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Introduction

The Microsoft® Macro Assembler Programmer’ s Guide provides the informa-
tion you need to write and debug assembly-language programs with the Micro-
soft Macro Assembler (MASM), version 6.0. This book documents enhanced
features of the language and the programming environment for MASM 6.0. It
also describes new features that take advantage of the capabilities of the
80386/486 processors.

The Programmer’s Guide is written for experienced programmers who know as-
sembly language and are familiar with an assembler. The book does not teach the
basics of assembly language; it does explain Microsoft-specific features. If you
want to learn or review the basics of assembly language, refer to “Books for
Further Reading” later in this introduction.

The documentation for MASM 6.0 is an integrated set, comprehensive and cohe-
sive. This book emphasizes writing efficient code with the new and advanced fea
tures of MASM. Installing and Using the Professional Development System
explains not only how to set up MASM 6.0 but also how to use the extensive on-
line reference system, the Microsoft Advisor.

Installing and Using also introduces the integrated environment called the Pro-
grammer’s WorkBench (PWB) and shows how to manage development projects
with it. The Microsoft Macro Assembler Reference provides a full listing of all
MASM instructions, directives, statements, and operators, and it serves as a
quick reference to utility commands.

For more information on these same topics, see the online Microsoft Advisor,
which is a complete reference to Macro Assembler language topics, to the utili-
ties, and to PWB. You should be able to find most of the information you need in
the Microsoft Advisor. The printed documents give more in-depth and back-
ground information.

New and Extended Features in MASM 6.0

Version 6.0 of MASM differs from version 5.1 in many ways, from optional ex-
tensions to features that replace or modify previous assembler behavior.

MASM 6.0 includes the Programmer’s WorkBench, an integrated software
development environment, and the CodeViewe® source-level debugger. From
within PWB you can edit, build, debug, or run a program, and you can perform
most of these operations with either menu selections or keyboard commands.

You can also customize PWB to suit your individual programming and editing re-
quirements and preferences.

xvii



Introduction

New MASM Language Features

Xviii

MASM 6.0 includes a number of new features, described in the list below, de-
signed to make programming more efficient and intuitive and to increase your
productivity. For example, MASM’s new high-level-language features mean that
you can get the speed of assembly language with the ease of high-level lan-
guages. You can also maintain your programs more easily.

s MASM 6.0 has many enhancements related to types. You can now use the
same type specifiers in initializations as in other contexts (BYTE instead of
DB). You can also define your own types, including pointer types, with the
new TYPEDEF directive. See Chapter 3, “Using Addresses and Pointers,”
and Chapter 4, “Defining and Using Integers.”

m  The syntax for defining and using structures and records has been enhanced.
You can also define unions with the new UNION directive. See Chapter 5,
“Defining and Using Complex Data Types.”

m  MASM now generates complete CodeView information for all types. See
Chapter 3, “Using Addresses and Pointers,” and Chapter 4, “Defining and
Using Integers.”

m  New control-flow directives let you use high-level-language constructs such
as loops and if-then-else blocks defined with .REPEAT and .UNTIL (or
JUNTILCXZ); .WHILE and .ENDW; and .IF, .ELSE, and .ELSEIF. The assem-
bler generates the appropriate code to implement the control structure. See
Chapter 7, “Controlling Program Flow.”

m  MASM now has more powerful features for defining and calling procedures.
The extended PROC syntax for generating stack frames has been enhanced in
version 6.0. You can also use the PROTO directive to prototype a procedure,
which you can then call with the INVOKE directive. INVOKE automatically
generates code to pass arguments (converting them to a related type, if appro-
priate) and make the call according to the specified calling convention. See
Chapter 7, “Controlling Program Flow.”

m  MASM optimizes jumps by automatically determining the most efficient
coding for a jump and then generating the appropriate code. See Chapter 7,
“Controlling Program Flow.”

m  Maintaining multiple-module programs is easier in MASM 6.0. The
EXTERNDEF and PROTO directives make it easy to maintain all global defi-
nitions in include files shared by all the source modules of a project. See
Chapter 8, “Sharing Data and Procedures among Modules and Libraries.”

The assembler has many new macro features that make complex macros clearer
and easier to write:
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m  You can specify default values for macro arguments or mark arguments as re-
quired. And with the VARARG keyword, one parameter can accept a variable
number of arguments.

m  You can implement loops inside of macros in various ways. For example, the
new WHILE directive expands the statements in a macro body while an ex-
pression is not zero.

m  You can define macro functions, which return text macros. Several prede-
fined text macros are also provided for processing strings. Macro operators
and other features related to processing text macros and macro arguments
have been enhanced. For more information on all these macro features, see
Chapter 9, “Using Macros.”

Finally, MASM 6.0 has improved customizable capabilities:

m  With the new .STARTUP and .EXIT directives you can automatically
generate appropriate start-up and exit code for DOS or OS/2 modules. See
Chapter 2, “Organizing MASM Segments.”

m  MASM 6.0 supports flat memory model, available with OS/2 version 2.0. In
flat model, segments can be as large as 4 gigabytes instead of 64K
(kilobytes). Offsets are 32 bits instead of 16 bits. See Chapter 2, “Organizing
MASM Segments.”

m The program H2INC.EXE converts C include files to MASM include files
and translates data structures and declarations. See Chapter 16, “Converting
C Header Files to MASM Include Files.”

MASM 6.0 includes many other minor new features as well as extended support
for features of earlier versions of MASM. These features are listed in Appendix
A, “Differences between MASM 6.0 and 5.1,” with cross-references to the chap-
ters where they are discussed in detail.

ML and MASM Command Lines

MASM 6.0 provides a new command-line driver, ML, which is more powerful
and flexible than the previous driver (MASM). ML assembles and links with one
command. The old MASM driver command syntax is still supported, however, to
support existing batch files and makefiles that use MASM command lines.-

NOTE The name MASM has traditionally been used to refer to the Microsoft Macro As-
sembler. It is used in that context throughout this book. But MASM also refers to
MASM.EXE, which has been replaced by ML.EXE. In MASM 6.0, the MASM.EXE file is a
small utility that translates command-line options to those accepted by ML.EXE, and then
calls ML.EXE. The distinction between ML.EXE and MASM.EXE is made whenever neces-
sary. Otherwise, MASM refers to the assembler and its features.

Xix
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Compatibility with Earlier Versions of MASM

In many cases, MASM 5.1 code will assemble without modification under
MASM 6.0. However, MASM 6.0 provides a new OPTION directive that lets
you selectively modify the assembly process. In particular, you can use the M510
argument with OPTION or the /Zm command-line option to set most features to
be compatible with version 5.1 code.

See Appendix A, “Differences between MASM 6.0 and 5.1,” for information
about obsolete features that will not assemble correctly under MASM 6.0. The
appendix also discusses how to update code to use the new features.

Scope and Organization of this Book

XX

The Programmer’s Guide describes how to get the most out of the Microsoft
Macro Assembler 6.0 and the Programmer’s WorkBench. The book is arranged
by topic, with each topic answering a question or solving a problem. The last sec-
tion in each chapter lists topics in the online reference system that provide addi-
tional information.

The Programmer’s Guide is divided into three parts:

Part 1, “Programming in Assembly Language,” explains how to program effi-
ciently using both the new and old features of MASM. It reviews the basic com-
ponents of assembly language and also describes the new and enhanced features.

Part 2, “Improving Programmer Productivity,” introduces the utility programs in-
cluded with MASM 6.0. These programs can help you program more quickly and
efficiently. For example, the chapters in Part 2 show you how to automatically
update your project (Chapter 10), use program lists as input (Chapter 11), use the
Microsoft linker (LINK) (Chapter 12), write module-definition files (Chapter

13), customize PWB to suit your programming style (Chapter 14), use the
CodeView debugger to record and play back a debugging session (Chapter 15),
and easily port data structures from C programs to MASM programs

(Chapter 16).

Part 3, “Advanced Topics,” covers specialized areas. It describes how to write
programs to run under OS/2 (Chapter 17) and how to build dynamic-link libraries
(Chapter 18). Chapter 19 shows how to write a terminate-and-stay-resident
(TSR) program. Chapter 20, on mixed-language programming, defines the cal-
ling conventions and equivalent data types that allow MASM to call and be
called by C, FORTRAN, Basic, and Pascal.

In addition, six appendixes and a glossary detail the features of MASM 6.0. Of
particular interest are Appendix A, “Differences between MASM 6.0 and 5.1,”
and Appendix B, “BNF Grammar.” Appendix A lists the new features of MASM
6.0 and also explains how to update MASM 5.1 code. The BNF grammar, or
Backus-Naur Form for grammar notation, lets you determine the exact syntax for
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any MASM language component. It clearly defines recursive definitions and
shows all the available options for any placeholder. Other appendixes cover
assembly listings, reserved words, default segment names, and error messages.

Books for Further Reading

The following books may help you learn to program in assembly language or
write specialized programs. These books are listed only for your convenience.
Microsoft makes no specific recommendations concerning any of these books.

Books about Programming in Assembly Language

Abrash, Michael, Zen of Assembly Language. Glenview, IL: Scott, Foresman and
Co., 1990.

Duntemann, Jeff, Assembly Language from Square One: For the PC AT and
Compatibles. Glenview, IL: Scott, Foresman and Co., 1990.

Fernandez, Judi N., and Ashley, Ruth, Assembly Language Programming for the
80386. New York: McGraw-Hill, 1990.

Miller, Alan R., DOS Assembly Language Programming. San Francisco:
SYBEX, 1988.

Scanlon, Leo J., 80286 Assembly Language Programming on MS-DOS Comput-
ers. New York: Brady Communications, 1986.

Turley, James L., Advanced 80386 Programming Techniques. Berkeley, CA:
Osborne McGraw-Hill, 1988.

Books ahout DOS and BIOS

“Article 11.” MS-DOS Encyclopedia. Redmond, WA: Microsoft Press, 1988.
Contains information about terminate-and-stay-resident programs.

Duncan, Ray, Advanced MS-DOS. 2nd ed. Redmond, WA: Microsoft Press, 1988.

Jourdain, Robert, Programmer’s Problem Solver for the IBM PC, XT and AT.
New York: Brady Communications, 1986.

Microsoft MS-DOS Programmer’ s Reference. Redmond, WA: Microsoft Press,
1986-87.

Norton, Peter and Wilton, Richard, The New Peter Norton Programmer’s Guide
to the IBM PC and PS/2. Redmond, WA: Microsoft Press, 1988.

Wilton, Richard, Programmer’s Guide to PC & PS/2 Video Systems. Redmond,
WA: Microsoft Press, 1987.

XXi
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Books about 0S/2

Duncan, Ray, Advanced OS/2 Programming. Redmond, WA: Microsoft Press,
1989.

, Essential OS/2 Functions. Redmond, WA: Microsoft Press, 1989.
Letwin, Gordon, Inside OS/2. Redmond, WA: Microsoft Press, 1989.
OS/2 Programmer’s Reference. 4 vols. Redmond, WA: Microsoft Press, 1989.

Books about Other Topics
Nelson, Ross P., The 80386 Book. Redmond, WA: Microsoft Press, 1988.

Startz, Richard, 8087/80287/80387 for the IBM PC and Compatibles. Bowie,
MD: Robert J. Brady Co., 1988.

Writing ROMable Code in Microsoft C. Costa Mesa, CA: SSI Corporation.

Document Conventions

XXii

The following document conventions are used throughout this manual:

Example of

Convention Description

SAMPLE2.ASM Uppercase letters indicate file names, segment
names, registers, and terms used at the command
level.

.MODEL Boldface type indicates assembly-language direc-
tives, instructions, type specifiers, and predefined
macros, as well as keywords in other programming
languages.

placeholders Italic letters indicate placeholders for information
you must supply, such as a file name. Italics are also
occasionally used for emphasis in the text.

target This font is used to indicate example programs, user

input, and screen output.

; A semicolon in the first column of an example sig-
nals illegal code. A semicolon also marks a comment.
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SHIFT Small capital letters signify names of keys on the
keyboard. Notice that a plus (+) indicates a combina-
tion of keys. For example, CTRL+E means to hold
down the CTRL key while pressing the E key.

[argument]| Items inside double square brackets are optional.

{registerlmemory} Braces and a vertical bar indicate a choice between
two or more items. You must choose one of the
items unless double square brackets surround the
braces.

Repeating elements... A horizontal ellipsis (...) following an item indicates
that more items having the same form may appear.

Program A vertical ellipsis tells you that part of a program has
been intentionally omitted.

Fragment

Getting Assistance and Reporting Problems

If you need help or think you have discovered a problem in the software, please
provide the following information to help us locate the problem:

m The version of DOS or OS/2 that you are running

= Your system configuration: the type of machine you are using, its total
memory, and its total free memory at assembler execution time, as well as
any other information you think might be useful

m  The assembly command line used, or the link command line if the problem
occurred during linking

m  Any object files or libraries you linked with if the problem occurred at
link time

If your program is very large, please try to reduce its size to the smallest possible
program that still produces the problem.

Use the Product Assistance Request form at the back of this book to send this in-
formation to Microsoft. If you have comments or suggestions regarding any of
the books accompanying this product, please indicate them on the Document
Feedback Card at the back of this book.

If you are not a registered Macro Assembler owner, you should fill out and return
the Registration Card. This enables Microsoft to keep you informed of updates
and other information about the assembler.

xxiii
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Chapter 1

Understanding Global Concepts

With the development of the Microsoft Macro Assembler (MASM) version 6.0,
you now have more options available to you for approaching a programming
task. This chapter explains the general concepts of programming in assembly lan-
guage, beginning with the environment and reviewing the components you need
to work in the assembler environment. Even if you are familiar with previous ver-
sions of MASM, you should examine this chapter for information on new terms
and features.

The first section of the chapter takes a look at the available processors and operat-
ing systems and how they work together. It also discusses the relationship of seg-
mented architecture to assembly programming and the differences it makes for
programming in OS/2 rather than in DOS.

The second section describes some of the language components of MASM that
are common to most programs, such as reserved words, constant expressions,
operators, and registers. The rest of this book assumes that you understand the in-
formation presented in this section.

The last section summarizes the assembly process, from assembling a program
through running it. You can affect this process by the way you develop your
code. Finally, this section explores how you can change the assembly process
with the OPTION directive and conditional assembly.

NOTE This manual does not cover information specific to programming for Microsoft
Windows™. For information on this, see the Microsoft Windows Software Development Kit.

1.1 The Processing Environment

The processing environment for MASM 6.0 includes the processor on which
your programs run, the operating system your programs will use, and the aspects
of the segmented architecture that influence the choice of programming models.
This section summarizes these elements of the environment and how they affect
your programming choices.

1.1.1 8086-Based Processors

The 8086 “family” of processors uses segments to control data and code. The
later 8086-based processors have larger instruction sets and more memory capac-
ity, but they still use the same segmented architecture. Knowing the differences
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between the various 8086-based processors can help you select the target proces-
sor for your programs.

The instruction set of the 8086 processor is upwardly compatible with its succes-
sors. To write code that runs on the widest number of machines, select the 8086
instruction set. By choosing to use the instruction set of a more advanced proces-
sor, you increase the capabilities and efficiency of your program, but you also re-
duce the number of systems on which the program can run.

Table 1.1 lists modes, memory, and segment size of processors on which your ap-
plication may need to run. Each processor is discussed in more detail below.

Table 1.1 8086 Family of Processors

Available Addressable Segment
Processor Modes Memory Size
8086/8088 Real 1 megabyte 16 bit
80186/80188 Real 1 megabyte 16 bit
80286 Real and Protected 16 megabytes 16 bit
80386 Real and Protected 4 gigabytes 16 or 32 bit
80486 Real and Protected 4 gigabytes 16 or 32 bit

Processor Modes Real mode allows only one process to run at a time. The
DOS operating system runs in real mode. The OS/2 operating system can execute
programs written for DOS, but is designed to provide capabilities available only
in protected mode. In protected mode, more than one process can be active at any
one time. Memory accessed by these different processes is protected from access
by another process.

Protected-mode addresses do not correspond directly to physical memory. Under
protected-mode operating systems, the processor allocates and manages memory
dynamically. Additional privileged instructions initialize protected mode and con-
trol multiple processes. Section 1.1.2 provides more information on operating
systems.

8086 and 8088 The 8086 is faster than the 8088 because of its 16-bit data
bus; the 8088 has only an §-bit data bus. The 16-bit data bus allows you to use
EVEN and ALIGN on an 8086 processor to word-align data and thus improve
data-handling efficiency. Memory addresses on the 8086 and 8088 refer to actual
physical addresses.

80186 and 80188 These two processors are identical to the 8086 and 8088
except that new instructions have been added and several old instructions have
been optimized. These processors run significantly faster than the 8086.
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80286 The 80286 processor adds some instructions to control protected mode,
and it runs faster. It also provides the optional protected mode that can be used
by the operating system to allow multiple processes to run at the same time. The
80286 is the minimum for running 16-bit versions of OS/2.

80386 Unlike its predecessors, the 80386 processor can handle both 16-bit
and 32-bit data. It is fully software-compatible with the 80286. It implements
many new hardware-level features, including virtual paged memory, multiple vir-
tual 8086 processes, addressing of up to four gigabytes of memory, and special-
ized debugging registers.

Under DOS, the 80836 supports all the instructions of the 80286 as well as
several additional ones. It also allows limited use of 32-bit registers and address-
ing modes. The 80386 operates at faster processor speeds than the 80286 and is
the minimum for running 32-bit versions of OS/2 and other 32-bit operating
systems.

80486 The 80486 processor is an enhanced version of the 80386, with instruc-
tion “pipelining” that executes many instructions two to three times faster. It in-
corporates an enhanced version of the 80387 coprocessor, as well as an 8K
(kilobyte) memory cache. The 80486 includes several new instructions and is
fully compatible with 80386 software.

8087, 80287, and 80387 These math coprocessors work concurrently with
the 8086 family of processors. Performing floating-point calculations with math
coprocessors is up to 100 times faster than emulating the calculations with in-
teger instructions. Although there are technical and performance differences
among the three coprocessors, the main difference to the applications program-
mer is that the 80287 and 80387 can operate in protected mode. The 80387 also
has several new instructions. The 80486 does not use any of these coprocessors;
its floating-point processor is built in and is functionally equivalent to the 80387.

1.1.2 Operating Systems

With MASM, you can create programs that run under DOS, Windows, or OS/2—
or all three, in some cases. For example, ML.EXE can produce executable files
that run in any of the target environments, regardless of the programmer’s en-
vironment. For information on building programs for different environments, see
“Building and Running Programs” in PWB’s online help.

DOS and OS/2 provide different processing modes. DOS uses the single-process
real mode. OS/2 uses the multiple-process protected mode. While OS/2 can also
run in real mode, this book assumes it is being used in protected mode.

DOS and OS/2 differ primarily in system access methods, size of addressable
memory, and segment selection. Table 1.2 summarizes these differences.
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Table 1.2  The DOS and OS/2 Operating Systems
Available Contents of

Operating System Active Addressable Segment Word
System Access Processes Memory Register Length
DOS (and Direct to hard-  One 1 megabyte Actual 16 bit
OS/2 1.x real ware address
mode)
0S/2 1.x pro- Operating sys-  Multiple 16 megabytes Segment 16 bit
tected mode tem call selectors
0S/22.x Operating sys-  Multiple 4 gigabytes Segment 32 bit

tem call selectors

DOS In real-mode programming, you can access system functions by calling
DOS, calling the basic input/output system (BIOS), or directly addressing hard-
ware. Access is through DOS interrupt 21h.

0S/2 1.x As you can see in Table 1.2, protected mode allows for much larger
data structures than real mode, since the addressable memory is extended to 16
megabytes. In protected mode, segment registers contain segment selectors rather
than actual segment values. These selectors cannot be calculated by the program;
they must be obtained by calling the operating system. Programs that attempt to
calculate segment values or to address memory directly do not work.

Protected-mode programs
cannot directly access
hardware ports.

Note that protected-mode operating systems such as XENIX® and OS/2 provide
system functions for memory and hardware accesses that would be prohibited
with direct processor commands. This software interface permits access without
the possibility of corrupting memory or crashing the system.

Protected mode uses privilege levels to maintain system integrity and security.
Programs cannot access data or code that is in a higher privilege level. Some in-
structions that directly access ports or clear interrupts (such as CLI, STI, IN,
and OUT) are available at privilege levels normally used only by systems
programmers.

0S/2 protected mode enforces the separation of segment values. The segments
have selectors that have no relationship to the offset. The operating system com-
bines the segment and offset so that your programs can address up to 16 mega-
bytes of virtual memory in a 16-bit system.

0S/2 2. x and flat model
eliminate segments.

0S/2 2.x 0S/2 2.xuses an unsegmented architecture. (See Section 1.1.3.) It
creates a “flat model” in which the entire address space is within one 32-bit seg-
ment. Section 2.2.1, “Defining Basic Attributes with .MODEL,” explains how to
use the flat model. In a 32-bit system, you can access up to four gigabytes of vir-
tual memory. (The term “virtual memory” means that if the programs running
under OS/2 request more memory than is physically available, part of the
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memory is temporarily swapped out to disk.) Since code, data, and stack are in
the same segment, the value of segment registers never needs to change. Internal
mechanisms of OS/2 2.x implement protection at a lower level.

1.1.3 Segmented Architecture

Only 64K of data can be
addressed by a 16-bit
segment address.

The 8086 processors differ from many other microprocessors in that they use a
segmented architecture: that is, each address is represented in two parts—a seg-
ment and an offset. Segmented addresses affect many aspects of assembly-
language programming, especially addresses and pointers.

Segmented architecture was originally designed to enable a 16-bit processor to
access an address space larger than 64K. (Section 1.1.5, “Segmented Address-
ing,” explains how the processor uses both the segment and offset to create
addresses larger than 64K.) DOS is an example of an operating system that uses
segmented architecture on a 16-bit processor.

With the advent of protected-mode processors such as the 80286, segmented ar-
chitecture gained a second purpose. Segments can separate different blocks of
code and data to protect them from undesirable interactions. OS/2 1.x is an oper-
ating system that takes advantage of the protection features of the 16-bit seg-
ments on the 80286.

Segmented architecture went through another significant change with the release
of 32-bit processors, starting with the 80386. These processors are backward
compatible with the older 16-bit processors, but they also offer a 32-bit mode
that minimizes the memory limitations of a 16-bit segmented architecture. Both
offer paging to maintain segment protection. XENIX 386 is an example of a 32-
bit segmented operating system using segment protection.

0OS/2 2.x takes advantage of the 32-bit processors to allow a nonsegmented
memory configuration. The processor still uses 32-bit segments, but from the
user’s viewpoint, there is only one segment. The flat memory model used by
0O8/2 2.x places code and data in a single segment. See Section 2.2.1, “Defining
Basic Attributes with .MODEL,” for more information about the flat memory
model.

1.1.4 Segment Protection

Segmented architecture is an important part of the OS/2 memory-protection
scheme. In a “multitasking” operating system where numerous programs can run
simultaneously, programs must not access the code and data of another process
without permission.

In DOS, the data and code segments are usually allocated adjacent to each other,
as shown in Figure 1.1. In OS/2, the data and code segments may be anywhere in
memory. The programmer knows nothing about their location and has no control
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Segment protection

prevents a bug in one
program from corrupting

another program.

over it. The segments may even be moved to a new memory location or swapped
to disk while the program is running.

Real-Mode Protected-Mode
Program Allocation Program Allocation
First | | | |
available || ! Somewhere || !
address > in memory __,
Next Code Code
address Segment Segment
after Code
Segment __,.
Data Somewhere ! : ¥
Segment in memory __,
. Data
I I Segment
I |
I

Figure 1.1 Segment Allocation

Segment protection makes software development easier and more reliable in
0S/2 than in DOS because, in OS/2, any illegal access is detected immediately.
The operating system intercepts illegal memory accesses, terminates the pro-
gram, and displays a message. This makes the bug easier to track down and fix.

In DOS, an illegal access is not detected and may not cause an error until later,
when another part of the program attempts to use the corrupted memory.

1.1.5 Segmented Addressing

10

Segmented addressing is the internal mechanism that combines a segment value
and an offset value to create an address. The two parts of an address are repre-
sented as

segment:offset

The segment portion is always a 16-bit value. The offset portion is a 16-bit value
in 16-bit mode or a 32-bit value in 32-bit mode.

In real mode, the segment value is a physical address that has an arithmetic rela-
tionship to the offset value. The segment and offset together create a 20-bit physi-
cal address (explained in the next section). Although 20-bit addresses can access
up to one megabyte of memory, the operating system on IBM@ PCs and compati-
bles uses part of this memory, leaving 640K of memory for programs.
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1.1.6 Segment Arithmetic

The segment selects a
region of memory; the
offset selects the byte
within that region.

Manipulating segment and offset addresses directly in real-mode programming is
called “segment arithmetic.” Programs that perform segment arithmetic are not
portable to protected-mode operating systems, where addresses do not corre-
spond to a known segment and offset.

To perform segment arithmetic successfully, it helps to understand how the pro-
cessor combines a 16-bit segment and a 16-bit offset to form a 20-bit linear
address. In effect, the segment selects a 64K region of memory, and the offset
selects the byte within that region. Here’s how it works:

1. The processor shifts the segment address to the left by four binary places, pro-
ducing a 20-bit address ending in four zeros. This operation has the effect of
multiplying the segment address by 16.

2. The processor adds this 20-bit segment address to the 16-bit offset address.
The offset address is not shifted.

3. The processor uses the resulting 20-bit address, often called the “physical
address,” to access an actual location in the one-megabyte address space.

Figure 1.2 illustrates this process.

15 0 15 0
(5 lajcle)—[5]a]lclz]o]

16-bit segment register Segment register shifted left 4 bits
15 0
+ Clol71+]
16-bit offset
19 0

S [elclela]

20-bit physical address

Figure 1.2 Calculating Physical Addresses

A 20-bit physical address may actually be specified by 4,096 equivalent
segment:offset addresses. For example, the 20-bit physical address 0F800 is
equivalent to 0000:F800, OF00:0800, or OF80:0000.

11
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You may need to convert two segmented addresses with different segments to
segmented addresses with the same segment to write TSRs (see Chapter 19), to
write code to handle huge arrays, or to determine the size of an area of memory.

1.2 Language Components of MASM

Programming with MASM requires that you understand the MASM concepts of
reserved words, identifiers, predefined symbols, constants, expressions, opera-
tors, data types, registers, and statements. This section defines important terms
and provides lists that summarize these topics. See online help or the MASM
Reference for detailed information.

1.2.1 Reserved Words

Use OPTION NOKEYWORD
if you want to use a
reserved word in another
context.

12

A reserved word has a special meaning fixed by the language. You can use it
only under certain conditions. MASM’s reserved words include:

m Instructions, which correspond to operations the processor can execute

m Directives, which give commands to the assembler

m Attributes, which provide a value for a field, such as segment alignment

m  Operators, which are used in expressions

m  Predefined symbols, which return information to your program

MASM reserved words are not case sensitive except for predefined symbols (see
Section 1.2.3).

The assembler generates an error if you use a reserved word as a variable, code
label, or other identifier within your source code. However, if you need to use a
reserved word for another purpose, the OPTION NOKEYWORD directive can
selectively disable a word’s status as a reserved word.

For example, to remove the STR instruction, the MASK operator, and the NAME
directive from the set of words MASM recognizes as reserved, use this statement
in the code segment of your program prior to the first reference to STR, MASK,
or NAME:

OPTION NOKEYWORD:<STR MASK NAME>

The OPTION directive is discussed in Section 1.3.2. Appendix D provides a com-
plete list of MASM reserved words.
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1.2.2 ldentifiers

Identitiers are names of
variables of a given type.

An identifier is a name that you invent and attach to a definition. Identifiers can
be symbols representing variables, constants, procedure names, code labels, seg-
ment names, and user-defined data types such as structures, unions, records, and
types defined with TYPEDEF. Identifiers longer than 247 characters generate an
erTor.

Certain restrictions limit the names you can use for identifiers. Follow these rules
to define a name for an identifier:

m The first character of the identifier can be an alphabetic character (A—Z) or
any of these four characters: @ _ $ ?

m The other characters in the identifier can be any of the characters listed above
or a decimal digit (0-9)

Avoid starting an identifier with the at sign (@), because MASM 6.0 predefines
some special symbols starting with @ (see Section 1.2.3). Beginning an identifier
with @ may also cause conflicts with future versions of the Macro Assembler.

The symbol—and thus the identifier—is visible as long as it remains within
scope. (See Section 8.2, “Sharing Symbols with Include Files,” for additional in-
formation about visibility and scope.)

1.2.3 Predefined Symbols

Macros and conditional-
assembly blocks often use
predefined symbols.

The assembler includes a number of predefined symbols (also called predefined
equates). You can use these symbol names at any point in your code to represent
the equate value. For example, the predefined equate @FileName represents the
base name of the current file. If the current source file is TASK.ASM, the value
of @FileName is TASK. The MASM predefined symbols are listed below ac-
cording to the kinds of information they provide. Case is important only if the
/Cp option is used. (See online help on ML command-line options for additional
details.)

Predefined Symbols for Segment Information

Symbol Description

@code Provides the name of the code segment, except in tiny
model when it returns DGROUP.

@CodeSize Returns an integer representing the default code distance.

@CurSeg Returns the name of the current segment.

@data Expands to DGROUP except in flat model.

@DataSize Returns an integer representing the default data distance.

13
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Symbol

@fardata
@fardata?

@Model
@stack

@WordSize

Description

Represents the name of the segment defined by the
JFARDATA directive.

Represents the name of the segment defined by the
JFARDATA? directive.

Returns the selected memory model.

Expands to DGROUP for near stacks or STACK for far
stacks. (See Section 2.2.3, “Creating a Stack.”)

Provides the size attribute of the current segment.

Predefined Symbols for Environment Information

Symbol
@Cpu
@Environ

@Interface

@Version

Description

Contains a bit mask specifying the processor mode.
Returns values of environment variables.
Contains information about the language parameters.

Represents the text equivalent of the MASM version
number. In MASM 6.0, this expands to 600.

Predefined Symbols for Date and Time Information

Symbol

@Date
@Time

Description

Supplies the current system date.

Supplies the current system time.

Predefined Symbols for File Information

Symbol

@FileCur
@FileName

@Line

Description

Names the current file (base and suffix).

Names the base name of the main file being assembled
as it appears on the command line.

Gives the source line number in the current file.
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Predefined Functions for Macro String Manipulation

Symbol Description

@CatStr Returns concatenation of two strings.

@InStr thurns the starting position of a string within another
string.

@SizeStr Returns the length of a given string.

@SubStr Returns substring from a given string.

1.2.4 Integer Constants and Constant Expressions

The default radix is
decimal.

Values of integer constants
and expressions are known
at assembly time.

An integer constant is a series of one or more numerals followed by an optional
radix specifier. For example, in these statements

mov ax, 25
mov ax, 0B3h

the numbers 25 and @B3h are integer constants. The h appended to @B3 is
aradix specifier. The specifiers are

m y forbinary (or b if radix is less than or equal to 10)
m 0 or q foroctal
m t fordecimal (or d if radix is less than or equal to 10)

m h for hexadecimal

Radix specifiers can be either uppercase or lowercase letters; sample code in this

book uses lowercase. If no radix is specified, the assembler interprets the integer

according to the current radix. The default radix is decimal, but it can be changed
with the .RADIX directive.

Hexadecimal numbers must always start with a decimal digit (0-9). If necessary,
add a leading zero to distinguish between symbols and hexadecimal numbers that
start with a letter. For example, ABCh is interpreted as an identifier. The hex-
adecimal digits A through F can be either uppercase or lowercase letters. Sample
code in this book uses uppercase letters.

Constant expressions contain integer constants and (optionally) operators such as
shift, logical, and arithmetic operators, and can be evaluated. The assembler eval-
uates them at assembly time. (In addition to constants, expressions can contain
labels, types, registers, and their attributes.) Constant expressions do not change
value during program execution.

15
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Symbolic Integer Constants You can define symbolic integer constants
with either of the data assignment directives, EQU or the equal sign (=). These
directives assign values to symbols during assembly, not during program execu-
tion. Symbols defined as integer constants can then be used in subsequent state-
ments as immediate operands having the assigned value. Symbolic constants are
often used to assign mnemonic names to constant values, which makes your code
more readable and easier to maintain.

The assembler does not allocate data storage when you use either EQU or =. In-
stead, it replaces each occurrence of the symbol with the value of the expression.

The difference between EQU and = is that integers defined with the = directive
can be changed in your source code, but those defined with EQU cannot. Once a
symbolic integer constant has been defined with the EQU directive, attempting to
redefine it generates an error. The syntax is

symbol EQU expression

The symbol must be a unique name. The expression can be an integer, a constant
expression, a one- or two-character string constant (four-character on the
80386/486), or an expression that evaluates to an address. If a constant value
used in numerous places in the source code needs to be changed, you modify the
expression in one place rather than throughout the source code.

The following example shows the correct use of EQU to define symbolic integers.

column EQU 80 ; Constant - 80
row EQU 25 ; Constant - 25
screen EQU column * row ; Constant - 2000
line EQU row ; Constant - 25

.DATA

.CODE

mov cx, column

mov bx, line

The value of a symbol defined with the = directive can be different at different
places in the source code. However, a constant value is assigned during assembly
for each use, and that value does not change at run time.
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1.2.5 Operators

The syntax for the = directive is

symbol = expression

Size of Constants The default word size for MASM 6.0 expressions is 32
bits. This behavior can be modified using OPTION EXPR16 or OPTION M510.
Both of these options set the expression word size to 16 bits, but OPTION M510
affects other assembler behavior as well (see Appendix A).

It is illegal to change the expression word size once it has been set with OPTION
M510, OPTION EXPR16, or OPTION EXPR32, but you can repeat the same direc-
tive in a file. This can be useful for putting an OPTION EXPR16 in every include
file, for example.

Operators are used in expressions. The value of the expression is determined at
assembly time and does not change when the program runs.

Operators should not be confused with processor instructions. The reserved
word ADD is an instruction. The plus sign (+) is an operator. For example,
Amount+2 is a valid use of the plus operator (+); it tells the assembler to add 2
to Amount, which might be a value or an address. This operation, which occurs
at assembly time, is different from the ADD instruction, which tells the processor
to perform addition at run time.

The assembler evaluates expressions that contain more than one operator accord-

ing to the following rules:

m  Operations in parentheses are always performed before any adjacent
operations.

m Binary operations of highest precedence are performed first.

m  Operations of equal precedence are performed from left to right.

m  Unary operations of equal precedence are performed right to left.

The order of precedence for all operators is listed in Table 1.3. Operators on the

‘same line have equal precedence.

17
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Table 1.3  Operator Precedence

Precedence  Operators

1 0.1

2 LENGTH, SIZE, WIDTH, MASK

3 . (structure-field-name operator)

4 : (segment-override operator), PTR

5 LROFFSET, OFFSET, SEG, THIS, TYPE
6 HIGH, HIGHWORD, LOW, LOWWORD
7 + ,— (unary)

8 * [, MOD, SHL, SHR

9 +, — (binary)

10 EQ, NE, LT, LE, GT, GE

11 NOT

12 AND

13 OR, XOR

14 OPATTR, SHORT, .TYPE

A “data type” describes a set of values. A variable of a given type can have any
of a set of values within the range specified for that type.

The intrinsic types for MASM 6.0 are BYTE, SBYTE, WORD, SWORD,
DWORD, SDWORD, FWORD, QWORD, and TBYTE. These types define in-
tegers and binary coded decimals (BCDs); they are discussed in Chapter 6. The
signed data types SBYTE, SWORD, and SDWORD are new to MASM 6.0. They
are useful in conjunction with directives such as INVOKE (for calling proce-
dures) and .IF (introduced in Chapter 7). The REAL4, REALS, and REAL10 direc-
tives can be used to define floating-point types. See Chapter 6.

Previous versions of MASM have separate directives for types and initializers.
For example, BYTE is a type and DB is the corresponding initializer. The distinc-
tion has been eliminated for MASM 6.0. Any type (intrinsic or user-defined) can
be used as an initializer.

MASM does not have specific types for arrays and strings. However, it allows a
sequence of data units to be treated as arrays, and character (byte) sequences to
be treated as strings. (See Section 5.1, “Arrays and Strings.”)

Types can also have attributes such as langtype and distance (NEAR and FAR).
See Section 7.3.3, “Declaring Parameters with the PROC Directive,” for informa-
tion on these attributes.
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The TYPEDEF directive
defines aliases and pointer
types.

You can also define your own types with STRUCT, UNION, and RECORD. The
types have fields that contain string or numeric data, or records that contain bits.
These data types are similar to the user-defined data types in high-level lan-
guages such as C, Pascal, and FORTRAN. (See Chapter 5, “Defining and Using
Complex Data Types.”)

You can define new types, including pointer types, with the TYPEDEF directive,
which is also new to MASM 6.0. TYPEDEF assigns a qualifiedtype (explained
below) to a typename.

NOTE The concept of the qualifiedtype is essential to understanding many of the new fea-
tures in MASM 6.0, including prototypes and the .IF and INVOKE directives. Descriptions of
these topics in later chapters refer to this section.

Once assigned, the typename can be used as a dara type in your program. Use of
the qualifiedtype also allows the CodeView debugger to display information on

the type. You cannot use a qualifiedtype as an initializer, but you can use a type
defined with TYPEDEF.

The qualifiedtype is any MASM type (such as structure types, union types, re-
cord types, or an intrinsic type) or can be a pointer to a type with the form

[distance]l PTR [[qualifiedtypell

where distance is NEAR, FAR, or any distance modifier. See Section 7.3.3, “De-
claring Parameters with the PROC Directive,” for more information on distance.

The qualifiedtype can also be any type previously defined with TYPEDEF. For
example, if you use TYPEDEF to create an alias for BYTE, as shown below, then
you can use that CHAR type as a qualifiedtype when defining the pointer type
PCHAR.

CHAR TYPEDEF BYTE
PCHAR  TYPEDEF PTR CHAR

Section 3.3, “Accessing Data with Pointers and Addresses,” shows how to use
the TYPEDEF directive to define pointers.

Since distance and qualifiedtype are optional syntax elements, you can use varia-
bles of type PTR or FAR PTR. You can also define procedure prototypes with
qualifiedtype. See Section 7.3.6, “Declaring Procedure Prototypes,” for more in-
formation about procedure prototypes.

Several rules govern the use of qualifiedtype:

m  The only component of a qualifiedtype definition that can be forward-
referenced is a structure or union type identifier.

m If distance is not specified, the right operand and current memory model de-
termine the type of the pointer. If the operand following PTR is not a distance
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or a function prototype, the operand is a pointer of the default data pointer
type in the current mode. Otherwise, the type of the pointer is the distance of
the right operand.

m If .MODEL is not specified, SMALL model (and therefore NEAR pointers) is
the default.

A qualifiedtype can be used in seven places:

Use Example

In procedure arguments procl PROC pMsg:PTR BYTE

In prototype arguments proc2 PROTO pMsg:FAR PTR
WORD

With local variables declared LOCAL pMsg:PTR

inside procedures

With the LABEL directive TempMsg LABEL PTR WORD

With the EXTERN and EXTERN pMsg:FAR PTR BYTE

EXTERNDEF directives EXTERN MyProc:PROTO

With the COMM directive COMM varl:WORD:3

With the TYPEDEF directive PPBYTE TYPEDEF PTR PBYTE

PFUNC TYPEDEF PROTO MyProc

Section 3.3.1 shows ways to write a TYPEDEF type for a qualifiedtype. At-
tributes such as NEAR and FAR can also be applied to a qualifiedtype.

You can also determine an accurate definition for TYPEDEF and qualifiedtype
from the BNF grammar definitions given in Appendix B. The BNF grammar de-
fines each component of the syntax for any directive, showing the recursive prop-
erties of components such as qualifiedtype.

All the 8086 processors have the same base set of 16-bit registers. Some registers
can be accessed as two separate 8-bit registers. In the 80386/486, most registers
can also be accessed as extended 32-bit registers.

Figure 1.3 shows the registers common to all the 8086-based processors. Each
register has its own special uses and limitations.
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General-Purpose Registers

Accumulator
Data

Count

Base

Base Pointer
Source Index
Destination Index

Stack Pointer
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—

f
AH AX

AL

DH DX

DL

CH CX

CL

BH BX

BL

BP

Sl

DI

SP

Segment Registers

Code Segment
Data Segment
Stack Segment

Extra Segment

CS

DS

SS

ES

Multiply, divide, I/O, and optimized moves
Multiply, divide, and I/O

Count for loops, repeats, shifts, and rotates
Pointer to base address (data segment)
Pointer to base address (stack segment)
Source string and index pointer

Destination string and index pointer

Pointer to top of stack

Other Registers

Flags Flags

Instruction Pointer P

Figure 1.3 Registers for 8088-80286 Processors

80386/486 Only The 80386/486 processors use the same 8-bit and 16-bit reg-
isters that the rest of the 8086 family uses. All of these registers can be further ex-
tended to 32 bits, except segment registers, which always occupy 16 bits. The
extended register names begin with the letter “E.” For example, the 32-bit exten-
sion of AX is EAX. The 80386/486 processors have two additional segment reg-
isters, FS and GS. Figure 1.4 shows the extended registers of the 80386/486.
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General-Purpose Registers

31 23 15 7 0

7 7
Accumulator E/i\X AH A:X AL
Data E?X DH D:X DL
Count E?XCH C:X cL
Base E?X BH B:X BL
Base Pointer Eli°>P BP
Source Index EISI sl
Destination Index EP' DI
Stack Pointer E?P sp
Segment Registers Other Registers
Code Segment cs Flags Eﬂfl/QS Flags
Data Segment DS Instruction EiP P
Stack Segment SS Pointer
Extra Segment ES
Exira Segment FS
Extra Segment GS

Figure 1.4 Extended Registers for the 80386/486 Processors

1.2.7.1 Segment Registers

At run time, all addresses are relative to one of four segment registers: CS, DS,
SS, or ES. (The 80386/486 processors add two more, FS and GS.) These regis-
ters, their segments, and their purpose are listed below:
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Operations on registers are
usually faster than
operations on memory
locations.

Register and Segment Purpose

CS (Code Segment) Contains processor instructions and their immediate
operands.

DS (Data Segment) Normally contains data allocated by the program.

SS (Stack Segment) Creates stacks for use by PUSH, POP, CALLS,
and RET.

ES (Extra Segment) References secondary data segment. Used by string
instructions.

FS, GS Provides extra segments on the 80386/486.

1.2.7.2 General-Purpose Registers

The AX, DX, CX, BX, BP, DI, and SI registers are 16-bit general-purpose regis-
ters. They can be used for temporary data storage. Since the processor accesses
registers more quickly than it can access memory, you can speed up execution by
keeping the most frequently used data in registers.

The 8086 family of processors does not perform memory-to-memory operations.
Thus, operations on more than one variable often require the data to be moved
into registers.

Four of the general registers, AX, DX, CX, and BX, can be accessed either as
two 8-bit registers or as a single 16-bit register. The AH, DH, CH, and BH regis-
ters represent the high-order 8 bits of the corresponding registers. Similarly, AL,
DL, CL, and BL represent the low-order 8 bits of the registers. All the general
registers can be extended to 32 bits on the 80386/486.

1.2.7.3 Special-Purpose Registers

The 8086 family of processors has two additional registers whose values are
changed automatically by the processor.

SP (Stack Pointer) The SP register points to the current location within the
stack segment. Pushing a value onto the stack decreases the value of SP by 2;
popping from the stack increases the value of SP by 2. With 32-bit operands on
80386/486 processors, SP is increased or decreased by 4 instead of 2. Call in-
structions store the calling address on the stack and decrease SP accordingly; re-
turn instructions get the stored address and increase SP. SP can also be
manipulated as a general-purpose register with instructions such as ADD.
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IP (Instruction Pointer) The IP register always contains the address of the
next instruction to be executed. You cannot directly access or change the instruc-
tion pointer. However, instructions that control program flow (such as calls,
jumps, loops, and interrupts) automatically change the instruction pointer.

1.2.7.4 Flags Register

The 16 bits in the flags register control the execution of certain instructions and
reflect the current status of the processor. In 80386/486 processors, the flags reg-
ister is extended to 32 bits. Some bits are undefined, so there are actually 9 flags
for real mode, 11 flags (including a 2-bit flag) for 80286 protected mode, 13 for
the 80386, and 14 for the 80486. The extended flags register of the 80386/486 is
sometimes called “Eflags.”

Figure 1.5 shows the bits of the 32-bit flags register for the 80386/486. Only the
lower word is used for the other 8086-family processors. The unmarked bits are
reserved for processor use; do not modify them.

_ Alignment Check
_ Virtual 8086 Mode
_ Resume
_ Nested Task
- /O Protection Level
_ Overflow
_ Direction
_ Interrupt Enable
_Trap
Sign
Zero
Auxiliary Carry
Parity
I_Carry
31 23 15 7 0
(TTT T T T T T T 1T TalvIR] Infiop[ofol 1]t]s[z[ Tal [P[ Tc]

Y |
80386/486 only 80286-80486 only All processors

Figure 1.5 Flags for 8088-80486 Processors

The nine flags common to all 8086-family processors are summarized below,
starting with the low-order flags. In these descriptions, “set” means the bit value
is 1, and “cleared” means the bit value is 0.
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Flag

Carry
Parity

Auxiliary
Carry

Zero

Sign
Trap
Interrupt

Enable

Direction

Overflow

1.2.8 Statements

Description

Set if an operation generates a carry to or a borrow from
a destination operand.

Set if the low-order bits of the result of an operation con-
tain an even number of set bits.

Set if an operation generates a carry to or a borrow from
the low-order four bits of an operand. This flag is used
for binary coded decimal (BCD) arithmetic.

Set if the result of an operation is O.

Equal to the high-order bit of the result of an operation
(O is positive, 1 is negative).

If set, the processor generates a single-step interrupt
after each instruction. A debugging program can use this
feature to execute a program one instruction at a time.

