straight-forward, and is 
shown in Listing 5. After the declarations, which in­
chIde overlayable registers, an initialization routine is 
listed. This separately called routine sets up the serial 
port on the 8096 to talk to the printer. In this case, the 
port has to be set for 300 baud. 

A console out routine' follows. This routine can also be 
called by any program, but it is used only by the plot 
routine in this example. The write to port 1 is used to 
trace the program flow. The character to be output is 
passed to this routine on the stack. This conforms to 

· PLM-96 requirements. 

Since all stack operations on the 8096 are 16-bits wide, 
a multiple character feature has been added to the con­
sole out routine. If the high byte it receives is non-zero, 
the ASCII character in that byte is printed after the 
character in the low byte. If the high byte has a value 
between 128 and 255, the character in the low byte is 
repeated the number of times indicated by the least sig­
nificant 7 bits of the high byte. 

· The print decimal number routine is next. It is called 
with two words on the stack. The first word is the un­
signed value to be printed. The second byte contains 
information on the number of'places to .be printed and 
zero and blank suppression. This routine is not over­
flow-proof. The ,user must declare a sufficient number 
of places to be printed for all possible numbers. 

The DRAW_GRAPH routine provides the plot. It 
first sends a series of carnage return, line feeds 
(CRLFs) to clear the printer and provides a margin on 
the paper. Each row is started with the row number, 2 
spaces, and a "+". Asterisks are then plotted until 

Number of asterisks> FFT Value / PLOT~ES 

Recall that PLOT_RES is a variable set by the main 
program. When the number of asterisks hits the desired 

· value, the value of the line is printed. If the Decibel 
mode is selected, the line value is divided by 512 and 
printed in integer + decimal part form, 'followed by 
"dB". If the number of asterisks reaches PLOT_ 
MAX, no value is printed. The next line is then started. 
A line with only a "!" is printed before the next plot 
line to provide Ii more aesthetic display on the printer. 
If a CRT was used, this extra line would probably not 
be wanted. 

21-272 



!: 
111 
!:!: 
::::J 

CQ 
en 

~ 1 
ro :::T 

CD 
'-I 

" UJ 
0 .. 
3: 
0 
CL 
c 
iD 

HCS-96 MACRO ASSEMBLER PLOT_SERIAL 02/18/86 PAGE 

SERIES-III HCS-96 MACRO ASSEMBLER, VLO 

SOIlRCB FILE: : F2: PLOTSP. ASS 
OBJECT FILE: : F2: PLOTSP. OB.J 
CONTROLS SPECIFIED IN INVOCATION COItIAND: NOSB 

ERR toe OBJECT 

0000 

0000 

0024 
0024 
0028 
002C 
002E 
0030 
0032 

0000 

LINE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

SOURCB STATEMBNT 
$pagelength(50) 

PLOT_SRRIAL MODULE STACBSI2B (6) 

Intel Corporation, Deceaber 12, 1985 
by Ira Rorden. toEO Applications 

This program produces a plot on serially connected printer. The 
maginitude of each of the 32 input values is plotted horizontally, with one 
"!" followed by a line:feed between each plot line. Each plot line starts 
with a "+" and the entire plot begins with 3 line feeds and ends with a fOnl 
feed. The values to be plotted are 32 unsigned words based at the externally 
defined pointer PLOT_IN. 

The routine INIT_OUTPUT E1St be run to set up the serial port when the 
system. 1s turned 00. CON OUT can be used by a progra.. to output to the 
serial port. DRAW_GRAPH is the routine that automatically plots the data. 

Sizing of the graph can be done using PLOT_RES. which determines how many 
units are needed for each dot, and PLOT_MAX. which is the maxi..Jl1..Jm value the 
progrBJI will be passed. Note that (PLOT MAX/PLOT RES) defines the maximum 
nUllber of columns. the routine will print: -

asBG 
RXTRN iocl, baud_reg. SpeOD. spstat. sbuf, portl 
RXTRN zero. ax. 'bx, ex, dx, lI'T_MODE 
sptmp: dsb 1 

OSKG at 248 
value: dsl 
divisor: dsl 
xptr: daw 
yptr: dsw 
xval: dsw 
10,_ val: daN 

DSKG 
EXTRN PLOT_IN 

$eject-
270169-64 

cl 

» 
"U 
I 

I\) ..... 
U1 



5= s-
IC 

I 
::T 
CD 

~ 
"G 
0' 

r\, -..... s:: 
.j>. 0 

Co 
c: 
ii' 
0 
0 
:::J g. 
c: 
(I) 
.e, 

":8-96 MACIlO ASSBMBLIIR 

ERR LOC OB.JBCT 

2500 

2500 

2500 B12000 

0270 

0082 
006r 

2503 B16roO 
2506 BI8200 

2509 B14900 
250C B12000 

250r ro 

PLOT_SI!RIAL 

B 

B 
B 

B 
8 

LINE 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
65 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

02/18/86 

SOURCB STATBMBNT 

CSBG at 25008 PIIOOIIAM IIlDULB BBGlNB 

PUBLIC INIT_OUTPUT, CON_OUT, DJIAW_GRAPII 
BITRN PLOT_HBS, PLOT_HBS_2, PLOT_MAX 

INIT_OUTPUT: INITIALI2B SBRIAL PORT 

ldb iocl,flJOIOOOOOB set p2.0 to txd 

equ 624 624:300 baud (at 12 MHz) 

PAGI! 

baud_val 

Baud_hillb 
baud_low 

equ 
equ 

«baud_val-l)/256) 08 BOB 
(baud_val-l) IIlD 256 

set tor XTALI clock 

'eject 

ldb baud_rell,lbaud_low 
Idb baud_rell,lbaud_hillb 

ldb 
ldb 

HBT 

spcoD,flJIOOIOOlb 
spt.p,flJOlOOOOOB 

enable reci ver .oo.e 1 
set TI-t.p 

2 

270189-65 

l 

» 
"P 
I\) 
..... 
UI 



IICS-96 MACRO ASSIlMBLER PLOT_S8RIAL 

ERR LOC OB.JECT LINE 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

c: 2510 78 
III 2510 ceoo 8 79 
r+ 2512 ceoo B 60 S· 2514 3FOllC I! 81 CC 2517 960001 8 82 
C1I 251A DF17 83 1 B4 

:r 251C 900000 I! 85 
CD 25lF 3500FA R 86 

"tI 25227lDFOO R 87 
~ 0" 2525 900000 8 DB 

N .. 89 
--.j 3: 2528 BOOOOO 8 90 
01 0 252B BOOI00 I! 91 

Co 2528 1101 8 92 
C 2530 717FOO 8 93 
iii 94 

'0 2533 1701 8 95 
0 2535 717FOI 8 96 

a 2538 900000 I! 97 
S· 253B 3500FA R 98 
C 25387l0FOO R 99 
CD 2541 900000 8 100 .s 101 

2544 BOOOOO I! 102 
25478001RR 8 103 
254A 8300 8 104 

105 
106 

02/18/86 PAGE 

SOURCE STATEMENT 

CONSOLE OUT ROUTINE 

Call with a word parameter on stack. The low byte has the character 
to be sent. If the high byte bas a value between 81B aDd 8FBD, the 
character is repeated 1 to 126 times respectively. One repeat eans 
that the character will be printed 2 times. If the high byte contaioa 
a value between 1 and 7FB, the charater represented by that value will 
be printed after the character in the low byte. If the high byte 
contains a value of zero only the low byte wi 11 be printed. 

CON_OUT: 
pop ax ex contains the calling adress 
pop dx 
jbs dx+ 1,7, onechr If' bit 7 is set print one character 
CIIpb dx.f-I.zero 
je onechr if highbyte;O print one character 

twochr: orb sptlllp,spstat wait for TI 
jbc sptmp ,5. twochr 
aodb sptmp,#llOlllllb clear TI-tap 
orb zero.spatet remove possible false TI 

Idb sbuf.dx 
Idb dx,dx+l Load second character 
clrb dx+l clear count byte 
aodb dx,#07FH ..... k MSB 

onechr: incb dx+l 
andb dx+I,t7FH 

waitl: orb spblp.apstat wait for TI 
jbc sptmp,5,waitl 
aodb sptap,#11011111b clear TI-tap 
orb zero,spstat remove possible falae TI 

Idb sbuf,dx 
DJNZ dx+l,waitl 
BB [ax] Effectively a RET 

$eJect 
270189-66 

cl 

» 
"tI 
I 

I\) 
...... 
U1 



C 
IIJ 

== :::I 
IQ 

I 
:::T 
ID 

" ~ 0" 
N -:!: -..j 
m 0 

Q. 
C 
iii 
0 
0 
~ g. 
c: 
CD 
8 

MCS-96 MACJII) ASSBMBLBR 

BRR LOC OJIJIICT 

254C 
254C 0000 
25411 CCOO 
2550 AC0100 
2553 ASOO962528 
2558 0024 
255A 
255A 0126 
255C 802824 
255r 380017 
2562 980024 
2565 D70F 
2567 
2567 310003 
25& 382800 
2560 3AOO15 
2570 A1FOO024 
25742003 

2576910100 
2579 65300024 
2570 617FOO24 
2581 C824 
2583 2F8B 
2586 A02824 
2588 012A 
258A 800A0028 
258B 880028 
2591 D7C7 
2593 
2593 B300 

2596 
2596 000001000AOO5400 

PLOT_SBRIAL 

II 
B 
B 
R 

B 
B 

B 

B 

R 

B 

R 

LINB 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
126 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 

02/18/86 PAGE 

SOllBCB STATBNI!NT 

PRINT DECIMAL NlllBBR BOUTINB 

Call with two worda.on stack. The firat is the value to be printed. 
The aecond baa _ inforatioD iD tbe low byte. 

r«)DB: 000 = aupre.a Illl zeros 
001 = priDt all Du.bera 
010 = aupreaa all zeros except risbtaost 
1xx = do Dot print 1eadiDg b1aoka 

The bisb byte of tbe 2Dd word = 2x tbe Du.ber of places to be printed 

PRINT_lUI: 
POP 
POP 
ldbze 
1d 
pop 

div loop: 
- elr 

Va1_0: 

divu 
jba 
aopb 
jDe 

jbc 
jb. 

prot.p: jba 
1d 
br 

nOD 0: orb 
cbr-ok: add 

- sud 
pusb 
call 

CODt: 1d 
c1r 
divu 
c.p 
jDe 

div dODe: 
- br 

DIVTAB: 
dew 

ex 
bx 
dx,bx+l 
divisor, divtab [dx] 
value 

value+2 
value,divisor 
bx,O,chr_ok 
value,zero 
OOD_O 

bx.l,prntsp 
divisor. O. chr _ok 
bx,2,cont 
value,toFOI{ 
cbr_ok 

bx,toOOlB 
value,t30h 
value.#7Fh 
value 
COD_oUt 
value. value+2 
divisor+2 
divisor.'IO 
divisor, zero 
diy_loop 

[ex] 

SeDd Deciaal DUIIber. to CON_OUT 

bx 10 IIOde byte, bx+1 ia diviaor pointer 

divide ax,dx by divisor 
print character regardless of value 

; Jtmp if value ia DOD zero 
Value is zero 

; Print space ioatead of 0 
; If in risbtaost position print 0 

Do Dot print apace if bit is set 
OFOht30h = 20R = space 

; Set flag 80 0'. will be printed 
j 30h+n=0 to 9 aacii 

send least aig seven bits, clear upper word 

output aaciiresult (reault(9) 
load value with reBainder 

next lower power of ten 

, Nu.ber of" places for result 
0, I, 10, 100, 1000, 10000 ; divisor table - 10**" 

4 

270189-67 

l 

» 
'U 
I 

N 
...... 
(II 



MCS-96 MACRO ASSIlMBLER 

ERR LOC OBJECT 

25A2 
25A2 C90DOO 
25A5 2F69 
25A7 C90AS2 
25M 2F64 
25AC C90000 
25.U'21'5r 

r- 25Bl 012C 
iii" 25B3 0130 - 25B5 5" 25B5 C90DOA CO 
U1 

25B821'56 

1 
25BA C90000 
25BD 21'51 

::r 
25Br C830 CD 

"V 25Cl C9020A 

!Y 0" 25C4 2rB6 

N -"-I 3: 25C6 C92020 
"-I 0 25C9 2r45 

Q. 25CB C92B00 
r::: 25CB 2F4O 
iii 
0 25DO AI00002B 
0 
::l 

II 2504 
2504 8820000025 
25090911 
250B 
25DB C92A00 
250B 2F30 
25BO 
2580 6500002B 
25B4 89000025 
25B8DlBA 
25M 204F 

PLOT_SBRIAL 

E 

E 

E 
E 

LINE 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
167 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 

SOURCE STATI!MI!NT 

DRAW GRAPH: 
- push 

call 
push 
call 
push 
call 

clr 
clr 

NXT_: 
- push 

NIT_COL: 

PRT_NK: 

call 
push 
call 

push 
push 
call 

push 
call 
push 
call 

Id 

cap 
jh 

push 
call 

IIiC_CNT: 
add 
cap 
jnh 
br 

$eject 

'Odb 
COD_out 
'820AH 
CON Otrr '00-
CON_out 

xptr 
xval 

IOAODB 
CON_Otrr 
IOOB 
CON_Otrr 

xval 
'(OAOOa or 0010b) 
PRINTc.NlM 

,2020a 
CONOtrr 
'2BH 
COD_out 

yptr,'PLOT_RES_2 

yptr,PLOT IN[xptrj 
PRT_NlloI -

,2AH 
CON_Otrr 

yptr,'PLOT RES 
yptr,tPLOT-MAl( 
met col -
NlTLN 

02/18/86 PACE 

Grapb drawing routine 

Clear 3 linea 

CRtF 

nul 

aupress all zeros except rigb:t.ost 

Print 2 spaces 

+ 

PLOT_RES_2 = PLOT_RES/2 
PLOT_RES is defined 7 linea down 

Next CohlllD. 

Print Mark 

PLOT_RES:;; nUliber of inputs per output point 
PLOT_IIIIX = lIIIXiaua line length 

5 

270189-68 

l 

3> 
"U 
I 

I\) 
...... 
en 



I«:S-96 MACRO ASSEMBLER PLOT_SERIAL 

£RR LOC 08JECT LINE 
198 

25£C 199 
25BC 8900002£ E 200 
25FO OF49 201 

202 
25F2 C92020 203 
25F5 2Fl9 204 
25F7 38000B £ 205 

206 
2SFA 207 
25FA CB2DOOOO £ 208 
25m C9000A 209 

c: 2601 2F49 210 

!. 2603 2036 211 
212 S' 2605 213 co 2605 A32000002B E 214 

I 260A08012B 215 
2600 AC2FOO E 216 

217 :::T 2610 C800 E 218 CD 
"D 2612 C9020A 219 

~ 0' 2615 2F35 220 

N .. 2617 C92£OO 221 

-.,J iii: 26lA 2BF4 222 
CD 0 223 

a. 261C 802BOI E 224 
C 261F 1100 E 225 
iii 226 

'0 2621 6DR60300 £ 227 
0 2625 370102 E 228 

3- 26280700 E 229 

:r 230 
c 262A C800 E 231 
CD 2620 C90l06 232 .s 262F 2FlB 233 

2631 C92000 234 
26342BDA 235 
2636 C96442 236 
26392BD5 237 

238 
239 

02/18/86 PAG£ 

SOURCE STATI!MJ!NT 

PRT_IIIM: 
ClOP 
be 

push 
call 
JBS 

nor'll aode: 
- push 

db _e: 

push 
call 
BR 

- ld 
obr 
Idbze 

puob 
push 
call 
push 
call 

ldb 
. clrb 

aulu 
jbc 
inc 

DO_rod: push 
push 
call 
push 
call 
push 
call 

$eject 

yptr. #PLOT RlS 2 
NXTLN --

'2020R 
con out 
FFT)«)DB. 3. db_mode 

PLOT.:.IN{xptr 1 
'(OMOR or 00008) 
PRINT NlIM 
NXTLN-

yptr, plot_in [xptrj 
yptr.Il 
ax.yptr+l 

If value is leas then miniElll needed 
for a plot. do not print value 

print 2 spaces then value 

supreS8 all zeros 

PLOT_IN = 5l2*lO*L0G(x) 
yptr=265 * 10LOG(x) 
ax= 10LOG(x) = yptr/256 

ax Print AX 
'(OAOOR or OOlOB) aupreoa all but rightlloot zero 
PRINT N\M 
'2BR - Docimal point 
COD_out 

ax+l.yptr high byte of ax = fractional portion of . 
ax 10LOG(x) 

ax.'3B6R 
ax+l.7.no rnd 
dx -

dx ; dx=ax+2 

ifax=FFOOR then ax+2 now = 998 docioool 

round value up 

'(600R or 00018) print all nUilbero to three places 
Print_DUBI 
'20R space 
COD_out 
'4264H "dB" 
COD_out 

6 

270189-69 

cl 

)0 

l' 
N ...... 
UI 



II:S-96 MACRO ASSEMBLER PLOT_SERIAL 

ERR LOC OBJl!CT LIN!! SOURCE STATBMBNT 
240 
241 

2638 C90DOA 242 NlITLII: push tOAODS 
2638 2BDO 243 call CON_OUT 
2640 C9OOD0 244 push tOOH 
2643 2BCB 245 call CON OUT 
2645C92086 246 push #8620H 
26482BC6 247 call CON OUT 
264A C92100 248 push 121H 
264D 2BCl 249 call COD_out 

250 
264F 0730 251 inc xval 

C 2651 6502002C 252 add xptr.12 
III 2655 893E002C 253 c.p xptr, 162 - 2659 D2022758 254 ble nxt_row S· 

255 CD 265D C90DOA 256 Done: push tOAODS en 2660 2EAI 257 call CON_OUT 1 2662 C90000 258 push IOCOOS 
2B65 2BA9 259 call COD_out :::r 

260 CD 
2667 FO 261 RET "II 

~ 0' 2668 262 END 

'" --..J 3: ASSEMBLY COMPLETED, NO BRROR(S) FODND. 
CO 0 

C. 
c:: 
iii 
0 
0 
::J 
d: 
::J 
c:: 
<D 
.8: 

Setup for next line 
CRLF 

Dul 

7 spaces 

02/18/86 

Start printing next row 

CRLF ;: Fona feed for Dext graph 

nulltFF 

PAGE 

270189-70 

( 

» 
" I 
I\) ..... 
en 



inter AP-275 

At the end of the plot, a form feed is given to set the 
printer up for the next graph: Our printer would fre­
quently miss the character after a CRLF. To solve this 
problem, a null (ASCII 0) is sent after every CRLF to 
make sure the printer is ready for the next line. This 
has been found to be a problem with many devices run­
ning at close to their maximum capacity, and the nulls 
work well to solve it. 

With the plot completed, the program begins to run 
again by taking another set of A to D samples. 

11.0 USING "T:HE FFT PROGRAM 

The program can be used with either real or tabled 
data. If real data is used, the signal is applied to analog 
channel 1. The program as written performs AID sam­
ples at 100 microsecond intervals, collecting the 64 
samples in 6.4 milliseconds. This sets the sampling win­
dow frequency at 156 Hz. If tabled data is used, 64 
words of data should be placed in the location pointed 
to by DATAO in the TABLE_LOAD routine of the 
Main Module. 

Program control is specified by FFT~ODE which is 
loaded in the main module. Also within the main mod­
ule are settings which control the A to D buffer routine 
and the Plot routine. The intention was to have only 
one module to change and recompile to vary parame­
ters in the entire program. 

The program modules are set up to run one-at-a-time so 
that the code would be easy to understand. Additional­
ly, the Plot routine takes so long-relative to the other 
sections, that it doesn't pay to try to overlap code sec­
tions. If this code were to be converted to run a process 
instead of print a graph, it might be worthwhile to run 
the FFT and the AID routines at the same time. 

If the goal of a modified program is to have the highest 
frequency sampling possible, it might be desirable to 
streamline the AID section and run it without inter­
ruption. When the A to D routine was complete the 
FFT routine could be started. The reasoning behind 
this is that at t4e fastest AID speeds the processor will 
. be almost completely tied up processing the AID infor-' 
mation and storing it away. Using an interrupt based 
AID routine would slow things down. 

A set of programs which will perform a FFT has been 
presented in this application note. These programs are 
available from the INSITE users library as program 
CA-26. More importantly, dozens of programing exam­
ples have been made available, making it easier to get 
started with the 8096. Examples of how to use the hard­
ware on the 8096 have already appeared in AP-248, 
"Using The 8096". These two applications notes form a: 
good base for the understanding of MCS-96 microcon­
troller based design. 

21-280 



intJ AP-275 

12.0 APPENDIX A - MATRICES 

Matrices are a convenient way to express groups of 
equations. Consider the complex discrete Fourier 
Transform in equation 9, with N = 4. 

3 

Y n = I X(k) wnk n = 0, 1, 2, 3 

k=O 
This can be expanded to 

Y(O) = X(O) WO + X(1) Wo + X(2) WO + X(3) WO 
Y(1) = X(O) WO + X(1) W1 + X(2) W2 + X(3) W3 
Y(2) = X(O) WO + X(1) W2 + X(2) W4 + X(3) W6 
Y(3) = X(O) Wo + X(1) W3 + X(2) W6 + X(3) W9 

In matrix notation, this is shown as 

[ 
Y(O) 1 [WO ,WO WO WO 
Y(1) _ WO W1 W2 W3 
Y(2) - WO W2 W4 W6 
Y(3) WO W3 W6 W9 

1 [ X(O) 1 X(1) 
X(2) 
X(3) 

The first step to simplifying this is to reduce the center 
matrix. Recalling that 

WN = WN MOD Nand WO = 1 

The matrix can be reduced to have less non-trivial mul-
tiplications. 

[ 
Y(O) 

1 [ j 
1 1 1 ][ X(O) 

1 
Y(1) W1 W2 W3 X(1) 
Y(2) W2 WO W2 X(2) 
Y(3) W3 W2 W1 X(3) 

The square matrix can be factored into 

[ 
Y(O) 1 [ 1 WO 0 0 1 [ 1 0 WO 0 1 [ X(O) 1 Y(2) _ 1 W2 0 0 0 1 0 WO X(1) 
Y(1) - 0 0 1 W1 1 0 W2 0 X(2) 
Y(3) 0 0 1 W3 0 1 0 W2 X(3) 

For this equation to work, the Y(l) and Y(2) terms 
need to be swapped, as shown above. This procedure is 
a Bit Reversal, as described in the text. ' 

Multiplying the two rightmost matrices results in 

X(O) + X(2) WO 
X(1) + X(3) WO 
X(O) + X(2) W3 
X(1) + X(3) W2 

requiring 4 complex multiplications 
& 4 complex additions 

Noting that WO = - W2, 2 of the complex multiplica­
tions can be eliminated, with the following results 

X(O) + X(2) WO 
X(1) + X(3) WO 
X(O) - X(2) WO 
X(1) - X(3) WO 

requiring 2 complex multiplications 
and 4 complex additions 

Since WI = - W3, a similar result occurs when this 
vector is multiplied by the remaining square matrix. 
The resulting equations are: 

Y(O) = (X(O) + X(2) WO) + WO (X(O) + X(3) WO) 
Y(2) = (X(O) + X(2) WO) - WO (X(1) + X(3) WO) 
Y(1) = (X(O) - X(2) WO) + W1 (X(1) - X(3) WO) 
Y(3) = (X(O) - X(2) WO) - W1 (X(1) - X(3) WO) , 

The number of complex multiplications required is 4, as 
compared with 16 for the unfactored matrix. 

In general, the FFT requires 

N' EXPONENT 
2 complex multiplications 

and 
N • EXPONENT complex additions 

where 
EXPONENT = Log2 N 

A standard Fourier Transform requires 

N2 complex multiplications 

and 
N(N -1) complex additions 

21-281 



inter Ap·275 

13.0 APPENDIXB - PLOTS 

The following plots are examples of output from the 
FFT program. These plots were generated using tabled 
data, but very similar plots have also been made using 
the analog input module. Typically, a plot made using 
the analog input module will not show quite as much 
power at each frequency and will show a positive value 
for the DC component. This is because it is difficult to 
get exactly a full-scale analog input with no DC offset. 

Plot 1 is a Magnitude plot of a square wave of period 
NT. 

Plot 2 is the same data plotted in dB. Note how the dB 
plot enhances the difference in the small signal val­
ues at the high frequencies. 

Plot 3 shows the windowed version of this data. Note 
that the widening of the bins due to windowing 
shows energy in the even harmonics that is not 
actually present. For data of this type a different 
window other than Hanning would normally be 
used. Many window types are available, the selec­
tion of which can be determined by the type of 
data to be plotted.3 

Plot 4 shows a sine wave of period NT /7 or fre­
quency 7/NT. 

Plot S shows the same input with windowing. Note the 
signal shown in bins 6 and 8. 

Plot 6 shows a sine wave of period NT/7.S. Note the 
noise caused by the discontinuity as discussed ear­
lier. 

Plot 7 uses windowing on the data used for plot 6. Note 
the cleaner appearance. 

Plot 8 shows a sine wave input of magnitude 0.707 and 
period NT/7.S. 

Plot 9 shows same input with windowing. 

Plot 10 shows a sine wave of magnitude 0.707/16 and 
period NT/ll. 

Plot 11 shows the same input with windowing. Note 
that there is no power shown in bins 10 and 12. 
This is because at 6 dB down from 3 dB they are 
nearly equal to zero. 

Plot 12 uses the sum of the signals for plots 8 and 10 as 
inputs. Note that the component at period NT/ll 
is almost hidden. 

Plot 13 uses the same signal as plot 12 but applies win­
dowing. Now the period component at NT/ll can 
easily be seen. The Hanning window works well in 
this case to separate the signal from the leakage. If 
the signals were closer together the Hanning win­
dow may not have worked and another window 
may have been needed. 

21-282 



o 

2 

3 

4 

8 

9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

AP·275 

+ 
! ............................... * •••••••••••••••• * •••• ***************************** 20868 
I 

1 ••••••••••••••••••••••••••• 6978 
! 
+ 
!**************** 
! 
+ 
!************ 
! 
+ 

3038 

!********* 
I 

2394 
+ 
!* ••••••• 1991 
! 
+ 
! ...... . 
! 
+ 
! ..... . 
! 
+ 
! ..... 
! 
+ 
! ..... 
I 
+ 
! ..... 
! 
+ 
! .... 
! 
+ 
! .... 
! 
+ 
! .... 
! 
+ 
! .... 
! 
+ 
! .... 
! 

1718 

1524 

1381 

1274 

1192 

1131 

1086 

1054 

1033 

1024 

4214 

Plot 1-Magnitude Plot of Squarewave 

21-283 

270189-20 



inter AP-275 

o 

2 
3 

4 

6 

7 
8 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

+ 
!****************'************************************************************ 
! 
+ 
1****************************************************.**** 
! 
+ 

28.706 dB 

!************************************************* 24.327 dB 
! 
+ 
! .......................................... . 
! 

21. 487 dB 

! ...................................... . 
! 
+ 

19.421 dB 

I . 
+************************************ 17.815 dB 
! 
+ 
!********************************* 16.538 dB 
! 
+ 
! .............................. . 15.499 dB 
! 
+ 
1***************************** 
! 
+ 
1 •••••••••••••••••••••••••••• 
I 

1**************************. 
! 
+ 
! ......................... . 
! 
+ 
1 ••••••••••••••••••••••••• 
! 

! ........................ . 
! 
+ 
!************************ 
I 
+ 
1************************ 
! 

14.639 dB 

13.940 dB 

13.363 dB 

12.908 dB 

12.554 dB 

12.296 dB 

12.125 dB 

12.043 dB 

Plot 2-0ecibel Plot of Squarewave 

21-284 

38.222 dB 

270189-21 



intJ AP-275 

o 
1 
2 
3 

4 

5 
6 

7 
8 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

+************ 6.105 dB 
!**************************************************************** 32.203 dB 

!********************************************************* 28.678 dB 

l********************************w************ 22.690 dB 
!.......................................... 20.760 dB 
I 
+************************************* 18.308 dB ! ................................. . 
I 
+******************************* 
I 

16.990 dB 
15.460 dB 

+***************************** 
!*************************** 

14.476 dB 

! ........................ . 13.398 dB 

I 
+************************ 

12.620 dB 
11.795 dB 

!********************** 11.175 dB 
! .................... . 10.507 dB 

10.000 dB ! ................... . 
! .................. . 9.464 dB 

9.039 dB ! ................. . 
! ................ . 
I 
+***************** 
!**************** 
!*************** 
!*************** 
!************** 
!************** 
!************* 
!************* 
I 
+************* 
!************* 
I 
+************ 
!************ 
!*.* •• * •• * ••• 
!************ 
I 

8.616 dB 
8.281 dB 

7.916 dB 
7.628 dB 
7.347 dB 

7.121 dB 
6.889 dB 

6.706 dB 
6.542 dB 
6.409 dB 
6.265 dB 

6.191 dB 
6.094 dB 
6.082 dB 
6.031 dB 

Plot 3-Plot of Squarewave with Window 

21-285 

270189-22 



inter AP-275 

o 
1 
2 

4 

8 

9 

10 
11 
12 
13 
14 

15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
31 

+ 
! 

t 
+ 
I 
+ 
! 
+ 

. ! 
+ 
! 
+ 
! 
+************************************************************************ 
I 
+ 
I 

t 
+ 
I 
+ 
I 
+ 
I 
+ 
! 
+ 
I 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
I 
+ 
! 
+ 
I 
+ 
! 
+ 
I 

r 
+ 
I 

Plot 4-Sln (7.0X) without Window 

21-286 

36.121 dB 

270189-23 



intJ AP-275 

o 

8 

10 
11 

12 
13 
14 

15 
16 

17 

18 

19 
20 
21 
22 
23 

24 

25 
26 
27 

28 

29 
30 
31 

+ 
! 
+ 
! 
+ 
I 
+ 
I 

<­
! 
+ 
I 

+************************************************ 24.078 dB 
!************************************************************ 
!***************************************.******** 24.078 dB 
! 
+ 
! 
+ 
! 
+ 
I 
+ 
! 
+ 
I 

<­
! 
+ 
I 

<­
! 
+ 
I 

<­
! 

r 
+ 
I 
+ 
I 

<­
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
I 
+ 
! 

Plot 5-Sin (7.0X) with Window 

21-287 

30.101 dB 

270189-24 



intJ AP-275 

o 
1 
2 

4 

6 

8 

9 

10 
11 

12 
13 
14 
15 
16 
17 

18 

19 
20 
21 

22 
23 
24 
25 

26 
27 

28 
29 

30 
31 

+***************************** 14.265 dB 

1*.**********.* •• ***.*** ••• *** 14.444 dB 
!***.**** •• ***.*********.*.*... 14.943 dB 

1** •• * ••• ** •• * ••• * •• * ••••• * ••••• * 15.865 dB 

l** •••••• * •• ***.*****.* ••••• ****·**· 17.308 dB 
!**.** ••• *.* ••• * •••••• **.* •• **** •• *.* •• * 19.569 dB 
l*.*.** ••• *.* •• *.* •• **.**.* •••• *****·*.··**.·*·* 23.421 dB 

1*********************************************'******************** I 
+**************************************************************** 
! .. ***.***.**.** ••• **.**.***.* •• **.* •• ******. 22.012 dB 

1* ••• * ••• *.**.* ••• **** •• ********··* 17.199 dB 

1*******-********************* 13.943 dB 

l************* •• ******** 11.472 dB 
!******************* 9.483 dB 
!*****.***.****.. 7.819 dB 
!.******.** •• * 6.402 dB 
1********** 5.164 dB 
1******** 4.090 dB 
1****** 3.152 dB 
I 
-i-***.* 
!**_. 
I 
+** 
! 
+* 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
I 

+ 
! 
+ 
! 
+ 
! 
r 
+ 
1 

2.308 dB 
1. 546 dB 

0.901 dB 
0.300 dB 

Plot 6-Sin (7.5X) without Window 

21-288 

32.441 dB 
31. 971 dB 

270189-25 



o 

2 
3 

4 

5 

6 

8 

9 

10 

11 

12 

13 

14 
15 

16 
17 
18 

19 

20 
21 
22 
23 
24 

25 
26 

27 

28 

29 
30 

31 

+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 

AP-275 

!***************************** 14.706 dB 
!********************************************************* 
! .................... * •••••••••••••••••••••••••••••••• **** 
! ..... * •••• * •• * ••• * •••••••••• * 14.694 dB 
! 
+ 
! 
+ 
! 
+ 
1 

<-
I 

<-
I 

<­
! 
+ 
1 

<-
I 

<­
! 
+ 
1 

<-
I 

<­
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
1 

<-
I .. 
! 
+ 
! 
+ 
! 

Plot 7-Sin (7.5X) with Window 

21-289 

28.671 d8 

28.678 d8 

270189-26 



o 

2 
3 
4 
5 
6 

7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

AP-275 

+ •••••• **************** 11.242 dB 
!*****.******.*****.**** 11.417 dB 
!************************ 11.936 dB 
!************************** 12.846 dB 

!***************************** 14.296 dB 

!********************************* 16.561 dB 

!***************************************** 20.409 dB 

!***********************************************~*********** 
!********************************************************** 
!************************************** 18.994 dB 
!............................ 14.187 dB 

!** ••• *.** ••• *.*.*..... 10.936 dB 
I . 
+*.* •• ***.** ••• **. B.472 dB 
!*.* ••••••••• * 6.468 dB 
!*.**.***** 4.819 dB 
!** •• **. 3.382 dB 
! .. *. 2.152 dB 
! t*· 1.082 dB 

r 
+ 
I 
+ 
! 
+ 
I 
+ 
! 
t 
+ 
I 
t 
+ 
I r 
t r 
+ 
I 
+ 
I 

29.425 dB 
28.959 dB 

Plot 8-0.707. Sin (7.5X) without Window 

21-290 

270189-27 



o 
1 

3 

4 

8 

10 
11 
12 

13 
14 
15 

16 

17 
18 
19 
20 
21 

22 
23 
24 

25 
26 
27 
28 
29 
30 
31 

+ 
! 
+ 
I 
+ 
I 
+ 
! 
+ 
! 
+ 

AP-275 

!*********************** 11.694 dB 
!*************************************************** 

!*************************************************** 
!*********************** 11.674 dB 
! 
+ 
I 
+ 
I 
+ 
I 
+ 
I 
+ 
! 
+ 
! 
+ 
! 
+ 
I 
+ 
! 
+ 
! 
+ 
I 
i-
I 
i­
I 
+ 
! 
+ 
! 
+ 
I 
+ 
! 
+ 
! 
+ 
! 

t 
+ 
! 
+ 
I 

25.663 dB 
25.667 dB 

Plot 9-0.707' Sin (7.5X) with Window 

21-291 

270189-28 



inter AP-275 

0 + 
! 
+ 

2 
I 
+ 
I 
+ 

4 
! 
+ 
! 
+ 
! 

6 + 
7 

! 
+ 

8 
! 
+ 
! 

9 + 
10 

I 
+ 

11 !****************** 9.031 dB 
! 

12 + 
I 

13 + 
I 

14 + 
! 

15 + 
16 

! 
+ 
I 

17 + 
I 

18 + 
! 

19 + 
20 

! 
+ 
! 

21 + 
! 

22 + 
23 

I 
+ 
! 

24 + 
! 

25 + 
! 

26 + 
I 

27 <-
! 

28 + 
! 

29 + 
! 

30 t 
31 + 

! 
270189-29 

Plot 10-0.707/16 • Sin (11X) without Window 

21-292 



o t 
1 t 
2 t 
3 r 
4 r 

+ 
I 

t 
+ 
I 

8 r 
+ 
I 

10 + 

11 !****** I 
12 t 
13 t 
14 r 
15 t 
16 + 

! 
17 + 

! 
18 t 
19 <­

! 
20 + 

! 
21 t 
22 + 

! 
23 + 

! 
24 t 
25 + 

! 
26 + 

! 
27 t 
28 + 

! 
29 + 

! 
30 + 

! 
31 r 

AP-275 

3.008 dB 

270189-30 

Plot 11-0.707116 • Sin (11X) with Window 

21-293 



inter AP-275 

o 

2 
3 
4 

6 

7 
8 

10 
11 

12 
13 

14 
15 
16 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

27 

28 
29 
30 

31 

+********************** 11.242 dB 

!*********************** 11.425 dB 
!* •••••• * •••••••• * •••• *.. 11.936 dB 
! .... * ••••••••••• * •••••••• * 12.846 dB 
! ............. **.............. 14.296 dB 

!.**.** ••• ** •••••• ***.* •••• *...... 16.561 dB 
! ... * •••••••••••••••••••••• ** ••••••••••• ** 20.409 dB 

!*.* ••••••••••••••••• *.* •• * ••• * ••••• ** ••••••• * ••• *** •• ****** 
! ................ *.* •••••••••••••••••••••• * •• * •••• *.*.***** 

! ........... * ••• * •••• * •••••••••••• *.... 19.000 dB 
! ....... *.................... 14.187 dB 

! ............. * •• * •••••••• * 13.105 dB 
! 
+***************** 8.472 dB 

l********~**** 6.483 dB 
!********** 4.819 dB 
!******* 3.382 dB 
!**** 2.152 dB 
! 
+** 1.082 dB 
! 
+ 
! 
+ 
! 
+ 
1 
.j. 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
I 
+ 
I 
+ 
1 
.j. 
! 
+ 
! 
+ 
! 
+ 
! 

29.425 dB 
28.959 dB 

Plot 12-0.707 (Sin (7.5X) + V,6 Sin (11X» without Window 

21-294 

270189-31 



o 

4 

5 

6 

8 

9 

10 

11 

12 

13 

14 

15 

16 
17 

18 

19 

20 
21 

22 

23 
24 
25 
26 
27 

2B 

29 

30 
31 

+ 
! 
+ 
I 
+ 
I 
+ 
I 
+ 
I 

.j. 

AP-275 

!*********************** 11.702 dB 

!*************************************************** 

!**************************************************. 
!....................... 11.674 dB 
! 
+ 
! ..... . 
! 
+ 
I 

.j. 
I 
.j. 
! 
+ 
! 
+ 
! 
+ 
I 
.j. 
I 

.j. 
! 
+ 
! 
+ 
I 
.j. 
! 
+ 
! 
+ 
I 
.j. 
! 
+ 
I 

.j. 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
1 

3.074 dB 

25.663 dB 
25.667 dB 

Plot 13-0.707 (Sin (7.5X) + 'Y16 Sin (11X» with Window 

21-295 

270189-32 



intJ AP-275 

BIBLIOGRAPHY 
1. Boyet, Howard and Katz, Ron, The 16-Bit 8096: 

Programming, Interfacing, Applications. 1985, Mi­
croprocessor Training Inc., New York, NY. 

2. Brigham, E. Oran, The Fast Fourier Transform. 
1974, Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey. 

3. Harris, Fredric J., On the use of Windows for Har­
monic Analysis with the Discrete Fourier Trans­
form. Proceedings of the IEEE, Vol. 66, No.1, Jan­
uary 1978. 

4. Weaver, H. Joseph, Applications of discrete and 
continuous Fourier analysis. 1983, John Wiley and 
Sons, New York. 

INTEL PUBLICATIONS 

1. 1986 Microcontroller Handbook, Order Number 
210918-004 

2. Using the 8096, AP-248, Order Number 270061-001 

3. MCS-96 Macro Assembler User's Guide, Order 
Number 122048-001 

4. MCS-96 Utilities User's Guide, Order Number 
122049-001 

21-296 



8096 SOFTWARE DEVELOPMENT PACKAGES 

• Choice of Hosts 

• MCS®-96 Software Support Package 

• C-96/196 Software Package 

• Supports All Members of the MCS-96 
Family 

• PL/M-96 Software Package 

8096 ASSEMBLER PACKAGE 

• Symbolic relocatable assembly 
language programming for the 8096 
microcontroller family 

• System Utilities for Program Linking 
and Relocation 

• Extends Intellec® Microcomputer 
Development System to support 
8096 program development 

• Encourages modular program design 
for maintainability and reliability 

The 8096 Software Support Package provides development system support for the 8096 family of 16-bit single 
chip microcomputers. The support package includes a macro assembler and system utilities. 

The assembler produces refocatable object modules from 8096 macro assembly language instructions. The 
object modules then are linked and located to absolute memory locations. 

The assembler and utilities run on PC DOS 3.0 IBM' PC XT/AT Systems. 

LEGEND 

O INTEL DEYELOPMEf\lT 
. TOOLS AND OTHER 

PRODUCTS 

O USER·CODED 
SOFTWARE 

Figure 1.8096 Software Development Process 

'IBM is a registered trademark of International Business Machines Corporation. 

21-297 

230613-1 

October 1987 
Order Number: 230613-006 



inter 8096 SOFTWARE DEVELOPMENT PACKAGES 

8096 MACRO ASSEMBLER 

• Gives Symbolic Access to Powerful 
8096 Hardware Features 

• Object Files are Linkable and Locatable 

• Symbolic Assembler Supports Macro 
Capabilities, Cross Reference, Symbol 
Table and Conditional Assembly 

ASM-96 is the macro assembler for the MCS family of microcontrollers, including the 80C196. ASM-96 trans­
lates symbolic assembly language mnemonics into relocatable object code. Since the object modules are 
linkable and locatable, ASM-96 encourages modular programming practices. 

The macro facility in ASM-96 allows programmers to save development and maintenance time since common 
code sequences only have to be done once. The assembler also provides conditional assembly capabilities. 

ASM-96 supports symbolic access to the many features of the 8096 architecture. An "include" file is provided 
with all of the 8096 hardware registers defined. Alternatively, the user can define any subset of the 8096 
hardware register set. 

Math routines are supported with mnemonics for 16 X 16-bit multiply or 32/16-bit divide instructions. 

The assembler runs on a PC-DOS 3.0 IBM PC XT/AT. 

RL96 LINKER AND RELOCATOR PROGRAM 

• Links Modules Generated by 
ASM-96,· C-96, and PL/M-96 

• Locates the Linked Object Module to 
Absolute Memory Locations 

• Encourages Modular Programming for 
Faster Program Development 

• Automated Selection of Required 
Modules from libraries to Satisfy 
Symbolic References 

RL96 is a utility that performs two functions useful in MCS-96 software development: 

- The link function w~ich combines a number of MCS-96 object modules into a single program. 

- The locate functions which assigns an absolute address to all relocatable addresses in the MCS-96 object 
module. 

RL96 resolves all external symbol references between modules and will select object modules from library 
files if necessary. 

RL96 creates two files: 

- The program or absolute object module file that can be executed by the targeted member of the MCS-96 
family. . 

- The listing file that shows the results of linkllocate, including a memory map symbol table and an optional 
cross reference listing. 

The relocator allows programmers to concentrate on software functionally and not worry about the absolute 
addresses of the object code. RL96 promotes modular programming. The application can be broken down into 
separate modules that are easier to design,test and maintain. Standard modules can be developed and used 
in different applications thus saving software development time. 

21-298 



8096 SOFTWARE DEVELOPMENT PACKAGES 

FPAL96 FLOATING POINT ARITHMETIC LIBRARY 
• Implements IEEE Floating Point 

Arithmetic 

• Basic Arithmetic Operations 
+, -, x, I, Mod Plus Square Root 

• Supports Single Precision 32 Bit 
Floating Point Variables 

• Includes an Error Handler Library 

FPAL96 is a library of single precision 32-bit floating point arithmetic functions. All math adheres to the 
proposed IEEE floating point standard for accuracy and reliability. An error handler to handle exceptions (for 
example, divide by zero) is included. 

The following functions are included: 

ADD NEGATE 

SUBTRACT ABSOLUTE 

MULTIPLY SQUARE ROOT 

DIVIDE INTEGER 

COMPARE REMAINDER 

LIB 96 
The LIB 96 utility creates and maintains libraries of software object modules. The customer can develop 
standard modules and place them in libraries. Application programs can then call these modules using prede~ 
fined interfaces. 

LIB 96 uses the following set of commands: 

-CREATE: Creates an empty library file. 
-ADD: Adds object modules to a library file. 
-DELETE: Deletes object modules from a library file. 
-LIST: Lists the modules in the library file. 
-EXIT: Terminates LIB 96 

When using object libraries, RL96 will include only those object modules that are required to satisfy external 
references, thus saving memory space. 

ORDERING INFORMATION 

Operating Environment Order Code 

D86ASM96 96 Assembler for PC DOS 3.0 Systems 

Documentation Package: 

MCS-96 Macro Assembler User's Guide 
MCS-96 Utilities User's Guide 
MCS-96 Assembler and Utilities Pocket 
Reference Card 
8096 Floating Point Arithmetic Library 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able. 

21-299 



inter 8096 SOFTWARE DEVELOPMENT PACKAGES 

PL/M·96 SOFTWARE PACKAGE 

• Choice of Hosts • Resident on 8086 Intel Microcomputer 

• Block Structured Language Design Development Systems for Higher 

Encourages Module Programming Performance 

• Provides Access to 8096 on Chip • Includes a Linking and Relocating 

Resources Utility and the Library Manager 

• Produces Relocatable Object Code • IEEE Floating Point Library included for 

which is Linkable to Object Modules Numeric Support 

Generated by Other 8096 Translators • Compatible with PL/M-86 Assuring 
Design Portability 

PLlM-96 is a structured, high-level programming language useful for developing software for the Intel 8096 
family of microcontrollers, including the 80C196. PL/M-96 was designed 'to support the software requirements 
of advanced 16 bit microcontroliers. Access to the on chip resources of the 8096 has been provided in 
PL/M-96. 

PL/M-96 is compatible with PL/M-86. Programmers familiar with'PL/M will find they can program in PLlM-96 
with little relearning effort. 

The PL/M-96 compiler translates PL/M-96 high level language statements into 8096 machine instructions. By 
programming in PLIM an engineer can be more productive in the initial software development cycle of the 
project. PLIM can also reduce future maintenance and support cost because PLIM programs are easier to 
understand. PL/M-96 was designed to complement Intel's ASM~96. 

PLlM-96 is available for PC DOS 3.0 based IBM PC XT/AT Systems. 

LEGEND 

D ?· INTEL DEVELOPMENT 
TOOLS AND OTHER 
PRODUCTS 

o USER·CODED 
SOFTWARE 

Figure 2. PL/M-96 Software Package 

21-300 

230613-1 



intJ 8096 SOFTWARE DEVELOPMENT PACKAGES 

PL/M-96 COMPILER 

FEATURES 

Major features of the PLlM-96 compiler and pro­
gramming language include: 

Structured Programming 

Programs written in PLlM-96 are developed as a 
collection of procedures, modules and blocks. Struc­
tured programs are easier to understand, maintain 
and debug. PL/M-96 programs can be made more 
reliable by clearly defining the scope of user vari­
ables (for example, local variables in a procedure). 
REENTRANT procedures are also supported by 
PLlM-96. 

Language Compatibility 

PL/M-96 object modules are compatible with all oth­
er object modules generated by Intel MCS-96 trans­
lators. Programmers may choose to link ASM-96 
and PL/M-96 object modules together. 

PLlM-96 object modules were designed to work 
with other Intel support tools for the MCS-96. The 
DEBUG compiler control provides these tools with 
symbolic information. 

Data Types Supported 

PL/M-96 supports seven data types for programmer 
flexibility in various logical, arithmetic and address­
ing functions. The seven data types include: 

-BYTE: 8-bit unsigned number 

-WORD: 16-bit unsigned number 

-DWORD: 

-SHORTINT: 

-INTEGER: 

-LONGINT: 

-REAL: 

32-bit unsigned number 

8-bit signed number 

16-bit signed number 

32-bit Signed number 

32-bit floating point number 

Another powerful feature are BASED variables. 
BASED variables allow the user to map more than 
one variable to the same memory location. This is 
especially useful for passing parameters, relative 
and absolute addressing, and memory allocation. 

Data Structures Supported 

Two data structuring facilities are supported by 
PL/M-96. The user can organize data into logical 
groups. This adds flexibility in referencing data. 

- Array: Indexed list of same type data elements 

- Structure: Named collection of same or different 
type data elements 

- Combinations of Both: Arrays of structures or 
structures of arrays 

Interrupt Handling 

Interrupts are supported in PLlM-96 by defining a 
procedure with the INTERRUPT attribute. The com­
piler will generate code to save and restore the pro­
gram status word when handling hardware interrupts 
of the MCS-96. 

Compiler Controls 

Compile time options increase the flexibility of the 
PL/M-96 compiler. These controls include: 

- Optimization 

- Conditional compilation 

- The inclusion of common PLlM-96 source files 
from disk 

- Cross reference of symbols 

- Optional assembly language code in the listing 
file 

21-301 



inter 8096 SOFTWARE DEVELOPMENT PACKAGES' 

Code Optimizations Lower Development Cost 

The PL/M-96 compilers has four levels of optimiza­
tion for reducing, program size. 

- Combination of constant expressions; "Strength 
reductions" (e.g.: a shift left rather than multiply 
by two) 

- Machine code optimizations; elimination of su­
perfluous branches; reuse of duplicate code, re­
moval of unreachable code 

- Overlaying of on chip RAM variables 

- Optimization of based variable operations 

- Use of short jumps where possible 

Built in Functions 

An extensive list of built in functions has been sup­
plied as part of the PL/M-96 language. ,Besides 
TYPE CONVERSION functions, there are built in 
functions for STRING manipulations. Functions are 
provided for interrogating the MCS-96 hardware 
flags such as CARRY and OVERFLOW. 

Error Checking 

If the PL/M-96 compiler detects a programming or 
compilation error, a fully detailed error message is 
provided by the compiler. If a syntax or program er­
ror is detected, the compiler will skip the code gen­
eration and optimization passes. This powerful 
PLlM-96 feature can yield a two times increase in 
throughput when a user is in the initial program de­
velopment cycle. 

BENEFITS 

PLM-96 is designed to be an efficient, cost-effective 
solution to the special requirements of MCS-96 Mi­
crocontroller Software Development, as illustrated 
by the following benefits of PLIM use: 

Low Learning Effort 

PL/M-96 is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M-96, a structured 

, high-level language, increases programmer produc­
tivity. 

Increases in programmer productivity translate im­
mediately into lower software development costs 
because less programming resources are required 
for a given programmed function. 

Increased Reliability 

PLlM-96 is designed to aid in the development of 
reliable software (PL/M programs are simple state­
ments of the program' algorithm). This substantially 
reduces the risk of costly correction of errors in sys­
tems that have already reached full production 
status. The more simply the program, is stated, the 
more likely it is to perform its intended function. 

Easier Enhancements . 
and Maintainance 

Programs written in PL/M tend to be self-document­
ing, thus easier to read and understand. This means 
it is easier to enhance and maintain PL/M programs 
as the system capabilities expand and future prod­
ucts are developed. 

ORDERING INFORMATION 

Order Code 

D86PLM96 

Operating Environment 

PL/M-96 Compiler for PC DOS 3.0 
based Systems 

Documentation Package 

PL/M-96 User's Guide 
MCS-96 Utilities User's Guide 
MCS-96 Assembler and Utilities Pocket 
Reference Card 
8096 Floating Point Arithmetic Library 

SUPPORT 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able. 

21-302 



8096 SOFTWARE DEVELOPMENT PACKAGES 

C 96 SOFTWARE PACKAGE 

• Implements the Full Programming • IEEE Floating Point Library (FPAL96) 
Capabilities of the C Language Included for Numeric Support 

• Complies with Draft ANSI Standard • Supports All of the Standard C 

• Produces Relocatable Object Code Language I/O Library (STDIO) 

which is Linkable to Object Modules • Includes a Linking and Relocating 
Generated by Other MCS®-96 Utility, an Object-To-Hexadecimal 
Translators Convertor, and a Library Manager 

• Produces High-Density Code That • Supports the 80C196 Architecture 
Rivals Assembly in Efficiency 

• Fully Linkable with the PL/M-96 and 
ASM-96 Programming Languages 

Intel's C 96 is a general purpose, structured programming language designed to support applications for the 
16-bit family of MCS-96 microcontrollers including the 80C196. C 96 implements the C language as described 
in the Kernighan and Ritchie book, The C Programming Language (Prentice-Hall) Software Series, 1978). The 
latest enhancements to the C programming language as defined by the draft proposed ANSI C standard (e.g., 
structure assignments, and the void and enum data types) are supported. 

The C 96 compiler translates C 96 language statements into MCS-96 machine instructions. The compiler 
generates code in Intel's relocatable Object Module Format (OMF) without using an intermediate assembly 
file. The OMF files can then be debugged using either the iSBE-96 emulator, the VLSiCE-96 emulator, or the 
ICE-196 

C 96 is available for the IBM PC AT and the PC XT 

LEGEND 

D 
o 

INTEL DEVELOPMENT 
TOOLS AND OTHER 
PRODUCTS 

USER·CODED 
SOFTWARE 

Figure 3_ 8096 Software Development Process 

21-303 

230613-1 



infef 8096 SOFTWARE DEVELOPMENT PACKAGES 

C 96 COMPILER 

COMPILER DESCRIPTION 

Major features of the C 96 compiler include the pre­
processor, the parser, and the code generator and 
optimizer. The code is output in Intel relocatable Ob­
ject Module Format (OMF). The compiled code can 
then be debugged with either the iSBE-96 emulator 
or the VLSiCE-96 emulator. 

The preprocessor interprets statements in the 
source code and performs such actions as macro 
expansion, file inclusion, and conditional compilation 
(for example, the #if directive, which specifies op­
tional inclusion or exclusion of code). 

The parser performs syntactic and semantic error 
checking on the code. The code generator converts 
the parser's output into efficient binary code. The 
optimizer streamlines the code and generates Intel 
relocatable OMF code, without creating an interme~ 
diate assembly file. 

The compiler's DEBUG/NODEBUG control option 
specifies whether or not the object module should 
contain debug information. The debug information 
can be used to debug the compiled program using 
either the iSBE-96 emulator or the VLSiCE-96 emu­
lator. 

COMPILER FEATURES 

Some of the features of the C 96 compiler are: 

• Declarations 

• Expressions and operators 

• Statements 
• Run-time library (STDIO) 

• Compiler invocation 

• Output conventions 

Each of these features is discussed in the following 
sections. 

DECLARATIONS 

Declarations are used to specify the attributes of a 
set of identifiers. The scope of a declaration can en­
compass the entire source file or be local to a func­
tion body or block. 

The storage class specifier defines the location and 
scope. The storage classes are as follows: 

• auto active block 

• extern external data definition ' 

• static active data segment or register segment 

• typedef a type definition (not storage allocation) 
that defines another name or a synonym 

The storage class can be further defined with one of 
the following storage class modifiers: 

• const code segment 

• register machine register 

• volatile 1/0 port (modifies the extern storage 
class only) 

Identifiers are defined by their type. The types fall 
into one of the following categories: 

• basic characters, integers, floating point 
numbers 

• derived arrays, structures, unions, enumera­
tions, functions, and pOinters 

• void empty set 

The type is further defined by the following type 
specifiers: 

• char, short, int, long, signed, unsigned, float, dou­
ble, struct, union, enum, and typedef 

EXPRESSIONS AND OPERATORS 

All of the C language expressions and operators are 
supported by Intel's C 96 compiler. Table 1 is a sum­
mary of the C openitors, arranged in order of prece­
dence (from top to bottom). Operator precedence 
within an expression is evaluated in the order of as­
sociativity shown in Table 1. 

STATEMENTS 

A statement is a program element that specifies an 
action to be performed. The C language supports 
the following types of statements: . 

• Simple any valid expression 

• Compound an optional list of variable declara­
tions followed by a list of statements 

21-304 



8096 SOFTWARE DEVELOPMENT PACKAGES 

• Selection an if or switch statement which is op­
tionally included dependent on speci­
fiedconditions 

• Iteration a do, while or for statement which exe­
cutes repeatedly until the controlling 
value is zero 

• Branching a break, continue, goto, or return 
statement which changes the program 
control flow 

Table 1. Precedence and Associativity 

Class Operator Associativity 

primary [ 1 ( ) - left to right 
unary ++ -- & * + - - right to left 

sizeof far 
binarymult. * / % left to right 
binary add + - left to right 
binary shift « » left to right 
binary relat. < > <= >= left to right 
binary equal. -- = left to right 
bitwise AND & left to right 

bitwiseXOR /\ left to right 
bitwise OR I . left to right 

logical AND && left to right 

logical OR II left to right 
conditional ? : right to left 

assignment = *= /= %= += -= right to left 

«=+ »=&= /\= 1= right to left 

comma left to right 

RUN-TIME LIBRARY (STDIO) 

Intel's C 96 compiler supports the standard C lan­
guage 1/0 library functions (STDIO). The include 
files listed in Table 2 are included with the C 96 com­
piler. 

Table 2. C 96 Include Files 

Name Description 

ctype.h Used to declare and map characters. 
errno.h Used for error checking. 
setjump.h Used to bypass a normal cali/return. 
stdio.h Used for standard 1/0 functions. 
string.h Used to manipulate strings. 
time.h Used to manipulate the time and date. 

Character and arithmetic conversion functions are 
also included (atof, atoi, atol, cstr, tolower, toupper, 
and udistr). 

COMPILER INVOCATION 

Intel's C 96 compiler is invoked with the following 
general syntax: 

c96 pathname [controls] 

The following invocation controls are some of the 
options supported by the C 96 compiler. 

• Object file controls-DEBUG/NODEBUG, 
OBJECT, OPTIMIZE (0 through 3), REGIS­

. TERS, REGOVERLA Y INOREGOVERLA Y, 
TYPE/NOTYPE 

• Listing controls (selection and content)-CODEI 
NOCODE, COND/NOCOND, LIST INOLlST, 
LlSTINCLUDE/NOLISTINCLUDE, PREPRINT I 
NOPREPRINT, SYMBOLS/NOSYMBOLS, 
XREFINOXREF 

• Listing format controls-PAGING/NOPAGING, 
PAGELENGTH, PAGEWIDTH 

• Source inclusion control-INCLUDE 

The REENTRANT INOREENTRANT extension has 
been added to the C 96 compiler invocation controls 
to enhance the compiler's use of the MCS-96 archi­
tecture. This extension enables the compiler to fully 
use the large register set of the MCS-96 family of 
microprocessors. When porting to programs in other 
environments, these keywords should be either re­
moved or defined as nUll. . 

Output Conventions 

The C 96 compiler produces a listing file and an ob­
ject file. The listing file contains a formatted list of 
the source code and a list of compiler error mes­
sages.The compiler produces the object file in In­
tel's relocatable OMF code directly, without creating 
an intermediate assembly file. 

BENEFITS 

There are many benefits to the C 96 compiler, as 
explained in the following sections. 

PROGRAM DEBUGGING 

With the DEBUG control the C 96 compiler produces 
extensive debug information, including symbols. The 
debug information can be used to debug the pro­
gram code with either the VLSiCE-96 emulator or 
the iSBE-96 emulator. This serves to enhance pro­
grammer productivity. 

21-305 



inter 8096 SOFTWARE DEVELOPMENT PACKAGES 

FASTER COMPILATION 

The C 96 compiler creates Intel object module for­
mat (OMF) directly, without creating an intermediate 
assembly file. This increases the compiler's execu­
tion speed. 

PORTABLE CODE 

Code portability has been designed into the C 96 
compiler. The C 96 code is fully linkable with both 
the PL/M-96 and the ASM-96 programming lan­
guages. 

Because the compiler supports the standard C li­
brary and produces Intel OMF code, programs de­
veloped on a variety of machines can be transported 
to the MCS-96. In addition, because C 96 conforms 
to accepted C language standards, programmers 
can quickly begin programming the MCS-96. 

FULL MANIPULATION OF THE 8096 
MICRO CONTROLLER 

The C 96 compiler has been highly optimized for the 
MCS-96 architecture. The REENTRANT !NOREEN­
TRANT control has been added so that the compiler 
can identify non-reentrant procedures. This is ex­
tremely useful because it enables the progra.mmer 
to have full access to the large MCS-96 register set. 

With the C 96 compiler, the programmer can declare 
register variables that are not local to any proce­
dure. Due to the large register set of the MCS-96 
architecture, the compiler can dedicate registers to 
such variables. 

SOFTWARE SUPPORT 

Intel's Software Support Service provides mainte­
nance on software packages with software support 
contracts which include subscription services, infor­
mation phone support, and updates. Consulting 
services can be arranged for on-site assistance at 
the customer's location for both short-term and 
long-term needs. For more information, contact your 
local Intel Sales Office. 

ORDERING INFORMATION 

Part Number Description 
D8SC96 C 96 Software Package 

PL/M-96 packages also include the 
RL96 Linker and Relocator, the 
FPAL96 Floating Point Library, and 
the UB96 librarian utility. 

Operating Environment 

IBM PC AT 

IBM PC XT 

21-306 



iDCX 96 
DISTRIBUTED CONTROL EXECUTIVE 

• High Performance, Real-time, • Integral Task Management, Timing, 
Multitasking Executive Interrupt and Message Passing 

• Full Support of MSC®-96 Services 

Microcontroller Family • Reliable, Compact 2.9K bytes 

• Configurable for User Customization • Simple User Interface 

The iDCX 96 Distributed Control Executive is compact, configurable, easy-to-use software for developing and 
implementing applications built on the high performance 16-bit family of 8096 microcontrollers (MCS-96). As a 
real-time, multitasking nucleus, the iDCX 96 Executive enhances the users ability to efficiently design MCS-96 
microcontroller applications requiring handling of multiple asynchronous events, and real-time response. 

In addition to the features integrated into most microcontrollers (CPU, RAM, ROM, and I/O) the MCS-96 family 
provides analog to digital conversion, pulse width modulation, and high-speed I/O facilities. Some examples of 
applications well-suited to the feature set and performance of the 8096 microcontrollers are: motor control, 
medical instrumentation, automotive transmission control, and machine control. Using the iDCX 96 Distributed 
Control Executive in these environments will significantly reduce application development time and expense. 
The iDCX 96 Executive performs equally well in stand-alone applications as well as distributed applications. 

Figure 1. iDCX 96 Distributed Control Executive System 

21-307 

280148-1 

December 1986 
Order Number: 280148-002 



iDCX 96 

ARCHITECTURE 

Real-time and Multitasking 

Real-time control systems must be responsive to the 
external environment and typically involve the exe­
cution of more than one function (task or set of 
tasks) in response to different external stimuli. Con­
trol of manufacturing process is an example. These 
processes can require the monitoring of multiple 
temperatures and pressures; control of heaters, 
fans, and motors all responding to many seemingly 
random inputs. The iDCX 96 Distributed Control Ex~ 
ecutive fully supports applications requiring re­
sponse to inputs as they occur ie., in real-time. Multi­
ple tasks in control applications require real-time re­
sponse. The iDCX 96 Executive helps the user im­
plement these multitasking time-critical applications. 

Some of the executive's facilities specifically tailored 
for developing and implementing standalone and 
distributed control systems are: task managment, 
timing and interrupt handling, and message passing. 
When integrated with communications software, the 
iDCX 96 Executive provides message passing to 
tasks on different microcontrollers. Response to the 
environment is guaranteed due to the event-driven 
nature of the executive. Interrupts, timers, or mes­
sages can initiate tasks for proper system response. 

Task Management 

A task can be thought of as a block of code that 
performs a specific activity. This activity is one that 
can occur in parallel with other activities in the sys­
tem. A task starts at a single point and executes 
indefinitely, usually in a loop. The iDCX 96 Execu­
tive's multitasking facility allows the user to partition 
system applications code into manageable activities 
or tasks. Each task competes for processor resourc­
es. The executive provides all synchronization, con­
trol, and scheduling to ensure each task gets the 
processor time it requires. A priority mechanism 
used by the executive determines when a task ac­
cesses the processor. Up to 16 tasks can be man­
aged by the executive. 

All tasks in an iDCX 96 Executive application are in 
one of three states as shown in Figure 2. For exam­
ple, when an RQ WAIT system call is made, the call­
ing task becomes ASLEEP until one of the events 
upon which it is waiting occurs. These events can be 
messages, timeouts, time intervals, or interrupts. 
When an event occurs the task becomes READY or 
RUNNING. 

Also, the executive allows for PREEMPTION of a 
task currently using processor resources so that 
emergencies will be responded to immediately. For 
example, suppose a conveyor in a manufacturing 

DELETED CREATED 

DELETED 

EVENT OCCURS ON 
WHICH A TASK IS 

WAITING 

NO RUNNING 
TASKS 

RUNNING TASK IS 
DELETED, PREEMPTED 
OR WAITING 

EVENT OCCURS AND ASLEEP 
TASK HAS A LOWER PRIORITY 

THAN RUNNING TASK 

DELETED CREATED 

Figure 2. iDCX 96 Executive Task States 

21-308 

280148-2 



inter iDCX96 

system suddenly developed a fault and began run­
ning out of the normal range. The other parts of the 
system cannot compensate, and an alarm is trig­
gered. Immediate response is a must to minimize 
losses. The executive's task prioritization scheme, 
task state definitions, and preemption facility reflect 
the asynchronous nature of events in real-time sys­
tems as well as the need to respond to the most 
critical events first. 

Interrupt Handling 

Interrupts signal the occurrence of an external event 
and are typically asynchronous with respect to the 
processor. In real-time control system interrupt han­
dling plays a major factor in the responsiveness and 
performance of the system. The iDCX 96 Distributed 
Control Executive provides the following interrupt 
handling services and features: 

• Interrupt source assignment to a task at system 
configuration. 

• Ability to disable all or some interrupts using the 
RQ DISABLEINTERRUPT system call. 

• Ability to enable disabled interrupts using the RQ 
ENABLEINTERRUPT system call. 

• Synchronization of events using the RQ WAIT 
system call. 

• Configuring a custom interrupt handler into the 
system. 

In keeping with the executive's preemptive priority­
based scheduling scheme for an interrupt to occur 
its associated task must have a higher priority than 
the present running task. The executive will mask all 
interrupts of lower priority. 

The eight interrupt sources provided by the 8096 ar­
chitecture are shown in Table 1. The iDCX 96 Exec­
utive architecture provides interrupt handlers for 
each source but allows users to sUbstitute custom 
interrupt handlers if desired~ 

Table 1. 8096 Hardware Interrupt Sources 

Source 

EXTINT 
Serial Port 
HSI.O 
High Speed Outputs 
HSI Data Available 
AID Conversion Complete 
Timer Overflow 
Software Interrupt 

Timer Management 

The iDCX 96 Executive supplies timing management 
facilities for synchronizing timed control loops and 

determining how long tasks wait on an event. In mUl­
titasking environments tasks compete for timing re­
sources. The executive eliminates contention for this 
resource by reserving one of the' 8096 on-chip tim­
ers for software timing services. A software clock is 
maintained from this on-chip timer, and is used for 
system timing functions. Tasks request interval tim­
ing or timeout timing services via the iDCX 96 Execu­
tive appropriate system calls. 

Message Passing 

The iDCX 96 Distributed Control Executive facilitates 
intertask communication that allows tasks to: 

• communicate with other tasks via messages 

• wait indefinitely on a message event 

• synchronize task operations throughout a system 

• manage system resources 

These services greatly simplify design of multitask­
ing, real-time control applications by providing an ex­
tremely flexible method of communication. Because 
tasks in an iDCX 96 Executive system exchange 
messages via message queues the communicating 
tasks are independent of one another. Tasks can 
store messages not yet received and put messages 
in a buffer that have not yet been sent. The user 
simply invokes the relevant system calls when re­
quired (RQ ALLOCATE, RQ DEALLOCATE, RQ 
SENDMESSAGE, RQ WAIT). 

The format of iDCX 96 messages follows the stan­
dard BITBUSTM Interconnect message format. Fig­
ure 3 shows the iDCX 96 Executive message format. 

Byte 0 

2 

3 

4 

5 

6 

7 

BIT 
7 

Link 
(Upper Byte) 

Link 
(Lower Byte) 

BIT 
o 

Message Length 

Flags 

Node Address 

Source/Destination 
Task IDS 

Command/Response 

Message 
Data 

Message 
Header 

} 0,,,,",, 

Figure 3. iDCX 96 Message Format 

21-309 



iDCX96 

By implementing. communications software, users 
can incorporate iDCX 96 Executive systems into a 
BITBUS Interconnect environment. Thus the execu­
tive supports communications in standalone and dis­
tributed control systems. Although users need to 
provide some communications software to imple­
ment communication between different microcon­
trollers, the support already provided in the execu­
tive gives users a head start in applications develop­
ment. 

functions are moved to different physical locations 
(e.g., another processor in a distributed system). 

The iDCX 96 Distributed Control Executive executes 
a variety of services in about half the time the iDCX 
51 Executive (formally iRMXTM 51 Executive) can. 
(TheiDCX 96 Executive is a functional. port of the 
iDCX 51 Executive to the MCS-96 family of micro­
controllers.) Table 3 shows ADVANCE performance 
information for the iDCX 96 Executive. 

Table 3. iDCX 96 Executive Performance 
HIGH PERFORMANCE AND 
EASE OF USE 

To meet the dual requirements of high performance 
and ease of use, two interfaces are provided for 
each system call: a PLIM 96 interface and a register 
interface. The PL/M 96 interface provides a higher 
degree of ease of use thus speeding development 
time. For extremely demanding applications the reg­
ister interface provides greater run-time speed and 
can be used with either PLIM 96 or ASM 96. 

The iDCX 96 Executive's capabilities are invoked 
through a set of system calls. Table 2 includes a 
listing of these interfaces and their functions. All the 
system calls with the exception of RQ GET FUNC­
TION IDS have already been referenced in this doc­
ument as part of the interrupt handling, message 
passing, and timing support facilities. The RQ GET 
FUNCTION IDS call allows the user to reference 
tasks by function rather than task number. This con­
stant identifier facility remains valid even· if 

Function 

Interrupt Latency 
w/Context Switch 

Interrupt Latency 
from Idle Stage 

Interrupt Latency 
w/Custom Handler 

RQALLOCATE 

RQSEND = > 
Non-Waiting Task 

RQSEND = > 
> Priority Waiting Task 

RQSEND = > 
< Priority Waiting Task 

RQWAIT on No Events 
• Advance Information 

Table 2. Functional Listing of System Calls 

Task Management Calls 

RQCREATETASK Create and schedule a new task. 
RQDELETET ASK Delete the specified task from the system. 

iDCX 51 
Time 
(p.s) 

130 

46 

N/A 

18 

98 

172 

137 

27 

RQGETFUNCTIONIDS Obtain the function IDs of tasks currently in the system. 

Intertask Communication Calls 

RQALLOCATE Obtain a message buffer from the system buffer pool. 
RQDEALLOCATE Return a message buffer to the system buffer pool. 
RQSENDMESSAGE Send a message to the specified task. 
RQWAIT Wait for interrupt, message, or interval. 

Interrupt Management Calls 

RQDISABLEINTERRUPT Temporarily disable multiple interrupts. 
RQENABLEINTERRUPT Reenable one or more interrupts previously disabled by 

RQDISABLEINTERRUPT. 
RQWAIT Wait for interrupt, message, or interval. 

Time Management Calls 

RQSETINTERVAL Establish a time interval. 
RQWAtT Wait for interrupt, message, or interval. 

21-310 

iDCX96 
Time' 
(p.s) 

70 

42 

16 

16 

46 

90 

66 

24 



iDCX96 

CONFIGURABLE 

Aside from the interrupt handler variables noted pre­
viously, other system variables are made available 
to the user for system customization. Most of these 
variables must be defined during initial system con­
figuration. Task-specific attributes like task priority, 
interrupt vectors, and function 10 are assigned via 
the Initial Task Descriptor structure at configuration 
time. Table 4 shows the configuration constants ac­
cessible to the user. These configuration constants 
give the iDCX 96 Executive added flexibility to satisfy 
the users needs. Table 5 shows other USER AVAIL­
ABLE variables. Run-time variables reflect the con-

dition of the running system. Development-time di­
agnostic variables also reflect conditions of the run­
ning environment, but are usually helpful during ap­
plication development. 

Also, the executive allows for adding additional 
tasks to an already configured system or changing 
initial configuration constants via an Initial Data De­
scriptor (100). The 100 structure lets the user rede­
fine existing configuration constants without recon­
figuring the entire system. Constants that may be 
redefined are the system: clock unit, clock priority, 
buffer pool address, buffer pool size, and buffer size. 

Table 4. Configuration Constants 

Constant Name Description 

RQMAXTASKS The maximum number of tasks that can exist in the system at any given time. 
RQMAXPRIORITY The highest priority level that can be assigned to a task or to the system clock. 
RQCLOCKPRIORITY The priority level of the system clock. 
RQCLOCKTICK The number of time cycles in the system clock basic time unit (a 'tick"). 
RQSTACKPOOLADR The starting address of the system stack pool. 
RQSTACKPOOLLEN The length, in bytes, of the system stack pool. 
RQSYSPOOLADR The starting address of the system buffer pool. 
RQSYSPOOLLEN The length, in bytes, of the system buffer pool. 
RQSYSBUFSIZE The size, in bytes, of each buffer in the system buffer pool. 
RQFIRSTITD The absolute address of the first ITO in the ITD/IDD chain. 
RQDIAGNOSTICS An entry point in which user-written power-up diagnostic code is added. 

Table 5. System Variables Available to the User 

Variable Size Access Description 

General Run-Time Variables 

RQTASKID WORD Read Only Contains the 10 of the running task 
RQCLOCKUNIT WORD Read/Write Specifies the unit of time for the system clock 
RQBUFSIZE WORD Read Only Specifies the size of the buffers in the system 

buffer pool 

Development-Time Diagnostic Variables 

RQPRIORITY WORD Read Only Contains the priority of the running task, or 
zero if the system is idle 

RQINITSTATUS WORD Read Only Specifies the system status at the end of the 
system initialization (low byte), and the 10 of 
the last task initialized (high byte) 

RQRUNSTATUS BYTE Read Only Specifies certain occurences and conditions 
which exist during runtime 

RQST ACKOVERFLOW WORD Read Only Specifies which tasks, if.any, may have stack 
overflow conditions 

21-311 



intJ iDCX96 

RE~IABLE AND COMPACT 

Real-time control applications require reliability. The 
iDCX 96 Distributed Control Executive requires 2.9K 
bytes of code space, 75 bytes of on-chip register 
RAM, and a minimum of 56 bytes of data RAM. This 
streamlined executive increases performance and 
reliability by providing a range of services in a mini­
mal amount Of code. The compact nature of the ex­
ecutive,in addition to its architecture, allows for in­
corporating it into PROM or the memory of the 8096 
microcontroller further reducing component count of 
the total system. 

The iDCX 96 Executive is completely tested and ver­
ified by Intel's stringent software evaluation process., 
Thus the user realizes higher system reliability with 
reduced effort by incorporating fully functional and 
tested software. Using the iDCX 96 Executive allows 
the software development team to focus on the ap- , 
'plication-specific parts of a project. 

The modular nature of the executive also enhances 
reliability by allowing user tasks to be refined inde­
pendently. In this way, errors can be isolated more 
easily and corrected in each specific module. Using 

the iDCX 96 Executive for MCS-96 microcontroller 
application development reduces risk and develop-' 
ment time. 

OPERATING ENVIRONMENT 

The iDCX 96 'Executive will operate on any of the 
MCS-96 Family of microcontrollers. T;:lbles 6 and 7 
show the product family and a summary of the 
MCS-96 Family features and benefits. 

Table 6. MCS®-96 Family of Products 

Options ' 68 Pin 48 Pin 

Digital ROMless 8096 8094 
liD ROM 8396 8394 

Analog 
ROMless 8097 8095 

and 
Digital 

ROM 8397 8395 liD 
, , 

The 48 pin version is available In DIP (dual In line) package, 
The 68 pin version comes in two' packages. the plastic Flatpack and 
the Pin Grid Array. 

Table 7. MCS®-96 Features and Benefits Summary 

Features Benefits 

16-BitCPU Efficient machine with higher throughput. 
8KBytes ROM Large program space for more complex, larger programs, 

Large on-board register file. 
Hardware MULIDIV Provides good math capability 16 by 16 multiply or 32 by 16 divide in 

6.5 JJ.s @ 12 MHz. 
6 Addressing Modes Provides greater flexibility of programming and data manipulation. 
High Speed liD Unit Can measure and generate pulses with high resolution (2 JJ.s @ 12 MHz). 

4 dedicated I/O lines 
4 programmable liD lines 

1 O-Bit AID Converter Reads the external analog inputs. 
Full Duplex Serial Port Provides asynchronous serial link to other processors or systems. 
Up to 40 liD Ports Provides TTL compatible digital data liD including system expansion, 

, with standard 8- or 16-bit peripherals. 
Programmable 8 Source Respond to asyncchronous events. 
Priority Interrupt System 
Pulse Width Modulated Output Provides a programmable pulse train with variable duty cycle. Also used 

to generate analog output. 
Watchdog Timer Provides ability to recover from software malfunction or hardware upset. 
48 Pin (DIP) & 68 Pin (Flatpack, Offers a variety of package types to choose from to better fit a specific 
Pin Grid Array) Versions application need for number of liD's and package size. 

21-312 



inter iDCX96 

DEVELOPMENT ENVIRONMENT 

Intel provides a complete development environment 
for the MCS-96 Family of microcontrollers. The iDCX 
96 Executive is only one of many of the software 
develoment products available. Figure 4 shows the 
iDCX 96 Executive development environment. The 
executive is compatible with the following software 
development utilities available from Intel: 

• 8096 Macro Assembler (ASM 96) 

• PL/M 96 Complier 

• RL 96 Linker and Relocator Program 

HOST SYSTEM 

• LIB 96 
• FPAL 96 Floating Point Arithmetic Library 

Hardware development tools available for MCS-96 
microcontrollers 

• iSBE-96, Single Board Emulator for the MCS-96 
Family of Microcontrollers 

• VLSiCE-96 In-Circuit Emulator 

Table 8 shows the possible MCS-96 Family develop­
ment environments: host systems, operating sys­
tems, available software utilities, and hardware de­
bug tools. 

TARGET 
SYSTEM 

20148-3 

Figure 4. iDCX 96 Development Environment 

Table 8. MCS®-96 Family Development Environments 

Development Utilities Host Systems 

Intellec® iPDSTM IBM·· -PC 
Software Series III/IV System System 

Systems 

MCS® 96 Software Support Package (ASM96) X X 
PL/M 96 Software Package X X 
iDCX 96 Executive X X X 
XASM96, COMM96, ATOP 96· X 

Hardware 

iSBE-96, Single Board Emulator X X X 
VLSiCE-96, In-Circuit Emulator X X 

'Products of u.s. Software, Portland, OR. 
"IBM is a registered trademark of International Business Machines. 

21-313 



inter iDCX96 

SPECIFICATIONS 

Hardware 

MCS,96 Family of Microcontroliers 
8094 8394 
8095 8395 
8096 ·8396 
8097 8397 

DEVELOPMENT ENVIRONMENT 

Software 

MCS-96 Software Support Package 
PL/M-96 Software Package 

iPDS System Host: 

·XASM96 Assembles MCS-96 programs on the 
iPDSTM 

·COM96 iPDS host communication software. 
Use with XASM96 

• ATOP96 Performs host communications and as­
sembly/disassembly of iSBE-96 in­
structions. Use with XASM96. 

·Products of U.S. Software 
5470 N.W. Innisbrook, Portland, OR 97229 
Phone: 503-645-5043 
Telex: 4993875 . 

Hardware 

SYSTEMS 

Inteliec Microcomputer Development System; 
Series III/IV 

iPDS Intel Personal Development System 
IBM Personal Computer 

DEBUG TOOLS 

SBE-96 Single Board Emulator for MCS-96 Family of 
Microcontroliers 

VLSiCE 96 In-Circuit Emulator 

Reference Manual (Supplied) 
148107-001 iDCX 96 Distributed Control Executive 

User's Guide 

ORDERING INFORMATION 
Part Number Description 
iDCX96SU Executive for the MCS-96 Family of 

Microcontroliers 

iDCX96BY 

Single User License, Development 
Only 

Media Supplied: B, E, F, J and I 

Executive for the MCS-96 Family of 
Microcontroliers OEM License, De-
rivative Products Media Supplied: B, 
E, F, J and I 

21-314 



• 

• 

• 

iSBE-96 DEVELOPMENT KIT 
SINGLE BOARD EMULATOR AND ASSEMBLER 

FOR THE MCS®-96 FAMILY OF MICROCONTROLLERS 

Hosts • Single Line Assembler/Disassembler 
-Intellec® Series III II V Development • MCS®-96 Software Support Package 

Systems 
-IBM' PC AT, PC XT, and Compatibles • Configurable Serial I/O 

(3.0) • 17.75 of On-Board User Memory 
Eight Software Execution Breakpoints • Optionally Expandable to 64K of On-
That Can Selectively Be Turned On and Board User Memory 
Off 

12 MHz Emulation Speed 

The iSBE·96 emulator supports the execution and debugging of programs for the MCS·96 family of microcon­
trollers at speeds up to 12 MHz. The MCS-96 family configurations are shown in Table 1. The iSBE-96 
emulator consists of an 8097 microcontroller, a serial port and cables, and an EPROM-based monitor that 
controls emulator operation and the user interface. 

The iSBE-96 emulator is a combination of hardware and software that permits programs written for the 
MCS-96 family of microcontrollers to be run and debugged in the emUlator's artificial environment or in the 
user's prototype system. As a result, development time can be reduced by the early integration of hardware 
and software. 

21-315 

231015-1 

April 1987 
Order Number: 231015-006 



inter iSBE·96 

FUNCTIONAL DESCRIPTION 

Integrated Hardware and Software 
Development 

The iSBE-96 emualtor allows hardware and software 
development to proceed simultaneously. This ap­
proach is more time- and cost-effective than the al­
ternate method: independent hardware and soft­
ware development followed by system integration. 
With the iSBE-96 emulator, prototype hardware can 
be added to the system as it is designed; software 
and hardware integration occurs while the product is 
being developed. The emulator aids in the recogni­
tion of hardware and software problems. 

Emulation is the controlled execution of the proto­
type software in the prototype hardware or in an arti­
ficial hardware environment that duplicates the mi­
crocontrolier of the prototype system. The iSBE-96 
emulator permits reading and writing of system 
memory, and control of program execution. The em­
ulator also allows interactive debugging of the proto­
type software and can externally control program ex­
ecution while operating in the prototype system. 
When the prototype system memory is not yet avail­
able, the iSBE-96 emulator's on-board memory per­
mits software debugging. 

Table 1. The Configurations of the MCS®·96 
Family of Microcontrollers 

68 Pin 48 Pin 

ROM LESS 8096 

Digital I/O ROM 8396 

EPROM 8796 

ROM LESS 8097 8095 
Analog and ROM 8397 8395 Digital I/O 

EPROM 8797 8795 

iSBE·96 Software 

The iSBE-96 emulator software is available for use 
with the following host systems: 

• Intellee Series III and Series IV development sys­
tems 

• IBM PC/AT and PC/XT computer systems 

The iSBE-96 emulator software is also available 
from U S Software" for use on the Intel Personal 
Development System (iPDSTM) and the Intellec Se­
ries II development system. 

• NOTE: 
U S Software is a registered trademark of United 
States Software Corporation. 

The iSBE-96 emulator is supplied with a driver rou­
tine that communicates with the monitor software on 
the iSBE-96 emulator board through serial channel 1 
or 2 (com1 / com2). The driver interrupts the 8097 
using the non-maskable interrupt (NMI) line for in­
coming keyboard input. The commands associated 
with the driver and the monitor are described in the 
following sections. 

ISBE·96 Driver 

iSBE-96 emulator is shipped with driver software for 
use on the Series III/IV development systems and 
the IBM PC AT/XT running PC DOS, version 3.0 or 
greater. The driver software provides a few easy-to­
use commands. These commands are described in 
Table 2. ASM/DASM available on DOS version only. 

Table 2. iSBE·96 Driver Commands 

Driver Command Function 

ASM Loads memory with MCS-96 
assembly mnemonics. 

DASM Displays memory as MCS-96 
assembly mnemonics. 

EXIT Exits the driver and returns to 
the host operating system. 

<CONTROL> C Same as for the EXIT 
command. 

HELP Displays the syntax of all 
commands. 

INCLUDE Specifies a command file. 

<CONTROL> I Turns the command file on 
and off. 

<TAB> Same as <CONTROL> I 
(turns the command file on 
and off). 

LIST . Specifies a list file. 

<CONTROL> L Turns list file on and off. 

<CONTROL> S Stops scrolling of the screen 
display. 

<CONTROL> Q Resumes scrOlling of the 
screen display. 

<CONTROL> X Deletes the line being 
entered. 

<ESCAPE> Aborts the command 
executing. 

iSBE-96 MONITOR 

The iSBE-96 monitor performs the following func­
tions: 

• Loads and saves user programs. 

• Independently emulates user programs. 

21-316 



Table 3. ISeD Monitor Commands 

Monitor 
Function 

Command 

BAUD Sets up the baud rate. 
BR Permits display and setting of 

up to eight software 
breakpoints. 

BYTE Permits display and changing 
of a single byte or range of 
bytes of memory or a single 
byte of the 8097 internal 
registers. 

CHANGE Permits display and changing 
of a series of memory words 
or bytes. 

<CONTROL> S Stops scrolling of the screen 
display. 

<CONTROL> Q Resumes scrolling of the 
screen display. 

<CONTROL> X Deletes the line being 
entered. 

<ESCAPE> Aborts the command 
executing. 

GO Begins emulation and 
continues until an enabled 
breakpoint is reached or the 
escape key is pressed. 

LOAD Loads programs and data 
from disks. 

MAP Permits mapping of several 
preprogrammed memory 
maps; also permits 
configurable serial I/O and 
selective servicing of the 
watchdog timer. 

PC Displays and changes the 
program counter. 

PSW Displays and changes the 
program status word. 

RESET CHIP Resets the 8096 to power-up 
conditions. 

SAVE Saves programs and data to 
disks. 

SP Displays and changes the 
stack pOinter. 

STEP Provides single-step 
emulation with selective 
display formats. 

VERSION Displays the monitor version 
number. 

WORD Permits display and changing 
of a single word or range of 
words of memory or a single 
word of the 8097 internal 
registers. 

iSBE·96 

• Examines and changes memory contents. 

• Examines registers. 

• Maps the file capabilities of the serial ports (DS/ 
DT). 

• Maps different memory configurations. 

The monitor commands are described in Table 3. 

Integrating Hardware and Software 

When the prototype system hardware is developed, 
the iSBE-96 emulator interfaces to the prototype 
through two 50-pin ribbon cables. The emulator can 
then execute code from the iSBE-96 on-board RAM 
(or from user-provided memory) and exercise the 
prototype system hardware. 

BLOCK DIAGRAM 

Figure 1 is a block diagram showing the iSBE-96 
emulator. The following sections describe each 
block. 

The Processor 

The 68-pin processor of the iSBE-96 emulator is 
used only in the 8097 external-access mode. An 
8097BH will be supported in 16-bit bus mode only. 

An adapter board is provided for the 68-pin PGA ver­
sion of the 8096 and 8097 microcontrollers. When 
debugging a 68-pin package, the two 50-pin ribbon 
cables plug into the 68-pin adaptor board which is 
plugged into the 68-pin socket on the prototype sys­
tem. 

When debugging a 48-pin package, the two 50-pin 
cables plug into the 48-pin adaptor board, which is 
then plugged into a 48-pin socket in the prototype 
system. A 68-pin PLCC Adaptor may be ordered. 

iSBE-96 Emulator 1/0 

The iSBE-96 emulator's memory-mapped I/O devic­
es are used to manage the system. These I/O devic­
es are mapped into memory between locations 
01 FOOH and 01 FFFH. 

Included as part of the I/O are two serial ports. One 
is configured as data set (OS) and the other as data 
terminal (DT). When operating with an Intellec® de­
velopment system, the data set port is used as the 
system console and the link for exchanging files. 

21-317 



inter iSBE·96 

J-----__ JJ 

8097 

12 MHZ 

J4 

J6 

J7 

231015-2 

Figure 1. Block Diagram for the iSBE-96 Single Board Emulator 

The serial ports are serviced under control of the 
NMI interrupt. The NMI interrupt has highest priority 
on the microcontroller and interrupts the user pro­
gram when characters are entered from the key­
board. When in emulation, the monitor will still serv­
ice inputs from the keyboard and execute certain 
monitor commands. Monitor activity is not transpar­
ent to the user. 

Simulated ROM (ROMSIM) 

There are eight 28-pin JEDEC byte-wide sockets 
with 2K-by-8 static RAMS present on the board. The 
partition on the user's prototype system that will be 
ROM is simulated by RAM on the iSBE-96 emulator 
board. This RAM facilitates easy program develop­
ment, allowing users to correct and test problems in 
their programs. 

ROMSIM can be expanded by replacing the iSBE-96 
RAMs with 8K-by-8 static RAMs. 

Port 3-4 Logic 

The port 3-4 logic has two functions: to provide bus 
expansion and to provide I/O ports. The port 3-4 
logic is controlled by a software switch available with 
the MAP command. 

The iSBE-96 emulator reconstructs ports 3 and 4 of 
the 8395, 8396, and 8397 microcontrollers when the 
logic is defined by the MAP command as port 3-4. 
This port function should be selected when one of 
these four microcontrollers is intended as the target 
microcontroller. 

When the BUS switch of the MAP Command is spec­
ified, the iSBE-96 address/data expansion bus is 
available to the prototype system. 

THE iSBE-96 EMULATOR MEMORY 
MAP. 

The target system should be designed with a memo­
ry map that is compatible with one of the iSBE-96 

21-318 



iSBE-96 

FFFFH 

USER 

6000H 

ROMSIM 

2012H 
TRAP VECTOR-

2010H RESERVED FOR MONITOR 

ROMSIM 
2000H 

RESERVED 
1 FOOH 

USER 

0800H 

DATARAM 
OR 

OPEN 
0100H 

INTERNAL REGISTERS! 
MONITOR ROUTINES 

OOOH 

Figure 2. ISBE-96 Emulator Default Mapping 

memory maps. Figure 2 shows the default address 
mapping. The following sections describe the areas 
of memory. 

Internal Registers/Monitor Routines 

Normally locations OOOH through OFFH contain the 
internal register space of the S097. However, in­
struction fetches from these locations access exter-

nal memory. This memory space contains the moni­
tor's non-maskable interrupt service routine and utili­
ty routines. 

For the monitor to access the user memory, the ad­
dress and data is passed to the interrupt or utility 
routines. The routines then modify the mode register 
to enable user memory, disable all of the monitor's 
memory (except page zero), and perform the appro­
priate operation. After an operation is complete, the 
service and utility routines restore the mode register 
to its previous state and return to the main monitor 
code. The NMI service routine is used to handle the 
keyboard input on the serial port. 

DATARAM 

Locations 100Hto 7FFH are mapped as the OA­
T ARAM space. This RAM is for general purpose use 
and is optionally enabled by using the MAP com­
mand. When the OATARAM buffer is not enabled, 
any access to this partition results in an access to 
user prototype system memory. 

User Area 

Locations SOOH to 1 EFFH are a user area. If an ac­
cess is made to this partition, it is directed to the 
user's prototype system. Any memory mapped as 
1/0 in the user system should be placed in this parti­
tion. With SK-by-S static RAMs, this area is located 
and available on the iSBE-96 board. 

Reserved Area 

Locations 1 FOOH to 1 FFFH are reserved by the 
monitor for on-board 1/0 devices. 

ROMSIM 

Because some of the MCS-96 family of microcon­
trollers are ROM LESS parts, a user program can be 
loaded for execution into the on-board RAMS of the 
iSBE-96 emulator. Locations 2000H to 5FFFH are 
mapped to this RAM space; the space is called 
ROMSIM. 

Trap Vector 

Locations 2000H to 2010H are the interrupt vector 
locations. Vector address location 2010H is used by 
the iSBE-96 monitor for breakpoints. 

21-319 



inter iSBE-96 

User Area 

The partition 6000H to OFFFFH is mapped to the 
user prototype area. During emulation any access to 
this partition is directed to the user's prototype sys­
tem. 

EXPANDING ON-BOARD MEMORY 

On-board memory can be expanded to a full 64K 
bytes by replacing the supplied 2K-by-S static RAMs 
with SK-by-S static RAMs or PROMs. The user may 
also replace on-board ROMSIM memory with 2K-by­
S PROMs or even locate all 64K bytes of memory on 
the prototype system. 

DESIGN CONSIDERATIONS 

Designers should note the following considerations 
for designing with the iSBE-96 emulator: 

• The iSBE-96 software uses 6 bytes of user stack 
space. 

• Analog signal accuracy is impaired when driven 
over the emulator cable (up to ± 50 mV loss of 
AID conversion accuracy). 

• The iSBE-96 emulator has some acldc paramet­
ric differences from the S097 chip. 

• The NMI vector is used for console service (Intel 
reserved interrupt). 

• Keyboard activity during emulation affects real­
time emulation because a 50 to 100 microseco'nd 
interrupt, service routine is executed for every 
keystroke. 

• The only hardware reset available for the iSBE-96 
emulator is the system reset momentary switch 
(switch 1 on the emulator board). 

• User system memory should be configured to the 
iSBE-96 memory map (see Figure 2). 

• The iSBE-96 emulator does not support a user 
system crystal as shipped. 

• The iSBE-96 driver software provided by Intel is 
not compatible with the Intellec Model SOO or Se­
ries II Development Systems. 

• The IBM PCI AT and PC/XT have been evaluated 
and accepted by Intel as compatible hosts for its 
development systems. Intel has not evaluated 
any ohter PC DOS machines (3.0). However, Intel 
knows of no reason why these PC DOS machines 
would not be compatible hosts for its develop­
ment systems. 

21-320 



iSBE-96 

SPECIFICATIONS 

Equipment Supplied 

Standard MUL TIBUS®-size board assembly 

EPROM-based monitor 

Auxiliary power cable 

RS-232 serial cables 

Two standard, 18 in., 50-pin ribbon cables for con­
nection to the user's prototype system 

Adapter board for the 48-pin DIP and 68-pin PGA 
versions of the MCS-96 microcontroller 

MCS-96 software support package 

One 8 in. single-density software disk for the Series 
III 

One 8 in. double-density software disk for the Series 
III 

One 5% in. software disk for the Series IV 

One 5% in. software disk for the IBM PC AT/XT 

Documentation 

ISBE-96 User's Guide (Order number 164116) 

iSBE-96 Pocket Reference (Order number 164157) 

Developing MCS-96 Applications Using iSBE-96 (Or­
der Number 280249-001, AP-273) 

Emulation Clock 

12 MHz supplied crystal 

Physcial Characteristics 

Width: 6.75 in. (17.15 cm) 
Length: 12 in. (30.48 cm) 
Height: 0.75 in. (1.91 cm) 

DC Electrical Requirements 
Voltage Current 

+5V ± 5% 3.5a max 
+12V ± 5% 0.06a max 
-12V ± 5% 0.05a max 

Environmental Characteristics 
Operating Temperature: 10'C to 40'C 

Operating Humidity: 10% to 85% relative hu­
midity, without condensa­
tion 

IBM PC XT/AT Host Requirements 
• PC DOS, version 3.0 or greater 

• External power supply 

• Serial channel Com1 ICom2 

21-321 



inter iSBE·96 

ORDERING INFORMATION 

Intel 3065 Bowers Ave. 
Santa Clara, CA 95051 

Part Number 

SBE96SKIT 

Description 

iSBE-96 single board emulator for 
use with the Series III/IV develop-
ment systems. The kit contains the 
following parts: 

• iSBE-96 single board emulator 

• MCS-96 software support package 
for the Series III/IV development 
systems 

• iSBE-96 Series III/IV upgrade kit 
(cables and software needed to 
run on Intel Hosts) 

SBE96DKIT iSBE-96 single board emulator for 
use with the IBM PC/AT and PC/XT 
computer systems. The kit contains 
the following parts: 

• iSBE-96 single board emulator 

• MCS-96 software support package 
for PC DOS 

• iSBE-96 DOS upgrade kit (cables 
and software needed to run on the 
IBM PC/AT or PC/XT) 

SBE96DU 

SBE96SU 

TASBEE 

US Software 

iSBE-96 DOS upgrade kit for those 
customers who wish to upgrade their 
Series III/IV kit to run on the IBM PC 
AT or PC XT. 

iSBE-96 Series III/IV upgrade kit for 
those customers who wish to up­
grade their DOS kit to run on Intel 
Hosts). 

68-pin PLCC Adaptor Board. 

5470 N. W. Innisbrook 
Portland, OR 97229 
Phone: 503-645-5043 
International Telex 4993875 

Part Number Description 

XASM96 Performs assembly of MCS®-96 pro­
grams written on the iPDS. 

ATOP96 iPDS and Series II software for iSBE-
96 host communications. Performs 
host communications and assembly/ 
disassembly of iSBE-96 instructions. 
The XASM Host Cross Assembler 
software must be ordered with this 
software. 

21-322 



VLSiCE-96 
IN-CIRCUIT EMULATOR FORTHE 8X9X 

FAMIL V OF MICROCONTROLLERS 
. • Precise Real-Time Emulation of the 

8X9X Family of Components 

• 64K of Mappable Memory for Early 
Software Debug and (EP)ROM 
Simulation 

• A 4K-Entry Trace Buffer for Storing 
Real-Time Execution History, Including 
Both Code and Data Flows 

• Fastbreaks and Dynamic Trace 

• Symbolic Debugging Allows Accesses 
to Memory Locations and Program 
Variables (Including Dynamic Variables) 
Using Program-Defined Names from 
the User's Assembler or Compiler 
Source Code 

• Shadow Registers Allow Reading Many 
8096 Write-Only and Writing Many 
Read-Only Registers 

• Break and Trace are Qualified on 
Execution Addresses, Data Addresses, 
and Values (Both External and Internal 
RAM), Opcodes, Selected PSW Flags, 
and 2 External Sync Lines 

• Equipped with the Integrated Command 
Directory (ICDTM) Which Provides 
- An On-Line Help File 
- A DynamiC Syntax Menu 
- DynamiC Command-Entry 
- Error Checking 
- On-Line Editor 

• Serially Linked to Intel Series III/IV 
Hosts or IBM* PC-XT and AT 

The VLSiCE-96 In-Circuit Emulator is a debugging and test tool used for development of the hardware and 
software of a target system based on the 8X9X family of microcontrollers (8095, 8096, 8097, 8395, 8396, 
8397, 8795, 8796, 8797, 8098, 8398, 8798) including BH components. 

21-323 
November 1987 

Order Number: 280140-004 



VLSiCE-96 IN-CIRCUIT EMULATOR 

INTRODUCTION 

The VLSiCE-96 emulator allows hardware and soft­
ware development of a design project to proceed 
simultaneously. With the VLSiCE-96 emulator, proto­
type hardware can be added to the system as it is 
designed and software can be developed prior to 
the completion of the hardware prototype. Thus, 
software and hardware can be integrated while the 
product is being developed. . 

The VLSiCE-96 emulator assists four stages of de­
velopment: 

• Software development 

• Hardware development 

• System integration 

• System test 

Software Development 

The VLSiCE-96 emulator can be operated without 
being connected to a prototype or before any of the 
prototype hardware is available. In this stand-alone 
mode, the VLSiCE-96 emulator can be used to facili­
tate application program development. 

Hardware Development 

Because the VLSiCE-96 emulator precisely matches 
the component's electrical and timing characteris­
tics as well as full bus access,it is a valuable tool for 
hardware development and debug. 

System Integration 

Integration of software and hardware begins when 
the. microcontroller socket is connected to any func­
tional element of the target system. As each section 
of the user's hardware is completed, it is added to 
the prototype. Thus, each section of the hardware 
and software can be· system tested with the 
VLSiCE-96 emulator in real-time operation as it be~ 
comes available. 

System Test 

When the prototype is complete, it is tested with the 
final version of the system software. The VLSiCE-96 
emulator can then be used to verify or debug the 
target system as a completed unit. 

By providing support for the ROM LESS, ROM, and 
EPROM versions of the microcontroller, the 
VLSiCE-96 emulator has the ability to debug a proto­
type or production product at any stage in its devel-

opment without introducing extraneous hardware or 
software test tools. 

PHYSICAL DESCRIPTION 

The VLSiCE-96 emulator consists of the following 
components (see Figure 1): 

• Software (includes the VLSiCE-96 emulator soft­
ware, diagnostic software, and tutorial) 

• 68-pin PGA adaptor 
68-pin PLCC adaptor (optional) 
48-pin DIP adaptor (optional) 

• Controller pod 

• User cable assembly (consisting of the user ca-
ble and processor module) 

• Serial cable (host-specific) 

• Crystal power accessory (CPA) 

• Multi-synchronous accessory (MSA) (optional) 

• Power supply and Vee booster module 

• AC and. DC power cables 

VLSiCE-96 software fully supports all mnemonics, 
object file formats, and symbolic references generat­
ed by Intel's ASM-96, PL/M-96, and C-96. 

The on-line tutorial is written in VLSiCE-96 command 
language. Thus, the user is able to interact with and 
use the VLSiCE-96 emulator while executing the tu­
torial. 

The controller pod contains 64K of ICE memory, a 
4K-entry trace buffer, and circuitry that provides 
communication between the host and the emulator. 

The processor module contains a special version of 
the Intel 8096 microcontroller, called the emulation 
processor. This chip performs real-time and single­
step execution of a program's object code for exe­
cution and debugging purposes in place of the target 
system microcontroller. 

The crystal power accessory (CPA) is a small de­
tachable board that connects to the back of the con­
troller pod and is used to run the VLSiCE-96 emula­
tor in the stand-alone mode. It is also used when 
running customer confidence tests. In the stand­
alone mode, the user plug on the user cable is con­
nected through the 68-pin PGA adaptor to the CPA. 
The CPA supplies clock and power. Stand-alone 
mode is used to test and debug software prior to the 
availability of hardware. 

The optional multi-synchronous accessory can be 
used to connect the VLSiCE-96 emulator with up to 
20 multi-ICE compatible emulators together for syn­
chronous GO and BREAK emulation, and TRACE. 

21-324 



inter VLSiCE·96IN·CIRCUIT EMULATOR 

It can also be used with other debug equipment 
such as logic analyzers and oscilloscopes for syn­
chronous GO, BREAK and TRACE. 

The serial cable connects the host system to the 
controller pod. The serial cable has electrical specifi­
cations similiar to the RS-232C standard. 

The power supply connects to the controller pod via 
the Vee booster module and the DC power cable. 
There are several voltage options available for the 
power supply depending on switch settings on the 
back of the power supply. 

A comprehensive set of documentation is included 
with the VLSiCE-96 emulator. 

Figure 1 shows a drawing of the VLSiCE-96 emula­
tor. 

VLSiCE·96 EMULATOR FEATURES 
The VLSiCE-96 emulator assists hardware and soft­
ware design engineers in developing, debugging and 
testing designs incorporating the 8X9X family of mi­
crocontrollers. The following are some of the 
VLSiCE-96 features: 

Emulation 
Emulation is the controlled execution of the proto­
type software in the prototype hardware or in an ar­
tificial hardware environment that duplicates the 
microcontroller of the target system. With the 
VLSiCE-96 emulator, emulation is a transparent pro­
cess that happens in real-time without sacrificing mi­
crocontroller resources. The execution of prototype 
software is facilitated through the VLSiCE-96 com­
mand language. 

Memory Mapping 
There are 64 Kbytes of zero-waitstate, high-speed 
mappable memory available. This memory space 
can be mapped to either the target system or to the 
on-board VLSiCE-9p memory space in 1 Kbyte 
blocks on 1 Kbyte boundaries. Mapping memory to 
the VLSiCE-96 emulator allows software develop­
ment to proceed before prototype hardware is avail­
able. Memory mapping also gives the VLSiCE-96 
emulator the capability to simulate the 8 Kbytes of 
(EP)ROM on those versions of the chip for code ver­
ification and validation. 

TARGET 
.... PTOR 

280140-2 

Figure 1. The VLSiCETM·96 Emulator 

21-325 



inter VLSiCE-96 IN-CIRCUIT EMULATOR 

Memory Examination and Modification 

The memory space for the 8X9X component and its 
target hardware is accessible through the emulator. 
The VLSiCE-96 software allows the component's 
special function registers to be accessed mnemoni­
cally (e.g. AD_RESULT, INT_MASK). A significant 
benefit to the VLSiCE-96 is its ability to read many of 
the write-only registers (e.g. lOCO, PWM_CON­
TROL) and to write many of the read-only registers 
(e.g. AD_RESULT, SBUFRX). 

Data can be displayed or modified in several bases: 
hex, decimal, and binary, and in standard formats 
including: ASCII, real and integer. Program code can 
be disassembled and displayed as assembler mne­
monics. It also can be modified with standard as­
sembler statements. 

Memory locations can also be examined or modified 
by their symbolic references. A symbolic reference is 
a procedure name, line number, or label in the user 
program that corresponds to a memory location. 

Some typical symbolic functions include: 

• Changing or inspecting the value of a program 
variable by using its symbolic name, rather than 
the address of the memory lacation. 

• Defining break and trace events using symbolic 
references. 

• Referencing static variables, dynamic (stack-resi­
dent) variables, based variables, and record 
structures combining primitive data types. The 
primitive data types are ADDRESS, BOOLEAN, 
BYTE, CHAR (character), WORD, DWORD (dou­
ble word), INTEGER, LONGINT, SHORTINT, and 
REAL. 

The VLSiCE emulator maintains a virtual symbol ta­
ble for program symbols making it possible for the 

table to exist without fitting entirely into host RAM 
memory. The size of the virtual symbol table is con­
strained only by the capacity of the disk. 

Breakpoint Specifications 

Breakpoints allow halting of a user program in order 
to examine the effect of the program's execution on 
the tar.get system. Breakpoints can be defined as 
execution addresses, data addresses and data val­
ues (both external and internal RAM), opcodes, se­
lected bits of the PSW flag, and as 2 external inputs 
(SYNCOIN AND SYNC1IN). These breaks can be ar­
ranged to occur over a range of addresses and with 
up to 8 levels of arming and disarming. After a break 
the user program can resume execution from where 
it left off. . 

Trace Specifications 

Tracing can be triggered with the same conditions 
set for breaking. The trace buffer is displayed as dis­
assembled instructions, data fetches and stores, 
and with the timetag showing the relative time at 
which the program executed each instruction. Figure 
2 shows a trace display as a result of the PRINT 
command. 

Normally, the VLSiCE-96 emulator traces program 
activity while the user program executes. With a 
trace specification, tracing can be specified to occur 
only when specific conditions are met during execu­
tion. The trace buffer collects data for up to 4 Kbyte 
entries of information during emulation. 

The trace buffer can be examined during halt mode 
or if non-stop emulation is desired; the trace can be 
examined while emulation continues. If this second 
option is selected, trace collection stops while the 
trace buffer is uploaded to the host. 

Figure 2. The Trace Buffer Display 

21-326 



VLSiCE-96 IN-CIRCUIT EMULATOR 

Arming and Triggering 

The VLSiCE-96 command language allows specifi­
cation of complex events with up to 8 states, each 
with several conditions. For example, a specification 
can be made that causes a break to occur when a 
variable is written only within a certain procedure. 
The execution of the procedure is the arm condition 
and the variable modification is the break condition. 
The arm condition is an optional part of a break/ 
trace sequence in the VLSiCE emulator. A set of arm 
conditions can be used to ensure that a break is not 
possible until all required qualifying conditions are 
satisfied. 

Procedures 

Debugging procedures (PROCS) are a user-named 
group of VLSiCE commands that are executed se­
quentially. Procs can simulate missing hardware or 
software, collect debug information, and make trou­
bleshooting decisions. They can be copied to text 
files on disk, then included from the file into the com­
mand sequence in later test sessions. 

Procedures can also serve as programmable diag­
nostics, implementing new emulator commands for 
special purpose. 

FASTBREAKS 

Fastbreaks make it possible to examine and modify 
memory without halting emulation. The commands 
that can be executed are simple one-access func­
tions, such as, WORD 1 FH or 10SO. When enabled, 
fastbreaks occur whenever a memory access is 
made. 

Breakpoints and tracepoints can be re-specified dur­
ing emulation with fastbreaks enabled. 

While emulation does not halt during fastbreaks, a 
delay in code execution occurs when a fastbreak is 
requested. In most cases, this latency in code exe­
cution is less than 150 JLs. 

Interrupts During Interrogation (101) 
Mode 

The VLSiCE-96 software can service and record in­
terrupts even though emulation has been halted (in­
terrogation mode). In the special mode designated 

as 101 mode, hardware interrupts can be serviced 
while the emulator is being interrogated. 
Use of this mode is determined by the setting of a 
VLSiCE-96 pseudo-variable (IDI_PC). After break­
ing from emulation or fastbreaks mode, whenever an 
interrupt occurs, the processor jumps to the appro­
priate vector and executes the interrupt service rou­
tine. 

The setting of another VLSiCE-96 pseudo-variable 
(I NT _REG_EN) allows the recording of interrupts 
but not the servicing of interrupts, during halt mode. 
If the pseudo-variable is set to TRUE, all interrupts 
are recorded in the INT_PENDING register, and 
serviced when the emulator re-enters emulation. 

Dynamic TraCing 

The trace buffer can be accessed in two ways, dy­
namically during emulation and statically after emu­
lation halts. While dynamically tracing, any form of 
the PRINT command can be entered and the speci­
fied portion of the trace buffer is displayed. This al­
lows real-time display of processor activity. Display­
ing the trace buffer during emulation stops collection 
of trace and some trace information can be lost, but 
emulation is unaffected. 

On-Line Syntax Guide 

A special syntax guide called the Integrated Com­
mand Directory (ICD), at the bottom of the display 
screen, aids in creating syntactically correct com­
mand lines. Figure 3 shows an example of the ICD 
for the GO command. 

HELP 

This feature provides assistance with the emulator 
commands through the host terminal. HELP is avail­
able for most of the commands. Figure 4 shows help 
for one of the commands. 

Multi-Synchronous Operation 

The VLSiCE-96 emulator can run with other emula­
tors, and lab equipment such as logic analyzers or 
oscilloscopes. VLSiCE-96 emulators can be daisy­
chained together in a network to work simultaneous­
ly to test a prototype system. The multi-synchronous 
operation is facilitated by the optional multi-synchro­
nous accessory. 

21-327 



inter VLSiCE-96 IN-CIRCUIT EMULATOR 

hlt> GO 

FROM FOREVER USING rIL ; <execute> 

hlt> GO FROII 

<address>. : <module-name> • <symbol> # < line-number> <expr> 

hl t > GO FROM 2080H 

FOREVER rIL USING; <execute> 

hl t > GO FROll2QBOH USING 

<brkregname> <event reg name> 

hlt> GO FROll2080HUSING brl 

• 7RACI SYlfCSUR7lULLBUl ; <execute> 

280140-3 

Figure 3. The Integrated Command Directory for the GO Command 

DESIGN CONSIDERATIONS 

There are design considerations to be aware of be­
fore designing with the VLSiCE-96 emulator. 

Electrical Considerations 

The user pin timings, thresholds, and loadrngs are 
identical to the 8096 component except the RESET 
and CLKOUT· pins have an additional loading. of 
1 p.A and 10 pF. The Non-Maskable Interrupt (NMI) 
is not supported. 

Clock Frequency 
Vee 

lee 

Min. 
6MHz 

Max. 
10 MHz 

Emulator does not 
require system 
power to operate. 

OmA 

Mechanical Considerations 

The user plug is on the end of a three foot (1 m) 
flexible. cable. Adequate spacing must be provided 
on the target system to allow the emulation proces­
sor board and user plug to be inserted into the target 
system. 

The height of the user plug should be considered for 
multiple board system prototypes that need to be 
debugged and tested. Be sure that the space be­
tween the boards is greater than 1 %" (4 cm) to al­
low for .the user plug. 

Figure 5 shows the user plug dimensions. The user 
plug comprises the emulator processor board and 
the 68-pin or 48-pin adaptor. In the figure, please 
note the location of pin 1 on each adaptor. 

21-328 



VlSiCE-96 IN-CIRCUIT EMULATOR 

hl t > HELP ASM 
The ASM c·ommand displays or modifies memory as 8096 mnemonics. 
The syntax is: 

ASM <asm-spec> 

<asm-spec> : :=<partition> [=' <asm96-inst> , [.' <asm96-inst> ,],~] 
I .<address> = <cr> 

where: 

<partition> specifies the area of memory to be displayed or modified. 

<asm96-inst> specifies the 8096 assembly instructions to be assembled. 

<address> is any valid 8096 address. 

<cr> indicates a carriage-return. 

The "ASM <address> =" syntax puts the user in line-mode, displaying the 
current address at which the assembly instruction will be placed and not 
requiring the quotes around the instructions. 

Please see the VLSiCE-96 User's Guide for more detailed information. 

Figure 4. HELP Screen 

Other Considerations 
• The non-maskable interrupt (NMI) is not support­

ed. 

• The counters for the pulse width modulator 
(PWM) and hardware Timer1 can be out of sync if 
either are disabled during interrogation. Synchro­
nize them by resetting the emulator. 

• The Zero flag is always cleared in the SUBC in­
struction. Therefore, the relational operators 
< = and > for LONG variables in C96 V1.0 and 
LONGINT variables in PL/M-96 V1.1, work incor­
rectly. These languages have been tailored for 
the 8X9X-90 microcontroller which either sets or 
resets the Zero flag in the SUBC instruction. 

If there is a memory-resident program that is perma­
nent on the PC, use of the DOS shell escape may 
corrupt the VLSiCE-986 software. To insure reliabili­
ty, do not use the system escape on host systems 
that have permanent memory-resident programs. 

The VLSiCE-96 emulator has some properties that 
are inherent in the 8X9XBH component. These are: 

• Neither the source nor the destination address of 
the Multiply or Divide instructions can be a writa­
ble special function register. 

• The special function registers, except RO, may 
not be used as base or index registers for in­
dexed or indirect instructions. 

• Several of the special function registers can only 
be accessed as words, while others only as 
bytes. These restrictions are listed in the 8096 
User's Manual. 

• The sticky flag is not affected when a skip by Ois 
executed. 

• To emulate the 8X9X-90 microcontroller, memory 
location 2018H in both target system emulator 
mapped memory should be OFFH. 

• The JBS and JBC instructions cannot be used 
directly on Port 2.1. 

SPECIFICATIONS 

Host Requirements 

An IBM PC XT or PC AT with 512 Kbytes RAM and 
hard disk. Intel recommends and IBM PC AT with 
640 Kbytes of RAM, one floppy drive and one hard 
disk, running PC-DOS 3.1 or later. 

21-329 



inter VLSiCE-96 IN-CIRCUIT EMULATOR 

~ 

\ 68 PIN PGA 
ADAPTOR ......... ........... .. .. .. .. .. .. .. .. .. :: .. 

f .. . . 
PIN1- ........... ......... 

( 
0 ..,. or-

3.2" 

) 
I 

68-PIN 
PLCC ADAPTOR -0-; ............... . ! i 

PIN 1 i ! 
I i 
:.' .......... -.... . 

48 PIN DIP 
ADAPTOR 

�· .. -------4.8"·-------~1 PIN1 

280140-4 

Figure 5. Dimensions for the Emulator Processor Boara and Adaptors 

An Intellec® Microcomputer Development System, 
Series III or Series IV, running under ISIS or iNDX, 
with at least 512 Kbytes of application memory resi­
dent, with dyal floppy or one hard disk and one flop­
py drive required. 

VLSiCE-96 Software Package 

VLSiCE-96 emulator software 

VLSiCE-96 confidence tests 

VLSiCE-96 tutorial software 

System Performance 

Mappable zero wait- Min 0 Kbytes Mappable to 
state (up to 10 MHz). Max 64 Kbytes user memory 

or ICE memory 
in 1K blocks 
on 1 K bounda­
ries. 

Trace Buffer 4 Kbytes x 48 bits 

Virtual Symbol Table A maximum of 61 Kbytes of 
host memory space is avail­
able for the virtual symbol ta­
ble (VST). The rest of the VST 
resides on disk and is paged 
in and out of host memory as 
needed. 

Physical Characteristics 

Controller Pod 

Width: 

Height: 

Depth: 

Weight: 

8%" (21 cm) 

1%" (4 cm) 

13% (34 cm) 

4 Ibs (2 kg) 

21-330 



VLSiCE-96 IN-CIRCUIT EMULATOR 

Power Supply 

Width: 7%" (18 cm) 

Height: 4" (10 cm) 

Depth: 11" (28 cm) 

Weight: 15 Ibs (7 kg) 

User Cable 

3' (1 m) 

Serial Cable 

12' (4 m) 

Electrical Characteristics 

Power Supply 

100V-120V or 200V-240V (selectable) 

50 Hz-60 Hz 

2 amps (AC max) @ 120V 

1 amp (AC max) @ 240V 

Environmental Characteristics 

Operating Temperature: O°C to +40°C (+32°F to 
+ 104°F) 

Operating Humidity: 

DOCUMENTATION 

Maximum of 85% relative 
humidity, non-condensing 

VLSiCE-96 In-Circuit Emulator User's Guide, order 
number 165814 

VLSiCE-96 In-Circuit Emulator Pocket Reference, 
order number 165815 

VLSiCE-96 In-Circuit Emulator Installation Supple­
ment, order number 166477 

VLSiCE-96 Emulator Tutorial Guide, order number 
165816 

Debug Editor User's Guide, order 167098 

ORDERING INFORMATION 

Emulator Hardware and Software 

Order Code 

V096KITA 

V096KITD 

V096KITAS 

V096KITS 

Description 
VLSiCE-96 power supply and cable, 
emulation base, user cable, CPA, seri­
al cables for PC AT and PC XT, 68-pin 
PGA target adaptor, ASM-96, AEDIT 
text editor. Host, probe, diagnostic 
and tutorial software is on 5%" media 
for DOS hosts running DOS V3.0 or 
greater. [Requires software license.] 

Same as V096KIT AD without ASM-96 
and AEDIT text editor. 

VLSiCE-96 power supply and cable, 
emulation base, user cable, serial ca­
ble, CPA, 68-pin PGA target adaptor, 
ASM-96, and AEDIT text editor. Host, 
probe, diagnostic and tutorial soft­
ware is on 8" single density and 8" 
double density media for hosting on 
an Intel Series III, and 5%" media for 
Series IV [Requires software license.] 

Same as V096KIT AS without ASM-96 
and AEDIT text editor. 

Target Adaptor 

Order Code Description 

T A096E Optional 68-pin PLCC Adaptor board 

TA0968 Optional 48-pin DIP Target Adaptor 
board .. 

Multi-Synchronous Accessory 

Order Code Description 

MSA96 Optional Multi-Synchronous Accesso­
ry for multi-ICE capability. 

21-331 



inter VLSiCE-96 IN-CIRCUIT EMULATOR 

Software Only 

Order Code Description 

SA096D Software for host, probe, diagnostic 
and tutorial on 5'\4" media for use 
with the PC AT and PC XT under PC­

. DOS V3.0 or greater. [Requires soft-
ware license.] 

SA096SD Software for host, probe, diagnostic 
and tutorial on 5'\4" media for use 
with the PC AT and PC XT under PC­
DOS V3.0 or greater. [Requires soft­
ware license.] 

SA096S Software for host, probe, diagnostic 
and tutorial on 8" single density and 
8" double-density media for use with 
a Series III, and 5'\4" media for use 
with a Series IV. [Requires software 
license.] 

Other Useful Intel 8X9X Debug and 
Development Support Products 

Order Code 

186ASM96 

186PLM96 

Description 

Consists of the ASM 96 macro as­
sembler that translates symbolic 
'assembly language mnemonics 
into relocatable object code, and 
the RL96 linker and relocator pro­
gram that links modules generated 
by ASM 96 and PLIM 96 and lo­
cates the linked object modules to 
absolute memory locations. Sys­
tem requirements, and Intellec Sys­
tem running iNDX. 

Consists of the PL/M 96 compiler 
that provides high level program­
ming language support, the LIB 96 
utility that creates and maintains li­
braries of software object modules, 
the FPAL96 floating point arithme­
tic library, and the RL96 linker and 
relocator program that links mod­
ules generated by ASM 96 and 
PL/M 96 and locates the linked ob­
ject modules to absolute memory 
locations. System requirements 
and Intellec System running iNDX. 

D86ASM96NL 

D86PLM96NL 

D86C96NL 

pSBE96SKIT 

pSBE96DKIT 

ASM/R&L 96 for PC-DOS. It con­
tains a macro assembler, a linker/ 
locator utility, a floating point utility 
and a librarian. System require­
ments are an IBM PC AT or PC XT 
with 512 Kbytes of RAM and PC­
DOS 3.0 or greater . 

PL/M 96 and R&L for PC-DOS. It 
contains a compiler, a linker/loca­
tor utility, a floating point utility and 
a librarian. System requirements 
are an IBM PC AT or PC XT with 
512 Kbytes of RAM and PC-DOS 
3.0 or greater. 

C96 and R&L for pC-DOS. Con­
tains a compiler linker/locator utili­
ty, and all standard C libra~ies 
including STDIO. System reqUire­
ments are an IBM PC AT or PC XT 
with 512 Kbytes of RAM and PC­
DOS 3.0 or greater. 

iSBE-96 single board emulator for 
use with the Series III/IV develop­
ment systems. The kit contains: 

iSBE-96 single board emulator 

iSBE-96 Series III/IV upgrade kit 
(cables and software needed to 
run on Intel Hosts). 

iSBE-96 single board emulator for 
use with the IBM PC AT and PC XT 
computer systems. The kit con­
tains: iSBE-96 single board emula­
tor 8096 software support package 
for PC-DOS. iSBE-96 DOS up­
grade kit (cables and software 
needed to run on the IBM PC AT or 
PCXT). 

Running the iSBE-96 emulator.on the Series II and 
iPDS system requires software from: 

U.S. Software Corporation 
5470 N.w. Innisbrook 
Portland, OR 97229 
Phone: 503-645-5043 
International Telex: 4993875 

21-332 



KE \L-'I'nIE 'I'K \'SP\KEI\'I' 80C; 196 I'-C:IKC:II'I' E'IUL \'I'OK 

REAL-TIME TRANSPARENT BOCI96IN-CIRClJIT EMlJLATOR 
The ICE-196PC in-circuit emulator delivers real-time high-level debugging capabilities for developing. 
integrating and testing 80C 196-based designs. Operating at the full speed of the 80C 196 
microcontroller. the ICE-196PC provides precise 110 pin timings and functionality. The ICE-196PC 
also allows you to develop code before prototype hardware is available. The ICE-196PC in-circuit 
emulator represents a low-cost development environment for designing real-time microcontroller­
based applications with minimal investment in time and resources. 

ICE""-196PC IN CIRClJlT EMlJLATOR I'EATlJRES 
• Real-Time Emulation of the 80C 196 • Symbolic Support and Source Code Display 

Microcontroller • Standalone Operation 
• 64K Bytes of Mappable Memory • Versatile and Powerful Host Software 
• 2K -entry Trace Buffer 
• 3 Breakpoints or 1 Range Break 

• Hosted On IBM PC XT. AT* or Compatibles 
With DOS 3.0 or Later 

REAL-TIME EMlJLATlON 
The ICE-196PC provides real-time emulation with the precise inpuVoutput pin timings and functions 
across the full operating frequencies of the 80C196 microcontroller. The ICE-196PC connects to the 
intended 80C196 microcontroller socket via a 16' flex cable. which terminates in a 68-pin PLCC 
probe. 

MAPPABLE MEMOR), 
The ICE-196PC has 64K bytes (65.536) of zero wait-state memory 
that can be enabled or mapped as read-only. write-only or readlwrite 
in 4K byte increments to simulate the internal (EP)ROM of the 
80C196 or external program memory. 

intJ-------
·PC XT, AT are trademarks 0( IBM. 
Intel CorporaUon assumes no responsibility for the use d any circuitry other than circuitry embodied In an Intel product, No otller circuit pal.enlltcenses are 
Implied. Information contained herein supersedes previously published specificatIons on these devices from Intel. 

© Intel Corporation 1987 21-333 "~G~ST. 1".7 
Order Number:280727.oot 



TR.4CE BllFl'ER 
The ICE-196PC contains a 2K (204B) entry trace buffer for 
keeping a history of actual instruction execution_ The trace 
buffer can be displayed as disassembled instructions or, 
optionally, disassembled instructions and the original C-96 
and PL/M-96 source code. 

BRE.4K SPECIFlC.4TlON 
Three execution address breakpoints or one range of 
addresses can be active at any time. The ICE-196PC 
allows any number of breakpoints to be defined and 
activated when needed. 

SYMBOUC SIlPPORT .4ND SOIlRCE 
CODE DISPlAY 
Full ASM-96, PUM-96 and C-96 language symbolics, 
including variable typing and scope, are supported by the 
ICE-196PC memory accesses, trace buffer display, 
breakpoint specification, and assembler/disassembler. 
Additionally. C-96 and PL/M-96 source code can be 
displayed to make development and debug easier. 

(1" Ii I i Ii' lilt" 
HOST REt)lllREMENTS 
IBM PC XT. AT (or compatible) 

512K bytes RAM. Hard Disk 
PC-DOS 3.0 or Later 
One Unused Peripheral Slot 
DC Current 2.5A 

T.4RGET INTERE'.4CE BO.4RD 
Length 2.0" (5.1cm) 
Height 1.2" (3.0cm) 
Width 2.3' (5.Bcm) 

IlSER C.4BLE 
Length 15.6" (39.6cm) 

PROBE ELECTRIC.4L 
80C 196* plus per pin 

Icc (From target system) 
Operating Frequency 

50pF loading 
5ns propagation delay 
50mA.@ 12 MHz 
35 to 12 MHz. 12 MHz only 
with CPA 

ENVIRONMENT.4L CH.4R.4CTERISTICS 
Operating Temperature 10°C to 40°C 

37.5°F to 104°F 
Operating Humidity Maximum 55 % Relative 

Humidity. non-condensing 

*This emulator supports the initial BOC 196 
microcontroller. The HOLD/HOLDA Feature will be 
supported by a Future product. 

ST.4ND.4WNE OPER.4TlON 
Product software can be developed prior to hardware 
availability with the optional Crystal Power Accessory 
(CPA) and the ICE-196PC mappable memory. The CPA also 
provides diagnostic testing to assure full functionality of 
the ICE-196PC. 

VERS.4TlLE .4ND POWERFIlL HOST 
SOFl'W.4RE 
The ICE-196PC comes equipped with an on-line help 
Facility, a dynamic command entry and syntax guide. built­
in editor, assembler and disassembler, and the ability to 
customize the command set via literal definitions and 
debug procedures. 

HOSTING 
The ICE-196PC is hosted on the IBM PC XT. AT or 
compatibles with PC-DOS 3.0 or later. 

r FLEX CAlLE 

.... cc_ 
ORDERING INI'ORM.4TlON 
Order (JOffe 
ICE-196PC 

ICE-196PCB 

CPA196 

DB6C96NL 
DB6PLM96NL 
DB6ASM96NL 

Desulptloa 
Emulation Board. user cable, target 
interFace board (PLCC). host, 
diagnostic, and tutorial soFtware on 
5 Y4" DOS diskette. and Crystal Power 
Accessory with power cable 
Same as above except does not 
include Crystal Power Accessory 
Crystal Power Accessory and power 
cable only 
C-96 Compiler* 
PUM-96 Compiler* 
ASM-96 Assembler* 

*Includes: Relocator/Linker. Object-to-hex Cohverter. 
Floating Point Arithmetic Library, Librarian 

For more inFormation or the number of your nearest sales 
office call BOO-54B-4725 (good in the U.S. and Canada). 

UNITED STATES. Intel Corporation 
3065 Bowers Ave .. Santa Clara, CA 95051 
Tel: (408) 9B7-8080 

21-334 . 



MSC®-96 INDEX 

A 
A-Bus, 17-02 
A/D Converter, 17-33, 19-01, 19-09, 19-19 

Actual and Ideal Characteristic, 19-13 
Block Diagram, 19-09 
Commands, 17-34, 17-57 
Differences (S097 vs S097BH), 19-15 
Interface Suggestions, 19-10 
Reference Voltages, 19-11 
Results, 17-34, 17-57 
Sample and Hold, 17-34 
Sampling Circuitry, 19-10 
Suggested Input Circuit, 19-11 
Transfer Function, 19-11 

aa, IS-01 
Absolute Error-AID Converter, 19-16 
Actual Characteristic-AID Converter, 19-15, 19-16 
ADO (Address/Data 0), 19-20 
ADO-AD15 (AddresslData 0-15), 17-0S 
ADD (Add words), IS-02 
ADDB (Add bytes), IS-03 
ADDC (Add words with Carry), IS-04 
ADDCB (Add bytes with Carry), 18-04 
Address 32-Bit Operands, 17-22 
Address Decoding, 19-24 
Address Valid Strobe Mode, 17-12 
Address Valid with Write Strobe, 17-13 
Address/Command/Data .Bus, 19-31 
Addressing Modes, IS-0 1 

Immediate, 17-16, IS-01 
Indirect, IS-01 
Indirect with Auto-Increment, 17-16 
Long-Indexed, 17-16, IS-01 
Register Direct, IS-01 
Short Indexed, 17-16, IS-01 
Stack Pointer Register, 17-17 
Zero Register, 17-17 

ADV (Address Valid), 17-12 
ALE (Address Latch Enable), 17-0S, 17-11, 17-12, 

19-09, 19-20, 19-26 
ALU (Arithmetic Logic Unit), 17-02 
Analog Inputs, 19-09 
Analog Interface, 17-33 
Analog Output, 19-17 
Analog Reference Voltages-AID Converter, 19-11 
Analog-to-Digital Conversion (AID), 17-33, 19-09 
Analog/Digital Converter (D/A), 17-35 
AND (Logical And Words), 18-05 
ANDB (Logical And Bytes), 18-06 
ANGND (Analog Ground), 17-33, 19-01, 19-11 
Assembly Language Addressing Modes, 17-17 
Auto Programming, 19-32 

B. 
Back-Bias Generator, 19-03 
baop, 18-01 
Baud Rates, 17-38, 17-57, 19-19 
BEA,18-01 
BHE (Bus High Enable), 17-08, 17-11, 19-09, 19-20, 

19-24 
Bit Operands, 17-14 
bitno, 18-01 
BR (Indirect), 18-07 
Branch, 18-07 
Break-Before-Make-AID Converter, 19-16 
breg, 18-01 
Bus (System), 17-08, 17-40, 19-09, 19-20 
Bus Control, 17-11 
Bus Timings, 19-21 
BUSWIDTH, 17-10, 19-24 
Byte Operands, 17-14, 17-19 

c 
C Flag (see Carry Flag), 17-18 
cadd, 18-01 
CALL, 18-26, 18-40 
CAM (Content Addressable Memory), 17-28 
Carry Flag, 17-18, 18-41 
CCB (Chip Configuration Byte), 17-10, 19-36 
CCR (Chip Configuration Register), 17-09, 17-59, 

19-21, 19-36 
CEA,18-01 
Channel-To-Channel Matching-AID Converter, 

19-16 
Characteristic-AID Converter, 19-16 
Chip Configuration Byte (see CCB), 17-10 
Chip Configuration Register (see CCR), 17-09 
Circuit 

Auto Programming, 19-32 
Configuration Byte Programming, 19-36 
D/A,19-18 
Gang Programming, 19-33 
Oscillator, 19-02 
Reset, 19-04 
Suggested AID Input, 19-11 

Clear Byte Instruction, 18-08 
Clear Carry Flag, 18-08 
Clear Word Instruction, 18-07 
Clearing the HSO, 17-32 
CLKOUT (Clock Out), 17-03, 17-09, 19-09, 19-21 
CLR (Clear Word), 18-07 
CLRB (Clear Byte), 18-08 
CLRC (Clear Carry Flag), 18-08 
CLRVT (Clear Overflow Trap), 18-09 
CMP (Compare Words), 17-19, 18-09 

21-335 



C (Continued) 
CMPB (Compare Bytes), 17-19, 18-10 
Code-AID Converter, 19-16 
Code Center-AID Converter, 19-16 
Code Transition-AID Converter, 19-16 
Code Width-AID Converter, 19-16 
Compare Bytes Instruction, 18-10 
Compare Words Instruction, 18-09 
Complement Instruction, 18-35, 18-36, 
Condition Flags, 17-18 
Conditional Jumps, 17-19 
Configuration Byte Programming, 19-36 
Content Addressable Memory (CAM), 17-28 
CPU (Central Processing Unit), 17-01 
Critical Regions, 17-26 
Crosstalk-AID Converter, 19-16 

D 
D-Bus, 17-02 
D.C. Input Leakage-AID Converter, 19-16 
DIA Circuits, 19-18 . 
DIA Converter, 19-17 
D/A Digital/Analog Converter, 17-35 
Data Program Command, 19-34 
Data Program/Verify Signals, 19-35 
Data Verify Command, 19-35 
DEC (Decrement Word), 18-10 
DECB (Decrement Byte), 18-11 
Decrement Byte Instruction, 18-11 
Decrement Word Instruction, 18-10 
DI (Disable Interrupts), 17-25, 17-27, 18-11 
Differential Non-Linearity-A/D Converter, 

19-15, 19-16 
Disabling The Watchdog, 17-43 
DIV (Divide Integers), 18-12 
DIVB (Divide Short-Integers), J8~12 
Divide, 18-12, 18-13 
DIVU (Divide Words), 18-13 
DIVUB (Divide Bytes), 18-13 
DJNZ (Dec and Jump if Not Zero), 18-14 
Double-Word Operands, 17-15, 17-19 
Drive and Interface Levels, 19-06 

E 
EA (External Access), 17-07, 17-10, 17-43, 

19-01, 19-30, 19-38 
EI (Enable Interrupts), 17-25, 17-27, 18-14 
EPROM, 17-07 

Erasing, 19-39 
Lock, 17-13, 19-38 
Programming, 19-30 
Timings, 19-28 

Erasing the 879XBH EPROM, 19-39 
Examples 

Memory Systems, 19-25 
Port Reconstruction, 19-29 
Run-Time Programming, 19-37 
System Verification, 19-26 

E 
EXT (Sign Extend Integer into Long-Integer), 17-19, 

18-15 
EXTB (Sign Extend Short-Integer into Integer), 17-19, 

18-15 
External Clock Drive, 17-03, 19-2 

F 
Feedthrough-A/D Converter, 19-15, 19-16 
FIFO (see HSI), 17-30 
Flag Settings, 18-01 
Flags, 17-18 
FPAL-96, 17-19 
Full-Scale Error-AID Converter, 19-15, 19-16 

G 
Gang Programming 

Auto, 19-32 
Slave, 19-35 

Generic Jumps and Calls, 18-01 
BH, 18-01 
BR, 18-01 
CALL,18-01 
JH, 18-01 
LCALL, 18-01 
LJMP, 18-01 
SCALL, 18-01 
SIMP, 18-01 

Global Interrupt Enable Bit (I Bit), 17-25 

H 
Hardware Connections minimum, 19-01, 19-04 
High Speed Inputs (see HSI), 17-28, 17-29 
High Speed Outputs (see HSO), 17-28, 17-31 
HSI, 17-28 

Input Timings, 19-18 
Interrupts, 17-30 
Modes, 17-30, 17-57 
Status, 17-30, 17-57 

HSO, 17-28, 17-36, 19-17 
CAM, 17-31 
Clearing, 17-32 
Command Tag, 17-32 
Interrupts, 17-31 
Output Timings, 19-18 
Pins, 19-08 
Status, 17-31, 17-32 

I Bit (Global Interrupt Enable Bit), 17-25 
1/0 Control Register 0 (lOCO), 17-41 
I/O Control Register 1 (lOCI), 17-42 
I/O Control Registers, 17-41 
1/0 Ports, 17-39 
1/0 Status Register 0 (IOS 1), 17-42 
I/O Status Register 1 (IOS2), 17-42 

21-336 



I (Continued) 
1/0 Timings, 19-18 
Ideal AID Characteristic-AID Converter, 

19-11, 19-16 
Immediate Addressing, 17-16, 18-01 
INC (Increment Word), 18-16 
INCB (Increment Byte), 18-16 
Increment Instruction, 18-16 
Indirect Addressing, 17-15, 18-01 
Indirect Shifts, 18-01 
Indirect with Auto-Increment Addressing, 17-16 
Input Ports, 17-39, 17-40, 19-08 
Input Resistance-AID Converter, 19-16 
INST (Instruction), 19-20, 19-24 
INST Line Usage, 19-24 
Instruction Set, 17-18, 18-01 
Instruction Summary, 17-20, 17-21, 17-52, 17-53 
Integer Operands, 17-14, 17-19 
Interface Levels, 19-06 
Internal Memory 

EPROM,17-07 
RAM,17-04 
ROM,17-07 

Internal Ready Control, 17-13 
Internal Timings, 17-03, 19-03 
Interrupt, 17-23, 17-24 

Control, 17-25 
Disable, 18-11 
Enable, 18-14 
Flags, 17-18 
Global Disable, 17-25 
HSI, 17-30 
HSO, 17-32 
Mask Register, 17-25 
Nonmaskable, 17-04 
Pending Register, 17-25, 17-27 
Priorities, 17-25 
Serial Port (TI/RI), 17-37, 19-19 
Software Timers, 17-33 
Timer, 17-28 
Timing, 17-27 
Vectors, 17-25, 17-58 

lOCO, 17-28, 17-41, 17-58 
lOCI, 17-28, 17-42, 17-58 
IOS0, 17-42; 17-58 
IOS1, 17-28, 17-42, 17-58 
IRCO, IRCI Internal Ready Control, 17-31 

J 
JBC (Jump if Bit Clear), 18-17 
JBS (Jump if Bit Set), 18-18 
JC (Jump if Carry Flag Set), 18-18 
JE (Jump if Equal), 18-19 
JGE (Jump if Signed Greater Than or Equal), 18-19 
JGT (Jump if Signed Greater Than), 17-19, 18-20 
JH (Jump if Higher Unsigned), 17-19, 18-20 
JLE (Jump if Less Than or Equal), 18-21 
JLT (Jump if Signed Less Than), 18-21 
JNC (Jump if Carry Flag is Clear), 18-22 
JNE (Jump if Not Equal), 18-22 

J 
JNH (Jump if Not Higher Unsigned), 18-23 
JNST (Jump if Sticky Bit is Clear), 18-23 
JNV (Jump if Overflow Flag is Clear), 18-24 
JNVT (Jump if Overflow Trap is Clear), 18-24 
JST (Jump if Sticky Bit is Set), 18-25 
Jump, 18-29, 18-50 

Conditional, 17-19 
if Carry Flag Clear, 18-22 
if Sticky Bit Clear, 18-23 
on Bit Clear, 18-17 
on Bit Set, 18-18 
on Carry Flag Set, 18-18 

Jump to Self, 19-37 
JV (Jump if Overflow Flag is Set), 18-25 
JVT (Jump if Overflow Trap is Set), 18-26 

L 
LCALL (Long Call), 18-26 
LD (Load Word), 18-27 
LDB (Load Byte), 18-27 
LDBSE (Load Integer with Short-Integer), 17-19, 

18-28 
LDBZE (Load Word with Byte), 18-28 
Least Significant Bit-AID Converter, 19-16 
UMP (Long Jump), 18-29 
Load, 18-27 
Load Sign Extended, 18-28 
Load Zero Extended, 18-28 
LOCO LOCI Program Lock Control, 17-13 
Lock Modes, 17-13 
Lock Program, 19-38 
Long-Indexed Addressing, 17-16, 18-01 
Long-Integer Operands, 17-15, 17-19 
lreg, 18-01 
LSB-Least Significant Bit-AID Converter, 19-16 

M 
MAO (Memory Address 0), 19-24 
MAO-MAI5 (Memory Address 0-15), 17-08 
Memory 

Interface, 19-20 
Map, 17-04, 17-51 
Reserved Locations, 17-07 
Timings, 17-09 

Memory Controller, 17-01, 17-02, 17-08 
Missed Codes-AID Converter, 19-15, 19-16 
Mode 0 Timings Serial Port, 19-19 
Mode 2 and 3 Timings Serial Port, 19-20 
Modified Quick-Pulse Programming, 19-39 
Monotonic-AID Converter, 19-15, 19-16 
Monotonicity-A/D Converter, 19-16 
MUL (Multiply Integers), 18-29, 18-30 
MULB (Multiply Short Integers), 18-30, 18-31 
Multiply, 18-29, 18-30, 18-31, 18-32, 18-33 
Multiprocessor Communications, 17-39 
MULU (Multiply Words), 18-31, 18-32 
MULUB (Multiply Bytes), 18-32, 18-33 

21-337 



N 
N Flag (see Negative Flag), 17-18 
NEG (Negate Integer), 18-33 
Negate Instruction, 18-33, 18-34 
Negative Flag, 17-18 
NEGB (Negate Short-Integer), 18-34 
NMI (Non-Maskable Interrupt), 17-04, 19-01 
No Missed Codes-AID Converter, 19-15, 19-16 
Noise Protection, 19-28 
Non-Linearity-AiD Converter, 19-15, 19-16 
N onmaskable Interrupt, 17-04 
NOP (No-Operation), 18-34 
NORML (Normalize Long-Integer), 17-19, 17-27, 

18-35 
NOT (Complement Word), 18-35 
NOTB (Complement Byte), 18-36 

o 
Off-Isolation-AID Converter, 19-15, 19-17 
Opcode, 18-01 
Opcode List, 17-54, 17-55, 17-56 
Open Drain Ports, 19-08 
Operand Addressing, 17-15 
Operand Types, 17-14 
Operating Modes, 17-09 
OR (Logical OR Words), 18-36 
ORB (Logical OR Bytes), 18-37 
Oscillator, 17-03, 19-01, 19-02 
Output Ports, 17-40 
Overflow Flag, 17-18, 18-24, 18-25 
Overflow Trap, 17-18, 18-09, 18-24, 18-26 

p 
Packaging, 17-48, 19-29 
Packaging Diagram, 17-49 
PACT (programming Active), 19-31 
PALE (Programming ALE Input), 19-31 
PC (Program Counter), 17-02, 18-01 
PCCB (Programming CCB), 17-10, 19-30, 19-36 
PCCR Programming Chip Configuration Register 

(PCCR), 19-30 
PDO (Program Duration Overflow), 19-31 
Phase 

Internal Clock, 17-03 
Pin Description, 17-44, 17-45, 17-46 
Pin List, 17-47 
Pinouts, 17-50 
PLM-96, 17-22 
PLMREG, 17-22 
PMODE (Programming Mode), 17-59, 19-30, 19-31 
POP (POP Word), 18-37 
Pop Flags, 18-38 
Pop Word, 18-37 
POPF (Pop Flags), 17-27, 18-38 
Port 0, 17-40 

Timings, 19-19 
Port 1, 17-40 

Timings, 19-19 

p 
Port 2, 17-39, 17-40, 17-59 

Alternate Functions, 17-39 
Timings, 19-19 

Port 3, 17-40, 19-31 
Timings, 19-19 

Port 4, 17-40, 19-31 
Timings, 19-19 

Port Reconstruction, 19-28 
Power Down, 17-05. 
Power Down Circuitry, 19-06 
PROG (Programming Pulse), 19-31 
Program Counter (PC), 17-02, 18-01 
Program Lock, 17-13, 19-38 
Program Status Word (PSW), 17-02, 17-17, 17-25 
Program Verified, 19-31 
Program/Verify Signals, 19-35 
Programming, 19-30 

Auto, 19-32 
Configuration Byte, 19-36 
Gang-Auto, 19-32 
Gang-Slave, 19-35 
Mode Select, 19-31 
Modes, 19-30 
Run-Time, 19-37 
Slave, 19-34 

Programming Active, 19-31 
Programming ALE Input, 19-31 
Programming Chip Configuration Byte (PCCB), 17-10, 

19-30 
Programming Duration Overflow, 19-31 
Programming Mode Pin Definitions, 19-31 
Programming Pulse, 19-31 
PSW (Program Status Word), 17-02, 17-17, 17-25 
Pulse Width Modulation (see PWM), 17-35 
PUSH (Push Word), 18-38 
Push Flags, 18-39 
Push Word, 18-38 
PUSHF (Push Flags), 17-27, 18-39 
PVER (Program Verified Output), 19-31 
PWM 

Using the HSO, 17-36 
PWM (Pulse Width Modulation), 17-35, 19-09, 19-17 

Q 
Quasi-Bidirectional Hardware Connections, 19-06 
Quasi-Bidirectional Port, 17-40, 19-06, 19-07 
Queue, 17-08 

R 
RALU (Register/Arithmetic Logic Unit), 17-01, 17-02 
RAM 

Internal Memory, 17-04 
RD (Read), 17-09, 19-09, 19-20 
Read, 17-09 
Ready, 17-09, 17-13, 19-21 
Ready Control, 17-13 

21-338 



R (Continued) 
Receive Interrupt (RI), 17-37, 19-19 
Register Direct Addressing, 17-15, 18-01 
Register File, 17-01, 17-02, 17-04 
Register Utilization, 17-22 
REN (Receiver Enable), 17-37, 19-19 
Repeatability-AID Converter, 19-17 
Reserved Memory Locations, 17-07 
Reset, 17-03, 17-05, 17-43, 19-03 

Instruction, 18-40, 19-28 
Multiple Chip, 19-04 
Sequence, 19-03 
Status, 17-44 
Sync Mode, 17-44 

Reset Signal, 17-43 
Resolution-AID Converter, 19-17 
RET (Return), 18-39 
Return, 18-39 
RI (Receive Interrupt), 17-37, 19-19 
ROM,17-07 
ROMIEPROM Dump Mode, 19-38 
ROMIEPROM Lock, 17-13, 19-38 
RST (Reset Instruction), 18-40, 19-28 
Run-Time Programming, 19-37 
RXD (Receive Pin), 19-09 

S 
SALE (Slave ALE), 19-31 
Sample Delay-AID Converter, 19-17 
Sample Delay Uncertainty-AID Converter, 19-17 
Sample Time-AID Converter, 19-17 
Sample Time Uncertainty-AID Converter, 19-17 
Sample Window-AID Converter, 19-17 
Sampling Circuitry-AID Input, 19-10 
SBUF (Serial Port Buffer), 17-37 
SCALL (Short Call), 18-40 
Security Key, 19-38 
Serial Port, 17-36 

Buffer (SBUF), 17-37 
Control/Status, 17-37 
Mode 0, 17-36 
Mode 0 Example, 19-20 
Mode 0 Timings, 19-19 
Mode 1, 17-37 
Mode 2, 17-37 
Mode 2 and 3 Timings, 19-20 
Mode 3, 17-37 
Timings, 19-19 

SETC (Set Carry Flag), 18-41 
SFR, 17-01, 17-04, 17-05 
SFR Summary, 17-06, 17-57 
Shift Indirect, 18-01 
SHL (Shift Word Left), 18-41 
SHLB (Shift Byte Left), 18-42 
SHLL (Shift Double-Word Left), 18-43 
Short-Indexed Addressing, 17-16, 18-01 
Short-Integer Operands, 17-14, 17-19 
SHR (Logical Shift Right Word), 18-44 

S 
SHRA (Arithmetic Shift Right Word), 18-45 
SHRAB (Arithmetic Shift Right Byte), 18-46 
SHRAL (Arithmetic Shift Right Double-Word), 18-47 
SHRB (Logical Shift Right Byte), 18-48 
SHRL (Logical Shift Right Double-Word), 18-49 
SID (Slave ID), 19-31 
Sign Extend, 18-15 
Signature Word, 19-39 
SIGND, 17-27 
SJMP (Short Jump), 18-50 
SKIP (Two Byte No-Operation), 18-50 
Slave ALE, 19-31 
Slave ID Number, 19-31 
Slave PC, 17-02, 17-08 
Slave Programming, 19-34 
Slave Programming Mode Commands, 19-34 
Slave Programming Pulse, 19-31 
Software Overview, 17-14 
Software Protection, 17-43 
Software Standards, 17-22 
Software Timers, 17-33 
Software Trap, 18-55 
Special Function Register (see SFR), 17-01 
SPROG (Slave Programming Pulse), 19-31 
SP _CON, 17-37, 17-38, 17-57 
SP_STAT, 17-37, 17-38, 17-57 
ST (Store Word), 18-51 
ST Flag (see Sticky Bit), 17-18 
Stack Pointer, 17-04 
Stack Pointer Register Addressing, 17-17 
Standard Bus Control, 17-11 
Standard 1/0 Ports, 19-19 
State Time, 17-03 
State Time List, 17-54, 17-55, 17-56 
Status and Control Registers, 17-41 
STB (Store Byte), 18-51 
Sticky Bit, 17-18, 18-25 
Store, 18-51 
SUB (Subtract Words), 18-52 
SUBB (Subtract Bytes), 18-53 
SUBC (Subtract Words with Borrow), 18-54 
SUBCB (Subtract Bytes with Borrow), 18-54 
Subroutine Linkage, 17-22 
Subtract, 18-52, 18-53, 18-54 
Successive Approximation-AID Converter, 19-17 
Sync Mode, 19-05 
System Bus, 17-08, 17-40, 19-09, 19-20 
System Bus Timings, 19-21 
System Verification, 19-26 

T 
T2CLK (TIMER2 Clock), 19-19 
T2RST (TIMER2 Reset), 17-32 
TAVDV (ADDRESS Valid to DATA Valid), 19-22, 

19-27 
TAVGY (ADDRESS Valid to BUSWIDTH Valid), 

19-22 

21-339 



T (Continued) 
TAVLL (ADDRESS Valid to ALE/ ADV Low), 19-23, 

19-27 
TB8/RB8, 17-37 
TCHCH (CLKOUT High to CLKOUT High), 19-23 
TCHCL (CLKOUT High to CLKOUT Low), 19-23 
TCLLH (CLKOUT Low to ALE High), 19-23 
TCLVL (CLKOUT Low to ALE/ADV Low), 19-23 
TCLYX (READY Hold after CLKOUT Low), 19-22 
Temperature Coefficients-AID Converter, 19-17 
Terminal Based Characteristic-AID Converter, 

19-14, 19-17 
Test, 19-01, 19-24 
THLHH (WRL WRH low to WRL WRH high), 

19-23, 19-27 
TI (Transmit Interrupt), 17-37, 19-19 
Timer 2, 17-32 
Timer Interrupts, 17-28 
Timings 

Definitions, 19-22, 19-23 
HSI/HSO, 19-18 
I/O, 19-18 
I/O Ports, 19-19 
Internal, 17-03, 19-03 
Serial Port, 19-19 
System Bus, 19-21 

TLHLL (ALE/ADV High to ALE/ADV Low), 19-23 
TLLAX (ALE/ ADV Low to ADDRESS Invalid), 

19-23 
TLLCH (ALE/ADV Low to CLKOUT High), 19-23 
TLLGV (ALE/ ADV. Low to BUSWIDTH Valid), 

19-22 
TLLGX (BUSWIDTH Hold after ALE/ ADV Low), 

19-22 
TLLHL (ALE/ ADV Low to WRL WRH Low), 19-23 
TLLRL (ALE/ ADV Low to RD Lo~19-23 
TLLRL (ALE/ ADV Low to RD or WR Low), 19-27 
TLLYH (ALE/ADV Low to READY High), 19-22 
TLLYL (ALE/ADV Low to READY Low), 19-22 
TOHCH (XTALl High to CLKOUT High), 19-23 
TOSC (Oscillator Period), 19-22 
TQVHL (OUTPUT Valid to WRL WRH Low), 19-23 
TQVWH (OUTPUT Valid to WR High), 19-23, 19-28 
Transmit Interrupt (TI), 17-37, 19-19 
TRAP (Software Trap), 17-27, 18-55 
TRHBX (RD High to INST BHE AD8-ADI5 Inval-

id), 19-23 
TRHDZ (RD High to DATA Float), 19-22 
TRHLH @Q High to ALE/ ADV High), 19-23 
TRLDV (RD Low to DATA Valid), 19-22, 19-27 
TRLRH (RD Low to RD Hi~9-23 
TWHBX (WR High: to INST BHE AD8-ADI5 Inval-

id), 19-23 
TWHLH (Write High to ALE/ADV High), 19-23 
TWHQX (WR High to OUTPUT Not valid), 19-23 
TWLWH (WR Low to WR High), 19-23 
TXD (Transmit Pin), 19-09 
TYLYH (READY Low to READY High), 19-22 

v 
V Flag (see Overflow Flag), 17-18 
Vee. 19-01 
Vee Rejection-AID Converter, 19-15, 19-17 
VPD (Powerdown Voltage), 17-05, 19-01 
VREF (Analog Voltage Reference), 17-33, 19-01, 19-11 
VSS, 19-01 
VSSb 19-01 
VSS2, 19-01 
VT Flag (see Overflow Trap), 17-18 

W 
waop, 18-01 
Watchdog Timer, 17-43, 19-05 

Disabling, 17-43, 19-05 
Word Dump Command, 19-35 
Word Operands, 17-14, 17-19 
WR (Write), 17-09, 17-11, 19-09, 19-20, 19-24 
wreg, 18-01 
WRH (Write High), 17-11, 17-12, 19-20, 19-24 
Write Strobe Mode, 17-12 
WRL (Write Low), 17-11, 17-12, 19-20, 19-24 

X 
XOR (Logical Exclusive-or Words), 18-55 
XORB (Logical Exclusive-or Bytes), 18-56 
XTAL Inputs, 17-03, 19-01, 19-02 

z 
Z Flag (see Zero Flag), 17-18 
Zero Flag, 17-18 
Zero Offset-AID Converter, 19-15, 19-17 
Zero Register Addressing, 17-17 

21-340 



80C196 INDEX 

A 
A-To-D Converter, 20-26 
AID Converter, 20-26 
AID Converter Clock Prescaler, 20-27 
Address Valid Mode (ADV), 20-08 
Addressing Modes 

Direct, 20-13 
Immediate, 20-13 
Indexed Long, 20-13 
Indexed Short, 20-13 
Indirect, 20-13 
Indirect with Auto-Increment, 20-13 

ADV (Address Valid), 20-08 
AD_COMMAND, 20-26, 20-29, 20-31 
AD_RESULT, 20-27, 20-29, 20-31 
ALE (Address Latch Enable), 20-06, 20-08, 20-33, 

20-37 
Alternate Register Window (WSR= 15),20-29 

B 
Baud Rate Values, 20-24 
BAUD_RATE, 20-29, 20-30 
BHE (Bus High Enable), 20-06, 20-08, 20-33 
BMOV (Block Move), 20-13 
Bus Control Modes 

Address Valid, 20-08 
Address Valid with Write Strobe, 20-08 
Standard Bus Control, 20-06 
Write Strobe, 20-06 

Bus Controller, 20-06 
Bus Modes 

Eight Bit, 20-06 
Sixteen Bit, 20-06 

BUSWIDTH, 20-06 

c 
C Flag (See Carry Flag), 20-12 
CAM (Content Addressable Memory), 20-19, 20-21 
Carry Flag, 20-12 
CCR (Chip Configuration Register), 20-06, 20-08, 

20-32, 20-34 
CDE (Clock Detect Enable), 20-37 
Chip Configuration Register (CCR), 20-06, 20-08, 

20-32, 20-34 
CLKOUT (Clock Out), 20-02, 20-33 
Clock Failure Detect, 20-37 
Clock Generator, 20-01 

Phases, 20-02 
Clock Prescaler AID Converter, 20-27 
CMPL (Compare Long), 20-13 
Content Addressable Memory (CAM), 20-19, 20-21 
Converting Other MCS-96 Products to 80C196, 20-38 
CPU Features, 20-38 

D 
DI (Disable Interrupts), 20-10 
Direct Address Mode, 20-13 
DJNZW (Dec and Jump on Not Zero Word), 20-13 

E 
EA (External Access), 20-08, 20-28 
EI (Enable Interrupts), 20-10 
Enhancements vs 8X9XBH, 20-01 
EPROM Internal, 20-03 

F 
Feature Summary, 20-38 
Figure 

80CI96KA Block Diagram, 20-01 
Address Valid Mode, 20-08 
Address Valid with Write Strobe Mode, 20-08 
All Possible Interrupt Sources, 20-09 
Bus Width Options, 20-06 
CHMOS Qljasi-Bidirectional Port Circuit, 20-29 
Format of the Chip Configuration Register, 20-07 
HSI Block Diagram, 20-20 
HSI Mode Register, 20-21 
HSI Status Register, 20-21 
HSO Block Diagram, 20-22 
HSO Command Register, 20-22 
Instruction Execution State Times, 20-17, 20-18 
Instruction Set Summary, 20-14, 20-15, 20-16 
Internal Register Values Following RESET, 20-37 
Interrupt Pending Registers, 20-10 
Interrupt Response Time, 20-11 
Interrupt Vector Locations, 20-10 
lOCO Control of the HSI, 20-21 
Memory Map, 20-02 
Multiple Register Windows, 20-03 
Oscillator, 20-02 
Port 2 Multiple Functions, 20-28 
Powerdownlup Sequence, 20-34 
PWM Block Diagram, 20-27 
PWM Waveforms, 20-28 
Reset Sequence, 20-36 
Serial Port Frames Mode I, 2 and 3, 20-24 
Serial Port Mode 0 Timings, 20-24 
Special Function Register Description, 20-05 
Special Function Registers (SFRs), 20-04 
Standard Bus Control, 20-07 
TIMER2 Control/Status Bits, 20-19 
Write Strobe Mode, 20-07 

Flags, 20-11 

G 
Global Disable Bit (I Bit), 20-10, 20-12 

21-341 



H 
High Speed Inputs (HSI), 20-19, 20-20 
High Speed Outputs (HSO); 20-19, 2()-21 
HSI (High Speed Inputs), 20-19, 20-20 
HSI Block Diagram, 20-20 
HSI FIFO, 20-20 
HSI Holding Register, 20-20 
HSI~ODE, 20-20, 20-29, 20-32 

.HSI_STATUS, 20-20, 20-29, 20-32 
HSI_TIME, 20-20, 20-29 
HSO (High Speed Outputs), 20-19, 20-21 
HSO Block Diagram, 20-22 
HSO Command Register, 20-22 
HSO_COMMAND, 20-21, 20-29, 20-32 
HSO_TIME, 20-21 

I 
I Bit (Global Disable Bit), 20-10, 20-12 
Idle Mode, 20-33 
IDLPD (Idle/Powerdown), 20-13, 20-33 
Immediate Addressing Mode, 20-13 
Indexed Long Addressing Mode, 20-13 
Indexed Short Addressing Mode, 20-13 
Indirect Addressing Mode, 20" 13 
Indirect with Auto-Increment Addressing Mode, 20-13 
INST (Instruction), 20-33, 20-37 
Instruction Execution State Times, 20-17, 20-18 
Instruction Queue, 20-06 
Instruction Set, 20-11 
Instruction Set Additions, 20-12 
Instruction Set Summary, 20-14, 20-15, 20-16 
Interual Memory , 

EPROM, 20-03 
RAM,20-02 
ROM,20-03 

Internal Register Values Following RESET, 20-37 
Internal Timings, 20-02 
Interrupt Controller, 20-01, 20-02 
Interrupt Mask Register (INT.:.J(ASK), 20-10 
Interrupt Mask Register 1 (INT~ASKI), 20-09, 

20-10 
Interrupt Pending Register (IPEND), 20-10 
Ipten:upt Pending Register I (IPENDl), 20-10 
Interrupt Response Time, 20-11 
Interrupt Vector Locations, 20-10 

I (Continued) 
Interrupts, 20-09 

AID Conversion Complete, 20-21 
EXTINT, 20-34 
High Speed Output, 20-21 
HSI Data Available, 20-20 . 
HSI FIFO 4, 20-20 
HSI FIFO is Full, 20-20 
HSI.O Pin, 20-20 
NMI (Non-Maskable Interrupt), 20~9 
PortO.7, 20-34 
Receive, 20-25 
Serial Port, 20-25 
Software Timer, 20-21 
Software Trap, 20-11 
T2CAPture, 20-19 
TIMER Overflow, 20-19 
TIMER2 Overflow, 20-19 
Transmit, 20-25 
Unimplemented Opcodes, 20-11 

INT~ASK (Interrupt Mask Register), 20-10 
INT~ASKI (Interrupt Mask Register I), 20-09, 

20-10, 20-30 
lOCO (I/O Control Register 0), 20-20, 20-30, 20-33 
lOCI (I/O Control Register 1), 20-30, 20-33 
IOC2 (I/O Control Register 2),20-29,20-31 
10SO (I/O Status Register 0), 20-23, 20-30, 20-32 
lOS 1(1/0 Status Register I), 20-23, 20-30, 20-33 
IOS2 (I/O Status Register 2),20-31 
IPEND (Interrupt Pending Register),20-t'O 
IPENDI (Interrupt Pending Register I), 20-10, 20-30 
IRCO IRCI (Internal Ready Control Bits land 0), 

20-08 

L 
LOCO LOCI (Lock Control Bits I and 2), 20-09 

M 
Memory Controller, 20-01, 20-02, 20-06 
Memory Map, 20-02 
Memory Protection, 20-09 
Microcode Engine, 20-02 
Minimum Hardware Connections, 20-35 
Mode 0 Serial Port, 20-23 
Mode 1 Serial Port, 20-23 
Mode 2 Serial Port, 20-23 
Mode 3 Serial Port, 20-23 

21-342 



N 
N Flag (See Negative Flag), 20-11 
Negative Flag, 20-11 
NMI (Non-Maskable Interrupt), 20-09 

o 
ONCE Mode, 20-37 
Overflow Flag, 20-11 
Overflow Trap Flag, 20-11 

p 
Packages, 20-40 
Peripheral Description, 20-19 
Peripheral Features, 20-38 
Pin Definitions, 20-39 
Pin Descriptions, 20-41, 20-42 
Pinouts, 20-40 
POPA (Pop All Registers), 20-11, 20-12 
POPF (Pop Flags), 20-10 
PORTO, 20-28, 20-29 
PORTI, 20-28 
PORT2, 20-28 
PORTS 3 and 4, 20-28 
Powerdown Mode, 20-33, 20-34 
Powerdown/up Sequence, 20-34 
Processing Unit, 20-01 
Program Counter, 20-06 
Program Protection Features, 20-37 
Program Status Word (PSW), 20-10, 20-11 
Protection, 20-09, 20-37 
PSW (Program Status Word), 20-10, 20-11 
Pulse Width Modulation (PWM), 20-27 
PUSHA (Push All Registers), 20-11, 20-12 
PUSHF (Push Flags), 20-10 
PWM (Pulse Width Modulation), 20-27 
PWM_CONTROL, 20-30 

Q 
Quasi-Bidirectional Pins, 20-28 
Quasi-Bidirectional Port Circuit (CHMOS), 20-29 
Queue, 20-06 

R 
RAM Internal, 20-02 
RD (Read), 20-33, 20-37 
READY, 20-08 
Register File, 20-01, 20-02, 20-03 
RESET, 20-34, 20-35, 20-37 

Sequence, 20-36 
Sequence and Status, 20-35 

ROM Internal, 20-03 
RST (RESET), 20-37 

S 
SBUF (Serial Port Buffer), 20-25, 20-29, 20-30 
Serial Port, 20-23 

Mode 0, 20-23 
Mode I, 20-23 
Mode 2, 20-23 
Mode 3, 20-23 

Serial Port Control, 20-25 
Serial Port Frames Mode I, 2 and 3, 20-24 
Serial Port Mode 0 Timings, 20-24 
Serial Port Status Register (SP _STAT), 20-25 
SFR Bit Summary, 20-30 
SFR Description, 20-05 
SFR Windows 

Window 0, 20-03 
Window 15,20-03 

SFRs, 20-02, 20-03, 20-04, 20-34 
SIGND (Signed Prefix for Mul and Div Instr), 20-11 
Slave Program Counter, 20-06 
Special Function Registers (See SFRs), 20-02, 20-03, 

20-04, 20-05, 20-34 
SP _CON, 20-25, 20-30, 20-32 
SP _STAT, 20-25, 20-29, 20-30 
ST (See Sticky Bit), 20-12 
Standard I/O Ports, 20-28 
State Time, 20-02 

T 
T2CAPture Register, 20-19 
TEST Mode, 20-37 
TIMERI, 20-19, 20-29 
TIMER2, 20-19, 20-29 
TRAP, 20-09, 20-11 

v 
V Flag (See Overflow Flag), 20-11 
Vee, 20-34 
Vpp, 20-34 
VT Flag (See Overflow Trap Flag), 20-11 

W 
Watchdog Timer, 20-29, 20-33, 20-37 
Window Select Register (WSR), 20-03, 20-29, 20-31 
WR (Write), 20-06, 20-33 
WRH (Write High), 20-06 
Write Strobe Mode, 20-06 
WRL (Write Low), 20-06 
WSR (Window Select Register), 20-03, 20-29, 20-31 

X 
XTAL Pins, 20-02, 20-37 

z 
Z Flag (See Zero Flag), 20-11 
Zero Flag, 20-11 

21-343 





80186 Data Sheets, 22 
Application Notes and 
Development Support Tools 





• 

• 
• 

• 

80186 
HIGH INTEGRATION 16-BIT MICROPROCESSOR 

Integrated Feature Set • Completely Object Code Compatible 
- Enhanced 8086-2 CPU with All Existing 8086, 8088 Software 
- Clock Generator -10 New Instruction Types 
- 2 Independent DMA Channels • Complete System Development 
- Programmable Interrupt Controller Support 
- 3 Programmable 16-bit Timers - Development Software; Assembler, 
- Programmable Memory and PL/M, Pascal, Fortan, and System 

Peripheral Chip-Select Logic Utilities 
- Programmable Wait State Generator -In-Circuit-Emulator (12ICETM-186) 
- Local Bus Controller 

High Performance Numerical 
Available in 10 MHz (80186-10) and 8 • Coprocessing Capability Through 8087 
MHz (80186) Versions Interface 
High-Performance Processor • Available in 68 Pin: 
- At 8 MHz provides 2 times the - Plastic Leaded Chip Carrier (PLCC) 

Performance of the Standard 8086 - Ceramic Pin Grid Array (PGA) 
- 4 MByte/Sec Bus Bandwidth - Ceramic Leadless Chip Carrier (LCC) 

Interface @ 8 MHz 
- 5 MByte/Sec Bus Bandwidth 

(See Packaging Outlines and Dimensions, Order #231369) 

Interface @ 10 MHz • Available in EXPRESS 
- Standard Temperature with Burn-In Direct Addressing Capability to 1 - Extended Temperature Range MByte of Memory and 64 KByte I/O ( - 40°C to + 85°C) 

INT3/INTA1 

INT2II11m 

~~]UTTT INTl TMROUT1 TMROUTO 

J I~TO TMR IN t TMR IN t 
NTI 1 r 

1 11 'eXECUTION UNIT] ~ ~ ~ -'- ...!. 
PROGRAMMABLE 

nMERS X, X, 
I 0 1 2 

16·81T I MAXCOUNT~ ALU I PROGRAMMABLE REGISTER B I 

I 
INTERRUPT 

MAX COUNT CLOCK CONTROLLER 
REGISTER A GENERATOR 

lS·BIT I 
GENERAL I CONTROL REGISTERS 
PURPOSE I CONmOL,1 18·81T REGISTERS 

...J REGISTERS COUNT REGISTER 

I't. j~ 
INTERNAL BUj 

j 
DRQO 
ORQ1 

SRDY 
ARDY 
'fHT 
HOLD 
HLDA 
m 

;=: 
:=: 
~:: .. 

