


LITERATURE 

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel 
Literature Sales. In Europe and other international locations, please contact your local sales office or 
distributor. 

INTEL LITERATURE SALES 
P.O. BOX 7641 
Mt. Prospect, IL 60056-7641 

CURRENT HANDBOOKS 

In the U.S. and Canada 
call toll free 
(800) 548-4725 

Product line handbooks contain data sheets,application notes, article reprints and other design information. 

TITLE 

SET OF 11 HANDBOOKS 
(Available in U.S. and Canada only) 

EMBEDDED APPLICATIONS 

8-BIT EMBEDDED CONTROLLERS 

16-BIT EMBEDDED CONTROLLERS 

16/32-BIT EMBEDDED PROCESSOFtS 

MEMORY 

MICROCOMMUNICATIONS 
(2 volume set) 

MICROCOMPUTER SYSTEMS 

MICROPROCESSORS 

PERIPHERALS 

PRODUCT GUIDE 
(Overview of Intel's complete product lines) 

PROGRAMMABLE LOGIC 

ADDITIONAL LITERATURE 
(Not included in handbook set) 

AUTOMOTIVE SUPPLEMENT 

COMPONENTS QUALITY/RELIABILITY HANDBOOK 

INTEL PACKAGING OUTLINES AND DIMENSIONS 
(Packaging types, number of leads. etc.) 

INTERNATIONAL LITERATURE GUIDE 

LITERATURE PRICE LIST (U.S. and Canada) 
(Comprehensive list of current Intel Literature) 

MILITARY 
(2 volume set) 

SYSTEMS QUALITY/RELIABILITY 

LITERATURE 
ORDER NUMBER 

231003 

270648 

270645 

270646 

270647 

210830 

231658 

280407 

230843 

296467 

210846 

296083 

231792 

210997 

231369 

E00029 

210620 

210461 

231762 



inter 

u.s. and CANADA LITERATURE ORDER FORM 

NAME: __________________________________________________________ _ 

COMPANY: __________________ ----------------------------------

ADDRESS: __________________________________________________ __ 

CITY: _______________________________ STATE: _____ ZIP: ___ _ 

COUNTRY: _________________________ __ 

PHONE NO.: -'--__ ----''--______________________________________ ,--__ _ 

ORDER NO TITLE QTY. PRICE TOTAL 

I I I __ X _____ = ____ __ 

____ X ____ = ____ __ 

____ X _____ = ____ __ 

____ X _____ = ____ __ 

____ X _____ = ____ __ 

____ X _____ = ____ __ 

__ X 

____ X _____ = ____ __ 

__ X 

____ X _____ = __ ~ __ 

Subtotal ______ __ 

Must Add Your 
Local Sales Tax ______ __ 

Postage: add 10% of subtotal -----------1.... Postage ______ __ 

Total ____ _ 
Pay by check, money order, or include company purchase order with this form ($100 minimumj.we also 
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks 
for delivery. 
o VISA 0 MasterCard 0 American Express Expiration Date ________________ _ 

Account No. ____________________________________________________________ _ 

Signature -"-______________ --:-__________________________________________ _ 

Mail To: Intel Literature Sales 
P.O. Box 7641 
Mt. Prospect, 1160056-7641 

International Customers outside the U.S. and Canada 
should use the International order form or contact their local 
Sales Office or Distributor. 

For phone orders in the U~S. and Canada 
Call Toll Free: (800) 548-4725 
Prices good until 12/31/90. 

Source HB 



INTERNATIONAL LITERATURE ORDER FORM 

NAME: ______________________________________________________ ___ 

COMPANY: ______________ ~----------------------------------
ADDRESS: __________________________________________________ __ 

CITY: _______________________________ STATE: _______ ZIP: ______ _ 
COUNTRY: __________________________________________________ __ 

PHONENO.:~( ____ ~ ________________________________________ __ 

ORDER NO. TITLE QTY. PRICE TOTAL 

____ X ___ = ___ __ 

____ X ___ = ___ __ 

__ X 

____ X ___ = ___ __ 

__ X 

____ X ___ = ___ __ 

____ X ___ = ___ __ 

__ X 

____ X ___ = ___ __ 

____ X ___ = ___ __ 

Subtotal ______ __ 

Must Add Your 
Local Sales Tax ______ __ 

Total ______ __ 

PAYMENT 

Cheques should be made payable to your local Intel Sales Office (see inside back cover.) 

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your 
local Intel Sales Office for details. 

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned 
to your local Intel Sales Office. 



~860TM 

. 64=B~T 
MICROPROCESSOR 

HARDWARHE 
REFERENCE 

MANUAL 

1990 



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may 
appear in this document nor does it make a commitment to update the information contained herein. 

Intel retains the right to make changes to these specifications at any time, without notice. 

Contact your local sales office to obtain the latest specifications before placing your order. 

The following are trademarks of Intel Corporation and may only be used to identify Intel products: 

376, 386, 387, 486, 4-SITE, Above, ACE51 , ACE96, ACE186, ACE196, ACE960, 
BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK, Genius, i, t, 
i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, 12 1CE, iLBX, iMDDX, iMMX, 
Inboard, Insite, Intel, intel, Inte1386, intelBOS, Intel Certified, Intelevision, inteligent 
Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, 
iRMX, iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis, 
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTI MODULE, MultiSERVER, 
ONCE, Open NET, OTP, PR0750, PROMPT, Promware, QUEST, QueX, Quick-Erase, 
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, 
SugarCube, TooITALK, UPI, Visual Edge, VLSiCEL, and ZapCode, and the combina­
tion of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix. 

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk 
Data Sciences Corporation. 

MULTIBUS is a patented Intel bus. 

CHMOS and HMOS are patented processes of Intel Corp. 

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products. 

Additional copies of this manual or other Intel literature may be obtained from: 

Intel Corporation 
Literature Sales 
P.O. Box 7641 
Mt. Prospect, IL 60056-7641 

©INTEL CORPORATION 1989 CG·101789 



PREFACE 

The Intel i860'M 64-bit microprocessor is a general purpose microprocessor integrating 
an integer RISC core unit, a floating-point unit, a paged memory management unit, 
instruction and data caches, and 3-D graphics software assist logic in a single VLSI 
component. The versatile 64-bit design of the i860 microprocessor balances performance 
across integer, floating point, and graphics processing capability. Its parallel architecture 
achieves high throughput with RISC design techniques, pipe lined processing units, wide 
data paths, large on-chip caches and fast one micron CHMOS* IV silicon technology. 

This manual provides the basic information required to implement an i860 microproces­
sor based system. It explains the external hardware details of the processor. 

Although the main users of this manual are hardware design engineers, it contains basic 
hardware information which is of value to software engineers and programmers. These 
readers should reference the first three chapters only. 

RELATED PUBLICATIONS 

In this manual, the i860 microprocessor is presented from a hardware perspective. Infor­
mation on the software architecture, instruction set and programming can be found in 
these related Intel publications: 

o i860™ 64-Bit Microprocessor Programmers Reference Manual, order number 240329 

Information on the device specification for the i860 microprocessor is available in the 
i860™ 64-Bit Microprocessor Data Sheet, order number 240296. Always refer to the most 
recent version of the device specification. 

ORGANIZATION OF THE MANUAL 

o Chapter 1, "Introduction to i860'M 64-Bit Microprocessor", provides an overview of 
the features of the i860 microprocessor and the advantages to system designers. It 
also provides the insight to i860 microprocessor applications. 

o Chapter 2, "Internal Architecture", describes the internal architecture of the i860 
microprocessor. 

• Chapter 3, "Local Bus Interface", discusses the i860 microprocessor local bus inter­
face. This includes the signal descriptions, bus operation and local bus interface 
guidelines. 

• Chapter 4, "Memory Interfacing", discusses techniques for designing memory sub­
systems for the i860 microprocessor. The schematics are given in Appendix C. 

o Chapter 5, "I/O Interfacing", discusses techniques for connecting 1(0 devices to an 
i860 microprocessor system. 

• Chapter 6, "Graphics Subsystem Example", discusses a design example for imple­
menting an i860 microprocessor based graphics subsystem. 

• Chapter 7, "MULTIBUS® II and the i860™ Microprocessor", provides a design 
example for the MULTIBUS II board built around the i860 microprocessor. 

iii 



PREFACE 

• Chapter 8, "Physical Design and Debugging", contains recommendations for con­
structing and debugging the i860 microprocessor based systems. 

• Chapter 9, "Testability", covers the testability issues on the i860 microprocessor. 

• Appendix A provides tested schematics of an i860 microprocessor Graphics Frame 
Buffer Board and is to used in conjunction with Chapter 6. 

• Appendix B contains an untested example for the i860 microprocessor based 
MULTIBUS II design that is explained in Chapter 7. 

• Appendix C provides the tested schematics and PLD codes for i860 microprocessor 
memory design. 

Signal mnemonics convey whether a signal state is active high or active low. An active­
low signal mnemonic is suffixed with a pound character (#); an active-high signal 
mnemonic does not have this suffix. 

iv 



TABLE OF CONTENTS 

CHAPTER 1 Page 
INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR 

1.1 PROCESSOR CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
1.2 PROCESSOR OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
1.2.1 Pipelining and Parallelism ......................................... 1-3 
1.2.2 Instruction Set Architecture. .. . . . . . . . . . . .. . . . . . . . . . . . . . .. . .. . . . . . . . 1-4 
1.2.3 Registers ........................................................ 1-4 
1.2.4 Address Space.. . . . . . . . . . . .. . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . .. . . .. . 1-4 
1.2.5 Floating-Point Operations. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
1.2.6 Graphics Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
1.2.7 Caches... . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . .. . . .. . 1-5 
1.2.8 Paging Unit .............. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.2.9 Debugging Support. . . . . . . . .. . . . .. . . . . ... . . .. . . . . . . . . . . . .. .. . . . . . . 1-6 
1.2.10 External Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.2.10.1 TWO-LEVEL BUS PIPELINING OF LOCAL BUS.................... 1-6 
1.2.10.2 BUS ARBITRATION SUPPORT................................... 1-6 
1.2.10.3 DRAM INTERFACE SUPPORT 

(PAGE-MODE AND STATIC COLUMN)......................... 1-7 
1.2.10.4 CACHE CONTROL............................................. 1-7 
1.2.10.5 LOCKED MEMORY CyCLES.................................... 1-7 
1.2.1 0.6 EIGHT-BIT BUS ACCESS FOR BOOTSTRAPPING 

OPERATION (CS8) .......................................... 1-8 
1.2.10.7 BOUNDARY SCAN TO SIMPLIFY BOARD LEVEL TESTING OR 

BOOTUP CODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
1.2.11 Clock Requirements ....................................... '..... 1-8 

. 1.2.12 i860 ™ Microprocessor Packaging and Power Requirements . . . . . . . . . . 1-8 
1.3 SYSTEM CONFIGURATION ......................................... 1-8 
1.3.1 Private and Shared Memory Configuration... .. ........ .... .. . .... ... 1-9 
1.4 APPLICATION OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 

CHAPTER 2 
INTERNAL ARCHITECTURE 

2.1 CORE EXECUTION UNIT........................................... 2-1 
2.1.1 Core Unit Registers ... ;.......................................... 2-1 
2.1.2 Instruction Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 
2.1.2.1 RISC OPTIMIZATIONS .......................................... 2-3 
2.1.2.2 DUAL-INSTRUCTION MODE ..................................... 2-4 
2.2 FLOATING-POINT UNIT ............................................ 2-4 
2.2.1 Floating-Point Register Bank ...................................... 2-6 
2.2.2 Pipelined and Scalar Operations ................................... 2-6 
2.2.3 Floating-Point Adder Unit ......................................... 2-8 
2.2.4 Floating-Point Multiplier Unit ....................................... 2-8 
2.2.5 Dual Operation Feature ........................................... 2-8 

v 



TABLE OF CONTENTS 

2.2.6 Floating-Point Computation Throughput ............................ 2-9 
2.3 PAGING UNIT ..................................................... 2-10 
2.3.1 Paging Algorithm ................................................ 2-11 
2.4 ON-CHIP CACHES AND BUS CONTROL............................. 2-13 
2.4.1 Instruction Cache Unit ............................................ 2-13 
2.4.2 Data Cache Unit ................................................. 2-14 
2.4.2.1 WRITE OPERATIONS AND THE DATA CACHE..................... 2-14 
2.4.3 Bypassing Instruction and Data Caches ............................ 2-15 
2.4.4 Flushing Instruction Cache, Data Cache, and TLB ................... 2-15 
2.4.5 Bus and Cache Control Unit ...................................... 2-15 
2.4.6 Write Buffers ....... :............................................ 2-16 
2.5 GRAPHICS UNIT .................................................. 2-16 

CHAPTER 3 
LOCAL BUS INTERFACE 

3.1 i860™ MICROPROCESSOR EXTERNAL INTERFACE 
AND BUS SIGNALS .............................................. 3-1 

3.1.1 i860 ™ Microprocessor Buses ...................................... 3-1 
3.1.2 i860 ™ Microprocessor Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 
3.1.3 i860™ Microprocessor Input Signals ................................ 3-2 
3.1.4 Power and Ground Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
3.2 BUS CHARACTERISTICS ........................................... 3-4 
3.3 BUS TRANSFER OPERATIONS ..................................... 3-5 
3.3.1 64-bit Bus and Byte Alignment of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
3.3.1.1 MEMORY ADDRESSABILITY AND ALIGNMENT REQUiREMENTS..... 3-5 
3.3.1.2 DATA ALIGNMENT DURING READ OPERATIONS................... 3-5 
3.3.1.3 DATA ALIGNMENT DURING WRITE OPERATIONS.................. 3-6 
3.3.1.4 LITTLE AND BIG ENDIAN MODES AND BUS OPERATION. . . . . . . . . . . 3-6 
3.3.1.5 ENDIAN MODE FOR CODE ACCESSES........................... 3-10 
3.3.1.6 SYSTEM OPERATION AND ENDIAN MODE........................ 3-10 
3.3.2 Basic Bus Operation. . . . . . . . . . . .. . . . . . . . . . . . . . . .. .. . . . .. . . . . . .. . . . 3-10 
3.3.3 Nonpipelined Bus Operations. . . . . . . .. .. . . . .. . . . .. .. . . . .. . . . . . .. . . . 3-10 
3.3.3.1 NONPIPELINED READ OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 
3.3.3.2 NONPIPELINED WRITE CYCLES.. .................. .............. 3-11 
3.3.3.3 WRITE CYCLES FOLLOWING READ CyCLES...................... 3-13 
3.3.4 Pipelined Operations. . . . . .. . . . . . . . . . . . . . . .. .. . . .. . . . . .. .. .. .. .. . . . 3-14 
3.3.4.1 PIPELINING AND INTERLEAVED MEMORY BANKS................. 3-15 
3.3.4.2 ORDERING OF DATA DURING PIPELINED OPERATIONS. . . . . . . . . . . 3-16 
3.3.4.3 BUS STATE MACHINE FOR PIPELINING. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 
3.3.4.4 PIPELINED READ AND WRITE CyCLES............ ..... .......... 3-18 
3.3.5 8-Bit Bus Transfers for Bootstrapping (CS8 Mode) ................... 3-19 
3.4 BUS CONTROL OPERATIONS....................................... 3-20 
3.4.1 Page Mode, Static Column DRAMs and Next Near Operation. . . . . . . . . . 3-20 
3.4.2 Bus Hold, Hold Acknowledge, Bus Request ........................ 3-21 
3.4.3 Bus Lock ........................................................ 3-22 

vi 



TABLE OF CONTENTS 

3.4.3.1 SUPERVISOR-MODE ACTIVATION OF LOCK# . . . . . . . . . . . . . . . . . . . . . 3-24 
3.4.3.2 USER-MODE ACTIVATION OF LOCK# ............................ 3-24 
3.4.3.3 BUS LOCK DURING PAGE TABLE UPDATE........................ 3-25 
3.5 CACHE CONTROL OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 
3.6 TRAPS AND INTERRUPTS .......................................... 3-26 
3.7 TEST SUPPORT FUNCTIONS....................................... 3-27 
3.7.1 Normal Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 
3.7.2 Serial Mode Operation ............................................ 3-29 
3.8 RESET AND CLOCK CIRCUIT ........... ,. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30 

CHAPTER 4 
MEMORY INTERFACING 

4.1 INTRODUCTION ................................................... 4-1 
4.2 CPU FEATURES ................................................... 4-1 
4.2.1 The KEN# Input ................................................. 4-1 
4.2.2 Bus Pipelining ........................................... :....... 4~2 
4.2.3 The Next Near Pin ............................................... 4-3 
4.2.4 Write Data Function .............................................. 4-4 
4.3 DRAM SUBSYSTEM OVERVIEW .................................... 4-5 
4.3.1 Address Path Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 
4.3.2 Data Path Logic .................................................. 4-6 
4.3.3 Parity Logic .... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 
4.3.4 Control Logic .................................................... 4-7 
4.4 DRAM SUBSYSTEM FUNCTION ................................... : 4-9 
4.4.1 Signal Description ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 
4.4.1.1 PROCESSOR INTERFACE .. :.................................... 4-9 
4.4.1.2 DATA PATH LOGIC CONTROL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 
4.4.1.3 ADDRESS PATH LOGIC CONTROL............................... 4-10 
4.4.1.4 CONTROLLER SIGNALS ........................................ 4-10 
4.4.2 Basic Read Cycle ................................................ 4-11 
4.4.3 Pipelined Read Cycles .................. . . . . . . . . . . . . . . . . . . . . . . . . . 4-12 
4.4.4 Basic Write Cycle................................................. 4-14 
4.4.4.1 CONSECUTIVE WRITE CYCLES ........ ~ . . . . . . . . . . . . . . . . . . . . . . . . 4-15 
4.4.5 Consecutive Bus Cycles ........ : . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 4-15 
4.4.5.1 WRITE FOLLOWED BY READ CyCLES............................ 4-16 
4.4.5.2 READ CYCLES FOLLOWED BY WRITE CyCLES................... 4-18 
4.4.6 Page Miss Cycles ................................................ 4-19 
4.4.7 Refresh Cycles .................................................. 4-20 
4.5 PARITY CIRCUIT ..................................... ;............ 4-21 
4.5.1 Dedicated Signals ............................. ~ . . . . . . . . . . . . . . . . . . 4-21 
4.5.2 Parity Functio'n ................................. '. . . . . . . . . . . . . . . . . 4-21 

vii 



TABLE OF CONTENTS 

CHAPTER 5 
I/O INTERFACING 

5.1 OVERVIEW .. "..................................................... 5-1 
5.1.1 i860 ™ Microprocessor I/O Subsystem .............................. 5-1 
5.2 GENERATING I/O CONTROL SIGNALS .............................. 5-3 
5.2.1 I/O Control Logic ................................................ 5-3 
5.2.2 Address Decode and Chip Select .................................. 5-4 
5.2.3 10RD#/IOWR# ............•..................................... 5-5 
5.2.4 READY# ........................................................ 5-5 
5.2.5 Recovery and Bus Contention ..................................... 5-5 
5.3 I/O CYCLES ...................................................... 5-6 
5.3.1 Read Cycle Timing ............................................... 5-6 
5.3.2 Write Cycle Timing ............................................... 5-8 
5.4 DESIGN EXAMPLES ............................................... 5-9 
5.4.1 82510 Interface .................................................. 5-9 
5.4.2 Eprom Interface .................................... . . . . . . . . . . . . . 5-12 
5.4.2.1 DOUBLE COpy LOAD........................................... 5-16 
5.4.2.2 EPROM TIMINGS............................................... 5-17 
5.5 DMA INTERFACE RECOMMENDATIONS ............................ 5-18 

CHAPTER 6 
GRAPHICS SUBSYSTEM EXAMPLE 

6.1 INTRODUCTION ........... '........................................ 6-1 
6.2 GRAPHICS AND THE i860™ MiCROPROCESSOR..................... 6-1 
6.2.1 Processor Bus Bandwidth ......................................... 6-2 
6.3 3-D GRAPHICS EXAMPLE .......................................... 6-2 
6.3.1 Features ........................................................ 6-2 
6.3.2 Testing .......................................................... 6-2 
6.4 SYSTEM OVERVIEW ............................................... 6-3 
6.4.1 Expansion Bus Interface .......................................... 6-3 
6.4.2 Data Transceiver/Latch Control .................................... 6-4 
6.4.3 Address Transceiver/Latch ........................................ 6-4 
6.4.4 VRAM Control ................................................... 6-4 
6.4.5 Serial Row/Column Address Generation ............................ 6-4 
6.4.6 Double Buffering ................................................. 6-4 
6.4.7 Expansion Interrupt/Buffer Switch .................................. 6-4 
6.4.8 CRT Timing Generation .... ,...................................... 6-5 
6.4.9 Pixel Serializer ................................................... 6-5 
6.4.10 Video DACs .................................................... 6-5 
6.5 OPERATION ...................................................... 6-5 
6.5.1 VRAM Control ................................................... 6-5 
6.5.1.1 SPEED MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 
6.5.1.2 PROCESSOR-INITIATED CYCLES ................................ 6-5 
6.5.1.3 REFRESH/RAM-TO-SAM TRANSFER CYCLES ..................... 6-7 
6.5.2 Expansion Bus Interface .......................................... 6-9 

viii 



TABLE OF CONTENTS 

6.5.2.1 EXPANSION SELECT ........................................... 6-9 
6.5.2.2 DATA TRANSCEIVER/LATCH SHARING........................... 6-9 
6.5.3 CRT Timing Logic ................................................ 6-10 
6.5.4 Schematics Description ........................................... 6-11 

CHAPTER 7 
MULTIBUS® II AND i860™ MICROPROCESSOR 

7.1 i860™ MICROPROCESSOR CPU BOARD ............................ 7-1 
7.2 MULTIBUS® II SYSTEM BUS STANDARD ............................ 7-2 
7.2.1 Parallel System Bus (PSB) ........................ -...... '" . .. .. . . 7-2 
7.2.2 Message Passing Coprocessor .................................... 7-3 
7.2.2.1 MPC INTERFACE TO PSB ....................................... 7-3 
7.2.2.2 MPC LOCAL BUS INTERFACE .................. -................. 7-6 
7:2.2.3 MPC DMA INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 
7.3 i860™ MICROPROCESSOR BUS INTERFACE ........................ 7-6 
7.4 DRAM SYSTEM ................................................... 7-7 
7.5 LOCAL I/O SYSTEM ............................................... 7-7 
7.5.1 82380 Integrated Systems Peripheral ........... . . . . . . . . . . .. . . . . . . . 7-7 
7.5.2 iSBX™ Bus Connector ..................... ;...................... 7-8 
7.6 DMA CONTROL AND THE SRAM MESSAGE SYSTEM ................. 7-8 
7.6.1 DMA Channels .......................................... . . . . . . . . 7-8 
7.6.2 SRAM Message Area............................................. 7-9 
7.7 EXPANSION CONNECTOR ......................................... 7-11 
7.7.1 Memory Expansion............................................... 7-11 
7.7.2 Intelligent Expansion ............................................. 7-12 

CHAPTER 8 
PHYSICAL DESIGN AND DEBUGGING 

8.1 GENERAL DESIGN GUiDELINES.................................... 8-1 
8.2 POWER DISSIPATION AND DiSTRIBUTION ................. _.......... 8-1 
8.2.1 Power and Ground Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 
8.3 DECOUPLING CAPACITORS ......................................... 8-4 
8.4 HIGH FREQUENCY DESIGN CONSIDERATIONS ..................... ,8-7 
8.4.1 Transmission Line Effects ......................................... 8-8 
8.4.1.1 TRANSMISSION LINE TYPES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 
8.4.1.1.1 Micro Strip Lines ...... .'.. .. .. . .. .. .. .. .. .. . .. .. . .. .. .. .. . . .. .. 8-10 
8.4.1.1.2 Strip Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
8.4.2 Impedance Mismatch .................•........................... 8-11 
8.4.2.1 IMPEDANCE MATCHING......................................... 8-14 
8.4.2.1.1 Need for Termination. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 
8.4.2.1.2 Series Termination ............................................ 8-15 
8.4.2.1.3 Parallel Terminated Lines ...................................... 8-15 
8.4.2.1.4 Thevenin's Equivalent Termination ..........•................... 8-16 
8.4.2.1.5 AC Termination ............................................... 8-17 
8.4.2.1.6 Active Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18 

ix 



TABLE OF CONTENTS 

8.4.2.1.7 Impedance Matching Example.................................. 8-19 
8.4.2.2 DAISY CHAINING ............................................... 8-21 
8.4.2.3 90 DEGREE ANGLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 
8.4.2.4 VIAS (FEED-THROUGH CONNECTIONS) " ....... ................. 8-21 
8.4.3 Interference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 
8.4.3.1 ELECTROMAGNETIC INTERFERENCE (CROSSTALK)............... 8-22 
8.4.3.2 MINIMIZING CROSSTALK. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 
8.4.3.3 ELECTROSTATIC INTERFERENCE................................ 8-25 
8.4.4 Propagation Delay ................................................ 8-25 
8.5 LATCH-UP.............. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26 
8.6 CLOCK CONSIDERATIONS ......................................... 8-26 
8.6.1 Requirements .................................................... 8-26 
8.6.2 Routing.......................................................... 8-27 
8.7 Thermal Characteristics ........... , ... , . .. .. . . . . . .. . . . .. . . . . ... .. . . . 8-28 
8.8 DERATING CURVE AND ITS EFFECTS............................... 8-30 
8.9 BUILDING AND DEBUGGING THE i860™ MICROPROCESSOR-BASED 

SYSTEM ....................................................... 8-31 
8.9.1 Debugging Features of the i860™ Microprocessor. . . . . . . . . . . . . . . . . . . . 8-33 
8.9.2 Certain Gotchas when Debugging with i860™ Microprocessor......... 8-33 
8.9.3 Debugging....................................................... 8-34 
8.9.4 Simple Diagnostic Programs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-34 
8.9.5 Other Simple Diagnostic Software .................................. 8-35 

CHAPTER 9 
TESTABILITY 

9.1 INTRODUCTION ................................................... 9-1 
9.2 BOUNDARY SCAN MODE.......................................... 9-1 
9.2.1 Shift Mode Operation ............................................. 9-3 
9.2.2 Normal Mode .................................................... 9-5 
9.2.3 A Test Sequence Example ........................................ 9-6 
9.3 USING THE TESTABILITY FEATURES IN A SYSTEM ..........•....... 9-7 
9.3.1 Component-level Testing ..............................•.......... 9-7 
9.3.2 System-level Testing ............................................. 9-7 

APPENDIX A 
GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

APPENDIX B 
MULTIBUS® II SCHEMATICS 

APPENDIX C 
MEMORY INTERFACE SCHEMATICS AND PLD CODE 

x 



TABLE OF CONTENTS 

Figures 

Figure Title Page 
2-1 Block Diagram of i860™ Microprocessor .... .... . . .. ... . .. . . .. . . . 2-2 
2-2 Dual-Instruction Mode .......................................... 2-5 
2-3 Pipelined Instruction Execution .................................. 2-7 
2-4 Dual-operation Data Paths ...................................... 2-10 
2-5 Paging Algorithm Implementation ................................ 2-12 
3-1 Byte Enable Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 
3-2 Little and Big Endian Data Access ............................... 3-9 
3-3 Nonpipelined Bus State Machine ................................ 3-11 
3-4 Fastest Read Cycles ........................................... 3-12 
3~5 Fastest Write Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 
3-6 Fastest Read/Write Cycles ...................................... 3-14 
3-7 Memory Operation Pipelining .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 
3-8 Pipelined Bus State Machine .................................... 3-17 
3-9 Pipelined Read Followed by Pipelined Write .............. . . . . . . . . 3-18 
3-10 Pipelined Write Followed by Pipelined Read .............. . . . . . . . . 3-20 
3-11 CS8 and RESET Activity ........................................ 3-21 
3-12 Pipelined Bus State Machine Including Hold State ................. 3-23 
3-13 HOLD, HLDA, and BREQ ....................................... 3-24 
3-14 Locked Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26 
3-15 Boundary Scan Chain .......................................... 3-29 
3-16 Circuit for Clock, RESET and CS8 Generation . . . . . . . . . . . . . . . . . . . . 3-31 
4-1 KEN# Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 
4-2 Bus Pipelining .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 
4-3 Read - Write Timing ............................................ 4-4 
4-4 Maximum Example Configuration ................................ 4-6 
4-5 Address Map .................................................. 4-8 
4-6 Basic Read Cycles . :... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 
4-7 Pipelined Read Cycles .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 4-13 
4-8 Basic Write Cycles ............................................. 4-15 
4-9 Consecutive Write Cycles ....................................... 4-16 
4-10 Write Followed by Read Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
4-11 Pipelined Read Followed by Write Cycles . .... . . .. . . ..... .. .. ... . 4-18 
4-12 Page Miss Cycles .............................................. 4-20 
4-13 Parity Block Diagram ........................................... 4-22 
5-1 i860™ Microprocessor System ....... . . .. ... ... .. ..... . . .. .. . .. . 5-2 
5-2 I/O Control Logic .............................................. 5-4 
5-3 Read Cycle Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 
5-4 I/O Write Timings ................................. . . . . . . . . . . . . . 5-7 
5-5 i860™ Processor Interface to 82510 .............................. 5-10 
5-6 i860™ EPROM Interface ........................................ 5-13 
5-7 Circuit for Booting from EPROM ................................. 5-14 

xi 



6-1 

6-2 

6~3 

6-4 
6-5 
6-6 
6-7 
6-8 
7-1 

7-2 
7-3 
7-4 
7-5 
7-6 
7-7 
8-1 
8-2 
8-3 
8-4 
8-5 
8-6 
8-7 
8-8 
8-9 
8-10 
8-11 
8-12 
8-13 
8-14 
8-15 
8-16 
8-17 
8-18 
8-19 
8-20 
8-21 
8-22 
8-23 
8-24 
8-25 
8-26 
8-27 
8-28 

TABLE OF CONTENTS 

Block Diagram of the i860 T
" Microprocessor Based Graphics 

Frame Buffer Board ........................................ . 

Read/Write/Read Operation (1-Wait-State-Write Mode) ............ . 
Write/Read/Write Operations (1-Wait-State-Write Mode) ........... . 
Refresh/RAM-to-SAM Transfers ................................. . 
Expansion Space ............................................. . 
Blank and Sync Signals ....................................... . 
Serial Data Clocking .......................................... . 
Blank Signals ................................................ . 
System Block Diagram of i860 T

" Microprocessor Based 
MULTIBUS® II Board ....................................... . 

PSB Bus Cycle Timing ........................................ . 
MPC Signal Groups ........................................... . 
Fly-by Transfer with SRAM Read and I/O Write ................... . 
SRAM Message Area using 32-bit Bus .......................... . 
SRAM Message Area using 64-bit Bus .......................... . 
DMA System Arbitration and Control ............................ . 
Reduction in Impedance ....................................... . 
Typical Power and Ground Trace Layout for Double-layer Boards .. . 
Orthogonal Arrangement ...................................... . 
Circuit without Decoupling ..................................... . 
Decoupling Chip Capacitors ................................... . 
Decoupling Leaded Capacitors ................................. . 
Micro Strip Lines ............................................. . 
Strip Lines ................................................... . 
Overshoot and Undershoot Effects ............................. . 
Loaded Transmission Line ..................................... . 
Series Termination ............................................ . 
Parallel Termination ........................................... . 
Thevenin's Equivalent Circuit .................................. . 
A.C. Termination .............................................. . 
Active Termination ............................................ . 
Impedance Mismatch Example ................................. . 
Use of Series Termination to Avoid Impedance Mismatch ......... . 
Daisy Chaining ............................................... . 
Avoiding 90 Degree Angles .................................... . 
Typical Layout ................................................ . 
Closed Loop Signal Paths are Undesirable ...................... . 
Typical Clock Circuit .......................................... . 
Clock Timings ................................................ . 
Clock Routing ................................................ . 
Star Connection .............................................. . 
Typical Heat Sinks ............................................ . 
Derating Curves for the i860 T" Processor ........................ . 
Typical i860 T

" Processor-based System ......................... . 

xii 

6-3 
6-6 
6-7 
6-8 
6-9 

6-10 
6-11 
6-12 

7-1 
7-4 
7-5 
7-9 

7-10 
7-11 
7-12 

8-3 
8-5 
8-6 
8-7 
8-8 
8-9 

8-10 
8-11 
8-12 
8-12 
8-15 
8-16 
8-17 
8-18 
8-19 
8-20 
8-20 
8-21 
8-22 
8-23 
8-24 
8-26 
8-27 
8-28 
8-28 
8-30 
8-31 
8-32 



TABLE OF CONTENTS 

8-29 Simple Diagnostic Program ..................................... 8-34 
8-30 Read/Write Diagnostic Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-35 
9-1 Entering and Exiting the Boundary Scan Mode . . . . . . . . . . . . . . . . . . . 9-2 
9-2 Order of Boundary Scan Chain .................................. 9-4 
9-3 The Shift Mode of the Boundary Scan Mode ...................... 9-5 
9-4 The Normal Mode of the Boundary Scan Mode ............ . . . . . . . 9-6 
9-5 A Typical System with Diagnostics Capabilities . . . . . . . . . . . . . . . . . . . . 9-7 
9-6 A Typical Timing for Serial Scan Mode ........................... 9-9 

Table 
2-1 
3-1 
3-2 
3-3 
3-4 
3-5 
5-1 
8-1 
9-1 
9-2 

Tables 

Title 
Cacheability Based on CD, WT and KEN# ...................... . 
Pin Summary ................................................. . 
Types of Traps ............................................... . 
Test Mode Selection .......................................... . 
Test Mode Latches ........................................... . 
Output Pin Status During Reset ................................ . 
Valid Addresses for SPACED copying ........................... . 
Comparison of Various Termination Techniques .................. . 
Test Mode Selection .......................................... . 
Test Mode Latches ........................................... . 

xiii 

Page 
2-15 
3-3 

3-27 
3-28 
3-28 
3-30 
5-17 
8-19 

9-3 
9-4 



CUSTOMER SUPPORT 

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE 

Customer Support is Intel's complete support service that provides Intel customers with hardware support, 
software support, customer training, consulting services and network management services. For detailed infor­
mation contact your local sales offices. 

After a customer purchases any system hardware or software product, service and support become major 
factors in determining whether that product will continue to meet a customer's expectations. Such support 
requires an international support organization and a breadth of programs to meet a variety of customer needs. 
As you might expect, IntePs customer support is quite extensive. It can start with assistance during your 
development effort to network management. 100 Intel sales and service offices are located worldwide-in the 
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is 
within close reach. 

HARDWARE SUPPORT SERVICES 

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity 
from the start and keep you running at maximum efficiency. Support for system or board level products can be 
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or 
mail-in factory service. 

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in 
your development lab or provide service on your product to your end-user/customer. 

SOFTWARE SUPPORT SERVICES 

Software products are supported by our Technical Information Service (TIPS) that has a special toll free 
number to provide you with direct, ready information on known, documented problems and deficiencies, as 
well as work-arounds, patches and other solutions. 

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshootmg guides and; 
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in 
environments which represent product groupings (e.g., iRMX® environment). 

CONSULTING SERVICES 

Intel provides field system engineering consulting services for any phase of your development or application 
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product, 
developing an application, personalizing training and customizing an Intel product to providing technical and 
management consulting. Systems Engineers are well versed in technical areas such as microcommunications, 
real-time applications, embedded microcontrollers, and network services. You know your application needs; 
we know our products. Working together we can help you get a successful product to market in the least 
possible time. 

CUSTOMER TRAINING 

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of 
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we 
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course 
categories include: architecture and assembly language, programming and operating systems, BITBUS '" and 
LAN applications. 

NElWORK MANAGEMENT SERVICES 

Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
ment via increased productivity and reduced costs can be very substantial. 

Intel offers complete network support, from definition of your network's physical and functional design, to 
implementation, installation and maintenance. Whether installing your first network or adding to an existing 
one, Intel's Networking Specialists can optimize network performance for you. 

CGfCUSTSUPPfl00389 

xiv 



Introduction to the i860 ™ 1 
64-Bit Microprocessor 





CHAPTER 1 
INTRODUCTION TO THE i860™ 

64-BIT MICROPROCESSOR 

This chapter provides an overview of the i860'M microprocessor, its characteristics, pos­
sible system configurations and applications. 

The i860 microprocessor uses pipelining, parallelism and reduced instruction set com­
puter (RISC) design techniques for high performance. With over one million transistors, 
it integrates an integer unit, a floating-point unit, a graphics unit, a memory management 
unit, and separate data and instruction caches. 

The i860 microprocessor executes up to two instructions in parallel and makes extensive 
use of pipelining. High integration and wide data paths eliminate bottlenecks in fetching 
instructions or data from its on-chip caches. 

Designing with the i860 CPU is like designing with any other microprocessor. Its high­
performance can be easily delivered using standard interface logic, DRAMs, EPROMs, 
and I/O devices. An existing 32-bit microprocessor-based system can be easily upgraded 
with the 64-bit i860 CPU by widening the memory bus. 

1.1 PROCESSOR CHARACTERISTICS 

The i860 microprocessor's 1 million transistors offer a high level of integration. A single 
board design can be completed with four address latches, eight data tranceivers, a clock 
generator circuit, one EPROM for bootstrapping, a 64-bit wide memory and a few 
PLDs. 

The i860 microprocessor contains the following features: 

• Integer processing unit 

• Floating-point and graphics unit 

• Memory management unit 

• 8 Kbyte data cache with 128-bit internal data path 

• 4 Kbyte instruction cache with 64-bit internal data path 

The i860 microprocessor uses RISC design techniques such as: 

• Single clock instruction execution 

• Load and store architecture 

• 32 general purpose 32-bit registers 

• Delayed branching 

1-1 



INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR 

• Register scoreboarding 

• Register bypassing 

• Single-cycle loop instruction 

• Branch taken/not-taken instruction fetching optimization 

The on-chip graphics and floating-point units of the i860 microprocessor support 
simulation and 3-D displays. The integer instructions can be used to feed data to the 
graphics and floating-point units. These units are pipelined to produce up to two 
floating-point results per clock. Some of the features related to the graphics and 
floating-point unit are: 

• Separate adder and multiplier units 

• Pipe lined/parallel floating-point hardware 

• Graphics instructions and hardware optimized for 3-D 

• 8-, 16- or 32-bit color or black and white pixel data types 

• Single- and double-precision IEEE floating-point standard 

• Parallel integer and floating-point operation 

The i860 microprocessor's high-performance design uses wide buses and pipelined logic 
to sustain many parallel operations. The level of performance of the i860 microprocessor 
is difficult to achieve in multichip systems due to the need for many wide buses. The 
high-performance design applies to the external bus as well, maximizing the performance 
that can be obtained from DRAM memory. Some of the performance related features 
are: 

• 64-bit internal and external data bus 

• Three operations per clock 

• Dual-instruction mode 

• 33/40 MHz operating frequency 

• 80 million floating-point operations per second peak in single-precision 

• 60 million floating-point operations per second peak in double-precision 

• 320 Mbyte/sec instruction cache bandwidth at 40 MHz 

• 640 Mbyte/sec data cache bandwidth at 40 MHz 

• 160 Mbyte/sec external bus bandwidth at 40 MHz 

• Fast data movement with 128-bit load and store instructions 

• Three pipe lined cycles on the external bus 

1-2 



INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR 

The i860 microprocessor can support virtual memory and multiprocessor systems. All 
memory references are fully restartable in case of virtual memory faults. Full support is 
provided for synchronizing operation between multiple CPUs. Features related to virtual 
memory and multiprocessor support are: 

• 32-bit (4 gigabyte) address space with on-chip paging unit 

• Support for demand paging 

• 4 Kbyte page size 

• On-chip 64-entry translation lookaside buffer (TLB) 

• User level/supervisor level protection 

• Bus locking across multiple instructions 

• Cache control 

• Trap mechanism for interrupts and faults 

• Multiprocessor operating systems 

Use of the i860 microprocessor design simplifies syster.l design. It has a conventional 
microprocessor bus with a standard READY# signal used to allow accesses to slow 
memories. Software development is assisted by specialized hardware debugging capabil­
ities. Some of the additional implementation features to facilitate hardware design and 
software development are: 

• 1 x clock 
.. Optimizations for use of page mode and static mode dynamic RAMs 

.. Pin boundary scanning for component or board testing 

• CHMOS* IV I-micron technology, TIL compatible 

• 3 watt power dissipation at 40 MHz 

• Single 8-bit EPROM can boot system 

• On-chip debugging support 

1.2 PROCESSOR OVERVIEW 

This section provides a quick overview of the i860 microprocessor. The processor archi­
tecture will be discussed in greater detail in Chapter 2, and the external interface in 
Chapter 3. 

1.2.1 Pipelining and Parallelism 

Pipe lining is a technique that divides tasks into a series of smaller sub tasks which can be 
performed quickly and concurrently with one another. By means of pipelining, several 
data items can be acted on simultaneously. Although several clock cycles are needed to 
complete an operation, a new result is produced each clock. Pipelining is used through­
out the i860 microprocessor to achieve maximum performance. Simple scalar operations 
can be used to hide details of the pipelining. All scalar floating-point and integer oper­
ations are fully interlocked. 

1·3 



INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR 

Parallelism allows two or more operations to execute simultaneously. The i860 
microprocessor supports parallelism, allowing multiplication and addition to execute 
simultaneously within the floating-point unit. Parallelism also allows the integer and 
floating-point units to execute simultaneously. The i860 microprocessor can execute an 
integer instruction and two floating-point operations in the same clock to achieve three 
operations per clock cycle. 

1.2.2 Instruction Set Architecture 

The instruction set architecture can implement any portable operating system, language 
or application. The instruction set includes integer, floating-point, and graphics instruc­
tions. All future products of the i860 CPU line will support this architecture. 

The core unit executes the basic instruction set including arithmetic, logical, shift and 
program control instructions. The core unit, floating-point unit and graphics unit are all 
implemented using RISe principles. All instructions execute in only one clock cycle. 

The i860 microprocessor uses a load and store architecture. Only load and store instruc­
tions can access memory data. All other instructions use only registers to perform oper­
ations. Integer and floating-point instructions use two operand registers and a 
destination register for the result. 

The i860 microprocessor employs delayed branching techniques to avoid interruptions to 
the flow of data through pipelines. An optimized set of conditional branch and loop 
instructions minimizes pipeline breaks. Use of a branch-taken or branch-not-taken ver­
sion of the conditional branch instruction selects whether to pre-fetch the upcoming 
sequential instruction or the branch target address. 

1.2.3 Registers 

The i860 microprocessor provides 32 32-bit integer registers for the core unit and an­
other 32 32-bit floating-point registers that are used in the floating-point unit. and the 
graphics unit. The floating-point registers can also be used in pairs as double-precision 
registers. Quadword memory load instructions load four floating-point registers. Regis­
ter rO of the integer registers and fO and f1 of the floating-point registers return a zero 
value when read and are treated as a null destination when a value is stored into them. 

1.2.4 Address Space 

The i860 microprocessor can address up to four gigabytes of memory and memory­
mapped I/O locations. Programmers can access memory space as 8-, 16-, 32-, 64- and 
128-bit quantities. Operands of 8 and 16 bits are automatically aligned to the low order 
bits of a 32-bit register on a load. An improperly aligned data access causes a trap. 

1-4 



INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR 

1.2.5 Floating-Point Operations 

The floating-point unit supports the ANSI/lEEE 754-1985 Standard for Binary Floating­
point Arithmetic and supports both single- and double-precision operands. Traps detect 
all floating-point exceptions. Hardware implements all rounding modes in order to sup­
port the standard with minimal overhead. The floating-point unit provides a full comple­
ment of operations to permit efficient implementation of all low-level and high-level 
functions defined by the standard. 

The parallel floating-point adder unit and multiplication unit have been designed to 
efficiently perform matrix manipulation, series expansion and signal processing algo­
rithms. The integer unit along with the pipelined and parallel operation of the floating­
point unit can emulate the capability of vector processing instructions found in 
supercomputers, but with added flexibility. The scalar floating-point operations hide all 
details of the pipeline. 

The floating"point load instructions provide 32-, 64- and 128-bit operands for the 
floating-point unit while it operates in dual-instruction mode. Integer operations can be 
performed in parallel with all floating point operations. 

1.2.6 Graphics Support 

The graphics unit supports instructions for 3-0 color or black and white algorithms. 
Pixel formats of 8-, 16- or 32-bit are supported. The i860 microprocessor supports effi­
cient implementation of Phong and Gouraud shading operations. A Z-buffer check 
instruction is provided to detect the closest surface of a 3-0 image. Either 16- or 32-bit 
Z-buffer can be used. The 3-0 graphics unit uses much of the floating-point point 
hardware. 

1.2.7 Caches 

Two on-chip caches help to sustain the i860 microprocessor's high performance. The 
8 Kbyte data cache is a two-way set-associative memory with a 32-byte block size and a 
128-bit data path. It uses a write-back policy on memory write operations. This technique 
delays the external write operations needed to maintain consistency between the cache 
and external memory. With this approach, multiple write operations to the same loca­
tion, do not result in needless multiple bus operations. When write operations to exter­
nal memory are performed, two 128-bit wide write buffers are used which post the write 
operations and delay them until the memory subsystem is not in use. 

The 4 Kbyte instruction cache is also implemented as a two-way set associative memory. 
It provides a 64-bit wide internal datapath. The instruction cache is,read-only; writes to 
memory do not update the code cache. A separate flush instruction is available to inval­
idate the contents of code cache, if the need arises. 

External caches are supported via cache control pins, cache. control bits in page table 
entries, and a two clock bus .. Multiprocessing systems can be built using external caches 
and preventing shared data from being cached on-chip. 

1-5 



INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR 

Since the data and instruction caches map virtual addresses to data, the data and in­
struction caches can operate in parallel with the translation lookaside buffer (TLB). 
Data can be obtained in one clock cycle when there is a hit in the cache. 

1.2.8 Paging Unit 

The on-chip paging unit converts 32-bit virtual memory addresses to 32-bit physical ad­
dresses. Each page is 4 Kbytes in size. Supervisor and user level read and write memory 
protection is provided on a per page basis. Supervisor pages can be write-protected to 
perform copy-on-write operations for supervisor data. 

A translation lookaside buffer (TLB) acts as a 64-entry cache for the virtual memory 
tables. These tables map virtual page addresses to physical page addresses and provide 
protection rights. The TLB makes memory management more efficient by operating in 
parallel with the data and instruction caches. TLB cache misses and updates are handled 
automatically in hardware. 

1.2.9 Debugging Support 

The i860 microprocessor provides a debug hardware support trap which can be activated 
when reading and/or writing at an address stored in the data breakpoint register. The 
address ,can refer to data inside the caches or off-chip. 

1.2.10 External Interface 

This section outlines the functions provided by the i860 microprocessor's external inter­
face. These functions are detailed in Chapter 3. 

The external interface pin-out consists of a 29-bit address bus, an 8-bit byte enable 
control bus, a 64-bit data bus, 19 control signals and 48 power and ground pins. The 
external bus is timed relative to a clock. All outputs are valid before the end of a clock 
period. All inputs are synchronous to the clock. 

1.2.10.1 TWO-LEVEL BUS PIPELINING OF LOCAL BUS 

The i860 microprocessor permits up to two levels of pipelining in external memory 
operations, providing throughput beyond the cycle or access time of the components 
used. A two level configuration allows three operations to occur simultaneously and 
triples memory throughput. While the total cycle time is six clocks, 64 bits of data are 
transferred every two clocks. Pipelining permits a high-performance memory system 
while using low-cost DRAMs. Even with a single bank of DRAMs, pipelining allows 
overlapping of accesses to the same DRAM page. . 

1.2.10.2 BUS ARBITRATION SUPPORT 

The i860 microprocessor provides three signals to control bus and control line arbitra­
tion: the input line HOLD (bus hold request) and the output lines HLDA (hold ac­
knowledge) and BREQ (bus request). HOLD and HOLDA provide a handshake with 

1-6 



INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR 

other processors or an arbitration circuit to allow several processors to share the external 
buses. The processor can operate out of its internal cache for periods of time and uses 
the BREQ signal to indicate that it is waiting to use the external bus. 

1.2.10.3 DRAM INTERFACE SUPPORT (PAGE-MODE AND STATIC COLUMN) 

The i860 microprocessor provides support for page mode and static column DRAMs. 
These provide faster memory cycles when sequential reads or writes take place from the 
same row address in a DRAM component. This occurs often, because cache updates 
typically involve four 64-bit sequential read cycles and the write buffers often group 
together four sequential write cycles. 

The i860 microprocessor provides a next near signal (NENE#) to reduce the amount of 
external circuitry needed to support page mode and static column DRAMs. The signal is 
asserted when successive current cycles are in the same DRAM page. The size of the 
DRAM can be programmed. 

1.2.10.4 CACHE CONTROL 

The i860 microprocessor supports memory mapped I/O, external caches and multiple 
CPUs. All of these require correct use of caching. The cache enable input signal 
(KEN#) and page table bit output signal (PTB) control and monitor the data and in­
struction caches. The KEN# signal input is used by external logic to tell the processor 
when read data should not be cached. This prevents the processor from caching shared 
memory in a multiprocessor system and alleviates inconsistencies when two or more 
processors are accessing the same area of memory. All read operations from memory 
mapped I/O locations must deassert KEN #. 

The page table bit (PTB) output signal operates in two modes. In one mode it indicates 
whether the software has disabled updates to the data or code cache during the current 
read cycle. In its other mode of operation it indicates whether the software has disabled 
the use of an external cache for the current cycle. This kind of software control of 
caching is done on a page by page basis, only when paging operation is enabled. The 
software controls the use of the cache in order to guarantee the consistency of shared 
data in a multiprocessor environment. 

1.2.10.5 LOCKED MEMORY CYCLES 

The external LOCK# pin indicates that the i860 microprocessor is performing a set of 
memory cycles that should not be interrupted. The memory subsystem should be de­
signed so that the memory subsystem cannot be accessed by other processors while this 
pin is active. Multiple instructions can be executed while the lock signal is active. All 
semaphore operations, like compare and swap, can be implemented. 

1-7 



INTRODUCTION TO THE iS60™ 64-BIT MICROPROCESSOR 

1.2.10.6 EIGHT-BIT BUS ACCESS FOR BOOTSTRAPPING OPERATION (CS8) 

The INT/CS8 input pin can establish 8-bit code accesses upon hardware reset. This 
feature allows bootstrapping from an 8-bit external EPROM or ROM device and re­
duces the number of parts needed to complete a board. Only code accesses are affected 
in this mode. This mode only works immediately after activation of RESET. A control 
register allows software to disable this mode, but not to reenable it. 

The entire code and initial data of an application or bootup code can be placed into one 
EPROM and copied to DRAM for execution. 

1.2.10.7 BOUNDARY SCAN TO SIMPLIFY BOARD LEVEL TESTING OR 
BOOTUP CODE 

The i860 microprocessor allows all the input pins to be serially sampled. Likewise, the 
state of all the output pins can assume a value set by serial input data. This precludes the 
need for complex programs that are normally needed to manipulate pins and permits the 
testing of board logic circuitry with the i860 microprocessor installed. 

1.2.11 Clock Requirements 

The i860 microprocessor uses an external clock that runs at 33.3 or 40 MHz. This clock 
synchronizes the internal functional blocks of the processor, and synchronizes the exter­
nal signals. Most logic connected to the i860 CPU will also use this clock. 

1.2.12 i860™ Microprocessor Packaging and Power Requirements 

The i860 microprocessor is available in a 168-pin pin-grid array (PGA) package with 120 
signal pins and 48 power and ground pins. All the power and ground pins must be 
connected. Low-induct;mce bypass capacitors should be used around the i860 CPU to 
handle current surges when all the address and data lines change state simultaneously. 
Direct current power dissipation when running at 33 MHz is two watts at normal oper­
ation and three watts at peak operation. A heat sink may be used to keep the case 
temperature within specification depending on airflow. 

1.3 SYSTEM CONFIGURATION 

The i860 microprocessor is suitable as a central processor in any high performance 
microprocessor application. It will usually be configured as a stand-alone processor with 
private memory and a memory mapped I/O subsystem. The i860 uses standard DRAMs 
and an EPROM for operation. A small system consists of i860 CPU, clock generator, 4 
address latches, 8 data transceivers, 1 EPROM, 64-bit memory of DRAM/SRAM, sev­
eral PLDs and I/O devices. 

Other configurations employ the i860 microprocessor as a dedicated application proces­
sor. In this case, a communications bus will exist between the i860 and the host. This bus 
should allow quick data transfers. 

1-8 



INTRODUCTION TO THE i860™ 54-BIT MICROPROCESSOR 

The processor may also be used in a multiprocessor system. The i860 CPU may work in 
a loosely-coupled fashion, communicating through shared memory or through a link of 
independent memories. The LOCK# signal must be used to guarantee atomic multiple­
cycle memory accesses. 

The i860 microprocessor provides several functions for multiprocessing support. Bus 
granting logic (HOLD, HOLDA, BREQ) eases the interface with other processors and 
DMAs. The cache enable/disable logic is used to maintain consistency between internal 
caches and shared memory. The capability for locked external cycles allow implementa­
tion of semaphores for use with shared memory. 

1.3.1 Private and Shared Memory Configuration 

Peak performance for a multiprocessor i860 system requires minimal contention for 
the use of memory. Typically, this is achieved by providing each i860 microprocessor 
with cache memory, its own private memory, memory that can be shared, or some 
combination. 

Multiprocessor systems not requiring peak performance can use shared memory only. 
This results in a simpler and lower-cost implementation. The memory subsystem can 
prioritize access to the shared memory between the processors to maximize efficiency. 

1.4 APPLICATiON OVERViEW 

The i860 microprocessor is designed for use in a wide range of applications. The proces­
sor's support of demand-paged virtual memory and the IEEE Floating Point Standard 
makes it especially suitable as a main processing engine for high-performance engineer­
ing workstations, mainframe computers and supercomputers. Its high integration allows 
a desktop form factor for capabilities previously associated with supercomputers and 
high-end graphics workstations. 

The i860 power can support computation intensive applications such as electronics or . 
mechanical system simulations. The power of the hardware 3-D graphics support graph­
ics applications. High-performance 3-D graphics can now become a standard feature of 
any workstation. 

The i860 microprocessor eliminates the need for special-purpose signal, graphics or 
floating-point coprocessors. The processor can also be used for high-performance em­
bedded controller applications,. or as an applications accelerator for existing systems. 

1-9 





Internal Architecture 2 





CHAPTER 2 
INTERNAL ARCHITECTURE 

The i860 microprocessor architecture obtains its performance by a combination of large 
data paths, high bandwidth data and instruction access (caches and registers), a large 
number of important functions included on-chip, and high levels of pipelining and par­
allelism. This architecture allows up to three operations per clock to be executed. 

The programmer controls the parallelism to manage data flow to and from the floating­
point unit. The on-chip caches provide storage for instructions and data. Wide buses can 
transfer an instruction pair and two double-precision floating-point operands each clock. 
A programmer can use the data cache as a large bank of vector floating-point registers. 

The i860 microprocessor architecture consists of nine units: 

• Core execution unit 

o Floating-point control unit 

• Floating-point adder unit 

• Floating-point multiplier unit 

o Paging unit 

• Data cache unit 

• Instruction cache unit 

• Bus and cache control unit 

• . Graphics unit 

The arrangement of these nine units is shown in Figure 1-1. This chapter describes how 
these nine units interact to interpret the instructions. 

2.1 CORE EXECUTION UNIT 

The core execution unit is the center of intelligence for the i860 microprocessor and is 
responsible for its overall operation. It fetches both integer and floating-point instruc­
tions. It decodes and executes integer, logical, control-transfer, load/store, exception 
handling, and cache flushing instructions. It can perform loads and stores to and from 
the integer register file and the floating-point register file. It also includes a special pixel 
store instruction that facilitates implementation of the Z-buffer hidden-surface elimina­
tion algorithm. 

2.1.1 Core Unit Registers 

The core execution unit includes a register file containing thirty-two 32-bit integer reg­
isters, a 32-bit ALU, a barrel shifter, two 32-bit processor status registers, a data break­
point register, a fault instruction register and control logic. 

The integer registers, labeled rO through r31, are accessible by arithmetic operations and 
load/store instructions. These registers are used for address computation and scalar in­
teger computations. All the registers can be read and written except rO, which· always 

2-1 



INTERNAL ARCHITECTURE 

32 

Ext.rnal Addr I 
Mamory 

Data Cach. Inatructlon Cach. Managamant 
Un" 

1lnst Data Cache 
Ext. Addr Addr Data 
Ollta 

FP Instr 
4 128 

" cor· r: Inatr 32 32 32 !32 

G4 Bua Control Floating Point 
4 • • • Intag.r Unit Un" Control Un" 

{64 64 64 
O •• t 

Src1 

Src2 

U ~ ~ 
Graphics Unit 

Adder Unit 
Multiplier 

Unit 
Merge 

240330-4 

Figure 2-1. Block Diagram of i860™ Microprocessor 

reads a value of zero. Writes to rO do not store a value in rOo rO works in· combination 
with a number of instructions to modify and extend their function. For example, to check 
if a register contains a zero, the or instruction can be used with the other source operand 
and destination as rOo The register bank remains unmodified as a result, and the condi­
tion code CC indicates if the given register contains a zero. 

The processor status register (PSR) and extended processor status register (EPSR) are 
32-bit read/write registers which contain various information on the status of the current 
process. They provide information such as condition code bit status, loop condition code, 
interrupt control and status, trap flags, data breakpoint control, pixel information, pro­
cessor identification, etc. Refer to the i860™ 64-Bit Microprocessor Programmer's Refer­
ence Manual, order number 240329, for more information. 

2-2 



INTERNAL ARCHITECTURE 

The extended processor status register (epsr) is Ii 32-bit read/write register which con­
tains additional state information beyond what is contained in the psr. This information 
includes the processor type (value of one for the i860 microprocessor), step number to 
distinguish among different revisions, data cache size field, and five flags: the overflow 
flag, big-endian mode bit, page table bit mode, write-protect mode bit, and the interlock 
bit. Refer to the i860™ 64-Bit Microprocessor Programmer's Reference Manual for more 
infomiation. 

The data breakpoint register (db) contains a breakpoint address. It is used to generate 
traps when Joads or stores are made from or to this address, and is thus useful for 
debugging. Refer to the i860™ 64-Bit Microprocessor Programmer's Reference Manual for 
details. 

The core execution unit contains logic for handling exceptions and external interrupts. 
When an exception condition or an external interrupt occurs, the processor transfers 
control to the trap handler. Again, refer to i860™ 64-Bit Microprocessor Programmer's 
Reference Manual for details. 

2.1.2 Instruction Execution 

Instructions are fetched into the core execution unit from the instruction cache. If this 
address location is not in the cache (a cache miss), the instruction is fed to the core 
execution unit from the external memory, while the corresponding Instruction Cache 
bloc~ is simultaneously filled. 

2.1.2.1 RiSe OPTIMIZATIONS 

The core execution unit is designed according to RISC principles, as explained in 
Chapter 1. It uses a pipelined organization that maximizes performance. The instruc­
tions are made purposefully simple using a load/store architecture. Emphasis is placed 
on minimizing circuit delays and economizing chip space in order to include the other 
processing units that are essential to overall high performance - the floating-point unit, 
graphics unit, paging unit, caches, and register banks. Pipelining is coupled with register 
bypassing, scoreboarding, and delayed branching to further enhance performance. Some 
integer operations are performed by the floating-point unit. Integer multiply and divide 
are implemented via a code sequence which use floating-point instructions. 

Execution pipelining is transparent for arithmetic, logic and shift instructions. Core in-
. structions appear to operate in one clock cycle with the destination register already 
loaded by the time the next instruction begins executing. However, this is not actually 
the case. Due to the delay required in storing to and reading from a register, the pro­
cessor detects if the last instruction's destination is used as an operand in the current 
instruction. If it is, the operand is returned to the ALU at the same time the register file 
is updated. This technique, known as register bypassing, is invisible to the programmer. 

Unlike arithmetic and logic operations, load operations require a minimum of two clock 
cycles to provide a valid result for the destination register. Because load instructions 
require a minimum of two cycles, the integer core uses scoreboarding to detect if the 
register operand of the current instruction is the destination of a preceding load. 

2-3 



INTERNAL ARCHITECTURE 

The use of register bypassing and score boarding allow load and store instructions to be 
executed at an effective rate of 1 instruction per clock cycle, assuming the data and 
instructions are found in their respective caches. When a cache miss occurs, the hard­
ware will automatically resolve potential problems by freezing execution if the data is 
needed. 

Branch instructions can also have the effect of locking the pipeline for one or more clock 
cycles. To avoid this waste, the i860 microprocessor uses delayed branching. The branch is 
delayed in the sense that the i860 microprocessor executes one additional instruction 
following the contr:)l-transfer instruction before actually transferring control. During the 
time used to execute the additional instruction, the i860 microprocessor refills the in­
struction pipeline by fetching instructions from the new instruction address. This avoids 
breaks in the instruction execution pipeline. 

By using the above techniques, it is possible to execute core unit instructions at the rate 
of one per clock quite consistently, thus providing a rate of 40 MIPs (40 MHz clock) of 
native integer operation performance. 

2.1.2.2 DUAL-INSTRUCTION MODE 

The i860 microprocessor provides a form of parallelism in the ability to execute a core 
instruction and a floating-point instruction simultaneously. This parallel instruction exe­
cution is referred to as dual-instruction mode. When executing in this mode, the instruc­
tion sequence consists of 64-bit aligned instruction pairs with a floating-point instruction 
in the lower 32 bits and a core instruction in the upper 32 bits. 

Enabling and disabling dual- and single-instruction mode is controlled by software. The 
d.fp-op in Figure 2-2 indicates the instructions responsible for enabling the dual­
instruction mode. As shown in the figure, there is a one-instruction delay between the 
instruction that does the enabling or disabling and the instruction which performs the 
operation. 

Note that when a 64-bit dual-instruction pair directly follows a delayed branch instruc­
tion in dual-instruction mode, both 32-bit instructions are executed. 

Further details regarding the use of dual-mode instructions are provided in the i860™ 
64-Bit Microprocessor Programmer's Reference Manual, order number 240329. 

2.2 FLOATING-POINT UNIT 

In addition to the core unit, which executes integer instructions, is the floating-point 
unit, which processes floating-point instructions. The pipelined floating-point unit, along 
with the on-chip cache, enables the 40 MHz i860 microprocessor to achieve a peak 
execution rate of up to 80 MFLOPs for single-precision and up to 60 MFLOPs for 
double-precision operations. 

2-4 



63 

core-op 

core-op 

core-op 

63 

I core-op 

I 

INTERNAL ARCHITECTURE 

31 o 
op 

d.fp-op 

d.fp-op or core-op 

d.fp-op 

fp-op 

fp-op 

op 

op 

31 o 
op 

d.fp-op 

fp-op 

fp-op 

op 

op 

1 
Initiates Dual­
Instruction Mode. 

1 
Enter Dual-
Instruction Mode. 

Initiate Exit From 
DJailnstruction Mode. 

1 
Leave Dual­
Instruction Mode. 

Temporary Dual­
Instruction Mode. 

j 
240330-7 

Figure 2-2. Dual-Instruction Mode 

The floating-point unit consists of the floating-point register bank, floating-point adder, 
floating-point multiplier, floating-point status register and floating-point control unit. 
The floating-point unit has two types of operations: scalar and pipelined. Scalar opera­
tions are like those used in most computers. Pipelined operations deliver the highest 
performance but require more programming expertise. Intel offers a library of common 
math functions already implemented using pipelined code. 

Floating-point data types, floating-point instructions, and exception handling all support 
the IEEE standard for binary floating-point arithmetic (ANSI/IEEE Std 754-1985) for 
both single- and double-precision data types. The floating-point status register holds 
information about the result of the operation. A complete set of traps includes tests for 
invalid source operands such as NaN (Not a Number), denormalized numbers, and in­
finities, as well as tests for errors in the result, such as overflow and underflow. The 
cause of the traps can be determined by examining the value in the floating-point status 
register. The·floating-point traps permit implementation of the IEEE Standard in a very 
efficient manner. For more information, see the i860™ 64-Bit Microprocessor Program­
mer's Reference Manual. 

Due to the low-level instruction set philosophy of the i860 microprocessor architecture, 
high-level functions defined by the Standard, such as square root, sine, and cosine are 

2-5 



INTERNAL ARCHITECTURE 

not implemented directly by the hardware. The facilities of the floating-point unit, how­
ever, allow for a very efficient implementation of these functions that actually out­
performs dedicated floating-point coprocessors. 

Intel offers an IEEE trap handler program, as well as a software library, that provides 
i860 microprocessor programs with the full set of functions supported by the IEEE 
standard. 

2.2.1 Floating-Point Register Bank 

The floating-point unit is provided with its own register bank. It contains 32 floating­
point registers, each 32-bits wide, labeled fO through f31. The registers can also be 
accessed in pairs for 64-bit double-precision values or 64-bit integer values. For this 
purpose, only even registers are used, e.g. f2, f4, etc. Load and store instructions also 
support the transfer of 128-bits worth of data (e.g. two doqble-precision operands). The 
registers are used in groups of four for this purpose, e.g. f4, f8, f12, etc. Registers fO and 
f1 are special in that, when read, they always provide a value of zero, and writing into 
them has no effect. These registers modify and extend the function of the floating-point 
instructions. Two null registers ate required in order to provide a zero operand and a 
null destination when using double-precision operations. 

The floating-point register bank (refer to Figure 2-1) allows multiple operations to occur 
in parallel. It contains two read ports, one write port, and two bidirectional ports. All 
these ports are 64-bits wide and can be used concurrently. 

The two 64-bit source operands provided by the floating-point registers are used as data 
input to the floating-point multiplier unit (FPMU), the floating-point adder unit 
(FPAU) or the graphics unit. A 64-bit input port to the floating-point registers transfers 
the result of the operations. The 64-bit integer instructions and graphics.instructions also 
use this register bank for their source and destination operands. 

Two 64-bit bidirectional ports between the data cache and the floating-point register 
bank allow transfers of up to 128 bits. A 64-bit bus can connect either of these two buses 
to the data bus on the bus cache control unit. This bus allows 64-bit transfers to and 
from external memory. The transfers are performed by the various floating-point load 
and store instructions. These transfers are controlled by the core unit and can occur in 
parallel with the floating-point instructions, as explained in Section 2.1.2.2, "Dual­
Instruction Mode". 

2.2.2 Pipelined and Scalar Operations 

The floating-point unit uses parallelism to increase the rate of operations performed by 
the unit. One type of parallelism used in the floating-point unit is known as "pipelining". 
A pipelined architecture treats each operation as a series of more primitive operations 
called stages. These can be executed in parallel. Consider the floating-point adder unit 
as an example. Let a represent the operation of the adder, and let the stages be repre­
sented by A[1], A[2], and A[3]. The stages are designed such that the A[i+ 1] stage for one 
add instruction can execute in parallel with the A[i] stage for the next add instruction. 
Since each A[i] stage can perform its task in a single clock, and three instructions can be 
in executing in parallel, one add operation per clock is achieved. 

2-6 



INTERNAL ARCHITECTURE 

Pipelining within the floating-point multiplier unit can be described similarly, except that 
it requires two clocks per stage on double-precision operations. The resulting status bits 
in the fsr reflect the result of the last completed operation within the pipeline. Pipelined 
instruction execution is shown in Figure 2-3. 

The functions performed by each stage of the pipeline are not documented. Programs 
should not rely on specific actions, only that the pipeline is of fixed length. 

INSTRUC 

INSTRUC 
1+1 

INSTRUC 
1+2 

INSTRUC 
1+3 

INSTRUC 
1+4 

results 

r 

I 

STAGE 1 STAGE 2 STAGE 3 

(status) reslhs (S1alUs) results 

CLOCKn 

1 

(s) 

~ CLOCKn+1 

~ ~="~ 
1+2 1+1 

(s) r (s) r 

1+2 

1+4 1+3 

(s) r (s) r 

status 

s 

s 

I 

rdest 
1+3 

NSTRI..IC I 1+5 I 1+4 1+3 I ~t 
1+5 •• r ______ (.S) .. _________ .......... _________ s ... 

240330-5 

Figure 2-3. Pipelined Instruction Execution 

2-7 



INTERNAL ARCHITECTURE 

In addition to pipelined execution, the i860 microprocessor can also execute floating­
point operations in scalar mode. In this mode, the floating-point unit does not initiate a 
new operation until the previous floating-point operation is completed, so that the scalar 
operation passes through all the stages of its pipeline before a new operation is started. 
Scalar mode is used when the next operation depends upon the result of the previous 
floating-point operations, or when the compiler or assembly language programmer 
wishes to avoid the added complexity of pipelining. Integer operations can be performed 
in parallel to scalar floating-point operations. 

2.2.3 Floating-Point Adder Unit 

The floating-point adder unit of the i860 microprocessor supports both double- and 
single-precision IEEE 754 format and operates in two modes: scalar mode and pipelined 
mode. In scalar mode, three clocks are required to complete an add, subtract or compare 
operation. In pipelined mode, one result per clock for either a single- or double­
precision operation is obtained. 

The adder unit supports the following precision combinations between inputs and re­
sults: single to single, double to double, and single to double. For this reason, the adder 
is also used to perform data precision conversions. Some of the instructions executed 
exclusively by the adder unit are: 

• Floating-point add (fadd) 

• Floating-point subtract (fsub) 

• Pipelined floating-point comparisons: (pfgt.p, pfeq.p) 

2.2.4 Floating-Point Multiplier Unit 

The floating-point multiplier unit performs floating-point multiplication in accordance 
with the IEEE standard. It is organized as a three-stage pipeline. In pipelined mode, the 
multiplication throughput is one single-precision instruction per clock and one double­
precision instruction each two clocks. 

The multiplier unit also supports a reciprocal instruction which is used to implement 
division and square-root operations by means of an iterative process. A small macro (or 
function) can be developed based on these instructions to perform the full division or 
square root. 

Certain instructions allow the multiplier unit to operate in parallel with the adder unit in 
a variety of flexible ways, thereby doubling the number of operations per clock. 

2.2.5 Dual Operation Feature 

Dual Operation is a special feature of the i860 microprocessor which allows the 
floating-point adder and multiplier unit to work in parallel, thus doubling the number of 
floating-point operations performed. Both add-and-multiply and subtract-and-multiply 
operations are supported. 

2-8 



INTERNAL ARCHITECTURE 

The instruction formats for add-and-multiply and subtract-and-multiply allow specifica­
tion of only two source operands and one destination. However, when operating the 
adder and multiplier in parallel, two pairs of operands and two destinations are needed 
for the general case. To overcome this limitation, the adder and multiplier can be con­
figured in a variety of ways that are especially suitable for problems such as: 

• matrix manipulation (e.g., solving linear equations) 

• series calculations (e.g., sine function calculation) 

• signal processing applications (e.g., Fast Fourier Transform) 

It graphics (e.g., coordinate transformations) 

For this purpose, three special registers are used - KR, KI and T. Both KR and KI can 
be used to hold constants or temporary values. These values can be loaded when used as 
operand inputs to the multiplier, and can later supply the value, without the need for an 
explicit instruction operand. T can act as a transfer register to hold the value of the 
result of a multiplication, which can be passed on as an operand to the adder on a later 
instruction. 

The data paths available are shown in Figure 2-4. Possible configurations can be selected 
as follows: 

• Operand 1 of the multiplier can be KR, KI, or scrl. 
o Operand 2 of the multiplier can be scr2 or the last stage of the adder pipeline. 
• Operand 1 of the adder can be scrl, the T-register, or the last stage result of the adder 

pipeline. 
It Operand 2 of the adder can be scr2, the last-stage result of the multiplier pipeline, or 

the last-stage result of the adder pipeline. 

In addition to the selection of operands, the instruction can choose whether to load KI, 
KR, or T as part of its operation. The possible operand data path selections and loading 
options allow a large number of possible combinations. Many of these combinations are 
functionally redundant or of no interest. Each instruction format for add-and-multiply 
and subtract-and-multiply supports 16 different instructions, and each of these instruc­
tions provides a different configuration of operand data path and KI, KR, or T loading 
selection. The configurations have been specially selected to streamline the implemen­
tation of the applications previously mentioned. Refer to the i860™ 64-Bit Microprocessor 
Programmer's Reference Manual for further details. 

