
Microsoft.Macro Assembler
Programmers Guide

Aficl'OSOll ®

Microsoft® Macro Assembler

Programmer's Guide

Version 6.0

For MS® OS/2 and MS-DOS® Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms of the agreement. It is against the law
to copy the software on any medium except as specifically allowed in the license or nondisclosure agreement. No part of
this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo­
copying and recording, for any purpose without the express written permission of Microsoft.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) ofthe Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or sub­
paragraphs (c)(1) and (2) of Commercial Computer Software-Restricted Rights at 48 CPR 52.227-19, as applicable.
Contractor/Manufacturer is Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399.

©Copyright Microsoft Corporation, 1991. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, CodeView, QuickC, and XENIX are registered trademarks and Making it all make sense,
Microsoft QuickBasic, QuickPascal, and Windows are trademarks of Microsoft Corporation.

U.S. Patent No. 4,955,066

Hercules is a registered trademark of Hercules Computer Technology.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

NEC and V25 are registered trademarks and V35 is a trademark of NEC Corporation.

Document No. LN06556-0291

1098765432

Contents
Introduction .. xvii

PART 1 Programming in Assembly Language

Chapter 1
1.1

Understanding Global Concepts 5
The Processing Environment . 5

1.1.1 8086-Based Processors .. 5

1.1.2 Operating Systems 7

1.1.3 Segmented Architecture 9

1.1.4 Segment Protection. 9

1.1.5 Segmented Addressing .. 10

1.1.6 Segment Arithmetic 11

1.2 Language Components of MASM .. 12

1.2.1 Reserved Words 12

1.2.2 Identifiers. .. 13

1.2.3 Predefined Symbols 13

1.2.4 Integer Constants and Constant Expressions 15

1.2.5 Operators .. 17

1.2.6 Data Types 18

1.2.7 Registers 20

1.2.8 Statements .. 25

1.3 The Assembly Process 27

1.3.1 Generating and Running Executable Programs 27

1.3.2 Using the OPTION Directive 29

1.3.3 Conditional Directives 33

1.4 Related Topics in Online Help . 36

Chapter 2 Organizing MASM Segments 37
2.1 Overview of Memory Segments 37

2.2 Using Simplified Segment Directives 38

2.2.1 Defining Basic Attributes with .MODEL 39

2.2.2 Specifying a Processor and Coprocessor 43

2.2.3 Creating a Stack 43

iii

Contents

iv

2.2.4 Creating Data Segments44

2.2.5 Creating Code Segments 45

2.2.6 Starting and Ending Code with .STARTUP and
.EXIT 46

2.3 U sing Full Segment Definitions48

2.4

Chapter 3
3.1

3.2

3.3

3.4

Chapter 4
4.1

2.3.1 Defining Segments with the SEGMENT Directive ... 49

2.3.2 Controlling the Segment Order 52

2.3.3 Setting the ASSUME Directive for
Segment Registers 54

2.3.4 Defining Segment Groups 55

Related Topics in Online Help 56

U sing Addresses and Pointers 57
Programming Segmented Addresses 57

3.1.1 Initializing Default Segment Registers 57

3.1.2 Near and Far Addresses 60

Specifying Addressing Modes 63

3.2.1 Register Operands 64

3.2.2 Immediate Operands 64

3.2.3 Direct Memory Operands 65

3.2.4 Indirect Memory Operands 68

Accessing Data with Pointers and Addresses 73

3.3.1 Defining Pointer Types with TYPEDEF 74

3.3.2 Defining Register Types with ASSUME 76

3.3.3 Basic Pointer and Address Operations 77

Related Topics in Online Help 83

Defining and Using Integers 85
Declaring Integer Variables 85

4.1.1 Allocating Memory for Integer Variables 85

4.1.2 Data Initialization 88

4.2 Integer Operations 88

4.2.1 Moving and Loading Integers 89

4.2.2 Pushing and Popping Stack Integers 93

4.2.3 Adding and Subtracting Integers 96

4.2.4 Multiplying and Dividing Integers 99

Contents

4.3 Manipulating Integers at the Bit Level 102

4.3.1 Logical Operations 102

4.3.2 Shifting and Rotating Bits 104

4.3.3 Multiplying and Dividing with Shift Instructions ... 106

4.4 Related Topics in Online Help .. 108

Chapter 5 Defining and Using Complex Data Types 111
5.1 Arrays and Strings 111

5.1.1 Declaring and Referencing Arrays 111

5.1.2 Declaring and Initializing Strings 114

5.1.3 Processing Arrays and Strings 117

5.2 Structures and Unions 123

5.2.1 Declaring Structure and Union Types 124

5.2.2 Defining Structure and Union Variables 126

5.2.3 Referencing Structures, Unions, and Fields 131

5.2.4 Nested Structures and Unions 134

5.3 Records .. 135

5.3.1 Declaring Record Types 136

5.3.2 Defining Record Variables 137

5.3.3 Record Operators 139

5.4 Related Topics in Online Help .. 140

Chapter 6 Using Floating-Point
and Binary Coded Decimal Numbers 141

6.1 Using Floating-Point Numbers 142

6.1.1 Declaring Floating-Point Variables and Constants .. 142

6.1.2 Storing Numbers in Floating-Point Format 144

6.2 Using a Math Coprocessor 145

6.2.1 Coprocessor Architecture .. 145

6.2.2 Instruction and Operand Formats 146

6.2.3 Coordinating Memory Access 150

6.2.4 Using Coprocessor Instructions 152

6.3 Using Emulator Libraries 161

6.4 U sing Binary Coded Decimal Numbers 162

6.4.1 Defining BCD Constants and Variables 162

6.4.2 Calculating with BCDs .. 163

6.5 Related Topics in Online Help 165

v

Contents

Chapter 7 Controlling Program Flow 167
7.1 Jumps .. 167

7.1.1 Unconditional Jumps 168

7.1.2 Conditional Jumps 170

7.2 Loops .. 177

7.2.1 Loop-Generating Directives 178

7.2.2 Writing Loop Conditions 182

7.3 Procedures .. 184

7.3.1 Defining Procedures 185

7.3.2 Passing Arguments on the Stack 186

7.3.3 Declaring Parameters with the PROC Directive 189

7.3.4 Using Local Variables 194

7.3.5 Creating Local Variables Automatically 195

7.3.6 Declaring Procedure Prototypes 198

7.3.7 Calling Procedures with INVOKE 199

7.3.8 Generating Prologue and Epilogue Code 203

7.4 DOS Interrupts 208

7.4.1 Calling DOS and ROM-BIOS Interrupts 208

7.4.2 Replacing or Redefining Interrupt Routines 210

7.5 Related Topics in Online Help 213

Chapter 8 Sharing Data and Procedures
among Modules and Libraries 215

8.1 Selecting Data-Sharing Methods 215

8.2 Sharing Symbols with Include Files 216

8.2.1 Organizing Modules 216

8.2.2 Declaring Symbols Public and External 218

8.2.3 Positioning External Declarations 222

8.3 Using Alternatives to Include Files 223

8.3.1 PUBLIC and EXTERN 223

8.3.2 Other Alternatives 224

8.4 Developing Libraries 224

8.4.1 Associating Libraries with Modules 225

8.4.2 Using EXTERN with Library Routines 226

8.5 Related Topics in Online Help 227

vi

Contents

Chapter 9
9.1

9.2

U sing Macros 229
Text Macros . 229

Macro Procedures 231

9.2.1 Creating Macro Procedures 231

9.2.2 Passing Arguments to Macros 232

9.2.3 Specifying Required and Default Parameters 233

9.204 Defining Local Symbols in Macros 235

9.3 Assembly Time Variables and Macro Operators 236

9.3.1 Text Delimiters « » and
the Literal-Character Operator (!) 237

9.3.2 Expansion Operator (%) 238

9.3.3 Substitution Operator (&) 240

904 Defining Repeat Blocks with Loop Directives 243

904.1 REPEAT Loops. 244

904.2 WHILE Loops 244

904.3 FOR Loops and Variable-Length Parameters 245

90404 FORC Loops 247

9.5 String Directives and Predefined Functions 248

9.6 Returning Values with Macro Functions 251

9.7 Advanced Macro Techniques .. 254

9.7.1 Nesting Macro Definitions 254

9.7.2 Testing for Argument Type and Environment 255

9.7.3 Using Recursive Macros 257

9.8 Related Topics in Online Help 257

PART 2 Improving Programmer Productivity

Chapter 10 Managing Projects with NMAKE 263
10.1 Overview of NMAKE 263

10.2 Running NMAKE .. 264

10.3 NMAKE Description Files 265

lOA Command-Line Options ... r--. •••••••••••••••••••••••••• 291

10.5 NMAKE Command File 293

10.6 The TOOLS.lNI File 294

10.7 Inline Files ... 295

10.8 Sequence of NMAKE Operations 296

10.9 A Sample NMAKE Description File 298

vii

Contents

10.10 Differences between NMAKE and MAKE 300

10.11 Using NMK ... 302

10.12 Using Exit Codes with NMAKE 303

10.13 Related Topics in Online Help 304

Chapter 11 Creating Help Files with HELPMAKE 305
11.1 Structure and Contents of a Help Database 305

11.2 Invoking HELPMAKE 308

11.3 HELPMAKE Options 309

11.4 Creating a Help Database 314

11.5 Help Text Conventions 315

11.6 Using Help Database Formats 321

11.7 Related Topics in Online Help 331

Chapter 12 Linking Object Files with LINK 333
12.1 Overview ... 333

12.2 LINK Output Files 334

12.3 LINK Syntax and Input 335

12.4 Running LINK 341

12.5 LINK Options 344

12.6 Setting Options with the LINK Environment Variable 360

12.7 Using Overlays under DOS 361

12.8 Linker Operation under DOS 364

12.9 LINK Temporary Files 368

12.10 LINK Exit Codes 369

12.11 Related Topics in Online Help 369

Chapter 13 Module-Definition Files 371
13.1 Overview ... 371

13.2 Module Statements 371

13.3 The NAME Statement 375

13.4 The LIBRARY Statement 376

13.5 The DESCRIPTION Statement 377

13.6 The STUB Statement 377

13.7 The EXETYPE Statement 378

13.8 The PROTMODE Statement 379

13.9 The REALMODE Statement 379

viii

Contents

13.10 The STACKSIZE Statement 380

13.11 The HEAPSIZE Statement 380

13.12 The CODE Statement 381

13.13 The DATA Statement 381

13.14 The SEGMENTS Statement 382

13.15 CODE, DATA, and SEGMENTS Attributes 383

13.16 The OLD Statement 386

13.17 The EXPORTS Statement 386

13.18 The IMPORTS Statement 388

13.19 Related Topics in Online Help 389

Chapter 14 Customizing the Microsoft Programmer's
WorkBench 391

14.1 Setting Switches 391

14.2 Assigning Functions to Keystrokes 393

14.3 Writing Macros . 395

14.4 Related Topics in Online Help 401

Chapter 15 Debugging Assembly-Language Programs
with CodeView 403

15.1 Understanding Windows in CodeView 403

15.2 Overview of Debugging Techniques 407

15.3 Viewing and Modifying Program Data 407

15.4 Controlling Execution 419

15.5 Replaying a Debug Session 424

15.6 Advanced CodeView Techniques 425

15.7 CodeView Command-Line Options 428

15.8 Customizing CodeView with the TOOLS.INI File 430

15.9 Related Topics in Online Help 431

Chapter 16 Converting C Header Files
to MASM Include Files 433

16.1 Basic H2INC Operation 433

16.2 H2INC Syntax and Options 434

16.3 Converting Data and Data Structures 437

16.4 Converting Function Prototypes 447

16.5 Related Topics in Online Help . 450

ix

Contents

PART 3 Advanced Topics

Chapter 17 Writing OS/2 Applications 455
17.1 OS/2 Overview 455

17.2 Differences between DOS and OS/2 456

17.3 A Sample Program 458

17.4 Building an OS/2 Application460

17.5 Binding OS/2 MASM Programs460

17.6 Register and Memory Initialization 461

17.7 Other OS/2 Utilities 462

17.8 Module-Definition Files 463

17.9 Related Topics in Online Help 463

Chapter 18 Creating Dynamic-Link Libraries 465
18.1 DLL Overview 465

18.2 DLL Programming Requirements 466

18.3 Writing the DLL Code 469

18.4 Building the DLL 474

18.5 Related Topics in Online Help 477

Chapter 19 Writing Memory-Resident Software 479
19.1 Terrninate-and-Stay-Resident Programs479

19.2 Interrupt Handlers in Active TSRs481

19.3 Example of a Simple TSR: ALARM485

19.4 Using DOS in Active TSRs490

19.5 Preventing Interference 493

19.6 Communicating through the Multiplex Interrupt 496

19.7 Deinstalling TSRs 498

19.8 Example of an Advanced TSR: SNAP 499

19.9 Related Topics in Online Help 513

Chapter 20 Mixed -Language Programming 515
20.1 Naming and Calling Conventions 516

20.2 Writing the Assembly-Language Procedure 520

20.3 The MASM/High-Level-Language Interface 521

20.4 Related Topics in Online Help 546

x

Contents

Appendixes

Appendix A Differences between MASM 6.0 and 5.1 549
A.l New Features of Version 6.0 549

A.l.l

A.I.2

A.I.3

A.I.4

A.I.5

A.I.6

A.I.7

A.I.8

A.I.9

A.I.I0

The Assembler, Environment, and Utilities 550

Segment Management 551

Data Types 552

Procedures, Loops, and Jumps 555

Simplifying Multiple-Module Projects 556

Expanded State Control 557

New Processor Instructions 557

Renamed Directives 558

Macro Enhancements 558

MASM 6.0 Programming Practices 560

A.2 Compatibility between MASM 5.1 and 6.0 560

A.2.1 Rewriting Code for Compatibility 561

A.2.2 Using the OPTION Directive 568

A.2.3 Changes to Instruction Encodings 582

Appendix B BNF Grammar 585

Appendix C Generating and Reading Assembly Listings 605
C.l Generating Listing Files . 605

C.2 Reading the Listing File . 608

Appendix D MASM Reserved Words 615
D.l Operands and Symbols 615

D.2 Registers ... 617

D.3 Operators and Directives 618

DA Processor Instructions 619

D.5 Coprocessor Instructions 622

Appendix E Default Segment Names 625

xi

Contents

Appendix F Error Messages 629
F.1 BIND Error Messages 629

F.2 CodeView Error Messages 632

F.3 EXEHDR Error Messages 661

F.4 HELPMAKE Error Messages 663

F.5 H2INC Error Messages 670

F.6 IMPLIB Error Messages 710

F. 7 LIB Error Messages 712

F.8 LINK Error Messages 718

F.9 ML Error Messages 739

F.10 NMAKE Error Messages 774
F.11 PWB.COM Error Messages 786

F.12 PWBRMAKE Error Messages 788

Glossary ... 793

Index .. 807

xii

Figures and Tables

Figures

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 4.1

Figure 4.2

Figure 4.3

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 7.1

Figure 7.2

Figure 7.3

Figure 8.1

Figure 8.2

Figure 8.3

Figure 10.1

Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 19.1

Figure 19.2

Figure 19.3

Segment Allocation. .. 10

Calculating Physical Addresses 11

Registers for 8088-80286 Processors 21

Extended Registers for the 80386/486 Processors 22

Flags for 8088-80486 Processors 24

Integer Formats .. 87

Stack Status before and after Pushes and Pops 94

Shifts and Rotates .. 105

Encoding for Real Numbers in IEEE Format " 144

Coprocessor Data Registers 146

Status of the Register Stack 148

Status of the Register Stack and Memory Locations. 149

Status of the Previously Initialized Register Stack 149

Status of the Already Initialized Register Stack " 150

Status of the Register Stack: Main Memory and Coprocessor 154

Coprocessor Control Registers " 160

Coprocessor and Processor Control Flags 161

Procedure Arguments on the Stack " 188

Local Variables on the Stack 195

Operation of Interrupts " 210

Using EXTERNDEF for Variables " 219

Using PROTO and INVOKE .. 220

Using PUBLIC and EXTERN 224

Typical Description Block 265

CodeView Display of all Possible Windows 404

Source Window as Active Window 405

Memory Displayed in ASCII Characters 416

Memory Displayed in Long-Real Floating-Point Values .. " 417

Source Window in Mixed Mode " 423

Source Window in Assembly Mode " 424

Time Line of Interactions between Interrupt Handlers
for a Typical TSR 483

Flow Chart for SNAP.EXE: Installation Phase 502

Flow Chart for SNAP.EXE: Resident Phase 503

xiii

Contents

Tables

xiv

Figure 19.4

Figure 20.1

Figure 20.2

Figure 20.3

Figure 20.4

Figure 20.5

Figure 20.6

Figure 20.7

Figure 20.8

Figure B.1

Table 1.1

Table 1.2

Table 1.3

Table 2.1

Table 3.1

Table 4.1

Table 5.1

Table 6.1

Table 6.2

Table 6.3

Table 7.1

Table 9.1

Table 10.1

Table 10.2

Table 10.3

Table lOA

Table 10.5

Table 10.6

Table 10.7

Table 10.8

Table 10.9

Table 10.10

Table 11.1

Flow Chart for SNAP.EXE: Deinstallation Phase 504

C String Format 524

C Stack Frame 527

FORTRAN String Format 530

FORTRAN Stack Frame 532

Basic String Descriptor Format 535

Basic Stack Frame 538

Pascal String Format 540

Pascal Stack Frame 542

BNF Definition of the TYPEDEF Directive 586

8086 Family of Processors 6

The DOS and OS/2 Operating Systems 7

Operator Precedence 18

Attributes of Memory Models 40

Indirect Addressing Modes with 16-Bit Registers 71

Division Operations 101

Requirements for String Instructions . 119

Ranges of Floating-Point Variables 142

Coprocessor Operand Formats . 147

Control-Flag Settings after Comparison or Test 157

Conditional-Jump Instructions Used after Compare
Instruction ... 173

MASM Macro Operators 237

Command Modifiers 269

Filename Macros 275

Recursion Macros 276

Command Macros 278

Options Macros 278

Predefined Inference Rules 284

Directives ... 286

Preprocessing Directives 287

Preprocessing-Directive Binary Operators 288

NMAKE Options 291

Standard h. Contexts 318

Table 11.2

Table 11.3

Table 11.4

Table 11.5

Table 12.1

Table 13.1

Table 19.1

Table 20.1

Table 20.2

Table C.l

Table C.2

Table E.l

Contents

Microsoft Product Context Prefixes 319

QuickHelp Dot Commands 323

QuickHelp Formatting Flags 325

RTF Formatting Codes 329

LINK Fixups .. 367

Module Statements .. 372

DOS Internal Stacks 492

Naming and Calling Conventions 517

Register Conventions for Simple Return Values 525

Options for Generating or Modifying Listing Files 606

Symbols and Abbreviations in Listings 609

Default Segments and Types for Standard Memory Models . 626

xv

Introduction
The Microsoft® Macro Assembler Programmer's Guide provides the informa­
tion you need to write and debug assembly-language programs with the Micro­
soft Macro Assembler (MASM), version 6.0. This book documents enhanced
features of the language and the programming environment for MASM 6.0. It
also describes new features that take advantage of the capabilities of the
80386/486 processors.

The Programmer's Guide is written for experienced programmers who know as­
sembly language and are familiar with an assembler. The book does not teach the
basics of assembly language; it does explain Microsoft-specific features. If you
want to learn or review the basics of assembly language, refer to "Books for
Further Reading" later in this introduction.

The documentation for MASM 6.0 is an integrated set, comprehensive and cohe­
sive. This book emphasizes writing efficient code with the new and advanced fea­
tures of MASM. Installing and Using the Professional Development System
explains not only how to set up MASM 6.0 but also how to use the extensive on­
line reference system, the Microsoft Advisor.

Installing and Using also introduces the integrated environment called the Pro­
grammer's WorkBench (PWB) and shows how to manage development projects
with it. The Microsoft Macro Assembler Reference provides a full listing of all
MASM instructions, directives, statements, and operators, and it serves as a
quick reference to utility commands.

For more information on these same topics, see the online Microsoft Advisor,
which is a complete reference to Macro Assembler language topics, to the utili­
ties, and to PWB. You should be able to find most of the information you need in
the Microsoft Advisor. The printed documents give more in-depth and back­
ground information.

New and Extended Features in MASM 6.0
Version 6.0 ofMASM differs from version 5.1 in many ways, from optional ex­
tensions to features that replace or modify previous assembler behavior.

MASM 6.0 includes the Programmer's WorkBench, an integrated software
development environment, and the CodeView® source-level debugger. From
within PWB you can edit, build, debug, or run a program, and you can perform
most of these operations with either menu selections or keyboard commands.
You can also customize PWB to suit your individual programming and editing re­
quirements and preferences.

xvii

Introduction

New MASM Language Features

xviii

MASM 6.0 includes a number of new features, described in the list below, de­
signed to make programming more efficient and intuitive and to increase your
productivity. For example, MASM's new high-level-language features mean that
you can get the speed of assembly language with the ease of high-level lan­
guages. You can also maintain your programs more easily.

• MASM 6.0 has many enhancements related to types. You can now use the
same type specifiers in initializations as in other contexts (BYTE instead of
DB). You can also define your own types, including pointer types, with the
new TYPEDEF directive. See Chapter 3, "Using Addresses and Pointers,"
and Chapter 4, "Defining and Using Integers."

• The syntax for defining and using structures and records has been enhanced.
You can also define unions with the new UNION directive. See Chapter 5,
"Defining and Using Complex Data Types."

• MASM now generates complete CodeView information for all types. See
Chapter 3, "Using Addresses and Pointers," and Chapter 4, "Defining and
Using Integers."

• New control-flow directives let you use high-level-language constructs such
as loops and if-then-else blocks defined with .REPEAT and .UNTIL (or
.UNTILCXZ); .WHILE and .ENDW; and .IF, .ELSE, and .ELSEIF. The assem­
bler generates the appropriate code to implement the control structure. See
Chapter 7, "Controlling Program Flow."

• MASM now has more powerful features for defining and calling procedures.
The extended PROC syntax for generating stack frames has been enhanced in
version 6.0. You can also use the PROTO directive to prototype a procedure,
which you can then call with the INVOKE directive. INVOKE automatically
generates code to pass arguments (converting them to a related type, if appro­
priate) and make the call according to the specified calling convention. See
Chapter 7, "Controlling Program Flow."

• MASM optimizes jumps by automatically determining the most efficient
coding for a jump and then generating the appropriate code. See Chapter 7,
"Controlling Program Flow."

• Maintaining multiple-module programs is easier in MASM 6.0. The
EXTERNDEF and PROTO directives make it easy to maintain all global defi­
nitions in include files shared by all the source modules of a project. See
Chapter 8, "Sharing Data and Procedures among Modules and Libraries."

The assembler has many new macro features that make complex macros clearer
and easier to write:

Introduction

• You can specify default values for macro arguments or mark arguments as re­
quired. And with the V ARARG keyword, one parameter can accept a variable
number of arguments.

• You can implement loops inside of macros in various ways. For example, the
new WHILE directive expands the statements in a macro body while an ex­
pression is not zero.

• You can define macro functions, which return text macros. Several prede­
fined text macros are also provided for processing strings. Macro operators
and other features related to processing text macros and macro arguments
have been enhanced. For more information on all these macro features, see
Chapter 9, "Using Macros."

Finally, MASM 6.0 has improved customizable capabilities:

• With the new .ST ARTUP and .EXIT directives you can automatically
generate appropriate start-up and exit code for DOS or OS/2 modules. See
Chapter 2, "Organizing MASM Segments."

• MASM 6.0 supports flat memory model, available with OS/2 version 2.0. In
flat model, segments can be as large as 4 gigabytes instead of 64K
(kilobytes). Offsets are 32 bits instead of 16 bits. See Chapter 2, "Organizing
MASM Segments."

• The program H2INC.EXE converts C include files to MASM include files
and translates data structures and declarations. See Chapter 16, "Converting
C Header Files to MASM Include Files."

MASM 6.0 includes many other minor new features as well as extended support
for features of earlier versions of MASM. These features are listed in Appendix
A, "Differences between MASM 6.0 and 5.1," with cross-references to the chap­
ters where they are discussed in detail.

ML and MASM Command Lines
MASM 6.0 provides a new command-line driver, ML, which is more powerful
and flexible than the previous driver (MASM). ML assembles and links with one
command. The old MASM driver command syntax is still supported, however, to
support existing batch files and makefiles that use MASM command lines.

NOTE The name MASM has traditionally been used to refer to the Microsoft Macro As­
sembler. It is used in that context throughout this book. But MASM also refers to
MASM.EXE, which has been replaced by ML.EXE. In MASM 6.0, the MASM.EXE file is a
small utility that translates command-line options to those accepted by ML.EXE, and then
calls ML.EXE. The distinction between ML.EXE and MASM.EXE is made whenever neces­
sary. Otherwise, MASM refers to the assembler and its features.

xix

Introduction

Compatibility with Earlier Versions of MASM
In many cases, MASM 5.1 code will assemble without modification under
MASM 6.0. However, MASM 6.0 provides a new OPTION directive that lets
you selectively modify the assembly process. In particular, you can use the M510
argument with OPTION or the /Zm command-line option to set most features to
be compatible with version 5.1 code.

See Appendix A, "Differences between MASM 6.0 and 5.1," for information
about obsolete features that will not assemble correctly under MASM 6.0. The
appendix also discusses how to update code to use the new features.

Scope and Organization of this Book

xx

The Programmer's Guide describes how to get the most out of the Microsoft
Macro Assembler 6.0 and the Programmer's WorkBench. The book is arranged
by topic, with each topic answering a question or solving a problem. The last sec­
tion in each chapter lists topics in the online reference system that provide addi­
tional information.

The Programmer's Guide is divided into three parts:

Part 1, "Programming in Assembly Language," explains how to program effi­
ciently using both the new and old features of MASM. It reviews the basic com­
ponents of assembly language and also describes the new and enhanced features.

Part 2, "Improving Programmer Productivity," introduces the utility programs in­
cluded with MASM 6.0. These programs can help you program more quickly and
efficiently. For example, the chapters in Part 2 show you how to automatically
update your project (Chapter 10), use program lists as input (Chapter 11), use the
Microsoft linker (LINK) (Chapter 12), write module-definition files (Chapter
13), customize PWB to suit your programming style (Chapter 14), use the
CodeView debugger to record and play back a debugging session (Chapter 15),
and easily port data structures from C programs to MASM programs
(Chapter 16).

Part 3, "Advanced Topics," covers specialized areas. It describes how to write
programs to run under OS/2 (Chapter 17) and how to build dynamic-link libraries
(Chapter 18). Chapter 19 shows how to write a terminate-and-stay-resident
(TSR) program. Chapter 20, on mixed-language programming, defines the cal­
ling conventions and equivalent data types that allow MASM to call and be
called by C, FORTRAN, Basic, and Pascal.

In addition, six appendixes and a glossary detail the features of MASM 6.0. Of
particular interest are Appendix A, "Differences between MASM 6.0 and 5.1,"
and Appendix B, "BNF Grammar." Appendix A lists the new features of MASM
6.0 and also explains how to update MASM 5.1 code. The BNF grammar, or
Backus-N aur Form for grammar notation, lets you determine the exact syntax for

Introduction

any MASM language component. It clearly defines recursive definitions and
shows all the available options for any placeholder. Other appendixes cover
assembly listings, reserved words, default segment names, and error messages.

Books for Further Reading
The following books may help you learn to program in assembly language or
write specialized programs. These books are listed only for your convenience.
Microsoft makes no specific recommendations concerning any of these books.

Books about Programming in Assembly Language
Abrash, Michael, Zen of Assembly Language. Glenview, IL: Scott, Foresman and

Co., 1990.

Duntemann, Jeff, Assembly Language from Square One: For the PC AT and
Compatibles. Glenview, IL: Scott, Foresman and Co., 1990.

Fernandez, Judi N., and Ashley, Ruth, Assembly Language Programming for the
80386. New York: McGraw-Hill, 1990.

Miller, Alan R., DOS Assembly Language Programming. San Francisco:
SYBEX, 1988.

Scanlon, Leo 1., 80286 Assembly Language Programming on MS-DOS Comput­
ers. New York: Brady Communications, 1986.

Turley, James L., Advanced 80386 Programming Techniques. Berkeley, CA:
Osborne McGraw-Hill, 1988.

Books about DOS and BIOS
"Article 1l." MS-DOS Encyclopedia. Redmond, WA: Microsoft Press, 1988.

Contains information about terminate-and-stay-resident programs.

Duncan, Ray, Advanced MS-DOS. 2nd ed. Redmond, WA: Microsoft Press, 1988.

Jourdain, Robert, Programmer's Problem Solver for the IBM PC, XT and AT.
New York: Brady Communications, 1986.

Microsoft MS-DOS Programmer's Reference. Redmond, WA: Microsoft Press,
1986-87.

Norton, Peter and Wilton, Richard, The New Peter Norton Programmer's Guide
to the IBM PC and PS/2. Redmond, WA: Microsoft Press, 1988.

Wilton, Richard, Programmer's Guide to PC & PS/2 Video Systems. Redmond,
W A: Microsoft Press, 1987.

xxi

Introduction

Books about OS/2
Duncan, Ray, Advanced OS/2 Programming. Redmond, WA: Microsoft Press,

1989.

---, Essential OS/2 Functions. Redmond, WA: Microsoft Press, 1989.

Letwin, Gordon, Inside OS/2. Redmond, WA: Microsoft Press, 1989.

OS/2 Programmer's Reference. 4 vols. Redmond, WA: Microsoft Press, 1989.

Books about Other Topics
Nelson, Ross P., The 80386 Book. Redmond, W A: Microsoft Press, 1988.

Startz, Richard, 8087/80287/80387 for the IBM PC and Compatibles. Bowie,
MD: Robert J. Brady Co., 1988.

Writing ROMabie Code in Microsoft C. Costa Mesa, CA: SSI Corporation.

Document Conventions

xxii

The following document conventions are used throughout this manual:

Example of
Convention

SAMPLE2.ASM

.MODEL

placeholders

target

Description

Uppercase letters indicate file names, segment
names, registers, and terms used at the command
level.

Boldface type indicates assembly-language direc­
tives, instructions, type specifiers, and predefined
macros, as well as keywords in other programming
languages.

Italic letters indicate placeholders for information
you must supply, such as a file name. Italics are also
occasionally used for emphasis in the text.

This font is used to indicate example programs, user
input, and screen output.

A semicolon in the first column of an example sig­
nals illegal code. A semicolon also marks a comment.

SHIff

[argument]

{registerlmemory}

Repeating elements ...

Program

Fragment

Introduction

Small capital letters signify names of keys on the
keyboard. Notice that a plus (+) indicates a combina­
tion of keys. For example, CTRL+E means to hold
down the CTRL key while pressing the E key.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice between
two or more items. You must choose one of the
items unless double square brackets surround the
braces.

A horizontal ellipsis (...) following an item indicates
that more items having the same form may appear.

A vertical ellipsis tells you that part of a program has
been intentionally omitted.

Getting Assistance and Reporting Problems
If you need help or think you have discovered a problem in the software, please
provide the following information to help us locate the problem:

• The version of DOS or OS/2 that you are running

• Your system configuration: the type of machine you are using, its total
memory, and its total free memory at assembler execution time, as well as
any other information you think might be useful

• The assembly command line used, or the link command line if the problem
occurred during linking

• Any object files or libraries you linked with if the problem occurred at
link time

If your program is very large, please try to reduce its size to the smallest possible
program that still produces the problem.

Use the Product Assistance Request form at the back of this book to send this in­
formation to Microsoft. If you have comments or suggestions regarding any of
the books accompanying this product, please indicate them on the Document
Feedback Card at the back of this book.

If you are not a registered Macro Assembler owner, you should fill out and return
the Registration Card. This enables Microsoft to keep you informed of updates
and other information about the assembler.

xxiii

Chapter 1

Understanding Global Concepts

With the development of the Microsoft Macro Assembler (MASM) version 6.0,
you now have more options available to you for approaching a programming
task. This chapter explains the general concepts of programming in assembly lan­
guage, beginning with the environment and reviewing the components you need
to work in the assembler environment. Even if you are familiar with previous ver­
sions of MASM, you should examine this chapter for information on new terms
and features.

The first section of the chapter takes a look at the available processors and operat­
ing systems and how they work together. It also discusses the relationship of seg­
mented architecture to assembly programming and the differences it makes for
programming in OS/2 rather than in DOS.

The second section describes some of the language components of MASM that
are common to most programs, such as reserved words, constant expressions,
operators, and registers. The rest of this book assumes that you understand the in­
formation presented in this section.

The last section summarizes the assembly process, from assembling a program
through running it. You can affect this process by the way you develop your
code. Finally, this section explores how you can change the assembly process
with the OPTION directive and conditional assembly.

NOTE This manual does not cover information specific to programming for Microsoft
Windows™, For information on this, see the Microsoft Windows Software Development Kit.

1.1 The Processing Environment
The processing environment for MASM 6.0 includes the processor on which
your programs run, the operating system your programs will use, and the aspects
of the segmented architecture that influence the choice of programming models.
This section summarizes these elements of the environment and how they affect
your programming choices.

1.1.1 SOS6-Based Processors
The 8086 "family" of processors uses segments to control data and code. The
later 8086-based processors have larger instruction sets and more memory capac­
ity, but they still use the same segmented architecture. Knowing the differences

5

Understanding Global Concepts

6

between the various 8086-based processors can help you select the target proces­
sor for your programs.

The instruction set of the 8086 processor is upwardly compatible with its succes­
sors. To write code that runs on the widest number of machines, select the 8086
instruction set. By choosing to use the instruction set of a more advanced proces­
sor, you increase the capabilities and efficiency of your program, but you also re­
duce the number of systems on which the program can run.

Table 1.1 lists modes, memory, and segment size of processors on which your ap­
plication may need to run. Each processor is discussed in more detail below.

Table 1.1 8086 Family of Processors

Available Addressable Segment
Processor Modes Memory Size

8086/8088 Real 1 megabyte 16 bit

80186/80188 Real 1 megabyte 16 bit

80286 Real and Protected 16 megabytes 16 bit

80386 Real and Protected 4 gigabytes 16 or 32 bit

80486 Real and Protected 4 gigabytes 16 or 32 bit

Processor Modes Real mode allows only one process to run at a time. The
DOS operating system runs in real mode. The OS/2 operating system can execute
programs written for DOS, but is designed to provide capabilities available only
in protected mode. In protected mode, more than one process can be active at any
one time. Memory accessed by these different processes is protected from access
by another process.

Protected-mode addresses do not correspond directly to physical memory. Under
protected-mode operating systems, the processor allocates and manages memory
dynamically. Additional privileged instructions initialize protected mode and con­
trol multiple processes. Section 1.1.2 provides more information on operating
systems.

8086 and 8088 The 8086 is faster than the 8088 because of its 16-bit data
bus; the 8088 has only an 8-bit data bus. The 16-bit data bus allows you to use
EVEN and ALIGN on an 8086 processor to word-align data and thus improve
data-handling efficiency. Memory addresses on the 8086 and 8088 refer to actual
physical addresses.

80186 and 80188 These two processors are identical to the 8086 and 8088
except that new instructions have been added and several old instructions have
been optimized. These processors run significantly faster than the 8086.

The Processing Environment

80286 The 80286 processor adds some instructions to control protected mode,
and it runs faster. It also provides the optional protected mode that can be used
by the operating system to allow multiple processes to run at the same time. The
80286 is the minimum for running 16-bit versions of OS/2.

80386 Unlike its predecessors, the 80386 processor can handle both 16-bit
and 32-bit data. It is fully software-compatible with the 80286. It implements
many new hardware-level features, including virtual paged memory, multiple vir­
tual 8086 processes, addressing of up to four gigabytes of memory, and special­
ized debugging registers.

Under DOS, the 80836 supports all the instructions of the 80286 as well as
several additional ones. It also allows limited use of 32-bit registers and address­
ing modes. The 80386 operates at faster processor speeds than the 80286 and is
the minimum for running 32-bit versions of OS/2 and other 32-bit operating
systems.

80486 The 80486 processor is an enhanced version of the 80386, with instruc­
tion "pipelining" that executes many instructions two to three times faster. It in­
corporates an enhanced version of the 80387 coprocessor, as well as an 8K
(kilobyte) memory cache. The 80486 includes several new instructions and is
fully compatible with 80386 software.

8087, 80287, and 80387 These math coprocessors work concurrently with
the 8086 family of processors. Performing floating-point calculations with math
coprocessors is up to 100 times faster than emulating the calculations with in­
teger instructions. Although there are technical and performance differences
among the three coprocessors, the main difference to the applications program­
mer is that the 80287 and 80387 can operate in protected mode. The 80387 also
has several new instructions. The 80486 does not use any of these coprocessors;
its floating-point processor is built in and is functionally equivalent to the 80387.

1.1.2 Operating Systems
With MASM, you can create programs that run under DOS, Windows, or OS/2-
or all three, in some cases. For example, ML.EXE can produce executable files
that run in any of the target environments, regardless of the programmer's en­
vironment. For information on building programs for different environments, see
"Building and Running Programs" in PWB 's online help.

DOS and OS/2 provide different processing modes. DOS uses the single-process
real mode. OS/2 uses the multiple-process protected mode. While OS/2 can also
run in real mode, this book assumes it is being used in protected mode.

DOS and OS/2 differ primarily in system access methods, size of addressable
memory, and segment selection. Table 1.2 summarizes these differences.

7

Understanding Global Concepts

Table 1.2

Operating
System

DOS (and
OS/2 l.x real
mode)

OS/2 l.x pro-
tee ted mode

OS/22.x

Protected-mode programs
cannot directly access
hardware ports.

OS/2 2.xand flat model
eliminate segments.

8

The DOS and OS/2 Operating Systems

Available Contents of
System Active Addressable Segment Word
Access Processes Memory Register Length

Direct to hard- One 1 megabyte Actual 16 bit
ware address

Operating sys- Multiple 16 megabytes Segment 16 bit
tern call selectors

Operating sys- Multiple 4 gigabytes Segment 32 bit
tern call selectors

DOS In real-mode programming, you can access system functions by calling
DOS, calling the basic input/output system (BIOS), or directly addressing hard­
ware. Access is through DOS interrupt 21h.

OS/2 1.x As you can see in Table 1.2, protected mode allows for much larger
data structures than real mode, since the addressable memory is extended to 16
megabytes. In protected mode, segment registers contain segment selectors rather
than actual segment values. These selectors cannot be calculated by the program;
they must be obtained by calling the operating system. Programs that attempt to
calculate segment values or to address memory directly do not work.

Note that protected-mode operating systems such as XENIX® and OS/2 provide
system functions for memory and hardware accesses that would be prohibited
with direct processor commands. This software interface permits access without
the possibility of corrupting memory or crashing the system.

Protected mode uses privilege levels to maintain system integrity and security.
Programs cannot access data or code that is in a higher privilege level. Some in­
structions that directly access ports or clear interrupts (such as CLI, STI, IN,
and OUT) are available at privilege levels normally used only by systems
programmers.

OS/2 protected mode enforces the separation of segment values. The segments
have selectors that have no relationship to the offset. The operating system com­
bines the segment and offset so that your programs can address up to 16 mega­
bytes of virtual memory in a 16-bit system.

OS/2 2.x OS/2 2.x uses an unsegmented architecture. (See Section 1.1.3.) It
creates a "flat model" in which the entire address space is within one 32-bit seg­
ment. Section 2.2.1, "Defining Basic Attributes with .MODEL," explains how to
use the flat model. In a 32-bit system, you can access up to four gigabytes of vir­
tual memory. (The term "virtual memory" means that if the programs running
under OS/2 request more memory than is physically available, part of the

The Processing Environment

memory is temporarily swapped out to disk.) Since code, data, and stack are in
the same segment, the value of segment registers never needs to change. Internal
mechanisms of OS/2 2.x implement protection at a lower level.

1.1.3 Segmented Architecture

Only 64K of data can be
addressed by a 16-bit
segment address.

The 8086 processors differ from many other microprocessors in that they use a
segmented architecture: that is, each address is represented in two parts-a seg­
ment and an offset. Segmented addresses affect many aspects of assembly­
language programming, especially addresses and pointers.

Segmented architecture was originally designed to enable a 16-bit processor to
access an address space larger than 64K. (Section 1.1.5, "Segmented Address­
ing," explains how the processor uses both the segment and offset to create
addresses larger than 64K.) DOS is an example of an operating system that uses
segmented architecture on a 16-bit processor.

With the advent of protected-mode processors such as the 80286, segmented ar­
chitecture gained a second purpose. Segments can separate different blocks of
code and data to protect them from undesirable interactions. OS/2 1.x is an oper­
ating system that takes advantage of the protection features of the 16-bit seg­
ments on the 80286.

Segmented architecture went through another significant change with the release
of 32-bit processors, starting with the 80386. These processors are backward
compatible with the older 16-bit processors, but they also offer a 32-bit mode
that minimizes the memory limitations of a 16-bit segmented architecture. Both
offer paging to maintain segment protection. XENIX 386 is an example of a 32-
bit segmented operating system using segment protection.

OS/2 2.x takes advantage of the 32-bit processors to allow a nonsegmented
memory configuration. The processor still uses 32-bit segments, but from the
user's viewpoint, there is only one segment. The flat memory model used by
OS/2 2.x places code and data in a single segment. See Section 2.2.1, "Defining
Basic Attributes with .MODEL," for more information about the flat memory
model.

1.1.4 Segment Protection
Segmented architecture is an important part of the OS/2 memory-protection
scheme. In a "multitasking" operating system where numerous programs can run
simultaneously, programs must not access the code and data of another process
without permission.

In DOS, the data and code segments are usually allocated adjacent to each other,
as shown in Figure 1.1. In OS/2, the data and code segments may be anywhere in
memory. The programmer knows nothing about their location and has no control

9

Understanding Global Concepts

Segment protection
prevents a bug in one
program from corrupting
another program.

over it. The segments may even be moved to a new memory location or swapped
to disk while the program is running.

Real-Mode
Program Allocation

First
available
address --+-

Next
address
after Code
Segment ---.

I I
I

/

I I

I I

v

Code
Segment

1/

Data
Segment

v

I I

Figure 1.1 Segment Allocation

Protected-Mode
Program Allocation

I I ~omewhere I:
In memory ---.,/J---------1/"

I

Code
Segment

v

Somewhere I I
in memory ---./)-------1t-71v

Data
Segment

I-r-,-------rv
I I I I

Segment protection makes software development easier and more reliable in
OS/2 than in DOS because, in OS/2, any illegal access is detected immediately.
The operating system intercepts illegal memory accesses, terminates the pro­
gram, and displays a message. This makes the bug easier to track down and fix.

In DOS, an illegal access is not detected and may not cause an error until later,
when another part of the program attempts to use the corrupted memory.

1.1.5 Segmented Addressing

10

Segmented addressing is the internal mechanism that combines a segment value
and an offset value to create an address. The two parts of an address are repre­
sented as

segment: offset

The segment portion is always a 16-bit value. The offset portion is a 16-bit value
in 16-bit mode or a 32-bit value in 32-bit mode.

In real mode, the segment value is a physical address that has an arithmetic rela­
tionship to the offset value. The segment and offset together create a 20-bit physi­
cal address (explained in the next section). Although 20-bit addresses can access
up to one megabyte of memory, the operating system on IBM® pes and compati­
bles uses part of this memory, leaving 640K of memory for programs.

The Processing Environment

1.1.6 Segment Arithmetic

The segment selects a
region of memory; the
offset selects the byte
within that region.

Manipulating segment and offset addresses directly in real-mode programming is
called "segment arithmetic." Programs that perform segment arithmetic are not
portable to protected-mode operating systems, where addresses do not corre­
spond to a known segment and offset.

To perform segment arithmetic successfully, it helps to understand how the pro­
cessor combines a 16-bit segment and a 16-bit offset to form a 20-bit linear
address. In effect, the segment selects a 64K region of memory, and the offset
selects the byte within that region. Here's how it works:

1. The processor shifts the segment address to the left by four binary places, pro­
ducing a 20-bit address ending in four zeros. This operation has the effect of
multiplying the segment address by 16.

2. The processor adds this 20-bit segment address to the 16-bit offset address.
The offset address is not shifted.

3. The processor uses the resulting 20-bit address, often called the "physical
address," to access an actual location in the one-megabyte address space.

Figure 1.2 illustrates this process.

15 0 15 0

(5 (3 (C(2 0 ---..~ (5 (3 (c (2 (00
16-bit segment register Segment register shifted left 4 bits

15 0

+ (1 (0(7(AO
16-bit offset

19 0

(5(4(C(9(AO
20-bit physical address

Figure 1.2 Calculating Physical Addresses

A 20-bit physical address may actually be specified by 4,096 equivalent
segment:offset addresses. For example, the 20-bit physical address OF800 is
equivalent to 0000:F800, OFOO:0800, or OF80:0000.

11

Understanding Global Concepts

You may need to convert two segmented addresses with different segments to
segmented addresses with the same segment to write TSRs (see Chapter 19), to
write code to handle huge arrays, or to determine the size of an area of memory.

1.2 Language Components of MASM
Programming with MASM requires that you understand the MASM concepts of
reserved words, identifiers, predefined symbols, constants, expressions, opera­
tors, data types, registers, and statements. This section defines important terms
and provides lists that summarize these topics. See online help or the MASM
Reference for detailed information.

1.2.1 Reserved Words

Use OPTION NOKEYWORD
if you want to use a
reserved word in another
context.

12

A reserved word has a special meaning fixed by the language. You can use it
only under certain conditions. MASM's reserved words include:

• Instructions, which correspond to operations the processor can execute

• Directives, which give commands to the assembler

• Attributes, which provide a value for a field, such as segment alignment

• Operators, which are used in expressions

• Predefined symbols, which return information to your program

MASM reserved words are not case sensitive except for predefined symbols (see
Section 1.2.3).

The assembler generates an error if you use a reserved word as a variable, code
label, or other identifier within your source code. However, if you need to use a
reserved word for another purpose, the OPTION NOKEYWORD directive can
selectively disable a word's status as a reserved word.

For example, to remove the STR instruction, the MASK operator, and the NAME
directive from the set of words MASM recognizes as reserved, use this statement
in the code segment of your program prior to the first reference to STR, MASK,
or NAME:

OPTION NOKEYWORD:<STR MASK NAME>

The OPTION directive is discussed in Section 1.3.2. Appendix D provides a com­
plete list of MASM reserved words.

1.2.2 Identifiers
Identifiers are names of
variables of a given type.

language Components of MASM

An identifier is a name that you invent and attach to a definition. Identifiers can
be symbols representing variables, constants, procedure names, code labels, seg­
ment names, and user-defined data types such as structures, unions, records, and
types defined with TYPEDEF. Identifiers longer than 247 characters generate an
error.

Certain restrictions limit the names you can use for identifiers. Follow these rules
to define a name for an identifier:

• The first character of the identifier can be an alphabetic character (A-Z) or
any of these four characters: @ _ $?

• The other characters in the identifier can be any of the characters listed above
or a decimal digit (0-9)

Avoid starting an identifier with the at sign (@), because MASM 6.0 predefines
some special symbols starting with @ (see Section 1.2.3). Beginning an identifier
with @ may also cause conflicts with future versions of the Macro Assembler.

The symbol-and thus the identifier-is visible as long as it remains within
scope. (See Section 8.2, "Sharing Symbols with Include Files," for additional in­
formation about visibility and scope.)

1.2.3 Predefined Symbols
Macros and conditional­
assembly blocks often use
predefined symbols.

The assembler includes a number of predefined symbols (also called predefined
equates). You can use these symbol names at any point in your code to represent
the equate value. For example, the predefined equate @FileName represents the
base name of the current file. If the current source file is T ASK.ASM, the value
of @FileName is TASK. The MASM predefined symbols are listed below ac­
cording to the kinds of information they provide. Case is important only if the
fCp option is used. (See online help on ML command-line options for additional
details.)

Predefined Symbols for Segment Information

Symbol

@code

@CodeSize

@CurSeg

@data

@DataSize

Description

Provides the name of the code segment, except in tiny
model when it returns DGROUP.

Returns an integer representing the default code distance.

Returns the name of the current segment.

Expands to DGROUP except in flat model.

Returns an integer representing the default data distance.

13

Understanding Global Concepts

14

Symbol

@fardata

@fardata?

@Model

@stack

@WordSize

Description

Represents the name of the segment defined by the
.FARDATA directive.

Represents the name of the segment defined by the
.FARDATA? directive.

Returns the selected memory model.

Expands to DGROUP for near stacks or STACK for far
stacks. (See Section 2.2.3, "Creating a Stack.")

Provides the size attribute of the current segment.

Predefined Symbols for Environment Information

Symbol

@Cpu

@Environ

@Interface

@Version

Description

Contains a bit mask specifying the processor mode.

Returns values of environment variables.

Contains information about the language parameters.

Represents the text equivalent of the MASM version
number. In MASM 6.0, this expands to 600.

Predefined Symbols for Date and Time Information

Symbol

@Date

@Time

Description

Supplies the current system date.

Supplies the current system time.

Predefined Symbols for File Information

Symbol

@FileCur

@FileName

@Line

Description

Names the current file (base and suffix).

N ames the base name of the main file being assembled
as it appears on the command line.

Gives the source line number in the current file.

Language Components of MASM

Predefined Functions for Macro String Manipulation

Symbol

@CatStr

@InStr

@SizeStr

@SubStr

Description

Returns concatenation of two strings.

Returns the starting position of a string within another
string.

Returns the length of a given string.

Returns substring from a given string.

1.2.4 Integer Constants and Constant Expressions

The default radix is
decimal.

Values of integer constants
and expressions are known
at assembly time.

An integer constant is a series of one or more numerals followed by an optional
radix specifier. For example, in these statements

mav ax, 25
mav ax, 0B3h

the numbers 25 and 0B3h are integer constants. The h appended to 0B3 is
a radix specifier. The specifiers are

• y for binary (or b if radix is less than or equal to 10)

• 0 or q for octal

• t for decimal (or d if radix is less than or equal to 10)

• h for hexadecimal

Radix specifiers can be either uppercase or lowercase letters; sample code in this
book uses lowercase. If no radix is specified, the assembler interprets the integer
according to the current radix. The default radix is decimal, but it can be changed
with the .RADIX directive.

Hexadecimal numbers must always start with a decimal digit (0-9). If necessary,
add a leading zero to distinguish between symbols and hexadecimal numbers that
start with a letter. For example, ABCh is interpreted as an identifier. The hex­
adecimal digits A through F can be either uppercase or lowercase letters. Sample
code in this book uses uppercase letters.

Constant expressions contain integer constants and (optionally) operators such as
shift, logical, and arithmetic operators, and can be evaluated. The assembler eval­
uates them at assembly time. (In addition to constants, expressions can contain
labels, types, registers, and their attributes.) Constant expressions do not change
value during program execution.

15

Understanding Global Concepts

Symbols defined with EQU
cannot be redefined.

16

Symbolic Integer Constants You can define symbolic integer constants
with either of the data assignment directives, EQU or the equal sign (=). These
directives assign values to symbols during assembly, not during program execu­
tion. Symbols defined as integer constants can then be used in subsequent state­
ments as immediate operands having the assigned value. Symbolic constants are
often used to assign mnemonic names to constant values, which makes your code
more readable and easier to maintain.

The assembler does not allocate data storage when you use either EQU or =. In­
stead, it replaces each occurrence of the symbol with the value of the expression.

The difference between EQU and = is that integers defined with the = directive
can be changed in your source code, but those defined with EQU cannot. Once a
symbolic integer constant has been defined with the EQU directive, attempting to
redefine it generates an error. The syntax is

symbol EQU expression

The symbol must be a unique name. The expression can be an integer, a constant
expression, a one- or two-character string constant (four-character on the
80386/486), or an expression that evaluates to an address. If a constant value
used in numerous places in the source code needs to be changed, you modify the
expression in one place rather than throughout the source code.

The following example shows the correct use of EQU to define symbolic integers.

column EaU 80 Constant - 80
row EaU 25 Constant - 25
screen EaU column * row Constant - 2000
line EaU row Constant - 25

.DATA

.CODE

mov ex, column
mov bx, line

The value of a symbol defined with the = directive can be different at different
places in the source code. However, a constant value is assigned during assembly
for each use, and that value does not change at run time.

1.2.5 Operators

The syntax for the = directive is

symbol = expression

language Components of MASM

Size of Constants The default word size for MASM 6.0 expressions is 32
bits. This behavior can be modified using OPTION EXPR16 or OPTION MSIO.
Both of these options set the expression word size to 16 bits, but OPTION MSIO
affects other assembler behavior as well (see Appendix A).

It is illegal to change the expression word size once it has been set with OPTION
MSIO, OPTION EXPR16, or OPTION EXPR32, but you can repeat the same direc­
tive in a file. This can be useful for putting an OPTION EXPR16 in every include
file, for example.

Operators are used in expressions. The value of the expression is determined at
assembly time and does not change when the program runs.

Operators should not be confused with processor instructions. The reserved
word ADD is an instruction. The plus sign (+) is an operator. For example,
Amo un t+2 is a valid use of the plus operator (+); it tells the assembler to add 2
to Amount, which might be a value or an address. This operation, which occurs
at assembly time, is different from the ADD instruction, which tells the processor
to perform addition at run time.

The assembler evaluates expressions that contain more than one operator accord­
ing to the following rules:

• Operations in parentheses are always performed before any adjacent
operations.

• Binary operations of highest precedence are performed first.

• Operations of equal precedence are performed from left to right.

• Unary operations of equal precedence are performed right to left.

The order of precedence for all operators is listed in Table 1.3. Operators on the
same line have equal precedence.

17

Understanding Global Concepts

1.2.6 Data Types

18

Table 1.3 Operator Precedence

Precedence Operators

2

3

4

5

6

7

8

9

10

11

12

13

14

(), []

LENGTH, SIZE, WIDTH, MASK

• (structure-field-name operator)

: (segment-override operator), PTR

LROFFSET, OFFSET, SEG, THIS, TYPE

HIGH, HIGHWORD, LOW, LOWWORD

+ ,- (unary)

*, I, MOD, SHL, SHR

+, - (binary)

EQ,NE,LT,LE,GT,GE

NOT

AND

OR,XOR

OPATTR, SHORT, .TYPE

A "data type" describes a set of values. A variable of a given type can have any
of a set of values within the range specified for that type.

The intrinsic types for MASM 6.0 are BYTE, SBYTE, WORD, SWORD,
DWORD, SDWORD, FWORD, QWORD, and TBYTE. These types define in­
tegers and binary coded decimals (BCDs); they are discussed in Chapter 6. The
signed data types SBYTE, SWORD, and SDWORD are new to MASM 6.0. They
are useful in conjunction with directives such as INVOKE (for calling proce­
dures) and .IF (introduced in Chapter 7). The REAL4, REAL8, and REALIO direc­
tives can be used to define floating-point types. See Chapter 6.

Previous versions of MASM have separate directives for types and initializers.
For example, BYTE is a type and DB is the corresponding initializer. The distinc­
tion has been eliminated for MASM 6.0. Any type (intrinsic or user-defined) can
be used as an initializer.

MASM does not have specific types for arrays and strings. However, it allows a
sequence of data units to be treated as arrays, and character (byte) sequences to
be treated as strings. (See Section 5.1, "Arrays and Strings.")

Types can also have attributes such as langtype and distance (NEAR and FAR).
See Section 7.3.3, "Declaring Parameters with the PROC Directive," for informa­
tion on these attributes.

The TYPEDEF directive
defines aliases and pOinter
types.

language Components of MASM

You can also define your own types with STRUCT, UNION, and RECORD. The
types have fields that contain string or numeric data, or records that contain bits.
These data types are similar to the user-defined data types in high-level lan­
guages such as C, Pascal, and FORTRAN. (See Chapter 5, "Defining and Using
Complex Data Types.")

You can define new types, including pointer types, with the TYPEDEF directive,
which is also new to MASM 6.0. TYPEDEF assigns a qualifiedtype (explained
below) to a typename.

NOTE The concept of the qualifiedtype is essential to understanding many of the new fea­
tures in MASM 6.0, including prototypes and the .IF and INVOKE directives. Descriptions of
these topics in later chapters refer to this section.

Once assigned, the typename can be used as a data type in your program. Use of
the qualifiedtype also allows the CodeView debugger to display information on
the type. You cannot use a qualifiedtype as an initializer, but you can use a type
defined with TYPEDEF.

The quaZzJiedtype is any MASM type (such as structure types, union types, re­
cord types, or an intrinsic type) or can be a pointer to a type with the form

[distance] PTR [qualifiedtype]

where distance is NEAR, FAR, or any distance modifier. See Section 7.3.3, "De­
claring Parameters with the PROC Directive," for more information on distance.

The qualifiedtype can also be any type previously defined with TYPEDEF. For
example, if you use TYPEDEF to create an alias for BYTE, as shown below, then
you can use that CHAR type as a qualifiedtype when defining the pointer type
PCHAR.

CHAR TYPEDEF BYTE
PCHAR TYPEDEF PTR CHAR

Section 3.3, "Accessing Data with Pointers and Addresses," shows how to use
the TYPEDEF directive to define pointers.

Since distance and qualifiedtype are optional syntax elements, you can use varia­
bles of type PTR or FAR PTR. You can also define procedure prototypes with
qualifiedtype. See Section 7.3.6, "Declaring Procedure Prototypes," for more in­
formation about procedure prototypes.

Several rules govern the use of qualifiedtype:

• The only component of a qualifiedtype definition that can be forward­
referenced is a structure or union type identifier.

• If distance is not specified, the right operand and current memory model de­
termine the type of the pointer. If the operand following PTR is not a distance

19

Understanding Global Concepts

1.2.7 Registers

20

or a function prototype, the operand is a pointer of the default data pointer
type in the current mode. Otherwise, the type of the pointer is the distance of
the right operand.

• If .MODEL is not specified, SMALL model (and therefore NEAR pointers) is
the default.

A qualifiedtype can be used in seven places:

Use

In procedure arguments

In prototype arguments

With local variables declared
inside procedures

With the LABEL directive

With the EXTERN and
EXTERNDEF directives

With the COMM directive

With the TYPEDEF directive

Example

procl PROC pMsg:PTR BYTE

proc2 PROTO pMsg:FAR PTR
WORD

LOCAL pMsg:PTR

TempMsg LABEL PTR WORD

EXTERN pMsg: FAR PTR BYTE
EXTERN MyProc: PROTO

COMM va r 1 : WO RD : 3

PPBYTE TYPEDEF PTR PBYTE
PFUNC TYPEDEF PROTO MyProc

Section 3.3.1 shows ways to write a TYPEDEF type for a qualifiedtype. At­
tributes such as NEAR and FAR can also be applied to a qualifiedtype.

You can also determine an accurate definition for TYPEDEF and qualifiedtype
from the BNF grammar definitions given in Appendix B. The BNF grammar de­
fines each component of the syntax for any directive, showing the recursive prop­
erties of components such as qualifiedtype.

All the 8086 processors have the same base set of 16-bit registers. Some registers
can be accessed as two separate 8-bit registers. In the 80386/486, most registers
can also be accessed as extended 32-bit registers.

Figure 1.3 shows the registers common to all the 8086-based processors. Each
register has its own special uses and limitations.

General·Purpose Registers

15
/

Accumulator AH

Data OH

Count CH

Base BH

Base Pointer

Source Index

Destination Index

Stack Pointer

Segment Registers

Code Segment

Data Segment

Stack Segment

Extra Segment

/

7
/

AX
i

oX ,
ex -,
BX ,
BP

SI

01

SP

CS

os

SS

ES

o
/

AL
/

OL
/

CL
/

BL
/

/

/

/

/

/

/

/

/

/

Language Components of MASM

Multiply, divide, 110, and optimized moves

Multiply, divide, and 110

Count for loops, repeats, shifts, and rotates

Pointer to base address (data segment)

Pointer to base address (stack segment)

Source string and index pointer

Destination string and index pointer

Pointer to top of stack

Other Registers

Flags ~
Instruction Pointer ~

Figure 1.3 Registers for 8088·80286 Processors

80386/486 Only The 80386/486 processors use the same 8-bit and 16-bit reg­
isters that the rest of the 8086 family uses. All of these registers can be further ex­
tended to 32 bits, except segment registers, which always occupy 16 bits. The
extended register names begin with the letter "E." For example, the 32-bit exten­
sion of AX is EAX. The 80386/486 processors have two additional segment reg­
isters, FS and OS. Figure 1.4 shows the extended registers of the 80386/486.

21

Understanding Global Concepts

22

General-Purpose Registers

/

Accumulator

Data

Count

Base

Base Pointer

Source Index

Destination Index

Stack Pointer

Segment Registers

Code Segment

Data Segment

Stack Segment

Extra Segment

Extra Segment

Extra Segment

/

31 23

CS

os

SS

ES

FS

GS

15 7 o
/ / /

Efx AH ~X AL
V

EOX OH OX OL
I I /

ECX CH ex CL
II V

EBX BH BX BL
I I V

E~P BP
V

Efl SI v
Epl 01

1/

EfP SP
i/

Other Registers

/ /

V
Flags

Instruction
v Pointer

V

V

V

v

Figure 1.4 Extended Registers for the 80386/486 Processors

1.2.7.1 Segment Registers

/

Eflj9S Flags

EIP IP I

At run time, all addresses are relative to one of four segment registers: CS, DS,
SS, or ES. (The 80386/486 processors add two more, FS and GS.) These regis­
ters, their segments, and their purpose are listed below:

/

V

V

Operations on registers are
usually faster than
operations on memory
locations.

Register and Segment

CS (Code Segment)

DS (Data Segment)

SS (Stack Segment)

ES (Extra Segment)

FS,GS

language Components of MASM

Purpose

Contains processor instructions and their immediate
operands.

Normally contains data allocated by the program.

Creates stacks for use by PUSH, POP, CALLS,
and RET.

References secondary data segment. Used by string
instructions.

Provides extra segments on the 80386/486.

1.2.7.2 General-Purpose Registers
The AX, DX, CX, BX, BP, DI, and SI registers are 16-bit general-purpose regis­
ters. They can be used for temporary data storage. Since the processor accesses
registers more quickly than it can access memory, you can speed up execution by
keeping the most frequently used data in registers.

The 8086 family of processors does not perform memory-to-memory operations.
Thus, operations on more than one variable often require the data to be moved
into registers.

Four of the general registers, AX, DX, CX, and BX, can be accessed either as
two 8-bit registers or as a single 16-bit register. The AH, DH, CH, and BH regis­
ters represent the high-order 8 bits of the corresponding registers. Similarly, AL,
DL, CL, and BL represent the low-order 8 bits of the registers. All the general
registers can be extended to 32 bits on the 80386/486.

1.2.7.3 Special-Purpose Registers
The 8086 family of processors has two additional registers whose values are
changed automatically by the processor.

SP (Stack Pointer) The SP register points to the current location within the
stack segment. Pushing a value onto the stack decreases the value of SP by 2;
popping from the stack increases the value of SP by 2. With 32-bit operands on
80386/486 processors, SP is increased or decreased by 4 instead of 2. Call in­
structions store the calling address on the stack and decrease SP accordingly; re­
turn instructions get the stored address and increase SP. SP can also be
manipulated as a general-purpose register with instructions such as ADD.

23

Understanding Global Concepts

Only the processor
can change IP.

Flags reveal the status of
the processor.

24

IP (Instruction Pointer) The IP register always contains the address of the
next instruction to be executed. You cannot directly access or change the instruc­
tion pointer. However, instructions that control program flow (such as calls,
jumps, loops, and interrupts) automatically change the instruction pointer.

1.2.7.4 Flags Register
The 16 bits in the flags register control the execution of certain instructions and
reflect the current status of the processor. In 80386/486 processors, the flags reg­
ister is extended to 32 bits. Some bits are undefined, so there are actually 9 flags
for real mode, 11 flags (including a 2-bit flag) for 80286 protected mode, 13 for
the 80386, and 14 for the 80486. The extended flags register of the 80386/486 is
sometimes called "Eflags."

Figure 1.5 shows the bits of the 32-bit flags register for the 80386/486. Only the
lower word is used for the other 8086-family processors. The unmarked bits are
reserved for processor use; do not modify them.

Alignment Check
Virtual 8086 Mode

Resume
Nested Task

I/O Protection Level
Overflow

Direction
Interrupt Enable

Trap
Sign

Zero

r r
AU;i~~~::

31 23 15 7 I a
((((((((((((((ArV(Rr I'N(IOP(oI'O(II\(srz((AI' (PI' (c~
\ y I~\ Y I

80386/486 only 80286-80486 only All processors

Figure 1.5 Flags for 8088-80486 Processors

The nine flags common to a1l8086-family processors are summarized below,
starting with the low-order flags. In these descriptions, "set" means the bit value
is 1, and "cleared" means the bit value is o.

1.2.8 Statements

Language Components of MASM

Carry

Parity

Auxiliary
Carry

Zero

Sign

Trap

Interrupt
Enable

Direction

Overflow

Description

Set if an operation generates a carry to or a borrow from
a destination operand.

Set if the low-order bits of the result of an operation con­
tain an even number of set bits.

Set if an operation generates a carry to or a borrow from
the low-order four bits of an operand. This flag is used
for binary coded decimal (BCD) arithmetic.

Set if the result of an operation is O.

Equal to the high-order bit of the result of an operation
(0 is positive, 1 is negative).

If set, the processor generates a single-step interrupt
after each instruction. A debugging program can use this
feature to execute a program one instruction at a time.

If set, interrupts are recognized and acted on as they are
received. The bit can be cleared to turn off interrupt pro­
cessing temporarily.

Set to make string operations process down from high
addresses to low addresses; can be cleared to make
string operations process up from low addresses to high
addresses.

Set if the result of an operation is too large or small to
fit in the destination operand.

Statements are the line-by-line components of source files. Each MASM state­
ment specifies an instruction or directive for the assembler. Statements have up
to four fields. The syntax is shown below:

[name] [operation] [operands] [;comment]

The fields are explained below:

Field

name

operation

Purpose

Defines a label that can be accessed from elsewhere in
the program. For example, it can name a variable, type,
segment, or code location.

States the action of the statement. This field contains
either an instruction or an assembler directive.

25

Understanding Global Concepts

The backslash character
joins physical lines into
one logical line.

26

Field

operands

comment

Purpose

Lists one or more items on which the instruction or
directive operates.

Provides a comment for the programmer. Comments
are for documentation only; they are ignored by the
assembler.

The following line contains all four fields:

mainlp: mov ax, 7 ; Comments follow the semicolon

Here, rna in 1 p is the label, mav is the operation, and ax and 7 are the oper­
ands, separated by a comma. The comment follows the semicolon.

All fields are optional, although certain directives and instructions require an
entry in the name or operand field. Some instructions and directives place restric­
tions on the choice of operands. By default, MASM is not case sensitive.

Each field (except the comment field) must be separated from other fields by
white-space characters (spaces or tabs). MASM also requires code labels to be
followed by a colon, operands to be separated by commas, and comments to be
preceded by a semicolon.

A logical line can contain up to 512 characters and occupy one or more physical
lines. To extend a logical line into two or more physical lines, put the backslash
character (\) as the last non-whitespace character before the comment or end of
the line. You can place a comment after the backslash as shown in this example:

. IF (x > 0) \ X must be positive
&& (ax > x) \ Result from function must be > x
&& (cx == 0) Check loop counter too
mov dx, 20h

.ENDIF

Multiline comments can also be specified with the COMMENT directive. The as­
sembler ignores all code between the delimiter character following the directive
and the line containing the next instance of the delimiter character. This example
illustrates the use of COMMENT.

COMMENT 1\

mov ax, 1

The assembler
ignores this text
and this code

The Assembly Process

1.3 The Assembly Process

You can control assembly
behavior with conditional
assembly.

Creating and running an executable file involves several processes:

• Assembling the source code into an object file

• Linking the object file with other modules or libraries into an executable
program

• Loading that program into memory

• Running the program

Once you have written your assembly-language program, MASM provides sev­
eral options for assembling it. The OPTION directive, new to MASM 6.0, has
several different arguments that let you control the way MASM assembles your
programs.

Conditional assembly allows you to create one source file that can generate a
variety of programs, depending on the status of various conditional-assembly
statements.

1.3.1 Generating and Running Executable Programs
This section briefly lists all the actions that take place during each of the as­
sembly steps. You can change the behavior of some of these actions in various
ways, for example, by using macros instead of procedures, or by using the
OPTION directive or conditional assembly. The other chapters in this book dis­
cuss specific programming methods; this list simply gives you an overview.

1.3.1.1 Assembling
The ML.EXE program does two things to create an executable program. First, it
assembles the source code into an intermediate object file. Second, it calls the
linker, LINK.EXE, which links the object files and libraries into an executable
program (usually with the .EXE extension).

At assembly time, the assembler

• Evaluates conditional-assembly directives, assembling if the conditions are
true.

• Expands macros and macro functions.

• Evaluates constant expressions such as MY F LAG AN 0 80H, substituting the
calculated value for the expression.

27

Understanding Global Concepts

28

• Encodes instructions and nonaddress operands. For example, mov cx, 13
can be encoded at assembly time because the instruction does not access
memory.

• Saves memory offsets as offsets from their segment.

• Passes segments and segment attributes to the object file.

• Saves placeholders for offsets and segments (relocatable addresses).

• Outputs a listing if requested.

• Passes messages (such as INCLUDELIB and .DOSSEG) directly to the linker.

See Section 1.3.3 for information about conditional assembly; see Chapter 9 for
macros. Chapters 2 and 3 give further details about segments and offsets, and Ap­
pendix C explains listing files.

1.3.1.2 Linking
Once your source code is assembled, the resulting object file is passed to the
linker. At this point, the linker may combine several object files into an execu­
table program.

At link time, the linker

• Combines segments according to the instructions in the object files, rearrang­
ing the positions of segments that share the same class or group.

• Fills in placeholders for offsets (relocatable addresses).

• Writes relocations for segments into the header of .EXE files (but not .COM
files).

• Writes an executable image.

Section 2.3.4, "Defining Segment Groups," defines classes and groups. Chapter
3, "Using Addresses and Pointers," explains segments and offsets.

1.3.1.3 Loading
The operating system loads the file generated by the linker into memory. When
the executable file is loaded into memory, DOS

• Reads the program segment prefix (PSP) header into memory.

• Allocates memory for the program, based on the values in the PSP.

• Loads the program.

• Calculates the correct values for absolute addresses from the relocation table.

The Assembly Process

• Loads the segment registers SS, CS, DS, and ES with values that point to the
proper areas of memory.

• Loads the instruction pointer (lP) to point to the start address in the code seg­
ment and the stack pointer (SP) to point to the stack.

• Begins execution of the program.

The process is similar for OS/2.

See Section 1.2.7, "Registers," for information about segment registers, the in­
struction pointer (lP), and the stack pointer (SP). See MASM online help or a
DOS reference for more information on the PSP.

1.3.1.4 Running
Your program is now ready to run. Some program operations cannot be handled
until the program runs, such as resolving indirect memory operands. See Section
7.1.1.2, "Indirect Operands."

1.3.2 Using the OPTION Directive
The OPTION directive lets you modify global aspects of the assembly process.
With OPTION, you can change command-line options and default arguments.
These changes affect only statements that follow the use of OPTION.

For example, you may have MASM code in which the first character of a varia­
ble, macro, structure, or field name is a dot (.). Since a leading dot causes MASM
6.0 to generate an error, you can use this statement in your program:

OPTION DOTNAME

This enables the use of the dot for the first character.

Changes made with OPTION override any corresponding command-line option.
For example, suppose you compile a module with this command line (which ena­
bles M510 compatibility):

ML IZm TEST.ASM

but this statement is in the module:

OPTION NOM510

From this point on in the module, the M51 0 compatibility options are disabled.

The lists below explain each of the arguments for the OPTION directive. You can
put more than one OPTION statement on one line if you separate them by
commas.

29

Understanding Global Concepts

Options for M510 Compatibility

Argument

CASEMAP: maptype

DOTNAMEINODOTNAME

M510 I NOM510

OLDMACROSINOOLDMACROS

30

Description

CASEMAP:NONE (or lex) causes
internal symbol recognition to be
case sensitive and causes the case
of identifiers in the .0Bl file to be
the same as specified in the
EXTERNDEF, PUBLIC, or
COMM statement. The default is
CASEMAP:NOTPUBLIC (or lep).
It specifies case insensitivity for
internal symbol recognition and
the same behavior as
CASEMAP:NONE for case
of identifiers in .0Bl files.
CASEMAP:ALL (leu) specifies
case insensitivity for identifiers
and converts all identifier names
to uppercase.

Enables the use of the dot (.) as
the leading character in variable,
macro, structure, union, and mem­
ber names. NODOTNAME is the
default.

Sets all features to be compatible
with MASM version 5.1, disa­
bling the SCOPED argument and
enabling OLDMACROS,
DOTNAME, and, OLDSTRUCTS.
OPTION M510 conditionally sets
other arguments for the OPTION
directive. The default is NOM510.
See Appendix A for more informa­
tion on using OPTION M510.

Enables the version 5.1 treatment
of macros. MASM 6.0 treats mac­
ros differently. The default is
NOOLDMACROS.

Argument

OLDSTRUCTSI NOOLDSTRUCTS

SCOPED I NOSCOPED

Options for Procedure Use

Argument

LANGUAGE: langtype

EPILOGUE: macroname

PROLOGUE: macroname

PROC: visibility

The Assembly Process

Description

Enables compatibility with
MASM 5.1 for treatment of struc­
ture members. See Section 5.2 for
information on structures.

Guarantees that all labels inside
procedures are local to the proce­
dure when SCOPED (the default)
is enabled.

Description

Specifies the default language
type (C, PASCAL, FORTRAN,
BASIC, SYSCALL, or STDCALL)
to be used with PROC, EXTERN,
and PUBLIC. This use of the
OPTION directive overrides the
.MODEL directive but is normally
used when .MODEL is not given.

Instructs the assembler to call the
macroname to generate a user­
defined epilogue instead of the
standard epilogue code when a
RET instruction is encountered.
See Section 7.3.8.

Instructs the assembler to call
macroname to generate a user­
defined prologue instead of
generating the standard prologue
code. See Section 7.3.8.

Allows the default visibility to be
set explicitly. The default visibility
is PUBLIC. The visibility can also
be either EXPORT or PRIVATE.

31

Understanding Global Concepts

Other Options

Argument

EXPR16 I EXPR32

EMULATOR I NOEMULATOR

LIMP I NOLJMP

NOKEYWORD:<keywordlist>

NOSIGNEXTEND

32

Description

Sets the expression word size to 16
or 32 bits. The default is 32 bits.
The M510 argument to the OPTION
directive sets the word size to 16
bits. Once set with the OPTION
directive, the expression word size
cannot be changed.

Controls the generation of
floating-point instructions. The
NOEMULATOR option generates
the coprocessor instructions
directly. The EMULATOR option
generates instructions with special
fixup records for the linker so that
the Microsoft floating-point emula­
tor, supplied with other Microsoft
languages, can be used. It produces
the same result as setting the /Fpi
command-line option. You can set
this option only once per module.

Enables automatic conditional­
jump lengthening. The default is
LJMP. See Section 7.1.2 for infor­
mation about conditional-jump
lengthening.

Disables the specified reserved
words. See Section 1.2.1, "Re­
served Words," for an example of
the syntax for this argument.

Overrides the default sign-extended
o~o~sfurilieAND,OR,md
XOR instructions and generates the
larger non-sign-extended forms of
these instructions. Provided for
compatibility with NEC V25® and
NEC V35™ controllers.

The Assembly Process

Argument

OFFSET: oJfsettype

READONLYINOREADONLY

SEGMENT: segSize

1.3.3 Conditional Directives

Description

Determines the result of OFFSET
operator fixups. SEGMENT sets the
defaults for fixups to be segment­
relative (compatible with MASM
5.1). GROUP, the default, generates
fixups relative to the group (if the
label is in a group). FLAT causes
fixups to be relative to a flat frame.
(The .386 mode must be enabled to
use FLAT.) See Appendix A for
more information.

Enables checking for instructions
that modify code segments, thereby
guaranteeing that read-only code
segments are not modified. Re­
places the /p command-line option
of MASM 5.1. It is useful for OS/2,
where code segments are normally
read-only.

Allows global default segment size
to be set. Also determines the de­
fault address size for external
symbols defined outside any seg­
ment. The segSize can be USE16,
USE32, or FLAT.

MASM 6.0 provides conditional-assembly directives and conditional-error direc­
tives. You can also use conditional-assembly directives when you want to test for
a specified condition and assemble a block of statements if the condition is true.
You can use conditional-error directives when you want to test for a specified
condition and generate an assembly error if the condition is true.

Both kinds of conditional directives test assembly-time conditions, not run-time
conditions. Only expressions that evaluate to constants during assembly can be
compared or tested. Predefined symbols are often used in conditional assembly.
See Section 1.2.3.

Conditional-Assembly Directives
The IF and ENDIF directives enclose the statements to be considered for condi­
tional assembly. The optional ELSEIF and ELSE blocks follow the IF directive.
There are many forms of the IF and ELSE directives. Online help provides a com­
plete list.

33

Understanding Global Concepts

34

The syntax used for the IF directives is shown below. The syntax for other
condition-assembly directives follow the same form.

IF expression1
ifstatements
[ELSEIF expression2
elseifstatements]
[ELSE
elsestatements]
ENDIF

The statements following the IF directive can be any valid statements, including
other conditional blocks, which in tum can contain any number of ELSEIF
blocks. ENDIF ends the block.

The statements following the IF directive are assembled only if the correspond­
ing condition is true. If the condition is not true and an ELSEIF directive is used,
the assembler checks to see if the corresponding condition is true. If so, it as­
sembles the statements following the ELSEIF directive. If no IF or ELSEIF condi­
tions are satisfied, the statements following the ELSE directive are assembled.

For example, you may want to assemble a line of code only if a particular varia­
ble has been defined. In this example,

buffer
buff

IFDEF
BYTE
ENDIF

buffer DUP(?)

buff is allocated only if buffer has been previously defined.

The following list summarizes the conditional-assembly directives:

Directive

IF and IFE

IFDEF and IFNDEF

IFB and IFNB

IFIDN and IFDIF

Use

Tests the value of an expression and allows
assembly based on the result.

Tests whether a symbol has been defined and allows
assembly based on the result.

Tests to see if a specified argument was passed to a
macro and allows assembly based on the result.

Compares two macro arguments and allows as­
sembly based on the result. (IFDIFI and IFIDNI per­
form the same action but are case insensitive.)

The Assembly Process

Conditional-Error Directives
You can use conditional-error directives to debug programs and check for
assembly-time errors. By inserting a conditional-error directive at a key point in
your code, you can test assembly-time conditions at that point. You can also use
conditional-error directives to test for boundary conditions in macros.

Like other severe errors, those generated by conditional-error directives cause the
assembler to return a nonzero exit code. If a severe error is encountered during as­
sembly, MASM does not generate the object module.

For example, the .ERRNDEF directive produces an error if some label has not
been defined. In this example, .ERRNDEF at the beginning of the conditional
block makes sure that a publ evel actually exists.

.ERRNDEF publevel
IF publevel LE 2
PUBLIC va rl , var2
ELSE
PUBLIC varl, var2, var3
ENDIF

These directives use the syntax given in the previous section. The following list
summarizes the conditional-error directives.

Directive

.ERR

.ERRE and .ERRNZ

.ERRDEF and

. ERRNDEF

.ERRB and .ERRNB

.ERRIDN and

.ERRDIF

Use

Forces an error where the directives occur in the
source file. The error is generated unconditionally
when the directive is encountered, but the direc­
tives can be placed within conditional-assembly
blocks to limit the errors to certain situations.

Tests the value of an expression and conditionally
generates an error based on the result.

Tests whether a symbol is defined and condition­
ally generates an error based on the result .

Tests whether a specified argument was passed to
a macro and conditionally generates an error
based on the result.

Compares two macro arguments and condition­
ally generates an error based on the result.
(.ERRIDNI and .ERRDIFI perform the same ac­
tion but are case sensitive.)

35

Understanding Global Conc~pts

1.4 Related Topics in Online Help

36

In addition to information covered in this chapter, information on the following
topics can be found in online help.

Topic

Predefined symbols

Operator precedence

Data types

Registers

Processor directives

Conditional assembly
and conditional errors

EVEN, ALIGN,
OPTION

Radix specifiers

ML command-line
options

Access

From the "MASM 6.0 Contents" screen, choose
"Predefined Symbols"

From the list of tables on the "MASM 6.0 Con­
tents" screen, choose "Operator Precedence"

Choose "Directives" from the "MASM 6.0 Con­
tents" screen; then choose "Data Allocation" or
"Complex Data Types" from the resulting screen

From the "MASM 6.0 Contents" screen, choose
"Language Overview"; then choose "Processor
Register Summary"

To see a table of directives, choose "Processor
Selection" from the "MASM 6.0 Contents"
screen

Choose "Directives" from the "MASM 6.0 Con­
tents" screen

From the "MASM 6.0 Contents" screen, choose
"Directives," then "Miscellaneous"

From the "MASM 6.0 Contents" screen, choose
"Language Overview"

From the "Microsoft Advisor Contents" screen,
choose "Macro Assembler" from the" Com­
mand Line" list

Chapter 2

Organizing MASM Segments

A segment is a collection of instructions or data whose addresses are all relative
to the same segment register. The code in your assembly-language program de­
fines and organizes them.

Segments can be defined by using simplified segment directives or full segment
definitions. Section 2.2, "Using Simplified Segment Directives," covers the direc­
tives you can use to begin, end, and organize segment program modules. It also
discusses how to access far data and code with simplified segment directives.

Section 2.3, "Using Full Segment Definitions," describes how to order, combine,
and divide segments, as well as how to use the SEGMENT directive to define full
segments. It also tells you how to create a segment group so that you can use just
one segment address to access all the data.

Most of the information in this chapter also applies to writing modules to be
called from other programs. Exceptions are noted when they apply. See Chapter
8, "Sharing Data and Procedures among Modules and Libraries," for more infor­
mation about multiple-module programming.

2.1 Overview of Memory Segments
A physical segment is an area of memory in which all locations are contiguous
and share the same segment address. A segment always begins on a 16-byte
(paragraph) boundary (unless an alignment attribute is specified with ALIGN).
While 16-bit segments can occupy up to 64K (kilobytes), 32-bit segments can be
as large as 4 gigabytes.

Segments reflect the architecture of the original 8086 processor. Prior to the
80386 processors and OS/2 2.x, assembly-language programming meant using
segmented memory. A flat address space is now available on 80386/486 proces­
sors in 32-bit mode. This space is still segmented at the hardware level, but it al­
lows you to ignore most segmentation concerns.

Segments provide a means for associating similar kinds of data. Most programs
have segments for code, data, constant data, and the stack. These logical seg­
ments are allocated by the assembler at assembly time.

You can define segments in two ways: with simplified segment directives and
with full segment definitions. You can also use both kinds of segment definitions
in the same program.

37

Organizing MASM Segments

Simplified segment
directives are easier to use
than full segment
definitions.

Simplified segment directives hide many of the details of segment definition and
assume the same conventions used by Microsoft high-level languages. (See Sec­
tion 2.2.) The simplified segment directives generate necessary code, specify seg­
ment attributes, and arrange segment order.

Full segment definitions require more complex syntax but provide more com­
plete control over how the assembler generates segments. (See Section 2.3.) If
you use full segment definitions, you must write code to handle all the tasks per­
formed automatically by the simplified segment directives.

2.2 USing Simplified Segment Directives

The main module is where
execution begins.

38

Structuring a MASM program using simplified segments requires use of several
directives to assign standard names, alignment, and attributes to the segments in
your program. These directives define the segments in such a way that linking
with Microsoft high-level languages is easy.

The simplified segment directives are .MODEL, .CODE, .CONST, .DATA,
.DATA?, .FARDATA, .FARDATA?, .STACK, .STARTUP, and .EXIT. These direc­
tives and the arguments they take are discussed in the following sections.

MASM programs consist of modules made up of segments. Every program writ­
ten only in MASM has one main module, where program execution begins. This
main module can contain code, data, or stack segments defined with all of the
simplified segment directives. Any additional modules should contain only code
and data segments. Every module that uses simplified segments must, however,
begin with the .MODEL directive.

The following example shows the structure of a main module using simplified
segment directives. It uses the default processor (8086), the default operating sys­
tem (OS_DOS), and the default stack distance (NEARSTACK). Additional mod­
ules linked to this main program would use only the .MODEL, .CODE, and
.DA T A directives and the END statement.

This is the structure of a main module
using simplified segment directives

.MODEL small, c This statement is required before you

.STACK

.DATA

.CODE

.STARTUP

can use other simplified segment
directives

Use default 1-kilobyte stack

Begin data segment

Place data declarations here

Begin code segment
Generate start-up code

A module must always
finish with the END
directive.

• EXIT
END

Using Simplified Segment Directives

Place instructions here

Generate exit code

The .DATA and .CODE statements do not require any separate statements to de­
fine the end of a segment. They close the preceding segment and then open a new
segment. The .STACK directive opens and closes the stack segment but does not
close the current segment. The END statement closes the last segment and marks
the end of the source code. It must be at the end of every module, whether or not
it is the main module.

2.2.1 Defining Basic Attributes with .MODEL
The .MODEL directive defines the attributes that affect the entire module:
memory model, default calling and naming conventions, operating system, and
stack type. This directive enables use of simplified segments and controls the
name of the code segment and the default distance for procedures.

You must place .MODEL in your source file before any other simplified segment
directive. The syntax is

.MODEL memorymodel [, modeloptions]

The memorymodel field is required and must appear immediately after the
.MODEL directive. The use of modeloptions, which define the other attributes, is
optional. The modeloptions must be separated by commas. You can also use
equates passed from the ML command line to define the modeloptions.

The list below summarizes the memorymodel field and the modeloptions fields
(language, operating system, and stack distance):

Field

Memory model

Language

Operating system

Stack distance

Description

TINY, SMALL, COMPACT, MEDIUM, LARGE,
HUGE, or FLAT. Determines size of code and data
pointers. This field is required.

C, BASIC, FORTRAN, PASCAL, SYSCALL, or
STDCALL. Sets calling and naming conventions for
procedures and public symbols.

OS OS2 or OS DOS. Determines behavior of - -
.STARTUP and .EXIT.

NEARSTACK or FARSTACK. Specifying
NEARSTACK groups the stack segment into a single
physical segment (DGROUP) along with data. SS is
assumed to equal DS. FARSTACK does not group the
stack with DGROUP; thus SS does not equal DS.

39

Organizing MASM Segments

40

You can use no more than one reserved word from each field. The following ex­
amples show how you can combine various fields:

.MODEL small

.MODEL large, c, farstack

.MODEL medium, pascal, os os2

Small memory model
Large memory model,
C conventions,
separate stack

Medium memory model,
Pascal conventions,
OS/2 start-up/exit

The next four sections give more detail on each field.

Defining the Memory Model
MASM supports the standard memory models used by Microsoft high-level lan­
guages-tiny, small, medium, compact, large, huge, and flat. You specify the
memory model with attributes of the same name placed after the .MODEL direc­
tive. Your choice of a memory model does not limit the kind of instructions you
can write. It does, however, control segment defaults and determine whether data
and code are near or far by default (see Table 2.1).

Table 2.1 Attributes of Memory Models

Memory Default Default Operating Data and Code
Model Code Data System Combined

Tiny Near Near DOS Yes

Small Near Near DOS, OS/2 l.x No

Medium Far Near DOS, OS/2 l.x No

Compact Near Far DOS, OS/2 l.x No

Large Far Far DOS, OS/2 l.x No

Huge Far Far DOS, OS/2 l.x No

Flat Near Near OS/22.x Yes

When writing assembler modules for a high-level language, you should use the
same memory model as the calling language. Generally, choose the smallest
memory model available that can contain your data and code, since near refer­
ences are more efficient than far references.

The predefined symbol @Model returns the memory model. It encodes memory
models as integers I lhrough 7. See Section 1.2.3 for more information on prede­
fined symbols, and see online help for an example of how to use them.

The seven memory models supported by MASM 6.0 divide into three groups.

The language type is most
important when you write a
mixed-language program.

Using Simplified Segment Directives

Small, Medium, Compact, Large, and Huge Models The traditional
memory models recognized by many DOS and OS/2 l.x languages are small, me­
dium, compact, large, and huge. Small model supports one data segment and one
code segment. All data and code are near by default. Large model supports multi­
ple code and multiple data segments. All data and code are far by default. Me­
dium and compact models are in between. Medium model supports mUltiple code
and single data segments; compact model supports multiple data segments and a
single code segment.

Huge model implies individual data items larger than a single segment, but the
implementation of huge data items must be coded by the programmer. Since the
assembler provides no direct support for this feature, huge model is essentially
the same as large model.

In each of these models, you can override the default. For example, you can
make large data items far in small model, or internal procedures near in large
model.

Tiny Model OS/2 does not support tiny model, but DOS does under MASM
6.0. This model places all data and code in a single segment. Therefore, the total
program size can be no more than 64K. The default is near for code and static
data items; you cannot override this default. However, you can allocate far data
dynamically at run time using DOS memory allocation services.

Tiny model produces DOS .COM files. Specifying . MODEL tiny automat­
ically sends a /TINY to the linker. Therefore, / AT is not necessary with . MO DEL
tiny. However, / AT does not insert a .MODEL directive. It only verifies that
there are no base or pointer fixups, and sends /TINY to the linker.

Flat Model The flat memory model is a nonsegmented configuration availa­
ble for 32-bit operating systems. It is similar to tiny model in that all code and
data go in a single 32-bit segment.

OS/2 2.x uses flat model when you specify the .386 or .486 directive before
.MODEL FLAT. All data and code (including system resources) are in a single
32-bit segment. Segment registers are initialized automatically at load time; the
programmer needs to modify them only when mixing l6-bit and 32-bit segments
in a single application. CS, DS, ES, and SS are all assumed to the supergroup
FLAT. FS and GS are assumed to ERROR, since 32-bit versions of OS/2 reserve
the use of these registers. Addresses and pointers passed to system services are al­
ways 32-bit near addresses and pointers. Although the theoretical size of the
single flat segment is four gigabytes, OS/2 2.0 actually limits it to 512 megabytes
in flat model.

Choosing the language Convention
The language option facilitates compatibility with high-level languages by deter­
mining the internal encoding for external and public symbol names, the code
generated for procedure initialization and cleanup, and the order that arguments
are passed to a procedure with INVOKE. It also facilitates compatibility with

41

Organizing MASM Segments

Having SS equal to DS
gives some programming
advantages.

42

high-level-language modules. The PASCAL, BASIC, and FORTRAN conventions
are identical. C and SYSCALL have the same calling convention but different
naming conventions. OS/2 system calls require the PASCAL calling convention
for OS/2 l.x, but require the SYSCALL convention for OS/2 2.x. Specifying
STDCALL for the calling convention enables a different calling convention and
the same naming convention (see Section 20.1).

Procedure definitions (PROC) and high-level procedure calls (INVOKE) automat­
ically generate code consistent with the calling convention of the specified lan­
guage. The PROC, INVOKE, PUBLIC, and EXTERN directives all use the
naming convention of the language. These directives follow the default language
conventions from the .MODEL directive unless you specifically override the de­
fault. Chapter 7, "Controlling Program Flow," tells how to use these directives.
You can also use the OPTION directive to set the language type. (See Section
1.3.2.) Not specifying a language type in either the .MODEL, OPTION,
EXTERN, PROC, INVOKE, or PROTO statement causes the assembler to
generate an error.

The predefined symbol @Interface provides information about the language par­
ameters. See online help for a description of the bit flags.

See Chapter 20, "Mixed-Language Programming," for more information on cal­
ling and naming conventions. See Chapter 7, "Controlling Program Flow," for in­
formation about writing procedures and prototypes. See Chapter 8, "Sharing Data
and Procedures among Modules and Libraries," for information on multiple-mod­
ule programming.

Specifying the Operating System
The operating-system options (OS_DOS or OS_OS2) are arguments of .MODEL.
They specify the start-up and exit code generated by the .STARTUP and .EXIT
directives. (See Section 2.2.6.) If you do not use .STARTUP and .EXIT, you can
omit this option. The default is OS _DOS.

Setting the Stack Distance
The NEARSTACK setting places the stack segment in a group, DGROUP, shared
with data. The .STARTUP directive then generates code to adjust SS:SP so that
SS (Stack Segment register) holds the same address as DS (Data Segment regis­
ter). If you do not use .STARTUP, you must make this adjustment yourself or
your program may fail to run. (See Section 2.2.6 for information about start-up
code.) In this case, you can use DS to access stack items (including parameters
and local variables) and SS to access near data. Furthermore, since stack items
share the same segment address as near data, you can reliably pass near pointers
to stack items.

The F ARST ACK setting gives the stack a segment of its own. That is, SS does
not equal DS. The default stack type, NEARSTACK, is a convenient setting for
most programs. Use FARSTACK for special cases such as memory-resident pro­
grams and dynamic-link libraries (DLLs) when you cannot assume that the cal­
ler's stack is near.

Using Simplified Segment Directives

The stack specification also affects the ASSUME statement generated by
.MODEL and .STACK. You can use the predefined symbol @Stack to determine
if the stack location is DGROUP (for near stacks) or STACK (for far stacks).

2.2.2 Specifying a Processor and Coprocessor

Processor directives affect
availability of various
MASM language features.

MASM supports a set of directives for selecting processors and coprocessors.
Once you select a processor, you must use only the instruction set available for
that processor. The default is the 8086 processor. If you always want your code
to run on this processor, you do not need to add any processor directives.

To enable a different processor mode and the additional instructions available on
that processor, use the directives .186, .286, .386, and .486.

The .286P, .386P, and .486P directives enable the instructions available only at
higher privilege levels in addition to the normal instruction set for the given pro­
cessor. Privileged instructions are not necessary for writing applications, even for
OS/2. Generally, you don't need privileged instructions unless you are writing
operating-systems code or device drivers.

In addition to enabling different instruction sets, the processor directives also af­
fect the behavior of extended language features. For example, the INVOKE direc­
tive pushes arguments onto the stack. If the .286 directive is in effect, INVOKE
takes advantage of operations possible only on 80286 and later processors.

Use the directives .8087 (the default), .287, .387, and .N087 to select a math co­
processor instruction set. The .N087 directive turns off assembly of all coproces­
sor instructions. Note that .486 also enables assembly of all coprocessor
instructions because the 80486 processor has a complete set of coprocessor regis­
ters and instructions built into the chip. The processor instructions imply the
corresponding coprocessor directive. The coprocessor directives are provided to
override the defaults.

2.2.3 Creating a Stack
The stack is the section of memory used for pushing or popping registers and stor­
ing the return address when a subroutine is called. The stack often holds tem­
porary and local variables.

If your main module is written in a high-level language, that language handles
the details of creating a stack. Use the .STACK directive only when you write a
main module in assembly language.

The .STACK directive creates a stack segment. By default, the assembler allo­
cates IK of memory for the stack. This size is sufficient for most small programs.

43

Organizing MASM Segments

To create a stack of a size other than the default size, give .STACK a single
numeric argument indicating stack size in bytes:

.STACK 2048 ; Use 2K stack

For a description of how stack memory is used with procedure calls and local
variables, see Chapter 7, "Controlling Program Flow."

2.2.4 Creating Data Segments

Near data pointers always
paint to DGROUP.

44

Programs can contain both near and far data. In general, you should place impor­
tant and frequently used data in the near data area, where data access is faster.
This area can get crowded, however, because (in l6-bit operating systems) the
total amount of all near data in all modules cannot exceed 64K. Therefore, you
may want to place infrequently used or particularly large data items in a far data
segment.

The .DATA, .DATA?, .CONST, .FARDATA, and .FARDATA? directives create
data segments. You can access the various segments within DGROUP without re­
loading segment registers (see Section 2.3.4, "Defining Segment Groups").
These four directives also prevent instructions from appearing in data segments
by assuming CS to ERROR. (See Section 2.3.3 for information about ASSUME.)

Near Data Segments
The .DATA directive creates a near data segment. This segment contains the
frequently used data for your program. It can occupy up to 64K in DOS or 512
megabytes under flat model in OS/2 2.0. It is placed in a special group identified
as DGROUP, which is also limited to 64K.

When you use .MODEL, the assembler automatically defines DGROUP for your
near data segment. The segments in DGROUP form near data, which can nor­
mally be accessed directly through DS or SS.

You can also define the .DATA? and .CONST segments that go into DGROUP
unless you are using flat model. Although all of these segments (along with the
stack) are eventually grouped together and handled as data segments, .DATA?
and .CONST enhance compatibility with Microsoft high-level languages. In
Microsoft languages, .CONST is used for defining constant data such as strings
and floating-point numbers that must be stored in memory. The .DATA? segment
is used for storing uninitialized variables. You can follow this convention if you
wish. If you use C start-up code, .DATA? is initialized to O.

You can use @data to determine the group of the data segment and @DataSize
to determine the size of the memory model set by the .MODEL directive. The pre­
defined symbols @WordSize and @CurSegreturn the size attribute and name
of the current segment, respectively. See Section 1.2.3, "Predefined Symbols."

Using Simplified Segment Directives

Far Data Segments
The compact, large, and huge memory models use far data addresses by default.
With these memory models, however, you can still use .DA T A, .DAT A?, and
.CONST to create data segments. The effect of these directives does not change
from one memory model to the next. They always contribute segments to the de­
fault data area, DGROUP, which has a total limit of 64K.

When you use .F ARDAT A or .F ARDA T A? in the small and medium memory
models, the assembler creates far data segments FAR_DATA and FAR_BSS, re­
spectively. You can access variables with:

mov ax, SEG farvar2
mov ds, ax

See Section 3.1.2 for more information on far data.

2.2.5 Creating Code Segments
Whether you are writing a main module or a module to be called from another
module, you can have both near and far code segments. This section explains
how to use near and far code segments and how to use the directives and prede­
fined equates that relate to code segments.

Near Code Segments
The small memory model is often the best choice for assembly programs that are
not linked to modules in other languages, especially if you do not need more than
64K of code. This memory model defaults to near (two-byte) addresses for code
and data, which makes the program run faster and use less memory.

When you use .MODEL and simplified segment directives, the .CODE directive
in your program instructs the assembler to start a code segment. The next seg­
ment directive closes the previous segment; the END directive at the end of your
program closes remaining segments. The example at the beginning of Section
2.2, "Using Simplified Segment Directives," shows how to do this.

You can use the predefined symbol @CodeSize to determine whether code point­
ers default to NEAR or FAR.

Far Code Segments
When you need more than 64K of code, use the medium, large, or huge memory
model to create far segments.

The medium, large, and huge memory models use far code addresses by default.
In the larger memory models, the assembler creates a different code segment for
each module. If you use multiple code segments in the small, compact, or tiny
model, the linker combines the .CODE segments for all modules into one
segment.

45

Organizing MASM Segments

The assembler assigns
names to code segments.

For far code segments, the assembler names each code segment MOD­
NAME_TEXT, in which MODNAME is the name of the module. With near
code, the assembler names every code segment _TEXT, causing the linker to con­
catenate these segments into one. You can override the default name by provid­
ing an argument after .CODE. (See Appendix E, "Default Segment Names," for a
complete list of segment names generated by MASM.)

With far code, a single module can contain multiple code segments. The .CODE
directive takes an optional text argument that names the segment. For instance,
the example below creates two distinct code segments, FIRST_TEXT and
SECOND_TEXT.

.CODE FIRST

; First set of instructions here

.CODE SECOND

; Second set of instructions here

Whenever the processor executes a far call or jump, it loads CS with the new seg­
ment address. No special action is necessary other than making sure that you use
far calls and jumps. See Section 3.1.2, "Near and Far Addresses."

NOTE The ASSUME directive is never necessary when you change code segments. In
MASM 6.0, the assembler always assumes that the CS register contains the address of the
current code segment or group. See Section 2.3.3 for more information about ASSUME
used with segment registers.

2.2.6 Starting and Ending Code with .STARTUP and .EXIT

.STARTUP generates the
start-up code required by
either DOS or OS/2.

46

The easiest way to begin and end a program is to use the .STARTUP and .EXIT
directives in the main module. The main module contains the starting point and
usually the termination point. You do not need these directives in a module
called by another module.

These directives make programs easy to maintain. They automatically generate
code appropriate to the operating system and stack types specified with .MODEL.
Thus, you can specify the program is for a different operating system or stack
type by altering keywords in the .MODEL directive.

To start a program, place the .ST ARTUP directive where you want execution to
begin. Usually, this location immediately follows the .CODE directive:

Using Simplified Segment Directives

.CODE

.STARTUP

. EXIT
END

Place executable code here

Note that .EXIT generates executable code, while END does not. The END direc­
tive informs the assembler that it has reached the end of the module. All modules
must end with the END directive whether you use simplified or full segments.

If you do not use .STARTUP, you must give the starting address as an argument
to the END directive. When .ST ARTUP is present, the assembler ignores any ar­
gument to END.

The code generated by .ST ARTUP depends on the operating system specified
after .MODEL.

If your program uses DOS for its operating system (the default), the initialization
code sets DS to DGROUP, and adjusts SS:SP so that it is relative to the group for
near data, DGROUP. To initialize a DOS program with the default NEARSTACK
attribute, .ST ARTUP generates the following code:

@Startup:
mov dx, DGROUP
mov ds, dx
mov bx, ss
sub bx, dx
s h 1 bx, 1 If .286 or higher, this is
s h 1 bx, 1 shortened to s hl bx, 4
sh 1 bx, 1
shl bx, 1
cli Not necessary in .286 or higher
mov ss, dx
add sp, bx
st i Not necessary in .286 or higher

END @Startup

A DOS program with the FARSTACK attribute does not need to adjust SS:SP, so
it just initializes DS:

@Startup:
mov dx, DGROUP
mov ds, dx

END @Startup

47

Organizing MASM Segments

OS/2 initializes DS so that it points to DGROUP and sets SS:SP as desired. Thus,
when the OS _ OS2 attribute is given, .ST ARTUP generates only a starting address.
This does not show up in the listing file, however, since the /Sg option for listing
files shows only the generated instructions.

When the program terminates, you can return an exit code to the operating sys­
tem. Applications that check exit codes usually assume that an exit code of 0
means no problem occurred and that 1 means an error terminated the program.
The .EXIT directive accepts the exit code as its one optional argument:

• EXIT ; Return exit code 1

This directive generates a DOS interrupt or OS/2 system call, depending on the
operating system specified in .MODEL. The code generated under DOS depends
on the argument provided to .EXIT. One example is

mav al, value
mov ah, 04Ch
int 21h

if a return value is specified. The return value can be a constant, a memory refer­
ence, or a register that can be moved into the AL register. If no return value is
specified, the first line in the example code above is not generated.

For OS/2, .EXIT invokes DosExit if you provide a prototype for DosExit and if
you include OS2.LIB. The listing file shows the statements generated by
INVOKE if the /Sg command-line option is specified. If you specify a return
value as an expression, the code generated passes the expression instead of the
register contents to the DosExit function. See Chapter 17 for information on writ­
ing programs for OS/2.

2.3 Using Full Segment Definitions

48

If you need complete control over segments, you can fully define the segments in
your program. This section explains segment definitions, including how to order
segments and how to define the segment types.

If you write a program under DOS without .MODEL and .STARTUP, you must
initialize registers yourself and use the END directive to indicate the starting
address. Under OS/2 you do not have to initialize registers. Section 2.3.2, "Con­
trolling the Segment Order," describes typical start-up code.

Using Full Segment Definitions

2.3.1 Defining Segments with the SEGMENT Directive

Options used with the
SEGMENT directive can be
in any order.

The SEGMENT directive begins a segment, and the ENDS directive ends a
segment:

name SEGMENT [align] [READ ONLY] [combine] [use] ['class']
statements
name ENDS

The name defines the name of the segment. Within a module, all segment defini­
tions with the same name are treated as though they reference the same segment.
The linker also combines identically named segments from different modules un­
less the combine type is PRIVATE. In addition, segments can be nested.

The optional types that follow the SEGMENT directive give the linker and the as­
sembler instructions on how to set up and combine segments. The list below sum­
marizes these types; the following sections explain them in more detail.

align

READONLY

combine

use (80386/486 only)

class

Description

Defines the memory boundary on which a new
segment begins.

Tells the assembler to report an error if it detects
an instruction modifying any item in a
READONLY segment.

Determines how the linker combines segments
from different modules when building executable
files.

Determines the size of a segment. USE16 indi­
cates that offsets in the segment are 16 bits wide.
USE32 indicates 32-bit offsets.

Provides a class name for the segment. The linker
automatically groups segments of the same class
in memory.

Types can be specified in any order. You can specify only one attribute from
each of these fields; for example, you cannot have two different align types.

Once you define a segment, you can reopen it later with another SEGMENT
directive. When you reopen a segment, you need only give the segment name.

NOTE The PAGE align type and the PUBLIC combine type are distinct from the PAGE and
PUBLIC directives. The assembler distinguishes them by means of context.

49

Organizing MASM Segments

50

Aligning Segments
The optional align type in the SEGMENT directive defines the range of memory
addresses from which a starting address for the segment can be selected. The
align type can be anyone of these:

Align Type

BYTE

WORD

DWORD

PARA

PAGE

Starting Address

Next available byte address.

Next available word address.

Next available double word address.

Next available paragraph address (16 bytes per para­
graph). Default.

Next available page address (256 bytes per page).

The linker uses the alignment information to determine the relative starting
address for each segment. The operating system calculates the actual starting
address when the program is loaded.

Making Segments Read-Only
The optional READONL Y attribute is helpful when creating read-only code seg­
ments for protected mode or when writing code to be placed in read-only
memory (ROM). It protects against illegal self-modifying code.

The READONL Y attribute causes the assembler to check for instructions that
modify the segment and to generate an error if it finds any. The assembler· gener­
ates an error if you attempt to write directly to a read-only segment.

Combining Segments
The optional combine type in the SEGMENT directive defines how the linker
combines segments having the same name but appearing in different modules.
The combine type controls linker behavior, not assembler behavior. The combine
types are described in full detail in online help and are summarized below.

Combine Type

PRIVATE

PUBLIC

STACK

Linker Action

Does not combine the segment with segments from
other modules, even if they have the same name.
Default.

Concatenates all segments having the same name to
form a single, contiguous segment.

Concatenates all segments having the same name and
causes the operating system to set SS:OO to the bottom
and SS:SP to the top of the resulting segment. Data in­
itialization is unreliable, as discussed below.

The 80386/486 can operate
in 16-bit or 32-bit mode.

Using Full Segment Definitions

Combine Type

COMMON

MEMORY

AT address

Linker Action

Overlaps segments. The length of the resulting area is
the length of the largest of the combined segments.
Data initialization is unreliable, as discussed below.

Used as a synonym for the PUBLIC combine type.

Assumes address as the segment location. An AT seg­
ment cannot contain any code or initialized data, but it
is useful for defining structures or variables that corre­
spond to specific far memory locations, such as a
screen buffer or low memory.

The AT combine type cannot be used in protected­
mode programs.

Do not place initialized data in STACK or COMMON segments. With these com­
bine types, the linker overlays initialized data for each module at the beginning
of the segment. The last module containing initialized data writes over any data
from other modules.

NOTE Normally, you should provide at least one stack segment (having STACK combine
type) in a program. If no stack segment i£ declared, LINK displays a warning message. You
can ignore this message if you have a specific reason for not declaring a stack segment. For
example, you would not have a separate stack segment in a DOS tiny model (.COM) pro­
gram, nor would you need a separate stack in a DLL library that used the caller's stack.

Setting Segment Word Sizes (80386/486 Only)
The use type in the SEGMENT directive specifies the segment word size on the
80386/486 processors. Segment word size determines the default operand and
address size of all items in a segment.

The size attribute can be USE16, USE32, or FLAT. If the 80386 or 80486 proces­
sor has been selected with the .386 or .486 directive, and this directive precedes
.MODEL, then USE32 is the default. This attribute specifies that items in the seg­
ment are addressed with a 32-bit offset rather than a 16-bit offset. If .MODEL
precedes the .386 or .486 directive, USE16 is the default. To make USE32 the de­
fault, put .386 or .486 before .MODEL. You can override the USE32 default with
the USE16 attribute.

NOTE Mixing 16-bit and 32-bit segments in the same program is possible but usually is
necessary only in systems programming.

51

Organizing MASM Segments

Segments of the same
class are grouped together
in the executable file.

Setting Segment Order with Class Type
The optional class type in the SEGMENT directive helps control segment order­
ing. Two segments with the same name are not combined if their class is differ­
ent. The linker arranges segments so that all segments identified with a given
class type are next to each other in the executable file. However, within a particu­
lar class, the linker orders segments in the order encountered. The .ALPHA,
.SEQ, or .DOSSEG directive determines this order in each .OBJ file. The most
common application for specifying a class type is to place all code segments first
in the executable file.

2.3.2 Controlling the Segment Order

52

The assembler normally positions segments in the object file in the order in
which they appear in source code. The linker, in turn, processes object files in the
order in which they appear on the command line. Within each object file, the
linker outputs segments in the order they appear, subject to any group, class, and
.DOSSEG requirements.

You can usually ignore segment ordering. However, it is important whenever
you want certain segments to appear at the beginning or end of a program or
when you make assumptions about which segments are next to each other in
memory. For tiny model (.COM) programs, code segments must appear first in
the executable file, because execution must start at the address IOOh.

Segment Order Directives
You can control the order in which segments appear in the executable program
with three directives. The default, .SEQ, arranges segments in the order in which
they are declared.

The .ALPHA directive specifies alphabetical segment ordering within a module .
. ALPHA is provided for compatibility with early versions of the IBM assembler.
If you have trouble running code from older books on assembly language, try
using .ALPHA.

The .DOSSEG directive specifies the DOS segment-ordering convention. It
places segments in the standard order required by Microsoft languages. Do not
use .DOSSEG in a module to be called from another module.

The .DOSSEG directive orders segments in this order:

1. Code segments

2. Data segments, in this order:

a. Segments not in class BSS or STACK

b. Class BSS segments

c. Class STACK segments

.DOSSEG handles segment
ordering.

Using Full Segment Definitions

When you declare two or more segments to be in the same class, the linker auto­
matically makes them contiguous. This rule overrides the segment-ordering direc­
tives. (See "Setting Segment Order with Class Type" in the previous section for
more about segment classes.)

Linker Control
Most of the segment-ordering techniques (class names, .ALPHA, .SEQ) control
the order in which the assembler outputs segments. Usually, you are more inter­
ested in the order in which segments appear in the executable file. The linker con­
trols this order.

The linker processes object files in the order in which they appear on the com­
mand line. Within each module, it then outputs segments in the order given in the
object file. If the first module defines segments DSEG and STACK and the sec­
ond module defines CSEG, then CSEG is output last. If you want to place CSEG
first, there are two ways to do so.

The simpler method is to use .DOSSEG. This directive is output as a special re­
cord to the object file linker, and it tells the linker to use the Microsoft segment­
ordering convention. This convention overrides command-line order of object
files, and it places all segments of class 'CODE' first. (See Section 2.3.1, "De­
fining Segments with the SEGMENT Directive.")

The other method is to define all the segments as early as possible (in an include
file, for example, or in the first module). These definitions can be "dummy seg­
ments"-that is, segments with no content. The linker observes the segment
ordering given, then later combines the empty segments with segments in other
modules that have the same name.

For example, you might include the following at the start of the first module of
your program or in an include file:

TEXT SEGMENT WORD PUBLIC 'CODE'
TEXT ENDS
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

CaNST SEGMENT WORD PUBLI C 'CaNST'
CaNST ENDS
STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

Later in the program, the order in which you write _TEXT, _DATA, or other seg­
ments does not matter because the ultimate order is controlled by the segment
order defined in the include file.

53

Organizing MASM Segments

2.3.3 Setting the ASSUME Directive for Segment Registers

The assembler must know
the location of segment
addresses.

54

Many of the assembler instructions assume a default segment. For example, JMP
assumes the segment associated with the CS register, PUSH and POP assume the
segment associated with the SS register, and MOV instructions assume the seg­
ment associated with the DS register.

When the assembler needs to reference an address, it must know what segment
contains the address. It finds this by using the default segment or group addresses
assigned with the ASSUME directive. The syntax is

ASSUME segregister: seglocation [, segregister : seglocation]
ASSUME dataregister: qualifiedtype [, dataregister : qualifiedtype]
ASSUME register: ERROR [, register: ERROR]
ASSUME [register :] NOTHING [, register: NOTHING]

The seglocation must be the name of the segment or group that is to be as­
sociated with segregister. Subsequent instructions that assume a default register
for referencing labels or variables automatically assume that if the default seg­
ment is segregister, the label or variable is in the seglocation. Beginning with
MASM 6.0, the assembler automatically sets CS to have the address of the cur­
rent code segment. Therefore, you do not need to include

ASSUME CS : MY_CODE

at the beginning of your program if you want the current segment associated
with CS.

NOTE Using the ASSUME directive to tell the assembler which segment to associate with a
segment register is not the same as telling the processor. The ASSUME directive affects only
assembly-time assumptions. You may need to use instructions to change run-time assump­
tions. Initializing segment registers at run time is discussed in Section 3.1.1.1, "Informing
the Assembler about Segment Values."

The ASSUME directive can define a segment for each of the segment registers.
The segregister can be CS, DS, ES, or SS (and FS and GS on the 80386/486).
The seglocation must be one of the following:

• The name of a segment defined in the source file with the SEGMENT
directive

• The name of a group defined in the source file with the GROUP directive

• The keyword NOTHING, ERROR, or FLAT

• A SEG expression (see Section 3.2.2, "Immediate Operands")

• A string equate (text macro) that evaluates to a segment or group name (but
not a string equate that evaluates to a SEG expression)

The ASSUME directive can
be used anywhere in your
program.

Using Full Segment Definitions

It is legal to combine assumes to FLAT with assumes to specific segments. Com­
binations might be necessary in operating-system code that handles both 16- and
32-bit segments.

The keyword NOTHING cancels the current segment assumptions. For example,
the statement ASSUME NOTHING cancels all register assumptions made by pre­
vious ASSUME statements.

Usually, a single ASSUME statement defines all four segment registers at the
start of the source file. However, you can use the ASSUME directive at any point
to change segment assumptions.

U sing the ASSUME directive to change segment assumptions is often equivalent
to changing assumptions with the segment-override operator (:) (see Section
3.2.3, "Direct Memory Operands"). The segment-override operator is more con­
venient for one-time overrides, whereas the ASSUME directive may be more con­
venient if previous assumptions must be overridden for a sequence of
instructions.

You can also prevent the use of a register with

ASSUME SegRegister: ERROR

The assembler does an ASSUME CS: ERROR when you use simplified direc­
tives to create data segments, effectively preventing instructions or code labels
from appearing in a data segment.

See Section 3.3.2 for information on other applications of ASSUME.

2.3.4 Defining Segment Groups

Segments within a group
can be treated as if they
shared the same segment
address.

A group is a collection of segments totalling not more than 64K in 16-bit mode.
Each code or data item in the group can be addressed relative to the beginning of
the group through DS or SS.

A group lets you develop separate segments for different kinds of data and then
combine these into one segment (a group) for all the data. Using a group can save
you from having to continually reload segment registers to access different seg­
ments. As a result, the program uses fewer instructions and runs faster.

The most common example of a group is the specially named group for near
data, DGROUP. In the Microsoft segment model, several segments CDATA,
_BSS, CONST, and STACK) are combined into a single group called DGROUP.
Microsoft high-level languages place all near data segments in this group. (By de­
fault, the stack is placed here, too.) The .MODEL directive automatically defines
DGROUP. The DS register normally points to the beginning of the group, giving
you relatively fast access to all data in DGROUP.

55

Organizing MASM Segments

The syntax of the group directive is

name GROUP segment [, segment] ...

The name labels the group. It can refer to a group that was previously defined.
This feature lets you add segments to a group one at a time. For example, if
MYGROUP was previously defined to include ASEG and BSEG, then the
statement

MYGROUP GROUP CSEG

is perfectly legal. It simply adds CSEG to the group MYGROUP; ASEG and
B S E G are not removed.

Each segment can be any valid segment name (including a segment defined later
in source code), with one restriction: a segment cannot belong to more than one
group.

The GROUP directive does not affect the order in which segments of a group are
loaded. You can place any number of 16-bit segments in a group as long as the
total size does not exceed 65,536 bytes. If the processor is in 32-bit mode, the
maximum size is four gigabytes. You need to make sure that non-grouped seg­
ments do not get placed between grouped segments in such a way that the size of
the group exceeds 64K or 4 gigabytes. Neither can you place a 16-bit and a 32-
bit segment in the same group.

2.4 Related Topics in Online Help

56

In addition to information covered in this chapter, information on the following
topics can be found in online help.

Topic

Memory models

@Model,
@CodeSize,
@DataSize

Calling conven­
tions

Coprocessor
Directives

Simplified and
full (complete)
segment control

Access

Choose "Memory Models" from the list of tables on
the "MASM 6.0 Contents" screen

Choose "Predefined Symbols" from the "MASM 6.0
Contents" screen

From the MASM Index, choose "Calling Convention"

From the "MASM 6.0 Contents" screen, choose
"Directives"; then choose "Processor Selection"

From the "MASM 6.0 Contents" screen, choose
"Directives"; then choose "Simplified Segment Con­
trol" or "Complete Segment Control"

Chapter 3

Using Addresses and Pointers

Most processor and operating-system modes require the use of segmented
addresses to access the code and data for MASM applications. The address of the
code or data in a segment is relative to an address in a segment register. You can
also use pointers to access data in MASM programs.

The first section of this chapter describes how to initialize default segment regis­
ters to access near and far addresses. The next section describes how to use the
available addressing modes to access the code and data. It also describes the re­
lated operators, syntax, and displacements.

The third section of this chapter explains how to use the TYPEDEF directive to
declare pointers (variables containing addresses) and the ASSUME directive to
give the assembler information about registers containing pointers. This section
also shows you how to do typical pointer operations and how to write code that
works for pointer variables in any memory model.

3.1 Programming Segmented Addresses
Before you use segmented addresses in your programs, you need to initialize the
segment registers. The initialization process depends on the registers used and on
your choice of simplified segment directives or full segment definitions. The
simplified segment directives (introduced in Section 2.2) handle most of the in­
itialization process for you. This section explains how to inform the assembler
and the processor of segment addresses, and how to access the near and far code
and data in those segments.

3.1.1 Initializing Default Segment Registers
The segmented architecture of the 8086-family of processors does not require
you to specify two addresses every time you access memory. As Chapter 2, "Or­
ganizing MASM Segments," explains, the 8086 family of processors uses a sys­
tem of default segment registers to simplify access to the most commonly used
data and code.

The segment registers DS, SS, and CS are normally initialized to default seg­
ments at the beginning of a program. If you write the main module in a high­
level language, the compiler initializes the segment registers. If you write the

57

Using Addresses and Pointers

Use ASSUME to inform the
assembler about default
segments.

58

main module in assembly language, you must initialize them yourself. Follow
these two steps to initialize segments:

1. Tell the assembler which segment is associated with a register. The assembler
must know the default segments at assembly time.

2. Tell the processor which segment is associated with a register by writing the
necessary code to load the correct segment value into the segment register on
the processor.

These steps are discussed separately in the following sections.

3.1.1.1 Informing the Assembler about Segment Values
The first step in initializing segments is to tell the assembler which segment to
associate with a register. You do this with the ASSUME directive. If you use
simplified segment directives, the assembler generates the appropriate ASSUME
statements automatically. If you use full segment definitions, you must code the
ASSUME statements for registers other than CS yourself. (ASSUME can also be
used on general-purpose registers, as explained in Section 3.3.2, "Defining Regis­
ter Types with ASSUME.")

With simplified segment directives, the .STARTUP directive and the start-up
code initialize DS to be equal to SS (unless you specify FARSTACK), which
allows default data to be accessed through either SS or DS. This can improve
efficiency in the code generated by compilers. The "DS equals SS" convention
may not work with certain applications, such as memory-resident programs in
DOS and multithread programs in OS/2. The code generated for .STARTUP is
shown in Section 2.2.6, "Starting and Ending Code with .STARTUP and .EXIT."
You can use similar code to set DS equal to SS in programs using full segment
definitions.

Here is an example using full segment definitions; it is equivalent to the
ASSUME statement generated with simplified segment directives in small model
with NEARSTACK:

ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP

In the example above, DS and SS are part of the same segment group. It is also
possible to have different segments for data and code, and to use ASSUME to set
ES, as shown below:

ASSUME cs:MYCODE, ds:MYDATA, ss:MYSTACK, es:OTHER

Correct use of the ASSUME statement can help find addressing errors. With
.CODE, the assembler assumes CS to the current segment. When you use the
simplified segment directives .DATA, .DATA?, .CONST, .FARDATA, or
.FARDATA?, the assembler automatically assumes CS to ERROR. This prevents

Programming Segmented Addresses

instructions from appearing in these segments. If you use full segment defini­
tions, you can accomplish the same by placing ASSUME CS: ERROR in a data
segment.

With either simple or full segments, you can cancel the control of an ASSUME
statement by assuming NOTHING. No assumptions is the default condition. For
example, you cancel the assumption for ES above with the following statement:

ASSUME es:NOTHING

Prior to the .MODEL statement (or in its absence), the assembler sets the
ASSUME statement for DS, ES, and SS to the current segment.

3.1.1.2 Informing the Processor about Segment Values
The second step in initializing segments is to inform the processor of segment
values at run time. How segment values are initialized at run time differs for each
segment register and depends on your use of simplified segment directives or full
segment definitions and on the operating system.

Specifying a Starting Address The CS segment register and the IP (in­
struction pointer) register are initialized automatically if you use the .STARTUP
directive with simplified segment directives. If you use full segment definitions,
you must specifically set a label in the code segment at the instruction you want
executed first. Then provide that label as an argument to the END directive. Both
CS and IP are set at load time to the start address the linker gets from the END
directive:

TEXT SEGMENT WORD PUBLIC 'CODE
ORG 100h , Use this declaration for .COM files only

start: ; First instruction here

TEXT ENDS
END start ; Name of starting label

The operating system automatically resolves the value of CS:IP at load time. The
label specified as the start address becomes the initial value of IP. In an execu­
table (.EXE) file, the start address is encoded into the header and is initialized by
the operating system at load time. In a .COM file, the initial IP is always as­
sumed to be 100h. Therefore, you must use the ORG directive to set the start
address to 100h. CS and IP cannot be directly modified except through jump,
call, and interrupt instructions.

59

Using Addresses and Pointers

OS is initialized auto­
matically under OS/2, but
you must initialize it for
~OS.

SS and SP are initialized
automatically.

Initializing OS The DS register is automatically initialized to the correct
value (DGROUP) if you use .ST ARTUP or if you are writing a program for OS/2.
If you do not use .STARTUP with DOS, you must initialize DS using the follow­
ing instructions:

mov ax, DGROUP
mov ds, ax

The initialization requires two instructions because the segment name is a con­
stant and the assembler does not allow a constant to be loaded directly to a seg­
ment register. The example above loads DGROUP, but you can load any valid
segment or group.

Initializing SS and SP The SS and SP registers are initialized automatically
if you use the .ST ACK directive with simplified segments or if you define a seg­
ment that has the STACK combine type with full segment definitions. Using the
STACK directive initializes SS to the stack segment. If you want SS to be equal
to DS, use .STARTUP or its equivalent. (See "Combining Segments" in Section
2.3.1.) For an executable file, the values are encoded into the executable header
and resolved at link time. For a .COM file, SS is initialized to the first address of
the 64K program segment and SP is initialized to OFFFEh.

If you do not need to access far data in your program, you do not need to initial­
ize the ES register, although you can do so. Use the same technique as for the DS
register. You can initialize SS to a far stack in the same way.

3.1.2 Near and Far Addresses

60

Addresses which have an implied segment name or segment registers associated
with them are called "near addresses." Addresses which have an explicit segment
associated with them are called "far addresses." The assembler handles near and
far code automatically, as described below. You must specify how to handle far
data.

The Microsoft segment model puts all near data and the stack in a group called
DGROUP. Near code is put in a segment called _TEXT. Each module's far code
or far data is placed in a separate segment. This convention is described in Sec­
tion 2.3.2, "Controlling the Segment Order."

The assembler cannot determine the address for some program components,
which are said to be relocatable. The assembler generates a fixup record and the
linker provides the address once the location of all segments has been deter­
mined. Usually a relocatable operand references a label, but there are exceptions.
Examples in the next two sections include information about the relocatability of
near and far data.

Programming Segmented Addresses

Near Code Control transfers within near code do not require changes to seg­
ment registers. The processor automatically handles changes to the offset in the
IP register when control-flow instructions such as JMP, CALL, and RET are
used. The statement

ca 11 nearproc ; Change code offset

changes the IP register to the new address but leaves the segment unchanged.
When the procedure returns, the processor resets IP to the offset of the next in­
struction after the call.

Far Code The processor automatically handles segment register changes
when dealing with far code. The statement

call farproc ; Change code segment and offset

automatically moves the segment and offset of the far pro c procedure to the
CS and IP registers. When the procedure returns, the processor sets CS to the
original code segment and sets IP to the offset of the next instruction after the
call.

Near Data Near data can usually be accessed directly. That is, a segment reg­
ister already holds the correct segment for the data item. The term "near data" is
often used to refer to the data in the DGROUP group.

After the first initialization of the DS and SS registers, these registers normally
point into DGROUP. If you modify the contents of either of these registers
during the execution of the program, the register may need to be reloaded prior to
being used for addressing DGROUP data.

If a stack variable is accessed directly through BP or SP, the SS register is the de­
fault. Otherwise, the default is DS:

nearvar WORD 0

mov ax, nearvar ; Access near data through OS or SS
mov ax, [bp+6] ; Access near data through SS

In this example, n ear v a r is a relocatable label. The assembler does not know
where the memory for n ear v a r will be allocated. The linker provides the
address at link time. The expression [b p+6] is not relocatable. The linker does
not need to provide an address for this expression.

Far Data To read or modify a far address, a segment register mu~t point to the
segment of the data. This requires two steps. First load the segment (normally
either ES or DS) with the correct value, and then (optionally) set an assume of
the segment register to the segment of the address (or to NOTHING).

61

Using Addresses and Pointers

You can initialize ES.

You can reinitialize DS.

62

NOTE In flat model (OS/2 2.x), far addresses are rarely used. By default, all addressing is
relative to the initial values of the segment registers. Thus, this section on far addressing
does not apply to most flat model programs.

One method commonly used to access far data is to initialize the ES segment reg­
ister. This example shows two ways to do this:

; First method
mov
mov
mov

Second method
mov

mov
ASSUME

mov

ax, SEG farvar
es, ax
ax, es:farvar

ax, SEG farvar2

ex, ax
ES:SEG farvar2

ax, farvar2

Load segment of the far address

Provide an explicit segment
override on the addressing

Load the segment of the
far address

Tell the assembler that ES points
to the segment containing farvar2

The assembler provides the ES
override since it knows that
the label is addressable

After loading the segment of the address into the ES segment register, you can
either explicitly override the segment register so that the addressing is correct
(method 1) or allow the assembler to inse ... t the override for you (method 2). The
assembler uses ASSUME statements to determine which segment register can be
used to address a segment of memory. To use the segment override operator, the
left operand must be a segment register, not a segment name. (See Section 3.2.3
for more information on segment overrides.)

If an instruction needs a segment override, the resulting code is slightly larger
and slower, since the override must be encoded into the instruction. However, the
resulting code may still be smaller than the code for multiple loads of the default
segment register for the instruction.

The DS, SS, FS, and GS segment registers (FS and GS are available only on the
80386/486 processors) may also be used to provide for addressing through other
segments.

If a program uses ES to access far data, it need not restore ES when finished (un­
less the program uses flat model). Some compilers require that you restore ES
before returning to a module written in a high-level language.

For a series of memory accesses to far data, you can reinitialize DS to the far
data and then restore DS when you are finished. Use the ASSUME directive to let
the assembler know that DS is no longer associated with the default data seg­
ment, as shown below:

Specifying Addressing Modes

push ds
mov ax, SEG fararray
mov ds, ax
ASSUME ds:SEG fararray
mov ax, fararray[0]
mov dx, fararray[2]

pop ds
ASSUME ds:@DATA

Save original segment
Move segment into data register
Initialize segment register
Tell assembl er where data is
Direct access faster
(A relocatable expression)

Restore segment
and default assumption

The additional overhead of saving and restoring the DS register in this data
access method may be worthwhile to avoid repeated segment overrides.

If a program changes DS to access far data, it should restore DS when finished.
This allows procedures to assume that DS is the segment for near data. This is a
convention used in many compilers, including Microsoft compilers.

Relocatable Data The memory expression es: fa rv a r is a relocatable
memory expression, since the assembler cannot determine the address at as­
sembly time.

Since no label is referenced, you may expect

mov ax, _myseg:0

to be nonrelocatable (in small model). However, in this case, _myseg: 0 is a
location in a local module whose memory location is dependent on the link order,
so mav ax, _myseg: 0 is relocatable.

A group name is also an immediate constant representing the beginning of the
group. The first three expressions below are relocatable expressions; the fourth is
not.

mov ax, DGROUP
mov ax, @data
mov ax, mygroup
mov ax, ds:0

3.2 Specifying Addressing Modes

Relocatable
Relocatable
Relocatable
Not relocatable

The 8086 family of processors recognizes four kinds of instruction operands: reg­
ister, immediate, direct memory, and indirect memory. Each type of operand
corresponds to a different addressing mode.

63

Using Addresses and Pointers

The four types of operands are summarized in the following list and described at
length in the rest of this section.

Operand Type

Register

Immediate

Direct memory

Indirect memory

Addressing Mode

An 8-bit or 16-bit register on the 8086-80486; can
also be 32-bit on the 80386/486

A constant value contained in the instruction itself

A fixed location in memory

A memory location determined at run time by using
the address stored in one or two registers and a
constant

3.2.1 Register Operands

Register operands have a
specific use related to
addresses.

A register operand specifies that the value in a particular register is an operand.
Code for the register or registers used in operands is encoded into the instruction
at assembly time.

Register operands can be used anywhere you need an operand. The following ex­
amples show typical register operands:

mov
add
jmp

bx, 10
ax, bx
di

Load constant to BX
Add AX and BX
Jump to the address in 01

An offset stored in a base or index register is often used as a pointer into
memory. An offset can be stored in one of the base or index registers; the register
can then be used as an indirect memory operand (see Section 3.2.4). For example:

mov [bx], dl Store OL in indirect memory operand
inc bx ; Increment register operand
mov [bx], dl ; Store OL in new i ndi rect memory operand

This example moves the value in DL to two consecutive bytes of a memory loca­
tion pointed to by BX. Any instruction that changes the register value also
changes the data item pointed to by the register.

3.2.2 Immediate Operands

64

An immediate operand is a constant value that is specified at assembly time. It
can be a constant or the result of a constant expression. Immediate values are usu­
ally encoded into the internal representation of the instruction at assembly time.
These are typical examples:

An OFFSET expression is
resolved at link time.

A SEG expression is
resolved at load time.

mov
add
sub

cx, 20
var, lFh
bx, 25 * 80

Specifying Addressing Modes

Load constant to register
Add hex constant to variable
Subtract constant expression

The OFFSET Operator Address constants are a special case of immediate
operand and consist of an offset or segment value. The OFFSET operator speci­
fies the offset of a memory location, as shown below:

mov bx, OFFSET var ; Load offset address

For information on differences between MASM 5.1 behavior and MASM 6.0 be­
havior related to OFFSET, see Appendix A.

Since segments in different modules may be combined into a single segment, the
true base of the segment is not known. Thus, the offset cannot be resolved until
link time and va r is a relocatable immediate.

The SEG Operator The SEG operator specifies the segment of a memory
location:

mov ax, SEG farvar ; Load segment address
moves, ax

The actual value of a particular segment is never known until the program is
loaded into memory. Constant segments are encoded into the header of the execu­
table file at link time. Executable files in the DOS .COM format (tiny model) can­
not contain relocatable segment expressions.

When you use the SEG operator with a variable that is not external, MASM 6.0
returns the address of the frame (the segment, group, or segment register) if one
has been explicitly set. Otherwise, it returns the group if one has been specified.
In the absence of a defined group, SEG returns the segment where the variable is
defined.

For external variables that are not defined in a segment, the linker fills in the seg­
ment portion of the address, which may be a segment or group.

This behavior can be changed with the jZm command-line option or with the
OPTION OFFSET:SEGMENT statement (see Appendix A, "Differences between
MASM 6.0 and 5.1"). Section 1.3.2 introduces the OPTION directive.

3.2.3 Direct Memory Operands
A direct memory operand specifies the data at a given address. The address and
size of the data are encoded into the internal representation of the instruction.
However, the instruction acts on the contents of the address, not the address it­
self. You must usually specify the size of these operands so that the instruction
knows how much memory to operate on.

65

Using Addresses and Pointers

Several operators can be
used in expressions that
evaluate to direct memory
operands.

66

The offset value of a direct memory operand is not resolved until link time, and
the segment must always be in a segment register at run time. The assembler
automatically handles address resolution.

You usually represent a direct memory operand in source code as a symbolic
name previously declared with a data directive such as BYTE, as illustrated
below:

var
. DATA?
BYTE ?

.CODE

mov va r, a 1

Segment for uninitialized data
Reserve one byte at current address
and assign this address to var

Load contents of byte register into
address specified by var

Any location in memory can be a direct memory operand as long as a size is
specified and the location is fixed. The data at the address can change, but the
address cannot. By default, instructions that use direct memory addressing use
the DS register. You can create an expression that points to a memory location
using any of the following operators:

Operator Name

Plus

Minus

Index

Structure member

Segment override

Symbol

+

[]

These operators are discussed in more detail below.

Plus and Minus The result of combining a memory operand and a constant
number with the plus or minus operator is a direct memory operand. However,
the result of combining two memory operands with the minus operator is an im­
mediate operand. For example:

memvar EOU
immexp EOU

array + 5
meml - mem2

Address five bytes beyond array
Distance between addresses

The second expression is legal only if both addresses are in the same segment.

The expression meml - mem2 is not relocatable, since the reference to the two
labels represents a difference in addresses (offsets). The linker does not need to
know about the labels in this statement.

Specifying Addressing Modes

Index The index operator (brackets enclosing an index value) specifies the reg­
ister or registers for indirect operands. It should contain a constant index when
used with direct memory operands. It is equivalent to the plus operator. For ex­
ample, the following statements are the same:

mav ax, array[5]
mav ax, array+5

Any direct memory operand can be enclosed in the index operator. The following
are equivalent:

mav ax, var
mav ax, [var]

Some programmers prefer to enclose the operand in brackets to show that the
contents, not the address, are used.

Structure Field The structure operator (a period) accesses elements of a
structure. A field within a structure variable can be accessed as a direct memory
operand:

mav bx, structvar.fieldl

The address of the structure operand is the sum of the offsets of s t rue t v a r
and fi e 1 d 1. See Section 5.2, "Structures and Unions," for more information
about structures.

Segment Override The segment override operator (a colon) specifies a seg­
ment portion of the address that is different from the default segment. When used
with instructions, this operator can apply to segment registers or segment names:

mav ax, es:farvar ; Use segment averride

The assembler will not generate a segment override if the default segment is ex­
plicitly provided. Thus, the following two statements are equivalent:

mav [bx], ax
mav ds:[bx], ax

A segment name override or the segment override operator forces the operand to
be an address expression.

mav
mav
mav
mav

WORD PTR FARSEG:0, ax
WORD PTR es:100h, ax
WORD PTR es:[100h], ax
WORD PTR [100h], ax

Segment name override
Legal and equivalent
expressions

Illegal, not an address

As the example shows, a constant expression cannot be an address expression un­
less it has a segment override.

67

Using Addresses and Pointers

3.2.4 Indirect Memory Operands

Certain rules govern the
use of base and index
registers.

An indirect memory
operand can have a
displacement.

68

Like direct memory operands, indirect memory operands specify the contents of
a given address. However, the processor calculates the address at run time by re­
ferring to the contents of registers. Since values in the registers can change at run
time, indirect memory operands provide dynamic access to memory.

Indirect memory operands make possible run-time operations such as pointer in­
direction and dynamic indexing of array elements, including indexing of multidi­
mensional arrays.

Strict rules govern which registers can be used for indirect memory operands
under 16-bit versions of the 8086-based processors. The rules change signifi­
cantly for 32-bit processors starting with the 80386. However, the new rules
apply only to code that does not need to be backward compatible.

This section first discusses features of indirect operands in either mode. Then it
explains the specific 16-bit rules and 32-bit rules separately.

3.2.4.1 Indirect Operands with 16- and 32-Bit Registers
Some rules and options for indirect memory operands always apply, regardless of
the size of the register. For example, you must always specify the register and
operand size for indirect memory operands. But you can use various syntaxes to
indicate an indirect memory operand. This section describes the rules that apply
to both 16-bit and 32-bit register modes.

Specifying Indirect Memory Operands The index operator specifies the
register or registers for indirect operands. The processor uses the data pointed to
by the register. For example, the following instruction moves the word-sized data
at the address contained in DS:BX into AX:

mav ax, WORD PTR [bx]

When you specify more than one register, the processor adds the two addresses
together to determine the effective address (the address of the data to operate on):

mav ax, [bx+si]

Specifying Displacements You can specify an address displacement- a
constant value to add to the effective address. A direct memory specifier is the
most common displacement:

mav ax, table[si]

In the relocatable expression above, the displacement tab 1 e is the base
address of an array; SI holds an index to an array element. The SI value is calcu­
lated at run time, often in a loop. The element loaded into AX depends on the
value of SI at the time the instruction is executed.

Indirect memory operands
must always have a size.

Specifying Addressing Modes

Each displacement can be an address or numeric constant. If there is more than
one displacement, the assembler adds them together at assembly time and en­
codes the total displacement. For example, in the statement

table WORD 100 DUP (0)

mav ax, table[bx][di]+6

both tab 1 e and 6 are displacements. The assembler adds the value of
tabl e to 6 to get the total displacement. However, this statement is not legal:

mav ax, mem1[si] + mem2

Specifying Operand Size Indirect memory operands must always have a
specified size. Often the size is specified by the size of the identifier. In the ex­
ample above, the size of the tab 1 e array determines the operand size. If an in­
direct memory operand is used with a register operand, the register size
determines the size of the memory object:

mav
mav

ax, [bx]
table[bx], 0

Size is 2 bytes - same as AX
; Size is 2 bytes fram size

af table

If there is no address or register operand, the size must be given specifically with
the PTR operator, as shown below:

inc
mav

WORD PTR [bx]
BYTE PTR [bp+6], 0

Ward size
Byte size

Syntax Options The assembler allows a variety of syntaxes for indirect
memory operands. However, all registers must be inside brackets. You can en­
close each register in its own pair of brackets, or you can place the registers in
the same pair of brackets separated by a plus operator (+). All the following varia­
tions are legal and equivalent:

mav ax, table[bx][di]
mav ax, table[di][bx]
mav ax, table[bx+di]
mav ax, [table+bx+di]
mav ax, [bx][di]+table

All of these statements move the value in ta b 1 e indexed by BX+O I into AX.

69

Using Addresses and Pointers

Registers pointing into
arrays must be zero-based
and scaled for the size of
the array.

70

Scaling Indexes The value of index registers pointing into arrays must often
be adjusted for zero-based arrays and scaled according to the size of the array
items. For a word array, the item number must be multiplied by two (shifted left
two places). When you are using 16-bit registers, scaling must be done with sepa­
rate instructions, as shown below:

mov
shl
inc

bx, 5
bx, 1
wtable[bx]

Get sixth element (adjust for 0)
Scale by two (word size)
Increment sixth element in table

When using 32-bit registers on the 80386/486 processor, you can include scaling
in the operand, as described in Section 3.2.4.3, "Indirect Memory Operands with
32-Bit Registers."

Accessing Structure Elements The structure member operator can be
used in indirect memory operands to access structure elements. In this example,
the structure member operator loads the yea r field of the fourth element of the
students array into AL:

STUDENT
grade
name
year

STUDENT

students

STRUCT
WORD
BYTE
BYTE
ENDS

mov
mov
mov
mul

?
20 DUP (?)
?

STUDENT < >

bx, OFFSET students
ax, 4
di, SIZE STUDENT
di

Assume array initialized
earlier

Point to array of students
Get fourth element
Get size of STUDENT
Multiply size times
elements to point to
current element

Load field from element:
mav al, (STUDENT PTR[bx+di]).year

See Section 5.2 for more information on MASM structures.

3.2.4.2 Indirect Memory Operands with 16-Bit Registers
For 8086-based computers and DOS, you must follow the strict indexing rules es­
tablished for the 8086 processor. Only four registers are allowed-BP, BX, SI,
and DI-and those only in certain combinations.

BP and BX are base registers. SI and DI are index registers. You can use either a
base or an index register by itself. But if you combine two registers, one must be
a base and one an index. Here are legal and illegal forms:

Specifying Addressing Modes

mov ax, [bx+di] Lega 1
mov ax, [bx+si] Lega 1
mov ax, [bp+di] Lega 1
mov ax, [bp+si] Legal
mov ax, [bx+bp] Illegal - two base registers
mov ax, [di+si] Illegal - two index registers

Table 3.1 shows the modes in which registers can be used to specify indirect
memory operands.

Table 3.1 Indirect Addressing Modes with 16-Bit Registers

Mode

Register indirect

Base or index

Base plus index

Base plus index with
displacement

Syntax

[BX]
[BP]
[D1]
[S1]

displacement[BX]
displacement[BP]
displacement[D1]
displaceme nt[S1]

[BX][D1]
[BP][D1]
[BX][S1]
[BP][S1]

displacement[BX] [D1]
displacement[BP] [D1]
displacement[BX][SI]
displacement[BP][S1]

Effective Address

Contents of register

Contents of register plus
displacement

Contents of base register
plus contents of index
register

Sum of base register,
index register, and
displacement

Different combinations of registers and displacements have different timings, as
shown in the Macro Assembler Reference.

3.2.4.3 Indirect Memory Operands with 32-Bit Registers
Instructions for the 80386/486 processor can be given in two segment modes-
16-bit and 32-bit. Indirect memory operands are different in each mode. The seg­
ment mode is independent of the register size; you can use 32-bit registers in
either mode.

In 16-bit mode, the 80386/486 operates in the mode used by all other 8086-based
processors, with one difference: you can use 32-bit registers. If the 80386/486
processor is enabled (with the .386 or .486 directive), 32-bit general-purpose regis­
ters are available in either segment mode. Using them eliminates many of the
limitations of 16-bit indirect memory operands. Using 80386/486 features can

71

Using Addresses and Pointers

Any general-purpose 32-bit
register can be used as
either the base or the
index.

The index register can
have a scaling factor of 1,
2,4, or 8.

The number of registers
and the scaling factor
affect base and index
registers.

72

make your DOS programs run faster and more efficiently if you are willing to
sacrifice backward compatibility with other processors.

In 32-bit mode, an offset address can be up to four gigabytes. (Segments are still
represented in 16 bits.) This effectively eliminates size restrictions on each seg­
ment, since few programs need four gigabytes of memory. OS/2 2.x uses 32-bit
mode and flat model, which spans all segments. XENIX 386 uses 32-bit mode
with multiple segments.

80386/486 Enhancements On the 80386/486, the processor allows any
general-purpose 32-bit register to be used as either the base or the index register
(except ESP, which can be a base but not an index). The same register can also
be used as both the base and index, but you cannot combine 16-bit and 32-bit
registers. Several examples are shown below:

add edx, [eax] Add double
mov dl , [esp+10] Add byte from stack
dec WORD PTR [edx][eax] Decrement word
cmp ax, array[ebx][ecx] Compare word from array
jmp FWORD PTR table[ecx] Jump into pointer table

Scaling Factors With 80386/486 registers, the index register can have a scal­
ing factor of 1, 2, 4, or 8. Any register except ESP can be the index register and
can have a scaling factor. Specify the scaling factor by using the multiplication
operator (*) adjacent to the register.

You can use scaling to index into arrays with different sizes of elements. For
example, the scaling factor is 1 for byte arrays (no scaling needed), 2 for word
arrays, 4 for doubleword arrays, and 8 for quadword arrays. There is no perfor­
mance penalty for using a scaling factor. Scaling is illustrated in the following
examples:

mov
mov
mov

eax, darray[edx*4]
eax, [esi*8][edi]
ax, wtbl[ecx+2][edx*2]

Load double of double array
Load double of quad array
Load word of word array

Scaling is also necessary on earlier processors, but it must be done with separate
instructions before the indirect memory operand is used, as described in Section
3.2.4.2, "Indirect Memory Operands with 16-Bit Registers."

The default segment register is SS if the base register is EBP or ESP; it is DS for
all other base registers. If two registers are used, only one can have a scaling fac­
tor. The register with the scaling factor is defined as the index register. The other
register is defined as the base. If scaling is not used, the first register is the base.
If only one register is used, it is considered the base for deciding the default seg­
ment unless it is scaled. The following examples illustrate how to determine the
base register:

Accessing Data with Pointers and Addresses

mov eax, [edx][ebp*4] EOX base (not scaled - seg 05)
mov eax, [edx*l] [ebp] EBP base (not scaled - seg 55)
mov eax, [edx][ebp] EOX base (fi rst - seg 05)
mov eax, [ebp][edx] EBP base (first - seg 55)
mov eax, [ebp*2] EBP base (only - seg 55)

Mixing 16-Bit and 32-Bit Registers Statements can mix 16-bit and 32-
bit registers if the register use is correct. For example, the following statement is
legal for either 16-bit or 32-bit segments:

mov eax, [bx]

This statement moves the 32-bit value pointed to by BX into the EAX register.
Although BX is a 16-bit pointer, it can still point into a 32-bit segment.

However, the following statement is never legal, since the CX register cannot be
used as a 16-bit pointer (although ECX can be used as a 32-bit pointer):

mov eax, [ex] ; illegal

Operands that mix 16-bit and 32-bit registers are also illegal:

mov eax, [ebx+si] ; illegal

The following statement is legal in either mode:

mov bx, [eax]

This statement moves the 16-bit value pointed to by EAX into the BX register.
This works fine in 32-bit mode. However, in 16-bit mode, moving a 32-bit
pointer into a 16-bit segment is illegal. If EAX contains a 16-bit value (the top
half of the 32-bit register is 0), the statement works. However, if the top half of
the EAX register is not 0, the operand points into a part of the segment that
doesn't exist, and this generates an error. If you use 32-bit registers as indexes
in 16-bit mode, you must make sure that the index registers contain valid 16-bit
addresses.

3.3 . Accessing Data with Pointers and Addresses
In high-level languages, a "pointer" (or pointer variable) is an address that is
stored in a variable. Assembly language also uses pointer variables, but the term
"pointer" has a wider use. The indirect memory operands discussed in the pre­
vious section can be thought of as pointers stored in registers.

An address can be stored in a pointer variable for later use. Program procedures
(including OS/2 systems calls) frequently pass pointer variables onto the stack to
transfer data between the calling program and the called procedure.

73

Using Addresses and Pointers

A pointer variable must be
transferred to registers
before it can be used.

Regardless of the reason for maintaining it, a pointer variable to data cannot in it­
self be directly used in MASM statements. (Pointers to code can be used
directly.) It must first be loaded into registers as an indirect memory operand.

There is a difference between a far address and a far pointer. A "far address" is
the address of a variable located in a far data segment. A "far pointer" is a varia­
ble that can specify both a segment and an offset. Like any other variable, a
pointer variable can be located in either the default (near) data segment or in a far
segment.

Previous versions of MASM allow pointer variables but provide little support for
them. In previous versions, any address loaded into a variable can be considered
a pointer, as in the following statements:

Var BYTE 0
npVar WORD Var
fpVar DWORD Var

Variable
; Near pointer to variable
; Far pointer to variable

If a variable is initialized to the name of another variable, the initialized variable
is a pointer, as shown in the example above. However, in previous versions of
MASM, the CodeView debugger recognizes n p Va rand fp Va r as word and
doubleword variables. CodeView does not treat them as pointers, nor does it rec­
ognize the type of data they point to (bytes, in the example).

The new directive TYPEDEF and the new capabilities of ASSUME make it easier
to manage pointers in registers and variables. These directives are discussed in
the next two sections. Basic pointer and address operations are covered in Sec­
tion 3.3.3.

3.3.1 Defining Pointer Types with TYPEDEF
Once defined, a TYPEDEF
is considered the same as
an intrinsic type.

74

You can define types for pointer variables using the TYPEDEF directive. A type
so defined is considered the same as the intrinsic types provided by the assembler
and can be used in the same contexts. The syntax for TYPEDEF when used to de­
fine pointers is

type name TYPEDEF [distance] PTR qualifiedtype

The typename is the name assigned to the new type. The distance can be NEAR,
FAR, or any distance modifier. The qualifiedtype can be any previously intrinsic
or defined MASM type, or a type previously defined with TYPEDEF. (See Sec­
tion 1.2.6, "Data Types," for a full definition of qualifiedtype.)

Here are some examples of user-defined types:

PBYTE
NPBYTE
FPBYTE
PWORD
NPWORD
FPWORD

TYPEDEF
TYPEDEF NEAR
TYPEDEF FAR
TYPEDEF
TYPEDEF NEAR
TYPEDEF FAR

PTR BYTE
PTR BYTE
PTR BYTE
PTR WORD
PTR WORD
PTR WORD

Pointer to bytes
Near pointer to bytes
Far pointer to bytes
Pointer to words
Near pointer to words
Far pointer to words

Accessing Data with Pointers and Addresses

PPBYTE TYPEDEF PTR PBYTE Pointer to pointer to bytes
(in C, an array of strings)

PVOID TYPEDEF PTR Pointer to any type of data

STRUCT PERSON Structure type
name BYTE 20 DUP (?)

num WORD ?
PERSON ENDS
PPERSON TYPEDEF PTR PERSON ; Pointer to structure type

The distance of a pointer can either be set specifically or determined automat­
ically by the memory model (set by .MODEL) and the segment size (16 or 32
bits). If you don't use .MODEL, near pointers are the default.

In 16-bit mode, a near pointer is two bytes that contain the offset of the object
pointed to. A far pointer requires four bytes, and it contains both the offset and
the segment. In 32-bit mode, a near pointer is four bytes and a far pointer is six
bytes. If you specify the distance with NEAR or FAR, the default distance of the
current segment size is used. You can use NEAR16, NEAR32, F AR16, and F AR32
to override the defaults set by the current segment size. In flat model, NEAR is
the default.

A pointer type created with TYPEDEF can be used to declare pointer variables.
Here are some examples using the pointer types defined above:

; Type
Array
Msg
pMsg
pArray
npMsg
npArray
fpArray
fpMsg

S1
S2
S3
pS123
ppS123

Andy
pAndy

declarations
WORD 25 DUP (0)
BYTE "This is a string", 0
PBYTE Msg Pointer to string
PWORD Array Pointer to word array
NPBYTE Msg Near pointer to string
NPWORD Array Near pointer to word array
FPWORD Array Far pointer to word array
FPBYTE Msg Far pointer to string

BYTE "first", 0 Some strings
BYTE "second", 0
BYTE "third", 0
PBYTE S1, S2, S3, 0 Array of pointers to strings
PPBYTE pS123 A pointer to pointers to strings

PERSON <> Structure variable
PPERSON Andy Pointer to structure variable

Procedure prototype

EXTERN ptrArray:PBYTE External variable
Parameter for prototype Sort PROTO pArray:PBYTE

; Parameter for procedure
Sort PROC pArray:PBYTE

75

Using Addresses and Pointers

LOCAL pTmp:PBYTE Local variable

ret
Sort ENDP

Once defined, pointer types can be used in any context where intrinsic types are
allowed.

3.3.2 Defining Register Types with ASSUME

76

Beginning with MASM 6.0, you can use the ASSUME directive with general­
purpose registers to specify that a register is a pointer to a certain size of object.
For example:

ASSUME bx:PTR WORD

inc [bx]
add bx, 2
mov [bx], 0

ASSUME bx:NOTHING

BX is word pointer until further
notice

Increment word pointed to by BX
Point to next word
Word pointed to by BX = 0

Other pointer operations with BX

Cancel assumptions

In this example, BX is specified to be a pointer to a word. After a sequence of
using BX as a pointer, the assumption is cancelled by assuming NOTHING.

Without the assumption to PTR WORD, many instructions need a size specifier.
The INC and MOV statements from the examples above would have to be written
like this to specify the sizes of the memory operands:

inc WORD PTR [bx]
mov WORD PTR [bx], 0

When you have used ASSUME, attempts to use the register for other purposes
generate assembly errors. In the example above, while the PTR WORD assump­
tion is in effect, any use of BX inconsistent with its ASSUME declaration gener­
ates an error. For example,

mov al, [bx] ; Can't move word to byte register

You can also use the PTR operator to override defaults:

mov ax, BYTE PTR [bx] ; Legal

Similarly, you can use ASSUME to prevent the use of a register as a pointer or
even to disable a register:

Accessing Data with Pointers and Addresses

ASSUME bx:WORD, dx:ERROR
mov al, [bx] ; Error - BX is an integer, not a pointer
mov ax, dx ; Error - DX disabled

See Section 2.3.3 for information on using ASSUME with segment registers.

3.3.3 Basic Pointer and Address Operations

Let the assembler
initialize pointer variables
when possible.

You can do these basic operations with pointers and addresses:

• Initialize a pointer variable by storing an address in it

• Load an address into registers, directly or from a pointer

The sections in the rest of this chapter describe variations of these tasks with both
pointers and addresses. The examples in these sections assume that you have pre­
viously defined the following pointer types with the TYPEDEF directive:

PBYTE TYPEDEF PTR BYTE
NPBYTE TYPEDEF NEAR PTR BYTE
FPBYTE TYPEDEF FAR PTR BYTE

Pointer to bytes
Near pointer to bytes
Far pointer to bytes

3.3.3.1 Initializing Pointer Variables
If the value of a pointer is known at assembly time, the assembler can initialize it
automatically so that no processing time is wasted on the task at run time. The
following example illustrates how to do this:

Msg BYTE "String", 0
pMsg PBYTE Msg

If a pointer variable can be conditionally defined to one of several constant
addresses, initialization must be delayed until run time. The technique is different
for near pointers than for far pointers, as shown below:

Msgl
Msg2
npMsg
fpMsg

BYTE
BYTE
NPBYTE
FPBYTE

mov

mov
mov

"Stringl"
"String2"
?
?

npMsg, OFFSET Msgl

WORD PTR fpMsg[0], OFFSET Msg2
WORD PTR fpMsg[2], SEG Msg2

Load near pointer

Load far offset
Load far segment

77

Using Addresses and Pointers

There are several options
for copying pOinters.

78

If you know that the segment for a far pointer is currently in a register, you can
load it directly:

mov WORD PTR fpMsg[2], ds Load segment of
far pointer

Dynamic Addresses Often the address to be initialized is dynamic. You
know the register or registers containing the address, and you want to save them
in a variable for later use. Typical situations include memory allocated by DOS
(see interrupt 21h function 48h in online help) and addresses found by the SCAS
or CMPS instructions (see Section 5.1.3.1). The technique for saving dynamic
addresses is illustrated below:

; Dynamically allocated buffer
fpBuf FPBYTE 0 Initialize so offset will be zero

error:

mov
mov
int
jc
mov

ah, 48h
bx, 10h
21h

Allocate memory
Request 16 paragraphs
Ca 11 DOS

error Return segment in AX
WORD PTR fpBuf[2], ax Load segment

(offset is already 0)

; Handle error

Copying Pointers Sometimes one pointer variable must be initialized by
copying from another. Here are two ways to copy a far pointer:

fpBuf1 FPBYTE ?
fpBuf2 FPBYTE ?

Copy through registers is faster, but requires a spare register
mov bx, WORD PTR fpBuf1[0]
mov WORD PTR fpBuf2[0], bx
mov bx, WORD PTR fpBuf1[2]
mov WORD PTR fpBuf2[2], bx

Copy through stack is slower, but does not use a register
push WORD PTR fpBufl [0]
push WORD PTR fpBufl [2]
pop WORD PTR fpBuf2[2]
pop WORD PTR fpBuf2[0]

Pointers passed as
procedure arguments are
pushed onto the stack.

Certain register pairs have
standard uses.

Accessing Data with Pointers and Addresses

Pointers as Arguments When a pointer is passed as an argument to a pro­
cedure, it must be pushed onto the stack. The procedure then sets up a stack
frame so that it can access the arguments from the stack. This technique is dis­
cussed in detail in Section 7.3.2, "Passing Arguments on the Stack." Pushing a
pointer is illustrated below:

; Push a far pointer (segment always pushed first)
push WORD PTR fpMsg[2] ; Push segment
push WORD PTR fpMsg[0] ; Push offset

Pushing an address is somewhat different:

; Push a far address as a far pointer
mov ax, SEG fVar Load and push segment
push ax
mov ax, OFFSET fVar Load and push offset
push ax

On the 80186 and later processors, you can shorten pushing a constant to one
step:

push
push

SEG fVar
OFFSET fVar

Push segment
Push offset

3.3.3.2 Loading Addresses into Registers
Loading an address into a pair of registers is one of the most common tasks in as­
sembly-language programming. You cannot do processing work with a constant
address or a pointer variable until the address is loaded into registers.

You often load addresses into particular segment:offset pairs. The following pairs
have specific uses:

Segment:Offset Pair

DS:SI

ES:DI

DS:DX

ES:BX

Standard Use

Source for string operations

Destination for string operations

Input for DOS functions

Output from DOS functions

In addition, you can use ES:SI, DS:DI, DS:BX, or any segment:offset pair for
your own indirect memory operands. You can use SS:BP with a displacement to
access procedure arguments or local variables in procedures.

Addresses from Data Segments For near addresses, you need only load
the offset; the segment is assumed as SS for stack-based data and as DS for other
data. You must load both segment and offset for far pointers.

79

Using Addresses and Pointers

Use LEA to load the offset
of an indirect memory
operand.

Use MOV and OFFSET to
load the offset of a direct
memory operand.

80

Here is an example of loading an address to DS:BX from a near data segment:

. DATA
Msg BYTE "String"

mov bx, OFFSET Msg Load address to BX
CDS already loaded)

If the data is in a far data segment, it is loaded like this:

.FARDATA
Msg BYTE "String"

mov ax, SEG Msg Load address to ES:BX
moves, ax
mov bx, OFFSET Msg

Stack Variables The technique for loading the address of a stack variable is
significantly different from the technique for loading near addresses. You may
need to put the correct segment value into ES for string operations. The follow­
ing example illustrates how to load the address of a local (stack) variable to
ES:DI:

Task PROC
LOCAL Arg[4]:BYTE

push ss Since it's stack-based, segment is SS
pop es Copy SS to ES
lea di, Arg Load offset to 01

The local variable in this case actually evaluates to SS:[BP-4]. This is an offset
from the stack frame (described in Section 7.3.2, "Passing Arguments on the
Stack"). Since you cannot use the OFFSET operator to get the offset of an in­
direct memory operand, you must use the LEA (Load Effective Address)
instruction.

Direct Memory Operands To get the address of a direct memory operand,
you can use the MOV instruction with OFFSET or the LEA instruction. MASM
6.0 automatically optimizes the LEA statement by generating the smaller and
faster code, as shown in this example:

1 ea
mov

si, Msg
si, OFFSET Msg ;

If you code this statement,
MASM 6.0 generates this code

Use conditional assembly
to write memory-model
independent code.

Accessing Data with Pointers and Addresses

The LEA instruction can be used to determine the address of indirect memory
operands, as shown below.

1 ea
mov

si, [bx]
si, OFFSET [bx]

Legal - LEA requi red for i ndi rect
Illegal - no OFFSET on indirect

Far Pointers Use the LES and LDS instructions to load far pointers. Use the
MOV instruction to load a near pointer. The following example shows how to
load a far pointer to ES:DI and a near pointer to SI (assuming DS as the segment):

InBuf BYTE 20 OUP (1)
OutBuf BYTE 20 OUP (0)

npIn NPBYTE InBuf
fpOut FPBYTE OutBuf

1 es di, fpOut Load far pointer to ES:OI

mov si, npln Load near pointer to SI (assume OS)

Copying between Segment Pairs Copying from one register pair to
another is complicated by the fact that you cannot copy one segment register
directly to another. Two methods are shown below. Timings are for the 8088
processor:

; Copy OS:SI to ES:OI, generating smaller code
push ds 1 byte, 14 clocks
pop es 1 byte, 12 clocks
mov d i , si 2 bytes, 2 clocks

Copy OS:SI to ES:OI, generating faster code
mov di , ds 2 bytes, 2 clocks
mov es, di 2 bytes, 2 clocks
mov di , si 2 bytes, 2 clocks

3.3.3.3 Model-Independent Techniques
Often you may want to write code that is memory-model independent. If you are
writing libraries that must be available for different memory models, you can use
conditional assembly to handle different sizes of pointers. You can use the prede­
fined symbols @DataSize and @Model to test the current assumptions.

81

Using Addresses and Pointers

Use conditional assembly
to handle pointers that
have no specified distance.

82

You can use conditional assembly to write code that works with pointer variables
that have no specified distance. The predefined symbol @DataSize tests the
pointer size for the current memory model:

Msgl BYTE "Stringl"
pMsg PBYTE ?

IF @DataSize
mov WORD PTR pMsg[0], OFFSET Msgl Load far offset
mov WORD PTR pMsg[2], SEG Msgl Load far segment
ELSE
mov pMsg, OFFSET Msgl Load near pointer
ENDIF

In the following example, a procedure receives as an argument a pointer to a
word variable. The code inside the procedure uses @DataSizeto determine
whether the current memory model supports far or near data. It loads and
processes the data accordingly:

; Procedure that receives an argument by reference
mu18 PROC arg:PTR WORD

IF @DataSize
les bx, arg Load far pointer to ES:BX
mov ax, es:[bx] Load the data pOinted to
ELSE
mov bx, arg Load near pointer to BX (assume DS)
mov ax, [bx] Load the data pOinted to
ENDIF
shl ax, 1 Multiply by 8
shl ax, 1
s h 1 ax, 1
ret

mu18 ENDP

If you have many routines, writing the conditionals for each case can be tedious.
The following conditional statements generate the proper instructions and seg­
ment overrides automatically.

; Equates for conditional handling of pointers
IF @DataSize

lesIF TEXTEOU <les>
ldsIF TEXTEOU <lds>
esIF TEXTEOU <es:>

ELSE
lesIF TEXTEOU <mov>
ldsIF TEXTEOU <mov>
esIF TEXTEOU <>

ENDIF

Related Topics in Online Help

Once you define these conditionals, you can use them to simplify code that must
handle several types of pointers. This next example rewrites the above m u 1 8
procedure to use conditional code.

mu18 PROC arg:PTR WORD

lesIF bx, a rg Load pointer to BX or ES:BX
mov ax, esIF [bx] Load the data from [BX] or ES:[BX]
shl ax, 1 Multiply by 8
shl ax, 1
shl ax, 1
ret

mu18 ENDP

The conditional statements from the examples above can be defined once in an
include file and used whenever you need to handle pointers.

3.4 Related Topics in Online Help
In addition to information covered in this chapter, information on the following
topics can be found in online help.

LROFFSET, THIS

LFS, LGS, and LSS

ALIGN, EVEN,
ORG

NEAR, NEAR16,
NEAR32, FAR16,
FAR32, and TYPE

PTR

PUSHCONTEXT
and POPCONTEXT

ASSUME,
.MODEL

@DataSize,
@Model

Access

From the "MASM 6.0 Contents" screen, choose
"Operators"; then choose "Address"

From the "MASM 6.0 Contents" screen, choose
"Processor Instructions"; then choose "Data
Transfer"

From the "MASM 6.0 Contents" screen, choose
"Directives"; then choose "Miscellaneous"

From the "MASM 6.0 Contents" screen, choose
"Operators"; then choose "Type and Size"

From the "MASM 6.0 Contents" screen, choose
"Operators"; then choose "Miscellaneous"

Access from the Macro Assembler Index

From the "MASM 6.0 Contents" screen, choose
"Directives"; then choose "Simplified Segment
Control"

From the "MASM 6.0 Contents" screen, choose
"Predefined Symbols"

83

Chapter 4

Defining and Using Integers

The 8086 family of processors is designed to operate on integer data; therefore,
most assembler statements are integer operations. Even string elements (dis­
cussed in Chapter 5, "Defining and Using Complex Data Types") are byte-sized
integers to the assembler.

This chapter covers the concepts essential for using integer variables in assembly­
language programs. The first section shows how to declare integer variables. The
second section describes basic integer operations including moving, loading, and
sign-extending integers, as well as calculating with integers. Finally, the last sec­
tion describes how to do various operations with integers at the bit level, such as
using bitwise logical instructions and shifting and rotating bits.

The complex data types introduced in the next chapter-arrays, strings, struc­
tures, unions, and records-use many of the integer operations illustrated in this
chapter, since the components of complex data types are often integers. Floating­
point operations require a different set of instructions and techniques. These are
covered in Chapter 6, "Using Floating-Point and Binary Coded Decimal
Numbers."

4.1 Declaring Integer Variables
You declare integer variables in the data segment of your program to allocate
memory for data. The EQU and = directives define integer constants. Integer vari­
ables allocated with the data allocation directives can be initialized in several
ways. MASM 6.0 provides new forms of the data allocation directives. This sec­
tion discusses these features and explains how to use the SIZEOF and TYPE oper­
ators to provide information to the assembler about the types in your program.
For information on symbolic integer constants, see Section 1.2.4, "Integer Con­
stants and Constant Expressions."

4.1.1 Allocating Memory for Integer Variables
When you declare an integer variable by assigning a label to a data allocation
directive, the assembler allocates memory space for the integer. The variable's
name becomes a label for the memory space. The syntax is

[name] directive initializer

85

Defining and Using Integers

The assembler enforces
only the size of initializers.

86

These directives, listed below, indicate the integer's size and value range.

Directive

BYTE, DB (bytes)

SBYTE (signed bytes)

WORD, DW (words = 2 bytes)

SWORD (signed words)

DWORD, DD (double words = 4 bytes)

SDWORD (signed doublewords)

FWORD, DF (farwords = 6 bytes)

QWORD, DQ (quadwords = 8 bytes)

TBYTE, DT (10 bytes)

Description of Initializers

Allocates unsigned numbers from
o to 255.

Allocates signed numbers from
-128 to +127.

Allocates unsigned numbers from
o to 65,535 (64K).

Allocates signed numbers from
-32,768 to +32,767.

Allocates unsigned numbers from
o to 4,294,967,295 (4 megabytes).

Allocates signed numbers from
-2,147,483,648 to
+2,147,483,647.

Allocates 6-byte (48-bit) integers.
These values are normally used
only as pointer variables on the
80386/486 processors.