RESET r_ 

J II Jl. + ~ 
PROGRAMMABLE 

DMAUNIT 
0 1 

CHIP·SELECT 2O-IIIT 
UNIT SOURCE POINTERS 

BUS INTERFACE 2Q·BIT 1~BIT .......... DESTINAnON UNIT SEGMENT POINTERS REGISTERS 
PROGRAMMABLE J lS·BIT &-BYTE CONTROL TRANSFER COUNT PREFETCH REGISTERS QUEUE 

Il CONTROL 

1 111]:-] ~ 
REGISTERS 

1 iiN ~Ak L~S8IA2 
LOCK ~ ADO- Al81S3- LCS PCS5lAl 

DTIR HElS7 AD15 Al9/S8 2.. -MCSO-3 PCSO-4 210451-1 

Figure 1.80186 Block Diagram 

22-1 
October 1987 

Order Number: 210451-009 



inter 80186 

The Intel 80186 is a highly integrated 16-bit microprocessor. The 80186 effectively combines 15-20 of the 
most common 8086 system components onto one. The 80186 provides two times greater throughput than the 
standard 5 MHz 8086. The 80186 is upward compatible with 8086 and 8088 software and adds 10 new 
instruction types to the existing set. 

Leadless Chip Carrier (JEDEC Type A) 
Contacts Facing Up Contacts Facing Down 

Pin Grid Array 
PINS rACING UP 

@®®@@@@@@ 
@@@@@@@@@@@ 
@@ @@ @@D®@ 
@@ @@ 
@@ @@ 
@@ @@ 
@@ @@ 
@@ @@ 
@@@@@@®®00@ 

@@@@®0®0CD 

PINS FACING DOWN 

@: :~~I :~?:l ,:~: ,:~: :.~i) :~) (#1 ,:~ 
,:~~: :~~I :~9,! ,:~: :.~~'I :~) :'ii' ':19: :~I :~~I :~} 

:~XI .~~; 

:~~) :~~: 

,,~} :~_~I 

·:iR: :'~f' 
:~_~i ,,~~: 

:~> ,:~~: 

¥~" :~_~'I 

xxx xxx xxx xxx xxx xxx .-
:.~·I ,:~~; 

:~I) .:3A: 

(# :~~I 

:~?; :~~I 

:.~i '~1: 
:~~) :~: 

(i},' :~9j 

:~) ::~) ':_~': ::~) ::~.1 :j9) (1~',1 ,)~~: :.i.~i :j~) :Wl 
(D ::~) (.~:l ~?": ~~~: :,1,\' :g, (!~,\ ,:~~: 

210451-2 

PIN NO.1 MARK 210451-3 

Plastic Leaded Chip Carrier 
Leads Facing Up Leads Facing Down 

PIN NO.1 WARK 

~ ~ 
~ ~ 
M ~ 
~ ~ 
~ ~ 

~~ Xx Xx XX ~: 
59 xxx 27 
60 ~~~ 26 
61 XXX 25 

:~ .- ~~ 
~ n 
~ ~ : ~ 

•• ').~.;n;;n~IQI;;n;;n;;n;;JIQI;;g~g;~ :: , 18 
123~S6789W11121314151617 

210451-19 

Figure 2. 80186 Pinout Diagrams 

22-2 



80186 

Table 1.80186 Pin Description 

Symbol Pin No. Type Name and Function 
Vee, Vee 9,43 I System Power: + 5 volt power supply. 
Vss,Vss 26,60 I System Ground. 
RESET 57 0 Reset Output indicates that the 80186 CPU is being reset, and can . 

be used as a system reset. It is active HIGH, synchronized with the 
processor clock, and lasts an integer number of clock periods 
corresponding to the length of the RES signal. 

X1,X2 59,58 I Crystal Inputs X1 and X2provide external connections for a 
fundamental mode parallel resonant crystal for the internal 
oscillator. Instead of using a crystal, an external clock may be 
applied to X1 while minimizing stray capacitance on X2. The input 
or oscillator frequency is internally divided by two to generate the 
clock signal (CLKOUT). 

CLKOUT 56 0 Clock Output provides the system with a 50% duty cycle waveform. 
All device pin timings are specified relative to CLKOUT. CLKOUT 
has sufficient MOS drive capabilities for the 8087 Numeric 
Processor Extension. 

RES 24 I System Reset causes the 80186 to immediately terminate its 
present activity, clear the internal logic, and enter a dormant state. 
This signal may be asynchronous to the 80186 clock. The 801 ~ 
begins fetching instructions approximately 7 clock cycles after RES 
is returned HIGH. For proper initialization, Vee must be within 
specifications and the clock Signal must be stable for more than 4 
clocks with RES held LOW. RES is internally synchronized. This 
input is provided with a Schmitt-trigger to facilitate power-on RES 
generation via an RC network. When RES occurs, the 80186 will 
drive the status lines to an inactive level for one clock, and then 
float them. 

TEST 47 I TEST is examined by the WAIT instruction. If the TEST input is 
HIGH when "WAIT" execution begins, instruction execution will 
suspend. TEST will be resampled until it goes LOW, at which time 
execution will resume. If interrupts are enabled while the 80186 is 
waiting for TEST, interrupts will be serviced. This input is 
synchronized internally. 

TMR INO, 20 I Timer Inputs are used either as clock or control Signals, depending 
TMR IN 1 21 I upon the programmed timer mode. These inputs are active HIGH 

(or LOW-to-HIGH transitions are counted) and internally 
synchronized. 

TMROUTO, 22 0 Timer outputs are used to provide single pulse or continous 
TMROUT1 23 0 waveform generation, depending upon the timer mode selected. 
DRQO 18 I DMA Request is driven HIGH by an external device when it desires 
DRQ1 19 I that a DMA channel (Channel 0 or 1) perform a transfer. These 

signals are active HIGH, level-triggered, and internally 
synchronized. 

NMI 46 I Non-Maskable Interrupt is an edge-triggered input which causes a 
type 2 interrupt. NMlls not maskable internally. A transition from a 
LOW to HIGH initiates the interrupt at the next instruction boundary. 
NMI is latched internally. An NMI duration of one clock or more will 
guarantee service. This input is internally synchronized. 

INTO,INT1 45,44 I Maskable Interrupt Requests can be requested by activating one of 
INT211NTAO 42 110 these pins. When configured as inputs, these pins are active HIGH. 
INT311NTA1 41 110 Interrupt Requests are synchronized internally. INT2 and INT3 may 

be configured via software to provide active-LOW interrupt-
acknowledge output signals. All interrupt inputs may be configured 
via software to be either edge- or level-triggered. To ensure 
recognition, all interrupt requests must remain active until the 
interrupt is acknowledged. When slave mode is selected, the 
function of these pins changes (see Interrupt Controller section of 
this data sheet). 

22-3 



intJ 80186 

Table 1.80186 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

A19/56, 65 0 Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the 
A18/55, 66 0 four most significant address bits during T 1. These signals are active 
A17/54, 67 0 HIGH. During T 2, T 3, T w, and T 4, status information is available on 
A16/53 68 0 these lines as encoded below: ' 

Low High 

56 Processor Cycle DMACycle 

53, 54, and 55 are defined as LOW during T 2-T 4. The status pins 
float during HOLD/HLDA. 

AD15-ADO 10-17, I/O Address/Data Bus (0-15) signals constitute the time multiplexed 
1-8 memory or I/O address (T 1) and data (T 2, T 3, T w, and T 4) bus. The 

bus is active HIGH. Ao is analogous to BHE for the lower byte of the 
data bus, pins D7 through Do. It is LOW during T 1 when a byte is to 
be transferred onto the lower portion of the bus in memory or I/O 
operations. 

SHE/57 64 0 During T 1 the Bus High Enable signal should be used to determine if 
data is to be enabled onto the most significant half of the data bus; 
pins D15-D8. BHE is LOW during T1 for read, write, and interrupt 
acknowledge cycles when a byte is to be transferred on the higher 
half of the bus. The 57 status information is available during T 2, T 3, 
and T 4.57 is logically equivalent to BHE. BHE/57 floats during 
HOLD, 

BHE and AO Encodings 

BHEValue AO Value Function 

0 0 Word Transfer 
0 .1 Byte Transfer on upper half of 

data bus (D15-D8) 
1 0 Byte Transfer on lower half of 

data bus (Dr Do) 
1 1 Reserved 

ALE/Q50 61 0 Address Latch Enable/Queue Status 0 is provided by the 80186 to 
latch the address into the 8282/8283 address latches. ALE is active 
HIGH. Addresses are guaranteed to be valid on the trailing edge of 
ALE. The ALE rising edge is generated off the rising edge of the 
CLKOUT immediately preceding T 1 of the associated bus cycle, 
effectively one-half clock cycle earlier than in the standard 8086. The 
trailing edge is generated off the CLKOUT rising edge in T 1 as in the 
8086. Note that ALE is never floated. 

WR/Q51 63 0 Write Strobe/Queue Status 1 indicates that the data on the bus is to 
be written into a memory or an I/O device. WR is active for T 2, T 3, 
and T w of any write cycle. It is active LOW, and floats during 
"HOLD." It is driven HIGH for one clock during Reset, and then 
floated. When the 80186 is in queue status mode, the ALE/QSO and 
WR/Q51 pins provide information about processor/instruction 
queue interaction. 

QS1 QSO Queue Operation 

0 0 No queue operation 
0 1 First opcode byte fetched from 

the queue 
1 1 Subsequent byte fetched from 

the queue 
1 0 Empty the queue 

22-4 



inter 80186 

Table 1.80186 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RD/QSMD 62 0 Read Strobe indicates that the 80186 is performing a memory or 110 
read cycle. RD is active LOW for T 2, T 3, and T w of any read cycle. It 
is guaranteed not to go LOW in T 2 until after the Address Bus is 
floated. RD is active LOW, and floats during "HOLD". RD is driven 
HIGH for one clock during Reset, and then the output driver is 
floated. A weak internal pull-up mechanism of the RD line holds it 
HIGH when the line is not driven. During RESET the pin is sampled 
to determine whether the 80186 should provide ALE, WR and RD, or 
if the Queue-Status should be provided. RD should be connected to 
GND to provide Queue-Status data. 

ARDY 55 I Asynchronous Ready informs the 80186 that the addressed memory 
space or 110 device will complete a data transfer. The ARDY input 
pin will accept an asynchronous input, and is active HIGH. Only the 
rising edge is internally synchronized by the 80186. This means that 
the falling edge of ARDY must be synchronized to the 80186 clock. If 
connected to Vee, no WAIT states are inserted. Asynchronous ready 
(ARDY) or synchronous ready (SRDY) must be active to terminate a 
bus cycle. If unused, this line should be tied LOW to yield control to 
the SRDY pin. 

SRDY 49 I Synchronous Ready must be synchronized externally to the 80186. 
The use of SRDY provides a relaxed system-timing specification on 
the Ready input. This is accomplished by eliminating the one-half 
clock cycle which is required for internally resolving the signal level 
when using the ARDY input. This line is active HIGH. If this line is 
connected to Vee, no WAIT states are inserted. Asynchronous ready 
(ARDY) or synchronous ready (SRDY) must be active before a bus 
cycle is terminated. If unused, this line should be tied LOW to yield 
control to the ARDY pin. 

LOCK 48 0 LOCK output indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active LOW. The LOCK 
signal is requested by the LOCK prefix instruction and is activated at 
the beginning of the first data cycle associated with the instruction 
following the LOCK prefix. It remains active until the completion of 
the instruction following the LOCK prefix. No prefetches will occur 
while LOCK is asserted. When executing more than one LOCK 
instruction, always make sure there are 6 bytes of code between the 
end of the first LOCK instruction and the start of the second LOCK 
instruction. LOCK is active LOW, is driven HIGH for one clock during 
RESET, and then floated. 

SO,S1, S2 52-54 0 Bus cycle status SO-S2 are.encoded to provide bus-transaction 
information: 

80186 Bus Cycle Status Information 

52 51 SO Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 1 0 Write 1/0 
0 1 1 Halt 
1 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

The status pins float during HOLD/HLDA. 
S2 may be used as a logical MIlO indicator, and S1 as a DT/R 
indicator. 
The status lines are driven HIGH for one clock during Reset, and 
then floated until a bus cycle begins. 

22-5 



inter 80186 

Table 1.80186 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

HOLD (input) 50 I HOLD indicates that another bus master is requesting the local bus. 
HLDA (output) 51 0 The HOLD input is active HIGH. HOLD may be asynchronous with 

respect to the 80186 clock. The 80186 will issue a HLDA (HIGH) in 
response to a HOLD request at the end of T 4 or Tj. Simultaneous 
with the issuance of HLDA, the 80186 will float the local bus and 
control lines. After HOLD is detected as being LOW, the 80186 will 
lower HLDA. When the 80186 needs to run another bus cycle, it will 
again drive the local bus and control lines. 

UCS 34 0 Upper Memory Chip Select is an active LOW output whenever a 
memory reference is made to the defined upper portion (1 K-256K 
block) of memory. This line is not floated during bus HOLD. The 
address range activating UCS is software programmable. 

LCS 33 0 Lower Memory Chip Select is active LOW whenever a memory 
reference is made to the defined lower portion (1 K-256K) of 
memory. This line is not floated during bus HOLD. The address 
range activating LCS is software programmable. 

MCSO-3 38,37,36,35 0 Mid·Range Memory Chip Select signals are active LOW when a 
memory reference is made to the defined mid·range portion of 
memory (8K-512K). These lines are not floated during bus HOLD. 
The address ranges activating MCSO-3 are software 
programmable. 

PCSO 25 0 Peripheral Chip Select Signals 0-4 are active LOW when a 
reference is made to the defined peripheral area (64K byte 1/0 

PCS1-4 27,28,29,30 0 space). These lines are not floated during bus HOLD. The address 
ranges activating PCSO-4 are software programmable. 

PCS5/A1 31 0 Peripheral Chip Select 5 or Latched A 1 may be programmed to 
provide a sixth peripheral chip select, or to provide an internally 
latched A 1 signal. The address range activating PCS5 is software 
programmable. When programmed to provide latched. A 1, rather 
than PCS5, this pin will retain the previously latched value of A1 
during a bus HOLD. A1 is active HIGH. 

PCS6/A2 32 0 Peripheral Chip Select 6 or Latched A2 may be programmed to 
provide a seventh peripheral chip select, or to provide an internally 
latched A2 signal. The address range activating PCS6 is software 
programmable. When programmed to provide latched A2, rather 
than PCS6, this pin will retain the previously latched value of A2 
during a bus HOLD. A2 is active HIGH. 

DT/R 40 0 Data Transmit/Receive controls the direction of data flow through 
the external 8286/8287 data bus transceiver. When LOW, data is 
transferred to the 80186. When HIGH the 80186 places write data 
on the data bus. 

DEN 39 0 Data Enable is provided as an 8286/8287 data bus transceiver 
output enable. DEN is active LOW d~ng each memory and I/O 
access. DEN is HIGH whenever DT IR changes state. 

22·6 



80186 

FUNCTIONAL DESCRIPTION 

Introduction 

The following Functional Description describes the 
base architecture of the 80186. This architecture is 
common to the 8086, 8088, and 80286 microproces­
sor families as well. The 80186 is a very high inte­
gration 16-bit microprocessor. It combines 15-20 of 
the most common microprocessor system compo­
nents onto one chip while providing twice the per­
formance of the standard 8086. The 80186 is object 
code compatible with the 8086/8088 microproces­
sors and adds 10 new instruction types to the exist­
ing 8086/8088 instruction set. 

80186 BASE ARCHITECTURE 

The 8086, 8088, 80186, and 80286 family all contain 
the same basic set of registers, instructions, and ad­
dressing modes. The 80186 processor is upward 
compatible with the 8086, 8088, and 80286 CPUs. 

Register Set 

The 80186 base architecture has fourteen registers 
as shown in Figures 3a and 3b. These registers are 
grouped into the following categories. 

General Registers 

Eight 16-bit general purpose registers may be used 
to contain arithmetic and logical operands. Four of 
these (AX, BX, CX, and OX) can be used as 16-bit 
registers or split into pairs of separate 8-bit registers. 

BYTE 
ADDRESSABLE 
(8-BIT 

REGISTER 
NAMES 
SHOWN) 

16-81T 
REGISTER 

NAME 

r 
AX 

OX 

cx 

BX 

BP 

, 
, 

SP 

15 

o 7 

AH AL 

DH DL 

CH CL 

BH .BL 

GENEAAL 
REGISTERS 

SPECIAL 
REGISTER 
FUNCTIONS 

MUL TJPLY IDIVIDE 
110 INSTRUCTIONS 

LOOP/SHIFT/REPEAT/COUNT 

BASE REGISTERS 

INDEX REGISTERS 

STACK POINTER 

Segment Registers 

Four 16:bit special purpose registers select, at any 
given time, the segments of memory that are imme­
diately addressable for code, stack, and data. (For 
usage, refer to Memory Organization.) 

Base and Index Registers 

Four of the general purpose registers may also be 
used to determine offset addresses of operands in 
memory. These registers may contain base address­
es or indexes to particular locations within a seg­
ment. The addressing mode selects the specific reg­
isters for operand and address calculations. 

Status and Control Registers 

Two 16-bit special purpose registers record or alter 
certain aspects of the 80186 processor state. These 
are the Instruction Pointer Register, which contains 
the offset address of the next sequential instruction 
to be executed, and the Status Word Register, which 
contains status and control flag bits (see Figures 3a 
and 3b). 

Status Word Description 

The Status Word records specific characteristics of 
the result of logical and arithmetic instructions (bits 
0, 2, 4, 6, 7, and 11) and controls the operation of 
the 80186 within a given operating mode (bits 8, 9, 
and 10). The Status Word Register is 16-bits wide. 
The function of the Status Word bits is shown in 
Table 2. 

15 

CS 

~ os 

SS 

ES 

SEGMENT REGISTERS 

15 

,: If-------
STATUS AND CONTROL 

REGISTERS 

CODE SEGMENT SELECTOR 

DATA SEGMENT SELECTOR 

STACK SEGMENT SELECTOR 

EXTRA SEGMENT SELECTOR 

STATUS WORD 

INSTRUCTION POINTEA 

Figure 3a. 80186 Register Set 

22-7 



intJ 80186 

STATUS FLAGS; 

CARRY ~~~~~~~~~~~~==F==l--l PARITY 

AUXILIARY CARRY 
ZERO 

~ INTEL RESERVED 

CONTROL FLAGS: 

~----- TRAP FLAG 

L_~======::: INTERRUPT ENABLE 
DIRECTION FLAG 

Figure 3b. Status Word Format 

210451-4 

Table 2. Status Word Bit Functions Instruction Set 
Bit 

Name 
Position 

0 CF 

2 PF 

4 AF 

6 ZF 

7 SF 

8 TF 

9 IF 

10 DF 

11 OF 

Function 

Carry Flag-Set on high-order 
bit carry or borrow; cleared 
otherwise 

Parity Flag-Set if low-order 8 
bits of result contain an even 
number of 1-bits; cleared 
otherwise 

Set on carry from or borrow to 
the low order four bits of AL; 
cleared otherwise 

Zero F;lag-Set if result is zero; 
cleared otherwise 

Sign Flag-Set equal to high-
order bit of result (0 if positive, 
1 if negative) 

Single Step Flag-Once set, a 
single step interrupt occurs 
after the next instruction 
executes. TF is cleared by the 
single step interrupt. 

Interrupt-enable Flag-When 
set, maskable interrupts will 
cause the CPU to transfer 
control to an interrupt vector 
specified location. 

Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index register 
when set. Clearing DF causes 
auto increment. 

Overflow Flag-Set if the 
signed result cannot be 
expressed within the number 
of bits in the destination 
operand; cleared otherwise 

22-8 

The instruction set is divided into. seven categories: 
data transfer, arithmetic, shift/rotate/logical, string 
manipulation, control transfer, high-level instruc­
tions, and .processor control. These categories are 
~ummarized in Figure 4. 

An 80186 instruction can reference anywhere from 
zero to several operands. An operand can reside in 
a register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later 
in this data sheet. 

Memory Organization 

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K 
(216) 8-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a 16-
bit base· segment and a 16-bit offset. The 16-bit 
base values are contained in one of four internal 
segment register (code, data, stack, extra). The 
physical address is calculated by shifting the base 
value LEFT by four bits and adding the 16-bit offset 
value to yield a 20-bit physical address (see Figure 
5). This allows for a 1 MByte physical address size. 

All instructions that address operands in memory 
must specify the base segment and the 16-bit offset 
value. For speed and compact instruction encoding, 
the segment register used for physical address gen­
eration is implied by the addressing mode used (see 
Table '3). These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 



intJ 80186 

GENERAL PURPOSE MOVS Move byte or word string 

MOV Move byte or word INS Input bytes or word string 
PUSH Push word onto stack OUTS Output bytes or word string 
POP Pop word off stack 

CMPS Compare byte or word string 
PUSHA Push all registers on stack 

SCAS Scan byte or word string 
POPA Pop all registers from stack 

LODS Load byte or word string 
XCHG Exchange byte or word 

XLAT Translate byte 
STOS Store byte or word string 

INPUT/OUTPUT REP Repeat 

IN Input byte or word REPE/REPZ Repeat while equal/zero 

OUT Output byte or word REPNE/REPNZ Repeat while not equal/not zero 

ADDRESS OBJECT LOGICALS 

LEA Load effective address NOT "Not" byte or word 

AND "And" byte or word 
LDS Load pOinter using DS 

OR "Inclusive or" byte or word 
LES Load pointer using ES 

XOR "Exclusive or" byte or word 
FLAG TRANSFER 

TEST "Test" byte or word 
LAHF Load AH register from flags SHIFTS 
SAHF Store AH register in flags SHLISAL Shift logical/ arithmetic left byte or word 
PUSHF Push flags onto stack SHR Shift logical right byte or word 

POPF Pop flags off stack SAR Shift arithmetic right byte or word 

ADDITION ROTATES 

ADD Add byte or word ROL Rotate left byte or word 

ADC Add byte or word with carry ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 
INC Increment byte or word by 1 

RCR Rotate through carry right byte or word 
AAA ASCII adjust for addition 

FLAG OPERATIONS 
DAA Decimal adjust for addition 

STC Set carry flag 
SUBTRACTION 

CLC Clear carry flag 
SUB Subtract byte or word 

CMC Complement carry flag 
SBB Subtract byte or word with borrow 

STD Set direction flag 
DEC Decrement byte or word by 1 

CLD Clear direction flag 
NEG Negate byte or word 

STI Set interrupt enable flag 
CMP Compare byte or word 

CLI Clear interrupt enable flag 
AAS ASCII adjust for subtraction 

EXTERNAL SYNCHRONIZATION 
DAS Decimal adjust for subtraction 

HLT Halt until interrupt or reset 
MULTIPLICATION 

WAIT Wait for TEST pin active 
MUL Multiply byte or word unsigned 

ESC Escape to extension processor 
IMUL Integer multiply byte or word 

LOCK Lock bus during next instruction 
AAM ASCII adjust for multiply 

NO OPERATION 
DIVISION 

NOP No operation 
DIV Divide byte or word unsigned 

HIGH LEVEL INSTRUCTIONS 
IDIV Integer divide byte or word 

ENTER Format stack for procedure entry 
AAD ASCII adjustfor division 

LEAVE Restore stack for procedure exit 
CBW Convert byte to word 

BOUND Detects values outside prescribed range 
CWD Convert word to doubleword 

Figure 4. 80186 Instruction Se t 

22-9 



intJ 80186 

CONDITIONAL TRANSFERS JO Jump if overflow 

JAlJNBE Jump if above/not below nor equal JP/JPE Jump if parity/parity even 

JAE/JNB Jump if above or equal/ not below JS Jump if sign 

JB/JNAE Jump if below/not above nor equal UNCONDITIONAL TRANSFERS 

JBE/JNA Jump if below or equal/not above CALL Call procedure 

JC Jump if carry RET Return from procedure 

JE/JZ Jump if equal/zero JMP Jump 

JG/JNLE Jump if greater/not less nor equal ITERATION CONTROLS 

JGE/JNL Jump if greater or equal/not less LOOP Loop 

JLlJNGE Jump if less/not greater nor equal LOOPE/LOOPZ Loop if equal/zero 

JLE/JNG Jump if less or equal/not greater LOOPNE/LOOPNZ Loop if not equal/not zero 

JNC Jump if not carry JCXZ Jump if register CX = 0 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 

JNO Jump if not overflow INT Interrupt 

JNP/JPO Jump if not parity/parity odd INTO Interrupt if overflow 

JNS Jump if not sign IRET Interrupt return 

Figure 4. 80186 Instruction Set (Continued) 

To access operands that do not reside in one of the 
four immediately available segments, a full 32-bit 
pointer can be used to reload both the base (seg­
ment) and offset values. 

;HIFT LEFT4 BITS I ' 2 3 4 n~~~ENT} 
15 0 LOGICAL I, 2 3 4 i 0 1 11" ___ -' ADDRESS 

19 t 0 _ 0 0 2 2 tOFFSET 

[~I 0 0 2 21. 15 0 

1S 0 

I, 2 3 6 21 PHYSICAL ADDRESS 

" ; 0 

TOMEMOAY 210451-5 

Figure 5. Two Component Address 

Table 3. Segment Register Selection Rules 

Memory Segment Implicit Segment Reference Register Selection Rule Needed Used 

Instructions Code (CS) Instruction prefetch and 
immediate data. 

Stack Stack (SS) All stack pushes and 
pops; any memory 
references which use BP 
Register as a base 
register. 

External Extra (ES) All string instruction 
Data references which use 
(Global) the 01 register as an 

index. 
Local Data Data (OS) All other data references. 

22-10 

MODULE A 

r---' 
I I 

~ODE 
DATA 

I I 
I I 

MODULE B 1-----+-..., 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

PROCEssD 
DATA 
BLOCK 2 

I I L ___ J 

MEMORY 

CPU 

CODE 

DATA 

STACK 

EXTRA 

SEGMENT 
REGISTERS 

210451-6 

Figure 6. Segmented Memory Helps 
Structure Software 



80186 

Addressing Modes 

The 80186 provides eight categories of addressing 
modes to specify operands. Two addressing modes 
are provided for instructions that operate on register 
or immediate operands: 

• Register Operand Mode: The operand is located 
in one of the 8- or 16-bit general registers. 

• Immediate Operand Mode:' The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand , 
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicitly 
chosen by the addressing mode or explicitly chosen 
by a segment override prefix. The offset, also called 
the effective address, is calculated by summing any 
combination of the following, three address ele­
ments: 

• the displacement (an 8- or 16-bit immediate value 
contained in the instruction); 

• the base (contents of either the BX or BP base 
registers); and 

• the index (contents of either the 51 or 01 index 
registers). 

Any carry out from the 16-bit addition is ignored. 
Eight-bit displacements are sign extended to 16-bit 
values. 

Combinations of these three address elements de­
fine the six memory addressing modes, described 
below. 

• Direct Mode: The operand's offset is contained in 
the instruction as an 8- or 16-bit displacement el­
ement. 

• Register Indirect Mode: The operand's offset is in 
one of the registers 51, 01, BX, or BP. 

• Based Mode: The operand's offset is the sum of 
an 8- or 16-bit displacement and the contents of 
a base register (BX or BP). 

• Indexed Mode: The operand's offset is the sum 
of an 8- or 16-bit displacement and the contents 
of an index register (51 or 01). 

• Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an 
Index register. 

• Based indexed Mode with Displacement· The op­
erand's offset is the sum of a base register's con­
tents, an index'register's contents, and an 8- or 
16-bit displacement. ' 

Data Types 

The 80186 directly supports the following data 
types: 

• Integer: A signed binary numeric value contained 
in an 8-bit byte or a 16-bit word. All operations 
assume a 2's complement representation. 
Signed 32- and 64-bit integers are supported us­
ing an 8087 Numeric Oata Coprocessor with the 
80186. 

• Ordinal: An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word. 

• Pointer: A 16- or 32-bit quantity, composed of a 
16-bit offset component or a 16-bit segment base 
component in addition to a 16-bit offset compo­
nent. 

• String: A contiguous sequence of bytes or words. 
A string may contain from 1 to 64K bytes. 

It ASCII: A byte representation of alphanumeric and 
control characters using the ASCII standard of 
character representation. 

• BCD: A byte (unpacked) representation of the 
decimal digits 0-9. 

• Packed BCD: A byte (packed) representation of 
two decimal digits (0-9). One digit is stored in 
each nibble (4-bits) of the byte. 

• Floating Point· A signed 32-, 64-, or 80-bit real 
number representation. (Floating point operands 
are supported using an 8087 Numeric Oata Co­
processor with the 80186.) 

In general, individual data elements must fit within 
'defined segment limits. Figure 7 graphically repre­
sents the data types supported by the 80186. 

I/O Space 

The lID space consists of 64K 8-bit or 32K 16-bit 
ports. Separate instructions address the lID space 
with either an 8-bit port address, specifi~d in the in­
struction, or a 16-bit port address in the OX register. 
8-bit port addresses are zero extended such that 
A1s-Aa are LOW. lID port addresses 00F8(H) 
through OOFF(H) are reserved. 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to 
allow resumption of the interrupted program. Inter­
rupts fall into three classes: hardware initiated, INT 
instructions, and instruction exceptions. Hardware 
initiated interrupts occur in response to an external 
input and are classified as non-maskable or maska­
ble. 

22-11 



80186 

, " 
SIGNED ITTTfTTT1 

BYTE ll.......!...--
SIGN BIT J L--...J 

MAGNITUDE 

, " 
UNSIGNED fTTTTTTT1 

BYTE L-.:.-...J 
~ 

, MAGNITUDE 

1514 +1 87 0 0 

S~~~~ II' i I' I i I' , iii iii 
SIGN BIT JC:I L""MT,s:""AG;;;NlmTu;no"E----.J 

SIGNED 31 +3 +2 1615 +1 a 

D~~~~: II Ii Iii i I t i i Iii I I i I I I' Ii I' Ii I Ii , I 
SIGN BiT J c:1 L.::M"'SB'----"MMAGCilNlmTU;nO"E ___ ---' 

+7 +6 +5 +4 +3 +2 +1 
SIGNED 63 4847 3231 1615 a 

wo"u:.:' II I I I I 
SIGN BIT J'-'~-"M"'SB'---...,M;-;-AG"'N""'T"'UO"'E------' 

IS +1 0 

UNS~~~g I' I j Iii I I' i I I' iii 
,L-MSB 

MAGNITUOe 

BINARY 7 +N a 
CODED fTTTTTTT1 

DECIMAL L-.:.-...J 
(BCD) o,~7~ N 

7 +N 0 

ASCII~ 
ASCII 

CHARACTER" 

7 +N 0 
PACKED fTTTTTTT1 

BCD L-L...J 

'--' 
MOST 
SIGNIFICANT DIGIT 

7 +1 07 0 a 

I'" 1 ,11 1" 'I'I t I 
BCD BCD 

DIGIT 1 DIGiT 0 

1 +1 07 0 a 

Illilii'lliflil'l 
ASCII ASCII 

CHARACTER, CHARACTERo 
7 +1 07 0 a 

1"'1"'1"'1"'1 
'--' 
LEAST 

SIGNIFICANT DIGIT 

715 +N 0 715 +1 0715 0 a 

STRING ~ ••• 1"'1 '1' 1"'1"'1 
BYTE WORD N BYTE WORD 1 BYTE WORD 0 

3\ +3 +2 1615 +1 0 a 

POINTER I' " I' " I' " I' , 'I" , I " , I' , , I' " I , 
SELECTOR OFFSET 

19+9 +8 +7 +6 +5 +4 +3 +2 +1 0" 

Fl~~~~ " 
StGN BIT -1';'-, ---'-,-.L...-'----'_.L...-'----''--.L...-L--l 

EXPONENT MAGN1TUOE 

210451-7 

NOTE: 
'Supported by using an 8087 Numeric Data Coproces­
sor with the 80186. 

Figure 7. 80186 Supported Data Types 

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction 
processing, is detected while attempting to execute 
an instruction. If the exception was caused by exe­
cuting an ESC instruction with the ESC trap bit set in 
the relocation register,the return instruction will 
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the 

return address from an exception will pOint at the 
instruction immediately following the instruction 
causing the exception. 

A table containing up to 256 pointers defines the 
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the 
80186 predefined types and default priority levels. 
For each interrupt, an 8-bit vector must be supplied 
to the 80186 which identifies the appropriate table 
entry. Exceptions supply the interrupt vector inter­
nally. In addition, 'internal peripherals and noncas­
caded external interrupts will generate their own 
vectors through· the internal interrupt controller. INT 
instructions contain or imply the vector and allow 
access to all 256 interrupts. Maskable hardware ini­
tiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. 
Non-maskable hardware interrupts use a predefined 

. internally supplied vector. 

Interrupt Sources 
The 80186 can service interrupts generated ·by soft­
ware or hardware. The software interrupts are gen­
erated by specific instructions (INT, ESC, unused 
OP, etc.) or the results of conditions specified by 
instructions (array bounds check, INTO, DIV, IDIV, 
etc.). All interrupt sources are serviced by an indirect 
call through an element of a vector table. This vector 
table is indexed by using the interrupt vector type 
(Table 4), multiplied by four. All hardware-generated 
interrupts are sampled at the end of each instruc­
tion. Thus, the software interrupts will begin service 
first. Once the service routine is entered and inter­
rupts are enabled, any hardware source of sufficient 
priority can interrupt the service routine in progress. 

The software generated 80186 interrupts are de­
scribed below. 

DIVIDE ERROR EXCEPTION (TYPE 0) 

Generated when a DIV or IDIV instruction quotient 
cannot be expressed in the number of bits in the 
destination. 

SINGLE-STEP INTERRUPT (TYPE 1) 

Generated after most instructions if the TF flag is 
set. Interrupts will not be generated after prefix in­
structions (e.g., REP), instructions which modify seg­
ment registers (e.g., POP OS), or the WAIT instruc­
tion. 

NON-MASKABLE INTERRUPT -NMI (TYPE 2) 

An external interrupt source which cannot be 
masked. 

22-12 



80186 

Table 4. 80186 Interrupt Vectors 

Interrupt Vector Default Related 
Name Type Priority Instructions 

Divide Error 0 '1 DIV,IDIV 
Exception 

Single Step 1 12" All 
Interrupt 

NMI 2 1 All 
Sreakpoint 3 '1 INT 

Interrupt 
INTO Detected 4 '1 INTO 

Overflow 
Exception 

Array Sounds 5 '1 SOUND 
Exception 

Unused·Opcode 6 *1 Undefined 
Exception Opcodes 

ESCOpcode 7 *1*** ESCOpcodes 
Exception 

Timer 0 Interrupt 8 2A···· 
Timer 1 Interrupt 18 2S···· 
Timer 2 Interrupt 19 2C···· 
Reserved 9 3 
DMA 0 Interrupt 10 4 
DMA 1 Interrupt 11 5 
INTO Interrupt 12 6 
INT1 Interrupt 13 7 
INT2 Interrupt 14 8 
INT3 Interrupt 15 9 

NOTES: 
'1. These are generated as the result of an instruction exe­
cution. 
"2. This is handled as in the 8086. 
... *3.AII three timers constitute one source of request to 
the interrupt controller. The Timer interrupts all have the 
same default priority level with respect to all other interrupt 
sources. However, they have a defined priority ordering 
amongst themselves. (Priority 2A is higher priority than 28.) 
Each Timer interrupt has a separate vector type number. 
4. Default priorities for the interrupt sources are used only if 
the user does not program each source into a unique prior­
ity level. 
• *. 5. An escape opcode will cause a trap only if the proper 
bit is set in the peripheral control block relocation register. 

BREAKPOINT INTERRUPT (TYPE 3) 

A one-byte version of the INT instruction. It uses 12 
as an index into the service routine address table 
(because it is a type 3 interrupt). 

INTO DETECTED OVERFLOW EXCEPTION 
(TYPE4) 

Generated during an INTO instruction if the OF bit is 
set. 

ARRAY BOUNDS EXCEPTION (TYPE 5) 

Generated during a SOUND instruction if the array 
index is outside the array bounds. The array bounds 
are located in memory at a location indicated by one 
of the instruction operands. The other operand indi­
cates the value of the index to be checked. 

UNUSED OPCODE EXCEPTION (TYPE 6) 

Generated if execution is attempted on undefined 
opcodes. 

ESCAPE OPCODE EXCEPTION (TYPE 7) 

Generated if execution is attempted of ESC opcodes 
(D8H-DFH). This exception will only be generated if 
a bit in the relocation register is set. The return ad­
dress of this exception will point to the ESC instruc­
tion causing the exception. If a segment override 
prefix preceded the ESC instruction, the return ad­
dress will point to the segment override prefix. 

Hardware-generated interrupts are divided into two 
groups: maskable interrupts and non-maskable in­
terrupts. The 80186 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition, maska­
ble interrupts may be generated by the 80186 inte­
grated DMA controller and the integrated timer unit. 
The vector types for these interrupts is shown in Ta­
ble 4. Software enables these inputs by setting the 
interrupt flag bit (IF) in the Status Word. The inter­
rupt controller is discussed in the peripheral section 
of this data sheet. 

Further maskable interrupts are disabled while serv­
icing an interrupt because the IF bit is reset as part 
of the response to an interrupt or exception. The 
saved Status Word will reflect the enable status of 
the processor prior to the interrupt. The interrupt flag 
will remain zero unless specifically set. The interrupt 
return instruction restores the Status Word, thereby 
restoring the original status of IF bit. If the interrupt 
return re-enables interrupts, and another interrupt is 
pending, the 80186 will immediately service the 
highest-priority interrupt pending, i.e., no instructions 
of the main line program will be executed. 

Non-Maskable Interrupt Request (NMI) 

A non-maskable interrupt (NMI) is also provided. 
This interrupt is serviced regardless of the state of 
the IF bit. A typical use of NMI would be to activate a 
power failure routine. The activation of this input 
causes an interrupt with an internally supplied vector 
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the 
beginning of an NMI interrupt to prevent maskable 
interrupts from being serviced. 

22-13 



intJ 80186 

Single-Step Interrupt 

The 80186 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is 
called the single-step interrupt and is controlled by 
the single-step flag bit (TF) in the Status Word. Once 
this bit is set, an internal single-step interrupt will 
occur after the next instruction has been executed. 
The interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single-stepped. 

Initialization and Processor Reset 

Processor initialization or startup is accomplished by 
driving the RES input pin LOW. RES forces the 
80186 to terminate all execution and local bus activi­
ty. No instruction or bus activity will occur as long as 
RES is active. After RES becomes inactive and an 
internal processing interval elapses, the 80186 be­
gins execution with the instruction at physical loca­
tion FFFFO(H). RES also sets some registers to pre­
defined values as shown in Table 5. 

Table 5. 80186 Initial Register State after RESET 

Status Word F002(H) 
Instruction Pointer OOOO(H) 
Code Segment FFFF(H) 
Data Segment OOOO(H) 
Extra Segment OOOO(H) 
Stack Segment OOOO(H) 
Relocation Register 20FF(H) 
UMCS FFFB(H) 

80186 CLOCK GENERATOR 

The 80186 provides an on-chip clock generator for 
both internal and external clock generation. The 
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous 
ready inputs, and reset circuitry. 

Oscillator 

The oscillator circuit of the 80186 is designed to be 
used with a parallel resonant fundamental mode 
crystal. This is used as the time base for the 80186. 
The crystal frequency selected will be double the 
CPU clock frequency. Use of an LC or RC circuit is 
not recommended with this oscillator. If a:n external 
oscillator is used, it can be connected directly to in­
put pin X1 in lieu of a crystaL The output of the oscil­
lator is not directly available outside the 80186. The 
recommended crystal configuration is shown in Fig­
ure 8. 

x, 1--------1 
c:::J x MHz CRYSTAL 

x,I-------l 
80186 T 20pF 

210451-8 

80186·10 (10 MHz) 20 

80186 (8 MHz) 16 

Figure 8. Recommended 80186 
Crystal Configuration 

The following parameters may be used for choosing 
a crystal: 

Temperature Range: 
ESR (Equivalent Series Resistance): 
Co (Shunt Capacitance of Crystal): 
C1 (Load Capacitance): 
Drive Level: 

Clock Generator 

o to 70°C 
300 max 

7.0 pf max 
20 pf ± 2pf 

1 mWmax 

The 80186 clock generator provides the 50% duty 
cycle processor clock for the 80186. It does this by 
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the 
state of the clock generator will change on the fail­
ing edge of the oscillator signal. The CLKOUT pin 
provides the processor clock signal for use outside 
the 80186. This may be used to drive other system 
components. All timings are referenced to the output 
clock. 

READY Synchronization 

The 80186 provides both synchronous and asyn­
chronous ready inputs. Asynchronous ready syn­
chronization is accomplished by circuitry which sam­
ples ARDY in the middle of T 2, T 3 and again in the 
middle of each T w until ARDY is sampled HIGH. 
One-half CLKOUT cycle of resolution time is used. 
Full synchronization ·is performed only on the rising 
edge of ARDY, i.e., the falling edge of ARDY must 
be synchronized to the CLKOUT signal if it will occur 
during T 2, T 3, or T W. High-to-LOW transitions of 
ARDY must be performed synchronously to the CPU 
clock. . 

A second ready input (SRDY) is provided to inter­
face with externally synchronized ready signals. This 
input is sampled at the end of T 2, T 3 and again at 
the end of each T w until it is sampled HIGH. By 
using this input rather than the asynchronous ready 
input, the half-clock cycle resolution time penalty is 
eliminated. 

22-14 



80186 

This input must satisfy set-up and hold times to guar­
antee proper operation of the circuit. 

In addition, the 80186, as part of the integrated chip­
select logic, has the capability to program WAJT 
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select/Ready Logic description. 

RESET logic 

The 80186 provides both a RES input pin and a syn­
chronized RESET pin for use with other system 
components. The RES input pin on the 80186 is pro­
vided with hysteresis in order to facilitate power-on 
Reset generation via an RC network. RESET is 
guaranteed to remain active for at least five clocks 
given a RES input of at least six clocks. RESET may 
be delayed up to two. and one-half clocks behind 
RES. 

Multiple 80186 processors may be synchronized 
through the. RES input pin, since this input resets 
both the processor and divide-by-two internal coun­
ter in the clock generator. In order to insure that the 
divide-by-two counters all begin counting at the 
same time, the active going edge of RES must satis­
fy a 25 ns setup time before the falling edge of the 
80186 clock input. In addition, in order to insure that 
all CPUs begin executing in the same clock cycle, 
the reset must satisfy a 25 ns setup time before the 
rising edge of the CLKOUT signal of all the proces­
sors. 

lOCAL BUS CONTROllER 

The 80186 provides a local bus controller to gener­
ate the local bus control signals. In addition, it em­
ploys a HOLD/HLDA protocol for relinquishing the 
local bus to other bus masters. It also provides con­
trol lines that can be used to enable external buffers 
and to direct the flow of data on and off the local 
bus. 

Memory/Peripheral Control 

The 80186 provides ALE, RD, and WR bus control 
signals. The RD and WR signals are used to strobe 
data from memory to the 80186 or to strobe data 
from the 80186 to memory. The ALE line provides a 
strobe to address latches for the multiplexed ad­
dress/ data bus. The 801 86 local bus controller does 
not provide a memory/I/O signal. If this is required, 
the user will have to use the S2 signal (which will 
require external latching), make the memory and I/O 
spaces nonoverlapping, or use only the integrated 
chip-select circuitry. 

Transceiver Control 

The 80186 generates two control signals to be con­
nected to 8286/8287 transceiver chips. This capa­
bility allows the addition of transceivers for extra 
buffering without adding external logic. These con­
trol lines, DT fA and DEN, are generated to control 
the flow of data through the transceivers. The opera­
tion of these signals is shown in Table 6. 

Table 6 Transceiver Control Signals Description 

Pin Name Function 

DEN (Data Enable) Enables the output 
drivers of the 
transceivers. It is active 
LOW during memory, 
I/O, or INTA cycles. 

DT /R (Data Transmit/ Determines the direction 
Receive) of travel through the 

transceivers. A HIGH 
level directs data away 
from the processor 
during write operations, 
while a LOW level directs 
data toward the 
processor during a read 
operation. 

local Bus Arbitration 

The 80186 uses a HOLD/HLDA system of local bus 
exchange. This provides an asynchronous bus ex­
change mechanism. This means multiple masters 
utilizing the same bus can operate at separate clock 
frequencies. The 80186 provides a single HOLD/ 
HLDA pair through which all other bus masters may 
gain control of the local bus. This requires external 
circuitry to arbitrate which external device will gain 
control of the bus from the 80186 when there is 
more than one alternate local bus master. When the 
80186 relinquishes control of the local bus, it floats 
DEN, RD, WR, SO-S2, LOCK, ADO-AD15, 
A 16-A 19, SHE, and DT /R to allow another master 
to drive these lines directly. 

The 80186 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a 
function of the activity occurring in the processor 
when the HOLD request is received. A HOLD re­
quest is the highest-priority activity request which 
the processor may receive: higher than instruction 
fetching or internal DMA cycles. However, if a DMA 
cycle is in progress, the 80186 will complete the 
transfer before relinquishing the bus .. This implies 
that· if a HOLD request is received just as a DMA 
transfer begins, the HOLD latency time can be as 
great as 4 bus cycles. This will occur if a DMA word 
transfer operation is taking place from an odd ad-

22-15 



infef 80186 

dress to an odd address. This is a total of 16 clocks 
or more, if WAIT states are required. In addition, if 
locked transfers are performed, the HOLD latency 
time will be increased by the length of the locked 
transfer. 

Local Bus Controller and Reset 

Upon receipt of a RESET pulse from the RES input, 
the local bus controller will perform the following ac­
tion: 

• Drive DEN, RD, and WR HIGH for one clock cy­
cle, then float. 

NOTE: 
RD is also provided with an internal· pull-up device 
to prevent the processor from inadvertently enter­
ing Queue Status mode during reset. 

• Drive SO-52 to the passive state (all HIGH) and 
then float. 

• Drive LOCK HIGH and then float. 
• Float ADO-15, A 16-19, SHE, DT IR. 
• Drive ALE LOW (ALE is never floated). 
• Drive HLDA LOW. 

INTERNAL PERIPHERAL INTERFACE 

All the 80186 integrated peripherals are controlled 
via 16-bit registers contained within an internal 256-
byte control block. This control block. may be 
mapped into either memory or 110 space. Internal 
logic will recognize the address and respond to the 
bus cycle. During bus cycles to internal registers, the 
bus controller will signal the operation externally 
(Le., the RD, WR, status, address, data, etc., lines 
will be driven as in a normal bus cycle), but D15-0, 
SRDY, and ARDY will be ignored. The base address 
of the control block must be on an even 256-b)'te 
boundary (Le., the lower 8 bits of the base address 
are all zeros). All of the defined registers within this 
control block may be read or written by the 80186 

. CPU at any time. The location of any register con­
tained within the 256-byte control block is deter­
mined by the current base address of the control 
block. 

The control block base address is programmed via a 
16-bit relocation register contained within the control 
block at offset FEH from the base address of the 
control block (see Figure 9). It provides the upper 12 
bits of the base address of the control block. The 
control block is effectively an internal chip select 
range and must abide by all the rules concerning 
chip selects (the chip select circuitry is discussed 
later in this data sheet). Any access to the 256 bytes 
of the control block activates an internal chip select. 

Other chip selects may overlap the control block 
only if they are programmed to zero wait states and 
ignore external ready. In addition, bit 12 of this regis­
ter determines whether the control block will be 
mapped into 1/0 or memory space. If this bit is 1, the 
control block will be located in memory space, 
whereas if the bit is 0, the control block will be locat­
ed in 1/0 space. If tne control register block is 
mapped into 1/0 space, the upper 4 bits of the base 
address must be programmed as 0 (since 1/0 ad­
dresses are only 16 bits wide). 

In addition to providing relocation information for the 
control block, the relocation register contains bits 
which place the interrupt controller into slave mode, 
and cause the CPU to interrupt upon encountering 
ESC instructions. At RESET, the relocation register 
is set t020FFH. This causes the control block to 
start at FFOOH in 110 space. An offset map of the 
256-byte control register block is shown in Figure 
10. 

The integrated 80186 peripherals. operate semi-au­
tonomously from the CPU. Access to them for the 
most part is via software readlwrite of the control 
block. Most of these registers can be both read and 
written. A few dedicated lines, such as interrupts and 
DMA request provide real-time communication be­
tween the CPU and peripherals as in a more con­
ventional system utilizing discrete peripheral blocks. 
The overall interaction and function of the peripheral 
blocks has not substantially changed. 

CHIP-SELECT/READY GENERATION 
LOGIC 

The 80186 contains logic which provides program­
mable chip-select generation for both memories and 
peripherals. In addition, it can be programmed to 
provide READY (or WAIT state) generation. It can 
also povide latched address bits A 1 and A2. The 
chip-select lines are active for all memory and 1/0 
cycles in their programmed areas, whether they be 
generated by the CPU or by the integrated DMA unit. 

Memory Chip Selects 

The 80186 provides 6 memory chip select outputs 
for 3 address areas; upper memory, lower memory, 
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory. 

The range for each chip select isuser-programma­
ble and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 
128K (plus 1 K and 256K for upper and lower chip 
selects). In addition, the beginning or base address 

22-16 



80186 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
OFFSET: FEH , ET 'SLAVE/MASTER' X 'MIlO' Reloca1ion Address Bits R19-R8 

ET - ESC Trap / No ESC Trap (1/0) 
MilO = Register block located in Memory /110 Space (1/0) 
SLAVE/MASTER = Configure interrupt controller for Slave/Master Mode (110) 

Figure 9. Relocation Register 

Relocation Register 

DMA Descriptors Channel 1 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Time 2 Control Registers 

Time 1 Control Registers 

Time 0 Control Registers 

Interrupt Controller Registers 

OFFSET 

FEH 

DAH 

DOH 

CAH 

COH 

A8H 

AOH 

66H 

60H 

5EH 

58H 

56H 

50H 

3EH 

20H 

Figure 10. Internal Register Map 

of the midrange memory chip select. may also be 
selected. Only one chip select may be programmed 
to be active for any memory location at a time. All 
chip select sizes are in bytes, whereas 80186 mem­
ory is arranged in words. This means that if, for ex­
ample, 16 64K x 1 memories are used, the memory 
block size will be 128K, not 64K. 

Upper Memory CS 

The 80186 provides a chip select, called UCS, for 
the top of memory. The top of memory is usually 
used as the system memory because after reset the 
80186 begins executing at memory location 
FFFFOH. 

The upper limit of memory defined by this chip select 
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of 
the select block is also defined. Table 7 shows the 
relationship between the base address selected and 
the size of the memory block obtained. 

Table 7. UMCS Programming Values 

Starting 
Memory UMCSValue 

Address 
(Base 

Block (Assuming 

Address) 
Size RO= R1 = R2= 0) 

FFCOO 1K FFF8H 
FF800 2K FFB8H 
FFOOO 4K FF38H 
FEOOO 8K FE38H 
FCOOO 16K FC38H 
F8000 32K F838H 
FOOOO 64K F038H 
EOOOO 128K E038H 
COOOO 256K C038H 

The lower limit of this memory block is defined in the 
UMCS register (see Figure 11). This register is at 
offset AOH in the internal control block. The legal 
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7. 
Any combination of bits 6-13 not shown in Table 7 
will result in undefined operation. After reset, the 
UMCS register is programmed for a 1 K area. It must 
be reprogrammed if a larger upper memory area, is 
desired. 

Any internally generated 20-bit address whose up­
per 16 bits are greater than or equal to UMCS (with 
bits 0-5 "0") will cause. UCS to be activated. UMCS 
bits R2-RO are used to specify READY mode for the 
area of memory defined by this chip-select register, 
as explained below. 

Lower Memory CS 

The 80186 provides a chip select for low memory 
called LCS. The bottom of memory contains the in­
terrupt vector table, starting at location OOOOOH. 

22-17 



intJ 80186 

The lower limit of memory defined by this chip select 
is always OH, while the upper limit is programmable. 
By programming the upper limit, the size of the 
memory block is also defined. Table 8 shows the 
relationship between the upper address selected 
and the size of the memory block obtained. 

Table 8. LMCS Programming Values 

Upper 
Memory LMCSValue 

Address 
Block (Assuming 
Size RO~R1 =R2_=O) 

003FFH 1K 0038H 
007FFH 2K 0078H 
OOFFFH 4K 00F8H 
01FFFH 8K 01F8H 
03FFFH 16K 03FBH 
07FFFH 32K 07F8H 
OFFFFH 64K OFF8H 
1FFFFH 128K 1FF8H 
3FFFFH 256K 3FF8H 

The upper limit of this memory block is defined in the 
LMCS register (see Figure 12). This register is at 
offset A2H in the internal control block. The legal 
values for bits 6-15 and the resulting upper' address 
and memory block sizes are given in Table S. Any 
combination of bits 6-15 not shown in Table 8 will 
result in undefined operation. After reset, the LMCS 
register value is undefined. However, the' LCS chip­
select line will not become active until the LMCS 
register is accessed. 

Any internally generated 20~bit address whose up­
per 16 bits are less than or equal to LMCS (with bits 
0-5 "1") will cause LCS to be active. LMCS register 
bits R2-RO are used to specify the READY mode for 
the area of memory defined by this chip-select regis­
ter. 

Mid-Range Memory CS 

The 80186 provides four MCS lines which are active 
within a user-locatable memory block. This block 
can be located within the 80186 1 M byte memory 
address s~ exclusive of the areas ,defined by 
UCS and LCS. Both the base address and size of 
this memory block are programmable. ' 

15 14 13 12 11 10 
OFFSET: AOH I 1 I 1 U I u I u I u I 

A19 

9 
u 

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is deter­
mined by bits 8-14 of the MPCS register (see Figure 
13). This register is at location A8H in the internal 
control block. One and only one of bits 8-14 must 
be set at a time. Unpredictable operation of the MCS 
lines will otherwise occur. Each of the four chip-se­
lect lines is active for one of the four equal contigu­
ous divisions of the mid-range block. Thus, if the to­
tal block size is 32K, each chip select is active for 8K 
of memory with MCSO being active for the first range 
and MCS3 being active for the last range. 

The EX and MS in MPCS relate to peripheral func­
tionally as described in a later section. 

Table 9. MPCS Programming Values 

Total Block Individual MPCSBits 
Size Select Size 14-8 

8K 2K 0000001B 
16K 4K 0000010B 
32K SK 0000100B 
64K 16K 0001000B 
128K 32K 0010000B 
256K 64K 0100000B 
512K 128K 1000000B 

The base address of the mid-range memory block is 
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal 
control block. These bits correspond to bits 
A19-A13 of the 20-bit memory address. Bits 
A 12-AO of the base address are always o. The base 
address may be set at any integer multiple of the 
size of the total memory block selected. For exam­
ple, if the mid-range block size is 32K (or the size of 
the block for which each MCS line is active is 8K), 
the block could be located at 1000014 or 18000H, 
but not at 14000H, since the first few integer multi­
ples of a 32K memory block are OH, SOOOH, 
10000H, 18000H, etc. After reset, the contents of 
both of these, registers is undefined. However, none 
of the MCS lines will be active until both the MMCS 
and MPCS registers are accessed. 

8 7 6 5 4 3 2 1 0 
u u U 1 1 I 1 I R2 I Rl I RO I 

All 

Figure 11. UMCS Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
OFFSET: A2HI 0 I 0 u I u I u I u I u u u u I 1 I 1 I 1 I R2 I Rl I RO I 

A19 All 

Figure 12. LMCS Register 

22-18 



80186 

15 14 13 12 11 10 9 S 7 6 5 4 2 0 
OFFSET: ASH 1 1 1 M6 1 M5 1 M4 1 M3 1 M21 M1 1 MO 1 EX 1 MS 1 1 1 1 1 1 1 R2 1 R1 1 RO 1 

Figure 13. MPCS Register 

15 9 o 
OFFSET: A6H 1 U u 1 u 1 u 1 u 1 u 1 u 1 1 1 1 1 1 1 1 1 1 1 R2 1 R1 1 RO 1 

A19 A13 

Figure 14. MMCS Register 

MMCS bits R2-RO specify READY mode of opera­
tion for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT 
states. 

The 512K blocl< size for the mid-range memory chip 
selects is a special case. When using 512K, the 
base. address would have to be at either locations 
OOOOOH or 80000H. If it were to be programmed at 
OOOOOH when the LCS line was programmed, there 
would be an internal conflict between the LCS ready 
generation logic and the MCS ready generation log­
ic. Likewise, if the base address were programmed 
at 80000H, there would be a conflict with the UCS 
ready generation logic. Since the LCS chip-select 
line does not become active until programmed, while 
the UCSline is active at reset, the memory base can 
be set only at OOOOOH. If this base address is select­
ed, however, the LCS range must not be pro­
grammed. 

Peripheral Chip Selects 

The 80186 can generate chip selects for up to seven 
peripheral devices. These chip selects are active for 
seven contiguous blocks of 128 bytes above a pro­
grammable base address. This base address may 
be located in either memory or I/O space. 

Seven CS lines called PCSO-6 are generated by the 
80186. The base address is user-programmable; 

however it can only be a multiple of 1 K bytes, i.e., 
the least significant 10 bits of the starting address 
are always O. 

PCS5 and PCS6 <::an also be programmed to provide 
latched address bits A 1, A2. If so programmed, they 
cannot be used as peripheral selects. These outputs 
can be connected directly to the AO, A 1 pins used 
for selecting internal registers of 8-bit peripheral 
chips. This scheme simplifies the hardware interface 
because the 8-bit registers of peripherals are simply 
treated as 16-bit registers located on even bounda­
ries in I/O space or memory space where only the 
lower 8-bits of the register are significant: the upper 
8-bits are "don't cares." 

The starting address of the peripheral chip-select 
block is defined by the PACS register (see Figure 
15). This register is located at offset A4H in the inter­
nal control block. Bits 15-6 of this register corre­
spond to bits 19-10 of the 20-bit Programmable 
Base Address (PBA) of the peripheral chip-select 
block. Bits 9-0 of the PBA of the peripheral chip-se­
lect block are all zeros. If the chip-select block is 
located in I/O space, bits 12-15 must be pro­
grammed zero, since the I/O address is only 16 bits 
wide. Table 10 shows the address range of each 
peripheral chip select with respect to the PBA con­
tained in PACS register. 

15 6 5 3 0 
OFFSET: A4H\ U 1 U 1 U 1 u \ u \ u 1 u 1 u 1 u·1 U I 1 1 1 1 1 1 R2 1 R1 1 RO I 

A19 A10 

Figure 15. PACS Register 

22-19 



intJ 80186 

The user should program bits 15-6 to correspond to 
the desired peripheral base location. PACS bits 0-2 
are used to specify READY mode for PCSO-PCS3. 

Table 10. PCS Address Ranges 

PCS Line Active between Locations 

PCSO PBA -PBA+127 
PCSl PBA + 128-PBA + 255 
PCS2 PBA + 256-PBA + 383 
PCS3 PBA + 384-PBA + 511 
PCS4 PBA + 512-PBA + 639 
PCS5 PBA + 640-PBA + 767 
PCS6 PBA + 768-PBA + 895 

The mode of operation of the peripheral chip selects 
is defined by the MPCS register (which is also used 
to set the size of the mid-range memory chip-select 
block, see Figure 13). This register is located at off­
set A8H in the internal control block. Bit 7 is used to 
select the function of PCS5 and PCS6, while bit 6 is 
used to select whether the peripheral chip selects 
are mapped into memory or 1/0 space. Table 11 
describes the programming of these bits. After reset, 
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines 
will be active until both of the MPCS and PACS reg­
isters are accessed. 

Table 11. MS, EX Programming Values 

Bit Description 

MS 1 = Peripherals mapped into memory space. 
o = Peripherals mapped into 1/0 space. 

EX o = 5 PCS lines. A 1, A2 provided. 
1 = 7 PCS lines. A 1, A2 are not provided. 

MPCS bits 0-2 are used to specify READY mode for 
PCS4-PCS6 as outlined below. 

READY Generation Logic 

The 80186 can generate a "READY" sl9..Q.al internal­
ly for each of the memory or peripheral CS lines. The 
number of WAIT states to be inserted for each pe­
ripheral or memory is programmable to provide 0-3 
wait states for all accesses to the area for which the 

. chip select is active. In addition, the 80186 may be 
programmed to either ignore external READY for 
each chip-select range individually or to factor exter­
nal READY. with the integrated ready generator. 

READY control consists of 3 bits for each CS line or 
group of lines generated by the 80186. The interpre­
tation of the ready bits is shown in Table 12. 

Table 12. READY Bits Programming 

R2 Rl RO Number of WAIT States Generated 

0 0 0 o wait states, external ROY 
also used. 

0 0 1 1 wait state inserted, external ROY 
also used. 

0 1 0 2 wait states inserted, external ROY 
also used. 

0 1 1 3 wait states inserted, external ROY 
also used. 

1 0 0 o wait states, external ROY 
ignored. 

1 0 1 1 wait state inserted, external ROY 
ignored. 

1 1 0 2 wait states inserted, external ROY 
ignored. 

1 1 1 3 wait states inserted, external ROY 
ignored. 

The internal ready generator operates in parallel 
with external READY, not in series if the external 
READY is used (R2 = 0). This means, for example, 
if the internal generator is set to insert two wait 
states, but activity on the external READY lines will 
insert four wait states, the processor will only insert 
four wait states, not six. This is because the two wait 
states generated by the internal generator over­
lapped the first two wait states generated by the ex­
ternal ready signal. Note that the external ARDY and 
SRDY lines are always ignored during cycles ac­
cessing internal peripherals. 

R2-RO of each control word specifies the READY 
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS 
set the PCSO-3 READY mode, R2-RO of MPCS set 
the PCS4-6 READY mode. 

Chip Select/Ready Logic.and Reset 

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions: 

• All chip-select outputs will be driven HIGH. 

• Upon leaving RESET, the UCS line will be pro­
grammed to provide chip selects to a 1 K block 
with the accompanying READY control bits set at 
011 to allow the maximum number of internal wait 
states in conjunction with external Ready consid­
eration (Le., UMCS resets to FFFBH). 

22-20 



80186 

.. No other chip select or READY control registers 
have any predefined values after RESET. They 
will not become active until the CPU accesses 
their control registers. Both the PACS and MPCS 
registers must be accessed before the PCS lines 
will become active. 

DMA CHANNELS 

The 80186 DMA controller provides two indepen­
dent DMA channels. Data transfers can occur be­
tween memory and I/O spaces (e.g., Memory to I/O) 
or within the same space (e.g., Memory to Memory 
or I/O to I/O). Data can be transferred either in 
bytes (8 bits) or in words (16 bits) to or from even or 
odd addresses. Each DMA channel maintains both a 
20-bit source and destination pointer which can be 
optionally incremented or decremented after each 
data transfer (by one or two depending on byte or 
word transfers). Each data transfer consumes 2 bus 
cycles (a minimum of 8 clocks), one cycle to fetch 
data and the other to store data. This provides a 
maximum data transfer rate of 1.25 Mword/sec or 
2.5 MBytes/sec at 10 MHz. 

DMA Operation 

Each channel has six registers in the control block 
which define each channel's specific operation. The 
control registers consist of a 20-bit Source pointer (2 
words), a 20-bit destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. The 
format of the DMA Control Blocks is shown in Table 
13. The Transfer Count Register (TC) specifies the 
number of DMA transfers to be performed. Up to 
64K byte or word transfers can be performed with 
automatic termination. The Control Word defines the 
channel's operation (se~ Figure 17). All registers 
may be modified or altered during any DMA activity. 
Any changes made to these registers will be reflect­
ed immediately in DMA operation. 

Table 13. DMA Control Block Format 

Register Name 

Control Word 
Transfer Count 
Destination Pointer (upper 4 

bits) 
Destination Pointer 
Source Pointer (upper 4 bits) 
Source Pointer 

TIMER REQUEST 

DMA 
CONTROL 

LOGIC 
INTERRUPT 
REQUEST 

Register Address 

Ch.O Ch.1 

CAH DAH 
C8H D8H 
C6H D6H 

C4H D4H 
C2H D2H 
COH DOH 

210451-9 

Figure 16. DMA Unit Block Diagram 

22-21 



80186 

15 14 13 12 11 10 

MI DESTINATION MI SOURCE 
TO DEC INC TO DEC INC 

x ~ DON'T CARE. 

Figure 17. DMA Control Register 

DMA Channel Control Word Register 

Each DMA Channel Control Word determines the 
mode of operation for the particular 81086 DMA 
channel. This register specifies: 

• the mode of synchronization; 

• whether bytes or words will be transferred; 

• whether interrupts will be generated after the last 

TC: If set, DMA will terminate when the 
contents of the Transfer Count regis­
ter reach zero. The ST ISTOP bit will 
also be reset at this point if TC is set. 
If this bit is cleared, the DMA unit will 
decrement the transfer count register 
for each DMA cycle, but the DMA 
transfer will not stop when the con­
tents of the TC register reach zero. 

transfer; SYN 00 No synchronization. 
• whether DMA activity will cease after a pro­

grammed number of DMA cycles; 

• the relative priority of the DMA channel with ree 
spect to the other DMA channel; 

• whether the source pointer will be incremented, 
decremented, or maintained constant after each. 
transfer; . 

• whether the source pointer addresses memory or 
1/0 space; 

• whether the destination pointer will be increment­
ed, decremented, or maintained constant after 
each transfer; and 

• whether the destination pointer will address 
memory or 110 space. 

The DMA channel control registers may be changed 
while the channel is operating. However, any chang­
es made during operation will affect the current DMA 
transfer. 

DMA Control Word Bit Descriptions 
S/W: 

ST/STOP: 

CHGINOCHG: 

INT: 

Byte/\'Vord (011) Transfers: 

Startlstop (1/0) Channel. 

Change/Do not change (1/0) 
ST ISTOP bit. If this bit is set when 
writing to the control word, the 
ST ISTOP bit will be programmed 
by the write to the control word. If 
this bit is cleared when writing the 
control word, the ST ISTOP bit will 
not be altered. This bit is riot 
stored; it will always be a 0 on 
read. . 

Enable Interrupts to CPU on 
Transfer Count termination. 

(2 bits) 

NOTE: 
When unsynchronized transfers are 
specified, the TC bit will be ignored 
and the ST bit will be cleared upon 
the transfer count reaching zero, 
stopping the channel. 

01 Source synchronization. 

10 Destination synchronization. 

11 Unused. 
SOURCE:INC Increment source pointer by 1 or 2 

(depends on S/W) after each trans­
fer. 

DEST: 

P 

TDRQ 

MilO Source pOinter is in MilO space (1/0). 

DEC Decrement source pointer by 1 or 2 
(depends on S/W) after each trans­
~r. . 

INC Increment destination pointer by 1 or 
2 (S/W) after each transfer. 

. MilO Destination pointer is in MilO space 
(1/0). 

DEC Decrement destination pointer by 1 
or 2 (depending on S/W) after each 
transfer. 

Channel priority-relative to other 
channel. 

o low priority. 

1 high priority. 

Channels will alternate cycles if both 
set at same priority level. 

0: Disable DMA requests from 
timer 2. 

1: Enable DMA requests from 
timer 2. 

Bit 3 Bit 3 is not used. 

If both INC and DEC are specified for the same 
pointer, the pointer will remain constant after each 
cycle. 

22-22 



80186 

DMA Destination and Source Pointer 
Registers 

Each DMA channel maintains a 20-bit source and a 
20-bit destination pointer. Each of these pointers 
takes up two full 16-bit registers in the peripheral 
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical 
address (see Figure 1 B). These pointers may be indi­
vidually incremented or decremented after each 
transfer. If word transfers are performed the pointer 
is incremented or decremented by two. Each pointer 
may point into either memory or I/O space. Since 
the DMA channels can perform transfers to or from 
odd addresses, there is no restriction on values for 
the pointer registers. Higher transfer rates can be 
obtained if all word transfers are performed to even 
addresses, since this will allow data to be accessed 
in a single memory access. 

DMA Transfer Count Register 

Each DMA channel maintains a 16-bit transfer count 
register (TC). This register is decremented after ev­
ery DMA cycle, regardless of the state of the TC bit 
in the DMA Control Register. If the TC bit in the DMA 
control word is set or if unsynchronized transfers are 
programmed, ho",!ever, DMA activity will terminate 
when the transfer count register reaches zero. 

DMA Requests 

Data transfers may be either source or destination 
synchronized, that is either the source of the data or 

HIGHER 
REGISTER 
ADDRESS 

LOWER 
REGISTER 
ADDRESS 

xxx 

A15-A12 

15 

the destination of the data may request the data 
transfer. In addition, DMA transfers may be unsyn­
chronized; that is, the transfer will take place contin­
ually until the correct number of transfers has oc­
curred. When source or unsynchronized transfers 
are performed, the DMA channel may begin another 
transfer immediately after the end of a previous 
DMA transfer. This allows a complete transfer to 
take place every 2 bus cycles or eight clock cycles 
(assuming no wait states). No prefetching occurs 
when source synchronized or unsynchronized trans­
fers are performed, however. Data will not be 
fetched from the source address until the destina­
tion device signals that it is ready to receive it. When 
destination synchronized transfers are requested, 
the DMA controller will relinquish control of the bus 
after every transfer. If no other bus activity is initiat­
ed, another DMA cycle will begin after two processor 
clocks. This is done to allow the destination device 
time to remove its request if another transfer is not 
desired. Since the DMA controller will relinquish the 
bus, the CPU can initiate a bus cycle. As a result, a 
complete bus cycle will often be inserted between 
destination synchronized transfers. These lead to 
the maximum DMA transfer rates shown in Table 14. 

XXX 

Table 14. Maximum DMA Transfer 
Rates @ 10 MHz 

Type of 
Synchronization CPU Running CPU Halted 

Selected 

Unsynchronized 2.5MBytes/sec 2.5MBytes/sec 
Source Synch. 2.5MBytes/sec 2.5MBytes/sec 
Destination Synch. 1.7MBytes/sec 2.0MBytes/sec 

XXX A19-A16 

A11-AB A7-A4 A3-AO 

o 

XXX = DON'T CARE 

Figure 18. DMA Memory Pointer Register Format 

22-23 



intJ 80186 

DMA Acknowledge 

No explicit DMA acknowledge pulse is provided. 
Since both source and destination pointers are 
maintained, a read from a requesting source, or a 
write to a requesting destination, should be used as 
the DMA acknowledge signal. Since the chip-select 
lines can be programmed to be active for a given 
block of memory or I/O space, and the DMA point­
ers can be programmed to point to the same given 
block, a chip-select line could be used to indicate a 
DMA acknowledge. 

DMA Priority 

The DMA channels may be programmed such that 
'one channel is always given priority over the other, 
or they may be programmed such as to alternate 
cycles when both have DMA requests pending. DMA 
cycles always have priority over internal CPU cycles 
except between locked memory accesses or word 
accesses to odd memory locations; however, an ex­
ternal bus hold takes priority over an internal DMA 
cycle. Because an interrupt request cannot suspend 
a DMA operation and the CPU cannot access mem­
ory during a DMA cycle, interrupt latency time will 
suffer during sequences of continuous DMA cycles. 
An NMI request, however, will cause all internal 
DMA activity to halt. This allows the CPU to quickly 
respond to the NMI request. 

DMA Programming 

DMA cycles will occur whenever the ST /STOP bit of 
the Control Register is set. If synchronized transfers 

TIMERD 

are programmed, a DRO must also have been gen­
erated. Therefore the source and destination trans­
fer pointers, and the transfer count register (if used) 
must be programmed before this bit is set. 

Each DMA register may be modified while the chan­
nel is operating. If the CHG/NOCHG bit is cleared 
when the control register is written, the ST ISTOP bit 
of the control register will not be modified by the 
write. If multiple channel registers are modified, it is 
recommended that' a LOCKED string transfer be 
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers. 

DMA Channels and Reset 

Upon RESET, the DMA channels will perform the 
following actions: 

• The Start/Stop bit for each channel will be reset 
to STOP. 

• Any transfer in progress is aborted. 

TIMERS 

The 80186 provides three internal 16-bit program­
mable timers (see Figure 19). Two of these are high­
ly flexible and are connected to four external pins (2 
per timer). They can be used to count external 
events, time external events, generate nonrepetitive 
waveforms, etc. The third timer is not connected to 
any external pins, and is useful for real-time coding 
and time delay applications. In addition, this third 
timer can be used as a prescaler to the other two, or 
as a DMA request source. 

TIMER 2 

MAX COUNT VALUE 

DMA 
RED, 

T2 
INT. 
RED. 

INTERNAL ADDRESS/DATA BUS 

ALL 16 BIT REGISTERS 
210451-10 

Figure 19. Timer Block Diagram 

22-24 



80186 

Timer Operation 

The timers are controlled by 11 16-bit registers in 
the internal peripheral control block. The configura­
tion of these registers is shown in Table 15. The 
count register contains the current value of the tim­
er. It can be read or written at any time independent 
of whether the timer is running or not. The value of 
this register will be incremented for each timer 
event. Each of the timers is equipped with a MAX 
COUNT register, which defines the maximum count 
the timer will reach. After reaching the MAX COUNT 
register value, the timer count value will reset to zero 
during that same clock, i.e., the maximum count val­
ue is never stored in the count register itself. Timers 
o and 1 are, in addition, equipped with a second 
MAX COUNT register, which enables the timers to 
alternate their count between two different MAX 
COUNT values programmed by the user. If a single 
MAX COUNT register is used, the timer output pin 
will switch LOW for a single clock, 1 clock after the 
maximum count value has been reached. In the dual 
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use, 
thus allowing nearly complete freedom in selecting 
waveform duty cycles. For the timers with two MAX 
COUNT registers, the RIU bit in the control register 
determines which is used for the comparison. 

Each timer gets serviced every fourth CPU-clock cy­
cle, and thus can operate at speeds up to one-quar­
ter the internal clock frequency (one-eighth the crys­
tal rate). External clocking of the timers may be done 
at up to a rate of one-quarter of the internal CPU­
clock rate (2 MHz for an 8 MHz CPU clock). Due to 
internal synchronization and pipelining of the timer 
circuitry, a timer output may take up to 6 clocks to 
respond to any individual clock or gate input. 

-15 14 13 12 11 
EN INH INT RIU o 

Since the count registers and the maximum count 
registers are all 16 bits wide, 16 bits of resolution are 
provided. Any Read or Write access to the timers will 
add one wait state to the minimum four-clock bus 
cycle, however. This is needed to synchronize and 
coordinate the internal data flows between the inter­
nal timers and the internal bus. 

The timers have several programmable options. 

• All three timers can be set to halt or continue on 
a terminal count. 

• Timers 0 and 1 can select between internal and 
external clocks, alternate between MAX COUNT 
registers and be set to retrigger on external 
events. 

.. The timers may be programmed to cause an in­
terrupt on terminal count. 

These options are selectable via the timer model 
control word. 

Timer Mode/Control Register 

The mode/control register (see Figure 20) allows 
the user to program the specific mode of operation 
or check the current programmed status for any of 
the three integrated timers. 

Table 15. Timer Control Block Format 

Register Name 
Register Offset 

Tmr.O Tmr.1 Tmr.2 

Mode/Control Word 56H 5EH 66H 
MaxCountB 54H 5CH not present 
Max Count A 52H 5AH 62H 
Count Register 50H 58H 60H 

5 4 3 210 

MC RTG p- EXT ALT I CONT I 

Figure 20. Timer Mode/Control Register 

22-25 



inter 80186 

ALT: 

The AL T bit determines which of two MAX COUNT 
registers is used for count comparison. If AL T = 0, 
register A for that timer is always used, while if AL T 
= 1, the comparison will alternate between register 
A and register B when each maximum count is 
reached. This alternation allows the user to change 
one MAX COUNT register while the other is being 
used, and thus provides a method. of generating 
non-repetitive waveforms. Square waves and pulse 
outputs of any duty cycle are a subset of available 
Signals obtained by not changing the final count reg­
isters. The AL T bit also determines the function' of 
the timer output pin. If AL T is zero, the output pin will 
go LOW for one clock, the clock after the maximum 
count is reached. If AL T is one, the output pin will 
reflect the current MAX COUNT register being used 
(0/1 for B/ A). 

CONT: 

Setting the CaNT bit causes the associated timer to 
run continuously, while resetting it causes the timer 
to halt upon maximum coul1t. If COUNT =0 and 
AL T = 1, the timer will count to the MAX COUNT 
register A value, reset, count to the register B value, 
reset, and halt. . 

EXT: 

The external bit selects between internal and exter­
nal clocking for the timer. The external Signal may 
be asynchronous with respect to the 80186 clock. 
If this bit is set, the timer will count LOW-to-HIGH 
transitions on the input pin. If cleared, it will count an 
internal clock while using the input pin for control. In 

. this mode, the function of the external pin is defined 
by the RTG bit. The maximum input to output tran­
sition latency time may be as much as 6 clocks. 
However, clock inputs may be pipelined as closely 
together as every 4 clocks without losing clock puls­
es. 

P: 

The prescaler bit is ignored unless internal clocking 
has been selected (EXT = 0). If the P bit is a zero, 
the timer will count at one-fourth the internal CPU 
clock rate. If the P bit is a one, the output of timer 2 
will be used as a clock for the timer. Note that the 
user must initialize and start timer 2 to obtain the 
prescaled clock. 

RTG: 

Retrigger bit is only active for internal clocking (EXT 
= 0). In this case it determines the control function 
provided by the input pin. 

If RTG = 0, the input level gates the internal clock 
on and off. If the input pin is HIGH, the timer will 
count; if the input pin is LOW, the timer will hold its 
value. As indicated previously, the input signal may 
be asynchronous with respect to the 80186 clock. 

When RTG = 1, the input pin detects LOW-to-HIGH 
transitions. The first such transition starts the timer 
running, clearing the timer value to :?:ero on the first 
clock, and then incrementing thereafter. Further 
trarisitions on the input pin will again reset the timer 
to zero, from which it will start counting up again. If 
CaNT = 0, when the timer has reached maximum 
count, the EN bit will be cleared, inhibiting further 
timer activity. 

EN: 

The enable bit provides programmer control over 
the timer's RUN/HALT status. When set, the timer is 
enabled to increment subject to the input pin con­
straints in the internal clock mode (discussed previ­
ously). When cleared, the timer will be inhibited from 
counting. All input pin transistions during the time EN 
is zero will be ignored. If CaNT is zero, the EN bit is 
. automatically cleared upon maximum count. 

INH: 

The. inhibit bit allows for selective updating of the 
enable (EN) bit. If INH is a one during the write to the 
mode/control word, then the state of the EN bit will 
be modified by the write. If INH is a zero during the 
write, the EN bit will be unaffected by the 
operation.This bit is not stored; it will always be a 0 
on a read. 

INT: 

When set, the INT bit enables interrupts from the 
timer, which will be generated on every terminal 
count. If the timer is configured in dual MAX COUNT 
register mode, an interrupt will be generated each 
time the value in MAX COUNT register A is reached, 
and each time the value in MAX COUNT register B is 
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced, the interrupt request will still 
be in force. (The request is latched in the Interrupt 
Controller). 

MC: 

The Maximum Count bit is set whenever the timer 
reaches its final maximum count value. If the timer is 
configured in dual MAX COUNT register mode, this 
bit will be set each time the value in MAX COUNT 
register A is reached, and each time the value in 
MAX COUNT register B is reached. This bit is set 



80186 

regardless of the timer's interrupt-enable bit. The 
MC bit gives the user the ability to monitor timer 
status through software instead of through inter­
rupts. 

Programmer intervention is required to clear this bit. 

RIU: 

The Register In Use bit indicates which MAX 
COUNT register is currently being used for compari­
son to the timer count value. A zero value indicates 
register A. The RIU bit cannot be written, i.e., its 
value is not affected when the control register is writ­
ten. It is always cleared when the AL T bit is zero. 

Not all mode bits are provided for timer 2. Certain 
bits are hardwired as indicated below: 

AL T = 0, EXT = 0, P = 0, RTG = 0, RIU = 0 

Count Registers 

Each of the three timers has a 16-bit count register. 
The current contents of this register may be read or 
written by the processor at any time. If the register is 
written into while the timer is counting,the new value 
will take effect in the current count cycle. 

Max Count Registers 

Timers 0 and 1 have two MAX COUNT registers 
while timer 2 has a single MAX COUNT register: 
These contain the number of events the timer will 
count. In timers 0 and 1, the MAX COUNT register 
used can alternate between the two max count val­
ues whenever the current maximum count is 
reached. The condition which causes a timer to re­
set is equivalent between the current count value 
and the max count being used. This means that if 
the count is changed to be above the max count 
value, or if the max count value is changed to be 
below the current value, the timer will not reset to 
zero, but rather will count to its maximum value, 
"wrap around" to zero, then count until the max 
count is reached. 

Timers and Reset 

Upon RESET, the Timers will perform the following 
actions: 

• All EN (Enable) bits are reset preventing timer 
counting. 

• All SEL (Select) bits are reset to zero. This se­
lects MAX COUNT register A, resulting in the 
Timer Out pins going HIGH upon RESET. 

INTERRUPT CONTROLLER 

The 80186 can receive interrupts from a number of 
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on 
a priority basis, for individual service by the CPU. 

Internal Interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers 
or by mask bits within the interrupt controller. The 
80186 interrupt controller has its own control regis­
ter that set the mode of operation for the controller. 

The interrupt controller will resolve priority among 
requests that are pending simultaneously. Nesting is 
pr?vi~ed so interrupt service rountines for lower pri­
onty Interrupts may themselves be interrupted by 
higher priority interrupts. A block diagram of the in­
terrupt controller is shown in Figure 21. 

The 80186 has a special slave mode in which the 
internal interrupt controller acts as a slave to an ex­
ternal master. The controller is programmed into this 
mode by setting bit 14 in the peripheral control block 
relocation register. (See Slave Mode section.) 

MASTER MODE OPERATION 

Interrupt Controller External Interface 

For external interrupt sources, five· dedicated pins 
are provided. One of these pins is dedicated to NMI, 
non-maskable interrupt. This is typically used for 
power-fail interrupts, etc. The other four pins may 
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line 
and an interrupt acknowledge line (called the "cas­
cade mode") along with two other input lines with 
internally generated interrupt vectors, or as two in­
terrupt input lines and two dedicated interrupt ac­
knowledge output lines. When the interrupt lines are 
configured in cascade mode, the 80186 interrupt 
controller will not generate internal interrupt vectors. 

External sources in the cascade mode use external­
ly generated interrupt vectors. When an interrupt is 
acknowledged, two INTA cycles are initiated and the 
vector is read into the 80186 on the second cycle. 
The capability to interface to external 8259A pro-. 
grammable interrupt controllers is thus provided 
when the inputs are configured in cascade mode. 

22-27 



intJ 80186 

Interrupt Controller Modes of 
Operation 

The basic modes of operation of the interrupt con­
troller in master mode are similar to the 8259A. The 
interrupt controller responds indentically to internal 
interrupts in all three modes: the difference is only in 
the interpretation of function of the four external in­
terrupt pins. The interrupt controller is set into one of 
these three modes by programming the correct bits 
in the INTO and INT1 control registers. The modes of 
interrupt controller operation are as follows: 

Fully Nested Mode 

When in the fully nested mode four pins are used as 
direct interrupt requests as in Figure 22. The vectors 
for these four inputs are generated internally. An in­
service bit is provided for every interrupt source. If a 
lower-priority device requests an interrupt while the 
in service bit (IS) is set, no interrupt will be generat­
ed by the interrupt controller. In addition, if another 
interrupt request occurs from the same interrupt 
source while the in-service bit is set, no interrupt will 
be generated by the interrupt controller. This allows 
interrupt service routines to operate with interrupts 
enabled without being themselves interrupted by 
lower-priority interrupts. Since interrupts are . el)­
abled, higher-priority interrupts will be serviced. 

When a service routine is completed, the proper IS 
bit must be reset by writing the proper pattern to the 
EOI register. This is required to allow subsequent 
interrupts from this interrupt source and to allow 
servicing. of lower,priority interrupts. An EOI com­
mand is issued at the end of the service routine just 
before the issuance of the return from interrupt in-

OMAO 
CONTROL REG. 

struction. If the fully nested structure has been up­
held, the next highest-priority source with its IS bit 
set is then serviced. 

Cascade Mode 

The 80186 has four interrupt pins and two of them 
have dual functions. In the fully nested mode the 
four pins are used as direct interrupt inputs and the 
corresponding vectors are generated internally. In 
the cascade mode, the four pins are configured into 
interrupt input-dedicated acknowledge signal pairs. 
The interconnection is shown in Figure 23. INTO is 
an interrupt input interfaced to an 8259A, while 
INT2/INTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is 
true for INT1 and INT3/INTA1. Each pair can selec­
tively be placed in the cascade or non-cascade 
mode by programming the proper value into INTO 
and INT1 control registers. The.use of the dedicated 
acknowledge signals eliminates the need for the use 
of external logic to generate INTA and device select 
signals. 

The primary cascade mode allows the capability to 
serve up to 128 external interrupt sources through 
the use of external master and slave 8259As. Three 
levels of priority are created, requiring priority resolu­
tion in the 80186 interrupt controller, the master 
8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these 
levels. When the interrupt service routine iscomplet­
ed, up to three end-of-interrupt commands must be 
issued by the programmer. 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 
IN·SERVICE OMA1 

CONTROL REG. 
EXT. INPUT 0 

CONTROL REG. 

. INTERRUPT 
PRIORITY 

RESOLVER 

REG . 
PRIOR. LEI! 
MASK REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

Figure 21. Interrupt Controller Block Diagram 

22-28 

210451-11 



80186 

r--;;:IN;:;:To;;'l .... -- INTERRUPT SOURCE 

INTI 1+---- INTERRUPT SOURCE 

80186 

INT2 1+---- INTERRUPT SOURCE 

INT3 1+---- INTERRUPT SOURCE 

210451-28 

Figure 22. Fully Nested (Direct) Mode Interrupt 
Controller Connections 

Special Fully Nested Mode 

This mode is entered by setting the SFNM bit in 
INTO or INT1 control register. It enables complete 
nestability with external 8259A masters. Normally, 
an interrupt request from an interrupt source will not 
be recognized unless the in-service bit for that 
source is reset. If more than one interrupt source is 
connected to an external interrupt controller, all of 
the interrupts will be funneled through the same 
80186 interrupt request pin. As a result, if the exter­
nal interrupt controller receives a higher-priority in­
terrupt,. its interrupt will not be recognized by the 
80186 controller until the 80186 in-service bit is re­
set. In special fully nested mode, the 80186 interrupt 
controller will allow interrupts from an external pin 
regardless of the state of the in-service bit for an 
interrupt source in order to allow multiple interrupts 
from a single pin. An in-service bit will continue to be 
set, however, to inhibit interrupts from other lower­
priority 80186 interrupt sources. 

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines. 
Software polling of the external master's IS register 
is required to determine if there is more than one bit 
set. If so, the IS bit in the 80186 remains active and 
the next interrupt service routine is entered. 

Operation in a Polled Environment 

The controller may be used in a polled mode if inter­
rupts are undesirable. When pOlling, the processor 
disables interrupts and then polls the interrupt con­
troller whenever it is convenient. Polling the interrupt 
controller is accomplished by reading the Poll Word 
(Figure 32). Bit 15 in the poll word indicates to the 
processor that an interrupt of high enough priority is 
requesting service. Bits 0-4 indicate to the proces­
sor the type vector of the highest-priority source re-

questing service. Reading the Poll Word causes the 
In-Service bit of the highest priority source to be set. 

It is ,desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending 
interrupt, i.e., not set the indicated in-service bit. The 
80186 provides a Poll Status Word in addition to the 
conventional Poll Word to allow this to be done. Poll 
Word information is duplicated in the Poll Status 
Word, but reading the Poll Status Word does not set 
the associated in-service bit. These words are locat­
ed in two adjacent memory locations in the register 
file. 

Master Mode Features 

Programmable Priority 

The user can program the interrupt sources into any 
of eight different priority levels. The programming is 
done by placing a 3-bit priority level (0-7) in the con­
trol register of each interrupt source. (A source with 
a priority level of 4 has higher priority over all priority 
levels from 5 to 7. Priority registers containing values 
lower than 4 have greater priority). All interrupt 
sources have preprogrammed default priority levels 
(see Table 4). 

If two requests with the same programmed priority 
level are pending at once, the priority ordering 
scheme shown in Table 4 is used. If the serviced 
interrupt routine reenables interrupts, it allows other 
requests to be serviced. 

End-of-Interrupt Command 

The end-of-interrupt (EOI) command is used by the 
programmer to reset the In-Service (IS) bit when an 
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the 
EOI register. There are two types of EOI commands, 
specific and nonspecific. The nonspecific command 
does not specify which IS bit is reset. When issued, 
the interrupt controller automatically resets the IS bit 
of the highest priority source with an active service 
routine. A specific EOI command requires that the 
programmer send the interrupt vector type to the in­
terrupt controller indicating which source's IS bit is 
to be reset. This command is used when the fully 
nested structure has been disturbed or the highest 
priority IS bit that was set does not belong to the 
service routine in progress. 

Trigger Mode 

The four external interrupt pins can be programmed 
in either edge- or level-trigger mode. The control 
register for each external source has a level-trigger 

22-29 



intJ 80186 

mode (L TM) bit. All interrupt inputs are active HIGH. 
In the edge sense mode or the level-trigger mode, 
the interrupt request must remain active (HIGH) until 
the interrupt request is acknowledged by the 80186 
CPU. In the edge-sense mode, if the level remains 
high after the interrupt is acknowledged, the input is 
disabled and no further requests will be generated. 
The input level must go LOW for at least one clock 
cycle to reenable the input. In the level-trigger mode, 
no such provision is made: holding the interrupt input 
HIGH will cause continuous interrupt requests. 

Interrupt Vectoring 

The 80186 Interrupt Controller will generate interrupt 
vectors for the integrated DMA channels and the in­
tegrated Timers. In addition, the Interrupt Controller 
will generate interrupt vectors for the external inter­
rupt lines if they are not configured in Cascade or 
Special Fully Nested Mode. The interrupt vectors 
generated are fixed and cannot be changed (see Ta­
ble 4). 

Interrupt Controller Registers 

The Interrupt Controller register model is shown in 
Figure 24. It contains 15 registers. All registers can 
both be read or written unless specified otherwise. 

In-Service Register 

This register can be read from or written into. The 
format is shown in Figure 25. It contains the In-Serv­
ice bit for each of the interrupt sources. The In-Serv­
ice bit is set to indicate that a source's service rou­
tine is in progress. When an In-Service bit is set, the 
interrupt controller will 110t generate interrupts to the 

CPU when it receives interrupt requests from devic­
es with a lower programmed priority level. The TMR 
bit is the In-Service bit for all three timers; the DO 
and D1bits are the In-Service bits for the two DMA 
channels; the 10-13 are the In-Service bits for the 
external interrupt pins. The IS bit is set when the 
processor acknowledges an interrupt request either 
by an interrupt acknowledge or by reading the poll 
register. The IS bit is reset at the end of the interrupt 
service routine by an end-of-interrupt command is­
sued by the CPU. 

Interrupt Request Register 

The internal interrupt sources have interrupt request 
bits inside the interrupt controller. The format of this 
register is shown in Figure 25. A read from this regis­
ter yields the status of these bits. The TMR bit is the 
logical OR of all timer interrupt requests. DO and D1 . 
are the interrupt request bits for the DMA channels. 

The state of the external interrupt input pins is also 
indicated. The state of the external interrupt pins is 
not a stored condition inside the interrupt controller, 
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly 
when an interrupt request is given to the interrupt 
controller, so if edge-triggered mode is selected, the 
bit in the register will be HIGH only after an inactive­
to-active transition. For internal. interrupt sources, 
the register bits are set when a request arrives and 
are reset when the processor acknowledges the re­
quests. 

Writes to the interrupt request register will affect the 
DO and D1 interrupt request bits. Setting either bit 
will cause the corresponding interrupt request while 
clearing either bit will remove the corresponding in­
terrupt request. All other bitsin the register are read­
only. 

; EB. . t= INTERRUPT SOURCES 

INTO J....._--.J-...... ~_ 8259A t= 
Vee _._ - -!== • 8259A 

INTAOIr-~~--~!== • 
80186 

INn J......----I----.r-:- : 
Vee _. 

L.. __ IN_TA_11_~~8_2_5_9A ..... i I ":,, Ii 
. t= INTERRUPT SOURCES 

210451-12 

Figure 23. Cascade alid Special Fully Nested Mode Interrupt Controller Connections 

22-30 



80186 

Mask Register 

This is a 16-bit register that contains a mask bit for 
each interrupt source. The format for this register is 
shown in Figure 25. A one in a bit position corre­
sponding to a particular source serves to mask the 
source from generating interrupts. These mask bits 
are the exact same bits which are used in the indi­
vidual control registers; programming a mask bit us­
ing the mask register will also change this bit in the 
individual control registers, and vice versa. 

INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INT1 CONTROL REGISTER 

INTO CONTROL REGISTER 

OMA 1 CONTROL REGISTER 

OMA 0 CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN·SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER 

OFFSET 

3EH 

3CH 

3AH 

38H 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

26H 

24H 

22H 

Figure 24. Interrupt Controller Registers 
(Master Mode) 

15 14 10 9 8 

Priority Mask Register 

This register is used to mask all interrupts below par­
ticular interrupt priority levels. The format of this reg­
ister is shown in Figure 26. The code in the lower 
three bits of this register inhibits interrupts of priority 
lower (a higher priority number) than the code speci­
fied. For example, 100 written into this register 
masks interrupts of level five (101), six (110), and 
seven (111). The register is reset to seven (111) 
upon RESET so no interrupts are masked due to 
priority number. 

Interrupt Status Register 

This register contains general interrupt controller 
status information. The format of this register is 
shown in Figure 27. The bits in the status register 
have the following functions: 

DHL T: DMA Halt Transfer; setting this bit halts all 
DMA transfers. It is automatically set when­
ever a non-maskable interrupt occurs, and it 
is reset when an IRET instruction is execut­
ed. The purpose of this bit is to allow prompt 
service of all non-maskable interrupts. This 
bit may also be set by the programmer. 

IRTx: These three bits represent the individual tim­
er interrupt request bits. These bits are used 
to differentiate the timer interrupts, since the 
timer IR bit in the interrupt request register is 
the "OR" function of all timer interrupt re­
quest Note that setting anyone of these 
three bits initiates an interrupt request to the 
interrupt controller. . 

7 6 4 3 2 

I 0 o I • • I 0 I 0 I 0 I 13 12 I 11 10 I 01 DO 

Figure 25. In-Service, Interrupt Request, and Mask Register Formats 

15 14 3 2 1 0 

I 0 0 I • • I 

Figure 26. Priority Mask Register Format 

15 14 7 6 5 43210 

10HLTI 0 I • I 0 o I 0 o I 0 IIRT2 IIRT1 IIRTO I 

Figure 27. Interrupt Status Register Format (Master Mode) 

22-31 



80186 

Timer, DMA 0,1; Control Register 

These registers are the control words for all the in­
ternal interrupt sources. The format for these regis­
ters is shown in Figure 28. The three bit positions 
PRO, PR1, and PR2 represent the programmable pri­
ority level of the interrupt source. The MSK bit inhib­
its interrupt requests from the interrupt source. The 
MSK bits in the individual control. registers are the 
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also 
modify them in the Mask Register, and vice versa. 

INTO-INT3 Control Registers 

These registers are the control words for the four 
external input pins. Figure 29 shows the format of 
the INTO and INT1 Control registers; Figure 30 
shows the format of the INT2 and INT3 Control reg­
isters. In cascade mode or special fully nested 
mode, the control words for INT2 and INT3 are not 
used. 

The bits in the various control registers are encoded 
as follows: 

PRO-2: Priority programming information. Highest 
Priority = 000, Lowest Priority = 111 

L TM: Level-trigger mode bit. 1 = level-triggered; 
o = edge-triggered. Interrupt Input levels 
are active high. In level-triggered mode, an 
interrupt is generated whenever the exter­
nal line is high. In edge-triggered mode, an 
interrupt will be generated only when this 

15 14 
I 0 0 I • 

MSK: 

C: 

level is proceded by an inactive-to-active 
transition on the line. In both cases, the 
level must remain active until the interrupt 
is acknowledged. 
Mask bit, 1 = mask; 0 = non-mask. 

Cascade mode bit, 1 = cascade; 0 = di­
rect 

SFNM: Special fully nested mode bit, 1 = SFNM 

EOI Register 

The end of the interrupt register is a command regis­
ter which can only be written into. The format of this 
register is shown in Figure 31. It initiates an EOI 
command when written to by the 80186 CPU. 

The bits in the EOI register are encoded as follows: 

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in Ta­
ble 4. For example, to reset the In-Service 
bit for DMA channel 0, these bits should be 
set to 01010, since the vector type for DMA 
channel 0 is 10. 

NOTE: 

To reset the single In-Service bit for any of 
the three timers, the vector type for timer 0 
(8) should be written in this register. 

43210 
o I MSK I PR2 I PRl I PRO I 

Figure 28. Timer/DMA Control Registers Formats 

15 14 7 6 5 4 3 2 1 0 
o 0 I • I 0 I SFNM I C I L TM I MSK I PR2 I PRl I PRO I 

Figure 29. INTO/INT1 Control Register Formats 

15 14 5 4 3 2 1 0 
o 0 I • o I LTM I MSK I PR2 I PRl I PRO I 

Figure 30. INT2/INT3 Control Register Formats 

22-32 



inter 80186 

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = O. 

Poll and Poll Status Registers 

These registers contain polling information. The for­
mat of these registers is shown in Figure 32. They 
can only be read. Reading the Poll register consti­
tutes a software poll. This will set the IS bit of the 
highest priority pending interrupt. Reading the poll 
status register will not set the IS bit of the highest 
priority pending interrupt; only the status of pending 
interrupts will be provided. 

Encoding of the Poll and Poll Status register bits are 
as follows: 

Sx: Encoded information that indicates the 
vector type of the highest priority inter­
rupting source. Valid only when INTREO 
= 1. 

INTREO: This bit determines if an interrupt request 
is present. Interrupt Request = 1; no In­
terrupt Request = O. 

SLAVE MODE OPERATION 

When slave mode is used, the internal 80186 inter­
rupt controller will be used as a slave controller to an 
external master interrupt controller. The internal 
80186 resources will be monitored by the internal 
interrupt controller, while the external controller 

15 14 13 

I SPEC/ I 
NSPEC 0 I 0 I . 

functions as the system master interrupt controller. 
Upon reset, the 80186 will be in master mode. To 
provide for slave mode operation bit 14 of the relo­
cation register should be set. 

Because of pin limitations caused by the need to 
interface to an external 8259A master, the internal 
interrupt controller will no longer accept external in­
puts. There are however, enough 80186 interrupt 
controller inputs (internally) to dedicate one to each 
timer. In this mode, each timer interrupt source has 
its own mask bit, IS bit, and control word. 

In slave mode each peripheral must be assigned a 
unique priority to ensure proper interrupt controller 
operation. Therefore, it is the programmer's respon­
sibility to assign correct priorities and initialize inter­
rupt control registers before enabling interrupts. 

These level assignments must remain fixed in the 
iRMX 86 mode of operation. 

Slave Mode External Interface 

The configuration of the 80186 with respect to an 
external 8259A master is shown in Figure 33. The 
INTO (pin 45) input is used as the 80186 CPU inter­
rupt input. INT3 (pin 41) functions as an output to 
send the 80186 slave-interrupt-request to one of the 
8 master-PIC-inputs. 

5 4 3 2 0 . I 0 I S4 S3 S2 S1 so 

Figure 31. EOI Register Format 

15 14 13 5 4 3 2 0 

I ~~61 0 I 0 I . . I 0 I S4 S3 S2 S1 so 

Figure 32. Poll and Poll Status Register Formats 

22-33 



80186 

(45) 
_INTERRUPT SOURCES 

INTO 
VCC 

INT !== OR OTHER SLAVES 

CPU --(42) -INT2 -
80186 

(44) 
INn 

CASCADE 
PIC ADDRESS 

(41) DECODER 

210451-13 

Figure 33. Slave Mode Interrupt Controller Connections 

Correct master-slave interface requires decoding of 
the slave addresses (CASO-2). Slave 8259As do this 
internally. Because of pin limitations, the 80186 
slave address will have to be decoded externally. 
INT1 (pin 44) is used as a slave-select input. Note 
that the slave vector address is transferred internal­
ly, but the READY input must be supplied externally. 

INT2 (pin 42) is used as an acknowledge output, 
suitable to drive thelNTA input of an 8259A. 

Interrupt Nesting 

Slave mode operation allows nesting of interrupt re­
quests. When an interrupt is acknowledged, the pri­
ority logic masks off all priority levels except those 
with equal or higher priority. 

Vector Generation in the Slave Mode 

Vector generation in slave mode is exactly like that 
of an 8259A slave. The interrupt controller gener­
ates an 8-bit vector which the CPU multiplies by four 
and uses as an address into a vector table. The sig­
nificant five bits of the vector are user-programma­
ble while the lower three bits are generated by the 
priority logic. These bits represent the. encoding of 
the priority level requesting service. The significant 
five bits of the vector are programmed by writing to 
the Interrupt Vector register at offset 20H. 

Specific End~of-Interrupt 

In slave mode the specific EOI command operates 
to reset an in-service bit of a specific priority. The 
user supplies a 3-bit priority-level value that points to 
an in-service bit to be reset. The command is exe­
cuted by writing the correct value in the Specific EOI 
register at offset 22H. 

Interrupt Controller Registers 
in the Slave Mode 

All control and command registers are located inside 
the internal peripheral control block. Figure 34 
shows the offsets of these registers. 

End-of-Interrupt Register 

The end-of-interrupt register is a command register 
which can only be written. The format of this register 
is shown in Figure 35. It initiates an EOI command 
when written by the 80186 CPU. 

The bits in the EOI register are encoded as follows: 

Lx: Encoded value indicating the priority of the IS 
bit to be reset. 

22-34 



80186 

In-Service Register 

This register can be read from or written into. It con­
tains the in-service bit for each of the internal inter­
rupt sources. The format for this register is shown in 
Figure 36. Bit positions 2 and 3 correspond to the 
OMA channels; positions 0, 4, and 5 correspond to 
the integral timers. The source's IS bit is set when I 

the processor acknowledges its interrupt request. 

Interrupt Request Register 

This register indicates which internal peripherals 
have interrupt requests pending. The format of this 
register is shown in Figure 36. The interrupt request 
bits are set when a request arrives from an internal 
source, and are reset when the processor acknowl­
edges the request. As in master mode, DO and 01 
are read/write; all other bits are read only. 

Mask Register 

The register contains a mask bit for each interrupt 
source. The format for this register is shown in Fig­
ure 36. If the bit in this register corresponding to a 
particular interrupt source is set, any interrupts from 
that source will be masked. These mask bits are ex­
actly the same bits which are used in the individual 
control registers, i.e., changing the state of a mask 
bit in this register will also change the state of the 
mask bit in the individual interrupt control register 
corresponding to the bit. 

Control Registers 

These registers are the control words for all the in­
ternal interrupt sources. The format of these regis­
ters is shown in Figure 37. Each of the timers and 
both of the OMA channels have their own Control 
Register. 

15 14 13 8 

I 0 0 I 0 I . . I 0 

The bits of the Control Registers are encoded as 
follows: 

prx: 3-bit encoded field indicating a priority level 
for the source; note that each source must be 
programmed at specified levels. 

msk: mask bit for the priority level indicated by prx 
bits. 

7 
0 

LEVEL 5 CONTROL REGISTER 
(TIMER 2) 

LEVEL 4 CONTROL REGISTER 
(TIMER 1) 

LEVEL 3 CONTROL REGISTER 
(OMA1) 

LEVEL 2 CONTROL REGISTER 
(OMAO) 

LEVEL 0 CONTROL REGISTER 
(TIMER 0) 

INTERRUPT STATUS REGISTER 

INTERRUPT-REQUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY-LEVEL MASK REGISTER 

MASK REGISTER 

SPECIFIC EOI REGISTER 

INTERRUPT VECTOR REGISTER 

OFFSET 

3AH 

38H 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

22H 

20H 

Figure 34. Interrupt Controller Registers 
(Slave Mode) 

6 5 4 3 2 0 
0 I 0 0 I 0 I L2 L1 LO 

Figure 35. Specific EOI Register Format 

15 14 13 8 7 6 5 4 3 2 0 

I 0 0 I 0 I . . I 0 0 I 0 ITMR21TMR11 01 00 I 0 ITMROI 

Figure 36. In-Service, Interrupt Request, and Mask Register Format 

22-35 



80186 

Interrupt Vector Register , 

This register provides the upper five bits of the inter­
rupt vector address. The format of this. register is 
shown in Figure 38. The interrupt controller itself 
provides the lower three bits of the interrupt vector 
as determined by the priority level of the interrupt 
request. 

The format of the bits in this register is: 

tx: 5-bit field indicating the upper five bits of the 
vector address. 

Priority-Level Mask Register 

This register indicates the lowest priority-level inter­
rupt which will be serviced, 

The encoding of the bits in this register is: 

mx: 3-bit encoded field indication priority-level val­
ue. All levels of lower priority will be masked. 

Interrupt Status Register 

This register is defined as in master mode except 
that DHL T is not implemented. (See Figure 27). 

Interrupt Controller and Reset 

Upon RESET, the interrupt controller will perform 
the following actions: 

• All SFNM bits reset to 0, implying Fully Nested 
Mode. 

• All PR bits in the various control registers set to 1. 
This places all sources at lowest priority (level 
111 ). 

• All L TM bits reset to 0, resulting in edge-sense 
mode. 

• All Interrupt Service bits resetto O. 

• All Interrupt Request bits reset to O. 

• All MSK (Interrupt Mask) bits set to 1 (mask). 

• AIIC (Cascade) bits reset to 0 (non-cascade). 

• All PRM (Priority Mask) bits set to 1, implying no 
levels masked. 

• Initialized to master mode. 

15 14 13 876 5 432 1 0 
1 0 0 1 0 1 • • 1 0 1 0 1 0 1 0 1 0 1 MSK 1 PR2 1 PAl 1 PRO 1 

Figure 37. Control Word Format 

15 14 13 8 7 6 5 4 3 2 0 

1 0 o .1 0 1 . · 1 0 14 1 13 1 12 1 11 to 1 0 1 0 1 0 1 

Figure 38. Interrupt Vector Register Format 

15 14 13 8 7 6 5 4 3 2 0 

1 0 0 1 0 1 . · 1 0 0 0 1 0 1 0 1 0 1 m2 ml mO 

Figure 39. Priority Level Mask Register 

22-36 



80186 

16MHz 

_C 0 1 
Xl X2 

UCS 

- RESET 8282 OR AODRESS 
RES ADO-

<:- F.1j'g, = ROM 

AD15 
ALE - STS OE 

I ~ { 
, 80166 

t 
I!Il 

WR 
L PROGRAM 

I 
RAM 

~3 
SHE r- -SRDY 

tr+5V 

ARDY 

NMI h -~ 
HOLD n r---+ 

LOW RAM 

rni II 

I TMRINO i--++5V 
{'r 

TMROUTO • 
~ 

CLOCK 

6266 OR 

fC=> ~ 8287 ::::> DO-D7 r"'" TRANSCEIVER 

DEN 
~ Of 

SERIAL T 
VO 

DT/R 

!i;1 
ERMINAL 

~ 
Al 
A2 

INTO J 

<::::>8 DI 
DISK 

INTERFACE 
INTl HARDWARE 

SK 

PCS4 
DROO 

210451-14 

Figure 40. Typical 80186 Computer 

22-37 



inter 

Vee 

f1 
~ 

80186 

16 MHz 

rD~ 
X1 X2 

UCS 

AD 

RES 

r-----v' 

ALE 
LCS 

BHE 
Wii 

ADD"ADI9 b 
80188 

NMI R '-~ HOLD 

ClKOUT 

-
SO-S2 ---,./ 

r-- --
-=> 

pcso -=t-
PCS1 

LOcK 

~~ SRDY 

ARDY 

CS 
RESET 

UF 
ROM 

8282 OR 
8283 ns LATCH 

STB DE 
STB OE LOW • .;:- RAM 

CS 

-1\ 

B2820R -"> ADDRESS 
8283 -v' BUS 

LATCH 

STB DE 

~~-STB ~ 

+ + 

1 B2880R 
8287 DATA BUS 

TRANSCEIVER 

-r+-~-

t :u DT/R 
ClK 
ALE 

k:-

MULTI· 
MAST ER 

M SYSTE 
BUS 

_ 8288 
SO-S2 BUS > ,BUS CONTROL 
CONTROllER COMMANOS 

CEN 
lOB AEN 

-:;:- T 
r 

SO-52 AEN 
8289 

ClK AR~V~ER > ~~~Ti~~¥ION 
SYSB/I'iRB 

lOB 

l..+5V lOCK RESB 

XACK 

210451-15 

Figure 41. Typical 80186 Multi-Master Bus Interface 

22-38 



80186 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature under Bias ...... O°C to 70°C 

* Notice: Stresses above those listed under. "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on any Pin with 
Respect to Ground .............. -1.0V to + 7V 

Power Dissipation ........................... 3W 

D.C. CHARACTERISTICS (TA = O°Cto + 70°C, VCC = 5V ±10%) 
Applicable to 80186 (8 MHz), 80186-10 (10 MHz). 

Symbol Parameter Min Max Units 

Vil Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 Vcc + 0.5 V 
(All except X1 and (RES) 

VIH1 Input High Voltage (RES) 3.0 Vcc + 0.5 V 

VOL Output Low Voltage 0.45 V 

VOH Output High Voltage 2.4 V 

Icc Power Supply Current 600' mA 

550 mA 

415 mA 

III Input Leakage Current ±10 p.A 

ILO Output Leakage Current ±10 p.A 

VClO Clock Output Low 0.6 V 

VCHO Clock Output High 4.0 V 

VCLl Clock Input Low Voltage -0.5 0.6 V 

VCHI Clock Input High Voltage 3.9 VCC + 1.0 V 

CIN Input Capacitance 10 pF 

CIO I/O Capacitance 20 pF . For extended temperature parts only. 

22-39 

Test Conditions 

la = 2.5 mA for SO-S2 
la = 2.0 mA for all other Outputs 

loa = - 400 pA 

TA = -40°C 

TA = O°C 

TA = +70°C 

OV < VIN < Vcc 

0.45V < VOUT < Vcc 

la = 4.0 mA 

loa = -200 p.A 



intJ 80186 

PIN TIMINGS 

A.C. CHARACTERISTICS (TA = O·Cto +70·C, VCC = 5V ±10%) 
80186 Timing Requirements All Timings Measured At 1 5V Unless Otherwise Noted 

80186 80186-10 

Symbol Parameter (8 MHz) (10 MHz) Units 
Test 
Conditions 

Min Max Min Max 

TDVCL Data in Setup (AID) 20 15 ns 

TCLDX Data in Hold (AID) 10 8 ns 

TARYHCH Asynchronous Ready 20 15 ns 
(ARDY) Active Setup 
Time' 

TARYLCL ARDYlnactive Setup 35 25 ns 
Time, 

TCLARX ARDY Hold Time 15 15 ns 

TARYCHL Asynchronous Ready 15 15 ns 
Inactive Hold Time 

TSRYCL Synchronous Ready 20 20 ns 
(SRDY) Transition 
Setup Time 

TCLSRY SRDY Transition 15 15 ns 
Hold Time 

THVCL HOLD Setup· 25 20 ns 

TINVCH INTR, NMI, TEST, 25 25 ns 
TIM IN, Setup· 

TINVCL DRaO, DRal, Setup· 25 20 ns 

80186 Master Interface Timing Responses 

TCLAV Address Valid Delay 5 55 5 44 ns CL = 20-200 pF 

TCLAX Address Hold 10 10 ns all Outputs 

TCLAZ Address Float Delay TCLAX 35 TCLAX 30 
(Except T CL TMV) 

ns @8&10MHz 

TCHCZ Command Lines 45 40 ns 
Float Delay 

TCHCV Command Lines Valid 55 45 ns 
Delay (after Float) 

hHLL ALE Width TCLCL -35 TCLCL -30 ns 

TCHLH ALE Active Delay 35 30 ns 

TCHLL ALE Inactive Delay 35 30 ns 

hLAX Address Hold from TCHCL -25 TCHCL-20 ns 
ALE Inactive 

TCLDV Data Valid Delay 10 44 10 40 ns 

TCLDOX Data Hold Time 10 10 ns 

TWHDX Data Hold after WR TCLCL -40 TCLCL -34 ns 

TCVCTV Control Active Delay 1 5 50 5 40 ns 

TCHCTV Control Active Delay 2 10 55 10 44 ns 

TCVCTX Control I nactive Delay 5 55 5 44 ns 

TCVDEX DEN Inactive Delay 10 70 10 56 ns 
(Non-Write Cycle) 

., 
'To guarantee recogmtlon at next clock. 

22-40 



80186 

PIN TIMINGS (Continued) 

A.C. CHARACTERISTICS (TA = DOC to + 70°C, VCC = 5V ±10%) (Continued) 

80186 Master Interface Timing Responses (Continued) 

80186 80186-10 

Symbol Parameter (8 MHz) (10 MHz) 

Min Max Min Max 

TAZRL Address Float to 0 0 
RDActive 

TCLRL RD Active Delay 10 70 10 56 

TCLRH RD Inactive Delay 10 55 10 44 

TRHAV RD Inactive to TCLCL-40 TCLCL -40 
Address Active 

TCLHAV HlDA Valid Delay 5 50 5 40 

TRLRH RDWidth 2TCLCL -50 2TCLCL -46 

TWLWH WRWidth 2TCLCL -40 2TCLCL -34 

TAVAL Address Valid to TCLCH-25 TCLCH-19 
ALE low 

TCHSV Status Active Delay 10 55 10 45 

TCLSH Status Inactive Delay 10 65 10 50 

TCLTMV Timer Output Delay 60 48 

TCLRO Reset Delay 60 48 

TCHQSV Queue Status Delay 35 28 

TCHDX Status Hold Time 10 10 

TAVCH Address Valid to 10 10 
Clock High 

TCLLV lOCK Validllnvalid 5 65 5 60 
Delay 

80186 Chip-Select Timing Responses 

TCLCSV Chip-Select 66 45 
Active Delay 

Tcxcsx Chip·Select Hold from 35 35 
Command Inactive 

TCHCSX Chip-Select 5 35 5 32 
Inactive Delay 

80186 ClKIN Requirements 

TCKIN ClKIN Period 62.5 250 50 250 

TCKHL ClKIN Fall Time 10 10 

TCKLH ClKIN Rise Time 10 10 

TCLCK ClKIN low Time 25 20 

TCHCK ClKIN High Time 25 20 

80186 ClKOUT Timing (200 pF load) 

TCICO ClKINto 50 25 
ClKOUTSkew 

TCLCL ClKOUT Period 125 500 100 500 

TCLCH ClKOUT low Time '12 T CLCL -7.5 '12 T CLCL - 6.0 

TCHCL ClKOUT High Time '12 T CLCL -7.5 '12 TCLCL -6.0 

TCH1CH2 ClKOUT Rise Time 15 12 

TCL2CL1 ClKOUT Fall Time 15 12 

22-41 

Units 
Test 

Conditions 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 100 pFmax 
@8&10MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 3.5 to 1.0V 

ns 1.0t03.5V 

ns 1.5V 

ns 1.5V 

ns 

ns 

ns 1.5V 

ns 1.5V 

ns 1.0 to 3.5V 

ns 3.5 to 1.0V 



inter 80186 

WAVEFORMS 

MAJOR CYCLE TIMING 

WRITE CYCLE 

R!!.INTA. 
DT/R = VOH 

J 

INTA CYCLE 

SOFDYARE HALT,.-DT/ii =VOL. ---+-~ '''VA'''' .~~a~ .. RD. WR.INT~, DEN = YOH A .... ___ ~wwn~_ 

-~roL~r~_~~I~:--I----------------r-r-~,_----J5llI; 
1m! 
ID; 
IJe§ 

_ \_TCLCSY TCXCSX- .., -
(NOTE 41 I 

210451-23 

22-42 



80186 

WAVEFORMS (Continued) 

MAJOR CYCLE TIMING (Continued) 

CLKOUT 

S2.~ --~----r-----~--~r-----+---~--+.v~~~~------+------------

BHE/S7,A19/S6-A161S3 

READ CYCLE 

NOTES: 

ALE 

TCHLH 

DT/R 

PCS, 

MCS -----+,,1 
~, 

UCS 
(NOTE 4) 

TCLRL I+----t-...... -+- TFILRI~----:--" 

210451-24 

1. Following a Write cycle, the Local Bus is floated by the 80186 only when the 80186 enters a "Hold Acknowledge" 
state. 
2. INTA occurs one clock later in slave mode. 
3. Status inactive just prior to T 4. 
4. Latched A 1 and A2 have same timings as PCS5 and PCS6. 

22-43 



inter 80-186 

WAVEFORMS (Continued) 

CLKOUT 

QSO,QS1 

210451-25 

22-44 



80186 

WAVEFORMS (Continued) 

READY TIMING 
T, T, T, 

CLKOUT 

TARYHCH_ 

ARDY 

____ --JI/i ,-"' 
ARDY A 

TARYLCL_ _ 

CLKOUT 

SRDY 

210451-29 

HOLD-HLDA TIMING 

CLKOUT \. r--{_ 
~CL--t-r ~--HOLD H--+~ 

----

HLDA 
-----~ 

AD15-ADO------------~~:c:::!Jt--~~------------------::::~!:~~+_<::!~~:: DEN ______ 80~1~8_6 __ ~~ 

A19/56 - A16/53. _____ ~ 

R5.WR. _____ !80~1~8~6 ____ ~~~~------~~--~----------------~I~~--+_---!8~01~8~6~ BHE.DT/ii. 
52-Sci. LOCK 

TCHCZ 

210451-26 

22-45 



inter 80186 

WAVEFORMS (Continued) 

TIMER ON 80186 

ClKIN 

TCKHl----

ClKOUT "W---TClCH--~,/4---TCHCl--~ 

1_------TClCl ------... 

TIMERIN 

I 
~ 

_TINVCH 

- TClTMV 1_ 
TlMEROUT 1----------2Y,to6Y, CLOCKS V-

---------------------+-~ 

80186 EXECUTION TIMINGS 

Since the bus interface unit and execution unit oper­
ate independently, a determination of 80186 pro­
gram execution timing must consider both the bus 
cycles necessary to prefetch instructions as well as 
the number of EU cycles necessary to execute in­
structions. The following instruction timings repre­
sent the minimum execution time in clock cycles for 
each instruction. The timings given are based on the 
following assumptions: . 

• The opcode, along with any data or displacement 
required for execution of a particular instruction, 
has been prefetched and resides in the queue at 
the time it is needed. 

• No wait states or bus HOLDS occur. 

210451-27 

• All word-data is located on even-address bound­
aries. 

All instructions which involve memory accesses can 
also require one or two additional clocks above the 
minimum timings shown due to the asynchronous 
handshake between the BIU and execution unit. 

All jumps and calls include the time required to fetch 
the opcode of the next instruction at the destination 
address. 

With a 16-bit BIU, the 80186 has sufficient bus per­
formance to ensure that an adequate number of pre­
fetched bytes will reside in the queue most of the 
time. Therefore, actual program execution will not be 
substantially greater than that derived from adding 
the instruction timings shown. 

22-46 



80186 

INSTRUCTION SET SUMMARY 

Function Format 
Clock 

Comments 
Cycles 

DATA TRANSFER 
MOV = Move: 

Register to RegisterlMemory 1000100w mod reg rim 2/12 

Registerlmemory to register 1000101w mod reg rim 2/9 

Immediate to registerlmemory 1100011 w mod 000 rim dala I dataifw=l I 12-13 8/16-bit 

Immediate to register 1011 w reg data dataifw=l I 3-4 8/16-bit 

Memory to accumulator 1010000w addr-Iow addr-high I 8 

Accumulator to memory 1010001w addr-Iow addr-high I 9 
, 

I Registerlmemory to segment register 10001110 mod 0 reg rim 2/9 

Segment register to registerlmemory 10001100 mod 0 reg rim I 2/11 

PUSH = Push: 

Memory I 11111111 I mod 110 rim I 16 

Register I 01010reg I 10 

Segment register I 000regll0 I 9 
:: ..... , I, I I I "I \flIIllediate 01101050 data data Hs.=;O 10 

.. :1 
. ~. ,~ 

PUSH~ "Pllm All ;01100000 
" .' 

36 

POP = Pop: 

Memory I 10001111 modOOO rim I 20 

Register I 01011 reg 10 

Segment register I 000regll1 (reg*Ol) 8 
.. 

POPAc: Pop~1 ". ,~ <. ;;1" 0.1100001 '.' 51. 

XCHG = Exchange: 

Registerlmemory with register I 1000011w I mod reg rim I 4/17 

Register with accumulator I 10010reg I 3 

IN = Input from: 

Fixed port 1110010w port I 10 

Variable port 1110110w 8 

OUT = Output to: 

Fixed port 1110011 w port I 9 

Variable port 1110111w 7 

XLAT = Translate byte to AL 11010111 11 

LEA = Load EA to register 10001101 mod reg rim I 6 

LOS = Load painter to OS 11000101 mod reg rim I (mod*ll) 18 

LES = Load pointer to ES 11000100 mod reg rim I (mod*ll) 18 

LAHF = Load AH with flags 10011111 2 

SAHF = Store AH into flags 10011110 3 

PUSHF = Push flags 10011100 9 

POPF = Pop flags 10011101 8 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

22-47 



80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Commenta 
Cycles 

DATA TRANSFER (Continued) 
SEGMENT = Segment Override: 

CS I 00101110 I 2 

SS I 00110110 I 2 

DS I 00111110 I 2 

ES I 00100110 I 2 

ARITHMETIC 
ADD = Add: 

Reg/memory with register to either I OOOOOOdw I mod reg rIm I 3/10 

Immediate to register/memory I 100000sw I modOOO rIm I data I data if s w= 01 I 4/16 

Immediate to accumulator I 0000010w I data I dataifw=1' I 3/4 B/16-bit 

ADC = Add with carry: 

Reg/memory with register to either I 000100dw I mod reg rIm I 3/10 

Immediate to register/memory I 100000sw I mod010 rIm I data I dataifsw=01 I 4/16 

Immediate to accumulator I 0001010w I data I dataifw=1 I 3/4 8/16-bit 

INC = Increment: 

Register/memory , I 1111111w I modOOO rIm, I 3/15 

Register I 01000reg I 3 

SUB = Subtract: 

Reg/memory and register to either I 001010dw I mod reg rIm I 3/10 

Immediate from register/memory I 100000sw I mod 101 rIm I data I dataifsw=01 I 4/16 

Immediate from accumulator I 0010110w I data I dataifw=1 I 3/4 B/16-bit 

SBB = Subtract with borrow: 

Reg/memory and register to either I 000110dw mod reg rIm I 3/10 

Immediate from register/memory I 100000sw modO 11 rIm I data I dataifsw=01 I 4/16 

Immediate from accumulator I 0001110w data I dataifw=1 I 3/4 B/16-bit 

DEC = Decrement 

Register/memory I 1111111w mod001 rIm I 3/15 

Register I 01001 reg 3 

CMP = Compare: 

Register/memory with register 0011101 w mod reg rIm I 3/10 

Register with register/memoiy 0011100w mod reg rIm I 3/10 

Immediate with register/memory 100000sw mod 111 rIm I data I dataifsw=01 I 3/10 

Immediate with accumulator 0011110w data I dataifw=1 I 3/4 8/16-bit 

NEG = Change sign register/memory 1111011w modO 11 rIm I 3/10 

AAA = ASCII adjust for add 00110111 8 

DAA = Decimal adjust for add 00100111 4 

AAS = ASCII adjust for sub1ract 00111111 7 

:lAS = Decimal adjust for subtract 00101111 4 

MUL= Multiply (unsigned): 1111 Q11 w mod 100 rIm I 
Register-Byte 26-28 
Register-Word 35-37 
Memory-Byte 32-34 
Memory-Word 41-43 

Shaded areas indicate instructions not available In 8086, 8088 mlcrosystems. 

22-48 



inter 80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

ARITHMETIC (Continued) 

IMUL ~ Integer multiply (signed): I 1111011 w I mod 101 rim I 
Register-Byte 25-28 
Register-Word 34-37 
Memory-Byte 31-34 
Memory-Word 40-43 

IMUL ~ Integer Immediate multiply I 01101 Os 1 I mod reg rim I data I data if s=O I 22-251 
(signed) 29-32 

DIV ~ Divide (unsigned): I 1111011w I mod 1 10 rim I 
Register-Byte 29 
Register-Word 38 
Memory-Byte 35 
Memory-Word 44 

IDIV ~ Integer divide (signed): I 1111011 w I mod 1 11 rim I 
Register-Byte 44-52 
Register-Word 53-61 
Memory-Byte 50-58 
Memory-Word 59-67 

AAM ~ ASCII adjust for multiply I 11010100 I 00001010 I 19 

AAD ~ ASCII adjust for divide I 11010101 I 00001010 I 15 

CBW ~ Convert byte to word I 10011000 I 2 

CWD ~ Convert word to double word I 10011001 I 4 

LOGIC 
Shift/Rotate Instructions: 

RegisterlMemory by 1 I 1101000w I mod TTT rim I 2/15 

RegisterlMemory by CL I 1101001 w I mod TTT rim I 5+n/17+n 

Register I MemOry by Count I 1100000w I modTTTr/m I count I 5+n/17+n 

TTT Instruction 
000 RDL 
001 RDR 
010 RCL 
011 RCR 
100 SHL/SAL 
101 SHR 
111 SAR 

AND ~ And: 

Reglmemory and register to either I 001000dw I mod reg rim I 3/10 

Immediate to registerlmemory I tOOOOOOw I mod 100 rim I data I dataifw~1 I 4/16 

Immediate to accumulator I 00100tOw I data I data ifw~ 1 I 3/4 8/16-bit 

TEST ~ And function to flags, no result: 

Registerlmemory and register I tOOO010w I mod reg rim I 3/10 

Immediate data and registerlmemory I 11110 t 1 w I modOOO rim I data I data ifw~ 1 I 4/10 

Immediate data and accumulator I 1010100w I data I data ifw~ 1 I 3/4 8/16-bit 

OR~Or: 

Reg/memory and register to either I 000010dw I mod reg rIm I 3/10 

Immediate to register/memory I 1000000w I mod 0 0 1 rIm I data I data ifw~ 1 I 4/16 

Immediate to accumulator I 0000110w I data I data ifw~ 1 I 3/4 8/16-bit 

Shaded areas indicate Instructions not available In 8086, 8088 mlcrosystems. 

22-49 



inter 80186 

INSTRUCTION SET SUMMARY (Continued) 

Function 

LOGIC (Continued) 
XOR = Exclusive or: 

Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

NOT = Invert register/memory 

STRING MANIPULATION 

MOYS = Move byte/word 

CMPS = Compare byte/word 

SCAS = Scan byte/word 

LODS = Load byte/wd to ALAX 

STOS = Stor byte/wd from ALA 

Repeated by count in CX 

MOYS = Move string 

CMPS = Compare string 

SCAS = Scan string 

LODS = Load string 

STOS = Store string 

:~ttt~a~~L 
CONTROL TRANSFER 

CALL = Call:. 

Direct within segment 

Register/memory 
indirect within segment 

Direct intersegment 

Indirect intersegment 

JMP = Unconditional jump: 

Short/long 

Direct within segment 

Register/memory 
indirect within segment 

Direct intersegment 

Indirect intersegment 

001100dw 

1000000w 

0011010w 

1111011 w 

1010010w 

1010011 w 

1010111 w 

1010110w 

11110010 

1111001 z 

1111001 z 

11110010 

11101000 

11111111 

10011010 

11111111 

11101011 

11101001 

11111111 

11101010 

11111111 

Format 

mod reg rIm 

mod 1 to rIm data 

data dataifw=1 

mod 0 1 -;;t;jiJ 

1010010w 

1010011 w 

1010111 w 

1010110w 

disp-Iow disp-high 

modOl0r/m 

segment offset 

segment selector 

mod 0 11 rIm (mod'" 11) 

disp-Iow 

disp-Iow disp-high 

mod 100 rIm 

segment offset 

segment selector 

mod 1 01 rIm I (mod'" 11) 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

22-50 

Clock 
Comments 

Cycles 

3/10 

datailw=1 4/16 

3/4 8/16-bit 

3/10 

14 

22 

15 

12 

8+8n 

5+22n 

5+15n 

6+11n 

15 

13119 

23 

38 

14 

14 

11/17 

14 

26 



inter 80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

CONTROL TRANSFER (Continued) 
RET = Return from CALL: 

Within segment 11000011 16 

Within seg adding immed to SP 11000010 data-low data-high 18 

Intersegment 11001011 22 

Intersegment adding immediate to SP 11001010 data-low data-high 25 

JE/JZ = Jump on equal/zero 01110100 disp 4/13 JMP not 

JL/JNGE = Jump on less/not greater or equal 01111100 disp 4/13 
taken/JMP 

taken 

JLE/JNG = Jump on less or equal/not greater 01111110 disp 4/13 

JB/JNAE = Jump on below/not above or equal 01110010 disp 4/13 

JBE/JNA = Jump on below or equal/not above 01110110 disp 4/13 

JP/JPE = Jump on parity/parity even 01111010 disp 4/13 

JO = Jump on overflow 01110000 disp 4/13 

JS = Jump on sign 01111000 disp 4/13 

JNE/JNZ = Jump on not equal/not zero 01110101 disp 4/13 

JNL/JGE = Jump on not less/greater or equal 01111101 disp 4/13 

JNLE/JG = Jump on not less or equal/greater 01 1111 1 1 disp 4/13 

JNB/JAE = Jump on not below/above or equal 01110011 disp 4/13 

JNBE/JA = Jump on not below or equal/above 01110111 disp 4/13 

JNP/JPO = Jump on not par/par odd 01111011 disp 4/13 

JNO = Jump on not overflow 01110001 disp 4/13 

JNS = Jump on not sign 01111001 disp 4/13 

JCXZ = Jump on CX zero 11100011 disp 5/15 

LOOP = Loop CX times 11100010 disp 6/16 LOOP not 

LOOPZ/LOOPE = Loop while zero/equal 1110000 1 disp 6/16 
taken/LOOP 

taken 

INT = Interrupt: 

Type specified 11001101 type 47 

Type 3 11001100 45 if INT. taken/ 

INTO = Interrupt on overflow 11001110 48/4 
if INT. not 

taken 

IRET = Interrupt return 11001111 28 

22-51 



inter 80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

PROCESSOR CONTROL 

ClC = Clear carry I 11111000 I 2 

CMC = Complement carry I 111 10101 I 2 

sTC = Set carry I 1 1 1 11 001 I 2 

ClD = Clear direction I 11111100 I 2 

sTD = Set direction I 11111101 I 2 

Cli = Clear interrupt I 111 1 1010 I 2 

sTI = Set interrupt 11111011 I 2 

HlT = Halt 11110100 I 2 

WAIT = Wait 10011011 I 6 if test = 0 

lOCK = Bus lock prefix 11110000 I 2 

ESC = Processor Extension Escape 11011TTT I mod llL rIm I 6 

TIT LLL are opcode to processor extension) 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

FOOTNOTES 

The Effective Address (EA) of the memory operand 
is computed according to the mod and rim fields: 
if mod = 11 then rIm is treated as REG field 
if mod = 00 then OISP = 0', disp·low and disp·high are absent 
if mod = 01 then OISP = disp·low sign-extended to 16-bits, disp·high 
is absent 
if mod = 10 then OISP = disp·high: disp·low 
if rIm = 000 then EA = (BX) + (Sl) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA ",; (BP) + (SI) + OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA = (SI) + OISP 
if rIm = 101 then EA = (01) + OISP 
if rIm = 110 then EA = (BP) + OISP' 
if rIm = 111 then EA = (BX) + OISP 

OISP follows 2nd byte of instruction (before data if 
required) 

'except if mod = 00 and rim = 110 then EA = 
disp-high: disp-Iow. 

EA calculation time is 4 clock cycles for all modes, 
and is included in the execution times given whenev­
er appropriate. 

Segment Override Prefix 

o o 1 reg o 

reg is assigned according to the following: 

reg 
Segment 
Register 

00 ES 
01 CS 
10 SS 
11 OS 

REG is assigned according to the following table: 

16-Bit (w = 1) 
000 AX 
001 CX 
010 OX 
011 BX 
100SP 
101 BP 
110 SI 
111 01 

a-Bit (w = 0) 
OOOAl 
001 Cl 
0100l 
011 Bl 
100AH 
101 CH 
1100H 
111 BH 

The physical addresses of all operands addressed 
by the BP register are computed using the SSseg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations 
(those addressed by the 01 register) are computed 
using the ES segment, which may not be overridden. 

22-52 



inter 
80C186 

CHMOS HIGH INTEGRATION 16-BITMICROPROCESSOR 
• Operation Modes Include: 

- Enhanced Mode Which Has 
- DRAM Refresh 
- Power-Save Logic 
- Direct Interface to New 

Numerics Coprocessor 
- Compatible Mode 

- NMOS 80186 Pin for Pin 
Replacement for Non-Numerics 
Applications 

• Integrated Feature Set 
- Enhanced 80C86/C88 CPU 
- Clock Generator 
- 2 Independent DMA Channels 
- Programmable Interrupt Controller 
- 3 Programmable 16-Bit Timers 
- Dynamic RAM Refresh Control Unit 
- Programmable Memory and 

Peripheral Chip Select Logic 
- Programmable Wait State Generator 
- Local Bus Controller 
- Power Save Logic 
- System-Level Testing Support (High 

Impedance Test Mode) 

• Available in 16 MHz (80C186-16), 
12.5 MHz (80C186-12) and 10 MHz 
(80C186-10) Versions 

• Direct Addressing Capability to 
1 MByte and 64 KByte I/O 

• Completely Object Code Compatible 
with All Existing 8086/8088 Software 
and Also Has 10 Additional Instructions 
over 8086/8088 

• Complete System Development 
Support 
-All 8086 and NMOS 80186 Software 

Development Tools Can Be Used for 
80C186 System Development 
- Assembler, PL/M, Pascal, Fortran, 

and System Utilities 
-In-Circuit-Emulator (ICETM-C186) 

• Available in 68 Pin: 
- Plastic Leaded Chip Carrier (PLCC) 
- Ceramic Pin Grid Array (PGA) 
- Ceramic Leadless Chip Carrier 

(JEDEC A Package) 
(See Packaging Outlines and Dimensions, Order Number 

231369) 

• Available in EXPRESS: 
- Standard Temperature with Burn-In 
- Extended Temperature Range 

(- 40°C to + 85°C) 

The Intel 80C186 is a CHMOS high integration microprocessor. It has features which are new to the 80186 
family which include a DRAM refresh control unit, power-save mode and a direct numerics interface. When 
used in "compatible" mode, the 80C186 is 100% pin-for-pin compatible with the NMOS 80186 (except for 
8087 applications). The "enhanced" mode of operation allows the full feature set of the 80C186 to be used. 
The 80C186 is upward compatible with 8086 and 8088 software and fully compatible with 80186 and 80188 
software. 

Figure 1. 80C186 Block Diagram 

22-53 

270354-1 

September 1987 
Order Number: 270354-002 



intJ 80C186 

Leadless Chip Carrier (JEDEC Type A) 

Contacts Facing Up 

'"II""""""""""""",\l5I ......•..........••.•..•..••.••..•.••.••.••..•.••.• 
so {2! ~; ~ 

A,50'y; _~ :.:.' r: peS6 / A2 
~: PCS5/Al 

ClKOUT : ~ : - peS4 

RESET :j x x x :: PCS3 

ALE/~ii ~I § § § i.~_: ~,l'S5:: 
R~~~~~ ~~ • _ ;_ TMROUTl 

A1B~ ;; ~~ ~~: ~U,TO 
AlB/55 :~ ~: TMR INO 

A17/S4 :: [: ORO I 
A16/53 :: [@ DRao ...........•...• -•............. -........... -...... . 

Ii"" """"""",, .. ,, .. "",,' 

Pin Grid Array 
PINS FACING UP 

@@@@@@@@@ 
@@@@@@@@@@@ 
@@ @@ @®D®·@ @@ @@ 
@@ @@ 
@@ @@ 

@@ @@ 
@@ @@ 
@@@9@@®®00@ 

@@@@®000CD 

PINS FACING DOWN 

<~r :~_~, :~?:' ,:~; ,:~: :XlJ !~~:. .:~?: ,:~~: 

.:~?; :~~:, :~-?} ,:~; :~~" :~:, '·1} ·:49: ",~~: ;~~:I :~, 

:~-~, @: 
:~~> ;~~: 
:~?} :_5.~·, 

':~9; :~} 
:,@ ,:~~: 

:~~:, ,:~~; 

¥?~, :~.?J 

xxx xxx xxx xxx xxx xxx --
:~}; @; 

::~f' :,3!!: 
':# :?_~'I 

.:~~: ;?~: 

:,~~: ':i~: 
:?~> ,:~?: 

':?.1.' :~_q'l 

270354-2 

P!NNO.lt.1ARK/ 
270354-3 

Plastic Leaded Chip Carrier 

Contacts Facing Up 
35 353637383940 4142 4344454647 484950 51 

52 
53 
5' 
55 
56 
57 
5. 
5. 
60 
6' 
62 
63 
6. 
65 
66 
67 
6. 

