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PREFACE

The Intel i860™ 64-bit microprocessor is a general purpose microprocessor integrating
an integer RISC core unit, a floating-point unit, a paged memory management unit,
instruction and data caches, and 3-D graphics software assist logic in a single VLSI
component. The versatile 64-bit design of the i860 microprocessor balances performance
across integer, floating point, and graphics processing capability. Its parallel architecture
achieves high throughput with RISC design techniques, pipelined processing units, wide
data paths, large on-chip caches and fast one micron CHMOS* IV silicon technology.

This manual provides the basic information required to implement an i860 microproces-
sor based system. It explains the external hardware details of the processor.

Although the main users of this manual are hardware design engineers, it contains basic
hardware information which is of value to software engineers and programmers. These
readers should reference the first three chapters only.

RELATED PUBLICATIONS

In this manual, the 1860 microprocessor is presented from a hardware perspective. Infor-
mation on the software architecture, instruction set and programming can be found in
these related Intel publications:

e i860™ 64-Bit Microprocessor Programmers Reference Manual, order number 240329
Information on the device specification for the i860 microprocessor is available in the

i860™ 64-Bit Microprocessor Data Sheet, order number 240296. Always refer to the most
recent version of the device specification.

ORGANIZATION OF THE MANUAL

o Chapter 1, “Introduction to i860™ 64-Bit Microprocessor”, provides an overview of
the features of the i860 microprocessor and the advantages to system designers. It
also provides the insight to i860 microprocessor applications.

o Chapter 2, “Internal Architecture”, describes the internal architecture of the i860
MiCroprocessor.

o Chapter 3, “Local Bus Interface”, discusses the i860 microprocessor local bus inter-
face. This includes the signal descriptions, bus operation and local bus interface
guidelines. ’

o Chapter 4, “Memory Interfacing”, discusses techniques for designing memory sub-
systems for the i860 microprocessor. The schematics are given in Appendix C.

o Chapter 5, “I/O Interfacing”, discusses techniques for connecting I/O devices to an
1860 microprocessor system.

o Chapter 6, “Graphics Subsystem Example”, discusses a design example for imple-
' menting an i860 microprocessor based graphics subsystem.

e Chapter 7, “MULTIBUS® II and the i860™ Microprocessor”, provides a design
example for the MULTIBUS II board built around the i860 microprocessor.
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e Chapter 8, “Physical Design and Debugging”, contains recommendations for con-
structing and debugging the i860 microprocessor based systems.

o Chapter 9, “Testability”, covers the testability issues on the i860 microprocessor.

e Appendix A provides tested schematics of an i860 microprocessor Graphics Frame
Buffer Board and is to used in conjunction with Chapter 6.

e Appendix B contains an untested example for the i860 microprocessor based
MULTIBUS II design that is explained in Chapter 7.

e Appendix C provides the tested schematics and PLD codes for i860 microprocessor
memory design.

Signal mnemonics convey whether a signal state is active high or active low. An active-
low signal mnemonic is suffixed with a pound character (#); an active-high signal
mnemonic does not have this suffix.
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CHAPTER 1
INTRODUCTION TO THE i860™
64-BIT MICROPROCESSOR

This chapter provides an overview of the i860™ mlcroprocessor its characteristics, pos-
sible system configurations and applications.

The 1860 microprocessor uses pipelining, parallelism and reduced instruction set com-
puter (RISC) design techniques for high performance. With over one million transistors,
it integrates an integer unit, a floating-point unit, a graphics unit, a memory management
unit, and separate data and instruction caches.

The 1860 microprocessor executes up to two instructions in parallel and makes extensive
use of pipelining. High integration and wide data paths eliminate bottlenecks in fetching
instructions or data from its on-chip caches.

Designing with the i860 CPU is like designing with any other microprocessor. Its high-
performance can be easily delivered using standard interface logic, DRAMs, EPROMs,
and I/O devices. An existing 32-bit microprocessor-based system can be easily upgraded
with the 64-bit i860 CPU by widening the memory bus.

1.1 PROCESSOR CHARACTERISTICS

The i860 microprocessor’s 1 million transistors offer a high level of integration. A single
board design can be completed with four address latches, eight data tranceivers, a clock
generator circuit, one EPROM for bootstrapping, a 64-bit wide memory and a few
PLDs.

The 1860 microprocessor contains the following features:
e Integer processing unit |

e Floating-point and graphics unit

¢ Memory management unit

e 8 Kbyte data cache with 128-bit internal data path

e 4 Kbyte instruction cache with 64-bit internal data path

The 1860 microprocessor uses RISC design techniques such as:

Single clock instruction execution

Load and store architecture

32 general purpose 32-bit registers

Delayed branching
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e Register scoreboarding
e Register bypassing
o Single-cycle loop instruction

e Branch taken/not-taken instruction fetching optimization

The on-chip graphics and floating-point units of the i860 microprocessor support
simulation and 3-D displays. The integer instructions can be used to feed data to the
graphics and floating-point units. These units are pipelined to produce up to two
floating-point results per clock. Some of the features related to the graphics and
floating-point unit are:

e Separate adder and multiplier units

e Pipelined/parallel floating-point hardware

e Graphics instructions and hardware optimized for 3-D

e 8-, 16- or 32-bit color or black and white pixel data types
o Single- and double-precision IEEE floating-point standard

o Parallel integer and floating-point operation

The i860 microprocessor’s high-performance design uses wide buses and pipelined logic
to sustain many parallel operations. The level of performance of the i860 microprocessor
is difficult to achieve in multichip systems due to the need for many wide buses. The
high-performance design applies to the external bus as well, maximizing the performance
that can be obtained from DRAM memory. Some of the performance related features
are:

e 64-bit internal and external data bus

e Three operations per clock

e Dual-instruction mode

e 33/40 MHz operating frequency

o 80 million floating-point operations per second peak in single-precision
o 60 million floating-point operations per second peak in double-precision
e 320 Mbyte/sec instruction cache bandwidth at 40 MHz

e 640 Mbyte/sec data cache bandwidth at 40 MHz

e 160 Mbyte/sec external bus bandwidth at 40 MHz

e Fast data movement with 128-bit load and store instructions

e Three pipelined cycles on the external bus

1-2
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The 1860 microprocessor can support virtual memory and multiprocessor systems. All
memory references are fully restartable in case of virtual memory faults. Full support is
provided for synchronizing operation between multiple CPUs. Features related to virtual
memory and multiprocessor support are:

e 32-bit (4 'gigabyte) address space with on-chip paging unit

e Support for demand paging

o 4 Kbyte page size

e On-chip 64-entry translation lookaside buffer (TLB)

e User level/supervisor level protection

e Bus locking across multiple instructions

e . Cache control

e Trap mechanism for interrupts and faults

e Multiprocessor operating systems

Use of the i860 microprocessor design simplifies systera design. It has a conventional
microprocessor bus with a standard READY# signal used to allow accesses to slow
memories. Software development is assisted by specialized hardware debugging capabil-

ities. Some of the additional implementation features to facilitate hardware design and
software development are:

o 1X clock

o Optimizations for use of page mode and static mode dynamic RAMs
o Pin boundary scanning for component or board testing

o CHMOS* IV 1-micron technology, TTL compatible

e 3 watt power dissipation at 40 MHz

¢ Single 8-bit EPROM can boot system

e On-chip debugging support

1.2 PROCESSOR OVERVIEW

This section provides a quick overview of the i860 microprocessor. The processor archi-
tecture will be discussed in greater detail in Chapter 2, and the external interface in
Chapter 3.

1.2.1 Pipelining and Parallelism

Pipelining is a technique that divides tasks into a series of smaller subtasks which can be
performed quickly and concurrently with one another. By means of pipelining, several
data items can be acted on simultaneously. Although several clock cycles are needed to
complete an operation, a new result is produced each clock. Pipelining is used through-
out the i860 microprocessor to achieve maximum performance. Simple scalar operations
can be used to hide details of the pipelining. All scalar floating-point and integer oper-
ations are fully interlocked.

1-3
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Parallelism allows two or more operations to execute simultaneously. The i860
microprocessor supports parallelism, allowing multiplication and addition to execute
simultaneously within the floating-point unit. Parallelism also allows the integer and
floating-point units to execute simultaneously. The i860 microprocessor can execute an
integer instruction and two floating-point operations in the same clock to achieve three
operations per clock cycle.

1.2.2 Instruction Set Architecture

The instruction set architecture can implement any portable operating system, language
or application. The instruction set includes integer, floating-point, and graphics instruc-
tions. All future products of the 1860 CPU line will support this architecture.

The core unit executes the basic instruction set including arithmetic, logical, shift and
program control instructions. The core unit, floating-point unit and graphics unit are all
implemented using RISC principles. All instructions execute in only one clock cycle.

The 1860 microprocessor uses a load and store architecture. Only load and store instruc-
tions can access memory data. All other instructions use only registers to perform oper-
ations. Integer and floating-point instructions use two operand registers and a
destination register for the result.

The i860 microprocessor employs delayed branching techniques to avoid interruptions to
the flow of data through pipelines. An optimized set of conditional branch and loop
instructions minimizes pipeline breaks. Use of a branch-taken or branch-not-taken ver-
sion of the conditional branch instruction selects whether to pre-fetch the upcoming
sequential instruction or the branch target address.

1.2.3 Registers

The 1860 microprocessor provides 32 32-bit integer registers for the core unit and an-
other 32 32-bit floating-point registers that are used in the floating-point unit and the
graphics unit. The floating-point registers can also be used in pairs as double-precision
registers. Quadword memory load instructions load four floating-point registers. Regis-
ter r0 of the integer registers and f0 and f1 of the floating-point registers return a zero
value when read and are treated as a null destination when a value is stored into them.

1.2.4 Address Space

The i860 microprocessor can address up to four gigabytes of memory and memory-
mapped I/O locations. Programmers can access memory space as 8-, 16-, 32-, 64- and
128-bit quantities. Operands of 8 and 16 bits are automatically aligned to the low order
bits of a 32-bit register on a load. An improperly aligned data access causes a trap.

1-4



intel” INTRODUCTION TO THE i860™ 64-BIT MICROPROCESSOR

1.2.5 Floating-Point Operations

The floating-point unit supports the ANSI/IEEE 754-1985 Standard for Binary Floating-
point Arithmetic and supports both single- and double-precision operands. Traps detect
all floating-point exceptions. Hardware implements all rounding modes in order to sup-
port the standard with minimal overhead. The floating-point unit provides a full comple-
ment of operations to permit efficient implementation of all low-level and high-level
functions defined by the standard.

The parallel floating-point adder unit and multiplication unit have been designed to
efficiently perform matrix manipulation, series expansion and signal processing algo-
rithms. The integer unit along with the pipelined and parallel operation of the floating-
point unit can emulate the capability of vector processing instructions found in
supercomputers, but with added flexibility. The scalar floating-point operations hide all
details of the pipeline.

The floating-point load instructions provide 32-, 64- and 128-bit operands for the
floating-point unit while it operates in dual-instruction mode. Integer operations can be
performed in parallel with all floating point operations.

1.2.6 Graphics Support

The graphics unit supports instructions for 3-D color or black and white algorithms.
Pixel formats of 8-, 16- or 32-bit are supported. The i860 microprocessor supports effi-
cient implementation of Phong and Gouraud shading operations. A Z-buffer check
instruction is provided to detect the closest surface of a 3-D image. Either 16- or 32-bit
Z-buffer can be used. The 3-D graphics unit uses much of the floating-point point
hardware.

1.2.7 Caches

Two on-chip caches help to sustain the i860 microprocessor’s high performance. The
8 Kbyte data cache is a two-way set-associative memory with a 32-byte block size and a
128-bit data path. It uses a write-back policy on memory write operations. This technique
delays the external write operations needed to maintain consistency between the cache
and external memory. With this approach, multiple write operations to the same loca-
tion, do not result in needless multiple bus operations. When write operations to exter-
nal memory are performed, two 128-bit wide write buffers are used which post the write
operations and delay them until the memory subsystem is not in use.

The 4 Kbyte instruction cache is also implemented as a two-way set associative memory.
It provides a 64-bit wide internal datapath. The instruction cache is.read-only; writes to
memory do not update the code cache. A separate flush instruction is available to inval-
idate the contents of code cache, if the need arises.

External caches are supported via cache control pins, cache control bits in page table

entries, and a two clock bus. Multiprocessing systems can be built using external caches
and preventing shared data from being cached on-chip.
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Since the data and instruction caches map virtual addresses to data, the data and in-
struction caches can operate in parallel with the translation lookaside buffer (TLB).
Data can be obtained in one clock cycle when there is a hit in the cache.

1.2.8 Paging Unit

The on-chip paging unit converts 32-bit virtual memory addresses to 32-bit physical ad-
dresses. Each page is 4 Kbytes in size. Supervisor and user level read and write memory
protection is provided on a per page basis. Supervisor pages can be write-protected to
perform copy-on-write operations for supervisor data.

A translation lookaside buffer (TLB) acts as a 64-entry cache for the virtual memory
tables. These tables map virtual page addresses to physical page addresses and provide
protection rights. The TLB makes memory management more efficient by operating in
parallel with the data and instruction caches. TLB cache misses and updates are handled
automatically in hardware.

1.2.9 Debugging Support

The 1860 microprocessor provides a debug hardware support trap which can be activated
when reading and/or writing at an address stored in the data breakpoint register. The
address can refer to data inside the caches or off-chip.

1.2.10 External Interface

This section outlines the functions provided by the i860 microprocessor’s external inter-
face. These functions are detailed in Chapter 3.

The external interface pin-out consists of a 29-bit address bus, an 8-bit byte enable
control bus, a 64-bit data bus, 19 control signals and 48 power and ground pins. The
external bus is timed relative to a clock. All outputs are valid before the end of a clock
period. All inputs are synchronous to the clock.

1.2,10.1 TWO-LEVEL BUS PIPELINING OF LOCAL BUS

The i860 microprocessor permits up to two levels of pipelining in external memory
operations, providing throughput beyond the cycle or access time of the components
used. A two level configuration allows three operations to occur simultaneously and
triples memory throughput. While the total cycle time is six clocks, 64 bits of data are
transferred every two clocks. Pipelining permits a high-performance memory system
while using low-cost DRAMSs. Even with a single bank of DRAMSs, pipelining allows
overlapping of accesses to the same DRAM page.

1.2.10.2 BUS ARBITRATION SUPPORT
* The i860 microprocessor provides three signals to control bus and control line arbitra-

tion: the input line HOLD (bus hold request) and the output lines HLDA (hold ac-
knowledge) and BREQ (bus request). HOLD and HOLDA provide a handshake with
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other processors or an arbitration circuit to allow several processors to share the external
buses. The processor can operate out of its internal cache for periods of time and uses
the BREQ signal to indicate that it is waiting to use the external bus.

1.2.10.3 DRAM INTERFACE SUPPORT (PAGE-MODE AND STATIC COLUMN)

The 1860 microprocessor provides support for page mode and static column DRAMs.
These provide faster memory cycles when sequential reads or writes take place from the
same row address in a DRAM component. This occurs often, because cache updates
typically involve four 64-bit sequential read cycles and the write buffers often group
together four sequential write cycles.

The 1860 microprocessor provides a next near signal (NENE#) to reduce the amount of
external circuitry needed to support page mode and static column DRAMs. The signal is
asserted when successive current cycles are in the same DRAM page. The size of the
DRAM can be programmed.

1.2.10.4 CACHE CONTROL

The 1860 microprocessor supports memory mapped I/O, external caches and multiple
CPUs. All of these require correct use of caching. The cache enable input signal
(KEN#) and page table bit output signal (PTB) control and monitor the data and in-
struction caches. The KEN# signal input is used by external logic to tell the processor
when read data should not be cached. This prevents the processor from caching shared
memory in a multiprocessor system and alleviates inconsistencies when two or more
processors are accessing the same area of memory. All read operations from memory
mapped I/O locations must deassert KEN#.

The page table bit (PTB) output signal operates in two modes. In one mode it indicates
whether the software has disabled updates to the data or code cache during the current
read cycle. In its other mode of operation it indicates whether the software has disabled
the use of an external cache for the current cycle. This kind of software control of
caching is done on a page by page basis, only when paging operation is enabled. The
software controls the use of the cache in order to guarantee the consistency of shared
data in a multiprocessor environment.

1.2.10.5 LOCKED MEMORY CYCLES

The external LOCK# pin indicates that the i860 microprocessor is performing a set of
memory cycles that should not be interrupted. The memory subsystem should bé de-
signed so that the memory subsystem cannot be accessed by other processors while this
pin is active. Multiple instructions can be executed while the lock signal is active. All
semaphore operations, like compare and swap, can be implemented.

1-7
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1.2.10.6 EIGHT-BIT BUS ACCESS FOR BOOTSTRAPPING OPERATION (CS8)

The INT/CS8 input pin can establish 8-bit code accesses upon hardware reset. This
feature allows bootstrapping from an 8-bit external EPROM or ROM device and re-
duces the number of parts needed to complete a board. Only code accesses are affected
in this mode. This mode only works immediately after activation of RESET. A control
register allows software to disable this mode, but not to reenable it.

The entire code and initial data of an application or bootup code can be placed into one
EPROM and copied to DRAM for execution.

1.2.10.7 BOUNDARY SCAN TO SIMPLIFY BOARD LEVEL TESTING OR
BOOTUP CODE

The 1860 microprocessor allows all the input pins to be serially sampled. Likewise, the
state of all the output pins can assume a value set by serial input data. This precludes the
need for complex programs that are normally needed to manipulate pins and permits the
testing of board logic circuitry with the i860 microprocessor installed.

1.2.11 Clock Requirements

The 860 microprocessor uses an external clock that runs at 33.3 or 40 MHz. This clock
synchronizes the internal functional blocks of the processor, and synchronizes the exter-
nal signals. Most logic connected to the i860 CPU will also use this clock.

1.2.12 i860™ Microprocessor Packaging and Power Requirements

The i860 microprocessor is available in a 168-pin pin-grid array (PGA) package with 120
signal pins and 48 power and ground pins. All the power and ground pins must be
connected. Low-inductance bypass capacitors should be used around the i860 CPU to
handle current surges when all the address and data lines change state simultaneously.
Direct current power dissipation when running at 33 MHz is two watts at normal oper-
ation and three watts at peak operation. A heat sink may be used to keep the case
temperature within specification depending on airflow.

1.3 SYSTEM CONFIGURATION

The 1860 microprocessor is suitable as a central processor in any high performance
microprocessor application. It will usually be configured as a stand-alone processor with
private memory and a memory mapped I/O subsystem. The i860 uses standard DRAMs
and an EPROM for operation. A small system consists of i860 CPU, clock generator, 4
address latches, 8 data transceivers, 1 EPROM, 64-bit memory of DRAM/SRAM, sev-
eral PLDs and I/O devices.

Other configurations employ the i860 microprocessor as a dedicated application proces-

sor. In this case, a communications bus will exist between the i860 and the host. This bus
should allow quick data transfers.

1-8
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The processor may also be used in a multiprocessor system. The i860 CPU may work in
a loosely-coupled fashion, communicating through shared memory or through a link of
independent memories. The LOCK# signal must be used to guarantee atomic multiple-
cycle memory accesses.

The 860 microprocessor provides several functions for multiprocessing support. Bus
granting logic (HOLD, HOLDA, BREQ) eases the interface with other processors and
DMAs. The cache enable/disable logic is used to maintain consistency between internal
caches and shared memory. The capability for locked external cycles allow implementa-
tion of semaphores for use with shared memory.

1.3.1 Private and Shared Memory Configuration

Peak performance for a multiprocessor i860 system requires minimal contention for
the use of memory. Typically, this is achieved by providing each i860 microprocessor
with cache memory, its own private memory, memory that can be shared, or some
combination.

Multiprocessor systems not requiring peak performance can use shared memory only.
This results in a simpler and lower-cost implementation. The memory subsystem can
prioritize access to the shared memory between the processors to maximize efficiency.

1.4 APPLICATION OVERVIEW

The i860 microprocessor is designed for use in a wide range of applications. The proces-
sor’s support of demand-paged virtual memory and the IEEE Floating Point Standard
makes it especially suitable as a main processing engine for high-performance engineer-

~ ing workstations, mainframe computers and supercomputers. Its high integration allows
a desktop form factor for capabilities previously associated with supercomputers and
high-end graphics workstations.

The i860 power can support computation intensive applications such as electronics or
mechanical system simulations. The power of the hardware 3-D graphics support graph-

ics applications. High-performance 3-D graphics can now become a standard feature of

any workstation.

The 1860 microprocessor eliminates the need for special-purpose signal, graphics or
floating-point coprocessors. The processor can also be used for high-performance em-
bedded controller applications, or as an applications accelerator for existing systems.
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CHAPTER 2
INTERNAL ARCHITECTURE

The 1860 microprocessor architecture obtains its performance by a combination of large
data paths, high bandwidth data and instruction access (caches and registers), a large
number of important functions included on-chip, and high levels of pipelining and par-
allelism. This architecture allows up to three operations per clock to be executed.

The programmer controls the parallelism to manage data flow to and from the floating-
point unit. The on-chip caches provide storage for instructions and data. Wide buses can
transfer an instruction pair and two double-precision floating-point operands each clock.
A programmer can use the data cache as a large bank of vector floating-point registers.
The i860 microprocessor architecture consists of nine units:
o Core execution unit
o Floating-point control unit
o Floating-point adder unit
o Floating-point multiplier unit
o Paging unit
e Data cache unit
o Instruction cache unit
o Bus and cache control unit

e Graphics unit

The arrangement of these nine units is shown in Figure 2-1. This chapter describes how
these nine units interact to interpret the instructions.

2.1 CORE EXECUTION UNIT

The core execution unit is the center of intelligence for the i860 microprocessor and is
responsible for its overall operation. It fetches both integer and floating-point instruc-
tions. It decodes and executes integer, logical, control-transfer, load/store, exception
handling, and cache flushing instructions. It can perform loads and stores to and from
the integer register file and the floating-point register file. It also includes a special pixel
store instruction that facilitates implementation of the Z-buffer hidden-surface elimina-
tion algorithm.

2.1.1 Core Unit Registers

The core execution unit includes a register file containing thirty-two 32-bit integer reg-
isters, a 32-bit ALU, a barrel shifter, two 32-bit processor status registers, a data break-
point register, a fault instruction register and control logic.

The integer registers, labeled r0 through r31, are accessible by arithmetic operations and

load/store instructions. These registers are used for address computation and scalar in-
teger computations. All the registers can be read and written except r0, which always
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reads a value of zero. Writes to r0 do not store a value in r0. r0 works in combination
with a number of instructions to modify and extend their function. For example, to check
if a register contains a zero, the or instruction can be used with the other source operand
and destination as r0. The register bank remains unmodified as a result, and the condi-

Figure 2-1. Block Diagram of i860™ Microprocessor

tion code CC indicates if the given register contains a zero.

The processor status register (PSR) and extended processor status register (EPSR) are
32-bit read/write registers which contain various information on the status of the current
process. They provide information such as condition code bit status, loop condition code,
interrupt control and status, trap flags, data breakpoint control, pixel information, pro-
cessor identification, etc. Refer to the i860™ 64-Bit Microprocessor Programmer’s Refer-

ence Manual, order number 240329, for more information.
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The extended processor status register (epsr) is a 32-bit read/write register which con-
tains additional state information beyond what is contained in the psr. This information
includes the processor type (value of one for the i860 microprocessor), step number to
distinguish among different revisions, data cache size field, and five flags: the overflow
flag, big-endian mode bit, page table bit mode, write-protect mode bit, and the interlock
bit. Refer to the i860™ 64-Bit Microprocessor Programmer’s Reference Manual for more
information.

The data breakpoint register (db) contains a breakpoint address. It is used to generate
traps when loads or stores are made from or to this address, and is thus useful for
debugging. Refer to the i860™ 64-Bit Mzcroprocessor Programmers Reference Manual for
details.

The core execution unit contains logic for handling exceptions and external interrupts.
When an exception condition or an external interrupt occurs, the processor transfers
control to the trap handler. Again, refer to i860™ 64-Bit Microprocessor Programmer’s
Reference Manual for details.

2.1.2 Instruction Execution

Instructions are fetched into the core execution unit from the instruction cache. If this
address location is not in the cache (a cache miss), the instruction is fed to the core
execution unit from the external memory, while the corresponding Instruction Cache
block is simultaneously filled.

2.1.2.1 RISC OPTIMIZATIONS

The core execution unit is designed according to RISC principles, as explained in
Chapter 1. It uses a pipelined organization that maximizes performance. The instruc-
tions are made purposefully simple using a load/store architecture. Emphasis is placed
on minimizing circuit delays and economizing chip space in order to include the other
processing units that are essential to overall high performance —the floating-point unit,
graphics unit, paging unit, caches, and register banks. Pipelining is coupled with register
bypassing, scoreboarding, and delayed branching to further enhance performance. Some
integer operations are performed by the floating-point unit. Integer multiply and divide
are implemented via a code sequence which use floating-point instructions.

Execution pipelining is transparent for arithmetic, logic and shift instructions. Core in-
" structions appear to operate in one clock cycle with the destination register already
loaded by the time the next instruction begins executing. However, this is not actually
the case. Due to the delay required in storing to and reading from a register, the pro-
cessor detects if the last instruction’s destination is used as an operand in the current
instruction. If it is, the operand is returned to the ALU at the same time the register file
is updated. This technique, known as register bypassing, is invisible to the programmer.

Unlike arithmetic and logic operations, load operations require a minimum of two clock
cycles to provide a valid result for the destination register. Because load instructions
require a minimum of two cycles, the integer core uses scoreboarding to detect if the
register operand of the current instruction is the destination of a preceding load.
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The use of register bypassing and scoreboarding allow load and store instructions to be
executed at an effective rate of 1 instruction per clock cycle, assuming the data and
instructions are found in their respective caches. When a cache miss occurs, the hard-
ware will automatically resolve potential problems by freezing execution if the data is
needed.

Branch instructions can also have the effect of locking the pipeline for one or more clock
cycles. To avoid this waste, the i860 microprocessor uses delayed branching. The branch is
delayed in the sense that the i860 microprocessor executes one additional instruction
following the control-transfer instruction before actually transferring control. During the
time used to execute the additional instruction, the i860 microprocessor refills the in-
struction pipeline by fetching instructions from the new instruction address. This avoids
breaks in the instruction execution pipeline.

By using the above techniques, it is possible to execute core unit instructions at the rate
of one per clock quite consistently, thus providing a rate of 40 MIPs (40 MHz clock) of
native integer operation performance.

2.1.2.2 DUAL-INSTRUCTION MODE

The 1860 microprocessor provides a form of parallelism in the ability to execute a core
instruction and a floating-point instruction simultaneously. This parallel instruction exe-
cution is referred to as dual-instruction mode. When executing in this mode, the instruc-
tion sequence consists of 64-bit aligned instruction pairs with a floating-point instruction
in the lower 32 bits and a core instruction in the upper 32 bits.

Enabling and disabling dual- and single-instruction mode is controlled by software. The
d.fp-op in Figure 2-2 indicates the instructions responsible for enabling the dual-
instruction mode. As shown in the figure, there is a one-instruction delay between the
instruction that does the enabling or disabling and the instruction which performs the
operation.

Note that when a 64-bit dual-instruction pair directly follows a delayed branch instruc-
tion in dual-instruction mode, both 32-bit instructions are executed.

Further details regarding the use of dual-mode instructions are provided in the i860™
64-Bit Microprocessor Programmer’s Reference Manual, order number 240329.

2.2 FLOATING-POINT UNIT

In addition to the core unit, which executes integer instructions, is the floating-point
unit, which processes floating-point instructions. The pipelined floating-point unit, along
with the on-chip cache, enables the 40 MHz i860 microprocessor to achieve a peak
execution rate of up to 80 MFLOPs for single-precision and -up to 60 MFLOPs for
double-precision operations.
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Figure 2-2. Dual-Instruction Mode

The floating-point unit consists of the floating-point register bank, floating-point adder,
floating-point multiplier, floating-point status register and floating-point control unit.
The floating-point unit has two types of operations: scalar and pipelined. Scalar opera-
tions are like those used in most computers. Pipelined operations deliver the highest
performance but require more programming expertise. Intel offers a library of common
math functions already implemented using pipelined code.

Floating-point data types, floating-point instructions, and exception handling all support
the IEEE standard for binary floating-point arithmetic (ANSI/IEEE Std 754-1985) for
both single- and double-precision data types. The floating-point status register holds
information about the result of the operation. A complete set of traps includes tests for
invalid source operands such as NaN (Not a Number), denormalized numbers, and in-
finities, as well as tests for errors in the result, such as overflow and underflow. The
cause of the traps can be determined by examining the value in the floating-point status
register. The floating-point traps permit implementation of the IEEE Standard in a very
efficient manner. For more information, see the i860™ 64-Bit Microprocessor Program-
mer’s Reference Manual.

Due to the low-level instruction set philosophy of the i860 microprocessor architecture,
high-level functions defined by the Standard, such as square root, sine, and cosine are
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not implemented directly by the hardware. The facilities of the floating-point unit, how-
ever, allow for a very efficient implementation of these functions that actually out-
. performs dedicated floating-point coprocessors.

Intel offers an IEEE trap handler program, as well as a software library, that provides
i860 microprocessor programs with the full set of functions supported by the IEEE
standard.

2.2.1 Floating-Point Register Bank

The floating-point unit is provided with its own register bank. It contains 32 floating-
point registers, each 32-bits wide, labeled fo through f31. The registers can also be
accessed in pairs for 64-bit double-precision values or 64-bit integer values. For this
purpose, only even registers are used, e.g. f2, f4, etc. Load and store instructions also
support the transfer of 128-bits worth of data (e.g. two double-precision operands). The
registers are used in groups of four for this purpose, e.g. 14, 18, 12, etc. Registers f0 and
f1 are special in that, when read, they always provide a value of zero, and writing into
them has no effect. These registers modify and extend the function of the floating-point
instructions. Two null registers are required in order to provide a zero operand and a
null destination when using double-precision operations.

The floating-point register bank (refer to Figure 2-1) allows multiple operations to occur
in parallel. It contains two read ports, one write port, and two bidirectional ports. All
these ports are 64-bits wide and can be used concurrently.

The two 64-bit source operands provided by the floating-point registers are used as data
input to the floating-point multiplier unit (FPMU), the floating-point adder unit
(FPAU) or the graphics unit. A 64-bit input port to the floating-point registers transfers
the result of the operations. The 64-bit integer instructions and graphics.instructions also
use this register bank for their source and destination operands.

Two 64-bit bidirectional ports between the data cache and the floating-point register
bank allow transfers of up to 128 bits. A 64-bit bus can connect either of these two buses
to the data bus on the bus cache control unit. This bus allows 64-bit transfers to and
from external memory. The transfers are performed by the various floating-point load
and store instructions. These transfers are controlled by the core unit and can occur in
parallel with the floating-point instructions, as explained in Section 2.1.2.2, “Dual-
Instruction Mode™.

2.2.2 Pipelined and Scalar Operations

The floating-point unit uses parallelism to increase the rate of operations performed by
the unit. One type of parallelism used in the floating-point unit is known as “pipelining”.
A pipelined architecture treats each operation as a series of more primitive operations
called stages. These can be executed in parallel. Consider the floating-point adder unit
as an example. Let a represent the operation of the adder, and let the stages be repre-
sented by A[1], A[2], and A[3]. The stages are designed such that the A[i+ 1] stage for one
add instruction can execute in parallel with the A[i] stage for the next add instruction.
Since each A[i] stage can perform its task in a single clock, and three instructions can be
in executing in parallel, one add operation per clock is achieved.
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Pipelining within the floating-point multiplier unit can be described similarly, except that
it requires two clocks per stage on double-precision operations. The resulting status bits
in the fsr reflect the result of the last completed operation within the pipeline. Pipelined

instruction execution is shown in Figure 2-3.

The functions performed by each stage of the pipeline are not documented. Programs

should not rely on specific actions, only that the pipeline is of fixed length.
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Figure 2-3. Pipelined Instruction Execution
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In addition to pipelined execution, the i860 microprocessor can also execute floating-
point operations in scalar mode. In this mode, the floating-point unit does not initiate a
new operation until the previous floating-point operation is completed, so that the scalar
operation passes through all the stages of its pipeline before a new operation is started.
Scalar mode is used when the next operation depends upon the result of the previous
floating-point operations, or when the compiler or assembly language programmer
* wishes to avoid the added complexity of pipelining. Integer operations can be performed
in parallel to scalar floating-point operations.

2.2.3 Floating-Point Adder Unit

The floating-point adder unit of the i860 microprocessor supports both double- and
single-precision IEEE 754 format and operates in two modes: scalar mode and pipelined
mode. In scalar mode, three clocks are required to complete an add, subtract or compare
operation. In pipelined mode, one result per clock for either a single- or double-
precision operation is obtained.

The adder unit supports the following precision combinations between inputs and re-
sults: single to single, double to double, and single to double. For this reason, the adder
is also used to perform data precision conversions. Some of the instructions executed
exclusively by the adder unit are:

o Floating-point add (fadd)
o Floating-point subtract (fsub)
e Pipelined floating-point comparisons: (pfgt.p, pfeq.p)

2.2.4 Floating-Point Multiplier Unit

The floating-point multiplier unit performs floating-point multiplication in accordance
with the IEEE standard. It is organized as a three-stage pipeline. In pipelined mode, the
multiplication throughput is one single-precision instruction per clock and one double-
precision instruction each two clocks.

The multiplier unit also supports a reciprocal instruction which is used to implement
division and square-root operations by means of an iterative process. A small macro (or
function) can be developed based on these instructions to perform the full division or
square root. )

Certain instructions allow the multiplier unit to operate in parallel with the adder unit in
a variety of flexible ways, thereby doubling the number of operations per clock.

2.2.5 Dual Operation Feature

Dual Operation is a special feature of the i860 microprocessor which allows the
floating-point adder and multiplier unit to work in parallel, thus doubling the number of
floating-point operations performed. Both add-and-multiply and subtract-and-multiply
operations are supported.
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The instruction formats for add-and-multiply and subtract-and-multiply allow specifica-
tion of only two source operands and one destination. However, when operating the
adder and multiplier in parallel, two pairs of operands and two destinations are needed
for the general case. To overcome this limitation, the adder and multiplier can be con-
figured in a variety of ways that are especially suitable for problems such as:

¢ matrix manipulation (e.g., solving linear equations)
e series calculations (e.g., sine function calculation)

signal processing applications (e.g., Fast Fourier Transform)
graphics (e.g., coordinate transformations)

For this purpose, three special registers are used—KR, KI and T. Both KR and KI can
be used to hold constants or temporary values. These values can be loaded when used as
operand inputs to the multiplier, and can later supply the value, without the need for an
explicit instruction operand. T can act as a transfer register to hold the value of the
result of a multiplication, which can be passed on as an operand to the adder on a later
instruction.

The data paths available are shown in Figure 2-4. Possible configurations can be selected
as follows:

e Operand 1 of the multiplier can be KR, KI, or scrl.
o Operand 2 of the multiplier can be scr2 or the last stage of the adder pipeline.

e Operand 1 of the adder can be scrl, the T-register, or the last stage result of the adder
pipeline.

e Operand 2 of the adder can be scr2, the last-stage result of the multiplier plpelme or
the last-stage result of the adder plpelme

In addition to the selection of operands, the instruction can choose whether to load KI,
KR, or T as part of its operation. The possible operand data path selections and loading
options allow a large number of possible combinations. Many of these combinations are
functionally redundant or of no interest. Each instruction format for add-and-multiply
and subtract-and-multiply supports 16 different instructions, and each of these instruc-
tions provides a different configuration of operand data path and KI, KR, or T loading
selection. The configurations have been specially selected to streamline the implemen-
tation of the applications previously mentioned. Refer to the i860™ 64-Bit Microprocessor
Programmer’s Reference Manual for further details.

2.2.6 Floating-Point Computation Throughput

The combination of the dual-instruction mode feature with pipelined dual operation
allows the i860 microprocessor to achieve a sustained 80 MFLOPs in single-precision
and 60 MFLOPs in double-precision for inner loops of common computations. Assuming
the code is in the cache, no visible memory cycles are needed to fetch the instructions.

The dual-instruction mode allows the loading and storing of operands and the updating
of array indices and loop control information to be performed in parallel with floating-
pomt execution. A load or a store (core unit instruction) can transfer up to 4 single-
precision operands or 2 double-precision operands, assuming these operands are
adjacent to each other in memory within some data array. Loads and stores take one
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Figure 2-4. Dual-operation Data Paths

clock cycle if the data is in the cache, and two clock cycles if fetched from external
memory. If the operands are from memory, instructions can continue to be executed in
the pipeline as long as they don’t access the registers being loaded. Thus, indexing,
loop-control, and operand loading can typically take place in parallel with the floating-
point computation, maintaining the sustained rate.

In pipelined mode, two single-precision floating-point operations can be executed per
clock cycle resulting in a rate of (2 operations/clock) x (40 MHz/sec) = 80 MFLOPs.
For double-precision, addition requires one clock cycle, while multiplication requires
two. For algorithms that require two floating-point additions and one multiplication for
each iteration, two adds and one multiply can be done in parallel in two clock cycles.
This results in three operations in two clock cycles, or (3-operations/2-cycles)
X (40 MHz) = 60 MFLOPs. Algorithms requiring a double-precision multiply and add
for every iteration execute at two operations per two clock cycles (due to the multiply
two-clock rate), resulting in an execution rate of 40 MFLOPs.

2.3 PAGING UNIT

The paging unit provides the i860 microprocessor with the capability of supporting an
efficient implementation of demand-paged virtual memory. Demand-paged virtual mem-
ory allows programs to use a larger, virtual memory space, which is actually supported by
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a smaller real (or physical) memory space. The paging unit, in combination with the
appropriate memory management software, automatically allocates physical pages of
memory to virtual page addresses as they are needed (on demand). Typically, when all of
physical memory is used up, physical memory is swapped out to disk, and pages are
reallocated.

The paging unit provides the ability to translate virtual addresses used by the processor
to physical addresses that correspond to locations in the external memory. It also pro-
vides page-level protection based on access rights, as well as two levels of privilege —
user and supervisor.

Address translation and memory protection are optional. They are enabled by the
address translation enable (ATE) bit in the directory base register. If this bit is not set,
the physical address is the same as the virtual address, and no translation or access-rights
checking is performed. The ATE bit is cleared upon reset. The i860 microprocessor
paging unit functions the same and uses the same page table entry formats as the Intel
386™ and i486™ microprocessors. :

2.3.1 Paging Algorithm

A virtual address is mapped to a physical address according to a set of tables called page
tables. The address is divided into a page address and an offset. A page is a collection of
data that occupies the space of a page frame in main memory, or some location in
secondary storage when there is insufficient space in main memory. A page frame con-
sists of 4K bytes of contiguous physical memory starting on a 4K-byte boundary. The
upper 20 bits of the 32-bit address of a page frame is referred to as the page address. In
the 1860 microprocessor, both virtual and physical addresses are 32 bits wide. They both
consist of a 20-bit page address and a 12-bit offset. The concatenation of the two pro-
vides a complete 32-bit byte address.

The address translation algorithm uses two levels of page tables. The two levels are
referred to as the page directory and the page tables. Both levels of page tables are a
page (4096 bytes) in size, consisting of 1024 32-bit entries.

The directory base register, dirbase, contains a 20-bit field which points to the page
directory. Only one page directory table is active at any given time. The entries of the
page directory contain the physical addresses of all the page tables used for the mapping
process, or contain entries indicating that the given page tables (corresponding to virtual
segments of address space) are not present in physical memory. The page tables them-
selves contain physical page addresses for all the valid virtual pages, or entries indicating
that the given virtual memory address is not present in physical memory.

The algorithm mapping virtual memory to physical memory is fully implemented by the
hardware and is depicted in Figure 2-5. The most-significant 10 bits of the virtual
address are used as an index into the page directory, which selects a specific page table.
The next 10 bits are used as an index into the selected page table, selecting a page frame
address. The last 12 bits act as an offset into the page frame address, building up a full
32-bit physical byte address. This completes the virtual to physical address conversion.
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If during a memory transfer, the page directory or page table indicates that a selected
page table or page frame is not present (by means of a zero in the Present bit of the
table entry), a trap occurs, allowing the software to validate the page by reading it from
secondary storage. The page table entries also provide the write, user, cache disable,
accessed and dirty bits, as well as 3 user-definable bits. These bits along with the write
protect bit in the extended processor status register are used to provide page-level pro-
tection rights, page cacheability information, and information needed to implement an
efficient replacement algorithm for swapping out page frames when main memory is full.
More details are provided in the i860™ 64-Bit Microprocessor Programmer’s Reference
Manual, order number 240329.

To avoid accessing the page directory and page table for every address translation, the
i860 microprocessor implements an on-chip translation look-aside buffer (TLB), which is
a cache that directly translates a virtual page address to a physical address, and provides
the additional bits from the page tables needed to provide protection and information
for replacement algorithms. TLB translation requires one clock cycle and is typically
invisible because of the processor’s pipelining.

The TLB is implemented as a 4-way, set-associative cache, mapping a total of 64 page
table entries. Because each page table entry maps 4 Kbytes of address space, a total of
4K x 64 or 256 Kbytes of memory are mapped at any one time by the TLB. When there
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Figure 2-5. Paging Algorithm Implementation
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is a miss in the TLB and the page tables in memory are used, an entry in the TLB is
automatically replaced by the new mapping.

2.4 ON-CHIP CACHES AND BUS CONTROL

The i860 microprocessor contains both an instruction and data cache. Being integrated
so close to the processor, and having been carefully designed for minimum delay, cache
storage can operate much faster than external memory. In addition, having both caches
on-chip allows them to operate in parallel. Thus, the processor can simultaneously read
instructions from the instruction cache, read or write data to and from the data cache, as
well as translate virtual addresses through the TLB. The caches also provide wide
data paths—the instruction cache is 64-bits wide, and the data cache is 128-bits wide.
Also, on-chip caches reduce the need for external caches, which reduces the total system
cost and makes available valuable PC-board real estate.

Both the data and instruction caches are virtually addressed. This not only provides for
faster operation, but allows the TLB to perform its virtual address to physical address
translation in parallel with the operation of the cache. If one of the caches determines
that it does not have the contents of the required virtual address (a cache miss), the TLB
will be ready with a physical address with which to begin an external memory cycle.

Both the instruction and data caches are implemented as a 2-way set associative memory
that maps a virtual address to a 32-byte block of data. These blocks correspond to 32
consecutive bytes loaded from an address having zero for the least-significant 5 bits.
When transferring data to or from the cache, the processor uses the desired set of bytes
from this 32-byte group. Allocation and replacement for both caches is always performed
using blocks of 32 bytes.

The 1860 microprocessor uses a wraparound technique which makes the process of filling
a cache block more efficient. Since a block consists of four 64-bit (8 bytes) entries, the
processor will first read the 64-bit entry that contains the data item, instruction, or
instruction pair that is needed by the processor. The processor continues processing
while the entry read is simultaneously stored in the cache. Next, the processor sequen-
tially reads the remaining three, 64-bit entries of the block and stores them in the cache.
Since the first entry read may lie in the middle of the block, the processor wraps around
to read the first 64-bit entry of the block after the last one is read. In this manner, the
cache block is loaded and the processor gets its data as quickly as possible.

The use of the caches when accessing memory can be bypassed by means of the CD
(Cache Disable) bit in the page tables or the KEN# (Cache Enable) pin, as explained in
Chapter 3. This is required for special cases such as I/O references or shared data in a
multiprocessor system.

2.4.1 Instruction Cache Unit
The instruction cache size is 4 Kbytes. With a 64-bit wide data path, the cache can
provide two 32-bit instructions in each fetch cycle: two core instructions, or one core

instruction, and one floating-point instruction. Thus, the transfer rate of the cache is 64
bits/clock (320MB/sec at 40 MHz).
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The instruction cache is intended to be used to map read-only memory (i.e., it does not
support self-modifying code). System programs that modify code should invalidate the
instruction cache via the ITI bit in the directory base register.

2.4.2 Data Cache Unit

The data cache size is 8 Kbytes. Using a 128-bit wide bus for reading data, it can transfer
up to 128 bits/clock. Thus with a 40 MHz clock, 640 Mbytes/sec can be transferred.
Unlike the instruction cache, the data cache supports both read and write operations
(corresponding to load and store instructions). :

The data cache with its 128-bit internal bus can supply up to two 64-bit operands to the
floating-point unit per cycle. Alternatively, it can supply one 32-bit operand per load
cycle, or a 16- or 8-bit, right-aligned, signed-extended value to the core unit.

The data read must be aligned in memory according to its size. The table below shows
the restriction on the addresses for different size data items:

Number of least-significant bits
Data Size in byte address that are 0
16-bit value ' 1
32-bit value 2
64-bit value 3
128-bit value 4

The data cache can be used as a large set of floating-point registers for vector opera-
tions. The ICS field of the extended processor status register allows a program to deter-
mine the cache size and use it appropriately.

2.4.2.1 WRITE OPERATIONS AND THE DATA CACHE

Writes to memory locations not present in the cache are sent directly to the memory
write buffers and do not affect the cache. A write operation to a location that is already
in the cache is written to the cache, but is not immediately written to memory. In this

" scheme, known as write-back, the blocks that have been written to the cache but not to
memory are marked as “dlrty When the replacement algorithm chooses to replace a
block containing a dirty block, or when a cache block is flushed, these dirty blocks are
written to memory.

The write-back scheme provides better performance than the write-through approach, in
which data written to the cache is immediately written to memory. This is because ac-
cesses and stores to variables or indices that are in the data cache require no external
memory cycles and hence reduce bus traffic.

When the data cache writes a block to memory, it uses two 128-bit wide write buffers.
These buffers delay the actual memory writes until an opportune time, if possible, as
explamed in Section 2.4.6.
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2.4.3 Bypassing Instruction and Data Caches

There are two pins on the i860 microprocessor that relate to cache enabling during any
external memory cycle. They are the Cache Enable input pin (KEN#) and the Page
Table Bit (PTB) output pin. They are used for controlling access to shared memory, I/O
buffers, and memory-mapped I/O devices.

When the i860 microprocessor detects that the KEN# input is not asserted during a bus
cycle, the processor inhibits use of the data cache and instruction cache for this cycle.

When paging is enabled, the CD (cache disable) bit of the secondary page table used
during a memory transfer determines whether or not to enable the use of the instruction
or data caches. A similar bit, WT (write through) is also available that disables data
caching. The value of the OR of these bits is reflected on the PTB output pin, depending
on the PBM bit in the extended processor status register. When paging is disabled, the
PTB pin remains not asserted.

KEN# is internally NORed with CD OR WT bits to determine whether or not to enable
use of the cache, as shown in Table 2-1.

Table 2-1. Cacheability Based on CD, WT and KEN#

CD OR WT KEN# Meaning
0 0 Cacheable access
0 1 Noncacheable access
1 0 Noncacheable page
1 1 Noncacheable page

2.4.4 Flushing Instruction Cache, Data Cache, and TLB

Setting the ITI (Instruction TLB Invalidate) bit in the dirbase register, invalidates the
contents of the instruction cache, as well as the Translation Lookaside Buffer.

The data cache is flushed by software using the cache flush instruction. This instruction
flushes one cache block at a time. A loop of code is executed to clear the entire data
cache. For a copy of this code, see the i860™ 64-Bit Microprocessor Programmer’s Refer-
ence Manual. ‘

2.4.5 Bus and Cache Control Unit

The bus and cache control unit interfaces to the external bus, performing instruction and
data accesses for the execution core unit. The control unit transfers data to and from the
external code memory, and controls TLB translation, including normal translation, miss
replacement and fault processing. It receives cycle requests and specifications from the
execution core unit. It performs instruction or data cache accesses and handles data or
instruction cache miss processing (cache block replacement). Its pipelined structure sup-
ports up to three outstanding bus cycles. The three-level bus cycle pipelining is explained
in Chapter 3.

The bus and cache control unit can fetch one, 64-bit instruction from the instruction
cache and 128-bits worth of data from the data cache on every clock cycle, as long as the
accessed data resides in the cache.
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The bus control unit also performs the physical address comparison for the generation of
the Next Near (NENE#) signal. The NENE# signal is asserted by the i860 micropro-
cessor if the currently issued address falls on the same DRAM page as the previously
issued address. The NENE# pin allows the external memory system to take advantage of
the static column and page-mode DRAMSs. The size of the DRAM page is program-
mable by three bits in the DIRBASE register.

The 1860 microprocessor can operate in two instruction fetch modes: normal or CS8
(code size 8) mode. When the CS8 bit in the DIRBASE register is set, external memory
cycles are processed as 8-bit cycles. When this bit is clear, instruction cache misses are
processed as 64-bit bus cycles. This bit cannot be set by software. To enter the CS8
mode, the INT signal is asserted prior to the falling edge of the RESET signal. This
allows the instruction bytes to be fetched on the eight least-significant bits of the exter-
nal data bus. Data may be transferred as 64, 32, 16, or 8 bits values using all 64 bits of
the data bus.