2.2.6 Floating-Point Computation Throughput 

The combination of the dual-instruction mode feature with pipelined dual operation 
allows the i860 microprocessor to achieve a sustained 80 MFLOPs in single-precision 
and 60 MFLOPs in double-precision for inner loops of common computations. Assuming 
the code is in the cache, no visible memory cycles are needed to fetch the instructions. 

The dual-instruction mode allows the loading and storing of operands and the updating 
of array indices and loop control information to be performed in parallel with floating­
point execution. A load or a store (core unit instruction) can transfer up to 4 single­
precision operands or 2 double-precision operands, assuming these operands are 
adjacent to each other in memory within some data array. Loads and stores take one 

2-9 



".nf_l® 
I lae- INTERNAL ARCHITECTURE 

SRCl SRC2 SRC2 

MULTIPLIER UNIT 

RESULT 

OPl OP2 

ADDER UNIT 

RESULT 

240330-6 

Figure 2-4. Dual-operation Data Paths 

clock cycle if the data is in the cache, and two clock cycles if fetched from external 
memory. If the operands are from memory, instructions can continue to be executed in 
the pipeline as long as they don't access the registers being loaded. Thus, indexing, 
loop-control, and operand loading can typically take place in parallel with the floating­
point computation, maintaining the sustained rate. 

In pipelined mode, two single-precision floating-point operations can be executed per 
clock cycle resulting in a rate of (2 operations/clock) x (40 MHz/sec) = 80 MFLOPs. 
For double-precision, addition requires one clock cycle, while multiplication requires 
two. For algorithms that require two floating-point additions and one multiplication for 
each iteration, two adds and one multiply can be done in parallel in two clock cycles. 
This results in three operations in two clock cycles, or (3-operations/2-cycles) 
x (40 MHz) = 60 MFLOPs. Algorithms requiring a double-precision multiply and add 
for every iteration execute at two operations per two clock cycles (due to the multiply 
two-clock rate), resulting in an execution rate of 40 MFLOPs. 

2.3 PAGING UNIT 

The paging unit provides the i860 microprocessor with the capability of supporting an 
efficient implementation of demand-paged virtual memory. Demand-paged virtual mem­
ory allows programs to use a larger, virtual memory space, which is actually supported by 

2-10 



INTERNAL ARCHITECTURE 

a smaller real (or physical) memory space. The paging unit, in combination with the 
appropriate memory management software, automatically allocates physical pages of 
memory to virtual page addresses as they are needed (on demand). Typically, when all of 
physical memory is used up, physical memory is swapped out to disk, and pages are 
reallocated. 

The paging unit provides the ability to translate virtual addresses used by the processor 
to physical addresses that correspond to locations in the external memory. It also pro­
vides page-level protection based on access rights, as well as two levels of privilege­
user and supervisor. 

Address translation and memory protection are optional. They are enabled by the 
address translation enable (ATE) bit in the directory base register. If this bit is not set, 
the physical address is the same as the virtual address, and no translation or access-rights 
checking is performed. The ATE bit is cleared upon reset. The i860 microprocessor 
paging unit functions the same and uses the same page table entry formats as the Intel 
386™ and i486™ microprocessors. 

2.3.1 Paging Algorithm 

A virtual address is mapped to a physical address according to a set of tables called page 
tables. The address is divided into a page address and an offset. A page is a collection of 
data that occupies the space of a page frame in main memory, or some location in 
secondary storage when there is insufficient space in main memory. A page frame con­
sists of 4K bytes of contiguous physical memory starting on a 4K-byte boundary. The 
upper 20 bits of the 32-bit address of a page frame is referred to as the page address. In 
the i860 microprocessor, both virtual and physical addresses are 32 bits wide. They both 
consist of a 20-bit page address and a 12-bit offset. The concatenation of the two pro­
vides a complete 32-bit byte address. 

The address translation algorithm uses two levels of page tables. The two levels are 
referred to as the page directory and the page tables. Both levels of page tables are a 
page (4096 bytes) in size, consisting of 1024 32-bit entries. 

The directory base register, dirbase, contains a 20-bit field which points to the page 
directory. Only one page directory table is active at any given time. The entries of the 
page directory contain the physical addresses of all the page tables used for the mapping 
process, or contain entries indicating that the given page tables (corresponding to virtual 
segments of address space) are not present in physical memory. The page tables them­
selves contain physical page addresses for all the valid virtual pages, or entries indicating 
that the given virtual memory address is not present in physical memory. 

The algorithm mapping virtual memory to physical memory is fully implemented by the 
hardware and is depicted in Figure 2-5. The most-significant 10 bits of the virtual 
address are used as an index into the page directory, which selects a specific page table. 
The next 10 bits are used as an index into the selected page table, selecting a page frame 
address. The last 12 bits act as an offset into the page frame address, building up a full 
32-bit physical byte address. This completes the virtual to physical address conversion. 

2-11 



INTERNAL ARCHITECTURE 

If during a memory transfer, the page directory or page table indicates that a selected 
page table .or page frame is not present (by means of a zero in the Present bit of the 
table entry), a trap occurs, allowing the software to validate the page by reading it from 
secondary storage. The page table entries also provide the write, user, cache disable, 
accessed and dirty bits, as well as 3 user-definable bits. These bits along with the write 
protect bit in the extended processor status register are used to provide page-level pro­
tection rights, page cacheability information, and information needed to implement an 
efficient replacement algorithm for swapping out page frames when main memory is full. 
More details are provided in the i860™ 64-Bit Microprocessor Programmer's Reference 
Manual, order number 240329. 

To avoid accessing the page directory and page table for every address translation, the 
i860 microprocessor implements an on-chip translation look-aside buffer (TLB), which is 
a cache that directly translates a virtual page address to a physical address, and provides 
the additional bits from the page tables needed to provide protection and information 
for replacement algorithms. TLB translation requires one clock cycle and is typically 
invisible because of the processor's pipelining. 

The TLB is implemented as a 4-way, set-associative cache, mapping a total of 64 page 
table entries. Because each page table entry maps 4 Kbytes of address space, a total of 
4K x 64 or 256 Kbytes of memory are mapped at anyone time by the TLB. When there 

PAGE FRAME 

I DIR I PAGE I OFFSET I 
I PHYSICAL 

ADDRESS 

PAGE DIRECTORY PAGE TABLE 

- PG lBL ENTRY - DlRENTRY t---

I DTB I 
I 240330-8 

Figure 2-5. Paging Algorithm Implementation 

2-12 



INTERNAL ARCHITECTURE 

is a miss in the TLB and the page tables in memory are used, an entry in the TLB is 
automatically replaced by the new mapping. 

2.4 ON-CHIP CACHES AND BUS CONTROL 

The i860 microprocessor contains both an instruction and data cache. Being integrated 
so close to the processor, and having been carefully designed for minimum delay, cache 
storage can operate much faster than external memory. In addition, having both caches 
on-chip allows them to operate in parallel. Thus, the processor can simultaneously read 
instructions from the instruction cache, read or write data to and from the data cache, as 
well as translate virtual addresses through the TLB. The caches also provide wide 
data paths - the instruction cache is 64-bits wide, and the data cache is 128-bits wide. 
Also, on-chip caches reduce the need for external caches, which reduces the total system 
cost and makes available valuable PC-board real estate. 

Both the data and instruction caches are virtually addressed. This not only provides for 
faster operation, but allows the TLB to perform its virtual address to physical address 
translation in parallel with the operation of the cache. If one of the caches determines 
that it does not have the contents ofthe required virtual address (a cache miss), the TLB 
will be ready with a physical address with which to begin an external memory cycle. 

Both the instruction and data caches are implemented as a 2-way set associative memory 
that lIlaps a virtual address to a 32-byte block of data. These blocks correspond to 32 
consecutive bytes loaded from an address having zero for the least-significant 5 bits. 
When transferring data to or from the cache, the processor uses the desired set of bytes 
from this 32-byte group. Allocation and replacement for both caches is always performed 
using blocks of 32 bytes. 

The i860 microprocessor uses a wraparound technique which makes the process of filling 
a cache block more efficient. Since a block consists of four 64-bit (8 bytes) entries, the 
processor will first read the 64-bit entry that contains the data item, instruction, or 
instruction pair that is needed by the processor. The processor continues processing 
while the entry read is simultaneously stored in the cache. Next, the processor sequen­
tially reads the remaining three, 64-bit entries of the block and stores them in the cache. 
Since the first entry read may lie in the middle of the block, the processor wraps around 
to read the first 64-bit entry of the block after the last one is read. In this manner, the 
cache block is loaded and the· processor gets its data as quickly as possible. 

The use of the caches when accessing memory can be bypassed by means of the CD 
(Cache Disable) bit in the page tables or the KEN# (Cache Enable) pin, as explained in 
Chapter 3. This is required for special cases such as I/O references or shared data in a 
multiprocessor system. 

2.4.1 Instruction Cache Unit 

The instruction cache size is 4 Kbytes. With a 64-bit wide data path, the cache can 
provide two 32-bit instructions in each fetch cycle: two core instructions, or one core 
instruction, and one floating-point instruction. Thus, the transfer rate of the cache is 64 
bits/clock (320MB/sec at 40 MHz). 

2-13 



INTERNAL ARCHITECTURE 

The instruction cache is intended to be used to map read-only memory (i.e., it does not 
support self-modifying code). System programs that modify code should invalidate the 
instruction cache via the IT! bit in the directory base register. 

2.4.2 Data Cache Unit 

The data cache size is 8 Kbytes. Using a 128-bit wide bus for reading data, it can transfer 
up to 128 bits/clock. Thus with a 40 MHz clock, 640 Mbytes/sec can be transferred. 
Unlike the instruction cache, the data cache supports both read and write operations 
(corresponding to load and store instructions). 

The data cache with its 128-bit internal bus can supply up to two 64-bit operands to the 
floating-point unit per cycle. Alternatively, it can supply one 32-bit operand per load 
cycle, or a 16- or 8-bit, right-aligned, signed-extended value to the core unit. 

The data read must be aligned in memory according to its size. The table below shows 
the restriction on the addresses for different size data items: 

Data Size 

16-bit value 
32-bit value 
64-bit value 
128-bit value 

Number of least-significant bits 
in byte address that are 0 

1 
2 
3 
4 

The data cache can be used as a large set of floating-point registers for vector opera­
tions. The IeS field of the extended processor status register allows a program to deter­
mine the cache size and use it appropriately. 

2.4.2.1 WRITE OPERATIONS AND THE DATA CACHE 

Writes to memory locations not present in the cache are sent directly to the memory 
write buffers and do not affect the cache. A write operation to a location that is already 
in the cache is written to the cache, but is not immediately written to memory. In this 

. scheme, known as write-back, the blocks that have been written to the cache but not to 
memory are marked as "dirty". When the replacement algorithm chooses to replace a 
block containing a dirty block, or when a cache block is flushed, these dirty blocks are 
written to memory. 

The write-back scheme provides better performance than the write-through approach, in 
which data written to the cache is immediately written to memory. This is because ac­
cesses and stores to variables or indices that are in the data cache require no external 
memory cycles and hence reduce bus traffic. 

When the data cache writes a block to memory, it uses two 128-bit wide write buffers. 
These buffers delay the actual memory writes until an opportune time, if possible, as 
explained in Section 2.4.6. 

2-14 



INTERNAL ARCHITECTURE 

2.4.3 Bypassing Instruction and Data Caches 

There are two pins on the i860 microprocessor that relate to cache enabling during any 
external memory cycle. They are the Cache Enable input pin (KEN#) and the Page 
Table Bit (PTB) output pin. They are used for controlling access to shared memory, I/O 
buffers, and memory-mapped I/O devices. 

When the i860 microprocessor detects that the KEN# input is not asserted during a bus 
cycle, the processor inhibits use of the data cache and instruction cache for this cycle. 

When paging is enabled, the CD (cache disable) bit of the secondary page table used 
during a memory transfer determines whether or not to enable the use of the instruction 
or data caches. A similar bit, WT (write through) is also available that disables data 
caching. The value of the OR of these bits is reflected on the PTE output pin, depending 
on the PBM bit in the extended processor status register. When paging is disabled, the 
PTE pin remains not asserted. 

KEN# is internally NORed with CD OR WT bits to determine whether or not to enable 
use of the cache, as shown in Table 2-l. 

Table 2-1. CacheabiJity Based on CD, WT and KEN# 

CDORWT KEN# Meaning 
0 0 Cacheable access 
0 1 Noncacheable access 
1 0 Noncacheable page 
1 1 Noncacheable page 

2.4.4 Flushing Instruction Cache, Data Cache, and TLB 

Setting the IT! (Instruction TLB Invalidate) bit in the dirbase register, invalidates the 
contents of the instruction cache, as well as the Translation Lookaside Buffer. 

The data cache is flushed by software using the cache flush instruction. This instruction 
flushes one cache block at a time. A loop of code is executed to clear the entire data 
cache. For a copy of this code, see the i860™ 64-Bit Microprocessor Programmer's Refer­
ence Manual. 

2.4.5 Bus and Cache Control Unit 

The bus and cache control unit interfaces to the external bus, performing instruction and 
data accesses for the execution core unit. The control unit transfers data to and from the 
external code memory, and controls TLB translation, including normal translation, miss 
replacement and fault processing. It receives cycle requests and specifications from the 
execution core unit. It performs instruction or data cache accesses and handles data or 
instruction cache miss processing (cache block replacement). Its pipelined structure sup­
ports up to three outstanding bus cycles. The three-level bus cycle pipelining is explained 
in Chapter 3. 

The bus and cache control unit can fetch one, 64-bit instruction from the instruction 
cache and 128-bits worth of data from the data cache on every clock cycle, as long as the 
accessed data resides in the cache. 

2-15 



INTERNAL ARCHITECTURE 

The bus control unit also performs the physical address comparison for the generation of 
the Next Near (NENE#) signal. The NENE# signal is asserted by the i860 micropro­
cessor if the currently issued address falls on the same DRAM page as the previously 
issued address. The NENE# pin allows the external memory system to take advantage of 
the static column and page-mode DRAMs. The size of the DRAM page is program­
mable by three bits in the DIRBASE register. 

The i860 microprocessor can operate in two instruction fetch modes: normal or CS8 
(code size 8) mode. When the CS8 bit in the DIRBASE register is set, external memory 
cycles are processed as 8-bit cycles. When this bit is clear, instruction cache misses are 
processed as 64-bit bus cycles. This bit cannot be set by software. To enter the CS8 
mode, the INT signal is asserted prior to the falling edge of the RESET signal. This 
allows the instruction bytes to be fetched on the eight least-significant bits of the exter­
nal data bus. Data may be transferred as 64, 32, 16, or 8 bits values using all 64 bits of 
the data bus. 

The CS8 mode allows· the i860 microprocessor processor to be bootstrapped from an 
8-bit EPROM. In the CS8 mode, the signals BE2, BEl and BEO are redefined to corre­
spond to the three least-significant bits of the address so that a complete byte address is 
available (i.e., 32 address pins can be used). 

Once the bootstrap code has been loaded into the 64-bit memory, a 64-bit fetch can be 
initiated. This is accomplished by clearing the CS8 bit in the dirbase register via software 
(one time only). Once this bit is disabled, it can not be enabled until a new hardware 
reset occurs. 

2.4.6 Write Buffers 

The bus and cache control unit also supports the use of two 128-bit write buffers. These 
buffers are designed to delay any write operations to memory until memory is not being 
used (i.e., instructions and data are being read from the caches). This optimizing delay is 
not always possible, because the memory operation in question may itself be read. The 
bus control logic forces memory write operations to insure proper functionality. 

The two 128-bit write buffers can operate on independent memory cycles. When write 
operations of 128 bits are performed, each write buffer is written in two memory cycles . 

. When writes are made that are smaller than 128 bits (64, 32, 16, or 8 bits), the write 
buffer is written in a single cycle. Proper alignment and the selection of the correct byte 
enables is made for cycles smaller than 64 bits. 

2.5 GRAPHICS UNIT 

The graphics unit executes instructions designed to support high-performance 3-D 
graphics applications. Support for packed pixels of 8-, 16-, and 32-bit data are supported. 
The precise pixel formats are given in the i860™ 64-Bit Microprocessor Programmer's 
Reference Manual, order number 240329. 

2-16 



INTERNAL ARCHITECTURE 

The graphics unit executes simple but powerful instructions that can be applied to the 
following graphics functions: 

• Hidden surface elimination 

• Distance interpolation 

• 3-D shading using intensity interpolation 

Based on these instructions, the i860 microprocessor processor can perform real-time, 
shaded graphics without the need for an external graphics processor. 

The instructions operate properly for the various pixel formats. With the 8-bit format the 
operations only affect the intensity. For 16- and 32-bit color pixels, the operations affect 
the isolated color vectors, e.g., red, green, or blue. Operations are performed on 64-bit 
entities, which can contain the values of multiple pixels in parallel. A special Pixel 
Store instruction implemented by the core unit can work in parallel with the graphics 
instructions. 

The interpolation operations of the processor support graphics applications in which a 
set of points on the surface of a solid object is represented by polygons. The distance and 
color intensities of the vertices of the polygons are known, but the distance and intensi­
ties of other points must be calculated by interpolation between these points. Graphics 
instructions, just as floating-point instructions, can be used in dual-instruction mode to 
achieve greater computation rates. 

2-17 





Local Bus Interface 3 





CHAPTER 3 
LOCAL BUS INTERFACE 

The local bus is designed to provide high data throughput among the processor, memory 
and I/O subsystems. It provides a flexible interface that is suitable for a wide variety of 
system environments. 

This chapter describes the local bus interface, its basic function, operation, and timing 
for related signals. 

3.1 i860™ MICROPROCESSOR EXTERNAL INTERFACE 
AND BUS SIGNALS 

The external interface of the i860'M microprocessor consists of a 64-bit data bus, 29-bit 
address bus, eight-bit byte-enable control bus, 19 status and control signals, and 48 
power and ground pins. This section provides an overview of the services provided by the 
external interface of the i860 microprocessor. 

3.1.1 i860 ™ Microprocessor Buses 

The i860 microprocessor communicates with external memory and I/O through a syn­
chronous bus interface that includes a separate data and address bus as follows: 

D63-DO 

A31-A3 

BE7#-BEO# 

These 64 pins make up the bidirectional data bus external interface. 
Either 8, 16, 32, or 64 bits of data can be transferred during a bus 
cycle. 

The address bus consists of 29 address pins which address one of 229 

64-bit memory locations. 

The byte-enable bus consists of eight pins that specify which bytes to 
access within a 64-bit location. These pins are used to enable writing 
in one, two, four or eight-bytes of the double-word involved in the 
current write cycle. Read operations should always return 64-bits of 
data. See Section 3.3.1.3 for details. BE2#, BEl#, BEO# are used as 
address bits A2, AI, AO respectively while in CS8 mode. See Section 
3.3.5 for details. 

3.1.2 i860™ Microprocessor Output Signals 

The i860 microprocessor output signals provide control and status information. The out­
put signals are as follows: 

ADS# The i860 microprocessor asserts the address status signal to indicate the 
beginning of a bus cycle. It identifies the clock period during which it 
provides a valid address and the other signals required to perform a mem­
ory cycle. 

3-1 



W/R# 

LOCK# 

NENE# 

PTB 

HLDA 

BREQ 

LOCAL BUS INTERFACE 

The write/read# signal indicates whether the current cycle is a write (high 
state) to or read (low state) from the memory or I/O subsystem. 

The lock signal is generated by the processor to indicate locked cycles to 
external circuitry (Section 3.4.3 provides further explanation). 

The next near signal tells the memory subsystem that a cycle is on the same 
DRAM row as a previous cycle. This allows the memory subsystem to use 
page mode or static-column mode features of DRAMs (Section 3.4.1 pro­
vides further explanation). 

The page table bit signal reflects either the value of the cache disable (CD) 
bit, or the write through (WT) bit of page table entry during the current 
cycle. The PBM (page-table bit mode) bit of the EPSR indicates which. If 
PBM is clear, PTB reflects CD; otherwise, it reflects WT (Section 3.5 pro­
vides further explanation). 

The hold acknowledge signal indicates that the bus has been released (Sec­
tion 3.4.2 provides further explanation). 

The bus request signal is asserted when an internal bris request is pending. 
This signal is used to assist external bus arbitration. Its value is indepen­
dent of the state of HOLD and HOLDA (Section 3.4.2 provides further 
explanation). 

BREQ is also used as serial output for the boundary scan chain while in 
boundary scan mode (Section 3.7 provides further explanation). 

3.1.3 i860™ Microprocessor Input Signals 

Input signals control various i860 microprocessor actions: 

CLK 

READY# 

NA# 

The clock input provides basic timing information for the processor to 
synchronize internal and external operations. All other signals are sam­
pled relative to the rising edge of CLK. The internal operating frequency 
is the same as the clock frequency. 

The ready signal indicates to the processor that a bus cycle is finished. 
For read cycles, the READY # signal indicates that data being read is 
valid and that the processor can latch the contents of the data bus. For 
write cycles, it indicates that the data being output to the data bus is 
being latched by the memory subsystem and is no longer needed to finish 
the bus cycle. READY # must be synchronous to CLK; it is sampled on 
every clock after the clock which follows the sampling of ADS#. 

The next address signal allows external data transfers to request pipelin­
ing. The signal indicates to the processor that the memory or I/O sub­
system is ready to receive a new address and begin a pipelined cycle. 
NA# is sampled during the second clock after ADS# (Section 3.3.4 pro­
vides further explanation). 

3-2 



INT/CS8 

KEN# 

HOLD 

SHI 

BSCN 

SCAN 

CCl, CCO 

LOCAL BUS INTERFACE 

The interrupt and code size signal serves two functions. When the 
RESET signal is asserted, the CS8 signal can be used to set the code size 
eight mode to indicate whether the bus performs instruction fetches on 
the low-order byte of the bus instead of the 64 bit wide bus. This feature 
allows booting from a single EPROM. Section 3.3.5 provides further de­
tails. At all other times, this pin serves as the INT signal and functions as 
the i860 microprocessor's maskable external interrupt (Section 3.6 pro­
vides further explanation). The state of the INT input is sampled on 
every clock. 

The cache enable signal enables updates to the processor's instruction 
and data caches. When paging is enabled, this signal works in combina­
tion with the WT, CD, and PTB bits of the current bus cycle. KEN# is 
sampled on every bus cycle (Section 3.5 provides details). 

The bus hold signal floats all output signals except HOLDA and BREQ 
and causes the processor to relinquish control of the bus. The HLDA 
signal indicates that the bus has been granted. Instruction execution con­
tinues unless required instructions and data cannot be read from the 
on-chip cache (Section 3.4.2. provides further explanation). The state of 
this pin is sampled every clock. 

The boundary scan shift input signal is used to read boundary scan chain 
serial data when in boundary scan mode (Section 3.7 provides further 
explanation). 

The boundary scan enable signal enables boundary scan mode for board 
or component testing (Section 3.7 provides further explanation). 

The shift scan is used in conjunction with boundary scan mode to set 
normal mode (when SCAN is de asserted) or shift mode (when SCAN is 
asserted) (Section 3.7 provides further explanation). 

These pins are reserved by Intel and must be strapped low. 

The i860 microprocessor bus interface pins are summarized in Table 3-1. 

Table 3-1 .. Pin Summary 

Pin Active 
Name Function State Input/Output 

Execution Control Pins 

ClK ClocK I 
RESET System reset High I 
HOLD Bus hold High I 
HlDA Bus hold acknowledge High 0 
BREQ Bus request High 0 
INT/CSa Interrupt, code-size High I 

3-3 



LOCAL BUS INTERFACE 

Table 3-1. Pin Summary (continued) 

Pin Active 
Name Function State Input/Output 

Bus Interface Pins 

A31-A3 Address bus High 0 
BE7#-BEO# Byte Enables Low 0 
D63-DO Data bus High I/O 
LOCK# Bus Lock Low 0 
W/R# Write/Read bus cycle Hi/Low 0 
NENE# NExt NEar Low 0 
NA# Next Address request . Low I 
READY# Transfer Acknowledge Low I 
ADS# ADdress Status Low 0 

Cache Interface Pins 

KEN # Cache ENable Low I 
PTB Page Table Bit High 0 

Testability Pins 

SHI Boundary Scan Shift Input High I 
BSCN Boundary Scan Enable High I 
SCAN Shift Scan Path High I 

Intel-Reserved Configuration Pins 

CC1-CCO Configuration High I 

Power and Ground Pins 

Vee System power 
Vss System ground 

A # after a pin name indicates that the signal is active when at the low voltage level. 

3.1.4 Power and Ground Pins 

The i860 microprocessor has 24 ground pins and 24 power pins. The i860™ 64-Bit Micro­
processor Data Sheet provides pin number assignments, detailed electrical characteristics, 
and decoupling requirements. 

3.2 BUS CHARACTERISTICS 

The fully-synchronous local bus provides 64-bit data transfers to and from memory or 
I/O devices. Minimum read and write cycles can be done in two clock cycles. The bus is 
capable of pipelining bus cycles two levels deep (three stages). I/O is memory mapped. 
An external address decoder can map address ranges to correspond with the I/O sub­
system and the memory subsystem. Also, memory-mapped devices should drive KEN# 
high during reads to prevent data caching. . 

To simplify explanation, the term memory subsystem refers to the I/O subsystem and the 
memory subsystem. . 

3-4 



LOCAL BUS INTERFACE 

3.3 BUS TRANSFER OPERATIONS 

This section discusses all bus transfer operations including data alignment issues, pipe­
lined and nonpipelined bus transfers, and 8-bit mode operation for bootstrapping. 

3.3.1 64-bit Bus and Byte Alignment of Data 

The i860 microprocessor performs external data transfers by means of its 64-bit data bus. 
This section discusses the details of how the bus control unit performs bus operations on 
data of various sizes. 

3.3.1.1 MEMORY ADDRESSABILITY AND ALIGNMENT REQUIREMENTS 

Memory is addressable down to each byte within a paged virtual address space of 232 

bytes. The i860 microprocessor instructions can operate on data of various sizes includ­
ing bytes (8-bytes), half-words (16-bits), words (32-bits), double-words (64-bits) and 
quadwords (128-bits). 

Data may be located anywhere within the byte-addressable space. However accesses to 
data not following the alignment requirements given below cause a trap. Load or store 
operations to unaligned data must be handled by a software routine and are very ineffi­
cient. The alignment requirements for data are as follows: 

o 128-bit values are aligned on 16-byte boundaries when referenced in memory (the 
four least-significant address bits must be zero). 

o 64-bit values are aligned on 8-byte boundaries when referenced in memory (i.e. the 
two least-significant address buts must be zero). 

I) 32-bit values are aligned on 4-byte boundaries when referenced in memory (i.e. the 
two least-significant address bits must be zero). 

o 16-bit values are aligned on 2-byte boundaries when referenced in memory (the least­
significant address bit must be zero). 

Misaligned instructions are not allowed. Instruction alignment requirements are: 

I) All instructions are 32-bits long and must be aligned on 4-byte boundaries (i.e. the 
two least-significant address bits must be zero). 

• Dual mode instruction pairs must be aligned on 8-byte boundaries with the floating­
point instruction first. 

3.3.1.2 DATA ALIGNMENT DURING READ OPERATIONS 

The i860 microprocessor performs aligned read operations in the following manner. 64-
and 128-bit transfers are handled as one and two 64-bit memory transfers, respectively. 

8-, 16-, and 32-bit memory read operations are accomplished by first reading 64-bits of 
data and extracting the data bytes needed. The 64-bit data is typically stored in the cache 
in parallel with the extraction of the data. The data is extracted by shifting the 64-bit 
value so that the least-significant byte of the data item is aligned with bits D7-DO. For 8-
and 16-bit integer data, the value is sign-extended to 32 bits, and the value is loaded into 
the appropriate register. 

3-5 



LOCAL BUS INTERFACE 

During read cycles, the byte enable signals BEO#-BE7# reflect the bytes on the data 
bus that are involved in the read operation. During read operations, however, the byte 
enable signals are not used to enable memory for specific bytes. Instead, all 8 bytes of 
the data bus must be read by the processor, if caching is enabled, to properly update the 
corresponding 64-bit entry in the cache. This type of operation is illustrated by the 
simplified circuit diagram in Figure 3-1. 

3.3.1.3 DATA ALIGNMENT DURING WRITE OPERATIONS 

Write operations require the reverse aligning process of a read operation. 64- and 128-
bit write operations are handled as one and two 64-bit data transfers, respectively. 8-, 16-
and 32-bit memory write operations are performed by properly aligning the data to be 
written onto the data bus and writing only on the bytes involved within the 64-bit word 
addressed. 

The byte enable lines, BEO#-BE7 # are used to determine which bytes of the addressed 
64-bit word to write to. 

For 8-bit, 16-bit and 32-bit data, the data bus outputs the register data shifted to the left 
by an appropriate number of bytes. The shift aligns the least-significant byte of the data 
with the least-significant byte of the destination in memory. 

The properly-aligned data bytes in the data bus are written on the bytes of the 64-bit 
word addressed, as selected by the active BE7#-BEO# lines. The circuit shown in Figure 
3-1 illustrates how the byte enable signals operate during a write operation. 

The number of bytes by which to left shift the data and the set of byte enable signals that 
are activated is determined by the least three significant bits of the byte address, the size 
of the data and the endian mode used, as discussed in Section 3.3.1.4. The 64-bit word 
involved is selected by the upper 29 bits of the physical address. 

3.3.1.4 LITTLE AND BIG ENDIAN MODES AND BUS OPERATION 

The i860 microprocessor can store data in memory in one of two formats, little endian or 
big endian. In little endian, all multibyte data items are stored so that the least signifi­
cant byte is at the smallest address of the bytes allocated for the data item. In big endian 
format all multibyte data items are stored so that the most significant byte is at the 
smallest address. The i860 microprocessor can operate in either mode. 

In the i860 microprocessor, multiple-byte data values are normally stored in little endian 
format (with the least significant byte at the lowest memory address). The processor, 
however also provides the capability of operating in big endian mode (with the most 
significant byte is at the lowest address). 

3-6 



LOCAL BUS INTERFACE 

r---------
DATA I MEMORY I 
BUS SUBSYSTBM I 

I I 
I 

/8 J wen I 

063-56 Memory byte 7 W-" I oen 

I I 
I I 

/8 
I 

I Memory byte 6 
wen 

; D55-48 " I 

oen 

BE7.wRITE 

BES.WRITE 

I 
I 

8 wen 
I 047-40 4 7 

/ ~ Memory byte 5 
BES.wRITE 

oen 
I 

1M III I i860 )JP .. 
I .. .. I 

• I 0 

C!I I 
• I G 

8 I 
wen 

D7-OO 4 / t Memory byte 0 I 7 
BED.WRITE 

oen 
I f-- BE7 
I 

____ -'- ____ .....J 

f--+ BE4 

r--- BE3 

r--- BE2 

WEN = Write Enable READ r--- BEl 

r--- BED DEN = Output Enable 

240330-9 

Figure 3-1. Byte Enable Control Signals 

3-7 



LOCAL BUS INTERFACE 

The following examples illustrates the use of the two modes of operation. Suppose a C 
program has the following global declaration for a structure: 

struct { 

} rec; 

byte A. B; 
short C; 
long D; 

/* byte */ 
/* 16-bit integer */ 
/* 32-bit integer */ 

The fields of rec are addressed as follows: A at rec + 0, B at rec + 1, C at rec + 2, D at 
rec + 4. If rec is double word aligned, the rec data structure for big endian mode will 
have the following form in memory, within the double word address corresponding to the 
address of rec: 

0 2 3 4 5 6 7 
A B C:msb C:lsb D:msb D:2msb D:21sb D:lsb 

and in little endian the following form: 

7 6 5 4 3 2 1 0 
D:msb D:2msb D:21sb D:lsb C:msb C:lsb B A 

In the above example msb stands for most-significant byte, 1 sb for least significant byte, 
2msb for second most significant byte, and 21 sb for second least significant byte. 

In both cases the addressability of each data item is the same, but the order of the byte 
addresses for the multibyte data item is different. 

The bytes are organized as follows: 

Byte addresses (most significant first) 
Item Address 

Little Endian Big Endian 

A 0 0 0 
B 1 1 1 
C 2 3,2 2,3 
D 4 7,6,5,4 4,5,6,7 

The default mode of operation for the i860 microprocessor is little endian. As an option 
that may be dynamically selected in supervisor mode, the i860 can operate in big endian 
mode. Figure 3-2 illustrates how the i860 can operate in big endian mode. Figure 3-2 
illustrates how the i860 handles little endian and big endian operations. When loading a 
register from memory, the i860 internally byte shifts the incoming data bus to the right as 
required to align the least significant byte (right side) of the addressed data with the 
least significant byte of the register. 

When storing register data in memory, the i860 shifts left the register data by the appro­
priate number of bytes required to align the data with the memory bytes addressed. This 
data is presented on the bus, and an external write cycle is performed. The bus enable 
lines that correspond to the data bytes being written are made active. 

3-8 



Byte Enables 
(BE#) 

Id.b O(ro), r16 0 
Id.b 1 (ro), r16 
Id.b 2(ro) , r16 2 
Id.b 3(ro), r16 3 
Id.b 4(ro) , r16 4 
Id.b 5(ro), r16 5 
Id.b 6(ro) , r16 6 
Id.b 7(ro), r16 7 

Id.s O(ro) , r16 1:0 
Id.s 2(ro) , r16 3:2 
Id.s 4(ro), r16 5:4 
Id.s 6(ro) , r16 7:6 

Id.s O(ro), r16 3:0 
Id.s 4(ro), r16 7:4 

LOCAL BUS INTERFACE 

• • • 
Word 1 

MAIN MEMORY 

• • • 
Word2 HGFEDCBA 

d63 dO 

LITTLE ENDIAN BIG EN DIAN 

Data Bus r16 Byte Enables Data Bus r16 

d63 dO d63 dO 
(BE#) 

d63 dO d31 dO 

A A 7 H H 

B B 6 G 
G 

C C 5 F 
F E 0 4 0 E 0 E 3 

E 
F 2 0 C 

F G 1 C B 

G H 0 B 
A 

H A 

d63 dO d63 dO d63 dO d31 dO 

00 7:6 [SJ[]] DC DC 5:4 F E F E 
F E F E 3:2· o C ~; 

HG HG 1:0 BA 

d63 dO d63 dO d63 dO d31 dO I 0 C B A I~ 7:4 IH G F E I~ 3:0 H G F E HGFE DCBA DCBA 

240330-10 

Figure 3-2. Little and Big Endian Data Access 

The determination of how many bytes to shift right during the bus operation, or left 
during a store operation, as well as the selection of the appropriate byte enable signals is 
determined by the least-significant 3 bits of the memory address involved, by the size of 
the data, and by the endian-mode selected. 

The big-endian little-endian example given earlier and Figure 3-2 illustrate the operation 
under both endian-modes. The reading or writing the A data byte in little endian shifts 
the data by zero bytes (no shift). For a write operation, activation of byte enable signal 
BEO#, stores the memory byte corresponding to bits d7-dO of the 64-bit memory entry 
addressed. In big endian, reading A shifts the data bus right by seven bytes, and writing 
shifts the register data left by seven bytes and activates BE7#, to store it in the byte 
corresponding to bits d63-d56. 

Big endian mode in the i860 essentially inverts the byte offset addresses, converting 
address 7 into 0, 0 into 7, 6 into 1, 1 into 6 and so on. 

3-9 



LOCAL BUS INTERFACE 

3.3.1.5 ENDIAN MODE FOR CODE ACCESSES 

Code accesses are always done with little endian addressing. This implies that code will 
appear differently than documented here when accessed as big endian data. Intel rec­
ommends that disassemblers running in a big endian system convert instructions which 
have been read as data back to little endian form and present them in the format docu­
mented here. 

3.3.1.6 SYSTEM OPERATION AND EN DIAN MODE 

Systems based on the i860 microprocessor can be designed for normal operation in little 
endian or big endian mode. The natural endian-mode operation is established by the 
way that external devices address the byte offsets within the 64-bit aligned memory 
locations. Typically, the system will be used only in the natural mode of operation. The 
i860, however, allows for dynamically changing the endian-mode by software executing in 
supervisor mode. 

3.3.2 Basic Bus Operation 

The i860 microprocessor's fully-synchronous external bus may operate without pipelining 
or with up to two levels of pipelining to boost memory subsystem throughput. All control 
signals that affect bus operations are sampled relative to the rising edge of the clock. 

A bus cycle begins when ADS# is sampled active and ends when READY # is sampled 
active. READY# is sampled on every cycle after ADS# is sampled active. New bus 
cycles can be started on any clock cycle after a one clock cycle delay following the 
beginning of the prior bus cycle. Thus, new cycles can start as often as every other cycle. 
Pipelining allows up to three outstanding cycles to exist concurrently. A bus cycle is 
considered outstanding while its associated READY # has not been sampled active. 

The processor can generate pipelined and nonpipelined read and write bus cycles, as 
requested by the memory subsystem. A pipelined cycle starts while one or two other bus 
cycles are outstanding. Pipelined cycles are started under control of the NA# signal as 
explained in Section 3.3.4. 

3.3.3 Nonpipelined Bus Operations 

Bus cycles require at least two clock cycles to complete. The state diagram in Figure 3-3 
illustrates how the bus operates in nonpipelined mode. 

The state machine assumes the idle TI state when there are no processor requests for 
external bus cycles (indicated by REO in Figure 3-4). When the processor requests a bus 
cycle, the bus controller transitions to the T 1 state and the ADS# signal is asserted. 
ADS# can be sampled by the memory subsystem at the end of the T 1 clock. ADS# 
assertion indicates the beginning of a bus cycle. The T 1 clock is always followed by the 
Tn clock during which the bus cycle is allowed to complete. The address bus (A32-A3) 
and the signals W/R#, NENE# and PTB are all made valid and stable prior to the end 

3-10 



LOCAL BUS INTERFACE 

One Outstanding Cycle 

No Outstanding 
Cycles 

Figure 3-3. Nonpipelined Bus State Machine 

240330-11 

of the first T 11 clock cycle. During read operations, the data bus (D63-DO) is floated to 
allow the memory subsystem to drive the data. During write operations, the processor 
drives the data bus and makes it valid and stable before the end of the first T 11 clock 
cycle. 

The memory subsystem does not assert the READY # signal unless the read and write 
cycles finish within the first T 11 clock. The diagram in Figure 3-3 shows that the state 
machine repeats the T11 state to add wait-states as long as NA# is not asserted. Wait­
states can be added as needed by leaving READY# unasserted. The signals involved in 
the memory cycle remain valid during wait-states. Assertion of NA# allows pipelined 
cycles to take place (Section 3.3.4. provides further explanation). When the processor 
samples the READY # signal, indicating completion of a bus cycles, the state machine 
transitions to the TI state, if there is no new processor bus requests at the time. If new 
requests are present, the state machine assumes the T 1 state and a new cycle begins. 

3.3.3.1 NONPIPELINED READ OPERATIONS 

Figure 3-4 shows that read operations can complete at end of the first T 11 state to 
produce two-clock read cycle. To achieve this level of efficiency, the memory subsystem 
must provide read data, assert READY # and allow for processor sampling before the 
read cycle completes. This calls for an extremely fast address to data access time (the 
i860 microprocessor Data Sheet provides detailed timing information). Required mem­
ory access times can be relaxed by adding wait-states or by using pipelining. Each wait­
state eases the access time requirement by one clock period. 

3.3.3.2 NONPIPELINED WRITE CYCLES 

Figure 3-5 shows a timing diagram of back-to-back write cycles. To perform a nonpipe­
lined write cycle, the processor asserts the ADS# signal during T 1 and drives the signals 
needed to perform the bus cycle. These include not only the same signals needed for a 

3-11 



elK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

lOCK#, PTB 

NA# 

R~DY# 

D63-DO 

LOCAL BUS INTERFACE 

CYCLE 1 CYCLE 2 CYCLE 3 

NON-PIPELINED NON-PIPELINED NON-PIPELINED 
R~D R~D R~D 
~-~ ~-~ ~-~ 

240330-13 

Figure 3-4. Fastest Read Cycles 

read, such as the address bus, W/R#, etc; but also the write data on the data bus, and 
the byte enable lines BE7#-BEO#. Write operations differ from read operations in that 
the processor does not need to wait for memory to finish its cycle in order to continue 
computing. The memory subsystem can merely latch the address bus, data bus, byte 
enable lines and other bus related signals, while simultaneously asserting READY#, 
allowing the processor to continue computing. The memory subsystem can perform the 
write operation while the processor is starting a new cycle. Thus, in Figure 3-5, cycle 1 
can physically write to memory while T 1, and T 11 of cycle 2 sets up the' next write cycle. 
In this way, cycle 1 has two full clock cycles to operate and there is no need for wait­
states. This situation is different for read cycles, where the required RAM access time 
needed to perform a two-clock nonpipelined operations is very small. 

Unlike cachable read operations, write operations make use of the processor-driven byte 
enable signals BE7#-BEO# driven by the i860 microprocessor (Section 3.3.1.3 provides 
further explanation). 

3-12 



elK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

PTS 

NA# 

READY# 

D63-DO 

LOCAL BUS INTERFACE 

CYCLE 1 CYCLE 2 CYCLE 3 

NON-PIPELINED NON-PIPELINED NON-PIPELINED 
WRITE WRITE WRITE 
~-~ ~-~ ~-~ 

240330-14 

Figure 3-5. Fastest Write Cycles 

3.3.3.3 WRITE CYCLES FOLLOWING READ CYCLES 

The timing diagram in Figure 3-6 shows that even though the data is not guaranteed 
valid until the later part of the T 11 cycle, the processor may begin driving the data bus 
early in the Tl cycle. If a read cycle precedes a write cycle, there could be contention for 
the data bus between read data being held by the memory subsystem past the beginning 
of the write's Tl cycle, and write data being driven early in Tl by the processor. As 
shown in Figure 3-6, the processor avoids this problem by delaying a write operation by 
one clock cycle when it follows a read operation. The processor does not start driving the 
write data for the write cycle (cycle 2 in Figure 3-6) until the beginning of T 11, as 
opposed to the write cycle in Figure 3-5, which starts driving the data as early as T1. 

Memory subsystem design must add a wait-state to accommodate the special handling of 
write cycles that follow read cycles. Although it is possible for the sake of simplicity to 
add a wait-state to all write operations, this is undesirable due to the degradation in 
performance. 

3-13 



ClK 

ADS# 

A31-A3. W/R#. 
BEn#. NENE#. 

PTB 

NA# 

READY# 

D63-DO 

LOCAL BUS INTERFACE 

CYCLE 1 

NON-PIPELINED 
READ 
(2-2) 

CYCLE 2 

NON-PIPELINED 
WRITE 
(3-3) 

Figure 3-6. Fastest Read/Write Cycles 

3.3.4 Pipelined Operations 

CYCLE 3 

NON-PIPELINED 
READ 
(2-2) 

240330-15 

The i860 microprocessor provides up to two levels of pipelining for 64-bit read and write 
operations. Two levels of pipelining implies the presence of three outstanding cycles, one 
level implies two outstanding cycles, and no pipelining implies no more than one out­
standing cycle. 

Pipelining of the external bus is controlled by the next address signal, NA#. By use of 
this signal the memory subsystem allows, zero, one, or two levels of pipelining. After a 
clock during which the processor has asserted ADS# to start a memory cycle, the mem­
ory subsystem can assert ~A# to indicate that even though the outstanding cycle is not 
finished, the processor can, if it needs to, start a new bus cycle. The NA# signal needs to 
be asserted for only one clock cycle, since it is latched internally. Once an asserted 
ADS# is latched, a new level of pipelining is permitted even if the processor's bus 
request comes at a later time. 

An m-D read or write cycle has a cycle time of m clocks and a cycle-to-cycle time of 0 
clocks (m 2!: D). Total cycle time is calculated from the clock in which ADS# is asserted 
to the clock in which READY # becomes active. Cycle-to-cycle time is calculated from 
the time that READY # is sampled active for the previous cycle to the time that it is 
sampled active for the current cycle. 

3-14 



LOCAL BUS INTERFACE 

Pipelining may begin whenever a bus cycle in progress requires more than two clock 
cycles to finish (m > 2). A new cycle may begin while another cycle is still in progress, if 
assertion of NA# requests it. NA# is only recognized in a clock where ADS# is inactive. 

Figure 3-7 shows how pipelining takes advantage of memory operations with four inter­
leaved memory banks. Pipelined memory reads achieve 6-2 cycles. That is, a total cycle 
time of six clocks and a cycle to cycle throughput of two clocks. The "A" in the diagram 
indicates when the address is valid. Total access time in this example is six clock cycles. 

3.3.4.1 PIPELINING AND INTERLEAVED MEMORY BANKS 

Memory subsystems will typically use as many interleaved memory banks as there are 
stages in the pipeline. Two levels of pipelining are most effective when a memory sub­
system with four interleaved banks. (Using three banks is not feasible because of the 
difficulty in making an address. decoder of this kind.) Interleaved memory banks are 
designed so that each supports one of several sequential 64-bit addresses. In a two bank 
system, fOJ example, one memory bank handles odd 64-bit addresses while the other 
handles the even addresses. In a four bank system, each bank handles one of four con­
secutive 64-bit addresses. When memory address cycles require a bank currently in use 
by an outstanding bus cycle, the memory subsystem adds wait-states while the specific 
outstanding cycle completes. It then resumes with pipelined operations. 

In another approach to the use of bus pipelining, the system initiates one more memory 
operation than the interleaved memory banks can accommodate. When the extra mem­
ory cycle is started, the memory subsystem stops issuing cycles until the accessed memory 

Start of Start of Start of Start of Start of 

Memor Memoll Memo~ Memoz Memo~ 
Cycle Cycle Cycle Cycle Cycle 

End of End of End of 
Memor Memoll Memo~ 
Cycle Cycle Cycle 

Effective Throughput =~2clk~ 

I----i----i----i----i----i----i----i----i----i----i----i----i 

Memory Cycle 1 = 6 clocks 
r-·A-------------------------, 

Memory Cycle 2 = 6 clocks 
r-·A-------------------------, 

Memory Cycle 3 = 6 clocks 
r-·A-------------------------, 

Memory Cycle 4 = 6 clocks 
r-·A---~---------------------, 

Memory Cycle 5 
r-·A----------------- ... 

240330-17 

Figure 3·7. Memory Operation Pipelining 

3-15 



LOCAL BUS INTERFACE 

bank becomes free. The memory subsystem has all the information needed to start a new 
cycle. When the new cycle starts,. the memory system queues up the next cycle. This 
eliminates the extra delay required to get a valid address for any queued bus cycle. 

3.3.4.2 ORDERING OF DATA DURING PIPELINED OPERATIONS 

In typical implementations, the memory subsystem indicates completion of pipelined 
write operations by asserting READY # when the processor provides valid data for writ­
ing. When pipelined bus operations are performed, the ordering of data driven onto the 
bus during read or write cycles must correspond to the order in which the outstanding 
cycles were initiated. If two read operations and a write operation are outstanding, the 
processor will not provide the write data until the outstanding read operations are com­
pleted. The memory subsystem must have a state machine that tracks when to drive the 
read data, and when to latch the write data. 

3.3.4.3 BUS STATE MACHINE FOR P.IPELINING 

Operation of pipelined bus cycles is illustrated by the bus state machine shown in 
Figure 3-8. Transitions are made on every clock cycle according to the state of the signals 
provided with the transition paths. 

The state machine is divided into sections that indicate zero, one, two and three out­
standing cycles. Sections that indicate zero and one outstanding cycle are small exten­
sions of the nonpipelined bus state machine shown in Figure 3-3. 

Two three-state machines have been added to the nonpipelined operation of Figure 3-3. 
They indicate state machines for two and three outstanding pipelined cycles. The states 
are labeled with subscripts in the form of Tj or Tji. The j subscript indicates the number 
of outstanding cycles, and the i subscript indicates substates 1 and 2. 

There are three processor states for each of the j-states. The states labeled with a single 
subscript Tj correspond to the initial state entered to begin a new cycle, given j - 1 or no 
outstanding cycles. A Tj state is entered only once for each external bus cycle and asserts 
the ADS# signal. A Ti. state for j > 1 is not entered unless there is a request from the 
processor and the NAtt has been or is in the process of being asserted. 

Notes: 

• RDY # in the figure corresponds to the READY # signal 

• NA# is not sampled during ADS# active clock 

• ADS# is made active in T l' T 2 and T 3 

• REO corresponds to an internal processor bus request 

T-1 is an auxiliary state which helps to complete memory cycles. Tjl states operate as the 
Tn state does for in nonpipelined cycles. During the first Tjl cycle in a given operation, 
signals that are relevant to the operation (such as address bus, W/R# and NENE#) are 
made valid and kept valid during subsequent Tjl wait-states._A Tjl state can be repeated 
on subsequent clock cycles as wait-states are introduced (that is, READY# remains 
unasserted). 

3-16 



LOCAL BUS INTERFACE 

i'DV·NA IDV·N), 

Th188 
go:.lIIldlng 

I ]_3 

-----

1Df·N), 

Two 
go:.lIIlding 

~ 
~ 

]-2 

-----

1Df·N), 

One 
~lBIIInding 

]-1 

240330-16 

Figure 3-8. Pipelined Bus State Machine 

If the processor is not requesting a new cycle, Tj2 can be entered from 1)1 when synchro­
nous sampling detects an asserted NA# while a memory cycle is stil1 active. A cycle 
request is indicated by the REO internal signal. The 1)2 state performs like the Tjl state 
but remembers that an NA# signal has been asserted and that a further level of pipe­
lining can be introduced at the processor's request. 

As mentioned, pipelined cycles occur when the memory subsystem asserts NA# while 
the CPU is processing an outstanding cycle. (The memory subsystem should not assert 
NA# when there are no outstanding cycles.) The NA# signal tells the processor that the 

3-17 



LOCAL BUS INTERFACE 

memory subsystem is prepared to receive another cycle while the previous cycle com­
pletes. In Figure 3-9, for example, NA# is asserted by the memory subsystem before the 
end of the T 11 cycle while the READY # signal remains un asserted. In this case, the 
memory subsystem has stored all the information it needs to complete the outstanding 
cycles. As soon as the processor is ready to request a new memory cycle (as indicated by 
the REO signal) and starting on the clock following the sampling of NA#, the processor 
provides, a new ADS# which starts the memory cycle. 

3.3.4.4 PIPELINED READ AND WRITE CYCLES 

Figures 3-9 and 3-10 illustrate pipelined memory cycles. Figure 3-9 shows four memory 
cycles. Nonpipelined cycles begin when there are no outstanding cycles. The digits in 
parentheses (such as 5-2 for cycle 2 in Figure 4-5) characterize the number of clocks 
needed to perform a pipelined cycle. The first digit indicates the total number of clocks 
between cycle initiation (ADS# assertion) and completion (READY# assertion). The 
second digit indicates the throughput rate (the number of clocks between READY# 
signals). 

Figure 3-9 illustrates the sequence of events in a group of pipelined cycles. The first 
operation is the cycle 1 memory read which begins when T 1 ends while asserting ADS#. 
At the completion of the Tl1 state, address lines A31-A3, W/R#, NENE# and PTB# 
are valid and latched by the memory subsystem. During this T 11 clock cycle, the memory 
subsystem asserts NA# to request a pipelined cycle. The state machine transitions to T 2 

initializing the read cycle, cycle 2, by the assertion of ADS#. During T 21, the memory 
subsystem latches the various signals needed to perform the cycle, and asserts NA# to 
start another pipelined cycle. As a result, the processor requests another cycle. The state 

ADS# 

CYCLE 1 
NON-PIPEUNED 

READ 
(5-5) 

Tll T2 T21 

CYCLE 2 
PIPELINED 

READ 
(5-2) 

T21 T3 

CYCLE 3 
PIPEUNED 

WRITE 
(6-3) 

T21 T3 T31 

CYCLE'(' 
PIPEUNED 

WRITE 
(6-2) 

T3 T31 

A31-A3,W/R#, h~~~~~AAm,--+-'~ronr--n~urn~~~AAm,--+-'~~r-~ BEn#, NENE#, 
LOCK#,PTB~~~--+D~~L-~~~~~~~~-+~~~~~~~~ 

NA# 

READY# 

063-00 

240330-18 

Figure 3-9. Pipelined Read Followed by Pipelined Write 

3-18 



LOCAL BUS INTERFACE 

machine transitions to T3 and a third cycle begins by another assertion ofADS#. During 
the same T 3 clock, READY # is asserted indicating that cycle 1 has completed and that 
the data bus has valid data. The state machine transition from T 3 to T 21 should be 
understood to gain insight as to how the pipelined bus state machine operates. Cycle 3 
starts with a T3 state and ends with a T21 state (instead of T31), since the sampling of an 
active READY # signal reduces the number of outstanding cycles back to two. Cycle 3 is 
a write cycle, so during T 21, all the previously mentioned bus cycle related signals in 
addition to the byte enable lines (BE7#-BEO#) and the data bus are made valid and 
latched by the memory subsystem. During T21 a new NA# is asserted, allowing the state 
machine to start cycle 4 and transition into T 3 again. Another READY # is asserted and 
cycle 2 completes, leaving cycles 3 and 4 outstanding. For the remaining cycles, the state 
machine oscillates between T3 and T31 thus maintaining two levels of pipelining (three 
outstanding bus cycles). 

The processor does not drive cycle-3 data onto the Data Bus until two READY # asser­
tions indicate completion of pipelined cycles 1 and 2. Note that since the cycle-3 write 
operation follows a read operation (cycle 2), the processor waits an additional clock 
cycle before driving cycle-3 data. The memory subsystem must detect the read/write 
sequence and delay by one clock cycle the assertion of READY # and the sampling of 
write data. 

Figure 3-10 shows a nonpipelined write operation followed by a pipelined write and two 
pipelined reads. The write operations are not preceded by a read operation, and the 
memory subsystem is not required to add a wait-state to complete the cycle. 

3.3.5 8-Bit Bus Transfers for Bootstrapping (CS8 Mode) 

Eight-bit code size mode is enabled when the INT/CS8signal is sampled active at the 
beginning of the period in which RESET is de asserted (Figure 3-11). In eight-bit code 
size mode, instruction cache misses are transferred as single byte reads instead of 8-byte 
reads (using bits D7-:DO of the data bus). This allows the i860 microprocessor to be 
bootstrapped with an 8-bit EPROM. For these single byte code reads, byte enables 
BE2#-BEO# are redefined to be the three low order bits· of the address bus, A2-AO. 
While KEN# is asserted, these code byte reads are used to update the contents of the 
instruction cache. (Section 3.5 explains the function of the KEN# signal). Pipelined 
memory cycles are not started in this mode, even if NA# is asserted. 

In CS8 mode, all program code resides in 8-bit memory (ROM) while data are in 64-bit 
memory (RAM). A reset operation traps to the OxFFFFFFOO standard trap handler 
starting address. Hardware must disable RAM address space covered by the 8-bit boot­
strap ROM and enable the ROM or EPROM over this address space. When exiting 
8-bit code size mode, programs must output to a special I/O port which tells the proces­
sor to unmap ROM or EPROM from memory and map the normal 64-bit memory. Once 
code is loaded in 64-bit memory, initialization code initiates 64-bit code fetches by clear­
ing the CS8 bit in the DIRBASE register. Once 8-bit code-size mode is disabled by 
software, it cannot be reenabled until the next hardware reset. 

3-19 



LOCAL BUS INTERFACE 

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

NON-PIPELINED PIPELINED PIPELINED PIPELINED 
WRITE WRITE READ READ 
(5-5) (5-2) (5-2) (5-2) 

T1 T11 T2 T21 T3 T21 T3 T21 T3 T21 T3 

elK 

ADS# 

A31-A3,W/R#, ~~~~~~~~r--h~~~--~~,mr.r--n,~rlr~-+~~ 
BEn#, NENE#, 

PTB~OQ~L-~~~~~~~~--~~~~~~~~~~~ 

READY# 

D63-DO 

240330-58 

Figure 3-10. Pipelined Write Followed by Pipelined Read 

3.4 BUS CONTROL OPERATIONS 

This section explains bus control operations including: page-mode and static-column 
DRAM support, bus arbitration, and bus locking. 

3.4.1 Page Mode, Static Column DRAMs and Next Near Operation 

The external bus interface facilitates high-performance designs using low-cost DRAMs. 
The next near signal (NENE#) facilitates designs using page mode and static column 
DRAMs. 

Page mode and static column DRAMs perform best when multiple reads or writes access 
closely-situated areas of memory (as in the same row address of a given DRAM). This 
occurs frequently because memory accesses are often sequential. 

The NENE# signal indicates that a memory cycle is using the same RAM page address 
as the previous cycle. The processor ignores a number of lower bits of the address that 
corresponds to the size of a page in the DRAM. NENE# provides information to the 
memory subsystem that it can use to enable page mode or the static-column mode oper­
ation of the DRAMs. NENE# eliminates the need for external circuitry and eliminates 
the difficult timing problems that are involved in implementing this capability. 

3-20 



LOCAL BUS INTERFACE 

~16 CLKs 

CLK 

RESET 

INT/CS8 

240330-59 

Figure 3·11. CS8 and RESET Activity 

The i860 microprocessor determines page size by interpreting the DPS field (bits 3, 2 
and 1) of the dirbase register. The value in the field indicates the number of least­
significant bits to ignore when comparing a cycle address to previous addresses. The 
number ignored equals 12 plus DPS. Zero is is an appropriate value for 256K x n 
RAMs, 1 for 1M x n RAMs, and so 00. 

NENE# is never asserted on a bus cycle immediately following the de assertion of 
HLDA. NENE# is not asserted for TLB miss cycles. 

3.4.2 Bus Hold, Hold Acknowledge, Bus Request 

The i860 microprocessor provides the input line HOLD and the output lines HOLDA 
(hold acknowledge) and BREQ (bus request) to control arbitration of the buses and 
control lines. 

The hold request signal (HOLD) is driven by an external device or bus arbiter to request 
control of the bus from the proces~or. The HOLD signal can be driven asynchronously. 
The processor has an internal synchronizer to prevent metastable problems when sam­
pling for HOLD. When hold is asserted, the processor blocks any new cycles. Once all 
outstanding bus cycles are completed, the processor relinquishes bus control by floating 
all output lines except HOLDA and BREQ. HOLDA indicates to the requesting device 
that bus control has been relinquished. The device can then use the signals and buses it 
needs until it relinquishes control to the processor. 

3-21 



LOCAL BUS INTERFACE 

The i860 microprocessor can continue executing from the cache once it has relinquished 
control of the bus. The BREO signal indicates to any external bus arbiter that the 
processor is waiting for an external bus cycle. BREO provides a means to implement a 
more efficient system for arbitrating between bus contenders such as a DMA device or 
another processor. 

The bus state machine in Figure 3-12 illustrates the process that brings bus activity to a 
halt when the HOLD input signal is asserted. This diagram is similar to the bus state 
machine in Figure 3-8, except it includes the hold state and labels the REO signals as 
REONH. REONH corresponds to REO ANDed with NOT HOLD. ANDing all REO 
signals with NOT HOLD prohibits the bus control unit from initiating new cycles while a 
hold is pending. Once all outstanding cycles are done, the state machine assumes the TI 
idle state where the SHOLD signal (synchronized version of HOLD) causes a transition 
to the hold state T H. When the processor detects that the SHOLD signal is no longer 
active, the state machine transitions back to T1, if no internal requests are pending 
(NOT REO), or to T 1 to start a new bus cycle. 

Figure 3-13 timing diagrams illustrate the operation of HOLD, HOLDA, and BREO. 
HOLD is asserted within a T21 cycle. Since external HOLD must be synchronized inter-

. nally, SHOLD is asserted one clock cycle after the assertion of HOLD. This explains 
why the T 2' T 21 bus cycle was started. This new bus cycle would not have started if 
HOLD had been asserted one clock earlier. The state machine completes all outstanding 
cycles and ignores internal bus requests indicated by the assertion of BREO. Once the 
TI idle state is reached, the hold state TH is entered. HOLDA is then asserted, and the 
microprocessor floats all output signals except HOLDA and BREO. Within the second 
hold cycle, the HOLD signal de asserts. The state machine exits the hold state and tran­
sitions to T 1 to perform another bus cycle request. Unlike the assertion of HOLD, de­
assertion of HOLD resets the SHOLD signal so that, on the next clock cycle, the bus can 
be recovered and HOLDA made inactive. The recommended set-up and hold times are 
required to ensure release of the hold state on the clock cycle following the deassertion 
of HOLD. 

BREO is activated by the processor's internal bus requests independent of the state of 
HOLD and HOLDA. 

Notes: 

• RDY # in the table corresponds to the READY # signal 

• NA# is not sampled during ADS# active clock 

• ADS# is made active in T1, T2 and T3 
• REONH is the internal bus request ANDed with synchronized HOLD 

• HLDA is made active in T H 

• HOLD is synchronized internally. 

3.4.3 Bus Lock 

The bus lock signal (LOCK#) provides indivisible read-modify-write memory operation 
sequences for use in multiprocessor systems. Multiprocessor systems with an external 
arbiter should also use the LOCK# signal to prevent granting the bus to other masters. 

3-22 



LOCAL BUS INTERFACE 

RlV·NA RlV'NA 

Three 
OutsunIing 
Cycles 

I~ 
]_3 ~ 

-----

RlV~ 

1Wo 
Clu1B1aIding 
Cycles I; 

~ 
]-2 

-----

RlV.NA 

One I~ Ou1slllnding 
Cycles 

~ j_1 

-----

No 
Ou1s1anding 
Cycles 

240330-19 

Figure 3·12. Pipellned Bus State Machine Including Hold State 

Programmers need not track synchronicity between the bus and the instruction that sets 
the BL bit. LOCK# is asserted along with ADS# on the first data bus cycle following 
the setting of the BL bit. LOCK# and ADS# are de asserted on the first data bus cycle 
after clearing of the BL bit. 

The bus is not locked until after the first data access cache miss causes the assertion of 
the LOCK# signal. Multiprocessor system software should therefore ensure that the 
fIrst load instruction in a locked sequence references noncachable memory. 

3-23 



LOCAL BUS INTERFACE 

121 T2 

ClK 

AOS# 

A31-A3, W/R#, hn~-h-"7r7m'AT--t---t---t"T"7l:-7r.d7\ 
BEn#, NENE#, 
lOCK#,PTB~~~~~~--t---t---t~~9Y 

REAOY# 

063-00 __ 

HalO 

HlOA~-~-~--+---r-~--~WJ 

BREQ 

240330-20 

Figure 3-13. HOLD, HLDA, and BREQ 

3.4.3.1 SUPERVISOR-MODE ACTIVATION OF LOCK# 

Supervisor mode software can set or clear the BL bit in the dirbase register directly. 

3.4.3.2 USER-MODE ACTIVATION OF LOCK# 

User mode software can set or clear the BL in the dirbase with the lock and unlock 
instructions. These instructions support generalized interlocked sequences. The lock in­
struction sets the BL bit in the dirbase, and the next load or store operation locks the 
bus. Interrupts are disabled until the bus is unlocked. The unlock instruction clears the 
BL bit in the dirbase, and the next load or store operation unlocks the bus. 

Some restrictions apply to this method. An interlocked instruction sequence must not 
branch or execute outside the 30 sequential instructions that follow a lock instruction. 
The interlocked sequence must be restartable from the lock instruction if a trap occurs, 
as in read-modify-write sequences. In sequences with more than one store instruction, 
software must prevent traps following the initial nonrestartable store instruction. This 
ensures that the sequence will not be restarted beyond this point. To meet this condi­
tion, the software must read and write the unmodified values of the locations used by the 

3-24 



LOCAL BUS INTERFACE 

instructions following the first store, to prevent the possibility of a data access page fault. 
Software must also ensure that executed code is within the same page to prevent instruc­
tion fetch page faults. 

The processor will ignore a second lock instruction issued before the bus is unlocked. A 
trap occurs when from 30 to 33 instructions have executed following a lock instruction, if 
a load or store which follows an urilock instruction has not been executed. 

If a trap occurs between a lock instruction and the first load or store following an unlock 
instruction, the interlock bit (IL) in the psr is set and BL is cleared. IL indicates to the 
trap handler that a lock sequence has caused the trap. It searches backward for the lock 
instruction and restarts from that point. The trap handler can scan up to 33 instructions; 
if no lock instruction is found, it signals an error to the user code. 

3.4.3.3 BUS LOCK DURING PAGE TABLE UPDATE 

The i860 microprocessor also asserts LOCK# in TLB miss processing to update the 
accessed bit within a page-table entry. The maximum time that LOCK# may be asserted 
for this case is the time needed for hardware to perform a read-modify-write in the 
page-table entry. 

The LOCK#signal is asserted with an appropriate setup time relative to the clock cycle 
that samples the assertion of ADS#. This ensures that this bus cycle will be part of a 
locked sequence. 

Figure 3-14 illustrates locked cycles. The LOCK# signal is asserted prior to the begining 
of the T 11 state of cycle 1 to initiate a locked cycle. The LOCK# signal is unasserted 
after the end of T 11 to indicate that cycle 2 is not locked. This particular example is not 
of practical use, since it locks a single cycle, but it illustrates the LOCK# signal timing. 

3.5 CACHE CONTROL OPERATIONS 

The KEN# (cache enable) input signal enables or disables cache updates. The PTB 
output signal is used when paging is enabled to provide the memory subsystem with 
cache control page table information relating to the current cycle. 

The i860 microprocessor prevents updates of both the data and instruction caches unless 
KEN# is sampled active. Enabling cache updates for a given cycle requires that KEN# 
be sampled active on the clock period after ADS# through the clock in which NA# or 
READY # is asserted. Updating either cache involves the generation of four 64-bit read 
operations. If KEN# is found deasserted for the first fetch cycle, the data being reaQ is 
not cached. 

Accesses to data or instructions already cached are not inhibited by KEN #. To prevent 
such accesses the caches must be flushed. 

When paging is enabled, the values in the cache disable (CD) and write through (WT) 
page table bits are used to determine the caching strategy. During memory transfers, the 
secondary page table entry's CD bit indicates whether accessed data should be stored in 
an external cache. CD in the first-level page table is ignored. The WT bit allows software 
to determine the internal caching strategy. If WT is set in a page table entry (PTE), 
on-chip caching for data is inhibited. If WT is clear, normal write-back policy applies to 

3-25 



ClK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

PTS 

NA# 

READY# 

D63-DO 

lOCK# 

LOCAL BUS INTERFACE 

CYCLE 1 CYCLE 2 CYCLE 3 

NON-PIPELINED NON-PIPELINED NON-PIPELINED 
READ WRITE WRITE 
~-~ ~-~ ~-~ 

240330-21 

Figure 3-14. Locked Cycles 

page table data. The WT bit of the page directory entries is reserved and is not refer­
enced by the processor. The WT bit is independent of the CD bit; data that is not stored 
in the on-chip caches may be placed in an external cache. 

The internal cache is disabled when a CD bit is set or when an external KEN# signal is 
unasserted. The CD and WT bits do not function when paging is disabled. 

When the PBM bit in the epsr is set, the PTB output signal reflects the value of the WT 
bit. When clear, PTB reflects the value of the CD bit. The PTB output signal remains 
unasserted while paging is disabled. 

3.6 TRAPS AND INTERRUPTS 

Traps are caused by external conditions or by exceptional conditions detected in the 
course of a program's execution. A trap causes the instruction being executed to abort 
and transfers control to a trap handler program stored in the hexadecimal virtual ad­
dress OFFFFFFOO. 

3-26 



LOCAL BUS INTERFACE 

The trap handler reads the psr and fsr registers to identify the cause of the trap and 
branches to the portion of code that processes the trap (or traps if more than one 
occurred simultaneously). Once the trap handler has executed code to service the trap 
conditions involved, it restores the state of the processor, restarts the aborted instruction 
and resumes normal program execution. The i860 microprocessor is designed to ensure 
that all program instructions can be restarted. The i860™ 64-Bit Programmer's Reference 
Manual explains how to write trap handling software. Table 3-2 summarizes the causes 
and indications of various traps. 

The reset trap and interrupt trap are caused by external conditions. Reset traps are 
caused by hardware resets. (Section 3.8 provides further explanation.) Interrupts are 
caused when an external source asserts the INT signal while interrupts are enabled (i.e. 
while the 1M interrupt mask bit is set in the psr). The trap handler immediately saves 
and clears the 1M to inhibit further incoming interrupts. 

The i860 microprocessor does not provide an interrupt acknowledge signal. After the 
interrupt takes place, the trap handler can read from the external I/O system to deter­
mine the source of the interrupt. The processor can then indicate to a port that the 
interrupt has been processed. 

Table 3-2. Types of Traps 

Type Indication Caused by 

psr epsr fsr Condition Instruction 

Instruction IT OF Software traps trap, intovr 
Fault IL Missing unlock Any 

Floating FT SE Floating-point source Any M- or A-unit except 
Point AO,MO exception Imlow 
Fault AU,MU Floating-point result Any M- or A-unit except 

AI,MI exception fmlow, pfgt, any pfeq_ 
overflow Reported on any F-P 
underflow instruction plus pst, 
inexact result fst, and sometimes 

tid, ptld, Ixfr 

Instruction IAT Address translation Any 
Access Fault exception during 

instruction fetch 

Data Access DAT Load/store address Any load/store 
Fault translation exception Any load/store 

Misaligned operand Any load/store 
address 

Operand address 
matches db register 

Interrupt IN External interrupt 

Reset No trap bits set Hardware RESET signal 

3.7 TEST SUPPORT FUNCTIONS 

The i860 microprocessor has a boundary scan mode for component or board level testing 
of signals and logic. Special test logic or instrumentation needs only to connect to the 
CLK, BSCN, SCAN, SHI, BREQ, RESET and HOLD signals to sample and drive the 
external processor signals. Table 3-3 indicates the signals for the test mode selections. 

3-27 



LOCAL BUS INTERFACE 

Sampling of an active boundary scan (BSCN) input signal initiates the boundary scan 
mode within the following clock cycle. Boundary scan mode may be activated while 
RESET is active. The processor exits boundary scan mode on the clock cycle following 
deassertion of BSCN. The internal state is undefined when the processor exits boundary 
scan mode. RESET should be asserted to reinitialize the processor. 

Table 3-3. Test Mode Selection 

BSCN SCAN Testability Mode 
LO LO No testability mode selected 
LO HI (Reserved for Intel) 
HI LO Boundary scan mode, normal 
HI HI Boundary scan mode, shift 

SHI as input; BREQ as output 

While in boundary scan mode, the processor may operate in normal mode or shift mode. 
Shift mode is a submode that is entered on the clock in which SCAN input is asserted. 
The normal mode is entered on the clock in which SCAN input is deasserted. 

For testing purposes, each signed pin has associated with it an internal latch. Table 3-4 
identifies these latches by name and classifies them as input, output or control. 

Table 3-4. Test Mode Latches 

Input Output Associated 
Control Latch Latch Latch 

SHI 
BSCN 
SCAN 
RESET 
Do-D63 Do-D63 DATAt 
CC1-CCO 

A31-A3 ADDRt 
NENE# NENEt 
PTB# PTBt 
W/R# W/Rt 
ADS# ADSt 
HLDA 
LOCK# LOCKt 

READY# 
KEN# 
NA# 
INT/CS8 
HOLD 

BE7-BEO# BEt 
BREQ 

3-28 



LOCAL BUS INTERFACE 

Here is a typical test sequence: 

1. Enter shift mode and assign a value to all the latches. 

2. Enter normal mode to force values onto desired output pins, and read all pin values. 

3. Enter shift mode to read the new values of the input pins. 

3.7.1 Normal Mode Operation 

Normal mode begins with a clock cycle that samples a deasserted SCAN input signal. 
Within normal mode, the contents of the output latches are driven onto the output pins 
or buses if the corresponding control latch bits are set. If the corresponding control latch 
is not set, the output pins are not driven. RESET and HOLD must be asserted to float 
the outputs. 

3.7.2 Serial Mode Operation 

Shift mode begins with a clock cycle that samples the SCAN input in the active state. 
The value of all pins are immediately loaded into latches. Input pin latches load exter­
nally driven values. Floated output or bidirectional pins also read externally driven val­
ues. Latches with forced output pin values during normal mode, load their own values 
and do not change. 