171615141312111098765432 1 1 
PIN NO,1 NARK 

Contacts FaCing Down 
~~~~q~~"~~~~E~~~~ 

52 35

xxx xxx
xxx
xxx xxx
xxx . -

)..
r,t;n:;;n:;n;IQQ1gr:;n;JgQlgm:mq'8

1234567891011121314151617

Figure 2. 80C186 Pinout Diagrams

22-54

3'
33
32
31
30
29
2.
27
26
25
2 •
23
22
21
20 ,. ,.

270354-19

infef 80C186

Table 1. 80C186 Pin Description

Symbol Pin No. Type Name and Function

Vee, Vee 9,43 I System Power: + 5 volt power supply.

Vss, Vss 26,60 I System Ground.

RESET 57 0 Reset Output indicates that the 80C186 CPU is being reset, and
can be used as a system reset. It is active HIGH, synchronized with
the processor clock, and lasts an integer number of clock periods
corresponding to the length of the RES signal. Reset goes inactive
2 clockout periods after RES goes inactive. When tied to the TEST /
BUSY pin, Reset forces the 80C186 into enhanced mode.

X1, X2 59,58 I Crystal Inputs X1 and X2 provide external connections for a
fundamental mode or third overtone parallel resonant crystal for the
internal oscillator. X1 can connect to an external clock instead of a
crystal. In this case, minimize the capacitance on X2 or drive X2
with complemented X1. The input or oscillator frequency is
internally divided by two to generate the clock signal (CLKOUT).

CLKOUT 56 0 Clock Output provides the system with a 50% duty cycle waveform.
All device pin timings are specified relative to CLKOUT. CLKOUT
has sufficient MOS drive capabilities for the Numeric Processor
Extension.

RES 24 I System Reset causes the 80C186 to immediately terminate its
present activity, clear the internal logic, and enter a dormant state.
This signal may be asynchronous to the 80C186 clock. The 80C186
begins fetching instructions approximately 7 clock cycles after RES
is returned HIGH. For proper initialization, Vee must be within
specifications and the clock signal must be stable for more than 4
clocks with RES held LOW. RES is internally synchronized. This
input is provided with a Schmitt-trigger to facilitate power-on RES
generation via an RC network. When RES occurs, the 80C186 will
drive the status lines to an inactive level for one clock, and then
float them.

TEST/BUSY 47 I The TEST pin is sampled during and after reset to determine
whether the 80C186 is to enter Compatible or Enhanced Mode.
Enhanced Mode requires TEST to be HIGH on the rising edge of
RES and LOW four clocks later. Any other combination will place
the 80C186 in Compatible Mode. A weak internal pullup insures a
HIGH state when the pin is not driven.

TEST -In Compatible Mode this pin is configured to operate as
TEST. This pin is examined by the WAIT instruction. If the TEST
input is HIGH when WAIT execution begins, instruction execution
will suspend. TEST will be resampled every five clocks until it goes
LOW, at which time execution will resume. If interrupts are enabled
while the 80C186 is waiting for TEST, interrupts will be serviced.

BUSY-In Enhanced Mode, this pin is configured to operate as
BUSY. The BUSY input is used to notify the 80C186 of Numerics
Processor Extension activity. Floating point instructions executing
in the 80C186 sample the BUSY pin to determine when the
Numerics Processor is ready to accept a new command. BUSY is
active HIGH.

TMR INO, 20 I Timer Inputs are used either as clock or control signals, depending
TMR IN 1 21 I upon the programmed timer mode. These inputs are active HIGH

(or LOW·to·HIGH transitions are counted) and internally
synchronized.

TMR OUTO, 22 0 Timer outputs are used to provide single pulse or continous
TMR OUT 1 23 0 waveform generation, depending upon the timer mode selected.

22-55

80C186

Table 1. 80C186 Pin Description (Continued)

Symbol Pin No. Type Name and Function

ORQO 18 I OMA Request is driven HIGH by an external device when it desires
ORQl 19 I that a OMA channel (Channel 0 or 1) perform a transfer. These

signals are active HIGH, level-triggered, and internally synchronized.

NMI 46 I Non-Maskable Interrupt is an edge-triggered input which causes a
type 2 interrupt. NMI is not maskable internally. A transition from a
LOW to HIGH initiates the interrupt at the next instruction boundary.
NMI is latched internally. An NMI duration of one clock or more will
guarantee service. This input is internally synchronized.

INTO,INT1 45,44 I Maskable Interrupt Requests can be requested by activating one of
INT211NTAO 42 1/0 these pins. When configured as inputs, these pins are active HIGH.
INT311NTA1 41 1/0 Interrupt Requests are synchronized internally. INT2 and INT3 may

be configured via software to provide active-LOW interrupt-
acknowledge output Signals. All interrupt inputs may be configured
via software to be either edge- or level-triggered. To ensure
recognition, all interrupt requests must remain active until the
interrupt is acknowledged. When slave mode is selected, the
function of these pins changes (see Interrupt Controller section of
this data sheet).

A19/86, 65 a Address Bus Outputs (16-19) and Bus Cycle 8tatus (3-6) reflect the
A18/85, 66 a four most signi.ficant address bits during T 1. These signals are active
A17/84, 67 a HIGH. During T 2, T 3, T w, and T 4, status information is available on
A16/83 68 a these lines as encoded below:

Low High

86 Processor Cycle DMACycle

83, 84, and 85 are defined as LOW during T 2-T 4.

AD15-AOO 10-17, 1/0 AddresslOata Bus (0-15) signals constitute the time multiplexed
1-8 memory or 1/0 address (Tl) and data (T2' T3, Tw, and T4) bus. The

bus is active HIGH. Ao is analogous to BHE for the lower byte of the
data bus, pins 07 through Do. It is LOW during T 1 when a byte is to
be transferred onto the lower portion of the bus in memory or 1/0
operations.

BHE 64 a The BHE (Bus High Enable) signal is analogous to AO in that it is
used to enable data on to the most significant half of the data bus,
pins 015-08. BHE will be LOW during Tl when the up~byte is
transferred and will remain LOW through T 3 AND T w. BHE does not
need to be latched. BHE will float during HOLD.

In Enhanced Mode, BHE will also be used to signify DRAM refresh
cycles. A refresh cycle is indicated by BHE and AO being HIGH.

BHE and AO Encodings

BHE Value AOValue Function

0 0 Word Transfer
0 1 Byte Transfer on upper half of

data bus (015-08)
1 0 Byte Transfer on lower half of

data bus (07-00)
1 1 Refresh

22-56

80C186

Table 1. 80C186 Pin Description (C.ontinued)

Symbol Pin No. Type Name and Function

ALE/QSO 61 0 Address Latch Enable/Queue Status 0 is pr.ovided by the 80C186
t.o latch the address. ALE is active HIGH. Addresses are
guaranteed t.o be valid .on the trailing edge .of ALE. The ALE rising
edge is generated .off the rising edge .of the CLKOUT immediately
preceding T1 .of the ass.ociated bus cycle, effectively .one-half cl.ock
cycle earlier than in the standard 8086. The trailing edge is
generated .off the CLKOUT rising edge in T 1 as in the 8086. N.ote
that ALE is never fl.oated.

WR/QS1 63 0 Write Str.obe/Queue Status 1 indicates that the data .on the bus is
t.o be written int.o a mem.ory.or an I/O device. WR is active f.or T 2,
T 3, and T w .of any write cycle. It is active LOW, and fl.oats during
"HOLD." It is driven HIGH f.or .one cl.ock during Reset, and then
fl.oated. When the 80C186 is in queue status m.ode, the ALE/QSO
and WR/QS1 pins pr.ovide inf.ormati.on ab.out process.or/instructi.on
queue interacti.on.

QS1 QSO Queue Operation

0 0 N.o queue .operati.on
0 1 First .opc.ode byte fetched fr.om

the queue
1 1 Subsequent byte fetched from

the queue
1 0 Empty the queue

RD/QSMD 62 0 Read Str.obe indicates that the 80C186 is perf.orming a mem.ory .or
I/O read cycle. RD is active LOW f.or T 2, T 3, and T w .of any read
cycle. It is guaranteed n.ot t.o g.o LOW in T 2 until after the Address
Bus is fl.oated. RD is active LOW, and fl.oats during "HOLD". RD is
driven HIGH for .one cl.ock during Reset, and then the .output driver
is fl.oated. A weak internal pull-up mechanism .of the RD line h.olds it
HIGH when the line is n.ot driven. During RESET the pin~ampled
t.o determine whether the 80C186 sh.ould pr.ovide ALE, WR and RD,
.or if the Queue-Status sh.ould be provided. RD sh.ould be
c.onnected t.o GND t.o pr.ovide Queue-Status data.

ARDY 55 I Asynchron.ous Ready inf.orms the 80C186 that the addressed
mem.ory space .or I/O device will c.omplete a data transfer. The
ARDY input pin will accept an asynchron.ous input, and is active
HIGH. Only the rising edge is internally synchr.onized by the
80C186. This means that the falling edge .of ARDY must be
synchr.onized t.o the 80C186 cl.ock. If c.onnected t.o Vee, n.o WAIT
states are inserted. Asynchr.on.ous ready (ARDY) .or synchr.on.ous
ready (SRDY) must be active t.o terminate a bus cycle. If unused,
this line sh.ould be tied LOW t.o yield c.ontrol t.o the SRDY pin.

SRDY 49 I Synchron.ous Ready must be synchronized externally t.o the
80C186. The use .of SRDY pr.ovides a relaxed system-timing
specificati.on .on the Ready input. This is acc.omplished by
eliminating the .one-half cl.ock cycle which is required f.or internally
res.olving the signal level when using the ARDY input. This line is
active HIGH. If this line is c.onnected t.o Vee, n.o WAIT states are
inserted. Asynchr.onbus ready (ARDY) .or synchr.on.ous ready
(SRDY) must be active before a bus cycle is terminated. If unused,
this line sh.ould be tied LOW t.o yield c.ontr.ol t.o the ARDY pin.

22-57

inter 80C186

Table 1. 80C186 Pin Description (Continued)

Symbol Pin No. Type Name and Function

LOCK 48 a LOCK output indicates that other system bus masters are not to gain
control of the system bus while LOCK is active LOW. The LOCK
signal is requested by the LOCK prefix instruction and is activated at
the beginning of the first data cycle associated with the instruction
following the LOCK prefix. It remains active until the completion of
the instruction following the LOCK prefix. No prefetches will occur
while LOCK is asserted. LOCK is active LOW, is driven HIGH for one
clock during RESET, and then floated.

SO,S1,S2 52-54 a Bus cycle status SO-S2 are encoded to provide bus-transaction
information:

80C186 Bus Cycle Status Information

S2 S1 SO Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 Halt
1 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

The status pins float during HOLD/HLDA.
S2 may be used as a logical MilO indicator, and S1 as a DT IA
indicator.
The status lines are driven HIGH for one clock during Reset, and
then floated until a bus cycle begins.

HOLD (input) 50 I HOLD indicates that another bus master is requesting the local bus.
HLDA (output) 51 a The HOLD input is active HIGH. HOLD may be asynchronous with

respect to the 80C186 clock. The 80C186 will issue a HLDA (HIGH)
in response to a HOLD request at the end of T 4 or Tj. Simultaneous
with the issuance of HLDA, the 80C186 will float the local bus and
control lines. After HOLD is detected as being LOW, the 80G186 will
lower HLDA. When the 80C186 needs to run another bus cycle, it will
again drive the local bus and control lines.

In Enhanced Mode, HLDA will go low when a DRAM refresh cycle is
pending in the 80C186 and an external bus master has control of the
bus. It will be up to the external master to relinquish the bus by
lowering HOLD so that the 80G186 may execute the refresh cycle.
Lowering HOLD for four clocks and returning HIGH will insure only
one refresh cycle to the external master. HLDA will immediately go
active after the refresh cycle has taken place.

UCS 34 a Upper Memory Chip Select is an active LOW output whenever a
memory reference is made to the defined upper portion (1 K-256K
block) of memory. This line is not floated during bus HOLD. The
address range activating UCS is software programmable.

UCS and LCS are sampled upon the rising edge of RES. If both pins
are held low, the 80C186 will enter ONCETM Mode. In ONCE Mode
all pins assume a high impedance state and remain so until a
subsequent RESET. UCS has a weak internal pullup for normal
operation.

22-58

80C186

Table 1. 80C186 Pin Description (Continued)

Symbol Pin No. Type Name and Function

LCS 33 0 Lower Memory Chip Select is active LOW whenever a
memory reference is made to the defined lower portion (1 K-
256K) of memory. This line is not floated during bus HOLD.
The address range activating LCS is software
programmable.

UCS and LCS are sampled upon the rising edge of RES. If
both pins are held low, the 80C186 will enter ONCE Mode. In
ONCE Mode all pins assume a high impedance state and
remain so until a subsequent RESET. UCS has a weak
internal pullup for normal operation.

MCSO/PEREQ 38 1/0 Mid-Range Memory Chip Select signals are active LOW
MCS1/ERROR 37 1/0 when a memory reference is made to the defined mid-range
MCS2 36 0 portion of memory (8K-512K). These lines are not floated
MCS3INPS 35 0 during bus HOLD. The address ranges activating MCSO-3

, are software programmable.

In Enhanced Mode, MCSO becomes a PEREQ input
(Processor Extension Request). When connected to the
Numerics Processor Extension, this input is used to signal
the 80C186 When to make numeric data transfers to and
from the NPX. MCS3 becomes NPS (Numeric Processor
Select) which may only be activated by communication to
the Numerics Processor Extension. MCS1 becomes ERROR
in enhanced mode and is used to signal numerics
coprocessor errors.

PCSO 25 0 Peripheral Chip Select signals 0-4 are active LOW when a

PCS1-4 27,28,29,30 0 reference is made to the defined peripheral area (64K byte II
o space). These lines are not floated during bus HOLD. The
address ranges activating PCSO-4 are software
programmable.

PCS5/A1 31 0 Peripheral Chip Select 5 or Latched A 1 may be programmed
to provide a sixth peripheral chip select, or to provide an
internally latched A 1 signal. The address range activating
PCS5 is software programmable. When programmed to
provide latched. A 1, rather than PCS5, this pin will retain the
previously latched value of A 1 during a bus HOLD. A 1 is
active HIGH.

PCS6/A2 32 0 Peripheral Chip Select 6 or Latched A2 may be programmed
to provide a seventh peripheral chip select, or to provide an
internally latched A2 signal. The address range activating
PCS6 is software programmable. When programmed to
provide latched A2, rather than PCS6, this pin will retain the
previously latched value of A2 during a bus HOLD. A2 is
active HIGH.

DTIR 40 0 Data Transmit/Receive controls the direction of data flow
through the external 8286/8287 data bus transceiver. When
LOW, data is transferred to the 80C186. When HIGH the
80C186 places write data on the data bus.

DEN 39 0 Data Enable is provided as an 8286/8287 data bus
transceiver output enable. DEN is active LOW during ~ch
memory and 1/0 access. DEN is HIGH whenever DT IR
changes state.

22-59

80C186

FUNCTIONAL DESCRIPTION

Introduction

The following Functional Description describes the
base architecture of the 80C186. This architecture is
common to the 8086, 8088, 80186 and 80286 micro­
processor families as well. The 80C186 is a very
high integration 16-bit microprocessor. It combines
15-20 of the most common microprocessor system
components onto one chip. The 80C186 is object
code compatible with the 8086/8088 microproces­
sors and adds 10 new instruction types to the exist­
ing 8086/8088 instruction set.

The 80C186 has two major modes of operation,
Compatible and Enhanced. In Compatible Mode the
80C186 is completely compatible with NMOS
80186, with the exception of 8087 support. All pin
functions, timings, and drive capabilities are identi­
cal. The Enhanced mode adds three new features to
the system design. These are Power-Save control,
Dynamic RAM refresh, and an asynchronous Nu­
merics Co"processor interface.

80C186 BASE ARCHITECTURE

The 8086,8088, 80186, and 80286 family all contain
the same basic set of registers, instructions, and ad­
dressing modes. The 80C186 processor is upward
compatible with the 8086, 8088, and 80286 CPUs.

Register Set

The 80C186 base architecture has fourteen regis­
ters as shown in Figures 3a and 3b. These registers
are grouped into the following categories.

General Registers

Eight 16-bit general purpose registers may be used
to contain arithmetic and logical operands. Four of

these (AX, BX, CX, and OX) can be used as 16-bit
registers or split into pairs of separate 8-bit registers.

Segment Registers

Four 16-bit special purpose registers select, at any
given time, the segments of memory that are imme­
diately addressable for code, stack, and data. (For
usage, refer to Memory Organization.)

Base and Index Registers

Four of the general purpose registers may also be
used to determine offset addresses of operands in
memory. These registers may contain base address­
es or indexes to particular locations within a seg­
ment. The addressing mode selects the specific reg­
isters for operand and address calculations.

Status and Control Registers

Two 16-bit special purpose registers record or alter
certain aspects of the 80C186 processor state.
These are the Instruction Pointer Register, which
contains the offset address of the next sequential
instruction to be executed, and the Status Word
Register, which contains status and control flag bits
(see Figures 3a and 3b).

Status Word Description

The Status Word records specific characteristics of
the result of logical and arithmetic instructions (bits
0, 2, 4, 6, 7, and 11) and controls the operation of
the 80C186 within a given operating mode (bits 8, 9,
and 10). The Status Word Register is 16-bits wide.
The function· of the Status Word bits is shown in
-Table 2.

22-60

intJ

BYTE
ADDRESSABLE

(e·BIT
REGISTER
NAMES

SHOWN)

16-8JT
REGISTER

NAME

I AX

OX

CX

BX

BP

I

I

SP

15

o 7

AH AL

oH oL

CH CL

BH BL

GENERAL
REGISTERS

)

STATUS FLAGS:

80C186

SPECIAL
15

REGISTER
FUNCTIONS

~
CS CODE SEGMENT SELECTOR

OS DATA SEGMENT SELECTOR

MUL TJPl Y IDIVIDE
110 INSTRUCTIONS SS STACK SEGMENT SELECTOR

ES EXTRA SEGMENT SELECTOR
LOOP/SHIFT/AEPEAT/COUNT

SEGMENT REGISTERS

BASE REGISTERS

15

F

I
STATUS WORD

INDEX REGISTERS

IP INSTRUCTION POINTER

STACK POINTER STATUS AND CONTROL

REGISTERS

Figure 3a. 80C186 Register Set

CARRY ----_______ -------______ --,

PARITY

AUXllIAAY CARRY ============~=l--l ZERO _

CONTROL FLAGS:

'------- TRAP FLAG

L_-========= INTERRUPT ENABLE DIRECTION FLAG

~ INTEL RESERVED 270354-4

Figure 3b. Status Word Format

22-61

intJ 80C186

Table 2. Status Word Bit Functions Instruction Set
Bit

Name
Position

0 CF

2 PF

4 AF

6 ZF

7 SF

a TF

9 IF

10 DF

11 OF

Function

Carry Flag-Set on high-order
bit carry or borrow; cleared
otherwise .

Parity Flag-Set if low-order a
bits of result contain an even
number of 1-bits; cleared
otherwise

Set on carry from or borrow to
the low order four bits of AL;
cleared otherwise

Zero Flag-Set if result is zero;
cleared otherwise

Sign Flag-Set equal to high-
order bit of result (0 if positive,
1 if negative)

Single Step Flag-Once set, a
single step interrupt occurs
after the next instruction
executes. TF is cleared by the
single step interrupt.

Interrupt-enable Flag-When
set, maskable interrupts will
cause the CPU to transfer
control to an interrupt vector
specified location.

Direction Flag-Causes string
instructions to auto decrement
the appropriate index register
when set. Clearing DF causes
auto increment.

Overflow Flag~Set if the
signed result cannot be
expressed within the number
of bits in the destination
operand; cleared otherwise

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/logical, string
manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are
summarized in Figure 4.

An aOC1a6 instruction can reference anywhere from
zero to several operands. An operand can reside in
a register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later
in this data sheet.

Memory Organization

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K
(216) a-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a 16-
bit base segment and a 16-bit offset. The 16-bit
base values are contained in one of four internal
segment register (code, data, stack, extra). The
physical address is calculated by shifting the base
value LEFT by four bits and adding the 16-bit offset
value to yield a 20-bit physical address (see Figure
5). This allows for a 1 MByte physical address size.

All instructions that address operands in memory
must specify the base segment and the 16-bit offset
value. For speed and compact instruction encoding,
the segment register used for physical address gen­
eration is implied by the addressing mode used (see
Table 3). These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.

22-62

80C186

GENERAL PURPOSE MOVS Move byte or word string

MOV Move byte or word INS Input bytes or word string
PUSH Push word onto stack OUTS Output bytes or word string
POP Pop word off stack

CMPS Compare byte or word string
PUSHA Push all registers on stack

SCAS Scan byte or word string
paPA Pop all registers from stack

LaDS Load byte or word string
XCHG Exchange byte or word

XLAT Translate byte
STOS Store byte or word string

INPUT/OUTPUT REP Repeat

IN Input byte or word REPE/REPZ Repeat while equal/zero

OUT Output byte or word REPNE/REPNZ Repeat while not equal/not zero

ADDRESS OBJECT LOGICALS

LEA Load effective address NOT "Not" byte or word

LDS Load pointer using DS
AND "And" byte or word

OR "Inclusive or" byte or word
LES Load pointer using ES

XOR "Exclusive or" byte or word
FLAG TRANSFER TEST "Test" byte or word

LAHF Load AH register from flags SHIFTS
SAHF Store AH register in flags SHL/SAL Shift logical/arithmetic left byte or word
PUSHF Push flags onto stack SHR Shift logical right byte or word

POPF Pop flags off stack SAR Shift arithmetic right byte or word

ADDITION ROTATES

ADD Add byte or word ROL Rotate left byte or word

ADC Add byte or word with carry ROR Rotate right byte or word

INC Increment byte or word by 1 RCL Rotate through carry left byte or word

AAA ASCII adjust for addition
RCR Rotate through carry right byte or word

DAA Decimal adjust for addition
FLAG OPERATIONS

SUBTRACTION
STC Set carry flag

SUB Subtract byte or word
CLC Clear carry flag

SBB Subtract byte or word with borrow
CMC Complement carry flag

DEC Decrement byte or word by 1
STD Set direction flag

NEG Negate byte or word
CLD Clear direction flag

CMP Compare byte or word
STI Set interrupt enable flag

AAS ASCII adjust for subtraction
CLI Clear interrupt enable flag

DAS Decimal adjust for subtraction
EXTERNAL SYNCHRONIZATION

MULTIPLICATION
HLT Halt until interrupt or reset

MUL Multiply byte or word unsigned
WAIT Wait for TEST pin active

IMUL Integer multiply byte or word
ESC Escape to extension processor

AAM ASCII adjust for multiply
LOCK Lock bus during next instruction

DIVISION
NO OPERATION

DIV Divide byte or word unsigned
Nap No operation

IDIV Integer divide byte or word
HIGH LEVEL INSTRUCTIONS

ASCII adjust for division
ENTER Format stack for procedure entry

AAD

CBW Convert byte to word
LEAVE Restore stack for procedure exit

CWD Convert word to doubleword
BOUND Detects values outside prescribed range

Figure 4. 80C186 Instruction Set

22-63

inter 80C186

CONDITIONAL TRANSFERS JO Jump if overflow

JAlJNBE Jump if above/not below nor equal JP/JPE Jump if parity/parity even

JAE/JNB Jump if above or equal/not below JS Jump if sign

JB/JNAE Jump if below/not above nor equal UNCONDITIONAL TRANSFERS

JBE/JNA Jump if below or equal/not above CALL Call procedure

JC Jump if carry RET Return from procedure

JE/JZ . Jump if equal/zero JMP Jump

JG/JNLE Jump if greater / not less nor equal ITERATION CONTROLS

JGE/JNL Jump if greater or equal/not less LOOP Loop

JLlJNGE Jump if less/not greater nor equal LOOPE/LOOPZ Loop if equal/zero

JLE/JNG Jump if less or equal/not greater LOOPNE/LOOPNZ Loop if not equal/not zero

JNC Jump if not carry JCXZ Jump if register CX = 0

JNE/JNZ Jump if not equal/not zero INTERRUPTS

JNO Jump if not overflow INT Interrupt

JNP/JPO Jump if not parity/parity odd INTO Interrupt if overflow

JNS Jump if not sign IRET Interrupt return

Figure 4. 80C186 Instruction Set (Continued)

To access operands that do not reside in one of the
four immediately available segments, a full 32-bit
pointer can be used to reload both the base (seg­
ment) and offset values.

fH'FT lEFT4 BlTSI 1234 I"GMEN,} BASE

I, , ! 0 I 15 a LOGICAL , ,
I

ADDRESS

t o 0 2 2 IOFFSET 19 0

[~I 0 , I· 15 0
0 ,

15 0

I, , , 6 'I PHYSICAL AODRESS

19 0

TO MEMORY 270354-5

Figure 5. Two Component Address

Table 3. Segment Register Selection Rules

Memory Segment Implicit Segment Reference Register Selection Rule Needed Used

Instructions Code (CS) Instruction prefetch and
immediate data.

Stack Stack (SS) All stack pushes and
pops; any memory
references which use BP
Register as a base
register.

External Extra (ES) All string instruction
Data references which use
(Global) the 01 register as an

index.
Local Data Data (OS) All other data references.

22-64

MODULE A

r---'
I I

~ODE
DATA

MODULE B I::::::==i-...,

PROCESS
STACK

PROCESS
DATA
BLOCK 1

PROCEssD DATA
BLOCK 2 .

I I L ___ J

MEMORV

CPU

CODE

DATA

STACK

EXTRA

SEGMENT
REGISTERS

270354-6

Figure 6. Segmented Memory Helps
. Structure Software

80C186

Addressing Modes

The 80C186 provides eight categories of addressing
modes to specify operands. Two addressing modes
are provided for instructions that operate on register
or immediate operands:

• Register Operand Mode: The operand is located
in one of the 8- or 16-bit general registers.

• Immediate Operand Mode: The operand is in­
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base .is sup­
plied by a 16-bit segment register either implicitly
chosen by the addressing mode or explicitly chosen
by a segment override prefix. The offset, also called
the effective address, is calculated by summing any
combination of the following three address ele­
ments:

• the displacement (an 8- or 16-bit immediate value
contained in the instruction);

• the base (contents of either the BX or BP base
registers); and

• the index (contents of either the SI or 01 index
registers).

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements de­
fine the six memory addressing modes, described
below.

• Direct Mode: The operand's offset is contained in
the instruction as an 8- or 16-bit displacement el­
ement.

• Register Indirect Mode: The operand's offset is in
one of the registers SI, 01, BX, or BP.

• Based Mode: The operand's offset is the sum of
an 8- or 16-bit displacement and the contents of
a base register (BX or BP).

• Indexed Mode: The operand's offset is the sum
of an 8- or 16-bit displacement and the contents
of an index register (SI or 01).

• Based Indexed Mode: The operand's offset is the
sum of the contents of a base register and an
I ndex register.

• Based indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8- or
16-bit displacement.

Data Types

The 80C186 directly supports the following data
types:

• Integer: A signed binary numeric value contained
in an 8-bit byte or a 16-bit word. All operations
assume a 2's complement representation.
Signed 32- and 64-bit integers are supported us­
ing a Numeric Data Coprocessor with the
80C186.

• Ordinal: An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word.

• Pointer: A 16- or 32-bit quantity, composed of a
16-bit offset component or a 16-bit segment base
component in addition to a 16-bit offset compo­
nent.

• String: A contiguous sequence of bytes or words.
A string may contain from 1 to 64K bytes.

• ASCII: A byte representation of alphanumeric and
control characters using the ASCII standard of
character representation.

• BCD: A byte (unpacked) representation of the
decimal digits 0-9.

• Packed BCD: A byte (packed) representation of
two decimal digits (0-9). One digit is stored in
each nibble (4-bits) of the byte.

• Floating Point: A signed 32-, 64-, or 80-bit real
number representation. (Floating point operands
are supported using a Numeric Data Coprocessor
with the 80C186.)

In general, individual data elements must fit within
defined segment limits. Figure 7 graphically repre­
sents the data types supported by the 80C186.

I/O Space

The 1/0 space consists of 64K 8-bit or 32K 16-bit
ports. Separate instructions address the 1/0 space
with either an 8-bit port address, specified in the in­
struction, or a 16-bit port address in the OX register.
8-bit port addresses are zero extended such that
A1s-Aa are LOW. 1/0 port addresses 00F8(H)
through OOFF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to
allow resumption of the interrupted program. Inter­
rupts fall into three classes: hardware initiated, INT
instructions, and instruction exceptions. Hardware
initiated interrupts occur in response to an external
input and are classified as non-maskable or maska­
ble.

22-65

80C186

7 0
SIGNED rrrrrrrn

BYTE LL....!.......J
SIGN BIT j L......--.J

MAGNITUDE

7 0
INSIGNED rTfTTTTT1

BYTE L...:..........
~
MAGNITUDE

1514 +1 '7 0 0

s~~=g II iii iii Iii i I' iii
SIGN BIT J L.I L..:::MST.:A"G"'NI:"TU"'D""E ---l

SIGNED 31 +3 +2 1615 + 1 0

D~~:~~ 11" I i Ii r Ii I' iii i Ii I i Ii I i Ii I Ii i I
SIGN BIT J L.IL..;;M:.=;SB=----,M"'A"'G"'NIT""U""DE.------'

+7 +6 +5 +4 +3 +2 +1
SIGNED 63 4847 3231 1615 0

w~~~11 I I I I I I
SIGN BIT J, ... '--"'M"'SB:.---M"'A:-::G""NI"'TU=DE.------'

15 +1 0 0

UNS~~~g I iii I ill' i i 11' iii
,LMSB

MAGNITUDE

BINARY 7 +N' o'
CODED rTfTTTTT1

DECIMAL L...:..........
(BCD) DI~~~ N

7 +N 0

ASCII EI::!

ASCII
CHARACTERN

7 +N 0
PACKED rTfTTTTT1

BCD L-.L.-J
L--I
MOST
SIGNIFICANT DIGIT

7 +1 (] 7 0 0

I'li Iii iii iii Ii i I
BCD BCD

DIGIT 1 DIGIT 0

7 +1 07 0 0

I if 'I iii Iii i I Ii i I
ASCII ASCII

CHARACTER, CHARACTERo

7 +1 07 0 0

l'iil'''riilli,'J
L--I
LEAST

SIGNIFICANT DIGIT

115 +N 0 715 +1 . 0715 0 0

STRINGEI::! ••• liiil!!II'!ij,I',
BYTE 'WORD N BYTE WORD 1 BYTE WORD 0

31 +3 +2 1615 +1 0 0

POINTER Iii iii iii iii Ii' ii" iii i , Iii iii iii
I I

SELECTOR OFFSET
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 0

FL~~~~ II I
SIGN BIT ~l"i --''-............. _.L........L._L-...J..--I_-'---'

EXPONENT MAGNITUDE

270354-7

NOTE:
"Supported by using a Numeric Data Coprocessor with
the 80C186.

Figure 7. 80C186 Supported Data Types

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which· prevents further instruction
processing, is detected while attempting to execute
an instruction. If the exception was caused by exe­
cuting an ESC instruction with the ESC trap bit set in
the relocation register, the return instruction will
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc-

tion if the prefix was present. In all other cases, the
return address from an exception will point at the
instruction. immediately following the instruction
causing th~ exception.

A table containing up to 256 pointers defines the .
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the
80C186 predefined types and default priority levels.
For each interrupt, an 8-bit vector must be supplied
to the 80C186 which identifies the appropriate table
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and noncas­
caded external interrupts will generate their own
vectors through the internal interrupt controller. INT
instructions contain or imply the vector and allow
access to all 256 interrupts. Maskable hardware ini­
tiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence.
Non-maskable hardware interrupts use a predefined
internally supplied vector.

Interrupt Sources
The 80C186 can service interrupts generated by
software or hardware. The software interrupts are
generated by specific instructions (INT, ESC, unused
OP, etc.) or the results of conditions specified by
instructions (array bounds check, INTO, OIV, 101V,
etc.). All interrupt sources are serviced by an indirect
call through an element of a vector table. This vector
table is indexed by using the interrupt vector type
(Table 4), multiplied by four. All hardware-generated
interrupts are sampled at the end of each instruc­
tion. Thus, the softWare interrupts will begin service
first. Once the service routine is entered and inter­
rupts are enabled, any hardware source of sufficient
priority can interrupt the service routine in progress.

The software generated. 80C186 interrupts are de­
scribed below.

DIVIDE ERROR EXCEPTION (TYPE 0)

Generated when a OIV or 10lV instruction quotient
cannot be expressed in the number of bits in the
destination.

SINGLE-STEP INTERRUPT (TYPE 1)

Generated after most instructions if the TF flag is
set. Interrupts will not be generated after prefix in­
structions (e.g., REP), instructions which modifyseg­
ment registers (e.g., POP OS), or the WAIT instruc­
tion.

NON-MASKABLE INTERRUPT -NMI (TYPE 2)

An external interrupt source which cannot be
masked.

22-66

inter 80C186

Table 4. 80C186 Interrupt Vectors

Interrupt Vector Default Related
Name Type Priority Instructions

Divide Error 0 *1 DIV,IDIV
Exception

Single Step 1 12" All
Interrupt

NMI 2 1 All
Breakpoint 3 *1 INT

Interrupt
INTO Detected 4 *1 INTO

Overflow
Exception

Array Bounds 5 '1 BOUND
Exception

Unused-Opcode 6 '1 Undefined
Exception Opcodes

ESCOpcode 7 *1 *** ESCOpcodes
Exception

Timer 0 Interrupt 8 2A····
Timer 1 Interrupt 18 2B**"
Timer 2 Interrupt 19 2C····
Reserved 9 3
DMA 0 Interrupt 10 4
DMA 1 Interrupt 11 5
INTO Interrupt .12 6
INT1 Interrupt 13 7
iNT2 Interrupt 14 8
INT3 Interrupt 15 9

NOTES:
'1. These are generated as the result of an instruction exe­
cution.
"2. This is handled as in the 8086.
····3. All three timers constitute one source of request to
the interrupt controller. The Timer interrupts all have the
same default priority level with respect to all other interrupt
sources. However, they have a defined priority ordering
amongst themselves. (Priority 2A is higher priority than 2B.)
Each Timer interrupt has a separate vector type number.
4. Default priorities for the interrupt sources are used only if
the user does not program each source into a unique prior­
ity level.
"'5. An escape opcode will cause a trap if the 80C186 is
in compatible mode or if the processor is in enhanced
mode with the proper bit set in the peripheral control block
relocation register. .

BREAKPOINT INTERRUPT (TYPE 3)

A one-byte version of the INT instruction. It uses 12 .
as an index into the service routine address table
(because it is a type 3 interrupt).

INTO DETECTED OVERFLOW EXCEPTION
(TYPE4)

Generated during an INTO instruction if the OF bit is
set.

ARRAY BOUNDS EXCEPTION (TYPE 5)

Generated during a BOUND instruction if the array
index is outside the array bounds. The array bounds
are located in memory at a location indicated by one
of the instruction operands. The other operand indi­
cates the value of the index to be checked.

UNUSED OPCODE EXCEPTION (TYPE 6)

Generated if execution is attempted on undefined
opcodes.

ESCAPE OPCODE EXCEPTION (TYPE 7)

Generated if execution is attempted of ESC opcodes
(D8H-DFH). In compatible mode operation, ESC
opcodes will always generate this exception. In en­
hanced mode operation, the exception will be gener­
ated only if a bit in the relocation register is set The
return address of this exception will point to the ESC
instruction causing the exception. If a segment over­
ride prefix preceded the ESC instruction, the return
address will point to the segment override prefix.

Hardware-generated interrupts are divided into two
groups: maskable interrupts and non-maskable in­
terrupts. The 80C186 provides maskable hardware
interrupt request pins INTO-INT3. In addition, mask­
able interrupts may be generated by the 80C186 in­
tegrated DMA controller and the integrated timer
unit. The vector types for these interrupts is shown
in Table 4. Software enables these inputs by setting
the interrupt flag bit (IF) in the Status Word. The in­
terrupt controller is discussed in the peripheral sec­
tion of this data sheet.

Further maskable interrupts are disabled while serv­
icing an interrupt because the IF bit is reset as part
of the response to an interrupt or exception. The
saved Status Word will reflect. the enable status of
the processor prior to the interrupt. The interrupt flag
will remain zero unless specifically set. The interrupt
return instruction restores the Status Word, thereby
restoring the original status of I F bit. If the interrupt
return ie-enables interrupts, and another interrupt is
pending, the 80C186 will immediately service the
highest-priority interrupt pending, I.e., no instructions
of the main line program will be executed.

Non-Maskable Interrupt Request (NMI)
A non-maskable interrupt (NMI) is also provided.
This interrupt is serviced regardless of the state of
the IF bit. A typical use of NMI would be to activate a
power failure routine. The activation of this input
causes an interrupt with an internally supplied vector
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the
beginning of an NMI interrupt to prevent maskable
interrupts from being serviced.

22-67

80C186

Single-Step Interrupt

The 80C186 has an internal interrupt that allows pro­
grams to execute one il1struction at a time. It is
called the single~step interrupt and is controlled by
the single-step flag bit (TF) in the Status Word. Once
this bit is set, an internal single-step interrupt will
occur after the next instruction has been executed.
The interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc­
tion to be single-stepped.

Initialization and Processor Reset

Processor initialization or startup is accomplished by
driving the RES input pin' LOW. RES forces the
80C186 to terminate all execution and local bus ac­
tivity. No instruction or bus activity will occur as long
as RES is active. After RES becomes inactive and
an internal processing interval elapses, the 80C186
begins execution with the instruction at physical lo­
cation FFFFO(H). RES also sets some registers to
predefined values as shown in Table 5.

Table 5. 80C186 Initial Register State
, after RESET

Status Word
Instruction Pointer
Code Segment
Data Segment
Extra Segment
Stack Segment
Relocation Register
UMCS

F002(H)
OOOO(H)
FFFF(H)
OOOO(H)
OOOO(H)
OOOO(H)
20FF(H)
FFFB(H)

80C186 CLOCK GENERATOR

The 80C186 provides an on-chip clock generator for
both internal and external clock. generation. The
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous
ready inputs, and reset circuitry.

Oscillator

The 80C186 oscillator circuit is designed to be used
either with a parallel resonant fundamental or third­
overtone mode crystal, depending upon the frequen­
cy range of the application as shown in Figure 8c.
This is used as the time base for the 80C186. The
crystal frequency chosen should be twice the re­
quired processor frequency. Use of an LC or RC cir-
cuit is not recommended. '

The output of the oscillator is not directly available
outside the 80C186. The two recommended crystal

configurations are shown in Figure 8a. When used in
third-overtone mode the tank circuit shown in Figure
8b is recommended for stable operation. The sum of
the stray capacitances and loading capacitors
should equal the values shown. It is advisable to lim­
it stray capacitance between the X1 and X2 pins to
less than 10 pF. While a fundamental-mode circuit
wil,l require approximately 1 ms for start-up, the.third­
overtone arrangement may require 1 ms to 3 ms to
stabilize.

Alternately the oscillator pins may be driven from an
external source in a configuration shown in Figure
8d or Figure 8e. The configuration shown in Figure
8f is not recommended.

The following parameters may be used for choosing
a crystal:

Temperature Range:
ESR (Equivalent Series Resistance):
Co (Shunt Capacitance of Crystal):
·C1 (Load Capacitance):
Drive Level:

Clock Generator

o to 70°C
400 max

7.0 pf max
20 pF ± 2,pF

1 mWmax

The 80C186 clock generator provides the 50% duty
cycle processor clock for the 80C186. It does this by
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the
state of the clock generator will change on the fail­
ing edge of the oscillator signal. The CLKOUT pin
proVides the processor clock Signal for use outside
the 80C186. This may be used to drive other system
'components. All timings are referenced to the output
clock.

READY Synchronization'

The 80C186 provides. both synchronous and asyn­
chronous ready inputs. Asynchronous rE;lady syn­
chronization is accomplished by circuitry which sam­
ples ARDY in the middle of T 2, T 3 and again in the
middle of each T w until ARDY is sampled HIGH.
One-half CLKOUT cycle of resolution time is used.
Full synchronization is performed only on the rising
edge of ARDY, Le.: the falling edge of ARDY must
be synchronized to the CLKOUT signal if it will occur
during T 2, T 3, or T w. High-to-LOW transitions of
ARDY must be performed synchronously to the CpO
clock. .

A second ready input (SRDY) is provided to inter­
face with externally synchronized ready signals. This
input is sampled at the end of T 2, T 3 and again at
the. end of each T w until it is sampled HIGH. By
using this input rather than the asynchronous ready
input, the half-clock cycle resolution time penalty is
eliminated. '

22-68

80C186

30pF 30pF E:: o$CRYSTAL Xl

1--+----tX2
2~~F 80C186

(Ba)
270354-24

E': ~CRYSTAL Xl

1--+---(X2
2~ ~F ~ 80C186

-=- ~Note 1

± 200pF

270354-25

Note 1:
XTAL Frequency

20 Mhz
25 Mhz
32 Mhz

Recommended Crystal Mode I' Third-Overtone

)-41'----:-, Fundamental-----j

1 I
Desired CPU Frequency 10MHz 12.5 MHz

(Be)

c::IEx~t.~r~n~OIJc~IO~cEk]s~ou~r~c.~~--r_------~Xl

4>">0----1-X2

(Be)

External Clock Source >-- Xl

(Bb)

Ll Value
12.0 f'H ±20%
B.2 f'H ±20%
4.7 f'H ±20%

'I
I

16MHz

270354-26

-:F Xl

270354-B

N.C. X2

80C186

I External Clock Source >-- X2

80C186

(BI)

(Bd)
270354-27 (DO NOT USE)

270354-2B

Figure 8. 80C186 Oscillator Configurations (see text)

22-69

inter 80C186

This input must satisfy set-up and hold times to guar­
antee proper operation of the circuit.

In addition, the 80C186, as part of the integrated
chip-select logic, has the capability to program WAIT
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select!Ready Logic description.

RESET Logic

The 80C186 provides both a RES input pin and a
synchronized RESET pin for use with other system
components. The RES input pin on the 80C186 is
provided with hysteresis in order to facilitate power­
on Reset generation via an RC network. RESET is
guaranteed to remain active for at least five clocks
given a RES input of at least six clocks. RESET may
be delayed up to two and one-half clocks behind
RES.

Multiple 80C186 processors may be synchronized
through the RES input pin, since this input resets
both the processor and divide-by-two internal coun­
ter in the clock generator. In order to insure that the
divide-by-two counters all begin counting at the
same time, the active going edge of RES must satis­
fy a 25 ns setup time before the falling edge of the
80C186 clock input. In addition, in order to insure
that all CPUs begin executing in the same clock cy­
cle, the reset must satisfy a 15 ns setup time before
the rising edge of the CLKOUT signal of all the proc­
essors.

LOCAL BUS CONTROLLER

The 80C186 provides a local bus controller to gener­
ate the local bus control Signals. In addition, it em­
ploys a HOLD/HLDA protocol for relinquishing the
local bus to other bus masters. It also provides con­
trol lines that can be used to enable external buffers
and to direct the flow of data on and off the local
bus.

Memory/Peripheral Control

The 80C186 provides ALE, RD, and WR bus control
signals. The RD and WR signals are used to strobe
data from memory to the 80C186 or to strobe data
from the 80C186 to memory. The ALE line provides
a strobe to address latches for the multiplexed ad­
dress/ data bus. The 80C186 local bus controller
does not provide a memory/l/O signal. If this is re­
quired, the user will have to use the S2 signal (which
will require external latching), make the memory and
I/O spaces nonoverlapping, or use only the integrat­
ed chip-select circuitry.

Transceiver Control

The 80C186 generates two control Signals to be
connected to external transceiver chips. This capa­
bility allows the addition of transceivers for extra
buffering with~t add~external logic. These con- .
trol Iines,DT /R and DEN, are generated to control
the flow of data through the transceivers. The opera­
tion of these signals is shown in Table 6.

Table 6. Transceiver Control Signals Description

Pin Name Function

DEN (Data Enable) Enables the output
drivers of the
transceivers. It is active
LOW during memory,
I/O, or INTA cycles.

DT /R (Data Transmit! Determines the direction
Receive) of travel through the

transceivers. A HIGH
level directs data away
from the processor
during write operations,
while a LOW level directs
data toward the
processor during a read
operation.

Local Bus Arbitration

The 80C186 uses a HOLD/HLDA system of local
bus exchange. This provides an asynchronous bus
exchange mechanism. This means multiple masters
utilizing the same bus can operate at separate clock
frequencies. The 80C186 provides a single HOLD/
HLDA pair through which all other bus masters may
gain control of the local bus. This requires external
circuitry to arbitrate which external device will gain
control of the bus from the 80C186 when there is

. more than one alternate local bus master. When the
80C186 relinquishes control of the local bus, it floats
DEN, RD, WR, SO-S2, LOCK, ADO-AD15,
A 16-A 19, BHE, and DTiR to allow another master
to drive these lines directly.

The 80C186 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a
function of the activity occurring in the processor
when the HOLD request is· received. A HOLD re­
quest is the highest-priority activity request which
the processor may receive: higher than instruction
fetching or internal DMA cycles. However, if a DMA
cycle is in progress, the 80C186 will complete the
transfer before relinquishing the bus. This implies
that if a HOLD request is received just as a DMA
transfer begins, the HOLD latency time can be as
great as 4 bus cycles. This will occur if a DMA word
transfer operation is taking place from an odd ad-

22-70

80C186

dress to an odd address. This is a total of 16 clocks
or more, if WAIT states are required. In addition, if
locked transfers are performed, the HOLD latency
time will be increased by the length of the locked
transfer.

Local Bus Controller and Reset

Upon receipt of a RESET.pulse from the RES input,
the local bus controller will perform the following ac­
tion:

• Drive. DEN, RD, and WR HIGH for one clock cy­
cle, then float.

NOTE:
RD is also provided with an internal pull-up device
to prevent the processor from inadvertently enter­
ing Queue Status mode during reset.

• Drive SO-S2 to the passive state (all HIGH) and
then float.

• Drive LOCK HIGH and then float.

• Float ADO-15, A16-19, SHE, DT/R.

• Drive ALE LOW (ALE is never floated).

• Drive HLDA LOW.

INTERNAL PERIPHERAL INTERFACE

All the 80C186 integrated peripherals are controlled
via 16-bit registers contained within an internal 256-
byte control block. This control block may be
mapped into either memory or I/O space. Internal
logic will recognize the address and respond to. the
bus cycle. During bus cycles to internal registers, the
bus controller will signal the operation externally
(Le., the RD, WR, status, address, data, etc., lines
will be driven as in a normal bus cycle), but 015-0,
SRDY, and ARDY will be ignored. The base address
of the control block must be on an even 256-byte
boundary (Le., the lower 8 bits of the base address
are all zeros). All of the defined registers within this
control block may be read or written by the 80C186
CPU at any time. The location of any register con­
tained within the 256-byte control block is deter­
mined by the current base address of the control
block.

The control block base address. is programmed via a
16-bit relocation register contained within the control
block at offset FEH from the base address of the
control block (see Figure 9). It provides the upper 12
bits of the base address of the control block. The
control block is effectively an internal chip select
range and must abide by all the rules concerning
chip selects (the chip select circuitry is discussed
later in this data sheet). Any access to the 256 bytes
of the control block activates an internal chip select.

22-71

Other chip selects may overlap the control block
only if they are programmed to zero wait states and
ignore external ready. In addition, bit 12 of this regis­
ter determines whether the control block will be
mapped into I/O or memory space. If this bit is 1, the
control block will be located in memory space,
whereas if the bit is 0, the control block will be locat­
ed in 110 space. If the control register block is
mapped into I/O space, the upper 4 bits of the base
address must be programmed as 0 (since I/O ad­
dresses are only 16 bits wide).

In addition to providing relocation information for the
control block, the relocation register contains bits
which place the interrupt controller into slave mode,
and cause the CPU to interrupt upon encountering
ESC instructions. At RESET, the relocation register
is set to 20FFH. This causes the control block to
start at FFOOH in I/O space. An offset map of the
256-byte control register block is shown in Figure
10.

The integrated 80C186 peripherals operate semi-au­
tonomously from the CPU. Access to them for the
most part is via software read/write of the control
block. Most of these registers can be both read and
written. A few dedicated lines, such as interrupts and
DMA request provide real-time communication be­
tween the CPU and· peripherals as in a more con­
ventional system utilizing discrete peripheral blocks.
The overall interaction and function of the peripheral
blocks has not substantially changed.

CHIP-SELECT IREADY GENERATION
LOGIC

The 80C186 contains logic which provides program­
mable chip-select generation for both memories and
peripherals. In addition, it can be programmed to
provide READY (or WAIT state) generation. It can
also povide latched address bits A 1 and A2. The
chip-select lines are active for all memory and I/O
cycles in their programmed areas, whether they be
generated by the CPU or by the integrated DMA unit.

Memory Chip Selects

The 80C186 provides 6 memory chip select outputs
for 3 address areas; upper memory, lower memory,
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory.

The range for each chip select is user-programma­
ble and can be set to 2K, 4K, 8K, 16K, 32K, 64K,
128K (plus 1 K and 256K for upper and lower chip
selects). In addition, the beginning or base address

inter 80C186

15 14 13 12 11 10 9 8 7 6 ·5 4 3 2 0
OFFSET: FEH I ET !SLAVE/MASfER1 X ! MIlO! Relocation Address Bits R19-R8

ET - ESC Trap I No ESC Trap (1/0)
MIlO = Register block located in Memory 1110 Space (tlO)
SLAVE/MASTER = Configures interrupt controlier for SlavelMaster Mode (1/0)

Figure 9. Relocation Register

Relocation Register

DMA Descriptors Channell

DMA Descriptors Channel 0

Chip-Select Control Registers

Time 2 Control Registers

Time 1 Control Registers

Time 0 Control Registers

Interrupt Controlier Registers

OFFSET

FEH

DAH

DOH

CAH

COH

A8H

AOH

66H

60H

SEH

S8H

S6H

SOH

3EH

20H

Figure 10. Internal Register Map

of the midrange memory chip select may also be
selected. Only one chip select may be programmed
to be active for any memory location at a time. All
chip select sizes are in bytes, whereas 80C186
memory is arranged in words. This means that if, for
example, 16 64K x 1 memories are used, the memo­
ry block size will be 128K, not 64K.

Upper Memory CS

The 80C186 provides a chip select, called UCS, for
the top of memory. The top of memory is usually
used as the system memory because after reset the
80C186 begins executing at memory location
FFFFOH.

The upper limit of memory defined by this chip select
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of
the select block is also defined. Table 7 shows the
relationship between the base address selected and
the size of the memory block obtained.

Table 7. UMCS Programming Values

Starting
Memory UMCSValue

Address
(Base

Block (Assuming

Address)
Size RO=R1=R2=0)

FFCOO 1K FFF8H
FF800 2K FFB8H
FFOOO 4K FF38H
FEOOO 8K FE38H
FCOOO 16K FC38H
F8000 32K F838H
FOOOO 64K F038H
EOOOO 128K E038H
cocoa 256K C038H

The lower limit of this memory block is defined in the
UMCS register (see Figure 11). This register is at
offset AOH in the internal control block. The legal
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7.
Any combination of bits 6-13 not shown in Table 7
will result in undefined operation. After reset, the
UMCS register is programmed for a 1 K area. It must
be reprogrammed if a larger upper memory area is
desired.

Any internally generated 20-bit address whose up­
per 16 bits are greater than or equal to UMCS (with
bits 0-5 "0") will cause UCS to be activated. UMCS
bits R2-RO are used to specify READY mode for the
area of memory defined by this chip-select register,
as explained below.

Lower Memory CS

The 80C186 provides a chip select for low memory
called LCS. The bottom of memory contains the in­
terrupt vector table, starting at location OOOOOH.

22-72

inter 80C186

The lower limit of memory defined by this chip select
is always OH, while the upper limit is programmable.
8y programming the upper limit, the size of the
memory block is also defined. Table 8 shows the
relationship between the upper address selected
and the size of the memory block obtained.

Table 8. LMCS Programming Values

Upper
Memory LMCSValue

Address
Block (Assuming
Size RO=R1 = R2=O)

003FFH 1K 0038H
007FFH 2K 0078H
OOFFFH 4K 00F8H
01FFFH 8K 01F8H
03FFFH 16K 03F8H
07FFFH 32K 07F8H
OFFFFH 64K OFF8H
1FFFFH 128K 1FF8H
3FFFFH 256K 3FF8H

The upper limit of this memory block is defined in the
LMCS register (see Figure 12). This register is at
offset A2H in the internal control block. The legal
values for bits 6-15 and the resulting upper address
and memory block sizes are given in Table 8. Any
combination of bits 6-15 not shown in Table 8 will
result in undefined operation. After reset, the LMCS
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS
register is accessed.

Any internally generated 20-bit address whose up­
per 16 bits are less than or equal to LMCS (with bits
0-5 "1 ") will cause LCS to be active. LMCS register
bits R2-RO are used to specify the READY mode for
the area of memory defined by this chip-select regis­
ter.

Mid-Range Memory CS

The 80C186 provides four MCS lines which are ac­
tive within a user-locatable memory block. This
block can be located within the 80C186 1 M byte
memory address space exclusive of the areas de­
fined by UCS and LCS. 80th the base ad-

15 14 13 12 11 10

OFFSET: AOH I 1 I u I u I u I u I
A19

9

u I

dress and size of this memory block are programma­
ble.

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is deter­
mined by bits 8-14 of the MPCS register (see Figure
13). This register is at location A8H in the internal
control block. One and only one of bits 8-14 must
be set at a time. Unpredictable operation of the MCS
lines will otherwise occur. Each of the four chip-se­
lect lines is active for one of the four equal contigu­
ous divisions of the mid-range block. Thus, if the to­
tal block size is 32K, each chip select is active for 8K
of memory with MCSO being active for the first range
and MeS3 being active for the last range.

The EX and MS in MPCS relate to peripheral func~
tionally as described in a later section.

Table 9. MPCS Programming Values

Total Block Individual MPCS Bits
Size Select Size 14-8

8K 2K 00000018
16K 4K 00000108
32K 8K 00001008
64K 16K 00010008
128K 32K 00100008
256K 64K 01000008
512K 128K 10000008

The base address of the mid-range memory block is
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal
control block. These bits correspond to bits
A 19-A 13 of the 20-bit memory address. 8its
A 12-AO of the base address are always O. The base
address may be set at any integer multiple of the
size of the total memory block selected. For exam­
ple, if the mid-range block size is 32K (or the size of
the block for which each MCS line is active is 8K),
the block could be located at 10000H or 18000H,
but not at 14000H, since the first few integer multi­
ples of a 32K memory block are OH, 8000H,
10000H, 18000H, etc. After reset, the contents of
both of these registers is undefined. However, none
of the MCS lines will be active until both the MMCS
and MPCS registers are accessed.

8 7 6 4 3 2 1 0

u u u I 1 I 1 I 1 I R2 I R1 I RO I
A11

Figure 11. UMCS Register

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

OFFSET: A2H I 0 I 0 u I u I u I u I u u u I u I 1 I 1 I 1 I R2 I R1 I RO I
A19 A11

Figure 12. LMCS Register

22-73

80C186

15 14 13 12 11 10 9 S 7 6 5 4 3 2 1 0
OFFSET: ASH I 1 I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1 I 1 1 I R2 I R1 I RO I

Figure 13. MPCS Register

15 9 3 0

OFFSET: A6H I u I u I u I u I u I u I u I 1 I 1 I 1 I 1 I 1 I 1 I R2 I R1 I RO I
A19 A13

Figure 14. MMCS Register

MMCS bits R2-RO specify READY mode of opera­
tion for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT
states.

The 512K block size for the mid-range memory chip
selects is a special case. When using 512K, the
base address would have to be at either locations
OOaOOH or 80000H. If it were to be programmed at
OOaOOH when the LCS line was programmed, there
would be an internal conflict between the LCS ready
generation logic and the MCS ready generation log­
ic. Likewise, if the base address were programmed
at 80000H, there would be a conflict with the UCS
ready generation logic. Since the LCS chip-select
line does not become active until programmed, while
the UCS line is active at reset, the memory base can
be set only at OOOOOH. If this base address is select­
ed, however, the LCS range must not be prO­
grammed.

Peripheral Chip Selects

The 80C186 can generate chip selects for up to sev­
en peripheral devices. These chip selects are active
for seven contiguous blocks of 128 bytes above a
programmable base address. This base address
may be located in either memory or 1/0 space.

Seven CS lines called PCSO-6 are generated by the
8aC186. The base address is user-programmable;

however it can only be a multiple of 1 K bytes, I.e.,
the least significant 10 bits of the starting address
are always O.

PCS5 and PCS6 can also be programmed to provide
latched address bits A 1, A2. If so programmed, they
cannot be used as peripheral selects. These outputs
can be connected directly to the AO, A 1 pins used
for selecting internal registers of 8-bit peripheral
chips. This scheme simplifies the hardware interface
because the 8-bit registers of peripherals are simply
treated as 16-bit registers located on even bounda­
ries in 1/0 space or memory space where only the
lower 8-bits of the register are significant: the upper
8-bits are "don't cares."

The starting address of the peripheral chip-select
block is defined by the PACS register (see Figure
15). This register is located at offset A4H in the inter­
nal control block. Bits 15-6 of this register corre­
spond to bits 19-10 of the 20-bit Programmable
Base Address (PBA) of the peripheral chip-select
block. Bits 9-0 of the PBA of the peripheral chip-se­
lect block are all zeros. If the chip-select block is
located in 1/0 space, bits 12-15 must be pro­
grammed zero, since the 1/0 address is only 16 bits
wide. Table 10 shows the address range of each
peripheral chip select with respect to the PBA con­
tained in PACS register.

15 6 3 0

OFFSET: A4H I u I u I u I u I u I u u I u I u I u I 1 I 1 1 I R2 I R1 I RO I
A19 A10

Figure 15. PACS Register

22-74

80C186

The user should program bits 15-6 to correspond to
the desired peripheral base location. PACS bits 0-2
are used to specify READY mode for PCSO-PCS3.

Table 10 PCS Address Ranges

PCS Line Active between Locations

PCSO PBA -PBA+127
PCS1 PBA + 128-PBA + 255
PCS2 PBA + 256-PBA + 383
PCS3 PBA + 384-PBA + 511
PCS4 PBA + 512-PBA + 639
PCS5 PBA + 640-PBA + 767
PCS6 PBA + 768-PBA+ 895

The mode of operation of the peripheral chip selects
is defined by the MPCS register (which is also used
to set the size of the mid-range memory chip-select
block, see Figure 13). This register is located at off­
set A8H in the internal control block. Bit 7 is used to
select the function of PCS5 and PCS6, while bit 6 is
used to select whether the peripheral chip selects
are mapped into memory or liD space. Table 11
describes the programming of these bits. After reset,
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines
will be active until both of the MPCS and PACS reg­
isters are accessed.

Table 11. MS, EX Programming Values

Bit Description

MS 1 = Peripherals mapped into memory space.
o = Peripherals mapped into liD space.

EX o = 5 PCS lines. A 1, A2 provided.
1 = 7 PCS lines. A 1, A2 are not provided.

MPCS bits 0-2 are used to specify READY mode for
PCS4-PCS6 as outlined below.

READY Generation Logic

The 80C186 can generate a "READY" signal inter­
nally for each of the memory or peripheral CS lines.
The number of WAIT states to beihserted for each
peripheral or memory is programmable to provide
0-3 wait states for all accesses to the area for
which the chip select is active. In addition, the
80C186 may be programmed to either ignore exter­
nal READY for each chip-select range individually or
to factor external READY with the integrated ready
generator.

READY control consists of 3 bits for each CS line or
group of lines generated by the 80C186. The inter­
pretation of the ready bits is shown in Table 12.

Table 12. READY Bits Programming

R2 R1 RO Number of WAIT States Generated

0 0 0 o wait states, external RDY
also used.

0 0 1 1 wait state inserted, external RDY
also used.

0 1 0 2 wait states inserted, external RDY
also used.

0 1 1 3 wait states inserted, external RDY
also used.

1 0 0 o wait states, external RDY
ignored.

1 0 1 1 wait state inserted, external RDY
ignored.

1 1 0 2 wait states inserted, external RDY
ignored.

1 1 1 3 wait states inserted, external RDY
ignored.

The internal ready generator operates in parallel
with external READY, not in series if the external
READY is used (R2 = 0). This means, for example,
if the internal generator is set to insert two wait
states, but activity on the external READY lines will
insert four wait states, the processor will only insert
four wait states, not six. This is because the two wait
states generated by the internal generator over­
lapped the first two wait states generated by the ex­
ternal ready signal. Note that the external ARDY and
SRDY lines are always ignored during cycles ac­
cessing internal peripherals.

R2-RO of each control word specifies the READY
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS
set the PCSO-3 READY mode, R2-RO of MPCS set
the PCS4-6 READY mode.

Chip Select/Ready Logic and Reset

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions:

• All chip-sE;llect outputs will be driven HIGH.

• Upon leaving RESET, the UCS line will be pro­
grammed to provide chip selects to a 1 K block
with the accompanying READY control bits set at
011 to allow the maximum number of internal wait
states in conjunction with external Ready consid­
eration (I.e., UMCS resets to FFFBH).

• No other chip select or READY control registers
have any predefined values after RESET. They
will not become active until the CPU accesses
their control registers. Both the PACS and MPCS
registers must be accessed before the PCS lines
will become active.

22-75

80C186

DMA CHANNELS

The 80C186 DMA controller provides, two indepen­
dent high-speed DMA channels. Data transfers can
occur between memory and I/O spaces (e.g., Mem­
ory to 1/0) or within the same space (e.g., Memory
to Memory or 1/0 to 1/0). Data can be transferred
either in bytes (8 bits) or in words (16 bits) to or from
even or odd addresses. Each DMA channel main­
tains both a 20-bit source and destination pointer
which can be optionally- incremented or decrement­
ed after each data transfer (by one or two depending
on byte or word transfers). Each data transfer con­
sumes 2 bus cycles (a minimum of 8 clocks), one
cycle to fetch data and the other to store data.

DMA Operation

Each channel has SIX registers in the control block
which define each channel's specific operation. The
control registers consist of a 20-bit Source pointer (2

words),a 20-bit destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. The
format of the DMA Control Blocks is shown in Table
13. The Transfer Count Register (TC) specifies the
number of DMA transfers to be performed. Up to
64K byte or word transfers can be performed with
automatic termination. The Control Word defines the
channel's operation (see Figure 17). All registers
may be modified or altered during any DMA activity.
Any changes made to these registers will be reflect­
ed immediately in DMA operation.

Table 13. DMA Control Block Format

Register Name

Control Word
Transfer Count
Destination Pointer (upper 4

bits)
Destination Pointer
Source Pointer '(upper 4 bits)
Source Pointer

DMA
CONTROL

LOGIC

TIMER REQUEST

1-__ • INTERRUPT
REQUEST

Register Address

Ch.O Ch.1

CAH DAH
C8H D8H
C6H D6H

C4H D4H
C2H D2H
COH DOH

270354-9

Figure 16. DMA Unit Block Diagram

22·76

inter 80C186

15 14 13 12 11 10

MI DESTINATION MI SOURCE
TO DEC INC TO DEC INC
x ~ DON'T CARE.

Figure 17. DMA Control Register

DMA Channel Control Word Register

Each DMA Channel Control Word determines the
mode of operation for the particular 80C186 DMA
channel. This register specifies:

• the mode of synchronization;

• whether bytes or words will be transferred;

• whether interrupts will be generated after the last
transfer;

• whether DMA activity will cease after a pro·
grammed number of DMA cycles;

• the relative priority of the DMA channel with re·
spect to the other DMA channel;

• whether the source pointer will be incremented,
decremented, or maintained constant after each
transfer;

• whether the source pointer addresses memory or
I/O space;

• whether the destination pointer will be increment·
ed, decremented, or maintained constant after
each transfer; and

• whether the destination pOinter will address
memory or 1/0 space.

The DMA channel control registers may be changed
while the channel is operating. However, any chang.
es made during operation will affect the current DMA
transfer.

DMA Control Word Bit Descriptions
B/W:

ST/STOP:

CHG/NOCHG:

INT:

TC:

Byte/Word (0/1) Transfers.

Startlstop (1/0) Channel.

Change/Do not change (1/0)
ST ISTOP bit. If this bit is set when
writi~ the control word, the
ST ISTOP bit will be programmed
by the write to the control word. If
this bit is cleared when writing the
control word, the ST ISTOP bit will
not be altered. This bit is not
stored; it will always be a 0 on
read.

Enable Interrupts to CPU on
Transfer Count termination.

If set, DMA will terminate when
the contents of the Transfer Count

SYN

(2 bits)

register reach zero. The ST ISTOP
bit will also be reset at this point if
TC is set. If this bit is cleared, the
DMA unit will decrement the trans·
fer count register for each DMA
cycle, but the DMA transfer will
not stop when the contents of the
TC register reach zero.

00 No synchronization.

NOTE:

When unsynchronized transfers
are specified, the TC bit will be ig·
nored and the ST bit will be
cleared upon the transfer count
reaching zero, stopping the chan·
nel.

01 Source synchronization.

10 Destination synchronization.

11 Unused.

SOURCE:INC Increment source pointer by 1 or 2
(depends on B/W) after each
transfer.

DEST:

P

TDRO

Bit3

MilO Source pointer is in MilO space
(1/0).

DEC Decrement source pointer by 1 or
2 (depends on B/W) after each
transfer.

INC Increment destination pointer by 1
or 2 (B/W) after each transfer.

MilO Destination pointer is in MilO
space (1/0).

DEC Decrement destination pointer by
1 or 2 (depending on B/W) after
each transfer.

Channel priority-relative to other
channel.

o low priority.

1 high priority.

Channels will alternate cycles if
both set at same priority level.

0: Disable DMA requests from tim·
er 2.

1: Enable DMA requests from tim·
er 2.

Bit 3 is not used.

22·77

80C186

If both INC and DEC are specified for the same
pointer, the pointer will remain constant after each
cycle.

DMA Destination and Source Pointer
Registers

Each DMA channel maintains a 20-bit source and a
20-bit destination pointer. Each of these pointers
takes up two full 16-bit registers in the peripherai
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical
address (see Figure 18). These pointers may be indi­
vidually incremented or decremented after each
transfer. If word transfers are performed the pointer
is incremented or decremented by two. Each pointer
may point into either memory or 1/0 space. Since
the DMA channels can perform transfers to or from
odd addresses, there is no restriction on values for
the pointer registers. Higher transfer rates can be
obtained if all word transfers are performed to even
addresses, since this will allow data to be accessed
in a single memory access.

DMA Transfer Count Register

Each DMA channel maintains a 16-bit transfer count
register (TC). This register is decremented after ev­
ery DMA cycle, regardless of the state of the TC bit
in the DMA Control Register. If the TC bit in the DMA
control word is set or if unsynchronized transfers are
programmed, however, DMA activity will terminate
when the transfer count register reaches zero.

HIGHER
REGISTER
ADDRESS

LOWER
REGISTER
ADDRESS

xxx

A15-A12

15

DMA Requests

Data transfers may be either source or destination
synchronized, that is either the source of the data or
the destination of the data may request the data
transfer. In addition, DMA transfers may be unsyn­
chronized; that is, the transfer will take place contin­
ually until the correct number of transfers has oc­
curred. When source or unsynchronized transfers
are performed, the DMA channel may begin another
transfer immediately after the end of a previous
DMA transfer. This allows a complete transfer to
take place every 2 bus cycles or eight clock cycles
(assuming no wait states). No prefetching occurs
when destination synchronization is performed, how­
ever. Data will not be fetched from the source ad­
dress until the destination device signals that it is
ready to receive it. When destination synchronized
transfers are requested, the DMA controller will re­
linquish control of the bus after every transfer. If no
other bus activity is initiated, another DMA cycle will
begin after two processor clocks. This is done to
allow the destination device time to remove its re­
quest if another transfer is not desired. Since the
DMA controller will relinquish the bus, the CPU can
initiate a bus cycle. As a result, a complete bus cycle
will often be inserted between destination synchro­
nized transfers. These lead to the maximum DMA
transfer rates shown in Table 14.

xxx

Table 14. Maximum DMA
Transfer Rates at 16 MHz

Type of
Synchronization CPU Running CPU Halted

Selected

Unsynchronized 4.0MBytes/sec 4.0MBytes/sec
Source Synch 4.0MBytes/sec 4.0MBytes/sec
Destination Synch 2.7MBytes/sec 3.2MBytes/sec

XXX A19-A16

All-AS A7-A4 A3-AO

o

xxx = DON'T CARE

Figure 18. DMA Memory Pointer Register Format

22-78

infef 80C186

DMA Acknowledge

No explicit DMA acknowledge pulse is provided.
Since both source and destination pOinters are
maintained, a read from a requesting source, or a
write to a requesting destination, should be used as
the DMA acknowledge signal. Since the chip-select
lines can be programmed to be active for a given
block of memory or I/O space, and the DMA point­
ers can be programmed to point to the same given
block, a chip-select line could be used to indicate a
DMA acknowledge.

DMA Priority

The DMA channels may be programmed such that
one channel is always given priority over the other,
or they may be programmed such as to alternate
cycles when both have DMA requests pending. DMA
cycles always have priority over internal CPU cycles
except between locked memory accesses or word
accesses to odd memory locations; however, an ex­
ternal bus hold takes priority over an internal DMA
cycle. Because an interrupt request cannot suspend
a DMA operation and the CPU cannot access mem­
ory during a DMA cycle, interrupt latency time will
suffer during sequences of continuous DMA cycles.
An NMI request, however, will cause all internal
DMA activity to halt. This allows the CPU to quickly
respond to the NMI request.

DMA Programming

DMA cycles will occur whenever the ST /STOP bit of
the Control Register is set. If synchronized transfers

TIMER 0

are programmed, a DRQ must also have been gen­
erated. Therefore the source and destination trans­
fer pointers, and the transfer count register (if used)
must be programmed before this bit is set.

Each DMA register may be modified while the chan­
nel is operating. If the CHGINOCHG bit is cleared
when the control register is written, the ST/STOP bit
of the control register will not be modified by the
write. If multiple channel registers are modified, it is
recommended that a LOCKED string transfer be
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers.

DMA Channels and Reset

Upon RESET, the DMA channels will perform the
following actions:

• The Start/Stop bit for each channel will be reset
to STOP.

• Any transfer in progress is aborted.

TIMERS

The 80C186 provides three internal 16-bit program­
mable timers (see Figure 19). Two of these are high­
ly flexible and are connected to four external pins (2
per timer). They can be used to count external
events, time external events, generate non repetitive
waveforms, etc. The third timer is not connected to
any external pins, and is useful for real-time coding
and time delay applications. In addition, this third
timer can be used as a prescaler to the other two, or
as a DMA request source.

DMA
REO.

CLOCK

MAX COUNT YAWE
B

MAX COUNT YAWE

ALL 16 BIT REOISTERS

MODE/CONTROL
WORD

INTERNAL ADDRESS/DATA BUS

Figure 19. Timer Block Diagram

22-79

270354-10

inter 80C186

Timer Operation

The timers are controlled by 11 16-bit registers in
the internal peripheral control block. The configura­
tion of these registers is shown in Table 15. The
count register contains the current value of the tim­
er. It can be read or written at any time independent
of whether the timer is running or not. The value of
this register will be incremented for each timer
event. Each of the timers is equipped with a MAX
COUNT register, which defines the maximum count
the timer will reach. After reaching the MAX COUNT
register value, the timer count value will reset to zero
during that same clock, i.e., the maximum count val­
ue is never stored in the count register itself. Timers
o and 1 are, in addition, equipped with a second
MAX COUNT register, which enables the timers to
alternate their count between two different MAX
COUNT values programmed by the user. If a single
MAX COUNT register is used, the timer output pin
will switch LOW for a single clock, 1 clock after the
maximum count value has been reached. In the dual
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use,
thus allowing nearly complete freedom in selecting
waveform duty cycles. For the timers with two MAX·
COUNT registers, the RIU bit in the control register
determines which is used for the comparison.

Each timer gets serviced every fourth CPU-clock cy­
cle, and thus can operate at speeds up to one-quar­
ter the internal clock frequency (one-eighth the crys­
tal rate). External clocking of the timers may be done
at up to a rate of one-quarter of the internal CPU­
clock rate. Due to internal synchronization and pipe­
lining of the timer circuitry, a timer output may take
up to 6 clocks to respond to any individual clock or
gate input.

15 14 13 12 11
EN INH INT RIU o

Since the count registers and the maximum count
registers are all 16 bits wide, 16 bits of resolution are
provided. Any Read or Write access to the timers will
add one wait state to the minimum four-clock bus
cycle, however. This is needed to synchronize and
coordinate the internal data flows between the inter­
nal timers and the internal bus.

The timers have several programmable options.

• All three timers can be set to halt or continue on
a terminal count.

• Timers 0 and 1 can select between internal and
external clocks, alternate between MAX COUNT
registers and be set to retrigger on external
events.

• The timers may be programmed to cause an in­
terrupt on terminal count.

These options are selectable via the timer model
control word.

Timer Mode/Control Register

The mode/control register (see Figure 20) allows
the user to program the specific mode of operation
or check the current programmed status for any of
the three integrated timers.

Table 15. Timer Control Block Format

Register Name
Register Offset

Tmr.O Tmr.1 Tmr.2

Mode/Control Word 56H 5EH 66H
Max Count B 54H 5CH not present
Max Count A 52H 5AH 62H
Count Register 50H 58H 60H

5 4 3 2 0
MC RTG p EXT ALT I CONT I

Figure 20. Timer Mode/Control Register

22-80

intJ 80C186

ALT:

The AL T bit determines which of two MAX COUNT
registers is used for count comparison. If AL T = 0,
register A for that timer is always used, while if AL T
= 1, the comparison will alternate between register
A and register B when each maximum count is
reached. This alternation allows the user to change
one MAX COUNT register while the other is being
used, and thus provides a method of generating
non-repetitive waveforms. Square waves and pulse
outputs of any duty cycle are a subset of available
signals obtained by not changing the final count reg­
isters. The AL T bit also determines the function of
the timer output pin. If AL T is zero, the output pin will
go LOW for one clock, the clock after the maximum
count is reached. If AL T is one, the output pin will
reflect the current MAX COUNT register being used
(0/1 for B/ A).

CONT:

Setting the CaNT bit causes the associated timer to
run continuously, while resetting it causes the timer
to halt upon maximum count. If COUNT = ° and
AL T = 1, the timer will count to the MAX COUNT
register A value, reset, count to the register B value,
reset, and halt.

EXT:

The external bit selects between internal and exter­
nal clocking for the timer. The external signal may
be asynchronous with respect to the 80C186 clock.
If this bit is set, the timer will count LOW-to-HIGH
transitions on the input pin. If cleared, it will count an
internal clock while using the input pin for control. In
this mode, the function of the external pin is defined
by the RTG bit. The maximum input to output tran­
sition latency time may be as much as 6 clocks.
However, clock inputs may be pipelined as closely
together as every 4.clocks without losing clock puls­
es.

P:

The prescaler bit is ignored unless internal clocking
has been selected (EXT = 0). If the P bit is a zero,
the timer will count at one-fourth the internal CPU
clock rate. If the P bit is a one, the output of timer 2
will be used as a clock for the timer. Note that the
user must initialize and start timer 2 to obtain the
prescaled clock.

RTG:

Retrigger bit is only active for internal clocking (EXT
= 0). In this case it determines the control function
provided by the input pin.

22-81

If RTG = 0, the input level gates the internal clock
on and off. If the input pin is HIGH, the timer will
count; if the input pin is LOW, the timer will hold its
value. As indicated previously, the input signal may
be asynchronous with respect to the 80C186 clock.

When RTG = 1, the input pin detects LOW-to-HIGH
transitions. The first such transition starts the timer
running, clearing the timer value to zero on the first
clock, and then incrementing thereafter. Further
transitions on the input pin will again reset the timer
to zero, from which it will start counting up again. If
CaNT = 0, when the timer has reached maximum
count, the EN bit will be cleared, inhibiting further
timer activity.

EN:

The enable bit provides programmer control over
the timer's RUN/HALT status. When set, the timer is
enabled to increment subject to the input pin con­
straints in the internal clock mode (discussed previ­
ously). When cleared, the timer will be inhibited from
counting. All input pin transistions during the time EN
is zero will be ignored. If CaNT is zero, the EN bit is
automatically cleared upon maximum count.

INH:

The inhibit bit allows for selective updating of the
enable (EN) bit. If INH is a one during the write to the
mode/control word, then the state of the·EN bit will
be modified by the write. If INH is a zero during the
write, the EN bit will be unaffected by the operation.
This bit is not stored; it will always be a ° on a read.

INT:

When set, the INT bit enables interrupts from the
timer, which will be generated on every terminal
count. If the timer is configured in dual MAX COUNT
register mode, an interrupt will be generated each
time the value in MAX COUNT register A is reached,
and each time the value in MAX COUNT register B is
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced, the interrupt request will still
be in force. (The request is latched in the Interrupt
Controller).

MC:

The Maximum Count bit is set whenever the timer
reaches its final maximum count value. If the timer is
configured in dual MAX COUNT register mode, this
bit will be set each time the value in MAX COUNT
register A is reached, and each time the value in
MAX COUNT register B is reached. This bit is set

80C186

regardless of the timer's interrupt-enable bit. The
MC bit gives the user the ability to monitor timer
status through software instead of through inter­
rupts.

Programmer intervention is required to clear this bit.

RIU:

The Register In Use bit indicates which MAX
COUNT register is currently being used for compari­
son to the timer count value. A zero value indicates
register A.. The RIU bit cannot be written, i.e., its
value is not affected when the control register is writ­
ten. It is always cleared when the AL T bit is zero.

Not all mode bits are provided for timer 2. Certain
bits are hardwired as indicated below:

AL T = 0, EXT = 0, P = 0, RTG = 0, RIU = °

Count Registers

Each of the three timers has a 16-bit count register.
The current contents of this register may be read or
written by the processor at any time. If the register is
written into while the timer is counting,the new value
will take effect in the current count cycle.

Max Count Registers

Timers 0 and 1 have two MAX COUNT registers,
while timer 2 has a single MAX COUNT register.
These contain the number of events the timer will
count. In timers 0 and 1, the MAX COUNT register
used can alternate between the two max count val­
ues whenever the current maximum count· is
reached. The condition which causes a timer to re­
set is equivalent between the current count value
and the max count being used. This means that if
the count is changed to be. above the max count
value, or if the max count value is changed to be
below the current value, the timer will not reset to
zero, but rather will count to its maximum value,
"wrap around" to zero, then count until the max
count is reached.

Timers and Reset

Upon RESET, the Timers will perform the following
actions:

• All EN (Enable) bits are reset preventing timer
counting.

• All SEL (Select) bits are reset to zero. This se­
lects MAX COUNT register A, resulting .in the
Timer Out pins going HIGH upon RESET.

INTERRUPT CONTROLLER

The 80C186 can receive interrupts from a number of
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on
a priority basis, for individual service by the CPU.

Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers
or by mask bits within the interrupt controller. The
80C186 interrupt controller has its own control regis­
ter that set the mode of operation for the controller.

The interrupt controller will resolve priority among
requests that are pending simultaneously. Nesting is
provided so interrupt service routines for lower priori­
ty interrupts may themselves be interrupted by high­
er priority interrupts. A block diagram of the interrupt
controller is shown in Figure 21.

The 80C186 has a special slave mode in which the
internal interrupt controller acts as a slave to an ex­
ternal master. The controller is programmed into this
mode by setting bit 14 in the peripheral control block
relocation register. (See Slave Mode section.)

MASTER MODE OPERATION

Interrupt Controller External Interface

For external interrupt sources, five dedicated pins
are provided. One of these pins is dedicated to NMI,
non-maskable interrupt. This is typically used for
power-fail interrupts, etc. The other four pins may
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line
and an interrupt acknowledge line (called the "cas­
cade mode") along with two other input lines with
internally generated interrupt vectors, or as two in­
terrupt input lines and two dedicated interrupt ac­
knowledge output lines. When the interrupt lines are
configured in cascade mode, the 80C186 interrupt
controller will not generate internal interrupt vectors.

External sources in the cascade mode use external­
ly generated interrupt vectors. When an interrupt is
acknowledged, two INTA cycles are initiated and the
vector is read into the 80C186 on the second cycle.
The capability to interface. to external 82C59A pro­
grammable interrupt controllers is thus provided
when the inputs are configured in cascade mode.

22-82

80C186

Interrupt Controller Modes of
Operation

The basic modes of operation of the interrupt con­
troller in master mode are similar to the 82C59A.
The interrupt controller responds indentically to in­
ternal interrupts in all three modes: the difference is
only in the interpretation of function of the four exter­
nal interrupt. pins. The interrupt controller is set into
one of these three modes by programming the cor­
rect bits in the INTO and INT1 control registers. The
modes of interrupt controller operation are as fol­
lows:

Fully Nested Mode

When in the fully nested mode four pins are used as
direct interrupt requests as in Figure 22. The vectors
for these four inputs are generated internally. An in­
service bit is provided for every interrupt source. If a
lower-priority device requests an interrupt while the
in service bit (IS) is set, no interrupt will be generat­
ed by the interrupt controller. In addition, if another
interrupt request occurs from the same interrupt
source while the in-service bit is set, no interrupt will
be generated by the interrupt controller. This allows
interrupt service routines to operate with interrupts.
enabled without being themselves interrupted by
lower-priority interrupts. Since interrupts are en­
abled, higher-priority interrupts will be serviced.

When a service routine is completed, the proper IS
bit must be reset by writing the proper pattern to the
EOI register. This is required to allow subsequent
interrupts from this interrupt source and to allow
servicing of lower-priority interrupts. An EOI com-

TIMER TIMER TIMER
o 1 2

DMAO
CONTRO~ REG.

DMAI
CONTRO~ REG.

DMA
1

mand is issued at the end of the service routine just
before the issuance of the return from interrupt in­
struction. If the fully nested structure has been up­
held, the next highest-priority source with its IS bit
set is then serviced.

Cascade Mode

The 80C186 has four interrupt pins and two of them
have dual functions. In the fully nested mode the
four pins are used as direct interrupt inputs and the
corresponding vectors are generated internally. In
the cascade mode, the four pins are configured into
interrupt input-dedicated acknowledge signal pairs.
The interconnection is shown in Figure 23. INTO is
an interrupt input interfaced to an 82C59A, while
INT2/1NTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is
true for INT1 and INT3/INTA1. Each pair can selec­
tively be placed in the cascade or non-cascade
mode by programming the proper value into INTO
and INT1 control registers. The use of the dedicated
acknowledge signals eliminates the need for the use
of external logic to generate INTA and device select
signals.

The primary cascade mode allows the capability to
serve up to 128 external interrupt sources through
the use of external master and slave 82C59As.
Three levels of priority are created, requiring priority
resolution in the 80C186 interrupt controller, the
master 82C59As, and the slave 82C59As. If an ex­
ternal interrupt is serviced, one IS bit is set at each
of these levels. When the interrupt service routine is
completed, up to three end-of-interrupt commands
must be issued by the programmer.

INTERRUPT
REQUEST REG.

INTERRUPT
MASK REG.

IN·SERVICE
REG.

EXT. INPUT 0
CONTRO~ REG.

INTERRUPT
PRIORITY
RESO~VER

PRIOR. ~EV.
MASK REG.

270354-11

Figure 21. Interrupt Controller Block Diagram

22·83

infef 80C186

INTO +-- INTERRUPT SOURCE

INTI +-- INTERRUPT SOURCE

80C186

INT2 +-- INTERRUPT SOURCE

INT3 +-- INTERRUPT SOURCE

270354-22

Figure 22. Fully Nested (Direct) Mode Interrupt
Controller Connections

Special Fully Nested Mode

This mode is entered by setting the SFNM bit in
INTO or INT1 control register. It enables complete
nestability with external 82C59A masters. Normally,
an interrupt request from an interrupt source will not
be recognized unless the in-service bit for that
source is reset. If more than one interrupt source is
connected to an external interrupt controller, all of
the interrupts will be funneled through the same
80C186 interrupt request pin. As a result, if the ex­
ternal interrupt controller receives a higher-priority
interrupt, its interrupt will not be recognized by the
80C186 controller until the 80C186 in-service bit is
reset. In special fully nested mode, the 80C186 in­
terrupt controller will allow interrupts from an exter­
nal pin regardless of the state of the in-service bit for
an interrupt source in order to allow multiple inter­
rupts from a single pin. An in-service bit will continue
to be set, however, to inhibit interrupts from other
lower-priority 80C186 interrupt sources.

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines.
Software polling of the external master's IS register
is required to determine if there is more than one bit
set. If so, the IS bit in the 80C186 remains active and
the next interrupt service routine is entered.

Operation in a Polled Envir.onment

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor
disables interrupts and then polls the interrupt con­
troller whenever it is convenient. Polling the iriterrupt
controller is accomplished by reading the Poll Word
(Figure 32). Bit 15 in the poll word indicates to the
processor that an interrupt of high enough priority is
requesting. service. Bits 0-4 indicate to the proces­
sor the type vector of the highest-priority source re­
questing service. Reading the Poll Word causes the
In-Service bit of the highest priority source to be set.

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending

interrupt, i.e., not set the indicated in-service bit. The
80C186 provides a Poll Status Word in addition to
the conventional Poll Word to allow this to be done.
Poll Word information is duplicated in the Poll Status
Word, but reading the Poll Status Word does not set
the associated in-service bit. These words are locat­
ed in two adjacent memory locations in the register
file.

Master Mode Features

Programmable Priority

The user can program the interrupt sources into any
of eight different priority levels. The programming is
done by placing a 3-bit priority level (0-7) in the con­
trol register of each interrupt source. (A source with
a priority level of 4 has higher priority over all priority
levels from 5 to 7. Priority registers containing values
lower than 4 have greater priority). All interrupt
sources have preprogrammed default priority levels
(see Table 4).

If two requests with the same programmed priority
level are pending at once, the priority ordering
scheme shown in Table 4 is used. If the serviced
interrupt routine reenables interrupts, it allows other
requests to be serviced.

End-of-Interrupt Command

The end-of-interrupt (EOI) command is used by the
programmer to reset the In-Service (IS) bit when an
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the
EOI register. There are two types of EOI commands,
specific and nonspecific. The nonspecific command
does not specify which IS bit is reset. When issued,
the interrupt controller automatically resets the IS bit
of the highest priority source with an active service
routine. A specific EOI command requires that the
programmer send the interrupt vector type to the in­
terrupt controller indicating which source's IS bit is
to be reset. This command is used when the fully
nested structure has been disturbed or the highest
priority IS bit that was set does not belong to the
service routine in progress.

Trigger Mode

The four external interrupt pins can be programmed
in either edge- or level-trigger mode. The control
register for each external source has a level-trigger
mode (L TM) bit. All interrupt inputs are active HIGH.
In the edge sense mode or the level-trigger mode,
the interrupt request must remain active (HIGH) until
the interrupt request is acknowledged by the

22-84

80C186

80C186 CPU. In the edge-sense mode, if the level
remains high after the interrupt is acknowledged, the
input is disabled and no further requests will be gen­
erated. The input level must go LOW for at least one
clock cycle to reenable the input. In the level-trigger
mode, no such provision is made: holding the inter­
rupt input HIGH will cause continuous interrupt re­
quests.

Interrupt Vectoring

The 80C186 Interrupt Controller will generate inter­
rupt vectors for the integrated OMA channels and
the integrated Timers. In addition, the Interrupt Con­
troller will generate interrupt vectors for the external
interrupt lines if they are not configured in Cascade
or Special Fully Nested Mode. The interrupt vectors
generated are fixed and cannot be changed (see Ta­
ble 4).

Interrupt Controller Registers

The Interrupt Controller register model is shown in
Figure 24. It contains 15 registers. All registers can
both be read or written unless specified otherwise.

In-Service Register

This register can be read from or written into. The
format is shown in Figure 25. It contains the In-Serv­
ice bit for each of the interrupt sources. The In-Serv­
ice bit is set to indicate that a source's service rou­
tine is in progress. When an In-Service bit is set, the
interrupt controller will not generate interrupts to the
CPU when it receives interrupt requests from devic_
es with a lower programmed priority level. The TMR
bit is the In-Service bit for all three timers; the 00
and 01 bits are the In-Service bits for the two OMA
channels; the 10-13 are the In-Service bits for the
external interrupt pins. The IS bit is set when the

processor acknowledges an interrupt request either
by an interrupt acknowledge or by reading the poll
register. The IS bit is reset at the end of the interrupt
service routine by an end-of-interrupt command is­
sued by the CPU.

Interrupt Request Register

The internal interrupt sources have interrupt request
bits inside the interrupt controller. The format of this
register is shown in Figure 25. A read from this regis­
ter yields the status of these bits. The TMR bit is the
logical OR of all timer interrupt requests. 00 and 01
are the interrupt request bits for the OMA channels.

The state of the external interrupt input pins is also
indicated. The state of the external interrupt pins is
not a stored condition inside the interrupt controller,
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly
when an interrupt request is given to the interrupt
controller, so if edge-triggered mode is selected, the
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources,
the register bits are set when a request arrives and
are reset when the processor acknowledges the re­
quests.

Writes to the interrupt request register will affect the
00 and 01 interrupt request bits. Setting either bit
will cause the corresponding interrupt request while
clearing either bit will remove the corresponding in­
terrupt request. All other bits in the register are read­
only.

Mask Register

This is a 16-bit register that contains a mask bit for
each interrupt source. The format for this register is
shown in Figure 25. A one in a bit position corre-

ESC: INTERRUPT SOURCES

IB 8259A ==
Vce == -

8259A == == INTO - . - . - .
80C186 • INT1IB- · ,~ ~~ i I: It=

INTAl 8259A == _--'

C:INTERRUP SOURCES
270354-12

Figure 23. Cascade and Special Fully Nested Mode Interrupt Controller Connections

22-85

inter 80C186

sponding to a particular source serves to mask the
source from generating interrupts. These mask bits
are the exact same bits which are used in the indi­
vidual control registers; programming a mask bit us­
ing the mask register will also change this bit in the
individual control registers, and vice versa.

INT3 CONTROL REGISTER

INT2 CONTROL REGISTER

INTl CONTROL REGISTER

INTO CONTROL REGISTER

OMA 1 CONTROL REGISTER

OMA 0 CONTROL REGISTER

TIMER CONTROL REGISTER

INTERRUPT STATUS REGISTER

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER

EOI REGISTER

OFFSET

3EH

3CH

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

26H

24H

22H

f"igure 24. Interrupt Controller Registers
(Master Mode)

Priority Mask Register

This register is used to mask all interrupts beloW par­
ticular interrupt priority levels. The format of this reg­
ister is shown in Figure 26. The code in the lower
three bits of this register inhibits interrupts of priority
lower (a higher priority number) than the code speci­
fied. For example, 100 written into this register
masks interrupts of level five (101), six (110), and
seven (111). The register is reset to seven (111)
upon RESET so no interrupts are masked due to
priority number.

Interrupt Status Register

This register contains general interrupt controller
status information. The format of this register is
shown in Figure 27. The bits in the status register
have the following functions:

DHL T: DMA Halt Transfer; setting this bit halts all
DMA transfers. It is automatically set when­
ever a non-maskable interrupt occurs, and it
is reset when an IRET instruction is execut­
ed. The purpose of this bit is to allow prompt
service of all non-maskable interrupts. This
bit may also be set by the programmer.

IRTx: These three bits represent the individual tim­
er interrupt request bits. These bits are used
to differentiate the timer interrupts, since the
timer IR bit in the interrupt request register is
the "OR" function of all timer interrupt re­
quest. Note that setting anyone of these
three bits initiates an interrupt request to the
interrupt controller.

15 14 10 9 8 7 6 5 4 3 2 0
I 0 0 I • • I 0 I 0 I 0 I 13 12 I 11 10 01 00 I 0 I TMR I

Figure 25. In-Service, Interrupt Request, and Mask Register Formats

15 14 3 2 1 0

I 0 0 I • • I

Figure 26. Priority Mask Register Format

15 "14 7 6 5 4 321 0

IOHLTI 0 I • o I 0 I 0 I 0 o IIRT2 IIRTl IIRTO I

Figure 27. Interrupt Status Register Format (Master Mode)

22-86

inter 80C186

Timer, DMA 0,1; Control Register

These registers are the control words for all the in­
ternal interrupt sources. The format for these regis­
ters is shown in Figure 28. The three bit positions
PRO, PR 1, and PR2 represent the programmable pri­
ority level of the interrupt source. The MSK bit inhib­
its interrupt requests from the interrupt source. The
MSK bits in the individual control registers are the
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also
modify them in the Mask Register, and vice versa.

INTO-INT3 Control Registers

These registers are the control words for the four
external input pins. Figure 29 shows the format of
the INTO and INT1 Control registers; Figure 30
shows the format of the INT2 and INT3 Control reg­
isters. In cascade mode or special fully nested
mode, the control words for INT2 and INT3 are not
used.

The bits in the various control registers are encoded
as follows:

PRO-2: Priority programming information. Highest
Priority = 000, Lowest Priority = 111

L TM: Level-trigger mode bit. 1 = level~triggered;
o = edge-triggered. Interrupt Input levels
are active high. In level-triggered mode, an
interrupt is generated whenever the exter­
nal line is high. In edge-triggered mode, an
interrupt will be generated only when this

15 14
I 0 0 I •

MSK:

C:

level is preceded by an inactive-to-active
transition on the line. In both cases, the
level must remain active until the interrupt
is acknowledged.

Mask bit, 1 = mask; 0 = non-mask.

Cascade mode bit, 1 = cascade; ° = di­
rect

SFNM: Special fully nested mode bit, 1 = SFNM

EOI Register

The end of the interrupt register is a command regis­
ter which can only be written into. The format of this
register is shown in Figure 30. It initiates an EOI
command when written to by the 80C186 CPU.

The bits in the EOI register are encoded as follows:

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in Ta­
ble 4. For example, to reset the In-Service
bit for DMA channel 0, these bits should be
set to 01010, since the vector type for DMA
channel 0 is 10. '

NOTE:

To reset the single In-Service bit for any of
the three timers, the vector type for timer 0
(8) should be written in this register.

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = O.

43210
I 0 I MSK I PR2 I PRl I PRO I

Figure 28. Timer/DMA Control Registers Formats

15 14 7 6 543 2 1 0
I 0 0 I • o ISFNMI c I LTM I MSK I PR2 I PRl I PRO I

Figure 29. INTOIINT1 Control Register Formats

15 14 5 4 3 2 1 0

I 0 0 I • I 0 I LTM I MSK I PR2 I PRl I PRO I

Figure 30. INT2/1NT3 Control Register Formats

22-87

inter 80C186

Poll and Poll Status Registers

These registers contain polling information. The for­
mat of these registers is shown in Figure 32. They
can only be read. Reading the Poll register consti­
tutes a software poll. This will set the IS bit of the
highest priority pending interrupt. Reading the poll
status register will not set the IS bit of the highest
priority pending interrupt; only the status of pending
interrupts will be provided.

Encoding of the Poll and Poll Status register bits are
as follows:

Sx: Encoded information that indicates the
vector type of the highest priority inter­
rupting source. Valid only when INTREQ
= 1.

INTREQ: This bit determines if an interrupt request
is present. Interrupt Request = 1; no In­
terrupt Request = O.

SLAVE MODE OPERATION

When slave mode is used, the internal 80C186 inter­
rupt controller will be used as a slave controller to an
external master interrupt controller. The internal
80C186 resources will be monitored by the internal
interrupt controller, while the external controller
functions as the system master interrupt controller.

15 14 13

I SPEC/ I
N5PEC a I a I .

Upon reset, the 80C186 will be in master mode. To
provide for slave mode operation bit 14 of the relo­
cation register should be set.

Because of pin limitations caused by the need to
interface to an external 82C59A master, the internal
interrupt controller will no longer accept external in­
puts. There are however, enough 80C186 interrupt
controller inputs (internally) to dedicate one to each
timer. In this mode, each timer interrupt source has
its own mask bit, IS bit, and control word.

In slave mode each peripheral must be assigned a
unique priority to ensure proper interrupt controller
operation. Therefore, it is the programmer's respon­
sibility to assign correct priorities and initialize inter­
rupt control registers before enabling interrupts.

Slave Mode External Interface

The configuration of the 80C186 with respect to an
external 82C59A master is shown in Figure 33. The
INTO (Pin 45) input is used as the 80C186 CPU inter­
rupt input. INT3 (Pin 41) functions as an output to
send the 80C186 slave-interrupt-request to one of
the 8 master-PIC-inputs.

5 4 3 2 0 . I a I 54 53 52 51 50

Figure 31. EOI Register Format

15 14 13 5 4 3 2 0

1~~61 a I a I . . I a I 54 I 53 52 51 50

Figure 32. Poll and Poll Status Register Format

22-88

80C186

1F=~~iI+:':"":-:--f~--' _INTERRUPT SOURCES
INT :::= OR OTHER SLAVES ---I~~~I~~~~~-

CASCADE
ADDRESS
DECODER

270354-13

Figure 33. Slave Mode Interrupt Controller Connections

Correct master-slave interface requires decoding of
the slave addresses (CASO-2). Slave 82C59As do
this internally. Because of pin limitations, the
80C186 slave address will hi:lVe to be decoded ex­
ternally. INT1 (Pin 44) is used as a slave-select in­
put. Note that the slave vector address is transferred
internally, but the READY input must be supplied ex­
ternally.

INT2 (Pin 42) is used as an acknowledge output,
suitable to drive the INTA input of an 82C59A.

Interrupt Nesting

Slave mode operation allows nesting of interrupt re­
quests. When an interrupt is acknowledged, the pri­
ority logic masks off all priority levels except those
with equal or higher priority.

Vector Generation in the Slave Mode

Vector generation in slave mode is exactly like that
of an 82C59A slave. The interrupt controller gener­
ates an 8-bit vector which the CPU multiplies by four
and uses as an address into a vector table. The sig­
nificant five bits of the vector are user-programma­
ble while the lower three bits are generated by the
priority logic. These bits represent the encoding of
the priority level requesting service. The significant
five bits of the vector are programmed by writing to
the Interrupt Vector register at offset 20H.

Specific End-of-Interrupt

In slave mode the specific EOI command operates
to reset an in-service bit of a specific priority. The
user supplies a 3-bit priority-level value that points to
an in-service bit to be reset. The command is exe­
cuted by writing the correct value in the Specific EOI
register at offset 22H.

Interrupt Controller Registers
in the Slave Mode

All control and command registers are located inside
the internal peripheral control block. Figure 34
shows the offsets of these registers.

End-of-Interrupt Register

The end-of-interrupt register is a command register
which can only be written. The format of this register
is shown in Figure 35. It initiates an EOI command
when written by the 80C186 CPU.

The bits in the EOI register are encoded as follows:

Lx: Encoded value indicating the priority of the IS
bit to be reset.

22-89

inter 80C186

In-Service Register

This register can be read from or written into. It con­
tains the in-service bit for each of the internal inter­
rupt sources. The format for this register is shown in
Figure 36. Bit positions 2 and 3 correspond to the
DMA channels; positions 0, 4, and 5 correspond to
the integral timers. The source's IS bit is set when
the processor acknowledges its interrupt request.

Interrupt Request Register

This register indicates which internal peripherals
have interrupt requests pending. The format of this
register is shown in Figure 36. The interrupt request
bits are set when a request arrives from an internal
source, and are reset when the processor acknowl­
edges the request. As in master mode, DO and D1
are read/write; all other bits are read only.

Mask Register

The register contains a mask bit for each interrupt
source. The format for this register is shown in Fig­
ure 36. If the bit in this register corresponding to a
particular interrupt source is set, any interrupts from
that source will be masked. These mask bits are ex­
actly the same bits which are used in the individual
control registers, i.e., changing the state of a mask
bit in this register will also change the state of the
mask bit in the individual interrupt control register
corresponding to the bit.

Control Registers

These registers are the control words for all the in­
ternal interrupt sources. The format of these regis­
ters is shown in Figure 37. Each of the timers and
both of the DMA channels have their own Control
Register.

15 14 13 8

I 0 0 0 I . . I 0 I

The bits of the Control Registers are encoded as
follows:

prx: 3-bit encoded field indicating a priority level
for the source; note that each source must be
programmed at specified levels.

msk: mask bit for the priority level indicated by prx
bits.

7
0

LEVEL 5 CONTROL REGISTER
(TIMER 2)

LEVEL 4 CONTROL REGISTER
(TIMER 1)

LEVEL 3 CONTROL REGISTER
(OMA1)

LEVEL 2 CONTROL REGISTER
(OMAO)

LEVEL 0 CONTROL REGISTER
(TIMER 0)

INTERRUPT STATUS REGISTER

INTERRUPT-REQUEST REGISTER

IN-SERVICE REGISTER

PR.IORITY-LEVEL MASK REGISTER

MASK REGISTER

SPECIFIC EOI REGISTER

INTERRUPT VECTOR REGISTER

OFFSET

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

22H

20H

Figure 34. Interrupt Controller Registers
(Slave Mode)

6 5 4 3 1 0
0 I 0 0 I 0 I L2 L1 LO

Figure 35. Specific EOI Register Format

15 14 13 8 7 6 5 4 3 2 0

I 0 0 I 0 I . . I 0 I 0 I 0 I TMR21 TMR11 01 00 0 ITMROI

Figure 36. In-Service, Interrupt Request, and Mask Register Format

22-90

inter 80C186

Interrupt Vector Register

This register provides the upper five bits of the inter­
rupt vector address. The format of this register is
shown in Figure 38. The interrupt controller itself
provides the lower three bits of the interrupt vector
as determined by the priority level of the interrupt
request.

The format of the bits in this register is:

tx: S-bit field indicating the upper five bits of the
vector address.

Priority-Level Mask Register

This register indicates the lowest priority-level inter­
rupt which will be serviced.

The encoding of the bits in this register is:

mx: 3-bit encoded field indication priority-level val­
ue. All levels of lower priority will be masked.

Interrupt Status Register

This register is defined as in master mode except
that DHL T is not implemented (see Figure 27).

Interrupt Controller and Reset

Upon RESET, the interrupt controller will perform
the following actions:

• All SFNM bits reset to 0, implying Fully Nested
Mode.

• All PR bits in the various control registers set to 1.
This places all sources at lowest priority (level
111).

• All L TM bits reset to 0, resulting in edge-sense
mode.

• All Interrupt Service bits reset to O.

• All Interrupt Request bits reset to O.

• All MSK (Interrupt Mask) bits set to 1· (mask).

• All C (Cascade) bits reset to 0 (non-cascade).

• All PRM (Priority Mask) bits set to 1, implying no
levels masked.

• Initialized to master mode.

15 14 13 876 5 4 3 2 1 0
o 0 0 I • • I 0 I 0 I 0 I 0 I 0 I MSK I PR2 I PR1 I PRO I

Figure 37. Control Word Format

15 14 13 8 7 6 5 4 3 2 0

I 0 0 I 0 I . · I 0 I t4 I t3 t2 I t1 to I 0 a I 0 I

Figure 38. Interrupt Vector Register Format

15 14 13 8 7 6 5 4 3 2 0

I 0 0 I a I . · I a I 0 I a I a I 0 I 0 I m2 m1 ma I

Figure 39. Priority Level Mask Register

22-91

infef 80C186

Enhanced Mode Operation

In Compatible Mode the 80C186 operates with all
the features of the NMOS 80186, with the exception
of 8087 support (Le. no numeric coprocessing is
possible in Compatible Mode). Queue-Status infor­
mation is still available for design purposes other
than 8087 support.

All the Enhanced Mode features are completely
masked when in Compatible Mode. A write to any of
the Enhanced Mode registers will have no effect,
while a read will not return any valid data.

In Enhanced Mode, the 80C186 will operate with
Power-Save, DRAM refresh, and numerics coproc­
essor support in addition to all the Compatible Mode
features.

Entering Enhanced Mode

If connected to a numerics coprocessor, this mode
will be invoked automatically. Without a NPX, this
mode can be entered by tying the RESET output
signal from the 80C186 to the TEST IBUSY input.

Queue-Status Mode

The queue-status mode is entered by strapping the
RD pin low. RD is sampled at RESET and if LOW,
the 80C186 will reconfigure the ALE and WR pins to
be QSO and QS1 respectively. This mode is avail­
able on the 80C186 in both Compatible and En­
hanced Modes and is identical to the NMOS 80186.

DRAM Refresh Control Unit
Description

The Refresh Control Unit (RCU) automatically gen­
erates DRAM refresh bus cycles. The RCU operates
only in Enhanced Mode. After a programmable peri­
od of time, the RCU generates a memory read re­
quest to the BIU. If the address generated during a
refresh bus cycle is within the range of a properly
programmed chip select, that chip select will be acti­
vated when the BIU executes the refresh bus cycle.
The ready logic and wait states programmed for that
region will also be in force. If no chip select is acti­
vated, then external ready is automatically required
to terminate the refresh bus cycle.

If the HLDA pin is active when a DRAM refresh re­
quest is generated (indicating a bus hold condition),
then the 80C186 will deactivate the HLDA pin in or­
der to perform a refresh cycle. The circuit external to
the 80C186 must remove the HOLD signal in order
to execute the refresh cycle. the sequence of HLDA
going inactive while HOLD is being held active can
be used to signal a pending refresh request.

All registers controlling DRAM refresh may be read
and written in Enhanced Mode. When the processor
is operating in Compatible Mode, they are deselect­
ed and are therefore inaccessible. Some fields of
these registers cannot be written and are always
read as zeros.

DRAM Refresh Addresses

The address generated during a refresh cycle is de­
termined by the contents of the MDRAM register
(see Figure 40) and the contents of a 9-bit counter.
Figure 41 illustrates the origin of each bit.

15' 14 13 12 11 10 9 8 7 6 5 4 3 2 0

~~s~~~bHI M6 I M5 I M4 I M3 I M2 I M1 I MO I 0 I 0 I 0 I 0 I 0 0 I 0 0 I 0 I
Bits 0-8: Reserved, read back as O.

Bits 9-15: MO-M6, are address bits A13-A19 of the 20-bit memory refresh address. These bits should
correspond to the chip select address to be activated for the DRAM partition. These bits are
set to 0 on RESET.

Figure 40. Memory Partition Register

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 AO

I MS I M5 I M4 I M3 I M2 I M1 I MO I 0 I 0 I 0 I CAS I CA71 CAS I CAS I CA41 CA31 CA21 CA1 I CAO I 1 I

M6-MO: Bits defined by MDRAM Register

CA8-CAO: Bits defined by refresh address counter

Figure 41. Addresses Generated by RCU

22-92

inter 80C186

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~~:;~~H'LI_O~ __ 0-L_O~ __ 0-L_O~I_O~IL-0~I_c_B~I_c_7~1_C_6~I_C_5-LI_C_4JI_C_3-LI_C_2JI_C_1-L1 _CO~I

Bits 0-8: CO-C8, clock divisor register, holds the number of CLKOUT cycles between each refresh
request.

Bits 9-15: Reserved, read back as O.

Figure 42. Clock Pre-Scaler Register

15 14 13 12 11 10 9 8 7 6 4 3 2 0

6~~~~~HLI _E~ __ 0-L __ ~O~ __ °-LI_o~I __ °-LI_T_BJI_T_7-LI_T_6JI_T_5-L1 _T4~I_T_3_LI _T2~I_T_1-L_TO~

Bits 0-8: TO-T8, refresh clock counter outputs. Read only.

Bits 9-14: Reserved, read back as O.

Bit 15: Enable RCU, set to 0 on RESET.

Figure 43. Enable RCU Register

Refresh Control Unit Programming and
Operation

After programming the MDRAM and the CDRAM
registers (Figures 40 and 42), the RCU is enabled by
setting the "E" bit in the EDRAM register (Figure
43). The clock counter (TO-T8 of EDRAM) will be
loaded from CO-C8 of CDRAM during T 3 of instruc­
tion cycle that sets the "E" bit. The clock counter is
then decremented at each subsequent CLKOUT.

A refresh is requested when the value of the counter
has reached 1 and the counter is reloaded from
CDRAM. In order to avoid missing refresh requests,
the value in the CDRAM register should always be at
least 18 (12H). Clearing the "E" bit at anytime will
clear the counter and stop refresh requests, but will
not reset the refresh address counter.

POWER-SA VE CONTROL

Power Save Operation

The 80C186, when in Enhanced Mode, can enter a
power saving state by internally dividing the clock-in
frequency by a programmable factor. This divided

frequency is also available at the CLKOUT pin. The
PDCON register contains the two-bit fields for se­
lecting the clock division factor and the enable bit.

All internal logic, including the Refresh Control Unit
and the timers, will have their clocks slowed down
by the division factor. To maintain a real time count
or a fixed DRAM refresh rate, these peripherals must
be re-programmed when entering and leaving the
power-save mode.

The power-save mode is exited whenever an inter­
rupt is processed by automatically resetting the en­
able bit. If the power-save mode is to be re-entered
after serving the interrupt, the enable bit will need to
be reset in software before returning from the inter­
rupt routine.

The internal clocks of the 80C186 will begin to be
divided during the T 3 state of the instruction cycle
that sets the enable bit. Clearing the enable bit will
restore full speed in the T 3 state of that instruction.

At no time should the internal clock frequency be
allowed to fall below 0.5 MHz. This is the minimum
operational frequency of the 80C186. For example,
an 80C186 running with a 12 MHz crystal (6 MHz
CLOCKOUT) should never have a clock divisor
greater than eight.

22-93

intJ 80C186

15 14 13 12 11 10 9 '8 7 6 5 4 3 2 0
6~~~~~HI~ _E_'~I __ O~I~°-LI_O~~0-L_O~I __ °-LI_O~ __ °-LI_O~I __ 0-L_O~ __ °-LI _O~_F_1~IL-FO~1

Bits 0-1:

Bits 2-14:

Clock Divisor Select
F1 FO Division Factor
o 0 divide by 1
o 1 divide by 4

o divide by8
divide by 16

Reserved, read back as zero.
Bit 15: Enable Power Save Mode. Set to zero on RESET.

Figure 44. Power-Save Control Register

Numeric Coprocessor (NPX)
Extension

Three of the mid-range memory chip selects are re­
defined according to Table 16 when using the nu­
merics coprocess9r extension. The fourth chip se­
lect, MCS2 functions as in compatible mode, and
may be programmed for activity with ready logic and
wait states accordingly. As in compatible mode,
MCS2 will function for one·fourth a programmed
block size.

Table 16. MCS Assignments

Compatible
Enhanced Mode

Mode

MCSO PEREQ Processor Extension Request
MCS1 ERROR NPX Error
MCS2 MCS2 Mid·Range Chip Select
MCS3 NPS Numeric Processor Select

Four port addresses are assigned to the NPX for 16-
bit reads and writes by the 80C186. Table 17 shows
the port definitions. These ports are not accessible
by using the 80C186 I/O instructions. However, nu·
merics operations will cause a PCS line to be acti­
vated if it is properly programmed for this I/O range.

Table 17. Numerics Coprocessor I/O Port
Assignments

I/O Address Read Definition Write Definition

00F8H Status/Control Opcode
OOFAH Data Data
OOFCH reserved CS:IP, DS:EA
OOFEH Opcode Status reserved

"ONCETM" Test Mode

To facilitate testing and inspection of devices when
fixed into a target system, the 80C186 has' a test
mode available which allows all pins to be placed in
a high·impedance state. "ONCE" stands for "ON
Circuit Emulation". When placed in this mode, the
80C186 will put all pins in the high-impedance state
until RESET.

The ONCE mode is selected by tying the UCS and
the LCS LOW during RESET. These pins are sam­
pled on the 10w~t2:b!9h transition of the RES pin.
The UCS and the LCS pins have weak internal pull­
up resistors similar to the RD and TEST/BUSY pins
to guarantee proper normal operation.

22·94

80C186

32 MHz rOl
Xl X2

UCS
..---
74HC373 ADDRESS RESET

RES ADO- """"" LATCH ~
ROM

AOIS
ALE r-F~~ I STS OE {

SOC18S

\
liD
Wli r

PROGRAM

I
RAM

MCSO-3

SHE t--- ~

SROY U'SV

ARDY

NMI h -
HOLD h ~

LOW RAM

~ I

I TMRINO f---sv (

TMROUTO
t

~
CLOCK

~
74HC24S

~ TRANSCEIVER ~ 00-07

DEN ~ ~T
SERIAL T

I/O
DT/R

~;
ERMINAL

PCSO
Al
A2

INTO I

DISK <=::::> 0 DIS INTERFACE
INTI HARDWARE

K

PCS4
DRQO

270354-14

Figure 45. Typical 80C186 Computer

22-95

inter 80C186

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature under Bias .•.. O·C to + 70·C

Storage Temperature -65·C to + 150·C

Voltage on Any Pin with
Respect to Ground -1.0V to + 7.0V

Package Power Dissipation .•.....••....•....• 3W

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE Specifications contained within the
following tables are subject to change.

ADVANCE INFORMATION-SEE INTEL FOR DESIGN-IN INFORMATION

D.C. CHARACTERISTICS

TA = O·C to +70·C, Vcc = 5V ±10% except Vcc = 5V ± 5% at 16 MHz

Symbol Parameter Min Max Units Test Conditions

Vil Input Low Voltage -0.5 0.2Vcc - 0.3 V

VIH Input High Voltage 0.2Vcc + 0.9 Vcc + 0.5 V
(All except X1 and RES)

VIH1 Input High Voltage (RES) 3.0 Vcc + 0.5 V

VOL Output Low Voltage 0.45 V IOl = 2.5 rnA (SO, 1, 2)
IOl = 2.0 rnA (others)

VOH Output High Voltage 2.4 Vcc V IOH = - 2.4 rnA @ 2.4V

0.8Vcc Vcc V IOH = '-200 p,A @ 0.8 Vcc

Icc Power Supply Current 150 rnA @ 12.5 MHz, O·C
Vcc = 5.5V

Ips Power Save Current 10 rnA per MHz + '20 rnA Typical
@25·C, Vcc = 5.0V

III Input Leakage Current ±10 p,A 0.45V ::;: VIN ::;: Vcc

ILO Output Leakage Current ±10 p,A 0.45V ::;: VOUT ::;: VCc!1)

VClO Clock Output Low 0.5 V ICLO = 4.0 rnA

VCHO Clock Output High 0.8 Vcc V ICHO = -500 p,A

VCLl Clock Input Low Voltage (X1) -0.5 0.6 V

VCHI Clock Input High Voltage (X1) 3.9 Vcc + 0.5 V

CIN Input Capacitance 10 pF @ 1 MHz(2)

CIO 1/0 Capacitance 20 pF @ 1 MHz(2)
.

NOTES:
1. Pins being floated during HOLD or by invoking the ONCE Mode.
2. Characterization conditions are a) Frequency = 1 MHz; b) Unmeasured pins at GND; c) VIN at + 5.0V or 0.45V. This
parameter is not tested.

22-96

80C186

PIN TIMINGS
ADVANCE INFORMATION-SEE INTEL FOR DESIGN-IN INFORMATION
A.C. CHARACTERISTICS

TA = O°C to + 70°C, VCC = SV ± 10% except VCC = SV ±S% at 16 MHz

All timings are measured at 1.SV and 100 pF loading on CLKOUT unless otherwise noted.
All output test conditions are with CL = SO-200 pF (10 MHz) and CL == SO-100 pF (12.S-16 MHz).
Input VIL = O.4SV and VIH = 2.4V for A.C. tests.

Symbol Parameter
80C186·10 80C186·12 80C186·16

Unit
Test

Min Max Min Max Min Max Conditions

80C186 TIMING REQUIREMENTS

TDVCL Data In Setup (AID) 15 15 10 ns

TCLDX Data In Hold (AID) 5 5 5 ns

TARYCH ARDY Resolution Transition 15 15 15 ns
Setup Time(1)

TARYLCL Asynchronous Ready (ARDY) 25 25 25 ns
Setup Time

TCLARX ARDY Active Hold Time 15 15 15 ns

TARYCHL ARDY Inactive 15 15 15 ns
Hold Time

TSRYCL Synchronous Ready 15 15 15 ns
(SRDY) Transition
Setup Time(1)

TCLSRY SRDY Transition 15 15 15 ns
Hold Time

THVCL HOLD Setup(1) 15 15 15 ns

TINVCH INTR, NMI, TEST, TMR IN 15 15 15 ns
Setup Time(1)

TINVCL DRQO, DRQ1, Setup 15 15 15 ns
Time(1)

80C186 MASTER INTERFACE TIMING RESPONSES

TCLAV Address Valid Delay 5 50 5 36 5 33 ns CL =50 pF

TCLAX Address Hold 0 0 0 ns -200 pF all

TCLAZ Address Float Delay TCLAX 30 TCLAX 25 TCLAX 20
outputs

ns (except

TCHCZ Command Lines 40 33 28 ns TCLTMV) @

Float Delay 10 MHz

TCHCV Command Lines Valid 45 37 32 ns
Delay (after Float)

TLHLL ALE Width (min) TCLCL - 30 TCLCL - 30 TCLCL - 30 ns CL=50pF

TCHLH ALE Active Delay 30 25 20 ns
-100 pF all
outputs

TCHLL ALE Inactive Delay 30 25 20 ns @ 12.5 &

hLAX Address Hold to TCHCL - 20 TCHCL - 15 TCHCL - 15 ns 16 MHz

ALE Inactive (min)

TCLDV Data Valid Delay 5 40 5 36 5 33 ns

TCLDOX Data Hold Time 5 5 5 ns

TWHDX Data Hold after WR (min) TCLCL - 34 TCLCL - 20 TCLCL - 20 ns

TcVCTV Control Active Delay 1 5 56 5 47 5 31 ns

TCHCTV Control Active Delay 2 5 44 5 37 5 31 ns -

TCVCTX Control Inactive Delay 5 44 5 37 5 31 ns

TCVDEX DEN Inactive Delay 5 56 5 47 5 35 ns
(Non·Write Cycle)

NOTE:
1. To guarantee recognition at next clock.

22·97

inter 80C186

PIN TIMINGS (Continued)

ADVANCE INFORMATION-SEE INTEL FOR DESIGN-IN INFORMATION

A.C. CHARACTERISTICS

TA = O°C to + 70°C, VCC = 5V ± 10% except VCC = 5V ±5% at 16 MHz

All timings are measured at 1.5V and 100 pF loading on CLKOUT unless otherwise noted.
All output test conditions are with CL = 50-200 pF (10 MHz) and CL = 50-100 pF (12.5-16 MHz).
Input VIL = 0.45V and VIH = 2.4V for A.C. tests.

Symbol Parameter
80C186·10 80C186·12 80C186·16

Unit
Test

Min Max Min Max Min Max Conditions

80C186 MASTER INTERFACE TIMING RESPONSES (Continued)

TAZRL Address Float to 0 0 0 ns CL = 50-200 pF
RD Active all outputs

TCLRL RD Active Delay 5 44 5 37 5 31 ns (exceptT CLTMV)
@ 10 MHz

TCLRH RD Inactive Delay 5 44 5 37 5 31 ns

TRHAV RD Inactive to TCLGL - 40 TCLCL - 20 TCLCL -20 ns CL=50-100pF
Address Active all outputs @

(min) 12.5 & 16 MHz

TCLHAV HLDA Valid Delay 5 40 5 33 5 25 ns

TRLRH RD Pulse Width 2TCLCL - 46 2TCLCL - 40 2TCLCL - 30 ns
(min)

TWLWH WR Pulse Width 2TCLCL - 34 2TCLCL - 30 2TCLCL - 25 ns
(min)

TAVLL Address Valid to TCLCH ~ 19 TCLCH - 15 TCLCH - 15 ns Equal
ALE Low (min) Loading

TCHSV Status Active 5 45 5 35 5 31 ns
Delay

TCLSH Status Inactive 5 50 5 35 5 30 ns
Delay

TCLTMV Timer Output Delay 48 40 30 ns 100 pF max
@ 10 MHz

TCLRO Reset Delay 48 40 30 ns CL = 50-200 pF

TCHQSV Queue Status 28 28 25 ns All outputs

Delay (exceptT CLTMV)
@ 10 MHz

TCHDX Status Hold Time 5 5 5 ns

TAVCH Address Valid to 0 0 0 ns CL = 50-100 pF
Clock High All outputs @

TCLLV LOCK Validllnvalid 5 45 5 40 5 35 ns 12.5&16MHz

Delay

TDXDL DEN Inactive to 0 0 0 ns Equal
DT/RLow Loading

80C186 CHlp·SELECT TIMING RESPONSES

TCLCSV Chip·Select 45 33 30 ns
Active Delay

Tcxcsx Chip·Select TCLCH - 10 TCLCH - 10 -TCLCH - 10 ns Equal
Hold from Loading
Command Inactive

TCHCSX Chip·Select 5 32 5 28 5 23 ns
Inactive Delay

22·98

inter 80C186

PIN TIMINGS (Continued)

ADVANCE INFORMATION-SEE INTEL FOR DESIGN-IN INFORMATION

A.C. CHARACTERISTICS

TA = O·C to +70·C, Vee = 5V ±10% except Vee = 5V ±5% at 16 MHz

All timings are measured at 1.5V and 100 pF loading on CLKOUT unless otherwise noted.
All output test conditions are with Cl = 50-200 pF (10 MHz) and Cl = 50-100 pF (12.5-16 MHz).
Input Vil = 0.45V and VIH = 2.4V for A.C. tests.

Symbol Parameter
80C186·10 80C186·12 80C186·16 .

Unit
Test

Min Max Min Max Min Max Conditions

80C186 ClKIN REQUIREMENTS Measurements taken with following conditions: External clock input to Xl and X2 not
connected (float)

TCKIN ClKIN Period 50 1000 40 1000 31.25 1000 ns

TCKHL ClKIN Fall Time 5 5 5 ns 3.5 to 1.0V

TCKLH ClKIN Rise Time 5 5 5 ns 1.0to 3.5V

TCLCK ClKIN low Time 20 15 13 ns 1.5V(2)

TCHCK ClKIN High Time 20 15 13 ns 1.5V(2)

80C186 ClKOUT TIMING 200 pF load maximum for 10 MHz or less, 100 pF load maximum above 10 MHz

TCICO ClKINto 25 21 17 ns
ClKOUTSkew

TCLCL ClKOUT Period 100 2000 60 2000 62.5 2000 ns

TCLCH ClKOUT 0.5 TCLCL -6 0.5 TCLCL -5 0.5 TCLCL -5 ns 1.5V
low Time (min)

TCHCL ClKOUT 0.5 TCLCL -6 0.5 TCLCL -5 0.5 TCLCL -5 ns 1.5V
High Time (min)

TCH1CH2 ClKOUT 10 10 6 ns 1.0 to 3.5V
Rise Time

TCL2CLl ClKOUT 10 10 6 ns 3.5 to 1.0V
Fall Time

NOTE:
2. TCLCK and T CHCK (ClKIN low and High times) should not have a duration less than 40% of T CKIN.

22·99

80C186

WAVEFORMS

MAJOR CYCLE TIMING
VOH

•. ;....;r""~ At~ :-,

WRITE CYCLE

iiii,lNTA,
OT/R - YOI<

CLKOU T

~

'TC

s"
IS,

A LE

TCHjjj":;

iii

~

I.~
K.. 1\-----0 --- I ':Tci:Cii: ;'1 IT"",,L -

I~
:111_ h LAX:::: rem

~ '-E S,-B,

ft
-1 I~ ~~ /r-_

- i--TCHLL

:LIII_ - I:: I:::~: t"J TC'LAZ_

•• u~. !i.AO DATAOU' Tci

~-~ t: - ITLL~' -.

1
~- J-

~ TCYCTlC- I-

-
""

TCLAZ Ir-' ,- ~LDX

'1 FLOAT I FLOAT

INTACYCLE
~~~' 1"\ Ii -=:~ TCHCTY 

¥-
I 

OT/ 

A IN,t 

1m, WII,III!, = YOH 

N 

SOFTWARE HALT-DT/Ii = YO 
JIlj, Wli,Im. aER, - V 0 

L, 
H 

~ I -
1 -_.- [J 

~~ I 

t INVAUD ADDRESS 

~ 
VI 

,v,uU' I-I 
'j 

;::: ~ ;:::~ 

-

-jNaTE11 

----

(4-

Ir-
DOX, ~E II 

TCLIII_ 'I~ 1-- ~_TCLCSV TCXCSX- -E41 

270354-16 

22-100 



80C186 

WAVEFORMS (Continued) 

MAJOR CYCLE TIMING (Continued) 

CLKOUT 

52·50 --+=~~~---l----i------r---l--~~~~~-----t-----------

BHEIS7.A191S6-Al61S3 

ALE 

TCHLH 

AD,,-ADc 

REAOCYCLE 

OTIA 

PCS. 
MCS ---------if-, I 
LCS. 

270354-17 

NOTES: 
1. Following a Write cycle, the Local Bus is floated by the 80C186 only when the 80C186 enters a "Hold Acknowledge" 
state. 
2. INTA occurs one clock later in slave mode. 
3. Status inactive just prior to T 4. 
4. Latched A1 and A2 have the same timings as PCS5 and PCS6. 

22-101 



intJ 
WAVEFORMS (Continued) 

CLKOUT 

CLKOUT 

~ 
. INTO·3 
'TIMERIN 

aso, aS1 

80C186 

270354-18 

22-102 



inter 80C186 

WAVEFORMS (Continued) 

READY TIMING 

CLKOUT 

ARDY 
(NORMALLY 
NOT READY) ------� 

READY) 
(NORM~m[ 

-------""1 

CLKOUT 

SR~ _________ ~'~ ___ -r~~ ___ _ 

HOLD-HLDA TIMING 

CLKOU~ """'\. '" 

~CL-+lr ~ 
HOLD H--+-~ 
---

HLDA 
----~ 

AD15 - ADO ----8-0C-1-86-~H--+\.1 
DEN ______ ~H--+'I 

A19/S6- A16/S3. --____ -~H~I 
RD. WR' __ .28~OC:.!1!86~ __ i~~~---§r---------~ 

SHE.DT/R. 
S2- SO. LOCK 

22-103 

270354-23 

270354-20 



inter 80C186 

WAVEFORMS (Continued) 

TIMER ON 80C186 

ClKIN 

TCKHl 

ClKOUT 
"'-__ TClCHI __ +-.".... __ TCHCl __ ~ 

'-------Tclcl--------I 

TIMERIN 

I 
--./ 

_TINVCH 

~~ 
TIMEROUT __ ~:===================__2_1_f2_-_6_1_f_2 C_l_O...:C_KS _________ -I_~~ 

80C186 EXECUTION TIMINGS 

A determination of 80C186 program execution tim­
ing must consider both the bus cycles necessary to 
prefetch instructions as well as the number of exe­
cution unit cycles necessary to execute instructions. 
The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following 
assumptions: 

• The opcode, along with any data or displacement 
required for execution of a particular instruction, 
has been prefetched and resides in the queue at 
the time it is needed. 

• No wait states or bus HOLDs occur. 

• All word-data is located on even-address bound­
aries. 

270354-21 

All jumps and calls include the time required to fetch 
the opcode of the next instruction at the destination 
address. 

All instructions which involve memory accesses can 
require one or two additional clocks above the mini­
mum timings shown due to the asynchronous hand­
shake between the BIU and execution unit. 

With a 16-bit BIU, the 80C186 has sufficient bus per­
formance to ensure that an adequate number of pre­
fetched bytes will reside in the queue most of the 
time. Therefore, actual program execution will not be 
substantially greater than that derived from adding 
the instruction timings shown. 

22-104 



80C186 

INSTRUCTION SET SUMMARY 

Function Format 
Clock 

Comments 
Cycles 

DATA TRANSFER 
MOV = Move: 

Register to Register IMemory 1000100w mod reg rim 2/12 

Registerlmemory to register 1000101w mod reg rim 2/9 

Immediate to registerlmemory 11000 11 w mod 000 rim data I data ifw= 1 I 12-13 8/16-bit 

Immediate to register 10 11 w reg data dataifw=l I 3-4 8/16-bit 

Memory to accumulator 1010000w addr-Iow addr-high I 8 

Accumulator to memory 1010001w addr-Iow addr-high I 9 

Registerlmemory to segmenl register 1000 1110 mod 0 reg rim 2/9 

Segment register to registerlmemory 10001100 mod a reg rim 2/11 

PUSH = Push: 

Memory I 11111111 I mod 11 a rim I 16 

Register I 01010reg I 10 

Segment register I 000regll0 9 

I~mediate 011010s0 data I dataffs=O I 10 

PUI:'IHA ';'.PU8.!I~1I 01100000 36 

POP = Pop: 

Memory 1000 1111 modOOO rim I 20 

Register 01011 reg .10 

Segment register OOOreg 111 (reg*Ol) 8 

POP!\ = Pop·AII I 0.1100001 51 . 
XCHG = Exchange: 

Registerlmemory with register I 1000011w I mod reg rim I 4/17 

Register with accumulator I 10010reg I 3 

IN = Input from: 

Fixed port I 1110010w I port I 10 

Variable port I 1110110w I 8 

OUT = Output to: 

Fixed port I 1110011 w I port I 9 

Variable port I 1110111w I 7 

XLAT = Translate byte to AL I 11010111 I 11 

LEA = Load EA to register I 1000 1101 I mod reg rim I 6 

LDS = Load pOinter to DS I 11000101 I mod reg rim I (mod*ll) 18 

LES = Load pointer to ES I 11000100 I mod reg rim I (mod*ll) 18 

LAHF = Load AH with flags 10011111 I 2 

SAHF = Store AH into flags 10011110 I 3 

PUSHF = Push flags 10011100 I 9 

POPF = Pop flags 10011101 I 8 

Shaded areas indicate instruction not available in 8086, 8088 microsystems. 

22-105 



inter 80C186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

DATA TRANSFER (Continued) 
SEGMENT ~ Segment Override: 

CS I 00101110 I 2 

SS I 00110110 I 2 

DS I 00111110 I 2 

ES I 00100110 I 2 

ARITHMETIC 
ADD ~ Add: 

Reg/memory with register to either I OOOOOOdw I mod reg rIm I 3/10 

Immediate to register/memory I 100000sw I mod 0 0 0 rIm I data I data if s w~OI I 4116 

Immediate to accumulator I 0000010w I data I data ifw~ 1 I 3/4 S/16-bit 

ADC ~ Add with carry: 

Reg/memory with register to either I 000100dw I mod reg rIm I 3110 

Immediate to register/memory I 100000sw I mod 010 rIm I data I data if s w~OI I 4116 

Immediate to accumulator I 0001010w I data I dataifw~1 I 3/4 Sl16-bit 

INC ~ Increment: 

Register/memory I lllllllw I modOOO rIm I 3115 

Register I 01000 reg I 3 

SUB ~ Subtract: 

Reg/memory and register to either I 001010dw I mod reg rim I 3110 

Immediate from register/memory I 100000sw I mod 101 rIm I data I data if s w~ 01 I 4/16 

Immediate Irom accumulator I 0010110w I data I dataifw~I' I 3/4 S/16-bit 

SBB ~ Subtract with borrow: 

Reg/memory and register to either I 000110dw mod reg rIm I 3110 

Immediate from register/memory I 100000sw modOll rIm I data I data if s w~OI I 4116 

Immediate from accumulator I 0001110w data I dataifw~1 I 3/4 Sl16-bit 

DEC ~ Decrement 

Register/memory I 1111111 w mod 0 0 1 rIm I 3/15 

Register I 01001 reg 3 

CMP ~ Compare: 

Register/memory with register I 0011101 w I mod reg rim I 3110 

Register with register I memory 0011100w I mod reg rIm I 3/10 

Immediate with register/memory 100000sw I mod 111 rIm I data I data if s w~(jl I 3110 

Immediate with accumulator 0011110w I data I dataifw~1 I 3/4 Sl16-bit 

NEG ~ Change sign register/memory 1111011w I modO 11 rIm I 3110 

AAA ~ ASCII adjust for add 00110111 I S 

DAA ~ Decimal adjust for add I 00100111 I 4 

AAS ~ ASCII adjust for subtract I 001 1 1 111 I 7 

DAS ~ Decimal adjust for subtract I 00101111 I 4 

MUL ~ Multiply (unsigned): I 1111011 w I mod 100 rIm I 
Register-Byte 26-2S 
Register-Word 35-37 
Memory-Byte 32-34 
Memory-Word 41-43 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

22-106 



80C186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

ARITHMETIC (Continued) 

IMUL ~ Integer multiply (signed): I 1111011 w I mod 101 rIm I 
Register-Byte 25-28 
Register-Word 34-37 
Memory-Byte 3t-34 
Memory-Word 40-43 

IMUL ~ Integer Immediate multiply I 011010s1 I modreg rim I data I datalfs=O I 22-251 
(signed) 29-32 

DIV ~ Divide (unsigned): I 1 t 11 011 w I mod 110 rIm I 
Register-Byte 29 
Register-Word 38 
Memory-Byte 35 

, Memory-Word 44 

IDIV ~ Integer divide (signed): I 1111011w I mod 11 1 rIm I 
Register-Byte 44-52 
Register-Word 53-61 
Memory-Byte 50-58 
Memory-Word 59-67 

AAM ~ ASCII adjust for multiply I 11010100 I 00001010 I 19 

AAD ~ ASCII adjust for divide I 11010101 I 00001010 I 15 

CBW ~ Convert byte to word I 10011000 I 2 

CWD ~ Convert word to double word I 10011001 I 4 

LOGIC 
Shill/Rotate Instructions: 

Register/Memory by 1 I 1101000w I modTTTr/m I 2/15 

Register/Memory by CL I 1101001 w I mod TTT r/m I 5+n/17+n 

Register/Memory by Count, I 1100000w I rnodTTTr/m I count I 5+nlI7+n ' '" 
" 

TTT Instruction 
000 ROL 
001 ROR 
010 RCL 
011 RCR 
100 SHL/SAL 
101 SHR 
111 SAR 

AND ~ And: 

Reg/memory and register to either I 001000dw I mod reg rIm I 3/10 

Immediate to register/memory I 1000000w I mod 1 00 rIm I data I data ifw~ 1 I 4/16 

Immediate to accumulator I 0010010w I data I dataifw~1 I 3/4 8/16-bit 

TEST ~ And function to flags, no result: 

Register/memory and register I 1000010w I mod reg rIm I 3/10 

Immediate data and register/memory I 1111011 w I mod 0 0 0 rIm I data I dataifw~1 I 4/10 

Immediate data and accumulator I 1010100w I data I dataifw~I' I 3/4 8/16-bit 

OR~Or: 

Reg/memory and register to either I 000010dw I mod reg rIm I 3/10 

Immediate to register/memory I 1000000w I mod 0 01 rIm I data I dataifw~1 I 4/16 

Immediate to accumulator I 0000110w I data I dataifw~1 I 3/4 8/16-bit 

Shaded areas indicate instructions not available In 8086, 8088 mlcrosystems. 

22-107 



inter 80C186 

INSTRUCTION SET SUMMARY (Continued) 

Function 

LOGIC (Continued) 
XOR = Exclusive or: 

Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

NOT = Invert register/memory 

STRING MANIPULATION 

MOVS = Move byte/word 

CMPS = Compare byte/word 

SCAS = Scan byte/word 

LODS = Load byte/wd to ALAX 

STOS = Stor byte/wd from ALA 

IN$ l;o;;;O~;P9ii 
: , '« ,'~ -: "', .~,,, <~, ~ ,) ,{c"., 

~' . ,*cd\J~t~~IYtd~o;D,]<W"·i 
Repeated by count in CX . 

MOVS = Move string 

CMPS = Compare string 

SCAS = Scan string 

LODS = Load string 

STOS = Store string 

INS";: 1~~~;'strin9 
, . '. c, ;'<.1 •. 'i~" 

CONTROL TRANSFER 

CALL = Call: 

Direct within segment 

Register/memory 
indirect within segment 

Direct intersegment 

Indirect intersegment 

JMP = Uncondltlonal)ump: 

Shortllong 

Direct within segment 

Registerlmemory 
indirect within segment 

Direct intersegment 

Indirect intersegment 

Format 

001100dw mod reg rIm 

1000000w mod'110 rIm data 

0011010w data dataifw=1 

1111011 w mod 0 10 rIm 

1010010w 

1010011 w 

1010111 w 

1010110w 

11110010 1010010w 

1111001 z 1010011 w 

1111001 z 

11110010 1010110w 

11101000 disp-Iow I disp-high 

11111111 mod 0 1 0 rIm I· 

10011010 segment offset 

segment selector 

11111111 modO 11 rim (mod", 11) 

11101011 I disp-Iow 

11101001 I disp-Iow disp-high 

1 1 1 1 1 1 1 1 I mod 1 00 rIm 

11101010 segment offset 

segment selector 

11111111 mod 1 01 rIm I (mod", 11) 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

22-108 

data ifw= 1 

Clock 
Cycles 

3/10 

4/16 

3/4 

3/10 

14 

22 

15 

12 

10 

8+8n 

5+22n 

5+15n 

6+11n 

15 

13/19 

23 

38 

14 

14 

11/17 

14 

26 

Comments 

8/16-bit 



80C186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

CONTROL TRANSFER (Continued) 
RET ~ Return from CALL: 

Within segment 11000011 16 

Within seg adding immed to SP 11000010 data-low data-high 18 

Intersegment 11001011 22 

Intersegment adding immediate to SP 11001010 data-low data-high 25 

JE/JZ ~ Jump on equal/zero 01110100 disp 4/13 JMP not 

JL/JNGE ~ Jump on less/not greater or equal 01111100 disp 4/13 
taken/JMP 

taken 

JLE/JNG ~ Jump on less or equal/not greater 01111110 disp 4/13 

JB/JNAE ~ Jump on below/not above or equal 01110010 disp 4/13 

JBE/JNA ~ Jump on below or equallnot above 01110110 disp 4/13 

JP/JPE ~ Jump on parity/parity even 01111010 disp 4/13 

JO ~ Jump on overflow 01110000 disp 4/13 

JS ~ Jump on sign 01111000 disp 4/13 

JNE/JNZ ~ Jump on not equal/not zero 01110101 disp 4/13 

JNL/JGE ~ Jump on not less/greater or equal 01111101 disp 4/13 

JNLE/JG ~ Jump on not less or equal/greater 01111111 disp 4/13 

JNB/JAE ~ Jump on not below/above or equal 01110011 disp 4/13 

JNBE/JA ~ Jump on not below or equal/above 01110111 disp 4/13 

JNP/JPO ~ Jump on not par/par odd 01111011 disp 4/13 

JNO ~ Jump on not overflow 01110001 disp 4/13 
, 

JNS ~ Jump on not sign 01111001 disp 4/13 

JCXZ ~ Jump on CX zero 11100'011 disp 5/15 

LOOP ~ Loop CX times 11100010 disp 6/16 LOOP not 

LOOPZ/LOOPE ~ Loop while zero/equal disp 
taken/LOOP 

11100001 6/16 
taken 

LOOPNZ/LOOPNE ~ Loop while not zero/equal I 11100000 disp 6/16 

.-
ENTER = Enter Procedur¢ data-low data-high I L 

L= 0 1P. 
l= i 25 
l>1 22+ 16(n . ...:.l) 

LEAVE ~ Leav~.PfO~~lJre a 
INT ~ Interrupt: 

Type specified 11001101 type 47 

Type 3 11001100 45 if INT. taken/ 

INTO ~ Interrupt on overflow 11001110 48/4 
if INT. not 

taken 

IRET ~ Interrupt return I 11001111 28 

BOUND ~Dat(l(;t va1lJe'OUI of range J (111:00010 I mod reg rim L .33.:-35 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

22·109 



inter 80C186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

PROCESSOR CONTROL 

CLC ~ Clear carry I 11111000 I 2 

CMC ~ Complement carry I 11110101 I 2 

STC ~ Set carry I 11111001 I 2 

CLO ~ Clear direction I 11111100 I 2 

STO ~ Set direc1ion I 11111101 I 2 

CLI ~ Clear interrupt 11111010 I 2 

STI ~ Set interrupt 11111011 2 

HLT ~ Halt 11110100 2 

WAIT~ Wait 10011011 6 if test ~ 0 

LOCK ~ Bus lock prefix 11110000 2 

ESC ~ Processor Extension Escape 11011 TTT mod LLL rIm I 6 

(TTT LLL are opcode to processor extension) 

Shaded areas Indicate Instructions not available In 8086, 8088 mlcrosystems. 

FOOTNOTES 

The Effective Address (EA) of the memory operand 
is computed according to the mod and rim fields: 
if mod 11 then rim is treated as a REG field 
if mod 00 then 018P = 0', disp-Iow and disp­

if mod 

if mod 
if rim 
if rim 
ifrlm 
if rim 
if rim 
if rim 
if rim 
if rim 

high are absent 
01 then 018P = disp-Iow sign-ex­
tended to 16-bits, disp-high is absent 
10 then 018P = disp-high: disp-Iow 
000 then EA = (BX) + (81) + 018P 
001 then EA = (BX) + (01) + 018P 
010 then EA = (BP) + (81) + 018P 
011 then EA = (BP) + (01) + 018P 
100 then EA = (81) + 018P 
101 then EA = (01) + 018P 
110 then EA = (BP) + 018P' 
111 then EA = (BX) + 018P 

018P follows 2nd byte of instruction (before data if 
required) . 

'except if mod = 00 and rim = 110 then EA = 
·disp-high: disp-Iow. 

EA calculation time is 4 clock cycles for all modes, 
and is included in the execution times given whenev­
er appropriate. 

Segment Override Prefix 

I 0 0 1 reg 1 1 0 I 

reg is assigned according to the following: 
Segment 

reg Register 
00 E8 
01 C8 
10 88 
11 08 

REG is assigned according to the following table: 
16-Bit (w = 1) 8-Bit (w = 0) 

000 AX OOOAL 
001 CX 001 CL 
0100X 0100L 
011 BX 011 BL 
1008P 100 AH 
101 BP 101 CH 
11081 1100H 
111 01 111 BH 

The physical addresses of all operands addressed 
by the BP register are computed using the 88 seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations 
(those addressed by the 01 register) are computed 
using the ES segment, which may not be overridden. 

22-110 



• 

• 

• 

• 

80188 
HIGH INTEGRATION 8-BIT MICROPROCESSOR 

Integrated Feature Set • Completely Object Code Compatible 
- Enhanced 8086-2 CPU with All EXisting 8086/8088 Software 
- Clock Generator -10 New Instruction Types 
- 2 Independent DMAChannels • DRAM Refresh Capability via DMA 
- Programmable Interrupt Controller Channel and Timer 2 
- 3 Programmable 16-Bit Timers 
- Programmable Memory and • Direct Addressing Capability to 

Peripheral Chip-Select Logic 1 MByte of Memory and 64 KByte I/O 
- Programmable Wait State Generator • Complete System Development 
- Local Bus Controller Support 
High-Performance 8 MHz Processor - Development Software; Assembler, 
- At 8 MHz Provides 2 Times the PL/M, Pascal, Fortran, and System 

Performance of the Standard 8088 Utilities 
- 2 MByte/Sec Bus Bandwidth -In-Circuit-Emulator (1 2ICETM-186/188) 

Interface @8 MHz • High Performance Numerical 
Available in EXPRESS Co processing Capability Through 8087 
- Standard Temperature with Burn-In Interface 
- Extended Temperature Range • Available in 68 Pin: 

( - 40°C to + 85°C) - Ceramic Leadless Chip Carrier (LCC) 
8-Bit Data Bus Interface; 16-Bit Internal - Ceramic Pin Grid Array (PGA) 
Architecture - Plastic Leaded Chip Carrier (PLCC) 

(See Packaging Outlines and Dimensions, Order #231369) 

INT311NTAl 

INT2IINTAO 

SROY 

ARDY 
TEST 
HOLD 

HLDA 
RES 

RESET 

-
-
-
-r-
::r--

jlD~LrT TT INT1 TMR our 1 TAI'R OUT 0 

'lINi'" 
TMRIN t TMRIII i 

Nr l 1 r 
I II EXECUTION UN"iT1 ! ! ... PROGRAMMABl f--
X, 

TIMERS 
X, I " 1 2 

16·811 I ~:~I~~EURNJ ~ ALU I PROGRAMMABLE 

CLOCK I 
INTERRUPT 

MAX COUNT CONTROLLER 
GENERATOR I REGISTER A 

16·91T 
GENERAL I CONTROL REGISTERS 
PURPOSE I 

REGISTERS CONTROL., 1 16·BIT 

--.J REGISTERS COUNT REGISTER 

) it { 
INTERNAL BUS oROO 

DRQ1 d U U ~ .---
PROGRAMMABLE 

DMAUNIT 

" 1 

CHIP·SELECT 2O·81T 
UNIT SOURCE POINTERS 

BUS INTERFACE 0 20·81T 
UNIT 1&81T DESTINATION 

SEGMENT POINTERS 
REGISTERS 

4-8YTE PROGRAMMABLE I 16-BIT 
CONTROL 

PREFETCH 
REGISTERS 11 TRANSFER COUNT 

QueUE CONTROL 

I I "-frU 
REGISTERS 

loh lJ.AtE rH 1 ~ ucs PCS61A2 
LOCK AD ADO- A16/S3- - -

LCS PCSS/A1 
DT/R 57 AD7 A19/56 'v AS A15 

210706-1 

Figure 1.80188 Block Diagram 

22-111 
November 1987 

Order Number: 210706-009 



inter 80188 

The Intel 80188 is a highly integrated microprocessor with an 8-bit data bus interface and a 16-bit internal 
architecture to give high performance. The 80188 effectively combines ~ 5-20 of the most common 8088 
system components onto one. The 80188 provides two times greater throughput than the standard 5 MHz 
8088. The 80188 is upward compatible with 8086 and 8088 software and adds 10 new instruction types to the 
existing set. 