Allocates 8-byte integers used
with 8087-family coprocessor
instructions.

Allocates 10-byte (80-bit) in­
tegers if the initializer has a radix
specifying the base of the number.

See Chapter 6 for information on the REAL4, REAL8, and REALIO directives
that allocate real numbers.

MASM does not enforce the range of values assigned to an integer. If the value
does not fit in the space allocated, however, the assembler generates an error.

The SIZEOF and TYPE operators, when applied to a type, return the size of an in­
teger of that type. The following list gives the size attribute associated with each
data type.

Declaring Integer Variables

The SBYTE, SWORD, and SDWORD data types are new to MASM 6.0. Use of
these signed data types tells the assembler to treat the initializers as signed data.
It is important to use these signed types with high-level constructs such as .IF,
.WHILE, and .REPEAT (see Section 7.2.1, "Loop-Generating Directives"), and
with PROTO and INVOKE directives (see Sections 7.3.6, "Declaring Procedure
Prototypes," and 7.3.7, "Calling Procedures with INVOKE").

The assembler stores integers with the least significant bytes lowest in memory.
Note that assembler listings and most debuggers show the bytes of a word in the
opposite order-high byte first.

Figure 4.1 illustrates the integer formats.

Word

o 1

(LOW byte (High byte 0
Doubleword

0 2 3
/

,
7

,

0 I
/

I
/

Low word High word

Quadword

0 2 3 4 5 6 7
/

, , ,
7

I
/ / /

I Low doubleword
L---

______ ~ __ ' __ ' __ '~O
(, (.

High doubleword

Figure 4.1 Integer Formats

87

Defining and Using Integers

TYPEDEF can define
integer aliases.

Although the TYPEDEF directive's primary purpose is to define pointer variables
(see Section 3.3.1), you can also use TYPEDEF to create an alias for any integer
type. For example, these declarations

char TYPEDEF SBYTE
longint TYPEDEF DWORD
float TYPEDEF REAL4
double TYPEDEF REAL8

allowyoutouse char, longint, float,or double in your programs if
you prefer the C data labels.

4.1.2 Data Initialization
You can initialize variables when you declare them by giving initial values-that
is, constants or expressions that evaluate to integer constants. The assembler
generates an error if you specify an initial value too large for the specified varia­
ble type. Variables can also be initialized with? if there are no initial values.

You can declare and initialize variables in one step with the data directives, as
these examples show.

integer BYTE 16 Initialize byte to 16
negint SBYTE -16 Initialize signed byte to -16
expression WORD 4*3 Initialize word to 12
signedexp SWORD 4*3 Initialize signed word to 12
empty aWaRD ? Allocate uninitialized long

integer
BYTE 1,2,3,4,5,6 Initialize six unnamed bytes

long DWORD 4294967295 Initialize doubleword to
4,294,967,295

longnum SOWaRD -2147433648 Initialize signed doubleword
to -2,147,433,648

tb TBYTE 2345t Initialize 10-byte binary
number

See Section 5.1, "Arrays and Strings," for information on arrays and on using the
DUP operator to allocate initializer lists.

Once you have declared integer variables in your program, you can use them in
integer operations such as adding, moving, loading, and exchanging. The next
section describes these operations.

4.2 Integer Operations

88

You often need to copy, move, exchange, load, and sign-extend integer variables
in your MASM code. This section shows how to do these operations as well as
how to add, subtract, multiply, and divide integers; push and pop integers onto

The PTR operator tells the
assembler the size of the
operand.

Integer Operations

the stack; and do bit-level manipulations with logical, shift, and rotate
instructions.

Since MASM instructions require operands to be the same size, you may need to
operate on data in a size other than the size originally declared. The PTR operator
lets you do this. For example, you can use the PTR operator to access the high­
order word of a DWORD-size variable. The syntax for the PTR operator is

type PTR expression

where the PTR operator forces expression to be treated as having the type
specified. An example of this use is

.DATA
num DWORD 0

.CODE

mov ax, WORD PTR num[0] ; Loads a word-size value from
mov dx, WORD PTR num[2]; a doubleword variable

You might choose not to use PTR, in contrast to this example. In that case, trying
to move n u m [0] into AX generates an error.

4.2.1 Moving and Loading Integers
The primary instructions for moving integers from operand to operand and load­
ing them into registers are MOV (Move), XCHG (Exchange), XLAT (Translate),
CWD (Convert Word to Double), and CBW (Convert Byte to Word).

4.2.1.1 Moving Integers
The most common method of moving data, the MOV instruction, can be thought
of as a copy instruction, since it always copies the source operand to the destina­
tion operand. Immediately after a MOV instruction, both the source and destina­
tion operands contain the same value.

The statements in the following example illustrate each type of memory move
that can be performed with a single instruction. Note that you cannot move
memory operands to memory operands in one operation.

Immediate value moves
mov
mov
mov

Register moves
mov
mov
mov
mov

ax, 7
mem, 7
mem[bx],

mem, ax
mem[bx],
ax, bx
ds, ax

7

ax

Immediate to register
Immediate to memory direct
Immediate to memory indirect

Register to memory direct
Register to memory indirect
Register to register
General register to segment
register

89

Defining and Using Integers

90

Direct memory moves
mov
mov

ax, mem
ds, mem

Indirect memory moves
mov ax, mem[bx]
mov ds, mem[bx]

Segment register moves
mov
mov
mov

mem, ds
mem[bx], ds
ax, ds

Memory direct to register
Memory to segment register

Memory indirect to register
Memory indirect to segment register

Segment register to memory
Segment register to memory indirect
Segment register to general
register

This next example shows several common types of moves that require two
instructions.

; Move immediate to segment register
mov ax, DGROUP Load immediate to general register
mov ds, ax Store general register to segment

register

Move memory to memory
mov ax, meml Load memory to general register
mov mem2, ax Store general register to memory

Move segment register to segment register
mov ax, ds Load segment register to general

register
mov es, ax Store general register to segment

register

The MOVSX and MOVZX instructions for the 80386/486 processors extend and
copy values in one step. See Section 4.2.1.4, "Extending Signed and Unsigned
Integers."

4.2.1.2 Exchanging Integers
The XCHG (Exchange) instruction exchanges the data in the source and destina­
tion operands. Data can be exchanged between registers or between registers and
memory, but not from memory to memory:

xchg
xchg
xchg

ax, bx
memory, ax
meml, mem2

Put AX in BX and BX in AX
Put "memory" in AX and AX in "memory"
Illegal- can't exchange between
memory location

In some circumstances, register-to-register moves are faster with XCHG than
with MOV. If speed is important in your programs, check the Reference to find
the fastest clock speeds for various operand combinations allowed with MOV
andXCHG.

XLAT and XLATB are
synonyms.

Integer Operations

4.2.1.3 Translating Integers from Tables
The XLAT (Translate) instruction loads data from a table into memory. The in­
struction is useful for translating bytes from one coding system to another. The
syntax is

XLAT[B] [[segment:]memory]

The BX register must contain the address of the start of the table. By default, the
DS register contains the segment of the table, but you can use a segment override
to specify a different segment. Also, you need not give the operand except when
specifying a segment override. (See Section 3.2.3, "Direct Memory Operands,"
for information about the segment override operator.)

Before the XLA T instruction executes, the AL register should contain a value
that points into the table (the start of the table is position 0). After the instruction
executes, AL contains the table value pointed to. For example, if AL contains 7,
the assembler puts the eighth byte of the table in the AL register.

This example, illustrating XLAT, looks up hexadecimal characters in a table to
convert an eight-bit binary number to a string representing a hexadecimal
number.

; Table
hex
convert
key

of hexadecimal digits
BYTE "0123456789ABCDEF"
BYTE "You pressed the key with ASCII code"
BYTE ?,?,"h",13,10,"$"
.CODE

mov a h, 8 Get a key in AL
int 21h Call DOS
mov bx, OFFSET hex Load table address
mov ah, al Save a copy in high byte
and a 1 , 00001111y Mask out top character
xlat Translate
mov key[1] , al Store the character
mov cl , 12 Load shift count
shr ax, cl Shift high character into

position
xlat Translate
mov key, al Store the character
mov dx, OFFSET convert Load message
mov ah, 9 Display character
int 21h Call DOS

91

Defining and Using Integers

Conversion instructions do
not operate on unsigned
numbers.

92

4.2.1.4 Extending Signed and Unsigned Integers
Since moving data to a different-sized register is illegal, you must "sign-extend"
integers to convert signed data to a larger register or register pair.

Sign-extending means copying the sign bit of the unextended operand to all bits
of the extended operand. The instructions in the following list sign-extend values
as shown. They work only on signed values in the accumulator register.

Instruction

CBW

CWD

CWDE

CDQ

Function

Convert byte to word

Convert word to doubleword

Convert word to doubleword extended (80386/486 only)

Convert doubleword to quadword (80386/486 only)

On the 80386/486, the CWDE instruction converts a signed 16-bit value in AX to
a signed 32-bit value in EAX. The CDQ instruction converts a signed 32-bit
value in EAX to a signed 64-bit value in the EDX:EAX register pair.

This example converts signed integers using CBW, CWD, CWDE, and CDQ .

. DATA
mem8 SBYTE -5
mem16 SWORD -5
mem32 SDWORD -5

.CODE

mov al, mem8 Load 8-bit -5 (FBh)
cbw Convert to 16-bit -5 (FFFBh) in AX

mov ax, mem16 Load 16-bit -5 (FFFBh)
cwd Convert to 32-bit -5 (FFFF:FFFBh)

in DX:AX
mov ax, mem16 Load 16-bit -5 (FFFBh)
cwde Convert to 32-bit -5 (FFFFFFFBh)

in EAX
mov eax, mem32 Load 32-bit -5 (FFFFFFFBh)
cdq Convert to 64-bit -5

(FFFFFFFF:FFFFFFFBh) in EDX:EAX

The procedure is different for unsigned values. Unsigned values are extended by
filling the upper bits with zeros rather than by sign extension. Because the sign­
extend instructions do not work on unsigned integers, you must set the value of
the higher register to zero.

Integer Operations

This example shows sign extension for unsigned numbers .

. DATA
mem8 BYTE 251
mem16 WORD 251

.CODE

mov
sub

mov
sub

al, mem8
ah, ah

ax, mem16
dx, dx

Load 251 (FBh) from 8-bit memory
Zero upper half (AH)

Load 251 (FBh) from 16-bit memory
Zero upper half (OX)

The 80386/486 processors provide instructions that move and extend a value to a
larger data size in a single step. MOVSX moves a signed value into a register and
sign-extends it. MOVZX moves an unsigned value into a register and zero­
extends it.

80386/486 instructions
movzx dx, bl ; Load unsigned 8-bit value into

16-bit register and zero-extend

These special 80386 and 80486 instructions usually execute much faster than the
equivalent 8086-80286 instructions.

4.2.2 Pushing and Popping Stack Integers

PUSH and POP always
operate on word-sized
data.

A stack is an area of memory for storing data temporarily. Unlike other segments
that store data starting from low memory, the stack stores data in reverse order­
starting from high memory. Data is always pushed or popped from the top of the
stack. The data on the stack can be the calling addresses of procedures or inter­
rupts, procedure arguments, or any operands, flags, or registers your program
needs to store temporarily.

At first, the stack is an uninitialized segment of a finite size. As data is added to
the stack at run time, the stack grows downward from high memory to low
memory. When items are removed from the stack, it shrinks upward from low to
high memory.

4.2.2.1 Saving Operands on the Stack
The PUSH instruction stores a two-byte operand on the stack. The POP instruc­
tion retrieves a previously pushed value. When a value is pushed onto the stack,
the assembler decreases the SP (Stack Pointer) register by 2. On 8086-based pro­
cessors, the SP register always points to the top of the stack. The PUSH and POP
instructions use the SP register to keep track of the current position.

93

Defining and Using Integers

94

When a value is popped off the stack, the assembler increases the SP register by
2. Although the stack always contains word values, the SP register points to byte
addresses. Thus, SP changes in multiples of two. When a PUSH or POP instruc­
tion executes in a 32-bit code segment (one with USE32 use type), the assembler
transfers a four-byte value, and ESP changes in multiples of four.

NOTE The 8086 and 8088 processors differ from later Intel processors in how they push
and pop the SP register. If you give the statement push sp with the 8086 or 8088, the
word pushed is the word in SP after the push operation.

Figure 4.2 illustrates how pushes and pops change the SP register.

Pushing Words onto the Stack

Before After
push ax pus h ax

High
memory I I

V

Low
memory I

I

I

/

/

/

/

I

+- SP

High
memory I I

V

Low
memory I

I

word
from AX

Popping Words from the Stack

Before After
pop ax pop ax

High
memory I I

/

Low
memory I

I

word
from AX

I

/

1/

+- SP
v

v
I

High
memory I I

/

Low
memory I

I

I

/

/

+- SP
/

/

I

I

V

+- SP
1/

1/

1/
I

Figure 4.2 Stack Status before and after Pushes and Pops

There are two ways to
clean up the stack.

Creating labels for stack
variables makes code
easier to read.

Integer Operations

On the 8086, PUSH and POP take only registers or memory expressions as their
operands. The other processors allow an immediate value to be an operand for
PUSH. For example, the following statement is legal on the 80186-80486
processors:

push 7 ; 3 clocks on 80286

That statement is faster than these equivalent statements, which are required on
the 8088 or 8086:

mov
push

ax, 7
ax

; 2 clocks plus
; 3 clocks on 80286

Words are popped off the stack in reverse order: the last item pushed is the first
popped. To return the stack to its original status, you can do the same number of
pops as pushes. You can subtract the correct number of words from the SP regis­
ter if you want to restore the stack without using the values on it.

To reference operands on the stack, keep in mind that the values pointed to by
the BP (Base Pointer) and SP registers are relative to the SS (Stack Segment) reg­
ister. The BP register is often used to point to the base of a frame of reference (a
stack frame) within the stack.

This example shows how you can access values on the stack using indirect
memory operands with BP as the base register.

push
mov
push
push
push

mov
mov
mov

add

pop

bp
bp, sp
ax
bx
cx

ax, [bp-6]
bx, [bp-4]
cx, [bp-2]

sp, 6

bp

Save current value of BP
Set stack frame
Push first; SP BP - 2
Push second; SP BP - 4
Push third; SP BP - 6

Put third in AX
Put second in BX
Put first in ex

Restore stack pointer
two bytes per push

Restore BP

If you use these stack values often in your program, you may want to give them
labels. For example, you can use TEXTEQU to create a label such as count
TEXTEQU <bp-6).Nowyoucanreplacethe mov ax, [bp - 6J statementin
the example above with mov ax, count. Section 9.1, "Text Macros," gives
more information about the TEXTEQU directive.

95

Defining and Using Integers

4.2.2.2 Saving Flags on the Stack
Flags can be pushed and popped onto the stack with the PUSHF and POPF in­
structions. You can use these instructions to save the status of flags before a pro­
cedure call and then to restore the original status after the procedure. You can
also use them within a procedure to save and restore the flag status of the caller.
The 32-bit versions of these instructions are PUSHFD and POPFD.

This example saves the flags register before calling the sy s t ask procedure:

pushf
call systask
popf

If you do not need to store the entire flag register, you can use the LAHF instruc­
tion to manually load and store the status of the lower byte of the flag register in
the AH register. (You need to save AH before making a procedure call.) SAHF re­
stores the value.

4.2.2.3 Saving Registers on the Stack (80186-80486
Only)

Starting with the 80186 processor, the PUSHA and POPA instructions push or
pop all the general-purpose registers with only one instruction. These instructions
save the status of all registers before a procedure call and then restore them after
the return. Using PUSHA and POPA is significantly faster and takes fewer bytes
of code than pushing and popping each register individually.

Thy processor pushes the registers in the following order: AX, ex, DX, BX, SP,
BP; SI, and DI. The SP word pushed is the value before the first register is
pushed.

The processor pops the registers in the opposite order. The 32-bit versions of
these instructions are PUSHAD and POPAD.

4.2.3 Adding and Subtracting Integers

96

You can use the ADD, ADC, INC, SUB, SBB, and DEC instructions for adding, in­
crementing, subtracting, and decrementing values in single registers. You can
also combine them to handle larger values that require two registers for storage.

4.2.3.1 Adding and Subtracting Integers Directly
The ADD, INC (Increment), SUB, and DEC (Decrement) instructions operate on
8- and 16-bit values on the 8086-80286 processors, and on 8-, 16-, and 32-bit
values on the 80386/486 processors. They can be combined with the ADC and
SBB instructions to work on 32-bit values on the 8086 and 64-bit values on the
80386/486 processors (see Section 4.2.3.2).

PTR allows you to operate
on data in sizes different
from its declared type.

Integer Operations

These instructions have two requirements:

1. If there are two operands, only one operand can be a memory operand.

2. If there are two operands, both must be the same size.

To meet the second requirement, you can use the PTR operator to force an oper­
and to the size required (see Section 4.2, "Integer Operations"). For example, if
B u f fer is an array of bytes and BX points to an element of the array, you can
add a word from Buffer with

add ax, WORD PTR Buffer[bx] Adds a word from the
byte variable

The next example shows 8-bit signed and unsigned addition and subtraction.

mem8
DATA
BYTE
.CODE

Addition

mov
inc
add

add

mov

add

Subtraction

mov
dec
sub

sub

mov
sub

39

a 1 , 26
al
al , 76

al , mem8

ah, al

a 1 , ah

al , 95
al
a 1 , 23

al, mem8

ah, 119
a 1 , ah

signed unsigned
Start with register 26 26
Increment 1 1
Add immediate 76 + 76

103 103
Add memory 39 + 39

Copy to AH -114 142
+overflow

Add register 142

28+carry

signed unsigned
Load register 95 95
Decrement -1 -1
Subtract immediate -23 -23

71 71
Subtract memory -122 -122

-51 205+sign

Load register 119
and subtract -51

86+overflow

97

Defining and Using Integers

Your programs must
include error-recovery for
overflows and carries.

98

The INC and DEC instructions treat integers as unsigned values and do not up­
date the carry flag for signed carries and borrows.

When the sum of eight-bit signed operands exceeds 127, the processor sets the
overflow flag. (The overflow flag is also set if both operands are negative and the
sum is less than or equal to -128.) Placing a JO (Jump on Overflow) or INTO (In­
terrupt on Overflow) instruction in your program at this point can transfer control
to error-recovery statements. When the sum exceeds 255, the processor sets the
carry flag. A JC (Jump on Carry) instruction at this point can transfer control to
error-recovery statements.

In the subtraction example above, the processor sets the sign flag if the result
goes below O. At this point, you can use a JS (Jump on Sign) instruction to trans­
fer control to error-recovery statements.

4.2.3.2 Adding and Subtracting in Multiple Registers
You can add and subtract numbers larger than the register size on your processor
with the ADC (Add with Carry) and SBB (Subtract with Borrow) instructions. If
the operations prior to an ADC or SBB instruction do not set the carry flag, these
instructions are identical to ADD and SUB. When you operate on large values in
more than one register, use ADD and SUB for the least significant part of the num­
ber and ADC or SBB for the most significant part.

The following example illustrates multiple-register addition and subtraction. You
can also use this technique with 64-bit operands on the 80386/486 processors .

. DATA
mem32 DWORD
mem32a DWORD
mem32b DWORD

.CODE

Addition
mov
sub
add
adc

Subtraction
mov
mov
sub
sbb

316423
316423
156739

ax, 43981
dx, dx
ax, WORD
dx, WORD

ax, WORD
dx, WORD
ax, WORD
dx, WORD

Load immediate 43981
into DX:AX

PTR mem32[0] Add to both + 316423
PTR mem32[2] memory words

Result in DX:AX 360404

PTR mem32a[0] Load mem32 316423
PTR mem32a[2] into DX:AX
PTR mem32b[0] Subtract low - 156739
PTR mem32b[2] then high

Result in DX:AX 159684

For 32-bit registers on the 80386/486, only two steps are necessary. If your pro-
gram needs to be assembled for more than one processor, you can assemble the
statements conditionally, as shown in this example:

Integer Operations

.DATA
mem32 DWORD 316423
mem32a DWORD 316423
mem32b DWORD 156739
p386 TEXTEQU (@Cpu AND 08h)

.CODE

Addition
IF p386
mov eax, 43981 Load immediate
add eax, mem32 Result in EAX
ELSE

do steps in previous example

ENDIF

Subtraction
IF p386
mov eax, mem32a Load memory
sub eax, mem32b Result in EAX
ELSE

do steps in previous example

ENDIF

Since the status of the carry flag affects the results of calculations with ADC and
SUB, be sure to turn off the carry flag with the CLC (Clear Carry Flag) instruc­
tion or use ADD for the first calculation when appropriate.

4.2.4 Multiplying and Dividing Integers
The 8086 family of processors uses different multiplication and division instruc­
tions for signed and unsigned integers. Multiplication and division instructions
also have special requirements depending on the size of the operaqds and the pro­
cessor the code runs on.

4.2.4.1 Using Multiplication Instructions
The MUL instruction multiplies unsigned numbers. IMUL multiplies signed num­
bers. For both instructions, one factor must be in the accumulator register (AL for
8-bit numbers, AX for 16-bit numbers, EAX for 32-bit numbers). The other fac­
tor can be in any single register or memory operand. The result overwrites the
contents of the accumulator register.

Multiplying two 8-bit numbers produces a 16-bit result returned in AX. Multiply­
ing two 16-bit operands yields a 32-bit result in DX:AX. The 80386/486 proces­
sor handles 64-bit products in the same way in the EDX:EAX pair.

99

Defining and Using Integers

Multiplication by an
immediate operand is
possible on the 80386/486.

100

This example illustrates multiplication of signed 16- and 32-bit integers .

. DATA
mem16 SWORD -30000

.CODE

8-bit signed multiply
mov al,23
mov bl, 24
mul b 1

16-bit unsigned multiply
mov ax, 50

i mul mem16

Load AL
Load BL
Multiply BL
Product in AX
overflow and carry set

Load AX

23
* 24

552

50
-30000

Multiply memory
Product in DX:AX -1500000
overflow and carry set

A nonzero number in the upper half of the result (AH for byte, DX or EDX for
word) sets the overflow and carry flags.

On the 80186-80486 processors, the IMUL instruction supports three different
operand combinations. The first syntax option allows for 16-bit multipliers pro­
ducing a 16-bit product or 32-bit multipliers for 32-bit products on the
80386/486. The result overwrites the destination. The syntax for this operation is

IMUL register16, immediate

The second syntax option specifies three operands for IMUL. The first operand
must be a 16-bit register operand, the second a 16-bit memory or register oper­
and, and the third a 16-bit immediate operand. IMUL mUltiplies the memory (or
register) and immediate operands and stores the product in the register operand
with this syntax:

IMUL register16, memory16 I register16, immediate

For the 80386/486 only, a third option for IMUL allows an additional operand for
multiplication of a register value by a register or memory value. This is the
syntax:

IMUL register, { register I memory}

The destination can be any 16-bit or 32-bit register. The source must be the same
size as the destination.

In all of these options, products too large to fit in 16 or 32 bits set the overflow
and carry flags. The following examples show these three options for IMUL.

Integer Operations

i mul dx, 456 Multiply OX times 456 on 80186-80486
i mul ax, [bx],6 Multiply the value pointed to by BX

by 6 and put the result in AX

i mul dx, ax Multiply OX times AX on 80386
i mul ax, [bx] Multiply AX by the value pointed to

by BX on 80386

The IMUL instruction with multiple operands can be used for either signed or un­
signed multiplication, since the 16-bit product is the same in either case. To get a
32-bit result, you must use the single-operand version of MUL or IMUL.

4.2.4.2 Using Division Instructions
The DIV instruction divides unsigned numbers, and IDIV divides signed num­
bers. Both return a quotient and a remainder.

Table 4.1 summarizes the division operations. The dividend is the number to be
divided, and the divisor is the number to divide by. The quotient is the result. The
divisor can be in any register or memory location except the registers where the
quotient and remainder are returned.

Table 4.1 Division Operations

Size of Dividend Size of
Operand Register Divisor Quotient Remainder

16 bits AX 8 bits AL AH

32 bits DX:AX 16 bits AX DX

64 bits (80386 EDX:EAX 32 bits EAX EDX
and 80486)

Unsigned division does not require careful attention to flags. The following ex­
amples illustrate signed division, which can be more complex .

. DATA
mem16 SWORD -2000
mem32 SDWORD 500000

.CODE

Divide 16-bit unsigned
mov ax, 700
mov bl , 36
div bl

by 8-bit
Load dividend 700
Load divisor DIV 36
Divide BL
Quotient in AL 19
Remainder in AH 16

101

Defining and Using Integers

Divide 32-bit signed by 16-bit
mov ax, WORD PTR mem32[0]
mov dx, WORD PTR mem32[2]
idiv mem16

Divide 16-bit signed by 16-bit
mov ax, WORD PTR mem16
cwd
mov bX,-421
idiv bx

Load into DX:AX
500000

DIV -2000
Divide memory
Quotient in AX
Remainder in DX

-250

Load into AX -2000
Extend to DX:AX

DIV -421
Divide by BX
Quotient in AX 4
Remainder in DX

o

-316

If the dividend and divisor are the same size, sign-extend or zero-extend the divi­
dend so that it is the length expected by the division instruction. See Section
4.2.1.4, "Extending Signed and Unsigned Integers."

4.3 Manipulating Integers at the Bit level
The instructions introduced so far in this chapter accessed integers at the byte or
word level. The logical, shift, and rotate instructions described in this section,
however, access the individual bits of the integers. You can use logical instruc­
tions to evaluate characters and do other text and screen operations. The shift and
rotate instructions do similar tasks by shifting and rotating bits through registers.
This section discusses some applications of these bit-level operations.

4.3.1 Logical Operations

102

The logical instructions-AND, OR, XOR, and NOT-operate on each bit in one
operand and on the corresponding bit in the other. The following list shows how
each instruction works. Except for NOT, these instructions require two integers
of the same size.

Instruction

AND

OR

XOR

NOT

Sets a Bit to 1 under These Conditions

Both corresponding bits in the operands have the value 1.

Either of the corresponding bits in the operands has the
value 1.

Either, but not both, of the corresponding bits in the oper­
ands has the value 1.

The corresponding bit in the operand is O. (This instruction
takes only one operand.)

Use AND, OR, and XOR to
set or clear specific bits.

Manipulating Integers at the Bit Level

NOTE Do not confuse logical instructions with the logical operators, which perform these
operations at assembly time, not run time. Although the names are the same, the assembler
recognizes the difference from context.

The following example shows the result of the AND, OR, XOR, and NOT instruc­
tions operating on a value in the AX register and in a mask. A mask is a binary or
hexadecimal number with appropriate bits set for the intended operation.

mov ax, 035h Load value 00110101
and ax, 0FBh Clear bit 2 AND 11111011

Value is now 31h 00110001
or ax, 016h Set bits 4,2,1 OR 00010110

Value is now 37h 00110111

xor ax, 0ADh Toggle bits 7,5,3,2,0 XOR 10101101

Value is now 9Ah 10011010
not ax Value is now 65h 01100101

You can use the AND instruction to clear the value of specific bits regardless of
their current settings. To do this, put the target value in one operand and a mask
of the bits you want to clear in the other. The bits of the mask should be 0 for any
bit positions you want to clear and I for any bit positions you want to remain
unchanged.

You can use the OR instruction to force specific bits to 1 regardless of their cur­
rent settings. The bits of the mask should be 1 for any bit positions you want to
set and 0 for any bit positions you want to remain unchanged.

You can use the XOR instruction to toggle the value of specific bits (reverse
them from their current settings). This instruction sets a bit to 1 if the correspond­
ing bits are different or to 0 if they are the same. The bits of the mask should be 1
for any bit positions you want to toggle and 0 for any bit positions you want to re­
main unchanged.

The following examples show an application for each of these instructions. The
code illustrating the AND instruction converts a "y" or "n" read from the key­
board to uppercase, since bit 5 is always clear in uppercase letters. In the ex­
ample for OR, the first statement is faster and uses fewer bytes than cmp bx, 0.
When the operands for XOR are identical, each bit cancels itself, producing O.

103

Defining and Using Integers

Converts characters to uppercase
mov ah, 7 Get character without echo

yes:

int 21h
and

cmp
je

al, 11011111y

a 1, 'Y'
yes

Compares operand to 0
or bx, bx

jg positive
jl negative

Sets a register to 0
xor
sub
mov

cx, cx
cx, cx
cx, 0

Convert to uppercase by clearing
bit 5

Is it Y?
If so, do Yes actions
else do No actions

Compare to 0
2 bytes, 2 clocks on 8088

BX is positive
BX is negative
else BX is zero

2 bytes, 3 clocks on 8088
2 bytes, 3 clocks on 8088
3 bytes, 4 clocks on 8088

On the 80386 and 80486, the BSF (Bit Scan Forward) and the BSR (Bit Scan
Reverse) instructions perform operations similar to those of the logical instruc­
tions. They scan the contents of a register to find the first-set or last-set bit. You
can use BSF or BSR to find the position of a set bit in a mask or to check if a reg­
ister value is O.

4.3.2 Shifting and Rotating Bits

104

The 8086-based processors provide a complete set of instructions for shifting and
rotating bits. Shift instructions move bits a specified number of places to the right
or left. The last bit in the direction of the shift goes into the carry flag, and the
first bit is filled with 0 or with the previous value of the first bit.

Rotate instructions also move bits a specified number of places to the right or
left. For each bit rotated, the last bit in the direction of the rotate operation moves
into the first bit position at the other end of the operand. With some variations,
the carry bit is used as an additional bit of the operand. Figure 4.3 illustrates the
eight variations of shift and rotate instructions for eight-bit operands. Notice that
SHL and SAL are identical.

SHL (Shift Left)

SAL (Shift Arithmetic Left)

ROL (Rotate Left)

RCL (Rotate through
Carry Left)

7 o

CF +--------------'

Figure 4.3 Shifts and Rotates

Manipulating Integers at the Bit Level

SHR (Shift Right)

SAR (Shift Arithmetic Right)

ROR (Rotate Right)

RCR (Rotate through
Carry Right)

7 0 i(-.(-.(-.(-. (-. (-.(-. (-.0'4
L--..------------l@J

All shift instructions use the same format. Before the instruction executes, the
destination operand contains the value to be shifted; after the instruction ex­
ecutes, it contains the shifted operand. The source operand contains the number
of bits to shift or rotate. It can be the immediate value I or the CL register. The
8088 and 8086 processors do not accept any other values or registers with these
instructions.

105

Defining and Using Integers

The shift instruction allows
you to change masks
during program execution.

Masks for logical instructions can be shifted to new bit positions. For example,
an operand that masks off a bit or group of bits can be shifted to move the mask
to a different position, allowing you to mask off a different bit each time the
mask is used. This technique, illustrated in the following example, is useful only
if the mask value is unknown until run time .

. DATA
masker BYTE 00000010y Mask that may change at run time

.CODE

mov cl , 2 Rotate two at a time
mov b 1 , 57h Load value to be changed 01010111y
rol masker, cl Rotate two to left 00001000y
or bl, masker Turn on masked values ---------

New value is 05Fh 01011111y
rol masker, cl Rotate two more 00100000y
or bl , masker Turn on masked values ---------

New value is 07Fh 01111111y

Starting with the 80186 processor, you can use eight-bit immediate values larger
than 1 as the source operand for shift or rotate instructions, as shown below:

shr bx, 4 9 clocks, 3 bytes on 80286

The following statements are equivalent if the program must run on the 8088 or
8086 processor:

mov
shr

cl, 4
bx, cl

2 clocks, 3 bytes on 80286
9 clocks, 2 bytes on 80286

11 clocks, 5 bytes

4.3.3 Multiplying and Dividing with Shift Instructions

106

You can use the shift and rotate instructions (SHR, SHL, SAR, and SAL) for mul­
tiplication and division. Shifting an integer right by one bit has the effect of divid­
ing by two; shifting left by one bit has the effect of mUltiplying by two. You can
take advantage of shifts to do fast multiplication and division by powers of two.
For example, shifting left twice multiplies by four, shifting left three times multi­
plies by eight, and so on.

Use SHR (Shift Right) to divide unsigned numbers. You can use SAR (Shift
Arithmetic Right) to divide signed numbers, but SAR rounds numbers down­
IDIV always rounds up. Division using SAR must adjust for this difference. Mul­
tiplication by shifting is the same for signed and unsigned numbers, so you can
use either SAL or SHL.

Use shifts instead of MUl
or DIV to optimize your
code.

Since RCR and RCl use
the carry flag, clear it
before multiple-register
shifts.

Manipulating Integers at the Bit level

Since the multiply and divide instructions are very slow on the 8088 and 8086
processors, using shifts instead can often speed operations by a factor of 10 or
more. For example, on the 8088 or 8086 processor, these statements take only
four clocks:

sub
s h 1

a h, a h
ax, 1

Clear AH
Multiply byte in AL by 2

The following statements produce the same results, but take between 74 and 81
clocks on the 8088 or 8086. The same statements take 15 clocks on the 80286
and between 11 and 16 clocks on the 80386.

mov
mul

b 1, 2
bl

; Multiply byte in AL by 2

You can put multiplication and division operations in macros so they can be
changed if the constants in a program change, as shown in the two macros below.

mul 10 MACRO factor Factor must be unsigned
mov ax, factor Load into AX
shl ax, 1 AX = factor * 2
mov bx, ax Save copy in BX
shl ax, 1 AX factor * 4
s h 1 ax, 1 AX factor * 8
add ax, bx AX (factor * 8) + (factor * 2)
ENDM AX factor * 10

div 512 MACRO dividend Dividend must be unsigned
mov ax, dividend Load into AX
shr ax, 1 AX = dividend / 2 (unsigned)
xchg a 1 , ah xchg is like rotate right 8

AL = (dividend / 2) / 256
cbw Clear upper byte
ENDM AX = (dividend / 512)

If you need to shift a value that is too large to fit in one register, you can shift
each part separately. The RCR (Register Carry Right) and RCL (Register Carry
Left) instructions carry values from the first register to the second by passing the
leftmost or rightmost bit through the carry flag.

This example shifts a multiword value .

mem32
. DATA

DWORD 500000
.CODE

Di vi de 32-bit unsigned
mov ex, 4

again: shr WORD PTR
rcr WORD PTR
loop again

by 16

mem32[2],
mem32[0],

Shi ft ri ght 4 500000
1 Shift into carry DIV 16
1 Rotate carry in

31250

107

Defining and Using Integers

Since the carry flag is treated as part of the operand (it's like using a nine-bit or
17 -bit operand), the flag value before the operation is crucial. The carry flag can
be set by a previous instruction, but you can also set it directly by using the CLC
(Clear Carry Flag), CMC (Complement Carry Flag), and STC (Set Carry Flag)
instructions.

On the 80386 and 80486, an alternate method for multiplying quickly by con­
stants takes advantage of the LEA (Load Effective Address) instruction and the
scaling of indirect memory operands. By using a 32-bit value as both the index
and the base register in an indirect memory operand, you can multiply by the con­
stants 2, 3,4,5,8, and 9 more quickly than you can by using the MUL instruc­
tion. LEA calculates the offset of the source operand and stores it into the
destination register, EBX, as this example shows:

1 ea ebx, [eax*2] EBX 2 * EAX
1 ea ebx, [eax*2+eax] EBX 3 * EAX
1 ea ebx, [eax*4] EBX 4 * EAX
lea ebx, [eax*4+eax] EBX 5 * EAX
1 ea ebx, [eax*8] EBX 8 * EAX
1 ea ebx, [eax*8+eax] EBX 9 * EAX

Section 3.2.4.3, "Indirect Memory Operands with 32-Bit Registers," discusses
scaling of 80386 indirect memory operands, and Section 3.3.3.2, "Loading
Addresses into Registers," introduces LEA.

This chapter has covered the integer operations you use in your MASM pro­
grams. The next chapter looks at more complex data types-arrays, strings, struc­
tures, unions, and records. Many of the operations presented in this chapter can
also be applied to the data structures discussed in Chapter 5, "Defining and Using
Complex Data Types."

4.4 Related Topics in Online Help

108

Online help features additional information about the topics discussed in this
chapter. From the "MASM 6.0 Contents" screen for MASM online help, select
the following topics:

BYTE, WORD, ...

Bitwise logical operations

Location counter

Access

Choose "Directives" and then "Data
Allocation"

Choose "Operators" and then from the list
of operators, choose "Logical and Shift"

Choose "Predefined Symbols" for informa­
tion on the $ symbol

BSF, BSR, SHLD, SHRD,
and SET condition

LES, LFS, LGS

.RADIX directive

MOD

OPATTR, .TYPE, HIGH,
LOW, HIGHWORD, and
LOWWORD

OPTION EXPR32,
OPTION EXPR16,

Related Topics in Online Help

Access

From the "Processor Instructions" catego­
ries, choose "Logical and Shift"

From the "Processor Instructions" catego­
ries, choose "Data Transfer"

Choose "Directives" and then choose
"Miscellaneous"

Choose "Operators," and then "Arithmetic"

Choose "Operators," then "Miscellaneous"

Choose "Directives," and then "OPTION"

109

Chapter 5

Defining and Using Complex Data Types

With the complex data types available in MASM 6.0-arrays, strings, records,
structures, and (new to version 6.0) unions-you can access data either as a unit
or as individual elements that make up the unit. The individual elements of com­
plex data types are often the integer types discussed in Chapter 4, "Defining and
Using Integers."

Section 5.1 first discusses how to declare, reference, and initialize arrays and
strings. This section summarizes the general steps needed to process arrays and
strings and describes the MASM instructions for moving, comparing, searching,
loading, and storing operations.

Section 5.2 covers similar information for structures and unions: how to declare
structure and union types, how to define structure and union variables, and how
to reference structures and unions and their fields.

Section 5.3 explains how to declare record types, define record variables, and use
record operators.

All three sections also describe how to use the LENGTHOF, SIZEOF, and TYPE
operators with each complex data type.

5.1 Arrays and Strings
An assembly-language array is a sequence of fixed-size variables. A string is an
array of characters. You can access the elements in an array or string relative to
the first element.

This section explains and illustrates the essential ways to handle arrays and
strings in your programs. It covers arrays first, beginning with the two ways to de­
clare an array and continuing with how to reference it. The section then explains
the special requirements for declaring and initializing a string. Finally, it de­
scribes the processing of arrays and strings.

5.1.1 Declaring and Referencing Arrays
You can declare an array in two ways: you can specify a list of array elements, or
you can use the DUP operator to specify a group of identical elements.

111

Defining and Using Complex Data Types

Initializer lists can be
longer than one line.

112

To declare an array, you must supply a label name, a type, and a series of ele­
ments separated by commas. You can access each element of an array relative to
the first. In the examples below, wa r ray and xa r ray are arrays.

warray WORD
xarray DWORD

1, 2, 3, 4
OFFFh, OAAAh

The assembler stores the elements consecutively in memory, with the first
address referenced by the label name.

Beginning with MASM 6.0, initializer lists of array declarations can span multi­
ple lines. The first initializer must appear on the same line as the data type, all en­
tries must be initialized, and, if you want the array to continue to the new line,
the line must end with a comma. These examples show legal multiple-line array
declarations:

big BYTE 21, 22, 23, 24, 25,
26, 27, 28

somelist WORD 10,
20,
30

If you do not want to use the new LENGTH OF and SIZEOF operators discussed
later in this section, then an array may span more than one logical line, although
a separate type declaration is needed on each logical line:

var1 BTYE
BYTE
BYTE

10, 20, 30
40, 50, 60
70, 80, 90

The DUP Operator
You can also declare an array with the DUP operator. This operator can be used
with any of the data allocation directives described in Section 4.1.1. In the syntax

count DUP (initialvalue [, initialvalue] ...)

the count value sets the number of times to repeat the last initialvalue. Each ini­
tial value is evaluated only once and can be any expression that evaluates to an
integer value, a character constant, or another DUP operator. The initial value (or
values) must always be placed within parentheses. For example, the statement

barray BYTE 5 DU P (1)

allocates the integer 1 five times for a total of five bytes.

The following examples show various ways to use the DUP operator to allocate
data elements.

Array indexes are not
scaled. The index is a
distance in bytes.

Arrays and Strings

array OWORO 10 OU P (1) 10 doublewords
initialized to

buffer BYTE 256 OUP (?) 256-byte buffer

masks BYTE 20 OUP (040h, 020h, 04h, 02h) 80-byte buffer
with bit mas ks

three d OWORO 5 OUP (5 OUP (5 OUP (0») 125 doublewords
initialized to 0

Referencing Arrays
Once an array is defined, you can refer to its first element by typing the array
name (no brackets required). The array name refers to the first object of the given
type in the list of initial values.

If war ray has been defined as

warray WORD 2, 4, 6, 8, 10

then referencing wa rray in your program refers to the first word-the word
containing 2.

To refer to the next element (in an array of words), use either of these two forms,
each of which refers to the array element two bytes past the beginning of
warray:

warray+2
warray[2]

This element can be used as you would any data item:

mov ax, warray[2]
push warray+2

When used with a variable name, brackets only add a number to the address. If
war ray refers to the address 2400 h, then war ray [2] refers to the address
2402h. The BOUND instruction (80186-80486 only) can be used to verify that
an index value is within the bounds of an array.

In assembly language, array indexes are zero-based and unscaled. The number
within brackets always represents an absolute distance in bytes. In practical
terms, the fact that indexes are unscaled means that if an element is larger than
one byte, you must multiply the index of the element by its size (in the example
above, 2), and then add the result to the address ofthe array. Thus, the expres­
sion wa r ray [4] represents the third element, which is four bytes past the
beginning of the array. Similarly, the expression wa r ray [6] represents the
fourth element.

You can also determine an index at run time:

mov
s h 1
mov

s i, ex
s i, 7
ax, warray[si]

ex holds index value
Scale for word referencing
Move element into AX

113

Defining and Using Complex Data Types

The offset required to access an array element can be calculated with the follow­
ing formula:

nth element of array = array[(n-l) * size of element]

LENGTHOF, SIZEOF, and TYPE for Arrays
When applied to arrays, the LENGTHOF, SIZEOF, and TYPE operators return in­
formation about the length and size of the array and about the type of the
ini tializers.

The LENGTH OF operator returns the number of items in the definition. It can be
applied only to an integer label. This is useful for determining the number of ele­
ments you need to process in an array of integers. For an array or string label,
SIZEOF returns the number of bytes used by the initializers in the definition.
TYPE returns the size of the elements of the array. These examples illustrate
these operators:

array WORD

larray EaU
sarray EOU
tarray EaU

num DWORD

lnum EOU
snum EaU
tnum EaU

warray WORD

len EaU
siz EaU
typ EaU

40 DU P (5)

LENGTHOF array
SIZEOF array
TYPE array

4, 5, 6, 7,
8, 9, 10, 11

LENGTHOF num
SIZEOF num
TYPE num

40 DUP (40 DUP (5»

LENGTHOF warray
SIZEOF warray
TYPE warray

40 elements
80 bytes

2 bytes per element

8 elements
32 bytes
4 bytes per element

1600 elements
3200 bytes

2 bytes per element

5.1.2 Declaring and Initializing Strings

Strings declared with types
other than BYTE must fit
the memory space
allocated.

114

A string is an array of bytes. Initializing a string like "H e 11 0, the r e" allo­
cates and initializes one byte for each character in the string. An initialized string
can be no longer than 255 characters.

For data directives other than BYTE, a string may initialize only a single element.
This element must be short enough to fit into the specified size and conform to
the expression word size in effect (see Section 1.2.4,"Integer Constants and Con­
stant Expressions"), as shown in these examples:

wstr WORD "OK"
dstr DWORD "ADCD" ; Legal under EXPR32 only

The actual values stored
when you use? depend on
the other data in your
program.

Arrays and Strings

As with arrays, string initializers can span multiple lines. The line must end with
a comma if you want the string to continue to the next line.

strl BYTE "This is a long string that does not"
"fit on one line."

You can also have an array of pointers to strings. For example:

PBYTE TY PEDEF PTR BYTE
.DATA

msgl BYTE "Operation completed successfully."
msg2 BYTE "Unknown command"
msg3 BYTE "Fil e not found"
pmsgl PBYTE msgl
pmsg2 BPBYTE msg2
pmsg3 PBYTE msg3

errors WORD pmsgl, pmsg2, pmsg3 An array of pointers
to strings

Strings must be enclosed in single (') or double (") quotation marks. To put a
single quotation mark inside a string enclosed by single quotation marks, use two
single quotation marks. Likewise, if you need quotation marks inside a string en­
closed by double quotation marks, use two sets. These examples show the
various uses of quotation marks:

char BYTE
message BYTE
warn BYTE
string BYTE

'a'
"That's the message."
'Can' 't find file.'
"This ""value'''' not found."

That's the message.
Can't find file.
This "value"
not found.

You can always use single quotation marks inside a string enclosed by double
quotation marks, as the initialization for message shows, and vice versa.

The? Initializer
You do not have to initialize all elements in an array to a value. If there is no ini­
tial value, you can initialize the array elements with the? operator. The? opera­
tor either is treated as a zero or causes a byte to be left unspecified in the object
file. Object files contain records for initialized data. An unspecified byte left in
the object file means that no records contain initialized data for that address.

The actual values stored in arrays allocated with? depend on certain conditions.
The? initializer is treated as a zero in a DUP statement that contains initializers
in addition to the? initializer. An unspecified byte is left in the object file if the?
initializer does not appear in a DUP statement, or if the DUP statement contains
only? initializers for nested DUP statements.

115

Defining and Using Complex Data Types

Interfacing with high-level
languages requires special
techniques with strings.

116

length-Specified Strings
Often there are reasons to know the length of a string. To use the DOS functions
for writing to a file, for example, ex must contain the length of the string before
the interrupt is called, as shown in this example.

msg BYTE "This is a length-specified string"

mov ah, 40h
mov bx, 1
mov ex, LENGTHOF msg
mov dx, OFFSET msg
int 2lh

Some high-level languages also expect strings passed to procedures to have a cer­
tain format. For example, Pascal procedures require the first byte of a string
passed as a parameter to contain the length of the string. You can write this
length into the first byte with

msg BYTE LENGTHOF msg - 1, "Thi sis a Pascal stri ng"

Other languages such as Basic have string descriptions-a kind of structure con­
taining both the length and the address of the string. For example, this structure
DESC could be used in a procedure accessed from Basic:

DESC
1 en
off

DESC

STRUCT
WORD ?
WORD ?
ENDS

Length of stringl
Offset of stringl

stringl BYTE
msg DESC

"This string goes in a string descriptor"
{LENGTHOF stringl, stringl}

See Section 5.2, "Structures and Unions."

Null-Terminated and $-Terminated Strings
Null-terminated and $-terminated strings have a special use with DOS functions.
Strings in modules shared with e need to end with a null character (0).

st rl BYTE "This string ends with a null character", 0

DOS file names also require a null character at the end. This example opens a file
named "MY FI LE. ASM".

namel BYTE "MYFILE.ASM", 0

mov ah, 3Dh
mov dx, OFFSET namel
i nt 21 h

Arrays and Strings

DOS function 9 requires a string to end with a dollar sign ($) so that it can recog­
nize the end of the string to write to the screen, as shown in this example.

msg BYTE "This is a dollar-terminated string$"

mov ah, 09h
mov dx, OFFSET msg
int 21h

LENGTHOF, SIZEOF, and TYPE for Strings
Because the assembler considers strings as simply arrays of byte elements, the
LENGTH OF and SIZEOF operators return the same values for strings as they do
for arrays, as illustrated in this example. The TYPE operator considers msg to
be one data unit and returns 1.

msg

1 msg
smsg
tmsg

BYTE

Eau
EaU
EaU

"This string extends"
"over three "
"lines."

LENGTHOF msg
SIZEOF msg
TYPE msg

37 elements
37 bytes

1 byte per element

5.1.3 Processing Arrays and Strings
The 8086-family instruction set has seven string instructions for fast and efficient
processing of entire strings and arrays. The term "string" in "string instructions"
refers to a sequence of elements, not just character strings. These instructions
work directly only on arrays of bytes and words on the 8086-80486 and on ar­
rays of bytes, words, and doublewords on the 80386 and 80486. Processing
larger elements must be done indirectly with loops.

The following list gives capsule descriptions of the five instructions discussed in
this section. Two additional instructions not described here are the INS and
OUTS instructions that transfer values to and from a memory port.

Instruction

MOVS

STOS

CMPS

LODS

SCAS

Description

Copies a string from one location to another

Stores values from the accumulator register to a string

Compares values in one string with values in another

Loads values from a string to the accumulator register

Scans a string for a specified value

117

Defining and Using Complex Data Types

All string operations follow
three basic steps.

118

All of these instructions use registers in a similar way and have a similar syntax.
Most are used with the repeat instruction prefixes REP, REPE (or REPZ), and
REPNE (or REPNZ). REPZ is a synonym for REPE (Repeat While Equal) and
REPNZ is a synonym for REPNE (Repeat While Not Equal).

This section first explains the general procedures for using all string instructions.
It then illustrates each instruction with an example.

5.1.3.1 Overview of String Operations
The string instructions have specific requirements for the location of strings and
the use of registers. To operate on any string, follow these three steps:

1. Set the direction flag to indicate the direction in which you want to process
the string. The STD instruction sets the flag, while CLD clears it.

If the direction flag is clear, the string is processed upward (from low ad­
dresses to high addresses, which is from left to right through the string). If the
direction flag is set, the string is processed downward (from high addresses to
low addresses, or from right to left). Under DOS, the direction flag is nor­
mally clear if your program has not changed it.

2. Load the number of iterations for the string instruction into the ex register.

If you want to process a 100-byte string, move 100 into ex. If you wish the
string instruction to terminate conditionally (for example, during a search
when a match is found), load the maximum number of iterations that can be
performed without an error.

3. Load the starting offset address of the source string into DS:SI and the start­
ing address of the destination string into ES:DI. Some string instructions take
only a destination or source, not both (see Table 5.1).

Normally, the segment address of the source string should be DS, but you can
use a segment override to specify a different segment for the source operand.
You cannot override the segment address for the destination string. Therefore,
you may need to change the value of ES. See Section 3.1 for information on
changing segment registers.

NOTE Although you can use a segment override on the source operand, a segment over­
ride combined with a repeat prefix can cause problems in certain situations on all proces­
sors except the 80386/486. If an interrupt occurs during the string operation, the segment
override is lost and the rest of the string operation processes incorrectly. Segment overrides
can be used safely when interrupts are turned off or with an 80386/486 processor.

You can adapt these steps to the requirements of any particular string operation.
The syntax for the string instructions is:

The instruction
automatically increments
DI or Sl.

Arrays and Strings

[prefix] CMPS [segmentregister:] source, [ES:] destination
LODS [segmentregister:] source

[prefix] MOVS [ES:] destination, [segmentregister:] source
[prefix] SCAS [ES:] destination
[prefix] STOS [ES:[destination

Some instructions have special forms for byte, word, or doubleword operands. If
you use the form of the instruction that ends in B (BYTE), W (WORD), or D
(DWORD) with LODS, SeAS, and STOS, the assembler knows whether the ele­
ment is in the AL, AX, or EAX register. Therefore, these instruction forms do
not require operands.

Table 5.1 lists each string instruction with the type of repeat prefix it uses and in­
dicates whether the instruction works on a source, a destination, or both.

Table 5.1 Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair

MOVS REP Both DS:SI, ES:DI

SCAS REPE/REPNE Destination ES:DI

CMPS REPE/REPNE Both DS:SI, ES:DI

LODS None Source DS:SI

STOS REP Destination ES:DI

INS REP Destination ES:DI

OUTS REP Source DS:SI

The repeat prefix causes the instruction that follows it to repeat for the number of
times specified in the count register or until a condition becomes true. After each
iteration, the instruction increments or decrements SI and DI so that it points to
new array elements. The string instructions work on these elements. The direc­
tion flag determines whether SI and DI are incremented (flag clear) or decre­
mented (flag set). The size of the instruction determines whether SI and DI are
altered by one, two, or four bytes each time.

These are the conditions that determine the number of repetitions specified by a
prefix.

Prefix

REP

REPE,REPZ

REPNE,REPNZ

Description

Repeats instruction ex times

Repeats instruction ex times, or as long as elements
are equal, whichever is fewer

Repeats instruction ex times, or as long as elements
are not equal, whichever is fewer

119

Defining and Using Complex Data Types

At loop end, 81 and DI point
to the element immediately
after the match.

120

The prefixes apply to only one string instruction at a time. To repeat a block of in­
structions, use a loop construction (see Section 7.2, "Loops").

At run time, if a string instruction is preceded by a repeat sequence, the processor
takes the following steps:

1. Checks the CX register and exits if CX is O. If the REPE prefix is used, the
loop exits if the zero flag is set; if REPNE is used, the loop exits if the zero
flag is clear.

2. Performs the string operation once.

3. Increases SI and/or DI if the direction flag is clear. Decreases SI and/or DI if
the direction flag is set. The amount of increase or decrease is 1 for byte
operations, 2 for word operations, and 4 for doubleword operations
(80386/486 only).

4. Decrements CX (no flags are modified).

5. Checks the zero flag at this point if the REPE or REPNE prefix is used (for
SCAS or CMPS). If the repeat condition does not hold, execution proceeds to
the next instruction.

6. Proceeds to the next iteration and repeats from step 1.

When the repeat loop ends, SI (or DI) points to the position following a match
(when using SCAS or CMPS), so you need to decrement or increment DI or SI to
point to the element where the match occurred.

Although string instructions (except LODS) are most often used with repeat pre­
fixes, they can also be used by themselves. In this case, the SI and/or DI registers
are adjusted as specified by the direction flag and the size of operands. However,
you must decrement the CX register and set up a loop for the repeated action.

5.1.3.2 String Instructions
To use the 8086-family string instructions, apply the steps outlined in the pre­
vious section. Examples in this section illustrate each instruction.

You can also use the techniques in this section with structures and unions, since
arrays and strings can be fields in structures and unions (see Section 5.2).

Moving Array Data The MOVS instruction copies data from one area of
memory to another. To move data, first load the count and the source and destina­
tion addresses into the appropriate registers. Then use REP with the MOVS
instruction.

Arrays and Strings

.MODEL sma 11

.DATA
source BYTE 10 DUP ('0123456789')
destin BYTE 100 DUP (?)

.CODE
mov ax, @data Load same segment
mov ds, ax to both OS
mov es, ax and ES

cld Work upward
mov ex, LENGTHOF source Set iteration count to 100
mov s i , OFFSET source Load address of source
mov d i , OFFSET destin Load address of destination
rep movsb Move 100 bytes

Storing Data in Arrays The STOS instruction stores a specified value in
each position of a string. The string is the destination, so it must be pointed to by
ES:DI. The value to store must be in the accumulator.

This example stores the character 'a' in each byte of a 100-byte string. Notice
that it does this by storing 50 words rather than 100 bytes. This makes the code
faster by reducing the number of iterations. To fill an odd number of bytes, you
would have to adjust for the last byte .

destin
ldestin

. MODEL

.DATA
BYTE
EQU
.CODE

cld
mov
mov
mov
rep

small, C

100 DUP (?)
(LENGTHOF destin) / 2

ax, 'aa'
ex, ldestin
d i , OFFSET destin
stosw

Assume ES OS

Work upward
Load character to fi 11
Load length of string
Load address of destination
Store 'aa' into array

Comparing Arrays The CMPS instruction compares two strings and points
to the address after which a match or nonmatch occurs. If the values are the
same, the zero flag is set. Either string can be considered as the destination or the
source unless a segment override is used.

121

Defining and Using Complex Data Types

122

This example using CMPSB assumes that the strings are in different segments.
Both segments must be initialized to the appropriate segment register.

.MODEL large, C

. DATA
stringl BYTE "The quick brown fox jumps over the lazy dog"

.FARDATA
string2 BYTE "The quick brown dog jumps over the lazy fox"
lstring EQU LENGTHOF string2

.CODE
mov ax, @data Load data segment
mov ds, ax into OS
mov ax, @fardata Load far data segment
mov es, ax into ES

cld Work upward
mov cx, lstring Load length of string
mov s i , OFFSET stringl Load offset of stringl
mov di , OFFSET string2 Load offset of string2
repe cmpsb Compare
jcxz allmatch CX is 0 if no nonmatch

allmatch: ; Speci al case for all match

loading Data from Arrays The LODS instruction loads a value from a
string into a register. The string is the source; the value is in the accumulator.
This instruction normally is not used with a repeat instruction prefix, since some­
thing must be done with each element before going on to the next.

The code in this example loads, processes, and displays each byte in a string of
bytes.

info
linfo

.DATA
BYTE
WORD
.CODE

cld
mov
mov
mov

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
LENGTHOF info

cx,linfo
s i, OFFSET info
ah, 2

Work upward
Load length
Load offset of source
Display character function

Structures and Unions

get:
lodsb Get a character
add a 1 , '0 ' Convert to ASCII
mov dl , al Move to DL
int 21h Call DOS to display character
loop get Repeat

Searching Arrays The seAS instruction scans a string for a specified value.
As the loop executes, this instruction compares the value pointed to by DI with
the value in the accumulator. If values are the same, the zero flag is set.

After a REPNE SeAS, the zero flag is cleared if no match was found. After a
REPE SeAS, the zero flag is set if all values matched.

This example assumes that ES is not the same as DS and that the address of the
string is stored in a pointer variable. The LES instruction loads the far address of
the string into ES:DI.

.DATA
string BYTE
pstring PBYTE
lstring EQU

.CODE

cld
mov
1 es
mov
repne
jcxz

notfound:

"The quick brown fox jumps over the lazy dog"
string Far pointer to string
LENGTHOF string Length of string

Work upward
cx, lstring Load length of string
d i , pstring Load address of string
a 1 , 'z' Load character to find
scasb Search
notfound CX is 0 if not found

ES:DI points to character
after first 'z'

Special case for not found

5.2 Structures and Unions
A structure is a group of possibly dissimilar data types and variable declarations
that can be accessed as a unit or by any of its components. The fields within the
structure can have different sizes and data types.

Unions are identical to structures, except that the fields of a union overlap in
memory, which allows you to define different data formats for the same memory
space. Unions can store different types of data depending on the situation. They
can also store data as one data type and retrieve it as another data type.

Whereas each field in a structure has an offset relative to the first byte of the
structure, all the fields in a union start at the same offset. The size of a structure

123

Defining and Using Complex Data Types

is the sum of its components, while the size of a union is the length of the longest
field.

A MASM structure is similar to a struct in the C language, a STRUCTURE in
FORTRAN, and a RECORD in Pascal. Unions in MASM are similar to unions in
C and FORTRAN, and to variant records in Pascal.

Follow these steps when using structures and unions:

1. Declare a structure (or union) type.

2. Define one or more variables having that type.

3. Reference the fields directly or indirectly with the field (dot) operator.

You can use the entire structure or union variable or just the individual fields as
operands in assembler statements. This section explains the allocating, initializ­
ing, and nesting of structures and unions.

MASM 6.0 extends the functionality of structures and also makes some changes
to MASM 5.1 behavior. You can still retain MASM 5.1 behavior if you prefer by
specifying OPTION OLDSTRUCTS in your program. See Section 1.3.2 for infor­
mation about the OPTION directive, and Section 5.2.3 for information about ref­
erencing structures and unions.

5.2.1 Declaring Structure and Union Types

124

When you declare a structure or union type, you create a template for data that
contains the sizes and, optionally, the initial values for fields in the structure or
union but that allocates no memory.

The STRUCT keyword marks the beginning of a type declaration for a structure.
(STRUCT and STRUC are synonyms.) STRUCT and UNION type declarations
have the following format:

name {STRUCT I UNION} [alignment] [,NONUNIQUE]
fie lddeclarations
name ENDS

The fielddeclarations are a series of one or more variable declarations. You can
declare default initial values individually or with the DUP operator (see Section
5.2.2, "Defining Structure and Union Variables"). Section 5.2.3, "Referencing
Structures, Unions, and Fields," explains the NONUNIQUE keyword. Structures
and unions can also be nested in MASM 6.0 (see Section 5.2.4).

Initializing Fields
If you provide initializers for the fields of a structure or union when you declare
the type, these initializers become the default value for the fields when you de­
fine a variable of that type. Section 5.2.2 explains default initializers.

A nested structure
has its own level.

Structures and Unions

When you initialize the fields of a union type, the type and value of the first field
become the default value and type for the union. In this example of an initialized
union declaration, the default type for the union is DWORD:

DWB UNION
d DWORD 00FFh
w WORD ?
b BYTE

DWB ENDS

If the size of the first member is less than the size of the union, the assembler ini­
tializes the rest of the union to zeros. When initializing strings in a type, make
sure the initial values are long enough to accommodate the largest possible
string.

Field Names
Structure and union field names in MASM 6.0 must be unique within a given
nesting level because they represent the offset from the beginning of the structure
to the corresponding field.

In MASM 6.0, a label and a structure field may have the same name, but not a
text macro and a field name. Also, field names between structures need not be
unique. Field names do need to be unique if you place OPTION M510 or
OPTION OLDSTRUCTS in your code or use the IZm option from the command
line, since versions of MASM prior to 6.0 require unique field names (see Appen­
dix A).

Alignment Value and Offsets for Structures
Data access to structures is faster on aligned fields than on unaligned fields.
Therefore, alignment gains speed at the cost of space. Alignment improves
access on 16-bit processors but makes no difference on code executing on an 8-
bit 8088 processor.

The way the assembler aligns structure fields determines the amount of space re­
quired to store a variable of that type. Each field in a structure has an offset rela­
tive to o. If you specify an alignment in the structure declaration (or with the
/Zpn command-line option), the offset for each field may be modified by the
alignment (or n).

The only values accepted for alignment are 1, 2, and 4. The default is 1. If the
type declaration includes an alignment, the fields are aligned to the minimum of
the field's size and the alignment. Any padding required to reach the correct off­
set for the field is added prior to allocating the field. The padding consists of
zeros and always precedes the field.

If the number of bytes in the field is greater than the alignment value, the element
will be padded such that the offset of the element is divisible by the alignment
value. If the number of bytes is greater than or equal to the alignment value, the
offset of the element is padded such that it is divisible by the element size.

125

Defining and Using Complex Data Types

The alignment value
affects memory allocation
of structure variables.

The size of the structure must also be evenly divisible by the structure alignment
value, so zeros may be added at the end of the structure.

If neither the alignment nor the /Zp command-line option is used, the offset is
incremented by the size of each data directive. This is the same as a default
alignment equal to 1. The alignment specified in the type declaration overrides
the /Zp command-line option.

These examples show how offsets are determined:

STUDENT2 STRUCT 2 Alignment value is 2
score WORD 1 Offset is 0
id BYTE 2 Offset is 2
year DWORD 3 Offset is 4; one byte padding added
sname BYTE 4 Offset is 8

STUDENT2 ENDS

One byte of padding is added at the end of the first byte-sized field. Otherwise
the offset of the yea r field would be 3, which is not divisible by the alignment
value of 2. The size of this structure is now 9 bytes. Since 9 is not evenly divis­
ible by 2, one byte of padding is added at the end of stu den t 2.

STUDENT4 STRUCT 4 Alignment value is 4
sname BYTE 1 Offset is 0
score WORD 10 DUP (00) Offset is 2
year BYTE 2 Offset is 22; 1 byte padding

added so offset of next field
is divisible by 4

id DWORD 3 Offset is 24
STUDENT4 ENDS

The alignment value affects the alignment of structure variables, so adding an
alignment value affects memory usage. This feature provides compatibility with
structures in Microsoft C.

With MASM 6.0, C programmers can use the H2INC utility to translate C struc­
tures to MASM (see Chapter 16).

5.2.2 Defining Structure and Union Variables

126

Once you have declared a structure or union type, variables of that type can be
defined. For each variable defined, memory is allocated in the current segment in
the format declared by the type. The syntax for defining a structure or union vari­
able is:

[name] type name < [initializer [,initializer] ...] >

[name] type name { [initializer [,initializer] ...] }

[name] type name constant DUP ({ [initializer [,initializer] ...] })

Structures and Unions

The name is the label assigned to the variable. If no name is given, the assembler
allocates space for the variable but does not give it a symbolic name. The type­
name is the name of a previously declared structure or union type.

An initializer can be given for each field. The type of each initializer must be the
type of the corresponding field defined in the type declaration. For unions, the
type of the initializer must be the same as the type for the first field. An initializa­
tion list can also be repeated using the DUP operator.

The list of initializers can be broken only after a comma unless you use a line
continuation character (\) at the end of the line. The last curly brace or angle
bracket must appear on the same line as the last initializer. You can also use the
line continuation character to extend a line as shown in the I tem4 declaration
below. Angle brackets and curly braces can be intermixed in an initialization as
long as they match. This example using the ITEMS structure illustrates the op­
tions for initializing lists:

ITEMS STRUCT
Iname BYTE ' Item Name'
Inurn WORD ?
ITYPE UNION

oldtype BYTE 0
newtype WORD ?

ENDS
ITEMS ENDS

.DATA
Item1 ITEMS < > Accepts default initializers
Item2 ITEMS { } Accepts default initializers
Item3 ITEMS <'Bolts', 126> Overrides default value of first

2 fields; use default of
the third field

Item4 ITEMS { \
'Bol ts' , Item name
126 \ Part number

}

The angle brackets or curly braces are required even if no initial value is given,
as in I teml and I tem2 in the example. If initial values are given for more
than one field, the values must be separated by commas, as shown in I tem3.

You need not initialize all fields in a structure. If an initial value is blank, the as­
sembler automatically uses the default initial value of the field, which was origi­
nally provided in the structure type declaration. If there is no default value, the
field is undefined.

127

Defining and Using Complex Data Types

Default initializers for
string or array fields set
the size for the field.

The string fields for
structure variables are the
length defined by the type
declaration.

128

For nested structures or unions (see Section 5.2.4), however, these are equivalent:

Item5
Item6

ITEMS
ITEMS

{ I Bo lts I" }

{ I Bo lts I, , { } }

A variable and an array of union type WB look like this:

WB UNION
w WORD ?
b BYTE ?

WB ENDS

num WB {0Fh}
array WB (40 / SIZEOF WB) DUP ({2})

(a (2 (a (2 (a (2 (

array [0J array[2J array[4J

Store 0Fh
Allocates and
initializes 10 unions

~
array[18J

In MASM 6.0, control structures (such as IF, macros, and directives) are also al­
lowed within structure and union declarations.

Arrays as Field Initializers
The length of the array that can override the contents of a field in a variable defi­
nition is fixed by the size of the initializer. The override cannot contain more ele­
ments than the default. Specifying fewer override array elements changes the
first n values of the default where n is the number of values in the override. The
rest of the array elements take their default values from the initializer.

Strings as Field Initializers
If the override is shorter, the assembler pads the override with spaces to equal the
length of the initializer. If the initializer is a string and the override value is not a
string, the override value must be enclosed in angle brackets or curly braces.

A string may be used to override any member of type BYTE (or SBYTE). The
string does not need to be enclosed in angle brackets or curly braces unless
mixed with other override methods.

If a structure has an initialized string field or an array of bytes, any new string as­
signed to a variable of the field that is smaller than the default is padded with
spaces. The assembler adds four spaces at the end of 'B 0 1 t s' in the variables
of type ITEMS above. The Iname field in the ITEMS structure cannot con­
tain a field initializer longer than 'Item Name' .

Structures and Unions

Structures as Field Initializers
Initializers for structure variables must be enclosed in curly braces or angle brack­
ets, but you can specify overrides with fewer elements than the defaults.

This example illustrates the use of default values with structures as field
initializers:

DISKDRIVES
a1
b1
c1

DISKDRIVES

INFO
buffer
crlf
query
endmark
drives

INFO

info1 INFO

STRUCT
BYTE ?
BYTE ?
BYTE ?
ENDS

STRUCT
BYTE 100 DUP (?)
BYTE 13, 10
BYTE 'Filename:' String <= can override
BYTE 36
DISKDRIVES <0, 1, 1>
ENDS

{ , , 'Di r' }

Illegal since name in query field is too long
and a string cannot initialize a field defined with DUP:
i nfo2 INFO {"TESTFI LE", , "Di rectoryName",}

lotsof INFO {

{ , ,
{

'file1', , {0,0,0} },
'file2', , {0,0,1} },
'file3', , {0,0,2} }

The diagram below shows how the assembler stores i n f 01.

o 1 2 99

(? (? (? (.... (? (13 (10 (D (i 1\ ((((((((36 (0 1\ 1\ (. ..
, Y 'T'

buffer crlf endmar~ J J j
drives.a1

drives.b1

query

drives.c1

The initialization for d r i ve S gives default values for all three fields of the
structure. The fields left blank in i n f 01 use the default values for those fields.
The i nfo2 declaration is illegal since "Di rectoryName" is longer than
the initial string for that field, and the "T EST F I L E" string cannot initialize a
field defined with DUP.

129

Defining and Using Complex Data Types

130

Arrays of Structures and Unions
You can define an array of structures using the DUP operator (see Section 5.1.1,
"Declaring and Referencing Arrays") or by creating a list of structures. For ex­
ample, you can define an array of structure variables like this:

Item7 ITEMS 30 OUP ({,,{10}})

The Item? array defined here has 30 elements of type ITEMS, with the third
field of each element (the union) initialized to 10.

You can also list array elements as shown in this example:

Item8 ITEMS {'Bolts', 126, 10},
{'Pliers' ,139, 10},
{'Saws', 414,10}

Structure Redefinition
The assembler generates an error for a structure redefinition unless all of the fol­
lowing are the same:

• Field names

• Offsets of named fields

• Initialization lists

• Field alignment value

Additionally, all fields must be present and at the same offset.

lENGTHOF, SIZEOF, and TYPE for Structures
The size of a structure determined by SIZEOF is the offset of the last field, plus
the size of the last field, plus any padding required for proper alignment (see Sec­
tion 5.2.1 for information about alignment). This example, using the data declara­
tions above, shows how to use the LENGTH OF, SIZEOF, and TYPE operators
with structures:

INFO STRUCT
buffer BYTE 100 OUP (?)

crlf BYTE 13, 10
query BYTE 'Filename: ,

endmark BYTE 36
drives OISKORIVES <0, 1, 1>

INFO ENOS

info1 INFO { , , 'Oi r' }

lotsof INFO { , , 'file1', , {0,0,0} } ,
{ 'file2' , , {0,0,l} },
{ , , 'file3' , , {0,0,2} }

Structures and Unions

sinfo1 Eau

linfo1 Eau
tinfo1 Eau

slotsof Eau

llotsof Eau

SIZEOF info1 116 = number of bytes in
initializers

LENGTHOF info1 1 = number of items
TYPE info1 116 same as size

SIZEOF lotsof 116 * 3 = number of
initializers

LENGTHOF lotsof 3 = number of items

bytes in

tlotsof Eau TYPE lotsof 116 = same as size for structure
of type INFO

LENGTHOF, SIZEOF, and TYPE for Unions
The size of a union determined by SIZEOF is the size of the longest field plus
any padding required. The length of a union variable determined by LENGTHOF
equals the number of initializers defined inside angle brackets or curly braces.
TYPE returns a value indicating the type of the longest field.

DWB UNION
d DWORD
w WORD
b BYTE

DWB ENDS

num DWB
array DWB

snum EaU
lnum EaU
tnum EaU
sarray EaU
larray EaU
tarray EQU

?
?

{0FFFFh}
(100 / SIZEOF

SIZEOF num
LENGTHOF num
TYPE num
SIZEOF array
LENGTHOF array
TYPE array

DWB) DUP ({0})

4
1
4
100 (4*25)
25
4

5.2.3 Referencing Structures, Unions, and Fields
Like other variables, structure variables can be accessed by name. You can
access fields within structure variables with this syntax:

variable. fie ld

In MASM 6.0, references to fields must always be fully qualified, with both the
structure or union name and the dot operator preceding the field name. Also, in
MASM 6.0, the dot operator can be used only with structure fields, not as an al­
ternative to the plus operator; nor can the plus operator be used as an alternative
to the dot operator.

131

Defining and Using Complex Data Types

132

This example shows several ways to reference the fields of a structure called
date.

DATE STRUCT ; Defines structure type
month BYTE ?
day BYTE ?
year WORD ?

DATE ENDS

yesterday DATE {g, 30, 198?} Declare structure
variable

mov
mov
mov
mov

al, yesterday.day
bx, OFFSET yesterday
al, (DATE PTR [bx]).month
al, [bx].date.month

Use structure variables
Load structure address
Use as indirect operand
This is necessary if

month were already a
field in a different
structure

Under OPTION M510 or OPTION OLDSTRUCTS, unique structure names do not
need to be qualified. See Section 1.3.2 for information on the OPTION
directive.

If the NONUNIQUE keyword appears in a structure definition, all fields of the
structure must be fully qualified when referenced, even if the OPTION
OLDSTRUCTS directive appears in the code. Also, in MASM 6.0, all references
to a field must be qualified.

Even if the initialized union is the size of a WORD or DWORD, members of
structures or unions are accessible only through the field's names.

In the following example, the two MOV statements show how you can access the
elements of an array of structures.

WB UNION
w WORD ?
b BYTE ?

WB ENDS

array WB (100 / SIZEOF WB) DUP ({0})

mov array[12].w, 40
mov array[32].b, 2

~ ~
array. w[12] array.b[32]

Structures and Unions

The WB union cannot be used directly as a WORD variable. However, you can
define a union containing both the structure and a WORD variable and access
either field. (The next section discusses nested structures and unions.)

You can use unions to access the same data in more than one form. For example,
one application of structures and unions is to simplify the task of reinitializing a
far pointer. If you have a far pointer declared as

FPWORD TYPEDEF FAR PTR WORD

.DATA
BoxB FPWORD ?
BoxA FPWORD ?
BoxB2 uptr < >

you must follow these steps to point BoxB to BoxA:

mov bx, OFFSET BoxA
mov WORD PTR BoxB[2], ds
mov WORD PTR BoxB, bx

When you do this, you must remember whether the segment or the offset is
stored first. However, if your program contains this union:

uptr UNION
dwptr FPWORD 0
STRUCT

offs WORD 0
segm WORD 0

ENDS
uptr ENDS

you can initialize a far pointer with these steps:

mov BoxB2.segm, ds
mov BoxB2.offs, bx
lds si, BoxB2.dwptr

This code moves the segment and the offset into the pointer and then moves the
pointer into a register with the other field of the union. Although this technique
does not reduce the code size, it avoids confusion about the order for loading the
segment and offset.

133

Defining and Using Complex Data Types

5.2.4 Nested Structures and Unions

134

Structures and unions in MASM 6.0 can be nested in several ways. This section
explains how to refer to the fields in a nested structure or union. The example
below illustrates the four techniques for nesting and how to reference the fields.
Note the syntax for nested structures. The discussion of these techniques follows
the example.

ITEMS
Inum
Iname

ITEMS

INVENTORY
UpDate
oldItem

STRUCT ups
source
shipmode

ENDS
STRUCT

f1
f2

ENDS
INVENTORY

.DATA

STRUCT
WORD ?
BYTE 'Item Name'
ENDS

STRUCT
WORD ?
ITEMS \

? ,
'AF8' \
}

ITEMS {?,' 94C '

WORD ?
BYTE ?

WORD ?
WORD ?

ENDS

yearly INVENTORY { }

Named variable of
existing structure

Unnamed variable of
existing type

Named nested structure

Unnamed nested structure

Referencing each type of data in the yearly structure:

mov ax, yearly.oldItem.Inum
mov yearly.ups.shipmode, 'A'
mov yearly.Inum, 'C'
mov ax, yearly.fl

To nest structures and unions, you can use any of these techniques:

• The field of a structure or union can be a named variable of an existing struc­
ture or union type, as in the old I tern field. The field names in old I tern
are not unique, so the full field names must be used when referencing those
fields in the statement

mov ax, yearly.oldItem.Inum

5.3 Records

Record fields are bits, not
bytes or words.

Records

• To declare a named structure or union inside another structure or union, give
the STRUCT or UNION keyword first and then define a label for it. Fields of
the nested structure or union must always be qualified, as shown in this
example:

rnov yearly.ups.shiprnode, 'A'

• As shown in the Items field of Inventory, you can also use unnamed
variables of existing structures or unions inside another structure or union. In
this case you can reference its fields directly, as shown in this example:

rnov yearly.Inurn, 'C'
rnov ax, yearly.fl

Offsets of nested structures are relative to the nested structure, not the root struc­
ture. In the example above, the offset of yea rl y. ups. shi pmode is
(current address of yearly) + 8 + 2. Itisrelativetothe ups struc­
ture, not the yea r 1 y structure.

Records are similar to structures, except that fields in records are bit strings. Each
bit field in a record variable can be used separately in constant operands or ex­
pressions. The processor cannot access bits individually at run time, but it can
access bit fields with instructions that manipulate bits.

Records are bytes, words, or doublewords in which the individual bits or groups
of bits are considered fields. In general, the three steps for using record variables
are the same as those for other complex data types:

1. Declare a record type.

2. Define one or more variables having the record type.

3. Reference record variables using shifts and masks.

Once defined, the record variable can be used as an operand in assembler
statements.

This section explains the record declaration syntax and the use of the MASK and
WIDTH operators. It also shows a few applications of record variables and
constants.

135

Defining and Using Complex Data Types

5.3.1 Declaring Record Types

The assembler shifts bits
in a record to the right if
all bits are not used.

136

A record type creates a template for data with the sizes and, optionally, the initial
values for bit fields in the record, but it does not allocate memory space for the
record.

The RECORD directive declares a record type for an 8-bit, 16-bit, or 32-bit re­
cord that contains one or more bit fields. The maximum size is based on the ex­
pression word size. See OPTION EXPR16 and OPTION EXPR32 in Section 1.3.2.
The syntax is

recordname RECORD field [,field] ...

Thefield declares the name, width, and initial value for the field. The syntax for
each field is:

fieldname: width [=expression]

Global labels, macro names, and record field names must all be unique, but re­
cord field names can have the same names as structure field names or global
labels. Width is the number of bits in the field, and expression is a constant
giving the initial (or default) value for the field. Record definitions can span
more than one line if the continued lines end with commas.

If expression is given, it declares the initial value for the field. The assembler
generates an error message if an initial value is too large for the width of its field.

The first field in the declaration always goes into the most significant bits of the
record. Subsequent fields are placed to the right in the succeeding bits. If the
fields do not total exactly 8, 16, or 32 bits as appropriate, the entire record is
shifted right, so the last bit of the last field is the lowest bit of the record. Unused
bits in the high end of the record are initialized to O.

The following example creates a byte record type co lor having four fields:
b 1 ink, ba c k, i nten s e, and for e. The contents of the record type are
shown after the example. Since no initial values are given, all bits are set to O.
Note that this is only a template maintained by the assembler. No data is created.

COLOR RECORD blink:l, back:3, intense:l, fore:3

7 o

Records

The next example creates a record type cw having six fields. Each record de­
clared with this type occupies 16 bits of memory. Initial (default) values are
given for each field. They can be used when data is declared for the record. The
bit diagram after the example shows the contents of the record type.

CW RECORD r1:3=0, ;c:1=0, rc:2=0, pc:2=3, r2:2=1, masks:6=63

15 7 o

(0 (0 (0 (0 (0 (0 1\ 1\ (0 1\ 1\ 1\ 1\ (1 1\ 1\ iJ 037Fh

~rX0T~1' maSk}:6~63
ic:l=0 pc:2=3

5.3.2 Defining Record Variables
Once you have declared a record type, you can define record variables of that
type. For each variable, memory is allocated to the object file in the format de­
clared by the type. The syntax is

[name] recordname <[initializer [,initializer] ...] >

[name] recordname {[initializer [,initializer] ...] }

[name] recordname constant DUP ([initializer [,initializer] ...])

The recordname is the name of a record type that was previously declared by
using the RECORD directive.

Afieldlist for each field in the record can be a list of integers, character con­
stants, or expressions that correspond to a value compatible with the size of the
field. Curly braces or angle brackets are required even if no initial value is given.

If you use the DUP operator (see Section 5.1.1, "Declaring and Referencing Ar­
rays") to initialize multiple record variables, only the angle brackets and initial
values, if given, need to be enclosed in parentheses. For example, you can define
an array of record variables with

xmas COLOR 50 OUP (<1, 2, 0, 4>)

You do not have to initialize all fields in a record. If an initial value is blank, the
assembler automatically stores the default initial value of the field. If there is no
default value, the assembler clears each bit in the field.

The definition in the example below creates a variable named war n i n 9 whose
type is given by the record type colo r. The initial values of the fields in the

137

Defining and Using Complex Data Types

138

variable are set to the values given in the record definition. The initial values
override any default record values, had any been given in the declaration.

COLOR RECORD blink:l,back:3,intense:l,fore:3 Record

warning COLOR <1, 0, 1, 4>

7 o

declaration
Record
definition

LENGTHOF, SIZEOF, and TYPE with Records
The SIZE OF and TYPE operators applied to a record name return the number of
bytes used by the record. SIZE OF for a record variable returns the number of
bytes used by the variable. You cannot use LENGTHOF with record types, but
you can with the variables of that type. LENGTH OF returns the number of items
in an initializer. The record can be used as an operand. The value of the operand
is a bit mask of the defined record. This example illustrates these points.

; Record definition
; 9 bits stored in 2 bytes
RGBCOLOR RECORD red:3, green:3, blue:3

mov ax, RGBCOLOR Equivalent to "mov ax,
01FFh"

mov ax, LENGTHOF RGBCOLOR Illegal since LENGTHOF can
apply only to data label

mov ax, SIZEOF RGBCOLOR Equivalent to "mov ax, 2"
mov ax, TYPE RGBCOLOR Equivalent to "mov ax, 2"

Record instance
8 bits stored in 1 byte

RGBCOLOR2 RECORD red:3, green:3, blue:2
rgb RGBCOLOR2 <1, 1, 1> Initialize to 025h

mov ax, RGBCOLOR2 Equivalent to "mov ax,
00FFhh"

mov ax, LENGTHOF rgb Equivalent to "mov ax, 1"
mov ax, SIZEOF rgb Equivalent to "mov ax, 1"
mov ax, TYPE rgb Equivalent to "mov ax, 1"

Records

5.3.3 Record Operators
The WIDTH operator (which is used only with records) returns the width in bits
of a record or record field. The MASK operator returns a bit mask for the bit posi­
tions occupied by the given record field. A bit in the mask contains a 1 if that bit
corresponds to a bit field. The example below shows how to use MASK and
WIDTH .

. DATA
COLOR RECORD bl ink: 1, back:3, intense:l, fore:3
message COLOR <1, 5, 1, 1>
wblink EaU WIDTH blink "wblink" 1
wback EaU WIDTH back "wback" 3
wintense EaU WIDTH intense "wintense" 1
wfore EaU WIDTH fore "wfore" 3
wcolor EaU WIDTH color "wcolor" 8

.CODE

mov a h, message Load initial 0101 1001
and a h , NOT MASK back Turn off AND 1000 1111

"back" ---------

0000 1001
or ah, MASK blink Turn on OR 1000 0000

"blink" ---------

1000 1001
xor ah, MASK intense Toggle XOR 0000 1000

"intense" ---------

1000 0001

IF (WIDTH color) GE 8 If color is 16 bit, load
mov ax, message into 16-bit register
ELSE else
mov a 1 , message load into low 8-bit register
xor ah, ah and clear hi gh 8-bits
ENDIF

139

Defining and Using Complex Data Types

This example illustrates sev~ral ways in which record fields can be used as oper­
ands and in expressions.

; Rotate "back" of "cursor" without changing other values

mov a 1 , cursor Load value from memory
mov ah, al Save a copy for work 1101 1001=ah/al
and a 1 , NOT MASK back; Mask out 01 d bits AND 1000 1111=mas k

to save old cursor ---------
1000 1001=al

mov cl , back Load bit position
shr a h, cl Shift to right 0000 1101=ah
inc ah Increment 0000 1110=ah

s h 1 ah, cl Shift left again 1110 0000=ah
and ah, MASK back Mask off extra bits AND 0111 0000=mask

to get new cursor ---------
0110 0000 ah

or ah, al Combine old and new OR 1000 1001 al

mov cursor, ah Write back to memory 1110 1001 ah

Record variables are often used with the logical operators to perform logical
operations on the bit fields of the record, as in the previous example using the
MASK operator.

5.4 Related Topics in Online Help

140

In addition to information on all the instructions and directives mentioned in this
chapter, information on the following topics can be found in online help, starting
at the "MASM 6.0 Contents" screen:

Topic

INS, OUTS

LABEL

RECORD, UNION,
STRUCT, MASK,
ORG, WIDTH, and
ALIGN

SHRD, SHLD, BSF,
and BSR

BOUND

Access

Choose "Processor Instructions" and then "System
and I/O Access"

Choose "Directives" and then "Code Labels"

Choose "Directives" and then choose "Complex
Data Types"

From "Processor Instructions," choose "Logical and
Shifts"

From "Processor Instructions," choose "Data
Transfer"

Chapter 6

Using Floating-Point
and Binary Coded Decimal Numbers

MASM requires different techniques for handling floating-point (real) numbers
and binary coded decimal (BCD) numbers than for handling integers. You have
two choices for working with real numbers-a math coprocessor or emulation
routines.

Math coprocessors-the 8087, 80287, and 80387 chips-work with the main pro­
cessor to handle real-number calculations. The 80486 processor performs
floating-point operations directly. All information in this chapter pertaining to
the 80387 coprocessor applies to the 80486 processor as well.

This chapter begins with a summary of the directives and formats of floating­
point data; you need to use these to allocate memory storage and initialize varia­
bles before you can work with floating-point numbers.

The chapter then explains how to use a math coprocessor for floating-point opera­
tions. It covers these areas:

• The architecture of the registers

• The operands for the coprocessor instruction formats

• The coordination of coprocessor and main processor memory access

• The basic groups of coprocessor instructions-for loading and storing data,
doing arithmetic calculations, and controlling program flow

The next main section describes emulation libraries. With the emulation routines
provided with all Microsoft high-level languages, you can use coprocessor in­
structions as though your computer had a math coprocessor. However, some co­
processor instructions are not handled by emulation, as this section explains.

Finally, because math coprocessor and emulation routines can also operate on
BCD numbers, this chapter discusses the instruction set for these numbers.

141

Using Floating-Point and Binary Coded Decimal Numbers

6.1 Using Floating-Point Numbers
Before using floating-point data in your program, you need to allocate the
memory storage for the data. You can then initialize variables either as real num­
bers in decimal form or as encoded hexadecimals. The assembler stores allocated
data in la-byte IEEE format. This section looks at floating-point declarations and
floating-point data formats.

6.1.1 Declaring Floating-Point Variables and Constants

There are two forms for
specifying floating­
point numbers.

142

You can allocate real constants using the REAL4, REALS, and REALIO direc­
tives. The list below shows the size of the floating-point number each of these
directives allocates.

Directive

REAL4

REALS

REALIO

Size

Short (32-bit) real numbers

Long (64-bit) real numbers

la-byte (80-bit) real numbers and BCD numbers

The possible ranges for floating-point variables are given in Table 6.1.

Table 6.1 Ranges of Floating-Point Variables

Significant
Data Type Bits Digits Approximate Range

Short real 32 6-7 ±l.l8 x 10-38 to ±3.40 x 1038

Long real 64 15-16 ±2.23 x 10-308 to ±1.79 x 10308

la-byte real 80 19 ±3.37 x 10-4932 to ±1.18 x 104932

With previous versions of MASM, the DD, DQ, and DT directives could be used
to allocate real constants. These directives are still supported by MASM 6.0, but
this means that the variables are integers rather than floating-point values. Al­
though this makes no difference in the assembly code, CodeView displays the
values incorrectly.

You can specify floating-point constants either as decimal constants or as en­
coded hexadecimal constants. You can express decimal real-number constants in
the form

[+ 1-] integer.[fraction][E][[+ I-]exponent]

Using Floating-Point Numbers

For example, the numbers 2. 523El and -3. 6E -2 are written in the correct
decimal format. These numbers can be used as initializers for real-number
variables.

Digits of real numbers are always evaluated as base 10. During assembly, the as­
sembler converts real-number constants given in decimal format to a binary for­
mat. The sign, exponent, and mantissa of the real number are encoded as bit
fields within the number.

You can also specify the encoded format directly with hexadecimal digits (0-9
plus A-F). The number must begin with a decimal digit (0-9) and a leading zero
if necessary, and end with the real-number designator (R). It cannot be signed.

For example, the hexadecimal number 3 F800000r can be used as an initial­
izer for a doubleword-sized variable.

The maximum range of exponent values and the number of digits required in the
hexadecimal number depend on the directive. The number of digits for encoded
numbers used with REAL4, REAL8, and REALIO must be 8, 16, and 20 digits, re­
spectively. If the number has a leading zero, the number must be 9, 17, or 21
digits.

Examples of decimal constant and hexadecimal specifications are shown here:

; Real numbers
short REAL4
double REAL8
tenbyte REAL10

25.23
2.523E1
2523.0E-2

; Encoded as hexadecimals

IEEE format
IEEE format
10-byte real format

ieeeshort REAL4 3F800000r
ieeedouble REAL8 3FF0000000000000r
temporary REAL10 3FFF8000000000000000r

1.0 as IEEE short
1.0 as IEEE long
1. 0 as 10-byte
real

Section 6.1.2, "Storing Numbers in Floating-Point Format," explains the IEEE
formats-the way the assembler actually stores the data.

Pascal or C programmers may prefer to create language-specific TYPEDEF decla­
rations, as illustrated in this example:

; C-language specific
float TYPEDEF REAL4
double TYPEDEF REAL8
long_double TYPEDEF REAL10
; Pascal-language specific
SINGLE TYPEDEF REAL4
DOUBLE TYPEDEF REAL8
EXTENDED TYPEDEF REAL10

For applications of TYPEDEF other than aliasing, see Section 3.3.1, "Defining
Pointer Types with TYPEDEF."

143

Using Floating-Point and Binary Coded Decimal Numbers

6.1.2 Storing Numbers in Floating-Point Format
The assembler stores real
numbers in the IEEE format.

144

The assembler stores the floating-point variables in the IEEE format. MASM 6.0
does not support .MSFLOA T and Microsoft binary format, which are available in
previous versions.

Figure 6.1 illustrates the IEEE format for encoding short (four-byte), long (eight­
byte), and 10-byte real numbers. Although this figure places the most-significant
bit first for illustration, low bytes actually appear first in memory.

Short Real Number

31 30 23 22

((L...l---------L-(__ -----"0
I~'

CDSign I
@Exponent

@Mantissa

Long Real Number

6362 52 51 31 0

I~Y~(______ ~(________ ~O
I'---------r' CD Sign

y
@Mantissa

@Exponent

10-Byte Real Number
63

79 71 6i~ 62 55 47 39 31 23 15 7
/Z " " " "

D :
~

II :
~

:

~

:
~

:
~

:
~

~ :
~

I~I'
CD Sign @ Integer part ®Mantissa

@Exponent

Figure 6.1 Encoding for Real Numbers in IEEE Format

This is how the parts of a real number are stored in the IEEE format:

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the first byte.

0

D

2. Exponent in the next bits in sequence (8 bits for a short real number, 11 bits
for a long real number, and 15 bits for a 10-byte real number).

Using a Math Coprocessor

3. Mantissa in the remaining bits. The first bit is always assumed to be 1. The
length is 23 bits for short real numbers, 52 bits for long real numbers, and 63
bits for 10-byte reals.

The exponent field represents a multiplier 2n. To accommodate negative ex­
ponents (such as 2-6), the value in the exponent field is biased; that is, the actual
exponent is determined by subtracting the appropriate bias value from the value
in the exponent field. For example, the bias for short reals is 127. If the value in
the exponent field is 130, the exponent represents a value of2130-127, or 23. The
bias for long reals is 1,023. The bias for 10-byte reals is 16,383.

Notice that the 10-byte real format stores the integer part of the mantissa. This
differs from the 4-byte and 8-byte formats, in which the integer part is implicit.

Once you have declared floating-point data for your program, you can use co­
processor or emulator instructions to access the data. The next section focuses on
the coprocessor architecture, instructions, and operands required for floating­
point operations.

6.2 USing a Math Coprocessor
When used with real numbers, packed BCD numbers, or long integers, coproces­
sors (the 8087, 80287, 80387, and 80486) calculate many times faster than the
8086-based processors. The coprocessor handles data with its own registers. The
organization of these registers reflects four possible formats for using operands
(as explained in Section 6.2.2, "Instruction and Operand Formats").

This section also describes how the coprocessor performs various tasks: transfer­
ring data to and from the coprocessor, coordinating processor and coprocessor
operations, and controlling program flow.

6.2.1 Coprocessor Architecture

The eight coprocessor data
registers form a stack.

The coprocessor accesses memory as the CPU does, but it has its own data and
control registers-eight data registers organized as a stack and seven control reg­
isters similar to the 8086 flag registers. The coprocessor's instruction set pro­
vides direct access to these registers.

The eight 80-bit data registers of the 8087-based coprocessors are organized as a
stack although they need not be used as a stack. As data items are pushed into the
top register, previous data items move into higher-numbered registers, which are
lower on the stack. Register 0 is the top of the stack; register 7 is the bottom. The
syntax for specifying registers is shown below:

ST [(number)]

145

Using Floating-Point and Binary Coded Decimal Numbers

The number must be a digit between 0 and 7 or a constant expression that evalu­
ates to a number from 0 to 7. ST is another way to refer to ST(O).

All coprocessor data is stored in registers in the lO-byte real format. The registers
and the register format are shown in Figure 6.2.

8T

8T(1)

8T(2)

8T(3)

8T(4)

8T(5)

8T(6)

8T(7)

79
// /

I~\
Sign I

Exponent

63

y
Mantissa

Figure 6.2 Coprocessor Data Registers

o
/

1/

1/

V

V

1/

V

V

V

Internally, all calculations are done on numbers of the same type. Since lO-byte
real numbers have the greatest precision, lower-precision numbers are guaranteed
not to lose precision as a result of calculations. The instructions that transfer
values between the main memory and the coprocessor automatically convert
numbers to and from the lO-byte real format.

6.2.2 Instruction and Operand Formats

146

Because of the stack organization of registers, you can consider registers either
as elements on a stack or as registers much like 8086-family registers. Table 6.2
lists the four main groups of coprocessor instructions and the general syntax for
each. The names given to the instruction format reflect the way the instruction
uses the coprocessor registers. The instruction operands are placed in the co­
processor data registers before the instruction executes.

All coprocessor
instructions begin with F.

Using a Math Coprocessor

Table 6.2 Coprocessor Operand Formats

Instruction Implied
Format Syntax Operands Example

Classical stack Faction ST, ST(1) fadd

Memory Faction memory ST fadd memloc

Register Faction ST{num), ST fadd st(5), st
Faction ST, ST{num) fadd st, st(3)

Register pop FactionP ST(num), ST faddp st(4), st

You can easily recognize coprocessor instructions because, unlike all 8086-
family instruction mnemonics, they start with the letter F. Coprocessor instruc­
tions can never have immediate operands and, with the exception of the FSTSW
instruction, they cannot have processor registers as operands.

6.2.2.1 Classical-Stack Format
Instructions in the classical-stack format treat the coprocessor registers like items
on a stack-thus its name. Items are pushed onto or popped off the top elements
of the stack. Since only the top item can be accessed on a traditional stack, there
is no need to specify operands. The first (top) register (and the second if the in­
struction needs two operands) is always assumed.

In coprocessor arithmetic operations, the top of the stack (ST) is the source oper­
and and the second register [ST(1)] is the destination. The result of the operation
goes into the destination operand, and the source is popped off the stack. The re­
sult is left at the top of the stack.

Instructions that load constants are one example of instructions that require the
classical-stack format. In this case, the constant created by the instruction is the
implied source, and the top of the stack is the destination.

147

Using Floating-Point and Binary Coded Decimal Numbers

Some coprocessor
instructions operate on
integers or BCDs.

148

This example illustrates the classical-stack format, and Figure 6.3 shows the sta­
tus of the register stack after each instruction:

fld1 Push 1 into first position
fl dpi Push pi into first position
fadd Add pi and 1 and pop

fl dl • fldpi • fadd •

8T 9 ~ ~ ~ 8T(1) 1.0

II I I I I I I I I I I II II

Figure 6.3 Status of the Register Stack

6.2.2.2 Memory Format
Instructions using the memory format, such as data transfer instructions, also
treat coprocessor registers like items on a stack. However, with this format, items
are pushed from memory onto the top element of the stack or popped from the
top element to memory. You must specify the memory operand.

Some instructions that use the memory format specify how a memory operand is
to be interpreted-as an integer (I) or as a binary coded decimal (B). The letter 1
or B follows the initial F in the syntax. For example, FILD interprets its operand
as an integer and FBLD interprets its operand as a BCD number. If the instruction
name does not include a type letter, the instruction works on real numbers.

You can also use memory operands in calculation instructions that operate on
two values (see Section 6.2.4, "Using Coprocessor Instructions"). The memory
operand is always the source. The stack top (ST) is always the implied destina­
tion. The result of the operation replaces the destination without changing its
stack position, as shown in this example and Figure 6.4:

.DATA
m1 REAL4 1.0
m2 REAL4 2.0

.CODE

fld m1
fld m2
fadd m1
fstp m1
fst m2

Push m1 into first position
Push m2 into first position
Add m2 to first position
Pop first position into m1
Copy first position to m2

Using a Math Coprocessor

fld ml -. fld m2 -. fadd ml ----. fstp ml ~ fst m2 ----.

m1

m2

~~~~~~ 
~~~~~~ 

ST IU
ST(1) P

I I I I

Figure 6.4 Status of the Register Stack and Memory Locations

6.2.2.3 Register Format
Instructions using the register format treat coprocessor registers as registers
rather than as stack elements. Instructions that use this format require two regis­
ter operands; one of them must be the stack top (ST).

In the register format, specify all operands by name. The first operand is the desti­
nation; its value is replaced with the result of the operation. The second operand
is the source; it is not affected by the operation. The stack position of the oper­
ands does not change.

The only instructions using the register operand format are the FXCH instruction
and the arithmetic instructions that do calculations on two values. With the
FXCH instruction, the stack top is implied and need not be specified, as shown in
this example and Figure 6.5:

8T

8T(1)

8T(2)

fadd st(l), st

fadd st, st(2)

fxch st(l)

Add second position to first -
result goes in second position

Add first position to third -
result goes in first position

Exchange first and second positions

fadd st(l) ,st ----. fadd st,st(2) ------. fxch st(l) ..

I I I I I I I I I I II II II

Figure 6.5 Status of the Previously Initialized Register Stack

149

Using Floating-Point and Binary Coded Decimal Numbers

6.2.2.4 Register-Pop Format
The register-pop format treats coprocessor registers as a modified stack. The
source register must always be the stack top. Specify the destination with the reg­
ister's name.

Instructions with this format place the result of the operation into the destination
operand, and the stack top pops off the stack. The effect is that both values being
operated on are lost and the result of the operation is saved in the specified desti­
nation register. The register-pop format is used only for instructions that do calcu­
lations on two values, as in this example and Figure 6.6:

faddp st(2), st Add first and third positions and pop -
first position destroyed;
third moves to second and holds result

faddpst(2),st ----..

ST 1.0

ST(1) 2.0

ST(2) 3.0

II II I I I I

Figure 6.6 Status of the Already Initialized Register Stack

6.2.3 Coordinating Memory Access

The processor and
coprocessor exchange data
through memory.

150

The math coprocessor works simultaneously with the main processor. However,
since the coprocessor cannot handle device input or output, data originates in the
main processor.

The main processor and the coprocessor have their own registers, which are com­
pletely separate and inaccessible to each other. They usually exchange data
through memory, since memory is available to both.

When using the coprocessor, follow these three steps:

1. Load data from memory to coprocessor registers.

2. Process the data.

3. Store the data from coprocessor registers back to memory.

Using a Math Coprocessor

Step 2, processing the data, can occur while the main processor is handling other
tasks. Steps 1 and 3 must be coordinated with the main processor so that the pro­
cessor and coprocessor do not try to access the same memory at the same time;
otherwise, problems of coordinating memory access can occur. Since the proces­
sor and coprocessor work independently, they may not finish working on
memory in the order in which you give instructions. Two potential timing con­
flicts can occur; they are handled in different ways.

One timing conflict results if a coprocessor instruction follows a processor in­
struction. The processor may have to wait until the coprocessor finishes if the
next processor instruction requires the result of the coprocessor's calculation.
You do not have to write your code to avoid this conflict, however. The assem­
bler coordinates this timing automatically for the 8088 and 8086 processors, and
the processor coordinates it automatically on the 80186-80486 processors. This
is the first case shown in the example later in this section.

Another conflict results if a processor instruction that accesses memory follows a
coprocessor instruction that accesses the same memory. The processor can try to
load a variable that is still being used by the coprocessor. You need careful syn­
chronization to control the timing, and this synchronization is not automatic on
the 8087 coprocessor. For code to run correctly on the 8087, you must include
the WAIT or FWAIT instruction (they are mnemonics for the same instruction) to
ensure that the coprocessor finishes before the processor begins, as shown in the
second example. In this situation, the processor does not generate the FWAIT in­
struction automatically.

Processor instruction first - No wait needed
mov WORD PTR mem32[0], ax Load memory
mov WORD PTR mem32[2], dx
fild mem32 Load to register

Coprocessor instruction first - Wait needed (for 8087)
fi st mem32 Store to memory
fwait Wait until coprocessor

mov
mov

ax, WORD PTR mem32[0]
dx, WORD PTR mem32[2]

is done
Move to register

When generating code for the 8087 coprocessor, the assembler automatically in­
serts a WAIT instruction before the coprocessor instruction. However, if you use
the .286 or .386 directive, the compiler assumes that the coprocessor instructions
are for the 80287 or 80387 and does not insert the WAIT instruction.

If your code does not need to run on an 8086 or 8088 processor, you can make
your programs shorter and more efficient by using the .286 or .386 directive.

151

Using Floating-Point and Binary Coded Decimal Numbers

6.2.4 Using Coprocessor Instructions

Load commands transfer
data, and store commands
remove data.

152

The 8087 family of coprocessors has separate instructions for each of the follow­
ing operations:

• Loading and storing data

• Doing arithmetic calculations

• Controlling program flow

The following sections explain the available instructions and show how to use
them for each of the operations listed above. See Section 6.2.2, "Instruction and
Operand Formats," for general syntax information.

6.2.4.1 Loading and Storing Data
Data-transfer instructions transfer data between main memory and the coproces­
sor registers or between different coprocessor registers. Two principles govern
data transfers:

• The choice of instruction determines whether a value in memory is con­
sidered an integer, a BCD number, or a real number. The value is always con­
sidered a 10-byte real number once it is transferred to the coprocessor.

• The size of the operand determines the size of a value in memory. Values in
the coprocessor always take up 10 bytes.

You can transfer data to stack registers using load commands. These commands
push data onto the stack from memory or from coprocessor registers. Store com­
mands remove data. Some store commands pop data off the register stack into
memory or coprocessor registers; others simply copy the data without changing it
on the stack.

If you use constants as operands, you cannot load them directly into coprocessor
registers. You must allocate memory and initialize a variable to a constant value.
That variable can then be loaded by using one of the load instructions listed
below.

A few special instructions are provided for loading certain constants. You can
load 0, 1, pi, and several common logarithmic values directly. Using these in­
structions is faster and often more precise than loading the values from initialized
variables.

All instructions that load constants have the stack top as the implied destination
operand. The constant to be loaded is the implied source operand.

Using a Math Coprocessor

The coprocessor data area, or parts of it, can also be moved to memory and later
loaded back. You may want to do this to save the current state of the coprocessor
before executing a procedure. After the procedure ends, restore the previous sta­
tus. Saving coprocessor data is also useful when you want to modify coprocessor
behavior by writing certain data to main memory, operating on the data with
8086-family instructions, and then loading it back to the coprocessor data area.

You can use the following instructions for transferring numbers to and from
registers:

Instruction(s)

FLD, FST, FSTP

FILD, FIST, FISTP

FBLD

FBSTP

FXCH

FLDZ

FLDI

FLDPI

FLDCW mem2byte

F[N]STCW mem2byte

FLDENV mem14byte

F[N]STENV mem14byte

FRSTOR mem94byte

F[N]SAVE mem94byte

FLDL2E

FLDL2T

FLDLG2

FLDLN2

Description

Loads and stores real numbers

Loads and stores binary integers

Loads BCD

Stores BCD

Exchanges register values

Pushes 0 into ST

Pushes 1 into ST

Pushes the value of pi into ST

Loads the control word into the coprocessor

Stores the control word in memory

Loads environment from memory

Stores environment in memory

Restores state from memory

Saves state in memory

Pushes the value of log2e into ST

Pushes log210 into ST

Pushes log 102 into ST

Pushes loge2 into ST

153

Using Floating-Point and Binary Coded Decimal Numbers

154

The following example and Figure 6.7 illustrate some of these instructions:

.DATA
ml REAL4 1.0
m2 REAL4 2.0

.CODE
fld ml Push ml into first item
fld st(2) Push third item into first
fst m2 Copy first item to m2
fxch st(2) Exchange first and third items
fstp ml Pop first item into ml

Main Memory

fld ml --. fld st(2) -+- fst m2 ---+ fxch st(2)-+-fstp ml--'