Immediately after the clock cycle that sets the shift mode, the output of the BREQ 
output signal reflects the value of the BREQ latch. On subsequent clocks, the value of 
all the latches are shifted to the BREQ pin. At the same time, new values are being 
shifted in via the SHI pin. Figure 3-15 shows the order in which boundary scan latch 
chains are serially read and written. All outputs except HOLDA and BREQ are floated 
in shift mode to avoid glitches on the output lines. However, some glitches may be 
evident in the HOLDA output pin. 

~ S~I ~BS~N~SC~N~E~~A~At~ rfo ~ ... ~ rf~3 ~ 
Z21 ~ Z60 ~ I3~ ~ ... ~ ~~ ~Ab~k~N~~2Et~NJ~~#~ ~~t ~ 
p~~# ~ Jv~~ ~ vJIW# ~ ~8~t ~Ab~9#~ Hr8A ~ Lb~Kt~Lci6~#~J..b\#~ 
114 ~ 115 ~ 116 ~ 117 ~ 11S~ 119 ~ 

KEN# NA# INT/CSS HOLD BEt BE7# 

Figure 3-15. Boundary Scan Chain 

3-29 

126 ----"0.. 127 ~ 
~ BEO#-----r BREQ-' 

240330-22 



LOCAL BUS INT.ERFACE 

3.8 RESET AND CLOCK CIRCUIT 

i860 microprocessor RESET input must remain high for at least 16 clock periods to 
initialize the processor. Table 3-5 shows the status of all output pins while RESET is 
asserted. Once the RESET signal goes low, the processor traps and begins execution at 
hexadecimal address OFFFFFFOO to execute the central trap handling routine. The 
i860™ 64-Bit Programmer's Reference Manual details processor status following a reset 
operation. 

The circuit in Figure 3-16 shows the simple system needed to generate the clock and the 
RESET signal. The clock is a standard TTL circuit rated for the i860 microprocessor 
configuration used (e.g. 40 MHz). 

The RESET signal is triggered when power is first turned on or when the reset button is 
pushed. Voltage in the capacitor falls to zero, creating a high value for the inverters 
output. The value is clocked by two D flip-flops to synchronously assert a RESET signal. 
The RC delay is at least 16 clock periods, raising the inverter input to a voltage level that 
moves the output to a low state. The low-level signal is clocked through two flip-flops 
and causes the RESET to deassert. The inverter and the flip-flops are used to clean up 
the RC signal and synchronize the resulting RESET signal. Two flip-flops help to pre­
vent a metastable state that could be derived when synchronizing the RC network pulse. 

Table 3-5. Output Pin Status During Reset 

Pin Value 

HOLD 
HOLD 

Pin Name 
Not Acknowledged 

Acknowledged 

AOS#, LOCK# HIGH Tri-State OFF 

W/R#, PTB LOW Tri-State OFF 

BREQ LOW LOW 

HLOA LOW HIGH 

063-00 Tri-State OFF Tri-State OFF 

A31-A3, 
BE7# - BEO#, Undefined Tri-State OFF 
NENE# 

The circuit shown to generate CS8 consists of a driver (e.g. two inverters) to delay 
RESET and provide the hold time relative to the falling edge of RESET. This signal is 
ORed with INT. CS8 is inactive after being sampled by the falling edge of RESET, and 
the INT signal remains unaffected. 

3-30 



47 ohm 

FlESET 
SWITCH 

+5V 

LOCAL BUS INTERFACE 

33MHz or 40Miz 
OSCIUATOR 

:»+---1 0 

10630 ohm 

Q o 

_--I CLK elK 

100 uF 

Q f----I--~ 

Figure 3-16. Circuit for Clock, RESET and CS8 Generation 

3-31 

CLK 

INTless 

FlESET 

240330-12 





Memory Interfacing 4 





4.1 INTRODUCTION 

CHAPTER 4 
MEMORY INTERFACING 

The on-chip caches of the i860'M 64-bit microprocessor contribute to its extremely high 
level of performance. Depending on the locality of memory references, the processor can 
usually operate from these caches. As a result, fewer accesses are made to the external 
bus allowing instructions and data to be supplied to the CPU at a very fast rate. 

The need for a high-performance cache system stems from the i860 microprocessor's 
access performance, which is double that of DRAMs. Because of this disparity, the 
cache is employed to decouple the processor from its external bus. In this way, the effect 
of a slower DRAM subsystem is greatly reduced. 

The locality of memory references is key in determining memory system performance. 
Software with widely dispersed memory references increase the number of DRAM ac­
cesses. The effect of a slower DRAM subsystems on processor performance is much 
more pronounced in applications characterized by widely dispersed references. These 
applications, such as Linpack, and graphics matrix operations or file handling applica­
tions, such as Troff, warrant the effort and cost needed to design efficient DRAM sub­
systems. Inoptimal designs can easily reduce performance in these applications by 60 to 
70 percent. Poor performance in these applications has a disproportionate detrimental 
effect on overall system performance, especially if important system functions such as 
page swapping or display are involved. 

This chapter examines a DRAM subsystem design. The example has been optimized to 
reduce the number of clocks in which the processor waits for the bus. Controller func­
tion, processor features, and details such as timing and power consumption are analyzed. 
The example cannot account for all processor applications, and many applications will 
implement optimizations not found here. This design has been built and tested, however. 
If desired, it may be implemented as shown. 

The example assumes a working knowledge of computer system design. Items that are 
discussed but not explained include DRAM operation, PLD programming and opera­
tion, worst case analysis techniques, and i860 microprocessor bus operation. The com­
plete schematics and PLD equations are included in Appendix C. 

4.2 CPU FEATURES 

Certain i860 microprocessor features are specially devised to facilitate optimum DRAM 
subsystem performance. This section briefly describes these special features. 

4.2.1 The KEN# Input 

External logic, which is usually part of the DRAM controller, generates the KEN# 
input. KEN# indicates that the current read cycle is cacheable. As discussed in earlier 
sections, the processor generates three read cycles (in addition to the current cycle) in 

4-1 



MEMORY INTERFACING 

response to KEN #. These cycles provide 32 bytes - enough data to fill one cache line. 
The handling of these cycles impacts memory system performance and will be discussed 
in the next section. 

KEN# is generated for every cache block fill cycle. It is usually generated by decoding 
the processor address. Since the processor has no I/O space, memory mapped I/O ad­
dresses must be non-cacheable. 

Figure 4-1 shows the timing requirements for generating KEN#. The most stringent case 
is a pipelined zero-wait-state cycle where KEN# must be generated in one clock. Once 
the address is. valid, KEN# must be generated in time to meet the setup time (tlO) 
dictating that KEN# be generated by combinatorial logic. 

4.2.2 Bus Pipelining 

Obviously, the i860 microprocessor's bus pipelining feature must be incorporated in 
D RAM subsystem design. This feature allows the processor to overlap bus cycles. 

Pipelining is controlled by the processor's NA# input signal. It allows the processor to 
begin a new bus cycle while another cycle is in progress. It can be activated twice before 
READY # is activated. In this way, three bus cycles can be activated before the first is 
completed. 

Although the process is not demonstrated in this example, write cycles can be pipelined. 
In this design, writes are buffered or "posted" and can run without wait-states. As such, 
write cycle performance does not benefit from the use of pipelining. 

Read cycle performance does benefit from pipelining, however, especially if read cycles' 
are due to a floating point vector load. Vector loads can occur in long sequences. Since 
most of these cycles do not cross a DRAM page boundary, they can be executed with a 
minimum number of wait-states. Figure 4-2 demonstrates how pipelining facilitates 
floating-point vector loads. 

eLK 

ADS# ~I / 71 I 
I ~ <: : : ADDRESS 

I 
NA# I \ /I 

KEN# 

240330-23 

Figure 4-1. KEN# Timing 

4-2 



MEMORY INTERFACING 

2 3 4 5 

CLK 

ADS. 

ADDRESS ____ --JX'-__ .:..-_--JX 2 

NA. I I 
n\TA ................................... : .......... q=> .. cp ... cp. 

READY' I ~--"I_.--' 
I I 

240330-24 

Figure 4-2. Bus Pipelining . 

The first read cycle in Figure 4-2 occurs from an idle bus state. In this case, the DRAM 
controller must add five wait-states to the cycle. These wait-states satisfy the RAS access 
time of the DRAMs. They are added by suppressing READY#. Ordinarily, waiting for 
READY# is a waste of processor time. Activating NA#, however, allows the next bus 
cycle to start. NA# is sampled active in the third clock, and ADS# is driven active. The 
address for the second cycle is valid one clock later. 

NA# is activated again before returning READY# to the CPU, and the third vector 
load is performed. At this point, READY # must be returned to the processor before 
NA# is activated again. Data for the first read cycle must be valid at the processor data 
input pins when NA# is activated. 

In this example, the pattern can be repeated for an unlimited number of bus cycles. 
When ADS# is not activated in response to NA#, the pattern is interrupted. Clearly, 
the benefit of pipelining in this example is that read cycles overlap. Consecutive pipe­
lined read cycles return data to the processor every two clocks. 

4.2.3 The Next Near Pin 

The next near (NENE#) feature directly supports the DRAM subsystem. (The next 
near pin is described fully in Chapter 3.) Its function optimizes page or static column 
mode designs. It indicates that the current row address is the same as the previous 
address. 

This DRAM design example uses static' column mode memories. These memory devices 
contain a row address register. The register simplifies access to memory if the access is 
within the same DRAM page (row address). In the example, RAS# can remain active 
from the previous cycle. For read cycles, CS# can also remain active. This type of cycle 

4-3 



MEMORY INTERFACING 

saves clocks: the required number of clocks doubles if RAS# must be activated to latch 
the row address. These extra clocks are required to meet RAS# precharge time. Imple­
mentation of this function will be detailed later in this chapter. 

The NENE# function optimizes memory subsystem design. If implemented in logic, the 
, function requires at least one register and a comparator. Another benefit is that 

NENE# is available along with the address, and no additional time is needed to gener­
ate this signal. 

4.2.4 Write Data Function 

Data bus contention could result when a write cycle is immediately preceded by a read 
cycle. The i860 CPU includes a bus feature to prevent this problem. When a write cycle 
occurs in the clock following a read cycle, write data valid timing changes. Figure 4-3 
illustrates this change. 

CLK 

ADS# I 
w/R#-+--+-1 --+-1 --1I-----iI--
DATA «t««: > $«: > 

READY# I I 

DiagnITI A. Zero-Wait State Write Cycfes 

CLK 

ADS# I I 
W/R# I I I I I I I 

DATA -i·· .... ·[··cb .. l·<<<{<< : > 
READY# I 1\ 1/ I 1\ Ir 

I I -r I I I 
DiagnITI B. React Cycte Folowed By Write 240330-25 

Figure 4-3. Read - Write Timing 

4-4 



MEMORY INTERFACING 

Diagram A shows two successive write cycles. Diagram B shows a read cycle followed by 
a write cycle. The write data in Diagram B is driven one clock later than it is in Diagram 
A. This feature allows data bus transceivers to tristate the processor side of the bus 
before the CPU drives the write data. 

4.3 DRAM SUBSYSTEM OVERVIEW 

The features just described help make the DRAM subsystem more efficient. These func­
tions are included in the processor to save logic needed to implement the DRAM con­
troller. Timing constraints have also been eliminated, allowing fewer clocks per bus 
cycle. 

The DRAM subsystem example described in this chapter illustrates how to use these 
features and describes the interaction of the processor with the memory system. The 
subsystem has been designed to use a 33.33 MHz clock. The example uses one Mbit 
memories which are organized 256K x 4. This memory is selected because of its mini­
mum configuration. With a 64-bit bus, the minimum memory configuration is 2 Mbytes 
(16 devices). Using 1M x 1 memory devices, the minimum memory configuration is 8 
Mbytes (64 devices). 

Figure 4-4 is a block diagram of the memory subsystem example. It comprises five parts: 
address path logic, data path logic, parity logic, controller and DRAMs. 

4.3.1 Address Path Logic 

Address path logic performs several functions. Its primary function is to drive the pro­
cessor address to the DRAM bank. To perform properly, it requires two paths for the 
row and column address. 

In this example, the row address consists of processor address bits 12 through 20. These 
bits are buffered by the 74BCT29827 buffer. The buffer also disables the row address 
when the column address is selected. The device's OE pin is used for this function. 

The output enable of the column address logic is also used for this function, but the 
column address must be latched for pipelining. For this reason, an AS821 register with 
output enable function is used. 

The register and buffer chosen to implement the address path logic are 10 bits wide. The 
memory uses nine of these bits. The remaining bit drives the parity DRAMs. The parity 
logic is described later. 

Outputs of row and column address devices drive every DRAM. Restrictions on the 
drive capabilities of these devices require additional drivers every 4 Mbytes. Two sets of 
address logic devices are shown in Figure 4-4. This configuration allows up to eight 
Mbytes of memory. Additional drivers can easily be added for larger co'nfigurations. 

4-5 



Processor 
Control 

Processor 
Address 

Parity 
Logic 

MEMORY INTERFACING 

Write Partity Data 

RASPO# 

Parity 
DRAM 

PARERR 

Control 
Logic 

CS#(O-4) 
~~~--~~------------~ 

Column 
RASO+CSO RAS2+CS2 

Row Add DRAM 0 DRAM 2 

RAS1 +CS1 RAS3+CS3 

Column Address Register 

DRAM 1 DRAM 3 

Row 

Row Add 

Column Address Register 

READ DATA 

Processor Data 

240330-26 

Figure 4-4. Maximum Example Configuration 

4.3.2 Data Path logic 

The data path consists of eight 74AS646 bidirectional latching transceivers. These de­
vices fulfill two critical memory system requirements. These transceivers hold read data 

4-6 



MEMORY INTERFACING 

when the processor performs pipelined read cycles. Data for two reads has been ac­
cessed when the processor begins the third read cycle in a pipe lined sequence. The data 
registers hold the first cycle's data while the second cycle's data is held at the transceiver 
input. 

The register feature of the transceivers is also used during write cycles. The memory 
system posts all write cycles. During a posted write, NRDY # is returned to the proces­
sor before data is written to the DRAM. Without posting, write cycles would require at 
least two wait-states. Registers in the data transceivers hold write data after NRDY# 
has been activated. Section 4.4.4 provides a detailed description of the posted write 
function. 

4.3.3 Parity logic 

Parity logic generates parity information and checks for parity errors. Eight 74AS280 
9-bit parity generator/checker devices are used. 

One parity bit is generated by each device. These bits are either written to the parity 
DRAMs or used by logic to generate a parity error signaL The parity error (PARERR) 
signal generates an interrupt which cannot be processed in time to stop the current bus 
cycle. The bus cycle which caused the error cannot be restarted. 

The parity DRAM devices are 1 Mbit chips organized as 1M x 1. These DRAMs are 
used to store parity information for all eight Mbytes of main memory. The tenth address 
bit mentioned in Section 3.1 supports these devices. They divide the parity DRAMs into 
four sections which correspond to appropriate banks of main memory. 

Odd-parity was chosen because of implementation restrictions. If even-parity is used, "I" 
inputs of the parity generators must be pulled down. Pull-ups are preferable in light of 
noise immunity. 

4.3.4 Control logic 

The controller circuit contains the bus tracking state machine which is implemented with 
one PLD. The output signals of the PLD control three other PLD devices, each of which 
implements a specific control function. 

The state machine PLD generates five state-variable outputs. These outputs define 32 
states; designated sequences of these states implement various bus cycles. The state 
variable signals are decoded by the other control PLDs to create control signals. These 
signals, such as RASO#, CAE # , and WEL, are activated to control the DRAMs, ad­
dresses and data logic. 

Because of timing restraints, the state machine PLD (DSTAT in Appendix C) generates 
control signals NA# and RDY#. These constraints will be explained in the functional 
description (Section 4.3). 

The DSTAT PLD also generates the BSY# signal. It serves as an arbiter between dif­
ferent system units, allocating processor bus priority to other subsystems that support 
bus pipelining. 

4-7 



MEMORY INTERFACING 

The Control-A PLD generates row address strobe (RAS#) signals for all DRAM banks. 
Address bits are decoded along with state variable outputs of the DSTAT PLD to gen­
erate these signals. Each signal drives every DRAM in a 2 Mbyte array. The PLD is not 
registered because it primarily performs a decode function. 

The RAS# signals select the active DRAM bank. Address inputs of this PLD are 
. A21-A23. Figure 4-5 shows the address map for four banks of memory. The program for 

this PLD is listed in Appendix C. It shows the states decoded for the write, read and 
refresh functions. This PLD can be duplicated if a larger main memory is required, in 
which case address decode must be modified to select more memory banks. 

This PLD also generates RAS# for the parity DRAMs. RASPO# enables the 1M x 1 
DRAMs containing parity information for 8 Mbytes of main memory. Decode of this 
signal requires fewer address inputs. 

Together, the Control-B and Control-C PLDs generate all address and data path control 
signals. They both have as inputs the state variables from the DSTAT PLD. Control-B 
also operates from a delayed clock, DCLK. 

The delayed clock allows the Control-B PLD to sample state variables in the clock they 
are generated. Control-B outputs can be generated in the same clock. 

The Control-B PLD controls the column address path. The PLD also generates the 
column address enable (CAE#) signal, which determines data access time, and the 
CSX# signal, which generates CS# signals to the DRAMs. Because the early write 
function is used, CSX# determines when data is written to the DRAMs. Control-B also 
generates signals which control the transceiver registers. The remaining transceiver con­
trol signals are generated by Control-Co 

7FFFFF 

600000 
5FFFFF 

400000 
3FFFFF 

200000 
1FFFFF 

Bank3 

Bank2 

Bank1 

BankO 

240330-27 

Figure 4-5. Address Map 

4-8 



MEMORY INTERFACING 

Control-C also generates parity logic control signals. These signals latch parity data 
during writes and error indication during reads. Another important Control-C signal is 
RAE# which controls the row address path. Control-C also generates OEX# which 
generates output enable signals for the DRAMs. 

The Control-D PLD does not use state variable inputs. Its only function is to generate 
write enable signals for the DRAMs. The WEL signal from Control-B is the clock input 
for this PLD. The signal is generated at the beginning and end of write cycles. By 
monitoring LADS# and W/R#, this PLD can determine the type of cycle being run 
when WEL is activated. The WE# signals are activated during writes and deactivated 
during reads. 

4.4 DRAM SUBSYSTEM FUNCTION 

This section defines the function of DRAM subsystem bus cycles. 

4.4.1 Signal Description 

The following list describes the purpose of all signals generated for the DRAM sub­
system. Subsequently, the signals will be implemented in a functional discussion. 

4.4.1.1 PROCESSOR INTERFACE 

NRDY# 

NNA# 

KEN# 

NRDY # is directly connected to the processors READY # input. It 
signals termination of a bus cycle and can be tristated. 

NNA# is connected to the processors NA# input. It is activated to 
enable pipe lining and can also be tristated. 

KEN# indicates when caching can be enabled. It generates a cache 
line fill when activated in the same CLK as NA# and RDY#. 

4.4.1.2 DATA PATH LOGIC CONTROL 

RAE# 

CAE# 

CAL# 

RDL 

RAE# enables the row address drivers. It disables the row address 
before column address is driven. 

CAE# enables the column address register outputs. It disables the 
column address when the row address is driven. 

CAL# drives the clock input of the column address registers. 

RDL activates the transceiver registers during read cycles. 

4·9 



WDL 

DRMDIR 

DRMEN# 

MEMORY INTERFACING 

WDL activates the transceiver registers during write cycles. 

DRMDIR controls the direction of the data transcievers. 

DRMEN# controls the time at which data is driven the the CPU or 
memory. 

4.4.1.3 ADDRESS PATH LOGIC CONTROL 

CSX# 

CS # 0-3 

OEX# 

OE#0-3 

RAS#0-3 

RASPO# 

WEO-WE7 

CSX# generates CS# signals for four banks of memory and is gener­
ated from the rising edge of DCLK 

These signals are buffered versions of CSX#. Each signal drives one 
bank of memory. 

OEX# generates OE# signals for four banks of memory and is gen­
erated from the rising edge of CLK 

These signals are buffered versions of OEX#. Each signal drives one 
bank of memory. 

These signals are decoded separately. Each enables access to a spe­
cific memory bank. They are decoded from address and state variable 
outputs. 

RASPO# is generated during any access to the first four DRAM banks 
DRAMs. It latches the row address in the parity DRAMs. 

These signals are generated by the Control-D PLD. Each signal cor­
responds to a single byte in each DRAM Bank. 

4.4.1.4 CONTROLLER SIGNALS 

WEL 

LADS # 

CPEN# 

DCLK 

SO-S4 

WEL is connected to the clock input of the Control-D PLD. It latches 
the BE#O-7 inputs and is activated only during write cycles. 

LADS# is used by the state machine to determine when a bus cycle 
has started. It also indicates that the processor address is valid. 

CPEN # indicates that a bus cycle has started and is waiting to be 
completed. It signals to the state machine that LADS# has been 
active and that a bus cycle is pending. 

DCLK drives the clock input of the Control-B pal. It is produced by 
delaying CLK 20ns. 

These signals are the state variable outputs of the state machine. They 
are decoded by other control PLDs to produce control signals. 

4-10 



BSY# 

MEMORY INTERFACING 

BSY# is used to prevent other subsystems from driving NA#, 
READY # or the data bus before the DRAM subsystem has com­
pleted pipelined bus cycles. 

DRAMSEL DRAMSEL is a decode output which indicates that the current bus 
cycle is a DRAM access. 

CLRCYC This signal clears the cycle pending register. 

4.4.2 Basic Read Cycle 

The basic read cycle is shown in Figure 4-6. This cycle is performed when the processor 
requests a single read while the bus is idle. To simplify discussion, pipelining is not used 
in this example, so the NA# signal is not shown. 

The read cycle begins when the CPU activates ADS#. ADS# is latched by controller 
logic and held for one clock. ADS# is latched with discrete logic because of processor 
bus timing constraints. Note that the processor address is not valid in this clock. 

ClK 

DClK 

ADS# 

LADS# 

ADDRESS 

RAE# 

RAS# 

CAE# 

DRAMADDR 

CAl# 

CS#(O-3) 

OE#(O-3) 

DRAMDATA 

RDl 

DATA 

NRDY# 

~~I~~~~~~I ~ 

--~ILU-r~~~~--rl ~I 

------r-{I...--f.I--I-+-+-i---l--+---+--J-I1 }----l 
'\ 1 1 I I 

1 1 \ 1 1 
1 1 ------r 

I 

I 1 1 \ 1 1 1 
n nn~ -n n~ ____ ~_ <kmtE«. >i»»»)-~_n n ~ n n_~ 

1 II! 1 !\LJI I 1 
-n n -r n ---r -n -in !@,m~«E(~«@«~«E(1 }})»>f» 

1 I lili! 141 
240330-28 

Figure 4-6. Basic Read Cycles 

4-11 



MEMORY INTERFACING 

The LADS# register output is sampled active at the next clock edge. The trailing edge 
of LADS# activates CPEN# if DRAMSEL is active. The row address from the proces­
sor becomes valid in this clock. Since RAE# is already active, the row address is driven 
to the DRAMs and is valid in the following clock. RAS# is driven active following this 
CLK edge. 

The falling edge of RAS# latches the row address in the DRAMs. The row address 
drivers must be tristated at this point, but not until the row address hold time is met. For 
this reason, RAE# is not deactivated until one clock after RAS# is activated. 

At this point, the column address must be driven as soon as possible. The address valid 
delay adds directly to data valid time, but row address buffers must be tristated before 
CAE# is activated. The delayed clock, DCLK, allows CAE# to be activated in the same 
clock in which RAE# is deactivated. In this way, CAE# is activated in the minimum 
time possible. 

CAL# latches the column address for pipe lined reads in the same clock in which CAE# 
is activated. CSX# is also activated in this clock and is buffered to produce four CS# 
signals. These signals enable DRAM data buffers for the read cycle while the column 
address stabilizes. 

Data becomes valid two clocks after CAE# is activated. Read data is not valid long 
enough to meet hold time requirements of CLK or DCLK and must be latched and 
synchronized to CLK This function is performed by the RDL signal. 

RDL enables the data transciever registers. It is driven from the same PLD as CAE# 
and is exactly in synch with CAE#. RDL is activated two DCLKs after CAE#, however, 
to ensure it is active in time to latch the read data. 

NRDY # is generated in the next clock. The processor samples read data held in the 
transceivers at this point. If no other cycle is pending, RAS# and CS# are deactivated in 
the next clock. The cycle ends when the state machine has waited three clocks and met 
RAS precharge time. 

4.4.3 Pipelined Read Cycles 

The basic read cycle just described only occurs if the processor generates a single read 
cycle to a noncacheable address. Since most read cycles are cache able, they occur as 
cache block fills. 

A cache block fill generates four consecutive read cycles. Using the pipe lining feature of 
the bus, these cycles may be overlapped as shown in Figure 4-7. Through pipelining, 
addresses of subsequent read cycles are driven before the previous cycle completes. As a 
result, the latency of the last three cycles of a fill block is reduced. A cache block fill 
begins as a basic read cycle. It is converted to a cache block fill by the KEN# signal, 
which is sampled active when NA# or RDY # is active. Three additional read cycles 
occur subsequently to fetch the entire cache block, and these cycles can be pipe lined. 

4-12 



MEMORY INTERFACING 

NA# controls bus pipelining and is generated by DRAM control logic. NA# is driven 
active by logic during any read cycle. If another bus cycle is pending, the processor 
activates ADS# in the following clock. Once this bus cycle has started, NA# is activated 
a second time. The processor then begins the next cycle by issuing ADS#. 

Up to three bus cycles may be pending at one time. NRDY # must be returned for the 
first read cycle before NA# can be activated a third time. This function must be en­
forced by the DRAM control logic. The state machine PLD is programmed to activate 
NA# at the appropriate time. During the first read, it activates NA# three clocks prior 
to the clock in which NRDY # is active. It activates NA# again one clock before the 
clock in which NRDY # is active. Figure 4-7 shows signal timing for this bus cycle 
sequence. 

Column address and data registers are needed to implement this function. As seen in 
Figure 4-7, the column address path remains enabled throughout the sequence. CAE # , 
RAS# and CSX# remain active from the first read. An address driven by the processor 
in response to NA# must be latched; otherwise, the column address changes before 

ClK 

DClK 

ADS# 

LADS# 

ADDRESS 

NNA# 

RAE# 

RAS# 

CAE# 

DRAMADDR 

CAl# 

CS#(O-3) 

OE#(O-3) 

DRAM DATA 

RDl 

DATA 

NRDY# 

240330-29 

Figure 4-7. Pipelined Read Cycles 

4-13 



MEMORY INTERFACING 

DRAM read data is valid. Once the data becomes valid, it must also be latched. Without 
data registers, the column address would be held for an additional DCLK to allow the 
processor to sample the data. This requirement would add an additional wait-state. 

NA# is activated again once NRDY # is returned to the processor for the first read 
cycle. As in the previous cycles, ADS# begins the fourth read one clock later. At this 
time, NRDY # is returned to the processor, completing the second read cycle. 

At this point, NA# is activated a fourth time. If another bus cycle is pending, ADS# will 
be activated. Otherwise, DRAM logic completes the next two bus cycles. If no bus cycles 
have been started, it then deactivates RAS# and CSX#. 

Another bus cycle may begin before the final bus cycles have completed, but not on the 
clock after which NA# is activated. RAS# and CSX# signals remain active in this case. 

Pipelined sequences usually occur as described here. These cycles must all occur within 
the same DRAM page, however. If the row address changes, RAS# must be deacti­
vated, and the pipelined sequence is interrupted. Read cycles generated for a cache 
block fill are always within the same page, and the sequence shown in Figure 4-7 illus­
trates this case. Note that all cycles of subsequent cache block fills can be pipelined. 

4.4.4 Basic Write Cycle 

In this example, pipe lining is not used with write cycles. A method called posting is 
employed instead. 

Posting is similar to pipe lining because it improves performance by allowing consecutive 
bus cycles to overlap. In posting, however, NRDY# is returned to the processor before a 
cycle is completed at the DRAM. This function is better suited to write cycles because 
data is not returned from the DRAMs. The processor may complete a cycle and begin 
another while the DRAM subsystem completes the write cycle. 

A write data register is needed to implement posted write cycles. This register holds 
write data after NRDY # is returned to the processor. In the example, the registers are 
contained in the data transceivers. This register is controlled by WDL. 

The row address function of read and write cycles are the same. Figure 4-8 illustrates the 
function of a write cycle, which begins from an idle bus state. LADS# starts the cycle 
one CLK after ADS# is activated. The row address propagates to the DRAM, and 
RAS# is activated. As with read cycles, CAE# is activated one clock later. 

CAL# is activated in this clock to latch the column address. The write data latch signal 
(WDL) is also activated. It is connected to the transciever clock input. Here, data is 
latched and driven to memories. 

CS#-controlled (early) writes are used in this example. When writes are performed in 
this way, data must be valid before CS# is activated. The WE# DRAM inputs must also 
be active prior to the falling edge of CS#. 

4-14 



ClK 

DClK 

ADS# 

LADS# 

ADDRESS 

RAE# \ 

RAS# 

CAE# 

DRAMADDR 

CAl# 

CS#(O-3) 

WE#(O-7) 

DATA 

WDl 

DRAM DATA 

NRDY# 

MEMORY INTERFACING 

420330-30 

Figure 4-8. Basic Write Cycles 

CS# is activated one clock after NRDY# is returned to the processor. The write enable 
signals are driven in the clock after LADS# is activated. Data becomes valid in the same 
clock that CS# is activated. If another bus cycle is pending, ADS# is active at the next 
clock edge. 

4.4.4.1 CONSECUTIVE WRITE CYCLES 

Posting is most beneficial when write cycles are consecutive. Figure 4-9 shows three 
consecutive write cycles. The first is identical to that shown in Figure 4-8. The addresses 
of the following two cycles are in the same DRAM page as the first. These cycles can be 
completed without wait-states on the processor's bus. Timing becomes more critical at 
zero wait-states. The WE# signals, for example, are no longer valid three clocks before 
CS#. They are activated in the same clock as CS#. In addition, write data is only valid in 
the last clock of the bus cycle. 

4.4.5 Consecutive Bus Cycles 

Additional wait-states are needed when different types of bus cycles occur consecutively. 
These are added to the second cycle of the sequence and allow the first bus cycle to 
complete after the second cycle begins. 

4-15 



infel@ MEMORY INTERFACING 

ClK 

DClK 

ADS# 

LADS# 

ADDRESS 

RAE# '""\ 

RAS# 

CAE# 

DRAMADDR 

CAl# 

CS#(O-3) 

WE#(O-7) 

DATA 

WDl 
DRAMDATA 

NRDY# 

240330-31 

Figure 4-9. Consecutive Write Cycles 

The state machine performs this function. It tracks the current bus sequence. If a read 
cycle immediately follows a write, or if the opposite occurs, the controller adds the 
needed number of wait-states. Bus cycles proceed normally but are delayed to allow the 
previous bus cycle to complete and to reverse the direction of the data bus. 

These functions are different for read and write cycles. The specific sequence for each is 
described in the following sections. 

4.4.5.1 WRITE FOLLOWED BY READ CYCLES 

Figure 4-10 shows a write cycle followed by a read cycle. This sequence occurs when a 
read cycle is pending before a write cycle has completed. A timing conflict would occur if 
the read is to the same DRAM page as the write. 

The state machine enters a special sequence to handle this event. It begins as if a normal 
write cycle had occurred. Mter it returns NRDY # for the write cycle, however, the 
processor asserts ADS#. This signal starts the read cycle. 

4-16 



ClK 

DClK 

ADS# 

LADS# 

ADDRESS 

RAE# 

RAS# 

CAE# 

DRAMADDR 

CAl# 

CS#(O-4) 

WE#(O-7) 

DATA 

WDl 

DRAM DATA 

NRDY# 

DRMEN# 

DRMDIR 

OE# 

RDl 

MEMORY INTERFACING 

1 

~ I I lu I I· I I 

k : 

1 1 

I 1 1 \ / 1 
~«««<t««< 1 1 1 »>M}}}}}»>Wx«<@«««<<<<<(<< 1 
1 i 1 '--WI4-----11 ill 
1 1 1 «q<(«««q«« 1 »l»}~<(« 1 1 1 
1 1 1 14 1 1 1 IY-'l 

I I I I II I I: LI 11 
I I~I I I 

240330-32 

Figure 4-10. Write Followed by Read Cycles 

In the first clock, data is written to the DRAM. Next, WDL is deactivated to prepare for 
another write cycle. Because the state machine has no way to determine the next cycle 
type, it prepares for the next write. 

The process continues into the next clock. Here, CSX# is also deactivated to prepare for 
the next write. The write enables are still active, and WDL is activated. Control and 
address signals for the read become valid in this CLK, and the state machine samples 
them at the next CLK edge. 

Once the state machine determines that a read cycle has started, it enters a special state 
sequence. It activates the OE# signal and activates CSX# to enable the DRAM for a 
read cycle. The Control-D PLD samples W/R# low and deactivates the WE# signals. 

4-17 



MEMORY INTERFACING 

At this point, the DRAM controller has added one extra wait-state to the normal read 
process. It adds another for the next clock to allow data to propagate to the latching 
transcievers. RDL is then activated to latch the read data, and the cycle completes 
normally. 

4.4.5.2 READ CYCLES FOLLOWED BY WRITE CYCLES 

Figure 4-11 illustrates a read cycle followed by a write cycle. Both cycles access the same 
DRAM. The write cycle begins while the read cycle is in progress. 

Pipelined reads add a level of complexity to the problem. When NA# is activated, a 
write cycle can start. This cycle can start before NRDY# is returned to the processor. 

ClK 

DClK 

ADS# 

LADS# 

ADDRESS 

NNA# 

RAE# 

RAS# 

CAE# 

DRAMADDR 

CAl# 

CS#(O-3) 

OE#(O-3) 

WE#(O-7) 

DRAM DATA 

RDl 

DATA 

WDl 

NRDY# 

DRMEN# 

DRMDIR 

I I I I I I I I I I I I 

I I I I I I I I 117 d, rt-r--l 
I I I I II I I I I I I I 
I I I I I I I I I \ I I / I 

~_~_'fI#IC=- _t __ n_~n ___ ~n-«~ I ~ 
I I I I I I I I I I 

~-Emfj 
I I I I I I II I I I I I 

240330-33 

Figure 4-11. Pipelined Read Followed by Write Cycles 

4-18 



MEMORY INTERFACING 

Figure 4-11 illustrates a worst-case scenario in which two read cycles must complete after 
the write cycle has begun. 

ADS# for the write cycle is active in the clock in which NRDY # is returned for the first 
of two read cycles. LADS# is active in the next clock. LADS# and W IR# indicate to the 
state machine that the cycle is a write. The state machine then enters a two clock 
sequence to complete the second read. 

The cycle pending signal is important in this sequence. LADS# is not active when the 
second read is finished. The CPEN# signal is the only indication that that another cycle 
has started. CPEN# is sampled by the state machine in the clock that NRDY# is active 
for the last read. In response, the state machine enters a special state sequence. Here, it 
performs the functions necessary to prepare for a write cycle. 

Two clocks after NRDY # completes the last read, OE# is deactivated. In the next 
clock, WDL latches the write data. NRDY # is then returned to complete the write 
cycle. CSX# is deactivated in this CLK so that data can be written in the next clock. At 
this point, the cycle continues as described in Section 3.4. 

4.4.6 Page Miss Cycles 

A page miss cycle is a memory access which changes the row address. This type of access 
is important in modern memory systems using page mode or static column mode 
DRAMs. These DRAMs have an internal register which holds the row address. Access 
can be made by simply changing the column address. This feature reduces the average 
access time by several clocks. 

The DRAM controller must be designed to take advantage of this feature. In doing so, 
memory system performance is improved dramatically. To use this feature, control logic 
need only activate RAS when the row address changes. 

The NENE# signal indicates when the row address has changed. It is available along 
with the address during any bus cycle. The state machine samples this pin at the begin­
ning of every bus cycle. 

When NENE# is sampled inactive, the state machine enters a special state sequence. 
Here, it performs the functions needed to latch the new row address. Figure 4-12 shows 
a typical page miss sequence. 

The RAS# signal is immediately deactivated when a page miss is detected and is held 
inactive for four clocks. The time RAS# is held inactive is determined by the RAS# 
precharge time. This timing is a requirement of the DRAMs and varies depending on 
the manufacturer and the speed selection used. 

CAE# is deactivated in the same clock as RAS#. The column address register outputs 
must be tristated before driving the row address. RAE# is activated two clocks later. At 
this time, the new row address is asserted at the DRAM address inputs. The cycle can 
then be completed as described earlier. 

4-19 



MEMORY INTERFACING 

ClK 

DClK 

ADS# -----LJ I I I I 
LADS# I Llii I I I 

I 

ADDRESS YIIIfIIIt{Ii I ! I I~ 
NENE# YIIIIIIIIfIII I I ~ 

RAE# I I I I I 
RAS# 

CAE# 

DRAMADDR 

CS#(O-3) 

240330-34 

Figure 4-12. Page Miss Cycles 

4.4.7 Refresh Cycles 

Refresh cycles must be performed at regular intelVals of approximately 15 microseconds. 
Each cycle refreshes one row of DRAM data. 

Most DRAMs provide their own refresh address. This address is maintained in an inter­
nal counter and is updated if CS# is activated before RAS#. The address from the 
counter also refreshes the memory array. This function is called CS# before RAS# 
refresh. 

Although not illustrated in this example, the refresh address can be provided by an 
external counter. This method is called RAS#-only refresh. 

The RFRQ signal is generated by another counter and indicates that a refresh cycle 
must be performed. The counter is set to a count which ensures the proper refresh 
intelVal. 

The RFRQ signal is sampled by the state machine during any idle cycle and at the end 
of every bus cycle. If the signal is active, the state machine enters a page miss cycle state 
sequence. Once the RAS# precharge time is satisfied, the state machine enters the 
refresh sequence. 

A new row address must be latched after a refresh cycle is performed. After RAS# is 
activated for the refresh cycle, it is again deactivated. Once the precharge time has been 
met, RAS# can be activated to complete a pending bus cycle. 

CPEN# is the only indication that a bus cycle has begun during the refresh cycle. If this 
signal is active after the second RAS# precharge, a bus cycle begins immediately. Only 
one bus cycle may be started during the refresh sequence. 

4-20 



MEMORY INTERFACING 

4.5 PARITY CIRCUIT 

Parity logic provides error detection capability for each byte of data. One bit is stored in 
the parity memory for each data byte. The value of this bit depends on the number of 
bits set in the corresponding byte. The parity logic is designed for odd parity. If a byte 
contains an even number of set bits, the parity bit is also set. 

Parity data is generated during write cycles. Some delay is incurred, but because writes 
are posted, parity data is available in time to be latched by CS# signals. These signals 
drive parity DRAMs and data memory. 

A separate RAS# signal is generated for the parity DRAMs. This signal must be acti­
vated for accesses to all four banks of memory. The Control-A PLD generates this signal 
during any cycle to the banks it controls. 

Parity is checked during read cycles. The parity error signal is activated if a zero is 
detected on any of the parity outputs. Figure 4-13 is a block diagram of parity logic. It 
shows connections of the control and bus signals. 

4.5.1 Dedicated Signals 

The following is a summary of the signals that control parity logic. 

RASPO# 

PARERR 

PERLTCH 

WPL 

RASPO# drives parity DRAM RAS# input. 

PARERR is activated when a parity error is detected. It is held in a 
register once activated. 

PERLTCH activates the register which samples PARERR during read 
cycles. 

WPL activates the write parity data register. 

4.5.2 Parity Function 

Parity data is latched during zero-wait-state writes. It is latched in the clock after write 
data has been latched. The write data register is clocked by WDL in the same clock in 
which NRDY # is activated. WPL clocks the parity write data register as shown in Figure 
4-13. WPL is activated from the rising edge of CLK. Since CSX# is activated from 
DCLK, parity data can propagate to the DRAMs before CSX# is active. 

Parity data is generated by 74AS280 devices. The I inputs of these devices are not driven 
during write cycles but are pulled high to generate correct parity output. During read 
cycles, read parity data is driven to I inputs. Appendix C provides complete DRAM 
system schematics. 

Read parity data is accessed in the same way that read data is accessed. The parity data 
register is clocked by RDL, and parity data is valid at the parity generators about the 
same time that read data is valid at the transceivers. The DRAMDIR signal enables 
output of this register. It disables the register outputs during write cycles. 

4-21 



MEMORY INTERFACING 

Parity 
Generators/ 

Checkers 

OPD(O-8) .... PARERR .... OD 
Processor Data • 

, , 
A-H(8) 

.... 
1(8) Write ,. rr PMHyD 

... 

-. D Q ,. 

Par~ 

t 
CK DRA S 

Read } Parity Data 
~ 

Q D 
.i ..... 

CK 

OE 

I 
From DRAM Control Logic 

DRMDIR 

RDL 

WPL 

RASPO# 

CS#(O-3) 

WE#(O-7) 

240330-35 

Figure 4-13. Parity Block Diagram 

The P ARERR signal indicates that a parity error has occurred. It is generated by a 
74AS80 nand gate. The inputs of this gate are connected to the OD outputs of the parity 
generator. If any of these outputs is high during a read cycle, P ARERR is activated. 

Once it occurs, the P ARERR signal is latched. The PERLATCH signal activates the 
P ARERR register. It is active every read cycle. The P ARERR register can be cleared in 
the read cycle following the cycle that caused the parity error. 

4·22 



I/O Interfacing 5 





5.1 OVERVIEW 

CHAPTER 5 
I/O INTERFACING 

I/O devices can be mapped anywhere within the i860™ microprocessor's four gigabyte 
physical address space and can be 64-, 32-, 16- or 8-bits wide. For accesses to 8-, 16- or 
32-bit devices, byte-swap logic or 8-, 16- or 32-bit load/store instructions must be used. 
Although address pipelining can be used for all i860 microprocessor accesses, I/O recov­
ery time and infrequent back-to-back I/O accesses greatly reduce pipelining benefits. 
The i860 microprocessor does not include I/O instructions, and there is no separate 
address map. All I/O devices must be mapped into the memory address space. The 
system distinguishes between memory and I/O accesses by decoding processor addresses. 
Although all reads can be cached, the I/O reads must not be cacheable and should 
deassert KEN# to indicate a non-cache able access. 

I/O buffers accessed by DMA devices must be marked non-cacheable or flushed from 
the data cache before an I/O operation. Two different approaches to I/O are described 
later. 

5.1.1 i860™ Microprocessor I/O Subsystem 

Figure 5-1 illustrates the I/O subsystem of an i860 microprocessor based system. The 
memory address and data are latched to allow pipelined operation. I/O addresses and 
data can be buffered if drive requirements exceed i860 microprocessor specifications. 
Processor addresses are decoded to determine whether access is to I/O or to a memory 
device. Decoder outputs notify control logic of cycles and indicate whether the cycles are 
to memory or to I/O. Read, write and chip select are generated by control logic. This 
logic also generates wait-states in i860 microprocessor cycles and generates READY # 
when control logic is ready to terminate the processor cycle. Interface to all slave devices 
except DRAMs is very similar and less performance sensitive. Nonvolatile memories 
such as ROMs and EPROMs are accessed through I/O control logic and share address 
and data paths with other slave I/O devices. The i860 microprocessor provides a CS/8 
bootstrap mode for byte-wide ROMs used only during power-up. The mode is disabled 
once the system boots . 

. I/O devices may be mapped anywhere within the processor's four gigabyte physical ad­
dress space. To minimize the decode logic, devices are placed within one contiguous 
block of the i860 microprocessor's address map. This minimizes the number of address 
lines needed to generate I/O select signals. If 8-, 16- or 32-bit I/O devices are used 

. without byte swap logic, I/O ports must be placed at 8-byte increments (i.e addresses 
must correspond to the data pins the device is hardwired to). This causes the processor 
to read or write data on the proper bytes of the data bus. For example, an 8-bit access 
may get data on D7-O; a 16-bit access may get data on D15-O; a 32-bit access may get 
data on D31-O. Here, addresses are on 64-bit boundaries. 

This limitation does not apply if external byte swap logic is used. 8-bit devices can be 
accessed on continuous byte boundaries; 16-bit devices can be accessed on continuous 
even byte boundaries; and 32-bit devices can be accessed on continuous, multiple-of-four 

5-1 



r-----'---, 29 

ADDRESS -C-
1M DATA ~ 

1860 CPU I 

CONTROL .... 1 /---., ......... 

lATCH 
r-

""-

BUFFERS 
r-

1/0 INTERFACING 

ADDRESS 

DATA LO .. ----------~-----+~----~~~~S 
VOCONTROI.. ......... ~ .... -t_t .... --"'""'"-t-... 

f- vo 
DECODE 

9-t-....-..!. LOGIC BUS ~ 
CONTROL 

Lt 
t.£MORY 
CONTROL 

1 
r-

t--

'--

DRAM 
.--

-
'-- 240330-36 

Figure 5-1. i860™ Microprocessor System 

5-2 



I/O INTERFACING 

byte boundaries. If a 16-bit access is attempted on an odd byte boundary, or if a 32-bit 
access is attempted on an address boundary that is not a multiple of four, the i860 
microprocessor generates an exception. 

5.2 GENERATING I/O CONTROL SIGNALS 

Control and chip select signals for slave I/O devices are generated by I/O control logic. 
The i860 microprocessor does not provide a separate I/O space, and the distinction 
between accesses to memory and to I/O devices is made by decoding addresses. The 
address decoder typically provides an 10SEL (I/O select) or MEMSEL (memory select) 
output to indicate the access type. When 10SEL is asserted, I/O control logic generates 
appropriate control signals, drives KEN# inactive to indicate a non-cacheable access, 
inserts any needed wait-states and returns READY # to the processor to terminate the 
cycle. I/O control logic must enable appropriate address and data buffers, and it must 
eliminate bus contention caused by data float delays. Most I/O devices require a recov­
ery period between back-to-back accesses. This can be enforced either through hardware 
or software. 

5.2.1 I/O Control Logic 

Figure 5-2 illustrates i860 microprocessor control logic. I/O select signals are generated 
from the decode of unlatched addresses. The decoder also generates device select sig­
nals which are latched to provide chip selects for specific devices being accessed. ADS# 
does not ensure a valid address when asserted. LADS#, a latched version of ADS#, is 
valid in state Tn and can be used to generate an address latch enable (ALE) signal. 
Address is guaranteed to be valid on the clock (rising) edge during which LADS# is 
active. 

When LADS# is active and I/O select is asserted, I/O control logic generates read or 
write signals based on the state of W/R# input. During pipelined operation, I/O control 
logic must know of any outstanding DRAM cycles to avoid misordered cycles. BSY 
indicates that there are outstanding DRAM cycles and that I/O control logic should not 
start a cycle. until BSY is de asserted. I/O control logic inserts needed I/O cycle wait­
states according to the number of wait-states required by the device being accessed. In a 
simple design, I/O accesses can be assigned the number of wait-states required by the 
slowest device. 

Following read cycles, I/O devices may need time to turn off the data bus. During this 
period, a write or read from another device causes bus contention. To ensure proper 
operation, I/O devices also require recovery time between consecutive accesses. It may 
or may not be practical to enforce this recovery with a hardware counter. The advantage 
of using a hardware enforced recovery mechanism is transparency and reliability. Also, 
future upgrades to higher CPU clock speeds will not require any changes in the I/O 
device drivers. If the recovery period is too long to be enforced with hardware, then 
software timing loops or a timer chip may be used to ensure proper operation. The 
hardware I/O recovery time is enforced by the control logic. Recovery logic generates a 
recovery delay (RECOVER) signal which prevents I/O control logic from asserting read 
or write until the recovery delay signal is deasserted. 

5-3 



I/O INTERFACING 

/_- OE, 
ADDRESS BE3-0 

BE3-0 
Address 

i860lM I : - ALE 
lCS51 0 

READY# f--t :--' 82.510 SEC 
r--

~~ F74 

W510SEC J VOCTL 

LADS' IOSEl lADS#- LADS# 
IOSEl IORD# 

CL 

-... Address 
DEVICE SELECTS 

BSY IOWR# - BSY DEVICE SELECTS 
- N'olA - Dll..Y 

IOBSY 

NREADY ~ DRAMSEl 
'- REco./ER 

NNA# 
NREADYj 

IBWR 

I 
IIOSEl kd 

BSY DRAMSEl~ RECO 
FROM / 

VER 

MEMORY CONTRa..LER WArr# 
CLK 

EPROMSEl 

110 TIME 240330-37 

Figure 5-2. I/O Control Logic 

5.2.2 Address Decode and Chip Select 

Chip selects for various I/O subsystem devices are generated through address decoding. 
Decodes may be done with a PLD, such as the Intel 85C508, or with a simple one­
of-four decoder such as the 74F138. Decodes can be done from latched or unlatched 
addresses. Unlatched address decodes allow device selects to be generated one propa­
gation delay after an address becomes valid. Some I/O devices need a long chip-select 
hold time from read or write. This requires that chip selects be latched. Decodes can be 
done alternately from latched addresses, but this delays the chip select generation and 
may result in slower cycles. Device selects are also used by I/O control logic to determine 
the number of wait-states for a device being accessed. If device selects are generated 
from unlatched addresses, I/O control logic must sample the device select with LADS# 
to ensure a valid sample of the device select. Latched device selects must be de asserted 
(unlatched) once READY# is returned to the processor. They are unlatched by activat­
ing the latch enable signal which causes the latch to become transparent. The device 
select is de asserted when the address changes at the beginning of a new cycle. 

5-4 



I/O INTERFACING 

I/O device addresses should simplify decode logic and reduce the number of address pins 
required to generate device selects and the I/O select signal. The I/O select signal indi­
cates I/O device accesses to control logic. I/O devices are typically mapped with a con­
tiguous single address space. Address space size is determined by the address lines used 
in decode. 

5.2.3 IORD#/IOWR# 

IORD# and IOWR# command signals are generated some time after the processor 
W/R# signal chip select. I/O devices have command-active width requirements, and 
wait-states are inserted in I/O cycles to accommodate these. The number of wait-states is 
determined by the I/O control logic of selected devices. Minimum command-active times 
range from lOOns to 400ns across various slave devices. I/O devices also have chip select 
set-up and hold time requirements. Chip select requirements are met by inserting delays 
in activating commands. If one delay is used across all devices, it must be the worst case 
delay. In the examples given here, the delay is two clocks. If necessary, hold time is met 
by latching chip selects and addresses. 

It may be necessary to delay driving write data onto the bus for several clocks. This is 
necessary if the previous cycle was a read to an I/O device with a long data float delay. It 
may also be necessary to delay the assertion of READY # from the rising edge of 
IOWR# to ensure sufficient write data hold time. 

5.2.4 READV# 

Wait-states are introduced into the i860 CPU cycle by not asserting READY#. Since 
most I/O devices are much slower than the i860 processor bus, all I/O cycles require 
additional wait states. Since READY # can be driven by multiple PLDs, it must be 
tri-stated by the PLDs not in use. If several devices reside in the I/O subsystem, the 
wait-state logic can be simplified by inserting the same number of wait-states in all I/O 
accesses. This slows accesses to some of the faster I/O devices, but these accesses are 
infrequent, and impact on system performance is minimal. If I/O speed is critical, a small 
ROM or PLD can be used to insert wait-states and enforce recovery on a per device 
basis. 

5.2.5 Recovery and Bus Contention 

Most I/O devices require a recovery period between back-to-back accesses. At higher 
i860 CPU clock frequencies, bus contention poses an additional concern. This is because 
long float delays of the I/O devices can conflict with data driven out in the next cycle by 
another device or by write data from the CPU. All slave devices stop driving data on the 
bus on the rising edge of IORD#. Some delay after the rising edge of IORD# the data 
will float. If, however, another device drives data onto the bus before the data from the 
previous access floats, bus contention will occur. The i860 CPU has extremely small cycle 
times (30ns @33 MHz, 25ns @40 MHz), and the possibility of bus contention must be 
considered. The I/O control logic implements recovery to eliminate bus contention. It 
asserts the signal RECOVER, which inhibits new I/O cycles from starting until the data 
from the previous read has floated. I/O control logic can also accomplish I/O recovery 
using a similar mechanism. The only time hardware enforced I/O recovery may not be 

5-5 



I/O INTERFACING 

possible is when recovery times are too great for the hardware counter. In this case, 
recovery time can be enforced with software using NOPs and delay loops or with a 
programmable timer. 

5.3 I/O CYCLES 

The I/O read and write cycle timings depend upon the implementation of the I/O control 
logic. Figures 5-3 and 5-4 illustrate the timings of the I/O read and write cycle for a 
typical implementation. 

5.3.1 Read Cycle Timing 

A new i860 microprocessor read cycle is initiated when ADS# is asserted in T l' The 
address and status signals become valid in T 11' LADS# becomes valid in T 11, and the 
address is latched on the next rising edge of clock (second T11). The I/O select signal is 

va READ CYCLE 

SIGNALS T1 
1 

T11 
1 

T11 
1 

T11 : T11 
1 

T11 
1 

T11 
1 

T11 
1 

T1 
I I I I I I I 

ADS. ~""'+""""I""""+"""'+"""'+"""'+"'" .. + ....... 
I I I I I I I I 

I 

LADS. ········t l······~ 1- ..... t······· t······· t······· t······ ·l······· t······· 
I I I I I I I I 

ADDRESS 
1 

······· .. ········•········· .. ·······T·······T········.·· ........ ) ...... 
I I I I I I T 

....... .1. ... "/" ........................................................ J •••••••• IOSEL 
III 1 1 1 I 

Chip ....... t······· t~······ + ....... + ....... -1- ....... -1- ........ ~ ....... ·l······r 
Selecttt 

IORo. ........ ; ........ .;. ........ ; ......... ;., ....... ~ ......... ~ .......... ~ ......... ! .. ~ 
·1· ....... ~ ........ i· ....... 

IODLV# 
....... + ....... + ....... + ....... + ....... + ...... 

I I I I I T I I 

DBUFOE. ....... t······· t······· t \ ...... t······· + ....... + ....... ·1········ .; .. ~ 

DaIa I I I I I I I q ....... 
1 1 1 1 I I I 

READY. ·······+·······+·······+········I········i········i-·,·····i······~ 

240330-38 

Figure 5-3. Read Cycle Timings 

5-6 



I/O INTERFACING 

10 WRITE 

SIGNALS 

ADS# ·······+·········~·········-I·········l········l········1········· 

I--_----IIL., 1 II I I I 
LADS# ......... r \ ....... '1"1 ........ r ......... , ......... r ........ T ......... r ........ . 

ADDRESS 

STATUS 

IOSEL 

Chip 
Select 

IOWR# 

, ........ : ......... :. ......... : ......... .1. ......... 1 ......... J) ...... . 
I I I I I I I 

.... ·····I····J· .. -1 ......... ·1··········1········ ·1········· + ......... ~ ........ . 
I I I I I I 1,----1 ......... i" "lH "\\ ........ 1' ••••••.. T' ....... j •••••.... Y·········f t- ...... . 

......... j ......... -I- .. \ ••.... ~ \ ••.•... ·1· ........ j ......... ·1· .... f· ... f ........ . 
1 

I 
I I 

.. y ... : .... '1' ....•.... f ••...•... I ......... y ......... ,:) ....... . 

VODala I I ........ 1 .•..•••.. 1 •.•.•..... 1 ....•..... ~ ••......• 1~ ......•. 
(Latched) I I 

READY, f-.. -.. -.. -. '-!'I-' .-.. -.. -.. -.!.·l-· .-.. -.. -. ·...!..·t-·· -.. -... -. ·..!...I·-· .-.. -. ·-··.!-f -... -.. -.. -. ·!...-I"-· .-.. --'.. ' ........ . 

240330-39 

Figure 5-4. I/O Write Timings 

generated from a combinatorial decode of the addresses. I/O select, when active with 
LADS#, indicates an I/O cycle to the control logic. The chip select is either asserted at 
the same time as I/O select or is latched in the clock following I/O select. The 10RD# 
signal is asserted in the second Tn if RECOVER is inactive. RECOVER, if active, 
indicates that the new cycle must be delayed in order to meet the recovery time of the 
I/O device or to prevent data bus contention. If RECOVER is active, then the I/O read 
(IORD#) signal is not asserted until RECOVER is deasserted. I/O data becomes valid 
on the bus one read delay after 10RD# is asserted. The bus control logic will need to 
keep 10RD# active to meet the minimum active time requirements. 

The worst-case timings values are calculated by assuming the maximum delay in the 
address latches and decode logic and the maximum delay through the data transceivers. 
These formulas will yield the fastest possible cycle. Wait-states must be added to meet 
the access times of the particular I/O device. 

5-7 



I/O INTERFACING 

The critical timings for I/O Read cycles are the following: 

1. Chip Select/Address Setup to IORD#: 

~ 3Tcy + PLDclk-to-output(min) - Decode delaymax 
- Address Valid delaymax - Latch Prop. Delaymax 

Chip select goes active later than I/O address and is latched, so chip select timing is 
used for the equation. 

Tcy : CLK PERIOD OF i860 Microprocessor. Address Valid Delay: Processor 
address valid delay in T 11' 

2. IORD# Minimum Active Width: 

~ Tcy + PLDclk-to-output - PLDclk-to-output + nTcy 
~ Tcy + nTcy 

n is the number of wait states inserted into the I/O read cycle. nTcy represents the 
additional time due to wait states. 

3. Chip Select/Address Hold after IORD#: 

~ Tcy - PLDclk-to-output + Address Validmin + Latch Prop. Delaymin 

Assumes I/O address changes earliest, so hold time calculations are done using the 
I/O address timings. 

4. IORD# Active to Data valid: 

~ Tcy - PLDclk-to-output - Data Setup Time - Data buffer Prop. delay. 
Data Setup Time: Processor setup time requirement for data to rising edge of clock. 

This assumes the minimum IORD# active pulse width of 1 clock. For wait states 
add the appropriate number of clocks to this value. 

Other timings which need consideration for read cycles are the read inactive to data 
float delay and address/chip select hold time after read. The address and chip select hold 
times from read are not a problem, since both chip select and address are latched. The 
data float delay in slave devices can be very long (40ns). This can cause data bus conten­
tion and is taken care of with the I/O recovery logic. (Section 5.2.5 provides further 
information. ) 

5.3.2 Write Cycle Timing 

An I/O write cycle starts similarly to an I/O read cycle. The address and status timings 
are similar to the I/O read. The processor outputs data in T11• I/O write (IOWR#) may 
be asserted one or two clocks after the chip select (the exact delay between chip select 
and IOWR# depends upon the chip select/address setup to write requirements of the 
I/O devices). The use of latching data buffers can improve CPU write performance. 
Once the data and address of the cycle are latched, READY # can be returned to the 
processor, and the CPU operation and the write cycle to the device can continue. 
IOWR# is de asserted only after the data set-up to write specification is met. Data is 
written into the I/O device on the rising edge of IOWR#, and the processor stops 
driving data once READY # is sampled active. 

5-8 



I/O INTERFACING 

The critical timings for the I/O write cycle are the following: 

1. 10WR# Active Pulse Width: 

~Tcy - PLDclk-to-output - PLDclk-to-output - PLDclk-to-output + nTcy 
~ Tcy + nTcy 

n is the number of wait states inserted into the I/O write cycle. NTCY represents the 
additional time due to wait-states. 

2. Address/Chip Select Set-up to Write: 

~ 3Tcy + PLDclk-to-output(min) - Decode delaymax 
- Address Valid delaymax - Latch Prop. Delaymax 

Chip select goes active later than I/O address and is latched, so chip select timing is 
used for the equation. 

Tcy: CLK PERIOD OF i860 Processor. 
Address Valid Delay: Processor address valid delay in Tn. 

3. Data Setup To Write Inactive: 

~ 4Tcy - 860 Data Valid Delaymax - Data Buffer Prop. Delaymax 
+ PLDclk-to-output Delay 

Formula 3 assumes a zero-wait-state write cycle. Write is riot posted. PLDclk-to-output 
delay is the delay in de asserting 10WR# from the rising edge of the clock. 

Other timings in the I/O write cycle are the address/chip select hold time from write 
(IOWR#) high and data hold time after write (IOWR#) high. Since the address and 
chip select are latched, hold time is not a problem. However, if data is buffered through 
a 74F245 type device, the data could float as early as 7ns from READY#. Typical hold 
times for I/O devices vary from Ons to 20ns. If data hold time requirements of the slave 
device are greater than 7ns, the write data must be latched; otherwise, READY # is 
returned some delay after the rising edge of 10WR#. 

5.4 DESIGN EXAMPLES 

This section discusses the i860 microprocessor interface to specific slave devices. It de­
scribes the basic interface, critical timings and equations. 

5.4.1 82510 Interface 

82510 is a UART with an asynchronous CPU interface. The basic interface is illustrated 
in Figure 5-5. The eight I/O ports of the 82510 are mapped to memory locations 
Ox07000000 through Ox07FFOOOO. The ports are located on 64-bit boundaries to allow 
data to be read on D7-DO without the use of external byte swap logic. The chip select 
signal is generated from the decode of A20 and A19. By decoding more of the address 
lines, a smaller memory block can be used to map the device. For example, a full decode 
could allow the 82510 to be mapped to OX07000000--0X0700000C. The address decoder 
generates the 10SEL as well as the 82510SEL signal. The address and chip select are 

5-9 



8 

A31-3 I-J DECOOER 
D7-O 

~ II- LAPS# IOSEL 

i8601McPu 6 A27-24 
A20,A19 

"11 
cC 
c 

IUf NREADY# 
ADS# ... 

CD 510SEL 
C1I 
I 

Y. 
CiI 

LATCH .-- LCS510 
Q) 
Q AS-3 

g 

'1J 
ClOCK LADS# 

F74 3 -... 
0 

~ n 
CD 

0 III 
III 
0 

NREADY# 1OCTL1 
... 

~WH 

5' -CD 
~ 
III n 
CD -0 
CO 
N 

IOSEL L. 

~~i 
BSY 
LADS# .--. 

~> 
!:l NREADYO# 1OCTL2 

510St:1 
C1I ... 
Q 

1OCTItv'E 
510SEL RECOVERO# 

DATA 
BUFFER 

8 

D7-O 

OE .---
A5-33 

r-

+5V 

ICRD# +~V .~ 
:JNR# I _ 

I-

RECOVER 
I-

~ 

f:.J ...... ORD# 

IOWR# 

82510 

07-0 
RD# 
WR# 

A2-0 

es 

R5-232 

I-- RXD 
I-- nco 
I-- RfS 
I-- ers 

~ IOPIC 
INTERRUPT 

ClK ~ CONTROLLER 

l osc 1 

240330-40 

l 

C5 
Z 
-I 
m 
II 

5 
z 
C) 

€I 



I/O INTERFACING 

latched to meet the minimum chip select active width and hold time. The RD# and 
WR# signals of the 82510 are generated by the IOCTLl PLD. Critical timings of the 
82510 are the following: 

Read Cycle 

1. Address Valid to Read Active (Tavrl): 

Tavrl :5 3Tcy + PLDclk-to-output(min) - Decode Delaymax 
- Address Valid delaymax - Latch Prop. Delaymax 

7ns :5 3Tcy - 25 
:5 SOns (@40MHz) 

2. Command Access Time To Data Valid (Trldv): 

Trldv :5 Tcy - PLDclk-to-output - Data Setup Time 
- Data buffer Propagation delay + NTcy. 

N: # of Wait States. 

281 :5 Tcy - 10 - 12 - 6 + NTcy 
:5 (N + I)Tcy - 28 

N=9 

3. Command Active Width (Trlrh): 

Trlrh :5 (N + 1 )Tcy 
N=9 

4. Read Inactive to Active (Tciad): 

Tciad :5 123ns 
:5 4Tcy - PLDclk-to-outputmax + PLDclk-to-outmin 
:5 4Tcy - 10 + 2 
:5 4*31 - 8 
:5 116ns 

The control logic can assert IORD# no earlier than 116ns after the previous read. This 
violates the recovery requirements of the 82510. Control logic can enforce this require­
ment by delaying the assertion of IORD# by one clock, or software can implement this 
by using NOPs. 

Write Cycle 

Address valid to write low and write active width timings are similar to 1 and 2 for read 
cycles. 

3. Data Valid to Write Inactive (Tdvwh): 

Tdvwh :5 3Tcy - Data Valid Delay - Buffer Delay + PLDclk-to-outputmin 
:5 3Tcy - 50 - 6 + 2 

90 :5 3*31 - 50 - 6 + 2 = 39 

5-11 



I/O INTERFACING 

The IOWR# pulse must be extended by two clocks. 

4. Data Hold Time after Write Inactive (Twhdx): 

Twhdx :::; Data Float Delaymin + Buffer Delaymin 
12 :::; 3.5 + 2.5 = 6.0 

The minimum data float and buffer delays do not meet the 82510 hold time require­
ments. In this case, READY# can be delayed from IOWR# by one clock, or data can 
be latched and READY # can be returned early. The second option reduces wait-states 
but requires latches on the data bus. 

5.4.2 Eprom Interface 

The i860 CPU supports a special CS8 mode for bootup from 8-bit I/O devices. This 
allows the processor to bootup from an 8-bit ROM. Once the system boots, the ROM 
can be copied into memory or can be disabled and replaced by DRAM. In this mode, 
code fetches (that are misses in the code cache) are eight bits wide. To facilitate 8-bit 
reads, the BE2#-BEO# pins behave as A2-AO. Once the i860 microprocessor boots, the 
CS8 mode can be disabled by setting the CS8 bit of the dirbase register. If EPROM 
contents are to be copied into DRAM after the bootup, the EPROM locations need to 
be remapped to 64-bit boundaries. This allows the i860 microprocessor to access the 
EPROM bytes on D7-DO without using byte swap logic. It does, however, require the 
address multiplexor to use either the processor address bus or the byte enables for 
A2-AO inputs of the EPROM. A method which does not require an address mux is the 
"double copy load" method. This method is more dependent upon software, however. It 
uses the BE2#-BEO# signals which are connected directly to the EPROM A2-AO 
addresses to select the bytes. 

Figure 5-6 shows the i860 processor interface to a byte-wide EPROM (27010) and uses 
an address multiplexor to select between BE2#-BEO# and processor addresses. The 
chip enable of the EPROM is generated decoding the memory address and the MAP bit. 
The MAP bit, when set, maps the EPROM addresses into the power-up bootstrap loca­
tions. When MAP is low, the EPROM is mapped to another address and DRAM is 
mapped to the bootstrap locations. The OE# signal is connected to the IORD# signal 
generated by the I/O Control Logic. The upper 14 address bits of the EPROM are 
connected to i860 CPU addresses. The lower three addresses A2-AO are multiplexed 
between BE2#-BEO# or three address bits of the processor. The multiplexor is con­
trolled by the MAP input which is generated by a bit in an I/O register. The EPROM 
data bus D7-DO is connected to the lower byte (D7-DO) of the processor data bus. This 
requires that the EPROM, when mapped as data, be on 64-bit boundaries. 

Use the circuit in Figure 5-7 for i860 microprocessor systems that boot from EPROM 
and copy their code to DRAM for normal execution. Normally, an EPROM used in CS8 
mode cannot be read as data. By adding a triple 2-to-1 multiplexor and using special 
addressing, the EPROM contents can be read out as data. A special routine is needed to 
access the EPROM. A portion of the physical address space must be reserved for ad­
dressing the EPROM as data. Figure 5-6 illustrates the connection from i860 CPU to 
EPROM. 

5-12 



I/O INTERFACING 

BUFFER EPROM r--

LATCH 8 07-0 
DATABUS -~ 

A2-0 
-

AOOAESS A3-A16 
A13-0 -

IORD# OE 

CE# 
ADDRESS MAX 

EPA2-O 
MAP 
A27-25 

BE2#-0# 

CMOOE 

LA17-15 

IODEC2 

AOOAESS 

CMOOE EPROMSEL 
TCRES 
BSY 
NREADY# 

LADS# 

MAP 240330-41 

Figure 5-6. i860™ EPROM Interface 

The EPROM(s) are connected to the low order 8 data bits of the i860 microprocessor 
data bus. The top 32 Mbytes of the physical address space is reserved to address up to 2 
Mbytes of EPROM code/data. A physical address space sixteen times the size of the 
EPROM must be used. The EPROM address space must be at the top of physical 
memory. 

Accesses with A24 HIGH are code accesses and should activate KEN# to enable cach­
ing of instructions from EPROM. Accesses to EPROM with A24 LOW must not allow 
caching of the EPROM data. The signals on data bus D63-D8 are undefined and must 
be ignored by the program. The data multiplexor must select the B inputs when A24 is 
high. 

5-13 



I/O INTERFACING 

A31 

A30 

A29 

A28 

A27 

A26 

A25 

A24 
I 

A23 A2 S 

A22 A1 CSt 
02 A2 

i860lM A21 AO 
tdJX 01 A1 

CPU BE2. B2 00 AO 

BE1. B1 

BEO. BO EPROM(s) 

An An 

A4 A4 

A3 A3 

D7.() D7'() 

I 
240330-42 

Figure 5-7. Circuit for Booting from EPROM 

The EPROM data is copied from EPROM to DRAM via a subroutine. The subroutine 
is called: eprom_copy(eprom_base,addrJnc,start,count,destination). The subroutine 
copies count bytes from start offset in the EPROM to destination. 

The parameter eprom_base points at the beginning of the 16 x EPROM space. For the 
hardware above, eprorn..base is OxFEOOOOOO. The eprom_base is not the same address as 
would be loaded into the instruction pointer to execute the first four bytes as instruc­
tions. The program address of the first instruction at offset 0 in the EPROM in the 
example above would be OxFFEOOOOO. In the example above, the EPROM instructions 
could also be executed at addresses OxFFCOOOOO, OxFFAOOOOO, OxFF800000, 

5-14 



I/O INTERFACING 

OxFF600000, OxFF400000, OxFF200000, and OxFFOOOOOO. An attempt to read these ad­
dress ranges would not allow access to all bytes of the EPROM since not all combina­
tions of BE2#-BEO# can be generated via reads. 

The parameter addr_inc is the address pin used to access individual bytes in the 
EPROM, for the hardware above this is 21. Consecutive bytes in EPROM are spaced 221 
bytes apart. At every eight bytes the low order address pins change. The table below 
illustrates: 

EPROM byte offset 
o 
1 
2 
3 
7 
8 
9 

Address used by eprollLcopy 
OxFEOOOOOO 
OxFE200000 
OxFE400000 
OxFE600000 
OxFEEOOOOO 
OxFE000008 
OxFE200008 

The parameter start is the byte offset in the EPROM to begin the copy. This offset 
assumes the EPROM appears as a sequence of bytes. The start can have any alignment. 
The count is the number of bytes to copy. The destination is where to copy the destina­
tion data, which can have any alignment. 

5-15 



I/O INTERFACING 

This subroutine can be called at any time so long as the program can address the lower 
half of the 16 X EPROM address space. 

II 
II R16 has base address of EPROM block 
II R17 has the address base used to access individual bytes 
II R18 has the starting offset of data in EPROM 
II R19 has the count of bytes to copy 
II R20 has the destination address 
II 

eprom_copy: : 
or l,r0,r21 II Form address increment 
adds -1,rI9,rI9 II See if zero count 
shl r 17, r21, r21 II Form EPROM byte address increment 
bnc exit II Exit if zero count 

or 7,r0,r22 /1 Form address limit test value 
shl r17, r22, r22 /1 Form maximum byte offset 
addu rI6,r22,r25 II Form upper address limit 
and 7,rI8,r23 II Form starting byte address 
shl rI7,r23,r23 II lower byte offset 
andnot 7,rI8,rI8 II Always address aligned address 
addu r23,rI8,rI8 /1 Form starting read address 
adds -1,r0,r24 II Setup decrement value for BlA 
bla r24,rI9,cloop 1/ Setup lCC for next BlA 
addu rI6,rI8,rI8 II Form virtual address to read EPROM 

cloop: 
ld.b 0(rI8),r26 1/ Get value from EPROM 
subu rI8,r25,r0 1/ Set carry if we read mod 7 byte 
bnc.t in block 1/ Jump with next instruction if not 
addu r21,rI8,r21 1/ mod 7 byte, Increment byte address 

andnot r22,rI8,rI8 /1 Go to MOD 0 byte 
adds 8,rI8,rI8 II Go to next EPROM 8 byte block 

in block: 
st.b r26,0(r20) II Put data byte into DRAM 
bla r24,rI9,cloop 
adds l,r20,r20 II Bump destination pointer 

exit: 
bri rl I I Exit 
nop II Nothing to do here 

5.4.2.1 DOUBLE COpy LOAD 

An alternative to the address multiplexor is the "double copy load" method. This 
method requires considerably more software effort than the address mux method and 
also uses more EPROM space (since two copies of the code are required). In this case 
the EPROM A2-AO are directly connected to the BE2#-BEO#. The 8-bit data bus of 

5-16 



I/O INTERFACING 

the EPROM is connected to D7-DO of the processor. Unlike the address mux method of 
copying, this method uses the on-chip data cache; and like the address mux method, the 
EPROM will need to be remapped from the bootstrap locations into another portion of 
the memory space of the i860 microprocessor. However, in this case, two copies of the 
code are needed in the EPROM: one copy with code bytes located on 8-bit boundaries 
and one copy with code bytes spaced for copying. As Table 5-1 illustrates, in the non­
CS8 mode there are only six valid BE2#-BEO# combinations for the eight possible 
EPROM addresses. Therefore the second copy of the code needs to be spaced so that 
the first byte is at location 0 and the second byte is at location 3. 

Table 5-1. Valid Addresses for SPACED copying 

Bus BE# Valid Address 
Address 210 T or F Address EPROM 

0 000 T (Load 32-bit value) 0 
1 001 F (16-bit access on odd boundary) Invalid 
2 010 F (two noncontiguous bytes) Invalid 
3 011 T (Load 1 byte) 3 
4 100 T (Load 16-bit value) 4 
5 101 T (Load 1 byte) 5 
6 110 T (Load 1 byte) 6 
7 111 T (Load 1 byte) 7 

The data is first copied into the data cache by using the Id.1 or Id.b instructions to assert 
the proper BE2#-BEO# values. Once the data is in the cache it is read into a register 
and saved in the appropriate DRAM location. An untested example of the possible code 
for the "double copy load" method is illustrated in the following pages. 

5.4.2.2 EPROM TIMINGS 

The timing analysis assumes that the address multiplexor scheme is being used for the 
EPROM interface. The OE# input of the EPROM is connected to IORD# output of 
the I/O Control Logic. The following are the critical timings: 

1. Address/CE# to Output (Tacc): 

Assumes that the multiplexed address bits are the last to' become valid. 

Tacc ::5 3Tcy - Latch Propmax - Addr. Muxmax - i860 CPU data Setup 
- Buffer Delaymax 

Tacc ::5 3Tcy - 35 

For Tacc of 200ns @33 MHz Two Wait States 

Addr. Mux.: Address Multiplex Delay 

5-17 



I/O INTERFACING 

2. OE# to Output (Toe): 

Assumes zero-wait-state cycle. 

Toe ::5 Tcy - PLDclk-to-output - Buffer Delay - i860 Microprocessor Setup 

Toe ::5 Tcy - 28 

For Toe of 85ns requires 3 wait states. 

3. OE# High to Output Float (Tdf): 

If READY# is asserted to the processor on the clock edge prior to IORD# going 
inactive, the EPROM data outputs can float as late as 60ns after the rising edge of 
IORD#. This means that EPROM data may be valid until as late as lOns into the 
second T11 of the next cycle. The i860 CPU for writes can output data as early as 
3.5ns from clock edge of the second T 11' If this were allowed to happen it would 
result in data bus contention and would cause problems in the system. The IOTIME 
PLD eliminates bus contention by not allowing the next cycle to begin until all data 
outputs of the slave device float. 

5.5 DMA INTERFACE RECOMMENDATIONS 

Performing DMA (Direct Memory Access) transfers in an i860 microprocessor system 
requires deciding between two general approaches. One uses DMA in the conventional 
mode, performing data transfers directly to DRAM. The other technique uses an inter­
mediate memory area. Each has important issues regarding performance, software com­
plexity, and part count. 

Any DMA design must take into account the on-chip caches. The i860 microprocessor 
caches use a write-back mechanism to minimize external bus traffic and increase perfor­
mance. The on-chip caches are logical-address caches. External bus snooping is 
not provided since such cycles would conflict with internal accesses, reducing overall 
performance. 

If DMA is permitted directly to main memory, then the software must insure that no 
data values associated with that memory area are in the caches. Either the I/O buffer is 
always marked non-cache able or the data cache must be flushed before the DMA may 
read from the memory area. Both the code and instruction caches must be flushed after 
the DMA has written to memory if the i860 microprocessor might have an old copy of 
the data. 

If DMA transfers directly to main memory and this I/O buffer is used directly by the 
application, it must also take into account the paging structure used in most systems. 
Paging breaks up the contiguous logical address space of the application into discontig­
uous memory addresses. The DMA device needs to transfer a stream of data to discon­
tiguous addresses if that data stream crosses a memory page boundary. 

Another approach to direct DMA is to allocate track buffers in memory which are 
always non-cacheable and occupy consecutive physical memory pages. The operating 
system can manage these buffers to speed up disk accesses since an entire track can be 
read in one revolution of the disk and kept for later disk accesses which usually want a 

5-18 



I/O INTERFACING 

sector in the same track. The OS can copy data between this track buffer and the 
application. The copy will update all caches and handle discontiguous memory pages. 
DRAM-to-DRAM copy can be as fast as 56/67 Mbytes/sec. 

Based on these issues, two general approaches are possible: low-cost, lower performance 
design using DMA directly to i860 microprocessor memory and a higher cost, higher 
performance approach using an intermediate memory area. 

An 82380 is used in this example. It provides eight DMA channels, 17 interrupt inputs, 
and five 16-bit timers. The 82380 has a bus interface identical to that of the 386'" 
microprocessor. It uses a 2 x clock. A 16 MHz 82380 requires the i860 microprocessor to 
run at 32 MHz. A 20 MHz 82380 can work with a 40 MHz i860 microprocessor. 

The first approach is conventional. An 82380 DMA device with four extra data trans­
ceivers could perform DMA to memory. It can run directly off the i860 processor clock 
with special PLDs that convert the 82380 bus signals into DRAM commands. The i860 
processor HOLDIHLDA signals are used. Each transfer requires at least four clocks on 
the i860 processor bus. More will usually be needed to allow access to real memory or 
I/O devices. For DRAM accesses by the 82380, the DRAM controller must perform 
them in pairs of clocks to match the 82380 bus timing. If the I/O device is not 32-bits 
wide, then the 82380 must either perform two-cycle transfers or else extra data transceiv­
ers are needed to route the I/O data to the correct part of the 64-bit data bus. 

The 82380 can support paged memory systems via a set of second address and count 
registers per channel. After completing the transfer of one block, the DMA channel 
automatically switches to the next set of registers. The registers must be reprogrammed 
during the time of a page transfer. If the operating system can not guarantee quick 
enough interrupt response, DMA transfers cannot cross a page boundary. 

The second approach is to add a special I/O buffer memory between the I/O device and 
the i860 microprocessor. SRAMs make this easier. The 82380 performs DMA transfers 
into the SRAMs on an isolated bus. The SRAM area is large enough for all the simul­
taneous DMA transfers in progress at once.The i860 processor copies data between the 
SRAM space and DRAM. The copy operation updates the cache and handles page 
boundary crossing. This approach offers higher performance, because the DMA chan­
nels do not tie up the CPU bus when accessing the I/O device. The SRAM space should 
be 64-bits wide to maximize the copy speed. 

The cost of using the I/O buffer memory is the SRAM devices and two or three address 
latches. Four data transceivers are still needed to buffer the data bus. Reads to the 
SRAM area must disable KEN#. 

When copying data between the application and I/O buffer, use pfld instructions to 
prevent the data from flushing the data cache. Normal writes can be used, because a 
write miss does not cause a cache load. The copy function shown here achieves 1Mbyte/ 
MHz data rate, assuming 4 wait states on first DRAM access and 1 wait state per SRAM 
access. At this rate, the time spent in copying data is negligible. 

5-19 



I/O INTERFACING 

Note: This example has not been tested 

II 
II Copy a block of data from the source to the destination. 
II Use pipelined floating-point loads to prevent data accesses 
II from flushing out data cache contents. 
II 
II bcopy(source_ptr,dest_ptr,count8) 
II 
II r16 on entry has pOinter to the source, must be 8-byte aligned 
II r17 on entry has pointer to the destination, must be 16-byte aligned 
II r18 on entry has count of 8-byte words to transfer. 
II 

II The transfers are performed on source and destination in series of 
II back-to-back operations to allow page mode accesses to DRAMs. 
II 
II 
II 
II 
II 
II 
II 
II 

Assuming 3 wait states on the first access, the transfer speed is 
38 clocks per 64 bytes transferred for big blocks. 

56.1 Mbyteslsec at 33.33 Mhz 

bcopy: : 
addu 
shr 
bc.t 
pfl d. 1 

II 

67.4 Mbyteslsec at 40 Mhz 
o bytes 8 clocks 
8-128 bytes 5 + 10n/8 clocks 

-16,r18,r20 
3,r20,r21 
do_long 
(r16) ,m 

II See if at least 16 transfers 
II Setup loop counter for 8 per loop 
II Jump if long transfer 
II Start reads on long transfer 

II Copy small block of data 8 bytes at a time 
II 

bte r0, r18,exit II Jump if 0 count 
adds -1, r0, r19 II Setup BLA counter 

dlast: 
adds -1,r18,r18 I I Setup -for BLA 
subs r17,r16,r17 II Form distance from source to destination 
bla r19,r18,sloop II Set LCC for next loop 
adds -8,r16,r16 II Setup for autoincrement addressing 

sloop: 
fl d.l 8(r16) + +, f16 II Get source and bump address 
bla r19,r18,sloop II Loop if more to do 
fst .1 f16,r17(r16) II Write destination 

exit: 
bri r1 II Return to caller 
nop II Nothing to do here 

II 
II Start the pipelined floating-point reads 
II 

5-20 



I/O INTERFACING 

do_long: 
adds 
pfld. 
bla 
pfl d.l 

bloop: 

/I 

pfl d.l 
pfl d.l 
pfl d.l 
pfl d.l 
pfl d.l 
pfl d.l 
pfl d.l 
pfl d.l 
fst.q 
fst.q 
adds 
fst.q 
bla 
fst.q 

-l,re,r19 
8(r16) + +, f9 
r19,r2l,bloop 
8(r16) + +, f9 

8(r16) + +, f16 
8(r16) + +, f18 
8(r16) + +, f29 
8(r16) + +, f22 
8(r16) + +, f24 
8(r16) + +, f26 
8(r16) + +, f28 
8(r16) + +, f39 
f16, (r17) 
f29,16(rl7} 
64,r17,r17 
f24,-32(rl7} 
r19,r2l,bloop 
f28,-16(rl7} 

// Finish off last transfers to mod 8 
1/ 

pfld.l 
pfld.l 
pfl d.l 
pfld.l 
pfl d.l 
pfld.l 
adds 
pfld.l 
pfld.l 
fst.q 
fst.q 
fst.q 
and 
fst.q 
bnc.t 
adds 
bri 
nop 

8(r16) + +, f16 
8(r16) + +, f18 
8(r16) + +, f29 
8(r16) + +, f22 
8(r16) + +, f24 
(r16),f26 
8,r16,r16 

-8(r16),f28 
-8(r16),f39 
f16, (rl7) 
f29,16(rl7) 
f24,32(r17) 
7,r29,r18 
f29,48(rl7} 
dlast 
64,r17,r17 
rl 

/1 Setup BLA counter 
/1 Read the next value 
/1 Set LCC for next loop 

I/Get value mod 9 
1/ Get value mod 1 
1/ Get value mod 2 
1/ Get value mod 3 
1/ Get value mod 4 
1/ Get value mod 5 
1/ Get value mod 6 
1/ Get value mod 7 
1/ Store 9-1 pair 
1/ Store 2-3 pair 
1/ Update destination pointer 
1/ Store 4-5 pair 
1/ Loop if more to do 
1/ Store 6-7 pair 

/1 Start last 5 reads 
II Get value mod 1 
/1 Get value mod 2 
II Get value mod 3 
II Get value mod 4 
/1 Get last three data words 
/1 Update source pointer 
/1 Reread last source 
/1 Get value mod 7 
/1 Put 9-1 pair into memory 
II Put 2-3 pair into memory 
II Put 4-5 pair into memory 
II Get remaining count 
II Put 6-7 pair into memory 
II Jump if still work 
II Update destination pOinter 
II Else all done 
II Nothing to do here 

5-21 



I/O INTERFACING 

Double copy load method: 

/ / Thi s program copi es ROM code to DRAM. It assumes that BE2#: BEfil# are 
// wired to the ROM address bits 2:fil (least significant bits). 

dramstart = filx7efffilfilfilfil 

epromstart = filxfffffilfilfilfil 
epromend = filxffffffffil 

.atmp r31 

.text 

II non-cacheable alias for DRAM, where ROM 
II copied code will go. 

copyrom: : II start coping EPROM contents to DRAM 
or 1%epromstart,rfil,r9 
orh h%epromstart,r9,r9 
or 1%epromend,rfil,r7 
orh h%epromend,r7,r7 
ca 11 fl ush cache 
nop 
or 1 %dramstart,.rfil,r8 
orh h%dramstart,r8,r8 

1 oadbytes: : 
ld.l fil(r9),rlfil 
ld.b fil(r9),rlfil 
call flush cache 
ld.b 8(r9):rI8 

ld.b 2 (r9), r13 
ld.b fil(r9),rI3 
call flush cache 
ld.b 8(r9),rI9 

ld.s fil(r9), r14 
ld.b fil(r9), r14 
call flush cache 
ld.b 8(r9),r2fil 

ld.b l(r9),rl5 
ld.b fil(r9),rI5 
call flush cache 
ld.b 8(r9), r21 

ld.b fil(r9),rI6 
ld.b fil(r9),rI6 
call flush cache 
ld.b 8(r9),r22 

ld.b 3 (r9),r17 
ld.b fil(r9),rI7 
call flush cache 

II make sure we get a miss 

II cache data for bytes fil & 8 
II load byte fil from cache 
II insure cache miss next time 
II load byte 8 from cache 

II cache data for bytes 3 & 11 
II load byte 3 from cache 
II insure cache miss next time 
II load byte 11 from cache 

II cache data for bytes 4 & 12 
/I etc. 

II cache data for bytes 5 & 13 

II cache data for bytes 6 & 14 

II cache data for bytes 7 & 15 

5-22 



ld.b B{ r9). r23 
store: : 

st.b rI0,0{rB) 
st.b r13,I{rB) 
st.b rI4,2{rB) 
st.b rI5,3{rB) 
st.b rI6,4(rB) 
st.b rI7,5(rB) 
st.b rlB,6(rB) 
st.b rI9,7(rB) 

st. b r20,B(rB) 
st.b r21,9(rB) 
st.b r22 ,0xa (rB) 
st. b r23 ,0xb (rB) 
xor r7,r9,r0 
bc load reset 
addu 0x10,r9,r9 
br loadbyts 
addu 0xc,rB,rB 

load reset:: 

wI =0xa0000000 
w2 = 0xa0000000 
w3 = 0x6bffc03f 
w4 = 0xa0000000 

resxc start=0x7effff00 
dramc start=0xffff0000 

byte_bucket = 0xlfff0010 

or 1%resxc_start,r0,r4 
orh h%resxc_start,r4,r4 
or 1%wl,r0,r5 
orh h%wl,r5,r5 
st.l r5,0(r4) 
addu 4,r4,r4 
or 1%w2,r0,r5 
orh h%w2,r5,r5 
st.l r5,0(r4) 
addu 4 ,r4,r4 
or 1%w3,r0,r5 
orh h%w3,r5,r5 
st.l r5,0(r4) 
addu 4 ,r4,r4 
or 1%w4, r0, r5 

I/O INTERFACING 

II store byte 0 to DRAM 
II" " 3" 
I I 4 
1/ 5 
I I 6 
I I 7 
II B 
II 11 

I I 12 
I I 13 
II 14 

II 15 
II check for end of ROM 
II branch if end of ROM 
II increment ROM counter 
II copy another 12 bytes 
II increment DRAM counter 

II Load the reset code to DRAM 

II This hex code is for the reset branch 
II branch from 0xffffff00 to 0xffff000B 
II (Two nop's, then branch) 
I I Sequence = nop; nop; br; nop 

II non-cacheable alias of feffff00 
II cacheable DRAM that will be mapped 
II over EPROM space after boot 
II ROM location 

II bottom of reset branch code 

II store word 1 
II increment counter 

II store word two 

II store word three 

5-23 



orh 
st.l 

h%w4,r5,r5 
r5,0(r4) 

I/O INTERFACING 

II store word four 

II The next line must be hand patched after every reassembly 

or 
orh 

0xf174, r0, rl 
0xffff,rl,rl 

II fffff174 is mask_cs8 

II We go through the warp drive section twice to insure that 
II it gets completely cached. We must be executing from 
II cache when we zero CS8 and the boot bit. 

or 1 %byte_bucket, r0,r5 
orh h%byte_bucket,r5,r5 
ld.c dirbase,r4 

warp drive:: 
st.b r0.0(r5) 
st.c 
bri 
nop 

mask cs8:: 

r4,dirbase 
rl 

or 0xff7f,r0,r3 
orh 0xffff,r3,r3 
and r3,r4,r4 
or 0x20,r4,r4 
xorh h%byte_bucket,r5,r5 
orh 0x0100,r5,r5 
or 1%dramc_start,r0,rl 
orh h%dramc_start,rl,rl 
br warp_drive 
nop 

II get dirbase contents 

II does nothing first time 
II does nothing first time 
II go tomask_CS8 the first time 
II go to ffff0000 second time 

I I kill cs8 bit 

II invalidate code cache bit 
II zero r5's high 16 bits 

II rl now has DRAM start address 

II r5 has the boot port address 
II r4 has CS8 bit reset 

II The following flush procedure is from the i860™ Programmer's Reference 
II manual. Please reference the manual for additional information. 
fl ush cache:: 

FLUSH P = 0x7f000000-32 
Ilrw';r24 , rx=r25, ry=r26, rz=r27 

mov rl,r2 
ld.c dirbase,r27 
or 0x800,r27,r27 
adds -I,r0,r25 
call D FLUSH 

5-24 



I/O INTERFACING 

st.c r27,dirbase 

or exgee,r27,r27 
call D FLUSH 
st.c r27,dirbase 

xor exgee,r27,r27 
mov r2,rl 
bri rl 
st.c r27,dirbase 

D FLUSH:: 
or 1%FLUSH_P,re,r24 
orh h%FLUSH_P,r24,r24 
or 127,re,r26 
bla r25,r26,D FLUSH LOOP 
1 d.l 32(r24),r0 -

D FLUSH LOOP:: - -
bla r25,r26,D FLUSH LOOP 
flush 32(r24)++ -
bri rl 
1 d.l -512(r24) ,re 

.end 

5-25 





Graphics Subsystem 
Example 

6 





CHAPTER 6 
GRAPHICS SUBSYSTEM EXAMPLE 

6.1 INTRODUCTION 

Computer graphics technology has developed rapidly in recent years and has trans­
formed the computing environment. Graphics provides visualization - the ability of 
computers to create revealing, life-like images from hard-to-interpret numerical data. 
Graphics offers user-friendliness to ease the man-machine interface, and it opens new 
applications in science, engineering and the arts. Advances in graphics hardware tech­
nology are catalysts for innovation. Raster display technology, low-cost, high-speed dis­
play memory and powerful, intelligent graphics processors are key elements to recent 
changes. A decade ago, high resolution graphics was reserved to centralized computing 
facilities. Today, home and office computers provide even better graphics at a fraction of 
the cost. . 

The underlying trend in computer graphics development is toward better display and 
pixel resolution. Display requirements for solids modeling and visualization are stringent 
because of the need to accurately represent smooth shaded objects. Graphics worksta­
tions are a new class of machines for graphic-intensive applications. They combine 
medium- to high-resolution color graphics with high-speed computational capability. 
Applications may call for real-time manipulation of complicated images composed of 
close to a hundred thousand polygons. These 3-D graphics applications demand high 
MFLOPS (millions of floating-point operations per second) performance. Object mod­
eling, transformation and rendering are common applications that usually require super­
computer power. 

6.2 GRAPHICS AND THE i860™ MICROPROCESSOR 

The i860'M microprocessor's architectural features provide high performance graphics 
capability. Floating-point power, parallel execution units, high integration and dedicated 
3-D graphics hardware combine to provide supercomputing graphics performance and 
capability. 

The processor provides an integer operation and up to two floating-point operations per 
clock cycle. Pipelined floating-point multiplication and addition units operate simulta­
neously using special dual operation instructions. This speeds matrix arithmetic and vec­
tor computation to provide a peak performance of 80 single-precision or 6O-double 
precision MFLOPS at 40 MHz. 

The i860 microprocessor supports 3-D graphics operations such as hidden surface elim­
ination and Gouraud shading. It operates on 8, 16, or 32-bit pixels. Its high speed, 64-bit 
data bus delivers a peak 160 megabytes per second with zero-wait-state accesses. Dual 
instruction mode allows floating-point or graphics operations to execute in parallel with 
pixel loading and storing. Scoreboarding can provide continuous execution during cache­
miss processing of data reads. 

6-1 



GRAPHICS SUBSYSTEM EXAMPLE 

6.2.1 Processor Bus Bandwidth 

In real-time applications, frames must be refreshed at least 10 times per second. Band­
width requirements vary according to display and pixel resolution. Nearly 40 Mbytes/sec 
bandwidth must be dedicated to memory refresh to provide real-time graphics on a 1,280 
x 1,024 pixel monitor with 24-bit resolution. Additional data transfers for modeling, 
transformation, hidden surface elimination and shading increase the bandwidth require­
ment. 

At 40 MHz, the i860 microprocessor provides 160 megabytes per second bus bandwidth 
with zero-wait-state cycles. This allows for real-time manipulation of high-resolution 3-D 
images. 

6.3 3-D GRAPHICS EXAMPLE 

This example outlines a graphics frame buffer daughter card for an i860 microprocessor 
evaluation vehicle. The example does not represent an ideal design but is instead em­
ployed to demonstrate the processor's 3-D graphics capabilities. The concepts employed 
here can be extended to complete systems where more board space and dedicated 
hardware/software support permit greater sophistication. 

This evaluation vehicle is designed as a frame buffer extension to an i860 microprocessor 
based system. The processor connects to the frame buffer board through the expansion 
bus. The frame buffer is mapped into the expansion space as allocated by the CPU core. 

6.3.1 Features 

The following features are included in the frame buffer example: 

• 1,024 x 768 RGB Display with 16-Bit Pixel Resolution 

• Double-Buffering at Two Megabytes Per Buffer 

• 33 MHz with 40 MHz Upgrade Path 

• PLD-Based VRAM Controller 

• VRAMControl Options for lOOns and 80ns VRAMs 

• PLD-Based Noninterlaced CRT Control 

Dedicated to the three colors, red, green arid blue, are 6, 6, and 4 bits per pixel respec­
tively. Sixteen-bit pixel resolution allows a double-buffered scheme requiring only four 
megabytes of total display memory for a 1,024 x 768 pixel display. It also allows four 
pixels per 64-bit load/store operation and four pixels per computation. Transformation 
and refresh rates are higher than those obtained with a 24-bit or 32-bit pixel resolution. 

6.3.2 Testing, 

This example has been tested for the operational mode that uses lOOns VRAM. Refer to 
Section 6.5.1.1. PLD codes are included in Appendix A. 

6-2 



GRAPHICS SUBSYSTEM EXAMPLE 

r---
DATA 

VRAM 
~ CONTROl CONTROl 1 

DATA 

i860lMMICROPROCESSOR 

DISPLAY ---4 

en BUFFER #0 .-
~ ADDRESS I-t 

~ ROWICOlUt.f\I 
en ADDRESS ~ 

~ I ~. X w 

------
DISPLAY r- --t 

BUFFER #1 ~ f4- EXPANSION fNTR 
& BUFFER 

SWITCH 
......... 

1 I 

CRTTIMNG 

-
a: 

~ --t 
a: w en 
-' 
~ 
a. 

--

-
~ 
~ 

--
- COLOR 

M:JNfTOR 

I 2 40330-43 

Figure 6-1. Block Diagram of the i860™ Microprocessor Based Graphics 
Frame Buffer Board 

6.4 SYSTEM OVERVIEW 

The frame buffer board is composed of three major sections: VRAM control, CRT 
control and expansion bus interface. The VRAM controller controls four megabytes of 
video RAMs which are divided into two display buffers. While the i860 processor ac­
cesses one buffer, the CRT may display the other buffer. Refer to the block diagram in 
Figure 6-1. . 

6.4.1 Expansion Bus Interface 

Frame buffer logic resides on the expansion bus. The key signals are listed below: 

• 64-bit buffered data bus 

• Bits A23-A3 of the i860 microprocessor address bus 

• i860 microprocessor control signals such as ADS#, READY# and NA# 

• Decoded signals from the baseboard logic such as EXPSEL# 

• Power supply and ground signals 

Refer to the schematics in Appendix A for the complete list of signals. 

6-3 



GRAPHICS SUBSYSTEM EXAMPLE 

6.4.2 Data Transceiver/Latch Control 

Data is transferred to and from the i860 microprocessor through data transceivers/ 
latches on the i860 microprocessor board. Expansion data control signals are generated 
to control the logic. 

6.4.3 Address Transceiver/Latch 

Address bits A20-A3 are used to generate row and column addresses during data access 
cycles. Bits A20-A12 are buffered and then latched as row address by VRAMs. Bits 
All-A3 are latched externally as column address when a VRAM cycle is detected. In­
cluding bit 21 (which selects display buffer #0 or #1), four megabytes of address space 
are provided. 

6.4.4 VRAM Control 

VRAM control provides VRAM control signals for read/write cycles, refresh cycles, and 
RAM-to-SAM transfer cycles. VRAM read/write cycles are synchronized with pipelined 
cycles to the DRAM subsystem on the i860 microprocessor board. 

6.4.5 Serial Row/Column Address Generation 

RAM-to-SAM transfer for the serial port occurs during horizontal blank periods, and 
row addresses increment accordingly. Each row transfer provides two screen lines, and 
row addresses increment every other horizontal blank time. A column address latched 
during SAM transfer indicates the origin of data within the SAM register. All but the 
most significant bit in the column address are zero. The most significant bit alternates 
between one and zero. If the bit is a one, the serial shift from the serial port originated 
from the middle of the SAM register. This occurs during a RAM-to-SAM transfer of 
display data for the second screen line stored in the second half of the same VRAM row. 
The row address is not incremented in this case. 

6.4.6 Double Buffering 

Double buffering reduces flickering and partial image update. Here, each buffer consists 
of two megabytes of video RAM. 

6.4.7 Expansion Interrupt/Buffer Switch 

Upon reset, buffer #0 is enabled. When ready to display data in a second buffer, the 
processor may read or write to a location where A22 is high. Actual buffer switching 
occurs in the subsequent vertical trace. A low value on A3 indicates that display data 
comes from buffer #0; a high value indicates that data comes from buffer #1. The 
processor is interrupted when vertical retrace occurs. 

6-4 



GRAPHICS SUBSYSTEM EXAMPLE 

6.4.8 CRT Timing Generation 

Blank and sync signals are generated with PLDnTL logic, and clocking is derived from 
the 64 MHz pixel clock. The 16 MHz serial clock clocks data out of the VRAM serial 
ports. 

6.4.9 Pixel Serializer 

Pixel resolution is 16 bits/pixel, and four pixels are clocked out with each rising edge of 
the serial clock. Pixels are loaded into shift registers at serial clock rate but shifted out of 
the registers at pixel clock rate. 

6.4.10 Video DACs 

Video DACs convert digital video data into analog video data at the pixel clock rate. The 
sync-on-green mode of the color monitor provides synchronization. 

6.5 OPERATION 

6.5.1 VRAM Control 

VRAM control logic provides all control signals for VRAM operation, including serial 
port accesses. 

6;5.1.1 SPEED MODE 

Two operation modes are designed to use lOOns and 80ns VRAMs. They are designated 
as l-wait-state-write and O-wait-state-write modes respectively. The lOOns VRAMs are 
used and tested in initial prototyping. (PLD code for the O-wait-state mode is not in­
cluded in the appendix.) They require one wait-state for writes and two wait-states for 
reads in page mode. (PLD codes are included in Appendix A.) 80ns VRAMs are needed 
to ~upport zero-wait-state writes and l-wait-state reads. Refer to the timing diagrams in 
Figure 6-2 and 6-3 for one-wait-state-write mode operation. 

6.5.1.2 PROCESSOR-INITIATED CYCLES 

The frame buffer 1?oard shares processor and latched data control buses with the i860 
microprocessor board. VRAM cycles may be started by the VRAM controller when the 
VRAM space is selected and DRAM busy signal(DRMBSY#) is deasserted (that is, 
pipelined cycles are completed). The expansion busy signal (EXPBSY#) is also asserted 
to prevent other cycles from starting while VRAM cycles are pending. 

Once the first VRAM cycle is started, VRAMs remain in page mode during 
near (NENE# asserted) cycles. Reads are pipelined with NA#. A new cycle can start 
when NA# is activated in pipelined mode or when READY# is activated in nonpipe­
lined mode. Idle or far cycles put VRAMs in precharge mode. Row addresses are 

6-5 



<D 
Read 

GRAPHICS SUBSYSTEM EXAMPLE 

(2) 
Read 

0) 
Write 

. ., . . .' . . 
@) 

Read 