The CS8 mode allows the i860 microprocessor processor to be bootstrapped from an
8-bit EPROM. In the CS8 mode, the signals BE2, BE1 and BEO are redefined to corre-
spond to the three least-mgmﬁcant bits of the address so that a complete byte address is
available (i.e., 32 address pins can be used).

‘Once the bootstrap code has been loaded into the 64-bit memory, a 64-bit fetch can be
initiated. This is accomplished by clearing the CS8 bit in the dirbase register via software
(one time only). Once this bit is disabled, it can not be enabled until a new hardware
reset occurs.

2.4.6 Write Buffers

The bus and cache control unit also supports the use of two 128-bit write buffers. These
buffers are designed to delay any write operations to memory until memory is not belng
used (i.e., instructions and data are being read from the caches). This optimizing delay is
not always possible, because the memory operation in question may itself be read. The
bus control logic forces memory write operations to insure proper functionality.

The two 128-bit write buffers can operate on independent memory cycles. When write
operations of 128 bits are performed, each write buffer is written in two memory cycles.

- When writes are made that are smaller than 128 bits (64, 32, 16, or 8 bits), the write
buffer is written in a single cycle. Proper alignment and the selection of the correct byte
enables is made for cycles smaller than 64 bits.

2.5 GRAPHICS UNIT

The graphics unit executes instructions designed to support high-performance 3-D
graphics applications. Support for packed pixels of 8-, 16-, and 32-bit data are supported.
The precise pixel formats are given in the i860™ 64-Bit Microprocessor Programmer’s
Reference Manual, order number 240329.
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The graphics unit executes simple but powerful instructions that can be applied to the
following graphics functions:

o Hidden surface elimination
o Distance interpolation
e 3-D shading using intensity interpolation

Based on these instructions, the i860 microprocessor processor can perform real-time,
shaded graphics without the need for an external graphics processor.

The instructions operate properly for the various pixel formats. With the 8-bit format the
operations only affect the intensity. For 16- and 32-bit color pixels, the operations affect
the isolated color vectors, e.g., red, green, or blue. Operations are performed on 64-bit
entities, which can contain the values of multiple pixels in parallel. A special Pixel
Store instruction implemented by the core unit can work in parallel with the graphics
instructions.

The interpolation operations of the processor support graphics applications in which a
set of points on the surface of a solid object is represented by polygons. The distance and
color intensities of the vertices of the polygons are known, but the distance and intensi-
ties of other points must be calculated by interpolation between these points. Graphics
instructions, just as floating-point instructions, can be used in dual-instruction mode to
achieve greater computation rates. :
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CHAPTER 3
LOCAL BUS INTERFACE

The local bus is designed to provide high data throughput among the processor, memory
and I/O subsystems. It provides a flexible interface that is suitable for a wide variety of
system environments.

This chapter describes the local bus interface, its basic function, operation, and timing
for related signals. :

3.1 i860™ MICROPROCESSOR EXTERNAL INTERFACE
AND BUS SIGNALS

The external interface of the i860™ microprocessor consists of a 64-bit data bus, 29-bit
address bus, eight-bit byte-enable control bus, 19 status and control signals, and 48
power and ground pins. This section provides an overview of the services provided by the
external interface of the i860 microprocessor.

3.1.1 i860™ Microprocessor Buses

The 1860 microprocessor communicates with external memory and I/O through a syn-
chronous bus interface that includes a separate data and address bus as follows:

D63-D0 These 64 pins make up the bidirectional data bus external interface.
Either 8, 16, 32, or 64 bits of data can be transferred during a bus
cycle.

A31-A3 The address bus consists of 29 address pins which address one of 2%
64-bit memory locations. : ,

BE7#-BEO0# The byte-enable bus consists of eight pins that specify which bytes to
access within a 64-bit location. These pins are used to enable writing
in one, two, four or eight-bytes of the double-word involved in the
current write cycle. Read operations should always return 64-bits of
data. See Section 3.3.1.3 for details. BE2#, BE1#, BEO# are used as
address bits A2, Al, A0 respectively while in CS8 mode. See Section
3.3.5 for details.

3.1.2 i860™ Microprocessor Output Signals

The i860 microprocessor output signals provide control and status information. The out-
put signals are as follows:

ADS# The 1860 microprocessor asserts the address status signal to indicate the
beginning of a bus cycle. It identifies the clock period during which it
provides a valid address and the other signals required to perform a mem-
ory cycle.
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W/R#

LOCK#

NENE#

PTB

HLDA

BREQ

The write/read# signal indicates whether the current cycle is a write (high
state) to or read (low state) from the memory or I/O subsystem.

The lock signal is generated by the processor to indicate locked cycles to
external circuitry (Section 3.4.3 provides further explanation).

The next near signal tells the memory subsystem that a cycle is on the same
DRAM row as a previous cycle. This allows the memory subsystem to use
page mode or static-column mode features of DRAMs (Section 3.4.1 pro-
vides further explanation).

The page table bit signal reflects either the value of the cache disable (CD)
bit, or the write through (WT) bit of page table entry during the current
cycle. The PBM (page-table bit mode) bit of the EPSR indicates which. If
PBM is clear, PTB reflects CD; otherwise, it reflects WT (Section 3.5 pro—
vides further explanation).

The hold acknowledge signal indicates that the bus has been released (Sec-
tion 3.4.2 provides further explanation).

The bus request signal is asserted when an internal bus request is pending.
This signal is used to assist external bus arbitration. Its value is indepen-
dent of the state of HOLD and HOLDA (Section 3.4.2 provides further
explanation).

BREQ is also used as serial output for the boundary scan chain while in
boundary scan mode (Section 3.7 provides further explanation).

3.1.3 i860™ Microprocessor Input Signals

Input signals control various i860 microprocessor actions:

CLK

READY#

NA#

The clock input provides basic timing 1nformat10n for the processor to
synchronize internal and external operations. All other signals are sam-
pled relative to the rising edge of CLK. The internal operating frequency
is the same as the clock frequency. ‘

The ready signal indicates to the processor that a bus cycle is finished.
For read cycles, the READY# signal indicates that data being read is
valid and that the processor can latch the contents of the data bus. For
write cycles, it indicates that the data being output to the data bus is
being latched by the memory subsystem and is no longer needed to finish
the bus cycle. READY# must be synchronous to CLK; it is sampled on
every clock after the clock which follows the sampling of ADS#.

The next address signal allows external data transfers to request pipelin-
ing. The signal indicates to the processor that the memory or I/O sub-
system is ready to receive a new address and begin a pipelined cycle.
NA# is sampled during the second clock after ADS# (Section 3.3.4 pro-
vides further explanation).
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INT/CS8

KEN#

HOLD

SHI

BSCN

SCAN

CC1, CCo

The interrupt and code size signal serves two functions. When the
RESET signal is asserted, the CS8 signal can be used to set the code size
eight mode to indicate whether the bus performs instruction fetches on
the low-order byte of the bus instead of the 64 bit wide bus. This feature
allows booting from a single EPROM. Section 3.3.5 provides further de-
tails. At all other times, this pin serves as the INT signal and functions as
the i860 microprocessor’s maskable external interrupt (Section 3.6 pro-
vides further explanation). The state of the INT input is sampled on
every clock.

The cache enable signal enables updates to the processor’s instruction
and data caches. When paging is enabled, this signal works in combina-
tion with the WT, CD, and PTB bits of the current bus cycle. KEN# is
sampled on every bus cycle (Section 3.5 provides details).

The bus hold signal floats all output signals except HOLDA and BREQ
and causes the processor to relinquish control of the bus. The HLDA
signal indicates that the bus.has been granted. Instruction execution con-
tinues unless required instructions and data cannot be read from the
on-chip cache (Section 3.4.2. provides further explanation). The state of
this pin is sampled every clock.

The boundary scan shift input signal is used to read boundary scan chain
serial data when in boundary scan mode (Section 3.7 provides further
explanation).

The boundary scan enable signal enables boundary scan mode for board
or component testing (Section 3.7 provides further explanation).

The shift scan is used in conjunction with boundary scan mode to set
normal mode (when SCAN is deasserted) or shift mode (when SCAN is
asserted) (Section 3.7 provides further explanation).

These pins are reserved by Intel and must be strapped low.

The i860 microprocessor bus interface pins are summarized in Table 3-1.

Table 3-1.' Pin Summary

Pin Active
Name Function State Input/Output
Execution Control Pins
CLK CLocK I
RESET System reset High I
HOLD Bus hold High I
HLDA Bus hold acknowledge High o
BREQ Bus request High 0}
INT/CS8 Interrupt, code-size High |
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Table 3-1. Pin Summary (continued)

Pin Active
Name Function State Input/Output

Bus Interface Pins

A31-A3 Address bus High (0]
BE7#-BEO# Byte Enables Low 0}
D63-D0 Data bus High /O
LOCK# Bus Lock ~ Low 0]
W/R# Write/Read bus cycle Hi/Low (o}
NENE# NExt NEar Low (0}
NA# Next Address request Low |
READY# Transfer Acknowledge Low |
ADS# ADdress Status Low o
Cache Interface Pins
KEN # Cache ENable Low |
PTB Page Table Bit High o}

Testability Pins

SHI Boundary Scan Shift Input High |
BSCN Boundary Scan Enable ) High I
SCAN | Shift Scan Path High |

Intel-Reserved Configuration Pins

CC1-CCo Configuration High |

Power and Ground Pins

Vee System power
Vss ‘ System ground

A # after a pin name indicates that the signal is active when at the low voltage level.

3.1.4 Power and Ground Pins

The i860 microprocessor has 24 ground pins and 24 power pins. The i860™ 64-Bit Micro-
processor Data Sheet provides pin number assignments, detailed electrical characteristics,
and decoupling requirements.

3.2 BUS CHARACTERISTICS

The fully-synchronous local bus provides 64-bit data transfers to and from memory or
I/O devices. Minimum read and write cycles can be done in two clock cycles. The bus is
capable of pipelining bus cycles two levels deep (three stages). I/O is memory mapped.
An external address decoder can map address ranges to correspond with the I/O sub-
system and the memory subsystem. Also, memory-mapped devices should drive KEN#
high during reads to prevent data caching.

To simplify explanation, the term memory subsystem refers to the I/O subsystem and the
memory subsystem.
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3.3 BUS TRANSFER OPERATIONS

This section discusses all bus transfer operations including data alignment issues, pipe-
lined and nonpipelined bus transfers, and 8-bit mode operation for bootstrapping.

3.3.1 64-bit Bus and Byte Alignment of Data

The 1860 microprocessor performs external data transfers by means of its 64-bit data bus.
This section discusses the details of how the bus control unit performs bus operations on
data of various sizes.

3.3.1.1 MEMORY ADDRESSABILITY AND ALIGNMENT REQUIREMENTS

Memory is addressable down to each byte within a paged virtual address space of 232
bytes. The i860 microprocessor instructions can operate on data of various sizes includ-
ing bytes (8-bytes), half-words (16-bits), words (32-bits), double-words (64-bits) and
quadwords (128-bits).

Data may be located anywhere within the byte-addressable space. However accesses to
data not following the alignment requirements given below cause a trap. Load or store
operations to unaligned data must be handled by a software routine and are very ineffi-
cient. The alignment requirements for data are as follows:

o 128-bit values are aligned on 16-byte boundaries when referenced in memory (the
four least-significant address bits must be zero).

o 64-bit values are aligned on 8-byte boundaries when referenced in memory (i.e. the
two least-significant address buts must be zero).

o 32-bit values are aligned on 4-byte boundaries when referenced in memory (i.e. the
two least-significant address bits must be zero).

o 16-bit values are aligned on 2-byte boundaries when referenced in memory (the least-
significant address bit must be zero).

Misaligned instructions are not allowed. Instruction alignment requirements are:

e All instructions are 32-bits long and must be aligned on 4-byte boundaries (i.e. the
two least-significant address bits must be zero).

o Dual mode instruction pairs must be aligned on 8-byte boundaries with the ﬂoatmg-
point instruction first.

3.3.1.2 DATA ALIGNMENT DURING READ OPERATIONS

The i860 microprocessor performs aligned read operations in the following manner. 64-
and 128-bit transfers are handled as one and two 64-bit memory transfers, respectively.

8-, 16-, and 32-bit memory read operations are accomplished by first reading 64-bits of
data and extracting the data bytes needed. The 64-bit data is typically stored in the cache
in parallel with the extraction of the data. The data is extracted by shifting the 64-bit
value so that the least-significant byte of the data item is aligned with bits D7-D0. For 8-
and 16-bit integer data, the value is sign-extended to 32 bits, and the value is loaded into
the appropriate register.
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During read cycles, the byte enable signals BEO#-BE7# reflect the bytes on the data
bus that are involved in the read operation. During read operations, however, the byte
enable signals are not used to enable memory for specific bytes. Instead, all 8 bytes of
the data bus must be read by the processor, if caching is enabled, to properly update the
corresponding 64-bit entry in the cache. This type of operation is illustrated by the
simplified circuit diagram in Figure 3-1.

3.3.1.3 DATA ALIGNMENT DURING WRITE OPERATIONS

Write operations require the reverse aligning process of a read operation. 64- and 128-
bit write operations are handled as one and two 64-bit data transfers, respectively. 8-, 16-
and 32-bit memory write operations are performed by properly aligning the data to be
written onto the data bus and writing only on the bytes involved within the 64-bit word
addressed.

The byte enable lines, BEO#-BE7# are used to determine which bytes of the addressed
64-bit word to write to.

For 8-bit, 16-bit and 32-bit data, the data bus outputs the register data shifted to the left
by an appropriate number of bytes. The shift aligns the least-significant byte of the data
with the least-significant byte of the destination in memory.

. The properly-aligned data bytes in the data bus are written on the bytes of the 64-bit
word addressed, as selected by the active BE7#-BEO# lines. The circuit shown in Figure
3-1 illustrates how the byte enable signals operate during a write operation.

The number of bytes by which to left shift the data and the set of byte enable signals that
are activated is determined by the least three significant bits of the byte address, the size
of the data and the endian mode used, as discussed in Section 3.3.1.4. The 64-bit word
involved is selected by the upper 29 bits of the physical address.

3.3.1.4 LITTLE AND BIG ENDIAN MODES AND BUS OPERATION

The 1860 microprocessor can store data in memory in one of two formats, little endian or
big endian. In little endian, all multibyte data items are stored so that the least signifi-
cant byte is at the smallest address of the bytes allocated for the data item. In big endian
format all multibyte data items are stored so that the most significant byte is at the
smallest address. The i860 microprocessor can operate in either mode.

In the i860 microprocessor, multiple-byte data values are normally stored in little endian
format (with the least significant byte at the lowest memory address). The processor,
however also provides the capability of operating in big endian mode (with the most
significant byte is at the lowest address).
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Figure 3-1. Byte Enable Control Signals
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The following examples illustrates the use of the two modes of operation. Suppose a C
program has the following global declaration for a structure:

struct {
byte A, B; /* byte */
short C; /* 16-bit .integer */
long D; /* 32-bit integer */
} rec;

The fields of rec are addressed as follows: A at rec + 0, B at rec + 1, C at rec + 2, D at
rec + 4. If rec is double word aligned, the rec data structure for big endian mode will
have the following form in memory, within the double word address corresponding to the
address of rec:

[/ 1 2 3 4 5 6 7
A B C:msb C:1sb D:msbh D:2msb D:21sb D:1sb

and in little endian the following form:

7 6 5 4 3 2 1 7]
D:msb  D:2msb D:21sb D:1sb C:msb C:isb B A

In the above example msb stands for most-significant byte, 1sb for least significant byte,
2msb for second most significant byte, and 21sb for second least significant byte.

In both cases the addressability of each data item is the same, but the order of the byte
addresses for the multibyte data item is different.

The bytes are organized as follows:

Byte addresses (most significant first)
Item Address
Little Endian - Big Endian
A 0 0 0
- B 1 1 1
C 2 32 2,3
D 4 7,6,5,4 4,5,6,7

The default mode of operation for the i860 microprocessor is little endian. As an option
that may be dynamically selected in supervisor mode, the i860 can operate in big endian
mode. Figure 3-2 illustrates how the i860 can operate in big endian mode. Figure 3-2
illustrates how the i860 handles little endian and big endian operations. When loading a
register from memory, the i860 internally byte shifts the incoming data bus to the right as
required to align the least significant byte (right side) of the addressed data with the
least significant byte of the register.

When storing register data in memory, the i860 shifts left the register data by the appro-
priate number of bytes required to align the data with the memory bytes addressed. This
data is presented on the bus, and an external write cycle is performed. The bus enable
lines that correspond to the data bytes being written are made active.

3-8



intel® | LOCAL BUS INTERFACE

MAIN MEMORY
o
°
[
Word 1
Word2 [HGFEDCBA
de3 do
LITTLE ENDIAN BIG ENDIAN
Byte Enables Data Bus 16 Byte Enables Data Bus e
BE#)  g4ea d0 dea do B e do  da do
_Id.b 0(r0), r16 0 A A 7 H H
1d.b 1(r0), r16 1 B B & G G
1d.b 2(r0), 16 2 c c 5 F
1d.b 3(r0), r16 3 D 4 F E
I1d.b 4(10), 16 4 D £ M E D
1d.b 5(r0), r16 5 E F 2 D c
1d.b 6(r0), r16 6 F G 1 c B
Id.b 7(r0), r16 7 G H 0 B A
H A
de3 do ds3 do de3 do d31 - do
1d:s 0(r0), 116 1.0 BA B A 76 HG HG
Id.s 2(r0), 116 32 DC DcC 5:4 FE FE
Id.s 4(r0), r16 5:4 FE FE a2 - DC g IC\)
1d.s 6(10), 116 I HG 1:0 BA
d63 d0  dg3 do d63 do da1 do
Id.s 0(r0), r16 3:0 DCBA DCBA 7:4 HGFE HGFE
lds4(0), 6 74 |y g EE HGFE 30 pceBA||bcBaA
24033010

Figure 3-2. Little and Big Endian Data Access

The determination of how many bytes to shift right during the bus operation, or left
during a store operation, as well as the selection of the appropriate byte enable signals is
determined by the least-significant 3 bits of the memory address involved, by the size of
the data, and by the endian-mode selected.

The big-endian little-endian example given earlier and Figure 3-2 illustrate the operation
under both endian-modes. The reading or writing the A data byte in little endian shifts
the data by zero bytes (no shift). For a write operation, activation of byte enable signal
BEO#, stores the memory byte corresponding to bits d7-d0 of the 64-bit memory entry
addressed. In big endian, reading A shifts the data bus right by seven bytes, and writing
shifts the register data left by seven bytes and activates BE7#, to store it in the byte
corresponding to bits d63-d56.

Big endian mode in the i860 essentially inverts the byte offset addresses, converting
address 7 into 0, 0 into 7, 6 into 1, 1 into 6 and so on.
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3.3.1.5 ENDIAN MODE FOR CODE ACCESSES

Code accesses are always done with little endian addressing. This implies that code will
appear differently than documented here when accessed as big endian data. Intel rec-
ommends that disassemblers running in a big endian system convert instructions which
have been read as data back to little endian form and present them in the format docu-
mented here.

3.3.1.6 SYSTEM OPERATION AND ENDIAN MODE

Systems based on the i860 microprocessor can be designed for normal operation in little
endian or big endian mode. The natural endian-mode operation is established by the
way that external devices address the byte offsets within the 64-bit aligned memory
locations. Typically, the system will be used only in the natural mode of operation. The
1860, however, allows for dynamically changing the endian-mode by software executing in
supervisor mode.

3.3.2 Basic Bus Operation

The 1860 microprocessor’s fully-synchronous external bus may operate without pipelining
or with up to two levels of pipelining to boost memory subsystem throughput. All control
signals that affect bus operations are sampled relative to the rising edge of the clock.

A bus cycle begins when ADS# is sampled active and ends when READY# is sampled
active. READY# is sampled on every cycle after ADS# is sampled active. New bus
cycles can be started on any clock cycle after a one clock cycle delay following the
beginning of the prior bus cycle. Thus, new cycles can start as often as every other cycle.
Pipelining allows up to three outstanding cycles to exist concurrently. A bus cycle is
considered outstanding while its associated READY# has not been sampled active.

The processor can generate pipelined and nonpipelined read and write bus cycles, as
requested by the memory subsystem. A pipelined cycle starts while one or two other bus
cycles are outstanding. Pipelined cycles are started under control of the NA# signal as
explained in Section 3.3.4.

3.3.3 Nonpipelined Bus Operations

Bus cycles require at least two clock cycles to complete. The state diagram in Figure 3-3
illustrates how the bus operates in nonpipelined mode.

The state machine assumes the idle T, state when there are no processor requests for
external bus cycles (indicated by REQ in Figure 3-4). When the processor requests a bus
cycle, the bus controller transitions to the T, state and the ADS# signal is asserted.
ADS# can be sampled by the memory subsystem at the end of the T; clock. ADS#
assertion indicates the beginning of a bus cycle. The T, clock is always followed by the
Ty, clock during which the bus cycle is allowed to complete. The address bus (A32-A3)
and the signals W/R#, NENE# and PTB are all made valid and stable prior to the end
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One Outstanding Cycle

240330-11

Figure 3-3. Nonpipelined Bus State Machine

of the first T;; clock cycle. During read operations, the data bus (D63-D0) is floated to
allow the memory subsystem to drive the data. During write operations, the processor
drives the data bus and makes it valid and stable before the end of the first T,; clock
cycle.

The memory subsystem does not assert the READY# signal unless the read and write
cycles finish within the first T;; clock. The diagram in Figure 3-3 shows that the state
machine repeats the T,; state to add wait-states as long as NA# is not asserted. Wait-
states can be added as needed by leaving READY# unasserted. The signals involved in
the memory cycle remain valid during wait-states. Assertion of NA# allows pipelined
cycles to take place (Section 3.3.4. provides further explanation). When the processor
samples the READY# signal, indicating completion of a bus cycles, the state machine
transitions to the Ty state, if there is no new processor bus requests at the time. If new
requests are present, the state machine assumes the T, state and a new cycle begins.

3.3.3.1 NONPIPELINED READ OPERATIONS

Figure 3-4 shows that read operations can complete at end of the first T,; state to
produce two-clock read cycle. To achieve this level of efficiency, the memory subsystem
must provide read data, assert READY# and allow for processor sampling before the
read cycle completes. This calls for an extremely fast address to data access time (the
i860 microprocessor Data Sheet provides detailed timing information). Required mem-
ory access times can be relaxed by adding wait-states or by using pipelining. Each wait-
state eases the access time requirement by one clock period.

3.3.3.2 NONPIPELINED WRITE CYCLES
Figure 3-5 shows a timing diagram of back-to-back write cycles. To perform a nonpipe-

lined write cycle, the processor asserts the ADS# signal during T, and drives the signals
needed to perform the bus cycle. These include not only the same signals needed for a
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Figure 3-4. Fastest Read Cycles

read, such as the address bus, W/R#, etc; but also the write data on the data bus, and
the byte enable lines BE7#-BEO#. Write operations differ from read operations in that
the processor does not need to wait for memory to finish its cycle in order to continue
computing. The memory subsystem can merely latch the address bus, data bus, byte
enable lines and other bus related signals, while simultaneously asserting READY#,
allowing the processor to continue computing. The memory subsystem can perform the
write operation while the processor is starting a new cycle. Thus, in Figure 3-5, cycle 1
can physically write to memory while T;, and T;; of cycle 2 sets up the next write cycle.
In this way, cycle 1 has two full clock cycles to operate and there is no need for wait-
states. This situation is different for read cycles, where the required RAM access time
needed to perform a two-clock nonpipelined operations is very small.

Unlike cachable read operations, write operations make use of the processor-driven byte
enable signals BE7#-BEO# driven by the i860 microprocessor (Section 3.3.1.3 provides
further explanation).
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Figure 3-5. Fastest Write Cycles

3.3.3.3 WRITE CYCLES FOLLOWING READ CYCLES

The timing diagram in Figure 3-6 shows that even though the data is not guaranteed
valid until the later part of the T,; cycle, the processor may begin driving the data bus
early in the T} cycle. If a read cycle precedes a write cycle, there could be contention for
the data bus between read data being held by the memory subsystem past the beginning
of the write’s T; cycle, and write data being driven early in T; by the processor. As
shown in Figure 3-6, the processor avoids this problem by delaying a write operation by
one clock cycle when it follows a read operation. The processor does not start driving the
write data for the write cycle (cycle 2 in Figure 3-6) until the beginning of Ty, as
opposed to the write cycle in Figure 3-5, which starts driving the data as early as T;.

- Memory subsystem design must add a wait-state to accommodate the special handling of
write cycles that follow read cycles. Although it is possible for the sake of simplicity to
add a wait-state to all write operations, this is undesirable due to the degradation in
performance.

3-13



intgl” LOCAL BUS INTERFACE

CYCLE 1 CYCLE 2 CYCLE 3
NON-PIPELINED|  NON-PIPELINED NON—PIPELINED
(2-2) (3-3) (2-2)

Too ] T | Ty T [T | Ty | Ty

B
W77 N7

ekt NEnes, [ XOOK | XX YY)
we (77177 {775 (O I TI7T
wors | [T TTTT TS\ A777
e ) S 10, G S

240330-15

ADS#

Figure 3-6. Fastest Read/Write Cycles

3.3.4 Pipelined Operations

The 1860 microprocessor provides up to two levels of pipelining for 64-bit read and write
operations. Two levels of pipelining implies the presence of three outstanding cycles, one
level implies two outstanding cycles, and no pipelining implies no more than one out-
standing cycle.

Pipelining of the external bus is controlled by the next address signal, NA#. By use of
this signal the memory subsystem allows, zero, one, or two levels of pipelining. After a
clock during which the processor has asserted ADS# to start a memory cycle, the mem-
ory subsystem can assert NA# to indicate that even though the outstanding cycle is not
finished, the processor can, if it needs to, start a new bus cycle. The NA# signal needs to
be asserted for only one clock cycle, since it is latched internally. Once an asserted
ADS# is latched, a new level of pipelining is permitted even if the processor’s bus
request comes at a later time.

An m-n read or write cycle has a cycle time of m clocks and a cycle-to-cycle time of n
clocks (m = m). Total cycle time is calculated from the clock in which ADS# is asserted
to the clock in which READY# becomes active. Cycle-to-cycle time is calculated from
the time that READY# is sampled active for the previous cycle to the time that it is
sampled active for the current cycle.
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Pipelining may begin whenever a bus cycle in progress requires more than two clock
cycles to finish (m > 2). A new cycle may begin while another cycle is still in progress, if
assertion of NA# requests it. NA# is only recognized in a clock where ADS# is inactive.

Figure 3-7 shows how pipelining takes advantage of memory operations with four inter-
leaved memory banks. Pipelined memory reads achieve 6-2 cycles. That is, a total cycle
time of six clocks and a cycle to cycle throughput of two clocks. The “A” in the diagram
indicates when the address is valid. Total access time in this example is six clock cycles.

3.3.4.1 PIPELINING AND INTERLEAVED MEMORY BANKS

Memory subsystems will typically use as many interleaved memory banks as there are
stages in the pipeline. Two levels of pipelining are most effective when a memory sub-
system with four interleaved banks. (Using three banks is not feasible because of the
difficulty in making an address decoder of this kind.) Interleaved memory banks are
designed so that each supports one of several sequential 64-bit addresses. In a two bank
system, for example, one memory bank handles odd 64-bit addresses while the other
handles the even addresses. In a four bank system, each bank handles one of four con-
secutive 64-bit addresses. When memory address cycles require a bank currently in use
by an outstanding bus cycle, the memory subsystem adds wait-states while the specific
outstanding cycle completes. It then resumes with pipelined operations.

In another approach to the use of bus pipelining, the system initiates one more memory
operation than the interleaved memory banks can accommodate. When the extra mem-
ory cycle is started, the memory subsystem stops issuing cycles until the accessed memory
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Figure 3-7. Memory Operation Pipelining
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bank becomes free. The memory subsystem has all the information needed to start a new
cycle. When the new cycle starts, the memory system queues up the next cycle. This
eliminates the extra delay required to get a valid address for any queued bus cycle.

3.3.4.2 ORDERING OF DATA DURING PIPELINED OPERATIONS

In typical implementations, the memory subsystem indicates completion of pipelined
write operations by asserting READY# when the processor provides valid data for writ-
ing. When pipelined bus operations are performed, the ordering of data driven onto the
bus during read or write cycles must correspond to the order in which the outstanding
cycles were initiated. If two read operations and a write operation are outstanding, the
processor will not provide the write data until the outstanding read operations are com-
pleted. The memory subsystem must have a state machine that tracks when to drive the
read data, and when to latch the write data.

3.3.4.3 BUS STATE MACHINE FOR PIPELINING

Operation of pipelined bus cycles is illustrated by the bus state machine shown in’
Figure 3-8. Transitions are made on every clock cycle according to the state of the signals
provided with the transition paths.

The state machine is divided into sections that indicate zero, one, two and three out-
standing cycles. Sections that indicate zero and one outstanding cycle are small exten-
sions of the nonpipelined bus state machine shown in Figure 3-3.

Two three-state machines have been added to the nonpipelined operation of Figure 3-3.
They indicate state machines for two and three outstanding pipelined cycles. The states
are labeled with subscripts in the form of T; or Tj;. The j subscript indicates the number
of outstanding cycles, and the i subscript 1nd1cates substates 1 and 2.

There are three processor states for each of the j-states. The states labeled with a single
subscript T; correspond to the initial state entered to begin a new cycle, given j—1 or no
outstandmg cycles. A T; state is entered only once for each external bus cycle and asserts
the ADS# signal. A T state for j>1 is not entered unless there is a request from the
processor and the NA# has been or is in the process of being asserted.

Notes:

e RDY# in the figure corresponds to the READY# signal

o NA# is not sampled during ADS# active clock

o ADS# is made active in T;, T, and T,

e REQ corresponds to an internal processor bus request

T;, is an auxiliary state which helps to complete memory cycles. Tj; states operate as the
TJ 11 State does for in nonpipelined cycles. During the first Tj; cycle in a given operation,
signals that are relevant to the operation (such as address bus W/R# and NENE#) are
made valid and kept valid during subsequent Tj; wait-states. A T; j1 state can be repeated

on subsequent clock cycles as wait-states are 1ntroduced (that is, READY# remains
unasserted). ,
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Figure 3-8. Pipelined Bus State Machine

If the processor is not requesting a new cycle, T}, can be entered from T;; when synchro-
nous sampling detects an asserted NA# while a memory cycle is still active. A cycle
request is indicated by the REQ internal signal. The Tj, state performs like the Tj; state
but remembers that an NA# signal has been asserted and that a further level of pipe-
lining can be introduced at the processor’s request.

As mentioned, pipelined cycles occur when the memory subsystem asserts NA# while
the CPU is processing an outstanding cycle. (The memory subsystem should not assert
NA# when there are no outstanding cycles.) The NA# signal tells the processor that the
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memory subsystem is prepared to receive another cycle while the previous cycle com-
pletes. In Figure 3-9, for example, NA# is asserted by the memory subsystem before the
end of the T,; cycle while the READY# signal remains unasserted. In this case, the
memory subsystem has stored all the information it needs to complete the outstanding
cycles. As soon as the processor is ready to request a new memory cycle (as indicated by
the REQ signal) and starting on the clock following the sampling of NA#, the processor
provides a new ADS# which starts the memory cycle.

3.3.4.4 PIPELINED READ AND WRITE CYCLES

Figures 3-9 and 3-10 illustrate pipelined memory cycles. Figure 3-9 shows four memory
cycles. Nonpipelined cycles begin when there are no outstanding cycles. The digits in
parentheses (such as 5-2 for cycle 2 in Figure 4-5) characterize the number of clocks
needed to perform a pipelined cycle. The first digit indicates the total number of clocks
between cycle initiation (ADS# assertion) and completion (READY# assertion). The
second digit indicates the throughput rate (the number of clocks between READY#
signals).

Figure 3-9 illustrates the sequence of events in a group of pipelined cycles. The first
operation is the cycle 1 memory read which begins when T, ends while asserting ADS#.
At the completion of the T,; state, address lines A31-A3, W/R#, NENE# and PTB#
are valid and latched by the memory subsystem. During this T;; clock cycle, the memory
subsystem asserts NA# to request a pipelined cycle. The state machine transitions to T,
initializing the read cycle, cycle 2, by the assertion of ADS#. During T,,, the memory
subsystem latches the various signals needed to perform the cycle, and asserts NA# to
start another pipelined cycle. As a result, the processor requests another cycle. The state
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Figure 3-9. Pipelined Read Followed by Pipelined Write
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machine transitions to T; and a third cycle begins by another assertion of ADS#. During
the same T; clock, READY# is asserted indicating that cycle 1 has completed and that
the data bus has valid data. The state machine transition from T; to T,; should be
understood to gain insight as to how the pipelined bus state machine operates. Cycle 3
starts with a T state and ends with a T,, state (instead of Tj;), since the sampling of an
active READY# signal reduces the number of outstanding cycles back to two. Cycle 3 is
a write cycle, so during T,;, all the previously mentioned bus cycle related signals in
addition to the byte enable lines (BE7#-BEO#) and the data bus are made valid and
latched by the memory subsystem. During T,; a new NA# is asserted, allowing the state
machine to start cycle 4 and transition into T; again. Another READY# is asserted and
cycle 2 completes, leaving cycles 3 and 4 outstanding. For the remaining cycles, the state
machine oscillates between T; and T;; thus maintaining two levels of pipelining (three
outstanding bus cycles).

The processor does not drive cycle-3 data onto the Data Bus until two READY# asser-
tions indicate completion of pipelined cycles 1 and 2. Note that since the cycle-3 write
operation follows a read operation (cycle 2), the processor waits an additional clock
cycle before driving cycle-3 data. The memory subsystem must detect the read/write
sequence and delay by one clock cycle the assertion of READY# and the sampling of
write data.

Figure 3-10 shows a nonpipelined write operation followed by a pipelined write and two
pipelined reads. The write operations are not preceded by a read operation, and the
memory subsystem is not required to add a wait-state to complete the cycle.

3.3.5 8-Bit Bus Transfers for Bootstrapping (CS8 Mode)

Eight-bit code size mode is enabled when the INT/CSS8 signal is sampled active at the
beginning of the period in which RESET is deasserted (Figure 3-11). In eight-bit code
size mode, instruction cache misses are transferred as single byte reads instead of 8-byte
reads (using bits D7-DO0 of the data bus). This allows the i860 microprocessor to be
bootstrapped with an 8-bit EPROM. For these single byte code reads, byte enables
BE2#-BEQ# are redefined to be the three low order bits of the address bus, A2-A0.
While KEN# is asserted, these code byte reads are used to update the contents of the
instruction cache. (Section 3.5 explains the function of the KEN# signal). Pipelined
memory cycles are not started in this mode, even if NA# is asserted.

In CS8 mode, all program code resides in 8-bit memory (ROM) while data are in 64-bit
memory (RAM). A reset operation traps to the 0xFFFFFF00 standard trap handler
starting address. Hardware must disable RAM address space covered by the 8-bit boot-
strap ROM and enable the ROM or EPROM over this address space. When exiting
8-bit code size mode, programs must output to a special I/O port which tells the proces-
sor to unmap ROM or EPROM from memory and map the normal 64-bit memory. Once
code is loaded in 64-bit memory, initialization code initiates 64-bit code fetches by clear-
ing the CS8 bit in the DIRBASE register. Once 8-bit code-size mode is disabled by
software, it cannot be reenabled until the next hardware reset.
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Figure 3-10. Pipelined Write Followed by Pipelined Read

3.4 BUS CONTROL OPERATIONS

This section explains bus control operations including: page-mode and static-column
DRAM support, bus arbitration, and bus locking.

3.4.1 Page Mode, Static Column DRAMs and Next Near Operation

The external bus interface facilitates high-performance designs using low-cost DRAMs.
The next near signal (NENE#) facilitates designs using page mode and static column
DRAMs.

Page mode and static column DRAM:s perform best when multiple reads or writes access
closely-situated areas of memory (as in the same row address of a given DRAM). This
occurs frequently because memory accesses are often sequential.

The NENE# signal indicates that a memory cycle is using the same RAM page address
as the previous cycle. The processor ignores a number of lower bits of the address that
corresponds to the size of a page in the DRAM. NENE# provides information to the
memory subsystem that it can use to enable page mode or the static-column mode oper-
ation of the DRAMs. NENE# eliminates the need for external circuitry and eliminates
the difficult timing problems that are involved in implementing this capability.
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Figure 3-11. CS8 and RESET Activity

The i860 microprocessor determines page size by interpreting the DPS field (bits 3, 2
and 1) of the dirbase register. The value in the field indicates the number of least-
significant bits to ignore when comparing a cycle address to previous addresses. The
number ignored equals 12 plus DPS. Zero is is an appropriate value for 256K X n
RAMs, 1 for IM X n RAMs, and so on.

NENE# is never asserted on a bus cycle immediately following the deassertion of
HLDA. NENE# is not asserted for TLB miss cycles.

3.4.2 Bus Hold, Hold Acknowledge, Bus Request

The i860 microprocessor provides the input line HOLD and the output lines HOLDA
(hold acknowledge) and BREQ (bus request) to control arbitration of the buses and
control lines.

The hold request signal (HOLD) is driven by an external device or bus arbiter to request
control of the bus from the processor. The HOLD signal can be driven asynchronously.
The processor has an internal synchronizer to prevent metastable problems when sam-
pling for HOLD. When hold is asserted, the processor blocks any new cycles. Once all
outstanding bus cycles are completed, the processor relinquishes bus control by floating
all output lines except HOLDA and BREQ. HOLDA indicates to the requesting device
that bus control has been relinquished. The device can then use the signals and buses it
needs until it relinquishes control to the processor.
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The i860 microprocessor can continue executing from the cache once it has relinquished
control of the bus. The BREQ signal indicates to any external bus arbiter that the
processor is waiting for an external bus cycle. BREQ provides a means to implement a
more efficient system for arbitrating between bus contenders such as a DMA device or
another processor.

The bus state machine in Figure 3-12 illustrates the process that brings bus activity to a
halt when the HOLD input signal is asserted. This diagram is similar to the bus state
machine in Figure 3-8, except it includes the hold state and labels the REQ signals as
REQNH. REQNH corresponds to REQ ANDed with NOT HOLD. ANDing all REQ
signals with NOT HOLD prohibits the bus control unit from initiating new cycles while a
hold is pending. Once all outstanding cycles are done, the state machine assumes the T;
idle state where the SHOLD signal (synchronized version of HOLD) causes a transition
to the hold state Ty. When the processor detects that the SHOLD signal is no longer
active, the state machine transitions back to Ty, if no internal requests are pending
(NOT REQ), or to T, to start a new bus cycle.

Figure 3-13 timing diagrams illustrate the operation of HOLD, HOLDA, and BREQ.
HOLD is asserted within a T,; cycle. Since external HOLD must be synchronized inter-
"nally, SHOLD is asserted one clock cycle after the assertion of HOLD. This explains
why the T,, T,; bus cycle was started. This new bus cycle would not have started if
HOLD had been asserted one clock earlier. The state machine completes all outstanding
cycles and ignores internal bus requests indicated by the assertion of BREQ. Once the
T, idle state is reached, the hold state Ty; is entered. HOLDA is then asserted, and the
microprocessor floats all output signals except HOLDA and BREQ. Within the second
hold cycle, the HOLD signal deasserts. The state machine exits the hold state and tran-
sitions to T; to perform another bus cycle request. Unlike the assertion of HOLD, de-
assertion of HOLD resets the SHOLD signal so that, on the next clock cycle, the bus can
be recovered and HOLDA made inactive. The recommended set-up and hold times are
required to ensure release of the hold state on the clock cycle following the deassertion
of HOLD.

BREQ is activated by the processor’s internal bus requests independent of the state of
HOLD and HOLDA. ,

Notes:

e RDY# in the table corresponds to the READY# signal

o NA# is not sampled during ADS# active clock

o ADS# is made active in T;, T, and T;

e REQNH is the internal bus request ANDed with synchronized HOLD

e HLDA is made active in Ty

e HOLD is synchronized internally.

3.4.3 Bus Lock
The bus lock signal (LOCK#) provides indivisible read-modify-write memory operation

sequences for use in multiprocessor systems. Multiprocessor systems with an external
arbiter should also use the LOCK# signal to prevent granting the bus to other masters.

3-22



intel” LOCAL BUS INTERFACE

From RESET ' 240330-19

Figure 3-12. Pipelined Bus State Machine Including Hold State

Programmers need not track synchronicity between the bus and the instruction that sets
the BL bit. LOCK# is asserted along with ADS# on the first data bus cycle following
the setting of the BL bit. LOCK# and ADS# are deasserted on the first data bus cycle
after clearing of the BL bit.

The bus is not locked until after the first data access cache miss causes the assertion of
the LOCK# signal. Multiprocessor system software should therefore ensure that the
first load instruction in a locked sequence references noncachable memory.
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Figure 3-13. HOLD, HLDA, and BREQ

3.4.3.1 SUPERVISOR-MODE ACTIVATION OF LOCK#

Supervisor mode software can set or clear the BL bit in the dirbase register directly.

3.4.3.2 USER-MODE ACTIVATION OF LOCK#

User mode software can set or clear the BL in the dirbase with the lock and unlock
instructions. These instructions support generalized interlocked sequences. The lock in-
struction sets the BL bit in the dirbase, and the next load or store operation locks the
bus. Interrupts are disabled until the bus is unlocked. The unlock instruction clears the
BL bit in the dirbase, and the next load or store operation unlocks the bus.

Some restrictions apply to this method. An interlocked instruction sequence must not
branch or execute outside the 30 sequential instructions that follow a lock instruction.
The interlocked sequence must be restartable from the lock instruction if a trap occurs,
as in read-modify-write sequences. In sequences with more than one store instruction,
software must prevent traps following the initial nonrestartable store instruction. This
ensures that the sequence will not be restarted beyond this point. To meet this condi-
tion, the software must read and write the unmodified values of the locations used by the
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instructions following the first store, to prevent the possibility of a data access page fault.
Software must also ensure that executed code is within the same page to prevent instruc-
tion fetch page faults.

The processor will ignore a second lock instruction issued before the bus is unlocked. A
trap occurs when from 30 to 33 instructions have executed following a lock instruction, if
a load or store which follows an unlock instruction has not been executed.

If a trap occurs between a lock instruction and the first load or store following an unlock
instruction, the interlock bit (IL) in the psr is set and BL is cleared. IL indicates to the
trap handler that a lock sequence has caused the trap. It searches backward for the lock
instruction and restarts from that point. The trap handler can scan up to 33 instructions;
if no lock instruction is found, it signals an error to the user code.

3.4.3.3 BUS LOCK DURING PAGE TABLE UPDATE

The 1860 microprocessor also asserts LOCK# in TLB miss processing to update the
accessed bit within a page-table entry. The maximum time that LOCK# may be asserted
for this case is the time needed for hardware to perform a read-modify-write in the
page-table entry.

The LOCK# signal is asserted with an appropriate setup time relative to the clock cycle
that samples the assertion of ADS#. This ensures that this bus cycle will be part of a
locked sequence.

Figure 3-14 illustrates locked cycles. The LOCK# signal is asserted prior to the begining
of the Ty, state of cycle 1 to initiate a locked cycle. The LOCK# signal is unasserted
after the end of T,; to indicate that cycle 2 is not locked. This particular example is not
of practical use, since it locks a single cycle, but it illustrates the LOCK# signal timing.

3.5 CACHE CONTROL OPERATIONS

The KEN# (cache enable) input signal enables or disables cache updates. The PTB
output signal is used when paging is enabled to provide the memory subsystem with
cache control page table information relating to the current cycle.

The 1860 microprocessor prevents updates of both the data and instruction caches unless
KEN# is sampled active. Enabling cache updates for a given cycle requires that KEN#
be sampled active on the clock period after ADS# through the clock in which NA# or
READY# is asserted. Updating either cache involves the generation of four 64-bit read
operations. If KEN# is found deasserted for the first fetch cycle, the data being read is
not cached.

Accesses to data or instructions already cached are not inhibited by KEN#. To prevent
such accesses the caches must be flushed.

When paging is enabled, the values in the cache disable (CD) and write through (WT)
page table bits are used to determine the caching strategy. During memory transfers, the
secondary page table entry’s CD bit indicates whether accessed data should be stored in
an external cache. CD in the first-level page table is ignored. The WT bit allows software
to determine the internal caching strategy. If WT is set in a page table entry (PTE),
on-chip caching for data is inhibited. If WT is clear, normal write-back policy applies to
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Figure 3-14. Locked Cycles

page table data. The WT bit of the page directory entries is reserved and is not refer-
enced by the processor. The WT bit is independent of the CD bit; data that is not stored
in the on-chip caches may be placed in an external cache.

The internal cache is disabled when a CD bit is set or when an external KEN# signal is
unasserted. The CD and WT bits do not function when paging is disabled.

When the PBM bit in the epsr is set, the PTB output signal reflects the value of the WT
bit. When clear, PTB reflects the value of the CD bit. The PTB output signal remains
unasserted while paging is disabled.

3.6 TRAPS AND INTERRUPTS

Traps are caused by external conditions or by exceptional conditions detected in the
course of a program’s execution. A trap causes the instruction being executed to abort
and transfers control to a trap handler program stored in the hexadecimal virtual ad-
dress OFFFFFF00.
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The trap handler reads the psr and fsr registers to identify the cause of the trap and
branches to the portion of code that processes the trap (or traps if more than one
occurred simultaneously). Once the trap handler has executed code to service the trap
conditions involved, it restores the state of the processor, restarts the aborted instruction
and resumes normal program execution. The i860 microprocessor is designed to ensure
that all program instructions can be restarted. The i860™ 64-Bit Programmer’s Reference
Manual explains how to write trap handling software. Table 3-2 summarizes the causes
and indications of various traps.

LOCAL BUS INTERFACE

The reset trap and interrupt trap are caused by external conditions. Reset traps are
caused by hardware resets. (Section 3.8 provides further explanation.) Interrupts are
caused when an external source asserts the INT signal while interrupts are enabled (i.e.
while the IM interrupt mask bit is set in the psr). The trap handler immediately saves
and clears the IM to inhibit further incoming interrupts.

The i860 microprocessor does not provide an interrupt acknowledge signal. After the
interrupt takes place, the trap handler can read from the external I/O system to deter-
mine the source of the interrupt. The processor can then indicate to a port that the
interrupt has been processed.

Table 3-2. Types of Traps

Type Indication Caused by
psr epsr fsr Condition Instruction
Instruction IT OF Software traps trap, intovr
Fault IL Missing unlock Any
Floating FT SE Floating-point source Any M- or A-unit except
Point AO,MO exception fmlow
Fault AU,MU Floating-point result Any M- or A-unit except
Al Mi exception fmlow, pfat, any pfeq.
overflow Reported on any F-P
underflow instruction plus pst,
inexact result fst, and sometimes
fid, pfld, Ixfr
Instruction IAT Address translation Any
Access Fault exception during
instruction fetch
Data Access DAT Load/store address Any |oad/store
Fault translation exception Any load/store
Misaligned operand Any load/store
address
Operand address
matches db register
Interrupt IN External interrupt
Reset No trap bits set Hardware RESET signal

3.7 TEST SUPPORT FUNCTIONS

The 1860 microprocessor has a boundary scan mode for component or board level testing
of signals and logic. Special test logic or instrumentation needs only to connect to the
CLK, BSCN, SCAN, SHI, BREQ, RESET and HOLD signals to sample and drive the
external processor signals. Table 3-3 indicates the signals for the test mode selections.
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Sampling of an active boundary scan (BSCN) input signal initiates the boundary scan
mode within the following clock cycle. Boundary scan mode may be activated while
RESET is active. The processor exits boundary scan mode on the clock cycle following
deassertion of BSCN. The internal state is undefined when the processor exits boundary
scan mode. RESET should be asserted to reinitialize the processor.

Table 3-3. Test Mode Selection

BSCN SCAN _ Testability Mode
LO LO No testability mode selected
LO HI (Reserved for Intel)
HI LO Boundary scan mode, normal
HI HI Boundary scan mode, shift
SHI as input; BREQ as output

While in boundary scan mode, the processor may operate in normal mode or shift mode.
Shift mode is a submode that is entered on the clock in which SCAN input is asserted.
The normal mode is entered on the clock in which SCAN input is deasserted.

For testing purposes, each signed pin has associated with it an internal latch. Table 3-4
identifies these latches by name and classifies them as input, output or control.