m1

m2

fo1J fo1J fo1J fo1J fo1J ~
~~~gJgJgJ 

Coprocessor Registers 

ST 

ST(1) 

ST(2) 

ST(3) 4.0 

II I I I I II I I I I I I I I I I II I I II 

Figure 6.7 Status of the Register Stack: Main Memory and Coprocessor 

6.2.4.2 Doing Arithmetic Calculations 
Most of the coprocessor instructions for doing arithmetic operations have several 
forms, depending on the operand used. You do not need to specify the operand 
type in the instruction if both operands are stack registers, since register values 
are always IO-byte real numbers. The arithmetic instructions are listed below. In 
most cases, the result replaces the destination register. 

Instruction 

FADD 

FSUB 

FSUBR 

Description 

Adds the source and destination 

Subtracts the source from the destination 

Subtracts the destination from the source 



Instruction 

FMUL 

FDIV 

FDIVR 

FABS 

FCnS 

FRNDINT 

FSQRT 

FSCALE 

FPREM 

80387 Only 

Instruction 

FSIN 

FCOS 

FSINCOS 

FPREMI 

FXTRACT 

F2XMl 

FYL2X 

FYL2XPl 

FPTAN 

FPATAN 

F[N]INIT 

F[N]CLEX 

FINCSTP 

FDECSTP 

FFREE 

Using a Math Coprocessor 

Description 

Multiplies the source and the destination 

Divides the destination by the source 

Divides the source by the destination 

Sets the sign of ST to positive 

Reverses the sign of ST 

Rounds ST to an integer 

Replaces the contents of ST with its square root 

Multiplies the stack-top value by 2 to the power con­
tained in ST(l) 

Calculates the remainder of ST divided by ST(l) 

Description 

Calculates the sine of the value in ST 

Calculates the cosine of the value in ST 

Calculates the sine and cosine of the value in ST 

Calculates the partial remainder by performing modulo 
division on the top two stack registers 

Breaks a number down into its exponent and mantissa 
and pushes the mantissa onto the register stack 

Calculates 2x_l 

Calculates Y * log2 X 

Calculates Y * log2 (X + 1) 

Calculates the tangent of the value in ST 

Calculates the arctangent of the ratio Y IX 

Resets the coprocessor and restores all the default condi­
tions in the control and status words 

Clears all exception flags and the busy flag of the status 
word 

Adds 1 to the stack pointer in the status word 

Subtracts 1 from the stack pointer in the status word 

Marks the specified register as empty 

155 



Using Floating-Point and Binary Coded Decimal Numbers 

156 

The following example illustrating several arithmetic instructions solves quad­
ratic equations. It does no error checking and fails for some values because it at­
tempts to find the square root of a negative number. You could revise the code 
using the FTST (Test for Zero) instruction to check for a negative number or 0 
before the square root is calculated. If b 2 - 4 a c is negative or 0, the code can 
jump to routines that handle these two special cases . 

. DATA 
a REAL4 3.0 
b REAL4 7.0 
cc REAL4 2.0 
posx REAL4 0.0 
negx REAL4 0.0 

.CODE 

Solve quadratic 
The formula is: 

fldl 

equation - no error checking 
-b +/- squareroot(b 2 - 4ac) / (2a) 

Get constants 2 and 4 
fadd 
fld 
fmul 

st,st 
st 
a 

fmul st(1) ,st 
fxch 
fmul cc 

fl d b 
fmul st,st 
fsubr 

fsqrt 
fl d b 
fchs 
fxch 

fld 
fadd 
fxch 
fsubp 

fdiv 
fstp 
fdivr 
fstp 

st 
st,st(2) 

st(2),st 

st,st(2) 
posx 

negx 

2 at bottom 
Copy it 

2a 

4a 
Exchange 
= 4ac 

Load b 
= b2 

= b2 - 4ac 
Negative value here produces error 
= square root(b 2 - 4ac) 
Load b 
Make it negative 
Exchange 

Copy square root 
Plus version = -b + root(b 2 - 4ac) 
Exchange 
Minus version = -b - root(b 2 - 4ac) 

Divide plus version 
Store it 
Divide minus version 
Store it 

The examples in online help contain an enhanced version of this procedure. 



Using a Math Coprocessor 

6.2.4.3 Controlling Program Flow 
The math coprocessors have several instructions that set control flags in the sta­
tus word. The 8087-family control flags can be used with conditional jumps to 
direct program flow in the same way that 8086-family flags are used. Since the 
coprocessor does not have jump instructions, you must transfer the status word to 
memory so that the flags can be used by 8086-family instructions. 

An easy way to use the status word with conditional jumps is to move its upper 
byte into the lower byte of the processor flags, as shown in this example: 

fstsw mem16 
fwait 
mov ax, mem16 
sahf 

Store status word in memory 
Make sure coprocessor is done 
Move to AX 
Store upper word in flags 

The SAHF (Store AH into Flags) instruction in the example above transfers AH 
into the low bits of the flags register. 

You can save several steps by loading the status word directly to AX on the 
80287 with the FSTSW and FNSTSW instructions. This is the only case in which 
data can be transferred directly between processor and coprocessor registers, as 
shown in this example: 

fstsw ax 

The coprocessor control flags and their relationship to the status word are de­
scribed in Section 6.2.4.4, "Control Registers." 

The 8087-family coprocessors provide several instructions for comparing oper­
ands and testing control flags. All these instructions compare the stack top (ST) 
to a source operand, which may either be specified or implied as ST(l). 

The compare instructions affect the C3, C2, and CO control flags, but not the C 1 
flag. Table 6.3 shows the flags set for each possible result of a comparison or test. 

Table 6.3 Control-Flag Settings after Comparison or Test 

After FCOM AfterFTEST C3 C2 CO 

ST> source ST is positive 0 0 0 

ST < source ST is negative 0 0 1 

ST = source ST is 0 0 0 

Not comparable ST is NAN or projective 
infinity 

Variations on the compare instructions allow you to pop the stack once or twice 
and to compare integers and zero. For each instruction, the stack top is always 
the implied destination operand. If you do not give an operand, ST( 1) is the 

157 



Using Floating-Point and Binary Coded Decimal Numbers 

158 

implied source. With some compare instructions, you can specify the source as a 
memory or register operand. 

All instructions summarized in the following list have implied operands: either 
ST as a single-destination operand or ST as the destination and ST( 1) as the 
source. These are the instructions for comparing and testing flags. 

Some instructions have a wait version and a no-wait version. The no-wait ver­
sions have N as the second letter. 

Instruction 

FCOM 

FTST 

FCOMP 

FUCOM, FUCOMP, 
FUCOMPP 

F[N]STSW mem2byte 

FXAM 

FPREM 

FNOP 

FDISI, FNDISI, 
FENI, FNENI 

FSETPM 

Description 

Compares the stack top to the source. The 
source and destination are unaffected by the 
comparison. 

Compares ST to o. 
Compares the stack top to the source and then 
pops the stack. 

Compare the source to ST and set the condition 
codes of the status word according to the result 
(80386/486 only). 

Stores the status word in memory. 

Sets the value of the control flags based on the 
type of the number in ST. 

Finds a correct remainder for large operands. It 
uses the C2 flag to indicate whether the re­
mainder returned is partial (C2 is set) or 
complete (C2 is clear). (If the bit is set, the 
operation should be repeated. It also returns the 
least-significant three bits of the quotient in CO, 
C3, and Cl.) 

Copies the stack top onto itself, thus padding the 
executable file and taking up processing time 
without having any effect on registers or 
memory. 

Enables or disables interrupts (8087 only). 

Sets protected mode. Requires a .286P or .386P 
directive (80287, 80387, and 80486 only). 

The following example illustrates some of these instructions. Notice how condi­
tional blocks are used to enhance 80287 code. 



Using a Math Coprocessor 

. DATA 
down REAL4 10.35 Sides of a rectangle 
across REAL4 13.07 
diamtr REAL4 12.93 Diameter of a circle 
status WORD ? 
P287 EOU (@Cpu AND 00111y) 

.CODE 

Get area of rectangle 
fld across 
fmul down 

Get area of circle: 
fld1 
fadd st, st 
fdivr diamtr 
fmul st, st 
fldpi 
fmul 

Load one side 
Multiply by the other 

Area = PI * (D/2)2 
Load one and 
double it to get constant 2 

Divide diameter to get radius 
Square radius 
Load pi 
Multiply it 

Compare area of circle and rectangle 
fcompp Compare and throw both away 

nocomp: 

same: 

IF p287 
fstsw ax 
ELSE 
fnstsw status 
mov ax, status 
ENDIF 
sahf 
j p nocomp 
jz same 
jc rectangle 
jmp circle 

rectangle: 

circle: 

(For 287+, skip memory) 

Load from coprocessor to memory 
Transfer memory to register 

Transfer AH to flags register 
If parity set, can't compare 
If zero set, they're the same 
If carry set, rectangle is bigger 
else circle is bigger 

Error handler 

Both equal 

Rectangle bigger 

; Circle bigger 

Additional instructions for the 80387/486 are FLDENVD and FLDENVW for 
loading the environment; FNSTENVD, FNSTENVW, FSTENVD, and FSTENVW 
for storing the environment state; FNSAVED, FNSAVEW, FSAVED, and 

159 



Using Floating-Point and Binary Coded Decimal Numbers 

160 

FSA YEW for saving tbe coprocessor state; and FRSTORD and FRSTORW for re­
storing the coprocessor state. 

The size of the code segment, not the operand size, determines the number of 
bytes loaded or stored with these instructions. The instructions ending with W 
store the 16-bit form of the control register data, and the instructions ending with 
D store the 32-bit form. For example, in 16-bit mode FSAVEW saves the 16-bit 
control register data. If you need to store the 32-bit form of the control register 
data, use FSA VED. 

6.2.4.4 Control Registers 
Some of the flags of the seven 16-bit control registers control coprocessor opera­
tions, while others maintain the current status of the coprocessor. In this sense, 
they are much like the 8086-family flags registers (see Figure 6.8). 

Control Registers 

Control Word 

Status Word 

Tag Word 

Instruction Pointer 

Operand Pointer 

f-/-------{'/ 

1------,/ 

1------,/ 

1------,/ 

/ 

/ 

Figure 6.8 Coprocessor Control Registers 

Of the control registers, only the status word register is commonly used (the 
others are used mostly by systems programmers). The format of the status word 
register is shown in Figure 6.9, which shows how the coprocessor control flags 
align with the processor flags. C3 overwrites the zero flag, C2 overwrites the par­
ity flag, and CO overwrites the carry flag. CI overwrites an undefined bit, so it 
cannot be used directly with conditional jumps, although you can use the TEST 
instruction to check C 1 in memory or in a register. The status word register also 
overwrites the sign and auxiliary-carry flags, so you cannot count on their being 
unchanged after the operation. 



Using Emulator libraries 

Status Word 

15 8 

I 
L 

I
ZC3

1 
Z 

I 
Z 

I 
Z 

IZC21ZC1 IZco ~ 

Flags 

7 o 

Figure 6.9 Coprocessor and Processor Control Flags 

6.3 Using Emulator libraries 

With emulator libraries, 
you can use most 
floating-point instructions. 

If you do not have a math coprocessor or an 80486 processor, you can do most 
floating-point operations by writing assembly-language procedures and accessing 
the emulator from a high-level language. All Microsoft high-level languages 
come with the emulator library. 

However, you cannot use a Microsoft emulator library with stand-alone assem­
bler programs, since the library depends on the high-level-language start-up code. 

To use the emulator, first write the procedure using coprocessor instructions. 
Then assemble it using the /FPi option of your compiler. Finally, link it with your 
high-level-language modules. In MASM 6.0 you can enter options in the Pro­
grammer's WorkBench (PWB) environment, or you can use the OPTION 
EMULA TOR in your source code. 

In emulation mode, the assembler generates instructions for the linker that the 
Microsoft emulator can use. The form of the OPTION directive in the example 
below tells the assembler to use emulation mode. This option (introduced in Sec­
tion 1.3.2) can be defined only once in a module. 

OPTION EMULATOR 

Emulator libraries do not allow for all of the coprocessor instructions. The follow­
ing floating-point instructions are not emulated: 

FCOS 
FDECSTP 
FINCSTP 
FPREMI 
FRSTOR 

FRSTOR16 
FRSTOR32 
FSAVE 
FSAVE16 
FSAVE32 

FSETPM 
FSIN 
FSINCOS 
FUCOM 
FUCOMP 

FUCOMPP 
FXTRACT 

161 



Using Floating-Point and Binary Coded Decimal Numbers 

The set of emulated instructions is different under OS/2 2.x. If you use a co­
processor instruction that is not emulated, your program generates a run-time 
error when it tries to execute the unemulated instruction. 

See Chapter 20, "Mixed-Language Programming," for information about writing 
assembly-language procedures for high-level languages. 

6.4 Using Binary Coded Decimal Numbers 
Binary coded decimal (BCD) numbers allow calculations on large numbers 
without rounding errors. The 8087-family coprocessors can do fast calculations 
with packed BCD numbers. See Section 6.4.2.2 for details. The 8086-family pro­
cessors can also do some calculations with packed BCD numbers, but the process 
is slower and more complicated. See Section 6.4.2 for details. 

This section explains how to define BCD numbers and then how to use them in 
calculations. 

6.4.1 Defining BCD Constants and Variables 

The TBYTE directive 
allocates packed BCD 
constants. 

162 

Unpacked BCD numbers are made up of bytes containing a single decimal digit 
in the lower four bits of each byte. Packed BCD numbers are made up of bytes 
containing two decimal digits: one in the upper four bits and one in the lower 
four bits. The leftmost digit holds the sign (0 for positive, 1 for negative). 

Packed BCD numbers are encoded in the 8087 coprocessor's packed BCD for­
mat. They can be up to 18 digits long, packed two digits per byte. The assembler 
zero-pads BCDs initialized with fewer than 18 digits. Digit 20 is the sign bit, and 
digit 19 is reserved. 

When you define an integer constant with the TBYTE directive and the current 
radix is decimal (t), the assembler interprets the number as a packed BCD 
number. 

The syntax for specifying packed BCDs is exactly the same as for other integers. 

pos1 TBYTE 1234567890 ; Encoded as 00000000001234567890h 
neg1 TBYTE -1234567890; Encoded as 80000000001234567890h 

Unpacked BCD numbers are stored one digit to a byte, with the value in the 
lower four bits. They can be defined using the BYTE directive. For example, an 
unpacked BCD number could be defined and initialized as 'shown below: 

unpackedr 
unpackedf 

BYTE 
BYTE 

1,5,8,2,5,2,9 
9,2,5,2,8,5,1 

; Initialized to 9,252,851 
; Initialized to 9,252,851 

Least-significant digits can come either first or last, depending on how you write 
the calculation routines that handle the numbers. 



Using Binary Coded Decimal Numbers 

6.4.2 Calculating with BCDs 

Instructions for unpacked 
BCDs allow accurate BCD 
calculations. 

When you use the processor to calculate with BCDs, the result is not correct un­
less you use the ASCII -adjust instructions to convert the result into the valid 
BCD integer. 

6.4.2.1 Unpacked BCD Numbers 
To do processor arithmetic on unpacked BCD numbers, you must do the eight-bit 
arithmetic calculations on each digit separately and assign the result to the AL 
register. After each operation, use the corresponding BCD instruction to adjust 
the result. The ASCII-adjust instructions do not take an operand. They always 
work on the value in the AL register. 

When a calculation using two one-digit values produces a two-digit result, the 
AAA, AAS, AAM, and AAD instructions put the first digit in AL and the second 
in AH. If the digit in AL needs to carry to or borrow from the digit in AH, the in­
structions set the carry and auxiliary carry flags. 

These instructions get their names from Intel mnemonics that use the term 
"ASCII" to refer to unpacked BCD numbers and "decimal" to refer to packed 
BCD numbers. The four ASCII-adjust instructions for unpacked BCDs are de­
scribed below: 

Instruction 

AAA 

AAS 

AAM 

AAD 

Description 

Adjusts after an addition operation. 

Adjusts after a subtraction operation. 

Adjusts after a multiplication operation. Always 
use with MUL, not with IMUL. 

Adjusts before a division operation. Unlike other 
BCD instructions, AAD converts a BCD value to 
a binary value before the operation. After the 
operation, use AAM to adjust the quotient. The re­
mainder is lost. If you need the remainder, save it 
in another register before adjusting the quotient. 
Then move it back to AL and adjust if necessary. 

The following examples show how to use each of these instructions in BCD addi­
tion' subtraction, multiplication, and division. 

; To add 9 and 3 as 
mov ax, 
mov bx, 
add al , 
aaa 

BCDs: 
9 
3 
bl 

Load 9 
and 3 as unpacked BCDs 

Add 09h and 03h to get 0Ch 
Adjust 0Ch in AL to 02h, 

increment AH to 01h, set carry 
Result 12 (unpacked BCD in AX) 

163 



Using Floating-Point and Binary Coded Decimal Numbers 

164 

To subtract 4 
mov 
mov 
sub 
aas 

To multiply 9 
mov 
mul 
aam 

To divide 25 
mov 
mov 
aad 

div 

aam 

from 13: 
ax, 103h 
bx, 4 
a 1 , bl 

times 3: 
ax, 903h 
ah 

by 2: 
ax, 205h 
bl , 2 

bl 

Load 13 
and 4 as unpacked BCDs 

Subtract 4 from 3 to get FFh (-1) 
Adjust 0FFh in AL to 9, 
decrement AH to 0, set carry 

Result 9 (unpacked BCD in AX) 

Load 9 and 3 as unpacked BCDs 
Multiply 9 and 3 to get 1Bh 
Adjust 1Bh in AL 
to get 27 (unpacked BCD in AX) 

Load 25 
and 2 as unpacked BCDs 

Adjust 0205h in AX 
to get 19h in AX 

Divide by 2 to get 
quotient 0Ch in AL 
remainder 1 in AH 

Adjust 0Ch in AL 
to 12 (unpacked BCD in AX) 
(remainder destroyed) 

If you process multidigit BCD numbers in loops, each digit is processed and ad­
justed in turn. 

6.4.2.2 Packed BCD Numbers 
Packed BCD numbers are made up of bytes containing two decimal digits: one in 
the upper four bits and one in the lower four bits. The 8086-family processors 
provide instructions for adjusting packed BCD numbers after addition and sub­
traction. You must write your own routines to adjust for multiplication and 
division. 

To do processor calculations on packed BCD numbers, you must do the eight-bit 
arithmetic calculations on each byte separately. The result should always be in 
the AL register. After each operation, use the corresponding BCD instruction to 
adjust the result. The decimal-adjust instructions do not take an operand. They al­
ways work on the value in the AL register. 

The 8086-family processors provide DAA (Decimal Adjust after Addition) and 
DAS (Decimal Adjust after Subtraction) for adjusting packed BCD numbers after 
addition and subtraction. 



Related Topics in Online Help 

These examples show DAA and DAS used for adding and subtracting BCDs. 

;To add 88 and 
mov 
add 
daa 

;To subtract 38 
mov 
sub 
das 

33: 
ax, 8833h 
a 1 , ah 

from 83: 
ax, 3883h 
a 1 , ah 

Load 88 and 33 as packed BCDs 
Add 88 and 33 to get 0BBh 
Adjust 0BBh to 121 (packed BCD:) 

1 in carry and 21 in AL 

Load 83 and 38 as packed BCDs 
Subtract 38 from 83 to get 04Bh 
Adjust 04Bh to 45 (packed BCD:) 
o in carry and 45 in AL 

Unlike the ASCII-adjust instructions, the decimal-adjust instructions never affect 
AH. The assembler sets the auxiliary carry flag if the digit in the lower four bits 
carries to or borrows from the digit in the upper four bits, and it sets the carry 
flag if the digit in the upper four bits needs to carry to or borrow from another 
byte. 

Multidigit BCD numbers are usually processed in loops. Each byte is processed 
and adjusted in turn. 

6.5 Related Topics in Online Help 
In addition to information on the instructions and directives mentioned in this 
chapter, information on the following topics can be found in online help, starting 
from the "MASM 6.0 Contents" screen. 

Control registers 

ML options 

Coprocessor 
instructions 

MATHDEMO.ASM 

Access 

Choose "Language Overview," and then choose 
"Coprocessor Status Word," "Coprocessor 
Control Word," or "Coprocessor Environment" 

Choose "ML Command Line" 

Choose "Coprocessor Instructions" 

Choose "Example Code" and then "Map of 
Demos" 

165 





Chapter 7 

Controlling Program Flow 

7.1 Jumps 

Very few programs actually execute all lines sequentially from .STARTUP to 
.EXIT. Rather, complex program logic and efficiency dictate that you control the 
flow of your program-jumping from one point to another, repeating an action 
until a condition is reached, and passing control to procedures. This chapter de­
scribes various means for controlling program flow and several features that 
simplify coding program-control constructs. 

The first section covers jumps from one point in the program to another. It ex­
plains how MASM 6.0 optimizes both unconditional and conditional jumps 
under certain circumstances, so that you do not have to specify every attribute. 
The section also describes instructions you can use to test conditional jumps. 

The next section describes loop and decision structures that repeat actions or 
evaluate conditions. They discuss some new MASM directives, such as .WHILE 
and .REPEAT, that generate appropriate compare, loop, and jump instructions 
for you, and the new .IF, .ELSE, and .ELSEIF directives that generate jump 
instructions. 

A number of improvements to procedure automation are covered in Section 7.3. 
These include extended functionality for PROC, a PROTO directive that lets you 
write procedure prototypes similar to those used in C, an INVOKE directive that 
automates parameter passing, and new options for the stack-frame setup inside 
procedures. 

Finally, the last section explains how to pass control to an interrupt routine. 

Jumps are the most direct method for changing program control from one loca­
tion to another. At the processor level, jumps work by changing the value of the 
IP (Instruction Pointer) register from the address of the current instruction to a 
target address, by changing the CS register for far jumps, and by changing the CS 
register for far jumps. The many forms of the jump instructions handle jumps 
based on conditions, flags, and bit settings. 

This section first describes unconditional jumps, including the new jump optimi­
zation features of MASM 6.0 and the use of indirect operands to specify the 
jump's destination and to construct jump tables. The section then discusses condi­
tional jumps--extending jumps, jumps based on bit or flag status, anonymous 
jumps, labels for jump targets, and decision directives that generate conditional 
jumps. 

167 



Controlling Program Flow 

7.1.1 Unconditional Jumps 

168 

Jumps in assembler programs are either conditional or unconditional. The assem­
bler executes conditional jumps only when the jump condition is true. You use 
the JMP instruction to jump unconditionally to a specified address. Its single 
operand contains the target address, which can be short, near, or far. 

Unconditional jumps are often used to skip over code that should not be ex­
ecuted, as shown in this example. 

; Handle one case 
label1: 

jmp continue 
Handle second case 

labe12: 

jmp continue 

continue: 

The distance of the target from the jump instruction and the size of the operand 
determine the assembler's encoding of the instruction. The larger the distance, 
the more bytes the assembler uses to code the instruction. In previous versions of 
MASM, unconditional NEAR jumps sometimes generate inefficient code. Un­
specified FAR jumps result in phase errors. 

7.1.1.1 Jump Optimizing 
Beginning with MASM 6.0, the assembler determines the smallest encoding 
possible for the direct unconditional jump. You do not specify a distance opera­
tor, so you do not have to determine the correct distance of the jump. If you do 
specify a distance, however, and it is too short, the assembler generates an error. 
A specified distance that is too long causes a less efficient jump to be generated 
than the assembler would generate if the distance had not been specified. 

MASM 6.0 optimizes jumps if the following conditions are met: 

• You do not specify SHORT, NEAR, FAR, NEAR16, NEAR32, FAR16, FAR32, 
or PROC as the distance of the target. 

• The target of the jump is not external and is in the same segment as the jump 
instruction. If the target is in a different segment (but in the same group), it is 
treated as if external. 



Jumps 

If these two conditions are met, MASM uses the instruction, distance, and size of 
the operand to determine how best to optimize the encoding for the jump. No syn­
tax changes are necessary. 

NOTE This information about jump optimizing also applies to conditional jumps on the 
80386/486. 

7.1.1.2 Indirect Operands 
Indirect operands specify a register or data memory location that holds the 
address of the jump's destination. Indirect operands differ from the operands of 
direct jumps by being a memory expression instead of an immediate expression. 
For indirect jumps, you can specify the encoding for the instruction by giving the 
size (WORD, DWORD, or FWORD) attributes for the operand. 

The default rules are based on the .MODEL and the default segment size. 

jmp [bx] Uses .MODEL and segment size 
defaults 

jmp WORD PTR [bx] A NEAR16 indirect call 

If the indirect operand is a register, the jump is always a NEAR16 jump for a 16-
bit register, and FAR32 for a 32-bit register: 

jmp 
jmp 

bx 
ebx 

; NEAR16 jump 
; FAR32 jump 

A DWORD indirect operand, however, is an ambiguous case: 

jmp DWORD PTR [var] ; A NEAR32 jump in a 32-bit segment; 
a FAR16 jump in a 16-bit segment 

In this case, you must define a type with TYPEDEF to specify the indirect 
operand. 

NFP TYPEDEF PTR NEAR32 
FFP TYPEDEF PTR FAR16 

jmp 
jmp 

NFP PTR [var] 
FFP PTR [var] 

NEAR32 indirect jump 
FAR16 indirect jump 

You can use an unconditional jump as a form of conditional jump by specifying 
the address in a register or indirect memory operand. Also, you can use indirect 
memory operands to construct jump tables that work like C switch statements, 

169 



Controlling Program Flow 

Pascal CASE statements, or Basic ON GOTO, ON GOSUB, or SELECT CASE 
statements, as shown in this example: 

NPVOID TYPEDEF NEAR PTR VOID 
.DATA 

ctl tbl NPVOID extended, 
ctrla, 
ctrlb 

.CODE 

mov 
int 
cbw 
mov 
shl 
jmp 

extended: 
mov 
int 

jmp 
ctrla: 

jmp 
ctrlb: 

jmp 

next: 

a h, 8h 
21h 

bx, ax 
bx, 1 
ctl_tbl[bxJ 

ah, 8h 
21h 

next 

next 

next 

Null key (extended code) 
Address of CONTROL-A key routine 
Address of CONTROL-B key routine 

Get a key 

Stretch AL into AX 
Copy 
Convert to address 
Jump to key routine 

Get second key of extended key 

Use another jump table 
for extended keys 

CONTROL-A code here 

CONTROL-B code here 

; Continue 

In this example, the indirect memory operands point to addresses of routines for 
handling different keystrokes. 

7.1.2 Conditional Jumps 

The conditional jump 
instructions check flag 
status. 

170 

The most common way to transfer control in assembly language is with a condi­
tional jump. This is a two-step process: first test the condition, and then jump if 
the condition is true or continue if it is false. 

Conditional-jump instructions (except JCXZ) use the status of one or more flags 
as their condition. Thus, any statement that sets a flag under specified conditions 
can be the test statement. The most common test statements use the CMP or 
TEST instructions. The jump statement can be anyone of 31 conditional-jump in-



Jumps 

structions. Conditional-jump instructions take a single operand containing the tar­
get address. 

7.1.2.1 Jump Extending 
In earlier versions of MASM, the NEAR and FAR operators cannot be used with 
conditional jumps on the 8086-80286 processors. MASM 6.0 automatically ex­
pands the jump instruction to include an unconditional jump to the destination, as 
long as a distance or size other than SHORT is specified or implicitly required 
from the operands. That is, MASM now generates the code that previously you 
had to write. 

Conditional jumps cannot refer to labels more than 128 bytes away. Therefore, in 
versions of MASM prior to 6.0, they are often combined with unconditional 
jumps, which have no such limitation. For example, the following statement is 
valid as long as ta rget is not far away: 

; Jump to target less than 128 bytes away 
jz target If previous operation resulted in 

zero, jump to target 

However, once ta rget becomes too distant, the following sequence is neces­
sary to enable a longer jump. Note that this sequence is logically equivalent to 
the example above: 

; Jumps to distant targets previously required two steps 
jnz skip If previous operation result is 

NOT zero, jump to "skip" 
jmp target Otherwise, jump to target 

skip: 

If the instruction is any of the conditional-jump instructions (except JCXZ and 
JECXZ ) and the target is greater than 128 bytes or is in a far segment, then jump­
extending for an instruction such as j e ta rget generates two instructions to 
replace it: 

1. The logical negation of the jump instruction, with a destination that skips 
over the second line it generates 

2. An unconditional jump to the target destination 

For example, if ta rget is more than 128 bytes away, MASM generates these 
lines of code for j e ta rget: 

jne $ + 2 + (length in bytes of the next instruction) 
jmp NEAR PTR target 

Now the conditional jump executes correctly. 

171 



Controlling Program Flow 

172 

The assembler generates this same code sequence if you specify the distance with 
NEAR PTR, FAR PTR, or SHORT. Therefore, 

jz NEAR PTR target 

becomes 

jne $ + 5 
jmp NEAR PTR target 

even if ta rget is nearby. 

When ski P is more than 128 bytes away, this example 

skip: 

mov 
jz 

ax, cx 
skip Skip is more than 128 bytes away 

(additional code here) 

generates code that looks like this: 

7327:0000 8BC1 
7327:0002 7503 
7327:0004 E9C000 
7327:0007 

MOV AX,CX 
JNZ 0007 
JMP 00C7 
(more code here) 

MASM 6.0 enables this jump expansion feature by default, but you can tum it off 
with the NOLJMP form of the OPTION directive. See Section 1.3.2 for informa­
tion about the OPTION directive. 

If the assembler generates code to extend a conditional jump, it issues a level 3 
warning saying that the conditional jump has been lengthened. You can set the 
warning level to 1 for development and to level 3 for a final optimizing pass to 
see if you can shorten jumps by reorganizing. 

If you specify the distance for the jump and the target is out of range for that dis­
tance, a "Jump out of Range" error results. 

Since the JCXZ and JECXZ instructions do not have logical negations, expansion 
of the jump instruction to handle targets with unspecified distances cannot be per­
formed for those instructions. Therefore the distance must always be short. 

The size and distance of the target operand determines the encoding for condi­
tional or unconditional jumps to externals or targets in different segments. The 
new jump-extending and optimization features do not apply in this case. 

NOTE Conditional jumps on the 80386 and 80486 processors can be to targets up to 32K 
bytes away, so jump extension occurs only for targets greater than that distance. 



SUB and CMP set the same 
flags. 

Table 7.1 

Jump 
Condition 

(Equal) 

-::f. (Not equal) 

Jumps 

7.1.2.2 Jumps Based on Comparisons 
The CMP instruction is specifically designed to test for conditional jumps. It does 
not change the destination operand-it compares two values without changing 
either of them. Instructions that change operands (such as SUB or AND) can also 
be used to test conditions. 

Internally, the CMP instruction is the same as the SUB instruction, except that 
CMP does not change the destination operand. Both set flags according to the re­
sult that the subtraction generates. 

Table 7.1 lists conditional-jump instructions for each comparison relationship 
and shows the flags that are tested to see if the relationship is true. Note the 
difference in instructions depending on the sign of the operands. Some of these 
are equivalent to instructions listed in the previous section. 

Conditional-Jump Instructions Used after Compare Instruction 

Signed Flags Tested Unsigned Flags Tested 
Compare (Jump if True) Compare (Jump if True) 

JE ZF= 1 JE ZF= 1 

JNE ZF=O JNE ZF=O 

> (Greater than) JG or JNLE ZF= 0 and JA or JNBE CF = 0 and 
SF=OF ZF=O 

<= (Less than JLE or JNG ZF = 1 or JBE or JNA CF = 1 or 
or equal to) SF-::f.OF ZF= 1 

< (Less than) JL or JNGE SF-::f.OF JB or JNAE CF= 1 

>= (Greater than JGE or JNL SF=OF JAE or JNB CF=O 
or equal to) 

In the CMP instruction, the mnemonic names always refer to the relationship of 
the first operand to the second operand. For instance, in this example JG tests 
whether the first operand is greater than the second. 

cmp 
jg 

j 1 

ax, bx 
contin 

next 

Compares ax and bx 
Equivalent to: If ax > bx goto 
contin 

Equivalent to: If ax < bx goto next 

Several conditional instructions have two names. For example, JG and JNLE 
(Jump if Not Less or Equal) are equivalent. You can use whichever name seems 
more mnemonic in context. 

173 



Controlling Program Flow 

Pairs of operands cannot 
be both registers or both 
memory locations. 

174 

7.1.2.3 Testing Bits and Jumping 
Using CMP is not the only way to check a condition prior to ajump. You can 
also check the status of bits in the operands using the TEST instruction. This in­
struction tests for conditions prior to jumps by comparing specific bits rather than 
entire operands. Jump execution depends on whether certain bits are on or off. 

The TEST instruction is the same as the AND instruction, except that TEST 
changes neither operand. If the result of the operation is 0, the zero flag is set, but 
the 0 is not actually written to the destination operand. The following example 
shows an application of TEST . 

. DATA 
bits BYTE ? 

.CODE 

If bit 2 or bit 4 is set, then call task_a 

test 
jz 
call 

bi ts, 10100y 
skip1 

Assume "bits" is 0D3h 11010011 
If 2 or 4 is set AND 00010100 

task a 
skip1: 

Then call task a 
Jump taken 

00010000 

If bits 2 and 4 are clear, then call task b 

skip2: 

test 
jnz 
call 

bits, 10100y 
skip2 
task b 

Assume "bits" is 0E9h 11101001 
If 2 and 4 are clear AND 00010100 

Then call task b 
Jump taken 

00000000 

Generally, when you use TEST, one of the operands is a mask in which the bits 
to be tested are the only bits set. The other operand contains the value to be 
tested. If all the bits set in the mask are clear in the operand being tested, the zero 
flag is set. If any of the flags set in the mask are also set in the operand, the zero 
flag is cleared. 

7.1.2.4 Jumping Based on Flag Status 
Your code can jump based on the condition of flags rather than on the relation­
ships of operands. Use the following conditional-jump instructions: 

Instruction 

JO 

JNO 

JC 

Jumps if 

The overflow flag is set 

The overflow flag is clear 

The carry flag is set (same as JB) 



Anonymous labels are 
alternatives to named 
labels. 

Jumps 

Instruction Jumps if 

JNC 

JZ 

JNZ 

JS 

JNS 

JP 

JNP 

JPE 

JPO 

JCXZ 

The carry flag is clear (same as JAE) 

The zero flag is set (same as JE) 

The zero flag is clear (same as JNE) 

The sign flag is set 

The sign flag is clear 

The parity flag is set 

The parity flag is clear 

Parity is even (parity flag set) 

Parity is odd (parity flag clear) 

CXisO 

JECXZ 
(80386/486 only) 

ECX is 0 

The following example shows two ways to use the instructions from the list 
above: 

; Uses JO to handle overflow condition 
add ax, bx ; Add two values 
jo overflow ; If value too large, adjust 

Uses JNZ to check for zero as the result of subtraction 
sub ax, bx Subtract 
jnz skip If the result is not zero, continue 
call zhandler Else do special case 

7.1.2.5 Anonymous Labels 
Coding jumps in assembly language requires that you invent many label names. 
One alternative to continually thinking up new label names is using anonymous 
labels, which you can use anywhere in your program. But because anonymous 
labels do not provide meaningful names, they are best used for conditionally test­
ing a few lines of code. You should mark major divisions of a program with ac­
tual named labels. 

Use two at signs (@@) followed by a colon (:) as an anonymous label. To jump 
to the nearest preceding anonymous label, use @B (back) in the jump instruc­
tion's operand field; to jump to the nearest following anonymous label, use @F 
(forward) in the operand field. 

175 



Controlling Program Flow 

176 

The jump in the example below uses an anonymous label: 

; OX is 20, unless CX is 1 ess than -20, then make OX 30 
mav dx, 20 
emp ex, -20 
jge @F 
mav dx, 30 

@@: 

The items @B and @F always refer to the nearest occurrences of@@:, so there 
is never any conflict between different anonymous labels. 

7.1.2.6 Decision Directives 
The high-level structures you can use for decision-making are the .IF, .ELSEIF, 
and .ELSE statements. These directives generate conditional jumps. The expres­
sion following the .IF directive is evaluated, and if true, the following instruc­
tions are executed until the next .ENDIF, .ELSE, or .ELSEIF directive is reached. 
The .ELSE statements execute if the expression is false. Using the .ELSEIF direc­
tive puts a new expression to be evaluated inside the alternative part of the origi­
nal .IF statement. The syntax is 

.IF condition} 
statements 
[.ELSEIF condition2 
statements] 
[.ELSE 
statements] 
.ENDIF 

The decision structure 

. IF ex = 20 
mav dx, 20 
.ELSE 
mav dx, 30 
.ENOIF 

generates this code: 

.IF ex == 
0017 83 F9 14 * emp 
001A 75 05 * jne 
001C BA 0014 mav 

.ELSE 
001F EB 03 * jmp 
0021 *@C0001: 
0021 BA 001E mav 

.ENOIF 
0024 *@C0003: 

20 
ex, 014h 
@C0001 
dx, 20 

@C0003 

dx, 30 



7.2 Loops 

Loops 

Loops repeat an action until a termination condition is reached. This condition 
can be a counter or the result of an expression's evaluation. MASM 6.0 offers 
many ways to set up loops in your programs. The following list compares 
MASM loop structures. 

Instructions 

LOOP 

LOOPE, LOOPZ, 
LOOPNE, LOOPNZ 

JCXZ, JECXZ 

Conditional jumps 

Action 

Automatically decrements CX. When CX = 0, the 
loop ends. The top of the loop cannot be greater than 
128 bytes from the LOOP instruction. (This is true 
for all LOOP instructions.) 

Loops while equal (or not equal). Checks CX and a 
condition. The loop ends when the condition is true. 
Set CX to a number out of range if you don't want a 
count to control the loop. 

Branches to a label only if CX = 0 (ECX on the 
80386). Useful for testing condition of CX before 
beginning loop. If CX = 0 before entering the loop, 
CX decrements to -Ion the first iteration and then 
must be decremented 65,535 times before it reaches 
o again. Unlike conditional-jump instructions, which 
can jump to either a near or a short label under the 
80386 or 80486, the loop instructions JCXZ and 
JECXZ always jump to a short label. 

Acts only if certain conditions met. Necessary if 
several conditions must be tested. See Section 7.1.2, 
"Conditional Jumps." 

The following examples illustrate these loop constructions. 

; The LOOP instruction: For 200 to 0 do task 
mov cx, 200 ; Set counter 

next: ; Do the task here 

loop next Do again 
Continue after loop 

177 



Controlling Program Flow 

; The LOOPNE instruction: While AX is not 'Y', do task 
mov cx, 256 Set count too high to interfere 

wend: But don't do more than 256 times 
Some statements that change AX 

cmp 
loopne 

al, 'Y' 
wend 

Using JCXZ: For 0 to CX do task 

Is it Y or too many times? 
No? Repeat 
Yes? Continue 

CX counter set previously 
jcxz done Check for 0 

next: Do the task here 

loop next Do again 
done: Continue after loop 

7.2.1 Loop-Generating Directives 
These directives are new 
to MASM 6.0. 

178 

The high-level control structures new to MASM 6.0 generate loop structures for 
you. These new directives are similar to the while and repeat loops of C or Pas­
cal. They can make your assembly programs less repetitive and easier to code, as 
well as easier to read. The assembler generates the appropriate assembly code. 
The .BREAK and .CONTINUE directives are also implemented to interrupt loop 
execution. These directives are summarized in the following list: 

Directives 

.WHILE, .ENDW 

.REPEAT, .UNTIL 

.REPEAT, .UNTILCXZ 

Action 

The statements between .WHILE condition and 
.ENDW execute while the condition is true. 

The loop executes at least once and continues until 
the condition given after .UNTIL is true. Generates 
conditional jumps. 

Compares label to an expression and generates ap­
propriate loop instructions. 

These constructs work much as they do in a high-level language such as Cor 
Pascal. Keep in mind the following points: 



Loops 

• These directives generate appropriate processor instructions. They are not 
new instructions. 

• They require proper use of signed and unsigned data declarations. 

These directives cause a set of instructions to execute based on the evaluation of 
some condition. This condition can be an expression that evaluates to a negative 
or nonnegative value, an expression using the binary operators in C (&&, II, or !), 
or the state of a flag. See Section 7.2.2.1 for more information about expression 
operators. 

The evaluation of the condition requires the assembler to know if the operands in 
the condition are signed or unsigned. To state explicitly that a named memory 
location contains a signed integer, use the signed data allocation directives: 
SBYTE, SWORD, and SDWORD. 

7.2.1.1 .WHILE Loops 
As with while loops in C or Pascal, the test condition for .WHILE is checked 
before the statements inside the loop execute. If the test condition is false, the 
loop does not execute. While the condition is true, the statements inside the loop 
repeat. 

Use the .ENDW directive to mark the end of the .WHILE loop. When the condi­
tion becomes false, program execution begins at the first statement following the 
.ENDW directive. The. WHILE directive generates appropriate compare and 
jump statements. The syntax is 

.WHILE condition 
statements 
.ENDW 

For example, this loop copies one buffer to another until a '$' character (marking 
the end of the string) is found: 

.DATA 
bufl 
buf2 
.CODE 
sub 
.WHILE 
mov 
mov 
inc 
.ENDW 

BYTE "This is a string", '$' 
BYTE 100 DUP (?) 

bx, bx 
(buf1[bx] 1= '$') 
al, bufl[bx] 
buf2[bx], al 
bx 

Zero out bx 

Get a character 
Move it to buffer 2 
Count forward 

179 



Controlling Program Flow 

A condition is optional with 
.UNTllCXZ. 

180 

7.2.1.2 .REPEAT Loops 
MASM's .REPEAT directive allows for loop constructions like the do loop of C 
and the REPEAT loop of Pascal. The loop executes until the condition following 
the .UNTIL (or .UNTILCXZ) directive becomes true. Since the condition is 
checked at the end of the loop, the loop always executes at least once. The 
.REPEA T directive generates conditional jumps. The syntax is: 

.REPEAT 
statements 
.UNTIL condition 

. REPEAT 
statements 
.UNTILCXZ [condition] 

where condition can also be exprl == expr2 or exprl 1= expr2. When two condi­
tions are used, expr2 can be an immediate expression, a register, or (if expr 1 is a 
register) a memory location. 

For example, the following code fills up a buffer with characters typed at the key­
board. The loop ends when the ENTER key (character 13) is pressed: 

.DATA 
buffer BYTE 100 DUP (0 ) 

.CODE 
sub bx • bx Zero out bx 
. REPEAT 
mov ah. 01h 
int 21h Get a key 
mov buffer[bxJ. al Put it in the buffer 
inc bx Increment the count 
. UNTI L (al == 13) Continue until al is 13 

The .UNTIL directive generates conditional jumps, but the .UNTILCXZ directive 
generates a LOOP instruction, as shown by the listing file code for these ex­
amples. In a listing file, assembler-generated code is preceded by an asterisk. 

ASSUME bx:PTR SomeStruct 

.REPEAT 
*@C0001: 

inc ax 
. UNTI L ax==6 

* cmp ax. 006h 
* jne @C0001 



.BREAK and .CONTINUE 
interrupt loop execution. 

Loops 

.REPEAT 
*@C0003: 

mov ax, 1 
. UNTI LCXZ 

* loop @C0003 

.REPEAT 
*@C0004: 

.UNTILCXZ [bx].field!= 6 
* cmp [bx].field, 006h 
* loope @C0004 

7.2.1.3 .BREAK and .CONTINUE Directives 
The .BREAK and .CONTINUE directives can be used to terminate a .REPEA T or 
.WHILE loop prematurely. These directives allow an optional.IF clause for con­
ditional breaks. The syntax is 

.BREAK [.IF condition]] 

.CONTINUE [.IF condition]] 

Note that .ENDIF is not used with the .IF forms of .BREAK and .CONTINUE in 
this context. The .BREAK and .CONTINUE directives work the same way as the 
break and continue instructions in C. Execution continues at the instruction fol­
lowing the .UNTIL, .UNTILCXZ, or .ENDW of the nearest enclosing loop. 

Instead of causing the loop execution to end as .BREAK does, .CONTINUE 
causes loop execution to jump directly to the code that evaluates the loop condi­
tion of the nearest enclosing loop. 

The following loop accepts only the keys in the range '0' to '9' and terminates 
when ENTER is pressed. 

.WHILE 1 
mov ah, 08h 
int 21h 
.BREAK .IF al == 13 
.CONTINUE .IF (al < 

mov 
mov 
int 
.ENDW 

dl, a 1 
ah, 02h 
21h 

Loop forever 
Get key without echo 

; If ENTER, break out of the loop 
'0') II (al > '9') 

If not a digit, continue looping 
Save the character for processing 
Output the character 

181 



Controlling Program Flow 

If you assemble the source code above with the /PI and /Sg command-line op­
tions and then view the results in the listing file, you would see this code: 

.WHILE 1 
0017 *@C0001: 
0017 B4 08 mav ah, 08h 
0019 CO 21 int 21h 

.BREAK . IF al == 13 
001B 3C 00 * cmp al, 000h 
0010 74 10 * je @C0002 

.CONTINUE .IF (al '0' ) II (al '9' ) 
001F 3C 30 * cmp a 1 , '0 ' 
0021 72 F4 * jb @C0001 
0023 3C 39 * cmp a 1 , '9 ' 
0025 77 F0 * ja @C0001 
0027 8A 00 mav dl, al 
0029 B4 02 mav ah, 02h 
002B CD 21 int 21h 

.ENOW 
0020 EB E8 * jmp @C0001 
002F *@C0002: 

The high-level control structures can be nested. That is, .REPEAT or .WHILE 
loops can contain .REPEAT or .WHILE loops as well as .IF statements. 

If the code generated by a .WHILE loop, .REPEAT loop, or .IF statement gener­
ates a conditional or unconditional jump, MASM uses the jump extension and 
jump optimization techniques described in Sections 7.1.1 , "Unconditional 
Jumps," and 7.1.2, "Conditional Jumps," to encode the jump appropriately. 

7.2.2 Writing Loop Conditions 

182 

You can express the conditions of the .IF, .REPEAT, and .WHILE directives 
using relational operators, and you can express the attributes of the operand with 
the PTR operator. To write loop conditions, you also need to know how the as­
sembler evaluates the operators and operands in the condition. This section ex­
plains the operators, attributes, precedence level, and expression evaluation order 
for the conditions used with loop-generating directives. 

7.2.2.1 Expression Operators 
The binary relational operators in MASM 6.0 high-level control structures are 
listed below. The same binary operators are used in C. These operators generate 
MASM compare, test, and conditional jump instructions. 

Operator Meaning 

Equal 

Not equal 



Flag names can be 
operands in a condition. 

Registers, constants, and 
memory locations are 
unsigned by default. 

loops 

Operator Meaning 

> Greater than 

>= Greater than or equal to 

< Less than 

<= Less than or equal to 

& Bit test 

Logical NOT 

&& Logical AND 

II LqgicalOR 

A condition without operators (other than !) tests for nonzero as it does in C. For 
example, . W H I L E (x) is the same as . W H I L E (x ! = 0), and . W H I L E 
( ! x) is the same as . W H I L E (x == 0). 

You can also use the flag names (ZERO?, CARRY?, OVERFLOW?, SIGN?, and 
PARITY?) as operands in conditions with the high-level control structures as in 
• W H I L E (C A R RY? ). The particular flag set determines the outcome of the con­
dition. Use flag names when you want to generate the compare or other instruc­
tions that set the flags. 

7.2.2.2 Signed and Unsigned Operands 
Expression operators generate unsigned jumps by default. However, if either side 
of the operation is signed, then the entire operation is considered signed. The de­
fault for the operands in registers, constants, and named memory locations is also 
to be unsigned. 

You can use the PTR operator to tell the assembler that a particular operand in a 
register or constant is a signed number, as in these examples: 

.WHILE SWORD PTR [bxJ <= 0 

.IF SWORD PTR meml > 0 

Without the PTR operator, the assembler would treat the contents of BX as an un­
signed value. 

You can also specify the size attributes of operands in memory locations with 
SBYTE, SWORD, and SDWORD, for use with .IF, .WHILE, and .REPEAT . 

. DATA 
meml SBYTE ? 
mem2 WORD ? 

.IF meml > 0 

.WHILE mem2 < bx 

.WHILE SWORD PTR ax < count 

183 



Controlling Program Flow 

7.2.2.3 Precedence Level 
As with C, you can concatenate conditions with the && operator for AND, the II 
operator for OR, and the! operator for negate. The precedence level is !, &&, and 
II, with! having the highest precedence. Like expressions in high-level languages, 
associativity is evaluated left to right. 

7.2.2.4 Expression Evaluation 
The assembler evaluates conditions created with high-level control structures ac­
cording to short-circuit evaluation. If the evaluation of a particular condition auto­
matically determines the final result (such as a condition that evaluates to false in 
a compound statement concatenated with AND), the evaluation does not con­
tinue. 

For example, in this. WHILE statement, 

.WHILE (ax> 0) && (WORD PTR [bx] == 0) 

the assembler evaluates the first condition. If this condition is false (that is, if AX 
is less than or equal to 0), the evaluation is finished. The second condition is not 
checked and the loop does not execute, because a compound condition contain­
ing a && requires both expressions to be true for the entire condition to be true. 

7.3 Procedures 

184 

Organizing your code into procedures that execute specific tasks divides large 
programs into manageable units, allows for separate testing, and makes code 
more efficient for repetitive tasks. 

Assembly-language procedures are comparable to functions in C; subprograms, 
functions, and subroutines in Basic; procedures and functions in Pascal; or sub­
routines and functions in FORTRAN. 

Two instructions control the use of assembly-language procedures; CALL pushes 
the return address onto the stack and transfers control to a procedure, and RET 
pops the return address off the stack and returns control to that location. 

The PROC and ENDP directives mark the beginning and end of a procedure. Ad­
ditionally, PROC can automatically 

• Preserve register values that should not change but that the procedure might 
otherwise alter 

• Set up a local stack pointer, so that you can access parameters and local varia­
bles placed on the stack 

• Adjust the stack when the procedure ends 



Procedures 

Sections 7.3.1 through 7.3.3 give infonnation on techniques for calling proce­
dures and accessing parameters. Sections 7.3.4 through 7.3.5 show how to allo­
cate and access local variables and parameters. 

Sections 7.3.6 and 7.3.7 introduce new directives in MASM 6.0 to further auto­
mate calling procedures and passing arguments. The PROTO directive allows 
you to declare prototypes for your procedures. INVOKE handles procedure calls 
and stack cleanup. Section 7.3.8 describes the automatic stack setup and cleanup 
generated with PROC. 

7.3.1 Defining Procedures 
Procedures require a label at the start of the procedure and a return at the end. 
Procedures are nonnally defined by using the PROC directive at the start of the 
procedure and the ENDP directive at the end. The RET instruction is nonnally 
placed immediately before the ENDP directive. The assembler makes sure that 
the distance of the RET instruction matches the distance defined by the PROC 
directive. The basic syntax for PROC is 

label PROC [NEAR I FAR] 

RET [constant] 
label ENDP 

The CALL instruction pushes the address of the next instruction in your code 
onto the stack and passes control to a specified address. The syntax is 

CALL {label I register I memory} 

The operand contains a value calculated at run time. Since that operand can be a 
register, direct memory operand, or indirect memory operand, you can write call 
tables similar to the jump table illustrated in Section 7.1.1.2. 

Calls can be near or far. Near calls push only the offset portion of the calling 
address and therefore must be within the same segment or group. You can 
specify the type for the target operand, but if you do not, MASM uses the de­
clared distance (NEAR or FAR) for operands that are labels and for the size of 
register or memory operands. Then the assembler encodes the call appropriately, 
as it does with unconditional jumps (see Sections 7.1.1, "Unconditional Jumps," 
and 7.1.2, "Conditional Jumps"). 

MASM 6.0 optimizes a call to a far label when the label is in the current segment 
by generating the code for a near call, saving one byte. 

185 



Controlling Program Flow 

Incorrect size for RET can 
cause your program to fail. 

You can define procedures without PROC and ENDP, but if you do, you must 
make sure that the size of the CALL matches the size of the RET. You can 
specify the RET instruction as RETN (Return Near) or RETF (Return Far) to 
override the default size: 

call NEAR PTR task Call is declared near 
Return comes to here 

task: 

retn 

The syntax for RETN and RETF is 

label: I label NEAR 
statements 
RETN [constant] 

label LABEL FAR 
statements 
RETF [constant] 

Procedure begins with near label 

Instructions go here 

Return declared near 

The RET instruction (and its RETF and RETN variations) allows an optional con­
stant operand that specifies a number of bytes to be added to the value of the SP 
register after the return. This operand adjusts for arguments passed to the proce­
dure before the call, as shown in the example in Section 7.3.4, "Using Local 
Variables." 

When you define procedures without PROC and ENDP, you must make sure that 
calls have the same size as corresponding returns. For example, RETF pops two 
words off the stack. If a NEAR call is made to a procedure with a far return, not 
only is the popped value meaningless, but the stack status may cause the execu­
tion to return to a random memory location, resulting in program failure. 

There is an also an extended PROC syntax that automates many of the details of 
accessing arguments and saving registers. See Section 7.3.3, "Declaring Param­
eters with the PROC Directive." 

7.3.2 Passing Arguments on the Stack 

186 

Each time you call a procedure, you may want it to operate on different data. 
This data, called "arguments," can be passed in various ways. For example, argu­
ments can be passed to a procedure in registers or in variables. However, the 



Procedures 

most common method of passing arguments is to use the stack. Microsoft lan­
guages have specific conventions for passing arguments. Chapter 20, "Mixed­
Language Programming," explains these conventions for assembly-language 
modules shared with modules from high-level languages. 

This section describes how a procedure accesses the arguments passed to it on 
the stack. Each argument is accessed as an offset from BP. However, if you use 
the PROC directive to declare parameters, the assembler calculates these offsets 
for you and lets you refer to parameters by name. The next section, "Declaring 
Parameters with the PROC Directive," explains how to use PROC this way. 

This example shows how to pass arguments to a procedure. The procedure ex­
pects to find those arguments on the stack. As this example shows, arguments 
must be accessed as offsets of BP. 

C-style procedure call and definition 

mov 
push 
push 
push 
call 
add 

addup PROC 

push 

mov 
mov 

add 

add 

mov 
pop 
ret 

addup ENDP 

ax, 10 
ax 
arg2 
cx 
add up 
sp, 6 

NEAR 

bp 

bp, sp 
ax, [bp+4] 

ax, [bp+6] 

ax, [bp+8] 

sp, bp 
bp 

Load and 
push constant as third argument 

Push memory as second argument 
Push register as first argument 
Call the procedure 
Destroy the pushed arguments 

(equivalent to three pops) 

Return address for near call 
takes two bytes 

Save base pointer - takes two bytes 
so arguments start at fourth byte 

Load stack into base pointer 
Get first argument from 
fourth byte above pointer 

Add second argument from 
sixth byte above pointer 

Add third argument from 
eighth byte above pointer 

Restore BP 
Return result in AX 

187 



Controlling Program Flow 

188 

Figure 7.1 shows the stack condition at key points in the process. 

High 
memory 

Before 
call addup 

I I I 

1/ 

Argument 3 / 

Argument 2 / 

Argument 1 
/ 

/ 

/ 
Low 
memory I 

I 

High 
memory 

After 
pop bp 

I I 
1/ 

I 

Argument 3 / 

Argument 2 / 

Argument 1 / 

Return 
address / 

/ 
Low 
memory I 

I 

+- SP 

I 

+- SP 

I 

After 
call addup 

I I I 

/ 1/ 

Argument 3 1/ 

Argument 2 v 

Argument 1 v 
Return 

address 

I 

After 
ret 

I I 
/ 

v 

1/ 

I 

1/ 

Argument 3 v 

Argument 2 / 

Argument 1 
/ 

/ 

/ 

I 

Figure 7.1 Procedure Arguments on the Stack 

+- SP 

I 

+- SP 

I 

After 
pus h bp 
mov bp,sp 

I I I 

/ 1/ 

Argument 3 1/ 

Argument 2 v 

Argument 1 v 
Return 

address v 
Old value 

of BP v 
I 

After 
add sp,6 

I I I 

/ 

/ 

/ 

/ 

/ 

/ 

I 

+- BP/SP 

I 

I 

+- SP 

I 

Starting with the 80186 processor, the ENTER and LEAVE instructions simplify 
the stack setup and restore instructions at the beginning and end of procedures. 

However, ENTER uses a lot of time. It is necessary only with nested, statically 
scoped procedures. Thus, a Pascal compiler may sometimes generate ENTER. 
The LEAVE instruction, on the other hand, is an efficient way to do the stack 
cleanup. LEAVE reverses the effect of the last ENTER instruction by restoring 
BP and SP to their values before the procedure call. 



Procedures 

7.3.3 Declaring Parameters with the PROC Directive 
With the PROC directive, you can specify registers to be saved, define param­
eters to the procedure, and assign symbol names to parameters (rather than as off­
sets from BP). This section describes how to use the PROC directive to automate 
the parameter-accessing techniques described in the last section. 

For example, the diagram below shows a valid PROC statement for a procedure 
called from C. It takes two parameters, va r 1 and a r 9 1, and uses (and must 
save) the DI and SI registers: 

myproc PROC FAR C PUBLIC USES di si, varl:WORD, argl:VARARG 

y ~~ 
Attributes Reglist Parameters 

The syntax for PROC is 

label PROC [attributes] [USES reglist] [,parameter[:tag] ... ] 

The following list describes the parts of the PROC directive. 

Argument 

label 

attributes 

reglist 

parameter 

Description 

The name of the procedure. 

Any of several attributes of the procedure, including the 
distance, langtype, and visibility of the procedure. The 
syntax for attributes is given in Section 7.3.3.1. 

A list of registers following the USES keyword that the 
procedure uses and that should be saved on entry. Regis­
ters in the list must be separated by blanks or tabs, not by 
commas. The assembler generates prologue code to push 
these registers onto the stack. When you exit, the assem­
bler generates epilogue code to pop the saved register 
values off the stack. 

The list of parameters passed to the procedure on the 
stack. The list can have a variable number of parameters. 
See the discussion below for the syntax of parameter. 
This list can be longer than one line if the continued line 
ends with a comma. 

189 



Controlling Program Flow 

190 

This diagram shows a valid PROC definition that uses several attributes: 

Distance 

r 
Langtype r r Visibility r Prologuearg 

myproc PROC FARC PUBLIC <macroarg> USES di si, varl:WORD, argl:VARARG 

y 
Attributes 

7.3.3.1 Attributes 
The syntax for the attributes field is 

[distance] [langtype] [visibility] [<prologuearg>] 

The list below explains each of these options. 

Argument 

distance 

lang typ e 

Description 

Controls the form of the RET instruction generated. Can be 
NEAR or FAR. If distance is not specified, it is determined 
from the model declared with the .MODEL directive. For 
TINY, SMALL, COMPACT, and FLAT, NEAR is assumed. 
For MEDIUM, LARGE, and HUGE, FAR is assumed. For 
80386/486 programming with 16- and 32-bit segments, 
NEAR16, NEAR32, FAR16, or FAR32 can be specified. 

Determines the calling convention used to access param­
eters and restore the stack. The BASIC, FORTRAN, and 
PASCAL langtypes convert procedure names to uppercase, 
place the last parameter in the parameter list lowest on the 
stack, and generate a RET, which adjusts the stack upward 
by the number of bytes in the argument list. 

The C and STDCALL langtype prefixes an underscore to 
the procedure name when the procedure's scope is PUBLIC 
or EXPORT and places the first parameter lowest on the 
stack. SYSCALL is equivalent to the C calling convention 
with no underscore prefixed to the procedure's name. 
STDCALL uses caller stack cleanup when :VARARG is 
specified; otherwise the called routine must clean up the 
stack (see Chapter 20). 



Procedures 

Argument 

visibility 

prologuearg 

Description 

Indicates whether the procedure is available to other mod­
ules. The visibility can be PRIVATE, PUBLIC, or EXPORT. 
A procedure name is PUBLIC unless it is explicitly de­
clared as PRIVATE. If the visibility is EXPORT, the linker 
places the procedure's name in the export table for seg­
mented executables. EXPORT also enables PUBLIC 
visibility. 

You can explicitly set the default visibility with the 
OPTION directive. OPTION PROC:PUBLIC sets the de­
fault to public. See Section 1.3.2 for more information. 

Specifies the arguments that affect the generation of pro­
logue and epilogue code (the code MASM generates when 
it encounters a PROC directive or the end of a procedure). 
See Section 7.3.8 for an explanation of prologue and epi-
10gue code. 

7.3.3.2 Parameters 
The parameters are separated from the reglist by a comma if there is a list of reg­
isters. In the syntax: 

parmname [:tag] 

parmname is the name of the parameter. The tag can be either the qualifiedtype 
or the keyword VARARG. However, only the last parameter in a list of param­
eters can use the V ARARG keyword. The qualifiedtype is discussed in Section 
1.2.6, "Data Types." An example showing how to reference VARARG param­
eters appears later in this section. Procedures can be nested if they do not have 
parameters or USES register lists. This diagram shows a procedure definition 
with one parameter definition. 

Parmname r r Qualifiedtype 

myproc PROC FAR C PUBLIC USES di si, varl:WORD, argl:VARARG 

~ 
Parameters 

191 



Controlling Program Flow 

192 

The following example shows the procedure in Section 7.3.2, "Passing Argu­
ments on the Stack," rewritten to use the extended PROC functionality. Prior to 
the procedure call, you must push the arguments onto the stack unless you use 
INVOKE (see Section 7.3.7, "Calling Procedures with INVOKE"). 

add up PROC NEAR C, 
argl:WORD, arg2:WORD, count:WORD 
mov ax, a rgl 
add ax, count 
add ax, a rg2 
ret 

addup ENDP 

If the arguments for a procedure are pointers, the assembler does not generate 
any code to get the value or values that the pointers reference; your program 
must still explicitly treat the argument as a pointer. (See Chapter 3, "Using 
Addresses and Pointers," for more information about using pointers.) 

In the example below, even though the procedure declares the parameters as near 
pointers, you still must code two MOV instructions to get the values of the param­
eters-the first MOV gets the address of the parameters, and the second MOV 
gets the parameter. 

; Ca 11 from C as a FUNCTION returning an integer 

.MODEL medium, c 

.CODE 
myadd PROC argl:NEAR PTR WORD, arg2:NEAR PTR WORD 

mov bx, argl Load first argument 
mov ax, [bx] 
mov bx, arg2 Add second argument 
add ax, [bx] 

ret 

myadd ENDP 
END 

You can use conditional-assembly directives to make sure that your pointer 
parameters are loaded correctly for the memory model. For example, the follow­
ing version of my a d d treats the parameters as FAR parameters if necessary: 

.MODEL medium, c ; Could be any model 

.CODE 
myadd PROC argl:PTR WORD, arg2:PTR WORD 

IF @DataSize 
1 es bx, argl Far parameters 
mov ax, es:[bx] 
1 es bx, arg2 
add ax, es:[bx] 



Procedures 

ELSE 
mov 
mov 
mov 
add 
ENOIF 

ret 
myadd ENOP 

ENO 

bx, argl 
ax, [bx] 
bx, arg2 
ax, [bx] 

7.3.3.3 Using VARARG 

Near parameters 

In the PROC statement, you can append the: V ARARG keyword to the last param­
eter to indicate that a variable number of arguments can be passed if you use the 
C, SYSCALL, or STDCALL calling conventions (see Section 20.1). A label must 
precede :VARARG so that the arguments can be accessed as offsets from the vari­
able name given. This example illustrates V ARARG: 

addup3 PROTO NEAR C, argcQunt:WORO, argl:VARARG 

invoke addup3, 3, 5, 2, 4 

addup3 PROC 

addup3 

sub 
sub 

. WH I LE 
add 
dec 
inc 
inc 
.ENOW 

ret 
ENOP 

NEAR C, argcount:WORO, argl:VARARG 
ax, ax ; Clear work register 
s i, s i 

argcount > 0 
ax, argl[si] 
argl 
si 
si 

Argcount has number of arguments 
Argl has the first argument 
Point to next argument 

Total is in AX 

Passing non-default-sized pointers in the VARARG portion of the parameter list 
can be done by explicitly passing the segment portion and the offset portion of 
the address separately. 

NOTE When you use the extended PROC features and the assembler encounters a RET 
instruction, it automatically generates instructions to pop saved registers, remove local vari­
ables from the stack, and, if necessary, remove parameters. It generates this code for each 
RET instruction it encounters. You can reduce code size by having only one return and jump­
ing to it from various locations. 

193 



Controlling Program Flow 

7.3.4 Using Local Variables 

Local variables are stored 
on the stack. 

194 

In high-level languages, local variables are visible only within a procedure. In 
Microsoft languages, these variables are usually stored on the stack. In assembly­
language programs, you can also have local variables. These variables should not 
be confused with labels or variable names that are local to a module, as described 
in Chapter 8, "Sharing Data and Procedures among Modules and Libraries." 

This section outlines the standard methods for creating local variables. The next 
section shows how to use the LOCAL directive to make the assembler automat­
ically generate local variables. When you use this directive, the assembler gener­
ates the same instructions as those used in this section but handles some of the 
details for you. 

If your procedure has relatively few variables, you can usually write the most 
efficient code by placing these values in registers. Local (stack) data is more effi­
cient when you have a large amount of local data for the procedure. 

To use local variables you must save stack space for the variable at the start of 
the procedure. The variable can then be accessed by its position in the stack. At 
the end of the procedure, you need to restore the stack pointer, which restores the 
memory used by local variables. 

This example subtracts two bytes from the SP register to make room for a local 
word variable. This variable can then be accessed as [b p - 2 ] . 

task 

task 

push 
call 

PROC 
push 
mov 
sub 

mov 
add 
sub 

mov 
pop 
ret 
ENDP 

ax 
task 

NEAR 
bp 
bp, sp 
sp, 2 

WORD PTR [bp-2], 3 
ax, [bp-2] 
[bp+4], ax 

sp, bp 
bp 
2 

Push one argument 
; Call 

Save base pointer 
Load stack into base pointer 
Save two bytes for local 
variable 

Initialize local variable 
Add local variable to AX 
Subtract local from argument 
Use [bp-2] and [bp+4] in 
other operations 

Clear local variables 
Restore base 
Return result in AX and pop 
two bytes to clear parameter 



Procedures 

Notice that the instruction mov s p, bp at the end of the procedure restores the 
original value of SP. The statement is required only if the value of SP is changed 
inside the procedure (usually by allocating local variables). The argument passed 
to the procedure is removed with the RET instruction. Contrast this to the ex­
ample in Section 7.3.2, "Passing Arguments on the Stack," in which the calling 
code adjusts the stack for the argument. 

Figure 7.2 shows the state of the stack at key points in the process. 

High 
memory 

Before 
call task 

I I I 

V v 
Argument 

V 

/ 

+- SP 

After 
call task 

I I I 

/ L/ 

Argument 
V 

Return 
address V 

+- SP 

After 
push bp 
mov bp,sp 

I I I 

/ / 

Argument 
/ 

Return 
address / 

Old value +- BP/SP 

Low 
memory I 

I 

After 
sub sp,2 

High 
memory I I 

V 

Low 
memory I 

I 

Argument 

Return 
address 

Old value 
of BP 
Space 

for loca! 

/ 

/ 
I 

I 

/ 

/ 

/ 

+- BP 
v 

+- BP-2 
V 

I 

V 

1/ 

I 

After 
mov sp,bp 
pop bp 

I I I 

/ V 

Argument v 
Return 

address v 

v 

V 
I 

Figure 7.2 local Variables on the Stack 

7.3.5 Creating Local Variables Automatically 

I 

+- SP 

I 

of BP 

I 

After 
ret 2 

I I 
/ 

I 

/ 

/ 
I 

I 

I +- SP 
/ 

/ 

/ 

/ 

/ 
I 

Section 7.3.4 described how to create local variables on the stack. This section 
shows you how to automate the process with the LOCAL directive. 

195 



Controlling Program Flow 

The LOCAL directive 
generates code to set up 
the stack for local 
variables. 

196 

You can use the LOCAL directive to save time and effort when working with 
local variables. When you use this directive, simply list the variables you want to 
create, giving a type for each one. The assembler calculates how much space is 
required on the stack. It also generates instructions to properly decrement SP (as 
described in the previous section) and to reset SP when you return from the 
procedure. 

When you create local variables this way, your source code can then refer to each 
local variable by name rather than as an offset of the stack pointer. Moreover, the 
assembler generates debugging information for each local variable. 

The procedure in the previous section can be generated more simply with the fol­
lowing code: 

tas k PROC 
LOCAL 

mov 
add 
sub 

ret 
task ENOP 

NEAR arg:WORO 
10c:WORO 

lac, 3 
ax, lac 
a rg, ax 

Initialize local variable 
Add local variable to AX 
Subtract local from argument 
Use "lac" and "arg" in other operations 

The LOCAL directive must be on the line immediately following the PROC state­
ment. It cannot be used after the first instruction in a procedure. The LOCAL 
directive has the following syntax: 

LOCAL vardef [, vardej] ... 

Each vardef defines a local variable. A local variable definition has this form: 

label[ [count] ] [:qualifiedtype] 

These are the parameters in local variable definitions: 

Argument 

label 

count 

Description 

The name given to the local variable. You can use this 
name to access the variable. 

The number of elements of this name and type to allo­
cate on the stack. You can allocate a simple array on the 
stack with count. The brackets around count are re­
quired. If this field is omitted, one data object is assumed. 



You must initialize local 
variables. 

Procedures 

Argument Description 

qualifiedtype A simple MASM type or a type defined with other types 
and attributes. See Section 1.2.6, "Data Types," for more 
information. 

If the number of local variables exceeds one line, you can place a comma at the 
end of the first line and continue the list on the next line. Another method is to 
use several consecutive LOCAL directives. 

The assembler does not initialize local variables. Your program must include 
code to perform any necessary initializations. For example, the following code 
fragment sets up a local array and initializes it to zero: 

arraysz EQU 20 

aproc USES di PROC 
LOCAL var1[arraysz]:WORO, var2:WORO 

Initialize 1 oca 1 array to zero 
push ss 
pop es Set ES=SS 
1 ea d i , va r1 ES:OI now points 
mov ex, arraysz Load count 
sub ax, ax 
rep stosw Store zeros 

Use the array ... 

ret 
aproc ENOP 

to array 

Even though you can reference stack variables by name, the assembler treats 
them as offsets from BP, and they are not visible outside the procedure. In this 
procedure, a r ray is a local variable. 

index 
test 
LOCAL 

EQU 10 
PROC NEAR 
array[index]:WORO 

mov 
mov 

bx, index 
array[bx], 5 Not legal! 

197 



Controlling Program Flow 

The second MOV statement may appear to be legal, but since a r ray is an 
offset of BP, this statement is the same as 

mov [bp + bx + arrayoffset], 5 ; Not legal! 

BP and BX can be added only to SI and DI. This example would be legal, how­
ever, if the index value were moved to SI or DI. This type of error in your pro­
gram can be difficult to find unless you keep in mind that local variables in 
procedures are offsets of BP. 

7.3.6 Declaring Procedure Prototypes 

Place prototypes after data 
declarations or in a 
separate include file. 

198 

MASM 6.0 provides a new directive, INVOKE, to handle many of the details im­
portant to procedure calls, such as pushing parameters according to the correct 
calling conventions. In order to use INVOKE, the procedure called must have pre­
viously been declared with a PROC statement, an EXTERNDEF (or EXTERN) 
statement, or a TYPEDEF. You can also place a prototype defined with PROTO 
before the INVOKE if the procedure type does not appear before the INVOKE. 
Procedure prototypes defined with PROTO inform the assembler of types and 
numbers of arguments so the assembler can check for errors and provide automat­
ic conversions when INVOKE calls the procedure. 

Prototypes in MASM perform the same function as prototypes in the C language 
and other high-level languages. A procedure prototype includes the procedure 
name, the types, and (optionally) the names of all parameters the procedure ex­
pects. Prototypes are usually placed at the beginning of an assembly program or 
in a separate include file. They are especially useful for procedures called from 
other modules and other languages, enabling the assembler to check for un­
matched parameters. If you write routines for a library, you may want to put pro­
totypes into an include file for all the procedures used in that library. See Chapter 
8, "Sharing Data and Procedures among Modules and Libraries," for more infor­
mation about using include files. 

Declaring procedure prototypes is optional. You can use the PROC directive and 
the CALL instruction, as shown in the previous section. 

In MASM 6.0, using the PROTO directive is one way to define procedure proto­
types. The syntax for a prototype definition is the same as for a procedure decla­
ration (see Section 7.3.3, "Declaring Parameters with the PROC Directive"), 
except that you do not include the list of registers, prologuearg list, or the scope 
of the procedure. 

Also, the PROTO keyword precedes the langtype and distance attributes. The at­
tributes (like C and FAR) are optional, but if not specified, the defaults are based 
on any .MODEL or OPTION LANGUAGE statement. The names of the parame­
ters are also optional, but you must list parameter types. A label preceding 
:VARARG is also optional in the prototype but not in the PROC statement. 



Procedures 

If a PROTO and a PROC for the same function appear in the same module, they 
must match in attribute, number of parameters, and parameter types. The easiest 
way to create prototypes with PROTO for your procedures is to write the proce­
dure and then copy the first line (the line that contains the PROC keyword) to a 
location in your program that follows the data declarations. Change PROC to 
PROTO and remove the USES reglist, the prologuearg field, and the visibility 
field. It is important that the prototype follow the declarations for any types used 
in it to avoid any forward references used by the parameters in the prototype. 

The prototype defined with PROTO statement and the PROC statement for two 
procedures are given below. 

Procedure prototypes 

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD 

myproc PROTO FAR C, argcount:WORD, arg2:VARARG 

; Procedure declarations 

addup 

myproc 

PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD 

PROC FAR C PUBLIC <callcount> USES di si, 
argcount:WORD, 
arg2:VARARG 

When you call a procedure with INVOKE, the assembler checks the arguments 
given by INVOKE against the parameters expected by the procedure. If the data 
types of the arguments do not match, MASM either reports an error or converts 
the type to the expected type. These conversions are explained in the next section. 

7.3.7 Calling Procedures with INVOKE 
INVOKE generates a sequence of instructions that push arguments and call a pro­
cedure. This helps maintain code if arguments or langtype for a procedure is 
changed. INVOKE generates procedure calls and automatically handles the fol­
lowing tasks: 

• Converts arguments to the expected types 

• Pushes arguments on the stack in the correct order 

• Cleans up the stack when the procedure returns 

If arguments do not match in number or if the type is not one the assembler can 
convert, an error results. 

If V ARARG is an option in a procedure, INVOKE can pass arguments in addition 
to those in the parameter list without generating an error or warning. The extra 

199 



Controlling Program Flow 

200 

arguments must be at the end of the INVOKE argument list. All other arguments 
must match in number and type. 

The syntax for INVOKE is 

INVOKE expression [, arguments] 

where expression can be the procedure's label or an indirect reference to a proce­
dure, and arguments can be an expression, a register pair, or an expression 
preceded with ADDR. (The ADDR operator is discussed below.) 

Procedures that have these procedure prototypes 

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD 

myproc PROTO FAR C, argcount:WORD, arg2:VARARG 

and these procedure declarations 

addup PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD 

myproc PROC FAR C PUBLIC <callcount> USES di si, 
argcount:WORD, 
arg2:VARARG 

may have INVOKE statements that look like this: 

INVOKE addup, ax, x, y 
I N V 0 K E my p roc, b x, c x, 100, 10 

The assembler can convert some arguments and parameter type combinations so 
that the correct type can be passed. The signed or unsigned qualities of the argu­
ments in the INVOKE statements determine how the assembler converts them to 
the types expected by the procedure. 

The addup procedure, for example, expects parameters of type WORD, but the 
arguments passed by INVOKE to the addup procedure can be any of these 
types: 

• BYTE, SBYTE, WORD, or SWORD 

• An expression whose type is specified with the PTR operator to be one of 
those types 

• An 8-bit or 16-bit register 

• An immediate expression in the range -32K to +64K 

• ANEARPTR 

If the type is smaller than that expected by the procedure, MASM widens the ar­
gument to match. 



When possible, MASM 
widen~ arguments to 
match parameter types. 

Procedures 

7.3.7.1 Widening Arguments 
For INVOKE to correctly handle type conversions, you must use the signed data 
types for any signed assignments. This list shows the cases in which MASM 
widens an argument to match the type expected by a procedure's parameters. 

Type Passed 

BYTE, SBYTE 

WORD,SWORD 

Type Expected 

WORD, SWORD, DWORD, SDWORD 

DWORD, SDWORD 

The assembler generates instructions such as XOR and CBW to perform the con­
version. You can see these generated instructions in the listing file by using the 
/Sg command-line option. The assembler can extend a segment if far data is ex­
pected, and it can convert the type given in the list to the types expected. If the as­
sembler cannot convert the type, however, it generates an error. 

7.3.7.2 Detecting Errors 
When the assembler widens arguments, it may require the use of a register that 
could overwrite another argument. 

For example, if a procedure with the C calling convention is called with this 
INVOKE statement, 

INVOKE myproeA, ax, ex, 100, arg 

where a rg is a BYTE variable and myproc expects four arguments of type 
WORD, the assembler widens and then pushes the variable with this code: 

mav al, DGROUP:arg 
xor ah, ah 
push ax 

As a result, the assembler generates code that also uses the AX register and there­
fore overwrites the first argument passed to the procedure in AX. The assembler 
generates an error in this case, requiring you to rewrite the INVOKE statement 
for this procedure. 

The INVOKE directive uses as few registers as possible. However, widening ar­
guments or pushing constants on the 8088 and 8086 requires the use of the AX 
register, and sometimes the DX register or the EAX and EDX on the 80386/486. 
This means that the content of AL, AH, AX, and EAX must frequently be over­
written, so you should avoid using these registers to pass arguments. As an alter­
native you can use DL, DH, DX, and EDX, since these registers are rarely used. 

201 



Controlling Program Flow 

202 

7.3.7.3 Invoking Far Addresses 
You can pass aFAR pointer in a segment: : offset pair, as shown below. Note the 
use of double colons to separate the register pair. The registers could be any 
other register pair, including a pair that a DOS call uses to return values. 

FPWORD TYPEDEF FAR PTR WORD 
SomeProc PROTO varl:DWORD, var2:WORD, var3:WORD 

pfaritem 

1 es 
INVOKE 

FPWORD faritem 

bx, pfa ritem 
SomeProc, ES::BX, argl, arg2 

However, you cannot give INVOKE two arguments, one for the segment and one 
for the offset, and have INVOKE combine the two for an address. 

7.3.7.4 Passing an Address 
You can use the ADDR operator to pass the address of an expression to a proce­
dure that is expecting a NEAR or FAR pointer. This example generates code to 
pass a far pointer (to a r 9 1) to the procedure pro c 1. 

PBYTE 
argl 
proc1 

INVOKE 

TYPEDEF FAR PTR BYTE 
BYTE "This is a string" 
PROTO NEAR C fparg:PBYTE 

procl, ADDR argl 

See Section 3.3.1 for information on defining pointers with TYPEDEF. 

7.3.7.5 Invoking Procedures Indirectly 
You can make an indirect procedure call such as cal 1 [b x + s i ] by using a 
pointer to a function prototype with TYPEDEF, as shown in this example: 

FUNCPROTO 
FUNCPTR 

.DATA 

TYPEDEF PROTO NEAR ARGl:WORD, ARG2:WORD 
TYPEDEF PTR FUNCPROTO 

pfunc FUNCPTR OFFSET procl, OFFSET proc2 

.CODE 
mov si, Num 
INVOKE FUNCPTR PTR [siJ 

Num contains 0 or 2 
Selects procl or proc2 



Procedures 

You can also use ASSUME to accomplish the same task. The ASSUME statement 
associates the type P FUN C with the BX register. 

ASSUME BX:FUNCPTR 
mov si, Num 
INVOKE FUNCPTR PTR [bx+si] 

7.3.7.6 Checking the Code Generated 
The INVOKE directive generates code that may vary depending on the processor 
mode and calling conventions in effect. You can check your listing files to see 
the code generated by the INVOKE directive if you use the /Sg command-line 
option. 

7.3.8 Generating Prologue and Epilogue Code 
When you use the PROC directive with its extended syntax and argument list, the 
assembler automatically generates the prologue and epilogue code in your proce­
dure. "Prologue code" is generated at the start of the procedure; it sets up a stack 
pointer so you can access parameters from within the procedure. It also saves 
space on the stack for local variables, initializes registers such as DS, and pushes 
registers that the procedure uses. Similarly, "epilogue code" is the code at the 
end of the procedure that pops registers and returns from the procedure. 

The assembler automatically generates the prologue code when it encounters the 
first instruction after the PROC directive. It generates the epilogue code when it 
encounters a RET or IRET instruction. Using the assembler-generated prologue 
and epilogue code saves you time and decreases the number of repetitive lines of 
code in your procedures. 

The generated prologue or epilogue code depends on the 

• Local variables defined 

• Arguments passed to the procedure 

• Current processor selected (affects epilogue code only) 

• Current calling convention 

• Options passed in the prologuearg of the PROC directive 

• Registers being saved 

The prologuearg list contains options specifying how the prologue or epilogue 
code should be generated. The next section explains how to use these options, 
gives the standard prologue and epilogue code, and explains the techniques for 
defining your own prologue and epilogue code. 

203 



Controlling Program Flow 

RETN and RETF suppress 
epilogue code generation. 

204 

7.3.8.1 Using Automatic Prologue and Epilogue Code 
The standard prologue and epilogue code handles parameters and local variables. 
If a procedure does not have any parameters or local variables, the prologue and 
epilogue code that sets up and restores a stack pointer is omitted, unless 
FORCEFRAME is included in the prologuearg list. (FORCEFRAME is discussed 
later in this section.) Prologue and epilogue code also generates a push and pop 
for each register in the register list unless the register list is empty. 

When a RET is used without an operand, the assembler generates the standard 
epilogue code. If you do not want the standard epilogue generated, you can use 
RETN or RETF with or without operands. RET with an integer operand does not 
generate epilogue code, but it does generate the right size of return. 

In the examples below showing standard prologue and epilogue code, 
1 oca 1 bytes is a variable name used in this example to represent the number 
of bytes needed on the stack for the locals declared, par m by t e s represents the 
number of bytes that the parameters take on the stack, and reg i s t e r s repre­
sents the list of registers to be pushed or popped. 

The standard prologue code is the same in any processor mode: 

push bp 
mov bp, sp 
sub sp, local bytes 
push registers 

The standard epilogue code is: 

if local bytes is not 0 

pop registers 
mov sp, bp 
pop bp 

if localbytes is not 0 

ret parmbytes use parmbytes only if lang is not C 

The standard prologue and epilogue code recognizes two operands passed in the 
prologuearg list, LOADDS and FORCEFRAME. These operands modify the pro­
logue code. Specifying LOADDS saves and initializes DS. Specifying 
FORCEFRAME as an argument generates a stack frame even if no arguments are 
sent to the procedure and no local variables are declared. If your procedure has 
any parameters or locals, you do not need to specify FORCEFRAME. 

Specifying LOADDS generates this prologue code: 

push bp 
mov bp, sp 
sub sp, localbytes 
push ds 
mov ax, DGROUP 
mov ds, ax 
push registers 

if local bytes is not 0 



Procedures 

Specifying LOADDS generates the following epilogue code: 

pop registers 
pop ds 
mov sp, bp 
pop bp 
ret parmbytes ; use parmbytes only if lang is not C 

7.3.8.2 User-Defined Prologue and Epilogue Code 
If you want a different set of instructions for prologue and epilogue code in your 
procedures, you can write macros that are executed instead of the standard pro­
logue and epilogue code. For example, while you are debugging your proce­
dures, you may want to include a stack check or track the number of times a 
procedure is called. You can write your own prologue code to do these things 
whenever a procedure executes. Different prologue code may also be necessary 
if you are writing applications for Microsoft Windows or any other environment 
application for DOS. User-defined prologue macros will respond correctly if you 
specify FORCEFRAME in the prologuearg of a procedure. 

To write your own prologue or epilogue code, the OPTION directive must appear 
in your program. It disables automatic prologue and epilogue code generation. 
When you specify 

OPTION PROLOGUE: maeroname 

OPTION EPILOGUE: maeroname 

the assembler calls the macro specified in the OPTION directive instead of gener­
ating the standard prologue and epilogue code. The prologue macro must be a 
macro function, and the epilogue macro must be a macro procedure. 

The assembler expects your prologue or epilogue macro to have this form: 

maeroname MACRO proename, I 
flag, I 

parmbytes, I 
loealbytes, I 

<regliSf>, I 
userparms 

205 



Controlling Program Flow 

206 

The following list explains the arguments passed to your macro. Your macro 
must have formal parameters to match all the actual arguments passed. 

Argument 

proename 

flag 

parmbytes 

loealbytes 

reglist 

userparms 

Description 

The name of the procedure. 

A 16-bit flag containing the following information: 

Bit = Value Description 

Bit 0, 1,2 

Bit 3 

Bit4 

Bit 5 

Bit 6 

Bit 7 

Bit 8 

Bits 9-15 

For calling conventions (OOO=un­
specified language type, 001=C, 
010=SYSCALL,011=STDCALL, 
100=PASCAL, 101=FORTRAN, 
110=BASIC) 

Undefined (not necessarily zero) 

Set if the caller restores the stack 
(Use RET, not RETn) 

Set if procedure is FAR 

Set if procedure is PRIVATE 

Set if procedure is EXPORT 

Set if the epilogue was generated as 
a result of an IRET instruction and 
cleared if the epilogue was gener­
ated as a result of a RET instruction 

Undefined (not necessarily zero) 

The byte count of all the parameters given in the PROC 
statement. 

The count in bytes of all locals defined with the LOCAL 
directive. 

A list of the registers following the USES operator in the 
procedure declaration. This list is enclosed by angle 
brackets « », and each item is separated by commas. 
This list is reversed for epilogues. 

Any argument you want to pass to the macro. The 
prologuearg (if there is one) specified in the PROC 
directive is passed to this argument. 

Your macro function must return the parmbytes parameter. However, if the pro­
logue places other values on the stack after pushing BP and these values are not 
referenced by any of the local variables, the exit value must be the number of 



Procedures 

bytes for procedure locals plus any space between BP and the locals. Therefore 
parmbytes is not always equal to the bytes occupied by the locals. 

The following macro is an example of a user-defined prologue that counts the 
number of times a procedure is called. 

ProfilePro MACRO procname, 
flag, 
bytecount, 
numlocals, 
regs, 
macroargs 

.DATA 
procname&count WORD 0 

.CODE 

ENDM 

inc procname&count 

push bp 
mov bp, sp 

IFNB <regs> 
FOR r, regs 

push r 
ENDM 

ENDIF 
EXITM %bytecount 

\ 
\ 
\ 
\ 
\ 

Accumulates count of times the 
procedure is called 

Other BP operations 

Your program must also include this statement before any procedures are called 
that use the prologue: 

OPTION PROLOGUE:ProfilePro 

If you define only a prologue or an epilogue macro, the standard prologue or epi­
logue code is used for the one you do not define. The form of the code generated 
depends on the .MODEL and PROC options used. 

If you want to revert to the standard prologue or epilogue code, use 
PROLOGUEDEF or EP I LOGU EDEF as the macroname in the OPTION 
statement. 

OPTION EPILOGUE:EPILOGUEDEF 

You can completely suppress prologue or epilogue generation with 

OPTION PROLOGUE:None 
OPTION EPILOGUE:None 

In this case, no user-defined macro is called, and the assembler does not generate 
a default code sequence. This state remains in effect until the next OPTION 
PROLOGUE or OPTION EPILOGUE is encountered. 

207 



Controlling Program Flow 

See Chapter 9 for additional information about writing macros. The 
PROLOGUE.INC file provided in the MASM 6.0 distribution disks can be used 
to create the prologue and epilogue sequences for the Microsoft C Professional 
Development System, version 6.0. 

7.4 DOS Interrupts 
In addition to jumps, loops, and procedures that alter program execution, inter­
rupt routines transfer execution to a different location. In this case, control goes 
to an interrupt routine. 

You can write your own interrupt routines, either to replace an existing routine or 
to use an undefined interrupt number. You may want to replace the processor's 
divide-overflow (Oh) interrupts or DOS interrupts, such as the critical-error (24h) 
and CONTROL+C (23h) handlers. The BOUND instruction checks array bounds 
and calls interrupt 5 when an error occurs. If you use this instruction, you need to 
write an interrupt handler for it. 

This section summarizes the following: 

• How to call interrupts 

• How the processor handles interrupts 

• How to redefine an existing interrupt routine 

The example routine in this section handles addition or multiplication overflow 
and illustrates the steps necessary for writing an interrupt routine. See Chapter 
19, "Writing Memory-Resident Software" for additional information about DOS 
and BIOS interrupts. 

NOTE Under OS/2, system access is made through calls to the Applications Program Inter­
face (API), not through interrupts. Microsoft Windows applications use both interrupts and 
API calls. 

7.4.1 Calling DOS and ROM-BIOS Interrupts 

208 

Interrupts are the only way to access DOS from assembly language. They are 
called with the INT instruction, which takes one operand-an immediate value 
between 0 and 255. 

When calling DOS and ROM-BIOS interrupts, you usually need to place a func­
tion number in the AH register. You can use other registers to pass arguments to 
functions. Some interrupts and functions return values in certain registers, al­
though register use varies for each interrupt. This code writes the text of ms 9 to 
the screen. 



DOS Interrupts 

.DATA 
msg BYTE "This writes to the screen",$ 

.CODE 
mov dx, offset msg 
mov ah, 09h 
int 21h 

When the INT instruction executes, the processor takes the following six steps: 

1. Looks up the address of the interrupt routine in the interrupt descriptor table 
(also called the "interrupt vector"). This table starts at the lowest point in 
memory (segment 0, offset 0) and consists of four bytes (two segment and 
two offset) for each interrupt. Thus, the address of an interrupt routine equals 
the number of the interrupt multiplied by 4. 

2. Clears the trap flag (TF) and interrupt enable flag (IF). 

3. Pushes the flags register, the current code segment (CS), and the current in­
struction pointer (IP). 

4. Jumps to the address of the interrupt routine, as specified in the interrupt de­
scriptor table. 

5. Executes the code of the interrupt routine until it encounters an IRET 
instruction. 

6. Pops the instruction pointer, code segment, and flags. 

209 



Controlling Program Flow 

Figure 7.3 illustrates how interrupts work. 

Before INT Inside INT After IRET 
Routine 

Interrupt INT segment 
Descriptor Table 

INT offset 

Flags Register Program flags LProgram flags IJ It:. Program flags I) 
(changes in routine) 

/ 

Q I 
t:. 0 Code Segment [ Program CS • New CS from Program CS table 

(changes in routine) 

Instruction 
I 
t:. 

IJ I 
L- 0 Program IP • New IP from Program IP Pointer table 

(changes in routine) 

High memory 

+- SP +- SP 

Stack Previous flags 

Previous CS 

Previous IP 

Low memory 

Figure 7.3 Operation of Interrupts 

Some DOS interrupts should not normally be called. Some (such as 20h and 27h) 
have been replaced by other DOS interrupts. Others are used internally by DOS. 

7.4.2 Replacing or Redefining Interrupt Routines 

210 

One interrupt routine you may want to redefine is the routine called by INTO. 
The INTO (Interrupt on Overflow) instruction is a variation of the INT instruc­
tion. It calls interrupt 04h when the overflow flag is set. By default, the routine 
for interrupt 4 simply consists of an IRET, so it returns without doing anything. 
Using INTO is an alternative to using JO (Jump on Overflow) to jump to an over­
flow routine. 



DOS Interrupts 

To replace or redefine an existing interrupt, your routine must 

• Replace the address in the interrupt descriptor table with the address of your 
new routine and save the old address 

• Provide new instructions to handle the interrupt 

• Restore the old address when your routine ends 

An interrupt routine can be written like a procedure by using the PROC and 
ENDP directives. The routine should always be defined as FAR and should end 
with an IRET instruction instead of a RET instruction. 

NOTE Since the assembler doesn't know whether you are going to terminate with RET or 
IRET, you can use the full extended PROC syntax (described in Section 7.3.3, "Declaring Para­
meters with the PROC Directive") to write interrupt procedures. However, you should not 
make interrupt procedures NEAR or specify arguments for them. You can use the USES key­
word, however, to correctly generate code to save and to restore a register list in interrupt 
procedures. 

The STI (Set Interrupt Flag) and CLI (Clear Interrupt Flag) instructions turn inter­
rupts on or off. You can use CLI to turn off interrupt processing so that an impor­
tant routine cannot be stopped by a hardware interrupt. After the routine has 
finished, use STI to turn interrupt processing back on. Interrupts received while 
interrupt processing was turned off by CLI are saved and executed when STI 
turns interrupts back on. 

MASM 6.0 provides two new forms of the IRET instruction that suppress epi­
logue sequences. This allows an interrupt to have local variables or use a user­
defined prologue. IRETF pops a F AR16 return address, and IRETFD pops a 
F AR32 return address. 

The following example uses DOS functions to save the address of the initial inter­
rupt routine in a variable and to put the address of the new interrupt routine in the 
interrupt descriptor table. Once the new address has been set, the new routine is 
called any time the interrupt is called. This new routine prints a message and sets 
AX and DX to O. 

To replace the address in the interrupt descriptor table with the address of your 
procedure, AL needs to be loaded with 04h and AH loaded with 35, the Get Inter­
rupt Vector function. The Set Interrupt Vector function requires 25 in AH. 

211 



Controlling Program Flow 

212 

Follow this example to replace an existing interrupt routine. To write an interrupt 
handler for an unused interrupt, see online help for available vectors . 

. MODEL LARGE, C, DOS 
FPFUNC TYPEDEF FAR PTR 

.DATA 
msg BYTE "Overflow - result set to 0",13,10,"$" 
vector FPFUNC ? 

.CODE 

.STARTUP 

mov ax, 3504h ; Load interrupt 4 and call DOS 
int 21h Get Interrupt Vector function 
mov WORD PTR vector[2],es Save segment 
mov WORD PTR vector[0],bx ; and offset 

push ds Save OS 
mov ax, cs Load segment of new routine 
mov ds, ax 
mov dx, OFFSET ovrflow Load offset of new routine 
mov ax, 2504h Load interrupt 4 and call DOS 
int 21h Set Interrupt Vector function 
pop ds Restore 

add 
into 

ax, bx Do addition (or multiplication) 
Ca 11 interrupt 4 if overflow 

ovrflow 

ovrflow 

lds 
mov 
int 
mov 
int 

dx, 
ax, 
21h 
ax, 
21h 

PROC 
sti 

mov 
mov 
int 
sub 
sub 
i ret 
ENDP 
END 

vector 
2504h 

4C00h 

FAR 

ah, 
dx, 
21h 
ax, 
dx, 

Load ori gi na 1 interrupt add ress 
Restore interrupt number 4 
with DOS set vector function 

Terminate function 

Enable interrupts 
(turned off by INT) 

09h Display string function 
OFFSET msg ; Load address 

Call DOS 
ax Set AX to 0 
dx Set OX to 0 

Return 

Before your program ends, you should restore the original address by loading 
DX with the original interrupt address and using the DOS set vector function to 
store the original address at the correct location. 



Related Topics in Online Help 

7.5 Related Topics in Online Help 
Other information available online which relates to topics in this chapter is given 
in the list below: 

Topic 

OPTION directive 

DOS and ROM-BIOS 
interrupts 

BT, BTC, BTR, BTS 

Other forms of the 
LOOP instruction 

Processor Flag 
Summary 

Access 

From the "MASM 6.0 Contents" screen, choose 
"Directives," then choose "Miscellaneous" 

From the list of System Resources on the "MASM 
6.0 Contents" screen, choose "DOS Calls" or "BIOS 
Calls" 

From the "MASM 6.0 Contents" screen, choose 
"Processor Instructions" and then "Logical and 
Shifts" 

From the "MASM 6.0 Contents" screen, choose 
"Processor Instructions" and then "Control Flow" 

From the "MASM 6.0 Contents" screen, choose 
"Processor Instructions" 

213 





Chapter 8 

Sharing Data and Procedures among 
Modules and Libraries 

To use symbols and procedures in more than one module, the assembler must be 
able to recognize the shared data as global to all the modules where they are 
used. MASM 6.0 provides new techniques to simplify data-sharing and give a 
high-level interface to multiple-module programming. With these techniques, 
you can place shared symbols in include files. This makes the data declarations 
in the file available to all modules that use the include file. 

After an overview of the data-sharing methods, the next section of this chapter fo­
cuses on organizing modules and using the include file to simplify data-sharing. 
The first method allows you to create a single include file that works in the mod­
ules where the symbol is used as well as where it is defined. 

Sharing procedures and data items using the PUBLIC and EXTERN directives in 
the appropriate modules is the other method of data-sharing. The third section of 
this chapter explains how to use PUBLIC and EXTERN. 

You may also want to place commonly used routines in libraries. Section 8.4 ex­
plains how to create program libraries and access their routines. 

8.1 Selecting Data-Sharing Methods 
If data defined in one module is to be used in the other modules of a multiple­
module program, the data must be made public and external. MASM provides 
several methods for doing this. 

One method is to declare a symbol public (with the PUBLIC directive) in the 
module where it is defined. This makes the symbol available to other modules. 
Then place an EXTERN statement for that symbol in the rest of the modules that 
use the public symbol. This statement informs the assembler that the symbol is 
external-defined in another module. 

As an alternative, you can use the COMM directive instead of PUBLIC and 
EXTERN. However, communal variables have some limitations. You cannot de­
pend on their location in memory because they are allocated by the linker, and 
they cannot be initialized. 

These two data-sharing methods are still available, but MASM 6.0 introduces a 
new directive, EXTERNDEF, that declares a symbol either public or external, as 

215 



Sharing Data and Procedures among Modules and Libraries 

appropriate. EXTERNDEF simplifies the declarations for global (public and exter­
nal) variables and encourages the use of include files. 

The next section provides further details on using include files. Section 8.3, 
"Using Alternatives to Include Files," provides more information on PUBLIC 
and EXTERN. 

8.2 Sharing Symbols with Include Files 
Place statements common 
to all modules in include 
files. 

Include files can contain any valid MASM statement but typically consist of type 
and symbol declarations. The assembler inserts the contents of the include file 
into a module at the location of the INCLUDE directive. Include files can 
simplify project organization by eliminating the need to physically insert com­
mon declarations into more than one program or module. Include files are always 
optional. See Section 8.3 for alternatives to using include files. 

The first part of this section explains how to organize symbol definitions and the 
declarations that make the symbols global (available to all modules). It then 
shows how to make both variables and procedures public with EXTERNDEF, 
PROTO, and COMM. The last part of this section tells where to place these direc­
tives in the modules and include files. 

8.2.1 Organizing Modules 

Include files are inserted 
at the location of the 
INCLUDE directive. 

216 

This section summarizes the organization of declarations and definitions in mod­
ules and include files and the use of the INCLUDE directive. 

Include Files Type declarations that need to be identical in every module 
should be placed in an include file. Doing so ensures consistency and can save 
programming time when updating programs. Include files should contain only 
symbol declarations and any other declarations that are resolved at assembly 
time. (See Section 1.3.1, "Generating and Running Executable Programs," for a 
list of assembly-time operations.) If the include file is associated with more than 
one module, it cannot contain statements that define and allocate memory for 
symbols unless you include the data conditionally (see Section 1.3.3). 

Modules Label definitions that cause the assembler to allocate memory space 
must be defined in a module, not in an include file. If any of these definitions is 
located in the include file, it is copied into each file that uses the include file, 
creating an error. 

Once you have placed public symbols in an include file, you need to associate 
that file with the main module. The INCLUDE statement is usually placed before 
data and code segments in your modules. When the assembler encounters an 
INCLUDE directive, it opens the specified file and assembles all its statements. 



You must make sure 
that the assembler can 
find include files. 

Put constants used in more 
than one module into the 
include file. 

Sharing Symbols with Include Files 

The assembler then returns to the original file and continues the assembly 
process. 

The INCLUDE directive takes the form 

INCLUDE filename 

where filename is the full name or fully specified path of the include file. For ex­
ample, the following declaration inserts the contents of the include file 
SCREEN.INC in your program: 

INCLUDE SCREEN.INC 

The file name in the INCLUDE directive must be fully specified; no extensions 
are assumed. If a full path name is not given, the assembler searches first in the 
directory of the source file containing the INCLUDE directive. 

If the include file is not in the source file directory, the assembler searches the 
paths specified in the assembler's command-line option /I, or in PWB 's Include 
Paths field in the MASM Option dialog box (accessed from the Option menu). 
The /1 option takes this form: 

II path 

Multiple /I options can be used to specify that multiple directives be searched in 
the order they appear on the command line. If none of these directories contains 
the desired include file, the assembler finally searches in the paths specified in 
the INCLUDE environment variable. If the include file still cannot be found, an 
assembly error occurs. The related /x option tells the assembler to ignore the 
INCLUDE environment variable for all subsequent assemblies. 

An include file may specify another include file. The assembler processes the sec­
ond include file before returning to the first. Include files can be nested this way 
as deeply as desired; the only limit is the amount of free memory. 

Include Files or Modules You can use the EQU directive to create named 
constants that cannot be redefined in your program (see Section 1.2.4, 
"Integer Constants and Constant Expressions," for information about the EQU 
directive). Placing a constant defined with EQU in an include file makes it avail­
able to all modules that use that include file. 

Placing TYPEDEF, STRUCT, UNION, and RECORD definitions in an include 
file guarantees consistency in type definitions. If required, the variable instances 
derived from these definitions can be made public among the modules with 
EXTERNDEF declarations (see the next section). Macros (including macros de­
fined with TEXTEQU) must be placed in include files to make them visible in 
other modules. 

217 



Sharing Data and Procedures among Modules and libraries 

If you elect to use full segment definitions (along with, or instead of, simplified 
definitions), you can force a consistent segment order in all files by defining 
segments in an include file. This technique is explained in Section 2.3.2, "Con­
trolling the Segment Order." 

8.2.2 Declaring Symbols Public and External 

External identifiers must 
be unique. 

EXTERNDEF can appear 
in the defining 
or calling modules. 

218 

It is sometimes useful to make procedures and variables (such as large arrays or 
status flags) global to all program modules. Global variables are freely accessible 
within all routines; you do not have to explicitly pass them to the routines that 
need them. 

Variables can be made global to multiple modules in several ways. This section 
describes three ways to make them global by using the EXTERNDEF, PROTO, 
or COMM declarations within include files. Section 8.3.1 explains how to use the 
PUBLIC and EXTERN directives within modules. 

These methods make symbols global to the modules in which they are used. 
Therefore, symbols must be unique. The linker enforces this requirement. 

8.2.2.1 Using EXTERNDEF 
MASM treats EXTERNDEF as a public declaration in the defining module and as 
an external declaration in accessing module(s). You can use the EXTERNDEF 
statement in your include file to make a variable common among two or more 
modules. EXTERNDEF works with all types of variables, including arrays, struc­
tures, unions, and records. It also works with procedures. 

As a result, a single include file can contain an EXTERNDEF declaration that 
works in both the defining module and any accessing module. It is ignored in 
modules that neither define nor access the variable. Therefore, an include file for 
a library which is used in multiple .EXE files does not force the definition of a 
symbol as EXTERN does. 

The EXTERNDEF statement takes this form: 

EXTERNDEF [langtype] name:qualifiedtype 

The name is the variable's identifier. The qualifiedtype is explained in detail in 
Section 1.2.6, "Data Types." 

The optionallangtype specifier sets the naming conventions for the name it 
precedes. It overrides any language specified in the .MODEL directive. The speci­
fier can be C, SYSCALL, STDCALL, PASCAL, FORTRAN, or BASIC. See Sec­
tion 20.1, "Naming and Calling Conventions," for information on selecting the 
appropriate langtype type. 



The assembler does not 
check parameters when 
you call EXTERNDEF 
procedures. 

Sharing Symbols with Include Files 

The diagram below shows the statements that declare an array, make it public, 
and use it in another module . 

.------ MOD.lNC -----, 

EXTERNDEF arrayl:BYTE 

1 

• + 
,----MOD1.ASM----. .-------MOD2.ASM -------, 

INCLUDE MOD. INC INCLUDE MOD. INC 

.DATA .CODE 
arrayl BYTE 2, 4, 6 mav ax, arrayl[12] 

Figure 8.1 Using EXTERNDEF for Variables 

The file position of EXTERNDEF directives is important. See Section 8.2.3, 
"Positioning External Declarations," for more information. 

You can also make procedures visible by using EXTERNDEF without PROTO in­
side an include file. This method treats the procedure name as a simple identifier, 
without the parameter list, so you forgo the assembler's ability to check for the 
correct parameters during assembly. 

The method for using EXTERNDEF for procedures is the same as using it with 
variables. You can also use EXTERNDEF to make code labels global. 

8.2.2.2 USing PROTO 
When a procedure is defined in one module and called from another module, it 
must be declared public in the defining module and external in the calling mod­
ules; otherwise, assembly or linking errors occur. 

You have three methods for declaring a procedure public. Using PUBLIC and 
EXTERN is the only method prior to MASM 6.0. Section 8.3.1 explains the use 
of PUBLIC and EXTERN. The previous section (8.2.2.1) explains the use of 
EXTERNDEF. This section illustrates the use of PROTO. 

A PROTO (prototype) declaration in the include file establishes a procedure's in­
terface in both the defining and calling modules. The PROTO directive automat­
ically generates an EXTERNDEF for the procedure unless the procedure has been 
declared PRIVATE in the PROC statement. Defining a prototype enables type­
checking for the procedure arguments. 

219 



Sharing Data and Procedures among Modules and Libraries 

PROTO and INVOKE 
simplify procedure calls. 

Follow these steps to create an interface for a procedure defined in one module 
and called from other modules: 

1. Place the PROTO declaration in the include file. 

2. Define the procedure with PROC. The PROC directive declares the procedure 
PUBLIC by default. 

3. Call the procedure with the INVOKE statement (or with CALL). 

The following example is a PROTO declaration for the far procedure 
Copy Fi 1 e, which uses the C parameter-passing and naming conventions, and 
takes the arguments fi 1 ename and numberl i nes. The diagram following 
the example shows the file placement for these statements. This definition goes 
into the include file: 

CopyFile PROTO FAR C filename:BYTE, numberlines:WORD 

The procedure definition for Copy Fi 1 e is 

CopyFile PROC FAR C USES ex, filename:BYTE, numberlines:WORD 

To call the Copy Fi 1 e procedure, you can use this INVOKE statement: 

INVOKE CopyFile, NameVar, 200 

r--------- TOOLS.INC ------------, 

CopyFile PROTO FAR C filename:BYTE, numberlines:WORD 

I 
t t 

.------- TOOLS.ASM --------, r------ FILE1.ASM ------, 

220 

INCLUDE TOOLS. INC 

.CODE 
INVOKE CopyFile, NameVar, 200 

Figure 8.2 USing PROTO and INVOKE 

INCLUDE TOOLS. INC 

.CODE 
CopyFile PROC FAR C USES ex, 

filename:BYTE, 
numberlines:WORD 

See Chapter 7, "Controlling Program Flow," for descriptions, syntax, and ex­
amples of PROTO, PROC, and INVOKE. 



Communal variables can 
reduce the size of 
executable files. 

EXTERNDEF is a flexible 
alternative to using COMM. 

Sharing Symbols with Include Files 

8.2.2.3 Using COMM 
Another way to share variables among modules is to add the COMM (communal) 
declaration to your include file. Since communal variables are allocated by the 
linker and cannot be initialized, you cannot depend on their location or sequence. 

Communal variables are supported by MASM primarily for compatibility with 
communal variables in Microsoft C. Communal variables are not used in any 
other Microsoft language, and they are not compatible with C++ and some other 
languages. 

COMM declares a variable external but cannot be used with code. COMM also in­
structs the linker to define the variable if it has not been explicitly defined in a 
module. The memory space for communal variables may not be assigned until 
load time, so using communal variables may reduce the size of your executable 
file. 

The COMM declaration has the syntax 

COMM [langtype] [NEAR I FAR] label:type[:count] 

The label is the name of the variable. The langtype sets the naming conventions 
for the name it precedes. It overrides any language specified in the .MODEL 
directive. 

If NEAR or FAR is not specified, the variable determines the default from the cur­
rent memory model (NEAR for TINY, SMALL, COMPACT, and FLAT; FAR for 
MEDIUM, LARGE, and HUGE). 

The type can be a constant expression, but it is usually a type such as BYTE, 
WORD, or DWORD, or a structure, union, or record. If you first declare the type 
with TYPEDEF, CodeView can provide type information. The count is the num­
ber of elements. If no count is given, one element is assumed. 

The following example creates the common far variable DataBl ock, which is 
a 1 ,024-element array of uninitialized signed doublewords: 

COMM FAR DataBlock:SDWORD:1024 

NOTE C variables declared outside functions (except static variables) are communal un­
less explicitly initialized; they are the same as assembly-language communal variables. If 
you are writing assembly-language modules for C, you can declare the same communal vari­
ables in both C and MASM include files. However, communal variables in C do not have to 
be declared communal in assembler. The linker will match the EXTERN, PUBLIC, and COMM 
statements for the variable. 

EXTERNDEF (explained in the previous section) is more flexible than COMM 
because you can initialize variables defined with it, and you can use those varia­
bles in code that depends on the position and sequence of the data. 

221 



Sharing Data and Procedures among Modules and Libraries 

8.2.3 Positioning External Declarations 

Always close opened 
segments. 

222 

Although LINK determines the actual address of an external symbol, the assem­
bler assumes a default segment for the symbol, based on the location of the exter­
nal directive in the source code. You should therefore position EXTERN and 
EXTERNDEF directives according to these rules: 

• If you know which segment defines an external symbol, put the EXTERN 
statement in that segment. 

• If you know the group but not the segment, position the EXTERN statement 
outside any segment and reference the variable with the group name. For ex­
ample, if va r 1 is in DGROUP, you would reference the variable as 

mov DGROUP:var1, 10. 

• If you know nothing about the location of an external variable, put the 
EXTERN statement outside any segment. You can use the SEG directive to 
access the external variable like this: 

mav ax, SEG varl 
maves, ax 
mav ax, es:varl 

• If the symbol is an absolute symbol or a far code label, you can declare it ex­
ternal anywhere in the source code. 

Any segments opened in include files should always be closed so that external 
declarations following an include statement are not incorrectly placed inside a 
segment. Any include statements in your program should immediately follow the 
.MODEL, OPTION, and processor directives. 

For the same reason, if you want to be certain that an external definition is out­
side a segment, you can use @CurSeg. The @CurSeg predefined symbol re­
turns a blank if the definition is not in a segment. For example, 

.DATA 

@CurSeg ENDS ; Clase segment 
EXTERNDEF var:WORD 

See Section 1.2.3, "Predefined Symbols," for information about predefined sym­
bols such as @CurSeg. 



Using Alternatives to Include Files 

8.3 Using Alternatives to Include Files 
If your project uses only two modules (or if it is written with a version of MASM 
prior to 6.0), you may want to continue using PUBLIC in the defining module 
and EXTERN in the accessing module, and not create an include file for the pro­
ject. The EXTERN directive can be used in an include file, but the include file 
containing EXTERN cannot be added to the module that contains the correspond­
ing PUBLIC directive for that symbol. This section assumes that you are not 
using include files. 

8.3.1 PUBLIC and EXTERN 
The PUBLIC and EXTERN directives are less flexible than EXTERNDEF and 
PROTO because they are module-specific: PUBLIC must appear in the defining 
module and EXTERN must appear in the calling modules. This section shows 
how to use PUBLIC and EXTERN. Information on where to place the external 
declarations in your file is in Section 8.2.3, "Positioning External Declarations." 

The PUBLIC directive makes a name visible outside the module in which it is de­
fined. This gives other program modules access to that identifier. 

The EXTERN directive performs the complementary function. It tells the assem­
bler that a name referenced within a particular module is actually defined and de­
clared public in another module that will be specified at link time. 

A PUBLIC directive can appear anywhere in a file. Its syntax is 

PUBLIC [langtype] name[, [langtype] name] ... 

The name must be the name of an identifier defined within the current source 
file. Only code labels, data labels, procedures, and numeric equates can be de­
clared public. 

If you specify the langtype field here, it overrides the language specified by 
.MODEL. The langtype field can be C, SYSCALL, STDCALL, PASCAL, 
FORTRAN, or BASIC. Section 7.3.3, "Declaring Parameters with the PROC 
Directive," and Section 20.1, "Naming and Calling Conventions," provide more 
information on specifying lang type types. 

The EXTERN directive tells the assembler that an identifier is external-defined 
in some other module that will be supplied at link time. Its syntax is 

EXTERN [langtype] name:{ABS I qualifiedtype} 

Section 1.2.6, "Data Types," describes qualifiedtype. The ABS (absolute) key­
word can be used only with external numeric constants. ABS causes the identifier 
to be imported as a relocatable unsized constant. This identifier can then be used 
anywhere a constant can be used. If the identifier is not found in another module 
at link time, the linker generates an error. 

223 



Sharing Data and Procedures among Modules and Libraries 

In the following example, the procedure B u i 1 d Tab 1 e and the variable Va r 
are declared public. The procedure uses the Pascal naming and data-passing 
conventions: 

,..------MOD1.ASM-----. 

.MODEL small, Pascal 
PUBLIC BuildTable, Var 

.DATA 
Var BYTE 0 

.CODE 
BuildTable PROC USES cx dx, 

sizevar:WORD 

ret 
Buil dTabl e ENDP 

Figure 8.3 Using PUBLIC and EXTERN 

,..------ MOD2.ASM -----, 

EXTERN Var:BYTE, 
BuildTable:FAR 

mov 
call 

al, Var 
BuildTable 

8.3.2 Other Alternatives 
You can also use the directives discussed earlier (EXTERNDEF, PROTO, and 
COMM) without the include file. In this case, place the declarations to make a 
symbol global in the same module where the symbol is defined. You might want 
to use this technique if you are linking only a few modules that have very little 
data in common. 

8.4 Developing libraries 

224 

As you create reusable procedures, you can place them in a library file for con­
venient access. Although you can put any routine into a library, each library usu­
ally contains related routines. For example, you might place string-manipulation 
functions in one library, matrix calculations in another, and port communications 
in another. 

A library consists of combined object modules, each created from a single source 
file. The object module is the smallest independent unit in a library. If you link 
with one symbol in a module, you get the entire module, but not the entire library. 



Developing Libraries 

A library can consist of two files-an include file containing necessary declara­
tions and constants and a .LIB file containing procedures already assembled into 
object code. 

8.4.1 Associating Libraries with Modules 

Specify library names with 
INClUDELIB. 

link libraries with 
command-line options. 

LINK searches 
in a specific order. 

You can choose either of two methods for associating your libraries with the 
modules that use them: you can use the INCLUDELIB directive inside your 
source files or link the modules from the command line. 

To associate a specified library with your object code, use INCLUDELIB. You 
can add this directive to the source file to specify the libraries you want linked, 
rather than specifying them in the LINK command line. The INCLUDELIB 
syntax is 

INCLUDELIB libraryname 

The libraryname can be a file name or a complete path specification. If you do 
not specify an extension, .LIB is assumed. The library name is placed in the com­
ment record of the object file. LINK reads this record and links with the specified 
library file. 

For example, the statement INC LUOE LI B GRAPH I CS passes a message from 
the assembler to the linker telling LINK to use library routines from the file 
GRAPHICS.LIB. If this statement is in the source file DRA W.ASM and 
GRAPHICS.LIB is in the same directory, the program can be assembled and 
linked with the following command line: 

ML DRAW.ASM 

Without the INCLUDELIB directive, the program DRA W.ASM has to be linked 
with either of the following command lines: 

ML DRAW.ASM GRAPHICS. LIB 
ML DRAW Ilink GRAPHICS 

If you want to assemble and link separately, you can use 

ML Ie DRAW.ASM 
LINK DRAW",GRAPHICS 

If you do not specify a complete path in the INCLUDELIB statement or at the 
command line, LINK searches for the library file in the following order: 

1. In the current directory 

2. In any directories in the library field of the LINK command line 

3. In any directories in the LIB environment variable 

225 



Sharing Data and Procedures among Modules and libraries 

The LIB utility provided with MASM 6.0 helps you create, organize, and main­
tain run-time libraries. 

8.4.2 Using EXTERN with Library Routines 

226 

In some cases, EXTERN helps you limit the size of your executable file by speci­
fying in the syntax an alternative name for a procedure. You would use this form 
of the EXTERN directive when declaring a procedure or symbol that may not 
need to be used. 

The syntax looks like this: 

EXTERN [langtype] name [ (altname) ] :qualifiedtype 

The addition of the altname to the syntax provides the name of an alternate proce­
dure that the linker uses to resolve the external reference if the procedure given 
by name is not needed. Both name and altname must have the same qualifiedtype. 

When the linker encounters an external definition for a procedure that gives an 
altname, the linker finishes processing that module before it links the object mod­
ule that contains the procedure given by name. If the program does not reference 
any symbols in the name file's object from any of the linked modules, the assem­
bler uses altname to satisfy the external reference. This saves space because the 
library object module is not brought in. 

For example, assume that the contents of STARTUP.ASM include these 
statements: 

EXTERN init(dummy) 

dummy PROC 

ret 

dummy ENDP 

call i nit 

A procedure definition containing no 
executable code 

; Defined in FLOAT.OBJ 

In this example, the reference to the routine i ni t (defined in FLOAT.OBJ) 
does not force the module FLOAT.OBJ to be linked into the executable file. If 
another reference causes FLOAT.OBJ to be linked into the executable file, then 
in it will refer to the in it label in FLOA T.OBJ. If there are no references 
which force FLOAT.OBJ to be loaded, then the alternate name for 
i nit ( dummy) will be used by the linker. 



Related Topics in Online Help 

8.5 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

Topic 

LIB 

INCLUDE, 
INCLUDELIB, 
EXTERNDEF, 
COMM,and 
PUBLIC 

TYPEDEF 

PROTO and INVOKE 

OPTION directive 

@CurSeg 

PWB Options menu 

Access 

From the "Microsoft Advisor Contents" screen, 
choose "LIB" from the list of Microsoft Utilities 

From the "MASM 6.0 Contents" screen, choose 
"Directives," then "Scope and Visibility" 

From the "MASM 6.0 Contents" screen, choose 
"Directives," then "Complex Data Types" 

From the "MASM 6.0 Contents" screen, choose 
"Directives," then "Procedures and Code Labels" 

From the "MASM 6.0 Contents" screen, choose 
"Directives," then "Miscellaneous" 

From the "MASM 6.0 Contents" screen, choose 
"Predefined Symbols" 

From the "Microsoft Advisor Contents" screen, 
choose "Programmer's WorkBench" 

227 





Chapter 9 

Using Macros 

9.1 

A "macro" is a symbolic name you give to a series of characters (a text macro) or 
to one or more statements (a macro procedure or function). As the assembler 
evaluates each line of your program, it scans the source code for names of pre­
viously defined macros. When it finds one, it substitutes the macro text for the 
macro name. In this way, you can avoid writing the same code several places in 
your program. 

This chapter describes the following types of macros: 

• Text macros, which expand to text within a source statement 

• Macro procedures, which expand to one or more complete statements and can 
optionally take parameters 

• Repeat blocks, which generate a group of statements a specified number of 
times or until a specified condition becomes true 

• Macro functions, which look like macro procedures and can be used like text 
macros but which also return a value 

• Predefined macro functions and string directives, which perform string 
operations 

Macro processing is a text-processing mechanism that is done sequentially at as­
sembly time. By the end of assembly, all macros have been expanded and the re­
sulting text assembled into object code. 

This chapter shows how to use macros for simple code substitutions as well as 
how to write sophisticated macros with parameter lists and repeat loops. It also 
describes how to use these features in conjunction with local symbols, macro 
operators, and predefined macro functions. 

Text Macros 
You can give a sequence of characters a symbolic name and then use the name in 
place of the text later in the source code. The named text is called a text macro. 

229 



Using Macros 

230 

The syntax for defining a text macro is 

name TEXTEQU <text> 
name TEXTEQU macrold I textmacro 
name TEXTEQU %constExpr 

where text is a sequence of characters enclosed in angle brackets, macrold is a 
previously defined macro function (see Section 9.6), textmacro is a previously de­
fined text macro, and %constExpr is an expression that evaluates to text. The use 
of angle brackets to delimit text is discussed in more detail in Section 9.3.1, and 
the % operator is explained in Section 9.3.2. 

Here are some examples: 

msg TEXTEQU <Some 
string TEXTEQU msg 
msg TEXTEQU <Some 
value TEXTEQU %(3 + 

text> 

other text> 
num) 

Text assigned to symbol 
Text macro assigned to symbol 
New text assigned to symbol 
Text representation of 

resolved expression assigned 
to symbol 

In the first line, text is assigned to the symbol rnsg. In the second line, the text of 
the rns 9 text macro is assigned to a new text macro called s t r i n g. In the 
third line, new text is assigned to rnsg. The result is that rnsg has the new text 
value, while s t r i n 9 has the original text value. The fourth line assigns 7 to 
val ue if n urn equals 4. If a text macro expands to another text macro (or 
macro function, which is discussed in Section 9.6), the resulting text macro will 
be recursively expanded. 

Text macros are useful for naming strings of text that do not evaluate to integers. 
For example, you might use a text macro to name a floating-point constant or a 
bracketed expression. Here are some practical examples: 

pi 
WPT 
a rg1 

TEXTEQU <3.1416> 
TEXTEQU <WORD PTR> 
TEXTEQU <[bp+4]> 

Floating point constant 
Sequence of key words 
Bracketed expression 

NOTE Use of the TEXTEQU directive to define text macros is new in MASM 6.0. In previous 
versions, you can use the EQU directive for the same purpose. If you have old code that 
worked under previous versions, it should still work under 6.0. However, the more con­
sistent and flexible TEXTEQU is recommended for new code. 



Macro Procedures 

9.2 Macro Procedures 
If your program needs to perform the same task many times, you can avoid 
having to type the same statements each time by writing a macro procedure. 
Macro procedures (commonly called macros) can be seen as text-processing 
mechanisms that automatically generate repeated text. 

The term "macro procedure" rather than macro is used when necessary to distin­
guish between macro procedures and macro functions (a new feature of MASM 
6.0 described in Section 9.6, "Returning Values with Macro Functions"). 

9.2.1 Creating Macro Procedures 

Macro comments must 
start with two semicolons 
instead of one. 

To define a macro procedure without parameters, place the desired statements be­
tween the MACRO and ENDM directives: 

name MACRO 
statements 
ENDM 

For example, suppose you want a program to beep when it encounters certain er­
rors. A beep macro can be defined as follows: 

beep 

ENDM 

mov 
mov 
int 

MACRO 
ah, 2 
dl, 7 
21h 

" Select DOS Print Char function 
" Select ASCII 7 (bell) 
" Call DOS 

The double semicolons mark the beginning of macro comments. Macro com­
ments appear in a listing file only at the macro's initial definition, not at the point 
where it is called and expanded. Listings are usually easier to read if the com­
ments aren't always expanded. Regular comments (those with a single semi­
colon) are listed in macro expansions. Appendix C discusses listing files and 
shows examples of how macros are expanded in listings. 

Once a macro is defined, you can call it anywhere in the program by using the 
macro's name as a statement. The following example calls the beep macro two 
times if an error flag has been set. 

.IF error 
beep 
beep 
.ENDIF 

If error flag is true 
execute macro two times 

231 



Using Macros 

Macros are usually faster 
than run-time procedures. 

The instructions in the macro take the place of the macro call when the program 
is assembled. This would be the resulting code (from the listing file): 

. IF error 
0017 80 3E 0000 R 00 * cmp error, 000h 
001C 74 0C * je @C0001 

beep 
001E B4 02 1 mov ah, 2 
0020 B2 07 1 mov dl , 7 
0022 CD 21 1 int 21h 

beep 
0024 B4 02 1 mov ah, 2 
0026 B2 07 1 mov dl , 7 
0028 CD 21 1 int 21h 

.ENDIF 
002A *@C0001: 

Contrast this with the results of defining beep as a procedure using the PROC 
directive and then calling it using the CALL instruction. The instructions of the 
procedure occur only once in the executable file, but you would also have the ad­
ditional overhead of the CALL and RET instructions. 

In some cases the same task can be done with either a macro or a procedure. Mac­
ros are potentially faster because they have less overhead, but they generate the 
same code multiple times rather than just once. 

9.2.2 Passing Arguments to Macros 
Parameters allow macros 
to execute variations of a 
general task. 

232 

By defining parameters for macros, you can define a general task and then ex­
ecute variations of it by passing different arguments each time you call the 
macro. The complete syntax for a macro procedure includes a parameter list: 

name MACRO parameterlist 
statements 
ENDM 

The parameterlist can contain any number of parameters. Use commas to sepa­
rate each parameter in the list. Parameter names cannot be reserved words unless 
the keyword has been disabled with OPTION NOKEYWORD, the compatibility 
modes have been set by specifying OPTION M510 (see Section 1.3.2), or the jZm 
command-line option has been set. 

To pass arguments to a macro, place the arguments after the macro name when 
you call the macro: 

macroname arglist 

All text between matching quotation marks in an arglist is considered one text 
item. 



Macro Procedures 

The beep macro introduced in the last section used the DOS interrupt to write 
the bell character (ASCII 7). It can be rewritten with a parameter to specify any 
character to write. 

writechar MACRO char 
mov ah, 2 

ENDM 

mov dl, char 
int 21h 

" Select DOS Print Char function 
" Select ASCII char 
" Call DOS 

Wherever cha r appears in the macro definition, the assembler replaces it with 
the argument in the macro call. Each time you call wri techa r, you can print a 
different value: 

writechar 7 
writechar 'A' 

Causes computer to beep 
Writes A to screen 

If you pass more arguments than there are parameters, the additional arguments 
generate a warning (unless you use the VARARG keyword; see Section 9.4.3). If 
you pass fewer arguments than the macro procedure expects, remaining parame­
ters are assigned empty strings (unless default values have been specified). This 
may cause errors. For example, if you call the wri techa r macro with no argu­
ment, it generates the following: 

mov dl , 

The assembler generates an error for the expanded statement but not for the 
macro definition or the macro call. 

Macros can be made more flexible by leaving off macro arguments or adding ad­
ditional ones. The next section tells some of the ways you can handle missing or 
extra arguments. 

9.2.3 Specifying Required and Default Parameters 
You can specify required 
and default parameters for 
macros. 

You can give macro parameters special attributes to make them more flexible 
and improve error handling; you can make them required, give them default 
values, or vary their number. Because variable parameters are used almost exclu­
sively with the FOR directive, discussion of them is postponed until Section 
9.4.3, "FOR Loops and Variable-Length Parameters." 

The syntax for a required parameter is 

parameter:REQ 

233 



Using Macros 

A default value fills in 
missing parameters. 

234 

For example, you can rewrite the w r i t e c h a r macro to require the c h a r 
parameter: 

writechar MACRO char:REQ 

ENDM 

mov ah, 2 
mov dl, char 
int 21h 

" Select DOS Print Char function 
" Select ASCII char 
" Ca 11 DOS 

If the call does not include a matching argument, the assembler reports the error 
in the line that contains the macro call. The effect of REQ is to improve error 
reporting. 

Another way to handle missing parameters is to specify a default value. The 
syntax is 

parameter:=textvalue 

Suppose that you often use wri techa r to beep by printing ASCII 7. The fol­
lowing macro definition uses an equal sign to tell the assembler to assume the 
parameter c h a r is 7 unless you specify otherwise: 

writechar 
mov 
mov 
int 

ENDM 

MACRO char:=<7> 
ah, 2 
dl, char 
21h 

" Select DOS Print Char function 
" Select ASCII char 
" Call DOS 

In this case, cha r is not required. If you don't supply a value, the assembler 
fills in the blank with the default value of 7 and the macro beeps when called. 

The default parameter value is enclosed in angle brackets so that the supplied 
value will be recognized as a text value. Section 9.3.1, "Text Delimiters « » 
and the Literal-Character Operator (!)," explains this in more detail. 

Missing arguments can also be handled with the IFB, IFNB, .ERRB, and .ERRNB 
directives. They are described briefly in Section 1.3.3, "Conditional Directives," 
and in online help. Here is a slightly more complex macro that uses some of 
these techniques. 

Scroll MACRO distance:REQ, attrib:=<07h>, tcol, trow, bcol, brow 
IFNB <tcol> ;; Ignore arguments if blank 

mov cl, tcol 
ENDIF 
IFNB <trow> 

mov ch, trow 
ENDIF 
IFNB <bcol> 

mov dl , bcol 
ENDIF 
IFNB <brow> 

mov dh, brow 
ENDIF 



Macro Procedures 

ENDM 

IFDIFI <attrib>, <bh> 
mov bh, attrib 

END IF 

" Don't move BH onto itself 

IF distance LE 0 ;; Negative scrolls up, positive down 
mov ax, 0600h + (-(distance) AND 0FFh) 

ELSE 
mov ax, 0700h + (distance AND 0FFh) 

ENDIF 
int 10h 

In this macro, the dis tan c e parameter is required. The at t rib parameter 
has a default value of 07h (white on black), but the macro also tests to make 
sure the corresponding argument isn't BH, since it would be inefficient (though 
legal) to load a register onto itself. The IFNB directive is used to test for blank ar­
guments. These are ignored to allow the user to manipulate rows and columns 
directly in registers ex and DX at run time. 

The following are two valid ways to call the macro: 

; Assume DL and CL already loaded 
dec dh Decrement top row 
inc ch Increment bottom row 
Scroll -3 Scroll white on black dynamic 

window up three lines 
Scroll 5, 17h, 2, 2, 14, 12 Scroll white on blue constant 

window down five lines 

This macro can generate completely different code, depending on its arguments. 
In this sense, it is not comparable to a procedure, which always has the same 
code regardless of arguments. 

9.2.4 Defining Local Symbols in Macros 
You can make a symbol local to a macro by declaring it at the start of the macro 
with the LOCAL directive. Any identifier may be declared local. 

You can choose whether you want numeric equates and text macros to be local 
or global. If a symbol will be used only inside a particular macro, you can de­
clare it local so that the name will be available for other declarations inside other 
macros or at the global level. On the other hand, it is sometimes convenient to de­
fine text macros and equates that are not local, so that their values can be shared 
between macros. 

If you need to use a label inside a macro, you must declare it local, since a label 
can occur only once in the source. The LOCAL directive makes a special in­
stance of the label each time the macro is called. This prevents redefinition of the 
label. 

All local symbols must be declared immediately following the MACRO state­
ment (although blank lines and comments may precede the local symbol). 

235 



Using Macros 

Separate each symbol with a comma. Comments are allowed on the LOCAL 
statement. Multiple LOCAL statements are also permitted. Here is an example 
macro that declares local labels: 

power MACRO factor:REQ, exponent:REQ 
LOCAL again, gotzero , , Local symbols 
sub dx, dx , , Clear top 
mov ax, 1 , , Multiply by one on first loop 
mov ex, exponent , , Load count 
jcxz gotzero , , Done if zero exponent 
mov bx, factor , , Load factor 

again: 
mul bx , , Multi ply factor times exponent 
loop again , , Result in AX 

gotzero: 
ENDM 

If the labels a 9 a i nand got z e r 0 were not declared local, the macro would 
work the first time it is called, but it would generate redefinition errors on sub­
sequent calls. MASM implements local labels by generating different names for 
them each time the macro is called. You can see this in listing files. The labels in 
the power macro might be expanded to ??0000 and ??0001 on the first 
call and to ??0002 and ??0003 on the second. 

9.3 Assembly Time Variables and Macro Operators 

236 

In writing macros, you will often assign and modify values assigned to symbols. 
These symbols can be thought of as assembly-time variables. Like memory varia­
bles, they are symbols that represent values. But since macros are processed at as­
sembly time, any symbol modified in a macro must be resolved as a constant by 
the end of assembly. 

The three kinds of assembly-time variables are: 

• Macro parameters 

• Text macros 

• Macro functions 

When a macro is expanded, the symbols are processed in the order shown above. 
First macro parameters are replaced with the text of their actual arguments. Then 
text macros are expanded. 

Macro parameters are similar to procedure parameters in some ways, but they 
also have important differences. In a procedure, a parameter has a type and a 
memory location. Its value can be modified within the procedure. In a macro, a 
parameter is a placeholder for the argument text. The value can only be assigned 



Assembly Time Variables and Macro Operators 

to another symbol or used directly; it cannot be modified. The macro may inter­
pret the argument text it receives either as a numeric value or as a text value. 

It is important to understand the difference between text values and numeric 
values. Numeric values can be processed with arithmetic operators and assigned 
to numeric equates. Text values can be processed with macro functions and 
assigned to text macros. 

Macro operators are often helpful when processing assembly-time variables. 
Table 9.1 shows the macro operators that MASM provides: 

Table 9.1 MASM Macro Operators 

Symbol Name 

<> Text Delimiters 

Li teral-Character Operator 

% Expansion Operator 

& Substitution Operator 

Description 

Opens and closes a literal string. 

Treats the next character as a literal char­
acter, even if it would normally have 
another meaning. 

Causes the assembler to expand a con­
stant expression or text macro. 

Tells the assembler to replace a macro par­
ameter or text macro name with its 
actual value. 

The next sections explain these operators in detail. 

9.3.1 Text Delimiters « » and 
the Literal-Character Operator (!) 

The angle brackets « » are text delimiters. The most common reason to delimit 
a text value is when assigning a text macro. You can do this with TEXTEQU, as 
previously shown, or with the SUBSTR and CATSTR directives discussed in Sec­
tion 9.5, "String Directives and Predefined Functions." 

By delimiting the text of macro arguments, you can pass text that includes 
spaces, commas, semicolons, and other special characters. In the following ex­
ample, assume you have previously defined a macro called wo r k: 

work <1, 2, 3, 4, 5> 

work 1, 2, 3, 4, 5 

Passes one argument 
with 15 characters 

Passes five arguments, each 
with 1 character 

Since angle brackets are delimiters, you can't include them as part of a delimited 
text value. The literal-character operator (!) can be used to override this 

237 



Using Macros 

limitation. It forces the assembler to treat the character following it literally 
rather than as a special character. 

errstr TEXTEQU <Expression 1> 255> ; errstr = "Expression> 255" 

Text delimiters also have a special use with the FOR directive, as explained in 
Section 9.4.3. 

9.3.2 Expansion Operator (%) 

238 

The expansion operator (% ) expands text macros or converts constant expres­
sions into their text representations. It performs these tasks differently in differ­
ent contexts, as discussed below. 

9.3.2.1 The Expansion Operator with Constants 
The expansion operator can be used in any context where a text value is expected 
but a numeric value is supplied. In these contexts, it can be thought of as a con­
version operator to convert numeric values to text values. 

The expansion operator forces immediate evaluation of a constant expression and 
replaces it with a text value consisting of the digits of the result. The digits are 
generated in the current radix (default decimal). 

This application of the expansion operator is useful when defining a text macro: 

a 
b 

TEXTEQU <3 + 4> 
TEXTEQU %3 + 4 

a "3 + 4" 
; b = "7" 

When assigning text macros, numeric equates can be used in the constant expres­
sions, but text macros cannot: 

num EQU 4 
numstr TEXTEQU <4> 
a TEXTEQU %3 + num 
b TEXTEQU %3 + numstr 

num = 4 
numstr = <4> 
a <7> 
b = <7> 

The expansion operator can be used when passing macro arguments. If you want 
the value rather than the text of an expression to be passed, use the expansion 
operator. Use of the expansion operator depends on whether you want the expres­
sion to be evaluated inside the macro on each use, or outside the macro once. The 
following macro 

work MACRO arg 
mov ax, arg * 4 

ENOM 



Assembly Time Variables and Macro Operators 

can be called with these statements: 

work 2 + 3 Passes "2 + 3" 
Code: mov ax, 2 + 3 * 4 (14) 

work %2 + 3 Passes 5 
Code: mov ax, 5 * 4 (20) 

Notice that because of operator precedence, results can vary depending on 
whether the expansion operator is used. Sometimes parentheses can be used in­
side the macro to force evaluation in a particular order: 

work MACRO arg 
mov ax, (arg) * 4 

ENOM 

work 
work 

2 + 3 
%2 + 3 

Code: mov ax, (2 + 3) * 4 (20) 
Code: mov ax, (5) * 4 (20) 

This example generates the same code regardless of whether you pass the argu­
ment as a value or as text, but in some cases you need to specify how the argu­
ment is passed. 

The value for a default argument must be text, but frequently you need to give a 
constant value. The expansion operator is one way to force the conversion. The 
following statements are equivalent: 

work 
work 

MACRO 
MACRO 

arg:=<07h> 
arg:=%07h 

The expansion operator also has several uses with macro functions. See 
Section 9.6. 

9.3.2.2 The Expansion Operator with Symbols 
When you use the expansion operator on a macro argument, any text macros or 
numeric equates in the argument are expanded: 

num EOU 4 
numstr TEXTEOU <4> 

work 2 + num Passes "2 + num" 
work %2 + num Passes "6" 
work 2 + numstr Passes "2 + numstr" 
work %2 + numstr Passes "6" 

The arguments can optionally be enclosed in parentheses. For example, these two 
statements are equivalent: 

work %2 + num 
work %(2 + num) 

239 



Using Macros 

9.3.2.3 The Expansion Operator as the First Character 
on a Line 

The expansion operator has a different meaning when used as the first character 
on a line. In this case, it instructs the assembler to expand any text macros and 
macro functions it finds on the rest of the line. 

This feature makes it possible to use text macros with directives such as ECHO, 
TITLE, and SUBTITLE that take an argument consisting of a single text value. 
For instance, ECHO displays its argument to the standard output device during as­
sembly. Such expansion can be useful for debugging macros and expressions, but 
the requirement that its argument be a single text value may have unexpected 
results: 

ECHO Bytes per element: %(SIZEOF array / LENGTHOF array) 

Instead of evaluating the expression, this line just echoes it: 

Bytes per element: %(SIZEOF array / LENGTHOF array) 

However, you can achieve the desired result by assigning the text of the expres­
sion to a text macro and then using the expansion operator at the beginning of the 
line to force expansion of the text macro. 

temp TEXTEQU %(SIZEOF array / LENGTHOF array) 
% ECHO Bytes per element: temp 

Note that you cannot get the same results by simply putting the % at the begin­
ning of the first echo line, because % expands only text macros, not numeric 
equates or constant expressions. 

Here are more examples of the use of the expansion operator at the start of a line: 

, Assume memmod, lang, and as are passed in with ID option 
% SUBTITLE Model: memmod Language: lang Operating System: as 

Assume num defined earlier 
tnum TEXTEQU %num 
% .ERRE num LE 255, <Failed because tnum 1> 255> 

9.3.3 Substitution Operator (&) 

240 

In MASM 6.0, the substitution operator (&) enables substitution of macro para­
meters, even when the parameter occurs within a larger word or within a quoted 
string. It can also be used to concatenate two macro parameters after they have 
been expanded. 

The syntax for the substitution operator looks like this: 

&parametername& 



Assembly Time Variables and Macro Operators 

The operators delimiting a name always tell the assembler to substitute the actual 
argument for the name. However, the substitution operator is often optional. The 
substitution operator is not necessary when there is a space or separation charac­
ter (comma, tab, or other operator) on that side. In the case of a parameter name 
inside a string, at least one substitution operator must appear. 

The rules for using the substitution operator have changed significantly since 
MASM 5.1, making macro behavior more consistent and flexible. If you have 
macros written for a previous version of MASM, you can specify the old be­
havior by using OLDMACROS or M510 with the OPTION directive (see Section 
1.3.2). 

In the macro 

work MACRO arg 
mov ax, &arg& * 4 

ENOM 

the & symbols tell the assembler to replace the value of a rg with the corre­
sponding argument. However, the characters on both the right and left are spaces. 
Therefore, the operators are unnecessary. The macro would normally be written 
like this: 

work MACRO arg 
mov ax, arg * 4 

ENOM 

The substitution operator is used for one of the following reasons: 

• To paste together two parameter names or a parameter name and text 

• To indicate that a parameter name inside double or single quotation marks 
should be expanded rather than be treated as part of the quoted string 

This macro illustrates both uses: 

errgen MACRO num, msg 
PUBLIC err&num 
err&num BYTE "Error &num: &msg" 

ENOM 

When called with the following arguments, 

errgen 5, <Unreadable disk> 

the macro generates this code: 

PUBLIC err5 
err5 BYTE "Error 5: Unreadable disk" 

241 



Using Macros 

242 

In the second line of the macro, the left & symbol must be provided because it is 
adjacent to the r character, which is a valid identifier symbol. The right & sym­
bol is not needed because there is a space to the right of the m. The statement 
pastes the text err to the argument value 5 to generate the symbol err5. 

The substitution operator is used again inside quotation marks at the start of the 
parameter names num and msg to indicate that these names should be ex­
panded. In this case, no pasting operation is necessary, so either operator could 
be omitted, but not both. The macro line could have been written as 

err&num BYTE "Error num&: msg&" 

or 

err&num BYTE "Error &num&: &msg&" 

The assembler processes substitution operators from left to right. This can have 
unexpected results when you are pasting together two macro parameters. For ex­
ample, if a r 9 1 has the value va r and a r 9 2 has the value 3, you could 
paste them together with this statement: 

&argl&&arg2& BYTE "Text" 

Eliminating extra substitution operators, you might expect the following to be 
equivalent: 

&argl&arg2 BYTE "Text" 

However, this actually produces the symbol va r a r 9 2 because in processing 
from left to right the assembler associates both the first and the second & sym­
bols with the first parameter. The assembler replaces &a rg 1 & by va r , produc­
ing va r a r 9 2 . The a r 9 2 is never evaluated. The correct abbreviation is 

argl&&arg2 BYTE "Text" 

whichproducesthedesiredsymbol var3. The symbol argl&&arg2 isre­
placed by va r&a rg2, which is replaced by va r3. 

The substitution operator is also necessary if you want a text macro substituted in­
side quotes. For example, 

arg TEXTEQU <hello> 
%echo This is a string "&arg" 
%echo This is a string "arg" 

Produces: This is a string "hello" 
Produces: This is a string "arg" 

The substitution operator can also be used in lines beginning with the expansion 
operator (%) symbol, even outside macros (see Section 9.3.2.3). Text macros are 
always expanded in such lines, but it may be necessary to use the substitution 
operator to paste text macro names to adjacent characters or symbol names, as 
shown below: 



Bit-test and macro 
expansion statements can 
be confused. 

Defining Repeat Blocks with Loop Directives 

text TEXTEOU <var> 
value TEXTEOU %5 
% ECHO textvalue is text&&value 

This echoes the message 

textvalue is var5 

The single ampersand (&) is the bit-test operator in MASM, as it is for C. This 
operator is also used in macro expansion as the substitute operator. Macro 
substitution always occurs before evaluation of the high-level control structures; 
therefore, in ambiguous cases, the & operator is treated as a macro-expansion 
character. You can always guarantee the correct use of the bit-test operator by 
enclosing the bit-test operands in parentheses. The example below illustrates 
these two uses. 

test MACRO x 
. IFax==&x 
mov ax, 10 
.ELSEIF ax&(x) 
mov ax, 20 
.ENDIF 
ENDM 

&x substituted with parameter value 

& is bitwise AND 

9.4 Defining Repeat Blocks with Loop Directives 
A "repeat block" is an unnamed macro defined with a loop directive. It generates 
the statements inside the repeat block a specified number of times or until a given 
condition becomes true. 

Several loop directives are available, providing different ways of specifying the 
number of iterations. Some loop directives also provide a way to specify argu­
ments for each iteration. Although the number of iterations is usually specified in 
the directive, you can use the EXITM directive to exit from the loop early. 

Repeat blocks can be used outside macros, but they frequently appear inside 
macro definitions to perform some repeated operation in the macro. 

This section explains the following four loop directives: REPEAT, WHILE, FOR, 
and FORC. In previous versions ofMASM, REPEAT was called REPT, FOR 
was called IRP, and FORe was called IRPC. MASM 6.0 still recognizes the old 
names. 

NOTE The REPEAT and WHILE directives should not be confused with the .REPEAT and 
.WHILE directives (see Section 7.2.1, "Loop-Generating Directives"), which generate loop 
and jump instructions for run-time program control. 

243 



Using Macros 

9.4.1 REPEAT Loops 
Repeat loops are expanded 
at assembly time. 

The REPEAT directive is the simplest loop directive. It specifies the number of 
times to generate the statements inside the macro. The syntax is 

REPEAT constexpr 
statements 
ENDM 

The constexpr can be a constant or a constant expression, and must contain no 
forward references. Since the repeat block will be expanded at assembly time, the 
number of iterations must be known then. 

Here is an example of a repeat block used to generate data. It initializes an array 
containing sequential ASCII values for all uppercase letters. 

alpha LABEL BYTE Name the data generated 
letter = I A I Initialize counter 
REPEAT 26 , , Repeat for each letter 

BYTE letter , , Allocate ASCII code for letter 
1 etter = letter + 1 , , Increment counter 

ENDM 

Here is another use of REPEAT, this time inside a macro: 

beep MACRO iter:=<3> 

ENDM 

mov ah, 2 
mov dl, 7 
REPEAT iter 

int 21h 
ENDM 

" Character output function 
" Bell character 
" Repeat number specified by macro 
, , Call DOS 

9.4.2 WHILE Loops 

244 

The WHILE directive is similar to REPEAT, but the loop continues as long as a 
given condition is true. The syntax is 

WHILE expression 
statements 
ENDM 

The expression must be a value that can be calculated at assembly time. Nor­
mally the expression uses relational operators, but it can be any expression that 
evaluates to zero (false) or nonzero (true). Usually, the condition changes during 
the evaluation of the macro so that the loop won't attempt to generate an infinite 
amount of code. However, you can use the EXITM directive to break out of the 
loop. 



Loops are especially 
useful for generating 
lookup tables. 

Defining Repeat Blocks with Loop Directives 

The following repeat block uses the WHILE directive to allocate variables ini­
tialized to calculated values. This is a common technique for generating lookup 
tables. Frequently it is faster to look up a value precalculated by the assembler 
at assembly time than to have the processor calculate the value at run time. 

cubes LABEL BYTE , , Name the data generated 
root 1 , , Initialize root 
cube root * root * root , , Calculate first cube 
WHILE cube LE 32767 , , Repeat until result too large 

WORD cube , , Allocate cube 
root root + , , Calculate next root and cube 
cube root * root * root 

ENOM 

9.4.3 FOR Loops and Variable-Length Parameters 
With the FOR directive you can iterate through a list of arguments, doing some 
operation on each of them in tum. It has the following syntax: 

FOR parameter, <argumentlist> 
statements 
ENDM 

The parameter is a placeholder that will be used as the name of each argument in­
side the FOR block. The argument list must be a list of comma-separated argu­
ments and must always be enclosed in angle brackets, as the following example 
illustrates: 

series LABEL BYTE 
FOR arg, <1,2,3,4,5,6,7,8,9,10> 

BYTE arg OUP (arg) 
ENOM 

On the first iteration, the a r 9 parameter is replaced with the first argument, the 
value 1. On the second iteration a r 9 is replaced with 2. The result is an array 
with the first byte initialized to 1, the next two bytes initialized to 2, the next 
three bytes initialized to 3, and so on. 

In this example the argument list is given specifically, but in some cases the list 
must be generated as a text macro. The value of the text macro must include the 
angle brackets. 

arglist TEXTEOU <!<3,6,9!» 
FOR arg, arglist 

ENOM 

Generate list as text macro 

Do something to arg 

Note the use of the literal character operator (!) to use angle brackets as charac­
ters, not delimiters (see Section 9.3.1). 

245 



Using Macros 

Variable parameter lists 
provide flexibility. 

246 

The FOR directive also provides a convenient way to process macros with a vari­
able number of arguments. To do this, add V ARARG to the last parameter to indi­
cate that a single named parameter will have the actual value of all additional 
arguments. For example, the following macro definition includes the three 
possible parameter attributes-required, default, and variable. 

work MACRO rarg:REQ, darg:=<5>, varg:VARARG 

The variable argument must always come last. If this macro is called with the 
statement 

wo r k 5, , 6, 7, a, b 

the first argument is received as passed, the second is replaced by the default 
value 5, and the last four are received as the single argument < 6, 7, a, b>. 
This is the same format expected by the FOR directive. The FOR directive dis­
cards leading spaces but recognizes trailing spaces. 

The following macro illustrates variable arguments: 

show MACRO chr:VARARG 
mov ah, 02h 
FOR arg, <chr> 

mov dl, arg 
int 21h 

ENOM 
ENOM 

When called with 

show '0', 'K', 13, 10 

the macro displays each of the specified characters one at a time. 

The parameter in a FOR loop can have the required or default attribute. The 
show macro can be modified to make blank arguments generate errors: 

show MACRO chr:VARARG 
mov ah, 02h 
FOR arg:REQ, <chr> 

mov dl, arg 
int 21h 

ENOM 
ENOM 

The macro now generates an error if called with 

show ' 0' " 'K', 13, 10 



Defining Repeat Blocks with loop Directives 

Another approach would be to use a default argument: 

show MACRO chr:VARARG 
mov ah, 02h 
FOR arg:=<' '>, <chr> 

mov 
int 

ENOM 
ENOM 

dl, a rg 
21h 

Now if the macro is called with 

show '0 I" 'K', 13, 10 

it inserts the default character, a space, for the blank argument. 

9.4.4 FORe Loops 
The FORe directive is similar to FOR but takes a string of text rather than a list 
of arguments. The statements are assembled once for each character (including 
spaces) in the string, substituting a different character for the parameter each 
time through. 

The syntax looks like this: 

FORe parameter, < text> 
statements 
ENDM 

The text must be enclosed in angle brackets. The following example illustrates 
FORe: 

FORC arg, <ABCOEFGHIJKLMNOPORSTUVWXYZ> 
BYTE '&arg' " Allocate uppercase letter 
BYTE '&arg' + 20h " Allocate lowercase letter 
BYTE '&arg' - 40h " Allocate ordinal of letter 

ENOM 

Notice that the substitution operator must be used inside the quotation marks to 
make sure that a r 9 is expanded to a character rather than treated as a literal 
string. 

With earlier versions of MASM, FORe is often used for complex parsing tasks. 
A long sentence can be examined character by character. Each character is then 
either thrown away or pasted onto a token string, depending on whether it is a 
separator character. In MASM 6.0, the predefined macro functions and string pro­
cessing directives discussed in Section 9.5 are usually more efficient for these 
tasks. 

247 



Using Macros 

9.5 String Directives and Predefined Functions 
Predefined macro string 
functions are new to 
MASM 6.0. 

248 

The assembler provides the following directives for manipulating text: SUBSTR, 
INSTR, SIZESTR, and CA TSTR. Each of these has a corresponding predefined 
macro function version: @SubStr, @InStr, @SizeStr, and @CatStr. 

You use the directive versions to assign a processed value to a text macro or 
numeric equate. For example, CA TSTR, which concatenates a list of text values, 
can be used like this: 

num 7 
newstr CATSTR <3 + >, %num, < = > , %3 + num ; "3 + 7 = 10" 

Assignment with CATSTR and SUBSTR works like assignment with the 
TEXTEQU directive. Assignment with SIZESTR and INSTR works like assign­
ment with the = operator. 

The arguments to directives must be text values. Use the expansion operator to 
make sure that constants and numeric equates are expanded to text. 

The macro function versions are similar, but their arguments must be enclosed in 
parentheses. Macro functions return text values and can be used in any context 
where text is expected. Section 9.6 tells how to write your own macro functions. 
An equivalent statement to the previous example using CA TSTR is 

num 7 
newstr TEXTEOU @CatStr( <3 + >, %num, < = > , %3 + num ) 

Although the directive version is simpler in the example above, the function ver­
sions are often convenient because they can be used as arguments to string direc­
tives or to other macro functions. 

Unlike the string directives, predefined macro function names are case sensitive. 
Since MASM is not case sensitive by default, the case doesn't matter unless you 
use the fep command-line option. 

The following sections summarize the syntax for each of the string directives and 
functions. The explanations focus on the directives, but the functions work the 
same except where noted. 

SUBSTR 
name SUBSTR string, startIT, length] 
@SubStr( string, startIT, length] ) 

The SUBSTR directive assigns a substring from a given string to a new symbol, 
specified by name. Start specifies the position (I-based) in string to start the sub­
string. Length specifies the length of the substring. If length is not given, it is as­
sumed to be the remainder of the string including the start character. The string 



String Directives and Predefined Functions 

in the SUBSTR syntax, as well as in the syntax for the other string directives and 
predefined functions, can be any text/tem where text/tem can be text enclosed in 
angle brackets « », the name of a macro, or a constant expression preceded by 
% (%constExpr). 

INSTR 
name INSTR [start,] string, substring 
@InStr( [start]], string, substring) 

The INSTR directive searches a specified string for an occurrence of a given sub­
string and assigns its position (I-based) to name. The search is case sensitive. 
Start is the position in string to start the search for substring. If start is not given, 
it is assumed to be 1 (the start of the string). If substring is not found, the position 
assigned to name is O. 

If the INSTR directive is used, the position value is assigned to a name as if it 
were a numeric equate. If the @InStr function is used, the value is returned as a 
string of digits in the current radix. 

The @InStr function has a slightly different syntax than the INSTR directive. 
You can omit the first argument and its associated comma from the directive. 
You can leave the first argument blank with the function, but a blank function ar­
gument must still have a comma. For example, 

pos INSTR <person>, <son> 

is the same as 

pos = @InStr( , <person>, <son> ) 

The return value could also be assigned to a text macro: 

strpos TEXTEQU @InStr( , <person>, <son> ) 

SIZESTR 
name SIZESTR string 
@SizeStr( string) 

The SIZESTR directive assigns the number of characters in string to name. An 
empty string assigns a length of zero. Although the length is always a positive 
number, it is assigned as a string of digits in the current radix rather than as a 
numeric value. 

If the SIZESTR directive is used, the size value is assigned to a name as if it were 
a numeric equate. If the @SizeStr function is used, the value is returned as a 
string of digits in the current radix. 

249 



Using Macros 

250 

CATSTR 
name CATSTR string[, string] ... 
@CatStr( string[, string] ... ) 

The CATSTR directive concatenates a list of text values specified by string into a 
single text value and assigns it to name. TEXTEQU is technically a synonym for 
CATSTR. TEXTEQU is normally used for single-string assignments, while 
CA TSTR is used for multistring concatenations. 

The following example that pushes and pops one set of registers illustrates 
several uses of string directives and functions: 

SaveRegs - Macro to generate a push instruction for each 
; register in argument list. Saves each register name in the 
; regpushed text macro. 
regpushed TEXTEQU <> ;; Initialize empty string 

SaveRegs MACRO regs:VARARG 
FOR reg, <regs> ;; Push each register 

push reg " and add it to the 1 i st 
regpushed CATSTR <reg>, <,>, regpushed 

ENDM ;; Strip off last comma 
regpushed CATSTR <1<>, regpushed ;; Mark start of list with < 
regpushed SUBSTR regpushed, 1, @SizeStr( regpushed ) 
regpushed CATSTR regpushed, <1» ;; Mark end with> 

ENDM 

RestoreRegs - Macro to generate a pop instruction for registers 
saved by the SaveRegs macro. Restores one group of registers. 

RestoreRegs MACRO 
LOCAL regs 
%FOR reg, regpushed 

pop reg 
ENDM 

ENDM 

Pop each register 

Notice how the Save Regs macro saves its result in the regpushed text 
macro for later use by the RestoreRegs macro. In this case, a text macro is 
used as a global variable. By contrast, the reg s text macro is used only in 
RestoreRegs. It is declared LOCAL so that it won't take the name regs 
from the global name space. The MACROS.INC file provided with MASM 6.0 
includes expanded versions of these same two macros. 



Returning Values with Macro Functions 

9.6 Returning Values with Macro Functions 
A macro function 
returns a text string. 

A macro function is a named group of statements that returns a value. When a 
macro function is called, its argument list must be enclosed in parentheses, even 
if the list is empty. The value returned is always text. 

Macro functions are new to MASM 6.0, as are several predefined macro func­
tions for common tasks. The predefined macros include @Environ (see Section 
1.2.3) and the string functions @SizeStr, @CatStr, @SubStr, and @InStr (dis­
cussed in the preceding section). 

Macro functions are defined in exactly the same way as macro procedures, ex­
cept that a value must always be returned using the EXITM directive. Here is an 
example: 

DEFINED MACRO symbol :REO 

ENDM 

IFDEF symbol 
EX ITM <-1) 

ELSE 
EX ITM <0> 

ENDIF 

" True 

" False 

This macro works like the defined operator in the C language. You can use it to 
test the defined state of several different symbols with a single statement, as 
shown below: 

IF DEFINED( DOS) AND NOT DEFINED( XENIX ) 
" Do something 

ENDIF 

Notice that the macro returns integer values as strings of digits, but the IF state­
ment evaluates numeric values or expressions. There is no conflict because the 
value returned by the macro function is seen in the statement exactly as if the 
user had typed the values directly into the program: 

IF -1 AND NOT 0 

Returning Values with EXITM 
The return value must be text, a text equate name, or the result of another macro 
function. If a function must return a numeric value (such as a constant, a numeric 
equate, or the result of a numeric expression), it must first convert the value to 
text using angle brackets or the expansion operator (%). The defined macro, for 
example, could have returned its value as 

EXITM %-1 

Although macro functions can include any legal statement, they seldom need to 
include instructions. This is because a macro function is expanded and its value 
returned at assembly time, while instructions are executed at run time. 

251 



Using Macros 

Macro functions can 
enhance FOR loops. 

252 

Here is another example of a macro function. It uses the WHILE directive to cal­
culate factorials: 

factorial MACRO num:REO 
LOCAL i, factor 
factor num 
i 1 
WHILE factor GT 

i 
factor 

ENOM 
EX ITM %i 

ENOM 

i * factor 
factor - 1 

The integer result of the calculation is changed to a text string with the expansion 
operator (%). The factori a 1 macro can be used to define data, as shown 
below: 

var WORD factorial( 4 ) 

The effect of this statement is to initialize va r with the number 24 (the factorial 
of 4). 

Using Macro Functions with Variable-Length Parameter lists 
You can use the FOR directive to handle macro parameters with the V ARARG 
attribute. Section 9.4.3 explains how to do this in simple cases where the variable 
parameters are handled sequentially, from first to last. However, you may some­
times need to process the parameters in reverse order or nonsequentially. Macro 
functions make these techniques possible. 

You may need to know the number of arguments in a V ARARG parameter. The 
following macro functions handle this. 

@ArgCount MACRO arglist:VARARG 

ENOM 

LOCAL count 
count = 0 
FOR arg, <arglist> 

count = count + 
ENOM 
EX ITM %count 

" Count the arguments 

You could use this inside a macro that has a V ARARG parameter, as shown 
below: 

work MACRO args:VARARG 
% ECHO Number of arguments is: @ArgCount( args ) 
ENOM 



Returning Values with Macro Functions 

Another useful task might be to select an item from an argument list using an 
index to indicate which item. The following macro simplifies this. 

@ArgI MACRO index:REO, arglist:VARARG 
LOCAL count, retstr 
retstr TEXTEOU <> 
count = 0 
FOR arg, <arglist> 

count = count + 
IF count EO index 

" Initialize count 
" Initialize return string 

" Item is found 
retstr TEXTEOU <arg> " Set return string 
EXITM " and exit IF 

ENOIF 
ENOM 
EXITM retstr " Exit functi on 

ENOM 

This function can be used as shown below: 

work MACRO args:VARARG 
% ECHO Third argument is: @ArgI( 3, args ) 
ENOM 

Finally, you might need to process arguments in reverse order. The following 
macro returns a new argument list in reverse order. 

@ArgRev MACRO arglist:REO 
LOCAL txt, arg 
txt TEXTEOU <> 

% FOR arg, <arglist> 
txt CATSTR <arg>, <,>, txt 

ENOM 
" Paste each onto list 

" Remove terminating comma 
txt SUBSTR txt, 1, @SizeStr( %txt ) - 1 
txt CATSTR <!<>, txt, <I»~ " Add angle brackets 
EX ITM txt 

ENOM 

You could call this function as shown below: 

work MACRO args:VARARG 
% FOR arg, @ArgRev( <args> " Process in reverse order 

ECHO arg 
ENOM 

ENOM 

These three macro functions are provided on the MASM distribution disk in the 
MACROS.INC include file. 

253 



Using Macros 

Macro Operators and Macro Functions 
This list summarizes the behavior of the expansion operator with macro 
functions. 

• If a macro function is not preceded by a %, it will be expanded. However, if 
it expands to a text macro or a macro function call, the result will not be ex­
panded further. 

• If you use a macro function call as an argument for another macro function 
call, a % is not needed. 

• If a macro function expands to a text macro (or another macro function), the 
macro function will be recursively expanded. 

• If a macro function is called inside angle brackets and is preceded by %, it 
will be expanded. 

9.7 Advanced Macro Techniques 
The concept of replacing macro names with predefined macro text is simple in 
theory, but it has many implications and complications. Here is a brief summary 
of some advanced techniques you can use in macros. 

9.7.1 Nesting Macro Definitions 

254 

Macros can define other macros or can be redefined. MASM does not process 
nested definitions until the outer macro has been called. Therefore, the inner mac­
ros cannot be called until the outer macro has been called. The nesting of macro 
definitions is limited only by memory. 

shifts MACRO opname 

ENOM 

opname&s MACRO operand:REQ, 

ENOM 

IF rotates LE 2 
REPEAT rotate 

opname operand, 1 
ENOM 

ELSE 
mov 
opname 

ENOIF 

cl, rotates 
operand, cl 

, , Macro 
rotates :=<1> 

, , One at 
, , for 2 

, , Using 
, , more 

generates macros 

a time is faster 
or 1 ess 

CL is faster for 
than 2 



Advanced Macro Techniques 

; Call macro to make new macros 
shifts ror Generates rors 
shifts rol Generates rols 
shifts shr Generates shrs 
shifts shl Generates shls 
shifts rcl Generates rcls 
shifts rcr Generates rcrs 
shifts sal Generates sals 
shifts sar Generates sars 

This macro generates enhanced versions of the shift and rotate instructions. The 
macros could be called like this: 

shrs ax, 5 
rols bx, 3 

The macro versions handle multiple shifts by generating different code, depend­
ing on how many shifts are specified. The example above is optimized for the 
8088 and 8086 processors. If you want to enhance for other processors, you can 
simply change the outer macro; it automatically changes all the inner macros. 
Code that uses the inner macros benefits from the enhancements but does not 
change so long as the macro interface doesn't change. 

9.7.2 Testing for Argument Type and Environment 
Macros can check the type of arguments and generate different code depending 
on what they find. For example, you can use the OPATTR operator to detemline 
if an argument is a constant, a register, or a memory operand. 

If you discover a constant value, you can often optimize the code. In some cases, 
you can generate better code for 0 or 1 than for other constants. If the argument 
is a memory operand, you know nothing about the value of the operand, since it 
may change at run time. However, you may want to generate different code de­
pending on the operand size and on whether it is a pointer. Similarly, if the oper­
and is a register, you know nothing of its contents, but you may be able to 
optimize if you can identify a particular register with the IFDIFI or IFIDNI 
directives. 

255 



Using Macros 

256 

The following example illustrates some of these techniques. It loads a specified 
address into a specified offset register. The segment register is assumed to be DS. 

load MACRO reg:REO, adr:REO 
IF (OPATTR (adr» AND 00010000y 

IFDIFI reg, adr 
mov reg, adr 

ENDIF 
ELSEIF (OPATTR (adr» AND 00000100y 

" Register 
" Don't load register 

onto itself 

mov reg, adr " Constant 
ELSEIF (TYPE (adr) EO BYTE) OR (TYPE (adr) EO SBYTE) 

mov reg, OFFSET adr " Bytes 

ENDM 

ELSEIF (SIZE (TYPE (adr» EO 2 
mov reg, adr 

ELSEIF (SIZE (TYPE (adr» EO 4 
mov reg, WORD PTR adr[0] 
mov ds, WORD PTR adr[2] 

ELSE 
.ERR <Illegal argument> 

ENDIF 

" Near pointer 

" Far pointer 

A macro may also generate different code depending on the assembly environ­
ment. The predefined text macro @Cpu can be used to test for processor type. 
The following example uses the more efficient constant variation of the PUSH in­
struction if the processor is an 80186 or higher. 

IF @Cpu AND 00000010y 
pushc MACRO op 

push op 

ELSE 
ENDM 

pushc MACRO op 
mov ax, op 
push ax 

ENDM 
ENDIF 

;; 80186 or higher 

" 8088/8086 

Note that the example generates a completely different macro for the two cases. 
This is more efficient than testing the processor inside the macro and condition­
ally generating different code. With this macro, the environment is checked only 
once; if the conditional were inside the macro it would be checked every time the 
macro is called. 

You can test the language and operating system using the @Interface text 
macro. The memory model can be tested with the @Model, @DataSize, or 
@CodeSize text macros. 

You can save the contexts inside macros with PUSH CONTEXT and 
POPCONTEXT. The options for these keywords are: 



Related Topics in Online Help 

RADIX 

LIST 

CPU 

ALL 

Description 

Saves segment register information 

Saves listing and CREF information 

Saves current CPU and processor 

All of the above 

9.7.3 Using Recursive Macros 
Macros can call themselves. In previous versions of MASM, recursion is an im­
portant technique for handling variable arguments. With MASM 6.0, you can do 
this much more cleanly using the FOR directive and the V ARARG attribute, as 
described in Section 9.4.3. However, recursion is still available and may be use­
ful for some macros. 

9.8 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help. From the "MASM 6.0 Contents" screen: 

INCLUDE 

GOTO,PURGE 

.LISTMACRO 

IFB, IFNB, IFDIFI, 
and IFIDNI 

ECHO 

OPATTR 

@Cpu, @Interface, 
@DataSize, @Environ, 
and @CodeSize 

PUSHCONTEXT, 
POPCONTEXT 

Access 

Choose "Directives," and then "Scope and 
Visibility" 

Choose "Directives," and then "Macros and 
Iterative Blocks" 

Choose "Directives," and then "Listing 
Control" 

Choose "Directives," and then "Conditional 
Assembly" 

Choose "Directives," and then 
"Miscellaneous" 

Choose "Operators," and then 
"Miscellaneous" 

Choose "Predefined Symbols" 

Choose "Directives" and then "Iterative 
Blocks" 

257 













Chapter 1 0 

Managing Projects with NMAKE 

The Microsoft Program Maintenance Utility (NMAKE) is a sophisticated com­
mand processor that saves time and simplifies project management. Once you 
specify which project files depend on others, NMAKE automatically executes 
the commands needed to update your project when any project file has changed. 

The advantage of using NMAKE instead of simple batch files is that NMAKE re­
compiles only those files that need recompiling. NMAKE doesn't waste time 
with files that haven't changed since the last build. NMAKE also has advanced 
features (such as macros) that simplify managing complex projects. 

This chapter includes examples that show how each feature of NMAKE works. 
In addition, Section 10.9, "A Sample NMAKE Description File," shows how 
many of these features work together. 

If you are using the Microsoft Programmer's WorkBench (PWB) to build your 
project, PWB automatically creates a description file (called a "makefile" in the 
PWB documentation) and calls NMAKE to run the file. You may want to read 
this chapter if you intend to build your program outside of PWB or if you want to 
understand or modify a description file created by PWB. 

A utility called NMK allows you to use NMAKE to manage your project under 
DOS (or in a DOS session under OS/2). Section 10.11, "Using NMK," explains 
when and how to use NMK. 

If you are familiar with MAKE, the predecessor to NMAKE, be sure to read Sec­
tion 10.10, "Differences between NMAKE and MAKE." These utilities differ in 
several important respects. 

10.1 Overview of NMAKE 
NMAKE works by looking at the last times and dates of modification for a "tar­
get" file and its "dependents" and then comparing them. A target is usually a file 
you want to create, such as an executable file. A dependent is usually a file from 
which a target is created, such as a source file. A target is "out-of-date" if any of 
its dependents has changed more recently than the target. 

263 



Managing Projects with NMAKE 

WARNING For NMAKE to work properly, the date and time setting on your system must 
be consistent relative to previous settings. If you set the date and time each time you start 
the system, be careful to set it accurately. If your system stores a setting, be certain 
that the battery is working. 

When you run NMAKE, it reads a "description file" that you supply. The descrip­
tion file consists of one or more description blocks. Each description block typi­
cally lists a target, the target's dependents, and the commands that build the 
target. NMAKE compares the last time the targets changed to the last time the de­
pendents changed. If the modification time of any dependents is the same or later 
than the time of the target, NMAKE updates the target by executing the com­
mand or commands listed in the description block. 

NMAKE's main purpose is to help you update applications quickly and simply. 
However, it can execute any DOS or OS/2 command, so it is not limited to com­
piling and linking. NMAKE can also make backups, move files, and perform 
other project-management tasks that you ordinarily do at the operating-system 
prompt. 

10.2 Running NMAKE 

NMAKE follows the 
instructions you specify 
in a description file. 

264 

You invoke NMAKE with the following syntax: 

NMAKE [options] [macros] [targets] 

The options field lists NMAKE options, which are described in Section 10.4, 
"Command-Line Options." 

The macros field lists macro definitions, which allow you to change text in the 
description file. The syntax for macros is described in "User-Defined Macros" in 
Section 10.3.4.1, "Macros." 

The targets field lists targets to build. NMAKE rebuilds only the targets listed on 
the command line. If you don't specify any targets, NMAKE builds only the fiist 
target in the description file. (This behavior departs significantly from that of 
MAKE. See Section 10.10, "Differences between NMAKE and MAKE.") 

NMAKE searches the current directory for the name of a description file you 
specify with the IF option. It halts and displays an error message if the file does 
not exist. If you do not use the IF option to specify a description file, NMAKE 
searches the current directory for a description file named MAKEFILE. If 
MAKEFILE does not exist, NMAKE checks the command line for target files 
and tries to build them using predefined inference rules (either default or defined 
in TOOLS.INI). This feature lets you use NMAKE without a description file (as 
long as NMAKE has a predefined inference rule for the target). If the command 
line does not specify any target files, NMAKE halts and displays an error 
message. 



NMAKE Description Files 

Example 
NMAKE /s "program=sample" sort.exe search.exe 

This command supplies four arguments: an option (I S), a macro definition 
(nprogram=sampl en), and two target specifications (sort. exe and 
sea rch. exe). 

The command does not specify a description file, so NMAKE looks for the de­
fault description file, MAKEFILE. The /S option tells NMAKE not to display the 
commands as they are executed. (See Section lOA, "Command-Line Options.") 
The macro definition perfonns a text substitution throughout the description file, 
replacing every instance of program with sampl e. The target specifications 
tell NMAKE to update the targets SORT.EXE and SEARCH.EXE. 

10.3 NMAKE Description Files 
The most important parts of a description file are the description blocks, which 
tell NMAKE how to build your project's target files. A description file can also 
contain comments, macros, inference rules, and directives. This section describes 
the elements of description files. 

10.3.1 Description Blocks 

The target is the file that 
you want to build. 

Description blocks fonn the heart of the description file. Figure 10.1 illustrates a 
typical NMAKE description block, including the three sections: targets, depend­
ents, and commands. 

Dependency line 
~ __________ ~1~ ____________ ~ 

Targets Dependents 
~ ,,---~ ___ --,1,--____ ~ 
myapp.exe : myapp.obj another.obj myapp.def 

1 ink my a p pan 0 the r, , NUL, 0 s 2, my a p p }- Commands 
copy myapp.exe c:\project 

Figure 10.1 Typical Description Block 

10.3.1.1 Targets 
The targets section of the dependency line lists one or more files to build. The 
line that lists targets and dependents is called the "dependency line." 

The example in Figure 10.1 tells NMAKE how to build a single target, 
MYAPP.EXE, if it is missing or out-of-date. Although single targets are 

265 



Managing Projects with NMAKE 

A dependent is a file 
used to build a target. 

266 

common, you can also list multiple targets in a single dependency line; you must 
separate each target name with a space. If the name of the last target before the 
colon (:) is one character long, put a space between the name and the colon, so 
NMAKE won't interpret the character as a drive specification. 

A target can appear in only one dependency line when specified as shown above. 
To update a target using more than one description block, specify two consecu­
tive colons (::) between targets and dependents. For details, see Section 10.3.1.8, 
"Specifying a Target in Multiple Description Blocks." 

The target is usually a file, but it can also be a "pseudotarget," a name that lets 
you build groups of files or execute a group of commands. For more information, 
see Section 10.3.2, "Pseudotargets." 

1 0.3.1.2 Dependents 
The dependents section of the description block lists one or more files from 
which the target is built. A colon (:) separates it from the targets section. The ex­
ample in Figure 10.1 lists three dependents after MY APP .EXE: 

myapp.exe : myapp.obj another.obj myapp.def 

You can also specify the directories in which NMAKE should search for a de­
pendent. Enclose one or more directory names in braces ({ }). Separate multiple 
directories with a semicolon (;). The syntax for a directory specification is 

{directory[;directory ... ]}dependent 

Example 
The following dependency line tells NMAKE to search the current directory first, 
then the specified directories: 

forward.exe : {\src\alpha;d:\proj}pass.obj 

In the line above, the target, FORWARD.EXE, has one dependent, PASS.OBJ. 
The directory list specifies two directories: 

{\src\alpha;d:\proj} 

NMAKE first searches for PASS.OBJ in the current directory. IfPASS.OBJ isn't 
there, NMAKE searches the \SRC\ALPHA directory, then the D:\PROJ 
directory. If NMAKE cannot find a dependent in the current directory or a listed 
directory, it looks for a description block with a dependency line containing 
PASS.OBJ as a target, and uses the commands in that description block to create 
PASS.OBJ. If NMAKE cannot find such a description block, it looks for an infer­
ence rule that describes how to create the dependent. (See Section 10.3.5, "Infer­
ence Rules.") 



The commands section 
can contain one or more 
commands. 

NMAKE Description Files 

10.3.1.3 Dependency Line 
The dependency line in Figure 10.1 tells NMAKE to rebuild the target 
MYAPP.EXE whenever MYAPP.OBJ, ANOTHER.OBJ, or MYAPP.DEF has 
changed more recently than MY APP.EXE. 

The object files in the dependency list above would never be newer than the ex­
ecutable file (unless you had recompiled the source code before running 
NMAKE). So NMAKE checks to see if the object files themselves are targets in 
other dependency lists, and if any dependents in those lists are targets elsewhere, 
and so on. 

NMAKE continues moving through all dependencies this way to build a "depend­
ency tree" that specifies all the steps required to fully update the target. If 
NMAKE then finds any dependents in the tree that are newer than the target, 
NMAKE updates the appropriate files and rebuilds the target. 

10.3.1.4 Commands 
The commands section of the description block lists the commands that NMAKE 
should use to build the target. You can use any command that can be executed 
from the command line. The example in Figure 10.1 tells NMAKE to build 
MY APP.EXE using the following LINK command: 

link myapp another.obj, , NUL, os2, myapp 

Notice that the line is indented. NMAKE uses indentation to distinguish between 
a dependency line and a command line. A command line must be indented at 
least one space or tab. The dependency line must not be indented (it cannot start 
with a space or tab). 

Many targets are built with a single command, but you can place more than one 
command after the dependency line, each on a separate line, as shown in 
Figure 10.1. 

A long command can span several lines if each line ends with a backslash (\). A 
backslash at the end of a line is equivalent to a space on the command line. For 
example, the command 

echo abcd\ 
efgh 

is equivalent to the command 

echo abcd efgh 

You can also place a command at the end of a dependency line. Use a semicolon 
(;) to separate the command from the rightmost dependent, as in 

project.exe : project.obj ; link project; 

267 



Managing Projects with NMAKE 

OS/2 allows multiple 
commands on one 
command line. 

268 

OS/2 allows you to combine two or more commands on a single command line 
with an ampersand (&). For example, the following command line is legal in an 
OS/2 description file: 

OIR & COpy sample.exe backup.exe 

A slight restriction is imposed on the use of the CD, CHDIR, and SET com­
mands in OS/2 description files. NMAKE executes these commands itself rather 
than passing them to OS/2. Therefore, if any of these commands is the first com­
mand on a line, the remaining commands are not executed because they aren't 
passed to OS/2. 

The following multiple-command line does not display the directory listing be­
cause DIR is preceded by a CD command: 

co \mydir & OIR 

To use CD, CHDIR, or SET in a description block, place these commands on sep­
arate lines: 

CD \mydir 
OIR 

NMAKE interprets a percent symbol (% ) within a command line as the start of a 
file specifier. To use a literal percent symbol in a command line, specify it as a 
double percent symbol (% %). (See Section 10.3.8, "Extracting Filename 
Components. ") 

1 0.3.1.5 Wild Cards 
You can use DOS and OS/2 wild-card characters (* and ?) to specify target and 
dependent filenames. NMAKE expands the wild cards when analyzing depend­
encies and when building targets. For example, the following description block 
links all files having the .OB] extension in the current directory: 

project.exe : *.obj 
LINK $*.obj; 

10.3.1.6 Command Modifiers 
Command modifiers are special prefixes attached to the command. They provide 
extra control over the commands in a description block. You can use more than 
one modifier for a single command. Table 10.1 describes the three NMAKE com­
mand modifiers. 



NMAKE Description Files 

Table 10.1 Command Modifiers 

Character Action 

@ Prevents NMAKE from displaying the command as it executes. In 
the example below, the at sign (@) suppresses display of the ECHO 
command line: 

-[number] 

sort.exe : sort.obj 
@ECHO Now sorti ng. 

The output of the ECHO command is not suppressed. 

Turns off error checking for the command. Spaces and tabs can ap­
pear before the command. If the dash is followed by a number, 
NMAKE checks the exit code returned by the command and stops if 
the code is greater than the number. No space or tab can appear be­
tween the dash and number. (See Section 10.12, "Using Exit Codes 
with NMAKE.") 

In the following example, if the program sampl e returns an exit 
code, NMAKE does not stop but continues to execute commands; if 
sort returns an exit code greater than 5, NMAKE stops: 

light.lst : light.txt 
-sampl eli ght. txt 
-5 sort 1 i ght. txt 

Executes the command for each dependent file if the command 
preceded by the exclamation point uses the predefined macros $** 
or $? (See Section 10.3.4, "Macros.") The $** macro refers to all de­
pendent files in the description block. The $? macro refers to all 
dependent files in the description block that have a more recent mod­
ification time than the target. For example, 

print: one. txt two. txt three. txt 
!print $** lptl: 

generates the following commands: 

print one.txt lptl: 