If set, interrupts are recognized and acted on as they are
received. The bit can be cleared to turn off interrupt pro-
cessing temporarily.

Set to make string operations process down from high
addresses to low addresses; can be cleared to make
string operations process up from low addresses to high
addresses.

Set if the result of an operation is too large or small to
fit in the destination operand.

Statements are the line-by-line components of source files. Each MASM state-
ment specifies an instruction or directive for the assembler. Statements have up
to four fields. The syntax is shown below:

[[name]l [[operation]| [[operands]l [[;comment]

The fields are explained below:

Field

name

operation

Purpose

Defines a label that can be accessed from elsewhere in
the program. For example, it can name a variable, type,
segment, or code location.

States the action of the statement. This field contains
either an instruction or an assembler directive.
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Field Purpose

operands Lists one or more items on which the instruction or
directive operates.

comment Provides a comment for the programmer. Comments
are for documentation only; they are ignored by the
assembler.

The following line contains all four fields:

mainlp: mov ax, 7 ; Comments follow the semicolon

Here, mainlp is the label, mov is the operation, and ax and 7 are the oper-
ands, separated by a comma. The comment follows the semicolon.

All fields are optional, although certain directives and instructions require an
entry in the name or operand field. Some instructions and directives place restric-
tions on the choice of operands. By default, MASM is not case sensitive.

Each field (except the comment field) must be separated from other fields by
white-space characters (spaces or tabs). MASM also requires code labels to be
followed by a colon, operands to be separated by commas, and comments to be
preceded by a semicolon.

A logical line can contain up to 512 characters and occupy one or more physical
lines. To extend a logical line into two or more physical lines, put the backslash
character (V) as the last non-whitespace character before the comment or end of

the line. You can place a comment after the backslash as shown in this example:

IF (x > @) \ ; X must be positive

&& (ax > x) \ ; Result from function must be > x
&& (cx == 0) ; Check loop counter too

mov dx, 20h

.ENDIF

Multiline comments can also be specified with the COMMENT directive. The as-
sembler ignores all code between the delimiter character following the directive
and the line containing the next instance of the delimiter character. This example
illustrates the use of COMMENT.

COMMENT ~ The assembler
ignores this text
A mov ax, 1 and this code
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1.3 The Assembly Process

Creating and running an executable file involves several processes:

m  Assembling the source code into an object file

m Linking the object file with other modules or libraries into an executable
program

m Loading that program into memory
m  Running the program
Once you have written your assembly-language program, MASM provides sev-

eral options for assembling it. The OPTION directive, new to MASM 6.0, has
several different arguments that let you control the way MASM assembles your

programs.
You can control assembly Conditional assembly allows you to create one source file that can generate a
behavior with conditional variety of programs, depending on the status of various conditional-assembly
assembly. statements,

1.3.1 Generating and Running Executable Programs

This section briefly lists all the actions that take place during each of the as-
sembly steps. You can change the behavior of some of these actions in various
ways, for example, by using macros instead of procedures, or by using the
OPTION directive or conditional assembly. The other chapters in this book dis-
cuss specific programming methods; this list simply gives you an overview.

1.3.1.1 Assembling

The ML.EXE program does two things to create an executable program. First, it
assembles the source code into an intermediate object file. Second, it calls the
linker, LINK.EXE, which links the object files and libraries into an executable
program (usually with the .EXE extension).

At assembly time, the assembler

m  Evaluates conditional-assembly directives, assembling if the conditions are
true.

m Expands macros and macro functions.

m Evaluates constant expressions such as MYFLAG AND 80@H, substituting the
calculated value for the expression.
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m  Encodes instructions and nonaddress operands. For example, mov cx, 13
can be encoded at assembly time because the instruction does not access
memory.

m Saves memory offsets as offsets from their segment.

= Passes segments and segment attributes to the object file.

= Saves placeholders for offsets and segments (relocatable addresses).

= Outputs a listing if requested.

m Passes messages (such as INCLUDELIB and .DOSSEG) directly to the linker.
See Section 1.3.3 for information about conditional assembly; see Chapter 9 for

macros. Chapters 2 and 3 give further details about segments and offsets, and Ap-
pendix C explains listing files.

1.3.1.2 Linking

Once your source code is assembled, the resulting object file is passed to the
linker. At this point, the linker may combine several object files into an execu-
table program.

At link time, the linker

m  Combines segments according to the instructions in the object files, rearrang-
ing the positions of segments that share the same class or group.

= Fills in placeholders for offsets (relocatable addresses).

m  Writes relocations for segments into the header of .EXE files (but not .COM
files).

m  Writes an executable image.

Section 2.3.4, “Defining Segment Groups,” defines classes and groups. Chapter
3, “Using Addresses and Pointers,” explains segments and offsets.

1.3.1.3 Loading

The operating system loads the file generated by the linker into memory. When
the executable file is loaded into memory, DOS

m Reads the program segment prefix (PSP) header into memory.
m  Allocates memory for the program, based on the values in the PSP.
m Loads the program.

m Calculates the correct values for absolute addresses from the relocation table.
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m  Loads the segment registers SS, CS, DS, and ES with values that point to the
proper areas of memory.

m Loads the instruction pointer (IP) to point to the start address in the code seg-
ment and the stack pointer (SP) to point to the stack.

m Begins execution of the program.

The process is similar for OS/2.

See Section 1.2.7, “Registers,” for information about segment registers, the in-
struction pointer (IP), and the stack pointer (SP). See MASM online help or a
DOS reference for more information on the PSP.

1.3.1.4 Running

Your program is now ready to run. Some program operations cannot be handled
until the program runs, such as resolving indirect memory operands. See Section
7.1.1.2, “Indirect Operands.”

1.3.2 Using the OPTION Directive

The OPTION directive lets you modify global aspects of the assembly process.
With OPTION, you can change command-line options and default arguments.
These changes affect only statements that follow the use of OPTION.

For example, you may have MASM code in which the first character of a varia-
ble, macro, structure, or field name is a dot (.). Since a leading dot causes MASM
6.0 to generate an error, you can use this statement in your program:

OPTION DOTNAME

This enables the use of the dot for the first character.

Changes made with OPTION override any corresponding command-line option.
For example, suppose you compile a module with this command line (which ena-
bles M510 compatibility):

ML /Zm TEST.ASM
but this statement is in the module:

OPTION NOM51@

From this point on in the module, the M510 compatibility options are disabled.

The lists below explain each of the arguments for the OPTION directive. You can
put more than one OPTION statement on one line if you separate them by
commas.
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Options for M510 Compatibility
Argument

CASEMAP: maptype

DOTNAME | NODOTNAME

M510 | NOM510

OLDMACROS | NOOLDMACROS

30

Description

CASEMAP:NONE (or /Cx) causes
internal symbol recognition to be
case sensitive and causes the case
of identifiers in the .OBJ file to be
the same as specified in the
EXTERNDEF, PUBLIC, or
COMM statement. The default is
CASEMAP:NOTPUBLIC (or /Cp).
It specifies case insensitivity for
internal symbol recognition and
the same behavior as
CASEMAP:NONE for case

of identifiers in .OBJ files.
CASEMAP:ALL (/Cu) specifies
case insensitivity for identifiers
and converts all identifier names
to uppercase.

Enables the use of the dot (.) as
the leading character in variable,
macro, structure, union, and mem-
ber names. NODOTNAME is the
default.

Sets all features to be compatible
with MASM version 5.1, disa-
bling the SCOPED argument and
enabling OLDMACROS,
DOTNAME, and, OLDSTRUCTS.
OPTION MS510 conditionally sets
other arguments for the OPTION
directive. The default is NOM510.
See Appendix A for more informa-
tion on using OPTION M510.

Enables the version 5.1 treatment
of macros. MASM 6.0 treats mac-
ros differently. The default is
NOOLDMACROS.
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Argument

OLDSTRUCTS | NOOLDSTRUCTS

SCOPED | NOSCOPED

Options for Procedure Use
Argument

LANGUAGE: langtype

EPILOGUE: macroname

PROLOGUE: macroname

PROC: visibility

Description

Enables compatibility with
MASM 5.1 for treatment of struc-
ture members. See Section 5.2 for
information on structures.

Guarantees that all labels inside
procedures are local to the proce-
dure when SCOPED (the default)
is enabled.

Description

Specifies the default language
type (C, PASCAL, FORTRAN,
BASIC, SYSCALL, or STDCALL)
to be used with PROC, EXTERN,
and PUBLIC. This use of the
OPTION directive overrides the
.MODEL directive but is normally
used when .MODEL is not given.

Instructs the assembler to call the
macroname to generate a user-
defined epilogue instead of the
standard epilogue code when a
RET instruction is encountered.
See Section 7.3.8.

Instructs the assembler to call
macroname to generate a user-
defined prologue instead of
generating the standard prologue
code. See Section 7.3.8.

Allows the default visibility to be
set explicitly. The default visibility
is PUBLIC. The visibility can also
be either EXPORT or PRIVATE.
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Other Options
Argument

EXPR16 | EXPR32

EMULATOR | NOEMULATOR

LIMP | NOLJMP

NOKEYWORD:<keywordlist>

NOSIGNEXTEND
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Description

Sets the expression word size to 16
or 32 bits. The default is 32 bits.
The M510 argument to the OPTION
directive sets the word size to 16
bits. Once set with the OPTION
directive, the expression word size
cannot be changed.

Controls the generation of
floating-point instructions. The
NOEMULATOR option generates
the coprocessor instructions
directly. The EMULATOR option
generates instructions with special
fixup records for the linker so that
the Microsoft floating-point emula-
tor, supplied with other Microsoft
languages, can be used. It produces
the same result as setting the /Fpi
command-line option. You can set
this option only once per module.

Enables automatic conditional-
jump lengthening. The default is
LIMP. See Section 7.1.2 for infor-
mation about conditional-jump
lengthening.

Disables the specified reserved
words. See Section 1.2.1, “Re-
served Words,” for an example of
the syntax for this argument.

Overrides the default sign-extended
opcodes for the AND, OR, and
XOR instructions and generates the
larger non-sign-extended forms of
these instructions. Provided for
compatibility with NEC V25® and
NEC V35™ controllers.
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Argument Description

OFFSET: offsettype Determines the result of OFFSET
operator fixups. SEGMENT sets the
defaults for fixups to be segment-
relative (compatible with MASM
5.1). GROUP, the default, generates
fixups relative to the group (if the
label is in a group). FLAT causes
fixups to be relative to a flat frame.
(The .386 mode must be enabled to
use FLAT.) See Appendix A for
more information.

READONLY | NOREADONLY Enables checking for instructions
that modify code segments, thereby
guaranteeing that read-only code
segments are not modified. Re-
places the /p command-line option
of MASM 5.1. It is useful for OS/2,
where code segments are normally
read-only.

SEGMENT: segSize Allows global default segment size
to be set. Also determines the de-
fault address size for external
symbols defined outside any seg-
ment. The segSize can be USE1S6,
USE32, or FLAT.

1.3.3 Conditional Directives

MASM 6.0 provides conditional-assembly directives and conditional-error direc-
tives. You can also use conditional-assembly directives when you want to test for
a specified condition and assemble a block of statements if the condition is true.
You can use conditional-error directives when you want to test for a specified
condition and generate an assembly error if the condition is true.

Both kinds of conditional directives test assembly-time conditions, not run-time
conditions. Only expressions that evaluate to constants during assembly can be
compared or tested. Predefined symbols are often used in conditional assembly.
See Section 1.2.3.

Conditional-Assembly Directives

The IF and ENDIF directives enclose the statements to be considered for condi-
tional assembly. The optional ELSEIF and ELSE blocks follow the IF directive.
There are many forms of the IF and ELSE directives. Online help provides a com-
plete list.
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The syntax used for the IF directives is shown below. The syntax for other
condition-assembly directives follow the same form.

IF expressionl
ifstatements
[ELSEIF expression2
elseifstatements]|
[ELSE
elsestatements]
ENDIF

The statements following the IF directive can be any valid statements, including
other conditional blocks, which in turn can contain any number of ELSEIF
blocks. ENDIF ends the block.

The statements following the IF directive are assembled only if the correspond-
ing condition is true. If the condition is not true and an ELSEIF directive is used,
the assembler checks to see if the corresponding condition is true. If so, it as-
sembles the statements following the ELSEIF directive. If no IF or ELSEIF condi-
tions are satisfied, the statements following the ELSE directive are assembled.

For example, you may want to assemble a line of code only if a particular varia-
ble has been defined. In this example,

IFDEF  buffer
buff BYTE buffer DUP(?)
ENDIF

buff is allocated only if buffer has been previously defined.

The following list summarizes the conditional-assembly directives:

Directive Use

IF and IFE Tests the value of an expression and allows
assembly based on the result.

IFDEF and IFNDEF Tests whether a symbol has been defined and allows
assembly based on the result.

IFB and IFNB Tests to see if a specified argument was passed to a
macro and allows assembly based on the result.

IFIDN and IFDIF Compares two macro arguments and allows as-
sembly based on the result. (IFDIFI and IFIDNI per-
form the same action but are case insensitive.)
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Conditional-Error Directives

You can use conditional-error directives to debug programs and check for
assembly-time errors. By inserting a conditional-error directive at a key point in
your code, you can test assembly-time conditions at that point. You can also use
conditional-error directives to test for boundary conditions in macros.

Like other severe errors, those generated by conditional-error directives cause the
assembler to return a nonzero exit code. If a severe error is encountered during as-
sembly, MASM does not generate the object module.

For example, the .ERRNDEF directive produces an error if some label has not
been defined. In this example, .ERRNDEF at the beginning of the conditional
block makes sure thata pubievel actually exists.

.ERRNDEF publevel

IF pubtevel LE 2
PUBLIC varl, var2

ELSE

PUBLIC varl, var2, var3
ENDIF

These directives use the syntax given in the previous section. The following list
summarizes the conditional-error directives.

Directive Use

.ERR Forces an error where the directives occur in the
source file. The error is generated unconditionally
when the directive is encountered, but the direc-
tives can be placed within conditional-assembly
blocks to limit the errors to certain situations.

.ERRE and .ERRNZ Tests the value of an expression and conditionally
generates an error based on the result.

.ERRDEF and Tests whether a symbol is defined and condition-

.ERRNDEF ally generates an error based on the result.

.ERRB and .ERRNB Tests whether a specified argument was passed to

a macro and conditionally generates an error
based on the result.

.ERRIDN and Compares two macro arguments and condition-

.ERRDIF ally generates an error based on the result.
(.ERRIDNI and .ERRDIFI perform the same ac-
tion but are case sensitive.)
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1.4 Related Topics in Online Help

In addition to information covered in this chapter, information on the following
topics can be found in online help.
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Topic

Predefined symbols
Operator precedence

Data types

Registers

Processor directives

Conditional assembly
and conditional errors

EVEN, ALIGN,
OPTION

Radix specifiers

ML command-line
options

Access

From the “MASM 6.0 Contents” screen, choose
“Predefined Symbols”

From the list of tables on the “MASM 6.0 Con-
tents” screen, choose “Operator Precedence”

Choose “Directives” from the “MASM 6.0 Con-
tents” screen; then choose “Data Allocation” or
“Complex Data Types” from the resulting screen

From the “MASM 6.0 Contents” screen, choose
“Language Overview”; then choose “Processor
Register Summary”

To see a table of directives, choose “Processor
Selection” from the “MASM 6.0 Contents”
screen

Choose “Directives” from the “MASM 6.0 Con-
tents” screen

From the “MASM 6.0 Contents” screen, choose
“Directives,” then “Miscellaneous”

From the “MASM 6.0 Contents” screen, choose
“Language Overview”

From the “Microsoft Advisor Contents” screen,
choose “Macro Assembler” from the “ Com-
mand Line” list



Chapter 2
Organizing MASM Segments

A segment is a collection of instructions or data whose addresses are all relative
to the same segment register. The code in your assembly-language program de-
fines and organizes them.

Segments can be defined by using simplified segment directives or full segment
definitions. Section 2.2, “Using Simplified Segment Directives,” covers the direc-
tives you can use to begin, end, and organize segment program modules. It also
discusses how to access far data and code with simplified segment directives.

Section 2.3, “Using Full Segment Definitions,” describes how to order, combine,
and divide segments, as well as how to use the SEGMENT directive to define full
segments. It also tells you how to create a segment group so that you can use just
one segment address to access all the data.

Most of the information in this chapter also applies to writing modules to be
called from other programs. Exceptions are noted when they apply. See Chapter
8, “Sharing Data and Procedures among Modules and Libraries,” for more infor-
mation about multiple-module programming.

2.1 Overview of Memory Segments

A physical segment is an area of memory in which all locations are contiguous
and share the same segment address. A segment always begins on a 16-byte
(paragraph) boundary (unless an alignment attribute is specified with ALIGN).
While 16-bit segments can occupy up to 64K (kilobytes), 32-bit segments can be
as large as 4 gigabytes.

Segments reflect the architecture of the original 8086 processor. Prior to the
80386 processors and OS/2 2.x, assembly-language programming meant using
segmented memory. A flat address space is now available on 80386/486 proces-
sors in 32-bit mode. This space is still segmented at the hardware level, but it al-
lows you to ignore most segmentation concerns.

Segments provide a means for associating similar kinds of data. Most programs
have segments for code, data, constant data, and the stack. These logical seg-
ments are allocated by the assembler at assembly time.

You can define segments in two ways: with simplified segment directives and
with full segment definitions. You can also use both kinds of segment definitions
in the same program.
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Simplified segment
directives are easier to use
than full segment
definitions.

Simplified segment directives hide many of the details of segment definition and
assume the same conventions used by Microsoft high-level languages. (See Sec-
tion 2.2.) The simplified segment directives generate necessary code, specify seg-
ment attributes, and arrange segment order.

Full segment definitions require more complex syntax but provide more com-
plete control over how the assembler generates segments. (See Section 2.3.) If
you use full segment definitions, you must write code to handle all the tasks per-
formed automatically by the simplified segment directives.

2.2 Using Simplified Segment Directives

The main module is where
execution begins.
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Structuring a MASM program using simplified segments requires use of several
directives to assign standard names, alignment, and attributes to the segments in
your program. These directives define the segments in such a way that linking
with Microsoft high-level languages is easy.

The simplified segment directives are . MODEL, .CODE, .CONST, .DATA,
.DATA?, FARDATA, .FARDATA?, .STACK, .STARTUP, and .EXIT. These direc-
tives and the arguments they take are discussed in the following sections.

MASM programs consist of modules made up of segments. Every program writ-
ten only in MASM has one main module, where program execution begins. This
main module can contain code, data, or stack segments defined with all of the
simplified segment directives. Any additional modules should contain only code
and data segments. Every module that uses simplified segments must, however,
begin with the MODEL directive.

The following example shows the structure of a main module using simplified
segment directives. It uses the default processor (8086), the default operating sys-
tem (OS_DOS), and the default stack distance (NEARSTACK). Additional mod-
ules linked to this main program would use only the MODEL, .CODE, and
.DATA directives and the END statement.

; This is the structure of a main module
; using simplified segment directives

.MODEL small, ¢ ; This statement is required before you
;  can use other simplified segment
; directives

.STACK ; Use default 1-kilobyte stack

.DATA ; Begin data segment

; Place data declarations here

.CODE ; Begin code segment
.STARTUP ; Generate start-up code
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A module must always
finish with the END
directive.

; Place instructions here

JEXIT ; Generate exit code
END

The .DATA and .CODE statements do not require any separate statements to de-
fine the end of a segment. They close the preceding segment and then open a new
segment. The .STACK directive opens and closes the stack segment but does not
close the current segment. The END statement closes the last segment and marks
the end of the source code. It must be at the end of every module, whether or not
it is the main module.

2.2.1 Defining Basic Attributes with .MODEL

The .MODEL directive defines the attributes that affect the entire module:
memory model, default calling and naming conventions, operating system, and
stack type. This directive enables use of simplified segments and controls the
name of the code segment and the default distance for procedures.

You must place MODEL in your source file before any other simplified segment
directive. The syntax is

.MODEL memorymodel [, modeloptions 1|

The memorymodel field is required and must appear immediately after the
.MODEL directive. The use of modeloptions, which define the other attributes, is
optional. The modeloptions must be separated by commas. You can also use
equates passed from the ML command line to define the modeloptions.

The list below summarizes the memorymodel field and the modeloptions fields
(language, operating system, and stack distance):

Field Description

Memory model TINY, SMALL, COMPACT, MEDIUM, LARGE,
HUGE, or FLAT. Determines size of code and data
pointers. This field is required.

Language C, BASIC, FORTRAN, PASCAL, SYSCALL, or
STDCALL. Sets calling and naming conventions for
procedures and public symbols.

Operating system 0S_0S2 or OS_DOS. Determines behavior of
STARTUP and .EXIT.
Stack distance NEARSTACK or FARSTACK. Specifying

NEARSTACK groups the stack segment into a single
physical segment (DGROUP) along with data. SS is
assumed to equal DS. FARSTACK does not group the
stack with DGROUP; thus SS does not equal DS.
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You can use no more than one reserved word from each field. The following ex-
amples show how you can combine various fields:

.MODEL small ; Small memory model
.MODEL large, ¢, farstack ; Large memory model,
; C conventions,
;  Separate stack
.MODEL  medium, pascal, os_os2 ; Medium memory model,
;  Pascal conventions,
; 0S/2 start-up/exit

The next four sections give more detail on each field.

Defining the Memory Model

MASM supports the standard memory models used by Microsoft high-level lan-
guages—tiny, small, medium, compact, large, huge, and flat. You specify the
memory model with attributes of the same name placed after the MODEL direc-
tive. Your choice of a memory model does not limit the kind of instructions you
can write. It does, however, control segment defaults and determine whether data
and code are near or far by default (see Table 2.1).

Table 2.1  Attributes of Memory Models

Memory Default Default Operating Data and Code
Model Code Data System Combined
Tiny Near Near DOS Yes

Small Near Near DOS, OS2 1.x No

Medium Far Near DOS, OS2 1.x No

Compact Near Far DOS, 0S/2 1.x No

Large Far Far DOS, 0S/2 1.x No

Huge Far Far DOS, 0S/2 1.x No

Flat Near Near 0S/22.x Yes

When writing assembler modules for a high-level language, you should use the
same memory model as the calling language. Generally, choose the smallest
memory model available that can contain your data and code, since near refer-
ences are more efficient than far references.

The predefined symbol @Model returns the memory model. It encodes memory
models as integers 1 through 7. See Section 1.2.3 for more information on prede-
fined symbols, and see online help for an example of how to use them.

The seven memory models supported by MASM 6.0 divide into three groups.



Using Simplified Segment Directives

The language type is most
important when you write a
mixed-language program.

Small, Medium, Compact, Large, and Huge Models The traditional
memory models recognized by many DOS and OS/2 1.x languages are small, me-
dium, compact, large, and huge. Small model supports one data segment and one
code segment. All data and code are near by default. Large model supports multi-
ple code and multiple data segments. All data and code are far by default. Me-
dium and compact models are in between. Medium model supports multiple code
and single data segments; compact model supports multiple data segments and a
single code segment.

Huge model implies individual data items larger than a single segment, but the
implementation of huge data items must be coded by the programmer. Since the
assembler provides no direct support for this feature, huge model is essentially
the same as large model.

In each of these models, you can override the default. For example, you can
make large data items far in small model, or internal procedures near in large
model.

Tiny Model 0S/2 does not support tiny model, but DOS does under MASM
6.0. This model places all data and code in a single segment. Therefore, the total
program size can be no more than 64K. The default is near for code and static
data items; you cannot override this default. However, you can allocate far data
dynamically at run time using DOS memory allocation services.

Tiny model produces DOS .COM files. Specifying .MODEL tiny automat-
ically sends a /TINY to the linker. Therefore, /AT is not necessary with .MODEL
tiny. However, /AT does not insert a . MODEL directive. It only verifies that
there are no base or pointer fixups, and sends /TINY to the linker.

Flat Model The flat memory model is a nonsegmented configuration availa-
ble for 32-bit operating systems. It is similar to tiny model in that all code and
data go in a single 32-bit segment.

08S/2 2.x uses flat model when you specify the .386 or .486 directive before
.MODEL FLAT. All data and code (including system resources) are in a single
32-bit segment. Segment registers are initialized automatically at load time; the
programmer needs to modify them only when mixing 16-bit and 32-bit segments
in a single application. CS, DS, ES, and SS are all assumed to the supergroup
FLAT. FS and GS are assumed to ERROR, since 32-bit versions of OS/2 reserve
the use of these registers. Addresses and pointers passed to system services are al-
ways 32-bit near addresses and pointers. Although the theoretical size of the
single flat segment is four gigabytes, OS/2 2.0 actually limits it to 512 megabytes
in flat model.

Choosing the Language Convention

The language option facilitates compatibility with high-level languages by deter-
mining the internal encoding for external and public symbol names, the code
generated for procedure initialization and cleanup, and the order that arguments
are passed to a procedure with INVOKE. It also facilitates compatibility with
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Having SS equal to DS
gives some programming
advaniages.
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high-level-language modules. The PASCAL, BASIC, and FORTRAN conventions
are identical. C and SYSCALL have the same calling convention but different
naming conventions. OS/2 system calls require the PASCAL calling convention
for OS/2 1.x, but require the SYSCALL convention for OS/2 2.x. Specifying
STDCALL for the calling convention enables a different calling convention and
the same naming convention (see Section 20.1).

Procedure definitions (PROC) and high-level procedure calls (INVOKE) automat-
ically generate code consistent with the calling convention of the specified lan-
guage. The PROC, INVOKE, PUBLIC, and EXTERN directives all use the
naming convention of the language. These directives follow the default language
conventions from the .MODEL directive unless you specifically override the de-
fault. Chapter 7, “Controlling Program Flow,” tells how to use these directives.
You can also use the OPTION directive to set the language type. (See Section
1.3.2.) Not specifying a language type in either the . MODEL, OPTION,
EXTERN, PROC, INVOKE, or PROTO statement causes the assembler to
generate an error.

The predefined symbol @Interface provides information about the language par-
ameters. See online help for a description of the bit flags.

See Chapter 20, “Mixed-Language Programming,” for more information on cal-
ling and naming conventions. See Chapter 7, “Controlling Program Flow,” for in-
formation about writing procedures and prototypes. See Chapter 8, “Sharing Data
and Procedures among Modules and Libraries,” for information on multiple-mod-
ule programming.

Specifying the Operating System

The operating-system options (OS_DOS or OS_0S2) are arguments of .MODEL.
They specify the start-up and exit code generated by the .STARTUP and .EXIT
directives. (See Section 2.2.6.) If you do not use .STARTUP and .EXIT, you can
omit this option. The default is OS_DOS.

Setting the Stack Distance

The NEARSTACK setting places the stack segment in a group, DGROUP, shared
with data. The .STARTUP directive then generates code to adjust SS:SP so that
SS (Stack Segment register) holds the same address as DS (Data Segment regis-
ter). If you do not use .STARTUP, you must make this adjustment yourself or
your program may fail to run. (See Section 2.2.6 for information about start-up
code.) In this case, you can use DS to access stack items (including parameters
and local variables) and SS to access near data. Furthermore, since stack items
share the same segment address as near data, you can reliably pass near pointers
to stack items.

The FARSTACK setting gives the stack a segment of its own. That is, SS does
not equal DS. The default stack type, NEARSTACK, is a convenient setting for
most programs. Use FARSTACK for special cases such as memory-resident pro-
grams and dynamic-link libraries (DLLs) when you cannot assume that the cal-
ler’s stack is near.
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The stack specification also atfects the ASSUME statement generated by
.MODEL and .STACK. You can use the predefined symbol @Stack to determine
if the stack location is DGROUP (for near stacks) or STACK (for far stacks).

2.2.2 Specifying a Processor and Coprocessor

Processor directives affect
availability of various
MASM language features.

MASM supports a set of directives for selecting processors and coprocessors.
Once you select a processor, you must use only the instruction set available for
that processor. The default is the 8086 processor. If you always want your code
to run on this processor, you do not need to add any processor directives.

To enable a different processor mode and the additional instructions available on
that processor, use the directives .186, .286, .386, and .486.

The .286P, .386P, and .486P directives enable the instructions available only at
higher privilege levels in addition to the normal instruction set for the given pro-
cessor. Privileged instructions are not necessary for writing applications, even for
0OS/2. Generally, you don’t need privileged instructions unless you are writing
operating-systems code or device drivers.

In addition to enabling different instruction sets, the processor directives also af-
fect the behavior of extended language features. For example, the INVOKE direc-
tive pushes arguments onto the stack. If the .286 directive is in effect, INVOKE
takes advantage of operations possible only on 80286 and later processors.

Use the directives .8087 (the default), .287, .387, and .NO87 to select a math co-
processor instruction set. The .NO87 directive turns off assembly of all coproces-
sor instructions. Note that .486 also enables assembly of all coprocessor
instructions because the 80486 processor has a complete set of coprocessor regis-
ters and instructions built into the chip. The processor instructions imply the
corresponding coprocessor directive. The coprocessor directives are provided to
override the defaults.

2.2.3 Creating a Stack

The stack is the section of memory used for pushing or popping registers and stor-
ing the return address when a subroutine is called. The stack often holds tem-
porary and local variables.

If your main module is written in a high-level language, that language handles
the details of creating a stack. Use the .STACK directive only when you write a
main module in assembly language.

The .STACK directive creates a stack segment. By default, the assembler allo-
cates 1K of memory for the stack. This size is sufficient for most small programs.
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To create a stack of a size other than the default size, give .STACK a single
numeric argument indicating stack size in bytes:

.STACK 2048 ; Use 2K stack

For a description of how stack memory is used with procedure calls and local
variables, see Chapter 7, “Controlling Program Flow.”

2.2.4 Creating Data Segments

Near data pointers always
point to DGROUP.
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Programs can contain both near and far data. In general, you should place impor-
tant and frequently used data in the near data area, where data access is faster.
This area can get crowded, however, because (in 16-bit operating systems) the
total amount of all near data in all modules cannot exceed 64K. Therefore, you
may want to place infrequently used or particularly large data items in a far data
segment.

The .DATA, .DATA?, .CONST, .FARDATA, and .FARDATA? directives create
data segments. You can access the various segments within DGROUP without re-
loading segment registers (see Section 2.3.4, “Defining Segment Groups”).

These four directives also prevent instructions from appearing in data segments
by assuming CS to ERROR. (See Section 2.3.3 for information about ASSUME.)

Near Data Segments

The .DATA directive creates a near data segment. This segment contains the
frequently used data for your program. It can occupy up to 64K in DOS or 512
megabytes under flat model in OS/2 2.0. It is placed in a special group identified
as DGROUP, which is also limited to 64K.

When you use .MODEL, the assembler automatically defines DGROUP for your
near data segment. The segments in DGROUP form near data, which can nor-
mally be accessed directly through DS or SS.

You can also define the .DATA? and .CONST segments that go into DGROUP
unless you are using flat model. Although all of these segments (along with the
stack) are eventually grouped together and handled as data segments, .DATA?
and .CONST enhance compatibility with Microsoft high-level languages. In
Microsoft languages, .CONST is used for defining constant data such as strings
and floating-point numbers that must be stored in memory. The .DATA? segment
is used for storing uninitialized variables. You can follow this convention if you
wish. If you use C start-up code, .DATA? is initialized to 0.

You can use @data to determine the group of the data segment and @DataSize
to determine the size of the memory model set by the MODEL directive. The pre-
defined symbols @WordSize and @CurSeg return the size attribute and name
of the current segment, respectively. See Section 1.2.3, “Predefined Symbols.”
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Far Data Segments

The compact, large, and huge memory models use far data addresses by default.
With these memory models, however, you can still use .DATA, .DATA?, and
.CONST to create data segments. The effect of these directives does not change
from one memory model to the next. They always contribute segments to the de-
fault data area, DGROUP, which has a total limit of 64K.

When you use .FARDATA or FARDATA? in the small and medium memory
models, the assembler creates far data segments FAR_DATA and FAR_BSS, re-
spectively. You can access variables with:

mov ax, SEG farvar2
mov ds, ax

See Section 3.1.2 for more information on far data.

2.2.5 Creating Code Segments

Whether you are writing a main module or a module to be called from another
module, you can have both near and far code segments. This section explains
how to use near and far code segments and how to use the directives and prede-
fined equates that relate to code segments.

Near Code Segments

The small memory model is often the best choice for assembly programs that are
not linked to modules in other languages, especially if you do not need more than
64K of code. This memory model defaults to near (two-byte) addresses for code
and data, which makes the program run faster and use less memory.

When you use .MODEL and simplified segment directives, the .CODE directive
in your program instructs the assembler to start a code segment. The next seg-
ment directive closes the previous segment; the END directive at the end of your
program closes remaining segments. The example at the beginning of Section
2.2, “Using Simplified Segment Directives,” shows how to do this.

You can use the predefined symbol @CodeSize to determine whether code point-
ers default to NEAR or FAR.

Far Code Segments

When you need more than 64K of code, use the medium, large, or huge memory
model to create far segments.

The medium, large, and huge memory models use far code addresses by default.
In the larger memory models, the assembler creates a different code segment for
each module. If you use multiple code segments in the small, compact, or tiny
model, the linker combines the .CODE segments for all modules into one
segment.
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The assembler assigns
names to code segments.

For far code segments, the assembler names each code segment MOD-
NAME_TEXT, in which MODNAME is the name of the module. With near
code, the assembler names every code segment _TEXT, causing the linker to con-
catenate these segments into one. You can override the default name by provid-
ing an argument after .CODE. (See Appendix E, “Default Segment Names,” for a
complete list of segment names generated by MASM.)

With far code, a single module can contain multiple code segments. The .CODE
directive takes an optional text argument that names the segment. For instance,
the example below creates two distinct code segments, FIRST_TEXT and
SECOND_TEXT.

.CODE FIRST
; First set of instructions here
.CODE  SECOND

; Second set of instructions here

Whenever the processor executes a far call or jump, it loads CS with the new seg-
ment address. No special action is necessary other than making sure that you use
far calls and jumps. See Section 3.1.2, “Near and Far Addresses.”

NOTE The ASSUME directive is never necessary when you change code segments. In
MASM 6.0, the assembler always assumes that the CS register contains the address of the
current code segment or group. See Section 2.3.3 for more information about ASSUME
used with segment registers.

2.2.6 Starting and Ending Code with .STARTUP and .EXIT

.STARTUP generates the
start-up code required by
either DOS or 0S/2.
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The easiest way to begin and end a program is to use the .STARTUP and .EXIT
directives in the main module. The main module contains the starting point and
usually the termination point. You do not need these directives in a module
called by another module.

These directives make programs easy to maintain. They automatically generate
code appropriate to the operating system and stack types specified with MODEL.
Thus, you can specify the program is for a different operating system or stack
type by altering keywords in the .MODEL directive.

To start a program, place the STARTUP directive where you want execution to
begin. Usually, this location immediately follows the .CODE directive:
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.CODE
.STARTUP

; Place executable code here

CEXIT
END

Note that .EXIT generates executable code, while END does not. The END direc-
tive informs the assembler that it has reached the end of the module. All modules
must end with the END directive whether you use simplified or full segments.

If you do not use .STARTUP, you must give the starting address as an argument
to the END directive. When .STARTUP is present, the assembler ignores any ar-
gument to END.

The code generated by .STARTUP depends on the operating system specified
after MODEL.

If your program uses DOS for its operating system (the default), the initialization
code sets DS to DGROUP, and adjusts SS:SP so that it is relative to the group for
near data, DGROUP. To initialize a DOS program with the default NEARSTACK
attribute, .STARTUP generates the following code:

@Startup:
mov dx, DGROUP
mov ds, dx
mov bx, ss
sub bx, dx
shl bx, 1 ; If .286 or higher, this is
shl bx, 1 ; shortened to shl bx, 4
shl bx, 1
shl bx, 1
cli ; Not necessary in .286 or higher
mov ss, dx
add sp, bx
sti ; Not necessary in .286 or higher

END @Startup

A DOS program with the FARSTACK attribute does not need to adjust SS:SP, so
it just initializes DS:

@Startup:
mov dx, DGROUP
mov ds, dx
END @Startup
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0S/2 initializes DS so that it points to DGROUP and sets SS:SP as desired. Thus,
when the OS_082 attribute is given, STARTUP generates only a starting address.
This does not show up in the listing file, however, since the /Sg option for listing
files shows only the generated instructions.

When the program terminates, you can return an exit code to the operating sys-
tem. Applications that check exit codes usually assume that an exit code of O
means no problem occurred and that 1 means an error terminated the program.
The .EXIT directive accepts the exit code as its one optional argument:

CEXIT 1 ; Return exit code 1

This directive generates a DOS interrupt or OS/2 system call, depending on the
operating system specified in MODEL. The code generated under DOS depends
on the argument provided to .EXIT. One example is

mov al, value
mov ah, 04Ch
int 21h

if a return value is specified. The return value can be a constant, a memory refer-
ence, or a register that can be moved into the AL register. If no return value is
specified, the first line in the example code above is not generated.

For OS/2, .EXIT invokes DosExit if you provide a prototype for DosExit and if
you include OS2.LIB. The listing file shows the statements generated by
INVOKE if the /Sg command-line option is specified. If you specify a return
value as an expression, the code generated passes the expression instead of the
register contents to the DosExit function. See Chapter 17 for information on writ-
ing programs for OS/2.

2.3 Using Full Segment Definitions
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If you need complete control over segments, you can fully define the segments in
your program. This section explains segment definitions, including how to order
segments and how to define the segment types.

If you write a program under DOS without .MODEL and .STARTUP, you must
initialize registers yourself and use the END directive to indicate the starting
address. Under OS/2 you do not have to initialize registers. Section 2.3.2, “Con-
trolling the Segment Order,” describes typical start-up code.
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2.3.1 Defining Segments with the SEGMENT Directive

Options used with the
SEGMENT directive can be
in any order.

The SEGMENT directive begins a segment, and the ENDS directive ends a
segment:

name SEGMENT [align]] [READONLY] [combinell [usell I’class’]]
statements
name ENDS

The name defines the name of the segment. Within a module, all segment defini-
tions with the same name are treated as though they reference the same segment.
The linker also combines identically named segments from different modules un-
less the combine type is PRIVATE. In addition, segments can be nested.

The optional types that follow the SEGMENT directive give the linker and the as-
sembler instructions on how to set up and combine segments. The list below sum-
marizes these types; the following sections explain them in more detail.

Type Description

align Defines the memory boundary on which a new
segment begins.

READONLY Tells the assembler to report an error if it detects

an instruction modifying any item in a
READONLY segment.

combine Determines how the linker combines segments
from different modules when building executable
files.

use (80386/486 only) Determines the size of a segment. USE16 indi-
cates that offsets in the segment are 16 bits wide.
USE32 indicates 32-bit offsets.

class Provides a class name for the segment. The linker
automatically groups segments of the same class
in memory.

Types can be specified in any order. You can specify only one attribute from
each of these fields; for example, you cannot have two different align types.

Once you define a segment, you can reopen it later with another SEGMENT
directive. When you reopen a segment, you need only give the segment name.

NOTE The PAGE align type and the PUBLIC combine type are distinct from the PAGE and
PUBLIC directives. The assembler distinguishes them by means of context.
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Aligning Segments

The optional align type in the SEGMENT directive defines the range of memory
addresses from which a starting address for the segment can be selected. The
align type can be any one of these:

Align Type Starting Address

BYTE Next available byte address.

WORD Next available word address.

DWORD Next available doubleword address.

PARA Next available paragraph address (16 bytes per para-

graph). Default.
PAGE Next available page address (256 bytes per page).

The linker uses the alignment information to determine the relative starting
address for each segment. The operating system calculates the actual starting
address when the program is loaded.

Making Segments Read-Only

The optional READONLY attribute is helpful when creating read-only code seg-
ments for protected mode or when writing code to be placed in read-only
memory (ROM). It protects against illegal self-modifying code.

The READONLY attribute causes the assembler to check for instructions that
modify the segment and to generate an error if it finds any. The assembler gener-
ates an error if you attempt to write directly to a read-only segment.

Combining Segments

The optional combine type in the SEGMENT directive defines how the linker
combines segments having the same name but appearing in different modules.
The combine type controls linker behavior, not assembler behavior. The combine
types are described in full detail in online help and are summarized below.

Combine Type Linker Action

PRIVATE Does not combine the segment with segments from
other modules, even if they have the same name.
Default.

PUBLIC Concatenates all segments having the same name to

form a single, contiguous segment.

STACK Concatenates all segments having the same name and
causes the operating system to set SS:00 to the bottom
and SS:SP to the top of the resulting segment. Data in-
itialization is unreliable, as discussed below.
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The 80386/486 can operate
in 16-hit or 32-bit mode.

Combine Type Linker Action

COMMON Overlaps segments. The length of the resulting area is
the length of the largest of the combined segments.
Data initialization is unreliable, as discussed below.

MEMORY Used as a synonym for the PUBLIC combine type.

AT address Assumes address as the segment location. An AT seg-
ment cannot contain any code or initialized data, but it
is useful for defining structures or variables that corre-
spond to specific far memory locations, such as a
screen buffer or low memory.

The AT combine type cannot be used in protected-
mode programs.

Do not place initialized data in STACK or COMMON segments. With these com-
bine types, the linker overlays initialized data for each module at the beginning
of the segment. The last module containing initialized data writes over any data
from other modules.

NOTE Normally, you should provide at least one stack segment (having STACK combine
type) in a program. If no stack segment ic declared, LINK displays a warning message. You
can ignore this message if you have a specific reason for not declaring a stack segment. For
example, you would not have a separate stack segment in a DOS tiny model (.COM) pro-
gram, nor would you need a separate stack in a DLL library that used the caller’s stack.

Setting Segment Word Sizes (80386/486 Only)

The use type in the SEGMENT directive specifies the segment word size on the
80386/486 processors. Segment word size determines the default operand and
address size of all items in a segment.

The size attribute can be USE16, USE32, or FLAT. If the 80386 or 80486 proces-
sor has been selected with the .386 or .486 directive, and this directive precedes
.MODEL, then USE32 is the default. This attribute specifies that items in the seg-
ment are addressed with a 32-bit offset rather than a 16-bit offset. If MODEL
precedes the .386 or .486 directive, USE16 is the default. To make USE32 the de-
fault, put .386 or .486 before .MODEL. You can override the USE32 default with
the USE16 attribute.

NOTE Mixing 16-bit and 32-bit segments in the same program is possible but usually is
necessary only in systems programming.
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Segments of the same
class are grouped together
in the executable file.

Setting Segment Order with Class Type

The optional class type in the SEGMENT directive helps control segment order-
ing. Two segments with the same name are not combined if their class is differ-
ent. The linker arranges segments so that all segments identified with a given
class type are next to each other in the executable file. However, within a particu-
lar class, the linker orders segments in the order encountered. The .ALPHA,
SEQ, or .DOSSEG directive determines this order in each .OBJ file. The most
common application for specifying a class type is to place all code segments first
in the executable file.

2.3.2 Controlling the Segment Order
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The assembler normally positions segments in the object file in the order in
which they appear in source code. The linker, in turn, processes object files in the
order in which they appear on the command line. Within each object file, the
linker outputs segments in the order they appear, subject to any group, class, and
.DOSSEG requirements.

You can usually ignore segment ordering. However, it is important whenever
you want certain segments to appear at the beginning or end of a program or
when you make assumptions about which segments are next to each other in
memory. For tiny model (.COM) programs, code segments must appear first in
the executable file, because execution must start at the address 100h.

Segment Order Directives

You can control the order in which segments appear in the executable program
with three directives. The default, .SEQ, arranges segments in the order in which
they are declared.

The .ALPHA directive specifies alphabetical segment ordering within a module.
.ALPHA is provided for compatibility with early versions of the IBM assembler.
If you have trouble running code from older books on assembly language, try
using .ALPHA.

The .DOSSEG directive specifies the DOS segment-ordering convention. It
places segments in the standard order required by Microsoft languages. Do not
use .DOSSEG in a module to be called from another module.

The .DOSSEG directive orders segments in this order:

1. Code segments

2. Data segments, in this order:
a. Segments not in class BSS or STACK
b. Class BSS segments
c. Class STACK segments
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.DOSSEG handles segment
ordering.

When you declare two or more segments to be in the same class, the linker auto-
matically makes them contiguous. This rule overrides the segment-ordering direc-
tives. (See “Setting Segment Order with Class Type” in the previous section for
more about segment classes.)

Linker Control

Most of the segment-ordering techniques (class names, .ALPHA, .SEQ) control
the order in which the assembler outputs segments. Usually, you are more inter-
ested in the order in which segments appear in the executable file. The linker con-
trols this order.

The linker processes object files in the order in which they appear on the com-
mand line. Within each module, it then outputs segments in the order given in the
object file. If the first module defines segments DSEG and STACK and the sec-
ond module defines CSEG, then CSEG is output last. If you want to place CSEG
first, there are two ways to do so.

The simpler method is to use .DOSSEG. This directive is output as a special re-
cord to the object file linker, and it tells the linker to use the Microsoft segment-
ordering convention. This convention overrides command-line order of object
files, and it places all segments of class 'CODE" first. (See Section 2.3.1, “De-
fining Segments with the SEGMENT Directive.”)

The other method is to define all the segments as early as possible (in an include
file, for example, or in the first module). These definitions can be “dummy seg-
ments”—that is, segments with no content. The linker observes the segment
ordering given, then later combines the empty segments with segments in other
modules that have the same name.

For example, you might include the following at the start of the first module of
your program or in an include file:

_TEXT  SEGMENT WORD PUBLIC 'CODE’

_TEXT  ENDS
_DATA  SEGMENT WORD PUBLIC 'DATA'
_DATA  ENDS
CONST ~ SEGMENT WORD PUBLIC 'CONST®
CONST  ENDS
STACK ~ SEGMENT PARA STACK 'STACK'
STACK  ENDS

Later in the program, the order in which you write _TEXT, _DATA, or other seg-
ments does not matter because the ultimate order is controlled by the segment
order defined in the include file.
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2.3.3 Setting the ASSUME Directive for Segment Registers

The assembler must know
the location of segment
addresses.