Table 3-4. Test Mode Latches

Input Output A‘e’é:::f;fd
Latch Latch Latch

SHI

BSCN

SCAN

RESET

D0-D63 D0-D63 DATAt

CC1-CCo
A31-A3 ADDRt
NENE# NENEt
PTB# PTBt
W/R# W/Rt
ADS# ADSt
HLDA
LOCK# LOCKt

READY#

KEN#

NA#

INT/CS8

HOLD
BE7-BEO# BEt
BREQ
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Here is a typical test sequence:
1. Enter shift mode and assign a value to all the latches.
2. Enter normal mode to force values onto desired output pins, and read all pin values.

3. Enter shift mode to read the new values of the input pins.

3.7.1 Normal Mode Operation

Normal mode begins with a clock cycle that samples a deasserted SCAN input signal.
Within normal mode, the contents of the output latches are driven onto the output pins
or buses if the corresponding control latch bits are set. If the corresponding control latch
is not set, the output pins are not driven. RESET and HOLD must be asserted to float
the outputs.

3.7.2 Serial Mode Operation

Shift mode begins with a clock cycle that samples the SCAN input in the active state.
The value of all pins are immediately loaded into latches. Input pin latches load exter-
nally driven values. Floated output or bidirectional pins also read externally driven val-
ues. Latches with forced output pin values during normal mode, load their own values
and do not change.

Immediately after the clock cycle that sets the shift mode, the output of the BREQ
output signal reflects the value of the BREQ latch. On subsequent clocks, the value of
all the latches are shifted to the BREQ pin. At the same time, new values are being
shifted in via the SHI pin. Figure 3-15 shows the order in which boundary scan latch
chains are serially read and written. All outputs except HOLDA and BREQ are floated
in shift mode to avoid glitches on the output lines. However, some glitches may be
evident in the HOLDA output pin.

1 2 3 4 5 6 69
—> sHi > BSoN ™ sCAN —PRESETPDATAt™> Do —> -+ —> pes —>
0 5 T 3 72 _y | _5100_g 101 g 102 3 103y 104 _3
cci cco A31 A3 —>ADDRt—> NENEt—>NENE# > PTB
106 106 107 108 s 109 . 110 111 112 113
PTB# > WAt —> W/R# —> ADSt —>ADS# > HLDA™> LOCKt P LOCK# PREADY# >

114 115 116 117 118 119 126 127
KEN# > NA# ~ZINT/Cs8 > HOLD > Bet > BE7# > ' > BEO# > BREQ >

240330-22

Figure 3-15. Boundary Scan Chain
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3.8 RESET AND CLOCK CIRCUIT

i860 microprocessor RESET input must remain high for at least 16 clock periods to
initialize the processor. Table 3-5 shows the status of all output pins while RESET is
asserted. Once the RESET signal goes low, the processor traps and begins execution at
hexadecimal address OFFFFFF00 to execute the central trap handling routine. The
i860™ 64-Bit Programmer’s Reference Manual details processor status following a reset
operation.

The circuit in Figure 3-16 shows the simple system needed to generate the clock and the
RESET signal. The clock is a standard TTL circuit rated for the i860 microprocessor
configuration used (e.g. 40 MHz).

The RESET signal is triggered when power is first turned on or when the reset button is
pushed. Voltage in the capacitor falls to zero, creating a high value for the inverters
output. The value is clocked by two D flip-flops to synchronously assert a RESET signal.
The RC delay is at least 16 clock periods, raising the inverter input to a voltage level that
moves the output to a low state. The low-level signal is clocked through two flip-flops
and causes the RESET to deassert. The inverter and the flip-flops are used to clean up
the RC signal and synchronize the resulting RESET signal. Two flip-flops help to pre-
vent a metastable state that could be derived when synchronizing the RC network pulse.

Table 3-5. Output Pin Status During Reset

Pin Value
HoLD HOLD
Pin Name Acknowledged Acknowledged

ADS#, LOCK# HIGH Tri-State OFF
W/R#, PTB LOW Tri-State OFF
BREQ LOW LOW
HLDA LOW HIGH
D63-DO Tri-State OFF Tri-State OFF
A31-A3,
BE7# - BEO#, Undefined Tri-State OFF
NENE#

The circuit shown to generate CS8 consists of a driver (e.g. two inverters) to delay
RESET and provide the hold time relative to the falling edge of RESET. This signal is
ORed with INT. CS8 is inactive after being sampled by the falling edge of RESET, and
the INT signal remains unaffected.
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Figure 3-16. Circuit for Clock, RESET and CS8 Generation
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CHAPTER 4
MEMORY INTERFACING

4.1 INTRODUCTION

The on-chip caches of the i860™ 64-bit microprocessor contribute to its extremely high
level of performance. Depending on the locality of memory references, the processor can
usually operate from these caches. As a result, fewer accesses are made to the external
bus allowing instructions and data to be supplied to the CPU at a very fast rate.

The need for a high-performance cache system stems from the i860 microprocessor’s
access performance, which is double that of DRAMSs. Because of this disparity, the
cache is employed to decouple the processor from its external bus. In this way, the effect
of a slower DRAM subsystem is greatly reduced.

The locality of memory references is key in determining memory system performance.
Software with widely dispersed memory references increase the number of DRAM ac-
cesses. The effect of a slower DRAM subsystems on processor performance is much
more pronounced in applications characterized by widely dispersed references. These
applications, such as Linpack, and graphics matrix operations or file handling applica-
tions, such as Troff, warrant the effort and cost needed to design efficient DRAM sub-
systems. Inoptimal designs can easily reduce performance in these applications by 60 to
70 percent. Poor performance in these applications has a disproportionate detrimental
effect on overall system performance, especially if important system functions such as
page swapping or display are involved.

This chapter examines a DRAM subsystem design. The example has been optimized to
reduce the number of clocks in which the processor waits for the bus. Controller func-
tion, processor features, and details such as timing and power consumption are analyzed.
The example cannot account for all processor applications, and many applications will
implement optimizations not found here. This design has been built and tested, however.
If desired, it may be implemented as shown.

The example assumes a working knowledge of computer system design. Items that are
discussed but not explained include DRAM operation, PLD programming and opera-
tion, worst case analysis techniques, and i860 microprocessor bus operation. The com-
plete schematics and PLD equations are included in Appendix C.

4.2 CPU FEATURES

Certain i860 microprocessor features are specially devised to facilitate optimum DRAM
subsystem performance. This section briefly describes these special features.

4.2.1 The KEN# Input

External logic, which is usually part of the DRAM controller, generates the KEN#
input. KEN# indicates that the current read cycle is cacheable. As discussed in earlier
sections, the processor generates three read cycles (in addition to the current cycle) in
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response to KEN#. These cycles provide 32 bytes—enough data to fill one cache line.
The handling of these cycles impacts memory system performance and will be discussed
in the next section.

KEN# is generated for every cache block fill cycle. It is usually generated by decoding
the processor address. Since the processor has no I/O space, memory mapped I/O ad-
dresses must be non-cacheable.

Figure 4-1 shows the timing requirements for generating KEN#. The most stringent case
is a pipelined zero-wait-state cycle where KEN# must be generated in one clock. Once
the address is. valid, KEN# must be generated in time to meet the setup time (t;g)
dictating that KEN# be generated by combinatorial logic.

4.2.2 Bus Pipelining

Obviously, the i860 microprocessor’s bus pipelining feature must be incorporated in
DRAM subsystem design. This feature allows the processor to overlap bus cycles.

Pipelining is controlled by the processor’s NA# input signal. It allows the processor to
begin a new bus cycle while another cycle is in progress. It can be activated twice before
READY# is activated. In this way, three bus cycles can be activated before the first is
completed.

Although the process is not demonstrated in this example, write cycles can be pipelined.
In this design, writes are buffered or “posted” and can run without wait-states. As such,
write cycle performance does not benefit from the use of pipelining.

Read cycle performance does benefit from pipelining, however, especially if read cycles’
are due to a floating point vector load. Vector loads can occur in long sequences. Since
most of these cycles do not cross a DRAM page boundary, they can be executed with a
minimum number of wait-states. Figure 4-2 demonstrates how pipelining facilitates
floating-point vector loads.

CLK I L L

ADS#

ADDRESS

NA#

KEN#

240330-23

Figure 4-1. KEN# Timing
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Figure 4-2. Bus Pipelining

The first read cycle in Figure 4-2 occurs from an idle bus state. In this case, the DRAM
controller must add five wait-states to the cycle. These wait-states satisfy the RAS access
time of the DRAMSs. They are added by suppressing READY#. Ordinarily, waiting for
READY# is a waste of processor time. Activating NA#, however, allows the next bus
cycle to start. NA# is sampled active in the third clock, and ADS# is driven active. The
address for the second cycle is valid one clock later.

NA# is activated again before returning READY# to the CPU, and the third vector
load is performed. At this point, READY# must be returned to the processor before
NA# is activated again Data for the first read cycle must be Valld at the processor data
input pins when NA# is activated.

In this example, the pattern can be repeated for an unlimited number of bus cycles.
When ADS# is not activated in response to NA#, the pattern is interrupted. Clearly,
the benefit of pipelining in this example is that read cycles overlap. Consecutive pipe-
lined read cycles return data to the processor every two clocks.

4.2.3 The Next Near Pin

The next near (NENE#) feature directly supports the DRAM subsystem. (The next
near pin is described fully in Chapter 3.) Its function optimizes page or static column
mode designs. It 1ndlcates that the current row address is the same as the previous
address.

This DRAM design example uses static' column mode memories. These memory devices
contain a row address register. The register simplifies access to memory if the access is
within the same DRAM page (row address). In the example, RAS# can remain active
from the previous cycle. For read cycles, CS# can also remain active. This type of cycle
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saves clocks: the required number of clocks doubles if RAS# must be activated to latch
the row address. These extra clocks are required to meet RAS# precharge time. Imple-
mentation of this function will be detailed later in this chapter.

The NENE# function optimizes memory subsystem design. If implemented in logic, the
' function requires at least one register and a comparator. Another benefit is that
NENE# is available along with the address, and no additional time is needed to gener-
ate this signal.

4.2.4 Write Data Function

Data bus contention could result when a write cycle is immediately preceded by a read
cycle. The i860 CPU includes a bus feature to prevent this problem. When a write cycle
occurs in the clock following a read cycle, write data valid timing changes. Figure 4-3
illustrates this change.

N I I I 0 O B
| |

ADS#
I I I

WiRe—- | | | |

1 1 T T

oo — R SR>
4 i 1

READY# | l I I I
I I I

Diagram A. Zero-Wait State Write Cycles

wre | I | /_—I'——I'—
oata Id}'@—_b
T I
READY# I |
| | | I
DiagramB. Read Cyce Folowed By Wit 54as30.25

Figure 4-3. Read - Write Timing
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Diagram A shows two successive write cycles. Diagram B shows a read cycle followed by
a write cycle. The write data in Diagram B is driven one clock later than it is in Diagram
A. This feature allows data bus transceivers to tristate the processor side of the bus
before the CPU drives the write data.

4.3 DRAM SUBSYSTEM OVERVIEW

The features just described help make the DRAM subsystem more efficient. These func-
tions are included in the processor to save logic needed to implement the DRAM con-
troller. Timing constraints have also been eliminated, allowing fewer clocks per bus
cycle.

The DRAM subsystem example described in this chapter illustrates how to use these
features and describes the interaction of the processor with the memory system. The
subsystem has been designed to use a 33.33 MHz clock. The example uses one Mbit
memories which are organized 256K X 4. This memory is selected because of its mini-
mum configuration. With a 64-bit bus, the minimum memory configuration is 2 Mbytes
(16 devices). Using 1M X 1 memory devices, the minimum memory configuration is 8
Mbytes (64 devices).

Figure 4-4 is a block diagram of the memory subsystem example. It comprises five parts:
address path logic, data path logic, parity logic, controller and DRAM:s.

4.3.1 Address Path Logic

Address path logic performs several functions. Its primary function is to drive the pro-
cessor address to the DRAM bank. To perform properly, it requires two paths for the
row and column address.

In this example, the row address consists of processor address bits 12 through 20. These
bits are buffered by the 74BCT29827 buffer. The buffer also disables the row address
when the column address is selected. The device’s OE pin is used for this function.

The output enable of the column address logic is also used for this function, but the
column address must be latched for pipelining. For this reason, an AS821 register with
output enable function is used.

The register and buffer chosen to implement the address path logic are 10 bits wide. The
memory uses nine of these bits. The remaining bit drives the parity DRAMSs. The parity
logic is described later.

Outputs of row and column address devices drive every DRAM. Restrictions on the
drive capabilities of these devices require additional drivers every 4 Mbytes. Two sets of
address logic devices are shown in Figure 4-4. This configuration allows up to eight
Mbytes of memory. Additional drivers can easily be added for larger configurations.
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Figure 4-4. Maximum Example Configuration

4.3.2 Data Path Logic

The data path consists of eight 74AS646 bidirectional latching transceivers. These de-
vices fulfill two critical memory system requirements. These transceivers hold read data
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when the processor performs pipelined read cycles. Data for two reads has been ac-
cessed when the processor begins the third read cycle in a pipelined sequence. The data -
registers hold the first cycle’s data while the second cycle’s data is held at the transceiver
input.

The register feature of the transceivers is also used during write cycles. The memory
system posts all write cycles. During a posted write, NRDY# is returned to the proces-
sor before data is written to the DRAM. Without posting, write cycles would require at
least two wait-states. Registers in the data transceivers hold write data after NRDY#
has been activated. Section 4.4.4 provides a detailed description of the posted write
function.

4.3.3 Parity Logic

Parity logic generates parity information and checks for parity errors. Eight 74AS280
9-bit parity generator/checker devices are used.

One parity bit is generated by each device. These bits are either written to the parity
DRAMs or used by logic to generate a parity error signal. The parity error (PARERR)
signal generates an interrupt which cannot be processed in time to stop the current bus
cycle. The bus cycle which caused the error cannot be restarted.

The parity DRAM devices are 1 Mbit chips organized as 1M X 1. These DRAMs are
used to store parity information for all eight Mbytes of main memory. The tenth address
bit mentioned in Section 3.1 supports these devices. They divide the parity DRAMs mto
four sections which correspond to appropriate banks of main memory.

Odd-parity was chosen because of implementation restrictions. If even-parity is used, “I”
inputs of the parity generators must be pulled down. Pull-ups are preferable in light of
noise immunity.

4.3.4 Control Logic

The controller circuit contains the bus tracking state machine which is implemented with
one PLD. The output signals of the PLD control three other PLD devices, each of which
implements a specific control function. :

The state machine PLD generates five state-variable outputs. These outputs define 32
states; designated sequences of these states implement various bus cycles. The state
variable signals are decoded by the other control PLDs to create control signals. These
signals, such as RASO#, CAE#, and WEL, are activated to control the DRAMs, ad-
dresses and data logic.

Because of timing restraints, the state machine PLD (DSTAT in Appendix C) generates
control signals NA# and RDY#. These constraints will be explained in the functional
description (Section 4.3).

The DSTAT PLD also generates the BSY# signal. It serves as an arbiter between dif-
ferent system units, allocating processor bus priority to other subsystems that support
bus pipelining.
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The Control-A PLD generates row address strobe (RAS#) signals for all DRAM banks.
Address bits are decoded along with state variable outputs of the DSTAT PLD to gen-
erate these signals. Each signal drives every DRAM in a 2 Mbyte array. The PLD is not
registered because it primarily performs a decode function.

- The RAS# signals select the active DRAM bank. Address inputs of this PLD are
A21-A23. Figure 4-5 shows the address map for four banks of memory. The program for
this PLD is listed in Appendix C. It shows the states decoded for the write, read and
refresh functions. This PLD can be duplicated if a larger main memory is required, in
which case address decode must be modified to select more memory banks.

This PLD also generates RAS# for the parity DRAMs. RASPO# enables the IM X 1
DRAMSs containing parity information for 8 Mbytes of main memory. Decode of this
signal requires fewer address inputs.

Together, the Control-B and Control-C PLDs generate all address and data path control
signals. They both have as inputs the state variables from the DSTAT PLD. Control-B
also operates from a delayed clock, DCLK.

The delayed clock allows the Control-B PLD to sample state variables in the clock they
are generated. Control-B outputs can be generated in the same clock.

The Control-B PLD controls the column address path. The PLD also generates the
column address enable (CAE#) signal, which determines data access time, and the
CSX# signal, which generates CS# signals to the DRAMs. Because the early write
function is used, CSX# determines when data is written to the DRAMSs. Control-B also
generates signals which control the transceiver registers. The remaining transceiver con-
trol signals are generated by Control-C.

7FFFFF

600000
SFFFFF

400000
3FFFFF

200000
1FFFFF

240330-27

Figure 4-5. Address Map
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Control-C also generates parity logic control signals. These signals latch parity data
during writes and error indication during reads. Another important Control-C signal is
RAE# which controls the row address path. Control-C also generates OEX# which
generates output enable signals for the DRAMs.

The Control-D PLD does not use state variable inputs. Its only function is to generate
write enable signals for the DRAMs. The WEL signal from Control-B is the clock input
for this PLD. The signal is generated at the beginning and end of write cycles. By
monitoring LADS# and W/R#, this PLD can determine the type of cycle being run
when WEL is activated. The WE# signals are activated during writes and deactivated
during reads.

4.4 DRAM SUBSYSTEM FUNCTION

This section defines the function of DRAM subsystem bus cycles.

4.4.1 Signal Description

The following list describes the purpose of all signals generated for the DRAM sub-
system. Subsequently, the signals will be implemented in a functional discussion.

4.4.1.1 PROCESSOR INTERFACE
NRDY# NRDY# is directly connected to the processors READY# input. It
signals termination of a bus cycle and can be tristated.

NNA# NNA# is connected to the processors NA# input. It is actlvated to
enable pipelining and can also be tristated.

KEN# KEN# indicates when caching can be enabled. It generates a cache
line fill when activated in the same CLK as NA# and RDY#.

4.4.1.2 DATA PATH LOGIC CONTROL

RAE# RAE# enables the row address drivers. It disables the row address
before column address is driven.

CAE# CAE# enables the column address register outputs. It disables the
column address when the row address is driven.

CAL# CAL# drives the clock input of the column address registers.

RDL RDL activates the transceiver registers during read cycles.
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WDL
DRMDIR
DRMEN#

WDL activates the transceiver registers during write cycles.
DRMDIR controls the direction of the data transcievers.

DRMEN# controls the time at which data is driven the the CPU or
memory.

4.4.1.3 ADDRESS PATH LOGIC CONTROL

CSX#

CS#0-3

OEX#

OE#0-3

RAS#0-3

RASPO#

WEO-WE7

CSX# generates CS# signals for four banks of memory and is gener-
ated from the rising edge of DCLK.

These signals are buffered versions of CSX#. Each signal drives one
bank of memory.

OEX# generates OE# signals for four banks of memory and is gen-
erated from the rising edge of CLK.

These signals are buffered versions of OEX#. Each signal drives one
bank of memory.

These signals are decoded separately. Each enables access to a spe-
cific memory bank. They are decoded from address and state variable
outputs.

RASPO# is generated during any access to the first four DRAM banks
DRAMs. It latches the row address in the parity DRAMs.

These signals are generated by the Control-D PLD. Each signal cor-
responds to a single byte in each DRAM Bank.

4.4.1.4 CONTROLLER SIGNALS

WEL

LADS#

CPEN#

DCLK

S0-S4

WEL is connected to the clock input of the Control-D PLD. It latches
the BE#0-7 inputs and is activated only during write cycles.

LADS# is used by the state machine to determine when a bus cycle
has started. It also indicates that the processor address is valid.

CPEN# indicates that a bus cycle has started and is waiting to be
completed. It signals to the state machine that LADS# has been
active and that a bus cycle is pending,.

DCLK drives the clock input of the Control-B pal. It is produced by
delaying CLK 20ns.

These signals are the state variable outputs of the state machine. They
are decoded by other control PLDs to produce control signals.
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BSY# BSY# is used to prevent other subsystems from driving NA#,
READY# or the data bus before the DRAM subsystem has com-
pleted pipelined bus cycles.

DRAMSEL DRAMSEL is a decode output which indicates that the current bus
cycle is a DRAM access.

CLRCYC This signal clears the cycle pending register.

4.4.2 Basic Read Cyclé

The basic read cycle is shown in Figure 4-6. This cycle is performed when the processor
requests a single read while the bus is idle. To simplify discussion, pipelining is not used
in this example, so the NA# signal is not shown.

The read cycle begins when the CPU activates ADS#. ADS# is latched by controller
logic and held for one clock. ADS# is latched with discrete logic because of processor
bus timing constraints. Note that the processor address is not valid in this clock.
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Figure 4-6. Basic Read Cycles
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The LADS# register output is sampled active at the next clock edge. The trailing edge
of LADS# activates CPEN# if DRAMSEL is active. The row address from the proces-
sor becomes valid in this clock. Since RAE# is already active, the row address is driven
to the DRAMSs and is valid in the following clock. RAS# is driven active following this
CLK edge.

The falling edge of RAS# latches the row address in the DRAMs. The row address
drivers must be tristated at this point, but not until the row address hold time is met. For
this reason, RAE# is not deactivated until one clock after RAS# is activated.

At this point, the column address must be driven as soon as possible. The address valid
delay adds directly to data valid time, but row address buffers must be tristated before
CAE# is activated. The delayed clock, DCLK, allows CAE# to be activated in the same
clock in which RAE# is deactivated. In this way, CAE# is activated in the minimum
time possible.

CAL# latches the column address for pipelined reads in the same clock in which CAE#
is activated. CSX# is also activated in this clock and is buffered to produce four CS#
signals. These signals enable DRAM data buffers for the read cycle while the column
address stabilizes.

Data becomes valid two clocks after CAE# is activated. Read data is not valid long
enough to meet hold time requirements of CLK or DCLK and must be latched and
synchronized to CLK. This function is performed by the RDL signal.

RDL enables the data transciever registers. It is driven from the same PLD as CAE#
and is exactly in synch with CAE#. RDL is activated two DCLKs after CAE#, however,
to ensure it is active in time to latch the read data.

NRDY# is generated in the next clock. The processor samples read data held in the
transceivers at this point. If no other cycle is pending, RAS# and CS# are deactivated in
the next clock. The cycle ends when the state machine has waited three clocks and met
RAS precharge time.

4.4.3 Pipelined Read Cycles

The basic read cycle just described only occurs if the processor generates a single read
cycle to a noncacheable address. Since most read cycles are cacheable, they occur as
cache block fills.

A cache block fill generates four consecutive read cycles. Using the pipelining feature of
the bus, these cycles may be overlapped as shown in Figure 4-7. Through pipelining,
addresses of subsequent read cycles are driven before the previous cycle completes. As a
result, the latency of the last three cycles of a fill block is reduced. A cache block fill
begins as a basic read cycle. It is converted to a cache block fill by the KEN# signal,
which is sampled active when NA# or RDY# is active. Three additional read cycles
occur subsequently to fetch the entire cache block, and these cycles can be pipelined.
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NA# controls bus pipelining and is generated by DRAM control logic. NA# is driven
active by logic during any read cycle. If another bus cycle is pending, the processor
activates ADS# in the following clock. Once this bus cycle has started, NA# is activated
a second time. The processor then begins the next cycle by issuing ADS#.

Up to three bus cycles may be pending at one time. NRDY# must be returned for the
first read cycle before NA# can be activated a third time. This function must be en-
forced by the DRAM control logic. The state machine PLD is programmed to activate
NA# at the appropriate time. During the first read, it activates NA# three clocks prior
to the clock in which NRDY# is active. It activates NA# again one clock before the
clock in which NRDY# is active. Figure 4-7 shows signal timing for this bus cycle
sequence.

Column address and data registers are needed to implement this function. As seen in
Figure 4-7, the column address path remains enabled throughout the sequence. CAE#,
RAS# and CSX# remain active from the first read. An address driven by the processor
in response to NA# must be latched; otherwise, the column address changes before
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Figure 4-7. Pipelined Read Cycles
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DRAM read data is valid. Once the data becomes valid, it must also be latched. Without
data registers, the column address would be held for an additional DCLK to allow the
processor to sample the data. This requirement would add an additional wait-state.

NA# is activated again once NRDY# is returned to the processor for the first read
cycle. As in the previous cycles, ADS# begins the fourth read one clock later. At this
time, NRDY# is returned to the processor, completing the second read cycle.

At this point, NA# is activated a fourth time. If another bus cycle is pending, ADS# will
be activated. Otherwise, DRAM logic completes the next two bus cycles. If no bus cycles
have been started, it then deactivates RAS# and CSX#.

Another bus cycle may begin before the final bus cycles have completed, but not on the
clock after which NA# is activated. RAS# and CSX# signals remain active in this case.

Pipelined sequences usually occur as described here. These cycles must all occur within
the same DRAM page, however. If the row address changes, RAS# must be deacti-
vated, and the pipelined sequence is interrupted. Read cycles generated for a cache
block fill are always within the same page, and the sequence shown in Figure 4-7 illus-
trates this case. Note that all cycles of subsequent cache block fills can be pipelined.

4.4.4 Basic Write Cycle

In this example, pipelining is not used with write cycles. A method called posting is
employed instead.

Posting is similar to pipelining because it improves performance by allowing consecutive
bus cycles to overlap. In posting, however, NRDY# is returned to the processor before a
cycle is completed at the DRAM. This function is better suited to write cycles because
data is not returned from the DRAMs. The processor may complete a cycle and begin
another while the DRAM subsystem completes the write cycle.

A write data register is needed to implement posted write cycles. This register holds
write data after NRDY# is returned to the processor. In the example, the registers are
contained in the data transceivers. This register is controlled by WDL.

The row address function of read and write cycles are the same. Figure 4-8 illustrates the
function of a write cycle, which begins from an idle bus state. LADS# starts the cycle
one CLK after ADS# is activated. The row address propagates to the DRAM, and
RAS# is activated. As with read cycles, CAE# is activated one clock later.

CAL# is activated in this clock to latch the column address. The write data latch signal
(WDL) is also activated. It is connected to the transciever clock input. Here, data is
latched and driven to memories.

CS#-controlled (early) writes are used in this example. When writes are performed in

this way, data must be valid before CS# is activated. The WE# DRAM inputs must also
be active prior to the falling edge of CS#.

414



intel” MEMORY INTERFACING

ADS#

LADS#
ADDRESS

RAE# "\ | |

|
RAS#_'_I_\ |
i

CAE#

|
DRAMADDR  ------ f- ROW[ <& __JcoLUMN )} ----- 1
CAL# \| /

LD

| 1

O I |

WE#(0-7) | \ i - i ] |

DATA @({({({{%{({{( : . )))))1}»}}})}}%}3}}}}} -------
woo —+H——\0 i N |

|
DRAMDATA = ----- J ----- J--— (O D )Y, ]
| | i I | | |

NRDY# | [ I\ il [ [ |
| | !

| | | |
420330-30

Figure 4-8. Basic Write Cycles

CS# is activated one clock after NRDY# is returned to the processor. The write enable
signals are driven in the clock after LADS# is activated. Data becomes valid in the same
clock that CS# is activated. If another bus cycle is pending, ADS# is active at the next
clock edge.

4.4.4.1 CONSECUTIVE WRITE CYCLES

Posting is most beneficial when write cycles are consecutive. Figure 4-9 shows three
consecutive write cycles. The first is identical to that shown in Figure 4-8. The addresses
of the following two cycles are in the same DRAM page as the first. These cycles can be
completed without wait-states on the processor’s bus. Timing becomes more critical at
zero wait-states. The WE# signals, for example, are no longer valid three clocks before
CS#. They are activated in the same clock as CS#. In addition, write data is only valid in
the last clock of the bus cycle.

4.4.5 Consecutive Bus Cycles

Additional wait-states are needed when different types of bus cycles occur consecutively.
These are added to the second cycle of the sequence and allow the first bus cycle to
complete after the second cycle begins.
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Figure 4-9. Consecutive Write Cycles

The state machine performs this function. It tracks the current bus sequence. If a read
cycle immediately follows a write, or if the opposite occurs, the controller adds the
needed number of wait-states. Bus cycles proceed normally but are delayed to allow the
previous bus cycle to complete and to reverse the direction of the data bus.

These functions are different for read and write cycles. The specific sequence for each is
described in the following sections.

4.4.5.1 WRITE FOLLOWED BY READ CYCLES

Figure 4-10 shows a write cycle followed by a read cycle. This sequence occurs when a
read cycle is pending before a write cycle has completed. A timing conflict would occur if
the read is to the same DRAM page as the write.

The state machine enters a special sequence to handle this event. It begins as if a normal
write cycle had occurred. After it returns NRDY# for the write cycle, however, the
processor asserts ADS#. This signal starts the read cycle.
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Figure 4-10. Write Followed by Read Cycles

In the first clock, data is written to the DRAM. Next, WDL is deactivated to prepare for
another write cycle. Because the state machine has no way to determine the next cycle
type, it prepares for the next write.

The process continues into the next clock. Here, CSX# is also deactivated to prepare for
the next write. The write enables are still active, and WDL is activated. Control and
address signals for the read become valid in this CLK, and the state machine samples
them at the next CLK edge.

Once the state machine determines that a read cycle has started, it enters a special state
sequence. It activates the OE# signal and activates CSX# to enable the DRAM for a
read cycle. The Control-D PLD samples W/R# low and deactivates the WE# signals.
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At this point, the DRAM controller has added one extra wait-state to the normal read
process. It adds another for the next clock to allow data to propagate to the latching
transcievers. RDL is then activated to latch the read data, and the cycle completes
normally.

4.4.5.2 READ CYCLES FOLLOWED BY WRITE CYCLES

Figure 4-11 illustrates a read cycle followed by a write cycle. Both cycles access the same
DRAM. The write cycle begins while the read cycle is in progress.

Pipelined reads add a level of complexity to the problem. When NA# is activated, a
write cycle can start. This cycle can start before NRDY# is returned to the processor.
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Figure 4-11. Pipelined Read Followed by Write Cycles
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Figure 4-11 illustrates a worst-case scenario in which two read cycles must complete after
the write cycle has begun.

ADS# for the write cycle is active in the clock in which NRDY# is returned for the first
of two read cycles. LADS# is active in the next clock. LADS# and W/R# indicate to the
state machine that the cycle is a write. The state machine then enters a two clock
sequence to complete the second read.

The cycle pending signal is important in this sequence. LADS# is not active when the
second read is finished. The CPEN# signal is the only indication that that another cycle
has started. CPEN# is sampled by the state machine in the clock that NRDY# is active
for the last read. In response, the state machine enters a special state sequence. Here, it
performs the functions necessary to prepare for a write cycle.

Two clocks after NRDY# completes the last read, OE# is deactivated. In the next
clock, WDL latches the write data. NRDY# is then returned to complete the write
cycle. CSX# is deactivated in this CLK so that data can be written in the next clock. At
this point, the cycle continues as described in Section 3.4.

4.4.6 Page Miss Cycles

A page miss cycle is a memory access which changes the row address. This type of access
is important in modern memory systems using page mode or static column mode
DRAMs. These DRAMs have an internal register which holds the row address. Access
can be made by simply changing the column address. This feature reduces the average
access time by several clocks.

The DRAM controller must be designed to take advantage of this feature. In doing so,
memory system performance is improved dramatically. To use this feature, control logic
need only activate RAS when the row address changes.

The NENE# signal indicates when the row address has changed. It is available along
with the address during any bus cycle. The state machine samples this pin at the begin-
ning of every bus cycle.

When NENE# is sampled inactive, the state machine enters a special state sequence.
Here, it performs the functions needed to latch the new row address. Figure 4-12 shows
a typical page miss sequence.

The RAS# signal is immediately deactivated when a page miss is detected and is held
inactive for four clocks. The time RAS# is held inactive is determined by the RAS#
precharge time. This timing is a requirement of the DRAMs and varies depending on
the manufacturer and the speed selection used.

CAE# is deactivated in the same clock as RAS#. The column address register outputs
must be tristated before driving the row address. RAE# is activated two clocks later. At
this time, the new row address is asserted at the DRAM address inputs. The cycle can
then be completed as described earlier. '

4-19



intel” MEMORY INTERFACING

CK LI I1iririrriruJyiriri

DCLK

posr —\|__—
woss ——H LA
Ty e e
i O I T B O
N e e S
e e SR
CS#(0-3) NS T ' ! ; é : ] !

| I I

24033034

Figure 4-12. Page Miss Cycles

4.4.7 Refresh Cycles

Refresh cycles must be performed at regular intervals of approximately 15 microseconds.
Each cycle refreshes one row of DRAM data.

Most DRAMs provide their own refresh address. This address is maintained in an inter-
nal counter and is updated if CS# is activated before RAS#. The address from the
counter also refreshes the memory array. This function is called CS# before RAS#
refresh.

Although not illustrated in this example, the refresh address can be provided by an
external counter. This method is called RAS#-only refresh.

The RFRQ signal is generated by another counter and indicates that a refresh cycle
must be performed. The counter is set to a count which ensures the proper refresh
interval.

The RFRQ signal is sampled by the state machine during any idle cycle and at the end
of every bus cycle. If the signal is active, the state machine enters a page miss cycle state
sequence. Once the RAS# precharge time is satisfied, the state machine enters the
refresh sequence.

A new row address must be latched after a refresh cycle is performed. After RAS# is
activated for the refresh cycle, it is again deactivated. Once the precharge time has been
met, RAS# can be activated to complete a pending bus cycle.

CPEN# is the only indication that a bus cycle has begun during the refresh cycle. If this
signal is active after the second RAS# precharge, a bus cycle begins immediately. Only
one bus cycle may be started during the refresh sequence.
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4.5 PARITY CIRCUIT

Parity logic provides error detection capability for each byte of data. One bit is stored in
the parity memory for each data byte. The value of this bit depends on the number of
bits set in the corresponding byte. The parity logic is designed for odd parity. If a byte
contains an even number of set bits, the parity bit is also set.

Parity data is generated during write cycles. Some delay is incurred, but because writes
are posted, parity data is available in time to be latched by CS# signals. These signals
drive parity DRAMs and data memory.

A separate RAS# signal is generated for the parity DRAMSs. This signal must be acti-
vated for accesses to all four banks of memory. The Control-A PLD generates this signal
during any cycle to the banks it controls.

Parity is checked during read cycles. The parity error signal is activated if a zero is
detected on any of the parity outputs. Figure 4-13 is a block diagram of parity logic. It
shows connections of the control and bus signals.

- 4.5.1 Dedicated Signals

The following is a summary of the signals that control parity logic.

RASPO# RASPO# drives parity DRAM RAS# input.

PARERR PARERR is activated when a parity error is detected. It is held in a
register once activated.

PERLTCH PERLTCH activates the register which samples PARERR during read
cycles.

WPL WPL activates the write parity data register.

4.5.2 Parity Function

Parity data is latched during zero-wait-state writes. It is latched in the clock after write
data has been latched. The write data register is clocked by WDL in the same clock in
which NRDY# is activated. WPL clocks the parity write data register as shown in Figure
4-13. WPL is activated from the rising edge of CLK. Since CSX# is activated from
DCLK, parity data can propagate to the DRAMs before CSX# is active.

Parity data is generated by 74AS280 devices. The I inputs of these devices are not driven
during write cycles but are pulled high to generate correct parity output. During read
cycles, read parity data is driven to I inputs. Appendix C provides complete DRAM
system schematics.

Read parity data is accessed in the same way that read data is accessed. The parity data
register is clocked by RDL, and parity data is valid at the parity generators about the
same time that read data is valid at the transceivers. The DRAMDIR signal enables
output of this register. It disables the register outputs during write cycles.
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Figure 4-13. Parity Block Diagram

The PARERR signal indicates that a parity error has occurred. It is generated by a
74AS80 nand gate. The inputs of this gate are connected to the OD outputs of the parity
generator. If any of these outputs is high during a read cycle, PARERR is activated.

Once it occurs, the PARERR signal is latched. The PERLATCH signal activates the
PARERR register. It is active every read cycle. The PARERR register can be cleared in
the read cycle following the cycle that caused the parity error.
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CHAPTER 5
1/0 INTERFACING

5.1 OVERVIEW

I/O devices can be mapped anywhere within the i860™ microprocessor’s four gigabyte
physical address space and can be 64-, 32-, 16- or 8-bits wide. For accesses to 8-, 16- or
32-bit devices, byte-swap logic or 8-, 16- or 32-bit load/store instructions must be used.
Although address pipelining can be used for all i860 microprocessor accesses, I/O recov-
ery time and infrequent back-to-back I/O accesses greatly reduce pipelining benefits.
The i860 microprocessor does not include I/O instructions, and there is no separate
address map. All I/O devices must be mapped into the memory address space. The
system distinguishes between memory and I/O accesses by decoding processor addresses.
Although all reads can be cached, the I/O reads must not be cacheable and should
deassert KEN# to indicate a non-cacheable access.

I/O buffers accessed by DMA devices must be marked non-cacheable or flushed from
the data cache before an 1/O operation. Two different approaches to I/O are described
later.

5.1.1 i860™ Microprocessor I/0O Subsystem

Figure 5-1 illustrates the I/O subsystem of an i860 microprocessor based system. The
memory address and data are latched to allow pipelined operation. I/O addresses and
data can be buffered if drive requirements exceed i860 microprocessor specifications.
Processor addresses are decoded to determine whether access is to I/O or to a memory
device. Decoder outputs notify control logic of cycles and indicate whether the cycles are
to memory or to I/O. Read, write and chip select are generated by control logic. This
logic also generates wait-states in i860 microprocessor cycles and generates READY#
when control logic is ready to terminate the processor cycle. Interface to all slave devices
except DRAM:s is very similar and less performance sensitive. Nonvolatile memories
such as ROMs and EPROMs are accessed through I/O control logic and share address
and data paths with other slave I/O devices. The i860 microprocessor provides a CS/8
bootstrap mode for byte-wide ROMs used only during power-up. The mode is disabled
once the system boots.

- I/O devices may be mapped anywhere within the processor’s four gigabyte physical ad-
dress space. To minimize the decode logic, devices are placed within one contiguous
block of the i860 microprocessor’s address map. This minimizes the number of address
lines needed to generate I/O select signals. If 8-, 16- or 32-bit I/O devices are used
without byte swap logic, I/O ports must be placed at 8-byte increments (i.e addresses
must correspond to the data pins the device is hardwired to). This causes the processor
to read or write data on the proper bytes of the data bus. For example, an 8-bit access
may get data on D7-0; a 16-bit access may get data on D15-0; a 32-bit access may get
data on D31-0. Here, addresses are on 64-bit boundaries.

This limitation does not apply if external byte swap logic is used. 8-bit devices can be
accessed on continuous byte boundaries; 16-bit devices can be accessed on continuous
even byte boundaries; and 32-bit devices can be accessed on continuous, multiple-of-four
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Figure 5-1. i860™ Microprocessor System
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byte boundaries. If a 16-bit access is attempted on an odd byte boundary, or if a 32-bit
access is attempted on an address boundary that is not a multiple of four, the 1860
microprocessor generates an exception.

5.2 GENERATING I/0O CONTROL SIGNALS

Control and chip select signals for slave I/O devices are generated by I/O control logic.
The i860 microprocessor does not provide a separate I/O space, and the distinction
between accesses to memory and to I/O devices is made by decoding addresses. The
address decoder typically provides an IOSEL (I/O select) or MEMSEL (memory select)
output to indicate the access type. When IOSEL is asserted, I/O control logic generates
appropriate control signals, drives KEN# inactive to indicate “a non-cacheable access,
inserts any needed wait-states and returns READY# to the processor to terminate the
cycle. I/O control logic must enable appropriate address and data buffers, and it must
eliminate bus contention caused by data float delays. Most I/O devices require a recov-
ery period between back-to-back accesses. This can be enforced either through hardware
or software.

5.2.1 1/0 Control Logic

Figure 5-2 illustrates i860 microprocessor control logic. I/O select signals are generated
from the decode of unlatched addresses. The decoder also generates device select sig-
nals which are latched to provide chip selects for specific devices being accessed. ADS#
does not ensure a valid address when asserted. LADS#, a latched version of ADS#, is
valid in state T;; and can be used to generate an address latch enable (ALE) signal.
Address is guaranteed to be valid on the clock (rising) edge during which LADS# is
active.

When LADS# is active and I/O select is asserted, I/O control logic generates read or
write signals based on the state of W/R# input. During pipelined operation, I/O control
logic must know of any outstanding DRAM cycles to avoid misordered cycles. BSY
indicates that there are outstanding DRAM cycles and that I/O control logic should not
start a cycle until BSY is deasserted. I/O control logic inserts needed 1/O cycle wait-
states according to the number of wait-states required by the device being accessed. In a
simple design, I/O accesses can be assigned the number of wait-states required by the
slowest device.

Following read cycles, I/O devices may need time to turn off the data bus. During this
period, a write or read from another device causes bus contention. To ensure proper
operation, I/O devices also require recovery time between consecutive accesses. It may
or may not be practical to enforce this recovery with a hardware counter. The advantage
of using a hardware enforced recovery mechanism is transparency and reliability. Also,
future upgrades to higher CPU clock speeds will not require any changes in the I/O
device drivers. If the recovery period is too long to be enforced with hardware, then
software timing loops or a timer chip may be used to ensure proper operation. The
hardware 1/O recovery time is enforced by the control logic. Recovery logic generates a
recovery delay (RECOVER) signal which prevents I/O control logic from asserting read
or write until the recovery delay signal is deasserted.
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Figure 5-2. 1/0 Control Logic

5.2.2 Address Decode and Chip Select

Chip selects for various I/O subsystem devices are generated through address decoding.
Decodes may be done with a PLD, such as the Intel 85C508, or with a simple one-
of-four decoder such as the 74F138. Decodes can be done from latched or unlatched
addresses. Unlatched address decodes allow device selects to be generated one propa-
gation delay after an address becomes valid. Some I/O devices need a long chip-select
hold time from read or write. This requires that chip selects be latched. Decodes can be
done alternately from latched addresses, but this delays the chip select generation and
may result in slower cycles. Device selects are also used by I/O control logic to determine
the number of wait-states for a device being accessed. If device selects are generated
from unlatched addresses, 1/O control logic must sample the device select with LADS#
to ensure a valid sample of the device select. Latched device selects must be deasserted
(unlatched) once READY# is returned to the processor. They are unlatched by activat-
ing the latch enable signal which causes the latch to become transparent. The device
select is deasserted when the address changes at the beginning of a new cycle.
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I/O device addresses should simplify decode logic and reduce the number of address pins
required to generate device selects and the I/O select signal. The I/O select signal indi-
cates I/O device accesses to control logic. I/O devices are typically mapped with a con-
tiguous single address space. Address space size is determined by the address lines used
in decode.

5.2.3 IORD#/IOWR#

IORD# and IOWR# command signals are generated some time after the processor
W/R# signal chip select. I/O devices have command-active width requirements, and
wait-states are inserted in I/O cycles to accommodate these. The number of wait-states is
determined by the I/O control logic of selected devices. Minimum command-active times
range from 100ns to 400ns across various slave devices. I/O devices also have chip select
set-up and hold time requirements. Chip select requirements are met by inserting delays
in activating commands. If one delay is used across all devices, it must be the worst case
delay. In the examples given here, the delay is two clocks. If necessary, hold time is met
by latching chip selects and addresses.

It may be necessary to delay driving write data onto the bus for several clocks. This is
necessary if the previous cycle was a read to an I/O device with a long data float delay. It
may also be necessary to delay the assertion of READY# from the rising edge of
IOWR# to ensure sufficient write data hold time.

5.2.4 READY#

Wait-states are introduced into the i860 CPU cycle by not asserting READY#. Since
most I/O devices are much slower than the i860 processor bus, all I/O cycles require
additional wait states. Since READY# can be driven by multiple PLDs, it must be
tri-stated by the PLDs not in use. If several devices reside in the I/O subsystem, the
wait-state logic can be simplified by inserting the same number of wait-states in all I/O
accesses. This slows accesses to some of the faster I/O devices, but these accesses are
infrequent, and impact on system performance is minimal. If I/O speed is critical, a small
ROM or PLD can be used to insert wait-states and enforce recovery on a per device
basis.

5.2.5 Recovery and Bus Contention

Most I/O devices require a recovery period between back-to-back accesses. At higher
i860 CPU clock frequencies, bus contention poses an additional concern. This is because
long float delays of the I/O devices can conflict with data driven out in the next cycle by
another device or by write data from the CPU. All slave devices stop driving data on the
bus on the rising edge of IORD#. Some delay after the rising edge of IORD# the data
will float. If, however, another device drives data onto the bus before the data from the
previous access floats, bus contention will occur. The i860 CPU has extremely small cycle
times (30ns @33 MHz, 25ns @40 MHz), and the possibility of bus contention must be
considered. The I/O control logic implements recovery to eliminate bus contention. It
asserts the signal RECOVER, which inhibits new I/O cycles from starting until the data
from the previous read has floated. I/O control logic can also accomplish I/O recovery
using a similar mechanism. The only time hardware enforced I/O recovery may not be
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possible is when recovery times are too great for the hardware counter. In this case,
recovery time can be enforced with software using NOPs and delay loops or with a
programmable timer.

5.3 1/0 CYCLES

The I/O read and write cycle timings depend upon the implementation of the I/O control
logic. Figures 5-3 and 5-4 illustrate the timings of the I/O read and write cycle for a
typical implementation.

5.3.1 Read Cycle Timing

A new i860 microprocessor read cycle is initiated when ADS# is asserted in T;. The
address and status signals become valid in T;;. LADS# becomes valid in T;;, and the
address is latched on the next rising edge of clock (second Ty;). The I/O select signal is

/O READ CYCLE
SIGNALS T I T. | T l T l T I T I T. | T | T
1 l 11 | 1 | 1 | 1 | 1 l 11 | 1 ' 1
ADS# } | | SETITTR ST | S | D | S -
| | | | ] |
I 1 T T T 1
LADS# |. ........ I ......... | ......... l ......... I ......... I ........
] | | | ] | ]
ADDRESS _I_( ...... { ......... i ......... l ......... T = ......... { ........ i) ......
| | | | ] |
IOSEL L S—— t t . 1
Y N R I
o
Selacs [ SRS SLLTTIEE SESCLLLS SIMIAMAS KALIIIIS Settatts dattts' ]
1 i 1 i | | i i
ORD# [ Yoo e oo P o SRR
l I I l 1 | | |
ooLys | T T | SEETEREE | | S5 ZEEEE e |
T
DBUFOE# |- | ......... I ......... |\ ....... ! ......... l ......... I ......... I ......... ! . I_
. N S N B 5 W
T Y Y e
READY# [........ | EEEERRE [ EEEEEEEE TR T T - \_U_
240330-38

Figure 5-3. Read Cycle Timings
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IO WRITE
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Figure 5-4. 1/0 Write Timings

generated from a combinatorial decode of the addresses. I/O select, when active with
LADS#, indicates an I/O cycle to the control logic. The chip select is either asserted at
the same time as I/O select or is latched in the clock following I/O select. The IORD#
signal is asserted in the second T;; if RECOVER is inactive. RECOVER, if active,
indicates that the new cycle must be delayed in order to meet the recovery time of the
I/O device or to prevent data bus contention. If RECOVER is active, then the 1/O read
(IORD#) signal is not asserted until RECOVER is deasserted. I/O data becomes valid
on the bus one read delay after IORD# is asserted. The bus control logic will need to
keep IORD# active to meet the minimum active time requirements.

The worst-case timings values are calculated by assuming the maximum delay in the
address latches and decode logic and the maximum delay through the data transceivers.
These formulas will yield the fastest possible cycle. Wait-states must be added to meet
the access times of the particular I/O device.
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The critical timings for I/O Read cycles are the following:

1. Chip Select/Address Setup to IORD#:

= 3Tcy + PLDclk-to-output(min) — Decode delaymax
— Address Valid delaymax — Latch Prop. Delaymax

Chip select goes active later than I/O address and is latched, so chip select timing is
used for the equation.

Tcy : CLK PERIOD OF i860 Microprocessor. Address Valid Delay : Processor
address valid delay in Tj;.

2. IORD# Minimum Active Width:

= Tcy + PLDclk-to-output — PLDclk-to-output + nTcy
= Tcy + nTcy

n is the number of wait states inserted into the I/O read cycle. n'Tcy represents the
additional time due to wait states.

3. Chip Select/Address Hold after IORD#:
= Tcy — PLDclk-to-output + Address Validmin + Latch Prop. Delaymin

Assumes I/O address changes earliest, so hold time calculations are done using the
I/O address timings.

4. IORD# Active to Data valid:

= Tcy — PLDclk-to-output — Data Setup Time — Data buffer Prop. delay.
Data Setup Time: Processor setup time requirement for data to rising edge of clock.

This assumes the minimum IORD# active pulse width of 1 clock. For wait states
add the appropriate number of clocks to this value.

Other timings which need consideration for read cycles are the read inactive to data
float delay and address/chip select hold time after read. The address and chip select hold
times from read are not a problem, since both chip select and address are latched. The
data float delay in slave devices can be very long (40ns). This can cause data bus conten-
tion and is taken care of with the I/O recovery logic. (Sectlon 5.2.5 provides further
information.)