print two. txt lptl: 
print three.txt lptl: 

10.3.1.7 Using Special Characters as Literals 
You may need to specify as a literal character one of the characters that NMAKE 
uses for a special purpose. These characters are 

: ;iI()$"\{}!@ 

To use one of these characters literally, place a caret (1\) in front of it. For ex­
ample, suppose you define a macro that ends with a backslash: 

exepath=c:\bin\ 

269 



Managing Projects with NMAKE 

270 

The line above is intended to define a macro named exepath with the value 
c: \ bin \. But the second bac~slash has an unintended side effect. Since the 
backslash is NMAKE's line-continuation character, the line actually defines 
ex epa t h as c: \ bin, followed by whatever appears on the next line of the de­
scription file. You can avoid this problem by placing a caret in front of the sec­
ond backslash: 

exepath=c:\bin A
\ 

You can also use a caret to insert a literal newline character in a string or macro: 

XYZ=abc A 

def 

The caret tells NMAKE to interpret the newline character as part of the macro, 
not a line break. Note that this effect differs from using a backslash ( \) to con­
tinue a line. A newline character that follows a backslash is replaced with a space. 

NMAKE ignores carets that precede characters other than the special characters 
listed above. The line 

is interpreted as 

ignore: these carets 

A caret within a quoted string is treated as a literal caret character. 

10.3.1.8 Specifying a Target in Multiple Description 
Blocks 

You can specify a target in more than one description block by placing two 
colons (::) after the target. This feature is useful for building a complex target, 
such as a library, that contains components created with different commands. For 
example, 

target.lib :: a.asm b.asm c.asm 
ML a.asm b.asm c.asm 
LIB target -+a.obj -+b.obj -+c.obj; 

target.lib :: d.c e.c 
CL Ic d.c e.c 
LIB target -+d.obj -+e.obj; 

Both description blocks update the library named TARGET.LIB. If any of the 
assembly-language files have changed more recently than the library, NMAKE 
executes the commands in the first block to assemble the source files and update 
the library. Similarly, if any of the C-Ianguage files have changed, NMAKE ex­
ecutes the second group of commands to compile the C files and update the 
library. 



NMAKE Description Files 

If you use a single colon in the example above, NMAKE issues an error message. 
It is legal, however, to use single colons if the target appears in only one block. 
In this case, dependency lines are cumulative. For example, 

target: jump. bas 
target : up.c 

echo Building target ... 

is equivalent to 

target: jump. bas up.c 
echo Building target ... 

No commands can appear between cumulative dependency lines, but blank lines, 
comment lines, macro definitions, and directives can appear. 

10.3.2 Pseudotargets 
A "pseudotarget" is similar to a target, but it is not a file. It is a name used as a 
label for executing a group of commands. In the following example, UP DA T E is 
a pseudotarget. 

UPDATE : *.* 
!COpy $** a:\product 

NMAKE always considers the pseudotarget to be out-of-date. In the previous ex­
ample, NMAKE copies all the dependent files to the specified drive and 
directory. 

Like target names, pseudotarget names are not case sensitive. 

10.3.3 Comments 
You can place comments in a description file by preceding them with a number 
sign (#): 

# Comment on line by itself 
OPTIONS = IMAP # Comment on macro's line 
all.exe : one.obj two.obj # Comment on dependency line 

link $(OPTIONS) one.obj two.obj; 

A comment extends to the end of the line in which it appears. Command lines 
(and dependency lines containing commands) cannot contain comments. 

To specify a literal #, precede it with a caret (A ), as in the following: 

DEF=A#define #Macro representing a C preprocessing directive 

271 



Managing Projects with NMAKE 

10.3.4 Macros 

272 

Macros offer a convenient way to replace a particular string in the description 
file with another string. Macros are useful for a variety of tasks, including the 
following: 

• Creating a single description file that works for several projects. You can de­
fine a macro that replaces a dummy filename in the description file with the 
specific filename for a particular project. 

• Controlling the options NMAKE passes to the compiler or linker. When you 
specify options in a macro, you can change options throughout the descrip­
tion file in a single step. 

You can define your own macros or use predefined macros. This section de­
scribes user-defined macros first. 

10.3.4.1 User-Defined Macros 
You can define a macro with this syntax: 

macroname=string 

The macroname can be any combination of letters, digits, and the underscore 
( _ ) character. Macro names are case sensitive. NMAKE interprets My Mac r a 
and MYMACRO as different macro names. 

The string can be any sequence of zero or more characters. (A string of zero char­
acters is called a "null string." A string consisting only of spaces, tabs, or both is 
also considered a null string.) For example, 

linkcmd=LINK Imap 

defines a macro named 1 in kcmd and assigns it the string LI N K /ma p. 

You can define macros in the description file, on the command line, in a com­
mand file (see Section 10.5, "NMAKE Command File"), or in TOOLS.INI (see 
Section 10.6, "The TOOLS.INI File"). Each macro defined in the description file 
must appear on a separate line. The line cannot start with a space or tab. 

When you define a macro in the description file, NMAKE ignores spaces on 
either side of the equal sign. The string itself can contain embedded spaces. You 
do not need to enclose string in quotation marks (if you do, they become part of 
the string). 



NMAKE Description Files 

Slightly different rules apply when you define a macro on the command line or in 
a command file. The command-line parser treats spaces as argument delimiters. 
Therefore, the string itself, or the entire macro, must be enclosed in double quota­
tion marks if it contains embedded spaces. All three forms of the following 
command-line macro are legal and equivalent: 

NMAKE program=sample 
NMAKE "program=sample" 
NMAKE "program = sample" 

The macro pro 9 ram is passed to NMAKE, with an assigned value of 
sampl e. 

If the string contains spaces, either the string or the entire macro must appear 
within quotes. Either form of the following command-line macro is allowed: 

NMAKE linkcmd="LINK Imap" 
NMAKE "linkcmd=LINK Imap" 

However, the following form of the same macro is not allowed. It contains 
spaces that are not enclosed by quotation marks: 

NMAKE linkcmd = "LINK Imap" 

A macro name can be given a null value. Both of the following definitions assign 
a null value to the macro linkoptions: 

NMAKE linkoptions= 
NMAKE linkoptions=" 

A macro name can be "undefined" with the !UNDEF preprocessing directive (see 
Section 10.3.7, "Preprocessing Directives"). Assigning a null value to a macro 
name does not undefine it; the name is still defined, but with a null value. 

A macro can be followed by a comment, using the syntax described in the preced­
ing section on comments. 

10.3.4.2 Using Macros 
Use a macro by enclosing its name in parentheses preceded by a dollar sign ($). 
For example, you can use the 1 ink cmd macro defined above by specifying 

$(linkcmd) 

NMAKE replaces every occurrence of $ (1 in kcmd) with LI N K /ma p. 

273 



Managing Projects with NMAKE 

An undefined macro is 
replaced by a null string. 

The filename macros 
conveniently represent 
filenames from the 
dependency line. 

274 

The following description file defines and uses three macros: 

program=sample 
L=LINK 
options= 

$(program).exe : $(program).obj 
$(L) $(options) $(program).obj; 

NMAKE interprets the description block as 

sample.exe : sample.obj 
LINK sample.obj; 

NMAKE replaces every occurrence of $ (p rog ram) with sa mp 1 e, every in­
stance of $ ( L) with LIN K, and every instance of $ (opt ions) with a null 
string. 

If you use as a macro a name that has never been defined, or was undefined, 
NMAKE treats that name as a null string. No error occurs. 

To use the dollar sign ($) as a literal character, specify two dollar signs ($$). 

The parentheses are optional if macroname is a single character. For example, 
$ L is equivalent to $ ( L) . However, parentheses are recommended for 
consistency. 

10.3.4.3 Special Macros 
NMAKE provides several special macros to represent various filenames and com­
mands. One use for these macros is in predefined inference rules. (See Section 
10.3.5.4.) Like user-defined macro names, special macro names are case sensi­
tive. For example, NMAKE interprets CC and cc as different macro names. 

Tables 10.2 through 10.5 summarize the four categories of special macros. The 
filename macros offer a convenient representation of filenames from a depend­
ency line; these are listed in Table 10.2. The recursion macros, listed in Table 
10.3, allow you to call NMAKE from within your description file. Tables 10.4 
and 10.5 describe the command macros and options macros that make it con­
venient for you to invoke the Microsoft language compilers. 

Table 10.2 lists macros that are predefined to represent file names. As with all 
one-character macros, these do not need to be enclosed in parentheses. (The $$@ 
and $** macros are exceptions to the parentheses rule for macros; they do not re­
quire parentheses even though they contain two characters.) Note that the macros 
in Table 10.2 represent filenames as you have specified them in the dependency 
line, and not the full specification of the filename. 



Macro modifiers specify 
parts of the predefined 
filename macros. 

NMAKE Description Files 

Table 10.2 Filename Macros 

Macro 
Reference Meaning 

$@ The current target's full name, as currently specified. This is not neces-
sarily the full path name. 

$* The current target's full name minus the file extension. 

$** The dependents of the current target. 

$? The dependents that have a more recent modification time than the cur­
rent target. 

$$@ The target that NMAKE is currently evaluating. You can use this macro 
only to specify a dependent. 

$< The dependent file that has a more recent modification time than the 
current target (evaluated only for inference rules). 

The example below uses the $? macro, which represents all dependents that are 
more recent than the target. The ! command modifier causes NMAKE to execute 
a command once for each dependent in the list (see Table 10.1). As a result, the 
LIB command is executed up to three times, each time replacing a module with a 
newer version. 

trig.lib : sin.obj cos.obj arctan.obj 
!LIB trig.lib -+$?; 

In the next example, NMAKE updates files in another directory by replacing 
them with files of the same name from the current directory. The $@ macro is 
used to represent the current target's full name: 

#Files in objects directory depend on versions in current directory 
DIR=c:\objects 
$(DIR)\globals.obj : globals.obj 

COPY globals.obj $@ 

$(DIR)\types.obj : types.obj 
COPY types.obj $@ 

$(DIR)\macros.obj : macros.obj 
COPY macros.obj $@ 

You can append one of the modifiers in the following list to any of the filename 
macros to extract part of a filename. If you add one of these modifiers to the 
macro, you must enclose the macro name and the modifier in parentheses. 

275 



Managing Projects with NMAKE 

Recursion macros let you 
use NMAKE to call NMAKE. 

276 

Modifier 

D 

B 

F 

R 

Resulting Filename Part 

Drive plus directory 

Base name 

Base name plus extension 

Drive plus directory plus base name 

For example, assume that $@ has the value C:\sOURCE\PROG\sORT.OBJ. The 
following list shows the effect of combining each modifier with $@: 

Macro Reference 

$(@D) 

$(@F) 

$(@B) 

$(@R) 

Value 

C:\sOURCE\PROG 

SORT.OBI 

SORT 

C:\sOURCE\PROG\sORT 

If $@ has the value SORT.OBI without a preceding directory, the value of $(@R) 
is just SORT, and the value of $(@D) is a dot (.) to represent the current directory. 

Table 10.3 lists three macros that you can use when you want to call NMAKE re­
cursively from within a description file. 

Table 10.3 Recursion Macros 

Macro 
Reference Meaning 

$(MAKE) 

$(MAKEDIR) 

$(MAKEFLAGS) 

The name used to call NMAKE recursively. The line on which 
it appears is executed even if the IN command-line option is 
specified. 

The directory from which NMAKE is called. 

The NMAKE options currently in effect. This macro is passed 
automatically when you call NMAKE recursively. You cannot 
redefine this macro. Use the preprocessing directive 
!CMDSWITCHES to update the MAKEFLAGS macro. (See Sec­
tion 10.3.7, "Preprocessing Directives.") 



Command macros 
are shortcut calls to 
Microsoft compilers. 

NMAKE Description Files 

To call NMAKE recursively, use the command 

$(MAKE) I$(MAKEFLAGS) 

The MAKE macro is useful for building different versions of a program. The fol­
lowing description file calls NMAKE recursively to build targets in the \ VERS 1 
and \ VERS2 directories. 

all: versl vers2 

versl 
cd \versl 
$(MAKE) 
cd .. 

vers2 : 
cd \vers2 
$(MAKE) 
cd .. 

The example changes to the \ VERS 1 directory and then calls NMAKE recur­
sively, causing NMAKE to process the file MAKEFILE in that directory. Then it 
changes to the \ VERS2 directory and calls NMAKE again, processing the file 
MAKEFILE in that directory. 

You can add options to the ones already in effect for NMAKE by following the 
MAKE macro with the options in the same syntax as you would specify them on 
the command line. You can also pass the name of a description file with the IF 
option instead of using a file named MAKEFILE. 

Deeply recursive build procedures can exhaust NMAKE's run-time stack, caus­
ing an error. If this occurs, use the EXEHDR utility to increase NMAKE's run­
time stack. The following command, for example, gives NMAKE.EXE a stack 
size of 16,384 (Ox4000) bytes: 

exehdr Istack:0x4000 nmake.exe 

NMAKE defines several macros to represent commands for Microsoft products. 
(See Table lOA.) You can use these macros as commands in a description block, 
or invoke them using a predefined inference rule. (See Section 10.3.5, "Inference 
Rules.") You can redefine these macros to represent part or all of a command 
line, including options. 

277 



Managing Projects with NMAKE 

Options macros 
pass preset options to 
Microsoft compilers. 

278 

Table 10.4 Command Macros 

Macro Reference Command Action Predefined Value 

$(AS) Invokes the Microsoft Macro AS=ml 
Assembler 

$(BC) Invokes the Microsoft Basic BC=bc 
Compiler 

$(CC) Invokes the Microsoft C Compiler CC=cl 

$(COBOL) Invokes the Microsoft COBOL COBOL=cobol 
Compiler 

$(FOR) Invokes the Microsoft FORTRAN FOR=fl 
Compiler 

$(PASCAL) Invokes the Microsoft Pascal PASCAL=pl 
Compiler 

$(RC) Invokes the Microsoft Resource RC=rc 
Compiler 

The macros in Table 10.5 are used by NMAKE to represent options to be passed 
to the commands for Microsoft languages. By default, these macros are unde­
fined. You can define them to mean the options you want to pass to the com­
mands. Whether or not they are defined, the macros are used automatically in the 
predefined inference rules. If the macros are undefined, or if they are defined to 
be null strings, a null string is generated in the command line. (See Section 
10.3.5.4, "Predefined Inference Rules.") 

Table 10.5 Options Macros 

Macro Reference 

$(AFLAGS) 

$(BFLAGS) 

$(CFLAGS) 

$(COBFLAGS) 

$(FFLAGS) 

$(PFLAGS) 

$(RFLAGS) 

Passed to 

Microsoft Macro Assembler 

Microsoft Basic Compiler 

Microsoft C Compiler 

Microsoft COBOL Compiler 

Microsoft FORTRAN Compiler 

Microsoft Pascal Compiler 

Microsoft Resource Compiler 



You can replace text in a 
macro as well as in the 
description file. 

NMAKE Description Files 

10.3.4.4 Substitution within Macros 
Just as macros allow you to substitute text in a description file, you can also sub­
stitute text within a macro itself. The substitution is temporary; it applies only to 
the current use of the macro and does not modify the original macro definition. 
Use the following form: 

$(macroname:string 1 =string2) 

Every occurrence of string1 is replaced by string2 in the macro macro name. Do 
not put any spaces or tabs between macro name and the colon. Spaces between 
the colon and string 1 or between string 1 and the equal sign are part of string 1. 
Spaces between the equal sign and string2 or between string2 and the right 
parenthesis are part of string2. If string2 is a null string, all occurrences of 
string 1 are deleted from the macroname macro. 

Macro substitution is case sensitive. This means that the case as well as the char­
acters in string1 must exactly match the target string in the macro, or the substitu­
tion is not performed. It also means that the string2 substitution is exactly as 
specified. 

Example 1 
The following description file illustrates macro substitution: 

SOURCES = project.for one.for two. for 

project.exe : $(SOURCES: .for=.obj) 
LINK $**; 

COpy : $(SOURCES) 
!COPY $** c:\backup 

The predefined macro $** stands for the names of all the dependent files (see 
Table 10.2). 

If you invoke the example file with a command line that specifies both targets, 

NMAKE project.exe copy 

NMAKE executes the following commands: 

LINK project.obj one.obj two.obj; 
COPY project.for c:\backup 
COPY one.for c:\backup 
COpy two. for c:\backup 

The macro substitution does not alter the SOURC ES macro definition. Rather, it 
replaces the listed characters. When NMAKE builds the target PROJECT.EXE, 
it gets the definition for the predefined macro $** (the dependent list) from the 
dependency line, which specifies the macro substitution in SOU RC ES. 

279 



Managing Projects with NMAKE 

280 

The same is true for the second target, COP Y. In this case, however, no macro 
substitution is requested, so SOU RC ES retains its original value, and $** repre­
sents the names of the FORTRAN source files. (In the example above, the target 
COPY is a pseudotarget; Section 10.3.2 describes pseudotargets.) 

Example 2 
If the macro OBJS is defined as 

OBJS=ONE.OBJ TWO.OBJ THREE.OBJ 

with exactly one space between each object name, you can replace each space in 
the defined value of OBJS with a space, followed by a plus sign, followed by a 
newline, by using 

$(OBJS: = +A 
) 

The caret (A) tells NMAKE to treat the end of the line as a literal newline charac­
ter. This example is useful for creating response files. 

10.3.4.5 Substitution within Predefined Macros 
You can also substitute text in any predefined macro except $$@. The principle 
is the same as for other macros. The command in the following description block 
substitutes within a predefined macro. Note that even though $@ is a single­
character macro, the substitution makes it a multi-character macro invocation, so 
it must be enclosed in parentheses. 

target.abc : depend.xyz 
echo $(@:targ=blank) 

If dependent de pen d . xy z has a later modification time than target 
tar get. abe, then NMAKE executes the command 

echo blanket.abc 

The example uses the predefined macro $@, which equals the full name of the 
current target (t a r get. abe). It substitutes b 1 an k for tar 9 in the target, re­
sulting in b 1 an ket . a be. 

10.3.4.6 Inherited Macros 
When NMAKE executes, it inherits macro definitions equivalent to every en­
vironment variable. The inherited macro names are converted to uppercase. 

Inherited macros can be used like other macros. You can also redefine them. The 
following example redefines the inherited macro PAT H: 

PATH = c:\tools\bin 

sample.exe : sample.obj 
LINK sample; 



Inherited macros take 
their definitions from 
environment variables. 

NMAKE Description Files 

No matter what value the environment variable PATH had before, it has the 
value c: \ too 1 s \bi n when NMAKE executes the LINK command in this de­
scription block. Redefining the inherited macro does not affect the original en­
vironment variable; when NMAKE terminates, PATH still has its original value. 

Inherited macros have one restriction: in a recursive call to NMAKE, the only 
macros that are preserved are those defined on the command line or in environ­
ment variables. Macros defined in the description file are not inherited when 
NMAKE is called recursively. To pass a macro to a recursive call: 

• Use the SET command before the recursive call to set the variable for the en­
tire NMAKE session. 

• Define the macro on the command line for the recursive call. 

The IE option causes macros inherited from environment variables to override 
any macros with the same name in the description file. 

10.3.4.7 Precedence among Macro Definitions 
If you define the same macro name in more than one place, NMAKE uses the 
macro with the highest precedence. The precedence from highest to lowest is as 
follows: 

1. A macro defined on the command line 

2. A macro defined in a description file or include file 

3. An inherited environment-variable macro 

4. A macro defined in the TOOLS.INI file 

5. A predefined macro such as CC and AS 

10.3.5 Inference Rules 

Inference rules tell NMAKE 
how to create files with a 
specific extension. 

Inference rules are templates that define how a file with one extension is created 
from a file with a different extension. When NMAKE encounters a description 
block that has no commands, it searches for an inference rule that matches the ex­
tensions of the target and dependent files. Similarly, if a dependent file doesn't 
exist, NMAKE looks for an inference rule that shows how to create the missing 
dependent from another file with the same base name. 

Inference rules provide a convenient shorthand for common operations. For in­
stance, you can use an inference rule to avoid repeating the same command in 
several description blocks. You can define your own inference rules or use prede­
fined inference rules. 

281 



Managing Projects with NMAKE 

282 

NOTE An inference rule is useful only when a target and dependent have the same base 
name, and have a one-to-one correspondence. For example, you cannot define an inference 
rule that replaces several modules in a library, because the modules would have different 
base names than the target library. 

Inference rules can exist only for dependents with extensions that are listed in the 
.SUFFIXES directive. (For infonnation on the .SUFFIXES directive, see Section 
10.3.6, "Directives.") NMAKE searches in the current or specified directory for a 
file whose base name matches the target and whose extension is listed in the 
.SUFFIXES list. If it finds such a file, it applies the inference rule that matches 
the extensions of the target and the located file. 

The .SUFFIXES list specifies an order of priority for NMAKE to use when 
searching for files. If more than one file is found, and thus more than one rule 
matches a dependency line, NMAKE searches the .SUFFIXES list and uses the 
rule whose extension appears earlier in the list. For example, the dependency line 

proj eet. exe : 

can be matched to several predefined inference rules and possibly one or more 
user-defined rules, all of which describe a command for creating an .EXE file. 
NMAKE uses the inference rule corresponding to the first matching file it finds. 

10.3.5.1 Inference Rule Syntax 
An inference rule has the following syntax: 

.Jromext.toext: 
commands 

The first line lists two extensions: Jromext extension represents the filename ex­
tension of a dependent file, and toext represents the extension of a target file. Ex­
tensions are not case sensitive. 

The second line of the inference rule gives the command to create a target file of 
toext from a dependent file ofJromext. Use the same rules for commands in infer­
ence rules as in description blocks. (See Section 10.3.1, "Description Blocks.") 

1 0.3.5.2 Inference Rule Search Paths 
The inference-rule syntax described above tells NMAKE to look for the specified 
files in the current directory. You can also specify directories to be searched by 
NMAKE when it looks for files with the extensions Jromext and toext. An infer­
ence rule that specifies paths has the following syntax: 

{frompath} .Jromext {topath} .toext: 
commands 



NMAKE Description Files 

NMAKE searches in the Jrompath directory for files with the Jromext extension. 
It uses commands to create files with the toext extension in the topath directory, 
if the Jromext file has a later modification time than the to ext file. 

The paths in the inference rule must exactly match the paths explicitly specified 
in the dependency line of a description block. 

If you use a path on one element of the inference rule, you must use paths on 
both. You can specify the current directory for either element by using the operat­
ing system notation for the current directory, which is a dot (.), or by specifying 
an empty pair of braces. 

You can specify only one path for each element in an inference rule. To specify 
more than one path, repeat the inference rule with the alternate path. 

10.3.5.3 User-Defined Inference Rules 
You can define inference rules in the description file or in TOOLS.INI (see Sec­
tion 10.6, "The TOOLS.INI File"). An inference rule lists two file extensions and 
one or more commands. 

Example 1 
The following inference rule tells NMAKE how to build a .OBJ file from a.C 
file: 

.e.obj: 
CL Ie $< 

In this example, the predefined macro $< represents the name of a dependent that 
has a more recent modification time than the target. 

NMAKE applies this inference rule to the following description block: 

sample.obj: 

The description block lists only a target, SAMPLE.OBJ. Both the dependent and 
the command are missing. However, given the target's base name and extension, 
plus the inference rule, NMAKE has enough information to build the target. 

NMAKE first looks for a file with the same base name as the target and with one 
of the extensions in the .SUFFIXES list. If SAMPLE.C exists (and no files with 
higher-priority extensions exist), NMAKE compares its time to that of 
SAMPLE.OBJ. If SAMPLE.C has changed more recently, NMAKE compiles it 
using the CL command listed in the inference rule: 

CL Ie sample.c 

283 



Managing Projects with NMAKE 

284 

Example 2 
The following inference rule compares a .C file in the current directory with the 
corresponding .OBJ file in another directory: 

{.}.e{e:\objeets}.obj: 
e1 Ie $<; 

The path for the .C file is represented by a dot. A path for the dependent exten­
sion is required because one is specified for the target extension. 

This inference rule matches a dependency line containing the same combination 
of paths, such as: 

e:\objeets\test.obj : test.e 

This rule does not match a dependency line such as: 

test.obj : test.e 

In this case, NMAKE uses the predefined inference rule .c.obj when building the 
target. 

10.3.5.4 Predefined Inference Rules 
NMAKE provides predefined inference rules containing commands for creating 
object, executable, and resource files. Table 10.6 describes the predefined infer­
ence rules. 

Table 10.6 Predefined Inference Rules 

Rule Command Default Action 

.asm.obj $(AS) $(AFLAGS) Ic $*.asm ML/c $*.ASM 

.asm.exe $(AS) $(AFLAGS) $* .asm ML$*.ASM 

.bas.obj $(BC) $(BFLAGS) $*.bas; BC $*.BAS; 

.c.obj $(CC) $(CFLAGS) Ic $*.c CL/c $*.C 

.c.exe $(CC) $(CFLAGS) $*.c CL$*.C 

.cbl.obj $(COBOL) $(COBFLAGS) $* .cbI; COBOL $*.CBL; 

.cbl.exe $(COBOL) $(COBFLAGS) $*.cbI, $*.exe; COBOL $*.CBL, $*.EXE; 

Jor.obj $(FOR) Ic $(FFLAGS) $* .for FL/c $*.FOR 

.for.exe $(FOR) $(FFLAGS) $*.for FL$*.FOR 

.pas.obj $(PASCAL) Ic $(PFLAGS) $* .pas PL/c $*.PAS 

.pas.exe $(PASCAL) $(PFLAGS) $*.pas PL$*.PAS 

.rc.res $(RC) $(RFLAGS) Ir $* RC Ir $* 



NMAKE Description Files 

For example, assume you have the following description file: 

sample.exe : 

This description block lists a target without any dependents or commands. 
NMAKE looks at the target's extension (.EXE) and searches for an inference 
rule that describes how to create an .EXE file. Table 10.6 shows that more than 
one inference rule exists for building an .EXE file. NMAKE looks for a file in 
the current or specified directory that has the same base name as the target 
s amp 1 e and one of the extensions in the .SUFFIXES list. For example, if a file 
called SAMPLE. FOR exists, NMAKE applies the . for. exe inference rule. If 
more than one file with the base name SAMPLE is found, NMAKE applies the 
inference rule for the extension listed earliest in the .SUFFIXES list. In this ex­
ample, if both SAMPLE.C and SAMPLE.FOR exist, NMAKE uses the . c. exe 
inference rule to compile SAMPLE.C and links the resulting file SAMPLE.OBJ 
to create SAMPLE.EXE. 

NOTE By default, the options macros such as CFLAGS shown in Table 10.5 are undefined. 
As explained in Section 10.3.4.2, "Using Macros," this causes no problem; NMAKE replaces 
an undefined macro with a null string. Because the predefined options macros are included 
in the inference rules, you can define these macros and have their assigned values passed 
automatically to the predefined inference rules. The predefined inference rules are listed in 
Table 10.6. 

10.3.5.5 Precedence among Inference Rules 
If the same inference rule is defined in more than one place, NMAKE uses the 
rule with the highest precedence. The precedence from highest to lowest is 

1. An inference rule defined in the description file. If more than one, the last one 
applies. 

2. An inference rule defined in the TOOLS.lNI file. If more than one, the last 
one applies. 

3. A predefined inference rule. 

User-defined inference rules always override predefined inference rules. 
NMAKE uses a predefined inference rule only if no user-defined inference rule 
exists for a given target and dependent. 

If two inference rules could produce a target with the same extension, NMAKE 
uses the inference rule whose dependent's extension appears first in the 
.SUFFIXES list. See Table 10.7 in the next section, "Directives." 

285 



Managing Projects with NMAKE 

10.3.6 Directives 

286 

The directives in Table 10.7 provide additional control ofNMAKE operations. 
You can use them in a description file outside of a description block or in the 
TOOLS.INI file. The four directives listed in the table are case sensitive and 
must appear in all uppercase letters. (Preprocessing directives are not case sensi­
tive; see Section 10.3.7, "Preprocessing Directives.") 

Table 10.7 Directives 

Directive Action 

.IGNORE: Ignores exit codes returned by programs called from the 
description file. This directive has the same effect as in­
voking NMAKE with the II option . 

. PRECIOUS : target ... 

. SILENT: 

. SUFFIXES : list 

Tells NMAKE not to delete targets if the commands that 
build them quit or are interrupted. Overrides the 
NMAKE default, which is to delete the target if building 
was interrupted by CTRL+C or CTRL+BREAK . 

Does not display lines as they are executed. This direc­
tive has the same effect as invoking NMAKE with the IS 
option . 

Lists file suffixes for NMAKE to try when building a tar­
get file for which no dependents are specified. This list 
is used together with inference rules. See Section 
10.3.5, "Inference Rules." 

The .IGNORE and .SILENT directives affect the file from their location onward. 
Location within the file does not matter for the .PRECIOUS and .SUFFIXES 
directives; they affect the entire description file. 

NMAKE refers to the value of the .SUFFIXES directive when using inference 
rules. When NMAKE finds a target without dependents, it searches the current 
directory for a file with the same base name as the target and a suffix from list. If 
NMAKE finds such a file, and if an inference rule applies to the file, then 
NMAKE treats the file as a dependent of the target. The order of the suffixes in 
the list defines the order in which NMAKE searches for the file. The list is prede­
fined as follows: 

.SUFFIXES : .exe .obj .asm .e .bas .ebl .for .pas .res .re 

To add additional suffixes to the end of the list, specify . S U F F I XES : fol­
lowed by the additional suffixes. To clear the list, specify . SU FF I XES : by it­
self. To change the list order or to specify an entirely new list, clear the list and 
specify a new . S U F F I XES : setting. 



NMAKE Description Files 

10.3.7 Preprocessing Directives 
NMAKE preprocessing directives are similar to compiler preprocessing direc­
tives. You can use the !IF, !IFDEF, !IFNDEF, !ELSE, and !ENDIF directives to 
conditionally process the description file. With other preprocessing directives 
you can display error messages, include other files, undefine a macro, and turn 
certain options on or off. NMAKE reads and executes the preprocessing direc­
tives before processing the description file as a whole. 

Preprocessing directives (listed in Table 10.8) begin with an exclamation point 
(!), which must appear at the beginning of the line. You can place spaces be­
tween the exclamation point and the directive keyword. These directives are not 
case sensitive. 

Table 10.8 Preprocessing Directives 

Directive Description 

!CMDSWITCHES 
{ +I-}opt ... 

!ERROR text 

!IF constantexpression 

!IFDEF macroname 

!IFNDEF macroname 

!ELSE 

!ENDIF 

Turns on or off NMAKE options /D, II, IN, and IS. (See 
Section lOA, "Command-Line Options.") Do not 
specify the slash (/). If !CMDSWITCHES is specified 
with no options, all options are reset to the values they 
had when NMAKE was started. This directive updates 
the MAKEFLAGS macro. Tum an option on by preced­
ing it with a plus sign (+), or turn it off by preceding it 
with a minus sign (-). 

Prints text, then stops execution. 

Reads the statements between the !IF keyword and the 
next !ELSE or !ENDIF keyword if constantexpression 
evaluates to a nonzero value. 

Reads the statements between the !IFDEF keyword and 
the next !ELSE or !ENDIF keyword if macroname is de­
fined. NMAKE considers a macro with a null value to 
be defined. 

Reads the statements between the !IFNDEF keyword and 
the next !ELSE or !ENDIF keyword if macroname is not 
defined. 

Reads the statements between the !ELSE and !ENDIF 
keywords if the preceding !IF, !IFDEF, or !IFNDEF state­
ment evaluated to zero. Anything following !ELSE on 
the same line is ignored. 

Marks the end of an !IF, !IFDEF, or !IFNDEF block. 
Anything following !ENDIF on the same line is ignored. 

287 



Managing Projects with NMAKE 

288 

Table 10.8 (continued) 

Directive Description 

!INCLUDE filename 

!UNDEF macroname 

Reads and evaluates the description file filename before 
continuing with the current description file. Iffilename 
is enclosed by angle brackets « > ), NMAKE searches 
for the file first in the current directory and then in the 
directories specified by the INCLUDE macro. Otherwise, 
it looks only in the current directory. The INCLUDE 
macro is initially set to the value of the INCLUDE en­
vironment variable. 

Marks macroname as undefined in NMAKE's symbol 
table. 

10.3.7.1 Expressions in Preprocessing 
The constantexpression used with the !IF directive can consist of integer con­
stants, string constants, or program invocations. Integer constants can use the 
unary operators for numerical negation (-), one's complement (-), and logical ne­
gation (!). They can also use any binary operator listed in Table 10.9. 

Table 10.9 Preprocessing-Directive Binary 
Operators 

Operator Description 

+ Addition 

Subtraction 

* Multiplication 

I Division 

% Modulus 

& Bitwise AND 

I Bitwise OR 
II BitwiseXOR 

&& Logical AND 

II Logical OR 

« Left shift 

» Right shift 

Equality 

!= Inequality 



NMAKE can invoke 
programs and check 
their status. 

NMAKE Description Files 

Table 10.9 (continued) 

Operator Description 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal to 

You can group expressions by enclosing them in parentheses. NMAKE treats 
numbers as decimal unless they start with 0 (octal) or Ox (hexadecimal). Use the 
equality (==) operator to compare two strings for equality, or the inequality (!=) 
operator to compare for inequality. Enclose strings in double quotation marks. 

Example 
The following example shows how preprocessing directives can be used to con­
trol whether the linker inserts CodeView information into the .EXE file: 

!INCLUDE <infrules.txt> 
! CMDSWITCHES +D 
winner.exe : winner.obj 
!IFDEF debug 

IF "$(debug)"=="y" 
LINK ICO winner.obj; 

ELSE 
LINK winner.obj; 

ENDIF 
!ELSE 

ERROR Macro named debug is not defined. 
!ENDIF 

In this example, the !INCLUDE directive inserts the INFRULES.TXT file into 
the description file. The !CMDSWITCHES directive sets the /D option, which dis­
plays the times of the files as they are checked. The !lFDEF directive checks to 
see if the macro debug is defined. If it is defined, the !IF directive checks to 
see if it is set to y. If it is, NMAKE reads the LINK command with the ICO op­
tion; otherwise, NMAKE reads the LINK command without ICO. If the deb u g 
macro is not defined, the !ERROR directive prints the specified message and 
NMAKE stops. 

10.3.7.2 Executing a Program in Preprocessing 
You can invoke any program from within NMAKE by placing the program's 
name or path name within square brackets ([ D. The program is executed during 
preprocessing, and its exit code replaces the program specification in the 

289 



Managing Projects with NMAKE 

description file. A nonzero exit code usually indicates an error. You can use this 
value to control execution, as in the following example: 

!IF [c:\util\checkdskJ != 0 
ERROR Not enough disk space; NMAKE terminating. 

!ENDIF 

10.3.8 Extracting Filename Components 

290 

"Special Macros," Section 10.3.4.3, showed how qualifiers could be added to 
macros that represented filenames in order to select components of the name or 
path. This feature is especially useful when creating a general-purpose descrip­
tion block that works with the name of any dependent. 

Besides these macro modifiers, NMAKE offers another feature that allows you to 
extract components of the name of the first dependent file as you have specified 
it in the description file or on the command line (not the full filename specifica­
tion on disk). The components can then be recombined with specific paths, exten­
sions, or directories to create the particular name or path you need, without 
having to specify the exact name or path when you write the description block. 

The first dependent file is the first file listed to the right of the colon on a depend­
ency line. If a dependent is implied from an inference rule, NMAKE considers it 
to be the first dependent file. If more than one dependent is implied from infer­
ence rules, the .SUFFIXES list determines which dependent is first. 

You can use either of the following syntaxes: 

%s 

%1 [parts]F 

where parts can be one or more of the following letters, or can be omitted: 

Letter Description 

No letter Complete name 

d Drive 

p Path 

f File base name 

e File extension 

You can specify more than one letter. The order of the letters is not significant; 
NMAKE constructs the filename that meets (or comes closest to meeting) all the 
specifications. The letters are case sensitive. 



Command-line Options 

The %s option substitutes the complete name; it is equivalent to both % I F and 
% I dpfeF. 

NMAKE interprets any percent symbol (% ) within a command line (either in a 
description block or an inference rule) as the start of a file specifier using this 
syntax. Therefore, if you need to use a literal percent symbol within a command 
line, you must specify it as a double percent symbol (% % ). 

Example 
The following example demonstrates this special syntax: 

sample.exe : c:\project\sample.obj 
LINK %ldpfF, a:%lpfF.exe; 

This example represents the following command: 

LINK c:\project\sample, a:\project\sample.exe; 

In this example, the sequence % I dpfF represents the same drive, path, and 
base name as the dependent on the dependency line, while the sequence % I pfF 
represents only the path and base name of the dependent. The command tells the 
LINK utility to build the executable file on another drive in a directory of the 
same name. 

1 0.4 Command-Line Options 
NMAKE accepts a number of options, listed in Table 10.10. You can specify op­
tions in uppercase or lowercase and use either a slash or dash. For example, -A, 
fA, -a, and fa all represent the same option. This book uses a slash and uppercase 
letters. 

Table 10.10 NMAKE Options 

Option 

IA 

IC 

/D 

IE 

Action 

Forces execution of all commands in description blocks in the 
description file even if targets are not out-of-date with respect to 
their dependents. Does not affect the behavior of incremental 
commands such as IUNK; using I A does not force a full link. 

Suppresses nonfatal error or warning messages and the 
NMAKE copyright message. 

Displays the modification time of each file. 

Causes environment variables to override macro definitions in 
description files. See Section 10.3.4, "Macros." 

291 



Managing Projects with NMAKE 

Table 10.10 (continued) 

292 

Option 

IF filename 

/HELP 

II 

IN 

INOLOGO 

/P 

IQ 

/R 

IS 

rr 

/X filename 

IZ 

/? 

Action 

Specifies filename as the name of the description file. If you 
supply a dash (-) instead of a filename, NMAKE gets 
description-file input from the standard input device. (Tenninate 
keyboard input with either F6 or CTRL+Z.) If you omit IF, 
NMAKE searches the current directory for a file called 
MAKEFILE and uses it as the description file. If MAKEFILE 
doesn't exist, NMAKE uses inference rules for the command­
line targets. 

Calls the QuickHelp utility. If NMAKE cannot locate the help 
file or QuickHelp, it displays a brief summary of NMAKE 
command-line syntax and exits to the operating system. 

Ignores exit codes from commands listed in the description file. 
NMAKE processes the whole description file even if errors 
occur. 

Displays but does not execute the description file's commands. 
This option is useful for debugging description files and check­
ing which targets are out-of-date. 

Suppresses the NMAKE copyright message. 

Displays all macro definitions, inference rules, target descrip­
tions, and the .SUFFIXES list on the standard output device. 

Checks modification times for command-line targets (or first tar­
get in description file if no command-line targets are specified). 
NMAKE returns a zero exit code if all such targets are up-to­
date and a nonzero exit code if any target is out-of-date. Only 
preprocessing commands in the description file are executed. 
This option is useful when running NMAKE from a batch file. 

Ignores inference rules and macros that are defined in the 
TOOLS.INI file or that are predefined. 

Suppresses the display of commands listed in the description 
file. 

Changes modification times for command-line targets (or first 
target in description file if no command-line targets are 
specified). Only preprocessing commands in the description file 
are executed. Contents of target files are not modified. 

Sends all error output to filename, which can be a file or a dev­
ice. If you supply a dash (-) instead of a filename, error output 
is sent to the standard output device. 

U sed for internal communication between NMAKE (or NMK) 
andPWB. 

Displays a brief summary ofNMAKE command-line syntax 
and exits to the operating system. 



NMAKE Command File 

Example 
The following command line specifies two NMAKE options: 

NMAKE IF sample.mak Ie targl targ2 

The IF option tells NMAKE to read the description file SAMPLE.MAK. The /e 
option tells NMAKE not to display nonfatal error messages and warnings. The 
command specifies two targets (t a r gland tar 9 2) to update. 

In the following example, NMAKE updates the target tar 9 1 : 

NMAKE 10 IN targl 

Since no description file is specified, NMAKE searches the current directory for 
a description file named MAKEFILE. The /D option displays the modification 
time of each file; the IN option displays the commands in MAKEFILE without 
executing them. 

10.5 NMAKE Command File 
If you find yourself repeatedly using the same sequence of command-line argu­
ments, you can place them in a text file and pass the file's name as a command­
line argument to NMAKE. NMAKE opens the command file and reads the 
arguments. This feature is especially useful if the argument list exceeds the maxi­
mum length of a command line (128 characters in DOS, 256 in OS/2). 

To provide input to NMAKE with a command file, type 

NMAKE @commandfile 

In the command file field, enter the name of a file containing the information 
NMAKE expects on the command line. You can split input between the com­
mand line and a command file. Use the name of the command file (preceded by 
@) in place of the input information on the command line. 

Example 1 
Assume you have created a filenamed UPDATE containing this line: 

IS "program = sample" sort.exe search.exe 

If you start NMAKE with the command 

NMAKE @update 

then NMAKE reads its command-line arguments from UPDATE. The at sign 
(@) tells NMAKE to read arguments from the file. The effect is the same as if 
you typed the arguments directly on the command line: 

NMAKE IS "program = sample" sort.exe search.exe 

293 



Managing Projects with NMAKE 

NMAKE treats the file as if it were a single set of arguments and replaces each 
line break with a space. Macro definitions that contain spaces must be enclosed 
in quotation marks, just as if you had typed them on the command line. 

The quotation marks that delimit a macro force all characters between them to be 
interpreted literally. Therefore, if you split a macro between lines, an unwanted 
line break is inserted into the macro. Macros that span multiple lines must be con­
tinued by ending each line except the last with a backslash (\ ): 

IS "program \ 
= sample" sort.exe seareh.exe 

This file is equivalent to the first example. The backslash allows the macro defini­
tion ("program = sampl e") to span two lines. 

Example 2 
If the command-file UPDATE contains this line: 

IS "program = sample" sort.exe 

you can give NMAKE the same command-line input as in the example above by 
specifying the command 

NMAKE @update seareh.exe 

10.6 The TOOLS.INI File 

294 

You can customize NMAKE by placing commonly used macros, inference rules, 
and description blocks in the TOOLS.INI initialization file. Settings for NMAKE 
must follow a line that begins with [NMAKE]. This section of the initialization 
file can contain macro definitions, .SUFFIXES lists, and inference rules. For ex­
ample, if TOOLS.INI contains the following section: 

[NMAKE] 
CC=qel 
CFLAGS=/Gc IGs IW3 IOat 
.e.obj: 

$(CC) Ie $(CFLAGS) $*.e 

NMAKE reads and applies the lines following [ N M A K E J. The example rede­
fines the macro CC to invoke the Microsoft QuickC® Compiler, defines the 
macro CFLAGS, and redefines the inference rule for making .OBJ files from.C 
sources. (Note that macros are case sensitive; a macro called cc is not substituted 
in a rule that uses $(CC).) 

NMAKE looks for TOOLS.INI in the current directory. If it isn't there, NMAKE 
searches the directory specified by the INIT environment variable. 



Inline Files 

Macros and inference rules appearing in TOOLS.INI can be overridden. See Sec­
tion 10.3.4.7, "Precedence among Macro Definitions," and Section 10.3.5.5, "Pre­
cedence among Inference Rules." 

1 0.7 Inline Files 
NMAKE can create "inline files" which contain any text you specify. One use of 
inline files is to write a response file for another utility such as LINK or LIB. 
This eliminates the need to maintain a separate response file and removes the re­
straint on the maximum length of a command line. 

Use this syntax to create an inline file called filename: 

target: dependents 
command« [filename] 

inlinetext 

«[KEEP I NOKEEP] 

All inlinetext between the two sets of double angle brackets «<) is placed in the 
inline file. The filename is optional. If you don't supply filename, NMAKE gives 
the inline file a unique name. NMAKE places the inline file in the directory 
specified by the TMP environment variable. If TMP is not defined, the inline file 
is placed in the current directory. 

Directives are not allowed in an inline file. NMAKE treats a directive in an inline 
file as literal text. 

The inline file can be temporary or permanent. If you don't specify the option, or 
if you specify NOKEEP, the file is temporary. Specify KEEP to retain the file 
after the build ends. 

Example 
The following description block creates a LIB response file named LIB.LRF: 

OBJECTS=add.obj sub.obj mul.obj div.obj 
math. lib : $(OBJECTS) 

LI B @< < 1 i b. 1 r f 
$*.lib 
-+$(OBJECTS: = &A 
-+) 
listing; 
«KEEP 

295 



Managing Projects with NMAKE 

The resulting response file tells LIB which library to use, the commands to ex­
ecute, and the name of the listing file to produce: 

math. lib 
-+add.obj & 
-+sub.obj & 
-+mul.obj & 
-+div.obj 
listing; 

The file MATH.LIB must exist beforehand for this example to work. 

Multiple Inline Files 
The inline file specification can create more than one inline file. For instance, 

target.abc : depend.xyz 
cat «filel «file2 

I am the contents of filel. 
«KEEP 
I am the contents of file2. 
«KEEP 

The example creates the two inline files, FILE 1 and FILE2. All inline text is writ­
ten to the files sequentially. Therefore, the text 

I am the contents of filel. 

goes into FILE 1 , not FILE2, even though the text is nested between the angle 
brackets for FILE2 and the < < KE E P statement which follows. NMAKE then ex­
ecutes the command 

cat filel file2 

The KEEP keywords tell NMAKE not to delete FILE 1 and FILE2 when done. 

10.8 Sequence of NMAKE Operations 

NMAKE first looks 
for a description file. 

296 

When you are writing a complex description file, it can be helpful to know the 
sequence in which NMAKE performs operations. This section describes those 
operations and their order. 

When you run NMAKE from the command line, NMAKE' s first task is to find 
the description file: 

1. If the IF option is used, NMAKE searches for the filename specified in the op­
tion. If NMAKE cannot find that file, it returns an error. 

2. If the IF option is not used, NMAKE looks for a file named MAKEFILE in 
the current directory. If there are targets on the command line, NMAKE 



Macro definitions 
follow a priority. 

Inference rules also 
follow a priority. 

NMAKE preprocesses 
directives before running 
the description-file 
commands. 

Sequence of NMAKE Operations 

builds them according to the instructions in MAKEFILE. If there are no tar­
gets on the command line, NMAKE builds only the first target it finds in 
MAKEFILE. 

3. IfNMAKE cannot find MAKEFILE, NMAKE looks for target files on the 
command line and attempts to build them using inference rules (either de­
fined by the user in TOOLS.INI or predefined by NMAKE). If no target is 
specified, NMAKE returns an error. 

NMAKE then assigns macro definitions with the following precedence (highest 
first): 

1. Macros defined on the command line 

2. Macros defined in a description file or include file 

3. Inherited macros 

4. Macros defined in the TOOLS.INI file 

5. Predefined macros (such as CC and RFLAGS) 

Macro definitions are assigned in order of priority, not in the order in which 
NMAKE encounters them. For example, a macro defined in an include file over­
rides a macro with the same name from the TOOLS.INI file. Note that a macro 
within a description file can be redefined; the most recent definition in the de­
scription file is used. 

NMAKE also assigns inference rules, using the following precedence (highest 
first): 

1. Inference rules defined in a description file or include file 

2. Inference rules defined in the TOOLS.INI file 

3. Predefined inference rules (such as .c.obj) 

You can use command-line options to change some of these precedences. 

• The IE option allows macros inherited from the environment to override mac­
ros defined in the description file. 

• The /R option tells NMAKE to ignore macros and inference rules that are de­
fined in TOOLS.INI or are predefined. 

Next, NMAKE evaluates any preprocessing directives. If an expression for condi­
tional preprocessing contains a program in square brackets ( [ ] ), the program is 
invoked during preprocessing, and the program's exit code is used in the expres­
sion. If an !INCLUDE directive is specified for a file, NMAKE preprocesses the 

297 



Managing Projects with NMAKE 

NMAKE updates targets in 
the description file. 

Errors usually stop 
the bUild. 

included file before continuing to preprocess the rest of the description file. Pre­
processing determines the final description file that NMAKE reads. 

NMAKE is now ready to update the targets. If you specified targets on the com­
mand line, NMAKE updates only those targets. If you did not specify targets on 
the command line, NMAKE updates just the first target it finds in the description 
file. (This behavior differs from the MAKE utility's default; see Section 10.10, 
"Differences between NMAKE and MAKE.") If you specify a pseudotarget, 
NMAKE always updates the target. If you use the fA option, NMAKE always up­
dates the target, even if the file is not out-of-date. 

If the dependents of the targets are themselves out-of-date or do not exist yet, 
NMAKE updates them first. If the target has no explicit dependent, NMAKE 
looks in the current directory for one or more files with the same base name as 
the target and whose extensions are in the .SUFFIXES list. (See Section 10.3.6, 
"Directives," for a description of the .SUFFIXES list.) If it finds such files, 
NMAKE treats them as dependents and updates the target according to the 
commands. 

NMAKE normally stops processing the description file when a command returns 
a nonzero exit code. In addition, if NMAKE cannot tell whether the target was 
built successfully, it deletes the target. If you use the /I command-line option, 
NMAKE ignores error codes and attempts to continue processing. The .IGNORE 
directive has the same effect as the /I option. To prevent NMAKE from deleting 
the partially created target if you interrupt the build with CTRL+C or CTRL+BREAK, 

specify the target name in the .PRECIOUS directive. 

Alternatively, you can use the dash (-) command modifier to ignore the error 
code for an individual command. An optional number after the dash tells 
NMAKE to continue if the command returns an exit code that is less than or 
equal to the number, and to stop if the exit code is greater than the number. 

You can document errors by using the !ERROR directive to print descriptive text. 
The directive causes NMAKE to print some text, then stop, even if you use /I, 
.IGNORE, or the dash (-) modifier. 

10.9 A Sample NMAKE Description File 

298 

The following example illustrates many ofNMAKE's features. The description 
file creates an executable file from C-Ianguage source files: 

# This description file builds SAMPLE.EXE from SAMPLE.C, 
# ONE.C, and TWO.C, then deletes intermediate files. 

CFLAGS 
LFLAGS 
CODEVIEW 

Ic IAL lad $(CODEVIEW) 
ICO 
lZi 

OBJS = sample.obj one.obj two.obj 

# controls compiler options 
# controls linker options 
# controls CodeView data 



A Sample NMAKE Description File 

all: sample.exe 

sample.exe : $(OBJS) 
link $(LFLAGS) @«sample.lrf 

$(OBJS: =+A 
) 

sample.exe 
sample.map; 
«KEEP 

sample.obj : sample.c sample.h common.h 
CL $(CFLAGS) sample.c 

one.obj : one.c one.h common.h 
CL $(CFLAGS) one.c 

two.obj : two.c two.h common.h 
CL $(CFLAGS) two.c 

clean: 
-del *.obj 
-del *.map 
-del *.lrf 

Assume that this description file is named SAMPLE.MAK. To invoke it, enter 

NMAKE IF SAMPLE.MAK all clean 

NMAKE then builds SAMPLE.EXE and deletes intermediate files. 

Here is how the description file works. The CFLAGS, CODEVIEW, and LFLAGS 
macros define the default options for the compiler, linker, and inclusion of 
CodeView information. You can redefine these options from the command line 
to alter or delete them. For example, 

NMAKE IF SAMPLE.MAK CODEVIEW= CFLAGS= all clean 

creates an .EXE file that does not contain CodeView information. 

The OBJS macro specifies the object files that make up SAMPLE.EXE, so they 
can be reused without having to type them again. Their names are separated by 
exactly one space so that the space can be replaced with a plus sign (+) and a car­
riage return in the link response file. (This is illustrated in the second example in 
Section 10.3.4.4, "Substitution within Macros.") 

The all pseudotarget points to the real target, SAMP LE. EX E. If you do not 
specify any target on the command line, NMAKE ignores the c1 ean pseudotar­
get but still builds all, since all is the first target in the description file. 

The dependency line containing the target sampl e. exe makes the object files 
specified in OBJS the dependents of SAMPLE.EXE. The command section of 
the block contains only link instructions. No compilation instructions are given, 

299 



Managing Projects with NMAKE 

since they are given explicitly later in the file. (You could also define an infer­
ence rule to specify how an object file is to be created from a C source file.) 

The link command is unusual in that the link parameters and options are not 
passed directly to LINK. Rather, an inline response file is created containing 
these elements. This eliminates the need to maintain a separate link response file. 
It also allows the LINK command line to exceed the normal limit on the length 
of a command line (128 characters in DOS, 256 characters in OS/2). 

The next three dependencies define the relationship of the source code to the ob­
ject files. The .R (header or include) files are also dependents, since any changes 
to them would require recompilation. 

The c 1 e an pseudotarget deletes unneeded files after a build. The dash modifier 
(-) tells NMAKE to ignore errors returned by the deletion commands. If you 
want to save any of these files, don't specify c 1 e a n on the command line; 
NMAKE then ignores the c 1 e an pseudotarget. 

10.10 Differences between NMAKE and MAKE 

300 

NMAKE replaces the Microsoft MAKE program. NMAKE differs from MAKE 
in the following ways: 

• NMAKE does not evaluate targets sequentially. Instead, NMAKE updates the 
targets you specify when you invoke it, regardless of their positions in the de­
scription file. If no targets are specified, NMAKE updates only the first target 
in the file. 

• NMAKE requires a special syntax when specifying a target in more than one 
dependency line. (See Section 10.3.1.8, "Specifying a Target in Multiple De­
scription Blocks.") 

• NMAKE accepts command-line arguments from a file. 

• NMAKE provides more command-line options. 

• NMAKE provides more predefined macros. 

• NMAKE permits substitutions within macros. 

• NMAKE supports directives placed in the description file. 

• NMAKE allows you to specify include files in the description file. 

The first item in the list deserves special emphasis. While MAKE updates every 
target, working from beginning to end of the description file, NMAKE expects 
you to specify targets on the command line. If you do not, NMAKE builds only 
the first target in the description file. 



Differences between NMAKE and MAKE 

This difference is clear if you run NMAKE using a typical MAKE description 
file, which lists a series of subordinate targets followed by a higher-level target 
that depends on the following subordinates: 

pmapp.obj : pmapp.c 
CL Ic IG2sw IW3 pmapp.c 

pmapp.exe : pmapp.obj pmapp.def 
LINK pmapp, lalign:16, NUL, os2, pmapp 

MAKE builds both targets (PMAPP.OBJ and PMAPP.EXE), but NMAKE builds 
only the first target (PMAPP.OBJ). 

Because of these performance differences, you may want to convert MAKE files 
to NMAKE files. MAKE description files are easy to convert. One way is to cre­
ate a new description block at the beginning of the file. Give this block a pseudo­
target named a 11 and list the top-level target as a dependent of a 11. To build 
all, NMAKE must update every file upon which the target a 11 depends: 

all : pmapp.exe 

pmapp.obj : pmapp.c 
CL Ic IG2sw IW3 pmapp.c 

pmapp.exe : pmapp.obj pmapp.def 
LINK pmapp, lalign:16, NUL, os2, pmapp 

If the above file is named MAKEFILE, you can update the target PMAPP.EXE 
with the command 

NMAKE 

or the command 

NMAKE all 

It is not necessary to list PMAPP.OBJ as a dependent of all. NMAKE builds a 
dependency tree for the entire description file and builds whatever files are 
needed to update PMAPP.EXE. If PMAPP.C has a later modification timethan 
PMAPP.OBJ, NMAKE compiles PMAPP.C to create PMAPP.OBJ, then links 
PMAPP.OBJ to create PMAPP.EXE. 

The same technique is suitable for description files with more than one top-level 
target. List all the top-level targets as dependents of all: 

all : pmapp. exe second. exe another. exe 

The example updates the targets PMAPP.EXE, SECOND.EXE, and 
ANOTHER.EXE. 

301 



Managing Projects with NMAKE 

If the description file lists a single, top-level target, you can use an even simpler 
technique. Move the top-level block to the beginning of the file: 

pmapp.exe : pmapp.obj pmapp.def 
LINK pmapp, lalign:16, NUL, os2, pmapp 

pmapp.obj : pmapp.c 
CL Ic IG2sw IW3 pmapp.c 

NMAKE updates the second target (PMAPP.OBJ) whenever needed to keep the 
first target (PMAPP.EXE) current. 

1 0.11 Using NMK 

302 

When you maintain a project under DOS or in a DOS session under OS/2, you 
will probably need to use the NMK utility. NMK uses only 5K of memory, leav­
ing room for the programs called during the build. You run NMK the same way 
you run NMAKE, using the same command-line syntax and the same description­
file syntax. NMK calls NMAKE to read the description file and perform the 
build. 

The behavior of NMK is slightly different from that of NMAKE. The fundamen­
tal difference is that NMAKE rechecks the update status of all files after each 
build step, whereas NMK checks file status only once, at the start of the build 
process. If your description file simply compiles a series of files and then links 
them, this difference never causes a problem. But consider the following ex­
ample, which uses a pseudotarget to clean up old files during the build: 

all : clean example.exe 

example.exe : example.asm 
ML example 

clean: 
del example.obj 
del example.exe 

This description file erases EXAMPLE.OBJ and EXAMPLE.EXE, then recom­
piles. Under NMAKE, it works as intended; that is, it 

1. Erases files 

2. Checks the status of EXAMPLE.EXE 

3. Rebuilds EXAMPLE.EXE because EXAMPLE.EXE is no longer present 



Using Exit Codes with NMAKE 

However, NMK checks the status of the environment only at the beginning of the 
build. Since EXAMPLE.EXE exists when the build starts, the preceding descrip­
tion file 

1. Erases files 

2. Stops execution, because EXAMPLE.EXE was present and up-to-date at the 
beginning of the process 

PWB never generates a description file that requires dynamic status checking to 
run correctly, so you can use PWB-created description files with either NMAKE 
orNMK. 

1 0.12 Using Exit Codes with NMAKE 
NMAKE stops execution if a program executed by one of the commands in the 
NMAKE description file encounters an error. The exit code returned by the pro­
gram is displayed as part of the error message. 

Assume the NMAKE description file T EST contains the following lines: 

TEST.OBJ : TEST. FOR 
FL Ie TEST.FOR 

If the source code in TEST. FO R causes an error (but not a warning), you would 
see the following message the first time you use NMAKE with the NMAKE de­
scription file TEST: 

NMAKE : fatal error U1077: 'FL Ie TEST. FOR' - return code '2' 

This error message indicates that the command F L / c T EST. FOR in the 
NMAKE description file returned exit code 2. 

You can cause NMAKE to ignore an exit code for a command by preceding the 
command with a dash modifier (-). If you specify a number after the dash modi­
fier (-n), NMAKE stops only if the exit code is greater than the specified num­
ber. (See Table 10.1.) You disable this behavior for the entire description file by 
invoking NMAKE with the /I option. 

You can also test exit codes in NMAKE description files with the !IF prepro­
cessing directive. See Section 10.3.7.2, "Executing a Program in Preprocessing." 

If you prefer to use DOS batch files instead of NMAKE description files, you 
can test the code returned with the IF command. See a DOS manual for more 
information. 

303 



Managing Projects with NMAKE 

NMAKE returns an exit code to the operating system or the calling program. A 
value of 0 indicates execution of NMAKE with no errors. Warnings return exit 
code O. 

Code 

o 
2 

4 

Meaning 

No error 

Program error 

System error-out of memory 

10.13 Related Topics in Online Help 

304 

In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

Topics 

Syntax and procedural in­
formation on NMAKE 

Using TOOLS.INI 

Access 

From the list of Utilities on the "Microsoft Ad­
visor Contents" screen, choose "NMAKE" 

From the "Microsoft Advisor Contents" 
screen, choose "Programmer's WorkBench"; 
then choose "Using TOOLS.INI" from the list 
of topics relating to customizing PWB 



Chapter 11 

Creating Help Files with HElPMAKE 

If you've used the Programmer's WorkBench (PWB) or one of the Microsoft 
Quick languages, you already know the advantages of online help, or the Micro­
soft Advisor. The Microsoft Help File Maintenance utility (HELPMAKE) lets 
you extend these advantages by customizing the help files supplied with Micro­
soft language products, or by creating your own help files for them. 

HELPMAKE translates help text files into a help database accessible within 
these environments: 

• Microsoft Programmer's WorkBench (PWB) 

• Microsoft QuickHelp utility 

• Microsoft CodeView debugger 

• Microsoft Editor version 1.02 

• Microsoft QuickC compiler versions 2.0 and later 

• Microsoft QuickBasicTM versions 4.5 and later 

• Microsoft QuickPascal TM version 1.0 

• Microsoft Word version 5.5 

This chapter describes how to create and modify help files using the 
HELPMAKE utility. 

11.1 Structure and Contents of a Help Database 
HELPMAKE creates a help database from one or more input files that contain in­
formation formatted for the help system. This section defines some of the terms 
involved in formatting and outlines the formats that HELP MAKE can process. 

11.1.1 Contents of a Help File 
Each help input file consists of one or more help "topics." A topic is the fun­
damental unit of help information. It is usually a screenful of information about a 
particular subject. You identify the subject by one or more "context strings," 
which are the words and phrases for which you want to be able to request help. 
When help is requested on a context string, the topic is displayed. 

305 



Creating Help Files with HElPMAKE 

Cross-references help 
you navigate a help 
database. 

Implicit cross-references 
are coded with an ordinary 
.context command. 

Hyperlinks are explicit 
cross-references marked 
by invisible text. 

306 

The .context command defines a context string for the topic that follows it. In the 
source file for C help, for example, this line introduces help for the #include 
directive: 

.context #include 

The .context command and other formatting elements are described in Section 
11.5, "Help Text Conventions." 

Whether a context string contains one word or several words depends on the ap­
plication. For example, because Microsoft QuickBasic considers spaces to be 
delimiters, a context string in QuickBasic help files is limited to a single word. 
Other applications, such as PWB, can handle context strings that span several 
words. In either case, the application hands the context string to an internal "help 
engine" that searches the database for information. 

Often, especially with library routines, the same information applies to more than 
one subject. For example, the C-language string-to-number functions strtod, 
strtol, and strtoul share the same help text. The help file lists all three function 
names as contexts for one block of topic text. The converse, however, is not true. 
You cannot associate a single context string with several blocks of topic text lo­
cated at different places in the help file. 

Cross-references make it possible to view information about related topics, in­
cluding header files and code examples. The help for the C-language open func­
tion, for example, references the access function. Cross-references can point to 
other contexts in the same help database, to contexts in other help databases, or 
even to ASCII files outside the database. 

Help files can have two kinds of cross-references: 

• Implicit 

• Explicit, or hyperlinks 

The word "open" is an implicit cross-reference throughout Microsoft C help, and 
introduces help for the open function. If you select the word "open" anywhere in 
C help, the help system displays information on the open function. The context 
for open begins with an ordinary .context command. As a result, anywhere that 
you select "open," the help system references this context. 

A "hyperlink" is an explicit cross-reference tied to a word or phrase at a specific 
location in the help file. You create hyperlinks when you write the help text. The 
hyperlink consists of a word or phrase followed by invisible text that gives the 
context to which the hyperlink refers. 



Formatting flags let you 
change the appearance of 
text. 

Structure and Contents of a Help Database 

For example, to cause an instance of the word "formatting" to display help on 
the printf function, you would create an explicit cross-reference from the word 
"formatting" to the context "printf." Elsewhere in the file, "formatting" has no 
special significance, but at that one position, it references the help for printf. For 
details on how to create hyperlinks, see Section 11.5.4. 

Help text can also include formatting attributes to control the appearance of the 
text on the screen. Using these attributes, you can make certain words appear in 
various colors, inverse video, and so forth, depending on the application display­
ing help and the graphics capabilities of your computer. 

11.1.2 Help File Formats 
You can create sources for help text files in any of three formats: 

• QuickHelp format 

• Rich Text Format (RTF) 

• Minimally formatted ASCII 

In addition, you can reference unformatted ASCII files, such as include files, 
from within a help database. 

An entire help system (such as the ones supplied with Microsoft C, FORTRAN, 
MASM, or QuickBasic) can use any combination of files formatted with differ­
ent format types. With C, for example, the README. DOC information file is en­
coded as minimally formatted ASCII; the help files for the PWB, C language, 
and run-time library are written in QuickHelp format before being compressed 
by HELPMAKE. The database also cross-references the header (include) files, 
which are unformatted ASCII files stored outside the database. 

QuickHelp 
QuickHelp format is the default format into which HELPMAKE decodes help 
databases. Any text editor can create a QuickHelp-format help text file. Quick­
Help format also lends itself to a relatively easy automated translation from other 
document formats. 

QuickHelp files can contain any kind of cross-reference or formatting attribute. 
Typically, you use QuickHelp format when modifying a Microsoft-supplied 
database. 

QuickHelp format makes use of dot commands (such as .context-see the de­
scription of QuickHelp dot commands in Section 11.6.1). To use dot commands 
other than .context and .comment, the IT option is required for encoding and de­
coding. For details, see Section 11.3, "Help make Options." 

307 



Creating Help Files with HElPMAKE 

Rich Text Format 
Rich Text Format (RTF) is a Microsoft word-processing format that several word 
processors support, including Microsoft Word version 5.0 and later, and Micro­
soft Word for Windows. You can use RTF as an intermediate format to simplify 
transferring help files from one format to another. Like QuickHelp files, RTF 
files can contain formatting attributes and cross-references. 

An RTF word processor provides the easiest way to create an RTF file, but you 
can manually insert RTF codes with an ordinary text editor. There are also utility 
programs that convert text files in other formats to RTF format. 

See Section 11.6.2, "Rich Text Format," for more information. 

Minimally Formatted ASCII 
Minimally formatted ASCII files define contexts and their topic text; they cannot 
contain screen-formatting commands or explicit cross-references. (Implicit cross­
references work the same way they do in the other formats.) Minimally formatted 
ASCII files are often used to display text in a README.DOC or small help files 
that do not require compression. See Section 11.6.3, "Minimally Formatted 
ASCII Format," for more information. 

Unformatted ASCII 
Unformatted ASCII files are exactly what their name implies: regular ASCII files 
with no formatting commands, context definitions, or special information. 
HELPMAKE does not process unformatted ASCII files in any special way. An 
unformatted ASCII file does not become part of the help database; only its name 
is used as the object of a cross-reference. Unformatted ASCII files are useful for 
storing program examples. Any word that is an implicit cross-reference in other 
help files is also an implicit cross-reference in unformatted ASCII files. 

11.2 Invoking HELPMAKE 

308 

The HELPMAKE program can encode to create new help files or decode to mod­
ify existing ones. Encoding converts a text file to a compressed help database. 
HELPMAKE can encode text files written in QuickHelp, RTF, and minimally 
formatted ASCII format. Decoding converts a help database to a text file for 
editing. Regardless of the source format, HELPMAKE always decodes a help 
database into a QuickHelp-format text file. 



HELPMAKE Options 

You invoke HELPMAKE with the following syntax: 

HELPMAKE {lE[n] I/D[c] II HI!?} [options] sourcefiles 

The options modify the action of HELPMAKE; they are described in Section 
11.3, "HELPMAKE Options." 

You must supply either the IE (encode) or the!D (decode) option. When encod­
ing, you must also use the /0 option to specify the file name of the database. 

The source files field is required. It specifies the input file(s) for HELPMAKE. If 
you use the !D (decode) option, source files can be one or more help database 
files (such as PWB.HLP). HELPMAKE decodes the database files to the stand­
ard output device. If you use the IE (encode) option, source files can be one or 
more help text files (such as PWB.SRC). File names are separated with a space. 
You can use standard wild-card characters to specify a group of related files. 

The example below invokes HELPMAKE with the N, IE, and /0 options (see 
Section 11.3.1, "Options for Encoding"). HELPMAKE reads input from the text 
file my. txt and writes the compressed help database in the file my. hlp. The 
IE option, without a compression specification, maximizes compression. Note 
that the DOS or OS/2 redirection symbol (» sends a log of HELPMAKE activity 
to the file my. 1 og. You may want to redirect the log file because, in its verbose 
mode (given by N), HELPMAKE can generate a lengthy log. 

HELPMAKE IV IE IOmy.hlp my.txt > my. log 

The example below invokes HELPMAKE to decode the help database my. hlp 
into the text file my. s re, given with the /0 option. Once again, the N option re­
sults in verbose output, and the output is directed to the log file my. log. Sec­
tion 11.3.2 describes additional options for decoding. 

HELPMAKE IV 10 IOmy.src my.hlp > my. log 

11.3 HElPMAKE Options 
HELPMAKE accepts the command-line options described below. You can 
specify options in uppercase or lowercase letters and precede them with either a 
forward slash (/) or a dash ( -). Most options apply only to encoding, others 
apply only to decoding, and a few apply to both. The IT option is required if you 
want to use dot commands with the QuickHelp format (which is the default 
format). 

309 



Creating Help Files with HELPMAKE 

11.3.1 Options for Encoding 

310 

When you encode a file-that is, when you build a help database-you must 
specify the IE option. HELPMAKE also accepts other options to control encod­
ing. The encoding options are listed below: 

Option 

lAc 

IC 

lE[n] 

JKfilename 

Action 

Specifies c as an application-specific control character for 
the help database file. The character marks a line that con­
tains special information for internal use by the application. 
For example, the Microsoft Advisor uses the colon (:). 

Makes context strings for this help file case sensitive. 

Creates (encodes) a help database from a specified text file. 
The n specifies the type(s) of compression. If n is omitted, 
HELPMAKE compresses the file as much as possible 
(about 50%). The value of n is in the range 0 -15. It is the 
sum of successive integral powers of 2 representing 
various compression techniques: 

Value 

o 

2 

4 

8 

Technique 

No compression 

Run-length compression 

Keyword compression 

Extended keyword compression 

Huffman compression 

Add values to combine compression techniques. For ex­
ample, use IE3 to get run-length and keyword compres­
sion. Use I EO in the testing stages of help database creation 
where you need to create the database quickly and are not 
yet concerned with size. 

Optimizes keyword compression by supplying a list of 
characters that act as word separators. The filename is a file 
containing your list of separator characters. 



!L 
/NOLO GO 

IOoutfile 

ISn 

IT 

HElPMAKE Options 

Action 

The IE2 and IE3 options tell HELPMAKE to identify "key­
words"-words occurring often enough to justify replacing 
them with shorter character sequences. A word is any series 
of characters that do not appear in the separator list. The de­
fault separator list includes all ASCII characters from 0 to 
32, ASCII character 127, and the following characters: 

! "#&' '()*+-,/:;<=>?@[\]"_{ I} ~ 

You can improve keyword compression by designing a sep­
arator list tailored to a specific help file. If your help file 
contains #include directives, #include is encoded (by de­
fault) as include. To encode #include as a keyword, create 
a separator list that omits the #: 

! "&" () * + -, I: ; < = >?@ [\] " _ { I } ~ 

Characters in the range 0-31 are always separators, so you 
need not include them. A customized list must include all 
other separators, however, including the space (which fol­
lows! in the list above). If you omit the space, 
HELPMAKE encodes sequences of words as keywords. 

Locks the generated file so that it cannot later be decoded. 

Suppresses the HELPMAKE copyright message. 

Specifies outfile as the name of the help database. 

Specifies the type of input file, according to the following 
n values: 

lSI 

IS2 

IS3 

File Type 

Rich Text Format (RTF) 

QuickHelp (default) 

Minimally formatted ASCII 

Translates dot commands into internal format. If your help 
file contains dot commands other than .context and 
.comment, you must supply this option when encoding it. 
Dot commands are described in Section I1.6.I,"QuickHelp 
Format," and in later sections. The IT option causes the op­
tion I A: to be assumed. 

311 



Creating Help Files with HELPMAKE 

N[n] 

/Wwidth 

11.3.2 Options for Decoding 

Action 

Controls verbosity of diagnostic and informational output. 
Larger values of n add more information. Omitting n pro­
duces a full listing. The values of n are listed below: 

Option Output 

N Maximum diagnostic output 

NO No diagnostic output and no banner 

Nl HELPMAKE banner only 

N2 Pass names 

N3 Contexts on first pass 

jV 4 Contexts on each pass 

jV5 Any intermediate steps within each pass 

jV6 Statistics on help file and compression 

Indicates the fixed width of the resulting help text in num­
ber of characters. The value of width can range from 11 to 
255. If the /W option is omitted, the default is 76. When en­
coding an RTF source (/SI), HELPMAKE automatically 
formats the text to width. When encoding QuickHelp (/S2) 
or minimally formatted ASCII (/S3) files, HELPMAKE 
truncates lines to this width. 

The ID option decodes a help database into QuickHelp files. HELPMAKE also 
accepts other options to control decoding. The decoding options are listed below: 

312 



ID[c] 

10[ouifile] 

IT 

HELPMAKE Options 

Action 

Decodes the input file into its original text or component 
parts. If a destination file is not specified with the 10 op­
tion, the help file is decoded to the standard output device. 
The form of decoding is controlled by the form of ID[c] 
specified: 

Form 

ID 

IDS 

IDU 

/NOLOGO 

Effect 

Fully decodes the help database, leaving 
all cross-references and formatting infor­
mation intact. 

Splits a concatenated help database into 
its components using their original 
names. If the database was not created 
by concatenation, HELPMAKE copies 
it to a file with its original name. The 
database is not decompressed. 

Decompresses the database and removes 
all screen formatting and cross­
references. The output can be used later 
for input and recompression, but all 
screen formatting and cross-references 
are lost. 

Suppresses the HELPMAKE copyright 
message. 

Specifies outfile for the decoded output from 
HELPMAKE. If ouifile is omitted, the help database is de­
coded to the standard output device. HELPMAKE always 
decodes help database files into QuickHelp format. 

Translates dot commands from internal format into dot­
command format. You must always supply this option 
when decoding a help database that contains dot com­
mands other than .context and .comment. 

313 



Creating Help Files with HELPMAKE 

IV[n] 

Action 

Controls verbosity of diagnostic and infonnational output. 
Larger values of n add more information. Omitting n pro­
duces a full listing. The values of n are listed below: 

Option Output 

N 
IVa 

Nl 

N2 

IV3 

Maximum diagnostic output 

No diagnostic output and no banner 

HELPMAKE banner only 

Pass names 

Contexts on first pass 

11.3.3 Options for Help 
The following are the options for help. 

I? 

I [HELP] 

Action 

Displays a brief summary of HELPMAKE command­
line syntax and exits without encoding or decoding any 
files. All other infonnation on the command line is 
ignored. 

Calls the QuickHelp utility and displays help about 
HELPMAKE. If HELPMAKE cannot find QuickHelp or 
the help file, it displays the same infonnation as with the 
/? option. No files are encoded or decoded. All other in­
formation on the command line is ignored. 

11.4 Creating a Help Database 

314 

There are two ways to create a Microsoft-compatible help database. 

The first method is to decompress an existing help database, modify the resulting 
help text file, and recompress the help text file to form a new database. 



Help Text Conventions 

The second method is to append a new help database to an existing help 
database. This method involves the following steps: 

1. Create a help text file in QuickHelp format, RTF, or minimally formatted 
ASCII. 

2. Use HELPMAKE to create a help database file. The example below invokes 
HELPMAKE, using yourhel p. txt as the input file and producing a help 
database file named you r h e 1 p . hlp: 

HELPMAKE IV IE IOyourhelp.hlp yourhelp.txt > yourhelp.log 

3. Back up the existing database. 

4. Append the new help database file to the existing database. The example 
below appends the new database you r h e 1 p . hlp to the a 1 an 9 . hlp 
database. (In the example, the /b modifier for the DOS COpy command com­
bines the files as binary files.) 

COpy alang.hlp Ib + yourhelp.hlp Ib 

5. Test the database. Assume yourhel p. hl P contains the context sampl e. 
If you type sa mp 1 e in PWB and request help on it, the help window should 
display the text associated with the context sa mp 1 e. 

WARNING The PWB editor truncates lines longer than about 250 characters. Some 
databases contain lines longer than this. To edit or create database files with extremely long 
lines, you must either use an editor (such as Microsoft Word) that does not restrict line 
length, or extend long lines using the backslash (\) line-continuation character. 

11.5 Help Text Conventions 
The source text that HELP MAKE uses to create Microsoft help databases must 
follow specific organizational conventions. The following sections explain these 
conventions. 

11.5.1 Structure of the Help Text File 
The Microsoft help system is simply a data-retrieval tool. It imposes no restric­
tions on the content or organization of help data. However, the HELPMAKE util­
ity and the data-display routines in the help system expect a help file to follow a 
standard format. This section explains how to create correctly formatted help text 
files. 

315 



Creating Help Files with HELPMAKE 

316 

In all three help text formats, the help text source file is a sequence of topics, 
each preceded by one or more context definitions. The following table lists the 
various formats and the corresponding context definition statements: 

Format 

QuickHelp 

RTF 

Minimally formatted 
ASCII 

Unformatted ASCII 

Context Definition 

.context context 

\ par > >context \ par 

»context 

None 

In QuickHelp format, each topic begins with one or more .context statements. 
These statements link the context string to its topic text. The topic text consists of 
all subsequent lines up to the next .context statement. 

In RTF format, each context definition must be in a paragraph of its own (de­
noted by \ par), beginning with the help delimiter (»). As in QuickHelp, the 
topic text consists of all subsequent paragraphs up to the next context definition. 

In minimally formatted ASCII, each context definition must be on a separate 
line, and each must begin with the help delimiter (»). As in RTF and QuickHelp 
files, all subsequent lines up to the next context definition constitute the topic 
text. 

See Section 11.6, "Using Help Database Formats," for detailed information about 
these three formats. 

WARNING HELPMAKE warns you if it encounters a duplicate context string definition 
within a given help source file. Each context string must be unique. 



Help Text Conventions 

11.5.2 Local Contexts 
Context strings beginning with the "at" sign (@) are "local." Making a context 
local saves file space and speeds access. However, local contexts cannot be cross­
referenced with an implicit link, and they have no meaning outside the local file. 

When you use a local context, HELPMAKE does not generate a global context 
string (a context string that is known throughout the help system). Instead, it 
embeds an encoded cross-reference that has meaning only within the current con­
text. For example, 

.context normal 
This is a normal topic, accessible by the context string "normal". 
[button\v@local\v] is a cross-reference to the following topic . 

. context @local 

This topic can be reached only by the explicit cross-reference 
in the previous topic (or by browsing the file sequentially). 

In the example above, the text but ton \ v@l 0 cal \ v references 1 0 cal as a 
local context. If the user selects the text but ton or scrolls through the file, the 
help system displays the topic text that follows the context definition for 
1 oca 1. Because 1 oca 1 is defined with the "at" sign @, it can be accessed 
only by a hyperlink within the same help file or by sequentially browsing the file. 

If you want a topic to be accessible in both local and global contexts, you simply 
mark the topic text with both global and local .context statements. For example, 
to make topi c both global and local, add the following statements: 

.context topic 

.context @topic 

Naturally, both .context statements must appear immediately before the topic 
text to which they point. 

To create a context that begins with a literal @, precede it with a backslash ( \). 

11.5.3 Context Prefixes 
Microsoft help databases use several "context prefixes." A context prefix is a 
single letter followed by a period. It appears before a context string with a prede­
fined meaning. These contexts may appear in the resulting text file when you de­
code a Microsoft help database. 

317 



Creating Help Files with HElPMAKE 

Context prefixes are used 
internally by Microsoft. 

318 

Except for the h. prefix described below, the context prefixes are used by Micro­
soft to mark environment- or product-specific features. You would not normally 
add them to the help files you write. 

You can use the h. prefix to identify standard help-file contexts. For instance, 
h.default identifies the default help screen (the screen that normally appears 
when you select top-level help). Table 11.1 lists the standard h. contexts. 

Table 11.1 Standard h. Contexts 

Context Description 

h.contents The table of contents for the help file. You should also define the 
string "contents" for direct reference to this context. 

h.default The default help screen, typically displayed when the user presses 
SHIFf +Fl at the "top level" in some applications. 

h.index The index for the help file. You can also define the string "index" for 
direct reference to this context. 

h.notfound The help text displayed by some applications when the help system 
cannot find information about the requested context. The text could be 
an index of contexts, a topical list, or general information about using 
help. 

h.pg# A specific page within the help file. This is used in response to a "go 
to page #" request. 

h.pg$ The help text that is logically last in the file. This is used by some ap­
plications in response to a "go to the end" request made within the 
help window. 

h.pgl The help text that is logically first in the file. This is used by some ap­
plications in response to a "go to the beginning" request made within 
the help window. 

h.tiUe The title of the help database. 



Help Text Conventions 

The context prefixes in Table 11.2 are internal to Microsoft products. They ap­
pear in decompressed databases, but you do not need to use them. 

Table 11.2 Microsoft Product Context Prefixes 

Prefix Purpose 

d. Dialog box. Each dialog box is assigned a number. Its help context 
string is d. followed by the number (for example, d. 12). 

e. Error number. If a product supports the error-numbering scheme used 
by Microsoft languages, it displays help for each error using this pre­
fix. For example, the context e. P010 5 refers to the Microsoft 
QuickPascal Compiler error message number POI OS. 

h. Help item. Prefixes miscellaneous help context strings that may be 
constructed or otherwise hidden from the user. For example, most ap­
plications look for the context string h.contents when Contents is 
chosen from the Help menu. 

m. Menu item. Contexts that relate to product menu items are defined by 
their shortcut keys. For example, the Exit selection on the File menu 
item is accessed by ALT +F, X and is referenced in help by m. f . x. 

n. Message number. Each message box is assigned a number. Its help 
context string is n. plus the number (for example, n. 5). 

11.5.4 Hyperlinks 
Explicit cross-references, or hyperlinks, are marked with invisible text in the help 
text file. A hyperlink is a word or phrase followed by invisible text that names 
the context to which the hyperlink refers. 

The keystroke that activates the hyperlink depends on the application. Consult 
the documentation for each product for the specific keystroke. 

319 



Creating Help Files with HELPMAKE 

320 

When the user activates the hyperlink, the help system displays the topic refer­
enced by the invisible text. The invisible cross-reference text is formatted as one 
of the following: 

Hidden Text 

contextstring 

filename! 

jllename!contextstring 

!command 

Action 

Displays the topic associated with contextstring. For 
example, exeformat displays the topic text for 
the context exeformat. 

Treatsfilename as a single topic to be displayed. For 
example, $ INC L U 0 E : s t d i 0 • h! searches the 
directories in the INCLUDE environment variable 
for file s td i 0 • h and displays it as a single help 
topic. 

Works the same as contextstring, except only the 
help file filename is searched for the context. If the 
file is not already open, the help system finds it (by 
searching either the current path or an explicit en­
vironment variable) and opens it. For example, 
$ BIN : rea d me. doc ! pat c h e s searches for 
readme. doc in the BIN environment variable 
and displays the topic associated with patches. 

Executes the command specified after the exclama­
tion point (!). 

In the following example, the word Example is a hyperlink. The \b ,\p, and 
\v formatting flags mark hyperlinks in the help text. (The formatting flags are 
listed later in this chapter, in Table 11.4.) 

\bSee also:\p Example\vopen.ex\v 

The hyperlink refers to open. ex. If you select any of the letters of Example, 
the help system displays the topic whose context is open. ex. On the screen, 
this line appears as follows: 

See also: Example 

Anapplicationmightdisplay See also: and Example in different colors or 
character types, depending on factors such as your default color selection and 
type of monitor. 



The anchor must fit 
on one line. 

Using Help Database Formats 

When a hyperlink needs to cross-reference more than one word, you must use an 
anchor, as in the following example: 

\bSee also:\p \uExample\p\vprintf.ex\v, fprintf, scanf, sprintf, 
vfprintf, vprintf, vsprintf 

\aformatting table\vprintf.table\v 

This part of the example is an anchored hyperlink: 

\aformatting table\vprintf.table\v 

The \a flag creates an anchor for the cross-reference. In the example, the phrase 
following the \a flag (f arm at tin 9 tab 1 e) is the hyperlink. It refers to the 
context p r i n t f . tab 1 e. The first \v flag marks both the end of the hyperlink 
and the beginning of the invisible text. The name p r i n t f . tab 1 e is invisible; 
it does not appear on the screen when the help is displayed. The second \v flag 
ends the invisible text. 

11.6 Using Help Database Formats 
A database can be written in any of three text formats. The list below briefly de­
scribes these types. Sections 11.6.1-11.6.3 describe the formatting types in detail. 

An entire help system (such as the one supplied with PWB or QuickC) can 
handle any combination of formats. For example, the help files for Microsoft C 
are written in QuickHelp format, and the README.DOC file is unformatted 
ASCII. 

Type 

QuickHelp 

RTF 

Minimally formatted 
ASCII 

Characteristics 

Uses dot commands and embedded formatting char­
acters (the default formatting type expected by 
HELPMAKE); supports highlighting, color, and 
cross-references. Files in this format must be com­
pressed before use. 

Uses a subset of standard RTF; supports highlight­
ing, color, and cross-references; supports some dot 
commands. Files in this format must be compressed 
before use. 

Uses a help delimiter (») to define help contexts; 
does not support highlighting, color, or cross­
references. Files in this format can be compressed, 
but compression is not required. 

321 



Creating Help Files with HElPMAKE 

11.6.1 QuickHelp Format 

You can define more than 
one context for a single 
topic. 

322 

The QuickHelp format uses a dot command and embedded formatting flags to 
convey information to HELPMAKE. 

11.6.1.1 QuickHelp Dol Commands 
QuickHelp provides a number of dot commands that identify topics and convey 
other topic-related information to the help system. If your help file contains dot 
commands other than .context or .comment, you must supply the IT option 
when encoding and decoding with HELPMAKE. 

The most important dot command is the .context command. Every topic in a 
QuickHelp file begins with one or more .context commands. Each .context com­
mand defines a context string for the topic text. You can define more than one 
context for a single topic, as long as you do not place any topic text between 
them. 

Typical .context commands are shown below. The first defines a context for the 
#include C preprocessor directive. The second set illustrates mUltiple contexts 
for one block of topic text. In this case, the same topic text explains all of the 
string-to-number conversion routines in C . 

. context #include 

description of #include goes here 

.context strtod 

.context strtol 

.context strtoul 

description of string-to-number functions goes here 

The QuickHelp format includes several other dot commands. Table 11.3 lists the 
dot commands available in QuickHelp format. 



Using Help Database Formats 

Table 11.3 QuickHelp Dot Commands 

Command Action 

.category string 

.command 

.comment string 
•. string 

. context string 

.end 

. freeze numlines 

.length topiclength 

. line number 

. list 

. mark name [column] 

Lists the category in which the current topic appears and 
its position in the list of topics. The category name is 
used by the QuickHelp Categories command, which dis­
plays the topics list. Supported only by QuickHelp. 

Indicates that the topic text is not a displayable help 
topic. Use this command to hide hyperlink topics and 
other internal information. 

The string is a comment that appears only in the help 
source file. Comments are not inserted in the help 
database, so they cannot be restored when you decom­
press a help file. 

The string introduces a topic . 

Ends a paste section. See the .paste command below. 
Supported only by QuickHelp . 

Locks the first numlines lines at the top of the screen. 
This can be used to preserve a bar of cross-reference but­
tons for a help topic and prevent it from being scrolled. 

Indicates the default window size, in topiclength lines, 
of the topic about to be displayed . 

Tells HELPMAKE to reset the line number to begin at 
number for subsequent lines of the input file. Line num­
bers appear in HELPMAKE error messages. 
HELPMAKE does not put the .line command into the 
help database, so it is not restored during decompres­
sion. See .source . 

Indicates that the current topic contains a list of topics. 
QuickHelp displays a highlighted line; you can choose a 
topic by moving the highlighted line over the desired 
topic and pressing ENTER. Help searches for the first 
word of the line. Supported only by QuickHelp . 

Defines a mark immediately preceding the following 
line of text. The marked line shows a script command 
where the display of a topic begins. The name identifies 
the mark. The column is an integer value specifying a 
column location within the marked line. Supported only 
by QuickHelp. 

323 



Creating Help Files with HELPMAKE 

324 

Table 11.3 (continued) 

Command Action 

.next context Tells the help system to look up the next topic using 
context instead of the topic that physically follows it in 
the file. You can use this command to skip large blocks 
of .command or .popup topics. 

.paste pastename 

.popup 

.previous context 

.raw 

.ref topic [, topic] ... 

. source file name 

.topic text 

Begins a paste section. The paste name appears in the 
QuickHelp Pastemenu. Supported only by QuickHelp. 

Tells the help system to display the current topic as a 
popup instead of a normal, scrollable topic. Supported 
only by QuickHelp. 

Tells the help system to look up the previous topic using 
context instead of the topic that physically precedes it in 
the file. You can use this command to skip large blocks 
of .command or .popup topics. 

Turns off special processing of certain characters by the 
application. 

Tells the help system to display the topic in the Refer­
ence menu. You can list as many topics as needed; 
separate each additional topic with a comma. A .ref com­
mand is formatted without regard to the /W option. 
Supported only by QuickHelp. 

If no topic is specified, QuickHelp searches the line im­
mediately following for a See: or See Also: reference; if 
present, the reference must be the first non-white-space 
characters on the line . 

Tells HELPMAKE that subsequent topics come from 
filename. By default, when an error occurs, the error 
message contains the name and line number of the input 
file. The .source command tells HELPMAKE to use 
filename in the error message instead of the name of the 
input file and to reset the line number to 1. This is useful 
when you concatenate several sources to form the input 
file. HELPMAKE does not put the .source command 
into the help database, so it is not restored during decom­
pression. See .line. 

Defines text as the name or title to be displayed in place 
of the context string if the application help displays a 
title. This command is always the first line in the context 
unless you also use the .length or .freeze commands. 



Using Help Database Formats 

11.6.1.2 QuickHelp Formatting Flags 
The QuickHelp format provides a number of formatting flags that are used to 
highlight parts of the help database and to mark hyperlinks in the help text. 

Each formatting flag consists of a backslash ( \ ) followed by a character. Table 
11.4 lists the formatting flags. 

Table 11.4 QuickHelp Formatting Flags 

Formatting Flag 

\a 

\b,\B 

\ i, \1 

\p,\P 

\u,\U 

\v,\V 

\\ 

Action 

Anchors text for cross-references 

Turns boldface on or off 

Turns italics on or off 

Turns off all attributes 

Turns underlining on or off 

Turns invisibility on or off 
(hides cross-references in text) 

Inserts a single backs lash in text 

On monochrome monitors, text labeled with the bold, italic, and underline at­
tributes appears in various ways, depending on the application (for example, high 
intensity and reverse video are commonly displayed). On color monitors, these at­
tributes are translated by the application into suitable colors, depending on the 
user's default color selections. 

The \b, \i, \u, and \v options are toggles, turning on and off their respective at­
tributes. You can use several of these on the same text. Use the \p attribute to 
tum off all attributes. Use the \v attribute to hide cross-references and hyperlinks 
in the text. 

HELPMAKE truncates the lines in QuickHelp files to the width specified with 
the jW option. Only visible characters count toward the character-width limit. 
Lines that begin with an application-specific control character are truncated to 
255 characters regardless of the width specification. See Section 11.3.1, "Options 
for Encoding," for more information on truncation and application-specific con­
trol characters. 

325 



Creating Help Files with HELPMAKE 

Insert formatting flags to 
mark explicit 
cross-references. 

326 

In the example below, the \ b flag initiates boldface text for Ret urn s : , and the 
\p flag changes the remaining text to plain text. 

\bReturns:\p a handle if successful, or -1 if not. 
errno: EACCES, EEXIST, EMFILE, ENOENT 

In the example below, the \a flag anchors text for the hyperlink E x amp 1 e. The 
\v flags define the cross-reference s amp 1 e_p rag and make the text between 
the \v flags invisible. Cross-references are described in the following section. 

\aExample \vsample_prog\v 

11.6.1.3 QuickHelp Cross-References 
Help databases contain two types of cross-references, implicit and explicit. They 
are described in Section 11.1.1, "Contents of a Help File." 

Any word that appears as a global context is implicitly cross-referenced. For ex­
ample, any time you request help in PWB on close, the help window displays in­
formation about that function. You do not code implicit cross-references into 
your help text files. 

Explicit cross-references (hyperlinks) are words or phrases on the screen that 
point to a context. For example, almost every "See:" and "See also:" reference in 
online help has a hyperlink pointing to the appropriate context. You can view the 
cross-referenced material immediately by activating the hyperlink, without 
having to search the help system's menus for the topic. You must insert format­
ting flags in your help text files to mark explicit cross-references. 

If the hyperlink consists of a single word, you can use invisible text to flag it in 
the source file. The \v formatting flag creates invisible text, as follows: 

hyperlink \vcontext \v 

Put the first \v flag immediately following the word you want to be the hyperlink. 
Following the flag, insert the context that the hyperlink points to. The second \v 
flag marks the end of the context; that is, the end of the invisible text. 
HELPMAKE generates a cross-reference whose context is the invisible text and 
whose hyperlink is the word. 

If the hyperlink consists of a phrase, rather than a single word, you must use an­
chored text to create explicit cross-references. Use the \a and \v flags to create an­
chored text as follows: 

\ ahyperlink-words \vcontext\v 



Using Help Database Formats 

The \a flag marks an anchor for the cross-reference. The text that follows the \a 
flag is the hyperlink. The hyperlink must fit entirely on one line. The first \v flag 
marks both the end of the hyperlink and the beginning of the invisible text that 
contains the cross-reference context. The second \v flag marks the end of the in­
visible text. 

The C functions abs, cabs, and fabs in the following examples are implicit cross­
references because they have a global context in the help system. 

See also: abs, cabs, fabs 

The next example shows the encoding for an explicit cross-reference to an ex­
ample program and a function template from the help database for the Microsoft 
C run-time library: 

See also: Example\vopen.ex\v, Template\vopen.tm\v, close 

Here, the hyperlinks are Example and Temp 1 ate, which reference the con­
texts open. ex and open. tm. The example also contains an implicit cross­
reference to the close function. 

The final example shows the encoding for an explicit cross-reference to an entire 
family of functions: 

See also: \ais ... functions\vis_functions\v, atoi 

The cross-reference uses anchored text to associate a phrase, rather than just a 
word, with a context. In this example, the hyperlink is the anchored phrase 
is. .. fu n ct ion s, and it cross-references the context i $_ fu n ct ion $. In 
addition, the example contains an implicit cross-reference to the C-Ianguage atoi 
routine. 

11.6.1.4 QuickHelp Example 
The code below is an example in QuickHelp format that contains a single entry: 

.context open 

.length 13 
\bInclude:\p 

\bPrototype:\p 
oflag: 

pmode: 

<fcntl.h>, <io.h>, <sys\\types.h>, <sys\\stat.h> 

int open(char *path, int flag[, int mode]); 
O_APPEND O_BINARY O_CREAT O_EXCL O_RDONLY 
O_RDWR O_TEXT O_TRUNC O_WRONLY 
(can be j oi ned by I) 
S_IWRITE S_IREAD S_IREAD I S_IWRITE 

\bReturns:\p a handle if successful, or -1 if not. 
errno: EACCES, EEXIST, EMFILE, ENOENT 

\bSee also:\p \uExample\p\vopen.ex\v, \uTemplate\p\vopen.tp\v, 
access, chmod, close, creat, dup, dup2, fopen, sopen, umask 

327 



Creating Help Files with HELPMAKE 

The .length command near the beginning of the example specifies the size of the 
initial window for the help text. Here, the initial window displays 13 lines. 

The manifest constants (such as 0_ WRONL Y and EEXIST), the C keywords 
(such as int and char), and the other functions (such as access and sopen) 
are implicit cross-references. The words Exampl e and Templ ate are 
explicit cross-references to the example open. ex and to the open template 
open. tp, respectively. Note the use of double backslashes in the include file 
names. 

11.6.2 Rich Text Format 

328 

Rich Text Format (RTF) is a Microsoft word-processing format supported by 
several word processors, including Microsoft Word 5.0 and Microsoft Word for 
Windows. RTF allows documents to be transferred between applications without 
loss of formatting. The HELPMAKE utility recognizes a subset of the full RTF 
syntax. If your file contains RTF codes that are not part of the subset, 
HELPMAKE discards them. 

To create an RTF-formatted file, enter the text and format it as you want it to ap­
pear: bold, underlined, hidden, italic, and so forth. (You can combine attributes.) 
You can also format paragraphs, selecting body and first-line indenting. The only 
items you need to insert into an RTF file manually are the help delimiter (») 
and the context string that start each entry. 

When you have entered and formatted the text, save it in RTF format. In Micro­
soft Word 5.0, for example, this means choosing Transfer Save, then highlighting 
RTF in the format: field. 

You do not see the RTF formatting codes when you load an RTF file into a com­
patible word processor; the word processor removes them and displays the text 
with the specified attribute(s). However, you can view these codes by loading an 
RTF file into a plain-text word processor. 

HELPMAKE recognizes the subset of RTF codes listed in Table 11.5. 



Using Help Database Formats 

Table 11.5 

RTF Code 

\b 

\ fin 

\i 

\ lin 

\ line 

\ par 

\ pard 

\ plain 

\tab 

\ul 

\v 

RTF Formatting Codes 

Action 

Boldface. The application decides how to display this; often it is 
intensified text. 

Paragraph first -line indent, n columns. 

Italic. The application decides how to display this; often it is 
reverse video. 

Paragraph indent from left margin, n columns. 

New line (not new paragraph). 

End of paragraph. 

Default paragraph formatting. 

Default attributes. On most screens, this is nonblinking normal 
intensity. 

Tab character. 

Underline. The application decides how to display this; some 
adapters that do not support underlining display it as blue text. 

Hidden text. Hidden text is used for cross-reference information 
and for some application-specific communications; it is not 
displayed. 

When HELPMAKE compresses the file, it formats the text to the width given 
with the jW option, ignoring the paragraph formats. 

As with the other text formats, each entry in the database source consists of one 
or more context strings, followed by topic text. An RTF file can contain Quick­
Help dot commands. 

The help delimiter (») at the beginning of any paragraph marks the beginning of 
a new help entry. The text that follows on the same line is defined as a context 
for the topic. If the next paragraph also begins with the help delimiter, it also de­
fines a context string for the same topic text. You can define any number of con­
texts for a block of topic text. The topic text comprises all subsequent paragraphs 
up to the next paragraph that begins with the help delimiter. 

329 



Creating Help Files with HElPMAKE 

{\ rt f1 

The example below is a help database containing a single entry using subset RTF 
text. Note that RTF uses curly braces ( { } ) for nesting. Thus, the entire file is en­
closed in curly braces, as is each specially formatted text item. 

\pard »open\par 
{\b Include:} <fcntl.h>, <io.h>, <sys\\types.h>, <sys\\stat.h>\par 

\par 
{\b Syntax:} int open( char * filename, int oflag[, int pmode ] );\par 

oflag: O_APPEND O_BINARY O_CREAT O_EXCL O_RDONLY\par 
O_RDWR O_TEXT O_TRUNC O_WRONLY\par 
(may be joined by I )\par 

pmode: S_IWRITE S_IREAD S_IREAD I S_IWRITE\par 
\par 

{\b Returns:} a handl e if successful, or -1 if not. \par 
EACCES, EEXIST, EMFILE, ENOENT\par errno: 

\par 
{\b See also:} Examples{\v open.ex}, access, chmod, close, creat, dup,\par 

dup2, fopen, sopen, umask\par 
»open.ex\par 
To build this help file, use the following command:\par 
\par 
HELPMAKE lSI IE15 IOOPEN.HLP OPEN.RTF\par 
\par 

< Back >{\v !B} 

RTF files normally contain additional information that is not visible to the user; 
HELPMAKE ignores this extra information. 

11.6.3 Minimally Formatted ASCII Format 

Minimally formatted ASCII 
files cannot contain 
highlighting. 

330 

A minimally formatted ASCII text file comprises a sequence of topics, each 
preceded by one or more unique context definitions. Each context definition must 
be on a separate line beginning with a help delimiter (»). Subsequent lines up to 
the next context definition constitute the topic text. 

There are two ways to use a minimally formatted ASCII file. You can compress 
it with HELPMAKE, creating a help database, or an application can access the 
uncompressed file directly. Compressing minimally formatted ASCII files in­
creases search speed. Uncompressed files are somewhat larger and slower to 
search. Minimally formatted ASCII files have a fixed width, and they cannot con­
tain highlighting (or other nondefault attributes) or explicit cross-references. 



»open 

Related Topics in Online Help 

The following example, coded in minimally formatted ASCII, shows the same 
text as the QuickHelp example presented earlier in this section. The first line of 
the example defines open as a context string. The minimally formatted ASCII 
help file must begin with the help delimiter (»), so that HELPMAKE or the ap­
plication can verify that the file is indeed an ASCII help file. 

Include: <fcntl.h>, <io.h>, <sys\types.h>, <sys\stat.h> 

Prototype: int open(char *path, int flag[, int mode]); 
ofl ag: O~APPEND O~B I NARY O. __ CREAT O_.EXC L O.~RDON L Y 

O~RDWR O~TEXT O~TRUNC O_WRONLY 
(can be j oi ned by I) 

pmode: S_IWRITE S_IREAD S_IREAD I S_IWRITE 

Returns: a handle if successful, or -1 if not. 
errno: EACCES, EEX IST, EMFILE, ENOENT 

See also: access, chmod, close, creat, dup, dup2, fopen, sopen, umask 

When displayed, the help information appears exactly as it is typed into the file. 
Any formatting codes are treated as ASCII text. 

11.7 Related Topics in Online Help 
Information on the following related topics can be found in online help. 

HELPMAKE 

QuickHelp 

Access 

Choose "HELPMAKE" from the "Microsoft Advisor 
Contents" screen 

Choose "QH" from the "Microsoft Advisor Contents" 
screen 

331 





Chapter 12 

Linking Object Files with LINK 

This chapter describes the Microsoft Segmented-Executable Linker (LINK), 
which combines compiled or assembled object files into an executable file. It ex­
plains LINK's input syntax and fields and tells how to use options to control 
LINK. It discusses overlays in DOS programs and concludes with background in­
formation about LINK. 

12.1 Overview 

Use BIND to create an 
OS/2 program that also 
runs under DOS. 

Use EXEHDR to examine 
the finished file. 

Other programs can call 
LINK automatically. 

LINK combines 80x86 object files into either an executable file or a dynamic­
link library (DLL). The object-file format is the Microsoft Relocatable Object­
Module Format (OMF), based on the Intel 8086 OMF. LINK uses library files in 
Microsoft library format. 

LINK creates "relocatable" executable files and DLLs-that is, the operating sys­
tem can load and execute these files in any unused section of memory. LINK can 
create DOS executable files with up to 1 megabyte of code and data (or up to 16 
megabytes when using overlays), or OS/2 and Microsoft Windows programs 
with up to 16 megabytes. 

For more information on OMF, executable-file format, and the linking process, 
see the MS-DOS Encyclopedia. 

The linker produces programs that run under DOS only or under OS/2 only, but 
not both. However, if an OS/2 program limits its OS/2 function calls to the 
Family API subset, you can use the Microsoft Bind Utility (BIND) to modify the 
OS/2 executable file so that it runs under both OS/2 and DOS. For more informa­
tion, see online help. 

When the file (either executable or DLL) is created, you can examine the infor­
mation that LINK puts in the file's header by using the Microsoft EXE File 
Header Utility (EXEHDR). For more information, see online help. 

The Programmer's WorkBench (PWB) invokes LINK to create the final execu­
table file or DLL. Therefore, if you develop your software with PWB, you might 
not need to read this chapter. However, the detailed explanations of LINK op­
tions might be helpful when you use the LINK Options dialog box in PWB. This 
information is also available in online help. 

The compiler or assembler supplied with your language (CL with C, FL with 
FORTRAN, ML with MASM) also invokes LINK. You can use most of the 
LINK options described in this chapter with this utility. Online help has more 

333 



linking Object Files with LINK 

information about the compilers and assembler: select help for the appropriate 
language from the Compiler box of the help Contents screen. 

NOTE Unless otherwise noted, all references to "library" in this chapter refer to a static li­
brary, either a standard library created by the Microsoft Library Manager (LIB) or an import 
library created by the Microsoft Import Library Manager (IMPLlB), and not a DLL. 

12.2 LINK Output Files 

334 

LINK is a bound application that runs under both DOS and OS/2 and can create 
executable files for DOS, OS/2, or Windows. You do not have to run LINK 
under OS/2 to create OS/2 applications, or under DOS to create DOS programs. 
The kind of file produced is determined by the way the source code is compiled 
and the information supplied to LINK, not the operating system LINK runs 
under. 

A program that runs under DOS is called an executable file or application. A pro­
gram or DLL that runs under Windows or OS/2 is called a segmented executable 
file. LINK creates the appropriate file according to the following rules: 

• If a module-definition file or import library is not specified and the object 
files and libraries do not contain export definitions, LINK creates an applica­
tion that runs under DOS. 

• If a module-definition file containing a LIBRARY statement is specified, 
LINK creates a DLL for Windows or OS/2. 

• If any other form of module-definition file is specified, or if any of the object 
files contains an exported definition, LINK creates an application to run 
under Windows or OS/2. 

LINK looks for the default run-time libraries named in the object files. Default li­
braries can be real or protected mode. (The mode is usually set when the lan­
guage product is installed.) Protected-mode libraries contain export definitions. If 
LINK finds protected-mode default libraries, the output file will be a segmented 
executable file rather than a DOS file. 

The file OS2.LIB is an import library. Linking with OS2.LIB produces an OS/2 
application or DLL. When you use a Microsoft high-level language to compile 
for protected mode, the compiler automatically specifies OS2.LIB as a default 
library. 

LINK's output is either an executable file or a DLL. For simplicity, this chapter 
sometimes refers to this output as the "main file" or "main output." 



Map files list the segments 
and symbols in a program. 

LINK produces other files 
when certain options are 
used. 

LINK Syntax and Input 

LINK also creates a "map" file, which lists the segments in the executable file. 
The /MAP option adds public symbols to the map file, and the /LINE option adds 
line numbers. 

Other options tell LINK to create other kinds of output files. The IINCR option 
creates .ILK and .SYM files for incremental linking with ILINK. LINK produces 
a .COM file instead of an .EXE file when the !TINY option is specified. The 
combination of /CO and !TINY puts debugging information into a .DBG file. A 
Quick library results when the /Q option is specified. For more information on 
these and other options, see Section 12.5, "LINK Options." 

12.3 LINK Syntax and Input 
The LINK command has the following syntax: 

LINK objfiles[, [exefile] [, [mapfile][, [libraries][, deffile] ] ] ][;] 

The LINK fields perform the following functions: 

• The objfiles field is a list of the object files that are to be linked into an execu-
table file or DLL. It is the only required field. 

• The exefile field lets you change the name of the output file from its default. 

• The mapfile field gives the map file a name other than its default name. 

• The libraries field specifies additional (or replacement) libraries to search for 
unresolved references. 

• The deffile field gives the name of a description file needed to create Win­
dows and OS/2 applications and DLLs. 

Fields are separated by commas. You can specify all the fields or leave one or 
more fields (including objfiles) blank; LINK will then prompt you for the miss­
ing input. (For an explanation of how to use LINK prompts, see Section 12.4, 
"Running LINK.") To leave a field blank, enter only the field's trailing comma. 

Options can be specified in any field. For descriptions of each of LINK's options, 
see Section 12.5, "LINK Options." 

The fields must be entered in the order shown, whether they contain input or are 
left blank. A semicolon (;) at the end of the LINK command line terminates the 
command and suppresses prompting for any missing fields. LINK then assumes 
the default values for the missing fields. 

If your file appears in or is to be created in another directory or device, you must 
supply the full pathname. Filenames are not case sensitive. 

The next five sections explain how to use each of the LINK fields. 

335 



linking Object Files with LINK 

12.3.1 The objfiles Field 

336 

The obJfiles field specifies one or more object files to be linked. At least one 
filename must be entered. If you do not supply an extension, LINK assumes a de­
fault .OBI extension. If the filename has no extension, add a period (.) at the end 
of its name. 

If you name more than one object file, separate the names with a plus sign (+) or 
a space. To extend objfiles to the following line, type a plus sign (+) as the last 
character on the current line, press ENTER, and continue. Do not split a name 
across lines. 

12.3.1.1 Load Libraries 
The obJfiles field can also specify library files. A library specified this way 
becomes a "load library." You must specify the library's filename extension; 
otherwise, LINK assumes an .OBI extension. 

LINK treats load libraries as any other object file: it puts every object module 
from a load library in the executable file, regardless of whether a module satisfies 
an unresolved external reference. The effect is the same as if you had specified 
all the library's object-module names in the obJfiles field. 

Specifying a load library can therefore create an executable file or DLL that is 
larger than it needs to be. (A library named in the libraries field adds only those 
modules required to resolve external references.) However, loading an entire li­
brary can be useful when 

• Repeatedly specifying the same group of object files 

• Placing a library in an overlay 

• Debugging, so you can call library routines that would not be included in the 
release version of the program 

12.3.1.2 How LINK Searches for Object Files 
When searching for object (and load-library) files, LINK looks in the following 
locations in the order specified: 

1. The directory specified for the file (if a path is included). If the file is not in 
that directory, the search terminates. 

2. The current directory. 

3. Any directories specified in the LIB environment variable. 

If LINK cannot find an object file, and a floppy drive is associated with that ob­
ject file, LINK pauses and prompts you to insert a disk containing the object file. 



LINK Syntax and Input 

If you specify a library in the obJfiles field, LINK treats it like any other object 
file. LINK therefore does not search for load libraries in directories named in the 
libraries field. 

12.3.1.3 Overlays 
A special syntax for the obJfiles field lets you create DOS programs that use over­
lay modules. For more information about overlays, see Section 12.7, "Using 
Overlays under DOS." 

12.3.2 The exefile Field 
The exefile field is used to specify a name for the main output file. If you do not 
supply an extension, LINK assumes a default extension, either .EXE, .COM 
(when using the rrINY option), .DLL (when using a module-definition file con­
taining a LIBRARY statement), or .QLB (when using the IQ option). 

If you do not specify an exefile, LINK gives the main output a default name. This 
name is the base name of the first file listed in the obJfiles field, plus the exten­
sion appropriate for the type of executable file being created. 

LINK creates the main file in the current directory unless you specify an explicit 
path with the filename. 

12.3.3 The mapfile Field 
The mapfile field is used to specify a filename for the map file or to suppress 
creation of a map file. A map file lists the segments in the executable file or DLL. 

You can specify a path with the filename. The default extension is .MAP. 
Specify NUL to suppress the creation of a map file. The default for the mapfile 
field is one of the following: 

• If this field is left blank on the command line or in a response file, LINK 
creates a map file with the base name of the exefile (or the first object file if 
no exefile is specified) and the extension .MAP. 

• When using LINK prompts, LINK assumes either the default described above 
(if an empty mapfile field is specified) or NUL. MA P, which suppresses crea­
tion of a map file. 

To add line numbers to the map file, use the /LINE option. To add public sym­
bols, use the /MAP option. Both /LINE and /MAP force a map file to be created 
unless NULL is explicitly specified. 

337 



Linking Object Files with LINK 

12.3.4 The libraries Field 

338 

You can specify one or more standard or import libraries (not DLLs) in the 
libraries field. If you name more than one library, separate the names with a plus 
sign (+ ) or a space. To extend libraries to the following line, type a plus sign ( +) 
as the last character on the current line, press ENTER, and continue. Do not split a 
name across lines. If you specify the base name of a library without an extension, 
LINK assumes a default .LIB extension. 

If no library is specified, LINK searches only the default libraries named in the 
object files to resolve unresolved references. If one or more libraries are 
specified, LINK searches them in the order named before searching the default 
libraries. 

You can tell LINK to search additional directories for specified or default librar­
ies by giving a drive name or path specification in the libraries field; end the 
specification with a backslash (\). (If you don't include the backslash, LINK as­
sumes the last element of the path is a library file.) LINK looks for files ending in 
.LIB in these directories. 

You can specify a total of 32 paths or libraries in the field. If you give more 
than 32 paths or libraries, LINK ignores the additional specifications without 
warning you. 

You might need to specify library names when you want to 

• Use a default library that has been renamed. 

• Specify a library other than the default named in the object file (for example, 
a library that handles floating-point arithmetic differently from the default 
library). 

• Search additional libraries. 

• Find a library not in the current directory and not in a directory specified by 
the LIB environment variable. 

12.3.4.1 Overriding Default-Library Searches 
Most compilers insert the names of the required language libraries in the object 
files. LINK searches for these default libraries automatically; you do not need to 
specify them in the libraries field. The libraries must already exist with the name 
expected by LINK. Default-library names usually refer to combined libraries 
built and named during setup; consult your compiler documentation for more in­
formation about default libraries. 

To make LINK ignore the default libraries, use the /NOD option. This leaves un­
resolved references in the object files, so you must use the libraries field to 
specify the alternative libraries that LINK is to search. 



LINK Syntax and Input 

12.3.4.2 Import Libraries 
You can specify import libraries created by the IMPLIB utility anywhere you can 
specify standard libraries. You can also use the LIB utility to combine import li­
braries and standard libraries. These combined libraries can then be specified in 
the libraries field. 

12.3.4.3 How LINK Resolves References 
LINK searches static libraries to resolve external references. A static library is 
either a standard library created by the LIB utility or an import library created by 
the IMPLIB utility. The linker searches first in the libraries and library directo­
ries you specify (in the order you specify them), then in the default libraries. If a 
default library is explicitly specified, it is searched in the order it is given. 

LINK uses only those library modules needed to resolve external references, not 
the entire library. However, if you enter a library as a load library in the objfiles 
field, all the modules of a load library are added to the main output. 

12.3.4.4 How LINK Searches for Library Files 
When searching for libraries, LINK looks in the following locations in this order: 

1. The directory specified for the file (if a path is included). If the file is not in 
that directory, the search terminates. (The default libraries named in object 
files by Microsoft compilers do not include path specifications.) 

2. The current directory. 

3. Any directories in the libraries field. 

4. Any directories specified in the LIB environment variable. 

If LINK cannot locate a library file, it prompts you to enter the location. The 
/BATCH option disables this prompting. 

Example 
The following is a specification in the libraries field: 

C:\TESTLIB\ NEWLIBV3 C:\MYLIBS\SPECIAL 

LINK searches NEWLIBV3.LIB first for unresolved references. Since no 
directory is specified for NEWLIBV3.LIB, LINK searches the following loca­
tions in this order: 

1. The current directory 

2. The C:\TESTLIB\ directory 

3. The directories in the LIB environment variable 

339 



Linking Object Files with LINK 

If LINK still cannot find NEWLIBV3.LIB, it prompts you with the message 

Enter new file spec 

You can then enter either a path to the library or a full pathname for another 
library. 

If unresolved references remain after searching NEWLIBV3.LIB, LINK then 
searches the library C:\MYLIBS\sPECIAL.LIB. If LINK cannot find this library, 
it prompts you as described above for NEWLIBV3.LIB. If there are still unre­
solved references, LINK searches the default libraries. 

12.3.5 The deffile Field 

12.3.6 Examples 

340 

Use the deffile field to specify a module-definition file when you are linking a 
segmented executable file, which is an application or DLL for OS/2 or Windows. 
A module-definition file is optional for an application but required for a DLL. If 
you specify a base name with no extension, LINK assumes a .DEF extension. If 
the filename has no extension, put a period (.) at the end of the name. 

By default, LINK assumes that no deffile needs to be specified. If you are linking 
for DOS, use a semicolon to terminate the command line before the deffile field 
(or accept the default NUL.DEF at the Oefi nit ions Fi 1 e prompt). 

12.3.5.1 How LINK Searches for Module-Definition Files 
LINK searches for the module-definition file in the following order: 

1. The directory specified for the file (if a path is included). If the file is not in 
that directory, the search terminates. 

2. The current directory. 

For information on module-definition files, see Chapter 13. 

The following examples illustrate various uses of the LINK command line. 

Example 1 
LINK FUN+TEXT+TABLE+CARE, , FUNLIST, XLIB.LIB; 

This command line links the object files FUN.OBJ, TEXT.OBJ, TABLE.OBJ, 
and CARE.OBJ. By default, the executable file is named FUN.EXE, because the 
base name of the first object file is FU N, and no name is specified for the execu­
table file. The map file is named FUNLIST.MAP. LINK searches for unresolved 
external references in the library XLIB .LIB before searching in the default 



Running LINK 

libraries. LINK does not prompt for a .DEF file because a semicolon appears 
before the deffile field. 

Example 2 
LINK FUN, , 

This command produces a map file named FUN. MAP because a comma appears 
as a placeholder for the mapfile field on the command line. 

Example 3 
LINK FUN, ; 
LINK FUN; 

Neither of these commands produces a map file, because commas do not appear 
as placeholders for the mapfile field. The semicolon (;) terminates the command 
line and accepts all remaining defaults without prompting; the prompting default 
for the map file is not to create one. 

Example 4 
LINK MAIN+GETDATA+PRINTIT, , MAIN; 

This command links the fites MAIN.OBJ, GETDATA.OBJ, and PRINTIT.OBJ 
into a DOS executable file because no module-definition file is specified. The 
map file MAIN. MAP is created. 

Example 5 
LINK GETDATA+PRINTIT, , , , MODDEF 

This command links GETDATA.OBJ and PRINTIT.OBJ into a DLL if 
MODDEF.DEF contains a LIBRARY statement. Otherwise, it links them into a 
segmented executable file for OS/2 or Windows. LINK creates a map file named 
GETDATA.MAP. 

12.4 Running LINK 
The simplest use of LINK is to combine one or more object files with a run-time 
library to create an executable file. You type LIN K at the command-line 
prompt, followed by the names of the object files and a semicolon (;). LINK com­
bines the object files with language libraries specified in the object files to create 
an executable file. By default, the executable file takes the name of the first ob­
ject file in the list. 

To interrupt LINK and return to the operating-system prompt, press CTRL+C at 
any time. 

341 



Linking Object Files with LINK 

LINK expects you to supply at least one input field (the objfiles field), and as 
many as five. There are several ways to supply the input fields LINK expects: 

• Enter all the required input directly on the command line. 

• Omit one or more of the input fields and respond when LINK prompts for the 
missing fields. 

• Put the input in a response file and enter the response-file name in place of 
the expected input. 

These methods can be used in combination. The LINK command line was dis­
cussed in Section 12.3. The following sections explain the other two methods. 

12.4.1 Specifying Input with LINK Prompts 

342 

If any field is missing from the LINK command line and the line does not end 
with a semicolon, or if any of the supplied fields are invalid, LINK prompts you 
for the missing or incorrect information. LINK displays one prompt at a time and 
waits until you respond: 

Object Modules [.OBJ]: 
Run File [basename.EXE]: 
List File [NUL.MAP]: 
Libraries [.LIB]: 
Definitions File [NUL.DEF]: 

The LINK prompts correspond to the command-line fields described earlier in 
this chapter. If you want LINK to prompt you for every input field, including 
objfiles, type the command LIN K by itself. 

Options can be entered anywhere in any field, before the semicolon if specified. 

12.4.1.1 Defaults 
The default values for each field are shown in brackets. Press ENTER to accept the 
default, or type in the filename(s) you want. The basename is the base name of 
the first object file you specified. To select the default responses for all the re­
maining prompts and terminate prompting, type a semicolon (;) and press ENTER. 

If you specify a filename without giving an extension, LINK adds the appropriate 
default extension. To specify a filename that does not have an extension, type a 
period (.) after the name. 

Use a space or plus sign (+) to separate multiple filenames in the objfiles and 
libraries fields. To extend a long objfiles or libraries response to a new line, type 
a plus sign (+) as the last character on the current line and press ENTER. You can 
continue entering your response when the same prompt appears on a new line. 
Do not split a filename or a pathname across lines. 



Running LINK 

12.4.2 Specifying Input in a Response File 
You can supply input to LINK in a response file. A response file is a text file con­
taining the input LINK expects on the command line or in response to prompts. 
Response files can be used to hold frequently used options or responses, or to 
overcome the I 28-character limit on the length of a DOS command line. 

12.4.2.1 Usage 
Specify the name of the response file in place of the expected command-line 
input or in response to a prompt. Precede the name with an at sign (@), as in 
@responsefile. You must specify an extension if the response file has one; there 
is no default extension. You can specify a path with the filename. 

You can specify a response file in any field (either on the command line or when 
responding to prompts) to supply input for one or more consecutive fields or all 
remaining fields. Note that LINK assumes nothing about the contents of the re­
sponse file; LINK simply reads the fields from the file and applies them, in order, 
to the fields for which it has no input. LINK ignores any fields in the response 
file or on the command line after the five expected fields are satisfied or a semi­
colon (;) appears. 

Example 
The following command invokes LINK and supplies all input in a response file, 
except the last input field: 

LINK @input.txt, mydefs 

12.4.2.2 Contents of the Response File 
Each input field must appear on a separate line or be separated from other fields 
on the same line by a comma. You can extend a field to the following line by 
adding a plus sign ( +) at the end of the current line. A blank field can be repre­
sented by either a blank line or a comma. 

Options can be entered anywhere in any field, before the semicolon if specified. 

If a response file does not specify all the fields, LINK prompts you for the rest. 
Use a semicolon (;) to suppress prompting and accept the default responses for 
all remaining fields. 

Example 
FUN TEXT TABLE+ 
CARE 
IMAP 
FUNLIST 
GRAF. LIB 

343 



Linking Object Files with LINK 

If the response file above is named FUN. LNK, the command 

LINK @FUN.LNK 

causes LINK to 

• Link the four object files FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and 
CARE.OBJ into an executable file named FUN.EXE. 

• Include public symbols and addresses in the map file. 

• Make the name of the map file FUNLIST.MAP. 

• Link any needed routines from the library file GRAF.LIB. 

• Assume no module-definition file. 

12.5 LINK Options 
This section explains how to use options to control LINK's behavior and modify 
LINK's output. It contains a description of each option following a brief introduc­
tion on how to specify options. 

12.5.1 Specifying Options 

344 

The following paragraphs discuss rules for using options. 

12.5.1.1 Syntax 
All options begin with a slash ( / ). You can specify an option by using the short­
est sequence of characters that uniquely identifies the option. The description for 
each option shows the minimum legal abbreviation with the optional part en­
closed in double brackets. No gaps or transpositions of letters are allowed. For ex­
ample, 

/B[ATCH] 

indicates that either /B or /BATCH can be used, as can /BA, /BAT, or /BATe. 
Option names are not case sensitive, so you can also specify /batch or /Batch. 
This chapter uses meaningful yet legal forms of the option names. 

12.5.1.2 Usage 
LINK options can appear on the command line, in response to a prompt, or as 
part of a field in a response file. They can also be specified in the LINK environ­
ment variable. (For more information, see Section 12.6, "Setting Options with 
the LINK Environment Variable.") Options can appear in any field before the 
last input, except as noted in the descriptions. 



LINK Options 

If an option appears more than once (for example, on the command line and in 
the LINK variable), the effect is the same as if the option was given only once. If 
two options conflict, the most recently specified option takes effect. This means 
that a command-line option or one given in response to a prompt overrides one 
specified in the LINK environment variable. For example, the command-line op­
tion fSEG:512 cancels the effect of the environment-variable option fSEG:256. 

12.5.1.3 Numeric Arguments 
Some LINK options take numeric arguments. You can enter numbers either in 
decimal format or in standard C-Ianguage notation. 

12.5.2 The /ALIGN Option 
Option 
f A[LIGNMENT] :size 

The fALIGN option aligns segments in a segmented executable file at the boun­
daries specified by size. The size argument must be an integer power of two. For 
example, 

IALIGN:16 

indicates an alignment boundary of 16 bytes. The default alignment is 512 bytes. 

This option reduces the size of the disk file by reducing the size of gaps between 
segments. It has no effect on the size of the file when loaded in memory. 

12.5.3 The /BATCH Option 
Option 
/B[ATCH] 

The /BATCH option suppresses prompting for libraries or object files that LINK 
cannot find. By default, the linker prompts for a new pathname whenever it can­
not find a library that it has been directed to use. It also prompts you if it cannot 
find an object file that it expects to find on a floppy disk. When /BATCH is used, 
the linker generates an error or warning message (if appropriate). The /BATCH 
option also suppresses the LINK copyright message and echoed input from re­
sponse files. 

Using this option can cause unresolved external references. It is intended pri­
marily for users who use batch files or makefiles for linking many executable 
files with a single command and who wish to prevent linker operation from 
halting. 

345 



linking Object Files with LINK 

NOTE This option does not suppress prompts for input fields. Use a semicolon (;) at the 
end of the LINK input to suppress input prompting. 

12.5.4 The ICO Option 
Option 
/CO[DEVIEW] 

The ICO option adds line numbers and symbolic data to the executable file for 
use with the Microsoft CodeView debugger. The ICO option has no effect if the 
object files do not contain CodeView debugging information. 

You can run the resulting executable file outside CodeView; the debugging data 
in the file is ignored. However, it increases file size and slows execution slightly. 
You should link a separate release version without the ICO option after the pro­
gram has been debugged. 

When ICO is used with the /TINY option, debug information is put in a separate 
file with the same base name as the .COM file and with the .DBG extension. 

The ICO option is not compatible with the /EXEPACK option for DOS execu­
table files. 

12.5.5 The ICPARM Option 

346 

Option 
/CP[ARMAXALLOC] :number 

The ICPARM option sets the maximum number of 16-byte paragraphs needed by 
the program when it is loaded into memory. The operating system uses this value 
to allocate space for the program before loading it. This option is useful when 
you want to execute another program from within your program and you need to 
reserve memory for the program. The ICPARM option is valid only when linking 
DOS programs. 

LINK normally requests the operating system to set the maximum number of 
paragraphs to 65,535. Since this is more memory than DOS can supply, the oper­
ating system always denies the request and allocates the largest contiguous block 
of memory it can find. If the ICP ARM option is used, the operating system allo­
cates no more space than the option specified. Any memory in excess of that re­
quired for the program loaded is free for other programs. 

The number can be any integer value in the range 1 to 65,535. If number is less 
than the minimum number of paragraphs needed by the program, LINK ignores 
your request and sets the maximum value equal to whatever the minimum value 
happens to be. The minimum number of paragraphs needed by a program is 
never less than the number of paragraphs of code and data in the program. To 



LINK Options 

free more memory for programs compiled in the medium and large models, link 
with fCP ARM: 1. This leaves no space for the near heap. 

NOTE You can change the maximum allocation after linking by using the EXEHDR utility, 
which modifies the executable-file header. 

12.5.6 The IDOSSEG Option 
Option 
fDO[SSEG] 

The /DOSSEG option forces segments to be ordered as follows: 

1. All segments with a class name ending in CODE 

2. All other segments outside DGROUP 

3. DGROUP segments, in the following order: 

a. Any segments of class BEGDAT A. (This class name is reserved for 
Microsoft use.) 

b. Any segments not of class BEGDATA, BSS, or STACK. 

c. Segments of class BSS. 

d. Segments of class STACK. 

In addition, /DOSSEG option defines the following two labels: 

edata DGROUP BSS 
end = DGROUP : STACK 

The variables _edata and _end have special meanings for Microsoft com­
pilers, so you should not define program variables with these names. Assembly­
language programs can reference these variables but should not change them. 

The /DOSSEG option also inserts 16 null bytes at the beginning of the _TEXT 
segment (if this segment is defined). This behavior of the option is overridden by 
the /NONULLS option when both are used; use /NONULLS to override the 
DOSSEG comment record commonly found in standard Microsoft libraries. 

This option is principally for use with assembly-language programs. When you 
link high-level-language programs, a special object-module record in the Micro­
soft language libraries automatically enables the /DOSSEG option. This option is 
also enabled by assembly modules that use MASM directive .DOSSEG. 

347 



Linking Object Files with LINK 

12.5.7 The /DSALLOC Option 
Option 
/DS[ALLOCATE] 

The /DSALLOC option tells LINK to load all data starting at the high end of the 
data segment. At run time, the data segment (DS) register is set to the lowest data­
segment address that contains program data. 

By default, LINK loads all data starting at the low end of the data segment. At 
run time, the DS register is set to the lowest possible address to allow the entire 
data segment to be used. 

The /DSALLOC option is most often used with the /HIGH option to take advan­
tage of unused memory within the data segment. These options are valid only for 
assembly-language programs that create DOS .EXE files. 

12.5.8 The /EXEPACK Option 

348 

Option 
/E[XEPACK] 

The /EXEP ACK option directs LINK to remove sequences of repeated bytes 
(usually null characters) and to optimize the load-time relocation table before 
creating the executable file. (The load-time relocation table is a table of refer­
ences relative to the start of the program, each of which changes when the execu­
table image is loaded into memory and an actual address for the entry point is 
assigned.) 

The /EXEPACK option does not always produce a significant saving in disk 
space and may sometimes actually increase file size. Programs that have a large 
number of load-time relocations (about 500 or more) and long streams of re­
peated characters are usually shorter if packed. LINK notifies you if the packed 
file is larger than the unpacked file. The time required to expand a packed file 
may cause it to load more slowly than a file linked without this option. 

You cannot debug packed files with CodeView, because the /EXEPACK option 
removes symbolic information. A LINK warning message notifies you of this. 

The /EXEPACK option is not compatible with the IINCR option or with Win­
dows programs. 



LINK Options 

12.5.9 The /FARCALL Option 

FARCALL optimizes by 
creating more efficient 
code. 

In rare cases, /FARCALL 
should be used with 
caution. 

Option 
IF[ARCALLTRANSLATION] 

The IFARCALL option directs the linker to optimize far calls to procedures that 
lie in the same segment as the caller. This can result in slightly faster code; the 
gain in speed is most apparent on 80286-based machines and later. The /p ACKC 
option can be used with IFARCALL when linking for OS/2. /pACKC is not rec­
ommended when linking Windows applications with IF ARCALL. 

The IFARCALL option is off by default. If an environment variable (such as 
LINK or FL) includes IFARCALL, you can use the /NOFARCALL option to 
override it. 

A program that has multiple code segments may make a far call to a procedure in 
the same segment. Since the segment address is the same (for both the code and 
the procedure it calls), only a near call is necessary. Far calls appear in the reloca­
tion table; a near call does not require a table entry. By converting far calls to 
near calls in the same segment, the IF ARC ALL option both reduces the size of 
the relocation table and increases execution speed, since only the offset needs to 
be loaded, not a new segment. The IF ARC ALL option has no effect on programs 
that make only near calls, since there are no far calls to convert. 

When IF ARC ALL is specified, the linker optimizes code by removing the in­
struction call FAR 1 a be 1 and substituting the following sequence: 

nap 
push cs 
call NEAR label 

During execution, the called procedure still returns with a far-return instruction. 
However, because both the code segment and the near address are on the stack, 
the far return is executed correctly. The no p (no-op) instruction is added so that 
exactly five bytes replace the five-byte far-call instruction. 

There is a small risk with the IFARCALL option. If LINK sees the far-call op­
code (9A hexadecimal) followed by a far pointer to the current statement, and 
that segment has a class name ending in CODE, it interprets that as a far call. 
This problem can occur when using _based (segname ("CODE")) in a C 
program. If a program linked with IF ARCALL fails for no apparent reason, try 
using /NOFARCALL. 

Object modules produced by Microsoft high-level languages are safe from this 
problem because little immediate data is stored in code segments. Assembly­
language programs are generally safe for use with the IF ARC ALL option if they 
do not involve advanced system-level code, such as might be found in operating 
systems or interrupt handlers. 

349 



Linking Object Files with LINK 

12.5.10 The IHELP Option 
Option 
/HE[LP] 

The /HELP option calls the QuickHelp utility. If LINK cannot find the help file 
or QuickHelp, it displays a brief summary of LINK command-line syntax and op­
tions. Do not give a filename when using the /HELP option. 

12.5.11 The IHIGH Option 
Option 
/HI[GH] 

At load time, the executable file can be placed either as low or as high in 
memory as possible. The /HIGH option causes DOS to place the executable file 
as high as possible in memory. Without the /HIGH option, DOS places the execu­
table file as low as possible. This option is usually used with the jDSALLOC op­
tion. These options are valid only for assembly-language programs that create 
DOS .EXE files. 

12.5.12 The IINCR Option 

350 

Option 
IINC[REMENTAL] 

The IINCR option must be used to prepare for subsequent linking with ILINK. 
This option produces a .SYM file and an .ILK file, each containing additional in­
formation needed by ILINK. 

When IINCR is specified, LINK creates the main output file as a segmented 
executable file. If the main output is a DOS application, LINK adds a stub loader 
so that the program can run under DOS. The file is slightly larger than it would 
be without IINCR. 

The /PADC and /PADD options are often used with the IINCR option to increase 
buffer size and thereby increase the likelihood that incremental linking will be 
successful. The (TINY and jEXEPACK options are not compatible with IINCR. 

You should not use IINCR or ILINK for the release version of a product. ILINK 
is intended to speed linking during development and debugging. In rare cases, 
linking with IINCR causes warning L4001 to be generated. If this occurs, do 
not use this option or ILINK. 



12.5.13 The /INFO Option 
Option 
jINF[ORMATION] 

LINK Options 

The /INFO option displays to the standard output information about the linking 
process, including the phase of linking and the names of the object files being 
linked. This option is a useful way to determine the locations of the object files 
being linked, the number of segments, and the order in which they are linked. 

12.5.14 The /LINE Option 
Option 
/LI[NENUMBERS] 

The /LINE option adds the line numbers and associated addresses from source 
files to the map file. The object file must contain line-number information for it 
to appear in the map file. If the object file has no line-number information, the 
/LINE option has no effect. (Use the jZd or jZi option with Microsoft compilers 
such as CL, FL, and ML to add line numbers to the object file.) If you also want 
to add public symbols to the map file, use the /MAP option. 

The /LINE option causes a map file to be created even if you did not explicitly 
tell the linker to do so. By default, the map file is given the same base name as 
the executable file with the extension .MAP. You can override the default name 
by specifying a new map filename in the map file field or in response to the 
Lis t F i 1 e prompt. 

12.5.15 The /MAP Option 
Option 
jM[AP] 

The /MAP option adds to the map file all public (global) symbols defined in ob­
ject files. When /MAP is specified, the map file contains a list of all the symbols 
sorted by name and a list of all the symbols sorted by address. If you do not use 
this option, the map file contains only a list of segments. If you also want to add 
line numbers to the map file, use the /LINE option. 

The /MAP option causes a map file to be created even if you did not explicitly 
tell the linker to do so. By default, the map file is given the same base name as 
the executable file with the extension .MAP. You can override the default name 
by specifying a new map filename in the map file field or in response to the 
List Fi 1 e prompt. 

Under some circumstances, adding symbols slows the linking process. If this is a 
problem, do not use /MAP. 

351 



Linking Object Files with LINK 

12.5.16 The INOD Option 
Option 
/NOD [EFAULTLIBRARYSEARCH] [:libraryname] 

The /NOD option tells LINK not to search default libraries named in object files. 
Specifying libraryname tells LINK to search all libraries named in the object 
files except libraryname. If you want LINK to ignore more than one library, 
specify /NOD once for each library. To tell LINK to ignore all default libraries, 
specify /NOD without a libraryname. 

High-level-language object files usually must be linked with a run-time library to 
produce an executable file. Therefore, if you use the /NOD option, you must also 
use the libraries field to specify an alternate library that resolves the external ref­
erences in the object files. 

12.5.17 The INOE Option 
Option 
/NOE[XTDICTIONARY] 

The /NOE option prevents the linker from searching extended dictionaries, which 
are lists of symbol locations in libraries created with LIB. The linker consults ex­
tended dictionaries to speed up library searches. 

Using /NOE slows the linker. Use this option when you are redefining a symbol 
or function defined in a library and you get the error 

L2044 symbol multiply defined, use INOE 

12.5.18 The INOFARCALL Option 

352 

Option 
/NOF[ARCALLTRANSLATION] 

The /NOFARCALL option turns off far-call optimization (translation). Far-call 
optimization is off by default. However, if an environment variable (such as 
LINK or FL) includes the /FAR CALL option, you can use /NOFARCALL to 
override /FARCALL. 



12.5.19 The /NOGROUP Option 
Option 
/NOG[ROUPASSOCIATION] 

LINK Options 

The /NOGROUP option ignores group associations when assigning addresses to 
data and code items. It is provided primarily for compatibility with previous ver­
sions of the linker (2.02 and earlier) and early versions of Microsoft compilers. 
This option is valid only for assembly-language programs that create DOS .EXE 
files. 

12.5.20 The /NOI Option 
Option 
/NOI[GNORECASE] 

This option preserves case in identifiers. By default, LINK treats uppercase and 
lowercase letters as equivalent. Thus ABC, Abc, and abc are considered the 
same name. When you use the /NOI option, the linker distinguishes between up­
percase and lowercase, and considers these identifiers to be three different names. 

In most high-level languages, identifiers are not case sensitive, so this option has 
no effect. However, case is significant in C. It's a good idea to use this option 
with C programs to catch misnamed identifiers. 

12.5.21 The /NOLOGO Option 
Option 
/NOL[OGO] 

The /NOLOGO option suppresses the copyright message displayed when LINK 
starts. This option has no effect if not specified first on the command line or in 
the LINK environment variable. 

12.5.22 The /NONULLS Option 
Option 
/NON[ULLSDOSSEG] 

The /NONULLS option arranges segments in the same order they are arranged 
by the /DOSSEG option. The only difference is that the /DOSSEG option inserts 
16 null bytes at the beginning of the _TEXT segment (if it is defined), but 
/NONULLS does not insert the extra bytes. 

353 



Linking Object Files with LINK 

If both the /DOSSEG and /NONULLS options are given, the /NONULLS option 
takes precedence. You can therefore use /NONULLS to override the DOSSEG 
comment record found in run-time libraries. This option is for segmented execu­
table files. 

12.5.23 The INOPACKC Option 
Option 
/NOP[ACKCODE] 

This option turns off code-segment packing. Code-segment packing is normally 
off by default. However, if an environment variable (such as LINK or FL) in­
cludes the /p ACKC option to turn on code-segment packing, you can use 
/NOP ACKC to override /p ACKC. 

12.5.24 The IOV Option 
Option 
10 [VERLAYINTERRUPT] :number 

This option sets an interrupt number for passing control to overlays. By default, 
the interrupt number used for passing control to overlays is 63 (3F hexadecimal). 
The IOV option allows you to select a different interrupt number. This option is 
valid only when linking DOS programs. 

The number can be any number from 0 to 255, specified in decimal format or in 
C-Ianguage notation. Numbers that conflict with DOS interrupts can be used; 
however, their use is not advised. You should use this option only when you 
want to use overlays with a program that already reserves interrupt 63 for some 
other purpose. 

12.5.25 The IPACKC Option 

354 

Option 
/PACKC[ODE] [:number] 

The /pACKC option turns on code-segment packing. The linker packs code seg­
ments by grouping neighboring code segments that have the same attributes. Seg­
ments in the same group are assigned the same segment address; offset addresses 
are adjusted accordingly. All items have the same physical address whether or 
not the /p ACKC option is used. However, /p ACKC changes the segment and off­
set addresses so that all items in a group share the same segment. 

The number specifies the maximum size of groups formed by /PACKC. The 
linker stops adding segments to a group when it cannot add another segment 
without exceeding number; then it starts a new group. The default segment size 



Use caution when packing 
assembly-language 
programs. 

LINK Options 

without /pACKC (or when /PACKC is specified without number) is 65,500 bytes 
(64K - 36 bytes). 

The /p ACKC option produces slightly faster and more compact code. It affects 
only programs with multiple code segments. This option is off by default and, if 
specified in an environment variable, can be overridden with the jNOPACKC 
option. 

Code-segment packing provides more opportunities for far-call optimization 
(which is enabled with the /FARCALL option). The /FARCALL and /pACKC 
options together produce faster and more compact code. However, this combina­
tion is not recommended for Windows applications. 

Object code created by Microsoft compilers can safely be linked with the 
/pACKC option. This option is unsafe only when used with assembly-language 
programs that make assumptions about the relative order of code segments. For 
example, the following assembly code attempts to calculate the distance between 
C S E Gland C S E G 2. This code produces incorrect results when used with 
/pACKC, because /pACKC causes the two segments to share the same segment 
address. Therefore, the procedure would always return zero. 

CSEGI SEGMENT PUBLIC 'CODE' 

CSEGI ENDS 

CSEG2 SEGMENT PARA PUBLIC 'CODE' 
ASSUME cs:CSEG2 

; Return the length of CSEGI in AX 

codesize PROC NEAR 
mov ax, CSEG2 Load para address of CSEGI 
sub ax, CSEGI Load para address of CSEG2 
mov cx, 4 Load count 
s h 1 ax, cl Convert distance from paragraphs 

to bytes 
codesize ENDP 

CSEG2 ENDS 

12.5.26 The /PACKD Option 
Option 
/PACKD[ATA] [:number] 

The /p ACKD option turns on data-segment packing. The linker considers any 
segment definition with a class name that does not end in CODE as a data seg­
ment. Adjacent data-segment definitions are combined into the same physical 

355 



linking Object Files with LINK 

segment. The linker stops adding segments to a group when it cannot add another 
segment without exceeding number bytes; then it starts a new group. The default 
segment size without IP ACKD (or when IP ACKD is specified without number) 
is 65,536 bytes (64K). 

The IPACKD option produces slightly faster and more compact code. It affects 
only programs with multiple data segments and is valid for OS/2 and Windows 
programs only. It might be necessary to use the IPACKD option to get around the 
limit of 255 physical data segments per executable file imposed by OS/2 and 
Windows. Try using IP ACKD if you get the following LINK error: 

L1073 file-segment limit exceeded 

This option may not be safe with other compilers that do not generate fixup re­
cords for all far data references. 

12.5.27 The /PADe Option 
Option 
IPADC[ODE] [:padsize] 

The IP ADC option adds filler bytes to the end of each code segment for use 
when later linking with ILINK. If you use IP ADC, you must also specify the 
IINCR option. 

The padsize is optional; the default is 0 bytes. If incremental linking fails, you 
can specify a padsize in decimal format or C-Ianguage notation. For example, 
/ PAD C : 256 adds an additional 256 bytes to each code segment. (You can also 
use 0400 or 0x100 to specify 256 bytes.) 

The linker recognizes code segments as segment definitions with class names 
that end in CODE. Microsoft high-level languages automatically use this declara­
tion for code segments. Code padding is not usually necessary for programs with 
mUltiple code segments but is recommended for mixed-model programs, pro­
grams with one code segment, and assembly-language programs in which code 
segments are grouped. 

12.5.28 The /PADD Option 

356 

Option 
IPADD[ATA] [:padsize] 

The IPADD option adds filler bytes to the end of each data segment to permit 
subsequent linking with ILINK. If you use IP ADD, you must also specify the 
IINCR option. 

The padsize is optional; the default is 16 bytes. The IINCR option itself adds 16 
bytes. This default padding is usually sufficient for successful incremental 



LINK Options 

linking. If incremental linking fails, you can specify a padsize in decimal format 
or C-Ianguage notation. (If you specify too large a padsize, you might exceed 
the 64K limitation on the size of the default data segment.) For example, 
/ PAD D : 32 adds an additional 32 bytes to each data segment. (You can also 
use 040 or 0x20 to specify 32 bytes.) 

12.5.29 The /PAUSE Option 
Option 
/PAU[SE] 

The /pAUSE option pauses the session before LINK writes the executable file or 
DLL to disk. This option is supplied for compatibility with machines that have 
two floppy drives but no hard disk. It allows you to swap floppy disks before 
LINK writes the executable file. 

If you specify the /PAUSE option, LINK displays the following message before 
it creates the main output: 

About to generate .EXE file 
Change diskette in drive letter and press <ENTER> 

The letter is the current drive. LINK resumes processing when you press ENTER. 

Do not remove a disk that contains either the map file or the temporary file. If 
LINK creates a temporary file on the disk you plan to remove, terminate the 
LINK session and rearrange your files so that the temporary file is on a disk that 
does not need to be removed. For more information on how LINK determines 
where to put the temporary file, see Section 12.9, "LINK Temporary Files." 

12.5.30 The /PM Option 
Option 
/PM[TYPE]:type 

This option specifies the type of Windows or OS/2 application being generated. 
The /PM option is equivalent to including a type specification in the NAME state­
ment in a module-definition file. 

357 



linking Object Files with LINK 

The type field can take one of the following values: 

Value 

PM 

VIO 

NOVIO 

Description 

Presentation Manager (PM) or Windows application. The appli­
cation uses the API provided by PM or Windows and must be 
executed in the PM or Windows environment. This is equiv­
alent to NAME WINDOWAPI. 

Character-mode application to run in a text window in the 
PM or Windows session. This is equivalent to NAME 
WINDOWCOMPAT. 

The default. Character-mode application that must run full 
screen and cannot run in a text window in PM or in Windows. 
This is equivalent to NAME NOTWINDOWCOMPAT. 

12.5.31 The /0 Option 
Option 
/Q[UICKLIBRARY] 

The /Q option directs the linker to produce a "Quick library" instead of an execu­
table file. A Quick library is similar to a standard library in that both contain 
routines that can be called by a program. However, a standard library is linked 
with a program at link time; in contrast, a Quick library is linked with a program 
at run time. 

When /Q is specified, the exefile field refers to a Quick library instead of an appli­
cation. The default extension for this field is then .QLB instead of .EXE. 

Quick libraries can be used only with programs created with Microsoft Quick­
Basic or early versions of Microsoft QuickC. These programs have the special 
code that loads a Quick library at run time. 

12.5.32 The /SEG Option 

358 

Option 
/SE[GMENTS] [:number] 

The /SEG option sets the maximum number of program segments. The default 
without /SEG or number is 128. You can specify number as any value from 1 to 
16,384 in individual format or C-Ianguage notation. However, the number of seg­
ment definitions is constrained by available memory. 

LINK must allocate some memory to keep track of information for each seg­
ment; the larger the number you specify, the less free memory LINK has to run 
in. A relatively low segment limit (such as the 128 default) reduces the chance 



LINK Options 

LINK will run out of memory. For programs with fewer than 128 segments, you 
can minimize LINK's memory requirements by setting number to reflect the ac­
tual number of segments in the program. If a program has more than 128 seg­
ments, however, you must set a higher value. 

If the number of segments allocated is too high for the amount of memory availa­
ble while linking, LINK displays the error message 

L1054 requested segment limit too high 

When this happens, try linking again after setting /SEG to a smaller number. 

12.5.33 The /STACK Option 
Option 
/ST[ACK]:number 

The /STACK option lets you change the stack size from its default value of 2,048 
bytes. The number is any positive value in decimal or C-Ianguage notation, up 
to 64K. 

Programs that pass large arrays or structures by value or with deeply nested sub­
routines may need additional stack space. In contrast, if your program uses the 
stack very little, you might be able to save space by decreasing the stack size. If a 
program fails with a stack-overflow message, try increasing the size of the stack. 

NOTE You can also use the EXEHDR utility to change the default stack size by modifying 
the executable-file header. 

12.5.34 The /TINY Option 
Option 
/T[INY] 

The /TINY option produces a .COM file instead of an .EXE file. The default ex­
tension of the output file is .COM. When the /CO option is used with /TINY, 
debug information is put in a separate file with the same base name as the .COM 
file and with the .DBG extension. 

Not every program can be linked in the .COM format. The following restrictions 
apply: 

• The program must consist of only one physical segment. You can declare 
more than one segment in assembly-language programs; however, the seg­
ments must be in the same group. 

• The code must not use far references. 

359 



linking Object Files with LINK 

• Segment addresses cannot be used as immediate data for instructions. For ex­
ample, you cannot use the following instruction: 

mav ax, CODESEG 

• Windows and OS/2 programs cannot be converted to a .COM format. 

12.5.35 The /W Option 
Option 
/W[ARNFIXUP] 

The /W option issues the L4000 warning when LINK uses a displacement from 
the beginning of a group in determining a fixup value. This option is provided be­
cause early versions of the Windows linker (LINK4) performed fixups without 
this displacement. This option is for linking segmented executable files. 

12.5.36 The /? Option 
Option 
/? 

The /? option displays a brief summary of LINK command-line syntax and 
options. 

12.6 Setting Options with the LINK Environment Variable 
You can use the LINK environment variable to set options that will be in effect 
each time you link. (Microsoft compilers such as CL, FL, and ML also use the op­
tions in the LINK environment variable.) 

12.6.1 Setting the LINK Environment Variable 

360 

You set the LINK environment variable with the following operating-system 
command: 

SET LI N K=options 

LINK expects to find options listed in the variable exactly as you would type 
them in fields on the command line, in response to a prompt, or in a response file. 
It does not accept input for other fields; filenames in the LINK variable cause an 
error. 



Using Overlays under DOS 

Example 
SET LINK=/NOI ISEG:256 leo 
LINK TEST; 
LINK INDO PROG; 

In the example above, the commands are specified at the system prompt. The file 
TEST.OBJ is linked using the options INOI, ISEG: 256, and ICO. The file 
PROG.OBJ is then linked with the option I NOD, in addition to I NO I, 
ISEG:256,and ICO. 

12.6.2 Behavior of the LINK Environment Variable 
You can specify options on the LINK command line or in a response file in addi­
tion to those in the LINK environment variable. If an option appears both in an 
input field and in the LINK variable, the input-field option overrides any environ­
ment-variable option it conflicts with. For example, the command-line option 
/SEG:512 overrides the environment-variable option /SEG:256. 

12.6.3 Clearing the LINK Environment Variable 
You must reset the LINK environment variable to prevent LINK from using its 
options. To clear the LINK variable, use the operating-system command 

SET LINK= 

To see the current setting of the LINK variable, type SET at the operating­
system prompt. 

12.7 Using Overlays under DOS 
LINK can create DOS programs with "overlays." Overlays allow sections of a 
program to be loaded into memory only as needed. This permits running a pro­
gram that would otherwise be too large to fit in available memory. Overlay pro­
grams execute more slowly, however, since the various program modules must 
be swapped into and out of memory. 

The CodeView debugger is compatible with overlaid modules. If you use 
CodeView to debug a program that has an overlay containing more than one code 
segment, you will see only the identifiers contained in the first segment of the 
overlay. 

361 



Linking Object Files with LINK 

12.7.1 Restrictions on Overlays 

362 

Not all programs can use overlays. You will probably need to reorganize the 
code to accommodate the limitations explained in this section. Even after reor­
ganization, some programs might not be convertible to overlay form or might not 
show a significant reduction in the amount of memory needed to execute them. 

Consider the following restrictions before trying to overlay a program: 

• You can use overlays only in programs with mUltiple code segments, because 
separate segment names are needed for overlays. Only code is overlaid, not 
data. The data becomes part of the "root" section of the program that is al­
ways in memory. 

• Only 255 overlays can be specified. The program can define only 255 logical 
segments (segments with different names). This limits the total size of an 
overlaid program to 16 megabytes. 

• Only one overlay (in addition to the root) can be in memory at anyone time. 
You must structure your program accordingly. 

• Duplicate names for different overlays are not supported; each module can ap­
pear only once in a program. 

• You must use far call/return instructions to transfer control between overlaid 
files. You cannot overlay files containing near routines if other overlays call 
those routines. 

• You cannot jump out of or into overlaid files using the longjrnp C-library 
function. You can, however, use long jumps within an overlaid file. 

• You cannot use a function pointer to call a routine out of or into overlaid 
files. You can, however, use a function pointer to call a routine within an 
overlaid file. 

• You cannot use the same public name in different overlays. 

• The code required to manage overlays adds about 2K to 3K to the size of the 
root module. 

WARNING Never rename an executable program file containing overlays if it is to run 
under DOS 2.xand earlier. LINK records the .EXE filename in the program file. If you rename 
the file, the overlay manager may not be able to locate the proper file. You can rename an 
.EXE file that will run under DOS 3.x and later. 



Using Overlays under DOS 

12.7.2 Specifying Overlays 
Specify overlays by enclosing object-file (and possibly load-library) names in 
parentheses in the objfiles field. Each group of object files bracketed by 
parentheses represents one overlay. Overlays cannot be nested. 

The remaining modules (those not in parentheses), and any drawn from the run­
time libraries, constitute the resident (or root) part of your program. The entry 
point to the program (for example, rna in () in a C program, or PROGRAM in a 
FORTRAN program) must be in the root. 

Example 
The following list of files contains three overlays: 

a + (b+c) + (d+e) + f + (g) 

In this example, the groups (b+c), (d+e), and (g) are overlays. The re­
maining files a and f and any modules from libraries in the libraries field re­
main memory-resident throughout the execution of the program. 

It is important to remember that whichever object file first defines a segment gets 
all contributions to that segment. In the example above, if D.OBJ and F.OBJ both 
define the same segment, the contribution from F.OBJ to that segment goes into 
the (d+e) overlay rather than into the root. 

12.7.3 How Overlays Work 
Programs that use overlays require the overlay-manager code to handle module 
swapping. This code is included as part of the standard libraries for Microsoft 
high-level languages. If you specify overlays during linking, the code for the 
overlay manager is automatically linked with the rest of your program. 

LINK produces only one .EXE file. The overlay manager searches for this file 
whenever another overlay needs to be loaded. It first searches in the current 
directory. If the file is not there, the manager then searches the directories in the 
PATH environment variable. If the overlay manager still cannot find the file, it 
prompts for the pathname. 

Example 
Assume that an executable program called P A YROLL.EXE uses overlays and 
does not exist in either the current directory or the directories specified by 
PATH. If you run P A YROLL.EXE by entering a complete path specification, the 
overlay manager displays the following message when it attempts to load an over­
lay file: 

Cannot find PAYROLL.EXE 
Please enter new program spec: 

363 



Linking Object Files with LINK 

You can then enter the drive or directory, or both, where PAYROLL.EXE is lo­
cated. For example, if the file is located in directory \EMPLOYEE\DATA \ on 
drive B, enter B: \ EM PLOY E E \ OAT A \; if the current drive is B, you can enter 
just \EMPLOYEE\OATA \. 

If you later remove the disk in drive B and the overlay manager needs the over­
lay again, it does not find P A YROLL.EXE and displays the following message: 

Please insert diskette containing B:\EMPLOYEE\OATA\PAYROLL.EXE 
in drive B: and strike any key when ready. 

After the overlay file has been read from the disk, the overlay manager displays 
the following message: 

Please restore the original diskette. 
Strike any key when ready. 

12.7.4 Overlay Interrupts 
LINK replaces far calls to routines in overlays with interrupts (followed by the 
module identifier and offset). By default, the interrupt number is 63 (3F hexadeci­
mal). You can use the JOV option to change the interrupt number. 

12.8 Linker Operation under DOS 

364 

LINK performs the following steps to produce a DOS executable file: 

1. Reads the object modules submitted 

2. Searches the given libraries, if necessary, to resolve external references 

3. Assigns addresses to segments 

4. Assigns addresses to public symbols 

5. Reads code and data in the segments 

6. Reads all relocation references in object modules 

7. Performs fixups 

8. Outputs an executable file (executable image and relocation information) 

Steps 5, 6, and 7 are performed iteratively-that is, LINK repeats these steps as 
many times as required before it progresses to step 8. 

The "executable image" contains the code and data that constitute the executable 
file. The "relocation information" is a list of references relative to the start of the 



linker Operation under DOS 

program, each of which changes when the executable image is loaded into 
memory and an actual address for the entry point is assigned. 

The following sections explain the process LINK uses to concatenate segments 
and resolve references to items in memory. 

12.8.1 Segment Alignment 
LINK uses each segment's alignment type to set the starting address for the seg­
ment. The alignment types are BYTE, WORD, DWORD, PARA~ and PAGE. 
These correspond to starting addresses at byte, word, doubleword, paragraph, and 
page boundaries, representing addresses that are mUltiples of 1, 2, 4, 16, and 256, 
respectively. The default alignment is PARA. 

When LINK encounters a segment, it checks the alignment type before copying 
the segment to the executable file. If the alignment is WORD, DWORD, PARA, 
or PAGE, LINK checks the executable image to see if the last byte copied ends at 
an appropriate boundary. If not, LINK pads the image with extra null bytes. 

12.8.2 Frame Number 
LINK computes a starting address for each segment in a program. The starting 
address is based on a segment's alignment and the sizes of the segments already 
copied to the executable file. The address consists of an offset and a "canonical 
frame number." The canonical frame number specifies the address of the first 
paragraph in memory containing one or more bytes of the segment. (A paragraph 
is 16 bytes of memory; therefore, to compute a physical location in memory, mul­
tiply the frame number by 16 and add the offset.) The offset is the number of 
bytes from the start of the paragraph to the first byte in the segment. For BYTE, 
WORD, and DWORD alignments, the offset may be nonzero. The offset is al­
ways zero for PARA and PAGE alignments. (An offset of zero means that the 
physical location is an exact multiple of 16.) 

The frame number of a segment can be obtained from the map file created by 
LINK. The first four digits of the start address give the frame number in hex­
adecimal. For example, a start address of 0C0A6 gives a frame number of 
0C0A. 

12.8.3 Segment Order 
LINK copies segments to the executable file in the same order that it encounters 
them in the object files. This order is maintained throughout the program unless 
LINK encounters two or more segments having the same class name. Segments 
having identical class names belong to the same class type and are copied as a 
contiguous block to the executable file. 

The /DOSSEG option might change the way in which segments are ordered. 

365 



linking Object Files with LINK 

12.8.4 Combined Segments 

12.8.5 Groups 

366 

LINK uses combine types to determine whether two or more segments sharing 
the same segment name should be combined into one large segment. The valid 
combine types are PUBLIC, STACK, COMMON, and PRIVATE. 

If a segment has combine type PUBLIC, LINK automatically combines it with 
any other segments having the same name and belonging to the same class. 
When LINK combines segments, it ensures that the segments are contiguous and 
that all addresses in the segments can be accessed using an offset from the same 
frame address. The result is the same as if the segment were defined as a whole 
in one source file. 

LINK preserves each individual segment's alignment type. This means that even 
though the segments belong to a single large segment, the code and data in the 
segments do not lose their original alignment. If the combined segments exceed 
64K, LINK displays an error message. 

If a segment has combine type STACK, LINK carries out the same combine 
operation as for PUBLIC segments. The only exception is that STACK segments 
cause LINK to copy an initial stack-pointer value to the executable file. This 
stack -pointer value is the offset to the end of the first stack segment (or combined 
stack segment) encountered. 

If a segment has combine type COMMON, LINK automatically combines it with 
any other segments having the same name and belonging to the same class. 
When LINK combines COMMON segments, however, it places the start of each 
segment at the same address, creating a series of overlapping segments. The re­
sult is a single segment no larger than the largest segment combined. 

A segment has combine type PRIVATE only if no explicit combine type is de­
fined for it in the source file. LINK does not combine private segments. 

Groups allow segments to be addressed relative to the same frame address. When 
LINK encounters a group, it adjusts all memory references to items in the group 
so that they are relative to the same frame address. 

Segments in a group do not have to be contiguous, belong to the same class, or 
have the same combine type. The only requirement is that all segments in the 
group fit within 64K. 

Groups do not affect the order in which the segments are loaded. Unless you use 
class names and enter object files in the right order, there is no guarantee the seg­
ments will be contiguous. In fact, LINK may place segments that do not belong 
to the group in the same 64K of memory. LINK does not explicitly check that all 
segments in a group fit within 64K of memory; however, LINK is likely to en­
counter a fixup-overfiow error if this requirement is not met. 



12.8.6 Fixups 

Linker Operation under DOS 

Once the starting address of each segment in a program is known and all segment 
combinations and groups have been established, LINK can "fix up" any unre­
solved references to labels and variables. To fix up unresolved references, LINK 
computes an appropriate offset and segment address and replaces the temporary 
values generated by the assembler with the new values. 

LINK carries out fixups for the types of references shown in Table 12.1. 

The size of the value to be computed depends on the type of reference. If LINK 
discovers an error in the anticipated size of a reference, it displays a fixup­
overflow message. This can happen, for example, if a program attempts to use a 
16-bit offset to reach an instruction which is more than 64K away. It can also 
occur if all segments in a group do not fit within a single 64K block of memory. 

Table 12.1 LINK Fixups 

Type 

Short 

Near 
self-relative 

Near 
segment -relative 

Long 

Location of Reference 

In JMP instructions that 
attempt to pass control to 
labeled instructions in the 
same segment or group. 
The target instruction 
must be no more than 128 
bytes from the point of 
reference. 

In instructions that access 
data relative to the same 
segment or group. 

In instructions that at­
tempt to access data in a 
specified segment or 
group, or relative to a 
specified segment 
register. 

In CALL instructions that 
attempt to access an in­
struction in another 
segment or group. 

LINK Action 

Computes a signed, eight-bit number 
for the reference and displays an 
error message if the target instruc­
tion belongs to a different segment 
or group (has a different frame 
address), or if the target is more than 
128 bytes away in either direction. 

Computes a 16-bit offset for the ref­
erence and displays an error if the 
data are not in the same segment or 
group. 

Computes a 16-bit offset for the ref­
erence and displays an error message 
if the offset of the target within the 
specified frame is greater than 64K 
or less than 0, or if the beginning of 
the canonical frame of the target is 
not addressable. 

Computes a 16-bit frame address 
and 16-bit offset for this reference, 
and displays an error message if the 
computed offset is greater than 64K 
or less than 0, or if the beginning of 
the canonical frame of the target is 
not addressable. 

367 



linking Object Files with LINK 

12.9 LINK Temporary Files 

368 

LINK uses available memory during the linking session. If LINK runs out of 
memory, it creates a disk file to hold intermediate files. LINK deletes this file 
when it finishes. 

When the linker creates a temporary disk file, you see the message 

Temporary fi 1 e tempfile has been created. 
Do not change diskette in drive, letter. 

In the message displayed above, tempfile is the name of the temporary file and 
letter is the drive containing the temporary file. (The second line appears only for 
a floppy drive.) 

After this message appears, do not remove the disk from the drive specified by 
letter until the link session ends. If the disk is removed, the operation of LINK is 
unpredictable, and you might see the following message: 

Unexpected end-of-file on scratch file 

If this happens, run LINK again. 

Location of the Temporary File 
If the TMP environment variable defines a temporary directory, LINK creates 
temporary files there. If the TMP environment variable is undefined or the tem­
porary directory doesn't exist, LINK creates temporary files in the current 
directory. 

Name of the Temporary File 
When running under OS/2 or DOS version 3.0 or later, LINK asks the operating 
system to create a temporary file with a unique name in the temporary-file 
directory. 

Under DOS versions earlier than 3.0, LINK creates a temporary file named 
VM.TMP. Do not use this name for your files. LINK generates an error message 
if it encounters an existing file with this name. 



LINK Exit Codes 

12.10 LINK Exit Codes 
LINK returns an exit code (also called return code or error code) that you can use 
to control the operation of batch files or makefiles. 

Code 

o 
2 

4 

Meaning 

No error. 

Program error. Commands or files given as input to the 
linker produced the error. 

System error. The linker 

• Ran out of space on output files 

• Was unable to reopen the temporary file 

• Experienced an internal error 

• Was interrupted by the user 

12.11 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

Syntax and procedural informa­
tion on LINK, BIND, and LIB 

Syntax and procedural informa­
tion on EXEHDR 

Access 

Choose these topics from the 
"Microsoft Advisor Contents" screen 

Choose "Miscellaneous" from the list 
of utilities on the "Microsoft Advisor 
Contents" screen 

369 





Chapter 13 

Module-Definition Files 

This chapter describes the contents of a module-definition file. It begins with a 
brief overview of the purpose of module-definition files. The rest of the chapter 
discusses each statement in a module-definition file and describes syntax rules, 
argument fields, attributes, and keywords for each statement. 

13.1 Overview 
A module-definition file is a text file that describes the name, attributes, exports, 
imports, system requirements, and other characteristics of an application or 
dynamic-link library (DLL) for OS/2 or Microsoft Windows. This file is required 
for DLLs and is optional (but desirable) for OS/2 and Windows applications. 

You use module-definition files in two situations: 

• You can specify a module-definition file in LINK's deffUe field. The module­
definition file gives LINK the information it needs to determine how to set up 
the application or DLL it creates. 

• You can provide LINK with the needed information when creating an applica­
tion by using the Microsoft Import Library Manager utility (IMPLIB) to cre­
ate an import library from a module-definition file (or from the DLL created 
by a module-definition file). You then specify the import library in LINK's 
libraries field. 

For more information about IMPLIB, see online help. 

13.2 Module Statements 
A module-definition file contains one or more "module statements." Each mod­
ule statement defines an attribute of the executable file, such as its name, the at­
tributes of program segments, and the number and names of exported and 
imported functions and data. Table 13.1 summarizes the purpose of the module 
statements and shows the order in which they are discussed in this chapter. 

371 



Module-Definition Files 

Table 13.1 Module Statements 

Statement Purpose 

NAME Names the application (no library created) 

LIBRARY Names the DLL (no application created) 

DESCRIPTION Embeds text in the application or DLL 

STUB Adds a DOS executable file to the beginning of the file 

EXETYPE Identifies the target operating system 

PROTMODE Specifies a protected-mode application or DLL 

REALM ODE Supported for compatibility 

STACKSIZE Sets stack size in bytes 

HEAPSIZE Sets local heap size in bytes 

CODE Sets default attributes for all code segments 

DATA Sets default attributes for all data segments 

SEGMENTS Sets attributes for specific segments 

OLD Preserves ordinals from a previous DLL 

EXPORTS Defines exported functions 

IMPORTS Defines imported functions 

13.2.1 Syntax Rules 

372 

The syntax rules in this section apply to all statements in a module-definition file. 
Other rules specific to each statement are described in the sections that follow. 

• Statement and attribute keywords are not case sensitive. A statement keyword 
can be preceded by spaces and tabs. 

• A NAME or LIBRARY statement, if used, must precede all other statements. 



Module Statements 

• Most statements appear at most once in a file and accept one specification of 
parameters and attributes. The specification follows the statement keyword 
on the same or subsequent line(s). If repeated with a different specification 
later in the file, the later statement overrides the earlier one. 

• The SEGMENTS, EXPORTS, and IMPORTS statements can appear more 
than once in the file and take mUltiple specifications, each on its own line. 
The statement keyword must appear once before the first specification and 
can be repeated before each additional specification. 

• Comments in the file are designated by a semicolon (;) at the beginning of 
each comment line. A comment cannot share a line with part or all of a state­
ment but can appear between lines of a multiline statement. 

• Numeric arguments can be specified in decimal or in C-Ianguage notation. 

• Name arguments cannot match a reserved word. 

Example 
The sample module-definition file below gives a description for a DLL. This 
sample file includes one comment and five statements. 

; Sample module-definition file 

LIBRARY 

DESCRIPTION 'Sample dynamic-link library' 

CODE PRELOAD 

STACKSIZE 1024 

EXPORTS 
Init @l 
Begin @2 
Finish @3 
Load @4 
Print @5 

373 



Module-Definition Files 

13.2.2 Reserved Words 

374 

The following words are reserved by the linker for use in module-definition files. 
These names cannot be used as arguments in module-definition statements. 

CLASS IOPL PRELOAD 
CODE LIBRARY PRIVATELIB 
CONFORMING LOADONCALL PROTMODE 
DATA LONGNAMES PURE 
DESCRIPTION MAX VAL READ ONLY 
DISCARDABLE MOVABLE READWRITE 
DOS4* MOVEABLE REALM ODE 
EXECUTE-ONL Y MULTIPLE RESIDENT 
EXECUTEONLY NAME RESIDENTNAME 
EXECUTEREAD NEWFILES SEGMENTS 
EXETYPE NODATA SHARED 
EXPORTS NOIOPL SINGLE 
FIXED NONCONFORMING STACKSIZE 
HEAPSIZE NONDISCARDABLE STUB 
HUGE * NONE UNKNOWN 
IMPORTS NONSHARED WINDOWAPI 
IMPURE NOTWINDOWCOMPAT WINDOWCOMPAT 
INITGLOBAL OLD WINDOWS 
INITINSTANCE OS2 

* DOS4 and HUGE are obsolete but are still reserved by the linker. 

In addition to the words listed above, the following words are reserved for use by 
future or other versions of the linker and should be avoided. 

ALIAS INVALID PERMANENT 
CONTIGUOUS MIXED1632 PHYSICAL 
DEV386 NONAME RESIDENT 
DEVICE NONPERMANENT SWAPPABLE 
DYNAMIC OBJECTS TERMINSTANCE 
INCLUDE ORDER VIRTUAL 



The NAME Statement 

13.3 The NAME Statement 
The NAME statement identifies the executable file as an application (rather than 
a DLL). It can also specify the name and application type-. The NAME or 
LIBRARY statement must precede all other statements. If NAME is specified, the 
LIBRARY statement cannot be used. If neither is used, the default is NAME and 