%4

Many of the assembler instructions assume a default segment. For example, JMP
assumes the segment associated with the CS register, PUSH and POP assume the
segment associated with the SS register, and MOV instructions assume the seg-
ment associated with the DS register.

When the assembler needs to reference an address, it must know what segment
contains the address. It finds this by using the default segment or group addresses
assigned with the ASSUME directive. The syntax is

ASSUME segregister : seglocation [[, segregister : seglocation]}
ASSUME dataregister : qualifiedtype ||, dataregister : qualifiedtype]l
ASSUME register : ERROR [, register : ERROR]|

ASSUME [[register :]] NOTHING [, register : NOTHING]|

The seglocation must be the name of the segment or group that is to be as-
sociated with segregister. Subsequent instructions that assume a default register
for referencing labels or variables automatically assume that if the default seg-
ment is segregister, the label or variable is in the seglocation. Beginning with
MASM 6.0, the assembler automatically sets CS to have the address of the cur-
rent code segment. Therefore, you do not need to include

ASSUME CS : MY_CODE

at the beginning of your program if you want the current segment associated
with CS.

NOTE Using the ASSUME directive to tell the assembler which segment to associate with a
segment register is not the same as telling the processor. The ASSUME directive affects only
assembly-time assumptions. You may need to use instructions to change run-time assump-
tions. Initializing segment registers at run time is discussed in Section 3.1.1.1, “Informing
the Assembler about Segment Values.”

The ASSUME directive can define a segment for each of the segment registers.
The segregister can be CS, DS, ES, or SS (and FS and GS on the 80386/486).
The seglocation must be one of the following:

m The name of a segment defined in the source file with the SEGMENT
directive

m  The name of a group defined in the source file with the GROUP directive

m  The keyword NOTHING, ERROR, or FLAT

m A SEG expression (see Section 3.2.2, “Immediate Operands”)

m A string equate (text macro) that evaluates to a segment or group name (but
not a string equate that evaluates to a SEG expression)
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The ASSUME directive can
be used anywhere in your
program.

It is legal to combine assumes to FLAT with assumes to specific segments. Com-
binations might be necessary in operating-system code that handles both 16- and
32-bit segments.

The keyword NOTHING cancels the current segment assumptions. For example,
the statement ASSUME NOTHING cancels all register assumptions made by pre-
vious ASSUME statements.

Usually, a single ASSUME statement defines all four segment registers at the
start of the source file. However, you can use the ASSUME directive at any point
to change segment assumptions.

Using the ASSUME directive to change segment assumptions is often equivalent
to changing assumptions with the segment-override operator (:) (see Section
3.2.3, “Direct Memory Operands”). The segment-override operator is more con-
venient for one-time overrides, whereas the ASSUME directive may be more con-
venient if previous assumptions must be overridden for a sequence of
instructions.

You can also prevent the use of a register with

ASSUME SegRegister : ERROR

The assembler does an ASSUME CS:ERROR when you use simplified direc-
tives to create data segments, effectively preventing instructions or code labels
from appearing in a data segment.

See Section 3.3.2 for information on other applications of ASSUME.

2.3.4 Defining Segment Groups

Segments within a group
can be treated as if they
shared the same segment
address.

A group is a collection of segments totalling not more than 64K in 16-bit mode.
Each code or data item in the group can be addressed relative to the beginning of
the group through DS or SS.

A group lets you develop separate segments for different kinds of data and then
combine these into one segment (a group) for all the data. Using a group can save
you from having to continually reload segment registers to access different seg-
ments. As a result, the program uses fewer instructions and runs faster.

The most common example of a group is the specially named group for near

data, DGROUP. In the Microsoft segment model, several segments (_DATA,
_BSS, CONST, and STACK) are combined into a single group called DGROUP.
Microsoft high-level languages place all near data segments in this group. (By de-
fault, the stack is placed here, too.) The .MODEL directive automatically defines
DGROUP. The DS register normally points to the beginning of the group, giving
you relatively fast access to all data in DGROUP.
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The syntax of the group directive is

name GROUP segment [, segment]]...

The name labels the group. It can refer to a group that was previously defined.
This feature lets you add segments to a group one at a time. For example, if
MYGROUP was previously defined to include ASEG and BSEG, then the

statement

MYGROUP GROUP

CSEG

is perfectly legal. It simply adds CSEG to the group MYGROUP; ASEG and
BSEG are not removed.

Each segment can be any valid segment name (including a segment defined later
in source code), with one restriction: a segment cannot belong to more than one

group.

The GROUP directive does not affect the order in which segments of a group are
loaded. You can place any number of 16-bit segments in a group as long as the
total size does not exceed 65,536 bytes. If the processor is in 32-bit mode, the
maximum size is four gigabytes. You need to make sure that non-grouped seg-
ments do not get placed between grouped segments in such a way that the size of
the group exceeds 64K or 4 gigabytes. Neither can you place a 16-bit and a 32-
bit segment in the same group.

2.4 Related Topics in Online Help

In addition to information covered in this chapter, information on the following
topics can be found in online help.

96

Topic

Memory models

@Model,
@CodeSize,
@DataSize

Calling conven-
tions

Coprocessor
Directives

Simplified and
full (complete)
segment control

Access

Choose “Memory Models” from the list of tables on
the “MASM 6.0 Contents” screen

Choose “Predefined Symbols” from the “MASM 6.0
Contents” screen

From the MASM Index, choose “Calling Convention”

From the “MASM 6.0 Contents” screen, choose
“Directives”; then choose “Processor Selection”

From the “MASM 6.0 Contents” screen, choose
“Directives”; then choose “Simplified Segment Con-
trol” or “Complete Segment Control”



Chapter 3

Using Addresses and Pointers

Most processor and operating-system modes require the use of segmented
addresses to access the code and data for MASM applications. The address of the
code or data in a segment is relative to an address in a segment register. You can
also use pointers to access data in MASM programs.

The first section of this chapter describes how to initialize default segment regis-
ters to access near and far addresses. The next section describes how to use the
available addressing modes to access the code and data. It also describes the re-
lated operators, syntax, and displacements.

The third section of this chapter explains how to use the TYPEDEF directive to
declare pointers (variables containing addresses) and the ASSUME directive to
give the assembler information about registers containing pointers. This section
also shows you how to do typical pointer operations and how to write code that
works for pointer variables in any memory model.

3.1 Programming Segmented Addresses

3.1.1 Initializing

Before you use segmented addresses in your programs, you need to initialize the
segment registers. The initialization process depends on the registers used and on
your choice of simplified segment directives or full segment definitions. The
simplified segment directives (introduced in Section 2.2) handle most of the in-
itialization process for you. This section explains how to inform the assembler
and the processor of segment addresses, and how to access the near and far code
and data in those segments.

Default Segment Registers

The segmented architecture of the 8086-family of processors does not require
you to specify two addresses every time you access memory. As Chapter 2, “Or-
ganizing MASM Segments,” explains, the 8086 family of processors uses a sys-
tem of default segment registers to simplify access to the most commonly used
data and code.

The segment registers DS, SS, and CS are normally initialized to default seg-
ments at the beginning of a program. If you write the main module in a high-
level language, the compiler initializes the segment registers. If you write the
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Use ASSUME to inform the
assembler about default
segments.
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main module in assembly language, you must initialize them yourself. Follow
these two steps to initialize segments:

1. Tell the assembler which segment is associated with a register. The assembler
must know the default segments at assembly time.

2. Tell the processor which segment is associated with a register by writing the
necessary code to load the correct segment value into the segment register on
the processor.

These steps are discussed separately in the following sections.

3.1.1.1 Informing the Assembler about Segment Values

The first step in initializing segments is to tell the assembler which segment to
associate with a register. You do this with the ASSUME directive. If you use
simplified segment directives, the assembler generates the appropriate ASSUME
statements automatically. If you use full segment definitions, you must code the
ASSUME statements for registers other than CS yourself. (ASSUME can also be
used on general-purpose registers, as explained in Section 3.3.2, “Defining Regis-
ter Types with ASSUME.”)

With simplified segment directives, the STARTUP directive and the start-up
code initialize DS to be equal to SS (unless you specify FARSTACK), which
allows default data to be accessed through either SS or DS. This can improve
efficiency in the code generated by compilers. The “DS equals SS” convention
may not work with certain applications, such as memory-resident programs in
DOS and multithread programs in OS/2. The code generated for .STARTUP is
shown in Section 2.2.6, “Starting and Ending Code with .STARTUP and .EXIT.”
You can use similar code to set DS equal to SS in programs using full segment
definitions.

Here is an example using full segment definitions; it is equivalent to the
ASSUME statement generated with simplified segment directives in small model
with NEARSTACK:

ASSUME c¢s:_TEXT, ds:DGROUP, ss:DGROUP

In the example above, DS and SS are part of the same segment group. It is also
possible to have different segments for data and code, and to use ASSUME to set
ES, as shown below:

ASSUME cs:MYCODE, ds:MYDATA, ss:MYSTACK, es:0THER

Correct use of the ASSUME statement can help find addressing errors. With
.CODE, the assembler assumes CS to the current segment. When you use the
simplified segment directives .DATA, .DATA?, .CONST, .FARDATA, or
.FARDATA?, the assembler automatically assumes CS to ERROR. This prevents
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instructions from appearing in these segments. If you use full segment defini-
tions, you can accomplish the same by placing ASSUME CS:ERROR in a data
segment.

With either simple or full segments, you can cancel the control of an ASSUME
statement by assuming NOTHING. No assumptions is the default condition. For
example, you cancel the assumption for ES above with the following statement:

ASSUME es:NOTHING

Prior to the .MODEL statement (or in its absence), the assembler sets the
ASSUME statement for DS, ES, and SS to the current segment.

3.1.1.2 Informing the Processor ahout Segment Values

The second step in initializing segments is to inform the processor of segment
values at run time. How segment values are initialized at run time differs for each
segment register and depends on your use of simplified segment directives or full
segment definitions and on the operating system.

Specifying a Starting Address The CS segment register and the IP (in-
struction pointer) register are initialized automatically if you use the .STARTUP
directive with simplified segment directives. If you use full segment definitions,
you must specifically set a label in the code segment at the instruction you want
executed first. Then provide that label as an argument to the END directive. Both
CS and IP are set at load time to the start address the linker gets from the END
directive:

_TEXT  SEGMENT WORD PUBLIC 'CODE

ORG 100h ; Use this declaration for .COM files only
start: ; First instruction here
_TEXT ENDS

END start ; Name of starting label

The operating system automatically resolves the value of CS:]IP at load time. The
label specified as the start address becomes the initial value of IP. In an execu-
table (.EXE) file, the start address is encoded into the header and is initialized by
the operating system at load time. In a .COM file, the initial IP is always as-
sumed to be 100h. Therefore, you must use the ORG directive to set the start
address to 100h. CS and IP cannot be directly modified except through jump,
call, and interrupt instructions.
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DS is initialized auto-
matically under 08/2, but
you must initialize it for
DOS.

S8 and SP are initialized
automatically.

Initializing DS The DS register is automatically initialized to the correct
value (DGROUP) if you use .STARTUP or if you are writing a program for OS/2.
If you do not use .STARTUP with DOS, you must initialize DS using the follow-
ing instructions:

mov ax, DGROUP
mov ds, ax

The initialization requires two instructions because the segment name is a con-

stant and the assembler does not allow a constant to be loaded directly to a seg-
ment register. The example above loads DGROUP, but you can load any valid

segment or group.

Initializing SS and SP  The SS and SP registers are initialized automatically
if you use the .STACK directive with simplified segments or if you define a seg-
ment that has the STACK combine type with full segment definitions. Using the
STACK directive initializes SS to the stack segment. If you want SS to be equal
to DS, use .STARTUP or its equivalent. (See “Combining Segments” in Section
2.3.1.) For an executable file, the values are encoded into the executable header
and resolved at link time. For a .COM file, SS is initialized to the first address of
the 64K program segment and SP is initialized to OFFFEh.

If you do not need to access far data in your program, you do not need to initial-
ize the ES register, although you can do so. Use the same technique as for the DS
register. You can initialize SS to a far stack in the same way.

3.1.2 Near and Far Addresses
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Addresses which have an implied segment name or segment registers associated
with them are called “near addresses.” Addresses which have an explicit segment
associated with them are called “far addresses.” The assembler handles near and
far code automatically, as described below. You must specify how to handle far
data.

The Microsoft segment model puts all near data and the stack in a group called
DGROUP. Near code is put in a segment called _TEXT. Each module’s far code
or far data is placed in a separate segment. This convention is described in Sec-
tion 2.3.2, “Controlling the Segment Order.”

The assembler cannot determine the address for some program components,
which are said to be relocatable. The assembler generates a fixup record and the
linker provides the address once the location of all segments has been deter-
mined. Usually a relocatable operand references a label, but there are exceptions.
Examples in the next two sections include information about the relocatability of
near and far data.
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Near Code Control transfers within near code do not require changes to seg-
ment registers. The processor automatically handles changes to the offset in the
IP register when control-flow instructions such as JMP, CALL, and RET are
used. The statement

call nearproc ; Change code offset

changes the IP register to the new address but leaves the segment unchanged.
When the procedure returns, the processor resets IP to the offset of the next in-
struction after the call.

Far Code The processor automatically handles segment register changes
when dealing with far code. The statement

call farproc ; Change code segment and offset

automatically moves the segment and offset of the farproc procedure to the
CS and IP registers. When the procedure returns, the processor sets CS to the
original code segment and sets IP to the offset of the next instruction after the
call.

Near Data Near data can usually be accessed directly. That is, a segment reg-
ister already holds the correct segment for the data item. The term “near data” is
often used to refer to the data in the DGROUP group.

After the first initialization of the DS and SS registers, these registers normally
point into DGROUP. If you modify the contents of either of these registers
during the execution of the program, the register may need to be reloaded prior to
being used for addressing DGROUP data.

If a stack variable is accessed directly through BP or SP, the SS register is the de-
fault. Otherwise, the default is DS:

nearvar WORD 0

mov ax, nearvar ; Access near data through DS or SS
mov ax, [bp+t6] ; Access near data through SS

In this example, nearvar is arelocatable label. The assembler does not know
where the memory for nearvar will be allocated. The linker provides the
address at link time. The expression [bp+6] is not relocatable. The linker does
not need to provide an address for this expression.

Far Data To read or modify a far address, a segment register must point to the
segment of the data. This requires two steps. First load the segment (normally
either ES or DS) with the correct value, and then (optionally) set an assume of
the segment register to the segment of the address (or to NOTHING).
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You can initialize ES.

You can reinitialize DS.
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NOTE In flat model (0S/2 2.x), far addresses are rarely used. By default, all addressing is
relative to the initial values of the segment registers. Thus, this section on far addressing
does not apply to most flat model programs.

One method commonly used to access far data is to initialize the ES segment reg-
ister. This example shows two ways to do this:

; First method

mov ax, SEG farvar ; Load segment of the far address
mov es, ax
mov ax, es:farvar ; Provide an explicit segment

; override on the addressing
; Second method
mov ax, SEG farvar2 ; Load the segment of the
;  far address
mov ex, ax
ASSUME ES:SEG farvar2 ; Tell the assembler that ES points
; to the segment containing farvar2
mov ax, farvar2 ; The assembler provides the ES
; override since it knows that
;  the label is addressable

After loading the segment of the address into the ES segment register, you can
either explicitly override the segment register so that the addressing is correct
(method 1) or allow the assembler to insext the override for you (method 2). The
assembler uses ASSUME statements to determine which segment register can be
used to address a segment of memory. To use the segment override operator, the
left operand must be a segment register, not a segment name. (See Section 3.2.3
for more information on segment overrides.)

If an instruction needs a segment override, the resulting code is slightly larger
and slower, since the override must be encoded into the instruction. However, the
resulting code may still be smaller than the code for multiple loads of the default
segment register for the instruction.

The DS, SS, FS, and GS segment registers (FS and GS are available only on the
80386/486 processors) may also be used to provide for addressing through other
segments.

If a program uses ES to access far data, it need not restore ES when finished (un-
less the program uses flat model). Some compilers require that you restore ES
before returning to a module written in a high-level language.

For a series of memory accesses to far data, you can reinitialize DS to the far
data and then restore DS when you are finished. Use the ASSUME directive to let
the assembler know that DS is no longer associated with the default data seg-
ment, as shown below:
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push ds ; Save original segment

mov ax, SEG fararray ; Move segment into data register
mov ds, ax ; Initialize segment register
ASSUME ds:SEG fararray ; Tell assembler where data is
mov ax, fararray[@] ; Direct access faster

mov dx, fararray[2] ; (A relocatable expression)

pop ds ; Restore segment

ASSUME  ds:@DATA ; and default assumption

The additional overhead of saving and restoring the DS register in this data
access method may be worthwhile to avoid repeated segment overrides.

If a program changes DS to access far data, it should restore DS when finished.
This allows procedures to assume that DS is the segment for near data. This is a
convention used in many compilers, including Microsoft compilers.

Relocatable Data The memory expression es:farvar is arelocatable
memory expression, since the assembler cannot determine the address at as-
sembly time.

Since no label is referenced, you may expect
mov ax, _myseg:9

to be nonrelocatable (in small model). However, in this case, _myseg:0 isa
location in a local module whose memory location is dependent on the link order,
so mov ax, _myseg:@ isrelocatable.

A group name is also an immediate constant representing the beginning of the
group. The first three expressions below are relocatable expressions; the fourth is

not.
mov ax, DGROUP ; Relocatable
mov ax, @data ; Relocatable
mov ax, mygroup ; Relocatable
mov ax, ds:@ ; Not relocatable

3.2 Specifying Addressing Modes

The 8086 family of processors recognizes four kinds of instruction operands: reg-
ister, immediate, direct memory, and indirect memory. Each type of operand
corresponds to a different addressing mode.
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The four types of operands are summarized in the following list and described at
length in the rest of this section.

Operand Type Addressing Mode

Register An 8-bit or 16-bit register on the 8086-80486; can
also be 32-bit on the 80386/486

Immediate A constant value contained in the instruction itself

Direct memory A fixed location in memory

Indirect memory A memory location determined at run time by using
the address stored in one or two registers and a
constant

3.2.1 Register Operands

Register operands have a
specific use related to
addresses.

A register operand specifies that the value in a particular register is an operand.
Code for the register or registers used in operands is encoded into the instruction
at assembly time.

Register operands can be used anywhere you need an operand. The following ex-
amples show typical register operands:

mov bx, 10 ; Load constant to BX
add ax, bx ; Add AX and BX
jmp di ; Jump to the address in DI

An offset stored in a base or index register is often used as a pointer into
memory. An offset can be stored in one of the base or index registers; the register
can then be used as an indirect memory operand (see Section 3.2.4). For example:

mov [bx]J, d1 ; Store DL in indirect memory operand
inc bx ; Increment register operand
mov [bx], d1 ; Store DL in new indirect memory operand

This example moves the value in DL to two consecutive bytes of a memory loca-
tion pointed to by BX. Any instruction that changes the register value also
changes the data item pointed to by the register.

3.2.2 Immediate Operands
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An immediate operand is a constant value that is specified at assembly time. It
can be a constant or the result of a constant expression. Immediate values are usu-
ally encoded into the internal representation of the instruction at assembly time.
These are typical examples:
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An OFFSET expression is
resolved at link time.

A SEG expression is
resolved at load time.

mov cx, 20 ; Load constant to register
add var, 1Fh ; Add hex constant to variable
sub bx, 25 * 80 ; Subtract constant expression

The OFFSET Operator Address constants are a special case of immediate
operand and consist of an offset or segment value. The OFFSET operator speci-
fies the offset of a memory location, as shown below:

mov bx, OFFSET var ; Load offset address

For information on differences between MASM 5.1 behavior and MASM 6.0 be-
havior related to OFFSET, see Appendix A.

Since segments in different modules may be combined into a single segment, the
true base of the segment is not known. Thus, the offset cannot be resolved until
link time and var is arelocatable immediate.

The SEG Operator The SEG operator specifies the segment of a memory
location:

mov ax, SEG farvar ; Load segment address
mov es, ax

The actual value of a particular segment is never known until the program is
loaded into memory. Constant segments are encoded into the header of the execu-
table file at link time. Executable files in the DOS .COM format (tiny model) can-
not contain relocatable segment expressions.

When you use the SEG operator with a variable that is not external, MASM 6.0
returns the address of the frame (the segment, group, or segment register) if one
has been explicitly set. Otherwise, it returns the group if one has been specified.
In the absence of a defined group, SEG returns the segment where the variable is
defined.

For external variables that are not defined in a segment, the linker fills in the seg-
ment portion of the address, which may be a segment or group.

This behavior can be changed with the /Zm command-line option or with the
OPTION OFFSET:SEGMENT statement (see Appendix A, “Differences between
MASM 6.0 and 5.17). Section 1.3.2 introduces the OPTION directive.

3.2.3 Direct Memory Operands

A direct memory operand specifies the data at a given address. The address and
size of the data are encoded into the internal representation of the instruction.
However, the instruction acts on the contents of the address, not the address it-
self. You must usually specify the size of these operands so that the instruction
knows how much memory to operate on.
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Several operators can be
used in expressions that
evaluate to direct memory
operands.
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The offset value of a direct memory operand is not resolved until link time, and
the segment must always be in a segment register at run time. The assembler
automatically handles address resolution.

You usually represent a direct memory operand in source code as a symbolic
name previously declared with a data directive such as BYTE, as illustrated
below:

.DATA? ; Segment for uninitialized data
var BYTE ? ; Reserve one byte at current address
; and assign this address to var
.CODE
mov var, al ; Load contents of byte register into

address specified by var

Any location in memory can be a direct memory operand as long as a size is
specified and the location is fixed. The data at the address can change, but the
address cannot. By default, instructions that use direct memory addressing use
the DS register. You can create an expression that points to a memory location
using any of the following operators:

Operator Name Symbol
Plus +
Minus -

Index []

Structure member

Segment override
These operators are discussed in more detail below.

Plus and Minus The result of combining a memory operand and a constant
number with the plus or minus operator is a direct memory operand. However,
the result of combining two memory operands with the minus operator is an im-
mediate operand. For example:

memvar EQU array + 5 ; Address five bytes beyond array
immexp EQU meml - mem2 ; Distance between addresses

The second expression is legal only if both addresses are in the same segment.

The expression meml - mem2 is not relocatable, since the reference to the two
labels represents a difference in addresses (offsets). The linker does not need to
know about the labels in this statement.
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Index The index operator (brackets enclosing an index value) specifies the reg-
ister or registers for indirect operands. It should contain a constant index when
used with direct memory operands. It is equivalent to the plus operator. For ex-
ample, the following statements are the same:

mov ax, array[5]
mov ax, arrayts

Any direct memory operand can be enclosed in the index operator. The following
are equivalent:

mov ax, var
mov ax, [var]

Some programmers prefer to enclose the operand in brackets to show that the
contents, not the address, are used.

Structure Field The structure operator (a period) accesses elements of a
structure. A field within a structure variable can be accessed as a direct memory
operand:

mov bx, structvar.fieldl

The address of the structure operand is the sum of the offsets of structvar
and fieldl. See Section 5.2, “Structures and Unions,” for more information
about structures.

Segment Override The segment override operator (a colon) specifies a seg-
ment portion of the address that is different from the default segment. When used
with instructions, this operator can apply to segment registers or segment names:

mov ax, es:farvar ; Use segment override

The assembler will not generate a segment override if the default segment is ex-
plicitly provided. Thus, the following two statements are equivalent:

mov [bx], ax
mov ds:[bx], ax

A segment name override or the segment override operator forces the operand to
be an address expression.

mov WORD PTR FARSEG:@, ax ; Segment name override
mov WORD PTR es:100h, ax ; Legal and equivalent
mov WORD PTR es:[1@@h], ax ; expressions

; mov WORD PTR [1@@h], ax ; I17egal, not an address

As the example shows, a constant expression cannot be an address expression un-
less it has a segment override.
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3.2.4 Indirect Memory Operands

Certain rules govern the
use of base and index
registers.

An indirect memory
operand can have a
displacement.
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Like direct memory operands, indirect memory operands specify the contents of

a given address. However, the processor calculates the address at run time by re-

ferring to the contents of registers. Since values in the registers can change at run
time, indirect memory operands provide dynamic access to memory.

Indirect memory operands make possible run-time operations such as pointer in-
direction and dynamic indexing of array elements, including indexing of multidi-
mensional arrays.

Strict rules govern which registers can be used for indirect memory operands
under 16-bit versions of the 8086-based processors. The rules change signifi-
cantly for 32-bit processors starting with the 80386. However, the new rules
apply only to code that does not need to be backward compatible.

This section first discusses features of indirect operands in either mode. Then it
explains the specific 16-bit rules and 32-bit rules separately.

3.2.4.1 Indirect Operands with 16- and 32-Bit Registers

Some rules and options for indirect memory operands always apply, regardless of
the size of the register. For example, you must always specify the register and
operand size for indirect memory operands. But you can use various syntaxes to
indicate an indirect memory operand. This section describes the rules that apply
to both 16-bit and 32-bit register modes.

Specifying Indirect Memory Operands The index operator specifies the
register or registers for indirect operands. The processor uses the data pointed to
by the register. For example, the following instruction moves the word-sized data
at the address contained in DS:BX into AX:

mov ax, WORD PTR [bx]

When you specify more than one register, the processor adds the two addresses
together to determine the effective address (the address of the data to operate on):

mov ax, [bx+si]

Specifying Displacements You can specify an address displacement— a
constant value to add to the effective address. A direct memory specifier is the
most common displacement:

mov ax, table[si]

In the relocatable expression above, the displacement table is the base
address of an array; SI holds an index to an array element. The SI value is calcu-
lated at run time, often in a loop. The element loaded into AX depends on the
value of SI at the time the instruction is executed.
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Indirect memory operands
must always have a size.

Each displacement can be an address or numeric constant. If there is more than
one displacement, the assembler adds them together at assembly time and en-
codes the total displacement. For example, in the statement

table  WORD 100 DUP (@)

mov ax, table[bx][di]+6

both table and 6 are displacements. The assembler adds the value of
table to 6 to get the total displacement. However, this statement is not legal:

mov ax, meml[si] + mem2

Specifying Operand Size Indirect memory operands must always have a
specified size. Often the size is specified by the size of the identifier. In the ex-
ample above, the size of the table array determines the operand size. If an in-
direct memory operand is used with a register operand, the register size
determines the size of the memory object:

mov ax, [bx] ;s Size is 2 bytes - same as AX
mov table[bx], @ ; Size is 2 bytes - from size
;  of table

If there is no address or register operand, the size must be given specifically with
the PTR operator, as shown below:

inc WORD PTR [bx] ; Word size
mov BYTE PTR [bp+6], @ ; Byte size

Syntax Options The assembler allows a variety of syntaxes for indirect
memory operands. However, all registers must be inside brackets. You can en-
close each register in its own pair of brackets, or you can place the registers in

the same pair of brackets separated by a plus operator (+). All the following varia-
tions are legal and equivalent:

mov ax, table[bx][di]
mov ax, table[di]ll[bx]
mov ax, table[bx+di]
mov ax, [tablet+bx+di]
mov ax, [bx][di]+table

All of these statements move the value in table indexed by BX+DI into AX.
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Registers pointing into
arrays must be zero-based
and scaled for the size of
the array.
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Scaling Indexes The value of index registers pointing into arrays must often
be adjusted for zero-based arrays and scaled according to the size of the array
items. For a word array, the item number must be multiplied by two (shifted left
two places). When you are using 16-bit registers, scaling must be done with sepa-
rate instructions, as shown below:

mov bx, 5 ; Get sixth element (adjust for 0)
shil bx, 1 ; Scale by two (word size)
inc wtablel[bx] ; Increment sixth element in table

When using 32-bit registers on the 80386/486 processor, you can include scaling
in the operand, as described in Section 3.2.4.3, “Indirect Memory Operands with
32-Bit Registers.”

Accessing Structure Elements  The structure member operator can be
used in indirect memory operands to access structure elements. In this example,
the structure member operator loads the year field of the fourth element of the
students array into AL:

STUDENT STRUCT
grade WORD ?
name BYTE 20 DUP (?)
year BYTE ?

STUDENT ENDS

students STUDENT < >

; Assume array initialized
. ; earlier
mov bx, OFFSET students ; Point to array of students
mov ax, 4 ; Get fourth element
mov di, SIZE STUDENT ; Get size of STUDENT
mul di ; Multiply size times

; elements to point to

; current element

; Load field from element:
mov al, (STUDENT PTR[bx+di]).year

See Section 5.2 for more information on MASM structures.

3.2.4.2 Indirect Memory Operands with 16-Bit Registers

For 8086-based computers and DOS, you must follow the strict indexing rules es-
tablished for the 8086 processor. Only four registers are allowed—BP, BX, SI,
and DI—and those only in certain combinations.

BP and BX are base registers. SI and DI are index registers. You can use either a
base or an index register by itself. But if you combine two registers, one must be
a base and one an index. Here are legal and illegal forms:
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mov ax, [bx+di] ; Legal

mov ax, [bxtsil ; Legal

mov ax, [bp+di] ; Legal

mov ax, [bp+sil ; Legal
; mov ax, [bx+bp] ; I1legal - two base registers
; mov ax, [di+si] ; I1legal - two index registers

Table 3.1 shows the modes in which registers can be used to specify indirect
memory operands.

Table 3.1  Indirect Addressing Modes with 16-Bit Registers

Mode Syntax Effective Address

Register indirect [BX] Contents of register
[BP]

[D1]
[S1]

Base or index displacement[BX] Contents of register plus
displacement[BP] displacement
displacement[DI]
displacement([SI]

Base plus index [BX][DI] Contents of base register
[BP][DI] plus contents of index
[BX][SI] register
[BP][SI]

Base plus index with displacement[ BX][DI}] Sum of base register,

displacement displacement|BP][DI] index register, and
displacement[BX][SI] displacement
displacement[BP1[SI]

Different combinations of registers and displacements have different timings, as
shown in the Macro Assembler Reference.

3.2.4.3 Indirect Memory Operands with 32-Bit Registers

Instructions for the 80386/486 processor can be given in two segment modes—
16-bit and 32-bit. Indirect memory operands are different in each mode. The seg-
ment mode is independent of the register size; you can use 32-bit registers in
either mode.

In 16-bit mode, the 80386/486 operates in the mode used by all other 8086-based
processors, with one difference: you can use 32-bit registers. If the 80386/486
processor is enabled (with the .386 or .486 directive), 32-bit general-purpose regis-
ters are available in either segment mode. Using them eliminates many of the
limitations of 16-bit indirect memory operands. Using 80386/486 features can
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Any general-purpose 32-hit
register can be used as
either the base or the
index.

The index register can
have a scaling factor of 1,
2,4,0r8.

The number of registers
and the scaling factor
affect base and index
registers.
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make your DOS programs run faster and more efficiently if you are willing to
sacrifice backward compatibility with other processors.

In 32-bit mode, an offset address can be up to four gigabytes. (Segments are still
represented in 16 bits.) This effectively eliminates size restrictions on each seg-
ment, since few programs need four gigabytes of memory. OS/2 2.x uses 32-bit
mode and flat model, which spans all segments. XENIX 386 uses 32-bit mode
with multiple segments.

80386/486 Enhancements On the 80386/486, the processor allows any
general-purpose 32-bit register to be used as either the base or the index register
(except ESP, which can be a base but not an index). The same register can also
be used as both the base and index, but you cannot combine 16-bit and 32-bit
registers. Several examples are shown below:

add edx, [eax] ; Add double

mov d1, [esp+le] ; Add byte from stack

dec WORD PTR [edx][eax] ; Decrement word

cmp ax, arraylebx][ecx] ; Compare word from array
jmp FWORD PTR table[ecx] ; Jump into pointer table

Scaling Factors Wwith 80386/486 registers, the index register can have a scal-
ing factor of 1, 2, 4, or 8. Any register except ESP can be the index register and
can have a scaling factor. Specify the scaling factor by using the multiplication
operator (*) adjacent to the register.

You can use scaling to index into arrays with different sizes of elements. For
example, the scaling factor is 1 for byte arrays (no scaling needed), 2 for word
arrays, 4 for doubleword arrays, and 8 for quadword arrays. There is no perfor-
mance penalty for using a scaling factor. Scaling is illustrated in the following
examples:

mov eax, darray[edx*4] ; Load double of double array
mov eax, [esi*8][edil] ; Load double of quad array
mov ax, wtbl[ecx+2][edx*2] ; Load word of word array

Scaling is also necessary on earlier processors, but it must be done with separate
instructions before the indirect memory operand is used, as described in Section
3.2.4.2, “Indirect Memory Operands with 16-Bit Registers.”

The default segment register is SS if the base register is EBP or ESP; it is DS for
all other base registers. If two registers are used, only one can have a scaling fac-
tor. The register with the scaling factor is defined as the index register. The other
register is defined as the base. If scaling is not used, the first register is the base.
If only one register is used, it is considered the base for deciding the default seg-
ment unless it is scaled. The following examples illustrate how to determine the
base register:
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mov  eax, [edx][ebpx4] ; EDX base (not scaled - seg DS)
mov eax, [edxx1]1[ebp] ; EBP base (not scaled - seg SS)
mov eax, [edx][ebp] ; EDX base (first - seg DS)
mov eax, [ebp]l[edx] ; EBP base (first - seg SS)
mov eax, [ebp*2] ; EBP base (only - seg SS)

Mixing 16-Bit and 32-Bit Registers Statements can mix 16-bit and 32-
bit registers if the register use is correct. For example, the following statement is
legal for either 16-bit or 32-bit segments:

mov eax, [bx]

This statement moves the 32-bit value pointed to by BX into the EAX register.
Although BX is a 16-bit pointer, it can still point into a 32-bit segment.

However, the following statement is never legal, since the CX register cannot be
used as a 16-bit pointer (although ECX can be used as a 32-bit pointer):

; mov eax, [cx] ; illegal

Operands that mix 16-bit and 32-bit registers are also illegal:
; mov eax, [ebx+si] ; 11legal
The following statement is legal in either mode:

mov bx, [eax]

This statement moves the 16-bit value pointed to by EAX into the BX register.
This works fine in 32-bit mode. However, in 16-bit mode, moving a 32-bit
pointer into a 16-bit segment is illegal. If EAX contains a 16-bit value (the top
half of the 32-bit register is 0), the statement works. However, if the top half of
the EAX register is not 0, the operand points into a part of the segment that
doesn’t exist, and this generates an error. If you use 32-bit registers as indexes
in 16-bit mode, you must make sure that the index registers contain valid 16-bit
addresses.

3.3 Accessing Data with Pointers and Addresses

In high-level languages, a “pointer” (or pointer variable) is an address that is
stored in a variable. Assembly language also uses pointer variables, but the term
“pointer” has a wider use. The indirect memory operands discussed in the pre-
vious section can be thought of as pointers stored in registers.

An address can be stored in a pointer variable for later use. Program procedures
(including OS/2 systems calls) frequently pass pointer variables onto the stack to
transfer data between the calling program and the called procedure.
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A pointer variable must be
transferred to registers
before it can be used.

Regardless of the reason for maintaining it, a pointer variable to data cannot in it-
self be directly used in MASM statements. (Pointers to code can be used
directly.) It must first be loaded into registers as an indirect memory operand.

There is a difference between a far address and a far pointer. A “far address” is
the address of a variable located in a far data segment. A “far pointer” is a varia-
ble that can specify both a segment and an offset. Like any other variable, a
pointer variable can be located in either the default (near) data segment or in a far
segment.

Previous versions of MASM allow pointer variables but provide little support for
them. In previous versions, any address loaded into a variable can be considered
a pointer, as in the following statements:

Var BYTE 0 ; Variable
npVar WORD Var ; Near pointer to variable
fpVar DWORD Var ; Far pointer to variable

If a variable is initialized to the name of another variable, the initialized variable
is a pointer, as shown in the example above. However, in previous versions of
MASM, the CodeView debugger recognizes npVar and fpVar as word and
doubleword variables. CodeView does not treat them as pointers, nor does it rec-
ognize the type of data they point to (bytes, in the example).

The new directive TYPEDEF and the new capabilities of ASSUME make it easier
to manage pointers in registers and variables. These directives are discussed in
the next two sections. Basic pointer and address operations are covered in Sec-
tion 3.3.3.

3.3.1 Defining Pointer Types with TYPEDEF

Once defined, a TYPEDEF
is considered the same as
an intrinsic type.
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You can define types for pointer variables using the TYPEDEF directive. A type
so defined is considered the same as the intrinsic types provided by the assembler
and can be used in the same contexts. The syntax for TYPEDEF when used to de-
fine pointers is

typename TYPEDETF [ distance]] PTR qualifiedtype

The typename is the name assigned to the new type. The distance can be NEAR,
FAR, or any distance modifier. The qualifiedtype can be any previously intrinsic
or defined MASM type, or a type previously defined with TYPEDEF. (See Sec-

tion 1.2.6, “Data Types,” for a full definition of qualifiedtype.)

Here are some examples of user-defined types:

PBYTE  TYPEDEF PTR BYTE ; Pointer to bytes
NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes
FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes
PWORD  TYPEDEF PTR WORD ; Pointer to words

NPWORD TYPEDEF NEAR PTR WORD ; Near pointer to words
FPWORD TYPEDEF FAR PTR WORD ; Far pointer to words
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PPBYTE TYPEDEF PTR PBYTE ; Pointer to pointer to bytes

; (in C, an array of strings)
PVYOID TYPEDEF PTR ; Pointer to any type of data
STRUCT PERSON ; Structure type

name BYTE 20 DUP (?)
num WORD ?
PERSON ENDS
PPERSON TYPEDEF PTR PERSON ; Pointer to structure type

The distance of a pointer can either be set specifically or determined automat-
ically by the memory model (set by .MODEL) and the segment size (16 or 32
bits). If you don’t use .MODEL, near pointers are the default.

In 16-bit mode, a near pointer is two bytes that contain the offset of the object
pointed to. A far pointer requires four bytes, and it contains both the offset and
the segment. In 32-bit mode, a near pointer is four bytes and a far pointer is six
bytes. If you specify the distance with NEAR or FAR, the default distance of the
current segment size is used. You can use NEAR16, NEAR32, FAR16, and FAR32
to override the defaults set by the current segment size. In flat model, NEAR is
the default.

A pointer type created with TYPEDEF can be used to declare pointer variables.
Here are some examples using the pointer types defined above:

; Type declarations
Array  WORD 25 DUP (@)

Msg BYTE "This is a string™, @

pMsg PBYTE Msg ; Pointer to string

pArray PWORD Array ; Pointer to word array

npMsg NPBYTE Msg ; Near pointer to string
npArray NPWORD Array ; Near pointer to word array
fpArray FPWORD Array ; Far pointer to word array
fpMsg FPBYTE Msg ; Far pointer to string

S1 BYTE "first", 0 ; Some strings

S2 BYTE "second", ©

S3 BYTE "third", @

pS123 PBYTE S1, S2, S3, 0 ; Array of pointers to strings
ppS123 PPBYTE pS123 ; A pointer to pointers to strings
Andy PERSON <> ; Structure variable

pAndy PPERSON Andy ; Pointer to structure variable

; Procedure prototype

EXTERN ptrArray:PBYTE ; External variable
Sort PROTO pArray:PBYTE ; Parameter for prototype

; Parameter for procedure
Sort PROC pArray:PBYTE
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LOCAL  pTmp:PBYTE ; Local variable
ret
Sort ENDP

Once defined, pointer types can be used in any context where intrinsic types are
allowed.

3.3.2 Defining Register Types with ASSUME
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Beginning with MASM 6.0, you can use the ASSUME directive with general-
purpose registers to specify that a register is a pointer to a certain size of object.
For example:

ASSUME  bx:PTR WORD ; BX is word pointer until further
; notice
inc [bx] ; Increment word pointed to by BX
add bx, 2 ; Point to next word
mov [bx]1, @ ; Word pointed to by BX = @
; Other pointer operations with BX
ASSUME  bx:NOTHING ; Cancel assumptions

In this example, BX is specified to be a pointer to a word. After a sequence of
using BX as a pointer, the assumption is cancelled by assuming NOTHING.

Without the assumption to PTR WORD, many instructions need a size specifier.
The INC and MOV statements from the examples above would have to be written
like this to specify the sizes of the memory operands:

inc WORD PTR [bx]
mov WORD PTR [bx], @

When you have used ASSUME, attempts to use the register for other purposes
generate assembly errors. In the example above, while the PTR WORD assump-
tion is in effect, any use of BX inconsistent with its ASSUME declaration gener-
ates an error. For example,

; mov al, [bx] ; Can't move word to byte register
You can also use the PTR operator to override defaults:
mov ax, BYTE PTR [bx] ; Legal

Similarly, you can use ASSUME to prevent the use of a register as a pointer or
even to disable a register:
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ASSUME  bx:WORD, dx:ERROR
; mov al, [bx] ; Error - BX is an integer, not a pointer
; mov ax, dx ; Error - DX disabled

See Section 2.3.3 for information on using ASSUME with segment registers.

3.3.3 Basic Pointer and Address Operations

Let the assembler
initialize pointer variables
when possible.

You can do these basic operations with pointers and addresses:

= Initialize a pointer variable by storing an address in it
m Load an address into registers, directly or from a pointer
The sections in the rest of this chapter describe variations of these tasks with both

pointers and addresses. The examples in these sections assume that you have pre-
viously defined the following pointer types with the TYPEDEF directive:

PBYTE TYPEDEF PTR BYTE ; Pointer to bytes
NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes
FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes

3.3.3.1 Initializing Pointer Variables

If the value of a pointer is known at assembly time, the assembler can initialize it
automatically so that no processing time is wasted on the task at run time. The
following example illustrates how to do this:

Msg BYTE  "String", @
pMsg  PBYTE  Msg

If a pointer variable can be conditionally defined to one of several constant
addresses, initialization must be delayed until run time. The technique is different
for near pointers than for far pointers, as shown below:

Msgl BYTE "Stringl"”
Msg?2 BYTE "String2"
npMsg NPBYTE ?
fpMsg FPBYTE ?

mov npMsg, OFFSET Msgl ; Load near pointer
mov WORD PTR fpMsg[@], OFFSET Msg2 ; Load far offset
mov WORD PTR fpMsg[2], SEG Msg2 ; Load far segment

7
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There are several options
for copying pointers.
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If you know that the segment for a far pointer is currently in a register, you can
load it directly:

mov WORD PTR fpMsg[2], ds ; Load segment of
; far pointer

Dynamic Addresses Often the address to be initialized is dynamic. You
know the register or registers containing the address, and you want to save them
in a variable for later use. Typical situations include memory allocated by DOS
(see interrupt 21h function 48h in online help) and addresses found by the SCAS
or CMPS instructions (see Section 5.1.3.1). The technique for saving dynamic
addresses is illustrated below:

; Dynamically allocated buffer

fpBuf FPBYTE @ ; Initialize so offset will be zero
mov ah, 48h ; Allocate memory
mov bx, 1@h ; Request 16 paragraphs
int 21h ; Call DOS
jc error ; Return segment in AX
mov WORD PTR fpBuf[2], ax ; Load segment

; (offset is already @)

error: ; Handle error

Copying Pointers Sometimes one pointer variable must be initialized by
copying from another. Here are two ways to copy a far pointer:

fpBufl FPBYTE 2
fpBuf2 FPBYTE ?

; Copy through registers is faster, but requires a spare register

mov bx, WORD PTR fpBufl[@]
mov WORD PTR fpBuf2[@], bx
mov bx, WORD PTR fpBufl[2]
mov WORD PTR fpBuf2[2], bx

; Copy through stack is slower, but does not use a register
push WORD PTR fpBufl[@]
push WORD PTR fpBufl[2]
pop WORD PTR fpBuf2[2]
pop WORD PTR fpBuf2[0@]
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Pointers passed as
procedure arguments are
pushed onto the stack.

Certain register pairs have
standard uses.

Pointers as Arguments When a pointer is passed as an argument to a pro-
cedure, it must be pushed onto the stack. The procedure then sets up a stack
frame so that it can access the arguments from the stack. This technique is dis-
cussed in detail in Section 7.3.2, “Passing Arguments on the Stack.” Pushing a
pointer is illustrated below:

; Push a far pointer (segment always pushed first)
push WORD PTR fpMsg[2] ; Push segment
push WORD PTR fpMsg[0] ; Push offset

Pushing an address is somewhat different:

; Push a far address as a far pointer

mov ax, SEG fVar ; Load and push segment
push ax

mov ax, OFFSET fVar ; Load and push offset
push ax

On the 80186 and later processors, you can shorten pushing a constant to one
step:

push SEG fVar ; Push segment
push OFFSET fVar ; Push offset

3.3.3.2 Loading Addresses into Registers

Loading an address into a pair of registers is one of the most common tasks in as-
sembly-language programming. You cannot do processing work with a constant
address or a pointer variable until the address is loaded into registers.

You often load addresses into particular segment:offset pairs. The following pairs
have specific uses:

Segment:Offset Pair Standard Use

DS:SI Source for string operations
ES:DI Destination for string operations
DS:DX Input for DOS functions

ES:BX Output from DOS functions

In addition, you can use ES:SI, DS:DI, DS:BX, or any segment:offset pair for
your own indirect memory operands. You can use SS:BP with a displacement to
access procedure arguments or local variables in procedures.

Addresses from Data Segments For near addresses, you need only load

the offset; the segment is assumed as SS for stack-based data and as DS for other
data. You must load both segment and offset for far pointers.
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Use LEA to load the offset
of an indirect memory
operand.

Use MOV and OFFSET to
load the offset of a direct
memory operand.