Leadless Chip Carrier (JEDEC Type A) 
Contacts Facing Up Contacts Facing Down 

PINS FACING UP 

I~I~ 
~~il~lh~~~~~'g~I~I~I~I~ 

~ 5~ L-lL-lLJLJL.H.JLJLJ .... JLJLJLJLJL.JLJLJ ~ r- DCS 
81' eLCS 
52 ' : PCSiiA2 

AROY C PCSS/Al 
CLKOUT , PCS< 

RESET )()()( , PCS3 

~ ~gg~ ~ ~~~ 
Vss ~~~ ~ Vss 

ALEIOSO x)( )( ~ PCSO 

~~~~ • _ E ~"OUTI 
frI C TMROUTO

AI9/88 ~ TMR IN 1
AI81S5 e TMR IN 0
A17iS4 , DROI
A1&'S3 r"r,r,r1rlr1r1rlr,r,rlflfHlr1r,r DROO

'" . ~ ·8 .. lI! .. 1'iu~.,o~·-:l1t
PINNO.1MAAK-'"" c~ccc:ccc~c~c:cc~:c

Pin Grid Array
PINS FACING DOWN

:'~)) ~-~,1 .;{?] @} @} (~.i" Ci~.' ~?) ~-~}

~-#.\ ~~} ~gl @} ~~} ~} ~~~, ~~} ~~-~.' ~-~.I ~~.I

~" ~~.I ~-~.I ~-~

~~.I ~?I
~-~} :~-~.I

:~}:~.~\
:~;I ',!-#.'
~!~.l ~-~}

:~-~.I :~-t.1

xxx xxx xxx xxx xxx xxx .-
:"#.V ~~,I
~.~! ~'~.\

~?} ~'~,I

~~} ~~,I
~~} ~;I
:'~Jl ~~,I

~¥.' (~) (~) (~:I :'~) :W' :l¥,1 :EI tl!:' @:' :1~}
:T' (~) (~) (7) (.~) :'f)) :l~:\ :l~) :t?)

Plastic Leaded Chip Carrier
Contacts Facing Up Contacts Facing Down

35 353637 383940-41-424.3.4-445-46-47-48-4950S1 ~~.~C~~~~~M~5~~~~

~ ~.

1716151-4131211109876 S" 3 2 1 1
PIN NO.1 WARK

~ ~
~ ~
~ n
55 31
~ ~

~~ xxx ~:
S9 ~~~ 27

:~ ~~~ ~:
~ u
63 23
~ ~
~ 21

= W

68 'l...~.JJ;;Il;lQlr;JI;lt;D;;R;;I!;~;)gI;;D;IQI;(:: I 18

123 -4 S 6·7 IS 9101112131-4151617

Figure 2. 80188 Pinout Diagram
22-112

210706-2

210706-3

210706-27

80188

Table 1. 80188 Pin Description

Symbol Pin No. Type Name and Function

Vee, Vee 9,43 I SYSTEM POWER: + 5 volt power supply.

Vss; Vss 26,60 I SYSTEM GROUND

RESET 57 0 RESET OUTPUT: Indicates that the 80188 CPU is being reset, and
can be used as a system reset. It is active HIGH, synchronized with
the processor clock, and lasts an integer number of clock periods
corresponding to the length of the RES signal.

X1, X2 59,58 I CRYSTAL INPUTS: X1 and X2 provide external connections for a
fundamental mode parallel resonant crystal for the internal
oscillator. Instead of using a crystal, an external clock may be
applied to X1 while minimizing stray capacitance on X2. The input
or oscillator frequency is internally divided by two to generate the
clock signal (CLKOUT).

CLKOUT 56 0 CLOCK OUTPUT: Provides the system with a 50% duty cycle
waveform. All device pin timings are specified relative to CLKOUT.
CLKOUT has sufficient MOS drive capabilities for the 8087 Numeric
Processor Extension.

RES 24 I SYSTEM RESET: Causes the 80188 to immediately terminate its
present activity, clear the internal logic, and enter a dormant state.
This signal may be asynchronous to the 80188 clock. The 801 ~
begins fetching instructions approximately 7 clock cycles after RES
is returned HIGH. For proper initialization, Vee must be within
specifications and the clock signal must be stable for more than 4
clocks with RES held low. RES is internally synchronized. This input
is provided with a Schmitt-trigger to facilitate power-on RES
generation via an RC network. When RES occurs, the 80188 will
drive the status lines to an inactive level for one clock, and then
float them.

TEST 47 I TEST: Is examined by the WAIT instruction. If the TEST input is
HIGH when "WAIT" execution begins, instruction execution will
suspend. TEST will be resampled until it goes LOW, at which time
execution will resume. If interrupts are enabled while the 80188 is
waiting for TEST, interrupts will be serviced. This input is
synchronized internally.

TMR INO, 20 I TIMER INPUTS: Are used either as clock or control signals,
TMR IN 1 21 I depending upon the programmed timer mode. These inputs are

active HIGH (or LOW-to-HIGH transitions are counted) and
internally synchronized.

TMR OUTO, 22 0 TIMER OUTPUTS: Are used to provide single pulse or continuous
TMROUT 1 23 0 waveform generation, depending upon the timer mode selected.

DRQO, 18 I DMA REQUEST: Is driven HIGH by an external device when it
DRQ1 19 I desires that a DMA channel (Channel 0 or 1) perform a transfer.

These signals are active HIGH, level-triggered, and internally
synchronized.

NMI 46 I NON·MASKABLE INTERRUPT: Is an edge-triggered input which
causes a type 2 interrupt. NMI is not maskable internally. A
transition from a LOW to HIGH initiates the interrupt at the next
instruction boundary. NMI is latched internally. An NMI duration of
one clock or more will guarantee service. This input is internally
synchronized.

22-113

80188

Table 1. 80188 Pin Description (Continued)

Symbol Pin No. Type Name and Function

INTO,INT1, 45,44 I MASKABLE INTERRUPT REQUESTS: Can be requested by
INT2/INTAO, 42 110 activating one of these pins. When configured as inputs, these pins
INT3/INTA1 41 I/O are active HIGH. Interrupt Requests are synchronized internally.

INT2 and INT3 may be configured via software to provide active-
, LOW interrupt-acknowledge output signals. All interrupt inputs may

be configured via software to be either edge- or level-triggered. To
ensure recognition, all interrupt requests must remain active until the
interrupt is acknowledged~ When slave mode is selected, the
function of these pins changes (see Interrupt Controller section of
this data sheet).

A19/S6, 65 0 ADDRESS BUS OUTPUTS (16-19) and BUS CYCLE STATUS (3-
A18/S5, 66 0 6): Reflect the four most Significant address bits during T 1. These
A17/S4, 67 0 signals are active HIGH. During T 2, T 3, Tw, and T 4, status
A16/S3 68 0 information is available on these lines as encoded below:

Low High

. S6 Processor Cycle DMACycle

S3, S4, and S5 are defined as LOW during T 2-T 4. The status pins
float during HOLD/HLDA.

AD7-ADO 2,4,6,8 I/O ADDRESS/DATA BUS (0-7): Signals constitute the time
11, 13, 15, 17 multiplexed memory or I/O address (T 1) and data (T 2, T 3, Tw, and

T 4) bus. The bus is active HIGH.

A15-A8 1,3,5,7 0 ADDRESS-ONLY BUS (8-15): Containing valid address from T 1-T 4.
10,12,14,16 The bus is active HIGH.

S7 64 0 This signal is HIGH to indicate that the 80188 has an 8-bit data bus.
S7 floats during HOLD.

ALE/QSO 61 0 ADDRESS LATCH ENABLE/QUEUE STATUS 0: Is provided by the
80188 to latch the address into the 8282/8283 address latches.
ALE is active HIGH. Addresses are guaranteed to be valid on the
trailing edge of ALE. The ALE rising edge is generated off the rising
edge of the CLKOUT immediately preceding T 1 of the associated
bus cycle, effectively one-half clock cycle earlier than in the
standard 8088. The trailing edge is generated off the CLKOUT rising
edge in T 1 as in the 8088. Note that ALE is never floated.

WR/QS1 63 0 WRITE STROBE/QUEUE STATUS 1: Indicates that the data on the

.' bus is to be written into a memory or an I/O device. WR is active for
T 2, T 3, and T w of any write cycle. It is active LOW, and floats during
"HOLD." It is driven HIGH for one clock during Reset, and then
floated. When the 80188 is in queue status mode, the ALE/QSO and
WR/QS1 pins provide information about processor/instruction
queue interaction.

.. ' QS1 QSO Queue Operation

0 0 No Queue Operation
0 1 First Opcode Byte Fetched

from the Queue
1 1 Subsequent Byte Fetched

from the Queue
1 0 Empty the Queue

22-114

80188

Table 1.80188 Pin Description (Continued)

Symbol Pin No. Type Name and Function

RD/QSMD 62 a READ STROBE: Indicates that the 80188 is performing a memory or
1/0 read cycle. RO is active LOW for T 2. T 3. and T w of any read
cycle. It is guaranteed not to go LOW in T 2 until after the Address
Bus is floated. RD is active LOW. and floats during "HOLD". RD is
driven HIGH for one clock during Reset. and then t~ output driver is
floated. A weak internal pull-up mechanism on the RD line holds it
HIGH when the line is not driven. During RESET the pin is sampled
to determine whether the 80188 should provide ALE. WR. and RD. or
if the Queue-Status should be provided. RD should be connected to
GND to provide Queue-Status data.

ARDY 55 I ASYNCHRONOUS READY: Informs the 80188 that the addressed
memory space or 1/0 device will complete a data transfer. The
ARDY input pin will accept an asynchronous input. and is active
HIGH. Only the rising edge is internally synchronized by the 80188.
This means that the falling edge of ARDY must be synchronized to
the 80188 clock. If connected to Vee. no WAIT states are inserted.
Asynchronous ready (ARDY) or synchronous ready (SRDY) must be
active to terminate a bus cycle. If unused. this line should be tied
LOW to yield control to the SRDY pin.

SRDY 49 I SYNCHRONOUS READY: Must be synchronized externally to the
80188. The use of SRDY provides a relaxed system-timing
specification on the Ready input. This is accomplished by eliminating
the one-half clock cycle which is required for internally resolving the
signal level when using the ARDY input. This line is active HIGH. If
this line is connected to Vee. no WAIT states are inserted.
Asynchronous ready (ARDY) or synchronous ready (SRDY) must be
active before a bus cycle is terminated. If unused. this line should be
tied LOW to yield control to the ARDY pin.

LOCK 48 a LOCK: Output indicates that other system bus masters are not~
gain control of the system bus while LOCK is active LOW. The LOCK
signal is requested by the LOCK prefix instruction and is activated at
the beginning of the first data cycle associated with the instruction
following the LOCK prefix. It remains active until the completion of
the instruction following the LOCK prefix. No prefetches will occur .
while LOCK is asserted. When executing more than one LOCK
instruction. always make sure there are 6 bytes of code between the
end of the first LOCK instruction and the start of the second LOCK
instruction. LOCK is active LOW. is driven HIGH for one clock during
RESET. and then floated.

SO. S1. S2 52-54 a BUS CYCLE STATUS SO-52: Are encoded to provide bus-
transaction information:

80188 Bus Cycle Status Information

52 51 SO Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 Halt
1 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

The status pins float during "HO!:.D."
S2 may be used as a logical MilO indicator. and Sf as a DT lFi
indicator.
The status lines are driven HIGH for one clock during Reset. and
then floated until a bus cycle begins.

22-115

inter 80188

Table 1.80188 Pin Description (Continued)

Symbol Pin No. Type Name and Function

HOLD (input) 50 I HOLD: Indicates that another bus master is requesting the local
HLDA (output) 51 0 bus. The HOLD input is active HIGH. HOLD may be asynchronous

with respect to the 80188 clock. The 80188 will issue a HLDA in
response to a HOLD request at the end of T 4 or Tj. Simultaneous
with the issuance of HLDA, the 80188 will float the local bus and
control lines. After HOLD is detected as being LOW, the 80188 will
lower HLDA. When the 80188 needs to run another bus cycle, it will
again drive the local bus and control lines.

UCS 34 0 UPPER MEMORY CHIP SELECT: Is an active LOW output
whenever a memory reference is made to the defined upper portion
(1 K-256K block) of memory. This line is not floated during bus
HOLD. The address range activating UCS is software
programmable.

LCS 33 0 LOWER MEMORY CHIP SELECT: Is active LOW whenever a
memory reference is made to the defined lower portion (1 K-256K)
of memory. This line is not floated during bus HOLD. The address
range activating LCS is software programmable.

MCSO-3 38,37,36,35 0 MID·RANGE MEMORY CHIP SELECT SIGNALS: Are active LOW
when a memory reference is made to the defined mid-range portion
of memory (8K-512K). These lines are not floated during bus
HOLD. The address ranges activating MCSO-3 are software
programmable.

PCSO-4 25,27-30 0 PERIPHERAL CHIP SELECT SIGNALS 0-4: Are active LOW when
a reference is made to the defined peripheral area (64K byte I/O
space). These lin~ not floated during bus HOLD. The address
ranges activating PCSO-4 are software programmable.

PCS5/A1 31 0 PERIPHERAL CHIP SELECT 5 or LATCHED A1: May be
programmed to provide a sixth peripheral chip select, or to provide
an internally latched A 1 signal. The address range activating PCS5
is software programmable. When programmed to provide latched
A 1, rather than PCS5, this pin will retain the previously latched value
of A1 during a bus HOLD. A1 is active HIGH.

PCS6/A2 32 0 PERIPHERAL CHIP SELECT 6 or LATCHED A2: May be
programmed to provide a seventh peripheral chip select, or to
provide an internally latched A2 signal. The address range
activating PCS6 is software programmable. When programmed to
provide latched A2, rather than PCS6, this pin will retain the
previously latched value of A2 during a bus HOLD. A2 is active
HIGH.

DT/R 40 0 DATA TRANSMIT IRECEIVE: Controls the direction of data flow
through the external 8286/8287 data bus transceiver. When LOW,
data is transferred to the 80188. When HIGH the 80188 places write
data on the data bus.

DEN 39 0 DATA ENABLE: Is provided as an 8286/8287 data bus transceiver
output enable. DEN is active LOW d~ng each memory and 1/0
access. DEN is HIGH whenever DT IR changes state.

22-116

80188

FUNCTIONAL DESCRIPTION

Introduction

The following Functional Description describes the
base architecture of the 80188. This architecture is
common to the 8086, 8088 and 80286 microproces­
sor families as well. The 80188 is a very high inte­
gration 8-bit microprocessor. It combines 15-20 of
the most common microprocessor system compo­
nents onto one chip while providing twice the per­
formance of the standard 8088. The 80188 is object
code compatible with the 8086, 8088 microproces­
sors and adds 10 new instruction types to the exist­
ing 8086, 8088 instruction set.

80188 BASE ARCHITECTURE

The 8086, 8088, 80186, 80188 and 80286 family all
contain the same basic set of registers, instructions,
and addressing modes. The 80188 processor is up­
ward compatible with the 8086, 8088, 80186, and
80286 CPUs.

Register Set

The 80188 base architecture has fourteen registers
as shown in Figures 3a and 3b. These registers are
grouped into the following categories.

GENERAL REGISTERS

Eight 16-bit general purpose registers may be used
to contain arithmetic and logical operands. Four of
these (AX, B?<, CX, and OX) can be used as 16-bit
registers or split into pairs of separate 8-bit registers.

BYTE
ADDRESSABLE
(B·BIT
REGISTER
NAMES
SHOWN)

16-81T
REGISTER

NAME

1: cx

BX

BP

I

o I

SP

15

o 7

AH AL

DH DL

CH CL

BH BL

GENERAL
REGISTERS

SPECIAL
REGISTER
FUNCTIONS

MULTIPLY/DIVIDE
110 INSTRUCTIONS

LOOP/SHIFT/REPEAT/COUNT

BASE REGISTERS

INOEX REGISTERS

STACK POINTER

SEGMENT REGISTERS

Four 16-bit special purpose registers select, 8,t any
given time, the segments of memory that are imme­
diately addressable for code, stack, and data. (For
usage, refer to Memory Organization.)

BASE AND INDEX REGISTERS

Four of the general purpose registers may also be
used to determine offset addresses of operands in
memory. These registers may contain base address­
es or indexes to particular locations within a seg­
ment. The addressing mode selects the specific reg­
isters for operand and address calculations.

STATUS AND CONTROL REGISTERS

Two 16-bit special purpose registers record or alter
certain aspects of the 80188 processor state. These
are the Instruction Pointer Register, which contains
the offset address of the next sequential instruction
to be executed, and the Status Word Register, which
contains status and control flag bits (see Figures 3a
and 3b).

STATUS WORD DESCRIPTION

The Status Word records specific characteristics of
the result of logical and arithmetic instructions (bits
0, 2, 4, 6, 7, and 11) and controls the operation of
the 80188 within a given operating mode (bits 8, 9,
and 10). The Status Word Register is 16-bits wide.
The function of the Status Word bits is shown in
Table 2.

15

CS

~
CODE SEGMENT SELECTOR

OS DATA SEGMENT SELECTOR

SS STACK SEGMENT SELECTOR

ES EXTRA SEGMENT SELECTOR

SEGMENT REGISTERS

15

F

I
STATUS WORD

IP INSTRUCTION POINTER

STATUSANDCQNTROL
REGISTERS

Figure 3a. 80188 Register Set
22-117

inter 80188

STATUS FLAGS

CARRY ---------------.

PARITY
AUXILIARV CARRY --------------,

ZERO -----------,

SIGN -----------,

~ INTEL RESERVED

CONTROL FLAGS

'------- TRAP FLAG

"-------- INTERRUPT ENABLE
"---------- DIRECTION FLAG

Figure 3b. Status Word Format

210706-4

Table 2. Status Word Bit Functions Instruction Set
Bit

Name
Position

0 CF

2 PF

4 AF

6 ZF

7 SF

8 TF

9 IF

10 OF

11 OF

Function

Carry Flag-'-Set on high-order
bit carry or borrow; cleared
otherwise

Parity Flag-Set if low-order
8 bits of result contain an even
number of 1-bits; cleared
otherwise

Set on carry from or borrow to
the low order four bits of AL;
cleared otherwise

Zero Flag-Set if result is zero;
cleared otherwise

Sign Flag-Set equal to high-
order bit of result (0 if positive,
1 if negative)

Single Step Flag-Once set, a
single step interrupt occurs
after the next instruction
executes. TF is cleared by the
single step interrupt.

Interrupt-Enable Flag-When
set, maskable interrupts will
cause the CPU to transfer
control to an interrupt vector
specified location.

Direction Flag-Causes string
instructions to auto decrement
the appropriate index register
when set. Clearing OF causes
auto increment.

Overflow Flag-Set if the
signed result cannot be
expressed within the number
of bits in the destination
operand; cleared otherwise
-

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/logical, string
manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are
summarized in Figure 4.

An 80188 instruction can reference anywhere from
zero to several operands. An operand can reside in
a register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later
in this data sheet.

Memory Organization

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K
(216) 8-bit bytes. Memory is addressed using a two­
component address (apointer) that consists of a 16-
bit base segment and a 16-bit offsef The 16-bit
base values are contained in one of four internal
segment registers (code, data, stack, extra). The
physical address is calculated by shifting the base
value LEFT by four bits and adding the 16-bit offset
value to yield a 20-bit physical address (see Figure
5). This allows for a 1 MByte physical address size.

All instructions that address operands in memory
must specify the base segment and the 16-bit offset
value. For speed and compact instruction encoding,
the segment register used for physical address gen­
eration is implied by the addressing mode used (see
Table 3). These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.

22-118

inter 80188

GENERAL PURPOSE MOVS Move byte or word string

MOV Move byte or word INS Input bytes or word string
PUSH Push word onto stack OUTS Output bytes or word string
POP Pop word off stack

CMPS Compare byte or word string
PUSHA Push all registers on stack

SCAS Scan byte or word string
paPA Pop all registers from stack

XCHG
LaDS Load byte or word string

Exchange byte or word

XLAT Translate byte
STOS Store byte or word string

INPUT/OUTPUT REP Repeat

IN Input byte or word REPE/REPZ Repeat while equal/zero

OUT Output byte or word REPNE/REPNZ Repeat while not equal/not zero

ADDRESS OBJECT LOGICALS

LEA Load effective address NOT "Not" byte or word

LDS Load pointer using DS AND "And" byte or word

LES Load pointer using ES
OR "Inclusive or" byte or word

XOR "Exclusive or" byte or word
FLAG TRANSFER

TEST "Test" byte or word
LAHF Load AH register from flags

SHIFTS
SAHF Store AH register in flags SHL/SAL Shift logical/ arithmetic left byte or word
PUSHF Push flags onto stack SHR Shift logical right byte or word
POPF Pop flags off stack SAR Shift arithmetic right byte or word

ADDITION ROTATES
ADD Add byte or word ROL Rotate left byte or word

ADC Add byte or word with carry ROR Rotate right byte or word

INC Increment byte or word by 1 RCL Rotate through carry left byte or word

AAA ASCII adjust for addition RCR Rotate through carry right byte or word

DAA Decimal adjust for addition FLAG OPERATIONS

SUBTRACTION STC Set carry flag

SUB Subtract byte or word CLC Clear carry flag

SBB Subtract byte or word with borrow CMC Complement carry flag

DEC Decrement byte or word by 1 STD Set direction flag

NEG Negate byte or word CLD Clear direction flag

CMP Compare byte or word STI Set interrupt enable flag

AAS ASCII adjust for subtraction CLI Clear interrupt enable flag

DAS Decimal adjust for subtraction EXTERNAL SYNCHRONIZATION

MULTIPLICATION HLT Halt until interrupt or reset

MUL Multiply byte or word unsigned WAIT Wait for TEST pin active

IMUL Integer multiply byte or word ESC Escape to extension processor

AAM ASCII adjust for multiply LOCK Lock bus during next instruction

DIVISION NO OPERATION

DIV Divide byte or word unsigned Nap No operation

IDIV Integer divide byte or word HIGH LEVEL INSTRUCTIONS

AAD ASCII adjust for division ENTER Format stack for procedure entry

CBW Convert byte to word LEAVE Restore stack for procedure exit

CWD Convert word to doubleword BOUND Detects values outside prescribed range

Figure 4. 80188 Instruction Set

22-119

inter 80188

CONDITIONAL TRANSFERS JO Jump if overflow

JAlJNBE Jump if above/not below nor equal JP/JPE Jump if parity/parity even

JAE/JNB Jump if above or equal/not below JS Jump if sign

JB/JNAE Jump if below/not above nor equal UNCONDITIONAL TRANSFERS

JBE/JNA Jump if below or equal/not above CALL Call procedure

JC Jump if carry RET Return from procedure

JE/JZ Jump if equal/zero JMP Jump

JG/JNLE Jump if greater/not less nor equal ITERATION CONTROLS

JGE/JNL Jump if greater or equal/not less LOOP Loop

JL/JNGE Jump if less/not greater nor equal LOOPE/LOOPZ Loop if equal/zero

JLE/JNG Jump if less or equal/not greater LOOPNE/LOOPNZ Loop if not equal/not zero

JNC Jump if not carry JCXZ Jump if register CX = 0

JNE/JNZ Jump if not equal/not zero INTERRUPTS

JNO Jump if not overflow INT Interrupt

JNP/JPO Jump if not parity/parity odd INTO Interrupt if overflow

JNS Jump if not sign IRET Interrupt return

Figure 4. 80188 Instruction Set (Continued)

To access operands that do not reside in one of the
four immediately available segments, a full 32-bit
pointer can be used to reload both the base (seg­
ment) and offset values.

IHIFT LEFT 4 61TS I , , 3 4 ISEGMENT} BASE

1 ' i 01 "
o LOGICAL , 3 4 ADDRESS

1 IOFFSET

" t 0 00 , 2

[~I 0 ,I, " 0 0 ,
" 0

1 '
, 3 • ,I PHYSICAL ADDRESS

" 0
TO MEMORY 210706-5

Figure 5. Two Component Address

Table 3. Segment Register Selection Rules

Memory Segment Implicit Segment Reference Register
Needed Used Selection Rule

Instructions Code (CS) Instruction prefetch and
immediate data.

Stack Stack (SS) All stack pushes and .
pops; any memory
references which use BP
Register as a base
register.

External Extra (ES) All string instruction
Data references which use
(Global) the 01 register as an

index.
Local Data Data (OS) All other data references.

22-120

MODULE A

r---'
1 1

~ODE
DATA

MODULE B b-:==:t---,

PROCESS
STACK

PROCESS
DATA
BLOCK 1

.1
1

PROCEssD
DATA
BLOCK 2

1 1 L ___ J

MEMORY

CPU

CODe

DATA

STACK

EXTRA

SEGMENT
REGISTERS

210706-6

Figure 6. Segmented Memory Helps
Structure Software

intJ 80188

Addressing Modes

The 80188 provides eight categories of addressing
modes to specify operands. Two addressing modes
are provided for instructions that operate on register
or immediate operands:

• Register Operand Mode: The operand is located
in one of the 8- or 16-bit general, registers.

• Immediate Operand Mode: The operand is in­
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicitly
chosen by the addressing mode or explicitly chosen
by a segment override prefix. The offset, also called
the effective address, is calculated by summing any
combination of the following three address ele­
ments:

• the displacement (an 8- or 16-bit immediate value
contained in the instruction);

• the base (contents of either the BX or BP base
registers); and

• the index (contents of either the SI or 01 index
registers).

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements de­
fine the six memory addressing modes, described
below.

• Direct Mode: The operand's offset is contained in
the instruction as an 8- or 16-bit displacement el­
ement.

• Register Indirect Mode: The operand's offset is in
one of the registers SI, 01, BX, or BP.

• Based Mode: The operand's offset is the sum of
an 8- or 16-bit displacement and the contents of
a base register (BX or BP).

• Indexed Mode: The operand's offset is the sum
of an 8- or 16-bit displacement and the contents
of an index register (SI or 01).

• Based Indexed Mode: The operand's offset is the
sum of the contents of a base register and an
index register.

• Based Indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8- or
16-bit displacement.

Data Types

The 80188 directly supports the following data
types:

• Integer: A signed binary numeric value contained
in an 8-bit byte or a 16-bit word. All operations
assume a 2's complement representation.
Signed 32- and 64-bit integers are supported us­
ing the 8087 Numeric Data Coprocessor with the
80188.

• Ordinal: An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word.

• Pointer: A 16- or 32-bit quantity, composed of a
16-bit offset component or a 16-bit segment base
component in addition to a 16-bit offset compo­
nent.

• String: A contiguous sequence of bytes or words.
A string may contain from 1 to 64K bytes.

• ASCII: A byte representation of alphanumeric and
control characters using the ASCII standard of
character representation.

• BCD: A byte (unpacked) representation of the
decimal digits 0-9.

• Packed BCD: A byte (packed) representation of
two decimal digits (0-9). One digit is stored in
each nibble (4-bits) of the byte.

• Floating Point: A signed 32-, 64-, or 80-bit real
number representation. (Floating point operands
are supported using the 8087 Numeric Data Co­
processor with the 80188.)

In general, individual data elements must fit within
defined segment limits. Figure 7 graphically repre­
sents the data types supported by the 80188.

1/0 Space

The I/O space consists of 64K 8-bit or 32K 16-bit
ports. Separate instructions address the liD space
with either an 8-bit port address, specified in the in­
struction, or a 16-bit port address in the OX register.
8-bit port addresses are zero extended such that
A1S-As are LOW. I/O port addresses OOF8(H)
through OOFF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to
allow resumption of the interrupted program. Inter­
rupts fall into three classes: hardware initiated, INT
instructions, and instruction exceptions. Hardware
initiated interrupts occur in response to an external
input lind are classified as non-maskable or mask­
able.

22-121

intJ . 80188

, 0

SIGNED rrrrrrrr1
BYTE~

SIGN BIT· L-...--.....J
MAGNITUDE

, 0

UNSIGNEO rrnTTTT1
BYTE~

~
MAGNITUDE

IS14 ... 1 8 7 0 0

S~~:g II i '1 " '1 iii I' i 'I
SIGN BIT .J LI L-"M"iiS:""AGo.NffiIT'IToUD"'E~.J

SIGNEO 31 +3 .. 2 lf1'!> +1 0 0

D~~~~~ II i I Iii iii i I Iii i I j i I Iii I I r I I I' I i I
SIGN BIT J ,-"--,M-"SB'--~---;M:O::A-";GN""'T"'U"'DE~~~~--'

+7 +6 +5 +4 +3 +2 +1
SIGNED 63 4847 3231 1615 0

w~~~11 I I I I
SIGN BIT JLI~--"M=SB"---~--"'MA"'G7.:NI'"'TU"'D.E __ ~~---I

15 ... 1 0

UNS~~~g I i r I Ii" I i Ii Iii 1 I
,L-MSB

MAGNITUDE

BINARY 1 +N 0

CODED rrnTTTT1
DECIMAL~

(BCD) DI~~~ N

7 +N 0

ASCII L:!:J
ASCIl

CHARACTERN

7 +N 0
PACKED fTT'"1'TTT1

BCD L-.l.......-J
L--I
MOST
SIGNIFICANT DIGIT

1 +1 07 0 0

,'"1"1),1'1,11 I
BCD eCD

DIGIT '1 OIGIT 0

1 +1 01 0 0 I Ii i I Ii I r iii iii I
ASCII ASCII

CHARACTER, CHARACTERo

7 +1 07 0 0

I" I I' " Iii i I' Ii I
L-...J
LEAST

SIGNIFICANT DIGIT

715 +N 0 1 15 +1 0115 0 0

STRING ~ (1111111('1111111
BYTE WORD N BYTE WORD 1 BYTE WORD 0

31 +3 +2 1615 +1 0

POINTER Iii iii iii' , iii i r II I i II I I Iii r I i I r I
I

SELECTOR OFFSET
19+9 +8 +7 +6 +5 +4 +3 +2 +1

FL~~~T~ 1/ I.
o 0

SIGN BIT...JLI ===----L~~____::==::;:-~_~--'
EXPONENT MAGNITUDE

210706-7

NOTE:
'Supported using an 8078 Numeric Data Coprocessor
with the 80188.

Figure 7. 80188 Supported Data Types

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction
processing, is detected while attempting to execute
an instruction. If the exception was caused by exe­
cuting an ESC instruction with the ESC trap bit set in
the relocation regis\er, the return instruction will
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the

return address from an exception .will point at the
instruction immediately following the instruction
causing the exception.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the
80188 predefined types and default priority levels.
For each interrupt, an 8-bit vector must be supplied
to the 80188 which identifies the appropriate table
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and noncas­
caded external interrupts will generate their own
vectors through the internal interrupt controller. INT
instructions contain or imply the vector and allow
access to all 256 interrupts. Maskable hardware ini­
tiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence.
Non-maskable hardware interrupts use a predefined
internally supplied vector.

Interrupt Sources

The 80188 can service interrupts generated by soft­
ware or hardware. The software interrupts are gen­
erated by specific instructions (INT, ESC, unused
OP, etc.) or the results of conditions specified by
instructions (array bounds check, INTO, DIV, IDIV,
etc.). All interrupt sources are serviced by an indirect
call through an element of a vector table. This vector
table is indexed by using the interrupt vector type
(Table 4), multiplied by four. All hardware-generated
interrupts are sampled at the end of each instruc­
tion. Thus, the software interrupts will begin service
first. Once the service routine is entered and inter­
rupts are enabled, any hardware source of sufficient
priority can interrupt the service routine in progress.

The software generated 80188 interrupts are de­
scribed below.

DIVIDE ERROR EXCEPTION (TYPE 0)

Generated when a DIV or IDIV instruction quotient
cannot be expressed in the number of bits in the
destination.

SINGLE-STEP INTERRUPT (TYPE 1)

Generated after most instructions if the TF flag is
set. Interrupts will not be generated after prefix in­
structions (e.g., REP), instructions which modify seg­
ment registers (e.g., POP OS), or the WAIT instruc­
tion.

NON-MASKABLE INTERRUPT -NMI (TYPE 2)

An external interrupt source which cannot be
masked.

22-122

intJ 80188

Table 4. 80188 Interrupt Vectors

Interrupt Vector Default Related
Name Type Priority Instructions

Divide Error 0 *1 DIV,IDIV
Exception

Single Step 1 12** All
Interrupt

NMI 2 1 All
Breakpoint 3 *1 INT

Interrupt
INTO Detected 4 *1 INTO

Overflow
Exception

Array Bounds 5 *1 BOUND
Exception

U nused-Opcode 6 *1 Undefined
Exception Opcodes

ESCOpcode 7 *1*** ESCOpcodes
Exception

Timer 0 Interrupt 8 2A"***
Timer 1 Interrupt 18 2B***'
Timer 2 Interrupt 19 2C****
Reserved 9 3
DMA 0 Interrupt 10 4
DMA 1 Interrupt 11 5
INTO Interrupt 12 6
INTi Interrupt 13 7
INT2 Interrupt 14 8
INT3 Interrupt 15 9

NOTES:
*1. These are generated as the result of an instruction exe­
cution.
**2. This is handled as in the 8088.
****3. All three timers constitute one source of request to
the interrupt controller. The Timer Interrupts all have the
same default priority level with respect to all other interrupt
sources. However, they have a defined priority ordering
amongst themselves. (Priority 2A is higher priority than 28.)
Each Timer Interrupt has a separate vector type number.
4. Default priorities for the interrupt sources are used only if
the user does not program each source into a unique prior­
ity level.
*. * 5. An escape opcode will cause a trap only if the proper
bit is set in the peripheral control block relocation register.

BREAKPOINT INTERRUPT (TYPE 3)

A one-byte version of the INT instruction. It uses 12
as an index into the service routine address table
(because it is a type 3 interrupt).

INTO DETECTED OVERFLOW EXCEPTION
(TYPE 4)

Generated during an INTO instruction if the OF bit is
set.

ARRAY BOUNDS EXCEPTION (TYPE 5)

Generated during a BOUND instruction if the array
index is outside the array bounds. The array bounds
are located in memory at a location indicated by one
of the instruction operands. The other operand indi­
cates the value of the index to be checked.

UNUSED OPCODE EXCEPTION (TYPE 6)

Generated if execution is attempted on undefined
opcodes.

ESCAPE OPCODE EXCEPTION (TYPE 7)

Generated if execution is attempted of ESC opcodes
(D8H-DFH). This exception will only be generated if
a bit in the relocation register is set. The return ad­
dress of this exception will point to the ESC instruc­
tion causing the exception. If a segment override
prefix preceded the ESC instruction, the return ad­
dress will point to the segment override prefix.

Hardware-generated interrupts are divided into two
groups: maskable interrupts and non-maskable in­
terrupts. The 80188 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition, mask­
able interrupts may be generated by the 80188 inte­
grated DMA controller and the integrated timer unit.
The vector types for these interrupts are shown in
Table 4. Software enables these inputs by setting
the Interrupt Flag bit (IF) in the Status Word. The
interrupt controller is discussed in the peripheral
section of this data sheet.

Further maskable interrupts are disabled while serv­
icing an interrupt because the IF bit is reset as part
of the response to an interrupt or exception. The
saved Status Word will reflect the enable status of
the processor prior to the interrupt. The interrupt flag
will remain zero unless specifically set. The interrupt
return instruction restores the Status Word, thereby
restoring the original status of IF bit. If the interrupt
return re-enables interrupts, and another interrupt is
pending, the 80188 will immediately service the
highest-priority interrupt pending, i.e., no instructions
of the main line program will be executed.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt (NMI) is also provided.
This interrupt is serviced regardless of the state of
the IF bit. A typical use of NMI would be to activate a
power failure routine. The activation of this input
causes an interrupt with an internally supplied vector
value of 2. No external interrupt acknowledge se­
quence is performed. The I F bit is cleared at the
beginning. of an NMI interrupt to prevent maskable
interrupts from being serviced.

22-123

infef 80188

Single-Step Interrupt

The 80188 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is
called the single-step interrupt and is controlled by
the single-step flag bit (TF) in the Status Word. Once
this bit is set, an internal single-step interrupt will
occur after the next instruction has been executed.
The interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc­
tion to be single-stepped.

Initialization and Processor Reset

Processor initialization or startup is accomplished by
driving the RES input pin LOW. RES forces the
80188 to terminate all execution and local bus activi­
ty. No instruction or bus activity will occur as long as
RES is active. After RES becomes inactive and an
internal processing interval elapses, the 80188 be­
gins execution with the instruction at physical loca­
tion FFFFO(H). RES also sets some registers to pre­
defined values as shown in Table 5.

Table 5. 80188 Initial Register State after RESET

Status Word F002(H)
Instruction Pointer OOOO(H)
Code Segment FFFF(H)
Data Segment OOOO(H)
Extra Segment OOOO(H)
Stack Segment OOOO(H)
Relocation Register 20FF(H)
UMCS FFFB(H)

THE 80188 COMPARED TO
THE 80186

The 80188 CPU is an 8-bit processor designed
around the 80186 internal structure. Most internal
functions of the 80188 are identical to the equivalent
80186 functions. The 80188 handles the external
bus the same way the 80186 does with the distinc­
tion of handling only 8 bits at a time. Sixteen bit op­
erands are fetched or written in two consecutive bus
cycles. Both processors will appear identical to the

software engineer, with the exception of execution
time. The internal register structure is identical and
all instructions have the same end result. The differ­
ences between the 80188 and the 80186 are out­
lined below. Internally, there are three differences
between the 80188 and the 80186. All changes are
related to the 8-bit bus interface.

• The queue length is 4 bytes in the 80188, where­
as the 80186 queue contains 6 bytes, or three
words. The queue was shortened to prevent
overuse of the bus by the BIU when prefetching
instructions. This was required because of the
additional time necessary to fetch instructions 8
bits at a time.

. • To further optimize the queue, the prefetching al­
gorithm was changed. The 80188 BIU will fetch a
new instruction to load into the queue each time
there is a 1-byte hole (space available) in the
queue. The 80186 waits until a 2-byte space is
available.

• The internal execution time of the instruction is
affected by the 8-bit interface. All 16-bit fetches
and writes from/to memory take an additional
four clock cycles. The CPU may also be limited
by the speed of instruction fetches when a series
of simple operations occur. When the more so­
phisticated instructions of the 80188 are being
used, the queue has time to fill and the execution
proceeds as fast as the execution unit will allow.

The 80188 and 80186 are completely software com­
patible by virtue of their identical execution units.
Software that is system dependent may not be com­
pletely transferable, but software that is not system
dependent will operate equally well on an 80188 or
an 80186.

The hardware interface of the 80188 contains the
major differences between the two CPUs. The pin
assignments are nearly identical, however, with the
following functional changes.

• A8-A 15-These pins are only address outputs
on the 80188. These address lines are latched
internally and remain valid throughout a bus cycle
in a manner similar to the 8085 upper address
lines.

• BHE has no meaning on the 80188 and has been
eliminated.

22-124

inter 80188

80188 Clock Generator

The 80188 provides an on-chip clock generator for
both internal and external clock generation. The
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous
ready inputs, and reset circuitry.

Oscillator

The oscillator circuit of the 80188 is designed to be
used with a parallel resonant fundamental mode
crystal. This is used as the time base for the 80188.
The crystal frequency selected will be double the
CPU clock frequency. Use of an LC or RC circuit is
not recommended with this oscillator. If an external
oscillator is used, it can be connected directly to in­
put pin X1 in lieu of a crystal. The output of the oscil­
lator is not directly available outside the 80188. The
recommended crystal configuration is shown in Fig­
ure 8.

x,I---------1
c::::J x MHz CRYSTAl.

x,f--------l
80188

T 20pF

80188·10 (10 MHz)

80188 (8 MHz)

210706-8

Figure 8. Recommended 80188
Crystal Configuration

The following parameters may be used for choosing
a crystal:

Temperature Range:
ESR (Equivalent Series Resistance):
Co (Shunt Capacitance of Crystal):
CL (Load Capacitance):
Drive Level:

Clock Generator

o to 70°C
300 max

7.0 pf max
20 pf ±2 pf
1 mWmax

The 80188 clock generator provides the 50% duty
cycle processor clock for the 80188. It does this by
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the
state of the clock generator will change on the fail­
ing edge of the oscillator signal. The CLKOUT pin
provides the processor clock signal for use outside

the 80188. This may be used to drive other system
components. All timings are referenced to the output
clock.

READY Synchronization

The 80188 provides both synchronous and asyn­
chronous ready inputs. Asynchronous ready syn­
chronization is accomplished by circuitry which sam­
ples ARDY in the middle of T 2, T 3 and again in the
middle of each T w until ARDY is sampled HIGH.
One-half CLKOUT cycle of resolution time is used.
Full synchronization is performed only on the rising
edge of ARDY, i.e., the falling edge of ARDY must
be synchronized to the CLKOUT signal if it will occur
during T 2, T 3, or T w. HIGH-to-LOW transitions of
ARDY must be performed synchronously to the CPU
clock.

A second ready input (SRDY) is provided to inter­
face with externally synchronized ready signals. This
input is sampled at the end of T 2, T 3 and again at
the end of each Tw until it is sampled HIGH. By
using this input rather than the asynchronous ready
input, the half-clock cycle resolution time penalty is
eliminated.

This input must satisfy set-up and hold times to guar­
antee proper operation of the circuit.

In addition, the 80188, as part of the integrated chip­
select logic, has the capability to program WAIT
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select/Ready Logic description.

RESET Logic

The 80188 provides both a RES input pin and a syn­
chronized RESET pin for use with other system
components. The RES input pin on the 80188 is pro­
vided with hysteresis in order to facilitate power-on
Reset generation via an RC network. RESET is
guaranteed to remain active for at least five clocks
given a RES input of at least six clocks. RESET may
be delayed up to two and one-half clocks behind
RES.

Multiple 80188 processors may be synchronized
through the RES input pin, since this input resets
both the processor and divide-by-two internal count­
er in the clock generator. In order to insure that the
divide-by-two counters all begin counting at the
same time,. the active going edge of RES must satis­
fy a 25 ns setup time before the falling edge of the

22-125

80188

80188 clock input. In addition, in order to insure that
all CPUs begin executing in the same clock cycle,
the reset must satisfy a 25 ns setup time before the

. rising edge of the CLKOUT signal of all the proces­
sors.

LOCAL BUS CONTROLLER

The 80188 provides a local bus controller to gener­
ate the local bus control signals. In addition, it em­
ploys a HOLD/HLDA protocol for relinquishing the
local bus to other bus masters. It also provides con­
trol lines that can be used to enable external buffers
and to direct the flow of data on and off the local
bus.

Memory/Peripheral Control

The 80188 provides ALE, RD, and WR bus control
signals. The RD and WR signals are used to strobe
data from memory to the 80188 or to strobe data
from the 80188 to memory. The ALE line provides a
strobe to address latches for the multiplexed ad­
dress/data bus. The 80188 local bus controller does
not provide a memory/I/O signal. If this is required,
the user will have to use the 82 signal (which will
require external latChing), make the memory and I/O
spaces nonoverlapping, or use only the integrated
chip-select circuitry. .

Transceiver Control

The 80188 generates two control signals to be con­
nected to 8286/8287 transceiver chips. This capa­
bility allows the addition of transceivers for extra
buffering without add~external logic. These con­
trol lines, DT /R and DEN, are generated to control
the flow of data through the transceivers. The opera­
tion of these signals is shown in Table 6.

Table 6. Transceiver Control Signals Description

Pin Name Function

DEN (Data Enable) Enables the output
drivers of the
transceivers. It is active
LOW during memory,

DT IR (Data Transmit!
I/O, or INTA cycles.
Determines the direction

Receive) of travel through the
transceivers. A HIGH
level directs data away
from the processor
during write operations,
while a LOW level directs
data toward the
processor during a read
operation.

Local Bus Arbitration

The 80188 uses a HOLD/HLDA system of local bus
exchange. This provides an asynchronous bus ex­
change mechanism. This means multiple masters
utilizing the same bus can operate at separate clock
frequencies. The 80188 provides a single HOLD/
HLDA pair through which all other bus masters may
gain control of the local bus. This requires external
circuitry to arbitrate which external device will gain
control of the bus from the 80188 when there is
more than one alternate local bus master. When
the 80188 relinquishes control of the local bus, it
floats DEN, RD, WR, 80-82, LOCK, ADO-AD7,
A8-A19, 87, and DT/R to allow another master to
drive these lines directly.

The 80188 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a
function of the activity occurring in the processor
when the HOLD request is received. A HOLD re­
quest is the highest-priority activity request which
the processor may receive: higher than instruction
fetching or internal DMA cycles. However, if a DMA
cycle is in progress, the 80188 will complete the
transfer before relinquishing the bus. This implies
that if a HOLD request is received just as a DMA
transfer begins, the HOLD latency time can be as
great as 4 bus cycles. This will occur if a DMA word
transfer operation is taking place from an odd ad­
dress to an odd address. This is a total of 16 clocks
or more, if WAIT states are required. In addition, if
locked transfers are performed, the HOLD latency
time will be increased by the length of the locked
transfer.

Local Bus Controller and Reset

Upon receipt of a RE8ET pulse from the RE8 input,
the local bus controller will perform the following ac­
tions:

• Drive DEN, RD, and WR HIGH for one clock cy­
cle, then float.

NOTE:
RD is also provided with an internal pull-up device
to prevent the processor from inadvertently enter­
ing Queue 8tatus mode during reset.

• Drive 80-82 to the passive state (all HIGH) and
then float.

• Drive LOCK HIGH and then float.

• Three-state ADO-7, A8-19, 87, DT/R.

• Drive ALE LOW (ALE is never floated).

• Drive HLDA LOW.

22-126

30188

INTERNAL PERIPHERAL INTERFACE

All the 80188 integrated peripherals are controlled
via 16-bit registers contained within an internal 256-
byte control block. This control block may be
mapped into either memory or I/O space. Internal
logic will recognize the address and respond to the
bus cycle. During bus cycles to internal registers, the
bus controller will signal the operation externally
(i.e., the RO, WR, status, address, data, etc., lines
will be driven as in a normal bus cycle), but 07-0,
SROY, and AROY will be ignored. The base address
of the control block must be on an even 256-byte
boundary (Le., the lower 8 bits of the base address
are all zeros). All of the defined registers within this
control block may be read or written by the 80188
CPU at any time. The location of any register con­
tained within the 256-byte control .block is deter­
mined by the current base address of the control
block.

The control block base address is programmed via a
16-bit relocation register contained within the control
block at offset FEH from the base address of the
control block (see Figure 9). It provides the upper 12
bits of the base address of the control block. Note
that mapping the control register block into an ad­
dress range corresponding to a chip-select range is
not recommended (the chip select circuitry is dis­
cussed later in this data sheet. In addition, bit 12 of
this register determines whether the control' block
will be mapped into I/O or memory space. If this bit
is 1, the control block will be located in memory
space, whereas if the bit is 0, the control block will
be located in I/O space. If the control register block
is mapped into I/O space, the upper 4 bits of the
base address must be programmed as 0 (since 110
addresses are only 16 bits wide).

Whenever mapping the 188 peripheral control block
to another location, the programming of the reloca­
tion register should be done with a byte write (Le.
OUT OX,AL). Any access to the control block is
done 16 bits at a time. Thus, internally, the reloca­
tion register will get written with 16 bits of the AX
register while externally, the BIU will run only one 8
bit bus cycle. If a word instruction is used (Le. OUT
OX,AX), the relocation register will be written on the
first bus cycle. The BIU will then run a second bus
cycle which is unnecessary. The address of the sec­
ond bus cycle will no longer be within the control
block (Le. the control block was moved on the first
cycle), and therefore, will require the generation of
an external ready signal to complete the cycle. For
this reason we recommend byte operations to the
relocation register. Byte instructions may also be
used for the other registers in the control block

and will eliminate half of the bus cycles required if a
word operation had been specified. Byte operations
are only valid on even addresses though, and are
undefined on odd addresses.

In addition to providing relocation information for the
control block, the relocation register contains bits
which place the interrupt controller into slave mode,
and cause the CPU to interrupt upon encountering
ESC instructions. At RESET, the relocation register
is set to 20FFH. This causes the control block to
start at FFOOH in 110 space. An offset map of the
256-byte control register block is shown in Figure
10.

The integrated 80188 peripherals operate semi-au­
tonomously from the CPU. Access to them for the
most part is via software read/write of the control
and data locations in the control block. Most of
these registers can be both read and written. A few
dedicated lines, such as interrupts and OMA request
provide real-time communication between the CPU
and peripherals as in a more conventional system
utilizing discrete peripheral blocks. The overall inter­
action and function of the peripheral blocks has not
substantially changed. The data access from/to the
256-byte internal control block will always be 16-bit
and done in one bus cycle. Externally the BIU will
still run two bus cycles for each 16-bit operation.

CHIP-SELECT/READY GENERATION
LOGIC

The 80188 contains logic which provides program­
mable chip-select generation for both memories and
peripherals. In addition, it can be programmed to
provide READY (or WAIT state) generation. It can
also provide latched address bits A 1 and A2. The
chip-select lines are active for all memory and I/O
cycles in their programmed areas, whether they be
generated by the CPU or by the integrated OMA unit.

Memory Chip Selects

The 80188 provides 6 memory chip select outputs
for 3 address areas: upper memory, lower memory,
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory.

The range for each chip select is user-programma­
ble and can be set to 2K, 4K, 8K, 16K, 32K, 64K,
128K (plus 1 K and 256K for upper and lower chip
selects). In addition, the beginning or base address

22-127

intJ 80188

15 14 13 12 11 10 9 S 7 6 5 4 3 2 0
OFFSET: FEH I ET I SLAVE/MASTER I X IMliol Relocalion Address Bits RI9-RS

ET - ESC Trap / No ESC Trap (I/O)
MilO ~ Register block located in Memory / 110 Space (1/0L-­
SLAVE/MASTER ~ Configure interrupt controller for Slave/MASTER Mode (I/O)

Figure 9. Relocation Register

Relocation Register

DMA Descriptors Channell

DMA Descriptors Channel 0

Chip·Select Control Registers

Timer 2 Control Registers

Timer 1 Control Registers

Timer 0 Control Registers

Interrupt Controller Registers

OFFSET

FEH

DAH

DOH

CAH

COH

ASH

AOH

66H

60H

5EH

5SH

56H

50H

3EH

20H'

Figure 10. Internal Register Map

of the midrange memory chip select may also be
selected. Only one chip select may be programmed
to be active for any memory location at a time. All
chip select sizes are in bytes.

Upper Memory CS

The 80188 provides a chip select, called UCS, for
the top of memory. The top of memory is usually
used as the system memory because after reset the
80188 begins executing at memory location
FFFFOH.

The upper limit of memory defined by this chip select
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of
the select block is also defined. Table 7 shows the
relationship between the base address selected and
the size of the memory block obtained.

Table 7. UMCS Programming Values

Starting
Memory UMCSValue

Address
(Base

Block (Assuming

Address)
Size RO= R1 = R2= 0)

FFCOO 1K FFF8H
FF800 2K FFB8H
FFOOO 4K FF38H
FEOOO 8K FE38H
FCOOO 16K FC38H
F8000 32K F838H
FOOOO 64K F038H
EOOOO 128K E038H
CODOC 256K C038H

The lower limit of this memory block is defined in the
UMCS register (see Figure 11). This register is at
offset AOH in the internal control block. The legal
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7.
Any combination of bits 6-13 not shown in Table 7
will result in undefined operation. After reset, the
UMCS register is programmed for a 1 K area. It must
be reprogrammed if a larger upper memory area is
desired.

Any internally generated 20'-bit address whose up­
per 16 bits are greater than orequal to UMCS (with
bits 0-5 "0") will cause UCS to be activated. UMCS
bits R2-RO are used to specify READY mode for the
area of memory defined by this chip·select register,
as explained below.

Lower Memory CS

The 80188 provides a chip select for low memory
called LCS. The bottom of memory contains the in­
terrupt vector table, starting at location OOOOOH.

22-128

80188

The lower limit of memory defined by this chip select
is always OH, while the upper limit is programmable.
By programming the upper limit, the size of the
memory block is also defined. Table 8 shows the
relationship between the upper address selected
and the size of the memory block obtained.

Table 8. LMCS Programming Values

Upper
Memory LMCSValue

Address
Block (Assuming
Size RO= R1 = R2=O)

003FFH 1K 0038H
007FFH 2K 0078H
OOFFFH 4K 00F8H
01FFFH 8K 01F8H
03FFFH 16K 03F8H
07FFFH 32K 07F8H
OFFFFH 64K OFF8H
1FFFFH 128K 1FF8H
3FFFFH 256K 3FF8H

The upper limit of this memory block is defined in the
LMCS register (see Figure 12). This register is at
offset A2H in the internal control block. The legal
values for bits 6-15 and the resulting upper address
and memory block sizes are given in Table 8. Any
combination of bits 6-15 not shown in Table 8 will
result in undefined operation. After reset, the LMCS
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS
register is accessed.

Any internally generated 20-bit address whose up­
per 16 bits are less than or equal to LMCS (with bits
0-5 "1 ") will cause LCS to be active. LMCS register
bits R2-RO are used to specify the READY mode for
the area of memory defined by this chip-selectregis­
ter.

Mid-Range Memory CS

The 80188 provides four MCS lines which are active
within a user-locatable memory block. This block
can be located within the 80188 1 M byte memory
address space exclusive of the areas defined by

15 14 13 12 11 10

OFFSET: AOH I 1 1 U U U U

A19

9

U

UCS and LCS. Both the base address and size of
this memory block are programmable.

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is deter­
mined by bits 8-14 of the MPCS register (see Figure
13). This register is at location A8H in the internal
control block. One and only one of bits 8-14 must
be set at a time. Unpredictable operation of the MCS
lines will otherwise occur. Each of the four chip-se­
lect lines is active for one of the four equal contigu­
ous divisions of the mid-range block. Thus, if the to­
tal block size is 32K, each chip select is active for 8K
of memory with MCSO being active for the first range
and MCS3 being active for the last range.

The EX and MS in MPCS relate to peripheral func­
tionality as described in a later section.

Table 9. MPCS Programming Values

Total Block Individual MPCS Bits
Size Select Size 14-8

8K 2K 0000001B
16K 4K 0000010B
32K 8K 0000100B
64K 16K 0001000B
128K 32K 0010000B
256K 64K 0100000B
512K 128K 1000000B

The base address of the mid-range memory block is
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal
control block. These bits correspond to bits
A 19-A 13 of the 20-bit memory address. Bits
A 12-AO of the base address are always O. The base
address may be set at any integer multiple of the
size of the total memory block selected. For exam­
ple, if the mid-range block size is 32K (or the size of
the block for which each MCS line is. active is 8K),
the block could be located at 10000H or 18000H,
but not at 14000H, since the first few integer multi­
ples ofa 32K memory block are OH, BOOOH,
10000H, 18000H, etc. After reset, the contents of
both of these registers is undefined. However, none
of the MCS lines will be active until both the MMCS
and MPCS registers are accessed.

8 7 6 5 4 3 2 1 0

U U u I 1 1 1 I R2 I R1 I RO I
A11

Figure 11. UMCS Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSET: A2H I 0 I 0 u I u u I u I u u u I u I 1 I 1 I 1 I R2 I R1 I RO I
A19 A11

Figure 12. LMCS Register

22-129

intJ 80188

15 14 13 12 11 10 9 S 7 6 5 4 3 2 1 0
OFFSET: ASH I 1 I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1 1 1 I R2 I R1 I RO I .

Figure 13. MPCS Register

15 9 3 0
OFFSET: A6H I u I u I u I u I u I u I u I 1 I 1 1 I 1 I 1 I 1 I R2 I R1 I RO I

A19 A13

Figure 14. MMCS Register

MMCS bits R2-RO specify READY mode of opera.
tion for all mid·range chip selects. All devices in mid­
range memory must use the same number of WAIT
states.

The 512K block size for the mid-range memory chip
selects is a special case. When using 512K, the
base address would have to be at either locations
OOOOOH or 80000H. If it were to be programmed at
OOOOOH when the LCS line was programmed, there
would be an internal conflict between the LCS ready
generation logic and the MCS ready generation log­
ic. Likewise, if the base address were programmed
at 80000H, there would be a conflict with the UCS
ready generation logic. Since the LCS chip-select
line does not become active until programmed, while
the UCS line is active at reset, the memory base can
be set only at OOOOOH. If this base address is select­
ed, however, the LCS range must not be pro­
grammed.

Peripheral Chip Selects .

The 80188 can generate chip selects for up to seven
peripheral devices. These chip selects are active for
seven contiguous blocks of 128 bytes above a pro­
grammable base. address. This base address may
be located in either memory or I/O space.

Seven CS lines called PCSO-6 are generated by the
80188. The base address is user-programmable;

however it can only be a multiple of 1 K bytes, i.e.,
the least significant 10 bits of the starting address
are always O.

PCS5 and PCS6 can also be programmed to provide
latched address bits A 1, A2. If so programmed, they
cannot be used as peripheral selects. These outputs
can be connected directly to the AO, A 1 pins used
for selecting internal registers of a-bit peripheral
chips. This scheme simplifies the hardware interface
because the 8-bit registers of peripherals are simply
treated as 16-bit registers located on even bounda­
ries in I/O space or memory space where only the
lower a-bits of the register are significant: the upper
8-bits are "don't cares."

The starting address of the peripheral chip-select
block is defined by the PACS register (see Figure
15). This register is located at offset A4H in the inter­
nal control block. Bits 15-6 of this register corre­
spond to bits 19-10 of the 20-bit Programmable
Base Address (PBA) of the peripheral chip-select
block: Bits 9-0 of the PBA of the peripheral Chip-se­
lect block are all zeros. If the chip-select block is
located in I/O space, bits 12-15 must be .pro­
grammed zero, since the I/O address is only 16 bits
wide. Table 10 shows the address range of each
peripheral chip select with respect to the PBA con­
tained in PACS register.

15 6 5 3 0
OFFSET: A4H I u I u I u I u I u I u I u I u I u I u I 1 I 1 I 1 I R2 I R1 I RO I

A19 A10

Figure 15. PACS Register

22-130

80188

The user should program bits 15-6 to correspond to
the desired peripheral base location. PACS bits 0-2
are used to specify READY mode for PCSO-PCS3.

Table 10. PCS Address Ranges

PCS Line Active between Locations

PCSO PBA -PBA+127
PCS1 PBA + 128-PBA + 255
PCS2 PBA + 256-PBA + 383
PCS3 PBA + 384-PBA + 511
PCS4 PBA + 512-PBA + 639
PCS5 PBA + 640-PBA + 767
PCS6 PBA + 768-PBA + 895

The mode of operation of the peripheral chip selects
is defined by the MPCS register (which is also used
to set the size of the mid-range memory chip-select
block, see Figure 13). This register is located at off­
set A8H in the internal control block. Bit 7 is used to
select the function of PCS5 and PCS6, while bit 6 is
used to select whether the peripheral chip selects
are mapped into memory or 1/0 space. Table 11
describes the programming of these bits. After reset,
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines
will be active until both of the MPCS and PACS reg­
isters are accessed.

Table 11. MS, EX Programming Values

Bit Description

MS 1 = Peripherals mapped into memory space.
o = Peripherals mapped into 1/0 space.

EX o = 5 PCS lines. A 1, A2 provided.
1 = 7 PCS lines. A 1, A2 are not provided.

MPCS bits 0-2 are used to specify READY mode for
PCS4-PCS6 as outlined below.

READY Generation Logic

The 80188 can generate a "READY" s!9!:!,al internal­
ly for each of the memory or peripheral CS lines. The
number of WAIT states to be inserted for each pe­
ripheral or memory is programmable to provide 0-3
wait states for all accesses to the area for which the
chip select is active. In addition, the 80188 may be
programmed to either ignore external READY for
each chip-select range individually or to factor exter­
nal READY with the integrated ready generator.

READY control consists of 3 bits for each CS line or
group of lines generated by the 80188. The int~rpre­
tation of the ready bits is shown in Table 12.

Table 12. READY Bits Programming

R2 R1 RO Number of WAIT States Generated

0 0 0 o wait states, external RDY
also used.

0 0 1 1 wait state inserted, external RDY
also used.

0 1 0 2 wait states inserted, external RDY
also used.

0 1 1 3 wait states inserted, external RDY
also used.

1 0 0 o wait states, external RDY
ignored.

1 0 1 1 wait state inserted, external RDY
ignored.

1 1 0 2 wait states inserted, external RDY
ignored.

1 1 1 3 wait states inserted, external RDY
ignored.

The internal ready generator operates in parallel
with external READY, not in series if the external
READY is used (R2 = 0). This means, for example,
if the internal generator is set to insert two wait
states, but activity on the external READY lines will
insert four wait states, the processor will only insert
four wait states, not six. This is because the two wait
states generated by the internal generator over­
lapped the first two wait states generated by the ex­
ternal ready signal. Note that the external ARDY and
SRDY lines are always ignored during cycles ac­
cessing internal peripherals.

R2-RO of each control word specifies the READY
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS
set the PCSO-3 READY mode, R2-RO of MPCS set
the PCS4-6 READY mode.

Chip Select/Ready Logic and Reset

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions:

• All chip-select outputs will be driven HIGH.

• Upon leaving RESET, the UCS line will be pro­
grammed to provide chip selects to a 1 K block
with the accompanying READY control bits set at
011 to allow the maximum number of internal wait
states in conjunction with external Ready consid­
eration (Le., UMCS resets to FFFBH).

• No other chip select or READY control registers
have any predefined values after RESET. They
will not become active until the CPU accesses
their control registers. Both the PACS and MPCS
registers must be accessed before the PCS lines
will become active.

22-131

inter 80188

DMA Channels

The 80188 DMA controller provides two indepen­
dent DMA channels. Data transfers can occur be­
tween memory and I/O spaces (e.g., Memory to I/O)
or within the same space (e.g., Memory to Memory
or I/O to I/O). Each DMA channel maintains both a
20-bit source and destination pointer which can be
optionally incremented or decremented after each
data transfer. Each data transfer consumes 2 bus
cycles (a minimum of 8 clocks), one cycle to fetch
data and the other to store data. This provides a
data transfer rate of one MByte/sec at 8 MHz.

DMA Operation

Each channel has six registers in the control block
which define each channel's specific operation. The
control registers consist of a 20-bit Source pointer (2
words), a 20-bit Destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control· Word.

The format of the DMA Control Blocks is shown in
Table 13. The Transfer Count Register (TC) speci­
fies the number of DMA transfers to be performed.
Up to 64K byte transfers can be performed with au­
tomatic termination. The Control Word defines the
channel's operation (see Figure 17). All registers
may be modified or altered during any DMA activity.
Any changes made to these registers will be reflect­
ed immediately in DMA operation.

Table 13. DMA Control Block Format

Register Name

Control Word
Transfer Count
Destination Pointer (upper 4

bits)
Destination Pointer
Source Pointer (upper 4 bits)
Source Pointer

TIMER REQUEST

OMA
CONTROL

LOGIC

l_....,..~j __ ~_INTERRUPT
REQUEST

Register Address

Ch.O Ch.1

CAH DAH
C8H D8H
C6H D6H

C4H D4H
C2H D2H
COH DOH

210706-9

Figure 16. DMA Unit Block Diagram

22-132

80188

15 14 13 12 11 10

MI DESTINATION MI SOURCE
iO DEC INC iO DEC INC

x = Don't Care

Figure 17. DMA Control Register

DMA Channel Control Word Register

Each DMA Channel Control Word determines the
mode of operation for the particular 80188 DMA
channel. This register specifies:

• the mode of synchronization;

• whether interrupts will be generated after the last
transfer;

• whether DMA activity will cease after a pro­
grammed number of DMA cycles;

• the relative priority of the DMA channel with re­
spect to. the other DMA channel;

• whether the source pointer will be incremented,
decremented, or maintained constant after each
transfer;

• whether the source pointer addresses memory or
1/0 space;

• whether the destination pointer will be increment­
ed, decremented, or maintained constant after
each transfer; and

• whether the destination pointer will address
memory or 1/0 space.

The DMA channel control registers may be changed
while the channel is operating. However, any chang­
es made during operation will affect the current DMA
transfer.

DMA Control Word Bit Descriptions
ST ISTOP: Startlstop (1/0) Channel.

CHG/NOCHG: Change/Do not change (1/0)
ST ISTOP bit. If this bit is set when
writi~ the control word, the
ST ISTOP bit will be programmed
by the write to the control word. If
this bit is cleared when writing the
control word, the ST ISTOP bit will
not be altered. This bit is not
stored; it will always be a 0 on
read.

INT: Enable Interrupts to CPU on byte
count termination.

TC:

SYN:

(2 bits)

If set, DMA will terminate when the
contents of the Transfer Count regis­
ter reaches zero. The ST ISTOP bit
will also be reset at this point if TC is
set. If this bit is cleared, the DMA unit
will decrement the transfer count reg­
ister for each DMA cycle, but the
DMA transfer will not stop when the
contents of the TC register reaches
zero.

00 No Synchronization

01 Source Synchronization

NOTE:
When unsynchronized transfers are
specified, the TC bit will be ignored
and the ST bit will be cleared upon
the transfer count reaching zero,
stopping the channel.

10 Destination Synchronization

11 Unused

SOURCE:INC Increment source pointer by 1 after
each transfer.

MilO Source pointer is in MilO space (1/0).

DEC Decrement source pointer by 1 after
each transfer.

DEST: INC Increment destination pointer by 1 af-
ter each transfer.

MilO Destination pointer is in MilO space
(1/0).

DEC Decrement destination pointer by 1
after each transfer.

P Channel priority-relative to other
channel.

o low priority.

1 high priority.

Channels will alternate cycles if both
,set at same priority level.

TDRQ 0: Disable DMA requests from timer
2.

1: Enable DMA requests from timer
2.

Bit 3 Bit 3 is not used.

If both INC and DEC are specified for the same
pointer, the pointer will remain constant after each
cycle.

22-133

inter 80188

DMA Destination and Source Pointer
Registers

Each DMA channel maintains a 20-bit source and a
20-bit. destination pointer. Each of these pointers
takes up two full 16-bit registers in the peripheral
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical
address (see Figure 18). These pointers may be indi­
vidually incremented or decremented after each
transfer. Each pointer may point into either memory
or I/O space. Since the DMA channels can perform
transfers to or from odd addresses, there is no re­
striction on values for the pointer registers.

DMA Transfer Count Register

Each DMA channel maintains a 16-bit transfer count
register (TC). This register is decremented after ev­
ery DMA cycle, regardless of the state of the TC bit
in the DMA Control Register. If the TC bit in the DMA
control word is set or if unsynchronized transfers are
programmed, DMA activity will terminate when the
transfer count register reaches zero.

DMA Requests

Data transfers may be either source or destination
synchronized, that is either the source of the data or
the destination of the data may request the data
transfer. In addition, DMA transfers may be unsyn~

HIGHER
REGISTER
ADDRESS

LOWER
REGISTER
ADDRESS

xxx

A15-'A12

15

xxx = Don't Care

chronized; that is, the transfer will take place contin­
ually until the correct number of transfers has oc­
curred. When source or unsynchronized transfers
are performed, the DMA channel may begin another
transfer immediately after the end of a previous
DMA transfer. This allows a complete transfer to
take place every 2 bus cycles or eight clock cycles
(assuming no wait states). No prefetching occurs
when source synchronized or unsynchronized trans­
fers are performed, however. Data will not be
fetched from the source address until the destina­
tion device signals that it is ready to receive it. When
destination synchronized transfers are requested,
the DMA controller will relinquish control of the bus
after every transfer. If no other bus activity is initiat­
ed, another DMA cycle will begin after two processor
clocks. This is done to allow the destination device
time to remove its request if another transfer is not
desired. Since the DMA controller will relinquish the
bus, the CPU can initiate a bus cycle. As a result, a
complete bus cycle will often be inserted between
destination synchronized transfers. These lead to
the maximum DMA transfer rates shown in Table 14.

Table 14. Maximum DMA Transfer
Rates @ 10 MHz

Type of
Synchronization CPU Running CPU Halted

Selected

Unsynchronized 1.25 MBytes/sec 1.25 MBytes/sec
Source Synch 1.25 MBytes/sec 1.25 MBytes/sec
Destination Synch 0.83 MBytes/sec 1.0 MBytes/sec

xxx XXX A19-A16

A11-AS A7-M A3-AO

o

Figure 18. DMA Memory Pointer Register Format

22-134

80188

DMA Acknowledge

No explicit DMA acknowledge pulse is provided.
Since both source and destination pointers are
maintained, a read from a requesting source, or a
write to a requesting destination, should be used as
the DMA acknowledge signal. Since the chip-select
lines can be programmed to be active for a given
block of memory or 1/0 space, and the DMA point­
ers can be programmed to point to the same given
block, a chip-select line could be used to indicate a
DMA acknowledge.

DMA Priority

The DMA channels may be programmed such that
one channel is always given priority over the other,
or they may be programmed such as to alternate
cycles when both have DMA requests pending. DMA
cycles always have priority over internal CPU cycles
except between locked memory accesses or word
accesses to odd memory locations; however, an ex­
ternal bus hold takes priority over an internal DMA
cycle. Because an interrupt request cannot suspend
a DMA operation and the CPU cannot access mem­
ory during a DMA cycle, interrupt latency time will
suffer during sequences of continuous DMA cycles.
An NMI request, however, will cause all internal
DMA activity to halt. This allows the CPU to quickly
respond to the NMI request.

DMA Programming

DMA cycles will occur whenever the ST ISTOP bit of
the Control Register is set. If synchronized transfers

TIMER 0

are programmed, a DRO must also have been gen­
erated. Therefore, the source and destination trans­
fer pointers, and the transfer count register (if used)
must be programmed before this bit is set.

Each DMA register may be modified while the chan­
nel is operating. If the CHG/NOCHG bit is cleared
when the control register is written, the ST ISTOP bit
of the control register will not be modified by the
write. If multiple channel registers are modified, it is
recommended that a LOCKED string transfer be
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers.

DMA Channels and Reset

Upon RESET, the DMA channels will perform the
following actions:

• The StartlStop bit for each channel will be reset
to STOP.

• Any transfer in progress is aborted.

TIMERS

The 80188 provides three internal 16-bit program­
mable timers (see Figure 19). Two of these are high­
ly flexible and are connected to four external pins (2
per timer). They can be used to count external
events, time external events, generate non repetitive
waveforms, etc. The third timer is not connected to
any external pins, and is useful for real-time coding
and time delay applications. In addition, this third
timer can be used as a prescaler to the other two, or
as a DMA request source.

TIMER 2

DMA
REO.

T2
-INT.

REO.

MAX COUNT VALUE
B

MAX COU:T VALUE CLOCK MAX COUNT VALUE

ALL 16 BIT REGISTERS

MODE/CONTROL
WORD

INTERNAL ADDRESS/DATA BUS

Figure 19. Timer Block Diagram

22-135

210706-10

inter 80188

Timer Operation

The timers are controlled by 11 16-bit registers in
the internal peripheral control block. The configura­
tion of these registers is shown in Table 15. The
count register contains the current value of the tim­
er. It can be read or written at any time independent
of whether the timer is running or not. The value of
.this register will be incremented for each timer
event. Each of the timers is equipped with a MAX
COUNT register, which defines the maximum count
the timer will reach. After reaching the MAX COUNT
register value, the timer count value will reset to zero
during that same clock, i.e., the maximum count val­
ue is never stored in the count register itself. Timers
o and 1 are, in addition, equipped with a second
MAX COUNT register, which enables the timers to
alternate their count betweeri two different MAX
COUNT values programmed by the user. If a single
MAX COUNT register is used, the timer output pin
will switch LOW for a single clock, 2 clocks after the
maximum count value has been reached. In the dual
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use,
thus allowing nearly complete freedom in selecting
waveform duty cycles. For the timers with two MAX
COUNT registers, the RIU bit in the control register
determines which is used for the comparison.

Each timer gets serviced every fourth CPU-clock cy­
cle, and thus can operate at speeds up to one-quar­
ter the internal clock frequency (orie-eighth the crys­
tal rate). External clocking of the timers may be done
at up to a rate of one·quarter of the internal CPU­
clock rate (2 MHz for an 8 MHz CPU clock). Due t!'
internal synchronization and pipelining of the timer
circuitry, a timer output may take up to 6 cloc.ks to
respond to any individual clock or gate input.

15 14 13 12 11
EN INH INT RIU o ...

Since the count registers and the maximum count
registers are all 16 bits wide, 16 bits of resolution are
provided. Any Read or Write access to the timers will
add one wait state to the minimum four-clock bus
cycle, however. This is needed to synchronize and
coordinate the internal data flows between the inter­
nal timers and the internal bus.

The timers have several programmable options.

• All three timers can be set to halt or continue on
a terminal count.

• Timers 0 and 1 can select between internal and
external clocks, alternate between MAX COUNT
registers and be set to retrigger on external
events.

• The timers may be programmed to cause an in­
terrupt on terminal count.

These options are selectable via the timer model
control word.

Timer Mode/Control Register

The mode/control register (see Figure 20) allows
the user to program the specific mode of operation
or check the currerit programmed status for any of
the three integrated timers.

Table 15. Timer Control Block Format

Register Name
Register Offset

Tmr.O Tmr.1 Tmr.2

Mode/Control Word 56H 5EH 66H
MaxCountB fi4H 5CH not present
Max Count A 52H 5AH 62H
Count Register 50H 58H 60H

5 4 3 2 1 0
Me RTG p EXT ALT I CONT I

Figure. 20. Timer Mode/Control Register

22·136

80188

ALT

The AL T bit determines which of two MAX COUNT
registers is used for count comparison. If AL T = 0,
register A for that timer is always used, while if
AL T = 1, the comparison will alternate between reg­
ister A and register B when each maximum count is
reached. This alternation allows the user to change
one MAX COUNT register while the other is being
used, and thus provides a method of generating
non-repetitive waveforms. Square waves and pulse
outputs of any duty cycle are a subset of available
signals obtained by not changing the final count reg­
isters. The AL T bit also determines the function of.
the timer output pin. If AL T is zero, the output pin will
go LOW for one clock, the clock after the maximum
count is reached. If AL T is one, the output pin will
reflect the current MAX COUNT register being used
(0/1 for B/ A).

CO NT

Setting the CaNT bit causes the associated timer to
run continuously, while resetting it causes the timer
to halt upon maximum count. If CaNT = 0 and AL T
= 1, the timer will count to the MAX COUNT register
A value, reset, count to the register B value, reset,
and halt.

EXT

The external bit selects between internal and exter­
nal clocking for the timer. The external signal may
be asynchronous with respect to the 80188 clock.
If this bit is set, the timer will count LOW-to-HIGH
transitions on the input pin. If cleared, it will count an
internal clock while using the input pin for control. In
this mode, the function of the external pin is defined
by the RTG bit. The maximum input to output tran­
sition latency time may be as much as 6 clocks.
However, clock inputs may be pipelined as closely
together as every 4 clocks without losing clock puls­
es.

p

The prescaler bit is ignored unless internal clocking
has been selected (EXT = 0). If the P bit is a zero,
the timer will count at one~fourth the internal CPU
clock rate. If the P bit is a one, the output of timer 2
will be used as a clock for the timer. Note that the
user must initialize and start· timer 2 to obtain the
prescaled clock ..

RTG

Retrigger bit is only active for internal clocking
(EXT = 0). In this case it determines the control
function provided by the input pin.

If RTG = 0, the input level gates the internal clock
on and off. If the input pin is HIGH, the timer will
count; if the input pin is LOW, the timer will hold its
value. As indicated previously, the input signal may
be asynchronous with respect to the 80188 clock.

When RTG = 1, the input pin detects LOW-to-HIGH
transitions. The first such transition starts the timer
running, clearing the timer value to zero on the first
clock, and then incrementing thereafter. Further
transitions on the input pin will again reset the timer
to zero, from which it will start counting up again. If
CaNT = 0, when the timer has reached maximum
count, the EN bit will be cleared, inhibiting further
timer activity.

EN

The eriable bit provides programmer control over
the timer's RUN/HALT status. When set, the timer is
enabled to increment subject to the input pin con­
straints in the internal clock mode (discussed previ­
ously). When cleared, the timer will be inhibited from
counting. All input pin transitions during the time EN
is zero will be ignored. If CaNT is zero, the EN bit is
automatically cleared upon maximum count.

The inhibit bit allows for selective updating of the
enable (EN) bit. If INH is a one during the write to the
mode/control word, then the state of the EN bit will
be modified by the write. If INH is a zero during the
write, the EN bit will be unaffected by the operation.
This bit is not stored; it will always be a 0 on a read.

INT

When set, the INT bit enables interrupts from the
timer, which will be generated on every terminal
count. If the timer is configured in dual MAX COUNT
register mode, an interrupt will be generated each
time the vaiue in MAX COUNT register A is reached,
and each time the value in MAX COUNT register B is
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced, the interrupt request will still
be in force. (The request is latched in the Interrupt
pontroller.)

MC

The Maximum Count bit is set whenever the timer
reaches its final maximum count value. If the timer is
configured in dual MAX COUNT register mode, this
bit will be set each time the value in MAX COUNT
register A is reached, and each time the value in
MAX COUNT register B is reached. This bit is set

22-137

inter 80188

regardless of· the timer's interrupt-enable bit. The
MC bit gives the user the ability to monitor timer
status through software instead of through inter­
rupts. Programmer intervention is required to clear
this bit.

RIU

The Register In Use bit indicates which MAX
COUNT register is currently being used for compari­
son to the timer count value. A zero value indicates
register A. The RIU bit cannot be written, i.e., its
value is not affected when the control register is writ­
ten. It is always cleared when the AL T bit is zero.

Not all mode bits are provided for timer 2. Certain
bits are hardwired as indicated below:

AL T = 0, EXT = 0, P = 0, RTG = 0, RIU = °

Count Registers

Each of the three timers has a 16-bit count register.
The current contents of this register may be read or
written by the processor at any time. If the register is
written into while the timer is counting, the new value
will take effect in the current count Cycle.

Max Count Registers

Timers 0 and 1 have two MAX COUNT registers,
while timer 2 has a single MAX COUNT register.
These contain the .number of events the timer will
count. In timers 0 and 1, the MAX COUNT register
used can alternate between the two max count val­
ues whenever the current maximum count is
reached. The condition which causes a timer to re­
set is equivalent between the current count value
and the max count being used. This means that if
the count is changed to be above the max count
value, or if the max count value is changed to be
below. the current value, the timer. will not reset to
zero, but rather will count to its maximum value,
"wrap around" to zero, then count until the max
count is reached.

Timers and Reset

Upon RESET, the Timers will perform the following
actions:

• All EN (Enable) bits are reset preventing timer
counting.

• All SEL (Select) bits are reset to zero. This se­
lectsMAX COUNT register A, resulting in the
Timer Out pins going HIGH upon RESET.

INTERRUPT CONTROLLER

The 80188 can receive interrupts from a number of
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on
a priority basis, for individual service by the CPU.

,Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers
or by mask bits within the interrupt controller. The
80188 interrupt controller has its own control regis­
ter that set the mode of operation for the controller.

The interrupt controller will resolve priority among
requests that are pending simultaneously. Nesting is
provided so interrupt service routines for lower priori­
ty interrupts may themselves be interrupted by high­
er priority interrupts. A block diagram of. the interrupt
controller is shown in Figure 21.

The 80188 has a special slave mode in which the
internal interrupt controller acts as a slave to an ex­
ternal master. The controller is programmed into this

. mode by setting bit 14 in the peripheral control block
relocation register. (See Slave Mode section.)

MASTER MODE OPERATION

Interrupt Controller External Interface

For external interrupt sources, five dedicated pins
are provided. One of these pins is dedicated to NMI,
non-maskable interrupt. This is typically used for
power-fail interrupts, etc. The other four pins may
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line
and an interrupt acknowledge line (called the "cas­
cade mode") along with two other input lines with
internally generated interrupt vectors, or as two in­
terrupt input lines and two dedicated interrupt ac­
knowledge output lines. When the interrupt lines are
configured in cascade mode, the 80188 interrupt
controller will not generate internal interrupt vectors.

External sources in the cascade mode use externa'l­
Iy generated interrupt vectors. When an interrupt is
acknowledged, two INTA cycles are initiated and the
vector is read into the 80188 on the second cycle.
The capability· to interface to external 8259A pro­
grammable interrupt controllers is thus provided
when the inputs are configured in cascade mode.,

22-138

intJ 80188

Interrupt Controller Modes of
Operation

The basic modes of operation of the interrupt con­
troller in master mode are similar to the 8259A. The
interrupt controller responds indentically to internal
interrupts in all three modes: the difference is only in
the interpretation of function of the four external in­
terrupt pins. The interrupt controller is set into one of
these three modes by programming the correct bits
in the INTO and INT1 control registers. The modes of
interrupt controller operation are as follows:

FULLY NESTED MODE

When in the fully nested mode four pins are used as
direct interrupt requests as in Figure 22. The vectors
for these four inputs are generated internally. An in­
service bit is provided for every interrupt source. If a
lower-priority device requests an interrupt while the
in-service bit (IS) is set, no interrupt will be generat­
ed by the interrupt controller. In addition, if another
interrupt request occurs from the same interrupt
source while the in-service bit is set, no interrupt will
be generated by the interrupt controller. This allows
interrupt service routines to operate with interrupts
enabled without being themselves interrupted by
lower-priority interrupts. Since interrupts are en­
abled, higher-priority interrupts will be serviced.

When a service routine is completed, the proper IS
bit must be reset by writing the proper pattern to the
EOI register. This is required to allow subsequent
interrupts from this interrupt source and to allow
servicing of lower-priority interrupts. An EOI com-

TIMER TIMER TIMER DMA DMA
o 1 2 0 1 INTO INTl INT2 INT3 NMI

DMAl
CONTROL REG.

EXT. INPUT 0
CONTROL AEG.

EXT. INPUT 1
CONTROL REG.

EXT. iNPUT 2
CONTROL REG.

210706-11

Figure 21. Interrupt Controller Block Diagram

mand is issued at the end of the service routine just
before the issuance of the return from interrupt in­
struction. If the fully nested structure has been up­
held, the next highest-priority source with its IS bit
set is then serviced.

CASCADE MODE

The 80188 has four interrupt pins and two of them
have dual functions. In the fully nested mode the
four pins are used as direct interrupt inputs and the
corresponding vectors are generated internally. In
the cascade mode, the four pins are configured into
interrupt input-dedicated acknowledge signal pairs.
The interconnection is shown in Figure 23. INTO is
an interrupt input interfaced to an 8259A, -while
INT2/INTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is
true for INT1 and INT3/INTA1. Each pair can selec­
tively be placed in the cascade or non-cascade
mode by programming the proper value into INTO
and INT1 control registers. The use of the dedicated
acknowledge signals eliminates the need for the use
of external logic to generate INTA and device select
signals.

The primary cascade mode allows the capability to
serve up to 128 external interrupt sources through
the use of external master and slave 8259As. Three
levels of priority are created, requiring priority resolu­
tion in the 80188 interrupt controller, the master
8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these
levels. When the interrupt service routine is complet­
ed, up to three end-of-interrupt commands must be
issued by the programmer.

SPECIAL FULLY NESTED MODE

This mode is entered by setting the SFNM bit in
INTO or INT1 control register. It enables complete
nestability with external 8259A masters. Normally,
an interrupt request from an interrupt source will not
be recognized unless the in-service bit for that
source is reset. If more than one interrupt source is
connected to an external interrupt controller, all of
the interrupts will be funneled through the same
80188 interrupt request pin. As a result, if the exter­
nal interrupt controller receives a higher-priority in­
terrupt, its interrupt will not be recognized by the
80188 controller until the 80188 in-service bit is re­
set. In special fully nested mode, the 80188 interrupt
controller will allow interrupts from an external pin
regardless of the state of the in-service bit for an
interrupt source in order to allow multiple interrupts
from a single pin. An in-service bit will continue to be

22-139

intJ 80188

set, however, to inhibit interrupts from other lower­
priority 80188 interrupt sources.

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines.
Software polling of the external master's IS register
is required to determine if there is more than one bit
set. If so, the IS bit in the 80188 remains active and
the next interrupt service routine is entered.

Operation in a Polled Environment

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor
disables interrupts and then polls the interrupt con­
troller whenever it is convenient. Polling the interrupt
cOhtroller is accomplished by reading the Poll Word
(Figure 32). Bit 15 in the poll word indicates to the
processor that an interrupt of high enough priority is
requesting service. Bits 0-4 indicate to the proces­
sor the type vector of the highest-priority source re-

o questing service. Reading the Poll Word causes the
In-Service bit of the highest priority source to be set.

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending
interrupt, i.e., not set the indicated in-service bit. The
80188 provides a Poll Status Word in addition to the
conventional Poll Word to allow this to be done. Poll
Word information is duplicated in the Poll Status
Word, but reading the Poll Status Word does not set
the associated ill-service bit. These words are locat­
ed in two adjacent memory locations in the register
file.

r--;;IN;;T;:;'o"k--- INTERRUPT SOURCE

INTl 1+--- INTERRUPT SOURCE

80188

INT2 1+--- INTERRUPT SOURCE

INT3 1+--- INTERRUPT SOURCE

2107.06-28

Figure 22. Fully Nested (Direct) Mode Interrupt
Controller Connections

Master Mode Features

PROGRAMMABLE PRIORITY

The user can program the interrupt sources into any
of eight different priority levels. The programming is
done by placing a 3-bit priority level (0-7) in the con­
trol register of each interrupt source. (A source with
a priority level of 4 has higher priority oVer all priority
levels from 5 to 7. Priority registers containing values
lower than 4 have greater priority). All interrupt
sources have preprogrammed default priority levels
(see Table 4).

If two requests with the same programmed priority
level are pending at once, the priority ordering
scheme shown in Table 4 is used. If the serviced
interrupt routine reenables interrupts, it allows other
requests to be serviced.

END-OF-INTERRUPT COMMAND

The end-of-interrupt (EOI) command is used by the
programmer to reset the In-Service (IS) bit when an
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the
EOI register. There are two types of EOI commands,
specific and nonspecific. The nonspecific command
does not specify which IS bit is reset. When issued,
the interrupt controller automatically resets the IS bit
of the highest priority source with an active service
routine. A specific EOI command requires that the
programmer send the interrupt vector type to the in­
terrupt controller indicating which source's IS bit is
to be reset. This command is used when the fully
nested structure has been disturbed or the highest
priority IS bit that was set does not belong to the
service routine in progress.

TRIGGER MODE

The four external interrupt pins can be programmed
in either edge- or level-trigger mode. The control
register for each external source has a level-trigger
mode (L TM) bit. All interrupt inputs are active HIGH.
In the edge sense mode or the level-trigger mode,
the interrupt request must remain active (HIGH) until
the interrupt request is acknowledged by the 80188
CPU. In the edge-sense mode, if the level remains
high after the interrupt is acknowledged, the input is
disabled and no further requests will be generated.
The input level must go LOW for at least one clock
cycle to reenable the input. In the level-trigger mode,
no such provision is made: holding the interrupt input
HIGH will cause continuous interrupt requests.

22-140

80188

INTERRUPT VECTORING

The 80188 Interrupt Controller will generate interrupt
vectors for the integrated OMA channels and the in­
tegrated Timers. In addition, the Interrupt Controller
will generate interrupt vectors for the external inter­
rupt lines if they are not configured in Cascade or
Special Fully Nested Mode. The interrupt vectors
generated are fixed and cannot be changed (see Ta­
ble 4).

Interrupt Controller Registers

The Interrupt Controller register model is shown in
Figure 24. It contains 15 registers. All registers can
both be read or written unless specified otherwise.

IN-SERVICE REGISTER

This register can be read from or written into. The
format is shown in Figure 25. It contains the In-Serv­
ice bit for each of the interrupt sources. The In-Serv­
ice bit is set to indicate that a source's service rou­
tine is in progress. When an In-Service bit is set, the
interrupt controller will not generate interrupts to the
CPU when it receives interrupt requests from devic­
es with a lower programmed priority level. The TMR
bit is the In-Service bit for all three timers; the 00
and 01' bits are the In-Service bits for the two OMA
channels; the 10-:13 are the In-Service bits for the
external interrupt pins. The IS bit is set when the
processor acknowledges an interrupt request either
by an interrupt acknowledge or by reading the poll
register. The IS bit is reset at the end of the interrupt
service routine by an end-of-interrupt command is­
sued by the CPU.

INTERRUPT REQUEST REGISTER

The internal interrupt sources have interrupt request
bits inside the interrupt controller. The format of this
register is shown in Figure 25. A read from this regis­
ter yields the status of these bits. The TMR bit is the
logical OR of all timer interrupt requests. 00 and 01
are the interrupt request bits for the OMA channels.

The state of the external interrupt input pins is also
indicated. The state of the external interrupt pins is
not a stored condition inside the interrupt controller,
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly
when an interrupt request is given to the interrupt
controller, so if edge-triggered mode is selected, the
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources,
the register bits are set when a request arrives and
are reset when the processor acknowledges the re­
quests.

Writes. to to the interrupt request register will affect
the 00 and 01 interrupt request bits. Setting either
bit will cause the corresponding interrupt request
while clearing either bit will remove the correspond­
ing interrupt request. All other bits in the register are
read-only.

MASK REGISTER

This is a 16-bit register that contains a mask bit for
each interrupt source. The format for this register is
shown in Figure 25. A one in a bit pOSition corre­
sponding to a particular source serves to mask the
source from generating interrupts. These mask bits
are the exact same bits which are used in the indi­
vidual control registers; programming a mask bit us­
ing the mask register will also change this bit in the
individual control registers, and vice versa.

~
t::: INTERRUPT SOURCES

........ _...r--.... 8259A :=:= - --. - . :=:= . -- . :=:= :
• • · ~ . , - . - . sg_. -- -- -8259A :=:=

.:=:=
_ INTERRUPT SOURCES

210706-12

Figure 23. Cascade and Special Fully Nested Mode Interrupt Controller Connections

22-141

intJ

INT3 CONTROL REGISTER

INT2 CONTROL REGISTER

INTl CONTROL REGISTER

INTO CONTROL REGISTER

DMA 1 CONTROL REGISTER

DMA 0 CONTROL REGISTER

TIMER CONTROL REGISTER

INTERRUPT STATUS REGISTER

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER

EOI REGISTER

OFFSET

3EH

3CH

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

26H

24H

22H

Figure 24. Interrupt Controller Registers
(Master. Mode)

15 14 10 9

80188

8

PRIORITY MASK REGISTER

This register is used to mask all interrupts below par­
ticular interrupt priority levels. The format of this'reg­
ister is shown in Figure 26. The code in the lower
three bits of this register inhibits interrupts of priority
lower (a higher priority number) than the code speci­
fied. For example, 100 written into this register
masks interrupts of level five (101), six (110), and
seven (111). The register is reset to seven (111)
upon RESET so no interrupts are masked due to
priority number.

INTERRUPT STATUS REGISTER

This register contains general interrupt controller
status information.· The format of this register is
shown in Figure 27. The bits in the status register
have the following functions:

DHL T: DMA Halt Transfer; setting this bit halts. all
DMA transfers. It is automatically set when­
ever a non-maskable iriterrjJpt occurs, and it
is reset when an IRET instruction is execut­
ed. The purpose of this bit is to allow prompt
service of all non-maskable interrupts. This
bit may also be selby the programmer.

IRTx: These three bits represent the individual tim­
er interrupt reques,t bits. These bits are used
to differentiate the timer interrupts, since the
timer IR bit in the interrupt request register is
the "OR" function of all timer interrupt re­
quests, Note that setting anyone of these
three bits initiates ·an interrupt request to the
interrupt controller.

7 6 5 2 o
I 0 o I • • I 0 I 0 I 0 I 13 I 12 I 11 DO o ITMRI

Figure 25. In-Service, Interrupt Request, and Mask Register Formats

15 14 3 2 1 0
o 0 I • . ,

Figure 26. Priority Mask Register Format

15 14 7 6 543 2 1 0

IDHLTI 0 I • • 1.0 I 0 o I 0 I 0 IIRT2 I IRTl IIRTO I

Figure 27. Interrupt Status Register Format (non-RMX Mode)

22-142

inter 80188

TIMER, DMA 0,1; CONTROL REGISTERS

These registers are the control words for all the in­
ternal interrupt sources. The format for these regis­
ters is shown in Figure 28. The three bit positions
PRO, PR1, and PR2 ~epresent the programmable pri­
ority level of the interrupt source. The MSK bit inhib­
its interrupt requests from the interrupt source. The
MSK bits in the individual control registers are the
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also
modify them in the Mask Register, and vice versa.

INTO-INT3 CONTROL REGISTERS

These registers are the control words for the four
external input pins. Figure 29 shows the format of
the INTO and INT1 Control registers; Figure 30
shows the format of the INT2 and INT3 Control reg­
isters. In cascade mode or special fully nested
mode, the control words for INT2 and INT3 are not
used ..

The bits in the various control registers are encoded
as follows:

PRO-2: Priority programming information. Highest
priority = 000, lowest priority = 111.

L TM: Level-trigger mode bit. 1 = level-trig­
gered; 0 = edge-triggered. Interrupt Input
levels are active high. In level-triggered
mode, an interrupt is generated whenever
the external line is high. In edge-triggered
mode, an interrupt will be generated only

15 14
I 0 0 I •

when this level is preceded by an inac­
tive-to-active transition on the line. In both
cases, the level must remain active until
the interrupt is acknowledged.

MSK: Mask bit, 1 = mask; 0 = non-mask.

C: Cascade mode bit, 1 = cascade; 0 = di­
rect.

SFNM: Special fully nested mode bit, 1 = SFNM.

EOI REGISTER

The end of the interrupt register is a command regis­
ter which can only be written into. The format of this
register is shown in Figure 31. It initiates an EOI
command when written to by the 80188 CPU.

The bits in the EOI register are encoded as follows:

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in
Table 4. For example, to reset the In­
Service bit for DMA channel 0, these bits
should be set to 01010, since the vector
type for DMA channel 0 is 10.

NOTE:
To reset the single In-Service bit for any of the
three timers, the vector type for timer 0 (8) should
be written in this register.

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = o.

43210
• I 0 I MSK I PR2 I PRl I PRO I

Figure 28. Timer/DMA Control Register Formats

15 14 7 6 5 4 3 2 1 0
I 0 0 I • • I 0 ISFNMI c I LTM I MSK I PR2 I PRl I PRO I

Figure 29. INTO/INT1 Control Register Formats

15 14 54321 0
I 0 0 I • • I 0 I LTM I MSK I PR2 I PRl I PRO I

Figure 30. INT2/INT3 Control Register Formats

22-143

80188

POLL AND POLL STATUS REGISTERS

These registers contain polling information. The for­
mat of these registers is shown in Figure 32. They
can only be read. Reading the Poll register consti­
tutes a software poll. This will set the IS bit of the
highest priority pending interrupt. Reading the poll
status register will not set the IS bit of the highest
priority pending interrupt; only the status of pending
interrupts will be provided.

Encoding of the Poll and Poll Status register bits are
as follows:

Sx: Encoded information that indicates the
vector type of the highest priority inter­
rupting source. Valid only when INTREQ
= 1.

INTREQ: This bit determines if an interrupt request
is present. Interrupt Request = 1; no In­
terrupt Request = O.

SLAVE MODE OPERATION

When slave mode is used, the internal 80188 inter­
rupt controller will be used as a slave controller to an
external master interrupt controller. The internal
80188 resources will be monitored. by the internal

15 14 13

ISPEC/I N5PEC 0 I 0 I .

interrupt controller, .while the external controller
functions as the system master interrupt controller.
Upon reset, the 80188 will be in master mode. To
provide for slave mode operation bit 14 of the relo­
cation register should be set.

Because of pin limitations caused by the need to
interface to an external 8259A master, the internal
interrupt controller will no longer accept external in­
puts. There are however, enough 80188 interrupt
controller inputs (internally) to dedicate one to each
timer. In this mode, each timer interrupt source has
its own mask bit, IS bit, and control word.

In slave mode each peripheral must be assigned a
unique priority to ensure proper interrupt controller
operation. Therefore, it is the programmer's respon­
sibility to assign correct priorities and initialize inter­
rupt control regisers before enable interrupts.

Slave Mode External Interface

The configuration of the 80188 with respect to an
external 8259A master is shown in Figure 33. The
INTO (pin 45) input is used as the 80188 CPU inter­
rupt input. INT3 (pin 41) functions as an output to
send the 80188 slave-interrupt-request to one of the
8 master-PIC-inputs.

5 4 3 2 0 . I 0 I 54 53 52 51 ·50

Figure 31. EOI Register Format

15 14 13 5 4 3 2 0

I~ral 0 I 0 I • . I 0 I 54 53 52 51 50

Figure 32. Poll and Poll Status Register Format

22-144

inter 80188

(45)
_INTERRUPT SOURCES

INTO
VCC

INT ::=:: OR OTHER SLAVES

CPU 8259A --- -INTA -(42)1
INT2 1:-80188

(44)
INT1

CASCADE
PIC ADDRESS

(41) DECODER

INT3~

210706-13

Figure 33. Slave Mode Interrupt Controller Connections

Correct master·slave interface requires decoding of
the slave addresses (CASO-2). Slave 8259As do
this internally. Because of pin limitations, the 80188
slave address will have to be decoded externally.
INT1 (pin 44) is used as a slave-select input. Note
that the slave vector address is transferred internal­
ly, but the READY input must be supplied externally.

INT2 (pin 42) is used as an acknowledge output,
suitable to drive the INTA input of an 8259A.

Interrupt Nesting

Slave mode operation allows nesting of interrupt re­
quests. When an interrupt is acknowledged, the pri­
ority logic masks off all priority levels except those
with equal or higher priority.

Vector Generation in the
Slave Mode

Vector generation in slave mode is exactly like that
of an 8259A slave. The interrupt controller gener­
ates an 8-bit vector which the CPU multiplies by four
and uses as an address into a vector table. The sig­
nificant five bits of the vector are user-programma­
ble while the lower three bits are generated by the
priority logic. These bits represent the encoding of
the priority level requesting service. The significant
five bits of the vector are programmed by writing to
the Interrupt Vector register at offset 20H.

Specific End-of-Interrupt

In slave mode the specific EOI command operates
to reset an in-service bit of a specific priority. The
user supplies a 3-bit priority-level value that points to
an in-service bit to be reset. The command is exe­
cuted by writing the correct value in the Specific EOI
register at offset 22H.

Interrupt Controller Registers
in the Slave Mode

All control and command registers are located inside
the internal peripheral control block. Figure 34
shows the offsets of these registers.

ENO-OF-INTERRUPT REGISTER

The end-of-interrupt register is a command register
which can only be written. The format of this register
is shown in Figure 35. It initiates an EOI command
when written by the 80188 CPU.

The bits in the EOI register are encoded as follows:

Lx: Encoded value indicating the priority of the IS
bit to be reset.

22-145

inter 80188

IN-SERVICE REGISTER

This register can be read from or written into. It con­
tains the in-service bit for each of the internal inter­
rupt sources. The format for this register is shown in
Figure 36. Bit positions 2 and 3 correspond to the
OMA channels; positions 0, 4, and 5 correspond to
the integral timers. The source's IS bit is set when
the processor acknowledges its interrupt request.

INTERRUPT REQUEST REGISTER

This register indicates which internal peripherals
have interrupt requests pending. The format of this
register is shown in Figure 36. The interrupt request
bits are set when a request arrives from an internal
source, and are reset when the processor acknowl­
edges the request. As in master mode, 00 and 01
are read/write, all other bits are read only.

MASK REGISTER

The register contains a mask bit for each interrupt
source. The format for this register is shown in Fig­
ure 36. If the bit in this register corresponding to a
particular interrupt source is set, any interrupts from
that source will be masked. These mask bits are ex­
actly the same bits which are used in the individual
control registers, i.e., changing the state of a mask
bit in this register will also change the state of the
mask bit in the individual interrupt control register
corresponding to the bit.

CONTROL REGISTERS

These registers are the control words for all the in­
ternal interrupt sources. The format of these regis­
ters is shown in Figure 37. Each of the timers and
both of the OMA channels have their own Control
Register.

15 14 13 8

I 0 I 0 0 I . . I 0 I

The bits of the Control Registers are encoded as
follows:

prx: 3-bit encoded field indicating a priority level
for the source; note that each source must be
programmed at specified levels.

msk: mask bit for the priority level indicated by prx
bits.

7
0 I

LEVEL 5 CONTROL REGISTER
(TIMER 2)

LEVEL 4 CONTROL REGISTER
(TIMER 1)

LEVEL 3 CONTROL REGISTER
(OMA1)

LEVEL 2 CONTROL REGISTER
(OMAO)

LEVEL 0 CONTROL REGISTER
(TIMER 0)

INTERRUPT STATUS REGISTER

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY·LEVEL MASK REGISTER

MASK REGISTER

SPECIFIC EOI REGISTER

INTERRUPT VECTOR REGISTER

OFFSET

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

22H

20H

Figure 34. Interrupt Controller Registers
(Slave Mode)

6 5 4 3 2 0
0 I 0 I 0 I 0 I L2 L1 LO

Figure 35. Specific EOI Register Format

15 14 13 8 7 6 5 4 3 2 0
0 0 I 0 I . . I 0 I 0 I 0 ITMR21TMR11 01 00 I 0 ITMROI

Figure 36. In-Service, Interrupt Request, and Mask Register Format

22-146

80188

INTERRUPT VECTOR REGISTER

This register provides the upper five bits of the inter­
rupt vector address. The format of this register is
shown in Figure 38. The interrupt controller itself
provides the lower three bits of the interrupt vector
as determined by the priority level of the interrupt
request.

The format of the bits in this register is:

tx: 5-bit field indicating the upper five bits of the
vector address.

PRIORITY·LEVEL MASK REGISTER

This register indicates the lowest priority-level inter­
rupt which will be- serviced.

The encoding of the bits in this register is:

mx: 3-bit encoded field indication priority-level val­
ue. All levels of lower priority will be masked.

INTERRUPT STATUS REGISTER

This register is defined as in master mode except
that DHL T is not implemented. (See Figure 27).

Interrupt Controller and Reset

Upon RESET, the interrupt controller will perform
the following actions:

• All SFNM bits reset to 0, implying Fully Nested
Mode.

• All PR bits in the various control registers set to 1.
This places all sources at lowest priority (level
111).

• All L TM bits reset to 0, resulting in edge-sense
mode.

• All Interrupt Service bits reset to o.
• All Interrupt Request bits reset to o.
• All MSK (Interrupt Mask) bits set to 1 (mask).

• All C (Cascade) bits reset to 0 (non-cascade).

• All PRM (Priority Mask) bits set to 1, implying no
levels masked.

• Initialized to master mode.

15 14 13 876 543 2 1 0
a a I a I • • I a I a I a I a I a I MSK I PR2 I PR 1 I PRO I

Figure 37. Control Word Format

15 14 13 8 7 6 5 4 3 2 a
I a a I a I . · I a I 14 I 13 12 I 11 to I a I a I a I

Figure 38. Interrupt Vector Register Format

15 14 13 8 7 6 5 4 3 2 0
a a a I . · I a I a I a a I a I a I m2 m1 mO

Figure 39. Priority Level Mask Register

22-147

Vee X1

I

80188

X2

uCS~---------------------------.1

.----
8282 OR ADDRESS

AOo-AD7, A 8283 I-----'~===~
AII-A15 r'-r F LATC~ 1---'

RESET
ROM

80188

ALE r--- STH DE r-
~ IL-_~ ____ ~

SRDVtr·SV

ARDV

NMlh

HOLD~

~~------~ ~--------_I~~

~

PROGRAM
RAM

LOW RAM

TMR IN 0 t----- . SV

TMROUTO~---------

I

~I:::::==<==)-"
PCSli FT==i.

A1

A21-+~---I

8286 OR

~ TRAN8i~~IVER
T 010

CLOCK

00-07

SERIAL
liD

INTO 1+--+-+---1 I-----------+-I---------.JI

INT1I-----------------------I
Pcs41---------------------~1
DRaOI~--------------------__I

DISK f::=:>8 INTERFACE 0 DISK
HARDWARE

Figure 40. Typical 80188 Computer

22-148

210706-14

Vee

r1
~

80188

16 MHz

t1D~
Xl X2

UCS

AD

RES

~

ALE
LCS

WR

b ADO·AD7
A8·A15

80188

NMI

~ ~----"---HOLD

CLKOUT

"-----

SO-52
~

r-!- f---

~

PCSO =-==r "\
peS1

LOCK

~ SRDY

ARDY

8282 OR
8283

LATCH

STB 6E
ST8 OE

+ ~

8282 OR
8283

LATCH

Vsi=r STB OE
STB 6E

t t

8286 OR
8287

TRANSCEIVER

T OJ:

I
DTII'i

CLK
ALE

DEN
8288

SO-52 BUS
CONTROLLER

CEN
lOB AEN

-;:- 1
I

SO-52 AEN
8289

CLK AR~YiER

CS
RESET

UF
ROM

ns LOW
RAM

CS

/\

-"> ~S~RESS

> DATA BUS

BUS CONTROL
COMMANDS

k=-

MULTI·
MAST ER

M SYSTE
BUS

;> ~~~Ti:~~ION
SYSBRESB

l.'5V I
lOB

LOCK RESB

I
I

XACK

210706-15

Figure 41. Typical 80188 MUlti-Master Bus Interface

22-149

inter 80188

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under Bias O·C to + 70·C

* Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

Storage Temperature - 65·C to + 150·C

Voltage on any Pin with
Respect to Ground -1.0V to + 7V

Power Dissipation 3 Watt

D.C. CHARACTERISTICS (TA = O·Cto +70·C, Vcc = 5V ±10%) ,
Applicable to B01 BB (B MHz)

Symbol Parameter Min Max Units Test Conditions

VIL Input Low Voltage -0.5 +O.B V

VIH Input High Voltage 2.0 VCC + 0.5 V
(All except X1 and RES)

VIH1 Input High Voltage (RES) 3.0 Vcc + 0.5 V

VOL Output Low Voltage 0.45 V la = 2.5 mA for SO-S2
la = 2.0 mA for all other outputs

VOH Output High Voltage 2.4 V loa = -400/LA

Icc Power Supply Current 600' rnA TA = -40·C

550 mA TA = O·C

415 rnA TA = +70·C

III Input Leakage Current ±10 /LA OV < VIN < VCC

ILO Output Leakage Current ±10 /LA 0.45V < VOUT < VCC

VCLO Clock Output Low 0.6 V la = 4.0 rnA

VCHO Clock Output High 4.0 V loa = -200/LA

VCll Clock Input Low Voltage -0.5 0.6 V

VCHI Clock Input High Voltage 3.9 VCC + 1.0 V

CIN Input Capacitance 10 pF

CIO 1/0 Capacitance 20 pF
'For extended temperature parts only.

22-150

inter 80188

PIN TIMINGS

A.C. CHARACTERISTICS (TA = O°Cta + 70°C, VCC = 5V ±10%)

80188 Timing Requirements All Timings Measured At 1 5 Volts Unless Otherwise Noted

80188
Symbol Parameter (8 MHz) Units

Min Max

TDVCL Data in Setup (AID) 20 ns

TCLDX Data in Hold (AID) 10 ns

TARYHCH Asynchronous Ready . 20 ns
(ARDY) active setup
time'

TARYLCL ARDY inactive setup 35 ns
time

TCLARX ARDY hold time 15 ns

TARYCHL Asynchronous Ready 15 ns
inactive hold time

TSRYCL Synchronous Ready 20 ns
(SRDY) Transition
Setup Time

TCLSRY SRDY Transition 15 ns
Hold Time

THVCL HOLD Setup' 25 ns

TINVCH INTR, NMI, TEST, 25 ns
TMR IN, Setup'

TINVCL DRQO, DRQ1, Setup' 25 ns

80188 Master Interface Timing Responses

TCLAV Address Valid Delay 5 55 ns

TCLAX Address Hold 10 ns

TCLAZ Address Float Delay TCLAX 35 ns

TCHCZ Command Lines 45 ns
Float Delay

TCHCV Command Lines Valid 55 ns
Delay (after float)

TLHLL ALE Width TCLCL -35 ns

TCHLH ALE Active Delay 35 ns

TCHLL ALE Inactive Delay 35 ns

TLLAX Address Hold to TCHCL -25 ns
ALE Inactive,

TCLDV Data Valid Delay 10 44 ns

TCLDOX Data Hold Time 10 ns

TWHDX Data Hold after WR TCLCL -40 ns

TcVCTV Control Active Delay 1 5 50 ns

TCHCTV Control Active Delay 2 10 55 ns

TCVCTX Control Inactive Delay 5 55 ns

TCVDEX DEN Inactive Delay 10 70 ns
(Non-Write Cycle)

..
*To guarantee recogmtlon at next clock.

22-151

Test
Conditions

CL = 20-200 pF
all outputs (except T CLTMV)
@8MHz

inter 80188

PIN TIMINGS (Continued)

A.C. CHARACTERISTICS
(T A = DOC to + 7DoC, V CC = 5V ± 1 D%) (Continued)

80188 Master Interface Timing Responses (Continued)

80188
Symbol Parameter (8 MHz)

Min

TAZAL Address Float to 0
RDActive

TCLAL RD Active Delay 10

TCLAH RD Inactive Delay 10

TAHAV RD Inactive to TCLCL -40
Address Active

TCLHAV HlDA Valid Delay 5

TALAH RDWidth 2TCLCL -50

TWLWH WRWidth 2TCLCL -40

TAVLL Address Valid to TCLCH -25
ALE low

TCHSV Status Active Delay 10

TCLSH Status Inactive Delay 10

TCLTMV Timer Output Delay

TCLAO Reset Delay

TCHQSV Queue Status Delay

TCHDX Status Hold Time 10

TAVCH Address Valid to 10
Clock High

TCLLV lOCK Valid/Invalid 5
Delay

80188 Chip·Select Timing Responses

TCLCSV Chip-Select
Active Delay

Tcxcsx Chip-Select Hold from 35
Command Inactive

TCHCSX Chip-Select 5
Inactive Delay

80188 ClKIN Requirements

TCKIN ClKIN Period 62.5

TCKHL ClKIN Fall Time

TCKLH ClKIN Rise Time

TCLCK ClKIN low Time 25

TCHCK ClKIN High Time 25

80188 ClKOUT Timing (200 pF load)

TCICO ClKINto
ClKOUTSkew

TCLCL ClKOUT Period 125

TCLCH ClKOUT low Time % TCLCL -7.5

TCHCL ClKOUT High Time % TCLCL -7.5

TCH1CH2 ClKOUT Rise Time

TCL2CL1 ClKOUT Fall Time

22-152

Test
Units

Conditions
Max

ns

70 ns

55 ns

ns

50 ns

ns

ns

ns

55 ns

65 ns

60 ns 100 pF max

60 ns

35 ns

ns

ns

65 ns

66 ns

ns

35 ns

250 ns

10 ns 3.5 to 1.0V

10 ns 1.0 to 3.5V

ns 1.5V

ns 1.5V

50 ns

500 ns

ns 1.5V

ns 1.5V

15 ns 1.0 to 3.5V

15 ns 3.5 to 1.0V

80188

WAVEFORMS

Major Cycle Timing

'~''"!HCb !---TClCl--

~ r--'I ~
~ TCHSV I'---' TCHCl '---' (NOTE 3)~ ~
V CL ~ l:::l TClSH I rClC~ _ __ u

ClK OUT

\. D///#/d
,
'. ---

TClAV 1- ~
TClDV TCHCZ

TCLAX ------ (NOTE 1)

S7,A19-A16 57_53 -
TClAV l- I----

TCHCZ
(NOTE 1)

A15-A8 A 15-A8 (FLOAT DURING INTA) -
TlHll TllAX

I --- ----
TAVAl

I
I ALE

F1 --- ----
TCHlH I-TCHll

TClAV l- I- TCrDV TCLAZ t-
TCLAX I- TClDOXI-

K A7-AO 1\ DATA OUT OTE1) ~I
WRITE CYCLE

RD,INTA,
DT/R=VOH

TAVCH I--
TCVCTV!::1 ,

TCVCTV

~

\.

TLLAX TWHDX

TCVCTX H
1

TWlWH

~
TCVCTX I--

TClDX 1-
:::::JTClAZ TDVCLi:=

INTA CYCLE

FLOAT

A TCHCTV !::::::I
\. DT/R

TCVCTV

~
V

RD,WR,=VOH
TCVCTV ---- P

DEN

~

SOFTWARE HAlT-DTjR=VOL'

Ro,WR,INTA,DEN=VOH
TCLAV 2J<

INVALID ADDRESS

::::::JTClCSV PCS,
MCS
lCS,

UCS
(NOTE 4)

\.

22-153·

POINTER
FLOAT

1\ H TCHCTV

1-
ld

~I/
TCVDEX ~

'fJ
~ :;

~TCHCSX
TCXCSX

j

210706-22

80188

WAVEFORMS (Continued)

Major Cycle Timing (Continued)

r--

Ao,-ADo

READ CYCLE

TCLRll+--+t-~-+--l'RlFIH-------'---+l--l

DTfii

~ ~----+_I
OC!

(NOTE 4)

210706-23

NOTES:
1. Following a Write cycle, the Local Bus is floated by the 80188 only when the 80188 enters a "Hold Acknowledge"
state.
2. INTA occurs one clock later in Slave Mode.
3. Status inactive just prior to T 4.
4. Latched A 1 and A2 have same timings as PCS5 and PCS6.

·22-154

WAVEFORMS (Continued)

CLKOUT

CLKOUT

~
INTO·3

TIMERIN

QSO,QS1

- TCLLV-

80188

210706-24

22-155

intJ 80188

WAVEFORMS (Continued)

READY TIMING

T, T3 T,

ClKOUT

ARDY

ARDY

ClKOUT

SRDY

210706-29

HOLD-HLDA TIMING

T,

ClKOUT

HlDA

- I TClAY

All-A,
Ao,-AOO --1O-1-.. -"H--+--~

10111

i5ffj ----U--+--tJ

A18/SS-A16/S3, -----l
1m,Wi!, 101 .. 10111

S7, ____ -l
DT/II,

fi-~,·
LOCK

210706-25

22 .. 156

80188

WAVEFORMS (Continued)

Timer On 80188

ClKIN

ClKOUT

i-------TClCl ------....

TIMERIN

I
~

TINVCH

"-r
TIMEROUT __ ~:====================-_2_'A_._tO_6_'A_.C_l_O_CK_S __________ +-_~

80188 EXECUTION TIMINGS

Since the bus interface unit and execution unit oper­
ate independently, a determination of 80188 pro­
gram execution timing must consider both the bus
cycles necessary to prefetch instructions as well as
the number of execution unit cycles necessary to
execute instructions. The following instruction tim­
ings represent the minimum execution time in clock
cycles for each instruction. The timings given are
based on the following assumptions:

• The opcode, along with any data or displacement
required for execution of a particular instruction,
has been prefetched and resides in the queue at
the time it is needed.

• No wait states or bus HOLDs occur.

210706-26

All instructions which involve memory accesses can
also require one or two additional clocks above the
minimum timings shown due to the asynchronous
handshake between the BIU and execution unit.

All jumps and calls include the time required to fetch
the opcode of the next instruction at the destination
address.

The 80188 8-bit BIU is noticeably limited in its per­
formance relative to the execution unit. A sufficient
number of prefetched bytes may not reside in the
prefetch queue much of the time. Therefore, actual
program execution may be substantially greater than
that derived from adding the instruction timings
shown.

22-157

intJ 80188

INSTRUCTION SET SUMMARY

Function Format

DATA TRANSFER
MOV = Move:

Register to registerlmemory

Registerlmemory to register

Immediate to registerlmemory

Immediate to register

Memory to accumulator

Accumulator to memory

Registerlmemory to segment register

Segment register to registerlmemory

PUSH = Push:

Memory

Register

Segment register

1

1

1

iotmlidiate ~, I,
PU~,"" P;ushAIl

POP = Pop:

Memory

Register

Segment register

J

1000100w mod reg rim

1000101w mod reg rim

1100011 w modOOO rim

1011 w reg data

1010000w addr-Iow

1010001w addr-Iow

10001110 mod 0 reg rim

10001100 mod 0 reg rim

1 1 1 1 1 1 1 1 I rilod 1 1 0 rim

0101 0 reg I
OOOregl 1 0 1

'01101''O.s'O: ,I: "c'dala':'

01tri:O'OllQ L
10001 1 11 I mod 0 0 0 rim

01011, reg 1

000 reg 1 1 1 I (reg*OI)

P()pA';", Pop AU

XCHG = Exchange:

'" I, 0 11 oo6:011~:'"

Registerlmemory with register

Register with accumulator

IN = Input from:

Fixed port

Variable port

OUT =' Output to:

Fixed port

Variable port

XLA T = Translate byte to AL

LEA = Load EA to register

LOS = Load pointer to OS

LES = Load pointer to ES

LAHF = Load AH with flags

SAHF = Store AH into flags

PUSHF = Push flags

1

1

1

I
I
1

1

1

I
1

I

1000011w mod reg rim

10010reg

1110010w port

1110110w

1110011 w port

1110111 w

11010111

10001101 mod reg rim

11000101 mod reg rim

11000100 mod reg rim

10011111

10011110

10011100

data

dataifw=1

addr-high

addr-high

~, dala'it'!i;';;O:

(mod*")

(mod*")

dataifw=1

Shaded areas indicate instructions not available in BOB6, BOBB micro systems.

Clock
Comments

Cycles

2/12'

2/9'

12/13' B/16-bit

3/4 8/16-bit

8'

9'

2/13

2/15

20

14

13

14' ,,,

:66

24

14

12

4/17'

10'

8'

9'

7'

15

6

26

26

2

13

'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers.

22-15B

80188

INSTRUCTION SET SUMMARY (Continued)

Function Format
Clock

Comments
Cycles

DATA TRANSFER (Continued)

POPF ~ Pop flags I 10011101 I 12

SEGMENT ~ Segment Override:

CS I 00101110 I 2

SS I 00110110 I 2

OS I 00111110 I 2

ES I 00100110 I 2

ARITHMETIC
ADD ~ Add:

Reglmemory with register to either I OOOOOOdw I mod reg rim I 3/10'

Immediate to registerlmemory I 100000sw I mod 0 0 0 rim I data I dataifsw~OI I 4/16'

Immediate to accumulator I 0000010w I data I dataifw~1 I 3/4 B/16-bit

ADC ~ Add with carry:

Reglmemory with register to either I 000100dw I mod reg rim I 3/10'

Immediate to registerlmemory I 100000sw I mod 0 10 rim I data I data if s w~ 01 I 4/16'

Immediate to accumulator I 0001010w I data I dataifw~1 I 3/4 B/16-bit

INC ~ Increment:

Registerlmemory I lllllllw I modOOO rim I 3/15'

Register I 01000 reg I 3

SUB ~ Subtract:

Reglmemory and register to either I 001010dw I mod reg rim I 3/10'

Immediate from registerlmemory I 100000sw I mod 101 rim I data I data if s w~OI I 4/16'

Immediate from accumulator I 0010110w I data I dataifw~1 I 3/4 B/16-bit

SBB ~ Subtract with borrow:

Reglmemory and register to either I 000110dw I mod reg rim I 3/10'

Immediate from registerlmemory I 100000sw I mod011 rim I data I data if s w~ 01 I 4/16'

Immediate from accumulator I 0001110w I data I dataifw~1 I 3/4 B/16-bit

DEC ~ Decrement:

Registerlmemory I 1111111 w I mod 0 01 rim I 3/15'

Register I 01001 reg I 3

CMP ~ Compare:

Registerlmemory with register I 0011101w I mod reg rim 3/10'

Register with register Imemory I 0011100w I mod reg 'r/m 3110'

Immediate with register/memory I 100000sw I mod 111 rim data I data if s w~ 01 I 3/10'

Immediate with accumulator I 0011110w I data dataifw~1 I 3/4 B/16-bit

NEG ~ Change sign registerlmemory I 1111011 w I mod 0 11 rim 3/10'

AAA ~ ASCII adjust for add I 00110111 I B

DAA ~ Decimal adjust for add I 00100111 I 4

AAS ~ ASCii adjust for subtract I 00111111 I 7

DAS ~ Decimal adjust for subtract I 00101111 I 4

Shaded areas indicate instructions not available in 8086, 8088 microsystems.
'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers.

22-159

intJ 80188

INSTRUCTION SET SUMMARY.(Continued)

Function Format

I"'''"T''IU~TI'' (Continued)

1 1 .1 1 011 w mod 100 rim

1 1 1 1 01 '1 w mod 1 01 rim

11 1 1 0 11 w mod 11 1 rim

11010100 00001010

11010101 00001010

= Convert byte to word 10011000

= Convert word to double word 1 0 0 1 1 0 0 1

'Confn,o",nn, and register to either

to registerlmemory

mod TTT r/ril

TIT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
11 1 SAR

Shaded areas indicate instructions not available in ~086. 8088 microsystems.

26-28
35-37
32-34
41-43'

25-28
34-37
31-34

29
38
35
44'

44-52
53-61
50-58
59-67'

19

15·

2

4

2/15

5+n/17+n

3/10'

4/16'

Comments

3/4 8/16-bit

°Note: Clock cycles shown for byte transfer_ For word operations. add 4 clock cycles for all memory transfers.

22-160

intJ 80188

INSTRUCTION SET SUMMARY (Continued)

Function Format

LOGIC (Continued)

TEST = And function to flags, no resu;-:It:=--____ -. _____ ---,

Register/memory and register I 10 ° ° ° lOw mod reg rIm

~==~=====;----~-----,
Immediate data and register/memory ~I =1::1=1::1 =O::I=I::w=*=m:=o::d =o=o=o=r/=m~===d=a=ta==~---=d:.:a:.::ta:.ci'-f w,,-=...;I'--.J

Immediate data and accumulator 1L.._1'-0'-'-1-'-0...;1...;0'-0'-W"--'-_---=d.=at:.:;a=--_-'-----=d.=at:.:;ac:.il...;w.:...=---=I--l

OR=Or:

Reg/memory and register to either 000010dw mod reg rIm

Clock
Cycles

3/10'

4/10'

3/4

3/10'

Comments

B/16-bit

Immediate to registerlmemory 1000000w mod 0 0 1 rIm data dataifw=1 4/16'

Immediate to accumulator 0000110w data dataifw=1 3/4 8/16-bit

XOR = Exclusive or:

Reg/memory and register to either 001100dw mod reg rIm 3/10'

Immediate to register/memory 1000000w mod 110 rIm data data il w= 1 4/16'

Immediate to accumulator 0011010w data dataifw=1 3/4 8/16-bit

NOT = Invert register Imemory 1111011w modO 10 rIm 3/10'

STRING MANIPULATION:

MOVS = Move byte/word 1010010w 14'

CMPS = Compare byte/word 1010011 w 22'

SCAS = Scan byte/word 1010111 w 15'

LaDS = Load byte/wd to AU AX 1010 11 Ow 12'

STOS = Stor byte/wd from ALI A 1010101 w

Repeated by count in CX

MOVS = Move string 11110010 1010010w 8+8n'

CMPS = Compare string 1111001 z 1010011 w 5+22n'

SCAS = Scan string 1111001 z 1010111 w 5+ 15n'

LaDS = Load string 11110010 1010110w 6+11n'

Shaded areas indicate instructions not available in 8086, 8088 microsystems .
• Note: Clock cycles. shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers.

22·161

intel" 80188

INSTRUCTION SET SUMMARY (Continued)

Function Format
Clock

Comments
Cycles

CONTROL TRANSFER

CALL = Cell:

Direct wllhln segment I 11101000 I disp-Iow I disp-high I 19

Register/memory I 11111111 I modO 1 0 rIm I 17/27
Indirect within segment

Direct Intersegment I 10011010 I segment offset I 31

I segment selector I
Indirect'intersegment I 11111111 I modO 1 t rIm I (mod#' 11) 54

JMP = UncondltlonarJump:

Short/long I 11101011 I disp-Iow I 14

Direct within segment I 11101001 I disp-Iow I disp-high I 14

Register/memory I 11111111 I mod 100 rIm I 11/21
Indirect wfthln segment

Direct intersegment I 11101010 segment offset I 14

segment selector I
Indirect intersegment I 11111111 modI 01 rIm I (mod#' 11) 34

RET = Return from CALL:

Within segment 11000011 20

Within seg adding immed to SP 11000010 data-low I data-high I 22

Intel'!legment 11001011 30

Intersegment adding immediate to SP 11001010 data-low I data-high I 33

JElJZ = Jump on equal/zero I 01110100 disp I 4/13 JMPnot

JUJNGE = Jump on less/not greater or equal I 01111100 disp I 4/13
taken/JMP

taken

JLEI JNG = J,ump on l!Iss or equal/not greater I 01111110 disp I 4/13

JB/JNAE = Jump on below/not above or equal 01110010 dlsp I 4/13

JBE/JNA = Jump on below or equal/not above 01110110 disp 4/13

JP/JPE = Jump on parity/parity even 01111010 disp 4/13

JO, = Jump on overllow 01110000 disp 4/13

JS = Jump on sign 01111000 disp 4/13

JNE/JNZ = Jump on not equal/not zero 01110101 disp 4/13

JNUJGE = Jump on not less/greater or equal 01111101 disp I 4/13

JNLE/JG = Jump on not less or equal/greater 01111111 disp I 4/13

JNB/JAE = Jump on not below/above or equal 01110011 disp I 4/13

JNBE/JA = Jump on not below or equal/above I 01110111 disp I 4/13

JNP/JPO,:" Jump on not par/par odd I 01111011 disp I 4/13

Shaded areas indicate instructions not available in 8086, 8088 microsystems_
ONate: Clock cycles shown for byte transfer_ For word operations, add 4 clock cycles for all memory transfers_

22-162

inter 80188

INSTRUCTION SET SUMMARY (Continued)

Function

CONTROL TRANSFER (Continued)

JNO = Jump on not overflow

JNS = Jump on not sign

JCXZ = Jump on CX zero

LOOP = Loop CX times

LOOPZ/LOOPE = Loop while zero/equal

Format

0111000 1 disp

0111100 1 dis'p

111000 11 disp

11100010 disp

11100001 disp

LOOPNZ/LOOPNE = Loop while not zero/equal I 1 1 1 a a a a a disp

~==:::::=:::::::~--,-..,..----, ,','-' --- ',"---.

Em!;R =. Enter Pro.::edure

L=O
L=1
L>1

INT = Interrupt:

Type specified

Type 3

INTO = Interrupt on overflow

IRET = Interrupt return

PROCESSOR CONTROL

CLC = Clear carry

CMC = Complement carry

STC = Set carry

CLO = Clear direction

STO = Set direction

CLI = Clear interrupt

STI = Set interrupt

HLT = Halt

WAIT = Wait

LOCK = Bus lock prefix

ESC = Processor Extension Escape

1100 110 1 type

11001100

11001110

1100 1111

11111000

11110101

1 1 1 11 a a 1

11111100

11 1 11 101

11 1 11 a 1 a

11 1 110 1 1

11110100

10011011

11110000

11011 TTT mod LLL rIm
(TTT LLL are opcode to processor extension)

Shaded areas indicate instructions not available in 8086, 8088 microsystems.

Clock
Cycles

4/13

4/13

5/15

6/16

6/16

6/16

47

45

48/4

28

2

2

2

2

2

2

6

6

Comments

LOOP not

taken/LOOP

taken

if INT. takenl

if INT. not
taken

if test = a

'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers.

22-163

intJ 80188

FOOTNOTES

The Effective Address (EA) of the memory operand
is computed according to the mod and rim fields:

if mod = 11 then rIm is treated as a REG field

if mod = 00 then OISP = 0', disp-Iow and disp-high are
absent

if mod = 01 then OISP = disp-Iow sign-extended to
16-bits, disp-high is absent

if mod = 10 then OISP = disp-high: disp-Iow

if rIm = 000 then EA = (BX) + (SI) + OISP

if rIm = 001 then EA = (BX) + (01) + OISP

ifr/m = 010 then EA = (BP) + (SI) + OISP

if rIm = 011then EA = (BP) + (01) + OISP

if rIm = 100 then EA = (SI) + OISP

if rIm = 101 then EA = (01) + OISP

if rIm = 110 then EA = (BP) + OISP'

if rIm = 111 then EA = (BX) + OISP

OISP follows 2nd byte of instruction (before data if
required)

"except if mod = 00 and rim = 110 then EA =
disp-high: disp-Iow.

EA calculation time is 4 clock cycles for all modes,
and is included in the execution times given whenev­
er appropriate.

Segment Override Prefix

I 0 0 1 reg ·1 1 0 I

reg is assigned according to the following:

reg

00
01
10
11

Segment
Register

ES
CS
SS
OS

REG is assigned according to the following table:

16-Bit (w = 1)
000 AX
001 CX
010 OX
011 BX
100 SP
101 BP
110 SI
111 01

8-Bit(w = 0)
OOOAL
001 CL
0100L
011 BL
100AH
101 CH
1100H
111 BH

The physical addresses of all operands addressed
by the BP register are computed using the SS seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations
(those addressed by the 01 register) are computed
using the ES segment, which may not be overridden.

22-164

intel~ ~©w~oo©~ OOO!P@Iru[M]~iiO@OO

80C188
CHMOS HIGH INTEGRATION 16-BIT MICROPROCESSOR

• Operation Modes Include: • Direct Addressing Capability to
- Enhanced Mode Which Has 1 MByte and 64 KByte I/O

- DRAM Refresh iii Completely Object Code Compatible
- Power-Save Logic with All Existing 8086/8088 Software

- Compatible Mode and Also Has 10 Additional Instructions
- NMOS 80188 Pin for Pin over 8086/8088

Replacement for Non-Numerics
Applications • Complete System Development

• Integrated Feature Set
Support
-All 8088 and NMOS 80188 Software

- Enhanced 80C86/C88 CPU Development Tools Can Be Used for
- Clock Generator 80C186 System Development
- 2 Independent DMA Channels - Assembler, PL/M, Pascal, Fortran,
- Programmable Interrupt Controller and System Utilities
- 3 Programmable 16-Bit Timers -In-Circuit-Emulator (ICETM-188)
- Dynamic RAM Refresh Control Unit
- Programmable Memory and • Available in 68 Pin:

Peripheral Chip Select Logic - Plastic Leaded Chip Carrier (PLCC)
- Programmable Wait State Generator - Ceramic Pin Grid Array (PGA)
- Local Bus Controller - Ceramic Leadless Chip Carrier
- Power Save Logic (JEDEC A Package)
- System-Level Testing Support (High (See Packaging Outlines and Dimensions, Order Number

Impedance Test Mode) 231369)

• Available in 16 MHz (80C188-16), • Available in EXPRESS:

12.5 MHz (80C188-12) and 10 MHz - Standard Temperature with Burn-In

(80C188-10) Versions - Extended Temperature Range
(- 40°C to + 85°C)

The Intel 80C188 is a CHMOS high integration microprocessor. It has features which are new to the 80186
family which include a DRAM refresh control unit, power-save mode and a direct numerics interface. When
used in "compatible" mode, the 80C188 is 100% pin-for-pin compatible with the NMOS 80188 (except for
8087 applications). The "enhanced" mode of operation allows the full feature set of the 80C188 to be used.
The 80C188 is upward compatible with 8086 and 8088 software and fully compatible with 80186 and 80188
software.

Figure 1. 80e188 Block Diagram

22-165

270432-1

October 1987
Order Number: 270432-001

intJ 80C188

Leadless Chip Carrier (JEDEC Type A)

Contacts Facing Up

,,,01,,,,,,,, ,, " "" .. "",1l5I _•................•..............•...
so :£'2J ~- 0Cs
51 "j ~: LCS
52 :: r: PCS6/A2

AROY :1 i: PCS5/Al
CLKOUT -:; : - PCS4

RESET :~ XXX ;: PCS3

V~s2S1 ~~, ~:g~ ~ ~~ ~~~~
~ ~ ~ ~".; ':~ VPilS;'Sso ALE/eso :j x x X

R~~SQ~~ ~j • _ ;: TMROUTI

BiiE -j ;: TIliR aUTO
A18S6:i ::= Tt.IRIN!

A18;55 :~ ;: TMR INO

A17/54 :! :: ORO 1
A16/53 :1 ~~ ORao .-.. -.. _.-., ... -......•.... _.-.. -..... -.....•..•

'11''''''''''''''''''''''''''''''''

Pin Grid Array
PINS fACING UP

@@@@@@@@@
@@@@@@@@@@@
@@ @@ @®D®@
@@ @@
@@ . @@
@@ @@
@@ @@
@@ . @J@
@@@@@@®®00@

@@@@®0®0CD

PINS fACING DOWN

,:~!: :f~! :~?) ,:~: ,:~: :.~-~" :~?) (~?: ,:~~:

@: :~~I ¥?\ ~#; :,~~J :~I :'i~1 ":~9; (~~i :~~I :~~~I

:~_4J ,:~~:

:~~:I ,:~~:

:~?} :~_~I

':~g; :~1)

:,~~i ,:~:

:~:I ,:~~:

.,~~,I :~.~I

xxx xxx xxx xxx xxx xxx --
:~.~'I ,:~?:

:~} ,:~q:

':i~: :~.~I
,:~?: "?~}

:,~~: ~i~;

:fA' ,~?:

:'i.i,I :;.Ql

270432-2

270432-3

Plasti~ Leaded Chip Carrier

Contacts Facing Up Contacts Facing Down
~~G~Q~~«~QM~~~D~~

52 35

1716151413121110967654321 1

52
3.

53
33

54
5S

32

56
31

57
30

58 XXX 2.

5. XXX 28
xxx 27

60 XXX
26

61 XXX
62

xxx 25 -- 2.
63

23
64

22
65
66

21

67
20

68
,.

).. 18

18

PIN NO.1 NARK
1234567891011121314151617

270432-4

Figure 2. 80C188 Pinout Diagrams

22-166

intJ 80C188

Table 1. 80C188 Pin Description

Symbol Pin No. Type Name and Function

Vee,Vee 9,43 I System Power: + 5 volt power supply.

Vss, Vss 26,60 I System Ground.

RESET 57 0 Reset Output indicates that the 80C188 CPU is being reset, and can
be used as a system reset. It is active HIGH, synchronized with the
processor clock, and lasts an integer number of clock periods
corresponding to the length of the RES signal. Reset goes inactive 2
clockout periods after RES goes inactive. When tied to the TEST pin,
Reset forces the 80C188 into enhanced mode.

X1, X2 59,58 I Crystal Inputs X1 and X2 provide external connections for a
fundamental mode or third overtone parallel resonant crystal for the
internal oscillator. X1 can connect to an external clock instead of a
crystal. In this case, minimize the capacitance on X2 or drive X2 with
complemented X1. The input or oscillator frequency is internally
divided by two to generate the clock signal (CLKOUT).

CLKOUT 56 0 Clock Output provides the system with a 50% duty cycle waveform.
All device pin timings are specified relative to CLKOUT.

RES 24 I System Reset causes the 80C188 to immediately terminate its
present activity, clear the internal logic, and enter a dormant state.
This signal may be asynchronous to the 80C188 clock. The 80C188
begins fetching instructions approximately 7 clock cycles after RES is
returned HIGH. For proper initialization, Vee must be within
specifications and the clock signal must be stable for more than 4
clocks with RES held LOW. RES is internally synchronized. This input
is provided with a Schmitt-trigger to facilitate power-on RES
generation via an RC network. When RES occurs, the 80C188 will
drive the status lines to an inactive level for one clock, and then float
them.

TEST 47 I The TEST pin is sampled during and after resefto determine whether
the 80C188 is to enter Compatible or Enhanced Mode. Enhanced
Mode requires TEST to be HIGH on the rising edge of RES and LOW
four clocks later. Any other combination will place the 80C188 in
Compatible Mode. A weak internal pullup insures a HIGH state when
the pin is not driven. This pin is examined by the WAIT instruction. If
the TEST input is HIGH when WAIT execution begins, instruction
execution will suspend. TEST will be resampled every five clocks until
it goes LOW, at which time execution will resume. If interrupts are
enabled while the 80C188 is waiting for TEST, interrupts will be
serviced.

TMR INO, 20 I Timer Inputs are used either as clock or control signals, depending
TMR IN 1 21 I upon the programmed timer mode. These inputs are active HIGH (or

LOW-to-HIGH transitions are counted) and internally synchronized.

TMROUTO, 22 0 Timer outputs are used to provide single pulse or continous waveform
TMROUT1 23 0 generation, depending upon the timer mode selected.

22-167

inter 80C188

Table 1. 80C188 Pin Description (Continued)

Symbol Pin No. Type Name and Function

DROO 18 I DMA Request is driven HIGH by an external device when it desires
DR01 19 I that a DMA channel (Channel 0 or 1) perform a transfer. These

signals are active HIGH, level-triggered, and internally synchronized.

NMI 46 I Non-Maskable Interrupt is an edg~-triggered input which causes a
type 2 interrupt. NMI is not maskable internally. A transition from a
LOW to HIGH initiates the interrupt at the next instruction boundary.
NMI is latched internally. An NMI duration of one clock or more will
guarantee service. This input is internally synchronized.

INTO,INT1 45,44 I Maskable Interrupt Requests can be requested by activating one of
I NT211NTAO 42 I/O these pins. When configured as inputs, these pins are active HIGH.
INT311NTA1 41 I/O Interrupt Requests are synchronized internally. INT2 and INT3 may

be configured via software to provide active-LOW interrupt-
acknowledge output signals. All interrupt inputs may be configured
via software to be either edge- or level-triggered. To ensure
recognition,all.interrupt requests must remain activE! until the
interrupt is acknowledged. When slave mode is selected, the
function, of these pins changes (see Interrupt Controller section of
this data sheet).

A19/56, 65 0 Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect
A18/55, 66 0 the four most significant address bits during T 1. These signals are
A17/S4, 67 0 active HIGH. During T 2, T 3, T w, and T 4, status information is
A16/53 68 0 available on these lines as encoded below:

I Low I High

56 , I Processor Cycle I DMACycle

53, 54, and 55 are defined as LOW during T 2-T 4.

A15-A8 1,3,5,7, 0 Address-Only Bus (15-8) contains valid addresses from T 1-T 4. The
10,12, 14,16 bus is active high.

AD7-ADO 2,4,6,8, I/O Address/Data Bus (7 -0) signals constitute the time multiplexed
11,13,16,17 memory or I/O address (T1) and data (T2, T3, Tw, and T4) bus. The

bus is active high.

57/RF5H 64 0 In compatible mode, 57 is high to signify that the 80C188 has an
8-bit bus except during bus HOLD at which time the pin floats.

In Enhanced Mode, 57 will become 57/RFSH in order to ~
DRAM refresh cycles. A refresh cycle is indicated by 57/RF5H
being LOW.

22-168

infef 80C188

Table 1. 80C186 Pin Description (Continued)

Symbol Pin No. Type Name and Function

ALE/QSO 61 0 Address Latch Enable/Queue Status 0 is provided by the 80C188
to latch the address. ALE is active HIGH. Addresses are
guaranteed to be valid on the trailing edge of ALE. The ALE rising
edge is generated off the rising edge of the CLKOUT immediately
preceding T1 of the associated bus cycle. effectively one-half clock
cycle earlier than in the standard 8088. The trailing edge is
generated off the CLKOUT rising edge in T1 as in the 8088. Note
that ALE is never floated.

WR/QS1 63 0 Write Strobe/Queue Status 1 indicates that the data on the bus is
to be written into a memory or an I/O device. WR is active for T 2.
T 3. and T w of any write cycle. It is active LOW. and floats during
"HOLD." It is driven HIGH for one clock during Reset. and then
floated. When the 80C188 is in queue status mode. the ALE/QSO
and WR/QS1 pins provide information about processor/instruction
queue interaction.

QS1 QSO Queue Operation

0 0 No queue operation
0 1 First opcode byte fetched from

the queue
1 1 Subsequent byte fetched from

the queue
1 0 Empty the queue

RD/QSMD 62 0 Read Strobe indicates that the 80C188 is performing a memory or
I/O read cycle. RD is active LOW for T 2. T 3. and T w of any read
cycle. It is guaranteed not to go LOW in T 2 until after the Address
Bus is floated. RD is active LOW. and floats during "HOLD". RD is
driven HIGH for one clock during Reset. and then the output driver
is floated. A weak internal pull-up mechanism of the RD line holds it
HIGH when the line is not driven. During RESET the pin is sampled
to determine whether the 80C188 should provide ALE. WR and RD.
or if the Queue-Status should be provided. RD should be
connected to GND to provide Queue-Status data.

ARDY 55 I Asynchronous Ready informs the 80C188 that the addressed
memory· space or I/O device will complete a data transfer. The
ARDY input pin will accept an asynchronous input. and is active
HIGH. Only the rising edge is internally synchronized by the
80C188. This means that the falling edge of ARDY must be
synchronized to the 80C188 clock. If connected to Vee. no WAIT
states are inserted. Asynchronous ready (ARDY) or synchronous
ready (SRDY) must be active to terminate a bus cycle. If unused.
this line should be tied LOW to yield control to the SRDY pin.

SRDY 49 I Synchronous Ready must be synchronized externally to the
80C188. The use of SRDY provides a relaxed system-timing
specification on the Ready input. This is accomplished by
eliminating the one-half clock cycle which is required for internally
resolving the signal level when using the ARDY input. This line is
active HIGH. If this line is connected to Vee. no WAIT states are
inserted. Asynchronous ready (ARDY) or synchronous ready
(SRDY) must be active before a bus cycle is terminated. If unused.
this line should be tied LOW to yield control to the ARDY pin.

22-169

intJ 80C188

Table 1. 80C188 Pin Description (Continued)

Symbol Pin No. Type Name and Function

LOCK 48 a LOCK output indicates that other system bus masters are not to gain
control of the system bus while LOCK is active LOW. The LOCK
signal is requested by the LOCK prefix instruction and is activated at
the beginning of the first data cycle associated with the instruction
following the LOCK prefix. It remains active until the completion of
the instruction following the LOCK prefix. No prefetches will occur
while LOCK is asserted. LOCK is active LOW, is driven HIGH for one
clock during RESET, and then floated.

SO, S1, S2 52-54 0 Bus cycle status SO-S2 are encoded to provide bus-transaction
information:

80C188 Bus Cycle Status Information

S2 81 80 Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 Halt
1 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

The status pins float during HOLD/HLDA.
S2 may be used as a logical MilO indicator, and S1 as a DT /R"
indicator.
The status lines are driven HIGH for one clock during Reset, and
then floated until a bus cycle begins.

HOLD (input) 50 I HOLD indicates that another bus master is requesting the local bus.
HLDA (output) 51 0 The HOLD input is active HIGH. HOLD may be asynchronous with

respect to the 80C188 clock. The 80C188 will issue a HLDA (HIGH)
in response to a HOLD request at the end of T 4 or Tj. Simultaneous
with the issuance of HLDA, the 80C188 will float the local bus and
control lines. After HOLD is detected as being LOW, the 80C188 will
lower HLDA. When the 80C188 needs to run another bus cycle, it will
again drive the local bus and control lines.

In Enhanced Mode, HLDA willgo low when a DRAM refresh cycle is
pending in the 80C188 and an external bus master has control of the
bus. It will be up to the external master to relinquish the bus by
lowering HOLD so that the 80C188 may execute the refresh cycle.
Lowering HOLD for four clocks and returning HIGH will insure only
one refresh cycle to the external master. HLDA will immediately go
active after the refresh cycle has taken place.

UCS 34 0 Upper Memory Chip Select is an active LOW output whenever a
memory reference is made to the defined upper portion (1 K-256K
block) of memory. This line is not floated during bus HOLD. The
address range activating UCS is software programmable.

UCS and LCS are sampled upon the rising edge of RES. If both pins
are held low, the 80C188 will enter ONCETM Mode. In ONCE Mode
all pins assume a high impedance state and remain so until a
subsequent RESET. UCS has a weak internal pullup for normal
operation.

22-170

intJ 80C188

Table 1. 80C188 Pin Description (Continued)

Symbol Pin No. Type Name and Function

LCS 33 0 Lower Memory Chip Select is active LOW whenever a
memory reference is made to the defined lower portion (1 K-
256K) of memory. This line is not floated during bus HOLD.
The address range activating LCS is software
programmable.

UCS and LCS are sampled upon the rising edge of RES. If
both pins are held low, the 80C186 will enter ONCE Mode. In
ONCE Mode all pins assume a high im~ance state and
remain so until a subsequent RESET. LCS has a weak
internal pullup for normal operation.

MCSO-3 38,37,36,35 0 Mid-Range Memory Chip Select signals are active LOW
when a memory reference is made to the defined mid-range
portion of memory (8K-512K). These lines are not floated
during bus HOLD. The address ranges activating MCSO-3
are software programmable.

PCSO 25 0 Peripheral Chip Select signals 0-4 are active LOW when a

PCS1-4 27,28,29,30 0
reference is made to the defined peripheral area (64K byte
1/0 space). These lines are not floated during bus HOLD.
The address ranges activating PCSO-4 are software
programmable.

PCS5/A1 31 0 Peripheral Chip Select 5 or Latched A1 may be programmed
to provide a sixth peripheral chip select, or to provide an
internally latched A 1 signal. The address range activating
PCS5 is software programmable. When programmed to
provide latched. A 1, rather than PCS5, this pin will retain the
previously latched value of A 1 during a bus HOLD. A 1 is
active HIGH.

PCS6/A2 32 0 Peripheral Chip Select 6 or Latched A2 may be programmed
to provide a seventh peripheral chip select, or to provide an
internally latched A2 signal. The address range activating
PCS6 is software programmable. When programmed to
provide latched A2, rather than PCS6, this pin will retain the
previously latched value of A2 during a bus HOLD. A2 is
active HIGH.

DTIR 40 0 Data Transmit/Receive controls the direction of data flow
through the external 8286/8287 data bus transceiver. When
LOW, data is transferred to the 80C1 88. When HIGH the
80C188 places write data on the data bus.

DEN 39 0 Data Enable is provided as an 8286/8287 data bus
transceiver output enable. DEN is active LOW during ~ch
memory and 1/0 access. DEN is HIGH whenever DT IR
changes state.

22-171

inter 80C188

FUNCTIONAL DESCRIPTION

Introduction

The following Functional Description describes the
base architecture of the 80C188. This architecture is
common to the 8086, 8088, 80186 and 80286 micro­
processor families as well. The 80C188 is a very
high integration 16-bit microprocessor. It combines
15-20 of the most common microprocessor system
components onto one chip. The 80C188 is object
code compatible with the 8086/8088 microproces­
sors and adds 1 0 new instruction types to the exist­
ing 8086/8088 instruction set.

The 80C188 has two major modes of operation,
Compatible and Enhanced. In Compatible Mode the
80C188 is completely compatible with NMOS
80188, with the exception of 8087 support. All pin
functions, timings, and drive capabilities are identi­
cal. The Enhanced mode adds two new features to
the system design. These are Power-Save control
and Dynamic RAM refresh.

80C188 BASE ARCHITECTURE

The 8086, 8088, 80186, and 80286 families all con­
tain the same basic set of registers, instructions, and
addressing modes. The 80C188 processor is up­
ward compatible with the 8086, 8088, and 80286
CPUs.

Register Set

The 80C188 base architecture has fourteen regis­
ters as shown in Figures 3a and 3b. These registers
are grouped into the following categories.

General Registers

Eight 16-bit general purpose registers may be used
to contain arithmetic and logical operands. Four of

these (AX, BX, CX, and OX) can be used as 16-bit
registers or split into pairs of separate 8-bit registers.

Segment Registers

Four 16-bit special purpose registers select, at any
given time, the segments of memory that are imme­
diately addressable for code, stack, and data. (For
usage, refer to Memory Organization.)

Base and Index Registers

Four of the general purpose registers may also be
used to determine offset addresses of operands in
memory. These registers may contain base address­
es or indexes to particular locations within a seg­
ment. The addressing mode selects the specific reg­
isters for operand and address calculations.

Status and Control Registers

Two 16-bit special purpose registers record or .alter
certain aspects of the 80C188 processor state.
These are the Instruction Pointer Register, which
contains the offset address of the next sequential
instruction to be executed, and the Status Word
Register, which contains status and control flag bits
(see Figures 3a and 3b).

Status Word Description

The Status Word records specific characteristics of
the result of logical and arithmetic instructions (bits
0, 2, 4, 6, 7, and 11) and controls the operation of
the 80C186 within a given operating mode (bits 8, 9,
and 10). The Status Word Register is 16-bits wide.
The function of the Status Word bits is shown in
Table 2.

22-172

inter

BYTE
ADDRESSABLE
(8-BIT
REGISTER
NAMES
SHOWN)

16·BIT
REGISTER

NAME

1
:
cx

BX

BP

I

D I

SP

15

o 7

AH AL

DH DL

CH CL

BH BL

GENERAL
REGISTERS

SPECIAL
REGISTER
FUNCTIONS

MULTIPLY/DIVIDE
I/O INSTRUCTIONS

80C188

LOOP/SHIFT IREPEAT IcaUNT

BASE REGISTERS

INDEX REGISTERS

) STACK POINTER

15

CS

~ DS

SS

ES

SEGMENT REGISTERS

15

F

I IP

STATUS AND CONTROL
REGISTERS

Figure 3a. 80C188 Register Set

STATUS FLAGS:

CODE SEGMENT SELECTOR

DATA SEGMENT SELECTOR

STACK SEGMENT SELECTOR

EXTRA SEGMENT SELECTOR

STATUS WORD

INSTRUCTION POINTER

CARRY -----------_____________ -,

PARITY :============~===l---l AUXILIARY CARRY
ZERO

CONTROL FLAGS:

l_~=~====== TRAP FLAG
INTERRUPT ENABLE
DIRECTION FLAG

~ INTEL RESERVED 270432-5

Figure 3b. Status Word For,mat

22-173

inter 80C188

Table 2. Status Word Bit Functions Instruction Set
Bit

Name
Position

0 CF

2 PF

4 AF

6 ZF

7 SF

8 TF

9 IF

10 OF

11 OF

Function

Carry Flag-Set on high-order .
bit carry or borrow; cleared
otherwise

Parity Flag-Set if low-order 8
bits of result contain an even
number cif 1-bits; cleared
otherwise

Set on carry from or borrow to
the low order four. bits of AL;
cleared otherwise

Zero Flag-Set if result is zero;
cleared otherwise

Sign Flag-Set equal to high-
order bit of result (0 if positive,
1 if negative)

Single Step Flag--Once set, a
sirigle step interrupt occurs
after the next instruction
executes. TF is cleared by the
single step interrupt.

Interrupt-enable Flag~When
set, maskable interrupts will
cause the CPU to transfer
control to an interrupt vector
specified location.

Direction Flag~auses string
instructions to auto decrement
the appropriate index' register
when set. Clearing OF causes
auto increment.

Overflow Flag-Set if the
signed result cannot be
expressed within the number
of bits in the destination
operand; cleared otherwise

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/logical, string
manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are
summarized in Figure 4.

An 80C188 instruction can reference anywhere from
zero to several operands. An operand can reside in
a register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later
in this data sheet.

Memory Organization

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K
(216) 8-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a 16-
bit base segment and a 16-bit offset. The 16-bit
base values are contained in one of four internal
segment register (code, data, stack, extra). The
physical address is calculated by shifting the base
value LEFT by four bits and adding the 16-bit offset
value to yield a 20-bit physical address (see Figure
5). This allows for a 1 MByte physical address size.

All instructions that address operands in memory
must specify the base segment and the 16-bit offset
value. For speed and compact instruction encoding,
the segment register used for physical address gen­
eration is implied by.the addressing mode used (see
Table 3). These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the impliCit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.

22-174

80C188

GENERAL PURPOSE MOVS Move byte or word string

MOV Move byte or word INS Input bytes or word string
PUSH Push word onto stack OUTS Output bytes or word string
POP Pop word off stack

CMPS Compare byte or word string
PUSHA Push all registers on stack

SCAS Scan byte or word string
POPA Pop all registers from stack

XCHG Exchange byte or word
LODS Load byte or word string

XLAT Translate byte
STOS Store byte or word string

INPUT/OUTPUT REP Repeat

IN Input byte or word REPE/REPZ Repeat while equal/zero

OUT Output byte or word REPNE/REPNZ Repeat while not equal/not zero

ADDRESS OBJECT LOGICALS

LEA Load effective address NOT "Not" byte or word

LOS Load pointer using OS
AND "And" byte or word

LES Load pointer using ES
OR "Inclusive or" byte or word

FLAG TRANSFER
XOR "Exclusive or" byte or word

TEST "Test" byte or word
LAHF Load AH register from flags SHIFTS
SAHF Store AH register in flags SHLISAL Shift logical/arithmetic left byte or word

PUSHF Push flags onto stack SHR Shift logical right byte or word

POPF Pop flags off stack SAR Shift arithmetic right byte or word

ADDITION ROTATES

ADD Add byte or word ROL Rotate left byte or word

ADC Add byte or word with carry ROR Rotate right byte or word

INC Increment byte or word by 1
RCL Rotate through carry left byte or word

AAA ASCII adjust for addition
RCR Rotate through carry right byte or word

DAA Decimal adjust for addition
FLAG OPERATIONS

SUBTRACTION
STC Set carry flag

SUB Subtract byte or word
CLC Clear carry flag

SBB Subtract byte or word with borrow
CMC Complement carry flag

DEC Decrement byte or word by 1
STD Set direction flag

NEG Negate byte or word
CLD Clear direction flag

CMP Compare byte or word
STI Set interrupt enable flag

AAS ASCII adjust for subtraction
CLI Clear interrupt enable flag

DAS Decimal adjust for subtraction
EXTERNAL SYNCHRONIZATION

MULTIPLICATION
HLT Halt until interrupt or reset

MUL Multiply byte or word unsigned
WAIT Wait for TEST pin active

IMUL Integer multiply byte or word
ESC Escape to extension processor

AAM ASCII adjust for multiply
LOCK Lock bus during next instruction

DIVISION
NO OPERATION

DIV Divide byte or word unsigned
NOP No operation

IDIV Integer divide byte or word
HIGH LEVEL INSTRUCTIONS

AAD ASCII adjust for division
ENTER Format stack for procedure entry

CBW Convert byte to word
LEAVE Restore stack for procedure exit

CWO Convert word to doubleword
BOUND Detects values outside prescribed range

Figure 4. 80C188 Instruction Set

22-175

inter 80C188

CONDITIONAL TRANSFERS JO Jump if overflow

JAlJNBE Jump if above/not below nor equal JP/JPE Jump if parity/parity even

JAE/JNB Jump if above or equal/not below JS Jump if sign

JB/JNAE Jump if below/not above nor equal UNCONDITIONAL TRANSFERS

JBE/JNA Jump if below or equal/not above CALL Cal.1 procedure

JC Jump if carry RET Return from procedure

JE/JZ Jump if equal/zero JMP Jump

JG/JNLE Jump if greater/not less nor equal ITERATION CONTROLS

JGE/JNL Jump if greater or equal/not less LOOP Loop

JLlJNGE Jump if less/not greater nor equal LOOPE/LOOPZ Loop if equal/zero

JLE/JNG Jump if less or equal/not greater LOOPNE/LOOPNZ Loop if not equal/not zero

JNC Jump if not carry JCXZ Jump if register CX = 0

JNE/JNZ Jump if not equal/not zero INTERRUPTS

JNO Jump if not overflow INT Interrupt

JNP/JPO Jump if not parity/parity odd INTO • Interrupt if overflow

JNS Jump if not sign IRET Interrupt return

Figure 4. 80C188 Instruction Set (Continued)

To access operands that do not reside in one of the
four immediately available segments, a full 32-bit
pointer can be used to reload both the base (seg­
ment) and· offset values.

tSH1FT LEFT 4 BITS I I SEGMENT}
15 1 2 3 4 0 BASE LOGICAL I, 2 3 4 i 0 I ,.--__ .., ADDRESS

19 t· 0 _ 0 0 2 2JOFFSET

r-~!:~!:~.o--.J:!15:::::J1 0 L~' 0 • 15
PHYSICAL ADDRESS

19

TO MEMORY

270432-6

Figure 5. Two Component Address

Table 3. Segment Register Selection Rules

Memory Segment Implicit Segment Reference Register Selection Rule
Needed Used

Instructions Code (CS) Instruction prefetch and
immediate data.

Stack Stack (55) All stack pushes and
pops; any memory
references which use BP
Register as a base
register.

External Extra (ES) All string instruction
Data references which use
(Global) the 01 register as an

index.
Local Data Data (OS) All other data references.

22-176

r---'

~I CODE.1

MODULE A .

DATA

MODULE B 1==--+-.,

PROCESS
STACK

PROCESS
DATA
BLOCK 1

PROCEssD DATA
BLOCK 2

1 1 L ___ J

MEMORY

CPU

coDe

DATA

STACK

EXTRA

SEGMENT
REGISTERS

270432-7

Figure 6. Segmented Memory Helps
Structure Software

80C188

Addressing Modes

The 80C188 provides eight categories of addressing
modes to specify operands. Two addressing modes
are provided for instructions that operate on register
or immediate operands:

• Register Operand Mode: The operand is located
in one of the 8- or 16-bit general registers.

• Immediate Operand Mode: The operand is in­
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicitly
chosen by the addressing mode or explicitly chosen
by a segment override prefix. The offset, also called
the effective address, is calculated by summing any
combination of the following three address ele­
ments:

• the displacement (an 8- or 16-bit immediate value
contained in the instruction);

• the base (contents of either the BX or BP base
registers); and

• the index (contents of either the SI or 01 index
registers).

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements de­
fine the six memory addressing modes, described
below.

• Direct Mode: The operand's offset is contained in
the instruction as an 8- or 16-bit displacement el­
ement.

• Register Indirect Mode: The operand's offset is in
one of the registers SI, 01, BX, or BP.

• Based Mode: The operand's offset is the sum of
an 8- or 16-bit displacement and the contents of
a base register (BX or BP).

• Indexed Mode: The operand's offset is the sum
of an 8- or 16-bit displacement and the contents
of an index register (SI or 01).

• Based Indexed Mode: The operand's offset is the
sum of the contents of a base register and an
Index register.

• Based indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8- or
16-bit displacement.

Data Types

The 80C188 directly supports the following data
types:

• Integer: A signed binary numeric value contained
in an 8-bit byte or a 16-bit word. All operations
assume a 2's complement representation.

• Ordinal: An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word.

• Pointer: A 16- or 32-bit quantity, composed of a
16-bit offset component or a 16-bit segment base
component in addition to a 16-bit offset compo­
nent.

• String: A contiguous sequence of bytes or words.
A string may contain from 1 to 64K bytes.

• ASCII: A byte representation of alphanumeric and
control characters using the ASCII standard of
character representation.

• BCD: A byte (unpacked) representation of the
decimal digits 0-9.

• Packed BCD: A byte (packed) representation of
two decimal digits (0-9). One digit is stored in
each nibble (4-bits) of the byte.

In general, individual data elements must fit within
defined segment limits. Figure 7 graphically repre­
sents the data types supported by the 80C188.

I/O Space

The I/O space consists of 64K 8-bit or 32K 16-bit
ports. Separate instructions address the 1/0 space
with either an 8-bit port address, specified in the in­
struction, or a 16-bit port address in the OX register.
8-bit port addresses are zero extended such that
A1S-As are LOW. 1/0 port addresses 00F8(H)
through OOFF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to
allow resumption of the interrupted program. Inter­
rupts fall into three classes: hardware initiated, INT
instructions, and instruction exceptions. Hardware
initiated interrupts occur in response to an external
input and are classified as non-maskable or maska­
ble.

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction
processing, is detected while attempting to execute
an instruction. If the exception was caused by at­
tempted execution of an ESC instruction, the return
instruction will point to the ESC instruction, or to the
segment override prefix immediately preceding

22-177

inter
7 0

SIGNED I'T"T""1
SYTE~

SIGN SIT.JL--..J

MAGNITUDE

7 0
UNSIGNED rrnTT'"l

SYTEL:......J
,L.MSS ,

MAGNITUDE

+1 0
1514 S 7 0

S~~~~ II ' ii' iii i , , Iii, I
SIGN SIT.J, ... L.~M~S~S ==--'

MAGNITUDE

+1 0
15 0

UNS~~~~ I ' i , Iii, I ' , iii, i I
,L.MSS ,.

MAGNITUDE

+N +1 o
7 0 7 07 0

BINARY,rrnTT'"l I ii 'I Ii i I :" I " i I
CODEDL:......J ••• _ '. _

DECIMAL SCD S .. C;.,D -SC-D
(BCD) DIGIT N DIGIT 1 DIGIT 0

+N +1 o
7 0 7 07 0

ASCIIE:] ••• 1'"1"'1'"1'"1

ASCII ASC)! ASCII
CHARACTERN CHARACTER, CHARACTERO

+N +1 o
7 0 7 07 0

PAC~~~E:] ••• 1" 11" 'I' "1"'1

L.J L.J
MOST 'LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT

+N +1 0
715'0 71507150

STRINGE:] ••• 1" 11" T "1"'1

SYTE/WORD N SYTE/WORD 1 SYTE/WORD 0

+3 +2 +1 0
31 1615 0

POINTER IIII1IIII i , , III , Ii' II' IIIIII1I i II

I ., I

SELECTOR OFFSET
270432-8.

Figure 7, 80C188 Supported Data Types

80C188

the ESC instruction if the prefix was present. In all
other cases, the return address from an exception
will point at the instruction immediately following the
instruction causing the exception.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the
BOC1 BB predefined types and default priority levels.
For each interrupt, an B-bit vector must be supplied
to the BOC1 B6 which identifies the appropriate table
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and noncas­
caded external interrupts will generate their own
vectors through the internal interrupt controller. INT
instructions contain or imply the vector and allow
access to all 256 interrupts. Maskable hardware ini­
tiated interrupts supply the B-bit vector to the CPU
during an interrupt acknowledge' bus sequence.
Non-maskable hardware intetruptl1 use a predefined
internally supplied vector.

Interrupt Sources
The BOC1 BB can service interrupts generated by
software or hardware. The software interrupts are
generated by specific instructions (I NT, ESC, unused
OP, etc.) or the results of conditions specified by
instructions (array bounds check, INTO, OIV, 10lV,
etc.). All interrupt sources are serviced by an indirect
call through an element of a vector table. This vector
table is indexed by using the interrupt vector type
(Table 4), multiplied by four. All hardware-generated
interrupts are sampled at the end of each instruc­
tion. Thus, the software interrupts will begin service
first. Once the service routine is entered and inter­
rupts are enabled, any hardware source of sufficient

. priority can interrupt the serVice routine in progress.

The software generated BOC1BB interrupts are de-
scribed below. .

DIVIDE EJ:lROR EXCEPTION (TYPE 0)

Generated when a OIV or 10lV instruction quotient
cannot be expressed in the number of bits in the
destination.

SINGLE·STEP INTERRUPT (TYPE 1)

Generated after most instructions if the TF flag is
set. Interrupts will not be generated after prefix in­
structions (e.g., REP), instructions which modify seg­
ment registers (e.g., POP OS), or the WAIT instruc­
tion.

NON·MASKABLE INTERRUPT-NMI (TYPE 2)

An external interrupt source which cannot be
. masked.

22-17B

80C188

Table 4. 80C188 Interrupt Vectors

Interrupt Vector Default Related
Name Type Priority Instructions

Divide Error 0 '1 DIV,IDIV
Exception

Single Step 1 12** All
Interrupt

NMI 2 1 All
Breakpoint 3 '1 INT

Interrupt
I NTO Detected 4 '1 INTO

Overflow
Exception

Array Bounds 5 '1 BOUND
Exception

Unused-Opcode 6 '1 Undefined
Exception Opcodes.

ESCOpcode 7 *1 *** ESCOpcodes
Exception

Timer 0 Interrupt 8 2A*'"
Timer 1 Interrupt 18 2B
Timer 2 Interrupt 19 2C .. ••
Reserved 9 3
DMA 0 Interrupt 10 4
DMA 1 Interrupt 11 5
INTO Interrupt 12 6
INTi Interrupt 13 7
INT2 Interrupt 14 8
INT3 Interrupt 15 9

NOTES:
'1. These are generated as the result of an instruction exe­
cution.
"2. This is handled as in the 8088 .
• ,. '3. All three timers constitute one source of request to
the interrupt controller. The Timer interrupts all have the
same default priority level with respect to all other interrupt
sources. However, they have a defined priority ordering
amongst themselves. (Priority 2A is higher priority than 2B.)
Each Timer interrupt has a separate vector type number.
4. Default priorities for the interrupt sources are used only if
the user does not program each source into a unique prior­
ity level.
•• '5. An escape opcode will cause a trap regardless of the
80C188 operating mode.

BREAKPOINT INTERRUPT (TYPE 3)

A one-byte version of the INT instruction. It uses 12
as an index into the service routine address table
(because it is a type 3 interrupt).

INTO DETECTED OVERFLOW EXCEPTION
(TYPE4)

Generated during an INTO instruction if the OF bit is
set.

ARRAY BOUNDS EXCEPTION (TYPE 5)

Generated during a BOUND instruction if the array
index is outside the array bounds. The array bounds
are located in memory at a location indicated by one
of the instruction operands. The other operand Jndi­
cates the value of the index to be checked.

UNUSED OPCODE EXCEPTION (TYPE 6)

Generated if execution is attempted on undefined
opcodes.

ESCAPE OPCODE EXCEPTION (TYPE 7)

Generated if execution is attempted of ESC opcodes
(D8H-DFH). The 80Ci88 does not check an escape
opcode trap bit as does the 80C186. On the
80C188, ESC traps occcui' in both compatible and
enhanced operating modes. The return address of
this exception will point to the ESC instruction caus­
ing the exception. If a segment override prefix pre­
ceded the ESC instruction, the return address will
point to the segment override prefix.

Hardware-generated interrupts are divided into two
groups: maskable interrupts and non-maskable in­
terrupts. The 80C188 provides maskable hardware
interrupt request pins INTO-INT3. In addition, mask­
able interrupts may be generated by the 80C188 in­
tegrated DMA controller and the integrated timer
unit. The vector types for these interrupts is shown
in Table 4. Software enables these inputs by setting
the interrupt flag bit (IF) in the Status Word. The in­
terrupt controller is discussed in the peripheral sec­
tion of this data sheet.

Further maskable interrupts are disabled while serv­
icing an interrupt because the IF bit is reset as part
of the response to an interrupt or exception. The
saved Status Word will reflect the enable status of
the processor prior to the interrupt. The interrupt flag
will remain zero unless specifically set. The interrupt
return instruction restores the Status Word, thereby
restoring the original status of IF bit. If the interrupt
return re-enables interrupts, and another interrupt is
pending, the 80C188 will immediately service the
highest-priority interrupt pending, i.e., no instructions
of the main line program wfll be executed.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt (NMI) is also provided.
This interrupt is serviced regardless of the state of
the IF bit. A typical use of NMI would be to activate a
power failure routine. The activation of this input
causes an interrupt with an internally supplied vector
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the
beginning of an NMI interrupt to prevent maskable
interrupts from being serviced.

22-179

intJ 80C188

Single-Step Interrupt

The 80C188 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is
called the single-step interrupt and is controlled by
the single-step flag bit (TF) in the Status Word. Once
this bit is set, an internal single-step interrupt will
occur after the next instruction has been executed.
The interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc­
tion to be single-stepped.

Initialization and Processor Reset

Processor initialization or startup is accomplished by
driving the RES input pin LOW. RES forces the
80C188 to terminate all execution and local bus ac­
tivity. No instruction or bus activity will occur as long
as RES is active. After RES becomes inactive and
an internal processing interval elapses, the 80C188
begins execution with the instruction at physical lo­
cation FFFFO(H). RES also sets some registers to
predefined values as shown in Table 5.

Table 5. 80C188 Initial Register
State after RESET

Status Word
Instruction Pointer
Code Segment
Data Segment
Extra Segment
Stack Segment
Relocation Register
UMCS

F002(H)
OOOO(H)
FFFF(H)
OOOO(H)
OOOO(H)
OOOO(H)
20FF(H)
FFFB(H)

THE 80C188 COMPARED TO THE
80C186

The 80C188 is an 8-bit processor designed based
on the 80C188 internal structure. Most internal func­
tions of the 80C188 are identical to the equivalent
80C186 functions. The 80C188 handles the external
bus the same way the 80C186 does with the distinc­
tion of handling only 8 bits at a time. Sixteen-bit op­
erands are fetched or written in two consecutive bus
cycles. The processors will look the same to the
software engineer, with the exception of execution
time. The internal register structure is identical and
all instructions except numerics instructions have
the same end result. Internally, there are four differ­
ences between the 80C188 and the 80C186. All
changes are related to the 8-bit bus interface.

• The queue length is 4 bytes in the 80C188,
whereas the 80C186 queue contains 6 bytes, or
three words. The queue was shortened to pre­
vent overuse of the bus by the BIU when pre­
fetching instructions. This was required because
of the additional time necessary to fetch instruc­
tions 8 bits at a time.

• To further optimize the queue, the prefetching al­
gorithm was changed. The 80C188 BIU will fetch
a new instruction to load into the queue each
time there is a 1-byte hole (space available) in the
queue. The 80C186 waits until a 2-byte space is
available.

• The internal execution time of an instruction is
affected by the 8-bit interface. All 16-bit fetches
and writes from/to memory take an additional
four clock cycles. The CPU may also be limited
by the rate of instruction fetches when a series of
simple operations' occur. When the more sophisti­
cated instructions of the 80C188 are being used,
the queue has more time to fill and the execution
proceeds more closely to the speed at which the
execution unit will allow.

• The 80C188 does not have a numerics interface,
since the 80C186 numerics interface inherently
requires 16-bit communication with the numerics
coprocessor.

The 80C188 and 80C186 are completely software
compatible (except for numerics instructions) by vir­
tue of their identical execution units. However, soft­
ware that is system dependent may not be com­
pletely transferable.

The bus interface and associated control signals
vary somewhat between the two processors. The
pin assignments are nearly identical, with the follow­
ing functional changes:

• A8-A 15-These pins are only address outputs
on the 80C188. These address lines are latched
internally and remain valid throughout the bus cy­
cle.

• BHE has no meaning on the 80C188. However, it
was necessary to designate this pin the
S7/RFSH pin in order to provide an indication of
DRAM refresh bus cycles. .

80C188 CLOCK GENERATOR

The 80C188 provides an on-chip clock generator for
both internal and external clock generation. The
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous
ready inputs, and reset circuitry.

Oscillator

The 80C188 oscillator circuit is designed to be used
either with a parallel resonant fundamental or third­
overtone mode crystal, depending upon the frequen­
cy range of the application as shown in Figure 8c.
This is used as the time base for the 80C188. The
crystal frequency chosen should be twice the re­
quired processor frequency. Use of an LC or RC cir­
cuit is not recommended.

22-180

80C188

The output of the oscillator is not directly available
outside the BOC1 BB. The two recommended crystal
configurations are shown in Figure Ba. When used in
third-overtone mode the tank circuit shown in Figure
Bb is recommended for stable operation. The sum of
the stray capacitances and loading capacitors
should equal the values shown. It is advisable to lim­
it stray capacitance between the X1 and X2 pins to
less than 10 pF. While a fundamental-mode circuit
will require approximately 1 ms for start-up, the third­
overtone arrangement may require 1 ms to 3 ms to
stabilize.

Alternately the oscillator pins may be driven from an
external source in a configuration shown in Figure
Bd or Figure Be. The configuration shown in Figure
Bf is not recommended.

The following parameters may be used for choosing
a crystal:

Temperature Range:
ESR (Equivalent Series Resistance):
Co (Shunt Capacitance of Crystal):
C1 (Load Capacitance):
Drive Level:

Clock Generator

o to 70DC
400 max

7.0 pF max
20 pF ± 2 pF

1 mWmax

The BOC1 BB clock generator provides the 50% duty
cycle processor clock for the BOC1 BB. It does this by

dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the
state of the clock generator will change on the fail­
ing edge of the oscillator signal. The CLKOUT pin
provides the processor clock signal for use outside
the BOC1 BB. This may be used to drive other system
components. All timings are referenced to the output
clock.

READY Synchronization

The BOC1 BB provides both synchronous and asyn­
chronous ready inputs. Asynchronous ready syn­
chronization is accomplished by circuitry which sam­
ples ARDY in the middle of T2, T3 and again in the
middle of each T w until ARDY is sampled HIGH.
One-half CLKOUT cycle of resolution time is used.
Full synchronization is performed only on the rising
edge of ARDY; i.e., the falling edge of ARDY must
be synchronized to the CLKOUT signal if it will occur
during T 2, T 3, or T w. High-to-LOW transitions of
ARDY must be performed synchronously to the CPU
clock.

A second ready input (SRDY) is provided to inter­
face with externally synchronized ready signals. This
input is sampled at the end of T 2, T 3 and again at
the end of each T w until it is sampled HIGH. By
using this input rather than the asynchronous ready
input, the half-clock cycle resolution time penalty is
eliminated.

22-1B1

80C188

30pF 30pF

r; {; "",,' ::
DPF 80C188

r: ~ ""''' ::
D~F ~ 80C18S'

(Ba) -=- ~Nole 1

J
3:200PF

NOTE:
XTAL Frequency L 1 Value

20 MHz 12.0/LH ±20%
25 MHz 8.2/LH ± 20%
32 MHz 4.7/LH ±20% -270432-9

-
(Bb) 270432-10

Recommended Cryslal Mode I' Third-Overlone
1;"---;'1 Fundamenla�-----+j 'I

1 1 1
Desired CPU Frequency 10MHz 12.5MHz 16MHz

(Be) 270432-11

c::EEx~lier~n~aIDc~lo~C~kJs~o~u~rcie:>------------~Xl

X2
(Bd) 80C188

270432-12

-F Xl 1c::IE~xti.r~n~ol~C~IO~Ck~so~u~rc~.:>--_r--------~Xl

I """>C_)---!X2
'"""V BOC188

,.E~x~le~r~no~I..,C:l"lo~c~k -:=S,..ou,..r,..ce~>-- X2

80C188

(Be) 270432-13
(Bf) 270432-14

(DO NOT USE)

Figure 8. 80C188 Oscillator Configurations (see text)

22-182

intJ 80C188

This input must satisfy set-up and hold times to guar­
antee proper operation of the circuit.

In addition, the 80C188, as part of the integrated
chip-select logic, has the capability to program WAIT
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select!Ready Logic description.

RESET Logic

The 80C188 provides both a RES input pin and a
synchronized RESET pin for use with other system
components. The RES input pin on the 80C188 is
provided with hysteresis in order to facilitate power­
on Reset generation via an RC network. RESET is
guaranteed to remain active for at least five clocks
given a RES input of at least six clocks. RESET may
be delayed up to two and one-half clocks behind
RES.

Multiple 80C188 processors may be synchronized
through the RES input pin, since this input resets
both the processor and divide-by-two internal coun­
ter in the clock generator. In order to insure that the
divide-by-two counters all begin counting at the
same time, the active going edge of RES must satis­
fy a 25 ns setup time before the falling edge of the
80C188 clock input. In addition, in order to insure
that all CPUs begin executing in the same clock cy­
cle, the reset must satisfy a 15 ns setup time before
the rising edge of the CLKOUT signal of all the proc­
essors.

LOCAL BUS CONTROLLER

The 80C188 provides a local bus controller to gener­
ate the local bus control signals. In addition, it em­
ploys a HOLD/HLDA protocol for relinquishing the
local bus to other bus masters. It also provides con­
trol lines that can be used to enable external buffers
and to direct the flow of data on and off the local
bus.

Memory/Peripheral Control

The 80C188 provides ALE, RD, and WR bus control
signals. The RD and WR signals are used to strobe
data from memory to the 80C188 or to strobe data
from the 80C188 to memory. The ALE line provides
a strobe to address latches for the multiplexed ad­
dress/data bus. The 80C188 local bus controller
does not provide a memory/I/O signal. If this is re­
quired, the user will have to use the S2 signal (which
will require external latching), make the memory and
I/O spaces nonoverlapping, or use only the integrat­
ed chip-select circuitry.

Transceiver Control

The 80C188 generates two control signals to be
connected to external transceiver chips. This capa­
bility allows the addition of transceivers for extra
buffering with~t add~external logic. These con­
trol lines, DT IR and DEN, are generated to control
the flow of data through the transceivers. The opera­
tion of these signals is shown in Table 6.

Table 6. Transceiver Control Signals Description

Pin Name Function

DEN (Data Enable) Enables the output
drivers of the
transceivers. It is active
LOW during memory,
I/O, or INTA cycles.

DT /A (Data Transmit! Determines the direction
Receive) of travel through the

transceivers. A HIGH
level directs data away
from the processor
during write operations,
while a LOW level directs
data toward the
processor during a read
operation.

Local Bus Arbitration

The 80C188 uses a HOLD/HLDA system of local
bus exchange. This provides an asynchronous bus
exchange mechanism. This means multiple masters
utilizing the same bus can operate at separate clock
frequencies. The 80C188 provides a single HOLD/
HLDA pair through which all other bus masters may
gain control of the local bus. This requires external
circuitry to arbitrate which external device will gain
control of the bus from the 80C188 when there is
more than one alternate local bus master. When the
80C188 relinquishes control of the local bus, it floats
DEN, RD, WR, SO-S2, LOCK, ADO-AD7, A8-A19,
S7/RFSH, and DT /A to allow another master to
drive these lines directly.

The 80C188 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a
function of the activity occurring in the processor
when the HOLD request is received. A HOLD re­
quest is the highest-priority activity request which
the processor may receive: higher than instruction
fetching or internal DMA cycles. However, if a DMA
cycle is in progress, the 80C188 will complete the
transfer before relinquishing the bus. This implies
that if a HOLD request is received just as a DMA
transfer begins, the HOLD latency time can be as
great as 4 bus cycles. This will occur if a DMA word
transfer operation is taking place from an odd ad-

22-183

80C188

dress to an odd address. This is a total of 16 clocks
or more, if WAIT states are required. In addition, if
locked transfers are performed, the HOLD latency
time will be increased by the length of the locked
transfer.

Local Bus Controller and Reset

Upon receipt of a RESET pulse from the RES input,
the local bus controller will perform the following ac­
tion:

• Drive DEN, RD, and WR HIGH for one clock cy­
cle, then float.

NOTE:
RD is also provided with an internal pull-up device
to prevent the processor from inadvertently enter­
ing Queue Status mode during reset.

• Drive SO-S2 to the passive state (all HIGH) and
then float.

• Drive LOCK HIGH and then float.

• Float ADO-AD?, A8-A19, S?/RFSH, DT/R.

• Drive ALE LOW (ALE is never floated).

• Drive HLDA LOW.

INTERNAL PERIPHERAL INTERFACE

All the 80C188 integrated peripherals are controlled
via 16-bit registers contained within an internal
256-byte control block. This control block may be
mapped into either memory or I/O space. Internal
logic will recognize the address and respond to the
bus cycle. During bus cycles to internal registers, the
bus controller will signal the operation externally
(Le., the RD, WR, status, address, data, etc., lines
will be driven as in a normal bus cycle), but D15-0,
SRDY, and ARDY will be ignored. The base address
of the control block must be on an even 256-byte
boundary (Le., the lower 8 bits of the base address
are all zeros). All of the defined registers within this
control block may be read or written by the 80C188
CPU at any time. The location of any register con­
tained within the 256-byte control block is deter­
mined by the current base address of the control
block.

The control block base address is programmed via a
16-bit relocation register contained within the control
block at offset FEH from the base address of the
control block (see Figure 9). It provides the upper 12
bits of the base address of the control block. The
control block is effectively an internal chip select
range and must abide by all the rules concerning
chip selects (the chip select circuitry is discussed
later in this data sheet). Any access to the 256 bytes
of the control block activates an internal chip select.

Other chip selects may overlap the control block
only if they are programmed to zero wait states and
ignore external ready. In addition, bit 12 of this regis­
ter determines whether the control block will be
mapped into I/O or memory space. If this bit is 1, the
control block will be located in memory space,
whereas if the bit is O,the control block will be locat­
ed in I/O space. If the control register block is
mapped into I/O space, the upper 4 bits of the base
address must be programmed as 0 (since I/O ad­
dresses are only 16 bits wide).

In addition to providing relocation information for the
control block, the relocation register contains bits
which place the interrupt controller into slave mode.
At RESET, the relocation register is set to 20FFH.
This causes the control block to start at FFOOH in
I/O space. An offset map of the 256-byte control
register block is shown in Figure 10.

The integrated 80C188 peripherals operate semi-au­
tonomously from the CPU. Access to them for the
most part is via software read/write of the control
block. Most of these registers can be both read and
written. A few dedicated lines, such as interrupts and
DMA request provide real-time communication be­
tween the CPU and peripherals as in a more con­
ventional system utilizing discrete peripheral blocks.
The overall interaction and function of the peripheral
blocks has not substantially changed.

CHIP-SELECT/READY GENERATION
LOGIC

The 80C188 contains logic which provides program­
mable chip-select generation for both memories and
peripherals. In addition, it can be programmed to
provide READY (or WAIT state) generation. It can
also povide latched address bits A 1 and A2. The
chip-select lines are active for all memory and I/O
cycles in their programmed areas, whether they be
generated by the CPU or by the integrated DMA unit.

Memory Chip Selects

The 80C188 provides 6 memory chip select outputs
for 3 address areas; upper memory, lower memory,
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory.

The range for each chip select is user-programma­
ble and can be set to 2K, 4K, 8K, 16K, 32K, 64K,
128K (plus 1 K and 256K for upper and lower chip
selects). In addition, the beginning or base address

22-184

inter 80C188

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
OFFSET: FEH I X ISLAVE/MASTERI X IMliol Relocation Address Bits R19-R8

MilO - Register block located in Memory /110 Space (I/O)
SLAVE/MASTER = Configures interrupt controller for Slave/Master Mode (I/O)

Figure 9. Relocation Register

Relocation Register

DMA DeSCriptors Channel 1

DMA Descriptors Channel 0

Chip-Select Controi Registers

TIme 2 Control Registers

Time 1 Control Registers

Time 0 Control Registers

Interrupt Controller Registers

OFFSET

FEH

DAH

DOH

CAH

COH

A8H

AOH

66H

SOH
5EH

58H

56H

50H

3EH

20H

Figure 10. Internal Register Map

of the midrange memorY chip' select may also be
selected. Only one chip select may be programmed
to be active for any memory location at a time; All
chip select sizes are in bytes, whereas 80C188
memory is arranged in words. This means that if, for
example, 16 64K x 1 memories are used, the memo­
ry block size will be 128K, not 64K.

Upper Memory CS

The 80C188 provides a chip select, called UCS, for
the top of memory. The top of memory is usually
used as the system memory because after reset the
80C188 begins executing at memory location
FFFFOH.

The upper limit of memory defined by this chip select
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of
the select block is also defined. Table 7 shows the
relationship between the base address selected and.
the size of the memory block obtairied.

Table 7. UMCS Programming Values

Starting
Memory UMCSValue

Address
{Base

Block (Assuming

Address)
Size RO=R1=R2=0)

FFCOO 1K FFF8H
FF800 2K FFB8H
FFOOO 4K FF38H
FEOOO 8K FE38H
FCOOO 16K FC38H
F8000 32K F838H
FOOOO 64K F038H
EOOOO 128K E038H
COOOO 256K C038H

The lower limit of this memory block is defined in the
UMCS register (see Figure 11). This register is at
offset AOH in the internal control block. The legal
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7.
Any combination of bits 6-13 not shown in Table 7
will result in undefined operation. After reset, the
UMCS register is programmed for a 1 K area. It must
be reprogrammed if a larger upper memory area is
desired.

Any internally generated 20-bit address whose up­
per 16 bits are greater than 9r equal to UMCS (with
bits 0-5 "0") will cause UCS to be activated. UMCS
bits R2-RO are used to specify READY mode for the
area of memory defined by this chip-select register,
as explained below.

.Lower Memory CS

The 80C188 provides a chip select for low memory
called LCS. The bottom of memory contains the in­
terrupt vector table, starting at location OOOOOH.

22-185

inter 80C188

The lower limit of memory defined by this chip select
is always OH, while the upper limit is programmable.
8y programming the upper limit, the size of the
memory block is also defined. Table S shows the
relationship between the upper address selected
and the size of the memory block obtained.

Table 8. LMCS Programming Values

Upper
Memory LMCSValue

Address
Block (Assuming
Size RO=R1=R2=O)

003FFH 1K 003SH
007FFH 2K 007SH
OOFFFH 4K OOFSH
01FFFH SK 01FSH
03FFFH 16K 03FSH
07FFFH 32K 07FSH
OFFFFH 64K OFFSH
1FFFFH 12SK 1FFSH
3FFFFH 256K 3FFSH

The upper limit of this memory block is defined in the
LMCS register (see Figure 12). This register is at
offset A2H in the internal control block. The legal
values for bits 6-15 and the resulting upper address
and memory block sizes are given in Table S. Any
combination of bits 6-15 not shown in Table S will
result in undefined operation. After reset, the LMCS
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS
register is accessed.

Any internally generated 20-bit address whose up­
per 16 bits are less than or equal to LMCS (with bits
0-5 "1 ")will cause LCS to be active. LMCS register
bits R2-RO are used to specify the READY mode for
the area of memory defined by this chip-select regis­
ter.

Mid-Range Memory CS

The SOC1SS provides four MCS lines which are ac­
tive within a user-locatable memory block. This
block can be located within the SOC1SS 1 M byte
memory address space exclusive of the areas de­
fined by UCS and LCS. 80th the base ad-

15 14 13 12 11 10
OFFSET: AOH I 1 I u I u I u I u I

A19

9
u I

dress and size of this memory block are programma­
ble.

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is deter­
mined by bits S'-14 of the MPCS register (see Figure
13). This register is at location ASH in the internal
control block. One and only one of bits S-14 must
be set at a time. Unpredictable operation of the MCS
lines will otherwise occur. Each of the four chip-se­
lect lines is active for one of the four equal contigu­
ous divisions of the mid-range block. Thus, if the to­
tal block size is 32K, each chip select is active for SK
of memory with MCSO being active for the first range
and MCS3 being active for the last range.

The EX and MS in MPCS relate to peripheral func­
tionally as described in a later section.

Table 9. MPCS Programming Values

Total Block Individual MPCSBits
Size Select Size 14-8

SK 2K 00000018
16K 4K 00000108
32K SK 00001008
64K 16K 00010008
12SK 32K 00100008
256K 64K 01000008
512K 12SK 10000008

The base address of the mid-range memory block is
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal
control block. These bits correspond to bits
A 19-A 13 of the 20-bit memory address. 8its
A 12-AO of the base address are always O. The base
address may be set at any integer multiple of the
size of the total memory block selected. For exam­
ple, if the mid-range block size is 32K (or the size of
the block for which each MCS line is active is SK),
the block could be located at 10000H or 1S000H,
.but not at 14000H, since the first few integer multi­
ples of a 32K memory block are OH, SOOOH,
10000H, 1S000H, etc. After reset, the contents of
both of these registers is undefined. However, none
of the MCS lines will be active until both the MMCS
and MPCS registers are accessed.

8 6 5 4 3 2 1 0
u I u I u 1 I 1 I 1 I R2 I Rl I RO I

All

Figure 11. UMCSReglster

15 14 13 12 11 10 9 B 7 6 4 3 2 1 0
OFFSET: A2H I 0 I 0 I u I u I u I u I u I u I u I u I 1 I 1 I 1 I R2 I Rl I RO I

A19 All

Figure 12. LMCS Register

22-1S6

80C188

15 14 13 12 11 10 9 S 7 6 4 3 2 1 0

OFFSET: ASH I 1 I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1 I 1 I 1 I R2 I R1 I RO I

Figure 13. MPCS Register

15 9 3 0

OFFSET: A6H I u I u I u I u I u I u I u I 1 1 I 1 I R2 I R1 I RO I
A19 A13

Figure 14. MMCS Register

MMCS bits R2-RO specify READY mode of opera­
tion for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT
states.

The 512K block size for the mid-range memory chip
selects is a special case. When using 512K, the
base address would have to be at either locations
OOOOOH or 80000H. If it were to be programmed at
OOOOOH when the LCS line was programmed, there
would be an internal conflict between the LCS ready
generation logic and the MCS ready generation log­
ic. Likewise, if the base address were programmed
at 80000H, there would be a conflict with the UCS
ready generation logic. Since the LCS chip-select
line does not become active until programmed, while
the UCS line is active at reset, the memory base can
be set only at OOOOOH. If this base address is select­
ed, however, the LCS range must not be pro­
grammed.

Peripheral Chip Selects

The 80C188 can generate chip selects for up to sev­
en peripheral devices. These chip selects are active
for seven contiguous blocks of 128 bytes above a
programmable base address. This base address
may be located in either memory or 1/0 space.

Seven CS lines called PCSO-6 are generated by the
80C188. The base address is user-programmable;

however it can only be a multiple of 1 K bytes, i.e.,
the least Significant 10 bits of the starting address
are always O.

PCS5 and PCS6 can also be programmed to provide
latched address bits A 1, A2. If so programmed, they
cannot be used as peripheral selects. These outputs
can be connected directly to the AO, A1 pins used
for selecting internal registers of 8-bit peripheral
chips. This scheme simplifies the hardware interface
because the 8-bit registers of peripherals are simply
treated as 16-bit registers located on even bounda­
ries in 1/0 space or memory space where only the
lower 8-bits of the register are significant: the upper
8-bits are "don't cares."

The starting address of the peripheral chip-select
block is defined by the PACS register (see Figure
15). This register is located at offset A4H in the inter­
nal control block. Bits 15-6 of this register corre­
spond to bits 19-10 of the 20-bit Programmable
Base Address (PBA) of the peripheral chip-select
block. Bits 9-0 of the PBA of the peripheral chip-se­
lect block are all zeros. If the chip-select block is
located in 1/0 space, bits 12-15 must be pro­
grammed zero, since the 1/0 address is only 16 bits
wide. Table 10 shows the address range of each
peripheral chip select with respect to the PBA con­
tained in PACS register.

. 15 6 5 3 0

OFFSET: A4H I u I u I u I u I u I u I u I u I u I u I 1 I 1 I 1 I R2 I R1 I RO I
A19 A10

Figure 15. PACS Register

22-187

inter 80C188

The user should program bits 15-6 to correspond to
the desired peripheral base location. PACS bits 0-2
are used to specify READY mode for PCSO-PCS3.

Table 10. PCS Address Ranges

PCS Line Active between Locations

PCSO PBA -PBA+127
PCS1 PBA + 128-PBA + 255
PCS2 PBA + 256-PBA + 383
PCS3 PBA + 384-PBA + 511
PCS4 PBA + 512-PBA + 639
PCS5 PBA + 640-PBA + 767
PCS6 PBA + 768~PBA + 895

The mode of operation of the peripheral chip selects
is defined by the MPCS register (which is also used
to set the size of the mid-range memory chip-select
block, see Figure 13). This register is located at off­
set A8H in the internal control block. Bit 7 is used to
select the function of PCS5 and PCS6, while bit 6 is
used to select whether the peripheral chip selects
are mapped into memory or I/O space. Table 11
describes the programming of these bits. After reset,
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines
will be active until both of the MPCS and PACS reg­
isters are accessed.

Table 11. MS, EX Programming Values

Bit Description

MS 1 = Peripherals mapped into memory space.
D = Peripherals mapped into I/O space.

EX o = 5 PCS lines. A 1, A2 provided.
1 = 7 PCS lines. A 1, A2 are not provided.

MPCS bits 0~2 are used to specify READY mode for
PCS4-PCS6 as outlined below.

READY Generation Logic

The 80C188 can generate a "READY" signal inter­
nally for each of the memory or peripheral CS lines.
The number of WAIT states to be inserted for each
peripheral or memory is programmable to provide
0-3 wait states for all accesses to the area for
which the chip select is active. In addition, the
80C188 may be programmed to either ignore exter­
nal READY for each chip-select range individually or
to factor external READY with the integrated ready
generator.

READY control consists of 3 bits for each CS line or
group of li!1es generated by the 80C188. The inter­
pretation of the ready bits is shown in Table 12.

Table 12. READY Bits Programming

R2 R1 RO Number of WAIT States Generated

0 0 0 o wait states, external ROY
also used.

0 0 1 1 wait state inserted, external ROY
also used.

0 1 0 2 wait states inserted, external ROY
also used.

0 1 1 3 wait states inserted, external ROY
also used.

1 0 0 o wait states, external ROY
ignored.

1 0 1 1 wait state inserted, external ROY
. ignored.

1 1 0 2 wait states inserted, external ROY
ignored.

1 1 1 3 wait states inserted, external ROY
ignored.

The internal ready generator operates in parallel
with external READY, not in series if the external
READY is used (R2 = 0). This means, for example,
if the internal generator is set to insert two wait
states, but activity on the external READY lines will
insert four wait states, the processor will only insert
four wait states, not six. This is because the two wait
states generated by the internal generator over­
lapped the first two wait states generated by the ex­
ternal ready signal. Note that the external ARDY and
SRDY lines are always ignored during cycles ac­
cessing internal peripherals.

R2-RO of each control word specifies the READY
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS
set the PCSO-3 READY mode, R2-RO of MPCS set
the PCS4-6 READY mode.

Chip Select/Ready Logic and Reset

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions:

• All chip-select outputs will be driven HIGH.

• Upon leaving RESET, the UCS line will be pro­
grammed to provide chip selects to a 1 K block
with the accompanying READY control bits set at
011 to allow the maximum number of internal wait
states in conjunction with external Ready consid­
eration (I.e., UMCS resets to FFFBH).

• No other chip select or READY control registers
have any predefined values after RESET. They
will not become active until the CPU accesses
their control registers. Both the PACS and MPCS
registers must be accessed before the PCS lines
will become active.

22-188

intJ 80C188

DMA CHANNELS

The 80C188 DMA controller provides two indepen­
dent DMA channels. Data transfers can occur be­
tween memory and liD spaces (e.g., Memory to liD)
or within the same space (e.g., Memory to Memory
or liD to liD). Each DMA channel maintains both a
20-bit 'source and destination pointer which can be
optionally incremented or decremented after each
data transfer. Each data transfer consumes 2 bus
cycles (a minimum of 8 clocks), one cycle to fetch
data and the other to store data.

DMA Operation

Each channel has six registers in the control block
which define each channel's specific operation. The
control registers consist of a 20-bit Source pointer (2
words), a 20-bit destination pointer (2 words), a
16-bit Transfer Counter, and a 16-bit Control Word.
The format of the DMA Control Blocks is shown in
Table 13. The Transfer Count Register (TC) speci-

fies the number of DMA transfers to be performed.
Up to 64K byte or word transfers can be performed
with automatic termination. The Control Word de­

Jines the channel's operation (see Figure 17). All
registers may be modified or altered during any DMA
activity. Any changes made to these registers will be
reflected immediately in DMA operation.

Table 13. DMA Control Block Format

Register Name

Control Word
Transfer Count
Destination Pointer (upper 4

bits)
Destination Pointer
Source Pointer (upper 4 bits)
Source Pointer

DMA
CONTROL

LOGIC

TIMER REQUEST

Register Address

Ch.O Ch.1

CAH DAH
C8H D8H
C6H D6H

C4H D4H
C2H D2H
COH DOH

270432-15

Figure 16. DMA Unit Block Diagram

22-189

infef 80C188

12 11 10

MI SOURCE
10 DEC INC

Figure 17. DMA Control Register

DMA Channel Control Word Register

Each DMA Channel Control Word determines the
mode of operation for the particular 80C188 DMA
channel. This register specifies:

• the mode of synchronization;

• whether interrupts will be generated after the last
transfer;

• whether DMA activity will cease after a pro­
grammed number of DMA cycles;

• the relative priority of the DMA channel with re­
spect to the other DMA channel;

• whether the source pointer will be incremented,
decremented, or maintained constant after each
transfer;

• whether the source pointer addresses memory or
1/0 space;

• whether the destination pointer will be increment­
ed, decremented, or maintained constant after
each transfer; and

• whether the destination pointer will address
memory or 1/0 space.

The DMA channel control registers may be changed
while the channel is operating. However, any chang­
es made during operation will affect the current DMA
transfer.

DMA Control Word Bit Descriptions

ST/STOP:

CHGINOCHG:

INT:

TC:

Start/stop (1/0) Channel.

Change/Do not change (1/0)
ST ISTOP bit. If this bit is set when
writi~ the control word, the
ST ISTOP bit will be programmed
by the write to the control word. If
this bit is cleared when writing the
control word, the ST ISTOP bit will
not be altered. This bit is not
stored; it will always be a a on
read.

Enable Interrupts to CPU on
Transfer Count termination.

If set, DMA will terminate when
the contents of the Transfer Count

SYN

(2 bits)

register reach zero. The ST ISTOP
bit will also be reset at this point if
TC is set. If this bit is cleared, the
DMA unit will decrement the trans­
fer count register for each DMA
cycle, but the DMA transfer will
not stop when the contents of the
TC register reach zero.
00 No synchronization.

NOTE:

When unsynchronized transfers
are specified, the TC bit will be ig­
nored and the ST bit will be
cleared upon the transfer count
reaching zero, stopping the chan­
nel.

01 Source synchronization.

10 Destination synchronization.

11 Unused.

SOURCE:INC· Increment source pointer by 1 af­
ter each transfer.

DEST:

P

TDRQ

Bit3

MilO Source pointer is in MilO space
(1/0).

DEC Decrement source pointer by 1 af­
ter each transfer.

INC Increment destination pointer by 1
after each transfer.

MilO Destination pointer is in MilO
space (1/0).

DEC Decrement destination pointer by
1 after each transfer.

Channel priority-relative to other
channel.

a low priority.

1 high priority.

Channels will alternate cycles if
both set at same priority level.

0: Disable DMA requests from tim­
er 2.

1: Enable DMA requests from tim­
er 2.

Bit 3 is not used.

22-190

inter 80C188

If both INC and DEC are specified for the same
pointer, the pointer will remain constant after each
cycle.

DMA Destination and Source Pointer
Registers

Each DMA channel maintains a 20-bit source and a
20-bit destination pointer. Each of these pointers
takes up two full .16-bit registers in the peripheral
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical
address (see Figure 18). These pointers may be indi­
vidually incremented or decremented after each
transfer. Each pointer may point into either memory
or I/O space. Since the DMA channels can perform
transfers to or from odd addresses, there is no re­
striction on values for the pointer registers. Higher
transfer rates can be obtained if all word transfers
are performed to even addresses, since this will al­
low data to be accessed in a single memory access.

DMATransfer Count Register

Each DMA channel maintains a 16-bit transfer count
register (TC). This register is decremented after ev­
ery DMA cycle, regardless of the state of the TC bit
in the DMA Control Register. If the TC bit in the PMA
control word is set or if unsynchronized transfers are
programmed, however, DMA activity will terminate
when the transfer count register reaches zero.

HIGHER
REGISTER
ADDRESS

LOWER
REGISTER
ADDRESS

xxx

A15-A12

15

DMA Requests

Data transfers may be either source or destination
synchronized, that is either the source of the data or
the destination of the data may request the data
transfer. In addition, DMA transfers may be unsyn­
chronized; that is, the transfer will take place contin­
ually until the correct number of transfers has oc­
curred. When source or unsynchronized transfers
are performed, the DMA channel may begin another
transfer immediately after the end of a previous
DMA transfer. This allows a complete transfer to
take place every 2 bus cycles or eight clock cycles
(assuming no wait states). No prefetching occurs
when destination synchronization is performed, how­
ever. Data will not be fetched from the source ad­
dress until the destination device signals that it is
ready to receive it. When destination synchronized
transfers are requested, the DMA controller will re­
linquish control of the bus after every transfer. If no
other bus activity is initiated, another DMA cycle will
begin after two processor clocks. This is done to
allow the destination device time to remove its re­
quest if another transfer is not desired. Since the
DMA controller will relinquish the bus, the CPU can
initiate a bus cycle. As a result, a complete bus cycle
will often be inserted between destination synchro­
nized transfers. These lead to the maximum DMA
transfer rates shown in Table 14.

Table 14. Maximum DMA
Transfer Rates at 16 MHz

Type of
Synchronization CPU Running CPU Halted

Selected

Unsynchronized 2.0 MBytes/sec 2.0 MBytes/sec
Source Synch 2.0 MBytes/sec 2.0 MBytes/sec
Destination Synch 1.3 MBytes/sec 1.6 MBytes/sec

XXX XXX A19-A16

All-AS A7-A4 A3-AD

D

XXX = DON'T CARE

Figure 18. DMA Memory Pointer Register Format

22-191

inter 80C188

DMA Acknowledge

No explicit DMA acknowledge pulse is provided.
Since both source and destination pointers are
maintained, a read from a requesting source, or a
write to a requesting destination, should be used as
the DMA acknowledge signal. Since the chip-select
lines can be programmed to be active for a given
block of memory or I/O space, and the DMA point­
ers can be programmed to point to the same given
block, a Chip-select line could be used to indicate a
DMA acknowledge.

DMA Priority

The DMA channels may be programmed such that
one channel is always given priority over the other,
or they. may be programmed such as to alternate
cycles when both have DMA requests pending. DMA
cycles always have priority over internal CPU cycles
except between locked memory accesses; however,
an external bus hold takes priority over an internal
DMA cycle. Because an interrupt request cannot
suspend a DMA operation and the CPU cannot ac­
cess memory during a DMA cycle, interrupt latency
time will suffer during sequences of continuous DMA
cycles. An NMI request, however, will cause all inter­
nal DMA activity to halt. This allows the. CPU to
quickly respond to the NMI request.

DMA Programming

DMA cycles will occur whenever the ST /STOP bit of
the Control Register is set. If synchronized transfers

nMERD

are programmed, a DRQ must also have been gen­
erated. Therefore the source and destination trans­
fer pointers, and the transfer count register (if used)
must be programmed before this bit is set.

Each DMA register may be modified while the chan­
nel is operating. If the CHG/NOCHG bit is cleared
when the control register is written, the ST /STOP bit
of the control register will not be modified by the
write. If multiple channel registers are modified, it is
recommended that a LOCKED. string transfer be
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers.

DMA Channels and Reset

Upon RESET, the DMA channels will perform the
following actions:

• The Start/Stop bit for each channel will be reset
to STOP.

• Any transfer in progress is aborted.

TIMERS

The 80C188 provides three internal 16-bit program­
mable timers (see Figure 19). Two of these are high­
ly flexible and are connected to four external pins (2
per timer).. They can be used to count external
events, time external events, generate nonrepetitive
waveforms, etc. The third. timer is not connected to
any external pins, and is useful for real-time coding
and time delay applications. In addition, this third
timer can be used as a prescaler to the other two, or
as a DMA request source.

DMA
REO.

CLOCK

I-,-..,.,..,""::;""",,.,.,.,::f CLOCK MAX COUNT YAWE MAX COUNT YAWE

ALL 11 lIT REGIITERS

I
MODEICONTFIOL

WORD

INTERNAL ADDRESS/DATA IUS

Figure 19. Timer Block Diagram

22-192

270432-16

80C188

Timer Operation

The timers are controlled by 11 16-bit registers in
the internal peripheral control block. The configura­
tion of these registers is shown in Table 15. The
count register contains the current value of the tim­
er. It can be read or written at any time independent
of whether the timer is running or not. The value of
this register will be incremented for each timer
event. Each of the timers is equipped with a MAX
COUNT register, which defines the maximum count
the timer will reach. After reaching the MAX COUNT
register value, the timer count value will reset to zero
during that same clock, i.e., the maximum count val­
ue is never stored in the count register itself. Timers
o and 1 are, in addition, equipped with a second
MAX COUNT register, which enables the timers to
alternate their count between two different MAX
COUNT values programmed by the user. If a single
MAX COUNT register is used, the timer output pin
will switch LOW for a single clock, 1 clock after the
maximum count value has been reached. In the dual
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use,
thus allowing nearly complete freedom in selecting
waveform duty cycles. For the timers with two MAX
COUNT registers, the RIU bit in the control register
determines which is used for the comparison.

Each timer gets serviced every fourth CPU-Glock cy­
cle, and thus can operate at speeds up to one-quar­
ter the internal clock frequency (one-eighth the crys­
tal rate). External clocking of the timers may be done
at up to a rate of one-quarter of the internal CPU­
clock rate. Due to internal synchronization and pipe­
lining of the timer circuitry, a timer output may take
up to 6 clocks to respond to any individual clock or
gate input.

15 14 13 12 11

EN INH INT RIU o

Since the count registers and the maximum count
registers are all 16 bits wide, 16 bits of resolution are
provided. Any Read or Write access to the timers will
add one wait state to the minimum four-clock bus
cycle, however. This is needed to synchronize and
coordinate the internal data flows between the inter­
nal timers and the internal bus.

The timers have several programmable options. -

• All three timers can be set to halt or continue on
a terminal count.

• Timers 0 and 1 can select between internal and
external clocks, alternate between MAX COUNT
registers and be set to retrigger on external
events.

• The timers may be programmed to cause an in­
terrupt on terminal count.

These options are selectable via the timer model
control word.

Timer Mode/Control Regist~r

The mode/control register (see Figure 20) allows
the user to program the specific mode of operation
or check the current programmed status for any of
the three integrated timers.

Table 15. Timer Control Block Format

Register Name
Register Offset

Tmr.O Tmr.1 Tmr.2

Mode/Control Word 56H 5EH 66H
Max Count B 54H 5CH not present
Max Count A 52H 5AH 62H
Count Register 50H 58H .60H

5 4 3 2 0
MC RTG p EXT ALT I CONT I

Figure 20. Timer Mode/Control Register

22-193

inter 80C188

ALT:

The AL T bit determines which of two MAX COUNT
registers is used for count comparison. If AL T = 0,
register A for that timer is always used, while if AL T
= 1, the comparison will alternate between register
A and register B when each maximum count is
reached. This alternation allows the user to change
one MAX COUNT register while. the other is being
used, and thus provides a method of generating
non-repetitive waveforms. Square waves and pulse
outputs of any duty cycle are a subset of available
signals obtained by not changing the final count reg­
isters. The AL T bit also determines the function of
the timer output pin. If AL T is zero, the output pin will
go LOW for one clock, the clock after the maximum
count is reached. If AL T is one, the output pin will
reflect the current MAX COUNT register being used
(0/1 for B/ A).

CONT:

Setting the CONT bit causes the associated timer to
run continuously, while resetting it causes the timer
to halt upon maximum count. If COUNT = 0 and
AL T = 1, the timer will count to the MAX COUNT
register A value, reset; count to the register B value,
reset, and halt.

EXT:

The external bit selects between internal and exter­
nal clocking for the timer. The external signal may
be asynchronous with respect to the 80C188 clock.
If this .bit is set, the timer will count LOW-to-HIGH
transitions on the input pin. If cleared, it will count an
internal clock while using the input pin for control. In
this mode, the function of the external pin is defined
by the RTG bit. The maximum input to output tran­
sition latency time may be as much as 6 clocks.
However, clock inputs may be pipe lined as closely
together as every 4 clocks without losing clock puls­
es.

P:

The prescaler bit is ignored unless internal clocking
has been selected (EXT = 0). If the P bit is a zero,
the timer will count at one-fourth the internal CPU
Clock rate. If the P bit is a one, the output of timer 2
will be used as a clock for the timer. Note that the
user must initialize and start timer 2 to obtain the
prescaled clock. .

RTG:

Retrigger bit is only active for internal clocking (EXT
= 0). In this case it determines the control function
provided by the input pin.

If RTG = 0, the input level gates the internal clock
on and off. If the input pin is HIGH, the timer will
count; if the input pin is LOW, the timer will hold its
value. As indicated previously, the input signal may
be asynchronous with respect to the 80C188 clock.

When RTG = 1, the input pin detects LOW-to-HIGH
transitions. The first such transition starts the timer
running, clearing the timer value to zero on the first
clock, and then incrementing thereafter. Further
transitions on the input pin will again reset the timer
to zero, from which it will start counting up again. If
CONT = 0, when the timer has reached maximum
count, the EN bit will be cleared, inhibiting further
timer activity.

EN:

The enable bit provides programmer control over
the timer's RUN/HALT status, When set, the timer is
enabled to increment subject to the input pin con­
straints in the internal clock mode (discussed previ­
ously). When cleared, the timer will be inhibited from
counting. All input pin transistions during the time EN
is zero will be ignored. If CONT is zero, the EN bit is
automatically cleared upon maximum count.

INH: .

The inhibit bit allows for selective updating of the
enable (EN) bit. If INH is a one during the write to.the
mode/control word, then the state of the EN bit will
be modified by the write. If INH is a zero during the
write, the EN bit will be unaffected by the operation.
This bit is not stored; it will always be a 0 on a read.

INT:

When set, the INT bit enables interrupts from the
timer, which will be generated on every terminal
count. If the timer is configured in dual MAX COUNT
register mode, an interrupt will be generated each
time the value in MAX COUNT register A is reached,
and each time the value in MAX COUNT register Bis .
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced, the interrupt request will still
be inforce. (The request is latched in the Interrupt
Controller).

MC:

The Maximum Count bit is set whenever the timer
reaches its final maximum count value. If the timer is
configured in dual MAX COUNT register mode, this
bit will be set each time the value in MAX COUNT
register A is reached, and each time the value in
MAX COUNT register B is reached. This bit is set

22-.194

80C188

regardless of the timer's interrupt-enable bit. The
MC bit gives the user the ability to monitor timer
status through software instead of through inter­
rupts.

Programmer intervention is required to clear this bit.

RIU:

The Register In Use bit indicates which MAX
COUNT register is currently being used for compari­
son to the timer count value. A zero value indicates
register A. The RIU bit cannot be written, i.e., its
value is not affected when the control register is writ­
ten. It is always cleared when the AL T bit is zero.

Not all mode bits are provided for timer 2. Certain
bits are hardwired as indicated below:

ALT = 0, EXT = 0, P = 0, RTG = 0, RIU = a

Count Registers

Each of the three timers has a 16-bit count register.
. The current contents of this register may be read or
written by the processor at any time. If the register is
written into while the timer is counting,the new value
will take effect in the current count cycle.

Max Count Registers

Timers 0 and 1 have two MAX COUNT registers,
while timer 2 has a single MAX COUNT register.
These contain the number of events the timer will
count. In timers 0 and 1, the MAX COUNT register
used can alternate between the two max count val­
ues whenever the current maximum count is
reached. The condition which causes a timer to re­
set is equivalent between the current count value
and the max count being used. This means that if
the count is changed to be above the max count
value, or if the max count value is changed to be
below the current value, the timer will not reset to
zero, but rather will count to its maximum value,
"wrap around" to zero, then count until the max
count is reached.

Timers and Reset

Upon RESET, the Timers will perform the following
actions:

• All EN (Enable) bits are reset preventing timer
counting.

• All SEL (Select) bits are reset to zero. This se­
lects MAX COUNT register A, resulting in the
Timer Out pins going HIGH upon RESET.

INTERRUPT CONTROLLER

The 80C188 can receive interrupts from a number of
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on
a priority basis, for individual service by the CPU.

Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers
or by mask bits within the interrupt controller. The
80C188 interrupt controller has its own control regis­
ter that set the mode of operation for the controller.

The interrupt controller will resolve priority among
requests that are pending simultaneously. Nesting is
provided so interrupt service routines for lower priori­
ty interrupts may themselves be interrupted by high­
er priority interrupts. A block diagram of the interrupt
controller is shown in Figure 21.

The 80C188 has a special slave mode in which the
internal interrupt controller acts as a slave to an ex­
ternal master. The controller is programmed into this
mode by setting bit 14 in the peripheral control block
relocation register. (See Slave Mode section.)

MASTER MODE OPERATION

Interrupt Controller External Interface

For external interrupt sources, five dedicated pins
are provided. One of these pins is dedicated to NMI,
non-maskable interrupt. This is typically used for
power-fail interrupts, etc. The other four pins may
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line
and an interrupt acknowledge line (called the "cas­
cade mode") along with two other input lines with
internally generated interrupt vectors, or as two in­
terrupt inpllt lines and two dedicated interrupt ac­
knowledge output lines. When the interrupt lines are
configured in cascade mode, the 80C188 interrupt
controller will not generate internal interrupt vectors.

External sources in the cascade mode use external­
ly generated interrupt vectors. When an interrupt is
acknowledged, two INTA cycles are initiated and the
vector is read into the 80C188 on the second cycle.
The capability to interface to external 82C59A pro­
grammable interrupt controllers is thus provided
when the inputs are configured in cascade mode.

22-195

intJ 80C188

Interrupt Controller Modes of
Operation

The basic modes of operation of the interrupt con­
troller in master mode are similar to the 82C59A.
The interrupt controller responds indentically to,in­
ternal interrupts in all three modes: the difference is
only in the interpretation of function of the four exter­
nal interrupt pins. The interrupt controller is set into
one of these three modes by programming the cor­
rect bits in the INTO and INTi control registers. The
modes of interrupt controller operation are as fol-
lows: '

Fully Nested Mode

When in the fully nested mode four pins are used as
direct interrupt requests as in Figure 22. The vectors
for these four inputs are generated internally'. An in­
service bit is provided for every interrupt source. If a
lower-priority device requests an interrupt while the
in service bit (IS) is set, no interrup~ will be generat­
ed by the interrupt controller. In addition, if another
interrupt request occurs from the same interrupt
source while the in-service bit is set, no interrupt will
be generated by the interrupt controller. This allows
interrupt service routines to operate with interrupts
enabled without being themselves interrupted by
lower-priority interrupts. Since interrupts are en­
abled, higher-priority interrupts will be serviced.

When a service routine is completed, the proper IS
bit must be reset by writing the proper pattern to the
EOI register. This is required to allow subsequent
interrupts from this interrupt source and to allow
servicing of lower-priority interrupts. An 'EO I com-

TIMER TIMER TIMER DMA

mand is issued at the end of the service routine just
before the issuance of the return from interrupt in­
struction. If the fully nested structure has been up­
held, the next highest-priority source with its IS bit
set is then serviced.

Cascade Mode

The 80C188 has four interrupt pins and two of them
have dual functions. In the fully nested mode the
four pins are used as direct interrupt inputs and the
correspondii\g vectors are generated internally. In
the cascade mode, the four pins are configured into
interrupt input-dedicated acknowledge signal pairs.
The interconnection is shown in Figure 23. INTO is
an interrupt input interfaced to an 82C59A, while
INT2/1NTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is
true for INTi and INT3/1NTA1. Each pair can selec­
tively be placed in the cascade or non-cascade
mode by programming the proper value into INTO
and INTi control registers. The use of the dedicated
acknowledge signals eliminates the need for the use
of external logic to generate INTA and device select
signals.

The primary cascade mode allows the capability to '
serve up to 128 external interrupt sources through
the use of external master and slave 82C59As.
Three levels of priority are created, requiring priority
resolution in the 80Ci88 interrupt controller, the
master 82C59As, and the slave 82C59As. If an ex­
ternal interrupt is serviced, one IS bit is set at each
pf these levels. When the interrupt service routine is
qompleted, up to three end-of-interrupt commands
must be issued by the programmer. '

0' l' 2 0 INTO INT1 INT2 INT3 NMI

DMAO
CONTRDL REG.

DMA1
CONTROL REG.

EXT. INPUT 0
CONTRDL REG.

EXT.INPUT1
CONTROL REG.

EXT. INPUT 2
CONTROL REG.

INTERRUPT
PRIORITY

RESOLVER

INTERRUPT
REQUEST REG.

INTERRUPT
MASK REG.

1+----+1 IN·SERVICE
REG.

Figure 21_lnterrupt Controller Block Diagram

22-196

270432-17

80C188

INTO

INn

BOC1BB

INT2

INT3

INTERRUPT SOURCE

INTERRUPT SOURCE

INTERRUPT SOURCE

INTERRUPT SOURCE

270432-18

Figure 22. Fully Nested (Direct) Mode
Interrupt Controller Connections

Special Fully Nested Mode

This mode is entered by setting the SFNM bit in
INTO or INT1 control register. It enables complete
nestability with external 82C59A masters. Normally,
an interrupt request from an interrupt source will not
be recognized unless the in-service bit for that
source is reset. If more than one interrupt source is
connected to an external interrupt controller, all of
the interrupts will be funneled through the same
80C188 interrupt request pin. As a result, if the ex­
ternal interrupt controller receives a higher-priority
interrupt, its interrupt will not be recognized by the
80C188 controller until the 80C188 in-service bit is
reset. In special fully nested mode, the 80C188 in­
terrupt controller will allow interrupts from an exter­
nal pin regardless of the state of the in-service bit for
an interrupt source in order to allow multiple inter­
rupts from a single pin. An in-service bit will continue
to be set, however, to inhibit interrupts from other
lower-priority 80C188 interrupt sources.

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines.
Software polling of the external master's IS register
is required to determine if there is more than one bit
set. If so, the IS bit in the 80C188 remains active and
the next interrupt service routine is entered.

Operation in a Polled Environment

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor
disables interrupts and then polls the interrupt con­
troller whenever it is convenient. Polling the interrupt
controller is accomplished by reading the Poll Word
(Figure 32). Bit 15 in the poll word indicates to the
processor that an interrupt of high enough priority is
requesting service. Bits 0:-4 indicate to the proces­
sor the type vector of the highest-priority source re­
questing service. Reading the Poll Word causes the
I n-Service bit of the highest priority source to be set.

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending

interrupt, i.e., not set the indicated in-service bit. The
80C188 provides a Poll Status Word in addition to
the conventional Poll Word to allow this to be done.
Poll Word information is duplicated in the Poll Status
Word, but reading the Poll Status Word does not set
the associated in-service bit. These words are locat­
ed in two adjacent memory locations in the register
file.

Master Mode Features

Programmable Priority

The user can program the interrupt sources into any
of eight different priority levels. The programming is
done by placing a 3-bit priority level (0-7) in the con­
trol register of each interrupt source. (A source with
a priority level of 4 has higher priority over all priority
levels from 5 to 7. Priority registers containing values
lower than 4 have greater priority). All interrupt
sources have preprogrammed default priority levels
(see Table 4).

If two requests with the same programmed priority
level are pending at once, the priority ordering
scheme shown in Table 4 is used. If the serviced
interrupt routine reenables interrupts, it allows other
requests to be serviced.

End-of-Interrupt Command

The end-of-interrupt (EOI) command is used by the
programmer to reset the In-Service (IS) bit when an
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the
EOI register. There are two types of EOI commands,
specific and nonspecific. The nonspecific command
does not specify which IS bit is reset. When issued,
the interrupt controller automatically resets the IS bit
of the highest priority source with an active service
routine. A specific EOI command requires that the
programmer send the interrupt vector type to the in­
terrupt controller indicating which source's IS bit is
to be reset. This command is used when the fully
nested structure has been disturbed or the highest
priority IS bit that was set does not belong to the
service routine in progress.

Trigger Mode

The four external interrupt pins can be programmed
in either edge- or level-trigger mode. The control
register for each external source has a level-trigger
mode (L TM) bit. All interrupt inputs are active HIGH.
In the edge sense mode or the level-trigger mode,
the interrupt request must remain active (HIGH) until
the interrupt request is acknowledged by the

22-197

intJ 80C188

80C188 CPU. In the edge-sense mode, if the level
remains high after the interrupt is acknowledged, the
input is disabled and no further requests will be gen­
erated. The input level must go LOW for at least one
clock cycle to reenable the input. In the level-trigger
mode, no such provision is made: holding the inter­
rupt input HIGH will cause continuous interrupt re­
quests.

Interrupt Vectoring

The 80C186 Interrupt Controller will generate inter­
rupt vectors for the integrated DMA channels and
the integrated Timers. In addition, the Interrupt Con­
troller will generate interrupt vectors for the external
interrupt lines if they are not configured in Cascade
or Special Fully Nested Mode. The interrupt vectors
generated are fixed and cannot be changed (see Ta­
ble 4).

Interrupt Controller Registers

The Interrupt Controller register model is shown in
Figure 24. It contains 15 registers. All registers can
both be read or written unless specified otherwise.

In-Service Register

This register can be read from or written into. The
format is shown in Figure 25. It contains the In-Serv­
ice bit for each of the interrupt sources. The In-Serv­
ice bit is set to indicate that a source's service rou­
tine is.in progress. When an In-Service bit is set, the
interrupt controller will not generate interrupts to the
CPU when it receives interrupt requests from devic­
es with a lower programmed priority level. The TMR
bit is the In-Service bit for all three timers; the DO
and D1 bits are the In-Service bits for the two DMA
channels; the 10-13 are the In-Service bits for the
external interrupt pins. The IS bit is set when the

processor acknowledges an interrupt request either
by an interrupt acknowledge or by reading the poll
register. The IS bit is reset at the end of the interrupt
service routine by an end-of-interrupt command is­
sued by the CPU.

Interrupt Request Register

The internal interrupt sources have interrupt request
bits inside the interrupt controller. The format of this
register is shown in Figure 25. A read from this regis­
ter yields the status of these bits. The TMR bit is the
logical OR of all timer interrupt requests. DO and D1
are the interrupt request bits for the DMA channels.

The state of the external interrupt input pins is also
indicated. The state of the external interrupt pins is
not a stored condition inside the interrupt controller,
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly
when an interrupt request is given to the interrupt
controller, so if edge-triggered mode is selected, the
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources,
the register bits are set when a request arrives and
are reset when the processor acknowledges the re­
quests.

Writes to the interrupt request register will affect the
DO and D1 interrupt request bits. Setting either bit
will cause the corresponding interrupt request while
clearing either bit will remove the corresponding in­
terrupt request. All other bits in the register are read­
only.

Mask Register

This is a 16-bit register that contains a mask bit for
each interrupt source. The format for this register is
shown in Figure 25. A one in a bit position corre-

INTO E8
~ INTERRUPT SOURCES

, -
Vce _ -IEJ- 8259A ~

8259A ~, ,~

80C188

INT1

'--_

- . - . - . · • •

IEJve
e

8, "" ! I: 1= ~ -' 8259A ~

CINTERRUP SOURCES
270432-19

Figure 23. Cascade and Special Fully Nested Mode Interrupt Controller Connections

22-198

80C188

sponding to a particular source serves to mask the
source from generating interrupts. These mask bits
are the exact same bits which are used in the indi­
vidual control registers; programming a mask bit us­
ing the mask register will also change this bit in the
individual control registers, and vice versa.

INT3 CONTROL REGISTER

INT2 CONTROL REGISTER

INT1 CONTROL REGISTER

INTO CONTROL REGISTER

OMA 1 CONTROL REGISTER

OMA 0 CONTROL REGISTER

TIMER CONTROL REGISTER

INTERRUPT STATUS REGISTER

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER

EOI REGISTER.

OFFSET

3EH

3CH

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

26H

24H

22H

Figure 24. Interrupt Controller Registers
(Master Mode)

15 14 10 9 8

I 0 I 0 I • • I 0 o I 0

Priority Mask Register

This register is used to mask all interrupts below par­
ticular interrupt priority levels. The format of this reg­
ister is shown in Figure 26. The code in the lower
three bits of this register inhibits interrupts of priority
lower (a higher priority number) than the code speci­
fied. For example, 100 written into this register
masks interrupts of level five (101), six (110), and
seven (111). The register is reset to seven (111)
upon RESET so no interrupts are masked due to
priority number.

Interrupt Status Register

This register contains general interrupt controller
status information. The format of this register is
shown in Figure 27. The bits in the status register
have the following functions:

DHL T: DMA Halt Transfer; setting this bit halts all
DMA transfers. It is automatically set when­
ever a non-maskable interrupt occurs, and it
is reset when an IRET instruction is execut­
ed. The purpose of this bit is to allow prompt
service of all non-maskable interrupts. This
bit may also be set by the programmer.

IRTx: These three bits represent the individual tim­
er interrupt request bits. These bits are used
to differentiate the timer interrupts, since the
timer IR bit in the interrupt request register is
the "OR" function of all timer interrupt re­
quest. Note that setting anyone of these
three bits initiates an interrupt request to the
interrupt controller.

7 6 5 4 3 2 o
13 12 I 11 10 I 01 DO I TMR I

Figure 25. In-Service, Interrupt Request, and Mask Register Formats

15 14 3 2 1 0

I 0 0 I • • I

Figure 26. Priority Mask Register Format

15 14 765 4 321 0

10HLTI 0 I • o I 0 I 0 o o IIRT2 IIRT1 IIRTO I

Figure 27. Interrupt Status Register Format (Master Mode)

22-199

intJ 80C188

Timer, DMA 0,1; Control Register

These registers are the control words for all the in­
ternal interrupt sources. The format for these regis­
ters is shown in Figure 28. The three bit positions
PRO, PR 1, and PR2 represent the programmablepri­
ority level of the interrupt source. The MSK bit inhib­
its interrupt requests from the interrupt source. The
MSK bits in the individual control registers are the
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also
modify them in the Mask Register, and vice versa.

INTO-INT3 Control Registers

These registers are the control words for the four
external input pins. Figure 29 shows the format of
the INTO and INT1 Control registers; Figure 30
shows the format of the INT2 and INT3 Control reg­
isters. In cascade mode or special fully nested
mode, the control words for INT2 and INT3 are not
used.

The bits in the various control registers are encoded
as follows:

PRO-2: Priority programming information. Highest
Priority = 000, Lowest Priority = 111

L TM: Level-trigger mode bit. 1 = level-triggered;
o = edge-triggered. Interrupt Input levels
are active high. In level-triggered mode, an
interrupt is generated whenever the exter­
nal line is high. In edge-triggered mode, an
interrupt will be generated only when this

15 14

I 0 0 I •

level is preceded by an inactive-to-active
transition on the line. In both cases, the
level must remain active until the interrupt
is acknowledged.

MSK: Mask bit, 1 = mask; 0 = non-mask.

C: Cascade mode bit, 1 = cascade; 0 = di­
rect

SFNM: Special fully nested mode bit, 1 = SFNM

EOI Register

The end of the interrupt register is a command regis­
ter which can only be written into. The format of this
register is shown in Figure 30. It initiates an EOI
command when written to by the 80C188 CPU.

The bits in the EOI register are encoded as follows:

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in Ta­
ble 4. For example, to reset the In-Service
bit for DMA channel 0, these bits should be
set to 01010, since the vector type for DMA
channel 0 is 10.

NOTE:

To reset the single In-Service bit for any of
the three timers, the vector type for timer 0
(8) should be written in this register.

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = O.

43210

I 0 I MSK I PR2 I PR1 I PRO I

Figure 28. Timer/DMA Control Registers Formats

15 14 76543210

I 0 I 0 I • o ISFNMI c I LTM I MSK I PR2 I PR1 I PRO I

Figure 29. INTO/l~T1 Control Register Formats

15 14 5 4 3 2 1 0
I 0 0 I • o I LTM I MSK I PR2 I PR1 I PRO I

Figure 30. INT2/1NT3 Control Register Formats

22-200

80C188

Poll and Poll Status Registers

These registers contain polling information. The for­
mat of these registers is shown in Figure 32. They
can only be read. Reading the Poll register consti­
tutes a software poll. This will set the IS bit of the
highest priority pending interrupt. Reading the poll
status register will not set the IS bit of the highest
priority pending interrupt; only the status of pending
interrupts will be provided.

Encoding of the Poll and Poll Status register bits are
as follows:

Sx: Encoded information that indicates the
vector type of the highest priority inter­
rupting source. Valid only when INTREQ
= 1.

INTREQ: This bit determines if an interrupt request
is present. Interrupt Request = 1; no In­
terrupt Request = O.

SLAVE MODE OPERATION

When slave mode is used, the internal 80C188 inter­
rupt controller will be used as a slave controller to an
external master interrupt controller. The internal
80C188 resources will be monitored by the internal
interrupt controller, while the external controller
functions as the system master interrupt controller.

15 14 13 I SPEC/ I
NSPEC 0 I 0 I .

Upon reset, the 80C188 will be in master mode. To
provide for slave mode operation bit 14 of the relo­
cation register should be set.

Because of pin limitations caused by the need to
interface to an external 82C59A master, the internal
interrupt controller will no longer accept external in­
puts. There are however, enough 80C188 interrupt
controller inputs (internally) to dedicate one to each
timer. In this mode, each timer interrupt source has
its own mask bit, IS bit, and control word.

In slave mode each peripheral must be assigned a
unique priority to ensure proper interrupt controller
operation. Therefore, it is the programmer's respon­
sibility to assign correct priorities and initialize inter­
rupt control registers before enabling interrupts.

Slave Mode External Interface

The configuration of the 80C188 with respect to an
external 82C59A master is shown in Figure 33. The
INTO (Pin 45) input is used as the 80C188 CPU inter­
rupt input. INT3 (Pin 41) functions as an output to
send the 80C188 slave-interrupt-request to one of
the 8 master-PIC-inputs.

5 3 2 0 . I 0 I S4 S3 S2 S1 so

Figure 31. EOI Register Format

15 14 13 5 4 3 2 0

I~~bl 0 I 0 I . . I 0 I S4 S3 S2 S1 so

Figure 32. Poll and Poll Status Register Format

22-201

inter 80C188

(45)
INTO

Vee
CPU

(42)1
INT2

INT

8259A

INTA

_I NTERRUPT SOURCES
OR OTHER SLAVES ------

l: 80C188
(44)

INn
CASCADE

PIC ADDRESS

INT3~
DECODER

270432-20

Figure 33. Slave Mode Interrupt Controller Connections

Correct master-slave interface requires decoding of
the slave addresses (CASO-2) .. Slave 82C59As do
this internally. Because of pin limitations, the
80C188 slave address will have to be decoded ex­
ternally. INT1 (Pin 44) is used as a slave-select in­
put. Note that the slave vector address is transferred
internally, but the READY input must be supplied ex­
ternally.

INT2 (Pin 42) is used as an acknowledge output,
suitable to drive the INTA input of an 82C59A.

Interrupt Nesting

Slave mode operation allows nesting of interrupt re­
quests. When an interrupt is acknowledged, the pri­
ority logic masks off all priority levels except those
with equal or higher priority.

Vector Generation in the Slave Mode

Vector generation in slave mode is exactly like that
of an 82C59A slave. The interrupt controller gener­
ates an 8-bit vector which the CPU multiplies by four
and uses as an address into a vector table. The sig­
nificant five bits of the vector are user-programma­
ble while the lower three bits are generated by the
priority logic. These bits represent the encoding of
the priority level requesting service. The significant
five bits of the vector are programmed by writing to
the Interrupt Vector register at offset 20H.

Specific End-of-Interrupt

In slave mode the specific EOI command operates
to reset an in-service bit of a specific priority. The
user supplies a 3-bit priority-level value that points to
an in-service bit to be reset. The command is exe­
cuted by writing the correct value in the Specific EOI
register at offset 22H.

Interrupt Controller Registers
in the Slave Mode

All control and command registers are located inside
the internal peripheral control block. Figure 34
shows the offsets of these registers.

End-of-Interrupt Register

The end-of-interrupt register is a command register
which can only be written. The format of this register
is shown in Figure 35. It initiates an EOI command
when written by the 80C188 CPU.

The bits in the EOI register are encoded as follows:

Lx: Encoded value indicating the priority of the IS
bit to be reset.

22-202

inter 80C188

In-Service Register

This register can be read from or written into. It con­
tains the in-service bit for each of the internal inter­
rupt sources. The format for this register is shown in
Figure 36. Bit positions 2 and 3 correspond to the
DMA channels; positions 0, 4, and 5 correspond to
the integral timers. The source's 15 bit is set when
the processor acknowledges its interrupt request.

Interrupt Request Register

This register indicates which internal peripherals
have interrupt requests pending. The format of this
register is shown in Figure 36. The interrupt request
bits are set when a request arrives from an internal
source, and are reset when the processor acknowl­
edges the request. As in master mode, DO and D1
are read/write; all other bits are read only.

Mask Register

The register contains a mask bit for each interrupt
source. The format for this register is shown in Fig­
ure 36. If the bit in this register corresponding to a
particular interrupt source is set, any interrupts from
that source will be masked. These mask bits are ex­
actly the same bits which are used in the individual
control registers, i.e., changing the state of a mask
bit in this register will also change the state of the
mask bit in the individual interrupt control register
corresponding to the bit. .

Control Registers

These registers are the control words for all the in­
ternal interrupt sources. The format of these regis­
ters is shown in Figure 37. Each of the timers and
both of the DMA channels have their own Control
Register.

15 14 13 8

I 0 0 I 01 • • . I 0 1

The bits of the Control Registers are encoded as
follows:

prx: 3-bit encoded field indicating a priority level
for the source; note that each source must be
programmed at specified levels.

msk: mask bit for the priority level indicated by prx
bits.

7
0 1

LEVEL 5 CONTROL REGISTER
(TIMER 2)

LEVEL 4 CONTROL REGISTER
(TIMER 1)

LEVEL 3 CONTROL REGISTER
(OMA1)

LEVEL 2 CONTROL REGISTER
(OMAO)

LEVEL 0 CONTROL REGISTER
(TIMER 0)

INTERRUPT STATUS REGISTER

INTERRUPT·REQUEST REGISTER

IN·SERVICE REGISTER

PRIORITY·LEVEL MASK REGISTER

MASK REGISTER

SPECIFIC EOI REGISTER

INTERRUPT VECTOR REGISTER

OFFSET

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

22H

20H

Figure 34. Interrupt Controller Registers
(Slave Mode)

6 5 4 3 2 0
0 1 0 1 0 1 0 1 L2 L1 LO

Figure 35_ Specific EOI Register Format

15 14 13 8 7 6 5 4 3 2 0

I 0 0 1 0 1 . . 1 0 1 0 1 0 ITMR21TMR11 01 00 0 ITMROI

Figure 36. In-Service, Interrupt Request, and Mask Register Format

22-203

80C188

Interrupt Vector Register

This register provides the upper five bits of the inter­
rupt vector, address. The format of this· register is
shown in Figure 38., The interrupt controller itself
provides the lower three bits of the interrupt vector
as determined by the priority level of the interrupt
request. '

The format of the bits in this register is:

tx: 5-bit field indicating the upper five bits of the
vector address.

Priority-Level Mask Register

This register indicates the lowest priority-level inter­
rupt which will be serviced.

The encoding of the bits in this register is:

mx: 3-bit encoded field indication priority-level val­
ue. All levels of lower priority will be masked.

Interrupt Status Register

This register is defined as in master mode except
that DHL T is not implemented (see Figure 27).

Interrupt Controller and Reset

Upon RESET, the interrupt controller will perform
the following actions:

• All SFNM bits reset to 0, implying Fully Nested
Mode.

• All PR bits in the various control registers set to 1.
, This places all sources at lowest priority (level
111~ ,

• All L TM bits reset to 0, resulting in edge-sense
mode. '

'. All Interrupt Service bits reset to O.

• All Interrupt Request'bits reset to O.

• All MSK (Interrupt Mask) bits set to 1 (mask).

• All C (Cascade) bits reset to 0 (non-cascade).

• All PRM (Priority Mask) bits set to 1, implying no
levels masked.

• Initialized to master mode.

15 14 13 8 765 4 3 2 1 0
I a a I 01 • • 1 a 1 a 1 0, 1 a 1 0 1 MSK 1 PR2 1 PRl 1 PRO I

Figure 37. Control Word Format

15 14 13 8 7 6 5 4 3 2 0
0 a a I . • 1 01 14 t3 1 12 1 11 10 1 a 1 a 1 a I

Figure 38. Interrupt Vector Register Format

15 14 13 8 7 6 5 4 3 2 0
I a a 1 a 1 • • I a I a 1 a 1 0 1 a 1 a 1 m2 I ml mO I

Figure 39. Priority Level Mask Register

22-204

80C188

Enhanced Mode Operation

In Compatible Mode the 80C188 operates with all
the features of the NMOS 80188, with the exception
of 8087 support (i.e. no numeric coprocessing is
possible). Queue-Status information is still available
for design purposes other than 8087 support.

All the Enhanced Mode features are completely
masked when in Compatible Mode. A write to any of
the Enhanced Mode registers will have no effect,
while a read will not return any valid data.

In Enhanced Mode, the 80C188 will operate with
Power-Save and DRAM refresh, in addition to all the
Compatible Mode features.

Entering Enhanced Mode

Enhanced mode can be entered by tying the RESET
output signal from the 80C188 to the TEST IBUSY
input.

Queue-Status Mode

The queue-status mode is entered by strapping the
RD pin low. RD is sampled at RESET and if LOW,
the 80C188 will reconfigure the ALE and WR pins to
be QSO and QS1 respectively. This mode is avail­
able on the 80C188 in both Compatible and En­
hanced Modes and is identical to the NMOS 80188.

15 14 13 12 11 10 9 8

~~:~~bHI MS I M5 I M4 I M3 I M2 I Ml I MO I 0

Bits 0-8: Reserved, read back as o.

DRAM Refresh Control Unit
Description

The Refresh Control Unit (RCU) automatically gen­
erates DRAM refresh bus cycles. The RCU operates
only in Enhanced Mode. After a programmable peri­
od of time, the RCU generates a memory read re­
quest to the BIU. If the address generated during a
refresh bus cycle is within the range of a properly
programmed chip select, that chip select will be acti­
vated when the BIU executes the refresh bus cycle.
The ready logic and wait states programmed for that
region will also be in force. If no chip select is acti­
vated, then external ready is automatically required
to terminate the refresh bus cycle.

If the HLDA pin is active when a DRAM refresh re­
quest is generated (indicating a bus hold condition),
then the 80C188 will deactivate the HLDA pin in or­
der to perform a refresh cycle. The circuit external to
the 80C188 must remove the HOLD signal in order
to execute the refresh cycle. The sequence of HLDA
going inactive while HOLD is being held active can
be used to signal a pending refresh request.

All registers controlling DRAM refresh may be read
and written in Enhanced Mode. When the processor
is operating in Compatible Mode, they are deselect­
ed and are therefore inaccessible. Some fields of
these registers cannot be written and are always
read as zeros.

DRAM Refresh Addresses

The address generated during a refresh cycle is de­
termined by the contents of the MDRAM register
(see Figure 40) and the contents of a 9-bit counter.
Figure 41 illustrates the origin of each bit.

4 3 2

o I 0 o I 0

Bits 9-15: MO-M6, are address bits A 13-A 19 of the 20-bit memory refresh address. These bits should
correspond to the chip select address to be activated for the DRAM partition. These bits are
set to 0 on RESET.

Figure 40. Memory Partition Register

A19 A18 A17 A16 A15 A14 A13 A12 All Al0 A9 A8 A7 A6 AS A4 A3 A2 Al AO
I MS I MS I M4 I M3 I M2 I Ml I MO I 0 I 0 I 0 I CAB I CA71 CAS I CAS I CA41 CA3 I CA21 CAl I CAO I 1 I

M6-MO: Bits defined by MDRAM Register

CA8-CAO: Bits defined by refresh address counter

Figure 41. Addresses Generated by RCU

22-205

intJ 80C188

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~~~~HI 0 I 0 I 0 I 0 I 0 10 I 0 I cal C7 I cal csi C41 c31c2'1 C1 I CO I 
Bits 0-8: CO-C8, clock divisor register, holds the number of CLKOUT cycles between each refresh 

request. . 

Bits 9-15: Reserved, read back as o. 
Figure 42. Clock Pre-Scaler Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~~~~HI E I 0 I 0 I 0 I 0 I 0 I 0 I Te I T7 I Te I TS I T4 I T3 I T2 I T1 I TO I 
Bits 0-8:

Bits 9-14:

TO-T8, refresh clock counter outputs. Read only.

Reserved, read back as o.
Bit 15: Enable RCU, set to 0 on RESET.

Figure 43. Enable RCU Register

Refresh Control Unit Programming and
Operation .

After programming the MORAM and the CORAM
registers (Figures 40 and 42), the RCU is enabled by
setting the "E" bit in the EDRAM register (Figure
43). The clock counter (TO-T8 of EORAM) will be
loaded from CO-C8 of CORAM during T3 of instruc­
tion cycle that sets the "En bit. The clock counter is
then decremented at each subsequent CLKOUT.

A refresh is requested when the value of the counter
has reached 1 and the counter is reloaded from
CORAM. In order to avoid missing refresh requests,
the value in the CORAM register should always be at
least 18 (12H). Clearing the "En bit at anytime will
clear .the counter and stop refresh requests, but will
not reset the refresh address counter.

POWER-SAVE CONTROL

Power Save Operation

The .80C188, when in Enhanced Mode, can enter. a '
power saving state by hiternally dividing the clock-in
frequency by a programmable factor. This divided

frequency is also available at the CLKOUT pin. The
POCON register contains the two-bit fields for se­
lecting the clock division factor and the enable bit.

All internal logic, including the Refresh Control Unit
and the timers,· will have their clocks slowed down
by the division factor. To maintain a real time count
or a fixed ORAM refresh rate, these peripherals must
be re-programmed when entering and leaving the
power-save mode.

The power-save mode is exited whenever an inter­
rupt is processed by automatically resetting the en­
able bit. If the power-save mode is to be re-entered
after serving the interrupt, the enable bit will need to
be reset in software before returning from the inter­
rupt routine.

The internal clocks of the 80C188 will begin to be
divided during the T 3 state of the instruction cycle
that sets the enable bit. Clearing the enable bit will
restore full speed in the T 3 state of that instruction.

At no time should the internal clock frequency be
allowed to fall ~elow 0.5 MHz. This is the minimum
operational frequency of the 80C188. For example,
an 80C188 running with a 12 MHz crystal (6 MHz
CLOCKOUT) should never have a clock divisor.
greater than eight.

22-206

80C188

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

6?t~~~~H'LI _E ...L1_°--1I_°---L1 _0L1_°--1I_°---L1 _0LI_°.....JIL°---L_o --1.1_o_IL-° ..1...1 _0 --1.1_°---1-1 F_1 ..1...1 --.JFO 1

BitsO-1: Clock Divisor Select
F1 FO Division Factor
o 0 divide by 1
o 1 divide by 4

o divide by 8
1 divide by 16

Bits 2-14: Reserved, read back as zero.
Bit 15: Enable Power Save Mode. Set to zero on RESET.

Figure 44. Power-Save Control Register

ONCETM Test Mode The ONCE mode is selected by tying the UCS and

To facilitate testing and inspection of devices when
fixed into a target system, the 80C188 has a test
mode available which allows all pins to be placed in
a high-impedance state. "ONCE" stands for "ON
Circuit Emulation". When placed in this mode, the
80C188 will put all pins in the high-impedance state
until RESET.

the LCS LOW during RESET. These pins are sam­
pled on the low-t~h transition of the RES pin.
The UCS and the LCS pins have weak internal pull­
up resistors similar to the RD and TEST IBUSY pins
to guarantee proper normal operation.

22-207

inter 80C188

32MH. r01
XI X2

UCS

~

74HC373 ADDRESS RESET

RES ADO-AD7.

f'.- f ~m' = ROM

AB-AI5
- ALE ~ ST8 OJ! r ~ {

8OC188

(
1\1)
WI!

PROGRAM

I
RAM

MeIO-3

U+
5V SRDY

ARDY

NMI h
HOLD h t=:

LOW RAM

I:eS II

I TMRINO 1--+5V
(

TMROUTO t

~
CLOCK

~
74HC245

~ TRANSCEIVER ~ 00-117

5EN ~ Pf
SERIAL T

110
DTiR

S~
ERMINAL

PCSO
AI
A2

INTO I

DISK <::=:::> 8 DIS INTERFACE
INTI HARDWARE

K

~
DRDO

270432-21

Figure 45. Typ~ca180C188 Computer

22-208

inter 80C188

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature under Bias •.•. O·C to + 70·C

Storage Temperature - 6S·C to + 1S0·C

Voltage on Any Pin with
Respect to Ground•.. -1.0V to + 7.0V

Package Power Dissipation••.•.......•.•. 3W

·Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

ADVANCE INFORMATION-SEE INTEL FOR DESIGN-IN INFORMATION

D.C. CHARACTERISTICS

T A= O·C to + 70·C, Vcc = SV ± 10% except Vcc = SV ± S% at 16 MHz

Symbol Parameter Min Max Units Test Conditions

Vil Input Low Voltage -O.S 0.2Vcc - 0.3 V

VIH Input High Voltage 0.2Vcc + 0.9 Vcc + O.S V
(All except X1 and RES)

VIH1 Input High Voltage (RES) 3.0 Vcc + O.S V

Val Output Low Voltage 0.4S V IOL = 2.5 rnA (SO, 1, 2)
IOl = 2.0 rnA (others)

VOH Output High Voltage 2.4 Vcc V IOH = -2.4 rnA @2.4V

0.8 Vcc Vcc V IOH = -200 /LA @0.8Vcc

Icc Power Supply Current 1S0 rnA @ 12.S MHz,O·C
Vcc = S.SV

Ips Power Save Current 10 rnA per MHz + 20 rnA Typical
@2S·C, Vcc = S.OV

III Input Leakage Current ±10 /LA 0.45V ~ VIN ~ Vcc

IlO Output Leakage Current ±10 . /-LA O.4SV ~ VOUT ~ VCc!1)

VClO Clock Output Low O.S V IClO = 4.0 rnA

VCHO Clock Output High 0.8 Vcc V ICHO = - SOO /LA

VCLl Clock Input Low Voltage (X1) -O.S 0.6 V

VCHI Clock Input High Voltage (X1) 3.9 Vcc + O.S V

CIN Input Capacitance
,

pF @ 1 MHz(2) 10

Cia I/O Capacitance 20 pF @ 1 MHz(2)

NOTES:
1. Pins being floated during HOLD or by invoking the ONCE Mode.
2. Characterization conditions are a) Frequency = 1 MHz; b) Unmeasured pins at GND; c) VIN at + S.OV or O.4SV. This
parameter is not tested.

22-209

inter 80C188

PIN TIMINGS
ADVANCE INFORMATION-SEE, INTEL FOR DESIGN-IN INFORMATION
A.C. CHARACTERISTICS

TA = O·C to +}O·C, VCC = SV ±100/0'except Vcc = SV ±S% at 16 MHz

All timings are measured at 1.SV and 100 pF loading on CLKOUT unless otherwise noted.
All output test conditions are with CL = 50-200 pF (10 MHz) and CL = 50-100 pF (12.5-16 MHz).
Input VIL = 0.45V and VIH = 2.4V for AC. tests.

Symbol Parameter 80C188-10 80C188-12 8OC188-16 Unit Test

Min Max Min Max Min Max Conditions

80C186 TIMING REQUIREMENTS

TOVCL Data In Setup (AID) 15 15 10 ns

TCLOX Data In Hold (AID) 5 5 ,5 ns,

TARYCH ARDY Resolution Transition 15 15 15 ns
,Setup Time(l)

TARYLCL Asynchronous Ready (ARDY) 25 25 25 ns
Setup Time

TCLARX ARDY Active Hold Time 15 15 15 ns

TARYCHL. ARDY Inactive 15 15 15 '1s
Hold Time

TSRYCL Synchronous Ready 15 15 15 ns
(SRDy) Transition
Setup Time(l)

TCLSRY SRDY Transition 15 15 15 ns
Hold Time

THVCL HOLD Setup(l) 15 15 15 ns

TINVCH INTR, NMI, TEST, TMR IN 15 15 15 ns
Setup Time(l)

TINVCL DRCO, DRC1, Setup 15 15 15 ns
Time(l)

80C188 MASTER INTERFACE TIMING RESPONSES

TCLAV Address Valid Delay 5 50 5 36 5 33 ns CL =50pF

TCLAX Address Hold 0 0 0 ns', -200 pF all

TCLAZ Address Float Delay TCLAX 30 TCLAX 25 TCLAX 20
outputs

ns (except
TCHCZ Command Unes 40 33 28 ns TCLTMV) @

Float Delay 10 MHz

TCHCV Command Unes Valid 45 37 32 ns
Delay (after Float)

TLHLL ALE Width (min) TCLCL - 30 TCLCL - 30 TCLCL - 30 ns CL =50pF

TCHLH ALE Active Delay 30 25 20 ns -100 pF all

TCHLL ALE Inactive Delay
outputs

30 25 20 ns @ 12.5&

TLLAX Address Hold to TCHCL - 20 TCHCL - 15 TCHCL -15 ns 16MHz
ALE Inactive (min)

TCLOV Data Valid Delay 5 40 5' 36 5 33 ns

TCLOOX Data Hold TIme 5 5 5 ns

TWHOX Data Hold after WR (min) TCLCL - 34 TCLCL - 20 TCLCL - 20 ns

TcVCTV ' Control Active Delay 1 5 56 5 47 5 31 ris

TCHCTV Control Active Delay 2 5 44 5 37 5 31 ns

TCVCTX Control Inactive Delay 5 44 5 37 5 31 ns

TCVOEX DEN Inactive Delay 5 56 5 47 5 35 ns
(Non-Write Cycle)

NOTE:
1. To guarantee recognition at next clock.

22-210

inter 80C188

PIN TIMINGS (Continued)

ADVANCE INFORMATION-SEE INTEL FOR DESIGN-IN INFORMATION

A.C. CHARACTERISTICS

TA = O·C to +70·C, Vcc = 5V ±10% except Vcc = 5V ±5% at 16 MHz

All timings are measured at 1.5V and 100 pF loading on CLKOUT unless otherwise noted.
All output test conditions are with CL = 50-200 pF (10 MHz) and CL = 50-100 pF (12.5-16 MHz).
Input VIL = 0.45V and VIH = 2.4V for A.C. tests.

Symbol Parameter
80C188-10 80C188-12 80C188-16

Unit
Test

Min Max Min Max Min Max Conditions

80C188 MASTER INTERFACE TIMING RESPONSES (Continued)

TAZRL Address Float to 0 0 0 ns CL = 50-200 pF
RDActive all outputs

TCLRL RD Active Delay 5 44 5 37 5 31 ns (except T CL TMV)
@10MHz

TCLRH RD Inactive Delay 5 44 5 37 5 31 ns

TRHAV RD Inactive to TCLCL - 40 TCLCL - 20 TCLCL - 20 ns CL =50-100 pF
Address Active all outputs@
(min) 12.5&16MHz

TCLHAV HLDA Valid Delay 5 40 5 33 5 25 ns

TRLRH RD Pulse Width 2TCLCL - 46 2TCLCL - 40 2TCLCL - 30 ns
(min)

TWLWH WR Pulse Width 2TcLCL - 34 2TCLCL - 30 2TCLCL - 25 ns
(min)

TAVLL Address Valid to TCLCH - 19 TCLCH - 15 TCLCH - 15 ns Equal
ALE Low (min) Loading

TCHSV Status Active 5 45 5 35 5 31 ns
Delay

TCLSH Status Inactive 5 50 5 35 5 30 ns
Delay

TCLTMV Timer Output Delay 48 40 30 ns 100 pF max
@10MHz

TCLRO Reset Delay 48 40 30 ns CL = 50-200 pF

TCHQSV Queue Status 28 28 25 ns All outputs

Delay (except T CL TMV)
@ 10 MHz

TCHOX Status Hold Time 5 5 5 ns

TAVCH Address Valid to 0 0 0 ns CL = 50-100 pF
Clock High All outputs @ .

TCLLV LOCK Validllnvalid 5 45 5 40 5 35 ns 12.5& 16MHz

Delay

TOXOL DEN Inactive to 0 0 0 ns Equal
DT/RLow Loading

80C188 CHIP-5ELECT TIMING RESPONSES

TCLCSV Chip·Select 45 33 30 ns
Active Delay

Tcxcsx Chip-Select TCLCH - 10 TCLCH - 10 TCLCH - 10 ns Equal
Hold from Loading
Command Inactive

TCHCSX Chip·Select 5 32 5 28 5 23 ns
Inactive Delay

22·211

intJ 80C188

PIN TIMINGS (Continued)

ADVANCE INFORMATION-SEE INTEL FOR DESIGN-IN INFORMATION

A.C. CHARACTERISTICS

TA = O·C to +70·C, VCC = 5V ±10% except VCC = 5V ±5% at 16 MHz

All timings are measured at 1.5V and 100 pF loading on CLKOUT unless otherwise noted.
All output test conditions are with Cl = 50-200 pF (10 MHz) andCl = 50-100 pF (12.5-16 MHz).
Input Vil = 0.45V and VIH = 2.4V for A.C. tests.

Symbol Parameter
80C188·10 80C188·12 80C188·16

Unit
Test

Min Max Min Max Min Max Conditions

80C188 ClKIN REQUIREMENTS Measurements taken with following conditions: External clock input to X1 and X2 not
connected (float)

TCKIN ClKIN Period 50 1000 40 1000 31.25 1000 ns

TCKHL ClKIN Fall Time 5 5 5 ns 3.5 to 1.0V

TCKLH elKIN Rise Time 5 5 5 ns 1.0 to 3.5V

TCLCK ClKIN low Time 20 15 13 ns 1.5V(2)

TCHCK ClKINHigh Time 20 15 13 ns 1.5V(2)

80C188 ClKOUT TIMING 200 pF load maximum for 10 MHz or less, 100 pF load maximum above 10 MHz

TCICO ClKINto 25 21 17 ns
ClKOUTSkew

TCLCL ClKOUT Period 100 2000 80 2000 62.5 2000 ns

TCLCH ClKOUT 0.5 TCLCL -6 0.5 TCLCL -5 0.5 TCLCL -5 ns 1.5V
low Time (min)

TCHCL ClKOUT 0.5 TCLCL -6 0.5 TCLCL -5 0.5 TCLCL -5 ns 1.5V
High Time (min)

TCH1CH2 ClKOUT 10 10 8 ns 1.0t03.5V
Rise Time

TCL2CLl ClKOUT 10 10 8 ns 3.5 to 1.0V
Fall Time

NOTE:
2. TCLCK and TCHCK (ClKIN low and High times) should not have a duration less than 40% of TCKIN.

22-212

WAVEFORMS

MAJOR CYCLE TIMING

WRITE CYCLE

RD,INTA,
DTjR=VOH

INTA CYCLE

RD,WR,=VOH

ClK OUT

A15-A8

ALE

DT/R

DEN

SOFTWARE HAlT-DTjR=VOL'

S7,RD,WR,INTA,DEN=VOH

PCS,
MCS,
lCS,
UCS,

(NOTE 4)

80C188

""""~HGS ~TClCl-

~ ,--, ~

--' TCHSV 1'---1 TCHCl f\---..o (NOTE3)~TClC: ~
VCl I ~ -I TClSH 1....:.=+ ____ •

\ IAllllllld • ,
'- ---

TClAV r- ~ TClDV
~

TCHCZ
TClAX ~ (NOTE 1)

S7,A19-A16j 57_53 -
TCLAV - --- TCHCZ

(NOTE 1)

A15-A8 (FLOAT DURING INTA) I--
TlHll TllAX

~
.. -- - ---

TAVLl
, , --- -_.-

TCHlH - I-- TCHll
TClAV I- - TClDV TClAZ I-

TCLAX -I TCLDOX 1-

K A7-AO K DATA OUT K:
TAVCH - I-- -+ TlLAX TWHDX

TCVCTV~ TCVCTX iyNOTE1)

TCVCTV

\
TWlWH

TCVCTX

TClDX
::JTClAZ TDVCll:,::::

A
POINTER

FLOAT FLOAT

TCHCTV 1\ :JlCHCTV

TCVCTV

~
J ~

~/

TCVCTV--P TCVDEX 1---

'1
~ ~

X INVALID ADDRESS

TClAV::j ~CHCSX :::JTCLCSV TCXCSX

\

270432-22

22-213

inter 80C188

WAVEFORMS (Continued)

MAJOR CYCLE TIMING (Continued)

17.A'''.-A,1/53

A,I-AS
-+--+-~+--+~~----~---+---T~I~----

AD,s-ADo

READ CYCLE

TC~L~--~~-f~TRLR"-----~~~-~

iiEi

iiCi.
iR!II ---1"-"\.1 as. ~.~T~'~

u.s I~--------------------------------------" (No,e4)

NOTES:

r-­
I

270432-23

1. Following a Write cycle, the Local Bus is floated by the 80C188 only when the 80C188 enters a "Hold Acknowledge"
state.
2. INTA occurs one clock later in slave mode.
3. Status inactive just prior to T 4.
4. Latched A1 and A2 have the same timings as ~ and~.

22-214

WAVEFORMS (Continued)

CLKOUT

CLKOUT

~
INTO·3

TIMERIN

aSO,aSl

80C188

270432-24

22-215

80C188

WAVEFORMS (Continued)

READY TIMING

CLKOUT

ARDY

(NORMALLY ------"1 NOT READY)

(NORM~m[
READY)

""';"'-""";'---",\1

CLKOUT

SRDY _________ JI~~-----~'I~-------

270432-25

HOLD-HLDA TIMING

CLKOUT' M
~CL-l-r t

HOLD -+-+--

HLDA -----
AD15 - ADO ------------ -+---+,1

DEN _____ 8_0C_l_88 ____ -+ __ -+'1
A19/S6-A16/S3, ________ --

RD, WR, 80C188
BHE, DT/ii, ------

S2- SO,LOCK

270432-26

22-216

80C188

WA VEFORMS (Continued)

TIMER ON 80C186

ClKIN

TCKHL

CLKOUT
_--TCLCHI---tao;/,+---TCHCL--"""!...

~------TCLCl-------.

-TINVCH