5.3.2 Write Cycle Timing

An I/O write cycle starts similarly to an I/O read cycle. The address and status timings
are similar to the I/O read. The processor outputs data in T,;. I/O write IOWR#) may
be asserted one or two clocks after the chip select (the exact delay between chip select
and IOWR# depends upon the chip select/address setup to write requirements of the
I/O devices). The use of latching data buffers can improve CPU write performance.
Once the data and address of the cycle are latched, READY# can be returned to the
processor, and the CPU operation and the write cycle to the device can continue.
IOWR# is deasserted only after the data set-up to write specification is met. Data is
written into the I/O device on the rising edge of IOWR#, and the processor stops
driving data once READY# is sampled active.

5-8



intel” | /O INTERFACING

The critical timings for the I/O write cycle are the following:

1. IOWR# Active Pulse Width:

=Tcy — PLDclk-to-output — PLDclk-to-output — PLDclk-to-output + nTcy
= Tecy + nTcy

n is the number of wait states inserted into the I/O write cycle. NTCY represents the
additional time due to wait-states.

2. Address/Chip Select Set-up to Write:

= 3Tcy + PLDclk-to-output(min) — Decode delaymax
— Address Valid delaymax — Latch Prop. Delaymax

Chip select goes active later than I/O address and is latched, so chip select timing is
used for the equation.

Tcy : CLK PERIOD OF i860 Processor.
Address Valid Delay : Processor address valid delay in Ty;.

3. Data Setup To Write Inactive:

= 4Tcy — 860 Data Valid Delaymax — Data Buffer Prop. Delaymax
+ PLDclk-to-output Delay

Formula 3 assumes a zero-wait-state write cycle. Write is not posted. PLDclk-to-output
delay is the delay in deasserting IOWR# from the rising edge of the clock.

Other timings in the I/O write cycle are the address/chip select hold time from write
(IOWR#) high and data hold time after write (IOWR#) high. Since the address and
chip select are latched, hold time is not a problem. However, if data is buffered through
a 74F245 type device, the data could float as early as 7ns from READY#. Typical hold
times for I/O devices vary from Ons to 20ns. If data hold time requirements of the slave
device are greater than 7ns, the write data must be latched; otherwise, READY# is
returned some delay after the rising edge of IOWR#.

5.4 DESIGN EXAMPLES

This section discusses the i860 microprocessor interface to specific slave devices. It de-
scribes the basic interface, critical timings and equations.

5.4.1 82510 Interface

82510 is a UART with an asynchronous CPU interface. The basic interface is illustrated
in Figure 5-5. The eight I/O ports of the 82510 are mapped to memory locations
0x07000000 through 0x07FF0000. The ports are located on 64-bit boundaries to allow
data to be read on D7-D0 without the use of external byte swap logic. The chip select
signal is generated from the decode of A20 and A19. By decoding more of the address
lines, a smaller memory block can be used to map the device. For example, a full decode
could allow the 82510 to be mapped to 0x07000000-0x0700000C. The address decoder
generates the IOSEL as well as the 82510SEL signal. The address and chip select are
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latched to meet the minimum chip select active width and hold time. The RD# and
WR# signals of the 82510 are generated by the IOCTL1 PLD. Critical timings of the
82510 are the following:

Read Cycle

1. Address Valid to Read Active (Tavrl):

Tavrl = 3Tcy + PLDclk-to-output(min) — Decode Delaymax
— Address Valid delaymax — Latch Prop. Delaymax

7ns < 3Tcy —25
< 50ns (@40MHz)
2. Command Access Time To Data Valid (Trldv):

Trldv < Tcy — PLDclk-to-output — Data Setup Time
— Data buffer Propagation delay + NTcy.

N: # of Wait States.

281 < Tey — 10 — 12 — 6 + NTcy
< (N + 1)Tey — 28
N=9

3. Command Active Width (Trlrh):
Trlrh = (N + 1)Tcy
N=9

4. Read Inactive to Active (Tciad):

Tciad < 123ns
< 4Tcy — PLDclk-to-outputmax + PLDclk-to-outmin
<4Tcy — 10 + 2
< 4*31 - 8
< 116ns

The control logic can assert IORD# no earlier than 116ns after the previous read. This
violates the recovery requirements of the 82510. Control logic can enforce this require-
ment by delaying the assertion of IORD# by one clock, or software can implement this
by using NOPs.

Write Cycle

Address valid to write low and write active width timings are similar to 1 and 2 for read
cycles.

3. Data Valid to Write Inactive (Tdvwh):

Tdvwh =< 3Tcy — Data Valid Delay — Buffer Delay + PLDclk-to-outputmin
=3Tcy — 50 —6 + 2
90 =3*31 -50 -6 + 2=39
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The IOWR# pulse must be extended by two clocks.

4. Data Hold Time after Write Inactive (Twhdx):

Twhdx < Data Float Delaymin + Buffer Delaymin
12 =35 + 25 =60

The minimum data float and buffer delays do not meet the 82510 hold time require-
ments. In this case, READY# can be delayed from IOWR# by one clock, or data can
be latched and READY# can be returned early. The second option reduces wait-states
but requires latches on the data bus.

5.4.2 Eprom Interface

The i860 CPU supports a special CS8 mode for bootup from 8-bit I/O devices. This
allows the processor to bootup from an 8-bit ROM. Once the system boots, the ROM
can be copied into memory or can be disabled and replaced by DRAM. In this mode,
code fetches (that are misses in the code cache) are eight bits wide. To facilitate 8-bit
reads, the BE2#-BEQ# pins behave as A2-A0. Once the i860 microprocessor boots, the
CS8 mode can be disabled by setting the CS8 bit of the dirbase register. If EPROM
contents are to be copied into DRAM after the bootup, the EPROM locations need to
be remapped to 64-bit boundaries. This allows the i860 microprocessor to access the
EPROM bytes on D7-D0 without using byte swap logic. It does, however, require the
address multiplexor to use either the processor address bus or the byte enables for
A2-AQ inputs of the EPROM. A method which does not require an address mux is the
“double copy load” method. This method is more dependent upon software, however. It
uses the BE2#-BEOQ# signals which are connected directly to the EPROM A2-A0
addresses to select the bytes.

Figure 5-6 shows the i860 processor interface to a byte-wide EPROM (27010) and uses
an address multiplexor to select between BE2#-BEO# and processor addresses. The
chip enable of the EPROM is generated decoding the memory address and the MAP bit.
The MAP bit, when set, maps the EPROM addresses into the power-up bootstrap loca-
tions. When MAP is low, the EPROM is mapped to another address and DRAM is
mapped to the bootstrap locations. The OE# signal is connected to the IORD# signal
generated by the I/O Control Logic. The upper 14 address bits of the EPROM are
connected to 1860 CPU addresses. The lower three addresses A2-AQ are multiplexed
between BE2#-BEO# or three address bits of the processor. The multiplexor is con-
trolled by the MAP input which is generated by a bit in an I/O register. The EPROM
data bus D7-D0 is connected to the lower byte (D7-D0) of the processor data bus. This
requires that the EPROM, when mapped as data, be on 64-bit boundaries.

Use the circuit in Figure 5-7 for i860 microprocessor systems that boot from EPROM
and copy their code to DRAM for normal execution. Normally, an EPROM used in CS8
mode cannot be read as data. By adding a triple 2-to-1 multiplexor and using special
addressing, the EPROM contents can be read out as data. A special routine is needed to
access the EPROM. A portion of the physical address space must be reserved for ad-
dressing the EPROM as data. Figure 5-6 illustrates the connection from i860 CPU to
EPROM.
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Figure 5-6. i860™ EPROM Interface

The EPROM(s) are connected to the low order 8 data bits of the i860 microprocessor
data bus. The top 32 Mbytes of the physical address space is reserved to address up to 2
Mbytes of EPROM code/data. A physical address space sixteen times the size of the
EPROM must be used. The EPROM address space must be at the top of physical
memory.

Accesses with A24 HIGH are code accesses and should activate KEN# to enable cach-
ing of instructions from EPROM. Accesses to EPROM with A24 LOW must not allow
caching of the EPROM data. The signals on data bus D63-D8 are undefined and must
be ignored by the program. The data multiplexor must select the B inputs when A24 is
high.
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Figure 5-7. Circuit for Booting from EPROM

The EPROM data is copied from EPROM to DRAM via a subroutine. The subroutine

is called: eprom_copy(eprom_base,addr_inc,start,count,destination). The subroutine
copies count bytes from start offset in the EPROM to destination.

The parameter eprom_base points at the beginning of the 16 X EPROM space. For the
hardware above, eprom_base is 0xFE000000. The eprom_base is not the same address as
would be loaded into the instruction pointer to execute the first four bytes as instruc-
tions. The program address of the first instruction at offset 0 in the EPROM in the
example above would be 0xFFE00000. In the example above, the EPROM instructions
could also be executed at addresses OxFFC00000, O0xFFA00000, O0xFF800000,
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0xFF600000, 0xFF400000, 0xFF200000, and OxFF000000. An attempt to read these ad-
dress ranges would not allow access to all bytes of the EPROM since not all combina-

tions of BE2#-BEO# can be generated via reads.

The parameter addrinc is the address pin used to access individual bytes in the
EPROM, for the hardware above this is 21. Consecutive bytes in EPROM are spaced 2%
bytes apart. At every eight bytes the low order address pins change. The table below

illustrates:

EPROM byte offset

0

O 03 W=

The parameter start is the byte offset in the EPROM to begin the copy. This offset
assumes the EPROM appears as a sequence of bytes. The start can have any alignment.
The count is the number of bytes to copy. The destination is where to copy the destina-

Address used by eprom_copy

0xFE000000
0xFE200000
0xFE400000
0xFE600000
0xFEE00000
0xFE000008
0xFE200008

tion data, which can have any alignment.
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This subroutine can be called at any time so long as the program can address the lower

half of the 16 x EPROM address space.

// R16 has base address of EPROM block

// R17 has the address base used to access individual bytes
// R18 has the starting offset of data in EPROM

// R19 has the count of bytes to copy

// R2@ has the destination address

eprom_copy: :

or 1,r@,r21 // Form address increment
adds -1,r19,r19 // See if zero count
shil ri7,r21,r21 // Form EPROM byte address increment
bnc exit // Exit if zero count
or 7,r8,r22 // Form address limit test value
shl rl7,r22,r22 // Form maximum byte offset
addu rl6,r22,r25 // Form upper address limit
and 7,r18,r23 // Form starting byte address
shl rl7,r23,r23 // Lower byte offset
andnot 7,rl8,rl8 // Always address aligned address
addu r23,r18,r18 // Form starting read address
adds -1,r@,r24 // Setup decrement value for BLA
bla r24,r19,cloop // Setup LCC for next BLA
~addu rl6,r18,r18 // Form virtual address to read EPROM
cloop:
1d.b 2(r18),r26 // Get value from EPROM
subu ri8,r25,r@ // Set carry if we read mod 7 byte
bnc.t in_block // Jump with next instruction if not
addu r21,r18,r21 // mod 7 byte, Increment byte address
andnot r22,r18,rl8 // Go to MOD @ byte
adds 8,r18,rl18 // Go to next EPROM 8 byte block
in_block:
st.b r26,9(r20) // Put data byte into DRAM
bla r24,r19,cloop
adds 1,r20,r20 // Bump destination pointer
exit:
bri rl // Exit
nop // Nothing to do here

5.4.2.1 DOUBLE COPY LOAD

An alternative to the address multiplexor is the “double copy load” method. This
method requires considerably more software effort than the address mux method and
also uses more EPROM space (since two copies of the code are required). In this case
the EPROM A2-AQ are directly connected to the BE2#-BEQO#. The 8-bit data bus of
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the EPROM is connected to D7-D0 of the processor. Unlike the address mux method of
copying, this method uses the on-chip data cache; and like the address mux method, the
EPROM will need to be remapped from the bootstrap locations into another portion of
the memory space of the i860 microprocessor. However, in this case, two copies of the
code are needed in the EPROM: one copy with code bytes located on 8-bit boundaries
and one copy with code bytes spaced for copying. As Table 5-1 illustrates, in the non-
CS8 mode there are only six valid BE2#-BEO# combinations for the eight possible
EPROM addresses. Therefore the second copy of the code needs to be spaced so that
the first byte is at location 0 and the second byte is at location 3.

Table 5-1. Valid Addresses for SPACED copying

Bus BE# Valid Address

Address 210 T or F Address EPROM
0 000 T (Load 32-bit value) 0
1 001 F (16-bit access on odd boundary) Invalid
2 010 F (two noncontiguous bytes) Invalid
3 011 T (Load 1 byte) 3
4 100 T (Load 16-bit value) 4
5 101 T (Load 1 byte) 5
6 110 T (Load 1 byte) 6
7 1M1 T (Load 1 byte) 7

The data is first copied into the data cache by using the Id.l or Id.b instructions to assert
the proper BE2#-BEO# values. Once the data is in the cache it is read into a register
and saved in the appropriate DRAM location. An untested example of the possible code
for the “double copy load” method is illustrated in the following pages.

5.4.2.2 EPROM TIMINGS

The timing analysis assumes that the address multiplexor scheme is being used for the
EPROM interface. The OE# input of the EPROM is connected to IORD# output of
the 1/O Control Logic. The following are the critical timings:

1. Address/CE# to Output (Tacc):

Assumes that the multiplexed address bits are the last to- become valid.

Tacc < 3Tcy — Latch Propmax — Addr. Muxmax — i860 CPU data Setup
— Buffer Delaymax

Tacc < 3Tcy — 35
For Tacc of 200ns @33 MHz Two Wait States

Addr. Mux.: Address Multiplex Delay
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2. OE# to Output (Toe):
Assumes zero-wait-state cycle.
Toe = Tcy — PLDclk-to-output — Buffer Delay — i860 Microprocessor Setup
Toe < Tcy — 28

For Toe of 85ns requires 3 wait states.

3. OE# High to Output Float (Tdf):

If READY# is asserted to the processor on the clock edge prior to IORD# going
inactive, the EPROM data outputs can float as late as 60ns after the rising edge of
IORD#. This means that EPROM data may be valid until as late as 10ns into the
second T; of the next cycle. The i860 CPU for writes can output data as early as
3.5ns from clock edge of the second T,;. If this were allowed to happen it would
result in data bus contention and would cause problems in the system. The IOTIME
PLD eliminates bus contention by not allowing the next cycle to begin until all data
outputs of the slave device float.

5.5 DMA INTERFACE RECOMMENDATIONS

Performing DMA (Direct Memory Access) transfers in an i860 microprocessor system
requires deciding between two general approaches. One uses DMA in the conventional
mode, performing data transfers directly to DRAM. The other technique uses an inter-
mediate memory area. Each has important issues regarding performance, software com-
plexity, and part count.

Any DMA design must take into account the on-chip caches. The i860 microprocessor
caches use a write-back mechanism to minimize external bus traffic and increase perfor-
mance. The on-chip caches are logical-address caches. External bus snooping is
not provided since such cycles would conflict with internal accesses, reducing overall
performance.

If DMA is permitted directly to main memory, then the software must insure that no
data values associated with that memory area are in the caches. Either the I/O buffer is
always marked non-cacheable or the data cache must be flushed before the DMA may
read from the memory area. Both the code and instruction caches must be flushed after
the DMA has written to memory if the i860 microprocessor might have an old copy of
the data.

If DMA transfers directly to main memory and this I/O buffer is used directly by the
application, it must also take into account the paging structure used in most systems.
Paging breaks up the contiguous logical address space of the application into discontig-
uous memory addresses. The DMA device needs to transfer a stream of data to discon-
tiguous addresses if that data stream crosses a memory page boundary.

Another approach to direct DMA is to allocate track buffers in memory which are
always non-cacheable and occupy consecutive physical memory pages. The operating
system can manage these buffers to speed up disk accesses since an entire track can be
read in one revolution of the disk and kept for later disk accesses which usually want a
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sector in the same track. The OS can copy data between this track buffer and the
application. The copy will update all caches and handle discontiguous memory pages.
DRAM-to-DRAM copy can be as fast as 56/67 Mbytes/sec.

Based on these issues, two general approaches are possible: low-cost, lower performance
design using DMA directly to i860 microprocessor memory and a higher cost, higher
performance approach using an intermediate memory area.

An 82380 is used in this example. It provides eight DMA channels, 17 interrupt inputs,
and five 16-bit timers. The 82380 has a bus interface identical to that of the 386™
microprocessor. It uses a 2 X clock. A 16 MHz 82380 requires the i860 microprocessor to
run at 32 MHz. A 20 MHz 82380 can work with a 40 MHz i860 microprocessor.

The first approach is conventional. An 82380 DMA device with four extra data trans-
ceivers could perform DMA to memory. It can run directly off the i860 processor clock
with special PLDs that convert the 82380 bus signals into DRAM commands. The i860
processor HOLD/HLDA signals are used. Each transfer requires at least four clocks on
the 1860 processor bus. More will usually be needed to allow access to real memory or
1/O devices. For DRAM accesses by the 82380, the DRAM controller must perform
them in pairs of clocks to match the 82380 bus timing. If the I/O device is not 32-bits
wide, then the 82380 must either perform two-cycle transfers or else extra data transceiv-
ers are needed to route the I/O data to the correct part of the 64-bit data bus.

The 82380 can support paged memory systems via a set of second address and count
registers per channel. After completing the transfer of one block, the DMA channel
automatically switches to the next set of registers. The registers must be reprogrammed
during the time of a page transfer. If the operating system can not guarantee quick
enough interrupt response, DMA transfers cannot cross a page boundary.

The second approach is to add a special I/O buffer memory between the I/O device and
the i860 microprocessor. SRAMs make this easier. The 82380 performs DMA transfers
into the SRAMSs on an isolated bus. The SRAM area is large enough for all the simul-
taneous DMA transfers in progress at once.The i860 processor copies data between the
SRAM space and DRAM. The copy operation updates the cache and handles page
boundary crossing. This approach offers higher performance, because the DMA chan-
nels do not tie up the CPU bus when accessing the I/O device. The SRAM space should
be 64-bits wide to maximize the copy speed.

The cost of using the I/O buffer memory is the SRAM devices and two or three address
latches. Four data transceivers are still needed to buffer the data bus. Reads to the
SRAM area must disable KEN#.

When copying data between the application and I/O buffer, use pfid instructions to
prevent the data from flushing the data cache. Normal writes can be used, because a
write miss does not cause a cache load. The copy function shown here achieves 1Mbyte/
MHz data rate, assuming 4 wait states on first DRAM access and 1 wait state per SRAM
access. At this rate, the time spent in copying data is negligible.
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Note: This example has not been tested

// Copy a block of data from the source to the destination.
// Use pipelined floating-point loads to prevent data accesses
// from flushing out data cache contents.

// bcopy(source_ptr,dest_ptr,count8)

// r16 on entry has pointer to the source, must be 8-byte aligned
// rl7 on entry has pointer to the destination, must be 16-byte aligned
// rl18 on entry has count of 8-byte words to transfer.

// The transfers are performed on source and destination in series of
// back-to-back operations to allow page mode accesses to DRAMs.

// Assuming 3 wait states on the first access, the transfer speed is
// 38 clocks per 64 bytes transferred for big blocks.

56.1 Mbytes/sec at 33.33 Mhz

67.4 Mbytes/sec at 40 Mhz

// Copy small block of data 8

bte
adds
dlast:
adds
subs
bla
adds
sloop:
f1d.1
bla
fst.1
exit:
bri
nop

//

@ bytes 8 clocks

8-128 bytes 5+10n/8 clocks

-16,r18,r20
3,r20,r21
do_long
(r16),fo

rd,rl8,exit
-1,rd,r19

-1,r18,r18
rl7,rl6,r17
r19,rl18,sloop
-8,rl6,rl6

8(rl6) + +,f16
r19,r18,sloop
f16,r17(r16)

rl

// See if at least 16 transfers

// Setup loop counter for 8 per loop
// Jdump if long transfer

// Start reads on long transfer

bytes at a time

// Jump if @ count
// Setup BLA counter

// Setup -for BLA

// Form distance from source to destination
// Set LCC for next loop

// Setup for autoincrement addressing

// Get source and bump address
// Loop if more to do
// Write destination

// Return to caller
// Nothing to do here

// Start the pipelined floating-point reads

//
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do_long:
adds -1,v8,r19 // Setup BLA counter
pfld. 8(r16) + +,f0 // Read the next value
bla r19,r21,bloop // Set LCC for next loop
pfld.1  8(rl6) + +,f0

bloop:
pfid.1  8(rl6) + +,f16 // Get value mod @
pfld.1  8(r16) + +,f18 // Get value mod 1
pfld.1  8(rl6) + +,f20 // Get value mod 2
pfid.1  8(rl6) + +,f22 // Get value mod 3
pfid.1  8(rl6) + +,f24 // Get value mod 4
pfld.1  8(rl6) + +,f26 // Get value mod 5
pfid.1  8(rl6) + +,f28 // Get value mod 6
pfld.1  8(rl6) + +,f3@ // Get value mod 7
fst.q f16,(r17) // Store @-1 pair
fst.q  f2@,16(r17) // Store 2-3 pair

adds 64,r17,r17 // Update destination pointer

fst.q f24,-32(r17) // Store 4-5 pair
bla rl9,r21,bloop // Loop if more to do
fst.q f28,-16(r17) // Store 6-7 pair

//

// Finish off last transfers to mod 8

//
pfld.1 8(r16) + +,f16 // Start last 5 reads
pfid.1 8(r16) + +,f18 // Get value mod 1
pfld.1 8(r16) + +,f20 // Get value mod 2
pfld.1 8(rl6) + +,f22 // Get value mod 3
pfld.1 8(r16) + +,f24 // Get value mod 4
pfid.1 (r16),t26 // Get last three data words
adds 8,rl6,r16 // Update source pointer
pfld.1  -8(rl6),f28 // Reread last source
pfld.1 = -8(rl6),f30 // Get value mod 7
fst.q 16, (r17) // Put @-1 pair into memory
fst.q f2@,16(r17) // Put 2-3 pair into memory
fst.q f24,32(r17) // Put 4-5 pair into memory
and 7,r28,r18 // Get remaining count
fst.q £20,48(r17) // Put 6-7 pair into memory
bnc.t dlast // Jump if still work
adds 64,r17,r17 // Update destination pointer
bri rl // Else all done
nop // Nothing to do here
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Double copy load method:

//  This program copies ROM code to DRAM. It assumes that BE2#:BE@# are
// wired to the ROM address bits 2:@ (least significant bits).
dramstart=@x7effo000 // non-cacheable alias for DRAM, where ROM
// copied code will go.

epromstart = @Oxffffoooo

epromend=  @xfffffffg
.atmp r3l
.text o
copyrom: : // start coping EPROM contents to DRAM
or 1%epromstart,rd,r9
orh  h%epromstart,r9,r9
or 1%epromend, rd,r7
orh h%epromend,r7,r7
call  flush_cache // make sure we get a miss
nop
or 1%dramstart,rd, r8
orh h%dramstart,r8,r8
loadbytes::
1d.1 @(r9),r1d // cache data for bytes @ & 8
1d.b  @(r9),rl1d // load byte @ from cache
call  flush_cache // insure cache miss next time
1d.b  8(r9),r18 // load byte 8 from cache
1d.b  2(r9),r13 // cache data for bytes 3 & 11
1d.b  @(r9),r13 // load byte 3 from cache
call  flush_cache // insure cache miss next time
1d.b  8(r9),r19 // load byte 11 from cache
1d.s g(r9),r14 // cache data for bytes 4 & 12
1d.b a(r9),ri4 // etc.
call flush_cache
1d.b 8(r9),r20
1d.b 1(r9),ri15 // cache data for bytes 5 & 13
1d.b g(r9),r15
call flush_cache
1d.b 8(r9),r21
1d.b g(r9),r16 // cache data for bytes 6 & 14
1d.b #(r9),rl6
call flush_cache
1d.b 8(r9),r22
1d.b 3(r9),r17 // cache data for bytes 7 & 15
1d.b g(r9),r17
call flush_cache
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1d.b 8(r9),r23
store::

st.b r1d,8(r8) // store byte @ to DRAM

st.b r13,1(r8) /! o3

st.b r14,2(r8) // 4

st.b r15,3(r8) // 5

st.b r16,4(r8) // 6

st.b r17,5(r8) // 7

st.b r18,6(r8) // 8

st.b r19,7(r8) // 11

st.b r29,8(r8) // 12

st.b r21,9(r8) // 13

st.b r22,0xa(r8) // 14

st.b r23,0xb(r8) // 15

xor r7,r9,rd // check for end of ROM

bc load reset // branch if end of ROM

addu @x10,r9,r9 // increment ROM counter

br Toadbyts // copy another 12 bytes

addu @xc,r8,r8 // increment DRAM counter

Toad_reset:: // Load the reset code to DRAM

wl =0xad000000 // This hex code is for the reset branch

w2 = (xad000009 // branch from @xffffff@d to Oxffffoods

w3 =0@x6bffca3f // (Two nop's, then branch)

wi = 0xa 0000000 // Sequence = nop; nop; br; nop
resxc_start =0x7effffoQ // non-cacheable alias of feffff@g
dramc_start =0xffffogo0 // cacheable DRAM that will be mapped

// over EPROM space after boot

byte_bucket =@x7fffgg10 // ROM Tocation

or 1%resxc_start,rd,r4 ~ // bottom of reset branch code

orh h%resxc_start,rd4,r4

or 1%wl,r@d,r5

orh h%wl,r5,r5

st.1  r5,0(r4) // store word 1

addu 4,r4,r4 // increment counter

or 1%w2,rd,r5

orh h%w2,r5,r5

st.1  r5,0(r4) // store word two

addu 4 ,r4,r4

or 1%w3,rd,r5

orh h%w3,r5,r5

st.1 r5,0(r4) // store word three

addu 4 ,rd,r4 .

or 1%wa,r@,r5
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orh
st.1

h%w4,r5,r5
r5,0(r4)

// store word four

// The next line must be hand patched after every reassembly

or
orh

gxf174,r@,r1
gxffff,rl,rl

/] fffff174 is mask_cs8

// We go through the warp drive section twice to insure that
// it gets completely cached. We must be executing from
// cache when we zero CS8 and the boot bit.

or 1%byte_bucket,rf@,r5
orh h%byte bucket,r5,r5
1d.c dirbase,r4
warp_drive::
st.b r,8(r5)
st.c r4,dirbase
bri rl
nop
mask_cs8::
or Oxff7f,rd,r3
orh oxffff,r3,r3
and r3,rd,rd
or Ox20,r4,r4
xorh  h%byte bucket,r5,r5
orh ox0108,r5,r5
or 1%dramc_start,r@,rl
orh h%dramc_start,rl,rl
br warp_drive
nop

// get dirbase contents

// does nothing first time

// does nothing first time

// go to mask_CS8 the first time
// go to ffff@vo@ second time

// kill cs8 bit

// invalidate code cache bit

// zero r5's high 16 bits

// rl now has DRAM start address

// r5 has the boot port address
// r4 has CS8 bit reset

// The following flush procedure is from the i86@™ Programmer's Reference
// manual. Please reference the manual for additional information.

flush_cache
FLUSH_P=

//rw=r24, rx=r25, ry=r26, rz=r27

mov
1d.
or

add
cal

2x7 f000008-32

rl,r2
¢ dirbase,r27
0x8008,r27,r27
s —1,r@,r25
1 D_FLUSH
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st.c

or
call
st.c

xor
mov
bri
st.c

D _FLUSH::

D_FLUSH_LOOP: :

.end

or
orh
or
bla
1d.1

bla
flush
bri
1d.1

r27,dirbase

2x908,r27 ,r27
D_FLUSH
r27,dirbase

0x900,r27,r27
r2,rl

rl
r27,dirbase

1%FLUSH_P,r@,r24
h%FLUSH_P,r24,r24
127,r0,r26
r25,r26,D_FLUSH_LOOP
32(r24),r0

r25,r26,D_FLUSH_LOOP
32(r24) + +

rl

—512(r24) ,r@
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CHAPTER 6
GRAPHICS SUBSYSTEM EXAMPLE

6.1 INTRODUCTION

Computer graphics technology has developed rapidly in recent years and has trans-
formed the computing environment. Graphics provides visualization — the ability of
computers to create revealing, life-like images from hard-to-interpret numerical data.
Graphics offers user-friendliness to ease the man-machine interface, and it opens new
applications in science, engineering and the arts. Advances in graphics hardware tech-
nology are catalysts for innovation. Raster display technology, low-cost, high-speed dis-
play memory and powerful, intelligent graphics processors are key elements to recent
changes. A decade ago, high resolution graphics was reserved to centralized computing
facilities. Today, home and office computers provide even better graphics at a fraction of
the cost.

The underlying trend in computer graphics development is toward better display and
pixel resolution. Display requirements for solids modeling and visualization are stringent
because of the need to accurately represent smooth shaded objects. Graphics worksta-
tions are a new class of machines for graphic-intensive applications. They combine
medium- to high-resolution color graphics with high-speed computational capability.
Applications may call for real-time manipulation of complicated images composed of
close to a hundred thousand polygons. These 3-D graphics applications demand high
MFLOPS (millions of floating-point operations per second) performance. Object mod-
eling, transformation and rendering are common applications that usually require super-
computer power.

6.2 GRAPHICS AND THE i860™ MICROPROCESSOR

The i860™ microprocessor’s architectural features provide high performance graphics
capability. Floating-point power, parallel execution units, high integration and dedicated
3-D graphics hardware combine to provide supercomputing graphics performance and
capability.

The processor provides an integer operation and up to two floating-point operations per
clock cycle. Pipelined floating-point multiplication and addition units operate simulta-
neously using special dual operation instructions. This speeds matrix arithmetic and vec-
tor computation to provide a peak performance of 80 single-precision or 60-double
precision MFLOPS at 40 MHz.

The 1860 microprocessor supports 3-D graphics operations such as hidden surface elim-
ination and Gouraud shading. It operates on 8, 16, or 32-bit pixels. Its high speed, 64-bit
data bus delivers a peak 160 megabytes per second with zero-wait-state accesses. Dual
instruction mode allows floating-point or graphics operations to execute in parallel with
pixel loading and storing. Scoreboarding can provide continuous execution during cache-
miss processing of data reads.
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6.2.1 Processor Bus Bandwidth

In real-time applications, frames must be refreshed at least 10 times per second. Band-
width requirements vary according to display and pixel resolution. Nearly 40 Mbytes/sec
bandwidth must be dedicated to memory refresh to provide real-time graphics on a 1,280
X 1,024 pixel monitor with 24-bit resolution. Additional data transfers for modeling,
transformation, hidden surface elimination and shading increase the bandwidth require-
ment.

At 40 MHz, the i860 microprocessor provides 160 megabytes per second bus bandwidth
with zero-wait-state cycles. This allows for real-time manipulation of high-resolution 3-D
images.

6.3 3-D GRAPHICS EXAMPLE

This example outlines a graphics frame buffer daughter card for an i860 microprocessor
evaluation vehicle. The example does not represent an ideal design but is instead em-
ployed to demonstrate the processor’s 3-D graphics capabilities. The concepts employed
here can be extended to complete systems where more board space and dedicated
hardware/software support permit greater sophistication.

This evaluation vehicle is designed as a frame buffer extension to an i860 microprocessor
based system. The processor connects to the frame buffer board through the expansion
bus. The frame buffer is mapped into the expansion space as allocated by the CPU core.

6.3.1 Features

The following features are included in the frame buffer example:
o 1,024- X 768 RGB Display with 16-Bit Pixel Resolution

o Double-Buffering at Two Megabytes Per Buffer

e 33 MHz with 40 MHz Upgrade Path

o PLD-Based VRAM Controller

e VRAM Control Options for 100ns and 80ns VRAMs

e PLD-Based Noninterlaced CRT Control

Dedicated to the three colors, red, green and blue, are 6, 6, and 4 bits per pixel respec-
tively. Sixteen-bit pixel resolution allows a double-buffered scheme requiring only four
megabytes of total display memory for a 1,024 x 768 pixel display. It also allows four

pixels per 64-bit load/store operation and four pixels per computation. Transformation
and refresh rates are higher than those obtained with a 24-bit or 32-bit pixel resolution.

6.3.2 Testing

This example has been tested for the operational mode that uses 100ns VRAM. Refer to
Section 6.5.1.1. PLD codes are included in Appendix A.
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Figure 6-1. Block Diagram of the i860™ Microprocessor Based Graphics
Frame Buffer Board

6.4 SYSTEM OVERVIEW

The frame buffer board is composed of three major sections: VRAM control, CRT
control and expansion bus interface. The VRAM controller controls four megabytes of
video RAMs which are divided into two display buffers. While the i860 processor ac-
cesses one buffer, the CRT may display the other buffer. Refer to the block diagram in
Figure 6-1. ‘

6.4.1 Expansion Bus Interface

Frame buffer logic resides on the expansion bus. The key signals are listed below:
¢ 64-bit buffered data bus

o Bits A23-A3 of the i860 microprocessor address bus

e i860 microprocessor control signals such as ADS#, READY# and NA#

o Decoded signals from the baseboard logic such as EXPSEL#

e Power supply and ground signals

Refer to the schematics in Appendix A for the complete list of signals.
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6.4.2 Data Transceiver/Latch Control

Data is transferred to and from the i860 microprocessor through data transceivers/
latches on the i860 microprocessor board. Expansion data control signals are generated
to control the logic.

6.4.3 Address Transceiver/Latch

Address bits A20-A3 are used to generate row and column addresses during data access
cycles. Bits A20-A12 are buffered and then latched as row address by VRAM:s. Bits
A11-A3 are latched externally as column address when a VRAM cycle is detected. In-
cluding bit 21 (which selects display buffer #0 or #1), four megabytes of address space
are provided.

6.4.4 VRAM Control

VRAM control provides VRAM control signals for read/write cycles, refresh cycles, and
RAM-to-SAM transfer cycles. VRAM read/write cycles are synchronized with pipelined
cycles to the DRAM subsystem on the i860 microprocessor board.

6.4.5 Serial Row/Column Address Generation ,
RAM-to-SAM transfer for the serial port occurs during horizontal blank periods, and
row addresses increment accordingly. Each row transfer provides two screen lines, and
* row addresses increment every other horizontal blank time. A column address latched
during SAM transfer indicates the origin of data within the SAM register. All but the
most significant bit in the column address are zero. The most significant bit alternates
between one and zero. If the bit is'a one, the serial shift from the serial port originated
from the middle of the SAM register. This occurs during a RAM-to-SAM transfer of
display data for the second screen line stored in the second half of the same VRAM row.
The row address is not incremented in this case.

6.4.6 Double Buffering

Double buffering reduces flickering and partial image update. Here, each buffer consists
of two megabytes of video RAM.

6.4.7 Expansion Interrupt/Buffer Switch

Upon reset, buffer #0 is enabled. When ready to display data in a second buffer, the
processor may read or write to a location where A22 is high. Actual buffer switching
occurs in the subsequent vertical trace. A low value on A3 indicates that display data
comes from buffer #0; a high value indicates that data comes from buffer #1. The
processor is interrupted when vertical retrace occurs.
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6.4.8 CRT Timing Generation

Blank and sync signals are generated with PLD/TTL logic, and clocking is derived from
the 64 MHz pixel clock. The 16 MHz serial clock clocks data out of the VRAM serial
ports.

6.4.9 Pixel Serializer

Pixel resolution is 16 bits/pixel, and four pixels are clocked out with each rising edge of
the serial clock. Pixels are loaded into shift registers at serial clock rate but shifted out of
the registers at pixel clock rate.

6.4.10 Video DACs

Video DACs convert digital video data into analog video data at the pixel clock rate. The
sync-on-green mode of the color monitor provides synchronization.

6.5 OPERATION

6.5.1 VRAM Control

VRAM control logic provides all control signals for VRAM operation, including serial
port accesses.

6.5.1.1 SPEED MODE

Two operation modes are designed to use 100ns and 80ns VRAM:s. They are designated
as 1-wait-state-write and 0-wait-state-write modes respectively. The 100ns VRAMs are
used and tested in initial prototyping. (PLD code for the 0-wait-state mode is not in-
cluded in the appendix.) They require one wait-state for writes and two wait-states for
reads in page mode. (PLD codes are included in Appendix A.) 80ns VRAMs are needed
to support zero-wait-state writes and 1-wait-state reads. Refer to the timing diagrams in
Figure 6-2 and 6-3 for one-wait-state-write mode operation.

6.5.1.2 PROCESSOR-INITIATED CYCLES

The frame buffer board shares processor and latched data control buses with the i860
microprocessor board. VRAM cycles may be started by the VRAM controller when the
VRAM space is selected and DRAM busy signal (DRMBSY#) is deasserted (that is,
pipelined cycles are completed). The expansion busy signal (EXPBSY#) is also asserted
to prevent other cycles from starting while VRAM cycles are pending.

Once the first VRAM cycle is started, VRAMs remain in page mode during
near (NENE# asserted) cycles. Reads are pipelined with NA#. A new cycle can start
when NA# is activated in pipelined mode or when READY# is activated in nonpipe-
lined mode. Idle or far cycles put VRAMs in precharge mode. Row addresses are
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Figure 6-2. Read/Write/Read Operation (1-Wait-State-Write Mode) |

latched by VRAMs on the falling edge of RAS#, and column addresses are latched on
the falling edge of CAS#. Subsequent near cycles to the VRAM space need to supply

column addresses only. Near cycles are indicated by the i860 microprocessor NENE#
pin. .

In read cycles, data is latched by the data latch on the i860 microprocessor board before
being read by the processor. This provides sufficient setup and hold times. In write
cycles, data is also latched before being written into VRAMs. The data latch is con-
trolled by expansion bus data control lines. Latch latency requires that write data be
latched to maintain one-wait-state operation in successive VRAM write cycles (one-

wait-state-write mode operation). Latch signals require at least one clock period to
TECOVer. :
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Figure 6-3. Write/Read/Write Operations (1 -Wait-State-Write Mode)

When a write cycle is immediately preceded by a read, data is not driven by the proces-
sor until one clock after READY# is returned. This is illustrated in Figure 6-2 and 6-3.

6.5.1.3 REFRESH/RAM-TO-SAM TRANSFER CYCLES

The refresh and serial register (SAM) transfer VRAM cycles are not initiated by the
processor. The cycles occur simultaneously in both VRAM banks and have priority over
processor-initiated cycles. Outstanding processor-initiated cycles resume following
refresh/SAM cycles. Refresh cycles have priority over RAM-to-SAM cycles.

Figure 6-4 illustrates a far cycle (NENE# not active) followed by a RAM-to-SAM trans-
fer request and refresh request (REF). The refresh cycle begins as soon as RAS# pre-
charge time has been met. The RAM-to-SAM request (TRQ) arrives one clock before
the refresh request. Request lines are not sampled until the end of the precharge period
where both lines are active. These cycles are equally important in displaying the correct
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images continuously. RAM-to-SAM requests occur during video blanking time and
minor delay is tolerable. The RAM-to-SAM cycle begins as soon as RAS# precharge
time for the refresh cycle is satisfied. CAS-before-RAS refresh VRAM mode is used to
generate a refresh address internally.

A RAM-to-SAM read transfer is requested when DT/OE# is asserted on the falling
edge of RAS#. In real-time read transfers without RAM-to-SAM transfers, the transfer
must remain active until CAS# has been deactivated. Although not indicated in the
diagram, WE# must be deasserted during refresh/’RAM-to-SAM transfer cycles. While
external address generation is not required in refresh cycles, a scan line address is re-
quired for RAM-to-SAM transfers. The address setup and hold mechanisms are similar
to those in a regular cycle.
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Figure 6-4. Refresh/RAM-to-SAM Transfers
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6.5.2 Expansion Bus Interface

The expansion bus allows the i860 microprocessor to access the frame buffer. The sche-
matics provide a complete list of bus signals. Expansion address space spans 8 mega-
bytes. Mapping is illustrated in Figure 6-5.

6.5.2.1 EXPANSION SELECT

The expansion select signal (EXPSEL#) and signals A21 and A22 are needed to decode
access to the expansion address space in two megabyte increments (refer to Figure 6-5).
Low levels on EXPSEL# and A22 signal VRAM accesses. A21 distinguishes between
display buffers #0 and #1 when the random port (processor side) of the VRAM:s is
accessed. When A22 is high for an access to the expansion space, A3 enables the serial
port (CRT side) of buffer #0 or buffer #1. Buffer switching occurs during vertical re-
trace. Although available, A23 is not used in decode logic; VRAMSs and unpopulated
space are assigned to two eight megabyte regions.

6.5.2.2 DATA TRANSCEIVER/LATCH SHARING

Four signals control the data transceivers/latches used in VRAM data accesses. The
ERDL# and EWDL# signals latch read and write data. ERDE# is used for transceiver
enable, and EWDE# is used for transfer direction control. ERDL# and EWDL# must
meet the setup time requirement relative to a delay clock (delayed from CLK) on the
i860 microprocessor board. Data is latched in the latter part of CLK. EWDL# activates
the write data latch signal.

High Address
A
Reserved
Anp=1 Space
8 MBytes
Buffer #1
A22 =0
Buffer #0
Low Address v
24033047

Figure 6-5. Expansion Space
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6.5.3 CRT Timing Logic

The 64 MHz pixel clock (PCLK) keys all timing signals. A divide-by-16 clock is gener-
ated to clock the horizontal blank signal, HBLANK. As shown in Figure 6-6, each hori-
zontal active period supports the 1,024 pixel horizontal display. Display active times are
set at 16.5us while inactive times are set at 4.5ps. The horizontal sync signal, HSYNC#
has a front porch of 0.5us, an active time of 1.5ps and a back porch of 2.5us. The
horizontal frequency is approximately 48 KHz. These timings are for the Hitachi Super-
scan (model CM2085MYV); they must be adjusted for use with a different monitor.

The vertical blank signal, VBLANK# is active low and remains active for 45 HBLANK
periods. To provide a 768 line display (by remaining inactive for 768 HBLANK clock
periods), the vertical retrace rate becomes approximately 60 times/sec. The front porch,
active time and back porch for the vertical sync signal (VSYNC#) are 6, 6 and 33
HBLANK periods respectively (refer to Figure 6-6).

Zeros are shifted into the shift registers during blanking periods. When blanking ends,
display data is shifted out of the VRAMs and loaded into the shift register by the
load/shift signal (LDSR#). Undefined data is not displayed. Figure 6-7 provides serial
data clocking timing. The serial clock (SC) is held low after all required data has been
moved from the shift registers at the end of the display period.

The pixel clock is divided by 16 to generate the CDIV16 clock used in most CRT timing
logic. Final timings are synchronized to the pixel clock to ensure correct blanking by the

video DACs where digital data, composite sync and blank signals combine to generate
RGB signals.

HBLANK Y — Va
HSYNC# ——\__/ it

.Sus|

1.5us |2.5us

16us |

VBLANK# T\

VSYNC# \_/

‘SH ISH ‘ 33H |
Notes 1) H = horizontal retrace period

2) VSYNC# is not generated but combined
with HSYNC# to generated SYNC#

240330-48

Figure 6-6. Blank and Sync Signals
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— |
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LDSR# ‘ LU ;?J

DIGITAL VIDEO X XX X2 XX+
DATA «
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240330-49

Figure 6-7. Serial Data Clocking

CRT timing relationships are illustrated in Figure 6-8. The horizontal blank (HBLANK)
is generated by counting COUNT, and the vertical blank (VBLANK#) is generated by
counting HBLANKS. The counters are reset by HCLR# at the end of horizontal display
periods and by the VCLR# (not shown) at the end of each display periods.

6.5.4 Schematics Description

Refer to Appendix A, page 24, for the schematics.
Sheet #1

This sheet contains address transceivers and latches. |
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HBLANK | *""I N 1024 PCLKS [ ”"L

VBLANK# I ? "" anl

I )
CBLANK# ”T—I v | ,
HCLRX#. — — 3%
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i 1 234568 1022 1024 1026
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BLANK# i -’-‘ \
n =256
sC DI\ /_" 2 @ \ [ i=4(n-1)+2
240330-50

Figure 6-8. Blank Signals

Sheet #2

This sheet contains half of the VRAMs in Buffer #0.
Sheet #3

This sheet contains half of the VRAMs in Buffer #0.
Sheet #4

This sheet contains half of the VRAMSs in Buffer #1.
Sheet. #5 |

This sheet contains half of the VRAMs in Buffer #1.
Sheet #6

This sheet contains VRAM control lbgic. RAS1# and RASO# control Buffers #1 and
#0 respectively. RAS1# is activated when A21 is high; RASO# is activated when A21 is
low. RAS1# and RASO# are combined to control the remaining logic.

CAS2#, CAS1# and CASO# are activated together; they are generated to share loading.
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PRECH# controls RASx# precharge time: three CLKs for far cycles; four clocks for
refresh/SAM to support CAS#/DTOE# before RAS#. REFC# controls RAS# active
time (five CLKs) during refresh/SAM. TRFQ# is activated when refresh (REF) or SAM
request (TRQ) is active. RASDEL# is to delay RAS# active edge by one clock when
TRFQ# is found active.

ROWE#/COLE# and SRAE#/SCAE# are address enabled for regular VRAM and
serial port row/column addresses.

CPEND# is activated when VRAM cycles are detected. They are deactivated when
CAS# is deactivated and no new VRAM cycle is detected. WDEL# delays logic activa-
tion when a write follows a read. NCLK# is added to minimize the number of inputs
(related to WDEL#) to the RDY# (processor ready signal) PLD.

ERDL# is activated in the clock that VRAM data is valid. It causes RDL activation in
the core logic in the same CLK.

DTOEx# enables VRAM output for read cycles and signals SAM transfer on the
RASx# falling edge. CLRTRFQ# clears the refresh request (REF) while CLRTRQ#
clears the SAM request (TRQ). ERDE# and EWDE# control direction (DRMDIR#)
and enabling (DRMEN#) of data bus transceivers on the i860 microprocessor board.
Refer to timing diagrams in the text for details.

Sheet #7

This sheet contains additional VRAM control and miscellaneous logic. DREF, PREF
and TREF are decode signals to the product terms and determine the number of inputs
required for DTOEx#, CASx# and RASx#, respectively.

EWDL# activates WDL in the core logic in the same CLK to capture processor write
data. In the case of zero-wait-state writes, it is activated whenever a VRAM cycle is
detected regardless of the read/write or near/far state.

SE1# and SEQ# are activated when an access to the upper portion of the expansion
space is detected. A low value on A3 activates SEQ#; a high value activates SE1#. Upon
reset, SEO# is activated. SE1# and SEO# cannot be active at the same time.

RDY# is activated for VRAM cycles and for buffer selection accesses to the upper
portion of the expansion space. RDY# is always in the high state when floated.
VSELX1 and VSELXO are state variables for these access cycles.

EXPBSY# is activated when VRAM cycles are in progress. CBUSY# combines the
various busy signals.

WEx# are write enable signals for VRAMs. They must be inactive to allow CAS-before-
RAS refresh and SAM transfer on the RASx# falling edge. REFC# deactivates WEx#.

Sheet #8

LDSR# loads serial data into the shift registers. Data to be clocked out by PCLK.
SCLR# clears register contents once all needed data has been shifted.
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Sheet #9

The VOG signal carries composite sync information to support sync-on-green. When
BLANK# is active, remaining shift register data is not displayed.

Sheet #10

PCLK is divided by 16 to generate CDIV16 for composite blank and sync clocking.
SBLANK# is the composite blank signal synchronized to PCLK. The final blank signal
BLANK# is used to clear the screen after remaining pixels are cleared from the shift
register. The composite sync (SYNC#) and BLANK# are used by the video DACs.

Sheet #11

REF and TRQ generation. TRQ is activated by HBLANK; REF by REFREQ from the
expansion bus.

Sheet #12

Terminations for VRAM control and for the expansion bus CLK signals (CLKC and
CLKG).
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CHAPTER 7
MULTIBUS® Il AND i860™ MICROPROCESSOR

The i860™ microprocessor provides supercomputing performance and capability that can
be provided on a standard bus platform. This allows systems integrators to take advan- -
tage of rapidly advancing CPU technology while preserving their investment in existing
hardware. Boards based on the MULTIBUS® II system bus and on the i860 micropro-
cessor can be added to existing systems or can be the basis for a new system design.

This chapter outlines an example of such a design. Schematics for the design are to be
found in Appendix B. This example has not been tested.