Here is an example of loading an address to DS:BX from a near data segment:

.DATA
Msg BYTE "String”
mov bx, OFFSET Msg ; Load address to BX

;5 (DS already loaded)

If the data is in a far data segment, it is loaded like this:

. FARDATA
Msg BYTE "String"
mov ax, SEG Msg ; Load address to ES:BX
mov es, ax
mov bx, OFFSET Msg

Stack Variables The technique for loading the address of a stack variable is
significantly different from the technique for loading near addresses. You may
need to put the correct segment value into ES for string operations. The follow-
ing example illustrates how to load the address of a local (stack) variable to
ES:DI:

Task PROC
LOCAL  Arg[4]1:BYTE

push SS ; Since it's stack-based, segment is SS
pop es ; Copy SS to ES
lea di, Arg ; Load offset to DI

The local variable in this case actually evaluates to SS:[BP-4]. This is an offset
from the stack frame (described in Section 7.3.2, “Passing Arguments on the
Stack™). Since you cannot use the OFFSET operator to get the offset of an in-
direct memory operand, you must use the LEA (Load Effective Address)
instruction.

Direct Memory Operands To get the address of a direct memory operand,
you can use the MOV instruction with OFFSET or the LEA instruction. MASM
6.0 automatically optimizes the LEA statement by generating the smaller and
faster code, as shown in this example:

lea si, Msg ; If you code this statement,
mov si, OFFSET Msg ; MASM 6.0 generates this code
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Use conditional assembly
to write memory-model
independent code.

The LEA instruction can be used to determine the address of indirect memory
operands, as shown below.

lea si, [bx] ; Legal - LEA required for indirect
; mov si, OFFSET [bx] ; Illegal - no OFFSET on indirect

Far Pointers  Use the LES and LDS instructions to load far pointers. Use the
MOV instruction to load a near pointer. The following example shows how to
load a far pointer to ES:DI and a near pointer to SI (assuming DS as the segment):

InBuf  BYTE 20 DUP (1)
OutBuf BYTE 20 DUP (©)

npln NPBYTE InBuf
fpOut FPBYTE OutBuf

les di, fpOut ; Load far pointer to ES:DI

mov si, npln ; Load near pointer to SI (assume DS)

(20pying between Segment Pairs Copying from one register pair to
another is complicated by the fact that you cannot copy one segment register
directly to another. Two methods are shown below. Timings are for the 8088
processor:

; Copy DS:SI to ES:DI, generating smaller code

push ds ; 1 byte, 14 clocks
pop es ; 1 byte, 12 clocks
mov di, si ; 2 bytes, 2 clocks

; Copy DS:SI to ES:DI, generating faster code

mov di, ds ; 2 bytes, 2 clocks
mov es, di ; 2 bytes, 2 clocks
mov di, si ; 2 bytes, 2 clocks

3.3.3.3 Model-Independent Techniques

Often you may want to write code that is memory-model independent. If you are
writing libraries that must be available for different memory models, you can use
conditional assembly to handle different sizes of pointers. You can use the prede-
fined symbols @DataSize and @Model to test the current assumptions.
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Use conditional assembly
to handle pointers that
have no specified distance.
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You can use conditional assembly to write code that works with pointer variables
that have no specified distance. The predefined symbol @DataSize tests the
pointer size for the current memory model:

Msgl BYTE "Stringl"
pMsg PBYTE ?

IF @DataSize

mov WORD PTR pMsg[@]1, OFFSET Msgl ; Load far offset
mov WORD PTR pMsg[2], SEG Msgl ; Load far segment
ELSE

mov pMsg, OFFSET Msgl ; Load near pointer
ENDIF

In the following example, a procedure receives as an argument a pointer to a
word variable. The code inside the procedure uses @DataSize to determine
whether the current memory model supports far or near data. It loads and
processes the data accordingly:

; Procedure that receives an argument by reference
mul8 PROC arg:PTR WORD

IF @DataSize
les bx, arg ; Load far pointer to ES:BX
mov ax, es:[bx] ; Load the data pointed to
ELSE
mov bx, arg ; Load near pointer to BX (assume DS)
mov ax, [bx] ; Load the data pointed to
ENDIF
shil ax, 1 ; Multiply by 8
shl ax, 1
shl ax, 1
ret

mul8 ENDP

If you have many routines, writing the conditionals for each case can be tedious.
The following conditional statements generate the proper instructions and seg-
ment overrides automatically.

; Equates for conditional handling of pointers
IF @DataSize

lesIF  TEXTEQU <les>

1dsIF TEXTEQU <lds>

esIF TEXTEQU <es:>
ELSE

lesIF TEXTEQU <mov>

1dsIF TEXTEQU <mov>

eslIF TEXTEQU <>
ENDIF
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Once you define these conditionals, you can use them to simplify code that must

handle several types of pointers. This next example rewrites the above mul8

procedure to use conditional code.

mul8 PROC arg:PTR WORD
lesIF bx, arg ; Load pointer to BX or ES:BX
mov ax, eslIF [bx] ; Load the data from [BX] or ES:[BX]
shl ax, ; Multiply by 8
shl ax,
shl ax,
ret
mul8 ENDP

The conditional statements from the examples above can be defined once in an

include file and used whenever you need to handle pointers.

3.4 Related Topics in Online Help

In addition to information covered in this chapter, information on the following

topics can be found in online help.

Topics

LROFFSET, THIS

LFS, LGS, and LSS

ALIGN, EVEN,
ORG

NEAR, NEAR1S6,
NEAR32, FAR16,
FAR32, and TYPE

PTR

PUSHCONTEXT
and POPCONTEXT

ASSUME,
-.MODEL

@DataSize,
@Model

Access

From the “MASM 6.0 Contents” screen, choose
“Operators”; then choose “Address”

From the “MASM 6.0 Contents” screen, choose
“Processor Instructions”; then choose “Data
Transfer”

From the “MASM 6.0 Contents” screen, choose
“Directives”; then choose “Miscellaneous”

From the “MASM 6.0 Contents” screen, choose
“Operators”; then choose “Type and Size”

From the “MASM 6.0 Contents” screen, choose
“Operators”; then choose “Miscellaneous”

Access from the Macro Assembler Index

From the “MASM 6.0 Contents” screen, choose
“Directives”; then choose “Simplified Segment
Control”

From the “MASM 6.0 Contents” screen, choose
“Predefined Symbols”
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Chapter 4
Defining and Using Integers

The 8086 family of processors is designed to operate on integer data; therefore,
most assembler statements are integer operations. Even string elements (dis-
cussed in Chapter 5, “Defining and Using Complex Data Types”) are byte-sized
integers to the assembler.

This chapter covers the concepts essential for using integer variables in assembly-
language programs. The first section shows how to declare integer variables. The
second section describes basic integer operations including moving, loading, and
sign-extending integers, as well as calculating with integers. Finally, the last sec-
tion describes how to do various operations with integers at the bit level, such as
using bitwise logical instructions and shifting and rotating bits.

The complex data types introduced in the next chapter—arrays, strings, struc-
tures, unions, and records—use many of the integer operations illustrated in this
chapter, since the components of complex data types are often integers. Floating-
point operations require a different set of instructions and techniques. These are
covered in Chapter 6, “Using Floating-Point and Binary Coded Decimal
Numbers.”

4.1 Declaring Integer Variables

You declare integer variables in the data segment of your program to allocate
memory for data. The EQU and = directives define integer constants. Integer vari-
ables allocated with the data allocation directives can be initiatized in several
ways. MASM 6.0 provides new forms of the data allocation directives. This sec-
tion discusses these features and explains how to use the SIZEOF and TYPE oper-
ators to provide information to the assembler about the types in your program.
For information on symbolic integer constants, see Section 1.2.4, “Integer Con-
stants and Constant Expressions.”

4.1.1 Allocating Memory for Integer Variables

When you declare an integer variable by assigning a label to a data allocation
directive, the assembler allocates memory space for the integer. The variable’s
name becomes a label for the memory space. The syntax is

[[name]] directive initializer
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The assembler enforces
only the size of initializers.
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These directives, listed below, indicate the integer’s size and value range.

Directive

BYTE, DB (bytes)

SBYTE (signed bytes)

WORD, DW (words = 2 bytes)
SWORD (signed words)

DWORD, DD (doublewords = 4 bytes)

SDWORD (signed doublewords)

FWORD, DF (farwords = 6 bytes)

QWORD, DQ (quadwords = § bytes)

TBYTE, DT (10 bytes)

Description of Initializers

Allocates unsigned numbers from
0 to 255.

Allocates signed numbers from
—128 to +127.

Allocates unsigned numbers from
0 to 65,535 (64K).

Allocates signed numbers from
-32,768 to +32,767.

Allocates unsigned numbers from
010 4,294,967,295 (4 megabytes).

Allocates signed numbers from
—2,147,483,648 to
+2,147,483,647.

Allocates 6-byte (48-bit) integers.
These values are normally used
only as pointer variables on the
80386/486 processors.

Allocates 8-byte integers used
with 8087-family coprocessor
instructions.

Allocates 10-byte (80-bit) in-

tegers if the initializer has a radix
specifying the base of the number.

See Chapter 6 for information on the REAL4, REALS, and REAL10 directives

that allocate real numbers.

MASM does not enforce the range of values assigned to an integer. If the value
does not fit in the space allocated, however, the assembler generates an error.

The SIZEOF and TYPE operators, when applied to a type, return the size of an in-

teger of that type. The following list gives the size attribute associated with each

data type.
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Data Type

BYTE, SBYTE

WORD, SWORD
DWORD, SDWORD

FWORD
QWORD
TBYTE

Bytes

o O W N =

10

The SBYTE, SWORD, and SDWORD data types are new to MASM 6.0. Use of
these signed data types tells the assembler to treat the initializers as signed data.
It is important to use these signed types with high-level constructs such as .IF,
WHILE, and .REPEAT (see Section 7.2.1, “Loop-Generating Directives”), and
with PROTO and INVOKE directives (see Sections 7.3.6, “Declaring Procedure
Prototypes,” and 7.3.7, “Calling Procedures with INVOKE”).

The assembler stores integers with the least significant bytes lowest in memory.
Note that assembler listings and most debuggers show the bytes of a word in the
opposite order—high byte first.

Figure 4.1 illustrates the integer formats.

Word

0

1

| Low byte | High byteg

Doubleword
0 1 2 3
Low word High word g
Quadword
0 1 2 3 4 5 6 7
Low doubleword High doubleword g

Figure 4.1 Integer Formats
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TYPEDEF can define Although the TYPEDEF directive’s primary purpose is to define pointer variables
integer aliases. (see Section 3.3.1), you can also use TYPEDEF to create an alias for any integer
type. For example, these declarations

char TYPEDEF SBYTE
longint TYPEDEF DWORD
float  TYPEDEF REAL4
double TYPEDEF REALS

allow youtouse char, Tongint, float,or double in your programs if
you prefer the C data labels.

4.1.2 Data Initialization

You can initialize variables when you declare them by giving initial values—that
is, constants or expressions that evaluate to integer constants. The assembler
generates an error if you specify an initial value too large for the specified varia-
ble type. Variables can also be initialized with ? if there are no initial values.

You can declare and initialize variables in one step with the data directives, as
these examples show.

integer BYTE 16 ; Initialize byte to 16
negint SBYTE -16 ; Initialize signed byte to -16
expression WORD 4%3 ; Initialize word to 12
signedexp SWORD 4%3 ; Initialize signed word to 12
empty QWORD 7 ; Allocate uninitialized Tong
; integer
BYTE 1,2,3,4,5,6 ; Initialize six unnamed bytes
long DWORD 4294967295 ; Initialize doubleword to
i 4,294,967,295
lTongnum SDWORD -2147433648 ; Initialize signed doubleword
; to -2,147,433,648
tb TBYTE 2345t ; Initialize 10-byte binary
;  number

See Section 5.1, “Arrays and Strings,” for information on arrays and on using the
DUP operator to allocate initializer lists.

Once you have declared integer variables in your program, you can use them in
integer operations such as adding, moving, loading, and exchanging. The next
section describes these operations.

4.2 Integer Operations

You often need to copy, move, exchange, load, and sign-extend integer variables
in your MASM code. This section shows how to do these operations as well as
how to add, subtract, multiply, and divide integers; push and pop integers onto
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The PTR operator tells the
assembler the size of the
operand.

the stack; and do bit-level manipulations with logical, shift, and rotate
instructions.

Since MASM instructions require operands to be the same size, you may need to
operate on data in a size other than the size originally declared. The PTR operator
lets you do this. For example, you can use the PTR operator to access the high-
order word of a DWORD-size variable. The syntax for the PTR operator is

type PTR expression

where the PTR operator forces expression to be treated as having the type
specified. An example of this use is

.DATA
num DWORD 0
.CODE
mov ax, WORD PTR num[@] ; Loads a word-size value from
mov dx, WORD PTR num[2] ; a doubleword variable

You might choose not to use PTR, in contrast to this example. In that case, trying
tomove num[@] into AX generates an error.

4.2.1 Moving and Loading Integers

The primary instructions for moving integers from operand to operand and load-
ing them into registers are MOV (Move), XCHG (Exchange), XLAT (Translate),
CWD (Convert Word to Double), and CBW (Convert Byte to Word).

4.2.1.1 Moving Integers

The most common method of moving data, the MOV instruction, can be thought
of as a copy instruction, since it always copies the source operand to the destina-
tion operand. Immediately after a MOV instruction, both the source and destina-
tion operands contain the same value.

The statements in the following example illustrate each type of memory move
that can be performed with a single instruction. Note that you cannot move
memory operands to memory operands in one operation.

; Immediate value moves

mov ax, 7 ; Immediate to register

mov mem, 7 ; Immediate to memory direct

mov mem[bx], 7 ; Immediate to memory indirect
; Register moves

mov mem, ax ; Register to memory direct

mov mem[bx], ax ; Register to memory indirect

mov ax, bx ; Register to register

mov ds, ax ; General register to segment

; register
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; Direct memory moves
mov ax, mem ; Memory direct to register
mov ds, mem ; Memory to segment register

; Indirect memory moves
mov ax, mem[bx] ; Memory indirect to register
mov ds, mem[bx] ; Memory indirect to segment register

; Segment register moves

mov mem, ds ; Segment register to memory
mov mem[bx], ds ; Segment register to memory indirect
mov ax, ds ; Segment register to general

; register

This next example shows several common types of moves that require two
instructions.

; Move immediate to segment register

mov ax, DGROUP ; Load immediate to general register
mov ds, ax ; Store general register to segment
; register

; Move memory to memory
mov ax, meml ; Load memory to general register
mov mem2, ax ; Store general register to memory

; Move segment register to segment register

mov ax, ds ; Load segment register to general
;  register

mov es, ax ; Store general register to segment
;  register

The MOVSX and MOVZX instructions for the 80386/486 processors extend and
copy values in one step. See Section 4.2.1.4, “Extending Signed and Unsigned
Integers.”

4.2.1.2 Exchanging Integers

The XCHG (Exchange) instruction exchanges the data in the source and destina-
tion operands. Data can be exchanged between registers or between registers and
memory, but not from memory to memory:

xchg ax, bx ; Put AX in BX and BX in AX
xchg memory, ax ; Put "memory" in AX and AX in "memory"
; xchg meml, mem2 ; ITlegal- can't exchange between

;  memory location

In some circumstances, register-to-register moves are faster with XCHG than
with MOV. If speed is important in your programs, check the Reference to find
the fastest clock speeds for various operand combinations allowed with MOV
and XCHG.
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XLAT and XLATB are
synonyms.

4.2.1.3 Translating Integers from Tables

The XLAT (Translate) instruction loads data from a table into memory. The in-
struction is useful for translating bytes from one coding system to another. The
syntax is

XLAT([B] [[segment:memory]j

The BX register must contain the address of the start of the table. By default, the
DS register contains the segment of the table, but you can use a segment override
to specify a different segment. Also, you need not give the operand except when

specifying a segment override. (See Section 3.2.3, “Direct Memory Operands,”
for information about the segment override operator.)

Before the XLAT instruction executes, the AL register should contain a value
that points into the table (the start of the table is position 0). After the instruction
executes, AL contains the table value pointed to. For example, if AL contains 7,
the assembler puts the eighth byte of the table in the AL register.

This example, illustrating XLAT, looks up hexadecimal characters in a table to
convert an eight-bit binary number to a string representing a hexadecimal

number.

; Table of hexadecimal digits

hex BYTE "0123456789ABCDEF"
convert BYTE "You pressed the key with ASCII code "
key BYTE ?2,?2,"h",13,10,"$"
.CODE
mov ah, 8 ; Get a key in AL
int 21h ; Call DOS
mov bx, OFFSET hex ; Load table address
mov ah, al ; Save a copy in high byte
and al, 00001111y ; Mask out top character
xlat ; Translate
mov key[1], al ; Store the character
mov cl, 12 ; Load shift count
shr ax, cl ; Shift high character into
position
xlat ; Translate
mov key, al ; Store the character
mov dx, OFFSET convert ; Load message
mov ah, 9 ; Display character
int 21h ; Call DOS
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Conversion instructions do
not operate on unsigned
numbers.
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4.2.1.4 Extending Signed and Unsigned Integers

Since moving data to a different-sized register is illegal, you must “sign-extend”
integers to convert signed data to a larger register or register pair.

Sign-extending means copying the sign bit of the unextended operand to all bits
of the extended operand. The instructions in the following list sign-extend values
as shown. They work only on signed values in the accumulator register.

Instruction Function

CBW Convert byte to word

CWD Convert word to doubleword

CWDE Convert word to doubleword extended (80386/486 only)
CDQ Convert doubleword to quadword (80386/486 only)

On the 80386/486, the CWDE instruction converts a signed 16-bit value in AX to
a signed 32-bit value in EAX. The CDQ instruction converts a signed 32-bit
value in EAX to a signed 64-bit value in the EDX:EAX register pair.

This example converts signed integers using CBW, CWD, CWDE, and CDQ.

.DATA
mem8 SBYTE -5
meml6 SWORD -5
mem32 SDWORD -5

.CODE

mov al, mem8 ; Load 8-bit -5 (FBh)

chw ; Convert to 16-bit -5 (FFFBh) in AX

mov ax, meml6 ; Load 16-bit -5 (FFFBh)

cwd ; Convert to 32-bit -5 (FFFF:FFFBh)
5 in DX:AX

mov ax, memlé ; Load 16-bit -5 (FFFBh)

cwde ; Convert to 32-bit -5 (FFFFFFFBh)
;in EAX

mov eax, mem32 ; Load 32-bit -5 (FFFFFFFBh)

cdg ; Convert to 64-bit -5

(FFFFFFFF:FFFFFFFBh) in EDX:EAX

The procedure is different for unsigned values. Unsigned values are extended by
filling the upper bits with zeros rather than by sign extension. Because the sign-
extend instructions do not work on unsigned integers, you must set the value of
the higher register to zero.
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This example shows sign extension for unsigned numbers.

.DATA
mem8 BYTE 251
meml6  WORD 251

.CODE

mov al, mem8 ; Load 251 (FBh) from 8-bit memory
sub ah, ah ; Zero upper half (AH)

mov ax, memlé ; Load 251 (FBh) from 16-bit memory
sub dx, dx ; Zero upper half (DX)

The 80386/486 processors provide instructions that move and extend a value to a
larger data size in a single step. MOVSX moves a signed value into a register and
sign-extends it. MOVZX moves an unsigned value into a register and zero-
extends it.

; 80386/486 instructions
movzx dx, bl ; Load unsigned 8-bit value into
; 16-bit register and zero-extend

These special 80386 and 80486 instructions usually execute much faster than the
equivalent 8086-80286 instructions.

4.2.2 Pushing and Popping Stack Integers

PUSH and POP always
operate on word-sized
data.

A stack is an area of memory for storing data temporarily. Unlike other segments
that store data starting from low memory, the stack stores data in reverse order—
starting from high memory. Data is always pushed or popped from the top of the
stack. The data on the stack can be the calling addresses of procedures or inter-
rupts, procedure arguments, or any operands, flags, or registers your program
needs to store temporarily.

At first, the stack is an uninitialized segment of a finite size. As data is added to
the stack at run time, the stack grows downward from high memory to low
memory. When items are removed from the stack, it shrinks upward from low to
high memory.

4.2.2.1 Saving Operands on the Stack

The PUSH instruction stores a two-byte operand on the stack. The POP instruc-
tion retrieves a previously pushed value. When a value is pushed onto the stack,
the assembler decreases the SP (Stack Pointer) register by 2. On 8086-based pro-
cessors, the SP register always points to the top of the stack. The PUSH and POP
instructions use the SP register to keep track of the current position.
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When a value is popped off the stack, the assembler increases the SP register by

2. Although the stack always contains word values, the SP register points to byte
addresses. Thus, SP changes in multiples of two. When a PUSH or POP instruc-

tion executes in a 32-bit code segment (one with USE32 use type), the assembler
transfers a four-byte value, and ESP changes in multiples of four.

NOTE The 8086 and 8088 processors differ from later Intel processors in how they push
and pop the SP register. If you give the statement push sp with the 8086 or 8088, the
word pushed is the word in SP after the push operation.

Figure 4.2 illustrates how pushes and pops change the SP register.

Pushing Words onto the Stack

Before After
push ax push ax
High ! ' High [ I
memory | '_ memory | | '
<« SP
word
from AX |4 ¥ SP
Low ' . Low : |
memory ' memory ! '
Popping Words from the Stack
Before After
pop ax pop ax
High I . High | !
memory | L memory | | '
+ 8P
word
from AX +SP
Low ! \ Low I |
memory ! memory !

Figure 4.2 Stack Status hefore and after Pushes and Pops
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There are two ways to
clean up the stack.

Creating labels for stack
variables makes code
easier to read.

On the 8086, PUSH and POP take only registers or memory expressions as their
operands. The other processors allow an immediate value to be an operand for
PUSH. For example, the following statement is legal on the 80186-80486
processors:

push 7 ; 3 clocks on 80286

That statement is faster than these equivalent statements, which are required on
the 8088 or 8086:

mov ax, 7 ; 2 clocks plus
push ax ; 3 clocks on 80286

Words are popped off the stack in reverse order: the last item pushed is the first
popped. To return the stack to its original status, you can do the same number of
pops as pushes. You can subtract the correct number of words from the SP regis-
ter if you want to restore the stack without using the values on it.

To reference operands on the stack, keep in mind that the values pointed to by
the BP (Base Pointer) and SP registers are relative to the SS (Stack Segment) reg-
ister. The BP register is often used to point to the base of a frame of reference (a
stack frame) within the stack.

This example shows how you can access values on the stack using indirect
memory operands with BP as the base register.

push bp ; Save current value of BP
mov bp, sp ; Set stack frame

push ax Push first; SP =BP - 2
push bx Push second; SP = BP - 4
push CcX ; Push third; SP =BP - 6
mov ax, [bp-61] ; Put third in AX
mov bx, [bp-4] ; Put second in BX
mov cx, [bp-21] ; Put first in CX
add sp, 6 ; Restore stack pointer

; two bytes per push
pop bp ; Restore BP

If you use these stack values often in your program, you may want to give them
labels. For example, you can use TEXTEQU to create a label such as count
TEXTEQU <bp-6>. Now you can replace the mov ax, [bp - 6] statement in
the example above with mov ax, count. Section 9.1, “Text Macros,” gives
more information about the TEXTEQU directive.
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4.2.3 Adding and
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4.2.2.2 Saving Flags on the Stack

Flags can be pushed and popped onto the stack with the PUSHF and POPF in-
structions. You can use these instructions to save the status of flags before a pro-
cedure call and then to restore the original status after the procedure. You can
also use them within a procedure to save and restore the flag status of the caller.
The 32-bit versions of these instructions are PUSHFD and POPFD.

This example saves the flags register before calling the systask procedure:

pushf
call systask

popf

If you do not need to store the entire flag register, you can use the LAHF instruc-
tion to manually load and store the status of the lower byte of the flag register in
the AH register. (You need to save AH before making a procedure call.) SAHF re-
stores the value.

4223 (S)a\lril;g Registers on the Stack (80186-80486
nly

Starting with the 80186 processor, the PUSHA and POPA instructions push or
pop all the general-purpose registers with only one instruction. These instructions
save the status of all registers before a procedure call and then restore them after
the return. Using PUSHA and POPA is significantly faster and takes fewer bytes
of code than pushing and popping each register individually.

The processor pushes the registers in the following order: AX, CX, DX, BX, SP,
BP, SI, and DI. The SP word pushed is the value before the first register is
pushed.

The processor pops the registers in the opposite order. The 32-bit versions of
these instructions are PUSHAD and POPAD.

Subtracting Integers

You can use the ADD, ADC, INC, SUB, SBB, and DEC instructions for adding, in-
crementing, subtracting, and decrementing values in single registers. You can
also combine them to handle larger values that require two registers for storage.

4.2.3.1 Adding and Subtracting Integers Directly

The ADD, INC (Increment), SUB, and DEC (Decrement) instructions operate on
8- and 16-bit values on the 8086—80286 processors, and on 8-, 16-, and 32-bit
values on the 80386/486 processors. They can be combined with the ADC and
SBB instructions to work on 32-bit values on the 8086 and 64-bit values on the
80386/486 processors (see Section 4.2.3.2).
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PTR allows you to operate
on data in sizes different
from its declared type.

These instructions have two requirements:

1. If there are two operands, only one operand can be a memory operand.

2. If there are two operands, both must be the same size.

To meet the second requirement, you can use the PTR operator to force an oper-

and to the size required (see Section 4.2, “Integer Operations”). For example, if
Buffer is an array of bytes and BX points to an element of the array, you can

add a word from Buffer with

add

ax, WORD PTR Buffer[bx]

’

; Adds a word from the

byte variable

The next example shows 8-bit signed and unsigned addition and subtraction.

mem8

s

DATA
BYTE
.CODE

; Addition

mov
inc
add
add

mov

add

; Subtraction

mov
dec
sub

sub

mov
sub

39
; signed unsigned
al, 26 ; Start with register 26 26
al ; Increment 1 1
al, 76 ; Add immediate 76 + 76
; 103 103
al, mem8 ; Add memory 39 + 39
ah, al ; Copy to AH -114 142
+overflow
al, ah ; Add register 142
; 28+carry
; signed unsigned
al, 95 ; Load register 95 95
al ; Decrement -1 -1
al, 23 ; Subtract immediate -23 -23
; 71 71
al, mem8 ; Subtract memory -122 -122
; -51 205+sign
ah, 119 ; Load register 119
al, ah ; and subtract -51

86+overflow
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Your programs must
inciude error-recovery for
overflows and carries.
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The INC and DEC instructions treat integers as unsigned values and do not up-
date the carry flag for signed carries and borrows.

When the sum of eight-bit signed operands exceeds 127, the processor sets the
overflow flag. (The overflow flag is also set if both operands are negative and the
sum is less than or equal to -128.) Placing a JO (Jump on Overflow) or INTO (In-
terrupt on Overflow) instruction in your program at this point can transfer control
to error-recovery statements. When the sum exceeds 255, the processor sets the
carry flag. A JC (Jump on Carry) instruction at this point can transfer control to
error-recovery statements.

In the subtraction example above, the processor sets the sign flag if the result
goes below 0. At this point, you can use a JS (Jump on Sign) instruction to trans-
fer control to error-recovery statements.

4.2.3.2 Adding and Subtracting in Multiple Registers

You can add and subtract numbers larger than the register size on your processor
with the ADC (Add with Carry) and SBB (Subtract with Borrow) instructions. If
the operations prior to an ADC or SBB instruction do not set the carry flag, these
instructions are identical to ADD and SUB. When you operate on large values in
more than one register, use ADD and SUB for the least significant part of the num-
ber and ADC or SBB for the most significant part.

The following example illustrates multiple-register addition and subtraction. You
can also use this technique with 64-bit operands on the 80386/486 processors.

.DATA
mem32 DWORD 316423
mem32a DWORD 316423
mem32b DWORD 156739

.CODE

; Addition
mov ax, 43981 ; Load immediate 43981
sub dx, dx ; into DX:AX
add ax, WORD PTR mem32[0] ; Add to both + 316423
adc dx, WORD PTR mem32[2] ; memory words = ------

; Result in DX:AX 360404

; Subtraction

mov ax, WORD PTR mem32a[@] ; Load mem32 316423
mov dx, WORD PTR mem32a[2] ; 1into DX:AX

sub ax, WORD PTR mem32b[@] ; Subtract Tow - 156739
sbhb dx, WORD PTR mem32b[2] ; then high = =------

; Result in DX:AX 159684

For 32-bit registers on the 80386/486, only two steps are necessary. If your pro-
gram needs to be assembled for more than one processor, you can assemble the
statements conditionally, as shown in this example:
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.DATA

mem32  DWORD 316423

mem32a DWORD 316423

mem32b DWORD 156739

p386  TEXTEQU (@Cpu AND 08h)

.CODE

; Addition
IF p386
mov eax, 43981 ; Load immediate
add eax, mem32 ; Result in EAX
ELSE

; do steps in previous example

ENDIF

; Subtraction
IF p386
mov eax, mem32a ; Load memory
sub eax, mem32b ; Result in EAX
ELSE

; do steps in previous example
ENDIF

Since the status of the carry flag affects the results of calculations with ADC and
SUB, be sure to turn off the carry flag with the CLC (Clear Carry Flag) instruc-
tion or use ADD for the first calculation when appropriate.

4.2.4 Multiplying and Dividing Integers

The 8086 family of processors uses different multiplication and division instruc-
tions for signed and unsigned integers. Multiplication and division instructions
also have special requirements depending on the size of the operands and the pro-
cessor the code runs on.

4.2.4.1 Using Multiplication Instructions

The MUL instruction multiplies unsigned numbers. IMUL multiplies signed num-
bers. For both instructions, one factor must be in the accumulator register (AL for
8-bit numbers, AX for 16-bit numbers, EAX for 32-bit numbers). The other fac-
tor can be in any single register or memory operand. The result overwrites the
contents of the accumulator register.

Multiplying two 8-bit numbers produces a 16-bit result returned in AX. Multiply-
ing two 16-bit operands yields a 32-bit result in DX:AX. The 80386/486 proces-
sor handles 64-bit products in the same way in the EDX:EAX pair.
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Multiplication by an
immediate operand is
possible on the 80386/486.
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This example illustrates multiplication of signed 16- and 32-bit integers.

.DATA
meml6  SWORD  -30000
.CODE

; 8-bit signed multiply

mov al, 23 ; Load AL 23
mov b1, 24 ; Load BL * 24
mul b1 ; Multiply BL  =----
; Product in AX 552

; overflow and carry set

; 16-bit unsigned multiply

mov ax, 50 ; Load AX 50
~-30000
imul meml6 Multiply memory  =----

Product in DX:AX -1500000
overflow and carry set

we we ws ws W

A nonzero number in the upper half of the result (AH for byte, DX or EDX for
word) sets the overflow and carry flags.

On the 80186-80486 processors, the IMUL instruction supports three different
operand combinations. The first syntax option allows for 16-bit multipliers pro-
ducing a 16-bit product or 32-bit multipliers for 32-bit products on the
80386/486. The result overwrites the destination. The syntax for this operation is

IMUL registerl 6, immediate

The second syntax option specifies three operands for IMUL. The first operand

must be a 16-bit register operand, the second a 16-bit memory or register oper-

and, and the third a 16-bit immediate operand. IMUL multiplies the memory (or
register) and immediate operands and stores the product in the register operand

with this syntax:

IMUL registerl6, memoryl6 | registerl 6, immediate

For the 80386/486 only, a third option for IMUL allows an additional operand for
multiplication of a register value by a register or memory value. This is the
syntax:

IMUL register,{register | memory}

The destination can be any 16-bit or 32-bit register. The source must be the same
size as the destination.

In all of these options, products too large to fit in 16 or 32 bits set the overflow
and carry flags. The following examples show these three options for IMUL.
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imul dx, 456 ; Multiply DX times 456 on 80186-80486
imul ax, [bx],6 ; Multiply the value pointed to by BX
; by 6 and put the result in AX

imul dx, ax ; Multiply DX times AX on 80386
imul ax, [bx] ; Multiply AX by the value pointed to
; by BX on 80386

The IMUL instruction with multiple operands can be used for either signed or un-
signed multiplication, since the 16-bit product is the same in either case. To get a
32-bit result, you must use the single-operand version of MUL or IMUL.

4.2.4.2 Using Division Instructions

The DIV instruction divides unsigned numbers, and IDIV divides signed num-
bers. Both return a quotient and a remainder.

Table 4.1 summarizes the division operations. The dividend is the number to be
divided, and the divisor is the number to divide by. The quotient is the result. The
divisor can be in any register or memory location except the registers where the
quotient and remainder are returned.

Table 4.1  Division Operations

Size of Dividend Size of

Operand Register Divisor Quotient Remainder
16 bits AX 8 bits AL AH

32 bits DX:AX 16 bits AX DX

64 bits (80386 EDX:EAX 32 bits EAX EDX

and 80486)

Unsigned division does not require careful attention to flags. The following ex-
amples illustrate signed division, which can be more complex.

.DATA
memlé  SWORD  -2000
mem32  SDWORD 500000
.CODE

; Divide 16-bit unsigned by 8-bit

mov ax, 700 ; Load dividend 700
mov b1, 36 ; Load divisor DIV 36
div bl ; Divide BL  ------
; Quotient in AL 19
; Remainder in AH 16
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; Divide 32-bit signed by 16-bit

mov ax, WORD PTR mem32[@] ; Load into DX:AX
mov dx, WORD PTR mem32[2] ; 500000
idiv meml6 ; DIV -2000
; Divide memory  ------
; Quotient in AX -250
; Remainder in DX 0
; Divide 16-bit signed by 16-bit
mov ax, WORD PTR memlé6 ; Load into AX ~2000
cwd ; Extend to DX:AX
mov bx,-421 ; DIV -421
idiv bx ; Divide by BX  -----
; Quotient in AX 4
; Remainder in DX -316

If the dividend and divisor are the same size, sign-extend or zero-extend the divi-
dend so that it is the length expected by the division instruction. See Section
4.2.1.4, “Extending Signed and Unsigned Integers.”

4.3 Manipulating Integers at the Bit Level

The instructions introduced so far in this chapter accessed integers at the byte or
word level. The logical, shift, and rotate instructions described in this section,
however, access the individual bits of the integers. You can use logical instruc-
tions to evaluate characters and do other text and screen operations. The shift and
rotate instructions do similar tasks by shifting and rotating bits through registers.
This section discusses some applications of these bit-level operations.

4.3.1 Logical Operations
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The logical instructions—AND, OR, XOR, and NOT—operate on each bit in one
operand and on the corresponding bit in the other. The following list shows how
each instruction works. Except for NOT, these instructions require two integers
of the same size.

Instruction Sets a Bit to 1 under These Conditions

AND Both corresponding bits in the operands have the value 1.

OR Either of the corresponding bits in the operands has the
value 1.

XOR Either, but not both, of the corresponding bits in the oper-

ands has the value 1.

NOT The corresponding bit in the operand is 0. (This instruction
takes only one operand.)
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Use AND, OR, and XOR to
set or clear specific bits.

NOTE Do not confuse logical instructions with the logical operators, which perform these
operations at assembly time, not run time. Although the names are the same, the assembler
recognizes the difference from context.

The following example shows the result of the AND, OR, XOR, and NOT instruc-
tions operating on a value in the AX register and in a mask. A mask is a binary or
hexadecimal number with appropriate bits set for the intended operation.

mov ax, 035h ; Load value 00110101
and ax, OFBh ; Clear bit 2 AND 11111011
; Value is now 31lh 00110001
or ax, 016h ; Set bits 4,2,1 OR 00010110
; Value is now 37h 00110111
xor ax, 0ADh ; Toggle bits 7,5,3,2,0 XOR 10101101
; Value is now 9Ah 10011010
not ax ; Value is now 65h 01100101

You can use the AND instruction to clear the value of specific bits regardless of
their current settings. To do this, put the target value in one operand and a mask
of the bits you want to clear in the other. The bits of the mask should be 0 for any
bit positions you want to clear and 1 for any bit positions you want to remain
unchanged.

You can use the OR instruction to force specific bits to 1 regardless of their cur-
rent settings. The bits of the mask should be 1 for any bit positions you want to
set and O for any bit positions you want to remain unchanged.

You can use the XOR instruction to toggle the value of specific bits (reverse

them from their current settings). This instruction sets a bit to 1 if the correspond-
ing bits are different or to O if they are the same. The bits of the mask should be 1

for any bit positions you want to toggle and O for any bit positions you want to re-
main unchanged.

The following examples show an application for each of these instructions. The
code illustrating the AND instruction converts a “y” or “n” read from the key-
board to uppercase, since bit 5 is always clear in uppercase letters. In the ex-
ample for OR, the first statement is faster and uses fewer bytes than cmp bx, 0.

When the operands for XOR are identical, each bit cancels itself, producing 0.
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; Converts characters to uppercas

mov ah, 7 ; Get character without echo

int 21h

and al, 11011111y ; Convert to uppercase by clearing
; bit 5

cmp al, 'Y’ ; Is it Y?

je yes ; If so, do Yes actions

; else do No actions
yes:

; Compares operand to @

or bx, bx ; Compare to @

; 2 bytes, 2 clocks on 8088
ig positive ; BX is positive
Jl negative ; BX is negative

; else BX is zero

; Sets a register to @

xor CcX, CX ; 2 bytes, 3 clocks on 8688
sub CX, CX ; 2 bytes, 3 clocks on 8088
mov cx, @ ; 3 bytes, 4 clocks on 8088

On the 80386 and 80486, the BSF (Bit Scan Forward) and the BSR (Bit Scan
Reverse) instructions perform operations similar to those of the logical instruc-
tions. They scan the contents of a register to find the first-set or last-set bit. You
can use BSF or BSR to find the position of a set bit in a mask or to check if a reg-
ister value is 0.

4.3.2 Shifting and Rotating Bits
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The 8086-based processors provide a complete set of instructions for shifting and
rotating bits. Shift instructions move bits a specified number of places to the right
or left. The last bit in the direction of the shift goes into the carry flag, and the
first bit is filled with O or with the previous value of the first bit.

Rotate instructions also move bits a specified number of places to the right or
left. For each bit rotated, the last bit in the direction of the rotate operation moves
into the first bit position at the other end of the operand. With some variations,
the carry bit is used as an additional bit of the operand. Figure 4.3 illustrates the
eight variations of shift and rotate instructions for eight-bit operands. Notice that
SHL and SAL are identical.
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SHL (Shift Left) SHR (Shift Right)
7 0 7 0

4
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SAL (Shift Arithmetic Left) SAR (Shift Arithmetic Right)
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Figure 4.3 Shifts and Rotates

All shift instructions use the same format. Before the instruction executes, the
destination operand contains the value to be shifted; after the instruction ex-
ecutes, it contains the shifted operand. The source operand contains the number
of bits to shift or rotate. It can be the immediate value 1 or the CL register. The
8088 and 8086 processors do not accept any other values or registers with these
instructions.
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The shift instruction allows
you to change masks
during program execution.

4.3.3 Multiplying
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Masks for logical instructions can be shifted to new bit positions. For example,
an operand that masks off a bit or group of bits can be shifted to move the mask
to a different position, allowing you to mask off a different bit each time the
mask is used. This technique, illustrated in the following example, is useful only
if the mask value is unknown until run time.

.DATA
masker BYTE 00000010y ; Mask that may change at run time

.CODE

mov cl, 2 ; Rotate two at a time

mov b1, 57h ; Load value to be changed 01010111y

rol masker, c1 ; Rotate two to left 00001000y

or b1, masker ; Turn on masked values = ---------
; New value is @5Fh 01011111y

rol masker, c1 ; Rotate two more 00100000y

or b1, masker ; Turn on masked values  ---------
; New value is @7Fh 01111111y

Starting with the 80186 processor, you can use eight-bit immediate values larger
than 1 as the source operand for shift or rotate instructions, as shown below:

shr bx, 4 ;9 clocks, 3 bytes on 80286

The following statements are equivalent if the program must run on the 8088 or
8086 processor:

mov cl, 4 ; 2 clocks, 3 bytes on 80286
shr bx, ¢l ; 9 clocks, 2 bytes on 80286
; 11 clocks, 5 bytes

and Dividing with Shift Instructions

You can use the shift and rotate instructions (SHR, SHL, SAR, and SAL) for mul-
tiplication and division. Shifting an integer right by one bit has the effect of divid-
ing by two; shifting left by one bit has the effect of multiplying by two. You can
take advantage of shifts to do fast multiplication and division by powers of two.
For example, shifting left twice multiplies by four, shifting left three times multi-
plies by eight, and so on.

Use SHR (Shift Right) to divide unsigned numbers. You can use SAR (Shift
Arithmetic Right) to divide signed numbers, but SAR rounds numbers down—
IDIV always rounds up. Division using SAR must adjust for this difference. Mul-
tiplication by shifting is the same for signed and unsigned numbers, so you can
use either SAL or SHL.
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Use shifts instead of MUL
or DIV to optimize your
code.

Since RCR and RCL use
the carry flag, clear it
hefore multiple-register
shifts.

Since the multiply and divide instructions are very slow on the 8088 and 8086
processors, using shifts instead can often speed operations by a factor of 10 or
more. For example, on the 8088 or 8086 processor, these statements take only
four clocks:

sub ah, ah ; Clear AH
shl ax, 1 ; Multiply byte in AL by 2

The following statements produce the same results, but take between 74 and 81
clocks on the 8088 or 8086. The same statements take 15 clocks on the 80286
and between 11 and 16 clocks on the 80386.

mov b1, 2 ; Multiply byte in AL by 2
mul b1

You can put multiplication and division operations in macros so they can be
changed if the constants in a program change, as shown in the two macros below.

mul_1@ MACRO factor Factor must be unsigned

mov ax, factor Load into AX
shl ax, 1 AX = factor * 2
mov bx, ax Save copy in BX

shl ax, 1 ; AX = factor * 4

shl ax, 1 AX = factor x 8
add ax, bx AX = (factor * 8) + (factor * 2)
ENDM AX = factor * 10
div_512 MACRO dividend ; Dividend must be unsigned
mov ax, dividend ; Load into AX
shr ax, 1 ; AX = dividend / 2 (unsigned)

xchg al, ah ; xchg is T1ike rotate right 8
; AL = (dividend / 2) / 256
cbw ; Clear upper byte

ENDM ;  AX = (dividend / 512)

If you need to shift a value that is too large to fit in one register, you can shift
each part separately. The RCR (Register Carry Right) and RCL (Register Carry
Left) instructions carry values from the first register to the second by passing the
leftmost or rightmost bit through the carry flag.

This example shifts a multiword value.

.DATA
mem32 DWORD 5000090
.CODE
; Divide 32-bit unsigned by 16
mov cx, 4 ; Shift right 4 500000
again: shr WORD PTR mem32[2], 1 ; Shift into carry DIV 16
rcr WORD PTR mem32[@], 1 ; Rotate carry in ------
loop again ; 31250

107



Defining and Using Integers

Since the carry flag is treated as part of the operand (it’s like using a nine-bit or
17-bit operand), the flag value before the operation is crucial. The carry flag can
be set by a previous instruction, but you can also set it directly by using the CLC
(Clear Carry Flag), CMC (Complement Carry Flag), and STC (Set Carry Flag)
instructions.

On the 80386 and 80486, an alternate method for multiplying quickly by con-
stants takes advantage of the LEA (Load Effective Address) instruction and the
scaling of indirect memory operands. By using a 32-bit value as both the index
and the base register in an indirect memory operand, you can multiply by the con-
stants 2, 3,4, 5, §, and 9 more quickly than you can by using the MUL instruc-
tion. LEA calculates the offset of the source operand and stores it into the
destination register, EBX, as this example shows:

lea ebx, [eax*2] ; EBX = 2 % EAX
lea ebx, [eax*2+eax] ; EBX = 3 % EAX
lea ebx, [eax*4] ; EBX = 4 x EAX
lea ebx, [eax*4+eax] ; EBX = 5 % EAX
lea ebx, [eax*8] ; EBX = 8 % EAX
lea ebx, [eax*8+eax] ; EBX = 9 % EAX

Section 3.2.4.3, “Indirect Memory Operands with 32-Bit Registers,” discusses
scaling of 80386 indirect memory operands, and Section 3.3.3.2, “Loading
Addresses into Registers,” introduces LEA.

This chapter has covered the integer operations you use in your MASM pro-
grams. The next chapter looks at more complex data types—arrays, strings, struc-
tures, unions, and records. Many of the operations presented in this chapter can
also be applied to the data structures discussed in Chapter 5, “Defining and Using
Complex Data Types.”

4.4 Related Topics in Online Help
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Online help features additional information about the topics discussed in this
chapter. From the “MASM 6.0 Contents” screen for MASM online help, select
the following topics:

Topic Access

BYTE, WORD, ... Choose “Directives” and then ‘“Data
Allocation”

Bitwise logical operations Choose “Operators” and then from the list

of operators, choose “Logical and Shift”

Location counter Choose “Predefined Symbols” for informa-
tion on the $ symbol



Related Topics in Online Help

Topic

BSF, BSR, SHLD, SHRD,
and SETcondition

LES, LFS, LGS

.RADIX directive

MOD

OPATTR, .TYPE, HIGH,
LOW, HIGHWORD, and
LOWWORD

OPTION EXPR32,
OPTION EXPR16,

Access

From the “Processor Instructions” catego-
ries, choose “Logical and Shift”

From the “Processor Instructions” catego-
ries, choose “Data Transfer”

Choose “Directives” and then choose
“Miscellaneous”

Choose “Operators,” and then “Arithmetic”

Choose “Operators,” then “Miscellaneous”

Choose “Directives,” and then “OPTION”
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Chapter 5
Defining and Using Complex Data Types

With the complex data types available in MASM 6.0—arrays, strings, records,
structures, and (new to version 6.0) unions—you can access data either as a unit
or as individual elements that make up the unit. The individual elements of com-
plex data types are often the integer types discussed in Chapter 4, “Defining and
Using Integers.”