LINK creates an application. 

Syntax 
NAME [appname] [apptype] [NEWFILES] 

Remarks 
The fields can appear in any order. 

If appname is specified, it becomes the name of the application as it is known by 
OS/2 or Windows. This name can be any valid filename. If appname contains a 
space, begins with a non alphabetic character, or is a reserved word, surround 
appname with double quotation marks. The name cannot exceed 255 characters 
(not including surrounding quotation marks). If appname is not specified, the 
base name of the executable file becomes the name of the application. 

If apptype is specified, it defines the type of application. This information is kept 
in the executable-file header. The apptype field can take one of the following 
values: 

Value 

WINDOWAPI 

WINDOWCOMPAT 

NOTWINDOWCOMPAT 

Description 

Presentation Manager (PM) or Windows appli­
cation. The application uses the API provided 
by PM or Windows and must be executed in 
the PM or Windows environment. This is 
equivalent to the LINK option /pM:PM. 

Character-mode application to run in a text 
window in the PM or Windows session. This 
is equivalent to the LINK option /pM: VIO. 

The default. Character-mode application that 
must run full screen and cannot run in a text 
window in PM or Windows. This is equivalent 
to the LINK option /pM:NOVIO. 

375 



Module-Definition Files 

Specify NEWFILES to tell the operating system that the application supports 
long filenames and extended file attributes (available under OS/2 version 1.2 and 
later). The synonym LONGNAMES is supported for compatibility. 

Example 
The example below assigns the name cal end a r to an application that can run 
in a text window in PM or Windows: 

NAME calendar WINDOWCOMPAT 

13.4 The LIBRARY Statement 

376 

The LIBRARY statement identifies the executable file as a DLL. It can also 
specify the name of the library and the type of library-module initialization re­
quired. The NAME or LIBRARY statement must precede all other statements. If 
LIBRARY is specified, the NAME statement cannot be used. If neither is used, 
the default is NAME. 

Syntax 
LIBRARY [libraryname] [initialization] [PRIVATELIB] 

Remarks 
The fields can appear in any order. 

If libraryname is specified, it becomes the name of the library as it is known by 
OS/2 or Windows. This name can be any valid filename. If libraryname contains 
a space, begins with a nonalphabetic character, or is a reserved word, surround 
the name with double quotation marks. The name cannot exceed 255 characters. 
If libraryname is not given, the base name of the DLL file becomes the name of 
the library. 

If initialization is specified, it determines the type of initialization required. The 
initialization field can take one of the following values: 

Value 

INITGLOBAL 

INITINSTANCE 

Description 

The default. The library-initialization routine is called 
only when the library is initially loaded into memory. 

The library-initialization routine is called each time a 
new process gains access to the DLL. This keyword ap­
plies only to OS/2. 

If PRIV A TELIB is specified, it tells Windows that only one application may use 
the DLL. 



The STUB Statement 

Example 
The following example assigns the name ca 1 enda r to the DLL being defined 
and specifies that library initialization is performed each time a new process 
gains access to ca 1 enda r: 

LIBRARY calendar INITINSTANCE 

13.5 The DESCRIPTION Statement 
The DESCRIPTION statement inserts specified text into the application or DLL. 
This statement is useful for embedding source-control or copyright information 
into a file. 

Syntax 
DESCRIPTION 'text' 

Remarks 
The text is a string of up to 255 characters enclosed in single or double quotation 
marks (' or "). To include a literal quotation mark in the text, either specify two 
consecutive quotation marks of the same type or enclose the text with the other 
type of quotation mark. If a DESCRIPTION statement is not specified, the default 
text is the name of the main output file as specified in LINK's exefile field. You 
can view this string by using the Microsoft EXE File Header Utility (EXEHDR). 

The DESCRIPTION statement is different from a comment. A comment is a line 
that begins with a semicolon (;). Comments are not placed in the application or 
library. 

Example 
The following example inserts the text Tester's Versi on, Test "A", in­
cluding a literal single quotation mark and a pair of literal double quotation 
marks, into the application or DLL being defined: 

DESCRIPTION "Tester's Version, Test ""A""" 

13.6 The STUB Statement 
The STUB statement adds a DOS executable file to the beginning of an OS/2 or 

Windows application or DLL. The stub is invoked whenever the file is executed 
under DOS. Usually, the stub displays a message and terminates execution. By 
default, LINK adds a standard stub for this purpose. Use the STUB statement 
when creating a dual-mode program. 

Syntax 
STUB {'filename' I NONE} 

377 



Module-Definition Files 

Remarks 
The filename specifies the DOS executable file to be added. LINK searches for 
filename first in the current directory and then in directories specified with the 
PATH environment variable. The filename must be surrounded by single or 
double quotation marks (' or"). 

The alternate specification NONE prevents LINK from adding a default stub. 
This saves space in the application or DLL, but the resulting file will hang the 
system if loaded in DOS. 

Example 
The following example inserts the DOS executable file STOPIT.EXE at the 
beginning of the application or DLL: 

STUB 'STOPIT.EXE' 

The file STOPIT .EXE is executed when you attempt to run the application or 
DLL under DOS. 

13.7 The EXETYPE Statement 

378 

The EXETYPE statement specifies under which operating system the application 
or DLL is to run. This statement is optional and provides an additional degree of 
protection against the program being run under an incorrect operating system. 

Syntax 
EXETYPE [OS2 I WINDOWS[ version] I UNKNOWN] 

Remarks 
The EXETYPE keyword is followed by a descriptor of the operating system, 
either OS2 (for OS/2 applications and DLLs), WINDOWS (for WINDOWS appli­
cations and DLLs), or UNKNOWN (for other applications). The default without a 
descriptor or an EXETYPE statement is OS2. 

EXETYPE sets bits in the header which identify the operating system. Operating­
system loaders can check these bits. 

Windows Programming 
The WINDOWS descriptor takes an optional version number. Windows reads this 
number to determine the minimum version of Windows needed to load the appli­
cation or DLL. For example, if 3.0 is specified, the resulting application or DLL 



The REAlMODE Statement 

can run under Windows versions 3.0 and higher. If version is not specified, the 
default is 3.0. The syntax for version is 

number[. [number] ] 

where each number is a decimal integer. 

In Windows programming, use the EXETYPE statement with a PROTMODE 
statement to specify an application or DLL that runs only under 
protected-mode Windows. 

13.8 The PROTMODE Statement 
The PROTMODE statement specifies that the application or DLL runs only under 
OS/2 or under Windows 3.0 standard mode and 386 enhanced mode. 
PROTMODE lets LINK optimize to reduce both the size of the file on disk and 
its loading time. However, an OS/2 program created with PROTMODE cannot be 
bound using BIND. Use PROTMODE in combination with an EXETYPE 
WINDOWS statement to define an application or DLL that runs only under pro­
tected-mode Windows. 

Syntax 
PROTMODE 

Example 
The following statement combination defines an application that runs only under 
protected-mode (standard or 386 enhanced) Windows version 3.0: 

EXETYPE WINDOWS 3.0 
PROTMODE 

13.9 The REALMODE Statement 
The REALM ODE statement specifies that the application runs only in real mode. 
This statement is supported for compatibility with existing module-definition 
files. Use EXETYPE instead. 

Syntax 
REALMODE 

379 



Module-Definition Files 

13.1 0 The STACKSIZE Statement 
The STACKSIZE statement specifies the size of the stack in bytes. It performs 
the same function as LINK's ISTACK option. If both are specified, the 
STACKSIZE statement overrides the 1ST ACK option. 

Syntax 
STACKSIZE number 

Remarks 
The number must be a positive integer, in decimal or C-Ianguage notation, up 
to 64K. 

Example 
The following example allocates 4,096 bytes of stack space: 

STACKSIZE 4096 

13.11 The HEAPSIZE Statement 

380 

The HEAPSIZE statement defines the size of the application or DLL' s local heap 
in bytes. This value affects the size of the default data segment (DGROUP). The 
default without HEAPSIZE is no local heap. 

Syntax 
HEAPSIZE {bytes I MAXVAL} 

Remarks 
The bytes field accepts a positive integer in decimal or C-Ianguage notation. The 
limit is MAXV AL; if bytes exceeds MAXV AL, the excess is not allocated. 

MAXVAL is a keyword that sets the heap size to 64K minus the size of 
DGROUP. This is useful in bound applications when you want to force a 64K re­
quirement for DGROUP for the program in DOS. The bound program fails to 
load if 64K of memory is not available. 

Example 
The following example sets the local heap to 4,000 bytes: 

HEAPSIZE 4000 



The DATA Statement 

13.12 The CODE Statement 
The CODE statement defines the default attributes for all code segments within 
the application or DLL. The SEGMENTS statement can override this default for 
one or more specific segments. 

Syntax 
CODE [attribute ... ] 

Remarks 
This statement accepts several optional attribute fields: conforming, discard, 
executeonly, iopl, load, movable, and shared. Each can appear once, in any order. 
These fields are described in Section 13.15, "CODE, DATA, and SEGMENTS 
Attributes. " 

Example 
The following example sets defaults for the program's code segments. No code 
segments in the program are loaded until accessed, and all require I/O hardware 
privilege. 

CODE LOADONCALL IOPL 

13.13 The DATA Statement 
The DATA statement defines the default attributes for all data segments within 
the application or DLL. The SEGMENTS statement can override this default for 
one or more specific segments. 

Syntax 
DATA [attribute ... ] 

Remarks 
This statement accepts several optional attribute fields: instance, iopl, load, 
movable, readonly, and shared. Each can appear once, in any order. These fields 
are described in Section 13.15, "CODE, DATA, and SEGMENTS Attributes." 

Example 
The example below defines the application's data segment so that it cannot be 
shared by multiple copies of the program and cannot be written to. By default, 
the data segment can be read and written to and a new DGROUP is created for 
each instance of the application. 

DATA NONSHARED READONLY 

381 



Module-Definition Files 

13.14 The SEGMENTS Statement 

382 

The SEGMENTS statement defines the attributes of one or more individual seg­
ments in the application or DLL. The attributes specified for a specific segment 
override the defaults set in the CODE and DATA statements (except as noted 
below). The total number of segment definitions cannot exceed the number set 
using LINK's ISEG option. (The default without ISEG is 128.) 

The SEGMENTS keyword marks the beginning of the segment definitions, where 
each definition is on its own line. The SEGMENTS statement must appear once 
before the first specification (on the same or preceding line) and can be repeated 
before each additional specification. SEGMENTS statements can appear more 
than once in the file. 

Syntax 
SEGMENTS 

[' ]segmentname['] [CLASS' classname'] [attribute ... ] 

Remarks 
Each segment definition begins with segmentname, optionally enclosed in single 
or double quotation marks (' or"). The quotation marks are required if 
segmentname is a reserved word. 

The CLASS keyword optionally specifies the class of the segment. Single or 
double quotation marks (' or ") are required around classname. If you do not use 
the CLASS argument, the linker assumes that the class is CODE. 

This statement accepts several optional attribute fields: conforming, discard, 
executeonly, iopl, load, movable, readonly, and shared. Each can appear once, in 
any order. These fields are described in the next section, "CODE, DATA, and 
SEGMENTS Attributes." 

Example 
The following example specifies segments named c s e 9 1 , c s e 9 2, and d s e 9 . 
The first segment is assigned the class mycode and the second is assigned 
CODE by default. Each segment is given different attributes. 

SEGMENTS 
csegl CLASS 'mycode' IOPL 
cseg2 EXECUTEONLY PRELOAD CONFORMING 
dseg CLASS 'data' LOADONCALL READONLY 



CODE, DATA, and SEGMENTS Attributes 

13.15 CODE, DATA, and SEGMENTS Attributes 
The following attribute fields apply to the CODE, DATA, and SEGMENTS state­
ments previously described. Refer to "Remarks" in each of the previous sections 
for the attribute fields that are used by each statement. Most fields are used by all 
three statements; others are used as noted. Each field can appear once, in any 
order. 

Listed with each attribute field below are keywords that are legal values for the 
field, along with descriptions of the field and values. The defaults are noted. If 
two segments with different attributes are combined into the same group, LINK 
makes decisions to resolve any conflicts and assumes a set of attributes. 

Attribute 

conforming 

discard 

Description 

{ CONFORMING I NONCONFORMING} 

For CODE and SEGMENTS statements only. Determines 
whether a code segment is an 80286 "confonning" segment 
for device drivers and system-level code. The conforming 
attribute is for OS/2 only. 

CONFORMING specifies that the segment executes at the 
caller's privilege level. When IOPL= YES is specified in 
CONFIG.SYS, no call gates are generated for calls or 
jumps. 

NONCONFORMING (the default) specifies that the seg­
ment can be accessed from Ring 2. When IOPL= YES is 
specified in CONFIG.SYS, call gates are generated. 

For more information, refer to Intel documentation for the 
80286 processor and later. 

{DISCARD ABLE I NONDISCARDABLE} 

For CODE and SEGMENTS statements only. Determines 
whether a code segment can be discarded from memory 
to fill a different memory request. If the discarded 
segment is accessed later, it is reloaded from disk. 
NONDISCARDABLE is the default. The discard attribute is 
for Windows only. 

383 



Module-Definition Files 

Attribute 

executeonly 

instance 

iopl 

load 

384 

Description 

{EXECUTEONLYIEXECUTEREAD} 

For CODE and SEGMENTS statements only. Determines 
whether a code segment can be read as well as executed. 

EXECUTEONLY specifies that the segment can only be ex­
ecuted. The keyword EXECUTE-ONLY is an alternate 
spelling. 

EXECUTEREAD (the default) specifies that the segment is 
both executable and readable. This attribute is necessary for 
a program to run under the Microsoft CodeView debugger. 

{NONE I SINGLE I MULTIPLE} 

For the DATA statement only. Affects the sharing attributes 
of the default data segment (DGROUP). This attribute inter­
acts with the shared attribute. 

NONE tells the loader not to allocate DGROUP. Use NONE 
when a DLL has no data and uses an application's 
DGROUP. 

SINGLE (the default for DLLs) specifies that one DGROUP 
is shared by all instances of the DLL or application. 

MULTIPLE (the default for applications) specifies that 
DGROUP is copied for each instance of the DLL or 
application. 

{IOPL I NOIOPL} 

Determines whether a segment has I/O privilege. OS/2 only. 

IOPL specifies that a code segment has I/O privilege and 
that a data segment can be accessed only from an IOPL 
code segment. 

NOIOPL (the default) specifies that there is no I/O privilege 
for code and no protection for data. 

{PRELOAD I LOADONCALL} 

Determines when a segment is loaded. 



Attribute 

(load, 
continued) 

movable 

readonly 

shared 

CODE, DATA, and SEGMENTS Attributes 

Description 

PRELOAD specifies that the segment is loaded when the 
program starts. 

LOADONCALL (the default) specifies that the segment is 
not loaded until accessed and only if not already loaded. 

{MOVABLE I FIXED} 

Determines whether a segment can be moved in memory. 
Windows only. FIXED is the default. An alternative spelling 
for MOVABLE is MOVEABLE. 

{READONLY I READWRITE} 

For DATA and SEGMENTS statements only. Determines 
access rights to a data segment. 

READONLY specifies that the segment can only be read. 

READWRITE (the default) specifies that the segment is 
both readable and writeable. 

{SHARED I NONSHARED} 

For real-mode Windows and for READWRITE data seg­
ments under OS/2 only. Determines whether all instances of 
the program can share EXECUTEREAD and READWRITE 
segments. (Under OS/2, all code segments and READONLY 
data segments are shared.) 

SHARED (the default for DLLs) specifies that one copy of 
the segment is loaded and shared among all processes ac­
cessing the application or DLL. This attribute saves 
memory and can be used for code that is not self-modifying. 
An alternate keyword is PURE. 

NONSHARED (the default for applications) specifies that 
the segment must be loaded separately for each process. An 
alternate keyword is IMPURE. 

This attribute and the instance attribute interact for data seg­
ments. The instance attribute has the keywords NONE, 
SINGLE, and MULTIPLE. If DATA SIN G LEis specified, 
LINK assumes SHARED; if DATA MULTIPLE is 
specified, LINK assumes NON SHARED. Similarly, DATA 
SHARED forces SINGLE, and DATA NONSHARED forces 
MULTIPLE. 

385 



Module-Definition Files 

13.16 The OLD Statement 
The OLD statement directs the linker to search another DLL for export ordinals. 
This statement preserves ordinal values used from older versions of a DLL. For 
more information on ordinals, see the sections below on the EXPORTS and 
IMPORTS statements. 

Exported names in the current DLL that match exported names in the old DLL 
are assigned ordinal values from the earlier DLL unless 

• The name in the old module has no ordinal value assigned, or 

• An ordinal value is explicitly assigned in the current DLL. 

Only one DLL can be specified; ordinals can be preserved from only one DLL. 
The OLD statement has no effect on applications. 

Syntax 
OLD 'filename' 

Remarks 
The filename specifies the DLL to be searched. It must be enclosed in single or 
double quotation marks (' or "). 

13.17 The EXPORTS Statement 

386 

The EXPORTS statement defines the names and attributes of the functions and 
data made available to other applications and DLLs, and of the functions that 
run with I/O privilege. By default, functions and data are hidden from other pro­
grams at run time. A definition is required for each function or data item being 
exported. 

The EXPORTS keyword marks the beginning of the export definitions, each on 
its own line. The EXPORTS keyword must appear once before the first definition 
(on the same or preceding line) and can be repeClted before each additional defini­
tion. EXPORTS statements can appear more than once in the file. 



The EXPORTS Statement 

Some languages offer a way to export without using an EXPORTS statement. For 
example, in C the _exports keyword makes a function available from a DLL. 

Syntax 
EXPORTS 
entryname[=internalname] [@ord[ RESIDENTNAME]] [NODATA] [pwords] 

Remarks 
The entryname defines the function or data-item name as it is known to other pro­
grams. The optional internalname defines the actual name of the exported func­
tion or data item as it appears within the exporting program; by default, this 
name is the same as entryname. 

The optional ord field defines a function's ordinal position within the module­
definition table as an integer from 1 to 65,535. If ord is specified, the function 
can be called by either entryname or ord. Use of ord is faster and can save space. 

The optional keyword RESIDENTNAME specifies that entryname be kept resi­
dent in memory at all times. This keyword is applicable only if ord is used. (If 
ord is not used, the name entryname is always kept in memory.) 

The optional keyword NODATA specifies that there is no static data in the 
function. 

The pwords field specifies the total size of the function's parameters in words. 
This field is required only if the function executes with I/O privilege. When a 
function with I/O privilege is called, OS/2 consults pwords to determine how 
many words to copy from the caller's stack to the I/O-privileged function's stack. 

Example 
The following EXPORTS statement defines the three exported functions 
Samp 1 eRead, St ri ng I n, and Ch a rTes t. The first two functions can be 
called either by their exported names or by an ordinal number. In the application 
or DLL where they are defined, these functions are named read2bi nand 
s t r 1, respectively. The first and last functions run with I/O privilege and there­
fore are given with the total size of the parameters. 

EXPORTS 
SampleRead 
Stringln 
CharTest 

read2bin @8 24 
strl @4 RESIDENTNAME 

6 

387 



Module-Definition Files 

13.18 The IMPORTS Statement 

388 

The IMPORTS statement defines the names and locations of functions and data 
items to be imported (usually from a DLL) for use in the application or DLL. A 
definition is required for each function or data item being imported. This state­
ment is an alternative to resolving references through an import library created 
by the IMPLIB utility; functions and data items listed in an import library do not 
require an IMPORTS definition. 

The IMPORTS keyword marks the beginning of the import definitions, each on 
its own line. The IMPORTS keyword must appear once before the first definition 
on the same or preceding line and can be repeated before each additional defini­
tion. IMPORTS statements can appear more than once in the file. 

Syntax 
IMPORTS 

[internalname= ]module name .entry 

Remarks 
The internalname specifies the function or data-item name as it is used in the im­
porting application or DLL. Thus, internalname appears in the source code of the 
importing program, while the function may have a different name in the program 
where it is defined. By default, internalname is the same as the entry name. An 
internalname is required if entry is an ordinal value. 

The modulename is the filename of the exporting application or DLL that con­
tains the function or data item. 

The entry field specifies the name or ordinal value of the function or data item as 
defined in the module name application or DLL. If entry is an ordinal value, 
internalname must be specified. (Ordinal values are set in an EXPORTS 
statement. ) 

NOTE A given symbol (function or data item) has a name for each of three different con­
texts. The symbol has a name used by the exporting program (application or DLL) where it 
is defined, a name used as an entry point between programs, and a name used by the im­
porting program where the symbol is used. If neither program uses the optional 
internalnamefield, the symbol has the same name in all three contexts. If either of the pro­
grams uses the internalnamefield, the symbol may have more than one distinct name. 



Related Topics in Online Help 

Example 
The following IMPORTS statement defines three functions to be imported: 
Sampl eRead, Sampl eWri te, and a function that has been assigned an ordi­
nal value of 1. The functions are found in the Sampl e, Sampl eA, and Read 
applications or DLLs, respectively. The function from Read is referred to as 
Re a d C h a r in the importing application or DLL. The original name of the func­
tion, as it is defined in Read, mayor may not be known and is not included in 
the IMPORTS statement. 

IMPORTS 
Sample.SampleRead 
SampleA.SampleWrite 

ReadChar Read.1 

13.19 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

Syntax and procedural 
information on LIB 

Module-definition files 
and IMPLIB 

Access 

Choose "LIB" from the list of utilities on the 
"Microsoft Advisor Contents" screen 

Choose "LINK" from the list of utilities on the 
"Microsoft Advisor Contents" screen 

389 





Chapter 14 

Customizing the Microsoft 
Programmer's WorkBench 

The Microsoft Programmer's WorkBench (PWB) is not just a text editor, but 
also a full-featured platform for program development. It is both flexible (you 
can customize it to match your working habits) and extensible (you can add your 
own functions and features). 

This chapter explains three ways to customize the Programmer's WorkBench: 

• Setting switches 

• Assigning keystrokes 

• Writing macros 

While this chapter explains customizing techniques, it does not document every 
customizable feature. Please consult online help for detailed information about 
these and other PWB features. 

This chapter assumes you are familiar with basic PWB operation and termi­
nology. If not, please read "Using the Programmer's WorkBench" in Installing 
and Using the Microsoft Macro Assembler Professional Development System. 
The Programmer's WorkBench is supplied with both the Macro Assembler and 
Microsoft C so that you can customize one copy of PWB to work with these and 
other languages. 

14.1 Setting Switches 
The Programmer's WorkBench has a number of "switches," or user-configurable 
options, that control features such as how many lines the screen scrolls or 
whether you are prompted to save a file when you exit. Each switch has a name 
and can be assigned a value. 

There are two ways to set PWB switches. The easiest way is to choose Editor Set­
tings from the Options menu. Saving the changes made to Editor Settings up­
dates your TOOLS.INI initialization file. You can also directly edit TOOLS.lNI. 
Either method can be used for more elaborate customizations, such as writing 
macros. 

391 



Customizing the Microsoft Programmer's WorkBench 

14.1.1 Changing Current Assignments and Switch Settings 

When you save <ASSIGN>, 
PWB updates your 
TOOlS.INI file. 

You can change the current editor switches and key assignments. Choose Editor 
Settings or Key Assignments from the Options menu. PWB displays these set­
tings in a new window labeled Current Assignments and Switch Settings. 

The <ASSIGN> pseudofile is associated with the Current Assignments and 
Switch Settings window. A pseudofile exists only in memory; it has no counter­
part on disk until you explicitly save it. Saving the <ASSIGN> pseudofile auto­
matically saves any changes you make in the Current Assignments and Switch 
Settings window. 

To change a switch, edit the line on which it appears. For instance, the vscroll 
switch controls how many lines PWB scrolls vertically; its default setting is 1. To 
change it, move to the corresponding line: 

vscroll:l 

Change the 1 to 3 and move the cursor to another line. PWB highlights the line to 
indicate that the change has been executed. (If you make an illegal change, PWB 
signals an error.) The change takes effect immediately: PWB now scrolls text 
three lines at a time. 

PWB discards all changes at the end of a session unless you explicitly save them. 
You save changes by saving <ASSIGN> as you would any other file. Select Save 
from the File menu, or press SHIFT +F2. 

You can also use this method for more elaborate customizations, such as writing 
macros (see Section 14.3, "Writing Macros"). Simply insert a few blank lines in 
the Current Assignments and Switch Settings window and enter the new informa­
tion in them. 

If you add or modify a line of the Current Assignments and Switch Settings win­
dow, PWB immediately alters its behavior accordingly; the new or changed lines 
are saved in TOOLS.INI when you save the <ASSIGN> file. However, deleting 
a line has no effect, either on PWB' s behavior or the contents of TOOLS .INI; 
you must edit TOOLS.INI to remove an assignment. 

14.1.2 Editing the TOOLS.lNllnitialization File 

392 

Another way to customize PWB is by editing TOOLS.INI, the initialization file 
used by PWB and other Microsoft language utilities. This is the most convenient 
way to perform extensive customizing. 

While the Current Assignments and Switch Settings window displays every cus­
tomizable PWB item, the TOOLS.INI file contains lines only for items you have 
customized. PWB sets any items you omit from TOOLS.INI to a default value. 



TOOlS.lNI is made up of 
sections that start with 
tags. 

TOOlS.lNI sections 
contain customization 
information. 

Assigning Functions to Keystrokes 

Since TOOLS.INI can initialize a number of Microsoft tools, the file is divided 
into sections, one for each tool. Each section begins with a tag consisting of the 
tool's base name enclosed in square brackets: [P W B] for PWB .EXE, 
[NMAKE] for NMAKE.EXE, and so on. 

For example, assume you set the vscroll switch to 3 and saved the change, but 
you have not customized PWB in any other way. Your TOOLS.INI file will con­
tain this section: 

[PWB] 
vscroll:3 

PWB reads TOOLS.INI at start-up and loads the settings from the [PWB] 
section. 

You can also create sections of TOOLS.INI that configure PWB for specific pro­
gramming languages or operating systems. For instance, your TOOLS.INI file 
could contain a section beginning with the tag 

[PWB-.C] 

for C source files, and 

[PWB-.ASM] 

for assembly-language (.ASM) source files. Each time you load a file with the 
designated extension, PWB reads the appropriate section of TOOLS.INI. You 
can have a different set of macros and other customizations for each file type. 

TOOLS.INI can also contain sections specific to an operating system. The follow­
ing tag introduces a section specific to DOS version 3.31, for instance: 

[PWB-3.31] 

You can combine tags as needed. For example, the tag 

[PWB-3.0 PWB-10.10R] 

applies to DOS version 3.0 and OS/2 version 1.1 real mode. 

14.2 Assigning Functions to Keystrokes 
You can assign any PWB function to almost any keystroke. Keystroke assign­
ments, like switches, are displayed in the Current Assignments and Switch Set­
tings window (choose Key Assignments from the Options menu) and can be 

393 



Customizing the Microsoft Programmer's WorkBench 

PWB uses the most recent 
duplicate key assignment. 

394 

changed there. Suppose you want to assign the home cursor function to 
SHIFT +HOME. The default keystroke assignment for home is 

home:Goto 

If you change the assignment to 

home:Shift+Home 

SHIFT+HOME moves the cursor to the home (upper left) window position. 

You can assign the same function to more than one keystroke. For example, 
many keystrokes invoke the select function, which selects a text region. The pre­
ceding example adds a new keystroke (SHIFT+HOME) for the home function, but 
it does not remove the previous assignment (GOTO, the 5 key on the keypad). 

If you aren't sure whether a keystroke is already assigned, select the Current As­
signments and Switch Settings window and press PGDN until you reach the A vail­
able Keys table. All unassigned keystrokes are displayed; once a keystroke is 
assigned, it no longer appears in this table. 

There are two limitations on keystroke assignments: 

• You should not reassign a keystroke that PWB assigns to a menu. For in­
stance, ALT+F displays the File menu; PWB ignores any attempt to reassign 
ALT+F. 

• You should not reassign the ALT plus number keys 1- 6 (ALT+l, ALT+2, and so 
on). These keystrokes are reserved for the file history menu items. 

A keystroke can invoke only one function. If you accidentally assign a keystroke 
to more than one function, PWB uses the most recent assignment. For example, 

home:Ctrl+A 
setfile:Ctrl+A 

assigns the CTRL+A keystroke to two different functions, home and setfile. The 
second assignment overrides the first, assigning CTRL+A to setfile. 

You might occasionally want to "unassign," or disable, a keystroke. This is done 
by assigning the unassigned function to the keystroke. For example, 

unassigned:Ctrl+A 

disables CTRL+A. PWB signals an error when you press any unassigned key. 

As the list of assigned keystrokes shows, you can use SHIFT +CTRL as a prefix. For 
PWB to recognize this key combination, SHIFT must come first. For example, to 
use SHIFT +CTRL with M, you must type SHIFT +CTRL+M, not CTRL+SHIFT +M. 



Writing Macros 

14.3 Writing Macros 
If you need a feature or function that is not a part of PWB, the quickest way to 
create it is by writing a macro in the TOOLS.INI file. A macro can do something 
as simple as inserting a line of text, or it can perform complex operations by in­
voking PWB functions and other macros. 

14.3.1 Macro Syntax 

Macros can extend 
over one line. 

You can pass arguments 
to PWB macros. 

A macro can consist of any combination of PWB functions, literal text, and calls 
to previously defined macros. You can define up to 1,024 macros at one time. 

Anything inside quotation marks is literal text. Within literal text, quotation 
marks are represented by a backslash followed by quotation marks (\ ") and a 
backslash is represented by two consecutive backslashes (\ \). Only literal text is 
case sensitive; PWB ignores the case of everything else. 

The following macro "comments out" a line of MASM source code: 

comment:=begline 
comment:alt+c 

fl. " , 

The first line names the macro (comment); the macro commands follow the as­
signment operator ( := ). The begline editor function moves the cursor to the 
beginning of the current line. The text inside quotation marks (the MASM com­
ment delimiter) is then inserted. The second line assigns a keystroke (ALT+C) to 
the macro. 

If a macro definition takes up more space than you have on one line (about 250 
characters in PWB), you can use the backslash (\) to continue the definition on 
the next line. Consider, for instance, the following macro, which comments out a 
line of C source code: 

comment:=begline "/* " endline " */" 

It could be written as 

comment:=begline \ 
"/* "endline \ 
" */" 

Notice the extra space before each backslash. If you want a space between the 
end of one line and the beginning of the next, you must precede the backslash 
with two spaces. 

You can use the arg function to pass arguments to functions. For example, the 
following macro passes the argument 15 to the plines function (which scrolls 
text down): 

movedown:=arg "15" plines 

395 



Customizing the Microsoft Programmer's WorkBench 

Because arg precedes the literal text, the text isn't written to the screen. Instead, 
it is passed as an argument to the next function, plines. The macro scrolls the 
current text down 15 lines. 

Arguments can also use regular-expression syntax (regular expressions are docu­
mented in online help): 

endword:=arg arg "([ .,;:()[\\]]!$)" psearch cancel 

The arg arg sequence directs the psearch function to treat the text argument as a 
regular-expression search pattern. This search pattern tells PWB to search for the 
next space, period, comma, semicolon, colon, parentheses, and square brackets. 
(Note that a backslash must precede any character that has a special meaning in 
regular expressions-in this case, the right bracket.) 

A macro can invoke other macros: 

lcomment:= "/* " 
rcomment:= " */" 
commentout:=begline lcomment endline rcomment 
commentout:ctrl+o 

The commentout macro invokes the previously defined macros 1 comment 
and rcomment. 

In addition to standard PWB functions, PWB macros can invoke user-defined 
macro functions. See Section 9.6, "Returning Values with Macro Functions." 

14.3.2 Macro Responses 

The meta prefix modifies 
the action of a function. 

396 

Some PWB functions ask you for confirmation. For example, the meta exit (quit 
without saving) function normally asks if you really want to exit. Such questions 
always take the answer "yes" (Y) or "no" (N). 

When you invoke such a function in a macro, the function assumes an answer of 
yes and does not ask for confirmation. For example, the macro definition 

quit:=meta exit 
quit: a It+x 

invokes meta exit when you press ALT+X. Because the meta exit function is in­
voked from a macro, PWB exits without asking for confirmation. 

The following operators allow you to restore normal prompting or change the de­
fault responses: 



Writing Macros 

Operator Description 

< Asks for confinnation; if not followed by another 
< operator, prompts for all further questions 

<y Assumes a response of "yes" 

<n Assumes a response of "no" 

A response operator applies to the function immediately preceding it. For 
example, you can add the < operator to the qui t macro definition to restore the 
usual prompt: 

quit:=meta exit < 
quit: a It+x 

Now the macro prompts for a response before it exits. 

14.3.3 Macro Arguments 

You cannot pass 
more than one argument 
from PWB to a macro. 

If you enter an argument in PWB and then invoke a macro, the argument is 
passed to the first function in the macro that takes an argument: 

tripleit:=copy paste paste 

The t r; p 1 e i t macro invokes the copy and paste editing functions. When 
you highlight a text area and then invoke the macro, your highlighted argument is 
passed to the copy function, which copies the argument to the clipboard. The 
macro then invokes paste twice. The effect is to insert two copies of the 
highlighted text. 

You cannot pass more than one argument from PWB to a macro, even if the 
macro invokes more than one function that can accept an argument. The argu­
ment always goes to the first function in the macro that takes an argument. 

You can also prompt for input inside a macro and pass the input as an argument 
using the prompt function as shown below: 

newfile:=arg "Next file: " prompt setfile < 
newfi 1 e: a It+n 

The newf; 1 e macro prompts for a file name and then switches to the specified 
file. The sequence a r 9 "N ext f; 1 e: " passes the text argument N ext 
f; 1 e: to prompt, which prints it in the text-argument dialog box and waits for 
the user to respond. The response is passed as a text argument to the setfile func­
tion, which switches to that file. 

397 



Customizing the Microsoft Programmer's WorkBench 

14.3.4 Macro Conditionals 

Macro execution depends 
on the status of 
conditionals. 

Macros can take different actions depending on certain conditions. Such macros 
take advantage of the fact that PWB editing functions return values-
a TRUE (nonzero) value if successful or FALSE (zero) if unsuccessful. 

Macros can use four conditional operators: 

Operator 

:>label 

=>label 

+>label 

->label 

Description 

Defines a label that can be targeted by other operators 

Jumps to label 

Jumps to label if the previous function returns TRUE 

Jumps to label if the previous function returns FALSE 

For example, the 1 eftma rg macro moves the cursor to the left margin of the 
editing window: 

leftmarg:=:>leftmore left +>leftmore 

The macro above invokes the left function repeatedly Uumping to the label 
1 eftmore) until it returns FALSE, indicating the cursor has reached the left 
margin. 

The label must appear immediately after the conditional operator, with no inter­
vening spaces. A conditional operator without a label exits the macro immedi­
ately if the condition is satisfied. If the condition is not satisfied, the macro 
continues execution. The following example demonstrates this: 

turnon:=insertmode +> insertmode 

This macro turns on insert mode regardless of whether insert mode is currently 
on or off. If insert mode is off, the first invocation of insertmode toggles the 
mode on and returns TRUE, causing the +> operator to terminate the macro. If in­
sert mode is currently on, the first invocation of insertmode turns insert mode 
off and returns FALSE. The macro then invokes insertmode a second time, turn­
ing insert mode back on. 

14.3.5 Recording Macros 

398 

You can also create a macro by recording a procedure as you perform it. The 
keystroke sequence is saved and can be replayed, like any other macro. To record 
a macro: 

1. Choose Set Record from the Edit menu. The Set Macro Record dialog box 
appears. 



Writing Macros 

2. Type the name you want the macro to have in the Name text box. 

3. Tab to the Key Assignment text box and press the key to which you are as­
signing the macro. (For example, press ALT + T to assign the macro to ALT + T. 
The name of the keystroke appears in the text box.) If the keystroke (such as 
ENTER, TAB, or ESC) would normally exit the dialog box or move to the next 
field, type in the keystroke's name. 

4. Click the OK button. 

5. Choose Record On from the Edit menu to start the recording. 

6. Type the text or perform the actions you want to record. (You can select text 
or fields with the mouse as well as the keyboard. Mouse selections are auto­
matically converted into equivalent keystrokes.) 

7. Choose Record On again to end the recording. 

You have now created a named macro available through the assigned keystroke. 
Pressing this key replays the actions you recorded. 

WARNING If you do not select a name for your macro, it is assigned the default name 
recordvalue. Unless you plan to discard the macro when exiting, do not let a recorded 
macro's name default to recordvalue. Any subsequent macro recorded with the 
recordvalue default name will overwrite the first recordvalue macro. 

A recorded macro is temporary; PWB discards it when you exit. To save a re­
corded macro: 

1. Choose Edit Macro from the Edit menu. This opens the <RECORD> pseudo­
file and displays the macros you recorded. 

2. Make any changes required. For example, you might want to change the 
macro's name or modify the keystroke sequence. 

3. Save the macro using the Save command from the File menu. 

The macros defined in the <RECORD> pseudo file are added to your TOOLS.INI 
file when you save the <RECORD> file. PWB automatically reloads them at the 
next session. 

You can append functions to an existing macro without having to record the origi­
nal steps again: 

1. Choose Set Record from the Edit menu. The Set Macro Record dialog box 
appears. 

2. Type the macro's name in the Name text box. 

399 



Customizing the Microsoft Programmer's WorkBench 

You can record a series of 
actions without executing 
them. 

3. Tab to the Clear First check box and cancel selection. This causes any new ac­
tions to be appended to the original macro, rather than replacing (clearing) it. 

4. Click the OK button. 

5. Choose Record On from the Edit menu to start the recording. 

6. Perform the actions you want added to the macro. 

7. Choose Record On again to end the recording. 

Remember to save the modified macro before exiting, or the new version will be 
discarded. 

You can make a "silent" recording, which records a series of actions without ex­
ecuting them. This allows you to create a macro without altering or damaging the 
file. Start the recording with a meta record command (press F9, SHIFT +CTRL+R). 

When the macro is complete, terminate recording with record (press 
SHIFT+CTRL+R). 

PWB gives no visual feedback during silent recording. If you need to see the 
macro being created, open the <RECORD> pseudofile in a second window as de­
scribed above. This is an excellent way to get a better understanding of macros 
and editor functions. 

14.3.6 Temporary Macros 

400 

You can use the assign function to create a macro that lasts only until the end of 
the current session. For example, the following steps create the comment 
macro described above: 

• Press ALT+A 

• Type comment:=begline 

• Press ALT += 

If. " , 

This key sequence tells PWB to open dialog boxes where the macro and key as­
signments are to be typed. To assign ALT+C to the macro, 

• Press ALT+A 

• Type comment: a 1 t+c 

• Press ALT += 

The macro is available immediately and is discarded when you exit PWB. 



Related Topics in Online Help 

14.4 Related Topics in Online Help 
Information on the following related topics can be found in online help. All the 
topics listed below are found by choosing "Programmer's WorkBench" from the 
"Microsoft Advisor's Help System Contents" screen. 

Topic 

Writing macros 

TOOLS.INI 

Regular expressions 

The prompt and meta 
functions 

Assigning keystrokes 

Access 

Choose "Writing and Using Macros" 

Choose "Using TOOLS.INI" 

Choose "Writing and Using Macros;" then choose 
"Regular Expressions" from under the "Building 
Macros" subhead 

Choose "Using PWB Functions," and from the next 
screen, choose "Alphabetical List" 

Choose "Setting PWB Switches" and then "Assign 
Function" 

401 





Chapter 15 

Debugging Assembly-language 
Programs with CodeView 

You can diagnose software problems and locate programming errors quickly 
with the CodeView debugger. This chapter explains how to 

• Display and modify variables and memory 

• Control the flow of execution 

• Use advanced CodeView debugging techniques 

• Modify CodeView's behavior with command-line switches and the 
TOOLS.INI file 

CodeView supports the Microsoft mouse (or any fully compatible pointing dev­
ice). This chapter first describes CodeView operations with the mouse, then with 
function keys. Command-window commands are not generally discussed, except 
when there is no comparable mouse or function-key command. Unless a specific 
mouse button is named, "clicking" means pressing and quickly releasing the left 
mouse button. 

15.1 Understanding Windows in CodeView 

Each window displays a 
different type of data. 

CodeView divides the screen into logically separate sections called windows. 
Windows permit a large amount of information to be displayed in an organized 
and easy-to-read fashion. 

Each CodeView winqow has a distinct function and operates independently of 
the others. The name of each window described below appears in the top of the 
window's frame: 

• The Source window displays the source code. You can open a second source 
window to view an include file, another source file, or the same source file at 
a different location. Any ASCII text file can be viewed in the Source window. 

• The Command window accepts debugging commands from the keyboard. 

• The Watch window displays the current values of selected variables. 

403 



Debugging Assembly-Language Programs with CodeView 

All displays are 
updated automatically. 

404 

• The Local window lists the values of all variables local to the current 
procedure. 

• The Memory window shows the contents of memory. You can open a second 
Memory window to view a different section of memory. 

• The Register window displays the contents of the microprocessor's registers, 
as well as the processor flags. 

• The 8087 window displays the registers of the coprocessor or its software 
emulator. 

Figure 15.1 shows all CodeView windows. 

local atch 
product rootl = 0.000000 
sign = root2 = 0.000000 
rootl = +uconfig = { ... } 
••• I 

GetVidConfig(); 
8: d isp lay_ca lc (); 

StrWrite( 9, 14, 
col = 20; 
do 

enoryl byte DS:OOOO (ACTIVE) 
CD 20 AB 80 00 9A FO FE ID FO 3D 09 08 27 34 OA 
08 27 85 OE 08 27 OE IF 01 01 01 00 02 03 FF FF 
FF FF FF FF FF FF FF FF FF FF FF FF 8A SC DC B7 

1---------------ti8087 III 

reg 
AX = 1130 
BX = 0000 
CX = 0010 
DX = 0018 
SP = IBCC 
BP = IBD6 
SI = OSlA 
DI = OSlA 
DS = 70AB 
ES = COOO 
SS = 70AB 
CS = 6A7S 
IP = 0400 
FL = 0246 

1330 (Closure=affine Round=nearest Precision=64-bi 2R HA PE HC 
IEM=O PM=l UM=l OM=O 2M=0 DM=O IM=O 

1-------------f":cOnnandl------------i 

> 

<F8=Trace> <F10=Step> <FS=Go> <F6=Window> <F3=Display> 

Figure 15.1 CodeView Display of All Possible Windows 

The first time you run CodeView, it displays three windows. The Local window 
is at the top, the Source window fills the middle of the screen, and the Command 
window is at the bottom. CodeView records which windows were open and how 
they were positioned at the time you exit. These settings become the default the 
next time you run CodeView. 

There are two ways to open windows. You can choose the desired window from 
the View menu or press its shortcut key. In addition, some operations (such as 
selecting a Watch variable) automatically open the appropriate window if it isn't 
already open. 

Code View continually and automatically updates the contents of all windows. 
However, if you want to interact with a particular window (such as entering a 



Understanding Windows in CodeView 

command, setting a breakpoint, or modifying a variable), you must first select 
that window. 

The selected window is called the "active" window. The active window is 
marked in three ways: 

• The window's name is highlighted. 

• The text cursor appears in the window. 

• The vertical and horizontal scroll bars move into the window. 

Figure 15.2 shows the Source window as the active window. 

atch 

arl--------~a~·im"413m4~.I.i3l1l'I~iIDN~H.~I~!a~iiID.le9Dy.l'a;t~i~.lw~'U1---------110 
185: I 
186: ; Return unused memory to DOS 
187: ; Pass PSP segment address and memory block alloc 
188: I~UO~E ~ewBlockSize, -psp, PGMSI2E 
189: 
190: 
191: 
192: 
193: 

; Initialize global configuration data 
I~UO~E GetUidConfig 

mov aI, vconfig.rows 
94: mov OldMode, al ; Preserve origil 

195: 
196: 
197: 
198: 
199: 
200: 

; Get current cursor position 
I~UO~E GetCurPos 

mov OldCurs, ax Store it 

-.,l 
F8=Trace> <F10=Step> <F5=Go> <F6=Window> <F3=Display> 

Figure 15.2 Source Window as Active Window 

reg 
AX = 1130 
BX = 0000 
CX = 0010 
DX = 0018 
SP = 09EO 
BP = 0000 
SI = 0000 
DI = 0000 
DS = 6253 
ES = ceoo 
SS = 6253 
CS = 6161 
IP = 0236 
FL = 0246 

~U UP EI PL 
2R ~A PE ~C 

DS:OOOA 
18 

To select a new active window, click that window (position the mouse pointer in 
the window and press the left mouse button). You can also press F6 or SHIFT+F6 

to move from one window to the next. 

Windows often contain more information than can be displayed in the area al­
lotted to the window. There are several ways to view these additional contents. 

405 



Debugging Assembly-language Programs with CodeView 

406 

To view additional contents with the mouse: 

• Drag the scroll box on the horizontal or vertical scroll bars. (Position the 
mouse pointer on the scroll box and, while holding down the left mouse but­
ton, move the mouse in the appropriate direction.) 

• Click the arrows at the top and bottom of the scroll bars. 

• Click the gray area to either side of the scroll box in a scroll bar. 

To view additional contents with the keyboard: 

• Press the direction keys (LEFT, RIGHT, UP, DOWN) to move the cursor. 

• Press PGUP, PGDN, CTRL+PGUP (page left), and CTRL+PGDN (page right) to 
move the cursor to a different page of the window's contents. 

• Press CTRL+HOME to move the cursor to the beginning of the window's 
contents. 

• Press CTRL+END to move the cursor to the end of the window's contents. 

Typing commands when the Source window is active causes CodeView to tem­
porarily shift its focus to the Command window. Whatever you type is appended 
to the last line in the Command window. If the Command window is closed, 
CodeView beeps in response to your entry and ignores the input. 

Adjusting the Windows 
Although you can't reposition the windows, you can change their size or close 
them. The Maximize, Size, and Close commands from the View menu perform 
these functions, or you can press CTRL+FIO, CTRL+F8, and CTRL+F4, respectively. 
Window manipulation is especially easy with a mouse: 

• To maximize a window (enlarge it so it fills the screen), click the up arrow at 
the right end of the window's top border, or double-click the window's title. 
(Position the mouse pointer anywhere on the title and press the left mouse but­
ton twice, rapidly.) To restore the window to its original size, click the double 
arrow at the right end of the top border or press CTRL+FlO. 

• To change the size of a window, position the mouse pointer anywhere along 
the line at the top of the window. Press and hold down the left mouse button, 
then drag the mouse to enlarge or reduce the window. The same action on a 
vertical border widens or narrows the window. 

• To close a window, click the dot at the left end of the top border. The adja­
cent windows automatically expand to recover the unused space. You can 
also close any window whose View menu name has a dot next to it: choose 
that window from the menu or press the window's shortcut key. 



CodeView remembers the 
last debugging session. 

Viewing and Modifying Program Data 

CodeView stores session information in a file called CURRENT.STS, which is 
created in the directory pointed to by the INIT environment variable (or in the 
current directory, if there is no IN IT variable). The session information includes 
such items as the name of the program being debugged, the CodeView windows 
that were open, breakpoint locations, and other status. This information becomes 
the default status the next time you run CodeView. 

15.2 Overview of Debugging Techniques 
There is no single best approach to debugging. CodeView offers a variety of de­
bugging tools that let you select a method appropriate for the program or for your 
work habits. This section describes some approaches to solving debugging 
problems. 

Broadly speaking, two things can go wrong in a program: 

• The program doesn't manipulate the data the way you expected it to. 

• The flow of execution is incorrect. 

These problems usually overlap. Incorrect execution can corrupt the data, and 
bad data can cause execution to take an unexpected turn. Because CodeView al­
lows you to trace program execution while simultaneously displaying whatever 
combination of variables you want, you don't have to know ahead of time 
whether the problem is bad data manipulation, a bad execution path, or some 
combination of both. 

CodeView has specific features that deal with the problems of bad data and incor­
rect execution: 

• You can view and modify any program variable, any section of memory, or 
any processor register. These features are explained in Section 15.3, "View­
ing and Modifying Program Data." 

• You can monitor the path of execution and precisely control where execution 
pauses. These features are explained in Section 15.4, "Controlling Execution." 

15.3 Viewing and Modifying Program Data 
CodeView offers a variety of ways to display the values of program variables, 
processor registers, and memory. You can also modify the values of all these 
items as the program executes. This section shows how to display and modify 
variables, registers, and memory. 

407 



Debugging Assembly-Language Programs with Code View 

15.3.1 Displaying Variables in the Watch Window 

You can watch an 
unlimited number 
of variables. 

There are several ways to 
display a variable's value. 

408 

To add a variable to the Watch window, position the cursor on the variable's 
name, using the mouse or the direction keys (LEFT, RIGHT, UP, DOWN). Then 
choose the Add Watch command from the Watch menu, or press CTRL+W. 

A dialog box appears with the selected variable's name displayed in the Expres­
sion field. If you don't want to watch the variable shown, type in the name of 
another variable. Click the OK button or press ENTER to add this variable to the 
Watch window. 

The Watch window appears at the top of the screen. Selecting a Watch variable 
automatically opens the Watch window if the window isn't already open. 

A newly added variable may be followed by the message: 

<Watch Expression Not in Context> 

This message appears when execution has not yet reached the procedure where a 
local variable is defined. Global variables (those declared outside procedures) 
never cause Code View to display this message; they can be watched from any­
where in the program. 

To remove a variable from the Watch window, choose the Delete Watch com­
mand from the Watch menu or press CTRL+U. Then select the variable to be re­
moved from the list in the dialog box. You can also position the cursor on any 
line in the Watch window and press CTRL+ y to delete that line. 

You can place as many variables as you like in the Watch window; the quantity 
is limited only by available memory. You can scroll the Watch window to posi­
tion it at those variables you want to view. CodeView automatically updates all 
Watch window variables as the program runs, including those not currently vis­
ible within the Watch window frame. 

A variable can be specified by its address as well as its name. You can give its 
address in segment:offset form, where either component can be a register name 
or a number. You can extract a variable's address by prefixing the & operator to 
its name. Prefixing a variable's address (or any address) with the BY, WO, or DW 
operator displays the byte, word, or doubleword value starting at that address. 

By default, CodeView displays variables as decimal values. You can select the 
radix by typing n8, n10, or n16 in the Command window for an octal, deci­
mal, or hexadecimal display. CodeView remembers the current radix when you 
exit; it becomes the default radix the next time you run CodeView. 



Viewing and Modifying Program Data 

15.3.2 Displaying Expressions in the Watch Window 

MASM expressions are 
evaluated using C rules. 

The Watch window is not limited to variables. You can enter an expression (that 
is, any valid combination of variables, constants, and operators) for CodeView to 
evaluate and display. You can also select the format in which CodeView displays 
the expression. 

CodeView does not include an expression evaluator specifically for MASM. It 
uses the C expression evaluator instead. This means you must enter MASM varia­
bles or expressions in a form the C evaluator recognizes, which is not always the 
way they appear in a MASM program. (Online help describes the operators and 
precedence order for C expressions. The last part of this section also gives ex­
amples of some of the more commonly used expression forms.) 

The Language command from the Options menu offers a choice of Auto, C, 
Basic, or FORTRAN expression evaluators. However, the Basic and FORTRAN 
expression evaluators do not support address evaluation, pointer conversions, 
type casting, or other operations needed when debugging assembly-language 
code. 

Besides arithmetic and memory-reference expressions, CodeView can also dis­
play Boolean expressions. For example, if a variable is never supposed to be 
larger than 100 or less than 25, the expression 

(var < 25 I I var > 100) 

evaluates to one (TRUE) if va r goes out of bounds. 

Changing Display Format 
By default, CodeView displays expression values in decimal form. You can 
change the display radix to octal or hexadecimal with the Radix (N) command de­
scribed at the end of the previous section. 

Another way to change the display format is to append a comma and a single­
digit format specifier to any watched variable, expression, or address. For ex­
ample, to display va rna me in octal form, type va rna me , 0 in the Watch 
expression box. (If varname is already in the Watch window, simply append a 
comma and the octal specifier , 0 and then move the cursor off the line.) The 
following list describes the use of each specifier: 

409 



Debugging Assembly-Language Programs with CodeView 

410 

Specifier 

c 

d 

eorE 

f 

gorG 

o 

s 

u 

xorX 

Form Displayed 

Least-significant byte of the variable displayed as a single 
character 

Decimal value 

Eight bytes displayed as a double-precision exponential 
number 

Four bytes displayed as a single-precision floating-point 
number 

Eight bytes displayed as a double-precision exponential 
number 

Signed integer value 

Unsigned octal value 

String; all following bytes displayed as ASCII characters, up 
to next null character (ASCII 0) 

Unsigned decimal value 

Hexadecimal value, without leading 0x 

Displaying MASM Expressions 
Expressions using registers or indexes are more complex. The following sections 
show how to substitute Code View expressions using the C expression evaluator 
for MASM expressions. 

Register Indirection The C expression evaluator does not recognize brack­
ets to indicate the memory location pointed to by a register. Instead, use the BY, 
WO, or DW operator to reference the corresponding byte, word, or doubleword 
value. 

MASM Expression 

BYTE PTR [bx] 

WORD PTR [bp] 

DWORD PTR [bp] 

CodeView Equivalent 

BY bx 

WO bp 

DW bp 



Viewing and Modifying Program Data 

Register Indirection with Displacement To perform based, indexed, or 
based-indexed indirection with a displacement, use the BY, WO, or DW operator 
combined with addition. 

MASM Expression 

BYTE PTR [di+6] 

BYTE PTR Test [bx] 

WORD PTR [si] [bp+6] 

DWORD PTR [bx] [si] 

CodeView Equivalent 

BY d i +6 

BY &Test+bx 

WO si+bp+6 

OW bx+si 

Address of a Variable Use the address operator (&) instead of the OFFSET 
operator. 

MASM Expression CodeView Equivalent 

OFFSET Var &Var 

PTR Operator Use C type casts, or the BY, WO, and DW operators in con­
junction with the address operator (&), to replace the PTR operator. 

MASM Expression CodeView Equivalents 

BYTE PTR Va r BY &Var 
*(unsigned char*)&Var 

WORD PTR Var WO &Va r 
*(unsigned *)&Var 

DWORD PTR Va r OW &Va r 
*(unsigned long*)&Var 

Strings Add a comma and the string specifier , s after the variable name. 

MASM Expression CodeView Equivalent 

Stringvar Stringvar,s 

Because CodeView uses the C expression evaluator and C strings end with an 
ASCII null (zero), CodeView displays all characters up to the next null in 
memory when you request a string display. If you intend to debug a MASM pro­
gram, you should terminate string variables with a null. 

411 



Debugging Assembly-language Programs with CodeView 

Array and Structure Elements The C expression evaluator equates an 
array name with the address of its first element. Therefore, you should prefix an 
array name with the address operator (&), then add the desired offset. The offset 
can be added directly, or it can appear within parentheses. It can be a number, a 
register name, or a variable. 

The following examples (using byte, word, and doubleword arrays) show how 
this is done: 

MASM Expression 

String[12] 

aWords[bx+di] 

aOWords[bx+4] 

CodeView Equivalents 

BY &String+12 
*(&String+12) 

WO &aWords+bx+di 
*(unsigned*)(&aWords+bx+di) 

OW &aOWords+bx+4 
*(unsigned long*)(&aOWords+bx+4) 

Pointers MASM 6.0 lets you define pointer-type variables. Since these are 
the same as C pointers, the C expression evaluator works as it does with C 
programs. 

You dereference a pointer simply by typing its name in the Watch window. The 
pointer's address is displayed, followed by all the elements of the variable to 
which the pointer refers. Multiple levels of indirection (that is, pointers refer­
encing other pointers) can be displayed simultaneously. 

15.3.3 Displaying Local Variables 

412 

When your program is executing within the scope of a procedure, the Local win­
dow automatically displays the variables local to that procedure (stack variables). 
This includes arguments declared in PROC directives and variables explicitly de­
clared as LOCAL within the procedure. 

Note that variables you create on the stack are not displayed in the Local win­
dow, since CodeView is aware only of the assembler-created stack. You can dis­
play user-defined stack variables in the Watch window by specifying their 
address in segment:offset form. 



Viewing and Modifying Program Data 

15.3.4 Using Pointers to Display Arrays and Strings 

A user-defined pOinter 
lets you view an 
expanded array. 

Unlike high-level-language compilers, MASM does not provide symbolic infor­
mation for arrays. Consequently, CodeView cannot distinguish between a simple 
variable and an array, and therefore cannot directly display an assembly­
language array in expanded form. (See Section 15.3.2, "Displaying Expressions 
in the Watch Window," to display individual array elements.) 

For debugging purposes, you can overcome MASM's lack of array information 
by using the TYPEDEF directive to define a pointer type, and from that a pointer 
variable for the array. (Place the directive and pointer definition within a 
conditional-assembly block, so the pointer won't be added to your release code.) 
You can then view the array from CodeView by placing the pointer in the Watch 
window. For example: 

array BYTE 20 OUP (0) 

IF debug 
PBYTE TYPEOEF PTR BYTE 
parray PBYTE array 

ENOIF 

; array of 20 bytes 

PBYTE type is pointer to bytes 
parray points to array 

If you declare multiple levels of pointers (pointers to pointers to pointers, and so 
on), multiple levels of indirection can be displayed simultaneously by expanding 
each subpointer. 

If it is inconvenient to view a character array in hexadecimal form, cast the varia­
ble's name to a character pointer by placing (c h a r *) in front of the name. The 
character array is then displayed as a string delimited by apostrophes. You can 
also append the string-format specifier , s to the expression. 

Note that the C expression evaluator expects a string to terminate with the ASCII 
null character (0). If you do not include a terminating null in the string's defini­
tion, the evaluator continues displaying memory as characters until it encounters 
a null. The Memory window is an effective way to view nonterminated strings. 

15.3.5 Displaying Structures 
MASM adds structure and union information to the debugging table. You can dis­
play MASM structures in expanded form, just as you would in C, Basic, Pascal, 
or FORTRAN. 

Structures contain multiple data values, often of different data types, arranged in 
one or more layers. Therefore, they are often referred to as "aggregate" data 
items. Code View lets you control how much of a structure is shown; that is, 
whether all, part, or none of its components are displayed. 

413 



Debugging Assembly-Language Programs with CodeView 

414 

The following example defines a structure and pointer types to implement a 
simple linked list: 

PTRLINKEDLIST TYPEDEF PTR LINKEDLIST 
PTRDATAWORD TYPEDEF PTR WORD 

LINKEDLIST STRUCT 
ptrNext PTRLINKEDLIST 0 
ptrData PTRDATAWORD 0 

LINKEDLIST ENDS 

rootNode linkedList < > 

Once root Node has been defined, the program calls the MALLOC function 
(which is available from the libraries of Microsoft high-level languages) to allo­
cate memory for a structure pointer and a data pointer. The addresses of each are 
assigned to the corresponding pointers in root Node, readying the list for its 
first entry. 

The program stores a list item at the memory location specified by the preceding 
pointer, then calls MALLOC to allocate memory for the next list item. This 
process is repeated for each new list item, creating a linked list of data structures. 

To display the linked list of structures, add rootNode to the Watch window. It 
initially appears in the form: 

+rootnode = { ... } 

The brackets indicate that this is an aggregate variable (since it's a structure). 
The plus sign (+) indicates that the structure has not yet been expanded to display 
its components. 

To expand rootnode, double-click its display line. (Position the mouse pointer 
anywhere on the line and press the left mouse button twice, rapidly.) You can 
also move the cursor to the line and press ENTER. The Watch window display 
changes to 

-rootnode 
+ptrnext = 0F00:1111 
ptrdata = 0x0032 "2" 

The address and data values shown here are arbitrary. They depend on the data 
values stored and on the memory location from where MALLOC obtained free 
space. The minus sign (-) indicates that root node has been fully expanded; 
no further expansion is possible. The plus sign ( +) indicates that p t r n ext 
points to another structure that has not been expanded. 



You can view individual 
elements instead of the 
entire structure. 

Viewing and Modifying Program Data 

Any structure element can be independently expanded or contracted. To expand 
the next structure, double-click p t r n ext, or press ENTER when the cursor is on 
that line. The Watch window display changes to 

-rootnode 
-ptrnext = 0F00:1111 

+ptrnext = 0F00:2222 
ptrdata = 0x0034 "4" 

ptrdata = 0x0032 "2" 

Note that both the data value and its ASCII equivalent are displayed. To contract 
the structure, double-click its line a second time or position the cursor on the line 
and press ENTER. 

The process of expanding structures pointed to by pt rnext may be repeated 
indefinitely until you reach the last structure in the list. Its identifier will be pre­
fixed with a minus sign, indicating that no more space for structures has been 
allocated. 

If you want to view only one or two elements of a large structure, indicate the 
specific structure elements in the Expression field of the Add Watch dialog box. 
Structure elements are separated by a dot (.), so you would type 

rootnode.ptrnext.ptrnext 

to view the pointer from the third structure in the list. 

15.3.6 Using Quick Watch 

You can add Quick 
Watch variables to 
the Watch window. 

Choose the Quick Watch command from the Watch menu (or press SHIFT +F9) to 
display the Quick Watch dialog box. If the cursor is in the Source, Local, or 
Watch window, the variable at the current cursor position appears in the dialog 
box. If it isn't the item you want to display, type in the desired expression or vari­
able; then press ENTER. The Quick Watch window immediately displays the 
specified item. 

The Quick Watch display automatically expands structures and pointers to their 
first level. You can expand or contract an element just as you would in the Watch 
window: position the cursor on the appropriate line and press ENTER. If the array 
needs more lines than the Quick Watch window can display, drag the scroll box 
with the mouse, or press DOWN or PGDN to view the rest of the array. 

Choose the Add Watch button to add a Quick Watch item to the Watch window. 
Structures and pointers appear in the Watch window expanded as they were dis­
played in the Quick Watch dialog box. 

Quick Watch is a convenient way to take a quick look at a variable or expression. 
Since only one Quick Watch variable can be viewed at a time, you would not use 
Quick Watch for most of the variables you want to view. 

415 



Debugging Assembly-Language Programs with CodeView 

15.3.7 Displaying Memory 

You can display memory 
values in any form. 

416 

Choosing the Memory command from the View menu opens a Memory window. 
Two Memory windows can be open at one time. 

By default, memory is displayed as hexadecimal byte values, with 16 bytes per 
line. At the end of each line is a second display of the same memory in ASCII 
form. Values that correspond to printable ASCII characters (decimal 32 to 127) 
are displayed in that form. Values outside this range are shown as dots (.). 

Byte values are not always the most convenient way to view memory. If the area 
of memory you're examining contains character strings or floating-point values, 
you might prefer to view them in a directly readable form. Choosing the Memory 
Window command from the Options menu displays a dialog box with a variety 
of display options: 

• ASCII characters 

• Byte, word, or doubleword binary values 

• Signed or unsigned integer decimal values 

• Short (32-bit), long (64-bit), or ten-byte (80-bit) floating-point values 

Figures 15.3 and 15.4 show two of these different displays. 

178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 

ourcel CS:IP MISCDEMO.asm (ACTIVE) 
PopWindows, SetAttrs, ExecPgm 

. CODE 

.STARTUP 

; Initialize -psp and _env variables 
INVO~E Initialize 

186: ; Return unused memory to DOS 
al~~----------~l!md3m"iD"~"i'.lm~~+Dii'Q·~m'lo~lom!O!Do'I'm;1i'illl~~'~I~--~--~~~~ID 

6151 : 0F00 ....... aa ... V .. % • ! ..... 5 .11 . ! ........... aa ... V .. % • ! ..... 5 . $ . ! ... . 
6151:0F40 ....... aa ... V .. %.! ... A •••••• w.F .. ).! .ll ..... ). W . . 1l .......... A •• V 
6151 :0F80 .. .IL L .ll ....... 1. .% •••.•• LII ...... L$ ...... L .. r .. M. !*._A.1. .. . 
6151 :0FC0 ............... U .. W ... - ..... F ...... P .......... xp$ ... X ... h .. _1 .. . 
6151:1000 U ... F .... A 

•• J.!l ........ u ....... ll., ................... ;Np.x ... . 
6151:1040 .. press a key to continue.yesno *** MISC Demonstration Progr 
6151:1080 am ***.Fl System Configuration.F2 Speaker Test.F3 Toggle Lin 
6151:10C0 e Mode.F4 Windows.F5 Screen Colors.F6 Exec Program.Select an 
6151:1100 option, or press ESC to quit:.monochromecolor MDA CGA MCGAEG 
6151:1140 A VGA Adapter: xxxx.Display: xxx 
6151:1180 xxxxxxx.Mode: xx.Rows: xx. 

F8=Trace> <F10=Step> <F5=Go> <F6=Window> <F3=Display> <Sh+F3=Memory Format> 

Figure 15.3 Memory Displayed in ASCII Characters 

-.,J. 



Viewing and Modifying Program Data 

178: 
179: 
189: 
181: 
182: 
183: 
184: 
185: 

. CODE 

ourcel CS:IP MISCDEMO.asn (ACTIVE) 
PopWindows. SetAttrs. ExecPg~ 

. STARTUP 

; Initialize -psp and _enu uariables 
INVOKE Initialize 

186: ; Return unused ~e~ory to DOS 
afl~~-=~~~=~"i~§!~!i.~IQ~iI~.~i~u~IU~'m;~¥~i'~'~.~~O!~O!O~U~'~';~li~,~p~J'~Jr------------1ID 

6151:9999 CD 29 99 A9 99 9A F9 FE -2.846196372836E+393 
6151:9998 ID F9 3D 99 98 27 34 9A +1.638369865619E-259 
6151:9919 98 27 85 9E 98 27 9E IF +4.289386185249E-159 
6151:9918 91 91 91 99 92 93 FF FF -1.BQNAN9999990E+999 
6151:9929 FF FF FF FF FF FF FF FF -1.BQNAN9999geOE+999 
6151:9928 FF FF FF FF 7F 5F BA B7 -3.9274773962e4E-949 
6151:9939 42 43 14 99 18 99 51 61 +5.975248599992E+169 
6151:9938 FF FF FF FF 99 99 99 99 +2.121995799471E-314 
6151:ge49 95 99 e9 99 99 99 99 99 +2.4793282292e6E-323 
6151:9948 99 99 99 99 99 99 99 99 +9.9999ge9ge990E+999 
6151:9959 CD 21 CB 99 99 99 99 99 +6.577229641791E-317 

-+,1 

F8=Trace> <F19=Step> <F5=Go> <F6=Window> <F3=Display> <Sh+F3=Me~ory For~at> 

Figure 15.4 Memory Displayed in long-Real Floating-Point Values 

Another way to choose a display format is to cycle through the formats by re­
peatedly pressing SHIFT +F3. 

Not every four-byte or eight-byte sequence represents a valid floating-point num­
ber. If a section of memory cannot be displayed in the floating-point format you 
select, the number displayed includes the characters NAN--"not a number." 

You can change the contents of the memory by simply overtyping new values in 
the Memory window. See Section 15.3.9 for more information on modifying 
values. 

Displaying Variables with a Live Expression 
Section 15.3.4 explained how to display a specific array element by adding the 
appropriate expression to the Watch window. You can also watch a particular 
array element or structure element in the Memory window. This CodeView dis­
play feature is called a "live expression." The term "live" means that CodeView 
dynamically displays memory starting at the current value of the address expres­
sion you specify. 

To create a live expression, choose the Memory Window command from the Op­
tions menu; then select the Live Expression check box. Type the element you 
want to view in the Address Expression field. For example, if a r r ay is a varia­
ble whose current value is being indexed by the value in the BI register and you 
wish to view it, type a r ray [b i J. Then choose the OK button or press ENTER. 

417 



Debugging Assembly-Language Programs with CodeView 

If no memory windows are open, a new Memory window opens. The first 
memory location in the window is the first memory location of the live expres­
sion. The section of memory displayed changes to the section the live expression 
currently references. 

You can use the Memory Window command from the Options menu to display 
the memory in a directly readable form. This is especially convenient when the 
live expression represents strings or floating-point values, which are difficult to 
interpret in hexadecimal form. 

It is usually more convenient to view an item in the Watch window than as a live 
expression. However, some items are more easily viewed as live expressions. For 
example, you can examine what is currently on top of the stack by entering 
SS:SP as the live expression. In fact, any legal combination of register values 
(such as ES:DI or DS:SI) can be entered in segment:offset form. 

15.3.8 Displaying the Processor Registers 

Video intensity shows 
changed values. 

The Register values reveal 
program status. 

418 

Choosing the Register command from the View menu (or pressing F2) opens a 
window on the right side of the screen. The microprocessor's current register 
values appear in this window. At the bottom of the window is a group of mne­
monics representing the processor flags. Pressing F2 a second time closes the 
window. 

When you first open the Register window, all register and flag values are shown 
in normal text. When you change a register or flag, the changed value is 
highlighted. For example, suppose the overflow flag is not set when the Register 
window is first opened. The corresponding mnemonic is NV and appears in light 
gray. If the overflow flag is subsequently set, the mnemonic changes to OV and 
appears in bright white. If your computer uses an 80386/486 processor and you 
are running the real-mode version of CodeView choosing the 386 Instructions 
command from the Options menu displays the registers as 32-bit values. Choos­
ing this command a second time returns to the 16-bit display. 

You can also display the registers of an 8087-80387 coprocessor (or the built-in 
coprocessor of the 80486) in a separate window by choosing the 8087 command 
from the View menu. If your program uses the coprocessor emulator, the emu­
lated registers are displayed instead. 

The Register window is a valuable debugging tool. Almost every assembly in­
struction alters a register or flag. As each line of code is executed, the register 
values and flags that change are highlighted, so you can see whether each instruc­
tion does what you intended it to. 

Also, when you execute an instruction whose operand has a memory location 
(such as a variable), the effective address of the operand, as well as the value 
stored at that address, is displayed at the bottom of the Register window. 



Controlling Execution 

15.3.9 Modifying the Values of Variables, Memory, and Registers 

It's easy to change 
memory values ... 

... or flags. 

Be cautious when 
modifying memory 
or a register. 

You can easily change the values of variables, memory locations, or registers dis­
played in the Watch, Local, Memory, Register, or 8087 windows. Simply posi­
tion the cursor at the value you want to change and edit it to the appropriate 
value. In the Watch and Local windows, the change is accepted by CodeView 
when you move the cursor off the line. If you change your mind, press ALT +BKSP 

to undo the last change you made. 

You can also alter expressions in the Watch window by adding an operator or 
changing the variable displayed. When you have altered the expression and 
moved the cursor off the line, CodeView will immediately show the new value of 
the modified expression. 

The starting address of each line of memory displayed is shown at the left of the 
Memory window in segment:offset form. Altering the address automatically 
shifts the display to the corresponding section of memory. Under OS/2, if your 
program does not own that section of memory, memory values are displayed as 
double question marks (??). 

You can also change the values of memory locations by modifying the right side 
of the memory display (where memory values are shown in ASCII form). For ex­
ample, to change a byte from decimal 75 to decimal 85, place the cursor over the 
letter K, which corresponds to the position where the memory value is 75 (K is 
ASCII 75), and type in U (ASCII 85). 

To toggle a processor flag, double-click its mnemonic. You can also position the 
cursor on a mnemonic, then press any key (except ENTER, TAB, or SPACE). Press 
ALT+BKSP (undo) to restore the flag to its previous setting. 

The effect of changing a register, flag, or memory location can vary from no ef­
fect at all to crashing the operating system. Be cautious when altering these 
values. 

15.4 Controlling Execution 
There are two forms of program execution under CodeView: 

• Continuous; the program executes until either a previously specified break­
point has been reached or the program terminates. 

• Single-step; the program pauses after each line of code has been executed. 

Sections 15.4.1 and 15.4.2 explain how each form of execution works and the 
most effective way to use each. 

As you are debugging, you can display the program in source-code form or as­
sembly form. Section 15.4.3 explains the advantages of each. 

419 



Debugging Assembly-language Programs with Code View 

15.4.1 Continuous Execution 

Breakpoints can be 
tied to lines of code. 

There is no limit to 
the number of breakpoints. 

Not every line 
can be a breakpoint. 

420 

Continuous execution lets you quickly execute the bug-free sections of code 
which would otherwise take a long time to execute one instruction at a time. 

The simplest form of continuous execution is to click the line of code you want 
to debug or examine in more detail with the right mouse button. The program ex­
ecutes up to the start of this line, then pauses. An alternative method is to posi­
tion the cursor on this line, then press F7. 

You can also pause execution at a specific line of code with a "breakpoint." 
There are several types of breakpoints. Breakpoints are explained in the follow­
ing section. 

Selecting Breakpoint Lines 
You can skip over those parts of the program that you don't want to examine by 
specifying one or more lines as breakpoints. The program executes up to the first 
breakpoint, then pauses. Pressing F5 continues program execution up to the next 
breakpoint, and so on. (You can halt execution at any time by pressing CTRL+C.) 

You can set as many breakpoints as you like (limited only by available memory). 
There are several ways to set breakpoints: 

• Double-click anywhere on the desired breakpoint line. The selected line is 
highlighted to show that it is a breakpoint. To remove the breakpoint, double­
click the line a second time. 

• Position the cursor anywhere on the line at which you want execution to 
pause. Press F9 to select the line as a breakpoint and highlight it. Press F9 a 
second time to remove the breakpoint and highlighting. 

• Display the Set Breakpoint dialog box by choosing Set Breakpoint from the 
Watch menu. Select one of the breakpoint options that permits a line ("loca­
tion") to be specified. The line at the cursor is the default breakpoint line in 
the Location field. If this line is not the desired location, enter the line number 
desired. (You must place a period in front of the line number, or CodeView 
will interpret the number as an absolute address.) To remove the breakpoint, 
use F9 or choose Edit Breakpoints from the Watch menu to display the Edit 
Breakpoints dialog box. 

A breakpoint line must be a program line that represents executable code. You 
cannot select a blank line, a comment, or a declaration (such as a variable declara­
tion or a segment specifier) as a breakpoint. 

A breakpoint can also be set at an address. Type the address in segment:offset 
form in the Set Breakpoint dialog box. (Address breakpoints, unlike line break­
points, are not saved in CodeView's status file, and therefore are not restored 
when you restart a debugging session.) 



Controlling Execution 

A breakpoint can be set to the name of a procedure if the procedure was declared 
with the PROC directive. If not, the procedure must contain a labeled line. Type 
the procedure's name or the line's label in the Set Breakpoint dialog box. 

Once execution has paused, you can continue execution by clicking the F5=Go 
button in the display or by pressing F5. Execution continues to the next break­
point. If there are no more breakpoints, execution continues to the end of the pro­
gram, or until a fatal error occurs. 

NOTE The Set Breakpoint dialog box contains a Commands text box. You can type 
Command-window commands in this box, separated by semicolons. These commands are 
executed when the breakpoint is reached. See the Command Window section of CodeView 
online help for a full description of Command-window commands. 

Conditional Breakpoints 
Breakpoints are not limited to specific lines of code. CodeView can also pause 
when a variable reaches a particular value or just changes value. This is a "condi­
tional breakpoint." In previous versions of CodeView, conditional breakpoints 
are called "watchpoints" and "tracepoints." 

You can associate a conditional breakpoint with a specific line of code, so that ex­
ecution pauses at that line only if the variable has simultaneously reached a par­
ticular value or changed value. The check boxes in the Set Breakpoint dialog box 
select these other breakpoint types. 

To pause execution when a variable reaches a particular value, type an expres­
sion that is usually false in the Expression field of the Set Breakpoint dialog box. 
For example, if you want to pause when the variable 1 a opt est equals 17, 
type 1 ooptes t == 17. 

To pause execution when a variable changes value, you need to type only the 
name of the variable in the Expression field. For large variables (such as arrays 
or character strings), you can specify the number of bytes you want checked (up 
to 32K) in the Length field. Execution pauses when anyone of these values 
changes. 

NOTE CodeView checks every conditional breakpoint after executing each line of source 
code. Unless you have enabled the use of the debug registers with the CodeView IR 
command-line option, this computational overhead greatly slows execution. (Execution is 
even slower if you are executing in Mixed mode or Assembly mode, because conditional 
breakpoints are checked after each machine instruction.) 

For maximum speed when debugging, either associate conditional breakpoints with specific 
lines, or set conditional breakpoints only after you have reached the section of code that 
needs to be debugged. You can also use the Disable button in the Edit Breakpoints dialog 
box to temporarily suspend evaluation of a previously set conditional breakpoint. 

421 



Debugging Assembly-Language Programs with CodeView 

You can specify how many 
times a breakpoint is 
reached before stopping. 

You can assign new 
values to variables while 
execution is paused. 

Using Breakpoints 
One of the most common bugs is a loop that executes too many or too few times. 
If you set a breakpoint on the statement that controls the loop statements, the pro­
gram pauses after each iteration. With the loop variable or critical program varia­
bles in the Watch or Local windows, it should be easy to see what's going wrong 
in the loop. 

You do not have to pause at a breakpoint the first time execution reaches it. 
CodeView lets you specify the number of times you want to ignore the break­
point condition before pausing. Type the number in the Pass Count field of the 
Set Breakpoint dialog box. This feature can eliminate a lot of tedious single­
stepping. 

Another programming error is erroneously assigning a value to a variable that 
should not change. Type the variable in the Expression field of the Set Break­
point dialog box. Execution breaks whenever this variable changes--even 
unintentionall y. 

Breakpoints are a convenient way to pause the program so you can assign new 
values to variables. For example, if a limit value is set by a variable, you can 
change the value to see whether program execution is affected. 

15.4.2 Single-Stepping 

There are two ways 
to single-step. 

422 

In single-stepping, CodeView pauses after each line of code is executed. The 
next line to be executed is highlighted. 

You can single-step through a program with the Step and Trace commands. Step 
(executed by pressing FlO) steps over procedure calls. All the code in the proce­
dure is executed, but it appears to you as if the procedure executed in a single 
step. Trace (executed by pressing F8) traces through every step of all procedures. 
Each line of the procedure is executed as a separate step. 

You can alternate between Trace and Step as you like. The method you use de­
pends only on whether you want to see what happens within a particular proce­
dure. (Note that interrupt calls are always stepped over; you do not see individual 
steps of the execution.) 

If CodeView cannot locate the source code for a procedure in the current 
directory, it pauses and asks for the name of the file that contains the source. If 
you cannot supply a source file, CodeView disassembles the executable code and 
displays that instead. (If you are executing in Source mode, and the source code 
for a procedure is not available, CodeView steps over the procedure, even if you 
use the Trace command.) 

Note that breakpoints are active during both step and trace mode. If the proce­
dure you step over contains a breakpoint, execution stops at the breakpoint. 



Controlling Execution 

You can trace through the program continuously (without having to press F8 at 
each step), using the Animate command from the Run menu. The speed of execu­
tion is controlled by the Trace Speed command from the Options menu. You can 
halt animated execution at any time by pressing any key. 

15.4.3 Changing the Program Display Mode 
The F3 function switches the display between Source mode, Mixed mode, and As­
sembly mode. You can also switch display modes by choosing the Source Win­
dow command from the Options menu and then selecting a display mode in the 
Source Window Options dialog box. (If the source-code text file cannot be lo­
cated, CodeView automatically disassembles the executable file and displays it in 
assembly-language form.) 

The Source mode shows the program as you wrote it. The Mixed mode and As­
sembly mode each expand macros and code-generating directives (such as 
.STARTUP) into assembly-language instructions. You can execute these instruc­
tions one at a time (rather than as a single item), and verify that the assembler has 
created the correct instructions from the macro or the directive. 

Figures 15.5 and 15.6 show Mixed mode and Assembly mode, respectively, for 
the same code. 

183: 
184: 

; Initialize -psp and _enu uariables 
INVO~E Initialize 

161:0225 EBEBOC CALL OF13 
185: 
186: ; Return unused nenory to DOS 
187: ; Pass PSP segnent address and nenory block allocated to progr 
188: INVO~E NewBlockSize. -psp. PGMSIZE 
6161:0228 FF36AAOS PUSH Word Ptr [OSAA1 
6161:022C B8000S MOV AX.0S00 
6161:022F 50 PUSH AX 
6161:0230 E8CD0C CALL 0F00 
189: 
190: Initialize global configuration data 
191: INVO~E GetVidConfig 
6161:0233 E8DAFD CALL 0010 
192: 
193: nou 
194: nou 
6161:0236 A00A00 
195: 
6161:0239 A21000 

al, uconfig.rows 
OldMode. al ; Preserue original line node 

MOV AL.Byte Ptr [000A1 

MOV Byte Ptr [00101.AL 

FB=Trace> <F10=Step> <FS=Go> <F6=W illdow> <F3=D isp lay> 

Figure 15.5 Source Window in Mixed Mode 

-> 

423 



Debugging Assembly-language Programs with CodeView 

6161:022F 50 PUSH AX 
6161:0230 E8CD0C CALL 0F00 
6161:0233 E8DAFD CALL 0010 
6161:0236 A00A00 MOl) AL,Byte Ptr [000Al 
6161:0239 A21000 MOl) Byte Ptr [00101,AL 
6161:023C E883FE CALL 00C2 
6161:023F A31100 MOl) Word Ptr £00Ul,AX 
6161:0242 33C0 XOR AX,AX 
6161:0244 50 PUSH AX 
6161:0245 33m XOR AX,AX 
6161:0247 50 PUSH AX 
6161:0248 A00A00 MOl) AL,Byte Ptr £000Al 
6161:024B 32E4 XOR AH,AH 
6161:024D 50 PUSH AX 
6161:024E B84F00 MOl) AX,004F 
6161:0251 50 PUSH AX 
6161:0252 B80700 MOl) AX ,0007 
6161:0255 50 PUSH AX 
6161:0256 E8B107 CALL 0A0A 

~J. 

F8=Trace) <F10=Step) <F5=Go) <F6=Window) <F3=Display) 

Figure 15.6 Source Window in Assembly Mode 

15.5 Replaying a Debug Session 

Dynamic replay makes it 
easy to correct a mistake. 

424 

CodeView can automatically create a "tape" (a disk file) with the debugging in­
structions and input data you entered when testing a program. The tape can then 
be "replayed" to repeat the debugging process. You initiate recording by choos­
ing the History On command from the Run menu. Choosing History On a second 
time terminates recording. The recording is saved in the .CVH file in the current 
directory. 

Dynamic replay has several uses. The most obvious is repeating a debug session 
for the corrected version of a program. Dynamic replay usually works with 
slightly modified programs. However, the more you change the program, the less 
likely the new version will replay reliably. 

You can also use the recording as a bookmark. You can quit after a long debug­
ging session, then pick up the session later in the same place. 

Most importantly, dynamic replay allows you to back up when you make an error 
or overshoot the section of code with the bug. This feature is important because 
not all bugs appear on the first path of execution you try. 

For example, you might have to manually execute a procedure many times 
before its bug appears. If you then enter a command that alters the machine's or 
program's status, thereby losing the information you need to find the cause of the 
bug, you would have to restart the program and manually repeat every debugging 
step to return to that point. Even worse, if you don't remember the exact 
sequence of events that exposed the bug, it could take hours to reproduce them. 



Advanced CodeView Techniques 

Dynamic replay of a recorded tape eliminates this problem. Choose the Undo 
command from the Run menu to automatically restart the program and continu­
ously execute every command up to (but not including) the last one you entered. 
You can repeat this process as many times as you like until you return to the 
desired point in execution. 

You can add additional steps to an existing tape. Choose History On, then choose 
Replay. When replay has completed, perform whatever new debugging steps you 
want, then choose History On a second time to terminate recording. The new 
tape contains both the original and the added commands. 

NOTE CodeView records only those mouse commands that apply to CodeView. Mouse 
commands recognized by the application being debugged are not recorded. 

Replay limitations under OS/2 
There are some limitations to dynamic replay when debugging under OS/2: 

• The program must not respond to asynchronous events. Replay under Presen­
tation Manager is not currently supported because of this restriction. 

• Breakpoints must be specified at specific source lines or for specific symbols 
(rather than by absolute addresses), or replay may fail. 

• Single-thread programs behave normally during replay. However, one of the 
threads in a multithread program may cause an asynchronous event, violating 
the first restriction in this list. Multithread programs are therefore more likely 
to fail during replay. 

• Multiprocess replay will fail. Each new process invokes a new CodeView ses­
sion. The existence of multiple sessions makes it impractical to record the 
sequence of events if you execute commands in a session other than the origi­
nal session. 

15.6 Advanced CodeView Techniques 
Once you are comfortable displaying and changing variables, stepping through 
the program, and using dynamic replay, you might want to experiment with the 
advanced techniques explained below. 

Debugging OS/2 Programs 
You can debug protected-mode and bound programs under CodeView. See the 
Debug Multiple Processes and Debug Multiple Threads sections of CodeView on­
line help for information about executing threads and multiple processes. 

425 



Debugging Assembly-Language Programs with CodeView 

426 

Setting Command-Line Arguments 
If your program retrieves command-line arguments, you can specify them with 
the Set Runtime Arguments command from the Run menu. Type the arguments 
in the Command Line field before you begin execution. (Arguments entered after 
execution begins cause an automatic restart.) 

Opening Multiple Source Windows 
You can open two Source windows at the same time. The windows can display 
two different sections of the same program, or one window can show the calling 
program and the other a procedure file. You can move freely between the win­
dows, executing lines of code as you like. 

Calling Procedures 
Any procedure in your program (whether user-written or from a library) can be 
called from the Command window or the Watch window. In the Command win­
dow, use the Display Expression command as follows: 

?procname (arglist) 

The procedure procname is evaluated with the arglist arguments and the returned 
value is displayed in the Command window. (Note that CodeView cannot eval­
uate a function that returns an aggregate type.) In the Watch window, simply 
enter the procedure call. If the procedure does not return a value, the value dis­
played is the value of the AX register upon return from the procedure. 

You can evaluate any procedure, not just those called by your program. All ob­
ject code specified to the linker is linked into the program. Any public functions 
in this code can be evaluated from the Command window. 

You can use this feature to call functions from within CodeView that you would 
not normally include in the final version of your program. For example, you 
could include the OS/2 API functions that control semaphores, then execute them 
from the Command window to manipulate the run-time environment at any point 
in the debugging process. (Remember that altering the environment during pro­
gram execution may have unexpected side effects.) 

Executing Faster when Using Breakpoints 
Breakpoints can slow execution. You can increase CodeView's speed with the /R 
command-line option if you have an 80386/486-based computer and are running 
CodeView under DOS. This option enables the four debug registers, which sup­
port breakpoint-checking in hardware rather than in software. (The CodeView op­
tions are described in Section 15.7.) 

Printing Selected Items 
You can print all or part of the contents of any window with the Print command 
from the File menu. In the Print dialog box, a check box lets you print selected 



Advanced CodeView Techniques 

text from the window, the material currently displayed in the window, or the com­
plete contents of the window. Select text by dragging the mouse across it, or by 
holding down the SHIFT key and pressing the direction keys (LEFT, RIGHT, UP, 

DOWN). 

By default, print output is to the file CODEVIEW.LST in the current directory. 
You can choose whether the new material is appended to an existing file or over­
writes it, using the Append/Overwrite check box. If you want print output to go 
to a different file, type its name in the To File Name field. If you want the output 
to go to a printer, enter the appropriate device name such as LPTI or COM2. 

Redirecting CodeView Input and Output 
The Command window accepts DOS-like commands that redirect input and out­
put. These commands can also be included on the command line that invokes 
CodeView. Whatever items follow the /C option on the command line are treated 
as CodeView commands to be immediately executed at start-up. 

C V / c " < i n file; t > 0 U t f i 1 e" my pro 9 

In the example above, input is redirected from i nfi 1 e, which can contain start­
up commands for CodeView. When CodeView exhausts all commands in the 
input file, focus automatically shifts to the Command window. Output is sent to 
out f i 1 e and echoed to the Command window. The t must precede the > 
command for output to be sent to the Command window. 

Redirection is a useful way to automate CodeView start-up. It also lets you keep 
a viewable record of command-line input and output, a feature not available with 
dynamic replay. No record is kept of mouse operations. Some applications (par­
ticularly interactive ones) may need modification to allow for redirection of input 
to the application itself. 

Executing Faster with Additional Memory 
If you are running DOS and your computer uses expanded or extended memory, 
you can increase CodeView's execution speed by selecting the IX or IE option. 
CodeView moves as much as it can of itself and the symbolic CodeView informa­
tion to higher memory (above the first megabyte). 

The IX option uses extended memory and gives the greatest speed increase. This 
option requires the HIMEM.SYS driver, which is included on your distribution 
disks. Add DEVICE = HIMEM. SYS to your CONFIG.SYS file to load 
HIMEM.SYS at boot time. 

The IE option uses expanded memory. The speed increase is not as great as that 
supplied by the IX option. The expanded memory manager (EMM) must be LIM 
4.0, and no single module's debug information can exceed 48K. If the symbol 
table exceeds this limit, try reducing file-name information by not specifying full 
path names at compile time and by specifying CodeView information (/Zi) only 
with those program modules that need debugging. 

427 



Debugging Assembly-Language Programs with CodeView 

If you do not specify either IX or IE (or the /D disk-overlay option), CodeView 
automatically searches for the HIMEM.SYS driver and extended memory so it 
can implement the IX option. If it fails, CodeView searches for expanded 
memory to implement the IE option. If that search fails, Code View uses a default 
disk overlay of 64K. (See the description of the /D option in the next section.) 

15.7 CodeView Command-Line Options 

428 

The following options can be added to the command line that invokes CodeView. 
The Starting Up CodeView section of CodeView online help contains more infor­
mation about these options. 

/2 

/25 

/43 

/50 

/B 

/Ccommands 

/D[buffersize] 

Description 

Two-monitor debugging. The display adapters must be 
configured for different addresses, such as Hercules® 
and VGA. The application is displayed on the primary 
monitor (the monitor the operating system normally 
directs output to), while CodeView's output appears on 
the secondary monitor. 

Display in 25-line mode. 

Display in 43-line mode. 

Display in 50-line mode. 

Display in black and white. This assures that the display 
is readable when a color display is not used. You should 
also specify this option along with the /2 option when 
the secondary monitor is black and white. 

Execute commands immediately on start-up. The com­
mands must be separated with a semicolon. If any 
commands require a space, enclose the entire list in 
double quotation marks. 

Use disk overlays to increase the size of the program that 
can be debugged, where buffersize is the decimal size of 
the overlay buffer, in kilobytes. Smaller buffers leave 
more room for the program being debugged, while larger 
buffers increase the speed of execution. The acceptable 
range is 16K to 128K. The default size is 64K. (DOS 
only.) 



IE 

IF 

/G 

/1[011] 

/K 

/Ldll 

1M 

IN [0 I 1] 

/0 

IR 

CodeView Command-line Options 

Description 

Use expanded memory for symbolic information and 
CodeView overlays. (DOS only.) 

Flip screen video pages (rather than swap). When your 
application does not use graphics, eight video screen 
pages are available. Switching from CodeView to the out­
put screen is accomplished by directly selecting the 
appropriate video page. Cannot be used with IS. (DOS 
only.) 

Suppress "snow" on a CGA display. (DOS only.) 

Control trapping of nonmaskable interrupts and 8259 in­
terrupts. A value of 0 forces interrupt trapping on 
machines CodeView doesn't recognize as IBM­
compatible. A value of 1 (the default) disables interrupt 
trapping. (DOS only.) 

Disable keyboard monitors (under OS/2) and keyboard 
interrupts (under DOS). This allows you to regain con­
trol of the computer under deadlock conditions, but 
prevents CodeView from recording keyboard entries 
when recording a debug session. 

Load symbolic information for the specified dynamic­
link libraries (DLL). (OS/2 only.) This option is required 
only for DLLs loaded with DOSLOADMODULE. 
CodeView automatically loads debug information for 
statically linked DLLs. 

Disable CodeView's use of the mouse. This simplifies de­
bugging programs that accept mouse commands. 

Identical to /1, but applies only to nonmaskable inter­
rupts. (DOS only.) 

Debug child processes ("offspring"). (OS/2 only.) 

Use 80386/486 hardware debug registers to speed execu­
tion. (DOS only.) 

429 



Debugging Assembly-Language Programs with CodeView 

IS 

/TSF 

IX 

Description 

Swap screen in buffers (rather than flip). When your pro­
gram uses graphics, all eight video pages must be used. 
Switching from CodeView to the output screen is accom­
plished by saving the previous screen in a buffer. Cannot 
be used with IF. (DOS only.) 

Toggle (invert) the sense of the Statefileread switch in 
TOOLS.INI. If Statefileread is set to no (do not read the 
status file), the status file is read, and vice-versa. 

Use extended memory for CodeView and symbolic infor­
mation. (DOS only.) 

15.8 Customizing CodeView with the TOOlS.INI File 

430 

The TOOLS.INI file customizes the behavior and user interface of several Micro­
soft products. The TOOLS.INI file is a plain ASCII text file. You should place it 
in a directory pointed to the INIT environment variable. (If you do not use the 
IN IT environment variable, CodeView looks for TOOLS.INI only in the 
Code View source directory.) 

The CodeView section of TOOLS.INI is preceded by the following line: 

[cv] 

If you run the protected-mode version of CodeView, use [c v p] instead. If you 
run both versions, include both: [c v c v p ]. You can have separate sections for 
c v and c v p if you want different customizations. 

Most of the TOOLS.INI customizations for CodeView control screen colors, but 
you can also specify such things as start-up commands or the default name of the 
file that receives CodeView output. See the Configure CodeView section of 
Code View online help for full information about all TOOLS.INI switches that 
control CodeView. 



Related Topics in Online Help 

15.9 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

CodeView information 

ML command-line options 

Access 

Choose "CodeView Debuggers" from the 
"Microsoft Advisor Contents" screen 

Choose "Macro Assembler" from the 
"Command Line" section of the "Microsoft 
Advisor Contents" screen 

431 





Chapter 16 

Converting C Header Files to 
MASM Include Files 

The H2INC utility translates C header files into MASM-compatible include files. 
C header files normally have the extension .H; MASM include files normally 
have the extension .INC. This is the origin of the program's name: "H to INC." 

H2INC simplifies porting data structures from your C programs to MASM pro­
grams. This is especially useful when you have 

• A program that mixes C code and MASM code with globally accessible data 
structures 

• A program prototyped in C that you're translating to MASM for compactness 
and fast execution 

The H2INC program translates data declarations, function prototypes, and type 
definitions. H2INC does not convert C code into MASM code. When H2INC en­
counters a C statement that would compile into executable code, H2INC ignores 
the statement and issues a warning message to the standard output. 

H2INC accepts C source code compatible with Microsoft C 6.0 and creates in­
clude files suitable for MASM 6.0. These include files will not work with ver­
sions of MASM prior to 6.0. 

H2INC is designed to translate project header files that you have written specifi­
cally for translation to MASM 6.0 include files. It is not designed to translate 
header files such as PM.H and WINDOWS.H. 

This chapter explains how H2INC performs the C code translation and how the 
command-line options control the conversions. 

16.1 Basic H21NC Operation 
H2INC is designed to provide automatic translation of C declarations that you 
need to include in the MASM portions of an application. However, the set of C 
statements processed by H2INC must be those needed by and interpretable by 
MASM. H2INC converts only function prototypes, some preprocessor directives, 

433 



Converting C Header Files to MASM Include Files 

H21NC translates 
declarations, not 
executable code. 

and C declarations outside the scope of procedures. For example, H2INC trans­
lates the C statement 

#define MAX_EMPLOYEES 400 

into this MASM statement: 

MAX_EMPLOYEES EQU 400t 

The t specifies the decimal radix. 

H2INC does not translate C code into MASM code. Statements such as the fol­
lowing are ignored: 

pri ntf( "Thi sis an executabl e statement. \n" ); 

By default, H2INC creates a single .INC file. If the C header file includes other 
header files, the statements from the original and nested files are translated and 
combined into one .INC file. This behavior can be changed with the /Ni option 
(see Section 16.2). 

The program also preprocesses some statements, just as the C preprocessor 
would. For example, given the following statements, if V E RS ION is not de­
fined, H2INC ignores the #ifdef block. 

#ifdef VERSION 
#define BOX_VALUE 4 
#endif 

If V E RS ION is defined, H2INC translates the statements inside the block from 
C syntax to MASM syntax. 

H2INC normally discards comments. If you use the IC option, C comments are 
passed to the output file. If the line starts with a / * or / / , the comment speci­
fier is converted to a semicolon (;). If the line is part of a multiline comment, a 
semicolon is prefixed to each line. 

H2INC ignores anything that is not a comment or that cannot be translated. 
These items do not appear in the output file. If H2INC encounters an error, it 
stops translating and deletes the resulting .INC file. 

16.2 H21NC Syntax and Options 

434 

To run H2INC, type H2 I NC at the command-line prompt, followed by the op­
tions desired and the names of the .H files you want to convert: 

H2INC [options]file.H ... 



H21NC Syntax and Options 

You can specify more than onefile.H. File names are separated by a space. The 
contents of eachfile.H are translated into a single file in the current directory 
with the name file.INC. The originalfile.H is not altered. 

The following lists describe the available options. You can specify more than one 
option. Note that the options are case sensitive except for /HELP. 

H2INC recognizes /? to display a summary of H2INC syntax, and /HELP to in­
voke QuickHelp for H2INC. If QuickHelp is not available, H2INC displays a 
short list of H2INC options. This option is not case sensitive. 

H2INC recognizes but ignores C 6.0 options that aren't specified in the following 
two lists. 

Options Directly Affecting H21NC Output 
This first list describes the options that directly affect the H2INC output: 

Option 

IC 

/Fa [filename] 

/Fc [filename] 

!Mn 

/Ni 

IZu 

Action 

Passes comments in the .H file to the .INC file. 

Specifies that the output file contain only equivalent 
MASM statements. This is the default. If specified, 
the filename overrides the default, keeping the base 
name of the C header files and adding the .INC ex­
tension. 

Specifies that the output file contain equivalent 
MASM statements plus original C statements con­
verted to comment lines. 

Assumes the .MODEL directive is not specified for 
the MASM source or the generated .INC files. In­
structs H2INC to declare explicitly the distances for 
all pointers and functions. 

Suppresses the expansion of nested include files. 

Makes all structure and union tag names unique. 

435 



Converting C Header Files to MASM Include Files 

436 

Options Indirectly Affecting H21NC Output 
This second list describes the options that indirectly affect the H2INC output: 

Option 

/AT 

/AS 

/AC 

/AM 

/AL 

/AH 

fD[const[=value] ] 

/GO 

/Gl 

/G2 

/G3 

/G4 

/Gc 

/Gd 

/Gr 

/Ht 

/lpaths 

/J 

/nologo 

Action 

Specifies tiny memory model (.COM). 

Specifies small memory model, the default. 

Specifies compact memory model. 

Specifies medium memory model. 

Specifies large memory model. 

Specifies huge memory model. 

Defines a constant or macro. 

Enables 8086/8088 instructions (default). 

Enables 80186/80188 instructions. 

Enables 80286 instructions. 

Enables 80386 instructions. Changes the default 
word size to DWORD. 

Enables 80486 instructions. Changes the default 
word size to DWORD. 

Specifies Pascal as the default calling convention. 

Specifies C as the default calling convention for 
functions (default). 

Specifies the _fastcall calling convention for func­
tions. Generates a warning since H2INC does not 
translate _fastcall functions and prototypes. 

Enables generation of text equates. By default, text 
items are not translated. 

Searches named paths for include files before search­
ing the paths in the INCLUDE environment varia­
ble. Paths are separated with a semicolon (;). 

Changes default character type from signed char to 
unsigned char. 

Suppresses display of the sign-on banner. 



Option 

/Tc [filename] 

/uident 

JU 

/w 

/WO 

/WI 

/W2 

/W3 

/W4 

/X 

/Za 

/Zc 

/Ze 

/Zn string 

/Zp{ 11214} 

Converting Data and Data Structures 

Action 

Enables the processing of files whose name does not 
end in .H. 

"Undefines" one of the predefined identifiers. (See 
Section 16.3.1.) 

"Undefines" all predefined identifiers. (See Section 
16.3.1.) 

Suppresses compiler warning messages; same as 
/Wo. 

Suppresses all warning messages. 

Displays level 1 warning messages (default). 

Displays levelland level 2 warning messages. 

Displays levell, 2, and 3 warning messages. 

Displays all warning messages. 

Excludes search for include files in the standard 
places. 

Disables language extensions (allows ANSI standard 
only). 

Causes functions declared as _pascal to be case in­
sensitive. 

Enables language extensions (default). 

Adds string to all names generated by H2INC. Used 
to eliminate name conflicts with other H2INC­
generated include files. 

Packs structure on a 1-,2-, or 4-byte boundary, fol­
lowing C packing rules. Default is /Zp2. 

16.3 Converting Data and Data Structures 
The primary use of H2INC is to convert data automatically from C format into 
MASM format. This section shows how H2INC converts constants, variables, 
pointers, and other C data structures to definitions recognizable to MASM. 

Since the names of the items translated by H2INC may be distinguished only by 
the case of the names, you should specify OPTION CASEMAP:NONE in any 
MASM files that include .INC files generated with H2INC. 

437 



Converting C Header Files to MASM Include Files 

16.3.1 User-Defined and Predefined Constants 

TEXTEQU is new to 
MASM 6.0. 

Predefined constants 
control the contents of .INC 
files. 

438 

H2INC translates constants from C to MASM format. For example, C symbolic 
constants of the form 

#define CORNERS 4 

are translated to MASM constants of the form 

CORNERS EOU 4t 

in cases where CORN E RS is an integer constant or is preprocessed to an integer 
constant. See Section 1.2.4, "Integer Constants and Constant Expressions," for 
more information on integer constants in MASM. 

When the defined expression evaluates to a noninteger value, such as a floating­
point number or a string, H2INC defines the expression with TEXTEQU and 
adds angle brackets to create text macros. By default, however, these TEXTEQU 
expressions are not added to the include file. Set the IHt option to tell H2INC to 
generate TEXTEQU expressions. 

1* #define PI 3.1415 *1 
PI TEXTEOU <3.1415> 

H2INC uses this form when the expression is anything other than a constant in­
teger expression. H2INC does not check the constant or string for validity. For 
example, although the following C definitions are valid, H2INC creates invalid 
string equates without generating an error. 

These C statements 

fldefi ne I NT 6 
#define FOREVER fore;;) 

generate these MASM statements: 

INT EOU 6t 
FOREVER TEXTEOU <fore;;»~ 

The first #define statement is invalid because INT is a MASM instruction; in 
MASM 6.0, instructions are reserved and cannot be used as identifiers. The for 
loop definition is invalid because MASM cannot assemble C code. 

You can make use of the following predefined constants in your C code to condi­
tionally generate the code in .INC files. The predefined constants and the condi­
tions under which they are defined are 



Converting Data and Data Structures 

Predefined Constant 

_H2INC 

M 186 

MSDOS 

MSC VER 

M_18086 

M 1286 

NO EXT KEYS 

CHAR UNSIGNED 
- -

M 186SM 

M 186MM 

M 186CM 

M 186LM 

M 186HM 

When Defined 

Al ways defined 

Al ways defined 

Always defined 

Defined as 600 for this release 

Defined if 100 is specified 

Defined if 100 is not specified 

Defined if IZa is specified 

Defined if IJ is specified 

Defined if I AS is specified 

Defined if I AM is specified 

Defined if lAC is specified 

Defined if I AL is specified 

Defined if I AH is specified 

For example, if your C header file includes definitions which are specific to the 
C portion of the program or otherwise are not appropriate for translation by 
H2INC, you can bracket the C-specific code with 

1fifndef _H2INC 
/* C-specific code */ 

1foend if 

In this case, only the C compiler processes the bracketed code. 

The lu and /U options affect these predefined constants. The luarg option unde­
fines the constant specified as the argument. The /U option disables the definition 
of all predefined constants. Neither lu or /U affects constants defined by the JD 
option. 

H2INC places an OPTION EXPR32 directive in the .INC file so that MASM cor­
rectly handles long integers within expressions. This means that the .INC files as 
well as all the .ASM files which include .INC files created with H2INC will re­
solve integer expressions in 32 bits instead of 16 bits. 

439 



Converting C Header Files to MASM Include Files 

16.3.2 Variables 

440 

H2INC translates variables from C to MASM format. For example, this C 
declaration 

is translated into the MASM declaration 

EXTERNDEF my_var:SWORD 

H2INC converts C variable types to MASM types as follows: 

CType 

char 

signed char 

unsigned char 

short 

unsigned short 

int 

unsigned int 

long 

unsigned long 

float 

double 

long double 

MASMType 

BYTE or SBYTE (controlled by /J option) 

SBYTE 

BYTE 

SWORD 

WORD 

SWORD (SDWORD with /03 or /04 option) 

WORD (DWORD with /03 or /04 option) 

SDWORD 

DWORD 

REAL4 

REAL8 

REALIO 

H2INC assumes that a variable is external unless the variable is explicitly de­
clared as static. For example, the C declaration 

long big_data; 

is converted to this MASM declaration: 

EXTERNDEF big_data:SDWORD 

See Sections 1.2.6, "Data Types," and 4.1.1, "Allocating Memory for Integer 
Variables," for more information on MASM data types, and Section 8.2.2, 
"Declaring Symbols Public and External," for information on EXTERNDEF. 



16.3.3 Pointers 

Converting Data and Data Structures 

H2INC does not allocate space for arrays since all variables are assumed to be ex­
ternal. For example, the C declaration 

int two_d[10][20]; 

translates to 

EXTERNDEF two d:SWORD 

H2INC does not translate static variables, since the scope of these variables ex­
tends only to the file where they are declared. 

H2INC translates C pointer variables into their MASM equivalents. The C 
declarations 

int *ptr_var; 
char NEAR *pCh; 

are translated into these MASM statements: 

EXTERNDEF ptr_var:PTR SWORD 
EXTERNDEF pCh:NEAR PTR SBYTE 

If you set the /Mn option, H2INC specifies all distances explicitly (for example, 
NEAR PTR instead of PTR). If /Mn is not set, the distances are generated only 
when they differ from the default values implied by the memory model specified 
by the fA command-line option. 

H2INC converts _segment and _based variables to type WORD in MASM. 

See Sections 1.2.6, "Data Types," and 3.3, "Accessing Data with Pointers and 
Addresses," for information about MASM pointers. 

16.3.4 Structures and Unions 
H2INC translates C structures and unions into their MASM equivalents. H2INC 
modifies the C structure or union definition to account for differences from 
MASM structure and union definitions. This list describes these modifications. 

• C allows a structure or union variable to have the same name as the type 
name, but MASM does not. The H2INC fZu option prevents the structure 
i:ame from matching a variable or instance by prefixing every MASM struc­
ture name with @ta 9_. 

• If a C structure or union definition does not have a name, H2INC supplies 
one for the MASM conversion. These generated structure names take the 
form @ta9_n, where n is an integer that starts at zero and is incremented for 
each structure name H2INC generates. 

441 



Converting C Header Files to MASM Include Files 

442 

• If the /Zn option is specified, H2INC inserts the given string between the un­
derscore and the number in the generated structure names. This eliminates 
name conflicts with other H2INC-generated include files. 

• H2INC adds the alignment value to the converted structure definition. 

The following examples show how these rules are applied when converting struc­
tures. (Union conversions are not shown; they are handled identically.) These ex­
amples assume that the C header file defines an alignment value of 2. (See 
Section 5.2.1, "Declaring Structure and Union Types," for information on align­
ment values.) 

The following named C structure definition 

struct file_info 
{ 

} ; 

unsigned char 
unsigned int 

fil e_addr; 
file_size; 

is converted to the following MASM form. Except for explicitly specifying the 
alignment value, the conversion is direct: 

file_info 
file_addr 
file_size 
fil e_ info 

STRUCT 2t 
BYTE 
WORD 
ENDS 

? 
? 

If the same C structure definition is converted using the /Zu option, the @ta 9_ 
prefix is added to the structure's name so that the name does not duplicate the 
name of a structure component: 

@tag_fil e_ info 
fil e_addr 
fil e_s i ze 
@tag_file_info 

STRUCT 2t 
BYTE 
WORD 
ENDS 

? 
? 

If the original C structure definition is modified to be an unnamed-type declara­
tion of a specific instance (myfi 1 e) 

struct 
{ 

unsigned char file_addr; 
unsigned int file_size; 

myfil e ; 



Converting Data and Data Structures 

its MASM conversion looks like the following example. (The specific integer 
added to the @tag_ prefix is determined by the sequence in which H2INC 
creates tag names.) 

@tag_7 
file_addr 
file_size 
@tag_7 
EXTERNDEF 

STRUCT 2t 
BYTE? 
WORD ? 
ENDS 
C myfile:@tag_7 

Nested structures may have as many levels as desired; they are not limited to one 
level. Nested structures are "unnested" (expanded) in the correct hierarchical 
sequence, as shown with the C structure and H2INC-generated code in this 
example. 

1* C code: *1 
struct phone 
{ 

} ; 

int areacode; 
long number; 

struct person 
{ 

char name[30]; 
char sex; 
int age; 
int weight; 
struct phone; 

Jim; 

H2INC generated code: 
phone STRUCT 2t 
areacode SWORD 
number SDWORD 
phone ENDS 

person STRUCT 2t 
name SBYTE 
sex SBYTE 
age SWORD 
weight SWORD 
STRUCT 

areacode SWORD 
number SDWORD 

ENDS 
person ENDS 

EXTERNDEF C Jim:person 

? 
? 

30t DUP (?) 
? 
? 
? 

? 
? 

See Section 5.2 for information on MASM structures and unions. 

443 



Converting C Header Files to MASM Include Files 

16.3.5 Bit Fields 

444 

H2INC translates C bit fields into MASM records. H2INC looks at a structure 
definition; if it consists only of bit fields of the same type and if the total size of 
the bit fields does not exceed the type of the bit fields, then H2INC outputs a 
RECORD definition with the name of the structure. All bit-field names are mod­
ified to include the structure name for uniqueness, since record fields have global 
scope in MASM. 

For example, 

struct s 
{ 

int i :4; 
int j:4; 
int k:4; 

becomes: 

s RECORD @tag_0:4, 
k@s:4, 
j@s:4, 
i@s:4 

The @ta 9 variable pads out the record to the type size of the bit fields so align­
ment of the structures will be correct. 

If the bit fields are too large, are not of the same type, or are mixed with fields 
that are not bit fields, H2INC generates a RECORD definition inside the structure 
and then uses the definition. 

For example, 

struct t 
{ 

i nt i; 
unsigned char a:4; 
int j:9; 
int k:9; 
long 1; 

} m; 



Converting Data and Data Structures 

becomes: 

t STRUCT 2t 
i SWORD ? 
rec@t 0 RECORD @tag_l:4, 

a@t:4 
@bit_0 rec@t_0 <> 
rec@t_l RECORD @tag_2:7, 

j@t:9 
@bit_l rec@t_l <> 
rec@t_2 RECORD @tag_3:7, 

k@t:9 
@bit_2 rec@t_2 <> 
1 SDWORD ? 
t ENDS 

EXTERNDEF C m:t 

Notice that j and k are not packed because their total size exceeds the 16 bits 
of an integer in C. 

Since the @b i t field names are local to the structure, these begin with 0 for 
each structure type; the @re c variables have global scope and so their number 
always increases. 

The C bit-field declaration 

struct SCREENMODE 
{ 

unsigned int disp_mode 4; 
unsigned int fg_color 3; 
unsigned int bg_color 3; 

} ; 

is converted into the following MASM record: 

SCREENMODE RECORD disp_mode@SCREENMODE:4, 
fg_color@SCREENMODE:3, 
bg_color@SCREENMODE:3 

See Section 5.3 for information about MASM records. 

445 



Converting C Header Files to MASM Include Files 

16.3.6 Enumerations 
H2INC converts C enumeration declarations into MASM EQU definitions that 
are treated as standard integer constants. If the C declaration is not assigned a 
value, the H2INC generates an EQU statement that supplies a value equivalent to 
its position in the list. For example, the C enumeration declaration 

enum tagName 
{ 

} ; 

i dl, 
id2, 
id3 = 42, 
id4 

is converted into the following EQU statements: 

idl 
id2 
id3 
id4 

Eau 
Eau 
Eau 
Eau 

0t 
1t 
42t 
43t 

See Section 1.2.4 for information on MASM integer constants. 

16.3.7 Type Definitions 

Addressing mode 
determines pOinter size. 

446 

All type definitions using C base types are translated directly. For example, 
H2INC converts the C type definitions 

typedef int INTEGER; 
typedef float FLOAT; 

to these MASM forms: 

INTEGER TYPEDEF SWORD 
FLOAT TYPEDEF REAL4 

Pointer types are converted in a similar fashion. The following declarations 

typedef int *PINT 
typedef int **PINT 
typedef int far *PINT 

become (respectively) 

PINT TYPEDEF PTR SWORD 
PINT TYPEDEF PTR PTR SWORD 
PINT TYPEDEF FAR PTR SWORD 

The number of bytes allocated for the pointer is set by the addressing mode you 
have selected unless if is specifically overridden in the type definition. 



Converting Function Prototypes 

C statements using typedef which convert to a type with the same name as the 
type do not generate errors, but are not converted. For example, H2INC does not 
convert 

typedef int SWORD 
typedef unsigned char BYTE 

since these typedef statements would generate these MASM statements: 

SWORD TYPEDEF SWORD 
BYTE TYPEDEF BYTE 

See Section 3.3, "Accessing Data with Pointers and Addresses," for information 
on using TYPEDEF in MASM 6.0. 

16.4 Converting Function Prototypes 

Procedures for returning 
values depend on the 
/angtype specified. 

When H2INC converts C function prototypes into MASM function prototypes, 
the elements of the C syntax are converted into the corresponding elements of the 
MASM syntax. 

The syntax of a C function prototype is 

[storage] [distance] [ret_type] [langtype] label ([parmlist] ) 

In C syntax, storage can be STATIC or EXTERN. H2INC does not translate 
static function prototypes because static functions are visible only within the cur­
rent source module, and standard include files do not contain executable code. 

In C, the ret_type is the data type of the return value. Because the MASM 
PROTO directive does not specify how to handle return values, H2INC does not 
translate the return type. However, H2INC checks th~ langtype specified in the C 
prototype to determine how particular languages return the value-through the 
stack or through registers. 

For the Pascal, FORTRAN, or Basic langtype specifications, H2INC appends an 
additional parameter to the argument list if the return type is longer than four 
bytes. This parameter is always a near pointer with the type of the return value. If 
the value of the return value type is not supported, this parameter is an untyped 
near pointer. 

For the _ cdecl langtype specification in the C prototype, all returned data is 
passed in registers (AX or AX plus DX). There is no restriction on the return 
type. Additional parameters are not necessary. 

447 



Converting C Header Files to MASM Include Files 

448 

The langtype represents the naming and passing conventions for a language type. 
H2INC accepts the following C language types and converts them to their corre­
sponding MASM language types: 

C Language Type 

cdecl 

fortran 

pascal 

stdcall 

_syscall 

MASM Language Type 

C 

FORTRAN 

PASCAL 

STDCALL 

SYSCALL 

H2INC explicitly includes the langtype in every function prototype. If no lan­
guage type is specified in the .H file prototype, the default language is _ cdecl (un­
less the default is overridden by the IOc command-line option). 

In the MASM prototype syntax, the label is the name of the function or 
procedure. 

If you select the IMn option, H2INC specifies the distance of the function (near 
or far), whether or not the C prototype specifies the distance. If /Mn is not set, 
H2INC specifies the distance only when it is different from the default distance 
specified by the memory model. 

If the C prototype's parameter list ends with a comma plus an ellipsis (, ... ), 
the function can accept a variable number of arguments. H2INC converts this to 
the MASM form: a comma followed by the :VARARG keyword (, : VARARG) 
appended to the last parameter. 

H2INC does not translate _fastcall functions. Functions explicitly declared 
_fastcall (or invoking H2INC with the lOr option) generate a warning indicating 
that the function declaration has been ignored. 

The following examples show how the preceding rules control the conversion of 
C prototypes to MASM prototypes (when the memory model default is small). 
The example function is my _ fun c. The TYPEDEF generated by H2INC for the 
PROTO is given along with the PROTO statement. 

1* C prototype *1 
my_func (float fNum, unsigned int x); 

MASM TYPEDEF 
@proto_0 TYPEDEF PROTO C :REAL4, :WORD 

MASM prototype 
my_func PROTO @proto_0 



Converting Function Prototypes 

1* C prototype *1 
extern my_funcl (char *argv[]); 

MASM TYPEDEF 
@proto_l TYPEDEF PROTO C :PTR PTR SBYTE 

MASM prototype 
my_funcl PROTO @proto_l 

1* C prototype *1 
struct vconfig _far * _far pascal my_func2 (int, scri ); 

MASM TYPEDEF 
@proto_2 TYPEDEF PROTO FAR PASCAL :SWORD, :scri 

MASM prototype 
my_func2 PROTO @proto_2 

1* C prototype *1 
long pascal my_func3 (double y, struct vconfig vc); 

MASM TYPEDEF 
@proto_3 TYPEDEF PROTO PASCAL :REAL8, :vconfig 

MASM prototype 
my_func3 PROTO @proto_3 

1* C prototype *1 
void far _cdecl myfunc4 ( char _huge *, short); 

MASM TYPEDEF 
@proto_4 TYPEDEF PROTO FAR C : FAR PTR SBYTE, : SWORD 

MASM prototype 
myfunc4 PROTO @proto_4 

1* C prototype *1 
short my_func5 (void *); 

MASM TYPEDEF 
@proto_5 TYPEDEF PROTO C :PTR 

MASM prototype 
my_func5 PROTO @proto_5 

1* C prototype *1 
c h a r my _ fun c 6 (i nt, ... ); 

MASM TY PEDEF 
@proto_6 TYPEDEF PROTO C :SWORD, :VARARG 

MASM prototype 
my_func6 PROTO @proto_6 

1* C prototype *1 
typedef char * ptrchar; 
ptrchar _cdecl my_func? (char *); 

MASM TYPEDEF 
@proto_? TYPEDEF PROTO C :PTR SBYTE 

MASM prototype 
my_func? PROTO @proto_? 

See Section 7.3.6, "Declaring Procedure Prototypes," for more information on 
prototypes and Chapter 20, "Mixed-Language Programming," for information on 
calling conventions and mixed-language programs. 

449 



Converting C Header Files to MASM Include Files 

16.5 Related Topics in Online Help 

450 

In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

Topic 

INCLUDE Directive 

Include files 

MASM data types 
(constants, variables, 
structures, unions, real 
numbers, records) 

TYPEDEF 

Procedures and proto­
types 

Access 

From the "MASM 6.0 Contents" screen, choose 
"Directives" and then "Miscellaneous" 

From the "MASM 6.0 Contents" screen, choose "Ex­
ample Code"; then choose "INCLUDE Files" to see 
a list of the include files provided with MASM 6.0 

From the "MASM 6.0 Contents" screen, choose 
"Directives"; then choose "Data Allocation" or 
"Complex Data Types" 

From the "MASM 6.0 Contents" screen, choose 
"Directives" and then "Complex Data Types" 

From the "MASM 6.0 Contents" screen, choose 
"Directives"; then choose "Procedure and Code 
Labels" 











Chapter 17 

Writing OS/2 Applications 

Microsoft Operating System/2 (OS/2) takes full advantage of 80286 and later pro­
cessors. It supports memory far beyond the DOS 640K limit and offers a rich set 
of multitasking system calls. Although OS/2 is much more powerful than DOS, 
you may ultimately find it easier to program for OS/2. 

This chapter shows how to develop an OS/2 application and how to write dual­
mode programs to run under both OS/2 and DOS. 

To write OS/2 applications, you must learn OS/2 system calls. While this chapter 
mentions a few of these calls, you should consult the references listed in the 
book's introduction to learn more about OS/2 system functions. 

OS/2 supports two modes-real mode, which emulates the DOS environment, 
and protected mode, which supports all the advanced features. For simplicity's 
sake, the rest of this chapter equates OS/2 with protected mode. 

NOTE Examples in this chapter support OS/2 1.x. Future versions of OS/2 may support 
different calling conventions. 

17.1 OS/2 Overview 
There are three steps in developing OS/2 or dual-mode applications: 

1. Write the source code, using procedure calls rather than interrupts to call sys­
tem functions. 

2. Assemble and link the program with OS2.LIB. 

3. Optionally, convert the program so that it can run under both OS/2 and DOS. 

This chapter explains each of these steps, first looking at specific differences in 
how you write DOS and OS/2 code. Then it illustrates the development of a 
simple OS/2 program. Finally, the chapter discusses register initialization and ad­
ditional OS/2 utilities. 

455 



Writing OS/2 Applications 

17.2 Differences between DOS and OS/2 

System calls control I/O 
and screen access. 

MASM 6.0 provides 
OS2.1NC and OS2.LlB. 

456 

Assembly language is assembly language. Most machine instructions you use in 
a DOS program are the same instructions you use in an OS/2 program. When you 
start making calls to the operating system, however, things change. 

You should understand the following differences between the two operating sys­
tems before attempting to write an OS/2 program. 

System Calls 
OS/2 is similar to DOS in that it offers a series of system calls that perform tasks 
such as opening or closing a disk file. The OS/2 system calls that handle key­
board input (KbdCharln, for example) correspond to the interrupt 16h instruc­
tions in DOS. The OS/2 system calls for screen output (VioScrollDn, for 
example) correspond to DOS interrupt 10h calls. And the OS/2 disk and 
operating-system calls (DosGetDateTime, for example) correspond to DOS in­
terrupt 21 h calls. 

The effect is similar, but the way you actually make the calls is different. In 
DOS, you issue an interrupt. In OS/2, you make the system call with the 
INVOKE directive or the CALL instruction. 

New Instructions 
OS/2 is designed for advanced processors, and you may want to write programs 
that take advantage of the new instructions available on the 80286-80486. To use 
the new instructions and still target OS/2 1.x, place a .286 directive at the begin­
ning of your source code. 

In general, you should avoid the directives that enable privileged instructions 
(.286P, .386P, and .486P), unless you are writing system-level code. 

Many OS/2 programs can be converted to run under DOS as well. To write pro­
grams to run on all DOS and OS/2 systems, use the default processor setting 
(.8086). 

The OS/2 Library 
OS/2 programs must be linked to the system-call import library, OS2.LIB. The 
best way to perform this task is to use the INCLUDELIB directive, as shown in 
the example in the next section. In addition, you can include the OS2.INC file as 
an alternative to adding the prototypes for the OS/2 functions to your file. 

The OS2.LIB file makes system calls possible; it contains import definitions for 
all system calls. An import definition specifies the name of a procedure and the 
dynamic-link library (DLL) where the procedure resides. You can learn more 
about DLLs in Chapter 18, "Creating Dynamic-Link Libraries." To create an 
OS/2 application, however, you need to know only that OS2.LIB is required. 



OS/21.xuses the Pascal 
calling convention. 

Differences between DOS and OS/2 

Start-Up Code 
Unlike DOS, OS/2 automatically initializes all segment registers as required by 
the standard segment model. No special start-up sequence is required, although 
OS/2 places useful information in AX, BX, and CX (see Section 17.6, "Register 
and Memory Initialization") that you may want to save. 

Calling Conventions 
OS/2 system calls follow the Pascal calling and naming conventions. One way to 
enforce these conventions is to specify PASCAL in the .MODEL directive, then 
use the INVOKE directive to generate the correct code. Another is to include the 
OS2.INC file, which uses the PROTO directive to prototype the functions to fol­
low the Pascal conventions. The prototypes specify Pascal as the calling conven­
tion. OS/2 functions return a value in AX. A nonzero value indicates an error. All 
registers except AX are preserved. 

The OS/2 2.x operating system uses different calling conventions. See the docu­
mentation provided with that product. 

Exit Code 
To exit an OS/2 program, call the OS/2 system function DosExit. If you use the 
.EXIT directive and the OS _ OS2 attribute of the .MODEL statement, the assem­
bler automatically generates the proper system call if you have a prototype for 
DosExit. 

Segment Restrictions 
Although OS/2 makes some operations easier, it does impose restrictions on the 
programmer. You cannot do segment arithmetic. That is, you cannot attempt to 
measure the distance between segments by subtracting one segment from 
another. In general, you also cannot add values to segment registers. Either opera­
tion may cause a protection violation, which would immediately terminate the 
program. 

Under OS/2, segment registers do not hold physical addresses; they hold "seg­
ment selectors." A segment selector is an index into the system's descriptor ta­
bles that hold the actual addresses. You can copy the segment selector or use it to 
access data, but you should not try to modify it. 

Huge pointer arithmetic is therefore different under OS/2. Under DOS, you can 
handle huge pointers easily by checking the OVERFLOW? flag after you incre­
ment or add to an offset address. If the result overflows (exceeds 64K), then you 
increment the segment address. Under OS/2, manipulation of huge pointers re­
quires special techniques. See your OS/2 documentation for more information. 

457 



Writing OS/2 Applications 

17.3 A Sample Program 

.STARTUP and .EXIT 
automatically generate 
code. 

0011 
0013 
0015 

458 

6A 01 
6A 00 

The following program prints He 110, wo r 1 d. It runs under OS/2 protected 
mode. 

HELLO.ASM 

.MODEL small, pascal, OS_OS2 

.286 

INCLUDELIB os2.lib 
INCLUDE os2.inc 

.STACK 

. DATA 
message BYTE "Hello, world.", 13, 10 
bytecount DWORD ? 

.CODE 

.STARTUP 
push 
push 
push 
push 
push 
push 
call 

. EXIT 
END 

1 
ds 
OFFSET message 
LENGTHOF message 
ds 
OFFSET bytecount 
DosWrite 

Message to print 
Holds number of 
bytes written 

Select standard output 
Pass address of message 

Pass length of message 
Pass address of count 
returned by function 

Call system write 
function 

Exit with 0 return code 

The .ST ARTUP and .EXIT directives are very useful because they automatically 
produce correct code for the operating-system type specified with the .MODEL 
directive (see Section 2.2, "Using Simplified Segment Directives"). As described 
in Section 17.6, OS/2 initializes all segment registers; therefore, .ST ARTUP does 
nothing but indicate the starting point. To correctly exit an OS/2 program, you 
must call the DosExit function. The DosExit prototype is always available to 
MASM programs. 

In the example above, .EXIT automatically generates the following code under 
OS/2: 

. EXIT 0 

* push +000000001h Action 1 ends all threads 

* push +000000000h Pass 0 return code 
9A ---- 0000 E * call DosExi t Call system function 

END 

Between .STARTUP and .EXIT, the entire program consists of a single call to the 
DosWrite function. The program pushes the parameters on the stack and then 



The processors you want to 
target determine the 
instructions you should 
use. 

A Sample Program 

makes the call. No POP or ADD instructions are needed to restore the stack after 
DosWrite returns; DosWrite observes the Pascal calling convention and restores 
the stack itself before returning. 

The .MODEL statement helps ensure that the assembler produces correct code for 
calling Dos Write: 

.MODEL small, pascal, OS_OS2 

When you run HELLO.EXE, OS/2 looks at the import definitions in the 
executable-file header and makes sure that all needed DLLs are in memory. It 
then loads any needed DLLs not already in memory. 

The assembler must be informed that DosWrite and DosExit are far and observe 
the Pascal calling convention. This information is in the prototype. 

In the call to DosWrite, note that although OFFSET message is an immediate 
operand, the program pushes it directly onto the stack. This operation is legal on 
80186-80486 processors but not on the 8086 or 8088: 

push OFFSET message 

Since OS/2 programs can execute only on the 80286 or later processors, it is rea­
sonable to use extended operations not supported by the 8086. However, if you 
want to write a program that can be converted to run under both OS/2 and DOS 
(as shown in Section 17.5), then you should write code that can run on the 8086. 
For example, 

mov ax, OFFSET msg 
push ax 

The following revision of the sample program illustrates the usefulness of the 
INVOKE directive. This version does everything the previous example did with 
far fewer statements: 

; HELLO.ASM 

message 
bytecount 

.MODEL small, pascal, OS_OS2 

INCLUDE os2.inc 
INCLUDELIB os2.lib 

.STACK 

.DATA 
BYTE 
DWORD 

"Hello, world.", 13, 10 
? 

.CODE 

.STARTUP 

Message to print 
Holds number of 
bytes written 

459 



Writing OS/2 Applications 

INVOKE DosWrite, 

. EXIT 0 
END 

1, 
ADDR message, 
LENGTHOF message, 
ADDR bytecount 

Exit with return code 0 

The INVOKE directive generates a call to the given procedure after first pushing 
all other arguments on the stack. Like a call statement in a high-level language, 
the INVOKE directive handles types in a sophisticated way. 

17.4 Building an OS/2 Application 
The easiest way to assemble and link the program is from the Programmer's 
WorkBench (PWB). From the Options Menu, select Link Options and choose 
OS/2 Application. When you select Build from the Make menu, PWB calls ML 
and LINK, passing the proper options. 

From the command line, type 

ML hello.asm 

The next section discusses how to "bind" the program-that is, convert it so that 
it runs under either DOS or OS/2. 

17.5 Binding OS/2 MASM Programs 

Online help also provides 
information on these 
utilities. 

460 

You can convert many OS/2 programs to run under both OS/2 and DOS 3.x. This 
conversion is called "binding" because it binds system calls to the API.LIB file 
provided with MASM 6.0. This file simulates OS/2 functions under DOS. The 
program must use a restricted set of system calls or it cannot be bound. 

OS/2 function calls are known collectively as the applications program interface 
(API). If you restrict your system calls to a subset of these functions known as 
the Family API, the program can be bound. See the Microsoft Operating Sys­
teml2 Programmer's Reference for a list of the Family API functions. 

If you use PWB, binding is easy. Select Bound Application from the LINK Op­
tions command in the Options menu. PWB does the rest, calling the BIND.EXE 
utility. 

If you want to bind the program to run under either OS/2 or DOS, use this com­
mand line: 

ML IFb hello.asm 



Register and Memory Initialization 

You can use system calls outside the Family API provided that you never use 
them when running under DOS. The program can check the operating system 
and, if running under OS/2, can execute system calls that do not belong to the 
Family API. To follow this strategy, list OS/2-only calls with the BIND's IN op­
tion. It is the program's responsibility to make sure these calls are never made 
under DOS; otherwise, execution is terminated. 

17.6 Register and Memory Initialization 

You may want to save the 
AX, BX, and ex registers 
at startup. 

When you execute an OS/2 program, OS/2 stores information about the program 
directly in registers. With DOS programs, the information is kept in a separate 
program segment prefix (PSP). The registers hold these values when an OS/2 pro­
gram begins: 

Register 

AX 

BX 

ex 
SP 

es:IP 
DS 

SS 

Contents at Program Start 

Segment address of program's environment 

Offset of command-line arguments within the 
environment 

Length of near data area (DGROUP) 

Offset of the top of the stack within the stack segment 

Program's entry point 

Segment address of near data area (DGROUP) 

Segment address of stack 

Note that OS/2 automatically initializes SS:SP correctly. If the .MODEL directive 
specifies FARSTACK, SS is initialized to its own segment address. If the model 
is NEARSTACK, OS/2 sets SS to DGROUP and SP to the top of the stack within 
DGROUP. 

Upon start-up, AX, BX, and ex all contain information highly useful to some 
programs. If you want to access the program's command-line arguments or know 
the size ofDGROUP, you must save the contents of these registers immediately: 

FPBYTE TYPEDEF FAR PTR BYTE 

.DATA 

args FPBYTE 0 
cmds FPBYTE 0 

.CODE 

461 



Writing OS/2 Applications 

If you use simplified 
segments, . DATA is 
equivalent to DGROUP. 

mov WORD PTR args[0], ax Save segment of args 
mov WORD PTR args[2], 0 Offset is 0 
mov WORD PTR cmds[0], ax Save segment of cmds 
mov WORD PTR cmds[2], bx Save offset of cmds 

The AX register points to the segment value of the start of the program's environ­
ment. AX:BX points to the starting address of arguments within the environment, 
the first of which is the program name. This name is followed by a null (zero) 
byte and the command-line arguments exactly as typed at the command prompt. 
A second null marks the end of the arguments. 

Under OS/2, the data segment register, DS, contains the segment of the near data 
area, DGROUP. If you use simplified segment directives, this is the .DATA seg­
ment. You must place one data segment in a group called DGROUP if you do not 
use the simplified directives: 

DATA SEGMENT WORD PUBLIC 'DATA' 

DATA ENDS 

DGROUP GROUP DATA 
ASSUME DS:DGROUP 

Calling the group anything other than DGROUP, or not having a DGROUP, 
causes an error. Only the memory required by the program is allocated by OS/2. 
This means that the system has space in reserve for later memory requests and 
for other programs. 

17.7 Other OS/2 Utilities 

462 

In addition to LINK and BIND, MASM 6.0 provides other utilities useful for 
working with OS/2. 

EXEHDR 
The EXEHDR utility examines and can modify a DOS, Windows, or OS/2 execu­
table file header. In the case of OS/2 and Windows, EXEHDR reports a great 
deal more information: specifically, it displays the contents of segment tables and 
lists the attributes of the individual segments. 



Related Topics in Online Help 

IMPLIB 
The IMPLIB utility creates an import library that you can use when linking with 
a DLL or group of DLLs. Generally, there are three steps in using a DLL: 

1. Copy the DLL to a directory listed in your CONFIG.SYS LIB PATH setting. 

2. Run IMPLIB on the DLL to create an import library, or write a module­
definition file. 

3. Link the import library or module-definition file with any application that 
uses the DLL. 

An import library does not contain executable code but does contain the name 
and location of dynamic-link calls. These calls are resolved during run time. 

Chapter 18 goes into more detail about how to write DLLs. 

17.8 Module-Definition Files 
You can create a module-definition file for an application. A module-definition 
file is a text file that contains statements that give directions to the linker. These 
statements can alter the attributes of individual segments-for example, whether 
multiple instances of the program share data. Module-definition files are op­
tional. If you use one, begin the file with the NAME statement. The following 
sample module-definition file specifies an application, MY P ROG, that shares the 
CONSTDAT segment: 

NAME MYPROG 

SEGMENTS CONSTDAT SHARED 

17.9 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help: 

BIND 

OS/2 Include files 

Access 

See the "Microsoft Advisor Contents" 
screen 

Choose from the "MASM 6.0 Contents" 
screen 

463 



Writing OS/2 Applications 

PROTO, INVOKE 

INCLUDE, INCLUDELIB 

EXEHDR 

INCL NOCOMMON 

CALL 

SHOW.EXE 

464 

Access 

From the "MASM 6.0 Contents" screen, 
choose "Directives" and then "Procedure 
and Code Labels" 

From the "MASM 6.0 Contents" screen, 
select "Directives" and then "Miscel­
laneous Language Directives" 

From the "Microsoft Advisor Contents" 
screen, select "Miscellaneous" under 
"Microsoft Utilities" 

Select "OS/2 Include Files" from the 
"MASM 6.0 Contents" screen; from the 
next screen, select "Category Summary" 

From the "MASM 6.0 Contents" screen, 
choose "Processor Instruction" and then 
"Control Flow" 

From the "MASM 6.0 Contents" screen, 
choose "Example Code" and then 
"SHOW (Text Viewer)" 



Chapter 18 

Creating Dynamic-link libraries 

A "dynamic-link library" (DLL) links to the main program at run time (hence the 
term dynamic link). The program that calls the DLL is known as the "client pro­
gram." One DLL can supply services for several clients simultaneously. 

The client program can choose to load the DLL into memory at the same time the 
main program loads, or it can choose to load the DLL only when it is needed. 

DLLs are available only in OS/2 and Windows. In non-Windows DOS programs, 
all object modules are statically linked to the program at link time. This chapter 
discusses DLL programming for OS/2 l.x only. 

After an overview of DLLs, this chapter describes the following stages in 
developing a DLL: 

• Understanding general DLL programming considerations 

• Writing an interface to the DLL's exported procedures and data 

• Writing initialization and termination code 

• Building the DLL 

The last step requires use of a module-definition file and an import library. 

18.1 DLL Overview 
Like a standard (object-code) library, a DLL contains procedures that one or 
more programs can call. Yet unlike standard-library procedures, DLL procedures 
are never copied into an application's executable file. They reside only on disk in 
the DLL file. 

DLLs have several advantages: 

• Dynamic link libraries save significant space since the DLL' s code and data 
exist in only one place, no matter how many different programs call the DLL. 
Applications that need a particular DLL can share it. 

In contrast, a standard library routine (the printf function in C, for example) 
becomes part of the executable code for each application that uses it. For ex­
ample, if three different programs use the statically linked printf function, 
three copies of the printf code are on disk. Furthermore, if all three programs 

465 



Creating Dynamic-link libraries 

Exported procedures are 
visible to the client 
program. 

run at once, the printf code occurs three times in memory. If the same func­
tion were part of a DLL, it would exist in only one location on disk and in 
memory. 

• Dynamic linking makes applications and libraries more independent, and 
therefore they are easier to maintain. You can update a DLL without having 
to relink any of the programs that use it. 

• Applications link faster because the executable code for a dynamic link func­
tion is not copied into the application's .EXE file. Instead, only an import 
definition is copied. 

The purpose of a DLL is to supply ("export") procedures and data to client pro­
grams at run time. Items not exported are visible only within the DLL. 

The concept of exporting is analogous to the action of the PUBLIC directive, but 
goes further. A public item is available only to other source modules within the 
same program or DLL. An exported item is available to all programs running on 
the system. In addition to global procedures and data, a DLL can contain other 
procedures and data definitions to support the operations of exported procedures. 

Finally, a DLL can contain initialization and termination code to allocate and re­
lease resources needed by the procedures. Resources are typically files or dy­
namic memory. System services for OS/2 and Windows are provided through 
DLLs. 

18.2 DLL Programming Requirements 

466 

Four programming requirements arise from the nature of DLLs. These require­
ments apply to all code used in a dynamic-link call-both in an exported proce­
dure and in any procedure it may call: 

• You cannot assume that the SS and DS registers hold the same value, unless 
you explicitly set SS equal to DS. 

• You should avoid using the math coprocessor or emulator routines unless you 
are certain a coprocessor or emulator library is available. 

• The DLL should be "re-entrant," because there is no guarantee that only one 
program will use the DLL. A re-entrant procedure is one that can be called by 
different programs concurrently. This creates problems for static data in the 
DLL, unless you declare data to be NONSHARED in the module-definitions 
file. 

• Be careful how you place data and code in segments. The location of data and 
code in different segments and the contents of the module-definition file also 
determine the content of the executable file. 



DLL Programming Requirements 

This section discusses these requirements. 

18.2.1 Separate Stack and Data Requirement 

Do not assume that 
SS equals OS. 

The separate stack and data requirement involves both assembler assumptions 
and coding techniques. If you used the F ARST ACK keyword as described in Sec­
tion 18.3.1, "Choosing Module Attributes," the assembler makes correct assump­
tions about the contents of DS and SS. 

In your own code, avoid any optimizing techniques that use SS to access items in 
the data segment or DS to access stack data. For example, the following code 
uses the ASSUME statement to be sure the correct stack is accessed: 

ASSUME DS:DGROUP 

push ds 
lds si, sourcead Load DS for string ops 

ASSUME DS:NOTHING 

ASSUME SS:STACK 
mov bx, ss:thing ; Access near data thing through SS 

ASSUME SS:NOTHING 

Thread-specific variables can be stored on the stack, as shown in the example 
above. 

18.2.2 Floating-Point Math Requirement 
Don't assume the math 
coprocessor is available to 
the OLL. 

A stand-alone DLL-that is, a DLL created for general use by many programs­
can make few assumptions about the calling program. Therefore, the safest way 
to perform floating-point calculations is to use alternate math routines. If you 
link to a Microsoft high-level language, you can access these routines through a 
language library. These routines give the fastest results possible without a co­
processor. See Section 6.3, "Using Emulator Libraries," for more information. 

Floating-point operations in DLLs can use a coprocessor or emulator routines if 
you are certain that a coprocessor or emulator libraries are available. 

18.2.3 Re-entrance Requirement 
A procedure may be called by any number of different programs concurrently. 
That is, program A may call a DLL procedure while program B is still executing 
the same procedure. The basic problem of re-entrance is how data is shared. 

467 



Creating Dynamic-Link Libraries 

Be aware that re-entering 
the DLL can modify its 
data. 

For example, suppose you have a DLL that contains an accounting package; one 
of the functions adds up an employee's salary for a whole year. First it initializes 
the total to zero; then it increments this total one week at a time. While program 
A is in the middle of this function, program B could enter the procedure; its first 
action would be to initialize the total to zero. Control could then pass back to pro­
gram A, which would then have zero total for salary. The problem is that two in­
stances of the DLL share the same variable for totals. 

A procedure in a DLL must therefore follow this rule: it can access static data 
items but must not alter them. Otherwise, one instance of a procedure could cor­
rupt data relied on by another instance of the procedure. 

There are several exceptions to this rule. First, if data is declared NONSHARED 
in the module-definitions file, each instance has its own copy of the data seg­
ment, and there is no conflict. Second, you can use semaphores to allow mutually 
exclusive access to data items. Finally, there may be some items you deliberately 
want all instances to alter-such as a global counter to keep track of number of 
instances. 

Section 18.4.1, "Writing the Module-Definition File," explains how to declare 
some data items as SHARED while declaring others to be NONSHARED. 

18.2.4 Segment Strategy in a DLL 

468 

Be careful how you place different kinds of data and code in different segments. 
When loading the DLL, OS/2 checks to see if the DLL is already in memory. If 
so, it loads only new copies of NON SHARED segments; it does not reload 
SHARED segments. Code segments are always SHARED. 

Control of DLL data and code works at the segment level. The DATA statement 
assigns default attributes for all data segments in the DLL, but the module­
definition SEGMENTS statement overrides these attributes for any given segment. 

You may want to create a DLL that has some data shared between all programs 
that call the DLL and some data that is private to each instance. The following 
module-definition statement specifies that all data in GLOBDAT is shared and 
all data in PRIVDAT is not: 

SEGMENTS 
GLOBDAT SHARED 'data' 
PRIVDAT NONSHARED 'data' 

The segments have class 'code' unless you specifically define the class as shown 
in this example. See Section 18.4.1 for more information on module-definition 
files. 



Writing the OLL Code 

18.3 Writing the DLL Code 
When you write the code for the DLL module, you need to select the correct 
module attributes, define the procedures and data in your DLL, and write the in­
itialization and termination code. This section discusses these tasks. 

18.3.1 Choosing Module Attributes 

DlLs use the OS_OS2 and 
FARSTACK attributes. 

As noted in Chapter 2, there are four fields for the .MODEL directive: memory 
model, language type, operating system, and stack type. When you write a DLL, 
you can choose the attributes you would normally use for the first two fields. 
OS/2 system calls use the Pascal calling convention, so you may find it con­
venient to make all your modules use this convention as well. 

The operating system and stack fields should be OS_OS2 and FARSTACK, re­
spectively. You should use the NEARSTACK attribute only if you switch execu­
tion to your own stack. 

A usable declaration is therefore 

.MODEL large, pascal, os_os2, farstack 

If you are using full segment definitions, remember to generate an ASSUME 
directive for DS but not for SS. 

ASSUME DS:DGROUP; Necessary with full segment definitions 

18.3.2 Defining Procedures and Data 
Procedures and data in DLLs can be either global (available to the client process) 
or local (used only by the DLL). To create a global data item, make sure that it is 
public: 

EXTERNDEF dllvar 
. DATA 

dllvar WORD 0 

The variable must then be exported in a module-definition file, as shown in Sec­
tion 18.4.1, "Writing the Module-Definition File." When executable files other 
than the DLL access the variable, they must treat it as far data, as in the follow­
ing example: 

mov ax, SEG dllvar 
moves, ax 
mov bx, es:dllvar 

469 



Creating Dynamic-Link Libraries 

470 

An exported procedure (often called a dynamic-link procedure) must follow 
these rules: 

• It must be declared far and public. The MASM keyword EXPORT does both 
of these. 

• The procedure should initialize DS upon entry (unless you are not going to be 
accessing any static near data). 

• Data pointers in the parameter list should be far. 

The easiest way to realize most of these requirements is to use the EXPORT key­
word and LOADDS in the procedure's prologuearg list (see Section 7.3.8). 
LOA DDS generates instructions to save DS and load it with the value of the 
DLL's data segment. The EXPORT keyword makes the procedure FAR and 
PUBLIC, overriding the memory model. You may also need to use 
FORCEFRAME, which instructs the assembler to generate a stack frame even if 
there are no parameters or locals. 

The example DLL used in the chapter, CSTR.DLL, illustrates how DLLs can be 
shared by several processes. The procedures in the DLL write a string and keep 
track of the number of times the string is written. When more than one process 
uses the DLL, they all increment the global variable GCount, but each process 
increments its own private instance of the PC a u n t variable. 

The only initialization code this DLL needs is code to set up the exit code. The 
next section shows how to write a module-definition file to create an import li­
brary and how to create a DLL from this code. 

The code for the CSTR.DLL example looks like this: 

.MODEL small, pascal, os_os2, farstack 

.286 

INCL NOCOMMON EaU 1 
INCL_DOSPROCESS EaU 1 
INCL_VIO EaU 1 

INCLUDE OS2.INC 
INCLUDELIB OS2.LIB 

.DOSSEG 

VioWrtCStr PROTO FAR PASCAL, pchString:PCH, hv:HVIO 
GetGCount PROTO PASCAL 
GetPCount PROTO PASCAL 
CStrExit PROTO FAR 

.STACK 

.DATA Default segment is SHARED 



Writing the DLL Code 

GCount WORD 

@CurSeg ENDS 

PRIVDAT SEGMENT 

PCount WORD 

0 

WORD 

0 

Count of all calls 

Private segment is NONSHARED 

Count of all this process 
calls to VioWrtCStr 

PRIVDAT ENDS 

.CODE 

.STARTUP 

pusha 

Initialization goes here. In this case, the only 
initialization is setting up the exit behavior. 

INVOKE DosExitList, EXLST_ADD, CStrExit 
INVOKE DosExitList, EXLST_EXIT,0 

popa 
retf 

VioWrtCStr PROC FAR PASCAL EXPORT <LOADDS> USES cx di si, 
pchString:PCH, 
hv:HVIO 

sub a 1 , al Search for zero 
mov cx, 0FFFFh Set maximum length 
les di , pchString Load pointer 
mov s i , di Copy it 
repne scasb Fi nd null 
.IF zero? Continue if found 
sub di , si Calculate length 
xchg di , si Restore address and save length 

INVOKE VioWrtTTy, Let OS/2 do output 
es: di , Address of string 
s i , Calculated length 
hv Video handle 

inc GCount Count as one of total calls 

471 



Creating Dynamic-link libraries 

472 

ASSUME DS:PRIVDAT 
mov ax, PRIVDAT 
mov ds, ax 
inc PCount Count as one of process calls 
ASSUME DS:DGROUP 
sub ax, ax Success 
.ELSE 
mov ax, Error 
.ENDIF 
ret 

VioWrtCStr ENDP 

GetGCount PROC FAR PASCAL EXPORT <LOADDS, FORCEFRAME) 
mov ax, GCount 
ret 

GetGCount ENDP 

GetPCount PROC FAR PASCAL EXPORT <LOADDS, FORCEFRAME) USES ds 
ASSUME DS:PRIVDAT 
mov ax, PRIVDAT 
mov ds, ax 
mov ax, PCount 
ASSUME DS:NOTHING 
ret 

GetPCount ENDP 

.DATA 
szOut BYTE 13, 10, "Exiting DLL ... ", 13, 10, 0 

.CODE 

CStrExit PROC FAR <LOADDS, FORCEFRAME) 
INVOKE VioWrtCStr, 

ADDR szOut, 
o 

INVOKE DosExitList, EXLST_EXIT, 0 
CStrExit ENDP 

END 



The DLl should establish 
its own data segment. 

Writing the Dll Code 

These generated code for the V I OWrtCSt r procedure follows. The code 
marked with asterisks is generated by the assembler. 

VioWrtCStr PROC FAR PASCAL EXPORT <LOAOOS> USES cx di s i , 
pchString:PCH, 
hv:HVIO 

0000 55 * push bp 
0001 8B EC * mov bp, sp 
0003 IE * push ds 
0004 B8 R * mov ax, OGROUP 
0007 8E 08 * mov ds, ax 
0009 51 * push cx 
000A 57 * push di 
000B 56 * push si 

Procedure code here 

ret 
000C 5E * pop si 
0000 5F * pop di 
000E 59 * pop cx 
000F 1F * pop ds 
0010 C9 * leave 
0011 CA 0006 * ret 00006h 
0014 VioWrtCStr ENOP 

The DLL should change DS in this manner because each client program has its 
own private version of DGROUP. When a program calls your dynamic-link pro­
cedure, DS points to the program's data area, not yours. The solution is to initial­
ize DS so that it points to your own default data area. 

However, one side effect of this approach is that it alters DS so that it no longer 
is equal to SS. Consequently, all data pointers in the parameter list must be far 
pointers, even if the data was stack data or near data. 

18.3.3 Creating Initialization and Termination Code 
Begin initialization code 
with the .STARTUP 
directive. 

A DLL can contain procedures that require special resources, such as temporary 
files or dynamic memory blocks. Resources allocated during initialization exist 
for the lifetime of the client program and are removed when the client program 
exits. Usually the best method for managing these resources is to write initializa­
tion and termination code. 

A DLL can have a starting point just as an application does. In the case of a DLL, 
this starting point marks the beginning of the initialization code. A DLL does not 
need a starting point if it has no need for initialization. Do not use .EXIT, since 
.EXIT will terminate the client program. 

Attributes of the initialization code are defined in the module-definition file 
(see Section 18.4.1). Initialization code can have the INITGLOBAL or 
INITINST ANCE attribute. 

473 



Creating Dynamic-Link Libraries 

INITGLOBAL specifies that the initialization code executes only once-when 
the DLL is first loaded into memory. INITINSTANCE specifies that initialization 
code should execute once for each program that uses the DLL. INITGLOBAL is 
the default. You should use termination code only for DLLs that have been de­
fined with INITINST ANCE unless you know that the first process to use the DLL 
is the last to terminate. 

To specify INITINSTANCE, place the LIBRARY statement in your module­
definition file: 

LIBRARY CSTR INITINSTANCE 

In the statement above, CSTR is the name of the DLL. 

To include a termination procedure, invoke DosExitList in the initialization 
code. DosExitList is a system function that attaches a termination procedure to a 
program. When the program terminates, OS/2 executes the procedure as part of 
the program exit sequence. In the termination procedure itself, release any sys­
tem resources (such as memory or files) allocated during initialization. 

This is the termination code for the CSTR.DLL module: 

CStrExit PROC FAR <LOADDS, FORCEFRAME> 
INVOKE VioWrtCStr, 

ADDR szOut, 
o 

INVOKE DosExitList, EXLST_EXIT, 0 
CStrExit ENDP 

The termination code in CSTR.DLL uses the INVOKE directive to set up a call to 
the DosExitList function. You can perform a similar operation by simply push­
ing arguments on the stack and observing the correct calling convention. 

The effect of DosExitList in the initialization code is to make OS/2 call the ter­
mination procedure when the current process exits. The "current process" in this 
case is the client program, not the DLL or the DLL initialization code. 

18.4 Building the DLL 

474 

To create a DLL, you need to assemble the DLL code, write a module-definition 
file, use LINK to create the DLL, generate an import library, and then link the 
DLL to the client program. 



Building the DLL 

18.4.1 Writing the Module-Definition File 
A module-definition file is 
required for DLLs. 

At least one procedure 
must be listed after 
EXPORTS. 

The module-definition file is an ASCII text file that lists attributes of a library or 
application (in the case of an application, this file is optional). The module­
definition file gives directions to the linker that supplement the information on 
the command line. 

This module-definition file tells the linker to create a DLL called CSTR.DLL 
with INITINSTANCE data. The library has exported procedure Vi oWrtCStr, 
GetPCount, and GetGCount, and the data segment PRIVDAT is not shared 
between programs: 

LIBRARY CSTR INITINSTANCE 

EXPORTS 
VioWrtCstr 
GetGCount 
GetPCount 

DATA SINGLE NONSHARED 

The LIBRARY statement need not specify a name. If the name is omitted, the 
linker gives the library the base filename of the module-definition file. The de­
fault file extension is .DLL. The INITINSTANCE attribute is optional and is sig­
nificant only if you have initialization code. If you specify INITINSTANCE, then 
the library initialization is called each time a new process gains access to the li­
brary. Otherwise, it will be called once only. 

The EXPORTS statement lists identifiers (procedures and variables) that can be 
accessed directly by client programs. Note that if you give a procedure the 
EXPORTS attribute from within the source code, you do not need to list the pro­
cedure here. The EXPORTS keyword automatically exports the procedure by 
name, so putting the names of the procedures in the module-definition file is not 
required. However, exported variables must be listed in a module-definition file. 

The DATA statement lists attributes for data segments (DGROUP) in the DLL. 
The default for DLLs, SINGLE, specifies that one DGROUP is shared by all in­
stances of the DLL. NON SHARED specifies that all other data segments are not 
to be shared. See Section 13.15, "CODE, DATA, and SEGMENTS Attributes." 

18.4.2 Generating an Import Library with IMPLIB 
The DLL exports a 
procedure; the client 
program imports it. 

Just as a procedure is exported by a DLL, it must be imported by an application. 
An application's EXE header must indicate what dynamic-link procedures are 
used and where they reside. The easiest way to specify this information is with 
an "import library," which is a .LIB file that contains the import information in 
object-record form. The IMPLIB utility automates this process for you. 

475 



Creating Dynamic-Link Libraries 

To create an import library, run the IMPLIB utility on the module-definition file: 

IMPLIB MYDYNLIB.LIB MYDYNLIB.DEF 

The result is the import library, MYDYNLIB.LIB, which you then link to any 
program that calls CSTR.DLL. You would then list MYDYNLIB.LIB in the li­
braries field (the fourth field) of the LINK command. Or, in assembly-language 
programs, you can link to this library automatically by just adding the following 
statement to the source code of your program: 

INCLUDELIB MYDYNLIB.LIB 

18.4.3 Creating and Using the DLL 

476 

Now you can use LINK to create the DLL. The LINK utility uses the object mod­
ule of the DLL code and the module definition to create the CSTR.DLL: 

LINK CSTR.OBJ , , , , MYDYNLIB.DEF 

If linking is successful, the linker creates a file with a .DLL extension. 

You can link several modules together to create a DLL. The following command 
line links several object modules and an object-code library (BIGLIB.LIB) to 
form a DLL. The module-definition file is MYDYNLIB.DEF: 

LINK MODI MOD2 MOD3", BIGLIB, MYDYNLIB 

To use the DLL, copy the .DLL file to a directory listed in the LIBP ATH setting 
in your CONFIG.SYS file. 

To create an executable file using the DLL, link the client program with the im­
port library as shown: 

LINK CALLDLL.OBJ , , , MYDYNLIB.LIB 

By running CALLDLL.EXE in separate OS/2 windows, you can see that both 
client programs access the DDL at the same time. When the last process exits the 
DLL, the DLL is removed from memory. 



Related Topics in Online Help 

18.5 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

Topic 

LINK 

Module-definition files 

EXPORT 

EXTERNDEF 

LOA DDS, 
FORCEFRAME 

IMPLIB 

Access 

From the "Microsoft Advisor Contents" screen, 
select LINK 

Select Module-Definition Files from the "LINK Con­
tents" screen 

Select from the MASM Language Index 

From the "MASM 6.0 Contents" screen, select 
"Directives"; then select "Scope and Visibility" from 
the next screen 

Choose "Proc" from the MASM Language Index 

Select "IMPLIB Summary" from the "LINK Con­
tents" screen 

477 





Chapter 19 

Writing Memory-Resident Software 

Through its memory-management system, DOS allows a program to remain resi­
dent in memory after terminating. The resident program can later regain control 
of the processor to perform tasks such as background printing or "popping up" a 
calculator on the screen. Such a program is commonly called a TSR, from the 
Terminate-and-Stay-Resident function it uses to return to DOS. 

This chapter explains the techniques of writing memory-resident software. The 
first two sections present introductory material. Following sections describe 
important DOS and BIOS interrupts and focus on how to write safe, compatible, 
memory-resident software. Two example programs illustrate the techniques 
described in the chapter. These programs are also available as sample programs 
on the MASM 6.0 disks. 

19.1 Terminate-and-Stay-Resident Programs 
DOS maintains a pointer to the beginning of unused memory. Programs load into 
memory at this position. They terminate execution by returning control to DOS. 
Normally, the pointer remains unchanged, allowing DOS to reuse memory when 
loading other programs. 

A terminating program can, however, prevent other programs from loading on 
top of it. It does this by returning to DOS through the terminate-and-stay-resident 
function, which resets the free-memory pointer to a higher position. This leaves 
the program resident in a protected block of memory, even though it is no longer 
running. 

The terminate-and-stay-resident function (Function 31h) is one of the DOS serv­
ices invoked through Interrupt 21h. The following fragment shows how a TSR 
program terminates using Function 31h and remains resident in a 1000h-byte 
block of memory: 

mov ah, 31h Request DOS Function 31h 
mov a 1 , err Set return code 
mov dx, 100h Reserve 100h paragraphs 

(1000h bytes) 
int 21h Terminate-and-stay-resident 

NOTE In current versions of DOS, Interrupt 27h also provides a terminate-and-stay­
resident service. However, Microsoft cannot guarantee future support for Interrupt 27h and 
does not recommend its use. 

479 



Writing Memory-Resident Software 

19.1.1 Structure of a TSR 

A TSR consists of an 
installation section and a 
resident section. 

TSRs consist of two distinct parts that execute at different times. The first part is 
the installation section, which executes only once, when DOS loads the program. 
The installation code performs any initialization tasks required by the TSR and 
then exits through the terminate-and-stay-resident function. 

The second part of the TSR, called the resident section, consists of code and data 
left in memory after termination. Though often identified with the TSR itself, the 
resident section makes up only part of the entire program. 

The TSR's resident code must be able to regain control of the processor and ex­
ecute after the program has terminated. Methods of executing a TSR are 
classified as either passive or active. 

19.1.2 Passive TSRs 
The simplest way to execute a TSR is to transfer control to it explicitly from 
another program. Because the TSR in this case does not solicit processor control, 
it is said to be passive. If the calling program can determine the TSR' s memory 
address, it can grant control via a far jump or call. More commonly, a program 
activates a passive TSR through a software interrupt. The installation section of 
the TSR writes the address of its resident code to the proper position in the inter­
rupt vector table (see Section 7.4, "DOS Interrupts"). Any subsequent program 
can then execute the TSR by calling the interrupt. 

Passive TSRs often replace existing software interrupts. For example, a passive 
TSR might replace Interrupt IOh, the BIOS video service. By intercepting calls 
that read or write to the screen, the TSR can access the video buffer directly, in­
creasing display speed. 

Passive TSRs allow limited access since they can be invoked only from another 
program. They have the advantage of executing within the context of the calling 
program, and thus run no risk of interfering with another process, which could 
happen with active TSRs. 

19.1.3 Active TSRs 

480 

The second method of executing a TSR involves signaling it through some hard­
ware event, such as a predetermined sequence of keystrokes. This type of TSR is 
called active because it must continually search for its start-up signal. The advan­
tage of active TSRs lies in their accessibility. They can take control from any run­
ning application, execute, and return, all on demand. 

An active TSR, however, must not seize processor control blindly. It must con­
tain additional code that determines the proper moment at which to execute. The 
extra code consists of one or more routines called "interrupt handlers," described 
in the following section. 



Interrupt Handlers in Active TSRs 

19.2 Interrupt Handlers in Active TSRs 
The memory-resident portion of an active TSR consists of two parts. One part 
contains the body of the TSR-the code and data that perform the program's 
main tasks. The other part contains the TSR's interrupt handlers. 

An interrupt handler is a routine that takes control when a specific interrupt oc­
curs. Although sometimes called an "interrupt service routine," a TSR's handler 
usually does not service the interrupt. Instead, it passes control to the original in­
terrupt routine, which does the actual interrupt servicing. 

Collectively, interrupt handlers ensure that a TSR operates compatibly with the 
rest of the system. Individually, each handler fulfills at least one of the following 
functions: 

• Auditing hardware events that may signal a request for the TSR 

• Monitoring system status 

• Determining whether a request for the TSR should be honored, based on cur­
rent system status 

19.2.1 Auditing Hardware Events for TSR Requests 
Active TSRs commonly use a special keystroke sequence or the timer as a re­
quest signal. A TSR invoked through one of these channels must be equipped 
with handlers that audit keyboard or timer events. 

A keyboard handler receives control at every keystroke. It examines each key, 
searching for the proper signal or "hot key." Generally, a keyboard handler 
should not attempt to call the TSR directly when it detects the hot key. If the 
TSR cannot safely interrupt the current process at that moment, the keyboard han­
dler is forced to exit to allow the process to continue. Since the handler cannot re­
gain control until the next keystroke, the user has to press the hot key repeatedly 
until the handler can comply with the request. 

Instead, the handler should merely set a request flag when it detects a hot-key sig­
nal and then exit normally. Examples in the following paragraphs illustrate this 
technique. 

For computers other than the IBM PS/2® series, an active TSR audits keystrokes 
through a handler for Interrupt 09, the keyboard interrupt: 

Keybrd PROC FAR 
sti Interrupts are okay 
push ax Save AX register 
in a 1 , 60h AL = scan code of current key 
call CheckHotKey Check for hot key 
. IF !carry? If not hot key: 

481 



Writing Memory-Resident Software 

482 

Hot key pressed. Reset the 
cl i 
in al,61h 
or al, 10000000y 
out 61h, al 
and al, 01111111y 
out 61h, al 
mov al, 20h 
out 20h, a 1 

keyboard to throwaway keystroke. 
Disable interrupts while resetting 
Get current port 61h state 
Turn on bit 7 to signal clear keybrd 
Send to port 
Turn off bit 7 to signal break 
Send to port 
Reset interrupt controller 

Reenable interrupts sti 
pop 
mov 
i ret 

ax Recover AX 

. ENDIF 

cs:TsrRequestFlag, TRUE; Raise request flag 
Exit interrupt handler 

; End hot-key check 

No hot key was pressed, so let normal Int 09 service 
routine take over 

pop ax Recover AX and fall through 
Interrupts cleared for service 
Installed as Int 09 handler for 

c 1 i 
KeybrdMonitor LABEL FAR 

mov 
pushf 

call 
mov 
i ret 

Keybrd ENDP 

PS/2 or for time-activated TSR 
Signal that interrupt is busy 

cs:intKeybrd.Flag, TRUE 
; Simulate interrupt by pushing flags, 

far-calling old Int 09 routine 
cs:intKeybrd.OldHand 
cs:intKeybrd.Flag, FALSE 

A TSR running on a PS/2 computer cannot reliably read key-scan codes using 
the above method. Instead, the TSR must search for its hot key through a handler 
for Interrupt I5h (Miscellaneous System Services). The handler determines the 
current keypress from the AL register when AH equals 4Fh, as shown here: 

MiscServ PROC FAR 
st i 
. IF ah == 4Fh 
push ax 
call CheckHotKey 
pop ax 

Interrupts okay 
If Keyboard Intercept Service: 
Preserve AX 
Check for hot key 

.IF !carry? If hot key: 
mov cs:TsrRequestFlag, TRUE; Raise request flag 
clc Signal BIOS not to process the key 
ret 2 Simulate IRET without popping flags 
.ENDIF End carry flag check 
.ENDIF End Keyboard Intercept check 
cli Disable interrupts and fall through 

SkipMiscServ LABEL FAR Interrupt 15h handler if PC/AT 
jmp cs:intMisc.OldHand 

MiscServ ENDP 



Interrupt Handlers in Active TSRs 

The example program in Section 19.8 demonstrates how a TSR tests for a PS/2 
machine and then sets up a handler for either Interrupt 09 or Interrupt ISh to 
audit keystrokes. 

Setting a request flag in the keyboard handler allows other code, such as the 
timer handler (Interrupt 08), to recognize a request for the TSR. The timer han­
dler gains control at every timer interrupt; the interrupts occur an average of 18.2 
times per second. The following fragment shows how a timer handler tests the re­
quest flag and continually polls until it can safely execute the TSR. 

TestFlag PROC FAR 

cmp TsrRequestFlag, FALSE Has TSR been requested? 
je exit If not, exit 
call CheckSystem Can system be interrupted 

safely? 
jc exit If not, exit 
call ActivateTsr If okay, call TSR 

Figure 19.1 illustrates the process. It shows a time line for a typical TSR signaled 
from the keyboard. When the keyboard handler detects the proper hot key, it sets 
a request flag called Ts rRequestFl ago Thereafter, the timer handler continu­
ally checks the system status until it can safely call the TSR. 

The timer itself can serve as the start-up signal if the TSR executes periodically. 
Screen clocks that continuously show seconds and minutes are examples of TSRs 
that use the timer this way. ALARM.ASM, a program described in the next sec­
tion, shows another example of a timer-driven TSR. 

Interrupt 13h (disk) 
DiskActiveFlag set· . . . . . . . . clear· . . . . . . . . . . . . . . . . . . . . . 

Interrupt 10h (video) -=:J 
VideoActiveFlag clear· . . . . . . . set· . clear· ............... . 

Interrupt 09h (keyboard) • 
TsrRequestFlag clear· . set· ........................... . 

Interrupt OSh (timer) • • • • • 
TSR 
TsrActiveFlag clear· . . . . . . . . . . . . . . . .. set·· ......... . 

Time in seconds: + 1/18 +2/18 +3/18 +4/18 

CD ® ® ® @ ® 

Figure 19.1 Time line of Interactions between Interrupt Handlers for a 
Typical TSR 

483 



Writing Memory-Resident Software 

19.2.2 Monitoring System Status 

484 

A TSR that uses a hardware device such as the video or disk must not interrupt 
while the device is active. A TSR monitors a device by handling the device's in­
terrupt. Each interrupt handler need only set a flag to indicate that the device is in 
use and then clear the flag when the interrupt finishes. 

The following shows a typical monitor handler: 

NewHandler PROC FAR 
mov 
pushf 

call 
mov 
i ret 

NewHandler ENDP 

ActiveFlag, TRUE 

OldHandler 
ActiveFlag, FALSE 

Set active flag 
Simulate interrupt by 

pushing flags, 
then calling original 

Clear active flag 
Return from interrupt 

routine 

Only hardware used by the TSR requires monitoring. For example, a TSR that 
performs disk input/output (I/O) must monitor disk use through Interrupt 13h. 
The disk handler sets an active flag that prevents the TSR from executing during 
a read or write operation. Otherwise, the TSR's own I/O would move the disk 
head. This would cause the suspended disk operation to continue with the head 
incorrectly positioned when the TSR returned control to the interrupted program. 

In the same way, an active TSR that displays to the screen must monitor calls to 
Interrupt lOh. The Interrupt lOh BIOS routine does not protect critical sections of 
code that program the video controller. The TSR must therefore ensure that it 
does not interrupt such nonreentrant operations. 

The activities of the operating system also affect the system status. With few ex­
ceptions, DOS functions are not reentrant and must not be interrupted. However, 
monitoring DOS is somewhat more complicated than monitoring hardware. Dis­
cussion of this subject is deferred until Section 19.4. 

The following comments describe the chain of events depicted in Figure 19.1. 
Each comment refers to one of the numbered pointers in the figure. 

1. At time = t, the timer handler activates. It finds the flag TsrRequestFl ag 
clear, indicating that the TSR has not been requested. The handler terminates 
without taking further action. Notice that Interrupt 13h is currently processing 
a disk I/O operation. 

2. Before the next timer interrupt, the keyboard handler detects the hot key, sig­
nalling a request for the TSR. The handler sets T s r Re que s t F 1 a 9 and 
returns. 

3. At time = t + 1/18 second, the timer handler again activates and finds 
T s r Re que s t F 1 a 9 set. The handler checks other active flags to determine 
if the TSR can safely execute. Since Interrupt 13h has not yet completed its 



Example of a Simple TSR: ALARM 

disk operation, the timer handler finds D; s kAc t ; ve F 1 a 9 set. The handler 
therefore terminates without invoking the TSR. 

4. At time = t + 2/18 second, the timer handler again finds T s r Re que s t F 1 a 9 
set and repeats its scan of the active flags. D; s kAct; ve F1 a 9 is now clear, 
but in the interim, Interrupt 10h has activated as indicated by the flag 
v; deoAct; ve F1 a g. The timer handler accordingly terminates without in­
voking the TSR. 

5. At time = t + 3/18 second, the timer handler repeats the process. This time it 
finds all active flags clear, indicating that the TSR may safely execute. The 
timer handler calls the TSR, which sets its own active flag to ensure that it 
will not interrupt itself if requested again. 

6. The timer and other interrupts continue to function normally while the TSR 
executes. 

19.2.3 Determining Whether to Invoke the TSR 
Once a handler receives a request signal for the TSR, it checks the various active 
flags maintained by the handlers that monitor system status. If any of the flags 
are set, the handler ignores the request and exits. If the flags are clear, the handler 
invokes the TSR, usually through a near or far call. Figure 19.1 illustrates how a 
timer handler detects a request and then periodically scans various active flags 
until all the flags are clear. 

A TSR that changes stacks must not interrupt itself. Otherwise, the second execu­
tion would overwrite the stack data belonging to the first. A TSR prevents this by 
setting its own active flag before executing, as shown in Figure 19.1. A handler 
must check this flag along with the other active flags when determining whether 
the TSR can safely execute. 

19.3 Example of a Simple TSR: ALARM 
This section presents a simple alarm clock TSR that demonstrates some of the 
material covered so far. The program accepts an argument from the command 
line that specifies the alarm setting in military form, such as 1635 for 4:35 P.M. 

For the sake of simplicity, the argument must consist of four digits, including 
leading zeros. To set the alarm at 7:45 A.M., for example, enter: 

ALARM 0745 

The installation section of the program begins with the Ins tall procedure. 
Ins tall computes the number of five-second intervals that must elapse before 
the alarm sounds and stores this number in the word CountDown. The proce­
dure then obtains the vector for Interrupt 08 (timer) through Interrupt 21h Func­
tion 35h and stores it in the far pointer 01 dT; me r. Interrupt 21h Function 25h 

485 



Writing Memory-Resident Software 

486 

replaces the vector with the far address of the new timer handler N ewTi me r. 
Once installed, the new timer handler executes at every timer interrupt. These in­
terrupts occur 18.2 times per second or 91 times every five seconds. 

Each time it executes, NewT i me r subtracts one from a secondary counter 
called Ti ck91. By counting 91 timer ticks, Ti ck91 accurately measures a pe­
riod of five seconds. When Ti ck91 reaches zero, it's reset to 91 and 
CountDown is decremented by one. When CountDown reaches zero, the 
alarm sounds. 

;* ALARM.ASM - A simple memory-resident program that beeps the speaker 
;* at a prearranged time. Can be loaded more than once for multiple 
;* alarm settings. During installation, ALARM establishes a handler 
;* for the timer interrupt (interrupt 08). It then terminates through 
;* the terminate-and-stay-resident function (function 31h). After the 
;* alarm sounds, the resident portion of the program retires by setting 
;* a flag that prevents further processing in the handler. 

;* NOTE: You must assemble this program as a .COM file, either as a PWB 
;* build option or with the ML fAT option . 

. MODEL tiny, pascal, os_dos 

.STACK 

.CODE 
ORG 

CountDown 

.STARTUP 
jmp 

5Dh 
LABEL 

Install 

WORD 
Location of time argument in PSP, 
converted to number of 5-second 
intervals to elapse 

Jump over data and resident code 

; Data must be in code segment so it won't be thrown away with Install code. 

OldTimer DWORD? 
tick 91 BYTE 91 
TimerActiveFlag BYTE 0 

Address of original timer routine 
Counts 91 clock ticks (5 seconds) 
Active flag for timer handler 

;* NewTimer - Handler routine for timer interrupt (interrupt 08). 
;* Decrements CountDown every 5 seconds. No other action is taken 
;* until CountDown reaches 0, at which time the speaker sounds. 

NewTimer PROC FAR 
.IF cs:TimerActiveFlag 
jmp cs:OldTimer 
.ENDIF 
inc cs:TimerActiveFlag 
pushf 
call cs: 01 dTi mer 
sti 
push ds 
push cs 
pop ds 
dec tick 91 

!= 0 If timer busy or retired: 
Jump to original timer routine 

Set active flag 
Simulate interrupt by pushing flags, 

then far-calling original routine 
Enable interrupts 
Preserve DS register 
Point DS to current segment for 
further memory access 

Count down for 91 ticks 



· IF 
mov 
dec 
· IF 
call 
inc 
.ENDIF 
.ENDIF 

dec 
pop 
i ret 

NewTimer ENDP 

zero? 
tick_91, 91 
CountDown 
zero? 
Sound 
TimerActiveFlag 

TimerActiveFlag 
ds 

Example of a Simple TSR: ALARM 

If 91 ticks have elapsed: 
Reset secondary counter and 
subtract one 5-second interval 

If CountDown drained: 
Sound speaker 
Alarm has sounded, set flag 

Decrement active flag 
Recover DS 
Return from interrupt handler 

;* Sound - Sounds speaker with the following tone and duration: 

BEEP_TONE 
BEEP DURATION 

Sound PROC 
mov 
out 
mov 
mov 
mov 
div 
out 
mov 
out 
in 
or 
out 

EOU 
EOU 

440 
6 

USES ax bx 
a 1 , 0B6h 
43h, al 
dx, 12h 
ax, 34DCh 

cx dx es 

bx, BEEP TONE 
bx 
42h, al 
a 1 , ah 
42h, al 
a 1 , 61h 
a 1, 3 
61h, al 

Pause for specified number of clock 

mov dx, BEE P DURA TI 0 N 
sub cx, cx 
mov es, ex 
add dx, es:[46Ch] 
adc cx, es:[46Eh] 
.REPEAT 
mov bx, es:[46Ch] 
mov ax, es:[46Eh] 
sub bx, dx 
sbb ax, cx 
· UNTI L !carry? 

in a 1 , 61h 
xor al, 3 
out 61h, al 
ret 

Sound ENDP 

Beep tone in hertz 
Number of clocks during beep, 
where 18 clocks = approx 1 second 

Save registers used in this 
Initialize channel 2 of 
timer chip 

Divide 1,193,180 hertz 
(clock frequency) by 
desired frequency 

Result is timer clock count 
Low byte of count to timer 

High byte of count to timer 
Read value from port 61h 
Set first two bits 
Turn speaker on 

ticks 

Beep duration in clock ticks 
CX:DX = tick count for pause 
Point ES to low memory data 

routine 

Add current tick count to CX:DX 
Result is target count in CX:DX 

Now repeatedly poll clock 
count until the target 
time is reached 

When time elapses, get port value 
Kill bits 0-1 to turn 
speaker off 

487 



Writing Memory-Resident Software 

488 

;* Install - Converts ASCII argument to valid binary number, replaces 
;* NewTimer as the interrupt handler for the timer, then makes program 
;* memory-resident by exiting through function 31h. 
; * 
;* This procedure marks the end of the TSR's resident section and the 
;* beginning of the installation section. When ALARM terminates through 
;* function 31h, the above code and data remain resident in memory. The 
;* memory occupied by the following code is returned to DOS. 

Install PROC 

Time argument is in hhmm military format. Converts ASCII digits to 
number of minutes since midnight, then converts current time to number 
of minutes since midnight. Difference is number of minutes to elapse 
until alarm sounds. Converts to seconds-to-elapse, divides by 5 seconds, 
and stores result in word CountDown. 

DEFAULT TIME EQU 3600 

mov ax, DEFAULT_TIME 
cwd 
. IF BYTE PTR CountDown != 
xor CountDown[0], '00' 