7.1 i860™ MICROPROCESSOR CPU BOARD

Figure 7-1 shows a block diagram of a board designed around the i860 microprocessor
and MULTIBUS II system bus. The main features include the following:

o MULTIBUS II System Bus Interface

e 860 Microprocessor

—_
ADDR
BUF
r l A
82380 | § sRAM
- EPROM
1860 LP o T = 1o
DATA
Sl BUF
—
| { AoOR
BUF DRAM ARRAY
4MBYTES
>
64 DATA 54 I “
BUF 24033051

Figure 7-1. System Block Diagram of i860™ Microprocessor Based MULTIBUS® Il Board
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e DRAM Main Memory
e Local I/O Devices
— 82380 Integrated Systems Peripheral
— 82510 UART
— SBX Connector
— Single 8-bit Boot EPROM
o DMA Control and SRAM Message Area
Memory and Graphics Expansion Connector

7.2 MULTIBUS® Il SYSTEM BUS STANDARD

The MULTIBUS II system bus standard is a processor-independent bus architecture
with full distributed multiprocessor support. The standard defines a 32-bit parallel sys-
tem bus with a maximum throughput of 40 Megabytes per second. The parallel system
bus is isolated from the CPU local bus to allow the i860 microprocessor to access mem-
ory on its 64-bit data bus. The parallel system bus handles interprocessor communica-
tions and accesses to I/O devices not dedicated to a single CPU board.

The MULTIBUS II system bus architecture also includes the system expansion (iISBX™)
I/0O bus. Refer to the IEEE 959 specification for a full description of this bus.

7.2.1 Parallel System Bus (PSB)

The parallel system bus (PSB) is optimized for standardized interprocessor data transfer
and signalling. Its burst transfer capability provides a maximum sustained bandwidth of
40 megabytes per second for high-performance data transfers. A hardware recognized
data type, called a packet, is used to ensure consistent and reliable transfers between
different system boards.

The PSB supports four address spaces for each bus agent (board that encompasses a
functional subsystem). Conventional I/O and memory address spaces are included, as are
two address spaces that support system functions:

e A 255-address message space supports message passing. Microprocessors typically
perform interprocessor communication inefficiently. Message passing allows two bus
agents to exchange blocks of data at full bus bandwidth without microprocessor
supervision. An intelligent bus interface capable of message passing shifts the burden
of interprocessor communication away from the processor and into hardware dedi-
cated to this task, thus enhancing overall system performance.

¢ An interconnect space allows geographic addressing — the identification of any bus
agent (board) by slot number. Every system based on the MULTIBUS II system bus
contains a central services module (CSM) that provides system services for all bus
agents residing on the PSB bus. These services include uniform initialization and bus
timeout detection.The CSM may use the interconnect space registers of each bus
agent to configure the agent dynamically. Stake pin jumpers, DIP switches and other
hardware configuration devices can thus be eliminated.
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Three types of bus cycles define .activity on the PSB bus:

Arbitration Cycle — Determines the next owner of the bus. This cycle consists of a
resolution phase in which competing bus agents determine priority for bus control. It
also includes an acquisition phase in which the bus agent with the highest priority
initiates a transfer cycle. This cycle overlaps other cycles allowing agents to transfer
bus control on back-to-back cycles.

Transfer Cycle — Performs a data transfer between the bus owner and another bus
agent. In the request phase, address control signals are driven. In the reply phase, two
agents perform a handshake to synchronize the data transfer. The reply phase is
repeated and data transfers continue until the bus owner ends the transfer cycle.

Exception Cycle — Indicates that an exception (error) has occurred during a transfer
cycle. In the signal phase, an exception signal from one bus agent causes all other bus
agents to terminate any arbitration and transfer cycles in progress. In the recovery
phase, the exception signals go inactive. A new arbitration cycle can begin on the
clock cycle following the recovery phase.

Figure 7-2 illustrates how the timing of these cycles overlap.

7.2.2 Message Passing Coprocessor

The interface from the processor’s local bus to the PSB can be simplified with the Intel
82389 message passing coprocessor (MPC). The MPC has been designed for message
passing protocols of the MULTIBUS II system bus architecture. It participates in the
entire PSB bus protocol and performs bus arbitration, transfer control, error detection
and reporting, and parity generation and checking. These functions occur independently
of the host CPU.

The MPC decouples local bus activities from interprocessor communications over the
PSB bus. The decoupled bus approach has two advantages:

Resources that would be held in wait-states while dedicated bus access arbitration is
underway are instead free. This parallelism increases system performance.

The bandwidth of one bus does not limit the transfer rate of another. Each bus can
perform full-speed, synchronous transfers.

As shown in Figure 7-3, the MPC signals can be divided into three functional groups:

PSB interface
Local bus interface
DMA interface

These signal groups are discussed below.

7.2.2.1 MPC INTERFACE TO PSB

The primary functions of PSB interface signals are arbitration and system control. Five
bidirectional arbitration signals (ARB5-ARBO0) are used during reset to read card-slot
ID and arbitration ID from the CSM. During arbitration, these signals output the
arbitration ID for priority resolution. Bus request (BREQ#) is a bidirectional signal.
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ARB5# *
ARB6#

RESOLUTION
BREQ# and

Arbitration Cycle

Transfer Cycle

ADDRESS

COMMAND
SCe6# * SC8#

ADS1# * ADS#

HANDSHAKE
SCé# * SC8#

DATA
ADS1# * AD#

Exception Cycle

SIGNAL
BUSERRS
and TIMEOUTS

240330-52

Figure 7-2. PSB Bus Cycle Timing

(It should not be confused with the BREQ# 1860 microprocessor signal.) Each bus agent
asserts BREQ# to request control of the bus and samples BREQ# to determine if other
agents are also contending for bus control.

Bus error (BUSERR#) is a bidirectional signal that a bus agent sends to all other bus
agents when it detects a transfer cycle parity error. The CSM sends the bus timeout
signal (TIMOUT#) to all bus agents when a bus cycle fails to end within a prescribed

time period.

Ten system control signals (SC9#-SC0#) coordinate transfer cycles. The MULTIBUS II
Architectural Specification defines each signal. Directional enables (SCOEH and
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Figure 7-3. MPC Signal Groups

SCOEL) are provided to let transceivers buffer these bidirectional signals. The MPC
checks byte parity lines (PAR3-PARO) are for incoming operations and set the parity
lines for outgoing operations.

Other PSB signals are reset (RST#), reset-not-complete (RSTNC#) and ID latch
(LACHn#, n = slot number). These signals are used only during system initialization.

The MPC coordinates interrupt handling for a bus agent on the PSB bus. Interrupts are
implemented as virtual interrupts in the message space. To send an interrupt message,
the processor writes to the MPC to indicate the source destination and message type.
The MPC coordinates the interrupt message transfer.

The PSB interface consists of the multiplexed address/data bus (AD31#-ADO0#). The
MPC controls external buffers used to drive the PSB. As a requesting agent, the MPC
drives addresses and data at appropriate times. As a receiving agent, the MPC monitors
the address/data bus for its address. When it recognizes one of its own addresses, the
MPC performs the required handshake and reads the message into the message queue.
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The MPC then, if necessary, interrupts the i860 microprocessor to indicate that the
message is pending in the queue. The processor reads the message and services the
interrupt accordingly.

7.2.2.2 MPC LOCAL BUS INTERFACE

The local bus interface of the MPC is like that of any other simple I/O device consisting
of select lines, address signals and read and write control lines. To support message
passing, MPC registers have various functions. They are accessed by asserting
REGSEL# and the appropriate register address while performing a read or write cycle.
Among other functions, the registers are used to program data message transfers, to
receive and send control transfers and handle errors.

7.2.2.3 MPC DMA INTERFACE

The DMA interface of the MPC has two channels that use the standard DREQ (DMA
Request) DACK (DMA Acknowledge) hardware transfer protocol. The two channels
are dedicated to the MPC one as the input channel and one as the output channel. Each
has its own control lines and operates independently.

MULTIBUS II uses a message passing protocol for data transfer. Control transfers (also
called unsolicited messages) are up to 32 bytes long, and data transfers (also called
solicited messages) are up to 16 Mbytes long and are split into 32 byte packets by the
sending and receiving MPCs. The sending and receiving DMA controllers do not know
that the data is being packetized on the system bus. This bus bandwidth preserving
feature does not affect local data transfers. The MPC has 32-byte internal FIFOs for
packaging data before sending it on the MULTIBUS backplane.

The board includes an SRAM message area to isolate back plane data rates from the
processor’s local bus. For a solicited outgoing message, the 1860 microprocessor transfers
messages into the SRAM at a high rate. The DMA channel then transfers messages
from the SRAM to the MPC’s outgoing message FIFO. For a solicited incoming message
the DMA channel transfers the message into the SRAM buffer and signals the processor
when it has completed. The processor can then very quickly transfer from the SRAM
area into main memory. As discussed later, using the SRAM as a dedicated DMA buffer
area has several advantages over DMA directly out of main memory.

7.3 i860™ MICROPROCESSOR BUS INTERFACE

The i860 microprocessor has a synchronous interface with nonmultiplexed address and
data buses. The data bus is 64 bits wide and the address bus provides 32-bit addressing.
Addressing consists of 29 address lines and separate byte enable for each of eight data
bytes. The bidirectional data bus can accept or drive new data on every other clock,
yielding a bandwidth of 160 megabytes per second at 40 MHz. The bus allows two levels
of pipelining that may be selected on a cycle by cycle basis. In pipelined mode, a new
cycle is started before earlier cycles have completed. Chapter 3 provides a complete
description of the i860 microprocessor bus interface.
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7.4 DRAM SYSTEM

The memory system consists of static column mode, noninterleaved, parity checked
DRAMs. The processor’s pipelined bus and address and data latches combine to hide
DRAM latency for most accesses. Using 80 nanosecond static-column DRAMs, the
memory system can supply the maximum data bandwidth required by the processor.

The board allows up to four megabytes of DRAM on the base board. DRAMS are static
column, 80 nanosecond, 256K X 4 chips in ZIP sockets. Parity DRAMS are 1M X 1. An
additional four megabytes of DRAM can be added to the expansion connector without
additional parity DRAMS. Chapter 4 provides more information about the DRAM
interface.

7.5 LOCAL I/O SYSTEM

The I/O system consists of an integrated systems peripheral (82380), a serial port
(82510), one 8-bit boot EPROM and an iSBX bus connector. The 82380 integrated
systems peripheral includes timers (8254), two interrupt controllers (8259 master and
slave) and eight DMA channels. The I/O system is memory mapped.

The serial port can be used in a polled or interrupt mode. It also suitable as a console
monitor. Timers are clocked from a reduced version of the serial controller’s oscillator
module. A control port enables and disables the timers. Timer outputs are connected as
8259 interrupts. The master and slave 8259 chips accommodate 15 interrupt sources.

Four of the DMA channels are used. Two are for the MPC interface, and two are for the
iSBX bus connector. The DMA channels can transfer into or out of the SRAM message
area.

7.5.1 82380 Integrated Systems Peripheral

The 82380 integrated systems peripheral serves both as a slave I/O device and as a bus
master DMA controller. The 82380 contains four 16-bit programmable timers and has
connections for 15 external interrupts. In addition, there are five internal interrupts that
can be used with the DMA channels and the timers.

The 82380 uses a double frequency clock. This allows a 40 MHz CPU to operate syn-
chronously with a 20 MHz 82380. At reset, a phase clock is generated and used by the
control logic for 82380 accesses. The port addressing and data bus requirements of in-
terfacing the 64-bit i860 microprocessor to the 32-bit 82380 are discussed in Chapter 5.

The DMA channels are programmed with the 82380 in slave mode. Once programmed,
the DMA channels become bus masters to complete transfers. To gain control of the
bus, the 82380 asserts HOLD. When HOLDA is returned to the 82380, it initiates the
DMA transfer. Transfers continue until completion or until HOLDA is deasserted.
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7.5.2 iSBX™ Bus Connector

An iSBX bus connector is also included. The DMA control interface can be configured
as defined in the iSBX bus specification. Several jumpers are provided for connection
configuring. To access 8- and 16-bit iSBX bus devices, the processor must address them
on eight byte boundaries.

DMA transfers with the iSBX bus are supported. Transfers are with the SRAM message
area. The DMA controller supports byte assembly and unassembly from 8 or 16 bit to 32
bits.

7.6 DMA CONTROL AND THE SRAM MESSAGE SYSTEM

DMA controllers benefit systems that have peripherals requiring block memory trans-
fers. In this system, DMA channels are used for incoming and outgoing MULTIBUS II
system bus messages and for I/O devices on the iSBX bus connector. Once a DMA
channel is programmed, the processor remains uninterrupted while block transfers
complete.

DMA performance depends on the DMA controller transfer rate and the effect of the
DMA controller on processor memory bandwidth. The relative influence of these factors
varies according to the task at hand. If the processor waits for DMA data, then transfer
rate is most important. In a multitasking environment, the DMA effect on bandwidth is
more critical. A multitasking system puts a task waiting for the DMA to sleep and
continues to execute other tasks. Overlapping tasks in this way improves overall system
performance. Any DMA method must also consider the write-back caching protocols of
the CPU and that the physical memory is arranged as pages.

I/O system devices are slow relative to the processor’s local bus. The DMA controller is
separated from this bus by address and data buffers. This allows DMA memory accesses
to occur independently of processor memory accesses. The memory portion of DMA
transfers accesses the SRAM message area. Direct transfers to main memory would have
to place the processor in a hold state, could not cross page boundaries and would require
the operating system to maintain memory consistency between the caches and the DMA
areas of memory. Transfers into the SRAM area do not initiate a hold, but they do
require the processor to perform a main memory data transfer once the DMA transfer
completes. The processor retains full memory bandwidth during DMA transfers to the
SRAM area and may continue to execute tasks. Transfers between SRAM and DRAM
area execute very quickly because SRAM and DRAM accesses occur at full bus band-
width. DMA transfers into the SRAM can be programmed to transfer blocks larger than
the 4 Kilobyte page size.

7.6.1 DMA Channels

The 82380 is the system DMA controller and contains eight DMA channels. DMA in-
terface devices use the standard DREQ/DACK protocol. Bus control logic of the 82380
is identical to the 386™ microprocessor and similar to the i860 microprocessor. The
82380 can perform data assembly and disassembly for 8- and 16-bit DMA devices. The
maximum data width for the device is 32-bits, and it uses address line A2 for accessing
within 64-bit processor words.
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Fly-by mode may be used for transfers between the I/O and SRAM systems. In this
mode, SRAM reads and MPC writes occur together to produce the highest possible
DMA transfer rate. Fly-by mode can only be used with 32-bit DMA devices such as the
MPC. Figure 7-4 shows two fly-by transfers between the SRAM and the output data
channel of the MPC. In the second cycle, the MPC deasserts ODREQ, indicating to the
DMA channel that its FIFO is full and that it cannot accommodate another transfer.
The DMA channel resumes transfers when ODREQ is again asserted.

The 82380 can assemble and disassemble 8-bit I/O accesses to 32-bit memory accesses
during accesses to both main memory and the SRAM message area. Address line A2 of
the 82380 determines which half of 64-bit memory data is accessed.

7.6.2 SRAM Message Area

The SRAM message area is ideally suited for isolating DMA traffic from the i860
microprocessor’s local bus. DMA transfers may occur in parallel with CPU main memory
accesses. Both the DMA controller and the CPU can act as bus masters to access the
SRAM and the I/O bus. :

The SRAM message area can be designed for various levels of price/performance. Two
implementations are shown in Figures 7-5 and 7-6. The first figure illustrates an ap-
proach that requires fewer parts and uses four 8-bit SRAM:s. In this example, the SRAM

I | | L o L [
-

s ~ -
ooneK ———) M —
SRAM RD# —\ ]__\ I_
pan ——————— —— p—
IOWRit —-\_—J \—_I_

RDY 380# \ [ \ '

ODREQ \

240330-54

Figure 7-4. Fly-by Transfer with SRAM Read and 1/O Write
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data bus is directly connected to the I/O data bus. Four data buffers are needed on the
processor side. Only the lower 32-bit processor data lines are used. This reduces the
processor to memory transfer rate by one-half. The processor may continue to access the
SRAM with zero wait-states, but it may only access the lower half of the data bus. The
auto-increment addressing mode of the processor is used, and full processor bus band-
width is maintained.

The second example supports a full 64-bit processor interface. Four additional data
buffers are needed on the processor side, the I/O side of the bus requires four additional
SRAMS and data buffers. The I/O-side buffers are used to multiplex the halves of the
64-bit wide SRAM to one 32-bit I/O data bus. Eight 256 Kbit SRAMs produce a 256
Kbyte message space. 64 Kbit SRAMs can be used instead if less message space is
required.

Arbitration between the two bus masters is performed by a PLD. The PLD can grant
control of the DMA message system to the 82380 by asserting HOLD. If the i860 micro-
processor begins a bus cycle that requires the DMA message system, the arbitration PLD
forces the 82380 from the bus.

Figure 7-7 shows arbitration and DMA control logic blocks. The 82380 asserts HOLD
and the arbitration PLD returns HOLDA. The 82380 takes control of the bus and per-
forms DMA cycles until HOLDA is deasserted or until the transfer is completed. If
HOLDA is deasserted, the 82380 relinquishes control of the bus. The arbitration PLD

S S S S
. R R R R
adress J A A A A VO Address Bus
M M M M
Processor x8 x8 x8 x8
Address Bus
B ——————————
Data
Buffers
Processor
Data Bus ‘
[D31: DO] ‘ VO Data Bus
—lemeep} <
32
240330-55

Figure 7-5. SRAM Message Area using 32-bit Bus
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Figure 7-6. SRAM Message Area using 64-bit Bus

deasserts HOLDA to the 82380 and waits for it to deassert HOLD. Although HOLD
becomes active again in the next clock, HOLDA is not returned to the 82380 until the
processor is finished with the bus. The 82380 is programmed in demand mode to allow

this type of arbitration to work. When the processor finishes its I/O cycle, it returns
HOLDA to the 82380.

7.7 EXPANSION CONNECTOR

The expansion connector can support memory expansion ranging from simple extensions
to complex extensions such as those found in graphics systems. DRAM control lines and
processor bus signals are both available on the connector.

7.7.1 Memory Expansion

Additional memory can be added to the expansion board. In this design, the processor
address bus must be buffered on the memory board. The address buffers perform ad-
dress multiplexing and provide DRAM drive capabilities. Control signals are available
on the connector, and DRAM and address buffer control signals can be generated using
simple decode logic. The data bus uses data buffers from the main board.
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Figure 7-7. DMA System Arbitration and Control

7.7.2 Intelligent Expansion

The connector provides the control signals needed to build an intelligent expansion
board. One example of an intelligent board is a frame buffer board. It requires its own
VRAM controller and control logic for returning READY# and NA# to the processor.
Motherboard data buffer control signals are also available. The controller tracks ADS#
and EXPSEL# signals to know when a cycle is intended for the expansion board con-
troller. The controller uses the EXPBSY# signal to indicate that it will be asserting the
READY# and NA# control lines. The base controller must disable control of these
lines when this occurs.
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CHAPTER 8
PHYSICAL DESIGN AND DEBUGGING

This chapter outlines the basic design issues, ranging from power and ground issues to
achieving proper thermal environment for i860™ CPU.

8.1 GENERAL DESIGN GUIDELINES

The performance and proper operation of any high-speed system greatly depends upon
proper physical layout. This section gives a brief overview of general issues and design
guidelines for layout which are significant to both high- and low-frequency systems.

The ever-increasing improvement of integrated circuit technology has led to an enor-
mous increase in the number of functions that are being implemented on a single chip.
Improved technology also allows these functions to be implemented to provide higher
performance. The i860 microprocessor, with operating frequencies of 33 MHz/40 MHz
and corresponding high edge rates, presents a challenge to the conventional interconnec-
tion technologies which to date have been adequate only for interconnecting less sophis-
ticated VLSI devices. This challenge applies especially to system designers who are
responsible for providing suitable interconnections at the systems level.

At higher frequencies, the interconnections in a circuit behave like transmission lines
which degrade a system’s overall speed and distort its output waveforms. In laying out a
conventional printed circuit board, there is freedom in defining the length, shape and
sequence of interconnections. But with high-speed devices like the i860 microprocessor,
this task is carried out with careful planning, evaluation and testing of the wiring pat-
terns. It is also critical to understand the physical properties of transmission lines be-
cause interconnection at high edge rates is analogous to a broadcasting transmission line.

8.2 POWER DISSIPATION AND DISTRIBUTION

The i860 microprocessor uses fast one-micron CHMOS* IV process technology. The
main difference between the previous HMOS microprocessors and the new ones is that,
in the latter, power dissipation is primarily capacitive and there is almost no DC power
dissipation. As power dissipation is directly proportional to frequency, accommodating
high-speed signals on printed circuit boards and through the interconnections is very
critical. The power dissipation of the VLSI device in operation is expressed by the sum
of the power dissipation of the circuit elements, which include internal logic gates, I/O
buffers and cache RAMEs. It is also a function of the operating conditions.

The worst-case power dissipation of any VLSI device is estimated in the following
manner: '

1. Let the following symbols stand for estimates of typical power dissipation for each
circuit element:
Ps = Typical power dissipation for internal logic gates (mW)
P,o = Typical power dissipation for I/O buffers (mW)
Pcram = Typical power dissipation for instruction/data cache RAMs (mW)
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2. To estimate total typical power dissipation:
Pr = Pg + Pyo + Pgram (mW)

where Py is the total typical power dissipation in milliwatts.

3. To estimate the worst case power dissipation:
Py = Prx C, (mW)

where P, is the worst case power dissipation (mW) and C, is a multiplier that is
dependent upon power supply voltage.

Internal logic power dissipation varies with operating frequency and to some extent with
wait-states and software. It is directly proportional to the supply voltage. Process varia-
tions in manufacturing also affect the internal logic power dissipation, although to a
lesser extent than with the NMOS processes.

The I/O buffer power dissipation, which accounts for roughly 10 to 25 percent of the
overall power dissipation, varies with the frequency and the supply voltage. It is also
affected by the capacitive bus load. The capacitive bus loadings for all output pins is
specified. in the i860™ 64-Bit Microprocessor Data Sheet. The i860 microprocessor’s out-
put valid delays will increase if these loadings are exceeded. The addressing pattern of
the software can affect I/O buffer power dissipation by changing the effective frequency
at the address pins. The frequency variations at the data pins tend to be smaller; thus, a
varying data pattern should not cause a significant change in the total power dissipation.

To calculate the total power dissipated by the board, the following formulas can be used.

To calculate the maximum statistical power:

Ptypical1 + Ptypical2 + ... (Pmax1 - Ptypicah)2 + (Pmaxz - Ptypicalz)2 + ...

where Pyica; and P,,,,; are the typical and maximum power dissipation of each of the
integratecf circuits on the board. The i860 microprocessor should be placed close to the
fan or where the airflow is unrestricted.

8.2.1 Power and Ground Planes

Today’s high-speed CMOS logic devices are susceptible to ground noise and the prob-
lems that this noise creates in digital system design. This noise is a direct result of the
fast switching speed and high drive capability of these devices, which are requisites in
high-performance systems. Logic designers can use techniques designed to minimize this
problem. One technique is to reduce capacitance loading on signal lines and provide
optimum power and ground planes.

Power and ground lines have inherent inductance and capacitance, which affect the total
impedance of the entire system. Higher impedances reduce current and therefore offer
reduced power consumption, while low impedance (e.g. ground planes) minimize prob-
lems like noise and cross talk. Hence, it is very important for a designer to have a
controlled impedance design where high speed signals are involved. The formula for
impedance Z, given the inductance L and the capacitance C, is as follows:

Z=(L/o)'"~.
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The total characteristic impedance for the power supply can be reduced by adding more
lines. For multilayer boards, power and ground planes must be used in i860 micropro-
cessor designs.

The effect of adding more lines to reduce impedance is illustrated in Figure 8-1, which
shows that two lines in parallel have half the impedance of a single line.

To reduce impedance even further, more lines should be added. To lower the impedance
a greater number of lines or a plane should be used. Planes also provide the best distri-
bution of power and ground.

The 1860 microprocessor has 24 power (V) and 24 ground (V) pins. All power and
ground pins must be connected to their respective planes. Ideally, the i860 microproces-
sor should be placed at the center of the board to take full advantage of these planes.
Although the i860 CPU generally demands less power than conventional devices, the
possibility of power surges is increased due to the processor’s higher operating frequency
and wide address and data buses. Peak-to-peak noise on V_, relative to V can be no
more than 400 mV, and preferably is no more than 200 mV.

—c, zg=[to”=2 [ Lo
200 C0

v 240330-75

Figure 8-1. Reduction in Impedance
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Although power and ground planes are preferable to power and ground traces, double-
layer boards present a need for routing of power and ground traces.

The inductive effect of a printed-circuit board (PCB) trace can be reduced by bypassing
and careful layout procedures to minimize inductances. Figure 8-2 shows a method for
reducing the inductive effects of PCB traces. The power and ground trace layout has a
low series inductance, because the loop area between the integrated circuits (ICs) and
the decoupling capacitors is small and the power and ground traces are closer. This
results in lower characteristic impedance, which in turn reduces the line voltage drop.

Another placement technique is called orthogonal arrangement, which requires more
area than the previous technique but produces similar results. This arrangement is
shown in Figure 8-3 . These techniques reduce the electromagnetic interference (EMI),
which is discussed in section 8.4.3.1.

8.3 DECOUPLING CAPACITORS

The advanced, high-speed CMOS logic families available today have much higher edge
rates than do the older, slower logic technologies. The switching speeds and drive capa-
bility needed to provide high performance to the systems are also associated with in-
creased noise levels. Some noise levels are inconsequential because they fall within the
switching times of the other devices. The switching activity of one device can propagate
to other devices through the power supply. For example, in the TTL NAND gate shown
in Figure 8-4, both the Q3 and the Q4 transistors are ON for a short time while output
is switching. This increased loading causes a negative spike on V.. and a positive spike
on V.

In synchronous systems where several gates switch simultaneously, the result is a signif-
icant amount of noise on the power and ground lines. This noise can be removed by
decoupling the power supply. First, it is necessary to match the power supply’s imped-
ance to that of the individual components. Any power supply presents a low source
impedance to other circuits, whether they are individual components on the same board
or on other boards in a multiboard system. It is necessary to match the supply’s imped-
ance to that of the components in order to lessen the potential for voltage drops that can
be caused by IC edge rates, ground- or signal-level shifting, noise induced currents or
voltage reflections.

This mismatch can be minimized by using a suitable high-frequency capacitor for bulk
decoupling of major circuitry sections, or for decoupling entire PC boards in multiboard
systems. This capacitor is typically placed at the supply’s entry point to the board. It
should be an aluminum or tantalum-electrolytic type capacitor having a low equivalent
series capacitance and low equivalent series inductance. This capacitor’s value is typi-
cally 10 to 47 pF. Additional 0.1 pF capacitors may be needed if supply noise is still a
problem. '

A second type of decoupling is used for the rest of the ICs on the board. Additional

decoupling capacitors can be used across the devices between V.. and V lines. The
voltage spikes that occur due to switching of gates are reduced as the extra current
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" Figure 8-2. Typical Power and Ground Trace Layout for Double-layer Boards

required during switching is supplied by the decoupling capacitors. These capacitors
should be placed close to their devices as the inductance of lengthier connection traces
reduce their effectiveness.

Most popular logic families require that a capacitor of 0.01 wF to 0.1 pF RF grade be
placed between every one to five packages, depending on the exact application. For
high-speed CMOS logic, a good rule of thumb is to place one of these bypass capacitors
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Figure 8-3. Orthogonal Arrangement

between every two to three ICs, depending on the supply voltage, the operating-speed
and EMI requirements. The capacitors should be evenly distributed throughout the
board to be most effective. In addition, the board should be decoupled from the external
supply line with a 10 to 47 pF capacitor. In some cases, moreover, it might be helpful to
add a 1 pF tantalum at major supply trace branches, particularly on large PCBs.

Surface mount (chip capacitors) are preferable for decoupling the i860 microprocessor
because they exhibit lower inductance and require less total board space than leaded
capacitors. They should be connected as shown in the Figure 8-5. These capacitors re-
duce the inductance, which keeps the voltage spikes to a minimum. They should be used
to keep the leads as short as possible.

Inductance is also reduced by the parallel inductor relationships of multiple pins. Six
leaded capacitors are required to match the effectiveness of one chip capacitor, but
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Figure 8-4. Circuit without Decoupling

because only a limited number can fit around i860 CPU, the configuration shown in
Figure 8-6 is recommended.

8.4 HIGH FREQUENCY DESIGN CONSIDERATIONS

The overwhelming concern in dealing with high speed technologies is the management
of transmission lines. As the edge rates of signals increase, the physical interconnections
between devices behave more like transmission lines. Although transmission line theory
is straightforward, the difference between ordinary interconnections and transmission
line interconnections is fairly complex. Transmission lines have distributed elements
which are hard to define, and designers tend to overcompensate for the effects of these
elements.

Efficient i860 CPU design requires the identification of transmission lines over back
plane wiring, printed circuit board traces, etc. Once this task is accomplished, the de-
signer’s next concern should be to deal with three major problems which are associated
with electromagnetic propagation: impedance control, propagation delay and coupling.

The following sections discuss the negative effects of a transmission line that occur when
operating at higher frequencies. As in higher frequency design, the reflection and
crosstalk effects are inevitable. It is impossible to design optimum systems without ac-
counting for these effects. Later sections include a discussion of techniques that can
minimize these effects.
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Figure 8-5. Decoupling Chip Capacitors

8.4.1 Transmission Line Effects

As a general rule, any interconnection is considered a transmission line when the time
required for the signal to travel the length of the interconnection is greater than one-
eighth of the signal rise time. (True K.M., “Reflection: Computations and Waveforms, The
Interface Handbook”, Fairchild Corp, Mountain View, CA, 1975, Ch. 3). The rise time
can be either rise time or fall time, whichever is smaller, and it corresponds to the linear
ramp amplitude from 0% to 100%. Normally the rise times are specified between 10% to
90% or 20% to 80% amplitude points. These figures are multiplied by 1.25 and 1.67 to
obtain the linear-ramp duration from 0% to 100% amplitude.

For example in a PCB using G-10 and polymide (the two main dielectric systems avail-
able for printed circuit boards) signals travel at approximately 5 to 6 inches per nano-
second.

Ift./l x v < 8 then the signal path is not a transmission line but a lumped element,

where

t, = rise time 0% — 100%
v = speed of propagation (5 to 6 inches/sec
I = length of interconnection (one-way only
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Figure 8-6. Decoupling Leaded Capacitors

The calculation is given by:

t/l x 6<8

SO

| = (t x 6)/8 = (1.25 x4 x6)/8 = 3.75 inches.

This calculation is based on the fact that the maximum rise time of the signals for the
i860 microprocessor is 4ns. For | = 3.75 inches interconnections act as transmission lines.

Every conductor that carries an AC signal and acts as a transmission line has a dis-
tributed resistance, an inductance and a capacitance which combine to produce the
characteristic impedance (Z,). The value of Z, depends upon physical attributes such as
cross-sectional area, the distance between the conductors and other ground or signal
conductors, and the dielectric constant of the material between them. Because the char-
acteristic impedance is reactive, its effect increases with frequency.

8.4.1.1 TRANSMISSION LINE TYPES

Although many different types of transmission lines (conductors) exist, those most com-
monly used on the printed circuit boards are microstrip lines, strip lines, printed circuit
traces, side-by-side conductors and flat conductors.
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8.4.1.1.1 Micro Strip Lines

The micro strip trace consists of a signal plane that is separated from a ground plane by
a dielectric as shown in Figure 8-7. G-10 fiber-glass epoxy, which is most common, has an
e, =5 where e, is the dielectric constant of the insulation. Let:

w = the width of signal line (inches)
t = the thickness of copper ( .0015 inches for 1 oz Cu/
.003 inches for 2 oz Cu)

h = the height of dielectric for controlled impedance (inches)

The characteristic impedance Z0, is a function of dielectric constant and the geometry of
the board. This is theoretically given by the following formula:

= (87 /+/(e, ¥+ 1.47)) In (5.98n/.8w + t) ohms

where e, is the relative dielectric constant of the board material and h, w and t are the
dimensions of the strip. Knowing the line width, the thickness of Cu and the height of
dielectric, the characteristic impedance can be easily calculated.

The propagatlon delay (t,q) associated with the trace is a function of the dielectric only.
This is calculated as follows:

t4 = 1.017 \/[0A756F 0B7) st

For G-10 fiber-glass epoxy boards (e, = 5.0), the propagation delay of microstrip is
calculated to be 1.77ns/ft.

8.4.1.1.2 Strip Lines

A strip line is a strip conductor centered in a dielectric medium between two voltage
planes. The characteristic impedance is given theoretically by the equation below:

Z, = 60//8, In (5.98b/ (0.8 W + t)) ohms

I(—— W ———>»
Micro Strip L
t

Dielectric

240330-81

Figure 8-7. Micro Strip Lines
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where b= distance between the planes for controlled impedance as shown in Figure 8-8.
The propagation delay is given by the following formula:
t,g = 1.017 /e ns/it

For G-10 fiberglass epoxy boards (e, = 5.0), the propagation delay of the strip lines is
2.26ns/ft.

Typical values of the characteristic impedance and propagation delay of these types of
lines are as follows:

Z, = 50 ohms
toa = 2ns/ft (or 6 in/nsec)

The three major effects of transmission line phenomenon are impedance mismatch, cou-
pling and skew.

The following section will discuss them briefly and provide solutions to minimize their
effects.

8.4.2 Impedance Mismatch

As mentioned earlier the impedance of a transmission line is a function of the geometry
of the line, its distance from the ground plane, and the loads along the line. Any discon-
tinuity in the impedance will cause reflections.

Impedance mismatch occurs between the transmission line characteristic impedance and
the input or output impedances of the devices that are connected to the line. The result
is that the signals are reflected back and forth on the line. These reflections can atten-
uate or reinforce the signal depending upon the phase relationships. The results of these
reflections include overshoot, undershoot, ringing and other undesirable effects.

At lower edge rates, the effects of these reflections are not severe. However at higher
rates, the rise time of the signal is short with respect to the propagation delay. Thus it
can cause problems as shown in Figure 8-9.

Ground
Planes 240330—82

Figure 8-8. Strip Lines
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Figure 8-9. Overshoot and Undershoot Effects

Overshoot occurs when the voltage level exceeds the maximum (upper) limit of the
output voltage, while undershoot occurs when the level passes below the minimum
(lower) limit. These conditions can cause excess current on the input gates which results

in permanent damage to the device.

The amount of reflection voltage can be easily calculated. Figure 8-10 shows a system
exhibiting reflections.

vs ,
Z

240330—-84

Figure 8-10. Loaded Transmission Line
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The magnitude of a reflection is usually represented in terms of a reflection coefficient.
This is illustrated in the following equations:

T = v/v; = Reflected voltage/Incident voltage
Tload = (Zload - ZO)/ (Zload + ZO)

source = (Zsource ZO)/ (Zsource + ZO)

Reflection voltage V. is given by V,, the voltage incident at the point of the reflection,
and the reflection coefficient.

The model transmission line can now be completed. In Figure 8-10, the voltage seen at
point A is given by the following equation:

Vo= Ve*Zy/ (Zo + Z)
This voltage V, enters the transmission line at “A” and appears at “B” delayed by t 4
Vp =V, (t — x/v) H(t — x/V)

where x = distance along the transmission line from point “A” and H(t) is the unit stop

function. The waveform encounters the load Z;, and this may cause reflection. The
reflected wave enters the transmission line at “B” and appears at point “A” after time

delay (tpq):

Vi = Ticaa*Vo

This phenomenon continues infinitely, but it is negligible after 3 or 4 reflections. Hence:
Viz = Tsource®Vn

Each reflected waveform is treated as a separate source that is independent of the

reflection coefficient at that point and the incident waveform. Thus the waveform from
any point and on the transmission line and at any given time is as follows:

veed = (3 { o3 Hle-)
# T -5 Wl (557

e fufo- 57 - (57

+771, fe- (57) Wl (7))
+ 121 Ve- (57 Wl (57)

+ ...
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Each reflection is added to the total voltage through the unit step function H(t). The
above equation can be rewritten as follows:

Vi) = (2] 1Valt—t0 Hit-t0)
+ Ty [Vs(t—tog(2L—X)) Ht—toq(2L—X))]
+ TiTs [Vs(t—15a(2L + X)) H(t—t,4(2L+X))]
+..}

Impedance discontinuity problems are managed by imposing limits and control during
the routing phase of the design. Design rules must be observed to control trace geome-
try, including specification of the trace width and spacing for each layer. This is very
important because it ensures the traces are smooth and constant without sharp turns.

There are several techniques which can be employed to further minimize the effects
caused by an impedance mismatch during the layout process:

1. Impedance matching

2. Daisy chaining

3. Avoidance of 90° corners.

4. Minimization of the number of vias.

8.4.2.1 IMPEDANCE MATCHING

Impedance matching is the process of matching the impedance of the source or load
with that of the trace, and it is accomplished with a technique called termination. The
reflection, overshoot and undershoot of signals are reduced by terminating the remote
end of the transmission line from the source. The terminating impedance combines with
the destination input circuitry to produce a load that closely matches the characteristic
impedance of the line. (Board traces have characteristic impedances in the range of 30
ohms to 200 ohms.)

The calculation of characteristic impedance was already discussed. Impedance of the
printed circuit board backplane connectors have the impedance in the same range as the
traces, i.e. 30-200 ohms.

Depending upon the length of the conductors or when using twisted pairs of coaxial
cable in place of PC traces, the characteristic impedance of a backplane may change.
Backplane impedance is also affected by the number of boards plugged.

8.4.2.1.1 Need for Termination
The transmission line should be terminated when the t,4 exceeds one-third of t,. If t,4 <

1/3 t,, the line can be left unterminated, provided the capacitive coupling between the
traces does not cause crosstalk.
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Termination thus eliminates impedance mismatches, increases noise immunity, sup-
presses RFI/EMI and helps to ensure that signals reach their destination with minimum
distortion. There are five methods for terminating traces on the board:

1. Series

2. Parallel
3. Thevenin
4. AC

5. Active

Termination requires additional components and power. In case of passive terminations,
extra drivers are needed to deliver more current to the line. In case of active termina-
tions extra power is needed which increases the power dissipation of the system.

8.4.2.1.2 Series Termination

One way of controlling ringing on longer lines is with the series termination technique
also known as damping. This is accomplished by placing a resistor in series with
the transmission line at the driving device end. The receiver has no termination. The
value of the impedance looking into the driving device (Ryuer+R. = Z,) should
approximate the impedance of the line as closely as possible. In this circuit the ringing
dampens out when the reflection coefficient goes to zero. Figure 8-11 illustrates the
series termination.

One main advantage of series termination is that only logic power dissipation results so
that lower overall power.is required than other termination techniques. There is one
penalty, however, in that the distributed loading along the transmission line cannot be
used because only half of the voltage waveform is travelling down the line. The drop in
voltage across series terminating resistor limits loading to a maximum of 10 loads.

8.4.2.1.3 Parallel Terminated Lines

Parallel termination is achieved by placing a resistor of an appropriate value between the
input of the loading device and the ground as shown in Figure 8-12.

Since the input impedance of the device is high as compared to the characteristic line
impedance, the resistor and the line function as a single impedance with a magnitude
that is defined by the value of the resistor.

ZO =75Q

R L=g—> Receiver

Driver

240330-85

Figure 8-11. Series Termination
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Figure 8-12. Parallel Termination

When the resistor matches the line impedance, the reflection coefficient at the load
approaches zero, and no reflection will occur. One useful approach is to place the ter-
mination as close to the loading device as possible.

Parallel terminated lines are used to achieve optimum circuit performance and to drive
distributed loads—an important benefit of using parallel terminations.

There are two significant advantages of using the parallel termination. First, it provides
an undistributed waveform along the entire line. Second, when a long line is loaded in
parallel termination, it does not affect the rise and fall time or the propagation delay of
the driving device. Note that parallel termination can also be used with wire wrap and
backplane wiring where the characteristic impedance is not exactly defined. If the de-
signer approximates the characteristic impedance, the reflection coefficient will be very
small. This results in minimum overshoot and ringing. Parallel termination is not recom-
mended for characteristic impedances of less than 100 ohms because of large DC current
requirements.

8.4.2.1.4 Thevenin’s Equivalent Termination

Thevenin’s equivalent termination is an extension of parallel termination technique. It
consists of connecting one resistor from the line to the ground and another from the line
to V... Each resistor has a value of twice the characteristic impedance of the line, so the
equivalent resistance matches the line impedance. This scheme is shown in Figure 8-13.

If there were no logic devices present, the line would be placed halfway between the V.
and the V. When a logic device is driving the line, a portion of the required current is
provided by the resistors, so the drivers can supply less current than needed in parallel
termination. The resistor value can be adjusted to bias the line towards V_ or ground
V. Ordinarily it is adjusted such that the two are equal, providing balanced perfor-
mance. Thevenin’s circuit provides good overshoot suppression and noise immunity.

Due to power dissipation, this technique is best suited for bipolar and mixed MOS/

CMOS devices and is not suitable for pure CMOS implementations. There are two
reasons for not having Thevenin’s equivalent for the pure CMOS system design. First
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Figure 8-13. Thevenin’s Equivalent Circuit

CMOS circuits have very high impedance to ground and V, and their switching thresh-
old is 50% of the supply voltage. Second, besides dissipating more power, multiple input
crossing may occur which creates output oscillations.

The main problem with Thevenin termination is high power dissipation in the termina-
tion resistors in relationship to the total power consumption of all of the CMOS devices
on the board. For this reason, most designers prefer series terminations for CMOS to
CMOS connections, as this does not introduce any additional impedance from the signal
to the ground. The main advantage of the series termination technique, apart from its
reduced power consumption, is its flexibility. The received signal amplitude can be ad-
justed to match the switching threshold of the receiver simply by changing the value of
the terminating resistor. Series termination is a very useful technique for interconnecting
the logic devices with long lines.

8.4.2.1.5 AC Termination

Another technique for designs that cannot tolerate high power dissipation of parallel
termination and delays created by series termination is AC termination. It consists of a
resistor and a capacitor connected in series from the line to the ground. It is similar to
the parallel termination technique in functionality except that the capacitor blocks the
DC component of the signal, and thus reduces power dissipation. This is shown in Figure
8-14.

The main disadvantage of this technique is that it requires two components. Further the

optimum value of the RC time constant of the termination network is not easy to calcu-
late. It usually begins as a resistive value which is slightly larger than the characteristic
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Figure 8-14. A.C. Termination

line impedance. It is critical to determine the capacitor value. If the value of RC time
constant is small, the RC circuit will act as an edge generator and will create overshoots
and undershoots. Increasing the capacitor value reduces the overshoot and undershoot,
but it increases power consumption. As a rule of thumb, the RC time constant should be
greater than twice the line delay. The power dissipation of the AC termination is a
function of the frequency.

8.4.2.1.6 Active Termination

An active termination consists of a resistor that is connected between the input and
output of a buffer driver as shown in Figure 8-15.

The main advantage of this technique is that it can tolerate large impedance variations.
This tolerance is valuable when tri-state drivers are connected to backplane busses.
However, the terminations are costly, and the signals that are produced are not as clean
as other terminations. A common solution is to place active terminations at both ends of
the bus. This helps maintain the uniform drive levels along the entire length of the bus,
and it reduces crosstalk and ringing.
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Table 8-1 shows the comparisons of different termination techniques.

Table 8-1. Comparison of Various Termination Techniques

# of Extra Prop

Termination Components R, Power Consumption Delay
Series 1 Zy-Zoyr Low Yes
Parallel 1 Z, High No
Thevenin 2 27, High No
AC* 2 27, Medium No
Active 1 2Z, Medium No

* A.C. also uses a capacitor of 200 pf to 500 pf.

Beyond matching impedances, there are other techniques that can help avoid reflections.

These are discussed in the following sections.

8.4.2.1.7 Impedance Matching Example

Previous sections discuss the techniques for calculating characteristic impedances (using
transmission line theory) and the termination procedures used to match impedances.
This section describes an impedance matching example that utilizes these techniques.
Figure 8-16 shows a simple interconnection which acts like a transmission line as shown

by the calculations.

AN

PC Boards in
Backplane

Connectors

W

Active Termination

One Line of Backplane Bus

Active Termination

240330—-89

Figure 8-15. Active Termination
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Source Load
‘{> L=g" “‘>
Z,=10Ka
Z;=100 Trace Is Microstrip L /
trt =3ns
trs=3ns .
240330-90

Figure 8-16. Impedance Mismatch Example

In this example the different values are given as follows:

Z, (source impedance) =10 ohms,

trs (source rise-time) =3nsec (normalized to 0%to 100%)
Z, (load impedance) =10 Kohms

trl (load rise-time) =3nsec (normalized to 0%to 100%)
| (length of interconnection) =9 in.

trace is micro-strip

e, (dielectric constant) =5.0

h =.008 in.

w =.01 in.

t =.0015 in.(1 oz. Cu)

v = 6 in./nsec

The interconnection will act as a transmission line if (as was shown in Section 8.4.1)

|2(tr><v)/82(3x6))823in.

The value of | = 9, thus the interconnection acts like a transmission line. The impedance

of the transmission line is calculated as follows:

87 /\/(e, + T.47) x In (5.98h/(.8w + 1))
34.39 In 5.05 = 55.6 ohms

Z,

Since Z; = 10 ohms, hence the termination techniques described previously will be
needed to match the difference of 45.6 ohms. One method is to use a series terminating
resistor of 45.6 ohms or use AC termination where R =55.6 ohms and C =.3uF. The

circuit of Figure 8-16 is shown with termination in Figure 8-17.

4550 _
2 —100 Zy=5560

Z, =10Ka

240330-91

Figure 8-17. Use of Series Termination to Avoid Impedance Mismatch
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8.4.2.2 DAISY CHAINING

In laying out PC boards, a stub or T-connection is another source of signal reflection.
These types of connections act as inductive loads in the signal path. In daisy chaining, a
single trace is run from the source, and the loads are distributed along this trace. This is
shown in Figure 8-18.

An alternative to this technique is to run multiple traces from the source to each load.
Each trace will have unique reflections, which are then transmitted down other traces
when they return to the source. In such cases, a separate termination is required for
each branch. To eliminate these multiple terminators from T-connections, high-
frequency designs are routed as daisy chains.

Because each gate provides its own impedance load along the chain, it is necessary to
distribute these loads evenly along the length of the chain. Hence, the impedance along
the chain will change in a series of steps and is easier to match. The overall speed of this
line is faster and predictable. Also all loads should be placed at equal distances (regular
intervals). ‘

8.4.2.3 90 DEGREE ANGLES

Another major cause of reflections are 90 degree angles in the signal paths, which cause
an abrupt change in the signal direction and promote signal reflection. For high-
frequency layout of designs, avoid 90 degree angles and use 45 or 135 degree angles, as
shown in Figure 8-19.

8.4.2.4 VIAS (FEED-THROUGH CONNECTIONS)

Another impedance source that degrades high-frequency circuit performance is the via.
Expert layout techniques can reduce vias to avoid reflection sites on PCBs.

8.4.3 Interference

Previous sections discuss reflections in high-frequency design, their causes, and tech-
niques to minimize them. The following sections discuss additional issues related to

high-frequency design, including interference. In general, interference occurs when elec-
trical activity in one conductor causes a transient voltage to appear in another conductor.

]

Source 240330-92

| Load | [ Load | [ Load |

Figure 8-18. Daisy Chaining
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Figure 8-19. Avoiding 90 Degree Angles

Two main factors increase interference in any circuit:

1. Variation of current and voltage in the lines causes frequency interference. This
interference increases with increases in frequency.

2. Coupling occurs when conductors are in close proximity.

Two types of interference are observed in high frequency circuits:
1. Electromagnetic Interference (EMI)

2. Electrostatic Interference (ESI)

8.4.3.1 ELECTROMAGNETIC INTERFERENCE (CROSSTALK)

Crosstalk is a problem at high operating frequencies because, as operating frequencies
increase, the signal wavelengths become comparable to the length of some of the inter-
connections on the PC board. Crosstalk is a phenomenon of a signal in one trace induc-
ing another similar signal in an adjacent trace. There are two types of couplings between
parallel traces which determine the amount of crosstalk in a circuit: inductive coupling
and radiative coupling,.

Inductive coupling occurs when a current in one trace produces a current in a parallel
trace. This current reduces with the distance between the two traces. Hence, closely
spaced wires or traces will incur the greatest degree of inductive coupling. Each of the
traces will induce a current in the other.

Radiative coupling occurs when two parallel traces act as a dipole antenna which radi-
ates signals that parallel wires can pick up. This results in the corruption of signal that is
already present in the trace. The intensity of this type of coupling is directly proportional
to the current present in the trace. However, it is inversely proportional to the square of
the distance between the radiator and the receiver.
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8.4.3.2 MINIMIZING CROSSTALK

When laying out a board for an i860 microprocessor-based system, several guidelines
should be followed to minimize crosstalk.

One source of crosstalk is the presence of a common impedance path. Figure 8-20 shows
a typical layout in which earth ground and signal ground are different.

To reduce crosstalk, it is necessary to minimize the common impedance paths, which are
shown as the ground 1mpedances Z,, Z; and Z,. During current switching, the ground
line voltage drops causing noise emission. By enlarging the ground conductor (which
reduces its effective impedance), this noise can be minimized. This technique also pro-
vides a secondary advantage in that it forms a shield which reduces the emissions of
other circuit traces, particularly in multilayer circuit boards.