Section 5.1 first discusses how to declare, reference, and initialize arrays and
strings. This section summarizes the general steps needed to process arrays and
strings and describes the MASM instructions for moving, comparing, searching,
loading, and storing operations.

Section 5.2 covers similar information for structures and unions: how to declare
structure and union types, how to define structure and union variables, and how
to reference structures and unions and their fields.

Section 5.3 explains how to declare record types, define record variables, and use
record operators.

All three sections also describe how to use the LENGTHOF, SIZEOF, and TYPE
operators with each complex data type.

5.1 Arrays and Strings

An assembly-language array is a sequence of fixed-size variables. A string is an
array of characters. You can access the elements in an array or string relative to
the first element.

This section explains and illustrates the essential ways to handle arrays and
strings in your programs. It covers arrays first, beginning with the two ways to de-
clare an array and continuing with how to reference it. The section then explains
the special requirements for declaring and initializing a string. Finally, it de-
scribes the processing of arrays and strings.

5.1.1 Declaring and Referencing Arrays

You can declare an array in two ways: you can specify a list of array elements, or
you can use the DUP operator to specify a group of identical elements.
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Initializer lists can be
longer than one line.

112

To declare an array, you must supply a label name, a type, and a series of ele-
ments separated by commas. You can access each element of an array relative to
the first. In the examples below, warray and xarray are arrays.

warray WORD 1, 2, 3, 4
xarray DWORD OFFFh, OAAAh

The assembler stores the elements consecutively in memory, with the first
address referenced by the label name.

Beginning with MASM 6.0, initializer lists of array declarations can span multi-
ple lines. The first initializer must appear on the same line as the data type, all en-
tries must be initialized, and, if you want the array to continue to the new line,
the line must end with a comma. These examples show legal multiple-line array
declarations:

big BYTE 21, 22, 23, 24, 25,
26, 27, 28
somelist WORD 10,
20,
30

If you do not want to use the new LENGTHOF and SIZEOF operators discussed
later in this section, then an array may span more than one logical line, although
a separate type declaration is needed on each logical line:

varl BTYE 10, 20, 30
BYTE 40, 50, 60
BYTE 70, 80, 90

The DUP Operator

You can also declare an array with the DUP operator. This operator can be used
with any of the data allocation directives described in Section 4.1.1. In the syntax

count DUP (initialvalue [[, initialvalue])...)

the count value sets the number of times to repeat the last initialvalue. Each ini-
tial value is evaluated only once and can be any expression that evaluates to an
integer value, a character constant, or another DUP operator. The initial value (or
values) must always be placed within parentheses. For example, the statement

barray BYTE 5 DUP (1)
allocates the integer 1 five times for a total of five bytes.

The following examples show various ways to use the DUP operator to allocate
data elements.
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array DWORD 10 DUP (1) ; 1@ doublewords
; dinitialized to 1
buffer BYTE 256 DUP (?) ; 256-byte buffer

masks BYTE 20 DUP (@40h, @020h, 04h, @2h) ; 8@-byte buffer

; with bit masks
three_d DWORD 5 DUP (5 DUP (5 DUP (0))) ; 125 doublewords

; initialized to @

Referencing Arrays

Once an array is defined, you can refer to its first element by typing the array
name (no brackets required). The array name refers to the first object of the given
type in the list of initial values.

If warray has been defined as
warray WORD 2, 4, 6, 8, 10

then referencing warray in your program refers to the first word—the word
containing 2.

To refer to the next element (in an array of words), use either of these two forms,
each of which refers to the array element two bytes past the beginning of
warray:

warray+2
warray[2]

This element can be used as you would any data item:

mov ax, warray[2]
push warray+2

When used with a variable name, brackets only add a number to the address. If
warray referstothe address 2400h, then warray[2] refers to the address
2402h. The BOUND instruction (80186—80486 only) can be used to verify that
an index value is within the bounds of an array.

Array indexes are not In assembly language, array indexes are zero-based and unscaled. The number
scaled. The index is a within brackets always represents an absolute distance in bytes. In practical
distance in bytes. terms, the fact that indexes are unscaled means that if an element is larger than

one byte, you must multiply the index of the element by its size (in the example
above, 2), and then add the result to the address of the array. Thus, the expres-
sion warray[4] represents the third element, which is four bytes past the
beginning of the array. Similarly, the expression warray[6] represents the
fourth element.

You can also determine an index at run time:

mov si, cx ; CX holds index value
shl si, 7 ; Scale for word referencing
mov ax, warray[si] ; Move element into AX
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The offset required to access an array element can be calculated with the follow-
ing formula:

nth element of array = array[(n-1) * size of element]

LENGTHOF, SIZEOF, and TYPE for Arrays

When applied to arrays, the LENGTHOF, SIZEOF, and TYPE operators return in-
formation about the length and size of the array and about the type of the
initializers.

The LENGTHOF operator returns the number of items in the definition. It can be
applied only to an integer label. This is useful for determining the number of ele-
ments you need to process in an array of integers. For an array or string label,
SIZEOF returns the number of bytes used by the initializers in the definition.
TYPE returns the size of the elements of the array. These examples illustrate
these operators:

array WORD 49 DUP (5)

larray EQU LENGTHOF array ; 40 elements
sarray EQU SIZEOQF array ; 80 bytes
tarray EQU TYPE array ; 2 bytes per element
num DWORD 4, 5, 6, 7,
8, 9, 10, 11
Tnum EQU LENGTHOF num ; 8 elements
snum EQU SIZEQF num ; 32 bytes
tnum EQU TYPE num ; 4 bytes per element

warray WORD 49 DUP (4@ DUP (5))

lTen EQU LENGTHOF warray ; 1600 elements
siz EQU SIZEQF  warray ; 3200 bytes
typ EQU TYPE warray ; 2 bytes per element

5.1.2 Declaring and Initializing Strings

Strings declared with types
other than BYTE must fit
the memory space
allocated.
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A string is an array of bytes. Initializing a string like "Hello, there” allo-
cates and initializes one byte for each character in the string. An initialized string
can be no longer than 255 characters.

For data directives other than BYTE, a string may initialize only a single element.
This element must be short enough to fit into the specified size and conform to
the expression word size in effect (see Section 1.2.4,“Integer Constants and Con-
stant Expressions”), as shown in these examples:

wstr WORD "OK"
dstr DWORD "ADCD" ; Legal under EXPR32 only
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The actual values stored
when you use ? depend on
the other data in your
program.

As with arrays, string initializers can span multiple lines. The line must end with
a comma if you want the string to continue to the next line.

strl BYTE "This is a long string that does not ",
"fit on one Tine."

You can also have an array of pointers to strings. For example:

PBYTE  TYPEDEF PTR BYTE

.DATA
msgl BYTE "Operation completed successfully."”
msg2 BYTE "Unknown command"
msg3 BYTE "File not found"

pmsgl PBYTE msgl
pmsg?2 BPBYTE msg2
pmsg3 PBYTE msg3

errors WORD pmsgl, pmsg2, pmsg3 ; An array of pointers
; to strings

Strings must be enclosed in single (') or double (") quotation marks. To put a
single quotation mark inside a string enclosed by single quotation marks, use two
single quotation marks. Likewise, if you need quotation marks inside a string en-
closed by double quotation marks, use two sets. These examples show the
various uses of quotation marks:

char BYTE 'a'

message BYTE "That's the message." ; That's the message.
warn BYTE ‘Can''t find file.' ; Can't find file.
string BYTE "This ""value"" not found." ; This "value"

not found.

You can always use single quotation marks inside a string enclosed by double
quotation marks, as the initialization for message shows, and vice versa.

The ? Initializer

You do not have to initialize all elements in an array to a value. If there is no ini-
tial value, you can initialize the array elements with the ? operator. The ? opera-
tor either is treated as a zero or causes a byte to be left unspecified in the object
file. Object files contain records for initialized data. An unspecified byte left in
the object file means that no records contain initialized data for that address.

The actual values stored in arrays allocated with ? depend on certain conditions.
The ? initializer is treated as a zero in a DUP statement that contains initializers
in addition to the ? initializer. An unspecified byte is left in the object file if the ?
initializer does not appear in a DUP statement, or if the DUP statement contains
only ? initializers for nested DUP statements.
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Interfacing with high-level
languages requires special
techniques with strings.
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Length-Specified Strings
Often there are reasons to know the length of a string. To use the DOS functions

for writing to a file, for example, CX must contain the length of the string before
the interrupt is called, as shown in this example.

msg BYTE "This is a length-specified string”
mov ah, 40h
mov bx, 1
mov cx, LENGTHOF msg
mov dx, OFFSET msg
int 21h

Some high-level languages also expect strings passed to procedures to have a cer-
tain format. For example, Pascal procedures require the first byte of a string
passed as a parameter to contain the length of the string. You can write this
length into the first byte with

msg BYTE LENGTHOF msg - 1, "This is a Pascal string”

Other languages such as Basic have string descriptions—a kind of structure con-
taining both the length and the address of the string. For example, this structure
DESC could be used in a procedure accessed from Basic:

DESC STRUCT

len WORD ? ; Length of stringl

off WORD ? ; Offset of stringl
DESC ENDS
stringl BYTE "This string goes in a string descriptor”
msg DESC {LENGTHOF stringl, stringl}

See Section 5.2, “Structures and Unions.”

Null-Terminated and $-Terminated Strings

Null-terminated and $-terminated strings have a special use with DOS functions.
Strings in modules shared with C need to end with a null character (0).

strl BYTE "This string ends with a null character”, @

DOS file names also require a null character at the end. This example opens a file
named "MYFILE.ASM".

namel BYTE "MYFILE.ASM", @
mov ah, 3Dh
mov dx, OFFSET namel
int 21h
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DOS function 9 requires a string to end with a dollar sign ($) so that it can recog-
nize the end of the string to write to the screen, as shown in this example.

msg BYTE "This is a dollar-terminated string$"
mov ah, 0@9h
mov dx, OFFSET msg
int 21h

LENGTHOF, SIZEOF, and TYPE for Strings

Because the assembler considers strings as simply arrays of byte elements, the
LENGTHOF and SIZEOF operators return the same values for strings as they do
for arrays, as illustrated in this example. The TYPE operator considers msg to
be one data unit and returns 1.

msg BYTE "This string extends ",
"over three ",
"lines."
Tmsg EQU LENGTHOF msg ; 37 elements
smsg EQU SIZEQOF msg ; 37 bytes
tmsg EQU TYPE msg ; 1 byte per element

5.1.3 Processing Arrays and Strings

The 8086-family instruction set has seven string instructions for fast and efficient
processing of entire strings and arrays. The term “string” in “string instructions”
refers to a sequence of elements, not just character strings. These instructions
work directly only on arrays of bytes and words on the 808680486 and on ar-
rays of bytes, words, and doublewords on the 80386 and 80486. Processing
larger elements must be done indirectly with loops.

The following list gives capsule descriptions of the five instructions discussed in
this section. Two additional instructions not described here are the INS and
OUTS instructions that transfer values to and from a memory port.

Instruction Description

MOVS Copies a string from one location to another

STOS Stores values from the accumulator register to a string
CMPS Compares values in one string with values in another
LODS Loads values from a string to the accumulator register
SCAS Scans a string for a specified value
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All string operations follow
three hasic steps.
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All of these instructions use registers in a similar way and have a similar syntax.
Most are used with the repeat instruction prefixes REP, REPE (or REPZ), and
REPNE (or REPNZ). REPZ is a synonym for REPE (Repeat While Equal) and
REPNZ is a synonym for REPNE (Repeat While Not Equal).

This section first explains the general procedures for using all string instructions.
It then illustrates each instruction with an example.

5.1.3.1 Overview of String Operations

The string instructions have specific requirements for the location of strings and
the use of registers. To operate on any string, follow these three steps:

1. Set the direction flag to indicate the direction in which you want to process
the string. The STD instruction sets the flag, while CLD clears it.

If the direction flag is clear, the string is processed upward (from low ad-
dresses to high addresses, which is from left to right through the string). If the
direction flag is set, the string is processed downward (from high addresses to
low addresses, or from right to left). Under DOS, the direction flag is nor-
mally clear if your program has not changed it.

2. Load the number of iterations for the string instruction into the CX register.

If you want to process a 100-byte string, move 100 into CX. If you wish the
string instruction to terminate conditionally (for example, during a search
when a match is found), load the maximum number of iterations that can be
performed without an error.

3. Load the starting offset address of the source string into DS:SI and the start-
ing address of the destination string into ES:DI. Some string instructions take
only a destination or source, not both (see Table 5.1).

Normally, the segment address of the source string should be DS, but you can
use a segment override to specify a different segment for the source operand.
You cannot override the segment address for the destination string. Therefore,
you may need to change the value of ES. See Section 3.1 for information on
changing segment registers.

NOTE Aithough you can use a segment override on the source operand, a segment over-
ride combined with a repeat prefix can cause problems in certain situations on all proces-
sors except the 80386/486. If an interrupt occurs during the string operation, the segment
override is lost and the rest of the string operation processes incorrectly. Segment overrides
can be used safely when interrupts are turned off or with an 80386/486 processor.

You can adapt these steps to the requirements of any particular string operation.
The syntax for the string instructions is:
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The instruction
automatically increments
Dl or SI.

[prefix]] CMPS ([segmentregister:]| source, [ES:]| destination
LODS [[segmentregister:]] source

[prefix] MOVS [[ES:]| destination, [segmentregister:]] source

[prefix]l SCAS [ES:]] destination

[prefix] STOS [ES:[[ destination

Some instructions have special forms for byte, word, or doubleword operands. If
you use the form of the instruction that ends in B (BYTE), W (WORD), or D
(DWORD) with LODS, SCAS, and STOS, the assembler knows whether the ele-
ment is in the AL, AX, or EAX register. Therefore, these instruction forms do
not require operands.

Table 5.1 lists each string instruction with the type of repeat prefix it uses and in-
dicates whether the instruction works on a source, a destination, or both.

Table 5.1  Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair
MOVS REP Both DS:SI, ES:DI
SCAS REPE/REPNE Destination ES:DI
CMPS REPE/REPNE Both DS:SI, ES:DI
LODS None Source DS:SI
STOS REP Destination ES:DI
INS REP Destination ES:DI
ouTsS REP Source DS:SI

The repeat prefix causes the instruction that follows it to repeat for the number of
times specified in the count register or until a condition becomes true. After each
iteration, the instruction increments or decrements SI and DI so that it points to
new array elements. The string instructions work on these elements. The direc-
tion flag determines whether SI and DI are incremented (flag clear) or decre-
mented (flag set). The size of the instruction determines whether SI and DI are
altered by one, two, or four bytes each time.

These are the conditions that determine the number of repetitions specified by a
prefix.

Prefix Description
REP Repeats instruction CX times
REPE, REPZ Repeats instruction CX times, or as long as elements

are equal, whichever is fewer

REPNE, REPNZ Repeats instruction CX times, or as long as elements
are not equal, whichever is fewer
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At loop end, Sl and DI point
to the element immediately
after the match.
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The prefixes apply to only one string instruction at a time. To repeat a block of in-
structions, use a loop construction (see Section 7.2, “Loops”).

At run time, if a string instruction is preceded by a repeat sequence, the processor
takes the following steps:

1. Checks the CX register and exits if CX is 0. If the REPE prefix is used, the
loop exits if the zero flag is set; if REPNE is used, the loop exits if the zero
flag is clear.

2. Performs the string operation once.

3. Increases SI and/or DI if the direction flag is clear. Decreases SI and/or DI if
the direction flag is set. The amount of increase or decrease is 1 for byte
operations, 2 for word operations, and 4 for doubleword operations
(80386/486 only).

4. Decrements CX (no flags are modified).

5. Checks the zero flag at this point if the REPE or REPNE prefix is used (for
SCAS or CMPS). If the repeat condition does not hold, execution proceeds to
the next instruction.

6. Proceeds to the next iteration and repeats from step 1.

When the repeat loop ends, SI (or DI) points to the position following a match
(when using SCAS or CMPS), so you need to decrement or increment DI or SI to
point to the element where the match occurred.

Although string instructions (except LODS) are most often used with repeat pre-
fixes, they can also be used by themselves. In this case, the SI and/or DI registers
are adjusted as specified by the direction flag and the size of operands. However,
you must decrement the CX register and set up a loop for the repeated action.

5.1.3.2 String Instructions

To use the 8086-family string instructions, apply the steps outlined in the pre-
vious section. Examples in this section illustrate each instruction.

You can also use the techniques in this section with structures and unions, since
arrays and strings can be fields in structures and unions (see Section 5.2).

Moving Array Data The MOVS instruction copies data from one area of
memory to another. To move data, first load the count and the source and destina-
tion addresses into the appropriate registers. Then use REP with the MOVS
instruction.
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.MODEL small

.DATA
source BYTE 10 DUP ('0123456789"')
destin BYTE 100 DUP (7)

.CODE

mov ax, @data ; Load same segment

mov ds, ax ;  to both DS

mov es, ax ; and ES

cld ; Work upward

mov cx, LENGTHOF source ; Set iteration count to 100
mov si, OFFSET source ; Load address of source

mov di, OFFSET destin ; Load address of destination
rep movsb ; Move 100 bytes

Sloring Data in Arrays The STOS instruction stores a specified value in
each position of a string. The string is the destination, so it must be pointed to by
ES:DI. The value to store must be in the accumulator.

This example stores the character 'a' in each byte of a 100-byte string. Notice
that it does this by storing 50 words rather than 100 bytes. This makes the code
faster by reducing the number of iterations. To fill an odd number of bytes, you
would have to adjust for the last byte.

.MODEL small, C

.DATA
destin BYTE 100 DUP (?)
ldestin EQU (LENGTHOF destin) / 2
.CODE
; Assume ES = DS
cld ; Work upward
mov ax, 'aa' ; Load character to fill
mov cx, ldestin ; Load length of string
mov di, OFFSET destin ; Load address of destination
rep stosw ; Store 'aa' into array

Comparing Arrays The CMPS instruction compares two strings and points
to the address after which a match or nonmatch occurs. If the values are the
same, the zero flag is set. Either string can be considered as the destination or the
source unless a segment override is used.
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This example using CMPSB assumes that the strings are in different segments.
Both segments must be initialized to the appropriate segment register.

.MODEL Tlarge, C

.DATA
stringl BYTE "The quick brown fox jumps over the lazy dog"
. FARDATA
string2 BYTE "The quick brown dog jumps over the Tazy fox"
Istring EQU LENGTHOF string2
.CODE
mov ax, @data ; Load data segment
mov ds, ax ; into DS
mov ax, @fardata ; Load far data segment
mov es, ax ; into ES
cld ; Work upward
mov cx, Istring ; Load length of string
mov si, OFFSET stringl ; Load offset of stringl
mov di, OFFSET string2 ; Load offset of string2
repe cmpsb ; Compare
jexz allmatch ; CX is @ if no nonmatch
allmatch: ; Special case for all match

Loading Data from Arrays The LODS instruction loads a value from a
string into a register. The string is the source; the value is in the accumulator.
This instruction normally is not used with a repeat instruction prefix, since some-
thing must be done with each element before going on to the next.

The code in this example loads, processes, and displays each byte in a string of
bytes.

.DATA
info BYTE 6,1, 2, 3, 4,5,6,7,8,9
linfo  WORD LENGTHOF info

.CODE

cld ; Work upward

mov cx, linfo ; Load length

mov si, OFFSET info ; Load offset of source

mov ah, 2 ; Display character function
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get:
lodsb ; Get a character
add al, '@’ ; Convert to ASCII
mov d1, al ; Move to DL
int 21h ; Call DOS to display character
Toop get ; Repeat

Searching Arrays The SCAS instruction scans a string for a specified value.
As the loop executes, this instruction compares the value pointed to by DI with
the value in the accumulator. If values are the same, the zero flag is set.

After a REPNE SCAS, the zero flag is cleared if no match was found. After a
REPE SCAS, the zero flag is set if all values matched.

This example assumes that ES is not the same as DS and that the address of the
string is stored in a pointer variable. The LES instruction loads the far address of
the string into ES:DI.

.DATA
string BYTE "The quick brown fox jumps over the lazy dog"
pstring PBYTE string ; Far pointer to string
Tstring EQU LENGTHOF string ; Length of string
.CODE
cld ; Work upward
mov cx, lIstring ; Load length of string
les di, pstring ; Load address of string
mov al, 'z’ ; Load character to find
repne scash ; Search
jexz notfound ; CX is @ if not found
; ES:DI points to character
; after first 'z’
notfound: ; Special case for not found

5.2 Structures and Unions

A structure is a group of possibly dissimilar data types and variable declarations
that can be accessed as a unit or by any of its components. The fields within the
structure can have different sizes and data types.

Unions are identical to structures, except that the fields of a union overlap in
memory, which allows you to define different data formats for the same memory
space. Unions can store different types of data depending on the situation. They
can also store data as one data type and retrieve it as another data type.

Whereas each field in a structure has an offset relative to the first byte of the
structure, all the fields in a union start at the same offset. The size of a structure
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is the sum of its components, while the size of a union is the length of the longest
field.

A MASM structure is similar to a struct in the C language, a STRUCTURE in
FORTRAN, and a RECORD in Pascal. Unions in MASM are similar to unions in
C and FORTRAN, and to variant records in Pascal.

Follow these steps when using structures and unions:

1. Declare a structure (or union) type.
2. Define one or more variables having that type.

3. Reference the fields directly or indirectly with the field (dot) operator.

You can use the entire structure or union variable or just the individual fields as
operands in assembler statements. This section explains the allocating, initializ-
ing, and nesting of structures and unions.

MASM 6.0 extends the functionality of structures and also makes some changes
to MASM 5.1 behavior. You can still retain MASM 5.1 behavior if you prefer by
specifying OPTION OLDSTRUCTS in your program. See Section 1.3.2 for infor-
mation about the OPTION directive, and Section 5.2.3 for information about ref-
erencing structures and unions.

5.2.1 Declaring Structure and Union Types
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When you declare a structure or union type, you create a template for data that
contains the sizes and, optionally, the initial values for fields in the structure or
union but that allocates no memory.

The STRUCT keyword marks the beginning of a type declaration for a structure.
(STRUCT and STRUC are synonyms.) STRUCT and UNION type declarations
have the following format:

name {STRUCT | UNION} [[alignment]] [, NONUNIQUE ]
fielddeclarations
name ENDS

The fielddeclarations are a series of one or more variable declarations. You can
declare default initial values individually or with the DUP operator (see Section
5.2.2, “Defining Structure and Union Variables”). Section 5.2.3, “Referencing
Structures, Unions, and Fields,” explains the NONUNIQUE keyword. Structures
and unions can also be nested in MASM 6.0 (see Section 5.2.4).

Initializing Fields
If you provide initializers for the fields of a structure or union when you declare

the type, these initializers become the default value for the fields when you de-
fine a variable of that type. Section 5.2.2 explains default initializers.
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A nested structure
has its own level.

When you initialize the fields of a union type, the type and value of the first field
become the default value and type for the union. In this example of an initialized
union declaration, the default type for the union is DWORD:

DWB UNION
d DWORD  @@FFh
W WORD ?
b BYTE ?

DWB ENDS

If the size of the first member is less than the size of the union, the assembler ini-
tializes the rest of the union to zeros. When initializing strings in a type, make
sure the initial values are long enough to accommodate the largest possible
string.

Field Names

Structure and union field names in MASM 6.0 must be unique within a given
nesting level because they represent the offset from the beginning of the structure
to the corresponding field.

In MASM 6.0, a label and a structure field may have the same name, but not a
text macro and a field name. Also, field names between structures need not be
unique. Field names do need to be unique if you place OPTION M510 or
OPTION OLDSTRUCTS in your code or use the /Zm option from the command
line, since versions of MASM prior to 6.0 require unique field names (see Appen-
dix A).

Alignment Value and Offsets for Structures

Data access to structures is faster on aligned fields than on unaligned fields.
Therefore, alignment gains speed at the cost of space. Alignment improves
access on 16-bit processors but makes no difference on code executing on an 8-
bit 8088 processor.

The way the assembler aligns structure fields determines the amount of space re-
quired to store a variable of that type. Each field in a structure has an offset rela-
tive to 0. If you specify an alignment in the structure declaration (or with the
/Zpn command-line option), the offset for each field may be modified by the
alignment (or n).

The only values accepted for alignment are 1, 2, and 4. The default is 1. If the
type declaration includes an alignment, the fields are aligned to the minimum of
the field’s size and the alignment. Any padding required to reach the correct off-
set for the field is added prior to allocating the field. The padding consists of
zeros and always precedes the field.

If the number of bytes in the field is greater than the alignment value, the element
will be padded such that the offset of the element is divisible by the alignment
value. If the number of bytes is greater than or equal to the alignment value, the
offset of the element is padded such that it is divisible by the element size.
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The alignment value
affects memory allocation
of structure variables.

The size of the structure must also be evenly divisible by the structure alignment
value, so zeros may be added at the end of the structure.

If neither the alignment nor the /Zp command-line option is used, the offset is
incremented by the size of each data directive. This is the same as a default
alignment equal to 1. The alignment specified in the type declaration overrides
the /Zp command-line option.

These examples show how offsets are determined:

STUDENT2 STRUCT 2 ; Alignment value is 2
score WORD 1 ; Offset is 0
id BYTE 2 ; Offset is 2
year DWORD 3 ; Offset is 4; one byte padding added
sname BYTE 4 ; Offset is 8

STUDENTZ ENDS

One byte of padding is added at the end of the first byte-sized field. Otherwise
the offset of the year field would be 3, which is not divisible by the alignment
value of 2. The size of this structure is now 9 bytes. Since 9 is not evenly divis-
ible by 2, one byte of padding is added at the end of student?2.

STUDENT4 STRUCT 4 ; Alignment value is 4
sname BYTE 1 ; Offset is @
score WORD 10 DUP (10@) ; Offset is 2
year BYTE 2 ; Offset is 22; 1 byte padding

; added so offset of next field
; is divisible by 4
id DWORD 3 ; Offset is 24
STUDENT4 ENDS

The alignment value affects the alignment of structure variables, so adding an
alignment value affects memory usage. This feature provides compatibility with
structures in Microsoft C.

With MASM 6.0, C programmers can use the H2INC utility to translate C struc-
tures to MASM (see Chapter 16).

5.2.2 Defining Structure and Union Variables
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Once you have declared a structure or union type, variables of that type can be
defined. For each variable defined, memory is allocated in the current segment in
the format declared by the type. The syntax for defining a structure or union vari-
able is:

[[name]) typename < [initializer [ initializer]...]] >
[[name]| typename { [Linitializer [ initializer]...] }

[name]| typename constant DUP ({ [initializer [[,initializer]...] })
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The name is the label assigned to the variable. If no name is given, the assembler
allocates space for the variable but does not give it a symbolic name. The zype-
name is the name of a previously declared structure or union type.

An initializer can be given for each field. The type of each initializer must be the
type of the corresponding field defined in the type declaration. For unions, the
type of the initializer must be the same as the type for the first field. An initializa-
tion list can also be repeated using the DUP operator.

The list of initializers can be broken only after a comma unless you use a line
continuation character (\) at the end of the line. The last curly brace or angle
bracket must appear on the same line as the last initializer. You can also use the
line continuation character to extend a line as shown in the Item4 declaration
below. Angle brackets and curly braces can be intermixed in an initialization as
long as they match. This example using the ITEMS structure illustrates the op-
tions for initializing lists:

ITEMS STRUCT
Iname BYTE 'Item Name'
Inum WORD ?
ITYPE UNION
oldtype BYTE 0
newtype WORD ?
ENDS
ITEMS ENDS
.DATA

ITteml  ITEMS <
Item2  ITEMS {
Item3  ITEMS <

> ; Accepts default initializers
} ; Accepts default initializers
Bolts', 126> ; Overrides default value of first
; 2 fields; use default of
;  the third field

Ttem4 ITEMS {\
'Bolts’, ; Item name
126 \ ; Part number
}

The angle brackets or curly braces are required even if no initial value is given,
asin Iteml and Item2 in the example. If initial values are given for more
than one field, the values must be separated by commas, as shown in Item3.

You need not initialize all fields in a structure. If an initial value is blank, the as-
sembler automatically uses the default initial value of the field, which was origi-
nally provided in the structure type declaration. If there is no default value, the
field is undefined.
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Default initializers for
string or array fields set
the size for the field.

The string fields for
structure variables are the
length defined by the type
declaration.
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For nested structures or unions (see Section 5.2.4), however, these are equivalent:

Itemb ITEMS {'Bolts"', , }
Item6 ITEMS {'Bolts', , {1}

A variable and an array of union type WB look like this:

WB UNION

w WORD ?

b BYTE ?
WB ENDS
num WB {@Fh} ; Store @Fh
array WB (40 / SIZEOF WB) DUP ({2}) ; Allocates and

; initializes 1@ unions
7 7 4 V4 £
lof2]of2]o]c2| o[ 2]
AV /\ / \ /
f )i )
array[@] array[2] array[4] array[18]

In MASM 6.0, control structures (such as IF, macros, and directives) are also al-
lowed within structure and union declarations.

Arrays as Field Initializers

The length of the array that can override the contents of a field in a variable defi-
nition is fixed by the size of the initializer. The override cannot contain more ele-
ments than the default. Specifying fewer override array elements changes the
first n values of the default where » is the number of values in the override. The
rest of the array elements take their default values from the initializer.

Strings as Field Initializers

If the override is shorter, the assembler pads the override with spaces to equal the
length of the initializer. If the initializer is a string and the override value is not a
string, the override value must be enclosed in angle brackets or curly braces.

A string may be used to override any member of type BYTE (or SBYTE). The
string does not need to be enclosed in angle brackets or curly braces unless
mixed with other override methods.

If a structure has an initialized string field or an array of bytes, any new string as-
signed to a variable of the field that is smaller than the default is padded with
spaces. The assembler adds four spaces at the end of "Bolts' in the variables
of type ITEMS above.The Iname field inthe ITEMS structure cannot con-
tain a field initializer longer than 'Item Name'.
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Structures as Field Initializers
Initializers for structure variables must be enclosed in curly braces or angle brack-
ets, but you can specify overrides with fewer elements than the defaults.

This example illustrates the use of default values with structures as field
initializers:

DISKDRIVES STRUCT
al BYTE ?
bl BYTE ?
cl BYTE ?
DISKDRIVES ENDS
INFO STRUCT
buffer BYTE 100 DUP (?)
crlf BYTE 13, 10
query BYTE 'Filename: ' ; String <= can override
endmark BYTE 36
drives DISKDRIVES <@, 1, 1>
INFO ENDS

infol INFO {,, 'Dir' }

; I1legal since name in query field is too long

; and a string cannot initialize a field defined with DUP:
; info2 INFO {"TESTFILE", , "DirectoryName",}

lTotsof INFO {, ‘fitel', , {0,0,0} },
¢, , 'file2', , {0,0,1} 3},
{, , 'file3', , {0,0,2} }

The diagram below shows how the assembler stores infol.

01 2 99
222 ofwsofoi ] [ [ | | | [ [ss]o]1]1]...
‘ Y AR Y J
buffer crif query endmark
drives.al
drives.bl
drives.cl

The initialization for drives gives default values for all three fields of the
structure. The fields left blank in infol use the default values for those fields.
The info2 declaration is illegal since "DirectoryName" islonger than
the initial string for that field, and the "TESTFILE" string cannot initialize a
field defined with DUP.
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Arrays of Structures and Unions

You can define an array of structures using the DUP operator (see Section 5.1.1,
“Declaring and Referencing Arrays”) or by creating a list of structures. For ex-
ample, you can define an array of structure variables like this:

Item7 ITEMS 30 DUP ({,,{10}})

The Item7 array defined here has 30 elements of type ITEMS, with the third
field of each element (the union) initialized to 10.

You can also list array elements as shown in this example:

Item8 ITEMS {'Bolts"', 126, 10},
{'Pliers',139, 10},
{'Saws', 414, 10}

Structure Redefinition
The assembler generates an error for a structure redefinition unless all of the fol-

lowing are the same:

m Field names

m Offsets of named fields
m Initialization lists

m Field alignment value

Additionally, all fields must be present and at the same offset.

LENGTHOF, SIZEOF, and TYPE for Structures

The size of a structure determined by SIZEOF is the offset of the last field, plus
the size of the last field, plus any padding required for proper alignment (see Sec-
tion 5.2.1 for information about alignment). This example, using the data declara-
tions above, shows how to use the LENGTHOF, SIZEOF, and TYPE operators
with structures:

INFO STRUCT
buffer BYTE 100 DUP (?)
crif BYTE 13, 19
query BYTE 'Filename: '
endmark BYTE 36
drives DISKDRIVES <@, 1, 1>
INFO ENDS
infol INFO {, , 'Dir' }
lotsof INFO {, , 'filel', , {0,0,0} },
{, , 'file2', , {0,0,1} },
{, , 'filte3', , {0,0,2} }
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sinfol EQU SIZEOF infol ; 116 = number of bytes in
; initializers
linfol EQU LENGTHOF infol ; 1 = number of items
tinfol EQU TYPE infol ; 116 = same as size
slotsof EQU SIZEOF lTotsof ; 116 * 3 = number of bytes in
; initializers
Tlotsof EQU LENGTHOF Totsof ; 3 = number of items
tlotsof EQU TYPE lotsof ; 116 = same as size for structure

of type INFO

LENGTHOF, SIZEOF, and TYPE for Unions

The size of a union determined by SIZEOF is the size of the longest field plus
any padding required. The length of a union variable determined by LENGTHOF
equals the number of initializers defined inside angle brackets or curly braces.
TYPE returns a value indicating the type of the longest field.

DWB UNION

d DWORD ?

w WORD ?

b BYTE ?
DWB ENDS
num DWB {OFFFFh}
array DWB (100 / SIZEOF DWB) DUP ({@})
snum EQU SIZEOF num ; =4
Tnum EQU LENGTHOF num ; =1
tnum EQU TYPE num ; = 4
sarray EQU SIZEQF array ; = 100 (4%25)
larray EQU LENGTHOF array ; = 25
tarray EQU TYPE array s =4

5.2.3 Referencing Structures, Unions, and Fields

Like other variables, structure variables can be accessed by name. You can
access fields within structure variables with this syntax:

variable. field

In MASM 6.0, references to fields must always be fully qualified, with both the
structure or union name and the dot operator preceding the field name. Also, in

MASM 6.0, the dot operator can be used only with structure fields, not as an al-
ternative to the plus operator; nor can the plus operator be used as an alternative
to the dot operator.
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This example shows several ways to reference the fields of a structure called
date.

DATE STRUCT ; Defines structure type
month BYTE ?
day BYTE ?
year WORD ?

DATE ENDS
yesterday DATE {9, 30, 1987} ; Declare structure
; variable
mov al, yesterday.day ; Use structure variables
mov bx, OFFSET yesterday ; Load structure address
mov al, (DATE PTR [bx]).month ; Use as indirect operand
mov al, [bx].date.month ; This is necessary if

month were already a
; field in a different
; Sstructure

Under OPTION M510 or OPTION OLDSTRUCTS, unique structure names do not
need to be qualified. See Section 1.3.2 for information on the OPTION
directive.

If the NONUNIQUE keyword appears in a structure definition, all fields of the
structure must be fully qualified when referenced, even if the OPTION
OLDSTRUCTS directive appears in the code. Also, in MASM 6.0, all references
to a field must be qualified.

Even if the initialized union is the size of a WORD or DWORD, members of
structures or unions are accessible only through the field’s names.

In the following example, the two MOV statements show how you can access the
elements of an array of structures.

WB UNION
W WORD
b BYTE ?
WB ENDS
array WB (100 / SIZEOF WB) DUP ({@3})
mov array[12].w, 40
mov array[32].b, 2
4 Z 7 4
1 T T 1 T T T
...4|4 0 0 ol e |2 0 0 ol -
1 1 1 1 1 1 1
array.wl[12] array.b[32]
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The WB union cannot be used directly as a WORD variable. However, you can
define a union containing both the structure and a WORD variable and access
either field. (The next section discusses nested structures and unions.)

You can use unions to access the same data in more than one form. For example,
one application of structures and unions is to simplify the task of reinitializing a
far pointer. If you have a far pointer declared as

FPWORD TYPEDEF FAR PTR WORD

.DATA
BoxB FPWORD ?
BoxA FPWORD ?
BoxB?2 uptr <>

you must follow these steps to point BoxB to BoxA:

mov bx, OFFSET BoxA
mov WORD PTR BoxB[2], ds
mov WORD PTR BoxB, bx

When you do this, you must remember whether the segment or the offset is
stored first. However, if your program contains this union:

uptr UNION
dwptr  FPWORD @
STRUCT
offs WORD 0
segm WORD 0
ENDS
uptr ENDS

you can initialize a far pointer with these steps:

mov BoxB2.segm, ds
mov BoxB2.offs, bx
1ds si, BoxB2.dwptr

This code moves the segment and the offset into the pointer and then moves the
pointer into a register with the other field of the union. Although this technique
does not reduce the code size, it avoids confusion about the order for loading the
segment and offset.
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5.2.4 Nested Structures and Unions

Structures and unions in MASM 6.0 can be nested in several ways. This section
explains how to refer to the fields in a nested structure or union. The example
below illustrates the four techniques for nesting and how to reference the fields.
Note the syntax for nested structures. The discussion of these techniques follows
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the example.

ITEMS
Inum
Iname

ITEMS

INVENTORY
UpDate
oldIltem

STRUCT ups
source
shipmode

ENDS

STRUCT
fl
f2

ENDS

INVENTORY

.DATA

STRUCT
WORD
BYTE
ENDS

STRUCT

WORD
ITEMS

ITEMS

WORD
BYTE

WORD
WORD

ENDS

yearly INVENTORY

?

‘Item Name'
?
{\
?’
"AF8" \ ; Named variable of
} ; existing structure
{ 2?2, '94C' } ; Unnamed variable of
;  existing type
; Named nested structure
?
?
; Unnamed nested structure
?
?
{1

; Referencing each type of data in the yearly structure:

mov
mov
mov
mov

ax, yearly.oldItem.Inum
yearly.ups.shipmode, 'A’
yearly.Inum, 'C'

ax, yearly.fl

To nest structures and unions, you can use any of these techniques:

s The field of a structure or union can be a named variable of an existing struc-
ture or union type, as in the oldItem field. The field namesin oldItem
are not unique, so the full field names must be used when referencing those
fields in the statement

ax,

yearly.oldItem.Inum
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5.3 Records

Record fields are bits, not
bytes or words.

m  To declare a named structure or union inside another structure or union, give
the STRUCT or UNION keyword first and then define a label for it. Fields of
the nested structure or union must always be qualified, as shown in this
example:

mov yearly.ups.shipmode, 'A’

m Asshowninthe Items fieldof Inventory, you can also use unnamed
variables of existing structures or unions inside another structure or union. In
this case you can reference its fields directly, as shown in this example:

mov yearly.Inum, 'C’'
mov ax, yearly.fl

Offsets of nested structures are relative to the nested structure, not the root struc-
ture. In the example above, the offset of yearly.ups.shipmode is
(current address of yearly) + 8 + 2. Itis relative to the ups struc-
ture, not the yearly structure.

Records are similar to structures, except that fields in records are bit strings. Each
bit field in a record variable can be used separately in constant operands or ex-
pressions. The processor cannot access bits individually at run time, but it can
access bit fields with instructions that manipulate bits.

Records are bytes, words, or doublewords in which the individual bits or groups
of bits are considered fields. In general, the three steps for using record variables
are the same as those for other complex data types:

1. Declare a record type.

2. Define one or more variables having the record type.

3. Reference record variables using shifts and masks.

Once defined, the record variable can be used as an operand in assembler
statements.

This section explains the record declaration syntax and the use of the MASK and
WIDTH operators. It also shows a few applications of record variables and
constants.
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5.3.1 Declaring Record Types

The assembler shifts bits
in a record to the right if
all bits are not used.
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A record type creates a template for data with the sizes and, optionally, the initial
values for bit fields in the record, but it does not allocate memory space for the
record.

The RECORD directive declares a record type for an 8-bit, 16-bit, or 32-bit re-
cord that contains one or more bit fields. The maximum size is based on the ex-
pression word size. See OPTION EXPR16 and OPTION EXPR32 in Section 1.3.2.
The syntax is

recordname RECORD field {], field]]...

The field declares the name, width, and initial value for the field. The syntax for
each field is:

fieldname:width([=expression]|

Global labels, macro names, and record field names must all be unique, but re-
cord field names can have the same names as structure field names or global
labels. Width is the number of bits in the field, and expression is a constant
giving the initial (or default) value for the field. Record definitions can span
more than one line if the continued lines end with commas.

If expression is given, it declares the initial value for the field. The assembler
generates an error message if an initial value is too large for the width of its field.

The first field in the declaration always goes into the most significant bits of the
record. Subsequent fields are placed to the right in the succeeding bits. If the
fields do not total exactly 8, 16, or 32 bits as appropriate, the entire record is
shifted right, so the last bit of the last field is the lowest bit of the record. Unused
bits in the high end of the record are initialized to O.

The following example creates a byte record type color having four fields:
b1ink, back, intense, and fore. The contents of the record type are
shown after the example. Since no initial values are given, all bits are set to 0.
Note that this is only a template maintained by the assembler. No data is created.

COLOR RECORD blink:1, back:3, intense:1, fore:3

0

(ofofofolofo o o]
e I e I '

blink intense
back fore
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The next example creates a record type cw having six fields. Each record de-
clared with this type occupies 16 bits of memory. Initial (default) values are
given for each field. They can be used when data is declared for the record. The
bit diagram after the example shows the contents of the record type.

CW RECORD rl:3=@, ic:1=0, rc:2=0, pc:2=3, r2:2=1, masks:6=63

15 7

|o|o|ororo|o|w1|o|1|1\1\1ﬂ111ﬂ037%
e e Y

rl:3= 0 rc:2=0 r2:2=1 masks:6=63
ic:1=0 pc:2=3

9.3.2 Defining Record Variables

Once you have declared a record type, you can define record variables of that
type. For each variable, memory is allocated to the object file in the format de-
clared by the type. The syntax is

[name]l recordname <[[initializer [[,initializer]...]] >
[name]] recordname {{[initializer [[,initializer]...] }
[[namel] recordname constant DUP ( [initializer [ initializer])...]} )

The recordname is the name of a record type that was previously declared by
using the RECORD directive.

A fieldlist for each field in the record can be a list of integers, character con-
stants, or expressions that correspond to a value compatible with the size of the
field. Curly braces or angle brackets are required even if no initial value is given.

If you use the DUP operator (see Section 5.1.1, “Declaring and Referencing Ar-
rays”) to initialize multiple record variables, only the angle brackets and initial
values, if given, need to be enclosed in parentheses. For example, you can define
an array of record variables with

xmas COLOR 5@ DUP ( <1, 2, @, 4>)

You do not have to initialize all fields in a record. If an initial value is blank, the
assembler automatically stores the default initial value of the field. If there is no
default value, the assembler clears each bit in the field.

The definition in the example below creates a variable named warning whose
type is given by the record type color. The initial values of the fields in the
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variable are set to the values given in the record definition. The initial values
override any default record values, had any been given in the declaration.

COLOR RECORD blink:1,back:3,intense:1,fore:3 ; Record

; declaration
warning COLOR <1, @0, 1, 4> ; Record

; definition

(Tofofol 1 ofo]) &en
he Y

blink intense
back fore

LENGTHOF, SIZEOF, and TYPE with Records

The SIZEOF and TYPE operators applied to a record name return the number of
bytes used by the record. SIZEOF for a record variable returns the number of
bytes used by the variable. You cannot use LENGTHOF with record types, but
you can with the variables of that type. LENGTHOF returns the number of items
in an initializer. The record can be used as an operand. The value of the operand
is a bit mask of the defined record. This example illustrates these points.

; Record definition
; 9 bits stored in 2 bytes

RGBCOLOR RECORD red:3, green:3, blue:3
mov ax, RGBCOLOR ; Equivalent to "mov ax,
Q1FFh"

apply only to data label
mov ax, SIZEOF RGBCOLOR ; Equivalent to "mov ax, 2"
mov ax, TYPE RGBCOLOR ; Equivalent to "mov ax, 2"

; mov ax, LENGTHOF RGBCOLOR ; ITlegal since LENGTHOF can

; Record instance
; 8 bits stored in 1 byte

RGBCOLOR2 RECORD red:3, green:3, blue:2
rgb RGBCOLOR2 <1, 1, 1> ; Initialize to ©025h
mov ax, RGBCOLOR2 ; Equivalent to "mov ax,
@OFFhh"
mov ax, LENGTHOF rgb Equivalent to "mov ax, 1"

mov ax, SIZEOF rgb
mov ax, TYPE rgb

Equivalent to "mov ax, 1"
Equivalent to "mov ax, 1"

we ws we we
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5.3.3 Record Operators

The WIDTH operator (which is used only with records) returns the width in bits
of a record or record field. The MASK operator returns a bit mask for the bit posi-
tions occupied by the given record field. A bit in the mask contains a 1 if that bit
corresponds to a bit field. The example below shows how to use MASK and

WIDTH.
.DATA
COLOR RECORD blink:1, back:3, intense:1, fore:3
message COLOR <1, 5, 1, 1>
wblink EQU WIDTH blink 5 "wblink"” 1
wback EQU WIDTH back ; "wback" =3
wintense EQU WIDTH intense ; "wintense" =1
wfore EQU WIDTH fore ; "wfore" =3
wcolor EQU WIDTH color ; "wcolor” =8
.CODE
mov ah, message ; Load initial 0101 1001
and ah, NOT MASK back ; Turn off AND 1000 1111
; "back™ 0 m--------
; 0000 1001
or ah, MASK blink ; Turn on OR 1000 0000
; "blink" 0 mmeem-—--
; 1000 1001
xor ah, MASK intense ; Toggle XOR 0000 1000
; "intense" = ---------
; 1000 9001
IF (WIDTH color) GE 8 ; If color is 16 bit, toad
mov ax, message ; into 16-bit register
ELSE ; else
mov al, message ; load into Tow 8-bit register
xor ah, ah ; and clear high 8-bits
ENDIF
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This example illustrates several ways in which record fields can be used as oper-

ands and in expressions.