~~~~~~~~~~~~~~~~~~~~ 
A~:: 10 IL4 : : : \ c ~ fL;I : : ~~ ~ : : : ~ ~!Lf ~ 

: m: ~~ ~ ~ ~~ @~. : @,: 
LADS# ~~IU: lUi-flf : : I'+-~ : Iu;..-Iit 

ADDR ~~x x¢ : . :_. ~ ~pc ~CI . ~~@) ~ 
RASx# I\!: 

240330-44 

Figure 6-2. Read/Write/Read Operation (1-Wait-State-Write Mode) 

latched by VRAMs on the falling edge of RAS#, and column addresses are latched on 
the falling edge of CAS#. Subsequent near cycles to the VRAM space need to supply 
column addresses only. Near cycles are indicated by the i860 microprocessor NENE# 
pin. 

In read cycles, data is latched by the data latch on the i860 microprocessor board before 
being read by the processor. This provides sufficient setup and hold times. In write 
cycles, data is also latched before being written into VRAMs. The data latch is con­
trolled by expansion· bus data control lines. Latch latency requires that write data be 
latched to maintain one-wait-state operation in successive VRAM write cycles (one­
wait-state-write mode operation). Latch signals require at least one clock period to 
recover. 

6-6 



ADS# 

NA# 

LADS# 

ADOR 
RASx# 

ROWE# 

COLE# 

MA 
CASx# 

M) 

EROL# 

READY# 

CPENO# 
LWR# 

063-00 

WOEL# 

EWOL# 

DTOE# 

ERDE# 

EWOE# 

GRAPHICS SUBSYSTEM EXAMPLE 

<D <?) @ @) 
Write Write Read Write 

h.. ~ h.J n.. ri.. ri. ~ ~ ~ rid r1J M-M-r\ f1.. ~ ~ r1-(ID @ 
~ L:.! ~ .L..:.( "?- .L:.! 

\Q 
~ .L:.! 

~ 
~ 'J.:I 

-:- f11: ~ JJ. ~ 111: ~ Ill: x>9o ~ ~ :- ~ :~ 

~ ~- I lOW ~)i-K< (1 XX (2) xx (3) ~ l4J 
l\(r ri: f:\~ rf: f:\: ~ III: 

:X o( ~ : ) ~ ~ ~ ~ ~ 
:,..,.. ~ ~ LJ~ 

:\G: ~ ILf: 
Ii: ~ 

u 
ri: h® ~ U; 

'f\! 

II· 

~ ~ ~ ~ XX: ~ r. :v ~ 4 

~ :--

~ 
\\!4 

~ 10: ~ Ill: Ill: U!- 111: ~ 
\~ 

Figure 6-3. Write/Read/Write Operations (1-Wait-State-Write Mode) 

r1- r1-
~ 

~ 

:,.,., 

I~ 
~ ~ 
.:"i' 
~ ~ 

~ 

LJ: 

240330-45 

When a write cycle is immediately preceded by a read, data is not driven by the proces­
sor until one clock after READY # is returned. This is illustrated in Figure 6-2 and 6-3. 

6.5.1.3 REFRESH/RAM-TO-SAM TRANSFER CYCLES 

The refresh and serial register (SAM) transfer VRAM cycles are not initiated by the 
processor. The cycles occur simultaneously in both VRAM banks and have priority over 
processor-initiated cycles. Outstanding processor-initiated cycles resume following 
refresh/SAM cycles. Refresh cycles have priority over RAM-to-SAM cycles. 

Figure 6-4 illustrates a far cycle (NENE# not active) followed by a RAM-to-SAM trans­
fer request and refresh request (REF). The refresh cycle begins as soon as RAS# pre­
charge time has been met. The RAM-to-SAM request (TRQ) arrives one clock before 
the refresh request. Request lines are not sampled until the end of the precharge period 
where both lines are active. These cycles are equally important in displaying the correct 

6-7 



GRAPHICS SUBSYSTEM EXAMPLE 

images continuously. RAM-to-SAM requests occur during video blanking time and 
minor delay is tolerable. The RAM-to-SAM cycle begins as soon as RAS# precharge 
time for the refresh cycle is satisfied. CAS-before-RAS refresh VRAM mode is used to 
generate a refresh address internally. 

A RAM-to-SAM read transfer is requested when DT/OE# is asserted on the falling 
edge of RAS#. In real-time read transfers without RAM-to-SAM transfers, the transfer 
must remain active until CAS# has been deactivated. Although not indicated in the 
diagram, WE# must be deasserted during refreshlRAM-to-SAM transfer cycles. While 
external address generation is not required in refresh cycles, a scan line address is re­
quired for RAM-to-SAM transfers. The address setup and hold mechanisms are similar 
to those in a regular cycle. 

AOSII 

lADS, 

RASxt 

ROWE. 

COLE. 

MA 

CASt 

EROL. 

ROY# 

CPEND' 

TRFO' 
PREC~ 

REFCt 

RASDEL# 

CLRRFQ# 

SRAE# 

SCAE# 

CLRFRO# 
REF 

TRO 

DTOE# 

~ ~~ 1-m h.~ ~.~~~ H-~ ~H-~~ 
~ i i l\l 1.£ : ! : : : : 1 1 j 

~i i ; i 
l\l : i : ~JF~ 1 1 

! ! IU 
1 1 ~ 

1 
1 i : : : : 11': : 

; ; i : 
IIIIIIl IWlUlt 'R-

tI 
; IF 

; ; in 
j f.l 

~ i 
: : : l ~ .1 j l ~ ~ III i i 

kfl ~$I Iii i i 
1 : i : 
i lj 1 J i . ; 11 1 
1 11 III i i i 
[ i L i ; i : 1 J 

i l i : : : : : 
! ! 

: 1 1 1 
111'. : 1 i .\J 1 ; ; i : ~ ! i 1 ; ; ; ; ; 'i ; ; 

Figure 6-4. Refresh/RAM-to-SAM Transfers 

6-8 

H-

J 
l'r 
: 

~ 

IT 

1 
11 

~ld-+ 111$ J 

lli 



GRAPHICS SUBSYSTEM EXAMPLE 

6.5.2 Expansion Bus Interface 

The expansion bus allows the i860 microprocessor to access the frame buffer. The sche­
matics provide a complete list of bus signals. Expansion address space spans 8 mega­
bytes. Mapping is illustrated in Figure 6-5. 

6.5.2.1 EXPANSION SELECT 

The expansion select signal (EXPSEL#) and signals A21 and A22 are needed to decode 
access to the expansion address space in two megabyte increments (refer to Figure 6-5). 
Low levels on EXPSEL# and A22 signal VRAM accesses. A21 distinguishes between 
display buffers #0 and #1 when the random port (processor side) of the VRAMs is 
accessed. When A22 is high for an access to the expansion space, A3 enables the serial 
port (CRT side) of buffer #0 or buffer #1. Buffer switching occurs during vertical re­
trace. Although available, A23 is not used in decode logic; VRAMs and unpopulated 
space are assigned to two eight megabyte regions. 

6.5.2.2 DATA TRANSCEIVER/LATCH SHARING 

Four signals control the data transceiversllatches used in VRAM data accesses. The 
ERDL# and EWDL# signals latch read and write data. ERDE# is used for transceiver 
enable, and EWDE# is used for transfer direction control. ERDL# and EWDL# must 
meet the setup time requirement relative to a delay clock (delayed from CLK) on the 
i860 microprocessor board. Data is latched in the latter part of CLK. EWDL# activates 
the write data latch signal. 

High Address 

Reserved 
Space 

Buffer #1 

A22 =0 1--------1 

Buffer #0 

Low Address 

8 MBytes 

240330-47 

Figure 6-5. Expansion Space 

6-9 



GRAPHICS SUBSYSTEM EXAMPLE 

6.5.3 CRT Timing Logic 

The 64 MHz pixel clock (PCLK) keys all timing signals. A divide-by-16 clock is gener­
ated to clock the horizontal blank signal, HBLANK. As shown in Figure 6-6, each hori­
zontal active period supports the 1,024 pixel horizontal display. Display active times are 
set at 16.5j.Ls while inactive times are set at 4.5j.Ls. The horizontal sync signal, HSYNC# 
has a front porch of 0.5 j.LS, an active time of 1.5 j.LS and a back porch of 2.5 j.Ls. The 
horizontal frequency is approximately 48 KHz. These timings are for the Hitachi Super­
scan (model CM2085MV); they must be adjusted for use with a different monitor. 

The vertical blank signal, VBLANK# is active low and remains active for 45 HBLANK 
periods. To provide a 768 line display (by remaining inactive for 768 HBLANK clock 
periods), the vertical retrace rate becomes approximately 60 times/sec. The front porch, 
active time and back porch for the vertical sync signal (VSYNC#) are 6, 6 and 33 
HBLANK periods respectively (refer to Figure 6-6). 

Zeros are shifted into the shift registers during blanking periods. When blanking ends, 
display data is shifted out of the VRAMs and loaded into the shift register by the 
load/shift signal (LDSR#). Undefined data is not displayed. Figure 6-7 provides serial 
data clocking timing. The serial clock (SC) is held low after all required data has been 
moved from the shift registers at the end of the display period. 

The pixel clock is divided by 16 to generate the CDIV16 clock used in most CRT timing 
logic. Final timings are synchronized to the pixel clock to ensure correct blanking by the 
video DACs where digital data, composite sync and blank signals combine to generate 
RGB signals. 

HBLANK 

HSYNC# 

VBLANK# \ / 
VSYNC# --V 

ISHISHI 33H 

Notes 1) H = horizontal retrace period 
2) VSYNC# is not generated but combined 

with HSYNC# to generated SYNC# 

240330-48 

Figure 6-6. Blank and Sync Signals 

S-10 



PClK 
(64M-1z) 

0IV-BV16 
(4Wi-lz) 

SBLANK# 
(TO LOGIC) 

sc 
(16MHz) 

SERIALVRAM 
DATA 

LDSRtI 

DIGITAL VIDEO 
DATA 

BLANK 
(TO VIDEODAC) 

rL ;L 

U 

W 

GRAPHICS SUBSYSTEM EXAMPLE 

rL h-h. rL JL h.. ~ n-
h 
I 

\I 

II I 

I 10 I I ® I 
(I 

~ poe (A) )0< ~ ~~ 
cI LJ LJ II 

I 1 2 3 Cf 1 
(( 

!I .. 

Figure 6-7. Serial Data Clocking 

IL h-h-h-

2 3 4 00 

L 

240330-49 

CRT timing relationships are illustrated in Figure 6-8. The horizontal blank (HBLANK) 
is generated by counting COUNT, and the vertical blank (VBLANK#) is generated by 
counting HBLANKs. The counters are reset by HCLR# at the end of horizontal display 
periods and by the VCLR# (not shown) at the end of each display periods. 

6.5.4 Schematics Description 

Refer to Appendix A, page 24, for the schematics. 

Sheet #1 

This sheet contains address transceivers and latches. 

6-11 



GRAPHICS SUBSYSTEM EXAMPLE 

COUNT 81 0 1 2 17 18 

<DIVIS 

HBLANK 

VBLANK# 

CBLANK# -+-+-+-+--n--j---I 

81 0 1 2 

1024 PCLKS 

17 18 

~RX#~-+~lr-r~I-r-r~~----------------;-;-'lr;-~r+-+---

i 
PCLK 

BLANK# 

sc 

123456 1022 1024 1026 

Figure 6-8. Blank Signals 

Sheet #2 

This sheet contains half of the VRAMs in Buffer #0. 

Sheet #3 

This sheet contains half of the VRAMs in Buffer #0. 

Sheet #4 

This sheet contains half of the VRAMs in Buffer #1. 

Sheet #5 

This sheet contains half of the VRAMs in Buffer #1. 

Sheet #6 

n-256 
i ~ 4(n-1)+2 

240330-50 

This sheet contains VRAM control logic. RASl# and RASO# control Buffers #1 and 
#0 respectively. RASl# is activated when A2l is high; RASO# is activated when A2l is 
low. RASl# and RASO# are combined to control the remaining logic. 

CAS2#, CASl# and CASO# are activated together; they are generated to share loading. 

6-12 



GRAPHICS SUBSYSTEM EXAMPLE 

PRECH# controls RASx# precharge time: three CLKs for far cycles; four clocks for 
refresh/SAM to support CAS#/DTOE# before RAS#. REFC# controls RAS# active 
time (five CLKs) during refresh/SAM. TRFQ# is activated when refresh (REF) or SAM 
request (TRQ) is active. RASDEL# is to delay RAS# active edge by one clock when 
TRFQ# is found active. 

ROWE#/COLE# and SRAE#/SCAE# are address enabled for regular VRAM and 
serial port row/column addresses. 

CPEND# is activated when VRAM cycles are detected. They are deactivated when 
CAS# is deactivated and no new VRAM cycle is detected. WDEL# delays logic activa­
tion when a write follows a read. NCLK# is added to minimize the number of inputs 
(related to WDEL#) to the RDY# (processor ready signal) PLD. 

ERDL# is activated in the clock that VRAM data is valid. It causes RDL activation in 
the core logic in the same CLK. 

DTOEx# enables VRAM output for read cycles and signals SAM transfer on the 
RASx# falling edge. CLRTRFQ# clears the refresh request (REF) while CLRTRQ# 
clears the SAM request (TRQ). ERDE# and EWDE# control direction (DRMDIR#) 
and enabling (DRMEN#) of data bus transceivers on the i860 microprocessor board. 
Refer to timing diagrams in the text for details. 

Sheet #7 

This sheet contains additional VRAM control and miscellaneous logic. DREF, PREF 
and TREF are decode signals to the product terms and determine the number of inputs 
required for DTOEx#, CASx# and RASx#, respectively. 

EWDL# activates WDL in the core logic in the same CLK to capture processor write 
data. In the case of zero-wait-state writes, it is activated whenever a VRAM cycle is 
detected regardless of the read/write or near/far state. 

SEI # and SEO# are activated when an access to the upper portion of the expansion 
space is detected. A low value on A3 activates SEO#; a high value activates SEl#. Upon 
reset, SEO# is activated. SEI # and SEO# cannot be active at the same time. 

RDY # is activated for VRAM cycles and for buffer selection accesses to the upper 
portion of the expansion space. RDY # is always in the high state when floated. 
VSELXl and VSELXO are state variables for these access cycles. 

EXPBSY # is activated when VRAM cycles are in progress. CBUSY # combines the 
various busy signals. 

WEx# are write enable signals for VRAMs. They must be inactive to allow CAS-before­
RAS refresh and SAM transfer on the RASx# falling edge. REFC# deactivates WEx#. 

Sheet #8 

LDSR# loads serial data into the shift registers. Data to be clocked out by PCLK. 
SCLR# clears register contents once all needed data has been shifted. 

6-13 



GRAPHICS SUBSYSTEM EXAMPLE 

Sheet #9 

The VOG signal carries composite sync information to support sync-on-green. When 
BLANK# is active, remaining shift register data is not displayed. 

Sheet #10 

PCLK is divided by 16 to generate CDIV16 for composite blank and sync clocking. 
SBLANK# is the composite blank signal synchronized to PCLK. The final blank signal 
BLANK# is used to clear the screen after remaining pixels are cleared from the shift 
register. The composite sync (SYNC#) and BLANK# are used by the video DACs. 

Sheet #11 

REF and TRQ generation. TRQ is activated by HBLANK; REF by REFREQ from the 
expansion bus. 

Sheet #12 

Terminations for VRAM control and for the expansion bus CLK signals (CLKC and 
CLKG). 

6-14 



MUL TIBUS® II and the 
i860 ™ Microprocessor 

7 





CHAPTER 7 
MUlTIBUS® II AND i860™ MICROPROCESSOR 

The i860'M microprocessor provides supercomputing performance and capability that can 
be provided on a standard bus platform. This allows systems integrators to take advan­
tage of rapidly advancing CPU technology while preserving their investment in existing 
hardware. Boards based on the MUL TIBUS® II system bus and on the i860 micropro­
cessor can be added to existing systems or can be the basis for a new system design. 

This chapter outlines an example of such a design. Schematics for the design are to be 
found in Appendix B. This example has not been tested. 

1.1 i860™ MICROPROCESSOR CPU BOARD 

Figure 7-1 shows a block diagram of a board designed around the i860 microprocessor 
and MULTIBUS II system bus. The main features include the following: 

• MULTIBUS II System Bus Interface 

• i860 Microprocessor 

--
I ADDR 

BlF 
13 ~ 

j { {, I~ J:' 
82380 I ~151 P1 

SRAM II EPROM II ~H sax I M'C I 
1~~pl 

CSM CONIIECTOR 
BUFFERS - , .l32 L8 }8 16 y16 Y16 

64 DATA 
32 BlF ~ 

-
'--i AIDA 

BlF DRAM ARRAY 

4M3Y1lES 
+--+ 

64 DATA I 64 I 
BlFI -- 240330·51 

Figure 7-1. System Block Diagram of i860 T" Microprocessor Based MULTIBUS® II Board 

7·1 



MULTIBUS® II AND THE i860™ MICROPROCESSOR 

• DRAM Main Memory 

• Local I/O Devices 

82380 Integrated Systems Peripheral 

82510 UART 

SBX Connector 

Single 8-bit Boot EPROM 

• DMA Control and SRAM Message Area 

• Memory and Graphics Expansion Connector 

7.2 MULTIBUS® II SYSTEM BUS STANDARD 

The MULTIBUS II system bus standard is a processor-independent bus architecture 
with full distributed multiprocessor support. The standard defines a 32-bit parallel sys­
tem bus with a maximum throughput of 40 Megabytes per second. The parallel system 
bus is isolated from the CPU local bus to allow the i860 microprocessor to access mem­
ory on its 64-bit data bus. The parallel system bus handles interprocessor communica­
tions and accesses to I/O devices not dedicated to a single CPU board. 

The MULTIBUS II system bus architecture also includes the system expansion (iSBXTM) 
1/0 bus. Refer to the IEEE 959 specification for a full description of this bus. 

7.2.1 Parallel System Bus (PSB) 

The parallel system bus (PSB) is optimized for standardized interprocessor data transfer 
and signalling. Its burst transfer capability provides a maximum sustained bandwidth of 
40 megabytes per second for high-performance data transfers. A hardware recognized 
data type, called a packet, is used to ensure consistent and reliable transfers between 
different system boards. 

The PSB supports four address spaces for each bus agent (board that encompasses a 
functional subsystem). Conventional I/O and memory address spaces are included, as are 
two address spaces that support system functions: 

• A 255-address message space supports message passing. Microprocessors typically 
perform interprocessor communication inefficiently. Message passing allows two bus 
agents to exchange blocks of data at full bus bandwidth without microprocessor 
supervision. An intelligent bus interface capable of message passing shifts the burden 
of interprocessor communication away from the processor and into hardware dedi­
cated to this task, thus enhancing overall system performance. 

• An interconnect space allows geographic addressing - the identification of any bus 
agent (board) by slot number. Every system based on the MULTIBUS II system bus 
contains a central services module (CSM) that provides system services for all bus 
agents residing on the PSB bus. These services include uniform initialization and bus 
timeout detection. The CSM may use the interconnect space registers of each bus 
agent to configure the agent dynamically. Stake pin jumpers, DIP switches and other 
hardware configuration devices can thus be eliminated. 

7-2 



MULTIBUS® II AND THE i860'M MICROPROCESSOR 

Three types of bus cycles define .activity on the PSB bus: 

• Arbitration Cycle - Determines the next owner of the bus. This cycle consists of a 
resolution phase in which competing bus agents determine priority for bus control. It 
also includes an acquisition phase in which the bus agent with the highest priority 
initiates a transfer cycle. This cycle overlaps other cycles allowing agents to transfer 
bus control on back-to-back cycles. 

• Transfer Cycle - Performs a data transfer between the bus owner and another bus 
agent. In the request phase, address control signals are driven. In the reply phase, two 
agents perform a handshake to synchronize the data transfer. The reply phase is 
repeated and data transfers continue until the bus owner ends the transfer cycle. 

o Exception Cycle - Indicates that an exception (error) has occurred during a transfer 
cycle. In the signal phase, an exception signal from one bus agent causes all other bus 
agents to terminate any arbitration and transfer cycles in progress. In the recovery 
phase, the exception signals go inactive. A new arbitration cycle can begin on the 
clock cycle following the recovery phase. 

Figure 7-2 illustrates how the timing of these cycles overlap. 

7.2.2 Message Passing Coprocessor 

The interface from the processor's local bus to the PSB can be simplified with the Intel 
82389 message passing coprocessor (MPC). The MPC has been designed for message 
passing protocols of the MULTIBUS II system bus architecture. It participates in the 
entire PSB bus protocol and performs bus arbitration, transfer control, error detection 
and reporting, and parity generation and checking. These functions occur independently 
of the host CPU. 

The MPC decouples local bus activities from interprocessor communications over the 
PSB bus. The decoupled bus approach has two advantages: 

• Resources that would be held in wait-states while dedicated bus access arbitration is 
underway are instead free. This parallelism increases system performance. 

e The bandwidth of one bus does not limit the transfer rate of another. Each bus can 
perform full-speed, synchronous transfers. 

As shown in Figure 7-3, the MPC signals can be divided into three functional groups: 

• PSB interface 

• Local bus interface 

• DMA interface 

These signal groups are discussed below. 

7.2.2.1 MPC INTERFACE TO PSB 

The primary functions of PSB interface signals are arbitration and system control. Five 
bidirectional arbitration signals (ARBS-ARBO) are used during reset to read card-slot 
ID and arbitration ID from the CSM. During arbitration, these signals output the 
arbitration ID for priority resolution. Bus request (BREQ#) is a bidirectional signal. 

7·3 



MULTIBUS® II AND THE i860'· MICROPROCESSOR 

Arbitration Cycle 

RESOLUTION 
BREQ# and 

ARB5# * 
ARB6# 

ACQUISITION 

Transfer Cycle 

COMMAND 
SC6# * SC8# 

ADDRESS 
ADS1# * ADS# 

HANDSHAKE 
SC6# * SC8# 

DATA 
ADS1# * AD# 

Exception Cycle 

SIGNAL 
BUSERRS 

and TIMEOUTS 

Figure 7-2. PSB Bus Cycle Timing 

RECOVERY 

240330-52 

(It should not be confused with the BREQ# i860 microprocessor signal.) Each bus agent 
asserts BREQ# to request control of the bus and samples BREQ# to determine if other 
agents are also contending for bus control. 

Bus error (BUSERR#) is a bidirectional signal that a bus agent sends to all other bus 
agents when it detects a transfer cycle parity error. The CSM sends the bus timeout 
signal (TIMOUT#) to all bus agents when it bus cycle fails to end within a prescribed 
time period. 

Ten system control signals (SC9#-SCO#) coordinate transfer cycles. The MULTIBUS II 
Architectural Specification defines each signal. Directional enables (SCOER and 

7-4 



MULTIBUS® II AND THE i860™ MICROPROCESSOR 

4 
Local Bus 

I r--
110 Address Bus -~,~--- A [5:2] I I PSB 

32 I 
VD Dala Bus ----"7'---.. 0 [0:31] I "---+1 

8 

7 --5 

1 
Decoded SeIect----... REGSEL#I: : 

110 Read Control----.. R 0. I' C I 
110 Write ControI---~ - .. W Ril : I 

Control Unes 

2 MNT I 
Interrupt Controller --"&-,--1 EM" I I 

r--~ I 
I 

DMA 

Controller 

' ... ----

---
OMAI 

IOREO I 
DOREO I 

I 
----...... IDACK I 

~ ----...... OOACK I 
I 

I 
I 
'-- -

Figure 7-3. MPC Signal Groups 

B 
U 
F 
F 
E 
R 
S 

T 

,.. 
,... Central 

Services 
Module 

"-
(Optional) 

Connector 
~ 

M 
U 
L 
T 
I 
B 
U 
S 

II 

-

240330-53 

SCOEL) are provided to let transceivers buffer these bidirectional signals. The MPC 
checks byte parity lines (PAR3-P ARO) are for incoming operations and set the parity 
lines for outgoing operations. 

Other PSB signals are reset (RST#), reset-not-complete (RSTNC#) and ID latch 
(LACHn#, n = slot number). These signals are used only during system initialization. 

The MPC coordinates interrupt handling for a bus agent on the PSB bus. Interrupts are 
implemented as virtual interrupts in the message space. To send an interrupt message, 
the processor writes to the MPC to indicate the source destination and message type. 
The MPC coordinates the interrupt message transfer. 

The PSB interface consists of the multiplexed address/data bus (AD31#-ADO#). The 
MPC controls external buffers used to drive the PSB. As a requesting agent, the MPC 
drives addresses and data at appropriate times. As a receiving agent, the MPC monitors 
the address/data bus for its address. When it recognizes one of its own addresses, the 
MPC performs the required handshake and reads the message into the message qu~ue. 

7-5 



MULTIBUS® II AND THE i860™ MICROPROCESSOR 

The MPC then, if necessary, interrupts the i860 microprocessor to indicate that the 
message is pending in the queue. The processor reads the message and services the 
interrupt accordingly. 

7.2.2.2 MPC LOCAL BUS INTERFACE 

The local bus interface of the MPC is like that of any other simple I/O device consisting 
of select lines, address signals and read and write control lines. To support message 
passing, MPC registers have various functions. They are accessed by asserting 
REGSEL# and the appropriate register address while performing a read or write cycle. 
Among other functions, the registers are used to program data message transfers, to 
receive and send control transfers and handle errors. 

7.2.2.3 MPC DMA INTERFACE 

The DMA interface of the MPC has two channels that use the standard DREQ (DMA 
Request) DACK (DMA Acknowledge) hardware transfer protocol. The two channels 
are dedicated to the MPC one as the input channel and one as the output channel. Each 
has its own control lines and operates independently. 

MULTIBUS II uses a message passing protocol for data transfer. Control transfers (also 
called unsolicited messages) are up to 32 bytes long, and data transfers (also called 
solicited messages) are up to 16 Mbytes long and are split into 32 byte packets by the 
sending and receiving MPCs. The sending and receiving DMA controllers do not know 
that the data is being packetized on the system bus. This bus bandwidth preserving 
feature does not affect local data transfers. The MPC has 32-byte internal FIFOs for 
packaging data before sending it on the MUL TIBUS backplane. 

The board includes an SRAM message area to isolate back plane data rates from the 
processor's local bus. For a solicited outgoing message, the i860 microprocessor transfers 
messages into the SRAM at a high rate. The DMA channel then transfers messages 
from the SRAM to the MPC's outgoing message FIFO. For a solicited incoming message 
the DMA channel transfers the message into the SRAM buffer and signals the processor 
when it has completed. The processor can then very quickly transfer from the SRAM 
area into main memory. As discussed later, using the SRAM as a dedicated DMA buffer 
area has several advantages over DMA directly out of main memory. 

7.3 i860™ MICROPROCESSOR BUS INTERFACE 

The i860 microprocessor has a synchronous interface with nonmultiplexed address and 
data buses. The data bus is 64 bits wide and the address bus provides 32-bit addressing. 
Addressing consists of 29 address lines and separate byte enable for each of eight data 
bytes. The bidirectional data bus can accept or drive new data on every other clock, 
yielding a bandwidth of 160 megabytes per second at 40 MHz. The bus allows two levels 
of pipelining that may be selected on a cycle by cycle basis. In pipelined mode, a new 
cycle is started before earlier cycles have completed. Chapter 3 provides a complete 
description of the i860 microprocessor bus interface. 

7-6 



MULTIBUS® II AND THE i860™ MICROPROCESSOR 

7.4 DRAM SYSTEM 

The memory system consists of static column mode, noninterleaved, parity checked 
DRAMs. The processor's pipelined bus and address and data latches combine to hide 
DRAM latency for most accesses. Using 80 nanosecond static-column DRAMs, the 
memory system can supply the maximum data bandwidth required by the processor. 

The board allows up to four megabytes of DRAM on the base board. DRAMS are static 
column, 80 nanosecond, 256K x 4 chips in ZIP sockets. Parity DRAMS are 1M x 1. An 
additional four megabytes of DRAM can be added to the expansion connector without 
additional parity DRAMS. Chapter 4 provides more information about the DRAM 
interface. 

7.5 LOCAL I/O SYSTEM 

The I/O system consists of an integrated systems peripheral (82380), a serial port 
(82510), one 8-bit boot EPROM and an iSBX bus connector. The 82380 integrated 
systems peripheral includes timers (8254), two interrupt controllers (8259 master and 
slave) and eight DMA channels. The I/O system is memory mapped. 

The serial port can be used in a polled or interrupt mode. It also suitable as a console 
monitor. Timers are clocked from a reduced version of the serial controller's oscillator 
module. A control port enables and disables the timers. Timer outputs are connected as 
8259 interrupts. The master and slave 8259 chips accommodate 15 interrupt sources. 

Four of the DMA channels are used. Two are for the MPC interface, and two are for the 
iSBX bus connector. The DMA channels can transfer into or out of the SRAM message 
area. 

7.5.1 82380 Integrated Systems Peripheral 

The 82380 integrated systems peripheral serves both as a slave I/O device and as a bus 
master DMA controller. The 82380 contains four 16-bit programmable timers and has 
connections for 15 external interrupts. In addition, there are five internal interrupts that 
can be used with the DMA channels and the timers. 

The 82380 uses a double frequency clock. This allows a 40 MHz CPU to operate syn­
chronously with a 20 MHz 82380. At reset, a phase clock is generated and used by the 
control logic for 82380 accesses. The port addressing and data bus requirements of in­
terfacing the 64-bit i860 microprocessor to the 32-bit 82380 are discussed in Chapter 5. 

The DMA channels are programmed with the 82380 in slave mode. Once programmed, 
the DMA channels become bus masters to complete transfers. To gain control of the 
bus, the 82380 asserts HOLD. When HOLDA is returned to the 82380, it initiates the 
DMA transfer. Transfers continue until completion or until HOLDA is deasserted. 

7-7 



MULTIBUS® II AND THE i860™ MICROPROCESSOR 

7 .5.2 iSBX™ Bus Connector 

An iSBX bus connector is also included. The DMA control interface can be configured 
as defined in the iSBX bus specification. Several jumpers are provided for connection 
configuring. To access 8- and 16-bit iSBX bus devices, the processor must address them 
on eight byte boundaries. 

DMA transfers with the iSBX bus are supported. Transfers are with the SRAM message 
area. The DMA controller supports byte assembly and unassembly from 8 or 16 bit to 32 
bits. 

7.6 DMA CONTROL AND THE SRAM MESSAGE SYSTEM 

DMA controllers benefit systems that have peripherals requiring block memory trans­
fers. In this system, DMA channels are used for incoming and outgoing MULTIBUS II 
system bus messages and for I/O devices on the iSBX bus connector. Once a DMA 
channel is programmed, the processor remains uninterrupted while block transfers 
complete. 

DMA performance depends on the DMA controller transfer rate and the effect of the 
DMA controller on processor memory bandwidth. The relative influence of these factors 
varies according to the task at hand. If the processor waits for DMA data, then transfer 
rate is most important. In a multitasking environment, the DMA effect on bandwidth is 
more critical. A multitasking system puts a task waiting for the DMA to sleep and 
continues to execute other tasks. Overlapping tasks in this way improves overall system 
performance. Any DMA method must also consider the write-back caching protocols of 
the CPU and that the physical memory is arranged as pages. 

I/O system devices are slow relative to the processor's local bus. The DMA controller is 
separated from this bus by address and data buffers. This allows DMA memory accesses 
to occur independently of processor memory accesses. The memory portion of DMA 
transfers accesses the SRAM message area. Direct transfers to main memory would have 
to place the processor in a hold state, could not cross page boundaries and would require 
the operating system to maintain memory consistency between the caches and the DMA 
areas of memory. Transfers into the SRAM area do not initiate a hold, but they do 
require the processor to perform a main memory data transfer once the DMA transfer 
completes. The processor retains full memory bandwidth during DMA transfers to the 
SRAM area and may continue to execute tasks. Transfers between SRAM and DRAM 
area execute very quickly because SRAM and DRAM accesses occur at full bus band­
width. DMA transfers into the SRAM can be programmed to transfer blocks larger than 
the 4 Kilobyte page size. 

7.6.1 DMA Channels 

The 82380 is the system DMA controller and contains eight DMA channels. DMA in­
terface devices use the standard DREQIDACl( protocol. Bus control logic of the 82380 
is identical to the 386™ microprocessor and similar to the i860 microprocessor. The 
82380 can perform data assembly and disassembly for 8- and 16-bit DMA devices. The 
maximum data width for the device is 32-bits, and it uses address line A2 for accessing 
within 64-bit processor words. 

7-8 



MULTIBUS® II AND THE iS60 T• MICROPROCESSOR 

Fly-by mode may be used for transfers between the I/O and SRAM systems. In this 
mode, SRAM reads and MPC writes occur together to produce the highest possible 
DMA transfer rate. Fly-by mode can only be used with 32-bit DMA devices such as the 
MPC. Figure 7-4 shows two fly-by transfers between the SRAM and the output data 
channel of the MPC. In the second cycle, the MPC de asserts ODREQ, indicating to the 
DMA channel that its FIFO is full and that it cannot accommodate another transfer. 
The DMA channel resumes transfers when ODREQ is again asserted. 

The 82380 can assemble and disassemble 8-bit I/O accesses to 32-bit memory accesses 
during accesses to both main memory and the SRAM message area. Address line A2 of 
the 82380 determines which half of 64-bit memory data is accessed. 

7.6.2 SRAM Message Area 

The SRAM message area is ideally suited for isolating DMA traffic from the i860 
microprocessor's local bus. DMA transfers may occur in parallel with CPU main memory 
accesses. Both the DMA controller and the CPU can act as bus masters to access the 
SRAM and the I/O bus. 

The SRAM message area can be designed for various levels of price/performance. Two 
implementations are shown in Figures 7-5 and 7-6. The first figure illustrates an ap­
proach that requires fewer parts and uses four 8-bit SRAMs. In this example, the SRAM 

L-____________ ~ __ ~~~ ________________ __J~ 

~ __________ ~Il ,-

~----------~,-

----~~========~)----~{=======:J~ 
,'--------' 

240330-54 

Figure 7-4. Fly-by Transfer with SRAM Read and I/O Write 

7-9 



MULTIBUS® II AND THE i860™ MICROPROCESSOR 

data bus is directly connected to the I/O data bus. Four data buffers are needed on the 
processor side. Only the lower 32-bit processor data lines are used. This reduces the 
processor to memory transfer rate by one-half. The processor may continue to access the 
SRAM with zero wait-states, but it may only access the lower half of the data bus. The 
auto-increment addressing mode of the processor is used, and full processor bus band­
width is maintained. 

The second example supports a full 64-bit processor interface. Four additional data 
buffers are needed on the processor side, the I/O side of the bus requires four additional 
SRAMS and data buffers. The I/O-side buffers are used to multiplex the halves of the 
64-bit wide SRAM to one 32-bit 1/0 data bus. Eight 256 Kbit SRAMs produce a 256 
Kbyte message space. 64 Kbit SRAMs can be used instead if less message space is 
required. 

Arbitration between the two bus masters is performed by a PLD. The PLD can grant 
control of the DMA message system to the 82380 by asserting HOLD. If the i860 micro­
processor begins a bus cycle that requires the DMA message system, the arbitration PLD 
forces the 82380 from the bus. 

Figure 7-7 shows arbitration and DMA control logic blocks. The 82380 asserts HOLD 
and the arbitration PLD returns HOLDA. The 82380 takes control of the bus and per­
forms DMA cycles until HOLDA is deasserted or until the transfer is completed. If 
HOLDA is deasserted, the 82380 relinquishes control of the bus. The arbitration PLD 

~ - ~ ~ 

s s s s 
AddreSs 

R R R R 

Latches r---- A A A A 110 Address Bus - M M M M 
Processor x8 x8 x8 x8 

Address Bus 
--!"" ~I- ..oII!~ -~ 

-
Da1a 

Bullers -
Processor 
DaIa Bus 
(031: DOJ 

, 
VODataBus 

32 

-- .. 240330·55 

Figure 7-5. SRAM Message Area using 32-bit Bus 

7·10 



".m_I<!II 
IIItJI MULTIBUS® II AND THE i860™ MICROPROCESSOR 

Processor Side DMA Side 

Address - - I""""- - -latches -
~ S S S S S S S S 110 Address 

Processor R R R R R R R R 
Bus Address Bus A A A A A A A A 

I r- M M M M ~ M M M M 
x8 x8 x8 x8 x8 x8 x8 x8 ... -I'"'" -I"'" -~ -"""' -"""' 

~!'"'" 

DaIa DaIa 
Buffers Buffers 
~ -

:- va 
DaIa 

Processor 
74F64s 

Bus 
DaIa Bus ~ 64 (X4) 

-

-74f646 
(X8) 240330-56 

Figure 7-6. SRAM Message Area using 64-bit Bus 

deasserts HOLDA to the 82380 and waits for it to deassert HOLD. Although HOLD 
becomes active again in the next clock, HOLDA is not returned to the 82380 until the 
processor is finished with the bus. The 82380 is programmed in demand mode to allow 
this type of arbitration to work. When the processor finishes its I/O cycle, it returns 
HOLDA to the 82380. 

7.7 EXPANSION CONNECTOR 

The expansion connector can support memory expansion ranging from simple extensions 
to complex extensions such as those found in graphics systems. DRAM control lines and 
processor bus signals are both available on the connector. 

7.7.1 Memory Expansion 

Additional memory can be added to the expansion board. In this design, the processor 
address bus must be buffered on the memory board. The address buffers perform ad­
dress multiplexing and provide DRAM drive capabilities. Control signals are available 
on the connector, and DRAM and address buffer control signals can be generated using 
simple decode logic. The data bus uses data buffers from the main board. 

7-11 



MULTIBUS® II AND THE i860™ MICROPROCESSOR 

SRAM 
LO 

CONTROl 
CYCLES 
~ 

--- tJPC 

i860~P 

TARGET 
CONTROl 
~ 

-t --. PAL r--

ARBITRATION 82380 ...... ~ 
CONTROl.. CONTROl 

~ 

i:J PAL PAL HOlD OOREO 
HOlDA IDREO --- ODACK 

DACK 

240330-57 

Figure 7·7. DMA System Arbitration and Control 

7.7.2 Intelligent Expansion 

The connector provides the control signals needed to build an intelligent expansion 
board. One example of an intelligent board is a frame buffer board. It requires its own 
VRAM controller and control logic for returning READY# and NA# to the processor. 
Motherboard data buffer control signals are also available. The controller tracks ADS# 
and EXPSEL# signals to know when a cycle is intended for the expansion board con­
troller. The controller uses the EXPBSY # signal to indicate that it will be asserting the 
READY # and NA# control lines. The base controller must disable control of these 
lines when this occurs. 

7-12 



Physical Design and 
Debugging 

8 





CHAPTER 8 
PHYSICAL DESIGN AND DEBUGGING 

This chapter outlines the basic design issues, ranging from power and ground issues to 
achieving proper thermal environment for i86QTM CPU. 

8.1 GENERAL DESIGN GUIDELINES 
, 

The performance and proper operation of any high-speed system greatly depends upon 
proper physical layout. This section gives a brief overview of general issues and design 
guidelines for layout which are significant to both high- and low-frequency systems. 

The ever-increasing improvement of integrated circuit technology has led to an enor­
mous increase in the number of functions that are being implemented on a single chip. 
Improved technology also allows these functions to be implemented to provide higher 
performance. The i860 microprocessor, with operating frequencies of 33 MHz/40 MHz 
and corresponding high edge rates, presents a challenge to the conventional interconnec­
tion technologies which to date have been adequate only for interconnecting less sophis­
ticated VLSI devices. This challenge applies especially to system designers who are 
responsible for providing suitable interconnections at the systems level. 

At higher frequencies, the interconnections in a circuit behave like transmission lines 
which degrade a system's overall speed and distort its output waveforms. In laying out a 
conventional printed circuit board, there is freedom in defining the length, shape and 
sequence of interconnections. But with high-speed devices like the i860 microprocessor, 
this task is carried out with careful planning, evaluation and testing of the wiring pat­
terns. It is also critical to understand the physical properties of transmission lines be­
cause interconnection at high edge rates is analogous to a broadcasting transmission line. 

8.2 POWER DISSIPATION AND DISTRIBUTION 

The i860 microprocessor uses fast one-micron CHMOS* IV process technology. The 
main difference between the previous HMOS microprocessors and the new ones is that, 
in the latter, power dissipation is primarily capacitive and there is almost no DC power 
dissipation. As power dissipation is directly proportional to frequency, accommodating 
high-speed signals on printed circuit boards and through the interconnections is very 
critical. The power dissipation of the VLSI device in operation is expressed by the sum 
of the power dissipation of the circuit elements, which include internal logic gates, I/O 
buffers and cache RAMs. It is also a function of the operating conditions. 

The worst-case power dissipation of any VLSI device is estimated in the following 
manner: 

1. Let the following symbols stand for estimates of typical power dissipation for each 
circuit element: 

PG = Typical power dissipation for internal logic gates (mW) 

PliO = Typical power dissipation for I/O buffers (mW) 

PCRAM = Typical power dissipation for instruction/data cache RAMs (mW) 

8-1 



PHYSICAL DESIGN AND DEBUGGING 

2. To estimate total typical power dissipation: 

PT = PG + PliO + PCRAM (mW) 

where PT is the total typical power dissipation in milliwatts. 

3. To estimate the worst case power dissipation: 

Pd=PTxCy(mW) 

where Pd is the worst case power dissipation (mW) and Cy is a multiplier that is 
dependent upon power supply voltage. 

Internal logic power dissipation varies with operating frequency and to some extent with 
wait-states and software. It is directly proportional to the supply voltage. Process varia­
tions in manufacturing also affect the internal logic power dissipation, although to a 
lesser extent than with the NMOS processes. 

The I/O buffer power dissipation, which accounts for roughly 10 to 25 percent of the 
overall power dissipation, varies with the frequency and the supply voltage. It is also 
affected by the capacitive bus load. The capacitive bus loadings for all output pins is 
specified in the i860™ 64-Bit Microprocessor Data Sheet. The i860 microprocessor's out­
put valid delays will increase if these loadings are exceeded. The addressing pattern of 
the software can affect I/O buffer power dissipation by changing the effective frequency 
at the address pins. The frequency variations at the data pins tend to be smaller; thus, a 
varying data pattern should not cause a significant change in the total power dissipation. 

To calculate the total power dissipated by the board, the following formulas can be used. 

To calculate the maximum statistical power: 

Ptypical1 + Ptypical2 + ... (Pmax1 - PtyPical1)2 + (Pmax2 - PtyPical2)2 + ... 

where Pty icali and Pmaxi are the typical and maximum power dissipation of each of the 
integratea' circuits on the board. The i860 microprocessor should be placed close to the 
fan or where the airflow is unrestricted. 

8.2.1 Power and Ground Planes 

Today's high-speed CMOS logic devices are susceptible to ground noise and the prob­
lems that this noise creates in digital system design. This noise is a direct result of the 
fast switching speed and high drive capability of these devices, which are requisites in 
high-performance systems. Logic designers can use techniques designed to minimize this 
problem. One technique is to reduce capacitance loading on signal lines and provide 
optimum power and ground planes. 