The impedances Z, through Z, depend upon the thickness of the copper PC-board foil,
the circuit switching speeds and the effective lengths of the traces. The current flowing
through these common impedance paths radiates more noise as the current increases.
The amount of voltage that is generated by these switching currents and multiplied by
the impedance is difficult to predict.

Vee
GND
%
/\/\/23\/\/_
—— (Parasitic — Parasitc =~ ——
c /l\ Capacitance) - Capacitance 1~ c
_—_—— Chassis Ground
24033094

Figure 8-20. Typical Layout
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An effective way of reducing EMI is to decouple the power supply by adding bypass
capacitors between V. and ground. This technique is similar to the general technique
discussed earlier. (The goal of the previous technique was to maintain correct logic
levels.) :

The design of effective coupling and bypass schemes centers on maximizing the charge
stored in the circuit bypass loops while minimizing the inductances in these loops. Some
other precautions that can minimize EMI are as follows:

¢ Running a ground line between two adjacent lines. The lines should be grounded at
both ends.

o Separation of the address and data busses by a ground line. This technique may
however be expensive due to large number of address and data lines.

e Removing closed loop signal paths which create inductive noise as shown in Figure
8-21.

Minimizing crosstalk involves first examining the circuit’s interconnection with its near-
est neighbors since parallel and adjacent lines can interact and cause EMI. It is neces-
sary to maximize the distance between adjacent parallel wires.

D1 D2

D4 D3

240330-95

Figure 8-21. Closed Loop Signal Paths are Undesirable
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8.4.3.3 ELECTROSTATIC INTERFERENCE

We have discussed two types of coupling, inductive and radiative coupling, which are
responsible for creating electromagnetic interference. A third, known as capacitive cou-
pling, occurs when two equipotential parallel traces are separated by a dielectric and act
as a capacitor. According to the standard capacitor equation, the electric field between
the two capacitor surfaces varies with the permitivity of the dielectric and with the area
of the parallel conductors.

Electrostatic interference (ESI) is caused by this type of coupling. The charge built on
one plate of the capacitor induces opposite charge on the other. To minimize the ESI,
the following steps should be taken.

o Separate the signal lines so that the effect of capacitive coupling is negated.
o Run a ground line between the two lines to cancel the electrostatic fields.

For high-frequency designs, a rule of thumb is to include ground planes under each
signal layer. Ground planes limit the crosstalk caused by a capacitive coupling between
small sections of adjacent layers that are at equipotentials. Additionally, when the width
and thickness of signal lines and their distance from the ground is constant, the effect of
capacitive coupling upon impedance remains uniform within + 5 percent across the
board. Using fixed impedance does not reduce capacitive coupling, but it does simplify
the modeling of propagation delays and coupling effects. In addition, capacitive coupling
can cause interference between layers, so the wires should be routed orthogonally on
neighboring board layers.

8.4.4 Propagation Delay

The propagation delay of a circuit is a function of the loads on the line, the impedance,
and the line segments. The term propagation delay means the propagation delay in the
entire circuit, including the delay in the transmission line (which is a function of the
dielectric constant).

Also, the printed circuit interconnections add to the propagation delay of every signal on
the wire. These interconnections not only decrease the operating speed of the circuits,
but also cause reflection, which produces undershoot and overshoot.

When the propagation delays in the circuit are significant, the design must compensate
for the signal skew. Signal skew occurs when the wire lengths (and thus the propagation
delays) between each source and each corresponding load are unequal.

Another negative aspect of propagation delay is that it can cause a race condition. This
condition occurs when two signals must reach the same destination within one clock
pulse of one another. To avoid race conditions, it is necessary to have the signals travel
through the same length traces. But if one route is shorter, then the signals will arrive at
different timings, causing race conditions.

One way to minimize this is by decreasing the length of the interconnections. Overall
route lengths are shorter in multilayer printed circuit boards than in a double layer
boards because ground and power traces are not present.
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8.5 LATCH-UP

Latch-up is a common condition in the use of CMOS devices which occurs when V.
becomes shorted to V. Latch-up is triggered when the voltage limits on the I/O pins are
exceeded, causing the internal PN junction to become forward-biased. The followmg
steps ensure the prevention of latch-up.

e Observe the maximum input voltage rating of I/O pins.

e Never apply power to an i860 microprocessor pin or to any device connected to it
before applying power to the i860 microprocessor.

e Use good termination techniques to prevent overshoot and undershoot.

e Use a proper layout to minimize reflections and to reduce noise on the signals.

8.6 CLOCK CONSIDERATIONS

8.6.1 Requirements

The 1860 microprocessor facilitates an easy to implement 1 X clock interface. An exter-
nal, 33/40 MHz clock synchronizes both the internal functional blocks of the micropro-
cessor and the external signals. Most of the i860 microprocessor’s board logic circuitry
also uses this clock. A typical i860 microprocessor clock circuit, shown in Figure 8-22, is
comprised of a 33/40 MHz oscillator and a buffer.

The clock input requirements for i860 microprocessor systems are more stringent than
those for many commonly used TTL devices. A CMOS buffer will meet the clock input
requirements as will a TTL buffer with a pullup resistor.

The minimum high and low times are specified as 7ns at 33 MHz and 5ns at 40 MHz.
The clock timings are shown in Figure 8-23.

2 18

S9/40 ‘ | OCLKA
4 16
OSC 6 Buffer 14
12

8 [ 2 oclkB

1

—_— 240330—-96

Figure 8-22. Typical Clock Circuit
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Figure 8-23. Clock Timings

8.6.2 Routing

Achieving the proper clock routing around a 33/40 MHz printed circuit board is delicate
because a myriad of problems, some of them subtle, can arise if certain design guidelines
are not followed. For example, fast clock edges cause reflections from high impedance
terminations. These reflections can cause significant signal degradation in systems
operating at 33/40 MHz clock rates. This section covers some design guidelines which
should be observed to properly lay out the clock lines for efficient i860 microprocessor
operation.

Since the rise/fall time of the clock signal is typically in the range of 2-4ns, the reflections
at this speed could result in undesirable noise and unacceptable signal degradation. The
degree of reflection depends on the impedance of the traces of the clock connections.
These reflections can be optimized by using proper terminations and by keeping the
length of the traces as short as possible. The preferred method is to connect all of the
loads via a single trace as shown in Figure 8-24, thus avoiding the extra stubs associated
with each load. The loads should be as close to one another as possible. Multiple clock
sources should be used for distributed loads.

A less desirable method is the star connection layout in which the clock traces branch to
the load as closely as possible (Figure 8-25). In this layout, the stubs should be kept as
short as possible. The maximum allowable length of the traces depends upon the fre-
quency and the total fanout, but the length of all of the traces in the star connection
should be equal. Lengths of less then one inch are recommended.
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Thevenin's
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Clock
Source N/ AV4 AVA4
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240330-98
Figure 8-24. Clock Routing
Load 1
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Termination Load 3 Load 2 |1
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Figure 8-25. Star Connection

8.7 Thermal Characteristics

There are thermal and electrical limitations associated with all operating electronic de-
vices. In an i860 microprocessor-based system, these limitations must be accommodated,
due to power dissipation concerns, to achieve proper system performance.

Generally, thermal and electrical characteristics are interrelated, and the actual con-
straints depend upon the application of a particular device.

Most of the general information on case temperature (T,), maximum current and voltage
ratings, maximum thermal resistance (8.,) at various airflows and package thermal spec-
ifications are given in the i860™ 64-Bit Microprocessor Data Sheet. Despite the wealth of
information presented in the data sheet, it is impossible to provide graphs and reference
tables to cover all applications. The designer must accurately calculate several factors
such as junction temperature (T;) and total power dissipation (Pg) in particular applica-
tions. This section explains how to perform these calculations.
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The thermal specifications for the i860 microprocessor are designed to ensure a tolera-
ble temperature at the surface of the chip. This temperature, called the junction temper-
ature (T;), can be determined from external measurements using the known thermal
charactetistics of the package.

The following two equations facilitate the calculation of the junction temperature (T;):

T=T, + Ja*Pd)and

T’ T, + (6. * Py

where
T, = junction temperature
T’a = ambient temperature
T, = case temperature
eja = junction to ambient temperature coefficient
8, = junction to case temperature coefficient
Py = power dissipation (worst case Py = 1,.*V,.)

Given a heat sink with a thermal resistance of 6, (sink to ambient), and given the
thermal resistance from the junction to the case 8, then the equation for calculating T;
is as follows:

Py(B; + 0., + 8,) + T,
Py(b + 6O + 0.) + T,

Case temperature calculations offer many advantages over ambient temperature calcu-
lations:

e Case temperature is more easily measured compared to ambient temperature because
the measurement is localized to a single point (the center of the package).

o The worst case junction temperature (T;) is lower when calculated with case temper-
ature for two reasons. First, the Junctlon -to-case thermal coefficient (8;.) is lower than
the junction-to-ambient thermal coefficient (8;,). Therefore, the calculated junction
temperature varies less with power d1551pat10n (Pd) Second, the junction-to-case co-
efficient (6;;) is not affected by the airflow in the system, while the junction-
to-ambient coefficient (6;,) does vary.

Given the case temperature specification, a designer can either set the ambient temper-
ature or use fans to control the case temperature. Finned heatsinks or conductive cool-
ing may also be used in an environment which prohibits the use of fans.

A designer has considerable freedom in designing the heatsink, and faces only practical
and economic limits. Multiple parallel devices may be helpful in reducing 6,,, because, if
the heat input to the heat sink is dispersed rather than concentrated, the effective ther-
mal impedance will be lower.

To approximate the case temperature for varying environments, the two equations dis-
cussed earlier should be combined by making the junction temperature the same for
both, resulting in the following equation:

Ta=Tc_( ia — lc)Pd
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The i860™ 64-Bit Microprocessor Data Sheet should be consulted to determine the values
of 6;, (per the system’s airflow requirement) and the ambient temperature that will yield
the desired case temperature. Whatever those conditions are, the proper calculations are
very important in achieving an efficient and reliable i860 microprocessor system.

The i860 microprocessor is available in a 168-pin ceramic PGA. The recommended heat
sinks for the device are offered in the pin fin design that utilizes air cooling. The heat
sink is mounted on the PGA package with a frame and spring. A typical heat sink is
shown in Figure 8-26.

8.8 DERATING CURVE AND ITS EFFECTS

A derating curve is a graph that plots the output buffer delay against the capacitive load.
The curve is used to analyze a signal delay without necessitating a simulation every time
the processor’s loading changes. This graph assumes the lumped-sum capacitance model
to calculate the total capacitance. The delay in the graph should be added to the speci-
fied AC timing value for the device that is driving the load. The derating curve is differ-
ent for different devices because each device has different output buffers.

SPRING

HEAT SINK

PGA

FRAME

240330-100

Figure 8-26. Typical Heat Sinks
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A derating curve is generated by tying the chip’s output buffers to a range of capacitors.
The voltage and resistance values chosen for the output buffers are at the highest spec-
ified temperature and are rising (worst case) values. The value of the capacitors centers
around the AC timing values for the chip. For 33 MHz and above, this is 50 pF. Since
the AC timing specifications are measured for a signal reaching 1.5 V, the output buffer
delay is the time that it takes for a signal to rise from 0 to 1.5 V. A curve is then drawn
from the range of time and capacitance values, with 50 pF representing the average and
with nominal or zero derating. These curves are valid only for a 25-150 pF load range.
Beyond this range the output buffers are not characterized. The derating curves for the
i860 microprocessor are shown in Figure 8-27. These curves use the lumped capacitance
model for circuit capacitance measurements and must be modified slightly when doing
worst-case calculations that involve transmission line effects.

8.9 BUILDING AND DEBUGGING THE i860™ MICROPROCESSOR-BASED
SYSTEM

While an i860 microprocessor based-system designer should plan the entire system, it is
necessary to begin building different elements of the core and begin testing them before
building the final system. If a printed circuit board layout has to be done, the whole
system may be simulated before generating the net list for the layout vendor. It is advis-
able to work with a preliminary layout to avoid the problems associated with wire wrap
boards that operate at high frequencies. A typical i860 microprocessor-based system is
shown in Figure 8-28.

Norm + 15

Norm + 10 DB3—-D0

—
Typical* Output k / /

Delay (ns) Norm + 5
*1, A31-A3PTB, W/R#, NENE#
¥ | Ber#~peog
/ ADS#,BREQ, LOCK#, HLDA
Norm

25 50 75 100 125 150

Norm — 5

Load Capacitance Cy_(pf)

NOTES:

Graphs are not linear outside the C| range shown.
Norm = nominal value given in the AC timing table.
*Typical part under worst—case conditions.

(Using loaded capacitance model).
240330101

Figure 8-27. Derating Curves for the i860™ Processor
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Figure 8-28. Typical i860™ Processor-based System

The following steps are usually carried out in designing with the i860 microprocessor.

1. Clock circuitry should use an oscillator and fast buffer. The CLK 51gnal should be

clean, without any overshoots or undershoots.

2. The reset circuitry should be designed as shown in Chapter 3. This circuitry is used
to generate the RESET # signal for the i860 microprocessor. The system should be
checked during reset for all of the timings. The clock continues to run during these

tests.

3. The INT and HOLD pin should be tied to LOW (negated from the active state).
The READY# pin is pulled HIGH so as to add additional delays (wait-states) to
the first cycle. At this instance, the i860 microprocessor is reset, and the signals
emitted from it are checked for the validity of the state. The i860 microprocessor

will generate the physical address OXFFFFFF00. The address latch is connected at
this time, and the address is verified. .

4. The PLD implementing the address decoder should be connected to the i860 micro-
processor. After reset, the i860 microprocessor is checked to find out whether it
accesses the EPROM for retrieving the initial code. The i860 microprocessor sup-
ports a special CS8 mode for boot-up from eight-bit I/O devices. This allows the
processor to boot-up from the eight-bit EPROM. Once the system boots, the ROM

can be copied into memory or can be disabled and replaced by DRAMs.
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To interface the i860 microprocessor to an eight-bit EPROM, an address multiplexer is
used to select between BE2#. . . 0# in CS8 mode and processor addresses in data mode.
This mode is discussed in detail in the I/O interfacing chapter.

8.9.1 Debugging Features of the i860™ Microprocessor
The i860 microprocessor supports debugging by providing data and instruction break-
points. The various debugging features are discussed below.

e A data break-point register (db) allows the specification of the address which can be
monitored by the 1860 microprocessor.

e The processor status register has break read and break write bits which enable traps.
For a detailed discussion, refer to the i860™ 64-Bit Microprocessor Data Sheet and the
i860™ 64-Bit Microprocessor Programmer’s Reference Manual.

e A data access trap (DAT) bit in the processor status register-helps the trap handler to
determine when the data break point cause a trap.

e A special trap instruction sets a breakpoint in the code. Additionally, an instruction
trap (IT) bit allows the trap handler to determine when a trap instruction will cause a
trap.

Combined with a general understanding of debugging issues, these features are sufficient
for debugging an entire i860 microprocessor-based system. These combined with certain
hindsight into general debugging issues is sufficient to debug the entire i860 micropro-
cessor based system.

If the initial run of a diagnostic program is not successful, then a logic analyzer can be
used to determine the source of a problem.

After an initial debugging the i860 microprocessor should generate a code fetch cycle to
the EPROM.

The 1860 microprocessor can stop issuing new cycles for the following reasons:
o The READY# signal is never asserted to terminate to the bus cycles.

o There is an infinite loop executing out of the cache. Address lines will toggle but no
bus cycles will be present.

8.9.2 Certain Gotchas when Debugging with i860™ Microprocessor

When designing with the i860 microprocessor, there are certain issues of which a de-
signer should be aware:

e After reset, the instruction and data cache may contain data so the cache flush pro-
cedure should be used to reset the instruction and data cache.

o In CS8 mode, when i860 microprocessor does a cache block fill, it fetches addresses in
decrementing order and executes in incrementing order.
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8.9.3 Debugging

Once the i860 microprocessor-based system is designed and the printed circuit board is
fabricated and stuffed, the next step is to debug the hardware in increments. The follow-
ing sections provide valuable debugging concepts and techniques for writing diagnostic
software. The i860™ 64-Bit Microprocessor Data Sheet, i860™ 64-Bit Microprocessor Pro-
grammer’s Reference Manual and this manual provide a good start.

8.9.4 Simple Diagnostic Programs

To begin debugging an i860 microprocessor-based system, the designer should utilize a
set of EPROMs with simple programs that send a message from the microprocessor
signaling that the initial communication channel is working. A code example is shown in

Figure 8-29.

1d$start::
mov

loop::
1d.1
1d.1

loopl::
1d.s
st.s
addu
adds
btne

br
nop
.data

message: :

.byte '"'Hello !

DATA_PORT_ADDR = 0x1008008

DATA_PORT_ADDR, ré4

message_ptr, ré
message_length, r7

#(r6), r5

r5, 0(rd)
2, ré, ré
-2, rl, r7
r7, r@, Toopl
loop

message ptr::
.Tong message

message_length::
.long 58 // Message length must be even !

(This message has been sent by the i86@ CPU)'',13,10

The loop inside this program can be utilized for various debugging purposes, such as
verifying various bus cycles and checking the noise level on the clock and on other
critical control signals. The rest of the system can then be exercised and tested.

Figure 8-29. Simple Diagnostic Program
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Once the data transceivers are connected, it is impossible to check the data path from
the i860 microprocessor for reading and writing to the external memory subsystem. A
special diagnostic program (shown by the example in Figure 8-30) is written to check the
read/write function to the external memory. The program should have built in loops so
that the i860 microprocessor’s behavior can be observed on a logic analyzer.

1d$start::
mov DATA_PORT_ADDR, r4
mov a, r5
loop::
1d.s @(r4), rl@
1d.s @(r4), ril
1d.s @(rd), ri2
1d.s @(rd), ri13
1d.s @(r4), ria
st.s rlg, 2(r4)
st.s rll, a(r4)
st.s rl2, d(ra)
st.s  ri3, (r4)
st.s rl4, a(r4)
br loop
nop

Figure 8-30. Read/Write Diagnostic Program

When the clock generator, i860 microprocessor, address decoder, address latch, data
transceivers, READY# generation logic and RESET logic are all functioning, the i860
microprocessor is capable of running the software in the EPROM:s.

Once the EPROMs are installed, the READY# line should be added to the bus cycles
following reset. During this state, the system is checked using the digital oscilloscope.

Another check should verify that the address latches have latched the first address, and
that the address decoder is providing a chip select signal for the EPROMs. The
EPROMs should supply the requested data through the data transceivers to the i860
microprocessor’s data pins.

Next the READY# input should be connected to the PLD that is generating the ready
signal to test the i860 microprocessor while running the simple diagnostic program. The
program loops back on itself and the system runs multiple bus cycles. The logic analyzer
can be used at this point to observe the dynamic behavior of the system.

8.9.5 Other Simple Diagnostic Software

Additional diagnostic programs can be written to test other system operations such as |
whether the i860 microprocessor is able to read and write from DRAMs or perform
functions like cache flushing. The following are samples of diagnostic programs.
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//This program writes to the 1868 CPU
DATA_PORT_ADDR = 01000008

1d$start::

mov DATA_PORT_ADDR, r4
mov rd, r5
loop:: st.s r5, @(r4)
addu 1, r5, r5
br loop

nop

//This program copies ROM code to DRAM on the 1860 uP add-in

//board.

dramstart =
epromstart =
epromend =

1d$start::
st.c
1d.c
st.c

loadbytes::

Ox7eff@@@@ //noncacheable alias

oxffffoo00

Oxfffffffo
.atmp r3l

.text

// initialize control regs

// leave all ints disabled
st.c r@,psr

rd, fsr
fir,rd
rd,eps

r

// clear pipeline

pfadd.
pfadd.
pfadd.
pfmul.
pfmul.
pfmul.

mov
mov
call
mov

1d.1
1d.b
call
1d.b

1d.b
1d.b

SS
SS
SS
SS
SS
SS

a8, 0,10
fa,10, fo
0,10, 0
f0,10,f0
0,0,
0,10, fo

epromstart,r9
epromend, r7
flush_cache
dramstart,r8

a(r9),r1p
g(r9),r10
flush_cache
8(r9),r18

2(r9),r13
#(r9),r13

8-36
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call
1d.b

1d.s
1d.b
call
1d.b

1d.b
1d.b
call
1d.b

1d.b
1d.b
call

1d.b
1d.b
call

store::

st.
st.
st.
st.
st.
st.
st.
st.
st.
st.
st.
st.
xor
bc
addu
br
addu

(=i = ik o i o g = ai « SN o S © R © B - 2N = =

load_reset::

wl=0@xad000000
w2 = @xad000090
w3 = @xed010000
wh =Pxec21ffff
w5 = 0x40000800
w6 = Gxadd00000

resxc_start =0x7effffoo ‘
-dramc_start =@xfff o000

flush_cache

8(r9),r19

a(r9),rla
g(r9),r14
flush_cache
8(r9),r20

1(r9),r15
#(r9),rl15
flush_cache
8(r9),r21

g(r9),r16
g(r9),r16
flush_cache

3(r9),rl17
#(r9),r17
flush_cache
8(r9),r23

r1@,0(r8)
r13,1(r8)
r14,2(r8)
r15,3(r8)
r16,4(r8)
r17,5(r8)
r18,6(r8)
r19,7(r8)
r28,8(r8)
r21,9(r8)
r22,0xa(r8)
r23,0xb(r8)
r7,r9,r@
load_reset
@x18,r9,r9
loadbytes
@xc,r8,r8

//insure cache miss next time
//1oad byte 11 from cache

//cache data for bytes 4 & 12
//etc.

//cache data for bytes 5 & 13

//cache data for bytes 6 & 14

1d.b  8(r9),r22
//cache data for bytes 7 & 15

//store byte @ to DRAM

// [} e 3ll
/! 4
/1 5
/1 6
/! 7
/1 8
/! 11
// 12
/1 13
/1l 14
/7 15

//check for end of ROM

//branch if end of ROM

//increment ROM counter
//copy another 12 bytes
//increment DRAM counter

//Load the reset code to DRAM

//This hex code is for the reset branch

//noncacheable alias of feffffog
//cacheable DRAM that will be mapped
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//over EPROM space after boot

byte_bucket=@x7fff@@16  //ROM location

mov
mov

st.1
addu
mov
st.1
addu
mov
st.1
addu
mov
st.1
addu
mov
st.1
addu
mov
st.1

resxc_start,r4  //bottom of reset branch code
wl,rb

r5,0(rd) //store word 1
4,r4,r4 //increment counter
w2,r5

r5,0(r4) //store word two
4,r4,rd

w3,r5

r5,0(rd) //store word three
4,v4,r4

wh,r5

r5,8(rd) //store word four
4,r4,r4

wh,r5

r5,8(r4) //store word five
4,r4,rd

wb,r5

r5,6(rd) //store word six

//The next line must be hand patched after every reassembly

mov

Bxfffffléc,rl //fffffl6c is mask_cs8

//We go through the warp drive section twice to insure that
//it gets completely cached. We must be executing from
//cache when we ki1l €S8 and the boot bit.

mov byte_bucket,r5

1d.c dirbase,r4 //get dirbase contents
warp_drive::

st.b rd,a(r5) //does nothing first time

orh gx108, r@, r20

1d.b @(r2@),rd //reset EVAT int

st.c rd,dirbase //does nothing first time

bri rl //go to mask_CS8 the first time
nop //go to ffff@@@F second time

mask_cs8::

mov
and
or
mov
xorh
mov
br
nop

OxFFFFFf7f,r3 //kill cs8 bit

r3,r4,r4

0x2@,rd,ra //invalidate code cache bit

0x1000018, r5

h%byte_bucket,r5,r5 //zero r5's high 16 bits

dramc_start,rl //r1 now has DRAM start address

warp_drive //r5 has EVAT boot port address
//r4 has CS8 bit reset
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//The following cache flush procedure is from the i868™ 64-Bit Microprocessor Pro-
grammer's  Reference Manual
// Please refer to it for additional information.

flush_cache::

FLUSH_P= @x7f000000-32
//rw=r24, rx=r25, ry=r26, rz=r27

mov rl,r2

1d.c dirbase,r27

or 2x800,r27,r27

adds -1,r@,r25
call D_FLUSH
st.c r27,dirbase

or @x900,r27 ,r27
call D_FLUSH
st.c r27,dirbase

xor ax908,r27 ,v27

mov r2,rl

bri ri

st.c r27,dirbase
D_FLUSH::

mov FLUSH_P,r24
or 127,r@,r26

bla  r25,r26,D_FLUSH_LOOP
1d.1 32(r24),r@
D_FLUSH_LOOP: :

bla  r25,r26,0_FLUSH_LOOP

flush  32(r24) + +

bri rl
1d.1 -512(r24),rd
.end

The diagnostic software verifies the ability of the system to perform the bus cycles. The
i860 microprocessor fetches code from the EPROMSs, and this implies that the EPROM
can read functions correctly. Instructions in the program generate bus cycles to write and
read the DRAM. The data value read back is checked for accuracy. The program has
built-in loops which allow the designer to observe processor states on a logic analyzer
and to monitor the signal level on an oscilloscope.
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CHAPTER 9
TESTABILITY

9.1 INTRODUCTION

Testability is a major issue in digital system design. Testing involves two processes, test
generation and test verification. Test generation is the process of determining the test
sequence for a circuit that will verify its proper operation and developing test vectors.
Test verification is the process of proving that the circuit works with the test vectors.
Test vectors are generated and introduced into a system, and, by observing the response
from the system and comparing it to expected data, error conditions can be detected.
Therefore testing the system requires control over the test vectors and a means of ob-
serving the response.

Many testing methods are practiced in the industry, including Level-Sensitive Scan
Design (LSSD), Scan Path, Scan/Set, and Random Access. These techniques require
additional hardware, particularly shift registers, in order to input the test vectors and to
observe the critical points in the system.

Various designs for testability have evolved. These designs share the same objective: to
control and observe the critical points in a system. As the system becomes more complex
it becomes more difficult to control and observe the signal path, and it is therefore
essential to plan for testability in the design phase.

The two methods that are most often used to load in test vectors are parallel loading and
serial scanning. Parallel loading of the input and output data translates to wide buses
and higher costs. Further, it may not be effective in storing and analyzing the results.
Serial scanning requires more clock cycles to load in test vectors through a serial channel
and to run the diagnostics. The response is then read through a serial channel, where-
upon a signature analysis can be performed.

The i860™ microprocessor has a boundary scan mode that involves a simple serial inter-
face that allows the testing of all signal traces with only seven probe connections. These
probes allow forcing of all the outputs and sampling of all inputs. This can be used in
component testing or board-level testing for the i860 CPU’s interface. This chapter dis-
cusses the testability features of the i860 CPU and the interface timings in performing
board-level testing.

9.2 BOUNDARY SCAN MODE

The boundary scan mode is an elegant testability method that provides serial scan diag-
nostics. Only seven probes need to be connected: the CLK, BSCN, SCAN, SHI, BREQ,
RESET, and HOLD signals. With this configuration the user can apply test vectors to
the system via a serial channel and sample the response.

The CLK input determines the execution rate and timings of the i860 microprocessor;
the timings of the other signals are specified relative to the rising edge of this signal. In
addition, the clock signal determines the shift-in rate of the test vectors and the shift-out
rate of the response.
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The testability pins are the Boundary Scan Shift Input (SHI), the Boundary Scan Enable
(BSCN), the Shift Scan Path (SCAN), and the boundary scan shift output, which is
shared with the Bus Request (BREQ) output. The BREQ pin has two functions. In
normal processor operations, the BREQ line is asserted when the i860 microprocessor
has a pending memory request, even when the HLDA line is asserted. In the boundary
scan mode it is the serial shift out pin. The Bus Hold (HOLD) line has a specific
function which is described in great detail, along with the above-mentioned signals, later
in this chapter. The RESET line causes the processor initialization. More details on
RESET are provided in Section 3.2 of the data sheet.

When the Boundary Scan Enable (BSCN) signal is asserted, the i860 mircoprocessor
enters the boundary scan mode on the next rising edge of CLK. When BSCN is deas-
serted while in boundary scan mode, the i860 microprocessor leaves the boundary scan
mode on the next rising edge of CLK. After leaving the boundary scan mode the internal
state is undefined and therefore RESET must be asserted. The timings to enter and exit
the boundary scan mode are shown in Figure 9-1.

The BSCN, signal configures the i860 microprocessor for the test mode. When in test -
mode, the processor can operate in normal mode or shift mode, and the Shift Scan Path
(SCAN) input causes the i860 microprocessor to assume one of the two. The test mode
operations are defined in Table 9-1. The normal mode is entered on the rising clock
edge when the SCAN line is deasserted; the shift mode is entered on the rising edge of
the clock when the SCAN line is asserted. In normal mode, the output signals are driven,
and the inputs are sampled simultaneously. In shift mode, the test vectors are shifted in
at one end of the chain, and the response is shifted out simultaneously at the other end.
In testing operations the user switches from shift mode to normal mode and vice versa
until all of the vectors are exercised. Then the user exits from the boundary scan mode.

& i860 CPU Exits
IBSSn%Zg ggt:r:sMode > Boundary Scan Mode —>»

CLK l

BSCN /
> ty
t o ty
10 (€
2 b j i——: :—
SCAN ><
5

240330-103

~N
"

~

Figure 9-1. Entering and Exiting the Boundary Scan Mode
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Table 9-1. Test Mode Selection

BSCN SCAN _____Testability Mode
LO LO No testability
LO HI Intel Reserved
HI LO Boundary Scan Mode, Normal
HI HI Boundary Scan Mode, Shift
SHI as input, BREQ as output

9.2.1 Shift Mode Operation

Transferring vectors to the system and reading the responses from the system requires a
serial path to the i860 microprocessor. This is provided by the shift mode operation. In
effect, the shift mode creates a long serial register to and from the i860 microprocessor.
Data shifted into the CPU corresponds to new test vectors that will be output to the
system. A response from the system can be shifted out while in shift mode. When switch-
ing to and from normal mode, the i860 microprocessor performs either a serial-
to-parallel operation or a parallel-to-serial operation. This is a simple, yet effective way
to test the system.

In shift mode, the pins shown in Table 9-2 are organized as a boundary scan chain. This
chain can be thought of as a long shift register that is shifted on the rising edge of CLK.
The order of the boundary scan chain is shown in Figure 9-2. The SHI pin receives the
input on one end of the boundary scan chain. The other end (the most significant bit) of
the boundary scan chain is the BREQ pin, shown here as the 127th position. The bits
that are shifted in through the SHI pin in the serial mode are in the sequence shown in
Figure 9-2. For shift mode operations, BREQ is shifted in followed in order by BEO#,
BE1#, ..., BSCN, SHI. A total of 127 cycles are needed. While these values are being
shifted in, serial bits are coming out of the BREQ pin. These bits are in the order
BREQ, BEO#, BE1#, ..., BSCN, and SHI, and they correspond to the response of a
previously loaded vector.

To avoid glitches that could occur while the values are being shifted out along the chain,
the RESET and HOLD pins must be asserted. In this way, all of the tristateable outputs
will be disabled. The timings related to serially shifting the data into and out of the
processor is shown in Figure 9-3.

The shift mode is used to shift in a new test vector, as well as to read the response to the
previous test vector. These operations are performed concurrently.
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Figure 9-2. Order of Boundary Scan Chain

Table 9-2. Test Mode Latches

Input Latch Output Latch Associated Control Latch

SHI

BSCN

SCAN

RESET

D0-D63 D0-63 DATAt

CC1-CCo
A31-A3 ADDRt
NENE# NENEt
PTB# PTBt
W/R# W/Rt
ADS# ADSt
HLDA
LOCK# LOCKt

READY# .

KEN#

NA#

INT/CS8

HOLD
BE7#-BEO# BEt
BREQ
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Shift Mode is .
Entered Here ihéf)t( ilt\ggde
1 2 127 Here
CLK
_'\‘\
Scan
SHI
Input
BREQ
Output

Figure 9-3. The Shift Mode of the Boundary Scan Mode

9.2.2 Normal Mode

During normal mode, two operations can occur simultaneously. The first is the driving of
the output lines with the test vector, while the second is the sampling the response on
the input lines. The outputs and inputs are shown in Table 9-2.

The three-state output pins A31-A3, BE7#-BEO#, W/R#, NENE#, ADS#, LOCK#,
and PTB are enabled by storing a high value in the corresponding control latches
ADDRt, BEt,W/Rt, NENEt, ADSt, LOCKt, and PTBt, respectively. If the correspond-
ing output control latch contains a low value, then the pins are tristated.

The data pins D63-DO0 are I/O pins and are enabled by the control latch, DATAt, which
is similar to the other control latches. In addition when the DATAt contains a low value,
then the data pins are configured as inputs and the values on the pins are sampled.

For each of the input pins RESET, HOLD, INT/CS8, NA#, READY#, KEN#, SHI,
BSCN, SCAN, and CC1-0, the corresponding latch is loaded with the value that is being
driven into the pin.

Normal mode is selected when the SCAN is deasserted while BSCN is asserted. All of
the signals shown in Table 9-2 are loaded serially in the shift mode (i.e. while BSCN is
high and SCAN is high.) The timings for the normal mode operation are shown in
Figure 9-4. .
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t
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Input
Signals
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Note: The BSCN must be high during the operation. 240330-106

Figure 9-4. The Normal Mode of the Boundary Scan Mode

9.2.3 A Test Sequence Example

The following relates to a typical testing session and addresses controllability and observ-
ability issues.

1.

5.

Enter boundary scan mode.

Establish a serial link via the shift mode to shift in the test vectors and to sample the
response. Data can be serially shifted into and out of the i860 CPU. Values are
assigned to the latches that correspond with the pins, as shown in Table 9-1. The
first test vector is then transferred to the i860 microprocessor.

. Enter normal mode. The processor drives the output and also samples the inputs.

This portion of the sequence sends a test vector to the system and also reads the
response synchronously to the rising edge of CLK.

Reenter shift mode and read the response from the output of the serial chain, while
loading new values for the next test vector at the input of the serial chain. It is
possible to loop between steps 3 and 4 until finished.

Exit boundary scan mode and reset the processor.

While running the test sequence, the user must be aware that the response being re-
ceived during the normal mode may correspond to test vector presented in the previous
cycle. This is true if a scan path also exists in the peripheral circuits.
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9.3 USING THE TESTABILITY FEATURES IN A SYSTEM

The boundary scan mode can help in component-level testing and in board-level testing.
These are discussed here, with the emphasis on board level testing.

9.3.1 Component-level Testing

For incoming testing, the serial scan device uses a serial channel to provide a means for
causing the output pins to toggle. Values can be assigned to the output latches in the
shift mode. During normal mode operation, the processor will drive the output pins. The
values of the input pins can also be latched in normal mode and then read out in the
shift mode. This provides a mechanism for monitor the inputs and toggling the outputs
via a serial channel, and may reduce test program development time.

9.3.2 System-level Testing

The benefits of the boundary scan mode are even more apparent when one is debugging
or testing a system, as on a bed of nails in Automatic Test Equipment (ATE). A typical
i860 microprocessor system may consist of peripherals and memory elements, as shown
in Figure 9-5. If the system is being debugged and brought up, then the serial path can
set up test vectors to various memory elements or peripherals. The response from the
peripherals can be accessed following the propagation delay while in normal mode.
Then, the response is serially shifted out in the shift mode. The received response is
compared to the expected response. After the user knows the peripherals are function-
ing properly, code from an EPROM can be used for more extensive testing.

ADRS

7| Buffer ¢ t

SHI, BSCN, SRAM
SCAN, CLK

v

EPROM

> Controls .
# i860 CPU |« N
4 \ Data

Buffer

7

ADRS
Buffer >

BREQ

DRAM Array

Diagnostics
Circuitry

Data
—>| Buffer

240330-107

Figure 9-5. A Typical System with Diagnostics Capabilities
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The peripherals or the memory elements must observe the set-up and hold times of the
i860 microprocessor during normal mode operation. This can be accomplished by giving
multiple clocks during normal mode operation to meet the delay timing of the longest
path. A typical timing diagram for a memory access is shown in Figure 9-6. (If the
longest delay path is four clock cycles, for example, then by asserting the normal mode
for five cycles, the address and the other controls are presented to the memory element,
after which the data can be read or written.) The latching of the signals in the i860 CPU
can be carried out reliably on the last clock edge, before the shift mode operations are
performed.

RAM and other circuits external to the i860 microprocessor peripherals may consist of
state machines. The user must ensure that the state machines are enabled or disabled at
the appropriate time during boundary scan mode. One way to ensure this is to have
separate clocks for the on-board state machines.

If the peripheral or memory elements have a serial scanning scheme as well, then the
clock can be asserted for as briefly as one cycle during normal mode. This implies that
the system will be responding to the test vectors of the previous cycle. The timings would
be similar to those shown in Figure 9-6, with a smaller number of clock pulses for
timeslots 2-3 and 4-5. Again, this assumes that the peripherals have a serial scan chain as
well. This method reduces the number of clock pulses for the normal mode; however,
the overhead in the number of external components is larger than in the first method.
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Figure 9-6. A Typical Timing for Serial Scan Mode
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SIGNAL

RASx#
RAS#
LRAS#
CASx#
WEx#
DTOEx#
CPEND#
ROWE#
COLE#
WDEL#
NCLK#
REF

TRQ
TRFQ#
RASDEL#
PRECH#
REFC#
ERDL#
LERDL#
EWLD#
ERDE#
EWDE#
CLRTRQ#
CLRREF#
SRAE#
SCAE#
HBLANK
HCOUNT
HCLR#
VCLR#
VBLANK#
SYNC#
CBLANK#
SBLANK#
VD Bus
LDSR#

SC
BLANK#
VOG/VOR/VOB
PCLK

APPENDIX A
GRAPHICS FRAME BUFFER

SCHEMATICS AND PLD CODE

DESCRIPTION

RAS# for buffer #x

RAS1# ANDed with RASO#

Delayed RAS#

CAS# for buffer #x

Write control for VRAMs

Output control and SAM transfer request
Cycle pending

Row address enable

Column address enable

Write delay

Timing control for WDEL#

Refresh request

SAM transfer request

Conditioned refresh/SAM transfer request
RAS# delay for CAS-/DTOE-before RAS
Controlling RAS# precharge time
Controlling RAS# active time for TRFQ#
Expansion read data latch

Delayed ERDL#

Expansion write data latch

Expansion read data enable

Expansion write data enable

Clearing TRQ

Clearing REFRESH

Row address enable for SAM transfer
Column address enable for SAM transfer
Horizontal blank

HBLANK count for generating vertical signal
Clear counter used to generate HBLANK
Clear counter used to generate VBLANKG#.
Vertical blank

Composite sync for video DACs
Composite blank

Composite blank synchronized to PCLK
Video data bus

Loading 4 pixels into shift registers

Serial clock for shifting VRAM data out,16MHz

Blank signal for video DACs
RGB signals
Pixel clock, 64 MHz
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module FB_VRM flag '-r3'
title 'Buffer Select'

Ul device 'P16R6';

VCC,GND,OCn pin  20,10,11;
CLKC,VBF@n,RESET,VSYNC,CLRFRX@

pin 1,2,4,5,6;
NC1,NC2,NC3,NC4,NC5,NSS1,NSS2 pin  3,7,8,9,12,13,18;

SE1ln,SE@n,VSYNCS,CLRFRQn,VSYNCn
pin  14,15,16,17,19;

Equations
CLRFRQn := CLRFRX@;
VSYNCS
:= VSYNC;
VSYNCn = !VSYNC;
state_diagram  [SEln,SE@n]
- state [1,1]: if(RESET # VSYNCS) then [1,1]
else if(!VSYNCS & VBF@n) then [@,1]
else if(!VSYNCS & !VBF@n) then [1,0]
else [1,1];
state [@,1]: if(RESET # VSYNCS) then [1,1]
else [@,1];
state [1,0]: if(RESET # VSYNCS) then [1,1]
else [1,0];
state [0,0]: goto [1,1];

"Description:

" Buffer switch happens at the time of vertical
" sync. /

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Buffer Switch'

U2 device 'P16R4'; .
VCC,GND,OCn pin  20,10,11;

CLKC,RESET,LADSn, EXPSELn,A22,A3 pin 1,2,3,4,5,6;

DRMBSYn,BSYn,EXPBSYn, LADSA22n pin 7,8,9,12;

CBUSYn,VBF@n,LRDYn,VSELX@,VSELX1  pin  13,14,15,16,17;

NC1,RDYn pin  18,19;
Equations

RDYn = !(!VSELX1 & VSELX@ & DRMBSYn & BSYn & EXPBSYn) ;
enable RDYn = !VSELX1 & DRMBSYn & BSYn & EXPBSYn;
CBUSYn = BSYn & (DRMBSYn # !EXPBSYn);

LADS22n = LADSn # A22;

LRDYn := RDYn;

state_diagram [VSELX1,VSELX@]

state [1,1]: if(RESET) then [1,1]
else if(!EXPSELn & A22 & !LADSn) then [@,1]
else [1,1];

state [0,1]: if(RESET # !RDYn & DRMBSYn & BSYn & EXPBSYn) then [@,0]
else [0,1];
state [0,0]: if(!RESET & !EXPSELn & A22 & !LADSn) then [@,1]
else [1,1];
state [1,0]: goto [1,1];
state_diagram [VBF@n]
state [1]: if(RESET # !LADSn & 'EXPSELn & A22 & !A3)
then [0]
else [1];
state [@]: if('RESET & !LADSn & !EXPSELn & A22 & A3)
then [1]
else [0];
"Description:

" - READYn is asserted when accesses direct to

the expansion space when A22 = 1. It is not
enabled until no busy signals are active, i.e.,
no pipelined cycles are pending.

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Write Enable’

U3 device 'P2@L8';

VCC,GND
LWRn,LBE@n, LBE1n,LBE2n, LBE3n, LBE4n

LBE5Nn, LBE6N,LBE7n,PRECHN,CAS@n
RASNn,WE@Xn,WE@n ,WE1n,WE2n,WE3n
WE4n,WE5n,WE6N,WE7n,WE7Xn

Equations
WE@n
WEIn
WE2n
WE3n
WE4n
WESn
WE6n
WE7n

"Description:

(LBE@n
(LBE1n
(LBE2n
(LBE3n
(LBE4n
(LBE5n
(LBE6n
(LBE7n

#
#
#
#
#
#
#
#

ILWRn) & CAS@n
ILWRn) & CAS@n
ILWRn) & CAS@n
ILWRn) & CAS@n
ILWRn) & CAS@n
ILWRn) & CAS@n
'LWRn) & CAS@n
'LWRn) & CAS@n

pin 24,
pin 1,2,3,4,5,6;

12;

pin 7,8,9,10,11;
pin 13,14,15,16,17,18;
pin 19,20,21,22,23;

IPRECHn
!PRECHn
!PRECHNn
!PRECHn
TPRECHn
IPRECHNn
!PRECHn
IPRECHN

HHRHFHR BB HHR

RASN
RASN
RASN
RASn
RASN
RASn
RASNH
RASN

HHHBHFHF®RHH

# WE@Xn & !CASOn;
# WEln & !CAS@n;

&
# WE2n & !CAS@n;
# WE3n & !CAS@n;
# WE4n & !CASOn;
# WE5n & !CAS@n;
# WE6bn & !CASOn;

# WE7Xn & !CAS@n;

" The write enables are not asserted when RASn goes active
b during CAS-Before-RAS refresh and write cycles
" starting up (to disable write-per-bit).

end FB_VRM;
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module FB_VRM flag '-r3'

title 'CRT Clocks'
U7 device 'P16R8';

VCC,GND,0Cn pin 20,10,11;
PCLK,VCLRn,HCLRn,RESET pin  1,2,3,4;
NC1,NC2,NC3,NC4,NC5 pin  5,6,7,8,9;
HQd,VvQo,CDIV16,CDIVS,CDIV4,CDIV2  pin  12,13,14,15,16,17;
HCLRXn,VCLRXn pin  18,19;

CDIV = [CDIV16,CDIV8,CDIV4,CDIV2];
equations
CDIV := (CDIV + 1) & !RESET;

state_diagram [HCLRXn,HQd]
state [1,1]: if(RESET) then [1,1]
else if(!HCLRn) then [@,1]
state [0,1]: goto [1,0];
state [1,0]: if(RESET # HCLRn) then [1,1]
else [1,0];
state [0,0]: goto [1,1];

state_diagram [VCLRXn,VQ@]
state [1,1]: if(RESET) then [1,1]
else if(!VCLRn) then [@,1]
state [0,1]: goto [1,0];
state [1,0]: if(RESET # VCLRn) then [1,1]
else [1,0];
state [0,0]: goto [1,1];

"Description:
" HCLRXn and VCLRXn clear the counters for horizontal and
" vertical timings.

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Ready Logic'

U8 device 'P2@R4';

VCC,GND,OCn pin  24,12,13;
CLK,RASn,COLEn,LADSNn,WRn,TRFQn

pin 1,2,3,4,5,6;
CPENDn,WDELX@,WDELn,NC1,EXPBSYn

pin  7,8,9,10,11;
LERDLn,NC2,WAIT,LRASNn,LWRn,NAXD

pin  14,15,16,17,18,19;

RDYX@,RESET,RDYn,NENEn pin  20,21,22,23;
RIDLE = 1;
RACT = @;

equations

LRASn := RASn;
RDYn = I((WAIT & !RDYX@ & TRFQn & !COLEn

& WDELn & !CPENDn & LWRn) # (!LERDLn));
enable RDYn = !EXPBSYn; _

state_diagram [RDYX@]

state RIDLE: if (RASn) then RIDLE
else if(!RASn & TRFQn) then RACT
. else RIDLE;
state RACT : if(RASn # IRDYn & !RASn # !LADSn & NENEn) then RIDLE
else RACT;

state_diagram  [NAX@]

state [1]: if (RASn) then [1]
else if(WAIT & !CPENDn & !LWRn & !COLEn & !RASn)

then [@]
‘ else [1];
state [@] : goto [1];
state_diagram [LWRn] ‘
state [1]: if(!LADSn & !WRn) then [0]
else [1];
state [@]: if(!LADSn & WRn) then [1]
else [0];

End FB_VRM;
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module FB_VRM flag '-r3'
title 'Output Enables'

U9 device 'P20R8';

VCC,GND,OCn pin  24,12,13;
CLK,DREF,EXPSELn,CPENDN,LADSA22n, TRFQn

pin 1,2,3,4,5,6;
WRn,LWRn,RASNn,NC1,NC2,REF,NC3 pin 7,8,9,10,11,14,15;

CLRRFX@,DTOE@n,DTOE1n, EWDEN, ERDEXD
pin 16,17,18,19,20;

CLRTRQn,NC4,PRECHN pin 21,22,23;
state_diagram [DTOE1n]
state [1]: if (!CPENDn & !LWRn & !RASn
# RASn & !TRFQn & PRECHn & !REF) then [@]
else [1];
state [@]: if (DREF # !LADSA22n & WRn & !EXPSELn) then [1]
else [0];
state_diagram [DTOE@n]
state [1]: if (ICPENDn & !LWRn & !RASn
# RASn & !TRFQn & PRECHn & !REF) then [d]
else [1];
state [@]: if (DREF # !LADSA22n & WRn & !EXPSELn) then [1]
else [0];
state_diagram [CLRRFX@]
state [1]: if (RASn & REF & PRECHn & !TRFQn)
then [0] '
else [1];

state [@]: goto [1];
state_diagram [CLRTRQn]

state [1]: if(!DTOE1ln & PRECHn & !RASn)
' then [@]
else [1];
state [@]: goto [1];
state diagram [ERDEXd]
state [1]: if (RASn) then [1]

else if(!RASn & !LWRn & TRFQn
# IRASn & !LADSA22n & !'WRn & !EXPSELn) then [4]

else [1];

state [@]: if (!LADSA22n & WRn & !EXPSELn # RASn) then [1]
else [0];

state_diagram [EWDEn]

state [1]: if(RASn) then [1]
else if(!RASn & LWRn) then [d]
else [1];

state [@]: if (ILADSA22n & !WRn & !EXPSELn # RASn) then [1]
else [0];
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"Description:

" ERDEXZ is an intermediate signal to generate ERDEn.
CLRRFX@ is an intermediate signal to generate the
" CLear_Refresh_ReQuest (CLRRFQ)

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Random Logic'

Ul@ device 'P20L8';

VCC,GND pin  24,12;
RAS1n,RAS@n,SCAEn, TRFQn, PRECHNn pin 1,2,3,4,5;
REF,CAS1n,CASX1,ERDEX@,WAIT,REFCn pin 6,7,8,9,10,11;
LWRn,WRn,DREF ,ERDEn,RASDELN, TREF pin 13,14,15,16,17,18;
NC1,LADSBn,RASNn,PREF,LADSNn pin 19,20,21,22,23;
Equations
RASn = RAS1n & RASOn;
TREF = !TRFQn & REFCn & CAS1n
# !SCAEn & REFCn
# LADSn & REFCn & ICAS1n & !CASX1 & LWRn & WAIT & TRFQn
# LADSn & REFCn & !CAS1n & ICASX1 & !LWRn & TRFQn;
PREF = (!RASln # !RAS@n) & !SCAEn & RASDELn
# !TRFQn & REF & RAS1n & RAS@n & PRECHn & RASDELn;
DREF = RAS1n & RAS@n & REFCn
# ISCAEn & REFCn;
ERDEn = ERDEX@ & (LADSn # WRn # RAS1n & RAS@n);

"Description:

LADSBn = LADSn;

TREF feeds into the RAS state machine. The !TRFQn term

is for CAS-Before-RAS refresh; the !SCAEn term
for serial register load inside the VRAMs.