xor CountDown[2], '00' 

mov a 1 , 10 
mul BYTE PTR CountDown[0] 
add al, BYTE PTR CountDown[lJ 
mov bh, a 1 
mov a 1 , 10 
mul BYTE PTR CountDown[2] 
add a 1 , BYTE PTR CountDown[3] 
mov b 1 , al 
mov ah, 2Ch 
int 21h 
mov dl , dh 
sub dh, dh 
push dx 

mov a 1 , 60 
nlul ch 
sub ch, ch 
add cx, ax 

mov a 1 , 60 
mul bh 
sub bh, bh 
add ax, bx 

sub ax, cx 

Default alarm setting = 1 hour 
(in seconds) from present time 

DX:AX = default time in seconds 
If not blank argument: 
Convert 4 bytes of ASCII 

argument to binary 

Multiply 1st hour digit by 10 
and add to 2nd hour digit 

BH = hour for alarm to go off 
Repeat procedure for minutes 
Multiply 1st minute digit by 10 
and add to 2nd minute digit 
BL = minute for alarm to go off 
Request function 2Ch 
Get Time (CX = current hour/min) 

Save OX = current seconds 

Multiply current hour by 60 
to convert to minutes 

Add current minutes to result 
CX = minutes since midnight 
Multiply alarm hour by 60 
to convert to minutes 

AX = number of minutes since 
midnight for alarm setting 

AX = time in minutes to elapse 
before alarm sounds 



Install 

Example of a Simple TSR: ALARM 

. IF carry? If alarm time is tomorrow: 
add ax, 24 * 60 Add minutes in a day 
.ENDIF 

mov 
mul 
pop 
sub 
sbb 
. IF 
mov 
cwd 

bx, 60 
bx 
bx 
ax, bx 
dx, 0 
carry? 
ax, 5 

DX:AX = minutes-to-elapse-times-60 
Recover current seconds 
DX:AX = seconds to elapse before 
alarm activates 

If negative: 
Assume 5 seconds 

.ENDIF 

.ENDIF 

mov 
div 
mov 

mov 
int 
mov 
mov 
mov 
mov 
int 

mov 
mov 
shr 
inc 
mov 
int 
ENDP 
END 

bx, 5 Divide result by 5 seconds 
bx AX = number of 5-second intervals 
CountDown, ax to elapse before alarm sounds 

ax, 3508h Request function 35h 
21h Get Vector for timer (interrupt 08) 
WORD PTR OldTimer[0], bx Store address of original 
WORD PTR OldTimer[2], es timer interrupt 
ax, 2508h Request function 25h 
dx, OFFSET NewTimer DS:DX points to new timer handler 
21h Set Vector with address of NewTimer 

dx, OFFSET Install DX = bytes in resident section 
cl , 4 
dx, cl Convert to number of paragraphs 
dx plus one 
ax, 3100h Request function 31h, error code=0 
21h Terminate-and-stay-resident 

Note the following points about ALARM: 

• The constant BEE P _TO N E specifies the alarm tone. Practical values for the 
tone range from approximately 100 to 4,000 hertz. 

• The Ins tall procedure marks the beginning of the installation section of 
the program. Execution begins here when ALARM. COM is loaded. A TSR 
generally places its installation code after the resident section. This allows the 
TSR to include the installation code and data and to return memory to DOS 
when the program terminates. Since the installation section executes only 
once, the TSR can discard it after becoming resident. 

• You can install ALARM any number of times in quick succession, each 
time with a new alarm setting. The timer handler does not restore the original 
timer vector after the alarm sounds. In effect, the multiple installations are 

489 



Writing Memory-Resident Software 

daisy-chained in memory. The address in 01 dTi mer for one installation is 
the address of NewTi mer in the preceding installation. 

• Until a system reboot, NewTi mer remains in place as the Interrupt 08 han­
dler, even after the alarm sounds. To save unnecessary activity, the byte 
Ti me rAct i ve F1 a 9 remains set after the alarm sounds. This forces an im­
mediate jump to the original handler for all subsequent executions of 
NewTi mer. 

• NewTi mer and Sound alter registers DS, AX, BX, CX, DX, and ES. To 
preserve the original values in these registers, the procedures first push them 
onto the stack and then restore the original values before exiting. This ensures 
that the process interrupted by NewTi mer continues with valid registers 
after NewTi me r returns. 

• ALARM requires little stack space. It assumes that the current stack is ade­
quate and makes no attempt to set up a new one. More sophisticated TSRs, 
however, should as a matter of course provide their own stacks to ensure ade­
quate stack depth. The example program presented in Section 19.8 demon­
strates this safety measure. 

19.4 Using DOS in Active TSRs 
This section explains how to write active TSRs that can safely call DOS func­
tions. The material explores the problems imposed by DOS's nonreentrance and 
explains how a TSR can resolve those problems. The solution consists of four 
parts: 

• Understanding how DOS uses stacks 

• Determining when DOS is active 

• Determining whether a TSR can safely interrupt an active DOS function 

• Monitoring the Critical Error flag 

19.4.1 Understanding DOS Stacks 

490 

DOS functions set up their own stacks, which makes them nonreentrant. If a TSR 
interrupts a DOS function and then executes another function that sets up the 
same stack, the second function will overwrite everything placed on the stack by 
the first function. The problem occurs when the second function returns and the 
first is left with unusable stack data. A TSR that calls a DOS function must not in­
terrupt any function that uses the same stack. 



With few exceptions, DOS 
functions use their own 
stacks when they execute. 

Using DOS in Active TSRs 

DOS versions 2.0 and later use three internal stacks: an I/O stack, a disk stack, 
and an auxiliary stack. The current stack depends on the DOS function. Func­
tions 01 through OCh set up the I/O stack. Functions higher than OCh (with few 
exceptions) use the disk stack, as do Interrupts 25h and 26h. DOS normally uses 
the auxiliary stack only when it executes Interrupt 24h (Critical Error Handler). 

19.4.2 Determining DOS Activity 
A TSR's handlers can determine when DOS is active by consulting a one-byte 
flag called the InDos flag. Every DOS function sets this flag upon entry and 
clears it upon termination. During installation, a TSR locates the flag through 
Function 34h (Get Address of InDos Flag), which returns the address as ES:BX. 
The installation portion then stores the address so that the handlers can later find 
the flag without again calling Function 34h. 

Theoretically, a TSR can wait to execute until the InDos flag is clear, thus side­
stepping the entire issue of interrupting DOS. However, several low-order func­
tions-such as Function OAh (Get Buffered Keyboard Input)-wait idly for an 
expected keystroke before they terminate. If a TSR were allowed to execute only 
after DOS returned, it too would be forced to wait for the terminating event. 

The solution lies in determining when the low-order functions are active. DOS 
provides another service for this purpose: Interrupt 28h, the Idle Interrupt. 

19.4.3 Interrupting DOS Functions 

A TSR may interrupt 
DOS Functions 01 
through OCh provided it 
does not call them. 

DOS continually calls Interrupt 28h from the low-order polling functions as they 
wait for keyboard input. This signal says that DOS is idle and that a TSR may 
interrupt provided it does not overwrite the I/O stack. 

An active TSR that calls DOS must monitor Interrupt 28h with a handler. When 
the handler gains control, it checks the TSR request flag. If the flag indicates the 
TSR has been requested and if system hardware is inactive, the handler executes 
the TSR. Since control must eventually return to the idle DOS function which 
has stored data on the I/O stack, the TSR in this case must not call any DOS func­
tion that also uses the I/O stack. Table 19.1 shows which functions set up the I/O 
stack for various versions of DOS. 

491 



Writing Memory-Resident Software 

Table 19.1 DOS Internal Stacks 

Critical DOS Version 
Function Error flag 2.x 3.0 3.1+ 

Ol-OCh Clear I/O* 1/0 I/O 
Set Aux* Aux Aux 

33h Clear Disk* Disk Caller* 
Set Disk Disk Caller 

50h-51h Clear 1/0 Caller Caller 
Set Aux Caller Caller 

59h Clear n/a* I/O Disk 
Set n/a Aux Disk 

5DOAh Clear n/a n/a Disk 
Set n/a n/a Disk 

62h Clear n/a Caller Caller 
Set n/a Caller Caller 

All others Clear Disk Disk Disk 
Set Disk Disk Disk 

* I/O = I/O stack, Aux = auxiliary stack, Disk = disk stack, Caller = caller's stack, 
n/a = function not available. 

TSRs that perform tasks of long or indefinite duration should themselves call In­
terrupt 28h. For example, a TSR that polls for keyboard input should include an 
INT 28b instruction in the polling loop, as shown here: 

po 11 : int 28h Signal idle state 
mov ah, 1 
int 16h Key waiting? 
jnz poll If not, repeat polling loop 
sub a h, ah 
int 16h Otherwise, get key 

This courtesy gives other TSRs a chance to execute if the InDos flag happens to 
be set. 

19.4.4 Monitoring the Critical Error Flag 

492 

DOS sets the Critical Error flag to a nonzero value when it detects a critical error. 
It then invokes Interrupt 24h (Critical Error Handler) and clears the flag when In­
terrupt 24h returns. DOS functions higher than OCh are illegal during critical 



Preventing Interference 

error processing. Therefore, a TSR that calls DOS must not execute while the 
Critical Error flag is set. 

DOS versions 3.1 and later locate the Critical Error flag in the byte preceding the 
InDos flag. A single call to Function 34h (Get Address of InDos Flag) thus effec­
tively returns the addresses of both flags. For earlier versions of DOS or for the 
compatibility version of DOS in OS/2, a TSR must call Function 34h and then 
scan the segment returned in the ES register for one of the two following 
sequences of instructions: 

Sequence of instructions in DOS Versions 2.0 - 3.0 
cmp ss:[CriticalErrorFlag], 0 
jne @F 
int 28h 

Sequence of instructions in OS/2's compatibility 
version of DOS 

test [CriticalErrorFlag], 0FFh 
jnz @F 
push ss:[?] 
int 28h 

The question mark inside brackets in the PUSH statement above indicates that the 
operand for the PUSH instruction can be any legal operand. 

In either version of DOS, the operand field in the first instruction gives the flag's 
offset. The value in ES determines the segment address. The example program 
presented in Section 19.8 demonstrates how to locate the Critical Error flag with 
this technique. 

19.5 Preventing Interference 
This section describes how an active TSR can avoid interfering with the process 
it interrupts. Interference occurs when a TSR commits an error or performs an ac­
tion that affects the interrupted process after the TSR returns. Examples of inter­
ference range from the relatively harmless, such as moving the cursor, to the 
serious, such as overrunning a stack. 

Although a TSR can potentially interfere with another process in many different 
ways, protection against interference involves only three steps: 

1. Recording a current configuration 

2. Changing the configuration so it applies to the TSR 

3. Restoring the original configuration before terminating 

The example program in Section 19.8 demonstrates all the noninterference 
safeguards described in this section. These safeguards by no means exhaust the 

493 



Writing Memory-Resident Software 

subject of noninterference. More sophisticated TSRs may require more sophisti­
cated methods. However, noninterference methods generally fall into one of the 
following categories: 

• Trapping errors 

• Preserving an existing condition 

• Preserving existing data 

19.5.1 Trapping Errors 

494 

A TSR committing an error that triggers an interrupt must handle the interrupt to 
trap the error. Otherwise, the existing interrupt routine, which belongs to the un­
derlying process, would attempt to service an error the underlying process did 
not commit. 

For example, a TSR that accepts keyboard input should include handlers for Inter­
rupts 23h and IBh to trap keyboard break signals. When DOS detects CTRL+C 

from the keyboard or input stream, it transfers control to Interrupt 23h (CTRL+C 

Handler). Similarly, the BIOS keyboard routine calls Interrupt IBh (CTRL+BREAK 

Handler) when it detects a CTRL+BREAK key combination. Both routines nor­
mally terminate the current process. 

A TSR that calls DOS should also trap critical errors through Interrupt 24h (Criti­
cal Error Handler). DOS functions call Interrupt 24h when they encounter certain 
hardware errors. The TSR must not allow the existing interrupt routine to service 
the error, since the routine might allow the user to abort service and return con­
trol to DOS. This would terminate both the TSR and the underlying process. By 
handling Interrupt 24h, the TSR retains control if a critical error occurs. 

An error-trapping handler differs in two ways from a TSR's other handlers: 

1. It is temporary, in service only while the TSR executes. At start-up, the TSR 
copies the handler's address to the interrupt vector table; it then restores the 
original vector before terminating. 

2. It provides complete service for the interrupt; it does not pass control on to 
the original routine. However, if the error is not a TSR error, the handler 
needs to pass the error to the original routine. 

Error-trapping handlers often set a flag to let the TSR know that the error has oc­
curred. For example, a handler for Interrupt IBh might set a flag when the user 



Preventing Interference 

presses CTRL+BREAK. The TSR can check the flag as it polls for keyboard input, 
as shown here: 

BrkHandler PROC FAR 

mov 
i ret 

BrkHandler ENOP 

poll: 
mov 

cmp 
je 
mov 
int 
jnz 

BreakFlag, TRUE 

BreakFlag, FALSE 

BreakFlag, TRUE 
exit 
ah, 1 
I6h 
poll 

19.5.2 Preserving an Existing Condition 

Handler for Interrupt IBh 

Raise break flag 
Terminate interrupt 

Initialize break flag 

Keyboard break pressed? 
If so, break polling loop 

Key waiting? 
If not, repeat polling loop 

A TSR and its interrupt handlers must preserve register values so that all registers 
are returned intact to the interrupted process. This is usually done by pushing the 
registers onto the stack before changing them, then popping the original values 
before returning. 

Setting up a new stack is another important safeguard against interference. A 
TSR should usually provide its own stack to avoid the possibility of overrunning 
the current stack. Exceptions to this rule are simple TSRs such as the sample pro­
gram ALARM that make minimal stack demands. 

A TSR that alters the video configuration should return the configuration to its 
original state upon return. Video configuration includes cursor position, cursor 
shape, and video mode. The services provided through Interrupt 10h enable a 
TSR to determine the existing configuration and alter it if necessary. 

However, some applications set video parameters by directly programming the 
video controller. When this happens, BIOS remains unaware of the new configu­
ration and consequently returns inaccurate information to the TSR. Unfor­
tunately, there is no solution to this problem if the controller's data registers 
provide write-only access and thus cannot be queried directly. For more informa­
tion on video controllers, refer to Richard Wilton, Programmer's Guide to the 
PC & PS/2 Video Systems. (See "Books for Further Reading" in the Introduction.) 

495 



Writing Memory-Resident Software 

19.5.3 Preserving Existing Data 
A TSR requires its own disk transfer area (DT A) if it calls DOS functions that 
access the DT A. These include file control block functions, as well as Functions 
IIh, I2h, 4Eh, and 4Fh. The TSR must switch to a new DTA to avoid overwrit­
ing the one belonging to the interrupted process. On becoming active, the TSR 
calls Function 2Fh to obtain the address of the current DT A. The TSR stores the 
address and then calls Function IAh to establish a new DTA. Before returning, 
the TSR again calls Function IAh to restore the address of the original DTA. 

DOS versions 3.1 and later allow a TSR to preserve extended error information. 
This prevents the TSR from destroying the original information if it commits a 
DOS error. 

The TSR retrieves the current extended error data by calling DOS Function 59h. 
It then copies registers AX, BX, CX, DX, SI, DI, DS, and ES to an II-word data 
structure in the order given. DOS reserves the last three words of the structure, 
which should each be set to zero. Before returning, the TSR calls Function 5Dh, 
with AL equalling OAh and DS:DX pointing to the data structure. This call re­
stores the extended error data to their original state. 

19.6 Communicating through the Multiplex Interrupt 
The Multiplex interrupt (Interrupt 2Fh) provides the Microsoft-approved way for 
a program to verify the presence of an installed TSR and to exchange informa­
tion with it. DOS version 2.x uses Interrupt 2Fh only as an interface for the resi­
dent print spooler utility PRINT. COM. Later DOS versions standardize calling 
conventions so that multiple TSRs can share the interrupt. 

A TSR chains to the Multiplex interrupt by setting up a handler. The TSR's in­
stallation code records the Interrupt 2Fh vector and then replaces it with the 
address of the new multiplex handler. 

19.6.1 The Multiplex Handler 

496 

A program communicates with a multiplex handler by calling Interrupt 2Fh with 
an identity number in the AH register. As each handler in the chain gains control, 
it compares the value in AH with its own identity number. If the handler finds 
that it is not the intended recipient of the call, it passes control to the previous 
handler. The process continues until control reaches the target handler. When the 
target handler finishes its tasks, it returns via an IRET instruction to terminate the 
interrupt. 



Communicating through the Multiplex Interrupt 

The target handler determines its tasks from the function number in AL. Conven­
tion reserves Function 0 as a request for installation status. A multiplex handler 
must respond to Function 0 by setting AL to OFFh, to inform the caller of the han­
dler's presence in memory. The handler should also return other information to 
provide a completely reliable identification. For example, it might return in 
ES:BX a far pointer to the TSR's copyright notice. This assures the caller it has 
located the intended TSR and not another TSR that has already claimed the iden­
tity number in AH. 

Identity numbers range from 192 to 255, since DOS reserves lesser values for its 
own use. During installation, a TSR must verify the uniqueness of its number. It 
must not set up a multiplex handler identified by a number already in use. A TSR 
usually obtains its identity number through one of the following methods: 

• The programmer assigns the number in the program. 

• The user chooses the number by entering it as an argument in the command 
line, placing it into an environment variable, or by altering the contents of an 
initialization file. 

• The TSR selects its own number through a process of trial and error. 

The last method offers the most flexibility. It finds an identity number not cur­
rently in use among the installed multiplex handlers and does not require inter­
vention from the user. 

To use this method, a TSR calls Interrupt 2Fh during installation, with AH = 192 
and AL = O. If the call returns AL = OFFh, the program tests other registers to de­
termine if it has found a prior installation of itself. If the test fails, the program re­
sets AL to zero, increments AH to 193, and again calls Interrupt 2Fh. The 
process repeats with incrementing values in AH until the TSR locates a prior in­
stallation of itself-in which case it should abort with an appropriate message to 
the user-or until AL returns as zero. The TSR can then use the value in AH as 
its identity number and proceed with installation. 

The SNAP.ASM program in Section 19.8 demonstrates how a TSR can use this 
trial-and-error method to select a unique identity number. During installation, the 
program calls Interrupt 2Fh to verify that SNAP is not already installed. When 
deinstalling, the program again calls Interrupt 2Fh to locate the resident TSR in 
memory. SNAP's multiplex handler services the call and returns the address of 
the resident code's program-segment prefix. The calling program can then locate 
the resident code and deinstall it, as explained in Section 19.7. 

497 



Writing Memory-Resident Software 

19.6.2 Using the Multiplex Interrupt Under DOS Version 2.x 
A TSR can use the Multiplex interrupt under DOS version 2.x with certain limita­
tions. Under version 2.x, only DOS's print spooler PRINT, itself a TSR program, 
provides an Interrupt 2Fh service. The Interrupt 2Fh vector remains null until 
PRINT or another TSR is installed that sets up a multiplex handler. 

Therefore, a TSR running under version 2.x must first check the existing Inter­
rupt 2Fh vector before installing a multiplex handler. The TSR locates the cur­
rent Interrupt 2Fh handler through Function 35h (Get Interrupt Vector). If the 
function returns a null vector, the TSR's handler will be last in the chain of Inter­
rupt 2Fh handlers. The handler must terminate with an IRET instruction rather 
than pass control to a nonexistent routine. 

PRINT in DOS version 2.x does not pass control on to the previous handler. If 
the user intends to run PRINT under version 2.x, the program must be installed 
before other TSRs that also handle Interrupt 2Fh. This places PRINT's multiplex 
handler last in the chain of handlers. 

19.7 Deinstalling TSRs 

498 

A TSR should provide a means for the user to remove or "deinstall" it from 
memory. Deinstallation returns occupied memory to the system, offering these 
benefits: 

• The freed memory becomes available to subsequent programs which may re­
quire additional memory space. 

• Deinstallation restores the system to a normal state. This allows sensitive pro­
grams that may be incompatible with TSRs a chance to execute without the 
presence of installed routines. 

A deinstallation program must first locate the TSR in memory, usually by re­
questing an address from the TSR's multiplex handler. When it has located the 
TSR, the deinstallation program should then compare addresses in the vector 
table with the addresses of the TSR' s handlers. A mismatch indicates that 
another TSR has chained a handler to the interrupt routine. In this case, the 
deinstallation program should deny the request to deinstall. If the addresses of 
the TSR's handlers match those in the vector table, deinstallation can safely 
continue. 



Example of an Advanced TSR: SNAP 

Deinstall the TSR in three steps: 

1. Restore to the vector table the original interrupt vectors replaced by the han­
dler addresses. 

2. Read the segment address stored at offset 2Ch of the resident TSR' s program 
segment prefix (PSP). This address points to the TSR's "environment block," 
a list of environment variables that DOS copies into memory when it loads a 
program. Place the block's address in the ES register and call DOS Function 
49h (Release Memory Block) to return the block's memory to the operating 
system. 

3. Place the resident PSP segment address in ES and again call Function 49h. 
This call releases the block of memory occupied by the TSR' s code and data. 

The example program in the next section demonstrates how to locate a resident 
TSR through its multiplex handler and deinstall it from memory. 

19.8 Example of an Advanced TSR: SNAP 
This section presents SNAP, a memory-resident program that demonstrates most 
of the techniques discussed in the chapter. SNAP takes a snapshot of the current 
screen and copies the text to a specified file. SNAP accommodates screens with 
various column and line counts, such as CGA's 40-column mode or VGA's 50-
line mode. The program ignores graphics screens. 

Once installed, SNAP occupies approximately 7.5K (kilobytes) of memory. 
When it detects the ALT+LEFT SHIFT+S key combination, SNAP displays a prompt 
for a file specification. The user can type a new file name, accept the previous 
file name by pressing ENTER, or press ESC to cancel the request. 

SNAP reads text directly from the video buffer and copies it to the specified file. 
The program sets the file pointer to the end of the file so that text is appended 
without overwriting previous data. SNAP copies each line only to the last charac­
ter, ignoring trailing spaces. The program adds a carriage return-linefeed 
sequence (ODOAh) to the end of each line. This makes the file accessible to any 
text editor that can read ASCII files. 

To demonstrate how a program accesses resident data through the Multiplex in­
terrupt, SNAP can reset the display attribute of its prompt box. After installing 
SNAP, run the main program with the IC option to change box colors: 

SNAP ICxx 

499 



Writing Memory-Resident Software 

The argument xx specifies the desired attribute as a two-digit hexadecimal num­
ber-for example, 7C for red on white, or OF for monochrome high intensity. For 
a list of color and monochrome display attributes, refer to a description of 
Basic's COLOR command or to the "Tables" section of the Macro Assembler 
Reference. 

SNAP can deinstall itself, provided another TSR has not been loaded after it. 
Deinstall SNAP by executing the main program with the /D option: 

SNAP 10 

If SNAP successfully deinstalls, it displays the following message: 

TSR deinstalled 

19.8.1 Building SNAP.EXE 

500 

SNAP combines four modules: SNAP.ASM, COMMON.ASM, 
HANDLERS.ASM, and INSTALL.ASM. Source files are located on one of your 
distribution disks. Each module stores temporary code and data in the segments 
INSTALLCODE and INSTALLDATA. These segments apply only to SNAP's 
installation phase; DOS recovers the memory they occupy when the program 
exits through the terminate-and-stay-resident function. The following briefly de­
scribes each module: 

• SNAP.ASM contains the TSR's main code and data. 

• COMMON.ASM contains procedures used by other example programs. 

• HANDLERS.ASM contains interrupt handler routines for Interrupts 08, 09, 
10h, 13h, 15h, 28h, and 2Fh. It also provides simple error-trapping handlers 
for Interrupts IBh, 23h, and 24h. Additional routines set up and deinstall the 
handlers. 

• INSTALL.ASM contains an exit routine that calls the terminate-and-stay­
resident function and a deinstallation routine that removes the program from 
memory. The module includes error-checking services and a command-line 
parser. 



Example of an Advanced TSR: SNAP 

This building-block approach allows you to create other TSRs by replacing 
SNAP.ASM and linking with the HANDLERS and INSTALL object modules. 
The library of routines accommodates both keyboard-activated and time­
activated TSRs. A time-activated TSR is a program that activates at a predeter­
mined time of day, similar to the example program ALARM introduced in 
Section 19.3. The header comments for the Ins tall procedure in HAN­
DLERS.ASM explain how to install a time-activated TSR. 

You can write new TSRs in assembly language or any high-level language that 
conforms to the Microsoft conventions for ordering segments. Regardless of the 
language, the new code must not invoke a DOS function that sets up the I/O 
stack (see Section 19.4.3). Code in Microsoft C, for example, must not call 
getche or kbhit, since these functions in tum call DOS Functions 01 and OBh. 

Code written in a high-level language must not check for stack overflows. 
Compiler-generated stack probes do not recognize the new stack setup when the 
TSR executes, and therefore must be disabled. The example program BELL.C, in­
cluded on disk with the TSR library routines, demonstrates how to disable stack 
checking in Microsoft C using the check_stack pragma. 

19.8.2 Outline of SNAP 
The following sections outline in detail how SNAP works. Each part of the out­
line covers a specific portion of SNAP's code. Headings refer to earlier sections 
of this chapter, providing cross-references to SNAP's key procedures. For ex­
ample, the part of the outline that describes how SNAP searches for its start-up 
signal refers to Section 19.2.1, "Auditing Hardware Events for TSR Requests." 

Figures 19.2 through 19.4 are flow charts of the SNAP program. Each chart il­
lustrates a separate phase of SNAP's operation, from installation through 
memory-residency to deinstallation. 

501 



Writing Memory-Resident Software 

502 

Begin 
Program entry point 

• Call Install 
'-----~I Install 

Set up TSR's interrupt handlers 
• Call GetVersion 

'-----~I GetVersion 
,-------------+1 Determine DOS version 

If not version 2.0 or higher, 
return with error code 

• Call GetDosFlags 

'-----~I GetDosFlags 
Get addresses of InOos and 

,-------------41 Critical Error flags 

• Call CaliMultiplex 

'--------NI Call Mu Iti plex 
,----------+1 Locate and call multiplex handler 

If TSR already installed, 
return with error code 

• Replace interrupt vectors with 
addresses of following handlers: 

Clock - Interrupt 08h 
Video - Interrupt 10h 
DisklO - Interrupt 13h 
Idle - Interrupt 28h 
Multiplex - Interrupt 2Fh 
Keybrd - Interrupt 09h (non-PS/2) 
SkipMiscServ - Interrupt 15h (non-PS/2) 
KeybrdMonitor - Interrupt 09h (PS/2) 
MiscServ - Interrupt 15h (PS/2) 

,-------+/ • Return 

Figure 19.2 Flow Chart for SNAP .EXE: Installation Phase 



Keybrd 
Interrupt 09 handler 
(keyboard) for non-PS/2 

• If hot key, set TsrRequestFlag = TRUE 
• IRET 

MiscServ 
Interrupt 15h handler 
(Misc Systems Services) for PS/2 
• If hot key, set TsrRequestFlag = TRUE 
• IRET 

KeybrdMonitor 
Interrupt 09 handler 
(keyboard) for PS/2 
• Set intKeybrd.Flag = TRUE 
• Call original 09 handler 
• Set intKeybrd.Flag = FALSE 
·IRET 

Video 
Interrupt 10h handler (video) 

• Set intVideo.Flag = TRUE 
• Call original 10h handler 
• Set intVideo.Flag = FALSE 
·IRET 

DisklO 
Interrupt 13h handler (disk) 

• Set intDisklO.Flag = TRUE 
• Call original 13h handler 
• Set intDisklO.Flag = FALSE 
·IRET 

Multiplex 
Interrupt 2Fh handler (multiplex) 

• set ES = code segment (function 0) 
• set ES = PSP segment (function 1) 
·IRET 

Example of an Advanced TSR: SNAP 

• call r.h~'r.k~~AnIIIA~t ...-____ ...1..-_____ --, 

'-----IMI CheckRequest 
Check TSR request flag 
and system status 
• If TsrRequestFlag = FALSE, 

return with carry flag set 
• If TsrActiveFlag = TRUE, 

return with carry flag set 
• Call 

'-------' .. I Check Dos 
Check DOS status 
• If Critical Error flag> 0, 

return with carry flag set 
• If InDos > 0 and Idle not active, 

return with carry flag set 
~--------,8 • Else return with carry flag clear 

• If carry flag set, return 
• Call CheckHardware 

'------'1 CheckHardware 
Check hardware status 
• If device being serviced, 

return with carry flag set 
• If intKeybrd.Flag = TRUE, 

return with carry flag set 
• If intVideo.Flag = TRUE, 

return with carry flag set 
• If intDisklO.Flag = TRUE, 

return with carry flag set 
~------+I • Else return with carry flag clear 

• If carry flag set, return 
• Call Activate 

'------.;;, Activate 
Set up for far call to TSR 
• Preserve stack pointer SS:SP 

and switch stacks 
• Push registers onto new stack 
• Replace interrupt vectors with far 

addresses of following handlers: 
CtrlBreak - Interrupt 1 Bh 
CtrlC - Interrupt 23h 
CritError - Interrupt 24h 

• Call 
'------I Snap 

Begin main body of TSR 
• Determine video configuration 
• Display screen box and 

prompt for file name 
• Open or create specified file 
• Copy screen text to file 
• Close file 

~--------,8 • Return 
;;~~~~~~~~~ 

• Restore original vectors 
for Interrupts 1 Bh, 23h, and 24h 

• Pop registers from stack 
• IRET • Restore original stack 

hZ::m::7TIWiTI1'7::m::7C'TITIT7:II· Set TstRequestFlag = FALSE 

'-----4J6·~RITet~u~rn~~~~~~~~~ 

Figure 19.3 Flow Chart for SNAP.EXE: Resident Phase 

503 



Writing Memory-Resident Software 

504 

Begin 
Program entry point 
• Call Deinstall 

l'--_--.;;t Deinstall 
Restore original interrupt vectors 
• Call GetVersion 

l'--__ ~:"I GetVersion 
,~------------"1Ijjl Determine DOS version 

If not version 2.0 or higher, 
return with error code 

• Call Call Multiplex 

I 

,~ ____ l ___ -----"1I.i! f;~!~U~~~~~~ multiplex handler I 
If TSR not installed, 
return with error code 

• Compare vectors with addresses 
of following handlers: 

Clock - Interrupt OSh 
Video - Interrupt 10h 
DisklO - Interrupt 13h 
Idle - Interrupt 2Sh 
Multiplex - Interrupt 2Fh 
Keybrd - Interrupt 09h (non-PS/2) 
SkipMiscServ - Interrupt 15h (non-PS/2) 

KeybrdMonitor - Interrupt 09h (PS/2) 
MiscServ - Interrupt 15h (PS/2) 

If any comparison fails, 
return with error code 

• Restore original vectors for Interrupts 
OSh, 09h, 10h, 13h, 15h, 2Sh and 2Fh 

,~----1;bz·~R~e~tu~r~n~~~~~~~~~~~~ 
If error, call FatalError 

I·~--------I"':I FatalError 

• Display error message 
• Terminate through Function 4Ch 

• Call FreeTsr 

l'--_---I." .. " FreeTsr 
,~-----+lt! Free program's allocated block 

• Exit to DOS 

Figure 19.4 Flow Chart for SNAP.EXE: Deinstallation Phase 

As you read through the following outline, you may wish to refer to the flow 
charts. They will help you maintain a larger perspective while exploring the 
details of SNAP's operation. Discussions in the outline cross-reference the charts. 



Example of an Advanced TSR: SNAP 

Note that information in both the outline and the flow charts is generic. Except 
for references to the SNAP procedure, all descriptions in the outline and the flow 
charts apply to any TSR created with the HANDLERS and INSTALL modules. 

Auditing Hardware Events for TSR Requests 
To search for its start-up signal, SNAP audits the keyboard with an interrupt han­
dler for either Interrupt 09 (keyboard) or Interrupt 15h (Miscellaneous System 
Services). See Section 19.2.1 for information on this topic. The Ins tall pro­
cedure determines which of the two interrupts to handle based on the following 
code: 

If valid scan code given: 
AH = hour to activate 
AL = minute to activate 

.IF 
mov 
mov 
call 
mov 

HotScan == 0 
ah, HotShift 
al, HotMask 
GetTimeToElapse 
CountDown, ax 

Get number of 5-second intervals 
to elapse before activation 

.ELSE 

cmp 
jb 

Version, 03IEh 
setup 

Force use of KeybrdMonitor as 
keyboard handler 

DOS Version 3.3 or higher? 
No? Skip next step 

Test for IBM PS/2 series. If not PS/2, use Keybrd and 
SkipMiscServ as handlers for Interrupts 09 and 15h 
respectively. If PS/2 system, set up KeybrdMonitor as the 
Interrupt 09 handler. Audit keystrokes with MiscServ 
handler, which searches for the hot key by handling calls 
to Interrupt 15h (Miscellaneous System Services). Refer to 
Section 19.2.1 for more information about keyboard handlers. 

mov 
int 
sti 

jc 
or 
jnz 

ax, 0C00h 
15h 

setup 
ah, ah 
setup 

Function 0Ch (Get System 
Configuration Parameters) 

Compaq ROM may leave disabled 

If carry set, 
or if AH not 0, 
services are not supported 

Test bit 4 to see if Intercept is implemented 
test BYTE PTR es:[bx+5], 00010000y 
jz setup 

If so, set up MiscServ as Interrupt 15h handler 
mov ax, OFFSET MiscServ 
mov WORD PTR intMisc.NewHand, ax 
.ENDIF 

Set up KeybrdMonitor as Interrupt 09 handler 
mov ax, OFFSET KeybrdMonitor 
mov WORD PTR intKeybrd.NewHand, ax 

505 



Writing Memory-Resident Software 

506 

This is the code's logic: 

• If the program is running under DOS version 3.3 or higher and if Interrupt 
15h supports Function 4Fh, set up handler Mi scServ to search for the hot 
key. Handle Interrupt 09 with KeybrdMoni tor only to maintain the key­
board active flag. 

• Otherwise, set up a handler for Interrupt 09 to search for the hot key. Handle 
calls to Interrupt 15h with the routine Ski pMi scServ, which contains this 
single instruction: 

jrnp cs:intMisc.OldHand 

The jump immediately passes control to the original Interrupt 15h routine; 
thus, Ski pMi scServ has no effect. It serves only to simplify coding in 
other parts of the program. 

At each keystroke, the keyboard interrupt handler (either Keybrd or 
Mi scServ) calls the procedure CheckHotKey with the scan code of the cur­
rent key. CheckHotKey compares the scan code and shift status with the 
bytes HotScan and HotShift.lfthecurrentkeymatches, CheckHotKey 
returns the carry flag clear to indicate that the user has pressed the hot key. 

If the keyboard handler finds the carry flag clear, it sets the flag 
Ts rRequestFl ag and exits. Otherwise, the handler transfers control to the 
original interrupt routine to service the interrupt. 

The timer handler C lac k reads the request flag at every occurrence of the 
timer interrupt. C lac k takes no action if it finds a zero value in 
Ts rRequestFl ago Figures 19.1 and 19.3 depict the relationship between the 
keyboard and timer handlers. 

Monitoring System Status 
Because SNAP produces output to both video and disk, it avoids interrupting 
either video or disk operations. The program uses interrupt handlers Vi de a and 
Di skIO to monitor Interrupts 10h (video) and 13h (disk). SNAP also avoids in­
terrupting keyboard use. The instructions at the far label KeybrdMoni tor 
serve as the monitor handler for Interrupt 09 (keyboard). See Section 19.2.2 for 
information on this topic. 

The three handlers perform similar functions. Each sets an active flag and then 
calls the original routine to service the interrupt. When the service routine re­
turns, the handler clears the active flag to indicate that the device is no longer 
III use. 



Example of an Advanced TSR: SNAP 

The BIOS Interrupt 13h routine clears or sets the carry flag to indicate the opera­
tion's success or failure. 0 i skI 0 therefore preserves the flags register when re­
turning, as shown here: 

DiskIO PROC FAR 
mov cs:intDiskIO.Flag, TRUE; Set active flag 

Simulate interrupt by pushing flags and far-calling old 
Int 13h routine 

pushf 
call cs:intDiskIO.OldHand 

Clear active flag without disturbing flags register 
mov cs:intDiskIO.Flag, FALSE 
sti ; Enable interrupts 

Simulate IRET without popping flags (since services use 
carry flag) 

ret 2 
DiskIO ENDP 

The terminating RET 2 instruction discards the original flags from the stack 
when the handler returns. 

Determining Whether to Invoke the TSR 
The procedure CheckRequest determines if the TSR 

• Has been requested 

• Can safely interrupt the system 

Eachtimeitexecutes,thetimerhandler Clock calls CheckRequest to 
read the flag TsrRequestFl ago If CheckRequest finds the flag set, it 
scans other flags maintained by the TSR's interrupt handlers and by DOS. These 
flags indicate the current system status. As the flow chart in Figure 19.3 shows, 
CheckRequest calls CheckDos (described below) to determine the status 
of the operating system. Chec kReq ues t then calls C hec kHa rdwa re to 
check hardware status. See Section 19.2.2 for information on this topic. 

CheckHa rdwa re queries the interrupt controller to determine if any device is 
currently being serviced. It also reads the active flags maintained by the 
KeybrdMoni tor, Vi de~, and Di skIO handlers. If the controller, key-
board, video, and disk are all inactive, CheckHa rdwa re clears the carry flag 
and returns. 

CheckRequest indicates system status with the carry flag. If the procedure re­
turns the carry flag set, the caller exits without invoking the TSR. A clear carry 
signals that the caller can safely execute the TSR. 

Determining DOS Activity 
As Figure 19.2 shows, the procedure Get Dos F 1 a g s locates the InDos flag 
during SNAP's installation phase. GetDos Fl a g s calls Function 34h (Get 

507 



Writing Memory-Resident Software 

508 

Address of InDos Flag) and then stores the flag's address in the far pointer 
In DosAdd r. See Section 19.4.2 for infonnation on this topic. 

When called from the CheckRequest procedure, CheckDos reads InDos 
to detennine if the operating system is active. Note that C h e c k 0 a s reads the 
flag directly from the address in In DosAdd r. It does not call Function 34h to 
locate the flag, since it has not yet established whether DOS is active. This fol­
lows from the general rule that interrupt handlers must not call any DOS function. 

The next two sections describe the procedure CheckDos more fully. 

Interrupting DOS Functions 
Figure 19.3 shows that the call to CheckDos can initiate either from Clock 
(timer handler) or I d 1 e (Interrupt 28h handler). If C h e c k 0 a s finds the 
InDos flag set, it reacts in different ways depending on the caller: 

• If called from Clock, CheckDos cannot know which DOS function is ac­
tive. In this case, it returns the carry flag set, indicating that Clock must 
deny the request for the TSR. 

• If called from I d 1 e, C h e c k 0 a s assumes that one of the low -order polling 
functions is active. It therefore clears the carry flag to let the caller know the 
TSR can safely interrupt the function. 

See Section 19.4.3 for infonnation on this topic. 

Monitoring the Critical Error Flag 
The procedure Get Dos F1 ag s (Figure 19.2) detennines the address of the 
Critical Error flag. The procedure stores the flag's address in the far pointer 
C r i t Err Add r. See Section 19.4.4 for infonnation on this topic. 

When called from either the Clock or Id1 e handlers,CheckDos reads the 
Critical Error flag. A nonzero value in the flag indicates that the Critical Error 
Handler (Interrupt 24h) is processing a critical error and the TSR must not inter­
rupt. In this case, C h e c k 0 a s sets the carry flag and returns, causing the caller 
to exit without executing the TSR. 



Example of an Advanced TSR: SNAP 

Trapping Errors 
As Figure 19.3 shows, C 1 0 c k and I d 1 e invoke the TSR by calling the proce­
dure Act i vat e. See Section 19.5.1 for information on this topic. Before 
calling the main body of the TSR, Act i va te sets up the following handlers: 

Handler Name 

CtrlBreak 

CtrlC 

CritError 

For Interrupt 

IBh (CTRL+BREAK 

Handler) 

23h (CTRL+C 

Handler) 

24h (Critical Error 
Handler) 

Receives Control When 

CTRL+BREAK sequence 
entered at keyboard 

DOS detects a CTRL+C 

sequence from the key­
board or input stream 

DOS encounters a critical 
error 

These handlers trap keyboard break signals and critical errors that would other­
wise trigger the original handler routines. The C t r 1 B rea k and C t r 1 C han­
dlers contain a single IRET instruction, thus rendering a keyboard break 
ineffective. The C r i t Err 0 r handler contains the following instructions: 

CritError PROC FAR 
st i 
sub al, al 

.IF cs:major != 2 
mov al,3 
.ENOIF 
i ret 

CritError ENOP 

Assume DOS 2.x 
Set AL = 0 for ignore error 
If DOS 3.x, set AL = 3 
DOS call fails 

The return code in AL forces DOS to take no further action when it encounters a 
critical error. 

As an added precaution, Act i va te also calls Function 33h (Get or Set 
CTRL+BREAK Flag) to determine the current setting of the checking flag. 
Act i vat e stores the setting, then calls Function 33h again to tum off break 
checking. 

When the TSR' s main procedure finishes its work, it returns to Act i vat e, 
which then restores the original setting for the checking flag. It also replaces the 
original vectors for Interrupts IBh, 23h, and 24h. 

SNAP's error-trapping safeguards enable the TSR to retain control in the event 
of an error. Pressing CTRL+BREAK or CTRL+C at SNAP's prompt has no effect. If 
the user specifies a nonexistent drive-a critical error-SNAP merely beeps the 
speaker and returns normally. 

509 



Writing Memory-Resident Software 

510 

Preserving an Existing Condition 
Act i va te records the stack pointer SS:SP in the doubleword 
01 dSta c kAdd r. The procedure then resets the pointer to the address of a new 
stack before calling the TSR. Switching stacks ensures that SNAP has adequate 
stack depth while it executes. See Section 19.5.2 for information on this topic. 

The label NewStack points to the top of the new stack buffer, located in the 
code segment of the HANDLERS.ASM module. The equate constant 
STAC K_S I Z determines the size of the stack. The include file TSR.lNC con­
tains the declaration for ST AC K_S I Z. 

Act i va te preserves the values in all registers by pushing them onto the new 
stack. It does not push DS, since that register is already preserved in the Clock 
or I d 1 e handler. 

SNAP does not alter the application's video configuration other than by moving 
the cursor. Figure 19.3 shows that Acti vate calls the procedure Snap, 
which executes Interrupt 10h to determine the current cursor position. S nap 
stores the row and column in the word 01 dPos. The procedure restores the cur­
sor to its original location before returning to Act i vat e. 

Preserving Existing Data 
Because SNAP does not call a DOS function that writes to the DT A, it does not 
need to preserve the DT A belonging to the interrupted process. However, the 
code for switching and restoring the DT A is included within IFDEF blocks in the 
procedure Acti vate. The equate constant DTA_SIZ, declared in the 
TSR.lNC file, governs the assembly of the blocks as well as the size of the new 
DTA. See Section 19.5.3 for information on this topic. 

SNAP can potentially overwrite existing extended error information by commit­
ting a file error. The program does not attempt to preserve the original informa­
tion by calling Functions 59h and 5Dh. In certain rare instances, this may 
confuse the interrupted process after SNAP returns. 

Communicating through the Multiplex Interrupt 
The program uses the Multiplex interrupt (Interrupt 2Fh) to 

• Verify that SNAP is installed 

• Select a unique mUltiplex identity number 

• Locate resident data 

See Section 19.6 for information on this topic. 

SNAP accesses Interrupt 2Fh through the procedure Ca 11 Mu 1 tip 1 ex, as 
shown in Figures 19.2 and 19.4. By searching for a prior installation, 
Cal 1 M u 1 tip 1 e x ensures that SNAP is not installed more than once. During 
deinstallation, Ca 11 Mu 1 tip 1 ex locates data required to deinstall the resi­
dent TSR. 



Example of an Advanced TSR: SNAP 

The procedure M u 1 tip 1 e x serves as SNAP's mUltiplex handler. When it rec­
ognizes its identity number in AH, M u 1 tip 1 e x determines its tasks from the 
function number in the AL register. The handler responds to Function 0 by return­
ing AL equalling OFFh and ES:DI pointing to an identifier string unique to 
SNAP. 

Call M u 1 tip 1 e x searches for the handler by invoking Interrupt 2Fh in a loop, 
beginning with a trial identity number of 192 in AH. At the start of each iteration 
of the loop, the procedure sets AL to zero to request presence verification from 
the multiplex handler. If the handler returns OFFh in AL, Call M u 1 tip 1 ex 
compares its copy of SNAP's identifier string with the text at memory location 
ES:DI. A failed match indicates that the multiplex handler servicing the call is 
not SNAP's handler. In this case, Ca 11 Mu 1 tip 1 ex increments AH and cycles 
back to the beginning of the loop. 

The process repeats until the call to Interrupt 2Fh returns a matching identifier 
string at ES:DI or until AL returns as zero. A matching string verifies that SNAP 
is installed, since its multiplex handler has serviced the call. A return value of 
zero indicates that SNAP is not installed and that no multiplex handler claims the 
trial identity number in AH. In this case, SNAP assigns the number to its own 
handler. 

Deinstalling TSRs 
During deinstallation, Ca 11 Mu 1 tip 1 ex locates SNAP's multiplex handler as 
described above. The handler Mu 1 tip 1 ex receives the verification request and 
returns in ES the code segment of the resident program. See Section 19.7 for in­
formation on this topic. 

De ins tall reads the addresses of the following interrupt handlers from the 
data structure in the resident code segment: 

Handler Name 

Clock 

Keybrd 

KeybrdMonitor 

Video 

DiskIO 

SkipMiscServ 

MiscServ 

Idle 

Multiplex 

Description 

Timer handler 

Keyboard handler (non-PS/2) 

Keyboard monitor handler (PS/2) 

Video monitor handler 

Disk monitor handler 

Miscellaneous Systems Services handler (non-PS/2) 

Miscellaneous Systems Services handler (PS/2) 

DOS Idle handler 

Multiplex handler 

511 



Writing Memory-Resident Software 

512 

De; n s tall calls DOS Function 35h (Get Interrupt Vector) to retrieve the cur­
rent vectors for each of the listed interrupts. By comparing each handler address 
with the corresponding vector, De; nsta 11 ensures that SNAP can be safely 
deinstalled. Failure in any of the comparisons indicates that another TSR has 
been installed after SNAP and has set up a handler for the same interrupt. In this 
case, De; n s tal 1 returns an error code, causing the program to abort with the 
following message: 

Can't deinstall TSR 

If all addresses match, De; nsta11 calls Interrupt 2Fh with SNAP's identity 
number in AH and AL set to 1. The handler M u 1 t; p 1 e x responds by returning 
in ES the address of the resident code's PSP. De; n s ta 11 then calls DOS 
Function 25h (Set Interrupt Vector) to restore the vectors for the original service 
routines. This is called "unhooking" or "unchaining" the interrupt handlers. 

After unhooking all of SNAP's interrupt handlers, De; n s tall returns with 
AX pointing to the resident code's PSP. The procedure FreeTs r then calls 
DOS Function 49h (Release Memory) to return SNAP's memory to the operating 
system. The program terminates with the message 

TSR deinstalled 

to indicate a successful deinstallation. 

Deinstalling SNAP does not guarantee more available memory space for the next 
program. If another TSR loads after SNAP but handles interrupts other than 08, 
09, 10h, 13h, 15h, 28h, or 2Fh, SNAP still deinstalls properly. The result is a 
harmless gap of deallocated memory formerly occupied by SNAP. DOS can use 
the free memory to store the next program's environment block. However, DOS 
loads the program itself above the still-resident TSR. 



Related Topics in Online Help 

19.9 Related Topics in Online Help 
In addition to information covered in this chapter, information on the following 
topics can be found in online help. 

Topic 

DOS and BIOS 
function calls 

Processor Flags 

IN, OUT 

Access 

From the "MASM 6.0 Contents" screen, choose "DOS 
Calls" or "BIOS Calls" from the list of "System 
Resources" 

From the "MASM 6.0 Contents" screen, choose "Lan­
guage Overview" and then choose "Processor Flag 
Summary" 

From the "MASM 6.0 Contents" screen, choose "Pro­
cessor Instructions" and then choose "System and I/O 
Access" 

513 





Chapter 20 

Mixed-language Programming 

Mixed-language programming allows you to combine the unique strengths of 
Microsoft Basic, C, FORTRAN, and Pascal with your assembly-language 
routines. Anyone of these languages can call MASM routines, and you can call 
any of these languages from within MASM routines. This makes virtually all of 
the routines from extensive high-level-language libraries available to a mixed­
language program. 

MASM 6.0 has a number of new features that make the interface in assembly­
language programs similar to the interface in high-level-language programs. For 
example, you can now use the INVOKE directive to call high-level-language pro­
cedures, and the assembler handles the argument-passing details for you. You 
can also use H21NC to translate C header files to MASM include files (see Chap­
ter 16). 

The new mixed-language features do not make the older methods of defining 
mixed-language interfaces obsolete. In most cases mixed-language programs 
written with previous versions of MASM will assemble and link correctly under 
MASM 6.0. (See Appendix A for more information.) 

This chapter explains how to write assembly routines that can be called from 
high-level-language modules and how to call high-level language routines from 
MASM. It assumes that you have a basic understanding of the languages you 
wish to combine and that you already know how to write, compile, and link 
multiple-module programs with these languages. 

This chapter is restricted to MASM's interface with C, Basic, FORTRAN, and 
Pascal; it does not cover mixed-language programming between high-level lan­
guages. The focus in this chapter is the Microsoft versions of C, Basic, 
FORTRAN, Pascal, and QuickPascal, but the same principles apply to other lan­
guages and compilers. The material in Section 7.3 on writing procedures in 
MASM and in Chapter 8 on multiple-module programming explains many of the 
techniques used in this chapter. 

Section 20.1 looks at naming and calling conventions, and Section 20.2 provides 
a template for writing the MASM procedure. Specific implementations of this 
convention in C, Basic, FORTRAN, and Pascal are described in Section 20.3. 
These language-specific sections also provide details on how the language man­
ages various data structures so that your MASM programs are compatible with 
the data from the high-level language. This chapter also contains examples of 
MASM procedures called from C, FORTRAN, Basic, Pascal, and QuickPascal. 

515 



Mixed-language Programming 

20.1 Naming and Calling Conventions 

You can change the default 
calling convention. 

516 

The naming convention specifies the way the compiler or assembler alters the 
name of the routine or identifier before placing it into an object file. Each lan­
guage alters the name of the identifiers. You must be sure that the naming con­
ventions for mixed-language programming are compatible. 

A calling convention specifies the way a language implements a call to a proce­
dure. MASM implements mixed-language calls according to the particular cal­
ling convention specified in the procedure declaration or prototype. 

MASM supports three different calling conventions. The assembler uses the C 
calling convention when the langtype is C or SYSCALL; it uses the Pascal calling 
convention when the langtype is PASCAL, BASIC, or FORTRAN; and it uses the 
STDCALL calling convention when the langtype is STDCALL. To MASM, 
BASIC, PASCAL, and FORTRAN are synonymous when specifying the Pascal 
calling convention for a procedure. 

There are several ways to set the calling convention. Using .MODEL with a 
langtype sets the default for the module. You can also use the OPTION directive 
to do the same. This is equivalent to the IOc or IOd option from the command 
line. Procedure prototypes and declarations can specify a lang type to override the 
default. 

When you write mixed-language routines, the easiest way to ensure calling con­
vention compatibility is to adopt the calling conventions of the language of the 
called procedure. However, Microsoft languages (except QuickPascal) can 
change their calling conventions, so at times you may want to change the calling 
convention to use a particular argument-passing method instead of the defaults 
for a particular language. Section 20.4 explains how to change the calling conven­
tion. The fastcall calling convention is not directly supported by the assembler. 
This section provides more detail on the information summarized in Table 20.1: 



Naming and Calling Conventions 

Table 20.1 Naming and Calling Conventions 

Convention C SYSCALL STDCALL BASIC FORTRAN PASCAL 

Leading X X 
underscore 

Capitalize X X X 
all 

Arguments X X X 
pushed left 
to right 

Arguments X X X 
pushed 
right to left 

Caller stack X * 
cleanup 

:VARARG X X X 
allowed 

* The STDCALL language type uses caller stack cleanup if the: V ARARG parameter is used. Otherwise, the called routine 
must clean up the stack. 

20.1.1 Naming Conventions 
The naming convention determines the way the compiler or assembler stores 
identifiers. If you set the LINK command-line option /N"oI, then the names of 
public variables or called routines are stored differently in the object modules 
being linked. As a result, LINK will not be able to find a match. It will instead re­
port unresolved external references. Therefore, you must use valid identifiers for 
each language and be sure the naming convention for the linked modules is the 
same. 

The C naming convention is used when the langtype is C or STDCALL, the 
SYSCALL naming convention is used when the langtype is SYSCALL, and the 
Pascal naming convention is used when the langtype is PASCAL, BASIC, or 
FORTRAN. The list below describes each convention. For example, assume you 

517 



Mixed-Language Programming 

have a variable named Big Ti me in your source code. The list below shows 
the result of each convention applied to this variable. 

Langtype Specified 

C, STDCALL 

SYSCALL 

PASCAL, FORTRAN, 
BASIC 

Characteristics 

The assembler and the compiler add leading under­
scores to the names seen by the linker. They do not 
translate case. The linker sees the variable as _B i 9 
Time. 

Leaves the name unmodified. The linker sees the 
variable as Big Ti me. 

Converts all names to uppercase. The linker sees the 
variable as BIG TIME. 

20.1.2 The C Calling Convention 
C and SYSCAll are 
identical as calling 
conventions. 

C and SYSCAll allow a 
variable number of 
arguments. 

518 

You must specify the C calling convention for MASM routines that link with C 
modules using the default calling convention. You can change the default calling 
convention for FORTRAN, Basic, and Pascal routines to the C calling conven­
tion, if you prefer. The characteristics of the C calling convention are sum­
marized below. 

Because the C calling convention allows for a variable number of arguments to 
be passed to the procedure, you may want to use this convention when you need 
this flexibility. 

When you specify SYSCALL for the langtype, the C calling convention is used, 
but a leading underscore is not added to the name of the global routine (see the 
next section). SYSCALL is provided for compatibility with system calls in OS/2 
version 2.0. 

Argument Passing With the C calling convention, the caller pushes argu­
ments from right to left. The assembler places arguments on the stack in the 
reverse of the order that they appear in the source code. The first argument is 
lowest in memory (because it is the last argument to be placed on the stack, and 
the stack grows downward). The code to remove arguments from the stack fol­
lows the procedure call, so the caller pops arguments off the stack. 

Register Preservation The called routine should save BP, SI, DI, DS, and 
SS if they are modified. 

Varying Number of Arguments Because the first argument is always the 
last one pushed, it is always on the top of the stack. Thus, it has the same address 
relative to the frame pointer, regardless of how many arguments were actually 
passed. Therefore, calling procedures with a variable number of arguments are 
possible. If the high-level-language procedure uses the C calling convention and 
expects a variable number of arguments, the prototype for the function must end 



Naming and Calling Conventions 

with :VARARG. See Section 7.3.3, "Declaring Parameters with the PROC Direc­
tive," for information on using PROC and INVOKE with VARARG. 

20.1.3 The Pascal Calling Convention 
By default, the FORTRAN, BASIC, and PASCAL langtype select the Pascal cal­
ling convention. This convention pushes arguments left to right so that the last ar­
gument is lowest on the stack, and it requires that the called routine remove 
arguments from the stack. Section 20.3.4 explains the Pascal naming convention. 

Argument Passing Arguments are placed on the stack in the same order in 
which they appear in the source code. The first argument is highest in memory 
(because it is also the first argument to be placed on the stack), and the stack 
grows downward. 

Register Preservation Routines using the Pascal calling convention must 
preserve SI, DI, BP, and DS and not modify SS. (This does not apply to proce­
dures called by QuickPascal. See Section 20.3.5.) For 32-bit code, the EBX, ES, 
FS, and GS registers must be preserved as well as EBP, ESI, and EDI. The direc­
tion flag is also cleared upon entry and must be preserved. 

Varying Number of Arguments Passing a variable number of arguments 
is not possible with the Pascal calling convention. 

20.1.4 The Standard Calling Convention 
The STDCALL calling convention is the same as the C calling convention, with 
the exception that the responsibility for removing arguments from the stack 
belongs to the called routine. The C calling convention is followed exactly if the 
STDCALL procedure also specifies V ARARG, allowing a variable number of par­
ameters. STDCALL is provided for compatibility with 32-bit versions of Micro­
soft compilers which have STDCALL as their default. 

Argument Passing Argument passing order is the same as the C calling con­
vention. The caller pushes the arguments from right to left. Unlike the C calling 
convention, however, the called routine must remove arguments from the stack 
unless the routine uses V ARARG to specify a variable number of arguments, in 
which case the caller removes the parameters from the stack. 

Register Preservation Routines using the STDCALL convention must pre­
serve the same registers required by the C calling convention: BP, SI, DI, DS, 
and SS. The direction flag is also cleared on entry and must be preserved. 

519 



Mixed-language Programming 

Varying Number of Arguments If the routine uses VARARG to specify 
that a variable number of arguments can be passed, the calling routine must re­
move arguments from the stack. 

20.2 Writing the Assembly-Language Procedure 

520 

MASM 6.0 simplifies the coding required for linking MASM routines to high­
level-language routines. You can use the new PROTO directive to write proce­
dure prototypes, and the new INVOKE directive to call external routines. This list 
summarizes the ways MASM simplifies procedure-related tasks. 

• The PROTO directive improves error checking on argument types. 

• INVOKE pushes arguments onto the stack and converts argument types to 
types expected when possible. These arguments can be referenced by their 
parameter label, rather than as offsets of the stack pointer. 

• The LOCAL directive following the PROC statement saves places on the 
stack for local variables. These variables can also be referenced by name, 
rather than as offsets of the stack pointer. 

• PROC sets up the appropriate stack frame according to the processor mode. 

• The USES keyword preserves registers given as arguments. 

• The C calling conventions specified in the PROC syntax allow for a variable 
number of arguments to be passed to the procedure. 

• The RET keyword adjusts the stack upward by the number of bytes in the ar­
gument list, removes local variables from the stack, and pops saved registers. 

• The PROC statement lists parameter names and types. The parameters can be 
referenced by name inside the procedure. 

The complete syntax and parameter descriptions for these procedure directives 
are explained in Section 7.3, "Procedures." This section summarizes information 
from Section 7.3 by giving a template you can use for writing a MASM routine 
to be called from a high-level language. 

The template looks like this: 

Label PROC [distance langtype visibility <prologueargs> USES reglist parmlist] 
LOCAL varlist 

RET 
LabelENDP 



The MASM/High-Level-Language Interface 

Replace the italicized words with appropriate keywords, registers, or variables as 
defined by the syntax in Section 7.3.3, "Declaring Parameters with the PROC 
Directive." 

The distance (NEAR or FAR) and visibility (PUBLIC, PRIVATE, or EXPORT) 
that you give in the procedure declaration override the current defaults. In some 
languages, the model can also be specified with command-line options. 

The langtype determines the calling convention for accessing arguments and re­
storing the stack. See Section 20.1 for information on calling conventions. 

The types for the parameters listed in the parmlist must be given. Also, if any of 
the parameters are pointers, the assembler does not generate code to get the value 
of the pointer references. You must write this code yourself. An example of how 
to do this is in Section 7.3.3. 

If you need to code your own stack-frame setup manually, or if you do not want 
the assembler to generate the standard stack setup and cleanup, see Section 7.3.2, 
"Passing Arguments on the Stack," and, in Section 7.3.8.2, "User-Defined Pro­
logue and Epilogue Code." 

20.3 The MASM/High-Level-Language Interface 

Use INVOKE to call 
high-level-language 
procedures. 

Use H21NC to translate C 
prototypes to MASM. 

Since high-level-language routines require certain program initialization code, 
the main program for a mixed-language program must be written in the high­
level language, or you must add EXTERN A_ACRTUSED to your program to 
force the start-up code from the high-level-language run times to be loaded. Once 
the high-level-language code calls an assembly routine, the assembly routine can 
then call high-level-language routines as needed. 

For procedures with prototypes, INVOKE makes calls from MASM to high-Ievel­
language programs, much like procedure or function calls in the high-level lan­
guage. INVOKE calls procedures and generates the code to push arguments in 
the order specified by the procedure's calling convention and to remove argu­
ments from the stack at the end of the procedure. 

INVOKE can also do some type checking and data conversion for the argument 
types so that the procedure receives compatible data. Section 7.3.6, "Declaring 
Procedure Prototypes," explains how to write procedure prototypes and gives 
several examples of procedure declarations and the corresponding prototypes. 

For programs that mix assembly language and C, the H2INC utility makes it easy 
to write prototypes and data declarations for the C procedures you want to call 
from MASM. H2INC translates the C prototypes and declarations into the corre­
sponding MASM prototypes and declarations, which INVOKE can use to call the 
procedure. Chapter 16 explains how to use H2INC. See Section 20.3.1 for ex­
amples of using H2INC to write prototypes. 

521 



Mixed-Language Programming 

You can also change the 
default argument-passing 
method. 

522 

Mixed-language programming also allows the main program or a routine to use 
external data-data defined in the other module. External data is the data that is 
stored in a set place in memory (unlike dynamic and local data, which is allo­
cated on the stack and heap) and is visible to other modules. 

External data is shared by all routines. One of the modules must define the static 
data, which causes the compiler to allocate storage for the data. The other mod­
ules that access the data must declare the data as external. 

This section describes argument-passing options and the standards for preserving 
registers and pushing addresses that are common to all high-level languages. It 
also explains the two methods that compilers use to store arrays-row-major and 
column-major order. 

Argument Passing 
Each language has its own convention for how an argument is actually passed. If 
the argument-passing conventions of your routines do not agree, then a called 
routine receives bad data. Microsoft languages support three different methods 
for passing an argument: 

• Near reference. Passes a variable's near (offset) address. This address is ex­
pressed as an offset from the default data segment. 

This method gives the called routine direct access to the variable itself. Any 
change the routine makes to the parameter is reflected in the calling routine. 

• Far reference. Passes a variable's far (segmented) address. 

This method is similar to passing by near reference, except that an address 
made up of a segment and an offset is passed, and it is slower. But it is neces­
sary when you pass data that is outside of the default data segment. (This is 
not an issue in Basic or Pascal unless you have specifically requested far 
memory.) 

• Value. Passes only the variable's value, not its address. 

With this method, the called routine gets the copy of the value of the argu­
ment but has no access to the original variable. Changes to a value argument 
have no effect on the value of the argument in the calling routine once the 
routine terminates. 

When you pass arguments between MASM and another language, you need to 
make sure that the called routine and the calling routine use the same method. In 
most cases, you should check the argument-passing defaults used by each lan­
guage and make any necessary adjustments. Most languages have features that 
allow you to change argument-passing methods. 



The MASM/High-Level-Language Interface 

Register Preservation 
A procedure called from any high-level language should preserve the direction 
flag and the values of BP, SI, DI, SS, and DS. Routines called from MASM must 
not alter SI, DI, SS, DS, or BP. 

Pushing Addresses 
Microsoft high-level languages push segment addresses before pushing offsets. 
This facilitates use of the LES and LDS instructions. Furthermore, when pushing 
arguments longer than two bytes, high-order words are always pushed before 
low-order words, and arguments longer than two bytes are stored on the stack 
from most significant to least significant. 

Array Storage 
Most high-level-language compilers store arrays in row-major order. This means 
that all elements of a row are stored consecutively. The first five elements of an 
array with four rows and three columns are stored in row-major order as 

A[l, 1], A[l, 2], A[l, 3], A[2, 1], A[2, 2] 

In column-major order, the column elements are stored consecutively. For ex­
ample, the same array defined above would be stored in column-major order as 

A[l, 1], A[2, 1], A[3, 1], A[4, 1], A[l, 2], A[2, 2] 

20.3.1 The C/MASM Interface 
This section summarizes the details unique to the C and MASM interface. The in­
formation is accurate for Microsoft C 6.0 and QuickC version 2.S. 

With the default naming and calling convention, the assembler (or compiler) 
pushes arguments right to left and adds a leading underscore to routine names. 

Compatible Data Types This list shows the C data types that are equivalent 
to the MASM 6.0 data types. 

C Type Equivalent MASM Type 

unsigned char BYTE 

char SBYTE 

unsigned short, unsigned int WORD 

int, short SWORD 

unsigned long DWORD 

float REAL4 

523 



Mixed-Language Programming 

524 

CType 

long 

double 

long double 

Equivalent MASM Type 

SDWORD 

REAL8 

REALIO 

Naming Restrictions C is case sensitive and does not convert names to up­
percase. Since C normally links with the /NOI command-line option, assemble 
MASM modules with the ICx or ICp option to prevent the assembler from con­
verting names to uppercase. 

Argument-Passing Defaults When the C module is compiled in small or 
medium model and when a distance is not specified, the C compiler passes arrays 
by near reference. In compact, large, or huge model, C arrays are passed by far 
reference (if a distance is not explicitly specified). All other types defined in the 
C module are passed by value. You can pass by reference if you specifically pass 
pointers or addresses. 

Changing the Calling Convention Put _pascal or _fortran in the C func­
tion declaration to specify the Pascal calling convention. 

Equivalent Arrays Array declarations give the number of elements. 
Al [a] [b ] declares a two-dimensional array in C with a rows and b 
columns. By default, the array's lower bound is zero. Arrays are stored by the 
compiler in row-major order. By default, passing arrays from C passes a pointer 
to the first element of the array. 

String Format C stores strings as arrays of bytes and uses a null character as 
the end-of-string delimiter. For example, consider the string declared as follows: 

char msg[] = "string of text" 

The string occupies 15 bytes of memory as: 

/77 7 777 777 

Figure 20.1 C String Format 

Since msg is an array of characters, it is passed by reference. To pass by value, 
declare the string to be a member of a structure and pass the structure. 



External data can be 
accessed directly by other 
modules. 

C structures are 
word-aligned by default. 

Your procedures can also 
return structures. 

The MASM/High-Level-Language Interface 

External Data In C, the extern keyword tells the compiler that the data or 
function is external. You can define a static data object in a C module by defin­
ing a data object outside all functions and subroutines. Do not use the static key­
word in C with a data object that you wish to be public. 

Structure Alignment By default, C uses word alignment (unpacked storage) 
for all data objects longer than one byte. This storage method specifies that oc­
casional bytes may be added as padding, so that word and double word objects 
start on an even boundary. In addition, all nested structures and records start on a 
word boundary. MASM is byte-aligned by default. 

When transferring .H files with H2INC, you can use the /Zp command-line op­
tion to specify structure alignment. If the /Zp option is not specified, H2INC uses 
word-alignment. Without H2INC, set the alignment to 2 when declaring the 
MASM structure, or compile the C module with /Zp I or the MASM module with 
/Zp2. 

Compiling and Linking Use the same memory model for both C and 
MASM. 

Returning Values The assembler returns simple data types in registers. 
Table 20.2 shows the register conventions for returning simple data types to a C 
program. 

Table 20.2 Register Conventions for Simple Return Values 

Data Type Registers 

char AL 

iot, short, near AX 

long, far High-order portion (or segment address) in DX; 
low-order portion (or offset address) in AX 

Procedures using the C calling convention and returning type float or type 
double store their return values into static variables. In multi-threaded programs, 
this could mean that the return value may be overwritten. You can avoid this by 
using the Pascal calling convention for multi-threaded programs so float or 
double values are passed on the stack. 

Structures less than four bytes long are returned in DX:AX. To return a longer 
structure from a procedure that uses the C calling convention, you must copy the 
structure to a global variable and then return a pointer to that variable in the AX 
register (DX:AX, if you compiled in compact, large, or huge model or if the vari­
able is declared as a far pointer). 

525 



Mixed-Language Programming 

526 

Structures, Records, and User-Defined Data Types You can pass 
structures, records, and user-defined types as arguments by value or by reference. 

Writing Procedure Prototypes The H2INC utility simplifies the task of 
writing prototypes for the C functions you want to call from MASM. The C pro­
totype converted by H2INC into a MASM prototype allows INVOKE to correctly 
call the C function. Here are some examples of C functions and the MASM proto­
types created with H2INC. 

1* Function Prototype Declarations to Convert with H2INC *1 

long checktypes ( 
char *name, 
unsigned char a, 
int b, 
float d, 
unsigned int *num ); 

my_func (float fNum, unsigned int x); 

extern my_funcl (char *argv[]); 

struct videoconfig _far * _far pascal my_func2 (int, scri ); 

For the C prototypes above, H2INC generates this code: 

TYPEDEF PROTO C :PTR SBYTE, :BYTE, 
:SWORD, :REAL4, : PTR WORD 

checktypes PROTO @proto_0 

@proto_l TYPEDEF PROTO C : REAL4, :WORD 
my_func PROTO @proto_l 

@proto_2 TYPEDEF PROTO C :PTR PTR SBYTE 
my_funcl PROTO @proto_2 

@proto_3 TYPEDEF PROTO FAR PASCAL :SWORD, : scri 
my_func2 PROTO @proto_3 

Example As shown in the short example below, the main module (written in 
C) calls an assembly routine, Power2. 

#include <stdio.h> 

extern int Power2( int factor, int power ); 

void main() 
{ 

printf( "3 times 2 to the power of 5 is %d\n", Power2( 3, 5 ) ); 



The MASM/High-level-language Interface 

Figure 20.2 shows how functions that observe the C calling convention use the 
stack frame. 

Near Function Call 

High addresses 

Stack grows 
downward with 
each push or call. 

+ 

Low addresses 

Far Function Call 

High addresses 

Stack grows 
downward with 
each push or call. 

+ 

Low addresses 

/ / 

Parameter n (rightmost) 
/ 

'/ 

Parameter 1 (leftmost) 
/ 

Return address (IP) 
/ 

Saved frame pointer (BP) / 

Local data space 
/ 

Saved SI 
/ 

Saved 01 
/ 

/ / 

Parameter n (rightmost) 
V 

V 

Parameter 1 (leftmost) 
V 

Return address (CS) 
V 

Return address (IP) v 
Saved frame pointer (BP) v 

Local data space v 
Saved SI 

/ 

Saved 01 
/ 

Figure 20.2 C Stack Frame 

.- Frame pointer (ap) 
points here. 

.- Stack pointer (SP) 
points to last item 
placed on stack. 

.- Frame pointer (ap) 
points here. 

.- Stack pointer (SP) 
points to last item 
placed on stack. 

527 



Mixed-Language Programming 

The MASM module that contains the Power2 routine looks like this: 

.MODEL small, e 

Power2 PROTO C faetor:SWORD, power:SWORD 
.CODE 

Power2 PROC C faetor:SWORD, power:SWORD 
mov ax, factor Load Argl 
mov ex, power Load Arg2 
shl ax, el AX = AX * 

into AX 
into CX 
(2 to power 

Leave return value in 
ret 

Power2 ENDP 
END 

of CX) 
AX 

The MASM procedure declaration for the Power2 routine specifies the C 
langtype and the parameters expected by the procedure. The langtype specifies 
the calling and naming conventions for the interface between MASM and C. The 
routine is public by default. When the C module calls Power2, it passes two ar­
guments, 3 and 5 by value. 

The C module first defines a prototype for the MASM routine. MASM 6.0 also 
supports prototyping of procedures and functions. See Section 7.3.6, "Declaring 
Procedure Prototypes," and the examples in this section. 

20.3.2 The FORTRAN/MASM Interface 

528 

This section summarizes the specific details important to calling FORTRAN pro­
cedures or receiving arguments from FORTRAN routines that call MASM 
routines. It includes a sample MASM and FORTRAN module. A FORTRAN 
procedure follows the Pascal calling convention by default. This convention 
passes arguments in the order listed, and the calling procedure removes the argu­
ments from the stack. The naming convention determines that exported names 
are uppercase. 



The MASM/High-level-language Interface 

Compatible Data Types This list shows the FORTRAN data types that are 
equivalent to the MASM 6.0 data types. 

FORTRAN Type 

CHARACTER*l 

INTEGER*l 

INTEGER*2 

REAL*4 

INTEGER*4 

REAL*8, DOUBLE PRECISION 

Equivalent MASM Type 

BYTE 

SBYTE 

SWORD 

REAL4 

SDWORD 

REAL4 

Naming Restrictions FORTRAN allows 31 characters for identifier names. 
A digit or an underscore cannot be the first character in an identifier name. 

Argument-Passing Defaults By default, FORTRAN passes arguments by 
reference as far addresses if the FORTRAN module is compiled in large or huge 
memory model. It passes them as near addresses if the FORTRAN module is 
compiled in medium model. Versions of FORTRAN prior to Version 4.0 always 
requires large model. 

The FORTRAN compiler passes an argument by value when declared with the 
VALUE attribute. This declaration can occur either in a FORTRAN INTERFACE 
block (which determines how to pass an argument) or in a function or subroutine 
declaration (which determines how to receive an argument). 

In FORTRAN you can apply the NEAR (or FAR) attribute to reference param­
eters. These keywords override the default. They have no effect when they 
specify the same method as the default. 

Changing the Calling Convention A call to a FORTRAN function or sub­
routine declared with the PASCAL or C attribute passes all arguments by value in 
the parameter list (except for parameters declared with the REFERENCE at­
tribute), This change in default passing method applies to function and sub­
routine definitions as well as to the functions and subroutines described by 
INTERFACE blocks. 

Equivalent Arrays When you declare FORTRAN arrays, you can specify 
any integer for the lower bound (the default is 1). The FORTRAN compiler 

529 



Mixed-Language Programming 

FORTRAN strings do not 
have an end-of-string 
delimiter. 

530 

stores all arrays in column-major order-that is, the leftmost subscript incre­
ments most rapidly. For example, the first seven elements of an array defined as 
A [3 , 4] are stored as 

A[l,l], A[2,1], A[3,1], A[1,2], A[2,2], A[3,2], A[1,3] 

String Format FORTRAN stores strings as a series of bytes at a fixed loca­
tion in memory, with no delimiter at the end of the string. When passing a 
variable-length FORTRAN string to another language, you need to devise a 
method by which the target routine can find the end of the string. 

Consider the string declared as 

CHARACTER*14 MSG 

MSG = 'String of text' 

The string is stored in 14 bytes of memory like this: 

Figure 20.3 FORTRAN Siring Formal 

Strings are passed by reference. Although FORTRAN has a method for passing 
length, the variable-length FORTRAN strings cannot be used in a mixed­
language interface because other languages cannot access the temporary variable 
that FORTRAN uses to communicate string length. However, fixed-length 
strings can be passed if the FORTRAN INTERFACE statement declares the 
length of the string in advance. 

External Data FORTRAN routines can directly access external data. In 
FORTRAN you can declare data to be external by adding the EXTERN attribute 
to the data declaration. You can also access a FORTRAN variable from MASM 
if it is declared in a COMMON block. 

A FORTRAN program can call an external assembly procedure with the use of 
the INTERFACE statement. However, the INTERFACE statement is not strictly 
necessary unless you intend to change one of the FORTRAN defaults. 

Structure Alignment By default, FORTRAN uses word alignment (packed 
storage) for all data objects larger than one byte. This storage method specifies 
that occasional bytes may be added as padding, so that word and doubleword ob­
jects start on an even boundary. In addition, all nested structures and records start 



MASM structures can be 
compatible with FORTRAN 
COMPLEX types. 

The MASM/High-Level-Language Interface 

on a word boundary. MASM's default is byte-alignment, so specify an alignment 
of 2 for MASM structures or use the /Zpl option when compiling in FORTRAN. 

Compiling and linking Use the same memory model for the MASM and 
FORTRAN modules. 

Returning Values You must use a special convention to return floating­
point values, records, user-defined types, arrays, and values larger than four bytes 
to a FORTRAN module from an assembly procedure. The FORTRAN module 
creates space in the stack segment to hold the actual return value. When the call 
to the assembly procedure is made, an extra parameter is passed. This parameter 
is the last one pushed. The segment address of the return value is contained 
in SS. 

In the assembly procedure, put the data for the return value at the location 
pointed to by the return value offset. Then copy the return-value offset (located at 
BP + 6) to AX, and copy SS to DX. This is necessary because the calling module 
expects DX:AX to point to the return value. 

Structures, Records, and User-Defined Data Types The FORTRAN 
structure variable, defined with the STRUCTURE keyword and declared with the 
RECORD statement, is equivalent to the Pascal RECORD and the C struct. You 
can pass structures as arguments by value or by reference (the default). 

The FORTRAN types COMPLEX*8 and COMPLEX*16 are not directly imple­
mented in MASM. However, you can write structures that are equivalent. The 
type COMPLEX*8 has two fields, both of which are four-byte floating-point 
numbers; the first contains the real component, and the second contains the imagi­
nary component. The type COMPLEX is equivalent to the type COMPLEX*8. 

The type COMPLEX*16 is similar to COMPLEX*8. The only difference is that 
each field of the former contains an eight-byte floating-point number. 

A FORTRAN LOGICAL*2 is stored as a one-byte indicator value (1=true, 
O=false) followed by an unused byte. A FORTRAN LOGICAL*4 is stored as a 
one-byte indicator value followed by three unused bytes. The type LOGICAL is 
equivalent to LOGICAL*4, unless $STORAGE:2 is in effect. 

To pass or receive a FORTRAN LOGICAL type, declare a MASM structure with 
the appropriate fields. 

Varying Number of Arguments In FORTRAN, you can call routines with 
a variable number of arguments by including the VARYING attribute in your in­
terface to the routine, along with the C attribute. You must use the C attribute be­
cause a variable number of arguments is possible only with the C calling 
convention. The VARYING attribute prevents FORTRAN from enforcing a 
matching number of parameters. 

531 



Mixed-Language Programming 

LOCNEAR and LOCFAR 
determine addresses. 

532 

Pointers and Addresses FORTRAN programs can determine near and far 
addresses with the LOCNEAR and LOCF AR functions. Store the result as 
INTEGER*2 (with the LOCNEAR function) or as INTEGER*4 (with the 
LOCF AR function). If you pass the result of LOCNEAR or LOCF AR to another 
language, be sure to pass by value. 

Example In the following example, the FORTRAN module calls an assembly 
procedure that calculates A*2 A B, where A and B are the first and second para­
meters, respectively. This is done by shifting the bits in A to the left B times. 

INTERFACE TO INTEGER*2 FUNCTION POWER2(A, B) 
INTEGER*2 A, B 
END 

PROGRAM MAIN 
INTEGER*2 POWER2 
I NTEGER*2 A, B 
A = 3 
B = 5 
WRITE (*, *) '3 TIMES 2 TO THE B OR 5 IS ',POWER2(A, B) 
END 

To understand how to write the assembly procedure, consider how the param­
eters are placed on the stack, as illustrated in Figure 20.4. 

/ 

Arg 1 segment 
A 

Arg 1 offset 

Arg 2 segment 

Arg 2 offset 

Stack grows 
downward with B 
each push or call. 

+ Return address 
(4 bytes) 

Saved BP 

Figure 20.4 FORTRAN Stack Frame 

/ 

v 

V 

V 

V 

High addresses 

BP+12 

..- BP+10 

BP+8 

BP+4 

..- BP 

Low addresses 

Figure 20.4 assumes that the FORTRAN module is compiled in large model. If 
you compile the FORTRAN module in medium model, then each argument is 
passed as a two-byte, not four-byte, address. The return address is four bytes long 
because procedures called from FORTRAN must always be FAR. 



The MASM/High-Level-Language Interface 

The assembler code looks like this: 

.MODEL LARGE, FORTRAN 

Power2 PROTO FORTRAN, faetor:FAR PTR SWORD, power:FAR PTR SWORD 

.CODE 

Power2 PROC FORTRAN, faetor:FAR PTR SWORD, power:FAR PTR SWORD 

1 es bx, factor 
mov ax, ES:[bx] 
les bx, power 
mov ex, ES:[bx] 
shl ax, el 
ret 

Power2 ENDP END 

20.3.3 The Basic/MASM Interface 
This section explains how to call MASM procedures or functions from Basic and 
how to receive Basic arguments for the MASM procedure. Pascal is the default 
naming and calling convention, so all lowercase letters are converted to upper­
case. Routines defined with the FUNCTION keyword return values, but routines 
defined with SUB do not. Basic DEF FN functions and GOSUB routines cannot 
be called from another language. 

The information provided pertains to Microsoft's Basic and QuickBasic com­
pilers. Differences between the two compilers are noted when necessary. 

Compatible Data Types The list shows the Basic data types that are equiv­
alent to the MASM 6.0 data types. 

Basic Type 

STRING*l 

INTEGER (X%) 

SINGLE (X!) 

LONG (X&), 
CURRENCY 

DOUBLE (X#) 

Equivalent MASM Type 

WORD 

SWORD 

REAL4 

SDWORD 

REAL8 

Naming Conventions Basic recognizes up to 40 characters of a name. In 
the object code, Basic also drops any of its reserved characters: %, &, !, #, @, &. 

533 



Mixed-Language Programming 

Basic stores arrays in 
column-major order. 

534 

Argument-Passing Defaults Basic can pass data in several ways and can 
receive it by value or by near reference. 

By default, Basic arguments are passed by near reference as two-byte addresses. 
To pass a near address, pass only the offset; if you need to pass a far address, 
pass the segment and offset separately as integer arguments. Pass the segment 
address first, unless you have specified C compatibility with the CDECL 
keyword. 

Basic passes each argument in a call by far reference when CALLS is used to in­
voke a routine. You can also use SEG to modify a parameter in a preceding 
DECLARE statement so that Basic passes that argument by far reference. 

To pass a Basic argument by value, apply the BYV AL keyword to the argument 
in the DECLARE statement. Arrays and user-defined types cannot be passed by 
value. 

DECLARE SUB Test(BYVAL a%, b%, SEG c%) 

CALL Test(x%, y%, z%) 

CALLS Test(x%, y%, z%) 

The CALL statement above passes the first argument (a %) by value, the second 
argument (b%) by near reference, and the third argument (c%) by far reference. 
Thestatement CALLS Test2(x%, y%, z%) passeseachargumentbyfar 
reference. 

Changing the Calling Convention Including the CDECL keyword in the 
Basic DECLARE statement enables the C calling and naming convention. This 
also allows a call to a MASM procedure with a varying number of arguments. 

Equivalent Arrays The DIM statement sets the number of dimensions for a 
Basic array and also sets the array's maximum subscript value. In the array decla­
ration 0 I M x ( a , b ) , the upper bounds (the maximum number of values 
possible) of the array are a and b. The default lower bound is O. The default 
upper bound for an array subscript is 10. 

The default for column storage in Basic is column-major order, as in FORTRAN. 
For an array defined as 0 I MAr r% ( 3 ,3 ), reference the last element as 
A r r% ( 3 ,3). The first five elements of A r r (3,3) are 

Arr(0,0), Arr(1,0), Arr(2,0), Arr(0,1), Arr(l,l) 

When you pass an array from Basic to a language that expects arrays to be stored 
in row-major order, use the command-line option /R when compiling the Basic 
module. 

Most Microsoft languages permit you to reference arrays directly. Basic uses an 
array descriptor, however, which is similar in some respects to a Basic string 



To pass arrays to MASM, 
you need to follow 
several rules. 

Basic's string descriptors 
are not compatible with 
the string formats of other 
languages. 

The MASM/High-Level-Language Interface 

descriptor. The array descriptor is necessary because Basic may shift the 
location of array data in memory; Basic handles memory allocation for arrays 
dynamically. 

A reference to an array in Basic is really a near reference to an array descriptor. 
Array descriptors are always in DGROUP, even though the data may be in far 
memory. Array descriptors contain information about type, dimensions, and 
memory locations of data. You can safely pass arrays to MASM routines only if 
you follow three rules: 

• Pass the array's address by applying the VARPTR function to the first ele­
ment of the Basic array and passing the result by value. To pass the far 
address of the array, apply both the VARPTR and VARSEG functions and 
pass each result by value. The receiving language gets the address of the first 
element and considers it to be the address of the entire array. It can then 
access the array with its normal array-indexing syntax. 

• If the MASM routine that receives the array makes a call back to Basic, then 
the location of the array data may change, and the address that was passed to 
the routine will be meaningless. 

• Basic can pass any member of an array by value. When passing individual 
array elements, the above restrictions do not apply. 

You can apply LBOUND and UBOUND to a Basic array to determine lower and 
upper bounds, and then pass the results to another routine. This way, the size of 
the array does not need to be determined in advance. 

String Format Strings are stored in Basic as four-byte string descriptors, as 
shown below. The first field of the string descriptor contains a two-byte integer 
indicating the length of the actual string text. The second field contains the 
address of this text. 

String length (two bytes) Address (relative to DS) 

Figure 20.5 Basic String Descriptor Format 

This address is an offset into the default data area and is assigned by Basic's 
string-space management routines. These management routines need to be availa­
ble to reassign this address whenever the length of the string changes, yet these 
management routines are available only to Basic. Therefore, your MASM proce­
dure should not alter the length of a Basic string. 

535 



Mixed-Language Programming 

MASM can access data 
declared with a COMMON 
statement. 

Use medium memory 
model with Basic. 

536 

Prior to version 7.0 of the Microsoft Basic Compiler, there are two ways to pass 
strings: 

1. Pass the address of the Basic string data to the other language 

2. Mimic the form of the Basic string descriptor in the other language, then use 
that to access the string as Basic would access one of its own strings 

NOTE Version 7.0 of the Microsoft Basic Compiler provides new functions that access the 
string descriptors and allow simplified string passing between Basic and other languages. 
Follow the instructions in the Basic documentation. 

The routine that receives the string must not call any Basic routine. If it does, 
Basic's string -space management routines may change the location of the string 
data without warning. 

The SADD function returns the address of a specified string variable. Basic 
should pass the result of the SADD function by value. Bear in mind that the 
string's address, not the string itself, is passed by value. This amounts to passing 
the string itself by reference. The Basic module passes the string address, and the 
other module receives the string address. The address returned by SADD is de­
clared as type INTEGER but is actually equivalent to a C near pointer or Pascal 
ADR variable. 

To return the far address of a string variable, version 7.0 (or later) of Basic pro­
vides the SSEGADD function. See your Basic documentation. 

External Data Variables can be global to modules in a Basic program by de­
claring them with the COMMON statement. Global variables do not require any 
additional declarations to be used by MASM procedures. 

Structure Alignment Basic packs user-defined types. For MASM structures 
to be compatible, select byte-alignment. 

Compiling and Linking Always assemble the MASM module with medium 
model when you are linking to Basic. If you are listing other libraries on the 
LINK command line, specify Basic libraries first. (There are differences between 
the QBX and command-line compilation. See your Basic documentation.) 

Returning Values Basic follows the usual convention of returning values in 
AX or DX:AX. If the value is not floating point, an array, or a structured type, or 
if it is less than 4 bytes long, then the two-byte integers should be returned from 
the MASM procedure in AX and four-byte integers should be returned in 
DX:AX. For all other types, return the near offset in AX. 

User-Defined Data Types The Basic TYPE statement defines structures 
composed of individual fields. These types are equivalent to the C struct, 



The MASM/High-Level-Language Interface 

FORTRAN record (declared with the STRUCTURE keyword), and Pascal 
Record types. 

You can use any of the Basic data types except variable-length strings or dy­
namic arrays in a user-defined type. Once defined, Basic types can be passed 
only by reference. 

Varying Number of Arguments You can vary the number of arguments in 
a Basic routine only when you use CDECL to change the calling convention. To 
call a function with a varying number of arguments, you also need to suppress 
the type-checking that normally forces a call to be made with a fixed number of 
arguments. In Basic, you can remove this type checking by omitting a parameter 
list from the DECLARE statement. 

Pointers and Addresses VARSEG accesses a variable's segment address, 
and VARPTR accesses a variable's offset address. The values returned by these 
intrinsic Basic functions should then be passed or stored as ordinary integer varia­
bles. Pass segment addresses first unless your procedure specifies the cdecl cal­
ling convention. If you pass them to MASM procedures, pass by value. 
Otherwise you are attempting to pass the address of the address, rather than the 
address itself. 

Example This example calls the Power2 procedure in the MASM 6.0 
module. 

DEFINT A-Z 

DECLARE FUNCTION Power2 (A AS INTEGER, B AS INTEGER) 
PRINT "3 times 2 to the power of 5 is "; 
PRINT Power2(3, 5) 

END 

The first argument, A, is higher in memory than B because Basic pushes argu­
ments in the same order in which they appear. 

537 



Mixed-Language Programming 

Figure 20. 6 shows how the arguments are placed on the stack: 

Stack grows 
downward with 
each push or call. 

+ 

A 

B 

/ 

Arg 1 address 

Arg 2 address 

Return address 
(4 bytes) 

Saved BP 

Figure 20.6 Basic Stack Frame 

High addresses 
/ 

/ 

/ 

/ 

/ 

Low addresses 

The assembly procedure can be written as follows: 

.MODEL medium 

Power2 PROTO PASCAL, Factor:PTR WORD, Power:PTR WORD 
.CODE 

Power2 PROC PASCAL, Factor:PTR WORD, Power:PTR WORD 

mov bx, WORD PTR Factor Load Factor into 
mov ax, [bx] AX 
mov bx, WORD PTR Power Load Power into 
mov ex, [bx] CX 
sh1 ax, c1 AX = AX * (2 to power 

of CX) 
ret 

Power2 ENDP 
END 

Note that each parameter must be loaded in a two-step process because the 
address of each is passed rather than the value. The return address is four bytes 
long because procedures called from Basic must be FAR. 

20.3.4 The Pascal/MASM Interface 

538 

This section summarizes details important to calling Microsoft Professional Pas­
cal, Version 4.0, routines from MASM and MASM routines from Pascal. It in­
cludes information on parameters and data types specific to Pascal source 
modules. The information in this section does not apply to QuickPascal (see Sec­
tion 20.3.5 for that). 

The Pascal calling convention-the default-places arguments on the stack in 
the same order in which they appear in the Pascal source code. The first 



The default for Pascal is 
passing by value. 

Pascal routines can use 
the C calling convention. 

The MASM/High-level-language Interface 

argument is highest in memory because it is also the first argument to be placed 
on the stack, and the stack grows downward. The default naming convention ex­
ports names in uppercase. 

Compatible Data Types This list shows the Pascal types that are equivalent 
to the MASM 6.0 data types. 

Pascal Type Equivalent MASM Type 

BYTE, CHAR, BOOLEAN BYTE 

WORD WORD 

INTEGER2 SWORD 

REAL,REAL4 REAL4 

INTEGER4 SDWORD 

REAL8 REAL8 

Naming Restrictions Microsoft Pascal Version 4.0 recognizes only the 
first 8 characters of any name, while the assembler recognizes the first 256. 
Names used publicly with Pascal should not be longer than 8 characters. 

Argument-Passing Defaults By default, Pascal arguments are passed by 
value, but they can be passed by near reference when declared as V AR or CONST 
and as far reference when declared as V ARS or CONSTS. A V ARS or CONSTS ar­
gument includes both a two-byte segment address and a two-byte offset with the 
segment pushed first. 

Pascal arguments are also passed by near (or far) reference when the ADR (or 
ADS) of a variable, or a pointer to a variable, is passed by value. In other words, 
the address of the variable is first determined. Then this address is passed by 
value. 

Changing the Calling Convention To use the C calling convention from 
Pascal, type [C ] at the end of the declarations before the semicolon, as shown: 

Procedure MyProc ( x : integer) [C]; EXTERN; 

Equivalent Arrays The lower bound for Pascal arrays can be any integer. 
Subscripts vary in row-major order. 

String Format Pascal has two types of strings, each of which uses a different 
format: a fixed-length type STRING and the variable-length type LSTRING. 

539 



Mixed-Language Programming 

Pascal strings store the 
string length in the first 
byte. 

540 

The format used for STRING is identical to that of the FORTRAN string.The for­
mat of an LSTRING stores the length in the first byte. For example, consider an 
LSTRING declared as 

VAR Msg:LSTRING(14); 
Msg := 'String of text' 

The string is stored in 15 bytes of memory. The first byte indicates the length of 
the string text. The remaining bytes contain the string text itself: 

Figure 20.7 Pascal String Format 

The Pascal data type LSTRING is not compatible with the formats used by the 
other languages. You can pass an LSTRING indirectly, however, by first assign­
ing it to a STRING variable. Pascal supports such assignments by performing a 
conversion of the data. 

Pascal passes an additional two-byte argument that indicates string length when­
ever you pass an argument of type STRING or LSTRING. To suppress the pass­
ing of this additional argument, declare a fixed-length type. 

External Data Pascal routines can directly access external data. You can de­
clare data as external by adding the EXTERN attribute to the data declaration. 

Structure Alignment Pascal uses word alignment (unpacked storage) for all 
data objects larger than one byte. In addition, all nested structures and records 
start on a word boundary. You can tum on packing for Pascal modules, or you 
can define structures in MASM to have 2 for their alignment value. 

Compiling and linking Always use large model for the MASM module 
when linking with Pascal. 

Returning Values Functions that return REAL, REAL4, or REAL8 values 
use the long return method; that is, the caller passes an additional, hidden offset 
of a temporary stack variable that will receive the result. 

INVOKE cannot handle long return values directly, but you can add an additional 
parameter to the prototype for the Pascal procedure. For example, a prototype 
for a Pascal procedure that expects an SWORD argument looks like this: 

PascalProc PROTO Pascal argl:SWORD, PtrRetVal:NEAR PTR 



Use the C and VARYING 
attributes for routines that 
will receive a variable 
number of arguments. 

The MASM/High-level-language Interface 

Before calling the Pascal procedure with INVOKE, allocate space on the 
stack with 

add sp, space 
mov ex, sp 
INVOKE PascalProc, ax, ex 

sub sp, space 

These statements place the address of the allocated space in CX. 

Since calls to Pascal procedures must be made from within a MASM procedure 
previously called from the Pascal module, an alternative way to handle a long re­
turn value is to create a local variable to receive the return value. This example 
illustrates this technique: 

Proc1 PROC argl:SWORD 
LOCAL RetVal :REAL8 
INVOKE PascalProc, ax, ADDR RetVal 

To return structures from MASM using the Pascal calling convention, the calling 
program allocates space for the return value on the stack and passes a pointer (as 
a hidden argument) to the location where the return value is to be placed. Copy 
the MASM structure into the location pointed to by the hidden argument and re­
turn the pointer to that location in the AX register (or DX:AX for far data 
models). 

Varying Number of Arguments In Pascal, you can call routines with a 
variable number of arguments by including the VARYING attribute in your inter­
face to the routine, along with the C attribute. You must use the C attribute for 
the Pascal routine, because a variable number of arguments is possible only with 
the C calling convention. 

Each time you call the routine, you will not be required to pass the same number 
of arguments as are declared in the interface to the routine. However, each actual 
argument that you pass will be type-checked against whatever formal parameters 
you may have declared. 

Structures, Records, and User-Defined Types You can pass Pascal 
structures, records, and user-defined types as arguments by value or by reference 
depending on the size of the data. 

Pointers and Addresses The Pascal ADR and ADS types are equivalent to 
the C near and far pointers. You can pass ADR and ADS variables as ADRMEM 
or ADSMEM. 

541 



Mixed-Language Programming 

542 

Exa m pie This example shows the Power 2 procedure as it is called by 
Pascal. 

Program Asmtest( input, output ); 
function Power2( a:integer; b:integer ): integer; extern; 
begin 

writeln( '3 times 2 to the power of 5 is " Power2( 3, 5 ) ); 
end. 

To understand how to write the assembly procedure, consider how the arguments 
are placed on the stack, as illustrated in Figure 20.8. 

Stack grows 
downward with 
each push or call. 

+ 

A 

B 

/ 

Arg 1 address 

Arg 2 address 

Return address 
(4 bytes) 

Saved BP 

Figure 20.8 Pascal Stack Frame 

High addresses 

/ 

/ 

/ 

/ 

Low addresses 

The first argument, 3, is higher in memory than 5 because Pascal pushes argu­
ments in the same order they appear. Both arguments are passed by value. 

The MASM 6.0 module can be written as follows: 

.MODEL medium, PASCAL 

.386 
Power2 PROTO PASCAL factor:WORD, power:WORD 

.CODE 

Power2 PROC factor:WORD, power:WORD 

mov ax, factor Load Factor into AX 
mov cx, power Load Power into CX 
shl ax, cl AX = AX * (2 to power 
ret Leave return value in 

Power2 ENDP 
END 

of CX) 
AX 

The AX and ex registers can be loaded directly because the arguments are 
passed by value. 



The MASM/High-Level-Language Interface 

20.3.5 The QuickPascal/MASM Interface 

By default, Pascal passes 
arguments by value. 

The QuickPascal implementation of Pascal uses several data types and defaults 
that are different from version 4.0 of the Microsoft Pascal compiler. This section 
summarizes the techniques for calling MASM procedures from QuickPascal and 
for accessing QuickPascal data and routines from MASM. The following infor­
mation also applies to other compilers that are compatible with QuickPascal. 

The Pascal calling convention pushes arguments in the order listed and exports 
identifiers in uppercase. 

Compatible Data Types This list gives the QuickPascal data types that are 
equivalent to the MASM 6.0 data types. 

QuickPascal Type Equivalent MASM Type 

Char, Boolean BYTE 

Byte, ShortInt SBYTE 

Word WORD 

Integer SWORD 

Single REAL4 

LongInt SDWORD 

Real FWORD 

Comp, Double REAL8 

Extended REALIO 

Naming Restrictions The first 63 characters of QuickPascal identifiers are 
significant. Identifiers are not case sensitive and the first character must be a let­
ter or an underscore character C). Digits can be used in the indentifier's name. 

Register Preservation Procedures called by QuickPascal must preserve the 
values of the BP, SP, SS, and DS registers. BP and SP are preserved by standard 
entry and exit code. If you need to alter DS or SS, you must preserve the current 
values. 

Argument-Passing Defaults When an argument is passed by value, 
QuickPascal takes different actions depending on the data type and size. This 

543 



Mixed-Language Programming 

544 

convention for value parameters is not shared by other Microsoft high-level lan­
guages, which always push arguments passed by value directly onto the stack. 

• Enumerated type arguments are passed as unsigned bytes if the enumeration 
has 256 or fewer values; otherwise they are passed as an unsigned word. 

• Types Single (4 bytes), Real (6 bytes), Double (8 bytes), Comp (8 bytes), 
and Extended (10 bytes) are passed on the stack. 

• Pointer types are passed as doublewords. The segment is pushed before the 
offset so the offset is lowest in memory. 

• If the value parameter is Char, Boolean, any pointer, any Integer, or any 
floating-point type, QuickPascal pushes the argument onto the stack. 

• If the argument is a string or set type, QuickPascal passes a pointer to the 
data. This action is really the same as passing by reference. If you want to 
avoid any possibility of altering the data, make a temporary copy of the data 
and then work with the temporary data. 

• If the argument is an array or record type and if it is not more than four bytes 
long, QuickPascal pushes the variable directly onto the stack. Otherwise, it 
pushes a pointer to the data. 

When an argument is passed by reference, QuickPascal pushes a four-byte 
pointer to the data. The offset portion of the pointer is always pushed first and is 
therefore higher in memory. 

Changing the Calling Convention QuickPascal supports only the Pascal 
calling convention. 

Equivalent Arrays Arrays are stored in row-major order. Arrays (and re­
cords with one, two, or four bytes) are passed directly on the stack. 

String Format In the STRING format, the first byte of the string stores the 
string length. In the CSTRING format, there is no length indicator and there is a 
terminating null byte. 

External Data You cannot declare public data in a data segment of the 
MASM module for the QuickPascal module to reference. QuickPascal can use 
private, static data in MASM modules; however, the data declared in the MASM 
module must be initialized with ? MASM can reference data in a QuickPascal 
unit. 

Structure Alignment QuickPascal records are byte-aligned. 



You do not need to use 
LINK or any other utility to 
produce executable files. 

The MASM/High-Level-Language Interface 

Compiling and Linking For QuickPascal to access an assembled MASM 
module (named MASMMOD.OBJ), include this line at the beginning of your 
QuickPascal program: 

{$L QPEX.OBJ} 

QuickPascal sets up the link to the MASM module by copying the MASM object 
file into the program and changing the file into its own internal object-code for­
mat. The disk-based object file is left unchanged. 

Returning Values To return a value to a QuickPascal module, follow these 
conventions: 

• For a String, CSTRING, Comp, or floating-point type other than Real, Quick­
Pascal passes an additional argument. This argument is pushed first and is a 
pointer to a temporary storage location. The function must place the result of 
the function in this location and not remove this pointer. 

• For ordinal types, (including Char, Boolean, and any integer), place the re­
sult in AL if one byte, in AX if two bytes, and in DX:AX if a doubleword (in 
which DX holds the most-significant byte). 

• QuickPascal does not support functions that return array or record types. 
However, you can set the value of an array or record if QuickPascal passes it 
as a V AR parameter. 

Example This example includes a Pascal program to call the assembly mod-
ule Power2. 

{$L QPEX.OBJ} 

program Asmtest( input, output ); 
function POWER2( factor:integer; power:integer ): integer; external; 
begin 

writeln( '3 times 2 to the power of 5 is " POWER2( 3,5) ); 

end. 

This is the assembly module to be called from the Pascal program. 

Power2 PROTO PASCAL factor:WORD, power:WORD 

CODE SEGMENT WORD PUBLIC 
ASSUME CS:CODE 

545 



Mixed-Language Programming 

Power2 PROC PASCAL factor:WORD, power:WORD 

mov ax, factor Load factor into AX 
mov cx, power Load power into CX 
s h 1 ax, cl AX = AX * (2 to power of CX) 

Leave return value in AX 
ret 

Power2 ENDP 

CODE ENDS 
END 

You cannot use the jZi command-line option when assembling a module to be 
called from QuickPascal. 

20.4 Related Topics in Online Help 

546 

Other information available online which relates to topics in this chapter is listed 
below: 

Topic 

/NOI Linker option 

PROC, LOCAL, 
INVOKE, LABEL 

H2INC 

STRUCT 

EXTERN, 
EXTERNDEF, PUBLIC 

USES, RET, VARARG 

Access 

From the list of Utilities on the "Microsoft Advisor 
Contents" screen, choose "LINK"; then choose 
"LINK Options" 

From the "MASM 6.0 Contents" screen, choose 
"Directives"; then choose "Procedures and Code 
Labels" 

From the "ML Contents" screen, choose "H2INC 
Utility" 

From the "MASM 6.0 Contents" screen, choose 
"Directives"; then choose "Complex Data Types" 

From the "MASM 6.0 Contents" screen, choose 
"Directives"; then choose "Scope and Visibility" 

From the MASM Index, select PROC 



Appendixes 

A Differences between MASM 6.0 and 5.1 ......... 549 

B BNF Grammar ........................................ 585 

C Generating and Reading Assembly Listings ..... 605 

D MASM Reserved Words ............................ 615 

E Default Segment Names ............................ 625 

F Error Messages ...................................... 629 





Appendix A 

Differences between MASM 6.0 and 5.1 

Version 6.0 of the Microsoft Macro Assembler contains significant changes over 
previous versions. Some of these changes include: 

• An environment called Programmer's WorkBench (PWB) from which you 
can write, edit, debug, and execute code 

• Expanded functionality for structures, unions, and type definitions 

• New directives for generating loops and decision statements, and for declar­
ing and calling procedures 

• Simplified methods for applying public attributes to variables and routines in 
multiple-module programs 

• Enhancements for writing and using macros 

• Flat-model support for OS/2 version 2.0 and new instructions for the 80486 
processor 

Section A.1 describes the new features of MASM 6.0. The appendix does not go 
into great detail about the new features, but it does provide references to the infor­
mation presented elsewhere in the MASM 6.0 documentation. For full explana­
tions and coding examples, see the documentation listed in the cross-references. 

Section A.2 discusses compatibility with MASM 5.1. To get your MASM 5.1 
code running under MASM 6.0 using OPTION M510 (or the /Zm command-line 
option), see Section A.2.1, "Rewriting Code for Compatibility." To remove 
OPTION M510 (or /Zm) from your code, see Section A.2.2, "Using the OPTION 
Directive." 

A.1 New Features of Version 6.0 
MASM 6.0 contains many new features. This section briefly describes each one. 
Some new features, such as the new behavior of structures, also allow you to 
select compatibility options. These features are also discussed in Section A.2, 
"Compatibility between MASM 5.1 and 6.0." 

549 



Differences between MASM 6.0 and 5.1 

A.1.1 The Assembler, Environment, and Utilities 

550 

Most of the executable files provided with MASM 6.0 are new or revised. For a 
complete list of these files, read the PACKING.LST file on the distribution disk. 
The book Installing and Using the Professional Development System also pro­
vides more information about setting up the environment, assembler, and online 
help system. 

The Assembler The macro assembler, now named ML.EXE, is capable of 
assembling and linking in one step. The command-line options are completely 
new. For example, the new fEP option produces a listing file during the assem­
bler's first pass. Command-line options now are case-sensitive and must be sepa­
rated by spaces. 

For backward compatibility with version 5.1 makefiles, a MASM.EXE utility is 
included. When you run MASM.EXE, it translates version 5.1 command-line 
options to the new version 6.0 command-line options and calls ML.EXE. See the 
Microsoft Macro Assembler Reference for details. 

H21NC H21NC converts C include files to MASM include files. It translates 
data structures and declarations but does not translate executable code. For more 
information, see Chapter 16, "Converting C Header Files to MASM Include 
Files." 

N MAKE NMAKE is the new version of the MAKE utility. NMAKE provides 
new functionality in evaluating target files and more flexibility with macros and 
command-line options. For more information, see Chapter 10, "Managing Pro­
jects with NMAKE." 

Integrated Environment PWB is an integrated environment for writing, 
developing, and debugging programs. See Installing and Using for information 
on using PWB, and the Reference for information on command-line options. See 
also Chapter 14, "Customizing the Microsoft Programmer's WorkBench," and 
Chapter 15, "Debugging Assembly-Language Programs with CodeView." 

Online Help The Microsoft Advisor online help system has been added 
to MASM 6.0. It provides a vast database of online help about all aspects of 
MASM, including the syntax and timings for processor and coprocessor instruc­
tions, MASM directives, command-line options, and support programs such as 
LINK and PWB. 

See Installing and Using, Chapter 4, for information on how to set up the 
help system. You can invoke the help system from within PWB or from the 
QuickHelp program (QH). 



New Features of Version 6.0 

HELPMAKE You can use the HELPMAKE utility to create additional help 
files from ASCII text files, allowing you to customize the online help system. For 
more information, see Chapter 11, "Creating Help Files with HELPMAKE." 

Other Programs MASM 6.0 contains the most recent versions of LINK, 
LIB, BIND, CodeView, and the mouse driver. The CREF program is not in­
cluded in MASM 6.0. The Source Browser provides the information that CREF 
provided under MASM 5.1. For more information on the source browser, see 
Chapter 3 of Installing and Using the Professional Development System or online 
help. 

A.1.2 Segment Management 
This section lists the changes and additions to memory-model and operating­
system support as well as to directives that relate to these topics. 

New Predefined Symbols The following new predefined symbols (also 
called predefined equates) provide information about simplified segments: 

Predefined Symbol 

@stack 

@Interface 

@Model 

@Line 

@Date 

@FileCur 

@Time 

@Environ 

Value 

DGROUP for near stacks, STACK for far stacks 

Information about language parameters 

Information about the current memory model 

The source line in the current file 

The current date 

The current file 

The current time 

The current environment variables 

For more information, see Section 1.2.3, "Predefined Symbols," or online help. 

Enhancements to the ASSUME Directive MASM automatically gen­
erates ASSUME values for the code segment register (CS) when a segment is 
opened. It is no longer necessary to include lines such as 

ASSUME CS:MyCodeSegment 

in your programs. In addition, the ASSUME directive can now include ERROR, 
FLAT, or register:type. Generating ASSUME values for the code segment reg­
ister CS to be other than the current segment or group is no longer valid. 

551 



Differences between MASM 6.0 and 5.1 

A.1.3 Data Types 

552 

For more information, see Sections 2.3.3, "Setting the ASSUME Directive for 
Segment Registers," and 3.3.2, "Defining Register Types with ASSUME." 

Relocatable Offsets For compatibility with Windows programs, the new 
LROFFSET operator can calculate a relocatable offset, which is resolved by the 
loader at run time. See online help for details. 

Flat Model In the flat memory model (available only in version 2.0 of OS/2), 
segments may be as large as four gigabytes because offsets contain 32 bits in­
stead of 16. Segments are limited to 64K in all other memory models supported 
by DOS and earlier versions of OS/2. Version 2.0 of OS/2 runs only on 
80386/486 processors. For more information about memory models, see Section 
2.2.1, "Defining Basic Attributes with . MODEL. " 

Operating Systems Support Specifying the new OS_OS2 or OS_DOS key­
words in the .MODEL statement allows the new .STARTUP directive to generate 
start-up code appropriate for the language and operating system. The new .EXIT 
directive generates the appropriate exit code. 

Section 2.2.1, "Defining Basic Attributes with .MODEL," provides more infor­
mation on specifying an operating system. Also see Section 2.2.6, "Starting and 
Ending Code with .STARTUP and .EXIT." 

MASM 6.0 introduces an entirely new concept of data typing for assembly lan­
guage. This section summarizes new and changed features relating to data decla­
rations in MASM 6.0. 

Defining Typed Variables You can now use the type names as directives 
to define variables. Initializers are unsigned by default. The following are 
equivalent: 

varl 
varl 

DB 
BYTE 

25 
25 

Signed Types You can use the new SBYTE, SWORD, and SDWORD direc­
tives to declare signed data. See Section 4.1.1, "Allocating Memory for Integer 
Variables." 

Floating-Point Types MASM 6.0 also introduces new directives for declar­
ing floating-point variables, REAL4, REAL8, and REALIO. See Section 6.1.1, 
"Declaring Floating-Point Variables and Constants," for information on these 
new type directives. 



New Features of Version 6.0 

Qualified Types NIASM 6.0 allows type definitions to include distance and 
language type attributes. Procedures, procedure prototypes, and external declara­
tions allow the type to be specified as a qualified type. Section 1.2.6, "Data 
Types," gives a complete description of qualified types. 

Structures Structures have changed in several ways: 

• Structures can be nested. 

• The names of structure fields need not be unique. As a result, references to 
field names must be qualified. 

• Initialization of structure variables can continue over multiple lines as long as 
the final noncomment character in the line is a comma. 

• Curly braces and angle brackets are equivalent. 

For example, this code works in MASM 6.0: 

SCORE STRUCT 
teaml BYTE 10 OUP (?) 

scorel BYTE ? 
team2 BYTE 10 OUP (?) 

score2 BYTE 
SCORE ENDS 

first SCORE {"BEARS", 20, This comment is allowed. 
"CUBS", 10 } 

mov al, [bxJ.score.teaml ; Field name must be qualified 
with structure name. 

You can use OPTION OLDSTRUCTS or OPTION M510 to enable MASM 5.1 be­
havior for structures. See Section A.2, "Compatibility between MASM 5.1 and 
6.0." For more information on structures and unions, see Section 5.2. 

Unions MASM 6.0 allows the definition of unions. Unions differ from struc­
tures in that all field initializers occupy the same data space. The new UNION 
directive defines these variables. For more information, see Section 5.2, "Struc­
tures and Unions." 

Types Defined with TYPEDEF The new TYPEDEF directive defines a type 
for use later in the program. It is most useful for defining pointer types. For more 
information, see Sections 1.2.6, "Data Types," and 3.3.1, "Defining Pointer 
Types with TYPEDEF." 

553 



Differences between MASM 6.0 and 5.1 

554 

Names of Identifiers The names of identifiers in MASM 6.0 can be up to 
247 characters long, and all the characters are significant. In previous versions of 
MASM (or if OPTION M510 is enabled), names are significant to 31 characters 
only. For more information on identifiers, see Section 1.2.2, "Identifiers." For 
more information on the OPTION directive, see Section 1.3.2, "Using the 
OPTION Directive." 

Multiple-Line Initializers In MASM 6.0, a comma at the end of a line 
implies that the line continues. For example, the following code is legal in 
MASM6.0: 

longstring BYTE 

bitmasks BYTE 

"This string ", 
"continues over two lines." 

80h, 40h, 20h, 10h, 
08h, 04h, 02h, 01h 

For more information, see Section 1.2.8, "Statements." 

Comments in Extended Lines Earlier versions of MASM allow a back­
slash ( \ ) as the line-continuation character if it is the last nonspace character in 
the line. MASM 6.0 permits a comment to follow the backslash. 

Determining Size and Length of Data Labels The new LENGTH OF 
operator returns the number of data items allocated for a data label. MASM 6.0 
also has a new SIZEOF operator. When applied to a type, the SIZEOF operator 
returns the size attribute of the type expression. When applied to a data label, 
SIZEOF returns the number of bytes used by the initializer in the label's defini­
tion. In this case, SIZEOF for a variable equals the number of bytes in the type 
multiplied by LENGTH OF for the variable. 

The LENGTH and SIZE operators have been retained for backward compatibi­
lity. See "Length and Size of Labels with OPTION M510" in Section A.2.2 for 
the behavior of SIZE under OPTION M510, and see "LENGTH Operator Applied 
to Record Types" in Section A.2.1.2 for obsolete behavior with the LENGTH 
operator. 

For information on LENGTH OF and SIZEOF, see Section 5.1.1, "Declaring and 
Referencing Arrays," Section 5.1.2, "Declaring and Initializing Strings," Section 
5.2.1, "Declaring Structure and Union Variables," and Section 5.3.2, "Defining 
Record Variables." 

HIGHWORD and LOWWORD Operators These new operators return the 
high and low words for the 32-bit operand given. They are similar to the HIGH 
and LOW operators of MASM 5.1 except that HIGHWORD and LOWWORD 
can take only constants as operands, not relocatables (labels). 



New Features of Version 6.0 

PTR and CodeView In MASM 5.1, the PTR operator, when applied to a 
data initializer, specifies what information should be generated by CodeView. 

Semantically using PTR in this manner is still valid, but this does not affect 
CodeView typing. Defining pointers with the TYPEDEF directive allows 
CodeView to generate correct information. See Section 3.3.1, "Defining Pointer 
Types with TYPEDEF." 

A.1.4 Procedures, Loops, and Jumps 
Significant changes have been made for procedure and jump handling in MASM 
6.0. The new functionality closely resembles high-level-language implementa­
tions of the procedure calls. MASM now generates the code to correctly handle 
argument passing, to check type compatibility between parameters and argu­
ments, and to process a variable number of arguments. MASM 6.0 can also 
handle jumps intelligently and optimize the coding according to the distance 
from the target. 

Function Prototypes and Calls The PROTO directive prototypes a func­
tion, which enables type-checking and type conversion of arguments if the func­
tion is called with INVOKE. For more information, see Section 7.3.6, "Declaring 
Procedure Prototypes." 

The new INVOKE directive calls a procedure and correctly passes the arguments 
according to the prototype. For more information, see Section 7.3.7, "Calling Pro­
cedures with INVOKE." 

You can also use the new V ARARG keyword to pass a variable number of argu­
ments to a procedure with INVOKE. See Section 7.3.3, "Declaring Parameters 
with the PROC Directive." 

The ADDR keyword is also new. When used with INVOKE, it changes an expres­
sion to an address expression (for passing by reference instead of by value). See 
Section 7.3.7, "Calling Procedures with INVOKE." 

High-Level Flow-Control Constructions MASM 6.0 contains several 
new directives that generate code for loops and decisions depending on the status 
of a conditional statement. The conditions are tested at run time rather than at as­
sembly time. 

The new directives are .IF, .ELSE, .ELSEIF, .REPEAT, .UNTIL, .UNTILCXZ, 
.WHILE, and .ENDW. MASM 6.0 also implements the associated .BREAK and 
.CONTINUE directives to use in loops and if statements and the binary operators 
used in the C language to form binary expressions. 

For more information, see Section 7.2, "Loops," and Section 7.1.2.6, "Decision 
Directives. " 

555 



Differences between MASM 6.0 and 5.1 

Automatic Optimization for Unconditional Jumps MASM 6.0 auto­
matically determines the smallest encoding for direct unconditional jumps. See 
Section 7.1.1, "Unconditional Jumps." 

Automatic Lengthening for Conditional Jumps If a conditional jump 
requires a distance other than SHORT, MASM automatically generates the neces­
sary comparison and unconditional jump to the destination. See Section 7.1.2, 
"Conditional Jumps." 

User-Defined Stack Frame Setup and Cleanup The code generated 
following a PROC statement-a prologue-sets up the stack for parameters and 
local variables. The epilogue code handles stack cleanup. MASM 6.0 allows the 
implementation of user-defined prologues and epilogues with macros and the 
OPTION directive. See Section 7.3.8, "Generating Prologue and Epilogue Code." 

A.1.5 Simplifying Multiple-Module Projects 

556 

Previous versions of MASM require that you declare data and routines used in 
more than one module both public and external by using the PUBLIC and 
EXTRN directives in the appropriate modules. With MASM 6.0, you can now 
use a single directive to accomplish the same task. This makes include files much 
more convenient for collecting all the common data and procedure declarations 
for your projects. 

EXTERNDEF in Include Files The EXTERNDEF directive allows you to 
put global data declarations within an include file. The data is then visible to all 
source files that include the file. For more information, see Section 8.2.2.1, 
"Using EXTERNDEF." 

Search Order for Include Files MASM 6.0 searches for include files in 
the directory of the main source file rather than in the current directory. Simi­
larly, it searches for nested include files in the directory of the include file. You 
can specify additional paths to search with the /I command-line option. For more 
information, see Section 8.2.1, "Organizing Modules." 

Enforcing Case Sensitivity In MASM 6.0, langtype takes precedence over 
the command-line options that specify case sensitivity. In MASM 5.1, only the 
command-line options influence case, not langtype. 

Alternate Names for Externals The syntax for EXTERN allows you to 
specify an alternate symbol name, which the linker can use to resolve an external 
if the symbol is not otherwise referenced. See Section 8.4.2, "Using EXTERN 
with Library Routines." 



New Features of Version 6.0 

A.1.6 Expanded State Control 
Several new directives enable or disable various aspects of the assembler control, 
such as the new 80486 coprocessor instructions and use of compatibility options. 

The OPTION Directive The new OPTION directive allows you to selec­
tively define the assembler's behavior, including the enabling of compatibility 
with MASM 5.1. See Sections 1.3.2, "Using the OPTION Directive," and A.2, 
"Compatibility between MASM 5.1 and 6.0." 

The .N087 Directive The new .N087 directive disables all coprocessor in­
structions. See online help for more information. 

The .486 and .486P Directives To enable the 80486 instructions, use the 
new .486 directive. The .486P directive enables 80486 instructions at the highest 
privilege level (recommended for systems-level programs only). See online help 
for more information. 

The PUSHCONTEXT and POPCONTEXT Directives The directive 
PUSHCONTEXT saves the assembly environment, and POPCONTEXT restores 
it. The environment includes the segment register assumes, the radix, the listing 
and CREF flags, and the current processor and coprocessor. Note that .NOCREF 
(the MASM equivalent to .XCREF) still determines whether information for a 
given symbol will be added to Browser information and to the symbol table in 
the listing file. See Appendix C or online help for more information on listing 
files. 

A.1.7 New Processor Instructions 
MASM 6.0 supports these new instructions for the 80486 processor: 

80486 Instruction 

BSWAP 

CMPXCHG 

INVD 

INVLPG 

WBINVD 

XADD 

Description 

Byte swap 

Compare and exchange 

Invalidate data cache 

Invalidate Translation Lookaside Buffer entry 

Write back and invalidate data cache 

Exchange and add 

See the Reference or online help for full descriptions of these new instructions. 

557 



Differences between MASM 6.0 and 5.1 

A.1.8 Renamed Directives 
To make the language more consistent, the following directives have been re­
named. The new, preferred, name is in the left column. MASM 6.0 still supports 
the old, obsolete names in the right column. 

MASM6.0 MASM5.1 

.DOSSEG DOSSEG 

.LISTIF .LFCOND 

.LISTMACRO .XALL 

.LISTMACROALL .LALL 

.NOCREF .XCREF 

.NOLIST .XLIST 

.NOLISTIF .SFCOND 

.NOLISTMACRO .SALL 

ECHO %OUT 

EXTERN EXTRN 

FOR IRP 

FORC IRPC 

REPEAT REPT 

STRUCT STRUC 

SUBTITLE SUB TTL 

Specifying 16-Bit and 32-Bit Instructions MASM 6.0 supports all in­
structions that work with the extended (32-bit) registers of the 80386/486. On cer­
tain instructions, you can override the default operand size with the W (word) 
and the D (double word) suffixes. See online help or the Reference for details. 

A.1.9 Macro Enhancements 

558 

The changes to macro functionality in MASM 6.0 are also significant. New direc­
tives provide for a variable number of arguments, loop constructions, definitions 
of text equates, and macro functions. 

Variable Arguments In MASM 5.1, extra arguments passed to macros are 
ignored. In MASM 6.0, you can pass a variable number of arguments to a macro 
by appending the V ARARG keyword to the last macro parameter in the macro 
definition. Additional arguments passed to this macro can then be referenced 



New Features of Version 6.0 

relative to the last declared parameter. Section 9.6, "Returning Values with 
Macro Functions," explains how to do this. 

Required and Default Macro Arguments With MASM 6.0, you can use 
REQ or the := operator to specify required or default arguments. See Section 
9.2.3. 

New Directives for Macro Loops Within a macro definition, WHILE re­
peats assembly as long as a condition remains true. Other macro loop directives, 
IRP, IRPC, and REPT, have been renamed FOR, FORC, and REPEAT. For more 
information, see Section 9.4, "Defining Repeat Blocks with Loop Directives." 

Text Macros You should use the EQU directive to define numeric constants, 
but MASM 6.0 also has a new TEXTEQU directive for defining text macros. 
TEXTEQU allows greater functionality than EQU. For example, it can assign the 
value calculated by a macro function to a label. For more information, see Sec­
tion 9.1, "Text Macros." 

The GOIO Directive for Macros Within a macro definition, GOTO trans­
fers assembly to a labeled line. Lines in macros can be labeled using a leading 
colon(:). The GOTO directive can then be used to change the flow of control 
within that macro. See online help. 

Macro Functions At assembly time, macro functions can determine and re­
turn a text value using EXITM. Predefined macro string functions concatenate 
strings, return the size of a string, find a substring in a string, and return the posi­
tion of a substring within a string. For information on writing your own macro 
functions, see Section 9.6, "Returning Values with Macro Functions." 

Predefined Macro Functions The following predefined text macro func­
tions are new: 

Symbol 

@CatStr 

@InStr 

@SizeStr 

@SubStr 

Value Returned 

A concatenated string 

The position of one string within another 

The size of a string 

A substring 

For more information, see Section 9.5, "String Directives and Predefined 
Functions." 

559 



Differences between MASM 6.0 and 5.1 

A.1.10 MASM 6.0 Programming Practices 
As you can see, MASM 6.0 provides many new features that can make MASM 
6.0 code simpler to write. If you are familiar with MASM 5.1 programming, you 
may find it helpful to adopt this list of new programming practices for program­
ming with the new assembler. This list summarizes many of the changes dis­
cussed in the next section, "Compatibility between MASM 5.1 and 6.0." 

• Select identifier names that do not begin with the dot operator (.). 

• Use the dot operator (.) only to reference structure fields, and the plus opera­
tor (+ ) when not referencing structures. 

• Different structures can have the same field names if you like, but the names 
of structure fields must always be qualified with the structure's type. 

• Separate macro arguments with commas, not spaces. 

• Avoid adding extra ampersands in macros. (Section A.2.2.3, "OPTION 
OLDMACROS," and Section 9.3.3, "Substitution Operator," give the new 
rules for using ampersands in macros.) 

• By default, code labels defined with a colon are local. Place two colons after 
code labels if you want to reference the label outside of the procedure. 

A.2 Compatibility between MASM 5.1 and 6.0 

560 

This section discusses the differences between MASM 5.1 and MASM 6.0. Sec­
tion A.2.1 provides information in addition to that found on the MASM 6.0 
Quick Start card. The information in this section explains what changes you may 
need to make in order to get your MASM 5.1 code to run under MASM 6.0 in 
compatibility mode. 

Note If you have not already done so, please read the Quick Start for MASM 5.0 and 5.1 
Users card provided in your MASM 6.0 package. 

Once your code runs in compatibility mode using OPTION M510 or the IZm com­
mand-line option, you may want to modify your code so it runs under MASM 6.0 
without the compatibility options. To learn how to do this, see Section A.2.2, 
"Using the OPTION Directive." 

You may notice that the .OBI and .EXE files differ between MASM 5.1 and 
MASM 6.0. These differences do not necessarily indicate compatibility prob­
lems, since MASM 6.0 generates optimal encoding. 



Compatibility between MASM 5.1 and 6.0 

A.2.1 Rewriting Code for Compatibility 
In some cases, MASM 6.0 with OPTION M510 does not support MASM 5.1 be­
havior. Several of these changes result from correcting bugs reported against 
MASM 5.1. To update your code to MASM 6.0, use the instructions in this sec­
tion. This usually requires only minor changes. 

Many of the items listed in this section will not exist in your code. The items 
most likely to occur are listed first, followed by those that are less likely to occur. 

In addition, you may have conflicts between identifier names and new reserved 
words. You can use OPTION NOKEYWORD to resolve errors generated due to 
use of reserved words as identifiers. See Section A.2.2.9 for more information. 

A.2.1.1 Bug Fixes from MASM 5.1 
This section lists the differences between MASM 5.1 and MASM 6.0 due to bug 
corrections from MASM 5.1. 

Invalid Use of LOCK, REPNE, and REPNZ MASM 6.0 flags illegal 
uses of the instruction prefixes LOCK, REPNE, and REPNZ. The error generated 
for invalid uses of the LOCK, REPNE, and REPNZ prefixes is error A2068: 

instruction prefix not allowed 

Table A.1 summarizes the correct use of the instruction prefixes. It lists each 
string instruction with the type of repeat prefix it uses and indicates whether the 
instruction works on a source, a destination, or both. 

Table A.I Requirements for String Instructions 

Instruction Repeat Prefix Source/Destination Register Pair 

MOVS REP Both DS:SI, ES:DI 

SCAS REPE/REPNE Destination ES:DI 

CMPS REPE/REPNE Both DS:SI, ES:DI 

LODS None Source DS:SI 

STOS REP Destination ES:DI 

INS REP Destination ES:DI 

OUTS REP Source DS:SI 

No Closing Quotation Marks in Macro Arguments In MASM 5.1, 
both single and double quotation marks (' and ") can be used to begin strings in 
macro arguments, and the assembler does not generate an error or warning if the 

561 



Differences between MASM 6.0 and 5.1 

562 

string does not end with quotation marks on a macro call. Instead, the assembler 
considers the remainder of the line to be part of the macro argument containing 
the opening quote (as if there were a closing quotation mark at the end of the 
line). 

By default, MASM 6.0 now generates error A2046: 

missing single or double quotation mark in string 

so all single and double quotation marks in macro arguments must be matched. 
(Angle brackets not enclosed by brackets must also be matched.) 

To correct errors the assembler finds, either end the string with a closing quota­
tion mark as shown in this example, or use the macro escape character (!) to treat 
the quotation mark literally. 

; MASM 5.1 code 
MyMacro "all this in one argument 

; Default MASM 6.0 code 
MyMacro "all this in one argument" 

Making a Scoped Label Public MASM 5.1 considers code labels de­
fined with a single colon inside a procedure to be local to that procedure if the 
module contains a .MODEL directive with a language type. Although the label is 
local, MASM 5.1 does not generate an error if it is also declared PUBLIC. 
MASM 6.0 generates error A2203: 

cannot decl are scoped code 1 abel as PUBLIC." 

If you want to make the label PUBLIC, it must not be local. You can use the 
double colon operator to define a non-scoped label, as shown in this example: 

PUBLIC publicLabel 
publ icLabel:: ; Non-scoped label MASM 6.0 

Byte Form of BT, BTS, BTC, and BTR Instructions MASM 5.1 allows 
a byte argument for the 80386 bit-test instructions, but encodes it as a word argu­
ment. The byte form is not supported by the processor. 

MASM 6.0 does not support this behavior and generates error A2024: 

invalid operand size for instruction 

Rewrite your code to use a word-sized argument. 

Default Values for Record Fields In MASM 5.1, default values for re­
cord fields can range down to _2n (where n is the number of bits in the field), re­
sulting in the loss of the sign bit. 



Compatibility between MASM 5.1 and 6.0 

The allowed range for default values in MASM 6.0 is _2n- 1 to 2n-l. Illegal initial­
izers generate error A2071: 

initializer too large for specified size 

A.2.1.2 Design Change Issues 
MASM 6.0 makes some changes in MASM 5.1 behavior to make the language 
more consistent. These design changes are not affected by the OPTION direc­
tive. Therefore, they require revisions in your code. In most cases, the necessary 
revisions are minor and the circumstances requiring changes are rare. 

Conflicting Structure Definitions MASM 5.1 allows two structures to be 
defined with the same name. The second definition replaces the first definition. 
However, the fields from the first are still defined. MASM 6.0 does not allow 
conflicting definitions of a structure. Errors A2160 through A2165 are generated 
when the assembler finds a conflicting definition. Each error notes a specific con­
flict, such as conflicting number of fields, conflicting names of fields, or conflict­
ing initializers. 

Forward References to Text Macros Outside of Expressions MASM 
5.1 allows forward references to text macros in specialized cases. MASM 6.0 
with OPTION M510 also permits forward references, but only when the text 
macro is referenced in an expression. To revise your code, place all macro defini­
tions at the beginning of the file. 

HIGH and LOW Applied to Relocatable Operands In MASM 5.1, ap­
plying HIGH and LOW to relocatable memory expressions is acceptable in some 
cases. For example, MASM 5.1 allows this code sequence: 

; MASM 5.1 code 
EXTRN var1:WORO 
var2 OW 0 

mov 
mov 

al, LOW var1 
ah, HIGH var1 

; These two instructions yield the 
same as mov ax, OFFSET var1 

However, mov ax, LOW va r2 is not legal. MASM 6.0 generates error A2105: 

HIGH and LOW require immediate operands 

The OFFSET operator is required on these operands in MASM 6.0, as shown 
below. Rewrite your code if necessary. 

; MASM 6.0 code 
mov al, LOW OFFSET var1 
mov ah, HIGH OFFSET var2 

563 



Differences between MASM 6.0 and 5.1 

564 

OFFSET Applied to Group Names and Indirect Memory Operands 
In MASM 6.0, you cannot apply OFFSET to a group name, indirect argument, or 
procedure argument. Doing so generates error A2098: 

invalid operand for OFFSET 

LENGTH Operator Applied to Record Types In MASM 5.1, the 
LENGTH operator, when applied to a record type, returns the total number of 
bits in a record definition. 

In MASM 6.0, the statement LENGTH recordName returns error A2143: 

expected data label 

Rewrite your code if necessary. The new SIZEOF operator returns information 
about records in MASM 6.0. See Section 5.3.2, "Defining Record Variables," for 
more information. 

Signed Comparison of Hexadecimal Values Using GT, GE, LE, or LT 
The rules for two' s-complement comparisons have changed. In MASM 5.1, the 
statement 

0FFFFh GT -1 

is false because the two's-complement values are equal. However, because hex­
adecimal numbers are now treated as unsigned, the expression is true in MASM 
6.0. To update, rewrite the affected code. 

RET Used with a Constant in Procedures with Epilogues By default 
in MASM 6.0, the RET instruction followed by a constant suppresses automatic 
generation of epilogue (stack cleanup) code. MASM 5.1 ignores the operand and 
generates the epilogue. Remove the argument if necessary. See Section 7.3.8, 
"Generating Prologue and Epilogue Code." 

Code Labels at Top of Procedures with Prologues By default in 
MASM 5.1, a code label defined on the same line as the first procedure instruc­
tion refers to the first byte of the prologue (the stack frame setup). 

In MASM 6.0, a code label defined at the beginning of a procedure refers to the 
first byte of the procedure after the prologue. If a label is needed before the pro­
logue, then the label must be placed before the PROC statement. See Section 
7.3.8, "Generating Prologue and Epilogue Code," for more information. 

Use of % as an Identifier Character MASM 5.1 allows % as an identi­
fier character. This undocumented behavior leads to ambiguities when % is used 
as the expansion operator in macros. Since % is not allowed as a character in 
MASM 6.0 identifiers, you must change the names of any identifiers containing 
the % character. See Section 1.2.2 for a list of legal identifier characters. 



Compatibility between MASM 5.1 and 6.0 

ASSUME CS Set to Wrong Value MASM 6.0 does not require the use of 
the ASSUME statement for the CS register. Instead, MASM 6.0 generates an auto­
matic ASSUME statement for the code segment register to the current segment or 
group (see Section 2.3.3). Additionally, MASM 6.0 does not allow explicit 
ASSUME statements for CS that contradict the automatically set ASSUME 
statement. 

MASM 5.1 allows CS to be assumed to the current segment, even if that segment 
is a member of a group. With MASM 6.0, this results in warning A4004: 

cannot ASSUME CS 

To avoid this warning with MASM 6.0, delete the ASSUME statement for CS. 

A.2.1.3 Code Requiring Two-Pass Assembly 
MASM 6.0 does not perform the standard two source passes that previous ver­
sions do. Therefore pass-dependent constructs are no longer meaningful. 

Obsolete Two-Pass Directives Because MASM 6.0 assembles in one 
pass, the directives referring to two passes are no longer supported. These in­
clude .ERRI, .ERR2, IFI, IF2, ELSEIFI, and ELSEIF2. If you use IF2 or .ERR2, 
the assembler generates error A2061: 

[ELSE]IF2/.ERR2 not allowed: single-pass assembler 

The .ERRI directive is treated as though it were .ERR, and the IFI directive is 
treated as though it were IF. 

MASM 5.1 directives that refer to the first pass are always true. Directives that 
refer to the second pass are flagged as errors. This change requires you to rewrite 
the affected code, since OPTION M510 does not enable this behavior. 

You typically use pass-sensitive directive when doing the following: (Each ex­
ample shows a MASM 6.0 rewrite.) 

• Declaring va r external only if it is not defined in this module: 

PREVIOUS VERSIONS OF MASM: 
IF2 

IFNDEF var 
EXTRN var:far 

ENDIF 
ENDIF 

MASM 6.0: 
EXTERNDEF var:far 

565 



Differences between MASM 6.0 and 5.1 

566 

• Including a file of definitions only once to speed assembly: 

PREVIOUS VERSIONS OF MASM: 
I Fl 

INCLUDE filel.inc 
END IF 

MASM 6.0: 
INCLUDE FILEl.INC 

• Generating a %OUT or . ERR message only once: 

PREVIOUS VERSIONS OF MASM: 
IF2 

%OUT This is my message 
ENDIF 

I F2 
.ERRNZ A NE B 

ENDIF 

MASM 6.0: 
ECHO This is my message 

.ERRNZ A NE B <ASSERTION FAILURE: A NE B> 

• Generating an error if a symbol is not defined but may be forward referenced: 

PREVIOUS VERSIONS OF MASM: 
I F2 

.ERRNDEF var 
END IF 

MASM 6.0: 
.ERRNDEF var 

See Section 1.3.3 for information on conditional directives. 

Note In the following three cases, MASM 6.0 generates warnings if OPTION M510 is used. 

IFDEF and IFNDEF with Forward-Referenced Identifiers If you use a 
symbol name that has not yet been defined in an IFDEF or IFNDEF expression, 
MASM 6.0 returns FALSE for the IFDEF expression and TRUE for the IFNDEF 
expression. The assembler generates warning A5005: 

IF condition may be pass-dependent 

when OPTION M510 is enabled. To resolve the error, move the symbol definition 
to the beginning of the file. 



Compatibility between MASM 5.1 and 6.0 

Address Spans as Constants The value of offsets calculated on the first 
assembly pass may not be the same as those calculated on later passes. There­
fore, comparisons with a constant, such as the following, should be avoided: 

IF OFFSET var1 - OFFSET var2 EO 10 

Note that expressions containing span distances can be used with the .ERR direc­
tives, since these directives are evaluated after all offsets are determined: 

.ERRE OFFSET var1 - OFFSET var2 - 10, <span incorrect) 

. TYPE with Forward References In MASM 5.1, .TYPE is evaluated on 
both assembly passes. This means it yields zero on the first pass and non-zero on 
the second pass if applied to an expression that forward references a symbol. 

In MASM 6.0, .TYPE is evaluated on the first assembly pass. As a result, if the 
operand references a symbol that has not yet been defined, .TYPE will yield O. 
This means that .TYPE, if used in a conditional-assembly construction, may yield 
different results with MASM 6.0 than with MASM 5.1. 

A.2.1.4 Obsolete Features No Longer Supported 
This section lists features no longer supported by MASM 6.0. Because both of 
these items are obscure features provided by early versions of the assembler, they 
probably do not affect your MASM 5.1 code. 

The ESC Instruction The ESC instruction, typically used to send hand­
coded commands to the coprocessor, is no longer supported. Because MASM 6.0 
recognizes and assembles the full set of coprocessor mnemonics, the ESC instruc­
tion is not necessary. Using the ESC instruction generates error A2205: 

ESC instruction is obsolete: ignored 

To update MASM 5.1 code, use the coprocessor instructions instead of ESC. 

The MSFlOAT Binary Format MASM 6.0 does not support the 
.MSFLOAT directive, which provided the Microsoft Binary Format (MSB) for 
floating-point numbers in variable initializers. Using the .MSFLOAT directive 
generates error A2204: 

.MSFLOAT directive is obsolete: ignored 

Use IEEE format or, if MSB format is necessary, initialize variables with hexa­
decimal values. See Section 6.1.2, "Storing Numbers in Floating-Point Format." 

567 



Differences between MASM 6.0 and 5.1 

A.2.2 Using the OPTION Directive 

568 

The OPTION directive can be used with various arguments to control compati­
bility with MASM 5.1 code. This section explains the differences in MASM 5.1 
and MASM 6.0 behavior that can be influenced with the OPTION directive. 

Section A.2.2.1 discusses the M510 argument to the OPTION directive, which 
selects the MASM 5.1 compatibility mode. In this mode, MASM 6.0 implements 
MASM 5.1 behavior relating to macros, offsets, scope of code labels, structures, 
identifier names, identifier case, and other behaviors. 

Note Wherever this appendix suggests using OPTION M510 in your code, you can set the 
/Zm command-line option instead. 

If you prefer to choose specific MASM 5.1 behaviors, rather than all those imple­
mented by the OPTION M510 directive, use the OPTION arguments discussed in 
Sections A.2.2.2 through A.2.2.9. Each section also explains how to revise your 
code if you want to remove OPTION directives from your MASM 5.1 code. 

If you have used any processor or coprocessor instruction names as label names 
in your code, you can use the OPTION NOKEYWORD directive to remove them 
from the reserved word list. See Section A.2.2.9. 

A.2.2.1 OPTION M510 
Using OPTION M510 is equivalent to adding /Zm to the command line. The 
OPTION M510 directive automatically sets the following: 

OPTION OLDSTRUCTS MASM 5.1 structures 
See Section A.2.2.2 

OPTI ON OLDMACROS MASM 5.1 macros 
See Section A.2.2.3 

OPTI ON DOTNAME Identifiers may begin with a dot C.) 
See Section A.2.2.4 

If you do not have a .386, 386P .486, or 486P directive in your module, then 
OPTION M510 adds: 

OPTION EXPR16 ; 16-bit expression precision 
See Section A.2.2.5 

If you do not have a .MODEL directive in your module, OPTION M510 adds: 

OPTION OFFSET:SEGMENT OFFSET operator defaults to 
segment-relative 
See Section A.2.2.6 



Compatibility between MASM 5.1 and 6.0 

If you do not have a .MODEL directive with a language specifier in your module, 
OPTION M510 also adds: 

OPTION NOSCOPED 

OPTION PROC:PRIVATE 

Code labels are not local inside 
procedures 
See Section A.2.2.7 

Labels defined with PROC are not 
public by default 
See Section A.2.2.8 

If you want to remove OPTION M510 from your code (or /Zm from the com­
mand line), add the OPTION directive arguments to your module according to 
the conditions stated above. 

There may be compatibility issues affecting your code that are supported under 
OPTION M510, but are not covered by the other OPTION directive arguments. 
Once your source code has been modified so it no longer requires behavior sup­
ported by OPTION M510, you can replace OPTION M510 with other OPTION 
directive arguments. These compatibility issues are discussed in Sections A.2.2.2 
through A.2.2.9. 

Once you have replaced OPTION M510 with other forms of the OPTION direc­
tive and your code works correctly, try removing the OPTION directives, one at a 
time. Make appropriate source modifications as necessary (see Sections A.2.2.2 
through A.2.2.9), until your code uses only MASM 6.0 defaults. 

Note OPTION M510 enables the behaviors discussed below in addition to the behaviors cor­
rected by the OPTION directive arguments described in Sections A.2.2.2 through A.2.2.9. 

Reserved Keywords Dependent on CPU Mode with OPTION M510 
With OPTION M510, keywords and instructions that are not available in the cur­
rent CPU mode (such as ENTER under .8086) are not treated as keywords. This 
also means the USE32, FLAT, F AR32, and NEAR32 segment types and the 
80386/486 registers are not keywords with a processor selection less than .386. 

If you remove OPTION M510, then any reserved word that you use as an identi­
fier generates a syntax error. You can either rename the identifiers or use 
OPTION NOKEYWORD. See Section A.2.2.9 for more information on OPTION 
NOKEYWORD. 

Invalid Use of Instruction Prefixes with OPTION M510 Code without 
OPTION M510 generates errors for all invalid uses of the instruction prefixes. 
Using OPTION M510 suppresses some of these errors in order to match MASM 
5.1 behavior. MASM 5.1 does not check for illegal uses of the instruction pre­
fixes LOCK, REP, REPE, REPZ, REPNE, and REPNZ. 

569 



Differences between MASM 6.0 and 5.1 

570 

Illegal uses of these prefixes result in error A2068: 

instruction prefix not allowed 

See Section 5.1.3.1, "Overview of String Operations", and Section A.2.1.1, "Bug 
Fixes from MASM 5.1" for more information on these instruction prefixes. 

Sizes of Constant Operands with OPTION M510 In MASM 5.1, a con­
stant whose value is so large it can fit only in the CPU's default word (four bytes 
for .386 and .486, two bytes otherwise) is assigned a size attribute of the default 
word size. The value of the constant affects the number of bytes changed by the 
instruction. For example, 

; Legal only with OPTION M510 
mov [bx], 0100h 

is legal in OPTION M510 mode. Since 0100 h cannot fit in a byte, it is inter­
preted as a word. 

Without OPTION M510, the assembler never assigns a size automatically. You 
must state it explicitly. Use OPTION M510 to enable the MASM 5.1 behavior if 
you do not want to change your MASM 5.1 code. 

For code without OPTION M510, the example above could be rewritten as: 

Without OPTION M510 
mov ax, WORD PTR 0100h 

Code labels in Data Definition with OPTION M510 MASM 5.1 al­
lows a code label definition in a data definition statement if that statement does 
not also define a data label. This is also allowed by MASM 6.0 if OPTION M510 
is enabled; otherwise it is illegal. 

; Legal only with OPTION M510 
MyCodeLabel: OW 0 

SEG Operator with OPTION M510 In MASM 5.1, the SEG operatorre­
turns a label's segment unless the frame is explicitly specified, in which case the 
frame is returned. A statement such as S EG DGROU P : va r always returns 
DGROUP, whereas SEG va r always returns the segment of va r. OPTION 
M510 provides this behavior. 

If you do not use OPTION M510, the behavior of the SEG operator is determined 
by the OPTION OFFSET directive. See Section A.2.2.6. 

When you use the SEG operator with a variable that is not external, code without 
OPTION M510 returns the address of the frame (the segment, group, or the value 
assumed to the segment register) if one has been explicitly set. Otherwise, it re­
turns the group if one has been specified. In the absence of a defined group, SEG 
returns the segment where the variable is defined. 



Compatibility between MASM 5.1 and 6.0 

Expression Evaluation with OPTION M510 By default, MASM 6.0 
changes the way that expressions are evaluated. In MASM 5.1, 

var-2[bx] 

is parsed as 

(var-2)[bx] 

Without OPTION M510, you need to rewrite this statement, since it is parsed as 

var-(2[bx]) 

which generates an error. OPTION M510 provides the MASM 5.1 behavior. 

Length and Size of Labels with OPTION M510 With OPTION M510, 
the LENGTH and SIZE operators can be applied to any label. For a code label, 
SIZE returns 0 F F F Fh for NEAR and 0 F F F E h for FAR, and LENGTH always 
returns 1. For strings, SIZE and LENGTH return 1. 

Without OPTION M510, LENGTH returns 1 except when used with DUP. In this 
case, the LENGTH operator returns the outermost DUP count. SIZE returns the 
length multiplied by the size of the type. However, the new LENGTH OF and 
SIZE OF operators return the number of data items and the number of bytes used 
by the initializer. 

If you specify OPTION M510 and the current word size is 2, NEAR16 and F AR16 
correspond to the constants 0FFFFh and 0FFFEh, respectively. When the cur­
rent word size is 4, NEAR and FAR (mapped to NEAR32 and F AR32, respec­
tively) correspond to 0FFFFh and 0FFFEh. 

Without OPTION M510, the distance attributes SHORT, NEAR16, NEAR32, 
FAR16, and FAR32 correspond to 0FF01 h, 0 FF02h, 0F F04h, 0 FF05h, and 
0FF06h, respectively. 

The behavior of the new SIZE OF and LENGTH OF operators for labels and 
strings is discussed in Section 5.1.1, "Declaring and Referencing Arrays"; 
Section 5.1.2, "Declaring and Initializing Strings"; Section 5.2.2, "Defining 
Structure and Union Variables"; and Section 5.3.2, "Defining Record Variables." 

Comparing Types Using EO and NE with OPTION M510 With 
OPTION M510, types are converted to a constant value equal to the size of the 
data type before comparisons with EQ and NE. Code types are converted to 
o F F F F h (near) and 0 F F F E h (far). If OPTION M510 is not enabled, types are 
converted to constants only when comparing them with constants; two types are 
equal only if they are equivalent qualified types. 

571 



Differences between MASM 6.0 and 5.1 

572 

For existing MASM 5.1 code, these distinctions affect only the use of the TYPE 
operator in conjunction with EQ and NE. The following example illustrates this 
situation: 

MYSTRUCT STRUC 
f1 DB 0 
f2 DB 0 
MYSTRUCT ENDS 

; With OPTI ON M510 

val (TYPE MYSTRUCT) EO WORD 
val 2 EO WORD 
val WORD EO WORD 
val SWORD EO SWORD 

; Without OPTION M510 

val 
val 
val 
val 

(TYPE MYSTRUCT) EO WORD 
2 EO WORD 
WORD EO WORD 
SWORD EO SWORD 

True: 2 EO 2 
True: 2 EO 2 
True: 2 EO 2 
True: 2 EO 2 

False: MyStruct NE WORD 
True: 2 EO 2 
True: WORD EO WORD 
False: SWORD NE WORD 

Use of Constant and PTR as a Type with OPTION M510 A constant 
can be used as the left operand to PTR when OPTION M510 is enabled. Other­
wise a type expression must be used. With OPTION M510, a constant must have 
a value of I (byte), 2 (word), 4 (dword), 6 (fword), 8 (qword) or 10 (tbyte), and it 
is treated as if the parenthesized type had been specified instead. Note that the 
TYPE operator yields a type expression, but the SIZE operator yields a constant. 

; With OPTION M510 

MyData OW 0 

mov WORD PTR [bx], 10 Legal 
mov (TYPE MyData) PTR [bx], 10 Legal 
mov (SIZE MyData) PTR [bx], 10 Legal 
mov 2 ptr [bx], 10 Legal 

Without OPTION M510 

mov WORD PTR [bx], 10 Legal 
mov (TYPE MyData) PTR [bx], 10 Legal 
mov (SIZE MyData) PTR [bx] , 10 Illegal 
mov 2 PTR [bx], 10 Illegal 

Structure Type Cast on Expressions with OPTION M510 As with 
MASM 5.1, a constant can be type cast with the PTR operator to a structure type. 
This is most often used in data initializers to affect the CodeView information of 
the data label being defined. Without OPTION M510, the assembler generates an 
error. 



Compatibility between MASM 5.1 and 6.0 

MYSTRC STRUC 
fl DB 0 
MYSTRC ENDS 

MyPtr OW MYSTRC PTR 0 ; Illegal without OPTION M510 

The type of initializers does not influence CodeView's type infonnation with 
MASM6.0. 

Hidden Coercion of OFFSET Expression Size with OPTION M510 
When programming for the 80386 or 80486, the size of an OFFSET expression 
may be two bytes (for a symbol in a USE16 segment) or 4 bytes (for a symbol in 
a USE32 or FLAT segment). However, with OPTION M510, a 32-bit OFFSET 
expression may be used in a l6-bit context. Without OPTION M510, the 
LOWWORD operator must be used to convert the offset size. 

; With OPTION M510 

.386 

seg32 SEGMENT USE32 
MyLabel WORD 0 
seg32 ENDS 

seg16 SEGMENT USE16 'code' With OPTI ONS M510: 
mov ax, OFFSET MyLabel Legal 
mov ax, LOWWORD OFFSET MyLabel Legal 
mov eax, OFFSET MyLabel Legal 

seg16 ENDS 

Wi thout OPTI ON M510 

.386 

seg32 SEGMENT USE32 
MyLabel WORD 0 
seg32 ENDS 

seg16 SEGMENT USE16 'code' Without OPTION M510: 
mov ax, OFFSET MyLabel Illegal 
mov ax, LOWWORD offset MyLabel Legal 
mov eax, OFFSET MyLabel Legal 

seg16 ENDS 

Specifying Radixes with OPTION M510 If the current radix in your 
code (without OPTION M510) is greater than 10, then the radix specifiers B 
(binary) and D (decimal) are not supported. You will need to change B to Y for 
binary, and D to T for decimal, since both Band D are legitimate hexadecimal 
values, making numbers such as 120 ambiguous. See Section 1.2.4, "Integer 
Constants and Constant Expressions," for more infonnation. 

573 



Differences between MASM 6.0 and 5.1 

574 

If you don't want to change radix specifiers when the current radix is greater than 
10, you need to specify OPTION M510 in your code. 

Naming Conventions with OPTION M510 By default in MASM 5.1, 
specifying a language type of PASCAL, FORTRAN, or BASIC does not cause 
names to be mapped to uppercase when publicly declared variables are written 
into the object file. 

Unless you use OPTION M510 in your code, these language types map identifier 
names to uppercase by default in MASM 6.0, even if you assemble with the 
ICp or ICx command-line options. See Section 20.1, "Naming and Calling 
Conventions. " 

When you link with /NOI[[GNORECASE]], case must be matched in the object 
files to resolve externals. 

length Significance of Symbol Names with OPTION M510 With 
MASM 5.1, only the first 31 characters of a symbol name are considered signifi­
cant, and only the first 31 characters of a public or external symbol name are 
placed in the object file. 

Without OPTION M510, the entire name is considered significant. The maximum 
number of characters placed in the object file is controlled with the IHnumber 
command-line option, with a default of 247 (the maximum length of an identifier 
in MASM 6.0). 

String Defaults in Structure Variables with OPTION M510 With 
OPTION M510, a structure field initialized to a string value can be overridden 
with a constant. Without OPTION M510, a string can be overridden only with 
another string or with a list. To update your code, surround the constant override 
value with angle brackets or curly braces to indicate a list with one element. 

MTSTRUCT 
MyString 
MTSTRUCT 

STRUCT 
BTYE 
ENDS 

; With OPTION M510 

MyInst MTSTRUCT 

"This is a string" 

<0> 

; Without OPTION M510, either of these statement is correct 

MyInst MTSTRUCT «0» 

MyInst MTSTRUCT {<0>} 

Effects of the? Initializer in Data Definitions with OPTION M510 
When? is used as a data initializer, it is sometimes treated as a zero and some­
times causes a byte to be left unspecified in the object file. The conditional be­
havior for MASM 6.0 without OPTION M510 is explained in Section 5.1.2. With 



Compatibility between MASM 5.1 and 6.0 

OPTION M510, however, the? initializer is always treated as a zero unless it is 
used with the DUP operator. This rarely affects program execution. 

Current Address Operator with OPTION M510 When OPTION M510 is 
enabled, the value of the current address operator ($) for a structure instance is 
the offset of the first byte of the instance. When OPTION M510 is not enabled, 
the value of $ is the offset of the current field in the instance. 

Segment Association for FAR Externals with OPTION M510 With 
MASM 5.1, a FAR external symbol defined inside a segment is considered to be 
inside that segment unless a .MODEL directive is used. With MASM 6.0, such a 
symbol is never considered to be inside that segment unless OPTION MSIO is 
used, in which case the MASM 5.1 behavior is emulated. Segment association 
for externals affects the frame of fix ups generated on references to the symbols. 

Defining Aliases Using EQU with OPTION M510 In MASM 5.1, a 
symbol can be equated to another symbol. These equates are called "aliases" in 
MASM 5.1. This behavior is simulated with OPTION M510. 

If you don't use OPTION M510, aliases cannot be defined using EQU. The right 
operand of an EQU directive must be an immediate expression or text. Change 
aliases to use the TEXTEQU directive, which is described in Section 9.1. This 
change should have no effect on your code but may cause an expression to eval­
uate differently. 

These examples illustrate MASM 5.1 code, MASM 6.0 code with OPTION 
M510, and MASM 6.0 code without OPTION M510: 

; MASM 5.1 code 
var1 EQU 3 
var2 EQU va r1 var2 taken as an alias 

var2 references var1 anywhere var2 is 
used as a symbol 

; MASM 6.0 with OPTI ON M510 
var1 EQU 3 
var2 EQU var1 var2 taken as a var2 EQU <var1> 

var2 substituted for var1 whenever 
text macros subs tituted 

; MASM 6.0 without OPTION M510 
var1 EQU 3 
var2 EQU var1; Treated as var2 EQU 3 

Difference in Text Macro Expansions with OPTION M510 When the 
name of a text macro is supplied as a text item, MASM 5.1 replaces the text 
macro name with its text value. However, if that text value contains other text 
macro names, no recursive expansion occurs. With MASM 6.0, recursive expan­
sion occurs unless OPTION M510 is enabled, as shown in the following example: 

575 



Differences between MASM 6.0 and 5.1 

576 

; With OPTION M510 

tml 
tm2 

tm3 

EOU 
EOU 

<contains tm2> 
<value> 

CATSTR tml 

; Without OPTION M510 

== <contains tm2> 

tm3 CATSTR tml ; == <contains value> 

Conditional Directives and Missing Operands with OPTION M510 
MASM 5.1 considers a missing argument to be a zero. MASM 6.0 requires an ar­
gument unless OPTION M510 is enabled. 

A.2.2.2 OPTION OLDSTRUCTS 
Changes made in MASM 6.0 that apply to structures are discussed in this sec­
tion. With OPTION OLDSTRUCTS or OPTION M510: 

• The plus operator can be used in structure field references in MASM 6.0. 
(The dot operator is required with OPTION NOOLDSTRUCTS, the default.) 

• Labels and structure field names cannot have the same name with OPTION 
OLDSTRUCTS (but they can with OPTION NOOLDSTRUCTS). 

Plus Operator Not Allowed with MASM 6.0 Structures By default, 
each reference to structure member names must use the dot (.) operator to sepa­
rate the structure variable name from the field name. Note that the dot (.) opera­
tor cannot be used as the plus (+) operator, nor can the plus operator be used as 
the dot operator. 

To convert your code so that it does not need OPTION OLDSTRUCTS: 

• Qualify all structure field references 

• Change all uses of the dot operator ( . ) that occur outside of structure refer­
ences to use the plus operator ( + ) 

If you remove OPTION OLDSTRUCTS from your code, the assembler generates 
errors on all lines needing to be changed. Non-structure uses of the dot operator 
result in error A2166: 

structure field expected 

Unqualified structure references result in error A2006: 

undefined symbol : identifier 



Compatibility between MASM 5.1 and 6.0 

This example shows code that doesn't work under the default, OPTION 
NOOLDSTRUCTS, and how to change it: 

; OPTION OLDSTRUCTS (Does not work with OPTION NOOLDSTRUCTS) 
structname STRUC 
a BYTE ? 
b WORD ? 
structname ENDS 

structinstance structname <> 

mov ax, [bx].b 
mov al, structinstance.a 
mov ax, [bx].4 

OPTION NOOLDSTRUCTS (the MASM 6.0 default) 
structname STRUCT 
a BYTE ? 
b WORD ? 
structname ENDS 

structinstance structname <> 

mov ax, [bx].structname.b 
mov al, structinstance.a 
mov ax, [bx]+4 

Alternative methods in MASM 6.0 
ASSUME bx:PTR structname 
mov ax, [bx] ; OR: 

Add qualifying type 
No change needed 
Change dot to plus 

mov ax, (structname PTR[bx]).b 

Non-Unique Structure Field Names Allowed in MASM 6.0 With the 
default, OPTION NOOLDSTRUCTS, label and structure field names may have 
the same name. With OPTION OLDSTRUCTS (the MASM 5.1 default), labels 
and structure fields cannot have the same name. For more information, see Sec­
tion 5.2, "Structures and Unions." 

A.2.2.3 OPTION OLDMACROS 
If you use MASM 6.0 without OPTION OLDMACROS or OPTION M510, the be­
havior of macros is changed in several ways. If you want the MASM 5.1 macro 
behavior, add OPTION OLDMACROS or OPTION M510 to your MASM 5.1 
code. 

Depending on the complexity of your MASM 5.1 macros and your programming 
style, it may be easy to make the necessary changes to remove OPTION 
OLDMACROS. This section describes the differences. 

577 



Differences between MASM 6.0 and.5.1 

578 

Commas Separating Macro Arguments MASM 5.1 allows white spaces 
or commas to separate arguments to macros. MASM 6.0 with OPTION 
NOOLDMACROS (the default), requires commas between arguments. For ex­
ample, in the macro call 

MyMacro var1 var2 var3, var4 

OPTION OLDMACROS passes four arguments (separated by spaces), but 
OPTION NOOLDMACROS passes only two arguments (separated by a comma). 
To convert your macro code, replace any space delimiters between macro argu­
ments with commas. 

New Behavior with Ampersands in Macros Using the MASM 6.0 as­
sembler default, OPTION NOOLDMACROS, causes ampersands (&) to be inter­
preted within a macro differently than in MASM 5.1. The number of ampersands 
and their positions in a statement determine the result of the macro expansion in 
MASM 5.1. Parameters for use in nested MASM 5.1 macros must be prefixed 
with several ampersands, since the assembler removes one ampersand for each 
level of macro expansion. Using OPTION OLDMACROS enables this behavior. 

Without OPTION OLDMACROS, ampersands are removed only once no matter 
how deeply nested the macro. To update your MASM 5.1 macros, a simple rule 
can be followed: Replace every sequence of ampersands with a single amper­
sand. The only exception to this is when macro parameters immediately precede 
and follow the ampersand, and both are to be substituted. In this case, two amper­
sands are needed. See Section 9.3.3, "Substitution Operator," for a description of 
the new rules. 

This example shows how to update a MASM 5.1 macro: 

; OPTION OLDMACROS (the MASM 5.1 behavior) 

create Names 
i rp 

macro 
ta i 1 , 

i rp num, 
; Define more 

arg&&tail&&&num&&&? 
ENDM 

ENDM 
ENDM 

arg 
<Next, Last> 
<1, 2> 
names of the 
label BYTE 

form: abcNextl? 

; OPTION NOOLDMACROS (the MASM 6.0 default) 

createNames macro arg 
for ta i 1, <Next, Last> 

for num, <1, 2> 
; Define more names of the 

arg&&tail&&num&? label BYTE 
ENDM 

ENDM 
ENDM 

; FOR is the MASM 6.0 
synonym for irp 

form: abcNext1? 



Compatibility between MASM 5.1 and 6.0 

A.2.2.4 OPTION DOTNAME 
MASM 5.1 allows names of identifiers to begin with a period. The MASM 6.0 
default is OPTION NODOTNAME. Adding OPTION DOTNAME to your code 
provides the MASM 5.1 behavior. 

If you don't want to use this directive in your source code, rename the identifiers 
whose names begin with a period. 

A.2.2.5 OPTION EXPR16 
The OPTION EXPR16 statement sets the expression word size to 16 bits. If you 
do not have .386, .386P, .486, or .486P directives in your MASM 5.1 code, 
OPTION EXPR16 is the default. For MASM 6.0, OPTION EXPR32 (an expres­
sion word size of 32 bits) is the default. 

It may not be easy to determine the effect of changing from 16-bit internal ex­
pression size to 32-bit size. In many cases, the 32-bit word size results in no 
change to MASM 5.1. code. However, problems may arise due to differences in 
intermediate values during evaluation of expressions. If you generate a listing file 
with the /PI and /Sa command-line options with and without OPTION EXPR16, 
you can compare the files for differences. 

It is illegal to change the expression size once it has been set with the OPTION 
directive. Changing the CPU type to .386 or .486 also sets OPTION EXPR32. 

A.2.2.6 OPTION OFFSET 
In MASM 5.1 code, offsets are computed with respect to the segment when the 
.MODEL is not used. This is equivalent to OPTION OFFSET:SEGMENT. 
OPTION M510 adds OPTION OFFSET:SEGMENT to your code if there is no 
.MODEL directive. 

When the .MODEL directive is used, offsets are computed with respect to the 
group. This is equivalent to MASM 6.0's OPTION OFFSET:GROUP (the 
MASM 6.0 default). 

Changing from OPTION OFFSET:SEGMENT to OPTION OFFSET:GROUP 
usually causes no problems. However, it is not easy to determine if changes are 
needed. 

The behavior of the OFFSET operator depends on the arguments used with 
OPTION OFFSET. If no GROUP directives are used, no changes are needed. 
Otherwise, use of the OFFSET operator must be examined to see if the operand 
is in a grouped segment with no group override. If so, a segment name override 
must be used. The following example shows equivalent statements for OPTION 
OFFSET:SEGMENT and OPTION OFFSET:GROUP: 

579 



Differences between MASM 6.0 and 5.1 

580 

; OPTION OFFSET:SEGMENT 
MyGroup GROUP MySeg 

MySeg SEGMENT 'data' 
My Labe 1 LABEL BYTE 

OW OFFSET MyLabel 
OW OFFSET MyGroup:MyLabel 
OW OFFSET MySeg:MyLabel 

MySeg ENOS 

In this example, the first use of OFFSET must be changed to 0 F FS ET 
My S e 9 : My Lab e 1 . The second and third uses do not need to be changed: 

; OPTION OFFSET:GROUP 
MyGroup GROUP MySeg 

MySeg 
MyLabel 

MySeg 

SEGMENT 
LABEL 
OW 
OW 
OW 
ENOS 

'data' 
BYTE 
OFFSET 
OFFSET 
OFFSET 

MySeg:MyLabel 
MyG rou p: My La be 1 
MySeg: My Labe 1 

Without OPTION M510, the OPTION OFFSET directive determines whether 
SEG is group- or segment-relative. When you don't use OPTION M510, the SEG 
operator behaves the same as the OFFSET operator does relative to OPTION 
OFFSET. With OPTION M510, SEG is always segment-relative by default, 
regardless of the current value of OPTION OFFSET (including the effect on 
OPTION OFFSET of a .MODEL directive). 

To remove OPTION M510 from your code, add OPTION OFFSET:SEGMENT if 
there is no .MODEL directive in your code. 

A.2.2.7 OPTION NOSCOPED 
Under MASM 5.1, code labels are scoped (local to the current procedure) if the 
.MODEL directive specifies a language type.They are not scoped (not local to the 
current procedure) if a language is not specified. Without OPTION M510 or 
OPTION NOSCOPED, code labels are always scoped. 

If your MASM 5.1 code does not specify a language type and you want to as­
semble without OPTION M510, add OPTION NOSCOPED to your code. 



Compatibility between MASM 5.1 and 6.0 

To determine which labels need to be changed, remove the OPTION NOSCOPED 
directive and assemble the module. The assembler generates error A2006: 

undefined symbol : identifier 

for each reference to a non-local symbol. 

A.2.2.B OPTION PROC 
By default, MASM 6.0 procedures are public (OPTION PROC:PUBLIC), but you 
can explicitly specify the default for procedure visibility with OPTION 
PROC:PRIVATE or OPTION PROC:EXPORT. 

If your module does not have a language specifier with the MODEL directive, 
using OPTION M510 adds OPTION PROC:PRIV ATE to the module. If you do 
not want to use OPTION PROC:PRIV ATE, you can add the PRIVATE keyword 
to each procedure you want to make private. The following example shows how 
to change MASM 5.1 code to make a procedure private: 

; MASM 5.1 (OPTION PROC:PRIVATE) 
MyProc PROC NEAR 

; MASM 6.0 (OPTION PROC:PUBLIC) 
MyProc PROC NEAR PRIVATE 

This is necessary only to avoid naming conflicts between public names in multi­
ple modules or libraries. The symbol table in a listing file shows the visibility 
(public, private, or export) of each procedure. 

A.2.2.9 OPTION NOKEYWORD 
MASM 5.1 allows you to use reserved words for names of identifiers, macro par­
ameters, and text macros. Several new reserved words have been added to 
MASM 6.0. If your existing code uses a reserved word as a symbol name, your 
code generates a syntax error on assembly. 

Identifiers and text macros can be keywords if you disable individual keywords 
with the OPTION NOKEYWORD directive. For example, 

OPTION NOKEYWORD:<INVOKE STRUCT> 

removes two keywords, INVOKE and STRUCT from the reserved word list. 

As an alternative to using OPTION NOKEYWORD, you can rename the offend­
ing label. For example, a label named S t r could be renamed S t r 1. 

581 



Differences between MASM 6.0 and 5.1 

The following list names all the new reserved words in MASM 6.0: 

.BREAK FLDENVW OPTION 

.CONTINUE FNSAVED OVERFLOW? 

.DOSSEG FNSAVEW PARITY? 

.ELSE FNSTENVD POPAW 

.ELSEIF FNSTENVW POPCONTEXT 

.ENDIF FOR PROTO 

.ENDW FORC PUSHAW 

.EXIT FRSTORD PUSH CONTEXT 

.IF FRSTORW PUSHD 

.LISTALL FSAVED PUSHW 

.LISTIF FSAVEW REALIO 

.LISTMACRO FSTENVD REAL4 

.LISTMACROALL FSTENVW REALS 

.NOS7 GOTO REPEAT 

.NOCREF HIGHWORD SBYTE 

.NOLIST INVD SDWORD 

.NOLISTIF INVLPG SIGN? 

.NOLISTMACRO INVOKE SIZEOF 

.REPEAT IRETDF STDCALL 

.STARTUP IRETF STRUCT 

.UNTIL LENGTHOF SUBTITLE 

.UNTILCXZ LOOPD SWORD 

.WHILE LOOPED SYSCALL 
ADDR LOOPEW TEXTEQU 
ALIAS LOOPNED TR3 
BSWAP LOOPNEW TR4 
CARRY? LOOPNZD TR5 
CMPXCHG LOOPNZW TYPEDEF 
ECHO LOOPW UNION 
EXTERN LOOPZW VARARG 
EXTERNDEF LOWWORD WBINVD 
FAR16 LROFFSET WHILE 
FAR32 NEAR16 XADD 
FLAT NEAR32 ZERO? 
FLDENVD OPATTR 

A.2.3 Changes to Instruction Encodings 

582 

MASM 6.0 contains changes to the encodings for several instructions. In some 
cases, the changes help optimize code size. 

Coprocessor Instructions MASM 5.1 adds an extra NOP instruction 
before the no-wait versions of coprocessor instructions. MASM 6.0 does not. In 
the rare case that the missing NOP affects the timing, insert NOP. 



Compatibility between MASM 5.1 and 6.0 

Also, in .286 mode, MASM 6.0 does not prefix any 8087, 80287, 80387, or 
80486 coprocessor instruction with FW AIT (unless the instruction is the WAIT 
form of an instruction that has a NOWAIT form). MASM 5.1 prefixes some of 
these instructions with FW AlT. 

RET Instruction If the operand to RET, RETN, or RETF is 0, MASM 6.0 
uses the one-byte encoding. MASM 5.1 generates the three-byte encoding in this 
case. Thus, it is possible to suppress the epilogue generation but still specify the 
default size for the RET (NEAR or FAR), by coding the return as 

RET 0 

If the operand for RET, RETN, or RETF is an external absolute, MASM 6.0 
generates the three-byte encoding. In this case, MASM 5.1 ignores the parameter 
and generates the one-byte encoding. 

LEA Instruction with Direct Memory Operands When the second oper­
and to the LEA instruction is a direct memory operand (that is, the second oper­
and does not contain registers), MASM 6.0 encodes the instruction as 

mov reg, OFFSET directmem 

This is smaller and faster than the equivalent LEA encoding that MASM 5.1 
generates. This should not affect your MASM 5.1 code. 

Arithmetic Instructions If your program uses the arithmetic instructions 
ADC, ADD, AND, CMP, OR, SUB, SBB, and XOR, and the following conditions 
are also true: 

• Either AX or EAX is the first operand 

• A sign-extendable byte constant is the second operand 

then the instructions are encoded in MASM 5.1 as ax/eax, imm16/32. 

MASM 6.0 uses this encoding instead: rm16/32. imm8. 

With the AX register, there is no size or speed difference between the two encod­
ings. In the EAX case, MASM 6.0's encoding is two bytes smaller. The OPTION 
NOSIGNEXTEND directive provides the MASM 5.1 behavior. 

583 





Appendix 8 

BNF Grammar 

The BNF grammar gives the full description of the MASM language. The 
MASM BNF follows the Backus-Naur Form (BNF) for grammar notation. 

You can use the BNF to determine the exact syntax for any language component. 
The BNF format clearly defines recursive definitions and shows all the available 
options for any placeholder. 

Definitions 
Terminals are endpoints in a BNF definition. No other resolution of their defini­
tion is possible. Terminals include the set of reserved words and user-defined 
objects. 

Nonterminals are placeholders in the BNF definition. All nonterminals are de­
fined elsewhere in the BNF. 

The BNF references two types of expressions before they are formally defined: 
constExpr and immExpr. A constExpr is an expression whose value is not relo­
eatable and not completely known at assembly time. An immExpr is similar to a 
constExpr, except that it may also be relocatable. 

Conventions 
The conventions use different font attributes for different items in the BNF. The 
symbols and formats are as follows: 

Attribute 

nonterminal 

RESERVED 

[] 

Description 

Italic type indicates nonterminals. 

Terminals in boldface type are literal reserved words 
and symbols that must be entered as shown. Charac­
ters in this context are always case insensitive. 

Objects enclosed in double brackets ([ ]) are op­
tional. The brackets do not actually appear in the 
source code. 

A vertical bar indicates a choice between the items 
on each side of the bar. 

585 



BNF Grammar 

586 

Attribute 

default typeface 

How to Use 

Description 

Underlined items indicate the default option if one is 
given. 

Characters in the set described or listed can be used 
as terminals in MASM statements. 

To illustrate the use of the BNF, Figure B.l explores the definition of the 
TYPEDEF directive by starting with the nonterminal typedefDir. 

Of course typedefDir is also an option given in the definition for a nonterminal 
"higher" than typedefDir. Look at the BNF definition for generalDir as an 
example. 

The entries under each horizontal brace in Figure B.l are terminals (such as 
NEAR16, NEAR32, FAR16, and FAR32) or nonterminals (such as qualifier, 
qualifiedType, distance, and protoSpec) that can be further defined. Each nonter­
minal (italicized word) in the typedefDir definition is also an entry in the BNF. 
Three vertical dots mean that the BNF description for that nonternminal is not 
illustrated in this figure (but is in the BNF). 

Definitions can be recursive. As an example, note that qualifiedType is used in 
one of the two possible definitions for qualifiedType and is also a component of 
the definition for qualifier. 

typedefDir 

,...----~l'--------------. 
typeld TYPEDEF qualifier 

1 
/~--------~~--------~, 

qualifiedType I PROTO protospec 

1 r,,------~'---------.., 

type I [distance] PTR [qualifiedType] 

[ distance] [lang Type] [protoArgList] I typeID 

neaifar I NEAR16 I NEAR32 I FAR16 I FAR32 

~ 
NEAR I FAR 

Figure B.1 BNF Definition of the TYPEDEF Directive 



Nonterminal 

.. 
" 

=Dir 

addOp 

aExpr 

alpha 

altId 

arbitraryText 

asmlnstruction 

assumeDir 

assumeList 

assumeReg 

assumeRegister 

assumeSegReg 

assumeSegVal 

assume Val 

bcdConst 

binaryOp 

bitDef 

bitDefList 

bitFieldld 

bitFieldSize 

blockStatements 

byteRegister 

Definition 

endOfLine 
1 comment 

id = immExpr ;; 

+ 1-

term 
1 aExpr && term 

a thru z 
1 A thruZ 
I?I@I 1$ 

id 

charList 

mnemonic [ exprList ] 

ASSUME assumeList ;; 
1 ASSUME NOTHING;; 

assumeRegister 
1 assumeList , assumeRegister 

register: assumeVal 

assumeSegReg 
1 assumeReg 

segmentRegister : assumeSegVal 

frameExpr 
1 NOTHING 1 ERROR 

qualifiedType 
1 NOTHING 1 ERROR 

[ sign] decNumber 

== 1 != 1 >= 1 <= 1 > 1 < 1 & 

bitFieldld : bitFieldSize [ = constExpr ] 

bitDef 
1 bitDefList , [ ;; ] bitDef 

id 

constExpr 

directiveList 
1 .CONTINUE [ .IF cExpr ] 
1 .BREAK [ .IF cExpr ] 

ALIAHIBLIBHICLICHIDLIDH 

BNF Grammar 

587 



BNF Grammar 

588 

Nonterminal 

cExpr 

character 

charList 

className 

commDecl 

commDir 

comment 

commentDir 

commList 

commType 

constant 

constExpr 

con textD ir 

contextltem 

contextItemList 

controlBlock 

controlDir 

controlElseif 

Definition 

aExpr 
I cExpr II aExpr 

Any character value (ordinal in the range 0-255) 
except linefeed (10) 

character 
I charList character 

string 

[ nearfar ] [ lang Type ] id : commType 
[ : constExpr ] 

COMM commList;; 

; text ;; 

COMMENT delimiter 
text 
text delimiter text;; 

commDecl 
I commList, commDecl 

type 
I constExpr 

digits [ radixOverride ] 

expr 

PUSHCONTEXT contextItemList ;; 
I POPCONTEXT contextltemList ;; 

ASSUMES I RADIX I LISTING I CPU I ALL 

context/tem 
I contextltemList , context/tem 

whileBlock 
I repeatBlock 

controlIf 
I controlBlock 

.ELSEIF cExpr;; 
directiveList 
[ controlElseif] 



Nonterminal 

con tro llf 

coprocessor 

crefDir 

crefOption 

cxzExpr 

dataDecl 

dataDir 

dataItem 

dataType 

decdigit 

decNumber 

delimiter 

digits 

directive 

directiveList 

distance 

BNF Grammar 

Definition 

.IF cExpr ;; 
directiveList 
[ controlElseif] 
[.ELSE ;; 
directiveList ] 
.ENDIF ;; 

.8087 1 .287 1 .387 1 .N 087 

crefOption ;; 

.CREF 
1 .XCREF [idList] 
1 .NOCREF [ idList ] 

expr 
I! expr 
1 expr == expr 
1 expr != expr 

DB 1 DW 1 DD 1 DF 1 DQ 1 DT 1 dataType 1 typeId 

[ id] dataItem ;; 

dataDecl scalarInstList 
1 structTag structInstList 
1 typeId structInstList 
1 unionTag structInstList 
1 recordTag recordInstList 

BYTE 1 SBYTE 1 WORD 1 SWORD 1 DWORD 
1 SDWORD 1 FWORD 1 QWORD 1 TBYTE 
IREAL41REAL81REALIO 

0111213141516171819 

de cdig it 
1 decNumber decdigit 

Any character other than whiteSpaceCharacter 

decdigit 
1 digits decdigit 
1 digits hexdigit 

generalDir 
1 segmentDef 

directive 
1 directiveList directive 

nemfar 
1 NEAR161 NEAR321 FAR161 FAR32 

589 



BNF Grammar 

Nonterminal Definition 

eOl eOl orOp e02 
I e02 

e02 e02 AND e03 
I e03 

e03 NOTe04 
I e04 

e04 e04 relOp e05 
I e05 

e05 e05 addOp e06 
le06 

e06 e06 mulOp e07 
I e06 shiftOp e07 
I e07 

e07 e07 addOp e08 
le08 

e08 HIGH e09 
I LOWe09 
I HIGHWORD e09 
I LOWWORD e09 
I e09 

e09 OFFSET elO 
I LROFFSET el 0 
I TYPE elO 
I THIS elO 
I e09 PTR elO 
I e09: elO 
I elO 

elO elO. ell 
I elO [expr] 
I ell 

590 



BNF Grammar 

Nonterminal Definition 

ell (expr) 
[expr] 
WIDTH id 
MASKid 
SIZE sizeArg 
SIZEOF sizeArg 
LENGTH id 
LENGTHOF id 
recordConst 
string 
constant 
type 
id 
$ 
segmentRegister 
register 
ST 
ST (expr) 

echoDir ECHO arbitraryText ;; 

elseifB lock elseiJStatement ;; 
directiveList 
[ elseifBlock] 

elseifStatement ELSEIF constExpr 
I ELSEIFE constExpr 
I ELSEIFB text/tern 
I ELSEIFNB text/tern 
I ELSEIFDEF id 
I ELSEIFNDEF id 
I ELSEIFDIF text/tern, text/tern 
I ELSEIFDIFI text/tern, text/tern 
I ELSEIFIDN text/tern, text/tern 
I ELSEIFIDNI text/tern, text/tern 
I ELSEIFI 
I ELSEIF2 

endDir END [ immExpr] ;; 

endpDir proc/d ENDP ;; 

endsDir idENDS ;; 

equDir textMacro/d EQU equType ;; 

equType immExpr 
I textLiteral 

errorDir errorOpt ;; 

591 



BNF Grammar 

592 

Nonterminal 

errorOpt 

exitDir 

exitrnDir: 

exponent 

expr 

exprList 

externDef 

externDir 

externKey 

externList 

exte rn Type 

fieldAlign 

field/nit 

field/nitList 

Definition 

ERR [text/tern] 
.ERRE constExpr [ optText ] 
.ERRNZ constExpr [ optText ] 
.ERRB text/tern [optText] 
.ERRNB text/tern [optText] 
.ERRDEF id [ optText ] 
.ERRNDEF id [ optText ] 
.ERRDIF text/tern, text/tern [optText] 
.ERRDIFI text/tern, textItern [ optText ] 
.ERRIDN text/tern, text/tern [optText] 
.ERRIDNI text/tern, text/tern [optText] 
.ERRl [ text/tern ] 
.ERR2 [ text/tern ] 

.EXIT [ expr] ;; 

EXITM 
I EXITM text/tern 

E [ sign] decNurnber 

SHORTe05 
I.TYPEe01 
I OPATTR e01 
I e01 

expr 
I exprList , expr 

[langType] id [ (altId) ] : externType 

externKey externList ;; 

EXTRN I EXTERN I EXTERNDEF 

externDef 
I externList , [ ;; ] externDef 

ABS 
I qualifiedType 

constExpr 

[ initValue ] 
I struct/nstance 

field/nit 
Ifield/nitList, [ ;; ] field/nit 



N onterminal 

file Char 

fileCharList 

fileSpec 

flagName 

floatNumber 

forcDir 

forDir 

forParm 

forParmType 

frameExpr 

generalDir 

gpRegister 

groupDir 

groupld 

BNF Grammar 

Definition 

Any character value (ordinal in the range 0-255) 
except backspace (8), tab (9), linefeed (10), vertical 
tab (11), form feed (12), carriage return (13), I\Z 
(26), or space (32) 

fileChar 
I fileC harList fileC har 

fileC harList 
I textLiteral 

ZERO? I CARRY? I OVERFLOW? 
I SIGN? I PARITY? 

[ sign] decNumber • [decNumber] [ exponent] 
I digits R 
I digits r 

FORC IIRPC 

FOR I IRP 

id [ : forParmType ] 

REQ 
I = textLiteral 

expr 

modelDir I segOrderDir I nameDir 
includeLibDir I commentDir 
groupDir I assumeDir 
structDir I recordDir I typedefDir 
externDir I publicDir I commDir I protoTypeDir 
equDir I =Dir I textDir 
contextDir I optionDir I processorDir 
radixDir 
titleDir I pageDir I listDir 
crefDir I echoDir 
ifDir I errorDir I includeDir 
macroDir I macroCalll macroRepeat I purgeDir 
macroWhile I macroFor I macroForc 
aliasDir 

AXIEAXIBXIEBXICXIECXIDXIEDX 
I BP I EBP I SP I ESP I DI I EDI I SI I ESI 

groupld GROUP segldList 

id 

593 



BNF Grammar 

594 

N onterminal 

hexdigit 

id 

idList 

ifDir 

iJStaternent 

irnrnExpr 

includeDir 

inc ludeLibD ir 

initValue 

inSegDir 

inSegDirList 

Definition 

alblcldlelf 
IAIBICIDIEIF 

alpha 
I id alpha 
I id decdigit 

id 
I idList, id 

iJStaternent ;; 
directiveList 
IT elseifBlock ] 
IT ELSE;; 
directiveList] 
ENDIF ;; 

IF constExpr 
lIFE constExpr 
I IFB text/tern 
I IFNB text/tern 
I IFDEF id 
I IFNDEF id 
I IFDIF text/tern, text/tern 
I IFDIFI text/tern, text/tern 
I IFIDN text/tern, text/tern 
I IFIDNI text/tern, text/tern 
11Ft 
IIF2 

expr 

INCLUDE fileSpec ;; 

INCLUDELIB fileSpec ;; 

irnrnExpr 
I string 
I? 
I constExpr DUP ( scalarInstList ) 
I floatNurnber 
I bcdConst 

IT labelDef] inSegrnentDir 

inSegDir 
I inSegDirList inSegDir 



Nonterminal 

inSegmentDir 

instrPrefix 

instruction 

invokeArg 

invokeDir 

invokeList 

keyword 

keywordList 

labelDef 

labelDir 

langType 

listDir 

listOption 

localDef 

BNF Grammar 

Definition 

instruction 
I dataDir 
I controlDir 
I startupDir 
I exitDir 
loffsetDir 
IlabelDir 
I procDir [ localDirList] [ inSegDirList] endpDir 
I invokeDir 
I generalDir 

REP I REPE I REPZ I REPNE I REPNZ I LOCK 

[ instrPrefix ] asmlnstruction 

register :: register 
I expr 
I ADDR expr 

INVOKE expr [, [ ;;] invokeList] ;; 

invokeArg 
I invokeList , [ ;; ] invokeArg 

Any reserved word 

keyword 
I keyword keywordList 

id: 
lid :: 
I@@: 

id LABEL qualijiedType ;; 

C I PASCAL I FORTRAN I BASIC 
I SYSCALLISTDCALL 

listOption ;; 

.LIST 
I .NOLIST I .XLIST 
I.LISTALL 
I .LISTIF I .LFCOND 
I .NOLISTIF I .SFCOND 
I.TFCOND 
I.LISTMACROALL I.LALL 
I .NOLISTMACRO I .SALL 
I .LISTMACRO I .XALL 

LOCAL idList ;; 

595 



BNF Grammar 

596 

N onterminal 

loealDir 

loealDirList 

loealList 

maeroArg 

maeroArgList 

maeroBody 

maeroCall 

maeroDir 

maeroFor 

maeroFore 

maeroFuncId 

maerold 

maeroldList 

maeroLabel 

maeroParm 

maeroP armList 

maeroProcId 

Definition 

LOCAL parmList ;; 

loealDir 
IloealDirList loealDir 

loealDef 
I loealList loealDef 

% eonstExpr 
I % textMaerold 
I % maeroFuncId ( maeroArgList ) 
I string 
I arbitraryText 
I < arbitrary Text > 

maeroArg 
I maeroArgList , maeroArg 

IT loealList ] 
maeroStmtList 

id maeroArgList ;; 
I id ( maeroArgList ) 

id MACRO IT maeroParmList] ;; 
maeroBody 
ENDM ;; 

forDir forParm, < maeroArgList > ;; 
maeroBody 
ENDM ;; 

foreDir id , textLiteral ;; 
maeroBody 
ENDM ;; 

id 

maeroProcId 
I maeroFuncId 

maerold 
I maeroldList, maerold 

id 

id [ : parmType ] 

maeroParm 
I maeroParmList, IT ;;] maeroParm 

id 



Nonterminal 

macroR epeat 

macroStmt 

macroStmtList 

macroWhile 

mapType 

memOption 

mnemonic 

modelDir 

modelOpt 

modelOptlist 

module 

mulOp 

nameDir 

near/ar 

nestedStruct 

offsetDir 

offsetDirType 

offsetType 

oldRecordFieldList 

BNF Grammar 

Definition 

repeatDir constExpr ;; 
macroBody 
ENDM ;; 

directive 
I exitmDir 
I: macroLabel 
I GOTO macroLabel 

macroStmt ;; 
I macroStmtList macroStmt ;; 

WHILE constExpr ;; 
macroBody 
ENDM ;; 

ALL I NONE I NOTPUBLIC 

TINY I SMALL I MEDIUM I COMPACT 
I LARGE I HUGE I FLAT 

Instruction name 

.MODEL memOption IT , modelOpt/ist ] ;; 

langType 
losType 
I stackOption 

modelOpt 
I modelOptlist , modelOpt 

IT directiveList ] endDir 

* 1/1 MOD 

NAME id;; 

NEAR I FAR 

structH dr [ id] ;; 
structBody 
ENDS ;; 

offsetDirType ;; 

EVEN 
I ORG immExpr 
I ALIGN [ constExpr ] 

GROUP I SEGMENT I FLAT 

IT constExpr ] 
I oldRecordFieldList , [ constExpr ] 

597 



BNF Grammar 

Nonterminal Definition 

optionDir OPTION optionList ;; 

option/tem CASEMAP: mapType 
I DOTNAMEI NODOTNAME 
I EMULATOR I NOEMULATOR 
I EPILOGUE: macro/ d 
LANGUAGE: langType 
LJMP I NOLJMP 
M510 I NOM510 
NO KEYWORD : < keywordList > 
NOSIGNEXTEND 
OFFSET: offsetType 
OLDMACROSINOOLDMACROS 
OLDSTRUCTSINOOLDSTRUCTS 
PROC : 0 Visibility 
PROLOGUE: macro/d 
READONLYINOREADONLY 
SCOPED I NOSCOPED 
SEGMENT: segSize 

optionList option/tem 
I optionList, [ ;; ] option/tem 

optText , text/tem 

orOp OR I XOR 

osType OS DOS I OS OS2 - -
o Visibility PUBLIC I PRIVATE I EXPORT 

pageDir PAGE [pageExpr] ;; 

pageExpr + 
I [pageLength ] [ ,page Width ] 

pageLength constExpr 

page Width constExpr 

parm parm/d [ : qualifiedType ] 
I parm/d [ constExpr] [ : qualifiedType ] 

parm/d id 

parmList parm 
I parmList , [ ;; ] parm 