Power and ground lines have inherent inductance and capacitance, which affect the total 
impedance of the entire system. Higher impedances reduce current and therefore offer 
reduced power consumption, while low impedance (e.g. ground planes) minimize prob­
lems like noise and cross talk. Hence, it is very important for a designer to have a 
controlled impedance design where high speed signals are involved. The formula for 
impedance Z, given the inductance L and the capacitance C, is as follows: 

Z= (LJC)1/2. 

8-2 



PHYSICAL DESIGN AND DEBUGGING 

The total characteristic impedance for the power supply can be reduced by adding more 
lines. For multilayer boards, power and ground planes must be used in i860 micropro­
cessor designs. 

The effect of adding more lines to reduce impedance is illustrated in Figure 8-1, which 
shows that two lines in parallel have half the impedance of a single line. 

To reduce impedance even further, more lines should be added. To lower the impedance 
a greater number of lines or a plane should be used. Planes also provide the best distri­
bution of power and ground. 

The i860 microprocessor has 24 power (V cc) and 24 ground (Vss) pins. All power and 
grounp pins must be connected to their respective planes. Ideally, the i860 microproces­
sor should be placed at the center of the board to take full advantage of these planes. 
Although the i860 CPU generally demands less power than conventional devices, the 
possibility of power surges is increased due to the processor's higher operating frequency 
and wide address and data buses. Peak-to-peak noise on V cc relative to Vss can be no 
more than 400 mY, and preferably is no more than 200 mY. 

roooo' 

Ie Lo 

20J La TO Co 

240330-75 

Figure 8-1. Reduction in Impedance 

8-3 



PHYSICAL DESIGN AND DEBUGGING 

Although power and ground planes are preferable to power and ground traces, double­
layer boards present a need for routing of power and ground traces. 

The inductive effect of a printed-circuit board (PCB) trace can be reduced by bypassing 
and careful layout procedures to minimize inductances. Figure 8-2 shows a method for 
reducing the inductive effects of PCB traces. The power and ground trace layout has a 
low series inductance, because the loop area between the integrated circuits (ICs) and 
the decoupling capacitors is small and the power and ground traces are closer. This 
results in lower characteristic impedance, which in turn reduces the line voltage drop. 

Another placement technique is called orthogonal arrangement, which requires more 
area than the previous technique but produces similar results. This arrangement is 
shown in Figure 8-3 . These techniques reduce the electromagnetic interference (EMI), 
which is discussed in section 8.4.3.1. 

8.3 DECOUPLING CAPACITORS 

The advanced, high-speed CMOS logic families available today have much higher edge 
rates than do the older, slower logic technologies. The switching speeds and drive capa­
bility needed to provide high performance to the systems are also associated with in­
creased noise levels. Some noise levels are inconsequential because they fall within the 
switching times of the other devices. The switching activity of one device can propagate 
to other devices through the power supply. For example, in the TTL NAND gate shown 
in Figure 8-4, both the 03 and the 04 transistors are ON for a short time while output 
is switching. This increased loading causes a negative spike on Vee and a positive spike 
on Vss' 

In synchronous systems where several gates switch simultaneously, the resuft is a signif­
icant amount of noise on the power and ground lines. This noise can be removed by 
decoupling the power supply. First, it is necessary to match the power supply's imped­
ance to that of the individual components. Any power supply presents a low source 
impedance to other circuits, whether they are individual components on the same board 
or on other boards in a multiboard system. It is necessary to match the supply's imped­
ance to that of the components in order to lessen the potential for voltage drops that can 
be caused by IC edge rates, ground- or signal-level shifting, noise induced currents or 
voltage reflections. 

This mismatch can be minimized by using a suitable high-frequency capacitor for bulk 
decoupling of major circuitry sections, or for decoupling entire PC boards in multiboard 
systems. This capacitor is typically placed at the supply's entry point to the board. It 
should be an aluminum or tantalum-electrolytic type capacitor having a low equivalent 
series capacitance and low equivalent series inductance. This capacitor's value is typi­
cally 10 to 47 IJ.F. Additional 0.1 IJ.F capacitors may be needed if supply noise is still a 
problem. 

A second type of decoupling is used for the rest of the ICs on the board. Additional 
decoupling capacitors can be used across the devices between V cc and Vss lines. The 
voltage spikes that occur due to switching of gates are reduced as the extra current 

8·4 



PHYSICAL DESIGN AND DEBUGGING 

GNO 5v 

Ie Packages 

~ : DeOO"'''"9 

GN0L..-..--i-_-+
I U'~" 

GNO 

I 
I 
I 

240330-76 

Figure 8-2. Typical Power and Ground Trace Layout for Double-layer Boards 

required during switching is supplied by the decoupling capacitors. These capacitors 
should be placed close to their devices as the inductance of lengthier connection traces 
reduce their effectiveness. 

Most popular logic families require that a capacitor of 0.01 fLF to 0.1 fLF RF grade be 
placed between every one to five packages, depending on the exact application. For 
high-speed CMOS logic, a good rule of thumb is to place one of these bypass capacitors 

8-5 



PHYSICAL DESIGN AND DEBUGGING 

5V Trace 

5 5 
"'\., x/1 x/1 

~ I ?\ I 
/ I I I 

1--. I--' W 
GND GND 

// / ..... 

?\'<- 7\'< I I 
I 

I _/ I h ,-. 1-. 
GND GND 

/ .... // 

7'1'< 7'1'< I I 
I 

I / I I 

? 
'-' '-' 

Return or / 
GNDTrace 

GND GND 

~ JV 5V hJ. 5V 

240330-77 

Figure 8-3. Orthogonal Arrangement 

between every two to three ICs, depending on the supply voltage, the operating-speed 
and EMI requirements. The capacitors should be evenly distributed throughout the 
board to be most effective. In addition, the board should be decoupled from the external 
supply line with a 10 to 47 pF capacitor. In some cases, moreover, it might be helpful to 
add a 1 I-LF tantalum at major supply trace branches, particularly on large PCBs. 

Surface mount (chip capacitors) are preferable for decoupling the i860 microprocessor 
because they exhibit lower inductance and require less total board space than leaded 
capacitors. They should be connected as shown in the Figure 8-5. These capacitors re­
duce the inductance, which keeps the voltage spikes to a minimum. They should be used 
to keep the leads as short as possible. 

Inductance is also reduced by the parallel inductor relationships of multiple pins. Six 
leaded capacitors are required to match the effectiveness of one chip capacitor, but 

8-6 



PHYSICAL DESIGN AND DEBUGGING 

A_-..... --..J 

3 _--+-..,.--..... 
I----.. y 

R4 

240330-78 

Figure 8-4. Circuit without Decoupling 

because only a limited number can fit around i860 CPU, the configuration shown in 
Figure 8-6 is recommended. 

8.4 HIGH FREQUENCY DESIGN CONSIDERATIONS 

The overwhelming concern in dealing with high speed technologies is the management 
of transmission lines. As the edge rates of signals increase, the physical interconnections 
between devices behave more like transmission lines. Although transmission line theory 
is straightforward, the difference between ordinary interconnections and transmission 
line interconnections is fairly complex. Transmission lines have distributed elements 
which are hard to define, and designers tend to overcompensate for the effects of these 
elements. 

Efficient i860 CPU design requires the identification of transmission lines over back 
plane wiring, printed circuit board traces, etc. Once this task is accomplished, the de­
signer's next concern should be to deal with three major problems which are associated 
with electromagnetic propagation: impedance control, propagation delay and coupling. 

The following sections discuss the negative effects of a transmission line that occur when 
operating at higher frequencies. As in higher frequency design, the reflection and 
crosstalk effects are inevitable. It is impossible to design optimum systems without ac­
counting for these effects. Later sections include a discussion of techniques that can 
minimize these effects. 

8-7 



D 

D 

PHYSICAL DESIGN AND DEBUGGING 

D 

i860TM 
IJP 

D 

D 

Under the 
Device 

D 
II 

Figure 8-5. Decoupling Chip Capacitors 

8.4.1 Transmission Line Effects 

D=O.1jJF 

1.01JF 

240330-79 

As a general rule, any interconnection is considered a transmission line when the time 
required for the signal to travel the length of the interconnection is greater than one­
eighth of the signal rise time. (True K.M., "Reflection: Computations and Wavefonns, The 
Interface Handbook", Fairchild Corp, Mountain View, CA, 1975, Ch. 3). The rise time 
can be either rise time or fall time, whichever is smaller, and it corresponds to the linear 
ramp amplitude from 0% to 100%. Normally the rise times are specified between 10% to 
90% or 20% to 80% amplitude points. These figures are multiplied by 1.25 and 1.67 to 
obtain the linear-ramp duration from 0% to 100% amplitude. 

For example in a PCB using G-lO and polymide (the two main dielectric systems avail­
able for printed circuit boards) signals travel at approximately 5 to 6 inches per nano­
second. 

If tr /1 x v s 8 then the signal path is not a transmission line but a lumped element, 

where 

tr = rise time 0% - 100% 
v = speed of propagation (5 to 6 inches/sec) 
I = length of mterconnection (one-way only) 

8-8 



PHYSICAL DESIGN AND DEBUGGING 

i860TM 
IJP 

Figure 8-6. Decoupling Leaded Capacitors 

The calculation is given by: 

t,ll x 6 ~ 8 

so 
I 2:: (tr x 6)/8 2:: (1.25 x 4 x 6)/8 2:: 3.75 inches. 

240330-80 

This calculation is based on the fact that the maximum rise time of the signals for the 
i860 microprocessor is 4ns. For I 2:: 3.75 inches interconnections act as transmission lines. 

Every conductor that carries an AC signal and acts as a transmission line has a dis­
tributed resistance, an inductance and a capacitance which combine to produce the 
characteristic impedance (Zo). The value of Zo depends upon physical attributes such as 
cross-sectional area, the distance between the conductors and other ground or signal 
conductors, and the dielectric constant of the material between them. Because the char­
acteristic impedance is reactive, its effect increases with frequency. 

8.4.1.1 TRANSMISSION LINE TYPES 

Although many different types of transmission lines (conductors) exist, those most com­
monly used on the printed circuit boards are microstrip lines, strip lines, printed circuit 
traces, side-by-side conductors and flat conductors. 

8-9 



PHYSICAL DESIGN AND DEBUGGING 

8.4.1.1.1 Micro Strip lines 

The micro strip trace consists of a signal plane that is separated from a ground plane by 
a dielectric as shown in Figure 8-7. G-IO fiber-glass epoxy, which is most common, has an 
er = 5 where er is the dielectric constant of the insulation. Let: 

w = the width of signal line (inches) 
= the thickness of copper ( .0015 inches for 1 oz Cui 

.003 inches for 2 oz Cu) 
h = the height of dielectric for controlled impedance (inches) 

The characteristic impedance ZO, is a function of dielectric constant and the geometry of 
the board. This is theoretically given by the following formula: 

Zo = (87/ V(er + 1.41)) In (5.98h/.8w + t) ohms 

where e r is the relative dielectric constant of the board material and h, wand t are the 
dimensions of the strip. Knowing the line width, the thickness of Cu and the height of 
dielectric, the characteristic impedance can be easily calculated. 

The propagation delay (tpd) associated with the trace is a function of the dielectric only. 
This is calculated as follows: 

tpd = 1.017 V(0.47Ser + 0.67) ns/ft 

For G-IO fiber-glass epoxy boards (er 

calculated to be l.77ns/ft. 
5.0), the propagation delay of microstrip is 

8.4.1.1.2 Strip Lines 

A strip line is a strip conductor centered in a dielectric medium between two voltage 
planes. The characteristic impedance is given theoretically by the equation below: 

Zo = 60 / ve,: In (5.98b/ 1T (0.8 W + t)) ohms 

Micro Strip w ---+>1 _____________ ~ 

240330-81 

Figure 8-7. Micro Strip Lines 

8-10 



PHYSICAL DESIGN AND DEBUGGING 

where b = distance between the planes for controlled impedance as shown in Figure 8-8. 

The propagation delay is given by the following formula: 

tpd = 1 .017 \.I'e. ns/ft 

ForG-lO fiberglass epoxy boards (er = 5.0), the propagation delay of the strip lines is 
2.26ns/ft. 

Typical values of the characteristic impedance and propagation delay of these types of 
lines are as follows: 

Zo = 50 ohms 
tpd = 2ns/ft (or 6 in/nsec) 

The three major effects of transmission line phenomenon are impedance mismatch, cou­
pling and skew. 

The following section will discuss them briefly and provide solutions to minimize their 
effects. 

8.4.2 Impedance Mismatch 

As mentioned earlier the impedance of a transmission line is a function of the geometry 
of the line, its distance from the ground plane, and the loads along the line. Any discon­
tinuity in the impedance will cause reflections. 

Impedance mismatch occurs between the transmission line characteristic impedance and 
the input or output impedances of the devices that are connected to the line. The result 
is that the signals are reflected back and forth on the line. These reflections can atten­
uate or reinforce the signal depending upon the phase relationships. The results of these 
reflections include overshoot, undershoot, ringing and other undesirable effects. . 

At lower edge rates, the effects of these reflections are not severe. However at higher 
rates, the rise time of the signal is short with respect to the propagation delay. Thus it 
can cause problems as shown in Figure 8-9. 

Ground 
Planes 

Figure 8-8. Strip Lines 

8-11 

240330-82 



PHYSICAL DESIGN AND DEBUGGING 

Expected Output 
Signal 

~~--------~~"~~) 
Time > I 

240330-83 

Figure 8-9. Overshoot and Undershoot Effects 

Overshoot occurs when the voltage level exceeds the maximum. (upper) limit of the 
output voltage, while undershoot occurs when the level passes below the minimum 
(lower) limit. These conditions can cause excess current on the input gates which results 
in permanent damage to the device. 

The amount of reflection voltage can be easily calculated. Figure 8-10 shows a system 
exhibiting reflections. 

240330-84 

Figure 8-10. Loaded Transmission Line 

8-12 



PHYSICAL DESIGN AND DEBUGGING 

The magnitude of a reflection is usually represented in terms of areflection coefficient. 
This is illustrated in the following equations: 

T = vJv; = Reflected voltage/Incident voltage 

T10ad = (Zload - lo)1 (Zload + Zo) 

Tsource = (Zsource - Zo)1 (Zsource + Zo) 

Reflection voltage Vr is given by Vi> the voltage incident at the point of the reflection, 
and the reflection coefficient. 

The model transmission line can now be completed. In Figure 8-10, the voltage seen at 
point A is given by the following equation: 

This voltage Va enters the transmission line at "A" and appears at "B" delayed by tpd' 

Vb = Va (t - xlv) H(t - xlv) 

where x = distance along the transmission line from point "A" and H(t) is the unit stop 
function. The waveform encounters the load ZL, and this may cause reflection. The 
reflected wave enters the transmission line at "B" and appears at point "A" after time 
delay (tpd): 

This phenomenon continues infinitely, but it is negligible after 3 or 4 reflections. Hence: 

Each reflected waveform is treated as a separate source that is independent of the 
reflection coefficient at that point and the incident waveform. Thus the waveform from 
any point and on the transmission line and at any given time is as follows: 

8-13 



PHYSICAL DESIGN AND DEBUGGING 

Each reflection is added to the total voltage through the unit step function H(t). The 
above equation can be rewritten as follows: 

V(x,t) = ( ZO~Zs) {VS(t-tpd.J H(t-tpd.J 

+ TI [Vs{t-tpd{2L-x» H{t-tpd {2L-x))] 

+ TITs [Vs{t-tpd {2L+x» H{t-tpd {2L+x))] 

+ ... } 

Impedance discontinuity problems are managed by imposing limits and control during 
the routing phase of the design. Design rules must be observed to control trace geome­
try, including specification of the trace width and spacing for each layer. This is very 
important because it ensures the traces are smooth and constant without sharp turns. 

There are several techniques which can be employed to further minimize the effects 
cau~ed by an impedance mismatch during the layout process: 

1. Impedance matching 
2. Daisy chaining 
3. Avoidance of 900 corners. 
4. Minimization of the number of vias. 

8.4.2.1 IMPEDANCE MATCHING 

Impedance matching is the process of matching the impedance of the source or load 
with that of the trace, and it is accomplished with a technique called termination. The 
reflection, overshoot and undershoot of signals are reduced by terminating the remote 
end of the transmission line from the source. The terminating impedance combines with 
the destination input circuitry to produce a load that closely matches the characteristic 
impedance of the line. (Board traces have characteristic impedances in the range of 30 
ohms to 200 ohms.) 

The calculation of characteristic impedance was already discussed. Impedance of the 
printed circuit board backplane connectors have the impedance in the same range as the 
traces, i.e. 30-200 ohms. 

Depending upon the length of the conductors or when using twisted pairs of coaxial 
cable in place of PC traces, the characteristic impedance of a backplane may change. 
Backplane impedance is also affected by the number of boards plugged. 

8.4.2.1.1 Need for Termination 

The transmission line should be terminated when the tpd exceeds one-third of 1,.. If tpd < 
1/3 1,., the line can be left unterminated, provided the capacitive coupling between the 
traces does not cause crosstalk. 

8-14 



PHYSICAL DESIGN AND DEBUGGING 

Termination thus eliminates impedance mismatches, increases noise immunity, sup­
presses RFI/EMI and helps to ensure that signals reach their destination with minimum 
distortion. There are five methods for terminating traces on the board: 

1. Series 
2. Parallel 
3. Thevenin 
4. AC 
5. Active 

Termination requires additional components and power. In case of passive terminations, 
extra drivers are needed to deliver more current to the line. In case of active termina­
tions extra power is needed which increases the power dissipation of the system. 

8.4.2.1.2 Series Termination 

One way of controlling ringing on longer lines is with the series termination technique 
also known as damping. This is accomplished by placing a resistor in series with 
the transmission line at the driving device end. The receiver has no termination. The 
value of the impedance looking into the driving device (Rd'ive, + RL = 20) should 
approximate the llDpedance of the line as closely as possible. In this circuit the ringing 
dampens out when the reflection coefficient goes to zero. Figure 8-11 illustrates the 
series termination. 

One main advantage of series termination is that only logic power dissipation results so 
that lower overall power.is required than other termination techniques. There is one 
penalty, however, in that the distributed loading along the transmission line cannot be 
used because only half of the voltage waveform is travelling down the line. The drop in 
voltage across series terminating resistor limits loading to a maximum of 10 loads. 

8.4.2.1.3 Parallel Terminated Lines 

Parallel termination is achieved by placing a resistor of an appropriate value between the 
input of the loading device and the ground as shown in Figure 8-12. 

Since the input impedance of the device is high as compared to the characteristic line 
impedance, the resistor and the line function as a single impedance with a magnitude 
that is defined by the value of the resistor. 

-t> 
Zo =750 

A 
'VVV'v 

B 

E~ ) 
c 

• • • 
F\. 

Driver L=9'~ Receiver 

240330-85 

Figure 8-11. Series Termination 

8-15 



PHYSICAL DESIGN AND DEBUGGING 

ZO=750 

240330-66 

Figure 8-12. Parallel Termination 

When the resistor matches the line impedance, the reflection coefficient at the load 
approaches zero, and no reflection will occur. One useful approach is to place the ter­
mination as close to the loading device as possible. 

Parallel terminated lines are used to achieve optimum circuit performance and to drive 
distributed loads - an important benefit of using parallel terminations. 

There are two significant advantages of using the parallel termination. First, it provides 
an undistributed waveform along the entire line. Second, when a long line is loaded in 
parallel termination, it does not affect the rise and fall time or the propagation delay of 
the driving device. Note that parallel termination can also be used with wire wrap and 
backplane wiring where the characteristic impedance is not exactly defined. If the de­
signer approximates the characteristic impedance, the reflection coefficient will be very 
small. This results in minimum overshoot and ringing. Parallel termination is not recom­
mended for characteristic impedances of less than 100 ohms because of large DC current 
requirements. 

8.4.2.1.4 Thevenin's Equivalent Termination 

Thevenin's equivalent termination is an extension of parallel termination technique. It 
consists of connecting one resistor from the line to the ground and another from the line 
to Vee. Each resistor has a value of twice the characteristic impedance of the line, so the 
equivalent resistance matches the line impedance. This scheme is shown in Figure 8-13. 

If there were no logic devices present, the line would be placed halfway between the Vee 
and the Vss. When a logic device is driving the line, a portion of the required current is 
provided by the resistors, so the drivers can supply less current than needed in parallel 
termination. The resistor value can be adjusted to bias the line towards Vee or ground 
Vss. Ordinarily it is adjusted such that the two are equal, providing balanced perfor­
mance. Thevenin's circuit provides good overshoot suppression and noise immunity. 

Due to power dissipation, this technique is best suited for bipolar and mixed MOS/ 
CMOS devices and is not suitable for pure CMOS implementations. There are two 
reasons for not having Thevenin's equivalent for the pure CMOS system design. First 

8·16 



PHYSICAL DESIGN AND DEBUGGING 

Driver Receiver 

240330-67 

Figure 8-13. Thevenin's Equivalent Circuit 

CMOS circuits have very high impedance to ground and Vee> and their switching thresh­
old is 50% of the supply voltage. Second, besides dissipating more power, multiple input 
crossing may occur which creates output oscillations. 

The main problem with Thevenin termination is high power dissipation in the termina­
tion resistors in relationship to the total power consumption of all of the CMOS devices 
on the board. For this reason, most designers prefer series terminations for CMOS to 
CMOS connections, as this does not introduce any additional impedance from the signal 
to the ground. The main advantage of the series termination technique, apart from its 
reduced power consumption, is its flexibility. The received signal amplitude can be ad­
justed to match the switching threshold of the receiver simply by changing the value of 
the terminating resistor. Series termination is a very useful technique for interconnecting 
the logic devices with long lines. 

8.4.2.1.5 AC Termination 

Another technique for designs that cannot tolerate high power dissipation of parallel 
termination and delays created by series termination is AC termination. It consists of a 
resistor and a capacitor connected in series from the line to the ground. It is similar to 
the parallel termination technique in functionality except that the capacitor blocks the 
DC component of the signal, and thus reduces power dissipation. This is shown in Figure 
8-14. 

The main disadvantage of this technique is that it requires two components. Further the 
optimum value of the RC time constant of the termination network is not easy to calcu­
late. It usually begins as a resistive value which is slightly larger than the characteristic 

8-17 



PHYSICAL DESIGN AND DEBUGGING 

Driver Receiver 

240330-88 

Figure 8-14. A.C. Termination. 

line impedance. It is critical to determine the capacitor value. If the value of RC time 
constant is small, the RC circuit will act as an edge generator and will create overshoots 
and undershoots. Increasing the capacitor value reduces the overshoot and undershoot, 
but it increases power consumption. As a rule of thumb, the RC time constant should be 
greater than twice the line delay. The power dissipation of the AC termination is a 
function of the frequency. 

B.4.2.1.6 Active Termination 

An active termination consists of a resistor that is connected between the input and 
output of a buffer driver as shown in Figure 8-15. 

The main advantage of this technique is that it can tolerate large impedance variations. 
This tolerance is valuable when tri-state drivers are connected to backplane busses. 
However, the terminations are costly, and the signals that are produced are not as clean 
as other terminations. A common solution is to place active terminations at both ends of 
the bus. This helps maintain the uniform drive levels along the entire length of the bus, 
and it reduces crosstalk and ringing. 

8-18 



PHYSICAL DESIGN AND DEBUGGING 

Table 8-1 shows the comparisons of different termination techniques. 

Table 8-1. Comparison of Various Termination Techniques 

# of Extra Prop 
Termination Components R Power Consumption Delay 

Series 1 2o-ZOUT Low Yes 
Parallel 1 20 High No 
Thevenin 2 220 High No 
AC* 2 220 Medium No 
Active 1 220 Medium No 

* A.C. also uses a capacitor of 200 pf to 500 pf. 

Beyond matching impedances, there are other techniques that can help avoid reflections. 
These are discussed in the following sections. 

8.4.2.1.7 Impedance Matching Example 

Previous sections discuss the techniques for calculating characteristic impedances (using 
transmission line theory) and the termination procedures used to match impedances. 
This section describes an impedance matching example that utilizes these techniques. 
Figure 8-16 shows a simple interconnection which acts like a transmission line as shown 
by the calculations. 

Active Termination 

PC Boards in 
Backplane 

1111 
Connectors 

One Line of Backplane Bus 

Figure 8-15. Active Termination 

8-19 

Active Termination 

240330-89 



PHYSICAL DESIGN AND DEBUGGING 

L=g" 

Trace Is Microstrip 

240330-90 

Figure 8-16. Impedance Mismatch Example 

In this example the different values are given as follows: 

Zs (source impedance) = 10 ohms, 
trs (source rise-time) =3nsec (normalized to O%to 100%) 
ZI (load impedance) = 10 Kohms 
trl (load rise-time) = 3nsec (normalized to O%to 100%) 
I (length of interconnection) = 9 in. 
trace is micro-strip 
er (dielectric constant) = 5.0 
h = .008 in. 
w =.01 in. 
t = .0015 in.(l oz. Cu) 
v = 6 in./nsec 

The interconnection will act as a transmission line if (as was shown in Section 8.4.1) 

I ~ (tr x v) I 8 ;::: (3 x 6)/8 ;::: 3 in. 

The value of I = 9, thus the interconnection acts like a transmission line. The impedance 
of the transmission line is calculated as follows: 

Zo = 87 I v(er + 1.41) x In (5.98hl (.8w + t) ) 
= 34.39 In 5.05 = 55.6 ohms 

Since Zs = 10 ohms, hence the termination techniques described previously will be 
needed to match the difference of 45.6 ohms. One method is to use a series terminating 
resistor of 45.6 ohms or use AC termination where R =55.6 ohms and C =.3j.LF. The 
circuit of Figure 8-16 is shown with termination in Figure 8-17. 

-[>----'VVV'v~c ) )r-----i[>-
, 45.50 

ZO=55.60 ZL =10Ko 

240330-91 

Figure 8-17. Use of Series Termination to Avoid Impedance Mismatch 

8-20 



PHYSICAL DESIGN AND DEBUGGING 

8.4.2.2 DAISY CHAINING 

In laying out PC boards, a stub or T -connection is another source of signal reflection. 
These types of connections act as inductive loads in the signal path. In daisy chaining, a 
single trace is run from the source, and the loads are distributed along this trace. This is 
shown in Figure 8-18. 

An alternative to this technique is to run multiple traces from the source to each load. 
Each trace will have unique reflections, which are then transmitted down other traces 
when they return to the source. In such cases, a separate termination is required for 
each branch. To eliminate these multiple terminators from T-connections, high­
frequency designs are routed as daisy chains. 

Because each gate provides its own impedance load along the chain, it is necessary to 
distribute these loads evenly along the length of the chain. Hence, the impedance along 
the chain will change in a series of steps and is easier to match. The overall speed of this 
line is faster and predictable. Also all loads should be placed at equal distances (regular 
intervals). ' 

8.4.2.3 90 DEGREE ANGLES 

Another major cause of reflections are 90 degree angles in the signal paths, which cause 
an abrupt change in the signal direction and promote signal reflection. For high­
frequency layout of designs, avoid 90 degree angles and use 45 or 135 degree angles, as 
shown in Figure 8-19. 

8.4.2.4 VIAS (FEED-THROUGH CONNECTIONS) 

Another impedance source that degrades high-frequency circuit performance is the via. 
Expert layout techniques can reduce vias to avoid reflection sites on PCBs. 

8.4.3 Interference 

Previous sections discuss reflections in high-frequency design, their causes, and tech­
niques to minimize them. The following sections discuss additional issues related to 
high-frequency design, including interference. In general, interference occurs when elec­
trical activity in one conductor causes a transient voltage to appear in another conductor. 

Source 240330-92 

Figure 8-18. Daisy Chaining 

8-21 



PHYSICAL DESIGN AND DEBUGGING 

Driver Driver 
BAD GOOD 

240330-93 

Figure 8-19. Avoiding 90 Degree Angles 

Two main factors increase interference in any circuit: 

1. Variation of current and voltage in the lines causes frequency interference. This 
interference increases with increases in frequency. 

2. Coupling occurs when conductors are in close proximity. 

Two types of interference are observed in high frequency circuits: 

1. Electromagnetic Interference (EMI) 

2. Electrostatic Interference (ESI) 

8.4.3.1 ELECTROMAGNETIC INTERFERENCE (CROSSTALK) 

Crosstalk is a problem at high operating frequencies because, as operating frequencies 
increase, the signal wavelengths become comparable to the length of some of the inter­
connections on the PC board. Crosstalk is a phenomenon of a signal in one trace induc­
ing another similar signal in an adjacent trace. There are two types of couplings between 
parallel traces which determine the amount of crosstalk in a circuit: inductive coupling 
and radiative coupling. 

Inductive coupling occurs when a current in one trace produces a current in a parallel 
trace. This current reduces with the distance between the two traces. Hence, closely 
spaced wires or traces will incur the greatest degree of inductive coupling. Each of the 
traces will induce a current in the other. 

Radiative coupling occurs when two parallel traces act as a dipole antenna which radi­
ates signals that parallel wires can pick up. This results in the corruption of signal that is 
already present in the trace. The intensity of this type of coupling is directly proportional 
to the current present in the trace. However, it is inversely proportional to the square of 
the distance between the radiator and the receiver. 

8-22 



PHYSICAL DESIGN AND DEBUGGING 

8.4.3.2 MINIMIZING CROSSTALK 

When laying out a board for an i860 microprocessor-based system, several guidelines 
should be followed to minimize crosstalk. 

One source of crosstalk is the presence of a common impedance path. Figure 8-20 shows 
a typical layout in which earth ground and signal ground are different. 

To reduce crosstalk, it is necessary to minimize the common impedance paths, which are 
shown as the ground impedances Z2' Z3 and Z4' During current switching, the ground 
line voltage drops causing noise emission. By enlarging the ground conductor (which 
reduces its effective impedance), this noise can be minimized. This technique also pro­
vides a secondary advantage in that it forms a shield which reduces the emissions of 
other circuit traces, particularly in multilayer circuit boards. 

The impedances Z2 through Z4 depend upon the thickness of the copper PC-board foil, 
the circuit switching speeds and the effective lengths of the traces. The current flowing 
through these common impedance paths radiates more noise as the current increases. 
The amount of voltage that is generated by these switching currents and multiplied by 
the impedance is difficult to predict. 

(Parasitic 
C L Capacitance) 

I 
Chassis Ground 

Figure 8-20. Typical Layout 

8-23 

Parasitic 
Capacitance T C 

240330-94 



PHYSICAL DESIGN AND DEBUGGING 

An effective way of reducing EM! is to decouple the power supply by adding bypass 
capacitors between Vee and ground. This technique is similar to the general technique 
discussed earlier. (The goal of the previous technique was to maintain correct logic 
levels.) 

The design of effective coupling and bypass schemes centers on maximizing the charge 
stored in the circuit bypass loops while minimizing the inductances in these loops. Some 
other precautions that can minimize EM! are as follows: 

• Running a ground line between two adjacent lines. The lines should be grounded at 
both ends. 

• Separation of the address and data busses by a ground line. This technique may 
however be expensive due to large number of address and data lines. 

• Removing closed loop signal paths which create inductive noise as shown in Figure 
8-21. 

Minimizing crosstalk involves first examining the circuit's interconnection with its near­
est neighbors since parallel and adjacent lines can interact and cause EM!. It is neces­
sary to maximize the distance between adjacent parallel wires. 

01 02 
r-- -

-~ 
:/ 

- -
04 03 

- -

240330-95 

Figure 8-21. Closed Loop Signal Paths are Undesirable 

8-24 



PHYSICAL DESIGN AND DEBUGGING 

8.4.3.3 ELECTROSTATIC INTERFERENCE 

We have discussed two types of coupling, inductive and radiative coupling, which are 
responsible for creating electromagnetic interference. A third, known as capacitive cou­
pling, occurs when two equipotential parallel traces are separated by a dielectric and act 
as a capacitor. According to the standard capacitor equation, the electric field between 
the two capacitor surfaces varies with the permitivity of the dielectric and with the area 
of the parallel conductors. 

Electrostatic interference (ESI) is caused by this type of coupling. The charge built on 
one plate of the capacitor induces opposite charge on the other. To minimize the ESI, 
the following steps should be taken. . 

• Separate the signal lines so that the effect of capacitive coupling is negated. 

• Run a ground line between the two lines to cancel the electrostatic fields. 

For high-frequency designs, a rule of thumb is to include ground planes under each 
signal layer. Ground planes limit the crosstalk caused by a capacitive coupling between 
small sections of adjacent layers that are at equipotentials. Additionally, when the width 
and thickness of signal lines and their distance from the ground is constant, the effect of 
capacitive coupling upon impedance remains uniform within ± 5 percent across the 
board. Using fixed impedance does not reduce capacitive coupling,but it does simplify 
the modeling of propagation delays and coupling effects. In addition, capacitive coupling 
can cause interference between layers, so the wires should be routed orthogonally on 
neighboring board layers. ' 

8.4.4 Propagation Delay 

The propagation delay of a circuit is a function of the loads on the line, the nnpedance, 
and the line segments. The term propagation delay means the propagation delay in the 
entire circuit, including the delay in the transmission line (which is a function of the 
dielectric constant). 

Also, the printed circuit interconnections add to the propagation delay of every signal on 
the wire. These interconnections not only decrease the operating speed of the circuits, 
but also cause reflection, which produces undershoot alld overshoot. 

When the propagation delays in the circuit are significant, the design must compensate 
for the signal skew. Signal skew occurs when the wire lengths (and thus the propagation 
delays) between each source and each corresponding load are unequal. 

Another negative aspect of propagation delay is that it can cause a race condition. This 
condition occurs when two signals must reach the same destination within one clock 
pulse of one another. To avoid race conditions, it is necessary to have the. signals travel 
through the same length traces. But if one route is shorter, then the signals will arrive at 
different timings, causing race conditions. 

One way to minimize this is by decreasing the length of the interconnections. Overall 
route lengths are shorter in multilayer printed circuit boards than in a double layer 
boards because ground and power traces are not present. 

8-25 



PHYSICAL DESIGN AND DEBUGGING 

8.5 LATCH-UP 

Latch-up is a common condition in the use of CMOS devices which occurs when Vee 
becomes shorted to Vss. Latch-up is triggered when the voltage limits on the I/O pins are 
exceeded, causing the internal PN junction to become forward-biased. The following 
steps ensure the prevention of latch-up. 

• Observe the maximum input voltage rating of I/O pins. 

• Never apply power to an i860 microprocessor pin or to any device connected to it 
before applying power to the i860 microprocessor. 

• Use good termination techniques to prevent overshoot and undershoot. 

• Use a proper layout to minimize reflections and to reduce noise on the signals. 

8.6 CLOCK CONSIDERATIONS 

8.6.1 Requirements 

The i860 microprocessor facilitates an easy to implement 1 x clock interface. An exter­
nal, 33/40 MHz clock synchronizes both the internal functional blocks of the micropro­
cessor and the external signals. Most of the i860 microprocessor's board logic circuitry 
also uses this clock. A typical i860 microprocessor clock circuit, shown in Figure 8-22, is 
comprised of a 33/40 MHz oscillator and a buffer. 

The clock input requirements for i860 microprocessor systems are more stringent than 
those for many commonly used TTL devices. A CMOS buffer will meet the clock input 
requirements as will a TTL buffer with a pullup resistor. 

The minimum high and low times are specified as 7ns at 33 MHz and Sns at 40 MHz. 
The clock timings are shown in Figure 8-23. 

ClKA 
33/40 2 18 
MHz 

4 16 - I----

OSC 6 
Buffer 

14 
- r--

8 12 
ClKB 

~ 
24ll330-96 

Figure 8-22. Typical Clock Circuit 

8-26 



3.av 

ClK 1.5V 

a.8V 

r=4ns 

t5 

PHYSICAL DESIGN AND DEBUGGING 

r=4ns 

t4 

1~--------~=7--------~1 
1E----t3=7----~ 

1~<r----------------t1=3a-125ns----------------~>~1 

1t T c = a to 85°C. Vee =5V"±:5%, 33.3 MHz measured at 1.5V. 

Figure 8-23. Clock Timings 

8.6.2 Routing 

240330-97 

Achieving the proper clock routing around a 33/40 MHz printed circuit board is delicate 
because a myriad of problems, some of them subtle, can arise if certain design guidelines 
are not followed. For example, fast clock edges cause reflections from high impedance 
terminations. These reflections can cause significant signal degradation in systems 
operating at 33/40 MHz clock rates. This section covers some design guidelines which 
should be observed to properly layout the clock lines for efficient i860 microprocessor 
operation. 

Since the rise/fall time of the clock signal is typically in the range of 2-4ns, the reflections 
at this speed could result in undesirable noise and unacceptable signal degradation. The 
degree of reflection depends on the impedance of the traces of the clock connections. 
These reflections can be optimized by using proper terminations and by keeping the 
length of the traces as short as possible. The preferred method is to connect all of the 
loads via a single trace as shown in Figure 8-24, thus avoiding the extra stubs associated 
with each load. The loads should be as close to one another as possible. Multiple clock 
sources should be used for distributed loads. 

A less desirable method is the star connection layout in which the clock traces branch to 
the load as closely as possible (Figure 8-25). In this layout, the stubs should be kept as 
short as possible. The maximum allowable length of the traces depends upon the fre­
quency and the total fanout, but the length of all of the traces in the star connection 
should be equal. Lengths of less then one inch are recommended. 

8-27 



Clock 
Source 

Clock 
Source 

PHYSICAL DESIGN AND DEBUGGING 

Figure 8-24. Clock Routing 

Series 
Termination 

Figure 8-25. Star Connection 

8.7 Thermal Characteristics 

Thevenin's 
Termination 

240330-98 

Load 2 1 

240330-99 

There are thermal and electrical limitations associated with all operating electronic de­
vices. In an i860 microprocessor-based system, these limitations must be accommodated, 
due to power dissipation concerns,to achieve proper system performance. 

Generally, thermal and electrical characteristics are interrelated, and the actual con­
straints depend upon the application of a particular device. 

Most of the general information on case temperature (Tc), maximum current and voltage 
ratings, maximum thermal resistance (Oca) at various airflows and package thermal spec­
ifications are given in the i860™ 64-Bit Microprocessor Data Sheet. Despite the wealth of 
information presented in the data sheet, it is impossible to provide graphs and reference 
tables to cover all applications. The designer must accurately calculate several factors 
such as junction temperature (Tj ) and total power dissipation (P d) in particular applica­
tions. This section explains how to perform these calculations. 

8-28 



PHYSICAL DESIGN AND DEBUGGING 

The thermal specifications for the i860 microprocessor are designed to ensure a tolera­
ble temperature at the surface of the chip. This temperature, called the junction temper­
ature (Tj), can be determined from external measurements using the known thermal 
characteristics of the package. 

The following two equations facilitate the calculation of the junction temperature (Tj): 

!! :: T a + (6j< P d) and 
I] - Tc + (6jc Pd) 

where 
!! = junction temperature 
I a = ambient temperature 
T c = case temperature 
Ilja = junction to ambient temperature coefficient 
Iljc = junction to case temperature coefficient 
P d = power dissipation (worst case P d = Icc *V cc) 

Given a heat sink with a thermal resistance of 6sa (sink to ambient), and given the 
thermal resistance from the junction to the case 6jc, then the equation for calculating Tj 
is as follows: 

T j :: P i6jc + 6cs + 6sa) + Ta 
T j - P i6jc + 6cs + 6sa) + Tc 

Case temperature calculations offer many advantages over ambient temperature calcu­
lations: 

• Case temperature is more easily measured compared to ambient temperature because 
the measurement is localized to a single point (the center of the package). 

• The worst case junction temperature (Tj) is lower when calculated with case temper­
ature for two reasons. First, the junction-to-case thermal coefficient (Sjc) is lower than 
the junction-to-ambient thermal coefficient (6ja). Therefore, the calculated junction 
temperature varies less with power dissipation (P d). Second, the junction-to-case co­
efficient (6jc) is not affected by the airflow in the system, while the junction­
to-ambient coefficient (6ja) does vary. 

Given the case temperature specification, a designer can either set the ambient temper­
ature or use fans to control the case temperature. Finned heatsinks or conductive cool­
ing may also be used in an environment which prohibits the use of fans. 

A designer has considerable freedom in designing the heatsink, and faces only practical 
and economic limits. Multiple parallel devices may be helpful in reducing 6sa, because, if 
the heat input to the heat sink is dispersed rather than concentrated, the effective ther­
mal impedance will be lower. 

To approximate the case temperature for varying environments, the two equations dis­
cussed earlier should be combined by making the junction temperature the same for 
both, resulting in the following equation: 

8-29 



PHYSICAL DESIGN AND DEBUGGING 

The i860™ 64-Bit Microprocessor Data Sheet should be consulted to determine the values 
of 8ja (per the system's airflow requirement) and the ambient temperature that will yield 
the desired case temperature. Whatever those conditions are, the proper calculations are 
very important in achieving an efficient and reliable i860 microprocessor system. 

The i860 microprocessor is available in a 168-pin ceramic PGA. The recommended heat 
sinks for the device are offered in the pin fin design that utilizes air cooling. The heat 
sink is mounted on the PGA package with a frame and spring. A typical heat sink is 
shown in Figure 8-26. 

8.8 DERATING CURVE AND ITS EFFECTS 

A derating curve is a graph that plots the output buffer delay against the capacitive load. 
The curve is used to analyze a signal delay without necessitating a simulation every time 
the processor's loading changes. This graph assumes the lumped-sum capacitance model 
to calculate the total capacitance. The delay in the graph should be added to the speci­
fied AC timing value for the device that is driving the load. The derating curve is differ­
ent for different devices because each device has different output buffers. 

SPRING 

HEAT SINK 

'_"-- PGA 

FRAME 

240330-100 

Figure 8-26. Typical Heat Sinks 

8-30 



PHYSICAL DESIGN AND DEBUGGING 

A derating curve is generated by tying the chip's output buffers to a range of capacitors. 
The voltage and resistance values chosen for the output buffers· are at the highest spec­
ified temperature and are rising (worst case) values. The value of the capacitors centers 
around the AC timing values for the chip. For 33 MHz and above, this is 50 pF. Since 
the AC timing specifications are measured for a signal reaching 1.5 V, the output buffer 
delay is the time that it takes for a signal to rise from 0 to 1.5 V. A curve is then drawn 
from the range of time and capacitance values, with 50 pF representing the average and 
with nominal or zero derating. These curves are valid only for a 25-150 pF load range. 
Beyond this range the output buffers are not characterized. The derating curves for the 
i860 microprocessor are shown in Figure 8-27. These curves use the lumped capacitance 
model for circuit capacitance measurements and must be modified slightly when doing 
worst-case calculations that involve transmission line effects. 

8.9 BUILDING AND DEBUGGING THE i860™ MICROPROCESSOR-BASED 
SYSTEM 

While an i860 microprocessor based-system designer should plan the entire system, it is 
necessary to begin building different elements of the core and begin testing them before 
building the final system. If a printed circuit board layout has to be done, the whole 
system may be simulated before generating the net list for the layout vendor. It is advis­
able to work with a preliminary layout to avoid the problems associated with wire wrap 
boards that operate at high frequencies. A typical i860 microprocessor-based system is 
shown in Figure 8-28. 

Typical* Output 
Delay (ns) 

*1.5V 

Norm + 15 ,.---,---,----..,.---,------, 

Norm + 101----1----+---+---+----:7"-'----1 

Norm l--.",....:J;£--+---+---+----I 

Norm - 5 
~25~-~50~-~7=5~-~1~O~0--7.12~5~~1=50 

Load Capacitance CL (pt) 

NOTES: 
Graphs are not linear outside the CLrange shown. 
Norm = nominal value given in the AC timing table. 
*Typical part under worst-case conditions. 
(Using loaded capacitance mode~. 

240330-101 

Figure 8-27. Derating Curves for the i860™ Processor 

8-31 



PHYSICAL DESIGN AND DEBUGGING 

I i860 I 
uP 

I 
Address 

Data 

Control 

I Latch I II Main I~ Buffer Memory I' ... 1 Memory I I I/O I , L Control Control 

I/O Control Bus 

I/O Data Bus 

I/O Address Bus 

I I I I 

I II LAN/ III Disk! 1 .. 1 EPROM Modem Tape ... 
Other I 
Peri ph 240330-102 

Figure 8-28. Typical i860 ™ Processor-based System 

The following steps are usually carried out in designing with the i860 microprocessor. 

1. Clock circuitry should use an oscillator and fast buffer. The CLK signal should be 
clean, without any overshoots or undershoots. 

2. The reset circuitry should be designed as shown in Chapter 3. This circuitry is used 
to generate the RESET # signal for the i860 microprocessor. The system should be 
checked during reset for all of the timings. The clock continues to run during these 
tests. 

3. The INT and HOLD pin should be tied to LOW (negated from the active state). 
The READY# pin is pulled HIGH so as to add additional delays (wait-states) to 
the first cycle. At this instance, the i860 microprocessor is reset, and the signals 
emitted from it are checked for the validity of the state. The i860 microprocessor 
will generate the physical address OXFFFFFFOO. The address latch is connected at 
this time, and the address is verified. 

4. The PLD implementing the address decoder should be connected to the i860 micro­
processor. After reset, the i860 microprocessor is checked to find out whether it 
accesses the EPROM for retrieving the initial code. The i860 microprocessor sup­
ports a special CS8 mode for boot-up from eight-bit I/O devices. This allows the 
processor to boot-up from the eight-bit EPROM. Once the system boots, the ROM 
can be copied into memory or can be disabled and replaced by DRAMs. 

8-32 



PHYSICAL DESIGN AND DEBUGGING 

To interface the i860 microprocessor to an eight-bit EPROM, an address multiplexer is 
used to select between BE2# ... 0# in CS8 mode and processor addresses in data mode. 
This mode is discussed in detail in the I/O interfacing chapfer. 

8.9.1 Debugging Features of the i860™ Microprocessor 

The i860 microprocessor supports debugging by providing data and instruction break­
points. The various debugging features are discussed below. 

• A data break-point register (db) allows the specification of the address which can be 
monitored by the i860 microprocessor. 

• The processor status register has break read and break write bits which enable traps. 
For a detailed discussion, refer to the i860™ 64-Bit Microprocessor Data Sheet and the 
i860™ 64-Bit Microprocessor Programmer's Reference Manual. 

• A data access trap (DAT) bit in the processor status register helps the trap handler to 
determine when the data break point cause a trap. 

• A special trap instruction sets a breakpoint in the code. Additionally, an instruction 
trap (IT) bit allows the trap handler to determine when a trap instruction will cause a 
trap. 

Combined with a general understanding of debugging issues, these features are sufficient 
for debugging an entire i860 microprocessor-based system. These combined with certain 
hindsight into general debugging issues is sufficient to debug the entire i860 micropro­
cessor based system. 

If the initial run of a diagnostic program is not successful, then a logic analyzer can be 
used to determine the source of a problem. 

After an initial debugging the i860 microprocessor should generate a code fetch cycle to 
the EPROM. 

The i860 microprocessor can stop issuing new cycles for the following reasons: 

• The READY # signal is never asserted to terminate to the bus cycles. 

• There is an infinite loop executing out of the cache. Address lines will toggle but no 
bus cycles will be present. 

8.9.2 Certain Gotchas when Debugging with i860™ Microprocessor 

When designing with the i860 microprocessor, there are certain issues of which a de­
signer should be aware: 

• After reset, the instruction and data cache may contain data so the cache flush pro­
cedure should be used to reset the instruction and data cache. 

• In CS8 mode, when i860 microprocessor does a cache block fill, it fetches addresses in 
decrementing order and executes in incrementing order. 

8-33 



PHYSICAL DESIGN AND DEBUGGING 

8.9.3 Debugging 

Once the i860 microprocessor-based system is designed and the printed circuit board is 
fabricated and stuffed, the next step is to debug the hardware in increments. The follow­
ing sections provide valuable debugging concepts and techniques for writing diagnostic 
software. The i860™ 64-Bit Microprocessor Data Sheet, i860™ 64-Bit Microprocessor Pro­
grammer's Reference Manual and this manual provide a good start. 

8.9.4 Simple Diagnostic Programs 

To begin debugging an i860 microprocessor-based system, the designer should utilize a 
set of EPROMs with simple programs that send a message from the microprocessor 
signaling that the initial communication channel is working. A code example is shown in 
Figure 8-29. 

DATA PORT ADDR = 0x1000008 

ld$start:: 
mov DATA_PORT_ADDR, r4 

loop: : 
1 d. 1 message_ptr, r6 
1 d. 1 message_length, r7 

1 oop1:: 
1 d. s 0(r6), r5 
st. s r5, 0(r4) 
addu 2, r6, r6 
adds -2, r7, r7 
btne r7, r0, 100p1 

br loop 
nap 

.data 
message_ptr:: 

.long message 
message_length:: 

.long 58 II Message length must be even 
message: : 

.byte "Hello! (This message has been sent by the i860 CPU)' ',13,10 

Figure 8-29. Simple Diagnostic Program 

The loop inside this program can be utilized for various debugging purposes, such as 
verifying various bus cycles and checking the noise level on the clock and on other 
critical control signals. The rest of the system can then be exercised and tested. 

8-34 



PHYSICAL DESIGN AND DEBUGGING 

Once the data transceivers are connected, it is impossible to check the data path from 
the i860 microprocessor for reading and writing to the external memory subsystem. A 
special diagnostic program (shown by the example in Figure 8-30) is written to check the 
read/write function to the external memory. The program should have built in loops so 
that the i860 microprocessor's behavior can be observed on a logic analyzer. 

1 d$start: : 
mov DATA_PORT_ADDR, r4 
mov 0, r5 

loop: : 
ld.s 0(r4), r10 
ld.s 0(r4), rll 
ld.s 0(r4), r12 
ld.s 0(r4), r13 
ld.s 0( r4) , r14 

st. s r10, 0(r4) 
st.s rll, 0(r4) 
st.s r12, 0(r4) 
st. s r13, 0(r4) 
st. s r14, 0(r4) 

br loop 
nop 

Figure 8-30. Read/Write Diagnostic Program 

When the clock generator, i860 microprocessor, address decoder, address latch, data 
transceivers, READY # generation logic and RESET logic are all functioning, the i860 
microprocessor is capable of running the software in the EPROMs. 

Once the EPROMs are installed, the READY # line should be added to the bus cycles 
following reset. During this state, the system is checked using the digital oscilloscope. 

Another check should verify that the address latches have latched the first address, and 
that the address decoder is providing a chip select signal for the EPROMs. The 
EPROMs should supply the requested data through the data transceivers to the i860 
microprocessor's data pins. 

Next the READY# input should be connected to the PLD that is generating the ready 
signal to test the i860 microprocessor while running the simple diagnostic program. The 
program loops back on itself and the system runs multiple bus cycles. The logic analyzer 
can be used at this point to observe the dynamic behavior of the system. 

8.9.5 Other Simple Diagnostic Software 

Additional diagnostic programs can be written to test other system operations such as 
whether the i860 microprocessor is able to read and write from DRAMs or perform 
functions like cache flushing. The following are samples of diagnostic programs. 

8-35 



PHYSICAL DESIGN AND DEBUGGING 

IIThis program writes to the i869 CPU 

DATA PORT ADDR = 9x1999998 
ld$start:~ 

mov DATA_PORT_ADDR, r4 
mov r9, r5 

loop:: st.s r5, 9(r4) 
addu I, r5, r5 
br loop 
nop 

IIThis program copies ROM ,code to DRAM on the i869 uP add-in 
Ilboard. 

dramstart= 
epromstart = 
epromend= 

9x7eff9999 Iinoncacheable alias 
9xffff9999 
9xfffffff9 

.atmp r31 

.text 

II initialize control regs 

II leave all ints disabled 
ld$start:: st.c r9,psr 
st.c r9, fsr 
ld.c fir,r9 
st.c r9,epsr 

II clear pipeline 
pfadd.ss f9,f9,f9 
pfadd.ss f9,f9,f9 
pfadd.ss f9,f9,f9 
pfmul.ss f9,f9,f9 
pfmul.ss f9,f9,f9 
pfmul.ss f9,f9,f9 

mov epromstart,r9 
mov epromend,r7 
call flush cache 
mov dramstart,r8 

1 oadbytes: : 
1 d.l 9(r9) ,r19 
ld.b 9(r9),r19 
call flush cache 
ld.b 8(r9):r18 

ld.b 2(r9),r13 
ld.b 9(r9),r13 

8-36 

Ilmake sure we get a miss 

Ilcache data for bytes 9 & 8 
Ilload byte 9 from cache 
Ilinsure cache miss next time 
Ilload byte 8 from cache 

Ilcache data for bytes 3 & 11 
Ilload byte 3 from cache 



infel® PHYSICAL DESIGN AND DEBUGGING 

call flush cache //insure cache miss next time 
ld.b 8(r9)~rI9 //load byte 11 from cache 

ld.s 0(r9),rI4 //cache data for bytes 4 & 12 
ld.b 0(r9),rI4 lIetc. 
call flush cache 
ld.b 8(r9)~r20 

ld.b l(r9),rI5 //cache data for bytes 5 & 13 
ld.b 0(r9),rI5 
call flush cache 
ld.b 8(r9) ~ r21 

ld.b 0(r9),rI6 //cache data for bytes 6 & 14 
ld.b 0(r9),r16 
call flush cache ld.b 8(r9), r22 

ld.b 3(r9),r17 //cache data for bytes 7 & 15 
ld.b 0(r9),r17 
call flush cache 
ld.b 8(r9) ~ r23 

store: : 
st.b rI0,0(r8) //store byte 0 to DRAM 
st.b r13,1(r8) 1/ 3 
st.b r14,2(r8) 1/ 4 
st.b rI5,3(r8) 1/ 5 
st. b rI6,4(r8) II 6 
st.b r17 ,5(r8) 1/ 7 
st.b rI8,6(r8) 1/ 8 
st.b rI9,7(r8) II 11 
st.b r20,8(r8) 1/ 12 
st.b r21,9(r8) 1/ 13 
st.b r22,0xa(r8) II 14 
st.b r23 ,0xb (r8) 1/ 15 
xor r7,r9,r0 //check for end of ROM 
bc load reset //branch if end of ROM 
addu 0xHl,r9,r9 //increment ROM counter 
br loadbytes //copy another 12 bytes 
addu 0xc,r8,r8 //increment DRAM counter 

load reset:: //Load the reset code to DRAM 

wI = 0xa0000000 //This hex code is for the reset branch 
w2 = 0xa0000000 
w3 = 0xe4010000 
w4 = 0xec21 ffff 
w5 = 0x40000800 
w6 = 0xa0000000 

resxc start = 0x7effff00 
dramc start =0xfffm000 

//noncacheable alias of feffff00 
//cacheable DRAM that will be mapped 

8-37 



PHYSICAL DESIGN AND DEBUGGING 

byte_bucket = 0x7fff0010 
//over EPROM space after boot 
I/ROM location 

mov resxc_start,r4 //bottom of reset branch code 
mov wl,r5 

st.l r5,0(r4) I/store word 1 
addu 4,r4,r4 //increment counter 
mov w2,r5 
st.l r5,0(r4) //store word two 
addu 4,r4,r4 
mov w3,r5 
st.l r5,0(r4) //store word three 
addu 4,r4,r4 
mov w4,r5 
st.l r5,0(r4) //store word four 
addu 4,r4,r4 
mov w5,r5 
st.l r5,0(r4) //store word five 
addu 4,r4,r4 
mov w6,r5 
st.l r5,0(r4) //store word six 

//The next line must be hand patched after every reassembly 
mov 0xfffff16c,rl //fffffI6c is mask cs8 

//We go through the warp drive section twice to insure that -
flit gets completely cached. We must be executing from 
//cache when we kill CS8 and the boot bit. 

mov byte_bucket,r5 
ld.c dirbase,r4 
warp_drive:: 
st.b r0,0(r5) 
orh 
ld.b 
st.c 
bri 
nop 

0x100, r0, r20 
0(r20),r0 
r4,dirbase 
rl 

mask cs8:: 

//get dirbase contents 

//does nothing first time 

//reset EVAT int 
//does nothing first time 
//go to mask_CS8 the first time 
//go to ffff0000 second time 

mov 0xffffff7f,r3 //kill cs8 bit 
and r3,r4,r4 
or 0x20,r4,r4 //invalidate code cache bit 
mov 0x1000010, r5 
xorh h%byte_bucket,r5,r5 //zero r5's high 16 bits 
mov dramc_start,rl //rl now has DRAM start address 
br warp_drive //r5 has EVAT boot port address 
nop //r4 has CS8 bit reset 

8-38 



ant_l@ 
. III-e- PHYSICAL DESIGN AND DEBUGGING 

liThe following cache flush procedure is from the i86HN 64-8it Microprocessor Pro­
grammer's Reference Manual 
II Please refer to it for additional information. 

fl ush cache:: 
FLUSH P = HxlfHHHHHH-32 

/lrw= r24, rx=r25, ry= r26, rz = r27 
mov r1,r2 
ld.c dirbase,r27 
or Hx8HH,r27,r27 
adds -1,rH,r25 
call D FLUSH 
st.c r27,dirbase 

or . Hx9HH,r27,r27 
call D FLUSH 
st.c r27,dirbase 

xor Hx9HH,r27,r27 
mov r2,r1 
bri r1 
st.c r27,dirbase 

D FLUSH:: 
mov FLUSH_P,r24 
or 127,rH,r26 
bla r25,r26,p_FLUSH_LOOP 
ld.l 32(r24),rH 
D FLUSH LOOP:: - -bla r25,r26,D_FLUSH_LOOP 

flush 32(r24)++ 
bri r1 
ld.l -512 (r24), rH 
.end 

The diagnostic software verifies the ability of the system to perform the bus cycles. The 
i860 microprocessor fetches code from the EPROMs, and this implies that the EPROM 
can read functions correctly. Instructions in the program generate bus cycles to write and 
read the DRAM. The data value read back is checked for accuracy. The program has 
built-in loops which allow the designer to observe processor states on a logi~ analyzer 
and to monitor the signal level on an oscilloscope. 

8-39 





Testability 9 





9.1 INTRODUCTION 

CHAPTER 9 
TESTABILITY 

Testability is a major issue in digital system design. Testing involves two processes, test 
generation and test verification. Test generation is the process of determining the test 
sequence for a circuit that will verify its proper operation and developing test vectors. 
Test verification is the process of proving that the circuit works with the test vectors. 
Test vectors are generated and introduced into a system, and, by observing the response 
from the system and comparing it to expected data, error conditions can be detected. 
Therefore testing the system requires control over the test vectors and a means of ob­
serving the response. 

Many testing methods are practiced in the industry, including Level-Sensitive Scan 
Design (LSSD), Scan Path, Scan/Set, and Random Access. These techniques require 
additional hardware, particularly shift registers, in order to input the test vectors and to 
observe the critical points in the system. 

Various designs for testability have evolved. These designs share the same objective: to 
control and observe the critical points in a system. As the system becomes more complex 
it becomes more difficult to control and observe the signal path, and it is therefore 
essential to plan for testability in the design phase. 

The two methods that are most often used to load in test vectors are parallel loading and 
serial scanning. Parallel loading of the input and output data translates to wide buses 
and higher costs. Further, it may not be effective in storing and analyzing the results. 
Serial scanning requires more clock cycles to load in test vectors through a serial channel 
and to run the diagnostics. The response is then read through a serial channel, where­
upon a signature analysis can be performed. 

The i86WM microprocessor has a boundary scan mode that involves a simple serial inter­
face that allows the testing of all signal traces with only seven probe connections. These 
probes allow forcing of all the outputs and sampling of all inputs. This can be used in 
component testing or board-level testing for the i860 CPU's interface. This chapter dis­
cusses the testability features of the i860 CPU and the interface timings in performing 
board-level testing. 

9.2 BOUNDARY SCAN MODE 

The boundary scan mode is an elegant testability method that provides serial scan diag­
nostics. Only seven probes need to be connected: the CLK, BSCN, SCAN, SHI, BREQ, 
RESET, and HOLD signals. With this configuration the user can apply test vectors to 
the system via a serial channel and sample the response. 

The CLK input determines the execution rate and timings of the i860 microprocessor; 
the timings of the other signals are specified relative to the rising edge of this signal. In 
addition, the clock signal determines the shift-in rate of the test vectors and the shift-out 
rate of the response. 

9-1 



TESTABILITY 

The testability pins are the Boundary Scan Shift Input (SHI), the Boundary Scan Enable 
(BSCN), the Shift Scan Path (SCAN), and the boundary scan shift output, which is 
shared with the Bus Request (BREQ) output. The BREQ pin has two functions. In 
normal processor operations, the BREQ line is asserted when the i860 microprocessor 
has a pending memory request, even when the HLDA line is asserted. In the boundary 
scan mode it is the serial shift out pin. The Bus Hold (HOLD) line has a specific 
function which is described in great detail, along with the above-mentioned signals, later 
in this chapter. The RESET line causes the processor initialization. More details on 
RESET are provided in Section 3.2 of the data sheet. 

When the Boundary Scan Enable (BSCN) signal is asserted, the i860 mircoprocessor 
enters the boundary scan mode on the next rising edge of CLK. When BSCN is deas­
serted while in boundary scan mode, the i860 microprocessor leaves the boundary scan 
mode on the next rising edge of CLK. After leaving the boundary scan mode the internal 
state is undefined and therefore RESET must be asserted. The timings to enter and exit 
the boundary scan mode are shown in Figure 9-1. 

The BSCN, signal configures the i860 microprocessor for the test mode. When in test 
mode, the processor can operate in normal mode or shift mode, and the Shift Scan Path 
(SCAN) input causes the i860 microprocessor to assume one of the two. The test mode 
operations are defined in Table 9-1. The normal mode is entered on the rising clock 
edge when the SCAN line is deasserted; the shift mode is entered on the rising edge of 
the clock when the SCAN line is asserted. In normal mode, the output signals are driven, 
and the inputs are sampled simultaneously. In shift mode, the test vectors are shifted in 
at one end of the chain, and the response is shifted out simultaneously at the other end. 
In testing operations the user switches from shift mode to normal mode and vice versa 
until all of the vectors are exercised. Then the user exits from the boundary scan mode. 

ClK 

BSCN 

SCAN 

i860 CPU Exits 
Boundary Scan Mode 

Figure 9-1. Entering and Exiting the Boundary Scan Mode 

9-2 

24!l330-103 



TESTABILITY 

Table 9·1. Test Mode Selection 

BSCN SCAN Testability Mode 
LO LO No testability 
LO HI Intel Reserved 
HI LO Boundary Scan Mode, Normal 
HI HI Boundary Scan Mode, Shift 

SHI as input, BREQ as output 

9.2.1 Shift Mode Operation 

Transferring vectors to the system and reading the responses from the system requires a 
serial path to the i860 microprocessor. This is provided by the shift mode operation. In 
effect, the shift mode creates a long serial register to and from the i860 microprocessor. 
Data shifted into the CPU corresponds to new test vectors that will be output to the 
system. A response from the system can be shifted out while in shift mode. When switch­
ing to and from normal mode, the i860 microprocessor performs either a serial­
to-parallel operation or a parallel-to-serial operation. This is a simple, yet effective way 
to test the system. 

In shift mode, the pins shown in Table 9-2 are organized as a boundary scan chain. This 
chain can be thought of as a long shift register that is shifted on the rising edge of CLK. 
The order of the boundary scan chain is shown in Figure 9-2. The SRI pin receives the 
input on one end of the boundary scan chain. The other end (the most significant bit) of 
the boundary scan chain is the BREQ pin, shown here as the 127th position. The bits 
that are shifted in through the SRI pin in the serial mode are in the sequence shown in 
Figure 9-2. For shift mode operations, BREQ is shifted in followed in order by BEO#, 
BE1#, ... , BSCN, SRI. A total of 127 cycles are needed. While these values are being 
shifted in, serial bits are coming out of the BREQ pin. These bits are in the order 
BREQ, BEO#, BE1#, ... , BSCN, and SRI, and they correspond to the response of a 
previously loaded vector. 

To avoid glitches that could occur while the values are being shifted out along the chain, 
the RESET and ROLD pins must be asserted. In this way, all of the tristateable outputs 
will be disabled. The timings related to serially shifting the data into and out of the 
processor is shown in Figure 9-3. 

The shift mode is used to shift in a new test vector, as well as to read the response to the 
previous test vector. These operations are performed concurrently. 

9-3 



TESTABILITY 

1 2 3 4 !i 6 7 8-68 I 
SHI ~ BSCN ~ SCAN ~ RESET ~ DATAt ~ 00 ~ 01 ~ ... ~ 063 ~ 

70 71 72 73 74-99 100 jQ~ 1D~ 
CCI ~ CCO ~ A31 ~ A30 ~ ... ~ A3 ~ ADDAt ~ NENEt ~ 

240330-104 

Figure 9-2. Order of Boundary Scan Chain 

Table 9-2. Test Mode Latches 

Input Latch Output Latch Associated Control Latch 
SHI 
BSCN 
SCAN 
RESET 
00-063 DQ--63 DATAt 
CC1-CCO 

A31-A3 ADDRt 
NENE# NENEt 
PTB# PTBt 
W/R# W/Rt 
ADS# ADSt 
HLDA 
LOCK# LOCKt 

READY# 
KEN# 
NA# 
INT/csa 
HOLD 

BE7#-BEO# BEt 
BREQ 

9-4 



elK 

Scan 

SHI 
Input 

BREQ 
Output 

I Shift Mode is 
En

1
tered Here 

2 

TESTABILITY 

127 
I Shift Mode 

is Exited 
Here 

~ 
~ 

240330-105 

Figure 9-3. The Shift Mode of the Boundary Scan Mode 

9.2.2 Normal Mode 

During normal mode, two operations can occur simultaneously. The first is the driving of 
the output lines with the test vector, while the second is the sampling the response on 
the input lines. The outputs and inputs are shown in Table 9-2. 

The three-state output pins A31-A3, BE7#-BEO#, W!R#, NENE#, ADS#, LOCK#, 
and PTB are enabled by storing a high value in the corresponding control latches 
ADDRt, BEt,W/Rt, NENEt, ADSt, LOCKt, and PTBt, respectively. If the correspond­
ing output control latch contains a low value, then the pins are tristated. 

The data pins D63-DO are I/O pins and are enabled by the control latch, DATAt, which 
is similar to the other control latches. In addition when the DATAt contains a low value, 
then the data pins are configured as inputs and the values on the pins are sampled. 

For each of the input pins RESET, HOLD, INT/CS8, NA#, READY#, KEN#, SHI, 
BSCN, SCAN, and CCI-O, the corresponding latch is loaded with the value that is being 
driven into the pin. 

Normal mode is selected when the SCAN is deasserted while BSCN is asserted. All of 
the signals shown in Table 9-2 are loaded serially in the shift mode (i.e. while BSCN is 
high and SCAN is high.) The timings for the normal mode operation are shown in 
Figure 9-4. -

9-5 



ClK 

SCAN 

Input 
Signals 

Output 
Signals 

TESTABILITY 

High-impedance 

Note: The BSCN must be high during the operation. 240330-106 

Figure 9-4. The Normal Mode of the Boundary Scan Mode 

9.2.3 A Test Sequence Example 

The following relates to a typical testing session and addresses controllability and observ­
ability issues. 

1. Enter boundary scan mode. 

2. Establish a serial link via the shift mode to shift in the test vectors and to sample the 
response. Data can be serially shifted into and out of the i860 CPU. Values are 
assigned to the latches that correspond with the pins, as shown in Table 9-1. The 
first test vector is then transferred to the i860 microprocessor. 

3. Enter normal mode. The processor drives the output and also samples the inputs. 
This portion of the sequence sends a test vector to the system and also reads the 
response synchronously to the rising edge of CLK. 

4. Reenter shift mode and read the response from the output of the serial chain, while 
loading new values for the next test vector at the input of the serial chain. It is 
possible to loop between steps 3 and 4 until finished. 

5. Exit boundary scan mode and reset the processor. 

While running the test sequence, the user must be aware that the response being re­
ceived during the normal mode may correspond to test vector presented in the- previous 
cycle. This is true if a scan path also exists in the peripheral circuits. 

9-6 



TESTABILITY 

9.3 USING THE TESTABILITY FEATURES IN A SYSTEM 

The boundary scan mode can help in component-level testing and in board-level testing. 
These are discussed here, with the emphasis on board level testing. 

9.3.1 Component-level Testing 

For incoming testing, the serial scan device uses a serial channel to provide a means for 
causing the output pins to toggle. Values can be assigned to the output latches in the 
shift mode. During normal mode operation, the processor will drive the output pins. The 
values of the input pins can also be latched in 'normal mode and then read out in the 
shift mode. This provides a mechanism form9n~tor the inputs and toggling the' outputs 
vi~ a serial channel, and may reduce test program development time. 

9.3.2 System-level Testing 

The benefits of the boundary scan mode are even more apparent when one is debugging 
or testing a system, as on a bed of nails in Automatic Test Equipment (ATE). A typical 
i860 microprocessor system may consist of peripherals and memory elements, as shown 
in Figure 9-5. If the sys!em is being debugged and brought up, then the serial path can 
set up test vectors to various memory elements or peripherals. The response from the 
peripherals can be accessed following the propagation delay while in normal mode. 
Then, the response is serially shifted out in the shift mode. The received response is 
compared to the expected response. After the u.ser knows the peripherals are function­
ing properly, code from an EPROM can be used for more extensive testing. 

CN, SHI, BS 

SCAN, ClK 

~ i860 CPU " "' 

BREQ 

'If 

Diagnostics 
Circuitry 

r---

... ADRS ,. Buffer 

'---

~ Controls 

I' 

r---

'-~ ADRS 
Buffer 

'---

-
~ 

Data 
Buffer 

-

... 
~ ~ .'. 

SRAM EPROM 

r---
Data 

h 

Buffer 
i 

, 
" ... - , 

'" , 
DRAM Array 

~I' 

i 
~ 

240330-1 Cf1 

Figure 9-5. A Typical System with Diagnostics Capabilities 

9-7 



TESTABILITY 

The peripherals or the memory elements must observe the set-up and hold times of the 
i860 microprocessor during normal mode operation. This can be accomplished by giving 
mUltiple clocks during normal mode operation to meet the delay timing of the longest 
path. A typical timing diagram for a memory access is shown in Figure 9-6. (If the 
longest delay path is four clock cycles, for example, then by asserting the normal mode 
for five cycles, the address and the other controls are presented to the memory element, 
after which the data can be read or written.) The latching of the signals in the i860 CPU 
can be carried out reliably on the last clock edge, before the shift mode operations are 
performed. 

RAM and other circuits external to the i860 microprocessor peripherals may consist of 
state machines. The user must ensure that the state machines are enabled or disabled at 
the appropriate time during boundary scan mode. One way to ensure this is to have 
separate clocks for the on-board state machines. 

If the peripheral or memory elements have a serial scanning scheme as well, then the 
clock can be asserted for as briefly as one cycle during normal mode. This implies that 
the system will be responding to the test vectors of the previous cycle. The timings would 
be similar to those shown in Figure 9-6, with a smaller number of clock pulses for 
timeslots 2-3 and 4-5. Again, this assumes that the peripherals have a serial scan chain as 
well. This method reduces the number of clock pulses for the normal mode; however, 
the overhead in the number of external components is larger than in the first method. 

9-8 



127 

I 
CLK 

sc~ 
i860 CPU 
Outputs 

2 

TESTABILITY 

R/W Memory 

133 

I 

3 

HiZ r-----------~~ 

4 

HiZ ,--------+----~ HiZ 

Output Vector 1 
~~ ______ +-__ -J 

Output Vector 2 i860 CPU 
Outputs 

SHI Input Serial Loading 

"----~~ 

Note 1'/y 
Sample Response 1 

Load Vector 1 
. Load vec~ ~ _____ ...J 

~roo~~ () 
S-e-r-ia~I~O~/P--------------------------~~~ ~--------------

Output Response 1 

TIMESLOT 1-2 LOAD TEST VECTOR SERIALLY-SHIFT. 
2-3 OUTPUT THE TEST VECTOR, AND MONITOR THE INPUTS. 

THE INPUTS ARE LATCHED ON EVERY CLOCK CYCLE 
FROM CYCLE 128 TO CYCLE 133. THE EXTERNAL 
DEVICES MUST HAVE THE DATA SET UP AROUND THE 
RISING EDGE OF CLOCK NO. 133. THE RESPONSE TO 
TEST VECTOR 1 IS LATCHED FROM THE INPUT PINS. 