; Rotate "back" of "cursor" without changing other values

mov al, cursor ; Load value from memory
mov ah, al ; Save a copy for work 1101 1001=ah/al
and al, NOT MASK back; Mask out old bits AND 1000 1111=mask
; to save old cursor ---------
; 1000 1001=al
mov cl, back ; Load bit position
shr ah, cl ; Shift to right 0000 1101=ah
inc ah ; Increment 0000 1110=ah
shl ah, cl ; Shift left again 1110 0000=ah
and ah, MASK back ; Mask off extra bits AND 0111 0000=mask
; to get new cursor  ---------
; 0110 0000 ah
or ah, al ; Combine old and new OR 1000 1001 al
mov cursor, ah ; Write back to memory 1110 1001 ah

Record variables are often used with the logical operators to perform logical
operations on the bit fields of the record, as in the previous example using the

MASK operator.

5.4 Related Topics in Online Help

In addition to information on all the instructions and directives mentioned in this
chapter, information on the following topics can be found in online help, starting
at the “MASM 6.0 Contents” screen:
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Topic
INS, OUTS

LABEL

RECORD, UNION,
STRUCT, MASK,
ORG, WIDTH, and
ALIGN

SHRD, SHLD, BSF,
and BSR

BOUND

Access

Choose “Processor Instructions” and then “System
and I/O Access”

Choose “Directives” and then “Code Labels”

Choose “Directives” and then choose “Complex
Data Types”

From “Processor Instructions,” choose “Logical and
Shifts”

From “Processor Instructions,” choose “Data
Transfer”



Chapter 6
Using Floating-Point
and Binary Coded Decimal Numbers

MASM requires different techniques for handling floating-point (real) numbers
and binary coded decimal (BCD) numbers than for handling integers. You have
two choices for working with real numbers—a math coprocessor or emulation
routines.

Math coprocessors—the 8087, 80287, and 80387 chips—work with the main pro-
cessor to handle real-number calculations. The 80486 processor performs
floating-point operations directly. All information in this chapter pertaining to

the 80387 coprocessor applies to the 80486 processor as well.

This chapter begins with a summary of the directives and formats of floating-
point data; you need to use these to allocate memory storage and initialize varia-
bles before you can work with floating-point numbers.

The chapter then explains how to use a math coprocessor for floating-point opera-
tions. It covers these areas:

m  The architecture of the registers

m  The operands for the coprocessor instruction formats

m The coordination of coprocessor and main processor memory access

m  The basic groups of coprocessor instructions—for loading and storing data,
doing arithmetic calculations, and controlling program flow

The next main section describes emulation libraries. With the emulation routines
provided with all Microsoft high-level languages, you can use coprocessor in-
structions as though your computer had a math coprocessor. However, some co-
processor instructions are not handled by emulation, as this section explains.

Finally, because math coprocessor and emulation routines can also operate on
BCD numbers, this chapter discusses the instruction set for these numbers.
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6.1 Using Floating-Point Numbers

Before using floating-point data in your program, you need to allocate the
memory storage for the data. You can then initialize variables either as real num-
bers in decimal form or as encoded hexadecimals. The assembler stores allocated
data in 10-byte IEEE format. This section looks at floating-point declarations and
floating-point data formats.

6.1.1 Declaring Floating-Point Variables and Constants

There are two forms for
specifying floating-
point numbers.
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You can allocate real constants using the REAL4, REALS, and REAL10 direc-
tives. The list below shows the size of the floating-point number each of these
directives allocates.

Directive Size

REAL4 Short (32-bit) real numbers

REALS Long (64-bit) real numbers

REAL10 10-byte (80-bit) real numbers and BCD numbers

The possible ranges for floating-point variables are given in Table 6.1.

Table 6.1  Ranges of Floating-Point Variables

Significant
Data Type Bits Digits Approximate Range
Short real 32 67 +1.18 x 10% 10 +3.40 x 10°8
Long real 64 15-16 +223 x 10°% 10 +1.79 x 10°%
10-byte real 80 19 +3.37 x 10 10 +1.18 x 10*2

With previous versions of MASM, the DD, DQ, and DT directives could be used
to allocate real constants. These directives are still supported by MASM 6.0, but
this means that the variables are integers rather than floating-point values. Al-
though this makes no difference in the assembly code, CodeView displays the
values incorrectly.

You can specify floating-point constants either as decimal constants or as en-
coded hexadecimal constants. You can express decimal real-number constants in
the form

[+ I =] integer.[[fraction|[ETL[+ | -llexponent]l
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For example, the numbers 2.523E1 and -3.6E-2 are written in the correct
decimal format. These numbers can be used as initializers for real-number
variables.

Digits of real numbers are always evaluated as base 10. During assembly, the as-
sembler converts real-number constants given in decimal format to a binary for-
mat. The sign, exponent, and mantissa of the real number are encoded as bit
fields within the number.

You can also specify the encoded format directly with hexadecimal digits (0—9
plus A—F). The number must begin with a decimal digit (0—9) and a leading zero
if necessary, and end with the real-number designator (R). It cannot be signed.

For example, the hexadecimal number 3F800000r can be used as an initial-
izer for a doubleword-sized variable.

The maximum range of exponent values and the number of digits required in the
hexadecimal number depend on the directive. The number of digits for encoded
numbers used with REAL4, REALS, and REAL10 must be 8, 16, and 20 digits, re-
spectively. If the number has a leading zero, the number must be 9, 17, or 21
digits.

Examples of decimal constant and hexadecimal specifications are shown here:

; Real numbers

short REAL4 25.23 ; IEEE format
double REALS8 2.523E1 ; IEEE format
tenbyte REAL1® 2523.0E-2 ; 10-byte real format
; Encoded as hexadecimals
ieeeshort REAL4 3F800000r ; 1.0 as IEEE short
ieeedouble REAL8 3FFO000000000000r ; 1.8 as IEEE Tong
temporary REALL® 3FFF8000000000000000r ; 1.0 as 10-byte
;  real

Section 6.1.2, “Storing Numbers in Floating-Point Format,” explains the IEEE
formats—the way the assembler actually stores the data.

Pascal or C programmers may prefer to create language-specific TYPEDEF decla-
rations, as illustrated in this example:

; C-language specific

float TYPEDEF REAL4
double TYPEDEF REALS8
Tong_double TYPEDEF REALLQ
; Pascal-Tanguage specific

SINGLE TYPEDEF REAL4
DOUBLE TYPEDEF REALS8
EXTENDED TYPEDEF REALLQ

For applications of TYPEDEF other than aliasing, see Section 3.3.1, “Defining
Pointer Types with TYPEDEF.”
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6.1.2 Storing Numbers in Floating-Point Format

The assembler stores real
numbers in the IEEE format.
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The assembler stores the floating-point variables in the IEEE format. MASM 6.0
does not support MSFLOAT and Microsoft binary format, which are available in
previous versions.

Figure 6.1 illustrates the IEEE format for encoding short (four-byte), long (eight-
byte), and 10-byte real numbers. Although this figure places the most-significant
bit first for illustration, low bytes actually appear first in memory.

Short Real Number

3130 2322

T )

| ‘ Y ’
@ Sign ® Mantissa

@ Exponent

Long Real Number

6362 52 51 31
1 |

| | \ T /
®Sign ® Mantissa

@ Exponent

e

10-Byte Real Number
63
79 71 6462 55 47 39 31 23 15 7

0
| | f n7 f f f f T f T g
| | L ! | | | |

| \ J \ /

® Sign T ® Integer part @ Mantissa
@ Exponent

Figure 6.1 Encoding for Real Numbers in IEEE Format
This is how the parts of a real number are stored in the IEEE format:

1. Sign bit (O for positive or 1 for negative) in the upper bit of the first byte.

2. Exponent in the next bits in sequence (8 bits for a short real number, 11 bits
for a long real number, and 15 bits for a 10-byte real number).
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3. Mantissa in the remaining bits. The first bit is always assumed to be 1. The
length is 23 bits for short real numbers, 52 bits for long real numbers, and 63
bits for 10-byte reals.

The exponent field represents a multiplier 2", To accommodate negative ex-
ponents (such as 2°6), the value in the exponent field is biased; that is, the actual
exponent is determined by subtracting the appropriate bias value from the value
in the exponent field. For example, the bias for short reals is 127. If the value in
the exponent field is 130, the exponent represents a value of 2130-127 or 23, The
bias for long reals is 1,023. The bias for 10-byte reals is 16,383.

Notice that the 10-byte real format stores the integer part of the mantissa. This
differs from the 4-byte and 8-byte formats, in which the integer part is implicit.

Once you have declared floating-point data for your program, you can use co-
processor or emulator instructions to access the data. The next section focuses on
the coprocessor architecture, instructions, and operands required for floating-
point operations.

6.2 Using a Math Coprocessor

When used with real numbers, packed BCD numbers, or long integers, coproces-
sors (the 8087, 80287, 80387, and 80486) calculate many times faster than the
8086-based processors. The coprocessor handles data with its own registers. The
organization of these registers reflects four possible formats for using operands
(as explained in Section 6.2.2, “Instruction and Operand Formats”).

This section also describes how the coprocessor performs various tasks: transfer-
ring data to and from the coprocessor, coordinating processor and coprocessor
operations, and controlling program flow.

6.2.1 Coprocessor Architecture

The eight coprocessor data
registers form a stack.

The coprocessor accesses memory as the CPU does, but it has its own data and
control registers—eight data registers organized as a stack and seven control reg-
isters similar to the 8086 flag registers. The coprocessor’s instruction set pro-
vides direct access to these registers.

The eight 80-bit data registers of the 8087-based coprocessors are organized as a

stack although they need not be used as a stack. As data items are pushed into the
top register, previous data items move into higher-numbered registers, which are

lower on the stack. Register 0 is the top of the stack; register 7 is the bottom. The
syntax for specifying registers is shown below:

ST [(numben)]|
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The number must be a digit between 0 and 7 or a constant expression that evalu-
ates to a number from O to 7. ST is another way to refer to ST(0).

All coprocessor data is stored in registers in the 10-byte real format. The registers
and the register format are shown in Figure 6.2.

79 63 0

| \ Y '

Sign Mantissa
Exponent

Figure 6.2 Coprocessor Data Registers

Internally, all calculations are done on numbers of the same type. Since 10-byte
real numbers have the greatest precision, lower-precision numbers are guaranteed
not to lose precision as a result of calculations. The instructions that transfer
values between the main memory and the coprocessor automatically convert
numbers to and from the 10-byte real format.

6.2.2 Instruction and Operand Formats
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Because of the stack organization of registers, you can consider registers either
as elements on a stack or as registers much like 8086-family registers. Table 6.2
lists the four main groups of coprocessor instructions and the general syntax for
each. The names given to the instruction format reflect the way the instruction
uses the coprocessor registers. The instruction operands are placed in the co-
processor data registers before the instruction executes.
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All coprocessor
instructions begin with F.

Table 6.2  Coprocessor Operand Formats

Instruction Implied

Format Syntax Operands Example

Classical stack Faction ST, ST(1) fadd

Memory Faction memory ST fadd memloc

Register Faction ST(num),ST — fadd st(5), st
Faction ST, ST(num) fadd st, st(3)

Register pop FactionP ST(num), ST — faddp st(4), st

You can easily recognize coprocessor instructions because, unlike all 8086-
family instruction mnemonics, they start with the letter F. Coprocessor instruc-
tions can never have immediate operands and, with the exception of the FSTSW
instruction, they cannot have processor registers as operands.

6.2.2.1 Classical-Stack Format

Instructions in the classical-stack format treat the coprocessor registers like items
on a stack—thus its name. Items are pushed onto or popped off the top elements
of the stack. Since only the top item can be accessed on a traditional stack, there
is no need to specify operands. The first (top) register (and the second if the in-
struction needs two operands) is always assumed.

In coprocessor arithmetic operations, the top of the stack (ST) is the source oper-
and and the second register [ST(1)] is the destination. The result of the operation
goes into the destination operand, and the source is popped off the stack. The re-
sult is left at the top of the stack.

Instructions that load constants are one example of instructions that require the
classical-stack format. In this case, the constant created by the instruction is the
implied source, and the top of the stack is the destination.
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Some coprocessor
instructions operate on
integers or BCDs.
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This example illustrates the classical-stack format, and Figure 6.3 shows the sta-
tus of the register stack after each instruction:

f1dl ; Push 1 into first position
fldpi ; Push pi into first position
fadd ; Add pi and 1 and pop
f1d1 -+ f1dpi » fadd >
ST 1.0 3.14 414
ST(1) 1.0

Lk b o B

Figure 6.3 Status of the Register Stack

6.2.2.2 Memory Format

Instructions using the memory format, such as data transfer instructions, also
treat coprocessor registers like items on a stack. However, with this format, items
are pushed from memory onto the top element of the stack or popped from the
top element to memory. You must specify the memory operand.

Some instructions that use the memory format specify how a memory operand is
to be interpreted—as an integer (I) or as a binary coded decimal (B). The letter I
or B follows the initial F in the syntax. For example, FILD interprets its operand
as an integer and FBLD interprets its operand as a BCD number. If the instruction
name does not include a type letter, the instruction works on real numbers.

You can also use memory operands in calculation instructions that operate on
two values (see Section 6.2.4, “Using Coprocessor Instructions”). The memory
operand is always the source. The stack top (ST) is always the implied destina-
tion. The result of the operation replaces the destination without changing its
stack position, as shown in this example and Figure 6.4:

.DATA

ml REAL4 1.0

m2 REAL4 2.0
.CODE
f1d ml ; Push ml into first position
fid m2 ; Push m2 into first position
fadd ml ; Add m2 to first position
fstp ml ; Pop first position into ml
fst m2 ; Copy first position to m2
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fld ml — f1d m2 — fadd m1 — fstp ml —» fst m2 ——»

m1 1.0 1.0 1.0 1.0 3.0 3.0
m2 |20 2.0 2.0 2.0 2.0 1.0
ST 1.0 2.0 3.0 1.0 1.0
ST(1) 1.0 1.0

R L L N L L L L

Figure 6.4 Status of the Register Stack and Memory Locations

6.2.2.3 Register Format

Instructions using the register format treat coprocessor registers as registers
rather than as stack elements. Instructions that use this format require two regis-
ter operands; one of them must be the stack top (ST).

In the register format, specify all operands by name. The first operand is the desti-
nation; its value is replaced with the result of the operation. The second operand
is the source; it is not affected by the operation. The stack position of the oper-
ands does not change.

The only instructions using the register operand format are the FXCH instruction
and the arithmetic instructions that do calculations on two values. With the
FXCH instruction, the stack top is implied and need not be specified, as shown in
this example and Figure 6.5:

fadd st(1l), st ; Add second position to first -

; result goes in second position
fadd st, st(2) ; Add first position to third -

;  result goes in first position
fxch st(l) ; Exchange first and second positions

fadd st(1),st — fadd st,st(2) — fxch st(l) ————

ST 1.0 1.0 4.0 3.0
ST(1) |20 3.0 3.0 4.0
ST(2) |3.0 3.0 3.0 3.0

! ! by B

Figure 6.5 Status of the Previously Initialized Register Stack
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6.2.2.4 Register-Pop Format

The register-pop format treats coprocessor registers as a modified stack. The
source register must always be the stack top. Specify the destination with the reg-
ister’s name.

Instructions with this format place the result of the operation into the destination
operand, and the stack top pops off the stack. The effect is that both values being
operated on are lost and the result of the operation is saved in the specified desti-
nation register. The register-pop format is used only for instructions that do calcu-
lations on two values, as in this example and Figure 6.6:

faddp  st(2), st ; Add first and third positions and pop -
; first position destroyed;
;  third moves to second and holds result

faddp st(2),st —

ST 1.0 2.0
ST(1) (2.0 4.0
ST(2) |30

Figure 6.6 Status of the Already Initialized Register Stack

6.2.3 Coordinating Memory Access

The processor and
coprocessor exchange data
through memory.
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The math coprocessor works simultaneously with the main processor. However,
since the coprocessor cannot handle device input or output, data originates in the
main processor.

The main processor and the coprocessor have their own registers, which are com-
pletely separate and inaccessible to each other. They usually exchange data
through memory, since memory is available to both.

When using the coprocessor, follow these three steps:

1. Load data from memory to coprocessor registers.
2. Process the data.

3. Store the data from coprocessor registers back to memory.
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Step 2, processing the data, can occur while the main processor is handling other
tasks. Steps 1 and 3 must be coordinated with the main processor so that the pro-
cessor and coprocessor do not try to access the same memory at the same time;
otherwise, problems of coordinating memory access can occur. Since the proces-
sor and coprocessor work independently, they may not finish working on
memory in the order in which you give instructions. Two potential timing con-
flicts can occur; they are handled in different ways.

One timing conflict results if a coprocessor instruction follows a processor in-
struction. The processor may have to wait until the coprocessor finishes if the
next processor instruction requires the result of the coprocessor’s calculation.
You do not have to write your code to avoid this conflict, however. The assem-
bler coordinates this timing automatically for the 8088 and 8086 processors, and
the processor coordinates it automatically on the 80186-80486 processors. This
is the first case shown in the example later in this section.

Another conflict results if a processor instruction that accesses memory follows a
coprocessor instruction that accesses the same memory. The processor can try to
load a variable that is still being used by the coprocessor. You need careful syn-
chronization to control the timing, and this synchronization is not automatic on
the 8087 coprocessor. For code to run correctly on the 8087, you must include
the WAIT or FWAIT instruction (they are mnemonics for the same instruction) to
ensure that the coprocessor finishes before the processor begins, as shown in the
second example. In this situation, the processor does not generate the FWAIT in-
struction automatically.

; Processor instruction first - No wait needed

mov WORD PTR mem32[0], ax ; Load memory
mov WORD PTR mem32[2], dx
fild mem32 ; Load to register
; Coprocessor instruction first - Wait needed (for 8087)
fist mem32 ; Store to memory
fwait ; Wait until coprocessor
; is done
mov ax, WORD PTR mem32[0] ; Move to register
mov dx, WORD PTR mem32[2]

When generating code for the 8087 coprocessor, the assembler automatically in-
serts a WAIT instruction before the coprocessor instruction. However, if you use
the .286 or .386 directive, the compiler assumes that the coprocessor instructions
are for the 80287 or 80387 and does not insert the WAIT instruction.

If your code does not need to run on an 8086 or 8088 processor, you can make
your programs shorter and more efficient by using the .286 or .386 directive.
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6.2.4 Using Coprocessor Instructions

Load commands transfer
data, and store commands
remove data.
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The 8087 family of coprocessors has separate instructions for each of the follow-
ing operations:

m Loading and storing data
s Doing arithmetic calculations

= Controlling program flow

The following sections explain the available instructions and show how to use
them for each of the operations listed above. See Section 6.2.2, “Instruction and
Operand Formats,” for general syntax information.

6.2.4.1 Loading and Storing Data

Data-transfer instructions transfer data between main memory and the coproces-
sor registers or between different coprocessor registers. Two principles govern
data transfers:

m  The choice of instruction determines whether a value in memory is con-
sidered an integer, a BCD number, or a real number. The value is always con-
sidered a 10-byte real number once it is transferred to the coprocessor.

m The size of the operand determines the size of a value in memory. Values in
the coprocessor always take up 10 bytes.

You can transfer data to stack registers using load commands. These commands
push data onto the stack from memory or from coprocessor registers. Store com-
mands remove data. Some store commands pop data off the register stack into
memory or coprocessor registers; others simply copy the data without changing it
on the stack.

If you use constants as operands, you cannot load them directly into coprocessor
registers. You must allocate memory and initialize a variable to a constant value.
That variable can then be loaded by using one of the load instructions listed
below.

A few special instructions are provided for loading certain constants. You can
load 0, 1, pi, and several common logarithmic values directly. Using these in-
structions is faster and often more precise than loading the values from initialized
variables.

All instructions that load constants have the stack top as the implied destination
operand. The constant to be loaded is the implied source operand.
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The coprocessor data area, or parts of it, can also be moved to memory and later
loaded back. You may want to do this to save the current state of the coprocessor
before executing a procedure. After the procedure ends, restore the previous sta-
tus. Saving coprocessor data is also useful when you want to modify coprocessor
behavior by writing certain data to main memory, operating on the data with
8086-family instructions, and then loading it back to the coprocessor data area.

You can use the following instructions for transferring numbers to and from

registers:

Instruction(s)

FLD, FST, FSTP
FILD, FIST, FISTP
FBLD

FBSTP

FXCH

FLDZ

FLD1

FLDPI

FLDCW mem2byte
FIN]ISTCW mem2byte
FLDENV memli4byte
F[NISTENYV memi4byte
FRSTOR mem94byte
F[N]ISAVE mem94byte
FLDL2E

FLDL2T

FLDLG2

FLDLN2

Description

Loads and stores real numbers
Loads and stores binary integers
Loads BCD

Stores BCD

Exchanges register values

Pushes 0 into ST

Pushes 1 into ST

Pushes the value of pi into ST
Loads the control word into the coprocessor
Stores the control word in memory
Loads environment from memory
Stores environment in memory
Restores state from memory

Saves state in memory

Pushes the value of log,€ into ST
Pushes log;10 into ST

Pushes logg2 into ST

Pushes log,2 into ST
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The following example and Figure 6.7 illustrate some of these instructions:

.DATA
ml REAL4 1.0
m2 REAL4 2.0
.CODE
f1d ml ; Push ml into first item
fid st(2) ; Push third item into first
fst m2 ; Copy first item to m2
fxch st(2) ; Exchange first and third items
fstp ml ; Pop first item into ml

Main Memory

fldml — f1d st(2) > fst m2 — fxch st(2)»fstpml —»

m1 1.0 1.0 1.0 1.0 1.0 3.0

m2 |20 2.0 2.0 40 4.0 4.0

Coprocessor Registers

ST |30 1.0 4.0 4.0 3.0 1.0
ST(1) | 4.0 3.0 1.0 1.0 1.0 4.0
ST(2) 4.0 3.0 3.0 4.0 4.0
ST(3) 4.0 4.0 4.0

R L L N N L L

Figure 6.7 Status of the Register Stack: Main Memory and Coprocessor

6.2.4.2 Doing Arithmetic Calculations

Most of the coprocessor instructions for doing arithmetic operations have several
forms, depending on the operand used. You do not need to specify the operand
type in the instruction if both operands are stack registers, since register values
are always 10-byte real numbers. The arithmetic instructions are listed below. In
most cases, the result replaces the destination register.

Instruction Description

FADD Adds the source and destination

FSUB Subtracts the source from the destination
FSUBR Subtracts the destination from the source
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Instruction

FMUL
FDIV
FDIVR
FABS
FCHS
FRNDINT
FSQRT
FSCALE

FPREM

80387 Only

Instruction

FSIN
FCOS
FSINCOS
FPREM1

FXTRACT

F2XM1
FYL2X
FYL2XP1
FPTAN
FPATAN
F[NJINIT

FIN]ICLEX

FINCSTP
FDECSTP
FFREE

Description

Multiplies the source and the destination
Divides the destination by the source

Divides the source by the destination

Sets the sign of ST to positive

Reverses the sign of ST

Rounds ST to an integer

Replaces the contents of ST with its square root

Multiplies the stack-top value by 2 to the power con-
tained in ST(1)

Calculates the remainder of ST divided by ST(1)

Description

Calculates the sine of the value in ST
Calculates the cosine of the value in ST
Calculates the sine and cosine of the value in ST

Calculates the partial remainder by performing modulo
division on the top two stack registers

Breaks a number down into its exponent and mantissa
and pushes the mantissa onto the register stack

Calculates 2*-1

Calculates Y * log, X

Calculates Y * log, (X+1)

Calculates the tangent of the value in ST
Calculates the arctangent of the ratio Y/X

Resets the coprocessor and restores all the default condi-
tions in the control and status words

Clears all exception flags and the busy flag of the status
word

Adds 1 to the stack pointer in the status word
Subtracts 1 from the stack pointer in the status word

Marks the specified register as empty
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The following example illustrating several arithmetic instructions solves quad-
ratic equations. It does no error checking and fails for some values because it at-
tempts to find the square root of a negative number. You could revise the code
using the FTST (Test for Zero) instruction to check for a negative number or 0
before the square root is calculated. If b2 - 4ac is negative or 0, the code can
jump to routines that handle these two special cases.

.DATA
a REAL4
b REAL4
cc REAL4

posx REAL4
negx REAL4

DO NN W
SO0

.CODE

; Solve quadratic equation - no error checking
; The formula is: -b +/- squareroot(b® - 4ac) / (2a)

fldl ; Get constants 2 and 4
fadd st,st ; 2 at bottom
fid st ; Copy it
fmul a ; = 2a
fmul st(l),st  ; = 4a
fxch ; Exchange
fmul cc ; = 4dac
fld b ; Load b
fmul st,st ;= b?
fsubr ; = b% - 4ac
; Negative value here produces error
fsqrt ; = square root(b? - 4ac)
fid b ; Load b
fchs ; Make it negative
fxch ; Exchange
fl1d st ; Copy square root
fadd st,st(2) ; Plus version = -b + root(b? - 4ac)
fxch ; Exchange
fsubp st(2),st ; Minus version = -b - root(b® - 4ac)
fdiv st,st(2) ; Divide plus version
fstp posx ; Store it
fdivr ; Divide minus version
fstp negx ; Store it

The examples in online help contain an enhanced version of this procedure.
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6.2.4.3 Controlling Program Flow

The math coprocessors have several instructions that set control flags in the sta-
tus word. The 8087-family control flags can be used with conditional jumps to
direct program flow in the same way that 8086-family flags are used. Since the
coprocessor does not have jump instructions, you must transfer the status word to
memory so that the flags can be used by 8086-family instructions.

An easy way to use the status word with conditional jumps is to move its upper
byte into the lower byte of the processor flags, as shown in this example:

fstsw meml6 ; Store status word in memory
fwait ; Make sure coprocessor is done
mov ax, memlé ; Move to AX

sahf ; Store upper word in flags

The SAHF (Store AH into Flags) instruction in the example above transfers AH
into the low bits of the flags register.

You can save several steps by loading the status word directly to AX on the
80287 with the FSTSW and FNSTSW instructions. This is the only case in which
data can be transferred directly between processor and coprocessor registers, as
shown in this example:

fstsw ax

The coprocessor control flags and their relationship to the status word are de-
scribed in Section 6.2.4.4, “Control Registers.”

The 8087-family coprocessors provide several instructions for comparing oper-
ands and testing control flags. All these instructions compare the stack top (ST)
to a source operand, which may either be specified or implied as ST(1).

The compare instructions affect the C3, C2, and CO control flags, but not the C1
flag. Table 6.3 shows the flags set for each possible result of a comparison or test.

Table 6.3  Control-Flag Settings after Comparison or Test

After FCOM After FTEST C3 C2 co

ST > source ST is positive 0 0 0

ST < source ST is negative 0 0 1

ST = source STis0 1 0 0

Not comparable ST is NAN or projective 1 1 1
infinity

Variations on the compare instructions allow you to pop the stack once or twice
and to compare integers and zero. For each instruction, the stack top is always
the implied destination operand. If you do not give an operand, ST(1) is the
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implied source. With some compare instructions, you can specify the source as a

memory or register operand.

All instructions summarized in the following list have implied operands: either
ST as a single-destination operand or ST as the destination and ST(1) as the
source. These are the instructions for comparing and testing flags.

Some instructions have a wait version and a no-wait version. The no-wait ver-
sions have N as the second letter.

Instruction

FCOM
FTST
FCOMP

FUCOM, FUCOMP,
FUCOMPP

FIN]STSW mem2byte
FXAM

FPREM

FNOP

FDISI, FNDISI,
FENI, FNENI

FSETPM

Description

Compares the stack top to the source. The
source and destination are unaffected by the
comparison.

Compares ST to 0.

Compares the stack top to the source and then
pops the stack.

Compare the source to ST and set the condition
codes of the status word according to the result
(80386/486 only).

Stores the status word in memory.

Sets the value of the control flags based on the
type of the number in ST.

Finds a correct remainder for large operands. It
uses the C2 flag to indicate whether the re-
mainder returned is partial (C2 is set) or
complete (C2 is clear). (If the bit is set, the
operation should be repeated. It also returns the
least-significant three bits of the quotient in CO,
C3,and C1.)

Copies the stack top onto itself, thus padding the
executable file and taking up processing time
without having any effect on registers or
memory.

Enables or disables interrupts (8087 only).

Sets protected mode. Requires a .286P or .386P
directive (80287, 80387, and 80486 only).

The following example illustrates some of these instructions. Notice how condi-
tional blocks are used to enhance 80287 code.
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.DATA
down REAL4
across REAL4
diamtr REAL4
status WORD
p287 EQU

.CODE

; Get area of
fld
fmul

; Get area of
f1d1
fadd
fdivr
fmul
fldpi
fmul

10.35
13.07

12.93
?

; Sides of a rectangle

; Diameter of a circle

(@Cpu AND 00111y)

rectangle
across
down

circle:
st, st

diamtr
st, st

Area

; Load one side
; Multiply by the other

PI * (D/2)2

Load one and

double it to get constant 2
Divide diameter to get radius
Square radius

Load pi
; Multiply it

; Compare area of circle and rectangle

fcompp
IF
fstsw
ELSE
fnstsw
mov
ENDIF
sahf
Jp

Jz

jc

jmp

nocomp:

same:

rectangle:

circle:

p287
ax

status
ax, status

nocomp
same
rectangle
circle

; Compare and throw both away
; (For 287+, skip memory)

; Load from coprocessor to memory
; Transfer memory to register

; Transfer AH to flags register

; If parity set, can't compare

; If zero set, they're the same

; If carry set, rectangle is bigger
; else circle is bigger

; Error handler
; Both equal
; Rectangle bigger

; Circle bigger

Additional instructions for the 80387/486 are FLDENVD and FLDENVW for
loading the environment; FNSTENVD, FNSTENVW, FSTENVD, and FSTENVW
for storing the environment state; FNSAVED, FNSAVEW, FSAVED, and
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FSAVEW for saving the coprocessor state; and FRSTORD and FRSTORW for re-
storing the coprocessor state.

The size of the code segment, not the operand size, determines the number of
bytes loaded or stored with these instructions. The instructions ending with W
store the 16-bit form of the control register data, and the instructions ending with
D store the 32-bit form. For example, in 16-bit mode FSAVEW saves the 16-bit
control register data. If you need to store the 32-bit form of the control register
data, use FSAVED.

6.2.4.4 Control Registers

Some of the flags of the seven 16-bit control registers control coprocessor opera-
tions, while others maintain the current status of the coprocessor. In this sense,
they are much like the 8086-family flags registers (see Figure 6.8).

Control Registers

Control Word

Status Word

Tag Word
Instruction Pointer |-~ ~————- i
Operand Pointer |---—-—---- g

Figure 6.8 Coprocessor Control Registers

Of the control registers, only the status word register is commonly used (the
others are used mostly by systems programmers). The format of the status word
register is shown in Figure 6.9, which shows how the coprocessor control flags
align with the processor flags. C3 overwrites the zero flag, C2 overwrites the par-
ity flag, and CO overwrites the carry flag. C1 overwrites an undefined bit, so it
cannot be used directly with conditional jumps, although you can use the TEST
instruction to check C1 in memory or in a register. The status word register also
overwrites the sign and auxiliary-carry flags, so you cannot count on their being
unchanged after the operation.
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Status Word

15 8
L7
ool [T Jezfcr]co])
Flags

7 0

|sF|zF| |aF| |PF] |CF|j

Figure 6.9 Coprocessor and Processor Control Flags

6.3 Using Emulator Libraries

With emulator libraries,
you can use most
floating-point instructions.

If you do not have a math coprocessor or an 80486 processor, you can do most
floating-point operations by writing assembly-language procedures and accessing
the emulator from a high-level language. All Microsoft high-level languages
come with the emulator library.

However, you cannot use a Microsoft emulator library with stand-alone assem-
bler programs, since the library depends on the high-level-language start-up code.

To use the emulator, first write the procedure using coprocessor instructions.
Then assemble it using the /FPi option of your compiler. Finally, link it with your
high-level-language modules. In MASM 6.0 you can enter options in the Pro-
grammer’s WorkBench (PWB) environment, or you can use the OPTION
EMULATOR in your source code.

In emulation mode, the assembler generates instructions for the linker that the
Microsoft emulator can use. The form of the OPTION directive in the example
below tells the assembler to use emulation mode. This option (introduced in Sec-
tion 1.3.2) can be defined only once in a module.

OPTION EMULATOR

Emulator libraries do not allow for all of the coprocessor instructions. The follow-
ing floating-point instructions are not emulated:

FCOS FRSTOR16 FSETPM FUCOMPP
FDECSTP FRSTOR32 FSIN FXTRACT
FINCSTP FSAVE FSINCOS

FPREM1 FSAVE16 FUCOM

FRSTOR FSAVE32 FUCOMP

161



Using Floating-Point and Binary Coded Decimal Numbers

The set of emulated instructions is different under OS/2 2.x. If you use a co-
processor instruction that is not emulated, your program generates a run-time
error when it tries to execute the unemulated instruction.

See Chapter 20, “Mixed-Language Programming,” for information about writing
assembly-language procedures for high-level languages.

6.4 Using Binary Coded Decimal Numbers

Binary coded decimal (BCD) numbers allow calculations on large numbers
without rounding errors. The 8087-family coprocessors can do fast calculations
with packed BCD numbers. See Section 6.4.2.2 for details. The 8086-family pro-
cessors can also do some calculations with packed BCD numbers, but the process
is slower and more complicated. See Section 6.4.2 for details.

This section explains how to define BCD numbers and then how to use them in
calculations.

6.4.1 Defining BCD Constants and Variables

The TBYTE directive
allocates packed BCD
constants.
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Unpacked BCD numbers are made up of bytes containing a single decimal digit
in the lower four bits of each byte. Packed BCD numbers are made up of bytes
containing two decimal digits: one in the upper four bits and one in the lower
four bits. The leftmost digit holds the sign (0 for positive, 1 for negative).

Packed BCD numbers are encoded in the 8087 coprocessor’s packed BCD for-
mat. They can be up to 18 digits long, packed two digits per byte. The assembler
zero-pads BCDs initialized with fewer than 18 digits. Digit 20 is the sign bit, and
digit 19 is reserved.

When you define an integer constant with the TBYTE directive and the current
radix is decimal (t), the assembler interprets the number as a packed BCD
number.

The syntax for specifying packed BCDs is exactly the same as for other integers.

posl TBYTE 1234567890 ; Encoded as 000000000012345678906h
negl TBYTE  -1234567890 ; Encoded as 80000000001234567890h

Unpacked BCD numbers are stored one digit to a byte, with the value in the
lower four bits. They can be defined using the BYTE directive. For example, an
unpacked BCD number could be defined and initialized as-shown below:

unpackedr BYTE

1,5, 9 ; Initialized to 9,252,851
unpackedf BYTE 9,2, 1

bl 5 ’ 2 I
,8,5, ; Initialized to 9,252,851
Least-significant digits can come either first or last, depending on how you write
the calculation routines that handle the numbers.
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6.4.2 Calculating with BCDs

Instructions for unpacked
BCDs allow accurate BCD
calculations.

When you use the processor to calculate with BCDs, the result is not correct un-
less you use the ASCII-adjust instructions to convert the result into the valid
BCD integer.

6.4.2.1 Unpacked BCD Numbers

To do processor arithmetic on unpacked BCD numbers, you must do the eight-bit
arithmetic calculations on each digit separately and assign the result to the AL
register. After each operation, use the corresponding BCD instruction to adjust
the result. The ASCII-adjust instructions do not take an operand. They always
work on the value in the AL register.

When a calculation using two one-digit values produces a two-digit result, the
AAA, AAS, AAM, and AAD instructions put the first digit in AL and the second
in AH. If the digit in AL needs to carry to or borrow from the digit in AH, the in-
structions set the carry and auxiliary carry flags.

These instructions get their names from Intel mnemonics that use the term
“ASCII” to refer to unpacked BCD numbers and “decimal” to refer to packed
BCD numbers. The four ASCII-adjust instructions for unpacked BCDs are de-
scribed below:

Instruction Description

AAA Adjusts after an addition operation.

AAS Adjusts after a subtraction operation.

AAM Adjusts after a multiplication operation. Always
use with MUL, not with IMUL.

AAD Adjusts before a division operation. Unlike other

BCD instructions, AAD converts a BCD value to
a binary value before the operation. After the
operation, use AAM to adjust the quotient. The re-
mainder is lost. If you need the remainder, save it
in another register before adjusting the quotient.
Then move it back to AL and adjust if necessary.

The following examples show how to use each of these instructions in BCD addi-
tion, subtraction, multiplication, and division.

; To add 9 and 3 as BCDs:

increment AH to @lh, set carry
Result 12 (unpacked BCD in AX)

mov ax, 9 ; Load 9

mov bx, 3 ; and 3 as unpacked BCDs
add al, bl ; Add 09h and 03h to get @Ch
aaa ; Adjust @Ch in AL to @2h,
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; To subtract 4 from 13: .
mov ax, 1083h ; Load 13
mov bx, 4 ; and 4 as unpacked BCDs
sub al, bl ; Subtract 4 from 3 to get FFh (-1)
aas ; Adjust OFFh in AL to 9,
; decrement AH to @, set carry
; Result 9 (unpacked BCD in AX)

; To multiply 9 times 3:
mov ax, 903h ; Load 9 and 3 as unpacked BCDs
mul ah Multiply 9 and 3 to get 1Bh
aam Adjust 1Bh in AL

to get 27 (unpacked BCD in AX)

s we we w

; To divide 25 by 2:

to 12 (unpacked BCD in AX)
(remainder destroyed)

mov ax, 20@5h ; Load 25
mov b1, 2 ; and 2 as unpacked BCDs
aad ; Adjust 0205h in AX
; to get 19h in AX
div b1l ; Divide by 2 to get
;  quotient @Ch in AL
; remainder 1 in AH
aam ; Adjust @Ch in AL

If you process multidigit BCD numbers in loops, each digit is processed and ad-
justed in turn.

6.4.2.2 Packed BCD Numbers

Packed BCD numbers are made up of bytes containing two decimal digits: one in
the upper four bits and one in the lower four bits. The 8086-family processors
provide instructions for adjusting packed BCD numbers after addition and sub-
traction. You must write your own routines to adjust for multiplication and
division.

To do processor calculations on packed BCD numbers, you must do the eight-bit
arithmetic calculations on each byte separately. The result should always be in
the AL register. After each operation, use the corresponding BCD instruction to
adjust the result. The decimal-adjust instructions do not take an operand. They al-
ways work on the value in the AL register.

The 8086-family processors provide DAA (Decimal Adjust after Addition) and
DAS (Decimal Adjust after Subtraction) for adjusting packed BCD numbers after
addition and subtraction.
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These examples show DAA and DAS used for adding and subtracting BCDs.

;To add 88 and 33:

mov ax, 8833h ; Load 88 and 33 as packed BCDs

add al, ah
daa

; Add 88 and 33 to get @BBh
; Adjust @BBh to 121 (packed BCD:)
; 1 din carry and 21 in AL

;To subtract 38 from 83:
mov ax, 3883h ; Load 83 and 38 as packed BCDs

sub al, ah
das

; Adjust @4Bh to 45 (packed BCD:)

; Subtract 38 from 83 to get 04Bh
; @ in carry and 45 in AL

Unlike the ASCII-adjust instructions, the decimal-adjust instructions never affect
AH. The assembler sets the auxiliary carry flag if the digit in the lower four bits
carries to or borrows from the digit in the upper four bits, and it sets the carry
flag if the digit in the upper four bits needs to catry to or borrow from another

byte.

Multidigit BCD numbers are usually processed in loops. Each byte is processed

and adjusted in turn.

6.5 Related Topics in Online Help

In addition to information on the instructions and directives mentioned in this
chapter, information on the following topics can be found in online help, starting
from the “MASM 6.0 Contents” screen.

Topic

Control registers

ML options

Coprocessor
Instructions

MATHDEMO.ASM

Access

Choose “Language Overview,” and then choose
“Coprocessor Status Word,” “Coprocessor
Control Word,” or “Coprocessor Environment”

Choose “ML Command Line”

Choose “Coprocessor Instructions”

Choose “Example Code” and then “Map of
Demos”
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Chapter 7

Controlling Program Flow

7.1 Jumps

Very few programs actually execute all lines sequentially from .STARTUP to
.EXIT. Rather, complex program logic and efficiency dictate that you control the
flow of your program—jumping from one point to another, repeating an action
until a condition is reached, and passing control to procedures. This chapter de-
scribes various means for controlling program flow and several features that
simplify coding program-control constructs.

The first section covers jumps from one point in the program to another. It ex-
plains how MASM 6.0 optimizes both unconditional and conditional jumps
under certain circumstances, so that you do not have to specify every attribute.
The section also describes instructions you can use to test conditional jumps.

The next section describes loop and decision structures that repeat actions or
evaluate conditions. They discuss some new MASM directives, such as .WHILE
and .REPEAT, that generate appropriate compare, loop, and jump instructions
for you, and the new .IF, .ELSE, and .ELSEIF directives that generate jump
instructions.

A number of improvements to procedure automation are covered in Section 7.3.
These include extended functionality for PROC, a PROTO directive that lets you
write procedure prototypes similar to those used in C, an INVOKE directive that
automates parameter passing, and new options for the stack-frame setup inside
procedures.

Finally, the last section explains how to pass control to an interrupt routine.

Jumps are the most direct method for changing program control from one loca-
tion to another. At the processor level, jumps work by changing the value of the
IP (Instruction Pointer) register from the address of the current instruction to a
target address, by changing the CS register for far jumps, and by changing the CS
register for far jumps. The many forms of the jump instructions handle jumps
based on conditions, flags, and bit settings.

This section first describes unconditional jumps, including the new jump optimi-
zation features of MASM 6.0 and the use of indirect operands to specify the
jump’s destination and to construct jump tables. The section then discusses condi-
tional jumps—extending jumps, jumps based on bit or flag status, anonymous
jumps, labels for jump targets, and decision directives that generate conditional
jumps.
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7.1.1 Unconditional Jumps
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Jumps in assembler programs are either conditional or unconditional. The assem-
bler executes conditional jumps only when the jump condition is true. You use
the JMP instruction to jump unconditionally to a specified address. Its single
operand contains the target address, which can be short, near, or far.

Unconditional jumps are often used to skip over code that should not be ex-
ecuted, as shown in this example.

; Handle one case
Tabell:

jmp continue
; Handle second case
label2:

jmp continue

continue:

The distance of the target from the jump instruction and the size of the operand
determine the assembler’s encoding of the instruction. The larger the distance,
the more bytes the assembler uses to code the instruction. In previous versions of
MASM, unconditional NEAR jumps sometimes generate inefficient code. Un-
specified FAR jumps result in phase errors.

7.1.1.1 Jump Optimizing

Beginning with MASM 6.0, the assembler determines the smallest encoding
possible for the direct unconditional jump. You do not specify a distance opera-
tor, so you do not have to determine the correct distance of the jump. If you do
specify a distance, however, and it is too short, the assembler generates an error.
A specified distance that is too long causes a less efficient jump to be generated
than the assembler would generate if the distance had not been specified.

MASM 6.0 optimizes jumps if the following conditions are met:
m  You do not specify SHORT, NEAR, FAR, NEAR16, NEAR32, FAR16, FAR32,
or PROC as the distance of the target.

m The target of the jump is not external and is in the same segment as the jump
instruction. If the target is in a different segment (but in the same group), it is
treated as if external.
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If these two conditions are met, MASM uses the instruction, distance, and size of
the operand to determine how best to optimize the encoding for the jump. No syn-
tax changes are necessary.

NOTE This information about jump optimizing also applies to conditional jumps on the
80386/486.

7.1.1.2 Indirect Operands

Indirect operands specify a register or data memory location that holds the
address of the jump’s destination. Indirect operands differ from the operands of
direct jumps by being a memory expression instead of an immediate expression.
For indirect jumps, you can specify the encoding for the instruction by giving the
size (WORD, DWORD, or FWORD) attributes for the operand.

The default rules are based on the .MODEL and the default segment size.

Jjmp [bx] ; Uses .MODEL and segment size
;  defaults
jmp WORD PTR [bx1 ; A NEAR16 indirect call

If the indirect operand is a register, the jump is always a NEAR16 jump for a 16-
bit register, and FAR32 for a 32-bit register:

Jjmp bx ; NEAR16 jump
jmp ebx ; FAR32  jump

A DWORD indirect operand, however, is an ambiguous case:

jmp DWORD PTR [var] ; A NEAR32 jump in a 32-bit segment;
; a FARL6 jump in a 16-bit segment

In this case, you must define a type with TYPEDEF to specify the indirect
operand.

NFP TYPEDEF PTR NEAR32

FFP TYPEDEF PTR FAR16
jmp NFP PTR [var] ; NEAR32 indirect jump
jmp FFP PTR [var] ; FAR16 indirect jump

You can use an unconditional jump as a form of conditional jump by specifying
the address in a register or indirect memory operand. Also, you can use indirect
memory operands to construct jump tables that work like C switch statements,
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Pascal CASE statements, or Basic ON GOTO, ON GOSUB, or SELECT CASE
statements, as shown in this example:

NPVOID TYPEDEF NEAR PTR VOID

.DATA
ct1_tbT NPVOID

.CODE

mov
int
cbw
mov
shi
Jmp

extended:
mov
int

Jmp
ctrla:

Jmp
ctrib:

Jmp

next:

extended,
ctrla,
ctrlb

ah, 8h
21h

bx, ax
bx, 1
ct1_tb1[bx]

ah, 8h

21h

next

next

next

’

Null key (extended code)

; Address of CONTROL-A key routine

Address of CONTROL-B key routine

Get a key

Stretch AL into AX

Copy

Convert to address

Jump to key routine

Get second key of extended key
Use another jump table

for extended keys

CONTROL-A code here

CONTROL-B code here

; Continue

In this example, the indirect memory operands point to addresses of routines for
handling different keystrokes.