~~~ 

TIMEROUT __ ~:~~~~~~~~~~~~~~~~~=-_2_1_/2_-_6_1_/2_C_LO_C_K_S _________ +-~~ 

80C188 EXECUTION TIMINGS 

A determination of 80C188 program execution tim­
ing must consider both the bus cycles necessary to 
prefetch instructions as well as the number of exe­
cution unit cycles necessary to execute instructions. 
The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following 
assumptions: 

• The opcode, along with any data or displacement 
required for execution of a particular instruction, 
has been prefetched and resides in the queue at 
the time it is needed. 

• No wait states or bus HOLDs occur. 

270432-27 

All instructions which involve memory accesses can 
require one or two additional clOCkS above the mini­
mum timings shown due to the asynchronous hand­
shake between the BIU and execution unit. 

All jumps and calls include the time required to fetch 
the opcode of the next instruction at the destination 
address. 

The 80C188 8-bit BIU is noticeably limited in its per­
formance relative to the execution unit. A sufficient 
number of prefetched bytes may not reside in the 
prefetch queue much of the time. Therefore, actual 
program execution will be substantially greater than 
that derived from adding the instruction timings 
shown. 

22-217 



80C188 

INSTRUCTION SET SUMMARY 

Function Format 

DATA TRANSFER 
MOV = Move: 

Register to RegisterlMemory 

Registerlmemory to register 

Immediate to registerlmemory 

Immediate to register 

Memory to accumulator 

Accumulator to memory 

Registerlmemory to segment register 

Segment register to registerlmemory 

PUSH = Push: 

Memory 

Register 

Segment register 

1000100w mod reg rIm 

100010lw mod reg rIm 

1100011w mod 000 rIm 

1011wreg data 

1010000w addr-Iow 

101000lw addr-Iow 

10001.110 mod 0 reg rIm 

10001100 modO reg rIm 

11111111 mod 110 rIm 

OIOIOreg 

OOOregl1 0 

Ini::§~hfi ;~ 'Y" ~:'~~~"~li; ~;;iJ~1~:tt~ii~b·tI0 t.i; ij~;, 

~~~.~:~.~·i~,~ 
POP = Pop:

Memory

Register

Segment register

XCHG = Exchange:

Registerlmemory with register

Register with accumulator

IN = Input from:

Fixed port

Variable port

OUT = Output to:

Fixed port

Variable port

XLAT = Translate byte to AL

LEA = Load EA to register

LOS = Load pOinter to OS

LES = load pointer to ES

LAHF = Load AH with flags

SAHF = Store AH into flags

PUSHF = Push flags

POPF = Pop flags

~l :f:~.!f (~*r4j ~;o;oM!t Jt~i::~

10001111 modOOO rIm

01011 reg

OOOreg111

100.0011 w mod reg rIm

10010reg

1110010w port

1110110w

1110011w port

1110111w

11010111

10001101 mod reg rIm

11000101 mod reg rIm

11000100 inod reg rIm

10011111

10011110

10011100

10011101

data

dataifw=1

addr-high

addr-high

(mod,.,,)

(mod,.,,)

Shaded areas indicate instructions not available in 8086. 8088 microsystems.

"NOTE:

dataifw=1

Clock cycles shown for byte transfer. For word operations. add 4 clock cycles for all memory transfers.
22-218

Clock
Comments

Cycles

2/12'

2/9'

12/13 S/16-bit

3/4 SlI6-bit

S'

9'

2113

2115

20

14

13

24

14

12

c~ !l

4117'

3

10'

S'

9'

7'

15

6

26

26

2

3

13

12

80C188

INSTRUCTION SET SUMMARY (Continued)

Function Format

DATA TRANSFER (Continued)
SEGMENT = Segment Override:

CS I 00101110 I
SS I 00110110 I
DS I 00111110 I
ES I 00100110 I
ARITHMETIC
ADD = Add:

Reglmemory with register to either I OOOOOOdw I mod reg rIm I
Immediate to registerlmemory I 100000sw I mod 0 0 0 rIm I data

Immediate to accumulator I 0000010w I data I dataifw=1

ADC = Add with carry:

Reglmemory with register to either I 000100dw I mod reg rIm I
Immediate to registerlmemory I 100000sw I modO 10 rIm I data

Immediate to accumulator I 0001010w I data I data ifw= 1

INC = Increment:

Registerlmemory I 1111111 w I mod 0 0 0 rIm I
Register I 01000reg I
SUB = Subtract:

Reglmemory and register to either I 001010dw I mod reg rIm I
Immediate from registerlmemory I 100000sw I mod 101 rIm I data

Immediate from accumulator I 0010110w I data I dataifw=1

SBB = Subtract with borrow:

Reglmemory and register to either I 000110dw mod reg rIm I
Immediate from register/memory I 100000sw modO 11 rIm I data

Immediate from accumulator I 0001110w data I dataifw=1

DEC = Decrement

Registerlmemory I 1111111 w modOO 1 rIm I
Register I 01001 reg

CMP = Compare:

Registerlmemory with register 0011101 w mod reg rIm I
Register with registerlmemory 0011100w mod reg rIm I
Immediate with registerlmemory 100000sw modlll rIm I data

Immediate with accumulator 0011110w data I dataifw=1

NEG = Change sign registerlmemory 1111011w modO 11 rIm I
AAA = ASCII adjust for add I 00110111

DAA = Decimal adjust for add I 00100111

AAS = ASCII adjust for subtract I 00111111

DAS = Decimal adjust for subtract I 00101111

Shaded areas indicate instructions not available In 8086, 8088 mlcrosystems.

-NOTE:

I data if s w=OI I
I

I data if s w= 01 I
I

I data if s w=OI I
I

I data if s w=OI I
I

I data if s w= 01 I
I

Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers.

22-219

Clock
Comments

Cycles

2

2

2

2

3/10'

4/16'

3/4 S/16-bit

3/10'

4/16'

3/4 S/16-bit

3/15'

3

3/10'

4/16'

3/4 8/16-bit

3/10'

4/16'

3/4 S/16-bit

3/15'

3

3/10'

3/10'

3/10'

3/4 8/1S-bit

3/10'

8

4

7

4

inter 80C188

INSTRUCTION SET SUMMARY (Continued)

Function

= Convert byte to word

= Convert word to double word

Instructions:

by1

byCL

Ic~" I ".~~'M' and register to either

to registerlmemory

Format

11 1 1 .0 11 w mod 1.0.0 rIm

1 1 1 1 .0 1 1 w mod 1 .0 1 rIm

11 1 1 .0 1 1 w mod 1 1 .0 rIm

1 11 1 .0 1 1 w mod 1 1 1 rIm

11.01.01.0.0 .0.0.0.01.01.0

11.0 1.0 1.0 1 .0.0.0.01.01.0

1.0.011.0.0.0

1.0.0 11 .0.0 1

11Q1QQQw mod TTT rIm

11Q1QQlw mod TTT rIm

TTT Instruction
.0.0.0 AOL
.0.0 1 AOA
.01.0 ACL
.011 ACA
1.0 .0 SHL/SAL
1.0 1 SHA
111 SAA

QQ1QQQdw mod reg rIm

Shaded areas indicate instructiens net avaUable in 8086, 8088 microsystems_

"NOTE:

data ifw= 1

26-28
35-37
32-34
41-43'

25-28
34-37
31-34
4.0-43'

29
38
35
44'

44-52
53-61
5.0-58
59-67'

19

15

2

4

2/15

5+n/17+n

3/1.0'

4/16'

Comments

3/4 8/16-bit

Cleck, cycles shewn fer byte transfer_ Fer werd eperatiens, add 4 cleck cycles fer all memery transfers_

22-220

infef 80C188

INSTRUCTION SET SUMMARY (Continued)

Function Format

LOGIC (Continued)
TEST=And function to flags, no resur:lt:=--____ -. _____ --,

Registerlmemory and register' 1 100001 0 w 1 mod reg rim I
~==~====~----~------,

Immediate data and registerlmemory ~I =1:::::1 =1::1::0::1:::::1 =w::::;l=m=o=d=o::o::o:::::r/=m=~1 ==d::a::ta===:-I_d::;a:.:ta=if..::w_=_I=--....J1

Immediate data and accumulator LI_l.:....:.0-'1-=0-'1'-0:...0:....cw-"I __ -=d=a=ta=--_~I--=d=a=ta:..:i:...f w,,-=..:.I----.J1

OR=Or:

Reglmemory and register to either

Immediate to register 1m emory

Immediate to accumulator

XOR = Exclusive or:

Reglmemory and register to either

1 000010dw 1

1 1000000w 1

10000110wl

I 001100dw

mod reg rim I
modOOI rim 1 data dataifw=1

data 1 dataifw=1

mod reg rim I
Immediate to registerlmemory 1 1000000w mod 1 1 a rim 1 data 1 dataifw=1

Immediate to accumulator

NOT = Invert registerlmemory

STRING MANIPULATION

10011010W

1 1111011 w

MOVS = Move byte/word 1 1 a 1 a a lOw

CMPS = Compare byte/word 1 1 a 1 a a 1 1 w

SCAS = Scan byte/word I 1 0 1 a 1 1 1 w

LODS = Load byte/wdto ALAX 1 1010 11 Ow 1

STOS = Stor byte/wd from ALA 1 1 a 1 a 1 a 1 w I
INS ~ll1put byle/wd f~mDj(port :1 0 11 a 1 law I

9l/TS;;" OutPtll bylel~d !O Pi< port . I 0.1 1 0 1 11 iii I

1 111100 10

111100 1 z

1 111001 z

11110010

111100 1 a

data 1 dataifw=1

mod 010 rim I

1010010w I
1010011 w

1010 111 w

1010 11 Ow

1010101 w

Repeated by count in CX

MOVS = Move string

CMPS = Compare string

SCAS = Scan string

LODS = Load string

STOS = Store string

't-jS ~ I.oput string

OUTS .. QutPu!~ri~g'
CONTROL TRANSFER

CALL = Call:

I ,111 1 001 0 I.: 011 01 1 Ow

Direct within segment

Registerlmemory
indirect within segment

Direct intersegment

Indirect intersegment

1 11101000 1 disp-Iow 1 disp-high

1 11111111 1 mod 0 10 rim I

1 1 0 0 1 1 a 1 a 1 segment offset I
1 segment selector I

1 1 1 1 1 1 11 1 1 mod 01 1 rim I (mod,. 11)

Shaded areas indicate instructions not available in B086, 80B8 microsystems.

'NOTE:

Clock
Cycles

3/10'

4/10'

3/4

3/10'

4/16'

3/4

3/10'

4/16'

3/4

3/10'

14'

22'

15'

12'

10'

14

14

B+Bn'

5+ 22n'

5+15n'

6+11n'

6+9n'

6+8n'

8+8"'.

19

17/27

31

54

Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers.

22-221

Comments

B/16-bit

B/16-bit

B/16-bit

80C188

INSTRUCTION SET SUMMARY (Continued)

Function Format
Clock

Comments
Cycles

CONTROL TRANSFER (Continued)
JMP = Unconditional Jump:

Short/long 11101011 disp-Iow 14

Direct within segment 1110100 1 disp-Iow disp-high 14

Register/memory 11111111 imod 1 00 r/ml 11/21
indirect within segment

Direct intersegment 11101010 segment offset 14

segment selector

Indirect intersegment 11111111 mod 1 01 r/ml (mod,. 11) 34

RET = Return from CALL:

Within segment 11000011 20

Within seg adding immed to SP 11000010 data-low data-high 22

Intersegment 1100 1 all 30

Intersegment adding immediate to SP 1100 1 010 data-low data-high 33

JE/JZ = Jump on equal/zero 01110100 disp 4/13 JMP not

JL/JNGE = Jump on less/not greater or equal 01111100 disp 4/13
taken/JMP

taken

JLE/JNG = Jump on less or equal/not greater a 111111 a disp 4/13

JB/JNAE = Jump on below/not above or equal at 110010 disp 4/13

JBE/JNA = Jump on below or equal/not above at 110110 disp 4113

JP/JPE = Jump on parity/parity even 01111010 disp 4/13

JO = Jump on overflow 01110000 disp 4/13

JS = Jump on sign 01111000 disp 4/13

JNE/JNZ = Jump on not equal/not zero a 111 a 10 1 disp 4/13

JNL/JGE = Jump on not less/greater or equal 01111101 disp 4/13

JNLE/JG = Jump on not less or equal/greater 01111111 disp 4/13

JNB/JAE = Jump on not below/above or equal 011100 11 disp 4/13

JNBE/JA = Jump on not below or equal/above 01110111 disp 4/13

JNP/JPO = Jump on not par/par odd a 11110 11 disp 4/13

JNO = Jump on not overflow 01110001 disp 4/13

JNS = Jump on not sign 01111001 disp 41.13

JCXZ = Jump on CX zero 111000 11 disp 5/15

LOOP = Loop CX times 11100010 disp 6/16 LOOP not

LOOPZ/LOOPE = Loop while zero/equal 11100001 disp 6/16
taken/LOOP

taken
LOOPNZ/LOOPNE = Loop while not zero/equal 11100000 disp 6/16

eKt~:::, g!'!!lrf'~.!lr~.~.'

~t~"
L>'t

Shaded areas indicate instructions not available in 8086. 8088 microsystems.

22-222

80C188

INSTRUCTION SET SUMMARY (Continued)

Function Format
Clock

Comments
Cycles

CONTROL TRANSFER (Continued)
INT ~ Interrupt:

Type specified I 1100 110 1 I type I 47

Type 3 I 1100 1100 I 45 if INT. takenl

INTO ~ Interrupt on overflow I 11001110 I 48/4
if INT. not

taken

IRET ~ Interrupt return I 1100 1 t 1 t I 28

BOUND ~ Datect value out of range I 01100010 I mod reg rIm I 33-35

PROCESSOR CONTROL

ClC ~ Clear carry I 11111000 I 2

CMC ~ Complement carry 11110101 I 2

STC ~ Set carry 1111100 1 I 2

CLD = Clear direction 11111100 I 2

STD ~ Set direction 11111101 I 2

Cli ~ Clear interrupt 11111010 I 2

STI ~ Set interrupt I 11111011 I 2

HlT ~ Halt I 11110100 I 2

WAIT~ Wait I 100 11011 I 6 illest ~ a

lOCK ~ Bus lock prefix I 11110000 I 2

ESC ~ Processor Extension Escape I 11011 TTT I mod LLL rim I 6

(TTT LLL are opcode to processor extension)

Shaded areas Indicate instructions not available in 8086, 8088 microsystems.

FOOTNOTES

The Effective Address (EA) of the memory operand
is computed according to the mod and rim fields:
if mod 11 then rim is treated as a REG field
if mod 00 then OISP = 0', disp-Iow and disp­

if mod

if mod
if rim
if rim
if rim

high are absent
01 then OISP = disp-Iow sign-ex­
tended to 16-bits, disp-high is absent
10 then OISP = disp-high: disp-Iow
000 then EA = (8X) + (SI) + OISP
001 then EA = (BX) + (01) + OISP
010 then EA = (BP) + (SI) + OISP

if rim 011 then EA = (BP) + (01) + OISP
if rim 100 then EA = (SI) + OISP
if rim 101 then EA = (01) + OISP
if rim 110 then EA = (BP) + OISP'
if rim 111 then EA = (BX) + OISP

OISP follows 2nd byte of instruction (before data if
required)

'except if mod = 00 and rim
disp-high: disp-Iow.

110 then EA

22-223

80C188

EA calculation time is 4 clock cycles for all modes,
and is included in the execution times given whenev­
er appropriate.

Segment Override Prefix

I 0 0 1 reg 1 1 0 I
reg is assigned according to the following:

reg
Segment
Register

00 E8
01 C8
10 88
11 08

REG is assigned according to the following table:

16-Bit (w = 1)
000 AX
001 CX
010 OX
011 BX
1008P
101 BP
11081
111 01

8-Bit(w = 0)
OOOAL
001 CL
0100L
011 BL
100AH
101 CH
1100H
111 BH

The physical addresses of all operands addressed
by the BP register are computed using the 88 seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations
(those addressed by the 01 register) are computed
using the E8 segment, which may not be overridden.

22-224

•

•

82188
INTEGRATED BUS CONTROLLER FOR
8086, 8088, 80186, 80188 PROCESSORS

Provides Flexibility in System • Supports Multiprocessor, Local Bus
Configurations Systems
- Supports 8087 Numerics • Allows use of 80186, 80188 High-

Coprocessor in 8 MHz 80186 and Integration Features
80188 Systems

- Provides a Low-cost Interface for • 3-State, Command Output Drivers
8086, 8088 Systems to an 82586 LAN • Available in EXPRESS
Coprocessor or 82730 Text - Standard Temperature Range
Coprocessor - Extended Temperature Range

Facilitates Interface to one or more • Available in Plastic DIP or Cerdip
Multimaster Busses Package

(See Packaging Spec., Order #231369)

The 82188 Integrated Bus Controller (IBG) is a 28-pin HMOS III component for use with 80186, 80188, 8086
and 8088 systems. The IBC provides command and control timing signals plus a configurable
RQ/GT ~ HOLD-HLDA converter. The device may be used to interface an 8087 Numerics Coprocessor
with an 80186 or 80188 Processor. Also, an 82586 Local Area Network (LAN) Coprocessor or 82730 Text
Coprocessor may be interfaced to an 8086 or 8088 with the IBC.

OSOI Vee SO

OS1I SO S1
OSOO S1 52
0510 52

RESET ALE
HLDA iiii
HOLD WR

RO/GTO DEN RESET

SYSHOLD DT/R CLK
SYSHLDA AEN AEN

RO/GTI ARDY
CSOUT SRDY

CSIN SRO
vs • CLK

231051-1
CSIN

0501
Figure 1. 0511

82188 Pin Configuration
SYSHOLD

HLDA

SRDY ARDY

- I I B STATUS
READY - DECODER r-- LOGIC I -

SRO

- I-- I-- I-

22-225

COMMAND I
SIGNAL

GENERATOR

CONTROL r-- C~~~~~L I LOGIC
GENERATOR I

I
I CHIP SELECT LOGIC:

I DELAY CIRCUIT L

I BUS A~::!~I~TION I

Figure 2.
82188 Block Diagram

RD

DEN
DT/R
ALE

0500

0510

HOLD

SYSHLDA

231051-2

OctQber 1986
Order Number: 231051-004

82188

PIN DESCRIPTIONS
Symbol Pin No. Type ' , Name and Function
SO 27 I Status Input Pins
51 26 " ,SO-52 correspond to the status pins of the CPU.
S2 25 The 82188 uses the status lines to detect and identify the processor

bus cycles. The 82188 decodes SO-52 to generate the command and
control signals. SO-52 are also used to insert 3 wait states into the
SRO line during the first 256 80186 bus cycles after RESET. A HIGH
input on all three lines indicates that no bus activity is taking place.
The status input lines contain weak internal pull.up devices.

S2 S1 SO Bus Cycle Initiated
0 0 0 interrupt acknowledge
0 0 1 read I/O
0 1 0 write I/O
0 1 1 halt
1 0 0 instruction fetch
1 0 1 read data from memory
1 1 0 write da~a to memory

,. 1 1 ~ passive (no bus cycle)

CLK 15 I CLOCK
CLKis the clock signal generated by the CPU or clock generator
device. CLK edges establish when signals are sampled and
generated.

RESET 5 I RESET
RESET is a level triggered signal that corresponds to the system reset
Signal. The signal initializes an internal bus cycle counter, thus
enabling the 82188 to insert internally generated wait states into the
SRO signal during system initialization. The 82188 mode is also
determined during RESET. RD, WR, and DEN are driven HIGH during
RESET regardless of AEN. RESET is active HIGH.

AEN 19 I Address Enable
This signal enables the system command lines when active. If AEN is
inactive (HIGH), RD, WR, and DEN will be tri-stated and ALE will be
driven LOW (DT lR will not be effected).AEN is an asynchronous
signal and is active LOW.

ALE 24 0 Address Latch Enable
This signal is used to strobe an address into address latches. ALE is
active HIGH and latch should occur on the HIGHto LOW transition.
ALE is intended for use with transparent D-type latches.

DEN 21 0 Data Enable
This signal is used to enabie data transceivers located on either the

, local or system data bus. The signai is active LOW. DEN is tri-stated
when AEN is inactive.

DT/R 20 0 Data TRANSMIT IRECEIVE .
This signal establishes the'direction of data flow through the data
transceivers. A HIGH on this line indicates TRANSMIT (write to I/O or
memory) and a LOW indicates RECEIVE (Read from I/O or memory).

22-226

inter 82188

PIN DESCRIPTIONS (Continued)

Symbol Pin No. Type Name and Function

RD 23 0 READ
This signal instructs an I/O or memory device to drive its
data onto the data bus. The AD signal is similiar to the
RD signal of the 80186(80188) in Non·Queue-Status
Mode. AD is active LOW and is tri-stated when AEN is

I inactive.

WR 22 0 WRITE
This signal instructs an I/O or memory device to record
the data presented on the data bus. The WA signal is
similiar to the WA signal of the 80186(80188) in Non-
Queue-Status Mode. WR is active LOW and is tri-stated
when AEN is inactive.

HOLD 7 0 HOLD
The HOLD signal is used to request bus control from the
80186.Q!:. 80188. The request can come from either the
8087 (AQ/GTO) or from the third processor (SYSHOLD).
The signal is active HIGH.

HLDA 6 I HOLD Acknowledge
80186 MODE-This line serves to translate the HLDA
output of the 80186(80188) to the appropriate signal of
the device requesting the bus. HLDA going active (HIGH)
indicates that the 80186 has relinquished the bus. If the
requesting device is the 8087, HLDA will be translated
into the grant pulse of the AQ/GTO line. If the
requesting device is the optional third processor, HLDA
will be routed into the SYSHLDA line.

This pin also determines the mode in which the 82188
will operate. If this line is HIGH during the falling edge of
RESET, the 82188 will enter the 8086 mode. If LOW, the
82188 will enter the 80186 mode. For 8086 mode, this
pin should be strapped to Vee.

RQ/GTO 8 I/O Request/Grant 0
RQ/GTO is connected to AQ/GTO of the 8087 Numeric
Coprocessor. When initiated by the 8087, RQ/GTO will
be translated to HOLD-HLDA to acquire the bus from the
80186(80188). This line is bidirectional, and is active
LOW. RQ/GTO has a weak internal pull-up device to
prevent erroneous request! grant signals.

AQ/GT1 11 I/O Request/Grant 1
80186 Mode-In 80186 Mode, AQ/GT1 allows a third
processor to take control of the local bus when the 8087

- - ~ - - - has bus control. For a HOLD-HLDA type third processor,
the 82188's AQ/GT1 line should be connected to the
AQ/GT1 line of the 8087.

8086 MODE-In 8086 Mode, AQ/GT1 is connected to
either AQ/GTO or AQ/GT1 of the 8086. AQ/GT1 will
start its request! grant sequence when the SYSHOLD
line goes active. In 8086 Mode, AQ/GT1 is used to gain
bus control from the 8086 or 8088.

AQ/GT1 is a bidirectional line and is active LOW. This
line has a weak internal pull-up device to prevent
erroneous request/ grant signals.

22-227

intJ 82188

PIN DESCRIPTIONS (Continued)

Symbol Pin No. Type Name and Function
SYSHOLD 9 I System Hold

. 80186 MODE-SYSHOLD serves as a hold input for an
optional third processor in an 80186(80188)-8087 system.
If the 80186(80188) has bus control, SYSHOLD will be
routed to HOLD to gain control of the bus. If the 8087 has
bus control, 'SYSHOLD will be translated to RQ/GT1 to
gain control of the bus.

8086 MODE-SYSHOLD serves as a hold input for a
coprocessor in an 8086 or 8088 system. SYSHOLD is
translated to RQ/GT1 of the 82188 to allow the
coprocessor to take control of the bus.

SYSHOLD may be an asynchronous signal.

SYSHLDA 10 0 System Hold Acknowledge
SYSHLDA serves as a hold acknowledge line to the

- processor or coprocessor connected to it. The device
connected to the SYSHOLD-SYSHLDA lines is allowed
the bus when SYSHLDA goes active (HIGH).

SRDY 17 I Synchronous Ready
The SRDY il)put serves the same function as SRDY of the
80186(80188). The 82188 combines SRDY with ARDY to
form a synchronized ready output signal (SRO). SRDY .

.. must be synchronized external to the 82188 and is active
HIGH. If tied to Vee, SRO will remain active (HIGH) after
the first 256 80186 cycles following RESET. If only ARDY
is to be used, SRDY should be tied LOW.

ARDY 18 I Asynchronous Ready
TheARDYinput serves the same function as ARDY of the
80186(80188). ARDY may be an asynchronous input, and
is active HIGH. Only the rising edge of ARDY is '
synchronized by the 82188. The falling edge must be
synchronized external to the 82188. If connected to Vee,
SRO will remain active (HIGH) after the first 256 80186
bus cycles following RESET. If only SRDY is to be used,
ARDY should be con'nected LOW:

SRO 16 0 Synchronous READY Output
SRO provides a synchronized READY signal which may
be interfaced directly with the SRDY of the 80186(80188)
and READY of the 8087. The SRO signal is an
accumulation of the synchronized ARDY signal, the SRDY
signal, and the internally generated wait sta~e signal.

QSOI 1 I Queue-Status Inputs
QS11 2 QSOI, QS11 are connected to the Queue~Status lines of

the 80186(80188) to allow synchronization of the queue-
status signals to 8087 timing requirements.

QSOO 3 .0 Queue-Status Outputs
QS10 4 QSOO, QS10 are connected to the queue-status pins of

the 8087. The signals produced meet 8087 Queue-Status
input requirements.

22-228

82188

PIN DESCRIPTIONS (Continued)

Symbol Pin No. Type Name and Function

CSIN 13 I Chip-Select Input
CSIN is connected to one of the chip-select lines of the
80186(80188). CSIN informs the 82188 that a bank select is taking
place. The 82188 routes this signal to the chip-select output
(CSOUT). CSIN is active LOW. This line is not used when memory
and I/O device addresses are decoded external to the
80186(80188).

CSOUT 12 0 Chip-Select Output
This signal is used as a chip-select line for a bank of memory devices.
It is active when CSIN is active or when the 8087 has bus control.
CSOUT is active LOW.

FUNCTIONAL DESCRIPTION

BUS CONTROLLER

The 82188 Integrated Bus Controller (IBC) gener­
ates system control and command signals. The sig­
nals generated are determined by the Status Decod­
ing LQ.9icJ:.he bus controller logic interprets status
lines SO-S2 to determine what type of bus cycle is
taking place. The appropriate signals are then gen­
erated by the Command and Control Signal Genera­
tors.

The Address Enable (AEN) line allows the command
and control signals to be disabled. When AEN is in­
active (HIGH), the command signals and DEN will be
tri-stated, and ALE will be held low (DT/R will be
uneffected). AEN inactive will allow other systems to
take control of the bus. Control and command sig­
nals respond to a change in the AEN signal within 40
ns.

The command si~s consist of RD and WR. The
82188's RD and WR signals are similiar to RD and
WR of the 80186(80188) in the non-Queue-Status
Mode. These command signals do not differentiate
between memory and I/O devices. RD and WR can
be conditioned by S2 of the 80186(80188) to obtain
separate signals for I/O and memory devices.

The control commands consist of Data Enable
(DEN), Data Transmit/Receive (DT /R), and Address
Latch Enable (ALE). The control commands are sim­
iliar to those generated by the 80186(80188). DEN
determines when the external bus should be en­
abled onto the local bus. DT /R determines the di­
rection of the data transfer, and ALE determines
when the address should be strobed into the latches
(used for demultiplexing the address bus).

MODE SELECT

The 82188 Integrated Bus Controller (IBC) is config­
urable. The device has two modes: 80186 Mode and
8086 Mode. Selecting the mode of the device con­
figures the Bus Arbitration Logic (see BUS ARBI­
TRATION section for details). In 80186 Mode, the
82188 IBC may be used as a bus controller/inter­
face device for an 80186(81088), 8087, and optional
third processor system. In 8086 Mode, the 82188
IBC may be used as an interface device allowing a
maximum mode 8086(8088) to interface with a co­
processor that uses a HOLD-HLDA bus exchange
protocol.

The mode of the 82188 is determined during RE­
SET. If the HLDA line is LOW at the falling edge of
RESET (as in the case when tied to the HLDA line of
the 80186 or 80188), the 82188 will enter into 80186
Mode. If the HLDA line is HIGH at the falling edge of
RESET, the 82188 will enter 8086 Mode. In 8086
Mode, only the Bus Arbitration Logic is used. The
eight pins used in 8086 Mode are: SYSHOLD,
SYSHLDA,HLDA,CLK,RESET,RQ/GT1,Vcc,and
Vss. The other pins may be left unconnected.

BUS ARBITRATION

The Bus Exchange Logic interfaces up to three sets
of bus exchange signals:

• HOLO-HLDA
• SYSHOLD-SYSHLDA

• RQ/GTO (RQ/GT1)

This logic executes translating, routing, and arbitrat­
ing functions. The logic translates HOLD-HLDA sig­
nals to RQ/GT signals and RQ/GT signals to
HOLD-HLDA Signals. The logic also determines
which set of bus exchange signals are to be inter­
faced. The mode of the 82188 and the priority of the
devices requesting the bus determine the routing of
the bus exchange signals.

22-229

inter 82188

80186 MODE

In 80186 Mode, a system may have three potential
bus masters: the 80186 or 80188 CPU, the 8087
Numerics Coprocessor, and a third processor (such
as the 82586 LAN.or 82730 TextCoprocessor). The
third ...E!,ocessor may have either a HOLD-HLDA or
RQ/GT bus exchange protocol. The possible bus
exchange signal connections and paths for 80186
Mode are shown in Figures 3 & 4 and Tables 1 & 2,
respectively. If no HOLD-HLDA type third processor
is used, SYSHOLD should be tied LOW to prevent
an erroneous SYSHOLD signal. In 80186 mode, the
bus priorities are:

Highest Priority Third Processor

Second Highest Priority 8087

Default Priority 80186

- THREE-PROCESSOR SYSTEM OPERATION
(HOLD-HLDA TYPE THIRD PROCESSOR)

In the configuration shown in Figure 3, the third proc­
essor requests the bus by sending SYSHOLD HIGH.
The 82188 will route (and translate if necessary) the
request to the current bus master. This includes
routing the request to HOLD if the 80186(80188) is
the current bus master or routing and translating the
request to RQ/GT1 if the 8087 is in control of the
bus. The third processor's request is not passed
through the 8087 if the 80186 is the bus master (see
Table 1).

The 8087. requests the bus using RQ/GTO. The re­
quest pulse from the 8087 will be translated. and
routed to HOLD if the 80186 is the bus master. If the
third processor has control of the bus, the grant
pulse to the 8087 will be delayed until the third proc­
essor relinquishes the bus (sending SYSHOLD
LOW). In this case, HOLD will ~emain HIGH during
the third processor-to-8087 bus control transfer. The
80186 will not be granted the bus until both coproc­
essors have released it.

Table 1. Bus Exchange Paths (80186 Mode) (HOLD-HLDA Type 3rd Proc)

Requesting Current Bus Master
Device 80186 8087 3rd Proc

80186 nla nla nla

8087
__ HOLD
RQ/GTO ~ HLDA nla nla

SYSHOLD HOLD ~~~~~~~ ~ RQ/GT1 nla 3rd Proc ~--
SYSHLDA HLDA

80186 82188 8087

HOLD HOLD

RQ/GTO RQ/GTO

HLDA HLDA

3RD pROC

HLDA SYSHLDA

RQ/GT1 RQ/GT1

HOLD SYSHOLD
231051-3

Figure 3.
Bus Exchange Signal Connections (80186 Mode) for a Three Local Processor System

(HOLD-HLDA Type 3rd Proc)

22-230

82188

Table 2. Bus Exchange Paths (80186 Mode) (RQ/GT Type 3rd Proc)

Requesting Current Bus Master
Device 80186 8087 3rd Proc

80186 nfa n/a nfa
_ _ HOLD

nfa 8087 RQfGTO~--
HLDA

nfa

3rd Proc RQfGT1 ~ RQfGTO ~ ~~~~ RQfGT1 nfa

80186 82188 8087

HOLD HOLD

HLDA HLDA

RQ/GTO RQ/GTO

RQ/GT1 Ra/GT1

SYSHOLD

.~ Ra/GT1 -Ne

231051-4

Figure 4.
Bus Exchange Signal Connections (80186 Mode) for a Three Local Processor System

(RQ/GT Type 3rd Proc)

When the bus is requested from the 80186(80188),
a bus priority decision is made. This decision is
made when the HLDA line goes active. Upon receipt
of the HLDA signal, the highest-priority requesting
device will be acknowledged the bus. For example, if
the 8087 initially requested the bus, the bus will be
granted to the third processor if SYSHOLD became
active before HLDA was received by the 82188. In
this case, the grant pulse to the 8087 will be delayed
until the third processor relinquishes the bus.

- THREE-PROCESSOR SYSTEM OPERATION
(RQ/GT TYPE THIRD PROCESSOR)

In the configuration shown in Figure 4, the third proc­
essor requests the bus by initia!!!!g a request! grant

. sequence with the 8087's RQfGT1 line. The 8087
will grant the bus if it is the current bus master or will
pass the request on if the 80186 is the current bus
master (see Table 2). In this configuration, the
82188's Bus Arbitration Logic translates RQfGTO to
HOLD-HLDA. The 8087 provides the bus arbitration
in this configuration.

8086 MODE

The 8086 Mode allows an 8086, 8088 system to
contain both RQfGT and HOLD-HLDA type coproc­
essors simultaneously. In 8086 Mode, two possible
bus masters may be interfaced by the 82188; an
8086 or 8088 CPU and a coprocessor which uses a
HOLD-HLDA bus exchange protocol (typically an
82586 LAN Coprocessor or an 82730 Text Coproc-

. essor). The bus exchange signal connections for
8086 Mode are shown in Figure 5. Bus arbitration
signals used in the 8086 Mode are:

• RQfGT1

• SYSHOLD

• SYSHLDA

In 8086 Mode, no arbitration is necessary since only
two devices are interfaced. The coprocessor has
bus priority over the 8086(8088). SYSHOLD­
SYSHLDA are routed and translated directly to RQI
GT1. RQfGT1 of the 82188 may be tied to either
RQ/GTO or RQfGT1 of the 8086(8088).

22-231

inter 82188

8088 82188 COPROC

RQ/GT1. im/GT1

SYSHOLD HOLD

SYSHLDA HLDA t HLDA

RQ/GTO I-

8087

~ RQ/GTO

231051-5

Figure 5. Bus Exchange Signal Connections (8086 Mode)

QUEUE-STATUS DELAY

The Oueue-Status Delay logic is used to delay the
queue-status signals from the 80186(80188) to meet
8087 queue-status timing requirements. OSOI, OS11
correspond to the queue-status lines of the
80186(80188). The 82188 delays these signals by
one clock phase. The delayed signals are interfaced
to the 8087 queue-status lines by OSOO, OS10.

CHIP-SELECT

The Chip-Select Logic allows the utilization of the
chip select circuitry of the 80186(80188). Normally,
this circuitry could not be used in an 80186(80188)-
8087 system since the 8087 contains no chip select
circuitry. The Chip-Select Logic contains two exter­
nal connections: Chip-Select Input (CSIN) and Chip­
Select Output (CSOUT). CSOUT is active when ei­
ther CSIN is active or when the 8087 has control of
the bus.

By using CSOUT to select memory containing data
structures, no external decoding is necessary. The
80186 may ~ access to this memory bank
through the CSIN line while the 8087 will automati­
cally obtain access when it becomes the bus mas­
ter. Note that this configuration limits the amount of
memory accessible by the 8087 to the physical
memory bank selected by CSOUT. Systems where
the 8087 must access the full 1 Megabyte address
space must use an external decoding scheme.

READY

The Ready logic allows two types of Ready signals:
a Synchronous Ready Signal (SRDY) and an Asyn­
chronous Ready Signal (ARDY). These signals are
similiar to SRDY and ARDY of the 80186. Wait
states will be inserted when both SRDY and ARDY
are LOW. Inserting wait states allows slower memo­
ry and 1/0 devices to be interfaced to· the
80186(80188)-8087 system.

ARDY's LOW-to-HIGH transition is synchronized to
the CPU clock by the 82188. The 82188 samples
ARDY at the beginning of T2, T3 and Twuntil sam­
pled HIGH. Note that ARDY of the 82188 is sampled
one phase earlier than ARDY of the 80186. ARDY's
falling edge must be synchronous to the CPU clock.
ARDY allows an easy interface with devices that
emit an asynchronous ready signal.

The SRDY signal allows direct interface to devices
that emit a synchronized ready signal. SRDY must
be synchronized to the CPU clock for both of its
transitions. SRDY is sampled in the middle of T2, T3
and in the middle of each Tw. An 82188-
80186(80188),s SRDY setup time is 30 ns longer
than the 80186(80188)'s SRDY setup time. SRDY
eliminates the half-clock cycle penalty necessary for
ARDY to be internally sychronized.

The sychronized ready output (SRO) is the accumu­
lation of SRDY, ARDY,· and the internal wait-state

22-232

82188

generator. SRO should be connected to SRDY of
the 80186(80188) (with 80186(80188)'s ARDY tied
LOW), and READY of the 8087.

SRDY ARDY SRO

0 0 0
1 X 1
X 1 1

The internal wait state generator allows for synchro­
nization between the 80186(80188) and 8087 in
80186 mode. Upon RESET, the 82188 automatically
inserts 3 wait-states per 80186(80188) bus cycle,
overlapped with any externally produced wait-states
created by ARDY and SRDY.

Since the 8087 has no provision for internal wait­
state generation, only externally created wait states
will be effective. The 82188, upon 'RESET, will inject
3 wait states for each of the first 256 80186(80188)
bus cycles onto the SRO line. This will allow the
8087 to match the 80186(80188)'s timing.

The internally-generated wait states are overlapped
with those produced by the SRDY and ARDY lines.
Overlapping the injected wait states insures a mini­
mum of three wait states for the first 256
80186(80188) bus cycles after RESET. Systems
with a greater number of wait states will not be ef­
fected. Internal wait state generation by the 82188
will stop on the 256th 80186(80188) bus cycle after
RESET. To maintain sychronization between the
80186(80188) and 8087, the following conditions
are necessary:

ARDY-----------------1

CLK----------------------~

HLDA ---------QL.......f

• The 80186(80188)'s control block must be
mapped in 1/0 space before it is written to or
read from.

• All memory Chip-select lines must be set to 0
WAIT STATES, EXTERNAL READY ALSO USED
within the first 256 80186(80188) bus cycles after
RESET.

An equivalent READY logic diagram is shown in
Figure 6.

SYSTEM CONSIDERATIONS

In any 82188 configuration, clock compatibility must
be considered. Depending on the device, a 50% or a
33% duty-cycle clock is needed. For example, the
80186 and 80188 (as well as the 82188, 82586, and
82730) requires a 50% duty-cycle clock. The 8086,
8088 and their 'kit' devices' (8087, 8089, 8288, and
8289) clock requirements, on the other hand, require
a 33% duty-cycle clock signal. The system designer
must make sure clock requirements of all the devic­
es in the system are met.

Figure 7 demonstrates the usage of the 82188 in
80186 Mode where it is used to interface an 8087
into an 80186 system.

Status bit six (S6) from the main processor (8086,
8088, 80186, or 80188) is used by the 8087 to track
the instruction flow. S6 is multiplexed with address
bit 19 (A 19). If the third processor generates only 16
bits of address, S6 is not generated. A 19/56 must
be driven high by external circuitry during the status
portion of bus cycles controlled by the third proces­
sor.

SRDY

SRO

RESET----------------------~-----------J

231051-6

Figure 6. Equivalent 82188 READY Circuit

22-233

I\)
I\)

N
(,)
.j>.

Q)
Q ...
Q)

cp
~
Q)
Q
Q)

";'I
N
CJ)

~
Ii
~:!!
!/lID -, C
:::J ...
lDeD
--.j
::T'
eD
Q)
N ...
Q)
Q)

5'
Q)
Q ...
~
3:
o
a.
eD

12MHz

---. ,.

"-

-

80186

HLDA
HOLD
MCSO

ARDY QSO
RD

QS1

SRDY
RESETOUT
CLOCKOUT

INTO S2

TEST
S1

SO

BUSY SO

INT S1

S2
CLK

RESET

RDY
QSO

QS1

RQ/GTO

RQ/GT1

8087-1

TO OPTIONAL
THIRD BUS MASTER

¢ ADD.'" DATA .u~ t
SYS SYS

HOLD HLDA ;L-HLDA
HOLD r CSIN

QSOI

QS11

ALE -
f-----

t---
S2 r- S1

SO
CLK

r- RESET

J-- SRO
t---

f----- 82188

DTiii -
DEN -

QSOO
QS10

RQ/GTO

RQ/GTt

~ ADDRESS DATA BUST
T

ARDY SRDY

------t STB ~

~ 74LS -373

~ -

I
I

----J DIR f-
----J OE

~ 74LS Jl--245

~ y-

COMMAND/CONTROL

ADDRESS

DATA

231051-7

l

C»
I\)
0)
0)

~
a§J
/iiiiJ
IF'

~
~
~
a§J
~

82188

ABSOLUTE MAXIMUM RATINGS *

Temperature Under Bias O°C to 70°C

Storage Temperature - 65°C to 150°C

Case Temperature O°C to + 85°C

Voltage on any Pin with
Respect to GND -1.0V to 7.0V

Power Dissipation 0.7 Watts

DC CHARACTERISTICS

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE Specifications contained within the
fol/owing tables are subject to change.

(Vcc = 5V ± 10%, TA = O°C to 70°C, TCASE = O°C to +85°C)

Symbol Parameter Min Max Units TestCond.

VIL Input Low Voltage -0.5 +0.8 volts

VIH Input High Voltage 2.0 Vcc + 0.5 volts

VOL Output Low Voltage 0.45 volts IOL = 2mA

VOH Output High Voltage 2.4 volts IOH = -400/LA

Icc Power Supply Current 100 mA TA = 25°C

III Input Leakage Current ±10 /LA OV<VIN<VCC

ILO Output Leakage Current ±10 /LA 0.45<VOUT<VCC

VCLI CLKlnput Low Voltage -0.5 +0.6 volts

VCHI CLK Input High Voltage 3.9 VCC +1.0 volts

CIN Input Capacitance 10 pF

CIO 1/0 Capacitance 20 pF

AC CHARACTERISTICS
(Vcc = 5V ± 10%, T A = O°C to 70°C, T CASE = O°C to + 85°C)

TIMING REQUIREMENTS

Symbol Parameter Min Max Units Notes

TCLCL Clock Period 125 500 ns

TCLCH Clock LOW Time %TCLCL-7.5 ns

TCHCL Clock HIGH Time %TCLCL-7.5 ns

TARYHCL ARDY Active Setup Time 20 ns

TCHARYL ARDY Hold Time 15 ns 8

TARYLCH ARDY Inactive Setup Time 35 ns

TSRYHCL SRDY Input Setup Time 65,50 ns 1

TSVCH STATUS Active Setup Time 55 ns

TSXCL STATUS Inactive Setup Time 50 ns

TOIVCL OSOI, OS11 Setup Time 15 ns

THAVGV HLDA Setup Time 50 ns

TSHVCL SYSHOLD Asynchronous Setup Time 25 ns

TGVCH RO/GT Input Setup Time 0 ns 6

22-235

intJ 82188

TIMING RESPONSES

Symbol Parameter Min Max Units

T8VLH STATUS Valid to ALE Delay 30 ns

TCHLL ALE Inactive Delay 30 ns

TCLML AD, WA Active Delay 10 70 ns

TCLMH AD, WA Inactive Delay 10 55 ns

TSVDTV STATUS to DTlR Delay 30 ns

TCLDTV DT lA Active Delay 55 ns

TCHDNV DEN Active Delay 10 55 ns

TCHDNX DEN Inactive Delay 10 55 ns

TCLOOV 0800,0810 Delay 5 50 ns

TCHHV HOLD Delay 50 ns

TCl8AV 8YSHlDA Delay 50 ns

TCLGV AOlGT Output Delay 40 ns

TGVHV AOlGTO To HOLD Delay 50 ns

TCLLH ALE Active Delay 30 ns

TAELCV Command Enable Delay 40 ns

TAEHCX . Command Disable Delay 40. ns

TCHRO SAO Output Delay 5 30 ns

T8AYHRO SADY To SRO Delay 30 ns

TCSIC80 C81N To C80UT Delay 30 ns

TCLCSOV ClK Low to CSOUT Delay 10 ns

TCLC80H CLK Low to C80UT Inactive Delay 10 ns

NOTES (applicable to both spec listing and timing diagrams):
1. TSRYHOl = (80186's) TSRYCl + 30 ns=65 ns for 6 MHz operation and 50 ns for 8 MHz operation.
2. Timing not tested.
3. DT/R will be asserted to the latest of TSVDTV & TC:lDTV.
4. ALE will be asserted to the latest of TSVlH & TCllH.
5. SRO will be asserted to the latest of TCHRO & TSRYHRO.
6. Cl = 20'-100 pF
7. Address/Data bus shown for reference only.
8. The falling edge of ARDY must be synchronized to ClK.

A.C. TESTING INPUT, OUTPUT WAVEFORM
INPUT/OUTPUT

'.~_ Tm"","", -~
0.45

231051-9

A.C. Testing: Inputs are driven at 2.4V for a Logic '1' and 0,45V
for a Logic '0',

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER rrcc
TEST

CL includes Jig Capacitance
CL ~ 20-200 pF unless otherwise noted

22-236

Notes

4

3

3

2,6

6

6

2,6

4

5,6

5

231051-10

82188

Command and Control Waveforms-80186 Mode

T1 T2

CLK

ARDY

SRDY

SRO

~CHRO ll;5 TSRYHRO
______________ -L __ ~ ®

231051-12

READY Timing-80186 Mode

22-237

inter 82188

SYSHOLD-SYSHLDA to RQ/GT1 Tlming-80186 Mode and 8086 Mode

22-238

82188

SYSHOLD-SYSHLDA To HOLD-HLDA Timing-80186 Mode

22-239

82188

HOLD

HLDA ---------s
_______________ tTCLCSOy LTCLCSOH

CSOUT r
~----~IS~----~

RQ/GTO to HOLD-HLDA Timing-80186 Mode

CLK~
: T. OIVCL

OSOI,
_ OSll .

f TCLOO.V

OSOO,
OSlO ________ --J

.D,::" ______)_-l(~-TA-E-L-C-V---=1--', r TAEHClC

DT/R,DEN ~)I--

CSIN)(

_________ ~ __ .'~,~-T-CS-I-C-S-O-.-----
CSOUT)1(_

Queue Status, ALE, Chip Select Delay Timing-80186 Mode

22-240

231051-15

231051-16

APPLICATION
NOTE

AP-186

November 1987

Introduction to the 80186
Microprocessor

Order Number: 210973-005
22-241

AP-186

1.0 INTRODUCTION

As state of the art technology has increased .the number
of transistors possible on a single integrated circuit,
these devices have attained new, higher levels of both
performance and functionality. Riding this crest are the
Intel 80186 and 80286 microprocessors. While the
80286 has added memory protection and management
to the basic 8086 architecture, the 80186 has integrated
six separate functional blocks into a single device.

The purpose of this note is to explain, through example,
the use of the 80186 with various peripheral and memo­
ry devices. Because the 80186 integrates a DMA unit,
timer unit, interrupt control1er unit, bus control1er unit
and chip select and ready generation unit with the CPU

INT3/1NTAI

on a single chip (see Figure 1), system construction is
simplified since many of the peripheral interfaces are
integrated onto the device.

The 80186 family actual1y consists of two processors:
the 80186 and 80188. The only difference between the
two processors is that the 80186 maintains a 16-bit ex­
ternal data bus while the 80188 has an 8-bit external
data bus. Internal1y, they both implement the same
processor with the same integrated peripheral compo­
nents. Thus, except where noted, al1 80186 information
in this note also applies to the 80188. The implications
of having an 8~bit external data bus on the 80188 are
explicitly noted in Appendix I. Any parametric values
indicated in this note are taken from 80186 data sheet
and refer to 8 MHz devices. Different values apply to
10 MHz devices.

INT2IIRTAii

'-
.-

'-~
'-I-

SRDY
ARDY

TRf
HOLD
HLDA

-I-
-I-
"'r-
-~ RES

RESET 1-

rD~LKOUT T Gr
INTI TMR OUT 1 TMR OUT D

TMR IN t TMR IN t
Nrl INiD 1 1

I I 'ExECUTION UNiT1 ! t t
PROGRAMMABLE

TIMERS
X, X, I D 1 2

16-8IT I MAX COUNT ~
ALU I PROGRAMMABLE REGISTER B I

CLOCK I
INTERRUPT MAX COUNT CONTROLLER

GENERATOR I
REGISTER A

16·BIT
GENERAL I CONTROL REGISTERS
PURPOSE I REGISTERS CONTROL~ 16-BIT

-1 REGISTERS COUNT REGISTER

~ rr { {
INTERNAL BUS

J ~J U ~--1-DRQD
DRQl

PROGRAMMABLE
DMAUNIT
D 1

CHIP-SELECT 2O·BIT
UNIT SOURCE POINTERS

BUS INTERFACE ~ 2O-BIT
UNIT III-BIT DESTINATION

SEGMENT POINTERS
REGISTERS

II-BYTE PROGRAMMABLE I 16-81T
CONTROL TRANSFER COUNT PREFETCH

RE1s1RS 11 QUEUE CONTROL

I IIln REGISTERS

1-J-N 1 ~At., . u&sl + .! _ PCS6IA2
LOCK RD ADO- AI61S3- LCS PCS5IAI

DTIR IIIf S7 AD15 AI9/56 V
MCS0-3

210973-1

Figure 1.80186 Block Diagram

22-242

intJ AP·186

2.0 OVERVIEW OF THE 80186

2.1 TheCPU

The 80186 CPU shares a common base architecture
with the 8086, 8088 and 80286. It is completely object
code compatible with the 8086/88. This architecture
features four 16·bit general purpose registers (AX, BX,
CX, DX) which may be used as operands in most arith­
metic operations in either 8 or 16 bit units. It also fea­
tures four 16-bit "pointer" registers (SI, 01, BP, SP)
which may be used both in arithmetic operations and in
accessing memory based variables. Four 16-bit segment
registers (CS, DS, SS, ES) are provided allowing simple
memory partitioning to aid construction of modular
programs. Finally, it has a 16-bit instruction pointer
and a 16-bit status register.

Physical memory addresses are generated by the 80186
identically to the 8086. The 16-bit segment value is left
shifted 4 bits and then is added to an offset value which
is derived from combinations of the pointer registers,
the instruction pointer, and immediate values (see Fig­
ure 2). Any carry out of this addition is ignored. The
result of this addition is a 20-bit physical address which
is presented to the system memory.

The 80186 has a 16-bit ALU which performs 8 or 16-
bit arithmetic and logical operations. It provides for
data movement among registers, memory and I/O
space. In addition, the CPU allows for high speed data
transfer from one area of memory to another using
string move instructions, and to or from an I/O port
and memory using block I/O instructions. Finally, the
CPU provides a wealth of conditional branch and other
control instructions.

"

I"
SEGMENT VALUE I 1

. OFFSET

PHYSICAL ADDRESS I

In the 80186, as in the 8086, instruction fetching and
instruction execution are performed by separate units:
the bus interface unit and the execution unit, respec­
tively. The 80186 also has a 6-byte prefetch queue as
does the 8086. The 80188 has a 4-byte prefetch queue
as does the 8088. As a program is excecuting, opcodes
are fetched from memory by the· bus interface unit and
placed in this queue. Whenever the execution unit re­
quires another instruction, it takes it out of the queue.
Effective processor throughput is increased by adding
this.queue, since the bus interface unit may continue to
fetch instructions while the execution unit executes a
long instruction. Then, when the CPU completes this
instruction, it does not have to wait for another instruc­
tion to be fetched from memory.

2.2 80186 CPU Enhancements

Although the 80186 is completely object code compati­
ble with the 8086, most of the 8086 instructions require
fewer clock cycles to execute on the 80186 than on the
8086 because of hardware enhancements in the bus in­
terface unit and the execution unit. In addition, the
80186 provides many new instructions which simplify
assembly language programming, enhance the perform­
ance of high level language implementations, and re­
duce object code sizes for the 80186. A complete de­
scription of the architecture and instruction execution
of. the 80186 can be found in volume I of the
8086/80186 Users Manual. The algorithm for the new
instructions are also given in appendix H of this note.

2.3 DMA Unit

The 80186 includes a DMA unit which provides two
high speed DMA channels. This DMA unit will per-

16 BITS "

18 BITS 'I
I

+

=
I

20 BITS ·1
210973-2

Figure 2. Physical Address Generation In the 80186

22-243

intJ AP-186

fonn transfers to or from any Combination of i/o space
and memory space in either byte or word units. Every
DMA cycle requires two to four bus' cycles, one or two
to fetch the data to an internal register, and one or two
to deposit the data. This allows word data to be located .
on odd boundaries, 'or byte data to be moved from odd
locations to even locations. This is. nonnally difficult,
. since odd data bytes are transferred on the upper 8 data
bits of the 16-bit data bus, while even data bytes are
transferred on the lower 8 data bits of the data bus.

Each DMA channel maintains independent 20-bit
source and destination pointers which are used to ac­
cess the source and destination of the data transferred.
Each of these pointers may independently address ei­
ther I/O or memory space. After each DMA cycle, the
pointers may be independently incremented, decre­
mented, or maintained constant. Each DMA channel
also maintains a transfer count which may be used to
terminate a series of DMA transfers 'after a pre-pro­
grammed number of transfers.

2.4 Timers

The 80186 includes a timer unit which contains linde­
pendent 16"bit timer/counters. Two of these timers can
be used to count external events, to provide wavefonns
derived from either the CPU clock or an external clock
of any duty cycle, or to interrUpt the CPU after a speci­
fied number of timer' "events". The third timer counts
only CPU clocks and can be 'used to interrupt the CPU
after a programmable number of CPU clocks, to give a
count pulse to either or both of the other two timers
after a programmable number of CPU clocks, or to give
a DMA request pulse to the integrated DMA unit after
a programmable number of CPU clocks.

.2~5 Interrupt Controller

The 80186 includes an interrupt controller. This con­
troller arbitrates interrupt requests between all internal
and external sources. It can be directly cascaded as the
master to two external 8259A interrupt controllers. In
addition, it can be configured as a slave.controller.

2.6 Clock Generator

The 80186 includes a clock generator and crystal oscil­
lator. The crystal oscillator can be used with a parallel
resonant, fundamental mode crystal at 2X the desired
CPU clock speed (i.e., 16.MHz for an 8 MHz 80186),
or witli an external oscillator also at 2X the CPU clock.
The output of the oscillator is internally divided by two
to provide the 50% duty cycle CPU clock from which
all 80186 system timing derives. The CPU clock is ex­
ternally available, and all timing parameters are refer­
enced to this externally available signal. The clock

generator also provides ready synchronization for the
processor.

2.7 Chip Select and Ready Generation
UnH .

The 80186 includes iritegrated chip select logic which
can be used to enable memory or peripheral devices. Six
output lines are used for memory addressing and seven
output lines are used for peripheral addressing.

The memory chip select lines are split into 3 groups for
separately addressing the major memory areas in a typi­
cal 80186 system: upper memory for reset ROM; lower
memory for interrupt vectors, and mid-range memory
for program memory. The size of each of these regions
is user programmable. The starting location and ending
location of lower memory and upper memory are fixed
at OOOOOH and FFFFFH respectively; the starting loca­
tion of the mid-range memory is user programmable.

Each of the seven peripheral select lines address one of
seven contiguous '128 byte blocks above a programma­
ble base address.' This base address· can be loCated in
either·memory or I/O space in order that peripheral
devices may be I/O or memory mapped.

Each of the programmed chip seleCt areas has associat­
ed with it a set of. programmable ready bits. These
ready bits control an' integrated wait state generator.
This allows a programmable number of wait states (0 to
3) to be automatically inserted whenever. an access is
made to the area. of memory associated with the chip
select area. In addition, each set of ready bits includes a
bit which detennines .whether the external ready signals
(ARDY and SRDy) will be used, or whether they will
be ignored (i.e., the bus cycle will terminate even
though a ready has not been returned on the external
pins). There are 5 total sets of ready bits which allow
independent ready generation for each of upper memo- .
ry, lower memory, mid-range memory, peripheral de­
vices 0-,3 and peripheral devices 4-6.

2.8 Integrated Peripheral Accessing

The integrated peripheral and chip select circuitry is'
controlled by sets of 16-bit registers accessed using
standard input, output, or memory access instructions.
These peripheral control registers are all located within
a 256 byte block which can be placed in either memory
or I/O space. Because they are accessed exactly as if
they were external devices, no new instruction types are
required to access and control the integrated peripher­
als. For more infonnation concerning the interfacing
and accessing of the integrated 80186 peripherals not
included in this note, please consult the 80186 data
sheet, or the 8086/80186 User's Manual Hardware Ref­
erence.

22-244

AP-186

3.0 USING THE 80186

3.1 Bus Interfacing to the 80186

3.1.1 OVERVIEW

The 80186 bus structure is very similar to the 8086 bus
structure. It includes a multiplexed address/data bus,
along with various control and status lines (see Table
1). Each bus cycle requires a minimum of 4 CPU clock
cycles along with any number of wait states required to
accommodate the speed access limitations of external
memory or peripheral devices. The bus cycles initiated
by the 80186 CPU are identical to the bus cycles intiti­
ated by the 80186 integrated DMA unit.

Each clock cycle of the 80186 bus cycle is called a "T"
state, and are numbered sequentially Tl> T2, T3, Tw
and T4. Additional idle T states (Tj) can occur between
T4 and T, when the processor requires no bus activity
(instruction fetches, memory writes, I/O reads, etc.).
The ready signals control the number of wait states
(tw) inserted in each bus cycle. The maximum number
of wait states is unbounded.

LINES

~~~1 
""", -0-1---! 

I (LOW 

I PHASE) 

I 

02 

(HIGH 

PHASE) 

L 
210973-3 

Figure 3. T-state in the 80186 

The beginning of a T state is signaled by a high to low 
transition of the CPU clock. Each T state is divided 
into two phases, phase 1 (or the low phase) and phase 2 
(or the high phase) which occur during the low and 
high levels of the CPU clock respectively (see Figure 3). 

Different types of bus activity occur for all of the 
T-states (see Figure 4). Address generation information 
occurs during T" data generation during T2, T3, Tw~ 

DATA 
LINES 

ADDRESSI t----1t~~~=1 y---.;----++--..1 
CONTROL -t-----'l------!\ 

SIGNALS 

(RD,WR) 

Figure 4. Example Bus Cycle of the 80186 

Table 1.80186 Bus Signals 

Function Signal Name 

address/data ADO-AD15 
address/ status A 16/S3-A 19-56, SHE/S7 
co-process,or control TEST 
local bus arbitration HOLD, HLDA 
local bus control ALE, AD, WA, DT lA', DEN 
multi-master bus LOCK 
ready (wait) interface SADY,AADY 
status information SO-S2 

22-245 

210973-4 



intJ AP-186 

and T 4. The beginning of a bus cycle is signaled by the 
status lines of the processor going from a passive state 
(all high) to an active state in the middle of the T-state 
immediately before T) (either a T4 or a Tj). Because 
information concerning an impending bus cycle occurs 
during the T-state immediately before the first T-state 
of the cycle itself, two different types of T 4 and T j can 
be generated: one where the T state is immediately fol­
lowed by a bus cycle, and one where the T state is 
immediately followed by an idle T state. 

During the first type of T4 or Tj, status information 
concerning the impending bus cycle is generated for the 
bus cycle immediately to follow. This information will 
be available no later than tCHSV (55 ns) after the. low­
to-high transition of the 80186 clock iIi the middle of 
the T state. During the second type of T4 or Tj the 
status outputs remain inactive (high), since no bus cycle 
is to be started. This means that the decision per the 
nature of a T 4 or Tj state (i.e., whether it is immediately 
followed by a Tjor a T) is decided atthe beginning of 
the T-state immediately preceding the T4 or Tj (see Fig­
ure 5). This has consequences for the bus latency time 
(see section 3.3.2 on bus latency). 

3.1.2. PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by the 80186 during 
T 1 of a bus cycle. Since the address and data lines are 
multiplexed on the same set of pins, addresses must be 
latched during T) if they are required to remain stable 

T,or 

Tw 

CLOCK 

OUT 

STATUS ACTIVE I STATUS 
INFO T,or 

Tw 

CLOCK 

OUT 

STATUS 
ACTIVE 
STATUS 

UNES 

for the duration of the bus cycle. To facilitate latching 
of the physical address, the 80186 generates an active 
high ALE (Address Latch Enable) signal which can be 
directly connected to a transparent latch's strobe input. 

Figure 6 illustrates the physical address generation pa­
rameters of the 80186. Addresses are guaranteed valid 
no greater than tCLAV (55 ns) after the beginning of T" 
and remain valid at least tCLAX (10 ns) after the end of 
T,. The ALE signal is driven high in the middle of the 
T state (~ither T4 orTj) immediately preceding T, and 
is driven low in the middle .of T" no sooner than 
tAVLL (30 ns) after addresses become valid. This 'pa­
rameter (tA VLL) is required to satisfy the address latch 
set-up times of address valid until strobe inactive. Ad­
dresses remain stable on the address/data bus at least 
tLLAX (30 ns) after ALE goes inactive to satisfy ad­
dress latch hold times of strobe inactive to address in­
valid. 

Because ALE goes high long before addresses become 
valid, the delay through the address latches will be 
chiefly the propagation delay through the latch rather 
than the d~lay from the latch strobe, which is typically 
longer than the propagation delay. For the Intel 8282 
latch, this parameter is trvov, the input valid to output 
valid delay when strobe is held active (high). Note that 
the 80186 drives ALE high one full clock phase earlier 
than the 8086 or the 8288 bus controller, and keeps it 
high throughout the 8086 or 8288 ALE high time (i.e., 
the 80186 ALE pulse is wider). 

INACTIVE 
STATUS 

INACTIVE 
STATUS 

I 
I 

210973-5 

Figure 5. Active-Inactive Status Transitions in the 80186 

22-246 



CLOCK 
OUT 

T,OR 

T. 

ALE ----' 

AP-186 

T, T. 

AO-A1B -----J.t::f,~![~~~--

210973-6 

NOTES: 
1. tCHLH: Clock high to ALE high = 35 ns max 
2. tCLAV: Clock low to address valid = 55 ns max 
3. tcHLL: Clock high 10 ALE low = 35 ns max 
4. tCLAX: Clock low to address invalid (address hold from clock low) = 10 ns min 
5. tLLAX: ALE low to address invalid (address hold from ALE) = 30 ns min 
6. IAVLL: Address valid to ALE low (address setup to ALE) = 30 ns min 

Figure 6. Address Generation Timing of the 80186 

A typical circuit for latching physical addresses is 
shown in Figure 7. This circuit uses 3 8282 transparent 
octal non-inverting latches to demultiplex all 20 ad­
dress bits provided by the 81086. Typically, the upper 4 
address bits are used only to select among various 
memory components or subsystems, so when the inte-

188 SIGNALS 

A18-

A19 

AD8-

AD15 

ADO­
AD7 

ALE 

4 
/ 

r-
-

8 
/ 

r-

/8 

f....-

=' 

grated chip selects (see section 8) are used, these upper 
bits need not be latched. The worst case address genera­
tion time from the beginning of T 1 (including address 
latch propagation time (tIVOV) of the Intel 8282) for 
the circuit is: 

tCLAV (44 ns) + t,vov (30 ns) = 74 ns 

8282 

LATCHED ADDRESS 
SIGNALS 

I 

STB 0 
/4 

A1B-A19 

OE 

B2B2 

I 
B 

STB 0 / A8-A15 

OE 

8282 
I 

STB 0 
/8 

/ AO-A7 

OE 

210973-7 

Figure 7. Oemultiplexlng the Address Bus of the 80186 

22-247 



AP-186 

Many memory or peripheral devices may not require 
addresses to remain stable throughout a data transfer. 
If a system is constructed wholly with these types of 
devices, addresses need not be latched. In addition, two 
of the peripheral chip select outputs of the 80186 may 
be configured to provide latched Al and A2 outputs for 
peripheral register selects in a system which does not 
demultiplex the address/data bus. 

One more signal is generated by the 80186 to address 
memory: BHE (Bus High Enable). This signal, along 
with AO, is used to enable byte devices connected to 
either or both halves (bytes) of the 16-bit data bus (see 
section 3.1.3 on data bus operation section). Because 
AO is used only to enable devices onto the lower half of 
the data bus, memory chip address inputs are usually 
driven by address bits AI-AI9, NOT AO-AI9. This 
provides S12K unique word addresses, or 1M unique 
BYTE addresses. 

Of course, BHE is not present on the 8 bit 80188. All 
data transfers occur on the 8 bits ofthe data bus. 

3.1.380186 DATA BUS OPERATION 

Throughout T 2, T 3, Tw.and T 4 of a bus cycle the mul­
tiplexed address/data bus becomes a 16-bit data. bus. 
Data transfers on this bus may be either in bytes or in 
words. All memory is byte addressable, that is, the up­
per and lower byte of a 16·bit word each have a unique 
byte address by which they may be individually ac· 
cessed, even though they share a common word address 
(see Figure 8). 