3-4 LOAD IN TEST VECTOR 2 SERIALLY, AND SERIALLY 
SHIFT OUT THE RESPONSE FROM TEST VECTOR 1. 

4-5 OUTPUT TEST VECTOR 2, AND MONITOR THE INPUTS. THE 
NUMBER OF CYCLES THAT SCAN IS IN THE LOW STATE 
IS SHORTER THAN THAT OF TIMESLOT 2-3 AND THIS 
IS BECAUSE THE EXTERNAL DEVICE HAS A FASTER 
ACCESS TIME. THE RESPONSE IS LATCHED ON CLOCK 
CYCLE 261 TO 265. 

NOTE 1 INPUTS ARE SAMPLED IN NORMAL SCAN MODE ON 
EVERY RISING EDGE OF CLK. 

Figure 9-6. A Typical Timing for Serial Scan Mode 

9-9 

240330-108 





Graphics Frame Buffer A 
Schematics and 
PLD Code* 

*This design has been tested. 





SIGNAL 

RASx# 
RAS# 
LRAS# 
CASx# 
WEx# 
DTOEx# 
CPEND# 
ROWE# 
COLE# 
WDEL# 
NCLK# 
REF 
TRQ 
TRFQ# 
RASDEL# 
PRECH# 
REFC# 
ERDL# 
LERDL# 
EWLD# 
ERDE# 
EWDE# 
CLRTRQ# 
CLRREF# 
SRAE# 
SCAE# 
HBLANK 
HCOUNT 
HCLR# 
VCLR# 
VBLANK# 
SYNC# 
CBLANK# 
SBLANK# 
VDBus 
LDSR# 
SC 
BLANK# 
VOGNORNOB 
PCLK 

APPENDIX A 
GRAPHICS FRAME BUFFER 

SCHEMATICS AND PLD CODE 

DESCRIPTION 

RAS# for buffer #x 
RASl # ANDed with RASO# 
Delayed RAS# 
CAS# for buffer #x 
Write control for VRAMs 
Output control and SAM transfer request 
Cycle pending 
Row address enable 
Column address enable 
Write delay 
Timing control for WDEL# 
Refresh request 
SAM transfer request 
Conditioned refresh/SAM transfer request 
RAS# delay for CAS-/DTOE-before RAS 
Controlling RAS# precharge time 
Controlling RAS# active time for TRFQ# 
Expansion read data latch 
Delayed ERDL# 
Expansion write data latch 
Expansion read data enable 
Expansion write data enable 
Clearing TRQ 
Clearing REFRESH 
Row address enable for SAM transfer 
Column address enable for SAM transfer 
Horizontal blank 
HBLANK count for generating vertical signal 
Clear counter used to generate HBLANK 
Clear counter used to generate VBLANK#. 
Vertical blank 
Composite sync for video DACs 
Composite blank 
Composite blank synchronized to PCLK 
Video data bus 
Loading 4 pixels into shift registers 
Serial clock for shifting VRAM data out,16MHz 
Blank signal for video DACs 
RGB signals 
Pixel clock, 64 MHz 

A-1 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Buffer Select' 

U1 device 'P16R6'; 

VCC,GND,OCn pin 
CLKC,VBF0n,RESET,VSYNC,CLRFRX0 

pin 
NC1,NC2,NC3,NC4,NC5,NSS1,NSS2 pin 
SE1n,SE0n,VSYNCS,CLRFRQn,VSYNCn 

pin 

Equations 
CLRFRQn : = CLRFRX0; 
VSYNCS 

: = VSYNC; 
VSYNCn = I VSYNC; 

state_diagram [SE1n,SE0n] 

20,10,11 ; 

1,2,4,5,6; 
3,7,8,9,12,13,18; 

14,15,16,17,19; 

state [1,1]: if(RESET # VSYNCS) then [1,1] 
else if(IVSYNCS & VBF0n) then [0,1] 
else if(IVSYNCS & IVBF0n) then [1,0] 
else [1,1]; 

state [0,1]: if(RESET # VSYNCS) then [1,1] 
else [0,1]; 

state [1,0]: if(RESET # VSYNCS) then [1,1] 
else [1,0]; 

state [0,0]: goto [1,1]; 

"Description: 
Buffer switch happens at the time of vertical 

sync. 

A-2 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Buffer Switch' 

U2 device 'P16R4': 

Equations 

VCC,GND,OCn pin 
CLKC,RESET,LADSn,EXPSELn,A22,A3 pin 
DRMBSYn,BSYn,EXPBSYn,LADSA22n pin 
CBUSYn,VBF0n,LRDYn,VSELX0,VSELXl pin 
NCl, RDYn pi n 

20,10,11: 
1,2,3,4,5,6: 
7,8,9,12: 
13,14,15,16,17; 
18,19: 

RDYn 1(lVSELXl & VSELX0 & DRMBSYn & BSYn & EXPBSYn) 
enabl e RDYn = I VSELXl & DRMBSYn & BSYn & EXPBSYn: 
CBUSYn = BSYn & (DRMBSYn # I EXPBSYn) : 
LADS22n = LADSn # A22: 
LRDYn : = RDYn: 

state_diagram 
state [1,1]: 

[VSELXl, VSELX0] 
if(RESET) then [1,1] 

state [0,1]: 

state [0,0]: 

state [1,0]: 

state_diagram 
state [1]: 

state [0]: 

"Description: 

else if(lEXPSELn & A22 & lLADSn) then [0,1] 
else [1,1]; 

if(RESET # lRDYn & DRMBSYn & BSYn & EXPBSYn) then [0,0] 
else [0,1]: 

if(lRESET & lEXPSELn & A22 & lLADSn) then [0,1] 
el se [1,1]: 

goto [1,1]; 

[VBF0n] 
if(RESET # I LADSn & I EXPSELn & A22 & lA3) 
then [0] 

else [1]: 
if(lRESET & lLADSn & !EXPSELn & A22 & A3) 
then [1] 

el se [0]: 

READYn is asserted when accesses direct to 
the expansion space when A22 = 1. It is not 
enabled until no busy signals are active, i.e., 
no pipelined cycles are pending. 

A-3 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Write Enable' 

U3 device 'P213L8'; 

VCC,GND 
LWRn,LBE13n,LBE1n,LBE2n,LBE3n,LBE4n 
LBE5n,LBE6n,LBE7n,PRECHn,CAS13n 
RASn,WE13Xn,WE13n,WE1n,WE2n,WE3n 
WE4n,WE5n,WE6n,WE7n,WE7Xn 

Equations 
WE0n (LBE13n # ! LWRn) & CAS13n # 
WEln (LBEln # ! LWRn) & CAS13n # 
WE2n (LBE2n # ! LWRn) & CAS13n # 
WE3n (LBE3n # ! LWRn) & CAS13n # 
WE4n (LBE4n # ! LWRn) & CAS13n # 
WE5n (LBE5n # ! LWRn) & CAS0n # 
WE6n (LBE6n # ! LWRn) & CAS13n # 
WE7n (LBE7n # ! LWRn) & CAS0n # 

"Description: 

pin 24,12; 
pin 1,2,3,4,5,6; 
pin 7,8,9,113,11; 
pin 13,14,15,16,17,18; 
pin 19,213,21,22,23; 

! PRECHn # RASn # WE13Xn & ! CAS13n; 
! PRECHn # RASn # WE1n & !CAS13n; 
! PRECHn # RASn # WE2n & !CAS13n; 
! PRECHn # RASn # WE3n & !CAS0n; 
!PRECHn # RASn # WE4n & !CAS13n; 
! PRECHn # RASn # WE5n & ! CAS13n; 
! PRECHn # RASn # WE6n & ! CAS13n; 
! PRECHn # RASn # WE7Xn & ! CAS13n; 

The write enables are not asserted when RASn goes active 
during CAS-Before-RAS refresh and write cycles 
starting up (to disable write-per-bit). 

end FB_VRM; 

A-4 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 

title 'CRT Clocks' 
U7 device 'P16R8'; 

VCC,GND,OCn pin 
PCLK,VCLRn,HCLRn,RESET pin 
NC1,NC2,NC3,NC4,NC5 pin 
HQ0,VQ0,CDIV16,CDIV8,CDIV4,CDIV2 pin 
HCLRXn,VCLRXn pin 

CDrV = [CDIV16,CDIV8,CDIV4,CDIV2]; 

equations 

CDIV := (CDIV + 1) & !RESET; 

state_diagram [HCLRXn,HQ0] 
state [1,1]: if(RESET) then [1,1] 

else if(!HCLRn) 
state [13,1] : goto [1,13]; 
state [1,13] : if(RESET # HCLRn) then [1,1] 

else [1,0]; 
state [0,13] : goto [1,1]; 

state_diagram [VCLRXn, VQ13] 
state [1,1]: if(RESET) then [1,1] 

else if(!VCLRn) 
state [13,1] : goto [1,13]; 
state [1,13] : if (RESET # VCLRn) then [1,1] 

else [1,13]; 
state [0,13] : goto [1,1]; 

"Description: 

213,10,11; 
1,2,3,4; 
5,6,7,8,9; 
12,13,14,15,16,17; 
18,19; 

then [13,1] 

then [0,1] 

" HCLRXn and VCLRXn clear the counters for horizontal and 
vertical timings. 

A-5 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Ready Logic' 

U8 device 'P20R4'; 

equations 

VCC,GND,OCn pin 24,12,13; 
CLK,RASn,COLEn,LADSn,WRn,TRFQn 

pin 1,2,3,4,5,6; 
CPENDn,WDELX0,WDELn,NCl,EXPBSYn 

pin 7,8,9,10,11; 
LERDLn,NC2,WAIT,LRASn,LWRn,NAX0 

RDYX0,RESET,RDYn,NENEn 

RIDLE = 1; 
RACT = 0; 

pin 14,15,16,17,18,19; 
pin 20,21,22,23; 

LRASn : = RASn; 
RDYn = I ((WAIT & I RDYX0 & TRFQn & I COLEn 

& WDELn & I CPENDn & LWRn) # (I LERDLn» ; 
enab 1 e RDYn = I EXPBSYn; 

state_diagram [RDYX0] 

state RIDLE: if (RASn) then RIDLE 
else if(IRASn & TRFQn) then RACT 
else RIDLE; 

state RACT: if(RASn # IRDYn & lRASn # ILADSn & NENEn) then RIDLE 
else RACT; 

state_diagram [NAX0] 

state [1] : if (RASn) then [1] 

state [0]: goto [1]; 

state diagram [LWRn] 

else if(WAIT & ICPENDn & ILWRn & ICOLEn & lRASn) 
then [0] 
else [1]; 

state-[I]: if(ILADSn & IWRn) then [0] 
else [1]; 

state [0]: if(ILADSn & WRn) then [1] 
else [0]; 

A-6 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Output Enables' 

U9 device 'P20R8'; 

VCC,GND,OCn pin 24,12,13; 
CLK,DREF,EXPSELn,CPENDn,LADSA22n,TRFQn 

pin 1,2,3,4,5,6; 
WRn,LWRn,RASn,NC1,NC2,REF,NC3 pin 7,8,9,10,11,14,15; 
CLRRFX0,DTOE0n,DTOE1n,EWDEn,ERDEX0 

CLRTRQn,NC4,PRECHn 
pin 16,17,18,19,20; 
pin 21,22,23; 

state_diagram 
state [1]: 

state [0]: 

[DTOEln] 
if (ICPENDn & ILWRn & IRASn 

# RASn & ITRFQn & PRECHn & IREF) then [0] 
else [1]; 

if (DREF # I LADSA22n & WRn & I EXPSELn) then [1] 
else [0]; 

state_diagram [DTOE0n] 
state [1]: if (ICPENDn & ILWRn & IRASn 

# RASn & ITRFQn & PRECHn & IREF) then [0] 
else [1]; 

state [0]: if (DREF # I LADSA22n & WRn & I EXPSELn) then [1] 
else [0]; 

state_diagram [CLRRFX0] 
state [1]: if (RASn & REF & PRECHn & ITRFQn) 

then [0] 
else [1]; 

state [0]: goto [1]; 

state_diagram [CLRTRQn] 
state [1]: if(IDTOE1n & PRECHn & IRASn) 

then [0] 
else [1]; 

state [0]: goto [1]; 

state_diagram 
state [1]: 

state [0]: 

[ERDEX0] 
if (RASn) then [1] 
else if(IRASn & ILWRn & TRFQn 

# IRASn & ILADSA22n & IWRn & IEXPSELn) then [0] 
else [1]; 

if (I LADSA22n & WRn & I EXPSELn # RASn) then [1] 
else [0]; 

state_diagram [EWDEn] 
state [1]: if(RASn) then [1] 

else if(IRASn & LWRn) then [0] 
else [1]; 

state [0]: if (I LADSA22n & I WRn & I EXPSELn # RASn) then [1] 
else [0]; 

A-7 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

"Description: 
" ERDEX0 is an intermediate signal to generate ERDEn. 

CLRRFX0 is an intermediate signal to generate the 
CLear_Refresh_ReQuest (CLRRFQ) 

A-a 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Random Logic' 

U10 device 'P20L8'; 

VCC,GND 
RASln,RAS0n,SCAEn,TRFQn,PRECHn 
REF,CASln,CASX1,ERDEX0,WAIT,REFCn 
LWRn,WRn,DREF,ERDEn,RASDELn,TREF 
NC1,LADSBn,RASn,PREF,LADSn 

Equations 
RASn 
TREF 

RASln & RAS0n; 
!TRFQn & REFCn & CASln 

# ! SCAEn & REFCn 

pin 24,12; 
pin 1,2,3,4,5; 
pin 6,7,8,9,10,11; 
pin 13,14,15,16,17,18; 
pin 19,20,21,22,23; 

# LADSn & REFCn & !CASln & !CASXl & LWRn & WAIT & TRFQn 
# LADSn & REFCn & !CASln & !CASXl & !LWRn & TRFQn; 

PREF 

DREF 

(!RASln # !RAS0n) & !SCAEn & RASDELn 
# !TRFQn & REF & RASln & RAS0n & PRECHn & RASDELn; 

RASln & RAS0n & REFCn 
# ! SCAEn & REFCn; 

ERDEn = ERDEX0 & (LADSn # WRn # RASln & RAS0n); 
LADSBn = LADSn; 

"Description: 
TREF feeds into the RAS state machine. The !TRFQn term 

is for CAS-Before-RAS refresh; the !SCAEn term 
for serial register load inside the VRAMs. 

PREF feeds into the CAS state machine. The !TRFQn term is 
for VRAM refresh request. The !SCAEn term is for 
serial register load inside the VRAMs. 

DREF feeds into the Output Enable logic. 
LADSBn is for non-critical logic. 

end FB_VRM; 

A-9 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Composite Sync and Blank' 

u11 device 'P22V10'; 

VCC,GND pin 24,12; 
pin 1,2,3; 
pin 4,5,6,7,8; 
pin 9,10,11,13; 

HBLANK,NC1,HSYNCn, 
HB0,HB1,HB2,HB3,RESET 
NC2,NC3,NC4,NC5 
VCLRn,HCNT2,HCNT0,HCNT4,HCNT5 
VBLANKn,VSYNC,HCNT1,HCNT3,CSYNCn 

pin 14,15,16,17,18; 
pin 19,20,21,22,23; 

HB = [HB3,HB2,HB1,HB0]; 
HCNT = [HCNT5, HCNT4,HCNT3,HCNT2, HCNTl, HCNT0] ; 

equations 

WHEN ((HB = = 15) & ! (HCNT = = 50) & ! RESET) 
THEN HCNT : = (HCNT + 1); 

ELSE HCNT : = HCNT & ! ((HCNT = = 50) & (HB 12)) & !RESET; 

CSYNCn = ! VSYNC & HSYNCn; 

state_diagram [VBLANKn] 
state [0]: if( (HCNT = = 2) & (HB = = 12) & ! RESET) then [1] 

else [0]; "Bl ank for 45 hori zonta 1 

state [1]: 
"lines 

if ((HCNT = = 50) & (HB = = 12) # RESET) then [0] 
else [1]; "Active time = 768 

"horizontal lines 

state_diagram [VSYNC] 
state [0]: if( (HCNT = = 0) & (HB = = 5) & ! RESET) then [1] 

else [0]; "Front Porch = 6 H lines 
state [1]: i f( (HCNT = = 0) & (HB = = 11) # RESET) then [0] 

else [1]; "Active for 6 H lines 

state_diagram [VCLRn] 
state [1]: if( (HCNT = = 50) & (HB 12) # RESET) then [0] 

else [1]; 
state [0]: if(! RESET) then [1] 

el se [0]; 

A-10 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Horizontal Sync and Blank' 

u14 device 'P16R6': 

VCC,GND,OCn pin 
CDIV16,CC6,CC5,CC4,CC3,CC2,CC1,CC0 pin 
VBLANKn,NC1,HCLRn,CBLANKn,HSYNCn pin 
EXPINTn,EINTX0,HBLANK,RESET pin 

CC = [CC6,CC5,CC4,CC3,CC2,CCl,CC0]: 

state diagram [EXPINTn,EINTX0] 
state-[l,l]: if(RESET) then [1,1] 

20,10,11; 
1,2,3,4,5,6,7,8: 
9,12,13,14,15; 
16,17,18,19; 

else if(!VBLANKn) then [0,1] 
else [1,1]: 

state [0,1]: goto [1,0]: 
state [1,0]: if (RESET # VBLANKn) then [1,1] 

else [1,0]: 
state [0,0]: goto [1,1]: 

state _ di agram [HBLANK] "Hori zonta 1 Bl ank" 
state [1]: if(RESET) then [1] 

el se i f(CC = = 17) then [0] 
else [1]: 

state [0]: if ((CC = = 81) # RESET) then [1] 

state_diagram 
state [1]: 

state [0]: 

el se [0]: 

[HCLRn] 
if ((CC = = 81) # RESET) 

else [1]: 
if(!RESET) then [1] 

el se [0]: 

then [0] 

state_diagram [HSYNCn] "Horizontal Sync" 

state [1]: 

state [0]: 

state_diagram 
state [1]: 

state [0]: 

"Description: 

if (RESET) then [1] 
else if(CC 1) then [0] 
else [1]; 

if ((CC = = 7) # RESET) then [1]; 
el se [0]; 

[CBLANKn] "Composite Blank" 
if (HBLANK # ! VBLANKn # RESET) then [0] 

else [1]: 
if(!HBLANK & VBLANKn & !RESET) then [1] 

else [0]: 

" CDIV16 is a 4MHz clock: therefore, horizontal scan period 
is about 20.5 usee and the active display time is 16.0 

usee (each CC count is 0.25 usee.). 

end FB_VRM: 

A-11 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Write Data Latch' 

U25 device 'P16R4'; 

VCC,GND,OCn pin 20,10,11; 
CLK,RESET,TRFQn,COLEn,NAX0,CPENDn pin 1,2,3,4,5,6; 
WDELn,LWRn,RASn,ERDLn,WAIT,LERDLn pin 7,8,9,12,13,14; 
EWDLX0,EWDLn,EXPBSYn,NC1,NAn pin 15,16,17,18,19; 

Equations 
NAn = NAX0 # I TRFQn; 
enab 1 e NAn = I EXPBSYn; 
LERDLn : = ERDLn; 

state_diagram 
state [1]: 

[EXPBSYn] 
if (RESET) then [1] 

else if (IRASn & TRFQn) then [0] 
else [1]; 

state [0]: 

state diagram 
state-:-[l,l] : 

state [0,1]: 

state [1,0]: 

state [0,0]: 

"Description: 

if(RESET # CPENDn & RASn & COLEn & TRFQn) then [1] 
else [0]; 

[EWDLn, EWDLX0] 
if (RESET) then [1,1] 

else if (IRASn & LWRn & TRFQn) 
else [1,1]; 

if(RESET # RASn # IWAIT) then [1,1] 
else [1,0]; 

if (WDELn) then [1,1] 
else [0,1]; 

goto [1,1]; 

then [0,1] 

NAn is driven only when it is a VRAM cycle. 
EWDLn is asserted whenever, it is a write cycle. 

A-12 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag 
'-r3' title 'Cycle Pending' 

U26 device 'P16R6'; 

VCC,GND.OCn pin 20,10,11; 
CLK,LADS22n,RESET,TRFQn,RDYn,CASln,RASn 

pin 1,2,3,4,5,6,7; 
EXPSELn,WRn,NCl,WDELX0,WDELn,NCLKX0 

NCLKn,NC2,CPENDn,WAIT 

state_diagram [CPENDn] 

pin 8,9,12,13,14,15; 
pin 16,17,18,19; 

state [1]: 

state [0]: 

state diagram 
state-[I,I] : 

state [1,0]: 

state [0,1]: 

state [0,0]: 

if (RESET) then [1] 
else if(ILADS22n & lEXPSELn) then [0] 
else [1]; 

if(LADS22n & lCASln & TRFQn 
# EXPSELn & lCASln & TRFQn # RESET) then [1] 

else [0]; 

[WDELn, WDELX0] 
if (RESET) then [1,1] "IDLE 

else if(ILADS22n & lWRn & lEXPSELn 
# lCPENDn & lWRn & lEXPSELn & lRASn) 
then [1,0] "INACT 

else [1,1]; 
if (RESET # RASn) then [1,1] 

else if(ILADS22n & WRn & lEXPSELn) then [0,1] "ACTIVE! 
else [1,0]; 

if (RASn) then [1,1] 
else if(INCLKX0) then [0,0] 
else [0,1]; 

goto [1,1]; 

state_diagram [NCLKn, NCLKX0] 
state [1,1]: if(RESET) then [1,1] "IDLE 

state [0,1]: 
state [0,0]: 

state [1,0]: 

else if(IRDYn) then [0,1] "INACT 
else [1,1]; 

goto [0,0]; "ACTIVE 
if(RESET # RDYn) then [1,1] 

else if (IRDYn) then [0,1] 
el se [0,0]; 

goto [1,1]; 

A-13 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

"Description: 
CPENDn (cycle pending) is deasserted only when CASxn has 

been asserted for the cycle. 
WDELn is for freezing the state machines when a write 

cycle is pipelined right after a read cycle. The 
i860 processor does not drive the data bus until 
one clock after-READYn is asserted for the 
previous read cycle. 

A-14 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Refresh Requests' 

U27 device 'P16R8'; 

VCC,GND,OCn pin 20,10,11; 
CLKG,PRECHn,REF,TRQ,RESET,RASn pin 1,2,3,4,5,6; 
CLRTRQn,RASDELn,RDYn,ROWEn,SRAEn pin 7,8,9,12,13; 

,TRFQX0,TRFQn,REFCX0,REFCn,SCAEn,COLEn 

TI = 3; 
TAl = 1; 
TA2 = 0; 
TIl = 2; 

RIDLE = 3; 
RINACTl = 1; 
RINACT2 = 0; 
RINACT3 = 2; 

state diagram [REFCn, REFCX0] 
state-RIDLE: if(RESET) then RIDLE 

pin 14,15,16,17,18,19; 

else if (RASn & !TRFQn) then RINACTI 
else RIDLE; 

state RINACTl: if(RESET) then RIDLE 
else if (!RASn & RASDELn) then RINACT2 
else RINACTl; 

state RINACT2: goto RIDLE; 
state RINACT3: goto RIDLE; 

state diagram [TRFQn,TRFQX0] 
state-TI: if(RESET) then TI 

else if (REF & RDYn # TRQ & RDYn) then TAl 
else TI; 

state TAl: if (RESET) then TI 
else if (!RASn & !REFCn) then TA2 
else TAl; 

state TA2: if (RESET # REFCn) then TI 
else TA2; 

state TIl: goto TI; 

state diagram [SRAEn] 
state-[I]: if(RESET) then [1] 

else if(RASn & !TRFQn & !REF & PRECHn) then [0] 
else [1]; 

state [0]: if (! RASn # RESET) then [1] 
else [0]; 

A-15 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

state diagram [SCAEn] 
state-[I]: if(RESET) then [1] else if(!CLRTRQn) then [0] 

el se [1]; 
state [0]: if (REFCn # RESET) then [1] 

state_diagram 
state [0]: 

state [1]: 

state_diagram 
state [1]: 

state [0]: 

"Description: 

else [0]; 

[ROWEn] 
if(RESET) then [0] 

else if(!RASn # !TRFQn) then [1] 
else [0]; 

if (RESET # TRFQn & COLEn & RASn) then [0] 
el se [1]; 

[COLEn] 
if (RESET) then [1] 

else if(ROWEn & !RASn & TRFQn) 
else [1]; 

if (RASn) then [1] 
el se [0]; 

then [0] 

" ROWEn enables row address whil e COLEn enables column 
address for i860 processor cycles. SRAEn and 

SCAEn enable the serial row and column addresses 
for serial register load cycles. 

TRFQn combines the VRAM refresh and serial register load 
requests. 

A-16 



GRAPHICS FRAME BUFFER SCHEMATICS AND PlD CODE 

module FB_VRM flag '-r3' 
title 'CAS Logic' 

U28 device 'P16R6'; 

VCC,GND,OCn pin 
CLK,CPENDn,RASn,WAIT,LWRn,WDELn pin 
COLEn,TRFQn,PREF,RESET,ERDLn pin 
CASX0,CASXl,CAS0n,CASln,CAS2n,NCI pin 

CIDLE = -bl1111; 
CACTIVEI -b00011; 
CACTIVE2 = -b00010; 
CACTIVE3 = -b00001; 
CNSI 0; 
CNS2 4; 
CNS3 5; 
CNS4 6; 
CNS5 7; 
CNS6 8; 
CNS7 9; 
CNS8 10; 
CNS9 11; 
CNS10 12; 
CNS11 13; 
CNS12 14; 
CNS13 15; 
CNS14 16; 
CNS15 17; 
CNS16 18; 
CNS17 19; 
CNS18 20; 
CNS19 21; 
CNS20 22; 
CNS21 23; 
CNS22 24; 
CNS23 25; 
CNS24 26; 
CNS25 27; 
CNS26 28; 
CNS27 29; 
CNS28 30; 

state_diagram [CAS2n, CASln, CAS0n, CASXl, CASX0] 

state CIDLE: if (RESET) then CIDLE 

20,10,11; 
1,2,3,4,5,6; 
7,8,9,12,13; 
14,15,16,17,18,19; 

else if(!RASn & !COLEn & !CPENDn & TRFQn & WDELn 
# PREF) then CACTIVEl 

else CIDLE; 

A-17 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

state CACTIVE1 :if(WAIT & LWRn & IRASn & ICOLEn 
# IWAIT & ILWRn & IRASn & ICOLEn 
# ITRFQn & COLEn) 
then CACTIVE3 

else if(IRASn & WAIT & ILWRn & ICOLEn) then CACTIVE2 
else if(IRASn & IWAIT & LWRn & ICOLEn # RESET) then 

CIDLE 
else CACTIVE1; 

state CACTIVE2: gata CACTIVE3; 
state CACTIVE3: gata CIDLE; 
state CNS1: gata CIDLE; 
state CNS2: gata CIDLE; 
state CNS3: gata CIDLE; 
state CNS4: gata CIDLE; 
state CNS5: gata CIDLE; 
state CNS6: gata CIDLE; 
state CNS7: gata CIDLE; 
state CNS8: gata CIDLE; 
state CNS9: gata CIDLE; 
state CNS10: gata CIDLE; 
state CNS11: gata CIDLE; 
state CNS12: gata CIDLE; 
state CNS13: gata CIDLE; 
state CNS14: gata CIDLE; 
state CNS15: gata CIDLE; 
state CNS16: gata CIDLE; 
state CNS17: gata CIDLE; 
state CNS18: gata CIDLE; 
state CNS19: gata CIDLE; 
state CNS20: gata CIDLE; 
state CNS21:' gata CIDLE; 
state CNS21: gata CIDLE; 
state CNS23: gat a CIDLE; 
state CNS24: gata CIDLE; 
state CNS25: gata CIDLE; 
state CNS26: gata CIDLE; 
state CNS27: gata CIDLE; 
state CNS28: gata CIDLE; 

state_diagram [ERDLn] 

state [1]: if(RESET) then [1] 
else if(IWAIT & ICOLEn & ILWRn & ICAS1n & CASX1 & CASX0 

# WAIT & ICOLEn & ILWRn & ICAS1n & CASX1 
& ICASX0) then [0] 

state [0]: 
else [1]; 

gata [1]; 

A·18 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

"Description: 
" The SCAEn term in the CAS state machine is for serial 

register load cycle while the REF term for 
CAS-Before-RAS refresh request. 

A-19 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'Serial Clocks' 

U29 device 'P16R8'; 

VCC,GND,OCn pin 29,19,11; 
PCLK,SBLANKn,SC9,SC1,LDSRn,SCX9 

pin 1,2,12,13,14,15; 
NC1,NC2,NC3,NC4,NC5,NC6,NC7 pin 3,4,5,6,7,8,9; 
BLANKn,BLANKX1,BLANKX9,NSSl 

SI = Ab9911; 
SAl Ab1111; 
SA2 = Ab1l19; 
S II = Ab9999 ; 
SNS1 5; 
SNS2 4; 
SNS3 2; 
SNS4 1; 
SNS5 6; 
SNS6 7; 
SNS7 8; 
SNS8 9; 
SNS9 19; 
SNS19 = 11; 
SNS11 ;= 12; 
SNS12 = 13; 

B1 = Ab911; 
BII Ab111; 
B12 Ab119; 
B13 = Ab191; 
B14 = Ab199; 
BNS1 = 2; 
BNS2 = 1; 
BNS3 = 9; 

equations 

state_diagram [SC1,SC9,LDSR,SCX9] 

pin 16,17,18,19; 

state SI: i f(SBLANKn) then SAl 

state SAl: 
state SA2: 
state SI1: 
state SNS1: . 
state SNS2: 
state SNS3: 
state SNS4: 
state SNS5: 
state SNS6: 

else SI; 
goto SA2; 
goto SIl; 
goto S~; 
goto SI; 
goto SI; 
goto SI; 
goto SI; 
goto SI; 
goto SI; 

A-20 



state SNS7: 
state SNS8: 
state SNS9: 
state SNS10: 
state SNSll: 
state SNS12: 

state_diagram 
state BI: 
state BIl: 
state BI2: 
state B13: 
state BI4: 
state BNSl: 
state BNS2: 
state BNS3: 

"Description: 

GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

goto SI; 
goto SI; 
goto SI; 
goto SI; 
goto SI; 
goto SI; 

[BLANKn,BLANKXl,BLANKX0] 
if(SBLANKn) then BII else BI; 
if(!SBLANKn) then BI2 else BIl; 
goto BI3; 
goto B14; 
goto BI; 
goto B1; 
goto BI; 
goto B1; 

" SC0 and SCI control the serial register loading inside 
the VRAMs. 

BLANKn feeds into the video DAC to blank out the monitor 
screen. 

A-21 



GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

module FB_VRM flag '-r3' 
title 'RAS Logic' 

U34 device 'P20R8'; 

VCC,GND,OCn pin 24,12,13; 
CLK,LADSn,NENEn,A22,A21,CBUSYn,TRFQn 

pin 1,2,3,4,5,6,7; 
TREF,RESET,EXPSELn,CPENDn,NC1,NC2 pin 8,9,10,11,14,15; 
PRCHX0,PRECHn,NC3,RASDELn,RAS1,RAS0n 

NC4,NC5 

IDLE = 1; 
ACTIVE = 0; 

PIDLE 3; 
PACT! = 1; 
PACT2 = 0; 
PNSI = 2; 

state_diagram [RAS0n] 

pin 16,17,18,19,20,21; 
pin 22,23; 

state IDLE: if(!LADSn & !EXPSELn & !A22 & !A21 & CBUSYn 
& TRFQn & PRECHn 

# !CPENDn & !EXPSELn & !A22 & !A21 & PRECHn 
& CBUSYn & TRFQn 

# !TRFQn & PRECHn & !RASDELn) then ACTIVE 
else IDLE; 

state ACTIVE :if ( TREF 
# RESET 
# ! LADSn & EXPSELn & TRFQn 
# ! LADSn & A22 & TRFQn 
# ! LADSn & A21 & TRFQn 
# !LADSn & !EXPSELn & !A22 & !A21 

& NENEn & TRFQn) 
then IDLE 

el se ACTIVE; 

state_diagram [RASln] 
state IDLE: if(!LADSn & !EXPSELn & !A22 & A21 & CBUSYn 

& TRFQn & PRECHn 
# !CPENDn & !EXPSELn & !A22 & A21 & PRECHn 

& CBUSYn & TRFQn 
# !TRFQn & PRECHn & !RASDELn) then ACTIVE 

el se IDLE; 

A-22 



".m_l® 
I I~ GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE 

state ACTIVE :if ( TREF 

state_diagram 
state [1]: 

state [0]: 

state_diagram 
state PIDlE: 

state PACT1: 

state PACT2: 
state PNS1: 

"Description: 

# RESET 
# llADSn & EXPSEln & TRFQn 

# I lADSn & A22 & TRFQn 
# I lADSn & !A21 & TRFQn 
# llADSn & lEXPSEln & !A22 & A21 

& NENEn & TRFQn) 
then IDLE 

else ACTIVE; 

[RASDEln] 
if (RESET) then [1] 

else if (!TRFQn & PRECHn) then [0] 
else [1]; 

if(RESET # IPRECHn) then [1] 
else [0]; 

[PRECHn. PRCHX0] 
if (RESET) THEN PIDlE 

else if (IRAS0n # !RASln) then PACTI 
else PIDlE; 

if (RESET) THEN PIDlE 
else if (RASln & RAS0n) then PACT2 
else PACT1; 

goto PIDlE; 
goto PIDlE; 

RASxn is asserted only for VRAM cycles and only when no 
other non-VRAM cycles are pending. 

RASDEln delays RASxn activation when refresh and serial 
register load requests are detected. 

PRECHn guarantees minium RASxn precharge time. 

end NI0_VRM; 

A-23 



~ 

A[0.25] -- A12 

.n 

• ,5 
.16 

.u 
•• 0 

1~2~ VAD 
V. 

A12 I 12 "ICUIIZ7::n '1110 

ROWE' 
COLE' 

.n 

.10 

.,5 

.u .,, 
'10 

.20 

! ::~:::# 
SltAE# 

RESeT 
:SCAE# 

aHO.T]' 

",2.12 VBl 

'I'1':U '182 

y. 2D VB) 

'I'll 1. VBII 

.,111 VIIS 

.,7 17 VBe 

.,. 11 YBT 

VBI 

OUT 

RP2 

elKC 

LADSB# 

.5 

.. 

+5V 

R'l OU • 

RP~ 
OU • II 

BEO# 

.!!.!! 
BE2# 

~ 8E4# 

US, 

BEi' 

BE7' 

13 

10 2:1 VAO 

20 22 VAl 

JII 21 VA2 

'0 ID VA) 

III U VAil 

IC! 11 VAS 

lCl 17 VAi 

I. 11 VA7 

I. 11 VA. 

11 III VBO 

U II VBl 

)0 :11 YII2 

.fIG II VB3 

II 11 VBIl 

7 ...... 121' , 

10 lD 

'OC 

un 
un 
.0 .-
R" 
M" 

n" 
M" 

MY 

OUT OUT 

YA[O.I] 

? VAO z 7.:cnu:!7:n 
VBLANK#" VAl 

SRAE' " 1'lz n~ n1u VA2 I 
RESET VAZ 

VA> 

V, • 

~<?F:--":""::"'-'--~ 
, 1Ic.!. lIell' 

lin lie.' ... 
J' 'lao 

VBLANK' • VBl 

SRAE' VB" 

~U 

LBE1# 
U_ U_ 
~-
~-
~~ 

LBE1' 

VB' 

V", 

VB. 

• '185 

• VB. 

• VB7 

lin lie. a 

.. 
OUT 

R" 

15 
OUT 

.. 2 

FR""E BUFFER 
~ 

,.,20 

,.,11 

::h! 
'I'I~ 
n lu 

z 7.:CU'::7::n 

VA> 

V" 

~
• "n VIl 

ill 11 "1' 21 vaz 
'" .,,, .III V., 

'. .,,5 l' vall 
'1. "1 11 vas 
.,. Y1 11 'IBIS 

• I "1 II '1117 

.",11 

~"" , .. 
uu 

OUT 

)RPS 

V" 

'18[01'] 

LBE[O.1]# 

FRAME BUFFER EXAMPLE 

DATE 107 -18 - 89 DRAWN BYI C L 

cf 
G> 

~ 
"tI 
::I: 
(; 
en 
"T'I 
::r:J 
l> 
3: 
m 

@J 

OJ 
c: 
"T'I 
"T'I 
m 
::r:J 
en 
(") 
::I: 
m 
3: 
~ 
(; 
en 
l> z 
C 
"tI 
r­
C 
(") 
o 
c m 



A I B 

1 
se. 
OTOEO# 
SEO# 
CAsa# 
RAsa# 

'A. t'~' SD. ~~. SD. 

.Al .. , SlU 10 SOl ~ 1 1102 
11 SDg 

'A. .. , 1101 • S" ~ t liDS • SOlO 

'A' n. liD", • SO> ~ J 110. 
I SD11 

'A' 20 " 111/101 
12 DO ~ " W11101 

12 DI 

.AS 
11 • W.'102 

111 01 ~ • IIZllOt 
1'J 011 

VA. 11 • IU/U:J t D' ....!!.L...!.! • ""IOJ 
Z 010 

VA> It 1 •• 110 .. J D. ~ 7 11.110" J 011 

VA. " . .C1~ ~. IICr-· . '" IIC2 1 , 
'" I c: lit. 1 

u ~6l u ~~ .. ~P'l · """. -;;;-- :::,,;-~ 

~ 
01 

~ ~D 1101' SD' ~~. SDU 

~1 IIDI 10 SD' ...!..aL.!! 1. 1102 10 son: 

~.1 11011 • SD' ~t 110:1 I SOl" 

• ~J liD", • SD' ~J 11011 • 5015 

~ 'I IIIllDl 11 D. ....2L....!! • 111/101 12 
D12 

~ Ii 11211D2 U D' ....Y!L.......! Ii 11211D2 lW D13 

~ Ii 1I./lOW:I 
D. ~ Ii 1I./1D1i 2 D14 

~ 7 IIII/ID' Ii D' ...!!L.......!. 7 .II/ID. W D1S 

~. 11,1 ~. IItl 1 

" :~:~; :~::i:; · , 
u _~ 

u ~9 "or _"""~ · ~. 
~ ~ 

~ n* 
E2# 
E3* 

· YA[O.Cl 

A I B I 

C I 

VAO t.~. SDlI 

VAl II 1. IIDt 11 5017 

"A2 :U it liD •• SDU 

VAll II J IlDIl • SOlD 

VA .. :rD • IIl11D1 1.1 DlO 

VAS 11 J 11./102 11 '1' 

VAl 18 • II./ IDI .I Dto 

VA7 2J , .11/10. J DlO 

y". 11 • IIC1iT-----. :~;i1 , 

.. ~ ~1'1 " ~] 
-;;;;-

~~. 5D20 

....!!.L....!!. 1. lID. 11 SD21 

~.I IUl' I SD22 

~W 11011 • 5D23 

~ • 1111101 12 OZO 

~ 5 11211D2 U D.l 

...!!!.......!! Ii "li/lDli 2 
D22 

....!!L..!! 7 ""IDIII W 
D25 

~. " . IIt2 15 . , IItS 27 

u ~~ 
~~ ~ 

FRA"E BUFFER 
REY.02 

c 

D 

0[0.51] 

SDrO.31] 

VAO :t.~. SD2" 

VAl .u 1. 1101 10 SDU 

VA2 :u :r 110'1 • 502. 

VA] IS ., 11011 • SD27 

VA .. 10 ,. 111/101 12 D .. 

VAS 18 J WtlllZ 111 D25 

VAl 18 • 11111/10. t D.' 

VA7 :tz 1 ""'10", J 
D21 

VAl 11 • 

"~ . let 1. , 
'" 

..... ~P'i u <n5l 
~ 

~~. 502' 

......Y.a!-...! 1. 1I0t 
11 SD211 

....:!.!!...... I 1101 • SD]O 

~. 110 •• 5D31 

.....!.!L....!. II 111/101 12 DZ • 

~ Ii 1121102 
15 DZD 

~ • IIW/IDW:I n. 
~ 7 .'1110'1 Ii D31 

~. IItl 1 

:~: :r; . , 
.. Fr' -""'~ U Ta~ 
~ 

-'-

FRAME BUFFER EXAMPLE 

VRAMs A-1 SH.2 

DATE 107-18-891 DRAWN !lY1 JP 

D 

1 

r-

• 

-

· 

-

· 

l 
C) 
::tI » 
'tI 
J: 
Ci en 
"TI 
::tI » s:: 
m 
IJJ 
c: 
"TI 
"TI 
m 
::tI 
en 
C') 
J: 
m 

~ 
Ci en 
» z 
c 
'tI 
r­
C 
C') 
o c 
m 

@ 



:r-
I\) 
0'> 

--

SCD 
DlOea, 
~ 
CASl' 

CAsa-'--
RAsa' 

I 

SD311 

!Y .. y IIU • $035 

II-=~"'l''' 111/101 12 D32 

5 11111021-""-' --1~--1 

• 1I:Jllnl-"'-~~" 
7 II"/IO.!J''-~''--II 

T5211251 

IJ-='--''''"D 1101' S DII 0 
lUI 10 SD'+l ~1 

~:r IIU Ii SO"2 

~.'IO.~ 
II-='-"'l'- Wl/IOl 1! DIIO 

11-='--"1" W211 02+""-'--1~---II 
11-='--"1" WY/I n,p''---'''~-{I 
~, W'I/IU IY 

17"1 ":&-111:21, 

'" 

V, 

I 

T52'+257 
VAO 21 0 1101' 

VAl IS 1 .1102 10 

VA2 Jill:t SlDI S 

VA3 2S 110. • 50S 

VAIf 20 1111101 12 

VAS 11 I IIZIIOII! ill 

VA6 II I 11./101:1 

VAT IZ T Munll J 051 

VAB 17~. 

1 
D["2,13] 

$D(520151] 

\1-="-'''40 .. Wi/lDl 12 DSI 

11-="--"40:5 W21101 11' I 
• IIS/IDS:I DSI 

VAl :12 fT "/ID"~ 
VA. 17 .. , 

r~lm ::§?5l 
~~~~uw~~~~m=~~~ 

T5211251 T5211257 T5211257 
1101 ' SD31 aIOl • SD"" IICII • $052 

1102 10 VAl un 10 SDIIS 1101 10 SD53 

VAl un J SOl' 110' !5 VA2 un I $054 

110' • S039 11011 I SDII7 VAl 11011 I SD55 

'II IIl/nl I' D31 .. W1/101 12 II 1111/101 12 D52 1-='-""" IIl/lICIl 12 010 

VAS • 112/102 n D37 I 1I:r1l02 n 045 • 112/102 11 D53 

VAlli 11. ''''/lOS.I 03' •• S/lo)::1 ... "10J:r D5" 

f'---'D"'.:... -II 7 .1111011]1 7 ... /lo .. :J 

~u ~ 

I w2/1n 11 011 

1-='--"'"10. WYlln 2 D152 

~7111_/10_~ 
~. IIC~ 

:~;tt; • "< 

~:::I ~ 
EO' i7i -L. 

VA-[Ola] 
FRAME BUFFER EXAMPLE 

VRAMs A-2 SH.3 
DATE 107.18- 89 1 DRAWN BY, JP 

1 I 

f-

f-

f-

i 
G') 
::D 
~ 
"'I::J 
::I: 
(; 
en 
-n 
::D 
~ 
3: 
m 
III 
c: 
-n -n 

@ 

m 
::D 
en o 
::I: 
m 
3: 
~ 
(; 
en 
~ z 
C 
"'I::J 
r­
C 
o o c 
m 





~ U 
I\) 
(XI 

II-
~ 

.<1 
'iiTOE1* 
~ 
CA$2, 

CAS1-'--

ItAS1# 

~~. 
~1 IIO! 111 

~:r IIDJ • 

~1I 11011 • 

~ -. lf11101 11 

~ • 1II1IJOJ 11 

~ •• "IOJ:r 

~ 7 IU/IU J 

.....Y!.!---ll • 
:~;~~ -'- , 

~E:"'51 .. =~ ----m-

1IIIIr 

.. WEll' 
_WESt 

WEIIi' 
WE7. 

vJl[OlaJ 

vn 

VB1 

T5211257 
1101' 

1102 10 

un • 

110" • 

II W11101 12 

J 11121102 1J 

I '1II:JIIOJ 2 

J 

,SD12 

so:,., 
SDJ4 

5035 ... ... ... 
D35 

SD36 

SOl. 

Dn 

I 

J J 

DL'l2153] lie::::: ;,;::: ::-::if: :::: ::: :: ;'::::;K:;'~ ,;; ; :.:';;; 10"""" 

~ ~DII01' S040 vae 'II ~. 501111 
I VRO:r.~~ 

f--Y!!--.!-! 1 1102 
10 50111 YIn II 1 J10Z 

10 so_v VBl 2' 1 UD2 ~ttn ~I .101 • 5042 VB2 211 :r SIO., • 5D50 VB2 2" :r IIOJ 

~J 11011 • SDIl3 VBJ .1'1 J SJOII • 5D51 VBl 2J J .1011 • 

~ 'I 1111/101 12 ... vali 2G 
.. 'lI11101 

12 olla VD4 20 
" tll11101 ~ 

VB5 1 ... IU/IGI 1'1 .41 ~ I tU/lOI 
U 049 YlS5 11 • 112/102 ~ 

va. 11 • IIIJ/IOJ:r D42 VBS 11 • II:t1l01l :r D50 VBS 11 • 1I1/I01:r D.' 
VB7 11 7 "./1011] D43 f---Y.!L-!.! 7 IU/IO" 

J D51 VB7 22 
7 ''''101l J 

v .. " . IIC1W- ~I "±;- VB. 17 I .oW-. :~~ , . lIel I, . IIIC:r 1 , , 
"" 

, "" .. ~9 .. tt ""~ 
----m- :: :9 

~ .. "'51 .... ""~ 
~ 

II n 

1524257 T.524257 T5211257 va. .. , lUI • 1101 • 1101' 
VOl .. , itO! 111 SD45 .. , 1102 11 1102 10 

VS, IIOJ S 11011 Ii $05 ... 11011 Ii 

V"' lUI" • SO",7 
110" • VB> nOli • son 

VB. III W11101 12 W1/101 12 II 111101 12 D'. 

J 1112/102 1:J :J 11121102 U D53 V •• I 121102 1J DOl 
V •• 

I 1II:J11O:J 2 D" • IIIJ/lOJ 2 I nllOJ 2 

VB7 7 1II1I/lOII:J Dn 
V .. VB' 

--'-

FRAME BUFFER EXAMPLE 

VRAMs B-2 SH.S 

DATE 107-18-891 DRAWN BYI .JP 

I 

f-

f-

f-

5" 
ii: 

G> 
:tJ » 
"tI 
:::I: 
(; 
(J) 

"T1 
:tJ » s: 
m 
to 
c: 
"T1 
"T1 
m 
:tJ 
(J) 
(") 
:::I: 
m s: 
!:i 
(; 
(J) 

» z 
c 
"tI 
r 
C 
(") 
o 
c m 

@ 



» 
N 
CD 

1 

2 

• 

. 

A 

elite; 

lADS 

HENE' 

A22 

A21 

CBUSV,. 

TREF 

RESET 

EXPSEL'" 

II~ 

+5Y 

'" .U . 
WAIT 

JP1 

"'I 
-

LADSA220 

w/R# 

E REF 

TR. 

RAU-

ROYt 

lERDlC 

[l::.PIUY€· 

~' DRn 

A 

I . 
2~ 

elK PLec 

• P1 · PZ 01 6 

5 P3 .2 5 · .- .. . 
1 P5 Oil 3 RASDH# 

TRFOH 
• P. 

.5 1 

1 P1 06 0 PRECHI 

1 PD 07 19 

1 P. O. 1. 
CPEND# 1 PI0 

II 
1 "11 

"'~l 2 '12 
IIU 5 

,. 1r£ lin 2 
....-

,..-ll!!!L 1 r---!- P1 PlD 111 

2 1'2 P1IIl 18 CPEND" 

----L '3 P11 ~~ . .- P1. ~~ 
5 P5 P15 ~: NOEll --..!... P6 PH 

---L. '1 P1. 13 WDElXO 

~PD P1' b!2 

• PO P11 11 

""" 

TRFO# 

P 1& RaD 

----L P 1 P1. HI COLEI 

2 P2 P1. U SCAE# 

3 P3 P11 17 REFtf 

• PO Pl6 0;: TRFO# --..!... P5 P15 

6 PO PH ~: !RAEt ~P7 PH 

• PO Pl, ~ , " P11 11 

~ 

I U.SDfli 

I . 

c 

~~ 
eLKG 1. P1 PUI ~~ 

CPEHOIt 2 1'2 P18 11 

RASn • P3 P11 17 CASlf 

WAIT It .- P1 • 16 

~ '5 P15 " 
WDELH 6 P. P" p!~ 
COLEII 1 P1 P13 13 

TRFO# a PB P12 ~SET 
PAEF • PO P11 11 

~ 
, 

elke; 2~ 
elk pLec 

RASC 
• P1 

01 2,. 

COLE#" 
• PZ 

02 23 

LAOS," 
• P3 

03 1 lWA# 

.,/R# 
• PO 

.. . 
T RFOI , P5 

CPENDJt! · " [., 2£j RDY' 

WOE lllO 1 P7 [.2 25 RESET 

"DELI 1 PO [., 19 WAIT · " 10 .. 18 

EXPDSYl'l flO 
LERDl' 1 

'" "'~l ~ PH 
IIU ~ 

115 lrE IIU .2 

ur. 

I c 

J D 

RASOI-

n"51# 

PAECH' '" 
CP£NDH m ",1 _ 12S_.,7. 

- . "1'1'1"'1 
"DEL#-

CA52' 

CAS1# 

CASO# 

CASXl. 

EIlDL' 

ClitE 2~ 
DAEF • P1 

E.'SEl#" .. P2 ., . 
CPEHDH 5 P3 .2 5 CLRTRO' 

LADSA22# G PO .. . EADEAO 

UFO# 1 .. ... EWDE# 

'NIAll 
• PO 

.5 1 DTOHj) 

LWR# 1 P1 ... OTOEO" 

RASIll" 1 PO 07 HI ClRRFXD 

!.! pg DC 14 

!! PI0 

~ P11 

"'~l 2 P12 
lin 5 

16"" IIU 2 

UFOS 
HAllO 
ROY#· 

::;~:l 

I 11 

SUEI: 
SCA[t: . 

FRAME BU FFE. R EXAMPLE 

VRAI'i CONTROL SH.E 

FRAME aUFF~r,; DATE I Q7-18- 89 1 DRAWN BYI JP 
ItfY.02 

D 

1 

r-

2 

r-

. 

r-

. 

l 
C) 
::a » 
"'D 
::I: 
o rn 
"11 

~ s: 
m 
tIl 
c: 
"11 
"11 m 
::D 
rn 
(") 
:I: 
m 
s: 
~ 
o rn 
» 
2: 
C 
"tJ 
r­
C 
() 
o 
o 
m 

@J 



. I B 

CLite elite 1 Pl 

2 .. 

LADS. · .. EXPSEL# · .. 1 .22 
• P' A. · .. 

ORMDn. 7 P7 

MUBS!L 
• PI WI. 

f!!!!!!...!- .. 
2~ 

U2 
USllt 

P1 'Lec 
IIASO# 

• .2 
seAE" · .. IDl 5 RAS. 

UFO. · .. ID2 II LADS •• 

PRECH" · .. IO:J~ 
REF 7 PI ID' 

1 TREF 

CASO" 
• P7 

ID. rD II~UDEL# 

"I 2 CASXI 1 •• ID' 
• ERDE. 

EIIDEaD 1 P. 
WAn 1 '10 

01 • DIIEF 

,.b .11 
02 I PIIEF 

~ 

LW..!!.t. 1 P12 .. '~ r--l' .13 ... 
2 P111 .e. 2 

aASDEL. U1D 
YSYHC elKC '16.IID 

CLRlFXO o...-.!.. ., .10 10 

RESET 2 '2 .,. p;.~ · .. 17 .17 
COLE. 

• PO 
.10 ~. 

NAxa 
• PO 

.15 p;.~ • C'END. • •• .10 10 

WDE!:f.. 7 P7 .13 13 

REFC" r-----!- PO P12Ffl <----.!.. 'l1P!!-P. 

U2' 

ERDL" 

WAIT 

UUDI7]# 

. 
• 

~ 
DUT ... 

A I • I 

C 1 D 

,.1 •• "0 

Pl. 10 RDY 

'" ~~ 
"7 ~~ ". p!~ 
Pl. ~: V8FO# 

'" 
'13 13 CBUSY. 

"2 
12 LADIA22. 

'11 
11 

1 
DUT NOTE I U15 • U52 NEED TO 

R" 
BE REPLACED WHEN CHANUNC 

·WAIT- OPTION 
~ lIAS" 

LADSI 
PIIEF 

TREF 
ERDE" 
DIIEF 

,.!ID-!!L-
elKe 1 ., .10 p!~ 
V.FO' 2 .2 p!~ .10 

1. .. Pl7 17 CLRIlFO# 

RESET " PO '10 p!~ 
VIYNC • PO '" 

15 SEO# 

• PI .10 10 IE1. 

L P7 .13 p!~ I i;UT 
!. PI '12 p!~ 
!. •• '11 

11 ••• ., Ex,an. ~ 

EWDL. 

.A. 
L£IIDL# 

2~ L.a" '1 PLee WU# LaED. 
• .2 

L8EUJ II .. 101 5 WEII-" 
Ia2 .. WE5# uu. 

• PO Lan. · .. 10:) :J WEll" 

LBU,_ 7 •• lOll 1 Wn:# 

LBn. 
• P7 

105 a WE2# 

LUI. 1 PI loa • WEl. 

LBE7# 1 •• 

REFC. 1 '10 Dl • 
WEal' 

CASO" 1 P11 D2~ 
PRECH. 1 .,2 

OU~l ~,u ... ... . FRAKE BUFFER EXAKPLE z '1_ .n Z 

I •• VRAK & MISC LOGIC SH.7 
FlAME BUFFE It DATE 107 .18- 89 1 DRAWN BYI CL 

REV.02 

C ·D 

1 

• 

• 

• 

I 
C) 

~ 
." 
:::z:: o 
en 
." 

i 
m 
til c: 
." 
." 
m 
::J:I 
en n 
:::z:: 
m 
3: 
~ o en 
):0 
z 
C 
." r­
C 
n 
o c 
m 

€I 



+SY 

R'1 

DU • 
SD[OII)l 

IOU · nne ... SD52 · 741'1..1 .. 

1032 · , ,,~ SD:JI · , uj-!-
SDIl , , -a I-!- SDza , , ··tL 
.DD 0 . 111 1D '100 SD. 0 . 151.0 YD' 

'Dill " . IDS]: G4~ " . ... f-!! 
SD:n " . u~ SDS7 " . ··tll 
SD17 .. 0 .. ~ SDZl .. 0 ··tll 

+SY 
SD' u , ., I. VOl SDS .. , .7:U 'IDS 

I ir%~ '" ~~ 
, " 

"f, I~" " , , ...... ...... 
DU 7 II .. u "n 

S050 · ""'1" " IDS" · , .. !!.!z .... 
SD3" · , u~ SOJ. · I. u~ 
SD18 , , urL 1022 , , u~ 
SD. . •• 1D Y02 $DO 0 . ,. 1DVD& 

SDS1 " . .IIf.!! SDSS " . --~ son " . .. ~ 50]1 " . as~ 
:j> H 1 

SOli .. 0 .. ~ SDZJ .. 0 .. ~ 
~ 

.D. .. , D' :nYDJ SD7 ~ .. , 17 21''1D1 

~jcT cu ~ , " 
~~ .. II 

, . 
~h...- ~ 

b!.!!! 
,.Clk. 

~. . 
iDUT 

DUT DUT 

"S R'S R'S R.S 

I 

+SY 

•• f, 

au 10 

111 

I 

+SY 

R.f, 

au 11 

SOSI · '..!.l..UI II 
SOlD · ''''1.' III 

sou · 111~ SO,," , · uj-!-
SDZ_ , , , ··lL SDza , ut!-
'D' 0 •• I.D YDG 

, . ID12 0 . nt-!!- YaU 
5057 " . G4~ Sail " . • ... r!! 
SDIIl " . as~ lOllS " . ..t-'! 
$025 .. 0 .. ~ 5021 .. 0 ··ru SD. II. D7 .7.1 'lOg S013 YoU .. , .7.21 

~p 
, " 

frEt:< "~ 
, , 

,11 Ir:~ I~~ w 

105. · :"'1" II IDI2 · ' .. 11: .. " 
SOliZ · , u~ SD .. 15 · I. niL 
S021 , 

'.I~ SOJD , , , u~ 
SOlD 0 YOlO . 1.1.· SD14 · . '1I~VD1II 
sDS' " . G4~ IDI3 " . '''~ 504] " . .. ~ sell7 " . .st-!! 
1027 .. 0 .. ~ SD31 .. 0 .It!! 
SD11 .. , ., 11 YOU SD15 U, '7.1i '1015 , ~ , " ~t:< , , 

tll<h... 

'10[0,15] .. 
f: DUT s· 11 DUT DUT 

DUT "S R.S .'S 

••• 

FRAME BUFFER EXAMPLE 

FItA"E aUFFEIt 

PIXEL SERIALIZATION SH.B 

DATE 107-18- 89 1 DRAWN BY. JP 
1tE'I.OZ 

l 
C) 

~ 
'tI 
:J: 
(; 
tJ) 

." 

~ 

€I> 

s: 
m 
ID 
c: 
." 
." 
m 
::D 
tJ) 
n 
:J: 
m 
s:: 
~ 
n 
tJ) 

l> 
z 
C 
'tI 
r­
C 
n 
o c 
m 



1-

~ 1-
I\) 

1-

VD[O.1.5J -
I 

VD1S '5 In7 

I VDU _ , I :---'=: 
VD12 _ I I I 6 In" 
YDU _ I I I I _ --~3 

VD10 _ I I I I J 0.1n2 

1~1 I I I I I ! 1 0 1 I 
22 

BT102 

~ 
un 

YOO 
VDa '5 D7 

VOl It IS 

- s. 
VM & " _ an 

o 2 

SYNC# 

U56 

8T102 

'n, ~-. 

-I 

I 

rflOO en. ROO 

" To .. 
~ l~ ~ ~ 1K 

ca,,1 I L"ns 1..2Y 

AGN 

" , ... len 
C6~ ~ .. 

ASHD 1. 

1 

I 

CO2 

.1UF 

C14 

,lUF 

L7, I 'von 

lDUF 

L1 

CII 

lOUF 

.1UF 

.1UF 

NOTE. ALL INDUCTORS 

ARE FERRITE BEADS 

YOR 

Ll YOG 

C5~~q.:'UOF 
at 

FRA"E IIUFFEII 

- I· 
R eXAMPLE FRAME BUFFE 

V1DEO DACs SH.9 

DATE '07~l.8-89 I DRAWN BY, JP 

t 
G) 
:D 
l> 
"tJ 
:::t 
(; 
00 
"T1 
:D 
l> 
:s:: 
m 
III 
c: 

@ 

"T1 
"T1 
m 
:D 
00 
o 
:::t 
m 
:s:: 
!f 
(; 
00 
l> z 
C 
"tJ 
r­
C 
o o c m 



~ 
w 
w 

. 
""'5 V +5V +5Y 

"f "f "f J OU 1 OUT 2 OU, 

H ,:>OUT OUT OUT OUT . i ~ i I 11 ItP RP Itp RP2 

~ ~ ~ ~ I 1 1 PCLO 

RESET 

Y1 

lose. 

Vellt' 2 

HCLR# 3 

7IJFCT21111 

0\2 Y2 y. 
o .. ... 

OUT RP2 

RP2 '1, v g \/I 

PDIV~6 1 

I HCLRJC# 

P' 

PO 

P5 

P. 

P. 

U7 

. I 

!!!!.!!.!.!!. 

P2 

P. 

P. P11 

OUT 

",2 

I 

C 

+5V +SV +5V 

"f "f "f-OUT" OUT 5 au Ii 

•• 
13 Hel 

• C 

---'-

yelRX# 

+5Y 
+5Y 

I ~1: III 
~DruO~ 

~ elK vb!--+--h 
peLKA 

"C'1:1f 

~qF7" 

L--

HC2 

11 He3 

I D 

'ii'"l7ii'""j!7 • velA'. 
II I/U. 

n 1/ .. 

Ito flu 

.. 1/ ... 

~ .. " .. 171/11 

vaLANIt. 

.e ,/u 

VSVNC 

.I.. n 1/ ••• 

CSYNC' 

EXPUH# 

valANK. 

PllR1E 

pelKA 

SIILANIt# 2 
'2 

BLANk# _ 

'5 
LOSR' 

P. "2 
SCO 

OUT 
U2. 

SBLAN'li 

~ 

. .. 
PClKC ----... 

FRAME BUFFER EXAMPLE 

CRT TIMING SH.10 

DATE 107-18-89 DRAWN BV I J P 

II I~ 
I 1 

I-

I. 

I' 

C) 
::0 » 
"C 
J: 
o en 
"T1 
::0 » 
s: 
m 
III 
c: 
"T1 
"T1 m 
::0 
en 
C') 
J: 
m 
s: 
~ 
o en 
» z 
o 
"C r 
o 
C') 
o 
o m 



REFREQ 

CLRRFQ# 
CLite 

+5. 

'P~ 
OUT g 

+5. +5. 

T 

1 
'P~ 
OU 10 

o U5 

"..... 

l 
® 

C> 
REF _ I I I~ 

'tJ 
::I: 
0 en 
"T1 
:II » :s: 
m 
aJ 
c: 
"T1 
"T1 
m 
:II 
en 
0 
::I: 
m :s: 
~ 
0 en 
» z 
c 
'tJ 
I"" 
C 

SYNC# I I 0 
0 
C 
m 

1.1 
FRAME BUFFER EXAMPLE 

MIse SH.11 

FR~ DATE 107-18-89\ DRAWN BYI JP 
REV.02 



A I • 
V •• 

VAO 
r- ------:: .' VA> .' 

VAT " 1 VA' " VA. " a 
VA2 " ~ VA. .' 
VA. " 

a .' : r---:L-
VA. ~r:--

V~D VBO · V81 " Nr VB2 " vn " a :fo" 
" · VB' · ~ VB. .' , 

VBi .' a . . eLkG 

2 
----!. .. 11\ 

~ :"--

~ ". .,.----
VB7 N 

sn# .' ~ 
se1 · ' -'-
RAS1' " 

~ 
DTOEO' " 0 

CAU " . 
seo .... ~ 

t1I VBI " 0 . . 
f---.!. .. '" :"'---

RASCg (}-;r:--
SEO# · DTOED' , ' . !,' 

-;. 0 · CASD' ~. ~ 
CA52t1 .' ~ t-""-7 .. 1"\ : "'---

-'-

. 

A I B I 

c I . 
THESE R-!'AU ARE EQUAL TO 

200 OH" THEVENUI 

CONNECT )30 OH" TO yaD 

.. &60 OH" TO GROUND 

V~D VO. 
V,' 

N~ ~ 
N 

~R17 ~'12 ". 
~ ~ " CLKC ,"elK" PCLKI 

~ " ~, 

~: .. :! "" "" ~N :;;R" 
N 

~ ~ ~ 
-'- -'- -L-

Y~D 

~ 
N?RJ2 

f'"' 
"} 

,"eLke 

, , 
< ... .-

.. TH" 

-'-

-

FRAME BUFFER-EXAMPLE 

TERMINATIONS SH.12 
FRA"E BUFFER DATE I07-18-89T DRAWN BYI JP 

REY.D2 

c . 

1 

H 

2 

'"""" 

• 

. 

l 
G) 

~ 
"tI 
::J: o en ..,.. 
~ s:: 
m 

@ 

IJI 
c: ..,.. ..,.. 
m 
::u 
en 
C') 
::J: 
m s:: 
~ o en 
;r:. 
z 
C 
"tI r­
C 
C') 
o 
C m 



:p-
C,) 
0> 

~~:F 

-1~:F 

FRAME BUFFER 

SIR TeST PATTERNS 

FRAME BUFFER EXAMPLE 

CAPS/TEST POINTS SH.1.3 

DATE 107-.18-89 DRAWN BY I J P 

:i" 
<£ 

C) 
:D » 
"tI 
::x::: 
o en 
"T1 
:D » 
~ 
m 
m 
c: 

@ 

"T1 
"T1 
m 
:D 
en o 
::I: 
m 
3: 
:t o en 
» z 
o 
"tI 
~ o 
o o 
o 
m 



MUL TIBUS® II Schematics* B 

*This design has not been tested. 





'" 

.... I IIII °1 .. ~ HA' ~ NItEADY" O. , ItEADY# 

". 
a

NltEN

". 
IIII ~IEN* 

~ l..!f6l I ,I~ iii Pflllt 

"ADS' ADS' .Wlt' .,., 
.. NENE# NENE' 
.LOCI(' LOCK' 

•• EO liED' 

I 860 ™ DEl' 

BE2 • 
• IIE' lin., 

1I£IIe# 

- IIE5# 

IIEI' 

IIE7' 

D[0:63] 

DJ.J. 1::1 ... DJ. 

D>O 1I1J. DJ. ... I 

Dn 1::1' D'S 

Dn II 12 n:55, 

DJ.7 I: 12 DJ. 

D'J.II A 12 D:,. 

D'. C 1\ n~D 

D"'O II 110'10 

D .. Dl1 D ... 1 

D42 1110 0112 

DOJ Cl0 DII' 

'o. Ala D ...... 

DOS 1111 D ... S 

, .. All D4. 

,., CII D47 

D" Aa D<IIa 

D .. II. DII' 

.SO A7 DSO 

.s> C. DS1 

'52 All D52 

os, 117 D" 

DSO 1110 --. 

DS5 C7 

us. A5 

U57 CI 

A[3:31] 

MBII DESIGN EXAMPLE 

J860 CPU AND-CLOCK 

DATE 102-10-891 DRAWN DVINM 

C/)s:» 
OC"'tJ 
:l:r-"'tJ m-lm 
3:ijjz »c::c -len--@J>< o '" en- tD 



MULTIBUS® II SCHEMATICS 

:E: 
Z 

"' 0 ; ..J 
0-

" 
.. 

:E: Z z 
C C " >< ., ~ "' " :E: Z < .. 

'" ~ 

" U) . 
"' 0 0 

" '" -GO " 0 
~ ., 
:E: w 

~ 
C 

" 

~ 
;; 

B-2 



MULTIBUS® II SCHEMATICS 

8-3 



III .;,. 

1 

2 

, 

, 

. 

IOSEL 

NWR# 
S.A"SEL 

elitE 

pellC 

a23aOSEL 

ROO :,.0 

LADS. 

Bwa# 

ISY 

RECOVER 

'NODE 

TeRES 

'24 

CNODE OE 

CLXD 

. I 

B 

~CTL 

1 " PZ' 23 

-----.!.. '2 '22 ~2 

---...!.. P3 • 21 21 

--.!... '" '20 JO 

• P5 
'10 10 · ,. '18 18 

, P7 '17 " · ,. '10 :)1. 

• PO '" :P 
10 PI0 P1' ...!.'!.--

11 ~nJ1 

1/C2 

~1 

1 " '23 r-!' 
2 '2 .22 ~2 
, " '21 21 

, PO .20 20 · ,. '" " · ,. '18 10 

, P7 

'" P!' · ,. '10 p!. 
• PO '15 P!' 

10 riO '14 r-!' 

"~~ 
un l$PCTL2 

1 P1 .23 2' 
-2. '2 '22 22 

'------..!. " '21 ~~ 
~p,. PZO ~~ · ,. '10 :)1~ · ,. .10 18 

, P7 

'" " · ,. '10 :)1. · " ". ,. 
10 PI0 .14 ...!' 
'.!.. '11 PHP1 

B 

I c 

U07 
1 

~,: 
DBUFA 

PRUF. , 
.J . 

TlfF]:7 

I 

0 

~ · · "I 

~ c : .. 
> · . · · . < · 

"".11 

I c 

I 0 

... 
D.UFOe 

CPAI 

sa. 
cpaA 

U07 . 
M 10 

7'1f:!7 

~111 DBUFDIR n 
7"'F:J7 

ADS. ,aD 

WR'_ 310 

DCI: :no 
NIO# 310 

I1BII DESIGN EXAI1PLE 

.860 82380 CONTROL 

DATE ,02 -10 - 89 I DRAWN BY I NM 

0 

1 

-

2 

f-

, 

f-

. 

~ 

s:: 
c: 
!:i 
65 
c: en 
€J 

en 
C') 
J: 
m s:: 
:!:i 
(; 
en 

€J 



(Xl 

0, 

1 

2 

, 

I-

. 

. I " 

"If''nll 
NREADV# 

CLkE 

ID'Eel ~ I 
CLKD 1 PI U ... '2) 23 

!'lAP 2 P2 P22 ~~ 
.E2-1... P3 1"21 21 S.XSEL 

~ PII P20 20 eXPSEL# 

~P5 PlO IV "PCSEL 

~P& P1I II SRAnSEl 

~ P7 P17 17 .2510SEL 

.A!!......!... PI P16 1& IOSEl. 

!.... Pit P15 15 DRA"SEL 

'E- Pl' P10 ~ 

~ P11 Pn~ A[3,31J 

I 
Ulfl IOCTLI 

CUtE 1 Pl P23 2' 

L ~ P2 P22 ~2 
.....!.. P] P21 J!l 

---!!... PII "'. 2. 

LADS# 5 P5 P10 10 

DWA' o PO P18 10 

"SY 7 P7 .,7 17 

NREADY# • PI P1& U 

CMODE • P. P15 J!5 
TeRES 10 PI0 P10 ..!O 

r .ll. P11 Pl3~ 
CMODE DE 

UlfZ IOCTL2 

CLKD 1 Pl P23 t-!' 
--L P2 P22 22 

- r-----L .. P21 ~~ 
L--..!!.. P. P2. ~~ 

5 PO P10 10 

• PO P1I ~~ "SY 7 P7 P17 17 

~ P. P16 ~~ CMODE II P. P15 15 

10 1'10 P14 p.o 

NlOCIC# 

11~~ 

. I " 

. I e 

L .o~·T1"E 
1 Pl P23 23 

2 P2 P22 J!2 , .. P21 J!l 

o PO P2. J!. 

5 P5 Pl' :#--
o PI P10 J!8 

7 P7 P17 17 

• P. P1& p:.~ 
• P. P15 p:.~ 

-----1!!.. Pl. PH 10 

---1L P11 PH~ 
. Pxrro-n-_ 

FPlDLY ItENAIU"O rODlY -

~ 
o ~ : ~ ~ 
~ z 

0 

SH .5 

I e 

I . 
DRAnSEL# 

EXI"SEL# 

IOSEt. 

.2510SEL 

WAIT# 

RECOVER 

EPRO"SEL 

SRAff- AD 

SRA"-WR 

IOID# 

IOWa, 

DMAJlE 
+0' 

R5 .0. 
•• 0 -;-n.. IOltD2# 

7IJLSOI 

.0. . 
1.l 

. IOWA2# 

7ltLSO' 

OLOCK' 

MBII DESIGN EXAMPLE 

,860 SRAM & lID CONTROL 

DATE ,02-~O-891 DRAWN BY, NM 

D 

1 

C-

2 

-

, 

° 

l 

s:: 
c: 
~ 
III 
c: 
rn 
® 

= rn o 
:::E: 
m s:: 
~ o 
rn 

Oil 



tIl 
m 

DM"-D[D,7] 

l.CS82510 

aSCI 

0""-"D[3 •• ] 

ORD2i 

lown, 
i2"5iCi'i"Ni' 

TCLk 

PFORCE 

'PIODE 

DPIODE 

'IlFZII .. 

""$T# 13 D"'''_Oll 

E"JPI," ... 7 Vl 12 D""_D5 

FINT II.... va 11 DM" 15 

= "'" IIL$S .. 1 

I 

I 

D"'''_D7 II I D1 

D""_D5 3 D6 ""U33 
Dpt D5 2 

D""-D4 1 011 TXD 6 TXDI 

.----'--91 RES £T 

1-~-++----~~~---:1P3 

~Pl 
D" ...... D3~P2 

p, 

L-+------i-t1~~:: 
P12 

opt... 0& II PI Pl1 b!!--, 
UII4 J ~ 

I 

UI ~ I~ 
~ ~ E 

AteERRUIl 

II ~ 

I CLURG 

II 

~J"P .. 
~ 

+5 , 
SREFREQ 

FINT 

r-----------------------~I· 
MBII DESIGN EXAMPLE 

82510 AND CMDPORT 

DATE 102.10.891 DRAWN BY, NM 

~ 

:s: 
c: 
~ 
IJI 
c: 
rJ) 
® 

= 
rJ) 
o 
::I: 
m :s: 
:!:t 
(; 
rJ) 

@J 



ell 
..:" I-

f-

D"'''-'oO[OI.1IJ 

.,I1~p 

=, DM ADI7] P] 

D""-,,D16" pIJ 

HBE25 

NBEI" 1"6 

NBEO 7 

~ 

EPROM AD 

EPRO"-,,1 

~ 

DnA ADD 

D",,-A01 
DMAJD2 

011" AD) 

~ 
DHA-ADS 

D""="D6 
OMA AD7 

D",,="DI 

+. 
! 

, 11 'tT I 

D",,-OO 
DI'I"-Dl. 

Of", 03 

D",,-D,. 
D",,-05 
DM Dii 
DM D7 

D",,-D[O III -

• C".D' III • I •• EI"RO"LA2 
I DPlA_ADI 

D""=,,DI0 
OMA "OIl 
0""-AD12 
0""-"D.13 

~': ..... ~ . " 
.!.!..u ;.C~D 
:II[U 

"[],111 

IDRD2# 

"BSY 

DptAJD1S 9 I Pili 1"11 11 

'.-.rnn:.--

I DDEC2 

415 
!..l..u ....,.,..,... 

CLKD '., P23 23 C'C"D. 

A27 2 .2 22 ACCER'.' A26 ., p, 

CHODE 

TeRES 

A25 II 

A24 • ..... SEL 
7 A2. • '''."'EL 

~P' pub!! 
P15~ DBE" 

lUV 11 

NREADY# 

LADS' 

I I 

r---------------------~I· 
MBII DESIGN EXAMPLE 

.860 EPROM INTERFACE 

DA~E .02 -10 - 89 I DRAWN BV I NM 

l 

:s: 
c: 
~ 
III 
c: 
en 
@ 

= en 
n 
J: 
m 

~ 
o en 

@ 



III 
ci:> 

_L ~ 
+5V ... 

Dulls DUTIZ +5 

r---U121 
TI"OUT ]: 1" TII'IOUT' 

11--""''"'---------1--+---_�_----1----'''- 2A 10 PROTf-
DelO 5 3A 38 SI Dela'-

"" J~ 

13 ~12j j --I I I r-~ CD"-. • UTI=: 
~IIF2112 

ACLOt f' L7 

L-__ --I~l__I_c~S~"#~.~ l~ I 
OUT 7ilLSI 

.a 

U122 CS"PAL l 
Bel It I I I 1 1'1 '10 111 RCYV, 

.ASl 2 1"2 Pl.~ 
eRST ]: 1'3 P17Q!.L-J 

1I 1'4 P1SP!15 

ACLO' 5 1'5 P 15 t)!5 

CS"# 15 1'6 Pll1 t>!" 
URST I I 1 1'7 P13 13 UCINT' 

I .... "J h : ~P1 "' .. -
cs .. , 

IRD, 

IAD[0:7) 

J7 

IWIt' 

LINT' 
SVBT 

.CLU' 
BelKO' 

ceLKO, 
eelltl_' 

f-

r---------------------------~I· 
MBII DESIGN EXAMPLE 

1860 CSM INTERFACE 

SH •• DATE I 02 ·10 - 81 DRAWN BV I NM 

I I 

l 

~ 
c: 
!:t 
iii 
c: 
en 
® 

= en 
o 
::I: 
m 
~ 

~ 
(; 
en 

(!j 



III 
cD 

1 

2 

. 

. 

. 
elite 

LADS' 

as. 
R1 

•• 
NREADV# 

HOLD :,.0 
IOSEL 

RECOVER 

CLitE 

pelk 

D""--"D17 

D. DlI 

ADS. no 
IU' •• 0 

"101: :,.0 

TeRES 

D""-- AD15 

EDACKO 

EDACKI 

EDACK2 

. 

I . 
U121f ARaeTl 

1 Pl P2> 2> 

2 P2 P2' 22 · .. P21 O!' · PO '1"20 o!D 

• P. PlO 10 

• PI 
PlI 18 

7 P7 P17 
11 'MODE 

• P. 
PlO 

1& DNODE 

• P. Pl' 
15 DOFF 

10 PI0 PH 14 

,.ll- P11 Pl'l 

ACkDEC 

~ 
.!.. PI Pl. 10 

2 P2 PlI ~~ · .. P17 17 

• P. P1I 11 

!.. 1'5 Pl' 
,. 

.!.. 1"6 . P" 
14 

7 P7 PH n 

• P. P12 ~ 
• PO 

P11 11 

\'lo:t:-n;ar- ~ ~ " 0< · ~ · " " · . · · . u u u u · . < < < < K K · . . · · . " . H " · . -

I . 

c 

~ACTL 

1 Pl '2> f-ll--
2 P2 P22 ~22 RELEASE · .. P21 21 · ,. P2. 2. 

• P, PlO 10 

• PI 
PlI 11 

7 P7 P17 ~~ 
• P. PlI p!~ 
• PO 

Pl. 
,. 

,-!!L Pl. P," 14 

11~~ 
O"ODE_OE 

· ~ · · · · < 
U • L E 
E 

I c 

I D 

.2l110SEl 

HOLDA :,.0 

D"ODE DE 

eMODE DE 

CMODE 

DNODE 

DOFF 

•• v 

':f au 7 

UAN RD 

SRA" Wit 

lORD' 

IOWA' 

RDY2 '10 

BCYCDLY 

DP'lATI"E ... 
1 Pl PlO :J!' 

-L P2 ". :J!. 

'-------..L .. P17 :J!7 

• PO 
P1I :J!!-

• P' 
Pl • :J!L--

• PI 
Pllt )!/I 

7 P7 PH :J!' 

• P. P12 ~~ 
• PO 

Pl1 11 

--L 
BeVCREe 

MBII DESIGN EXAMPLE 

82380 MASTER AND ARB 

SH.II DATE I 02 -10 - 891 DRAWN BV I NM 

D 

1 

f-

2 

-

• 

-

. 

l 

s::: 
c: 
~ 
ai 
c: 
en 

@> 

= en 
C') 
::z:: 
m 

~ o en 

@I 



~ 
o 

A(3131] 

D""JLE 
tltODE_OE 

I 

,,- ]I 2 

A5 11:5 

A6 5 

A7 6 

A. 7 

Ag • 1D 

AI0 II ID 

~~ 
All Tz 1 

A12 '2D 

A13 .. 3D 

AlII 5 liD 

A15 Ii 5D 

AHi 7 ID 

Al1 • 1D 

All II ID 

.. 

1Q 1111 

2Q l.8 .. 
7. 

L----

UII3 BE SWAP 

"" 

O",,-ADO I 
D",,="D1 

D",,,-AD2 

D",,-AD3 

O""="D. 
D",,-"D5 
O",,--"DI5 

D",,-"D1 

D""_AOI 

~ 
Opt ... ADI0 

D""_AD11 

Dpt ... "D12 

Opt ... AD13 

~ 
0""_"D15 

D""_"D11 

D",,-"D17 

I I 

I-

D"A-AD[OI11] 

AU 1D" 10 111 

N8E[0,]] A,20 2D > 2Q~ I 
iii. E' r r-=--------' NIE2 ]D I 'O~'7~;DB~'~';~1I~~~~~::"""""""""""""""""""""""~~~~" .B" :: f" ::r~: :::~:11 ~:DB:~;LDD'. DB"'.". 
UEO &D en IQ 111 D8£O;-' 

ADD "21 U .. UT' r - r 7D (» nr-!' 
__________ -2~.D .Q~1~2--------------------------------------------J 

LCSI2510 

r---------------------------~I· 

'-----

I1BII DESIGN EXAI1PLE 

DI1A ADDRESS BUFFERS 
SM .10 DATE D2-10-89 I DRAWN BY, Nil 

I I 

l 

~ 
c: 
~ 
01 
c: en 

@) 

= en o 
J: 
m 
~ 

~ 
(; 
en 

@J 



. I 

DBUFOE 

••• 
CPR" 

1 CPAB ... 
OBUFDIR 

.55 

1 CAl C •• n 
2 5"B sa. n 

'J DIR .. 1 

~ ., 81 20 

~ .. 82 11 

~ •• 83 1 • 

~ •• ... 17 

~ .5 85 11 

I:: 1: •• B. 15 

ID7 11 
.7 87 111 .. B. 13 

TIIA$III' 
.5. • 1 CAl C,. n 

2 lAB ... 22 

:5 DIR t; 1 

~ 

~ ., 81 20 

~ •• 82 l' 

~ •• 83 11 

~ .. 811 17 

~ .5 85 1& 

~ •• BI 15 
IDU 10 .7 87 111 
1015 11 .. •• 13 

7uffil 
.5. 

1 CA. C •• n 
2 SAB sa. .. 
J DIR .. 21 

• I~ 
., a1 20 

•• 82 II 
D18 • •• as 1. 
~ .. ... 11 

P .5 BS 1. 

•• 8. 15 

~ .7 .7 1_ 

...!!!!.......! •• •• 13 

741AII.I 
.57 

1 CAl C,. n 

2 .". sa. n 

, DIR .. 1 

~ ., II 20 

I¥.!---f .. 82 1 • 

I::: : .. ., 1. 
ID28 • •• 8'" 11 

• •• 85 11 I:;: 1: •• a. 15 

1031 11 
.7 87 111 
.1 B. l' 

D[0.63J 7",.", ... 

• I 

• C I 

DM DO 
DM D1 
DM D. 
DNA-OJ 
DM D. 
DM D5 
DM DI 
DM D7 

D",,-D. 
OM B 

DM 10 
DM"-.Dl1 
DM 12 
DM n 
DMAJJlII 
DMAJ)1S 

D"LUli 
DM 17 
DM n 
D"A-Dl' 
.""-020 
DM ., 
DM Dn 
D"A-023 

DM •• 
DM D'. 
DM D" 
DM .7 
D""-D2. 
DM n 
"M "D 
0",,-031 

IH.l1 

• 1 C 

D 

D"A.J)[D,31] 

MBII DESIGN EXAMPLE 

DMA DATA BUFFERS 

DATE '02-10-8g, I DRAWN BV'NM 

D 

1 

• 

• 

· 

~ 

3: 
c 
!:i 
iii c 
fJ) 

@I 

= 
fJ) 
o 
::J: 
m 
3: 
~ o 
fJ) 



. I . I e I D 

A[:5I:5J.J "AIUOIIJ 

A21:r 7 .. 1:T:r .. :r7n "AAI A22:r Acn.U1 :rs .. AAI 

r--!!!.!- :r .. :r.!!..!!!!.!!.. •• · · YlIIII "AAO + •• + •• +5' +5' 

~s .. s.!.!.!!!!.!.. .. · I n:r1 .. AAI 
+5 
~ . ... ..!..!..!!!.!!. •• I .. •• s .. AA2 ':f ':f .. •• · 1 r---!!!..!.... s ... ..!!..!!.!.!!.. .. · ... u "A,A:S au 7 ou Il OU ~ 5 

< 
~1l0 · DU • 

~ . ... ~ A1 , · '" u "AA" 
"D ,.,... 

~7 .. 7..!!...!!!!!... .. · , ..7 17 "AA5 ... 
,.--.A- D o 5 ~ .... .!!...!!.!.!.!. •• I I ... u "AAI ... 

Clla • 1 ,Aun s "'I U "AA7 AID u • ... ..!!........!!. 
CUt 11" p!- ~ u nIU"AA. Al1u n "1D~ 

.'E#, ~~ CAE#1 ~~ r- """ TltF711 ~ ~ 

•• s IllAE. 

~ 
... 

CAE. 
--£-Ul1 

U22 DCTlA 
U1I 

ClIeTC# ...J.!!..!.. 11 lAID. ,.,... ....... P1 '11 • iliA s# • • of-!- ~. o • 
CI'EIII# ~ .. .18 .. 1A11# 

5[014] 
17 MKU.: ----!!..!.l.. .. .,7 

.~ 

I\) 

• CLI' 11" p!- i!!.- elK 11" ~ DIIA"SEl# 
~ .. ... y,.0 

IJ 
lADU# ... PS .11 y,. • 

ttl< ttl< 51 0 .. ... y,.' 
TltF7 TF7 

Ull DeTla 
liASI'D •. 

nBA# 
S2 7 P7 .15 15 

DClK 1 

" .11 11 .. 0 12 PFOIICE 
DIIA"IEl. EWOl. .. CAE. PO .12 .. . .. s •• 11 A211 

EIIDl. •• P17 17 CAL" •• .11 
~I'll .10 10 5[014] 

DITAT 
p.!...-- ..!!....A. 1'5 • 15 , . WEL tADU 

1 ., .11 11 ....!.!.......! PI ... .. WDL T CIX" 
IIIEFIED · .. ~:; s. 

~P7 .15 15 RDL 
C5[0 1 :5JfI '" U15 .en. ~ 

IIIWIt. · .. .,7 ~P' .12 12 ITA." ..-.!!.~1: CIO • IIIIIIENE. · .. I 1'1 Pll~ 

~ 
1 PI P2] 2] 

.10 ~ ~ 1'2 1'22 p22WEa' ~ •• Y2~ · .. .15 ~ ....... ~ PJ 1'21 p2UEl 
t----!!- A:s V] 5 el2 

-!... PI ... 111 12 ------.!L All 1r YIl :s en 
upasy. 7 P7 • 15 15 S] U17 DCTlC - ~ Pit P20 p20WEJ 

.. asv o .0 P12~ 
~ 1'5 PU pUllin • • IIF21l1l 

1 P1 .11 ~ I"BElI PI '18 pUIIIEII 
L-!.... PI P11~ 1"11111• 2 .. .. 0 .. 11II8E27 1'7 1'17 p17WU' DEX 2~1~. DE.'" 

17 OEX'_ , .... ~ .. .,7 11II8n. P. PU 1I111E.!t • •• V2 II ou,,: 
~PII .10 10 

I .. EIII PI PIS p15WE1. 

rJ.!--!.. PS .15 :>ll-- , .......... ~ !.. AJ TJ ....!Il 
aWIt •• o •• Til 12 

~I'I ... ~ I .. Eh P11 P15 1 ± ..... r~ ~ P7 '15 ~ ~ 1 u, ~P' .12 :>!L 
ClKA 1 Ir.I DELAT .,u. 

---!-~1111 WHO 1 7Jfl 

• DCllC - MBU DESIGN EXAMPLE 
~ 1u .. 

~,. !~ 
1-2101" 

U .. • .... 111 I/,. • .o. 1860 DRAM CONTROL · ,. ... .. .. 1;1;."" C ... .... W · :: === ~= 
III .... .JLI-a 

a== III · Laau:a .... 1".12 DATE .02 -10 - 89 I DRAWN BV. NM z . I • e • 

, 

r-

• 

-

• 

r-

• 

l 

3: 
c: 
!:j 
iii 
c: 
fn 
® 

= 
fn o 
% 
m 
3: 
~ 
~ 

@ 



f-

~ f-
(,) 

D"~D[O.:Sll 

U&D 
IDY1_'80 

:RDY2 JIO 2 Lr 

I 

AT 

< 
ouTlz 

I 

ClClClClQICIQClQQrfrfrlrlrlrfrlrlrlrlNNNNNNNl\INN""" DI·~·~·I·I·l·~·j·~·~Dl·l·l·l·l·l·j·l·l·IDI·l·l·l·l~I·1~I~l·l·l· iii i i' iii i i ; ; ; ; ; ; ; i ; ; i ; ; ; ; ; ; ; ; ; ; ;~. 
al!lQQQQQOiCIClQClClQQQQQQQQQ 

:I:I:I~I:I~I~I·I=I:I~I=I~I~I~I·I:I:I:I:I:I:I·I·I:I=I:I~I:I:I·I· "l::c:II.I!IU •• ClI:gII.QUUo(U%UlIIIO •• ullil.,Ll.wau<_< 

O",N 1II#1II ...... III0 ... NIfI #111111"'. III 0 ,,",NI'I II III 10"". 01 0 ... 
ClIlClI:IQQQQClClrlrfrlrlrl ...... rlrfrlNNNNNNftNNNIllIfI 

I 

• relit I 1'11111 lelKIN Q Q CI Q Q Q Q Q Q Q CI Q Q Q Q Q CI Q Q Q a Q 

IRQtl Pl0 roEIUNT CLltD 

: I 11 m I'LK> ,"'"1::;, N12 RESET 

.'2 CPURST 

NA._:SIO N' .A. 
READY# 

II:OO_laO READYO# 

HOLD_liD 

HDLD"-_:JaO 

oc._:,.o 
KIO#Jao 

+5V +5V rOUTl/REF# 

Toun"I ROJ. 
TOUT] I Toun, 

.seD 

"" WSC1 

"f .'? ~ ou 5 OU Jtwsco ~ 

.... WSCI 

NINT INT 

= ADS' 380 ••• '.0 I~ADS' 
k12 WIR' +5V +5V +5V +5V 

01£0 BED' 

OBE1' BEl.' 

OIU# BE2' 

OBn J2 an, 
2 
OUT .. 

82380 

U47 

1101.2 ,.10 "HIT 

I ROll "" EI NT 

lR01 .. Nil EXINT 

IROlS ,.. 82510lNT 

IR011 .. 8 ACCERRINT 

IRQl.7 fI' LINT 

IROlo' " AUXINT 

IRQllI '7 SBXINT 

11020 fi117 FIIIIT 

IR021.~ 
IRQ22~ 
IR02] .. , 

J"'211 

~ 
£0'# f"'-'.'-----------....... <L. .. 

EOACItO L3 EOACItD 

EDACKI "1 EDACKI 

EOACIt2 L2 EDACK2 

DREOD"' DREOO 

DREOI P5 DREOI 

DIIE02 H5 DIIE02 

DRE03 'IJ I DRE03 

DREOIJ/IRO.' "5 DREOII/INT 

OlEOS P3 ODIIEO 

OU051"" lOllED 

ORE II 7 1.!!.L-.!!.!!.!l 

D"""#II'ICI .... CJlD"NII'I#II'ICI ...... O'" 

"11'1#11\" ...... """"""'""""""""""""(04"11'111'1 C C « « « « « « c « c- « c c ceo( 0( 0( « 0( « 0( « « c c c c c OUT ~ 
. 

OUT OUT lOUT 

R17-_ 1117- .. 
~I~~~=~~~~~~~=~~~~~~~~~~=~~I~~= 