7.1.2 Conditional Jumps

The most common way to transfer control in assembly language is with a condi-
tional jump. This is a two-step process: first test the condition, and then jump if
the condition is true or continue if it is false.

The conditional jump
instructions check flag
status.

Conditional-jump instructions (except JCXZ) use the status of one or more flags
as their condition. Thus, any statement that sets a flag under specified conditions
can be the test statement. The most common test statements use the CMP or

TEST instructions. The jump statement can be any one of 31 conditional-jump in-
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structions. Conditional-jump instructions take a single operand containing the tar-
get address.

7.1.2.1 Jump Extending

In earlier versions of MASM, the NEAR and FAR operators cannot be used with
conditional jumps on the 8086-80286 processors. MASM 6.0 automatically ex-
pands the jump instruction to include an unconditional jump to the destination, as
long as a distance or size other than SHORT is specified or implicitly required
from the operands. That is, MASM now generates the code that previously you
had to write.

Conditional jumps cannot refer to labels more than 128 bytes away. Therefore, in
versions of MASM prior to 6.0, they are often combined with unconditional
jumps, which have no such limitation. For example, the following statement is
valid as long as target isnot far away:

; Jump to target less than 128 bytes away
jz target ; If previous operation resulted in
; zero, jump to target

However, once target becomes too distant, the following sequence is neces-
sary to enable a longer jump. Note that this sequence is logically equivalent to
the example above:

; Jumps to distant targets previously required two steps

jnz skip ; If previous operation resuit is
;  NOT zero, jump to "skip"
Jjmp target ; Otherwise, jump to target

skip:

If the instruction is any of the conditional-jump instructions (except JCXZ and
JECXZ ) and the target is greater than 128 bytes or is in a far segment, then jump-
extending for an instruction such as je target generates two instructions to
replace it:

1. The logical negation of the jump instruction, with a destination that skips
over the second line it generates

2. An unconditional jump to the target destination

For example, if target is more than 128 bytes away, MASM generates these
lines of code for je target:

jne $ + 2 + (length in bytes of the next instruction)
jmp NEAR PTR target

Now the conditional jump executes correctly.
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The assembler generates this same code sequence if you specify the distance with
NEAR PTR, FAR PTR, or SHORT. Therefore,

jz NEAR PTR target
becomes

jne $+5

jmp NEAR PTR target

even if target isnearby.
When skip is more than 128 bytes away, this example

mov ax, cx
jz skip ; Skip is more than 128 bytes away

; (additional code here)
skip:

generates code that looks like this:

7327:0000 8BC1 MOV AX,CX
7327:0002 7503 JNZ 0007
7327:0004 E9CQ00 JMP eec7
7327:0007 (more code here)

MASM 6.0 enables this jump expansion feature by default, but you can turn it off
with the NOLJMP form of the OPTION directive. See Section 1.3.2 for informa-
tion about the OPTION directive.

If the assembler generates code to extend a conditional jump, it issues a level 3
warning saying that the conditional jump has been lengthened. You can set the
warning level to 1 for development and to level 3 for a final optimizing pass to
see if you can shorten jumps by reorganizing.

If you specify the distance for the jump and the target is out of range for that dis-
tance, a “Jump out of Range” error results.

Since the JCXZ and JECXZ instructions do not have logical negations, expansion
of the jump instruction to handle targets with unspecified distances cannot be per-
formed for those instructions. Therefore the distance must always be short.

The size and distance of the target operand determines the encoding for condi-
tional or unconditional jumps to externals or targets in different segments. The
new jump-extending and optimization features do not apply in this case.

NOTE Conditional jumps on the 80386 and 80486 processors can be to targets up to 32K
bytes away, so jump extension occurs only for targets greater than that distance.
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7.1.2.2 Jumps Based on Comparisons

The CMP instruction is specifically designed to test for conditional jumps. It does
not change the destination operand—it compares two values without changing
either of them. Instructions that change operands (such as SUB or AND) can also
be used to test conditions.

SUB and CMP set the same Internally, the CMP instruction is the same as the SUB instruction, except that
flags. CMP does not change the destination operand. Both set flags according to the re-
sult that the subtraction generates.

Table 7.1 lists conditional-jump instructions for each comparison relationship
and shows the flags that are tested to see if the relationship is true. Note the
difference in instructions depending on the sign of the operands. Some of these
are equivalent to instructions listed in the previous section.

Table 7.1  Conditional-Jump Instructions Used after Compare Instruction

Jump Signed Flags Tested Unsigned Flags Tested
Condition Compare (Jump if True)  Compare (Jump if True)
= (Equal) JE ZF=1 JE ZF=1
# (Notequal) JNE ZF=0 JNE ZF =0
> (Greater than) JG or JNLE ZF =0 and JA or JNBE CF =0 and
SF=0F ZF=0
<= (Less than JLE or JNG ZF=1or JBE or JNA CF=1or
or equal to) SF #0F ZF =1
< (Less than) JL or INGE SF #0F JB or JNAE CF=1
>= (Greater than JGE or JNL SF=0F JAE or JNB CF=0

or equal to)

In the CMP instruction, the mnemonic names always refer to the relationship of
the first operand to the second operand. For instance, in this example JG tests
whether the first operand is greater than the second.

cmp ax, bx ; Compares ax and bx
Jjg contin ; Equivalent to: If ( ax > bx ) goto
;  contin
jl next ; Equivalent to: If ( ax < bx ) goto next

Several conditional instructions have two names. For example, JG and JNLE
(Jump if Not Less or Equal) are equivalent. You can use whichever name seems
more mnemonic in context.

173



Controlling Program Flow

Pairs of operands cannot
be hoth registers or both
memory locations.
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7.1.2.3 Testing Bits and Jumping

Using CMP is not the only way to check a condition prior to a jump. You can
also check the status of bits in the operands using the TEST instruction. This in-
struction tests for conditions prior to jumps by comparing specific bits rather than
entire operands. Jump execution depends on whether certain bits are on or off.

The TEST instruction is the same as the AND instruction, except that TEST
changes neither operand. If the result of the operation is 0, the zero flag is set, but
the 0 is not actually written to the destination operand. The following example
shows an application of TEST.

.DATA
bits BYTE ?
.CODE

; If bit 2 or bit 4 is set, then call task_a
; Assume "bits" is @D3h 11010011

test bits, 10100y ; If 2 or 4 is set AND 00010100

jz skipl etk

call task_a ; Then call task_a 00010000
skipl: ; Jump taken

; If bits 2 and 4 are clear, then call task_b
; Assume "bits" is QE9h 11101001
test bits, 10100y ; If 2 and 4 are clear AND 00010100
jnz skip2 ;
call task_b ; Then call task_b 20000000
; Jump taken

skip2:

Generally, when you use TEST, one of the operands is a mask in which the bits
to be tested are the only bits set. The other operand contains the value to be
tested. If all the bits set in the mask are clear in the operand being tested, the zero
flag is set. If any of the flags set in the mask are also set in the operand, the zero
flag is cleared.

7.1.2.4 Jumping Based on Flag Status

Your code can jump based on the condition of flags rather than on the relation-
ships of operands. Use the following conditional-jump instructions:

Instruction Jumps if

JO The overflow flag is set

JNO The overflow flag is clear

JC The carry flag is set (same as JB)



Jumps

Anonymous labels are
alternatives to named
labels.

Instruction Jumps if

JNC The carry flag is clear (same as JAE)
JZ The zero flag is set (same as JE)
JNZ The zero flag is clear (same as JNE)
JS The sign flag is set

JNS The sign flag is clear

JP The parity flag is set

JNP The parity flag is clear

JPE Parity is even (parity flag set)

JPO Parity is odd (parity flag clear)
JCXZ CXis0

JECXZ ECXis0

(80386/486 only)

The following example shows two ways to use the instructions from the list
above:

; Uses JO to handle overflow condition
add ax, bx ; Add two values
jo overflow ; If value too large, adjust

; Uses JUNZ to check for zero as the result of subtraction

sub ax, bx ; Subtract
inz skip ; If the result is not zero, continue
call zhandler ; Else do special case

7.1.2.5 Anonymous Labels

Coding jumps in assembly language requires that you invent many label names.
One alternative to continually thinking up new label names is using anonymous
labels, which you can use anywhere in your program. But because anonymous
labels do not provide meaningful names, they are best used for conditionally test-
ing a few lines of code. You should mark major divisions of a program with ac-
tual named labels.

Use two at signs (@@ ) followed by a colon (:) as an anonymous label. To jump
to the nearest preceding anonymous label, use @B (back) in the jump instruc-
tion’s operand field; to jump to the nearest following anonymous label, use @F
(forward) in the operand field.
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The jump in the example below uses an anonymous label:

; DX is 20, unless CX is Tess than -20, then make DX 30

mov dx, 20
cmp cx, -20
jge @F

mov dx, 30

@@:

The items @B and @F always refer to the nearest occurrences of @@:, so there
is never any conflict between different anonymous labels.

7.1.2.6 Decision Directives

The high-level structures you can use for decision-making are the .IF, .ELSEIF,
and .ELSE statements. These directives generate conditional jumps. The expres-
sion following the .IF directive is evaluated, and if true, the following instruc-
tions are executed until the next .ENDIF, .ELSE, or .ELSEIF directive is reached.
The .ELSE statements execute if the expression is false. Using the .ELSEIF direc-
tive puts a new expression to be evaluated inside the alternative part of the origi-
nal .IF statement. The syntax is

IF conditionl
statements
[.ELSEIF condition2
statements]}

[.ELSE

statements]]

.ENDIF

The decision structure

LIF cx = 20
mov dx, 20

LELSE

mov dx, 30

.ENDIF

generates this code:

JIF ex == 20
0017 83 F9 14 * cmp cx, 014h
001A 75 05 * Jjne @Coe0l
001C BA 0014 mov dx, 20
.ELSE
0@1F EB @3 * Jjmp @C0003
0021 *@C0001 :
0021 BA 001E mov  dx, 30
.ENDIF
0024 *@C0003:
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7.2 Loops

Loops repeat an action until a termination condition is reached. This condition
can be a counter or the result of an expression’s evaluation. MASM 6.0 offers
many ways to set up loops in your programs. The following list compares
MASM loop structures.

Instructions Action

LOOP Automatically decrements CX. When CX =0, the
loop ends. The top of the loop cannot be greater than
128 bytes from the LOOP instruction. (This is true
for all LOOP instructions.)

LOOPE, LOOPZ, Loops while equal (or not equal). Checks CX and a

LOOPNE, LOOPNZ condition. The loop ends when the condition is true.
Set CX to a number out of range if you don’t want a
count to control the loop.

JCXZ, JECXZ Branches to a label only if CX = 0 (ECX on the
80386). Useful for testing condition of CX before
beginning loop. If CX = 0 before entering the loop,
CX decrements to —1 on the first iteration and then
must be decremented 65,535 times before it reaches
0 again. Unlike conditional-jump instructions, which
can jump to either a near or a short label under the
80386 or 80486, the loop instructions JCXZ and
JECXZ always jump to a short label.

Conditional jumps Acts only if certain conditions met. Necessary if
several conditions must be tested. See Section 7.1.2,
“Conditional Jumps.”

The following examples illustrate these loop constructions.

; The LOOP instruction: For 200 to @ do task

mov cx, 200 ; Set counter
next: . ; Do the task here
Toop next ; Do again

; Continue after loop
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; The LOOPNE instruction: While AX is not 'Y', do task
mov cx, 256 ; Set count too high to interfere
wend: . ; But don't do more than 256 times
; Some statements that change AX

cmp al, 'Y ; Is it Y or too many times?
loopne wend ; No? Repeat
; Yes? Continue

; Using JCXZ: For @ to CX do task
; CX counter set previously

jexz done ; Check for 0

next: . ; Do the task here
loop next ; Do again

done: ; Continue after Toop

7.2.1 Loop-Generating Directives

These directives are new
to MASM 6.0.
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The high-level control structures new to MASM 6.0 generate loop structures for
you. These new directives are similar to the while and repeat loops of C or Pas-
cal. They can make your assembly programs less repetitive and easier to code, as
well as easier to read. The assembler generates the appropriate assembly code.
The .BREAK and .CONTINUE directives are also implemented to interrupt loop
execution. These directives are summarized in the following list:

Directives Action

.WHILE, .ENDW The statements between .WHILE condition and
.ENDW execute while the condition is true.

.REPEAT, .UNTIL The loop executes at least once and continues until
the condition given after .UNTIL is true. Generates
conditional jumps.

.REPEAT, .UNTILCXZ Compares label to an expression and generates ap-
propriate loop instructions.

These constructs work much as they do in a high-level language such as C or
Pascal. Keep in mind the following points:
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m These directives generate appropriate processor instructions. They are not
new instructions.

m They require proper use of signed and unsigned data declarations.

These directives cause a set of instructions to execute based on the evaluation of
some condition. This condition can be an expression that evaluates to a negative
or nonnegative value, an expression using the binary operators in C (&&, ||, or !),
or the state of a flag. See Section 7.2.2.1 for more information about expression
operators.

The evaluation of the condition requires the assembler to know if the operands in
the condition are signed or unsigned. To state explicitly that a named memory
location contains a signed integer, use the signed data allocation directives:
SBYTE, SWORD, and SDWORD.

7.2.1.1 .WHILE Loops

As with while loops in C or Pascal, the test condition for .WHILE is checked
before the statements inside the loop execute. If the test condition is false, the
loop does not execute. While the condition is true, the statements inside the loop
repeat.

Use the .ENDW directive to mark the end of the .WHILE loop. When the condi-
tion becomes false, program execution begins at the first statement following the
.ENDW directive. The .WHILE directive generates appropriate compare and
jump statements. The syntax is

WHILE condition
statements
.ENDW

For example, this loop copies one buffer to another until a ‘$’ character (marking
the end of the string) is found:

.DATA
bufl BYTE "This is a string"”,'$’
buf2 BYTE 100 DUP (?)

.CODE

sub bx, bx ; Zero out bx

WHILE (bufl[bx] != '$")

mov al, bufl[bx] ; Get a character

mov buf2[bx], al ; Move it to buffer 2
inc bx ; Count forward

.ENDW
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A condition is optional with
.UNTILCXZ.
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7.2.1.2 .REPEAT Loops

MASM’s .REPEAT directive allows for loop constructions like the do loop of C
and the REPEAT loop of Pascal. The loop executes until the condition following
the .UNTIL (or .UNTILCXZ) directive becomes true. Since the condition is
checked at the end of the loop, the loop always executes at least once. The
.REPEAT directive generates conditional jumps. The syntax is:

REPEAT
statements
{UNTIL condition

REPEAT
Statements
JUNTILCXZ [[condition]]

where condition can also be exprl == expr2 or exprl /= expr2. When two condi-
tions are used, expr2 can be an immediate expression, a register, or (if exprl is a
register) a memory location.

For example, the following code fills up a buffer with characters typed at the key-
board. The loop ends when the ENTER key (character 13) is pressed:

.DATA
buffer BYTE 100 DUP (@)
.CODE
sub bx, bx s Zero out bx
.REPEAT
mov ah, @lh
int 21h ; Get a key
mov buffer[bx], al ; Put it in the buffer
inc bx ; Increment the count

JUNTIL (al == 13) Continue until al is 13

The .UNTIL directive generates conditional jumps, but the .UNTILCXZ directive
generates a LOOP instruction, as shown by the listing file code for these ex-
amples. In a listing file, assembler-generated code is preceded by an asterisk.

ASSUME  bx:PTR SomeStruct

.REPEAT
*@C0001:
inc ax
JUNTIL ax==6
* cmp ax, 006h
* jne @Coeal
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.BREAK and .CONTINUE
interrupt loop execution.

.REPEAT

*@C0003:
mov ax, 1

JUNTILCXZ
* loop @CO0O3

.REPEAT
*@C0004:

LUNTILCXZ  [bx].field != 6
* cmp [bx].field, @06h
® loope @C0004

7.2.1.3 .BREAK and .CONTINUE Directives

The .BREAK and .CONTINUE directives can be used to terminate a .REPEAT or
.WHILE loop prematurely. These directives allow an optional .IF clause for con-
ditional breaks. The syntax is

BREAK [[.IF condition]]
.CONTINUE [LIF condition]|

Note that .ENDIF is not used with the .IF forms of .BREAK and .CONTINUE in
this context. The .BREAK and .CONTINUE directives work the same way as the
break and continue instructions in C. Execution continues at the instruction fol-
lowing the .UNTIL, .UNTILCXZ, or .ENDW of the nearest enclosing loop.

Instead of causing the loop execution to end as .BREAK does, .CONTINUE
causes loop execution to jump directly to the code that evaluates the loop condi-
tion of the nearest enclosing loop.

The following loop accepts only the keys in the range ‘0’ to ‘9” and terminates
when ENTER is pressed.

JWHILE 1 ; Loop forever

mov ah, 08h ; Get key without echo

int 21h

.BREAK .IF al == 13 ; If ENTER, break out of the Toop

.CONTINUE .IF (al < '@') || (al > '9")
; If not a digit, continue Tooping

mov dl, al ; Save the character for processing
mov ah, 02h ; Output the character

int 21h

.ENDW
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If you assemble the source code above with the /Fl and /Sg command-line op-
tions and then view the results in the listing file, you would see this code:

CWHILE 1
0017 *@C0001:
0017 B4 08 mov ah, 08h
0019 CD 21 int 21h
.BREAK .IF al == 13
001B 3C @D * cmp al, 00Dh
001D 74 10 * je @C00e02
.CONTINUE .IF (al '@") || (al '9")
001F 3C 30 * cmp al, '@’
0021 72 F4 * jb @Coool
0023 3C 39 * cmp al, '9’'
0025 77 FO * ja @C0001
0027 8A DO mov d1, al
0029 B4 @2 mov ah, 02h
902B CD 21 int 21h
.ENDW
002D EB ES8 * jmp @Co001
002F *@C0002:

The high-level control structures can be nested. That is, REPEAT or .WHILE
loops can contain .REPEAT or .WHILE loops as well as .IF statements.

If the code generated by a .WHILE loop, .REPEAT loop, or .IF statement gener-
ates a conditional or unconditional jump, MASM uses the jump extension and
jump optimization techniques described in Sections 7.1.1, “Unconditional
Jumps,” and 7.1.2, “Conditional Jumps,” to encode the jump appropriately.

7.2.2 Writing Loop Conditions

You can express the conditions of the .IF, .REPEAT, and .WHILE directives
using relational operators, and you can express the attributes of the operand with
the PTR operator. To write loop conditions, you also need to know how the as-
sembler evaluates the operators and operands in the condition. This section ex-
plains the operators, attributes, precedence level, and expression evaluation order
for the conditions used with loop-generating directives.

7.2.2.1 Expression Operators

The binary relational operators in MASM 6.0 high-level control structures are
listed below. The same binary operators are used in C. These operators generate
MASM compare, test, and conditional jump instructions.

Operator Meaning
== Equal
1= Not equal
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Flag names can he
operands in a condition.

Registers, constants, and
memory locations are
unsigned by default.

Operator Meaning

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to

& Bit test

! Logical NOT

&& Logical AND

I Logical OR

A condition without operators (other than !) tests for nonzero as it does in C. For
example, .WHILE (x) isthesameas .WHILE (x !=0),and .WHILE
(!x) isthesameas .WHILE (x ==0).

You can also use the flag names (ZERO?, CARRY?, OVERFLOW?, SIGN?, and
PARITY?) as operands in conditions with the high-level control structures as in

.WHILE (CARRY?). The particular flag set determines the outcome of the con-
dition. Use flag names when you want to generate the compare or other instruc-
tions that set the flags.

7.2.2.2 Signed and Unsigned Operands

Expression operators generate unsigned jumps by default. However, if either side
of the operation is signed, then the entire operation is considered signed. The de-
fault for the operands in registers, constants, and named memory locations is also
to be unsigned.

You can use the PTR operator to tell the assembler that a particular operand in a
register or constant is a signed number, as in these examples:

.WHILE SWORD PTR [bx] <= @
IF SWORD PTR meml > @

Without the PTR operator, the assembler would treat the contents of BX as an un-
signed value.

You can also specify the size attributes of operands in memory locations with
SBYTE, SWORD, and SDWORD, for use with .IF, WHILE, and .REPEAT.

.DATA
meml SBYTE ?
mem2 WORD ?
IF meml > 0
.WHILE mem2 < bx
.WHILE SWORD PTR ax < count
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7.2.2.3 Precedence Level

As with C, you can concatenate conditions with the && operator for AND, the ||
operator for OR, and the ! operator for negate. The precedence level is !, &&, and
||, with ! having the highest precedence. Like expressions in high-level languages,
associativity is evaluated left to right.

7.2.2.4 Expression Evaluation

The assembler evaluates conditions created with high-level control structures ac-
cording to short-circuit evaluation. If the evaluation of a particular condition auto-
matically determines the final result (such as a condition that evaluates to false in
a compound statement concatenated with AND), the evaluation does not con-
tinue.

For example, in this .WHILE statement,

.WHILE (ax > @) && (WORD PTR [bx] == @)

the assembler evaluates the first condition. If this condition is false (that is, if AX
is less than or equal to 0), the evaluation is finished. The second condition is not
checked and the loop does not execute, because a compound condition contain-
ing a && requires both expressions to be true for the entire condition to be true.

/.3 Procedures
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Organizing your code into procedures that execute specific tasks divides large
programs into manageable units, allows for separate testing, and makes code
more efficient for repetitive tasks.

Assembly-language procedures are comparable to functions in C; subprograms,
functions, and subroutines in Basic; procedures and functions in Pascal; or sub-
routines and functions in FORTRAN.

Two instructions control the use of assembly-language procedures; CALL pushes
the return address onto the stack and transfers control to a procedure, and RET
pops the return address off the stack and returns control to that location.

The PROC and ENDP directives mark the beginning and end of a procedure. Ad-
ditionally, PROC can automatically

m  Preserve register values that should not change but that the procedure might
otherwise alter

m  Setup a local stack pointer, so that you can access parameters and local varia-
bles placed on the stack

m  Adjust the stack when the procedure ends
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Sections 7.3.1 through 7.3.3 give information on techniques for calling proce-
dures and accessing parameters. Sections 7.3.4 through 7.3.5 show how to allo-
cate and access local variables and parameters.

Sections 7.3.6 and 7.3.7 introduce new directives in MASM 6.0 to further auto-
mate calling procedures and passing arguments. The PROTO directive allows
you to declare prototypes for your procedures. INVOKE handles procedure calls
and stack cleanup. Section 7.3.8 describes the automatic stack setup and cleanup
generated with PROC.

7.3.1 Defining Procedures

Procedures require a label at the start of the procedure and a return at the end.
Procedures are normally defined by using the PROC directive at the start of the
procedure and the ENDP directive at the end. The RET instruction is normally
placed immediately before the ENDP directive. The assembler makes sure that
the distance of the RET instruction matches the distance defined by the PROC
directive. The basic syntax for PROC is

label PROC [NEAR | FAR]

RET [constant]
label ENDP

The CALL instruction pushes the address of the next instruction in your code
onto the stack and passes control to a specified address. The syntax is

CALL {label| register | memory}

The operand contains a value calculated at run time. Since that operand can be a
register, direct memory operand, or indirect memory operand, you can write call
tables similar to the jump table illustrated in Section 7.1.1.2.

Calls can be near or far. Near calls push only the offset portion of the calling
address and therefore must be within the same segment or group. You can
specify the type for the target operand, but if you do not, MASM uses the de-
clared distance (NEAR or FAR) for operands that are labels and for the size of
register or memory operands. Then the assembler encodes the call appropriately,
as it does with unconditional jumps (see Sections 7.1.1, “Unconditional Jumps,”
and 7.1.2, “Conditional Jumps™).

MASM 6.0 optimizes a call to a far label when the label is in the current segment
by generating the code for a near call, saving one byte.
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Incorrect size for RET can
cause your program to fail.

You can define procedures without PROC and ENDP, but if you do, you must
make sure that the size of the CALL matches the size of the RET. You can
specify the RET instruction as RETN (Return Near) or RETF (Return Far) to
override the default size:

call NEAR PTR task ; Call is declared near
. ; Return comes to here

task: ; Procedure begins with near label
; Instructions go here
retn ; Return declared near

The syntax for RETN and RETF is

label: | label NEAR
Statements
RETN [[constant]

label LABEL FAR
statements
RETF [[constant])

The RET instruction (and its RETF and RETN variations) allows an optional con-
stant operand that specifies a number of bytes to be added to the value of the SP
register after the return. This operand adjusts for arguments passed to the proce-
dure before the call, as shown in the example in Section 7.3.4, “Using Local
Variables.”

When you define procedures without PROC and ENDP, you must make sure that
calls have the same size as corresponding returns. For example, RETF pops two
words off the stack. If a NEAR call is made to a procedure with a far return, not
only is the popped value meaningless, but the stack status may cause the execu-
tion to return to a random memory location, resulting in program failure.

There is an also an extended PROC syntax that automates many of the details of
accessing arguments and saving registers. See Section 7.3.3, “Declaring Param-
eters with the PROC Directive.”

7.3.2 Passing Arguments on the Stack
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Each time you call a procedure, you may want it to operate on different data.
This data, called “arguments,” can be passed in various ways. For example, argu-
ments can be passed to a procedure in registers or in variables. However, the
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most common method of passing arguments is to use the stack. Microsoft lan-
guages have specific conventions for passing arguments. Chapter 20, “Mixed-
Language Programming,” explains these conventions for assembly-language
modules shared with modules from high-level languages.

This section describes how a procedure accesses the arguments passed to it on
the stack. Each argument is accessed as an offset from BP. However, if you use
the PROC directive to declare parameters, the assembler calculates these offsets
for you and lets you refer to parameters by name. The next section, “Declaring
Parameters with the PROC Directive,” explains how to use PROC this way.

This example shows how to pass arguments to a procedure. The procedure ex-
pects to find those arguments on the stack. As this example shows, arguments
must be accessed as offsets of BP.

; C-style procedure call and definition

mov ax, 10 ; Load and

push ax ;  push constant as third argument
push arg2 ; Push memory as second argument
push cX ; Push register as first argument
call addup ; Call the procedure

add sp, 6 ; Destroy the pushed arguments
. ;  (equivalent to three pops)

addup PROC NEAR ; Return address for near call
;  takes two bytes
push bp ; Save base pointer - takes two bytes
;  so arguments start at fourth byte
mov bp, sp ; Load stack into base pointer
mov ax, [bpt4] ; Get first argument from
; fourth byte above pointer
add ax, [bp+6] ; Add second argument from
; sixth byte above pointer
add ax, [bp+8] ; Add third argument from
; eighth byte above pointer
mov sp, bp
pop bp ; Restore BP
ret ; Return result in AX
addup ENDP

187



Controlling Program Flow

Figure 7.1 shows the stack condition at key points in the process.

Before After After
call addup call addup push bp
mov bp,sp
H/gh 1 1 | 1 ‘ ' | 1 | 1
memory | | \ | |
Argument 3 Argument 3 Argument 3| |+ BP+8
Argument 2 Argument 2 Argument 2| | ¢ BP+6
Argument 1| |+ SP Argument 1 Argument 1| | BP+4
Return « SP Return
address address
Old value | |« BP/SP
of BP
Low : | : 1 : '
memory | 1 ! | 1 |
After After After
pop bp ret add sp,6
H[gh | 1 | 1 | 1 | | | l
memory | | \ | | +SP
Argument 3 Argument 3
Argument 2 Argument 2
Argument 1 Argument 1| |* SP
Return <« SP
address
Low : | : . i |
memory i I I 1 ! 1

Figure 7.1 Procedure Arguments on the Stack

Starting with the 80186 processor, the ENTER and LEAVE instructions simplify
the stack setup and restore instructions at the beginning and end of procedures.

However, ENTER uses a lot of time. It is necessary only with nested, statically
scoped procedures. Thus, a Pascal compiler may sometimes generate ENTER.
The LEAVE instruction, on the other hand, is an efficient way to do the stack
cleanup. LEAVE reverses the effect of the last ENTER instruction by restoring
BP and SP to their values before the procedure call.
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7.3.3 Declaring Parameters with the PROC Directive

With the PROC directive, you can specify registers to be saved, define param-
eters to the procedure, and assign symbol names to parameters (rather than as off-
sets from BP). This section describes how to use the PROC directive to automate
the parameter-accessing techniques described in the last section.

For example, the diagram below shows a valid PROC statement for a procedure
called from C. It takes two parameters, varl and argl, and uses (and must
save) the DI and SI registers:

myproc PROC FAR C PUBLIC USES di si, varl:WORD, argl:VARARG

T / \ T R—— \ T —
Attributes Reglist Parameters
The syntax for PROC is

label PROC [[attributes]] [USES reglist]l [, parameter|:tag]... 1|

The following list describes the parts of the PROC directive.

Argument Description
label The name of the procedure.
attributes Any of several attributes of the procedure, including the

distance, langtype, and visibility of the procedure. The
syntax for attributes is given in Section 7.3.3.1.

reglist A list of registers following the USES keyword that the
procedure uses and that should be saved on entry. Regis-
ters in the list must be separated by blanks or tabs, not by
commas. The assembler generates prologue code to push
these registers onto the stack. When you exit, the assem-
bler generates epilogue code to pop the saved register
values off the stack.

parameter The list of parameters passed to the procedure on the
stack. The list can have a variable number of parameters.
See the discussion below for the syntax of parameter.
This list can be longer than one line if the continued line
ends with a comma.
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This diagram shows a valid PROC definition that uses several attributes:

Distance
Langtype
Visibility |_Pro/oguearg
myproc PROC FAR C PUBLIC <macroarg> USES di si, varl:WORD, argl:VARARG
)
Attributes

7.3.3.1 Attributes

The syntax for the attributes field is

[distance]l [langtypell [visibilityll [<prologuearg>]

The list below explains each of these options.

Argument Description

distance Controls the form of the RET instruction generated. Can be
NEAR or FAR. If distance is not specified, it is determined
from the model declared with the MODEL directive. For
TINY, SMALL, COMPACT, and FLAT, NEAR is assumed.
For MEDIUM, LARGE, and HUGE, FAR is assumed. For
80386/486 programming with 16- and 32-bit segments,
NEAR16, NEAR32, FAR16, or FAR32 can be specified.

langtype Determines the calling convention used to access param-
eters and restore the stack. The BASIC, FORTRAN, and
PASCAL langtypes convert procedure names to uppercase,
place the last parameter in the parameter list lowest on the
stack, and generate a RET, which adjusts the stack upward
by the number of bytes in the argument list.

The C and STDCALL langtype prefixes an underscore to
the procedure name when the procedure’s scope is PUBLIC
or EXPORT and places the first parameter lowest on the
stack. SYSCALL is equivalent to the C calling convention
with no underscore prefixed to the procedure’s name.
STDCALL uses caller stack cleanup when :VARARG is
specified; otherwise the called routine must clean up the
stack (see Chapter 20).
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Indicates whether the procedure is available to other mod-
ules. The visibility can be PRIVATE, PUBLIC, or EXPORT.
A procedure name is PUBLIC unless it is explicitly de-
clared as PRIVATE. If the visibility is EXPORT, the linker
places the procedure’s name in the export table for seg-
mented executables. EXPORT also enables PUBLIC

You can explicitly set the default visibility with the
OPTION directive. OPTION PROC:PUBLIC sets the de-
fault to public. See Section 1.3.2 for more information.

Argument Description
visibility

visibility.
prologuearg

Specifies the arguments that affect the generation of pro-
logue and epilogue code (the code MASM generates when
it encounters a PROC directive or the end of a procedure).
See Section 7.3.8 for an explanation of prologue and epi-
logue code.

7.3.3.2 Parameters

The parameters are separated from the reglist by a comma if there is a list of reg-
isters. In the syntax:

parmname [[:tag]

parmname is the name of the parameter. The tag can be either the qualifiedtype
or the keyword VARARG. However, only the last parameter in a list of param-
eters can use the VARARG keyword. The qualifiedtype is discussed in Section
1.2.6, “Data Types.” An example showing how to reference VARARG param-
eters appears later in this section. Procedures can be nested if they do not have
parameters or USES register lists. This diagram shows a procedure definition
with one parameter definition.

Parmname
Qualifiedtype

myproc PROC FAR C PUBLIC USES di si, varl:WORD, argl:VARARG

——

Parameters
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The following example shows the procedure in Section 7.3.2, “Passing Argu-
ments on the Stack,” rewritten to use the extended PROC functionality. Prior to
the procedure call, you must push the arguments onto the stack unless you use
INVOKE (see Section 7.3.7, “Calling Procedures with INVOKE?”).

addup PROC NEAR C,
argl:WORD, arg2:WORD, count:WORD

mov ax, argl
add ax, count
add ax, argz2
ret

addup ENDP

If the arguments for a procedure are pointers, the assembler does not generate
any code to get the value or values that the pointers reference; your program
must still explicitly treat the argument as a pointer. (See Chapter 3, “Using
Addresses and Pointers,” for more information about using pointers.)

In the example below, even though the procedure declares the parameters as near
pointers, you still must code two MOYV instructions to get the values of the param-
eters—the first MOV gets the address of the parameters, and the second MOV
gets the parameter.

; Call from C as a FUNCTION returning an integer

.MODEL medium, c
.CODE
myadd PROC  argl:NEAR PTR WORD, arg2:NEAR PTR WORD

mov bx, argl ; Load first argument
mov ax, [bx]
mov bx, arg2 ; Add second argument
add ax, [bx]
ret

myadd ENDP
END

You can use conditional-assembly directives to make sure that your pointer
parameters are loaded correctly for the memory model. For example, the follow-
ing version of myadd treats the parameters as FAR parameters if necessary:

.MODEL medium, c ; Could be any model
.CODE
myadd PROC argl:PTR WORD, arg2:PTR WORD
IF @DataSize
Tes bx, argl ; Far parameters
mov ax, es:[bx]
les bx, arg2
add ax, es:[bx]
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ELSE

mov bx, argl ; Near parameters
mov ax, [bx]

mov bx, arg2

add ax, [bx]

ENDIF

ret
myadd ENDP

END

7.3.3.3 Using VARARG

In the PROC statement, you can append the :VARARG keyword to the last param-
eter to indicate that a variable number of arguments can be passed if you use the
C, SYSCALL, or STDCALL calling conventions (see Section 20.1). A label must
precede :VARARG so that the arguments can be accessed as offsets from the vari-
able name given. This example illustrates VARARG:

addup3 PROTO NEAR C, argcount:WORD, argl:VARARG
invoke addup3, 3, 5, 2, 4

addup3 PROC NEAR C, argcount:WORD, argl:VARARG

sub ax, ax ; Clear work register

sub si, si

WHILE argcount > @ ; Argcount has number of arguments
add ax, argl[si]l] ; Argl has the first argument

dec argl ; Point to next argument

inc si

inc si

.ENDW

ret ; Total is in AX

addup3 ENDP

Passing non-default-sized pointers in the VARARG portion of the parameter list
can be done by explicitly passing the segment portion and the offset portion of
the address separately.

NOTE When you use the extended PROC features and the assembler encounters a RET
instruction, it automatically generates instructions to pop saved registers, remove local vari-
ables from the stack, and, if necessary, remove parameters. It generates this code for each
RET instruction it encounters. You can reduce code size by having only one return and jump-
ing to it from various locations.
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7.3.4 Using Local Variables

In high-level languages, local variables are visible only within a procedure. In
Microsoft languages, these variables are usually stored on the stack. In assembly-
language programs, you can also have local variables. These variables should not
be confused with labels or variable names that are local to a module, as described
in Chapter 8, “Sharing Data and Procedures among Modules and Libraries.”

This section outlines the standard methods for creating local variables. The next
section shows how to use the LOCAL directive to make the assembler automat-
ically generate local variables. When you use this directive, the assembler gener-
ates the same instructions as those used in this section but handles some of the
details for you.

If your procedure has relatively few variables, you can usually write the most
efficient code by placing these values in registers. Local (stack) data is more effi-
cient when you have a large amount of local data for the procedure.

Local variables are stored To use local variables you must save stack space for the variable at the start of

on the stack. the procedure. The variable can then be accessed by its position in the stack. At
the end of the procedure, you need to restore the stack pointer, which restores the
memory used by local variables.

This example subtracts two bytes from the SP register to make room for a local
word variable. This variable can then be accessed as [bp-2].

push ax ; Push one argument
call task ; Call

task PROC NEAR

push bp ; Save base pointer
mov bp, sp ; Load stack into base pointer
sub sp, 2 ; Save two bytes for local
; variable
mov WORD PTR [bp-2]1, 3 ; Initialize local variable
add ax, [bp-2] ; Add local variable to AX
Subtract local from argument

sub [bp+4], ax
. Use [bp-2] and [bp+4] in
other operations

mov sp, bp ; Clear local variables

pop bp ; Restore base
ret 2 ; Return result in AX and pop
task ENDP ; two bytes to clear parameter
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Notice that the instruction mov sp,bp at the end of the procedure restores the
original value of SP. The statement is required only if the value of SP is changed
inside the procedure (usually by allocating local variables). The argument passed
to the procedure is removed with the RET instruction. Contrast this to the ex-
ample in Section 7.3.2, “Passing Arguments on the Stack,” in which the calling
code adjusts the stack for the argument.

Figure 7.2 shows the state of the stack at key points in the process.

Before After After
call task call task push bp
mov bp,sp
H/gh 1 | 1 1 1 1
memory ] ' I | I 1 I | I
Argument | |+ SP Argument Argument | |+ BP+4
Return Return
address + SP address
Olgf vBalljue <« BP/SP
LOW : I : | : 1
memory ! I | 1 ) i
After After After
sub sp,2 mov sp,bp ret 2
pop bp
Hl:gh I i | | I i
memory | | ' L ' i | |+ SP
Argument | |* BP+4 | Argument
Return Return
address address <SP
Old value | |« BP
of BP
Space <+ BP-2
for loca!
LOW : | : 1 : |
memory I 1 I i 1 1

Figure 7.2 Local Variables on the Stack

7.3.5 Creating Local Variables Automatically

Section 7.3.4 described how to create local variables on the stack. This section
shows you how to automate the process with the LOCAL directive.
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The LOCAL directive
generates code to set up
the stack for local
variables.
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You can use the LOCAL directive to save time and effort when working with
local variables. When you use this directive, simply list the variables you want to
create, giving a type for each one. The assembler calculates how much space is
required on the stack. It also generates instructions to properly decrement SP (as
described in the previous section) and to reset SP when you return from the
procedure.

When you create local variables this way, your source code can then refer to each
local variable by name rather than as an offset of the stack pointer. Moreover, the
assembler generates debugging information for each local variable.

The procedure in the previous section can be generated more simply with the fol-
lowing code:

task PROC NEAR arg:WORD
LOCAL Toc:WORD

mov loc, 3 ; Initialize Tocal variable

add ax, loc ; Add local variable to AX
sub arg, ax ; Subtract local from argument
; Use "loc" and "arg" in other operations
ret
task ENDP

The LOCAL directive must be on the line immediately following the PROC state-
ment. It cannot be used after the first instruction in a procedure. The LOCAL
directive has the following syntax:

LOCAL vardef [, vardef]...
Each vardef defines a local variable. A local variable definition has this form:
labell] [count] N[[:qualifiedtype]]

These are the parameters in local variable definitions:

Argument Description

label The name given to the local variable. You can use this
name to access the variable.

count The number of elements of this name and type to allo-
cate on the stack. You can allocate a simple array on the
stack with count. The brackets around count are re-
quired. If this field is omitted, one data object is assumed.
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You must initialize local
variables.

Argument Description

qualifiedtype A simple MASM type or a type defined with other types
and attributes. See Section 1.2.6, “Data Types,” for more
information.

If the number of local variables exceeds one line, you can place a comma at the
end of the first line and continue the list on the next line. Another method is to
use several consecutive LOCAL directives.

The assembler does not initialize local variables. Your program must include
code to perform any necessary initializations. For example, the following code
fragment sets up a local array and initializes it to zero:

arraysz EQU 20

aproc PROC USES di
LOCAL  varl[arraysz]l:WORD, var2:WORD

; Initialize local array to zero

push SS

pop es ; Set ES=SS

lea di, varl ; ES:DI now points to array
mov CX, arraysz ; Load count

sub ax, ax

rep stosw ; Store zeros

; Use the array...

ret
aproc ENDP
Even though you can reference stack variables by name, the assembler treats

them as offsets from BP, and they are not visible outside the procedure. In this
procedure, array is alocal variable.

index EQU 10
test PROC NEAR
LOCAL array[index]:WORD

mov bx, index
; mov array[bx], 5 ; Not legal!
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The second MOV statement may appear to be legal, but since array isan
offset of BP, this statement is the same as

; mov [bp + bx + arrayoffset], 5 ; Not legall!

BP and BX can be added only to SI and DI. This example would be legal, how-
ever, if the index value were moved to SI or DI. This type of error in your pro-
gram can be difficult to find unless you keep in mind that local variables in
procedures are offsets of BP.

7.3.6 Declaring Procedure Prototypes

Place prototypes after data
declarations orina
separate include file.
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MASM 6.0 provides a new directive, INVOKE, to handle many of the details im-
portant to procedure calls, such as pushing parameters according to the correct
calling conventions. In order to use INVOKE, the procedure called must have pre-
viously been declared with a PROC statement, an EXTERNDEF (or EXTERN)
statement, or a TYPEDEF. You can also place a prototype defined with PROTO
before the INVOKE if the procedure type does not appear before the INVOKE.
Procedure prototypes defined with PROTO inform the assembler of types and
numbers of arguments so the assembler can check for errors and provide automat-
ic conversions when INVOKE calls the procedure.

Prototypes in MASM perform the same function as prototypes in the C language
and other high-level languages. A procedure prototype includes the procedure
name, the types, and (optionally) the names of all parameters the procedure ex-
pects. Prototypes are usually placed at the beginning of an assembly program or
in a separate include file. They are especially useful for procedures called from
other modules and other languages, enabling the assembler to check for un-
matched parameters. If you write routines for a library, you may want to put pro-
totypes into an include file for all the procedures used in that library. See Chapter
8, “Sharing Data and Procedures among Modules and Libraries,” for more infor-
mation about using include files.

Declaring procedure prototypes is optional. You can use the PROC directive and
the CALL instruction, as shown in the previous section.

In MASM 6.0, using the PROTO directive is one way to define procedure proto-
types. The syntax for a prototype definition is the same as for a procedure decla-
ration (see Section 7.3.3, “Declaring Parameters with the PROC Directive”),
except that you do not include the list of registers, prologuearg list, or the scope
of the procedure.

Also, the PROTO keyword precedes the langtype and distance attributes. The at-
tributes (like C and FAR) are optional, but if not specified, the defaults are based
on any .MODEL or OPTION LANGUAGE statement. The names of the parame-
ters are also optional, but you must list parameter types. A label preceding
:VARARG is also optional in the prototype but not in the PROC statement.
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If a PROTO and a PROC for the same function appear in the same module, they
must match in attribute, number of parameters, and parameter types. The easiest
way to create prototypes with PROTO for your procedures is to write the proce-
dure and then copy the first line (the line that contains the PROC keyword) to a
location in your program that follows the data declarations. Change PROC to
PROTO and remove the USES reglist, the prologuearg field, and the visibility
field. It is important that the prototype follow the declarations for any types used
in it to avoid any forward references used by the parameters in the prototype.

The prototype defined with PROTO statement and the PROC statement for two
procedures are given below.

;  Procedure prototypes

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD
myproc PROTO FAR C, argcount:WORD, arg2:VARARG

; Procedure declarations

addup PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD

myproc PROC FAR C PUBLIC <callcount> USES di si,
argcount:WORD,
arg2:VARARG

When you call a procedure with INVOKE, the assembler checks the arguments
given by INVOKE against the parameters expected by the procedure. If the data
types of the arguments do not match, MASM either reports an error or converts
the type to the expected type. These conversions are explained in the next section.

7.3.7 Calling Procedures with INVOKE

INVOKE generates a sequence of instructions that push arguments and call a pro-
cedure. This helps maintain code if arguments or langtype for a procedure is
changed. INVOKE generates procedure calls and automatically handles the fol-
lowing tasks:

mn  Converts arguments to the expected types

m Pushes arguments on the stack in the correct order

m Cleans up the stack when the procedure returns

If arguments do not match in number or if the type is not one the assembler can

convert, an error results.

If VARARG is an option in a procedure, INVOKE can pass arguments in addition
to those in the parameter list without generating an error or warning. The extra
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arguments must be at the end of the INVOKE argument list. All other arguments
must match in number and type.

The syntax for INVOKE is
INVOKE expression [[, arguments]|

where expression can be the procedure’s label or an indirect reference to a proce-
dure, and arguments can be an expression, a register pair, or an expression
preceded with ADDR. (The ADDR operator is discussed below.)

Procedures that have these procedure prototypes

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD
myproc PROTO FAR C, argcount:WORD, arg2:VARARG

and these procedure declarations

addup PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD

myproc PROC FAR C PUBLIC <callcount> USES di si,
argcount:WORD,
arg2:VARARG

may have INVOKE statements that look like this:

INVOKE addup, ax, x, Yy
INVOKE myproc, bx, cx, 100, 10

The assembler can convert some arguments and parameter type combinations so
that the correct type can be passed. The signed or unsigned qualities of the argu-
ments in the INVOKE statements determine how the assembler converts them to
the types expected by the procedure.

The addup procedure, for example, expects parameters of type WORD, but the
arguments passed by INVOKE to the addup procedure can be any of these

types:
m BYTE, SBYTE, WORD, or SWORD

m  An expression whose type is specified with the PTR operator to be one of
those types

m  An 8-bit or 16-bit register
m  An immediate expression in the range —32K to +64K
m A NEAR PTR

If the type is smaller than that expected by the procedure, MASM widens the ar-
gument to match.
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When possible, MASM
widens arguments to
match parameter types.