All bytes with even addresses (AO= 0) reside on the 
lower 8 bits of the data bus, while all bytes with odd 
addresses (AO = 1) reside on the upper 8 bits of the 
data bus. Whenever an access is made to only the even 
byte, AO is driven low, BHE is driven high, and the 
data transfer occurs on DO-D7 of the data bus. When­
ever an access is made to only the odd byte, BHE is 
driven low, AO is driven high, and the data transfer 

occurs on D8-DlS of the data bus. Finally, if a word 
access is performed to an even address, both AO and 
BHE are driven low and the data transfer occurs on 
DO-DiS. 

Word accesses are made to the addressed byte and to 
the next higher numbered byte. If a word access is per­
formed to an odd address, two byte accesses must be 
performed, the first to access the odd byte at the first 
word address on D8-DlS, the second to access the 
even byte at the next sequential word address on DO­
D7. For example, in Figure 8, byte 0 and byte 1 can be 
individually accessed (read or written) in two separate 
bus cycles (byte accesses) to byte addresses 0 and 1 at 
word address O. They may also be accessed together in 
a single bus cycle (word access) to word address O. 
However, if a word access is made to address 1, two bus 
cycles will be required, the first to access byte 1 at word 
address 0 (note byte 0 will not be accessed), and the 
second to access byte 2at word address 2 (note byte 3 
will not be accessed). This is why all word data should 
be located at even addresses to maximize processor per­
formance. 

When byte reads are made, the data returned on the 
half of the data bus not being accessed is ignorel;!. When 
byte writes are made, the data driven on the half of the 
data bus not being written is indetermiriate. 

3.1.480188 DATA BUS OPERATION 

Because the 80188 externally has only an 8-bit data bus, 
the above discussion about upper and lower bytes of the 
data bus does not apply to the 80188. No performance 
improvement will occur if word data is placed on even 
boundaries in memory space. All word accesses require 
two bus cycles, the first to access to lower byte of the 
word; the second to access the upper byte of the word. 

Any 80188 access to the integrated peripherals must be 
done 16 bits at a time: thus in this special case, a word 
access will occur in a single bus cycle in the 80188. The 

~8~n.:BI:::1 
WORD ADDRESS ;-__ ...... -;-_.8_ BIT_S-j-; 

. I : I I~=:-
08· 
015 

DO· 
07 

80186 SIGNAL 
CONNECTIONS 

210973-8 

Figure 8. Physical Memory Byte/Word Addressing in the 80186 

22-248 



AP-186 

external data bus will record only a single byte being 
transferred, however. 

3.1.5 GENERAL DATA BUS OPERATION 

Beca~se.of the bus drive capabilities of the 80186 (200 
pF, smkmg 2 rnA, sourcing 400 /LA, roughly twice that 
of the 8086), this bus may not require additional buffer­
ing in many small systems. If data buffers are not used 
in the system, care should be taken not to allow bus 
contention between the 80186 and the devices directly 
connected to the 80186 data bus. Since the 80186 floats 
t~e address/data bus before activating any command 
hnes, the only requirement on a directly connected de­
vice is that it floats its output drivers after a read 
BEFORE the 80186 beings to drive address information 
for the next bus cycle. The~ameter of interest here is 
the minimum time from RD inactive until addresses 
active for the next bus cycle (tRHAV) which has a mini­
mum value of 85 ns. If the memory or peripheral device 
cannot disable its output drivers in this time, data buff­
ers will be required to prevent both the 80186 and the 
peripheral or memory device from driving these lines 
concurrently. Note, this parameter is unaffected by the 
addition of wait states. Data buffers solve this problem 
because their output float times are typically much fast­
er than the 80186 required minimum. 

If the buffers are require~ the 80186 provides DEN 
(~ata ENable) and DT/R (Data Transmit/Receive) 
slgna~ to simplify buffer interfacing. The DEN and 
DT/R signals are activated during all bus cycles, 
whether or not the cycle addresses buffered devices. 

80166 SIGNAL 

ADB-D15 

DEN 

BUFFERED 

DEVICES 

SELECT 

ADO- AD7 

DTIR 

S }" 
.....::: 
J"" 

} 

The DEN signal is driven low whenever the processor 
is either ready to receive data (during a read) or when 
the processor is ready to send data (during a write) 
(that is, any time during an active bus cycle when ad­
dress information is not being generated on the ad­
dress/data pins). In most systems, the DEN signal 
should NOT be directly connected to the OE input of 
buffers, since unbuffered devices (or other buffers) may 
be directly connected to the processor's address/data 
pins. If .DEN were directly connected to several buffers, 
contentIOn would occur during read cycles, as many 
devices attempt to drive the processor bus. Rather, it 
should be a factor (along with the chip selects for buff­
ered devices) in generating the output enable input of a 
bi-directional buffer. " 

The DT /R signal determines the direction of data 
propagation through the bi-directional bus buffers. It is 
high whenever data is being driven out from the proces­
sor, and is low whenever data is being read into the 
processor. Unlike the DEN signal, it may be directly 
connected to bus buffers, since this signal does not usu­
ally directly enable the output drivers of the buffer. An 
example data bus subsystem supporting both buffered 
and unbuffered devices is shown in Figure 9. Note that 
the A side of the 8286 buffer is connected to the 80186 
the B side to the external device. The B side of th; 
buffer has greater drive capacity than the A side (since 
it is meant to drive much greater loads). The DT/R 
signal can directly drive the T (transmit) signal of the 
buf!er, since it has the correct polarity for this configu­
ration. 

8286 
A 

OE B 

..- T 

8286 

A 

OE B 

T 

8 
/ 

/8 
/ 

/8 

/ /8 

/ 

DB­

AD15 

DO-

07 

BUFFERED 

DATA 

BUS 

UNBUFFERED 

} DATA 

BUS 
210973-9 

Figure 9. Example 80186 Buffered/Unbuffered Data Bus 

22-249 



inter AP-186 

CLOCK 
OUT 

ADO- '-----0 

T, 

AD15 J:-~-"";~ 
:'--j--+,~ 

210973-10 

NOTES: 
1. tCLAZ: Clock low until address float = 35 ns max 
2. tclRl: Clock low until RI5 active = 70 ns max 
3. tAZRl: Address float until RI5 active = 0 ns min 
4. tOVCl: Data valid until clock low (data input set-up time) = 20 ns min· 
5. tcLDX: Clock low unitl data invalid (data input hold time from clock) = 10 ns min· 
6. tclRH: Clock low until RD high = 10 ns min 
7. tRHAV: RD high until addresses, valid = 85 ns min 
8. tRHOX: Read high until data invalid (data input hold from RD) = 0 ns min· ' 
·Input requirements of 80186, all others are output ,characteristics 

Figure 10. Read Cycle Timing of the 80186 

3.1.6 CONTROL SIGNALS 

The 80186 directl~vides the control signals RD, 
WR, LOCK and TEST. In addition, the 80186 pro­
vides the status signals SO-S2 and S6 from which all 
other required bus control signals can be generated. 

3.1.6.1 RD and WR 

The RD and WR signals strobe data to or from memo­
ry or I/O space.' The RD signal is driven low off the, 
beginning ofT2, and is driven high off the beginning of 
ILduring all memory and I/O reads (see Figure 10). 
RD will not become active until the 80186 has ceased 
driving address information on the address/data bus. 
Data is sampled into the processor at the beginning of 
T4. RD will not go inactive until the processor's data 
hold time (IOns) has been satisfied. 

LATCH 

52 ---.. D 

Note that the 80186 does not provide separate I/O and 
memory RD signals. If separate I/O read and memory 
read signals are required, they can be synthesized using 
the S2 signal (which is low for all I/O ~ations and 
high for all memory operations) and the RD signal (see 
Figure 11). It should be noted that if this approach is 
used, the S2 signal will require latching, since the S2 
,signal (like SO and S 1) goes to .!..E.assive state well be­
fore the beginning ofT4 (wher~ RD goes inactive), IfS2 
was directly used for this purpose, the type of read 
command (I/O or memory) could change just before 
T 4 as S2 goes to the passive state (high). The status 
signals may be latched using ALE in an identical fash­
ion as is used to latch the address signals (often using 
the spare bits in the address latches). 

Often the lack of a separate I/O and memory RD sig­
nal is not important in an 80186 system. Each of the 

Qr---~------r-~ 
ALE ---.t STB 

fiD ~-----------~~~ 
210973-11 

Figure 11. Generating I/O and Memory Read Signals from the 80186 

22-250 



inter AP-186 

80186 chip select signals will respond on only one of 
memory or I/O accesses (the memory chip selects re­
spond only to accesses memory space; the peripheral 
chip selects can respond to accesses in either I/O or 
memory space, at programmer option). Thus, the chip 
select signal enables the ex.ternal device only during ac­
cesses to the proper address in the proper space. 

The WR signal is also driven low off the beginning of 
T 2 and driven.J!ish off the b~ning of T 4 (see Figure 
12). Like the RD signal, the WR signal is active for all 
memory and I/O writes, and also like the RD signal, 
separate I/O and memory writes may be generated us­
ing the latched S2 signal along with the WR signal. 
More importantly, however, is the active going edge of 
write. At the time WR makes its active (high to low) 
transition, valid write data is NOT present on the data 
bus. This has consequences when using this signal as a 
write enable signal for DRAMs and iRAMs since both 
of these devices require that the write data be stable on 
the data bus at the time of the inactive to active tran­
sition of the WE signal. In DRAM applications, this 
problem is solved by a DRAM controller (such as the 
Intel 8207 or 8203), while with iRAMs this problem 

T, 

ADO· 

may be solved by placing cross-coupled NAND gates 
between the CPU and the iRAMS on the WR line (see 
~re 13). This will delay the active going edge of the 
WR signal to the iRAMs by a clock phase, allowing 
valid data to be driven onto the data bus. 

3.1.6.2 Queue Status Signals 

If the RD line is externally grounded during reset and 
remains grounded during processor operation, the 
80186 will enter "queue status" mode. When in this 
mode, the WR and ALE signals become queue status 
outputs, reflecting the status of the internal prefetch 
queue during each clock cycle. These signals are pro­
vided to allow a processor extension (such as the Intel 
8087 floating point processor) to track execution of in­
structions within the 80186. The interpretation of QSO 
(ALE) and QSl (WR) are given in Table 2. These sig­
nals change on the high-to-low clock transition, one 
clock phase earlier than on the 8086. Note that since 
execution unit operation is independent of bus interface 
unit operation, queue status lines may change in any T 
state. 

T, 

AD15 --~~~~-'l~--__ -+~~~ __ r+ ______ ~~r~~~ __ _ 
WR 

NOTES: 
1. tCLOV: Clock low until data valid = 44 ns max 
2. tcvCTV: Clock low until WR active = 50 ns max 
3. tcvCTX: Clock low until WR inactive = 55 ns max 
4. tCLOOX: Clock high until data invalid = 10 ns min 
5. tWHDX: WR inactive until data invalid = tCLCL - 40 

= 85 ns min 

Figure 12. Write Cycle Timing of the 80186 

CLKOUT ----+--' 

DELAYED 

WRITE 

(DATA VALID 

ON LEADING EDGE) 

Figure 13. Synthesizing Delayed Write from the 80186 

22-251 

210973-12 

210973-13 



inter AP·186 

Table 2. 80186 Queue Status 

QS1 QSO Interpretation 

0 0 no operation 
0 1 first byte of instruction taken 

from queue 
1 0 queue was reinitialized 
1 1 subsequent byte of instruction 

taken from queue 

Since the ALE, RD, and WR signals are not directly 
available from the 80186 when it is configured in queue 
status mode, these signals must be derived from the 
status lines SO-S2 using an external 8288 bus controller 
(see below). To prevent the 80186 from accidentally 
entering queue status mode during reset, the RD line is 
internally provided with a weak pullup device. RD is 
the ONLY three-state or input pin on the 80186 which 
is supplied with a pullup or pull down device. 

3.1.6.3 Status Lines 

The 80186 provides 3 status outputs which are used to 
indicate the type of bus cycle currently being executed. 
These signals go from an inactive state (all high) to one 
of seven possible active states during the T state imme­
diately preceding T 1 of a bus cycle (see Figure 5)~ The 
possible status line encodings and their interpretations 
are given in Table 3. The status lines are driven to their 
inactive state in the T state (T 3 or Tw) immediately 
preceding T 4 of the current bus cycle. 

The status lines may be directly connected to an 8288 
bus controller, which can be used to provide local bus 
control signals or multi-bus control signals (see Figure 
14). Use of the 8288 bus controller does not preclude 
the use of the 80186 generated RD, WR and ALE sig­
nals, however. The 80186 directly generated signals, 
may be used to provide local bus control signals, while 
an 8288 is used to provide multi-bus control signals, for 
example. 

80186 

3 8288 
SO-52 SO-52 

BUS CONTROL 

CLOCK SIGNALS 

OUT 
ClK 

210973-14 

Figure 14.80186/8288 Bus Controller 
Interconnection 

Table 3. 80186 Status Line Interpretation 

S2 S1 SO Operation 

0 0 0 interrupt acknowledge 
0 0 1 read I/O 
0 1 0 write I/O 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read memory 
1 1 0 write memory 
1 1 1 passive 

The 80186 provides two additional status signals: S6 
and S7. S7 is equivalent to BRE (see section 3.1.2) and 
appears on the same pin as BRE. BRE/S7 changes 
state at the beginning of the T 1 state in the bus cycle. 
BRE/S7 does not need to be latched, i.e., it may be 
used directly as the BRE signal. S6 provides informa­
tion concerning the unit generating the bus cycle. It is 
time multiplexed with A19, and is available during T2, 
T 3, T 4 and Tw. In the 8086 family, all central proces­
sors (e.g., the 8086, 8088 and 8087) drive this line low, 
while all I/O processors (e.g., 8089) drive this line high 
during their respective bus cycles. Following this 
scheme, the 80186 drives this line low whenever the bus 
cycle is generated by the 80186 CPU, but drives it high 
when the bus cycle is generated by the integrated 80186 
DMA unit. This allows external devices to distinguish 
between bus cycles fetching data for the CPU from 
those transfering data for the DMA unit. 

Three other status signals are available on the 8086 but 
not on the 80186. They are S3, S4, and S5. Taken to­
gether, S3 and S4 indicate the segment register from 
which the current physical address drives. S5 indicates 
the state of the interrupt flip-flop. On the 80186, these 
signals will ALWAYS be low. 

3.1.6.4 TEST and LOCK 

Finally, the 80186 provides a TEST input and a LOCK 
output. The TEST input is used in conjunction with the 
processor WAIT instruction. It is typically driven by a 
processor extension (like the 8087) to indicate whether 
it is busy. Then, by executing the WAIT (or FWAIT) 
instruction, the central processor may be forced to tem­
porarily suspend program execution until the processor 
extension indicates that it is idle by driving the TEST 
line low. 

The LOCK output is driven low whenever the data 
cycles of a LOCKED instruction are executed. A 
LOCKED instruction is generated whenever the 
LOCK prefix occurs immediately before an instruction. 

22-252 



AP-186 

The LOCK prefix is active for the single instruction 
immediately following the LOCK prefix. This signal is 
used to indicate to a bus arbiter (e.g., the 8289) that a 
series of locked data transfers is occurring. The bus 
arbiter should under no circumstances release the bus 
while locked transfers are occurring. The 80186 will 
not recognize a bus HOLD, nor will it allow DMA 
cycles to be run by the integrated DMA controller dur­
ing locked data transfers. LOCKED transfers are used 
in multiprocessor systems to access memory based sem­
aphore variables which control access to shared system 
resources. 

On the 80186, the LOCK signal will go active during 
T 1 of the first DATA cycle of the locked transfer. It is 
driven inactive 3 T-states after the beginning of the last 
DATA cycle of the locked transfers. On the 8086, the 
LOCK signal is activated immediately after the LOCK 
prefix is executed. The LOCK prefix may be executed 
well before the processor is prepared to perform the 
locked data transfer. This has the unfortunate conse­
quence of activating the LOCK signal before the first 
LOCKED data cycle is performed. Since LOCK is ac­
tive before the processor requires the bus for the data 
transfer, opcode pre-fetching can be LOCKED. How­
ever, since the 80186 does not activate the LOCK sig­
nal until the processor is ready to actually perform the 
locked transfer, locked pre-fetching will not occur with 
the 80186. . 

The LOCK output is also driven low by hardware dur­
ing interrupt acknowledge cycles when the integrated 
interrupt controller operates in cascaded or iRMX 86 
modes (see sections 6.5.2 and 6.5.3). In these modes, 
the operation of the LOCK pin may be altered when an 
interrupt occurs during execution of a software­
LOCKED instruction. See section 6.5.4 for a descrip­
tion of additional hardware necessary to block DMA 
and HOLD requests under such circumstances. 

3.1.7 HALT TIMING 

A HALT bus cycle is used to signal the world that the 
80186 CPU has executed a HLT instruction. It differs 
from a normal bus cycle in two important ways. 

The first way in which a HALT bus cycle differs from a 
normal bus cycle is that since the processor is entering 
a halted state, none of the control lines (RD or WR) 
will be driven active. Address and data information will 
not be driven by the processor, and no data will be 
returned. The second way a HALT bus cycle differs 
from a normal bus cycle is that the SO-S2 status lines 
go to their passive state (all high) during T 2 of the bus 

cycle, well before they go to their passive state during a 
normal bus cycle. 

Like a normal bus cycle, however, ALE is driven ac­
tive. Since no valid address information is present, the 
information strobed into the address latches should be 
ignored. This ALE pulse can be used, however, to latch 
the HALT status from the SO-S2 status lines. 

The processor being halted does not interfere with the 
operation of any of the 80186 integrated peripheral 
units. This means that if a DMA transfer is pending 
while the processor is halted, the bus cycles associated 
with the DMA transfer will run. In fact, DMA latency 
time will improve while the processor is halted because 
the DMA unit will not be contending with the proces­
sor for access to the 80186 (see section 4.4.1). 

3.1.8 8288 AND 8289 INTERFACING 

The 8288 and 8289 are the bus controller and multi­
master bus arbitration devices used with the 8086 and 
8088. Because the 80186 bus is similar to the 8086 bus, 
they can be directly used with the 80186. Figure 15 
shows an 80186 interconnection to these two devices. 

The 8288 bus co~roller generates control signals (RD, 
WR, ALE, DT/R, DEN, etc.) for an 8086 maximum 
mode system. It derives its information by decoding 
status lines SO-S2 of the processor. Because the 80186 
and the 8086 drive the same status information on these 

80186 

TO MULTI-MASTER BUS 

ADDRESS LATCHES & 

DATA BUFFERS 

8288 
~-'--o----<,.j~- ALE 

S2 DEN 

DT/R 

CLOCKOUT ..... -/--<,.j CLK 

210973-16 

Figure 15. 80186/8288/8289 Interconnection 

22-253 



AP-186 

ARDY 

INPUT ,-------- 80186 -------, 

SRDY 
INPUT 

CPU 

I CLOCK-

I 

I 

C 

TaBUS 
INTERFACE 
UNIT 

L ________________ ~ 

. 210973-17 

NOTES: 
1. Asynchronous Resolution Flip Flop 
2. Ready Latch Flip Flop 

The illustrated logic devices are shown for conceptual purposes only. The MOS latches and switches in the actual circuit 
are not necessarily organized in this manner. 

Figure 16. Ready Circuitry of the 80186 

lines, the 80186 can be directly connected to the 8288 
just as in an 8086 system. Using the 8288 with the 
80186 does not prevent using the 80186 control signals 
directly. Many systems require both local bus control 
signals and system bus control signals. In this type of 
system, the 80186 lines could be used as the local sig­
nals, with the 8288 lines used as the system signals. 
Note that in an 80186 system, the 8288 generated ALE 
pulse occurs later than that of the 80186 itself. In many 
multimaster bus systems, the 8288 ALE pulse should 
be used to strobe the addresses into the system bus ad­
dress latches to insure that the address hold times are 
met. 

The 8289 bus arbiter arbitrates the use of a multi-mas­
ter system bus among various devices each of which 
can become the bus master. This component also de­
codes status lines 80-82 of the processor directly to 
determine when the system bus is required. When the 
system bus is required, the 8289 forces the processor to 
wait until it has acquired control of the bus, then it 
allows the processor to drive address, data and control 
information onto the system bus. The system deter­
mines when it requires system bus resources by an ad­
dress decode. Whenever the address being driven coin­
cides with the address of an on-board resource, the sys­
tem bus is not required and thus will not be requested. 
The circuit shown factors the 80186 chip select lines to 
determine when the system bus should be requested, or 
when the 80186 request can be satisfied using a local 
resource. 

3.1.9 READY INTERFACING 

The 80186 provides two ready lines, a synchronous 
ready (8RDY) line and ail asynchronous ready 
(ARDY) line. These lines signal the processor to insert 
wait states (Tw) into a CPU bus cycle. This allows 
slower devices to respond to. CPU service requests 
(reads or writes). Wait states will only be inserted when 
both ARDY and8RDY are low, i.e., only one of the 
lines need be active to terminate a bus cycle. Figure 16 
depicts the logical ORing of the ARDY and 8RDY 
functions. Any number of wait states may be inserted 
into a bus cycle. The 80186 will ignore the RDY inputs 
during any accesses to the integrated peripheral regis­
ters and to any area where the' chip select ready bits 
indicate that the external ready should be ignored. 

The timing required by the two RDY lines is differ-ent. 
The ARDY line is meant to be used with asynchronous 
ready inputs. Thus, inputs to this line will be internally 
synchronized to the CPU clock before being presented 
to the processor. The synchronization circuitry used 
with the ARDY line is shown in Figure 16. The first 
flip-flop is used to "resolve" the. asynchronous tran­
sition of the ARDY line. It will achieve a definite level 
(either high or low) before its output is latched intp the 
second flip-flop for presentation to the CPU. When 
latched high, it allows the level present on the ARDY 
line to pass directly to the CPU; when latched low, it 
forces not ready to be presented to the CPU (see Ap­
pendix B for synchronizer information). 

22-254 



AP-186 

I 
I 

CLOCK 
OUT 

ARDY ~ 
210973-18 

In a Normally-Nat-Ready system, wait states will be inserted unless: 
1. tARYCH: ARDY active to clock high (ARDY resolution setup lime) ~ 20 ns min 
2. tcLARX: Clock low to ARDY inactive (ARDY active hold lime) ~ 15 ns min 

I 
I 

CLOCK 
OUT 

ARDY ~ 
210973-19 

In a Normally-Ready syslem, wait slales will be inserted If: 
1. IARYCH: ARDY low to clock high (ARDY resolution setup lime) ~ 20 ns min 
2. IARYCHL: Clock high 10 ARDY high (ARDY inaclive hold time) ~ 15 ns min 

I 
I 

CLOCK 
OUT 

ARDY ~ 
210973-20 

Alternatively, in a Normally-Ready system, wail states will be inserted If: 
1. tARYLCL: ARDY low 10 clock low (ARDY selup lime) ~ 35 ns min 
2. tCLARX: Clock low 10 ARDY high (ARDY aclive hold lime) ~ 15 ns min 

Figure 17. ARDY Transitions 

Asynchronous ready logic may be implemented as ei­
ther Normally-Ready or Normally-Not-Ready. Figure 
17 depicts activity for both implementations. Remem­
ber that for ARDY to force wait states, SRDY must be 
low as well. 

In a Normally-Not-Ready implementation the setup 
and hold times of both the resolution flip-flop and the 
ready latch must be satisfied. The ARDY pin must go 
active at least 20 ns before the rising edge of T2, T3, or 
Tw and stay active until 15 ns after the falling edge of 
T3 or Tw to stop generation of wait states and termi­
nate the bus cycle. If ARDY goes active before the 
rising edge of T 2 and stays active after the falling edge 
of T 3 there will be no wait state inserted. 

In a Normally-Ready implementation the setup and 
hold times of either the resolution flip-flop or the ready 
latch must be met. Wait states will be generated if 
ARDY goes inactive 20 ns before the rising edge of T 2 
and stays inactive a minimum of 15 ns after the falling 
edge, or if ARDY goes inactive at least 35 ns before the 
falling edge of T3 and stays inactive a minimum of 15 
ns after the edge. The 80186 ready circuitry performs in 
this manner in order to allow a slow device the maxi­
mum amount of time to respond with a not ready after 
it has been selected. 

22-255 



inter AP-186 

The synchronous ready (SRDY) line requires that ALL 
transitions on this line during T2, T3 or Tw satisfy a 
certain setup and hold time (tSRYCL = 35 ns and 
tcLSRY = 15 ns respectively). If these requirements 
are not met, the CPU will not function properly. Valid 
transitions on this line, and subsequent wait state inser~ 
tion is shown in Figure 18. The processor looks at this 
line at the beignning of each T3 and Tw. If the line is 
sampled active at the beginning of either of these two 
cycles, that cycle will be immediately followed by T 4. 

On the other hand, if the line is sampled inactive at the 
beginning of either of these two cycles, that cycle will 
be followed by a Tw. Any asynchronous transition on 
the SRDY line not occurring at the beginning ofT3 or 
Tw, that is, when the processor is not "looking at" the 
ready lines will not cause CPU malfunction. 

3.1.10 BUS PERFORMANCE ISSUES 

Bus cycles occur sequentially, but do not necessarily 
come immediately one after another, that is the bus 
may remain idle for several T states (Tv between each 
bus access irutiated by the 80186. This occurs whenever 
the 80186 internal queue is full and no read/write 
cycles are being requested by the execution unit or inte­
grated DMA unit. The reader should recall that a sepa­
rate unit, the bus interface unit, fetches opcodes 
(including immediate data) from memory, while the ex­
ecution unit actually executes the pre-fetched instruc­
tions. The number of clock cycles required to execute 
an 80186 instruction vary from 2 clock cycles for a 
register to register move to 67 clock cycles for an inte­
ger divide. 

If a program contains many long instructions, program 
execution will be CPU limited, that is, the instruction 
queue will be constantly filled. Thus, the execution unit 
does not need to wait for an instruction to be fetched. If 
a program contains mainly short instructions or data 
move' instructions, the execution will be bus limited. 

Here, the execution unit will be required to wait often" 
for an instruction to be fetched before it continues its 
operation. Programs illustrating this effect and per­
formance degradation of each with the addition of wait 
states are given in appendix G. 

All instruction fetches are word (16-bit) fetches from 
even addresses unless the fetch occurs as a result of a 
jump to an odd location. This maximizes the utilization 
of each bus cycle used for instruction fetching, since 
each fetch will access two bytes of information. It is 
also good programming practice to locate all word data 
at even locations, so that both bytes of the word may be 
accessed in a single bus cycle (see discussion on data 
bus operation for further information, section 3.1.3 of 
this note). 

Although the amount of bus utilization, i.e., the per­
centage of bus time used by the 80186 for instruction 
fetching and execution required for top performance 
will vary considerably from one program to another, a 
typical instruction mix on the 80186 will require great­
er bus utilization than the 8086. This is caused by the 
higher performance execution unit requiring instruc­
tions from the prefetch queue at a greater rate. This 
also means that the effect of wait states is more pro­
nounced in an 80186 system than in an 8086 system. In 
all but a few cases; however, the performance degrada­
tion incurred 'by adding a wait state is less than might 
be expected because instruction fetching and execution 
are performed by separate units. 

3.2 Example Memory Systems 

3.2.1 2764 INTERFACE 

With the above knowledge of. the 80186 bus, various 
memory interfaces may be generated. One of the sim­
plest of these is the example EPROM interface shown 
in Figure 19. 

~ : ~ : ~ : ~ 

OUT 000 " ~~ 
SRDY 0 

210973-23 

NOTES: 
1. Decision: Ready, T-State will be followed by a wait state 
2. Decision: Ready. T-State will not be followed by a wait state , 
3. IsAyeL: Synchronous ready stable until clock low (SRDY set-up time) = 35 ns min 
4. tcLSAY: Clock low until synchronous ready transition (SRDY hold time) = 15 ns min 

Figure 18. ValId Transitions on the 80186 

22-256 



intJ AP-186 

A13 
A1 

RD 

ADO-AD7 

AD8-AD15 

)3 
/ 

13 
/ 

/8 

/8 , 

2764 2764 

CE L.... CE 
A12 
~ 

A12 

AO AO 

OE r OE 
00-07 00-07 

t 
J 

210973-24 

Figure 19_ Example 2764/80186 Interface 

The addresses are latched using the address generation 
circuit shown earlier. Note that the AO line of each 
EPROM is connected to the Al address line from the 
80186, NOT the AO line. Remember, AO only signals a 
data transfer on the lower 8 bits of the 16-bit data bus! 
The EPROM outputs are connected directly to the ad­
dress/data inputs of the 80186, and the 80186 RD sig­
nal is used as the OE for the EPROMs. 

The chip enable of the EPROM is driven directly by 
the chip select output of the 80186 (see section 8). In 
this configuration, the access time calculation for the 
EPROMs are: 

time from 

address: (3 + N) • tCLCL - tCLAV -

llVOV (8282) - lDVCL 

= 375 + (N • (25) - 44 - 30 - 20 

= 281 + (N • 125) ns 

time from 

chip select: (3 + N) • lCLCL - tCLCSV - lDVCL 

= 375 + (N • 125) - 66 - 20 

= 289 + (N • 125) ns 

time from 

RD (OE): (2 + N) lCLCL - tCLRL - lDVCL 

= 250 + (N • 125) - 70 - 20 

= 160 + (N • 125) ns 

where: 

tCLA V = time from clock low in T 1 until addresses 
are valid 

tCLCL = clock period of processor 

tIVOV = time from input valid of 8282 until output 
valid of 8282 

tDVCL = 186 data valid input setup time until clock 
low time of T 4 

tCLCSV = time from clock low in T 1 until chip se­
lects are valid 

tCLRL = time from clock low in T 2 until RD goes 
low 
N = number of wait'states inserted 

Thus, for 0 wait state operation, 250 ns EPROMs must 
be used. The only significant ~meter not included 
above is tRHA V, the time from RD inactive (high) until 
the 80186 begins driving address information. This pa­
rameter is 85 ns, which meets the 2764-25 (250 ns speed 
selection) output float time of 85 ns. If slower 
EPROMs are used, a discrete data buffer MUST be 
inserted between the EPROM data lines and the ad­
dress/data bus, since these devices may continue to 
drive data information on the multiplexed address/data 
bus when the 80186 begins to drive address information 
for the next bus cycle. 

22-257 



intJ Ap·186 

3.2;2 8203 DRAM INTERFACE 

An example 8203/DRAM interface is shown in Figure 
20. The 8203 provides all required DRAM control sig­
nals, address multiplexing, and refresh generation. In 
this circuit, the 8203 is configured to interface with 
64KDRAMs. . 

All 8203 cycles are generated off control signals (RD 
and WR) provided by the 80186. These signals will not 
go active until T 2 of the bus cycle. In addition, since the 
8203 clock (generated by the internal crystal oscillator 
of the 8203) is asynchronous to the 80186 clock, all 

MC:ff 
MC80 

A17-Al 

AHOY 

ADO-AU15 

] '\ - 17 , 

r---

----rJ .- --
'--

-

memory requests by the 80186 must be synchronized to 
the 8203 before the cycle will be run. To minimize this 
synchroniiation time, the 8203 should be used with the 
highest speed crystal that will maintain DRAM com­
patability. Even if a 25 MHz crystal is used (the maxi­
mum allowed by the .8203) two wait states will be re­
quired by the example circuit when using 150 ns 
DRAMs with an 8 MHz 80186, three wait states if 
200 ns DRAMs are used (see timing analysis, Figure 
21). 

The entire RAM array controlled by the 8203 can be 
selected by one or a group of the 80186 provided chip 
selects. These chip selects can also be used to insert the 
wait states required by the interface. 

rU 
R.-r 

22ll 22ll .• J 
8Ei: WR UPPER LOWER 

BnEW! BnEW! AD-
All, ·WE f---
BO 
SACK DRAMSI 

XACK 
AD 

r 
j 

DIO-15 
1282 DDO-15 

DOO·7 

OE DID-7 I--
S1B 

8282 

000-7 

II! DIO-7 ~ 

S1B 

210973-26 

Figure 20. Example 8203/DRAM/80186 Interface 

22-258 



AP-186 

T, T, 

188 ---i-.....;~ 
AD 

8203 ________ ~-_, 

RAS 

8203 __ -+ ____ +-_......:1,,+-, 
CAS 

NOTES: 
1. tCLEL: Clock low until read low = 70 ns max 
2. tCR: Command active until RAS = 150 ns max' 
3. tcc: Command active until CAS = 245 ns max' 
4. tCAC: Access time from CAS = 85 ns max 
5. tISOU: Input to output delay = 30 ns max 
6. tDVCL: Data valid to clock low (data in set up) = 20 ns min 

210973-27 

<D & ® are 186 specs' 
® & ® are 8203 specs 
@) is a 2164A-15 spec 
® is on 8282 spec 

Total Access Time = 70 + 245 + 85 + 30 + 20 = 450 ns (3.6 T-states) 
• Assumes 25 MHz 
8203 operation 

Figure 21. Example 8203/2164A-15 Access Time Calculation 

Since the 8203 is operating asynchronously to the 
80186, the RDY output of the 8203 (used to suspend 
processor operation when a processor DRAM request 
coincides with a DRAM refresh cycle) must be syn­
chronized to the 80186. The 80186 ARDY line is used 
to provide the necessary ready synchronization. The 
8203 ready outputs operate in a normally not ready 
mode, that is, they are only driven active when an 8203 
cycle is being executed, and a refresh cycle is not being 
run. The 8203 SACK is presented to the 80186 only 
when the DRAM is being accessed. Notice that the 
SACK output of the 8203 is used, rather than the 
XACK output. Since the 80186 will insert at least one 
full CPU clock cycle between the time RDY is sampled 
active, and the time data must be present on the data 
bus, using the XACK signal would insert unnecessary 
additional wait states, since it does not indicate ready 
until valid data is available from the memory. 

3.2.3 8207 DRAM INTERFACE 

The 8207 advanced dual-port DRAM controller pro­
vides a high performance DRAM memory interface 

specifically for 80186 and 80286 microcomputer sys­
tems. This controller provides all address multiplexing 
and DRAM refresh circuitry. In addition, it synchro­
nizes and arbitrates memory requests from two differ­
ent ports (e.g., an 80186 and a Multibus), allowing the 
two ports to share memory. Finally, the 8207 provides 
a simple interface to the 8206 error detection and cor­
rection chip. 

The simplest 8207 (and also the highest performance) 
interface is shown in Figure 22. This shows the 80186 
connected to an 8207 using the 8207 slow cycle, syn­
chronous status interface. In this mode, the 8207 de­
codes the type of cycle to be run directly from the 
status lines of the 80186. In addition, since the 8207 
CLOCKIN is driven by the CLOCKOUT of the 80186, 
any performance degradation caused by required mem­
ory request synchronization between the 80186 and the 
8207 is not present. Finally, the entire memory array 
driven by the 8207 may be selected using one or a 
group of the 80186 memory chip selects, as in the 8203 
interface above. 

22-259 



intJ AP-186 

80188 

CLKOUT t----.J 

SOt----+i 

S1t-----1 

S2t----.J 

LMCS t-----I 

CLK 

WR 

FiD 

PCTL 

PE 

7 

+5 

PCTC 

210973-28 

Figure 22. 80186/8207/DRAM Interface 

The 8207 AACK signal may be used to generate a syn­
chronous ready signal to the 80186 in the above inter­
face. Since dynamic memory periodically requires re­
freshing, 80186 access cycles may occur simultaneously 
with an 8207 generated refresh cycle. When this occurs, 
the 8207 will hold the AACK line high until the proc­
essor initiated access is ,run (note, the sense of this line 
is reversed with respect to the 80186 SRDY input). 
This signal should be factored with the DRAM (8207) 
select input and used to drive the SRDY line of the 
80186. Remember that only one of SRDY and ARDY 
needs to be active for a bus cycle to be terminated. If 
asynchronous devices (e.g., a Multibus interface) are 
connected to the ARDY line with the 8207 connected 
to the SRDY line, care must be taken in design of. the 
ready circuit such that only one of the RDY lines is 
driven active at a time to prevent premature termina­
tion of the bus cycle. 

A single-port version of the 8207 is available as the 
8208. For more information about DRAM interfacing 
and timing, consult the 8207 and 8208 data sheets. 

3.3 HOLD/HLDA Interface 

The 80186 employs a HOLD/HLDA bus exchange 
protocol. This protocol allows other asynchronous bus 
master devices (i.e., ones which drive address, data, and 
control information on the bus) 'to gain control of the 
bus to perform bus cycles (memory or I/O reads or 
writes). 

3.3.1 HOLD RESPONSE 

In the HOLD/HLDA protocol, a device requiring bus 
control (e.g., an external DMA device) raises the 
HOLD line. In response to this HOLD request, the 
80186 will raise its HLDA line after it has finished its 
current bus activity. When the external device is fin­
ished with the bus, it drops its bus HOLD request. The 
80186 responds by dropping its HLDA line and resum­
ing bus operation. 

When the 80186 recognizes a bus hold by driving 
HLDA high, it will float many of its signals (see Figure 
23). ADO-ADl5 (address/data 0-15) and DEN (data 
enable) are floated within tCLAZ (35 ns) after the same 
clock edge that HLDA is driven active. A16-A19 (ad­
dress_16-19) RD, WR, BHE (Bu~H~h Enable), 
DT/R (Data Transmit/Receive) and SO-S2 (status 0-
2) are floated within tCHCZ (45 ns) after the clock edge 
immediately before the clock edge on which HLDA 
comes active. 

CLOCK 

OUT 

T,ORT, T, T, 

HO~ ----~----~~------~-----

H~A ----i----++--;..a 
A015·AOO ---"""--+-4::::~....:;:FL~O::::A:.:.:r __ .;-__ _ 

OEN ____ ~_+ ____ J I 

~~~~~: ----~-+~~i-__ ~--~F~LO~'A~:r--+i------
DT/Ji,so-§2, ____ +-__ J I
~ I

I

210973-29

Figure 23. Signal Float/HLDA Timing
of the 80186

Only the above mentioned signals are floated during
bus HOLD. Of the signals not floated by the 80186,
some have to do with peripheral functionality (e.g.,
TmrOut). Many others either directly or indirectly con­
trol bus devices. These signals are ALE (Address Latch
Enable,~section 3.1.2) and all the chip select lines
(UCS, LCS, MCSO-3,' and PCSO-6). The designer
must be aware that the chip select circuitry does not
look at externally generated addresses (see section 8 for
a discussion of the chip select logic). Thus, for memory
or peripheral devices which are addressed by external
bus master devices, discrete chip select and ready gen­
eration logic must be used.

3.3.2 HOLD/HLDA TIMING AND BUS LATENCY

The time required between HOLD going active and the
80186 driving HLDA active is known as bus latency.
Many factors affect this latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and
interrupt acknowledge cycles.

The HOLD request line is internally synchronized by
the 80186, and may therefore be an asynchronous sig­
nal. To guarantee recognition on a certain clock edge, it
must satisfy a certain setup and hold time to the faIling

22-260

inter Ap·186

edge of the CPU clock. A full CPU clock cycle is re­
quired for this synchronization, that is, 'the internal
HOLD signal is not presented to the internal bus arbi­
tration circuitry until one full clock cycle after it is
latched from the HOLD input (see Appendix B for a

HOLD

HLDA __________________________ -J

210973-30

NOTES:
1. tHVCL: Hold valid until clock low = 25 ns min
2. tCLHAV: Clock low until HLDA active = 50 ns max

Figure 24. 80186 Idle Bus Hold/HLDA Timing

NOTES:

CLOCK
OUT

HOLD __ ""; __ .1

HLDA

T.OR

Tw

discussion of 80186 synchronizers). If the bus is idle,
HLDA will follow HOLD by two CPU clock cycles
plus a small amount of setup and propagation delay
time. The first clock cycle synchronizes the input; the
second signals the internal circuitry to initiate a bus
hold. (See Figure 24).

Many factors influence the number of clock cycles be­
tween a HOLD request and a HLDA. These may make
bus latency longer than the best case shown above. Per­
haps the most important factor is that the 80186 will
not relinquish the local bus until the bus is idle. An idle
bus occurs whenever the 80186 is not performing any
bus transfers. As stated in section 3.1.1, when the bus is
idle, the 80186 generates idle T-states. The bus can be­
come idle only at the end of a bus cycle. Thus, the
80186 can recognize HOLD only after the end of its
current bus cycle. The 80186 will normally insert no Ti
states between T4 and TJ of the next bus cycle if it
requires any bus activity (e.g., instruction fetches or
I/O reads). However, the 80186 may not have an im­
mediate need for the bus after a bus cycle, and will
insert Tj states independent of the HOLD input (see
Section 3.1.1).

T.

210973-31

1. Decision: No additional internal bus cycles required. idle T -states will be inserted after T 4
2. Greater than 25 ns (tHVCU
3. Less than 50 ns (tCLHAV)
4. HOLD request internally synchronized

NOTES:

CLOCK
OUT

HOLD

T.OR

I Tw : T. : T1

~
l'

. I I' I
' I I .

. 4Ii
~<D:. CD .: :
'I I I

HLDA ---------------------------------- 210973-32

1. Decision: Additional internal bus cycles required, no idle T-states will be inserted, HOLD not active soon enough to
force idle T -states '.'
2. Greater than 25 ns (tHVCU: not required since it will not get recognized anyway
3. HOLD request internally synchronized

Figure 25. HLD/HLDA Timing in the 80186

22-261

AP-186

CLOCK
OUT

HOLD

T,

HLDA ~~ ________ ~ ______ ~ ____________ -J

210973-33

NOTES:
1. HOLD request internally synchronized
2. Decision: HOLD request active. idle t-states will be inserted at end of current bus cycle
3. Greater than 25 ns
4. Less than 50 ns

Figure 26. HOLD/HLDA Timing In the 80186

When the HOLD request is active. the 80186 will be
forced to proceed from T4 to Tj in order that the bus
may be relinquished. HOLD must go active 3 T-states
before the end of a bus cycle to force the 80186 to insert
idle T-states after T4 (one to synchronize the' request.
and one to signal the 80186 that T4 of the bus cycle will
be followed by idle T -states, see section 3.1.1). After the
bus cycle has ended, the bus hold will be immediately
acknowledged. If, however, the 80186 has already de­
termined that an idle T -state will follow T 4 of the cur­
rent bus cycle. HOLD need go active only 2 T-states
before the end of a bus cycle to force the 80186 to
relinquish the bus at the end of the current bus cycle.
This is because the external HOLD request is not re­
quired to force the generation of idle T -states. Figure 26
graphically portrays the scenarios depicted above.

An external HOLD has higher priority than both the
80186 CPU or integrated DMA unit. However, an ex­
ternal HOLD will not separate the two cycles needed to
perform a word access when the word accessed is locat­
ed at an odd location (see Section 3.1.3). In addition, an
external HOLD will not separate the two-to-four bus
cycles required to perform a DMA transfer using the
integrated controller. Each of these factors will add ad­
ditional bus cycle times to the bus latency ofthe 80186.

,Another factor influencing bus latency time is locked
transfers. Whenever a locked transfer is occurring, the
80186 will not recognize external HOLDs (nor will it
recognize internal DMA bus requests). Locked trans­
fers are programmed, by preceding an instruction with
the LOCK prefix. Any transfers generated by such a
prefixed instruction will be locked, and will not be sepa­
rated by any external bus requesting device. String in­
structions may be locked. Since string transfers may
require thousands of bus cycles. bus latency time will
sutTer if they are locked.

The final factor affecting bus latency time is mterrupt
acknowledge cycles. When an external interrupt con­
troller is used, or if the integrated interrupt controller is
used in Slave mode (see Section 4.4.1) the 80186 will
run two interrupt acknowledge cycles back to back.
These cycles are automatically "locked" and will never
be separated by any bus HOLD,' either internal or ex­
ternal. See Section 6.5 on interrupt acknowledge timing

,for more information concerning interrupt acknowl­
edge timing.

3.3.3 COMING OUT OF HOLD

After the 80186 recognizes ihat the HOLD input has
gone inactive, it will drop its HLDA line in Jl single'
clock. Figure 27 shows this timing. The 80186 will in­
sert only two Tj after HLDA has gone inactive, assum­
ing that the 80186 has internal bus cycles to run. Dur­
ing the'last Tj, status information will go active con­
cerning the bus cycle about to be run (see Section
3.1.1). If the 80186 has no pending bus activity, it will
maintain all lines floating (high impedance) until the
last Tj before it begins its first bus cycle after the
HOLD.

3.4 Differences between the 8086 Bus
and the 80186 Bus

The 80186 bus was dermed to be upward compatible
with the 8086 bus. As a result, the 8086 bus interface
components' (the 8288 bus controller and the 8289 bus
arbiter) may be used directly with the 80186. There are
a few significant differences between the two processors
which should be considered.

22-262

AP-186

CLOCK

OUT

HOLD ---"'\

T, T, T,

HLDA ----~----~"'\

ADD-AD15

DEN ------~------~----~--_t--7i-----
A16/53-A19/S6

RD,WR,BHE -----:------:-----:---~
DT/R,SO-S2 ~+----

210973-34

NOTES:
1. HOLD internally synchronized
2. Greater than 25 ns
3. Less than 50 ns
4. Lines come out of float only if a bus cycle is pending

Figure 27_ 80186 Coming out of Hold

CPU Duty Cycle and Clock Generator

The 80186 employs an integrated clock generator
which provides a 50% duty cycle CPU clock (1/2 of
the time it is high, the other 1/2 of the time it is low).
This is different than the 8086, which employs an exter­
nal clock generator (the 8284A) with a 33% duty cycle
CPU clock (1/3 of the time it is high, the other 2/3 of
the time, it is low). These differences manifest them­
selves as follows:

1) No oscillator output is available from the 80186,
as it is available from the 8284A clock generator.

2) The 80186 does not provide a PCLK (50% duty
cycle, 1/2 CPU clock frequency) output as does
the 8284A.

3) The clock low phase of the 80186 is narrower, and
the clock high phase is wider than on the same
speed 8086.

4) The 80186 does not internally factor AEN with
RDY. This means that if both RDY inputs
(ARDY and SRDY) are used, external logic must
be used to prevent the RDY not connected to a
certain device from being driven active during an
access to this device (remember, only one RDY
input needs to be active to terminate a bus cycle,
see Section 3.1.6).

5) The 80186 concurrently provides both a single
asynchronous ready input and a single synchro­
nous ready input, while the 8284A provides ei-

ther two synchronous ready inputs or two asyn­
chronous ready inputs as a user strapable option.

6) The CLOCK OUT (CPU clock output signal)
drive capacity of the 80186 is less than the CPU
clock drive capacity of the 8284A. This means
that not as many high speed devices (e.g.,
Schottky TTL flip-flops) may be connected to this
signal as can be used with the 8284A clock output.

7) The crystal or external oscillator used by the
80186 is twice the CPU clock frequency, while the
crystal or external oscillator used with the 8284A
is three times the CPU clock frequency.

Local Bus Controller and Control Signals

The 80186 simultaneously provides both local bus con­
troller outputs (RD, WR, ALE, DEN and DT/R) and
status outputs (SO, S 1 S2) for use with the 8288 bus
controller. This is different from the 8086 where the
local bus controller outputs (generated only in min
mode) are sacrificed if status outputs (generated only in
max mode) are desired. These differences will manifest
themselves in 8086 systems and 80186 systems as fol­
lows:

1) Because the 80186 can simultaneously provide lo­
cal bus control signals and status outputs, many
systems supporting both a system bus (e.g.,

22-263

Ap·186

a MULTIBUS®) and a local bus will not require
two separate external bus controllers, that is, the
80186 bus control signals may be used to control
the local bus while the 80186 status signals are
concurrently connected to the 8288 bus controller
to drive the control signals of the system bus.

2) The ALE signal of the 80186 goes active a clock
phase earlier on the 80186 then on the 8086 or
8288. This minimizes address propagation time
through the address latches, since typically the de­
lay time through these latches from inputs valid is
less than the propagation delay from the strobe
input active.

3) The 80186 RD input must be tied low to provide
queue status outputs from the 80186 (see Figure
28). When so s~ped into "queue status mode,"
the ALE and WR outputs provide queue status
information. Notice that this queue status infor­
mation is available one clock phase earlier from
the 80186 than from the 8086 (see Figure 29).

80186

QSO ALE

QSl WR

rL-RD
__ ...1

210973-35

Figure 28. Generating Queue Status Information
from the 80186

HOLD/HLDA vs. RQ/GT

As discussed earlier, the 80186 uses a HOLD/HLDA
type of protocol for exchanging bus mastership (like the
8086 in min mode) rather than the RQ/GT protocol
used by the 8086 in max mode. This allows compatibil­
ity with Intel's the new generation of high perform­
ance/high. integration bus master peripheral devices

CLOCK

OUT

(for example the 82586 Ethernet controller or 82730
high performance CRT controller/text coprocessor).

Status Information

The 80186 does not provide S3-S5 status information.
On the 8086, S3 and S4 provide information regarding
the segment register used to generate the physical ad­
dress of the currently executing bus cycle. S5 provides
information concerning the state of the interrupt enable
flip-flop. These status bits are always low on the 80186.

Status signal S6 is used to indicate whether the current
bus cycle is initiated by either the CPU or a DMA
device. Subsequently, it is always low on the 8086. On
the 80186, it is low whenever the current bus cycle is
initiated by the 80186 CPU, and is high when the cur­
rent bus cycle is initiated by the 80186 integrated DMA
unit.

Bus Drive

The 80186 output drivers will drive 200 pF loads. This
is double that of the 8086 (100 pF). This allows larger
systems to be constructed without the need for bus
buffers. It also means that it is very important to pro­
vide good grounds to the 80186, since its large drivers
can discharge its outputs very quickly causing large
current transients on the 80186 ground pins.

Miscellaneous

The 80186 does not provide early imd late write signals,
as does the 8288 bus controller. The WR signal gener­
ated by the 80186 corresponds to the early write signal
of the 8288. This means that data is not stable on the
address/data bus when this signal is driven active.

The 80186 also does not provide differentiated I/O and
memory read and write command signals. If these sig­
nals are desired, an external 8288 bus controller may be
used, or the S2 signal may be used to synthesize differ­
entiated commands (see Section 3.1.4). .

188 ... -------+--------~----~)~~~~,~~~~--...
QS---------r~----~----~,~~----~~--------

8086 ... -----....;.-------...;....--------1.-.,,------" .. ,.----
QS _______________ ~ ________ ~~ ____ ~~ ____ __

NOTES:
1. 80186 changes queue status off falling edge of ClK
2. 8086 changes queue status off riSing edge of ClK

Figure 29. 80186 and 8086 Queue Status Generation

22-264

210973-36

AP-186

4.0 DMA UNIT INTERFACING

The 80186 includes a DMA unit which provides two
independent high speed DMA channels. These chan­
nels operate independently of the CPU, and drive all
integrated bus interface components (bus controller,
chip selects, etc.) exactly as the CPU (see Figure 30).
This means that bus cycles initiated by the DMA unit
are exactly the same as bus cycles initiated by the CPU
(except that S6 = 1 during all DMA initiated cycles,
see Section 3.1). Thus interfacing with the DMA unit
itself is very simple, since except for the addition of the
DMA request connection, it is exactly the same as in­
terfacing to the CPU.

EXTERNAL ADDRESS/DATA,

CONTROL, CHIP SELECTS,

ETC.

BUS INTERFACE

&

CHIP SELECT CIRCUITRY

DMA
REQUESTS

210973-37

Figure 30_ 80186 CPU/DMA
Channel Internal Model

4.1 DMA Features

Each of the two DMA channels provides the following
features:

• Independent 20-bit source and destination pointers
which are used to access the I/O or memory loca­
tion from which data will be fetched or to which
data will be deposited

• Programmable auto-increment, auto-decrement or
neither of the source and destination pointers after
each DMA transfer

• Programmable termination of DMA activity after a
certain number of DMA transfers

• Programmable CPU interruption at DMA termina­
tion

• Byte or word DMA transfers to or from even or odd
memory or I/O addresses

• Programmable generation of DMA requests by:

I) the source of the data

2) the destination of the data

3) timer 2 (see Section 5)

4) the DMA unit itself (continuous DMA requests)

4.2 DMA Unit Programming

Each of the two DMA channels contains a number of
registers which are used to control channel operation.
These registers are included in the 80186 integrated pe­
ripheral control block (see Appendix A). These regis­
ters include the source and destination pointer registers,
the transfer count register and the control register. The
layout and interpretation of the bits in these registers is
given in Figure 31.

The 20-bit source and destination pointers allow access
to the complete 1 Mbyte address space of the 80186,
and that all 20 bits are affected by the auto-increment
or auto-decrement unit of the DMA (i.e., the DMA
channels address the full 1 Mbyte address space of the
80186 as a flat, linear array without segments). When
addressing I/O space, the upper 4 bits of the DMA
pointer registers should be programmed to be o. If they
are not programmed 0, then the programmed value
(greater than 64K in I/O space) will be driven onto the
address bus (an area of I/O space not accessible to the
CPU). The data transfer will occur correctly, however.

After every DMA transfer the 16-bit DMA transfer
count register it is decremented by I, whether a byte
transfer or a word transfer has occurred. If the TC bit
in the DMA control register is set, the DMA ST/STOP
bit (see below) will be cleared when this register goes to
0, causing all DMA activity to cease. A transfer count
of zero allows 65536 (2 16) transfers.

The DMA control register (see Figure 32) contains bits
which control various channel characteristics, includ­
ing for each of the data source and destination whether
the pointer points to memory or I/O space, or whether
the pointer will be incremented, decremented or left
alone after each DMA transfer. It also contains a bit
which selects between byte or word transfers. Two syn­
chronization bits are used to determine the source of
the DMA requests (see Section 4.7). The TC bit deter­
mines whether DMA activity will cease after a pro­
grammed number ofDMA transfers, and the INT bit is
used to enable interrupts to the processor when this has
occurred (note that an interrupt will not be generated
to the CPU when the transfer count register reaches
zero unless both the INT bit and the TC bit are set).

The control register also contains a start/stop (ST /
STOP) bit. This bit is used to enable DMA transfers.
Whenever this bit is set, the channel is "armed,"

22-265

inter AP-186

OFFSET

DEH

DCH
DAH

DSH
D6H

D4H
D2H

DOH
CEH

CCH

CAH
CSH

C6H

C4H

C2H
COH

15

15

15

15

15

15

(1) CONTROL REGISTER LAYOUT:

x

X

X

X

X

I I I I

X

I I I I

X

X

X

I I I XI I I
0

119 16

0

119 16

0

X

I I I Xl I I
0

X 119 16

0
X 119 16

0

CONTROL WORD

TRANSFER COUNT

DESTINATION POINTER

SOURCE POINTER CHANNEL 1 t
CHANNELOl

CONTROL WORD
TRANSFER COUNT

DESTINATION POINTER

SOURCE POINTER

DESTINATION SOURCE
~

SYNCHRONIZATION

210973-38

Figure 31. 80186 DMA Register Layout

210973-39

Figure 32. DMA Control Register

that is, a DMA transfer will occur whenever a DMA
request is made to the channel. If this bit is cleared, no
DMA transfers will be performed by the channel. A
companion bit, the CHG/NOCHG bit, allows the con·
tents of the DMA control register to be changed with­
out modifying the state of the start/stop bit. The ST/
STOP bit will only be modified if the CHG/NOCHG
bit is also set during the write to the DMA control
register. The CHG/NOCHG bit is write only. It will
always be read back as a O. Because DMA transfers
could occur immediately after the ST /STOP bit is set,
it should only be set after all other DMA controller
registers have been programmed. This bit is automati­
cally cleared when the transfer count register reaches
zero and the TC bit in the DMA control register is set,
or when the transfer count register reaches zero and
unsynchronized DMA transfers are programmed.

All DMA unit programming registers are directly ac­
cessible by the cpu. This means the cpu can, for ex­
ample, modify the DMA source pointer register after
137 DMA transfers have occurred, and have the new
pointer value used for the 138th DMA transfer. Ifmore
than one register in the DMA channel is being modified
at any time that a DMA request may be generated and
the DMA channel is enabled (the ST/STOP bit in the
control register is set), the register programming values
should be placed in memory locations and moved into
the DMA registers using a locked string move instruc­
tion. This will prevent a DMA transfer from occurring
after only half of the register values have changed. The
above also holds true if a read/modify/write type of
operation is being performed (e.g., ANDing off bits in a
pointer register in a single AND instruction to a point­
er register mapped into memory space).

22-266

infef AP-186

CLOCK : To :

NOTES:

ourLn
DRQ -.JJT
ADO- -":""--+-1

AD15 --!---+-1

AD --'----'"",",

1. Source address
2. Source data
3. Destination address
4. Destination data

T, T, T,

I
I
I
I

~ CD
I
!

\

Tw Tw T. T, T, T, To

\ I
I I I

!~ I

: CD: 0:
I
I

1/ I
I

I I
I I

:\ Ir
I I

210973-40

Wait states are inserted by the bus condition during the bus cycle, not by the DMA controller

Figure 33. Example DMA Transfer Cycle on the 80186

4.3 DMA Transfers

Every DMA transfer in the 80186 consists of two inde­
pendent bus cycles, the fetch cycle and the deposit cycle
(see Figure 33). During the fetch cycle, the byte. or
word data is accessed from memory or I/O space usmg
the address in the source pointer register. The data ac­
cessed is placed in an internal temporary register,
which is not accessible to the cpu. During the deposit
cycle, the byte or word data in this internal register is
placed in memory or I/O space using the address in t~e
destination pointer register. These two bus cycles will
not be separated by bus HOLD or by the other DMA
channel, and one will never be run without the other
except when the CPU is RESET. Notice that the bus
cycles run by the DMA unit are exactly the same as
memory or I/O bus cycles run by the cpu. The only
difference between the two is the state of the S6 status
line (which is multiplexed on the AI9line): on all CPU
initiated bus cycles, this status line will be driven low;
on all DMA initiated bus cycles, this status line will be
driven high.

4.4 DMA Requests

Each DMA channel has a single DMA request line by
which an external device may request a DMA transfer.
The synchronization bits in the DMA control register
determine whether this line is interpreted to be connect­
ed to the source of the DMA data or the destination of
the DMA data. All transfer requests on this line are
synchronized to the CPU clock before being presented

to internal DMA logic. This means that any asynchro­
nous transitions of the DMA request line will not cause
the DMA channel to malfunction. In addition to exter­
nal requests, DMA requests may be generated whenev­
er the internal Timer 2 times out, or continuously by
programming the synchronization bits in the DMA
control register to call for unsynchronized DMA trans­
fers.

4.4.1 DMA REQUEST TIMING AND LATENCY

Before any DMA request can be generated, the 80186
internal bus must be granted to the DMA unit. A cer­
tain amount of time is required for the CPU to grant
this internal bus to the DMA unit. The time between a
DMA request being issued and the DMA transfer being
run is known as DMA latency. Many of the issues con­
cerning DMA latency are the same as those concerning
bus latency (see Section 3.3.2). The only important dif­
ference is that external HOLD always has bus priority
over an internal DMA transfer. Thus, the latency time
of an internal DMA cycle will suffer during an external
bus HOLD.

Each DMA channel has a programmed priority relative
to the other DMA channel. Both channels may be pro­
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other chan­
nel. If both channels are active, DMA latency will suf­
fer on the lower priority channel. If both channels are
active and both channels are of the same programmed
priority, DMA transfer cycles will alternate between
the two channels (i.e., the first channel will perform a

22-267

inter AP-186

T,

of OM A

210973-41

NOTES:
1. tDRQCL = DMA request to clock low = 25 ns to guarantee recognition
2. Synchronizer resolution time
3. DMA unit priority arbitration, etc. time
4. Bus Interface Unit latches DMA request and decides to run DMA cycle

Figure 34. DMA Request Timing on the 80186 (showing minimum response time to request)

fetch and deposit, followed by a fetch and deposit by
the second channel, etc.).

The minimum timing required to generate a DMA cy­
cle is shown in Figure 34. Note that the minimum time
from DRQ becoming active until the beginning of the
first DMA cycle is 4 CPU clock cycles, that is, a DMA
request is sampled 4 clock cycles before the beginning
of a bus cycle to determine if any DMA activity will be
required. This time is independent of the number of
wait states inserted in the bus cycle. The maximum
DMA latency is a function of other processor activity
(see above).

80186

AODR.

LATCH

A6

Also notice that ifDRQ is sampled active at 1 in Figure
34, the DMA cycle will be executed, even if the DMA
request goes inactive before the beginning of the first
DMA cycle. This does not mean that the DMA request
is latched into the processor such that any transition on
the DMA request line will cause a DMA cycle eventu­
ally. Quite the contrary, DMA request must be active
at a certain time before the end of a bus cycle for the
DMA request to be recognized by the processor. If the
DMA request line goes inactive before that window,
then no DMA cycles will be run.

DMADEVICE

ALEr-------------------------~
ACKNOWLEDGE

PCSO I---------------------..... ----------.J CHIP SEL

ORQO DMA REQUEST

210973-42

Figure 35. DMA Acknowledge Synthesis from the 80186

22-268

AP-186

4.5 DMA Acknowledge

The 80186 generates no explicit DMA acknowledge
signal. Instead, the 80186 performs a read or write di­
rectly to the DMA requesting device. If required, a
DMA acknowledge signal can be generated by a decode
of an address, or by merely using one of the PCS lines
(see Figure 35). Note ALE must be used to factor the
DACK because addresses are not guaranteed stable
when chip selects go active. This is r~ed because if
the address is not stable when the PCS goes active,
glitches can occur at the output of the DACK genera­
tion circuitry as the address lines change state. Once
ALE has gone low, the addresses are guaranteed to
have been stable for at least tAvAL (30 ns).

4.6 Internally Generated DMA
Requests

There are two types in internally synchronized DMA
transfers, that is, transfer initiated by a unit integrated
in the 80186. These two types are transfers in which the
DMA request is generated by Timer 2, or where DMA
request is generated by the DMA channel itself.

The DMA channel can be programmed such that
whenever Timer 2 reaches its maximum count, a DMA
request will be generated. This feature is selected by
setting the TDRQ bit in the DMA channel control reg­
ister. A DMA request generated in this manner will be
latched in the DMA controller, so that once the timer
request has been generated, it cannot be cleared except
by running the DMA cycle or by clearing the TDRQ
bits in both DMA control registers. Before any DMA
requests are generated in this mode, Timer 2 must be
initiated and enabled.

A timer requested DMA cycle being run by either
DMA channel will reset the timer request. Thus, if
both channels are using it to request a DMA cycle, only
one DMA channel will execute a transfer for every
timeout of Timer 2. Another implication of having a
single bit timer DMA request latch in the DMA con­
troller is that if another Timer 2 timeout occurs before
a DMA channel has a chance to run a DMA transfer,
the first request will be lost, i.e., only a single DMA
transfer will occur, even though the timer has timed out
twice.

The DMA channel can also be programmed to provide
its own DMA requests. In this mode, DMA transfer
cycles will be run continuously at the maximum bus
bandwidth, one after the other until the prepro­
grammed number of DMA transfers (in the DMA
transfer count register) have occurred. This mode is
selected by programming the synchronization bits in
the DMA control register for unsynchronized transfers.
Note that in this mode, the DMA controller will mo­
nopolize the CPU bus, i.e., the CPU will not be able to

perform opcode fetching, memory operations, etc.,
while the DMA transfers are occurring. Also notice
that the DMA will only perform the number of trans­
fers indicated in the maximum count register regardless
of the state of the TC bit in the DMA control register.

4.7 Externally Synchronized DMA
Transfers

There are two types of externally synchronized DMA
transfers, that is, DMA transfers which are requested
by an external device rather than by integrated Timer 2
or by the DMA channel itself (in unsynchronized trans­
fers). These are source synchronized and destination
synchronized transfers. These modes are selected by
programming the synchronization bits in the DMA
channel control register. The only difference between
the two is the time at which the DMA request pin is
sampled to determine if another DMA transfer is im­
mediately required after the currently executing DMA
transfer. On source synchronized transfers, this is done
such that two source synchronized DMA transfers may
occur one immediately after the other, while on desti­
nation synchronized transfers a certain amount of idle
time is automatically inserted between two DMA trans­
fers to allow time for the DMA requesting device to
drive its DMA request inactive.

4.7.1 SOURCE SYNCHRONIZED
DMA TRANSFERS

In a source synchronized DMA transfer, the source of
the DMA data requests the DMA cycle. An example of
this would be a floppy disk read from the disk to main
memory. In this type of transfer, the device requesting
the transfer is read during the fetch cycle of the DMA
transfer. Since it takes 4 CPU clock cycles from the
time DMA request is sampled to the time the DMA
transfer is actually begun, and a bus cycle takes a mini­
mum of 4 clock cycles, the earliest time the DMA re­
quest pin will be sampled for another DMA transfer
will be at the beginning of the deposit cycle of a DMA
transfer. This allows over 3 CPU clock cycles between
the time the DMA requesting device receives an ac­
knowledge to its DMA request (around the beginning
of T2 of the DMA fetch cycle), and the time it must
drive this request inactive (assuming no wait states) to
insure that another DMA transfer is not performed if it
is not desired (see Figure 36).

4.7.2 DESTINATION SYNCHRONIZED
DMA TRANSFERS

In destination synchronized DMA transfers, the desti­
nation of the DMA data requests the DMA transfer.
An example of this would be a floppy disk write from
main memory to the disk. In this type of transfer, the
device requesting the transfer is written during the de-

22-269

AP-186

FETCH CYCLE DEPOSIT CYCLE

210973-43
80186 DECISION

NOTE:
1. Current DMA source synchronized transfer will not be immediately followed by another DMA transfer

DEPOSIT CYCLE

T, T, : T3 : Tw T,

80186 Decision

NOTE:

T, T,

NEXT

DMA

TRANSFER

T,

210973-44

1. Current DMA destination synchronized transfer will be followed immediately by another DMA t~~nsfer

Figure 36. Source & Destination Synchronized DMA Request Timing

posit cycle of theDMA transfer. This causes a prob­
lem, since the DMA requesting device will not receive
notification of the .DMA cycle being run until 3 clock
cycles before the end of the DMA transfer (if no wait
states are being inserted into the deposit cycle of the
DMA transfer) and it takes 4 clock cycles to determine
whether another DMA cycle should be run immediate­
ly following the current DMA transfer. To get around
this problem, the DMA unit will relinquish the CPU
bus after each destination synchronized DMA transfer
for at least 2 CPU clock cycles to allow the DMA re­
questing device time to drop its DMA request if it does
not immediately desire another immediate DMA trans­
fer. When the bus is relinquished by the DMA unit, the
CPU may resume bus operation (e.g., instruction fetch­
ing, memory or I/O reads or writes, etc.). Thus, typi­
cally, a CPU initiated bus cycle will be inserted between
each destination synchronized DMA transfer. If no
CPU bus activity is required, however (and none can be
guaranteed), the DMA unit will insert only 2 CPU
clock cycles between the deposit cycle of one DMA
transfer and the fetch cycle of the next DMA transfer.
This means that the DMA destination requesting de­
vice must .drop its DMA request at least two clClck cy­
cles before the end of the deposit cycle regardless of the
number of wait states inserted into the bus cycle.

Figure 36 shows the DMA request going away too late
to prevent the immediate generation of another DMA
transfer. Any wait states inserted in the deposit cycle of
the DMA transfer will lengthen the amount of time
from the beginning of the deposit· cycle to the time
DMA will be sampled for another DMA transfer.
Thus, if the amount of time a device requires to drop its
DMA request after receiving a DMA acknowledge
from the 80186 is longer than the 0 wait state 80186
maximum (100 ns), wait states can be inserted into the
DMA cycle to lengthen the amount of time the device
has to drop its DMA request after receiving the DMA
acknowledge. Table 4 shows the amount of time be­
tween the beginning ofT2 and the time DMA request is
sampled as wait states are inserted in the DMA deposit
cycle.

Table 4. DMA Request Inactive Timing

Number of
Max Time (ns)

Wait States
For DRQ Inactive
from Start of T 2

0 100
1 225
2 350
3 475

22-270

AP-186

DMA FETCH CYCLE

T, T,

DRO
(ALWAYS

HIGH) I
I
I
I

NMI-.l..1 I' ·1· I

CD I
I I
I I

DHLT
(INTERNAL
REGISTER

BIT)

NOTES:
1. DMA request synchronization
2. Decision: Will DMA cycle be run?

Answer: No DMA request is active but DHL T is set
(from NMI request)

3. NMI synchronization time

DMA DEPOSIT CYCLE

T. T, T, T, T.

I I I
I. .1 .1
I CD I CD I

I

@
·1

I

210973-45

4. Logic delay time from synchronized NMI until DHL T set (note: DHL T is in the interrupt control status register)

Figure 37. NMI and DMA Interaction

4.8 DMA Halt and NMI

Whenever a Non-Maskable Interrupt is received by the
80186, all DMA activity will be suspended after the end
of the current DMA transfer. This is performed by the
NMI automatically setting the DMA Halt (DHLT) bit
in the interrupt controller status register (see Section
6.3.7). The timing of NMI required to prevent a DMA
cycle from occurring is shown in Figure 37. After the
NMI has been serviced, the DHLT bit should be
cleared by the programmer, and DMA activity will re­
sume exactly where it left off, i.e., none of the DMA
registers will have been modified. The DHLT bit is not
automatically reset after the NMI has been serviced. It
is automatically reset by the IRET instruction. This
DHLT bit may also be set by the programmer to pre­
vent DMA activity during any critical section of code.
However, the DHLT bit is not programmable in the
slave mode.

4.9 Example DMA Interfaces

4.9.1 8272 FLOPPY DISK INTERFACE

An example DMA interface to the 8272 Floppy Disk
Controller is shown in Figure 38. This shows how a
typical DMA device can be interfaced to the 80186. An
example floppy disk software driver for this interface is
given in Appendix C.

The data lines of the 8272 are connected, through buff­
ers, to the 80186 ADO-AD7 lines. The buffers are re­
quired because the 8272 will not float its output drivers
quickly enough to prevent contention with the 80186
driven address information after a read from the 8272
(see Section 3.1.3).

DMA acknowledge for the 8272 is driven by an address
decode within the region assigned to PCS2. If PCS2 is
assigned to be active between I/O locations OSOOH and
OS7FH, then an access to I/O location OSOOH will en­
able only the chip select, while an access to I/O loca­
tion OSOIH will enable both the chip select and the
DMA acknowledge. Remember, ALE must be factored
into the DACK generation logic because addresses are
not guaranteed stable when the chip selects become ac­
tive. If ALE were not used, the DACK generation cir­
cuitry could glitch as address output changed state
while the chip select was active.

Notice that the TC line of the 8272 is driven by a very
similar circuit as the one generating DACK (except for
the reversed sense of the output!). This line is used to
terminate an 8272 command before the command has
completed execution. Thus, the TC input to the 8272 is
software driven in this case. Another method of driving
the TC input would be to connect the DACK signal to
one of the 80186 timers, and program the timer to out-

22-271

AP-186

DRQ -0 Q-D oj
7474 7474

C. CL C. CL

I I DRQ

CLKOUT ~ CLK

PCS2 cs

ALE b- DACK

ADDR
LATCH 8272 U =p- TC ~

FLOPPY

DISK

NTERFACE AO

DATA
/ /

DBa·
AD7·ADO BUF·

8/ 8/ DB7
FER

AD RD

VIR VIR

RESET RESET

CK = 7474 CLOCK INPUT
CL = 7474 CLEAR INPUT 210973-46

Figure 38. Example 8272/80186 DMA Interface

put a pulse to the 8272 after a certain number of DMA
cycles have been run (see next section for 80186 timer
information).

The above discussion assumed that a single 80186 PCS
line is free to generate all 8272 select signals. If more
than one <:!!!E.. select is free, however, different 80186
generated PCS lines could be used for each function.
For example, PCS2 could be used to select the 8272,.
PCS3 could be used to drive the DACK line of the
8272, etc.

DMA requests are delayed by two clock periods in go­
ing from the 8272 to the 80186. This is required by the
8272 tRQR (time from DMA request to DMA RD go­
ing active) spec of 800 ns min. This requires 6.4 80186

CPU clock cycles (at 8 MHz), well beyond the 5 mini­
mum provided by the 80186 (4 clock cycles to the be­
ginning of the DMA bus cycle,S to the beginning ofT2
of the DMA bus cycle where RD will go active). The
two flip-flops add two complete CPU clock cycles to
this response time.

DMA request will go away 200 ns after DACK is pre­
sented to the 8272. During a DMA write cycle (i.e., a
destination synchronized transfer), this is not soon
enough to prevent the immediate generation of another
DMA transfer if no wait states are inserted in the de­
posit cycle to the 8272. Therefore, at least 1 wait state is
required by this interface, regardless of the data access
parameters of the 8272.

22-272

AP-186

4.9.28274 SERIAL COMMUNICATION
INTERFACE

An example 8274 synchronous/asynchronous serial
chip/80186 DMA interface is shown in Figure 39. The
8274 interface is even simpler than the 8272 interface,
since it does not require the generation of a DMA ac­
knowledge signal, and the 8274 does not require the
length of time between a DMA request and the DMA
read or write cycle that the 8272 does. An example
serial driver using the 8274 in DMA mode with the
80186 is given in Appendix C.

8274
DRQO TxDRO•

DR01 RxDRO.

r----
ADDR

~ LATCH
AO,A1

2"
'At! 8286

ADO-AD7
A,/

DATA ~ DBD-DB7
8/ BUFFER

iW iW

WR WR

RESET RESET

210973-47

Figure 39. Example 8274/80186 DMA Interface

The data lines of the 8274 are connected through buff­
ers to the 80186 ADO-AD7 lines. Again, these are re­
quired not because of bus drive problems, but because
the 8274 will not floatits drivers before the 80186 will
begin driving address information on its address/data
bus. If both the 8274 and the 8272 are included in the
same 80186 system, they could share the same data bus
buffer (as could any other peripheral devices in the sys­
tem).

The 8274 does not require a DMA acknowledge signal.
The first read from or write to the data register of the
8274 after the 8274 generates the DMA request signal
will clear the DMA request. The time between when
the control signal (RD or WR) becomes active and
when the 8274 will drop its DMA request during a
DMA write is 150 ns, which will require at least one
wait state be inserted into the DMA write cycle for
proper operation of the interface.

5.0 TIMER UNIT INTERFACING

The 80186 includes a timer unit which provides three
independent 16-bit timers. These timers operate inde­
pendently of the CPU. Two of these have input and
output pins allowing counting of external events and
generation of arbitrary waveforms. The third timer can
be used as a timer, as a prescaler for the other two
timers, or as a DMA request source.

5.1 Timer Operation

The internal timer unit on the 80186 could be modeled
by a single counter element, time multiplexed to three
register banks, each of which contains different control
and count values. These register banks are, in tum,
dual ported between the counter element and the 80186
CPU (see Figure 40). Figure 41 shows the timer ele­
ment sequencing, and the subsequent constraints on in­
put and output signals. If the CPU modifies one of the
timer registers, this change will affect the counter ele­
ment the next time that register is presented to the
counter element. There is no connection between the
sequencing of the counter element through the timer
register banks and the Bus Interface Unit's sequencing
through T -states. Timer operation and bus interface op­
eration are completely asynchronous.

5.2 Timer Registers

Each timer is controlled by a block of registers (see
Figure 42). Each of these registers can be read or writ­
ten whether or not the timer is operating. All processor
accesses to these registers are synchronized to all coun­
ter element accesses to these registers, meaning that one
will never read a count register in which only half of
the bits have been modified. Because of this synchroni­
zation, one wait state is automatically inserted into any
access to the timer registers. Unlike the DMA unit,
locking accesses to timer registers will not prevent the
timer's counter elements from accessing the timer regis­
ters.

Each timer has a 16-bit count register. This register is
incremented for each timer event. A timer event can be
a low-to-high transition on the external pin (for Timers
o and 1), a CPU clock transition (divided by 4 because
of the counter element mUltiplexing), or a time out of
timer 2 (for Timers 0 and 1). Because the count register
is 16 bits wide, up to 65536 (2 16) timer events can be
counted by a single timer/counter. This register can be
both read or written whether the timer is or is not oper­
ating.

Each timer includes a maximum count register. When­
ever the timer count register is equal to the maximum
count register, the count register will be reset to zero,
that is, the maximum count value will never be stored
in the count r\!gister. This maximum count value may

22-273

•"nt_r 11'tP AP-186

TIMER IN
o

TIMER IN
1

TIMER OUT
o

nMERoUT
1

NOTES:

CPU

1. Timer in 0 resolution time
2. Timer in 1 resolution tfme

T. T,
IN IN

Figure 40. 80186 Timer Model

nMERO

SERVICED

nMER1

SERVICED

TIMER 2

SERVICED

3. Modified count value written into 80186 Timer 0 count register
4. Modified count value written into 80186 Timer 1 count register

DEAD

TIMER 0

SERVICED

Figure 41. 80186 Counter Element Multiplexing and Timer Input Synchronization

22-274

210973-48

210973-49

Ap·186

OFFSET

50H COUNT REGISTER ------------5211 MAX COUNT REGISTER A
TIMER 0 ------------54H MAX COUNT REGISTER B

56H - CoNTROLREGiSTER-<1)_- - --

58H COUNT REGISTER ------------SAH MAX COUNT REGISTER A
TIMER 1 ------------SCH _ MAX CO~T RE..!!!S~0- ____

SEH CONTROL REGISTER I

60H COUNT REGISTER ------------
6211 _ MAX COUNT REGISTER _____

TIMER 2
64H X X X

66H - CONTROL REGISTER -(j) - - --

CD CONTROL REGISTER LAYOUT

15
210973-50

Figure 42. 80186 Timer Register Layout

be written while the timer is operating. A maximum
count value of 0 implies a maxil!1um count of 65536, a
maximum count value of 1 implies a maximum count
of 1, etc. The user should be aware that only equiva­
lence between the count value and the maximum count
register value is checked, that is, the count value will
not be cleared if the value in the count register is great­
er than the value in the maximum count register. This
could only occur by programmer intervention, either by
setting the value in the count register greater than the
value in the maximum count register, or by setting the
value in the maximum count register to be less than the
value in the count register. If this is programmed, the
timer will count to the maximum possible count
(FFFFH), increment to 0, then count up to the value in
the maximum count register. The TC bit in the timer
control register will not be set when the counter over­
flows to 0, nor will an interrupt be generated from the
timer unit.

Timers 0 and 1 each contain an additional maximum
count register. When both maximum count registers
are used, the timer will first count up to the value in
maximum count register A, reset to zero, count up to
the value in maximum count register B, and reset to
zero again. The ALTernate bit in the timer control reg­
ister determines whether one or both maximum count
registers are used. If this bit is low, only maximum
count register A is used; maximum count register B is
ignored. If it is high, both maximum count register A
and maximum count register B are used. The RIU (reg­
ister in use) bit in the timer control register indicates
which maximum count register is currently being used.
This bit is 0 when maximum count register A is being
used, 1 when maximum count register B is being used.
This RIU bit is read only. It is unaffected by any write
to the timer control register. It will always be read 0 in
single maximum count register mode (since only maxi­
mum count register A will be used).

Each timer can generate an interrupt whenever the tim­
er count value reaches a maximum count value. That is,
an interrupt can be generated whenever the value in
maximum count register A is reached, and whenever
the value in maximum count register B is reached. In
addition, the MC (maximum count) bit in the timer
control register is set whenever the timer count reaches
a maximum count value. This bit is never automatically
cleared, i.e., programmer intervention is required to
clear this bit. If a timer generates a second interrupt
request before the first interrupt request has been serv­
iced, the first interrupt request to the CPU will be lost.

Each timer has an ENable bit in the timer control regis­
ter. This bit is used to enable the timer to count. The
timer will count timer events only when this bit is set.
Any timer events occurring when this bit is reset are
ignored. Any write to the timer control register will
modify the ENable bit only ifthe INHibit bit is also set.
The timer ENable bit will not be modified by a write to
the timer control register if the INHibit bit is not set.
The INHibit bit in the timer control register allows
selective updating of the timer ENable bit. The value of
the INHibit bit is not stored in a write to the timer
control register; it will always be read as a 1.

Each timer has a CONTinuous bit in the timer control
register. If this bit is cleared, the timer ENable bit will
be automatically cleared at the end of each timing cy­
cle. If a single maximum count register is used, the end
of a timing cycle occurs when the count value resets to
zero after reaching the value in maximum count regis­
ter A. If dual maximum count registers are used, the
end of a timing cycle occurs when the count value re­
sets to zero after reaching the value in maximum count
register B. If the CONTinuous bit is set, the ENable bit
in the timer control register will never be automatically
reset. Thus, after each timing cycle, another timing

22-275

Ap·186

cycle will automatically begin. For example, in single
maximum count register mode, the timer will count up
to the value in maximum count register A, reset· to
zero, ad infinitum. In dual maximum count register
mode, the timer will count up the value in maximum
count register A,reset to zero, count up the value in
maximum count register B, reset to zero, count up to
the value in maximum count register A, reset to zero, et
cetera.

5.3 Timer Events

Each timer counts timer events. All timers can use a
transition of the CPU clock as an event. Because of the
counter element multiplexing, the timer count value
will be incremented every fourth CPU clock. For Timer
2, this is the only timer event which can be used. For
Timers 0 and 1, this event is selected by clearing the
EXTernal and Prescaler bits in the timer control regis­
ter.

Timers 0 and 1 can use Timer 2 reaching its maximum
count as a timer event. This is selected by clearing the
EXTernal bit and setting the Prescaler bit in the timer
control register. When this is done, the timer will incre­
ment whenever Timer 2 resets to zero having reached
its own maximum count. Note that Timer 2 must be
initialized and running for the other timer's value to be
incremented.

Timers 0 and 1 can also be programmed to count low­
to~high transitions on the external input pin. Each tran­
sition on the external pin is synchronized to the.80186
clock before it is presented to the timer circuitry, and
may, therefore, be asynchronous (see Appendix B for
information on 80186 synchronizers). The .. timer counts
transitions on the input pin: the input value must go
low, then go high to cause the timer increment. Any
transition on this line is latched. If a transition occurs
when a timer is not being serviced by the counter ele­
ment, the transition on the input line will be remem­
bered so that :when the timer does get serviced, the in­
put transition will be counted. Because of the counter
element multiplexing, the maximum rate at which the
timer can count is 1/4 of the CPU clock rate (2 MHz
with an 8 MHz CPU clock).

5.4 Timer Input Pin Operation

Timers 0 and 1 each have individual timer input pins.
Alliow-to-high transitions on these input pins are syn­
chronized, latched, and presented to the counter ele­
ment when the particular timer is being serviced by the
counter element.

Signals on this input can affect timer operation 'in three
different ways. The manner in which the pin signals are

used is determined by the EXTernal and RTG (retrig­
ger) bits in the timer control register. If the EXTernal
bit is set, transitions on the input pin will cause the
timer count value to increment if the timer is enabled
(the ENable bit in the timer control register is set).
Thus, the timer counts external events. If the EXTernal
bit is cleared, all timer increments are caused by either
the CPU clock or by Timer 2 timing out. In this mode,
the RTG.bit determines whether the input pin will en­
able timer operation, or whether it will retrigger timer
operation.

If the EXTernal bit is low and the RTG bit is also low,
the timer will count internal timer events only when the
timer input pin is high and the ENable bit in the timer
control register is set. Note that in this mode, the pin is
level sensitive, not edge sensitive. A low-to-high tran­
sition on the timer input pin is not required to enable
timer operation. If the input is tied high, the timer will
be continually enabled. The timer enable input signal is
completely independent of the ENable bit in the timer
control register: both must be high for the timer to
count. Example uses for the timer in this mode would
be a real time clock or a baud rate generator.

If the EXTernal bit is low and the RTG bit is high, the
timer will act as a digital one-shot. In this mode, every
low-to-high transition on the timer input pin will cause
the timer to reset to zero; If the timer is enabled (i.e.,
the ENable bit in the timer control register is set) timer
operation will begin (the timer will count CPU clock
transitions or Timer 2 timeouts). Timer operation will
cease at the end of a timer cycle, that is, when the value
in the maximum count register A is reached and the
timer count value resets to zero (in single maximum
count register mode, remember that .the maximum
count value is never stored in the timer count register)
or' when the value in maximum count register B is
reached and the timer count value resets to zero (in
dual maximum count register mode). If another low-to­
high transition occurs on the input pin before the end of
the timer cycle, the timer will reset to zero and begin
the timing cycle again regardless of the state of the
CONtinuous bit in the timer control register theRIU
bit will not be changed by the input transition. If the
CONtinuous bit in the timer control register is cleared,
the timer ENable bit will automatically be cleared at
the end of the timer cycle. This means that any addi­
tional transitions on the input pin will be ignored by the
timer. If the CONtinuous bit in the timer control regis­
ter is set, the timer will reset to zero and begin another
timing cycle for every low-to-high transition on the in­
put pin, regardless of whether the timer had reached
the end of a timer cycle, because the timer ENable bit
would not have been cleared at the end of the timing
cycle. The timer will also continue counting at the end
of a timer cycle, whether or not another. transition has
occurred on the input pin. An example. use of the timer
in this mode is an alarm clock time out signal or inter­
rupt.

22-276

AP-186

5.5 Timer Output Pin Operation

Timers ° and 1 each contain a single timer output pin.
This pin can perform two functions at programmer op­
tion. The first is a single pulse indicating the end of a
timing cycle. The second is a level indicating the maxi­
mum count register currently being used. The timer
outputs operate as outlined below whether internal or
external clocking of the timer is used. If external clock­
ing is used, however, the user should remember that the
time between an external transition on the timer input
pin and the time this transition is reflected in the timer
out pin will vary depending on when the input tran­
sition occurs relative to the timer's being serviced by
the counter element.

When the timer is in single maximum count register
mode (the ALTernate bit in the timer control register is
cleared) the timer output pin will go low for a single
CPU clock the clock after the timer is serviced by the
counter element where maximum count is reached (see
Figure 43). This mode is useful when using the timer as
a baud rate generator.

TIMER o SERVICED

When the timer is programmed in dual maximum
count register mode (the ALTernate bit in the timer
control register is set), the timer output pin indicates
which maximum count register is being used. It is low
if maximum count register B is being used for the cur­
rent count, high if maximum count register A is being
used. If the timer is programmed in continuous mode
(the CONTinuous bit in the timer control register is
set), this pin could generate a waveform of any duty
cycle. For example, if maximum count register A con­
tained 10 and maximum count register B contained 20,
a 33% duty cycle waveform would be generated.

5.6 Sample 80186 Timer Applications

The 80186 timers can be used for almost any applica­
tion for which a discrete timer circuit would be used.
These include real time clocks, baud rate generators, or
event counters.

INTERNAL __________________ -v ________ -+ ________________ _
COUNT
VALUE

MAXCOUNT-l

TMR OUT ----------------------------1-.
PIN

210973-51

Figure 43. 80186 Timer Out Signal

80188
+5V

+5V
......----

TMR INol
TIMER

0 TMR OUT 0 TxC } SERIAL

'---
Rxe CONTROLLER

210973-53

210973-52

Figure 44. 80186 Real Time Clock Figure 45. 80186 Baud Rate Generator

22-277

AP-186

80188 0
SL 0

~'o-LIGHT
TMRINO 0 "/

210973-54

Figure 46

5.6.180186 TIMER REAL TIME CLOCK

The sample program in appendix D shows the 80186
timer being used with the 80186 CPU to form a real
time clock. In this implementation, Timer 2 is pro­
grammed to provide an interrupt to the CPU every mil­
lisecond. The CPU then increments memory based
clock variables.

5.6.280186 TIMER BAUD RATE GENERATOR

The 80186 timers can also be used as baud rate genera­
tors for serial communication controllers (e.g., the
8274). Figure 45 shows this simple connection, and the

TIMER TIMER TIMER DMA

code to program the timer as a baud rate generator is
included in Appendix D.

5.6.3 80186 TIMER EVENT COUNTER

The 80186 timer can be used to count events. Figure 46
shows a hypothetical set up in which the 80186 timer
will count the interruptions in a light source. The num­
ber of interruptions can be read directly from the count
register of the timer, since the timer counts up, i.e.,
each interruption in the light source will cause the tim­
er count value to increase. The code to set up the 80186
timer in this mode is included in Appendix D.

o 1 2 1 INTO INn INT2 INT3 NMI

TIMER
CONTROL REG.

DMAO
CONTROL REG.

DMA1
CONTROL REG.

EXT. INPUT 0
CONTROL REG.

EXT. INPUT 1
CONTROL REG.

EXT. INPUT 2
CONTROL REG.

INTERRUPT
PRIORITY
RESOLVER

INTERRUPT
REQUEST TO
PROCESSOR

INTERNAL ADDRESS/DATA BUS

INTERRUPT
REQUEST REG.

INTERRUPT
MASK REG.

IN-SERVICE
REG.

PRIOR. LEV.
MASK REG.

INTERRUPT
STATUS REG.

Figure 47. 80186 Interrupt Controller Block Diagram

22-278

210973-55

AP-186

6.0 80186 INTERRUPT CONTROLLER
INTERFACING

The 80186 contains an integrated interrupt controller.
This unit performs tasks of the interrupt controller in a
typical system. These include synchronization of inter­
rupt requests, prioritization of interrupt requests, and
request type vectoring in response to a CPU interrupt
acknowledge. It can be a master to two external 8259A
interrupt controllers or can be a slave to an external
interrupt controller.

6.1 Interrupt Controller Model

The integrated interrupt controller block diagram is
shown in Figure 47. It contains registers and a control
element. Four inputs are provided for external interfac­
ing to the interrupt controller. Their functions change
according to the programmed mode of the interrupt
controller. Like the other 80186 integrated peripheral
registers, the interrupt controller registers are available
for CPU reading or writing at any time.

6.2 Interrupt Controller Operation

The interrupt controller operates in two major modes,
master and slave mode. In master mode the integrated
controller acts as the master interrupt controller for the
system, while in slave mode the controller operates as a
slave to an external interrupt controller which operates
as the master interrupt controller for the system. Some

of the interrupt controller registers and interrupt con­
troller pins change definition between these two modes,
but the basic charter and function of the interrupt con­
troller remains fundamentally the same. The difference
is when in master mode, the interrupt controller pres­
ents its interrupt input directly to the 80186 CPU,
while in slave mode the interrupt controller presents its
interrupt input to an external controller (which then
presents its interrupt input to the 80186 CPU). Placing
the interrupt controller in slave mode is done by setting
the SLAVE/MASTER bit in the peripheral control
block pointer (see Appendix A).

6.3 Interrupt Controller Registers

The interrupt controller has a number of registers
which are used to control its operation (see Figure 48).
Some of these change their function between the two
major modes of the interrupt controller (master and
slave mode). The differences are indicated in the follow­
ing section. If not indicated, the function and imple­
mentation of the registers is the same in the two basic
modes of operation of the interrupt controller. The
method of interaction among the various interrupt con­
troller registers is shown in the flowcharts in Figures 56
and 57.

6.3.1 CONTROL REGISTERS

Each source of interrupt to the 80186 has a control
register in the internal controller. These registers con-

MAS1ER MODE OFFSET ADDRESS SLAVE MODE

NOTE:

,----------------------. ,---------~~---------.

____ ..!~~ ~O!:':.R~I:. ~~I~T~': _ _ _ _ _ _ 3EH (i)
INT2 CONTROL REGISTER -----------------------
INTI CONTROL REGISTER

INTO CONTROL REGISTER

DMA 1 CONTROL REGISTER

DMAO CONTROL REGISTER

TIMER CONTROL REGISTER

INTERRUPT CONTROLLER STATUS REGISTER

INTERRUPT REQUEST REGISTER

IN·SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER

. EOI REGISTER -----------0-----------

3CH ===========0====== ===== 3AH TIMER 2 CONTROL REGISTER -----------------------
38H _____ T-'-M5~ !.. C~~T.!'~L_R5~~~R ____ _

36H DMAl CONTROL REGISTER -----------------------
34H DMAO CONTROL REGISTER

32H

30H

2EH

2CH

2AH

28H

26H

24H

22H

20H

_____ ~M~':~~~~~~~~~~~ ___ _
INTERRUPT CONTROLLER STATUS REGISTER

INTERRUPT REQUEST REGISTER -----------------------IN SERVICE REGISTER -----------------------PRIORITY MASK REGISTER

MASK REGISTER

===========0=========== (i)

= = = = = = ~[c}FI(E~I}I[~s~~ = = = = =
INTERRUPT VECTOR REGISTER

1. Unsupported in this mode: values written mayor may not be stored

Figure 48. 80186 Interrupt Controller Registers

22-279

210973-56

AP-186

15 o

[J] SPECIAL CAS- LEVEL
I I

~
FULLY CADE TRIG.

MASK
PRIORITY BITS 0 NESTED

BIT 0 MODE 0 MODE(j)
BIT I I

210973-57

NOTE:
1. This bit present only in INTO-INT3 control registers
2. These bits present only in INTO-INT1 control register

Figure 49. Interrupt Controller Control Register

15 MASTER MODE o 15 SLAVE MODE 0

x x x x x

210973-58

Figure 50. 80186 Interrupt Controller In-Service, Interrupt Request and Mask Register Format

tain three bits which select one of eight different inter­
rupt priority levels for the interrupt device (0 is highest
priority, 7 is lowest priority), and a mask bit to enable
the interrupt (see Figure 49). When the mask bit is low,
the interrupt is enabled, when it is high, the interrupt is
masked.

There are seven control registers in the 80186 integrat­
ed interrupt controller. In master mode, four of these
serve the external interrupt inputs, one each for the two
DMA channels, and one for the collective timer inter­
rupts. In slave mode, the external interrupt inputs are
not used, so each timer can have its own individual
control register.

6.3.2 REQUEST REGISTER

The interrupt controller includes an interrupt request
register (see Figure 50). This register contains seven
active bits, one for each interrupt control register.
Whenever an interrupt request is made by the interrupt
source associated with a specific control register, the bit
in interrupt request register is set, regardless if the in­
terrupt is enabled, or if it is of sufficient priority to
cause a processor interrupt. The bits in this register
which are associated with integrated peripheral devices
(the DMA and timer units) can be read or written,
while the bits in this register which are associated with
the external interrupt pins can only be read (values
written to them are not stored). These interrupt request
bits are automatically cleared when the interrupt is ac­
knowledged.

6.3.3 MASK REGISTER AND PRIORITY
MASK REGISTER

The interrupt controller contains a mask register (see
Figure 50). This register contains a mask bit for each
interrupt source associated with an interrupt control
register. The bit for an interrupt source in the mask
register is identically the same bit as is provided in the
interrupt control register: modifying a mask bit in the
control register will also modify it in the mask register,
and vice versa.

The interrupt controller also contains a priority mask
register (see Figure 51). This register contains three bits
which indicate the lowest priority an interrupt may
have that will cause an interrupt acknowledge. Inter­
rupts received which have a lower priority will be effec­
tively masked off. Upon reset this register is set to the
lowest priority of 7 to enable all interrupts of any prior­
ity. This register may be read or written.

15 o
x x x x

210973-59

Figure 51. 80186 Interrupt Controller Priority
Mask Register Format

6.3.4 IN-SERVICE REGISTER

The interrupt controller contains an in-service register
(see Figure 50). A bit in the in-service register is associ­
ated with each interrupt control register so that when
an interrupt request by the device associated with the

22-280

AP-186

control register is acknowledged by the processor (ei­
ther by the processor running the interrupt acknowl­
edge or by the processor reading the interrupt poll reg­
ister) the bit is set. The bit is reset when the CPU issues
an End Of Interrupt to the interrupt controller. This
register may be both read and written, i.e., the CPU
may set in-service bits without an interrupt ever occur­
ring, or may reset them without using the EOI function
of the interrupt controller.

6.3.5 POLL AND POLL STATUS REGISTERS

The interrupt controller contains both a poll register
and a poll status register (see Figure 52). Both of these
registers contain the same information. They have a
single bit to indicate an interrupt is pending. This bit is
set if an interrupt of sufficient priority has been re­
ceived. It is automatically cleared when the interrupt is
acknowledged. If (and only if) an interrupt is pending,
they also contain information as to the interrupt type of
the highest priority interrupt pending.

15 o
x x

SO-84 = interrupt type

210973-60

Figure 52. 80186 Poll &
Poll Status Register Format

Reading the poll register will acknowledge the pending
interrupt to the interrupt controller just as if the proc-

15 MASTER MODE o

essor had acknowledged the interrupt through interrupt
acknowledge cycles. The processor will not actually run
any interrupt acknowledge cycles, and will not vector
through a location in the interrupt vector table. The
contents of the interrupt request, in-service, poll, and
poll status registers will change appropriately. Reading
the poll status register will merely transmit the status of
the polling bits without modifying any of the other in­
terrupt controller registers. These registers are read
only: data written to them is not stored. These registers
are not supported in slave mode. The state of the bits in
these registers in slave mode is not defined.

6.3.6 END OF INTERRUPT REGISTER

The interrupt controller contains an End Of Interrupt
register (see Figure 53). The programmer issues an End
Of Interrupt to the controller by writing to this register.
After receiving the End Of Interrupt, the interrupt con­
troller automatically resets the in-service bit for·the in­
terrupt. The value of the word written to this register
determines whether the End Of Interrupt is specific or
non-specific. A non-specific End Of Interrupt is speci­
fied by setting the non-specific bit in the word written
to the End Of Interrupt register. In a non-specific End
Of Interrupt, the in-service bit of the highest priority
interrupt set is automatically cleared, while a specific
End Of Interrupt allows the in-service bit cleared to be
explicitly specified. The in-service bit is reset whether
the bit was set by an interrupt acknowledge or if it was
set by the CPU writing the bit directly to the in-service
register. If the highest priority interrupt is reset, the
poll and poll status registers will change to reflect the

15 SLAVE MODE

x x x x x

LO-L2 = Interrupt priority level

210973-61

Figure 53. 80186 End of Interrupt Register Format

15r DHLT (MASTER MODE ONLY) o

I I x x x x x
210973-62

Figure 54. 80186 Interrupt Status Register Format

15 o
x x x

210973-63

Figure 55. 80186 Interrupt Vector Register Format (slave mode only)

22-281

intJ Ap·186

next lowest priority interrupt to be serviced. If a less
than highest priority interrupt in-service bit is reset, the
priority poll and poll status registers will not be modi­
fied (because the highest priority interrupt to be serv­
iced has not changed). Only the specific EOI is support­
ed in slave mode. This register is write only: data writ­
ten is not stored and cannot be read back.

6.3.7 INTERRUPT STATUS REGISTER

The interrupt controller also contains an interrupt
status register (see Figure 54). This register contains
four significant bits. There are three bits used to .show
which timer is causing an Interrupt. This is required
because in master mode, the timers share a single inter­
rupt control register. A bit in this register is set to indi­

,cate which timer has generated an interrupt. The bit,
associated with a timer is automatically cleared after
the interrupt request for the timer is acknowledged.
More than one of these bits may be set at a time. The
fourth bit in the interrupt status register is the DMA
halt bit (not implemented in slave mode). When set,
this bit prevents any DMA activity. It is automatically
set whenever a NMI is received by the interrupt con­
troller. It can also be set explicitly by the programmer.
This bit is automatically cleared whenever the IRET
instruction is executed. All significant bits in this regis­
ter are read/write.

6.3.8 INTERRUPT VECTOR REGISTER

Finally, in slave mode only, the interrupt controller
contains an interrupt· vector register (see Figure 55).
This register is used to specify the 5 most significant
bits of the interrupt type vector placed on the CPU bus
in response to an interrupt acknowledgement (the lower
3 significant bits of the interrupt type are determined by
the priority level of the device causing the interrupt in
slave mode).

6.4 Interrupt Sources

The 80186 interrupt controller receives and arbitrates
among many different interrupt request sources, both
internal and external. Each interrupt source may be
programmed to be a different priority level in the inter­
rupt controller. An interrupt request generation flow
chart is shown in Figure 56. Such a flowchart would be
followed independently by' each interrupt source.

6.4.1 INTERNAL INTERRUPT SOURCES

The internal interrupt sources are the three timers and
the two DMA channels. An interrupt from each of
these interrupt sources is latched in the interrupt con­
troller, so that if the condition CausiIig the interrupt is
cleared in the originating integrated peripheral device,
the interrupt request will remain pending in the inter-

rupt controller. The state of the pending interrupt can
be obtained by reading the interrupt request register of
the interrupt controller. For all internal interrupts, the
latched interrupt request can be reset by the processor
by writing to the interrupt request register. Note that
all timers share a common bit in the interrupt request
register in master mode. The interrupt controller status
register may be read to determine which timer is actual­
ly causing the interrupt request in this mode. Each tim-,
er has a unique interrupt vector (see Section 6.5.1).
Thus polling is not required to determine which timer
has caused the interrupt in the interrupt service routine.
Also, because the timers share a common interrupt
control register, they are placed at a common priority
level as . referenced to all other interrupt devices.
Among themselves they have a fixed priority, with tim­
er 0 as the highest priority timer and timer 2' as the
lower priority timer.

6.4.2 EXTERNAL INTERRUPT SOURCES

The 80186 interrupt controller will accept external in­
terrupt requests only when it is programmed in master
mode. In this mode, the external pins associated' with
the interrupt controller may serve either as direct inter­
rupt inputs, or as cascaded interrupt inputs from other
interrupt controllers as a programmed option. These
options are selected by programming the C and SFNM
bits in the INTO and INTI control registers (see Figure
49).

When programmed as direct interrupt inputs, the four
interrupt inputs are each controlled by an individual
interrupt control register. As stated earlier, these regis­
ters contain 3 bits which seleCt the priority level for the
interrupt and a single bit which enables the interrupt
source to the processor. In 'addition each of these con­
trol registers ,contains a bit which selects either edge or
level triggered mode for the interrupt input. When edge
triggered mode is selected, a low-to-high transition
must occur on the interrupt input before an interrupt is
generated, while in level triggered mode, only a high
level needs to be maintained to generate an interrupt. In
edge triggered mode, the input must remain low at least
1 clock cycle before the input is "re-armed." In both
modes, the interrupt level must remain high until the
interrupt is acknowledged, i.e., the interrupt request is
not latched in the interrupt controller. The status ofthe
interrupt input can be shown by reading the interrupt
request register. Each of the external pins has a bit in
this register which indicates an interrupt request on the
particular pin. Note' that since interrupt requests on
these inputs are not latched by the interrupt controller,
if the external input goes inactive, the interrupt requests
(and also the bit in the interrupt request register) will
also go inactive (low). Also, if the interrupt input is in
edge triggered mode, a low-to-high transition on the
input pin must occur before the interrupt request bit
will be set in the interrupt request register.

22~282

AP-186

210973-64

Figure 56. 80186 Interrupt Request Sequencing

If the C (Cascade) bit of the INTO or INTI control
registers are set, the interrupt input is cascaded to an
external interrupt controller. In this mode, whenever
the interrupt presented to the INTO or INTI line is
acknowledged, the integrated interrupt controller will
not provide the interrupt type for the interrupt. In­
stead, two INTA bus cycles will be run, with the INT2
and INT3 lines providing the interrupt acknowledge
pulses for the INTO and the INTI interrupt requests
respectively. INTO/INT2 and INTl/INT3 may be in­
dividually programmed into cascade mode. This allows
128 individually vectored interrupt sources if two banks
of 8 external interrupt controllers each are used.

6.4.3 SLAVE MODE INTERRUPT SOURCES

When the interrupt controller is configured in slave
mode, the integrated interrupt controller accepts in-

terrupt requests only from the integrated peripherals.
Any external interrupt requests must go through an
external interrupt controller. This external interrupt
controller requests interrupt service directly from the
80186 CPU through the INTO line on the 80186. In this
mode, the function of this line is not affected by the
integrated interrupt controller. In addition, in slave
mode the integrated interrupt controller must request
interrupt service through this external interrupt con­
troller. This interrupt request is made on the INT3 line
(see Section 6.6.4 on external interrupt connections).

6.5 interrupt Response

The 80186 can respond to an interrupt in two different
ways. The first will occur if the internal controller is

22-283

intJ AP-186

GENERATE INTA

CJfi::~A~R YES
INTERRUPT CD

CONTROLLER

NOTES:

PROVIDE HIGHEST
PRIORITY INTERRUPT

VECTOR ON
INTERNAL BUS

WAIT FOR NEXT
INTERRUPT

ACKNOWLEDGE

210973-65

1. Before actual interrupt acknowledge is run by CPU
2. Two interrupt acknowledge cycles will be'run, the interrupt type is read by the CPU on the second cycle
3. Interrupt acknowledge cycles will not be run, the interrupt vector address is placed on an internal bus and is not
available outside the processor
4. Interrupt type is not driven on external bus in slave mode

Figure 57. 80186 Interrupt Acknowledge Sequencing

providing the interrupt vector information with the
controller in master mode. The second will occur if the
CPU reads interrupt type information from an external
interrupt controller or if the interrupt controller is in
slave mode. In both of these instances the interrupt vec­
tor information driven by the 80186 integrated inter­
rupt controller is not available outside the 80186 micro­
processor.

In each interrupt mode, when the integrated interrupt
controller receives an interrupt response, the interrupt
controller will automatically set the in·service bit and
reset the interrupt request bit in the integrated control­
ler; In addition, unless the interrupt control register for
the interrupt is set in Special Fully Nested Mode, the
interrupt controller will prevent any interrupts from oc­
curring from the same interrupt line until the in·service
bit for that line has been cleared.

6.5.1 INTERNAL VECTORING, MASTER MODE

In master mode, the interrupt types associated with all
the interrupt sources are fixed and unalterable. These
interrupt types are given in Table 5. In response to an
internal CPU interrupt acknowledge the interrupt con­
troller will generate the vector address rather than the
interrupt type. On the 80186 (like the 8086) the inter­
rupt vector address is the interrupt type multiplied by
4. This speeds interrupt response.

In master mode, the integrated interrupt controller is
the master interrupt controller of the system. As a re­
sult, no external interrupt controller need know when
the integrated controller is providing an interrupt vec­
tor, nor when the interrupt acknowledge is taking
place. As a result, no interrupt acknowledge bus cycles
will be generated. The first external indication that an
interrupt has been acknowledged will be the processor
reading the interrupt vector from the interrupt vector
table in low memory.

22-284

AP-186

Table 5. 80186 Interrupt Vector Types

Interrupt Vector Default
Name Type Priority

Timer 0 8 Oa
Timer 1 18 Ob
Timer 2 19 Oc
DMAO 10 2
DMA1 11 3
INTO 12 4
INT 1 13 5
INT2 14 6
INT3 15 7

Because the two interrupt acknowledge cycles are not
run, and the interrupt vector address does not need to
be calculated, interrupt response to an internally vec­
tored interrupt is 42 clock cycles, which is faster than
the interrupt response when external vectoring is re­
quired, or if the interrupt controller is run in slave
mode.

If two interrupts of the same programmed priority oc·
cur, the default priority scheme (as shown in Table 5) is
used.

T, T, T,

CLKOUT
I

6.5.2 INTERNAL VECTORING, SLAVE MODE

In slave mode, the interrupt types associated with the
various interrupt sources are alterable. The upper 5
most significant bits are taken from the interrupt vector
register, and the lower 3 significant bits are taken from
the priority level of the device causing the interrupt.
Because the interrupt type, rather than the interrupt
vector address, is given by the interrupt controller in
this mode the interrupt vector address must be calculat­
ed by the CPU before servicing the interrupt.

In slave mode, the integrated interrupt controller will
present the interrupt type to the CPU in response to the
two interrupt acknowledge bus cycles run by the proc·
essor. During the first interrupt acknowledge cycle, the
external master interrupt controller determines which
slave interrupt controller will be allowed to place its
interrupt vector on the microprocessor bus. During the
second interrupt acknowledge cycle, the processor
reads the interrupt vector from its bus. Thus, these two
interrupt acknowledge cycles must be run, since the
integrated controller will present the interrupt type in­
formation only when the external interrupt controller
signals the integrated controller that it has the highest
pending interrupt request (see Figure 58). The 80186

T, T, T, T.

S~S2 ----~~--~~--~:~---+-----+-----+---,-+-----+----~T;r_lI~---

NOTES:

I I I

INTO ____ INTE~R~R-U-P-T-A~CrK-NO-W--LE~DG--E--_+----_+----_T----_T----_,----_._r---,-----
(HIGH)

INT3 ----~----~--~----~--~----r_--_r----T_--~t_--T----

(HIGH) -:::----+-----;--v--+-----I-----+-. --___ '"":":~~==~. =::-::t:--~'"""'\r
CAS CD 80188 SLAVE ENABLE CASCADE ADDRESS FROM 8259A :: __ ~ ____ ~--~~----_+'----_+'----_+'----~:----~:--~~:~--~--J.~

SLAVE -----l------;---,
3ELECT CD

,
I

I I
I I
I I

INTA 011...--'----'----'-': I \\..._,--_,--_.:-1
I I

-LOC--K ~ V~--~----~-----
I\....--_T-----r-----r-----r----.-----i-----~,
I I

210973-66

1. SLAVE SELECT = INT1
2. INTA = INT 2
3. Driven by external interrupt controller
4. SLAVE SELECT must be driven before Phase 2 of T2 of the second INTA cycle
5. SLAVE SELECT read by 80186

Figure 58. 80186 Slave Mode Interrupt Acknowledge Timing

22·285

inter Ap·186 .

SO·S2

ADO·AD7 -+---~-~---+---+--~-~~--+-(l~=Df--t-

I
I·

I

INT~RRUPT TYPE
(FROM EXTERNAL

CONTROLLER)

210973-67

Figure 59. 80186 Cascaded Interrupt Acknowledge Timing

samples the SLAVE SELECT line during the falling
edge of the clock atthe beginning of T 3 of the second
interrupt acknowledge cycle. This input must be stable
20 ns before and 10 ns after this edge.

These two interrupt' acknowledge cycles will be run
back to back, and will be LOCKED with the LOCK
output active (meaning that DMA requests and HOLD
requests will not be honored until both cycles have been
run). Note that the two interrupt acknowledge cycles
will always be separa:ted by two idle T states, and that
wait states will be inserted into the interrupt acknowl·
edge cycle if a ready is not returned by the processor
bus interface. The two idle T states are inserted to allow
compatibility with the tinling requirements of an exter·
nal 8259A interrupt controller.

Because the interrupt acknowledge cycles must be run
in slave mode, even for internally generated vectors,
and the integrated' controller presents an interrupt type
rather than a vector address, the interrupt response
time here is the same as if an externally vectored inter·
rupt was required, namely 55 CPU clocks.

6.5.3 EXTERNAL VECTORING

External interrupt vectoring occurs whenever the
80186 interrupt controller is placed in cascade mode,
special fully nested mode, or slave mode (and the inte·
grated controller is not enabled by the external master
interrupt controller). In this mode, the 80186 generates
two interrupt acknowledge cycles, reading the in·ter·
rupt type off the lower 8 bits of the address/data bus on
the second interrupt acknowledge cycle (see Figure 59).
This interrupt response is exactly the same as the 8086,
so that the 8259A interrupt controller can be used ex·
actly as it would in an 8086 system. Notice tliat

the two interrupt acknowledge cycles are LOCKED,
and that two idle T·states are always inserted between
the two interrupt acknowledge bus cycles, and that wait
states will be inserted in the interrupt acknowledge cy·
cle if a ready is not returned to the processor. Also
notice that the 80186 provides two interrupt acknowl·
edge signals, one for interrupts signaled by the INTO
line, and one for interrupts signaled, by the INTI line
(on the INT2/INTAO and INT3/INTAllines, respec­
tively). These two interrupt acknowledge signals are
mutually exclusive. Interrupt acknowledge status will
be driven on the status lines (SO-S2) when either
INT2/INTAO Or INT3/INTAI signal an interrupt ac­
knowledge.

6.5.4 EFFECT OF LOCK PREFIX ON
INTERRUPT ACKNOWLEDGE CYCLES

When the interrupt controller is operating in either the
, cascade or slave modes and an interrupt occurs during
an instruction that has been LOCKED by software, the
LOCK signal timing shown in Figures 58 and 59 may
be aItered. Some peripheral devices used with the 80186
require contiguous INT A cycles to allow correct inter·
rupt controller response. In such cases, the external cir·
cuitry in Figure 60 should be used to ensure that DMA
or HOLD requests are blocked-from "stealing" the bus
during INTA cycles.

6.6 Interrupt Controller External
Connections

The four interrupt signals Can be programmably config·
ured into 3 major options. These are direct interrupt
inputs (with the integrated controller providing the in·
terrupt vector)" cascaded (with an external interrupt

22-286

AP-186

OROO, ORal
OR HOLD

80186

sot---tOO
51 01

Ot.4A OR HOLD REOUEST

OOt--"O-....
01

52 02 a2~----c~-'

745373
ALE G

210973-Al

Figure 60. Circuit Blocking DMA or HOLD Request Between INTA Cycles

controller providing the interrupt vector), or slave
mode. In all these modes, any interrupt presented to the
external lines must remain set until the interrupt is ac­
knowledged.

6.6.1 DIRECT INPUT MODE

When the Cascade mode bits are cleared, the interrupt
input lines are configured as direct interrupt input lines
(see Figure 61). In this mode an interrupt source (e.g.,
an 8272 floppy disk controller) may be directly con­
nected to the interrupt input line. Whenever aJ;! inter­
rupt is received on the input line, the integrated con­
troller will do nothing unless the interrupt is enabled,
and it is the highest priority pending interrupt. At this
time, the interrupt controller will present the interrupt
to the CPU and wait for an interrupt acknowledge.
When the acknowledge occurs, it will present the interc
rupt vector address to the CPU. In this mode, the CPU
will not run any interrupt acknowledge cyCles.

INTERRUPT

SOURCES

.

80186

INTO

INT1

INT2

INT3

210973-68

Figure 61. 80186 Non-Cascaded Interrupt
Connection

These lines can be individually programmed in either
edge or level triggered mode using their respective con­
trol registers. In edge triggered mode, a low-to.high
transition must occur before the interrupt will be gener­
ated to the CPU, while in level triggered mode, only a
high level must be present on the input for an interrupt
to be generated. In edge trigger mode, the interrupt
input must also be low for at least 1 CPU clock cycle to
insure recognition. In both modes, the interrupt input
must remain active until acknowledged~

6.6.2 CASCADE MODE

When the Cascade mode bit is set and the SFNM bit is
cleared, the interrupt input lines are configured in cas­
cade mode. In this mode, the interrupt input line is
paired with 'an interrupt acknowledge line. The INT2/
INTAO and INT3/INTAllines are dual purpose; they
can function as direct input lines, or' they can function
as interrupt acknowledge outputs. INT2/INT AO pro­
vides the interrupt acknowledge for an INTO input, and
INT3/INTAI provides the interrupt acknowledge for
an INTI input. Figure 62 shows this connection.

When programmed in this mode, in response to an in­
terrupt request on the INTO line, the 80186 will provide
two interrupt acknowledge pulses. These pulses will be
provided on the INT2/INTAO line, and will also be
reflected by interrupt acknowledge status being gener-'
ated on the SO-S2 status lines. On the second pulse, the
interrupt type will be read in. The. 80186 externally vec­
tored interrupt response is covered in more detail in
Section 6.5,

22-287

AP-186

8259A 80186

INT INTO

INTA IRm

8259A

INT INT1

INTA INTA1

210973-69

Figure 62. 80186 Cascade and Special Fully
Nested Mode Interface

INTO/INT2/INTAO and INTl/INT3/INTAI may be
individually programmed into interrupt request/ac­
knowledge pairs, or programmed as direct inputs. This
means that INTO/INT2/INTAO may be programmed
as an interrupt/acknowledge pair, while INTI and
INT3/INTAI each provide separate internally vec­
tored interrupt inputs.

When an interrupt is received on a cascaded interrupt,
the priority mask bits and the in-service bits in the par­
ticular interrupt control register will be set into the in­
terrupt controller's mask and priority mask registers.
This will prevent the controller from generating an
80186 CPU interrupt request from a lower priority in­
terrupt. Also, since the in-service bit is set, any subse­
quent interrupt requests on the particulur i .. tcu-upt i .. -
put line will not cause the. integrated interrupt control­
ler to generate an interrupt request to the 80186 CPU.
This means that if the external interrupt controller re­
ceives a higher priority interrupt request on one of its
interrupt request lines and presents it to the 80186 in­
terrupt request line, it will not subsequently be present­
ed to the 80186 CPU by the integrated interrupt con­
troller until the in-service bit for the interrupt line has
been cleared.

6.6.3 SPECIAL FULLY.NESTED MODE

When both the Cascade mode bit and the SFNM bit are
set, the interrupt input lines are configured in Special
Fully Nested Mode. The external interface in this mode
is exactly as in Cascade Mode. The only difference is in
the conditions allowing an interrupt from the external
interrupt controller to the integrated interrupt control­
ler to interrupt the 80186 CPU.

When an interrupt is received from a special fully nest­
ed mode interrupt iine, it will interrupt the 80186 CPU
if it is the highest priority interrupt pending regardless
of the state of the in-service bit for the interrupt source
in the interrupt controller. When an interrupt is ac-

knowledged from a special fully nested mode interrupt
line, the priority mask bits and the in-service bits in the
particular interrupt control register will be set into the
interrupt controller's in-service and priority mask regis­
ters. This will prevent the interrupt controller from
generating an 80186 CPU interrupt request from a low­
er priority interrupt. Unlike cascade mode, however,
the interrupt controller will not prevent additional in­
terrupt requests generated by the same external inter­
rupt controller from interrupting the 80186 CPU. This
means that if the external (cascaded) interrupt control­
ler receives a higher priority interrupt request on one of
its interrupt request lines and presents it to the integrat­
ed controller's interrupt request line, it may cause an
interrupt to be generated to the 80186 CPU, regardless
of the state of the in-service bit for the interrupt line.

If the SFNM mode bit is set and the Cascade mode bit
is not also set, the controller will provide internal inter­
rupt vectoring. It will also ignore the state of the in­
service bit in determining whether to present an inter­
rupt request to the CPU. In other words, it will use the
SFNM conditions ofinterrupt generation with an inter­
nally vectored interrupt response, i.e., if the interrupt
pending is the highest priority type pending,· it will
cause a CPU interrupt regardless of the state of the in­
service bit for the interrupt.

6.6.4 SLAVE MODE

When the SLAVE/MASTER bit in the peripheral relo-
",0+''''" '1"0::.0.,"0-+,:0.,. 1c.> C!~t t'h.:o ;nt.:. 111"t.+ '''.,,+.,.'''110li0,. ;C! '''0li0+ ;"+1'\ -_, -0 _ _'"" - a..o. _ -t" .. _ _ _

slave mode. In this mode, all four interrupt controller
input lines are used to perform the necessary handshak­
ing with the external master interrupt controller. Fig­
ure 63 shows the hardware configuration of the 80186
interrupt lines with an external controller in slave
mode.

80188 8259A
INTO INT

:-
1NT2 INTA

~>
CASCADE

INT1 ADDR.
DECODE

1NT3

210973-70

Figure 63. 80186 Slave Mode Interface

22-288

Ap·186

Because the integrated interrupt controller is a slave
controller, it must be able to generate an interrupt input
for an external interrupt controller. It also must be sig­
naled when it has the highest priority pending interrupt
to know when to place its interrupt vector on the bus.
These two signals are provided by the INT3/Slave In­
terrupt Output and INTI/Slave Select lines, respective­
ly. The external master interrupt controller must be
able to interrupt the 80186 CPU, and needs to know
when the interrupt request is acknowledged. The INTO
and INT2/INT AO lines provide these two functions.

6.7 Example 8259A/Cascade Mode
Interface

Figure 64 shows the 80186 and 8259A in cascade inter­
rupt mode. The code to initialize the 80186 interrupt
controller is given in Appendix E. Notice that an "in-

80188
..r-' AROY

INTO

INT2

INTl

INT3

ADO·A07

AD

WR

PCSA

terrupt ready" signal must be returned to the 80186 to
prevent the generation of wait states in response to the
interrupt acknowledge cycles. In this configuration the
INTO and INT2 lines are used as direct interrupt input
lines. Thus, this configuration provides 10 external in­
terrupt lines: 2 provided by the 80186 interrupt control­
ler itself, and 8 from the external 8259A. Also, the
8259A is configured as a master interrupt controller. It
will only receive interrupt acknowledge pulses in re­
sponse to an interrupt it has generated. It may be cas­
caded again to up to 8 additional 8259As (each of
which would be configured in slave mode).

6.8 Interrupt Latency

Interrupt latency time is the time from when the 80186
receives the interrupt to the time it begins to respond to
the interrupt. This is different from interrupt response

OTHERARO Y

8259A·2

10

EXTERNAL

INTERRUPTS

INT /
8/

INTA

00·07

AD Lf WR SP
cs

t
210973-71

Figure 64. 80186/8259A Interrupt Cascading

22-289

AP-186

time, which is the time from when the processor actual­
ly begins processing the interrupt to when it actually
executes the first instruction of the, interrupt service
routine. The factors affecting interrupt latency are the
intstruction being executed and the state of the inter­
rupt enable flip-flop.

Interrupts will be acknowledged only if the interrupt
enable flip-flop in the CPU is set. Thus, interrupt laten­
cy will be very 100ig indeed if interrupts are never en­
abled by the processor!

When interrupts are enabled in the CPU, the interrupt
latency is a function of the instructions being executed.
Only repeated instructions will be interrupted before
being completed, and those only between their respec­
tive iterations. This means that the interrupt latency
time could be as long as 69 CPU clocks, which is the
time it takes the processor to execute an integer divide
instruction (with a segment override prefix, see below),
the longest single instruction on the,80186.

Other factors can affect interrupt latency. An interrupt
will not be accepted between the execution of a prefix
(such as segment override prefixes and lock prefixes)
and the instruction. In addition, an interrupt will not be
accepted between an instruction which modifies any of
the segment registers and the instruction immediately
following the instruction. This is required to allow the
stack to be changed. If the interrupt were accepted, the
return address from the interrupt would be placed on a
stack which was not valid (the Stack Segment register
would have been modified but the Stack Pointer regis­
ter would not have been). Finally, an interrupt will not
be accepted between the execution of the WAIT in­
struction and the instruction immediately following it if
the TEST input is active. If the WAIT sees the TEST
input inactive, however, the interrupt will be accepted,
and the WAIT will be re-executed lifter the interrupt
return. This is required, since the WAIT is used to pre­
vent execution by the 80186 of an 8087 instruction
while the 8087 is busy.

x,
x,

7.0 CLOCK GENERATOR

The 80186 includes a clock generator which generates
the main clock signal for all 80186 integrated compo­
nents,and all CPU synchronous devices in the 80186
system. This clock generator includes a crystal oscilla­
tor, divide by two counter, reset circuitry, and ready
generation logic. A block diagram of the clock genera­
tor is shown in Figure 65.

7.1 Crystal Oscillator

The 80186 crystal oscillator is a parallel resonant,
Pierce oscillator. It was designed to be used as shown in
Figure 66. The capacitor values shown are approxi­
mate. As the crystal frequency drops, they should be
increased, so that at the 4 MHz minimum crystal fre­
quency supported by the 80186 they take on a value of
30 pF. The output of this oscillator is not directly avail­
able outside the 80186.

The following parameters may be used for choosing a
crystal:

Temperature Range:
ESR (Equivalent Series Resistance):
Co (Shunt Capacitance of Crystal):
CI (Load Capacitance):
Drive Level:

80186

x,~----~------~

Ot070°C
30nmax

7.0 pF max
20pF ±2pF

ImWmax

c::::::J I 20pF

x, r-----~

210973-73

Figure 66. 80186 Crystal Connection

CPU CLOCK &

CLOCKOUT

ARDY--------------~~~~~_,
SRDY---------------r-1~::~:J

CPU
READY

~--------------+-~
CPU RESET

&

RESET OUTPUT

Figure 65_ 80186 Clock Generator Block Diagram

22-290

210973-74

inter Ap·186

EFI

CLKOUT

210973-75

Figure 67. 80186 Clock Generator Reset

7.2 Using an External Oscillator

An external oscillator may be used with the 80186. The
external frequency input (EFI) signal is connected di~
reedy to the Xl input of the oscillator. X2 should be
left open. This oscillator input is used to drive an inter­
nal divide-by-two counter to generate the CPU clock
signal, so the external frequency input can be of practi­
cally any duty cycle, so long as the minimum high and
low times for the signal (as stated in the data sheet) are
met.

7.3 Clock Generator

The output of the crystal oscillator (or the external fre­
quency input) drives a divide by two circuit which gen­
erates a 50% duty cycle clock for the 80186 system. All
80186 timing is referenced to this signal, which is avail­
able on the CLKOUT pin of the 80186. This signal will
change state on the high-to-Iow transition of the EFI
signal.

7.4 Ready Generation

The clock generator also includes the circuitry required
for ready generation. Interfacing to the SRDY and
ARDY inputs this provides is covered in Section 3.1.6.

7.5 Reset

The 80186 clock generator also provides a synchroniz­
ed reset signal for the system. This signal is generated
from the reset input (RES) to the 80186. The clock
generator synchronizes this signal to the clockout sig­
nal.

The reset input signal also resets the divide-by-two
counter. A one clock cycle internal clear pulse is gener­
ated when the RES input signal fIrSt goes active. This
clear pulse goes active beginning on the first low-to­
high transition of the Xl input after RES goes active,
and goes inactive on the next low-to-high transition of
the Xl input. In order to insure that the clear pulse is
generated on the next EFI cycle, the RES input signal
must satisfy a 25 ns setup time to the high-to-Iow EFI
input signal (see Figure 67). During this clear, clockout

will be high. On the next high-to-low transition of Xl,
clockout will go low, and will change state on every
subsequent high-to-low transition of EFI.

The reset signal presented to the rest of the 80 i 86, and
also the signal present on the RESET output pin of the
80186 is synchronized by the high-to-Iow transition of
the clockout signal of the 80186. This signal remains
active as long as the RES input also remains active.
After the RES input goes inactive, the 80186 will begin
to fetch its first instruction (at memory location
FFFFOH) after 6 1/2 CPU clock cycles (i.e., Tl of the
first instruction fetch will occur 6 1/2 clock cycles lat­
er). To insure that the RESET ouput will go inactive on
the next CPU clock cycle, the inactive going edge of the
RES input must satisfy certain hold and setup times to
the low-to-high edge of the clockout signal of the 80186
(see Figure 68).

~~~ 
RES-___ ..J 

RESET -----------.\"' __ _ 

, 210973-76 

Figure 68. 80186 Coming out of Reset 

8.0 CHIP SELECTS 

The 80186 includes a chip sc:lect unit which generates 
hardware chip select signals for memory and I/O ac­
cesses generated by the 80186 CPU and DMA units. 
This unit is programmable such that it can be used to 
fulfill the chip select requirements (in terms of memory 
device or bank size and speed) of most small and medi­
um sized 80186 systems. 

The chip selects are driven only for internally generated 
bus cycles. Any cycles generated by an external unit 
(e.g., an external DMA controller) will not cause the 
chip selects to go active. Thus, any external bus masters 
must be responsible for their own chip select genera­
tion. Also, during a bus HOLD, the 80186 does not 

22-291 



inter Ap·186 

80186CHIPSELECT~ MEMORY or I/O 

'"EX"'TE""'R"NAAoL"Lvy"G""EN"'E"'R"A"":r""ED""'CH"'I"P"'SE"'L""E"'C"'T ~ DEVICE CHIP SELECT 
210973-77 

Figure 69. 80186/External Chip Select/Device Chip Select Generation 

float the chip select lines. Therefore, logic must be in­
cluded to enable the devices which the external bus 
master wishes to access (see Figure 69). 

8.1 Memory Chip Selects 

The 80186 provides six discrete chip select lines which 
are meant to be connected to memory components in 
an 80186 system. These signals are named UCS, LCS, 
and MCSO-3 for Upper Memory Chip Select, Lower 
Memory· Chip Select and Midrange Memory Chip Se­
lect 0-3. They are meant (but not limited) to be con­
nected to the three major .areas of the 80186 system 
memory (see Figure 70). 

MCS3 { 

MCS2 { 

MCSl { 

~{ 

FFFFF 

STARTUP 

ROM 

---
PROGRAM 

MEMORY 
---

---

INTERRUPT 

VECTOR 

TABLE 
0 

210973-78 

Figure 70. 80186 Memory Areas & Chip Selects 

As could be guessed by their names, upper memory, 
lower memory, and mid-range memory chip selects are 
designed to address upper, lower, and middle. areas of 
memory in an 80186 s~m. The upper limit of UCS 
and the lower limit of LCS are fixed at FFFFFH and 
OOOOOH in memory space, respectively. The other limit 
of these is set by the memory size programmed into the 
control register for the chip select line. Mid-range 
memory allows both the base address and the block size 
of the memory area to be programmed. The only limi­
tation is that the base address must be programmed to 
be an integer multiple of the total block size. For exam-

pie, if the block size was 128K bytes (4 32K byte 
chunks) the base address could be 0 or 20000H, but not 
lOOOOH. 

The memory chip selects are controlled by 4 registers in 
the peripheral control block ~ Figure 71). These in­
clude 1 each for UCS and LCS, the. values of which 
determine the size of the memory blocks addressed by 
these two lines. The other two registers are used to 
control the size and base address of the mid-range 
memory block. 

On reset, only UCS is active. It is programmed by reset 
to be active for the top lK memory block, to insert 3 
wait states to all memory fetches, and to factor external 
ready for every memory fetch (see Section 8.3 for more 
information on internal ready generation). All other 
chip select registers assume indeterminate states after 
reset, but none of the other chip select lines will be 
active until all necessary registers for a signal have been 
accessed (not necessarily written, a read to an uninitial­
ized register will enable· the chip select function con­
trolled by that register). 

8.2 Peripheral Chip Selects 

The 80186 provides seven discrete chip select lines 
which are meant to be connected to peripheral compo­
nents in an 80186 system. These signals are named 
PCSO-6. Each of these lines is active for one of seven 
continuous 128 byte areas in memory or I/O space 
above a programmed base address. 

The peripheral chip selects are controlled by two regis­
ters in the internal peripheral control block (see Figure 
71). These registers allow the base address of the pe­
ripherals to be set, and allow the peripherals to be 
mapped into memory or I/O space. Both of these regis­
ters must be accessed before any of the peripheral chip 
selects will become active. 

A bit in the MPCS register allows PCS5 arid PCS6 to 
become latched Al and A2 outputs. When this option 
is selected, PCS5 and PCS6 will reflect the state of Al 
and A2 throughout a bus cycle. These are provided to 
allow external peripheral register selection in a system 
in which the addresses are not latched. Upon reset, 
these lines are driven high. They will only reflect Al 
and A2 after both P ACS and MPCS have been ac­
cesssed (and are programmed to provide Al and A2!). 

22-292 



AP-186 

OFFSET: 

AOH UPPER MEMORY SIZE CD UMCS 

A2H LOWER MEMORY SIZE CD LMCS 

A4H 

A6H 

PERIPHERAL CHIP SELECT BASE ADDRESS CD PACS 

MMCS 

MPCS 

MID·RANGE MEMORY BASE ADDRESS CD 
A8H MID·RANGE MEMORY SIZE I ~ I ~ I (5) 

NOTES: 
1. Upper memory ready bits 
2. Lower memory ready bits 
3. PCSO-PCS3 ready bits 
4. Mid·range memory ready bits 
5. PCS4-PCS6 ready bits 
6. MS: 1 = Peripherals active in memory space 

o = Peripherals active in 1/0 space 
EX:1 = 7 PCS lines 
0= PCS5 = A1, PCS6 = A2 

Not all bits of every field are used 

CD 
210973-79 

Figure 71. 80186 Chip Select Control Registers 

8.3 Ready Generation 

The 80186 includes a ready generation unit. This unit 
generates an internal ready signal for all accesses to 
memory or I/O areas to which the chip select circuitry 
of the 80186 responds. 

For each ready generation area, 0-3 wait states may be 
inserted by the internal unit. Table 6 shows how the 
ready control bits should be programmed to provide 
this. In addition, the ready generation circuit may be 
programmed to ignore the state of the external ready 
(i.e., only the internal ready circuit will be used) or to 
factor the state of the external ready (i.e., a ready will 
be returned to the processor only after both the internal 
ready circuit has gone ready and the external ready has 
gone ready). Some kind of circuit must be included to 
generate an external ready, however, since upon reset 
the ready generator is programmed to factor external 
ready to all accesses to the top 1 K byte memory block. 
If a ready was not returned on one of the external ready 
lines (ARDY or SRDy) the processor would wait for· 
ever to fetch its first instruction. 

Table 6. 80186 Wait State Programming 

R2 R1 RO Number of Wait States 

0 0 0 o + external ready 
0 0 1 1 + external ready 
0 1 0 2 + external ready 
0 1 1 3 + external ready 
1 0 0 o (no external ready required) 
1 0 1 1 (no external ready required) 
1 1 0 2 (no external ready required) 
1 1 1 3 (no external ready required) 

8.4 Examples of Chip Select Usage 

Many examples of the use of the chip select lines are 
given in the bus interface section of this note (Section 
3.2). These examples show how simple it is to use the 
chip select function provided by the 80186. The key 
point to remember when using the chip select·function 
is that they are only activated during bus cycles gener­
ated by the 80186 CPU or DMA units. When another 
master has the bus, it must generate its own chip select 
function. In addition, whenever the bus is given by the 
80186 to an external master (through the HOLD/ 
HLDA arrangement) the 80186 does NOT float the 
chip select lines. 

8.5 Overlapping Chip Select Areas 

Generally, the chip selects of the 80186 should not be 
programmed such that any two areas overlap. In addi­
tion, none of the programmed chip select areas should 
overlap any of the locations of the integrated 256-byte 
control register block. The consequences of doing this 
are: 

Whenever two chip select lines are programmed to re­
spond to the same area, both will be activated during 
any access to that area. When this is done, the ready 
bits for both areas must be programmed to the same 
value. If this is not done, the processor response to an 
access in this area is indeterminate. This rule also ap­
plies to overlapping chip selects with the integrated 
control block. 

22-293 



inter AP-186 

If any of the chip select areas overlap the integrated 
256-byte control block, the timing on the chip select 
line is altered. An access to the control block will tem­
porarily activate the corresponding chip select pin, but 
it will go inactive prematurely. 

9.0 SOFTWARE IN AN 80186 SYSTEM 

Since the 80186 is object code compatible with the 8086 
and 8088, the software in an 80186 system is very simi­
lar to that in an 8086 system. Because of the hardware 
chip select functions, however, a certain amount of ini­
tialization code must be included when using those 
functions on the 80186. 

9.1 System Initialization in an 
80186 System 

Most programmable components of a computer system 
must be initialized before they are used. This is also 
true for the 80186. The 80186 includes circuitry which 
directly, affects the ability of the system to address 
memory and I/O devices, namely the chip select cir­
cuitry. This circuitry must be initialized before the 
memory areas and peripheral devices addressed by the 
chip select signals are used. 

Upon reset, the UMCS register is programmed to be 
active for all memory fetches within the top IK byte of 
memory space. It is also programmed to insert three 
wait states to all memory accesses within this space. If 
the hardware chip selects are used, they must be pro­
grammed before the processor leaves this lK byte area 
of memory. If a jump to an area for which the chips are 
not selected occurs, the microcomputer system will 
cease to operate (since the processor will fetch garbage 
from the data bus). Appendix F shows a typical initiali­
zation sequence for the 80186 chip select unit. 

Once the chip selects have been properly initialized, the 
rest of the 80186 system may be initialized much like an 
8086 system. For example, the interrupt vector table 
might get set up, the interrupt controller initialized, a 
serial I/O channel initialized, and the main program 
begun. Note that the integrated peripherals included in 
the 80186 do not share the same programming model 
as the standard Intel peripherals used to implement 
these functions in a typical 8086 system, i.e. different 
values must be programmed into different registers to 
achieve the same function using the integrated periph­
erals. Appendix F shows a typical initialization se­
quence for an interrupt driven system using the 80186 
interrupt controller. 

9.2 Instruction Execution Differences 
between the 8086 and 80186 

There are a few instruction execution differences be­
tween the 8086 and the 80186. These differences are: 

UNDEFINED OPCODES: 

When the opcodes 63H, 64H, 65H, 66H, 67H, FIH, 
FEH XXI llXXXB and FFH XXIIIXXXB are exe­
cuted, the 80186 will execute an illegal instruction ex­
ception, interrupt type 6. The 8086 will ignore the op­
code. 

OFH OPCODE: 

When the opcode OFH is encountered, the 8086 will 
execute a POP CS, while the 80186 will excecute an 
illegal instruction exception, interrupt type 6. 

WORD WRITE AT OFFSET FFFFH: 

When a word write is performed at offset FFFFH in a 
segment, the 8086 will write one byte at offset FFFFH, 
and the other at offset 0, while the 80186 will write one 
byte at offset FFFFH, and the other at offset l0000H 
(one byte beyond the end of the segment). One byte 
segment underflow will also occur (on the 80186) if a 
stack PUSH is executed and the Stack Pointer contains 
the value 1. 

SHIFT/ROTATE BY VALUE GREATER .THAN 31: 

Before the 80186 performs a shift or rotate by a value 
(either in the CL register, or by an immediate value) it 
ANDs the value with IFH, limiting the number of bits 
rotated to less than 32. The 8086 does not do this. 

LOCK PREFIX: 

The 8086 activates its LOCK signal immediately after 
executing the LOCK prefix. The 80186 does not acti­
vate the LOCK signal until the processor is ready to 
begin the data cycles associated with the LOCKed in­
struction. 

NOTE: 
When executing more than one LOCKed instruction, 
always make sure there are 6 bytes of code between 
the end of the first LOCKed instruction and the start 
of the second LOCKed instruction. 

22-294 



AP-186 

INTERRUPTED STRING MOVE INSTRUCTIONS: 

If an 8086 is interrupted during the execution of a re­
peated string move instruction, the return value it will 
push on the stack will point to the last prefix instruc­
tion before the string move instruction. If the instruc­
tion had more than one prefix (e.g., a segment override 
prefix in addition to the repeat prefix), it will not be re­
executed upon returning from the interrupt. The 80186 
will push the value of the first prefix to the repeated 
instruction, so long as prefixes are not repeated, allow­
ing the string instruction to properly resume. 

CONDITIONS CAUSING DIVIDE ERROR WITH 
AN INTEGER DIVIDE: 

The 8086 will cause a divide error whenever the abso­
lute value of the. quotient is greater than 7FFFH (for 
word operations) or if the absolute value of the quotient 
is greater than 7FH (for byte operations). The 80186 
has expanded the range of negative numbers allowed as 

. a quotient by 1 to include 8000H and 80H. These num­
bers represent the most negative numbers representable 
using 2's complement arithmetic (equaling - 32768 and 
-128 in decimal, respectively). 

ESC OPCODE: 

The 80186 may be programmed to cause an interrupt 
type 7 whenever an ESCape instruction (used for co­
processors like the 8087) is executed. The 8086 has no 
such provision. Before the 80186 performs this trap, it 
must be programmed to do so. 

These differences can be used to determine whether the 
program is being executed on an 8086 or an 80186. 
Probably the safest execution difference to use for this 
purpose is the difference in multiple bit shifts. For ex­
ample, if a multiple bit shift is programmed where the 
shift count (stored in the CL register!) is 33, the 8086 
will shift the value 33 bits, whereas the 80186 will shift 
it only a single bit. 

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language program­
ming of the processor, and enhance the performance of 
higher level languages running on the processor. These 
new instructions are covered in depth in the 
8086/80186 users manual and in Appendix H of this 
note. 

10.0 CONCLUSIONS 

The 80186 is a glittering example of state-of-the-art in­
tegrated circuit technology applied to make the job of 
the microprocessor system designer simpler and faster. 
Because many of the required peripherals and their in­
terfaces have been cast in silicon, and because of the 
timing and drive latitudes provided by the part, the 
designer is free to concentrate on other issues of system 
design. As a result, systems designed around the 80186 
allow applications where no other proceSSOr has been 
able to provide the necessary performance at a compa­
rable size or cost. 

22-295 



AP-186 

APPENDIX A 
PERIPHERAL CONTROL BLOCK 

All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained 
within an integrated peripheral control block. The reg­
isters are physically located within the peripheral devic­
es they control, but are addressed as a single block of 
registers. This set of registers encompasses 256 contigu­
ous bytes and can be located on any 256 byte boundary 
of the 80186 memory or I/O space. A map of these 
registers is shown in Figure A-I; any unused bytes are 
reserved. 

A.1 SETTING THE BASE LOCATION 
OF THE PERIPHERAL CONTROL 
BLOCK 

In addition to the control registers for each of the inte­
grated 80186 peripheral devices, the peripheral control 

block contains the peripheral control block relocation 
register. This register allows the peripheral control 
block to be re-Iocated on any 256 byte boundary within 
the processor's memory or I/O space. Figure A-2 
shows the layout of this register. 

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the 
peripheral control block, any time the location of the 
peripheral control block is moved, the location of the 
relocation registers will also move. 

In addition to the peripheral control. block relocation 
information, the relocation register contains two addi­
tional bits. One is used to set the interrupt controller 
into slave mode. The other is used to force the proces­
sor to trap whenever an ESCape (coprocessor) instruc­
tion is I;:ncountered. 

OFFSET 

Relocation Register FEH 

DMA Descriptor. Channe" 1 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

, 

DAH 

DOH 

CAH 

COH 

ASH 

AOH 

&8H 

SOH 
5EH 

58H 
58H 

50H 

3EH 

20H 

210973-81 

Figure A·1. 80186 Integrated Peripheral Control Block 
22-296 



inter AP-186 

11 10 6 o 
OFFSET: FEH Relocation Address Blls R19-R8 L-~ __________ ~~~ ____________________________________________________________ ~ 

NOTES: 
ET = ESC Trap / No ESC Trap (1/0) 
M/IO = Register Block Located in Memory / I/O Space (1/0) 
SLAVE/MASTER = Masterlnterrupt Controller Mode / Slave 

Interrupt Controller Mode (0/1) 

210973-82 

Figure A-2. 80186 Relocation Register Layout 

Because the relocation register is contained within the 
peripheral control block, upon reset the relocation reg­
ister is automatically programmed with the value 
20 FFH. This means that the peripheral control block 
will be located at the very top (FFOOH to FFFFH) of 
I/O space. Thus, after reset the relocation register will 
be located at word location FFFEH in I/O space. 

If the user wished to locate the peripheral control block 
starting at memory location 10000H he would program 
the peripheral control register with the value l100H. 
By doing this, he would move all registers within the 
integrated peripheral control block to memory loca­
tions 10000H to 100FFH. Note that since the reloca­
tion register is contained within the peripheral control 
block, it too would move to word location 100FEH in 
memory space. 

Whenever mapping the 188 peripheral control block to 
another location, the programming of the relocation 
register should be done with a byte write (i.e., OUT 
DX,AL). Any access to the control block is done 16 
bits at a time. Thus, internally, the relocation register 
will get written with 16 bits of the AX register while 
externally, the BIU will run only one 8 bit bus cycle. If 
a word instruction is used (i.e., OUT DX,AX), the relo­
cation register will be written on the first bus cycle. The 
BIU will then run a second bus cycle which is unneces­
sary. The address of the second bus cycle will no longer 
be within the control block (i.e., the control block was 
moved on the first cycle), and therefore, will require the 
generation of an external ready signal to complete the 
cycle. For this reason we recommend byte operations to 
the relocation register. Byte instructions may also be 
used for the other registers in the control block and will 
eliminate half of the bus cycles required if a word oper­
ation had been specified. Byte operations are only valid 
on even addresses though, and are undefined on odd 
addresses. 

A.2 Peripheral Control Block 
Registers 

Each of the integrated peripherals' control and status 
registers are located at a fixed location above the pro­
grammed base location of the peripheral control block. 
There are many locations within the peripheral control 
block which are not assigned to any peripheral. If a 
write is made to any of these locations, the bus cycle 
will be run, but the value will not be stored in any 
internal location. This means that if a subsequent read 
is made to the same location, the value written will not 
be read back. 

The processor will run an external bus cycle for any 
memory or I/O cycle which accesses a location within 
the integrated control block. This means that the ad­
dress, data, and control information will be driven on 
the 80186 external pins just as if a "normal" bus cycle 
had been run. Any information returned by an external 
device will be ignored, however, even if the access was 
to a location which does not correspond to any of the 
integrated peripheral control registers. The above is 
also true for the 80188, except that the word access 
made to the integrated registers will be performed in a 
single bus cycle internally, while externally, the BIU 
runs two bus cycles. 

The processor internally generates a ready signal when­
ever any of the integrated peripherals are accessed; thus 
any external ready signals are ignored whenever an ac­
cess is made to any location within the integrated pe­
ripheral register control block. This ready will also be 
returned if an access is made to a location within the 
256 byte area of the peripheral control block which 
does not correspond to any integrated peripheral con­
trol register. The processor will insert 0 wait states to 
any access within the integrated peripheral control 
block except for accesses to the timer registers. ANY 
access to the timer control and counting registers will 
incur 1 wait state. This wait state is required to proper­
ly multiplex processor and counter element accesses to 
the timer control registers. 

22-297 



AP-186 

All accesses made to the integrated peripheral control 
block will be WORD accesses. Any write to the inte­
grated registers will modify all 16 bits of the register, 
whether the opcode specified a byte write or a word 
write. A byte read from an even location should cause 
no problems, but the data returned when a byte read is 
performed from an odd address within the peripheral 
control block is undefined. This is true both for the 

80186 AND the 80188. As stated above, even though 
the 80188 has an external 8 bit data bus, internally it is 
still a 16 bit machine. Thus, the word accesses per­
formed to the integrated registers by the 80188 will 
each occur in a single bus cycle internally while exter­
nally the BIU runs two bus cycles. The DMA control­
ler must not be used for.either read or write accesses to 
the peripheral control block. 

22-298 



AP-186 

APPENDIX B 
80186 SYNCHRONIZATION INFORMATION 

Many input signals to the 80186 are asynchronous, that 
is, a specified set up or hold time is not required to 
insure proper functioning of the device. Associated 
with each of these inputs is a synchronizer which sam­
ples this external asynchronous signal, and synchroniz­
es it to the internal 80186 clock. 

B.1 WHY SYNCHRONIZERS ARE 
REQUIRED 

Every data latch requires a certain set up and hold time 
in order to operate properly. At a certain window with­
in the specified set up and hold time, the part will actu­
ally try to latch the data. If the input makes a transition 
within this window, the output will not attain a stable 
state within the given output delay time. The size of 
this sampling window is typically much smaller than 
the actual window specified by the data sheet, however 
part to part variation could move this window around 
within the specified window in the data sheet. 

Even if the input to a data latch makes a transition 
while a data latch is attempting to latch this input, the 
output of the latch will attain a stable state after a cer­
tain amount of time, typically much longer than the 
normal strobe to output delay time. Figure B-1 shows a 
normal input to output strobed transition and one in 
which the input signal makes a transition during the 
latch's sample window. In order to synchronize an 
asynchronous signal, all one needs to do is to sample 
the signal into one data latch, wait a certain amount of 
time, then latch it into a second data latch. Since the 
time between the strobe into the first data latch and the 
strobe into the second data latch allows the first data 
latch to attain a steady state (or to resolve the asyn­
chronous signal), the second data latch will be present­
ed with an input signal which satisfies any set up and 
hold time requirements it may have. 

Thus, the output of this second latch is a synchronous 
signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer 
fails to resolve the asynchronous transition within the 

STROBE I 
INPUT --~S::E=T-7:UP~T::IM:::E-!·HOLDTIME 

rrl 
I 

ACTUAL SAMPLING INSTANT 

Ilel INVALID ~ 

INPUT ------' ~ 

RESPONSE ------1. RESOLUTION TIME 1 

VALID -.-J 
INPUT 

RESPONSE ______ -..11 
210973-83 

Figure 8-1. Valid and Invalid Latch Input 
Transitions and Responses 

time between the two latch's strobe signals. The rate of 
failure is determined by the actual size of the sampling 
window of the data latch, and by the amount of time 
between the strobe signals of the two latches. Obvious­
ly, as the sampling window gets smaller, the number of 
times an asynchronous transition will occur during the 
sampling window will drop. In addition, however, a 
smaller sampling window is also indicative of a faster 
resolution time for an input transition which manages 
to fall within the sampling window. 

B.2 80186 SYNCHRONIZERS 

The 80186 contains synchronizers on the RES, TEST, 
TmrInO-I, DRQO-I, NMI, INTO-3, ARDY, and 
HOLD input lines. Each of these synchronizers use the 
two stage synchronization technique described above 
(with some minor modifications for the ARDY line, see 
section 3.1.6). The sampling window of the latches is 
designed to be in the tens of pico-seconds, and should 
allow operation of the synchronizers with a mean time 
between failures of over 30 years assuming continuous 
operation. 

22-299 



inter AP-186 

APPENDIX C 
80186 EXAMPLE DMA INTERFACE CODE 

Smodl86 
name assembly_example.80 I 86_D MA.support 

This file contains an example procedure which initializes the 80186 DMA 
controller to perform the DMA transfers between the 80186 system and the 
8272 Floppy Disk Controller (FDC). It assumes that the 80186 
Peripheral control block has not been moved from its reset location. 

8~1 ~u 
arg2 equ 
arg3 equ 
DMA.FROM_LOWER equ 
DMA.FROM_UPPER equ 
DMA.TO_LOWER equ 
DMA. TO_UPPER equ 
DMA.COUNT equ 
DMA.CONTROL equ 
DMA.TO_DISK.CONTROL equ 

DMA.FROM_DISK.CONTROLequ 

FDC_DMA equ 
FDC.DATA equ 
FDC.5TATUS equ 

cgroup group 

word ptr [BP + 4) 
word ptr [BP + 6) 
word ptr [BP + 8) 
OFFCOh 
OFFC2h 
OFFC4h 
OFFC6h 
OFFC8h 
OFFCAh 
01486h 

OA046h 

6B8h 
688h 
680h 

code 

DMA register locations 

destination synchronization 
source to memory, incremented 
destination to I/O 
no terminal count 
byte transfers 
source synchronization 
source to I/O 
destination to memory, incr 
no terminal count 
byte transfers 
FDC DMA address 
FDC data register 
FOC status register 

code segment public 'code' 
public seLdma.. 
assume cs:cgroup 

seLdma (offset,to) programs the DMA channel to point one side to the 

seLdmL 

disk DMA address, and the other to memory pointed to by ds:offset. If 
'to' = 0 then will be a transfer from disk to memorYi if 
'to' = 1 then will be a transfer from memory to disk. The parameters to 
the routine are passed on the stack. 

PfOC near 
enter 0,0 
push AX 
push BX 
push DX 
test ar,g2,1 

jz fro"'-disk 
performing a transfer from memory to the disk controller 

mov 
rol 

AX,DS 
AX,4 

22-300 

set stack addressability 
save registers used 

check to see direction of 
transfer 

get the segment value 
gen the upper 4 bilS of the 
physical address in the lower 4 
bits of the register 

210973-84 



AP-186 

mov BX,AX save the result ... 
mov OX,OMA.FROM.UPPER prgm the upper 4 bits or the 
out OX,AX DMA source register 
and AX,OFFFOh rorm the lower 16 bits or the 

physical address 
add AX,argl add the orrset 
mov OX,OMA.FROM.LOWER prgm the lower !6 bits or the 
out OX,AX DMA source register 
jne no.carry.from check for carry out of addition 
inc BX if carry out. then need to adj 
mov AX,BX the upper 4 bits of the pointer 
mov OX,OMA.FROM.UPPER 
out OX,AX 

no.carryJrom: 
mov AX,FOCOMA prgm the low 16 bits or the OMA 
mov OX,OMA.TO.LOWER destination register 
out OX,AX 
xor AX,AX zero the up 4 bits or the OMA 
mov OX,OMA. TO.UPPER destination register 
out OX,AX 
mov AX,OMA.TO.OISK.CONTROL; prgm the OMA ctl reg 
mov OX,OMA.CONTROL note: DMA may begin immcdiatly 
out OX,AX after this word is output 
pop OX 
pop BX 
pop AX 
leave 
ret 

frorn..disk: 

performing a transfer from the disk to memory 

mov AX,OS 
rol AX,4 
mov OX,OMA. TO.UPPER 
out OX,AX 
mov BX,AX 
and AX,OFFFOh 
add AX,arg! 
mov DX,OMA.TO.LOWER 
out OX,AX 
joe no.carry_to 
inc BX 
mov AX,BX 
mov OX,OMA.TO.UPPER 
out OX,AX 

mov AX,FDCOMA 

mov DX,OMA.FROM.LOWER 
out DX,AX 
xor AX,AX 
mov OX,OMA.FROM.UPPER 
out OX,AX 
mov AX,OMA.FROM.OISK.CONTROL 
mov OX,OMA.CONTROL 

210973-85 
out DX,AX 
pop OX 
pop BX 
pop AX 
leave 
ret 

seLdma. endp 

code ends 
end 

210973-86 

22-301 



inter AP-186 

APPENDIX D 
80186 EXAMPLE TIMER INTERFACE CODE 

Sm:odl86 
name example-SO 186.timer_code 

this file contains example 80186 timer routines. The first routine 

argl 
arg2 
arg3 
timer.2int 

sets up the timer and interrupt controller to cause the timer 
to gcnerate an interrupt every 10 milliseconds, and to service 
interrupt to implement a real time clock. Timer 2 is used in 
this example because no input or output signals are required. 
The code example assumes that the peripheral control block has 
not been moved from its reset location (FFOO-FFFf in I/O space). 

equ word ptr [BP + 4) 
equ word ptr [BP + 6) 
equ word ptr [BP + 8) 
equ 19 

timer.2control equ OFF66h 
timer.2max....ctl equ OFF62h 
timerJnLctl equ OFF32h 
eoLrcgistcr equ OFF22h 
interrupLstat equ OFF30h 

data segment 
public houf .• minute.,scconci.mscc-

mset- db ? 
hour_ db 
minutc_ db 
seconL db 
data ends 

cgroup group code 
dgroup group data 

code segment 
public scuimc. 
assume cs:code,ds:dgroup 

seLtime(hour.minute,second) sets the time variables, initializes the 
80186 timer2 to provide interrupts every 10 milliseconds, and 
programs the interrupt vector for timer 2 

seuime- proc near 
enter 0,0 
push AX 
push OX 
push SI 
push OS 

xor AX,AX 

moy OS,AX 

moy SI,4 • timer2Jnt 

22-302 

timer 2 has vector type 19 

interrupt controller regs 

public 'data' 

public 'code' 

set stack addressability 
save registers used 

set the interrupt vector 
the timers have unique 
interrupt 
vectors even though they share' 
the same control register 

210973-87 



seLtime. 

timer2JnterrupLroutine 

bump.sc<ond: 

bump..minute: 

timer2..interrupLroutine 
code 

AP·186 

m~ word ptr DS:[SI],offset timer_2_interrupt_routine 
inc SI 
inc SI 
mo. DS:[SIJ,CS 
pop DS 

mav AX,arg I set the time values 
may hour-.AL 
may AX,arg2 
maY minutc...AL 
moy AX,8rg3 
mo. second..,AL 
may mscc.,O 

mo. 
mo. 

out 
mov 
mo. 