~~~~~~~~~~~~~~~~~ MBII DESIGN EXAMPLE 

1860 DRAM CONTROL 
0"AJO[012.] 

SH.1J DATE 102 -1.0 - 8~ DRAWN BY I 

I I 
NM 

cf 

3: 
c: 
~ 
iii 
c: 
(J) 
@ 

= 
(J) 
o 
X 
m 
3: 
:t o 
(J) 

@ 



~ 
~ 

I 

D[O,63J 

~ 
DRMutH ~.lJ'C' 

:aDL u~ elK 

RPD[O,7J 

+5' 

<10 

+5' 

•• , 
DUTIl DUTIl 

+5' 

.1 , 
aUTtl 

.fODD J 1D 

RPDl " 2D 

.I'D2 7 3D 

lPO] • 110 

.'011 1] 5D 

RPDS lit &0 

.'DI 17 1D 

.PD711 10 

+5' 

n. 
DuTl ... 

+5' 

.10 , 
Dulls 

10 Z 

•• 5 

3D I 01'2 

110 • DI''' 

50 12 01'11 

I. 15 DPS 

70 11 DP' 

ao 1. DP1 

+5' 

01. 
< 

+5Y +5V 

R1~ R1~ 
DuTIl GUTl7 DUTIl 

I 

DD • 

D1 I 

0210 

DJ 11 

Oil 12 

D513 

DI 1 

D7 • 

U57 

'"5 
01 • A 

UI • I 

01010 C 

01111 D 

01212 E 

D1315 F 

Dill 1 Ii 

015 2 H 

DI"1" I 

• n 
011 • A 

017 • I 

01110 C 

01911 D 

02012 E 

0211) F 

022 1 G 

D23 2 

DP2 II 

UIII • 

025 • 

.7. 

EYu}-! 

ODD~D! 

EYEII}-! 

ODD~ll 

EVEN~ 

ODD~21 

onn EVEN~ 
D2711 

02112 

02113 

::: ~ aDD pi orul 

pp, II 

DP[0,7J 

1 

U .. 

D32 • A­

OJ] II 8 

D., .. 10 C 

D1511 D 

D1112 E 

D3713 F 

0:,. 1 Ii 

D31 2 H 

01''' II I 

U .. 

0110 • A 

D"1 g B 

D"211C1 C 

0 .. 511 0 

0 ..... 12 £ 

011513 F 

D ... 1 G 

Olf7 2 H 

DP5" I 

OPD[0,7J 

EYEN~ 

aDD~" 

£YEN~ 

OOO~ 

,.......,..... 
D .... 

Dlfg g 

05010 

D5111 

05212 

05]1] 

05 .. 1 

055 2 

OPI " 

D5& • 

DS7 g 

UI • 

un 

EYENJ-! 

ODO~I' 

D5.10 EYENJ--!. 

D5g11 

DIDU 

Dll1] 

012 1 ODO~ 
DI] 2 

pr7 .. 

I 

GPD] 

OPDII 

U71 • Ifil·· 

.70 

"" 11 elK 

OPOI J ID 

OPO] II 2D 

OP05 7 1D 

OP01 • 110 

01"01 13 5D 

OPO" ID 

0l'D2 11 

01'00 II 10 

"1'I"I<"S3"7 

--L. 

10 2 WPDI 

20 5 WPDJ 

30 15 .1"05 

liD I WPD7 

511 12 .'DI 

I' 15 111'011 

70 II WPDZ 

aO 11 "PDO 

PARERR 

WPD[O,7J 

"BII DESIGN EXA"PLE 

IH.l" 

.860 PARITY GENERATOR 

DATE 102-10-891 DRAWN IVI NM 

l 

~ 
c: 
~ 
ED 
c: en 

@J 

= 
~ 
:J: 
m 
~ 

~ 
(; 
en 

@ 



T. 
01 

MAA[0.9J 

11 .. RAS_POI! 

""AD 11 AD 
""A1 12 A1 
"",.,2 13 0\2 
ptA":! 111 0\3 

--.l 

~::; ~~:: DOUT 13 RPDO 

+5V """15 11 0415 

"""7 lV A7 
"Aloe 20 ... 8 

r 

RG "AAIII 1 ,*-'I 

Cs[o:3J41 

WE[0.7JII 

WPD[0.7J 

RASPD# 7 RAJI 
C53 2 eSI 
WEO# & WEI 

"'POD 5 DIN 

""AD 11 AD 

"""1 12 A1 
""A.2 1., 0\2 
"AA'J 1/t 0\3 

""Alt 1& "" 
"AA5 17 A5 
""AI 11 AI 
""A1 HI A7 
""AI 20 ... 1 
""All 1 AD 

ItASI 
cst 
NEI 

Dour 13 RPDl 

I 

1 

"""0 11 AD 
"AA1 12 A1 
rlAA.2 13 1\2 
"AA3 111 0\3 

--.l 

~::; ~~:: DOUT I' RPD2 

"AAI5 l' AIS 
""A7 111 107 
PlAAI 20 ... 1 
MAAII 1 All 

RASf'O# 7 RASI 
e52# 2 ell 
WE2# & WEI 
.PD2 5 DIN 

"",,0 11 AD 
"ltA112 1.1 
""A.2 1) 0\2 
"A0\3 1_ ... ) 
MilA" 1& "It 
""A5 17 A5 
""AI 10 AI 
""A7 111 A7 
M.U.'20 A8 
"AAII 1 All 

RASI 
Cst 
WEI 
DIN 

U4 

DOUT~ 

I 

""AD 11 AD 
l'Io\A1 12 A1 

HAA.2 13 A,2 
""0\3 11l 0\., 
:::: ~::: DOUT l:s Rf'DIt 

""A' 18 AI 
""A7 1.11 11.1 
""AI 20 "I 
"AAII 1 All 

RAS PO' 7 A.A! I 
CS1# 2 eSI 

DIN 

""AD 11 AD 
""A1 12 A1 
""A2 13 A,2 
""A.3 1" 0\3 
"'AAII 1& "II 
"AA5 17 AS 
"AA6 18 A6 
"AA111 A7 
"AAI20 A8 
"AAII 1 AI 

Dour I) RI'D5 

"AAO 11 AD 

"AA112 Al 
"AA213 A2 
"AA) 11; A:5 

"". 

RPDEO.7J 

""AAAA51+~::: DOUT 13 RPDG 

"AA618 A6 
"AA7111 A7 

"AAI20 AI 
"AA9 1 A9 

RASI'O# 7 RASI 
CSO' 2 CSI 
WE6' 6 WEI 
WI'D6 5 DJN 

"AAO 11 AO 
"AAl 12 Al 
"AA2 1) A2 
"A A) 1" A) 
"AA,. 16 All 
"AA5 17 A5 
"AA6 18 A6 
"AI.l 11 A7 
MAA. 20 AI 

MAA9 1 A9 

IIIASI'O# 7 1llAS! 

cst 
1I11r.;O;. .;:I.EI 

Dour 13 1111'01 

MBII DESIGN EXAMPLE 

1860 PARITY DRAMS 

DATE ,02-10-891 DRANN BY, NM 

r-

l 

s: 
c: 
~ 
m 
c: 
(J) 

@) 

= 
(J) 
n 
::I: 
m 
3:: 
~ 
(; 
(J) 

@ 



tp 
en 

_ aIlRE." 

_VOL 

D[OI63J 

I 

.DL 

I.DL 

un 

CAB cui n 
SA. .1,\ 
DII . , 
.2 
n 

•• I •• 
.7 

•• 

.. 

.2 
•• .. .. 
•• .7 .. 

7 .. "1 .... 
un 

1~''I:' 
lAB .1,\ 
DII 

010 • All 

.. 

.2 
•• .. Dll 7 "If 

012 • A!i 

....!. 

101 ...... tlJ 0\' D15 _~ 

•• •• .. 
711".11115 

U •• 

'D' 

IWDL 1 ~ 23 RDL 

SAB S." 
DII 

D1I Al II 
D17 0\2 82 
D18 A:S 83 1. 11011 
011 All ... 17 "Oil 
DZO A5 .5 II 

A' •• 
DZ2 10 A7 .7 
D2) 11 Aa •• 

nAil ... 
U07 

VOL CA. CIA 25 RDL 
IlTA SAB .1,\ nl" 
OR"DIR:J DX R . 1;' 1 DRttE. 
DZ.. II Al II 20 "DZ" 
DZS A2 12 11 "D2 
OZI A'J .J 18 liD.,! 
027 A" I_ ....... 
oz. A5 .5 
DZI AI 8. 
D50 ·10",7 .7 
OJI 11 AI .1 

r ... H .. '''' 

1 

I 

1 

UII 

"DL CAB CIA 25 II' 
liT" •• Z SAB 110\ 22 n •. 
URMDIR" DIR ~ 1 D.PtEI 
D52 Al 

D'" A2 
D .. 
D3S All 
051 A5 
D57 II AI 
DJ. 10 0\7 

Ion 

.2 
n .. 
•• 

" .. 
.7 
•• 
~ 

IWDL 

I.DL 

IVOL 

" .2 
n .. 
•• .. 
B7 

•• 
"""'1'ii'Asiiii 
u •• 

.2 
n 

.. 

.7 
•• 

l"AS ... 1 
uas 

CAB c.· 
II 

., 

.2 
n ., 
•• •• 
B7 

•• 
711"1'''' 

.DI 

IID[OI63J 

IIBII DESIGN EXAIIPLE I' 
DRAII DATA BUFFERS 

DATE ,02 -10 - 891 DRAWN BY I NM 

l 
(j 

s:: 
c: 
~ 
iii 
c: en 

@) 

= 
en o 
:::r::: 
m s:: 
~ 
(; 
en 



IAD[0,7] 

V1 

U61 

~D" XTALl 

1'0.0 ~ HI XTAL.l 

II 10 "HZ 
PO.l 'S. 10401 

1'0.2 ~ XTAL2 11 XTALZ 1'0.3 ~ 
1"0.11 35 IADII 

1'0.5 ~ c. co 1'0.6 ~ 

I I 
1'0.7 .!!......!.!.!! 

1'1.0 1 
P10 

1"1.1 2 P11 

1'1.2 :J P12 

- - Pl.]I II 
1'1 ... 5 
"1.5 15 
1'1.6 7 

-5V +5V +5V +5V +5V +5V +5V +5V 1'1.7 • 

~ 

OU 

.11 .11 .11 .11 .10 .11 011 1'2.0 21 

< 1'2.1 ~ 
1'2.2 25 

IOU • OU 7 OU S OUT 5 OU • OU :5 OU 2 
P2." 2'4 , ~ " . . · . , 
1'2." 25 , . 0 . · .. 0 

; . . . ! · ! ! 1'2.5 26 
1'2.6 27 

1"2.7 2 • 

.1 

'" PJ.O/RXD ~ +~ 
1'] .1/TXD 

1').2/INTO' F.?--
":S.'S/INTl' ~ 

EAt/YI'P 1'3,11/1'0 1. 
UCRST RST "3.5/T1 ~ 

P3.I5/NR, 10 

+'V "3.7/RD# 17 
,.SEN# ~ 

ALE/PADC' '0 
.1~ 

OU • 
ReYV, 

IREO, 
UCINT# c,. 
LINT' 

1 . 
• < 1 y-J .1. 
1 • r '-.10 

CALI -

+5 

· · · > · · r · un 
+5Y " · ...... n · · ~D o 5 PERINT .. 

+5 
OUT 5 • c:vq JI •• D • "D 

'--,""'''7 

c 
HE"J"P . - n 

r 
; 

US5 

,-~. LI NT 

LilES 
PFORCE 

-ll{:: IHItD", r 1. 

PROT 
n. 

COLD' 
DClD 

"PCRST 
UIUT 

IN.' 
110# 
lAST 

PARERR' 
.E' 

.f" " 
+5 

UIS U11 .11 

PARA 5 ~ 2 .. REDn~ 11 10 I PARB.1 

~"LS1" 
. 

VEL 

U11 .12 of." 
P10 • t;:::... • 1'10#.1 2YELLONn~ 

t.::=;,.LSlll 

. ... 
Ul1 Rn: . "''' 11 ~ IOCR"tAl 2 ••• mj(}L--< 

v;:.LSHt . .. 
Rill Dhl\ 

CRUB IORN2" !AAA,2 GRN2 n~ , , r 

I /'IBII DESIGN EXA/'IPLE 

1860 /'IPC87C51 INTERFACE 

DATE I02-~O-89 I DRAWN BYINM 

l 

=: 
c: 
!:j 
iii 
c: 
en 

@) 

en 
C') 
::I: 
m 
=: 
~ 
o en 

@ 



I-

-.l 
+5V .... SV 

.7 
• 2. 
OU~ OU~. ~~~~~~~~~~~~~~~~~~~~~;~;~~;;;~;; 

0'" ~1"I#U'lIG~.lIIiO ""1111"1#111l1li .... 11 CI""IIIIi'I#III,. .... OIDI"I 
SEL/EIUI: 

.11 ......... rfrfrfrlrlrlrl"''"''''f'tIllIllIllNIIICIINIIINI''II''I 
ClODClOClClClClQ •••••••••••••••••••••• 

D""-"D1 D2 ClClClClClClClClDClClClDCDClClClDDClCI 

D""-"D2 
D"A D3 

!.! 
II 
!!! 
.ll 

I <> ~TE1> :;~ I I :~ :; 
!!. 
!.!. 
!.! 
II 
2-

~ 

T"IfEV 

REFAD · " ADDI • •• 
BUSER 

• P7 
RUN e •• 

.... ,RESET !!.!..!~+-t---==/..!!P'L--i LACHN 
:HN oa -qlOJ'C""C"1r 

.. ~'.* :2 -<1""""'" 
rtACK# 

-

","CIOSEL TU>£r "E • PO 
"PC"E~ ~ SCDUO 

!..! ~ SCDIR 1 02 

-".! 
!!3. 
!!..L 
ill. 
£!.! 
• 1. 

~ 

n 
U94 

TOW 
TRU 

BSCO L2 BSCO# 

BSC1 L:J IISI:1# 

BSC2 "1 BSC2# 

BSC:J ...!!.L....!.!i 
BSC .. "3 BlC .. # 

BSC5 N:J BSC5# 
IADO En IADD BSCS ..!..L...!.!£.! 
lo\D1 "n ISC7 P2 BSC7# 
IO\D2 

I~2 Isca ...!L....!.!.£! 
lAD] en lAD] BseO N1 BSCO# 

tADS 11> 
lAD6 

100D_ 

lAD5 
BPARO N10 BPARO# 

IIPAR1 P10 8PAR1# 

IAD1 
~ 

IAD6 

lAD1 
BPAR2 Q10 .PAU# 

liPAn PO~~~ 

---.!!! 
----.!! 
~ 
ARB2# Q,. 
ARB1# .. 3 

ARIIO," 

+ •• ..; 
:1° 

DMA_DEO,31l 

o~ TJ" 

ll,llit 

IH'"t 

-~!.! 

!!! 

'L. . -. -
~ 

REFAD. 

.:::~:#. 
RSTIIIC' 

.!.!!!!.. 
!..5.!!.!..!!B. 
ll!!!.!!.!..., 

II$C[OIIll]# 

BPAREo.3l/f 

+ •• 

au 7 

12 

;; ·I·I·I·I·I·I~;iiiiiiii:i·I·I·I·I·I·liiiiii· 
r-------------------------~I· 

BADEo.31lff 

I 

1&.1&. IICla ::r:z: ."..,"".J.J.JEEEZZ 11.011.0 II. OZLOL 0 

,,:t =1:*"''' ,. 
.,.'" "' .. " D" 1111"1 4' 111l1li'" l1li11 0" III 1"1 4' VIlli"'. III 0" 

O ... NIfI:tIfl .... l1li0 ""0'1,",""'''''''"'"' rllIIlIIlIIlIIlII 1111111111'1111 1"1111 
ClCI ClClClClCI Q ClClCI caQOQClO ClDCI ClClaa ClClDClClCI CI 
CC ccc c c ecce <<(<(<(coCe c<c c<cc c ecce c c 
• III .... III III III III III • III ...... III III III III III III III III III III .. III III III ... 1 1 IH .1. 

I 

MBII DESIGN EXAMPLE 

,860 & 82389 MPC 

DATE 102 -10 - 8~ DRAWN BV INK 

l 

s:: 
c 
!:i 
iii c 
(J) 
@ 

= (J) 
o 
:I: 
m s:: 
~ o 
(J) 

@ 



MUL TIBUS® II SCHEMATICS 

~ " ~ . 
~ 

I~ ~ 
~ 

I~ 
u 

I~ . , ~ 

I~ ::~ 
I~ ~ I ~ 
1= ~ 1 ~ 

~ ~ ~ 
I~ ~ I-

I-- 1 1 l ~ 
E I~ 

I : ~ 
j I . 

~ : ~ 
, ;; 1! j 

~ u 

f---I 

Ii ;f 
111 ! j -I; 

~L II 11 
I-- t-:: ::::: :::=:::==~:::; ;; ;:. 

~~ 
c . u 
~ ~ ~ . . 

~ ~ ,"""" .:=:=~: 
u ~ 

JI' 
JllillU 

I . LIJJ.IJJ 
ill Itll . 

~ 

~~ 
I-- yr- r-

~ 

~h; ~ 

1 
1 

~ c 

L....±.j I':-- • . " 
u 5 

" ~ 

--

6-19 



MULTIBUS® II SCHEMATICS 

'" 0 E 
t- Z .. U .. ;. oJ Z ... Z 

.. 
E 0 z 
C U Z 
)( 

~ . .. N " . ... 
Z .. ~ .. 
~ 

~ .. 
I/) 0 .. I/) 0 

'" :::> ~ .. 
~ ~ N 
~ t- o .. oJ -E :::> .. 

E 0-
e 
" 

u u 

t--- . " 
T . . " . . -

=:===:::::::::=:=:: ===::::::::::::::::: ~==:::::::=:::::::== 

.~~~,,~ ""~" ... . • .tN'-~!!I:-

"rr~~~"~~" " "'",.'· .... t'· .. ~r .... ,..,..~' " " II' ~ I . . .. 
u 

~~ 
~I'--

C-

c c 

.. I " I ~ I . 

8-20 



• I • L 

1 

BPAR[0.3J/1 

IITRDE. 

ADDIR 

BAD[O r31J/1 

BSC[0.9J/I 
DIGS ~10" 

BSCO" · " 81 18 sco# 8AD7. z Al 81 II 

• 8'Cl# • •• 82 17 SCi. ."DI. • •• 82 17 

BIC2# • •• II' 11& 
le2. 8AD5# · ., 85 15 

Bin .. • •• 811 15 It:s. BAD". • •• • .. 15 

8SC •• I ~5 85 101, sc •• BAD:S# • •• B5 lit 

L A5 8. J.:S 8"02 7 •• 8. 15 

OJ 

~ 

.!. A7 87r!2 , 8"01# 
• '7 

.7 12 

!.. .. ··rA1 ."DO. • •• B. 11 

1: OIR " Dn ToToF ... 
~. l' IIFZIfS 

SCDIIlO 

UI0D U101 

8SC"" · ., 81 II SClf# 8AD15" 
• A1 

81 11 

• IISCS" • •• 8Z 17 scs# • "ou,. · .. 8Z 17 

8IC.# · .. 83 11 ICI. ."01]:# 
• AS 

• ., 11 

• IC7. · .. • ... 15 IC7 • ."012. · .. • ... lS 

• ICI. • •• as 1'1 IC •• ."Dll# • •• B5 1 ... 

LAI • 1 rAJ • "DlD • 7 •• BI 1:1 

.!.."., B7~2 • "08# 
• .7 

.7 12 

.!.. ". B'r!l ."D,. • •• B' 11 

" DIR ... DIR 

~. I FZ ... ' 

~. l' 1ilF2 .. S 

ICDIlll 

· 
. . I . I 

c 

.,,"RO* 
8PAR1# 

8PAR2# 

8PAR3' 

AD7. ."031' 
AO&# BAD:JD' 

ADS# 8"021" 

AD II. 8"DZI. 

AD3# 8"027# 

ADZ# 8"'021# 

AD1# 8"D25. 

ADO' 8"0211# 

"015# 8"025# . 

AOlll# 8"022. 

"01:1# ."021# 

"012# ."020. 

"011. ."011. 
"010# ."011. 

"D8# .AOU. 

"D'. ."D1&# 

5".21 

c 

L D 

~la, 

.!.. " 81r!1 

!.. 0\2 82 r-!7 
.!...A'S nr!' 

PAR[0.3JII .!.,.AII 811 r!5 

• •• as lit PARo" 

7 •• n 1'5 P"U# I 

• A7 
.7 12 'A12# I · .. B. 11 PAU •• 

Yf IfF2·f15 
• 1 

UI05 · " 81 II AD31# 

• •• 8Z 17 AaJD" · .. II' 1. ADZ •• 

• •• ." 15 
ADZI" · .. 85 111 AD27# 

7 •• 8. 13 AD21# 

• 0\7 87 12 AD25# · .. B. 11 Aon. 

" Dn 

¥. l' ,.FZlfS 

UIDZ · ., 81 II ADZJ. 

• •• 8Z 17 AD22 • 

• •• .,11 "021. 

• •• • ... 15 "D20# 

• •• .5 111 "ou. 
7 •• .1 1:1 "011 • 
• '7 

B7 12 "D17 • 

• •• •• 11 "D1I# 

Tat ... ·· 
AD[0,31J/I 

SC [0 r 9J11 

IIBII DESIGN EXAIIPLE 

.860 IIULTIBUSII INTERFACE 

BATE 102-10- 89 1 DRAWN BV •. N" 

D 

1 

f-

• 

-

• 

-

'1 

i 

l 

s::: 
c: 
!:j 
m c: 
~ 
= en o 
:J: 
m 

! 
(; 
en 

@ 



A . 
D",,-"D[OI18] 

~ 

D. ADI_ 1 Al' D.A Dl' 

1 D",,-AOU 21 
An DOl 

11 D"AJO DNAJOlJ 

D. AD12 2 
AU D02 

12 D. Dl DN .-AD1! 

D"A.-ADll .. 
All DO. 

n D;';' '2 D",\JDll 

D"A-ADI0 21 
AlO DO. 

lS D"AJt:! DNAJDID 

D. AD. 
,. 

AI D.' 
11 ON" DII D.A D. 

D",,-AD. 2. 
A. DO' 

11 D"A~5 D"AJDa 

D"A.. AD1 • A7 D.7 
18 DNA na D"AJD7 

D. AD' · AI DO. 
10 OMA n7 D. D. 

S D",,-"D5 AS D"A-AD5 

D. ADO • .. Dpt JDIt 

D. AD. 7 .. opt JD:J 

D'M __ ADZ · ~ 
0"A--"02 A2 ,.... 

D. ADl 
• 2 

D""---"Dl Al V£ 

D",,-"DO 10 0 DNAJDO AD t:T 

2 ~ 

~ 
I\) 

~ 
D"A-AD111 1 AlO D""JD1Ii 

D"AJD11 .. 
An D.' 

11 DptA. oa D""JOn 

D""--"DI2 2 
AU D02 

12 npt .. 011 0 .. AJOI2 

D",,-,,011 " All D.' 
n 0",,-010 D"AJ011 

0""-,,010 21 
Al0 DO. 

lS D. Dl1 D""--,,010 

0",,--,,011 
,. 

A. DOS 
11 0"'" n12 D""JOII . D"AJOa 2S 

A • D .. 
11 0",,-013 DMAJoa 

D""--,,07 • A7 D07 
11 D. DH D""--"D7 

D" ... jD& · AI DO. 
10 D",,-015 D"A-"Ol 

0""-"D5 S 
AS D""-AD5 

D"AJDIJ & 
A' 

D"A D' 

D""-ADl 7 
A' 

DNAJD:J 

0""-"02 · A2 lrr~ 0" ... --"D2 

DNA AD1 • Al 
D.A Dl 

0""--,,00 la 
AO :~ D""-"DO 

~ 

nA" RD 

SRA" WR . 
_L 

A I . 1 

e 

~ 
1 AH 
2. 11 

An DOl 
2 12 

AU D02 ,. n 
All D.' 

21 lS 
AlD D.' 

2. 11 
AI DO. 

2S 11 
AI DO. • 10 
A7 D07 · 10 
A& D.' 

S 
AS • A' 

7 
AJ 

:: ::~ 10 D 
AO t:T 

U .. 
'---

~ 
1 AH .. 11 

An DOl 
2 12 

A12 D02 ,. n 
Al1 DO> 

21 lS 
Ala DO. ,. 11 
AI DOS 

2S 11 
AI DOl , 11 
A7 D07 

0 10 
A& DOl 

S 
AS • .. 

1 .. :: ::1 10 AD 1:'E"~ 

~ 

SH .22 

e 

"1 D 

Dft"-DlII 

D. D11 

D",,-Dl_ 
D"A-D19 

D. 020 

D"AJJ21 

a",,- 022 

D. D" 

D. D2' 

D. D2S 

0",,-026 

D. 027 

DN"- 02. 

0",,-02. 
DN"- D:JD 

0""-.D11 

0""-1)[01"1] 

MBII DESIGN EXAMPLE 

SRAM INTERFACE 

DATE 102-10- 89 1 DRAWN BY, NM 

D 

1 

2 

. 

0 

i 

3: 
c: 

€I 

!:j 
iii 
c: en 

@l 

= en 
C') 
~ 
m 
3: 
~ 
(; 
en 



III 

~ 

-12 +12 +S 

+SV +SV If rn +SV 

."~ .. 11 m 1 c1i Cl 1 c11 1'". :: 2 

OU 100UT 10 C11 T T T T T 
"WAlT' 

IBUNT. _L 

T::L': I ~ ~ 
DM "0[012] D",,-AD2 • 

"PST' I I D""-,,OO 1 

IOWn# 

JORD2# H 
DNA 0[0,15] H 

D"A D7 1 
SIXSELl 

SlIUEL2 2 

• LDACKlt# 1tQJ 
• LDA-Cn, J~ 

• DREO"/UT J~ 

.AUXIJn J~ 

.DREn J~ 

.EOP# J4§j' 

SIXAUXIllT 
DMA 0_ 

UxTD"A 
P16 $8KOPTl • 

S8KOPTO 
IP1"1 

SI)!'MOACk 

,Pl1 SBXDIlQT ~ • 

DNA DIll 

~ +SV 

Pg O:f 
.~ h. ~ =- _'- PS 

MBII DESIGN EXAMPLE 

DMA CONTROL INTERFACE 

DATE 102.10.891 DRAWN BY, NM 

l 

3: 
c: 
!:i 
iii 
c: 
(J) 
® 

= 
(J) 
o 
::J: 
m 
3: 
~ o 
(J) 

€I 



I Ii 
+5V +5V 

I .. ~ "f, .o?, 

I @ 

ou • OU 2 au Iii 

"[0,21] -0[0,153] 

I I .2 .. •• 
~~~ D12 1~1 D13 D5' lr,-n~ 
t-?232 2 .,, Dl' 2 2 32E?- ~ 2 :J2 2 057 .. " ,,~ D15 •• H • D15 D50 

!! !!~II I f-.5 
I! II '" 34 "5 ~. 50 • D17 D58 

r~ 5 
.5 5 .15 D10 5 5 .5 5 D10 D50 5 5 3S~ OIl 

.0 o 0 1,36 Al7 D20 o 0 n~ f--! Iii 36 Iii 0&3 
AT ~ 7, 

~=* 
D22 7 7 

" 7 
021 052 '7 37m 

r4' 
.,. 

~ 8 51 8 0 .. K· .,.' 1 I El(PBSV# r.-!-' 50 • .10 D .. .. 50 • D25 g. 111 II 

~o ... .20 D20 , .. 
:~~ 

10 10 1I0~ I IIIMA, AI0 I rH-l :!~ 
... 11 1 D2' 1111 41 1 3: #2 .21 ~ 2 '2 2 D20 ~12 .2 2 EXINT 

~13 .. . .22 ... 13 • .. . Dn 13 13 113~ c: 
~l" .. . . .. Dn 1"1 .. 411~ 111 1_ ... NAEADY# !:j #1: ::* ... 15 5 .5 5 DH #15 .5 5 RTOS' 

HBEol HIE" ~15 ... .. 5 16 11 u~ iii 417 ., 7 HBES ... 17 7 ., 7 D" 1717 ., 7 ERDL# 

~. •• 8 HIEI Dn 11 • ::~ ~1' ... EWOL# c: 
~ -ga ;~~ ~u D50 11111 ::* en 
~ ~o NBEl r--¥.~. 5 •• ¥.-o ERDE' @ 

OJ H I.. I ~1 51~ ....-# 1 51 1 

DOl Il r- -#1 51 1 EWDE# 

N ~2 ~;~ 
... 22 2 

!~~ ~2 52 2 CPEN# = 
-I> 

.. . Dl .. 2 .. . D43 .. . 
!:~ en I. n, ... ~,. 54~ ~~. 5' • D45 r- .g .. (') ~ 5 5S 5 .. ... 25 5 55 5 D47 ..g. 25 55~ 

~ 15 56 56 D5 ... 2. 0 !~~ 
S1 .. 0 50 0 so :::E: 

~ 1 57 57 D7 ... 27 7 D •• n 2727 57 7 " m 
~. sa~ ~. sa' D51 ~. 5.~ 3: Dl. I r---!! II 51' DO D5. 211. 511' D5. 

r ~211 511' 54 

~ 0 60 50 D11 D52 30~~ .ll~~ ~ -
NBECO.7] • 0 en 

~ 11111111 I II I I 
S[O,Il] 

REFREO 

NADS' 

H • NNENE' 
BWR' 
BSY 
EXPSEL# 
~ 
~ 
~ 
DRAI'lSEL# 

MBII DESIGN EXAMPLE 

EXPANSION BUS 

DATE I 02 -10 - 891 DRAWN BY I NH 

1 1 



Memory Interface 
Schematics and 
PLD Code* 

·This is a tested example. 

c 





APPENDIX C 
MEMORY INTERFACE 

SCHEMATICS AND PLD CODE 

C-1 

: 

= , ; 



;; 

.,: 

MEMORY INTERFACE SCHEMATICS AND PLD CODE 

II 

" 
o 

~~~:"Q'O: 
~ ~--

----

~ 
0 

~ 

C-2 

-
= - -
~ 

~ -
~ --- . . 

-~ 
~ 

~ 

=-
~ 

w • . v 

> ;;; 

z 
~ » -~ c 
z 

z 
c z 

" ~~ z < 

~ 
0 

~ 

~: 
0 

0 

" ~ 
r:= ~ 0_ 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

:!! 
~ 

c 
~ 

~ 

« 

Q 
3 « 
~ 
Q " 

LLLLLLU J IUIUI LLLLLLl.~1 .LLLLI-LLi 
· .LLLLLLLI · .LLLLU.LI · _LLLLU.LI · lblbl-~I.~I ~ -- ~ ~ - -- ~ 

~t~c,.-~-.--- ~W;;::;;;;::; ~tcc,.-~-.--- ~I;C_._~_' ___ ; :::::::U ______ •• : :::::.......... : ::: ..... _-_ .. 
§ 3:;::;~::~::; ~ ~;:::::::::; ~ ~~;::c::;:::; ::l§ ~3;:::::;::::; 
- IC[[CLLI -

J I LlITII 
-

JU L LI-rl - ICCCrm . . . . -· 11111111 · 1IIIIIll · 11II1111 · 11111111 

. 
11111111 IlWW l LI.LI III .LLLLLLLI 

· J_LLLLLLI · J.LLU.LLI · · --- '-:~I ~ -- : : -- - -- : rc '-------- ~r'--~-·-·- ~t~3;::;;::;::; ~t3;;::;;:::::;-: ~::: ....... -... : ... !!! .... --_._-

§ E:;::c:::::::: ....... ~ 5::::;;:::~:,:; :>~ ~:::;:::~:':i :0 ~ ::.:;::::::::; 
- -rrrrrm -

I LlLL[[I 
- 1111111=1 - IC[[[LEI -. . 

· 11111111 · IWllU · 11111111 · 11111111 

'; 

= = - ~ 

~ 

~. ~ 

~ ~ 

C·3 



".m_l® 
1 1'81 MEMORY INTERFACE SCHEMATICS AND PLD CODE 

= 

~ 
... 

..:h- "t-
~I ~I 

£..... 

!: ~- ~I ~-.- ...... -....... -.. :;:;:::;~ ;;; :;:=;::::::a=~ ..................... "'.0 

:~[[[[[[[~ : :LLLU IIII ~ : . 'TITITrrrr 'rrrrrrrrrr 

~I ~I 
~I ~ I, .- : ...... 

::;;::::::::::::~=: :; :=:=:::::::::a~: 

1lLLLlliH :LLLLLLlLL~ 
'ti'JTrrrj'rr :-rrrrrrrrrr . 

~I ~I 
I, --.. - ............ - ... ~;:;;:;! .................. c ...... 

~l : ~ -- ............ : ... -.. :~~! .. ... c ..................... 

:111-1111 [I ~ :111111111 ~ 
'trrrrrrrrr 'rrrrrrrm 

~I ~I 
~I ~ I: 0_ 
! .,.....-

.- .............. - ..... :;:;;:;! ;; .- .................... :;:;;:;!. ::) .......................... .. .... c .................. o 

:~~r.rrrrn ~ :111111111 ~ -

~ 

;::: : ~ 
~ ~ 

~ 

i ~ i 
~ ~ '" 00. 

~ 

C·4 

L 
I 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

~ .. 
~ 

" 
~ " z 

!! ~ 
~ 

S5 lS 
:: ! 

::.:::.: 

~~ --. 
~::.: 

~; 

~ -. 
5 

~~ --
~5 

:; 

~ 

~ 

.. 
c .. .. 

~ .. 
ill 

C-5 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

". .. 

~ +-:""'": -'..;:::.::..: '---, 

~~I~ 

:TrrtTIT~b 61 : IIIII -9 
:1"1' '1"1' , "I"I" crrrrrrl'rr 

- 1111111 ~ 
"1"1"1"1"1"1"1' 

: 
1111111 e 

: LLLU _L~ 

~ .., .. ~---, 
~~ 
~ E...-

, 
-a.- __ 

~~~ 4~~- ~ 
-~= ::-
;;;~ .:~- C> 

-TrrrTITe 
: 'l"trrtL'tr • 

:IIIIIIII~ - I[[IJITfe 
'1"1'1"1"1"1"1"1'1" crrrrrlcrrl" 

r---------~+-______ ~~----__ ~U_ ______ _H~~ 

C-6 



i 
i 
I 

~I 
~ 

I 
-I 

I 
~ 

I 

:;; 

~ 

~ 

~ 

:!; 
c 
c c 
2 

~ 
c 

~ 

.,; 

~ 

~ 

~ 

.: 

I 

MEMORY INTERFACE SCHEMATICS AND PLD CODE 

. -. -' . ~;,,- "". ~ . 
~. 

~ 

~ 
f'- f'- ~ ~ ~-- . ' ... 

~~~ }L c> E-~ ~ ~ 
-~= : ... .. ... . .. ;:~ ~~~- c> 

~ \r 
. 

1~~1 :~~~ :rr~1 :~~ri 
m :::: · ~ ~l :::: ---- ~l :::: , 
~:C~--~·-·~~~~~ ~ ----~.-.~~~~ ~ 

- ... -. ....................... :;; - ... -- .......... ::;:::::: ~ 

:Tt[[[r[~ b~ 
-

- : LULLl_~ : IlILLl L~ - IIIIIIH 
'rrrtrrrtr " 'rr 'rrl"l'"l"l"l'l"1" . 

I 

lcri :rr~ :rrri :r~cl --_. :~ ~l ---- ~~ -::::.--~~~~ :::: : :::: DOO. 

ft _N-. .. n ..... :~:::::: ~ _ ... -. .......... :~~::: - - .. - ..................... 

:JLlIJI .~ - ::;111111 .~ :.1111111 -IIUIJlIJ 
'-rrrrrl-l"1" - . 

!~rl :ct~ :rrr.i :Er~i 
:~:: 

gl-----.--~~:::;: ~ ----~.--~;;;;:;:; g::: ~",r. . , - .............. - - ....................... ..;P ... - ............................. 

~p 11111 ~ 
: 

bb 
-

: 111111 ~ : 1111111 -11111111 ~ 
'rr!' '-rrrrl'rrr 

j~ ~r~~ ~~~~I :~~~I l :::: ~l --_. ;1 ;:1 :::: r. ... . .. - CiacCIo ... oaoa . - ~ :: ............. - ~:C--·ft.--~:::::::: ; ;; - ............... :;:;;:::::: ~:C~-·~·--·~~~ ~:C--·~---~:::::::: ; 

~p-rr-nrr~ :rE[E[[L~ trrrrrrr~ :1111111 ~ 
.. ····rl·rl" -I" 'rrrrrrri' 'rl-rrl- 'ri- 'rrtrl"'rl" 

I 
:!! 
~ . 
c g 
~ 

~ 

c-? 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

:;; 

i "". :.:. H u ., "" . "" 
~ 

e 
= ~ 

~ ~ 
~. 

t- ~!~ ~ ~ ~ ]~- ~ 

::: ~ ~ ..ll...- ..ll.- .ll.-- -~ : : eee ~:= .::- ~ t: 
" " 

... :::: 
- ............... :;;;:;.:: 

: LLL! H _LLLU .~ 1LLLLLL~ errrrITlerr em IT eITl" 

±~tl ±lli ~r~rl :CtEI 
.,---=:~----, 

~ . :::: ;;'" ~ ~ :::: ~'" b a.... oeoo, ~ 
~,:"" ......... · ... -· ..... ..:r .. _ ..................... ..:J ;; -......................... .. --....... ·-· ........ -:I~ 

~ 

: LLLL _LL~ :e-' L LLLLL L~ :LlLlIJl Ct:b = LLLLLl L~ 
ecr Cl"ITIT em rr errr e 

:r·--------~~-------w~----~~:~------~~!~·~_ 

C-8 

: 
i 
i 

. 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

. . 
LL LO .. u .-. .. -.. . 

:! 

-¥--
:i_. 

~ ~ .lla- f-
.. -- .. 

: ~~~ jL t> 
~ ~ .ii.- .E.- li.- =5!e ~ ... 

~;! .~~- t> 
« :: < :: < -- . 

f~rl :~t~ :r~~ :r~rl 
~ :::: ,~~ ~ DQOD :::: ~l :~~~ ;;'" 
~ -~ .. ~.~.:;; ww ~ - ................. :;;;;:;;::; 

~ - ............................. ... _ ............................. 
: 

~I[[[[ -:~ : LLLLLL L l~~~~~~[~ 11111 I Ii: : <I" 

l!fl :rc~ :r~~1 :~~~I l: ::::::: 000'0' 

~j ~ 
0'00'0 ~l gEE: , if. . , - ............... - ...................... - ................. :::0::::::: ~ ;;;:~~ .. ~.~-~;;~~. - ............................ 

~ 

: . : -
:;1111 II Ii: : LUU -~ : LLLLLL l IIIIIIH < 

:r~~1 :~C~ :IT~I :r~~1 l: :::= ~l :::: ,J ~ D ••• 00030 - , :: ::t .... ~=C···~·~·:;;~~ . ;; - ................ ::-;.;::;:: ;; - ..................... ww ~ 
__ ............... C ......... 

l[r.l Is - - : -
:JLLLL -~ : JULLLL < 1111111 Ii; 

<rrrrrrl'rl" , . 

±~r.1 ±E~ ~r~r.l :rEEI 
~ ~:m , _ :::: J~ acu;:o.,. 

;; _N ............ ::::.::::::: .. ~ - ................. c ......... ~ - ........................ -................ -~;;:;::::::; ~ 
:T[IJT[~ :rtlrrrTs : Trrrm ~~~~r.~~~~ :::.:I" - :[:;'rl" , 'rr ttrrrj'j'j'tt'1" 

~ I 
~ :! - ~ 

~ . 
::: r. 
" . ~ 
Q 

I 

C-9 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

"TITLE DRAM Control A. 
"PATTERN DCTLA0.ABL 

" U98 
" Reference Sheet 4 of the Schematics. 
" This PLD must have a propagation delay of 10ns or faster 

module dctla0 
U98 device 'E0320'; 

A31, A23, A22, A21, !S0 
!Sl, !S2, !S3, !S4, GND 
NC0, HOLD, !HREQ, !RASP0, !RAS3 
!RAS2, !RAS1, !RAS0, !KEN, VCC 

EQUATIONS 

"Intel 85C220 PLD 

pin 1,2,3,4,5; 
pin 6,7,8,9,10; 
pin 11,12,13,14,15; 
pin 16,17,18,19,20; 

RASe = A23 & A22 & A21 & S4 & S3 & !S2 & !Sl & !S0 
# A23 & A22 & A21 & !S4 & !S3 & S2 & !Sl & !S0 
# ! S4 & S3 & ! S2 & ! S 1 & S0 
# RAS0 & S4 
# RAS0 & S3 
# RAS0 & S2; 

RAS1 = A23 & A22 & IA21 & S4 & S3 & !S2 & lSI & !S0 
# A23 & A22 & !A21 & !S4 & !S3 & S2 & !Sl & !S0 
# ! S4 & S3 & ! S2 & ! S 1 & S0 
# RAS1 & S4 
# RAS1 & S3 
# RAS1 & S2; 

RAS2 = A23 & !A22 & A21 & S4 & S3 & !S2 & !Sl & !S0 
# A23 & !A22 & A21 & !S4 & !S3 & S2 & !SI & !S0 
# ! S4 & S3 & ! S2 & ! S 1 & S0 
# RAS2 & S4 
# RAS2 & S3 
# RAS2 & S2; 

RAS3 = A23 & !A22 & !A21 & S4 & S3 & !S2 & !Sl & !S0 
# A23 & !A22 & !A21 & !S4 & !S3 & S2 & !Sl & !S0 
# ! S4 & S3 & ! S2 & ! Sl & S0 
# RAS3 & S4 
# RAS3 & S3 
# RAS3 & S2; 

C-10 

"start write 
"start read 
"start refresh 
"hold 
"hold 
"hold 

"start write 
"start read 
"start refresh 
"hold 
"hold 
"hold 

"start write 
"start read 
"start refresh 
"hold 
"hold 
"hold 

"start wri te 
"start read 
"start refresh 
"hold 
"hold 
"hold 



".nfo_l® 
11'eI MEMORY INTERFACE SCHEMATICS AND PLD CODE 

RA5P0 = A23 & 54 & 53 & 152 & 151 & 150 
# A23 & 154 & 153 & 52 & 151 & 150 
# 154 & 53 & 152 & 151 & 50 
# RA5P0 & 54 
# RA5P0 & 53 
# RA5P0 & 52; 

KEN A31; 

I HOLD I HREQ; 

end dctla0 

" Description: 
"This PLD decodes and drives the RA5 lines for the DRAMs from 
"the main state machine and the N10 addresses. It drives the RA5 
"lines for the 8 Mbytes on the EV-AT board. 

"start wri te 
"start read 
"start refresh 
"hol d 
"hol d 
"hol d 

" The addresses (A21-A23) are decoded and activated when the 
"DRAM state machine starts a read or a write cycle. They are held 
"active until the state machine enters the Precharge sequence 
"(5tate 31). ' All RA5 1 ines are active during a refresh cycle. 

C-11 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

"TITLE DRAM Control B. 
"PATTERN DCTLBl.ABL 

" U99 
" This PLD decodes and drives numerous DRAM control signals. 
" This PLD must have an external clock frequency of 58MHz or faster. 

module dctlbl 
U99 device 'E0320'; 

@ALTERNATE 

DCLK, /EWDL, /ERDL, /S0, /SI 
/S2, /S3, /S4, /RTDS, GND 
JOE, /RTAB, /WDL, /RDL, /WEL 
/CSX, /CAE, /CAL, /RTBA, VCC 

EQUATIONS 

RTAB RTDS; 

RTBA RTDS; 

RDL .- /ERDL * /S0 
+ /ERDL * /SI 
+ /ERDL * /S2 
+ /ERDL * S3 * S4; 

WEL := S4 * S3 * S2 * SI * /S0 
+ S4 * S3 * S2 * /SI * /S0 
+ S4 * S3 * /S2 * SI * /S0 
+ S4 * S3 * /S2 * /SI * /S0; 

WDL := /EWDL * /S0 
+ /EWDL * /S3 
+ /EWDL * /S4; 

CSX .- S4 * S3 * S2 * /S0 
+ S4 * S3 * /S2 * SI * /S0 
+ S4 * /S3 * S2 * SI 
+ S4 * /S3 * /S2 * SI 
+ /S4 * S3 * S2 * SI 
+ /S4 * S3 * /S2 * /SI 
+ /S4 * /S3 * S2 * SI 
+ /S4 * S2 * /SI * S0; 

CAL . - /S0; 

"Intel 85C220 PLD 

pin 1,2,3,4,5,; 
pin 6,7,8,9,10; 
pin 11,12,13,14,15; 
pin 16,17,18,19,20; 

C-12 

"/RDL IS HIGH DURING 
"STATE 8,16,24 

"state 1 
"state 3 
"state 5 
"state 7 

"/WDL IS HIGH DURING 
"STATE 0,2,4,6 

"state I, 3 
"state 5 
"state 8, 9 
"state 12,13 
"state 16,17 
"state 22,23 
"state 24,25 
"state 18,26 

" all odd states . 



intel® MEMORY INTERFACE SCHEMATICS AND PLD CODE 

CAE .- S4 * S3 * S2 "states 0,1,2,3 
+ S4 * S3 * /S2 * Sl "states 4,5 
+ S4 * S3 * /S2 * /Sl * S0 "state 6 
+ S4 * /S3 * Sl "states 8,9,12,13 
+ /S4 * S3 * S2 * Sl "states 16,17 
+ /S4 * /S3 * S2 * Sl "states 24,25 
+ /S4 * S2 * /Sl * S0; "state 18,26 

end dctlbl 
" Description: Refer to the DRAM State Machine document for an explaination 

of when these signals are to be active. 

CAE Column Address Enable. Turns on the Column address drivers. 

CAL Column Address Latch. Latches the N10 addresses for the DRAM 
column address. 

CSX Chip Select for the DRAM array. 

WEL Write Enable Latch. Latches the BEN bits to drive the active 
DRAM WEs. 

WDL Write Data Latch. For DRAM accesses only. 

RDL Read Data Latch. For DRAM accesses only. 

CHANGE HISTORY: 
This PLD adds the state 18 to eliminate the tCAC timing violation 
for reads immediately following writes. 

C·13 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

"TITLE DRAM Control C. 
"PATTERN DCTLC3.ABL 

" UHI0 
" This PLD decodes and drives numerous DRAM control signals. 
" This PLD must have an external count frequency of 58MHz or faster 

module dctlc3 
U100 device 'E0320'; 

@ALTERNATE 

CLKA, WR, /50, /51, /52 
/S3, /54, /EWDE, /ERDE, GND 
JOE, /PERLTCH, /DRMEN, /DRMDIR, /CLRFRQ 
/WPL, /OEX, /RAE, /CLRCYC, VCC 

EQUATION5 

PERLTCH 54 * /53 * S2 * 51 * /50 
+ S4 * /S3 * /52 * 51 * /50; 

CLRCYC 54 * 53 * S2 * S1 * /50 
+ 54 * S3 * /S2 * 51 * /50 
+ 54 * /S3 * S2 * 51 * /S0 
+ /54 * 53 * 52 * /S1 * 50 
+ /S4 * /S3 * S2 * 51 * /50; 

OEX .- S4 * S3 * 52 * 51 * S0 * /WR 
+ S4 * S3 * /S2 * 51 * S0 * /WR 
+ 54 * /53 * 52 * 51 
+ /54 * S3 * S2 * 51 
+ /54 * 53 * S2 * /S1 * S0 
+ /54 * /53 * 52; 

RAE . - /54 * /S3 * /S2 * S1 
+ /54 * /53 * /52 * /51 * S0; 

CLRFRQ : = 54 

WPL 

+ /54 * S3 * S2 
+ /54 * 53 * /S2 * 51 
+ /54 * 53 * /52 * /51 * S0 
+ /S4 * /S3; 

. - 54 * 53 * 52 *51 * /S0 
+ 54 * 53 * 52 * /51 * /S0 
+ 54 * 53 * /52 * 51 * /50 
+ S4 * 53 * /S2 * /51 * /50; 

C-14 

"Intel 85C220 PLD 

pin 1,2,3,4,5; 
pin 6,7,8,9,10; 
pin 11,12,13,14,15; 
pin 16,17,18,19,20; 

"state 9 
"state 13 

"state 1 
"state 5 
"state 9 
"state 18 
"state 25 

"state 0 if near read cycle. 
"state 4 if near read cycle. 
"state 8,9 
"state 16,17 
"state 18 
"state 24,25,26,27 

"state 28,29 
"state 30 

"ALL EXCEPT state 23 

"state 1 
"state 3 
"state 5 
"state 7 



infel® MEMORY INTERFACE SCHEMATICS AND PLD CODE 

DRMEN .- S4 * S3 * /Sl "state 2,3,6,7 
+ S4 * S3 * Sl * /SIJ "state 1,5 
+ S4 * /S3 * S2 * Sl "state 8,9 
+ /S4 * S2 * Sl "state 16,17,24,25 
+ S4 * S3 * Sl * SIJ * WR "state 1J,4 if write cycle. 
+ EWDE 
+ ERDE; 

DRMDIR .- S4 * /S3 * S2 * Sl "state 8,9 
+ S4 * /S3 * /S2 * Sl * /SIJ "state 13 
+ /S4 * S2 * /Sl * SIJ "state 18,26 
+ /S4 * S2 * Sl "state 16,17,24,25 
+ ERDE; 

end dctlc3 
"Description: Refer to the DRAM State Machine document for an explaination 

of when these signals are to be active. 

PERLTCH 

CLRFRQ 

WPL 

OEX 

RAE 

CLRCYC 

" CHANGE HISTORY 

Parity Error Latch. Latches parity errors (if any) 
during DRAM read cycles. 

Clear Refresh Request. Restarts the refresh counter. 

Write Parity Latch. Latches the parity bits during a 
DRAM write. 

Output Enable. For the DRAMS. 

Row Address Enable. Turns on the row addresses to the 
DRAM. 

Clear Cycle. Clears queued cycles. 

REV 1 change to 16R6D to correct for speed path problem, and fix 
possible buffer contention. 

REV 2 add state 18 to fix tCAC violation. 

REV 3 Added state 1 to CLRCYC 

C-1S 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

"TITLE NUl EV-AT DRAM Control State Machine. 
"PATTERN DSTATl. PDS 

" U104 
" This PLD contains the state machine for the DRAM controller. 
" This PLD must have an external clock frequency of 58MHz or faster. 

module dstatl 
U104 device 'E0320'; 

@ALTERNATE 

CLKA, WR, /NENE, /LADS, /CPEN 
/EXPBSY, ATMBSY, /DSEL, REFREQ, GND 
JOE, /NA, /S4, /S3, /S2 
/Sl, /S0, /DRAMBSY, iRDY, VCC 

EQUATIONS 

S0 .- S4 * S3 * Sl * 
+ S4 * /S3 * /S2 * Sl * 
+ S4 * /S3 * /S2 * Sl * 
+ /S4 * S3 * /S2 * Sl * 
+ /S4 * /S3 * /S2 * Sl * 
+ /S4 * /S3 * /S2 * Sl * 
+ /S0; 

Sl .- S4 * S3 * Sl * 
+ S4 * /S3 * S2 * Sl * 
+ /S4 * S2 * Sl * 
+ /S4 * /S3 * /S2 * Sl * 
+ /S4 * /S3 * /S2 * Sl * 
+ /Sl * S0 
+ Sl * /S0; 

S2 := S4 * S1 * 
+ S4 * /S3 * /S2 * Sl * 
+ S4 * /S3 * /S2 * S1 * 
+ /S4 * S2 * S1 * 
+ /S4 * /S3 * /S2 * Sl * 
* /EXPBSY * /ATMBSY 
+ /S4 * /S3 * /S2 * Sl * 
* /EXPBSY * /ATMBSY 
+ S2 * /Sl 
+ S2 * /S0; 

"Intel 85C220 PLD 

pin 1,2,3,4,5; 
pin 6,7,8,9,10; 
pin 11,12,13,14,15; 
pin 16,17,18,19,20; 

S0 * LADS * /WR * DSEL * NENE * /REFREQ 
S0 * LADS * /WR * DSEL * NENE * /REFREQ 
S0 * CPEN * /WR * DSEL * NENE * /REFREQ 
S0 
S0 * /LADS * /CPEN * /REFREQ 
S0 * /DSEL * /REFREQ 

S0 * LADS * WR * DSEL * NENE * /REFREQ 
S0 
S0 
S0 * /LADS * /CPEN * /REFREQ 
S0 * /DSEL * /REFREQ 

S0 * LADS * /WR * DSEL * 
S0 * LADS * DSEL * 
S0 * CPEN * DSEL * 
S0 * LADS * /WR * DSEL * 
S0 * LADS * /WR * DSEL 

S0 * CPEN * /WR * DSEL 

C-16 

NENE * /REFREQ 
NENE * /REFREQ 
NENE * /REFREQ 
NENE * /REFREQ 

* /REFREQ 

* /REFREQ 



iniel® MEMORY INTERFACE SCHEMATICS AND PLD CODE 

S3 S4 * S3 * Sl * S0 * LADS * DSEL * NENE * /REFREQ .-
+ S4 * /S3 * /S2 * Sl * S0 * LADS * WR * DSEL * NENE * /REFREQ 
+ S4 * /S3 * /S2 * Sl * S0 * CPEN * WR * DSEL * NENE * /REFREQ 
+ /S4 * /S3 * /S2 * Sl * S0 * LADS * WR * DSEL * /REFREQ 
* /EXPBSY * /ATMBSY 
+ /S4 * /S3 * /S2 * Sl * S0 * CPEN * WR * DSEL * /REFREQ 
* /EXPBSY * /ATMBSY 
+ /S4 * /S3 * /S2 * Sl * Sf! * REFREQ 
+ S3 * /Sl 
+ S3 * /Sf!; 

S4 .- S4 * Sl * S0 * LADS * WR * DSEL * NENE * /REFREQ 
+ S4 * /S3 * S2 * Sl * S0 
+ S4 * /S3 * /S2 * Sl * S0 * CPEN * WR * DSEL * NENE * /REFREQ 
+ /S4 * S2 * Sl * Sf! 
+ /S4 * /S3 * /S2 * Sl * Sf! * LADS * WR * DSEL * /REFREQ 
* /EXPBSY * /ATMBSY 
+ /S4 * /S3 * /S2 * Sl * Sf! * CPEN * WR * DSEL * /REFREQ 
* /EXPBSY * /ATMBSY 
+ S4 * /Sl 
+ S4 * /Sf!; 

DRAMBSY .- S4 * S3 
+ S4 * /S3 
+ /S4 * S3 * S2 
+ /S4 * /S3 * S2 
+ CPEN 
+ EXPBSY 
+ ATMBSY; 

NA S4 * S3 * Sl * Sf! * LADS * /WR * NENE * /REFREQ 
+ S4 * /S3 * S2 * Sl * Sf! * LADS * /WR * NENE * /REFREQ 
+ /S4 * S2 * Sl * Sf! * LADS * /WR * NENE * /REFREQ 
+ /S4 * /S3 * S2 * /Sl * S0; 

ENABLE NA = /EXPBSY * / ATMBSY * DRAMBSY; 

RDY S4 * S3 
+ S4 * S3 
+ S4 * /S3 

* Sl * Sf! * LADS * WR * NENE * /REFREQ 
* /Sl * S0 
* Sl * /S0; 

ENABLE RDY = /EXPBSY * /ATMBSY * DRAMBSY; 
end dstatl 

" Description: This PLD is the state machine for the DRAM interface to the Nlf!. 
" There are 32 states some of which are redundant to minimize the number of 
" product terms. This design supports a non-interleaved memory design using 
" Static-column 256K x4 DRAMs for the main memory, and 1M xl DRAMs for the 
" parity bits. 