PREF feeds into the CAS state machine. The !TRFQn term is

for VRAM refresh request. The !SCAEn term is for
serial register Toad inside the VRAMs.

DREF feeds into the Output Enable logic.
LADSBn is for non-critical logic.
end FB_VRM;
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module FB_VRM flag '-r3'
title 'Composite Sync and Blank'

ull device 'P22V19';

VCC,GND pin  24,12;
HBLANK,NC1,HSYNCn, pin  1,2,3;
HB@,HB1,HB2,HB3,RESET pin 4,5,6,7,8;
NC2,NC3,NC4,NC5 pin  9,10,11,13;
VCLRn,HCNT2,HCNT@,HCNT4 ,HCNT5 pin  14,15,16,17,18;
VBLANKn,VSYNC,HCNT1,HCNT3,CSYNCn - pin  19,20,21,22,23;
HB = [HB3,HB2,HB1,HBd];
HCNT = [HCNT5,HCNT4,HCNT3,HCNT2,HCNT1,HCNT@] ;
equations
WHEN ((HB == 15) & !(HCNT == 5@) & !RESET)
THEN HCNT := (HCNT + 1);
ELSE HCNT := HCNT & !((HCNT == 5@) & (HB == 12)) & !RESET;

CSYNCn = !VSYNC & HSYNCn;
state_diagram [VBLANKn]

state [@]: if((HCNT == 2) & (HB ==12) & !RESET) then [1]
else [0]; "Blank for 45 horizontal
"Tines
state [1]: if((HCNT == 50) & (HB ==12) # RESET) then [d]
else [1]; "Active time = 768

"horizontal Tlines

state_diagram [VSYNC]

state [0]: if((HCNT == @) & (HB ==5) & !RESET) then [1]

else [0]; "Front Porch = 6 H Tines
state [1]: if((HCNT == @) & (HB ==11) # RESET) then [0]

else [1]; "Active for 6 H Tlines
state_diagram [VCLRn]
state [1]: if((HCNT == 5@) & (HB == 12) # RESET) then [@]

else [1];
state [0]: if(!RESET) then [1]

else [0];

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Horizontal Sync and Blank'

uld device 'P16R6';

VCC,GND,OCn pin 20,10,11;
cpbIvie,cceé,CC5,cC4,CC3,CC2,CC1,CCO  pin 1,2,3,4,5,6,7,8;
VBLANKn,NC1,HCLRn,CBLANKn,HSYNCn pin 9,12,13,14,15;
EXPINTn,EINTX@,HBLANK,RESET pin 16,17,18,19;

cc = [ccé6,cC5,CC4,CC3,CC2,CC1,CCa] 5

state_diagram [EXPINTn,EINTX@]
state [1,1]: if(RESET) then [1,1]
: else if(!VBLANKn) then [@,1]
else [1,1];

state [0,1]: goto [1,0];
state [1,0]: if(RESET # VBLANKn) then [1,1]
else [1,0];
state [0,0]: goto [1,1];
state_diagram [HBLANK] "Horizontal Blank"
state [1]: if(RESET) then [1]
else if(CC == 17) then [@]
else [1];
state [@]: if((CC == 81) # RESET) then [1]
else [@];
state_diagram [HCLRn]
state [1]: Jif((CC == 81) # RESET) then [0]
' else [1];
state [0]: if(IRESET) then [1]
else [0];
state_diagram [HSYNCn] "Horizontal Sync"
state [1]: if (RESET) then [1]
else if(CC == 1) then [0]
else [1];
state [0]: if ((CC == 7) # RESET) then [1];
' else [@];
state_diagram [CBLANKn] "Composite Blank"
state [1]: if (HBLANK # !VBLANKn # RESET) then [@]
else [1];
state [@]: if (!HBLANK & VBLANKn & !RESET) then [1]
else [@];
"Description:

" CDIV16 is a 4MHz clock; therefore, horizontal scan period
" is about 26.5 usec and the active display time is 16.9
" usec (each CC count is @.25 usec.).

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Write Data Latch'

U25 device 'P16R4';

VCC,GND,OCn pin 20,10,11;
CLK,RESET,TRFQn,COLEn,NAX@,CPENDn pin 1,2,3,4,5,6;
WDELn, LWRn,RASn,ERDLn,WAIT,LERDLN pin 7,8,9,12,13,14;
EWDLX@,EWDLn,EXPBSYn,NC1,NAn pin 15,16,17,18,19;

Equations
NAn = NAX@ # !TRFQn;
enable NAn = !EXPBSYn;
LERDLn := ERDLn;

state_diagram [EXPBSYn]

state [1]: if (RESET) then [1]
else if (!RASn & TRFQn) then [0]
else [1];

state [@]: if(RESET # CPENDn & RASn & COLEn & TRFQn) then [1]
else [4];

state_diagram [EWDLn,EWDLX@]

state [1,1]: if (RESET) then [1,1]

else if (!RASn & LWRn & TRFQn) then [@,1]
else [1,1];

state [@,1]: if(RESET # RASn # !WAIT) then [1,1]
else [1,0];

state [1,0]: if (WDELn) then [1,1]
else [@,1];

state [0,0]: goto [1,1];

"Description:

NAn is driven only when it is a VRAM cycle.
EWDLn is asserted whenever, it is a write cycle.

End FB_VRM;
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module FB_VRM flag
'-r3' title 'Cycle Pending'

U26 device 'P16R6';

VCC,GND,0Cn pin 20,10,11;
CLK,LADS22n,RESET,TRFQn,RDYn,CAS1n,RASN

. pin 1,2,3,4,5,6,7;
EXPSELn,WRn,NC1,WDELX@,WDELn,NCLKX@
pin  8,9,12,13,14,15;

NCLKn,NC2,CPENDn ,WAIT pin 16,17,18,19;

state_diagram [CPENDn]

state [1]: if (RESET) then [1]
else if(!LADS22n & IEXPSELn) then [@]
else [1];

state [@]: if(LADS22n & !CAS1n & TRFQn

# EXPSELn & !CAS1n & TRFQn # RESET) then [1]

else [@];

state_diagram [WDELn, WDELX®]

. state [1,1]: if (RESET) then [1,1] "IDLE

else if(1LADS22n & !WRn & !EXPSELn
# ICPENDn & !WRn & !EXPSELn & !RASn)
then [1,8] "INACT
else [1,1];
state [1,0]: if (RESET # RASn) then [1,1]
else if(!LADS22n & WRn & !'EXPSELn) then [@,1] "ACTIVE1
else [1,0];
state [0,1]: if (RASn) then [1,1]
) else if(INCLKX@) then [0,d]
else [@,1];

state [0,0]: goto [1,1];
state_diagram [NCLKn, NCLKX@]
state [1,1]: if(RESET) then [1,1] "IDLE

else if(!RDYn) then [@,1] "INACT
else [1,1];
state [0,1]: goto [@,0];"ACTIVE
state [0,0]: if(RESET # RDYn) then [1,1]
- else if (!RDYn) then [0,1]
else [0,0];
state [1,0]: goto [1,1];
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"Description:

CPENDn (cycle pending) is deasserted only when CASxn has
been asserted for the cycle.

WDELn is for freezing the state machines when a write
cycle is pipelined right after a read cycle. The
1860 processor does not drive the data bus until
one clock after READYn is asserted for the
previous read cycle.

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Refresh Requests'

U27 device 'P16R8';

VCC,GND,0Cn pin 20,10,11;
CLKG,PRECHn,REF, TRQ,RESET,RASN pin 1,2,3,4,5,6;
CLRTRQn,RASDELN,RDYn,ROWEN, SRAEN pin 7,8,9,12,13;
TRFQX@, TRFQn,REFCX@,REFCn, SCAEn,COLENn

pin 14,15,16,17,18,19;

TI = 3;
TAl = 1;
TA2 = @;
TIl = 2;
RIDLE = 3;
RINACT1 = 1;
RINACT2 = @;
RINACT3 = 2;
state_diagram [REFCn, REFCX@]
state RIDLE: if(RESET) then RIDLE

else if (RASn & !TRFQn) then RINACT1
else RIDLE;

state RINACT1: if(RESET) then RIDLE
else if (!RASn & RASDELn) then RINACT2
else RINACTI;

state RINACT2: goto RIDLE;

state RINACT3: goto RIDLE;

state_diagram [TRFQn,TRFQX@]

state TI: if (RESET) then TI
else if (REF & RDYn # TRQ & RDYn) then TAl
else TI;
state TAl: if (RESET) then TI
else if (!RASn & !REFCn) then TA2
else TAl;
state TA2: if (RESET # REFCn) then TI
else TA2;
state TI1: goto TI;
state_diagram [SRAEn]
state [1]: if(RESET) then [1]
else if(RASn & !TRFQn & !REF & PRECHn) then [0]
else [1];
state [0]: if(IRASn # RESET) then [1]
else [0];
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state_diagram [SCAEn]

state [1]: if(RESET) then [1] else if(!CLRTRQn) then [@]
else [1];

state [@]: if(REFCn # RESET) then [1]
else [@];

state_diagram [ROWEn]

state [0]: if(RESET) then [@]
else if(!RASn # !ITRFQn) then [1]
else [@];

state [1]: if (RESET # TRFQn & COLEn & RASn) then [@]
else [1];

state_diagram [COLEn]

state [1]: if (RESET) then [1]
else if(ROWEn & !RASn & TRFQn) then [@]
else [1];

state [@]: if (RASn) then [1]
else [0];

"Description:

ROWEn enables row address while COLEn enables column
address for 1868 processor cycles. SRAEn and

SCAEn enable the serial row and column addresses
for serial register load cycles.

TRFQn combines the VRAM refresh and serial register load
requests.

end FB_VRM;
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module FB_VRM flag '-r3'
title 'CAS Logic'

U28 device 'P16R6';

VCC,GND,OCn pin  20,10,11;
CLK,CPENDn,RASn,WAIT, LWRn,WDELN pin 1,2,3,4,5,6;
COLEn,TRFQn, PREF,RESET,ERDLn pin 7,8,9,12,13;
CASX@,CASX1,CAS@n,CAS1n,CAS2n,NC1  pin  14,15,16,17,18,19;

CIDLE = -~b11111;

CACTIVEL = -~b@@@11;
CACTIVE2 = ~b@0@1d;
CACTIVE3 = ~b@@@a1;

CNS1 = @;

CNS2 = 4,

CNS3 = 5;

CNS4 = 6;

CNS5 = 7;

CNS6 = 8;

CNS7 = 9;
CNS8 = 10;
CNS9 = 11;
CNS19 = 12;
CNS11 = 13;
CNS12 = 14;
CNS13 = 15;
CNS14 = 16;
CNS15 = 17;
CNS16 = 18;
CNS17 = 19;
CNS18 = 20;
CNS19 = 21;
CNS20 = 22;
CNS21 = 23;
CNS22 = 24,
CNS23 = 25;
CNS24 = 26;
CNS25 = 27;
CNS26 = 28;
CNS27 = 29;
CNS28 = 30;

'state_diagram [CAS2n, CAS1n, CAS@n, CASX1, CASXd]
state CIDLE: if (RESET) then CIDLE

else if(!RASn & !COLEn & !CPENDn & TRFQn & WDELn
# PREF) then CACTIVEL
else CIDLE;
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state CACTIVEL :if(WAIT & LWRn & !RASn & !COLEn
# IWAIT & 'LWRn & !RASn & !COLEn
# 1TRFQn & COLEn)
then CACTIVE3
else if(!RASn & WAIT & !LWRn & !COLEn) then CACTIVEZ2
else if(!RASn & !WAIT & LWRn & !COLEn # RESET) then
CIDLE
else CACTIVE];

state CACTIVE2: goto CACTIVE3;
state CACTIVE3: goto CIDLE;
state CNS1: goto CIDLE;
state CNS2:  goto CIDLE;
state CNS3: goto CIDLE;
state CNS4: goto CIDLE;
state CNS5:  goto CIDLE;
state CNS6: goto CIDLE;
state CNS7: goto CIDLE;
state CNS8:  goto CIDLE;
state CNS9:  goto CIDLE;
state CNS1@: goto CIDLE;
state CNS11: goto CIDLE;
state CNS12: goto CIDLE;
state CNS13: goto CIDLE;
state CNS14: goto CIDLE;
state CNS15: goto CIDLE;
state CNS16: goto CIDLE;
state CNS17: goto CIDLE;
state CNS18: goto CIDLE;
state CNS19: goto CIDLE;
state CNS2@: goto CIDLE;
state CNS21: -goto CIDLE;
state CNS21: goto CIDLE;
state CNS23: goto CIDLE;
state CNS24: goto CIDLE;
state CNS25: goto CIDLE;
state CNS26: goto CIDLE;
state CNS27: goto CIDLE;
state CNS28: goto CIDLE;

state_diagram [ERDLn]

state [1]: if(RESET) then [1]
else if(IWAIT & !COLEn & !LWRn & !CASIn & CASX1 & CASXd
# WAIT & !COLEn & !LWRn & ICAS1n & CASX1
& !CASX@) then [@]
else [1];
state [@]: goto [1]; -

A-18



intel® GRAPHICS FRAME BUFFER SCHEMATICS AND PLD CODE

"Description:

" The SCAEn term in the CAS state machine is for serial
" register Toad cycle while the REF term for

" CAS-Before-RAS refresh request.

end FB_VRM;
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module FB_VRM flag '-r3'
title 'Serial Clocks'

U29 device 'P16R8';

VCC,GND,OCn pin  20,10,11;
PCLK, SBLANKn,SC@,SC1,LDSRn, SCX@

pin 1,2,12,13,14,15;
NC1,NC2,NC3,NC4,NC5,NC6,NC7 pin  3,4,5,6,7,8,9;
BLANKn,BLANKX1,BLANKX@,NSS1

pin 16,17,18,19;

SI = ~b@@ll;

SAl = -~bllll;

SA2 = ~bl118@;

SI1 = ~bogog;

SNS1 = 5;

SNS2 = 4;

SNS3 = 2;

SNS4 = 1;

SNS5 = 6;

SNS6 = 7;

SNS7 = 8;

SNS8 = 9;

SNS9 = 1@;

SNS16 = 11;

SNS11 = 12;

SNS12 = 13;

BI = ~b@ll;

BIl = ~blll;

BI2 = ~bl1@;

BI3 = ~bl@l;

BI4 = ~b10gd;

BNS1 = 2;

BNS2 = 1;

BNS3 = 4;
equations
state_diagram [SC1,SC@,LDSR,SCX@]
state SI: if(SBLANKn) then SAl

else SI;

state SAl: goto SA2;
state SA2: goto SI1;
state SI1: goto SI;
state SNS1: goto SI;
state SNS2: goto SI;
state SNS3: ~ goto SI;
state SNS4: goto SI;
state SNS5: goto SI;
state SNS6: goto SI;
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state
state
state
state
state
state

SNS7:
SNS8:
SNS9:

SNS1@:
SNS11:
SNS12:

goto SI;
goto SI;
goto SI;
goto SI;
goto SI;
goto SI;

state_diagram [BLANKn,BLANKX1,BLANKX@]

state
state
state
state
state
state
state
state

"Description:

BI:
BI1:
BI2:
BI3:
BI4:
BNS1:
BNS2:
BNS3:

if(SBLANKn) then BI1 else BI;
if(!SBLANKn) then BI2 else BIl;
goto BI3;

goto BI4;

goto BI;

goto BI;

goto BI;

goto BI;

SCO and SC1 control the serial register loading inside

the VRAMs.

BLANKn feeds into the video DAC to blank out the monitor

end FB_VRM;

screen.
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module FB_VRM flag '-r3'
title 'RAS Logic'

U34 device 'P20R8';

VCC,GND,OCn pin 24,12,13;
CLK,LADSn,NENEn,A22,A21,CBUSYn, TRFQn

pin 1,2,3,4,5,6,7;
TREF,RESET,EXPSELn,CPENDNn,NC1,NC2 pin 8,9,10,11,14,15;
PRCHX@, PRECHn,NC3,RASDELN,RAS1,RAS@n

pin 16,17,18,19,20,21;
NC4,NC5 pin 22,23;

IDLE = 1;
ACTIVE =

PIDLE
PACT1
PACT2
PNS1 = 2;

state_diagram [RAS@n]

H

.
s

3
1;
[']

1

1

state IDLE: if(1LADSn & !EXPSELn & !A22 & !A21 & CBUSYn
& TRFQn & PRECHn
# ICPENDn & !EXPSELn & !A22 & !A21 & PRECHn
& CBUSYn & TRFQn
# ITRFQn & PRECHn & !RASDELn) then ACTIVE
else IDLE;
state ACTIVE :if ( TREF
' RESET
'LADSn & EXPSELn & TRFQn
ILADSn & A22 & TRFQn
ILADSn & A21 & TRFQn
ILADSn & !'EXPSELn & !'A22 & !A21
& NENEn & TRFQn)
then IDLE
else ACTIVE;

state_diagram [RAS1n]
state IDLE: if(!'LADSn & !'EXPSELn & !A22 & A21 & CBUSYn
& TRFQn & PRECHn
# ICPENDn & !EXPSELn & !A22 & A21 & PRECHn
& CBUSYn & TRFQn
# ITRFQn & PRECHn & !RASDELn) then ACTIVE
else IDLE;

HH W HH
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state

ACTIVE :if ( TREF
# RESET
# 1LADSn & EXPSELn & TRFQn
# 1LADSn & A22 & TRFQn
# I1LADSn & !'A21 & TRFQn
# ILADSn & !EXPSELn & !'A22 & A21
& NENEn & TRFQn)

then IDLE

else ACTIVE;

state_diagram [RASDELn]

state [1]: if (RESET) then [1]
else if (!TRFQn & PRECHn) then [@]
else [1];

state [@]: if(RESET # !PRECHn) then [1]

' else [0];

state_diagram [PRECHn, PRCHX@]
state PIDLE: if (RESET) THEN PIDLE

else if (IRASOn # !RAS1n) then PACT1
else PIDLE;

state PACT1: if (RESET) THEN PIDLE

else if (RASIn & RAS@n) then PACT2
else PACT1;

state PACT2: goto PIDLE;
state PNS1: goto PIDLE;
"Description:

RASxn is asserted only for VRAM cycles and only when no
other non-VRAM cycles are pending.

RASDELn delays RASxn activation when refresh and serial
register Toad requests are detected.

PRECHn guarantees minium RASxn precharge time.

end N19 VRM;
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intel” MEMORY INTERFACE SCHEMATICS AND PLD CODE

"TITLE DRAM Control A.
"PATTERN DCTLA@.ABL

" U98
" Reference Sheet 4 of the Schematics.
" This PLD must have a propagation delay of 1@ns or faster

module dctla@d

U98 device 'E@320'; "Intel 85C220 PLD

A31, A23, A22, A21, !S@ . pin 1,2,3,4,5;

151, 1S2, 1S3, !S4, GND pin 6,7,8,9,18;

NC@, HOLD, !'HREQ, 'RASP@, !RAS3 pin 11,12,13,14,15;

1RAS2, !RAS1, !RAS@, !KEN, VCC pin 16,17,18,19,20;

EQUATIONS

RASG = A23 & A22 & A21 & S4 & S3 & !S2 & !S1 & !S@ "start write
# A23 & A22 & A21 & 1S4 & 1S3 & S2 & !S1 & !S@ "start read
# 1S48& S3&1S28&!S18& SO "start refresh
# RASO & S4 "hold
# RASG & S3 "hold
# RASO & S2; "hold

RASI = A23 & A22 & 'A21 & S4 & S3 & !S2 & !S1 & !S@ "start write
# A23 & A22 & 'A21 & 'S4 & !S3 & S2 & IS1 & !S@ "start read
# 1S4 & S3&!S2 & !S18& SO "start refresh
# RAS1 & S4 "hold
# RAS1 & S3 "hold
# RAS1 & S2; "hold

RAS2 = A23 & 1A22 & A21 & S4 & S3 & !S2 & !S1 & !S@ "start write
# A23 & 'A22 & A21 & 1S4 & !S3 & S2 & !IS1 & !S@ "start read
# 1S4 & S3 & 1S2 & IS1& S@ "start refresh
# RAS2 & S4 "hold
# RAS2 & S3 "hold
# RAS2 & S2; "hold

RAS3 = A23 & 1A22 & !A21 & S4 & S3 & !S2 & IS1 & !S@ "start write
# A23 & 1A22 & 'A21 & !S4 & !S3 & S2 & !S1 & !S@ "start read
# 1S4 & S3&1S2&!S1& SO "start refresh
# RAS3 & S4 "hold
# RAS3 & S3 "hold
# RAS3 & S2; "hold
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intgl” MEMORY INTERFACE SCHEMATICS AND PLD CODE

RASPO = A23 & S4 & S3 & IS2 & IS1 & 150 "start write
# A23 & 1S4 8 1S3 & S2 & IS1 & 150 "start read
# 1S4 & S3&1S28& IS1 & SO "start refresh
# RASPO & S4 "hold
# RASPO & S3 "hold
# RASPO & S2; "hold

KEN = A31;

IHOLD = IHREQ;

end dctlaf

" Description:

"This PLD decodes and drives the RAS lines for the DRAMs from

"the main state machine and the N19 addresses. It drives the RAS
"lines for the 8 Mbytes on the EV-AT board.

" The addresses (A21-A23) are decoded and activated when the
"DRAM state machine starts a read or a write cycle. They are held
"active until the state machine enters the Precharge sequence
"(State 31). A1l RAS Tines are active during a refresh cycle.

n



intgl® MEMORY INTERFACE SCHEMATICS AND PLD CODE

"TITLE DRAM Control B.
"PATTERN DCTLB1.ABL

" U99

” This PLD decodes and drives numerous DRAM control signals.
" This PLD must have an external clock frequency of 58MHz or faster.

module dctlbl
U99 device 'E@320';

(@ALTERNATE

- DCLK, /EWDL, /ERDL, /S@, /S1
/82, /S3, /S4, /RTDS, GND

/OE, /RTAB, /WDL, /RDL, /WEL
/CSX, /CAE, /CAL, /RTBA, VCC

EQUATIONS
RTAB
RTBA
RDL

RTDS;
RTDS;

/ERDL * /S@
/ERDL * /S1
/ERDL * /S2
JERDL * S3 * S4;

S4 * S3 * S2 *
S4 * S3 * S2 *
S4 * S3 * /S2 *
S4 * S3 * /S2 *

/EWDL * /S@
JEWDL * /S3
JEWDL * /S4;

S4 * S3 * S2
S4 * S3 * /S2
S4 * /S3 * S2
S4 * /S3 * /S2
/S4 * S3 * S2
/S4 * S3 * /S2
/S4 * /S3 * S2
/54 * S2

/50;

+ 4+ +

WEL

+ 4+

WDL

+ +

CSX

L S B R

e e e e

CAL

S1
/1
S1
/S1

S1
S1
S1
S1
/S1
S1
/51

* /S@
* /SO
* /S@
* /S8

* /S8

* /S8

*

S@;

"Intel 85C22@ PLD

pin 1,2,3,4,5,;
pin 6,7,8,9,10;
pin 11,12,13,14,15;
pin 16,17,18,19,20;

"/RDL IS HIGH DURING
"STATE 8,16,24

”

”

"state
"state
"state
"state

"/WDL IS HIGH DURING
"STATE 9,2,4,6

"

N O W =

"state 1, 3
"state 5

"state 8, 9
"state 12,13
"state 16,17
"state 22,23
"state 24,25

"state 18,26
" all odd states.
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intgl®

CAE = S4
+ S4
+ S4
+ S4
+ /S4
+ /S4
+ /S4

end dctlbl

" Description:

CAE

CAL

CSX

WEL

WDL

RDL

* §3* S2 "states 0,1,2,3
* §3 * /S2 * S1 "states 4,5
* S3 * /S2 * /S1 * SO "state 6
* /S3 * S1 "states 8,9,12,13
* §3* S2* S1 "states 16,17
* /S3 * §2 * S1 "states 24,25
L% S2 * /S1 * S@; "state 18,26

Refer to the DRAM State Machine document for an explaination
of when these signals are to be active. .

Column Address Enable. Turns on the Column address drivers.

Column Address Latch. Latches the N1@ addresses for the DRAM
column address.

Chip Select for the DRAM array.

Write Enable Latch. Latches the BEN bits to drive the active
DRAM WEs.

Write Data Latch. For DRAM accesses only.

Read Data Latch. For DRAM accesses only.

CHANGE HISTORY:
This PLD adds the state 18 to eliminate the tCAC timing violation
“for reads immediately following writes.
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"TITLE DRAM Control C.
"PATTERN DCTLC3.ABL

" U100

" This PLD decodes and drives numerous DRAM control signals.
" This PLD must have an external count frequency of 58MHz or faster

module dctlc3
U109 device 'E@320';

@ALTERNATE

CLKA, WR, /S@, /S1, /S2

/S3, /S4, [EWDE, /ERDE, GND

/OE, /PERLTCH, /DRMEN, /DRMDIR, /CLRFRQ
/WPL, /OEX, /RAE, /CLRCYC, VCC

EQUATIONS
PERLTCH = S4 * /S3 * S2 * S1 * /S@
+ S4 * /S3 */S2 * S1* /S@;
CLRCYC = S4 * S3 * 'S2 * S1* /SO
+ S4* S3* /S2* S1*/S@
+ S4 * /S3* S2* S1* /S@
+ /S4 * S3 * S2* [/S1* S@
+ /S4 * /S3 * S2 * S1 * /S@;
OEX = S4* S3* S2* S1* S@* /WR
+ S4* S3*/S2* S1* S@ * [WR
+ S4 * /S3* S2 * Sl
+ /S4* S3* S2* S1
+ /S4 * S3 * S2* /S1* S@
+ /S4 * [S3 * S2;
RAE t= /S4 * /S3 * /S2 * S1
+ /S4 * [S3 * /S2 * /S1 * S@;
CLRFRQ := S4
+ /sS4 * S3 * S2
+ /S4 * S3 * /S2 * Sl
+ /sS4 * S3 * /S2 * [S1 * S@
+ /S4 * /S3;
WPL := S4* S3* S2* S1* /S@
+ S4* S3* S2* /S1* /S@
+ S4* S3*/S2* S1*/S@
+ S4* S3* /S2 * /S1 * /S@;

C-14

"Intel 85C22@ PLD

pin 1,2,3,4,5;
pin 6,7,8,9,10;
pin 11,12,13,14,15;
pin 16,17,18,19,28;

"state 9
"state 13

"state 1
"state 5
"state 9
"state 18
"state 25

"state @ 1if near read cycle.
"state 4 if near read cycle.
"state 8,9

"state 16,17

"state 18

"state 24,25,26,27

"state 28,29
"state 30

"ALL EXCEPT state 23

"state 1
"state 3
"state 5
"state 7
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DRMEN := S4 * S3 * /S1 "state 2,3,6,7
+ S4 * S3 * S1* /S@ "state 1,5
+ S4* /S3* S2 * S1 "state 8,9
+ /5S4 * 52 * S1 "state 16,17,24,25
+ S4* S3 * S1* S@* WR "state @,4 if write cycle.
+ EWDE
+ ERDE;
DRMDIR := S4 * /S3 * S2 * S] "state 8,9
+ S4* /S3* /S2 * S1* /S@ "state 13
+ /S4 * S2 * /S1* S@ "state 18,26
+ /S4 * S2 * S1 "state 16,17,24,25
+ ERDE;
end dctlc3

" Descriptionﬁ Refer to the DRAM State Machine document for an explaination
" of when these signals are to be active.

" PERLTCH Parity Error Latch. Latches parity errors (if any)
" during DRAM read cycles.
" CLRFRQ Clear Refresh Request. Restarts the refresh counter.

" WPL Write Parity Latch. Latches the parity bits during a
" DRAM write.

" 0EX Output Enable. For the DRAMS.

" RAE Row Address Enable. Turns on the row addresses to the
" DRAM,

" CLRCYC Clear Cycle. Clears queued cycles.

" CHANGE HISTORY

" REV 1 change to 16R6D to correct for speed path problem, and fix
" possible buffer contention.

" REV 2 add state 18 to fix tCAC violation.

" REV 3 Added state 1 to CLRCYC
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"TITLE

" Ulo4

MEMORY INTERFACE SCHEMATICS AND PLD CODE

N1@ EV-AT DRAM Control State Machine.
"PATTERN DSTAT1.PDS

" This PLD contains the state machine for the DRAM controller.
" This PLD must have an external clock frequency of 58MHz or faster.

module dstatl

U104 device 'E@320';

(@ALTERNATE

CLKA, WR, /NENE, /LADS, /CPEN
/EXPBSY, ATMBSY, /DSEL, REFREQ, GND

/OE, /NA, /S4, /S3, /S2

/S1, /S@, /DRAMBSY, /RDY, VCC

EQUATIONS
S@

S1

S2

++++++ 0 A+

+ 4+ Y4+ 4+ 4+ 4+

S4 * S3

S4 * /S3 * [S2
S4 * /S3 * /S2
/S4 * S3 * /S2
/S4 * /S3 * /S2
/S4 * /S3 * [S2
/58;

S4 * S3
S4 * /S3 * S2
/54 * S2
/S4 * [/S3 * /S2
/S4 * [S3 * [S2
/S1 * S@
S1 * /S@;

S4

S4 * /S3 * [S2

S4 * /S3 * /S2
/54 * S2
/S4 * /S3 * /S2

/EXPBSY  * /ATMBSY

/S& * [S3 * [S2

/EXPBSY  * /ATMBSY

S2 * /sl
S2 * /S8;

* F X * * %k * X F *

E

*

*

S1
S1
S1
S1
S1
S1

S1
S1
S1
S1
S1

S1
S1
S1
S1
S1

S1

* % ¥ * F * ok ok X X X

* 0k % k%

S *
S *

S@
S@
So
SO

S@
So
SO
S@
So

S@
SO
S@
S@
S@

SO

"Intel 85C228 PLD

pin 1
pin 6
pin 1
pin 1

LADS * /WR * DSEL *
LADS * /WR * DSEL *
* CPEN * /WR * DSEL *

* /LADS * /CPEN * /REFREQ

* /DSEL * /REFREQ

* LADS * WR * DSEL *

* /LADS * /CPEN * /REFREQ

* /DSEL * /REFREQ

LADS * /WR
LADS
CPEN
LADS * /WR
LADS * /WR

DSEL *
DSEL *
DSEL *
DSEL *
DSEL

* % * X *
* Ok %k *

*

* CPEN * /WR DSEL

NENE
NENE
NENE

NENE

NENE
NENE
NENE
NENE

* /REFREQ
* /REFREQ
* /REFREQ

* /REFREQ

* /REFREQ
* /REFREQ
* /REFREQ
* [REFREQ
* /REFREQ

* /REFREQ
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S@ * LADS

S3 HE S4 * S3 * §1 * * DSEL * NENE * /REFREQ
+ S4 * /S3 * /S2 * S1 * S@ * LADS * WR * DSEL * NENE * /REFREQ
+ S4* /S3* /S2 * S1 * S@* CPEN * WR * DSEL * NENE * /REFREQ
+ /S4 * /S3 * /S2 * S1 * S@ * LADS * WR * DSEL * /REFREQ
*  JEXPBSY * /ATMBSY ,
+ /S4 * /S3 * /S2 * S1* S@* CPEN * WR * DSEL * /REFREQ
*  JEXPBSY * /ATMBSY -
+ /S4 * /S3 * /S2 * S1 * S@ * REFREQ
+ S3* /S1
+ S3 * /S@;

S4 =S4 * S1* Sg* LADS * WR * DSEL * NENE * /REFREQ
+ S4* /S3*x S2* S1* SO
+ S4* /S3 * /S2 * S1* S@* CPEN * WR * DSEL * NENE * /REFREQ
+ /sS4 * S2* S1* S@
+ /S4 * /S3 * /S2 * S1 * S@ * LADS * WR * DSEL * /REFREQ
*  JEXPBSY * /ATMBSY
+ /S4 * /S3 * /S2 * S1 * S@* CPEN * WR * DSEL * /REFREQ
*  /EXPBSY = * /ATMBSY
+ S4* /S1
+ S4 * /S@;

DRAMBSY : = S4 * S3
+ S4 * /S3
+ /S4* S3* S2
+ /S4 * /S3* S2
+  CPEN
+  EXPBSY
+  ATMBSY;

NA = S4 * S3 * S1 * S@ * LADS * /WR * NENE * /REFREQ
+ S4* /S3* S2* S1* S@* LADS * /WR * NENE * /REFREQ
+ /S4 * §2* S1* S@* LADS * /WR * NENE * /REFREQ
+ /S4 * /S3 * S2 * /S1 * S@;

ENABLE NA = /EXPBSY * /ATMBSY * DRAMBSY;

RDY = S4 * S3 * S1* S@* LADS * WR * NENE * /REFREQ
+ S4* S3 * /S1* S@
+ S4 * /S3 * S1 * /S@;

ENABLE RDY = /EXPBSY * /ATMBSY * DRAMBSY;

end dstatl

" Description: This PLD is the state machine for the DRAM interface to the N14@.
- " There are 32 states some of which are redundant to minimize the number of

" product terms. This design supports a non-interleaved memory design using

" Static-column 256K x4 DRAMs for the main memory, and 1M x1 DRAMs for the

" parity bits.

"
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There are six types of cycles possible: far read, far write, near read,
near write, refresh, and idle. Near read and near write cycles imply memory
accesses with the same row address as the preceeding cycle. Refresh request
has the highest priority and will interrupt near memory cycles.

Read cycles will use full pipelining, write cycles are never pipelined.
Near read cycles will be zero wait-state when following read cycles, and
near write cycles will be zero wait-state when following write cycles.

DRAMBSY prevents other units from starting a cycle when the DRAM controller
is busy.
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TITLE DRAM Control State Machine.
PATTERN  DSTAT1.PDS

s U1g4
; This PLD contains the state machine for the DRAM controller.

CHIP DSTAT1 PAL16R6

CLKA WR /NENE /LADS /CPEN /EXPBSY ATMBSY /DSEL REFREQ GND
/OE /NNA /S4 /S3 /S2 /S1 /SO /DRAMBSY /NRDY VCC

EOUATIONS
SO := S4 * S3 * S1 * SO * LADS * /WR * DSEL * NENE * /REFREQ
+ S4 * /S3 * /S2 * S1 * SO * LADS * /WR * DSEL * NENE * /REFREQ
+ S4 * /S3 * /S2 * S1 * SO * CPEN */WR * DSEL * NENE */REFREQ
+ /S4 * S3 */S2 * S1 * SO
+ /S4 */S3 */S2 * S1 * SO */LADS */CPEN */REFREQ
+ /S4 */S3 */S2 * S1 * SO */DSEL */REFREQ
+ /S0 ‘
S1 1= S4 * S3 * S1 * SO * LADS * WR * DSEL * NENE * /REFREQ
+ S4 */S3 * S2 * S1 * SO
+ /S4 * 82 *S1*S0
+ /S4 * /S3 */S2 * S1 * SO */LADS */CPEN */REFREQ
+ /S4 * /S3 */S2 * S1 * SO */DSEL * /REFREQ
+ /S1 * S0
+ S1 */S0
S2 := S4 * S1 * SO * LADS * /WR * DSEL * NENE * /REFREQ
+ S4 */S3 */S2 * S1 * SO * LADS * DSEL * NENE * /REFREQ
+ S4 */S3 */S2 * S1 * SO * CPEN * DSEL * NENE * /REFREQ
+ /S4 * S2 * S1 * SO * LADS * /WR * DSEL * NENE * /REFREQ
+ /S4 */S3 */S2 * S1 * SO * LADS * /WR * DSEL * /REFREQ
* /EXPBSY */ATMBSY
.+ /S4 */S3 */S2 * S1 * SO * CPEN */WR * DSEL * /REFREQ
* [EXPBSY */ATMBSY
+ S2 */S1
+ S2 */S0
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S3 = S4 * S3 * S§1 * SO * LADS * DSEL * NENE * /REFREQ
+ S4 * /S3 * /S2 * S1 * SO * LADS * WR * DSEL * NENE * /REFREQ
+ S4 * /S3 * /S2 * S1 * SO * CPEN * WR * DSEL * NENE * /REFREQ
+ /S4 * /S3 * /S2 * S1 * SO * LADS * WR * DSEL * /REFREQ
* JEXPBSY * /ATMBSY
+ /S4 * /S3 * /S2 * S1 * SO * CPEN * WR * DSEL * /REFREQ
* JEXPBSY */ATMBSY
+ /S4 * /S3 * /S2 * S1 * SO * REFREQ
+ S3 * /S1
+ S3 * /SO
S4 1= S4 * S1 * SO * LADS * WR * DSEL * NENE * /REFREQ
+ S4 * /S3 * S2 * S1 * S0
+ S4 * /S3 * /S2 * S1 * SO * CPEN * WR * DSEL * NENE * /REFREQ
+ /S4 * S2 * S1 * S0
+ /S4 */S3 */S2 * S1 * SO * LADS * WR * DSEL * /REFREQ
* JEXPBSY * /ATMBSY
+ /S4 * /S3 * /S2 * S1 * SO * CPEN * WR * DSEL * /REFREQ
*  JEXPBSY* /ATMBSY
+ S4 * /S1
+ S4 * /SO
DRAMBSY := S4 * S3
+ S4 * /S3
+ /S4 * S3 * S2
+ /S4 * /S3 * S2
+ CPEN
+ EXPBSY
+ ATMBSY
NNA = S4 * S3 * S1 * SO * LADS * /WR * NENE * /REFREQ
+ S4 * /S3 * S2 * S1 * SO * LADS * /WR * NENE * /REFREQ
+ /S4 * §2 * S1 * SO * LADS * /WR * NENE * /REFREQ
+ /S4 * /S3 * S2 * /S1 * SO

NNA.TRST = /EXPBSY * /ATMBSY * DRAMBSY

NRDY =S4 * §3 * S1 * SO * LADS * WR * NENE * /REFREQ
+ S4 * §3 * /S1 * SO
+ S4 * /S3 * S1 * /SO

NRDY.TRST = /EXPBSY * /ATMBSY * DRAMBSY

; Description: This PLD is the state machine for the 1860 DRAM interface.

; There are 32 states some of which are redundant to minimize the number of
s product terms. This design supports a non-interleaved memory design using
; Static-column 256K x4 DRAMs for the main memory, and IM X1 DRAMs for the
s parity bits. .
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There are six types of cycles possible: far read, far write, near read,
near write, refresh, and idle. Near read and near write cycles imply
memory accesses with the same row address as the preceeding cycle.
Refresh request has the highest priority and will interrupt near
memory cycles. '

e we we we we

; Read cycles will use full pipelining, write cycles are never pipelined.
; Near read cycles will be zero wait-state when following read cycles, and
; near write cycles wiil be zero wait-state when following write cycles.

; DRAMBSY prevents other units from starting a cycle when the DRAM controller
; is busy.

TITLE DRAM Control A.
PATTERN  DCTLA@.PDS

;U98
; Reference Sheet 4 of the Schematics.

CHIP DCTLAO PAL16L8

A31 A23 A22 A21 /S8 /S1 /S2 /S3 /S4 GND
NCO HOLD /HREQ /RASPO /RAS3 /RAS2 /RAS1 /RAS@ /KEN VCC

EQUATIONS

RASH = A23 * A22 * A21 * S4 * S3 * /S2 * /S1 * /SO ;start write
+ A23 * A22 * A21 * /SA4 * /S3 * S2 * /S1 * /SO ;start read
+ /S4 * S3 * /S2 * /S1 * SO sstart refresh
+ RASO * S4 shold
+ RASO * S3 shold
+ RASO * S2 shold

RAS1 = A23 * A22 * /A21 * S4 * S3 * /S2 * /S1 * /SO sstart write
+ A23 * A22 * /A21 * /S4 * /S3 * S2 * /S1 * /SO ;start read
+ /S4 * S3 * /S2 * /S1 * SO ;start refresh
+ RAS1 * S$4 shold
+ RAS1 * S3 shold
+ RAS1 * S2 shold

RAS2 = A23 * /A22 * A21 * S4 * S3 * /S2 * [/S1 * /SO ;start write
+ A23 * /A22 * A21 * /S4 * /S3 * S2 * /S1 * /SO ;start read
+ /S4 * S3 * /S2 * /S1 * S@ ;start refresh
+ RAS2 * S4 shold
+ RAS2 * S3 shold
+ RAS2 * S2 shold

C-21



intel” MEMORY INTERFACE SCHEMATICS AND PLD CODE

RAS3 = A23 * /A22 * [A21 * S4 * S3 */S2 * /S1 * /SO ;start write
+ A23 * [A22 * [/A21 * /SA4 * /S3 * S2 * /S1 * /SO  ;start read
+ /S4 * S3 * /S2 * /S1 * SO ;start refresh
+ RAS3 * S4 ;hold
+ RAS3 * S3 : ;hold
+ RAS3 * S2 shold

RASPO = A23 * S4 * S3 * /S2 * /S1 * /SO ;start write
+ A23 * /S4 * /S3.* S2 * /S1 * /SO sstart read
+ /S4 * S3 * /S2 * /S1 * SO ;start refresh
+ RASPg * S4 shold
+ RASPZ * S3 ;hold
+ RASPg * S2 shold

KEN = A31

/HOLD = /HREQ

sDescription:

: This PLD decodes and drives the RAS lines for the DRAMs from
; the main state machine and the i860 addresses. It drives the RAS
H lines for the 8 Mbytes on the board.

The addresses (A21-A23) are decoded and activated when the

DRAM state machine starts a read or a write cycle. They are held
active until ths state machine enters the Precharge sequence
(State 31). A11 RAS lines are active during a refresh cycle.

e we. ws we we we

This PLD must be "D" speed.

TITLE DRAM Control B.
PATTERN  DCTLB1.PDS

s U99
s This PLD decodes and drives numerous DRAM control signals.
s Must be "D" speed.

CHIP DCTLB1 PAL16R6

DCLK /EWDL /ERDL /SO /S1 /S2 /S3 /S4 /RTDS GND
/OE /RTAB /WDL /RDL /WEL /CSX /CAE /CAL /RTBA VCC

EQUATIONS
RTAB = RTDS
RTBA = RTDS
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RDL

WEL

WDL

CSX

CAL
CAE

we we we we we

we we we we we we ue

we we we we we we we

:= /ERDL * /SO

+ /ERDL * /S1

+ /ERDL * /S2

+ /JERDL * S3 * S4

t= S4 * S3 * S2 * S1 * /S0
+ S4 * S3 * S2 * /S1 * /SO
+ S4 * S3 * /S2 * S1 * /SO
+ S4 * S3 * /S2 * /S1 * /SO

:= JEWDL * /SO
+ JEWDL * /S3
+ /JEWDL * /S4

t= S4 * S3 * S2 * /SO

S4 * §3 * /S2 * S1 * /SO
S4 * /S3 *'S2 * S1

S4 * /S3 * /S2 * S1

/S4 * S3 * S2 * S1

/S4 * S3 * /S2 * /S1

/S4 * /S3 * S2 * S1

/54 * 82 * /S1 * S0

= /SO

1= S4 * S3 * S2

S4 * S3 * /S2 * Sl

S4 * S3 * /S2 * /S1 * SO
S4 * /S3 * S1

/S4 * S3 * S2 * S1

/S4 * /S3 * S2 * Sl

/54 * S2 * /S1 * SO

+ 4+ o+ o+

++ 4+ + + +

Description:

CAE Column Address Enable. Turns on the Column address drivers.

CAL Column Address Latch. Latches the N10 addresses for the DRAM

column address.

CSX Chip Select for the DRAM array.

WEL Write Enable Latch. Latches the BEN bits to drive the active

DRAM WEs.

s/RDL IS HIGH DURING
sSTATE 8,16,24
;state 1

;state 3

;state 5

;state 7

;/WDL IS HIGH DURING
;STATE #,2,4,6

;state 1, 3
;state 5
sstate 8, 9
;state 12,13
;state 16,17
;state 22,23
;state 24,25
;state 18,26

;all odd states.

;states 4,1,2,3
;states 4,5
sstate 6

;states 8,9,12,13
;states 16,17
;states 24,25
;state 18,26

WDL Write Data Latch. For DRAM accesses only.

RDL Read Data Latch. For DRAM accesses only.
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s This PLD decodes and drives numerous DRAM control signals.

TITLE DRAM Control C.
PATTERN DCTLC2.PDS

s U100

3 Must be "D" speed.

CHIP DCTLC2 PAL16R6

CLKA WR /SO /S1 /S2 /S3 /SA /EWDE /ERDE GND
/OE /PERLTCH /DRMEN /DRMDIR /CLRFRQ /WPL /OEX /RAE /CLRCYC VCC

EQUATIO
PERLTCH

NS
= S4 * /S3 * S2 * S1 * /SO

+ S4 * /S3 * /S2 * S1 * /SO

CLRCYC

= S4 * $3 *S2 * S1 * /SO

+ S4 * S3 * /S2 * S1 * /SO

+ S4 * /S3 * S2 * S1 * /SO

+ /S4 * S3 * S2 * /S1 * SO
<+ /S& * [S3 * S2 * S1 * /SO

OEX : =

+ 4+ + +

RAE

+ /S4 * /S3 * /S2 * /S1 * SO

CLRFRQ

+ 4+ +

WPL :

+ 4+ + 0

DRMEN: =

++ o+t

DRMDIR
+
+

S4 * S3 * S2 * S1, SO * /WR

S4 * /S3 * S2 * S1

/S4 * S3 * S2 * S1

/54 * S3 * S2 * /S1 * SO
/S4 * /S3 * S2

/S4 * /S3 */S2 * S1

:= S4

/S4 * S3 * S2

/S4 * S3 * /S2 * S1

/S4 * S3 * /S2 * [S1 * S@
/S4 * /S3

S4 * S3 * S2 * S1 * /SO
S4 * S3 * S2 * /S1 * /SO
S4 * §3 * /S2 * S1 * /SO
S4 * S3 * /S2 * /S1 * /SO
S4 * S3 */S1

S4 * S3 * S1 * /S0

S4 * /S3 * S2 * S1

/sS4 * 52 * S1

S4 * §3 *S1* S0 *WR
EWDE

ERDE

1= S4 * /S3 * §2 * S1
S4 * /S3 * /S2 * S1 * /SO
/54 *S§2 * /S1* S0

S4 * §3 * /S2 * S1 * SO * /WR

;state 9
;state 13

sstate 1
sstate 5
sstate 9
;state 18
;state 25

;state @ if near read cycle.
;state 4 if near read cycle.
;state 8,9

;state 16,17

;state 18

;state 24,25,26,27

;state 28,29
;state 30

sALL EXCEPT state 23

;state 1
;state 3
;state 5
sstate 7

;state 2,3,6,7

;state 1,5

;state 8,9

;state 16,17,24,25

;state 8,4 if write cycle.

;state 8,9
;state 13
;state 18,26
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+ /54 * §2 * S1 ;state 16,17,24,25
+ ERDE

3 Description:

5 PERLTCH Parity Error Latch. Latches parity errors (if any)

5 during DRAM read cycles.

H CLRFRQ Clear Refresh Request. Restarts the refresh counter.
; WPL Write Parity Latch. Latches the parity bits during a
H DRAM write.

H 0EX Qutput Enable. For the DRAMS.

5 RAE Row Address Enable. Turns on the row addresses to the
5 DRAM,

5 CLRCYC Clear Cycle. Clears queued cycles.

TITLE DRAM Control D.

PATTERN DCTLD@.PDS

sThis PLD decodes and drives the DRAM Write Enable signals.
;Can be "B" speed.

CHIP DCTLDO PAL2@R8

/WEL /CPEN /DSEL /WR /BEO /BE1 /BE2 /BE3 /BE4 /BE5 /BE6 GND
/OE /BE7 /WE7 /WE6 /WE5 /WE4 /WE3 /WE2 /WE1 /WEO /LADS VCC

EOUATIONS

WE7 := LADS * DSEL * /WR * BE7
+ CPEN * DSEL * /WR * BE7
WE6 := LADS * DSEL * /WR * BE6
+ CPEN * DSEL * /WR * BE6
WE5 := LADS * DSEL * /WR * BE5
+ CPEN * DSEL * /WR * BE5
WE4 := LADS * DSEL * /WR * BE4
+ CPEN * DSEL * /WR * BE4
WE3 := LADS * DSEL * /WR * BE3
+ CPEN * DSEL * /WR * BE3
WE2  := LADS * DSEL * /WR * BE2
+ CPEN * DSEL * /WR * BE2
WEl  := LADS * DSEL * /WR * BEl
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+ CPEN * DSEL * /WR * BE1

WEO  := LADS * DSEL * /WR * BEO
+ CPEN * DSEL * /WR * BEO

s Description: This PLD samples the BEN lines during write cycles and
; drives the DRAM Write Enables directly.