DX,timcr2.maLcti 
AX,20000 

OX,AX 
DX,timcr2..control 
AX,llIooOOOOOOOOoolb 

out OX,AX 

mo. 
mo. 

DX,timerinLcti 
AX,OOOOb 

out OX,AX 

set tbe max count value 
10 ms /500 ns (timer 2 counts 
at 1/4 the CPU clock rate) 

set the control word 
cnable counting 
generate interrupts on TC 
continuous counting 

set up the interrupt controller 
unmask interrupts 
highest priority interrupt 

sti cnable processor interrupts 

pop SI 
pop OX 
pop AX 
leave 
ret 
endp 

proc 
push 
push 

cmp 
jae 
inc 
imp 

mo. 
cmp 
j.e 
inc 
imp 

mo. 
cmp 
jac 
inc 
imp 
pop 
pop 
ret 
endp 
ends 
end 

far 
AX 
OX 

msc<.99 
bump.sccond 
mscc.. 
reseLinLctl 

msc<.O 
second-59 
bump.minute 
second.. 
rescLinLctl 

sc<ond-O 
minute.,S9 
bump.hour 
minute.. 
reseunLctl 
OX 
AX 

210973-89 

22-303 

see if one second has passed 
if above or equal... 

reset millisecond 
see if one minute has passed 

see if one hour has passed 

210973-88 



inter 

bump-hour: 

reseLhour: 

rcseLinLctl: 

timer2JntcrrupLroutine 
code 

Smodl86 
name 

mov 
cmp 
jac 
inc 
jmp 

mov 
mov 
out 

pop 
pop 
iret 
endp 
ends 
end 

AP-186 

minute_.O 
hour1 12 
reseLhour 
hour. 
resetJnLctl 

DX,eoLregister 
AX,8000h 
OX,AX 

OX 
AX 

example..80 I 86.baucLcode 

this file contains example 80186 timer routines. The second routine 
sets up the timer as a baud rate generator. In this mode. 
Timer) is used to continually output pulses with a period of 
6.S usee for ,usc with a serial controller at 9600 baud 
programmed in divide by 16 mode (the actual period required 
for 9600 baud is 6.51 usec). This assumes that the 80186 is 
running at 8 MHz. The code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO·FFFF in 1/0 space). 

timer I.control equ OFF5Eh 
timerl.rnax..cnt equ OFF5Ah 

code segment 
assume cs:code 

~ seLbaudO initializes the 80186 timer I as a baud rate generator for 
a serial port running at 9600 baud 

seLbaucL proc near 
push AX 
push OX 

mov DX,timerl-DlaLcnt 
mov AX,13 
out OX,AX 
mov OX,timerLeontrol 
mov AX,llOOOOOOOOOOOOOlb 

out OX,AX 

pop OX 
pop AX 

22-304 

see if 12 hours have passed 

non-specific end of interrupt 

public 'code' 

save registers used 

set the max count value 
500ns • 13 - 6.5 usec 

set the control word 
. enable counting, 
no interrupt on TC 
continuous counting 
single max count register 

210973-90 



seLbaud. 
code 

Smodl86 
name 

ret 
endp 
ends 
end 

AP-186 

cxample..80 186.counLCodc 

this file contains example 80186 timer routines. The third routine 
sets up the timer as an external event counter. In this mode. 
Timer 1 is used to count transitions on its input pin. After 
the timer has been sct up by the routine, the number of 
events counted can be directly read from the timer count 
register at location FF58H in 1/0 space. The timer will 
count a maximum of 6S535 timer events before wrapping 
around to lero. This code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO·FFFF in 1/0 space). 

timerl.control equ OFF5Eh 
timcrl.max.cnt equ OFF5Ah 
timerl.cnueg equ OFF58H 

code segment 
assume cs:code 

; seLcounl() initializes the 80186 timerl as an event counter 

seLcounL 

seLcounL 
code 

proc 
push 
push 

mov 
mov 

out 
mav 
mov 

out 

xor 
mov 
out 

pop 
pop 
ret 

endp 
ends 
end 

near 
AX 
OX 

DX.timerlJl1ax..cnt 
AX,O 

OX,AX 
DX,timerl.control 
AX,IIOOOOOOOOOOO 10 I b 

OX,AX 

AX,AX 
OX,timerl.cnLreg 
OX,AX 

OX 
AX 

22-305 

public 'code' 

save registers used 

set the max count value 
allows the timer to count 
all the way to FFFFH 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 
external clocking 

zero AX 
and zero the count in the timer 
count register 

210973-91 



inter AP-186 

APPENDIX E 
80186 EXAMPLE INTERRUPT CONTROLLER 

INTERFACE CODE 

Smodl86 
name example-80 I 86jnlerrupLcode 

This routine configures the 80186 interrupt controller to provide 
two cascaded interrupt inputs (through an external 8259A 
inlerrupl controller on pins INTO/INn) and Iwo direcl 
inlerrupl inpuls (on pins INTI and INTJ), Thederault priorily 
levels are used. Because of this, the priority level programmed 
into the control register is set the Ill. the level all 
interrupts arc programmed to at reset. 

intO.control 
inLmask 

equ 
equ 

OFF38H 
OFF28H 

code 

setJnL 

seLinL 
code 

$mod186 
name 

segment 
assume CS:code 
proc near 
push OX 
push AX 

mov AX,OIOOIlIB 

mov DX.intO-control 
out OX,AX 

mov AX,OIOOIIOIB 

mov DX.inLmask 
out OX,AX 
pop AX 
pop OX 
reI 
endp 
ends 
end 

e.ample-80 I 86.inlerrupLcode 

This routine configures the 80186 interrupt controller into slave 
mode. This code does not initialize any of the 80186 
integrated peripheral control registers. nor does it initialize 
the external 82S9A interrupt controller. 

relocation..reg equ OFFFEH 

code segment 
assume CS:codc 

seLrmx... proc near 
push OX 
push AX 

mov DX,ce)ocation..rcg 
in AX,OX 
or AX,O I OOOOOOOOOOOOOOB 
out OX,AX 

public 'code' 

cascade mode 
intcnupt unmasked 

now unmask the other external 
interrupts 

public 'code' 

read old contenls or regisler 
sellhe Slave/Master mode bit 

22-306 

210973-92 



inter AP-186 

APPENDIX F 
80186/8086 EXAMPLE SYSTEM INITIALIZATION CODE 

name cxample.80186..sYS1ClTLinit 

This file contains a system initialization routine for the 80186 
or the 8086. The code determines whether it is running on 
an 80186 or an 8086, and ifit is running on an 80186, it 
initializes the integrated chip select registers. 

restart segment at 

This is the processor reset address at OFFFFO·H 

org 0 
imp far ptr initialize 

restart ends 

Cltrn monitor:far 
iniLhw segment at 

assume CS:iniLhw 

This scgment initializes the chip selects. It must be located in the 
top I K to insure that the ROM remains selected in the 80186 
s)'Stem until the proper size of the select area can be programmed. 

UMCs..reg 
LMC5.reg 
PACS.reg 
MPCS.reg 
UMCs..value 
LMCs..value 
PACS.value 
MPC5.value 

initialize 

cqu 
cqu 
cqu 
cqu 
cqu 
cqu 
cqu 
cqu 

proc 
may 
mov 
shr 
test 
iz 

may 
mov 
out 

may 
may 
out 

mov 

may 
out 
mov 
mov 
out 

OFFAOH 
OFFA2H 
OFFA4H 
OFFA8H 
OF038H 
07F8H 
007EH 
81B8H 

far 
AX,2 
CL,33 
AX,CL 
AX,I 
noLBOl86 

OX,UMcs..reg . 
AX,UMcs..yalue 
OX,AX 

OX,LMCs.reg 
AX,LMC5.value 
OX,AX 

OX,PACS.reg 

AX,PACs..Yalue 
OX,AX 
OX,MPCs.reg 
AX,MPC5.Yalue 
OX,AX 

Now that the chip selects are aU set up, the main program of the. 
computer may be executed. 

noLB0186: 

initialize 
iniLhw 

imp 
endp 
ends 
end 

far ptr monitor 

OFFFFh 

OFFFOh 

chip select register locations 

64K, no wait states 
32K, no wait states 
peripheral base at 4OOH, 2 ws 
PCSS and 6 supplies, 
peripherals in 1/0 space 

determine if this is an 
8086 or an 80186 (checks 
to See if the multiple bit 
shift value was ANDcd) 

program the UMCS register 

program the LMCS register 

set up the peripheral chip 
selects (note the mid·ranse 
memory chip selects are not 
needed in this system, and 
are thus not initialized 

210973-94 

22-307 

210973-93 



AP-186 

APPENDIX G 
80186 WAIT STATE PERFORMANCE 

Because the 80186 contains separate bus interface and 
execution units, the actual performance of the proces­
sor will not degrade at a constant rate as wait states are 
added to the memory cycle time from the processor. 
The actual rate of performance degradation will depend 
on the type and mix of instructions actually encoun­
tered in the user's program. 

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of 
the processor. These programs show the two extremes 
to which wait states will or will not affect system per­
formance as wait states are introduced. 

Program 1 is very memory intensive. It performs many 
memory reads and writes using the more extensive 
memory addressing modes of the processor (which also 
take a greater number of bytes in the opcode' for the 
instruction). As a result, the execution unit must con­
stantly wait for the bus interface unit to fetch and per­
form the memory cycles to allow it to continue. Thus, 
the execution time of this type of routine will grow 
quickly as wait states are added, since the execution 
time is almost totally limited to the speed at which the 
processor can run bus cycles. 

Note also that this program execution time calculated 
by merely summing up the number of clock cycles giv­
en in the data sheet will typically be less than the actual 
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data 
sheet assume that the opcode bytes have been pre­
fetched and reside in the 80186 prefetch queue for im­
mediate access by the execution unit. If the execution 

unit cannot access the opcode bytes immediately upon 
request, dead clock cycles will be inserted in which the 
execution unit will remain idle, thus increasing the 
number of clock cycles required to complete execution 
of the program. 

On the other hand, program 2 is more CPU intensive. 
It performs many integer multiplies, during which time 
the bus interface unit can fill up the instruction prefetch 
queue in parallel with the execution unit performing the 
multiply. In this program, the bus interface unit can 
perform bus operations faster than the execution unit 
actually requires them to be run. In this case, the per­
formance degradation is much less as wait states are 
added to the memory interface. The execution time of 
this program is closer to 'the number of clock cycles 
calculated by adding the number of cycles per instruc­
tion because the execution unit does not have to wait 
for the bus interface unit to place an opcode byte in the 
prefetch queue as often. Thus, fewer clock cycles are 
wasted by the execution unit laying idle for want of 
instructions. Table G-l lists the execution times mea­
sured for these two programs as wait states were intro­
duced with the 80186 running at 8 MHz. 

TableG-1 

# of 
Program 1 Program 2 

Wait Exec Perf Exec Perf 
States Time Degr Time Degr (p.sec) (p.sec) 

0 505 294 
1 595 18% 311 6% 
2 669 12% 337 8% 
3 752 12% 347 3% 

$mod186 
name exampl~waiLstatc-performance 

This file contains two programs which demonstrate the 80186 performance 
degradation as wait states are inserted. Program 1 performs a 
transformation between two types of characters sets, then copies 

cgroup 
dgroup 
data 

the transformed characters back to the original buffer (which is 64 ' 
bytes long. Program 2 performs the same type of transformation, however 
instead of performing a table lookup, it multiplies each number in the 
original 32 word buffer by a constant (3, note the use of the integer 
immediate multiply instruction). Program "nothing" is used to measure 
the call and return times from the driver program only. 

group code 
group data 
segment public 'data' 

22-308 

210973-95 



inter Ap·186 

uable db 256 dup (1) 
t..string db 64 dup (1) 
m~rray dw 32 dup (1) 
data ends 

code segment public 'code' 
assume eS:cgroup,DS:dgroup 
public bench..l,bench.2,nothins-.waiUtate.,seLtimer. 

bench_I proc near 
push SI ; save registers used 
push ex 
push BX 
push AX 

moy eX,64 translate 64 bytes 
moy SI,O 
moy BH,O 

loop_back: 
moy BL,Lslring[SII get the byte 
moy AL,Ltable[BXI translate byte 
moy Lstring[SII,AL and store it 
inc SI increment index 
loop loop-back do the next byte 

pop AX 
pop BX 
pop ex 
pop SI 
ret 

bench. I endp 

bench.2 proc near 
push AX save registers used 
push SI 
push ex 

moy eX,32 mUltiply 32 numbers 
moy SI,offset m.array 

loop_back.2: 
imul AX,word ptr [SI),3 immediate multiply 
moy word ptr [SII,AX 
inc SI 
inc SI 
loop loop_back.2 

pop ex 
pop SI 
pop AX 
ret 

bench.2. endp 
210973-96 

22-309 



inter 
nothing.. 

nothing.. 

proc 
ret 
endp 

AP-186 

near 

waiutate(n) sets the 80186 LMCS register to the number of wait states 
(0 to 3) indicated by the parameter n (which is passed on the stack). 
No other bits of the LMCS register are modified. 

waiLstatc- proc ncar 
enter 0,0 
push AX 
push BX 
push OX 

mo. BX,word ptr [BP + 4) 
mo. OX,OFFA2h 

contents 
in AX,OX 

and AX,OFFFCh 
and BX,3 
or AX,BX 
out OX,AX 

pop OX 
pop BX 
pop AX 
leave 
ret 

waiLstate. endp 

seLtimcr() initializes the 80186 timers to count microseconds. Timer 2 
is set up as a prcscaler to timer 0, the microsecond count can be read 

directly out of the timer 0 count register at location FFSOH in I/O 
space. 

sCLtimer_ proc near 
push AX 
push OX 

mo. OX,Off66h 
mo. AX,4000h 
out OX,AX 

mov OX,OffSOh 
mo. AX,O 
out OX,AX 

mo. OX,OffS2h 
mo. AX,O 
out OX,AX 

22-310 

set up stack frame 
save registen used 

get argument 
get current LMCS register 

and off existing ready bits 
insure ws count is good 
adjust the ready bits 
and write to LMCS 

tear down stack frame 

stop timer 2 

clear timer 0 count 

timer 0 counts up to 6SS3S 

210973-97 



AP-186 

moy DX,Off56h enable timer 0 
moY AX,Oc009h 
out DX,AX 

moy DX,Off60h clear timer 2 count 
moy AX,O 
out DX,AX 

moY DX,Off62h set maximum count of timer 2 
moY AX,2 
out DX,AX 

moy DX,Off66h re-enable timer 2 
moy AX,OcOOlh 
out DX,AX 

pop DX 
pop AX 
ret 

seuimer. endp 
code ends 

end 
210973-98 

22-311 



AP-186 

APPENDIX H 
80186 NEW INSTRUCTIONS 

The 80186 performs many additional instructions to 
those of the 8086. These instructions appear shaded in 
the instruction set summary at the back of the 80186 
data sheet. This appendix explains the operation of 
these new instructions. In order to use these new in­
structions with the 8086/186 assembler, the 
"$modI86" switch must be given to the assembler. This 
can be done by placing the line: "$modI86" at the be­
ginning of the assembly language file. 

PUSH IMMEDIATE 

This instruction allows immediate data to be pushed 
onto the processor stack. The data can be either an 
immediate byte or an immediate word. If the data is a 
byte, it will be sign extended to a word before it is 
pushed onto the stack (since all stack operations are 
word operations). 

PUSHA,POPA 

These instructions allow all of the general purpose 
80186 registers to be saved on the stack, or restored 
from the stack. The registers saved by this instruction 
(in the order they are pushed onto the stack) are AX, 
CX, DX, BX, SP, BP, SI, and DI. The SP value pushed 
onto the stack is the value of the register before the first 
PUSH (AX) is performed; the value popped for the SP 
register is ignored. 

This instruction does not save any of the segment regis­
ters (CS, DC, SS, ES), the instruction pointer (IP), the 
flag register, or any of the integrated peripheral regis­
ters. 

IMULBY AN IMMEDIATE VALUE 

This instruction allows a value to be multiplied by an 
immediate value. The result of this operation is 16 bits 
long. One operand for this instruction is obtained using 
one of the 80186 addressing modes (meaning it can be 
in a register or in memory). The immediate value can 
be either a byte or a word, but will be sign extended if it 
is a byte. The 16-bit result of the multiplication can be 
placed in any of the 80186 general purpose or pointer 
registers. 

This instruction requires three operands: the register in 
which the result is to be placed, the immediate value, 

and the second operand. Again, this second operand 
can be any of the 80186 general purpose registers or a 
specified memory location. 

SHIFTS/ROTATES BY AN IMMEDIATE 
VALUE 

The 80186 can perform multiple bit shifts or rotates 
where the number of bits to be shifted is specified by an 
immediate value. This is different from the 8086, where 
only a single bit shift can be performed, or a multiple 
shift can be performed where the number of bits to be 
shifted is specified in the CL register. 

All of the shift/rotate instructions of the 80186 allow 
the number of bits shifted to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the 
number of bits specified modulus 32 (i.e., the maximum 
number of bits shifted by the 80186 multiple bit shifts is 
31). 

These instructions require two operands: the operand 
to be shifted (which may be a register or a memory 
location specified by any of the 80186 addressing 
modes) and the number of bits to be shifted. 

BLOCK INPUT/OUTPUT 
The 80186 adds two new input/output instructions: 
INS and OUTS. These instructions perform block input 
or output operations. They operate similarly to the 
string move instructions of the processor. 

The INS instruction performs block input from an I/O 
port to memory. The I/O address is specified by the 
DX register; the memory location is pointed to by the 
DI register. After the operation is performed, the DI 
register is adjusted by 1 (if a byte input is specified) or 
by 2 (if a word input is specified). The adjustment is 
either an increment or a decrement, as determined by 
the Direction bit in the flag register of the processor. 
The ES segment register is used for memory address­
ing, and cannot be overridden. When preceded by a 
REPeat prefix, this instruction allows blocks of data to 
be moved from an I/O address to a block of memory. 
Note that the I/O address in the DX register is not 
modified by this operation. 

22-312 



AP-186 

The OUTS instruction performs block output from 
memory to an 110 port. The 110 address is specified by 
the DX register; the memory location is pointed to by 
the SI register. After the operation is performed, the SI 
register is adjusted by 1 (if a byte output is specified) or 
by 2 (if a word output is specified). The adjustment is 
either an increment or a decrement, as determined by 
the Direction bit in the flag register of the processor. 
The DS segment register is used for memory address­
ing, but can be overridden by using a segment override 
prefix. When preceded by a REPeat prefix, this instruc­
tion allows blocks of data to be moved from a block of 
memory to an I/O address. Again note that the I/O 
address in the DX register is not modified by this oper­
ation. 

Like the string move instruction, these two instructions 
require two operands to specify whether word or byte 
operations are to take place. Additionally, this determi­
nation can be supplied by the mnemonic itself by add­
ing a "B" or "W" to the basic mnemonic, for example: 

INSB ;perform byte input 

REP OUTSW ;perform word block output 

BOUND 

The 80186 supplies a BOUND instruction to facilitate 
bound checking of arrays. In this instruction, the calcu­
lated index into the array is placed in one of the general 

purpose registers ofthe 80186. Located in two adjacent 
word memory locations are the lower and upper 
bounds for the array index. The BOUND instruction 
compares the register contents to the memory loca­
tions, and if the value in the register is not between the 
values in the memory locations, an interrupt type 5 is 
generated. The comparisons performed are SIGNED 
comparisons. A register value equal to either the upper 
bound or the lower bound will not cause an interrupt. 

This instruction requires two arguments: the register in 
which the calculated array index is placed, and the 
word memory location which contains the lower bound 
of the array (which can be specified by any of the 80186 
memory addressing modes). The memory location con­
taining the upper bound of the array must follow imme­
diately the memory location containing ,the lower 
bound of the array. 

ENTER AND LEAVE 

The 80186 contains two instructions which are used to 
build and tear down stack frames of higher level, block 
structured languages. The instruction used to build 
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is: 

PUSH BP /'save the previous frame 
pointer'/ 

if level=O then 
BP:=SP; 

else templ:=SP;/'save current frame pointer 
'/ 

temp2:= level - 1; 
do while temp2>0/*copy down previous level 

frame'/ 
BP:= BP - 2; /*pointers*/ 
PUSH [BP]; 

BP:=templ; 
PUSH BP; /'put current level frame 

pointer' / 

lOin the save area'/ 
SP:=SP - disp; /'create space on the stack 

for' / 

/'local variables'/ 

22-313 



AP-186 

Figure H-I shows the layout of the stack before and 
after this operation. 

This instruction requires two' operands: the first value 
(disp) specifies the number of bytes the local variables 
of this routine require. This is an unsigned value and 
,can be as large as 65535. The second value (level) is an 
unsigned value which specifies the level of the proce­
dure. It can be as great as 255. 

The 80186 includes the LEAVE instruction to tear 
down stack frames built up by the ENTER instruction. 

? 

. t BEFORE 
BP .-J 
SP -----~--------_4 

As can be seen from the layout of the stack left by the 
ENTER instruction, this involves only moving the con­
tents of the BP register to the SP register, and popping 
the old BP value from the stack. 

Neither the ENTER nor the LEAVE instructions save 
any of the 80186 general purpose registers. If they must 
be saved, this must be done in addition to the ENTER 
and tlie LEAVE. In addition, the LEAVE instruction 
does not perform a return from a subroutine. If this is 
desired, the LEAVE instruction must be explicitly fol­
lowed by the RET instruction. 

AFTER 

BP ----- OLD BP I-...-.-----1 
OLD FRAME 

PTRS. 

CURREwtRAME r-­

LOCAL 

VARIABLE 

AREA 

SP ------~----------~ 
210973-99 

Figure H-1. ENTER Instruction Stack Frame 

22-314 



AP-186 

APPENDIX I 
80186/80188 DIFFERENCES 

The 80188 is exactly like the 80186, except it has an 8 
bit external bus. It shares the same execution unit, tim­
ers, peripheral control block, interrupt controller, chip 
select, and DMA logic. The differences between the 
two caused by the narrower data bus are: 

• The 80188 has a 4 byte prefetch queue, rather than 
the 6 byte prefetch queue present on the 80186. The 
reason for this is since the 80188 fetches opcodes 
one byte at a time, the number of bus cycles re­
quired to fill the smaller queue of the 80188 is actu­
ally greater than the number of bus cycles required 
to fill the queue of the 80186. As a result, a smaller 
queue is required to prevent an inordinate number 
of bus cycles being wasted by prefetching opcodes to 
be discarded during a jump. 

• AD8-ADI5 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is 
present on these lines throughout the bus cycle of 
the 80188. Valid address information is not guaran­
teed on these lines during idle T states. 

• BHE/S7 is always defined HIGH by the 80188, 
since the upper half of the data bus is non-existent. 

• The DMA controller of the 80188 only performs 
byte transfers. The B/W bit in the DMA control 
word is ignored. 

• Execution times for many memory access instruc­
tions are increased because the memory access must 
be funnelled through a narrower data bus. The 
80188 also will be more bus limited than the 80186 
(that is, the execution unit will be required to wait 
for the opcode information to be fetched more often) 
because the data bus is narrower. The execution 
time within the processor, however, has not changed 
between the 80186 and 80188. 

Another important point is that the 80188 internally is 
a 16-bit machine. This means that any access to the 
integrated peripheral registers of the 80188 will be done 
in 16-bit chunks, NOT in 8-bit chunks. All internal 
peripheral registers are still 16-bits wide, and only a 
single read or write is required to access the registers . 
When a word access is made to the internal registers, 
the BIU will run two bus cycles externally. 

Access to the control block may also be done with byte 
operations. Internally the full 16-bits of the AX register 
will be written, while externally, only one bus cycle will 
be executed . 

22-315 



inter APPLICATION 
NOTE 

AP-258 

February 1986 

High Speed Numerics with the 
80186/80188 and 8087· 

STEVE FARRER 
APPLICATIONS ENGINEER 

22-316 
Order Number: 231590-001 



AP-258 

1.0 INTRODUCTION 

From their introduction in 1982, the highly integrated 
16-bit 80186 and its 8-bit external bus version, the 
80188, have been ideal processor choices for high-per­
formance, low-cost embedded control applications. The 
integrated peripheral functions and enhanced 8086 
CPU of the 80186 and 80188 allow for an easy upgrade 
of older generation control applications to achieve 
higher performance while lowering the overall system 
cost through reduced board space, and a simplified pro­
duction flow. 

More and more controller applications need even high­
er performance in numerics, yet still require the low­
cost and small form factor of the 80186 and 80188. The 
8087 Numerics Data Coprocessor satisfies this need as 
an optional add-on component. 

The 8087 Numeric Data Coprocessor is interfaced to 
the 80186 and 80188 through the 82188 !BC (Integrat­
ed Bus Controller). The !BC provides a highly integrat­
ed interface solution which replaces the 8288 used in 
8086-8087 systems. The IBC incorporates all the nec­
essary bus control for the 8087 while also providing the 
necessary logic to support the interface between the 
80186/8 and the 8087. 

This application note discusses the design considera­
tions associated with using the 8087 Numeric Data Co­
processor with the 80186 and 80188. Sections two, 

three, and four contain an overview of the integrated 
circuits involved in the numerics configuration. Section 
five discusses the interfacing aspects between the 
80186/8 and the 8087, including the role of the 82188 
Integrated Bus Controller and the operation of the inte­
grated peripherals on the 80186/8 with the 8087. Sec­
tion six compares the advantages of using an 8087 Nu­
meric Data Coprocessor over software routines written 
for the host processor as well as the advantage of using 
an 80186/8 numerics system over an 8086/8088 nu­
merics system. 

Except where noted, all future references to the 80186 
will apply equally to the 80188. 

2.0 OVERVIEW OF THE 80186 

The 80186 and 80188 are highly integrated microproc­
essors which effectively combine up to 20 of the most 
common system components onto a single chip. The 
80186 and 80188 processors are designed to provide 
both higher performance and a more highly integated 
solution to the total system. 

Higher integration results from integrating system pe­
ripherals onto the microprocessor. The peripherals con­
sist of a clock generator, an interrupt controller, a 
DMA controller, a counter/timer unit, a programma­
ble wait state generator, programmable chip selects, 
and a bus controller. (See Figure \.) 

INT3IINTA1 

INT2IIRm 

HlOA 
RES 

RESET 

CLOCK 
GENERATOR 

EXECUTION U'N'IT1 

l6·BIT 
ALU 

I 
I 
I 
I 
I 
I 
I 

'--.,.--...J...J 

PROGRAMMABLE 
INTEARUPT 

CONTROLLER MAX COUNT 
REGISTER A 

CONTFIOL REGISTERS 

...----I-ORoo 

CONTROL 
REGISTERS 

DRQl 

Figure 1.80186/8 Block Diagram 

22-317 

231590-1 



infef AP-258 

Higher performance results from enhancements to both 
general and specific areas of the 8086 CPU, including 
faster effective address calculation, improvement in the 
execution speed of many instructions, and the inclusion 
of new instructions which are designed to produce opti­
mum 80186 code, 

The 80186 and 80188 are completely object code com­
patible with the 8086 and 8088. They have the same 
basic register set, memory organization, and addressing 
modes. The differences between the 80186 and 80188 
are the same as the differences between .the 8086 and 
8088: the 80186 has a l6-bit architecture and 16-bit bus 
interface; the 80188 has a 16-bit internal architecture 
and an 8-bit data bus interface. The instruction execu­
tion times of the two processors differ accordingly: for 
each non-immediate 16-bit data read/write instruction, 
4 additional clock cycles are required by the 80188. 

3.0 NUMERICS OVERVIEW 

3.1 The Benefits of Numeric 
Coprocessing 

The 8086/8 and 80186/8 are general purpose micro­
processors, designed for a very wide range of applica­
tions. Typically, these applications need fast, efficient 
data movement .and general purpose control instruc­
tions. Arithmetic on data values tends to be simple in 
these applications. The 8086/8 and 80186/8 fulfill these 
needs in a low cost, effective manner. 

However, some applications require extremely fast and 
complex math functions which are not provided by a 
general purpose processor. Such functions as square 
root, sine, cosine, and logarithms are not directly avail­
able in a general purpose processor. Software routines 
required to implement these functions tend to be slow 
and not very accurate. Integer data types and their 
arithmetic operations (i.e., add, subtract, multiply and 
divide) which are directly available on general purpose 
processors, still may not meet the needs for accuracy, 
speed and ease of use. . 

Providing fast, accurate, complex math can be quite 
complicated, requiring large areas of silicon on inte­
grated circuits. A general data processor does not pro­
vide these features due to the extra cost burden that less 
complex general applications must take on. For such 
features, a special numeric data processor is required -
one which is easy to use and has a high level of support 
in hardware and,software. 

3.2 Introduction to the 8087 

The 8087 is a numeric data coprocessor which is capa­
ble of performing complex mathematical functions 
while the host processor (i.e. the main CPU) performs 

more general tasks. It supports the necessary data types 
and operations and allows use of all the current hard­
ware and software support for the 8086/8 and 80186/8 
microprocessors .. The fact that the 8087 is a coproces­
sor means it is capable of operating in parallel with the 
host CPU, which greatly improves the processing pow­
er of the system. 

The 8087 can increase the performance of floating­
point calculations by 50 to 100 times, providing the 
performance and precision required for small· business 
and graphics applications as well as scientific data pro­
cessing. 

The 8087 numeric coprocessor adds 68 floating-point 
instructions and eight 80-bit floating-point registers to 
the basic 8086 programming architecture. All the nu­
meric instructions and data types of the 8087 are used 
by the programmer in the same manner as the general 
data types and instructions of the host. 

The numeric data formats and arithmetic operations 
provided by the .8087 support the proposed IEEE Mi­
croprocessor Floating Point Standard. All of the pro­
posed IEEE floating point standard algorithms, excep­
tion detection, exception handling, infinity arithmetic 
and rounding controis are implemented. The IEEE 
standard makes it easier to use floating point and helps 
to avoid common problems that are inherent to floating 
point. 

3.3 Escape Instructions 

The coprocessing capabilities of the 8087 are achieved 
by monitoring the local bus of the host processor. Cer­
tain instructions within the 8086 assembly language 
known as ESCAPE instructions are defined to be co­
processor instructions and, as such,. are treated differ­
ently. 

The coprocessor monitors program execution of the 
host processor to detect the occurrence of an ESCAPE 
instruction. The fetching of instructions is monitored 
via the data bus and bus cycle status S2-S0, while the 
execution of instructions is monitored via the queue 
status lines QSO and QS 1. 

All ESCAPE instructions start with the high-order 5-
bits of the instruction opcode being 11011. They have 
two basic forms, the memory reference form and the 
non-memory reference form. The non-memory form, 
shown in Figure 2A, initiates some activity in the co­
processor using the nine available bits of the ESCAPE 
instruction to indicate which function to perform. 

Memory reference forms of the ESCAPE instruction, 
shown in Figure 2B, allow the host to point out a mem­
ory operand to the coprocessor using any host memory 

22-318 



inter AP-258 

115 114 113 112 111 110 19 18 17 IS 15 14 13 12 11 10 
1st byte I 2nd byte 

Figure 2A. Non-Memory Reference ESCAPE Instructions 

addressing mode. Six bits are available in the memory 
reference form to identify what to do with the memory 
operand. 

Memory reference forms of ESCAPE instructions are 
identified by bits 7 and 6 of the byte following the ES­
CAPE opcode. These two bits are the MOD field of the 
8086/8 or 80186/8 effective address calculation byte. 
Together with the R/M field (bits 2 through 0), they 
determine the addressing mode and how manysubse­
quent bytes remain in the instruction. 

3.4 Host Response to Escape 
Instructions 

The host performs one of two possible actions when 
encountering an ESCAPE instruction: do nothing (op­
eration is internal to 8087) or calculate an effective ad­
dress and read a word value beginning at that address 
(required for all LOADS and STORES). The host ig­
nores the value of the word read and hence the cycle is 
referred to as a "Dummy Read Cycle." ESCAPE in­
structions do not change any registers in the host other 
than advancing the IP. If there is no coprocessor or the 
coprocessor ignores the ESCAPE instruction, the ES­
CAPE instruction is effectively a NOP to the host. Oth­
er than calculating a memory address and reading a 
word of memory, the host makes no other assumptions 
regarding coprocessor activity. 

The memory reference ESCAPE instructions have two 
purposes: to identify a memory operand and, for certain 
instructions, to transfer a word from memory to the 
coprocessor. 

MOD 

10 1 0 1 

3.5 Coprocessor Response to Escape 
Instructions 

The 8087 performs basically three types of functions 
when encountering an ESCAPE instruction: LOAD 
(read from memory), STORE (write to memory), and 
EXECUTE (perform one of the internal 8087 math 
functions). 

When the host executes a memory reference ESCAPE 
instruction intended to cause a read operation by the 
8087, the host always reads the low-order word of any 
8087 memory operand. The 8087 will save the address 
and data read. To read any subsequent words of the 
operand, the 8087 must become a local bus master. 

When the 8087 has the local bus, it increments the 20-
bit physical address it saved to address the remaining 
words of the operand. 

When the ESCAPE instruction is intended to cause a 
write operation by the 8087, the 8087 will save the ad­
dress but ignore the data read. Eventually, it will get 
control of the local bus and perform successive writes 
incrementing the 20-bit address after each word until 
the entire numeric variable has been written. 

ESCAPE instructions intended to cause the execution 
of a coprocessor calculation do not require any bus ac­
tivity. Numeric calculations work off of an internal reg­
ister stack which has been initialized using a LOAD 
operation. The calculation takes place using one or two 
of the stack positions specified by the ESCAPE instruc­
tion. The result of the operation is also placed in one of 
the stack positions specified by the ESCAPE instruc­
tion. The result may then be returned to memory using 
a STORE instruction, thus allowing the host processor 
to access it. 

16-bit direct displacement 

1 1 1 1 1 1 1 1 
11s 114 113 112 111 110 19 18 17 Is Is 14 13 12 11 10 015014013012011 010 09 08 07 Ds Ds D4 D3 D2 Dl Do 

MOD RIM 16-bit displacement 

11 11 1 0 11 11 1 11 1 0 1 1 1 1 1 1 

~OO 
o 1 d RIM 1 

1 1 

B-bit displacement 

1 1 1 1 1 

MOD 

10 1 0 1 1 

RIM 1 
1 1 

Figure 28. Memory Reference ESCAPE Instruction Forms 

22-319 



inter AP-258 

4.0 OVERVIEW OF THE 82188 
INTEGRATED BUS CONTROLLER 

4.1 Introduction 

The 82188 Integrated Bus Controller (!BC) is a highly 
integrated version of the 8288 Bus Controller. The IBC 
provides command and control timing signals for bus 
control and all of the necessary logic to interface the 
80186 to the 8087. 

4.2 Bus Control Signals 

The bus command and control signals consist of RD, 
WR, DEN, DT/R, and ALE. The timings and levels 
are driven following the latching of valid signals on the 
status lines SO-S2. When SO-S2 change state from pas­
sive to active, the IBC begins cycling through a state 
machine which drives the corresponding control and 
command lines for the bus cycle. As with the 8288, an 
address enable input (AEN) is present to allow tri-stat-

5.0 DESIGNING THE SYSTEM 

ing when other bus masters supply their own bus con­
trol signals. 

4.3 Bus Arbitration 

The !BC also has the ability to convert bus arbitration 
protocols of RQ/GT to HOLD-HLDA. This allows the 
82586 Local Area Network (LAN) Coprocessor, the 
82730 Text Coprocessor, and other coprocessors using 
the HOLD-HLDA protocol to be interfaced to the 
8086/8 as well as allowing the 80186/8 to be interfaced 
to the 8087. In addition to converting arbitration proto­
cols, the !BC makes it possible to arbitrate between two 
bus masters using HOLD-HLDA with a third using 
RQ/GT. 

4.4 Interface Logic 

In addition to all the bus control and arbitration fea­
tures, the !BC provides logic to connect the queue 
status to the 8087, a chip-select for the 8087, and the 
necessary READY synchronization required between 
the 8087 and the 80186/8. 

5.1 Circuit Schematics of the 80186/8-82888-8087 System 

16MH zi 
f 

-;:: 

-

TO OPTIONAL 
THIRD BUS MASTER 

I t 
B0186 ADDRESS DATA BUS 

... 
SYS SYS ;L-HOLD HLDA 

\r HLDA HLDA 
HOLD HOLD 
MCSO CSIN 

ARDY 
Rii 

OSO OSOI 

OSI OSII 

SROY 
RESETOUT 

CLOCKOUT 

INTO S2 f---- ALE -
TEST 51 I--so r- S2 

51 
SO 

~ CLK 
RESET 

SO l- f- SRO 
BUSY 

511--INT 
52 r---- 8218B 

CLK 
RESET DT/R fo-

ROY DEN fo-
OSO QSOO 
OSI QS10 

Rei/GTO Rii/GTO 
Rei/GTI Rei/GTI 

A l' l' 
BOB7-1 ADDRESS DATA BUS 

A~DY S~DY 

-II. 
) . 

f----.1SrB 
~ ~ 74LS 
,-,I 373 

~ 

qW"" OE 
~ 74LS ~ ,-,I 245 

~ 

Figure 3. 80186/8-82188-8087 Circuit Diagram 

22-320 

COMMAND/CONTROL 

ADDRESS 

DATA 

231590-2 



Ap·258 

5.2 Queue Status 

The 8087 tracks the instruction execution of the 80186 
by keeping an internal instruction queue which is iden­
tical to the processor's instruction queue. Each time the 
processor performs an instruction fetch, the 8087 latch­
es the instruction into its own queue in parallel with the 
processor. Each time the processor removes the first 
byte of an instruction from the queue, the 8087 removes 
the byte at the top of the 8087 queue and checks to see 
if the byte is an ESCAPE prefix. If it is, the 8087 de­
codes the following bytes in parallel with the processor 
to determine which numeric instruction the bytes repre­
sent. If the first byte of the instruction is not an ES­
CAPE prefix, the 8087 discards it along with the subse­
quent bytes of the non-numeric instruction as the 80186 
removes them from the queue for execution. 

The 8087 operates its internal instruction queue by 
monitoring the two queue status lines from the CPU. 
This status information is made available by the CPU 
by placing it into queue status mode. This requires 
strapping the RD pin on the 80186 ~round. When 
RD is tied to ground, ALE and WR become QSO 
(Queue Status #0) and QSl (Queue Status # 1) respec­
tively. 

Table 1 Queue Status Decoding 

QS1 QSO Queue Operation 

0 0 No queue operation 
0 1 First byte from queue 
1 0 Subsequent byte from queue 
1 1 Reserved 

Each time the 80186 begins decoding a new instruction, 
the queue status lines indicate "first byte of instruction 
taken from the queue". This signals the 8087 to check 
for an ESCAPE prefix. As the remaining bytes of the 
instruction are removed, the queue status indicates 
"subsequent byte removed from queue". The 8087 uses 
this status to either continue decoding subsequent 
bytes, if the first byte was an ESCAPE prefix, or to 
discard the subsequent bytes if the first byte was not an 
ESCAPE prefix. 

The QSO(ALE) and QSl(WR) pins of the 80186 are fed 
directly to the 82188 where they are latched and de­
layed by one-half-clock. The delayed queue status from 
the 82188 is then presented directly to the 8087. 

The waveforms of the queue status signals are shown in 
Figure 4. The critical timings are the setup time into 
the 82188 from the 80186 and the setup and hold time 
into the 8087 from the 82188. The calculations for an 8 
MHz system are as follows: 

.5TCLCL - TCHQSV (186 max) 
.5(125 ns) - 35 

:<: TQIVCL (82188 min) 
:<: 15 ns 

;setup to 82188 

T CLCL - T CLQOV (82188 max) 
(125 ns) - 50 

;setup to 8087 

TCLQOV (82188 min) :<: T CLQX (8087 min) 
:<: 5 ns 

;hold to 8087 
5 

elK ~'-----lTcHQSY t r -!TCHQSYX .... 
80186 QUEUE STATUS ~ I INTO 82188 ~_+-_____ _ 

+;:QIYCL~~ ~ _________________ ~ I_~_C_LQ_O_Y _____ _+-"'\ TCLQOY 

82188 QUEUE STATUS r 
INTO 8087 _______________ J ]Io-------+--"' r.:::= TQYCL •. TCLQX 

r r 

231590-3 

Figure 4. Queue Status Timing 

22-321 



AP-258 

5.3 Bus Control Signals 

When the 80186 is in Queue Status mode,another com­
ponent must gerierate the ALE, RD, and WR signals. 
The 82188 provides these2.ignals by monitoring the 
CPU bus cycle status (SO-S2). Also provided are DEN 
and DT/R: which may be used for extra drive capability 
on the control bus. With the exception of ALE, all con­
trol signals on the 82188 are almost identical to their 
corresponding 80186 control signals. This section dis­
cusses the differences between the 80186 and the 82188 
control signals for the purpose of upgrading an 80186 
design to an 80186-8087 design. For original 80186-
8087 designs, there is no need to compare control signal 
timings of the 82188 with the 80186. 

5.3.1 ALE 

The ALE (Address Latch Enable) signal goes active 
one clock phase earlier on the 80186 than on the 82188. 
Timing ofthe ALE signal on the 82188 is closer to that 
of the 8086 and 8288 bus controller because the bus 
cycle status is used to generate the ALE pulse. ALE on 
the 80186 goes active before the bus cycle status lines 
are valid. 

The inactive edge of ALE occurs in the same clock 
phase for both the 80186 and the 82188. The setup and 
hold times of the 80186 address relative to the 82188 
ALE signal are shown in Figure 5 and are calculated 
for an 8 MHz system as follows: 

Setup Time 
For 80186 = TAVCH (186 min) + TCHLL (82188 min) 

=lO+O=lOns. 

NOTE: 
The hold time calculation is the same for both· the 
80186 and 8087. 

These timings provide adequate. setup and hold times 
for a 74LS373 address latch. 

n, 

elK 

ALE ----.I ... ~ __ ' __ _ 
ADDRESS . . ~ VALID, I~ 

t:SETUP-l-HOlDj 
231590-4 

Figure 5. Address Latch Timings 

For 8087 = 0.5 (TCLCL) - TCLAV (8087 max) + TCHLL (82188 min) 
= 0.5 (125) - 55 + 0 = 7.5 

Hold Time 
= 0.5 (TCLCd - TCHLL (82188 max) + TCLAZ (186 min) 
= 0.5 (125) - 30 + 10 = 42.5 ns. 

22-322 



intJ AP-258 

T1 

elK 

80186 RD 

82188--------....;..-~ 

iffi AND WR 

80186 WR 

TCLRL = TCLML = TCVCTV = 10t070ns 
TCLRH = TCLMH = 10t055ns 
TCVCTX = 5 to 55 ns 

T2 T3 T4 

231590-5 

Figure 6. Read and Write Timings 

5.3.2 Read and Write 

The read and write signals of the 82188 have identical 
timings to those of the 80186 with one exception: the 
82188 WR inactive edge may not go inactive quite as 
early as the 80186. This spec is, in fact, a tighter spec 
than the 80186 WR timing and should make designs 
easier. The timings for RD and WR are shown in Fig­
ure 6 for both the 80186 and the 82188. 

5.3.3 DEN 

The DEN signal on the 82188 is identical to the DEN 
signal on the 80186 but with a tighter timing specifica­
tion. This makes designs easier with the 82188 and 
makes upgrades from 80186 bus control to 82188 bus 
control more straightforward. The timings for DEN on 
both the 80186 and 82188 are shown in Figure 7. 

T1 

elK 

80186 DEN 

82188 DEN 

T CVCTV = 10 to 70 • clock edge to DEN activelinactive 
T CVDEX = 10 to 70 • falling edge of T 4 to DEN inactive 
T CHDNV = 10 to 55 • rising edge of clock to DEN active 
T CHDNX = 10 to 55 • clock edge to DEN inactive 

T2 

5.3.4 DT/R" 

The operation of the DT /R: signal varies somewhat be­
tween the 80186 and the 82188. The 80186 DT/R sig­
nal will remain in an active high state for all write cy­
cles and will default to a high state when the ~stem bus 
is idle (i.e., no bus activity). The 80186 DT/R goes low 
only for read cycles and does so only for the duration of 
the bus cycle. At the end of the read cycle, assuming 
the following cycle is a non-read, the DT /R: signal will 
default back to a high state. Back-to-back read cycles 
will result in the DT /R: signal remaining low until the 
end of the last read cycle. 

The DT/R signal on the 82188 operates differently by 
making transitions only at the start of a bus cycle. The 
82188 DT/R signal has no default state and therefore 
will remain in whichever state the previous bus cycle 
required. The 82188 DT/R signal will only change 
states when the current bus cycle requires a state differ­
ent from the previous bus cycle. 

T3 T4 

231590-6 

Figure 7. Data Control Timings 

22-323 



intJ Ap"258 

T4 T1 T2 T3 T4 

CLK 

80186DT/R:::::::::::~\~ ______________________________________ ~{~::::::: 

(READ) I 
80186 DT/R / ~ (WRITE) ____ ~_. 

. ,_T_CL_D_N ______________________________________ _ 
82188 DT/R --------"" ~ (WRITE) 
READ/WRITE _______ -' "" ___________________ (READ) 

TCLDTV = 0 to 55 ns. 231590-7 

Figure 8. Data Transmit & Receive Timings 

5.4 Chip Selects 

5.4.1 INTRODUCTION 

Chip-select circuitry is typically accomplished by using 
a discrete decoder to decode two'or more of the upper 
address lines.· When a valid address appears on the ad­
dress bus, the decoder. generates a valid chip-select. 
With this method, any bus master capable of placing an 
address on the system bus is able to generate a chip-se­
lect. An. example 'of this is shown in Figure 9 where an 
8086/8087 system uses a common decoder on the ad­
dress bus. Note the decoder is able to operate regardless 
of which processor is in control of the bus. 

ADDRESS 

ADDRESS 
DECODER· 

231590-8 

Figure 9. Typical 8086/8087 System 

With high integration processors like the 80186 and 
80188, the chip-select decoder is integrated onto the 
processor chip. The integrated chip-selects on the 
80186 enable direct processor connection to the chip­
enable pins on many memory devices, thus eliminating 
an external decoder. But because the integrated chip-se­
lects decode the '80186's internal bus, an external bus 
master, such as the 8087, is unable to activate them. 
The 82188 IBC solves this problem by supplying a 
chip'select mechanism which may be activated by both 
the host processor and a second processor. 

5.4.2 CSI AND CSO OF THE 82188 

The CSI (chip select in) and CSO (chip select out) pins 
of the 82188 provide a way for a second bus master to 
select memory while also making use of the 80186 inte­
grated chip-selects. The CSI pin of the .82188 connects 
directly to one of the 80186's chip-selects while CSO 
connects to the memory device. designated for the chip­
selects range. An example of this is shown in Figure 10. 

231590-9 

Figure 10. Typical 80186/82188/8087 System 

22-324 



intJ AP-258 

When the 80186 has control of the bus, the circuit acts 
just as a buffer and the memory device gets selected as 
if the circuit had not been there. Whenever CSI goes 
active, CSO goes active. When a second bus master, 
such as the 8087, takes control of the bus, CSO goes 
active and remains active until the 8087 passes control 
back to the processor. At this time CSO is deactivated. 

A functional block diagram of the CSI-CSO circuit is 
shown in Figure II. A grant pulse on the RQ/GTO line 
gives control to the 8087 and also causes the 
8Q87CONTROL signal to go active, which in tum 
causes CSO to go active. The 8087CONTROL signal 
~s inactive when either a release is received on 
RQ/GTO, indicating that the 8087 is relinquishing con­
trol to the main processor, or a grant is received on the 
RQ/GTl line, indicating that the 8087 is relinquishing 
control to a third processor. Both actions signify that 
the 8087 is relinquishing the bus. If CSO goes inactive 
because a third processor took control of the bus, then 
CSO will go active again for the 8087 when a release 
pulse is transmitted on the RQ/GTI line to the 8087. 
This release pulse occurs as a result of SYSHLDA go­
ing inactive from the third processor. 

5.4.3 SYSTEM DESIGN EXAMPLE 

To pr~vide the 8087 access to data in low memory 
through an integrated chip-select, the LCS pin should 
be disconnected from the bank that it is currently se­
lecting and fed directly into the 82188CSI. The CSI 
~ut should be connected ~he banks which the 
LCS formerly selected. The LCS will still select the 
same banks beCause CSO goes active whenever CSI 
goes active. But now the 8087, when taking control of 
the bus, may also select these banks. 

Care must be taken in locating the 8087 data area be­
cause it must reside in the area in which the chip-select 
is defined. If the 8087 generates an address outside of 
the LCS range, the CSO will still go active, but the 
address will erroneously select a part of the lower bank. 
Note also that this chip-select limits the size of the 8087 
data area to the maximum size memory which can be 
selected with one chip-select. However, this does not 
place a limit on instruction code size or non-8087 data 
size. All 80186 and 8087 instructions are fetched by the 
processor and therefore do not require that the 8087 be 

82188 IBC 

CSII-------I 

HOLD 

HLDA 

8087 CONTROL 

ARBITRATION 
LOGIC 

.-------, RO/Gn 

SYSHOLD SYSHLDA 

Figure 11.82188 Chip Select Circuitry 

22-325 

231590-10 



inter AP-258 

able to address them. Likewise, non-8087 data is never 
accessed by the 8087 and therefore does not require an 
8087 chip-select. 

5.5 Wait State & Ready Logic 

The 8087 must accurately track every instruction fetch 
the 80186 performs so that each op-code may be read 
from the system bus by the 8087 in parallel with the 
processor. This means that for instruction code areas, 
the 80186 cannot use internally generated wait states. 
All ready logic for these areas must be generated exter­
nally and sent into the 82188. The 82188 then presents 
a synchronous ready out (SRO) signal to both the 
80186 and the 8087. 

5.5.1 INTERNAL WAIT STATES WITH 
INSTRUCTION FETCHES 

If internal wait states are used by the processor with the 
8087 at zero wait states, then the. 8087 will latch op­
codes using a four clock bus cycle while the processor is 
using between five and seven clocks on each bus cycle. 
If the wait states are truly necessary to latch valid data 
from memory, then a four clock bus cycle will force the 
8087 to latch invalid data. The invalid data may then be 
possibly interpreted to be an ESCAPE prefix when, in 
reality, it is not. The reverse may also hold true in that 
the 8087 may not recognize an ESCAPE prefix when it 
is fetched. These conditions could cause a system to 
hang (i.e., cease to operate), or operate with erroneous 
results. 

If the memory is fast enough to allow latching of valid 
data within a four clock bus cycle, then the 80186 inter­
nal wait states will not cause the system to hang. Both 
processors will receive valid data during their respec­
tive bu~ cycles. The 8087 will finish its bus cycle earlier 
than the processor, but this is of no consequence to 
system operation. The 8087 will synchronize with the 
processor using the status lines SO-S2 at the start of the 
next instruction fetch. 

5.5.2 INTERNAL WAIT STATES WITH. DATA & 
1/0 CYCLES 

With the exception of "Dummy Read Cycles" and in­
struction fetches, all memory and I/O bus cycles exe­
cuted by the host processor are ignored by the 8087. 
Coprocessor synchronization is not required for un­
tracked bus cycles and, therefore, internally generated 
wait states do not affect system operation. All of the 
I/O space and any part of memory used strictly for 
data may use the internal wait state generator on the 
80186. 

Memory used for 8087 data is somewhat different. 
Here, as in the case of code segment areas, the system 
must rely on an external ready signal or else the memo­
ry must be fast enough to support zero wait state opera­
tion. Without an external ready signal, the 8087 will 
always perform a four clock bus cycle which, when 
used with slow memories, results in the latching of in­
valid data. 

Internal wait states will not affect system operation for 
data cycles performed by the 8087. In this case the 8087 
has control of the bus and the two processors operate 
independently. 

One type of data cycle has not yet been considered. 
Each time a numerics variable is accessed, the host 
processor runs a "Dummy Read Cycle" in order to 
calculate the operand address for the 8087. The 8087 
latches the address and then takes control of the bus to 
fetch any subsequent bytes which are necessary. If the 
8087 variables are located at even addresses, then an 
internally generated wait state will not present any 
problems to the system. If any numeric variables are 
located at odd addresses, then the interface between the 
host and coprocessor becomes asynchronous causing 
erroneous results. 

The erroneous results are due to the 80186 running two 
back-to-back bus cycles with wait states while the 8087 
runs two back-to-back bus cycles without wait states. 
The start of the second bus cycle is completely uncoor­
dinated between the two processors and the 8087 is un­
able to latch the correct address for subsequent trans­
fers. For this reason, 8087 variables in a 80186 system 
must always lie on even boundaries when using the in­
ternal wait state generator to access them. 

Numeric variables in an 80188 system must never be in 
a section of memory which uses the internal wait state 
generator. The 80188 will always perform consecutive 
bus cycles which would be equivalent to the 80186 per­
forming an odd addressed "Dummy Read Cycle." 

5.5.3 AUTOMATIC WAIT STATES AT RESET 

The 80186 automatically inserts three wait states to the 
predefined upper memory chip select range upon power 
up and reset. This enables designers to use slow memo­
ries for system boot ROM if so desired. If slow ROM's 
are chosen, then no further programming is necessary. 
If fast ROM's are chosen, then the wait state logic may 
simply be reprogrammed to the appropriate number of 
wait states. 

The automatic wait states have the possibility of pre­
senting the same problem as described in section 5.5.1 if 

22-326 



intJ AP-258 

the boot ROM needs one or more wait states. Under 
these conditions the 8087 would be forced to latch inc 
valid opcodes and possibly mistake one for an ESCAPE 
instruction. 

If the boot ROM requires wait states, then some sort of 
external ready logic is necessary. This allows both proc­
essors to run with the same number of wait states and 
insures that they always receive valid data. 

If the boot ROM does not require wait states, then 
there is no need to design external ready logic for the 
upper chip select region. But if 8087 code is present in 
the upper memory chip select region, the situation de­
scribed in section 3.4 regarding "Dummy Read Cycles" 
must be considered. 

The 82188 solves this problem by inserting three wait 
states on the SRO line to the 8087 for the first 256 bus 
cycles. By doing this the 82188 inserts the same number 
of wait states to both processors keeping them synchro­
nized. The initialization code for the 80186 must pro­
gram the upper memory chip select to look at external 
ready and to insert zero wait states within these first 
256 bus cycles. At the end of the 256 bus cycles, the 
82188 stops inserting wait states and both processors 
run at zero wait states. 

5.5.4 EXTERNAL READY SYNCHRONIZATION 

The 80186 and 8087 sample READY on different clock 
edges. This implies that some sort of external synchro­
nization is required to insure that both processors sam­
ple the same ready state. Without the synchronization, 
it would be possible for the external signal to change 
state between samples. The 80186 may sample ready 
high while the 8087 samples ready low. This would lead 
to the two processors running different length bus cy­
cles and possibly cause the system to hang. 

The 82188 provides ready synchronization through the 
ARDY and SRDY inputs. Once a valid transition is 
recorded, the 82188 presents the results on the SRO 
output and holds the output in that state until both 
processors have had a chance to sample the signal. 

5.6 BUS ARBITRATION 

In order for the 8087 to read and write numeric data to 
and from memory, it must have a means of taking con­
trol of the local bus. With the 8086/88 this is accom­
plished through a request-grant exchange protocol. The 
80186, however, makes use of HOLD/HOLD AC-

KNOWLEDGE protocol to exchange control of the 
bus with another processor. The 82188 supplies the 
necessary conversion to interface RQ/GT to HOLD/ 
HLDA signals. The RQ/GT3~ of the 8087 con­
nects directly to the 82188's RQ/GTO input while the 
82188's HOLD and HLDA pins connect to the 80186's 
HOLD and HLDA pins. 

When the 8087 requires control of the bus, the 8087 
sends a request on the RQ/GTO line to the 82188. The 
82188 responds by sending a HOLD request to the 
80186. When HLDA is received back from the 80186, 
the 82188 sends a grant back to the 8087 on the same 
RQ/GTO line. 

The 82188 also has provisions for adding a third bus­
master to the system which uses HOLD/HLDA pro­
tocol. This is accomplished by ~inL the 82188 
SYSHOLD, SYSHLDA, and RQ/GTI signals. 
The third processor requests the bus by pulling the 
SYSHOLD line high. The 82188 will route (and trans­
late if necessary) the requests to the current bus master. 
If the 8087 has control, the 82188 will request control 
via the RQ/GTI line which should be connected to the 
8087's RQ/GTI line. 

The 8087 will relinquish control by~tt~ off the bus 
and sending a grant pulse on the RQ/GTI line. The 
82188 responds by sending a SYSHLDA to the third 
processor. The third processor lowers SYSHOLD when 
it has finished on the bus. The 82188 routes this in the 
form of a release pulse on the RQ/GT1 line to the 
8087. The 8087 then continues bus activity where it left 
off. The maximum latency from SYSHOLD to 
SYSHLDA is equal to the 80186 latency + 8087 laten­
cy + 82188 latency. 

S.7 SPEED REQUIREMENTS 

One of the most important timing specs associated with 
the 80186-8087 interface is the speed at which the sys­
tem should run. The 8087 was designed to operate with 
a 33% duty cycle clock whereas the 80186 and 80188 
were designed to operate with a 50% duty cycle clock. 
In order to run both parts off the same clock, the 8087 
must run at a slower speed than is typically implied by 
its dash number in the 8086/88 family. 

22-327 



AP-258 

To determine the speed at which an 8087 may run 
(with a 50% duty cycle clock), the minimum low and 
high times. of the 8087 must be examined. The maxi­
mum of these two minimum specs becomes the half-pe­
riod of the 50% duty cycle system clock. For example, 
the 8087-1 provides worst case spec compatibility with 
the 80186 at system clock-speeds of up to 8 MHz. The 
clock waveforms are shown in Figure 12 using 10 MHz 
timings. 

The minimum clock low time spec (T CLCH) of the 10 
MHz 8087 is 53 ns. The clock low time of an 8 MHz 
80186 is specified to be: 

%(TcLcLl - 7.5 

Solving for TCLCL of the 80186 using TCLCH of the 
8087 yields the following: 

%(TCLCLl - 7.5 = TCLCH 

(TCLCLl = 2(TcLCH + 7.5) 

TCLCL = 121 ns 

The calculation shows minimum cycle time of the 
80186 to be 121 ns. This time translates into a maxi­
mum frequency of 8.26 MHz. 

6.0 BENCHMARKS 

6.1 Introduction 

The following benchmarks COmpare the overall system 
performance of an 8086, 80188, and an 80186 in nu­
meric applications. Results are shown for all three 
processors in systems with the 8087 coprocessor and 
in systems using an 8087 software emulator. Three 
FORTRAN benchmark programs are used to dem-

onstrate the large increase in floating-point math per­
formance provided by the 8087 and also the increase in 
performance due to the enhanced 80186 and 80188 host 
processors. 

The 8086 results were measured on an Intellec® Series 
III Microcomputer Development System with an 
iSBC® 86/12 board and an iSBC 337 multimodule. 
Typically, one wait state for memory read cycles and 
two wait states for memory write cycles are experienced 
in this environment. 

The 80186 and 80188 results were measured on a proto­
type board which allowed zero wait state operation at 
8 MHz. The benchmarks measured using the 8087 
showed little sensitivity to wait states. Instructions exe­
cuted on the 8087 tend to be long in comparison to the 
amount of bus activity required and, therefore, are not 
affected much by wait states. 

The benchmarks measured using the software emulator 
are much more bus intensive and average from 10 to 15 
percent performance degradation for one wait state. 

All execution times shown here represent 8 MHz oper­
ation. The 8086 results were measured at 5 MHz and 
extrapolated to achieve 8 MHz execution times. 

6.2 Interest Rate Calculations 

Routines were written in FORTRAN-86 to calculate 
the final value of a fund given the annual interest and 
the present value. It is assumed that the interest will be 
compounded daily, which requires the calculation of 
the yearly effective rate. This value, which is the equiv­
alent. annual interest if the interest were compounded 
daily, is determined by the following formula: 

yer = (1 +. (ir/np))**np - 1 

1.-------------l00ns------------~ 

10 104Hz --""""\ 
8087 SPECS \ 

33% DUTY CYCLE 1\ 
CLOCK '"----------

I 
J 

8104Hz ---"\. 
80186 SPECS \ 

1---------- TCLCH ----------I 

MIN. LOW TIME 

50% DUTY CYCLE 1\ 
CLOCK 

I 
) 

\ ,-------

1-------------- TCLCL MINIMUM -----------1 

231590-11 

Figure 12. Clock Cycle Timing 

22-328 



AP-258 

where: 
yer is the yearly effective rate 
ir is the annual interest rate 
np is the number of compounding periods per 
annum 

Once the yer is determined, the final value of the fund 
is determined by the formula: 

where: 

tv = (1 +yer) • pv 

pv is the present value 
fv is the future value 

Results are obtained using single-precision, double-pre­
cision, and temporary real precision operands when: 

ir is set to 10% (0.1) 
np is set to 365 (for daily compounding) 
pv is set to $2,000,000 

THE RESULTS: 

yer Final Value 

Single-Precision 10.514% $2,210,287.50 
(32-bit) 

Double-Precision 10.516% $2,210,311.57 
(64-bit) 

Temporary Real 10.516% $2,210,311.57 
Precision 

The difference between the final single-precision and 
double-precision values is $24.07; the difference in the 
final value between the double-precision and the tempo­
rary real precision is 0.000062 cents. Since the 8087 
performs all internal calculations on 80-bit floating 
point numbers (temp real format), temporary real pre­
cision operations perform faster than single- or double­
precision. No data conversions are required when load­
ing or storing temporary real values in the 8087. Thus, 
for business applications, the double-precision comput­
ing of the 8087 is essential for accurate results, and the 
performance advantage of using the 8087 turns out to 
be as much as 100 times the equivalent software emula­
tion program. 

6.3 Matrix Multiply Benchmark 
Routine 

A routine was written in FORTRAN-86 to compute 
the product of two matrices using a simple row/column 
inner-product method. Execution times were obtained 
for the multiplication of 32 X 32 matrices using double 
precision. The results of the benchmark are shown in 
Figure 14. 

The results show the 8087 coprocessor systems per­
forming from 23 to 31 times faster than the equivalent 
software emulation program. Both the 80188/87 and 
the 80186/87 systems outperform the 8086/87 system 
by 34 to 75 percent. This difference is mainly attributed 
to the fact that the matrix program largely consists of 
effective address calculations used in array accessing. 
The hardware effective address calculator of the 80186 
and 80188 allow each array access to improve by as 
much as three times the 8086 effective address calcula­
tion. 

6;4 Whetstone Benchmark Routine 

The Whetstone benchmark program was developed by 
Harry Curnow for the Central Computer Agency of the 
British government. This benchmark has received high 
visibility in the scientific community as a measurement 
of main frame computer performance. It is a "synthet­
ic" program. That is, it does not solve a real problem, 
but rather contains a mix of FORTRAN statements 
which reflect the frequency of such statements as mea­
sured in over 900 actual programs. The program com­
putes a performance metric: "thousands of Whetstone 
instructions per second (KIPS)." 

Simple variable and array addressing, fixed- and float­
ing- point arithmetic, subroutine calls and parameter 
passing, and standard mathematical functions are per­
formed in eleven separate modules or loops of a pre­
scribed number of iterations. 

Table 2 Interest Rate Benchmark Results 

8087 Software Emulator 8087 Coprocessor 

80188 8086 80186 80188 8086 80186 

Single Precision 70.3 ms 62.8 ms 43.4 ms .70 ms .66ms .61 ms 

Double Precision 72.1 ms 62.9 ms 44.4 ms .71 ms .66ms .61 ms 

Temp Real Precision 72.6 ms 63.0 ms 44.8 ms .69ms .65ms .59 ms 

Average 71.7 ms 62.9 ms 44.2 ms .70ms .66 ms .60 ms 

22-329 



inter AP-258 

The original coding of the Whetstone benchmark was 
written in Algol-60 and used single-precision values. It 

. was rewritten in FORTRAN with single-precision val­
ues to exactly reflect the original intent. Another ver­
sion was created using double-precision values. The re­
sults are shown in Table 3 .. 

110 

100 

90 

2.0 f-

I- 1.4 -
0.9 

1.0 
r---1.0 -

80188 8086 80186 

The results show the 8087 systems with the 80186 and 
80188 outperforming the equivalent software emulation 
by 60 to 83 times. Additionally, the 80186 coupled with 
the 8087 outperformed the 8086/87 system by 22 per­
cent. 

104.1 

0 95.5 

89.7 0 0 .....,.... .....,.... r--

80188/8087 8086/8087 80186/8087 231590-12 

Figure 13. Interest Rate Benchmark Results 

40 

30 

20 

21-

1 I- --!!.. 

.2 

"' '" N .. 
80188 

"' 
cO 
"' 

8086 

1.6 
,.;-.---

u : 
"' "1 
o 

80186 

31.5 

o 
r--

u 

= ~ 
"' 

41.1 

23.6 o .....,.... 

80188/8087 8086/8087 80186/8087 

Figure 14. Double Precision Matrix Multiplication 

22-330 

231590-13 



AP-258 

Table 3. Whetstone Benchmark Results 

Units = KIPS 
8087 Software Emulator 8087 Coprocessor 

80188 8086 

Single 
2 2.3 

Precision 

Double 
2 2.2 

Precision 

6.5 Benchmark Conclusions 

These benchmarks show that the 8087 Numeric Data 
Coprocessor, coupled with either the 80186 or the 
80188, can increase the performance of a numeric ap· 
plication by 75 to 100 times the equivalent software 
emulation program. 

Applications which require array accessing with effec· 
tive address calculations will benefit even more by us· 
ing the 80188 and 80186 as the host processor as com· 
pared to the 8086. The results of the matrix multiplica· 
tion show both the 80188 and 80186 outperforming the 
8086 by 34 and 75%, respectively, in an 8087 system. 
In general, an 80186/8087 system will offer a 10% to a 
75% improvement over an equivalent 8086/8087 sys· 
tern, depending on the instruction mix. 

7. CONCLUSION 

For control1er applications which require high perform­
ance in numerics and low system cost, the 16·bit 80186 
or 8-bit 80188 coupled with the 8087 offers an ideal 
solution. The integrated features of the 80186 and 

REFERENCES: 
82188 Data Sheet #231051 
80186 Data Sheet #210451 
80188 Data Sheet #210706 

80186 80188 8086 80186 

3.3 165.8 178.0 197.6 

3.2 151.7 152.0 185.2 

80188 offer a low system cost through reduced board 
space and a simplified production flow while the 8087 
fulfil1s the performance requirements of numeric appli­
cations. 

The 82188 lEC provides a straightforward, highly inte­
grated solution to interfacing the 80188 or 80186 to the 
8087. The bus control timings of the 82188 are compat­
ible with the 80186 and 80188, al10wing easy upgrades 
from existing designs. The 82188 features present a 
highly integrated solution to both new and old designs. 

The coprocessing capabilities of the 8087 bring per­
formance improvements of 75 to 100 times the equiva­
lent 80186 or 80188 software emulation program and 
an 80186/8087 system will offer a 10% to a 75% im­
provement over an equivalent 8086/8087 system de­
pending on the instruction mix. 

In addition a growing base of high· level language sup· 
port (FORTRAN, Pascal, C, Basic, PL/M, etc.) from 
Intel and numerous third-party software vendors facili­
tates the timely and efficient generation of application 
software. 

iAPX 86/88 80186/188 Users Manual 
Programmers Reference #210911 
Hardware Reference #210912 

AP-I13 "Getting Started with the 
Numeric Data Processor #207865 

22-331 



inter APPLICATION 
NOTE 

AP-286 

October 1986 

80186/188 Interface to Intel 
Microcontrollers 

PARVIZ KHODADADI 
APPLICATIONS ENGINEER 

22-332 
Order Number: 231784-001 



intJ AP-286 

1.0 INTRODUCTION 

Systems which require I/O processing and serial data 
transmission are very software intensive. The commu­
nication task and I/O operations consume a lot of the 
system's intelligence and software. In many conven­
tional systems the central processing unit carries the 
burden of all the communication and I/O operations in 
addition to its main routines, resulting in a slow and 
inefficient system. 

In an ideal system, tasks are divided among processors 
to increase performance and achieve flexibility. One at­
tractive solution is the combination of the Intel highly 
integrated 80186 microprocessor and the Intel8-bit mi­
crocontrollers such as the 80C51, 8052, or 8044. In 
such a system, the 80186 provides the processing power 
and the 1 Mbyte memory addressability, while the con­
troller provides the intelligence for the I/O operations 
and data communication tasks. The 80186 runs appli­
cation programs, performs the high level communica­
tion tasks, and provides the human interface. The mi­
crocontroller performs 8-bit math and single bit boole­
an operations, the low level communication tasks, and 
I/O processing. 

pcso 
PCSl 

DRQO 

INTO 

RESET 

This application note describes an efficient method of 
interfacing the 16-bit 80186 high integration micro­
processor to the 80C51, 8052, or the microcontroller­
based 8044 serial communication controller. The inter­
face hardware shown in Figure 1.1, is very simple and 
may be implemented with a programmable logic device 
or a gate-array. The 80186 and the microcontroller may 
run asynchronously and at different speeds. With this 
technique data transfers up to 200 Kbytes per second 
can be achieved between a 12 MHz microcontroller and 
an 8 MHz 80186. 

The 8-bit 80188 high integration microprocessor can 
also be used with the same interface technique. The 
performance of the interface is the same since an 8-bit 
bus is used. 

Interface to the 8044, 80C51, and the 8052 is identical 
because they have identical. pinouts (some pins have 
alternate functions). As an example, the software pro­
cedures for the 8044/80186 interface, which is the 
building block for the application driver, is supplied in 
this Application Note. 

t.lRO INTERFACE 
t.lWR CHIP 

cs 
OACK 

ORQ 

INT 

RESET 

231784-1 

Figure 1.1. 80186/Microcontroller Based System 
22-333 



AP-286 

1.1 System Overview 

The 80186 and the microcontrollers are processors. 
They each access memory and have address/data, read, 
and write signals. There are three common ways to in­
terface multiple processors together: 

1) First In First Out (FIFO) 

2) Dual Port RAM (DPRAM) 

3) Slave Port 

The FIFO interface, compared to DPRAM, requires 
less TTL and is easier to interface; however, FIFOs are 
expensive. The DPRAM interface is also expensive and 
even more complex. When DPRAM is used, the ad­
dress/data lines of each processor must be buffered, 
and hardware logic is needed to arbitrate access to 
DPRAM. The slave port interface given here is cheaper 
and easier than both FIFO and DPRAM alternatives. 

The 80186 processor, when interfaced to this circuit, 
views the microcontroller as a peripheral chip with 8-
bit data bus and no address lines (see Figure 1.1). It can 
read status and send commands to the microcontroller 
at any time. The microcontroller becomes a slave co­
processor while keeping its processing power and serial 
communication capabilities. 

The microcontrollers, with the interface hardware, 
have a high level command interface like many other 
data communication peripherals. For example, the 
80186 can send the microcontroller commands such as 
Transmit or Configure. This means the designer does 
not have to write low level software to perform these 
tasks, and it oflloads the 80186 to serve other functions 
in the application. 

1.2 Application Examples: 

The combination of the 80186 and a microcontroller 
basically provides all the functions that are needed in a 
system: a l6-bit CPU, 8-bit CPU, DMA controller, I/O 
ports, and a serial port. The 80C51 and the 8052 have 
an on-chip asynchronous channel, while the 8044 has 
an intelligent SDLC serial channel. In addition, many 
other functions such as timers, counters, and interrupt 
controllers are integrated in both the 80186 and the 
microcontrollers. 

Applications of the system described above are in the 
area of robotics; data communication networks, or seri­
al communication backplanes. A typical example is 
copiers. Different segments of the copy machine like 
the motor, paper feed, diagnostics, and error/warning 
displays are all controlled by microcontrollers. Each 
segment receives orders from and replies to the central 
processor which consists of the 80186 interfaced with a 
microcontroller. 

Another common application is in the area of process 
controllers. An example is a central control unit for a 
multiple story building which controls the heating, 
cooling, and lighting of each room in each floor. In 
each room a microcontroller performs the above func­
tions based on the orders received from the central 
processor. Depending on the throughput and type of 
the serial communication required, the 8044 or the 
80C51 (8052) may be selected for the application. 

2.0 OVERVIEW OF THE 80186, 
80C51, 8052, AND 8044 

This section briefly discusses the features of the micro­
controllers and the 80186. For more information about 
these products please refer to the Intel Microcontroller 
and Microsystem components hand-books. Readers fa­
miliar with the above products may skip this section. 

2.1 The 80186 Internal Architecture 

The 80186 contains an enhanced version of Intel's pop­
ular 8086 CPU integrated with many other features 
common to most systems (Figure 2.1). The 16-bit CPU 
can access up to 1 Mbyte of memory and execute in­
structions faster than the 8086. With speed selection of 
8, 10, and 12.5 MHz, this highly integrated product is 
the most popular 16-bit microprocessor for embedded 
control applications. 

The on-chip DMA controller has two channels which 
can each be shared by multiple devices. Each channel is 
capable of transferring data up to 3.12 Mbytes per sec­
ond (12.5 MHz speed). It offers the choice of byte or 
word transfer. It can be programmed to perform a 
burst transfer of a block of data, transfer data per speci­
fied time interval, or transfer data per external request. 

The on-chip interrupt controller responds to both ex­
ternal interrupts and interrupts requested by the on­
chip peripherals such as the timers and the DMA chan­
nels. It can be configured to generate interrupt vector 
addresses internally like the microcontrollers or exter­
nally like the popular 8259 interrupt controller. It can 
be configured to be a slave controller to an external 
interrupt controller (iRMX 86 mode) or be master for 
one or two 8259s which in turn may be masters for up 
to 8 more 8259s. When configured in master mode, 
each channel can support up to 64 external interrupts 
(128 total). 

Three 16-bit timers are also integrated on the chip. 
Timer 0 and timer 1 can be configured to be 16-bit 
counters and count external events. If configured as 
timers, they can be started by software or by an exter­
nal event. Timer 0 and 1 each contain a timer output 
pin. Transitions on these pins occur when the timers 
reach one of the two possible maximum counts. Timer 

22-334 



AP-286 

2 can be used as a prescaler for timer 0 and 1 or can be 
used to generate DMA requests to the on-chip DMA 
channel. 

Finally, the integrated clock generator, the wait state 
generator, and the chip select logic reduce the external 
logic necessary to build a processing system. 

2.2 The MCS-51 Internal Architecture 

The 80C51BH, as shown in Figure 2.2, consists of an 8-
bit CPU which can access up to 64 Kbytes of data 
memory (RAM) and 64 Kbytes of program memory 
(ROM). In addition, 4 Kbytes of ROM and 128 bytes 
of RAM are built onto the chip. 

The on-chip interrupt controller supports five inter­
rupts with two priority levels. There are two timers 
integrated in the 80C5!. Timer 0 and 1 can be config­
ured as 8-bit or 16-bit .timers or event counters. 

Finally the integrated full duplex asynchronous serial 
channel provides the human interface or communica-

CLOCK 

INTERRUPT 
CONTROLLER 

16-BIT 
CPU 

BUS 
CONTROLLER 

tion capability with other microcontrollers. The UART 
supports data rates up toSOO kHz (with 15 MHz crys­
tal) and can distinguish between address bytes and data 
bytes. 

The 8052 has the same features as the 80CS1 except it 
has 8 Kbytes of on-chip ROM and 256 bytes of on-chip 
RAM. In addition the 8052 has another timer which 
may be configured as the baud rate generator for the 
serial port. ' 

2.3 The 8044 Internal Architecture 

The 8044 has all the features of the 80C5!. In addition 
the on-chip RAM size is increased to 192 bytes and an 
intelligent HDLC/SDLC serial channel (SIU) replaces 
the SOC51 serial port (see Figure 2.3). It supports data 
rates up to 2.4 Mbps when an external clock is used and 
375 Kbps when the clock is extracted from the data 
line. The serial port can be used in half duplex point to 
point, multipoint, or one-way loop configurations. 

2DMA 
CHANNELS, 

TIMER! 
COUNTER 

WAIT STATE 
GENERATOR 

CHIP SELECT 
LOGIC 

Figure 2.1. 80186 Block Diagr~m 

CLOCK 

TIMER! 
COUNTERS 

18051l, 
~ 

8-BIT 
CPU 

4KBYTES 
ROM 

INTERRUPT 
CONTROLLER 

128 BYTES 
RAM 

Figure 2.2. 80C51 Block Diagram 

BAUD 
RATE 
GENERATOR 

NRZI DECODER/ 
ENCODER 

FLAG 
DETECT 

Figure 2.3. 8044 Block Diagram 

COMMANDS RESPONSES 

SERIAL 
PORT 

nl!O " 

~ORTS 

PHASE LOCKED 
LOOP 

FRAME CHECK SEQ. 
GEN!CHECK 

B RR or RR or 

PRIMARY RNR or - +- ~~~ ~~ SECONDARY 

INFO REJ 

Figure 2.4. 8044 Automatic Response to SDLC Commands 
22-335 



AP-286 

FLAG FLAG FLAG 
ADDRESS ADDRESS 
CONTROL DATA 

DATA FIELD DATA FIELD 
FIELD 
FCSO FCSO FCSO 
FCS1 FCS1 FCS1 
FLAG FLAG FLAG 

FLAG' FLAG FLAG 
ADDRESS ADDRESS 
CONTROL 

DATA 
DATA 
FIELD 

DATA 
FIELD 

FIELD 

FLAG FLAG FLAG 
Figure 2.5. The 8044 Frame Formats 

The SIU is called an intelligent channel because it re­
sponds to some SDLC commands automatically with­
out the CPU intervention when it is set in auto mode. 
These automatic responses substantially reduce the 
cOmmunication software. Figure 2.4 gives the' com­
mands and the automatic responses. 

The 8044 supports many types of frames including the 
standard SDLC format. Figure 2.5 shows the types of 
frames the 8044 can transmit and receive. If a format 
with ~ address byte is chosen, the 8044 Performs ad­
dress filtering during reception and transmits the con­
tents of the station address register during transmission 
automatically. If a format with FCS bytes is chosen, the 
8044 performs Cyclic Redundancy Check (CRC) dur­
ing reception and calculates the FCS bytes during 
transmission of a frame in hardware. Two preamble. 
bytes (PFS) may optionally be added: to the frames. 
Formats that include the station address and the con­
trol byte are· supported both in the auto and flexible 
modes. 

3.0 80186/MICROCONTROLLER 
INTERACTION 

The 80186 communicates with the microcontroller 
(8044, 80C51 or 8052) through the system's memory 
arid the Command/Data and Status registers. The CPU 
c::reates a data structure in the memory, programs the 
DMA controller with the start address and byte count 
of the block, and issues a command to the microcon­
troller. A hypothetical block diagram of a microcon­
troller when used with the interfaCe hardware is given 
in Figure 3.1. 

Chip select and interrupt lines are used to communicate 
between the microcontroller and the host. The inter-

rupt is used by the microcontroller to draw the 80186's 
attention. The Chip Select is used by the 80186 to draw' 
the microcontroller's attention to a new command. 

There are two kinds of transfers over the bus: Com­
. mand/Status . and data transfers. Command/Status 
transfers are always performed by the CPU. Data 
transfers are requested by the microcontroller and are 
typically performed by the DMA controller. 

The CPU writes commands using CS and WR signals 
and interrupts the microcontroller. The microcontroller 
reads the command, decodes it and performs the neces­
sary actions. The CPU reads the status register using 
CS and RD signals (see Figure 4.1). 

To initiate a commnad like TRANSMIT or CONFIG­
URE, a write operation to the microcontroller is issued 
by the CPU.' A read operation from the CPU gives the 
status of the microcontroller. Section 5 discusses details 
on these commands and the status. 

Any parameters or data associated with the command 
are transferred between the system memory and the 
microcontroller using DMA. The 80186 prepares a 
data block in memory. Its first byte specifies the length 
of the rest of the block. The rest of the block is the 
information field. The CPU programs the DMA con­
troller with the start address of the block, length of the 
block and other control information and then issues the 
command to the microcontroller. 

When the microcontroller requires access to the memo­
ry for parameter or data transfer, it activates the 80186 
DMA request line and uses the DMA controller to 
achieve the data transfer. Upon completion of an opera­
tion, the microcontroller interrupts the 80186. The 
CPU then reads results of the operation and status of 
the microcontroller. 

22-336 



inter AP-286 

DRQ 

WR 
STATUS 

CS 80C51 

DATA 
OR 

DO-7 8052 
REGISTER 

OR 

RD 80""' 

DACK 
REGISTER 

INT 

231784-2 

Figure 3.1. Microcontroller Plus the Interface Hardware Block Diagram 

4.0 SYSTEM INTERFACE 

There are two kinds of transfers over the bus: com­
mand/status and data transfers. The command/status 
transfers are always initiated and performed by the 
80186. The data transfers are requested by the micro­
controller using the DMA request (DRQ) line. In rela­
tively slow systems the 80186 might also perform the 
data transfers. In that case, the request from the micro­
controller will serve as an interrupt to the CPU. This 
mode of operation depends on the serial data rate. 

The system interface performs command/status trans­
fers, data/parameter transfers, and interrupts. This sec-' 
tion describes the interface between the 80186 and a 
microcontroller shown in Figure 1.1. Section 6 de­
scribes the interface hardware. 

4.1 Command/Status Transfers 

The 80186 cOIitrols the microcontroller by writing into 
the command/data register and reading from the status 
register. The CPU writes a command by activating the 
chip select (PCSO), putting the command onto the data 
bus, and activating the WR signal. The command byte 
is latched into the command/data register, and the mi­
crocontroller is interrupted. In the interrupt service 
routine, the microcontroller reads the command byte 
from the command/data register, decodes the com­
mand byte, and activates the DRQ for data or parame-

ter transfer if the decoded command requires such 
transfer. 

At the end of parameter transfer the microcontroller 
updates the status register and interrupts the 80186. 

4.2 Data/Parameter Transfer 

Data/parameter transfers are controlled by a pair of 
REQUEST/ACKNOWLEDGE lines: DMA Request 
line (DRQ) and DMA Acknowledge line (DACK). 
Data and parameters are transferred via the Com­
mandIData'register to or from memory. 

In order to request a transfer from memory, the micro­
controller activates the DRQ pin. The DRQ signal goes 
active after a read operation by the microcontroller. In 
response, the 80186 DMA controller performs a byte 
transfer from the memory to the CommandlData regis­
ter. Data is transferred on the bus and written into the 
CommandlData register on the rising edge of the 
80186 WR signal (MWR), which is activated by the 
DMA controller. Figure 4.2 shows the write timing. 

In order to request a transfer to memory, the microcon­
troller activates the DRQ signal and outputs the data 
into the Command/Data latch. When the microcon­
troller WR signal goes active, DRQ is set. In response, 
the DMA performs the data transfer and resets the 
DRQ signal. Figure 4.3 shows the read timing. 

22-337 



intJ AP·286 

4.3 Interrupt 

The microcontroller reports on completion of an event 
by updating the status register and raising the interrupt 
signal assuming this signal is initially low. The inter­
rupt is cleared by the command from the CPU where 

the INTERRUPT ACKNOWLEDGE bit is set 
(MD7). The INT A bit is the most significant bit of the 
command byte. Figure 4.4 and 4.5 show the interrupt 
timing. Note that it is the responsibility of the CPU to 
clear the interrupt in order to prevent a deadlock. 

80186 Pin Name Function 

CS RD WR 

1 X X No Transfer to/from Command/Status 
0 1 1 

0 0 0 Illegal 

0 0 1 Read from Status Register 

0 1 0 Write to Command/Data Register 

DACK RD WR 

1 X X No Transfer 
0 1 1 

0 0 0 Illegal 

0 0 1 Data Read from DMA Channel 

0 1 0 Data Write to DMA Channel 

NOTE: 
Only one of CS, DACK may be active at any time. 

Figure 4.1. Data Bus Control Signals and Their Functions 

\~----------------------~I 

\~--------------~I 
1.400-7 x x 

.231784-3 

Figure 4.2. Write Timing 

\~------------~--------~I 

\~--------------~I 
1.400-7 x x 

231784-4 

Figure 4.3. Read Timing 

22-338 



AP-286 

'~--------------I 
M07 _______ ...,1 ,"----

INT '''------[" (0''',)----
231784-5 

Figure 4.4. Interrupt Timing (Going Inactive) 

CLKOUT 

""~ =1 i 
ORQ, INT --= :r 

75 (nSEC) 

,~----

231784-6 

Figure 4.5. Reset Timing 

5.0 COMMANDS AND STATUS 

This section specifies the format of the commands and 
status. The commands and status given here are similar 
to most common coprocessors and data communication 
peripherals (e.g., the 82588 and 82586). The user may 
add more commands or redefine the formats for his/ 
her own specific application. 

5.1 Commands 

A command is given to the microcontroller by writing 
it into the Command/Data register and interrupting 
the microcontroller. The command can be issued at any 
time; but in case it is not accepted, the operation is 
treated like a NOP and will be ignored (although the 
INT will be updated). 

Format: 

7 

INTA 

6 

x 
5 

x 
4 3 2 0 

x OPERATION 

5.1.1 ACKNOWLEDGING INTERRUPT (BIT 7) 

only way to clear the interrupt bit and reset the 80186 
interrupt signal other than by a hardware reset. 

5.1.2 OPERATIONS (BITS 0-3) 

The . OPERATION field initiates a specific operation. 
The microcontroller executes the following commands 
in software: 

NOP 
ABORT 
TRANSMIT" 
CONFIGURE" 
DUMP' 
RECEIVE" 
TRA-DISABLE 
REC-DISABLE 
"Requires DMA operation. 

The above operations except ABORT are executed only 
when the microcontroller is not executing any other 
operation. Abort is accepted only when the CPU is per­
forming a DMA operation. 

The INTA bit, if set, causes the interrupt hardware 
signal and the interrupt bit to be cleared. This is the 

22-339 



inter AP-286 

Operations that require parameter transfer (e.g., CON­
FIGURE and DUMP) or data transfer (e.g., TRANS­
MIT and RECEIVE) are called parametric operations. 
The remaining are called non-parametric operations. 

An operation is initiated by writing into the command 
register. This causes the microcontroller to execute the 
command decode instructions. Some of the operations 
cause the microcontroller to read parameters from 
memory. The parameters are organized in a block that 
starts with an 8-bit byte count. The byte count specifies 
the length of the rest of the block. Before beginning the 
operation, the DMA pointer of the DMA channel must 
point to the byte count. There is no restriction on the 
memory structure of the parameter block as long as the 
microcontroller receives the next byte of the block for 
every DMA request it generates. Transferring the bytes 
is the job of the 80186 DMA controller. 

The microcontroller requests the byte-count and deter­
mines· the length of the parameter block. It then re­
quests the parameters. 

Upon completion of the operation, (when interrupt is 
low) the microcontroller updates the status, raises the 
interrupt signal, and goes idle. 

NOP 

This operation does not affect the microcontroller. It 
has no parameters and no results. 

ABORT 

This operation attempts to.abort the completion of an 
operation under execution. It is valid for CONFIG­
URE, TRANSMIT, DUMP, and RECEIVE. It is ig­
nored for any of the above if transfer of parameters has 
already been accomplished. The microcontroller, upon 
reception of the ABORT command, stops the DMA 
operation and issues an Execution-Aborted interrupt. 

TRANSMIT 

This operation transmits one message. A message may 
be transmitted as an SDLC frame by the 8044, or in 
ASYNC protocol by the 80C51 or the 8052 serial port. 

Figure 5.1 shows the format of the Transmit block. A 
typical transmit operation parameter block includes the 
destination address and the control byte in the informa­
tion field. As an example, see the 8044 transmit block 
in Figure 7.2. 

7 6 5 4 3 2 o 
BYTE COUNT 

FIRST INFO BYTE 

LAST INFO BYTE 

Figure 5.1. Format of Transmit Block 

The transmit operation will either complete the execu­
tion or be aborted by a specific ABORT operation. A 
Transmit-Done or Execution-Aborted interrupt is is­
sued upon completion of this operation. 

CONFIGURE 

This operation configures the microcontroller's internal 
registers. The length. and the part of the configuration 
block that is modified are determined,by the first two 
bytes of the command parameter (see Figure 5.2). The 
FIRST BYTE specifies the first register in the config­
ilre block that will be configured, and the BYTE 
COUNT specifies the number of registers that will be 
configured starting with the FIRST BYTE. For exam­
ple, if the FIRST BYTE is 1 and the BYTE COUNT is 
the length of the configure block, then all of the regis­
ters are updated. If FIRST BYTE is 4 and BYTE 
COUNT is 2, then only the fourth register in the con­
figure block is updated. Minimum byte count is 2. 

7 6 543 2 0 

BYTE COUNT 

FIRST BYTE 

FIRST REGISTER 

LAST REGISTER 

Figure 5.2. Format of Configure Block 

A Configure-Done interrupt is issued when the opera­
tion is done unless ABORT was issued during the 
DMA operation. 

DUMP 

This operation causes dumping of a set of microcontrol­
ler internal registers to system memory. Figure 7.4 
shows the format of the 8044 DUMP block. 

The DUMP operation will either complete the execu­
tion or be aborted by a specific ABORT operation. A 
Dump-Done or Execution-Aborted interrupt is issued 
upon completion of this operation. 

22-340 



AP-286 

RECEIVE 

This operation enables the reception of frames. It is 
ignored if the microcontroller's serial channel is already 
in reception mode: 

The serial port receives only frames that pass the ad­
dress filtering. The microcontroller transfers the re­
ceived information and the byte count to the system 
memory using DMA. The completion of frame recep­
tion causes a Receive-Done event. 

REC-DISABLE 

This operation causes reception to be disabled. If trans­
fer of data to the 80186 memory has already begun, 
then it is treated like the ABORT command. This oper­
ation has no parameters. REC-DISABLE is accepted 
only when the microcontroller's serial port is in receive 
mode. 

TRA-DISABLE 

This operation causes the transmission process to be 
aborted. If the microcontroller is fetching data from 
80186 memory, then it is treated like the ABORT com­
mand. This operation has no parameters. It is accepted 
only when the serial port is in transmit mode. 

5.1.3 ILLEGAL COMMANDS 

Parametric and non-parametric commands except 
ABORT will be rejected (interrupt will not be set) if the 
microcontroller is already executing a command. 

ABORT is rejected if issued when the microcontroller 
is not requesting DMA operation, or a non-Parametric 
execution is performed, or transfer of parameters/data 
has already been accomplished. 

DMA operations shall not be aborted by any non-para­
metric or parametric command except by the ABORT 
command. 

REC-DISABLE and TRA-DISABLE will not be ac­
cepted if the serial channel is idle. 

5.2 Status 

The microcontroller provides the information about the 
last operation that was executed, via the status register. 

The microcontroller reports on these events by updat­
ing a status register and raising the INTERRUPT sig­
nal. Information from the status register is valid pro­
vided the interrupt signal is high or bit 0 of the status 
being read is set. 

Format: 
7 6 5 432 o 

leTS· I RTS· E EVENT DMA INT 
'8044 only 

5.2.1 INTERRUPT (BIT 0) 

The interrupt bit is set together with the hardware in­
terrupt signal. Setting the INT bit indicates the occur­
rence of an event. This bit is cleared by any command 
whose INTA bit is set. Status is valid only when this bit 
is set. 

5.2.2 DMA OPERATION (BIT 1) 

The DMA bit, when set, indicates that a DMA opera­
tion is in progress. This bit is set if the commnad re­
ceived by the microcontroller requires data or parame­
ter transfer. If this bit is clear, DRQ will be inactive. 
The DMA bit, when cleared, indicates the completion 
of a DMA operation. 

5.2.3 ERROR (BIT 5) 

The E bit, if set, indicates that the event generated for 
the operation that was completed contains a warning, 
or the operation was not accepted. 

5.2.4 REQUEST TO SEND (BIT 6) 

The RTS bit, if clear, indicates that the serial channel is 
requesting a transmission. 

5.2.5 CLEAR TO SEND (BIT 7) 

The CTS bit indicates that, if the RTS bit is clear, the 
serial port is active and transmitting a frame. 

5.2.6 EVENT (BITS 2-4) 

The event field specifies why the microcontroller needs' 
the attention of the 80186. 

The following events may occur: 

CONFIGURE-DONE 
TRANSMIT-DONE 
DUMP-DONE 
RECEIVE-DONE 
RECEPTION-DISABLED 
TRANSMISSION"DISABLED 
EXECUTION-ABORTED 

22-341 



inter AP-286 

CONFIGURE-DONE 

This event indicates the completion of a CONFIGURE 
operation. ' 

TRANSMIT-DONE 

This event indicates the completion of the TRANSMIT 
operation. 

If the E bit is set, it indicates that the trans~it buffer 
was already fulL 

DUMP-DONE 

This event indicates that the DUMP operation is com­
pleted. 

RECEIVE-DONE 

This event indicates that a frame has been received and 
stored in memory. 

The format of the received message is indicated in Fig­
ure 5.3. 

7 6 5 4 3 2 o 
" 

FIRST INFO BYTE 

LAST INFO BYTE 

RECEIVED BYTE COUNT 

Figure 5.3. Format of Receive Block 

Following the byte count, a few more bytes relating to 
the received frame such as the source address and the 
control byte may be transferred to the system memory 
using DMA. As an example, see'the 8044 receive block 
in Figure 7.3. 

Note that the format of a frame received by the micro­
controller serial channel is configured by the CONFIG­
URE command. 

If the E bit is set, buffer overrun has occurred. 

RECEPTION-DISABLED 

This event is issued as a result of a RCV-DISABLE 
operation that causes part of a frame to be disabled. 

If the E bit is set, the serial port was already disabled, 
and the RCV-DISABLE is not accepted. 

TRANSMISSION-DISABLED 

This event is issued as a result of a TRA-DISABLE 
operation that causes transmission of a frame to be dis­
abled. 

The E bit, if set, indicates that the TRA-DISABLE 
operation was not accepted since the serial port was 
already idle, or transmission of a frame has already 
been accomplished. 

EXECUTION-ABORTED 

This event indicates that the execution of the last opera­
tion was aborted by the ABORT command. 

If the E bit is set, ABORT was issued when the micro­
controller was not executing any commands. 

6.0 HARDWARE DESCRIPTION 

The interface hardware shown in Figures 6.1 and 6.2 
are identicaL The difference is the status register. In 
Figure 6.2, an external latch is used to latch the status 
byte. This hardware is recommended if an extra I/O 
port on the microcontroller is required for some other 
applications, or external program and data memory is 
required for the microcontroller. The hardware shown 
in Figure 6.1 makes use of one of the microcontroller's 
I/O ports(Port I) to latch the status to minimize hard­
ware. The discussion of Sections I through 5 apply to 
both schematics. 

6.1 Reset 

After an 80186 hardware reset, the microcontroller is 
also reset. The on-chip registers are initialized as ex­
plained in the Intel Microcontroller Handbook. The re­
set signal also clears the 80186 interrupt and the micro­
controller interrupt signals by resetting FF3 (Flip:Flop 
3) and FF2 (Flip-Flop 2). Figure 4.5 shows the RESET 
timing. 

6.2 Sending Commands 

A bidirectional latched transceiver (74ALS646) is used 
for the Command/Data register. When the 80186 
writes a command to the Command/Data register, it 
interrupts the microcontroller. The interrupt is generat­
ed only when bit 7 (INTA) of the command byte is set. 
When the 80186 PCSO and WR signals go active to 
write the command, FF2 will be ,set and FF3 will be 
cleared. The output of FF3 is the interrupt to the 80186 
and the INT status bit. The INT bit is cleared immedi­
ately to indicate that the status is no longer valid. The 
output of FF2 is the interrupt to the microcontroller. A 
high to low transition on this line will interrupt the 
microcontroller. The interrupt signal will be cleared as 
soon as the microcontroller reads the command from 
the Command/Data register. 

22-342 



AP-286 

6.3 DMA Transfers 

In the interrupt service routine the ~ommand is decod­
ed. If it requires a DMA transfer, the microcontroller 
sets the DMA bit of the status register which activates 
the DMA request signal. DRQ active causes the 80186 
on-chip DMA to perform a fetch and a deposit bus 
cycle. The first DMA cycle clears the DRQ signal (FFI 
is cleared). When the microcontroller performs a read 
or write operation, the output of the FFI will be set, 
and DRQ goes active again. 

The DMA controller transfers a byte from system 
memory to the Command/Data register. Data is 
latched when the 80186 PCSI and WR signals go ac­
tive. PCSI and WR active also clear FFI. The micro­
controller monitors the output of FFI by polling the 
P3.3 pin. When FFI is cleared the microcontroller 
reads the byte from the Command/Data register. The 
P3.3 pin is also the interrupt pin. Ifa slow rate of trans­
fer is acceptable, every DMA transfer can be interrupt 
driven to allow the microcontroller to perform other 
tasks. 

The DMA controller transfers a byte from the Com­
mand/Data register to system memory by activating 

Vee 

DRQa 

the 80186 PCSI and RD signals. PCSI and RD active 
also clear FFI. When FFI is cleared the microcontrol­
ler writes the next byte to the Command/Data register. 

When all the data is transferred, the microcontroller 
clears the DMA status bit to disable DRQ. It then up­
dates the status, sets the INT bit, and interrupts the 
80186. 

If the interface hardware in Figure 6.1 is used P 1.1 is 
the DMA status bit and PI.O is the INT bit. The micro­
controller enables or disables them by writing to port I. 
In Figure 6.2, DRQ or INT is disabled or enabled by 
writing to the 74LS374 status register. Note that the 
INT status bit is c·leared by the hardware when the 
80186 writes a command. 

6.4 Reading Status 

The command is written and the status is read with the 
same chip select (PCSO), although the status is read 
through the 74LS245 transceiver and the command is 
written to the Command/Data register. 

LS245 Pl.7 

P1.6 

P1.5 
AO-7 

P1.04 

P1.3 

P1.2 

P1.1 

P3.3/INT1 

MR04:;::LY>----+--+-t-----.J GNO 

A B DO-7 
ALS646 

MOO-7-+-+-__ -+ .. __ ---."z;...41 

PCSl -I-..:;~Y.Ht--_t-I-+;::::__I 

MWR'-r ...... " .J 

"';::~::::::j;t:::===Rii ~ ViR 

pcso,J-=LY.)---t--I~ 1--+------+----.... P3.2/INTO 

INT+------1f+=--+---------~ 
PLO 

RESET 

L-------------------___ -+R~IT 231784-7 

Figure 6.1. Hardware Interface (Port 11s the Status Register) 

22-343 



AP-286 

LS245 
07 

LS374 

06 
Vee 05 

r-- AO-7 
04 

03 

02 
LS74 01 

ORao In·!=E CLR 
~ J 

DO 
G 01R OE CLK 

~i 

... • P3.3/INTI 

:1 GNO GNO ,.. 
i '---

~ LS373 

1+"" A B 

1 ALS646 I' 

OIR 

tARO 

1.400-7 00-7 

-!:D Lolt= ~ CAB G CBA I+- - J 
PCSI 

~- ~ L 

-~ 
LS138 A2 

Vee ~ 

RO 

f It. 

MWR 

>1: FF2 M07 LSLS4_ 

- ---./ 
CLR Q 

PCSO 

I 
~ 

INT 

RESET I V-

1 -

I~ C LS74 0 
CLR 

J 
, 

~ 
r-

L ALE 

WR 

P3.2/INTO 

RESET 

231784-8 

Figure 6.2. Hardware Interface 

The microcontroller updates the status byte whenever a 
change occurs in the status and outputs the result to the 
status register. In order to read status, the 80186 acti­
vates the PCSO line, and then activates the RD line. 
The contents of the status are put on the data bus, 
through the 74LS245 transceiver. 

For systems that require two DMA'channels, a second 
pair of DRQ1/DACKl signals may easily be added to 
the hardware. In that case one of the status bits 
(DMA2) ANDed with the output of FFI will serve as 
the second DMA request signal (DRQ1). DACKI can 
be generated with the 80186 PCS2. 

7.0 8044/80186 INTERFACE 

This section shows how to make use of the status and 
commands described in section 5 and the hardware giv­
en in Figure 6.1 to interface the 80186 with the 8044. 
The 8044 code to implement these functions is shown 
in Appendix A. 

7.1 Configuring the 8044 

This operation configures the 8044 registers. The for­
mat of the configure block is shown in Figure 7.1. The 
part of the configuration block that is modified is deter­
mined by the first two bytes of the command parame­
ter. The FIRST BYTE specifies the first register in the 
configure block that will be configured, and the BYTE 
COUNT specifies the number of registers that will be 
configured starting with the FIRST BYTE. For exam­
ple, if the FIRST BYTE is 1 and the BYTE COUNT is 
13, then all of the registers are updated. If FIRST 
BYTE is 4 and BYTE COUNT is 2, then transmit buff­
er start register is configured. 

The configure command performs the following: 1) 
configures the interrupts and assigns their priorities; 2) 
assigns the start address and length of the transmit and 
receive buffers; 3) sets the station address; 4) sets the 
clock option and the frame format. 

22-344 



inter AP-286 

For other microcontrollers the format of the configure 
block should be modified accordingly. For example, the 
80CSI serial port registers (e.g., T2CON, SCON) re­
place the 8044 SIU registers in the configure block. 

7 6 5 432 1 0 

BYTE COUNT 

FIRST BYTE 

STS 

SMD 

STATION ADDRESS 

TRANSMIT BUFFER START 

TRANSMIT BUFFER LENGTH 

RECEIVE BUFFER START 

RECEIVE BUFFER LENGTH 

INTERRUPT PRIORITY 

INTERRUPT ENABLE 

TIMER/COUNTER MODE 

TIMER/COUNTER MODE 

PROCESSOR STATUS WORD 

Figure 7.1. Format of the 8044 Configure Block 

7.2 Transmitting a Message 
with the 8044 

A message is a block of data which represents a text file 
or a set of instructions for a remote node or an applica­
tion program which resides on the 8044 program mem­
ory. A message can be a frame (packet) by itself or can 
be comprised of multiple frames. An SDLC frame is 
the smallest block of data that the 8044 transmits. The 
8044 can receive commands from the 80186 to transmit 
and receive messages. The 8044 on-chip CPU can be 
programmed to divide messages into frames if neces­
sary. Maximum frame size is limited by the transmit or 
receive buffer. 

To transmit a message, the 80186 prepares a transmit 
data block in memory as shown in Figure 7.2. Its first 
byte specifies the length of the rest of the block. The 
next two bytes specify the destination address of the 
node the message is being sent to and the control byte 
of the message. The 80186 programs the DMA control­
ler with the start address of the block, length of the 
block and other control information and then issues the 
Transmit command to the 8044. 

Upon receiving the command, the 8044 fetches the first 
byte of the block using DMA to determine the length of 
the rest of the block. It then fetches the destination 
address and the control byte using DMA. 

The 8044 fetches the rest of the message into the on­
chip transmit buffer. The size and location of the trans­
mit buffer in the on-chip RAM is configured with the 
Configure command. The 8044 CPU then enables the 
Serial Interface Unit (SIU) to transmit the data as an 
SDLC frame. The SIU sends out the opening flag, the 
station address, the SDLC control byte, and the con­
tents of transmit buffer. It then transmits the calculated 
CRC bytes and the closing flag. The 8044 CPU and the 
SIU operate concurrently. The CPU can fetch bytes 
from system memory or execute a command such as 
TRANSMIT-DISABLE while the SIV is active. 

Upon completion of transmission, the SIU updates the 
internal registers and interrupts the 8044 CPU. The 
8044 then updates the status and interrupts the 80186. 
Note that baud rate generation, zero bit insertion, 
NRZI encoding, and CRC calculation are automatical­
ly done by the SIV. 

7.3 Receiving a Message 
with the 8044 

To receive a message, the 80186 allocates a block of 
memory to store the message. It sets·the DMA channel 
and sends the Receive command to the 8044. 

Upon reception of the command, the 8044 enables its 
serial channel. The 8044 receives and passes to memory 
all frames whose address matches the individual or 
broadcast address and passes the CRC test. 

The SIU performs NRZI decoding and zero bit dele­
tion, then stores the information field of the received 
frame in the on-chip receive buffer. At the end of recep­
tion, the CPU requests the transfer of data bytes to 
80186 memory using DMA. After transferring all the 
bytes, the 8044 transfers the data length, source ad­
dress, and control byte of the received frame to the 
memory (see Figure 7.3). Upon completion of the 
transfers, the 8044 updates the status register and raises 
the interrupt signal to inform the 80186. 

If the SIU is not ready when the first byte of the frame 
arrives, then the whole frame is ignored. Disabling re­
ception after the first byte was passed to memory caus­
es the rest of the frame to be ignored and an interrupt 
with Receive-Aborted event to be issued. 

22-345 



inter Ap·286 

PREAMBLE 

BYTE COUNT FLAG 

DESTINATION ADDRESS, DESTI ADDRESS 

TRANSMIT CONTROL BYTE CONTROL BYTE 

FIRST DATA BYTE FIRST DATA BYTE, 

LAST DATA BYTE LAST DATA BYTE 

FCS BYrE 

FCS BYTE 

FLAG 

Figure 7.2. The 8044 Transmit Frame Structure 
and Location of Data Element in System Memory 

PREAMBLE 

FLAG 

rr- DESTI ADDRESS 

CONTROL BYTE 

FIRST DATA BYTE FIRST DATA BYTE 

II LAST DATA BYTE 

!J 
LAST DATA BYTE 

BYTE COUNT FCS BYTE 

DESTI ADDRESS FCS BYTE 

CONTROL BYTE FLAG 

231784-9 

Figure 7.3. The 8044 Receive Frame Structure 
and Location of Received Data Element in 

System Memory 

7.4 Dumping the 8044 Registers 

Upon reception of the Dump command, the 8044 trans­
fers the contents of its internal registers to the system 
memory (See Figure 7.4). 

7 6 5 4 3 2 o 
STS REG. 

SMDREG. 

STAD REG. 

'TBS REG. 

TBLREG. 

TCB REG. 

RBSREG. 

RBLREG. 

RCB REG. 

RFLREG. 

PSWREG. 

IPREG. 

IE REG. 

TMODREG. 

TCON REG. 

Figure 7.4. Format of the 8044 Dumped Registers 

7.5 Aborting an Operation 

To abort a DMA operation, the 80186 sends an Abort 
command to the Comrnand/Data latch and interrupts 
the 8044. During a DMA operation, the 8044 puts the 
external interrupt to high priority; therefore, the Abort 
interrupt will suspend the execution of the operation in 
progress and update the status register with the Execu­
tion-Aborted event. It then returns the 8044 program 
counter to a location before the aborted operation start­
ed. The Abort software procedure given in Appendix A 
gives the details of the execution of the ABORT com-
mand. ' 

7.6 Disabling the Transmission or 
Reception 

Transmission of a frame is aborted if the 80186 sends a 
TRANSMIT-DISABLE command to the 8044. The 
command causes the 8044 to clear the Transmit Buffer 

22-346 



inter AP-286 

Full (TBF) bit. During transmission, if the TBF bit is 
cleared, the SIU will discontinue the transmission and 
interrupt the 8044 CPU. 

The RECEIVE-DISABLE command causes the 8044 
to clear the Receive Buffer Empty (RBE) bit. The SIU 
aborts the reception, if the RBE bit is cleared by the 
CPU. 

When transmission or reception of a frame is discontin­
ued, the SIU interrupts the 8044 CPU. The CPU then 
updates the status and interrupts the 80186. 

7.7 Handling Interrupts 

When the 80186 sends a command, it sets the 8044 
external interrupt flag. The 8044 services the interrupt 
at its own convenience. In the interrupt service routine 
the 8044 executes the appropriate instructions for a giv­
en command. During execution of a command the 8044 
ignores any command, except ABORT, sent by the 
80186 (see section 5.1.2). This is accomplished by clear­
ing the interrupt flag before the 8044 returns from the 
interrupt service routine. During DMA operations the 
8044 sets the external interrupt to high priority. An 
interrupt with high priority can suspend execution of 
an interrupt service routine with low priority. The 
ABORT command given by the 80186 will interrupt 
the execution of the DMA transfer in progress. Upon 
completion of ABORT, execution of the last operation 
will not be resumed (see Appendix A). Note that any 
other command given during the DMA operation will 
also abort the operation in progress and should be 
avoided. 

8.0 8044 IN EXPANDED OPERATION 

To increase the number of information bytes in a frame, 
the 8044 can be operated in Expanded mode. In Ex­
panded operation the system memory can be used as 
the transmit and receive buffer instead of the 8044 in­
ternal RAM. AP-283, "Flexibility in Frame Size Oper­
ation with the 8044", describes Expanded operation in 
detail. 

8.1 Transmitting a Message in 
Expanded Operation 

In Expanded operation the 8044 transmits the frame 
while it is fetching the data from the system memory 
using DMA. An internal transmit buffer is not neces­
sary. The system memory can be used as the transmit 
buffer by the 8044. 

Upon receiving the Transmit command, the 8044 en­
ables the SIU and fetches the first data byte from the 
Command/Data register. The SIU transmits the open­
ing flag, station address, and the control byte if the 
frame format includes these fields. It then transmits the 

fetched data. The 8044 CPU fetches the next byte while 
the previously fetched byte is being transmitted by the 
SIU. The CPU fetches the remaining bytes using 
DMA, then the SIU transmits them simultaneously un­
til the end of message is reached. The SIU then trans­
mits the FCS bytes, the closing flag and interrupts the 
8044 CPU. The 8044 updates the status with the Trans­
mit-Done event and interrupts the 80186. If the DMA 
does not keep up with transmission, the transmission is 
an underrun. 

8.2 Receiving a Message in Expanded 
Operation 

In Expanded operation the DMA controller transfers 
data to the system memory while the 8044 SIU is re­
ceiving them. 

To receive a message, the 80186 allocates a block of 
memory for storing the message. It sets the DMA chan­
nel and sends the Receive command to the 8044. 

Upon reception of the command, the 8044 enables its 
serial channel and waits for a frame. The SIU performs 
flag detection, address filtering, zero bit deletion, NRZI 
decoding, and CRC checking as it does in Normal op­
eration. 

After the SIU receives the first byte of the frame, the 
8044 CPU requests the transfer of the byte to memory 
using DMA. The 80186 DMA moves the information 
byte into the system memory while the SIU is receiving 
the next byte. The next byte is transferred to the memo­
ry after the SIU receives it. . When the entire frame is 
received, the SIU checks the received Frame Check Se­
quence bytes. If there is no CRC error, the SIU updates 
the 8044 registers and interrupts the 8044 CPU. The 
CPU updates the status and interrupts the 80186. 

9.0 CONCLUSION 
This application note describes an efficient way to in­
terface the 80186 and the 80188 microprocessors to the 
Intel 8-bit microcontrollers like the 80C51, 8052, and 
8044. To illustrate this point the 80186 microprocessor 
interface to the 8044 microcontroller based serial com­
munication chip was described. The hardware interface 
given here is very general and can interface the 8-bit 
microcontrollers to a variety of Intel microprocessors 
and DMA controllers. The microcontrollers with this 
interface hardware have the same benefits as both the 
Intel UPI-41/42 family and data communication pe­
ripheral chips such as the 82588 and the 82568 LAN 
controllers. Like the Intel UPI chips, they can be easily 
interfaced to microprocessors, and like the data com­
munication peripherals, they execute high level com­
mands. A similar approach can be used to interface 
Intel microprocessors to the 16-bit 8096 microcontrol­
ler. 

22-347 



AP-286 

APPENDIX A 
SOFTWARE 

The software modules .shown here implement the exe­
cution of commands and status explained in sections 5 
and 7. The 80186 software provides procedures to send 
commands and read status. The 8044 software decodes 
and executes the commands, updates the status, and 
interrupts the 80186. The procedures given here are 
called by higher level software drivers. For example, an 
80186 application program may use the Transmit com­
mand to send a block of data to an application program 
that resides in the 8044 ROM or in another remote 
node. The application programs and the drivers that 
perform the communication. tasks run asynchronously 
since all communication tasks are interrupt-driven. 

Figure A-I shows how to assign the ports and control 
registers for an 80186-based system. The software is 
written for an Intel iSBC® 186/51 computer board. 
The 8044 hardware is connected to the computer board 
iSBXTM connector. 

Figure Ac2 shows the 80186 command procedures. 
These procedures are used by the data link driver. 

Figure A-3 shows how the DMA controller is loaded 
and initialized for data and parameter transfer from the 
80186 memory to the 8044. This procedure is used by 
the TRANSMIT and CONFIGURE commands. 

Figure A-4 shows how the DMA controller is loaded 
and initialized for data and parameter transfer from the 
8044 to the 80186 memory. This procedure is used by 
the RECEIVE and DUMP commands. 

Figure A-5 shows an interrupt service routine which 
handles interrupts resulting from various events. Note 
that this routine is not complete. The user should write 
the software to respond to events. 

Figure A-6 shows an example of the 80186 software. It 
shows how to start various operations. This is not a 
data link driver, but it gives the procedures needed to 
write a complete driver. ' 

Figure A-7 shows how to initialize the 8044. The user 
application program should be inserted here. 

Figures A-8 through A-13 show the 8044 external in­
terrupt service routine. In this routine a command re­
ceived from the 80186 is decoded, and one of the com­
mand procedures shown in Figures A-9 through A-13 
is executed. 

Figure A-14 shows the serial channel (SIll) interrupt 
service routine. Note that execution of TRANSMIT, 
RECEIVE, and TRANSMIT-DISABLE commands 
are completed in this routine. 

22-348 



AP-286 

NAME COM_DlUVER 

;.. 80186 SOF'l'liARE FOR 'l'HE 80186/MICROCONTROLLER INTERFACE 

;. 8044 BOARD CONNECTED TO 'l'HE SBX1 OF THE ,SBC 186/51 BOARD. 
;. SBX1 INTO TIED TO 80130 IR[0-7]. CONNECT JtlMPER 30 TO 46. 
;. 80186 DMA CHANNEL 1 USED. CONNECT JtlMPER 202 TO 203. 

TRUE EQU OFFFFH 
FAlBE EQU OH 

I 8044 REGISTERS 

CMD 44 
ST i4 
DATA_44 

I EVENTS 

CON DONE 
TRA-DONE 
DUM-DONE 
REC-DONE 
REC-DISA 
TRA-DISA 
ABO=:DONE 
; COMMANDS 

EQU 080H 
EQU 080H 
BQU OD4H 

EQU 01H 
EQU 02H 
EQU 03H 
EQU 04H 
EQU OSH 
EQU 06H 
EQU 07H 

(INTA~l) 

ABO CMD EQU 
REC-DIS CMD EQU 
XMIT DIS CMD EQU 
REC CMD - EQU 

080H 
081H 
082H 
083H 
084H 
oaSH 
086H 
087H 

TRA-CMD EQU 
DUM-CMD EQU 
CON-CMD EQU 
NOP=:CMD EQU 

, 80186 DMA CHANNEL 1 REGISTERS 

SL DMA1 
SH-DMA1 
DL-DMA1 
DH-DMA1 
cHi' DMA1 
CTL=:DMA1 

EQU OFFDOH 
EQU OFFD2H 
EQU OFFD4H 
EQU OFFD6H 
EQU OFFD8H 
EQU OFFDAH 

ADDRESS OF 'l'HE COMMAND REGISTER 
I ADDRESS OF THE STATUS REGISTER 

ADDRESS OF 'l'HE DATA REGISTER 

CONFIGURE DONE 
TRANSMIT DoNE 
DUMP DONE 
RECEIVE DONE 

I RECEPTION DISABLE 
TRANSMISSION DISABLE 
EXECUTION_ABORTED 

ABORT 
RECEIVE DISABLE 
TRANSMIT DISABLE 
RECEIVE 
TRANSMIT 
DUMP 
CONFIGURE 
NOP 

SOURCE ADDRESS (LO WORD) 
SOURCE ADDRESS (HI WORD) 
DESTINATION ADDRESS (LO WORD) 
DESTINATION ADDRESS (HI WORD) 
TRANSFER COUNT ADDRESS 
CONTROL ADDRESS 

, 80186 INTERRUPT CONTROLLER REGISTERS 

CTLO IIITR 
CTLCIIITR 
MASK-IIITR 
EOI INTR 
NSPEC_BIT 

EQU OFF38H 
EQU OFF3AH 
EQU OFF28H 
EQU OFF22H 
EQU '08000H 

INT 0 CONTROL ADDRESS 
INT 1 CONTROL REGISTER 
INT MASK REGISTER 
INT EOI REGISTER 
NON-SPECIFIC EOI 

; 80130 INTERRUPT CONTROLLER REGISTERS 

EOI SINTR EQU OEOH INT EOI REGISTER 
MAsiCSINTR EQU OE2H ; MASK REGISTER 

RDIRR EQU 010H COMMAND TO 80130 TO READ IRR REG 
RD=:ISR EQU OllH COMMAND TO 80130 TO READ ISR REG 

IV_BASE EQU 20H BASE OF 80130 INT CONTROLLER VECTOR 

Figure A-1. Port and Register Definitions for 80186 System 

22-349 

231784-10 

231784-11 



intJ AP-286 

:._* ••••• __ • __ ••• _ •• _ •• _.--•• _._ •• __ .-._._ •••••••• _---*.*.-._._._. __ .­
; INTERRUPT TABLE 

INTERRUPTS SEGMENT AT 0 

ORG (IV_BASE+1) *4H 

LABEL DWORD IR1 VECTOR 

INTERRUPTS ENDS 
,_*** •• _______ ••••• __ ._. _____ ••• __ • ____ ••• _._ ••• _._ ••• _.to._"'._._ ..•. 
STACK SEGMENT STACK I STACK I 

THE STACK OW 
TOS- LABEL 

STACK ENDS 

200H 
WORD 

DUP(?) 

; _ •• _. "'A"''''. "' ••• "'._ •• _._ •••••••• ,. ••••••••••••• _ •••••• ___ •••••••••••• _ 

DATA SEGHENT PUBLIC 'DATA' 

REC_BUFFER DB 1024 DuP(?) 

CON_BUFFER DB 08H, OlH~ OaR, ODOH, 5SR, 20K, OSH, JOR, OSH 

DUK_BUFFER DB O"H DUP(?) 

TRA_BUFFER DB 07H, 55H, 11K, Olli, 02K, 03K, 04H, OSH 

CHND]LAG ow FALSE 

DATA ENDS 
231784-12 

Figure A-1. Port and Register Definitions for 80186 System (Continued) 

; * •• _ •••• _ •••• A.- .to •• _ "''''''''''''' _ •• "' ... t ••• * •• _._._._ •••• __ "'. __ •••• 

CODE SEGMENT 'PUBLIC f CODE' 

ASSUME 
& 
& 
& 

CS:CODE, 
OS: DATA, 
ES:NOTHING, 
SS:STACK 

: _ .. _ ...... __ .. t._. _",.t. __ ••••• _. _ •• 111 *~.*.**. _ •• __ ••• *._."'."'. 

PUSH 
MOV 
LES 
MOV 
MOV 
CALL 
HOV 
OUT 
pop 
RET 

PROC. FAR 

BP 
BP,SP 
SI,OWORD PTR '(BP+6] 
AX,WORD PTR(BP+lO] 
AH,OH . 
REC DMA 
AL,REC CMD 
CHD 44;AL 
BP -

LOAD BUFFER POINTER 
LOAD BUFFER SIZE 

CALL REC-DMA 
LOAD RECEIVE COMMAND 
SEND TO COMMAND/DATA REG 

1--*·············_"'_··*·*******···*··*···**···*·····*·** •••• " •• 

PUSH 
'HOV 
LES 
HOV 
MOV 
CALL 
MOV 
OUT 
POP 
RET 

BP 
BP,SP 
SI, DWORD PTa (BP+6] 
AX, WORD PTR(BP+10] 
AH,OH 
TRA DBA 
AL,TRA CMD 
CHD 44;AL 
BP -

ENDP 

LOAD BUFFER POINTER 
, LOAD BUFFER SIZE 

, CALL TRA-DIIA 
, LOAD TRANSHIT COIlMAND 

SEND TO COHMAHD/DATA REG 

Figure A-2. Setup and Execution of Commands 

22·350 

231784-13 



AP-286 

: "'II'It "' ....................... "' .......................................... * * ........ * ................. * * ........ .. 

CONF _COMMAND PRoe FAR 

PUSH BP 
MOV 
LES 
MOV 
MOV 
CALL 
MOV 
OUT 
POP 
RET 

BP,SP 
SI,DWORD PTR[BP+6) 
AX,WORD PTR[BP+lO) 
AH,OH 
TRA DMA 
AL,eON eKD 
CMD 44-;AL 
BP -

LOAD BUFFER POINTER 
LOAD BUFFER SIZE 

CALL TRA-DKA 
LOAD CONFIGURE COMMAND 
SEND TO COMMAND/DATA REG 

; 'III •••••••••••• * •••••• 1< ••••••••••• 111 ••• "' ........................ *. 

DUMP_COMMAND 

PUSH 
MOV 
LES 
MOV 
MOV 
CALL 
MOV 
OUT 
POP 
RET 

PRoe 

BP 
BP,SP 

FAR 

SI, DWORD PTR[BP+6] 
AX,WORD PTR[BP+lO) 
ARtOH 
REC DKA 
AL,DUM eKn 
eMO 44-;AL 
BP -

DUMP COMMAND ENDP 

LOAD BUFFER POINTER 
LOAD BUFFER SIZE 

CALL REC-DKA 
LOAD DUMP COMMAND 
SEND TO COMMAND/DATA REG 

; ." .... "' .................. * ..... * .......... * ... * ........ * ................ * ........ * ........ "' ............ '111" 

XMIT _DIS_COMMAND PRoe 

MOV 
OUT 
RET 

AL,XMIT DIS eHD 
CMD_44,AL -

XMIT_DIS_COMMAND ENDP 

FAR 

LOAD XMIT-DIS COMMAND 
SEND TO COMMAND/DATA REG 

; "' ... "''II'll''' ••••••••••••••• * •••• _ •••••••••••••• 'III •• ". 'II ••••••••••• *. 

MOV 
OUT 
RET 

PRoe 

AL, REC DIS eMD 
CMD_44-;AL -

FAR 

LOAD REC-DIS COMMAND 
SEND TO COMMAND/DATA REG 

; "'''' ... *. "' .. "' ........ "' .......... * '" '" 'II •• " '" 'III."""""''''''''''''''''''''' "' ..... * ....... III "' .......... 

ABOR _COMMAND FRoe FAR 

MOV AL,ABO CMD LOAD ABORT COMMAND 
OUT CMD_44-;AL SEND TO COMMAND/DATA REG 
RET 

: ••• 'it." ••••• *. * ••••••••••••••• * ........... ." • ." .... ." .. ."." ........ ." • ." .... .. 

NOP_COMMAND ' PROC FAR 

MOV AL,NOP_CMD LOAD NOP COMMAND 
OUT CHD_44,AL SEND TO COMMAND/DATA REG 
RET 

NOP_COMMAND. ENDP 

Figure A-2. Setup and Execution of Commands (Continued) 

22·351 

231784-14 

231784-15 



AP.-286 

_ •• t.tt ••••••••••••••••••••••••••••••••••••••••••••••••••• t. 
•• RECEIVE DIIA 
ARGS AX BUFFER SIZE 

ES I SI BUFFER POINTER 

REC_DIIA PROC NEAR 
MOV DX,CNr DMAl 
our DX,AX - .. 

XOR BX,SX 
MOV AX,ES 
SHL AX,l 
RCL BX,l 
SHL AX,l 
RCL BX,l 
SHL AX,l 
RCL BX,l 
SHL AX,l 
RCL BX,l 
ADD AX,Sl 
ADC BX,O 
MOV DX,DL_DMAl 
our DX,AX 
MOV AX,BX 
MOV DX,DH_DMAl 
our OX, AX 

MOV AX,DATA_44 
MOV DX,SL_DllAl 
our DX,AX 

XOR AX,AX 
MOV DX,SH_DllAl 
our DX,AX 

MOV DX,CTL_DHAl 
MOV AX,1010001010100110B 
our DX,AX 
RET 

REC_DIIA ENDP 

LOAD ADD OF rRANSFER COUNT REG 
., PROGRAM rRANSFER COUNT REGISTER· 

CLEAR BX 
LOAD SEG ADDRESS OF BUFFER 
CALCULArE LINEAR ADDRESS OF THE BlIFFER 

, ADD rHE OFFSET TO BASE 

, LOAD ADDRESS OF DEST POINrER (LO WORD) 
PROGRAM DEST POINTER REGISTER (LO WORD) 

, LOAD ADDRESS OF ·IlEST POINrER (HI WORD) 
PROGRAM DEST POINTER REGISTER (HI WORD) 

LOAD ADDRESS OF DATA REGISTER 
LOAD ADDRESS OF SOURCE POINrER 

, PROGRAM SOURCE POINTER REGISTER (LO WORD) 

CLEAR AX 
LOAD ADDRESS OF SOURCE POINrER (HI WORD) 
PROGRAM SOURCE .POINrER REGISTER (HI WORD) 

, LOAD ADDRESS OF CONTROL REGISTER 
LOAD THE CONTROL WORD 

, PROGM THE CONTRL REGISTER 

Figure A-3. Loading and Starting the 80186 DMA Controller 

; •••• t •••••• t •••••• t t •• t.t t ••• t .. _ ••••• t ................ t •••• _ ._. * .. .. ; *. TRANSMIT DNA 
I ARGS AX BUFFER SIZE 

ESISI BUFFER POINrER 
I 
TRA_DMA 

INC 
MOV 
our 

XOR 
MOV 
SHL 
RCL 
SHL 
RCL 
SHL 
RCL 
SHL 
RCL 
ADD 
ADC 
MOV 
our 
HOV 
HOV 
our 

HOV 
HOV 
our 
XOR 
HOV 
our 

HOV 
HOV 
our 
RET 

PROC NEAR 
AX 
OX, CNr DMAl 
DX,AX -

BX,ax 
AX,ES 
AX,l 
ax,l 
AX,l 
BX,l 
AX,l 
ax,l 
AX,l 
aX,l 
AX,Sl 
BX,O 
DX,SL DMAl 
DX,AX­
AX,BX 
DX,SH DHAl 
DX,AJC 

AX,DATA 44 
DX,DL DiiAl 
DX,AX-

AX,AX 
DX,DH DMAl 
OX,Me 

OX, crL DMAl 
AX,0001011010100110B 
DX,AX 

TItA_DMA ENDP 

, LOAD ADD OF rRANSFER COUNT REG 
.' PROGRAM rRANSFER COUNT REGISTER 

·CLEAR BX 
, LOAD SEG ADDRESS OF BUFFER 

CALCULATE LINEAR ADDRESS OF rHE BUFFER 

ADD THE OFFSET TO bASE 

LOAD ADDRESS OF SOURCE POINTER (LO WORD) 
, PROGRAM SOURCE POINTER REGISTER (LO WORD) 

LOAD ADDRESS OF SOURCE POINrER (HI WORD) 
PROGRAM SOURCE POINrER REGISTER (HI WORD) 

LOAD ADDRESS OF DATA REGISrER 
LOAD ADDRESS OF DEST POINrER 
PROGRAM DEST POINTER REGISTER (LO WORD) 

CLEAR AX 
LOAD ADDRESS OF DEST POINrER (HI WORD) 
PROGRAM DEST POINrER REGISTER (HI WORD) 

LoAD ADDRESS OF CONTROL REGISTER 
LOAD THE CONTROL WORD 
PROGRAM THE CONrRL REGISrER 

Figure A-4. Loading and Starting the 80186 DMA Controller 

22-352 

231784-16 

231784~17 



AP-286 

;'" ,,**** •• ,,* 'II" •• ***1r*" •••••••• **.,. ." •• " •• " ••••••••••••••••• * •••••••••• 
80186 INTERRUPT ROUTINE 

INT_lB6: 

PUSH 
PUSH 
MOV 
MOV 
OUT 

AX 
OX 
AX, NSPEC BIT 
OX,EOI INTR 
OX,AX -

MOV AL,01100DOIB 
OUT EOI_SINTR,AL 

IN AL,ST 44 
AND AX,OFFH 

SEND NSPEC END OF INT 

; READ THE STATUS 

DECODE STATUS AND TAKE APPROPRIATE ACTION 

MOV OX, CTL DHAl 
IN AX,OX -

: DISABLE DMA 

OR AX,0100B 
AND AX,NOT 010B 
OUT DX,AX 

MOV CMND _FLAG, TRUE 

POP OX 
POP AX 
lRET 

Figure A-5. Interrupt Service Routine 

;""" ~ ••• "' •••• "' .. "'" '" ** "'" "' .... " ... 11 '" ** .... 11 * ..... * '" "'" "' ........ "' .. *. "'" .. '" * "'" 

BEGIN: 
CLI 
CLD 

SET ALL REGISTERS SMALL HODEL 

MOV SP,DATA 
MOV OS, SP 
MOV ES,SP 
MOV SP I STACK 
MOV SS,SP 
MOV SP I OFFSET TOS 

SETUP INTERRUPT VECTORS 

PUSH ES 
XOR AX,AX 
MOV ES,AX 
MOV WORD PTR ES:IV INTRO +0, OFFSET INT_leG 
MOV WORD PTR ES: IV-INTRO +2, CS 
POP ES -

SETUP 80130 INTERRUPT CONTROLLER 

MOV AL,000100119 Iewl 
OUT EOI_SINTR,AL 
MOL AL 

MOV AL,IV_BASE ICW2 
OUT MASK_SINTR,AL 
MOL AL 

MOV AL / 000000008 I ICW4 
OUT MASK_SINTR,AL 
MOL AL 

MOV AL,OFCH IMASK 
OUT MASK_SINTR,AL 

Figure A-S. Example of Executing Commands 

231784-18 

231784-19 



intJ AP-286 

I SETUP 80186 III'l'ERRUPT CONTROLLER 

MOV AX,0000000000100000B 
MOV DX, CTLO INTR 
OUT DX,AX-

MOV DX, CTLl INTR 
IN AX,DX -
OR AX,0000000000101000B 
OUT DX,AX 

MOV 
MOV 
OUT 
STI 

AX,OOOEDH 
DX,MASK INTR 
DX,AX -

/... SEND CONFIURE COMMAND 

PUSH 
PUSH 
PUSH 
CALL 
ADD 

1I0RD PTR CON BUFFER 
DS -: 
OFFSET CON BUFFER 
CONF COMMAiiD 
SP,3*2 

IIAIT FOR END OF COMMAND 

IIAI'l'l. 

, ... 

IIAIT2. 

~: ~~~lLAG,TRUE 
MOV CMND_FLAG,FALSE 

SEND DUMP COMMAND 

PUSH 
PUSH 
PUSH 
CALL 
ADD 

1I0RD PTR DUM BUFFER 
DS -
OFFSET DUM BUFFER 
DUMP COMMAiiD 
SP,3*2 

CMP CMND _FLAG, TRUE 
JNE IIAIT2 
MOV CMND_FLAG, FALSE 

, *** SEND TRANSMIT COMMAND 

PUSH 1I0RD PTR 'l'RA_BUFFER 
PUSH OS 
PUSH OFFSET 'l'RA BUFFER 
CALL XMIT COMMAiiD 
ADD SP,3*2 

IIAIT3. 
CMP CMND]LAG, TRUE 
JNE IIAIT3 
MOV CMND_FLAG,FALSE 

,*** SEND RECEIVE COMMAND 

PUSH 1I0RD PTR REC _BUFFER 
PUSH DS 
PUSH OFFSET REC BUFFER 
CALL RECV COMMAiiD 
ADD SP,3*2 

IIAIT4. 
CMP CMND_FLAG,TRUE 
JNE IIAIT4 
MOV CMND]IAG, FALSE 

CODE ENDS 
END BEGIN 

/ MASK ALL BUT 10 

, ENABLE INTERRUPTS 

PUSH BUFFER SIZE 
PUSH BUFFER SEGMENT REGISTER 
PUSH OFFSET OF BUFFER 
CALL CONFIGURE 

. / PUSH BUFFER SIZE 
I PUSH BuFFER SEGMEH'l' REGISTER 

PUSH .OFFSET OF BUFFER 
CALL CONFIGURE 

PUSH BUFFER SIZE 
PUSH BUFFER SEGMEH'l' REGISTER 
PUSH . OFFSET OF' BUFFER 

I CALL COMMAND 

PUSH BUFFER SIZE 
PUSH BUFFER SEGMENT REGISTER. 
PUSH OFFSET OF BUFFER 
CALL COMMAND 

Figure A-6. Example of Executing Commands (Continued) 

22-354 

231784-20 

231784-21 



$DEBUG NOMOD51 
$INCLUDE (REG44. PDF) 

AP-286 

; THE 8044 SOFTWARE DRIVER FOR THE 80186/8044 INTERFACE. 

ORG 
SJMP 
ORG 
JMP 
ORG 
JMP 

DOH 
INIT 
03H 
EINTO 
23H 
SIINT 

LOCATIONS 00 THRU 26H ARE USED 
BY INTERRUPT SERVICE ROUTINES. 
VECTOR ADDRESS FOR EXT INTO. 

VECTOR ADDRESS FOR SERIAL INT 

j ****** * *********** *** INITIALIZATION ** .* •••••••• *********** *** 

INIT: 

DOT: 

ORG 
MOV 
MOV 
CLR 
SETB 
SJMP 

26H 
TCON ,I00000001B 
IE, #00010001B 
P1.1 
EA 
DOT 

EXT INTO: EDGE TRIGGER 
SI=EXO=l 
CLEAR DRQ STATUS BIT 
ENABLE INTERRUPTS 
WAIT FOR AN INTERRUPT 

231784-22 

Figure A-7. Initialization Routine 

;*****ir*************EXTERNAL INTERRUPT 0 ********************* 
EINTO: CLR Pl. 5 CLEAR THE E BIT 

MOV DPTR, #100H LOAD DATA POINTER WITH A DUMY NUMBER 
MOVX A, (lDPTR READ THE COMMAND BYTE. 
ANL A, :#00001111B KEEP THE OPERATION FIELD 
MOV R2 , A SAVE COMMAND 

DECODE COMMAND AND JUMP TO THE APPROPRIATE ROUTINE 

Jl: 

J2: 

J3: 

J4: 

J5: 

J6: 

J7: 

J8: 

J9: 

COMMAND OPERATION (BITSO-3) 

ABORT DOH 
REC-DISABLE 01H 
TRA-DISABLE 02H 
RECEIVE 03H 
TRANSMIT 04H 
DUMP 05H 
CONFIGURE 06H 
Nap 07H 

JNB 
JMP 

CJNE 
JMP 

CJNE 
JMP 
CJNE 
JMP 
CJNE 
JMP 
CJNE 
JMp 
CJNE 
JMP 
CJNE 
JMP 
CJNE 
JMP 
RETI 

PXD,Jl 
CABO 

A, #OOH,J2 
CABO 

A, #OlH,J3 
CRDIS 
A, #OB5H,J4 
CTDIS 
A, #03H,J5 
CREC 
A, #04H,J6 
CTRA 
A, #05H,J7 
CDUMP 
A, #06H,J8 
CCON 
A, #07H,J9 
CHOP 

; IF INTO IS SET TO PRIORITY 1, 
;THEN DMA OPERATION WAS IN PROGRESS. 
; EXECUTE ABORT REGARDLESS OF THE 
; COMMAND ISSUED. 
; EXECUTE ABORT 
; THIS LINE WILL BE EXECUTED IF ABORT WAS 
; ISSUED WHEN THE 8044 IS NOT EXECUTING 
jANY COMMANDS. 

EXECUTE RECEIVE-DISCONNECT 

EXECUTE TRANSMIT-DISCONNECT 

EXECUTE RECEIVE 

EXECUTE TRANSMIT 

EXECUTE DUMP 

EXECUTE CONFIGURE 

EXECUTE NaP 
RETURN. OPERATION NOT RECOGNIZED. 

Figure A-S. External Interrupt Service Routine 

22-355 

231784-23 



; .. NOP COMMAND 

CNOP: CLR lEO 

RETI 

: .. ABORT COMMAND 

CABO: JNB PXO, CABOJ 1 
CLR PXO 
CLR P1.1 

SETB PL2 
SETB PL3 
SETB Pl.4 

CLR lEO 
CLR Pl.O 
SETB PLO 
JB PJ.2,$ 

POP ACC 
POP ACC 
MOV B, #HIGH($+lO) 
MOV ACC, #LOW($+7) 
PUSH ACC 
PUSH B 

CABOJ2: RETI 

CABOJl: NOP 
SETB PLS 

SETB Pl.2 
SETa PL3 
SETB Pl.4 

CLR lEO 
CLR Pl.O 
SETB PLO 
JB P3 .2, $ 
RETI 

AP:'286 

IGNORE PENDING EXT INTO (IF ANY) • 
ANY INTERRUPT (COMMNAD) DURING 
EXECUTION OF AN OPERATION IS IGNORED 
RETURN 

WAS DMA IN PROGRESS? 
YES. EXT INTo: PRIORITY 0 
CLEAR DMA REQUEST 

,; UPDATE STATUS WITH 
: ABORT-DONE EVENT 

(STATUS=DDH; E=O) 

IGNORE PENDING EXT INTO (IF ANY) • 

SET INT BIT AND INTERRUPT 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 
EXECUTE THE NEXT "RETI" TWICE 
POP OUT THE OLD HI BYTE PC 
POP OUT THE OLD LOW BYTE PC 
HI BYTE ADDRESS OF CABOJ2 
LOW BYTE ADDRESS OF CABOJ2 

; PUSH THE ADDRESS OF THE NEXT 
; "RETI" INSTRUCTION INTO STACK 

RETURN 

OMA WAS NOT IN PROGRESS 
SET' THE E BIT 

; UPDATE STATUS WITH 
: ABORT-DONE EVENT 

(STATUS=FDH; E=l) 

IGNORE' PENDING EXT INTO (IF ANY) • 

SET INT BIT AND INTERRUPT 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 
RETURN 

Figure A-9. Execution of NOP and ABORT Commands 

; ** CONFIGURE COMMNAD 

CCON: 

CCONF4: 

CCONJl: 

CCONFS: 

CCONJ2: 

CCONF6: 

CCONJ3: 

MOV DPTR, flOOH 
CLR lEO 
SETB PXO 

SETB PL1 
JB P3.3,$ 
MOVX A,@OPTR 
MOV RO,A 
DEC RO 
JB P3.3,$ 
MOVX A, @DPTR 
MOV RI,A 
JB P3.3,$ 
MOVX A,@DPTR 
CJNE Rl,#OlH,CCONJl 
MOV STS,A 
INC R1 
D.JNZ RD, CCONF4 
JMP 'CCONT1 
JB P3.3,CCONF4 
MOVX A,@DPTR 
CJNE RI, j02H,CCONJ2 
MOV SMDjA ' 
INC R1 
DJNZ RO, CCONFS 
JMP CCONT1 
JB P3.3,CCONF5 
MOVX A,@DPTR 
CJNE R1, #03H,CCONJ) 
MOV STAD,A 
INC R1 
DJNZ RO, CCONF6 
JHp CCONT1 
JB P3 • 3 , CCONF6 
MOVX A,@DPTR 
CJNE Rl,#04H,CCONJ4 

IGNORE PENDING EXT INTO (IF ANY) 
EXT INTO; PRIORITY 1 
PXO IS SET TO ACCEPT ABORT 

DURING DMA OPERATION. 
ENABLE DMA REQUEST 
WAIT FOR DMA ACK. 
READ FROM COMMAN/DATA REGISTER 
LOAD BYTE COUNT 
DECREMENT BYTE COUNT 
WAIT FOR DMA ACK. 
READ FROM COMMAND/DATA REGISTER 
LOAD FIRST-BYTE 
WAIT FOR DMA ACK. 
READ FROM COMMAND/DATA REGISTER 
CHECK THE FIRST-BYTE 
UPDATE THE STS REGISTER 
INC. POINTER TO THE CONF. BLOCK 
CHECK THE BYTE COUNT 

Figure A-10. Execution of CONFIGURE Command 

22-356 

231784-24 

231784-25 



MOV 
INC 
DJNZ 
JMP 

CCONF7: JB 
MOVX 

CCONJ4: CJNE 
MOV 
INC 
DJNZ 
JMP 

CCONF8: JB 
MOVX 

CCONJS: CJNE 
MOV 
INC 
DJNZ 
JMP 

CCONF9: JB 
MOVX 

CCONJ6: CJNE 
MOV 
INC 
DJNZ 
JMP 

CCONFA: JB 
MOVX 

CCONJ7: CJNE 
MOV 
INC 
DJNZ 
JMP 

CCONFB: JB 
MOVX 

CCONJ8: CJNE 
MOV 
INC 
DJNZ 
JMP 

CCONFC: JB 
MOVX 

CCONJ9: CJNE 
MOV 
INC 
DJNZ 
JMP 

CCONFD: JB 
MOVX 

CCONJA: CJNE 
MOV 
INC 
DJNZ 
JMP 

CCONFE: JB 
MOVX 

CCONJB: CJNE 
MOV 
INC 
DJNZ 
JMP 

ERRORl: NOP 
SETB 

CCONTI: NOP 
CLR 
CLR 

SETB 
CLR 
CLR 

CLR 
CLR 
SETB 
JB 
RETI 

TBS,A 
Rl 
RO,CCONF7 
CCONTI 
PJ • 3 , CCONF7 
A,@DPTR 
Rl, #05H,CCONJ5 
TBL,A 
Rl 
RO,CCONFS 
CCONTI 
P3 • 3 , CCONF8 
A,@DPTR 
Rl, #06H,CCONJ6 
RBS,A 
Rl 
RO,CCONF9 
CCONTI 
P3 • 3 ,CCONF9 
A,@DPTR 
Rl, #07H,CCONJ7 
RBL,A 
Rl 
RO,CCONFA 
CCONTI 
PJ • 3 , CCONFA 
A,@DPTR 
Rl, j08H,CCONJ8 
IP,A 
Rl 
RO,CCONFB 
CCONTI 
P3.3,CCONFB 
A,@DPTR 
Rl, j09H, CCONJ9 
IE,A 
Rl 
RO,CCONFC 
CCONTI 
P3 • 3 , CCONFC 
A,@DPTR 
Rl, tOAH,CCONJA 
TMOD,A 
RI 
RO,CCONFD 
CCONTI 
P3 • 3 ,CCONFD 
A,@DPTR 
Rl, ,OBH,CCONJB 
TCOH,A 
RI 
RO,CCONFE 
CCONTI 
P3 . 3, CCONFE 
A,@DPTR 
RI,'OCH,ERRORI 
PSW,A 
Rl 
RO,ERRORl 
CCONTI 

PI.S 

Pl.l 
PXO 

Pl.2 
Pl.3 
PI.4 

lEO 
PI.O 
Pl.O 

P3.2,$ 

Ap·286 

ILLEGAL BYTE COUNT 
SET THE E STATUS BIT 

CLEAR DNA REQUEST 
EXT INTO: PRIORITY a 

I UPDATE STATUS WITH 
ICONFIGURE-DONE EVENT 

(STATUS-CSH IF E-O) 

231784-26 

IGNORE PENDING EXT INTO (IF ANY) 

INTERRUPT THE 80186 . 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 
RETURN 

Figure A·10. Execution of CONFIGURE Command (Continued) 

22-357 

231784-27 



intJ AP-286 

; * * DUMP COMMAND 

CDUMP: MOV 
MOVX 
CLR 
SETB 
SETB 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
CLR 
CLR 

SETS 
SETB 
CLR 

CLR 
CLR 
SETB 
JB 
RETI 

A,STS 
@DPTR,A 
lEO 
PXO 
Plol 
P3. 3, $ 
A,SMD 
@DPTR,A 
P3.3,$ 
A,STAD 
@DPTR,A 
P3.3,$ 
A,TBS 
@DPTR,A 
P3.3,$ 
A,TBL 
@DPTR,A 
P3. 3, $ 
A,TCB 
@DPTR,A 
P3. 3, $ 
A,RBS 
@DPTR,A 
Pl. 3, $ 
A,RBL 
@DPTR,A 
P3.l , $ 
A,ReB 
@DPTR,A 
P3.3,$ 
A,RFL 
@DPTR,A 
P3.l , $ 
A,PSW' 
@DPTR,A 
PJ .3, $ 
A,IP 
@DPTR,A 
P3.l , $ 
AilE 
@DPTR,A 
P3 .3, $ 
A,TMon 
@DPTR,A 
P3 .3, $ 
A, TeON 
@DPTR,A 
P3.3,$ 
Plol 
PXO 

Plo2 
Pl.3 
P1.4 

lEO 
PLO 
PLO 
P3.2, $ 

LOAD THE FIRST DUMP REG INTO ACC 
WRITE TO THE COMMAND/DATA REGISTER 
IGNORE PENDING EXT INTO (IF ANY) 
INTRERRUPT 0: PRIORITY 1 
ENABLE DMA REQUEST 
WAIT FOR DMA ACK 

DISABLE DRQ 
EXTERNAL INTO: PRIORITY 0 

; UPDATE STATUS WITH 
; DUMP-DONE EVENT 

(STATUS=CDH) 

IGNORE PENDING EXT INTO 

INTERRUPT THE 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 
RETURN 

Figure A-11. Execution of DUMP Command 

22-358 

231784-28 

231784-29 



inter 

; •• RECEIVE COMMAND. 
CREe: JNB RBE, CRECJl 

SETB Pl.S 
CRECJ 1: SETB RBE 

eLR RBP 
eLR lEO 
RET! 

; ** TRANSMIT COMMAND. 
CTRA: MOV RI , Tas 

CLR lEO 
SETB PXO 
SETB Pl.l 
JB P3.3,$ 
MOVX A,@DPTR 
MOV RO,A 
DEC A 
DEC A 
MOV TBL,A 

CTRAJ2: JB P3. 3 I CTRAJ'2 
MQVX A,@DPTR 
MOV STAD,A 
DEC RO 

eTHAJ3 : JB P3 • J, CTRAJ3 
MOVX At@DPTR 
MOV TeB,A 
DJNZ RO, CTRAJ 4 
SJMP CTRAJ5 

CTRAJ4: JB P3.3,CTRAJ4 

CTRAJ5: 

MOVX A, @DPTR 
MOV @Rl,A 
INC Rl 
DJNZ RO, CTRAJ 4 

CLR 
CLR 
SETB 
SETB 
CLR 
RETI 

Pl.l 
PXO 
TBF 
RTS 
lEO 

AP-286 

IS SIU ALREADY IN RECEIVE HODE? 
YES. SET THE E BIT 
NO. ENABLE RECEPTION 
CLEAR RECEIVE BUFFER PROTECT BIT 
IGNORE PENDING EXT INTO (IF ANY) 
RETURN. UPDATE STATUS IN THE 

SIU INTERRUPT ROUTINE. 

LOAD TRANSMIT BUFFER START 
I IGNORE PENDING EXT INTO (IF ANY) 

EXT INTO: PRIROITY 1 
ENABLE DRA REQUEST 
WAIT FOR OMA ACK. 
READ FROM COMMAND/DATA REG. 
LOAD THE BYTE COUNT 

; SUBTRACT 2 FROM THE BYTE 
; COUNT AND LOAD INTO XMIT 

LOAD BUFFER LENGTH 
WAIT FOR DHA ACK. 
READ FROM COMMAND/DATA REG. 
LOAD DESTINATION ADDRESS 
DECREMENT THE BYTE COUNT 
WAIT FOR DMA ACK. 
READ FROM COMMAND/DATA REG. 
LOAD THE TRANSMIT CONTROL BYTE 
IS THERE ANY INFO. BYTE? 
NO. 
YES. WAIT FOR DRA ACK. 
READ FROM COMMAND/DATA REG. 
MOVE DATA TO THE TRANSMIT BUFFER 
INC. POINTER TO BUFFER 
LAST BYTE FETCHED INTO THE BUFFER? 
NO. FETCH THE NEXT BYTE 
YES. DISABLE ORA REQUEST 
EXT INTO: PRIORITY 0 
SET TRANSMIT BUFFER FULL 
ENABLE TRANSMISSION 
IGNORE PENDING EXT INTO (IF ANY) 

; RETURN. UPDATE STATUS IN THE 
; SIU INTERRUPI' ROUTINE 

Figure A-12. Execution of RECEIVE and TRANSMIT Commands 

; •• TRANSMIT-DISCONNECT COIDQJtD 

CTDIS: 

CTDIJ1: 

JB 
SETB 
CLR 
CLR 
RETI 

TBF,CTDIJl 
Pl.5 
TBF 
lEO 

; ** RECEIVE-DISCONNECT COMMAND 

CRDIS: JB RBE, CRDIJl 
SETB Pl.5 

CRDIJ1: CLR RBE 

SETB Pl. 2 
CLR Pl.3 
SETB Pl.4 

CLR 
CLR 
SETB 
JB 
RETI 

lEO 
PLO 
PloD 
P3.2,$ 

IS TRANSMIT BUFFER ALREADY EMPTY? 
YES, SET THE E BIT 
NO. CLEAR TRANSMIT BUFFER 
IGNORE PENDING EXT INTO (IF ANY) 

; RETURN. UPATE STATUS IN THE 
; SIU INTERRUPT ROUTINE. 

IS RECEIVE BUFFER ALREADY EMPTY? 
YES. SET THE E BIT 
NO. CLEAR RECEIVE BUFFER 

; UPDATE STATUS WITH 
; RECEPTION-DISABLED EVENT 
; (STATUS=D5 IF E=O) 

INTERRUPT THE 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 
RETURN 

231784-30 

231784-31 

Figure A-13. Execution of RECEIVE-DISCONNECT and TRANSMIT-DISCONNECT Commands 

22-359 



inter AP-286 

;************ SERIAL CHANNEL (SIU) INTERRUPT ***********1t.****** 

srINT: CLR SI 
MOV A,R2 
CJNE A, t03H-, SINTJl 
JHP' SIREC 

SINTJ1: CJNE A, #02H,SINTJ2 
JHp SITDIS 

SINTJ2: JHP SITRA 

; ** TRANSMISSION IS DISABLED 

SITDIS: JB RTS, SINTJ3 
JNB TBF, SINTJ3 

CLR Pl.2 
SETB Pl. 3 
SETB Pl. 4 

CLR 
CLR 
SETB 
JB 
RET! 

lEO 
PLO 
PLO 
P3.2,$ 

; 'II. A FRAME IS TRANSMITTED 

SITRA: JB RTS, SINTJ3 

CLR P1.2 
SETB Pl.3 
SETB Pl.4 

CLR lEO 
CLR PLO 
SETB PLO 
JB F3.2 , $ 
RETI 

; *. A FRAME IS RECEIVED 

SIREC: JB RBE,SINTJ3 
JNB BOV,SINTJ4 
SETB Pl.5 

SINTJ4: MOV RO,RFL 
MOV Rl,RBS 
CLR lEO 
SETB PXO 

MOV A,@Rl 
MOVX @OPTR,A 
SETB Pl.1 
INC R1 
JB P3.3,$ 
DJNZ RO,CINTJ7 
SJMP CINTJ8 

CINTJ7: MOV A,@Rl 
MOVX @DPTR,A 
INC R1 
JB P3 .3, $ 
DJNZ RO,CINTJ7 

CINTJ8: MOV A,RFL 
MOVX @DPTR,A 
JB PJ.3,$ 
MOV A,STAD 
MOVX @OPTR,A 
JB P3.3,$ 
MOV A,ReB 
MOVX @DPTR,A 
JB P3. 3, $ 
CLR Pl.1 
CLR PXO 

LOAD THE OPERATION FIELD 
RECEIVE' COMMAND PENDING? 
YES. 
TRANSMIT-DISCONNECT PENDING? 
YES. 
TRANSMIT COMMAND IS PENDING 

REQUEST TO SEND ENABLED? 
YES. TRANSMISSION DISABLED? 
YES. 

; UPDATE STATUS WITH 
;TRANSMISSION-DISABLED EVENT 

(STATUS=D9H) 

IGNORE PENDING EXT INTO 

INTERRUPT THE 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 

; A FRAME TRANSMITTED? 
; YES. 
; UPDATE STATUS WITH 
;TRANSMIT-DONE EVENT 
; (STATUS=C9). 

INTERRUPT THE 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 

RECEIVE BUFFER FULL? 
YES. BUFFER OVERRUN? 
YES. SET THE E BIT 
LOAD RO WITH RECEIVE BYTE COUNT 
LOAD R1 WITH RECEIVE BUFFER ADDRESS 
IGNORE PENDING EXT INTO (IF ANY) 
EXT INTO: PRIORITY 1 

MOVE FIRST BYTE INTO ACC. 
WRITE TO THE COMMAND/DATA REG 
ENABLE DMA REQUEST 
INC POINTER TO RECEIVE BUFFER 
WAIT FOR DMA ACK. 
LAST BYTE MOVED? 
YES 

LOAD RECEIVED DATA INTO ACC. 
WRITE TO THE COMMAND/DATA REG. 
INC POINTER TO RECEIVE BUFFER 
WAIT TILL DMA ACK 
LAST BYTE ,MOVED TO COMMAND/DATA REG? 
NO. DEPOSIT THE, NEXT BYTE 
LOAD, BYTE COUNT" 
WRITE TO THE COMMAND/DATA REG 
WAIT ,FOR DMA ACK. 
LOAD STATION ADDRESS 
WRITE TO THE COMMAND/DATA REG 
WAIT FOR DMA ACK. 
LOAD RECEIVE CONTROL BYTE 
WRITE TO THE COMMAND/DATA REG 
WAIT FOR DMA ACK. 
CLEAR DMA REQUEST 
EXTERNAL INTERRUPT: PRIORITY 0 

Figure A-14. Serial Channel Interrupt Routine 

22-360 

231784-32 

231784-33 



CLR 
CLR 
SETB 
CLR 
CLR 
SETB 
JB 
RETI 

SINTJ3: NOP 
RETI 

END 

Plo2 
Pl~3 
Pl.4 
IEO 
Pl.O 
PloO 
P3.2,$ 

AP-286 

, UPDATE STATUS WITH 
.RECEIVE-DONE EVENT 

(STATUS=D1H IF EaO) 
IGNORE PENDING EXT INTO 

INTERRUPT THE 80186 
WAIT TILL INTERRUPT IS ACIOIOWLEDGED 

Figure A-14. Serial Channel Interrupt Routine (Continued) 

22-361 

231784-34 



inter· 8086/80186 
SOFTWARE PACKAGES 

8086/80186 Software Devel~pment 
Package 

• Macro Assembler with 'Complete 
System Development Capability for 
8086/80186 Designs 

• Complete Set of Utilities for Object 
Module Management and Program 
Linkage 

FORTRAN 8086/80186 Software Package 

• Features High-Level Language Support 
for Floating-Point Calculation, 
Transcendentals, Interrupt Procedures, 
and Run-Time Exception Handling 

• Meets ANSI FORTRAN 77 Subset 
Language Specifications 

• Supports Complex Data Types 

---

2 

PASCAL 8086/80186 Software Package 

• Object Compatible and Linkable with 
PL/M 8086, ASM 8086 and FORTRAN 86 

• Supports Large Array Operation 

PL/M 8086/80186 Software Package 

• Advanced Structured System 
Implementation Language for Algorithm 
Development 

• Easy-to-Learn Block-Structured 
Language Encourages Program 
Modularity 

iC-86 Compiler for the 8086/80186 

• Implements Full ANSI Standard C 
Language 

• Produces High Denslty.Code Rivaling 
Assembler 

210689-6 

Figure 1. Program modules compiled with any of the 8086 languages may 
be linked together. Each language is compatible with Intel's debug tools. 