C-17 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

" There are six types of cycles possible: far read, far write, near read, 
" near write, refresh, and idle. Near read and near write cycles imply memory 
" accesses with the same row address as the preceeding cycle. Refresh request 
" has the hi ghest pri ori ty and wi 11 interrupt near memory cycl es. 

" Read cycles will use full pipelining, write cycles are never pipelined. 
" Near read cycl es wi 11 be zero wait-state when foll owi ng read cycl es, and 
" near write cycles will be zero wait-state when following write cycles. 

" DRAMBSY prevents other units from starting a cycle when the DRAM controller 
" is busy. 

C-18 



•"n+_I® 
I nea MEMORY INTERFACE SCHEMATICS AND PLD CODE 

TITLE DRAM Control State Machine. 
PATTERN DSTATl.PDS 

; UH14 
; This PLD contains the state machine for the DRAM controller. 

CHIP DSTATI PAL16R6 

CLKA WR /NENE /LADS /CPEN /EXPBSY ATMBSY /DSEL REFREQ GND 
JOE /NNA /S4 /S3 /S2 /SI ISO /DRAMBSY /NRDY VCC 

EQUATIONS 

SO . - S4 * S3 ;, S1 * SO * LADS * /WR * DSEL * NENE * /REFREQ 
+ S4 * /S3 * /S2 * SI * SO * LADS * /WR * DSEL * NENE * /REFREQ 

+ S4 * /S3 * /S2 * SI * SO * CPEN */WR * DSEL * NENE */REFREQ 

+ /S4 * S3 * /S2 * SI * SO 
+ /S4 */S3 */S2 * SI * SO */LADS */CPEN */REFREQ 
+ /S4 */S3 */S2 * SI * SO */DSEL */REFREQ 
+ ISO 

SI . - S4 * S3 * SI * SO * LADS * WR * DSEL * NENE * /REFREQ 
+ S4 * /S3 * S2 * SI * SO 
+ /S4 * S2 * SI * SO 
+ /S4 * /S3 */S2 * SI * SO */LADS */CPEN */REFREQ 
+ /S4 * /S3 * /S2 * SI * SO * /DSEL * /REFREQ 
+ /SI * SO 
+ SI */SO 

S2 . - S4 * SI * SO * LADS * /WR * DSEL * NENE * /REFREQ 
+ S4 */S3 */S2 * SI * SO * LADS * DSEL * NENE * /REFREQ 

+ S4 */S3 */S2 * SI * SO * CPEN * DSEL * NENE * /REFREQ 

+ /S4 * S2 * SI * SO * LADS * /WR * DSEL * NENE * /REFREQ 

+ /S4 * /S3 * /S2 * SI * SO * LADS * /WR * DSEL * /REFREQ 
* /EXPBSY */ATMBSY 
+ /S4 */S3 */S2 * SI * SO * CPEN */WR * DSEL * /REFREQ 
* /EXPBSY */ATMBSY 
+ S2 */SI 
+ S2 */SO 

C-19 



S3 

MEMORY INTERFACE SCHEMATICS AND PLD CODE 

. - S4 * S3 * Sl * SO * LADS * DSEL * NENE * /REFREQ 

+ S4 * /S3 * /S2 * Sl * SO * LADS * WR * DSEL * NENE * /REFREQ 

+ S4 * /S3 * /S2 * Sl * SO * CPEN * WR * DSEL * NENE * /REFREQ 

+ /S4 * /S3 * /S2 * Sl * SO * LADS * WR * DSEL * /REFREQ 
* /EXPBSY * /ATMBSY 
+ /S4 * /S3 * /S2 * Sl * SO * CPEN * WR * DSEL * /REFREQ 
* /EXPBSY */ATMBSY 
+ /S4 * /S3 * /S2 * Sl * SO * REFREQ 
+ S3 * /Sl 
+ S3 * /SO 

S4 • - S4 * Sl * SO * LADS * WR * DSEL * NENE * /REFREQ 
+ S4 * /S3 * S2 * Sl * SO 
+ S4 * /S3 * /S2 * Sl * SO * CPEN * WR * DSEL * NENE * /REFREQ 

+ /S4 * S2 * Sl * SO 
+ /S4 */S3 */S2 * Sl * SO * LADS * WR * DSEL * /REFREQ 
* /EXPBSY * /ATMBSY 
+ /S4 * /S3 * /S2 * Sl * SO * CPEN * WR * DSEL * /REFREQ 
* /EXPBSY* /ATMBSY 
+ S4 * /Sl 
+ S4 * /SO 

DRAMBSY : = S4 * S3 
+ S4 * /S3 
+ /S4 * S3 * S2 
+ /S4 * /S3 * S2 
+ CPEN 
+ EXPBSY 
+ ATMBSY 

NNA S4 * S3 * Sl * SO * LADS * /WR * NENE * /REFREQ 
+ S4 * /S3 * S2 * Sl * SO * LADS * /WR * NENE * /REFREQ 
+ /S4 * S2 * Sl * SO * LADS * /WR * NENE * /REFREQ 
+ /S4 * /S3 * S2 * /Sl * SO 

NNA. TRST = /EXPBSY * /ATMBSY * DRAMBSY 

NRDY S4 * S3 * Sl * SO * LADS * WR * NENE * /REFREQ 
+ S4 * S3 * /Sl * SO 
+ S4 * /S3 * Sl * /SO 

NRDY. TRST = /EXPBSY * /ATMBSY * DRAMBSY 

; Description: This PLD is the state machine for the i860 DRAM interface. 
; There are 32 states some of which are redundant to minimize the number of 
; product terms. This design supports a non-interleaved memory design using 
;- Static-column 256K x4 DRAMs for the main memory, and 1M xl DRAMs for the 
; parity bits. 

C·20 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

; There are six types of cycles possible.: far read, far write, near read, 
; near write, refresh, and idle. Near read and near write cycles imply 
; memory accesses with the same row address as the preceeding cycle. 
; Refresh request has the highest priority and will interrupt near 
; memory cycles. 

Read cycles will use full pipeli\ning, write cycles are never pipelined. 
Near read cycles will be zero wait-state when following read cycles, and 
near write cycles wiil be zero wait-state when following write cycles. 

DRAMBSY prevents other units from starting a cycle when the DRAM controller 
is busy. 

TITLE DRAM Control A. 
PATTERN DCTLA9.PDS 

;U98 
; Reference Sheet 4 of the Schematics. 

CHIP DCTLAO PAL16L8 

A31 A23 A22 A21 /S9 /SI /S2 /S3 /S4 GND 
NCO HOLD /HREQ /RASPO /RAS3 /RAS2 /RASI /RAS9 /KEN VCC . 

EQUATIONS 

RAS9 A23 * A22 * A21 * S4 * S3 * /S2 * /SI * /SO ;start write 
+ A23 * A22 * A2l * /S4 * /S3 * S2 * /SI * /SO ;start read 
+ /S4 * S3 * /S2 * /SI * SO ;start refresh 
+ RASO * S4 ;hold 
+ RASO * S3 ;hold 
+ RASO * S2 ;hold 

RASI A23 * A22 * /A2l * S4 * S3 * /S2 * /SI * /SO ;start write 
+ A23 * A22 * /A2l * /S4 * /S3 * S2 * /SI * /SO ;start read 
+ /S4 * S3 * /S2 * /SI * SO ;start refresh 
+ RASI * S4 ;hold 
+ RASI .. S3 ;hold 
+ RASI * S2 ;hold 

RAS2 A23 * /A22 * A2l * S4 * S3 * /S2 * /SI * /SO ;start write 
+ A23 * /A22 * A21 * /S4 * /S3 * S2 * /SI * /SO ;start read 
+ /S4 * S3 * /S2 * /SI * S9 ;start refresh 
+ RAS2 * S4 ;hold 
+ RAS2 * S3 ;hold 
+ RAS2 * S2 ;hold 

C-21 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

RAS3 A23 * /A22 * /A2l * S4 * S3 */S2 * /SI * /SO 
+ A23 * /A22 * /A2l * /S4 * /S3 * S2 * /SI * /SO 
+ /S4 * S3 * /S2 * /SI * SO 
+ RAS3 * S4 
+ RAS3 * S3 
+ RAS3 * S2 

RASPO A23 * S4 * S3 * /S2 * /SI * /SO 
+ A23 * /S4 * /S3 * S2 * /SI * /SO 
+ /S4 * S3 * /S2 * /SI * SO 
+ RASP13 * S4 
+- RASP13 * S3 
+ RASP13 * S2 

KEN = A3l 

/HOlD = /HREQ 

iDescription: 

i start write 
istart read 
istart refresh 
ihOld 
ihold 
ihOld 

i start write 
istart read 
istart refresh 
ihOld 
ihOld 
ihOld 

This PlD decodes and drives the RAS lines for the DRAMs from 
the main state machine and the i8613 addresses. It drives the RAS 
lines for the 8 Mbytes on the board. 

The addresses (A21-A23) are decoded and activated when the 
DRAM state machine starts a read or a write cycle. They are held 
active until ths state machine enters the Precharge sequence 
(State 31). All RAS lines are active during a refresh cycle. 

This PlD must be "D" speed. 

TITLE DRAM Control B. 
PATTERN DCTlBl.PDS 

U99 
i This PlD decodes and drives numerous DRAM control signals. 
i Must be "D" speed. 

CHIP DCTlBl PAl16R6 

DClK /EWDl /ERDl /SO /SI /S2 /S3 /S4 /RTDS GND 
/OE /RTAB /WDl /RDl /WEl /CSX /CAE /CAl /RTBA VCC 

EQUATIONS 
RTAB RTDS 

RTBA = RTDS 

C-22 



RDL 

WEL 

WDL 

CSX 

CAL 

CAE 

MEMORY INTERFACE SCHEMATICS AND PLD CODE 

: = /ERDL * /SO 
+ /ERDL * /SI 
+ /ERDL * /S2 
+ /ERDL * S3 * S4 

: = S4 * S3 * S2 * SI * /SO 
+ S4 * S3 * S2* /SI* /SO 
+ S4 * S3 * /S2 * SI * /SO 
+ S4 * S3 * /S2 * /SI * /SO 

: = /EWDL * /SO 
+ /EWDL * /S3 
+ /EWDL * /S4 

: = S4 * S3 * S2 * /SO 
+ S4 * S3 * /S2 * SI * /SO 
+ S4 * /S3 * S2 * SI 
+ S4 * /S3 * /S2 * SI 
+ /S4 * S3 * S2 * SI 
+ /S4 * S3 * /S2 * /SI 
+ /S4 * /S3 * S2 * SI 
+ /S4 * S2 * /SI * SO 

: = /SO 

: = S4 * S3 * S2 
+ S4 * S3 * /S2 * SI 
+ S4 * S3 * /S2 * /SI * SO 
+ S4 * /S3 * SI 
+ /S4 * S3 * S2 * SI 
+ /S4 * /S3 * S2 * SI 
+ /S4 * S2 * /SI * SO 

;/RDL IS HIGH DURING 
;STATE 8,16,24 

;state 1 
;state 3 
;state 5 
;state 7 

;/WDL IS HIGH DURING 
;STATE 0,2,4,6 

;state I, 3 
;state 5 
;state 8, 9 
;state 12,13 
;state 16,17 
;state 22,23 
;state 24,25 
;state 18,26 

;all odd states. 

;states 0,1,2,3 
;states 4,5 
;state 6 
;states 8,9,12,13 
;states 16,17 
;states 24,25 
;state 18,26 

Description: 

CAE Column Address Enable. Turns on the Column address drivers. 

CAL Column Address Latch. Latches the N10 addresses for the DRAM 
column address. 

CSX Chip Select for the DRAM array. 

WEL Write Enable Latch. Latches the BEN bits to drive the active 
DRAM WEs. 

WDL Write Data Latch. For DRAM accesses only. 

RDL Read Data Latch. For DRAM accesses only. 

C-23 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

TITLE 
PATTERN 

U100 

DRAM Control C. 
DCTLC2.PD5 

; This PLD decodes and drives numerous DRAM control signals. 
; Must be "D" speed. 

CHIP DCTLC2 PAL16R6 

CLKA WR /50 /51 /52 /53 /54 /EWDE /ERDE GND 
fOE /PERLTCH /DRMEN /DRMDIR /CLRFRQ /WPL /OEX /RAE /CLRCYC VCC 

EOUATION5 

PERLTCH = 54 * /53 * 52 * 51 * /50 
+ 54 * /53 * /52 * 51 * /50 

CLRCYC = 54 * 53 *52 * 51 * /50 
+ 54 * 53 * /52 * 51 * /50 
+ 54 * /53 * 52 * 51 * /50 
+ /54 * 53 * 52 * /51 * 50 
+ /54 * /53 * 52 * 51 * /50 

OEX : = 54 * 53 * 52 * 51, 50 * /WR 
+ 54 * 53 * /52 * 51 * 50 * /WR 
+ 54 * /53 * 52 * 51 
+ /54 * 53 * 52 * 51 
+ /54 * 53 * 52 * /51 * 50 
+ /54 * /53 * 52 

RAE . - /54 * /53 */52 * 51 
+ /54 * /53 * /52 * /51 * 50 

CLRFRQ : = 54 
+ /54 * 53 * 52 
+ /54 * 53 * /52 * 51 
+ /54 * 53 * /52 * /51 * 50 
+ /54 * /53 

WPL • - 54 * 53 * 52 * 51 * /50 
+ 54 '* 53 * 52 * /51 * /50 
+ 54 * 53 * /52 * 51 * /50 
+ 54 * 53 * /52 * /51 * /50 

DRMEN: = 54 * 53 */51 
+ 54 * 53 * 51 * /50 
+ 54 * /53 * 52 * 51 
+ /54 * 52 * 51 
+ 54 * 53 
+ EWDE 
+ ERDE 

* 51 * 50 * WR 

DRMDIR : = 54 * /53 * 52 * 51 
+ 54 * /53 * /52 * 51 * /50 
+ /54 * 52 * /51 * 50 

;state 9 
; state 13 

;state 1 
;state 5 
;state 9 
;state 18 
;state 25 

;state 0 if near read cycle. 
;state 4 if near read cycle. 
;state 8,9 
:state 16,17 
;state 18 
;state 24,25,26,27 

;state 28,29 
;state 30 

;ALL EXCEPT state 23 

;state 1 
;state 3 
;state 5 
;state 7 

;state 2,3,6,7 
;state 1,5 
;state 8,9 
;state 16,17,24,25 
;state 0,4 if write cycle. 

;state 8,9 
;state 13 
;state 18,26 

C-24 



+ /S4 
+ ERDE 

MEMORY INTERFACE SCHEMATICS AND PLD CODE 

* S2 * Sl ;state 16,17,24,25 

Description: 

PERLTCH 

CLRFRQ 

WPL 

OEX 

RAE 

CLRCYC 

Parity Error Latch. Latches parity errors (if any) 
during DRAM read cycles. 

Clear Refresh Request. Restarts the refresh counter. 

Write Parity Latch. Latches the parity bits during a 
DRAM write. 

Output Enable. For the DRAMS. 

Row Address Enable. Turns on the row addresses to the 
DRAM. 

Clear Cycle. Clears queued cycles. 

TITLE 
PATTERN 

DRAM Control D. 
DCTLD0.PDS 

;This PLD decodes and drives the DRAM Write Enable Signals. 
;Can be "B" speed. 

CHIP DCTLDO PAL20R8 

/WEL /CPEN /DSEL /WR /BEO /BEl /BE2 /BE3 /BE4 /BE5 /BE6 GND 
fOE /BE7 /WE7 /WE6 /WE5 /WE4 /WE3 /WE2 /WE1 /WEO /LADS VCC 

EOUATIONS 

WE7 : = LADS * DSEL * /WR * BEl 
+ CPEN * DSEL * /WR * BE7 

WE6 : = LADS * DSEL * /WR * BE6 
+ CPEN * DSEL * /WR * BE6 

WE5 : = LADS * DSEL * /WR * BE5 
+ CPEN * DSEL * /WR * BE5 

WE4 : = LADS * DSEL * /WR * BE4 
+ CPEN * DSEL * /WR * BE4 

WE3 : = LADS * DSEL * /WR * BE3 
+ CPEN * DSEL * /WR * BE3 

WE2 : = . LADS * DSEL * /WR * BE2 
+ CPEN * DSEL * /WR * BE2 

WEl .- LADS * DSEL * /WR * BEl 

C-25 



MEMORY INTERFACE SCHEMATICS AND PLD CODE 

+ CPEN * DSEL * /WR * BEl 

WED : = LADS * DSEL * /WR * BEQ 
+ CPEN * DSEL * /WR * BEQ 

Description: This PLD samples the BEN lines during write cycles and 
drives the DRAM Write Enables directly. 

C·26 



inter 
ALABAMA 

tlntel Corp. 
5015 Bradford Dr., #2 
Huntsville 35805 
Tel: (205) 830-4010 
FAX: (205) 837-2640 

ARIZONA 

tlnlel Corp. 
11225 N. 28th Dr. 
Suite 0-214 
Phoenix 85029 
Tel: (602) 869-4980 
FAX: (602) 869-4294 

Intel Corp. 
1161 N. EI Dorado Place 
Suite 301 
Tucson 85715 
Tel: (602) 299-6815 
FAX: (602) 296-8234 

CALIFORNIA 

tlnlel Corp. 
21515 Vanowen Street 
Suite 116 
Canoga Park 91303 
Tel: (818) 704-8500 
FAX: (818) 340-1144 

tlnlel Corp. 
2250 E. Imperial Highway 
Suite 218 
EI Segundo 90245 
Tel: (213) 640-6040 
FAX: (213) 640-7133 

Intel Corp. 
1510 Arden Way 
Suite 101 
Sacramento 95815 
Tel: (916) 920-8096 
FAX: (916) 920-8253 

tlnlel Corp. 
9665 Chesapeake Dr. 
Suite 325 
San Diego 95123 
Tel: (619) 292-8086 
FAX: (619) 292-0628 

tlntel Corp." 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 
TWX: 910-595-1114 
FAX: (714) 541-9157 

tlnlel Corp." 
San Tomas 4 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 
Tel: (408) 986-8086 
TWX: 910-338-0255 
FAX: (408) 727-2620 

COLORADO 

Inlel Corp. 
4445 Northpark Drive 
Suite 100 
Colorado Springs 80907 
Tel: (719) 594-6622 
FAX: (303) 594-0720 

tlntel Corp.* 
650 S. Cherry SI. 
Suite 915 
Denver 80222 
Tel: (303) 321-8086 
TWX: 910-931-2289 
FAX: (303) 322-8670 

tSales and Service Office 
*Field Application Location 

DOMESTIC SALES 
CONNECTICUT MASSACHUSETIS 

tlntel Corp. tlntel Corp. "" 
301 Lee Farm Corporate Park Westford Corp. Center 
83 Wooster Heights. Ad. 3 Carlisle Road 
Danbury 06810 2nd Floor 
Tel: (203) 748-3130 Westford 01886 
FAX: (203) 794-0339 Tel: (508) 692-3222 

TWX: 710-343-6333 
FLORIDA FAX: (508) 692-7867 

tlntel Corp. MICHIGAN 
6363 N.W. 6th Way 
Suite 100 tlntel Corp. 
Ft. Lauderdale 33309 7071 Orchard Lake Road 
Tel: (305) 771-0600 Suite 100 
_TWX: 510-956-9407 West Bloomfield 48322 
FAX: (305) 772-8193 Tel: (313) 851-8096 

FAX: (313) 851-8770 
tlntel Corp. 
5850 T.G. Lee Blvd. MINNESOTA 
Suite 340 
Orlando 32822 tlntel Corp. 

Tel: (407) 240-8000 3500 W. 801h 51. 

FAX: (407) 240-8097 Suite 360 
Bloomington 55431 

Intel Corp. Tel: (612) 835-6722 
11300 4th Street North TWX: 910-576-2867 
Suite 170 FAX: (612) 831-6497 
S1. Petersburg 33716 
Tel: (813) 577-2413 MISSOURI 
FAX: (813) 578-1607 

tlnlel Corp. 

GEORGIA 4203 Earth City Expressway 
Suite 131 

Intel Corp. Earth City 63045 
20 Technology Parkway, N.W. Tel: (314) 291-1990 
Suite 150 FAX: (314) 291-4341 
Norcross 30092 
Tel: (404) 449-0541 NEW JERSEY 
FAX: (404) 605-9762 tlntel Corp." 

ILLINOIS 
Parkway 109 Office Center 
328 Newman Springs Road 

tlntel Corp." Red Bank 07701 

300 N. Martingale Road Tel: (201) 747-2233 

Suite 400 FAX: (201) 747-0983 

Schaumburg 60173 tlntel Corp. 
Tel: (312) 605-8031 280 Corporate Center 
FAX: (312) 706-9762 75 Livingston Avenue 

First Floor 
INDIANA Roseland 07068 

tlntel Corp. 
Tel: (201) 740-0111 
FAX: (201) 740-0626 

8777 Purdue Road 
Suite 125 NEW YORK 
Indianapolis 46268 
Tel: (317) 875-0623 Intel Corp.* 
FAX: (317) 875-8938 850 Cross Keys Office Park 

Fairport 14450 
IOWA Tel: (716) 425-2750 

TWX.: 510-253-7391 
Intel Corp. FAX: (716) 223-2561 
1930 SI. Andrews Drive N.E. 

tlntel Corp.* 2nd Floor 
Cedar Rapids 52402 2950 Expressway Dr., South 
Tel: (319) 393-1294 Suite 130 

Islandia 11722 
Tel: (516) 231-3300 KANSAS TWX: 510-227-6236 

tlntel Corp. FAX: (516) 348-7939 

~~Tt~51 ¥g.d~I~~·. 0 tlntel Corp. 
Westage Business Center Overland Park 66210 Bldg. 300, Route 9 

Tel: (913) 345-2727 Fishkill 12524 FAX: (913) 345-2076 Tel: (914) 897-3860 

MARYLAND 
FAX: (914) 897-3125 

tlntel Corp. * NORTH CAROLINA 

10010 Junction Dr. tlntel Corp. 
Suite 200 5800 Executive Center Dr. 
Annapolis Junction 20701 Suite 105 
Tel: (301) 206-2860 Charlotte 28212 
FAX: (301) 206-3677 Tel: (704) 568-8966 

(301) 206-3678 FAX: (704) 535-2236 

OFFICES 
Intel Corp. tlntel Corp.* 
5540 Centerview Dr. 7322 S.W. Freeway 
Suite 215 Suite 1490 
Raleigh 27606 Houston 77074 
Tel: (919) 851-9537 Tel: (713) 988-8086 
FAX: (919) 851-8974 TWX: 910-881-2490 

FAX: (713) 988-3660 

OHIO UTAH 

tlntel Corp. * tlntel Corp. 
3401 Park Center Drive 428 East 6400 South 
Suite 220 Suite 104 
Dayton 45414 Murray 84107 
Tel: (513) 890-5350 Tel: (801) 263-8051 
TWX: 810-450-2528 FAX: (801) 268-1457 
FAX: (513) 890-8658 

VIRGINIA 
tlntel Corp." tlntel Corp. 
25700 Science Park Dr. 1504 Santa Rosa Road 
Suite 100 Suite 108 
Beachwood 44122 Richmond 23288 
Tel: (216) 464-2736 Tel: (804) 282-5668 
TWX: 810-427-9298 FAX: (216) 464-2270 
FAX: (804) 282-0673 

WASHINGTON 
OKLAHOMA tlntel Corp. 

Intel Corp. 155 108th Avenue N.E. 

6801 N. Broadway Suite 386 

Suite 115 Bellevue 98004 

Oklahoma City 73162 Tel: (206) 453-8086 
TWX: 910-443-3002 Tel: (405) 848-8086 FAX: (206) 451-9556 FAX: (405) 840-9819 
Intel Corp. 
408 N. Mullan Road OREGON Suite 102 

tlnlel Corp. Spokane 99206 
Tel: (509) 928-8086 15254 N.W. Greenbrier Parkway 

Building B FAX: (509) 928-9467 
Beaverton 97005 WISCONSIN 
Tel: (503) 645-8051 
lWX: 910-467-8741 Intel Corp. 
FAX: (503) 645-8181 330 S. Executive Dr. 

Suite 102 

PENNSYLVANIA 
Brookfield 53005 
Tel: (414) 784-8087 

flntel Corp." FAX: (414) 796-2115 

455 Pennsylvania Avenue 
Suite 230 CANADA 
Fort Washington 19034 
Tel: (215) 641-1000 BRITISH COLUMBIA 
TWX: 510-661-2077 Intel Semiconductor of FAX: (215) 641-0785 

Canada, Ltd. 
tlntel Corp. * 4585 Canada Way 
400 Penn Center Blvd. Suite 202 
Suite 610 Burnaby V5G 4L6 
Pittsburgh 15235 Tel: (604) 298-0387 
Tel: (412) 823-4970 FAX: (604) 298-8234 
FAX: (412) 829-7578 ONTARIO 

PUERTO RICO tlnlel Semiconductor of 
Canada, Ltd. 

tlnlel Corp. 2650 Queensview Drive 
Suite 250 South Industrial Park 

P.O. Box 910 Ottawa K2B SH6 

Las Piedras 00671 Tel: (613) 829-9714 

Tel: (809) 733-8616 FAX: (613) 820-5936 

tlntel Semiconductor of 

TEXAS Canada, Ltd. 
190 Attwell Drive 

Intel Corp. Suite 500 
Rexdale M9W 6H8 8911 Capital of Texas Hwy. 
Tel: (416) 675-2105 Austin 78759 

Tel: (512) 794-8086 FAX: (416) 675-2438 

FAX: (512) 338-9335 QUEBEC 

tlntel Corp. * Intel SemIconductor of 
12000 Ford Road Canada, Ltd_ 
Suite 400 620 St. Jean Boulevard 
Dallas 75234 Pointe Claire H9R 3K2 
Tel: (214) 241-8087 Tel: (514) 694-9130 
FAX: (214) 484-1180 FAX: 514-694-0064 



DOMESTIC DISTRIBUTORS 
ALABAMA tHamilton Electro Sales CONNECTICUT tHamilton/Avnet Electronics Arrow Electronics, Inc. 

10950 W. Washington Blvd. 1130 Thorndale Avenue 7524 Standish Place 
Arrow Electronics, Inc. Culver City 20230 tArrow Electronics, Inc. Bensenville 60106 Rockville 20855 
1015 Henderson Road Tel: (213) 558-2458 12 Beaumont Road Tel: (312) 869-7780 Tel: 301-424-0244 
Huntsville 35805 TWX: 910-340-6364 Wallingford 06492 TWX: 910-227-0060 
Tel: (205) 837-6955 Tel: (203) 265-7741 MASSACHUSETTS 

tHamiiton/Avnet Electronics Hamilton Electro Sales TWX: 710-476-0162 MTI Systems Sales Arrow Electronics, Inc. 
1361 B West 190th Street 1100 W. Thorndale 25 Upton Dr. 4940 Research Drive 
Gardena 90248 Hamilton/Avnet Electronics Itasca 60143 Wilmington 01887 Huntsville 35805 
Tel: (213) 217-6700 Commerce Industrial Park Tel: (312) 773-2300 Tel: (617) 935-5134 Tel: (205) 837-7210 Commerce Drive 

TWX: 810-726-2162 
tHamilton/Avnet Electronics Danbury 06810 tPioneer Electronics tHamiiton/Avnet Electronics 

Tel: (203) 797-2800 1551 Carmen Drive 100 Centennial Drive 
Pioneer/Technologies Group, Inc 3002 'G' Street Elk Grove Village 60007 Peabody 01960 Ontario 91761 TWX: 710-456-9974 4825 University Square Tel: (312) 437-9680 Tel: (617) 531-7430 
Huntsville 35805 Tel: (714) 989-9411 tPioneer Electronics TWX: 910-222-1834 TWX: 710-393-0382 
Tel: (205) 837-9300 

tAvnet Electronics 
112 Main Street MTI Systems Sales rvvX: 810-726-2197 Norwalk 06851 INDIANA 20501 Plummer Tel: (203) 853-1515 83 Cambridge St. 

ARIZONA Chatsworth 91351 TWX: 710-468-3373 tArrow Electronics, Inc. 
Burlington 01813 

Tel: (213) 700-6271 
2495 Directors Row, Suite H Pioneer Electronics 

tHamllton/Avnet Electronics TWX: 910-494-2207 Indianapolis 46241 44 Hartwell Avenue 
505 S. Madison Drive FLORIDA 

Tel: (317) 243-9353 Lexington 02173 
Tempe 85281 tHamilton Electro Sales 

tArrow Electronics, Inc. TWX: 810-341-3119 Tel: (617) 861-9200 
Tel: (602) 231-5140 3170 Pullman Street TWX: 710-326-6617 
TWX: 910-950-0077 Costa Mesa 92626 400 Fairway Drive Hamilton/Avnet Electronics 

Tel: (714) 641-4150 Suite 102 485 Gradle Drive MICHIGAN 
Hamilton/Avnet Electronics TWX; 910-595-2638 Deerfield Beach 33441 Carmel 46032 Arrow Electronics, Inc. 30 South McKiemy Tel: (305) 429-8200 

Tel: (317) 844-9333 755 Phoenix Drive Chandler 85226 tHamilton/Avnet EI~ctronics TWX: 510-955-9456 
TWX: 810-260-3966 Ann Arbor 48104 Tel: (602) 961-6669 4103 Northgate Blvd. Arrow Electronics, Inc. Tel: (313) 971-8220 TWX: 910-950-0077 Sacramento 95834 37 Skyline Drive tPioneer Electronics TWX: 810-223-6020 

Tel: (916) 920-3150 6408 Castleplace Drive Arrow Electronics, Inc. Suite 3101 Indianapolis 46250 Hamilton/Avnet Electronics 
4134 E. Wood Street Wyle Distribution Group Lake Marv 32746 Tel: (317) 849-7300 2215 29th Street S.E. 
Phoenix 85040 124 Maryland Street 

Tel: (407) 323-0252 TWX: 810-260-1794 Space AS 
Tel: (602) 437-0750 TWX: 510-959-6337 Grand Rapids 49508 
TWX: 910-951-1550 EI Segundo 90254 

Tel: (616) 243-8805 Tel: (213) 322-8100 tHamilton/Avnet Electronics IOWA TWX: 810-274-6921 Wyle Distribution Group 6801 N.W. 15th Way 
17855 N. Black Canyon Hwy. Wyle Distribution Group Ft. Lauderdale 33309 Hamllton/Avnet Electronics Pioneer Electronics 
Phoenix 85023 7382 Lampson Ave. Tel: (305) 971-2900 915 33rd Avenue, SW. 4504 Broadmoor S.E. 
Tel: (602) 249-2232 Garden Grove 92641 TWX: 510-956-3097 Cedar Rapids 52404 Grand Rapids 49508 
TWX: 910-951-4282 Tel: (714) 891-1717 Tel: (319) 362-4757 FAX: 616-698-1831 

TWX: 910-348-7140 or 7111 tHamilton/Avnet Electronics 
tHamilton/Avnet Electronics 

CALIFORNIA 3197 Tech Drive North KANSAS 32487 Schoolcraft Road Wyle Distribution Group St. Petersburg 33702 
Livonia 48150 

Arrow ElectrOnics, Inc. 11151 Sun Center Drive Tel: (813) 576-3930 r'.irow Electronics Tel: (313) 522-4700 
10824 Hope Street Rancho Cordova 95670 TWX: 810-863-0374 8208 Melrose Dr., Suite 2iO TWX: 810-282-8775 
Cypress 90630 Tel: (916) 638-5282 

tHamilton/Avnet Electronics 
Lenexa 66214 

tPioneer/Michigan Tel: (714) 220-6300 Tel: (913) 541-9542 
tWyle Distribution Group 6947 University Boulevard 13485 Stamford 

Arrow Electronics, Inc. 9525 Chesapeake Drive Winter Park 32792 tHamilton/Avnet Electronics Livonia 48150 
19748 Dearborn Street San Diego 92123 Tel: (305) 628-3888 9219 Quivera Road Tel: (313) 525-1800 
Chatsworth 9131 1 Tel: (619) 565-9171 TWX: 810-853-0322 Overland Park 66215 TWX: 810-242-3271 
Tel: (213) 701-7500 TWX: 910-335-1590 tPioneerfTechnologies Group, Inc. Tel: (913) 888-8900 MINNESOTA TWX: 910-493-2086 TWX: 910-743-0005 

tWyle Distribution Group 
337 S. Lake Blvd. tArrow Electronics, Inc. tArow Electronics, Inc. 

3000 Bowers Avenue 
Alta Monte Springs 32701 PloneerfTec Gr. 5230 W. 73rd Street 521 Weddell Drive 

Santa Clara 95051 
Tel: (407) 834-9090 10551 Lockman Rd. Edina 55435 Sunnyvale 94086 TWX: 810-853-0284 Lenexa 66215 Tel: (612) 830-1800 Tel: (408) 745-6600 Tel: (408) 727-2500 

Tel: (913) 492-0500 
TWX: 910-339-9371 TWX: 910-338-0296 PioneerfTechnotogies Group, Inc. TWX: 910-576-3125 

674 S. Military Trail tHamiiton/Avnet Electronics 
Arrow Electronics, Inc. tWyle Distribution Group Deerfield Beach 33442 KENTUCKY 12400 Whitewater Drive 
9511 Ridgehaven Court 17872 Cowan Avenue Tel: (305) 428-8877 Minnetonka 55434 
San Diego 92123 Irvine 92714 TWX: 510-955-9653 Hamitton/Avnet Electronics Tel: (612) 932-0600 
Tel: (619) 565-4800 Tel: (714) 863-9953 1051 D. Newton Park 

tPioneer Electronics TWX: 888-064 TWX: 910-595-1572 
GEORGIA 

Lexington 40511 
7625 Golden Triange Dr. 

tArrow Electronics, Inc. 
Tel: (606) 259-1475 

Suite G 
2961 Dow Avenue Wyle Distribution Group tArrow Electronics, Inc. Eden Prairi 55343 
Tustin 92680 26677 W. Agoura Rd. 3155 Northwoods Parkway MARYLAND Tel: (612) 944-3355 
Tel: (714) 838-5422 Calabasas 91302 Suite A 
'NIX: 910-595-2860 Tel: (818) 880-9000 Norcross 30071 Arrow Electronics, Inc. MISSOURI 

TWX: 372-0232 Tel: (404) 449-8252 8300 Guilford Drive tArrow Electronics, Inc. 
tAvnet Etectronics TWX: 810-766-0439 Suite H, River Center 2380 Schuetz 
350 McCormick Avenue Columbia 21046 S1. Louis 63141 
Costa Mesa 92626 COLORADO tHamilton/Avnet Electronics Tel: (301) 995-0003 Tel: (314) 567-6888 
Tel: (714) 754-6071 5825 0 Peachtree Corners TWX: 710-236-9005 TWX: 910-764-0882 
TWX: 910-595-1928 Arrow Electronics, Inc. Norcross 30092 

Hamilton/Avnet Etectronics tHamllton/Avnet Electronics 7060 South Tucson Way Tel: (404) 447-7500 
tHamiiton/Avnet Electronics Englewood 80112 TWX: 810-766-0432 6822 Oak Hall Lane 13743 Shoreline Court 
1175 Bordeaux Drive Tel: (303) 790-4444 Columbia 21045 Earth City 63045 
Sunnyvale 94086 PioneerfTechnologles Group, Inc. Tel: (301) 995-3500 Tel: (314) 344-1200 
Tel: (408) 743-3300 tHamilton/Avnet Electronics 3100 F Northwoods Place TWX: 710-862-1861 TWX: 910-762-0684 
TWX: 910-339-9332 8765 E. Orchard Road Norcross 30071 

tMesa Technology Corp. NEW HAMPSHIRE rei: (404) 448-1711 
tHamilton/Avnet Electronics Suite 708 TWX: 810-766-4515 9720 Patuxent Woods Dr. tArrow Electronics, Inc. 
4545 Ridgeview Avenue Englewood 80111 Columbia 21046 3 Perimeter Road 
San Diego 92123 Tel: (303) 740-1017 Tel: (301) 290-8150 Manchester 03103 
Tel: (619) 571-7500 TWX: 910-935-0787 ILLINOIS TWX: 710-828-9702 Tel: (603) 668-6968 
TWX: 910-595-2638 

Arrow Electronics, tnc. tPioneerfTechnologies Group, Inc. TWX: 710-220-1684 tWyle Distribution Group 
tHamilton/Avnet ElectroniCs 451 E. 124th Avenue 1140 W. Thorndale 9100 Gaither Road tHamilton/Avnet Electronics 
9650 Desoto Avenue Thornton 80241 Itasca 60143 Gaithersburg 20877 444 E. Industrial Drive 
Chatsworth 91311 Tel: (303) 457-9953 Tel: (312) 250-0500 Tel: (301) 921-0660 Manchester 03103 
Tel: (818) 700-1161 TWX: 910-936-0770 TWX: 312-250-0916 TWX: 710-828-0545 Tel: (603) 624-9400 

tMicrocomputer System Technical Distributor Center 



inter 
DOMESTIC DISTRIBUTORS (Contd.) 

NEW JERSEY 

tArrow Electronics, Inc, 
Four East Stow Road 
Unit 11 
Marlton 08053 
Tel: (609) 596-8000 
TVVX: 710-897-0829 

tArrow Electronics 
6 Century Drive 
Parsipanny 07054 
Tel: (201) 538-0900 

tHamilton/Avnet Electronics 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-0110 
TWX: 710-940-0262 

tHamilton/Avnet Electronics 
10 Industrial 
Fairfield 07006 
Tel: (201) 575-5300 
TWX: 710-734-4388 

tMTI Systems Sales 
37 Kulick Rd. 
Fairfield 07006 
Tel: (201) 227-5552 

tPioneer Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 575-3510 
TWX: 710-734-4382 

NEW MEXICO 

Alliance Electronics Inc. 
11030 Cochiti S.E. 
Albuquerque 87123 
Tel: (505) 292-3360 
TWX: 910-989-1151 

Hamilton/Avnet Electronics 
2524 Baylor Drive S. E. 
Albuquerque all 06 
Tel: (505) 765-1500 
TWX: 910-989-0614 

NEW YORK 

tArrow Electronics, Inc. 
3375 Brighton Henrietta 
Townline Rd. 
Rochester 14623 
Tel: (716) 275-0300 
TWX: 510-253-4766 

Arrow Electronics, Inc. 
20 Oser Avenue 
Hauppauge 11788 
Tel: (516) 231-1000 
TWX: 510-227-6623 

Hamilton/Avnet 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-9800 
TWX: 510-224-6166 

tHamiiton/Avnet Electronics 
333 Metro Park 
Rochester 14623 
Tel: (716) 475-9130 
TWX: 510-253-5470 

iHamiiton/Avnet Electronics 
103 Twin Oaks Drive 
Syracuse 13206 
Tei: (315) 437-0288 
TWX: 710-541-1560 

tMTI Systems Sales 
38 Harbor Park Drive 
Port Washington 11050 
Tel: (516) 621-6200 

tPioneer Electronics 
68 Corporate Drive 
Binghamton 13904 
Tel: (607) 722-9300 
TWX: 510-252-0893 

Pioneer Electronics 
40 Oser Avenue 
Hauppauge 11787 
Tel: (516) 231-9200 

tPioneer Electronics 
60 Crossway Park West 
Woodbury, Long Island 11797 
Tel: (516) 921-8700 
TWX: 510-221-2184 

tPioneer Electronics 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381-7070 
TWX: 510-253-7001 

NORTH CAROLINA 

tArrow Electronics, Inc. 
5240 Greensdairy Road 
Raleigh 27604 
Tel: (919) 876-3132 
TWX: 510-928-1856 

tHamilton/Avnet Electronics 
3510 Spring Forest Drive 
Raleigh 27604 
Tel: (919) 878-0819 
TWX: 510-928-1836 

Ploneer/Technologies Group, Inc. 
9801 A-Southern Pine Blvd. 
Charlotte 28210 
Tel: (919) 527-8188 
TWX: 810-621-0366 

OHIO 

Arrow Electronics, Inc. 
7620 McEwen Road 
Centerville 45459 
Tel: (513) 435-5563 
TWX: 810-459-1611 

tArrow Electronics, Inc. 
6238 Cochran Road 
Solon 44139 
Tel: (216) 248-3990 
TWX: 810-427-9409 

tHamilton/Avnet Electronics 
954 Senate Drive 
Dayton 45459 
Tel: (513) 439-6733 
TWX: 810-450-2531 

Hamilton/Avnet Electronics 
4588 Emery Industrial Pkwy. 
Warrensville Heights 44128 
Tel: (216) 349-5100 
TWX: 810-427-9452 

tHamiiton/Avnet Electronics 
777 Brooksedge Blvd. 
Westerville 43081 
Tel: (614) 882-7004 

tPioneer Electronics 
4433 Interpoint Boulevard 
Dayton 45424 
Tel: (513) 236-9900 
TWX: 810-459-1622 

tPioneer Electronics 
4800 E. 131 st Street 
Cleveland 44105 
Tel: (216) 587-3600 
TWX: 810-422-2211 

OKLAHOMA 

Arrow ElectroniCS, Inc. 
1211 E. 51stSt., Suite 101 
Tulsa 74146 
Tel: (918) 252-7537 

tMicrocomputer System Technical Distributor Center 

tHamilton/Avnet Electronics tPioneer Electronics 
12121 E. 51st St., Suite 102A 18260 Kramer 
Tulsa 74146 Auslin 78758 
Tel: (918) 252-7297 Tel: (512) 835-4000 

T\NX: 910-874-1323 

OREGON tPioneer Electronics 

tAl mac Electronics Corp. 
13710 Omega Road 
Dallas 75234 

1885 N.W. 169th Place Tel: (214) 386-7300 
Beaverton 97005 TWX: 910-850-5563 
Tel: (503) 629-8090 
TWX: 910-467-8746 tPioneer Electronics 

5853 Point West Drive 
tHamilton/Avnet Electronics Houston 77036 
6024 S. W. Jean Road Tel: (713) 988-5555 
Bldg. C, Suite 10 TWX: 910-881-1606 
Lake Oswego 97034 

Wyle Distribution Group Tel: (503) 635-7848 
TWX: 910-455-8179 1810 Greenville Avenue 

Richardson 75081 
Wyle Distribution Group Tel: (214) 235-9953 
5250 N.E. Elam Young Parkway 
Suite 600 

UTAH Hillsboro 97124 
Tel: (503) 640-6000 Arrow Electronics TWX: 910-460-2203 1946 Parkway Blvd. 

Salt Lake City 84119 
PENNSYLVANIA Tel: (801) 973-6913 

Arrow Electronics, Inc. tHamilton/Avnet Electronics 
650 Seco Road 1585 West 2100 South 
Monroeville 15146 Salt Lake City 84119 
Tel: (412) 856-7000 Tel: (801) 972-2800 

TWX: 910-925-4018 
Hamilton/Avnet Electronics 
2800 Liberty Ava. Wyle Distribution Group 
Pittsburgh 15238 1325 West 2200 South 
Tel: (412) 281-4150 Suite E 

West Valley 84119 
Pioneer Electronics Tel: (801) 974-9953 
259 Kappa Drive 
Pittsburgh 15238 

WASHINGTON Tel: (412) 782-2300 
TWX: 710-795-3122 tAlmac Electronics Corp. 

tPioneer(Technologies Group, Inc. 14360 S.E. Eastgate Way 
Bellevue 98007 Delaware Valley Tel: (206) 643-9992 261 Gibralter Road TWX: 910-444-2067 Horsham 19044 

Tel: (215) 674-4000 Arrow ElectroniCS, Inc. TWX: 510-665-6778 19540 68th Ave. South 
Kent 98032 

TEXAS Tel: (206) 575-4420 

tArrow ElectroniCS, Inc. tHamilton/Avnet Electronics 
3220 Commander Drive 14212 N.E. 21st Street 

Bellevue 98005 Carrollton 75006 
Tel: (206) 643-3950 Tel: (214) 380-6464 
TWX: 910-443-2469 TWX: 910-860-5377 

Wyle Distribution Group tArrow Electronics, Inc. 15385 N.E. 90th Street 10899 Kinghurst Redmond 98052 Suite 100 Tel: (206) 881-1150 Houston 77099 
Tel: (713) 530-4700 
TWX: 910-880-4439 WISCONSIN 

tArrow ElectroniCS, Inc. Arrow ElectroniCS, Inc. 
2227 W. Braker Lane 200 N. Patrick Blvd., Ste. 100 
Austin 78758 Brookfield 53005 
Tel: (512) 835-4180 Tel: (414) 767-6600 
TWX: 910-874-1348 TWX: 910-262-1193 

tHamiiton/Avnet Electronics Hamilton/Avnet Electronics 
1807 W. Braker Lane 2975 Moorland Road 
Austin 78758 New Berlin 53151 
Tel: (512) 837-8911 Tel: (414) 784-4510 
TWX: 910-874-1319 TWX: 910-262-1182 

tHamilton/Avnet Electronics 
2111 W. Walnut Hill Lane CANADA 
Irving 75038 
Tel: (214) 550-6111 
TWX: 910-860-5929 ALBERTA 

tHamiiton/Avnet Electronics Hamilton/Avnet Electronics 
4850 Wright Rd., Suite 190 2816 21st Street N.E. 
Stafford 77477 Calgary T2E 6Z3 
Tel: (713) 240-7733 Tel: (403) 230-3586 
TWX: 910-881-5523 TWX: 03-827-642 

Zentronics 
Bay No.1 
3300 14th Avenue N.E. 
Calgary T2A 6J4 
Tel: (403) 272-1021 

BRITISH COLUMBIA 

tHamilton/Avnet Electronics 
105-2550 Boundary 
Burmalay V5M 3Z3 
Tel: (604) 437-6667 

Zentronics 
108-11400 Bridgeport Road 
Richmond V6X 1 T2 
Tel: (604) 273-5575 
TWX: 04-5077-89 

MANITOBA 

Zentronics 
60-1313 Border Unit 60 
Winnipeg R3H OX4 
Tel: (204) 694-1957 

ONTARIO 

Arrow Electronics, Inc. 
36 Antares Dr. 
Nepean K2E 7W5 
Tel: (613) 226-6903 

Arrow E!ectronics, Inc. 
1093 Meyerside 
Mississauga LST lM4 
Tel: (416) 673-7769 
TWX: 06-218213 

tHamilton/Avnet Electronics 
6845 Rexwood Road 
Units 3-4-5 
Mississauga L4T 1 R2 
Tel: (416) 677-7432 
TWX:-610-492-8867 

Hamilton/Avnet Electronics 
6845 Rexwood Rd., Unit 6 
Mississauga L4T 1 R2 
Tel: (416) 277-0484 

tHamilton/Avnet Electronics 
190 Colonnade Road South 
Nepean K2E 7LS 
Tel: (613) 226-1700 
TWX: 05-349-71 

tZentronics 
8 Tilbury Court 
Brampton L6T 3T 4 
Tel: (416) 451-9600 
TWX: 06-976-78 

tZentronics 
155 Colonnade Road 
Unit 17 
Nepean K2E 7K1 
Tel: (613) 226-8840 

Zentronics 
60-1313 Border St. 
Winnipeg R3H 014 
Tel: (204) 694-7957 

QUEBEC 

tArrow Electronics Inc. 
4050 Jean Talon Quest 
Montreal H4P 1 W1 
Tel: (514) 735-5511 
TWX: 05-25590 

Arrow Electronics, Inc. 
500 Avenue St-Jean Baptiste 
Suite 280 
Quebec G2E 5R9 
Tel: (418) 871-7500 
FAX: 418-871-6816 

Hamilton/Avnet Electronics 
2795 Halpern 
St. Laurent H2E 7K1 
Tel: (514) 335-1000 
T\NX: 610-421-3731 

Zentronics 
817 McCaffrey 
St. Laurent H4T 1 M3 
Tel: (514) 737-9700 
TWX: 05-827-535 



bENMARK 

Intel Denmark NS 
Glentevej 61, 3rd Floor 
2400 Copenhagen NV 
Tel: (45) (31) 198033 
TLX: 19567 

FINLAND 

tntel Finland OY 
Ruosilantie 2 
00390 Helsinki 
Tel: (358) 0 544 644 
TLX: 123332 

FRANCE 

Intel Corporation S.A.R.L 
1, Rue Edison-BP 303 
78054 5t. Quentin·en-Yvelines 
Cedex 
Tel: (33) (1) 30 57 70 00 
TLX: 699016 

EUROPEAN SALES OFFICES 
WEST GERMANY ISRAEL NORWAY 

Intel Semiconductor GmbH'" Intel Semiconductor Ltd. '" Intel Norway NS 
Dornacher Strasse 1 Atidim Industrial Park-Neve Sharet Hvamveien 4-PO Box 92 
8016 Feldkirchen bei Muenchen P,O. Box 43202 2013 Skjetten 
Tel: (49) 089/90992-0 Tel·Aviv 61430 Tel: (47) (6) 842 420 
TLX: 5-23177 Tel: (972) 03-498080 TLX: 78018 

TLX: 371215 
Intel Semiconductor GmbH 
Hohenzollern Strasse 5 ITALY SPAIN 
3000 Hannover 1 
Tel: (49) 0511/344081 Intel Corporation Ilalia S.p.A.* Intel Iberia SA 
TLX: 9-23625 Milanofiori Palazzo E Zurbaran, 28 

20090 Assago 28010 Madrid 
Intel Semiconductor GmbH Milano Tel: (34) (1) 308.25.52 
Abraham Lincoln Strasse 16-18 Tel: (39) (02) 89200950 TLX: 46880 
6200 Wiesbaden TLX: 341286 
Tel: (49) 06121/7605-0 

SWEDEN TLX: 4-186183 NETHERLANDS 

Intel Semiconductor GmbH Intel Semiconductor B.V.· Intel Sweden A.B.· 
Zettachring lOA Postbus 84130 Dalvagen 24 
7000 Stuttgart 80 3099 CC Rotterdam 171 36 Solna 
Tel: (49) 0711/7287-280 Tel: (31) 10.407.11.11 Tel: (46) 8 734 01 00 
TLX: 7-254826 TLX: 22283 TLX: 12261 

SWITZERLAND 

Intel Semiconductor A.G. 
Zuerichstrasse 
8185 Winkel-Rueti bei Zuerich 
Tel: (41) 01/860 62 62 
TLX: 825977 

UNITED KINGDOM 

Intel Corporation (U.K.) Ltd.· 
Pipers Way 
Swindon, Wiltshire SN3 1 RJ 
Tel: (44) (0793) 696000 
TLX: 444447/8 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Tekelec-Airtronic ITALY Ditram Bytech-Comway Systems 

Bacher Electronics G.m.b.H. 
Cite des Bruyeres 

Intesi 
Avenida Miguel Bombarda, 133 3 The Western Centre 

Rue Carle Vernet - BP 2 1000 Lisboa Western Road 
Rotenmuehlgasse 26 92310 Sevres Divisione ITT Industries GmbH Tel: (35) (1) 54 53 13 Bracknell RG 12 1 RW 
1120 Wien Tel: (33) (1) 45 34 75 35 Viale Milanofiori TL.X: 14182 Tel: (44) (0344) 55333 
Tel: (43) (0222) 83 56 46 TLX: 204552 Palazzo E/5 TLX: 847201 
TLX: 31532 ¥~~~g9'i"~~?s~J~~, SPAIN 

WEST GERMANY Jermyn 
BELGIUM TL.X: 311351 ATD Electronica, SA Vestry Estate 

Inelco Belgium SA Electronic 2000 AG lasi Elettronica S.pA Plaza Ciudad de Vlena, 6 Otford Road 

Av. des Croix de Guerre 94 Stahlgruberring 12 V. Ie Fulvia Testi, 126 28040 Madrid Sevenoaks 

1120 Bruxelles 8000 Muenchen 82 20092 Cinisello Balsamo (MI) Tel: (34) (1) 234 40 00 Kent TN14 5EU 

Oorlogskruisenlaan, 94 Tel: (49) 089/42001-0 Tel: (39) 02/2440012 TLX: 42477 Tel: (44) (0732) 450144 

1120 Brussel 
TLX: 522561 TLX: 352040 ITI-SESA TLX: 95142 

Tel: (32) (02) 216 01 60 ITT Muftikomponent GmbH Telcom S.r.1. Calle Miguel Angel, 21-3 MMD TL.X: 64475 or 22090 Postfach 1265 Via M. Civitali 75 28010 Madrid Unit 8 Southview Park 
Bahnhofstrasse 44 20148 Milano Tel: (34) (1) 419 09 57 Caversham 

DENMARK 7141 Moeglingen Tel: (39) 02/4049046 TL.X: 27461 Reading 

ITT-Multikomponent 
Tel: (49) 07141/4879 TLX: 335654 Metrologia Iberica, SA Berkshire RG4 OAF 
TLX: 7264472 Tel: (44) (0734) 481666 Naverland 29 ITT Multicomponents Ctra. de Fuencarral, n.80 

2600 Glostrup Jermyn GmbH Viale Milanofiori E/5 28100 Alcobendas (Madrid) TLX: 846669 

Tel: (45) (0) 2 45 66 45 1m Dachsstueck 9 ¥~~~g~s~~?s~J~~, 
Tel: (34) (1) 653 86 11 

Rapid Silicon TLX: 33355 6250 Limburg Rapid House Tel: (49) 06431/508-0 TLX: 311351 SWEDEN Denmark Street 
FINLAND TLX: 415257-0 

Silverstar Nordisk Elektronik AB High Wycombe 
OY Fintronic AS Metrologie GmbH Via Dei Gracchi 20 Torshamnsgatan 39 Buckinghamshire HP11 2ER 

Melkonkatu 24A Meglingerstrasse 49 20146 Milano Box 36 Tel: (44) (0494) 442266 

00210 Helsinki 8000 Muenchen 71 Tel: (39) 02/49961 16493 Kista TLX: 837931 

Tel: (358) (0) 6926022 Tel: (49) 089/78042-0 TLX: 332189 Tel: (46) 08-03 46 30 
Rapid Systems TLX: 124224 TLX: 5213189 TLX: 10547 

NETHERLANDS Rapid House 

FRANCE 
Proelectron Vertriebs GmbH SWITZERLAND Denmark Street 
Max Planck Strasse 1-3 Koning en Hartman Elektrotechniek High Wycombe 

A1mex 6072 Dreieich B.v. lndustrade A.G. Buckinghamshire HP11 2ER 

Zone industrielle d'Antony Tel: (49).06103/30434-3 Energieweg 1 Hertistrasse 31 Tel: (44) (0494) 450244 
48, rue de l'Aubepine TLX: 417903 2627 AP Delft 8304 Wallisellen TLX: 837931 
BP 102 Tel: (31) (0) 15/609906 Tel: (41) (01) 8328111 

92164 Antony cedex IRELAND TLX: 38250 TLX: 56788 
YUGOSLAVIA 

Tel: (33) (1) 46 66 21 12 Micro Marketing Ltd. NORWAY TURKEY TLX: 250067 Glenageary Office Park Nordisk Elektronikk (Norge) NS 
H.R. Microelectronics Corp. 

Jermyn-Generim Glenageary Postboks 123 EMPA Electronic 2005 de la Cruz Blvd., Ste. 223 

60, rue des Gemeaux Co. Dublin Smedsvingen 4 Undwurmstrasse 95A Santa Clara, CA 95050 
SiJic 580 Tel: (21) (353) (01) 856325 1364 Hvalstad 8000 Muenchen 2 U.S.A. 
94653 Rungis cedex TL.X: 31584 Tel: (47) (02) 84 62 10 Tel: (49) 089/53 80 570 Tel: (1) (408) 988-0286 

Tel: (33) (1) 49 78 49 78 TL.X: 77546 TLX: 528573 TLX: 387452 
TLX: 261585 ISRAEL 

Rapido Electronic Components 
Metrologie Eastronics Ltd. PORTUGAL UNITED KINGDOM 

S.p.a. 
Tour d'Asnieres 11 Rozanis Street ATD Portugal LOA Accent Electronic Components Ltd. Via C. Beccaria, 8 
4, avo laurent-Cely P.O.B. 39300 Rua Dos Lusiados, 5 Sala B Jubilee House, Jubilee Road 34133 Trieste 
92606 Asnieres Cedex Tel-Aviv 61392 1300 Lisboa Letchworth, Herts SG6 1TL ltalia 
Tel: (33) (1) 47 90 62 40 Tel: (972) 03-475151 Tel: (35) (1) 64 80 91 Tel: (44) (0462) 686666 Tel: (39) 040/360555 
TLX: 611448 TLX: 33638 TLX: 61562 TLX: 826293 TLX: 460461 

·Field Application LocatJon 



AUSTRALIA 

Intel Australia Pty. Ltd." 
Spectrum Building 

~~2:sa~~~t~E,L~~~~ 6 

Tel: 612-957-2744 
FAX: 612-923-2632 

BRAZIL 

Intel Semicondutores do Brazil LTDA 
Av. Paulista, 11S9-CJS 404/405 
01311 - Sao Paulo - S.P. 
Tel: 55-11-287-5899 
TLX: 39111531461SDB 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
1S/F, Office 1, Cilie Bldg. 
Jian Guo Men Wai Street 
Beijing, PRC 
Tel: (1) 500-4850 
TLX: 22947 INTEL eN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd." 
10/F East Tower 
Bond Center 
Queensway, Central 
Hong Kong 
Tel: (5) 8444-555 
TLX: 63869 ISHLHK HX 
FAX: (5) 8681-989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
St. Mark's Road 
Bangatore 560001 
Tet: 011-91-812-215065 
TLX: 9538452875 DCBY 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Takodai, Tsukuba-shi 
Ibaraki, 300-26 
Tel: 0298-47-8511 
TLX: 3656-160 
FAX: 029747-8450 

Intel Japan K.K.* 
DaUchi Mitsugi Bldg. 
1-8889 Fuchu-cho 
Fuchu-shi, Tokyo 183 
Tel: 0423-60-7871 
FAX: 0423-60-0315 

I ntel Japan K. K. * 
Bldg. Kumagaya 
2-69 Hon-cho 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

Intel Japan K.K.* 
Mitsui-Seimei Musashi·kosugi Bldg. 
915 Shinmaruko, Nakahara-ku 
Kawasaki-shi, Kanagawa 211 
Tel: 044-733-7011 
FAX: 044-733-7010 

~i~;~a~~~~i~tsU9i Bldg. 
1-2-1 Asahi-machi 
Atsugi-shi, Kanagawa 243 
Tel: 0462-29-3731 
FAX: 0462-29-3781 

Intel Japan K.K.* 
Ryokuchi-Eki Bldg. 
2-4-1 Terauchi 
Toyonaka-shi, Osaka 560 
Tel: 06-863-1091 
FAX: 06-663-1084 

Intel Japan K.K. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
Tel: 03-201-3621 
FAX: 03-201-6850 

Intel Japan K.K. 
Green Bldg. 
1-16-20 Nishiki 
Naka·ku, Nagoya-shi 
Aichi 450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Technology Asia, Ltd. 
16th Floor, Life Bldg. 
61 Yoido-dong, Youngdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186, 8286, 8386 
TL.X: K29312 INTELKO 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #21-05/06 
United Square 
Singapore 1130 
Tel: 250-7811 
TLX: 39921 INTEL 
FAX: 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
6th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-716-9660 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

DAFSYS S.R.L. 
Chacabuco, 90-6 PISO 
1069-Buenos Aires 
Tel: 54-1-334-7726 
FAX: 54-1-334-1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TLX: M30895 
FAX: 011-61-3-543-8179 

NSD-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3126 
Tel: 038900970 
FAX: 038990819 

BRAZIL 

Elebra Microelectronica SA 
Rua Geraldo Flausina Gomes, 78 
10th Floor 
04575 - Sao Paulo - S.P. 
Tel: 55-11-534-9641 
TLX: 55-11-54593/54591 
FAX: 55-11-534~9424 

CHILE 

DIN Instruments 
Suecia 2323 
Casilla 6055, Correo 22 
Santiago 
Tel: 56-2-225-8139 
Tl..X: 240.846 RUD 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Flat D, 20 Kingsford Ind. Bldg. 
Phase 1, 26 Kwai Hei Street 
N.T., Kowloon 
Hong Kong 
Tel: 652~0-4223222 
TWX: 39114 JINMI HX 
FAX: 852-0-4261602 

*Field Application Location 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538458332 MDBG 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MDEV 

Micronic Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MDND IN 

Micranic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511·6471 
FAX: 093-551-7861 

C. Itoh Techno-Science Co., Ltd. 
4-8-1 Dobashi, Miyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semican ~ystems, Inc. 
Flower Hill Shlnmachi Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-439-1600 
FAX: 03-439-1601 

Okaya Koki 
2-4-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12~22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-546-5011 
FAX: 03-546-5044 

KOREA 

J-Tek Corporation 
6th Floor, Government PenSion Bldg. 
24-3 Yaida-dong " 
Youngdeungpo-ku 
Seou1150~010 
Tel: 82-2-780-8039 
TL.X: 25299 KODIGIT 
FAX: 82-2-784-8391 

Samsung Electronics 
150 Taepyungro-2 KA 
Chungku, Seoul 100-102 
Tel: 82-2-751-3965 
TLX: 27970 KORSST 
FAX: 82-2-753-0967 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Vista, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UR 
FAX: (619) 585-8322 

Dicopel SA 
Tochtli 368 Fracc. Ind. San Antonio 
Azcapotzalco 
C.P. 02760-Mexico, D.F. 
Tel: 52~5-561-3211 
TLX: 177 3790 Dicome 
FAX: 52-5-561-1279 

PSI de Mexico 
Francisco Villas Esq. Ajusto 
Cuernavaca - Morelos - CEP 62130 
Tel: 52-73-13-9412 
FAX: 52-73-17-5333 

NEW ZEALAND 

Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011-64-9-591-155 
FAX: 011-64-9-592-681 

SINGAPORE 

Electronic Resources. Pte, Ltd. 
17 Harvey Road #04~01 
Singapore 1336 
Tel: 283-0888 
TWX: 56541 ERS 
FAX: 2895327 

SOUTH AFRICA 

Electronic Building Elements 
178 Erasmus Street (off Watermeyet Street) 
Meyerspark, Pretoria, 0184 
Tel: 011-2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

Micro Electronics Corporation 
5/F 587, Ming Shen East Rd. 
Taipei, R.O.C. 
Tel: 866-2~501-8231 
FAX: 886-2-505-6609 

Sertek 
15/F 135, Section 2 
Chien Juo North Rd. 
Taipei 10479, R.O.C. 
Tel: (02) 5010055 
FAX: (02) 5012521 

(02) 5058414 

VENEZUELA 

P. Benavides S.A. 
Avilanes a Rio 
Residencia Kamarata 
Locales 4 AL 7 
La Candelaria, Caracas 
Tel: 58-2-574-6338 
TLX: 28450 
FAX: 58-2-572~3321 



ALABAMA 

*Intel Corp. 
5015 Bradford Dr., Suite 2 
Huntsville 35805 
Tel: (205) 830-4010 

ALASKA 

Intel Corp. 
c/o TransAlaska Data Systems 
300 Old Steese Hwy. 
Fairbanks 99701-3120 
Tel: (907) 452-4401 

Intel Corp. 
c/o TransAlaska Data Systems 
1551 Lore Road 
Anchorage 99507 
Tel: (907) 522-1776 

ARIZONA 

"'Intel Corp. 
11225 N. 28th Dr. 
Suite 0-214 
Phoenix 85029 
Tel: (602) 869-4980 

"'Intel Corp. 
500 E. Fry Blvd., Suite M-15 
Sierra Vista 85635 
Tel: (602) 459-5010 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen 8t., Ste. 116 
Canoga Park 91303 
Tel: (818) 704-8500 

"'Intel Corp. 
2250 E. Imperial Hwy., Ste. 218 
EI Segundo 90245 
Tel: (213) 640-6040 

""ntel Corp. 
1900 Prairie City Rd. 
Folsom 95630-9597 
Tel: (916) 351-6143 

1-800-468-3548 

Intel Corp. 
9665 Cheasapeake Dr., Suite 325 
San Diego 92123-1326 
Tel: (619) 292-8086 

"Intel Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1700 

1-800-421-0386 

DOMESTIC SERVICE OFFICES 
"'*tlntel Corp. 
San Tomas 4 

KANSAS NEW YORK 

2700 San Tomas Exp., 2nd Floor *Intel Corp. "'tlntel Corp. 
Santa Clara 95051 10985 Cody, Suite 140 2950 Expressway Dr. South 
Tel: (408) 986-8086 Overland Park 66210 Islandia 11722 

Tel: (913) 345-2727 Tel: (516) 231-3300 

COLORADO *Intel Corp. 
MARYLAND Westage Business Center 

*Intel Corp. Bldg. 300, Route 9 
650 S. Cherry St., Suite 915 **tlntel Corp. Fishkill 12524 
Denver 80222 10010 Junction Dr., Suit'e 200 Tel: (914) 897-3860 
Tel: (303) 321-8086 Annapolis Junction 20701 

Tel: (301) 206-2860 

CONNECTICUT 
FAX: 301-206-3677 NORTH CAROLINA 

"'Intel Corp. "'Intel Corp. MASSACHUSETIS 
301 Lee Farm Corporate Park 5800 Executive Dr., Ste. 105 

Charlotte 28212 83 Wooster Heights Rd. "''''tlntel Corp. Tel: (704) 568-8966 Danbury 06810 3 Carlisle Rd., 2nd Floor 
Tel: (203) 748-3130 Westford 01886 "Intel Corp. 

Tel: (508) 692-1060 2700 Wycliff Road 
FLORIDA Suite 102 

MICHIGAN Raleigh 27607 
"Intel Corp. Tel: (919) 781-8022 
6363 N.W. 6th Way, Ste. 100 "'tlntel Corp. Ft. Lauderdale 33309 
Tel: (305) 771-0600 

7071 Orchard Lake Rd., Ste. 100 OHIO 
West Bloomfield 48322 

"'Intel Corp. 
Tel: (313) 851-8905 .. tlntel Corp. 

5850 T.G. Lee Blvd., Ste. 340 3401 Park Center Dr., Ste. 220 
Orlando 32822 MINNESOTA Dayton 45414 
Tel: (407) 240-8000 Tel: (513) 890-5350 

"'tlntel Corp. 
"'tlntel Corp. 

GEORGIA 3500 W. 80th S1., Suite 360 
25700 Science Park Dr., Ste. 100 Bloomington 55431 

Tel: (612) 835-6722 Beachwood 44122 
"'Intel Corp. Tel: (216) 464-2736 
3280 Pointe Pkwy., Ste. 200 
Norcross 30092 MISSOURI 
Tel: (404) 449-0541 OREGON 

"'Intel Corp. 
HAWAII 4203 Earth City Exp., S1e. 131 Intel Corp. 

Earth City 63045 15254 N.W. Greenbrier Parkway 

"'Intel Corp. Tel: (314) 291-1990 Building B 
Beaverton 97005 

U.S.I.S.C. Signal Batt. Tel: (503) 645-8051 
Building T-1521 

NEW JERSEY Shafter Plats "'Intel Corp. Shafter 96856 
"''''Intel Corp. 5200 N.E. Elam Young Parkway 
300 Sylvan Avenue Hillsboro 97123 

ILLINOIS Englewood Cliffs 07632 Tel: (503) 681-8080 
Tel: (201) 567-0821 

.. tlntel Corp. 
"'Intel Corp. PENNSYLVANIA 300 N. Martingale Rd., Ste. 400 

Schaumburg 60173 Parkway 109 Office Center 
Tel: (312) 605-8031 32B Newman Springs Road "'tlntel Corp. 

Red Bank 07701 455 Pennsylvania Ave., Ste. 230 
Tel: (201) 747-2233 Fort Washington 19034 

INDIANA Tel: (215) 641-1000 
"'Intel Corp. 

"'Intel Corp. 280 Corporate Center tlntel Corp_ 
8777 Purdue Rd., 8te. 125 75 Livingston Ave., 1st Floor 400 Penn Center Blvd., 8te. 610 
Indianapolis 46268 Roseland 07068 Pittsburgh 15235 
Tel: (317) 875-0623 Tel: (201) 740-0111 Tel: (412) 823-4970 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

300 N. Martingale Road 
SUite 300 
Schaumburg 60173 
Tel: (708) 706-5700 

1-800-421-0386 

MASSACHUSETIS 

3 Carlisle Road, First Floor 
Westford 01886 
Tel: (301) 220-3380 

1-800-328-0386 

MARYLAND 

10010 Junction Dr. 
Suite 200 
Annapolis Junction 20701 
Tel: (301) 206-2860 

1-800-328-0386 

Intel Corp. 
1513 Cedar Cliff Dr. 
Camp Hill 17011 
Tel: (717) 761-0860 

PUERTO RICO 

Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

Intel Corp. 
8815 Dyer St., Suite 225 
EI Paso 79904 
Tel: (915) 751-0186 

"'Intel Corp. 
313 E. Anderson Lane, Suite 314 
Austin 78752 
Tel: (512) 454-3628 

.. tlntel Corp. 
12000 Ford Rd., Suite 401 
Dallas 75234 
Tel: (214) 241-8087 

"'Intel Corp. 
7322 SW. Freeway, Ste. 1490 
Houston 77074 
Tel: (713) 988-8086 

UTAH 

Intel Corp. 
428 East 6400 South, Ste. 104 
Murray 84107 
Tel: (B01) 263-8051 

VIRGINIA 

"'Intel Corp. 
1504 Santa Rosa Rd., Ste. lOB 
Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 

"'Intel Corp. 
155 108th Avenue N.E., Ste. 386 
Bellevue 98004 
Tel: (206) 453-8086 

CANADA 
ONTARIO 

Intel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829-9714 
FAX: 613-820-5936 

Intel Semiconductor of 
Canada, Ltd. 
190 Attwell Dr., Ste. 102 
Rexdale M9W 6HB 
Tel: (416) 675-2105 
FAX: 416-675-2438 

SYSTEMS ENGINEERING MANAGERS OFFICES 
MINNESOTA 

3500 W. 80th Street 
SUite 360 
Bloomington 55431 
Tel: (612) 835-6722 

tSystem Engineering locations 
"'Carry-in locations 

"Carry-in/mail-in locations 

NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 