.
’
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Suite 1

Islandia 11722

10-: 6
FAX: (51 6) 348-7939

tintel Corp.

Westage Business Center
Bldg. 300, Route 9
Fishkill 12524

Tel: (914) 897-3860

FAX: (914) 897-3125

NORTH CAROLINA

tintel Corp.

5800 Executive Center Dr.
Suite 105

Charlotte 28212

Tel: (704) 568-8966

FAX: (704) 535-2236

Intel Corp.

5540 Cenlervnew Dr.

Suite 2

Raleigh 27606

Tel: (919) 851-9537

FAX: (919) 851-8974

OHIO

tintel Corp.*

3401 Park Center Drive
Suite 220

Dayton 45414

Tel: (513) 890-5350
TWX: 810-450-2528
FAX: (513) 890-8658

tintel Corp.*

25700 Science Park Dr.

Suite 100

Beachwood 44122

Tel: (216) 464-2736
810-427-9298

FAX: (804) 282-0673

OKLAHOMA

Intel Corp.
6801 N. Broadway
Suite 115

Oklahoma City 73162
Tel: (405) 848-8086
FAX: (405) 840-9819

OREGON
Tintel Corp.

15254 N.W. Greenbrier Parkway

Building B
Beaverton 97005
Tel: (503) 645-8051
0-467-8741
FAX: (503) 645-8181

PENNSYLVANIA

tintel Corp.*

455 Pennsylvania Avenue
Suite 230

Fort Washington 19034

FAX: (215) 641-0785

tintel Corp.*

400 Penn Center Blvd.
Suite 610

Pittsburgh 15235

Tel: (412) 823-4970
FAX: (412) 829-7578

PUERTO RICO

tintel Corp.

South Industrial Park
P.0. Box 910

Las Piedras 00671
Tel: (809) 733-8616

TEXAS
Intel Corp.

8911 Capital of Texas Hwy.

Austin 78759
Tel: (512) 794-8086
FAX: (512) 338-9335

tintel Corp.*

12000 Ford Road
Suite 400

Dallas 75234

Tel: (214) 241-8087
FAX: (214) 484-1180

tintel Corp.*

7322 S.W. Freeway
Suite 1490
Houston 77074
Tel: (713) 988-8086

TWX: 910-881-2490
FAX: (713) 988-3660
UTAH

tintel Corp.

428 East 6400 South
Sunte 104

Yot (801)263 -8051
FAX: (801) 268-1457

VIRGINIA

tintel Corp.

1504 Santa Rosa Road
Suite 108

Richmond 23288

Tel: (804) 282-5668
FAX: (216) 464-2270

WASHINGTON

tintel Corp.

155 108th Avenue N.E.
Suite 386

Bellevue 98004

Tel: (206) 453-8086
TWX: 910-443-3002
FAX: (206) 451-9556
Intel Corp.

408 N. Mullan Road
Suite 1

Sp okane 99206

o (509) 928-8086
FAX: (509) 928-9467

WISCONSIN

. Intel G

v

330 S Executlve Dr.
Suite

Brookﬁeld 53005
Tel: (414) 784-8087
FAX: (414) 796-2115

CANADA

BRITISH COLUMBIA

Intel Semiconductor of
Canada, Ltd.

4585 Canada Way
Suite 202

Burnaby V5G 4

Tel: (604) 298»0387
FAX: (604) 298-8234

ONTARIO

tintel Semiconductor of
Canada, Ltd.

2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Tel: (613) 829-9714
FAX: (613) 820-5936
tintel Semiconductor of
Canada, Ltd.
190 Attwell Drive

00
MSW 6H8
Tel: (416) 675-2105
FAX: (416) 675-2438
QUEBEC

Intel Semiconductor of
Canada, Ltd.

620 St. Jean Boulevard
Pointe Claire HOR 3K2
Tel: (514} 694-9130
FAX: 514-694-0064



in

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805

Tel: (205) 837-6955

tHamilton/Avnet Electronics
4940 Research Drive
Huntsville 35805

Tel: (205) 837-7210

TWX: 810-726-2162

Pioneer/Technologies Group, Inc.

4825 University Square
Huntsville 35805

Tel: (205) 837-9300
TWX: 810-726-2197

ARIZONA

‘tHamilton/Avnet Electronics
505 S. Madison Drive
Tempe 85281

Tel: (602) 231-5140

TWX: 910-950-0077

Hamilton/Avnet Electronics
30 South McKiemy
Chandler 85226

Tel: (602) 961-6669

TWX: 910-950-0077

Arrow Electronics, Inc.
4134 E. Wood Street
Phoenix 85040

Tel: (602) 437-0750
TWX: 910-951-1550

Wyle Distribution Group
17855 N. Black Canyon Hwy.
Phoenix 85023

Tel: (602) 249-2232

TWX: 910-951-4282

CALIFORNIA

Arrow Electronics, Inc.
10824 Hope Street
Cypress 90

Tel: (714) 220 6300

Arrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311

Tel: (213) 701-7500
TWX: 910-493-2086

tArow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086

Tel: (408) 745-6600
TWX: 910-339-9371

Arrow Electronics, Inc.
9511 Ridgehaven Court
San Diego 92123

Tel: (619) 565-4800
TWX: 8!

tArrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680

Tel: (714) 838-5422
TWX: 910-595-2860

tAvnet Electronics
350 McCormlck Avenue
9262

TWX: 910-595-1928

‘tHamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086

Tel: (408) 743-3300

TWX: 910-339-9332

‘tHamilton/Avnet Electronics
4545 Ridgeview Avenue
San Diego 92123

Tel: (619) 571-7500

TWX: 910-595-2638

‘tHamilton/Avnet Electronics
9650 Desoto Avenue
Chatsworth 91311

Tel: (818) 700-1161

DOMESTIC DISTRIBUTORS

THamllton Electro Sales
0950 W. Washington Blvd.

Cu!ver City 20230

Tel: (213) 558-2458

TWX: 910-340-6364

Hamilton Electro Sales
1361B West 190th Street
Gardena 90248

Tel: (213) 217-6700

‘tHamilton/Avnet Electronics
3002 ‘G’ Street

Ontario 91761

Tel: (714) 989-9411

tAvnet Electronics
20501 Plummer
Chatsworth 91351
Tel: (213) 700-6271
TWX: 910-494-2207

tHamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626

Tel: (714) 641-4150
TWX: 910-595-2638

tHamilton/Avnet Electronics
4103 Northgate Blvd.
Sacramento 95834

Tel: (916) 920-3150

Wyle Distribution Group
124 Maryland Street
4

g
Tel: (213) 322-8100

Wyle Distribution Group
7382 Lampson Ave.
Garden Grove 92641

Tel: (714) 891-1717

TWX: 910-348-7140 or 7111

Wyle Distribution Group
11151 Sun Center Drive
Rancho Cordova 95670
Tel: (916) 638-5282

TWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123

Tel: (619) 565-9171
TWX: 910-335-1590

1Wyle Distribution Group
Bowers Avenue

Santa Clara 95051

Tel: (408) 727-2500

TWX: 910-338-0296

1Wyle Distribution Group

17872 Cowan Avenue

Irvine 92714

Tel: (714) 863-9953
TWX: 910-595-1572

Wyle Distribution Group
26677 W. Agoura Rd.
Calabasas 91302

Tel: (818) 880-9000
TWX: 372-0232

COLORADO

Arrow Electronics, Inc.
7060 South Tucson Way
Englewood 80112

Tel: (303) 790-4444

tHamilton/Avnet Electronics
8765 E. Orchard Road
Suite 708

Englewood 80111

Tel: (303) 740-1017

TWX: 910-935-0787

tWyle Distribution Group
451 E. 124th Avenue
Thornton 80241

Tel: (303) 457-9953
TWX: 910-936-0770

‘tMicrocomputer System Technical Distributor Center

CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road
Wallingford 06492

Tel: (203) 265-7741
TWX: 710-476-0162

Hamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive

Danbury 06810

Tel: (203) 797-2800

TWX: 710-456-9974

tPioneer Electronics
112 Main Street
Norwalk 06851

Tel: (203) 853-1515
TWX: 710-468-3373

FLORIDA

tArrow Electronics, Inc.
400 Fairway Drive
Suite 102

Deerfield Beach 33441
Tel: (305) 429-8200
TWX: 510-955-9456

Arrow Electronics, Inc.
37 Skyline Drive

Suite 3101

Lake Marv 32746

Tel: (407) 323-0252
TWX: 510-959-6337

‘tHamilton/Avnet Electronics
6801 N.W. 15th Way

Ft. Lauderdale 33309

Tel: (305) 971-2900

TWX: 510-956-3097

tHamilton/Avnet Electronics
3197 Tech Drive North

St. Petersburg 33702

Tel: (813) 576-3930

TWX: 810-863-0374

‘tHamilton/Avnet Electronics
6947 University Boulevard
Winter Park 32792

Tel: (305) 628-3888

TWX: 810-853-0322

tPioneer/Te echnologles Group, Inc.

337 S. Lake B

Alta Monte Sprmgs 32701
Tel: (407) 834-9090
TWX: 810-853-0284

Pioneer/Technologies Group, Inc.
674 S. Military Trail

Deerfield Beach 33442

Tel: (305) 428-8877

TWX: 510-955-9653

GEORGIA

tArrow Electronics, Inc.
3155 Northwoods Parkway
Suite A

Norcross 30071

Tel: (404) 449-8252

TWX: 810-766-0439

‘tHamilton/Avnet Electronics
5825 D Peachtree Corners
Norcross 30092

Tel: (404) 447-7500

TWX: 810-766-0432

Pioneer/Technologies Group, Inc.
3100 F Northwoods Place
Norcross 30071

Tel: (404) 448-1711

TWX: 810-766-4515

ILLINOIS

Arrow Electronics, Inc.
1140 W. Thorndale
Itasca 60143

Tel: (312) 250-0500
TWX: 312-250-0916

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106

Tel: (312) 860-7780

TWX: 910-227-0060

MTI Systems Sales
1100 W. Thorndale
Itasca 60143

Tel: (312) 773-2300

1Pioneer Electronics
1551 Carmen Drive

Elk Grove Village 60007
Tel: (312) 437-9680
TWX: 910-222-1834

INDIANA

TArrow Electronics, Inc.
2495 Directors Row, Suite H
Indianapolis 46241

Tel: (317) 243-9353

TWX: 810-341-3119

Hamllton/Avnet Electronics
485 Gradle Drive

Carmel 46032

Tel: (317) 844-9333

TWX: 810-260-3966

tPioneer Electronics
6408 Castleplace Drive
Indianapolis 46250
Tel: (317) 849-7300
TWX: 810-260-1794

IOWA

Hamilton/Avnet Electronics
915 33rd Avenue, S.W.
Cedar Rapids 52404

Tel: (319) 362-4757

KANSAS

Airow Electronics

8208 Melrose Dr., Suite 210
Lenexa 66214

Tel: (913) 541-9542

‘tHamilton/Avnet Electronics
9219 Quivera Road
Overland Park 66215
Tel: (913) 888-8900

WX: 910-743-0005

Pioneer/Tec Gr.
10551 Lockman Rd.
Lenexa 66215

Tel: (913) 492-0500

KENTUCKY

Hamilton/Avnet Electronics
1051 D. Newton Park
Lexington 40511

Tel: (606) 259-1475

MARYLAND

Arrow Electronics, Inc.
8300 Guilford Drive
Suite H, River Center
Columbia 21046

Tel: (301) 995-0003
TWX: 710-236-9005

Hamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia 21045

Tel: (301) 995-3500

TWX: 710-862-1861

tMesa Technology Corp.

9720 Patuxent Woods Dr.

Columbia 21046

Tel: (301) 290-8150
TWX: 710-828-9702

tPioneer/Technologies Group, Inc.

9100 Gaither Road

Gaithersburg 20877
Tel: (301) 921-0660
TWX: 710-828-0545

Arrow Electronics, Inc.
7524 Standish Place
Rockville 20855

Tel: 301-424-0244

MASSACHUSETTS

Arrow Electronics, Inc.
25 Upton Dr.
Wilmington 01887
Tel: (617) 935-5134

‘tHamilton/Avnet Electronics
10D Centennial Drive
Peabody 01960

Tel: (617) 531-7430

TWX: 710-393-0382

MTI Systems Sales
83 Cambridge St.
Burlington 01813

Pioneer Electronics
44 Hartwell Avenue
Lexington 02173

Tel: (617) 861-9200
TWX: 710-326-6617

MICHIGAN

Arrow Electronics, Inc.
755 Phoenix Drive
Ann Arbor 48104

Tel: (313) 971-8220
TWX: 810-223-6020

Hamlllon/Avnel Electronics
2215 29th Street S.E.
Space A5

Grand Rapids 49508

Tel: (616) 243-8805

TWX: 810-274-6921

Pioneer Electronics
4504 Broadmoor S.E.
Grand Rapids 49508
FAX: 616-698-1831

tHamilton/Avnet Electronics
32487 Schoolcraft Road
Livonia 48150

Tel: (313) 522-4700

TWX: 810-282-8775

tPioneer/Michigan
13485 Stamford
Livonia 48150

Tel: (313) 525-1800
TWX: 810-242-3271

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street

Edina 55435

Tel: (612) 830-1800

TWX: 910-576-3125
‘tHamilton/Avnet Electronics
12400 Whitewater Drive
Minnetonka 55434

Tel: (612) 932-0600

tPioneer Electronics
7625 Golden Triange Dr.
Suite G

Eden Prairi 55343

Tel: (612) 944-3355

MISSOURI

TArrow Electronics, Inc.
2380 Schuetz

St. Louis 63141

Tel: (314) 567-6888
TWX: 910-764-0882

‘tHamilton/Avnet Electronics
13743 Shoreline Court
Earth City 63045

Tel: (314) 344-1200

TWX: 910-762-0684

NEW HAMPSHIRE

tArrow Electronics, Inc.

3 Perimeter Road
Manchester 03103

Tel: (603) 668-6968

TWX: 710-220-1684
tHamilton/Avnet Electronics
444 E. Industrial Drive
Manchester 03103

Tel: (603) 624-9400
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NEW JERSEY

TArrow Electronics, Inc.
Four East Stow Road

Mamon 08053
Tel: (609) 596-8000
TWX: 710-897-0829

tArrow Electronics
6 Century Drive
Parsipanny 07054
Tel: (201) 538-0900

‘tHamilton/Avnet Electronics
1 Keystone Ave., Bldg. 36
Cherry Hill 08003

Tel: (609) 424-0110

TWX: 710-940-0262

‘tHamilton/Avnet Electronics
10 Industrial

Fairfield 07006

Tel: (201) 575-5300

TWX: 710-734-4388

MTI Systems Sales
37 Kulick Rd.

Fairfield 07006

Tel: (201) 227-5552

tPioneer Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 575-3510
TWX: 710-734-4382

NEW MEXICO

Alliance Electronics Inc.
11030 Cochiti S.E.
Albuquerque 87123
Tel: (505) 292-3360
TWX: 910-989-1151

Hamilton/Avnet Electronics
2524 Baylor Drive S.E.
Albuquerque 87106

Tel: (505) 765-1500

TWX: 910-989-0614

NEW YORK

TArrow Electronics, Inc.
3375 Brighton Henrietta
Townline Rd.

Rochester 14623

Tel: (716) 275-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
TWX: 510-227-6623

Hamilton/Avnet

933 Motor Parkway
Hauppauge 11788

Tel: (516) 231-9800
TWX: 510-224-6166

‘tHamilton/Avnet Electronics
333 Metro Park

Rochester 14623

Tel: (716) 475-9130

TWKX: 510-253-5470

‘tHamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206

Tel: (315) 437-0288

TWX: 710-541-1560

TMTI Systems Sales

38 Harbor Park Drive
Port Washington 11050
Tel: (516) 621-6200

DOMESTIC DISTRIBUTORS (Contd.)

1Pioneer Electronics
68 Corporate Drive
Binghamton 13904
Tel: (607) 722-9300
TWX: 510-252-0893

Pioneer Electronics
40 Oser Avenue
Hauppauge 11787
Tel: (516) 231-9200

tPioneer Electronics

60 Crossway Park West
Woodbury, Long Island 11797
Tel: (516) 921-8700

TWX: 510-221-2184

tPioneer Electronics
840 Fairport Park
Fairport 14450

Tel: (716) 381-7070
TWX: 510-253-7001

NORTH CAROLINA

tArrow Electronics, Inc.
5240 Greensdairy Road
Raleigh 27604

Tel: (919) 876-3132
TWX: 510-928-1856

‘tHamilton/Avnet Electronics
3510 Spring Forest Drive
Raleigh 27604

Tel: (919) 878-0819

TWX: 510-928-1836

Pioneer/Technologies Group, Inc.

9801 A-Southern Pine Blivd.
Charlotte 28210

Tel: (919) 527-8188

TWX: 810-621-0366

OHIO

Arrow Electronics, Inc.
7620 McEwen Road
Centerville 45459

Tel: (513) 435-5563
TWX: 810-459-1611

TArrow Electronics, Inc.
6238 Cochran Road
Solon 44139

Tel: (216) 248-3990
TWX: 810-427-9409

tHamilton/Avnet Electronics
954 Senate Drive

Dayton 45459

Tel: (513) 439-6733

TWX: 810-450-2531

Hamilton/Avnet Electronics
4588 Emery Industrial Pkwy.
Warrensville Heights 44128
Tel: (216) 349-5100

TWX: 810-427-9452

tHamilton/Avnet Electronics
777 Brooksedge Blvd.
Westerville 43081

Tel: (614) 882-7004

tPioneer Electronics
4433 Interpoint Boulevard
Dayton 45424

Tel: (513) 236-9900

TWX: 810-459-1622

tPioneer Electronics
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587-3600
TWX: 810-422-2211

OKLAHOMA

Arrow Electronics, Inc.
1211 E. 51st St., Suite 101
Tulsa 74146

Tel: (915) 252-7537

tMicrocomputer System Technical Distributor Center

‘tHamilton/Avnet Electronics
12121 E. 51st St., Suite 102A
Tulsa 74146

Tel: (918) 252-7297

OREGON

tAlmac Electronics Corp.
1885 N.W. 168th Place
Beaverton 97005

Tel: (503) 629-8090
TWX: 910-467-8746

‘THamilton/Avnet Electronics
6024 S.W. Jean Road

Bldg. C, Suite 10

Lake Oswego 97034

Tel: (503) 635-7848

TWX: 910-455-8179

Wyle Distribution Group

5250 N.E. Elam Young Parkway
Suite 600

Hillsboro 97124

Tel: (503) 640-6000

TWX: 910-460-2203

PENNSYLVANIA

Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856-7000

Hamilton/Avnet Electronics
2800 Liberty Ave.
Pittsburgh 15238

Tel: (412) 281-4150

Pioneer Electronics
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782-2300
TWX: 710-795-3122

tPioneer/Technologies Group, Inc.

Delaware Valley
261 Gibralter Road
Horsham 19044
Tel: (215) 674-4000
TWX: 510-665-6778

TEXAS

TArrow Electronics, Inc.
3220 Commander Drive
Carroliton 75006

Tel: (214) 380-6464
TWX: 910-860-5377

TArrow Electronics, Inc.
10899 Kinghurst

Suite 100

Houston 77099

Tel: (713) 530-4700
TWX: 910-880-4439

tArrow Electronics, Inc.
2227 W. Braker Lane
Austin 78758

Tel: (512) 835-4180
TWX: 910-874-1348

THamllton/Avnet Electronics
Braker Lane

Austm 78758

Tel: (512) 837-8911

TWX: 910-874-1319

‘tHamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving 75038

Tel: (214) 550-6111

TWX: 910-860-5929

tHamilton/Avnet Electronics
4850 Wright Rd., Suite 190
Stafford 77477

Tel: (713) 240-7733

TWX: 910-881-5523

tPioneer Electronics
18260 Kramer
Austin 78758

Tel: (512) 835-4000
TWX: 910-874-1323

tPioneer Electronics

Tel: (214) 386-7300
TWX: 910-850-5563

tPioneer Electronics
5853 Point West Drive
Houston 77036

Tel: (713) 988-5555
TWX: 910-881-1606

Wyle Distribution Group
1810 Greenville Avenue
Richardson 75081

Tel: (214) 235-9953

UTAH

Arrow Electronics
1946 Parkway Bivd.
Salt Lake City 84119
Tel: (801) 973-6913

tHamilton/Avnet Electronics
1585 West 2100 South

Salt Lake City 84119

Tel: (801) 972-2800

TWX: 910-925-4018

Wyle Distribution Group
1325 West 2200 South
Suite E

West Valley 84119

Tel: (801) 974-9953

"~ WASHINGTON

tAlmac Electronics Corp.
14360 S.E. Eastgate Way
Bellevue 98007

Tel: (206) 643-9992
TWX: 910-444-2067

Arrow Electronics, Inc.
19540 68th Ave. South
Kent 98032

Tel: (206) 575-4420

‘tHamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005

Tel: (206) 643-3950

TWX: 910-443-2469

Wyle Distribution Group
15385 N.E. 90th Street
Redmond 98052

Tel: (206) ee1 1150

WISCONSIN

Arrow Electronics, Inc.

200 N. Patrick Bivd., Ste. 100
Brookfield 53005

Tel: (414) 767-6600

TWX: 910-262-1193

Hamilton/Avnet Electronics
2975 Moorland Road

New Berlin 53151

Tel: (414) 784-4510

TWX: 910-262-1182

CANADA

ALBERTA

Hamilton/Avnet Electronics
2816 21st Street N.E.
Calgary T2E 623

Tel: (403) 230-3586

TWX: 03-827-642

Zentronics

Bay No. 1

3300 14th Avenue N.E.
Calgary T2A

Tel: (403) 272- 1021

BRITISH COLUMBIA

tHamilton/Avnet Electronics
105-2550 Boundary
Burmalay V5M 3Z3
Tel: (604) 437-6667

Zentronics

108-11400 Bridgeport Road
Richmond VéX 1T2

Tel: (604) 273-5575

TWX: 04-5077-89

MANITOBA

Zentronics

60-1313 Border Unit 60
Winnipeg R3H 0X4

Tel: (204) 694-1957

ONTARIO

Arrow Electronics, Inc.
36 Antares Dr.
Nepean K2E 7W5

Tel: (613) 226-6903

Arrow Electronics, Inc.
1093 Meyerside
Mississauga L5T 1M4
Tel: (416) 673-7769
TWX: 06-218213

‘tHamilton/Avnet Electronics
6845 Rexwood Road

Units 3-4-5

Mississauga L4T 1R2

Tel: (416) 677-7432

TWX: 610-492-8867

Hamilton/Avnet Electronics
6845 Rexwood Rd., Unit 6
Mississauga L4T 1R2

Tel: (416) 277-0484

tHamilton/Avnet Electronics
190 Colonnade Road South
Nepean K2E 7L5

Tel: (613) 226-1700

TWX: 05-349-71
tZentronics

8 Tilbury Court -
Brampton L6T 3T4

Tel: (416) 451-9600

TWX: 06-976-78

1Zentronics

155 Colonnade Road
Unit 1

Nepean K2E 7K1
Tel: (613) 226-8340

Zentronics
60-1313 Border St.
Winnipeg R3H 014
Tel: (204) 694-7957

QUEBEC

tArrow Electronics Inc.
4050 Jean Talon Quest
Montreal H4P 1W1

Tel: (514) 735-5511
TWX: 05-25590

Arrow Electronics, Inc.

500 Avenue St-Jean Baptiste
Suite 280

Quebec G2E 5R9

Tel: (418) 871-7500

FAX: 418-871-6816

Hamilton/Avnet Electronics
2795 Halpern

St. Laurent H2E 7K1

Tel: (514) 335-1000

TWX: 610-421-3731

Zentronics

817 McCaffrey

St. Laurent H4T 1M3
Tel: (514) 737-9700
TWX: 05-827-535
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DENMARK

Intel Denmark A/S

Glentevej 61, 3rd Floor
2400 Copenha en NV
Tel (45) (31) 1980 33

FINLAND

Intel Finland OY
Ruosilantie 2

00390 Helsinki

Tel: (358) 0 544 644
TLX: 123332

FRANCE

Intel Corporation S., A R L.

1, Rue Edison-BP 3

78054 St. Quenun-en-Yvellnes

Cedex
Tel: (33) (1) 30 57 70 00
TLX: 699016

EUROPEAN SALES OFFICES

WEST GERMANY

Intel Semiconductor GmbH*
Dornacher Strasse 1

8016 Feldkwchen bel Muenchen
Tel (49) 059

Intel Semiconductor GmbH
Hohenzollem Strasse 5
3000 Han

Tel (49) 0511/344081

Intel Semiconductor GmbH
Abraham Lincoln Strasse 16-18
6200 Wiesbaden

Tel: (49) 06121/7605-0

TLX: 4-186183

Intel Semiconductor GmbH
Zettachring 10A

7000 Stuttgart 80

Tel: (49) 0711[7287 280
TLX: 7-2548:

ISRAEL

Intel Semiconductor Ltd.*

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 6

Tel (972) 03 498080

ITALY

Intel Corporation Italia S.p.A.*
Milanofiori Palazzo E

20090 Assago

Milano

Tel: (39) (02) 89200950
TLX: 3

NETHERLANDS

Intel Semlconductor B.V.*
Postbus 84

3099 CC Rotterdam

Tel: (31) 10.407.11.11
TLX: 22283

NORWAY

Intel Norway A/S
Hvamvelen 4 PO Box 92
2013 S|

Tel (47) (6) 842 420

SPAIN

Intel Iberia S.A.
Zurbaran, 28

28010 Madrid

Tel: (34) (1) 308.25.52
TLX: 46880

SWEDEN

Intel Sweden A.B.*
Dalvagen 24

171 36 Solna

Tel: (46) 8 734 01 00
TLX: 12261

SWITZERLAND

Intel Semiconductor A.G.
Zuerichstrasse

8185 Winkel-Rueti bei Zuerich
Tel: (41) 01/860 62 62

TLX: 825977

UNITED KINGDOM

Inte! Corporahon (U.K.) Ltd.*
Pipers Wa

Swindon, Wiltshire SN3 1RJ
Tel: (44) (0793) 696000
TLX: 444447/8

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Electronics G.m.b.H.
Rotenmuehlgasse 26

1120 Wiei

;el (43) (0222) 83 56 46

BELGIUM

Inelco Belgium S.A.

Av. des Croix de Guerre 94
1120 Bruxelles
Oorlogskruisenlaan, 94
1120 Brussel

Tel: (32) (02) 216 01 60
TLX: 64475 or 22090

DENMARK

ITT-Multikomponent
Naverland 29

2600 Glostrup

Tel: (45) (0) 2 45 66 45
TLX: 33 355

FINLAND

QY Fintronic AB
Melkonkatu 24A
00210 Helsinki

Tel: (358) (0) 6926022
TLX: 124224

FRANCE

Almex
Zone industrielle d’Antony
48, rue de I'Aubepine

BP 102

92164 Antony cedex
Tel: (33) (1) 46 66 21 12
TLX: 250067

Jermyn-Generim

60, rue des Gemeaux
Silic 580

94653 Rungis cedex
Tel: (33) (1) 49 78 49 78
TLX: 261585

Metrologie

Tour d'Asnieres

4, av. Laurent-Cely
92606 Asnieres Cedex
Tel: (33) (1) 47 90 62 40
TLX: 611448

*Field Application Location

Tekelec-Airtronic

Cite des Bruyeres

Rue Carle Vernet BP2
92310 Sev!

;el (33) (1) 45 347535

WEST GERMANY

Electronic 2000 AG
Stahlgruberring 12
8000 Muenchen 82
Tel: (49) 089/42001-0
TLX: 522561

T Mulnkomponem GmbH
Postfach

Bahnhotstvasse 44

7141 Moeglingen

Tel: (49) 07141/4879
TLX: 7264472

Jermyn GmbH

Im Dachsstueck 9
6250 Limburg

Tel: (49) 06431/508-0
TLX: 415257-0

Metrologie GmbH
Meglingerstrasse 49
8000 Muenchen 71
Tel: (49) 089/78042-0
TLX: 5213189

Proelectron Vertriebs GmbH
Max Planck Strasse 1-3
6072 Dreicich

Tel (49) 06103130434-3

IRELAND

Micro Marketing Ltd.
Glenageary Office Park
Glenageary

Co.
Tel (21) (353) (01) 8563 25

ISRAEL

Eastronics Ltd.

11 Rozanis Street
P.0.B. 39300
Tel-Aviv 61392

Tel: (972) 03-475151
TLX: 33638

ITALY

Intesi

Divisione ITT Industries GmbH
Viale Milanofiori

Palazzo E/5

20090 Assago (MI)

Tel: (39) 02 824701

TLX: 311351

Lasi Elettronica S.p.A.

V. le Fulvio Testi, 126

20092 Cinisello Balsamo (MI)
Tel: (39) 02/2440012

TLX: 352040

Telcom S.r.l.

Via M. Clwtall 75
20148 Milan

Tel (39) 02/4049046

T Mumcomponents
Viale Milanofiori E/5
20090 Assago (MI)
Tel: (39) 02/824701
TLX: 311351

Silverstar

Via Dei Gracchi 20
20146 Milano

Tel: (39) 02/49961
TLX: 332189

NETHERLANDS
gonmg en Hartman Elektrotechniek

Energieweg 1

2627 AP Delft

Tel: (31) (0) 15/609906
TLX: 38250

NORWAY

Nordisk Elektronikk (Norge) A/S
Postboks 123

Smedsvingen 4

1364 Hvalstad

Tel: (47) (02) 84 62 10

TLX: 77546

PORTUGAL

ATD Portugal LDA

Rua Dos Lusiados, 5 Sala B
1300 Lisboa

Tel: (35) (1) 64 80 91

TLX: 61562

Ditram
Avenida Mlguel Bombarda, 133

1000 Lis
Tel (35) (1) 545313

SPAIN

ATD Electronica, S.A.
Plaza Ciudad de Viena, 6
28040 Madrid

Tel: (34) (1) 234 40 00
TLX: 42477

ITT-SESA .

Calle Mlguel Angel 21-3
28010 M:

Tel: (34) (1) 419 09 57
TLX: 27461

Metrologia Iberica, S.A.
Ctra. de Fuencarral, n.80
28100 Alcobendas (Madrid)
Tel: (34) (1) 653 86 11

SWEDEN

Nordisk Elektronik AB
Torshamnsgatan 39

ox
164 93 Kista
Tel: (46) 08-03 46 30
TLX: 105 47

SWITZERLAND

Industrade A.G.
Hertistrasse 31

8304 Wallisellen

Tel: (41) (01) 8328111
TLX: 56788

TURKEY

EMPA Electronic
Lindwurmstrasse 95A
8000 Muenchen 2

Tel: (49) 089/53 80 570
TLX: 528573

UNITED KINGDOM

Accent Electronic Components Ltd.

Jubilee House, Jubilee Road
Letchworth, Herts SG6 1TL
Tel: (44) (0462) 686666
TLX: 826293

Bytech-Comway Systems
3 The Western Centre
Western Road

Bracknell RG12 1RW
Tel: (44) (0344) 55333
TLX: 847201

Jermyn

Vestry Estate

Otford Road
Sevenoaks

Kent TN14 S5EU

Tel: (44) (0732) 450144
TLX: 9

MMD

Unit 8 Southview Park
Caversham

Reading

Berkshire RG4 0AF

Tel: (44) (0734) 481666
TLX: 846669

Rapid Silicon

Rapid House

Denmark Street

High Wycombe
Buckinghamshire HP11 2ER
Tel: (44) (0494) 442266
TLX: 837931

Rapid Systems

Rapid House

Denmark Street

High Wycombe
Buckinghamshire HP11 2ER
Tel: (44) (0494) 450244
TLX: 837931

YUGOSLAVIA

H.R. Microelectronics Corp.
2005 de la Cruz Bivd., Ste. 223
Sama Clara, CA 95050

Tel: (1) (408) 988-0286

TLX: 387452

gapldo Electronic Components

pa
Via C. Beccaria, 8
34133 Trieste

Ital
Tel (39) 040/360555
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AUSTRALIA

Intel Australia Pty. Ltd.*
Spectrum Building

200 Pacific Hwy., Level 6
Crows Nest, NSE, 2065
Tel: 612-957-2744

FAX: 612-923-2632

BRAZIL

Intel Semicondutores do Brazil LTDA
Av. Paulista, 1159-CJS 404/405
01311 - Sao Paulo S.P.

Tel: 55-11-287.

TLX: 3911153146 ISDB

FAX: 55-11-287-5119

CHINA/HONG KONG

Intel PRC Corporation
15/F, Office 1, Citic Bldg.
Jian Guo Men Wai Street
Beijing, PRC

Tel: (1) 500-4850

TLX: 22947 INTEL CN
FAX: (1) 500-2953

Intel Semiconductor Ltd.*
10/F East Tower

Bond Center
Queensway, Central
Hong Kong

Tel: (5) 8444

TLX: 63869 ISHLHK HX
FAX: (5) 8681-989

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

Tel: 011-91-812-215065
TLX: 9538452875 DCBY
FAX: 091-812-215067

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Tel: 0298-47-8511

TLX: 3656-160

FAX: 029747-8450

Intel Japan K.K.*
Daiichi Mitsugi Bldg.
1-8889 Fuchu-cho
Fuchu-shi, Tokyo 183
Tel: 0423-60-7871

FAX: 0423-60-0315

Intel Japan K.K.*

Bldg. Kumagaya

2-69 Hon-cho

Kumagaya- Shl Saxtama 360
Tel: 0485-24-

FAX: 0485- 24 7518

Intel Japan K.K.*

Mitsui-Seimei Musashi-kosugi Bldg.
915 Shinmaruko, Nakahara-ku
Kawasaki-shi, Kanagawa 211

Tel: 044-733-7011

FAX: 044-733-7010

Intel Japan K.K.

Nihon Seimei Atsugi Bldg.
1-2-1 Asahi-machi
Atsugi-shi, Kanagawa 243
Tel: 0462-29-3731

FAX: 0462-29-3781

Intel Japan K.K.*
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560
Tel: 06-863-1091

FAX: 06-863-1084

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621

FAX: 03-201-6850

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 450

Tel: 052-204-1261
FAX: 052-204-1285

INTERNATIONAL SALES OFFICES

KOREA

Intel Technology Asia, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-Ku
Seoul 150-010

Tel: (2) 784-8186, 8286, 8386
TLX: K29312 INTELKO

FAX: (2) 784-8096

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #21-05/06
United Square

Singapore 1130

Tel: 250-7811

TLX: 39921 INTEL

FAX: 250-9256

TAIWAN

Intel Technology Far East Ltd.
8th Floor, No. 20!

Bank Tower Bldg.

Tung Hua N. Road

Taipei

Tel: 886-2-716-9660

FAX: 886-2-717-2455

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

DAFSYS S.R.L.
Chacabuco, 90-6 PISO
1069-Buenos Aires
Tel: 54-1-334-7726
FAX: 54-1-334-1871

AUSTRALIA

Email Electronics

15-17 Hume Street
Huntingdale, 3166

Tel: 011-61 3 544 8244
TLX: AA 308!

FAX: 011-61-3 543-8179

NSD-Australia

205 Middleborough Rd.
Box Hill, Victoria 3128
Tel: 03 8900970

FAX: 03 8990819

BRAZIL

Elebra Microelectronica S.A.

Rua Geraldo Flausina Gomes, 78
10th Floot

04575 - Sao Paulo - S.P.

Tel: 55-11-534-9641

TLX: 55-11-54593/54591

FAX: 55-11-534-9424

CHILE

DIN Instruments
Suecia 2323

Casilla 6055, Correo 22
Santiago

Tel: 56-2-225-8139
TLX: 240.846 RUD

CHINA/HONG KONG

Novel Precision Machineré Co., Ltd.
Flat D, 20 Kingsford Ind. Bidg.

Phase 1, 26 Kwai Hei Street

N.T., Kowloon

Hong Kong

Tel: 852-0-4223222

TWX: 39114 JINMI HX

FAX: 852-0-4261602

*Field Application Location

INDIA

Micronic Devices

Arun Complex

No. 65 D.V.G. Road

Basavanagudi

Bangalore 560 004

Tel: 011-91-812-600-631
011-91-812-611-365

TLX: 9538458332 MDBG

Micronic Devices

No. 516 5th Floor
Swastik Chambers

Sion, Trombay Road
Chembur

Bombay 400

TLX: 9531 171447 MDEV

Micronic Devices

25/8, 1st Floor

Bada Bazaar Marg

Old Rajinder Nagar

New Delhi 110 060

Tel: 011-91-11-5723509
011-91-11-589771

TLX: 031-63253 MDND IN

Micronic Devices

6-3-348/12A Dwarakapuri Colony
Hyderabad 500 482

Tel: 011-91-842-226748

S&S Corporation
1587 Kooser Road
San Jose, CA 95118
Tel: (408) 978-6216
TLX: 820281

FAX: (408) 978-8635

JAPAN

Asahi Electronics Co. Ltd.
KMM Bidg. 2-14-1 Asano
Kokurakita-ku
Kitakyushu-shi 802

Tel: 093-511-6471

FAX: 093-551-7861

C. Itoh Techno-Science Co., Ltd.
4-8-1 Dobashi, Miyamae-ku
Kawasaki-shi, Kanagawa 213
Tel: 044-852-5121

FAX: 044-877-4268

Dia Semicon Systems, Inc.
Flower Hill Shinmachi Higashi-kan
1-23-9 Shinmachi, Setagaya-ku
Tokyo 154

Tel: 03-439-1600

FAX: 03-439-1601

Okaya Koki

2-4-18 Sakae

Naka-ku, Nagoya-shi 460
Tel: 052-204-2916

FAX: 052-204-2901

Ryoyo Electro Corp.
Konwa Bldg.
1-12-22 Tsukiji
Chuo-ku, Tokyo 104
Tel: 03-546-5011
FAX: 03-546-5044

KOREA
J-Tek Corporation

6th Floor, Government Pension Bldg.

24-3 Yoido-dong
Youngdeungpo-ku
Seoul 150-010

Tel: 82-2-780-8039
TLX: 25299 KODIGIT
FAX: 82-2-784-8391

Samsung Electronics
150 Taepyungro-2 KA
Chungku, Seoul 100-102
Tel: 82-2-751-3985

TLX: 27970 KORSST
FAX: 82-2-753-0967

MEXICO

SSB Electronics, Inc.

675 Palomar Street, Bldg 4, Suite A
Chula Vista, CA 92011

Tel: (619) 585-3253

TLX: 287751 CBALL UR

FAX: (619) 585-8322

Dicopel S.A.

Tochtli 368 Fracc. Ind. San Antonio
Azcapotzalco

C.P. 02760-Mexico, D.F.

Tel: 52-5-561-3211

TLX: 177 3790 Dicome

FAX: 52-5-561-1279

PSI de Mexico

Francisco Villas Esq. Ajusto
Cuernavaca—Morelos — CEP 62130
Tel: 52-73-13-9412

FAX: 52-73-17-5333

NEW ZEALAND

Email Electronics

36 Olive Road

Penrose, Auckland

Tel: 011-64-9-591-155

FAX: 011-64-9-592-681
SINGAPORE

Electronic Resources Pte, Ltd.
17 Harvey Road #04-01
Singapore 1336

Tel: 283-0888

TWX: 56541 ERS

FAX: 2895327

SOUTH AFRICA

Electronic Building Elements

178 Erasmus Street (off Watermeyet Street)

Meyerspark, Pretoria, 0184
Tel: 011-2712-803-7680
FAX: 011-2712-803-8294

TAIWAN

Micro Electronics Corporation
5/F 587, Mlng Shen East Rd.
Taipei, R.

Tel: 886-2-501-8231

FAX: 886-2-505-6609

Sertek

15/F 135, Section 2

Chien Juo North Rd.

Taipei 10479, R.O.C.

Tel: (02) 5010055

FAX: (02) 5012521
(02) 5058414

VENEZUELA

P. Benavides S.A.
Avilanes a Rio
Residencia Kamarata
Locales 4 AL 7

La Candelaria, Caracas
Tel: 58 2-574-633

TLX: 28450

FAX: 58-2-572-3321
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ALABAMA

*Intel Corp.

5015 Bradford Dr., Suite 2
Huntsville 35805

Tel: (205) 830-4010

ALASKA

Intel Corp.
-c/o TransAIaska Data Systems
300 Old Stee:
Fairbanks 99701 3120
Tel: (907) 452-4401

Intel Corp.

c/o TransAlaska Data Systems
1551 Lore Road

Anchorage 99507

Tel: (907) 522-1776

ARIZONA

*Intel Cor|
11225 N. 2em Dr.
* Suite D-214
Phoenix 85029
Tel: (602) 869-4980

*Intel Corp.

500 E. Fry Blvd., Suite M-15
Sierra Vista 85635

Tel: (602) 459-5010

CALIFORNIA

tintel Corp.

21515 Vanowen St., Ste. 116
Canoga Park 91303

Tel: (818) 704-8500

*Intel Corp.

2250 E. Imperial Hwy., Ste. 218
El Segundo 90245

Tel: (213) 640-6040

*Intel Corp.

1900 Prairie City Rd.

Folsom 95630-9597

Tel: (916) 351-6143
1-800-468-3548

Intel Corp.

9665 Cheasapeake Dr Suite 325
San Diego 9212:

Tel: (619) 292- 8086

**Intel Corp.

400 N. Tustin Avenue
Suite 450

Santa Ana 92705

Tel: (714) 835-9642

CALIFORNIA

2700 San Tomas Expressway

Santa Clara 95051

Tel: (408) 970-1700
1-800-421-0386

DOMESTIC SERVICE OFFICES

**tintel Corp.

San Tomas 4

2700 San Tomas Exp., 2nd Floor
Santa Clara 95051

Tel: (408) 986-8086

COLORADO

*Intel Corp.

650 S. Cherry St., Suite 915
Denver 80222

Tel: (303) 321-8086

CONNECTICUT

*Intel Corp.

301 Lee Farm Corporate Park
83 Wooster Heights Rd.
Danbury 06810

Tel: (203) 748-3130

FLORIDA

**Intel Corp.

6363 N.W. 6th Way, Ste. 100
Ft. Lauderdale 33309

Tel: (305) 771-0600

*Intel Corp.

5850 T.G. Lee Bivd., Ste. 340
Orlando 32822

Tel: (407) 240-8000

GEORGIA

*Intel Corp.

3280 Pointe Pkwy., Ste. 200
Norcross 30092

Tel: (404) 449-0541

HAWAII

"Intel Corp.
U.S.1.S.C. Signal Batt.

Building T-1521

Shafter Plats

Shafter 96856

ILLINOIS

**fIntel Corp.

300 N. Mamngale Rd., Ste. 400
Schaumburg 6017.

Tel: (312) 605-8031

INDIANA

*Intel Corp.

8777 Purdue Rd., Ste. 125
Indianapolis 46268

Tel: (317) 875-0623

KANSAS

*Intel Corp.

10985 Cody, Suite 140
Overland Park 66210
Tel: (913) 345-2727

MARYLAND

**tIntel Corp. .
10010 Junction Dr., Suite 200
Annapolis Junction 20701
Tel: (301) 206-2860

FAX: 301-208-3677

MASSACHUSETTS

**tIntel Corp.

3 Carlisle Rd., 2nd Floor
Westford 01886

Tel: (508) 692-1060

MICHIGAN

*tintel Corp.

7071 Orchard Lake Rd., Ste. 100
West Bloomfield 48322

Tel: (313) 851-8905

MINNESOTA

*tintel Corp.

3500 W. 80th St., Suite 360
Bloomington 55431

Tel: (612) 835-6722

MISSOURI

*Intel Corp.

4203 Earth City Exp., Ste. 131
Earth City 63045

Tel: (314) 291-1990

NEW JERSEY

**Intel Corp.

300 Sylvan Avenue
Englewood Cliffs 07632
Tel: (201) 567-0821

*Intel Corp.

Parkway 109 Office Center
328 Newman Springs Road
Red Bank 07701

Tel: (201) 747-2233

*Intel Corp.

280 Corporate Center

75 Livingston Ave., 1st Floor
Roseland 07068

Tel: (201) 740-0111

NEW YORK

*tintel Corp.

2950 Expressway Dr. South
Islandia 11722

Tel: (516) 231-3300

*Intel Corp.

Westage Business Center
Bldg. 300, Route 9
Fishkill 12524

Tel: (914) 897-3860

NORTH CAROLINA

*Intel Corp.

5800 Executive Dr., Ste. 105
Charlotte 28212

Tel: (704) 568-8966

**Intel Corp.

2700 Wycliff Road
Suite 102

Raleigh 2

Tel: (919) 781-8022

OHIO

**tIntel Cor|
3401 Pavk Center Dr., Ste. 220
Tel: (51 3) 890-5350

*tIntel Corp.

25700 Science Park Dr., Ste. 100
Beachwood 44122

Tel: (216) 464-2736

OREGON

Intel Corp.

15254 N.W. Greenbrier Parkway
Building B

Beaverton 97005

Tel: (503) 645-8051

*Intel Corp.

5200 N.E. Elam Young Parkway
Hillsboro 97123

Tel: (503) 681-8080

PENNSYLVANIA

*tIntel Corp.

455 Pennsylvania Ave., Ste. 230
Fort Washington 19034

Tel: (215) 641-1000

tintel Corp.

400 Penn Center Blvd., Ste. 610
Pittsburgh 15235

Tel: (412) 823-4970

CUSTOMER TRAINING CENTERS

ILLINOIS

300 N. Martingale Road

Suite 300

Schaumburg 60173

Tel: (708) 706-5700
1-800-421-0386

MASSACHUSETTS

3 Carlisle Road, First Floor

Westford 01886

Tel: (301) 220-3380
1-800-328-0386

MARYLAND

10010 Junction Dr.

Suite 200

Annapolis Junction 20701

Tel: (301) 206-2860
1-800-328-0386

Intel Corp.

1513 Cedar Cliff Dr.
Camp Hill 17011
Tel: (717) 761-0860

PUERTO RICO

Intel Corp.
South Industrial Park
P.O. Box 910

671

Las Piedras 00!

Tel: (809) 733-8616 '
TEXAS

Intel Corp.

8815 Dyer St., Suite 225

El Paso 79904
Tel: (915) 751-0186

*Intel Corp.

313E. Anderson Lane, Suite 314
Austin 78752

Tel: (512) 454-3628

**tIntel Corp.

12000 Ford Rd., Suite 401
Dallas 75234

Tel: (214) 241-8087

*Intel Corp.

7322 S.W. Freeway, Ste. 1490
Houston 77074

Tel: (713) 988-8086

UTAH

Intel Corp.

428 East 6400 South, Ste. 104
Murray 84107

Tel: (801) 263-8051

VIRGINIA

*Intel Corp.

1504 Santa Rosa Rd., Ste. 108
Richmond 23288

Tel: (804) 282-5668

WASHINGTON

*Intel Corp.

155 108th Avenue N.E., Ste. 386
Bellevue 98004

Tel: (206) 453-8086

CANADA

ONTARIO

Intel Semiconductor of

Canada, Ltd.

2650 Queensview Dr., Ste. 250
6

ttawa
Tel: (613) 829-9714
FAX: 613-820-5936

Intel Semiconductor of
Canada, Ltd.

190 Attwell Dr., Ste. 102
Rexdale MOW 6H8

Tel: (416) 675-2105
FAX: 416-675-2438

SYSTEMS ENGINEERING MANAGERS OFFICES

MINNESOTA

3500 W. 80th Street
Suite 360

Bloomington 55431
Tel: (612) 835-6722

1System Engineering locations
*Carry-in locations
**Carry-in/mail-in locations

NEW YORK -~

2950 Expressway Dr., South
Islandia 11722
Tel: (506) 231-3300



UNITED STATES
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN

Intel Japan K.K.

5.6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison, BP 303

78054 Saint-Quentin-en-Yvelines Cedex

UNITED KINGDOM :
Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon
Wiltshire, England SN3 1R]

WEST GERMANY
Intel Semiconductor GmbH

Dornacher Strasse 1
8016 Feldkirchen bei Muenchen

HONG KONG
Intel Semiconductor Ltd.

10/F East Tower
Bond Center
Queensway, Central

CANADA

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario MOW 6HS8

Order Number: 240330-002

Printed in U.S.A./1289/20K/RRD JM

Microprocessors ISBN 1'55512'106-3