parmType REQ 
I = textLiteral 
I VARARG 

pOptions [ distance] [ langType ] [ oVisibility ] 

598 



Nonterminal 

primary 

procDir 

processor 

processorDir 

procId 

procP armList 

pro toA rg 

pro toArgList 

protoList 

protoSpec 

protoTypeDir 

pubDef 

publicDir 

pubList 

purgeDir 

qualifiedType 

qualifier 

quote 

radixDir 

BNF Grammar 

Definition 

expr binaryOp expr 
IflagName 
1 expr 

procId PROC [pOptions] [< macroArgList >] 
[usesRegs] [procParmList] 

~ 
1.186 
1 .286 1 .286C 1 .286P 
1 .386 1 .386C 1 .386P 
1 .486 1 .486P 

processor ;; 
1 coprocessor;; 

id 

[ [ , [ ,.,. ] ] parmList ] 
[[, [,.,.]] parmld :VARARG] 

[ id] : qualifiedType 

[ [ , [ ,.,. ] ] protoList ] 
[ [, [ ,.,.] ] [id] :VARARG ] 

protoArg 
1 protoList , [ ,.,. ] protoArg 

[ distance] [ lang Type ] [protoArgList] 
1 typeld 

id PROTO protoSpec 

[ lang Type ] id 

PUBLIC pubList ,.,. 

pubDef 
1 pubList , [ ,.,. ] pubDef 

PURGE macroldList 

type 
1 [ distance] PTR [ qualifiedType ] 

qualifiedType 
1 PROTO protoSpec 

1 ' 

.RADIX constExpr,.,. 

599 



BNF Grammar 

600 

Nonterminal 

radixOverride 

recordConst 

recordDir 

recordFieldList 

record! nstance 

record! nstList 

recordTag 

register 

regList 

relOp 

repeatB lock 

repeatDir 

scalar! nstList 

segAlign 

segAttrib 

Definition 

hlolqltly 
IHIOIQITIY 

recordTag { oldRecordFieldList } 
I recordTag < oldRecordFieldList > 

recordTag RECORD bitDefList ;; 

IT constExpr ] 
I recordFieldList , [ ;; ] IT constExpr] 

{ IT ;;] recordFieldList IT ;; ] } 
I < oldRecordFieldList > 
I constExpr DUP ( record!nstance ) 

record! nstance 
I record!nstList, IT ;; ] record!nstance 

id 

specialRegister 
I gpRegister 
I byteRegister 

register 
I regList register 

EQINEILTILEIGTIGE 

.REPEAT ;; 
blockStatements ;; 
untilDir ;; 

REPEATIREPT 

initValue 
I scalar!nstList , IT ;; ] initValue 

BYTE I WORD I DWORD I PARA I PAGE 

PUBLIC 
I STACK 
I COMMON 
I MEMORY 
I AT constExpr 
I PRIVATE 



Nonterminal 

segDir 

seg/d 

seg/dList 

segmentDef 

segmentDir 

segmentRegister 

segOption 

segOptionList 

segOrderDir 

segRO 

segSize 

shiftOp 

sign 

simpleExpr 

simpleSegDir 

sizeArg 

specialChars 

BNF Grammar 

Definition 

.CODE [ seg/d ] 
I.DATA 
I.DATA? 
I.CONST 
I .FARDATA [ seg/d] 
I.FARDATA? [seg/d] 
I .STACK [constExpr] 

id 

seg/d 
I seg/dList ,seg/d 

segmentDir [ inSegDirList ] endsDir 
I simpleSegDir [ inSegDirList] [ endsDir ] 

seg/d SEGMENT [ segOptionList ] ;; 

CSIDSIESIFSIGSISS 

segAlign 
I segRO 
I segAttrib 
I segSize 
I className 

segOption 
I segOptionList segOption 

.ALPHA I .SEO I .DOSSEG I DOSSEG 

READONLY 

USE16 IUSE32 I FLAT 

SHR I SHL 

-I + 

(cExpr) 
I primary 

segDir ;; 

id 
I type 
I elO 

:I.I[I]I(I)I<I>I{I} 
I+I-I/I*I&I%I! 
1'1 \ I = I; I, I" 
I white space (8, 9, 11-13,26, 32) I endOfLine 

601 



BNF Grammar 

602 

N onterminal 

specialRegister 

stackOption 

startupDir 

stext 

string 

stringChar 

structBody 

structDir 

structHdr 

structlnstance 

structI nstList 

structItem 

structTag 

term 

text 

textDir 

Definition 

CRO I CR2 I CR3 
IDROIDRIIDR21DR31DR61DR7 
ITR31TR41TR5ITR61TR7 

NEARSTACK I FARSTACK 

.STARTUP ;; 

string Char 
I stext stringChar 

quote [ stext ] quote 

quote quote 
I Any character value (ordinal in the range 0-255) 
except linefeed (10) and elements of quote 

structltem ;; 
I structBody structItem ;; 

structTag structHdr [fieldAlign ] 
[, NONUNIQUE ] ;; 
structBody 
structTag ENDS ;; 

STRUCISTRUCTIUNION 

< [fieldlnitList] > 
I { [ ;; ] [fieldlnitList] [ ;; ] } 
I constExpr DUP ( structInstList) 

structInstance 
I structlnstList , [ ;; ] structInstance 

dataDir 
I generalDir 
loffsetDir 
I nestedStruct 

id 

simpleExpr 
I ! simpleExpr 

textLiteral 
I text character 
I ! character text 
I character 
I ! character 

id textMacroDir ;; 



N onterminal 

textItem 

textLen 

textList 

textLiteral 

textMacroDir 

textMacroId 

textS tart 

titleDir 

titleType 

type 

typedefDir 

typeId 

unionTag 

untilDir 

usesRegs 

whileBlock 

whiteSpaceC haracter 

BNF Grammar 

Definition 

textLiteral 
I textMacroId 
I % constExpr 

constExpr 

textItem 
I textList , [ ;; ] text/tern 

< text >;; 

CATSTR [ textList ] 
I TEXTEQU [ textList ] 
I SIZESTR text/tern 
I SUBSTR textItem , textS tart [ , textLen ] 
I INSTR [ textS tart , ] textItem , text/tern 

id 

constExpr 

titleType arbitraryText ;; 

TITLE I SUBTITLE I SUBTTL 

structTag 
I unionTag 
I recordTag 
I distance 
I dataType 
I typeId 

typeId TYPEDEF qualifier 

id 

id 

.UNTIL cExpr ;; 

.UNTILCXZ [cxzExpr] ;; 

USES regList 

. WHILE cExpr ;; 
blockStatements ;; 
.ENDW 

ASCII 8, 9, 11-13,32 

603 





Appendix C 

Generating and Reading Assembly 
Listings 

MASM creates an assembly listing of your source file whenever you select the 
appropriate option in PWB, use one of the related source code directives, or 
specify the /PI option on the MASM command line. The assembly listing con­
tains both the statements in the source file and the binary code (if any) generated 
for each statement. The listing also shows the names and values of all labels, vari­
ables, and symbols in your file. 

The assembler creates tables for macros, structures, unions, records, segments, 
groups, and other symbols. These tables are placed at the end of the assembly 
listing. MASM lists only the types of symbols encountered in the program. For 
example, if your program has no macros, the symbol table does not have a mac­
ros section. 

C.1 Generating Listing Files 
MASM 6.0 provides several ways to generate a listing file. From within PWB, 
follow these steps: 

1. From the "Options" menu, choose MASM Options. 

2. In the MASM Options dialog box, choose Set Debug or Release Options. 

The resulting dialog box for Set Debug or Release Options lists the choices sum­
marized in Table C.I. This table also shows the equivalent directives you can use 
in your source code or the equivalent command-line options. 

605 



Generating and Reading Assembly Listings 

606 

Table C.I Options for Generating or Modifying Listing Files 

To generate this In source From command 
information: In PWB1

, select: code, enter: line, enter: 

Default listing-includes Generate Listing File .LIST (default) IFI 
all assembled lines 

Turn off all source Generate Listing .NOLIST 
listings (overrides all File (turn off) (synonym = .SFCOND) 
listing directives) 

List all source lines, in- Include All Source .LISTALL IFIISa 
cluding false conditionals Lines 
and generated code 

Show assembler- List Generated IFIISg 
generated code Instructions 

Include false conditionals2 List False .LISTIF IFIISx 
Conditionals (synonym = .LFCOND) 

Suppress listing of any List False Condition- .NOLISTIF 
subsequent conditional als (turn off) (synonym = .SFCOND) 
blocks whose condition is 
false 

Toggle between .LISTIF .TFCOND 
and .NOLISTIF 

Suppress symbol table Generate Symbol IFl/Sn 
generation Table (turn off the 

default) 

List all processed macro .LISTMACROALL 
statements (synonym = .LALL) 

List only instructions, .LISTMACRO 
data, and segment direc- (default) 
tives in macros (synonym = .XALL) 

Turn off all listing during .NOLISTMACRO 
macro expansion (synonym = .SALL) 

Specify title for each page TITLE name 1St 
(use only once per file) 

Specify subtitle for page SUBTITLE name ISs 

Designate page length PAGE [length,width][+] ISp length 
and line width, increment lSI width 
section number, or 
generate page breaks 

1 Select MASM Options from the "Options" menu. Then choose Set Dialog Options from the MASM Options dialog 
box. 

2 See Section 1.3.2.2, "Conditional Directives." 



Generating Listing Files 

C.1.1 Generating a First Pass Listing 
The jEP command-line option may be used to produce a listing during the assem­
bier's first pass. This listing is printed to standard output and is suitable for pro­
cessing by the assembler. A first pass listing can be helpful for locating problems 
when there are many errors, or when unmatched nesting errors occur. 

C.1.2 Controlling the Contents of the Listing File 
With source code directives you can vary the contents of the listing file for differ­
ent sections of the source file, whereas (in the absence of source code directives) 
the PWB or command-line options affect the entire listing. 

The /FI command-line option enables a listing. Without /FI, no listing is pro­
duced. The /S options are legal without /FI, but they have no effect. 

A file generated with /FI shows all assembled source lines and provides a header 
at the beginning of the listing. It also adds a header before the symbol table and 
each section of the symbol table but does not add any page breaks between 
sections. 

C.1.3 Controlling Listing Information on Macros 
The only way to control the listing of macro expansions is with the source direc­
tives. The assembler always lists the full macro definition. The directives affect 
only expansion of macro calls. Macro comments are never listed in macro 
expansions. The default, .LISTMACRO, ignores comments and equates. The 
.NOLISTMACRO directive shows the initial macro call but not the source lines 
generated by the initial call or by recursive calls. 

The assembler lists normal comments in macros only when you specify the 
.LISTMACROALL directive. This directive produces all statements processed 
during a macro expansion, including normal comments (preceded by a single 
semicolon) but not macro comments (preceded by a double semicolon). 

C.1.4 Controlling the Page Format 
With source code directives or command-line options, you can specify the line 
length, page length, title, and subtitle of the pages in a listing file. In PWB, you 
can enter listing file options in the "Additional Options" section of the MASM 
Options dialog box. Table C.I gives the command-line options and source code 
listings for control of page format. 

607 



Generating and Reading Assembly Listings 

C.1.5 Precedence of Command-Line Options and Listing Directives 
Since command-line options and source code directives can specify opposite be­
havior for the same listing file option, the assembler interprets the commands ac­
cording to the precedence levels below. Selecting PWB options is equivalent to 
specifying IFI IS letter on the command line: 

• ISa overrides any source code directives that suppress listing. 

• Source code directives override all command-line options except ISa. 

• .NOLIST overrides other listing directives such as .NOLISTIF and 
.LISTMACROALL. 

• The ISx, ISs, ISp, and lSI options set initial values for their respective fea­
tures. Directives in the source file override these command-line options. 

C.2 Reading the Listing File 
The first column of the listing file gives the offset and binary code generated by 
the assembler. The next column gives the source statement exactly as it appears 
in the source file or as expanded by a macro. Various symbols and abbreviations 
in this column provide information about the code, as explained below. 

C.2.1 Code Generated 
The assembler lists the code generated from the statements of a source file. Each 
line has this syntax: 

offset [code] 

The offset is the offset from the beginning of the current segment to the code. If 
the statement generates code or data, code shows the numeric value in hexadeci­
mal notation if the value is known at assembly time. If the value is calculated at 
run time, the assembler indicates what action is necessary to compute the value. 

C.2.2 Error Messages 

608 

If any errors occur during assembly, each error message and error number ap­
pears directly below the statement where the error occurred. An example of an 
error line and message is shown below: 

mov ax, [dx][di] 
listtst.asm(66): error A2031: must be index or base register 



Reading the Listing File 

C.2.3 Symbols and Abbreviations 
The assembler uses the symbols and abbreviations shown in Table C.2 to indi­
cate addresses that need to be resolved by the linker or values that were 
generated in a special way. The example in this section illustrates many of these 
symbols. The numbers in column one correspond to the location of this symbol 
in the sample listing file. 

The listing file was produced using "List-Generated Instructions" from PWB (or 
using /PI /Sg from the command line). 

Table C.2 Symbols and Abbreviations in Listings 

Label Character Meaning 

CD C Line from include file 

(2) EQU or equal-sign (=) directive 

@ nn[xx] DUP expression: nn copies of the value xx 

@ Segment/group address (linker must resolve) 

@ R Relocatable address (linker must resolve) 

@ * Assembler-generated code 

@ E External address (linker must resolve) 

® n Macro-expansion nesting level (+ if more than 9) 

(J) Operator size override 

@ & Address size override 

® nn: Segment override in statement 

@ nn/ REP or LOCK prefix instruction 

The sample listing file also shows the size of structures and unions in the first 
column. 

609 



Generating and Reading Assembly listings 

Mi eros oft (R) Macro Assembler Version 6.00 Nov 13 01:27:05 1990 
listtst.asm Page 1 - 1 

.MODEL small, c 

.386 

.DOSSEG 

.STACK 256 
INCLUDE dos.mac 

CD C StrDef MACRO namel, text 
C namel BYTE &text 
C BYTE 13d, 10d 
C l&namel EOU LENGTHOF namel 
C ENDM 
C 
C Display MACRO string 
C mov ah, 09h 
C mov dx, OFFSET string 
C int 21h 
C ENDM 
C 

@ 0020 num EOU 20h 
COLOR RECORD b: 1, r:3=1, i : 1 = 1, f: 3= 7 

35 value TEXTEOU %3 + num 
32 tnum TEXTEOU %num 
04 strpos TEXTEOU @InStr( , <person>, son> ) 

PutStr PROTO pMsg:PTR BYTE 

0004 DATE STRUCT 
0000 05 month BYTE 5 
0001 07 day BYTE 7 
0002 07C3 year WORD 1987 

DATE ENDS 

0002 Ul UNION 
0000 0028 fsize WORD 40 

bsize BYTE 60 
Ul ENDS 

0000 . DATA 

0000 00000000 ddData DWORD ? 
0004 IF text COLOR <> 
0005 09 16 07C3 today DATE <9,22,1987> 
0009 00 fl ag BYTE 0 

@ 000A 001E [ buffer WORD 30 DUP (0) 
0000 

] 

610 



Reading the listing File 

StrDef ending, "Finished." 
0046 46 69 6E 69 73 68 1 ending BYTE "Finished." 

65 64 2E 
004F 00 0A 1 BYTE 13d, 10d 
= 0009 1 lending EQU LENGTHOF ending 
0051 54 68 69 73 20 69 Msg BYTE "This is a string","0" 

73 20 61 20 73 74 
72 69 6E 67 30 

flaat TYPEDEF REAL4 
FPBYTE TYPEDEF FAR PTR BYTE 

0062 ---- 0051 R FPMSG FPBYTE Msg 
PBYTE TYPEDEF PTR BYTE 
NPWORD TYPEDEF NEAR PTR WORD 
PVOID TYPEDEF PTR 
PPBYTE TYPEDEF PTR PBYTE 

0000 .CODE 
.STARTUP 

@ 0000 B8 R * mav ax, DGROUP 
0003 8E D8 * mav ds, ax 
0005 8C D3 * mav bx, ss 
0007 2B D8 * sub bx, ax 
0009 Cl E3 04 * sh 1 bx, 004h 
000C 8E D0 * mav ss, ax 
000E 03 E3 * add sp, bx 

EXTERNDEF wark:NEAR 
@ 0010 E8 0000 E call wark 

Display ending 
@ 0013 B4 09 1 mav ah, 09h 

0015 BA 0046 R 1 mav dx, OFFSET ending 
0018 CD 21 1 int 21h 

(J) 001A 661 Al 0000 R mav eax, ddData 
@ 001E 67& FE 03 inc BYTE PTR [ebxJ 

INVOKE PutStr, ADDR msg 
0021 B8 0051 R * 1 ea ax, DGROUP:Msg 
0024 50 * push ax 
0025 E8 0042 R * call PutStr 
0028 83 C4 02 * add sp, 00002h 

002B B8 R mav ax, @data 
002E 8E C0 mav es, ax 
0030 B8 0063 mav ax, 'e' 

® 0033 26: 8B 0E 0020 mav ex, es:num 
0038 BF 0052 mav di , 82 

® 003B F2/ AE repne scasb 
0030 57 push di 

611 



Generating and Reading Assembly listings 

. EXIT 
003E B4 4C * mov ah, 04Ch 
0040 CO 21 * int 021h 

0042 PutStr PROC pMsg:PTR BYTE 
0042 55 * push bp 
0043 8B EC * mov bp, sp 
0045 B4 02 mov ah, 02H 
0047 8B 7E 04 mov di , pMsg 
004A 8A 15 mov dl , [di] 

mov ax, [dx][di] 
i sttst. asm(7l): error A2031: must be index or base register 

.WHILE (dl) 
004C EB 10 * jmp @C0001 
004E *@C0002: 
004E CO 21 int 21h 
0050 47 inc di 
0051 8A 15 mov dl , [di] 

.ENOW 
0053 *@C0001: 
0053 0A 02 * or d 1, dl 
0055 75 02 * jne @C0002 

ret 
0057 50 * pop bp 
0058 C3 * ret 00000h 
0059 PutStr ENOP 

ENO 

C.2.4 Reading Tables in a Listing File 

612 

The tables at the end of a listing file list the macros, structures, unions, records, 
segments, groups, and symbols that appear in a source file. These tables are not 
printed in the sample listing, but this section summarizes the information. 

Macro Table Lists all macros in the main file or the include files. Differenti­
ates between macro functions and macro procedures. 

Structures and Unions Table Provides the size in bytes of the structure or 
union and the offset of each field. The type of each field is also given. 

Record Table "Width" gives the number of bits of the entire record. "Shift" 
provides the offset in bits from the low-order bit of the record to the low-order bit 
of the field. "Width" for fields gives the number of bits in the field. "Mask" gives 
the maximum value of the field, expressed in hexadecimal notation. "Initial" 
gives the initial value supplied for the field. 



Reading the listing File 

Type Table The "Size" column in this table gives the size of the TYPEDEF 
type in bytes, and the "Attr" column gives the base type for the TYPEDEF 
definition. 

Segment and Group Table "Size" specifies whether the segment is 16 bit 
or 32 bit. "Length" gives the size of the segment in bytes. "Align" gives the seg­
ment alignment (WORD, PARA, and so on). "Combine" gives the combine type 
(Public, Stack, etc.). "Class" gives the segment's class (DATA, STACK, 
CODE, etc.). 

Procedures, Parameters, and Locals Gives the types and offsets from 
BP of all parameters and locals defined in each procedure, as well as the size and 
memory location of each procedure. 

Symbol Table All symbols (except names for macros, structures, unions, re­
cords, and segments) are listed in a symbol table at the end of the listing. The 
"Name" column lists the names in alphabetical order. The "Type" column lists 
each symbol's type. 

The length of a multiple-element variable, such as an array or string, is the length 
of a single element, not the length of the entire variable. 

If the symbol represents an absolute value defined with an EQ U or equal-sign (=) 
directive, the "Value" column shows the symbol's value. The value may be 
another symbol, a string, or a constant numeric value (in hexadecimal), depend­
ing on the type. If the symbol represents a variable or label, the "Value" column 
shows the symbol's hexadecimal offset from the beginning of the segment in 
which it is defined. 

The "Attr" column shows the attributes of the symbol. The attributes include the 
name of the segment (if any) in which the symbol is defined, the scope of the 
symbol, and the code length. A symbol's scope is given only if the symbol is de­
fined using the EXTERN and PUBLIC directives. The scope can be external, 
global, or communal. The "Attr" column is blank if the symbol has no attribute. 

613 





Appendix 0 

MASM Reserved Words 

This appendix lists the reserved words recognized by MASM. They are divided 
primarily by their use in the language. The primary categories are 

• Operands and symbols 

• Registers 

• Operators and directives 

• Processor instructions 

• Coprocessor instructions 

Reserved words in MASM 6.0 are reserved under all CPU modes. Words 
enabled in .8086 mode, the default, can be used in all higher CPU modes. To use 
words from subcategories such as "Special Operands for the 80386" (Section 
D.1.l) requires .386 mode or higher. 

You can disable the recognition of any reserved word specified in this appendix 
by setting the NOKEYWORD option for the OPTION directive. Once disabled, 
the word can be used in any way as a user-defined symbol (provided the word is 
a valid identifier). If you want to remove the STR instruction, the MASK opera­
tor, and the NAME directive, for instance, from the set of words MASM recog­
nizes as reserved, add this statement to your program: 

OPTION NOKEYWORD:<STR MASK NAME> 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

0.1 Operands and Symbols 
The words on the two lists in this section are the operands to certain directives. 
They have special meaning to the assembler. The words on the first list are not re­
served words. They can be used in every way as normal identifiers, without af­
fecting their use as operands to directives. The assembler interprets their use 
from context. 

Even though the words on the first list are not reserved, they should not be de­
fined to be text macros or text macro functions. If they are, they will not be recog­
nized in their special contexts. The assembler does not give a warning if such a 
redefinition occurs. 

615 



MASM Reserved Words 

ABS LARGE NOTHING 
ALL LISTING* NOTPUBLIC* 
ASSUMES LJMP* OLDMACROS* 
AT LOADDS* OLDSTRUCTS* 
CASEMAP* M51O* OS DOS* 
COMMON MEDIUM OS OS2* 
COMPACT MEMORY PARA 
CPU* NEARSTACK* PRIVATE* 
DOTNAME* NODOTNAME* PROLOGUE* 
EMULATOR* NOEMULATOR* RADIX* 
EPILOGUE* NOKEYWORD* READONLY* 
ERROR* NOLJMP* REQ* 
EXPORT* NOM510* SCOPED* 
EXPR16* NONE SMALL 
EXPR32* NONUNIQUE* STACK 
FARSTACK* NOOLDMACROS* TINY 
FLAT NOOLDSTRUCTS* USE16 
FORCEFRAME NOREADONLY* USE32 
HUGE NOSCOPED* USES 
LANGUAGE* NOSIGNEXTEND* 

These operands are reserved words. Reserved words are never case sensitive. 

$ FAR16* REALIO* 
? FORTRAN SBYTE* 
@B FWORD SDWORD* 
@F NEAR SIGN?* 
ADDR* NEAR16* STDCALL* 
BASIC OVERFLOW?* SWORD* 
BYTE PARITY?* SYSCALL* 
C PASCAL TBYTE 
CARRY?* QWORD VARARG* 
DWORD REAL4* WORD 
FAR REAL8* ZERO?* 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

616 



0.1.1 Special Operands for the 80386/486 

FLAT* 
NEAR32* 
FAR32* 

0.1.2 Predefined Symbols 

Registers 

Unlike most MASM reserved words, the predefined symbols are case sensitive. 

0.2 Registers 

@CatStr* 
@code 
@CodeSize 
@Cpu 
@CurSeg 
@data 
@DataSize 
@Date* 

AH 
AL 
AX 
BH 
BL 
BP 
BX 
CH 
CL 
CRO 
CR2 
CR3 
CS 
CX 
DH 

@Environ* 
@fardata 
@fardata? 
@FileCur* 
@FileName 
@InStr* 
@Interface* 
@Line* 

D1 
DL 
DRO 
DR! 
DR2 
DR3 
DR6 
DR7 
DS 
DX 
EAX 
EBP 
EBX 
ECX 
ED1 

@Model* 
@SizeStr* 
@stack* 
@SubStr* 
@Time* 
@Version 
@WordSize 

EDX 
ES 
ES1 
ESP 
FS 
OS 
S1 
SP 
SS 
ST 
TR3* 
TR4* 
TR5* 
TR6 
TR7 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

617 



MASM Reserved Words 

0.3 Operators and Directives 

.186 .FARDATA DD 

.286 .FARDATA? DF 

.286C .IF* DOSSEG 

.286P .LALL DQ 

.287 .LFCOND DT 

.386 .LIST DUP 

.386C .LISTALL* DW 

.386P .LISTIF* ECHO* 

.387 .LISTMACRO* ELSE 

.486* .LISTMACROALL* ELSEIF 

.486P* .MODEL ELSEIFI 

.8086 .N087* ELSEIF2 

.8087 .NOCREF* ELSEIFB 

.ALPHA .NOLIST* ELSEIFDEF 

.BREAK* .NOLISTIF* ELSEIFDIF 

.CODE .NOLISTMACRO* ELSEIFDIFI 

.CONST .RADIX ELSEIFE 

.CONTINUE* .REPEAT* ELSEIFIDN 

.CREF .SALL ELSEIFIDNI 

.DATA .SEQ ELSEIFNB 

.DATA? .SFCOND ELSEIFNDEF 

.DOSSEG* .STACK END 

.ELSE* .STARTUP* ENDIF 

.ELSEIF* .TFCOND ENDM 

.ENDIF* .TYPE ENDP 

.ENDW* .UNTIL* ENDS 

.ERR .UNTILCXZ* EQ 

.ERRI .WHILE* EQU 

.ERR2 .XALL EVEN 

.ERRB .XCREF EXITM 

.ERRDEF .XLIST EXTERN* 

.ERRDIF .XLISTIF EXTERNDEF* 

.ERRDIFI .XLISTMACRO EXTRN 

.ERRE ALIAS* FOR* 

.ERRIDN ALIGN FORC* 

.ERRIDNI ASSUME GE 

.ERRNB CATSTR GOTO* 

.ERRNDEF COMM GROUP 

.ERRNZ COMMENT GT 

.EXIT* DB HIGH 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

618 



Processor Instructions 

HIGHWORD* LOCAL PUSHCONTEXT* 
IF LOW RECORD 
1Ft LOWWORD* REPEAT* 
IF2 LROFFSET* REPT 
IFB LT SEG 
IFDEF MACRO SEGMENT 
IFDIF MASK SHORT 
IFDIFI MOD SIZE 
IFE .MSFLOAT SIZEOF* 
IFIDN NAME SIZESTR 
IFIDNI NE STRUC 
IFNB OFFSET STRUCT* 
IFNDEF OPATTR* SUBSTR 
INCLUDE OPTION* SUBTITLE* 
INCLUDELIB ORG SUB TTL 
INSTR %OUT TEXTEQU* 
INVOKE* PAGE THIS 
IRP POPCONTEXT* TITLE 
IRPC PROC TYPE 
LABEL PROTO* TYPEDEF* 
LE PTR UNION* 
LENGTH PUBLIC WHILE* 
LENGTHOF* PURGE WIDTH 

0.4 Processor Instructions 
MASM processor instructions are not case sensitive. 

0.4.1 8086/8088 Processor Instructions 

AAA CMC IDIV 
AAD CMP IMUL 
AAM CMPS IN 
AAS CMPSB INC 
ADC CMPSW INT 
ADD CWD INTO 
AND DAA IRET 
CALL DAS JA 
CBW DEC JAE 
CLC DIV JB 
CLD ESC JBE 
CLI HLT JC 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

619 



MASM Reserved Words 

JCXZ LEA RCL 
JE LES RCR 
JG LODS RET 
JGE LODSB RETF 
JL LODSW RETN 
JLE LOOP ROL 
JMP LOOPE ROR 
JNA LOOPEW* SAHF 
JNAE LOOPNE SAL 
JNB LOOPNEW* SAR 
JNBE LOOPNZ SBB 
JNC LOOPNZW* SCAS 
JNE LOOPW* SCASB 
JNG LOOPZ SCASW 
JNGE LOOPZW* SHL 
JNL MOV SHR 
JNLE MOVS STC 
JNO MOVSB STD 
JNP MOVSW STI 
JNS MUL STOS 
JNZ NEG STOSB 
JO NOP STOSW 
JP NOT SUB 
JPE OR TEST 
JPO OUT WAIT 
JS POP XCHG 
JZ POPF XLAT 
LAHF PUSH XLATB 
LDS PUSHF XOR 

0.4.2 80186 Processor Instructions 

BOUND INSW OUTSW 
ENTER LEAVE POPA 
INS OUTS PUSHA 
INSB OUTSB PUSHW* 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

620 



0.4.3 80286 Processor Instructions 

ARPL 
LAR 
LSL 
SGDT 

SIDT 
SLDT 
SMSW 
STR 

Processor Instructions 

VERR 
VERW 

0.4.4 80286 and 80386 Privileged-Mode Instructions 

CLTS LIDT LMSW 
LGDT LLDT LTR 

0.4.5 80386 Processor Instructions 

BSF LSS SETNAE 
BSR MOVSD SETNB 
BT MOVSX SETNBE 
BTC MOVZX SETNC 
BTR OUTSD SETNE 
BTS POPAD SETNG 
CDQ POPFD SETNGE 
CMPSD PUSHAD SETNL 
CWDE PUSHD* SETNLE 
INSD PUSHFD SETNO 
IRETD SCASD SETNP 
IRETDF* SETA SETNS 
IRETF* SETAE SETNZ 
JECXZ SETB SETO 
LFS SETBE SETP 
LGS SETC SETPE 
LODSD SETE SETPO 
LOOPD* SETG SETS 
LOOPED* SETGE SETZ 
LOOPNED* SETL SHLD 
LOOPNZD* SETLE SHRD 
LOOPZD* SETNA STOSD 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

621 



MASM Reserved Words 

0.4.6 80486 Processor Instructions 

BSWAP* 
CMPXCHG* 

0.4.7 Instruction Prefixes 

LOCK 
REP 

INVD* 
INVLPG* 

REPE 
REPNE 

0.5 Coprocessor Instructions 

WBINVD* 
XADD* 

REPNZ 
REPZ 

MASM coprocessor instructions are not case sensitive. 

0.5.1 8087 Coprocessor Instructions 

F2XMl FDIVRP FLD 
FABS FENI FLDI 
FADD FFREE FLDCW 
FADDP FIADD FLDENV 
FBLD FICOM FLDENVW* 
FBSTP FICOMP FLDL2E 
FCHS FIDIV FLDL2T 
FCLEX FIDIVR FLDLG2 
FCOM FILD FLDLN2 
FCOMP FIMUL FLDPI 
FCOMPP FINCSTP FLDZ 
FDECSTP FIN IT FMUL 
FDISI FIST FMULP 
FDIV FISTP FNCLEX 
FDIVP FISUB FNDISI 
FDIVR FISUBR FNENI 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

622 



FNINIT FRSTOR 
FNOP FRSTORW* 
FNSAVE FSAVE 
FNSAVEW* FSAVEW* 
FNSTCW FSCALE 
FNSTENV FSQRT 
FNSTENVW* FST 
FNSTSW FSTCW 
FPATAN FSTENV 
FPREM FSTENVW* 
FPTAN FSTP 
FRNDINT FSTSW 

0.5.2 80287 Privileged-Mode Instruction 

FSETPM 

0.5.3 80387 Instructions 

FCOS 
FLDENVD* 
FNSAVED* 
FNSTENVD* 
FPREMI 

FRSTORD* 
FSAVED* 
FSIN 
FSINCOS 
FSTENVD* 

Coprocessor Instructions 

FSUB 
FSUBP 
FSUBR 
FSUBRP 
FTST 
FWAIT 
FXAM 
FXCH 
FXTRACT 
FYL2X 
FYL2XPI 

FUCOM 
FUCOMP 
FUCOMPP 

* Words in this appendix identified with an asterisk (*) are new to MASM 6.0. 

623 





Appendix E 

Default Segment Names 

If you use simplified segment directives by themselves, you do not need to know 
the names assigned for each segment. However, it is possible to mix full segment 
definitions with simplified segment directives, in which case you need to know 
the segment names. 

Table E.1 shows the default segment names created by each directive. 

If you use .MODEL, a _TEXT segment is always defined, even if all .CODE 
directives specify a name. The default segment name used as part of far-code seg­
ment names is the filename of the module. The default name associated with the 
.CODE directive can be overridden, as can the default names for .FARDATA and 
.FARDATA? 

The segment and group table at the end of listings always shows the actual seg­
ment names. However, the GROUP and ASSUME statements generated by the 
.MODEL directive are not shown in listing files. For a program that uses all 
possible segments, group statements equivalent to the following would be 
generated: 

DGROUP GROUP _DATA, CONST, _BSS, STACK 

For the tiny model, these ASSUME statements would be generated: 

ASSUME cs:DGROUP, ds:DGROUP, ss:DGROUP 

For small and compact models with NEARSTACK, these ASSUME statements 
would be generated: 

ASSUME cs: _TEXT, ds:DGROUP, ss:DGROUP 

For medium, large, and huge models with NEARSTACK, these ASSUME state­
ments would be generated: 

ASSUME cs:name_TEXT, ds:DGROUP, ss:DGROUP 

625 



Default Segment Names 

Table E.I Default Segments and Types for Standard Memory Models 

Model Directive Name Align Combine Class Group 

Tiny .CODE - TEXT WORD PUBLIC 'CODE' DGROUP 

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA' 

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP -

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP -

Small .CODE TEXT WORD PUBLIC 'CODE' -
.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA' 

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP -

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP -

.STACK STACK PARA STACK 'STACK' DGROUP* 

Medium .CODE name_TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA' 

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP -

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP -

.STACK STACK PARA STACK 'STACK' DGROUP* 

Compact .CODE - TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA' 

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP -

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP -

.STACK STACK PARA STACK 'STACK' DGROUP* 

626 



Default Segment Names 

Table E.1 (continued) 

Model Directive Name Align Combine Class Group 

Large or huge .CODE namcTEXT WORD PUBLIC 'CODE' 

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA' 

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP -

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP 

.STACK STACK PARA STACK 'STACK' DGROUP* 

Flat .CODE TEXT DWORD PUBLIC 'CODE' -

.FARDATA DATA DWORD PUBLIC 'DATA' 

.FARDATA? BSS DWORD PUBLIC 'BSS' -

.DATA DATA DWORD PUBLIC 'DATA' -

.CONST CONST DWORD PUBLIC 'CONST' 

.DATA? BSS DWORD PUBLIC 'BSS' -

.STACK STACK DWORD PUBLIC 'STACK' 

* unless the stack type is FARSTACK 

627 





Appendix F 

Error Messages 

This appendix lists MASM 6.0 error and warning messages. Each message in­
cludes an explanation of what went wrong and what action to take to correct the 
problem. 

Error numbers consist of a one- or two-letter prefix and four digits. The first digit 
indicates a severity level: 

• Fatal errors stop execution and are numbered 1 xxx. 

• Errors numbered 2xxx are usually nonfatal; execution continues if possible. 

• Warnings do not stop execution but indicate a possible problem; they are 
numbered 4xxx. 

Error messages may also display the input file and line number where the error 
occurred. 

F.1 BIND Error Messages 

Number 

U1250 

U1251 

U1252 

This section lists error messages generated by the Microsoft Bind Utility (BIND). 
BIND errors (U12xx) are always fatal. 

BIND Error Message 

invalid executable file 

The executable file cannot be bound. Either the header is invalid, or the execu­
table file has an invalid magic number. 

Repeat with a backup version of the executable file, or rebuild the file and repeat. 

cannot create file :filename 

BIND was unable to create a temporary file or the map file, probably because the 
disk was full. 

unrecoverable I/O error 

The system returned an I/O error when reading the executable file. 

629 



Error Messages 

U1253 

U1254 

U1255 

U1256 

U1257 

U1258 

U1259 

U1260 

630 

cannot open file : filename 

The given file could not be opened. 

The following are possible causes of this error: 

• The file does not exist. 

• The file is in use by another process. 

• The disk is full. 

structure error in .EXE file 

The executable file has an invalid structure. 

Rebuild the file. 

structure error in .LIB file: filename 

The given library file has an invalid structure. Library files must conform to 
Microsoft object module format. 

Repeat with a backup version of the library file, or rebuild the library and repeat. 

out of memory 

There was insufficient memory for BIND to run. 

too many libraries specified, number allowed 

The BIND command line contained more than the given number of libraries. 

Combine some libraries. 

resource tables not supported 

Protected-mode executable files that use resource tables cannot be bound be­
cause when the bound executable file runs in DOS mode the resources would be 
unknown. 

internal error - Lname not found: lname 

BIND encountered an internal error. 

Repeat the attempt with a new copy of BIND. If the problem persists, note the cir­
cumstances of the error and notify Microsoft Corporation by following the in­
structions on the Microsoft Product Assistance Request form at the back of one 
of your manuals. 

import by ordinal not defined: dllname.ordinal 

The given DLL does not contain a function with the given ordinal value. As a re­
sult, fixups from function calls to this function cannot be made. 



U1261 

U1262 

U1263 

U1264 

U1265 

U1266 

U1267 

U1268 

BIND Error Messages 

system call syscall return error 

BIND encountered an internal error. 

Repeat the attempt with a new copy of BIND. If the problem persists, note the cir­
cumstances of the error and notify Microsoft Corporation by following the in­
structions in the Microsoft Product Assistance Request form at the back of one of 
your manuals. 

cannot find LINK.EXE in path 

BIND could not find LINK.EXE in any directory specified by the PATH environ­
ment variable. 

BIND needs the linker to complete the binding operation. 

error during link of file, link error status: status 

A linking error occurred during the LINK session invoked by BIND. 

The following are possible causes of this error: 

• Unresolved references exist in the files. BIND could not resolve references 
with API.LIB or other support libraries. 

• APILMR.OBJ was used when the executable file was created, and LINK 
gaveerrorL2044, symbol multiply defined, use INOE.Relink 
using the LINK option /NOE, then rebind. 

• There was not enough memory. 

• A disk I/O error occurred. 

unrecognized option : option 

The BIND command line contained the given unrecognized option. 

unrecognized argument : string 

The given string is not a valid argument for the option it was specified with. 

no infile specified 

No executable file to be bound was named on the BIND command line. 

no outfile specified 

The option for naming an outfile, /0, was given on the command line, but no file 
was named. 

duplicate infile name given :filename 

The given file was named in more than one place on the BIND command line. 

631 



Error Messages 

U1269 

U1270 

U1271 

U1272 

duplicate global name: name 

The given global name was defined in more than one place in the specified librar­
ies, making a unique fixup impossible. 

This error can be caused by specifying both OS2.LIB and DOSCALLS.LIB. To 
correct the error, specify only OS2.LIB. 

terminated by user 

BIND was halted by CTRL+C or CTRL+BREAK. 

insufficient disk space 

There was not enough room on the disk. BIND creates temporary files that take 
up disk space. 

Make some room on the disk and repeat. 

cannot bind a PROTMODE executable 

The module-definition file used to create the executable file contained a 
PROTMODE statement. This statement creates an executable file that cannot be 
run under DOS and prevents the file from being bound. 

F.2 CodeView Error Messages 

632 

Code View displays an error message whenever it detects a command it cannot ex­
ecute. Most errors terminate the CodeView command in error, but do not termi­
nate the debugger. Start-up errors terminate CodeView. 

Depending on the context of the error, CodeView may display only the text of the 
message without the error number. This section is organized in alphabetical order 
by message text. 

In some cases, CodeView may display the error number by itself. To obtain the 
error message and an explanation of the error in thoses cases, use online help. 
Click the right mouse button on the error number or use the Help CH) Command­
window command. For example, 

H CV1020 

displays help for the error Di vi de by zero. 



CodeView Error Messages 

Error Message 

Access denied (CV0013) 

A specified file's permission setting does not allow the required access. 

One of the following may have occurred: 

• An attempt was made to write to a read-only file. 

• A locking or sharing violation occurred. 

• An attempt was made to open a directory instead of a file. 

Address of register variable cannot be watched (CVI049) 

An attempt was made to evaluate the address of a register variable. A register 
variable can be watched but not the address of a register variable. 

One of the following occurred: 

• The variable was declared as a register variable. Recompile the program with 
the register declaration removed. 

• The optimizer converted an ordinary variable into a register variable to speed 
up execution. Recompile the program using the lad option to tum optimiza­
tion off. 

• The function was defined with _ fastcall, causing parameters to be passed in 
registers. Remove the _fastcall designation and recompile. 

All threads blocked (CV3502) 

The block may be due to a request for a system service semaphore. When the 
semaphore is cleared, the block will clear. 

The block may also be due to a deadlock situation that will not clear until one or 
more of the threads are terminated. 

Arg list too long (CV0007) 

Code View is not able to restart the program being debugged because the number 
of arguments to the executable program exceeds the limit of 128. 

Argument to IMAG/DIMAG must be simple type (CVl121) 

An invalid argument was specified to IMAG or DIMAG, such as an array with no 
subscripts. 

633 



Error Messages 

634 

Array must have subscript (CVII01) 

An array was specified without any subscripts, such as IARRAY+2. A correct 
example would be IARRAY (1 )+2. 

Bad integer or real constant (CVII05) 

An illegal numeric constant was specified in an expression. 

Bad intrinsic function (CVII06) 

An illegal intrinsic function name was specified in an expression. 

Bad subscript (CVII00) 

An illegal subscript expression was specified for an array. 

For example, I A R RA Y ( 3 . 3) and I A R RA Y ( ( 3 , 3 » are illegal. The correct 
expression is I A R RA Y ( 3 , 3 ) . 

Badly formed type (CVI009) 

CodeView detected corrupt information in the symbol table of the file being 
debugged. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

Breakpoint number or '*' expected (CVI006) 

A breakpoint was specified without a number or asterisk. 

A Breakpoint Clear (BC), Breakpoint Disable (BD), or Breakpoint Enable (BE) 
command requires one or more numbers to specify the breakpoints, or an asterisk 
to specify all breakpoints. 

For example, the following command causes this error: 

be a 

Cannot cast complex constant component into REAL (CVll12) 

Both the real and imaginary components of a COMPLEX constant must be com­
patible with the type REAL. 

Cannot cast IMAG/DIMAG argument to COMPLEX (CVl122) 

Arguments to IMAG and DIMAG must be simple numeric types. 



CodeView Error Messages 

Cannot create CURRENT.STS (CVI063) 

CodeView could not find an existing state file (CURRENT.STS), and it tried to 
create one but failed. 

One of the following may have occurred: 

• There was not enough space either on the disk containing the program to be 
debugged or on the disk pointed to by the INIT environment variable. 

• There were not enough free file handles. In DOS, increase the number of file 
handles by changing the FILES setting in CONFIG.SYS to allow a larger 
number of open files. FILES=20 is the recommended setting. In OS/2, if mul­
tiple processes are running, removing one or more of them may release 
enough file handles. 

• The environment variable IN IT pointed to a directory that does not exist. If 
the variable points to more than one directory, the first directory listed does 
not exist. 

Cannot create \QUEUES\CVP (CV3601) 

One or more of the required queues could not be created. 

When debugging mUltiprocess programs, CodeView creates mUltiple copies of it­
self that intercommunicate through queues. 

The failure to create queues may be due to lack of memory, or to having too 
many OS/2 processes running at one time. 

Cannot create \SEM\CVP (CV360S) 

The required semaphore could not be assigned. 

When debugging multiprocess programs, CodeView allocates areas of shared 
memory for interprocess communication. 

The failure to assign a semaphore may be due to lack of memory or to having too 
many OS/2 processes running at one time. 

Cannot create \SHAREMEM\CVP (CV3604) 

The required shared memory could not be assigned. 

When debugging multiprocess programs, CodeView allocates areas of shared 
memory for interprocess communication. 

The failure to assign shared memory may be due to lack of memory or to having 
too many OS/2 processes running at one time. 

635 



Error Messages 

636 

Cannot open CV.EXE (CV1310) 

An error occurred while CV.EXE was being opened. 

One of the following may have occurred: 

• The file could be corrupt. Copy CV.EXE from the original disks and retry. 

• The operating system could not find CV.EXE due to a disk error. 

• There were not enough free file handles. In DOS, increase the number of file 
handles by changing the FILES setting in CONFIG.SYS to allow a larger 
number of open files. FILES=20 is the recommended setting. In OS/2, if mul­
tiple processes are running, removing one or more of them may release 
enough file handles. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions in the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Cannot open \QUEUES\CVP (CV3602) 

One or more of the required queues could not be opened. 

When debugging multiprocess programs, Code View creates multiple copies of it­
self that intercommunicate through queues. 

The failure to open queues may be due to lack of memory or to having too many 
OS/2 processes running at one time. 

Cannot open \SHAREMEM\CVP (CV3606) 

The required shared memory could not be opened. 

When debugging multiprocess programs, Code View tries to access areas of 
shared memory for interprocess communication. 

The failure to open shared memory may be due to lack of memory or to having 
too many OS/2 processes running at one time. 

Cannot open \SEM\CVP (CV3607) 

The required semaphore could not be opened. 

When debugging multiprocess programs, Code View tries to access areas of 
shared memory for interprocess communication. 

The failure to open a semaphore may be due to lack of memory or to having too 
many OS/2 processes running at one time. 



CodeView Error Messages 

Cannot read CV.EXE (CV1311) 

An error occurred while CV.EXE was being read. Possibly the operating system 
could not find CV.EXE due to a disk error. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions in the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Cannot read file (CV5004) 

A file was selected from a dialog box, and CodeView then opened the file. The 
read process failed while the file was being read. 

Read the file again. If the second read fails, exit and restart CodeView. If the read 
process still fails, the file may be corrupt. 

Cannot read this version ofCURRENT.STS (CVI054) 

The state file (CURRENT.STS) has a version number that is not recognized by 
this version of CodeView. 

Check the directories for older copies and delete them. 

Cannot restart program, out of system resources (CV3611) 

The operating system reached its limit of one of the following resources: 

• Memory 

• Screen groups 

• Threads 

Cannot select (CV5001) 

The cursor was not on the same line as an automatically selectable symbol. 

Cannot understand entry in TOOLS.INI or CURRENT.STS (CVI056) 

At least one line in the given file (either the state file or the TOOLS.INI file) 
could not be interpreted. 

On start-up, CodeView reads the state file (CURRENT.STS) and the TOOLS.INI 
file (if the latter is available). 

Examine the given file to find the problem. 

Cannot use second monitor from VIO window (CV3610) 

The operating system cannot support a second monitor from a virtual I/O win­
dow (Presentation-Manager text window). 

637 



Error Messages 

638 

Cannot use struct or union as scalar (CVI025) 

A structure or union was used in an expression, but no element was specified. 

When requesting display of a structure or union variable, the name of the varia­
ble may appear by itself, without a field qualifier. If a structure or union is used 
in an expression, it must be qualified with the specific element desired. 

Specify the element whose value is to be used in the expression. 

Character constant too long (CVII09) 

A character constant was specified that is too long for the FORTRAN expression 
evaluator (the limit is 126 bytes). 

Use the Radix (N) command to change the radix. 

Character too big for current radix (CVl120) 

A radix was specified in a constant that is larger than the current radix. 

Command incompatible with history (CV2202) 

The command entered is illegal while recording because it changes the state of 
CodeView and/or the program being debugged. 

For example, the Restart (L) command cannot be used during recording. 

Tum off history to use the command. 

Constant too big (CVI028) 

Code View cannot accept an unsigned integer constant larger than 4,294,967,295 
(OxFFFFFFFF hex), or a floating-point constant whose magnitude is larger than 
approximately 1.8E+ 308. 

Corrupt debug OMF detected infile, discarding source line information (CV2206) 

The linker used was not the current version of the Microsoft linker. 

Conditions that require the most current linker include use of the alloc text 
pragma in a C program and use of multiple segments in an assembly-language 
module. 

Corrupted CV.EXE (CV1318) 

The CV.EXE file has been corrupted. Copy CV.EXE from the original disks and 
retry. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 



CodeView Error Messages 

CURRENT.STS not found-creating default (CVIOS7) 

The state file (CURRENT.STS) could not be located at start-up, so CodeView 
created a state file. 

Divide by zero (CVI020) 

The expression contains a divisor of zero, which is illegal. This divisor might be 
the literal number zero, or it might be an expression that evaluates to zero. 

IE: EMM driver not loaded (CV1304) 

The EMM driver must be installed in order to use expanded memory. 

IE: EMM internal error (CV1309) 

An unexpected error from the EMM driver occurred. The driver may be cor­
rupted or may have malfunctioned. 

If replacing the EMM driver does not correct the problem, note the circum­
stances of the error and notify Microsoft Corporation by following the instruc­
tions in the Microsoft Product Assistance Request form at the back of one of 
your manuals. 

IE: EMM not LIM 4.0 or later (CV130S) 

The EMM driver must be LIM EMS version 4.0 or later in order to contain the 
calls needed for CodeView to use expanded memory. 

IE: no EMM handle available (CV1306) 

No handle is available for the CodeView overlay code. 

One of the following may be a solution: 

• If possible, increase the number of EMM handles that are allocated when the 
EMM driver is loaded. 

• If multiple applications are running, remove one or more of the applications 
that use expanded memory. This should free enough handles to permit 
CodeView to run properly. 

• Some memory may have become inaccessible due to program error. Reboot 
in order to free the memory. 

639 



Error Messages 

640 

IE: not enough free expanded memory (CV1308) 

There is currently not enough room in expanded memory to load overlays. 

One of the following may be a solution: 

• Decrease the size of memory allocated to SMARTDRV.SYS or RAM­
DRIVE.SYS to free expanded memory. 

• Reconfigure the EMM driver or hardware to allocate more expanded memory. 

IE: not enough total expanded memory (CV1307) 

There is not enough room in all of expanded memory to load overlays. Freeing 
expanded memory will not help. 

If possible, reconfigure the EMM driver or hardware to allocate more expanded 
memory. 

EMM error (CV3010) 

An unknown expanded memory error has occurred. 

One of the following may have occurred: 

• The EMM driver may be corrupted or may have malfunctioned. Reload the 
driver and retry. 

• There was a disk error. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

EMM hardware error (CV3001) 

An error has occurred in expanded memory. 

Exit CodeView and reboot the computer. If this does not correct the problem, the 
expanded memory board may need service. 

EMM memory not found (CV3011) 

CodeView cannot find expanded memory. 

The EMM driver or expanded memory board is not installed, or the board has a 
malfunction. 



CodeView Error Messages 

EMM software error (CV3000) 

An error has occurred in the EMM driver. 

Exit CodeView and reboot the computer. If the problem recurs, replace the EMM 
driver file with a fresh copy from the EMM driver's distribution disk. If this does 
not correct the problem, the expanded memory board may need service. 

Executable file format error (CV0008) 

The system is not able to load the program to be debugged. The file is not an ex­
ecutable file, or it has an invalid format for this operating system. 

Try to run the program outside of CodeView. 

Expression not a memory address (CVI050) 

The expression entered does not evaluate to an address. An address must be a 
numeric value. 

An lvalue (so called because it appears on the left side of an assignment state­
ment) is an expression that refers to a memory location. 

For example, buffe r [count] is a valid lvalue because it points to a specific 
memory location. The logical comparison zed ! = 0 is not a valid lvalue be­
cause it evaluates to TRUE or FALSE, not a memory address. 

Expression too complex (CVI019) 

The expression entered was too complex for the amount of storage space availa­
ble to the expression evaluator. 

Overflow usually occurs because of too many pending calculations. Rearrange 
the expression so that each component of the expression can be evaluated imme­
diately, rather than having to wait for other parts of the expression to be 
calculated. 

Extra input ignored (CVI003) 

The first part of the command line was interpreted correctly. 

The remainder of the line could not be interpreted or was unnecessary. 

File error (CVI041) 

CodeView could not write to the disk. 

One of the following may have occurred: 

• There was not enough space on the disk. 

• The file was locked by another process. 

641 



Error Messages 

642 

Flip/Swap option off-application output lost (CVI043) 

The program being debugged wrote to the display when Flip/Swap was off. The 
program output was lost. 

When flipping is on, video page 1 is normally reserved for CodeView, while pro­
grams by default write to video page O. Programs that write to video page 1 must 
be debugged with swapping on. 

Tum Flip/Swap on to be able to view program output. 

Floating-point support not loaded (CVI048) 

An attempt was made to access the math processor registers in a program that 
does not use floating-point arithmetic. 

Several situations can cause this error: 

• The math processor registers can only be accessed through the floating-point 
library code. This code is not loaded if the program does not perform floating­
point calculations. 

• If the program does not use floating-point instructions, this error may occur 
when attempting to access the math processor before any floating-point in­
structions have been performed. The C run-time library includes a floating­
point instruction near the beginning so that the math processor registers are 
always accessible. 

• If a floating-point instruction occurs in an assembly-language routine before 
such an instruction occurs in the C code that calls the routine, this error 
occurs. 

Function argument may not be byte register (CV 4058) 

The register specified in the function does not accept a byte value. The register 
must be assigned a word or doubleword value. 

Function call before stack frame initialization (CVI026) 

A function call cannot be executed until after the BP (stack frame) register has 
been initialized. 

Run the program to a statement that follows initialization of the BP register. 
This is usually set up as the first statement in the first function of the program. 

Function returning struct/union not supported (CVI060) 

Code View cannot evaluate a function that returns a structure or union variable. 



CodeView Error Messages 

I/O error (CV0005) 

An attempt was made to access an address that is not accessible to the program 
being debugged. 

Check the previous command for numeric constants used as addresses and for 
pointers used for indirection. 

Illegal instruction (CV 4001) 

An assembler instruction was not recognized. 

The instruction may have been mistyped. 

Illegal operand (CV 4003) 

The specified operand is not permitted with this instruction. 

The operand name may have been mistyped. 

Illegal size for item (CV 4036) 

The wrong size was specified for the data item. 

Illegal usage of CS register (CV 4059) 

The CS (code segment) register cannot be addressed in the function specified. 

Index out of bound (CVII02) 

A subscript value was specified that is outside the bounds declared for the array. 

Insufficient EMM memory (CV3007) 

CodeView tried to allocate expanded memory, but there was not enough space. 

Possible solutions include the following: 

• Run CVPACK on the executable file to reduce the demand on memory for 
symbolic information. 

• Recompile without symbolic information in some of the modules. CodeView 
requires memory to hold information about the program being debugged. 
Compile some modules with the jZd option instead of jZi, or don't use either 
option. 

• If multiple applications are running, remove one or more of the applications 
that use expanded memory. This may free enough memory to permit 
CodeView to run properly. 

• Allocate more expanded memory in the system configuration. 

643 



Error Messages 

644 

Internal debugger error: n (CVOIOO) 

CodeView has encountered an internal error. Quit and restart. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Internal error-unrecoverable fault (CV1319) 

The DOS extender encountered a general protection fault. 

The CodeView file may be corrupt. Reboot and copy CV.EXE from the original 
disks and retry. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Invalid address (CV0014) 

The View (V) command was followed by an argument that could not be inter­
preted as a valid address. 

A name or constant may have been specified without the period (.) that indicates 
a filename or line number. 

Invalid argument (CV0022) 

An invalid value was given as an argument in the most recent command. 

One of the following may have occurred: 

• An invalid argument was passed to the Go (G) command. 

• An invalid argument was passed to the Delete Watch Expression CY) 
command. 

Invalid breakpoint command (CVIOOl) 

CodeView could not interpret the breakpoint command. 

The command probably used an invalid symbol or the incorrect command format. 



CodeView Error Messages 

Invalid executable file-please relink (CVI046) 

The executable file did not have a valid format. 

One of the following may have occurred: 

• The executable file was not created with the linker released with this version 
of CodeView. Relink the object code using the current version of LINK.EXE. 

• The .EXE file may have been corrupted. Recompile and relink the program. 

Invalid flag (CVI022) 

An attempt was made to examine or change a flag, but the flag name was not 
valid. 

Any flags preceding the invalid name were changed to the values specified. Any 
flags after the invalid name were not changed. 

Use the flag mnemonics displayed after entering the R FL command. 

Invalid format in CV.EXE (CV1313) 

The CV.EXE file has been corrupted. Copy CV.EXE from the original disks and 
retry. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Invalid format specifier (use one of ABDILSTUW) (CVI021) 

A Dump (D), Enter (E), or View Memory (VM) command included a format 
specifier that is not recognized by CodeView. 

The valid format specifiers are 

Specifier Display Format 

A ASCII 

B Byte 

I Integer 

U Unsigned integer 

W Word 

D Doubleword 

S Short real 

645 



Error Messages 

646 

Specifier 

L 

T 

Invalid format string (CVI038) 

Display Format 

Long real 

10-byte real 

An invalid format specifier followed an expression. 

Invalid operation (CVI062) 

An attempt was made to set the IP register to a line or address in a different 
segment. 

Invalid process ID (CV3603) 

An attempt was made to run a process using an ID that does not exist. 

The ID may have been mistyped. 

Invalid radix (use 8,10, or 16) (CVI027) 

The Radix (N) command takes three radixes: 8 (octal), 10 (decimal), and 16 (hex­
adecimal). Other radixes are not permitted. The new radix is always entered as a 
decimal number, regardless of the current radix. 

Invalid register (CVI004) 

The Register (R) command named a register that does not exist or cannot be dis­
played. Code View can display the following registers: 

AX 
BX 
ex 
OX 

SP 
BP 
S1 
01 

OS 
ES 
SS 
es 

1P 
FL 

When running under DOS or Windows on an 80386/486 machine, the 386 option 
can be selected to display the following registers: 

EAX 
EBX 
EeX 
EOX 

ESP 
EBP 
ES1 
E01 

DS 
ES 
FS 
es 

GS 
SS 
E1P 
EFL 

Invalid tab setting-assumed 8 (CV2210) 

The value for tabs cannot be less than 0 or greater than 19. If you supply a value 
that is not in this range, CodeView defaults to a tab value of 8. 



CodeView Error Messages 

Invalid thread ID (CV3500) 

An attempt was made to run a thread using an ID that does not exist. 

The ID may have been mistyped. 

Invalid type cast (CVI008) 

An attempt was made to cast a variable to an undefined or user-defined type. 

A cast can be made only to fundamental C types. 

Library module not loaded (CVI042) 

The program being debugged uses load-on-demand DLLs. At least one of these 
libraries is needed but does not currently exist on the path specified by the LIB­
PATH environment variable. 

LIM 4.0 function not supported (CV3013) 

CodeView required a function that is not supported in the EMM driver present on 
the system. 

Either of the following must be done: 

• Run CodeView without using expanded memory. 

• Obtain an EMM driver that fully supports LIM EMS version 4.0 or later. 

LIM 4.0 subfunction not supported (CV3014) 

CodeView required a subfunction that is not supported in the EMM driver pre­
sent on the system. 

Either of the following must be done: 

• Run CodeView without using expanded memory. 

• Obtain an EMM driver that fully supports LIM EMS version 4.0 or later. 

Loaded symbols for module module (CV2207) 

CodeView automatically loaded the symbols for the given DLL. The DLL can 
now be debugged. 

Losing History (CV5010) 

When you restarted the program, Code View was not able to maintain debug 
history. 

Match not found (CVI016) 

No string was found that matched the search pattern. 

647 



Error Messages 

648 

Missing ')' (CVIOOO) 

The command contained a left parenthesis ( ( ) that lacked a matching right 
parenthesis ( ) ). 

Missing ']' (CVIOI4) 

The command contained a left bracket ( [ ) that lacked a matching right 
bracket ( ] ). 

Missing '(' (CVI034) 

The command contained a right parenthesis ( ) ) that lacked a matching left 
parenthesis ( ( ). 

Missing '(' in complex constant (CVIIIO) 

CodeView expected an opening parenthesis of a complex constant in an expres­
sion, but it was missing. 

Missing ')' in complex constant (CVIIII) 

CodeView expected a closing parenthesis of a complex constant, but it was 
missing. 

Missing '(' to intrinsic (CVII13) 

CodeView expected an opening parenthesis for an intrinsic function, but it was 
missing. 

Missing ')' to intrinsic (CVII14) 

Code View expected a closing parenthesis for an intrinsic function, but it was 
missing. 

Missing ')' in substring (CVII19) 

CodeView expected a closing parenthesis for a substring expression, but it was 
missing. 

Missing or corrupt emulator info (CVIOSI) 

Status information about the floating-point emulator is missing or corrupt. 

The program probably wrote to this area of memory. Check all pointers to con­
firm that they refer to their intended objects. 

No closing double quotation mark (CVI029) 

The double quotation mark (") expected at the end of the string was missing. 



CodeView Error Messages 

No closing single quotation mark (CVI030) 

The single quotation mark (') expected at the end of the character constant was 
missing. 

No code at this line number (CVI023) 

An attempt was made to set a breakpoint at a line that does not correspond to ma­
chine code. Such a line could be a blank line, a comment line, a line with pro­
gram declarations, or a line moved or removed by compiler optimization. 

To set a breakpoint at a line deleted by the optimizer, recompile the program 
with the lad option to tum optimization off. 

Note that in a multiline statement the code is associated only with one line of the 
statement. 

No CodeView source information (CVI059) 

There is no CodeView symbol listing for the source file or module being 
debugged. 

Be sure the file was compiled with the IZi option or the IZd option. If linking in a 
separate step, be sure to use the ICO option. 

No debugging information (CV5003) 

The program file did not contain the debugging information needed. 

Recompile the program using the IZi option to include CodeView symbolic infor­
mation. If linking in a separate step, use the LINK ICO option. 

No file selected (CV5005) 

A module must be selected before OK is chosen. 

To exit the dialog box without selecting a module, choose Cancel. 

No free EMM memory handles (CV3005) 

No expanded memory handle is available for the symbolic information. 

One of the following may be a solution: 

• If multiple applications are running, remove one or more of the applications 
that use expanded memory. This should free enough handles to permit 
Code View to run properly. 

• Reconfigure the EMM driver to allow more handles. 

No immediate mode (CV 4056) 

The instruction does not take an immediate-mode operand. 

649 



Error Messages 

650 

No match found (CV5008) 

There was no match for the specified string in the file. 

No previous regular expression (CVIOll) 

The Repeat Last Find command was executed, but no previous regular expres­
sion (search string) has been specified. 

No process status, /0 not specified (CV5002) 

Code View must be started with the /0 option in order to debug mUltiprocess 
programs. 

Exit and restart CodeView with the /0 option. 

No second monitor connected to system (CVI061) 

Code View was invoked with the /2 option, but there was no second monitor for 
CodeView to use. 

No source lines at this address (CVI031) 

An attempt was made to view an address which has no source code. 

No Source window open (CVI058) 

A command was entered to manipulate the contents of the Source window, but 
no Source window is open. 

No space left on device (CV0028) 

No more space for writing is available on the disk. 

One of the following may have occurred: 

• CodeView could not find room for writing a temporary file. 

• An attempt was made to write to a disk that was full. 

No such file or directory (CV0002) 

The specified file does not exist or a pathname does not specify an existing 
directory. 

Check the file or directory name in the most recent command. 

One of the following may have occurred: 

• The View (V) command or the Open Source command from the File menu 
was used to view a nonexistent file. 

• An attempt was made to print to a nonexistent file or directory. 



CodeView Error Messages 

No symbolic information for filename (CVOI0l) 

The executable file (or DLL if in OS/2) did not contain the symbols needed by 
CodeView. 

Be sure to compile the program or DLL using the /Zi option. If linking in a sepa­
rate step, be sure to use the /CO option. Use the most current version of LINK. 

No watch variables to delete (CV5009) 

An attempt was made to delete one or more watch variables (watch expressions), 
but no watch expressions are currently selected. 

Not a text file (CVI039) 

An attempt was made to load a file that is not a text file, possibly a binary-data 
file or an executable program file. This error can also occur if the first line of a 
file includes characters that are not in the range of ASCII 9 to 13 or ASCII 32 
to 126. 

The Source window only works with text files. 

Not DOS 3.0 or later (CVI315) 

CodeView requires DOS version 3.0 or later. CodeView does not support DOS 
versions 1.x and 2.x. 

Not enough memory to load CV.EXE (CVI314) 

There was not enough conventional memory to load CodeView. 

Possible solutions include the following: 

• Free memory by removing terrninate-and-stay-resident software. 

• Reduce the settings in CONFIG.SYS for FILES, BUFFERS, and 
LASTDRIVE. 

Operand expected (CV 4027) 

The operation or instruction requires an operand, but none was specified. 

Operand must be register (CV 4018) 

The operand for this instruction must be a register, not a label or variable. 

Operand must have size (CV 4035) 

No variable size was specified for the operand. 

Specify the size of the variable being accessed by using the BY, WO, or DW 
operator. 

651 



Error Messages 

652 

Operand types incorrect for this operation (CVIOIO) 

The operand types specified are not legal for the operation. 

For example, a pointer cannot be multiplied by any value. 

Operand types must match (CV4031) 

The command or instruction takes two or more operands, all of the same type. 

Operator must have a struct/union type (CVI033) 

Components of structure variables or unions must be fully qualified. Components 
cannot be entered without full specification. 

Operator needs lvalue (CVI032) 

An expression that does not evaluate to an lvalue was specified for an operation 
that requires an lvalue. 

An lvalue (so called because it appears on the left side of an assignment state­
ment) is an expression that refers to a memory location. 

For example, buffe r [count] is a valid lvalue because it points to a specific 
memory location. The logical comparison zed != 0 is not a valid lvalue be­
cause it evaluates to TRUE or FALSE, not a memory address. 

Outdated EMM software (LIM 4.0 required) (CV3012) 

The EMM driver must be LIM EMS version 4.0 or later in order to contain the 
calls needed for CodeView to use expanded memory. 

Out of memory (CV0012) 

CodeView was unable to allocate or reallocate the memory that it required be­
cause not enough memory was available. 

Possible solutions include the following: 

• Run CVP ACK on the executable file to reduce the demand on memory for 
symbolic information. 

• Recompile without symbolic information in some of the modules. CodeView 
requires memory to hold information about the program being debugged. 
Compile some modules with the /Zd option instead of /Zi, or don't use either 
option. 

• Remove other programs or drivers running in the system that could be con­
suming significant amounts of memory. 

• Decrease the settings in CONFIG.SYS for FILES and BUFFERS. 



CodeView Error Messages 

Out of memory (CV3608) 

CodeView needed additional conventional memory, but insufficient memory was 
available. 

Possible solutions include the following: 

• Run CVP ACK on the executable file to reduce the demand on memory for 
symbolic information. 

• Recompile without symbolic information in some of the modules. CodeView 
requires memory to hold information about the program being debugged. 
Compile some modules with the jZd option instead of jZi, or don't use either 
option. 

• Remove other programs or drivers running in the system that could be con-
suming significant amounts of memory. 

• Free some memory by removing terminate-and-stay-resident software. 

• Remove unneeded watches or breakpoints. 

• Compile some modules with optimizations enabled to reduce the demand on 
memory made by the program being debugged. 

Overlay Manager stack overflow (CV1317) 

The CodeView file may be corrupt. Copy CV.EXE from the original disks and 
retry. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Overlay not resident (CVI047) 

An attempt was made to disassemble machine code from an overlay section of 
code that is not currently resident in memory. 

Execute the program until the overlay is loaded. 

Packed file (CV5012) 

(DOS only) 

CodeView cannot debug files in DOS that are linked with the jEXEP ACK op­
tion. Relink without this option to debug the file and then switch back to linking 
with jEXEP ACK for the release version of your program. 

653 



Error Messages 

654 

Path of execution different from history (CV5006) 

The code executed during dynamic replay differed from the recorded history. 

This may be normal if the program being debugged responds to asynchronous 
events. 

Radix must be between 2 and 36 inclusive (CVII07) 

A radix outside the allowable range was specified. 

Register must be AX or AL (CV4060) 

The destination register for the instruction must be AX or AL. 

Register variable out of scope (CVI024) 

An attempt was made to display a register variable outside the scope of the func­
tion containing it. 

One of the following occurred: 

• The variable was declared as a register variable. Recompile the program with 
the register declaration removed. 

• The optimizer converted an ordinary variable into a register variable to speed 
up execution. Recompile the program using the IOd option to tum optimiza­
tion off. 

• The function was defined with _fastcall, causing parameters to be passed in 
registers. Remove the _fastcall designation and recompile. 

Regular expression too long (CVI012) 

The regular expression entered was too long or complex for Code View to handle. 

Use a simpler regular expression. 

Relative jump out of range (CV 4053) 

An address jump was specified that is greater than permitted. 

A jump may be forward no more than 127 bytes and backward no more than 128 
bytes relative to the next instruction. 

Restart illegal in child CodeView (CV3612) 

A request was made to restart the program within a child copy of CodeView. 

The Restart command cannot be used on a child process in a child CodeView. It 
is necessary to restart the parent program to begin the child process again. 



CodeView Error Messages 

Restart program to edit options (CV2204) 

The program must be restarted before the recording or playback options can be 
modified. 

Restart program to record (CVS007) 

Recording cannot begin while the program is executing. 

Restart the program before recording. 

Resynchronizing the user tape (CV220S) 

The command history and user input tapes are out of synchronization. CodeView 
automatically adjusted the user tape to be synchronized with the command tape. 

Screen session ended-application output lost (CVI044) 

Under OS/2, each screen display is handled by a different session. When 
CodeView tried to switch from one display to the other, the other display's ses­
sion had ended and the output was gone. 

Exit CodeView and restart it. 

Simple variable can not have arguments (CVlllS) 

In an expression, an argument was specified to a simple variable. 

For example, given the declaration INTEGER NUM, the expression NUM (I) is 
not allowed. 

Specified number of lines not supported, using default (CVI0S2) 

A display mode was selected that is not supported by either the monitor's hard­
ware or the driver routines. 

Exit CodeView, then restart it with an appropriate command-line option for the 
display mode, either /25, /43, or /50. 

Substring range out of bound (CVlllS) 

A character expression exceeded the length specified in the CHARACTER 
statement. 

Symbol not defined (CV4009) 

The symbol specified has not been previously defined. 

The symbol name may have been mistyped. 

Syntax error (CVI017) 

The command contained a syntax error. 

The most likely cause is an invalid command or expression. 

655 



Error Messages 

656 

The program has terminated, restart to continue (CV0003) 

Code View has detected a termination request by the program being debugged. 

The program cannot be executed because it has terminated and has not been re­
started. Program memory remains allocated and may still be examined at this 
point. 

To run the program again, reload it using the Restart command. 

Thread blocked (CV3S01) 

The requested thread will not run because it is blocked by another thread. 

If this is not expected behavior for the program being debugged, it may be neces­
sary to terminate the threads that are blocking the requested thread. 

Too few array bounds given (CVII03) 

The bounds specified in an array subscript do not match the array declaration. 

For example, given the array declaration INTEGER IARRAY (3,4), the expres­
sion IARRAY ( I) would produce this message. 

Too many array bounds given (CVII04) 

Too many subscripts were specified for the array. 

For example, given the array declaration INTEGER IARRAY (3,4), the expres­
sion IARRAY ( I ,3, J) would produce this error message. 

Too many open files (CV0024) 

Code View could not open a file it needed because no more file handles are 
available. 

In DOS, increase the number of file handles by changing the FILES setting in 
CONFIG.SYS to allow a larger number of open files. FILES=20 is the recom­
mended setting. In OS/2, if multiple processes are running, removing one or 
more of them may release enough file handles. 

The program being debugged may have so many files open that all available han­
dles are exhausted. Check that the program has not left files open unnecessarily. 
The first four handles are reserved by the operating system. 

Too many watch objects (CVI036) 

More watch objects were specified than Code View can handle. 

The number of watch expressions that can be specified varies with the demands 
made upon CodeView' s internal memory resources. 

Remove one or more of the watch expressions, or remove some breakpoints. 



CodeView Error Messages 

TOOLS.INI not found (CVI053) 

The directory listed in the INIT environment variable did not contain a 
TOOLS.lNI file. 

Check the INIT variable to be sure it points to the correct directory. 

Type clash in function argument (CVII17) 

The type of an actual parameter did not match the corresponding formal 
parameter. 

This message also appears when a routine that uses alternate returns is called and 
the values of the return labels in the actual parameter list are not O. 

Type conversion too complex (CVI037) 

Too many levels of type casting were specified. 

Type casting is limited to two levels, as in 

(char) «int) (floatvar)) 

Unable to create tape (CV2200) 

CodeView could not open a disk file (tape) to record commands and data for later 
replay. 

Choosing the History On option from the Run menu causes CodeView to open 
disk files program.CVH and program.CVI to record all commands and data for a 
debugging session. 

One of the following situations may have caused the error: 

• There was not enough space on the disk containing the program to be 
debugged. 

• There were not enough free file handles. In DOS, increase the number of file 
handles by changing the FILES setting in CONFIG.SYS to allow a larger 
number of open files. FILES=20 is the recommended setting. In OS/2, if mul­
tiple processes are running, removing one or more of them may release 
enough file handles to permit creating the tape. 

Unable to open file (CVI007) 

The file specified cannot be opened. 

One of the following may have occurred: 

• The file may not exist in the specified directory. 

• The filename was misspelled. 

657 



Error Messages 

658 

• The file's attributes are set so that it cannot be opened. 

• A locking or sharing violation occurred. 

Unable to open tape (CV2201) 

Code View could not open the history file (tape) for replay. 

Choosing the History On option from the Run menu causes CodeView to open 
disk files program.CVH and program.CVI to record all commands and data for a 
debugging session. 

There probably were not enough free file handles. In DOS, increase the number 
of file handles by changing the FILES setting in CONFIG.SYS to allow a larger 
number of open files. FILES=20 is the recommended setting. In OS/2, if multiple 
processes are running, removing one or more of them may release enough file 
handles to permit opening the tape. 

Unexpected EMM error (CV1316) 

An unexpected error occurred when reading overlays into expanded memory. 

One of the following has probably occurred: 

• The EMM driver may be corrupted or may have malfunctioned. Reload the 
driver and retry. 

• Expanded memory has been corrupted. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Unexpected end-or-file in CV.EXE (CV1312) 

An unexpected end-of-file occurred while CV.EXE was being read. 

The CodeView file may be corrupt. Copy CV.EXE from the original disks and 
retry. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 

Unknown queue request-ignored (CV3609) 

One of the CodeView processes sent a command or data to another CodeView 
process that the latter process did not recognize. This is not a fatal error. 

If this is a recurring error, please note the circumstances of the error and notify 
Microsoft Corporation by following the instructions on the Microsoft Product As­
sistance Request form at the back of one of your manuals. 



CodeView Error Messages 

Unknown symbol (CV1018) 

The symbolic name specified could not be found. 

One of the following may have occurred: 

• The specified name was misspelled. 

• The wrong case was used when case sensitivity was on. Case sensitivity is 
toggled by the Case Sensitivity command from the Options menu, or set by 
the Option (0) Command-window command. 

• The module containing the specified symbol may not have been compiled 
with the /Zi option to include symbolic information. 

User Tape Disabled (CV2208) 

The current CodeView session was invoked with the IK option to disable the key­
board. CodeView issues this warning as a reminder that the recording ability is 
limited when IK is used. You can record Code View commands made during a de­
bugging session, but not user keystrokes. 

User tape may be truncated (CV2203) 

A request was made to start recording again without completely rerunning the 
original history tape. Any unexecuted commands will be discarded. 

Value out of range (CV4050) 

The value specified was out of range for the data item. 

Video mode changed without /S option (CV1040) 

The program being debugged changed screen modes, and CodeView was not set 
for swapping. The program output is now damaged or unrecoverable. 

To be able to view program output, exit CodeView and restart it with the Swap 
(IS) option. 

Wrong number of function arguments (CV1116) 

An incorrect number of arguments was specified in a function call. 

Wrong type of register (CV 4019) 

The register specified is not permitted for this operation or instruction. 

The mnemonic for the register may have been mistyped. 

659 



Error Messages 

660 

IX: CPU in protected or virtual mode (CV1301) 

The DOS extender was unable to switch to protected mode. 

One of the following may have occurred: 

• OS/2 is running. 

• An EMM driver is running in protected mode. 

• A protected-mode application is running. 

IX: CPU not 80286 or later (CV1300) 

The DOS extender runs in protected mode, which is supported only on the 80286 
and later processors. 

IX: HIMEM.SYS not loaded (CV1302) 

HIMEM.SYS is used by the DOS extender to allocate extended memory and 
must be installed. 

IX: not enough extended memory (CV1303) 

There was not enough space in extended memory to load the DOS extender. 

One of the following may be a solution: 

• Remove programs that are using extended memory. 

• Run CodeView without the IX option. 

IX: Unexpected initialization error (CV1320) 

The DOS extender encountered a general protection fault. 

The CodeView file may be corrupt. Copy CV.EXE from the original disks and 
retry. 

If the error recurs, note the circumstances of the error and notify Microsoft Cor­
poration by following the instructions on the Microsoft Product Assistance Re­
quest form at the back of one of your manuals. 



EXEHDR Error Messages 

F.3 EXEHDR Error Messages 

Number 

UII00 

UII01 

UII02 

UII03 

UII04 

UII05 

This section lists error messages generated by the Microsoft EXE File Header 
Utility (EXEHDR). EXEHDR errors (Ullxx) are always fatal. 

EXEHDR Error Message 

invalid magic number number 

EXEHDR discovered an unknown signature in the header for the file. 

The signature in the header for a file gives the operating system under which the 
executable file will run. EXEHDR recognizes signatures for DOS and OS/2 only. 

automatic data segment greater than 64K; correcting heap size 

There was not enough space in the automatic, or default, data segment 
(DGROUP) to accommodate the requested new heap size. EXEHDR adjusted the 
heap size to the maximum available space. 

This error applies only to OS/2 programs. 

automatic data segment greater than 64K; correcting stack size 

There was not enough space in the automatic, or default, data segment 
(DGROUP) to accommodate the requested new stack size. EXEHDR adjusted 
the stack size to the maximum available space. 

This error applies only to OS/2 programs. 

invalid .EXE file : actual length less than reported 

The second and third fields in the input-file header indicate a file size greater 
than the actual size. 

cannot change load-high program 

When the minimum allocation value and the maximum allocation value are both 
0, the file cannot be modified. 

minimum allocation less than stack; correcting minimum 

If the minimum allocation is not enough to accommodate the stack (either the 
original stack request or the modified request), the minimum allocation value is 
adjusted. 

This error applies only to DOS programs. 

661 



Error Messages 

UII06 

UII07 

UII08 

UII09 

Ulll0 

Ulill 

Ull12 

Ull13 

Ull14 

662 

minimum allocation greater than maximum; correcting maximum 

If the minimum allocation is greater than the maximum allocation, the maximum 
allocation value is adjusted. 

If a display of DOS header values is requested, the values shown will be the 
values after the packed file is expanded. 

This error applies only to DOS programs. 

unexpected end of resident/nonresident name table 

While decoding run-time relocation records, EXEHDR found the end of either 
the resident names table or the nonresident names table. The executable file is 
probably corrupted. 

This error applies only to OS/2 and Windows programs. 

cannot display compressed relocation records 

EXEHDR cannot decode the information in the file header because the header is 
not in a standard format. 

illegal value argument 

The given argument was invalid for the EXEHDR option it was specified with. 

malformed number number 

A command-line option for EXEHDR required a value, but the specified number 
was mistyped. 

option requires value 

A command-line option for EXEHDR required a value, but no value was 
specified, or the specified value was in an illegal format for the given option. 

value out of legal range lower-upper 

A command-line option for EXEHDR required a value, but the specified number 
did not fall in the required decimal range. 

value out of legal range lower-upper 

A command-line option for EXEHDR required a value, but the specified number 
did not fall in the required hexadecimal range. 

missing option value; option option ignored 

A command-line option for EXEHDR required a value, but nothing was 
specified. EXEHDR ignored the option. 



UIIIS 

Ull16 

Ul120 

Ul121 

Ul130 

Ul131 

Ul132 

Ul140 

HElPMAKE Error Messages 

option option ignored 

A command-line option for EXEHDR was ignored. This error usually occurs 
with error Ul116, un recogn i zed opt ion. 

unrecognized option: option 

A command-line option for EXEHDR was not recognized. This error usually oc­
curs with either UlI15, option i gno red, or UlllI, opt ion requ ires 
value. 

input file missing 

No input file was specified on the EXEHDR command line. 

command line too long: commandline 

The given EXEHDR command line exceeded the limit of 512 characters. 

cannot read filename 

EXEHDR could not read the input file. Either the file is missing or the file at­
tribute is set to prevent reading. 

invalid .EXE file 

The input file specified on the EXEHDR command line was not a valid execu­
table file. 

unexpected end-of-file 

EXEHDR found an unexpected end-of-file condition while reading the execu­
table file. The file is probably corrupt. 

out of memory 

There was not enough memory for EXEHDR to decode the header of the execu­
table file. 

F.4 HELPMAKE Error Messages 
This section lists error messages generated by the Microsoft Help File Main­
tenance Utility (HELPMAKE): 

• Fatal errors (H lxxx) cause HELPMAKE to stop execution. No output file is 
produced. 

• Errors (H 2xxx) do not prevent an output file from being produced, but parts of 
the conversion are not completed. 

663 



Error Messages 

• Warnings (H4xxx) do not prevent an output file from being produced, but 
problems may exist in the output. 

F.4.1 HELPMAKE Fatal Errors 
Number 

H1000 

H1001 

H1002 

H1003 

H1004 

664 

HELPMAKE Error Message 

I A requires character 

The IA option requires an application-specific control character. 

The correct form is 

lAc 

where c is the control character. 

IE compression level must be numeric 

The /E option requires either no argument or a numeric value in the range 0-15. 
The correct form is 

/En 

where n specifies the amount of compression requested. 

multiple 10 parameters specified 

Only one output file can be specified with the 10 option. 

invalid IS file-type identifier 

The IS option was given an argument other than 1,2, or 3. 

The IS option requires specification of the type of input file. An invalid file-type 
identifier was specified. The correct form is 

ISn 

where n specifies the format of the input help text file. The only valid values are 
1 (RTF), 2 (QuickHelp format), and 3 (minimally formatted ASCII). 

IS requires file-type identifier 

The IS option requires specification of the type of input file. There was no file­
type identifier specified. 

The correct form is 

ISn 

where n specifies the format of the input help text file. The only valid values are 
1 (RTF), 2 (QuickHelp format), and 3 (minimally formatted ASCII). 



81005 

81006 

81050 

81051 

81052 

81053 

81097 

81098 

81099 

HElPMAKE Error Messages 

IW fixed width invalid 

An invalid width was specified with the /W option. The valid range is 11-255. 

multiple IK parameters specified 

The option for specifying a keyword separator file, /K, was used more than once 
on the HELPMAKE command line. 

Only one file containing separator characters may be specified. 

option invalid with IDS 

The IC, IL, and 10 options for encoding are invalid with the IDS option for 
decoding. 

improper arguments for ID 

The ID option permits either no argument or an S or U argument. In addition, ID 
is invalid with the IC or IL option. 

encode requires 10 option 

Database encoding was requested without a specified output-file name for the 
operation. 

compression level exceeds 15 

A value greater than 15 was specified with the IE option. 

The IE option requires either no argument or a numeric value in the range 0-15. 
The correct form is 

lEn 

where n specifies the amount of compression requested. 

no operation specified 

The HELPMAKE command line did not contain an option for encoding, decod­
ing, or help. 

HELPMAKE requires the IE, ID, /H, or /? option. 

unrecognized option 

An unrecognized name followed the option indicator. 

An option is specified by a forward slash (/) or a dash (-) and an option name. 

syntax error on command line 

HELPMAKE cannot interpret the command line. 

665 



Error Messages 

HII00 

HII01 

HII02 

HII03 

HII04 

HII07 

H1200 

H1201 

H1250 

666 

cannot open file 

One of the files specified on the HELPMAKE command line could not be found 
or created. 

error writing file 

The output file could not be written, probably because the disk is full. 

no input file specified 

In an encoding operation, no input help text file was specified. 

no context strings found 

No context strings were found in the input stream while encoding. 

Either the file is empty, or the specified IS value does not correspond to the help 
text formatting. 

no topic text found 

No topic text was found in the help text file. 

Either the file is empty, or the specified IS value does not correspond to the help 
text formatting. 

cannot overwrite input file 

The IDS option for splitting a concatenated help file was specified, but the help 
file contained a database with the same name as the help file. 

Rename the help file to a filename other than one of the database names. 

insufficient memory to allocate context buffer 

There was insufficient memory to run HELPMAKE. 

HELPMAKE requires 256K free memory. 

insufficient memory to allocate utility buffer 

There was insufficient memory to run HELPMAKE. 

HELPMAKE requires 256K free memory. 

not a valid compressed help file 

The input file specified for a decompression operation is not a valid help 
database file. 



H1251 

H1300 

H1302 

H1303 

H1304 

H1305 

H1900 

HELPMAKE Error Messages 

cannot decompress locked help file 

An attempt was made to decompress a help database file that is locked. 

A file is locked if the /L option is specified when the help file is created. 

word too long in RTF processing 

A single word was longer than the specified format width (set by the /W option) 
or was found to be longer than 128 characters when HELPMAKE was reformat­
ting a paragraph. 

attribute stack overflow processing RTF 

RTF attribute groups are nested too deeply. HELPMAKE supports a maximum 
of 50 levels of attribute-group nesting in RTF format. 

unknown RTF attribute 

An unknown RTF formatting command was found. 

One of the following may have occurred: 

• A new RTF attribute was used. HELPMAKE recognizes a set of attributes 
that were current at the time this version of HELPMAKE was created. It inter­
prets some of the attributes and knows to ignore the others. Any RTF attribute 
defined after HELPMAKE was created is not known by HELPMAKE and 
will cause this error. 

• The RTF file is corrupted. 

topic too large 

A topic exceeded the limit for the size of topics. 

A single topic cannot exceed 64K. 

topic text without context string 

The source file contained topic text that was not preceded by a .context definition. 

internal virtual memory error 

This message indicates an internal HELP MAKE error. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request fo;m at the 
back of one of your manuals. 

667 



Error Messages 

H1901 

H1902 

H1903 

H1990 

out of local memory 

This message indicates an internal HELPMAKE error. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

out of disk space for swap file 

The current drive or directory is full. 

HELPMAKE uses a temporary swap file, written to the current drive and 
directory. The temporary file can grow to 1.5 times the size of the input files (for 
large help files) and is not removed until the final help file is completed. 

cannot open swap file 

HELPMAKE was unable to create its temporary swap file on the current drive 
and directory for one of the following reasons: 

• The current drive or directory is full. 

• The device cannot be written to. 

internal compression error 

This message indicates an internal HELPMAKE error. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions in the Microsoft Product Assistance Request form at the back 
of one of your manuals. 

F.4.2 HELPMAKE Errors 

668 

Number 

H2000 

H2001 

HELPMAKE Error Message 

line too long, truncated 

A line exceeded the fixed width specified by the /W option or the default of 76 
characters. HELPMAKE truncated the extra characters. 

duplicate context string 

A context string preceded more than one topic in a help database. A context 
string can be associated with only one block of topic text. 



H2002 

H2003 

HELPMAKE Error Messages 

zero length hot spot 

A cross-reference was specified, but the word or anchored text associated with it 
was of zero length. 

With no visible text to associate with the cross-reference, the hot spot will be in­
operative. This error is issued as a warning and does not prevent the building of a 
help file. However, some applications may not be able to use the resulting help 
file correctly. 

The following example will cause this error: 

\a\vcross_reference\v 

unrecognized dot command 

A line in the source file contained a dot (.) in column 1, but it was not followed 
by a command recognized by HELPMAKE. 

F.4.3 HELPMAKE Warnings 
Number 

H4000 

H4002 

H4003 

HELPMAKE Warning 

keyword compression analysis table size exceeded 
no further new words will be analyzed 

The maximum number (16,000) of unique keywords has been encountered 
during keyword compression. This happens only in very large help files. No 
further keywords will be included in the analysis. HELPMAKE continues to ana­
lyze how frequently words occur that it has already encountered. 

reference to undefined local context 

A string specifying a local context was used in a cross-reference but was not de­
fined in a .context statement. 

A local context begins with an at sign (@). Each local context that is used must 
be defined in a .context statement in one of the input files to HELPMAKE. 

negative left indent 

Topic text in an RTF file was formatted with a left indent to a position to the left 
of column 1. HELPMAKE deleted all text preceding column 1. 

669 



Error Messages 

F.5 H21NC Error Messages 

670 

This section lists error messages generated by the C to MASM Include File 
Translator (H2INC). The error messages produced by the compiler fall into three 
categories: 

• Fatal error messages 

• Compilation error messages 

• Warning messages 

The messages for each category are listed below in numerical order, with a brief 
explanation of each error. To look up an error message, first determine the mes­
sage category, then find the error number. All messages give the filename and 
line number where the error occurs. 

Fatal Error Messages 
Fatal error messages indicate a severe problem, one that prevents the compiler 
from processing your program any further. These messages have the following 
format: 

filename (line): fatal error HIlxxx: messagetext 

After the compiler displays a fatal-error message, it terminates without producing 
an include file or checking for further errors. 

Compilation Error Messages 
Compilation error messages identify actual header errors. There messages appear 
in the following format: 

filename (line): error HI2xxx: messagetext 

The compiler does not produce an include file for a header file that has compila­
tion errors. When the compiler encounters such errors, it attempts to recover 
from the error. If possible, it continues to process the header file and produce 
error messages. If errors are too numerous or too severe, the compiler stops pro­
cessing. 

Warning Messages 
Warning messages are informational only; they do not prevent compilation. 
These messages appear in the following format: 

filename (line) : war n i n 9 HI 4 xxx: message text 



H21NC Error Messages 

F.5.1 H21NC Fatal Errors 
Number 

HIl003 

HIl004 

HII007 

HII008 

HII009 

HIIOll 

HII012 

HII016 

HII017 

Message 

error count exceeds n; stopping compilation 

Errors in the program were too numerous or too severe to allow recovery, and the 
compiler must terminate. 

unexpected end-of-file found 

The default disk drive did not contain sufficient space for the compiler to create 
temporary files. The space required is approximately two times the size of the 
source file. 

This message also appears when the #if directive occurs without a corresponding 
closing #endif directive while the #if test directs the compiler to skip the section. 

unrecognized flag string in option 

The string in the command-line option was not a valid option. 

no input file specified 

The compiler was not given a file to compile. 

compiler limit: macros nested too deeply 

Too many macros were being expanded at the same time. 

This error occurs when a macro definition contains macros to be expanded and 
those macros contain other macros. 

Try to split the nested macros into simpler macros. 

compiler limit: identifier: macro definition too big 

The macro definition was longer than allowed. 

Split the definition into shorter definitions. 

unmatched parenthesis nesting - missing character 

The parentheses in a preprocessor directive were not matched. The missing char­
acter is either a left, (, or right, ), parenthesis. 

#if[n]def expected an identifier 

An identifier must be specified with the #ifdef and #ifndef directives. 

invalid integer constant expression 

The expression in an #if directive either did not exist or did not evaluate to a 
constant. 

671 



Error Messages 

HI1018 

HI1019 

HII020 

HII021 

HI1022 

HI1023 

HI1024 

672 

unexpected '#elif' 

The #elif directive is legal only when it appears within an #if, #ifdef, or #ifndef 
construct. 

unexpected '#else' 

The #else directive is legal only when it appears within an #if, #ifdef, or #ifndef 
construct. 

unexpected '#endif' 

An #endif directive appeared without a matching #if, #ifdef, or #ifndef directive. 

invalid preprocessor command string 

The characters following the number sign (#) did not form a valid preprocessor 
directive. 

expected '#endif' 

An #if, #ifdef, or #ifndef directive was not terminated with an #endif directive. 

cannot open source file filename 

The given file either did not exist, could not be opened, or was not found. 

Make sure the environment settings are valid and that the correct path name for 
the file is specified. 

If this error appears without an error message, the compiler has run out of file 
handles. If in DOS, increase the number of file handles by changing the FILES 
setting CONFIG.SYS to allow a larger number of open files. FILES=20 is the 
recommended setting. 

cannot open include file filename 

The specified file in an #include preprocessor directive could not be found. 

Make sure settings for the INCLUDE and TMP environment variables are valid 
and that the correct path name for the file is specified. 

If this error appears without an error message, the compiler has run out of file 
handles. If in DOS, increase the number of file handles by changing the FILES 
setting in CONFIG.SYS to allow a larger number of open files. FILES=20 is the 
recommended setting. 



811026 

811033 

811036 

811039 

H21NC Error Messages 

parser stack overflow, please simplify your program 

The program cannot be processed because the space required to parse the pro­
gram causes a stack overflow in the compiler. 

Simplify the program by decreasing the complexity of expressions. Decrease the 
level of nesting in for and switch statements by putting some of the more deeply 
nested statements in separate functions. Break up very long expressions involv­
ing ',' operators or function calls. 

cannot open assembly language output file filename 

There are several possible causes for this error: 

• The given name is not valid. 

• The file cannot be opened for lack of space. 

• A read-only file with the given name already exists. 

cannot open source listing file filename 

There are several possible causes for this error: 

• The given name is not valid. 

• The file cannot be opened for lack of space. 

• A read-only file with the given name already exists. 

unrecoverable heap overflow in Pass 3 

The post-optimizer compiler pass overflowed the heap and could not continue. 

One of the following may be a solution: 

• Break up the function containing the line that caused the error. 

• Recompile with the /Od option, removing optimization. 

• In OS/2, recompile using the!B3 C3L option to invoke the large-model ver­
sion of the third pass of the compiler. 

• In DOS, remove other programs or drivers running in the system which could 
be consuming significant amounts of memory. 

• In DOS, if using NMAKE, compile without using NMAKE. 

673 



Error Messages 

HII040 

HII047 

HII048 

HII049 

HIIOSO 

HIIOS2 

HIIOS3 

674 

unexpected end-of-file in source fileJilename 

The compiler detected an unexpected end-of-file condition while creating a 
source listing or mingled source/object listing. 

This occurs under OS/2 if the source file is deleted or overwritten while it is 
being read. 

limit of option exceeded at string 

The given option was specified too many times. The given string is the argument 
to the option that caused the error. 

If the CL or H2INC environment variables have been set, options in these varia­
bles are read before options specified on the command line. The CL environment 
variable is read before the H2INC environment variable. 

unknown option character in option 

The given character was not a valid letter for the option. 

For example, the following line 

f/:pragma optimize("q", on) 

causes the following error 

unknown option 'q' in 'f/:pragma optimize' 

invalid numerical argument string 

A numerical argument was expected instead of the given string. 

segment: code segment too large 

A code segment grew to within 36 bytes of 64K during compilation. 

A 36-byte pad is used because of a bug in some 80286 chips that can cause pro­
grams to exhibit strange behavior when, among other conditions, the size of a 
code segment is within 36 bytes of 64K. 

compiler limit: #if/#ifdef nested too deeply 

The program exceeded the maximum of 32 nesting levels for #if and #ifdef 
directives. 

compiler limit: struct/union nested too deeply 

A structure or union definition was nested to more than 15 levels. 

Break the structure or union into two parts by defining one or more of the nested 
structures using typedef. 



HII090 

HI1800 

segment data allocation exceeds 64K 

The size of the named segment exceeds 64K. 

This error occurs with based allocation. 

option: unrecognized option 

H21NC Error Messages 

A command-line option was specified that was not understood by H2INC. 

F.5.2 H21NC Compilation Errors 
Number 

HI2000 

HI2001 

Message 

UNKNOWN ERROR 
Contact Microsoft Product Support Services 

The compiler detected an unknown error condition. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

newline in constant 

A string constant was continued onto a second line without either a backslash or 
closing and opening quotes. 

To break a string constant onto two lines in the source file, do one of the 
following: 

• End the first line with the line-continuation character, a backslash, \. 

• Close the string on the first line with a double quotation mark, and open the 
string on the next line with another quotation mark. 

It is not sufficient to end the first line with \n, the escape sequence for embedding 
a newline character in a string constant. 

The following two examples demonstrate causes of this error: 

printf("Hello, 
world"); 

or 

printf("Hello, \n 
worl d") ; 

675 



Error Messages 

HI2003 

HI2004 

HI2005 

HI2006 

HI2007 

676 

The following two examples show ways to correct this error: 

printf("Hello,\ 
world"); 

or 

printf("Hello," 
" world"); 

Note that any spaces at the beginning of the next line after a line-continuation 
character are included in the string constant. Note, also, that neither solution actu­
ally places a newline character into the string constant. To embed this character: 

printf("Hello, \n\ 
world"); 

or 

printf("Hello, \ 
\nworld"); 

or 

printf("Hello, \n" 
"world"); 

or 

printf("Hello," 
"\nworld"); 

expected defined id 

An identifier was expected after the preprocessing keyword defined. 

expected defined(id) 

An identifier was expected after the left parenthesis, (, following the prepro­
cessing keyword defined. 

#line expected a line number, found token 

A #line directive lacked the required line-number specification. 

#include expected a file name, found token 

An #include directive lacked the required filename specification. 

#define syntax 

An identifier was expected following #define in a preprocessing directive. 



HI2008 

HI2009 

HI2010 

HI2012 

HI2013 

HI2014 

HI2015 

HI2016 

HI2017 

HI2018 

H21NC Error Messages 

character: unexpected in macro definition 

The given character was found immediately following the name of the macro. 

reuse of macro formal identifier 

The given identifier was used more than once in the formal-parameter list of a 
macro definition. 

character: unexpected in macro formal-parameter list 

The given character was used incorrectly in the formal-parameter list of a macro 
definition. 

missing name following '<' 
An #include directive lacked the required filename specification. 

missing '>' 
The closing angle bracket (» was missing from an #include directive. 

preprocessor command must start as first non-white-space 

Non-white-space characters appeared before the number sign (#) of a preproces­
sor directive on the same line. 

too many characters in constant 

A character constant contained more than one character. 

Note that an escape sequence (for example, \t for tab) is converted to a single 
character. 

no closing single quotation mark 

A newline character was found before the closing single quotation mark of a char­
acter constant. 

illegal escape sequence 

An escape sequence appeared where one was not expected. 

An escape sequence (a backslash, \, followed by a number or letter) may occur 
only in a character or string constant. 

unknown character hexnumber 

The ASCII character corresponding to the given hexadecimal number appeared 
in the source file but is an illegal character. 

One possible cause of this error is corruption of the source file. Edit the file and 
look at the line on which the error occurred. 

677 



Error Messages 

HI2019 

HI2021 

HI2022 

HI2025 

HI2026 

HI2027 

HI2028 

HI2030 

HI2031 

678 

expected preprocessor directive, found character 

The given character followed a number sign (#), but it was not the first letter of a 
preprocessor directive. 

expected exponent value, not character 

The given character was used as the exponent of a floating-point constant but 
was not a valid number. 

number: too big for character 

The octal number following a backslash (\) in a character or string constant was 
too large to be represented as a character. 

identifier: enum/struct/union type redefinition 

The given identifier had already been used for an enumeration, structure, or 
union tag. 

identifier: member of enum redefinition 

The given identifier has already been used for an enumeration constant, either 
within the same enumeration type or within another visible enumeration type. 

use of undefined enum/struct/union identifier 

The given identifier referred to a structure or union type that was not defined. 

struct/union member needs to be inside a struct/union 

Structure and union members must be declared within the structure or union. 

This error may be caused by an enumeration declaration containing a declaration 
of a structure member, as in the following example: 

enum a { 
january, 
february, 
int march; 
} ; 

1* Illegal structure declaration *1 

identifier: struct/union member redefinition 

The identifier was used for more than one member of the same structure or union. 

identifier: function cannot be struct/union member 

The given function was declared to be a member of a structure or union. 

To correct this error, use a pointer to the function instead. 



HI2033 

HI2034 

HI2035 

HI2037 

HI2038 

HI2041 

HI2042 

HI2056 

HI2057 

H21NC Error Messages 

identifier: bit field cannot have indirection 

The given bit field was declared as a pointer (*), which is not allowed. 

identifier: type of bit field too small for number of bits 

The number of bits specified in the bit-field declaration exceeded the number of 
bits in the given base type. 

struct/union identifier: unknown size 

The given structure or union had an undefined size. 

Usually this occurs when referencing a declared but not defined structure or 
union tag. 

For example, the following causes this error: 

struct s_tag *ps; 
ps = &my_var; 
*ps = 17; /* This line causes the error */ 

left of operator specifies undefined struct/union identifier 

The expression before the member-selection operator ( -> or .) identified a struc­
ture or union type that was not defined. 

identifier: not struct/union member 

The given identifier was used in a context that required a structure or union 
member. 

illegal digit character for base number 

The given character was not a legal digit for the base used. 

signed/unsigned keywords mutually exclusive 

The keywords signed and unsigned were both used in a single declaration, as in 
the following example: 

unsigned signed int i; 

illegal expression 

An expression was illegal because of a previous error, which may not have pro­
duced an error message. 

expected constant expression 

The context requires a constant expression. 

679 



Error Messages 

HI2058 

HI2059 

HI2060 

HI2061 

HI2062 

HI2063 

HI2064 

HI2065 

HI2066 

HI2067 

680 

constant expression is not integral 

The context requires an integral constant expression. 

syntax error: token 

The token caused a syntax error. 

syntax error: end-of-file found 

The compiler expected at least one more token. 

Some causes of this error include: 

Omitting a semicolon (;), as in 

int *p 

Omitting a closing brace (} ) from the last function, as in 

rna in ( ) 
{ 

syntax error: identifier identIfier 

The identifier caused a syntax error. 

type type unexpected 

The compiler did not expect the given type to appear here, possibly because it al­
ready had a required type. 

identifier: not a function 

The given identifier was not declared as a function, but an attempt was made to 
use it as a function. 

term does not evaluate to a function 

An attempt was made to call a function through an expression that did not eval­
uate to a function pointer. 

identifier: undefined 

An attempt was made to use an identifier that was not defined. 

cast to function type is illegal 

An object was cast to a function type, which is illegal. 

However, it is legal to cast an object to a function pointer. 

cast to array type is illegal 

An object was cast to an array type. 



HI2068 

HI2069 

HI2070 

HI2071 

HI2072 

HI2043 

HI2044 

HI2045 

HI2046 

HI2047 

HI2048 

HI2049 

HI2050 

HI2051 

H21NC Error Messages 

illegal cast 

A type used in a cast operation was not legal for this expression. 

cast of void term to nonvoid 

The void type was cast to a different type. 

illegal sizeof operand 

The operand of a sizeof expression was not an identifier or a type name. 

identifier: illegal storage class 

The given storage class cannot be used in this context. 

identifier: initialization of a function 

An attempt was made to initialize a function. 

illegal break 

A break statement is legal only within a do, for, while, or switch statement. 

illegal continue 

A continue statement is legal only within a do, for, or while statement. 

identifier: label redefined 

The label appeared before more than one statement in the same function. 

illegal case 

The keyword case may appear only within a switch statement. 

illegal default 

The keyword default may appear only within a switch statement. 

more than one default 

A switch statement contained more than one default label. 

case value value already used 

The case value was already used in this switch statement. 

nonintegral switch expression 

A switch expression did not evaluate to an integral value. 

case expression not constant 

Case expressions must be integral constants. 

681 



Error Messages 

HI2052 

HI2054 

HI2055 

HI2075 

HI2076 

HI2077 

HI2078 

HI2079 

HI2080 

HI2082 

682 

case expression not integral 

Case expressions must be integral constants. 

expected '(' to follow identifier 

The context requires parentheses after the function identifier. 

One cause of this error is forgetting an equal sign (=) on a complex initialization, 
as in 

int arrayl[] 
{ 

1,2,3 
} ; 

/* Missing = */ 

expected formal-parameter list, not a type list 

An argument-type list appeared in a function definition instead of a fonnal­
parameter list. 

identifier: array initialization needs curly braces 

There were no curly braces, { }, around the given array initializer. 

identifier: struct/union initialization needs curly braces 

There were no curly braces, { }, around the given structure or union initializer. 

nonscalar field initializer identifier 

An attempt was made to initialize a bit-field member of a structure with a nonsca­
lar value. 

too many initializers 

The number of initializers exceeded the number of objects to be initialized. 

identifier uses undefined structlunion name 

The identifier was declared as structure or union type name, but the name had not 
been defined. This error may also occur if an attempt is made to initialize an 
anonymous union. 

illegal far _fastcall function 

A far _fastcall function may not be compiled with the /Gw option, nor with the 
/Gq option if stack checking is enabled. 

redefinition of formal parameter identifier 

A fonnal parameter to a function was redeclared within the function body. 



812084 

812086 

812087 

812090 

812091 

H21NC Error Messages 

function function already has a body 

The function has already been defined. 

identifier: redefinition 

The given identifier was defined more than once, or a subsequent declaration 
differed from a previous one. 

The following are ways to cause this error: 

int a; 
cha r a; 
ma in ( ) 
{ 
} 

ma in ( ) 
{ 

int a; 
int a; 
} 

However, the following does not cause this error: 

int a; 
int a; 
maine) 
{ 

} 

identifier: missing subscript 

The definition of an array with multiple subscripts was missing a subscript value 
for a dimension other than the first dimension. 

The following is an example of an illegal definition: 

int func(a) 
char a[10][]; 
{ } 

The following is an example of a legal definition: 

int func(a) 
char a[][5]; 
{ } 

function returns array 

A function cannot return an array. It can return a pointer to an array. 

function returns function 

A function cannot return a function. It can return a pointer to a function. 

683 



Error Messages 

HI2092 

HI2095 

HI2100 

HI2101 

HI2102 

HI2103 

HI2104 

HI2105 

HI2106 

HI2107 

HI2108 

HI2109 

HI2110 

684 

array element type cannot be function 

Arrays of functions are not allowed. Arrays of pointers to functions are allowed. 

function: actual has type void: parameter number 

An attempt was made to pass a void argument to a function. The given number 
indicates which argument was in error. 

Formal parameters and arguments to functions cannot have type void. They can, 
however, have type void * (pointer to void). 

illegal indirection 

The indirection operator (*) was applied to a nonpointer value. 

, &' on constant 

The address-of operator (&) did not have an lvalue as its operand. 

, &' requires lvalue 

The address-of operator (&) must be applied to an lvalue expression. 

, &' on register variable 

An attempt was made to take the address of a register variable. 

, &' on bit field ignored 

An attempt was made to take the address of a bit field. 

operator needs lvalue 

The given operator did not have an lvalue operand. 

operator: left operand must be lvalue 

The left operand of the given operator was not an lvalue. 

illegal index, indirection not allowed 

A subscript was applied to an expression that did not evaluate to a pointer. 

nonintegral index 

A nonintegral expression was used in an array subscript. 

subscript on nonarray 

A subscript was used on a variable that was not an array. 

pointer + pointer 

An attempt was made to add one pointer to another using the plus (+) operator. 



HI2111 

HI2112 

HI2113 

HI2114 

HI21lS 

HI2117 

HI2118 

HI2120 

HI2121 

HI2124 

HI2128 

H21NC Error Messages 

pointer + nonintegral value 

An attempt was made to add a nonintegral value to a pointer. 

illegal pointer subtraction 

An attempt was made to subtract pointers that did not point to the same type. 

pointer subtracted from non pointer 

The right operand in a subtraction operation using the minus (-) operator was a 
pointer, but the left operand was not. 

operator: pointer on left; needs integral right 

The left operand of the given operator was a pointer, so the right operand must be 
an integral value. 

identifier: incompatible types 

An expression contained incompatible types. 

operator: illegal for struct/union 

Structure and union type values are not allowed with the given operator. 

negative subscript 

A value defining an array size was negative. 

void illegal with all types 

The void type was used in a declaration with another type. 

operator: bad left/right operand 

The left or right operand of the given operator was illegal for that operator. 

divide or mod by zero 

A constant expression was evaluated and found to have a zero denominator. 

identifier: huge array cannot be aligned to segment boundary 

The given huge array was large enough to cross two segment boundaries, but 
could not be aligned to both boundaries to prevent an individual array element 
from crossing a boundary. 

If the size of a huge array causes it to cross two boundaries, the size of each array 
element must be a power of two, so that a whole number of elements will fit be­
tween two segment boundaries. 

685 



Error Messages 

HI2129 

HI2130 

HI2131 

HI2132 

HI2133 

HI2134 

HI2136 

HI2137 

HI2139 

686 

static function function not found 

A forward reference was made to a static function that was never defined. 

#line expected a string containing the file name, found token 

The optional token following the line number on a #line directive was not a 
string. 

more than one memory attribute 

More than one of the keywords _near, _far, _huge, or _based were applied to 
an item, as in the following example: 

typedef int _near nint; 
nint _far a; /* Illegal */ 

syntax error : unexpected identifier 

An identifier appeared in a syntactically illegal context. 

identifier: unknown size 

An attempt was made to declare an unsized array as a local variable. 

identifier: struct/union too large 

The size of a structure or union exceeded the 64K compiler limit. 

function: prototype must have parameter types 

A function prototype declarator had formal-parameter names, but no types were 
provided for the parameters. 

A formal parameter in a function prototype must either have a type or be repre­
sented by an ellipsis ( ... ) to indicate a variable number of arguments and no type 
checking. 

One cause of this error is a misspelling of a type name in a prototype that does 
not provide the names of formal parameters. 

empty character constant 

The illegal empty-character constant (0) was used. 

type following identifier is illegal 

Two types were used in the same declaration. 

For example: 

int double a; 



HI2141 

HI2143 

HI2144 

HI2145 

HI2146 

HI2147 

HI2148 

HI2149 

HI2150 

HI2151 

H21NC Error Messages 

value out of range for enum constant 

An enumeration constant had a value outside the range of values allowed for 
type int. 

syntax error: missing token} before token2 

The compiler expected token} to appear before token2. 

This message may appear if a required closing brace (}), right parenthesis 0), or 
semicolon (;) is missing. 

syntax error: missing token before type type 

The compiler expected the given token to appear before the given type name. 

This message may appear if a required closing brace (} ), right parenthesis ()), or 
semicolon (;) is missing. 

syntax error: missing token before identifier 

The compiler expected the given token to appear before an identifier. 

This message may appear if a semicolon (;) does not appear after the last declara­
tion of a block. 

syntax error: missing token before identifier identifier 

The compiler expected the given token to appear before the given identifier. 

unknown size 

An attempt was made to increment an index or pointer to an array whose base 
type has not yet been declared. 

array too large 

An array exceeded the maximum legal size of 64K. 

Either reduce the size of the array, or declare it with _huge. 

identifier: named bit field cannot have 0 width 

The given named bit field had zero width. Only unnamed bit fields are allowed to 
have zero width. 

identifier: bit field must have type int, signed int, or unsigned int 

The ANSI C standard requires bit fields to have types of int, signed int, or 
unsigned int. This message appears only when compiling with the jZa option. 

more than one language attribute 

More than one keyword specifying a calling convention for a function was given. 

687 



Error Messages 

HI2152 

HI2153 

HI2154 

HI2156 

HI2157 

HI2158 

HI2159 

HI2160 

688 

identifier: pointers to functions with different attributes 

An attempt was made to assign a pointer to a function declared with one calling 
convention (cdecl, fortran, pascal, or fastcall) to a pointer to a function de­
clared with a-different calling convention. -

hex constants must have at least 1 hex digit 

The hexadecimal constants Ox, OX, and \x are illegal. At least one hexadecimal 
digit must follow the x or X. 

segment: does not refer to a segment name 

A _based-allocated variable must be allocated in a segment unless it is extern 
and uninitialized. 

pragma must be outside function 

A pragma that must be specified at a global level, outside a function body, oc­
curred within a function. 

For example, the following causes this error: 

rna inC) 
{ 

#pragrna optirnizeC"l", on) 
} 

function : must be declared before use in pragma list 

The function name in the list of functions for an alloc _text pragma has not been 
declared prior to being referenced in the list. 

identifier: is a function 

The given identifier was specified in the list of variables in a same _seg pragma 
but was previously declared as a function. 

more than one storage class specified 

A declaration contained more than one storage class, as in 

extern static int i; 

## cannot occur at the beginning of a macro definition 

A macro definition began with a token-pasting operator (##), as in 

#define rnacCa,b) ##a 



HI2161 

HI2162 

HI2165 

HI2166 

HI2167 

HI2168 

HI2171 

HI2172 

HI2173 

H21NC Error Messages 

## cannot occur at the end of a macro definition 

A macro definition ended with a token-pasting operator (##), as in 

#define mac(a,b) a## 

expected macro formal parameter 

The token following a stringizing operator (#) was not a formal-parameter name. 

For example: 

#define print(a) printf(#b) 

keyword: cannot modify pointers to data 

The _fortran, _pascal, _cdecl, or _fastcall keyword was used illegally to mod­
ify a pointer to data, as in the following example: 

char _pascal *p; 

lvalue specifies const object 

An attempt was made to modify an item declared with const type. 

function: too many actual parameters for intrinsic function 

A reference to the intrinsic function name contained too many actual parameters. 

function: too few actual parameters for intrinsic function 

A reference to the intrinsic function name contained too few actual parameters. 

operator: illegal operand 

The given unary operator was used with an illegal operand type, as in the follow­
ing example: 

int (*fp) (); 
double d,dl; 
fp++; 
d = ~dl; 

function: actual is not a pointer: parameter number 

An attempt was made to pass an argument that was not a pointer to a function 
that expected a pointer. The given number indicates which argument was in error. 

function: actual is not a pointer: parameter number 1, 
parameter list number2 

An attempt was made to pass a nonpointer argument to a function that expected a 
pointer. 

689 



Error Messages 

HI2174 

HI2177 

HI2178 

HI2179 

HI2185 

HI2187 

HI2189 

690 

This error occurs in calls that return a pointer to a function. The first number indi­
cates which argument was in error; the second number indicates which argument 
list contained the invalid argument. 

function : actual has type void : parameter number 1, 
parameter list number2 

An attempt was made to pass a void argument to a function. Formal parameters 
and arguments to functions cannot have type void. They can, however, have type 
void * (pointer to void). 

This error occurs in calls that return a pointer to a function. The first number indi­
cates which argument was in error; the second number indicates which argument 
list contained the invalid argument. 

constant too big 

Information was lost because a constant value was too large to be represented in 
the type to which it was assigned. 

identifier: storage class for same_seg variables must be extern 

The given variable was specified in a same_seg pragma, but it was not declared 
with extern storage class. 

identifier: was used in same_seg, but storage class is no longer extern 

The given variable was specified in a same_seg pragma, but it was redeclared 
with a storage class other than extern. 

identifier: illegal _based allocation 

A _based-allocated variable that explicitly has extern storage class and is unini­
tialized may not have a base of any of the following: 

(_segment) & var 
_segname("_STACK") 
Csegment)_self 
void 

If the variable does not explicitly have extern storage class or it is uninitialized, 
then its base must use _segname("string") where string is any segment name or 
reserved segment name except "_STACK". 

cast of near function pointer to far function pointer 

An attempt was made to cast a near function pointer as a far function pointer. 

#error : string 

An #error directive was encountered. The string is the descriptive text supplied 
in the directive. 



HI2193 

HI2194 

HI2195 

HI2200 

HI2201 

HI2205 

HI2208 

HI2209 

HI2210 

HI2211 

H21NC Error Messages 

identifier: already in a segment 

A variable in the same _ seg pragma has already been allocated in a segment, 
using _based. 

segment: is a text segment 

The given text segment was used where a data, const, or bss segment was ex­
pected. 

segment: is a data segment 

The given data segment was used where a text segment was expected. 

function: function has already been defined 

A function name passed as an argument in an alloc _text pragma has already 
been defined. 

function: storage class must be extern 

A function declaration appears within a block, but the function is not declared ex­
tern. This causes an error if the /Za option is in effect. 

For example, the following causes this error, when compiled with /Za: 

rnai n ( ) 
{ 

static int funcl(); 
} 

identifier: cannot initialize extern block-scoped variables 

A variable with extern storage class may not be initialized in a function. 

no members defined using this type 

An enum, struct, or union was defined without any members. This is an error 
only when compiling with /Za; otherwise, it is a warning. 

type cast in _based construct must be Csegment) 

The only type allowed within a cast in a _based declarator is C segment). 

identifier: must be near/far data pointer 

The base in a _based declarator may not be an array, a function, or a _based 
pointer. 

Csegment) applied to function identifier function 

The item cast in a based declarator must not be a function. 

691 



Error Messages 

HI2212 

HI2213 

HI2214 

HI2215 

HI2216 

HI2217 

HI2218 

692 

identifier : _based not available for functions/pointers to functions 

Functions cannot be _based-allocated. Use the alloc_text pragma. 

identifier: illegal argument to _based 

A symbol used as a base must have type _segment or be a near or far pointer. 

pointers based on void require the use of:> 

A _ based pointer based on void cannot be dereferenced. Use the: > operator to 
create an address that can be dereferenced. 

:> operator only for objects based on void 

The right operand of the :> operator must be a pointer based on void, as in 

char _based(void) *cbvpi 

attribute} may not be used with attribute2 

The given function attributes are incompatible. 

Some combinations of attributes that cause this error are 

• _ saveregs and Jnterrupt 

• _fastcall and _save regs 

• _fastcall and Jnterrupt 

• _ fastcall and _export 

attribute} must be used with attribute2 

The first function attribute requires the second attribute to be used. 

Some causes for this error include 

• An interrupt function explicitly declared as near. Interrupt functions must be 
far. 

• An interrupt function or a function with a variable number of arguments, 
when that function is declared with the _fortran, _pascal, or _fastcall at­
tribute. Functions declared with the _interrupt attribute or with a variable 
number of arguments must use the C calling conventions. Remove the _for­
tran, _pascal, or _fastcall attribute from the function declaration. 

type in _based construct must be void 

The only type allowed within a _based construct is void. 



HI2219 

HI2220 

HI2221 

HI2222 

HI2223 

HI2224 

HI2225 

H21NC Error Messages 

syntax error: type qualifier must be after '*' 
Either const or volatile appeared where a type or qualifier is not allowed, as in 

int (canst *p); 

warning treated as error - no object file generated 

When the compiler option /WX is used, the first warning generated by the com­
piler causes this error message to be displayed. 

Either correct the condition that caused the warning, or compile at a lower warn­
ing level or without /WX. 

, .' : left operand points to struct/union, use -> 

The left operand of the '.' operator must be a struct/union type. It cannot be a 
pointer to a struct/union type. 

This error usually means that a -> operator must be used. 

-> : left operand has struct/union type, use'.' 

The left operand of the -> operator must be a pointer to a struct/union type. It 
cannot be a struct/union type. 

This error usually means that a '.' operator must be used. 

left of ->member must point to struct/union 

The left operand of the -> operator is not a pointer to a struct/union type. 

This error can occur when the left operand is an undefined variable. Undefined 
variables have type into 

left of .member must have struct/union type 

The left operand of the '.' operator is not a struct/union type. 

This error can occur when the left operand is an undefined variable. Undefined 
variables have type int. 

tagname : first member of struct is unnamed 

The struct with the given tag started with an unnamed member (an alignment 
member). Struct definitions must start with a named member. 

693 



Error Messages 

F.5.3 H21NC Warnings 
Number 

HI4000 

HI4001 

HI4002 

HI4003 

HI4004 

694 

Message 

UNKNOWN WARNING 
Contact Microsoft Product Support Services 

The compiler detected an unknown error condition. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

nonstandard extension used - extension 

The given nonstandard language extension was used when the /Ze option was 
specified. 

This is a level 4 warning, except in the case of a function pointer cast to data 
when the Quick Compile option, /qc, is in use, which produces a level I warning. 

If the /Za option has been specified, this condition generates a syntax error. 

too many actual parameters for macro identifier 

The number of actual arguments specified with the given identifier was greater 
than the number of formal parameters given in the macro definition of the 
identifier. 

The additional actual parameters are collected but ignored during expansion of 
the macro. 

not enough actual parameters for macro identifier 

The number of actual arguments specified with the given identifier was fewer 
than the number of formal parameters given in the macro definition of the 
identifier. 

When a formal parameter is referenced in the definition and the corresponding ac­
tual parameter has not been provided, empty text is substituted in the macro 
expansion. 

missing ')' after defined 

The closing parenthesis was missing from an #if defined phrase. 

The compiler assumes a right parenthesis, ), after the first identifier it finds. It 
then attempts to compile the remainder of the line, which may result in another 
warning or error. 



HI4005 

HI4006 

HI4007 

HI4008 

HI4009 

HI4011 

H21NC Error Messages 

The following example causes this warning and a fatal error: 

#if definedC 101 ) I I C 102 ) 

The compiler assumed a right parenthesis after ID 1, then found a mismatched 
parenthesis in the remainder of the line. The following avoids this problem: 

#if definedC 101 ) I I definedC 102 ) 

identifier: macro redefinition 

The given identifier was defined twice. The compiler assumed the new macro 
definition. 

To eliminate the warning, either remove one of the definitions or use an #Undef 
directive before the second definition. 

This warning is caused in situations where a macro is defined both on the com­
mand line and in the code with a #define directive. 

#undef expected an identifier 

The name of the identifier whose definition was to be removed was not given 
with the #Undef directive. The #Undef was ignored. 

identifier: must be attribute 

The attribute of the given function was not explicitly stated. The compiler forced 
the attribute. 

For example, the function main must have the _ cdecl attribute. 

identifier: _fastcall attribute on data ignored 

The _fastcall attribute on the given data identifier was ignored. 

string too big, trailing characters truncated 

A string exceeded the compiler limit of 2047 on string size. The excess charac­
ters at the end of the string were truncated. 

To correct this problem, break the string into two or more strings. 

identifier truncated to identifier 

Only the first 31 characters of an identifier are significant. The characters after 
the limit were truncated. 

This may mean that two identifiers that are different before truncation may have 
the same identifier name after truncation. 

695 



Error Messages 

HI4015 

HI4016 

HI4017 

HI4020 

HI4021 

HI4022 

HI4023 

696 

identifier: bit-field type must be integral 

The given bit field was not declared as an integral type. The compiler assumed 
the base type of the bit field to be unsigned. 

Bit fields must be declared as unsigned integral types. 

function: no function return type, using int as default 

The given function had not yet been declared or defined, so the return type was 
unknown. A default return type of int was assumed. 

cast of int expression to far pointer 

A far pointer represents a full segmented address. On an 8086/8088 processor, 
casting an int value to a far pointer may produce an address with a meaningless 
segment value. 

The compiler extended the int expression to a four-byte value. 

function: too many actual parameters 

The number of arguments specified in a function call was greater than the num­
ber of parameters specified in the function prototype or function definition. 

The extra parameters were passed according to the calling convention used on 
the function. 

function : too few actual parameters 

The number of arguments specified in a function call was less than the number of 
parameters specified in the function prototype or function definition. 

Only the provided actual parameters are passed. If the called function references 
a variable that was not passed, the results are undefined and may be unexpected. 

function : pointer mismatch : parameter number 

The pointer type of the given parameter was different from the pointer type 
specified in the argument-type list or function definition. 

The parameter will be passed without change. Its value will be interpreted as a 
pointer within the called function. 

function : _based pointer passed to unprototyped function: parameter number 

When in a near data model, only the offset portion of a _based pointer is passed 
to an unprototyped function. If the function expects a far pointer, the resulting 
code will be wrong. In any data model, if the function is defined to take a _based 
pointer with a different base, the resulting code may be unpredictable. 

If a prototype is used before the call, the call will be generated correctly. 



HI4024 

HI4028 

HI4030 

HI4031 

HI4034 

HI4040 

HI4042 

H21NC Error Messages 

function: different types: parameter number 

The type of the given parameter in a function call did not agree with the type 
given in the argument-type list or function definition. 

The parameter will be passed without change. The function will interpret the par­
ameter's type as the type expected by the function. 

parameter number declaration different 

The type of the given parameter did not agree with the corresponding type in the 
argument-type list or with the corresponding formal parameter. 

The original declaration was used. 

first parameter list longer than the second 

A function was declared more than once with different parameter lists. 

The first declaration was used. 

second parameter list is longer than the first 

A function was declared more than once with different parameter lists. 

The first declaration was used. 

sizeof returns 0 

The sizeof operator was applied to an operand that yielded a size of zero. 

This warning is informational. 

memory attribute on identlfier ignored 

The _near, _far, _huge, or _based keyword has no effect in the declaration of 
the given identifier and is ignored. 

One cause of this warning is a huge array that is not declared globally. Declare 
huge arrays outside of main. 

identifier: has bad storage class 

The storage class specified for identifier cannot be used in this context. 

The default storage class for this context was used in place of the illegal class: 

• If identlfier was a function, the compiler assumed extern class. 

• If identifier was a formal parameter or local variable, the compiler assumed 
auto class. 

• If identifier was a global variable, the compiler assumed that the variable was 
declared with no storage class. 

697 



Error Messages 

HI4044 

HI4047 

HI4048 

HI4049 

HI4050 

HI4051 

698 

_huge on identifier ignored, must be an array 

The compiler ignored the _huge memory attribute on the given identifier. Only 
arrays may be declared with the _huge memory attribute. On pointers, _huge 
must be used as a modifier, not as a memory attribute. 

operator: different levels of indirection 

An expression involving the specified operator had inconsistent levels of 
indirection. 

If both operands are of arithmetic type, or if both are not (such as two arrays or 
pointers), then they are used without change, though the compiler may DS­
extend one of the operands if one is far and one is near. If one is arithmetic and 
one is not, the arithmetic operator is converted to the type of the other operator. 

For example, the following code causes this warning but is compiled without 
change: 

char **p; 
char *q; 
p = q; 1* Warning *1 

array's declared subscripts different 

An expression involved pointers to arrays of different size. 

The pointers were used without conversion. 

operator: indirection to different types 

The pointer expressions used with the given operator had different base types. 

The expressions were used without conversion. 

For example, the following code causes this warning: 

5truct t51 *51; 
5truct t52 *52; 
52 = 51; 1* Warning *1 

operator: different code attributes 

The function-pointer expressions used with operator had different code at­
tributes. The attribute involved is either _export or Joadds. 

This is a warning and not an error, because _export and _loadds affect only 
entry sequences and not calling conventions. 

type conversion, possible loss of data 

Two data items in an expression had different base types, causing the type of one 
item to be converted. During the conversion, a data item was truncated. 



014053 

014063 

014066 

014067 

014071 

014072 

H21NC Error Messages 

at least one void operand 

An expression with type void was used as an operand. 

The expression was evaluated using an undefined value for the void operand. 

function: function too large for post-optimizer 

Not enough space was available to optimize the given function. 

One of the following may be a solution: 

• Recompile with fewer optimizations. 

• Divide the function into two or more smaller functions. 

• In OS/2, recompile using the /B3 C3L option to invoke the large-model ver­
sion of the third pass of the compiler. 

local symbol-table overflow - some local symbols may be missing in listings 

The listing generator ran out of heap space for local variables, so the source 
listing may not contain symbol-table information for all local variables. 

unexpected characters following directive directive - newline expected 

Extra characters followed a preprocessor directive and were ignored. This warn­
ing appears only when compiling with the /Za option. 

For example, the following code causes this warning: 

4I=endif 

To remove the warning, compile with /Ze or use comment delimiters: 

4I=endif 

function: no function prototype given 

The given function was called before the compiler found the corresponding func­
tion prototype. 

The function will be called using the default rules for calling a function without a 
prototype. 

function: no function prototype on _fastcall function 

A _fastcall function was called without first being prototyped. 

Functions that are _fastcall should be prototyped to guarantee that the registers 
assigned at each point of call are the same as the registers assumed when the 
function is defined. A function defined in the new ANSI style is a prototype. 

699 



Error Messages 

HI4073 

HI4076 

HI4079 

HI4082 

HI4083 

HI4084 

700 

A prototype must be added when this warning appears, unless the function takes 
no arguments or takes only arguments that cannot be passed in the general­
purpose registers. 

scoping too deep, deepest scoping merged when debugging 

Declarations appeared at a static nesting level greater than 13. As a result, all dec­
larations beyond this level will seem to appear at the same level. 

type : may be used on integral types only 

The signed or unsigned type modifier was used with a nonintegral type. 

The given qualifier was ignored. 

The following example causes this warning: 

unsigned double x; 

unexpected token token 

An unexpected separator token was found in the argument list of a pragma. 

The remainder of the pragma was ignored. 

expected an identifier, found token 

An identifier was missing from the argument list. 

The remainder of the pragma was ignored. 

expected '(', found token 

A left parenthesis, (, was missing from a pragma's argument list. 

The pragma was ignored. 

The following example causes this warning: 

#pragma check_pointer on) 

expected a pragma keyword, found token 

The token following #pragma was not recognized as a directive. 

The pragma was ignored. 

The following example causes this warning: 

#pragma (on) 



914085 

914086 

914087 

914088 

914089 

914090 

H21NC Error Messages 

expected [on I off] 

The pragma expected an on or off parameter, but the specified parameter was un­
recognized or missing. 

The pragma was ignored. 

expected [112 14] 

The pragma expected a parameter of either 1, 2, or 4, but the specified parameter 
was unrecognized or missing. 

function: declared with void parameter list 

The given function was declared as taking no parameters, but a call to the func­
tion specified actual parameters. 

The extra parameters were passed according to the calling convention used on 
the function. 

The following example causes this warning: 

int f1(vaid); 
f1(10); 

function: pointer mismatch: parameter number, parameter list number 

The argument passed to the given function had a different level of indirection 
from the given parameter in the function definition. 

The parameter will be passed without change. Its value will be interpreted as a 
pointer within the called function. 

function : different types : parameter number, parameter list number 

The argument passed to the given function did not have the same type as the 
given parameter in the function definition. 

The parameter will be passed without change. The function will interpret the par­
ameter's type as the type expected by the function. 

different const/volatile qualifiers 

A pointer to an item declared as const was assigned to a pointer that was not de­
clared as const. As a result, the const item pointed to could be modified without 
being detected. 

The expression was compiled without modification. 

The following example causes this warning: 

canst char *p = "abcde"; 
int str(char *s); 
str(p); 

701 



Error Messages 

HI4091 

HI4092 

HI4093 

HI4095 

HI4096 

HI4098 

HI4104 

702 

no symbols were declared 

The compiler detected an empty declaration, as in the following example: 

int ; 

The declaration was ignored. 

untagged enum/struct/union declared no symbols 

The compiler detected an empty declaration using an untagged structure, union, 
or enumerated variable. The declaration was ignored. 

For example, the following code causes this warning: 

struct { ... }; 

unescaped newline in character constant in inactive code 

The constant expression of an #if, #elif, #ifdef, or #ifndef preprocessor directive 
evaluated to 0, making the code that follows inactive. Within that inactive code, 
a newline character appeared within a set of single or double quotation marks. 

All text until the next double quotation mark was considered to be within a char­
acter constant. 

expected ')', found token 

More than one argument was given for a pragma that can take only one argument. 

The compiler assumed the expected parenthesis and ignored the remainder of the 
line. 

attribute} must be used with attribute2 

The use of attribute2 requires the use of attribute!. 

For example, using a variable number of arguments ( ... ) requires that _cdecl be 
used. Also, Jnterrupt functions must be _far and _ cdecl. 

The compiler assumed attribute1 for the function. 

void function returning a value 

A function declared with a void return type also returned a value. 

A function was declared with a void return type but was defined as a value. 

The compiler assumed the function returns a value of type int. 

identifier: near data in same _ seg pragma, ignored 

The given near variable was specified in a same_seg pragma. 

The identifier was ignored. 



HI4105 

HI4109 

HI4110 

HI4111 

HI4112 

HI4113 

HI4114 

HI4115 

H21NC Error Messages 

identifier: code modifiers only on function or pointer to function 

The given identifier was declared with a code modifier that can be used only with 
a function or function pointer. 

The code modifier was ignored. 

unexpected identifier identifier 

The pragma contained an unexpected token. 

The pragma was ignored. 

unexpected token int constant 

The pragma contained an unexpected integer constant. 

The pragma was ignored. 

unexpected token string 

The pragma contained an unexpected string. 

The pragma was ignored. 

macro name name is reserved, command ignored 

The given command attempted to define or undefine the predefined macro name 
or the preprocessor operator defined. The given command is displayed as either 
#define or #Undef, even if the attempt was made using command-line options. 

The command was ignored. 

function parameter lists differed 

A function pointer was assigned to a function pointer, but the parameter lists of 
the functions do not agree. 

The expression was compiled without modification. 

same type qualifier used more than once 

A type qualifier (const, volatile, signed, or unsigned) was used more than once in 
the same type. 

The second occurrence of the qualifier was ignored. 

tag: type definition in formal parameter list 

The given tag was used to define a struct, union, or enum in the formal parame­
ter list of a function. 

The compiler assumed the definition was at the global level. 

703 



Error Messages 

HI4116 

HI4119 

HI4120 

HI4123 

HI4125 

HI4126 

HI4128 

704 

(no tag) : type definition in formal parameter list 

A struct, union, or enum type with no tag was defined in the formal parameter 
list of a function. 

The compiler assumed the definition was at the global level. 

different bases name} and name2 specified 

The _based pointers in the expression have different symbolic bases. There may 
be truncation or loss in the code generated. 

based/unbased mismatch 

The expression contains a conversion between a _based pointer and another 
pointer that is unbased. Some information may have been truncated. 

This warning commonly occurs when a _based pointer is passed to a function 
that accepts a near or far pointer. 

different base expressions specified 

The expression contains a conversion between _based pointers, but the base ex­
pressions of the _based pointers are different. Some of the _based conversions 
may be unexpected. 

decimal digit terminates octal escape sequence 

An octal escape sequence in a character or string constant was terminated with a 
decimal digit. 

The compiler evaluated the octal number without the decimal digit and assumed 
the decimal digit was a character. 

The following example causes this warning: 

cha r a rrayl[] = "\ 709"; 

If the digit 9 was intended as a character and was not a typing error, correct the 
example as follows: 

char array[] = "\0709"; 1* String containing "89" *1 

flag: unknown memory model flag 

The flag used with the / A option was not recognized and was ignored. 

storage-class specifier after type 

A storage-class specifier (auto, extern, register, static) appears after a type in a 
declaration. The compiler assumed that the storage class specifier occurred 
before the type. 

New-style code places the storage-class specifier first. 



HI4129 

HI4130 

HI4131 

HI4132 

H21NC Error Messages 

character: unrecognized character escape sequence 

The character following a backslash in a character or string constant was not rec­
ognized as a valid escape sequence. 

As a result, the backslash is ignored and not printed, and the character following 
the backslash is printed. 

To print a single backs lash (\), specify a double backslash (\\). 

operator : logical operation on address of string constant 

The operator was used with the address of a string literal. Unexpected code was 
generated. 

For example, the following code causes this warning: 

char *pc; 
pc = "Hello"; 
if (pc == "Hello") 

The if statement compares the value stored in the pointer pc to the address of the 
string "Hello", which is separately allocated each time it occurs in the code. It 
does not compare the string pointed to by pc with the string "Hello". 

To compare strings, use the strcmp function. 

function: uses old-style declarator 

The function declaration or definition is not a prototype. 

New-style function declarations are in prototype form. 

• old style 

int addrec( name, id ) 
char *name; 
int id; 
{ } 

• new style 

int addrec( char *name, int id ) 
{ } 

object: const object should be initialized 

The value of a const object cannot be changed, so the only way to give the const 
object a value is to initialize it. 

It will not be possible to assign a value to object. 

705 



Error Messages 

HI4135 

HI4136 

HI4138 

706 

conversion between different integral types 

lnfonnation was lost between two integral types. 

For example, the following code causes this warning: 

int intvar; 
long longvar; 
intvar = longvar; 

If the information is merely interpreted differently, this warning is not given, as 
in the following example: 

unsigned uintvar = intvar; 

conversion between different floating types 

lnfonnation was lost or truncated between two floating types. 

For example, the following code causes this warning: 

double doublevar; 
float floatvar; 
floatvar = doublevar; 

Note that unsuffixed floating-point constants have type double, so the following 
code causes this warning: 

floatvar = 1.0; 

If the floating-point constant should be treated as float type, use the F (or f) suf­
fix on the constant to prevent the following warning: 

floatvar = 1.0F; 

*/ found outside of comment 

The compiler found a closing comment delimiter (* /) without a preceding open­
ing delimiter. It assumed a space between the asterisk (*) and the forward 
slash (/). 

The following example causes this warning: 

int *1*comment*/ptr; 

In this example, the compiler assumed a space before the first comment delimiter 
(/*) and issued the warning but compiled the line nonnally. To remove the warn­
ing, insert the assumed space. 

Usually, the cause of this warning is an attempt to nest comments. 



014139 

014186 

014200 

014201 

014202 

H21NC Error Messages 

To comment out sections of code that may contain comments, enclose the code 
in an #if/#endifblock and set the controlling expression to zero, as in: 

tfif 0 
int my_variable; 
tfend if 

1* Declaration currently not needed *1 

hexnumher : hex escape sequence is out of range 

A hex escape sequence appearing in a character or string constant was too large 
to be converted to a character. 

If in a string constant, the compiler cast the low byte of the hexadecimal number 
to a char. If in a char constant, the compiler made the cast and then sign extended 
the result. If in a char constant and compiled with 11, the compiler cast the value 
to an unsigned char. 

For example, \xlffis out of range for a character. Note that the following code 
causes this warning: 

printf("\x7Bell\n"); 

The number 7be is a legal hex number but is too large for a character. To correct 
this example, use three hex digits: 

printf("\x007Bell\n"); 

string too long - truncated to 40 characters 

The string argument for a title or subtitle pragma exceeded the maximum allowa­
ble length and was truncated. 

local variable identifier used without having been initialized 

A reference was made to a local variable that had not been assigned a value. As a 
result, the value of the variable is unpredictable. 

This warning is given only when compiling with global register allocation on 
(lOe). 

local variable identifier may be used without having been initialized 

A reference was made to a local variable that might not have been assigned a 
value. As a result, the value of the variable may be unpredictable. 

This warning is given only when compiling with the global register allocation on 
(lOe). 

unreachable code 

The flow of control can never reach the indicated line. 

This warning is given only when compiling with one of the global optimizations 
(lOe, 109, or 101). 

707 



Error Messages 

HI4203 

HI4204 

HI420S 

HI4209 

708 

function: function too large for global optimizations 

The named function was too large to fit in memory and be compiled with the 
selected optimization. The compiler did not perform any global optimizations 
(fOe, 109, or 101). Other 10 optimizations, such as lOa and 10i, are still 
performed. 

One of the following may remove this warning: 

• Recompile with fewer optimizations. 

• Divide the function into two or more smaller functions. 

• In OS/2, recompile using the /B2 C2L option to invoke the large-model ver­
sion of the second pass of the compiler. 

function: in-line assembler precludes global optimizations 

The use of in-line assembler in the named function prevented the specified global 
optimizations (fOe, 109, or 101) from being performed. 

statement has no effect 

The indicated statement will have no effect on the program execution. 

Some examples of statements with no effect: 

1 ; 
a + 1; 
b == c; 

comma operator within array index expression 

The value used as an index into an array was the last one of multiple expressions 
separated by the comma operator. 

An array index legally may be the value of the last expression in a series of ex­
pressions separated by the comma operator. However, the intent may have been 
to use the expressions to specify multiple indexes into a multidimensional array. 

For example, the following line, which causes this warning, is legal in C, and 
specifies the index c into array a: 

a[b,c] 

However, the following line uses both band c as indexes into a two-dimensional 
array: 

a[b][c] 



HI4300 

HI4301 

HI4323 

HI4324 

HI4800 

HI4801 

H21NC Error Messages 

insufficient memory to process debugging information 

The program was compiled with the /Zi option, but not enough memory was 
available to create the required debugging information. 

One of the following may be a solution: 

• Split the current file into two or more files and compile them separately. 

• Remove other programs or drivers running in the system which could be con­
suming significant amounts of memory. 

• In OS/2, recompile using the /B3 C3L option to invoke the large-model ver­
sion of the third pass of the compiler. 

loss of debugging information caused by optimization 

Some optimizations, such as code motion, cause references to nested variables to 
be moved. The information about the level at which the variables are declared 
may be lost. As a result, all declarations will seem to be at nesting level 1. 

potential divide by 0 

The second operand in a divide operation evaluated to zero at compile time, 
giving undefined results. 

The 0 operand may have been generated by the compiler, as in the following 
example: 

funcH) { i nt i, j , k; i /= j && k; } 

potential mod by 0 

The second operand in a remainder operation evaluated to zero at compile time, 
giving undefined results. 

more than one memory model specified 

There was more than one memory model given at the command line. The /AT, 
/AS, /AM, /AC, /AL, and /AH options specify the memory model. 

This error is caused by conflicting options specified at the command line and in 
the CL and H2INC environment variables. 

more than one target processor specified 

There was more than one processor type given at the command line. The /GO, 
/G 1, and /G2 options specify the processor type. 

This error is caused by conflicting options specified at the command line and in 
the CL and H2INC environment variables. 

709 



Error Messages 

HI4802 

HI4810 

HI4811 

HI4812 

HI4815 

HI4816 

HI4820 

ignoring invalid IZp value value 

The alignment value specified to the /Zp option was not I, 2, or 4. The default of 
I was assumed. 

untranslatable basic type size 

H2INC could not translate the item to a MASM type. 

The C void type cannot be translated to a similar MASM type. 

static function prototype not translated 

H2INC does not translate static items, as they are not visible outside the C source 
file. 

static variable declaration not accepted with IMn switch 

H2INC does not translate static items, as they are not visible outside the C source 
file. 

string: EQU string truncated to 254 characters 

A #define statement exceeded 254 characters, the maximum length of a MASM 
EQ U statement. The string was truncated. 

ignoring _fastcall function definition 

H2INC does not translate function declarations or prototypes with the _fastcall 
attribute. The fastcall calling convention cannot be used directly with MASM. 
See the documentation with your C compiler for details on _fastcall. 

ignoring function definition: functionO 

H2INC does not translate function bodies. 

H2INC translates header information only; it cannot convert program code. 

F.6 IMPLIB Error Messages 

710 

This section lists error messages generated by the Microsoft Import Library 
Manager (lMPLIB): 

• Fatal errors (I M 16xx) cause IMPLIB to stop execution. 

• Errors (IM26xx) prevent IMPLIB from creating an import library. 



IMPLIB Error Messages 

F.6.1 IMPLIB Fatal Errors 
Number 

IM1600 

IM1601 

IM1602 

IM1603 

IM1604 

IMPLIB Error Message 

out of space on output file 

The drive or directory where the import library is being created is full. 

out of heap space 

There was not enough room in memory for the heap needed by IMPLIB. 

Increase the available memory. 

syntax error in the module definitions file 

IMPLIB could not understand the contents of the module-definition file. 

filename: cannot create file 

IMPLIB could not create the given file. 

One of the following may be a cause: 

• The file already exists with a read-only attribute. 

• There is insufficient disk space to create the file. 

• The drive cannot be written to. 

filename: cannot open file 

IMPLIB could not find the specified module-definition file or DLL. 

F.6.2 IMPLIB Errors 
Number 

IM2600 

IM2601 

IM2602 

IMPLIB Error Message 

string too long in line number; truncated to 512 characters 

The given line in the module-definition file exceeded the limit on line length. 
IMPLIB ignored text after the first 512 characters. 

symbol multiply defined 

The given symbol was defined more than once in the input files. 

unexpected end of name table in DLL 

A DLL input file was corrupted. 

711 



Error Messages 

IM2603 filename: invalid .DLL file 

The given DLL input file was corrupted. 

F.7 LIB Error Messages 
This section lists error messages generated by the Microsoft Library Manager 
(LIB): 

• Fatal errors (U llxx) cause LIB to stop execution. 

• Errors (U21xx) do not stop execution but prevent LIB from creating a library. 

• Warnings (U41xx) indicate possible problems in the library being created. 

F. 7.1 LIB Fatal Errors 
Number 

U1150 

U1151 

U1152 

U1153 

U1154 

U1155 

712 

LIB Error Message 

page size too small 

The page size of an input library was too small, indicating an invalid input .LIB 
file. 

syntax error : illegal file specification 

A command operator was not followed by a module name or filename. 

One possible cause of this error is an option specified with a dash (-) instead of a 
forward slash (/). 

syntax error : option name missing 

A forward slash (I) appeared on the command line without an option name 
after it. 

syntax error : option value missing 

The /PAGE option was given without a value following it. 

unrecognized option 

An unrecognized name followed the option indicator. 

An option is specified by a forward slash (/) and a name. The name can be 
specified by a legal abbreviation of the full name. 

syntax error: illegal input 

A specified command did not follow correct LIB syntax. 



Ul156 

Ul157 

Ul158 

Ul159 

Ul160 

Ul161 

Ul162 

LIB Error Messages 

syntax error 

A specified command did not follow correct LIB syntax. 

comma or newline missing 

A comma or carriage return was expected in the command line but did not 
appear. 

This may indicate an incorrectly placed comma, as in the following command 
line: 

LIB math.lib, -modI +mod2; 

The line must be entered as follows: 

LIB math. lib -modI +mod2; 

terminator missing 

The last line of the response file used to start LIB did not end with a carriage 
return. 

option argument missing 

An expected argument to an option or command was missing from the command 
line. 

invalid page size 

The argument specified with the IP AGE option was not valid for that option. The 
value must be an integer power of 2 between 16 and 32,768. 

cannot rename old library 

LIB could not rename the old library with a .BAK extension because the .BAK 
version already existed with read-only protection. 

Change the protection on the old .BAK version. 

cannot reopen library 

The old library could not be reopened after it was renamed with a .BAK 
extension. 

One of the following may have occurred: 

• Another process deleted the file or changed it to read-only. 

• The floppy disk containing the file was removed. 

• A hard-disk error occurred. 

713 



Error Messages 

Ul163 

Ul164 

Ul170 

Ul171 

Ul172 

Ul173 

Ul174 

Ul175 

Ul180 

714 

error writing to cross-reference file 

The disk or root directory was full. 

Delete or move files to make space. 

name length exceeds 255 characters 

A filename specified on the command line exceeded the LIB limit of 255 charac­
ters. Reduce the number of characters in the name. 

too many symbols 

The number of symbols in all object files and libraries exceeded the capacity of 
the dictionary created by LIB. 

Create two or more smaller libraries. 

insufficient memory 

LIB did not have enough memory to run. 

Remove any shells or resident programs and try again, or add more memory. 

no more virtual memory 

The LIB session required more memory than the one-megabyte limit imposed by 
LIB. 

Try using the /NOE option or reducing the number of object modules. 

internal failure 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

mark : not allocated 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

free : not allocated 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

write to extract file failed 

The disk or root directory was full. 

Delete or move files to make space. 



U1181 

U1182 

U1183 

U1184 

U1185 

U1186 

U1187 

U1188 

U1189 

LIB Error Messages 

write to library file failed 

The disk or root directory was full. 

Delete or move files to make space. 

filename: cannot create extract file 

The disk or root directory was full, or the given extract file already existed with 
read-only protection. 

Make space on the disk or change the protection of the extract file. 

cannot open response file 

The response file was not found. 

unexpected end-of-file on command input 

An end-of-file character was received prematurely in response to a prompt. 

cannot create new library 

The disk or root directory was full, or the library file already existed with read­
only protection. 

Make space on the disk or change the protection of the library file. 

error writing to new library 

The disk or root directory was full. 

Delete or move files to make space. 

cannot open temporary file VM. TMP 

The disk or root directory was full. 

Delete or move files to make space. 

insufficient disk space for temporary file 

The library manager cannot write to the virtual memory. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

cannot read from temporary file 

The library manager cannot read the virtual memory. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

715 



Error Messages 

U1190 interrupted by user 

LIB was interrupted during its operation, with either CTRL+C or CTRL+BREAK. 

U1200 filename : invalid library header 

The input library file had an invalid fonnat. 

Either it was not a library file, or it had been corrupted. 

U1203 filename : invalid object file near location 

The given file was not a valid object file or was corrupted at the given location. 

F.7.2 LIB Errors 
Number LIB Error Message 

716 

U2152 filename: cannot create listing 

U2155 

U2157 

U2158 

One of the following may have occurred: 

• The directory or disk was full. 

• The cross-reference-listing file already existed with read-only protection. 

module: module not in library; ignored 

The specified module was not found in the input library. 

One cause of this error is a filename or directory name containing a hyphen, also 
called a dash (-). LIB interprets the dash as the operator for the delete command. 
This error occurs if you install a Microsoft language product in a directory that 
has a dash in its pathname, such as C:\MS-c. The SETUP program calls LIB to 
create the Microsoft combined libraries, but the dash in the command line passed 
to LIB causes the library-building session to fail. 

Another possible cause of this error is an option specified with a dash (-) instead 
of a forward slash (/). 

filename: cannot access file 

LIB was unable to open the specified file, probably because the file did not exist. 

Check the path specification and filename. 

library: invalid library header; file ignored 

The given library had an incorrect fonnat and was not combined. 



LIB Error Messages 

U2159 filename: invalid format (number); file ignored 

The given file was not recognized as a XENIX archive and was not combined. 

F.7.3 LIB Warnings 
Number 

U4150 

U4151 

U4153 

U4155 

U4156 

LIB Warning 

module: module redefinition ignored 

A module was specified with the + operator to be added to a library, but a mod­
ule having that name was already in the library. 

One cause of this error is an incorrect specification of the replace operator, - +. 

symbol: symbol defined in module module; redefinition ignored 

The given symbol was defined in more than one module. 

option: value: page size invalid; ignored 

The argument specified with the /PAGE option was not valid for that option. The 
value must be an integer power of 2 between 16 and 32,768. LIB assumed an ex­
isting page size from a library being combined. 

module name : module not in library 

The given module specified with a command operator does not exist in the 
library. 

If the replacement command (-+) was specified, LIB addded the file anyway. If 
the delete (-), copy (*), or move (-*) command was specified, LIB ignored the 
command. 

library: output-library specification ignored 

A new library was created because the filename specified in the oldlibrary field 
did not exist, but a filename was also specified in the newlibrary field. LIB ig­
nored the newlibrary specification. 

For example, both of the following command lines cause this error if project.lib 
does not already exist: 

LIB project.lib +one.obj, new. 1st, project.lib 

LIB project.lib +one.obj, new. 1st, new. lib 

717 



Error Messages 

U4157 

U4158 

insufficient memory, extended dictionary not created 

Insufficient memory prevented LIB from creating an extended dictionary. 

The library is still valid, but the linker cannot take advantage of the extended dic­
tionary to speed linking. 

internal error, extended dictionary not created 

An internal error prevented LIB from creating an extended dictionary. 

The library is still valid, but the linker cannot take advantage of the extended dic­
tionary to speed linking. 

F.B LINK Error Messages 
This section lists error messages generated by the Microsoft Segmented-Execu­
table Linker (LINK): 

• Fatal errors (Llxxx) cause LINK to stop execution. 

• Errors (L2xxx) do not stop execution but prevent LINK from creating an out­
put file. 

• Warnings (L4xxx) indicate possible problems in the output file being created. 

F.B.1 LINK Fatal Errors 
Number 

LIOOI 

LI003 

718 

LINK Error Message 

option: option name ambiguous 

A unique option name did not appear after the option indicator. 

An option is specified by a forward-slash indicator (/) and a name. The name can 
be specified by an abbreviation of the full name, but the abbreviation must be 
unambiguous. 

For example, many options begin with the letter N, so the following command 
causes this error: 

LINK IN main; 

/Q and /EXEP ACK incompatible 

LINK cannot be given both the IQ option and the jEXEPACK option. 



LI004 

LI005 

LI006 

LI007 

LI008 

LI009 

LI020 

LI021 

LI022 

LI023 

LI024 

LINK Error Messages 

value : invalid numeric value 

An incorrect value appeared for a LINK option. For example, this error occurs 
when a character string is specified with an option that requires a numeric value. 

option: packing limit exceeds 64K 

The value specified with the IP ACKC or IP ACKD option exceeded the limit of 
65,536 bytes. 

number: stack size exceeds 64K-l 

The value given as a parameter to the /STACK option exceeded the allowed max­
imum of 65,535 bytes. 

/OVERLA YINTERRUPT : interrupt number exceeds 255 

An overlay interrupt number greater than 255 was specified with the /OY option 
value. 

Check the DOS Technical Reference or other DOS technical manual for informa­
tion about interrupts. 

/SEGMENTS : segment limit set too high 

The /SEG option was specified with a limit on the number of definitions of logi­
cal segments that was impossible to satisfy. 

value: /CP ARM: illegal value 

The value specified with the /CPARM option was not in the range 1-65,535. 

no object modules specified 

No object-file names were specified to the linker. 

cannot nest response files 

A response file occurred within a response file. 

response line too long 

A line in a response file was longer than 255 characters. 

terminated by user 

CTRL+C was entered. 

nested right parentheses 

The contents of an overlay were typed incorrectly on the command line. 

719 



Error Messages 

LI025 

LI026 

LI027 

LI030 

LI031 

LI032 

LI040 

LI041 

LI042 

720 

nested left parentheses 

The contents of an overlay were typed incorrectly on the command line. 

unmatched right parenthesis 

A right parenthesis was missing from the contents specification of an overlay on 
the command line. 

unmatched left parenthesis 

A left parenthesis was missing from the contents specification of an overlay on 
the command line. 

missing internal name 

An IMPORTS statement specified an ordinal in the module-definition file 
without including the internal name of the routine. 

The name must be given if the import is by ordinal. 

module description redefined 

A DESCRIPTION statement in the module-definition file was specified more 
than once. 

module name redefined 

The module name was specified more than once (in a NAME or LIBRARY 
statement). 

too many exported entries 

The program exceeded the limit of 65,535 exported names. 

resident names table overflow 

The size of the resident names table exceeded 65,535 bytes. 

An entry in the resident names table is made for each exported routine designated 
RESIDENTNAME and consists of the name plus three bytes of information. The 
first entry is the module name. 

Reduce the number of exported routines or change some to nonresident status. 

nonresident names table overflow 

The size of the nonresident names table exceeded 65,535 bytes. 

An entry in the nonresident names table is made for each exported routine not 
designated RESIDENTNAME and consists of the name plus three bytes of infor­
mation. The first entry is the DESCRIPTION statement. 

Reduce the number of exported routines or change some to resident status. 



LI043 

LI044 

LI045 

LI046 

LI047 

LI048 

LI049 

LINK Error Messages 

relocation table overflow 

More than 32,768 long calls, long jumps, or other long pointers appeared in the 
program. 

Try replacing long references with short references where possible. 

imported names table overflow 

The size of the imported names table exceeds 65,535 bytes. 

An entry in the imported names table is made for each new name given in the IM­
PORTS section, including the module names, and consists of the name plus one 
byte. 

Reduce the number of imports. 

too many TYPDEF records 

An object module contained more than 255 TYPDEF records. These records de­
scribe communal variables. 

This error can appear only with programs produced by the Microsoft FORTRAN 
Compiler or other compilers that support communal variables. (TYPDEF is a 
DOS term. It is explained in the Microsoft MS-DOS Programmer's Reference 
and in other reference books on DOS.) 

too many external symbols in one module 

An object module specified more than the limit of 1,023 external symbols. 

Break the module into smaller parts. 

too many group, segment, and class names in one module 

The program contained too many group, segment, and class names. 

Reduce the number of groups, segments, or classes. Re-create the object file. 

too many segments in one module 

An object module had more than 255 segments. 

Split the module or combine segments. 

too many segments 

The program had more than the maximum number of segments. 

Use the /SEG option when linking to specify the maximum legal number of seg­
ments. The range of valid settings is 0-3,072. The default is 128. 

721 



Error Messages 

LI050 

LI051 

LI052 

LI053 

LI054 

LI056 

LI057 

722 

too many groups in one module 

LINK encountered more than 21 group definitions (GRPDEF) in a single module. 

Reduce the number of group definitions or split the module. (Group definitions 
are explained in the Microsoft MS-DOS Programmer's Reference and in other 
reference books on DOS.) 

too many groups 

The program defined more than 20 groups, not counting DGROUP. 

Reduce the number of groups. 

too many libraries 

An attempt was made to link with more than 32 libraries. 

Combine libraries, or use modules that require fewer libraries. 

out of memory for symbol table 

The program had more symbolic information (such as public, external, segment, 
group, class, and file names) than could fit in available memory. 

Try freeing memory by linking from the DOS command level instead of from a 
MAKE file or an editor. Otherwise, combine modules or segments and try to 
eliminate as many public symbols as possible. 

requested segment limit too high 

LINK did not have enough memory to allocate tables describing the number of 
segments requested. The number of segments is the default of 128 or the value 
specified with the /SEG option. 

Try linking again by using the /SEG option to select a smaller number of seg­
ments (for example, use 64 if the default was used previously), or free some 
memory by eliminating resident programs or shells. 

too many overlays 

The program defined more than 63 overlays. 

data record too large 

An LEDATA record (in an object module) contained more than 1,024 bytes of 
data. This is a translator error. (LEDATA is a DOS term explained in the Micro­
soft MS-DOS Programmer's Reference and in other DOS reference books.) 

Note which translator (compiler or assembler) produced the incorrect object mod­
ule. Please report the circumstances of the error to Microsoft Corporation by fol­
lowing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 



LI061 

LI062 

LI063 

LI064 

LI070 

LI071 

LINK Error Messages 

out of memory for IINCR 

LINK ran out of memory when trying to process the additional information re­
quired for ILINK support. 

Disable incremental linking. 

too many symbols for IINCR 

The program had more symbols than can be stored in the .SYM file. 

Reduce the number of symbols or disable incremental linking. 

out of memory for CodeView information 

LINK was given too many object files with debug information, and it ran out of 
space to store them. 

Reduce the number of object files that have full debug information by compiling 
some files with either IZd instead of /Zi or no CodeView option at all. 

out of memory-nearlfar heap exhausted 

LINK was not able to allocate enough memory for the given heap. 

One of the following may be a solution: 

• Under OS/2, increase the swap space. 

• Reduce the size of code, data, and symbols in the program. 

• Under OS/2, split the program into dynamic-link libraries. 

segment: segment size exceeds 64K 

A single segment contained more than 64K of code or data. 

Try changing the memory model to use far code or data as appropriate. If the pro­
gram is in C, use CL's /NT option or the #pragma alloc_text to build smaller 
segments. 

segment _TEXT exceeds 64K - 16 

This error is likely to occur only in small-model C programs, but it can occur 
when any program with a segment named _TEXT is linked using the /DOSSEG 
option of the LINK command. 

Small-model C programs must reserve code addresses 0 and 1; this range is in­
creased to 16 for alignment purposes. 

Try compiling and linking using the medium or large model. If the program is in 
C, use CL's /NT option or the #pragma alloc_text to build smaller segments. 

723 



Error Messages 

LI072 

LI073 

LI074 

LI075 

LI078 

LI080 

724 

common area exceeds 64K 

The program had more than 65,536 bytes of communal variables. This error oc­
curs only with programs produced by the Microsoft FORTRAN Compiler or 
other compilers that support communal variables. 

file-segment limit exceeded 

The number of physical or file segments exceeded the limit of 255 imposed by 
OS/2 protected mode and by Windows for each application or dynamic-link 
library. 

A file segment is created for each group definition, nonpacked logical segment, 
and set of packed segments. 

Reduce the number of segments, or put more information into each segment. Use 
the /p ACKC option or the /p ACKD option or both. 

group: group exceeds 64K 

The given group exceeds the limit of 65,536 bytes. 

Reduce the size of the group, or remove any unneeded segments from the group. 
Refer to the map file for a listing of segments. 

entry table exceeds 64K - 1 

The entry table exceeded the limit of 65,535 bytes. 

There is an entry in this table for each exported routine. The table also includes 
an entry for each address that is the target of a far relocation, when one of the fol­
lowing conditions is true: 

• The target segment is designated IOPL (specific to OS/2). 

• PROTMODE is not enabled and the target segment is designated MOVABLE 
(specific to Windows). 

Declare PROTMODE if applicable, or reduce the number of exported routines, or 
make some segments FIXED or NOIOPL if possible. 

file-segment alignment too small 

The segment-alignment size specified with the /ALION option was too small. 

cannot open list file 

The disk or the root directory was full. 

Delete or move files to make space. 



LI081 

LI082 

LI083 

LI084 

LI085 

LI086 

LINK Error Messages 

out of space for run file 

The disk on which the executable file was being written became full. Free more 
space on the disk and restart LINK. 

filename: stub file not found 

LINK could not open the file given in the STUB statement in the module­
definition file. 

The file must be in the current directory or in a directory specified by the PATH 
environment variable. 

cannot open run file 

One of the following may have occurred: 

• The disk or the root directory was full. 

• Another process opened or deleted the file. 

• A read-only file existed with the same name. 

• The floppy disk containing the file was removed. 

• A hard-disk error occurred. 

cannot create temporary file 

One of the following may have occurred: 

• The disk or the root directory was full. 

• The directory specified in the TMP environment variable did not exist. 

cannot open temporary file 

One of the following may have occurred: 

• The disk or the root directory was full. 

• The directory specified in the TMP environment variable did not exist. 

scratch file missing 

An internal error has occurred. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

725 



Error Messages 

LI087 

LI088 

LI089 

LI090 

LI091 

LI092 

LI093 

LI094 

LI095 

LIIOO 

726 

unexpected end-of-file on scratch file 

The disk with the temporary linker-output file was removed. 

out of space for list file 

The disk where the listing file was being written is full. 

Free more space on the disk and restart LINK. 

filename: cannot open response file 

LINK could not find the specified response file. 

Check that the name of the response file is spelled correctly. 

cannot reopen list file 

The original floppy disk was not replaced at the prompt. 

Restart the link session. 

unexpected end-of-file on library 

The floppy disk containing the library was probably removed. 

Replace the disk containing the library and run LINK again. 

cannot open module-definition file 

LINK could not open the module-definition file specified on the command line 
or in the response file. 

filename: object not found 

LINK could not find the given object file. 

Check the specification of the object file. 

filename: cannot open file for writing 

LINK was unable to open the file with write permission. 

Check file permissions. 

filename : out of space on file 

LINK ran out of disk space for the specified output file. 

Delete or move files to make space. 

stub .EXE file invalid 

The file specified in the STUB statement is not a valid real-mode executable file. 



LII01 

LII02 

LII03 

LII04 

LII0S 

Lll13 

LIIIS 

Lll16 

Ll123 

LINK Error Messages 

invalid object module 

One of the object modules was invalid. 

Check that the correct version of LINK is being used. 

If the error persists after recompiling, note the circumstances of the error and 
notify Microsoft Corporation by following the instructions on the Microsoft Pro­
duct Assistance Request form at the back of one of your manuals. 

unexpected end-of-file 

An invalid format for a library was encountered. 

attempt to access data outside segment bounds 

A data record in an object module specified data extending beyond the end of a 
segment. This is a translator error. 

Note which translator (compiler or assembler) produced the incorrect object mod­
ule and the circumstances in which it was produced. Please report this error to 
Microsoft Corporation by following the instructions on the Microsoft Product As­
sistance Request form at the back of one of your manuals. 

filename: invalid library 

The specified file was not a valid library file. 

invalid object due to aborted incremental compile 

Delete the object file, recompile the program, and relink. 

unresolved COMDEF; internal error 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

option: option incompatible with overlays 

The given option is not compatible with overlays. 

Remove the option, or do not use overlaid modules. 

/EXEPACK valid only for OS/2 and real-mode DOS 

The /EXEP ACK option is incompatible with Windows programs. 

segment: segment defined both 16-bit and 32-bit 

Define the segment as either 16-bit or 32-bit. 

727 



Error Messages 

Ll126 

Ll127 

F.8.2 LINK Errors 
Number 

L2000 

L2002 

728 

conflicting pwords value 

An exported name was specified in the module-definition file with an IOPL­
parameter-words (pwords) value, and the same name was specified as an export 
by the Microsoft C export pragma with a different pwords value. 

far segment references not allowed with /TINY 

The {fINY option for producing a .COM file was used in a program that has a 
far segment reference. 

Far segment references are not compatible with the .COM-file format. High­
level-language programs cause this error unless the language supports the tiny 
memory model. An assembly-language program that references a segment 
address also causes this error. 

For example: 

mav ax, seg mydata 

LINK Error Message 

imported starting address 

The program starting address as specified in the END statement in an assembly­
language file is an imported routine. This is not supported by OS/2 or Windows. 

fixup overflow at number in segment segment 

This error message will be followed by either 

ta rget externa 1 symbol 

or 

frm seg name], tgt seg name2, tgt offset number 

A fixup overflow is an attempted reference to code or data that is impossible be­
cause the source location (where the reference is made "from") and the target 
address (where the reference is made "to") are too far apart. Usually the problem 
is corrected by examining the source location. 

For information about frame and target segments, see the Microsoft MS-DOS 
Programmer's Reference. 



L2003 

L2005 

L2010 

L2011 

L2012 

L2013 

LINK Error Messages 

near reference to far target at offset in segment segment 
pos: offset target external name 

The program issued a near call or jump to a label in a different segment. 

This error occurs most often when specifically declaring an external procedure to 
be near that should be declared as far. 

This error can be caused by compiling a small-model C program with CL's /NT 
option. 

fixup type unsupported at number in segment segment 

A fixup type occurred that is not supported by LINK. This is probably a compiler 
error. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

too many fixups in LIDAT A record 

The number of far relocations (pointer- or base-type) in an LIDAT A record 
exceeds the limit imposed by LINK. 

The cause is usually a DUP statement in an assembly-language program. The 
limit is dynamic: a I ,024-byte buffer is shared by relocations and the contents of 
the LID AT A record; there are eight bytes per relocation. 

Reduce the number of far relocations in the DUP statement. 

identifier: NEAR/HUGE conflict 

Conflicting NEAR and HUGE attributes were given for a communal variable. 
This error can occur only with programs produced by the Microsoft FORTRAN 
Compiler or other compilers that support communal variables. 

arrayname : array-element size mismatch 

A far communal array was declared with two or more different array-element 
sizes (for instance, an array was declared once as an array of characters and once 
as an array of real numbers). This error occurs only with the Microsoft FOR­
TRAN Compiler and any other compiler that supports far communal arrays. 

LIDAT A record too large 

An LIDATA record contained more than 512 bytes. This is probably a compiler 
error. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

729 



Error Messages 

L2022 

L2023 

L2024 

L2025 

L2026 

L2027 

L2028 

L2029 

730 

entry (alias internalname) : export undefined 

The internal name of the given exported function or data item is undefined. 

entry (alias internalname) : export imported 

The internal name of the given exported function or data item conflicts with the 
internal name of a previously imported function or data item. 

symbol: special symbol already defined 

The program defined a symbol name already used by LINK for one of its own 
low-level symbols. For example, LINK generates special symbols used in over­
lay support and other operations. 

Choose another name for the symbol to avoid conflict. 

symbol: symbol defined more than once 

The same symbol has been found in two different object files. 

entry ordinal number, name name: multiple definitions for 
same ordinal 

The given exported name with the given ordinal number conflicted with a differ­
ent exported name previously assigned to the same ordinal. Only one name can 
be associated with a particular ordinal. 

name: ordinal too large for export 

The given exported name was assigned an ordinal that exceeded the limit of 
65,535 (64K-l). 

automatic data segment plus heap exceed 64K 

The total size of data declared in DGROUP, plus the value given in HEAPSIZE 
in the module-definition file, plus the stack size given by the 1ST ACK option or 
STACKSIZE module-definition file statement, exceeds 64K. 

Reduce near-data allocation, HEAPSIZE, or stack. 

symbol: unresolved external 

A symbol was declared to be external in one or more modules, but it was not pub­
licly defined in any module or library. 

The name of the unresolved external symbol is given, then a list of object mod­
ules that contain references to this symbol. This message and the list are written 
to the map file, if one exists. 

One cause of this error is using the /NOI option for files that use case 
inconsistently. 



L2030 

L2041 

L2043 

L2044 

L2045 

L2047 

LINK Error Messages 

starting address not code (use class CODE) 

The program starting address, as specified in the END statement of an .ASM file, 
should be in a code segment. Code segments are recognized if their class name 
ends in CODE. This is an error in OS/2 protected mode. 

The error message may be disabled by including the REALMODE statement in 
the module-definition file. 

stack plus data exceed 64K 

If the total of near data and requested stack size exceeds 64K, the program will 
not run correctly. LINK checks for this condition only when /DOSSEO is 
enabled, which is the case in the library start-up module for Microsoft language 
libraries. 

For object modules compiled with the Microsoft C or FORTRAN optimizing 
compilers, recompile with the /Ot command-line option to set the data-size 
threshold to a smaller number. 

This is a fatal LINK error. 

Quick library support module missing 

The required module QUICKLIB.OBJ was missing. 

The module QUICKLIB.OBJ must be linked in when creating a Quick library. 

symbol: symbol multiply defined, use INOE 

LINK found what it interprets as a public-symbol redefinition, probably because 
a symbol defined in a library was redefined. 

Relink with the /NOE option. If error L2025 results for the same symbol, then 
this is a genuine symbol-redefinition error. 

segment: segment with> 1 class name not allowed with lINeR 

The program defined a segment more than once, giving the segment different 
class names. This is incompatible with the IINCR option. This error appears only 
with assembly-language programs. 

For example, the following two statements define two distinct segments with the 
same name but different classes: 

BSS segment 'BSS' 

BSS segment 'DATA' 

IOPL attribute conflict - segment segment in group group 

The specified segment is a member of the specified group but has an IOPL at­
tribute that is different from other segments in the group. 

731 



Error Messages 

L2048 

L2049 

L20S0 

L20S1 

L20S2 

Microsoft Overlay Manager module not found 