This Is an example of development under DOS. 

22-362 
October 1987 

Order Number: 210689·008 



inter 8086 SOFTWARE DEVELOPMENT PACKAGE 

8086/80186 SOFTWARE DEVELOPMENT PACKAGE 
• Complete System Development 

Capability for High-Performance 8086 
Applications 

• Macro Assembler for Machine-Level 
Programming 

• System Utilities for Program Linkage 
and Relocation 

II Package Supports Program 
Development with PLM-86, Pascal-86, 
FORTAN 86, & iC 86 

• Available on a Choice of Hosts 

The 8086 Software Development package contains a macro assembler, a program linker (for linking separate­
ly compiled modules together, a system locator, library manager, an object to hex code converter, and a 
conversion utility to create DOS executable files. 

All the utilities in the Software Development Package run on the Intel Microcomputer Development Systems 
(Series III/Series IV) as weil as the IBM PC XT/AT DEC VAxt Minicomputer under the VMSt Operating 
System, and Intel systems 86/3XX under iRMX™86, and Intel System 286/3XX under iRMX™286. 

210689-7 

tVAX, VMS are trademarks of Digital Equipment Corporation. 

22-363 



intJ 8086 SOFTWARE DEVELOPMENT PACKAGE 

8086/80186 MACRO ASSEMBLER 

• Produces Relocatable Object Code 
Which is Linkable to All Other Intel 
86/186 Object Modules, Generated by 
Intel 8086 Compilers 

• Powerful and Flexible Text Macro 
Facility with Three Macro Listings 
Options to Aid Debugging 

• Highly Mnemonic and Compact 
Language, Most Mnemonics Represent 
Several Distinct Machine Instructions 

• "Strongly Typed' Assembler Helps 
Detect Errors at Assembly Time 

• High-Level Data Structuring Facilities 
Such as "STRUCTURES" and 
"RECORDS" 

• Over 120 Detailed and Fully 
Documented Error Messages 

ASM-86 is the "high"level" macro assembler for the 86/186 assembly language. ASM-86 translates symbolic 
86/186 assembly language mnemonics into 86/186 relocatable object code. 

ASM-86 should be used where maximum code efficiency and hardware control is needed. The 86/186 assem­
bly language includes approximately 100 instruction mnemonics. From these few mnemonics the assembler 
can generate over 3,800 distinct machine instructions. Therefore, the software development task is simplified, 
as the programmer need know only 100 mnemonics to generate all possible 86/186 machine instructions. 
ASM-86 will generate the shortest machine instruction possible given no forward referencing or given explicit 
information as to the characteristics of forward referenced symbols. 

ASM-86 offers many features normally found only in high-level languages. The 86/186 assembly language is 
strongly typed. The assembler performs extensive checks on the usage of variables and labels. The assembler 
uses the attributes which are derived explicitly when a variable or label is first defined, then makes sure that 
each use of the symbol in later instructions conforms to the usage defined for that symbol. This means that 
many programming errors will be detected when the program is assembled, long before it is being debugged 
on hardware. 

22-364 



inter 8086 SOFTWARE DEVELOPMENT PACKAGE 

LINK-86 

• Automatic Combination of 8086 • Automatic Generation of a Summary 
Programs Separately Translated Using Map Giving Results of the LINK-86 
Intel. Compilers or Assemblers into Process 
Relocatable Object Module • Abbreviated Control Syntax 

• Automatic Selection of Required • Relocatable Modules May Be Merged 
Modules from Specified Libraries to into a Single Module Suitable for 
Satisfy Symbolic References Inclusion in a Library 

• Extensive Debug Symbol Manipulation, • Supports "Incremental" Linking 
allowing Line Numbers, Local Symbols, 
and Public Symbols to be Purged and • Supports Type Checking of Public and 
Listed Selectively External Symbols 

LlNK-86 combines object modules specified in the LlNK-86 input list into a single output module. LlNK-86 
combines segments from the input modules according to the order in which the modules are listed. 

LlNK-86 will accept libraries and object modules built from any Intel translator generating 8086 Relocatable 
Object Modules. 

Support for incremental linking is provided since an output module produced by LlNK-86 can be an input to 
another link. At each stage in the incremental linking process, unneeded public symbols may be purged. 

LlNK-86 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their types are not 
consistant. 

LlNK-86 will link any valid set of input modules without any controls. However, controls are available to control 
the output of diagnostic information in the LlNK-86 process and to control the content of the output module. 

LlNK-86 allows the user to create a large program as the combination of several smaller, separately compiled 
modules. After development and debugging of these component modules the user can link them together, 
locate them using LOC-86 and enter final testing with much of the work accomplished. 

22-365 



8086 SOFTWARE DEVELOPMENT PACKAGE 

LOC-S6 

• Automatic Generation of a Summary 
Map Giving Starting Address, Segment 
Addresses and Length, and Debug 
Symbols and Their Addresses 

• Abbreviated Control Syntax 

• Segments May be Relocated to Best 
Match Users Memory Configuration 

• Extensive Debug Symbol Manipulation 
Allowing Line Numbers, Local Symbols, 
and Public Symbols to be Purged and 
Listed Selectively 

Relocatability allows the programmer to code programs or sections of programs without having to know the 
final arrangement of the object code in memory. 

LOC-86 converts relative addresses in an input module in 86/186 object module format to absolute address­
es. LOC-86 orders the segments in the input module and assigns absolute addresses to the segments. The 
sequence in which the segments in the input module are assigned absolute addresses is determined by their 
order in the input module and the controls supplied with the command. 

LOC-86 will relocate any valid input module without any controls. However, controls are available to control the 
output of diagnostic information in the LOC-86 process, to control the content of the output module, or both. 

The program you are developing will almost certainly use some mix of random access memory (RAM), read­
only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro­
gram affects both cost and performance in your application. The relocation feature allows you to develop your 
program and then simply relocate the object code to suit your application. 

22-366 



8086 SOFTWARE DEVELOPMENT PACKAGE 

L1B-86 

• LlB-86 is a Library Manager Program 
which Allows You to: 
- Create Specifically Formatted Files 

to Contain Libraries of Object 
Modules 

- Maintain These Libraries by Adding 
or Deleting Modules 

- Print a Listing of the Modules and 
Public Symbols in a Library File 

• Libraries Can be Used as Input to 
LlNK-86 which Will Automatically Link 
Modules from the Library that Satisfy 
External References in the Modules 
Being· Linked· 

• Abbreviated Control Syntax 

Libraries aid in the job of building programs. The library manager program L1B~86 creates and maintains files 
containing object modules. The operation of L1B-B6 is controlled by commands to indicate which operation 
L1B-86 is to perform. The commands are: 

CREATE: 
ADD: 
DELETE: 
LIST: 

creates an empty library file 
adds object modules to a library file 
deletes modules from a library file 
lists the module directory of library files 

EXIT: terminates the L1B-86 program and returns control to VMS 

When using object libraries, the linker will call only those object modules that are required to satisfy external 
references, thus saving memory space. 

OH-86 

• Converts an 86/186 Absolute Object 
Module to Symbolic Hexadecimal 
Format 

• Facilitates Preparing a File for Loading 
by Symbolic Hexadecimal Loader (e.g. 
iSBCTM Monitor SDK-86 Loader), or 
Universal PROM Mapper 

• Converts an Absolute Module to a More 
Readable Format that can be Displayed 
on a CRT or Printed for Debugging 

The OH-86 utility converts an 86/186 absolute object module to the hexadecimal format. This conversion may 
be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal 
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be 
displayed or printed. 

The module to be converted must be in absolute form; the output from LOC-86 is in absolute format. 

22-367 



inter 8086 SOFTWARE DEVELOPMENT PACKAGE 

SPECIFICATIONS 

Documentation Package 

ASM-86 Assembly Language Reference Manual 

8086/87/88 Macro Assembler Operating Instructions 

iAPX 86 Family Utilities User's Guide 

Support Available 

Software Updates, Subscription Service, Hotline Support 

ORDERING INFORMATION 

Order Code 

D86ASM86 

WSASM86 

MWSASM86 

R86ASM86 

R286ASM286 

Operating Environment 

IBM PC XT I AT running PC DOS Version 3.0 or later 

VAXtlVMSt 

MICROVAXt IVMSt 

Intel 86/3XX Systems running: iRMXTM 86 

Intel 286/3XX Systems running: iRMXTM 286 

tMICROVAX, VAX, VMS are trademarks of Digital Equipment Corporation. 

·IBM. AT are registered trademarks of International Business Machines Corporation. 

22-368 



FORTRAN 8086/80186 
SOFTWARE· PACKAGE 

• Features High-Level Language Support • Offers Upward Compatibility with 
for Floating-Point Calculations, FORTRAN 80 
Transcendentals, Interrupt Procedures, • Provides FORTRAN Run-Time Support 
and Run-Time Exception Handling for 86/186 Based Design 

• Meets ANSI FORTRAN 77 Subset • Provides Users Ability to do Formatted 
Language Specifications and Unformatted 110 with Sequential or 

• Supports 8086/20, 8088/20 Numeric Direct Access Methods 
Data Processor for Fast and Efficient • 121CETM Symbolic Debugging Fully· 
Execution of Numeric Instructions Supported 

• Uses REALMATH Floating-Point • PSCOPE Source Level Debugging Fully 
Standard for Consistent and Reliable Supported 
Results 

Supports Arrays Larger Than 64K • Supports Complex Data Types • 
Unlimited User Program Symbols • Choice of Industry Standard Hosts • 

FORTRAN 86/186 meets the ANSI FORTRAN 77 Language Subset Specification and includes many features 
of the full standard. Therefore, the user is assured of portability of most existing ANS FORTRAN programs and 
of full portability from other computer systems with an ANS FORTRAN 77 Compiler. 

FORTRAN 86/186 is available to run on the Intel Microcomputer Development Systems (Series III/Series IV) 
as well as the IBM PC XT/AT running PC DOS Version 3.0 or later, Digital Equipment VAXtlVMSt and Intel 
System 86/3XX running iRMXTM 86 operating system. 

FORTRAN 86/186 is one of a complete family of compatible programming languages for 8086,8088,80186, 
80188 development: PL/M, Pascal, FORTRAN, C, and Assembler. Therefore, users may choose the language 
best suited for a specific problem solution. 

tVAX, VMS are trademarks of Digital Equipment Corporation. 

'IBM, AT are registered trademarks of International Business Machines Corporation. 

22-369 



FORTRAN 86/186 SOFTWARE PACKAGE 

FEATURES 

Extensive High-Level Language 
Numeric Processing Support 

Single (32-bit), double (64-bit), and double extended 
precision (80-bit) complex (two 32-bit), and double 
complex (two 64-bit) floating-point data types 

REALMATH Proposed IEEE. floating-Point Stan­
dard) for consistent and reliable results 

Full support for all other data types: integer, logical, 
character 

Ability to use hardware (8086/20, 8088120 Numeric 
Data Processor) or software (simulator) floating­
point support chosen at link time 

ANSI FORTRAN 77 Standard 

Intel® Microprocessor Support 

FORTRAN 86/186 language features support of 
8086/20, 8088/20 Numeric Data Processor 

Compiler generates in-line iAPX 8086/20, 8088/20 
Numeric. Data Processor object code for floating­
point arithmetic (See Figure 2) 

Intrinsics allow user to control iAPX 8086/20, 8088/ 
20 Numeric Data processor 

8086,8088,80186,80188 architectural advantages 
used for indexing and character-string handling 

Symbolic debugging of application using ICE emula­
tors 

Source level debugging using PSCOPE 

FLOATING-POINT-STATEMENT 

TEMPER = (PRESS - VOLUM 1 QUEK) - 3.45 1 (PRESS - VOLUM 1 QUEK 
& - (PRESS - VOLUM 1 QUEK) • (PRESS - VOLUM 1 QUEK) 

OBJECT CODE GENERATED 

Intel FORTRAN 8086 Compiler 

0013 
0018 
OOlD 
0022 
0025 
002B 
002E 
0031 
0034 
0037 
003A 
003D 
0040 
0045 

8086/20, 8088/20 
MACHINE-CODE 

9BD9060COO 
9BD8360000 
9BD82E0800 
9 BDDD 1 
9B2ED83EOOOO 
9BD9C9 
9BDDD2 
9BDEE9 
9BD9Cl 
9BD8C8 
9BDDC2 
9BDEEl 
9BD91E0400 
9B 

I ASSEMBLER MNEMONICS 

FLD VOLUM 
FDIV QUEK 
FSUBR PRESS 
FST TOS+1H 
FDIVR CS:@CONST 
FXCHG TOS + lH 
FST TOS+2H 
FSUBRP 
FLD 
FMUL 
FFREE 
FSUBP 
FSTP 
WAIT 

TOS+1H 
TOS 
TOS+2H 

TEMPER 

STATEMENT # 2 

Figure 2. Object code generated by FORTRAN 86/186 for a floating-point 
calculation using 8086/20, 8088/20 Numeric Processor. 

22-370 



FORTRAN 86/186 SOFTWARE PACKAGE 

Microprocessor Application Support 
- Direct byte- or word-oriented port I/O 

- Reentrant procedures 

- Interrupt procedures 

BENEFITS 

FORTRAN 86/186 provides a means of developing 
application software for the Intel 86/186 products 
lines in a familiar, widely accepted, and industry­
standard programming language. FORTRAN 
86/186 will greatly enhance the user's ability to pro­
vide cost-effective software development for Intel 
microprocessors as illustrated by the following: 

Early Project Completion 

FORTRAN is an industry-standard, high-level nu­
merics processing language. FORTRAN program­
mers can use FORTRAN 86/186 on microprocessor 
projects with little retraining. Existing FORTRAN 
software can be compiled with FORTRAN 86/186 
and programs developed in FORTRAN 86/186 can 
run on other computers with ANSI FORTRAN 77 
with little or no change. Libraries of mathematical 
programs using ANSI 77 standards may be compiled 
with FORTRAN 86/186. 

Application Object Code Portability for 
a Processor Family 

FORTRAN 86/186 modules "talk" to the resident 
Intellec development operating system using Intel's 
standard interface for all development-system soft­
ware. This allows an application developed under 
the ISIS-II operating system to execute on iRMX/86, 
or a user-supplied operating system by linking in the 
iRMX/86 or other appropriate interface library. A 
standard logical-record interface enables communi­
cation with non-standard I/O devices. 

Comprehensive, Reliable and Efficient 
Numeric Processing 

The unique combination of FORTRAN 8086/8088, 
8086/20, 8088/20 Numeric Data processor, and 
REALMATH (Proposed IEEE Floating-Point Stan­
dard) provide universal consistency in results of nu­
meric computations and efficient object code gener­
ation. 

SPECIFICATIONS 

Documentation Package 

FORTRAN 86/88/186/188 User's Guide 

ORDERING INFORMATION 
Order Code 

D86FOR86 

R86FOR86 

VVSFOR86 

Operating Environment 

IBM PC XT/AT running. PC DOS 
Version 3.0 or later 

Intel System 86/3XX running 
iRMX 86 

For 86 VAXIVMS 4.3 and later 

SUPPORT AVAILABLE 

Software updates, Subscription Service, Hotline 
Support. 

22-371 



inter 
PASCAL 86/186 

SOFTWARE PACKAGE 

• Choice of Industry Standard Hosts • Unlimited User Program Symbols 

• . Object Compatible and Link.ablewlth • Supports 8086/20, 8088/20 Numeric 
PLIM 86/186, ASM 86/186, iC86/186 Data Processors 
and FORTRAN 86/186 • Strict Implementation of ISO Standard 

• 121CETM Symbolic Debugging Fully Pascal 
Supported • Useful Extensions Essential for 

• PSCOPE Source Level Dubugging Fully Microcomputer Applications 
Supported • Separate Compilation with Type-

• Implements REALMATH for Consistent Checking Enforced Between Pascal 
and Reliable Results Modules 

• Supports Large Array Operation • Compiler Option to Support Full Run-
Time Range-Checking 

PASCAL 86/186 conforms to and implements the ISO PASCAL standard. The language is enhanced to 
support microcomputer applications with special features, such as separate compilation, interrupt handling 
and direct port I/O. To assist the development of portable software, the compiler can be directed to flag all 
non-standard features. 

The PASCAL 86/186 compiler runs on Series III and Series IV Microcomputer Development Systems, as well 
as the IBM' XT/AT* running PC DOS Version 3.0 or later, Digital Equipment VAXIVMSt, and Intel System 
8086/3XX running iRMXTM 86. 

A well-defined I/O interlace is provided for run-time support. This allows a user-written operating system to 
support application programs as an alternate to the development system environment. Program modules 
compiled under PASCAL 86/186 are compatible and linkable with modules written in PL/M 86/186, 
ASM 86/186, C86/186 or FORTRAN 86/186. With a complete family of compatible programming languages 
for the 86/186 one can implement each module in the language most appropriate to the task at hand. 

PASCAL 86/186 object modules contain symbol and type information for program debugging using ICE emula­
tors and PSCOPE source language debugger. For final production version, the compiler can remove this extra 
inhrmation and code. 

tVAX, VMS are trademarks of Digital Equipment Corporation. 

22-372 



inter PASCAL 86/186 

FEATURES 

Includes all the language features of Jensen & Wirth 
Pascal as defined in the ISO Pascal Standard. 

Supports required extensions for microcomputer ap­
plications. 

- Interrupt handling 

- Direct port I/O 

Separate compilation extensions allow: 

- Modular decomposition of large programs 

- Linkage with other Pascal modules as well as 
PL/M 86/186, ASM 86/186, C86/186 and FOR­
TRAN 86/186 

- Enforcement of type-checking at LINK-time 

Supports numerous compiler options to control the 
compilation process, to INCLUDE files, flag non­
standard Pascal statements and others to control 
program listing and object modules. 

Utilizes the IEEE standard for Floating-Point Arith­
metic (the Intel REALMATH standard) for arithmetic 
operations. 

Well-defined and documented run-time operating 
system interfaces allow the user to execute the ap­
plications under user-designed operations systems. 

Predefined type extensions allow: 

- Create precision in read, integer, and unsigned 
calculations. 

- Means to check 8087 errors 

- Circumvention of rigid type checking on calls to 
non-Pascal routines 

BENEFITS 

Pr~vides a standard Pascal for 86/186 based appli­
cations. 

- Pascal has gained wide acceptance as a porta­
ble application language for microcomputer ap­
plications 

- It is being taught in many colleges and universi­
ties around the world 

- It is easy to learn, originally intended as a vehicle 
for teaching computer programming 

- Improves maintainability: Type mechanism is 
both strictly enforced and user extendable 

- Few machine specific language constructs 

Strict implementation of the proposed ISO standard 
for Pascal aids portability of application programs. A 
compile time option checks conformance to the 
standard making it easy to write conforming pro­
grams. 

PASCAL 86/186 extensions via predefined proce­
dures for interrupt handling and direct port I/O make 
it possible to code an entire application in Pascal 
without compromising portability. 

Standard Intel REALMATH is easy to use and pro­
vides reliable results, consistent with other Intel lan­
guages and other implementations of the IEEE pro­
posed Floating-Point standard. 

Provides run-time support for co-processors. All 
real-type arithmetic is performed on the 86/20 nu­
meric data processor unit or software emulator. Run­
time library routines, common between Pascal and 
other Intel languages (such as FORTRAN), permit 
efficient and consistently accurate results. 

Extended relocation and linkage support allows the 
user to link Pascal program modules with routines 
written in other languages for certain parts of the 
program. For example, real-time or hardware depen­
dent routines written in ASM 86/186 or PL/M 
86/186 can be linked to Pascal routines, further ex­
tending the user's ability to write structured and 
modular programs. 

PASCAL 86/186 programs "talk" to the resident op­
erating system using Intel's standard interface for 
translated programs. This allows users to replace 
the development operating system by their own op­
erating systems in the final application. 

PASCAL 8086/8088 takes full advantage of 86/186 
high level language architecture to generate efficient 
machine code. 

Compiler options can be used to control the program 
listings and object modules. While debugging, the 
user may generate additional information such as 
the symbol record information required and useful 
for debugging using PSCOPE or ICE emulation. After 
debugging, the production version may be stream­
lined by removing this additional information. 

22-373 



inter PASCAL 86/186 

SPECIFICATIONS 

ORDERING INFORMATION 

Ordering Code 
D86PAS86 

Operating Environment 

R86PAS86 

VVSPAS86 

MVVPAS86 

IBM PC XT/ATrunning PC DOS Version 3.0 or later 

Intel System 86/3XX running iRMXTM 86 

VAXNMS 

MICROVAXNMS 

Documentation Package 

PASCAL·86 User's Guide 

SUPPORT 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail-. 
able. . 

22-374 



PL/M 86/186 Software Package 
• Systems Programming Language for 

the 86/186 Processors 

• Language is Upward Compatible from 
PLIM 80, Assuring MCS®-80/85 Design 
Portability 

• Advanced Structured System 
Implementation Language for Algorithm 
Development 

• Supports 16-Bit Signed Integer and 32-
Bit Floating Point Arithmetic in 
Accordance with IEEE Proposed 
Standard . 

• Easy-to-Learn Block-Structured 
Language Encourages Program 
Modularity 

• Improved Compiler Performance Now 
Supports More User Symbols and 
Faster Compilation Speeds 

• Produces Relocatable Object Code 
Which Is Linkable to All Other 8086 
Object Modules 

• Code Optimization Assures Efficient 
Code Generation and Minimum 
Application Memory Utilization 

• Built-In Syntax Checker Doubles 
Performance for Compiling Programs 
Containing Errors 

• Resident on Choice of Hosts 

• 121CE Symbolic Debugging Fully 
Supported 

• PSCOPE Source Level Debugging Fully 
Supported 

PLIM 86/186 is an advanced, structured, high-level systems programming language. The PLIM 86/186 com­
piler was created specifically for performing software development for the Intel 86/186 Microprocessors. 
PL/M was designed so that program statements naturally express the program algorithm. This frees the 
programmer to concentrate on the logic of the program without concern for burdensome details of machine or 
assembly language programming (such as register allocation, meanings of assembler mnemonics, etc.). 

The PL/M 86/186 compiler efficiently converts free-form PL/M language statements into machine instruc­
tions. Substantially fewer PLIM statements are necessary for a given application than if it were programmed at 
the assembly language or machine code level. 

The use of PL/M high-level language for system programming, instead of assembly language, results in a high 
degree of engineering productivity during project development. This translates into significant reductions in 
initial software development and follow-up maintenance costs for the user. 

PLIM 8086 is available to run on the Intellec® Microcomputer Development Systems (Series III/Series IV) as 
well as the IBM PC XT/AT, DEC VAXtIVMSt, and Intel System 8086/3XX running iRMXTM 86. 

tVAX, VMS are trademarks of Digital Equipment Corporation. 

22-375 



inter PL/M 86/186 SOFTWARE PACKAGE 

FEATURES 

Major features of the Intel PLIM 8086 compiler and 
programming language include: 

Block Structure 

PL/M source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program 
modularity in this manner makes programs more 
readable, and easier to maintain and debug. The 
language becomes more flexible, by clearly defining 
the scope of user variables (local to a private proce­
dure). 

The use of procedures to break down a large 
problem is paramount to productive software 
development. The PL/M 8086 implementation of a 
block structure allows the use of REENTRANT (re­
cursive) procedures, which are especially useful in 
system design. 

Language Compatibility 

PLIM 8086 object modules are compatil",>le with ob­
ject modules generated by all other 8086 transla­
tors. This means that PLIM programs may be linked 
to programs written in any other 8086 language. 

Object modules are compatible with In-Circuit Emu­
lators; DEBUG compiler control provides the In-Cir­
cuit Emulators with symbolic debugging cap~bilities. 

PLIM 8086 Language is upward compatible with 
PLIM 80, so that application programs may be easily 
ported to run on the 8086. 

Supports Seven Data Types 

PLIM makes use of seven data types for various 
applications. These data types range from one to 
four bytes, and facilitate various arithmetic, logic, 
and addressing functions: 

- Byte: 8-bit unsigned number 

- Word: 16-bit unsigned number 

- DWORD: 32-bit unsigned number 

- Integer: 16-bit signed number 

- Read: 32-bit floating point number 

- Pointer: 16-bit or 32-bit memory address 
indicator 

- Selector: 16-bit base portion of a pointer 

Another powerful facility allows the use of BASED 
variables that map more than one variable to the 
same memory location. This is especially useful for 
passing parameters, relative and absolute address­
ing, and memory allocation. 

Two Data Structuring Facilities 

In addition to the five data types .and based vari­
ables, PL/M supports two data structuring facilities. 
These help the user to organize data into logical 
groups. 

- Array: Indexed list of same type of data elements 

- Structure: Named collection of same or different 
type data elements 

- Combinations of Each: Arrays of structures or 
structures ~f arrays 

8087 Numerics Support 

PLIM programs that use 32-bit REAL data may be 
executed using the Numeric Data Processor for im­
proved performance. All floating-point operations 
supported by PLIM may be executed on the 
8086/20 or 8088/20 NDP, or the 8087 Emulator (a 
software module) provided with the package. Deter­
mination of use of the chip or Emulator takes place 
at linktime, allowing compilations to be run~time in­
dependent. 

Built-In String Handling Facilities 

The PLIM 8086 language contains built-in functions 
for string manipulation. These byte and word func­
tions perform the following operations on character 
strings: MOVE, COMPARE, TRANSLATE, SEARCH, 
SKIP, and SET. 

Interrupt Handling 

PL/M has the facility for handling interrupts. A pro­
cedure may be defined with the INTERRUPT attri­
bute, and the compiler willi automatically initialize an 
interrupt vector at the appropriate memory location. 
The compiler will also generate code to save and 
restore the processor status, for execution of the 
user-defined interrupt handler routine. The proce­
dure SET$INTERRUPT, the function retuning an IN­
TERRUPT$PTR, and the PL/M statement CAU­
SE$INTERRUPT all add flexibility to user programs 
involving interrupt and handling. 

22-376 



PLIM 86/186 SOFTWARE PACKAGE 

Compiler Controls 

Including several that have been mentioned, the 
PL/M 8086 compiler offers more than 25 controls 
that facilitate such features as: 

- Conditional compilation 

Including additional PL/M source files from disk 

Corresponding assembly language code in the 
listing file 

Setting overflow conditions for run-time handling 

Segmentation Control 

The PLIM 8086 compiler takes full advantage of 
program addressing with the SMALL, COMPACT, 
MEDIUM, and LARGE segmentation controls. Pro­
grams with less than 64 KB total code space can 
exploit the most efficient memory addressing 
schemes, which lowers total memory requirements. 
Larger programs can exploit the flexibility of extend­
ed one-megabyte addressing. 

Code Optimization 

The PLIM 8086 compiler offers four levels of opti­
mization for significantly reducing overall program 
size. 

Combination or "folding" of constant expres­
sions; and short-circuit evaluation of Boolean ex­
pressions 

"Strength reductions" (such as a shift left rather 
than multiply by 2); and elimination of common 
sub-expressions within the same block 

Machine code optimizations; elimination of su­
perfluous branches; re-use of duplicate code; re­
moval of unreachable code 

Byte comparisons (rather than 20-bit address 
calculations) for pointer variables; optimization of 
based-variable operations 

Error Checking 

The PL/M 8086 compiler has a very powerful fea­
ture to speed up compilations. If a syntax or program 
error is detected, the compiler will skip the code 
generation and optimization passes. This usually 
yields a 2X performance increase for compilation of 
programs with errors. 

A fully detailed set of programming and compilation 
errors is provided by the compiler. 

M:DO; r Beginning of module"/ 

SORTPROC: PROCEDURE (PTA. COUNT. RECSIZE. KEYINDEX)~ 
DECLARE PTR POINTER. (COUNT. RECSIZE. KEYINDEX) INTEGER. 

PUBLIC and EXTERNAL attributes promote 
program modularity. 

/" Parameters: 
PTA is pointer to first record. 
COUNT is number of records to be sorted. . 
RECSIZE is, number of, bytes in each record-max is 128. 
KEYINDEX IS byte position within each record of a BYTE scalar I "Bas,ed" Variables allow manipulation of external data by 

10' :b~e~u~se~d~a~s ~so~rt~k,!ey~.~·I ___________ -1 p~s~m.g the base of the data structure (a pointer). This 
DECLARE(RECORD BASeD PT~(l) BYTE, l minimiZeS ~he ~TACK space used for parameter passing. and 

CURRENT (128) BYTE, the execution time to perform many STACK operations. 

(I. J) INTEGER: 

SORT: DO J~1 TO COUNT-t: 
CALL MOVB(@RECORD(J-RECSIZE). (@CURREND. RECSIZE): 

FIND: 

END M; 

I~J: 

DO WHILE 1>0 
AND RECORD((I- t),RECSIZE. KEYINOEX) 
>CURRENT(KEYINDEX): 

CALL MOVB(@RECORD((I-t)"RECSIZE). 
@RECORD(I·RECSIZE). 

101_ 1: 
RECSIZE): 

END FIND: 

END sg~f:L MOVB (@CURRENT. @RECORD(I-RECSIZE). RECSIZE): 

END SORTPROC: 

rEnd of module-' 

The ·'AT" operator returns the address of a 
~ariabl~, inst~ad of its contents. This is very useful 
In passing pOinters for based variables. 

! ~~~i~~f:t~~~~1 PUM built-,n procedures for string 

210689-5 

Figure 3. Sample PL/M 8086 Program 

22-377 



inter PL/M 86/186 SOFTWARE PACKAGE 

BENEFITS 

PLIM 8086 is designed to be an efficient, cost-effec­
tive solution to the special requirements of 8086 Mi­
crosystem . Software Development, as iIIus~rated by 
the following benefits of PL/M use: 

Cost-Effective Alternative to Assembly 
Language 

PL/M 8086 programs are code efficient. PLIM 8086 
combines all of the benefits of a high-level language 
(ease of use, high productivity) with the ability to ac­
cess the 8086 architecture. Consequently, for the 
development of systems software, PL/M 8086 is the 
cost-effective alternative to assembly language pro­
gramming. 

Low Learning Effort 

PLIM is easy to learn and to use, even for the nov­
ice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M 8086, a struc­
tured high-level language, increases programmer 
productivity. 

. Lower Development Cost 

Increases in programmer productivity translate im­
mediately into lower software development costs 
because fewer programming resources are required 
for a given programmed function. 

In'creased Reliability 

PLIM 8086 is designed to aid in the development of 
reliable software (PLIM 8086 programs are simple 
statements of the program algorithm). This substan­
tially reduces the risk of costly correction of errors in 
systems that have already reached full production 
status, as the more Simply stated the program is, the 
more likely it is to perform its intended function. 

Easier Enhancements and 
Maintenance 

Programs written in PL/M tend to be self-document­
ing, thus easier to read and understand. This means 
it is easier to enhance and maintain PLIM programs 
as the system capabilities expand and future prod­
ucts are developed. 

SPECIFICATIONS 

Documentation Package 
PUM-8086 User's Guide for 8086-based Develop­
ment Systems 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Reporting (SPR), Software Updates, Technical Re­
ports, Monthly Newsletter available. 

ORDERING INFORMATION 

Order Code 
D86PLM86 

R86PLM86 

WSPLM86 

MWSPLM86 

Operating Environment 
IBM PC XT I AT running PC DOS 
Version 3.0 or later 

Intel System 8086/3XX running 
iRMXTM 86 

VAXIVMS 

MICROVAXIVMS 

22-378 



iC-86/186 
C COMPILER FOR THE 8086 AND THE 80186 

• Implements Full C Language as Defined • Supports Small, Medium, Compact, and 
by the Draft ANSI Standard Large Models of Computation 

• Produces High Density Code Rivaling • Supports IEEE Floating Point Math with 
Assembler 8087 Coprocessor 

• Supports Both Standard Intel (PL/M- • Supports 1/0 and Hardware Interrupts 
like) and Standard C Calling Directly in C 
Conventions • Supports Full Standard 1/0 Library 

• Allows Mixed Memory Model (STDIO) 
Programming via Near and Far Pointers • Written in C 

• Available for DOS and VAX/VMS* • All Code and Libraries Are Fully 
Operating System Compatible 

• Designed to Work with Intel Debuggers 
such as 121CE and PSCOPE 

The C Programming Language was originally designed in 1972 and has become increasingly popular as a 
systems development language. C combines the flexibility and programming speed of a higher level language 
with the efficiency and control of assembly language. 

Intel iC-86 brings the full power of the C programming language to 8086, 8088, 80186, and 80188 based 
microprocessor systems. iC-86 has been developed specifically for embedded microprocessor-based applica­
tions. 

Intel iC-86 supports the full C language as described in the Kernighan and Ritchie book, "The C Programming 
Language", (Prentice-Hall, 1978). iC-86 implements the complete C language specification as defined in the 
ANSI X3J11 standard. 

iC-86 is an outstanding microprocessor system implementation language because it provides: 

1. the ability to manipulate the fundamental objects of the machine (including machine addresses) as easily as 
assembly language. 

2. the power and speed of a structured language supporting a large number of data types, storage classes, 
expressions and statements, 

3. processor independence (most programs developed for other processors can be easily transported to the 
8086), and 

4. code that rivals assembly language in efficiency 

INTEL iC-8S COMPILER 
DESCRIPTION 

The iC-86 compiler operates in four phases: pre­
processor, parser, code generator, and optimizer. 
The preprocessor phase interprets directives in C 
source code, including conditional compilations 

(# define). The parser phase converts the C pro­
gram into an intermediate free form and does all 
syntactic and semantic error checking. The code 
generator phase converts the parser's output into an 
efficient intermediate binary code, performs con­
stant folding, and features an extremely efficient reg­
ister allocator, ensuring high quality code. The opti­
mizer phase converts the output of the code gener-

22-379 



infef IC-86 C COMPILER FOR THE 8086/80186 

ator into relocatable Intel Object Module Format 
(OMF) code, without creating an intermediate as­
sembly file. Optionally, the iC-S6 compiler can pro­
duce a symbolic pseudo-assembly file. The iC-S6 
optimizer eliminates common code, eliminates re­
dundant loads and stores, and resolves span depen­
dencies (shortens branches) within a program. 

The iC-S6 runtime library consists of a number of 
functions which the C programmer can ,call. The run­
time system includes ,the standard 1/0 library 
(STDIO), conversion routines, routines for manipu­
lating strings, special routines to perform functioris 
not available on the SOS6 (32-bit arithmetic and em­
ulated floating point), and (where appropriate) rou­
tines for interfacing with the operating system. 

iC-S6 uses Intel's linker and locator and generates 
debug records for symbols and lines on request, per­
mitting access to Intel's PSCOPE AND 121CETM to 
aid in program testing. Intel's DOS LlNKS6 can also 
be used to create DOS executable .EXE files for pro­
totyping. 

FEATURES 

Memory Model Support 

iC-S6 supports the SMALL, MEDIUM, COMPACT, 
and LARGE segmentation models. A SMALL Model 
Program can have up to 64K bytes of code space 
and 64K bytes of total data, memory, and stack 
space for all combined modules. ,SMALL model will 
generate the most efficient code and is the compiler 
default. A MEDIUM Model Program cari have a sep_ 
erate 64K segment for each module of code, while 
total data, memory, and stack must be less than 
64K. In the COMPACT model code, data, stack, and 
memory can each reside in a separate 64K seg" 
men!. The LARGE model is intended for programs 
needing up to 64K of code space and 64K of data 
space for each module. LARGE model also provides 
up to 64K of stack space and up to 64K of space for 
memory. Mixed model programming is supported 
with "near" and "far" calls. 

Preprocessor Directives 

# define-defines a macro 

# include-includes code outside of the program 
source file 

#if-conditionally includes or excludes code 

Other preprocessor directives include #undef, 
#ifdef, #ifndef, #else, #endif, and #Iine. 

Statements 

The C language supports a variety of statements: 

Conditionals: IF, IF-ELSE 

Loops: WHILE, DO-WHILE, FOR 

Selection of cases: SWITCH,CASE, DEFAULT 

Exit from a function: RETURN 

Loop control: CONTINUE, BREAK 

Branching: GOTO 

Expressions and Operators 

The C language includes a rich set of expressions' 
and operators. 

Primary expression: invoke functions, select ele­
ments from arrays, and extract fields from structures 
or unions 

Arithmetic operators: add, subtract, multiply, divide, 
modulus 

Relational operators: greater than, greater than or 
equal, less than, less than or equal, not equal 

Unary operators: indirect through a pointer, compute 
an address, logical negation, ones complement, pro­
vide the size in bytes of an operand. 

Logical operators: AND, OR 

Bitwise operators: AND, exclusive OR, inclusive OR, 
bitwise complement· 

, . 

Calling Conventions 

iC-S6 provides two distinct calling conventions for 
handling the way parameters are, passed on the 
stack. The variable parameter list (VPL) is the de­
fault, and is consistent with most other,C compilers. 
VPL pushes the last (rightmost) parameter first, and 
the first parameter is pushed last. The fixed parame­
ter list (FPL)is the calling convention for most other 
Intel compilers, including PLIM. FPL pushes the first 
parameter first, and the last parameter last. By using 
the keyword "alien", the user can make direct PL/M 
calls. 

22-3S0 



IC-86 C COMPILER FORTHE 8086/80186 

Data Types and Storage Classes 

Data in C is described by its type and storage class. 
The type determines its representation and use, and 
the storage class determines its lifetime, scope, and 
storage allocation. The following data types are fully 
supported by iC-86. 

char 

an 8-bit signed integer 

int 

a 16-bit signed integer 

short 

same as int (on the 8086) 

long 

a 32-bit signed integer 

unsigned 

a modifier for integer data types (char, int, short, 
and long) which doubles the positive range of 
values 

float 

a 32-bit floating point number which utilizes the 
8087 or a software floating point library 

double 

a 64-bit floating point number 

bit-field 

maximum size is that of an int 

void 

a special type that cannot be used as an opera­
tor; normally used for functions called only for 
effect (to prevent their use in contexts where a 
value is required). 

enum 

an enumerated data type 

These fundamental data types may be used to 
create other data types including: arrays, func­
tions, structures, pointers, and unions. 

The storage classes available in iC-86 include: 

register 

suggests that a variable be kept in a machine 
register, often enhancing code density and 
speed 

extern 

a variable defined outside of the function where 
it is declared; retaining its value throughout the 
entire program and accessible to other modules 

auto 

a local variable, created when a block of code is 
entered and discarded when the block is exited 

static 

a local variable that retains its value until the 
termination of the entire program 

typedef 

defines a new data type name from existing data 
types 

BENEFITS 

Faster Compilation 

Intel iC-86 compiles C programs substantially faster 
than standard C compilers because it produces Intel 
OMF code directly, eliminating the traditional inter­
mediate process of generating an assembly file. 

Portability of Code 

Because Intel iC-86 supports the STOIO and pro­
duces Intel OMF code, programs developed on a 
variety of machines can easily be transported to the 
8086. 

Rapid Program Development 

Intel iC-86 provides the programmer with detailed er­
ror messages and access to PSCOPE-86 and 121CE 
to speed program development. A complete listing 
file can also be produced. 

Full Manipulation of the 
8086 and 80186 

Intel iC-86 enables the programmer to utilize fea­
tures of the C language to control bit fields, pointers, 
addresses and register allocation, taking full advan­
tage of the fundamental concepts ofthe 8086. A 
M00186 control is also available to provide full sup­
port for the additional instructions in the 80186. 

22-381 



inter IC-86 C COMPILER FOR THE 8086/80186 

SPECIFICATIONS 

Operating Environment, 

The iC-86 compiler runs host resident on DOS 3.0 or 
greater. iC-86 can also run as a cross compiler on a 
VAX 111780 computer under the VMS operating 
system. 640K bytes ofLJser Memory'is required on 
all versions. The PC DOS Operating Environment is 
also supported. Specify desired version when order­
ing. ~ 

Required Hardware 

VAX version: 

- Digital Equipment Corporation VAX 111780 or 
compatible computer running VMS 4.5 or greater 

PC DOS version: 

- PC XT or AT using PC DOS 3.0 or later 

- Hard disk recommended 

Required Software; 

MicroVAX or VAX version: 

- VMS Operating System 4.5 or greater 

PC DOS version: 

...:. PC DOS Release 3.0 or later Operati~g System 

Documentation Package 

ie-8B User Manual 

c: A Reference Manual by Harbison and Steele, 
(1987 Pr,entice~Hall) , 

Shipping Media 

VAX version: 

~ 1600 bpi, 9 track Magnetic tape 
, ' 

DOS version: 

- 5%" DOS format diskette 

- 3.5" DOS format diskette 

ORDERING INFORMATION 

Order Code Description 
MWSC86 iC-86 Cross Compiler for' 

MicroVAXIVMS 

WSC86 

D86C86 

iC-86 Cross Compiler for VAXIVMS 

iC-86 Compiler for PC DOS 

Intel Software' License required for VAX and 
MicroVAX versions 

SUPPORT 

Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 

, options available., ' 

°MDS is an ordering code only and is not used as a product 
name or trademark. MDS is a registered trademark, of Mo­
hawk Data Sciences Corporation. 

VAX, VMS are registered trademarks of Digital Equipment 
Corporation. 

22-382 



VAX*/VMS* RESIDENT 
8086/88/186 

SOFTWARE DEVELOPMENT PACKAGES 
• Executes on DEC VAX*/MicroVAX 

Minicomputer under VMS* Operating 
System to translate PL/M-86, Pascal-86 
and ASM-86 Programs for 8086, 88 
and 186 Microprocessors. 

• Packages include C-86; FORTRAN-86; 
Pascal-86; PL/M-86; ASM-86; Link and 
Relocation Utilities;OH-86 Absolute 
Object Module to Hexadecimal Format 
Converter; and Library Manager 
Program. 

• Output linkable with Code Generated 
on Intellec® Development Systems. 

The VAXIVMS Resident Software Development Packages contain software development tools for the 8086, 
88, and 186 microprocessors. The package lets the user develop, compile, maintain libraries, and link and 
locate programs on a VAX running the VMS operating system. The translator output is object module compati­
ble with programs translated by the corresponding version of the translator on an Intellec Development 
System. 

Four packages are available: 

1. An ASM-86 Assembler Package which includes the Assembler, the Link Utility, the Locate Utility, the 
absolute object to hexadecimal format conversion utility and the Library Manager Program. 

2. A PL/M-86 Compiler Package which contains the PL/M-86 Compiler and Runtime Support Libraries. 

3. A Pascal-86 Compiler Package which contains the Pascal-86 Compiler and Runtime Support Libraries. 

4. A C-86 Compiler Package which contains the C-86 Compiler and Run-Time Libraries. 

5. A FORTRAN-86 Compiler Package which contains the FORTRAN-86 Compiler and Run-Time Libraries.· 

The VAXIVMS resident development packages and the Intellec Development System development packages 
are built from the same technology base. Therefore, the VAXIVMS resident development packages and the 
Intellec Development System development packages are very similar. 

Version numbers can be used to identify features correspondence. The VAXIVMS resident deveiopment 
packages will have the same features as the Intellec Development System product with the same version 
~m~~ . 

The object modules produced by the translators contain symbol and type information for programming debug­
ging using ICETM translators and/or the PSCOPE debugger. For final production version, the compiler can 
remove this extra information and code. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

22-383 
September 1987 

Order Number: 210643-004 



inter VAX*/VMS* RESIDENT 

VAX*-PL/M-86/88/186 SOFTWARE PACKAGE 

• Executes on VAX*/MicroVAX • Code Optimization Assures Efficient 
Minicomputers under the VMS· Code Generation and Minimum 
Operating. System Application Memory Utilization. 

• Supports 16-Bit Signed Integer and • Built-In Syntax Checker Doubles 
32-Bit Floating Point Arithmetic In Performance for Compiling Programs 
Accordance with IEEE Proposed Containing Errors 
Standard • Source Input/Object Output Compatible 

• Easy-To-Learn Block-Structured with PL/M-86 Hosted on an Intellec® 
Language Encourages Program Development System 
Modularity • ICETM, PSCOPE Symbolic Debugging 

• Produces Relocatable Object Code Fully Supported 
Which Is Linkable to All Other Intel 
8086 Object Modules, Generated on 
Either a VAX*, a PCXT/AT running 
PC-DOS Version 3.0 or Intellec® 
Development Systems 

Like its counterpart for MCS®-80/85 program development, and Intellec® hosted 8086 program development, 
VAX-PL/M-86 is an advanced, structured high-level programming language. The VAX-PL/M-86 compiler was 
created specifically for performing software development for the Intel 8086, 88 and 186 Microprocessors. 

PLIM is a powerful, structured, high-level system implementation language in which program statements can 
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the program 
without concern for burdensome details of machine or assembly language programming (such as register 
allocation, meanings of assembler mnemonics, etc.). 

The VAX-PLlM-86 compiler efficiently converts free~form PL/M language statements into equivalent 
8086/88/186 machine instructions. Substantially fewer PL/M statements are necessary for a given applica­
tion than if it were programmed at the assembly language or machine code level. 

The use of PLIM high-level language for system programming, instead of assembly language, results in a high 
degree of engineering productivity during project development. This translates into significant reductions in 
initial software devfjlopment and follow-on maintenance costs for the user. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

22-384 



VAX*/VMS* RESIDENT 

VAX*-PASCAL-86/88 SOFTWARE PACKAGE 

• Executes VAX'/MicroVAX • Strict Implementation of ISO Standard 
Minicomputers under the VMS' Pascal 
Operating System • Useful Extensions Essential for 

• Produces Relocatable Object Code Microcomputer Applications 
Which is Linkable to All Other Intel • Separate Compilation with Type-
8086 Object Modules, Generated on Checking Enforced between Pascal 
Either a VAX', a PC XT/AT running PC- Modules 
DOS Version 3.0 or Intellec® 
Development Systems • Compiler Option to Support Full Run-

• ICETM, PSCOPE Symbolic Debugging 
Time Range-Checking 

Fully Supported • Source Input/Object Output Compatible 

Implements REALMATH for Consistent 
with Pascal-86 Hosted on a Intellec® • Development System 

and Reliable Results 

• Supports 8086/20, 88/20 Numeric Data 
Processors 

VAX-PASCAL-86 conforms to and implements the ISO Pascal standard. The language is enhanced to support 
microcomputer applications with special features, such as separate compilation, interrupt handling and direct 
port I/O. Other extensions include additional data types not required by the standard and miscellaneous 
enhancements such as an allowed underscore in names, an OTHERWISE clause in CASE construction and 
so forth. To assist the development of portable software,the compiler can be directed to flag all non-standard 
features. 

The VAX-PASCAL-86 compiler runs on the Digital Equipment Corporation VAX under the VMS Operating 
System. A well-defined I/O interface is provided for run-time support. This allows a user-written operating 
system to support application programs on the target system as an alternate to the development system 
environment. Program modules compiled under PASCAL-86 are compatible and linkable with modules written 
in PL/M-86, and ASM-86. With a complete family of compatible programming languages for the 8086, 88, and 
186 one can implement each module in the language most appropriate to the task at hand. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

22-385 



VAX*/VMS* RESIDENT 

VAX* 8086/88/186 MACRO ASSEMBLER 

• Executes on VAX*/MicroVAX 
Minicomputers under The VMS· 
Operating System 

• Produces Relocatable Object Code 
Which is Linkable to All Other Intel 
8086/88/186 Object Modules, 
Generated on Either a VAX·, a PC 
XT/AT running PC-DOS Version 3.0 or 
Intellec® Development Systems 

• Powerful and Flexible Text Macro 
, Facility with Three Macro Listing 
Options to Aid Debugging 

• Highly Mnemonic and Compact 
Language, Most Mnemonics Represent 
Several Distinct Machine Instructions 

• "Strongly Typed" Assembler Helps 
Detect Errors at Assembly Time 

• High-Level Data Structuring Facilities 
Such as "STRUCTURES" and 
"RECORDS" 

• Over 120 Detailed and Fully 
Documented Error Messages 

• Produces Relocatable and Linkable 
Object Code 

• Source Input/Object Output Compatible 
with ASM-86 hosted on an Intellec® 
Development System 

VAX-ASM-86 is the "high-level" macro assembler for the 8086/88/186 assembly language. VAX-ASM-86 
translates symbolic 8086/88/186 assembly language mnemonics into 8086/88/186 relocatable object code. 

VAX-ASM-86 should be used where maximum code efficiency and hardware control is needed. The 
8086/88/186 assembly language includes approximately 100 instruction mnemonics. From these few mne­
monics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software develop­
ment task is simplified, as the programmer need know only 100 mnemonics to generate all possible 8086/88/ 
186 machine instructions. VAX-ASM-86 will generate the shortest machine instruction possible given no for­
ward referencing or given explicit information as to the characteristics of forward referenced symbols. 

VAX-ASM-86 offers many features normally found only in high-level languages. The 8086/88/186 assembly 
language is strongly typed. The assembler performs extensive checks on the usage of variable and labels. The 
assembler uses the attributes which are derived explicity when a variable or label is first defined, then makes 
sure that each use of the symbol in later instructions conforms to the usage defined for that symbol. This 
means that many programming errors will be deteced when the program is assembled, long before it is being 
debugged on hardware. 

'VAX, DEC. and VMS are trademarks of Digital Equipment Corporation .. 

22-386 



VAX*/VMS· RESIDENT 

VAX*-LIB-86 

• Executes on VAX*/MicroVAX 
Minicomputers under the VMS· 
Operating System 

• VAX-LlB-86 is a Library Manager 
Program which Allows You to: 
Create Specifically Formatted Files to 
Contain Libraries of Object Modules 
Maintain These Libraries by Adding or 
Deleting Modules 
Print a Listing of the Modules and 
Public Symbols in a Library File 

• Libraries Can be Used as Input to 
VAX-LlNK-86 Which Will Automatically 
Link Modules from the Library that 
Satisfy External References in the 
Modules Being Linked 

• Abbreviated Control Syntax 

Libraries aid in the job of building programs. The library manager program VAX-LlB-86 creates and maintains 
files containing object modules. The operation of VAX-LlB-86 is controlled by commands to indicate which 
operation VAX-LlB-86 is to perform. The commands are: 

CREATE: creates an empty library file 

ADD: adds object modules to a library file 

DELETE: deletes modules from a library file 

LIST: lists the module directory of library files 

EXIT: terminates the LlB-86 program and returns control to VMS 

When using object libraries, the linker will call only those object modules that are required to satisfy external 
references, thus saving memory space. 

VAX-OH-86 

• Executes on VAX*/MicroVAX 
Minicomputers under the VMS' 
Operating System 

• Converts an 8086/88/186 Absolute 
Object Module to Symbolic 
Hexademical Format 

• Facilitates Preparing a file for Loading 
by Symbolic Hexadecimal Loader (e.g. 
iSBC® Monitor SDK-86 Loader), or 
Universal PROM Mapper 

• Converts an Absolute Module to a More 
Readable Format that can be Displayed 
on a CRT or Printed for Debugging 

The VAX-OH-86 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion 
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal 
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be 
displayed or printed. 

The module to be converted must be in absolute form; the output from VAX-LOC-86 is in absolute format. 

'VAX, VMS are trademarks of Digital Equipment Corporation. 

22-387 



inter VAX*/VMS* RESIDENT 

VAX*-LINK-86 

• Executes on VAX· IMicroVAX • Automatic Generation ofa Summary 
. Minicomputers under the' VMS· Map Giving Results of the LlNK"86 
Operating System Process 

• Automatic' Combinatio.n of Separately • Abbreviated Control Syntax 
Compiled or Assembled 86/881186 . • Rel()catable modules may be Merged 
Programs into a Relocatable Module, into a Single Module Suitable for 
Generated on Either a VAX, a PC ,Inclusion ina Library 
XT I AT running PC-DOS Version 3.0 or 
an Intellec® Development System • Supports "Incremental" Linking 

• Automatic Selection of Required • Supports Type Checking of Public and 
Modules from Specified Libraries to External Symbols 
Satisfy Symbolic References 

• Extensive Debug Symbol Manipulation, 
allowing LIne Numbers, Local Symbols; 

. and Public Symbols to be Purged and 
Listed Selectively 

VAX-liNK-S6 combines object modules specified in the VAX-liNK-S6 input list into a single output module. 
VAX-liNK-S6 combines segments from the input modules according to the order in which the modules are 
listed. 

VAX-liNK-S6 will accept libraries and object modules built from VAX-PL/M-S6, VAX-PASCAL·S6, VAX-ASM­
S6, or any other Intel translator generating SOS6 Relocatable Object Modules, such as the Series III resident 
translators. 

Support for incremental linking is provided since an output module produced by VAX-liNK-S6 can be an input 
to another link. At each stage in the incremental linking proce:;s, unneeded public symbols may be purged. 

V AX-liNK-S6 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their types are 
not consistent. ' 

VAX-liNK-S6 will link any valid set of input modules without any controls., However, controls are. av~ilable to 
control the output 0.1 diagnostic information in the VAX-liNK-S6 process and to contr<;ll the content of the 
output module. 

VAX-liNK-S6' allows the user to create a large program as the combination of several smaller, separately 
compiled modules. After development and debugging of these component modules the user can link them 
together, locate them using VAX-LOC-S6 and enter final testing with much of the work accomplished. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

22-3SS 



inter VAX*/VMS* RESIDENT 

VAX*-LOC-86 

• Executes on the VAX*/MicroVAX • Abbreviated Control Syntax 
Minicomputers under the VMS* • Automatic and Independent Relocation 
Operating System of Independent Relocation of 

• Automatic Generation of a Summary Segments. Segments May be Relocated 
Map Giving Starting Address, Segment to Best Match Users Memory 
Addresses and Length, and Debug Configuration 
Symbols and their Addresses • Extensive Debug Symbol Manipulation, 

• Extensive Capability to Manipulate the Allowing Line Numbers, Local Symbols, 
Order and Placement of Segments in and Public Symbols to be Purged and 
8086/8088 Memory Listed Selectively 

Relocatability allows the programmer to code programs or sections of programs without having to know the 
final arrangement of the object code in memory. 

VAX-LOC-86 converts relative addresses in an input module in iAPX-86/88/186 object module format to 
absolute addresses. VAX-LOC-86 orders the segments in the input module and assigns absolute addresses to 
the segments. The sequence in which the segments in the input module are assigned absolute addresses is 
determined by their order in the input module and the controls supplied with the command. 

VAX-LOC-86 will relocate any valid input module without any controls. However, controls are available to 
control the output of diagnostic information in the VAX-LOC-86 process, to control the content of the output 
module, or both. 

The program you are developing will almost certainly use some mix of random access memory (RAM), read­
only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro­
gram affects both cost and performance in your application. The relocation feature allows you to develop your 
program and then simply relocate the object code to suit your application. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

22-389 



inter VAX*/VMS* RESIDENT 

SPECIFICATIONS 

Operating Environment 

Required Hardware 

VAX' 11/780, 11/782, 11/750, or 11/730 9 Track 
Magnetic Tape Drive, 1600 BPI 

MicroVAX II with TK-50 tape drive. 

Required Software 

VMS Operating System V3.0 or Later. All of the de­
velopment packages are delivered as unlinked VAX 
object code which can be linked to VMS as de­
signed for the system where the development pack­
age is to be used. VMS command' files to perform 
the link are provided. 

MicroVMS (V4.4 or later). 

Documentation Package 

iAPX-86, 88 Development Software Installation Man­
ual and User's Guid,e for VAXIVMS, Order number 
121950-001 

Shipping Media 

9 Track Magnetic Tape 1600 bpi (VAX) 

TK-50 Cartridge Tape (MicroVAX) 

ORDERING INFORMATION 

Part Number 

VVSASM86 

VVSPLM86 

iMDX-344VX 

Description 

VAX-ASM-86, VAX-LlNK-86, 
VAX-LOC-86, VAX-LlB-86, 
VAX-OH-86, Package 

VAX-PLM-86 Package 

VAX-PASCAL-86 Package 

VVSC86 VAX-C-86 Package 

MVVSASM86 MICROVAX ASM86 Package 

MVVSPLM86 MICROVAX PLM86 Package 

MVVSC86 MICROVAX C86 Package 

MVVSFORT86 MICROVAX FORTRAN 86 Package 

REQUIRES SOFTWARE LICENSE 

22-390 



8087 SUPPORT LIBRARY 

• Library to Support Floating Point 
Arithmetic in Pascal-86, 
PL/M-86, FTN-86 and ASM-86 

• Decimal Conversion Library Supports 
Binary-Decimal Conversions 

• Supports Proposed IEEE Floating Point 
Standard for High Accuracy and 
Software Portability 

• Common Elementary Function Library 
Provides Trigonometric, Logarithmic 
and Other Useful Functions 

• Error-Handler Module Simplifies 
Floating Point Error Recovery 

The SOS7 Support Library provides Pascal-S6, FORTRAN-S6, PLlM-S6 and ASM-S6 users with numeric data 
processing capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can 
bind in library modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed 
accurate, reliable results for all appropriate inputs. Figure 1 below illustrates how the SOS7 Support Library can 
be bound with PLlM-S6 and ASM-S6 user code to do this. The SOS7 Support Library supports the proposed 
IEEE Floating Point Standard. Consequently, by using this Library, the user not only saves software develop­
ment time, but is guaranteed that the numeric software meets industry standards and is portable-the software 
investment is maintained. 

The SOS7 Support Library consists of the common elementary function library (CELS7.LlB), the decimal con­
version library (DCS7.L1B), the emulator interface library E8087.LlB, the error handler module (EH87.LlB) and 
interface libraries (SOS7.L1B, NULS7.L1B). 

B.PLM 

A.PLM 

mq.rTHH: PROCEDURE (THETA) REALO:TERNAL: 
D£ClARETHETAREAL; 

ENDmqlrTNH: 

DECLARE (lNPUTVALUE,OUTPUT VA1.UE) REAL: 

INPUT VALUE=O.62;j'r .. t vol~"/ 

OUTPUTVAlUE=mq .. TNH(INPUJYAlUE): 

t.'~50t'"t;8Itt,!'. I .. t Inpyt, OUTPUT VA.LUE I, Qbout 

D.ASM 

C.ASM 
:Thl. EXTRN mu!tt QPPIOl' olltold. ofoU S[GWENT-ENDS 

iIXO~Nmq.rTNH'FAR. 
tNPU~VALUEDQ(-O,82) ~1~"IOUO"r~ot •• t 

aUlJ>UrVAlUE DO '1 

;~~;:~t~~:.i,:nUI~I~~.~:~ t~~~t"oM~{!t 
;.oriob"'. 

FlD INPUT VALUE :lood thl porom.t~r Inlo thl 8087 
:.tack 

~~ g'U'WJ~'tALUE ~~ I~:. hlri~:~':n~o~:nt~. 
:8087at<>o;k 

:W1thll •• tnllnp",l,aUTPUTV,I,lU[lsnowobout 
;-0.:5:5112803 

Pl/M-86 

ASM-86 

, COMPILED 
SOURCE MODULES 

ASSEMBLED 
SOURCE MODULES 

8087 SUPPORT 
LIBRARY 

lINK-86 

LINKED USER 
OBJECT MODULE 

231613-1 

Figure 1. Use of 8087 Support Library with PL/M-86 and ASM-86 

22-391 
August 1985 

Order Number: 231613-001 



intJ 8087 SUPPORT LIBRARY 

CEL87.LIB 
THE COMMON ELEMENTARY FUNCTION LIBRARY 

FUNCTIONS 

CEl8?LlB contains commonly used floating point 
functions. It is used along with the 808? numeric co­
processor. It provides a complete package of ele­
mentary functions, giving valid results for all appro­
priate inputs. Following is a summary of CEl8? func­
tions, grouped by functionality. 

Rounding and Truncation Functions: 
mqerlEX, mqerlE2, and mqerlE4. Round a real 

number to the nearest integer; to the 
even integer ifthere is a tie. The an­
swer returned is real, a 16-bit integer 
or a 32-bit integer respectively. 

mqerlAX, mqerlA2, mqerlA4. Round a real num­
ber to the nearest integer, to the inte­
ger away from zero if there is a tie; the 
answer returned is real, a 16-bit inte­
ger or a 32-bit integer, respectively. 

mqerlCX, mqerlC2, mqerlC4. Truncate the frac­
tional part of a real input; the answer 
is real, a 16-bit integer or 32-bit inte­
ger, repectively. 

Logarithmic and Exponential 
Functions: 
mqerlGD 

mqerlGE 

mqerEXP 

mqerY2X 

mqerY12 

mqerY14 

mqerYIS 

computes decimal. (base 10) loga­
rithms. 

computes natural base (base e) loga­
rithms. 

computes exponentials to the base e. 

computes exponentials to any base. 

raises an input real to a 16-bit integer 
power. 

is as mqerY12, except to a 32-bit inte­
ger power. 

is as mqerY12, but it accommodates 
PLlM-286 users. 

Trigonometric and Hyperbolic 
Functions: 
mqerSIN, mqerCOS, mqerTAN compute sine, 

cosine, and tangent. 

mqerASN, mqerACS, mqerATN compute the 
corresponding inverse functions. 

mqerSNH, mqerCSH, mqerTNH compute the 
corresponding hyperbolic functions. 

mqerAT2 is a special version of the arc tangent 
function that accepts rectangular co­
ordinate inputs. 

Other Functions (of real variables): 
mqerDIM is FORTRAN's positive difference 

function. 

mqerMAX returns the maximum of two real in­
puts. 

mqerMIN returns the minimum of two real in­
puts. 

mqerSGH combines the sign of one input with 
the magnitude of the other input. 

mqerMOD computes a modulus, retaining the 
sign of the dividend. 

mqerRMD computes a modulus, giving the value 
closest to zero. 

Complex Number Functions: 
mqercCMUl, and mqercCDIV perform complex 

multiplication and division of complex 
numbers. 

mqercCPOl converts complex numbers from rec­
tangular to polar form. mqercCREC 
converts complex numbers from polar 
to rectangular form. 

mqercCSQR, and mqercCABS compute the com­
plex square root and real absolute 
value (magnitude) of a complex num­
ber. 

mqercCEXP, and mqercClGE compute the com­
plex value of e raised to a complex 
power and the complex natural loga­
rithm (base e) of a complex number. 

mqercCSIN, mqercCCOS, and mqercCTAN com­
pute the complex sine, cosine, and 
tangent of a complex number. 

mqercCASN, mqercCACS, and mqercCATN com­
pute the complex inverse sine, co­
sine, and tangent of a complex num­
ber: 

mqercCSNH, mqercCCSH, and mqercCTNH com­
pute the complex hyperbolic sine, co­
sine, and tangent of a complex num­
ber. 

22-392 



8087 SUPPORT LIBRARY 

mqercCACH, mqercCASI;l, and mqercCATH com­
pute the com pies inverse hyperbolic 
sine, cosine, and tangent of a com­
plex number. 

mqercCC2C, mqercCR2C, mqercCC2R, mqercCCl2, 
mqercCCl4, and mqercCCIS return 
complex values of complex (or real) 
values raised to complex (real, short 
integer, or long integer) values. 

DC87.LIB 
THE DECIMAL CONVERSION LIBRARY 

DC87.LlB is a library of procedures which convert 
binary representations of floating point numbers and 
ASCII-encoded string of digits. 

The binary-to-decimal procedure mqcBIN_DE­
CLOW accepts a binary number in any of the for­
mats used for the representation of floating point 
numbers in the 8087 .. Because there are so many 
output formats for floating point numbers, mqcBIN_ 
DECLOW does not attempt to provide a finished, 
formatted text string. Instead, it provides the "build­
ing blocks" for you to use to construct the output 
string which meets your exact format specification. 

The decimal-to-binary procedure mqcDEC_BIN ac­
cepts a text string which consists of a decimal num­
ber with optional sign, decimal point, and/or power­
of-ten exponent. It translates the string into the call­
er's choice of binary formats. 

Decimal-to-binary procedure mqcDECLOW_BIN is 
provided for callers who have already broken the 
decimal number into its constituent parts. 

The procedures mqcLONG_TEMP, mqcSHORT_ 
TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT 
convert floating point numbers between the longest 
binary format, TEMP_REAL, and the shorter for­
mats. 

EH87.L1B 
THE ERROR HANDLER LIBRARY 

EH87.LlB is a library of five utility procedures for 
writing trap handlers. Trap handlers are called when 
an unmasked 8087 error occurs. 

The 8087 error reporting mechanism can be used 
not only to report error conditions, but also to let 
software implement IEEE standard options not di­
rectly supported by the chip. The three such exten­
sions to the 8087 are: normalizing mode, non-trap­
ping not-a-number (NaN), and non-ordered compari­
son. The utility procedures support these extra fea­
tures. 

DECODE is called near the beginning of the trap 
handler. It preserves the complete state of the 8087, 
and also identifies what function called the trap han­
dier, and returns available arguments and/or results. 
DECODE eliminates much of the effort needed to 
determine what error caused the trap handler to be 
called. . 

NORMAL provides the "normalizing mode" capabili­
ty for handling the "0" exception. By calling NOR-

MAL in your trap handler, you eliminate the need to 
write code in your application program which tests 
for non-normal inputs. 

SIEVE provides two capabilities for handling the "I" 
exception. It implements non-trapping NaN's and 
non-ordered comparisons. These two IEEE standard 
features are useful for diagnostic work. 

ENCODE is called near the end of the trap handler. 
It restores the state of the 8087 saved by DECODE, 
and performs a choice of concluding actions, by ei­
ther retrying the offending function or returning a 
specified result. 

FILTER calls each of the above four procedures. If 
your error handler does nothing more than detect 
fatal errors and implement the features supported by 
SIEVE and NORMAL, then your interface to 
EH87.LlB can be accomplished with a single call to 
FILTER. 

22-393 



inter 8087 SUPPORT LIBRARY 

SOS7.LIB, NULS7.LlB, ESOS7.LlB 
INTERFACE LIBRARIES 

E8087.L1B, 80B7.L1B and NULB7.L1B libraries config­
ure a user's application program for his run-time 

FULL 8087 EMULATOR 

The Full 80B7 Emulator is a 16-kilobyte object mod­
ule that is linked to the application program for float­
ing-point operations. Its functionality is identical to 
the BOB7 chip, and is ideal for prototyping and de­
bugging floating-point applications. The Emulator is 
an alternative to the use of the BOB7 chip, although 
the latter executes floating-point applications up to 
100 times faster than an BOB6 with the BOB7 Emula­
tor. Furthermore, since the 80B7 is a "coprocessor," 
use of the chip will allow many operations to be per­
formed in parallel with the BOB6. 

ORDERING INFORMATION 

Part Number 

iMDS 319 

Requires Software License 

SUPPORT 

Description 

BOB7 Support Library 

Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 

environment; running with the B087 component or 
without floating point arithmetic, respectively. 

SPECIFICATIONS 

Operating Environment 

Intel Microcomputer Development Systems (Series 
III, Series IV) 

Documentation Package 

8087 Support Library Reference Manual 

consult the price list for a description of the support 
options available. 

22-394 



80287 SUPPORT LIBRARY 

• Library to support floating point 
arithmetic in Pascal-286, PL/M-286 and 
ASM-286 

• Decimal conversion library supports 
binary-decimal conversions 

• Supports proposed IEEE Floating Point 
Standard for high accuracy and 
software portability 

• Common elementary function library 
provides trigonometric, logarithmic and 
other useful functions 

• Error-handler module simplifies floating 
point error recovery 

The 80287 Support Library provides Pascal-286, PL/M-286 and ASM-286 users with numeric data processing 
capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can bind in library 
modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed accurate, 
reliable results for all appropriate inputs. Figure 1 below illustrates how the 80287 Support Library can be 
bound with PL/M-286 and ASM-286 user code to do this. The 80287 Support Library supports the proposed 
IEEE Floating Point Standard. Consequently, by using this Library, the user not only saves software develop­
ment time, but is guaranteed that the numeric software meets industry standards and is portable-the software 
investment is maintained. 

The 80287 Support Library consists of the common elementary function library (CEL287.LlB), the decimal 
conversion library (DC287.LlB), the error handler module (EH287.LlB) and interface libraries (80287.LlB, 
NUL287.LlB). 

B.PLM 

A.PLM 

m~~C~~E ~~~O~~1.fTH£TA) REAL EXTERNAL; 

[NO mqlrTNH: 

DECLARE (INPUT VALUE, OUTPUT VALUE) REAL; 

INPUT VALU[=Q.62:j"Tnt yoh .•• "/ 

OUTPUT VALUE=mcwTNH(INPUT VALUE): 

j"Now with the tul Input, OUTPUT VALUE It gbout 
0.55112803"/ . 

D.ASM 

C.ASM 
:T~\~ EXTRH ml,ld opplor oul$lda of gU SEGUENT-ENDS 

l'XfRN mqlr Tt/H: fAR 

INPUT VALUE: 00(-0.62) ;lnltionzotlon Is a test 
;volue 

OUTPUT VALUE DO ? 

:The followl"IiI c::ode dupUcotu the above PL/101 
;OIQlgnmlnl .totemenl, uClpl with LONG REAL 
;vorlabln 

flO INPUT VALUE :Lood the porcm,.tlr Into tn, 80281 
;stock 

;:}~ 3'uWm~ALUE ~~~;,.Ith·' 7J's~~i'l;.~a~~~~~. 
;802137 stock 

:Wlth th. lISt Input, OUTPUT VALUE Is now about 
:-0.55112803 

ASM-286 

COMPILED 
SOURCE MODULES 

ASSEMBLED 
SOURCE MODULES 

80287 SUPPORT 
LIBRARY 

LINKED USER 
OBJECT MODULE 

231041-1 

Figure 1. Use of 80287 Support Library with PL/M-286 and ASM-286 

22-395 
October 1986 

Order Number: 231041·002 



80287 SUPPORT LIBRARY 

CEL287.LIB 
THE COMMON ELEMENTARY FUNCTION LIBRARY 

FUNCTIONS 

CEL287.LlB contains commonly used floating point 
functions. It is used along with the 80287 numeric 
coprocessor. It provides a complete package of ele­
mentary functions, giving valid results for all appro­
priate inputs. Following is a summary of CEL287 
functions, grouped by functionality. 

Rounding and Truncation Functions: 
mqerlEX, mqerlE2, and mqerlE4. Round a real 

number to the nearest integer; to the 
even integer if there is a tie. The an­
swer returned is real, a 16-bit integer 
or a 32-bit integer respectively. 

mqerlAX, 

mqerlCX, 

mqerlA2, mqerlA4. Round a real num­
ber to the nearest integer, to the inte­
ger away from zero if there is a tie; the 
answer returned is real, a 16-bit inte­
ger or a 32-bit integer, respectively. 

mqerlC2, mqerlC4. Truncate the frac­
tional part of a real input; the answer 
is real, a 16-bit integer or 32-bit inte­
ger, repectively. 

Logarithmic and Exponential 
Functions: 
mqerLGD 

mqerLGE 

mqerEXP 

mqerY2X 

mqerY12 

mqerY14 

mqerYIS 

computes decimal (base 10) loga­
rithms. 

computes natural base (base e) loga­
rithms. 

computes exponentials to the base e. 

computes exponentials to any base. 

raises an input real to a 16-bit integer 
power. 

is as mqerY12, except to a 32-bit inte­
ger power. 

is as mqerY12, but it accommodates 
PL/M-286 users. 

Trigonometric and Hyperbolic 
Functions: 
mqerSIN, 

mqerASN, 

mqerCOS, mqerT AN compute sine, 
cosine, and tangent. 

mqerACS, mqerATN compute the 
corresponding inverse functions. 

mqerSNH, mqerCSH, mqerTNH compute the 
corresponding hyperbolic functions. 

mqerAT2 is a special version of the arc tangent 
function that accepts rectangular co­
ordinate inputs. 

Other Functions (of real variables): 
mqerDIM· is FORTRAN's positive difference 

function. 

mqerMAX 

mqerMIN 

mqerSGH 

returns the maximum of two real in­
puts. 
returns the minimum of two real in­
puts. 

combines the sign of one input with 
the magnitude of the other input. 

mqerMOD computes a modulus, retaining the 
sign of the dividend. 

mqerRMD computes a modulus, giving the value 
closest to zero. 

Complex Number Functions: 
mqercCMUL, and mqercCDIV perform complex 

multiplication and division of complex 
numbers. 

mqercCPOL converts complex numbers from rec­
tangular to polar form. mqercCREC 
converts complex numbers from polar 
to rectangular form. 

mqercCSQR, and mqercCABS compute the com­
plex square root and real absolute 
value (magnitude) of a complex num­
ber. 

rriqercCEXP, and mqercCLGE compute the com­
plex value of e raised to a complex 
power and the complex natural loga­
rithm (base e) of a complex number. 

mqercCSIN, mqercCCOS, and mqercCTAN com­
pute the complex sine, cosine, and 
tangent of a complex number. 

mqercCASN, mqercCACS, and mqercCATN com­
pute the compl~x inverse sine, co­
sine, and tangent of a complex num­
ber. 

mqercCSNH, mqercCCSH, and mqercCTNH com­
pute the complex hyperbolic sine, co­
sine, and tangent of a complex num­
ber. 

22-396 



80287 SUPPORT LIBRARY 

Complex Number Functions: (Continued) 
mqercCACH, mqercCASH, and mqercCATH com­

pute the comples inverse hyperbolic 
sine, cosine, and tangent of a com­
plex number. 

mqercCC2C, mqercCR2C, mqercCC2R, mqercCCl2, 
mqercCCl4, and mqercCCIS return 
complex values of complex (or real) 
values raised to complex (real, short 
integer, or long integer) values. 

DC287.LlB 
THE DECIMAL CONVERSION LIBRARY 

DC287.LlB is a library of procedures which convert 
binary representations of floating point numbers and 
ASCII-encoded string of digits. 

The binary-to-decimal procedure mqcBIN_DE­
CLOW accepts a binary number in any of the for­
mats used for the representation of floating point 
numbers in the 80287. Because there are. so many 
output formats for floating point numbers, mqcBIN_ 
DEC LOW does not attempt to provide a finished, 
formatted text string. Instead, it provides the "build­
ing blocks" for you to use to construct the output 
string which meets your exact format specification. 

The decimal-to-binary proced~re mqcDEC_BIN ac­
cepts a text string which consists of a decimal num­
ber with optional sign, decimal point, and/or power­
of-ten exponent. It translates the string into the call­
er's choice of binary formats. 

Decimal-to-binary procedure mqcDECLOW_BIN is 
provided for callers who have already broken the 
decimal number into its constituent parts. 

The procedures mqcLONG_ TEMP, mqcSHORT_ 
TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT 
convert floating point numbers between the longest 
binary format, TEMP_REAL, and the shorter for­
mats. 

EH287.lIB 
THE ERROR HANDLER LIBRARY 

EH287.LlB is a library of five utility procedures for 
writing trap handlers. Trap handlers are called when 
an unmasked 80287 error occurs. 

The 80287 error reporting mechanism can be used 
not only to report error conditions, but also to let 
software implement IEEE standard options not di­
rectly supported by the chip. The three such exten­
sions to the 80287 are: normalizing mode, non-trap­
ping not-a-number (NaN), and non-ordered compari­
son. The utility procedures support these extra fea­
tures. 

DECODE is called near the beginning of the trap 
handler. It preserves the complete state of the 
80287, and also identifies what function called the 
trap handler, and returns available arguments 
and/or results. DECODE eliminates much of the ef­
fort needed to determine what error caused the trap 
handler to be called. 

NORMAL provides the "normalizing mode" capabili­
ty for handling the "D" exception. By calling NOR-

MAL in your trap handler, you eliminate the need to 
write code in your application program which tests 
for non-normal inputs. 

SIEVE provides two capabilities for handling the "I" 
exception. It implements non-trapping NaN's and 
non-ordered comparisons. These two IEEE standard 
features are useful for diagnostic work. 

ENCODE is called near the end of the trap handler. 
It restores the state of the 80287 saved by DE­
CODE, and performs a choice of concluding actions, 
by either retrying the offending function or returning 
a specified result. 

FILTER calls each of the above four procedures. If 
your error handler does nothing more than detect 
fatal errors and implement the features supported by 
SIEVE and NORMAL, then your interface to 
EH287.LlB can be accomplished with a single call to 
FILTER. 

22-397 



infef 80287 SUPPORT LIBRARY 

80287.LlB, NUL287.LlB 
INTERFACE LIBRARIES 

80287.LlB and NUL287.LlB libraries configure a us­
er's application program for his run-time environ-

SPECI FICATIONS 

Operating Environment 

Intel Microcomputer Development Systems (Series 
III, Series IV) 

Documentation Package 

80287 Support Library Reference Manual 

Related Software 

A 80287 software emulator is available as part of the 
8086 software toolbox (iMDX364) 

ment; running with the 80287 component or without 
floating point arithmetic, respectively. 

ORDERING. INFORMATION 
Part Number Description 
iMDX329 80287 Support Library 

Requires Software License 

SUPPORT 

Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 
options available. . 

22-398 



inter iPATTM PERFORMANCE ANALYSIS TOOL 

• Provides Real-Time Performance • Complements Emulator by Allowing 
Analysis and Real-Time Test Coverage Simultaneous Debugging and 
of Code Written for 8086/8088, Performance Analysis 
80186/80188, and 80286 Processors • Permits Activation of Analysis using 

• Displays Performance-Analysis Emulator Procedures 
Histograms to Isolate Slow Code • Handles Up to 24-Bit Execution 

• Displays Test Coverage Tables to Address Space 
Isolate Untested Code; Permits Saving • Permits Specification of Analysis 
and Updating Test Results Address Ranges Symbolically or with 

• Measures Interrupt Latency Absolute Addresses 

• Does not Intrude Into Program Being • Provides Flexible Isolation of Code 
Analyzed Ranges, Windowed Events, and 

• Collects 100% of Execution Data Interrupt Activity 

The Intel Performance Analysis Tool (iPATTM) helps software engineers optimize code and improve software 
reliability. Software object code generated by Intel assemblers and Intel compilers (e.g., for C, PLlM, Pascal, 
Ada, and FORTRAN) can be analyzed symbolically to improve software execution efficiency and to validate 
test coverage. Any object code that lacks Intel compiler information-but that can be run by Intel emulators 
and for which an absolute program map is available-can also be analyzed (nonsymbolically) by the iPAT 
analyst. iPAT operation is currently supported via a target interface to the 121CETM Integrated Instrumentation 
and In-Circuit Emulation System. 

Mode: PROFILE ABS TRUE 
PTIMEBASE: 10us HISTO TIME 
Include calls SORT ADDRESS 
Status: OK FILTER FALSE 

Event :TimeCms)O% 5% 10% 15% 
---------------------+--------+---------+---------+---------+-------_. 
GET~LOADING~INFO 

FIND~3D~POSITION 

READ~SURFACE~SENSORS 

GET~AIRSPEED 
GET~THROTTLE~SETTING 

GET~AILERON~POSITIONS: 

GET~RUDDER~POSITION 

GET~FLAP~POSTIONS 
CALCULATE~FEASIBILITY: 

REFRESH~PILOT~DISPLAY: 

GET~PILOT~RESPONSE 
SELTHROTTLE 
SET~AILERONS 
SELRUDDER 
SELFLAPS 
*Background* 

470 
620 
580 

o 
380 
120 

60 
130 
300 
740 
190 

80 
310 

o 
180 

28 

:­:­:-
:-
:1' 

---------------------+--------+---------+---------+--~-----~+----~-,--. 
Total: : 4188 0% 5% 

22-399 

10% 15% 
280165-1 

October 1986 
Order Number: 280165-001 



iPATTM 

PERFORMANCE ANALYSIS 
INTRODUCTION 

The size and complexity of software has increased 
with each new generation of microprocessors. As a 
result, it has become increasingly important to opti­
mize software and to ensure its reliability. The iPAT 
analyst answers these needs. 

Optimizing Software 

Optimizing software means maximizing software 
speed without sacrificing functionality or reliability. 
To increase speed, execution bottlenecks need 
careful attention. But, how can the crucial slow code 
be located? . 

Without the iPAT analyst, you might analyze the vari­
ous paths in the source code and make educated 
guesses where the bottlenecks will occur. Or you 
might place count statements in the code to learn 
how often the various paths are entered. Neither of 
these methods can ensure that you really will isolate 
the bottlenecks. Furthermore, the second method is 
intrusive-with the extra statel'J1ents, real-time oper­
ation of your original code cannot occur. 

The iPAT analyst provides the solution to the soft­
ware engineering problem of locating crucial code. 
With the iPAT analyst, you can quickly and easily 
show (with histograms or tables) timing and count 
information for specified program modules, proce­
dures, lines, or absolute address ranges. Because it 
fully supports symbolic information from Intel high­
level languages, the iPAT analyst enables you to use 
the names of procedures and modules to specify 
ranges that you want to analyze. (For object code 
that lacks symbolic information, consult your code's 
absolute program map and then specify absolute ad- . 
dress ranges of interest.) 

Furthermore, the iPAT analyst is nonintrusive and 
operates in real-time. It does not sample program 
operation on a statistical basis; rather, it has avail­
able to it each address that is executed so that no 
potentially troublesome code· will be overlooked. 
(The iPAT analyst can also monitor when interrupts 
occur.) 

Software teams currently dOing their coding in as­
sembly language (to ensure speed of program exe­
cution) can now consider writing future code in high­
level languages. Since much code does not have a 
significant effect on overall program speed, after the 
code is written in high-level language, the bottle­
necks can be located by the iPAT analyst. Then, if 
need be, the code causing the bottlenecks can be 
redone in assembly language. This method of 

. software development means faster product devel­
opment, since coding can progress much faster us­
ing a high-level language. 

Measuring Hardware-Interrupt-to­
Software-Response Time (Latency) 

The iPAT analyst not only allows you to acquire tim­
ing and count information on software events; it also 
allows you to examine hardware-interrupt-to-soft­
ware interactions. For example, you can measure 
how long it is before the appropriate service routine 
is executed in response to a hardware interrupt. If 
the measured hardware-interrupt-to-software laten­
cy period is not acceptable, the iPAT analyst can 
help you isolate the causes. 

Coordinating Performance Analysis 
with Emulator Controls 

Using the emulator with the iPAT analyst also en­
abies· you to analyze program execution as a func­
tion of differing target-system conditions. You can 
set up the conditions in the target system with the 
emulator, set up iPAT data collection for a section of 
code, then run the program with the iPAT analyst 
activated. Change the target conditions and repeat 
program execution and performance analysis. 

You can also create emulator procedures (PROCs) 
containing emulator commands that trigger perform­
ance analysis as a function of selected software or 
hardware events. 

Ensuring Software Reliability 

As code is developed, there is a need to ensure that 
it has no defective code. Typically for this purpose, 
test suites are developed by software engineers. 
The engineers use their theoretical understanding of 
the software to devise test suites that will exercise 
the code paths. Then, the program under test is run 
with the test suites, and the program's output is ex­
amined . .If the desired values are present in the out­
put, it is assumed that the paths were tested. But 
this is an inference; the test results do not them­
selves show whether the paths were all exercised. 

Thus, without the help of the iPAT analyst, testers 
cannot be confident that their tests exercised all the 
code. As a result, there may be a tendency to re­
strict designs to familiar algorithms and techniques, 
so that previously successful test suites can be 
reused. . 

By contrast, the coverage mode in the iPAT analyst 
enables you to identify easily and quickly which lines 
or procedures in your software are not being 

22-400 



inter iPATTM 

exercised by the test suites. Thus, you need not re­
strict your test suites or your coding techniques and 
options. Furthermore, when the iPAT analyst reveals 
untested code, you can modify your test suites until 
the iPAT analyst shows that all code is tested. 

How the iPATTM Analyst Affects 
Development 

As your code is being developed, preliminary analy­
ses can be made with the iPAT analyst. Then, when 
your system hardware is developed to the point that 
code can be loaded into it and run, the iPAT analyst 
can make real-time measurements. Refinements of 
software and test suites can occur up until product 
release, with each new modification being checked 
by the iPAT analyst for execution efficiency and reli­
ability. 

But, the iPAT analyst's usefulness to the product is 
not at an end, because most products are enhanced 
after the first release. As new releases are being 
prepared (to add new features), the iPAT analyst will 
be available to analyze the new code and the new­
est test suites. 

The iPAT analyst can also be used to enhance exist­
ing products-products that were developed before 
performance analysis was available. you can exam­
ine existing code with the iPAT analyst to identify 
slow code; recode; re-examine; then, when perform­
ance (and reliability) have been improved, release 
the enhanced products. 

The iPAT analyst provides a way for software engi­
neers to check whether the software meets perform­
ance specifications. In addition, in the future you will 
be able to write more meaningful specifications that 
cite desired iPAT measurements. 

If portions of code are likely to be reused, the iPAT 
analyst can provide measurements of the reusable 
code's performance characteristics. Then, future us­
ers of the code will know in advance what to expect 
from the code. 

Another use of performance analysis is encouraging 
engineers to engage in "what-if" thinking. They can 
ask, "What if this portion of the code was designed 
this way?" Then, after they complete several ways 
of coding, the various versions can be analyzed by 
the iPAT analyst to reveal which has the greatest 
efficiency. 

PHYSICAL DESCRIPTION 

The iPAT system consists of hardware and software. 

Figure 1 shows the iPAT hardware connected to the 
121CE emulation system and hosted by an IBM PC 
AT. The iPAT hardware includes the following: 

• Power supply (with AC and DC power cables) 

• Core module 
• Emulator-specific target interface (which enables 

the core module to function with a specific emula­
tor) 

• Cable for connecting the core module to the tar­
get interface 

• RS-232 serial cable for connecting the core mod­
ule to the host system 

iPAT software is integrated with the emulator soft­
ware. Thus, with the iPAT 1121CE system target inter­
face you receive 121CE system host software. (You 
do not receive 121CE system probe software; contin­
ue to use the probe software-version 1.7 or later­
supplied with the 121CE system.) In addition, you re­
ceive iPAT diagnostic and tutorial software. 

FUNCTIONAL DESCRIPTION 

Users will begin analysis of their code by obtaining 
an overview of their software's operation, and then 
restrict their focus as they home in on the problem 
areas in their code. Five analysis modes are avail­
able: 

• profile 

• coverage 
• windowed event count 

• duration 

• linkage 

Of these, the profile and coverage modes can be 
used to acquire both overviews and more localized 
inspection of your software behavior. The iPAT win­
dowed-event-count, duration, and linkage modes 
each provide specific perspectives on localized soft­
ware behavior. 

GAINING AN OVERVIEW OF 
SOFTWARE OPERATION 

Gaining an overview of your software operation is 
simple with the iPAT analyst. If you want an overview 
of program activity, you load your program, select 

22-401 



intJ iPATTM 

280165-2 

Figure 1. The iPATTM Analyst Used with an IBM PC AT 

22-402 



iPATiM 

the profile analysis mode, and then run the program. 
To do so, you need only enter the following com­
mands: 

LOAD new_program 
PAT INIT PROFILE 
GO 

To display the results (during or after program exe­
cution), enter: 

PAT DISPLAY 

iPAT options and controls provide considerable flexi­
bility in monitoring and displaying information about 
your code. Yet the default settings have been de­
signed with a view to typical applications and ease-

Mode: PROFILE 
PTIMEBASE: 10us 
Include calls 
Status: OK 

Event :Time(ms)O% 

of-learning. Default operation in the profile mode 
monitors all procedures in the user program and 
measures their real-time characteristics. 

The default display for profile mode is a histogram 
that shows the time spent in each of your program's 
procedures. See Figure 2 for a sample default profile 
display. 

Acquiring an overview of test coverage is also sim­
ple. First set up the coverage mode. 

PAT INIT COVERAGE 

Example: The procedure REFRESH 
PILOT_DISPLAY consumes about 17.5% -
of the program execution time. 

ABS TRUE 
HISTO TIME 
SORT ADDRESS 
FILTER FALSE 

5% 10% 15% 
---------------------+--------+---------+---------+---------+---------
GET_LOAD lNG_INFO 470 
FIND_3D_POSITION 620 
READ_SURF ACE_SENSORS 580 
GET_AIRSPEED 0 
GET_THROTTLE_SETTING 380 
GET_AILERON_POSITIONS: 120 
GET_RUDDER_POSITION 60 
GET_FLAP_POSTIONS 130 
CALCULATE_FEASIBILITY: 300 
REFRESH_PILOT_DISPLAY: 740 
GET_PILOT_RESPONSE 190 
SET_THROTTLE 80 
SET_AILERONS 310 
SET_RUDDER 0 
SET_FLAPS 180 
*Background* 28 

:­:­:-
:-
: ..... 

---------------------+--------+-- ------+---------+---------+---------
Total: : 4188 0% 5% 

I Data concerning execution of the main-line I 
code is included in the Background line. 

10% 

Figure 2. Profile Mode: Time Histogram Display 

22-403 

15% 

280165-3 



IPATTM 

Then, run· your program with the data inputs from 
your tests suites, and request a display of results 

. using the following commands: 

GO FROM top 
PAT DISPLAY 

By default, the coverage display lists all procedures 
and indicates whether each was executed, Figure 3 
shows a. sample coverage display. It indicates that 
no code in the procedures GET -AIR_SPEED arid 
SET_RUDDER was executed by the test suites. 

GETTING OTHER VIEWS OF 
SOFTWARE OPERATION 

To obtain more refined information about program 
operation and test coverage, you can use all five 
analysis modes. For all modes, the basic display 
command is the same: . 

PAT DISPLAY 

You can select whether the display should be re­
newed periodically during real-time program execu­
tion.1f you select periodic renewal, you can also se­
lect how frequently (in seconds) it is renewed. 

Data co.llection occurs with one of five selectable 
time bases: 100 ,""S, 1 0 ,""S, 1 ,""S, and 200 ns. The 
default value is 10 ,""S. 

The following sections describe how each of the five 
analysis modes and their associated displays can be 
used to obtain other kinds of overviews and how to 
localize the collection of data. 

Mode: COVERAGE 

Coverage Mode 

The default features of the coverage mode have al­
ready been described. Once you have a coverage 
overview, you may want to restrict the data dis­

. played. 

For example, if the default coverage information 
shows. that all procedures were executed by test 
suites, you may next wish to determine whether all 
lines in certain procedures were executed. You 
would then request a display (for the address range 
desired) of the lines not executed. Using this meth­
od, you can obtain very refined test-coverage infor­
mation and thus help ensure software reliability. 

Profile Mode 

For profile mode there· are a number of ways you 
can control analysis and the display of data. 

Profile-Mode Analysis: For profile mode, data, by 
default, is collected on program procedures. If you 
want to acquire an even wider overview, you can 
change the focus to program modules. Or, for a very 
close view, you can request that data be collected 
on the lines executed. 

After you have examined your program's profile dis-. 
play, you may notice that several procedures are. us­
ing excessive time. You will next want to use the 
iPAT analyst to determine whether the time spent is 

. really attributable to those procedures or rather to 
calls by those procedures to other procedures. In 
the default case, when a procedure calls another, 
the time spent in the called procedure is accumulat-

I Example: SET ...AiLERO. NS w. as executed "'­
but SET_RUDDER was not, I 

SHOW ALL PROC 

:Exec: .Event :Exec: Event :Exec: Eyent 
+----+----------~------+----+-----~--~--------+----+------------------+ • :GET_LOADING_INFO • :GET_AILERON_POSI • :GET_PILOT_RESPONSE: 

• :FIND_3D~POSITION • :GET~UDDER_POSIT • :SELTHROTTLE 

• : READ_SURF ACE_SEN • :GET_FLAP_POSTION • :SET_AILERONS 
:GELAIRSPEED • :CALCULATE_FEASIB :SELRUDDER 

• :GET_THROTTLE_SET • :REFRESH_PILOT_DI • :SET_FLAPS 
280165-4 

Figure 3. Coverage Mode: Display Showing Procedures Executed and Not Executed 

22-404 



iPATTM 

ed by the iPAT analyst as part of the calling proce­
dure's time. If you do not want time charged to the 
caller, change the control so that the time accumu­
lated by calling procedures excludes time used by 
called procedures. Then rerun the program and col­
lect new data. Now, by comparing the time charged 
to the calling procedure in the two cases, you can 
determine to what extent calls by the procedure use 
excessive time. . 

When you use profile mode, you need not collect 
data· on the whole program. You can restrict the 
range of modules, procedures, or lines that are pro­
filed. In addition, you can restrict the profile to speci­
fied absolute-address ranges or to an interrupt-ad­
dress pair. 

Profile-Mode Displays: The default profile display 
(shown in Figure 2) provides a histogram of the time 
used by program procedures. Once you notice that 
some procedures are taking too long, you will want 

to determine how often those procedures are called. 
Is the excessive time a result of their being called 
frequently or the result of slow code? To find out, 
you need only select a display of count information. 
A histogram appears immediately (derived from al­
ready-acquired data). In the histogram, the lines for 
the procedures that are taking too long will show 
whether their counts are small (implying slow code) 
or large. 

You can also display count and time information 
simultaneously by selecting the table display option. 
To do so, simply change the HISTO control to false 
and request a new display. Figure 4 shows a sample 
profile table display. 

Another display control allows you to specify in what 
order data is presented. By default, data is present­
ed in address order. But you can also direct the iPAT 
analyst to arrange results in time order or count or­
der, with highest values first. 

Example: GET _THROTTLE-SETTING was 
executed 49 times. Total execution time was 380 
ms, with 7.8 ms as the average execution time. 

Mode: PROfILE 
PTIMEBASE: 10us 
Include calls 
Status: OK 

ABS 
HISTO 
SORT 
fILTER 

TRUE 
fALSE 
ADDRESS 
fALSE 

Event :Count :Time(ms) :Time Min :Time Ave :Time Max 
---------------------+------+---------+---------+---------+---------+ 
GET_lOADING_INfO 3 470 50 156-7 360 
fIND_3D_POSITION 14 620 14 44-3 181 
READ_SURfACE_SENSORS 31 580 7 18.7 21 
GET_AIRSPEED 0 0 0 0 0 
GET_THROTTLE_SETTING 49 380 2 7.8 16~~--~ 
GET_AIlERON~POSITIONS: 26 120 1.1 4.6 11 
GET_RUDDER_POSITION 14 60 1.0 4.3 9 
GET_flAP_POSTIONS 12 .: 130 9 10.8 34 
CALCULATE_fEASIBILITY: 26 300 7 11.~ 14 
REfRESH_PILOT_DISPLAY: 2 740 38 370.0 702 
GET_PILOT_RESPONSE 3 190 44 63.3 80 
SET_THROTTLE 2 80 35 40.0 45 
SET_AILERONS 3 310 33 ·103.3 168 
SET_RUDDER 0 0 0 0 0 
SET_flAPS 11 180 11 16.4 19 
*Background* 7 28 3 4.0 4 
---------------------+------+---------+---------+---------+---------+ 
Totals: 203 : 4188 

280165-5 

Figure 4. Profile Mode: Table Display 

22-405 



inter iPATTM 

Duration Mode 

Duration-Mode Analysis:' With the' duration mode 
you can focus on timing information for one block of 
code or one interrupt-address pair. If you wish to 
determine how regularly a procedure meets perform­
ance specifications for timing, duration mode will 
provide the answer. This mode also is useful when 
you want information on how widely response time 
varies between the arrival of an interrupt and the 
execution of a particular service routine. 

Duration mode collects· data from repeated execu­
tions of a specified block of code or interrupt-ad­
dress pair. The data is then placed· in a number of 
bins (selectable as 8, 16, or 32 bins). You can select 
whether the bins have equal intervals or· bin size in; 
creases logarithmically (use the latter when you ex­
pect a wide variation in time values). 

Figure 5 shows a sample duration-mode default dis­
play. It assumes that a user wishes to find out the 
variation in response time for a specific interrupt-ad­
dress sequence. In this case, the user is interested 
in the. elapsed time between an interrupt caused 

by ground contact of an airplane's landing gear and 
the execution of the first statement in the procedure 
that controls thrust shutdown. The display shows, 
for example, that the bin for the elapsed time interval 
4 ,...s to 7 ,...s recorded 17 instances of the interrupt­
procedure execution pair. Note that in this case the 
performance specification indicated that elapsed 
time should never exceed 64 ,...s, the duration dis­
play shows that the current design does not meet 
the specification. 

Duration-Mode Displays: The default duration dis­
play (as shown, in Figure 5) provides a time histo­
gram. A table display can also be selected. 

In duration mode, you are not restricted to learning 
only about timing that occurs between two events. 
You can also learn about timing that occurs outside 
the event pair-the demand for the event pair. Sup­
pose, for instance, RAM memory in yo.ur operating 
system is currently filled, and. you want to determine 
whether one of the processes stored there is used 
too infrequently to justify its placement in RAM. Col­
lect data on this process using the duration mode. 
Then use the duration-mode OUTER display option. 

Example: This bar shows that on 17 occasions 
STOP_THRUST required between 4 and 7 p,S to I­
execute. 

Mode: 
Event: 
Bin Range: 
PTIMEBASE: 
Type: 
Status: 

])URATION 
Interrupt to STOP_THRUST 
1 us to 256 us 
1 us' 
Logarithmic 
OK 

Frequency-> 

SELECT 
HISTO 

INNER 
TIME 

o 4 8 12 . 16 20 24 
Interval(us)+---~--~+------~+-----~-+--------+--------+--------+--------

< 1 
1 - 1 
2 - 3 
4 - 7 
8 - 15' 

16 - 31 
32 - 63 
64 - 127 

128 - 256 
> 256 

:_. :­:­:. ' 

------------+-------+-------+-------+--------+--------+--------+---------
o 4 8 12 16 20 24 

280165-6 

Figure 5. Duration Mode: Histogram Display 

22-406 



iPATTM 

By doing so, you select a display of binned timing 
data that shows the distribution of the specified pro­
cess's demand. If the process is infrequently used 
(contrary to original expectations), it could be moved 
to disk and RAM space made available for other, 
more frequently used, routines. 

Windowed-Eve nt-Count Mode 

The windowed-event-count mode counts how often 
a specified begin-end pair (window) is entered-and 
how often, once the window is entered, an interrupt 
occurs or a specified address is executed. (A count 
is also kept of how often the selected event occurs 
outside the window.) As with the duration mode, 
data is binned. The begin-end pair can be two ad­
dresses (specified absolutely or symbolically) or an 
address and the occurrence of an interrupt. 

This mode is useful for obtaining refined count data. 
For example, if profile mode indicates that proce­
dure A is using excessive time and that much of the 
time is attributable to procedure calls, you can use 

this mode to get a better understanding of the situa­
tion. Use procedure A as the window and the name 
of a procedure it calls (B) as the event of interest. 
Data will then be gathered and placed in bins. The 
resulting display will show the distribution of how of­
ten procedure B is called each time procedure A is 
executed. Thus, you can see whether procedure B is 
the procedure causing procedure A to use so much 
time. 

Because the event is counted both inside and out­
side the window, you can use this mode to deter­
mine whether an undesired event occurs excessive­
ly within a given block of code. If, for example, one 
procedure consumes too much time and you sus­
pect that interrupts are occuring excessively during 
the procedure, use this mode to corroborate your 
suspicions. Specify the procedure as the window 
and interrupts as the event. Then display the results 
both for interrupts within the procedure and those 
outside the procedure. By comparing the two dis­
plays, you can determine whether interrupt frequen­
cy within the procedure is skewed. Figure 6 shows a 
sample display for interrupts that occur inside the 
window. 

Example: This bar shows that for 15 executions of 
STOP_THRUST, interrupts inside of 
STOP_THRUST occurred between 25 and 29 times. 

Mode: 
Window: 
Event: 
Bin Range: 
Type: 
Status: 

WINDOW 
STOP_THRUST 
Interrupt 
5 to 44 
Linear 
OK 

Frequency-> 
o 4 8 12 16 

SEL:ECT 
HISTO 

20 

INNER 
COUNT 

24 
Interval 

< 5 
+-------+-------+-------+--------+--------+--------+------- -

5 - 9 
10 - 14 
15 - 19 
20 24 
2S - 29 
3D - 34 
35 - 39 
40 - 44 

> 45 

:-:. 
------------+-------+-------+-------+--------+--------+--------+---------

o 4 8 12 16 20 24 
280165-7 

Figure 6_ Windowed-Eve nt-Count Mode: Interrupt Latency Histogram 

22-407 



inter iPATTM 

As with the duration rnode, you can select the granu­
larity of data collection for the windowed-event­
count mode (8, 16, or 32 bins), and you can specify 
linear or logarithmic binning. 

Linkage Mode 

Linkage mode has two options, the many-to-one op­
tion and the many-to-many option. Both options al­
low you to focus on inter-procedure activity. 

Many-to-One Option: With this linkage option, you 
can focus on ,one procedure or block of code (the 
one) and determine its linkage to other procedures 
or blocks of code (the many) that call it. ' 

For example, suppose that profile mode has re­
vealed procedure SCALE_DISTANCE to be using 
excessive time and is called often (see Figure 7). If 
many of the calls to it are from one or two proce­
dures, to improve execution speed SCALE_DIS­
T ANCE could be optimized and moved in line into 
the procedures that call it often. The many-to-one 
option can help in this case. You simply enter the 
PAT LINKAGE analysis command and specify the 

Mode: LINKAGE (many-to-one) 
PTIMEBASE: 100us 
Status: OK 
To (0): SCALE_DISTANCE 

: O-Count 

names of the procedure that call SCALE_DIS­
T ANCE (the many) and specify SCALE_DISTANCE 
as the one. Then, when the program is executed, 
appropriate count and time data is collected. Figure 
7 shows a sample count histogram display for the 
many-to-one option. For each of the calling proce­
dures, Figure 7 shows the average number of invo­
cations of SCALE_DISTANCE. We see that proce­
dure DRAW_MAP, on the average, invokes 
SCALE_DISTANCE 10.2 times. 

The many-to-one display can also be changed to a 
time histogram (showing, for each of the many pro­
cedures, the average time the one procedure uses) 
or to a table. 

Many-to-Many Option: This linkage option allows 
you to collect information on the linkage between 
many event pairs. 

In the other modes, you cannot use an interrupt or 
the same address to specify both members of an 
event pair. For the many-to-many option, there is no 
such restriction. Thus, with this option you can col­
lect timing and count information on recursive proce­
dures and interrupt-to-interrupt activity. 

Example: This bar shows that DRAW_MAP 
invokes SCALE_DISTANCE 10.2 times, on the 
average - more times than any other procedure. 
Note that the label "0" stands for One and "M" 
stands for Many. 

HISTO COUNT 

Event (M) : M-Count 0.0 2.0 4.0 6.0 8.0 10.0 
---------------------+----------+-----+-----+-----+-----+-----+----
DRAW_MAP 
DRAW_FLIGHT_PATH 
DRAW_OTHER_ACRFT_PATH: 
DRAW_GRND_TURBULANCE : 
DRAW_DISTANCE_MARKERS: 

10.2 
1.6 
0.7 
1.4 
6.8 

:­:. :-
---------------------+----------+-----+-----+-----+-----+-----+----

0.0 2.0 4.0 6.0 8.0 10.0 
280165-8 

Figure 7. Linkage Mode (Many-to-One): Count Ratio Histogram 

22-408 



inter iPATTM 

Data for the many-to-many option is displayed in a 
table. See Figure 8 for a sample display. 

USER INTERFACE 

The iPAT software is integrated with the emulator 
software. For example, iPAT command options are 
integrated in the emulator syntax menu at the bot­
tom of the screen. 

In addition, the emulator LITERALLY command can 
be used to abbreviate frequently used commands. 
The history buffer is also available to retrieve previ­
ous commands. 

As already noted, the iPAT analyst requires only one 
command line to set up an analysis-mode (PAT 
INIT) and one to request a data display (PAT DIS­
PLAY). There are also six display pseudo-variables 
used to set display options: SHOW, ASS, SELECT, 
FILTER,SORT, and HISTO. 

Users can save test-coverage data collected for 
subsequent reviewing. The command PAT SAVE 
saves coverage data to a user-specified file; the 
command RECALL enables you to restore the file 

and then update the test information with additional 
test runs. 

Displays for all modes can be saved to a file using 
the emulator LIST command. 

To speed command entry, you can create registers 
that save frequently used commands. Then use the 
names of the desired registers with your analysis 
and display commands. 

The emulator's screen editor can be used to exam­
ine and modify source code that the iPAT analyst 
has pinpointed as needing improvement. 

SPECIFICATIONS FOR iPATTM AN 
121CETM SYSTEM 

Host Requirements 

Intel Series III or Series IV development system; or 
an ISM PC XT or PC AT system 

At least 512K bytes of RAM (of which 384K by1es 
must be available for the iPAT 1121CE system soft­
ware) 

Example: This line shows how often interrupts occur 
and provides timing information about the intervals 
between interrupts. In this case 220 interrupts 
occurred; the average interrupt-to-interrupt time 
interval was 250 pS. 

Mode: LINKAGE (many-to-many) 
Timebase: 1Dus 
Status: OK 

Events : Count:Time (us):Time Min:Time Ave:Time Max: 
-------------~---+----~-+---------+--------+--------+--------+ 
DRAW_MAP 
DRAW_MAP 3D 2700 80 90 100 

INTERRUPT 
INTERRUPT 220 55000 130 250 310~ 

SETJLAPS 
SELRUDDER 25 325 10 13 20 

SETJLAPS 
SELAILERONS 3 970 288 323 417 
-----------------+------+---------+--------+--------+--------+ 

280165-9 

Figure 8. Linkage Mo~e (Many-to-Many) Display 

22-409 



iPATTM 

Available serial channel that operates at 300, 1200, 
9600, or 19200 baud. (For a Series IV host, the avail­
able channel must be the lEU channel and, to use 
the iPAT analyst at baud rates greater than 300, an 
SPU board must be installed.) 

Two double-density diskette drives or a hard disk 

121CETM System Requirements 

Version 1.7 (or greater) probe software 

iPAT software does not support 121CE system opera­
tion with the Intel Logic Timing Analyzer (iL T A) and 
iL TA software does not support iPAT operation. 

After the iPAT analyst interface board is installed, 
space is available in the 121CE system instrumenta­
tion chassis for only one optional board. (Thus the 
user can install only one optional high-speed (OHS) 
memory board.) 

Only one iPAT analyst will function in a multiple­
probe 121CE system. 

iPATTM Analyst Software 

121CE host software that includes iPAT software 

iPAT confidence tests 

iPAT tutorial software 

System Performance 

Address Range Specification: Address ranges can 
be specified symbolically (for code compiled by Intel 
compilers) or with absolute addresses. Addresses 
anywhere within processor address space can be 
used. 

Speed: The iPAT analyst captures instruction ad­
dresses at full processor speeds (however, when us­
ers specify many short intervals that are frequently 
executed, iPAT processing overflow may occur). 

Timebase: Data collection time base selectable as 
200 ns, 1 /ks, 10 /ks, or 100 /ks. 

Display Updates: Users can specify how frequently 
.(in seconds) displays are updated. 

Status: If time-count, bin-count, or FIFO overflow 
occurs, the display indicates the overflow. 

Profile Mode: Collects time and count information 
on specified entry-exit pairs. Permits specification of 
125 entry-exit pairs when calls to other procedures 
are included in data collection and a minimum of 63 
pairs when calls are excluded. Data collection can 
focus on modules, procedures, lines, absolute ad­
dress pairs, or interrupt-address pairs. Displays are 
selectable as histograms or tables; data displayed 
can be sorted by address, count, or time. 

Coverage Mode: Provides up to 252K bytes of cov­
erage, mappable anywhere within the processor ad­
dress space. Results are displayed in a table; users 
can select whether the table shows modules, proce­
dures, or lines executed (and/or not executed). 

Linkage Mode: The linkage mode has two options: 

Many-to-One Option: Collects count and time data 
about interaction of one specified entry-exit pair with 
respect to other specified entry-exit pairs. Permits 
specification of 63 entry-exit address pairs for the 
many and one entry-exit address pair for the one. 
Displays are selectable as histograms or tables; 
data displayed can be sorted by address, count, or 
time. 

Many-to-Many Option: Collects count and time 
data on one or more pairs of events. Permits specifi­
cation of 63 event pairs; each member of a pair can 
be an address or interrupt. Measurements of recur­
sion and interrupt to interrupt are supported. Display 
is a table. 

Modes that Organize Data into Bins: The following 
two iPAT modes organize collected data into bins. 
Users can select bin granularity (8, 16, or 32 bins) 
and the highest and lowest values for the outer bins. 
Users can also select whether bin intervals are 
equal or increase logarithmically. 

Windowed-Event Count Mode: Collects count 
data concerning an event that occurs within a speci­
fied window. Permits selection of the window entry­
exit pair as an address pair, interrupt-address pair, or 
address-interrupt pair. The event selected can be an 
address or an interrupt. Resulting binned count data 
can be displayed as a histogram or table. 

Duration Mode: Collects time information for a se­
lected entry-exit pair. Permits selection of an entry­
exit pair as an address pair, interrupt-address pair, or 
address-interrupt pair. Resulting binned timing infor­
mation can be displayed as a histogram or table. 

22~410 



iPATTM 

PHYSICAL CHARACTERISTICS 

Target-Interface Board (to be 
installed in 121CE system 
instrumentation chassis): 

Length 30 cm (12 in) 
Width 30 cm (12 in) 

iPAT Core Module: 

Length 35 cm (13% in) 
Width 21 cm (8% in) 
Height 4 cm (1% in) 

iPAT Power supply: 

Length 28 cm (11 in) 
Width 11 cm(4%in) 
Height 19 cm (7% in) 

AC power cord for the power supply: 3.0 m (10ft) 

Power-supply-to-core DC power cable: 1.8 m (6 It), 
10 conductor 

Emulation-clips jumper cable: 20 cm (8 in), 40 con­
ductor 

Execution-trace jumper cable: 10 cm (4 in), 60 con­
ductor 

iPAT-to-emulator cable: 0.9 m (36 in), 60 conductor 

R.S232 serial cable (for connecting the iPAT core to 
the host system): 3.7 m (12 ft). This cable is shipped 
with the iPAT software. 

Electrical Characteristics 

Selectable AC power source: 100V, 120V, 220V, 
240V 

47-63 Hz 

2 amps (AG) at 100V or 120V, 1 amp at 220V or 
240V 

Environmental Requirements 
Operating Temperature: 10·C to 40·C (50· to 104·F) 

Operating Humidity: Maximum of 85%' relative hu-
midity, non-condensing 

ORDERING INFORMATION 
Order Code Description 
iPATCORE iPAT core unit that supports Intel 8-

and 16-bit microprocessors. It must 
be used with the appropriate emulator 
target interface, cables, and software. 

iPAT86PC iPAT-12ICE system target imterface, 
cables, and DOS software for IBM PC 
AT and PC XT host 

iPAT86S3 iPAT-12ICE system target interface, 
cables, and ISIS software for Series III 
host 

iPAT86S4 iPAT-12ICE system target interface, 
cables, and iNDX software for Series 
IV host 

iPAT86DOS iPAT DOS software (for use with IBM 
PC AT and PC XT hosts) and serial 
cables 

iPAT86NDX iPAT Series IV (iNDX) software and 
serial cable 

iPAT861SS iPAT Series III (ISIS) software and se­
rial cable 

22-411 



intJ 
121CETM Integrated Instrumentation 

and In-Circuit Emulation System 

• Provides Real-Time In-Circuit Emulation • Supports Common Memory between 

• Offers Symbolic Debugging Capabilities Processors without Any User System 

- Accesses Memory Locations and Hardware 

Program Variables (Including • Offers a Performance Analysis Tool 
Dynamic Variables) Using Program- (iPATTM Analyst) 
Defined Names • Maps User Program Memory into a 

- Maintains a Virtual Symbol Table Maximum of 288K Zero-Wait-State RAM 
- Source Code Display at Breakpoints (Zero Wait-States to 10 MHz) 

• Offers Multi-Condition, Multi-Level, • Maps User 1/0 to Console or t.o 
Multi-Probe Break and Trace Capability Debugging Procedures 

• Provides Built-In AEDIT Editor to Allow • Provides Disassembly and Single-Line 
Editing of Development System Files Assembly to Help with On-Line Code 
without Exiting from 121CE Operation Patching 

• Provides Low Cost Conversions Among • Common Human Interface Provided by 
8086,8088,80186,80188 and 80286 the PSCOPE-86 Debugging Language 
Microprocessors and the 121CE Command Language 

• Simultaneously Controls up to Four • Uses Integrated Command Directory, 
Microprocessors for Debugging ICDTM, for Command Syntax Directionl 
Multiprocessor Systems for a Single Correction to Ease Debug Operations 
Work Station 

The Intel Integrated Instrumentation and In-Circuit Emulation (l2ICETM) system aids the design of systems that 
use the 8086, 8088, 80186, 80188 and 80286 microprocessors. The 121CE system combines symbolic soft­
ware debugging, in-circuit emulation, and the optional Intel Performance Analysis Tool (iPAT analyst). Support 
features for the 8087 and 80287 coprocessors are also included. For the 8086/8088,80186/80188, and 
80286 processors, the 121CE system supports programs written in C, PL/M, FORTRAN, Pascal, and assembly 
language. Up to four 121CE instrumentation chassis can be hosted by one of Intel's Intellec® microcomputer 
development systems or by an IBM' PC AT or PC XT. 

'IBM is a trademark of the International Business Machines Corporation. 

22-412 

210469-1 

October 1987 
Order Number: 210469-008 



PHYSICAL DESCRIPTION 

The 121CE system hardware consists of the host in­
terface board, the 121CE instrumentation chassis, the 
emulation base module, the emulation personality 
module, a host/chassis cable, inter-chassis cables 
(for multiple chassis systems), a user cable, optional 
high-speed memory boards, and an optional per­
formance analyzer. The 121CE system software con­
sists of 121CE host software, 121CE probe software, 
confidence tests, PSCOPE-86, and optional iPAT 
analyst software. Table 1 shows elements of the 
121CE system. 

The host interface board resides in the host devel­
opment system. A cable connects the host interface 
board to the 121CE instrumentation chassis. Another 
cable connects the 121CE instrumentation chassis to 
the buffer box. 

The instrumentation chassis contains high-speed 
zero-wait-state emulation memory, break-and-trace 
logic, memory and 110 maps, and the emulation 
clips assembly. 

The chassis may also contain the optional perform­
ance analyzer and optional high-speed memory. 
High-speed mellJory is expandable from 32K bytes 
to 288K bytes in 128K increments. 

The buffer box contains the emulation personality 
module. This module configures the 121CE system 
for a particular iAPX microprocessor. The user cable 
connects the buffer box to user prototype hardware. 

The host development system may host up to four 
121CE instrumentation chassis. Each chassis may 
have its own buffer box, user cable, emulation clips, 
optional high-speed memory boards, and perform­
ance analyzer. 

TARGET SYSTEM CONSIDERATIONS 

To ensure proper emulation of a host target system, 
consider the following: 

• Each 121CE system probe has specific timing pa­
rameters that differ from the chip which the probe 
emulates. Hence, a customer design that follows 
the chip's timing speCifications may not work with 
the 121CE system probe. The target system may 
have to be modified slightly to account for the aif­
ferences in timing between the probe and the chip. 
See the probe waveform section in this data sheet 
for timing differences. 

• Target system noise and Signal margins and tim­
ings are a critical consideration for emulation at 
speeds beyond 6 MHz. Typical solutions used to 

. reduce target system noise such as RC networks 
and series resistor terminations could cause unac-

ceptable timing degradation. Consequently, Intel 
recommends that wirewrap target boards be care­
fully designed for emulation with the 121CE system. 
Printed circuit boards should be used because of 
the superior signal transmission characteristics. All 
target systems must have power and ground 
planes, decoupling capacitors, and signal lines 
layed out according to correct design techniques. 
For an introduction to proper design, see Applica­
tion Note 125, Designing Microcontroller Systems 
for Electrically Noisy Environments, Order Number 
210313. 

• The 121CE system depends on a target system 
clock signal to run the internal probe circuitry. To 
run the internal probe circuitry, the clock signal 
must satisfy two criteria. The target system clock 
must meet the voltage levels defined in this data 
sheet and it must also exceed the TTL logic family 
minimal noise and ringing specifications. This is 
necessary since the signal must travel up the user 
cable and through data buffers to reach the probe 
circuitry. The 121CE system is designed to minimize 
the capacitive, noise, and chip delay associated 
with this path, but these effects worsen timings 
and amplify target system noise that may exist. 

FUNCTIONAL DESCRIPTION 

Resource Borrowing 

The 121CE system memory map allows the prototype 
system to borrow memory. resources from the 121CE 
system. 

If prototype memory is not yet available, the user 
program may reside in 121CE memory. Because this 
memory is RAM, changes can be made quickly and 
easily. For example, if the prototype contains 
EPROM, it does not need to be erased and repro­
grammed during development. 

Later, as prototype memory becomes available, the 
verified user program can be reassigned, memory 
block by memory block, to prototype memory . 

. The 121CETM System Memory Map 

The 121CE system can direct (map) an emulated mi­
croprocessor's memory space (the user program 
memory) to any combination of the following: 

• High-speed 121CE system memory-this consists 
of 32K bytes of programamble wait-state memory 
(programmable from 0 to 15). This memory re­
sides in the 121CE system chassis on the map-I/O 
board. 

22-413 



inter 

/ 

121CETM 

Table 1.12ICETM System Overview 

PC BOARD 
AND CABLE 

.~~------~----~/ 

OPTIONS 

~~------~----~/ 

210469-3 

HOST DEVELOPMENT SYSTEM HOST-TO-I21CETM SYSTEM 
INTERFACE BOARD 

AND CABLE 

CHASSIS AND EMULATION MODULE 
-----. 

EMULATION 
PERSONAUTY 

MODULE 

Name 

Host Development 
System 

210469-2 

Description 

Required for all applications. Use one of the following: 
• Intellec Series III development system 
• Intellec Series IV development system 
• IBM PC AT or PC XT (with 512K bytes of available memory and version3.0 of 

PC DOS) 
• IBM 50 system (available in Japan; features kanjI) 

22-414 



I 

intef 
Table 1.12ICETM System Overview (Continued) 

Name Description 
Host-to-12ICE System Required for communication between the host and the 121CE system. 
Interface Board, Cable, • MUL TIBUS® bus interface board for Series III and Series IV (product code 
and Host Software 111520) 

• Host-to-12ICE system cable for the Series III and Series IV (product code 
111530 or 111531) 

• 121CE system host software for the Series III and Series IV (product code 
11I951A, B, or C) 

• Package with PC host interface board, cable and PC DOS version of 121CE 
host software (product code 111520AT954D) 

Instrumentation Chassis Required for real-time microprocessor emulation, break and trace capability, and 
and Emulation Module memory and I/O capability. 

• Instrumentation chassis (product code 111514B) has four board slots: 
1 slot for breakltrace board 
1 slot for map-liD board 
2 slots for 1 (or 2) optional high-speed memory board(s) andlor 1 optional 
logic timing analyzer board 

• Maximum of four chassis for multi-probe applications 
• Emulation module (product code 111620) includes breakltrace board, map-liD 

board, and buffer base box 

Emulation Personality Required for emulation of specific microprocessors: 808618088, 80186/80188, 
Module (Probe) and Probe or 80286. 
Software • Module includes personality board, buffer box cover, and user cable 

• Series III or IV: Order probe and probe software separately, 
• PC host: Probe and probe software packaged together 

Intel Performance Analysis Used to optimize'code execution speed and control and to improve software 
Tool (iPAT Analyst) reliability. 

• Complete with sytem software, power supply, core module, iPAT-to-12ICE 
interface board, and cables 

Optional High-Speed Required for memory expansion. 
Memory Board (OHS) • 128K bytes of programmable (0 to 15) wait-state memory 

• One or two boards mount in the instrumentation chassis' 

• Optional high-speed 121CE memory-this consists 
of up to 256K bytes of programmable wait-state 
memory (0 wait-states up to 10 MHz). This mem­
ory resides in the 121CE system chassis on (lne or 
twei optional high-speed memory boards (128K 
bytes each). 

• Read-only-the 121CEsystem displays an error 
message if a user program attempts to write to an 
area of memory designated as read-only. The 
user can, however, write to a read-only, area with 
121CE system commands. 

• Read/write, no verify-normally, the 121CE sys­
tem performs a read-after-write verification after 
program loads and after writing to memory with 
an 121CE system command. The 121CE system 
can suppress this verification; For example, if a 
prototype has memory-mapped liD, a verifying 
read may change the state of the I/O device. 

• MUL TIBUS® bus memory (host system memo­
ry)-this resides in the host development system 
itself. (Any amount of unused host memory can 
be used in 1 K increments.) Note that this feature 
is not available for a PC host. 

• User memory-this resides in the user' prototype 
hardware. 

When a user program runs in 121CE memory or user 
memory, the 121CE system emulates in real time. A 
memory access to MUL TIBUS bus memory, howev­
er, inserts approximately 25 wait-states into. the 
memory cycle. 

Access Restrictions 
In addition to directing memory accesses, the follow­
ing access restrictions can be specified. 

• Guarded-initially, the 121CE system puts all 
memory in a guarded state. Neither the user pro­
gram nor the 121CE system user . can 'access 
guarded memory. 

The 121CETM System 1/0 Map 

The 121CE system can direct (map) an emulated mi­
croprocessor's I/O space to the host development 
system's console, to the prototype system, to de­
bugging procedures, or toa combination of these. 

22-415 



121CETM 

SIMULATING 1/0 WITH THE HOST 
DEVELOPMENT CONSOLE 

Suppose a user program requires input from an I/O 
device not yet part of the prototype. Map the input 
port range assigned to that device to the host devel­
opment system's console. Then, when the user pro­
gram requires input, it halts and the 121CE system 
console displays a message requesting the data. 
When you enter the required data at the keyboard, 
the user program continues. 

SIMULATING I/O WITH 121CETM SYSTEM 
DEBUGGING PROCEDURES 

Procedures that supply the needed input data can 
be written in the 121CE system command language. 
When setting up the I/O map, the user specifies that 
the I/O procedure is invoked when certain I/O ports 
are accessed. 

I/O ports are mapped in blocks of 64 byte-wide 
ports or 32 word-wide ports. A total of 64K byte-wide 
ports or 32K word-wide ports can be mapped. 

Symbolic Debugging 

With symbolic debugging, a memory location can be 
referenced by specifying its symbolic reference. A 
symbolic reference is a procedure name, line num­
ber, or label in the user program that corresponds to 
a location in the user program's memory space. 

TYPICAL SYMBOLIC FUNCTIONS 

Symbolic functions include: 

• Changing or· inspecting the value and type of a 
program variable by. using its program-defined 
name, rather than the address of the memory lo­
cation where the variable and a hexadecimal val­
ue for the data are stored. 

• Defining break and trace events using source-
code symbols. 

With symbolic debugging, the user can reference 
static variables, dynamic (stack-resident) variables, 
based variables, and record structures combining 
primitive data types. The primitive data types are 
ADDRESS, BOOLEAN, BYTE, BCD, CHAR, WORD, 
DWORD, SELECTOR, POINTER, three INTEGER 
types, and four REAL types. 

THE VIRTUAL SYMBOL TABLE 

The 121CE system maintains a virtual symbol table 
for program symbols; that is, the entire symbol table 
need not fit into memory at the same time. (The size 
of the virtual symbol table is constrained only by the 
capacity of the storage device.) 

The 121CE system divides the symbol table. into 
pages. If a program's symbol table is large, the 121CE 
system reads only some of the symbol table pages 
into memory. When the user references a variable 
whose symbol is not currently defined in memory, 
the 121CE system reads the needed symbol table 
page from disk into memory. 

Breakpoint, Trace, and Arm 
Specifications 

With 121CE commands, breakpoint, trace and arm 
specifications can be defined. 

Breakpoints allow halting of a user program in order 
to examine the effect of the program's execution on 
the· prototype. With the 121CE system, a breakpoint 
can· be set at a particular memory location or at a 
particular statement in a user program (including 
high-level language programs). A break can also be 
set to occur when the user program enters or ac­
cesses a specified memory partition or reads or 
writes a user program variable. When the user pro­
gram resumes execution, it picks up from where it 
left off. 

Normally, the 121CE system traces while the user 
program executes. With a trace specification, how­
ever, the user can choose to have tracing occur only 
when specific conditions are met. 

An arm specification describes an event or combina­
tion of events that must occur before the 121CE sys­
tem can recognize certain breakpoint and trace 
specifications. Typical events are the execution of 
an instruction or the modification of a data value. 

The 121CE system command language allows you to 
specify complex, multilevel events. For example, you 
can specify that a break occurs when a variable is 
written, but only if that write occurs within a certain 
procedure. The execution of the procedure is the 
arm condition; the variable modification is the break 
condition. The 121CE system command language al­
lows users to specify complex events with up to four 
states with four conditions and to use such events 
as arm, break, or trace conditions; a specified num­
ber of events can be used as a condition. 

SOURCE DISPLAY 

With the source display commands, a user can cor­
relate a module under debug to a source code file. 
Then, when breakpoints are encountered, source 
text is displayed along with the break message and 
the line number of the breakpoint. The number of 
source code lines displayed before and after a 
breakpoint can also be defined. 

22-416 



PSCOPE86 r--------l ...!'I~T::;!?T!M __________ __ , 
r 8086/8088 EMULATION I 116·BIT IAPX I 

ISOnWARE DEBUGGINGI I 80186/80188 EMULATION I 
1 80286 EMULATION I 

: I I I 
I I I I 

sonWARE 
DEBUGGING 

I I I USER I 

I I I I 
I 
I 
I 
I 

I I 

HARDWARE 
DEBUGGING 

I I L _______ -' 

I 
I 
I 

210469-4 

Figure 1. 121CETM System Debugging Capabilities 

Coprocessor Support 

The 8086/8088 emulation personality module pro­
vides transparent RQ/GT and MN/MX pin emulation 
to support real-time prototype systems that use the 
8087 as a coprocessor. The 8086/8088 (and the 
80186/80188) emulation personality module also 
provides debugging features specific to the 8087. 
121CE system commands provide access to the 
8087's stack, status registers, and flags. The 121CE 

. system's disassembly and trace features extend to 
8087 instructions and data types. 

The 80186 and 80286 emulation personality mod­
ules also allow the prototype hardware to contain 
coprocessors. The 80186 probe can qualify break 
points and collect trace information when the co­
processor drives the status lines (SO-S2) in the pre­
scribed manner. The 80286 personality module al­
lows the hardware to contain the 80287 processor 
extension and provides special debugging fea­
tures-the user can enable and disable the 80287 
and change and examine its registers. 

DEBUGGING WITH THE 121CETM 
SYSTEM 

The 121CE system allows both hardware and soft­
ware debugging (see Figure 1). 

• Software debugging~12lCE system commands 
permit symbolic debugging of user programs writ­
ten in high-level languages as well as assembly 
language. By looping the user cable back into the 
buffer box, a user program can be debugged 
even if no prototype hardware is present. In a 
multi-probe environment, the 121CE system can 
map common memory from the host develop­
ment system and support semaphore operation 
even with no user system prototype hardware. 
This feature makes possible detailed debugging 
of multi-processor software before the hardware 
is available. 

Additionally, as code is being developed, prelimi­
nary analyses can be made with the optional 
iPAT analyst. You can also use the 121CE system 
and the iPAT analyst to analyze program execu­
tion under different target system conditions. This 
can be accomplished by setting up target system 
conditions in the 121CE system and running the 
program with the iPAT analyst activated. 

22-417 



intJ 121CETM 

• Hardware debugging-the 121CE system is a real­
time, in-circuit emulator. Trace data are collected 
in real time, and 121CE system software does not 
intrude into user program space. 

The usefulness of an 121CE system extends through­
out the development cycle, beginning with the sym­
bolic debugging of prototype software and ending 
with the final integration of debugged software and 
prototype hardware. 

PSCOPE-86 

PSCOPE-86 is a high-level language, symbolic de­
bugger, designed for use with Pascal-86, PL/M-86, 
and FORTRAN-86. It is a separate product included 
with the Series III and Series IV versions of the 121CE 
system; it runs in the host development system. 
PSCOPE-86 is field-proven, familiar to Intel custom­
ers, and suited for the debugging of applications 
software when the hardware capabilities of the 121CE 
system are not needed. The PSCOPE-86 and 121CE 
command languages are similar. (Note that 
PSCOPE-86 is available as an option for use with 
the PC AT or PC XT.) 

Designing a product that contains a microcomputer 
requires close coordination of hardware and soft­
ware development. A typical design process takes 
advantage of both the 121CE system and 
PSCOPE-86. Use PSCOPE-86 for debugging soft­
ware before downloading the software into a target 
environment; use the 121CE system for debugging 
and emulation of the target system. 

THE 121CETM SYSTEM COMMAND 
LANGUAGE 

The syntax of 121CE system commands resembles 
that of a high-level language. The 121CE system 
command Ian gauge is versatile and powerful while 
remaining easy to learn and use. 

The Integrated Command Directory (ICDTM) assists 
users with command syntax. 

• The ICD directory directs the user in choosing 
commands from a display on the bottom line of 
the screen. As commands are entered, the bot­
tom line indicates syntax elements available for 
use in the commands. 

I 

• The ICD directory flags syntax errors. Syntax er­
rors are flagged as they occur (rather than after 
the carriage return is pressed). 

• The ICD directory provides on-line help with the 
HELP command. 

Automatic expansion of LITERALLY expressions is 
available. When the feature is activated, each char­
acter string defined by a LITERALLY definition is au­
tomatically expanded to its full length. 

The 121CE command language deals with user-creat­
ed debugging objects. By manipulating debugging 
objects, the user can streamline complex debugging 
sessions. 

Debugging objects are uniquely named, user-creat­
ed, software constructs that the 121CE system uses 
to manage the debugging environment. The four 
types of debugging objects are: debugging proce­
dures, LITERALLY definitions, debugging registers, 
and debugging variables. In the following examples, 
121CE system keywords are shown in all caps. 

• Debugging procedures (named groups of 121CE . 
system commands) can simulate missing soft­
ware or hardware, collect debugging information, 
and make troubleshooting decisions. For exam­
ple, consider a debugging procedure (called init) 
that simulates input from I/O ports 2 and 4. 

The procedure and MAPIO command are given 
first, followed by an explanation. 

'DEFINE PROCEDURE init = DO 
• 'IF %0==2 THEN 
•• *PORTDATA=lOOT 
•• ·ELSE IF %0==4 THEN 
••• ·PORTDATA=65T 
••• ·END 
•• ·END 

'END 
'MAPIO 0 LENGTH 64K ICE (init) 

Whenever the MAPIO command maps I/O ports 
to an 121CE system procedure, three parameters 
are made available to the procedure (even if the 
procedure does not use them): %0, % 1, %2. The 
parameter %0 passes the port number; % 1 
passes a Boolean value that indicates whether 
read or write I/O activity will occur, and %2 pass­
es a Boolean value that indicates whether the 
I/O is a byte-wide or a word-wide port. PORTDA­
TA is a pseudo-variable that contains the actual 
port data. This procedure specifies that if port 2 is 
used, the procedure returns 100 (base ten); if, 
however, port 4 is used, the procedure returns 65 
(base ten). 

• LITERALLY definitions are shorthand names for 
previously defined character strings. LITERALLY 
definitions can save keystrokes and improve clar­
ity. For example, here is the definition of a LITER­
ALLY that saves keystrokes. This LITERALLY al­
lows the user to type DEF for DEFINE. 

22-418 



inter 121CETM 

'DEFINE LITERALLY DEF = "DEFINE" 
These definitions may be saved to disk and auto­
reloaded. In addition, an automatic LITERALLY 
expansion feature can be turned on and off. 

• Debugging registers are user-created, software 
registers that hold arm, breakpoint and trace 
specifications. The 121CE system can be ordered 
to emulate the user program and specify one or 
more debugging registers. There is no need to re­
enter the specification for each emulation. For 
example here is the definition of a debugging reg­
ister called pay that contains a trace specifica­
tion. This example takes advantage of the previ­
ous LITERALLY definition. 

'DEF TRCREG pay = :cmaker.payment 
To emulate a user program and trace only during 
the procedure payment, specify the debugging 
register pay as part of the GO command. 

'GO USING pay 

• Debugging variables are user-created variables 
used with 121CE system commands. For example, 
here is the definition of a debugging variable 
called begin. Its type is POINTER. 

'DEFINE POINTE~ begin = 0020H:0006H 
During a debugging session, the user can set the 
execution point to this pointer value by typing: 

'$=begin 
The 121CE system pseudo-variable $ repre­
sents the current execution point. 

Example of a Debugging Session 

Figures 2, 3, and 4 illustrate some of the key capabil­
ities of the 121CE system. The user program is written 
in Pascal-86. It was compiled, linked, and located on 
an Intellec Series III development system. The re­
sulting file consists of absolute code and is called 
CMAKER.86. Figure 2 shows the Pascal listing; Fig­
ure 3 shows a sample debugging session; and Fig­
ure 4 briefly explains the debugging steps shown in 
Figure 3. 

The CMAKER.86 program controls an automatic 
changemaker. The program reads the amount ten­
dered (the variable paid) and the amount of the pur­
chase (the variable purchase). It calculates the 
coins needed for change and asserts control signals 
to a change release mechanism by writing an output 
port. Each of the lower four bits of the output port 
controls the release of a different coin denomina­
tion. 

3 0 Q = quarters 
D = dimes 
N = nickels 
P = pennies 

121CETM System Command Functions 

The 121CE system command language contains a 
number of functional categories. 

• Emulation commands-the GO command in­
structs the 121CE system to begin emulation. The 
user can also command the 121CE system to 
break or trace under certain specified conditions. 

• Utility commands-these are general purpose 
commands for use in a debugging environment. 
For example, one use of the EVAL command is to 
calculate the nearest source-code line number 
that corresponds to the address of an assembly 
language instruction. The PRESRC command 
can be used to display a specified number of 
source code lines preceding a breakpoint. The 
HELP command provides on-line assistance. The 
EDIT command invokes a menu-driven text editor 
(AEDIT) that allows updating of debugging object 
definitions and editing of development system 
files without exiting the 121CE system. The shell 
escape command () enables access to the DOS 
operating system without exiting the 121CE system 
(DOS host specific). A command line editor and 
history key are also provided. 

• Environment commands-these are commands 
that set up the debugging environment. For ex­
ample, the MAP command sets up the memory 
map. Another environment command (WAIT­
STATE) inserts wait-states into memory access­
es, allowing the simulation of slow memories. 

• File handling commands-these are commands 
that access disk files. Debugging object defini­
tions can be saved in a disk file and loaded in 
later debugging sessions. Debugging sessions 
can also be recorded in a disk file for later analy­
sis. 

• Probe-specific commands-these are commands 
whose effects are different for different probes. 
For example, the PINS command displays the 
state of selected signal lines on the current 
probe. 

• Option-specific commands-these are com­
mands that control an optional test/measure­
ment device, such as the performance analysis 
tool. 

22-419 



inter 121CETM 

SERIES·III Pascal:86, V2.0 
Source File: CMAKER.SRC 
Object File: CMAKER.OBJ 
Controls Specified: XREF, DEBUG, TYPE 

STMT LINE NESTING SOURCE TEXT: MAKER.SRC 
1 1 0 0 PROGRAM cmaker; 
2 2 0 0 VAR change, coins :integer; 

3 3 0 0 quarte(s,nickels,dimes,pennies :integer; 

4 4 0 0 paid,purchase :word; 

5 6 0 0 PROCEDURE payment; 
6 7 1 0 VAR numberofcoins :integer; 

7 8 1 0 release :word; 

8 9 1 0 BEGIN ("payment") 
8 10 1 1 numberofcoins: = quarters + dimes + nickels + pennies; 

9 11 1 1 while numberofcoins < > 0 do 
10 12 1 1 BEGIN 
10 13 1 2 release: =0; 
11 14 1 2 if quarters < > 0 then 
12 15 1 2 BEGIN 
12 16 1 3 release: = release + 8; 
13 17 1 3 quarters: = quarters-1 

END; 
15 19 2 if dimes < > 0 then 
16 20 . 2 BEGIN 
16 21 3 release: = release + 4; 
17 22 3 . dimes: =dimes-1 

END; 
19 24 2 if nickels < > 0 then 
20 25 2 BEGIN 
20 26 3 release: =release + 2; 
21 27 3 nickels: = nickels-1 

END; 
23 29 2 if pennies < > 0 then 
24 30 2 BEGIN 
24 31 3 r.elease: = release + 1 ; 
25 32 3 pennies: = pennies-1 

END; 
27 34 1 2 n\Jmberofcoins: = quarters + dimes + nickels + pennies; 
28 35 1 2 OUTWRD(130,release); 
29 36 1 2 END; 
31 37 1 1 END; ("payment") 

32 39 0 0 BEGIN ("main") 
32 40 0 1 INWRD(2,paid); 
33 41 0 1 INWRD(70,purchase); 
34 42 0 1 change : = paid - purchase; 
35 43 0 1 coins : = change mod 100; 
36 44 0 1 quarters: =coins div 25; 
37 45 0 1 coins : = coins mod 25; 
38 46 0 1 dimes : = coins div 10; 
39 47 0 1 coins : = coins mod 10; 
40 48 0 1 nickels : =coins div 5; 
41 49 0 1 pennies : = coins mod 5; 
42 50 0 1 payment; 
43 51 0 1 END. ("main") 

210469.-5 

Figure 2. Listing of CMAKER.86 

22·420 



(1) "BASE 
DECIMAL 

(2) "MAP OK LENGTH 32K HS 
"MAPIO OT LENGTH 192T ICE 
"MAP 
MAP OK LENGTH 32K HS 

121CETM 

MAP 32K LENGTH 992K GUARDED 
'MAPIO 
MAPIO OOOOOH LENGTH OOOCOH ICE 
MAPIO OOOCOH LENGTH OFF40H USER 

(3) 'LOAD :F1:CMAKER.86 
(4) 'DEFINE POINTER begin = $ 

'DEFINE BRKREG pay = :cmaker #9 
'DEFINE PROC display = DO 
.'WRITE USING (' "quarters = ",T,O,>')quarters 
.'WRITE USING (' "dimes = ",T,O')dimes 
.'WRITE USING (' "nickels = ",T,O,>')nlckels 
.'WRITE USING (' "pennies = ",T,O')pennies 
• 'RETURN TRUE 
.'END 

(5) 'GO USING pay 
?UNIT 0 PORT 2H REQUESTS WORD INPUT (ENTER VALUE)'100 
?UNIT 0 PORT 46H REQUESTS WORD INPUT (ENTER VALUE)'65 
"Probe 0 stopped at :CMAKER#9 + 4 because of execute break 

Break register is PAY Trace Buffer Overflow 

(6) 'quarters;dimes;numberofcoins 
+1 
+1 
+2 

(7) "DEFINE SYSREG wr_number = WRITE AT .:cmaker.payment.numberofcolns & 
• "CALL display 
'GO USING wr_number 

quarters = + 1 dimes = + 1 
nickels = + 0 pennies = + 0 

Probe 0 stopped at :CMAKER # 28 + 3 because of bus break 
Break register is WR_NUMBER 

(8) 'numberofcoins 
+0 
*EVAL release 
1100Y 12T CH' . .' 

(9) 'CLIPSOUT = 11Y 

(10) 'GO FOREVER 
?UNIT 0 PORT 82H OUTPUT WORD OC 
?Probe 0 stopped at location 0033:00AEH because of bus not active 

Bus address = 0203DE 
'$=begln , 

Figure 3. Sample Debugging Session (Explanations In Figure 4) 

22-421 



intJ 

1. Checking to see that the default radix is decimal. 

2. Mapping user program memory to 121CE high-speed memory and user 1/0 ports to the 121CE system 
console. 

3. Loading the user program. 

4. Defining debugging objects. 

The debugging variable begin is set to $, an 121CE pseudo-variable representing the current execution 
point. At this pOint in the debugging session, $ is the beginning of the user program. 

The break register pay specifies a breakpoint at statement 9 in the user program. 

The debuggning procedure display displays the value of some user program variables on the console. 

5. Beginning emulation with the debugging register pay. The. console requests the two input values, paid 
and purchase. Then, the break occurs. 

6. Displaying three user program variables. 

7. Defining another debugging register. The specified event is the writing of the user program variable 
numberofcoins. When that event occurs, the 121CE system calls the debugging procedure display. In 
addition to displaying some user program variables, this debugging procedure returns a Boolean value. 
Because this value is TRUE, the break occurs; if the value were FALSE, emulation would continue. 

8. Displaying the two user program variables, numberofcoins and release. The EVAL command displays 
release in binary, decimal, hexadecimal, and ASCII. Unprintable ASCII characters appear as periods 
(.). . 

9. Asserting both output lines on the emulation clips. These lines are input to the prototype hardware and 
control a change release mechanism. 

10. Resuming emulation. The console displays the write of release to the output port. The user program 
finishes executing, and the probe stops emulating because of bus inactivity. The $ is set back to the 
beginning of the user program in preparation for another emulation. 

Figure 4. Explanation of Sample Debugging Session in Figure 3 

121CETM SYSTEM INSTRUMENTATION 
SUPPORT 

121CETM System Emulation Clips 

Eight external input lines are sampled during each 
processor bus cycle. The 121CE system records the 
values of these lines in the trace buffer during each 
execution cycle. The 121CE system can use these 
values when defining events. 

Four additional output lines synchronize 121CE sys­
tem events with external hardware. Two lines are 
active and programmable with 121CE system com­
mands. Two other lines, break and trace, allow an 
121CE system chassis to be linked to other 121CE sys­
tem chassis. 

iPATTM PERFORMANCE ANALYSIS 
TOOL 

The Intel Performance Analysis Tool (iPAT analyst) 
helps software engineers optimize code and im­
prove software reliability. Software object code gen­
erated by Intel assemblers and Intel compilers (e.g., 
for C, PL/M, Pascal, and FORTRAN) can be ana­
lyzed symbolically to improve software execution ef­
ficiency and to validate test coverage. Any object 
code that lacks Intel compiler information-but that 
can be run by Intel emulators and for which an abso­
lute program map is available-can also be ana­
lyzed (non-symbolically) by theiPAT analyst. The 
iF?AT analyst operation is currently supported via a 
target interface to the 121CE system. For more infor­
mation, see the iPAT analyst data sheet, Order 
Number 280165. 

22-422 



inter 121CETM 

121CETM SYSTEM SPECIFICATIONS 

Host Requirements 

Series III, Series IV, Model 800, or IBM PC AT or PC 
XT. 

512K bytes in host development system memory 
space. 

Two double-density diskette drives or a hard disk. 

121CETM System Software 

121CE system host software 
121CE system probe software 
121CE system confidence tests 
PSCOPE-86 (available as an option for the IBM PC 
AT or PC XT) 

System Performance 

Mappable zero wait-state 
memory (zero wait-states 
up to 10 MHz for 8086; 
8 MHz for 8088; up to 10 
MHz for 80186/80188, and 
up to 10 MHz for 80286): 

Trace buffer: 

Virtual symbol table: 

Minimum 32K bytes 
Maximum 288K bytes 

1023 x 48 bits 

The number of user 
program symbols is 
limited only by avail­
able disk space. 

Physical Characteristics 

INSTRUMENTATION CHASSIS 
Width: 17.0 in (43.2 cm) 

Height: 8.25 in (21.0 cm) 

Depth: 24.13 in (61.3 cm) 

Weight: 48 Ibs (21.9 kg) 

HOST/CHASSIS CABLE 

10ft (3.0m) and 42 ft (12.8m) options for 
Series III/Series IV host 

15 ft (4.6m) for PC host 

INTER-CHASSIS CABLE SET 

2 ft (61 cm) and 10ft (3.0m) options 

BUFFER BOX 
Width: 8.5 in (21.6 cm) 

Height: 3.0 in (7.6 cm) 

Depth: 10.0 in (25.4 cm) 

Weight: 8 Ibs (3.7 kg) 

Electrical Characteristics 

90-132V or 180"':264V (selectable) 
47-63 Hz 
12 amps (AG) 

Environmental Requirements 
Operating Temperature: O°C to 40°C (32°F to 

104°F) 

Operating Humidity: Maximum of 85% relative 
humidity, non-condensing 

22-423 



HIGH PERI'ORflANCE REA£-'I'llJIE EIfllILA'I'ION 
Intel's ICE-186 emulator delivers real-time emulation for the 80C186 microprocessor at speeds up to 
12.5 MHz. The in-circuit emulator is a versatile and efficient tool for developing, debugging and 
testing products designed with the Intel80C186 microprocessor. The ICE-186 emulator provides real 
time, full speed emulation in a users system. Popular features such as symbolic debug, 2K bytes 
trace memory, and single-step program execution are standard on the ICE-186 emulator. Intel 
provides a complete development environment using assembler (ASM86) as well as high-level 
languages such as Intel's C86, PUM86 or Fortran 86 to accelerate development schedules. 

The ICE-186 emulator supports a subset of the 80C186 features at 12.5 MHz and at the TTL level 
characteristics of the component The emulator is hosted on IBM's Personal Computer AT, already 
available as a standard deveiopment solution in most of today's engineering environments. The 
ICE-186 erilUlator operates in prototype or standalone mode, allowing software development and 
debug before a' prototype system is available. The ICE-186 emulator is ideally suited for developing 
real-time applications such as industrial automation, computer peripherals, communications, office 
automation, or other applications requiring the full power of the 12.5 MHz 80C186 microprocessor. 

Icr-186 FEA'I'lIRES 
• Full 12.5 MHz Emulation Speed 
• 2K Bytes Deep Trace Memory 
• Two-Level Breakpoints with Occurrence 

Counters 
• Single-Step Capability 

• Coprocessor Support 
• RS-232-C and CPIB Communication Links 
• Crystal Power Accessory 
• Interface for Intel Performance AnalYSis Tool 

(iPAT) 
• 128K Bytes Zero Wait-State Mapped Memory • Interface for Optional General Purpose Logic 

Analyzer • Supports DRAM Refresh 
• High-Level Language Support • Tutorial Software 
• Symbolic Debug • Complete Intel Service and Support 

imJ-------------------
Intel Corporation assumes no responsibility for the use or an~' circuitry other than drcuitry embodied In an Intel product. No other circuit patent licenses are 
implied. Information contained herein supersedes prevlousl)' published specifications on these devices from Intel. 

© Intel Corporatlon 1987 22-424 
"~G~ST. 1"87 

Order Number: 28072 ...... 



HIGHEST EMllLA.TION SPEED 
A.VA.ILA.BLE TODA.), 
The ICE-186 emulator supports development and debug of 
time-critical hardware and software using Intel's 12.5 MHz 
80C 186 microprocessor. 

RETRA.CE SOFTWA.RE TRA.CItS 
This emulator captures up to 2,048 frames of processor 
activity, including both execution and data bus activity. 
With this trace memory, large blocks of program code can 
be traced in real time and viewed for program flow and 
bellavior ct13racteristics. 

HA.RDWA.RE BREA.IlPOINTS FOR 
COMPLEX DEBllG 
User-defined "TIL-THEN" breakpoint statements stop 
emulation at specific execution addresses or bus events. 
During the hardware and software integration phase, 
breakpoint statements can be defined as execution 
addresses and/or bus addresses and/or bus access types 
such as memory and 110 reads or writes. Additionally, 
event counters provide another level of breakpoint control 
for sophisticated state machine constructs used to specify 
emulation breakpoints/tracepoints. 

SMA.U OR LA.RGE STEPS 
A stepping command can be used to view program 
execution one frame at a time or in preset frame blocks. 
When used in conjunction with symbolic debug, code 
execution can be monitored quickly and precisely. 

DEBllG CODE WITHOllT A. 
PROTOT),PE 
Even before prototype hardware is available, the ICE-186 
emulator working in conjunction with the Crystal Power 
Accessory (CPA) creates a "virtual" application 
environment. 128K bytes of zero wait-state memory is 
available for mapped memory and I/O resource addressing 
in 4K increments. The CPA provides emulator diagnostics 
as well as the ability to use the emulator without a 
prototype. 

DON'T LOSE MEMOR), 
The ICE-186 emulator continues DRAM refresh signals 
even when emulation has been halted, thus ensuring 
DRAM memory will not be lost. During interrogation mode 
the ICE-186 emulator will keep the timers functioning and 
correctly respond to interrupts in real-time. 

HIGH LEVEL LA.NGllA.GE SIlPPORT 
OPTIMIZED FOR INTEL TOOLS 
The ICE-186 supports emulation for programs written in 
Intel's ASM86 or any of Intel's high-level languages: 

PLlM-86 
Pascal-86 

F'ortran-86 
C-86 

These languages are optimized for Intel component 
architectures to deliver a tightly integrated, high 
performance development environment. 

llSER-FRIENDL), S),MBOMCS A.ID IN 
DEBllG 
Symbolics allow access to program symbols by name 
rather than cumbersome physical addresses. SymboliC 
debug speeds the debugging process by reducing reliance 
on memory maps. In a dynamic development process, user 
variables can be used as parameters for ICE-186 
commands resulting in a consistent debug environment. 

COPROCESSOR SIlPPORT 
Coprocessor support enables applications to run faster 
due to o[f loading of the main CPU. The ICE:-186 emulator 
supports alternate coprocessors such as LAN controllers 
and graphic engines, however it does not have built in 
support for the 8087 coprocessor. 

MllLTIPLE HIGH-SPEED 
COMMllNICA.TlON UNitS 
Two communication links are available [or use in 
conjunction with the host IBM PC AT. The ICE-186 
emulator uses either serial (RS-232-C) or a parallel (GPIB) 
link. A user supplied National Instruments (lEEE-488) 
GPIB communication board provides parallel transfers at 
rates up to 300K bytes per second. 

SOFTWARE ANAf.YSIS (iPA'i') 
Intel's Performance Analysis Tool (iPAT) is designed to 
increase team productivity with features like interrupt 
latency measurement, code coverage analysis and 
software module performance analYSis. These features 
enable the user to design reliable, high performance 
embedded control products. The ICE-186 emulator has an 
external 60 pin connector for iPAT. 

BllILT-IN SlJPPOR'l' !FOR fUJGBq: 
A.NA.L),SIS 
General-purpose logic analyzers can be used in 
conjunction with the ICE-186 to provide detailed timing of 
speCific events. The ICE-186 emulator provides an external 
sync signal for triggering logic analYSis, making complex 
trigger sequence programming easy. An additional 60 pin 
connector is included for the logic analyzer. 

WORLDWIDE SERVICE AND SlJPPORT 
The ICE-186 emulator is supported by Intel's worldwide 
service and support organization. Total hardware and 
software support is available including a hotline number 
when the need is there. 

22-425 



Ii" iN I iii' i I",iil 
PEIlSONA.£ t;OMPIJ'I'ER 
IlEOIJIIlEMEN'I'S 
The ICE-I 86 emulator is hosted on .an IBM PC AT. The 
emulator has been tested and evaluated on an IBM PC AT. 
The PC AT must meet the following minimum 
requirements: 
• 640K Bytes of Memory 
• Intel Above Board with at Least 1M· Byte of Expansion 

Memory 
• One 360K Bytes or One 1.2M Bytes noppy Disk Drive 
• One 20M Bytes Fixed-Disk Drive 
• PC DOS 3.2 or Later 
• A serial Port (COM I or COM2) Supporting Minimally at 

9600 Baud Data Transfers. or a National Instruments 
GPIB;PC2A board. 

• IBM PC AT BIOS 

PIIYSIt;A.£ DESUllP'l'ION A.ND 
t;IIA.IlA.t;'I'EIlISrlt;S 
The ICE-186 Emulator consists of the following 
components: 

Width Height Length 
Unit Inc:hes l:m. Inc:hes l:m. Inc:hes l:m. 

Emulator 
Control Unit 10.40 26.40 1.70 4.30 20.70 52.60 

Power Supply 2.80 7.10 . 4.15 10.70 11.00 27.90 
User Probe 3.70 9.40 .65 1.60 7.00 17.80 
User Cable! 

Plcc 22.00 55.90 
Hinge Cable 3.40 8.60 
Crystal Power 

Accessory 4.30 10.90 .60 1.50 6.70 17.00 
CPA Power 

Cable 9.00 22.90 

USER PROBE 
'HINGE' CABLE or ! -----------ft-· I I I~/~~~~ 

. I ___________ :-J' 

C USER CABLE . -.t. I 

~ I I it. 65"J-
\::22"-+1----7.0"---:--+1.-.~.4" 

./ 

E£Et;'I'IlIt;A.£ t;ONSIDEIlA.'I'IONS 
Icc 1050mA 

ENt'IIIONMEN'I'A.£ SPEt;II'It;A.'I'IONS 
Operating Temperature 10°C-40°C Ambient 
Storage Temperature - 40°C· 70°C 

fIIlDERING INI'fJRMA.'I'ION 
ICEI86 

ICE I 86PAT 

ICE-186 NMOS System including ICE 
software (Requires DOS 3.XX PC AT with 
Above Board) 

ICE·186 NMOS System including ICE SIW 
packages and the iPAT system (Requires 
DOS 3.XX PC AT with Above Board) 

D86ASM86NL 86 macro assembler 86 builder/binderl 
mapper utilities for DOS 3.XX. 

D86C86NL 86 C compiler and run time libraries for 
DOS 3.XX. 

D86PLM86NL 86 PL/M compiler for DOS 3.XX. 

D86FOR86NL 86 Fortran compiler for DOS 3.XX. 

22-426 