Overlays were designated, but the Microsoft Overlay Manager module was not 
found. This module is defined in the default library. 

no segments defined 

No code or initialized data was defined in the program. The resulting executable 
file is not likely to be valid. 

USE16!USE32 attribute conflict - segment segment in group group 

16-bit segments cannot be grouped with 32-bit segments. 

start address not equal to Oxl00 for !TINY 

The program starting address, as specified in the .COM file, must have a starting 
value equal to 100 hexadecimal (Ox 100 or OxO). Any other value is illegal. 

Put the following line of assembly source code in front of the code segment: 

ORG 100h 

symbol: unresolved external; possible calling convention mismatch 

A symbol was declared to be external in one or more modules, but LINK could 
not find it publicly defined in any module or library. 

The name of the unresolved external symbol is given, then a list of object mod­
ules that contain references to this symbol. The error message and the list are 
written to the map file, if one exists. 

This error occurs in a C-Ianguage program when a prototype for an externally de­
fined function is omitted and the program is compiled with CL's /Gr option. The 
calling convention for _fastcall does not match the assumptions that are made 
when a prototype is not included for an external function. 

Either include a prototype for the function, or compile without the /Gr option. 

F.B.3 LINK Warnings 
Number 

L4000 

732 

LINK Warning 

segment displacement included near offset in segment segment 

This is the warning generated by the /W option. 



L4001 

L4002 

L4004 

L4010 

L4011 

L4012 

L4013 

LINK Error Messages 

frame-relative fixup, frame ignored near offset in segment segment 

A reference was made relative to a segment or group that is different from the tar­
get segment of the reference. 

For example, if _ i d 1 is defined in segment _ T EXT, the instruction call 
DGROUP:_ i dl produces this warning. The frame DGROUP is ignored, so 
LINK treats the call as if it were call TEXT:_ i dl. 

frame-relative absolute fixup near offset in segment segment 

A reference was made relative to a segment or group that was different from 
the target segment of the reference, and both segments are absolute (defined 
with AT). 

LINK assumed that the executable file will be run only under DOS. 

possible fixup overflow at offset in segment segment 

A near call or jump was made to another segment which was not a member of the 
same group as the segment from which the call or jump was made. 

This can cause an incorrect real-mode address calculation when the distance be­
tween the paragraph address (frame number) of the segment group and the target 
segment is greater than 64K, even though the distance between the segment 
where the call or jump was actually made and the target segment is less than 64K. 

invalid alignment specification 

The number specified in the /ALIGN option must be a power of 2 in the range 2-
32,768. 

/PACKC value exceeding 64K-36 unreliable 

The packing limit specified with the IPACKC option was in the range 65,501-
65,536 bytes. Code segments with a size in this range are unreliable on some ver­
sions of the 80286 processor. 

IHIGH disables IEXEPACK 

The /HIGH and jEXEP ACK options cannot be used at the same time. 

option: option ignored for segmented executable file 

The given option is not allowed with OS/2 or Windows programs. 

733 



Error Messages 

L4014 

L4015 

L4016 

L4017 

L4018 

L4019 

L4020 

L4021 

734 

option : option ignored for DOS executable file 

The given option is not allowed with DOS programs. 

ICO disables IDSALLOC 

The ICO and /DSALLOC options cannot be used at the same time. 

ICO disables IEXEPACK 

The ICO and /EXEP ACK options cannot be used at the same time. 

option: unrecognized option name; option ignored 

An unrecognized name followed the option indicator. LINK ignored the option 
specification. 

An option is specified by a forward slash (/) and a name. The name can be 
specified by a legal abbreviation of the full name. 

For example, the following command causes this warning: 

LINK INODEFAULTLIBSEARCH main 

This error can also occur if the wrong version of LINK is used. Check the directo­
ries in the PATH environment variable for other versions of LINK.EXE. 

missing or unrecognized application type; option option ignored 

The /PM option accepts only the keywords PM, VIO, and NOVIO. 

ITINY disables IINCR 

The /TINY and IINCR options are incompatible. A .COM file always requires a 
full link and cannot be incrementally linked. LINK ignored IINCR. 

segment: code-segment size exceeds 64K-36 

Code segments in the range 65,501-65,536 bytes in length may be unreliable on 
some versions of the 80286 processor. 

no stack segment 

The program did not contain a stack segment defined with the STACK combine 
type. 

Normally, every program should have a stack segment with the combine type 
specified as STACK. This message may be ignored if there is a specific reason 
for not defining a stack or for defining one without the STACK combine type. 
Linking with versions of LINK earlier than version 2.40 might cause this mes­
sage, since these linkers search libraries only once. 



L4022 

L4023 

L4024 

L4025 

L4026 

L4027 

L4028 

L4029 

L4030 

LINK Error Messages 

group1, group2 : groups overlap 

The given groups overlap. Since a group is assigned to a physical segment, 
groups cannot overlap in OS/2 or Windows executable files. 

Reorganize segments and group definitions so the groups do not overlap. Refer 
to the map file. 

entry (internalname) : export internal name conflict 

The internal name of the given exported function or data item conflicted with the 
internal name of a previous import definition or export definition. 

name: multiple definitions for export name 

The given name was exported more than once, an action that is not allowed. 

modulename.entry(internalname) : import internal name conflict 

The internal name of the given imported function or data item conflicted with the 
internal name of a previous export or import. (The given entry is either a name or 
an ordinal number.) 

modulename.entry(internalname) : self-imported 

The given function or data item was imported from the module being linked. 
This is not supported on some systems. 

name: multiple definitions for import internal name 

The given internal name was imported more than once. Previous import defini­
tions are ignored. 

segment: segment already defined 

The given segment was defined more than once in the SEGMENTS statement of 
the module-definition file. 

segment: DGROUP segment converted to type DATA 

The given logical segment in the group DGROUP was defined as a code segment. 

DGROUP cannot contain code segments because LINK always considers 
DGROUP to be a data segment. The name DGROUP is predefined as the auto­
matic (or default) data segment. 

LINK converted the named segment to type DATA. 

segment: segment attributes changed to conform with 
automatic data segment 

The given logical segment in the group DGROUP was given sharing attributes 
(SHARED/NONSHARED) that differed from the automatic data attributes as 

735 



Error Messages 

L4031 

L4032 

L4033 

L4034 

L4036 

L4038 

736 

declared by the DATA instance specification (SINGLE/MUL TIPLE). The at­
tributes are converted to conform to those of DGROUP. 

The name DGROUP is predefined as the automatic (or default) data segment. 
DGROUP cannot contain code segments because LINK always considers 
DGROUP to be a data segment. 

segment: segment declared in more than one group 

A segment was declared to be a member of two different groups. 

segment: code-group size exceeds 64K-36 

The given code group has a size in the range 65,501-65,536 bytes, a size that is 
unreliable on some versions of the 80286 processor. 

first segment in mixed group group is a USE32 segment 

A 16-bit segment must be first in a group created with both USE16 and USE32 
segments. 

LINK continued to build the executable file, but the resulting file may not run 
correctly. 

more than 239 overlay segments; extra put in root 

The link command line or response file designated too many segments to go into 
overlays. 

The limit on the number of segments that can go into overlays is 239. Segments 
starting with the 240th segment are assigned to the permanently resident portion 
of the program (the root). 

no automatic data segment 

The application did not define a group named DGROUP. 

DGROUP has special meaning to LINK, which uses it to identify the automatic 
(or default) data segment used by the operating system. Most OS/2 and Windows 
applications require DGROUP. 

This warning will not be issued if DATA NONE is declared or if the executable 
file is a dynamic-link library. 

program has no starting address 

The OS/2 or Windows application had no starting address, which will usually 
cause the program to fail. High-level languages automatically specify a starting 
address. 

If you are writing an assembly-language program, specify a starting address with 
the END statement. 



L4040 

L4042 

L4043 

L4045 

L4047 

L4050 

LINK Error Messages 

DOS programs and dynamic-link libraries should never receive this message, re­
gardless of whether they have starting addresses. 

stack size ignored for /TINY 

LINK ignores stack size if the !TINY option is used and if the stack segment has 
been defined in front of the code segment. 

cannot open old version 

The file specified in the OLD statement in the module-definition file could not be 
opened. 

old version not segmented executable format 

The file specified in the OLD statement in the module-definition file was not a 
valid OS/2 or Windows executable file. 

name of output file is filename 

LINK used the given filename for the output file. 

If the output filename is specified without an extension, LINK assumes the de­
fault extension .EXE. Creating a Quick library, DLL, or .COM file forces LINK 
to use a different extension: 

/TINY option 

/Q option 

LIBRARY statement 

.COM 

.QLB 

.DLL 

Multiple code segments in module of overlaid program 
incompatible with ICO 

If there are multiple code segments defined in one object file by use of the C 
compiler #pragma alloc _ textO and the program is built as an overlaid program, 
you can access the CodeView symbolic information for only the first code seg­
ment in an overlay. Symbolic information is not accessible for other code seg­
ments in the overlay. 

file not suitable for /EXEPACK; relink without 

LINK could not pack the file because the size of the packed load image plus 
packing overhead was larger than that of the unpacked load image. 

737 



Error Messages 

L4051 

L4053 

L4054 

L4067 

L4068 

L4069 

L4070 

738 

filename: cannot find library 

LINK could not find the given library file. 

One of the following may be a cause: 

• The specified file does not exist. Enter the name or full path specification of a 
library file. 

• The LIB environment variable is not set correctly. Check for incorrect 
directory specifications, mistyping, and a space, semicolon, or hidden charac­
ter at the end of the line. 

• An earlier version of LINK is being run. Check the path environment variable 
and delete or rename earlier linkers. 

VM.TMP: illegal filename; ignored 

VM.TMP appeared as an object-file name. 

Rename the file and rerun LINK. 

filename: cannot find file 

LINK could not find the specified file. 

Enter a new filename, a new path specification, or both. 

changing default resolution for weak external symbol 
from oldresolution to newresolution 

LINK found conflicting default resolutions for a weak external. It ignored the 
first resolution and used the second. 

ignoring stack size greater than 64K 

A stack was defined with an invalid size. LINK assumed 64K. 

filename truncated to filename 

A filename specification exceeded the length allowed. LINK assumed the given 
filename. 

too many public symbols for sorting 

LINK uses the stack and all available memory in the near heap to sort public sym­
bols for the /MAP option. This warning is issued if the number of public symbols 
exceeds the space available for them. In addition, the symbols are not sorted in 
the map file but are listed in an arbitrary order. 



L4080 changing substitute name for alias symbol 
from oldalias to newalias 

Ml Error Messages 

LINK found conflicting alias names. It ignored the first alias and used the second. 

F.9 ML Error Messages 
The error messages produced by the assembler fall into three categories: 

• Fatal error messages 

• Assembly error messages 

• Warning messages 

The messages for each category are listed below in numerical order, with a brief 
explanation of each error. To look up an error message, first determine the mes­
sage category, then find the error number. All messages give the filename and 
line number where the error occurs. 

Fatal Error Messages 
Fatal error messages indicate a severe problem, one that prevents the assembler 
from processing your program any further. These messages have the following 
format: 

filename (line): fatal error Alxxx: messagetext 

After the assembler displays a fatal-error message, it terminates without produc­
ing an object file or checking for further errors. 

Assembly Error Messages 
Assembly error messages identify actual program errors. There messages appear 
in the following format: 

filename (line) : error A2xxx: messagetext 

The assembler does not produce an object file for a source file that has assembly 
errors in the program. When the assembler encounters such errors, it attempts to 
recover from the error. If possible, it continues to process the source file and pro­
duce error messages. If errors are too numerous or too severe, the assembler 
stops processing. 

Warning Messages 
Warning messages are informational only; they do not prevent assembly and link­
ing. These messages appear in the following format: 

filename (line) : wa rn i ng A4xxx: messagetext 

739 



Error Messages 

F.9.1 ML Fatal Errors 
Number 

AIOOO 

AIOOI 

AI002 

740 

Message 

cannot open file: filename 

The assembler was unable to open a source, include, or output file. 

One of the following may be a cause: 

• The file does not exist. 

• The file is in use by another process. 

• The filename is not valid. 

• A read-only file with the output filename already exists. 

• Not enough file handles exist. In DOS, increase the number of file handles by 
changing the FILES setting in CONFIG.SYS to allow a larger number of 
open files. FILES=20 is the recommended setting. 

• The current drive is full. 

• The current directory is the root and is full. 

• The device cannot be written to. 

• The drive is not ready. 

I/O error closing file 

The operating system returned an error when the assembler attempted to close a 
file. 

This error can be caused by having a corrupt file system or by removing a disk 
before the file could be closed. 

I/O error writing file 

The assembler was unable to write to an output file. 

One of the following may be a cause: 

• The current drive is full. 

• The current directory is the root and is full. 

• The device cannot be written to. 

• The drive is not ready. 



AI003 

AI004 

AI005 

AI006 

ML Error Messages 

I/O error reading file 

The assembler encountered an error when trying to read a file. 

One of the following may be a cause: 

• The disk has a bad sector. 

• The file-access attribute is set to prevent reading. 

• The drive is not ready. 

out of far memory, use /VM command-line option 

There was insufficient memory to assemble the program. 

One of the following may be a solution: 

• In DOS, use the NM command-line option to enable virtual memory. 

• If you are using the NMAKE utility, try using NMK or assembling outside of 
NMAKE. 

• In PWB, try exiting and assembling using ML. 

• In OS/2, try increasing the swap space. 

• In DOS, remove terminate-and-stay-resident (TSR) software. 

• Change CONFIG.SYS to specify a lower number of buffers (the BUFFERS= 
command) and fewer drives (the LASTDRIVE= command). 

• Eliminate unnecessary INCLUDE directives. 

assembler limit: macro parameter name table full 

Too many parameters, locals, or macro labels were defined for a macro. There 
was no more room in the macro name table. 

Define shorter or fewer names, or remove unnecessary macros. 

invalid command-line option: option 

ML did not recognize the given parameter as an option. 

741 



Error Messages 

AI007 

AI008 

AI009 

AIOIO 

742 

nesting level too deep 

The assembler reached its nesting limit. The limit is 20 levels except where noted 
otherwise. 

One of the following was nested too deeply: 

• A high-level directive such as .IF, .REPEAT, or .WHILE 

• A structure definition 

• A conditional-assembly directive 

• A procedure definition 

• A PUSHCONTEXT directive (The limit is 10.) 

• A segment definition 

• An include file 

• A macro 

unmatched macro nesting 

Either a macro was not terminated before the end of the file, or the terminating 
directive ENDM was found outside of a macro block. 

One cause of this error is omission of the dot before .REPEAT or .WHILE. 

line too long 

A line in a source file exceeded the limit of 512 characters. 

If multiple physical lines are concatenated with the line-continuation character 
(\), the resulting logical line is still limited to 512 characters. 

unmatched block nesting: 

A block beginning did not have a matching end, or a block end did not have a 
matching beginning. One of the following may be involved: 

• A high-level directive such as .IF, .REPEAT, or .WHILE 

• A conditional-assembly directive such as IF, REPEAT, or WHILE 

• A structure or union definition 

• A procedure definition 



A101l 

A1012 

A1013 

A1014 

Ml Error Messages 

• A segment definition 

• A POPCONTEXT directive 

• A conditional-assembly directive, such as an ELSE, ELSEIF, or ENDIF 
without a matching IF 

directive must be in control block 

The assembler found a high-level directive where one was not expected. One of 
the following directives was found: 

• .ELSE without .IF 

• .ENDIF without .IF 

• .ENDW without .WHILE 

• .UNTIL[CXZ] without .REPEA T 

• .CONTINUE without .WHILE or .REPEAT 

• .BREAK without .WHILE or .REPEAT 

• .ELSE following .ELSE 

error count exceeds 100; stopping assembly 

The number of nonfatal errors exceeded the assembler limit of 100. 

Nonfatal errors are in the range A2xxx. When warnings are treated as errors they 
are included in the count. Warnings are considered errors if you use the /WX 
command-line option, or if you set the Warnings Treated as Errors option in the 
Macro Assembler Global Options dialog box ofPWB. 

invalid numerical command-line argument: number 

The argument specified with an option was not a number or was an invalid 
number. 

too many arguments 

There was insufficient memory to hold all of the command-line arguments. 

This error usually occurs while expanding input filename wildcards (* and ?). To 
eliminate this error, assemble multiple source files separately. 

743 



Error Messages 

AI015 

AI016 

AI017 

AI018 

744 

statement too complex 

The assembler ran out of stack space while trying to parse the specified statement. 

One or more of the following changes may eliminate this error: 

• Break the statement into several shorter statements. 

• Reorganize the statement to reduce the amount of parenthetical nesting. 

• If the statement is part of a macro, break the macro into several shorter 
macros. 

out of virtual memory 

The assembler was unable to allocate enough virtual memory to assemble this 
file. 

To eliminate this error, free some space on the drive specified by the TMP en­
vironment variable, or reassign TMP to a location where there is more free space. 
The assembler uses the current directory to store VM files if the TMP environ­
ment varible does not exist. 

out of near memory 

There was insufficient memory to assemble the program. 

One of the following may be a solution: 

• If you are using the NMAKE utility, try using NMK or assembling outside of 
NMAKE. 

• In PWB, try exiting and assembling using ML. 

• In OS/2, try increasing the swap space. 

• In DOS, remove terminate-and-stay-resident (TSR) software. 

• Change CONFIG.SYS to specify a lower number of buffers (the BUFFERS= 
command) and fewer drives (the LASTDRIVE= command). 

• Eliminate unnecessary INCLUDE directives. 

missing source filename 

ML could not find a file to assemble or pass to the linker. 

This error is generated when you give ML command-line options without specify­
ing a filename to act upon. To assemble files that do not have a .ASM extension, 
use the ITa command-line option. 

This error can also be generated by invoking ML with no parameters if the ML 
environment variable contains command-line options. 



A1901 

F.9.2 ML Errors 
Number 

A2000 

A2001 

A2002 

A2003 

A2004 

A2005 

Ml Error Messages 

Internal Assembler Error 
Contact Microsoft Product Support Services 

The MASM driver called ML.EXE, which generated a system error. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

Message 

memory operand not allowed in context 

A memory operand was given to an instruction that cannot take a memory 
operand. 

immediate operand not allowed 

A constant or memory offset was given to an instruction that cannot take an im­
mediate operand. 

cannot have more than one ELSE clause per IF block 

The assembler found an ELSE directive after an existing ELSE directive in a 
conditional-assembly block (IF block). 

Only one ELSE can be used in an IF block. An IF block begins with an IF, IFE, 
IFB, IFNB, IFDEF, IFNDEF, IFDIF, or IFIDN directive. There can be several 
ELSEIF statements in an IF block. 

One cause of this error is omission of an ENDIF statement from a nested IF block. 

extra characters after statement 

A directive was followed by unexpected characters. 

symbol type conflict: identifier 

The EXTERNDEF or LABEL directive was used on a variable, symbol, data 
structure, or label that was defined in the same module but with a different type. 

symbol redefinition: identifier 

The given nonredefinable symbol was defined in two places. 

745 



Error Messages 

A2006 

A2008 

A2009 

A2010 

746 

undefined symbol: identifier 

An attempt was made to use a symbol that was not defined. 

One of the following may have occurred: 

• A symbol was not defined. 

• A field was not a member of the specified structure. 

• A symbol was defined in an include file that was not included. 

• An external symbol was used without an EXTERN or EXTERNDEF directive. 

• A symbol name was misspelled. 

• A local code label was referenced outside of its scope. 

syntax error : 

A token at the current location caused a syntax error. 

One of the following may have occurred: 

• A dot prefix was added to or omitted from a directive. 

• A reserved word (such as C or SIZE) was used as an identifier. 

• An instruction was used that was not available with the current processor or 
coprocessor selection. 

• A comparison run-time operator (such as ==) was used in a conditional as­
sembly statement instead of a relational operator (such as EQ). 

• An instruction or directive was given too few operands. 

• An obsolete directive was used. 

syntax error in expression 

An expression on the current line contained a syntax error. This error message 
may also be a side-effect of a preceding program error. 

invalid type expression 

The operand to THIS or PTR was not a valid type expression. 



A2011 

A2012 

A2013 

A2014 

A2015 

Ml Error Messages 

distance invalid for word size of current segment 

A procedure definition or a code label defined with LABEL specified an address 
size that was incompatible with the current segment size. 

One of the following occurred: 

• A NEAR16 or FAR16 procedure was defined in a 32-bit segment. 

• A NEAR32 or F AR32 procedure was defined in a 16-bit segment. 

• A code label defined with LABELspecified F AR16 or NEAR16 in a 32-bit 
segment. 

• A code label defined with LABEL specified F AR32 or NEAR32 in a 16-bit 
segment. 

PROC, MACRO, or macro repeat directive must precede LOCAL 

A LOCAL directive must be immediately preceded by a MACRO, PROC, macro 
repeat directive (such as REPEAT, WHILE, or FOR), or another LOCAL 
directive . 

. MODEL must precede this directive 

A simplified segment directive or a .ST ARTUP or .EXIT directive was not 
preceded by a .MODEL directive. 

A .MODEL directive must specify the model defaults before a simplified seg­
ment directive, or a .ST ARTUP or .EXIT directive may be used. 

cannot define as public or external: identifier 

Only labels, procedures, and numeric equates can be made public or external 
using PUBLIC, EXTERN, or EXTERNDEF. Local code labels cannot be made 
public. 

segment attributes cannot change: attribute 

A segment was reopened with different attributes than it was opened with 
originally. 

When a SEGMENT directive opens a previously defined segment, the newly 
opened segment inherits the attributes the segment was defined with. 

747 



Error Messages 

A2016 

A2017 

A2018 

A2019 

A2020 

A2021 

A2022 

A2023 

A2024 

748 

expression expected 

The assembler expected an expression at the current location but found one of 
the following: 

• A unary operator without an operand 

• A binary operator without two operands 

• An empty pair of parentheses, ( ), or brackets, [ ] 

operator expected 

An expression operator was expected at the current location. 

One possible cause of this error is a missing comma between expressions in an 
expression list. 

invalid use of external symbol: identifier 

An attempt was made to compare the given external symbol using a relational 
operator. 

The comparison cannot be made because the value or address of an external sym­
bol is not known at assembly time. 

operand must be RECORD type or field 

The operand following the WIDTH or MASK operator was not valid. 

The WIDTH operator takes an operand that is the name of a field or a record. The 
MASK operator takes an operand that is the name of a field or a record type. 

identifier not a record: identifier 

A record type was expected at the current location. 

record constants cannot span line breaks 

A record constant must be defined on one physical line. A line ended in the 
middle of the definition of a record constant. 

instruction operands must be the same size 

The operands to an instruction did not have the same size. 

instruction operand must have size 

At least one of the operands to an instruction must have a known size. 

invalid operand size for instruction 

The size of an operand was not valid. 



A2025 

A2026 

A2027 

A2028 

A2029 

Ml Error Messages 

operands must be in same segment 

Relocatable operands used with a relational or minus operator were not located 
in the same segment. 

constant expected 

The assembler expected a constant expression at the current location. A constant 
expression is a numeric expression that can be resolved at assembly time. 

operand must be a memory expression 

The right operand of a PTR expression was not a memory expression. 

When the left operand of the PTR operator is a structure or union type, the right 
operand must be a memory expression. 

expression must be a code address 

An expression evaluating to a code address was expected. 

One of the following occurred: 

• SHORT was not followed by a code address. 

• NEAR PTR or FAR PTR was applied to something that was not a code 
address. 

multiple base registers not allowed 

An attempt was made to combine two base registers in a memory expression. 

For example, the following expressions cause this error: 

[bx+bp] 

[bx][bp] 

In another example, given the following definition: 

idl prac argl:byte 

either of the following lines causes this error: 

mav al, [bx].argl 

lea ax, argl[bx] 

749 



Error Messages 

A2030 

A2031 

A2032 

A2033 

750 

multiple index registers not allowed 

An attempt was made to combine two index registers in a memory expression. 

For example, the following expressions cause this error: 

[si+di] 

[di][si] 

must be index or base register 

An attempt was made to use a register that was not a base or index register in a 
memory expression. 

For example, the following expressions cause this error: 

[ax] 

[bl] 

invalid use of register 

An attempt was made to use a register that was not valid for the intended use. 

One of the following occurred: 

• OFFSET was applied to a register. (OFFSET can be applied to a register 
under the M510 option.) 

• A special 386 register was used in an invalid context. 

• A register was cast with PTR to a type of invalid size. 

• A register was specified as the right operand of a segment override 
operator (:). 

• A register was specified as the right operand of a binary minus operator (-). 

• An attempt was made to multiply registers using the * operator. 

• Brackets ([ ]) were missing around a register that was added to something. 

invalid INVOKE argument: argument number 

The INVOKE directive was passed a special 386 register, or a register pair con­
taining a byte register or special 386 register. These registers are illegal with 
INVOKE. 



A2034 

A2035 

A2036 

A2037 

A2038 

A2039 

A2040 

ML Error Messages 

must be in segment block 

One of the following was found outside of a segment block: 

• An instruction 

• A label definition 

• A THIS operator 

• A $ operator 

• A procedure definition 

• An ALIGN directive 

• An ORG directive 

DUP too complex 

A declaration using the DUP operator resulted in a data structure with an internal 
representation that was too large. 

too many initial values for structure: structure 

The given structure was defined with more initializers than the number of fields 
in the type declaration of the structure. 

statement not allowed inside structure definition 

A structure definition contained an invalid statement. 

A structure cannot contain instructions, labels, procedures, control-flow direc­
tives, .STARTUP, or .EXIT. 

missing operand for macro operator 

The assembler found the end of a macro's parameter list immediately after the ! 
or % operator. 

line too long 

A source-file line exceeded the limit of 512 characters. 

If mUltiple physical lines are concatenated with the line- continuation character 
(\), the resulting logical line is still limited to 512 characters. 

segment register not allowed in context 

A segment register was specified for an instruction that cannot take a segment 
register. 

751 



Error Messages 

A2041 

A2042 

A2043 

A2044 

A2045 

A2046 

752 

string or text literal too long 

A string or text literal, or a macro function return value, exceeded the limit of 
255 characters. 

statement too complex 

A statement was too complex for the assembler to parse. 

Reduce either the number of tokens or the number of forward-referenced 
identifiers. 

identifier too long 

An identifier exceeded the limit of 247 characters. 

invalid character in file 

The source file contained a character outside a comment, string, or literal that 
was not recognized as an operator or other legal character. 

missing angle bracket or brace in literal 

An unmatched angle bracket (either < or » or brace (either { or }) was found in a 
literal constant or an initializer. 

One of the following occurred: 

• A pair of angle brackets or braces was not complete. 

• An angle bracket was intended to be literal, but it was not preceded by an ex­
clamation point (!) to indicate a literal character. 

missing single or double quotation mark in string 

An unmatched quotation mark (either' or ") was found in a string. 

One of the following may have occurred: 

• A pair of quotation marks around a string was not complete. 

• A pair of quotation marks around a string was formed of one single and one 
double quotation mark. 

• A single or double quotation mark was intended to be literal, but the surround­
ing quotation marks were the same kind as the literal one. 



A2047 

A2048 

A2049 

A20S0 

A20S1 

A20S2 

ML Error Messages 

empty (null) string 

A string consisted of a delimiting pair of quotation marks and no characters 
within. 

For a string to be valid, it must contain 1-255 characters. 

nondigit in number 

A number contained a character that was not in the set of characters used by the 
current radix (base). 

This error can occur if a B or D radix specifier is used when the default radix is 
one that includes that letter as a valid digit. 

syntax error in floating-point constant 

A floating-point constant contained an invalid character. 

real or BCD number not allowed 

A floating-point (real) number or binary coded decimal (BCD) constant was used 
other than as a data initializer. 

One of the following occurred: 

• A real number or a BCD was used in an expression. 

• A real number was used to initialize a directive other than DWORD, 
QWORD, or TBYTE. 

• A BCD was used to initialize a directive other than TBYTE. 

text item required 

A literal constant or text macro was expected. 

One of the following was expected: 

• A literal constant, which is text enclosed in < > 

• A text macro name 

• A macro function call 

• A % followed by a constant expression 

forced error 

The conditional-error directive .ERR or .ERR! was used to generate this error. 

753 



Error Messages 

A2053 

A2054 

A2055 

A2056 

A2057 

A2058 

A2059 

A2060 

A2061 

A2062 

754 

forced error: value equal to 0 

The conditional-error directive .ERRE was used to generate this error. 

forced error: value not equal to 0 

The conditional-error directive .ERRNZ was used to generate this error. 

forced error : symbol not defined 

The conditional-error directive .ERRNDEF was used to generate this error. 

forced error : symbol defined 

The conditional-error directive .ERRDEF was used to generate this error. 

forced error : string blank 

The conditional-error directive .ERRB was used to generate this error. 

forced error: string not blank 

The conditional-error directive .ERRNB was used to generate this error. 

forced error: strings equal 

The conditional-error directive .ERRIDN or .ERRIDNI was used to generate this 
error. 

forced error: strings not equal 

The conditional-error directive .ERRDIF or .ERRDIFI was used to generate this 
error. 

[ELSE]IF2/.ERR2 not allowed: single-pass assembler 

A directive for a two-pass assembler was found. 

The Microsoft Macro Assembler (MASM) is a one-pass assembler. MASM does 
not accept the IF2, ELSEIF2, and .ERR2 directives. 

This error also occurs if an ELSE directive follows an IFl directive. 

expression too complex for. UNTILCXZ 

An expression used in the condition that follows .UNTILCXZ was too complex. 

The .UNTILCXZ directive can take only one expression, which can contain only 
== or !=. It cannot take other comparison operators or more complex expressions 
using operators such as II. 



A2063 

A2064 

A2065 

A2066 

A2067 

A2068 

A2069 

A2070 

A2071 

A2072 

ML Error Messages 

can ALIGN only to power of 2 : expression 

The expression specified with the ALIGN directive was invalid. 

The ALIGN expression must be a power of 2 between 2 and 256, and must be 
less than or equal to the alignment of the current segment, structure, or union. 

structure alignment must be 1, 2, or 4 

The alignment specified in a structure definition was invalid. 

expected: token 

The assembler expected the given token. 

incompatible CPU mode and segment size 

An attempt was made to open a segment with a USE16, USE32, or FLAT attribute 
that was not compatible with the specified CPU, or to change to a 16-bit CPU 
while in a 32-bit segment. 

The USE32 and FLAT attributes must be preceded by one of the following proces­
sor directives: .386, .386C, .386P, .486, or .486P. 

LOCK must be followed by a memory operation 

The LOCK prefix preceded an invalid instruction. No instruction can take the 
LOCK prefix unless one of its operands is a memory expression. 

instruction prefix not allowed 

One of the prefixes REP, REPE, REPNE, or LOCK preceded an instruction for 
which it was not valid. 

no operands allowed for this instruction 

One or more operands were specified with an instruction that takes no operands. 

invalid instruction operands 

One or more operands were not valid for the instruction they were specified with. 

initializer too large for specified size 

An initializer value was too large for the data area it was initializing. 

cannot access symbol in given segment or group: identifier 

The given identifier cannot be addressed from the segment or group specified. 

755 



Error Messages 

A2073 

A2074 

A2075 

A2076 

A2077 

A2078 

A2079 

A2080 

A2081 

756 

operands have different frames 

Two operands in an expression were in different frames. 

Subtraction of pointers requires the pointers to be in the same frame. Subtraction 
of two expressions that have different effective frames is not allowed. An effec­
tive frame is calculated from the segment, group, or segment register. 

cannot access label through segment registers 

An attempt was made to access a label through a segment register that was not as­
sumed to its segment or group. 

jump destination too far [: by 'n' bytes] 

The destination specified with a jump instruction was too far from the instruction. 

One of the following may be a solution: 

• Enable the LJMP option. 

• Remove the SHORT operator. If SHORT has forced a jump that is too far, n is 
the number of bytes out of range. 

• Rearrange code so that the jump is no longer out of range. 

jump destination must specify a label 

A direct jump's destination must be relative to a code label. 

instruction does not allow NEAR indirect addressing 

A conditional jump or loop cannot take a memory operand. It must be given a 
relative address or label. 

instruction does not allow FAR indirect addressing 

A conditional jump or loop cannot take a memory operand. It must be given a 
relative address or label. 

instruction does not allow FAR direct addressing 

A conditional jump or loop cannot be to a different segment or group. 

jump distance not possible in current CPU mode 

A distance was specified with a jump instruction that was incompatible with the 
current processor mode. 

For example, 48-bit jumps require .386 or above. 

missing operand after unary operator 

An operator required an operand, but no operand followed. 



A2082 

A2083 

A2084 

A2085 

A2086 

A2087 

A2088 

A2089 

Ml Error Messages 

cannot mix 16- and 32-bit registers 

An address expression contained both 16- and 32-bit registers. 

For example, the following expression causes this error: 

[bx+edi] 

invalid scale value 

A register scale was specified that was not 1,2,4, or 8. 

constant value too large 

A constant was specified that was too big for the context in which it was used. 

instruction or register not accepted in current CPU mode 

An attempt was made to use an instruction, register, or keyword that was not 
valid for the current processor mode. 

For example, 32-bit registers require .386 or above. Control registers such as CRO 
require privileged mode .386P or above. This error will also be generated for the 
NEAR32, FAR32, and FLAT keywords, which require .386 or above. 

reserved word expected 

One or more items in the list specified with a NOKEYWORD option were not rec­
ognized as reserved words. 

instruction form requires 80386/486 

An instruction was used that was not compatible with the current processor mode. 

One of the following processor directives must precede the instruction: .386, 
.386C, .386P, .486, or .486P. 

END directive required at end of file 

The assembler reached the end of the main source file and did not find an .END 
directive. 

too many bits in RECORD: identifier 

One of the following occurred: 

• Too many bits were defined for the given record field. 

• Too many total bits were defined for the given record. 

The size limit for a record or a field in a record is 16 bits when doing 16-bit arith­
metic or 32 bits when doing 32-bit arithmetic. 

757 



Error Messages 

A2090 

A2091 

A2092 

A2093 

A2094 

A2095 

758 

positive value expected 

A positive value was not found in one of the following situations: 

• The starting position specified for SUBSTR or @SubStr 

• The number of data objects specified for COMM 

• The element size specified for COMM 

index value past end of string 

An index value exceeded the length of the string it referred to when used with 
INSTR, SUBSTR, @InStr, or @SubStr. 

count must be positive or zero 

The operand specified to the SUBSTR directive, @SubStr macro function, SUL 
operator, SUR operator, or DUP operator was negative. 

count value too large 

The length argument specified for SUBSTR or @SubStr exceeded the length of 
the specified string. 

operand must be relocatable 

An operand was not relative to a label. 

One of the following occurred: 

• An operand specified with the END directive was not relative to a label. 

• An operand to the SEG operator was not relative to a label. 

• The right operand to the minus operator was relative to a label, but the left 
operand was not. 

• The operands to a relational operator were either not both integer constants or 
not both memory operands. Relational operators can take operands that are 
both addresses or both non-addresses but not one of each. 

constant or relocatable label expected 

The operand specified must be a constant expression or a memory offset. 



A2096 

A2097 

A2098 

A2099 

A2100 

A2101 

A2102 

A2103 

A2104 

segment, group, or segment register expected 

A segment or group was expected but was not found. 

One of the following occurred: 

ML Error Messages 

• The left operand specified with the segment override operator (:) was not a 
segment register (CS, DS, SS, ES, FS, or OS), group name, segment name, or 
segment expression. 

• The ASSUME directive was given a segment register without a valid segment 
address, segment register, group, or the special FLAT group. 

segment expected: identifier 

The GROUP directive was given an identifier that was not a defined segment. 

invalid operand for OFFSET 

The expression following the OFFSET operator must be a memory expression or 
an immediate expression. 

invalid use of external absolute 

An attempt was made to subtract a constant defined in another module from an 
expression. 

You can avoid this error by placing constants in include files rather than making 
them external. 

segment or group not allowed 

An attempt was made to use a segment or group in a way that was not valid. Seg­
ments or groups cannot be added. 

cannot add two relocatable labels 

An attempt was made to add two expressions that were both relative to a label. 

cannot add memory expression and code label 

An attempt was made to add a code label to a memory expression. 

segment exceeds 64K limit 

A 16-bit segment exceeded the size limit of 64K. 

invalid type for data declaration : type 

The given type was not valid for a data declaration. 

759 



Error Messages 

A210S 

A2107 

A2108 

A2109 

A2110 

A2111 

A2112 

A2113 

A2114 

A211S 

760 

HIGH and LOW require immediate operands 

The operand specified with either the HIGH or the LOW operator was not an im­
mediate expression. 

cannot have implicit far jump or call to near label 

An attempt was made to make an implicit far jump or call to a near label in 
another segment. 

use of register assumed to ERROR 

An attempt was made to use a register that had been assumed to ERROR with the 
ASSUME directive. 

only white space or comment can follow backslash 

A character other than a semicolon (;) or a white-space character (spaces or TAB 
characters) was found after a line-continuation character (\). 

COMMENT delimiter expected 

A delimiter character was not specified for a COMMENT directive. 

The delimiter character is specified by the first character that is not white space 
(spaces or TAB characters) after the COMMENT directive. The comment con­
sists of all text following the delimiter until the end of the line containing the 
next appearance of the delimiter. 

conflicting parameter definition 

A procedure defined with the PROC directive did not match its prototype as de­
fined with the PROTO directive. 

PROC and prototype calling conventions conflict 

A procedure was defined in a prototype (using the PROTO, EXTERNDEF, or 
EXTERN directive), but the calling convention did not match the corresponding 
PROC directive. 

invalid radix tag 

The specified radix was not a number in the range 2-16. 

INVOKE argument type mismatch: argument number 

The type of the arguments passed using the INVOKE directive did not match the 
type of the parameters in the prototype of the procedure being invoked. 

invalid coprocessor register 

The coprocessor index specified was negative or greater than 7. 



A2116 

A2117 

A21lS 

A2119 

A2120 

A2121 

A2122 

Ml Error Messages 

instructions and initialized data not allowed in AT segments 

An instruction or initialized data was found in a segment defined with the AT 
attribute. 

Data in AT segments must be declared with the? initializer. 

fA T option requires TINY memory model 

The fAT option was specified on the assembler command line, but the program 
being assembled did not specify the TINY memory model with the .MODEL 
directive. 

This error is only generated for modules that specify a start address or use the 
.STARTUP directive. 

cannot have segment address references with TINY model 

An attempt was made to reference a segment in a TINY model program. 

All TINY model code and data must be accessed with NEAR addresses. 

language type must be specified 

A procedure definition or prototype was not given a language type. 

A language type must be declared in each procedure definition or prototype if a 
default language type is not specified. A default language type is set using either 
the .MODEL directive, OPTION LANG, or the ML command-line options /Gc 
or /Gd. 

PROLOGUE must be macro function 

The identifier specified with the OPTION PROLOGUE directive was not recog­
nized as a defined macro function. 

The user-defined prologue must be a macro function that returns the number of 
bytes needed for local varaiables and any extra space needed for the macro 
function. 

EPILOGUE must be macro procedure 

The identifier specified with the OPTION EPILOGUE directive was not recog­
nized as a defined macro procedure. 

The user-defined epilogue macro cannot return a value. 

alternate identifier not allowed with EXTERNDEF 

An attempt was made to specify an alternate identifier with an EXTERNDEF 
directive. 

You can specify an optional alternate identifier with the EXTERN directive but 
not with EXTERNDEF. 

761 



Error Messages 

A2123 

A2125 

A2126 

A2127 

A2129 

A2130 

A2131 

A2132 

762 

text macro nesting level too deep 

A text macro was nested too deeply. The nesting limit for text macros is 40. 

missing macro argument 

A required argument to @InStr, @SubStr, or a user-defined macro was not 
specified. 

EXITM used inconsistently 

The EXITM directive was used both with and without a return value in the same 
macro. 

A macro procedure returns a value; a macro function does not. 

macro function argument list too long 

There were too many characters in a macro function's argument list. This error 
applies also to a prologue macro function called implicitly by the PROC directive. 

V ARAR G parameter must be last parameter 

A parameter other than the last one was given the VARARG attribute. 

The :VARARG specification can be applied only to the last parameter in a para­
meter list for macro and procedure definitions and prototypes. You cannot use 
multiple: V ARARG specifications in a macro. 

V ARARG parameter not allowed with LOCAL 

An attempt was made to specify: V ARARG as the type in a procedure's LOCAL 
declaration. 

VARARG parameter requires C calling convention 

A V ARARG parameter was specified in a procedure definition or prototype, but 
the C, SYSCALL, or STDCALL calling convention was not specified. 

ORG needs a constant or local offset 

The expression specified with the ORG directive was not valid. 

ORG requires an immediate expression with no reference to an external label or 
to a label outside the current segment. 



A2133 

A2134 

A2136 

A2137 

A2138 

A2140 

A2141 

A2142 

A2143 

ML Error Messages 

register value overwritten by INVOKE 

A register was passed as an argument to a procedure, but the code generated by 
INVOKE to pass other arguments destroyed the contents of the register. 

The AX, AL, AH, EAX, DX, DL, DH, and EDX registers may be used by the as­
sembler to perform data conversion. 

Use a different register. 

structure too large to pass with INVOKE: argument number 

An attempt was made with INVOKE to pass a structure that exceeded 255 bytes. 

Pass structures by reference if they are larger than 255 bytes. 

too many arguments to INVOKE 

The number of arguments passed using the INVOKE directive exceeded the num­
ber of parameters in the prototype for the procedure being invoked. 

too few arguments to INVOKE 

The number of arguments passed using the INVOKE directive was fewer than the 
number of required parameters specified in the prototype for the procedure being 
invoked. 

invalid data initializer 

The initializer list for a data definition was invalid. 

This error can be caused by using the R radix override with too few digits. 

RET operand too large 

The operand specified to RET, RETN, or RETF exceeded two bytes. 

too many operands to instruction 

Too many operands were specified with a string control instruction. 

cannot have more than one .ELSE clause per .IF block 

The assembler found more than one .ELSE clause within the current .IF block. 

Use .ELSEIF for all but the last block. 

expected data label 

The LENGTHOF, SIZEOF, LENGTH, or SIZE operator was applied to a non­
data label, or the SIZEOF or SIZE operator was applied to a type. 

763 



Error Messages 

A2144 

A2145 

A2146 

A2147 

A2148 

A2149 

A2150 

A2151 

A2152 

764 

cannot nest procedures 

An attempt was made to nest a procedure containing a parameter, local variable, 
USES clause, or a statement that generated a new segment or group. 

EXPORT must be FAR: procedure 

The given procedure was given EXPORT visibility and NEAR distance. 

All EXPORT procedures must be FAR. The default visibility may have been set 
with the OPTION PROC:EXPORT statement or the SMALL or COMPACT 
memory models. 

procedure declared with two visibility attributes: procedure 

The given procedure was given conflicting visibilities. 

A procedure was declared with two different visibilities (PUBLIC, PRIVATE, or 
EXPORT). The PROC and PROTO statements for a procedure must have the 
same visibility. 

macro label not defined: macrolabel 

The given macro label was not found. 

A macro label is defined with :macrolabel. 

invalid symbol type in expression: identifier 

The given identifier was used in an expression in which it was not valid. 

For example, a macro procedure name is not allowed in an expression. 

byte register cannot be first operand 

A byte register was specified to an instruction that cannot take it as the first 
operand. 

word register cannot be first operand 

A word register was specified to an instruction that cannot take it as the first 
operand. 

special register cannot be first operand 

A special register was specified to an instruction that cannot take it as the first 
operand. 

coprocessor register cannot be first operand 

A coprocessor (stack) register was specified to an instruction that cannot take it 
as the first operand. 



A2153 

A2154 

A2155 

A2156 

A2157 

A2158 

A2159 

ML Error Messages 

cannot change size of expression computations 

An attempt was made to set the expression word size when the size had been al­
ready set using the EXPR16, EXPR32, SEGMENT:USE32, or SEGMENT:FLAT 
option or the .386 or higher processor selection directive. 

syntax error in control-flow directive 

The condition for a control-flow directive (such as .IF or .WHILE) contained a 
syntax error. 

cannot use 16-bit register with a 32-bit address 

An attempt was made to mix 16-bit and 32-bit offsets in an expression. 

Use a 32-bit register with a symbol defined in a 32-bit segment. 

For example, if i d 1 is defined in a 32-bit segment, the following causes this 
error: 

idl[bx] 

constant value out of range 

An invalid value was specified for the PAGE directive. 

The first parameter of the PAGE directive can be either 0 or a value in the range 
10-255. The second parameter of the PAGE directive can be either 0 or a value 
in the range 60-255. 

missing right parenthesis 

A right parenthesis, ), was missing from a macro function call. 

Be sure that parentheses are in pairs if nested. 

type is wrong size for register 

An attempt was made to assume a general-purpose register to a type with a differ­
ent size than the register. 

For example, the following pair of statements causes this error: 

ASSUME bx:far ptr byte 
ASSUME al :word 

far pointer is 4 or 6 bytes 
; al is a byte reg, cannot hold word 

structure cannot be instanced 

An attempt was made to create an instance of a structure when there were no 
fields or data defined in the structure definition or when ORG was used in the 
structure definition. 

765 



Error Messages 

A2160 

A2161 

A2162 

A2163 

A2164 

A2165 

A2166 

766 

non-benign structure redefinition: label incorrect 

A label given in a structure redefinition either did not exist in the original defini­
tion or was out of order in the redefinition. 

non-benign structure redefinition: too few labels 

Not enough members were defined in a structure redefinition. 

OLDSTRUCT/NOOLDSTRUCT state cannot be changed 

Once the OLDSTRUCTS or NOOLDSTRUCTS option has been specified and a 
structure has been defined, the structure scoping cannot be altered or respecified 
in the same module. 

non-benign structure redefinition: incorrect initializers 

A STRUCT or UNION was redefined with a different initializer value. 

When structures and unions are defined more than once, the definitions must be 
identical. This error can be caused by using a variable as an initializer and having 
the value of the variable change between definitions. 

non-benign structure redefinition: too few initializers 

A STRUCT or UNION was redefined with too few initializers. 

When structures and unions are defined more than once, the definitions must be 
identical. 

non-benign structure redefinition: label has incorrect offset 

The offset of a label in a redefined STRUCT or UNION differs from the original 
definition. 

When structures and unions are defined more than once, the definitions must be 
identical. This error can be caused by a missing member or by a member that has 
a different size than in its original definition. 

structure field expected 

The right-hand side of a dot operator (.) is not a structure field. 

This error may occur with some code acceptable to previous versions of the as­
sembler. To enable the old behavior, use OPTION OLDSTRUCTS, which is auto­
matically enabled by OPTION M510 or the jZm command-line option. 



A2167 

A2169 

A2170 

A2171 

A2172 

A2173 

A2175 

A2176 

A2177 

ML Error Messages 

unexpected literal found in expression 

A literal was found where an expression was expected. 

One of the following may have occurred: 

• A literal was used as an initializer 

• A record tag was omitted from a record constant 

divide by zero in expression 

An expression contains a divisor whose value is equal to zero. 

Check that the syntax of the expression is correct and that the divisor (whether 
constant or variable) is correctly initialized. 

directive must appear inside a macro 

A GOTO or EXITM directive was found outside the body of a macro. 

cannot expand macro function 

A syntax error prevented the assembler from expanding the macro function. 

too few bits in RECORD 

There was an attempt to define a record field of 0 bits. 

macro function cannot redefine itself 

There was an attempt to define a macro function inside the body of a macro func­
tion with the same name. This error can also occur when a member of a chain of 
macros attempts to redefine a previous member of the chain. 

invalid qualified type 

An identifier was encountered in a qualified type that was not a type, structure, 
record, union, or prototype. 

floating point initializer on an integer variable 

An attempt was made to use a floating-point initializer with DWORD,QWORD, 
or TBYTE. Only integer initializers are allowed. 

nested structure improperly initialized 

The nested structure initialization could not be resolved. 

This error can be caused by using different beginning and ending delimiters in a 
nested structure initialization. 

767 



Error Messages 

A2178 

A2179 

A2180 

A2181 

A2182 

A2183 

A2184 

A2185 

768 

invalid use of FLAT 

There was an ambiguous reference to FLAT as a group. 

This error is generated when there is a reference to FLAT instead of a FLAT sub­
group. For example, 

mov 
mov 

ax, FLAT 
ax, SEG FLAT:_data 

structure improperly initialized 

Generates A2178 
Correct 

There was an error in a structure initializer. 

One of the following occurred: 

• The initializer is not a valid expression. 

• The initializer is an invalid DUP statement. 

improper list initialization 

In a structure, there was an attempt to initialize a list of items with a value or list 
of values of the wrong size. 

initializer must be a string or single item 

There was an attempt to initialize a structure element with something other than a 
single item or string. 

This error can be caused by omitting braces ({ }) around an initializer. 

initializer must be a single item 

There was an attempt to initialize a structure element with something other than a 
single item. 

This error can be caused by omitting braces ({ }) around an initializer. 

initializer must be a single byte 

There was an attempt to initialize a structure element of byte size with something 
other than a single byte. 

improper use of list initializer 

The assembler did not expect an opening brace ({) at this point. 

improper literal initialization 

A literal structure initializer was not properly delimited. 

This error can be caused by missing angle brackets « » or braces ({ }) around 
an initializer or by extra characters after the end of an initializer. 



A2186 

A2187 

A2188 

A2189 

A2190 

A2191 

A2192 

ML Error Messages 

extra characters in literal initialization 

A literal structure initializer was not properly delimited. 

One of the following may have occurred: 

• There were missing or mismatched angle brackets « » or braces ({ }) around 
an initializer. 

• There were extra characters after the end of an initializer. 

• There was a syntax error in the structure initialization. 

must use floating point initializer 

A variable declared with the REAL4, REAL8, and REAL10 directives must be ini­
tialized with a floating-point number or a question mark (?). 

This error can be caused by giving an initializer in integer form (such as 18) in­
stead of in floating-point form (18.0). 

cannot use .EXIT for OS OS2 with .8086 

The INVOKE generated by the .EXIT statement under OS _ OS2 requires the .186 
(or higher) directive, since it must be able to use the PUSH instruction to push im­
mediates directly. 

invalid combination with segment alignment 

The alignment specified by the ALIGN or EVEN directive was greater than the 
current segment alignment as specified by the SEGMENT directive. 

INVOKE requires prototype for procedure 

The INVOKE directive must be preceded by a PROTO statement for the proce­
dure being called. 

When using INVOKE with an address rather than an explicit procedure name, 
you must precede the address with a pointer to the prototype. 

cannot include structure in self 

You cannot reference a structure recursively (inside its own definition). 

symbol language attribute conflict 

Two declarations for the same symbol have conflicting language attributes (such 
as C and PASCAL). The attributes should be identical or compatible. 

769 



Error Messages 

A2193 

A2194 

A2195 

A2196 

A2197 

A2198 

A2199 

A2200 

A2201 

770 

non-benign COMM redefinition 

A variable was redefined with the COMM directive to a different language type, 
distance, size, or instance count. 

Multiple COMM definitions of a variable must be identical. 

COMM variable exceeds 64K 

A variable declared with the COMM directive in a 16-bit segment was greater 
than 64K. 

parameter or local cannot have void type 

The assembler attemped to create an argument or create a local without a type. 

This error can be caused by declaring or passing a symbol followed by a colon 
without specifying a type or by using a user-defined type defined as void. 

cannot use TINY model with OS OS2 

A .MODEL statement specified the TINY memory model and the OS_OS2 operat­
ing system. The tiny memory model is not allowed under OS/2. 

expression size must be 32-bits 

There was an attempt to use the 16-bit expression evaluator in a 32-bit segment. 
In a 32-bit segment (USE32 or FLAT), you cannot use the default 16-bit expres­
sion evaluator (OPTION EXPR16) . 

. EXIT does not work with 32-bit segments 

The .EXIT directive cannot be used in a 32-bit segment; it is valid only under 
MS-DOS and OS/2 l.x . 

. ST ARTUP does not work with 32-bit segments 

The .STARTUP directive cannot be used in a 32-bit segment; it is valid only 
under MS-DOS and OS/2 l.x. 

ORG directive not allowed in unions 

The ORG directive is not valid inside a UNION definition. 

You can use the ORG directive inside STRUCT definitions, but it is meaningless 
inside a UNION. 

scope state cannot be changed 

Both OPTION SCOPED and OPTION NOSCOPED statements occurred in a mod­
ule. You cannot switch scoping behavior in a module. 

This error may be caused by an OPTION SCOPED or OPTION NOSCOPED state­
ment in an include file. 



A2901 cannot run ML.EXE 

The MASM driver could not spawn ML.EXE. 

One of the following may have occurred: 

• ML.EXE was not in the path. 

• The READ attribute was not set on ML.EXE. 

• There was not enough memory. 

ML Error Messages 

F.9.3 ML Warnings 
Number 

A4000 

A4002 

A4003 

A4004 

A4006 

Message 

cannot modify READONL Y segment 

An attempt was made to modify an operand in a segment marked with the READ­
ONL Y attribute. 

non-unique STRUCT/UNION field used without qualification 

A STRUCT or UNION field can be referenced without qualification only if it has 
a unique identifier. 

This conflict can be resolved either by renaming one of the structure fields to 
make it unique or by fully specifying both field references. 

The NONUNIQUE keyword requires that all references to the elements of a 
STRUCT or UNION be fully specified. 

startaddress on END directive ignored with .ST ARTUP 

Both .ST ARTUP and a program load address (optional with the END directive) 
were specified. The address specification with the END directive was ignored. 

cannot ASSUME CS 

An attempt was made to assume a value for the CS register. CS is always set to 
the current segment or group. 

too many arguments in macro call 

There were more arguments given in the macro call than there were parameters 
in the macro definition. 

771 



Error Messages 

A4007 

A4008 

A4009 

A4010 

A4011 

A4012 

A4910 

A5000 

772 

option untranslated, directive required: option 

There is no ML command-line equivalent for the given MASM option. The 
desired behavior can be obtained by using a directive in the source file. 

IA 
(P 

IS 

Directive 

.ALPHA 

OPTION READONLY 

.SEQ 

invalid command-line option value, default is used: option 

The value specified with the given option was not valid. The option was ignored, 
and the default was assumed. 

virtual memory not available: IVM ignored 

The assembler was unable to initialize virtual memory. 

You may be able to fix this error by freeing memory being used by RAM disks, 
caches, or TSR programs. 

insufficent memory for IEP : IEP ignored 

There is not enough memory to generate a first-pass listing. 

expected '>' on text literal 

A macro was called with a text literal argument that was missing a closing angle 
bracket. 

multiple .MODEL directives found: .MODEL ignored 

More than one .MODEL directive was found in the current module. Only the first 
.MODEL statement is used. 

cannot open file: filename 

The given filename could not be in the current path. 

Make sure thatfilename was copied from the distribution disks and is in the cur­
rent path. 

@@: label defined but not referenced 

A jump target was defined with the @@: label, but the target was not used by a 
jump instruction. 

One common cause of this error is insertion of an extra @@: label between the 
jump and the @@: label that the jump originally referred to. 



A5001 

A5002 

A5003 

A5004 

A5005 

A6001 

A6003 

Ml Error Messages 

expression expected, assume value 0 

There was an IF, ELSEIF, IFE, IFNE, ELSEIFE, or ELSEIFNE directive without 
an expression to evaluate. The assembler assumes a 0 for the comparison expres­
sion. 

externdef previously assumed to be external 

The OPATTR or .TYPE operator was applied to a symbol after the symbol was 
used in an EXTERNDEF statement but before it was declared. These operators 
were used on a line where the assembler assumed that the symbol was external. 

length of symbol previously assumed to be different 

The LENGTHOF, LENGTH, SIZEOF, or SIZE operator was applied to a symbol 
after the symbol was used in an EXTERNDEF statement but before it was de­
clared. These operators were used on a line where the assembler assumed that the 
symbol had a different length and size. 

symbol previously assumed to not be in a group 

A symbol was used in an EXTERNDEF statement outside of a segment and then 
was declared inside a segment. 

types are different 

The type given by an INVOKE statement differed from that given in the proce­
dure prototype. The assembler performed the appropriate type conversion. 

no return from procedure 

A PROC statement generated a prologue, but there was no RET or IRET instruc­
tion found inside the procedure block. 

conditional jump lengthened 

A conditional jump was encoded as a reverse conditional jump around a near un­
conditional jump. 

You may be able to rearrange code to avoid the longer form. 

773 



Error Messages 

F.10 NMAKE Error Messages 
This section lists error messages generated by the Microsoft Program Main­
tenance Utility (NMAKE): 

• Fatal errors (U 10xx) cause NMAKE to stop execution. 

• Fatal errors (U14xx) cause NMK to stop execution. 

• Errors (U 2xxx) do not stop execution but prevent NMAKE from completing 
the make process. 

• Warnings (U4xxx) indicate possible problems in the make process. 

F.10.1 NMAKE Fatal Errors 
Number 

UIOOO 

UIOOI 

UI002 

UI003 

UI004 

774 

NMAKE Error Message 

syntax error: ')' missing in macro invocation 

A left parenthesis ( ( ) appeared without a matching right parenthesis ( ) ) in a 
macro in'vocation. The correct form is $(name), or $n for one-character names. 

syntax error: illegal character character in macro 

A nonalphanumeric character other than an underscore C) appeared in a macro. 

syntax error: invalid macro invocation '$' 

A single dollar sign ($) appeared without a macro name associated with it. 

The correct form is $(name). To use a dollar sign in the file, type it twice ($$) or 
precede it with a caret ( A). 

syntax error : '=' missing in macro 

The equal sign (=) was missing in a macro definition. 

The correct form is 

macroname=string 

syntax error : macro name missing 

A macro invocation appeared without a name. 

The correct form is 

$(name) 



UIOOS 

UI006 

UI007 

UIOl7 

UIOl8 

UIOl9 

UI020 

UI021 

UI022 

UI023 

NMAKE Error Messages 

syntax error: text must follow':' in macro 

A string substitution was specified for a macro, but the string to be changed in 
the macro was not specified. 

syntax error: missing closing double quotation mark 

An opening double quotation mark (") appeared without a closing double quota­
tion mark. 

double quotation mark not allowed in name 

The specified target name or filename contained a double quotation mark ("). 

Double quotation marks can surround a filename but cannot be contained 
within it. 

unknown directive !directive 

The directive specified is not one of the recognized directives. 

directive and/or expression part missing 

The directive was incompletely specified. 

The expression part of the directive is required. 

too many nested !IF blocks 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

end-of-file found before next directive 

A directive, such as !ENDIF, was missing. 

syntax error : !ELSE unexpected 

An !ELSE directive was found that was not preceded by !IF, !IFDEF, or 
!IFNDEF, or the directive was placed in a syntactically incorrect place. 

missing terminating character for string/program invocation: char 

The closing double quotation mark (") in a string comparison in a directive was 
missing, or the closing bracket ( ] ) in a program invocation in a directive was 
missing. 

syntax error in expression 

An expression was invalid. 

Check the allowed operators and operator precedence. 

775 



Error Messages 

UI024 

UI031 

UI033 

UI034 

UI035 

UI036 

UI037 

UI038 

UI039 

UI040 

776 

illegal argument to !CMDSWITCHES 

An unrecognized command switch was specified. 

filename missing (or macro is null) 

An include directive was found, but the name of the file to be included was 
missing, or the macro expanded to nothing. 

syntax error: string unexpected 

The given string is not part of the vaiid syntax for a description file. 

syntax error: separator missing 

The colon (:) that separates targets and dependents is missing. 

syntax error: expected ':' or '=' separator 

Either a colon (:), implying a dependency line, or an equal sign (=), implying a 
macro definition, was expected. 

syntax error: too many names to left of '=' 

Only one string is allowed to the left of a macro definition. 

syntax error : target name missing 

A colon (:) was found before a target name was found. 

At least one target is required. 

internal error : lexer 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

internal error : parser 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

internal error : macro expansion 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 



UI041 

UI042 

UI043 

UI044 

UI045 

UI046 

UI049 

UI050 

UI051 

UI052 

NMAKE Error Messages 

internal error : target building 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

internal error : expression stack overflow 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

internal error: temp file limit exceeded 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

internal error: too many levels of recursion building a target 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

internal error message 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

internal error: out of search handles 

This error occurs under OS/2 when there are not enough search handles for 
NMAKE to run. 

macro or inline file too long (maximum 64K) 

An inline file or a macro exceeded the limit of 64K. 

user-specified text 

The message specified with the !ERROR directive was displayed. 

out of memory 

The program ran out of space in the far heap. 

Split the description file into smaller and simpler pieces. 

file filename not found 

The file was not found. 

Check the specification of the filename in the description file. 

777 



Error Messages 

UI053 

UI054 

UI055 

UI056 

UI057 

UI058 

778 

fileJilename unreadable 

The file cannot be read. 

The following are possible causes of this error: 

• The file does not have appropriate attributes for reading. 

• A bad area exists on disk. 

• A bad file-allocation table exists. 

• The file is locked. 

cannot create inline file Jilename 

NMAKE failed in its attempt to create the given file. 

The following are possible causes of this error: 

• The file already exists with a read-only attribute. 

• There is insufficient disk space to create the file. 

out of environment space 

The environment space limit was reached. 

Restart the program with a larger environment space or with fewer environment 
variables. 

cannot find command processor 

The command processor was not found. 

NMAKE uses COMMAND.COM or CMD.EXE as a command processor to ex­
ecute commands. It looks for the command processor first by the full pathname 
given by the COMSPEC environment variable. If COMSPEC does not exist, 
NMAKE searches the directories specified by the PATH environment variable. 

cannot delete temporary fileJilename 

NMAKE failed to delete the temporary inline file. 

terminated by user 

Execution of NMAKE was aborted by CTRL+C or CTRL+BREAK. 



UI060 

UI061 

UI062 

UI063 

UI064 

UI065 

UI066 

NMAKE Error Messages 

unable to close file: jllename 

NMAKE encountered an error while closing a file. 

One of the following may have occurred: 

• The file is a read-only file. 

• There is a locking or sharing violation. 

• The disk is full. 

IF option requires a filename 

The IF command-line option requires the name of the description file to be 
specified. 

To use standard input, specify '-' as the filename. 

One cause of this error is omitting the space between IF and the filename. 

missing filename with IX option 

The IX command-line option requires the name of the file to which diagnostic 
error output should be redirected. 

To use standard output, specify' -' as the output filename. 

missing macro name before '=' 
NMAKE detected an equal sign (=) without a preceding name. 

This error can occur in a recursive call when the macro corresponding to the 
macro name expands to nothing. 

MAKE FILE not found and no target specified 

No description file was found, and no target was specified. 

A description file can be specified either with the IF option or in a file named 
MAKEFILE. Note that NMAKE can create a target using an inference rule even 
if no description file is specified. 

invalid option option 

The option specified is not a valid option for NMAKE. 

option IN not supported; use NMAKE IN 

NMK does not support the IN option. Run NMAKE with the IN option. 

779 



Error Messages 

UI070 

UI071 

UI072 

UI073 

UI074 

UI075 

UI076 

UI077 

UI078 

UI079 

UI080 

780 

cycle in macro definition macro name 

A circular definition was detected in the given macro definition. 

Circular definitions are invalid. 

cycle in dependency tree for target targetname 

A circular dependency was detected in the dependency tree for the given target. 

Circular dependencies are invalid. 

cycle in include files: filename 

A circular inclusion was detected in the given include file. This file includes a 
file which eventually includes this file. 

don't know how to make targetname 

The specified target does not exist, and there are no commands to execute or in­
ference rules given for it. 

macro definition too long 

The value of a macro definition overflowed an internal buffer. 

string too long 

The text string overflowed an internal buffer. 

name too long 

The macro name, target name, or build-command name overflowed an internal 
buffer. 

Macro names cannot exceed 128 characters. 

program: return code value 

The given program invoked from NMAKE failed, returning the given exit code. 

constant overflow at directive 

A constant in the directive's expression was too big. 

illegal expression : divide by zero 

An expression tried to divide by zero. 

operator and/or operand usage illegal 

The expression incorrectly used an operator or operand. 

Check the allowed set of operators and their order of precedence. 



UI081 

UI082 

UI083 

UI084 

UI085 

UI086 

UI087 

UI088 

NMAKE Error Messages 

program: program not found 

NMAKE could not find the given program in order to run it. 

Make sure that the program is in the current path and has the correct extension. 

command: cannot execute command; out of memory 

NMAKE cannot execute the given command because there is not enough 
memory. 

Free some memory and run NMAKE again. 

target macro $(macroname) expands to nothing 

A target was specified as a macro name that has not been defined or has null 
value. 

NMAKE cannot process a null target. 

cannot create temporary fileJilename 

NMAKE was unable to create a temporary file it needed for processing the de­
scription file. 

The following are possible causes of this error: 

• The file already exists with a read-only attribute. 

• There is insufficient disk space to create the file. 

• The TMP environment variable was set to an invalid directory or path. 

cannot mix implicit and explicit rules 

A regular target was specified along with the target for a rule. 

A rule has the form 

.jromext.toext 

inference rule cannot have dependents 

Dependents are not allowed when an inference rule is being defined. 

cannot have: and:: dependents for same target 

A target cannot have both a single-colon (:) and a double-colon (::) dependency. 

invalid separator '::' on inference rule 

Inference rules can use only a single-colon (:) separator. 

781 



Error Messages 

UI089 

UI090 

UI091 

UI092 

UI093 

UI094 

UI095 

UI096 

782 

cannot have build commands for directive targetname 

Directives (for example, .PRECIOUS or .SUFFIXES) cannot have build com­
mands specified. 

cannot have dependents for directive targetname 

The specified directive (for example, .SILENT or .IGNORE) cannot have a 
dependent. 

invalid suffixes in inference rule 

The suffixes being used in the inference rule are not part of the .SUFFIXES list. 

too many names in rule 

An inference rule cannot have more than one pair of extensions. 

cannot mix special pseudotargets 

It is illegal to list two or more pseudotargets together. 

syntax error: only (NO)KEEP allowed here 

Something other than KEEP or NOKEEP appeared at the end of the syntax for 
creating an inline file. 

The syntax for generating an inline file allows an action to be specified after the 
second pair of angle brackets. Valid actions are KEEP and NOKEEP. Any other 
specification is invalid. 

The KEEP option specifies that NMAKE should leave the inline file on disk. The 
NOKEEP option causes NMAKE to delete the file before exiting. The default is 
NOKEEP. 

expanded command line commandline too long 

After macro expansion, the command line shown exceeded the length limit for 
command lines for the operating system. 

DOS permits up to 128 characters on a command line. 

If the command is for a program that can accept command-line input from a file, 
change the command and supply input from either a file on disk or an inline file. 
For example, LINK and LIB accept input from a response file. 

cannot open file filename 

The given file could not be opened, either because the disk was full or because 
the file has been set to be read-only. 



UI097 

UI098 

UI099 

U1450 

U1451 

U1452 

NMAKE Error Messages 

extmake syntax usage error, no dependent 

No dependent was given. 

In extmake syntax, the target under consideration must have either an implicit de­
pendent or an explicit dependent. 

extmake syntax in string incorrect 

The part of the string shown contains an extmake syntax error. 

stack overflow 

The description file being processed was too complex for the current stack alloca­
tion in NMAKE. 

NMAKE has a default allocation of Ox3000 (I2K). 

To increase NMAKE's stack allocation, run the EXEHDR utility with a larger 
stack option: 

EXEHDR 1ST ACK:stacksize 

where stacksize is a number greater than the current stack allocation in NMAKE. 

could not execute NMAKE.EXE 

NMK was not able to locate and execute the NMAKE utility. Make sure this file 
is on your path. 

out of memory 

There was not enough available memory to complete the operation. 

One of the following may be a cause: 

• There are too many TSR programs installed. Remove some TSRs. 

• A previous command did not release memory when it terminated. This can 
happen if you attempt to run a TSR from within NMK. 

• There are too many active command shells. Close the current shell by enter­
ing E X I T at the operating -system prompt. 

COMSPEC not defined 

The COMSPEC environment variable is not defined 

NMK requires COMSPEC to be set to the full pathname of the operating-system 
command processor. 

783 



Error Messages 

U1453 

U1454 

U1455 

error reading script file 

NMK encountered an error while reading the script file, which contains com­
mands to execute during a shell or build operation. 

This can be caused by a CTRL+BREAK or a disk error while reading the script file. 

command 
could not execute 

NMK was unable to execute the given command. 

One of the following may have occurred: 

• There was not enough available memory to execute the command. A previous 
command may not have released memory when it ended. This can happen if 
you attempt to run a TSR from within NMK. 

• The operating system denied access to the file: it is in use by another program. 

• The executable file is corrupt. 

bad command or file name 

An operating-system command or executable program could not be executed. 

Either the command was spelled incorrectly, or it does not exist on the paths 
specified in the PATH environment variable. 

F.10.2 NMAKE Errors 
Number 

U2001 

784 

NMAKE Error Message 

no more file handles (too many files open) 

NMAKE could not find a free file handle. 

One of the following may be a solution: 

• Reduce recursion in the build procedures. 

• In DOS, increase the number of file handles by changing the FILES setting in 
CONFIG.SYS to allow a larger number of open files. FILES=20 is the recom­
mended setting. 



NMAKE Error Messages 

F.10.3 NMAKE Warnings 
Number 

U4001 

U4002 

U4003 

U4004 

U4005 

U4006 

U4007 

U4008 

NMAKE Warning 

command file can be invoked only from command line 

A command file cannot be invoked from within another command file. The invo­
cation was ignored. 

The command file must contain the entire remaining command line. 

resetting value of special macro macro name 

The value of a macro such as $(MAKE) was changed within a description file. 

no match found for wildcardJilename 

There are no filenames that match the specified target or dependent file with the 
wildcard characters asterisk (*) and question mark (7). 

too many rules for target targetname 

Multiple blocks of build commands were specified for a target using single 
colons (:) as separators. 

To use multiple dependency blocks for the same target, specify a pair of colons 
( : :) as the separator. 

ignoring rule rule (extension not in .SUFFIXES) 

The rule was ignored because the suffix( es) in the rule are not listed in the 
.SUFFIXES list. 

special macro undefined : macroname 

The special macro name is undefined and expands to nothing. 

filenameJilename too long; truncating to 8.3 

The base name of the given file has more than eight characters, or the extension 
has more than three characters. NMAKE truncated the name to an eight­
character base and a three-character extension. 

You can use long filenames supported by HPFS under OS/2 by enclosing the 
name in double quotation marks. 

removed target target 

Execution of NMAKE was interrupted while NMAKE was trying to build the 
given target, and therefore the target was incomplete. Because the target was not 
specified in the .PRECIOUS list, NMAKE has deleted it. 

785 



Error Messages 

U4009 duplicate inline file filename 

The given filename is the same as the name of an earlier inline file. 

Reuse of this name caused the earlier file to be overwritten. This will probably 
cause unexpected results. 

F.11 PWB.COM Error Messages 

Number 

U1350 

U1351 

786 

This section lists fatal error messages generated by the DOS Microsoft Program­
mer's WorkBench (PWB.COM). PWB errors (U13xx) prevent PWB from 
starting up, or returning from a build or operating-system shell. 

PWB Error Message 

Could not execute PWBED.EXE 

PWB.COM could not find or load PWBED.EXE. 

Make sure your system has the following configuration: 

• Make sure PWBED.EXE can be found on the path specified in the PATH en­
vironment variable and that there is sufficient memory to operate PWB. 

• Check that your environment contains the recommended settings from the 
NEW -V ARS.BAT file created by the SETUP program when you installed 
PWB. 

PWBED.EXE is the executable file for the PWB editor and environment. 
PWB.COM processes the command line on start-up and handles all system-level 
commands when building projects and executing Shell, User, Print, and Compile 
commands. 

out of memory 

There is not enough available memory to complete the operation. 

Some possible causes for this error are 

• You may have too many TSR programs installed. Remove some TSRs. 

• A previous command may not have released memory when it terminated. 
This can happen if you attempt to run a TSR from within PWB. 

• You may have too many active command shells. Leave the current shell with 
the operating-system Exit command. 



U1352 

U1353 

U1354 

U1355 

PWB.COM Error Messages 

COMSPEC not defined 

The COMSPEC environment variable is not set. 

PWB requires COMSPEC to be set to the full pathname of the operating-system 
command processor. 

error reading script file 

PWB.COM encountered an error while reading the file that contains a script of 
commands to execute during a shell or build operation. 

This can be caused by a CTRL+BREAK or a disk error while reading the script 
file. 

could not execute 

PWB.COM was unable to execute the given command. 

Some possible causes for this error are 

• The executable file for the command was not found. 

• The pathname of the command was not found. 

• The operating system denied access to the file: it is in use by another program. 

• There is not enough available memory to execute the command. 

A previous command may not have released memory when it terminated. 
This can happen if you attempt to run a TSR from within PWB. 

• The environment is corrupt. 

• The executable file is corrupt. 

Bad Command or Filename 

An operating-system command or executable program could not be executed. 

The command may be spelled incorrectly, or it does not exist on the path 
specified in the PATH environment variable. Make sure that your environment 
contains the recommended settings from the NEW-VARS.BAT file created by 
the SETUP program when you installed PWB. 

787 



Error Messages 

F.12 PWBRMAKE Error Messages 
This section lists error messages generated by the Microsoft PWBRMAKE Util­
ity (PWBRMAKE): 

• Fatal errors (U 15xx) cause PWBRMAKE to stop execution. 

• Warnings (U45xx) indicate possible problems in the operation of 
PWBRMAKE. 

F.12.1 PWBRMAKE Fatal Errors 
Number 

U1500 

U1501 

U1502 

U1503 

788 

PWBRMAKE Error Message 

UNKNOWN ERROR 
Contact Microsoft Product Support Services 

PWBRMAKE detected an unknown error condition. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

unknown character character in option option 

PWBRMAKE did not recognize the given character specified for the given 
option. 

incomplete specification for option option 

The given option did not contain the complete specification that PWBRMAKE 
expected. 

cannot write to file filename 

PWBRMAKE could not write to the given file. 

One of the following may have occurred: 

• The disk was full. 

• A hardware error occurred. 



U1504 

U1505 

U1506 

PWBRMAKE Error Messages 

cannot position in file filename 

PWBRMAKE could not move to a location in the given file. 

One of the following may have occurred: 

• The disk was full. 

• A hardware error occurred. 

• The file was truncated. Truncation can occur if the compiler runs out of disk 
space or is interrupted when it is creating the .SBR file. 

cannot read from file filename 

PWBRMAKE could not read from the given file. 

One of the following may have occurred: 

• The file was corrupt. 

• The file was truncated. Truncation can occur if the compiler runs out of disk 
space or is interrupted when it is creating the .SBR file. 

cannot open file filename 

PWBRMAKE could not open the given file. 

One of the following may have occurred: 

• No more file handles were available. In DOS, increase the number of file han­
dles by changing the FILES setting in CONFIG.SYS to allow a larger number 
of open files. FILES=20 is the recommended setting. 

• The file was locked by another process. 

• The disk was full. 

• A hardware error occurred. 

• The specified output file had the same name as an existing subdirectory. 

789 



Error Messages 

U1507 

U1508 

U1509 

U1510 

790 

cannot open temporary file filename 

PWBRMAKE could not open one of its temporary files. 

One of the following may have occurred: 

• No more file handles were available. In DOS, increase the number of file han­
dles by changing the FILES setting in CONFIG.SYS to allow a larger number 
of open files. FILES=20 is the recommended setting. 

• The TMP environment variable was not set to a valid drive and directory. 

• The disk was full. 

cannot delete temporary file filename 

PWBRMAKE could not delete one of its temporary files. 

One of the following may have occurred: 

• Another process had the file open. 

• A hardware error occurred. 

out of heap space 

PWBRMAKE ran out of memory. 

One of the following may be a solution: 

• Reduce the memory that PWBRMAKE will require by using one or more op­
tions. Use lEi or IEs to eliminate some input files. Use IEm to eliminate 
macro bodies. 

• Free some memory by removing terminate-and-stay-resident (TSR) software. 

• Reconfigure the EMM driver. 

• Change CONFIG.SYS to specify a lower number of buffers (the BUFFERS 
command) and fewer drives (the LASTDRIVE command). 

corrupt .SBR file filename 

The given .SBR file is corrupt or does not have the expected format. 

Recompile to regenerate the .SBR file. 



U1511 

U1512 

U1513 

U1514 

PWBRMAKE Error Messages 

invalid response file specification 

PWBRMAKE did not understand the command-line specification for the re­
sponse file. The specification was probably wrong or incomplete. 

For example, the following specification causes this error: 

pwbrmake @ 

database capacity exceeded 

PWBRMAKE could not build a database because the number of definitions, ref­
erences, modules, or other information exceeded the limit for a database. 

One of the following may be a solution: 

• Exclude some information using the /Em, /Es, or /Ei option. 

• Omit the /lu option if it was used. 

• Divide the list of .SBR files and build multiple databases. 

nonincremental update requires all .SBR files 

An attempt was made to build a new database, but one or more of the specified 
.SBR files was truncated. This message is always preceded by warning U4502, 
which will give the name of the .SBR file that caused the error. 

PWBRMAKE can process a truncated, or zero-length, .SBR file only when a 
database already exists and is being incrementally updated. 

One of the following may be a cause: 

• The database was deleted. 

• The wrong database name was specified. 

• The database file was corrupted, requiring a full build. 

all .SBR files truncated and not in database 

None of the .SBR files specified for an update was a part of the original database. 
This message is always preceded by warning U4502, which will give the name of 
the .SBR file that caused the error. 

One of the following may be a cause: 

• The wrong database name was specified. 

• The database file was corrupted, requiring a full build. 

791 



Error Messages 

F.12.2 PWBRMAKE Warnings 
Number 

U4500 

U4501 

U4502 

792 

PWBRMAKE Warning 

UNKNOWN WARNING 
Contact Microsoft Product Support Services 

An unknown error condition was detected by PWBRMAKE. 

Note the circumstances of the error and notify Microsoft Corporation by follow­
ing the instructions on the Microsoft Product Assistance Request form at the 
back of one of your manuals. 

ignoring unknown option option 

PWBRMAKE did not recognize the given option and ignored it. 

truncated .SBR fileJilename not in database 

The given zero-length .SBR file, specified during a database update, was not orig­
inally part of the database. 

If a zero-length file not part of the original build of the database is specified 
during a rebuild of that database, PWBRMAKE issues this warning. One of the 
following may be a cause: 

• The wrong database name was specified. 

• The database was deleted. (Error U 1513 will result.) 

• The database file was corrupted, requiring a full build. 



Glossary 
8087, 80287, or 80387 coprocessor Intel chips 
that perform high-speed floating-point and binary 
coded decimal number processing. Also called 
math coprocessors. Floating-point instructions are 
supported directly by the 80486 processor. 

A 
address The memory location of a data item or 
procedure, or an expression that evaluates to an 
address. The expression can represent just the offset 
(in which case the default segment is assumed), or 
it can be in segment:offset format. 

address constant In an assembly-language in­
struction, an immediate operand derived by 
applying the SEG or OFFSET operator to an 
identifier. 

address range A range of memory bounded by 
two addresses. 

addressing modes The various ways a memory 
address or device I/O address can be generated. See 
far address, near address. 

aggregate types Data types containing more than 
one element, such as arrays, structures, and 
unions. 

animate A debugging feature in which each line 
in a running program is highlighted as it executes. 
The Animate command from the CodeView debug­
ger Run menu turns on animation. 

API (application program interface) A set of 
system-level routines that can be used in an applica­
tion program for tasks such as basic input/output 
and file management. In a graphics-oriented operat­
ing environment like Microsoft Windows, 
high-level support for video graphics output is part 
of the Windows graphical API. See Family applica­
tion program interface. 

arg In PWB, a function modifier that introduces 
an argument or an editing function. The argument 
may be of any type and is passed to the next func­
tion as input. For example, the PWB command 
Arg texta rg Copy passes the text argument 
textarg tothefunction Copy. 

argument A value passed to a procedure or func­
tion. See parameter. 

array An ordered set of continuous elements of 
the same type. 

ASCII (American Standard Code for Information 
Interchange) A widely used coding scheme where 
one-byte numeric values represent letters, numbers, 
symbols, and special characters. There are 256 
possible codes. The first 128 codes are stand­
ardized; the remaining 128 are special characters 
defined by the computer manufacturer. 

assembler A program that converts a text file con­
taining mnemonically coded microprocessor 
instructions into the corresponding binary machine 
code. MASM is an assembler. See compiler. 

assembly language A programming language in 
which each line of source code corresponds to a 
specific microprocessor instruction. Assembly lan­
guage gives the programmer full access to the 
computer's hardware and produces the most com­
pact, fastest executing code. See high-level 
language. 

assembly mode The mode in which the 
CodeView debugger displays the assembly­
language equivalent of the high-level code being 
executed. CodeView obtains the assembly-language 
code by disassembling the executable file. See 
source mode. 

793 



Glossary 

B 
base address The starting address of a stack 
frame. Base addresses are usually stored in the BP 
register. 

base name The portion of the filename that 
precedes the extension. For example, SAMPLE is 
the base name of the file SAMPLE.ASM. 

BCD (binary coded decimal) A way of repre­
senting decimal digits where four bits of one byte 
are a decimal digit, coded as the equivalent binary 
number. 

binary Referring to the base-2 counting system, 
whose digits are 0 and 1. 

binary expression A Boolean expression con­
sisting of two operands joined by a binary operator 
and resolving to a binary number. 

binary file A file that contains numbers in binary 
form (as opposed to ASCII characters representing 
the same numbers). For example, a program file is 
a binary file. 

binary operator A Boolean operator that takes 
two arguments. The AND and OR operators in as­
sembly language are examples of binary operators. 

BIOS (Basic Input/Output System) The software 
in a computer's ROM which forms a hardware­
independent interface between the CPU and its 
peripherals (for example, keyboard, disk drives, 
video display, I/O ports). 

bit Short for binary digit. The basic unit of binary 
counting. Logically equivalent to decimal digits, ex­
cept that bits can have a value of 0 or 1, whereas 
decimal digits can range from 0 through 9. 

breakpoint A user-defined condition that pauses 
program execution while debugging. CodeView can 
set breakpoints at a specific line of code, for a 
specific value of a variable, or for a combination of 
these two conditions. 

794 

buffer A reserved section of memory that holds 
data temporarily, most often during input/output 
operations. 

byte The smallest unit of measure for computer 
memory and data storage. One byte consists of 
eight bits and can store one 8-bit character (a letter, 
number, punctuation mark, or other symbol). It can 
represent unsigned values from 0 to 255 or signed 
values between -128 and + 127 . 

c 
C calling convention The convention that follows 
the order used by C-that is, pushing arguments 
onto the stack from right to left, or in reverse order 
from the way they are declared in the MASM proce­
dure. The C calling convention permits a variable 
number of arguments to be passed. 

chaining (to an interrupt) Installing an interrupt 
handler that shares control of an interrupt with 
other handlers. Control passes from one handler to 
the next until a handler breaks the chain by termi­
nating through an IRET instruction. See interrupt 
handler. 

character string A group of characters enclosed 
in single quotation marks (' ') or double quotation 
marks (" "). 

child process In protected mode, a new process 
created by a currently executing process (its parent 
process). 

Clipboard In PWB, a section of memory that 
holds text deleted with the Copy, Ldelete, or 
Sdelete functions. Any text attached to the clip­
board deletes text already there. The Paste function 
inserts text from the clipboard at the current cursor 
position. 

.COM The filename extension for executable files 
that have a single segment containing both code 
and data. Tiny model produces .COM files. 

combine type The segment-declaration specifier 
(AT, COMMON, MEMORY, PUBLIC, or STACK) 



which tells the linker to combine all segments of 
the same type. Segments without a combine type 
are private and are placed in separate physical 
segments. 

compact A memory model with multiple data seg­
ments but only one code segment. 

compiler A program that translates source code 
into machine language. Usually applied only to 
high-level languages, such as Basic, Pascal, 
FORTRAN, or C. See assembler. 

constant A value that does not change during pro­
gram execution. A variable, on the other hand, is a 
value that can-and usually does--change. See 
symbolic constant. 

constant expression Any expression that evalu­
ates to a constant. It may include integer constants, 
character constants, floating-point constants, or 
other constant expressions. 

o 
debugger A utility program that allows the pro­
grammer to execute a program one line at a time 
and view the contents of registers and memory in 
order to help locate the source of bugs or other 
problems. Examples are CodeView and Symdeb. 

declaration A construct that associates the name 
and the attributes of a variable, function, or type. 
See variable declaration. 

default A setting or value that is assumed unless 
specified otherwise. 

definition A construct that initializes and allocates 
storage for a variable, or that specifies either code 
labels or the name, formal parameters, body, and re­
turn type of a procedure. See type definition. 

device driver A program that transforms I/O re­
quests into the operations necessary to make a 
specific piece of hardware fulfill that request. 

Glossary 

Dialog Command window The window at the bot­
tom of the CodeView screen where dialog com­
mands can be entered, and previously entered 
dialog commands can be reviewed. 

direct memory operand In an assembly-language 
instruction, a memory operand that refers to the con­
tents of an explicitly specified memory location. 

directive An instruction that controls the assem­
bler's state. 

displacement In an assembly-language instruc­
tion, a constant value added to an effective address. 
This value often specifies the starting address of a 
variable, such as an array or multidimensional table. 

DLL See dynamic-link library. 

double-click To rapidly press and release a mouse 
button twice while pointing the mouse cursor at an 
object on the screen. 

double preCision A real (floating-point) value that 
occupies eight bytes of memory (MASM type 
REALS). Double-precision values are accurate to 
15 or 16 digits. 

doubleword A four-byte word (MASM type 
DWORD). 

drag To move the mouse while pointing at an ob­
ject and holding down one of the mouse buttons. 

dump To display the contents of memory at a 
specified memory range. 

dynamic linking The resolution of external refer­
ences at load time or run time (rather than link 
time). Dynamic linking allows the called sub­
routines to be packaged, distributed, and 
maintained independently of their callers. OS/2 ex­
tends the dynamic-link mechanism to serve as the 
primary method by which all system and nonsys­
tem services are obtained. 

795 



Glossary 

dynamic-link library (Dll) A file, in a special for­
mat, that contains the binary code for a group of 
dynamically linked routines. 

dynamic-link routine A routine that can be linked 
at load time or run time. 

E 
environment block The section of memory con­
taining the DOS environment variables. 

errorlevel code See exit code. 

. EXE The filename extension for a program that 
can be loaded and executed by the computer. The 
small, compact, medium, large, huge, and flat mod­
els generate .EXE files. See .COM, tiny. 

exit code A code returned by a program to the 
operating system. This usually indicates whether 
the program ran successfully. 

expanded memory Increased memory available 
after adding an EMS (Expanded Memory Specifica­
tion) board to an 8086 or 80286 machine. 
Expanded memory can be simulated in software. 
The EMS board can increase memory from I mega­
byte to 8 megabytes by swapping segments of 
high-end memory into lower memory. Applications 
must be written to the EMS standard in order to 
make use of expanded memory. See extended 
memory. 

expression Any valid combination of mathemati­
calor logical variables, constants, strings, and 
operators that yields a single value. 

extended memory Physical memory above 1 meg­
abyte that can be addressed by 80286-80486 
machines in protected mode. Adding a memory 
card adds extended memory. On 80386-based 
machines, extended memory can be made to simu­
late expanded memory by using a memory­
management program. 

extension The part of a filename (of up to three 
characters) that follows the period (.). An extension 

796 

is not required but is usually added to differentiate 
similar files. For example, the source-code file 
MYPROG.ASM is assembled into the object file 
MYPROG.OBJ, which is linked to produce the ex­
ecutable file MYPROG.EXE. 

external variable A variable declared in one mod­
ule and referenced in another module. 

F 
Family Application Program Interface (Family API) 
A standard execution environment under 
MS-DOS® (versions 2.x and later) and OS/2. The 
programmer can use the Family API to create an 
application that uses a subset of OS/2 functions (but 
a superset of MS-DOS 3.x functions). 

far address A memory location specified with a 
segment value plus an offset from the start of that 
segment. Far addresses require four bytes-two for 
the segment and two for the offset. See near 
address. 

field One of the components of a structure, union, 
or record variable. 

fixup The linking process that supplies addresses 
for procedure calls and variable references. 

flags register A register containing information 
about the status of the CPU and the results of the 
last arithmetic operation performed by the CPU. 

flat A nonsegmented linear address space. Selec­
tors in flat model can address the entire four 
gigabytes of addressable memory space. See 
segment, selector. 

formal parameters The variables that receive 
values passed to a function when the function is 
called. 

forward declaration A function declaration that 
establishes the attributes of a symbol so that it can 
be referenced before it is defined, or called from a 
different source file. 



frame The segment, group, or segment register 
that specifies the segment portion of an address. 

G 
General-Protection (GP) fault An error that oc­
curs in protected mode when a program accesses 
invalid memory locations or accesses valid loca­
tions in an invalid way (such as writing into ROM 
areas). 

gigabyte 1,024 megabytes, or 1,073,741,824 
bytes. 

global See visibility. 

global constant A constant available throughout a 
module. Symbolic constants defined in the module­
level code are global constants. 

global data segment A data segment that is 
shared among all instances of a dynamic-link 
routine; in other words, a single segment that is ac­
cessible to all processes that call a particular 
dynamic-link routine. 

global variable A variable that is available (vis­
ible) across multiple modules. 

granularity The degree to which library proce­
dures can be linked as individual blocks of code. In 
Microsoft libraries, granularity is at the object-file 
level. If a single object file containing three proce­
dures is added to a library, all three procedures will 
be linked with the main program even if only one 
of them is actually called. 

group A collection of individually defined seg­
ments that have the same segment base address. 

H 
handle An arbitrary value that an operating sys­
tem supplies to a program (or vice versa) so that the 
program can access system resources, files, periph­
erals, and so forth, in a controlled fashion. 

Glossary 

hexadecimal The base-16 numbering system 
whose digits are ° through F (the letters A through 
F represent the decimal numbers 10 through 15). 
This is often used in computer programming be­
cause it is easily converted to and from the binary 
(base-2) numbering system the computer itself uses. 

high-level language A programming language 
that expresses operations as mathematical or logical 
relationships which the language's compiler then 
converts into machine code. This contrasts with as­
sembly language, in which the program is written 
directly as a sequence of explicit microprocessor in­
structions. Basic, C, COBOL, FORTRAN, and 
Pascal are examples of high-level languages. See 
assembly language, compiler. 

hooking (an interrupt) Replacing an address in 
the interrupt vector table with the address of 
another interrupt handler. See interrupt handler, 
interrupt vector table, unhooking (an interrupt). 

huge A memory model (similar to large model) 
with more than one code segment and more than 
one data segment. However, individual data items 
can be larger than 64K, spanning more than one 
segment. See large. 

identifier A name that identifies a register or 
memory location. 

IEEE format A standard created by the Institute of 
Electrical and Electronics Engineers for repre­
senting floating-point numbers, performing math 
with them, and handling underflow/overflow condi­
tions. The 8087 family of coprocessors and the 
emulator package implement this format. 

immediate expression An expression that evalu­
ates to a number that can either be a component of 
an address or the entire address. 

immediate operand In an assembly-language in­
struction, a constant operand that is specified at 
assembly time and stored in the program file as part 
of the instruction opcode. 

797 



Glossary 

include file A text file with the .INC extension 
whose contents are inserted into the source-code 
file and immediately assembled. 

indirect memory operand In an assembly­
language instruction, a memory operand whose 
value is treated as an address that points to the loca­
tion of the desired data. 

instruction The unit of binary information that a 
CPU decodes and executes. In assembly language, 
instruction refers to the mnemonic (such as LDS or 
SHL) that the assembler converts into machine 
code. 

instruction prefix See prefix. 

interrupt Instructions that cause a new sequence 
of actions to take place. 

interrupt handler A routine that receives proces­
sor control when a specific interrupt occurs. 

interrupt service routine See interrupt handler. 

interrupt vector An address that points to an inter­
rupt handler. 

interrupt vector table A table maintained by the 
operating system. It contains addresses (vectors) of 
current interrupt handlers. When an interrupt oc­
curs, the CPU branches to the address in the table 
that corresponds to the interrupt's number. See in­
terrupt handler. 

K 
keyword A word with a special, predefined mean­
ing for the assembler. In MASM 6.0, keywords 
cannot be used as identifiers. 

kilobyte (K) 1,024 bytes. 

L 
label A symbol (identifier) representing the 
address of a code label or data objects. 

798 

language type The specifier that establishes the 
naming and calling conventions for a procedure. 
These are BASIC, C, FORTRAN, PASCAL, 
STDCALL, and SYSCALL. 

large A memory model with more than one code 
segment and more than one data segment, but with 
no individual data item larger than 64K (a single 
segment). See huge. 

library A file with the .LIB extension that stores 
modules of compiled code (object files). The linker 
extracts modules from the library and combines 
them with other object modules to create execu­
table program files. 

linked list A data structure in which each entry in­
cludes a pointer to the location of the adjoining 
entries. 

linking The process in which the linker resolves 
all external references by searching the run-time 
and user libraries, and then computes absolute off­
set addresses for these references. The linking 
process results in a single executable file. 

local constant A constant whose scope is limited 
to a procedure or a module. 

local variable A variable whose scope is confined 
to a particular unit of code, such as module-level 
code, or a procedure. See module-level code. 

logical device A symbolic name for a device that 
can be mapped to a physical (actual) device. 

logical line A complete program statement in 
source code, including the initial line of code and 
any extension lines. 

low-level input and output routines Run-time li­
brary routines that perform unbuffered, unformatted 
input/output operations. 

LSB (least-significant bit) The bit lowest in 
memory in a binary number. 



M 
machine code The binary numbers that a micro­
processor interprets as program instructions. See 
instruction. 

macro A block of text or instructions that has 
been assigned an identifier. When the assembler 
sees this identifier in the source code, it substitutes 
the related text or instructions and assembles them. 

main module The module containing the point 
where program execution begins (the program's 
entry point). See module. 

math coprocessor See 8087, 80287, or 80387 co­
processor. 

medium A memory model with multiple code seg­
ments but only one data segment. 

megabyte 1,024 kilobytes or 1,048,576 bytes. 

member One of the elements of a structure or 
union; also called a field. 

memory address A number through which a pro­
gram can reference a location in memory. 

memory map A representation of where in 
memory the computer expects to find certain types 
of information. 

memory model A convention for specifying the 
number and types of code and data segments in a 
module. See tiny, small, medium, compact, large, 
huge, and flat. 

memory operand An operand that specifies a 
memory location. 

meta A prefix that modifies the subsequent PWB 
function. 

mnemonic A word, abbreviation, or acronym that 
replaces something too complex to remember or 
type easily. For example, ADC is the mnemonic for 
the 8086's add-with-carry instruction. The 

Glossary 

assembler converts it into machine (binary) code, 
so it is not necessary to remember or calculate the 
binary form. 

module A discrete group of statements. Every pro­
gram has at least one module (the main module). In 
most cases, a module is the same as a source file. 

module-level code Program statements within 
any module that are outside procedure definitions. 

MSB (most-significant bit) The bit farthest to the 
left in a binary number. It represents 2(n-l), where n 
is the number of bits in the number. 

multitasking operating system An operating sys­
tem in which two or more programs, processes, or 
threads can execute simultaneously. 

N 
naming convention The way the compiler or as­
sembler alters the name of a routine before placing 
it into an object file. 

NAN Acronym for "not a number." The math co­
processors generate NANs when the result of an 
operation cannot be represented in IEEE format. 
For example, if two numbers being multiplied have 
a product larger than the maximum value permitted, 
the coprocessor returns a NAN instead of the 
product. 

near address A memory location specified by the 
offset from the start of the value in a segment regis­
ter. A near address requires only two bytes. See far 
address. 

nonreentrant See reentrant procedure. 

null character The ASCII character encoded as 
the value O. 

null pointer A pointer to nothing, expressed as the 
value O. 

799 



Glossary 

o 
.OBJ Default filename extension for an object file. 

object file A file (normally with the extension 
.OBJ) produced by assembling source code. It con­
tains relocatable machine code. The linker 
combines object files with run-time and library 
code to create an executable file. 

offset The number of bytes from the beginning of 
a segment to a particular byte within that segment. 

opcode The binary number that represents a 
specific microprocessor instruction. 

operand A constant or variable value that is 
manipulated in an expression or instruction. 

operator One or more symbols that specify how 
the operand or operands of an expression are 
manipulated. 

option A variable that modifies the way a pro­
gram performs. Options can appear on the 
command line, or they can be part of an initializa­
tion file (such as TOOLS.INI). An option is 
sometimes called a switch. 

OS/2 A multitasking operating system for the 
80286-80486 family of personal computers. 

output screen The CodeView screen that displays 
program output. Choosing the Output command 
from the View menu or pressing F4 switches to this 
screen. 

overflow An error that occurs when the value as­
signed to a numeric variable falls outside the 
allowable range for that variable's type. 

overlay A program component loaded into 
memory from disk only when needed. This tech­
nique reduces the amount of free RAM needed to 
run the program. 

800 

p 
parameter The name given in a procedure defini­
tion to a variable that is passed to the procedure. 
See argument. 

passing by reference Transferring the address of 
an argument to a procedure. This allows the proce­
dure to modify the argument's value. 

passing by value Transferring the value (rather 
than the address) of an argument to a procedure. 
This prevents the procedure from changing the argu­
ment's original value. 

physical memory The hardware addresses of the 
actual RAM or ROM present in the computer. 

physical segment The hardware address of a seg­
ment. 

pOinter A variable containing the address or rela­
tive offset of another variable. 

precedence The relative position of an operator 
in the hierarchy that determines the order in which 
expression elements are evaluated. 

preemptive Having the power to take precedence 
over another event. 

prefix A keyword (LOCK, REP, REPE, REPNE, 
REPNZ, or REPZ) that modifies the behavior of an 
instruction. MASM 6.0 checks to be sure the prefix 
is compatible with the instruction. 

private Data items and routines local to the mod­
ule in which they are defined. They cannot be 
accessed outside that module. See public. 

privilege level A hardware-supported feature of 
the 80286-80486 processors which allows the pro­
grammer to specify the exclusivity of a program 
or process. Programs running at low-numbered 
privilege levels can access data or resources at 
higher-numbered privilege levels, but the reverse is 
not true. This feature reduces the possibility that 



malfunctioning code will corrupt data or crash the 
operating system. 

privileged mode The term applied to privilege 
level O. This privilege level should only be used by 
the OS/2 kernel and device drivers. Special privi­
leged instructions are enabled by .286P, .386P, and 
.486P. This feature should not be confused with pro­
tected mode. 

procedure call An expression that invokes a pro­
cedure and passes actual arguments (if any) to the 
procedure. 

procedure definition A definition that specifies a 
procedure's name, its formal parameters, the decla­
rations and statements that define what it does, and 
(optionally) its return type and storage class. 

procedure prototype A procedure declaration that 
includes a list of the names and types of formal par­
ameters following the procedure name. 

process Generally, any executing program or 
code unit. This term implies that the program or 
unit is one of a group of processes executing 
independentl y. 

Program Segment Prefix (PSP) A 256-byte data 
structure at the base of the memory block allocated 
to a transient program. It contains linkages to DOS 
and data from DOS that the program can use or 
ignore. 

protected mode The 80286-80486 operating 
mode that permits mUltiple processes to run and not 
interfere with each other. This feature should not be 
confused with privileged mode. 

public Data items and procedures that can be 
accessed outside the module in which they are de­
fined. See private. 

Q 
qualifiedtype A user-defined type consisting of an 
existing MASM type (intrinsic, structure, union, or 

Glossary 

record), or a previously defined TYPEDEF type, to­
gether with its language or distance attributes. 

R 
radix The base of a number system. The default 
radix for MASM and CodeView is 10. 

RAM (random-access memory) Computer 
memory that can both be written to and read from. 
RAM data is volatile; it is usually lost when the 
computer is turned off. Programs are loaded into 
and executed from RAM. See ROM. 

real mode The normal operating mode of the 
8086 family of processors. Addresses correspond to 
physical (not mapped) memory locations, and there 
is no mechanism to keep one application from ac­
cessing or modifying the code or data of another. 
See protected mode. 

record A MASM variable that consists of a 
sequence of bit values. 

reentrant procedure A procedure that can be 
safely interrupted during its execution and restarted 
from its beginning in response to a call from a pre­
emptive process. After servicing the preemptive 
call, the procedure continues execution at the point 
at which it was interrupted. 

register operand In an assembly-language instruc­
tion, an operand that is stored in the register 
specified by the instruction. 

register window The optional CodeView window 
in which the CPU registers and the flag register bits 
are displayed. 

registers Memory locations in the processor that 
temporarily store data, addresses, and logical values. 

regular expression A text expression that speci­
fies a pattern of text to be matched (as opposed to 
matching specific characters). 

relocatable Not having an absolute address. The 
assembler does not know where the label, data, or 

801 



Glossary 

code will be located in memory, so it generates a 
fixup record. The linker provides the address. 

return value The value returned by a function. 

ROM (read-only memory) Computer memory that 
can only be read from and cannot be modified. 
ROM data is permanent; it is not lost when the ma­
chine is turned off. A computer's ROM often 
contains BIOS routines and parts of the operating 
system. See RAM. 

routine A generic term for a procedure or 
function. 

run-time dynamic linking The act of establishing 
a link when a process is started or is running. 

run··time error A math or logic error that can be 
detected only when the program runs. Examples of 
run-time errors are dividing by a variable whose 
value is zero or calling a DLL function that doesn't 
exist. 

s 
scope The range of statements over which a varia­
ble or constant can be referenced by name. See 
global constant, global variable, local constant, 
local variable. 

SCrE!en swapping A screen-exchange method that 
uses buffers to store the debugging and output 
screens. When you request the other screen, the two 
buffers are exchanged. This method is slower than 
flipping (the other screen-exchange method), but it 
works with most adapters and most types of 
programs. 

scroll bars The bars that appear at the right side 
and bottom of a window and some list boxes. Drag­
ging the mouse on the scroll bars allows scrolling 
through the contents of a window or text box. 

segment A section of memory, limited to 64K 
with 16-bit segments or 4 gigabytes with 32-bit seg­
ments, containing code or data. Also refers to the 
starting address of that memory area. 

802 

sequential mode The mode in CodeView in 
which no windows are available. Input and output 
scroll down the screen, and the old output scrolls 
off the top of the screen when the screen is full. 
You cannot examine previous commands after they 
scroll off the top. This mode is required with com­
puters that are not IBM compatible. 

selector An address segment component supplied 
by a protected-mode operating system (such as 
OS/2). Programs that attempt to modify or directly 
manipulate these values may crash or cause system 
malfunctions. 

shared memory A memory segment that can be 
accessed simultaneously by more than one process. 

shell escape A method of gaining access to the 
operating system without leaving CodeView or 
losing the current debugging context. It is possible 
to execute DOS commands, then return to the de­
bugger. 

sign extended The process of widening (for ex­
ample, going from a byte to a word, or a word to a 
doubleword) a negative integer while retaining its 
correct value and sign. 

signed integer A binary integer that uses the 
most-significant bit to represent signed quantities. 
If this bit is one, the number is negative; if zero, the 
number is non-negative. See two's complement, 
unsigned integer. 

single precision A real (floating-point) value that 
occupies four bytes of memory. Single-precision 
values are accurate to six or seven decimal places. 

Single-tasking environment An environment in 
which only one program runs at a time. DOS is a 
single-tasking environment. 

small A memory model with only one code seg­
ment and only one data segment. 

source file A text file containing symbols that de­
fine the program. 



source mode The mode in which CodeView dis­
plays the assembly-language source code that 
represents the machine code currently being ex­
ecuted. 

stack A dynamically shrinking and expanding 
area of memory in which data items are stored con­
secutively and removed on a last-in, first-out basis. 
A stack can be used to pass parameters to proce­
dures. 

stack frame The portion of a stack containing a 
particular procedure's local variables and 
parameters. 

stack probe A short routine called on entry to a 
function to verify that there is enough room in the 
program stack to allocate local variables required 
by the function and, if so, to allocate those varia­
bles. 

stack switching Changing pointers (usually the 
SS:SP register) to point to another stack or stack 
frame. 

stack trace A symbolic representation of the func­
tions that are being executed to reach the current 
instruction address. As a function is executed, the 
function address and any function arguments are 
pushed on the stack. Therefore, tracing the stack 
shows the active functions and their arguments. 

standard error The device to which a program 
can send error messages. The display is normally 
standard error. 

standard input The device from which a program 
reads its input. The keyboard is normally standard 
input. 

standard output The device to which a program 
can send its output. The display is normally stand­
ard output. 

statement A combination of labels, data declara­
tions, directives, or instructions that the assembler 
can convert into machine code. 

Glossary 

static linking The combining of multiple object 
and library files into a single executable file with 
all external references resolved. See dynamic 
linking. 

status bar The line at the bottom of the PWB or 
CodeView screen. The status bar displays text posi­
tion, keyboard status, current context of execution, 
and other program information. 

STDCAll A calling convention that uses caller 
stack cleanup if the VARARG keyword is specified. 
Otherwise the called routine must clean up the 
stack. 

string A contiguous sequence of characters iden­
tified with a symbolic name. 

string literal A string of characters and escape 
sequences delimited by single quotation marks 
(' ') or double quotation marks (" "). 

structure A set of elements or fields, which may 
be of different types, grouped under a single name. 

structure member One of the elements of a struc­
ture. Also called a field. 

switch See option. 

symbol A name that identifies a memory location 
(usually for data). 

symbolic constant A constant represented by a 
symbol rather than the constant itself. Symbolic 
constants are defined with EQU statements. They 
make a program easier to read and modify. 

SYSCAll A language type for a procedure. Its 
conventions are identical to C's, except no under­
score is prefixed to the name. All OS/2 version 2.0 
functions use the SYSCALL language type. 

T 
tag The name assigned to a structure, union, or 
enumeration type. 

803 



Glossary 

task See process. 

text Ordinary, readable characters, including the 
uppercase and lowercase letters of the alphabet, the 
numerals 0 through 9, and punctuation marks. 

text box In PWB, a box where you type informa­
tion needed to carry out a command. A text box 
appears within a dialog box. The text box may be 
blank or contain a default entry. 

tiny Memory model with a single segment for 
both code and data. This limits the total program 
size to 64K. Tiny programs have the filename exten­
sion .COM. 

toggle A function key or menu selection that 
turns a feature off if it is on, or on if it is off. Used 
as a verb, "toggle" means to reverse the status of a 
feature. 

TOOLS.INI A file containing initialization informa­
tion for many of the Microsoft utilities, including 
PWB. 

two's complement A form ofbase-2 notation in 
which negative numbers are formed by inverting 
the bit values of the equivalent positive number and 
adding I to the result. 

type A description of a set of values and a valid 
set of operations on items of that type. For ex­
ample, a variable of type BYTE can have any of a 
set of integer values within the range specified for 
the type on a particular machine. 

type checking An operation in which the assem­
bler verifies that the operands of an operator are 
valid or that the actual arguments in a function call 
are of the same types as the function definition's 
parameters. 

type definition The storage format and attributes 
for a data unit. 

804 

u 
unary expression An expression consisting of a 
single operand preceded or followed by a unary 
operator. 

unary operator An operator that acts on a single 
operand, such as NOT. 

underflow An error condition that occurs when a 
calculation produces a result too small for the com­
puter to represent. 

unhooking (an interrupt) The act of removing 
your interrupt handler and restoring the original 
vector. See hooking (an interrupt). 

union A set of values (in fields) of different types 
that occupy the same storage space. 

unresolved external See unresolved reference. 

unresolved reference A reference to a global or 
external variable or function that cannot be found, 
either in the modules being linked or in the libraries 
linked with those modules. An unresolved reference 
causes a fatal link error. 

unsigned integer A positive binary integer; all its 
bits represent the magnitude of the number. See 
signed integer. 

user-defined type A data type defined by the user. 
It is usually a structure, union, record, or pointer. 

v 
variable declaration A statement that initializes 
and allocates storage for a variable of a given type. 

virtual disk A portion of the computer's random 
access memory reserved for use as a simulated disk 
drive. Also called an electronic disk or RAM disk. 
Unless saved to a physical disk, the contents of a 
virtual disk are lost when the computer is turned off. 

virtual memory Memory space allocated on a 
disk, rather than in RAM. Virtual memory allows 



large data structures that would not fit in conven­
tional memory, at the expense of slow access. 

visibility The characteristic of a variable or func­
tion that describes the parts of the program in 
which it can be accessed. An item has global visi­
bility if it can be referenced in every source file 
constituting the program. Otherwise, it has local 
visibility. 

w 
watch window The window in CodeView that dis­
plays watch statements and their values. A variable 
or expression is watchable only while execution is 
occurring in the section of the program (context) in 
which the item is defined. 

window A discrete area of the screen in PWB or 
CodeView used to display part of a file or to enter 
statements. 

window commands Commands that work only in 
CodeView's window mode. Window commands 
consist of function keys, mouse selections, CTRL 

and ALT key combinations, and selections from pop­
up menus. 

window mode The mode in which CodeView dis­
plays separate windows, which can change 
independently. CodeView has mouse support and a 
wide variety of window commands in window 
mode. 

word A data unit containing 16 bits (two bytes). It 
can store values from 0 to 65,535 (or -32,768 to 
+32,767). 

Glossary 

805 





Index 
< > (angle brackets) 

default parameters, 234 
epilogues, 206 
FOR loops, 245 
FORC loops, 247 
macro text delimiters, 237 
prologues, 206 
records, 137 
structures and unions, 127 

@@: (anonymous label), 175 
@ (at sign) 

H2INC, 443 
HELPMAKE, 317 
predefined symbols, 13-14 

\ (backslash character), 26, 294, 395 
[ ] (brackets), 113 
: (colon),26,560,562 
{ } (curly braces), 127, 137 
$ (current address operator), 575 
$ (dollar sign), 116 
. (dot operator), 131,560,576 
:: (double colon), 202, 560, 562 
" (double quotation marks), 115,561-562 
;; (double semicolon), 231 
% (expansion operator), 238-239, 251, 564 
> (help delimiter), 328-329 
[ ] (index operator), 67 
\ (line-continuation character), 127 
! (literal-character operator), 237 
( ) (parentheses), 112 
+ (plus operator), 66, 69, 576 
I? option, LINK, 360 
? (question mark initializer), 88, 115,574-575 
: (segment-override operator), 55,62,67 
; (semicolon), 26, 341 
, (single quotation mark), 115,561-562 
. (structure-member operator), 67, 70 
& (substitution operator), 240-242, 578 
.186 directive, 43 
.286 directive, 43, 456 
.286P directive, 43, 456 
.287 directive, 43 
.386 directive 

FLAT, 33,41 
processor mode, specifying, 43 
segment mode, setting, 51, 71 

.386P directive, 43, 456 

.387 directive, 43 

.486 directive 
FLAT,41 
processor mode, specifying, 43 
segment mode, setting, 51, 71 

.486P directive, 43, 456 

.8086 directive, 456 
8086-based processors, 5-7 
.8087 directive, 43 
8087 math coprocessor, 7, 141, 793 
8088 processor, 80186 processor, 6 
80188 processor, 6 
80286 processor, 7 
80287 math coprocessor, 7, 141, 793 
80386 processor, 7 
80387 math coprocessor, 7,141,793 
80486 processor, 7, 141 

A 
/ A option, LINK, 345 
AAA instruction, 163 
AAD instruction, 163 
AAM instruction, 163 
AAS instruction, 163 
ABS operand, 223 
ADC instruction, 96-98 
ADD instruction, 96-98 
ADDR operator, 202 
Address range, 793 
Addresses 

base, 794 
constant, 793 
defined, 793 
displacement of, 68 
dynamic, 78 
effective, 68 
errors in, 59 
far, 60, 79, 796 
near, 60, 79, 799 
physical, 10-11 
registers, loading into, 79 
relocatable, 60 
segmented, 10, 12, 57 

Addressing modes 
defined, 793 
direct registers, 65-67 
indirect registers, 68-71 
scaling operands, 72 
specifying, 63 

807 



Index 

Aliases, 88, 575 
ALIGN directive, 6, 37 
Align types, 50 

See also individual entries 
/ALIGNMENT option, LINK, 345 
.ALPHA directive, 52 
AND instruction, 32, 102-103 
Angle brackets « » 

default parameters, 234 
epilogues, 206 
FOR loops, 245 
FORC loops, 247 
macro text delimiters, 237 
prologues, 206 
records, 137 
structures and unions, 127 

Anonymous label (@@:), 175 
API (Application Program Interface), 460, 793 
Applications 

bound,460 
dual-mode, 455 
OS/2. See OS/2 applications 

Architecture 
segmented, 5, 9 
unsegmented, 9, 37 

Arg function, PWB, 395, 793 
Arguments 

defined, 793 
mixed-language programs, passing in, 522 
qualifiedtype, 20 
stack,186 

Arrays 
accessing elements in, 112 
declaring, 111-112 
defined, 111, 793 
defining, 18 
DUP, declaring with, 112, 130 
instructions for processing, 117-123 
LENGTH OF directive, 114 
multiple-line declarations for, 112 
number of bytes in, 114 
referencing, 113 
SIZEOF directive, 114 

ASCII, defined, 793 
Assembler, 793 
Assembly 

actions during, 27 
conditional. See Conditional assembly 
INCLUDE files, 217 
language 

808 

book list, xxi 
defined, 793 
mixed-language programs, 520 

Assembly (continued) 
listing files. See Listing files 
mode, 793 
two-pass, 565 

Assembly-time variables, 236 
ASSUME directive 

code segments, changing, 46, 565 
correct stack, accessing, 467 
enhancements, 551 
general-purpose registers, 76 
.MODEL, generated with, 43 
segment registers, setting, 54-59 
.ST ACK, generated with, 43 

/AT command-line option, ML, 41 
AT address combine type, 51 
At sign (@) 

H2INC, 443 
HELPMAKE, 317 
predefined symbols, 13-15 

Attributes. See Segments, attributes 

B 
IE option, LINK, 345 
Backslash character (\) 

MASM code, 26 
NMAKE macros, 294 
PWB macros, 395 

Backus-Naur Form. See BNF grammar 
Base Pointer (BP) register, 95 
Basic/MASM programs, 533-538 
lEA TCH option, LINK, 345 
BCD. See Binary Coded Decimals 
Bias, 145 
Binary Coded Decimals, 162-165, 794 
Binary expression, 794 
Binary file, 794 
Binary operator, 794 
BIND utility 

described, 460 
error messages, 629-632 

Bits, 102-106 
BNF grammar, 20, 585-586 
Bound applications, 460 
BOUND instruction, 113 
BP (Base Pointer) register, 95 
Brackets ([]), 113 
.BREAK directive, 181 
BSF instruction, 104 
BSR instruction, 104 
Byte, 794 



BYTE align type, 50 
BYTE directive, 86 

c 
C calling convention, 518 
C function prototypes, 447 
C header files, 433 
C/MASM programs, 523-528 
CALL instruction, 185,456 
Calling conventions 

C, 518,794 
directives, specifying with, 42 
list, 516 
mixed-language programming, 516-517 
OS/2,457 
Pascal,519 
STDCALL, 519-520, 803 
SYSCALL, 803 

CARRY? operand, 183 
Case sensitivity 

enforcing, 556 
macro functions, predefined, 248 
MASM statements, 26 
radix specifiers, 15 
reserved words, 12,615 
specifying 

command-line options, in, 30 
language type, 556 
OPTION directive, in, 30 

symbols, predefined, 13 
CASEMAP:ALL argument, OPTION directive, 30 
CASEMAP:NONE argument, OPTION directive, 30, 437 
CASEMAP:NOTPUBLIC argument, OPTION 

directive, 30 
@CatStr predefined macro function, 248, 250 
CATSTR directive, 248, 250 
CBW instruction, 92 
CDQ instruction, 92 
Chaining to interrupts, 794 
Character string, 794 
CLC instruction, 108 
CLI instruction, 211 
Client program, 465 
CMC instruction, 108 
CMP instruction, 173 
CMPS instruction, 117, 119, 121,561 
CMPSB instruction, 122 
/CO option, LINK, 346 
Code segment. See Segments, code 
CODE statement, LINK, 381 
Code, near or far, 45-46,61 

.CODE directive, 38,45-46 
@CodeSize predefined symbol, 45 
/CODEVIEW option, LINK, 346 
CodeView 

8087 window, 404 
animation, 793 
arrays and strings, viewing, 413 
breakpoints, 420-421,426, 794 
C expression evaluator, 409-411 
calling procedures, 426 
Command window, 403 
command-line arguments, 426 
command-line options (list), 428 
CURRENT.STS file, 407 
data display format, 409 
data, viewing, 407-409 
debugging techniques, 407 
display mode, 423 
displaying, 418 
dynamic replay, 424 
error messages, 632-660 
expanded/extended memory, 427 
limitations under OS/2, 425 
live expressions, 417 
Local window, 412 
memory, 416-417, 419 
Memory window, 404 
multiple windows, 426 
OS/2 programs, compiling, 425 
output screen, 800 
pointers, defining with TYPEDEF, 413 
printing from, 427 
program execution, 419 
Quick Watch command, 415 
Radix command, 409 
redirecting I/O, 427 
registers, 419 
Register window, 404, 801 
replaying sessions, 424 
single-stepping, 422 
source mode, 803 
Source window, 403 
status bar, 803 
structures, viewing, 413-415 
TOOLS.INI file, 430 
variables, 419 
Watch window, 408-409 
windows 

commands, 805 
described,403-406 
mode, 805 

colon (:), 26 

Index 

809 



Index 

.COM files 
defined, 794 
initial IP, setting, 59 
relocatable segment expression, lacking, 65 
tiny model, 41, 51-52 

Combine types 
See also individual entries 
defined, 794 
list, 51 

COMM directive, 20, 215, 221 
Command-line driver, ML, xix 
Command-line options 

CodeView, 428--430 
H2INC, 435--437 
HELPMAKE,309-314 
LINK, 344-360 
listing file options (list), 606 
ML. See ML, command-line options 
NMAKE, 291-293 

COMMENT directive, 26 
Comments 

extended lines, 554 
macros, 231 
source code, 25-26 

COMMON combine type, 51, 366 
Communal variables, 221 
Compact model. See Memory models, compact 
Compatibility, MASM 5.1. See MASM 5.1 compatibility 
Compiler, 795 
Conditional assembly 

assembly behavior, changing, 27 
conditions, testing for, 33 
directives, 33 
pointers, 82, 192 

Conditional-error directives (list), 35 
.CONST directive, 38, 44--45 
Constants 

address, 793 
defined, 15, 795 
expressions, 15, 795 
global,797 
immediate, 64 
integer, 15 
local,798 
size, 15,570 
symbolic, 16,803 

.CONTINUE directive, 181 
Coprocessors 

architecture, 145-146 
control registers, 160 
data format in registers, 145 
defined, 141, 793 
described, 7, 145 

810 

Coprocessors (continued) 
instructions 

arithmetic, 153-155 
data transfer, 152 
described, 152 
list, 622 
overview, 146 
program control, 157-160 

memory access, 150 
operand formats, 146-150 
specifying, 43, 145 
status word register, 160 
steps for using, 150 

fCp command-line option, ML, 13,248,346 
fCP[ARMAXALLOC] option, LINK, 346 
@Cpu predefined symbol, 256 
Curly braces ({ }), 127, 137 
Current address operator ($),575 
@CurSeg predefined symbol, 44, 222 
CWD instruction, 92 
CWDE instruction, 92 

D 
DAA instruction, 164 
DAS instruction, 164 
Data segment. See Segments, data 
DATA statement, LINK, 381 
Data types 

arrays. See Arrays 
attributes for, 19 
Binary Coded Decimals, 162 
CodeView, 19 
defined,18 
defining, 88 
directives, 18 
floating-point, 142 
initializers, as, 18 
integers, allocating memory for, 85-86 
new features, MASM 6.0, 552-555 
qualifiedtypes, 19,218 
real, 18, 142 
signed, 18, 86-87 
strings. See Strings 
structures, 124 
TYPEDEF,19 
unions, 124 
user-defined, 19 

Data-sharing methods, 215 
.DATA directive, 38,44--45 
.DAT A? directive, 38, 44--45 
@data predefined symbol, 44 



data, near or far, 44-45, 61 
@DataSize predefined symbol, 44, 82 
DB directive, 86 
DD directive, 86 
Debugger, 795 
Debugging. See CodeView, debugging techniques 
DEC instruction, 96-98 
Default setting or value, 795 
Definition, 795 
Dependent, description block, 266 
Description files (NMAKE). See NMAKE, description 

files 
DESCRIPTION statement, LINK, 377 
Device driver, 795 
DF directive, 86 
DGROUP group name 

DOS programs, 47 
DS registers, initializing to, 60 
memory, allocating, 348 
.MODEL, defined by, 44 
near data, accessing, 61 
OS/2 programs for, 48 
segment 

order, 347 
placement, 39-41,43,55,60 

Direct memory operands 
defined, 795 
loading offset of, 80 
overview, 63, 65-67 

Directives 
.186,43 
.286,43,456 
.286P, 43, 456 
.287,43 
.386. See .386 directive 
.386P, 43, 456 
.387,43 
.486. See .486 directive 
.486P, 43, 456 
.8086,456 
.8087,43 
= (equal), 16 
ALIGN, 6, 37 
.ALPHA,52 
ASSUME. See ASSUME directive 
.BREAK,181 
BYTE,86 
CATSTR, 248, 250 
.CODE, 38, 45-46 
COMM, 20, 215, 221 
COMMENT, 26 
conditional assembly, 33-34 
conditional error, 35, 565 

Directives (continued) 
.CONST, 38, 44-45 
.CONTINUE,181 
data declarations, 88 
data types, 18 
.DA T A, 38, 44-45 
.DATA?, 38, 44-45 
DB,86 
DD,86 
decision, 176 
defined, 795 
DF,86 
.DOSSEG,52 
DQ,86 
DT,86 
DW,86 
DWORD,86 
ECHO,240 
ELSE,33-34 
.ELSE,176 
ELSEIF, 33-34,565 
.ELSEIF, 176, 565 
ELSEIFE, 576 
END, 38, 59 
ENDIF, 33-34 
.ENDIF,176 
ENDS,49 
.ENDW, 178 
EQU, 16,575 
.ERR,35 
.ERRl,565 
.ERR2,565 
.ERRB, 35,234 
.ERRDEF,35 
.ERRDIF,35 
.ERRE,35 
.ERRIDN,35 
.ERRNB, 35, 234 
.ERRNDEF, 35 
.ERRNZ,35 
EVEN,6 
.EXIT, 38,46-48,457 
EXITM,251 
EXTERN. See EXTERN directive 
EXTERNDEF. See EXTERNDEF directive 
.FARDATA, 38,44-45 
.FARDATA?, 38,44-45 
floating-point, 142 
FOR, 245-246, 252 
FORC, 247 
FWORD,86 
GROUP, 55-56 
IF,33-34,565 

Index 

811 



Index 

Directives (continued) 
.IF, 176,565 
IFB, 34, 235 
IFDEF, 34, 566 
IFDIF,34 
IFE,34 
IFIDN,34 
IFNB, 34, 235 
IFNDEF, 34, 566 
INCLUDE,216-217 
INCLUDELIB, 225, 456, 475 
INSTR, 248-249 
INVOKE. See INVOKE directive 
LABEL,20 
LENGTHOF. See LENGTHOF directive 
LIST,618 
.LIST, 606,617 
.LISTMACRO, 607 
.LISTMACROALL,607 
LOCAL, 194-197,235 
loop-generating, 178 
.MODEL. See .MODEL directive 
.MSFLOAT,567 
.N087, 43, 557 
obsolete, 567 
OPTION. See OPTION directive 
ORG,59 
PAGE,606 
POPCONTEXT, 256, 557 
PROC, 199,520 
PROTO. See PROTO directive 
PUBLIC, 215, 223 
PUSHCONTEXT, 256, 557 
QWORD,86 
.RADIX, 15 
REAL4, 142-143 
REAL8,142-143 
REALlO,142-143 
renamed in MASM 6.0, 558 
REPEAT,244 
. REPEAT, 178 
SBYTE,86 
SDWORD, 86 
SEGMENT,49-52 
segment order, controlling, 52 
.SEQ,52 
SIZEOF. See SIZEOF directive 
SIZESTR, 248-249 
.ST ACK. See .STACK directive 
.STARTUP. See .STARTUP directive 
SUBSTR,248 
SUBTITLE, 606 
SWORD,86 

812 

Directives (continued) 
TBYTE, 86,162 
TEXTEQU. See TEXTEQU directive 
TITLE,606 
TYPE. See TYPE directive 
TYPEDEF. See TYPEDEF directive 
.UNTIL,178 
.UNTILCXZ, 178 
WHILE,244 
.WHILE,178 
WORD,86 

Displacement, 69, 795 
Distance attributes, 19 
DIV instruction, 101 
Division 

instructions, 101 
shift operations, 106 

DLLs 
advantages of, 465 
building, 474 
client program, 465 
data segments, changing, 473 
defined, 465, 796 
example, 470 
exporting, 466,469 
F ARSTACK, 467, 469 
floating-point operations, 467 
generating, 475 
IMPLIB,475 
initialization code, 473 
linking, 476 
.MODEL,469 
module attributes, 469 
module-definition files, 473, 475 
NEARST ACK, 469 
programming requirements, 466 
re-entrance, 466--467 
segments in, 468 
stacks in, 51 
termination code, 473 
using, 463 

/DO option, LINK, 347 
Document conventions, xxii 
Dollar sign ($), 116 
DOS applications, differences from OS/2 

applications, 456 
DOS interrupts, 208 
DOS operating system, 6-9 
/DOSSEG option, LINK, 347 
.DOSSEG directive, 52 
Dot operator (.), 131,560,576 
DOTNAME argument, OPTION directive, 30 
Double colon (::), 202 



Double quotation marks ("), 115 
Double semicolon (;;), 231 
Doublewords, 86, 795 
DQ directive, 86 
IDS [ALLOCATE] option, LINK, 348 
DT directive, 86 
Dual-mode applications, 455 
Dump, memory, 795 
DUP operator 

arrays, 112, 130 
record variables, 137 
structures and unions, 127 

DW directive, 86 
DWORD align type, 50 
DWORD directive, 86 
Dynamic linking 

defined,795 
run-time, 802 

Dynamic-link libraries. See DLLs 
Dynamic-link routines, 796 

E 
IE option, LINK, 348 
ECHO directive, 240 
Editor. See PWB 
ELSE directive, 33-34 
.ELSE directive, 176 
ELSEIF directive, 33-34 
.ELSEIF directive, 176 
EMULATOR argument, OPTION directive, 32,161 
Emulator libraries, 161 
Encoding options, HELPMAKE, 310 
END directive, 38, 59 
ENDIF directive, 33-34 
.ENDIF directive, 176 
ENDS directive, 49 
.ENDW directive, 178 
ENTER instruction, 188 
Environment 

block,796 
target, 7 
variables 

INCLUDE,217 
LINK,360 
returning values of, 14 

IEP command-line option, ML, 550, 607 
EPILOGUE argument, OPTION directive, 31, 205-207 
Epilogue code 

defined,203 
macros, 205-206 

Epilogue code (continued) 
PROC statement, specifying arguments in, 191 
procedures, 31 
RET instruction, 564 
standard, 204 
user-defined, 205 

EQU directive, 16,575 
Equal directive (=), 16 
Equates, predefined. See Predefined symbols 
.ERR directive, 35 
.ERRB directive, 35, 234 
.ERRDEF directive, 35 
.ERRDIF directive, 35 
.ERRE directive, 35 
.ERRIDN directive, 35 
.ERRNB directive, 35, 234 
.ERRNDEF directive, 35 
.ERRNZ directive, 35 
Error messages 

BIND, 629-632 
CodeView, 632-660 
EXEHDR, 661-662 
H2INC, 670-710 
HELPMAKE, 663-669 
IMPLIB,710-712 
LIB,712-718 
LINK,718-739 
ML,739-773 
NMAKE,774-786 
overview, 629 
PWB,786-787 
PWBRMAKE,788-792 

ERROR operand, 54 
Errorlevel code. See Exit code 
Errors 

general-protection fault, 797 
run-time, 802 
standard, 803 

EVEN directive, 6 
Executable (.EXE) files 

controlling size of, 226 
defined, 796 

EXEHDR utility 
described, 462 
error messages, 661-662 

IEXEP ACK option, LINK, 348 
EXETYPE statement, LINK, 378 
.EXIT directive, 38, 46-48,457-458 
Exit codes 

applications, checked by, 48 
defined, 796 
LINK,369 
NMAKE,303 

Index 

813 



Index 

EXITM directive, 251 
Expansion operator (%),238-239, 251, 564 
EXPORT operand, 191 
EXPORTS statement, LINK, 386 
EXPR 16 argument, OPTION directive, 17, 32, 579 
EXPR32 argument, OPTION directive, 17,32,579 
Expressions 

assembly-time evaluation, 27 
binary, 794 
constant, 15 
defined,796 
immediate, 797 
loop conditions, evaluating, 184 
OPTION M510 behavior, 571 
order of evaluation, 17 
regular, 801 
size, 573 
unary, 804 
word size, 17,32 

Extension, filename, 796 
EXTERN directive 

data-sharing, 215 
executable file size, limiting, 226 
module-specific, 223 
overview, 20 
positioning, 222 
procedure prototypes, declaring, 198 

External declarations, 222 
External variables, 221,575, 796 
EXTERNDEF directive 

F 

data-sharing, 215 
H2INC, generated by, 440 
overview, 20 
positioning, 222 
procedure prototypes, declaring, 198 
symbols, declaring, 218-219 

IF, option, LINK, 349 
Family API (Application Program Interface), 460, 796 
Far address, 74, 796 
Far code, 61 
Far data, 61-63 
FAR operator, 171 
Far pointer, 74, 79 
IFARCALLTRANSLATION option, LINK, 349 
.FARDATA directive, 38,44-45 
.FARDATA? directive, 44-45 

814 

FARSTACK operand 
DOS program, initializing, 47 
example, 39 
grouping, 39 
OS2 program, initializing, 461 
special cases, setting for, 42 

Farwords, 86 
FCOM instruction, 158 
Fields, 25-26, 796 
Files 

base name, 794 
binary, 794 
.COM 

defined, 794 
initial IP, setting, 59 
relocatable segment expression, lacking, 65 
tiny model, specifying, 41, 51-52 

.EXE,796 
executable, 29 
extensions, 796 
.LIB,798 
line numbers, 14 
naming, 14 
.OBJ,800 
object, 800 
source, 802 

First pass listings, 607 
Fixup, 796 
IFI command-line option, ML, 607 
Flags 

CARRY?,183 
operands, as, 183 
OVERFLOW?, 183,457 
PARITY?,183 
SIGN?,183 
stack, saving on, 96 
ZERO?,183 

Flags register. See Registers, flags 
Flat model. See Memory models, flat 
FLAT operand, 51, 54 
FLD1 instruction, 153 
FLDZ instruction, 153 
Floating -point 

calculations, 7 
constants, 142-143 
emulation, 161 
instructions 

arithmetic, 154-155 
controlling, 32 
data transfer, 153 
not emulated (list), 161 
program control, 157-161 



Floating -point (continued) 
operations, 152 
values 

double precision, 795 
single precision, 802 

variables, 142-144 
FOR directive, 245-246, 252 
FORC directive, 247 
FORCEFRAME operand, 204-205, 470 
Formal parameters, 796 
FORTRAN(MASM programs, 528-532 
Forward declaration, 796 
/Fpi command-line option, ML, 161 
Frame, 65, 797 
FS register, 21 
FTST instruction, 158 
Full segment definitions 

described,37 
segment registers, initializing, 58-59 
segments, specifying, 625 
using, 48-56 

Functions, Arg, 395 
FWORD directive, 86 
FXCH instruction, 149 

G 
General-Protection (GP) fault, 797 
Gigabyte, 797 
Global 

constant, 797 
data segment, 797 
variables, 216-218, 797 

Grammar. See BNF grammar 
Granularity, 797 
GROUP directive, 56 
Groups 

defined, 55, 797 
DGROUP, 55,347 
GROUP directive, 56 
linking procedures, 366 
SEG operator, returned by, 65 

GS register, 21 

H 
H2INC 

C data types (list), 440 
command-line options (lists), 435 

H2INC (continued) 
converting from C 

bit fields, 444 
comments, 434 
constants, 438 
enumerations, 446 
function prototypes, 447-448 
nested structures, 443 
pointers, 441 
records, 444 
structures, 441-442 
type definitions, 446 
unions, 441-442 
variables, 440 

error messages, 670-710 
fastcall calling convention, 448 
function prototypes, writing, 526 
naming considerations, 441 
overview, 433-434 
predefined constants (list), 439 
syntax, 434-435 
type definitions, 446-448 

Handle, 797 
HEAPSIZE statement, LINK, 380 
/HE[LP] option, LINK, 350 
Help delimiter (», 328-329 
Help files. See HELPMAKE, help files 
Help, online. See Microsoft Advisor 
HELPMAKE 

command-line options (lists), 309-314 
error messages, 663-669 
file formats 

minimally formatted ASCII, 308, 316, 330 
QuickHelp format, 307, 316 
Rich Text Format (RTF), 308, 316, 329-330 
unformatted ASCII, 308, 316 

help database, 314, 321 
help files 

context prefixes, 317 
local contexts, 317 
organizational conventions, 315 
overview, 305 
structure, 315 

hyperlinks, 306, 319 
Microsoft product context prefixes (list), 319 
options 

decoding (list), 312 
encoding (list), 310 
help (list), 314 

Index 

815 



Index 

HELPMAKE (continued) 
QuickHelp 

cross-references, 326 
dot commands (list), 322 
example, 327 
format, 322 
formatting flags (list), 325 

standard .h contexts (list), 318 
syntax, 308 

Hexadecimal, 797 
/HI[GH] option, LINK, 350 
HIGH operator, 563 
High-level language, 797 
HIGHWORD operator, 554 
Hooking (an interrupt), 797 
Huge model. See Memory models, huge 
Hyperlinks. See HELPMAKE, hyperlinks 

II command-line option, ML, 217 
Identifiers 

ABS, 223 
defined, 797 
naming restrictions 

characters, 13,564 
dot operator (.),560 
length, 554,574 

OPTION DOTNAME, 579 
OPTION NOKEYWORD, 581 

IDIV instruction, 101 
IEEE format, 144,797 
.IF directive, 176 
IF directive, 33-34 
IFB directive, 34, 234 
IFDEF directive, 34 
IFDIF directive, 34 
IFE directive, 34 
IFIDN directive, 34 
IFNB directive, 34, 235 
IFNDEF directive, 34 
Immediate operands, 63-65, 797 
IMPLIB utility 

described, 463,475 
error messages, 710-712 

Import libraries, 456, 463 
IMPORTS statement, LINK, 388 
IMUL instruction, 99-100 
IN instruction, 8 
INC instuction, 96-98 
INCLUDE directive, 216-217 
INCLUDE environment variables, 217 

816 

Include files 
assembling, 217 
defined, 798 
nested,217 
overview, 216 

INCLUDELIB directive, 225, 456, 476 
IINCR[EMENTAL] option, LINK, 350 
Index operator ([ ]), 67 
Indirect memory operands, 63, 68-72, 798 
Inference rules, NMAKE, 285 
IINF[ORMA TION] option, LINK, 351 
Initializers 

allocating, 88 
directives for, 18 
multiple-line, 554 

@InStrpredefined macro function, 248-249 
INSTR directive, 248-249 
Instruction Pointer (IP) register, 24, 59-61, 167 
Instructions 

AAA,163 
AAD,163 
AAM,163 
AAS, 163 
ADC, 96-98 
ADD,96-98 
AND, 32,102-103 
arithmetic, 583 
bit-test, 562 
BOUND,113 
BSF,104 
BSR,104 
CALL, 185,456 
CBW, 92 
CDQ,92 
CLC, 108 
CLI, 8,211 
CMC, 108 
CMP, 173 
CMPS, 117, 119, 121,561 
CMPSB,122 
conditional-jump, 174-175 
coprocessor, 582 
CWD,92 
CWDE,92 
DAA,164 
DAS, 164 
DEC, 96-98 
default segments, requiring, 54 
defined, 798 
DIV, 101 
encodings, changes to, 582-583 
ENTER,188 
ESC, 567 



Instructions (continued) 
FCOM,158 
FLDl,153 
FLDZ, 153 
floating-point. See Floating-point, instructions 
FTST,158 
FXCH,149 
IDIV, 101 
IMUL, 99-100 
IN,8 
INC, 96-98 
INT,208-209 
INTO, 210 
JCXZ, 172, 177 
JECXZ, 172, 177 
JMP, 54,168 
JO,174 
jump, 172-175 
LAHF,96 
LDS, 81 
LEA, 80,108,583 
LEAVE,188 
LES, 81 
list, 619 
LOCK, 561, 569 
LODS, 117, 119, 122,561 
logical, 102-105 
LOOP, 177 
LOOPE,177 
LOOPNE,177 
LOOPNZ, 177 
LOOPZ, 177 
MOV, 54, 80, 89, 583 
MOVS, 117, 119, 120,561 
MOVSX,93 
MOVZX, 93 
MUL,99-100 
Nap, 582 
NOT, 102-103 
obsolete, 567 
operands for, 63 
OR, 32, 102-103 
OUT,8 
POP, 54,93 
POPA,96 
POPAD,96 
POPF,96 
POPFD,96 
privileged, 6,43 
PUSH, 54, 93 
PUSHA,96 
PUSHAD,96 
PUSHF,96 

Instructions (continued) 
PUSHFD,96 
RCL, 104-108 
RCR, 104-108 
REP, 118-119,569 
REPE, 118-119,569 
REPNE, 118-119,561,569 
REPNZ, 118-119,561,569 
REPZ, 118-119,569 
RET. See RET instruction 
RETF, 186,583 
RETN, 186,583 
ROL, 104-107 
ROR, 104-107 
SAL, 104-107 
SAR, 104-107 
SBB,96-98 
SCAS, 117, 119, 123,561 
SHL, 104-107 
SHR,104-107 
STC, 108 
ST!, 8, 211 
STOS, 117, 119, 121,561 
SUB,96-98 
TEST,174 
XCHG,90 
XLAT,91 
XLATB,91 
XOR, 32, 102-103 

INT instruction, 208-209 
Integers 

adding, 96-98 
allocating memory for, 85-86 
Binary Coded Decimals (BCD), 162 
bit operations on, 102 
constants, defining, 15-16 
dividing, 101 
exchanging, 90 
hexadecimal, 15 
initializing, 88 
memory format, 87 
moving, 89 
multiplying, 99-100 
operations with, 89 
popping off stack, 93 
pushing onto stack, 93 
radix specifiers for, 15 
sign-extending, 92 
signed, 87, 802 
size, 86 
stack,93 
subtracting, 96-98 
translating, 91 

Index 

817 



Index 

Integers (continued) 
types, defining, 18,86 
unsigned, 804 
value range, 86 

@Interface predefined symbol, 42 
Interrupt descriptor table, 209 
Interrupt handler, 798 
Interrupt vector, 209, 798 
Interrupt-enable flag, 209 
Interrupts 

chaining to, 794 
CLI instruction, 211 
defined, 798 
INT instruction, 208-209 
operation, 210 
overview, 208 
redefining, 210 
routines, 211-212 
STI instruction, 211 
unhooking, 804 

INTO instruction, 210 
INVOKE directive 

actions, 199 
ADDR, invoking, 202 
arguments, widening, 201 
error detection, 201 
far addresses, invoking, 202 
generated code, checking, 203 
indirect procedure calls, 202 
mixed-language programs, 520 
OS/2 system calls, 456, 459 
procedures, calling, 198 
type conversions, 199-200 

IP. See Instruction Pointer (IP) register 
IRET instruction, 794 

J 
JCXZ instruction, 172, 177 
JECXZ instruction, 172, 177 
JMP instruction, 54, 168 
JO instruction, 174 
Jumps 

anonymous, 175 
automatic, 171 
conditional 

818 

bit status, 174 
comparisons, 173 
extending, 32, 171-172 
flag status, 174-175 
instructions (list), 173-175 
overview, 170 

Jumps (continued) 
directives for, 176 

K 

extension, automatic, 32, 171-172 
instructions, 173-175 
optimization, automatic, 168 
overview, 167 
unconditional, 168-170 

Keywords, 798 
See also Reserved words 

Kilobyte, 798 

l 
LABEL directive, 20 
Labels 

anonymous, 175 
code 

length,554 
OPTION M510 behavior, 570 
OPTION NOSCOPED, 580 
procedures,564 
referencing, 560 
size, 554 
visibility, 562 

defined, 798 
LAHF instruction, 96 
LANGUAGE argument, OPTION directive, 198 
Language attributes 

.MODEL directive, 39-42 
OPTION directive, 31 

LANGUAGE:BASIC argument, OPTION directive, 31 
LANGUAGE:C argument, OPTION directive, 31 
LANGUAGE:FORTRAN argument, OPTION 

directive, 31 
LANGUAGE:PASCAL argument, OPTION directive, 31 
LANGUAGE:STDCALL argument, OPTION 

directive, 31 
LANGUAGE:SYSCALL argument, OPTION 

directive, 31 
Large model. See Memory models, large 
LDS instruction, 81 
LEA instruction, 80, 108,583 
LEAVE instruction, 188 
LENGTH operator, 564 
LENGTH OF directive 

number of items, returning, 117, 130, 138 
structures, defining, 114 
unions, 131 



LES instruction, 81 
ILl option, LINK, 351 
LIB utility, error messages, 712-718 
Libraries 

defined, 798 
emulator, 161 
import, 456, 463 
linking. See LINK, specifying libraries 
overview, 224 
source files, specifying in, 225 

Library files, 798 
LIBRARY statement, LINK, 376 
Line-continuation character (\), 127 
ILINENUMBERS option, LINK, 351 
LINK 

alignment types, 365 
combine types, 366 
command-line options, 344-360 

See also individual entries 
DOS executables, producing, 364 
environment variable, 360 
error messages, 718-739 
exit codes (list), 369 
groups, 366 
libraries, specifying, 338 
module-definition files. See Module-definition files 
object file search order, 336 
output files, 334 
overlays under DOS, 361 
overview, 333 
prompts, 342 
PWB, invoking in, 333 
response files, 343 
running, 341 
syntax, 335-340 
temporary files, 357, 368 

Linked list, 798 
Linking 

actions during, 28, 50 
defined, 798 
dynamic, 795 
segment order in, 53 
static, 803 

.LIST directive, 606 
Listing files 

code generated, 608 
command-line options, 605-608 
directives, 606-607 
error messages, 608 
example, 609-612 
first pass, 607 
generating, 605 
.LIST,606 

Listing files (continued) 
.LISTMACRO, 607 
.LISTMACROALL,607 
options (list), 606 
PAGE,606 
page fonnat, controlling, 607 
PWB options, 605, 608 
reading, 608, 612 
SUBTITLE,606 
symbols used in (list), 609 
tables in, 612-613 
TITLE,606 

.LISTMACRO directive, 607 

.LISTMACROALL directive, 607 
Literal-character operator (!), 237 
LJMP argument, OPTION directive, 32 
LOADDS operand, 204,470 
Loading, actions during, 28 
Local constants, 798 
LOCAL directive, 194-196, 235 
Local variables 

creating, 194 
defined, 798 
loading addresses of, 80 
procedures, in, 194 

Local window, CodeView, 412 
LOCK instruction, 561 
LODS instruction, 117, 119, 122,561 
Logical device, 798 
Logical instruction, 102-103 
Logical line, 26, 798 
Lookup tables, 245 
LOOP instruction, 177 
LOOPE instruction, 177 
LOOPNE instruction, 177 
LOOPNZ instruction, 177 
Loops 

conditions 
expression evaluation, 184 
precedence, 184 
PTR operator in, 183 
relational operators for (list), 182-183 
signed operands, 183 
writing, 182-184 

controlling execution of, 181 
directives, 178-181 
instructions (list), 177 
macros, 244-247, 252 

LOOPZ instruction, 177 
LOW operator, 563 
LOWWORD operator, 554 
LROFFSET operator, 552 

Index 

819 



Index 

M 
/M option, LINK, 351 
M510 argument, OPTION directive 

compatibility with MASM 5.1, 32, 561-575 
expression word size, setting, 17 
macro behavior, 241 
structures, 125 

Machine code, 799 
Macros 

arguments 
commas, 560, 578 
quotation marks, 562 
testing if passed, 35 
VARARG, 246, 252 

calling, 231 
checking argument types with, 255 
comments (;;), 231 
defined, 229, 799 
expansion, 27 
functions 

defined, 251 
epilogues, 205 
EXITM,251 
prologues, 205 
returning values, 251 

listing file directives, 607 
.LISTMACRO, 607 
.LISTMACROALL,607 
local symbols in, 235 
loops, 244-247,252 
MASM 5.1 behavior, 30, 563, 577-578 
nested,254 
new features, 558 
NMAKE. See NMAKE, macros 
operators 

behavior in macro functions, 254 
expansion (%), 238-240, 251 
list, 237 
literal-character 0), 237 
substitution (&), 240-242,560,578 

OPTION OLDMACROS, 577-578 
parameters 

default values, 234 
procedure parameters, compared to, 236 
required,233 
substitution, 240-242 

passing arguments to, 232, 238 
predefined string functions, 15 
procedures, 231-232 
PWB. See PWB macros 
recursive, 257 
redefining, 254 

820 

Macros (continued) 
string operations, 248 
text 

defined, 229 
forward referencing, 563 
numeric equates, compared to, 237 
OPTION M510 behavior, 575 
syntax, 230 

V ARARG keyword, 246, 252, 558 
writing, 231 

Makefile. See NMAKE, description file 
Mantissa, 145 
/MAP option, LINK, 351 
Map files, creating, 351 
Mask 

defined, 103 
logic instructions, 106 
record operators, 139 

MASK operator, 139 
MASM 5.1 compatibility 

address fixups, 33 
macro behavior, 30 
OPTION directive, specifying, 30-31 
overview, xx 
structures, 31 
updating code, 561-567 

MASM utility, xix, 550 
Math coprocessor. See Coprocessors 
Medium model. See Memory models, medium 
Megabyte, 799 
Members, 799 
Memory 

access, dynamic, 68 
address, 799 
allocation, 28 
dump, 795 
expanded, 796 
extended, 796 
map, 799 
operand, 799 
physical, 800 
shared,802 
virtual,8 

MEMORY combine type, 51 
Memory models 

attributes (table), 40 
compact, 41 
default segment names (list), 626 
defined, 799 
described, 39 
determining, 14 
far code segments, 45 
far data segments, 45 



Memory models (continued) 
flat, 62, 796 
huge, 41, 797 
large, 41, 798 
medium, 41, 799 
model-independent code, 82 
near code segments, 45 
small, 41, 802 
specifying in PROC statement, 190 
tiny, 41,52,804 

Memory window, CodeView, 404 
Memory-resident programs. See TSRs 
Meta function, PWB, 799 
Microsoft Advisor, xvii, 550 
Minus operator (-), 66 
Mixed-language programming 

argument passing, 522 
assembly procedures, 520 
Basic/MASM programs, 533-538 
C prototypes, converting with H2INC, 525 
C/MASM programs, 523-528 
calling conventions 

languagetypes,518-520 
list, 516 

column-major order, 523 
compatible data types 

Basic (list), 533 
C (list), 523 
FORTRAN (list), 529 
Pascal (list), 539 
QuickPascal (list), 543 

external data, 522 
FORTRAN/MASM programs, 528-532 
initialization code, 521 
INVOKE,520-521 
naming conventions, 516-517 
overview, 515 
Pascal/MASM programs, 539-542 
QuickPascal/MASM programs, 543-546 
register preservation, 523 
row-major order, 523 

ML 
command-line options 

/AT,41 
/Cp, 13,248 
IEP,550,607 
/Fl,607 
/Fpi, 32, 161 
1I,217 
/SG,48 
/X,217 

ML (continued) 
command-line options (continued) 

/Zm, 65,125 
/Zp, 125 
overview, xix 

error messages, 739-773 
Mnemonic, 799 
.MODEL directive 

attributes, 39-40 
DGROUP,55 
language types, specifying, 31, 516 
memory model, defining, 40-41 
mode default, 51 
operating system, specifying, 469 
overview, 39 
positioning, 51 
simplified segment directives, 38 
stack type, specifying, 469 

@Model predefined symbol, 40, 81 
Module statements, 371-372 
Module-definition files 

described,371 
DLLs, 473-475 
module statements (list), 371 
OS/2 applications, 463 
overview, 371 
reserved words (list), 374 
rules for, 372 
search order, LINK, 340 
statements 

CODE,381 
DATA,381 
DESCRIPTION,377 
EXETYPE, 378 
EXPORTS, 386 
HEAPSIZE, 380 
IMPORTS, 388 
LIBRARY, 376 
NAME,375 
OLD,386 
PROTMODE, 379 
REALMODE, 379 
SEGMENTS, 382 
STACKSIZE, 380 
STUB,377 

syntax, 372 
Module-level code, 799 
Modules, main, 799 
MOV instruction, 54, 80, 89, 583 
MOVS instruction, 117,119,120,561 
MOVSX instruction, 93 
MOVZX instruction, 93 
MUL instruction, 99-100 

Index 

821 



Index 

Multiple-module programs 
alternatives to include files, 223 
COMM,221 
data-sharing methods, selecting, 215 
EXTERN with library routines, 226 
external declarations, positioning, 222 
EXTERNDEF, 218 
include files, assembling, 216-217 
libraries, developing, 224-225 
modules, organizing, 216 
PROTO, 219 
PUBLIC and EXTERN, 223 
symbols 

declaring public and external, 218 
sharing with include files, 216 

Multiplex interrupt, 496-498, 510 
Multiplication 

instructions, 99 
shift operations, 106 

Multitasking operating system, 799 

N 
NAME statement, LINK, 375 
Naming conventions 

defined, 799 
directives, specifying with, 42 
(list),516 
mixed-language programming, 516-518 
OPTION M510 behavior, 574 
OS/2 system calls, 457 

Naming restrictions, 13 
NAN (Not A Number), 799 
NEAR operator, 171 
NEARSTACK operand 

ASSUME statement, 58 
default stack type, as, 42, 47 
described,39 
OS/2,461 

New features, MASM 6.0, xviii, 549-560 
NMAKE 

command file, 293 
command-line options (table), 291 
description files 

822 

command modifiers (table), 268 
comments, 271 
creating, 265-267 
described, 263-265 
directives, 286 
filename components, extracting, 290 
inference rules, 281-284 
macros, 272-273, 279-281 

NMAKE (continued) 
description files (continued) 

multiple description blocks in, 270 
predefined inference rules (list), 284 
preprocessing directives, executing with, 287-288 
pseudotargets, 271 
sample, 298 
special characters, 269 

error messages, 774-786 
exit codes, 303 
inline files, 295-296 
macros 

command (list), 277 
filename (list), 274 
multiple-line, 294 
options (list), 278 
recursive (list), 276 
special,274 
user-defined, 272-273 

MAKE, differences from, 300-301 
NMK,302 
overview, 263 
sequence of operations, 296-298 
syntax, 264 
TOOLS.INI, customizing, 294 

NMK. See NMAKE, NMK 
.N087 directive, 43, 557 
/NOD[EFAULTLIBRARYSEARCH], option, LINK, 352 
NODOTNAME argument, OPTION directive, 30 
NOEMULATOR argument, OPTION directive, 32 
/NOE[XTDICTIONARY] option, LINK, 352 
/NOF[ARCALLTRANSLATION] option, LINK, 352 
/NOG[ROUPASSOCIA TION] option, LINK, 353 
/NOI[GNORECASE] option, LINK, 353 
NO KEYWORD argument, OPTION directive 

described, 32 
identifiers, 12, 561 
label names, 568 
symbol names, 581 

NOLJMP argument, OPTION directive, 32, 172 
/NOL[OGO] option, LINK, 353 
NOM510 argument, OPTION directive, 30 
/NON[ULLSDOSSEG] option, LINK, 353 
NONUNIQUE operand, 124, 132 
NOOLDMACROS argument, OPTION directive, 30 
NOOLDSTRUCTS argument, OPTION directive, 31 
/NOP[ACKCODE] option, LINK, 354 
NOREADONL Y argument, OPTION directive, 33 
NOSCOPED argument, OPTION directive, 31 
NOSIGNEXTEND argument, OPTION directive, 32 
NOT instruction, 102-103 
NOTHING operand, 54-55 



Null characters, 799 
Null pointers, 799 
Numeric equates, compared to text macros, 237 

o 
/0 option, LINK, 354 
Object files, 800 
OFFSET operator, 65, 563-564, 579 
OFFSET:FLAT argument, OPTION directive, 33 
OFFSET:GROUP argument, OPTION directive, 33 
OFFSET:SEGMENT argument, OPTION 

directive, 33, 65 
Offsets 

accessing data with, 74 
addresses, 10 
defined, 800 
described, 10-11 
determining, 28, 567, 579 
fixups for, 33 

OLD statement, LINK, 386 
OLDMACROS argument, OPTION directive, 30, 241, 

568,577 
OLDSTRUCTS argument, OPTION directive 

MASM 5.1 compatibility, 31, 568, 576-577 
structures, 124-125, 132 

Online help. See Microsoft Advisor 
OPATTR operator, 255 
Opcode, 800 
Operands 

ABS, 223 
defined, 800 
direct memory, 795 
FAR,19 
immediate, 797 
indirect memory, 63, 68-72,798 
memory, 799 
NEAR,19 
register, 64, 801 
size, 69 
USEI6, 49,51 
USE32, 49,51 

Operating systems 
.MODEL, specifying with, 39, 552 
multitasking, 9, 799 
OS_DOS, OS_OS2, specifying, 42 
table, 8 
types. See DOS, OS/2 operating systems 

Operators 
ADDR,202 
binary, 794 
current address ($), 575 

Operators (continued) 
defined, 800 
dot (.), 131 
DUP. See DUP operator 
EQ,571 
expansion (%), 238-240, 251 
expressions, in, 15, 17 
FAR,171 
HIGH,563 
HIGHWORD, 554 
index([ D, 67 
instructions, compared to , 17 
LENGTH, 564, 571 
list, 618 
literal-character (!), 237 
LOW, 563 
LOWWORD, 554, 573 . 
LROFFSET, 552 
macro, 254 
MASK,139 
minus (-), 66 
NE,571 
NEAR,171 
OFFSET,65 
OFFSET operator, 80 
OPATTR,255 
plus (+), 66, 69 
precedence, 17-18 
PTR. See PTR operator 
relational, 182, 564, 571 
SEG, 54, 65, 570 
segment-override (:), 62, 67 
SHORT,171 
SIZE, 571 
SIZEOF,86 
structure-member (.), 67, 70 
substitution (&), 240-242 
.TYPE,567 
TYPE, 86, 572 
unary, 804 
WIDTH,139 

OPTION directive 
CASEMAP, 30, 437 
described,27 
DOTNAME, 30, 568, 579 
emulation mode, 161 
EMULATOR, 32,161 
EPILOGUE, 31, 205-207 
EXPR16, 17,32,579 
EXPR32, 17,32,579 
LANGUAGE, 31,198 
language types, specifying, 516 
list of arguments for, 30 

Index 

823 



Index 

OPTION directive (continued) 
LJMP,32 
M51O. See M510 argument, OPTION directive 
NODOTNAME,30 
NOEMULATOR,32 
NOKEYWORD. See NOKEYWORD argument, 

OPTION directive 
NOLJMP, 32, 172 
NOM510,30 
NOOLDMACROS, 30 
NOOLDSTRUCTS,31 
NOREADONL Y, 33 
NOSCOPED, 31, 569, 580 
NOSIGNEXTEND,32 
OFFSET, 33, 65, 579-580 
OLD MACROS, 30, 240 
OLDSTRUCTS. See OLDSTRUCTS argument, 

OPTION directive 
PROC, 191,581 
procedure use, 31 
PROLOGUE, 31, 205-207 
READONLY,33 
SCOPED,31 
using, 29, 568 

Options, 800 
OR instruction, 32,102-103 
Ordinal position, 387 
ORG directive, 59 
OS/2 applications 

binding, 460 
building, 460 
calling convention, 457 
differences from DOS applications, 456 
DosExits,457--458 
example, 458--459 
FARSTACK,461 
INCLUDELIB,456 
INVOKE, 459 
NEARST ACK, 461 
OS2.LIB, 456 
overview, 455 
register initialization, 461 
segment selectors, 457 
system calls, 456 
target processors, 459 

OS/2 operating system, 6-10, 37, 800 
OS/2 system calls, 48, 456 
OS2.1NC, 456 
OS2.LIB, 48, 456 
OS_DOS operand, 39, 42 
OS_OS2 operand, 39,42,48 
OUT instruction, 8 
Overflow, 800 

824 

OVERFLOW? flag, 183,457 
Overlay, 800 
/O[VERLAYINTERRUPT] option, LINK, 354 

p 
/P ACKC[ODE] option, LINK, 354 
/PACKD[ATA] option, LINK, 355 
/P ADC[ODE] option, LINK, 356 
/P ADD[A T A] option, LINK, 356 
PAGE align type, 50 
PAGE directive, 606 
PARA align type, 50 
Parameters, 800 
Parentheses ( ), 112 
PARITY? operand, 183 
Pascal calling convention, 519 
Pascal/MASM programs, 538-542 
Passing by reference, 800 
Passing by value, 800 
/PAU[SE] option, LINK, 357 
Physical line, 26 
Physical memory, 800 
Plus operator (+), 69, 560, 576 
/PM [TYPE] option, LINK, 357 
Pointer variables, 73-79 
Pointers 

accessing data with, 73 
arguments, as, 79 
copying, 78 
defined, 800 
far, 73, 80 
H2INC, translated by, 441 
initializing, 77 
location, 73 
null, 799 
operations, 77 
TYPEDEF, defined with, 19,74-77 
types, to, 19 
variable, 800 

POP instruction, 54, 93 
POPA instruction, 96 
POPAD instruction, 96 
POPCONTEXT directive, 256, 557 
POPF instruction, 96 
POPFD instruction, 96 
Precedence 

defined, 800 
operators (list), 17 

Predefined equates. See Predefined symbols 
Predefined functions for macros, 15 



Predefined string functions 
@CatStr, 248, 250 
@InStr, 248-249 
@SizeStr, 248-250 
@SubStr, 248-249 

Predefined symbols 
case sensitivity, 12-13 
@CodeSize, 45, 256 
@Cpu,256 
@CurSeg, 44, 222 
@data, 44 
@DataSize, 44, 82, 256 
@Interface, 42 
list, 13,617 
@Model, 40, 81 
new to MASM 6.0 (list), 551 
@Stack, 43 
@WordSize,44 

Preemptive, 800 
Prefix, 800 
Private, 800 
PRIV ATE combine type, 366 
PRIVATE operand, 191 
Privilege levels, 8, 800 
Privileged mode, 801 
Problems, reporting, xxiii 
PROC directive, 199,520 
PROC:EXPORT argument, OPTION directive, 31 
PROC:PRIV ATE argument, OPTION directive, 31, 569 
PROC:PUBLIC argument, OPTION directive, 31,191 
Procedures 

arguments 
far pointers, 202 
near addresses, 202 
passing, 186-187 
pointers, 79 
type conversions, 200-201 

CALL instruction, 185, 198 
calls 

defined, 801 
indirect, 202 
optimizing, 185 

defining, 185 
epilogues, 31 
EXTERNDEF directive, 218-219 
include files, in, 218 
INVOKE directive, 198-203,220 
libraries, 224 
local variables, 80, 194-197 
macro. See Macros, procedures 
new features, 555-556 
OPTION PROC, 581 
overview, 184 

Procedures (continued) 
parameters, 189-193,200 
PROC attributes, specifying, 190 
prologues, 31 
PROTO directive, 198,219-220 
prototypes, 198,801 
reentrant, 801 
RET instruction, 185, 193 
RETF instruction, 186 
RETN instruction, 186 
syntax description, 189 
VARARGkeyword, 191,193,199 
visibility, 31,581 

Procedure definition, 801 
Process, 801 
Processors 

See also Real mode; Protected mode 
8086-based,5-6,37 
.MODEL directive, 43 
modes, determining, 14 
target, 6 

Product assistance, xxiii 
Program Segment Prefix (PSP), 801 
Programmer's WorkBench. See PWB 
Programming, MASM 6.0 practices, 560 
Programs 

exiting, 46 
mixed-language, 515 
multiple-module. See Multiple-module programs 
starting, 46 

Projects, managing. See NMAKE 

Index 

PROLOGUE argument, OPTION directive, 31, 205-207 
Prologue code 

arguments, specifying, 191 
code labels in, 564 
defined, 203 
macros for, 205-207 
standard, 204 
user-defined, 31, 205 

Protected mode 
defined, 801 
described, 6-11, 50,455 

PROTMODE statement, LINK, 379 
PROTO directive 

H2INC, generated by, 447 
include file, in, 216 
procedure prototypes, writing, 198-199, 520 

Prototypes 
H2INC, converted by, 447 
procedure 

defined, 801 
directives for, 198-199 

qualifiedtypes, defined with, 19 

825 



Index 

Pseudofile. See PWB, pseudofile 
PTR operator 

example, 97 
OPTION M510 behavior, 572 
pointer to type, as, 19 
signed number, specifying, 183 
size, specifying, 69,89 
TYPEDEF,74 

Public,801 
PUBLIC combine type, 50, 366 
PUBLIC directive, 191,215,223 
PUSH instruction, 54, 93 
PUSHA instruction, 96 
PUSHAD instruction, 96 
PUSHCONTEXT directive, 256, 557 
PUSHF instruction, 96 
PUSHFD instruction, 96 
PWB 

arg function, 395, 793 
editor options, 391 
error messages, 786-787 
extensions, loading, 393 
key assignments, 392, 393 
macros 

arguments, 397 
conditional (list), 398 
interactive, 396 
overview, 395 
recording, 398 
response operators (list), 396 
syntax, 395 
temporary, 400 

meta function, 799 
options, setting, 391 
pseudofile, 391 
regular expressions, 396 
status bar, 803 
text box, 804 
TOOLS.INI 

feature or function, changing, 395 
macros, writing, 399 
switches, setting, 391-393 

PWBRMAKE utility, error messages, 788-792 

Q 
IQ option, LINK, 358 
Quadwords, 86 
Qualifiedtypes 

BNF grammar, defined by, 20 
defined, 19, 801 
pointers, defining, 74-76 

826 

Qualifiedtypes (continued) 
prototypes, as, 19 
rules for use, 19-20 
where to use, 20 

Question mark initializer ( ? ), 88, 115,574-575 
QuickHelp 

cross-references, 326 
dot commands (list), 322 
example, 327 
format. See HELPMAKE, file formats 
formatting flags (list), 325 

IQUICKLIBRARY option, LINK, 358 
QuickPascal/MASM programs, 543-546 
Quotation marks (' or "), 115 
QWORD directive, 86 

R 
.RADIX directive, 15,801 
Radix, 801 
Radix specifiers 

list, 15 
OPTION M510 behavior, 573 

Range, address, 793 
RCL instruction, 104-107 
RCR instruction, 104-108 
Re-entrant DLL, 466 
Read-only code, 33 
READONL Y argument, OPTION directive, 33 
READONL Y operand, 49-50 
Real mode 

defined, 801 
described, 6-10, 455 

Real numbers. See Floating-point 
REAL4 directive, 142-143 
REAL8 directive, 142-143 
REAL10 directive, 142-143 
REALMODE statement, LINK, 379 
Records 

defined, 135, 801 
field ranges, 562 
H2INC, generated by, 444 
LENGTH operator, 564 
LENGTHOF directive, 138 
MASK operator, 139 
SIZEOF directive, 138 
syntax, 136-137 
TYPE directive, 138 
WIDTH operator, 139 

Recursive macros, 257 
Reentrant procedure, 801 
Register operands, 64 



Register window, CodeView, 801 
Registers 

16-bit, 20, 70 
base, 68-72 
coprocessor, 145 
copying pairs of, 81 
defined, 801 
division (table), 101 
Eflags,24 
extended, 21 
flags, 24-25,796 
FS,21 
general purpose, 23 
GS,21 
index, 68-72 
indirect addressing, 68 
indirect operands, 70-71 
initializing, 48 
Instruction Pointer. See Instruction Pointer (IP) registers 
list, 617 
loading addresses into, 79 
mixed 16-bit, 32-bit, 73 
pointers as, 76 
scaling, 70, 72 
segments. See Segment registers 
Stack Pointer (SP), 23 
Stack Segment (SS), 95 
stack, saving on, 96 
types, defined with ASSUME, 76 

Regular expressions. See PWB, regular expressions 
Relational operators (list), 182 
Relocatable 

addresses, 60 
data, 61, 63 
defined, 801 
expressions, 65-66, 68 

REP instruction, 118, 119 
REPE instruction, 118 ,119 
Repeat blocks, 243 
REPEAT directive, 244 
.REPEA T directive, 178 
REPNE instruction, 118, 119,561 
REPNZ instruction, 118, 119,561 
Reporting problems, xxiii 
REPZ instruction, 118 ,119 
Reserved words 

described, 12,32 
list, 615 
OPTION M510 behavior, 569 
OPTION NOKEYWORD, 581 

Response files, LINK, 343 

RET instruction 
epilogue code, generating, 204, 583 
instruction encodings, changes to, 564 
PROC, 185, 193 

RETF instruction, 186, 583 
RETN instruction, 186, 583 
Return values, 802 

Index 

Rich Text Format (RTF). See HELPMAKE, file formats 
ROL instruction, 104-107 
ROM-BIOS Interrupts. See Interrupts 
ROR instruction, 104-107 
Rotate instructions, 104 
Routines 

defined, 802 
dynamic-link,796 
interrupt, 211 
low-level I/O, 798 

Run-time error, 802 

s 
SAL instruction, 104-107 
SAR instruction, 104-107 
SBB instruction, 96-98 
SBYTE directive, 86 
Scaling factor, 113 
Scaling index registers, 70, 72 
SCAS instruction, 117, 119, 123, 561 
Scope, 802 

See also Visibility 
SCOPED argument, OPTION directive, 31 
Screen swapping, 802 
Scroll bars, 802 
SOWaRD directive, 86 
/SE option, LINK, 358 
SEG operator, 54, 65, 570 
Segment arithmetic, 11 
SEGMENT directive, 49-52 
Segment registers 

assigning, 62, 65 
ASSUME directive, 54, 565 
changing, 60 
default, 67 
described, 22 
DOS, 29,47 
FS,23 
GS,23 
initializing, 48, 58-61 
near code, 61 
OS/2, 41, 462 
restoring, 62 
segment-override operator (:), 55 

827 



Index 

Segment selectors, 8 
Segment-override operator (:),55,62,67 
SEGMENT:FLAT argument, OPTION directive, 33 
SEGMENT:USEI6 argument, OPTION directive, 33 
SEGMENT:USE32 argument, OPTION directive, 33 
Segmented architecture, 5, 9 
Segments 

32-bit,41 
accessing data with, 74 
addresses, 10 
aligning, 49-50 
alignment types, 365-366 
attributes, 382-383 
class names, 365 
class types, 49, 52-53,365 
code 

described,45--46 
memory model support for, 41 

combine types, 366 
combining, 45, 49-51, 366 
current, 13 
data 

default, 54, 58-59, 62 
described, 44--45 
global,797 
memory model support for, 41 

default names for (list), 626 
defined, 37, 802 
defining, 37-56 
described, 9, 11 
fixups for, 33 
full segment definitions, defining, 37-38,48-56 
groups, defining, 55 
initializing, 59 
location, 9 
naming, 45 
order, 52-53, 365 
physical, 800 
position, 30 
program, 358 
protection, 9-10 
READONLY,50 
selector, 802 
simplified segment directives, defining, 38--48 
size, 14,49 
types, 49 
USE16,49 
USE32,49 
values, 59 
word size, setting, 51 

ISE[GMENTS] option, LINK, 358 
SEGMENTS statement, LINK, 382 

828 

Selector, 802 
Semicolon (;), 26, 341 
.sEQ directive, 52 
Sequential mode, 802 
Shell escape, Code View, 802 
Shift instructions, 104 
SHL instruction, 104-107 
SHORT operator, 171 
SHR instruction, 104-107 
Sign extended, 802 
Sign-extending integers, 92 
SIGN? operand, 183 
Signed data, 18 
Simplified segment directives 

code segments, creating, 46 
code, starting and ending, 47 
data segments, creating, 45 
described, 37 
language convention, choosing, 41 
memory model, defining, 40 
.MODEL, defining with, 39 
operating system, specifying, 40 
processor, specifying, 43 
segment registers, initializing, 58-59 
stack distance, setting, 42 
stack, creating, 44 
using, 38 

Single quotation mark C), 115 
Single-tasking environment, 802 
Size attribute, segments, 51 
SIZEOF directive 

arrays, 114 
records, 138 
strings, 117 
structures, 130 
unions, 131 

SIZEOF operator, 86 
@SizeStr predefined macro function, 248-249 
SIZESTR directive, 248-249 
Small model. See Memory models, small 
Source code, statements in, 25 
Source mode, CodeView, 803 
Source window, CodeView, 403 
SP (Stack Pointer) register, 23, 93-95 
SS (Stack Segment) register, 95 
1ST option, LINK, 359 
Stack distance, 42 
Stack frame, 95, 204, 803 
Stack Pointer (SP) register, 23 
Stack Segment (SS) register, 95 
STACK combine type, 50, 366 



.ST ACK directive 
ASSUME, 43 
described,38 
segment registers, setting, 60 

@stack predefined symbol, 43,347 
1ST ACK option, LINK, 359 
Stacks 

creating, 43 
defined, 803 
described, 93 
distance, specifying, 42 
far, 14 
FARSTACK, 39,42 
flags, saving, 96 
local variables on, 194-198 
near, 14 
NEARSTACK, 38-39, 42 
operations with, 95-96 
operators with, 93 
passing arguments on, 186 
pointer, 93-95 
POP instructions, 93 
probe, 803 
PUSH instructions, 93 
registers, saving, 96 
segment register, 22 
separate, 51 
switching, 803 
trace, 803 
variables. See Local variables 

ST ACKSIZE statement, LINK, 380 
Standard error, 803 
Standard input, 803 
Standard output, 803 
.STARTUP directive 

described,38 
program, starting, 46 
segment address, 42 
segments, initializing, 58-60 

Startup routine, 346 
Statements 

case sensitivity, 26 
defined, 803 
module, 371-372 
syntax, 25 

Status flags, saving, 96 
STC instruction, 108 
STDCALL calling convention, 519-520, 803 
STI instruction, 8, 211 

STOS instruction, 117, 119, 121, 561 
String literal, 803 
Strings 

$-terminated, 116 
character, 794 
compatibility with high-level languages, 116 
declaring, 114 
defined, 111, 803 
defining, 18 
directives for manipulating, 248 
initializing, 114 
instructions 

processing, 117-123 
requirements (table), 119,561 

LENGTHOF directive, 116-117 
multiple-line declarations for, 114 
null-terminated, 116 
overview, 118 
predefined functions for macros, 15,248 

See also Predefined string functions 
register pairs, 79-80 
size, 117 
type, 117 

STRUCT directive, 124 
Structure-member operator (.), 67 
Structures 

alignment of fields, 124-12~ 
arrays as initializers, 128 
arrays of, 130 
compatibility with MASM 5.1,31,124 
current address operator ($),575 
default field values, 127 
defined, 123,803 
fields 

accessing, 67, 70, 576 
initializing, 124 
naming, 125,560,577 

H2INC, generated by, 442 
initializers, as, 129 
LENGTHOF directive, 130 
MASM 5.1 behavior, 31, 563, 576 
members, 803 
memory allocation for, 123 
nested,134 
new features, 553 
OPTION M510 behavior, 572 
OPTION OLDSTRUCTS, 576 
redefinition, 130, 563 
referencing fields, 131 

Index 

829 



Index 

Structures (continued) 
SIZEOF directive, 130 
steps for using, 124 
string initializers, 128,574 
TYPE directive, 130 
types, declaring, 124 
variables, defining, 126 

STUB statement, LINK, 377 
SUB instruction, 96-99 
Substitution operator (&),240-242,578 
@SubStr predefined macro function, 248-249 
SUBSTR directive, 248 
SUBTITLE directive, 606 
Switches. See Options 
SWORD directive, 86 
Symbol table, listing files, 613 
Symbols 

See also Identifiers 
declaring public and external, 218, 223 
defined, 803 
external,575 
naming, 574 
predefined, 12-15 

Syntax, MASM 6.0 statements, 25 
SYSCALL calling convention, 803 
System date, 14 
System time, 14 

T 
rr option, LINK, 359 
Tables, lookup, 245 
Tags, 803 
Target environment, 7 
TBYTE directive, 86,162 
Terminate-and-Stay-Resident programs. See TSRs 
TEST instruction, 174 
Text, 804 
Text delimiters. See Angle brackets 
Text editor. See PWB 
Text macros. See Macros, text 
TEXTEQU directive 

aliases, 575 
CA TSTR, compared with, 250 
H2INC, generated by, 438 
syntax, 230 

rrINY option, LINK, 359 
Tiny model. See Memory models, tiny 
TITLE directive, 606 
Toggle, 804 

830 

TOOLS.INI 
CodeView, 430 
defined, 804 
NMAKE,294 
PWB,391-392,395 

Trap flag, 209 
TSRs 

active 
described, 480 
DOS functions, 490-491, 507-508 
interrupt handlers in, 481 

deinstalling, 498, 511 
described,479 
DOS internal stacks (lists), 491 
errors, trapping, 494 
examples 

ALARM.ASM, 485-489 
SNAP.ASM, 499-50 I, 505-511 

existing data, preserving, 496, 510 
hardware events, auditing, 481-483,505 
interrupt handlers, 481 
monitoring 

Critical Error flag, 492-493 
system status, 484, 506-507 

multiplex interrupt, 496, 510 
passive, 480 
segmented addresses, 12 

Type checking, 804 
Type definition, 804 
TYPE directive 

arrays, 114 
records, 138 
strings, 117 
structures, 130 
unions, 131 

.TYPE operator, 567 
TYPE operator, 86 
TYPEDEF directive 

aliases, created by, 88, 143 
BNF,586 
CodeView information for, 413 
data types, defining, 88 
H2INC, generated by, 446-448 
indirect operands, defining, 169 
pointers, defined by, 19, 74, 76 
procedure declarations, 198 
procedure prototypes, 198 
qualifiedtypes, 20 

Types. See Data types 



u 
Unary expression, 804 
Unary operator, 804 
Unconditional jumps, optimizing, 168 
Underflow, 804 
Unhooking interrupts, 804 
Unions 

arrays as initializers, 128 
arrays of, 130 
defined, 123,804 
fields, 125 
H2INC, generated by, 442 
LENGTH OF directive, 131 
memory allocation, 123 
nested,134 
referencing fields in, 131 
SIZEOF directive, 131 
steps for using, 124 
string initializers, 128 
TYPE directive, 131 
types, declaring, 124 
variables, defining, 126 

Unpacked BCD numbers, 163 
Unresolved external. See Unresolved reference 
Unresolved reference, 804 
Unsegmented architecture, 9, 37 
.UNTIL directive, 178 
. UNTILCXZ directive, 178 
USE16 operand, 49, 51 
USE32 operand, 49,51 
User-defined types, 804 
USES in PROC statement, 189 
Utilities 

v 

BIND,460-461 
EXEHDR,462 
H2INC, 433-450 
HELPMAKE,305-331 
IMPLIB, 463, 475 
LINK, 333-369 
MASM, xix, 550 
ML,xix 

See also ML 
NMAKE, 263-304 
NMK,302-303 

V ARARG keyword 
macros, 246, 252, 558 
procedures, 191, 193, 199 

Variable declaration, 804 
Variables 

assembly-time, 236 
communal, 221 
environment, 14,217,360 
external, 221, 575, 796 
floating-point, 142-144 
global, 216, 218, 797 
initializing, 88 
integers, allocating memory for, 85-86 
local address, loading, 80 
local. See Local variables 
naming restrictions, 13 
pointer. See Pointer variables 
stack. See Local variables 

Virtual disk, 804 
Virtual memory, 8, 804 
Visibility 

w 

defined, 805 
PROC statement, 31, 190 
scope, within, 13 

/W[ARNFIXUP] option, LINK, 360 
Watch window, CodeView, 408-409,805 
WHILE directive, 244 
.WHILE directive, 178 
WIDTH operator, 139 
Windows 

commands, 795 
defined, 805 
Local,412 
manipulating, 403-406 
Memory, 404 
multiple, 426 
programming, 5 
Register, 801 
Source, 403 
Watch, 408-409, 805 

Word,805 
WORD align type, 50 
WORD directive, 86 
Word size 

default, 17, 570, 579 
expressions, 17, 32 

@WordSizepredefined symbol, 44 

Index 

831 



Index 

x 
IX command-line option, ML, 217 
XCHG instruction, 90 
XLA T instruction, 91 
XLA TB instruction, 91 
XOR instruction, 32, 102-103 

z 
ZERO? operand, 183 
/Zm command-line option, ML, 125 
/Zp command-line option, ML, 125 

832 



Microsoft Product Assistance Request - MASM 6.0 
Microsoft Product Support Services 

Phone (206) 646-5109 

Instructions 
When you need assistance with a Microsoft product and you are calling from the United States, contact our 
Product Support Services group at (206) 646-5109. If you are calling from another country, please contact the 
nearest Microsoft subsidiary. (The subsidiaries' phone numbers are on the preaddressed labels included in the 
package.) So that we can answer your questions as quickly as possible, please gather all information that applies 
to your problem. Note or print out anyon-screen messages you get when the problem occurs. Have your manual 
and product disks close at hand and have available all the information requested on this form when you call. 

So that we can assist you more effectively, please be prepared to answer the following questions regarding 
your problem, your software, and your hardware. 

Diagnosing a Problem 
1 Can you reproduce the problem? 

Dyes 0 no 

Steps to duplicate problem: 

2 Does the problem occur with another copy of 
the original disk of your Microsoft software? 

Dyes 0 no 

3 Does the problem occur with another system 
(if available)? 

Dyes o no 

4 If you were running other windowing or 
memory-resident software at the same time, 
does the problem also occur when you don't 
use the other software? 

Dyes o no 

NameNersion Number 

NameNersion Number 

5 Which version of the linker are you using? (To 
display the version number on your screen, type 
LINK at the DOS or OS/2 prompt and press 
ENTER.) 

Version Number 

Product 

NameNersion Number 

Operating System 

NameNersion Number 

Hardware 
Computer 

Manufacturer/Model 

Capacity (megabyte) 

CPU 
(e.g., 8088, 80286) 

Note: If using DOS, you can run CHKDSK to 
determine the amount of memory available. If using 
Apple® Macintosh® FinderTM, select" About the Finder..." 
from the Apple menu to determine the amount of 
memory available. 

• Floppy-disk drives 

Number: 01 02 o other 

Density: 0 single 0 double 0 quad 

Capacity 5.25": 0 160K 0 360K 

3.5": 0 360K 0 720K 

• Hard Disks 

Manufacturer/Model 

Manufacturer/Model 

01.2 MB 

01.4 MB 

Capacity (megabyte) 

Capacity (megabyte) 



Hardware (continued) 

Peripherals 
• Printer/Plotter 

Manufacturer/Model o Serial o Parallel 

Printer peripherals, such as font cartridges, 
downloadable fonts, sheet feeders: 

• Mouse 

Microsoft® Mouse: 0 Bus 0 Serial 0 InPort® 

o PS/2® 0 Other 

Manufacturer/Model 

• Boards 

o Add-on RAM board/EMS boards 

Manufacturer/ModellTotal Memory 

o Graphics-adapter board 

Manufacturer/Model 

o Other boards installed 

Manufacturer/Model 

Manufacturer/Model 

• Modem 

Manufacturer/Model 

CD-ROM Player 

Manufacturer/Model 

Version of Microsoft MS-DOS® CD-ROM 
Extensions: 

Network 
Is your system part of a network? Dyes 0 no 

Manufactu rer/Model 

What software does your network use? 

••• 



Documentation Feedback- Microsofb MASM 6.0 
Please help us improve our documentation. When you become familiar with this product, complete and 
return this form. Comments and suggestions become the property of Microsoft Corporation. 

Please answer the following questions about your 
programming background and practice. 

Programming experience: 
Total years __ Years using MASM __ 

Occupation: ______________ _ 

Was it easy to set up this product for your 
programming environment? Yes __ No __ 
Comments: ______________ _ 

What percentage of your programming is done 
in the Programmer's WbrkBench (PWB)? __ 
Outside PWB? __ 

What editor(s) other than PWB do you use? __ _ 

Please answer the following questions about the 
documentation. Then, using a scale of 1-5, rate 
the overall effectiveness of each piece. 
(1 = Poor, 2 = Below average, 3 = Satisfactory, 
4 = Very good, 5 = Excellent) 

Microsoft Macro Assembler Advisor (online help 
system) 

1. Do you use the Microsoft Macro Assembler 
Advisor? Yes __ No __ 
Why or why not? __________ _ 

2. How useful are the example programs? 
Not useful __ Somewhat useful __ 
Very useful __ Comments: ______ _ 

3. Can you find the information you need quickly 
and easily? Yes __ No __ 

4. List any information you expected to find that 
was not there. ___________ _ 

5. Rate the amount of information on each screen: 
Too much _ Not enough _ About right __ 
Comments: ____________ _ 

6. What improvements would you like in future 
versions of online help? ________ _ 

7. Rating (1-5): __ Comments: _____ _ 

Installing and Using the Professional 
Development System 

1. Did you use this book to install MASM 6.0? 
Yes __ No __ 

2. Did the chapter on using the Programmer's 
WorkBench cover PWB' s features adequately? 
Yes __ No __ Didn't read __ 

3. Did the chapter on using online help explain 
the help system clearly? 
Yes __ No __ Didn't read __ 

4. Rating (1-5): __ Comments: _____ _ 

Programmer' 51 Guide 

1. Which statement best summarizes your response 
to the Programmer's Guide? 
__ It's too simple; I want more in-depth 

information. 
__ It's about right; I can understand and 

use it without difficulty. 
__ It's too technical; I find it hard to read 

and apply. 

2. Which chapters do you find most helpful? __ 

Least helpful? ___________ _ 

3. What other topics would you like to see 
covered? ______________ _ 

4. Rating (1-5): __ Comments: _____ _ 

Reference 

1. Which section(s) do you use the most? ___ _ 

The least? _____________ _ 

2. What other topics or information should be 
covered? ______________ _ 

3. Rating (1-5): __ Comments: _____ _ 

Which parts of the documentation do you refer to 
most frequently? ____________ _ 

Use the back of this form for additional suggestions and comments. Please note any errors and special 
strengths or weaknesses in areas such as programming examples, indexes, and overall organization. 



Name 

Address 

City/State/Zip 

Phone (home) 

Additional comments: 

Please mail this form to: 

Microsoft Corporation 
One Microsoft Way 
Redmond, WA 
98052-6399 

Attn: Languages-MASM 6.0 

(work) 



Nliclosott® 
Making it all make sense ™ 

Microsoft Corporation 
One Microsoft Way 
Redmond , WA 98052-6399 

0291 Part No. 06556 