7.3.7.1 Widening Arguments

For INVOKE to correctly handle type conversions, you must use the signed data
types for any signed assignments. This list shows the cases in which MASM
widens an argument to match the type expected by a procedure’s parameters.

Type Passed Type Expected
BYTE, SBYTE WORD, SWORD, DWORD, SDWORD
WORD, SWORD DWORD, SDWORD

The assembler generates instructions such as XOR and CBW to perform the con-
version. You can see these generated instructions in the listing file by using the
/Sg command-line option. The assembler can extend a segment if far data is ex-
pected, and it can convert the type given in the list to the types expected. If the as-
sembler cannot convert the type, however, it generates an error.

7.3.7.2 Detecting Errors

When the assembler widens arguments, it may require the use of a register that
could overwrite another argument.

For example, if a procedure with the C calling convention is called with this
INVOKE statement,

INVOKE myprocA, ax, cx, 1008, arg

where arg is a BYTE variable and myproc expects four arguments of type
WORD, the assembler widens and then pushes the variable with this code:

mov al, DGROUP:arg
xor ah, ah
push ax

As aresult, the assembler generates code that also uses the AX register and there-
fore overwrites the first argument passed to the procedure in AX. The assembler
generates an error in this case, requiring you to rewrite the INVOKE statement
for this procedure.

The INVOKE directive uses as few registers as possible. However, widening ar-
guments or pushing constants on the 8088 and 8086 requires the use of the AX
register, and sometimes the DX register or the EAX and EDX on the 80386/486.
This means that the content of AL, AH, AX, and EAX must frequently be over-
written, so you should avoid using these registers to pass arguments. As an alter-
native you can use DL, DH, DX, and EDX, since these registers are rarely used.
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7.3.7.3 Invoking Far Addresses

You can pass a FAR pointer in a segment::offset pair, as shown below. Note the
use of double colons to separate the register pair. The registers could be any
other register pair, including a pair that a DOS call uses to return values.

FPWORD  TYPEDEF FAR PTR WORD
SomeProc PROTO varl:DWORD, var2:WORD, var3:WORD

pfaritem FPWORD faritem
Tes bx, pfaritem
INVOKE SomeProc, ES::BX, argl, arg2

However, you cannot give INVOKE two arguments, one for the segment and one
for the offset, and have INVOKE combine the two for an address.

7.3.7.4 Passing an Address

You can use the ADDR operator to pass the address of an expression to a proce-
dure that is expecting a NEAR or FAR pointer. This example generates code to
pass a far pointer (to argl) to the procedure procl.

PBYTE  TYPEDEF FAR PTR BYTE
argl BYTE "This is a string”
procl PROTO  NEAR C fparg:PBYTE

INVOKE procl, ADDR argl

See Section 3.3.1 for information on defining pointers with TYPEDEF.

7.3.7.5 Invoking Procedures Indirectly

You can make an indirect procedure call suchas call [bx + si] by usinga
pointer to a function prototype with TYPEDEF, as shown in this example:

FUNCPROTO TYPEDEF PROTO NEAR ARG1:WORD, ARGZ2:WORD
FUNCPTR TYPEDEF PTR FUNCPROTO

.DATA
pfunc FUNCPTR OFFSET procl, OFFSET proc2

.CODE
mov si, Num ; Num contains @ or 2
INVOKE FUNCPTR PTR [si] ; Selects procl or proc2



Procedures

You can also use ASSUME to accomplish the same task. The ASSUME statement
associates the type PFUNC with the BX register.

ASSUME  BX:FUNCPTR
mov si, Num
INVOKE FUNCPTR PTR [bx+si]

7.3.7.6 Checking the Code Generated

The INVOKE directive generates code that may vary depending on the processor
mode and calling conventions in effect. You can check your listing files to see
the code generated by the INVOKE directive if you use the /Sg command-line
option.

7.3.8 Generating Prologue and Epilogue Code

When you use the PROC directive with its extended syntax and argument list, the
assembler automatically generates the prologue and epilogue code in your proce-
dure. “Prologue code” is generated at the start of the procedure; it sets up a stack
pointer so you can access parameters from within the procedure. It also saves
space on the stack for local variables, initializes registers such as DS, and pushes
registers that the procedure uses. Similarly, “epilogue code” is the code at the
end of the procedure that pops registers and returns from the procedure.

The assembler automatically generates the prologue code when it encounters the
first instruction after the PROC directive. It generates the epilogue code when it
encounters a RET or IRET instruction. Using the assembler-generated prologue
and epilogue code saves you time and decreases the number of repetitive lines of
code in your procedures.

The generated prologue or epilogue code depends on the

m Local variables defined

m Arguments passed to the procedure

m Current processor selected (affects epilogue code only)

m  Current calling convention

m  Options passed in the prologuearg of the PROC directive

m Registers being saved

The prologuearg list contains options specifying how the prologue or epilogue
code should be generated. The next section explains how to use these options,

gives the standard prologue and epilogue code, and explains the techniques for
defining your own prologue and epilogue code.
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RETN and RETF suppress
epilogue code generation.
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7.3.8.1 Using Automatic Prologue and Epilogue Code

The standard prologue and epilogue code handles parameters and local variables.
If a procedure does not have any parameters or local variables, the prologue and
epilogue code that sets up and restores a stack pointer is omitted, unless
FORCEFRAME is included in the prologuearg list. (FORCEFRAME is discussed
later in this section.) Prologue and epilogue code also generates a push and pop
for each register in the register list uniess the register list is empty.

When a RET is used without an operand, the assembler generates the standard
epilogue code. If you do not want the standard epilogue generated, you can use
RETN or RETF with or without operands. RET with an integer operand does not
generate epilogue code, but it does generate the right size of return.

In the examples below showing standard prologue and epilogue code,
localbytes isa variable name used in this example to represent the number
of bytes needed on the stack for the locals declared, parmbytes represents the
number of bytes that the parameters take on the stack, and registers repre-
sents the list of registers to be pushed or popped.

The standard prologue code is the same in any processor mode:

push bp

mov bp, sp

sub sp, localbytes ; if localbytes is not
push registers

The standard epilogue code is:

pop registers
mov sp, bp ; if localbytes is not @

pop bp
ret parmbytes ; use parmbytes only if lang is not C

The standard prologue and epilogue code recognizes two operands passed in the
prologuearg list, LOADDS and FORCEFRAME. These operands modify the pro-
logue code. Specifying LOADDS saves and initializes DS. Specifying
FORCEFRAME as an argument generates a stack frame even if no arguments are
sent to the procedure and no local variables are declared. If your procedure has
any parameters or locals, you do not need to specify FORCEFRAME.

Specifying LOADDS generates this prologue code:

push bp

mov bp, sp

sub sp, localbytes ; if localbytes is not @
push ds

mov ax, DGROUP

mov ds, ax

push registers
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Specifying LOADDS generates the following epilogue code:

pop registers

pop ds

mov sp, bp

pop bp

ret parmbytes ; use parmbytes only if lang is not C

7.3.8.2 User-Defined Prologue and Epilogue Code

If you want a different set of instructions for prologue and epilogue code in your
procedures, you can write macros that are executed instead of the standard pro-
logue and epilogue code. For example, while you are debugging your proce-
dures, you may want to include a stack check or track the number of times a
procedure is called. You can write your own prologue code to do these things
whenever a procedure executes. Different prologue code may also be necessary
if you are writing applications for Microsoft Windows or any other environment
application for DOS. User-defined prologue macros will respond correctly if you
specify FORCEFRAME in the prologuearg of a procedure.

To write your own prologue or epilogue code, the OPTION directive must appear
in your program. It disables automatic prologue and epilogue code generation.
When you specify

OPTION PROLOGUE : macroname
OPTION EPILOGUE : macroname

the assembler calls the macro specified in the OPTION directive instead of gener-
ating the standard prologue and epilogue code. The prologue macro must be a
macro function, and the epilogue macro must be a macro procedure.

The assembler expects your prologue or epilogue macro to have this form:

macroname MACRO procname, [
flag, !
parmbytes, |
localbytes, |
<reglist>, |
userparms

205



Controlling Program Flow

206

The following list explains the arguments passed to your macro. Your macro
must have formal parameters to match all the actual arguments passed.

Argument

procname

flag

parmbytes
localbytes

reglist

userparms

Description

The name of the procedure.

A 16-bit flag containing the following information:

Bit = Value Description

Bit0, 1,2 For calling conventions (000=un-
specified language type, 001=C,

010=SYSCALL, 011=STDCALL,
100=PASCAL, 101=FORTRAN,

110=BASIC)

Bit 3 Undefined (not necessarily zero)

Bit 4 Set if the caller restores the stack
(Use RET, not RETr)

Bit5 Set if procedure is FAR

Bit 6 Set if procedure is PRIVATE

Bit7 Set if procedure is EXPORT

Bit 8 Set if the epilogue was generated as

a result of an IRET instruction and
cleared if the epilogue was gener-
ated as a result of a RET instruction

Bits 9-15 Undefined (not necessarily zero)

The byte count of all the parameters given in the PROC
statement.

The count in bytes of all locals defined with the LOCAL
directive.

A list of the registers following the USES operator in the
procedure declaration. This list is enclosed by angle
brackets (< >), and each item is separated by commas.
This list is reversed for epilogues.

Any argument you want to pass to the macro. The
prologuearg (if there is one) specified in the PROC
directive is passed to this argument.

Your macro function must return the parmbytes parameter. However, if the pro-
logue places other values on the stack after pushing BP and these values are not
referenced by any of the local variables, the exit value must be the number of
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bytes for procedure locals plus any space between BP and the locals. Therefore
parmbytes is not always equal to the bytes occupied by the locals.

The following macro is an example of a user-defined prologue that counts the
number of times a procedure is called.

ProfilePro MACRO procname, \
flag, \
bytecount, \
numlocals, \
regs, \
macroargs
.DATA
procname&count WORD @
.CODE
inc procname&count ; Accumulates count of times the
;  procedure is called
push bp
mov bp, sp

; Other BP operations
IFNB <regs>

FOR r, regs
push r
ENDM
ENDIF

EXITM %bytecount
ENDM

Your program must also include this statement before any procedures are called
that use the prologue:

OPTION PROLOGUE:ProfilePro

If you define only a prologue or an epilogue macro, the standard prologue or epi-
logue code is used for the one you do not define. The form of the code generated
depends on the MODEL and PROC options used.

If you want to revert to the standard prologue or epilogue code, use
PROLOGUEDEF or EPILOGUEDEF asthe macroname in the OPTION
statement.

OPTION EPILOGUE:EPILOGUEDEF
You can completely suppress prologue or epilogue generation with

OPTION PROLOGUE:None
OPTION EPILOGUE:None

In this case, no user-defined macro is called, and the assembler does not generate
a default code sequence. This state remains in effect until the next OPTION
PROLOGUE or OPTION EPILOGUE is encountered.
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See Chapter 9 for additional information about writing macros. The
PROLOGUE.INC file provided in the MASM 6.0 distribution disks can be used
to create the prologue and epilogue sequences for the Microsoft C Professional
Development System, version 6.0.

7.4 DOS Interrupts

In addition to jumps, loops, and procedures that alter program execution, inter-
rupt routines transfer execution to a different location. In this case, control goes
to an interrupt routine.

You can write your own interrupt routines, either to replace an existing routine or
to use an undefined interrupt number. You may want to replace the processor’s
divide-overflow (Oh) interrupts or DOS interrupts, such as the critical-error (24h)
and CONTROL+C (23h) handlers. The BOUND instruction checks array bounds
and calls interrupt 5 when an error occurs. If you use this instruction, you need to
write an interrupt handler for it.

This section summarizes the following:

m  How to call interrupts
m  How the processor handles interrupts

m  How to redefine an existing interrupt routine

The example routine in this section handles addition or multiplication overflow
and illustrates the steps necessary for writing an interrupt routine. See Chapter
19, “Writing Memory-Resident Software” for additional information about DOS
and BIOS interrupts.

NOTE Under 0S/2, system access is made through calls to the Applications Program Inter-
face (API), not through interrupts. Microsoft Windows applications use both interrupts and
AP calls.

7.4.1 Calling DOS and ROM-BIOS Interrupts
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Interrupts are the only way to access DOS from assembly language. They are
called with the INT instruction, which takes one operand—an immediate value
between 0 and 255.

When calling DOS and ROM-BIOS interrupts, you usually need to place a func-
tion number in the AH register. You can use other registers to pass arguments to
functions. Some interrupts and functions return values in certain registers, al-
though register use varies for each interrupt. This code writes the text of msg to
the screen.
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.DATA
msg BYTE "This writes to the screen",$
.CODE
mov dx, offset msg
mov ah, 09h
int 21h

When the INT instruction executes, the processor takes the following six steps:

1. Looks up the address of the interrupt routine in the interrupt descriptor table
(also called the “interrupt vector”). This table starts at the lowest point in
memory (segment 0, offset 0) and consists of four bytes (two segment and
two offset) for each interrupt. Thus, the address of an interrupt routine equals
the number of the interrupt multiplied by 4.

2. Clears the trap flag (TF) and interrupt enable flag (IF).

3. Pushes the flags register, the current code segment (CS), and the current in-
struction pointer (IP).

4. Jumps to the address of the interrupt routine, as specified in the interrupt de-
scriptor table.

5. Executes the code of the interrupt routine until it encounters an IRET
instruction.

6. Pops the instruction pointer, code segment, and flags.
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7.4.2 Replacing or Redefining Interrupt Routines
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Figure 7.3 illustrates how interrupts work.
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Some DOS interrupts should not normally be called. Some (such as 20h and 27h)
have been replaced by other DOS interrupts. Others are used internally by DOS.

One interrupt routine you may want to redefine is the routine called by INTO.
The INTO (Interrupt on Overflow) instruction is a variation of the INT instruc-
tion. It calls interrupt 0O4h when the overflow flag is set. By default, the routine
for interrupt 4 simply consists of an IRET, so it returns without doing anything.
Using INTO is an alternative to using JO (Jump on Overflow) to jump to an over-
flow routine.
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To replace or redefine an existing interrupt, your routine must

= Replace the address in the interrupt descriptor table with the address of your
new routine and save the old address

m Provide new instructions to handle the interrupt

m  Restore the old address when your routine ends

An interrupt routine can be written like a procedure by using the PROC and
ENDP directives. The routine should always be defined as FAR and should end
with an IRET instruction instead of a RET instruction.

NOTE Since the assembler doesn’t know whether you are going to terminate with RET or
IRET, you can use the full extended PROC syntax (described in Section 7.3.3, “Declaring Para-
meters with the PROC Directive”) to write interrupt procedures. However, you should not
make interrupt procedures NEAR or specify arguments for them. You can use the USES key-
word, however, to correctly generate code to save and to restore a register list in interrupt
procedures.

The STI (Set Interrupt Flag) and CLI (Clear Interrupt Flag) instructions turn inter-
rupts on or off. You can use CLI to turn off interrupt processing so that an impor-
tant routine cannot be stopped by a hardware interrupt. After the routine has
finished, use STI to turn interrupt processing back on. Interrupts received while
interrupt processing was turned off by CLI are saved and executed when STI
turns interrupts back on.

MASM 6.0 provides two new forms of the IRET instruction that suppress epi-
logue sequences. This allows an interrupt to have local variables or use a user-
defined prologue. IRETF pops a FAR16 return address, and IRETFD pops a
FAR32 return address.

The following example uses DOS functions to save the address of the initial inter-
rupt routine in a variable and to put the address of the new interrupt routine in the
interrupt descriptor table. Once the new address has been set, the new routine is
called any time the interrupt is called. This new routine prints a message and sets
AX and DX to 0.

To replace the address in the interrupt descriptor table with the address of your
procedure, AL needs to be loaded with 04h and AH loaded with 35, the Get Inter-
rupt Vector function. The Set Interrupt Vector function requires 25 in AH.
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Follow this example to replace an existing interrupt routine. To write an interrupt
handler for an unused interrupt, see online help for available vectors.

.MODEL LARGE, C, DOS
FPFUNC TYPEDEF FAR PTR

.DATA
msg BYTE "Overflow - result set to 0",13,10,"$"
vector FPFUNC ?
.CODE
.STARTUP
mov ax, 3504h ; Load interrupt 4 and call DOS
int 21h ;  Get Interrupt Vector function
mov WORD PTR vector[2],es ; Save segment
mov WORD PTR vector[@],bx ; and offset
push ds ; Save DS
mov ax, Ccs ; Load segment of new routine
mov ds, ax
mov dx, OFFSET ovrflow ; Load offset of new routine
mov ax, 2504h ; Load interrupt 4 and call DOS
int 21h ;  Set Interrupt Vector function
pop ds ; Restore
add ax, bx ; Do addition (or multiplication)
into ; Call dinterrupt 4 if overflow
1ds dx, vector ; Load original interrupt address
mov ax, 2504h ; Restore interrupt number 4
int 21h ;  with DOS set vector function
mov ax, 4C00h ; Terminate function
int 21h
ovrflow PROC FAR
sti ; Enable interrupts
;  (turned off by INT)
mov ah, @09h ; Display string function
mov dx, OFFSET msg ; Load address
int 21h ; Call DOS
sub ax, ax ; Set AX to 0@
sub dx, dx ; Set DX to @
iret ; Return
ovrflow ENDP
END

Before your program ends, you should restore the original address by loading
DX with the original interrupt address and using the DOS set vector function to
store the original address at the correct location.
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7.5 Related Topics in Online Help

Other information available online which relates to topics in this chapter is given

in the list below:

Topic

OPTION directive

DOS and ROM-BIOS
interrupts

BT, BTC, BTR, BTS

Other forms of the
LOOP instruction

Processor Flag
Summary

Access

From the “MASM 6.0 Contents” screen, choose
“Directives,” then choose “Miscellaneous”

From the list of System Resources on the “MASM
6.0 Contents” screen, choose “DOS Calls” or “BIOS
Calls”

From the “MASM 6.0 Contents” screen, choose
“Processor Instructions” and then “Logical and
Shifts”

From the “MASM 6.0 Contents” screen, choose
“Processor Instructions’ and then “Control Flow”

From the “MASM 6.0 Contents” screen, choose
“Processor Instructions”
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Chapter 8

Sharing Data and Procedures among
Modules and Libraries

To use symbols and procedures in more than one module, the assembler must be
able to recognize the shared data as global to all the modules where they are
used. MASM 6.0 provides new techniques to simplify data-sharing and give a
high-level interface to multiple-module programming. With these techniques,
you can place shared symbols in include files. This makes the data declarations
in the file available to all modules that use the include file.

After an overview of the data-sharing methods, the next section of this chapter fo-
cuses on organizing modules and using the include file to simplify data-sharing.
The first method allows you to create a single include file that works in the mod-
ules where the symbol is used as well as where it is defined.

Sharing procedures and data items using the PUBLIC and EXTERN directives in
the appropriate modules is the other method of data-sharing. The third section of
this chapter explains how to use PUBLIC and EXTERN.

You may also want to place commonly used routines in libraries. Section 8.4 ex-
plains how to create program libraries and access their routines.

8.1 Selecting Data-Sharing Methods

If data defined in one module is to be used in the other modules of a multiple-
module program, the data must be made public and external. MASM provides
several methods for doing this.

One method is to declare a symbol public (with the PUBLIC directive) in the
module where it is defined. This makes the symbol available to other modules.
Then place an EXTERN statement for that symbol in the rest of the modules that
use the public symbol. This statement informs the assembler that the symbol is
external—defined in another module.

As an alternative, you can use the COMM directive instead of PUBLIC and
EXTERN. However, communal variables have some limitations. You cannot de-
pend on their location in memory because they are allocated by the linker, and
they cannot be initialized.

These two data-sharing methods are still available, but MASM 6.0 introduces a
new directive, EXTERNDEEF, that declares a symbol either public or external, as
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appropriate. EXTERNDEF simplifies the declarations for global (public and exter-
nal) variables and encourages the use of include files.

The next section provides further details on using include files. Section 8.3,
“Using Alternatives to Include Files,” provides more information on PUBLIC
and EXTERN.

8.2 Sharing Symbols with Include Files

Place statements common
to all modules in include
files.

Include files can contain any valid MASM statement but typically consist of type
and symbol declarations. The assembler inserts the contents of the include file
into a module at the location of the INCLUDE directive. Include files can
simplify project organization by eliminating the need to physically insert com-
mon declarations into more than one program or module. Include files are always
optional. See Section 8.3 for alternatives to using include files.

The first part of this section explains how to organize symbol definitions and the
declarations that make the symbols global (available to all modules). It then
shows how to make both variables and procedures public with EXTERNDEF,
PROTO, and COMM. The last part of this section tells where to place these direc-
tives in the modules and include files.

8.2.1 Organizing Modules

Include files are inserted
at the location of the
INCLUDE directive.
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This section summarizes the organization of declarations and definitions in mod-
ules and include files and the use of the INCLUDE directive.

Include Files Type declarations that need to be identical in every module
should be placed in an include file. Doing so ensures consistency and can save
programming time when updating programs. Include files should contain only
symbol declarations and any other declarations that are resolved at assembly
time. (See Section 1.3.1, “Generating and Running Executable Programs,” for a
list of assembly-time operations.) If the include file is associated with more than
one module, it cannot contain statements that define and allocate memory for
symbols unless you include the data conditionally (see Section 1.3.3).

Modules Label definitions that cause the assembler to allocate memory space
must be defined in a module, not in an include file. If any of these definitions is
located in the include file, it is copied into each file that uses the include file,
creating an error.

Once you have placed public symbols in an include file, you need to associate
that file with the main module. The INCLUDE statement is usually placed before
data and code segments in your modules. When the assembler encounters an
INCLUDE directive, it opens the specified file and assembles all its statements.
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You must make sure
that the assembler can
find include files.

Put constants used in more
than one module into the
include file.

The assembler then returns to the original file and continues the assembly
process.

The INCLUDE directive takes the form
INCLUDE filename

where filename is the full name or fully specified path of the include file. For ex-
ample, the following declaration inserts the contents of the include file
SCREEN.INC in your program:

INCLUDE SCREEN.INC

The file name in the INCLUDE directive must be fully specified; no extensions
are assumed. If a full path name is not given, the assembler searches first in the
directory of the source file containing the INCLUDE directive.

If the include file is not in the source file directory, the assembler searches the
paths specified in the assembler’s command-line option /I, or in PWB’s Include
Paths field in the MASM Option dialog box (accessed from the Option menu).
The /I option takes this form:

/1 path

Multiple /I options can be used to specify that multiple directives be searched in
the order they appear on the command line. If none of these directories contains
the desired include file, the assembler finally searches in the paths specified in
the INCLUDE environment variable. If the include file still cannot be found, an
assembly error occurs. The related /x option tells the assembler to ignore the
INCLUDE environment variable for all subsequent assemblies.

An include file may specify another include file. The assembler processes the sec-
ond include file before returning to the first. Include files can be nested this way
as deeply as desired; the only limit is the amount of free memory.

Include Files or Modules You can use the EQU directive to create named
constants that cannot be redefined in your program (see Section 1.2.4,

“Integer Constants and Constant Expressions,” for information about the EQU
directive). Placing a constant defined with EQU in an include file makes it avail-
able to all modules that use that include file.

Placing TYPEDEF, STRUCT, UNION, and RECORD definitions in an include
file guarantees consistency in type definitions. If required, the variable instances
derived from these definitions can be made public among the modules with
EXTERNDEEF declarations (see the next section). Macros (including macros de-
fined with TEXTEQU) must be placed in include files to make them visible in
other modules.
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If you elect to use full segment definitions (along with, or instead of, simplified
definitions), you can force a consistent segment order in all files by defining
segments in an include file. This technique is explained in Section 2.3.2, “Con-
trolling the Segment Order.”

8.2.2 Declaring Symbols Public and External

External identifiers must
he unigue.

EXTERNDEF can appear
in the defining
or calling modules.
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It is sometimes useful to make procedures and variables (such as large arrays or
status flags) global to all program modules. Global variables are freely accessible
within all routines; you do not have to explicitly pass them to the routines that
need them.

Variables can be made global to multiple modules in several ways. This section
describes three ways to make them global by using the EXTERNDEF, PROTO,
or COMM declarations within include files. Section 8.3.1 explains how to use the
PUBLIC and EXTERN directives within modules.

These methods make symbols global to the modules in which they are used.
Therefore, symbols must be unique. The linker enforces this requirement.

8.2.2.1 Using EXTERNDEF

MASM treats EXTERNDEF as a public declaration in the defining module and as
an external declaration in accessing module(s). You can use the EXTERNDEF
statement in your include file to make a variable common among two or more
modules. EXTERNDEF works with all types of variables, including arrays, struc-
tures, unions, and records. It also works with procedures.

As aresult, a single include file can contain an EXTERNDEF declaration that
works in both the defining module and any accessing module. It is ignored in
modules that neither define nor access the variable. Therefore, an include file for
a library which is used in multiple .EXE files does not force the definition of a
symbol as EXTERN does.

The EXTERNDEF statement takes this form:
EXTERNDETF [[langtype]] name:qualifiedtype

The name is the variable’s identifier. The qualifiedtype is explained in detail in
Section 1.2.6, “Data Types.”

The optional langtype specifier sets the naming conventions for the name it
precedes. It overrides any language specified in the .MODEL directive. The speci-
fier can be C, SYSCALL, STDCALL, PASCAL, FORTRAN, or BASIC. See Sec-
tion 20.1, “Naming and Calling Conventions,” for information on selecting the

appropriate langtype type.
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The assembler does not
check parameters when
you call EXTERNDEF
procedures.

The diagram below shows the statements that declare an array, make it public,
and use it in another module.

—— MOD.INC ——
EXTERNDEF arrayl:BYTE
|

! '

————MOD1.ASM MOD2.ASM
INCLUDE MOD.INC INCLUDE MOD.INC
_DATA -CODE
arrayl BYTE 2, 4, 6 mov ax, arrayl[12]

Figure 8.1 Using EXTERNDEF for Variahles

The file position of EXTERNDEF directives is important. See Section 8.2.3,
“Positioning External Declarations,” for more information.

You can also make procedures visible by using EXTERNDEF without PROTO in-
side an include file. This method treats the procedure name as a simple identifier,
without the parameter list, so you forgo the assembler’s ability to check for the
correct parameters during assembly.

The method for using EXTERNDEF for procedures is the same as using it with
variables. You can also use EXTERNDEF to make code labels global.

8.2.2.2 Using PROTO

When a procedure is defined in one module and called from another module, it
must be declared public in the defining module and external in the calling mod-
ules; otherwise, assembly or linking errors occur.

You have three methods for declaring a procedure public. Using PUBLIC and
EXTERN is the only method prior to MASM 6.0. Section 8.3.1 explains the use
of PUBLIC and EXTERN. The previous section (8.2.2.1) explains the use of
EXTERNDEEF. This section illustrates the use of PROTO.

A PROTO (prototype) declaration in the include file establishes a procedure’s in-
terface in both the defining and calling modules. The PROTO directive automat-
ically generates an EXTERNDEF for the procedure unless the procedure has been
declared PRIVATE in the PROC statement. Defining a prototype enables type-
checking for the procedure arguments.
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PROTO and INVOKE Follow these steps to create an interface for a procedure defined in one module
simplify procedure calls. and called from other modules:
1. Place the PROTO declaration in the include file.

2. Define the procedure with PROC. The PROC directive declares the procedure
PUBLIC by default.

3. Call the procedure with the INVOKE statement (or with CALL).

The following example is a PROTO declaration for the far procedure
CopyFile, which uses the C parameter-passing and naming conventions, and
takes the arguments filename and numberlines. The diagram following

the example shows the file placement for these statements. This definition goes
into the include file:

CopyFile PROTO FAR C filename:BYTE, numberlines:WORD

The procedure definition for CopyFile is

CopyFile PROC FAR C USES cx, filename:BYTE, numberlines:WORD
To call the CopyFile procedure, you can use this INVOKE statement:

INVOKE CopyFile, NameVar, 200

TOOLS.INC
CopyFile PROTO FAR C filename:BYTE, numberlines:WORD

— | ¢

TOOLS.ASM FILE1.ASM
INCLUDE TOOLS.INC INCLUDE TOOLS.INC
-CODE -CODE
INVOKE CopyFile, NameVar, 200 CopyFile PROC FAR C USES cx,

filename:BYTE,
numberlines:WORD

Figure 8.2 Using PROTO and INVOKE

See Chapter 7, “Controlling Program Flow,” for descriptions, syntax, and ex-
amples of PROTO, PROC, and INVOKE.
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Communal variables can
reduce the size of
executable files.

EXTERNDEF is a flexible
alternative to using COMM.

8.2.2.3 Using COMM

Another way to share variables among modules is to add the COMM (communal)
declaration to your include file. Since communal variables are allocated by the
linker and cannot be initialized, you cannot depend on their location or sequence.

Communal variables are supported by MASM primarily for compatibility with
communal variables in Microsoft C. Communal variables are not used in any
other Microsoft language, and they are not compatible with C++ and some other
languages.

COMM declares a variable external but cannot be used with code. COMM also in-
structs the linker to define the variable if it has not been explicitly defined in a
module. The memory space for communal variables may not be assigned until
load time, so using communal variables may reduce the size of your executable
file.

The COMM declaration has the syntax
COMM [[langtype]l [NEAR | FAR] label:typel :count]

The label is the name of the variable. The langtype sets the naming conventions
for the name it precedes. It overrides any language specified in the .MODEL
directive.

If NEAR or FAR is not specified, the variable determines the default from the cur-
rent memory model (NEAR for TINY, SMALL, COMPACT, and FLAT; FAR for
MEDIUM, LARGE, and HUGE).

The type can be a constant expression, but it is usually a type such as BYTE,
WORD, or DWORD, or a structure, union, or record. If you first declare the fype
with TYPEDEF, CodeView can provide type information. The count is the num-
ber of elements. If no count is given, one element is assumed.

The following example creates the common far variable DataBlock, which is
a 1,024-element array of uninitialized signed doublewords:

COMM FAR DataBlock:SDWORD:1024

NOTE C variables declared outside functions (except static variables) are communal un-
less explicitly initialized; they are the same as assembly-language communal variables. If
you are writing assembly-language modules for C, you can declare the same communal vari-
ables in both C and MASM include files. However, communal variables in C do not have to
be declared communal in assembler. The linker will match the EXTERN, PUBLIC, and COMM
statements for the variable.

EXTERNDEF (explained in the previous section) is more flexible than COMM
because you can initialize variables defined with it, and you can use those varia-
bles in code that depends on the position and sequence of the data.
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8.2.3 Positioning External Declarations

Always close opened
segments.
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Although LINK determines the actual address of an external symbol, the assem-
bler assumes a default segment for the symbol, based on the location of the exter-
nal directive in the source code. You should therefore position EXTERN and
EXTERNDEF directives according to these rules:

m If you know which segment defines an external symbol, put the EXTERN
statement in that segment.

m If you know the group but not the segment, position the EXTERN statement
outside any segment and reference the variable with the group name. For ex-
ample, if varl isin DGROUP, you would reference the variable as

mov DGROUP:varl, 10.

m If you know nothing about the location of an external variable, put the
EXTERN statement outside any segment. You can use the SEG directive to
access the external variable like this:

mov ax, SEG varl
mov es, ax
mov ax, es:varl

m If the symbol is an absolute symbol or a far code label, you can declare it ex-
ternal anywhere in the source code.

Any segments opened in include files should always be closed so that external
declarations following an include statement are not incorrectly placed inside a
segment. Any include statements in your program should immediately follow the
.MODEL, OPTION, and processor directives.

For the same reason, if you want to be certain that an external definition is out-
side a segment, you can use @CurSeg. The @CurSeg predefined symbol re-
turns a blank if the definition is not in a segment. For example,

.DATA

@CurSeg ENDS ; Close segment
EXTERNDEF var:WORD

See Section 1.2.3, “Predefined Symbols,” for information about predefined sym-
bols such as @CurSeg.
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8.3 Using Alternatives to Include Files

If your project uses only two modules (or if it is written with a version of MASM
prior to 6.0), you may want to continue using PUBLIC in the defining module
and EXTERN in the accessing module, and not create an include file for the pro-
ject. The EXTERN directive can be used in an include file, but the include file
containing EXTERN cannot be added to the module that contains the correspond-
ing PUBLIC directive for that symbol. This section assumes that you are not
using include files.

8.3.1 PUBLIC and EXTERN

The PUBLIC and EXTERN directives are less flexible than EXTERNDEF and
PROTO because they are module-specific: PUBLIC must appear in the defining
module and EXTERN must appear in the calling modules. This section shows
how to use PUBLIC and EXTERN. Information on where to place the external
declarations in your file is in Section 8.2.3, “Positioning External Declarations.”

The PUBLIC directive makes a name visible outside the module in which it is de-
fined. This gives other program modules access to that identifier.

The EXTERN directive performs the complementary function. It tells the assem-
bler that a name referenced within a particular module is actually defined and de-
clared public in another module that will be specified at link time.

A PUBLIC directive can appear anywhere in a file. Its syntax is

PUBLIC [[langtypel]l namell, [langtypell name] ...

The name must be the name of an identifier defined within the current source
file. Only code labels, data labels, procedures, and numeric equates can be de-
clared public.

If you specify the langtype field here, it overrides the language specified by
.MODEL. The langtype field can be C, SYSCALL, STDCALL, PASCAL,
FORTRAN, or BASIC. Section 7.3.3, “Declaring Parameters with the PROC
Directive,” and Section 20.1, “Naming and Calling Conventions,” provide more
information on specifying langtype types.

The EXTERN directive tells the assembler that an identifier is external—defined
in some other module that will be supplied at link time. Its syntax is

EXTERN [langtype]l name:{ABS | qualifiedtype}

Section 1.2.6, “Data Types,” describes qualifiedtype. The ABS (absolute) key-
word can be used only with external numeric constants. ABS causes the identifier
to be imported as a relocatable unsized constant. This identifier can then be used
anywhere a constant can be used. If the identifier is not found in another module
at link time, the linker generates an error.
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In the following example, the procedure BuildTable and the variable Var
are declared public. The procedure uses the Pascal naming and data-passing
conventions:

MOD1.ASM MOD2.ASM
.MODEL small, Pascal EXTERN Var:BYTE,
PUBLIC BuildTable, Var BuildTable:FAR
:DATA l;]OV al, Var
Var BYTE [} call BuildTable
.CODE

BuildTable PROC USES cx dx,
sizevar:WORD

ret
BuildTable ENDP

Figure 8.3 Using PUBLIC and EXTERN

8.3.2 Other Alternatives

You can also use the directives discussed earlier (EXTERNDEF, PROTO, and
COMM) without the include file. In this case, place the declarations to make a
symbol global in the same module where the symbol is defined. You might want
to use this technique if you are linking only a few modules that have very little
data in common.

8.4 Developing Libraries
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As you create reusable procedures, you can place them in a library file for con-
venient access. Although you can put any routine into a library, each library usu-
ally contains related routines. For example, you might place string-manipulation
functions in one library, matrix calculations in another, and port communications
in another.

A library consists of combined object modules, each created from a single source
file. The object module is the smallest independent unit in a library. If you link
with one symbol in a module, you get the entire module, but not the entire library.
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A library can consist of two files—an include file containing necessary declara-
tions and constants and a .LIB file containing procedures already assembled into
object code.

8.4.1 Associating Libraries with Modules

Specify library names with
INCLUDELIB.

Link libraries with
command-line options.

LINK searches
in a specific order.

You can choose either of two methods for associating your libraries with the
modules that use them: you can use the INCLUDELIB directive inside your
source files or link the modules from the command line.

To associate a specified library with your object code, use INCLUDELIB. You
can add this directive to the source file to specify the libraries you want linked,
rather than specifying them in the LINK command line. The INCLUDELIB
syntax is

INCLUDELIB libraryname

The libraryname can be a file name or a complete path specification. If you do
not specify an extension, .LIB is assumed. The /ibraryname is placed in the com-
ment record of the object file. LINK reads this record and links with the specified
library file.

For example, the statement INCLUDELIB GRAPHICS passes a message from
the assembler to the linker telling LINK to use library routines from the file
GRAPHICS .LIB. If this statement is in the source file DRAW.ASM and
GRAPHICS.LIB is in the same directory, the program can be assembled and
linked with the following command line:

ML DRAW.ASM

Without the INCLUDELIB directive, the program DRAW.ASM has to be linked
with either of the following command lines:

ML DRAW.ASM GRAPHICS.LIB
ML DRAW /1ink GRAPHICS

If you want to assemble and link separately, you can use

ML /c DRAW.ASM
LINK DRAW,,,GRAPHICS

If you do not specify a complete path in the INCLUDELIB statement or at the
command line, LINK searches for the library file in the following order:

1. In the current directory
2. In any directories in the library field of the LINK command line

3. In any directories in the LIB environment variable
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The LIB utility provided with MASM 6.0 helps you create, organize, and main-
tain run-time libraries.

8.4.2 Using EXTERN with Library Routines
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In some cases, EXTERN helps you limit the size of your executable file by speci-
fying in the syntax an alternative name for a procedure. You would use this form
of the EXTERN directive when declaring a procedure or symbol that may not
need to be used.

The syntax looks like this:
EXTERN [[langtype]] name [ (altname) ] :qualifiedtype

The addition of the altname to the syntax provides the name of an alternate proce-
dure that the linker uses to resolve the external reference if the procedure given
by name is not needed. Both name and altname must have the same qualifiedtype.

When the linker encounters an external definition for a procedure that gives an
altname, the linker finishes processing that module before it links the object mod-
ule that contains the procedure given by name. If the program does not reference
any symbols in the name file’s object from any of the linked modules, the assem-
bler uses altname to satisfy the external reference. This saves space because the
library object module is not brought in.

For example, assume that the contents of STARTUP.ASM include these
statements:

EXTERN init(dummy)

dummy PROC
. ; A procedure definition containing no
ret ;  executable code

dummy ENDP
call init ; Defined in FLOAT.OBJ

In this example, the reference to the routine init (defined in FLOAT.OBJ)
does not force the module FLOAT.OBJ to be linked into the executable file. If
another reference causes FLOAT.OBIJ to be linked into the executable file, then
init will refer to the init label in FLOAT.OBJ. If there are no references
which force FLOAT.OBJ to be loaded, then the alternate name for
init(dummy) will be used by the linker.
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8.5 Related Topics in Online Help

In addition to information covered in this chapter, information on the following
topics can be found in online help.

Topic Access

LIB From the “Microsoft Advisor Contents” screen,
choose “LIB” from the list of Microsoft Utilities

INCLUDE, From the “MASM 6.0 Contents” screen, choose

INCLUDELIB, “Directives,” then “Scope and Visibility”

EXTERNDEF,

COMM, and

PUBLIC

TYPEDEF From the “MASM 6.0 Contents” screen, choose
“Directives,” then “Complex Data Types”

PROTO and INVOKE From the “MASM 6.0 Contents” screen, choose
“Directives,” then “Procedures and Code Labels”

OPTION directive From the “MASM 6.0 Contents” screen, choose
“Directives,” then “Miscellaneous”

@CurSeg From the “MASM 6.0 Contents” screen, choose
“Predefined Symbols”

PWB Options menu From the “Microsoft Advisor Contents” screen,

choose “Programmer’s WorkBench”
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Chapter 9
Using Macros

A “macro” is a symbolic name you give to a series of characters (a text macro) or
to one or more statements (a macro procedure or function). As the assembler
evaluates each line of your program, it scans the source code for names of pre-
viously defined macros. When it finds one, it substitutes the macro text for the
macro name. In this way, you can avoid writing the same code several places in
your program.

This chapter describes the following types of macros:

m  Text macros, which expand to text within a source statement

m  Macro procedures, which expand to one or more complete statements and can
optionally take parameters

m  Repeat blocks, which generate a group of statements a specified number of
times or until a specified condition becomes true

m  Macro functions, which look like macro procedures and can be used like text
macros but which also return a value

m Predefined macro functions and string directives, which perform string
operations

Macro processing is a text-processing mechanism that is done sequentially at as-
sembly time. By the end of assembly, all macros have been expanded and the re-
sulting text assembled into object code.

This chapter shows how to use macros for simple code substitutions as well as
how to write sophisticated macros with parameter lists and repeat loops. It also
describes how to use these features in conjunction with local symbols, macro
operators, and predefined macro functions.

9.1 Text Macros

You can give a sequence of characters a symbolic name and then use the name in
place of the text later in the source code. The named text is called a text macro.

229



Using Macros

230

The syntax for defining a text macro is

name TEXTEQU <text>
name TEXTEQU macrold | textmacro
name TEXTEQU %constExpr

where fext is a sequence of characters enclosed in angle brackets, macrold is a
previously defined macro function (see Section 9.6), textmacro is a previously de-
fined text macro, and %constExpr is an expression that evaluates to text. The use
of angle brackets to delimit text is discussed in more detail in Section 9.3.1, and
the % operator is explained in Section 9.3.2.

Here are some examples:

msg TEXTEQU <Some text> ; Text assigned to symbol
string TEXTEQU msg ; Text macro assigned to symbol
msg TEXTEQU <Some other text> ; New text assigned to symbol
value  TEXTEQU %(3 + num) ; Text representation of
; resolved expression assigned
;  to symbol

In the first line, text is assigned to the symbol msg. In the second line, the text of
the msg text macro is assigned to a new text macro called string. In the

third line, new text is assigned to msg. The result is that msg has the new text
value, while string has the original text value. The fourth line assigns 7 to
value if num equals 4.If a text macro expands to another text macro (or
macro function, which is discussed in Section 9.6), the resulting text macro will
be recursively expanded.

Text macros are useful for naming strings of text that do not evaluate to integers.
For example, you might use a text macro to name a floating-point constant or a
bracketed expression. Here are some practical examples:

pi TEXTEQU <3.1416> ; Floating point constant
WPT TEXTEQU <WORD PTR> ; Sequence of key words
argl TEXTEQU <[bp+41> ; Bracketed expression

NOTE Use of the TEXTEQU directive to define text macros is new in MASM 6.0. In previous
versions, you can use the EQU directive for the same purpose. If you have old code that
worked under previous versions, it should still work under 6.0. However, the more con-
sistent and flexible TEXTEQU is recommended for new code.



Macro Procedures

9.2 Macro Procedures

If your program needs to perform the same task many times, you can avoid
having to type the same statements each time by writing a macro procedure.
Macro procedures (commonly called macros) can be seen as text-processing
mechanisms that automatically generate repeated text.

The term “macro procedure” rather than macro is used when necessary to distin-
guish between macro procedures and macro functions (a new feature of MASM
6.0 described in Section 9.6, “Returning Values with Macro Functions™).

9.2.1 Creating Macro Procedures

Macro comments must
start with two semicolons
instead of one.

To define a macro procedure without parameters, place the desired statements be-
tween the MACRO and ENDM directives:

name MACRO
statements
ENDM

For example, suppose you want a program to beep when it encounters certain er-
rors. A beep macro can be defined as follows:

beep MACRO
mov ah, 2 ;3 Select DOS Print Char function
mov dl, 7 ;3 Select ASCII 7 (bell)
int 21h ;3 Call DOS

ENDM

The double semicolons mark the beginning of macro comments. Macro com-
ments appear in a listing file only at the macro’s initial definition, not at the point
where it is called and expanded. Listings are usually easier to read if the com-
ments aren’t always expanded. Regular comments (those with a single semi-
colon) are listed in macro expansions. Appendix C discusses listing files and
shows examples of how macros are expanded in listings.

Once a macro is defined, you can call it anywhere in the program by using the
macro’s name as a statement. The following example calls the beep macro two
times if an error flag has been set.

IF error ; If error flag is true
beep ;  execute macro two times
beep

.ENDIF
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Macros are usually faster
than run-time procedures.

The instructions in the macro take the place of the macro call when the program
is assembled. This would be the resulting code (from the listing file):

IF error
0017 80 3E 0000 R 00 * cmp error, 000h
001C 74 oC * je @C0001
beep
PO1E B4 @2 1 mov ah, 2
0020 B2 @7 1 mov dl, 7
0022 CD 21 1 int 21h
beep
0024 B4 02 1 mov ah, 2
0026 B2 @7 1 mov dl, 7
0028 (D 21 1 int 21h
.ENDIF
002A *@C0001:

Contrast this with the results of defining beep as a procedure using the PROC
directive and then calling it using the CALL instruction. The instructions of the
procedure occur only once in the executable file, but you would also have the ad-
ditional overhead of the CALL and RET instructions.

In some cases the same task can be done with either a macro or a procedure. Mac-
ros are potentially faster because they have less overhead, but they generate the
same code multiple times rather than just once.

9.2.2 Passing Arguments to Macros

Parameters allow macros
to execute variations of a
general task.
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By defining parameters for macros, you can define a general task and then ex-
ecute variations of it by passing different arguments each time you call the
macro. The complete syntax for a macro procedure includes a parameter list:

name MACRO parameterlist

statements
ENDM

The parameterlist can contain any number of parameters. Use commas to sepa-
rate each parameter in the list. Parameter names cannot be reserved words unless
the keyword has been disabled with OPTION NOKEYWORD, the compatibility
modes have been set by specifying OPTION M510 (see Section 1.3.2), or the /Zm
command-line option has been set.

To pass arguments to a macro, place the arguments after the macro name when
you call the macro:

macroname arglist

All text between matching quotation marks in an arglist is considered one text
item.
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The beep macro introduced in the last section used the DOS interrupt to write
the bell character (ASCII 7). It can be rewritten with a parameter to specify any
character to write.

writechar MACRO char

mov ah, 2 ;3 Select DOS Print Char function
mov dl, char ;3 Select ASCII char
int 21h ;3 Call DOS

ENDM

Wherever char appears in the macro definition, the assembler replaces it with
the argument in the macro call. Each time you call writechar, you can print a
different value:

writechar 7 ; Causes computer to beep
writechar 'A' ; Writes A to screen

If you pass more arguments than there are parameters, the additional arguments
generate a warning (unless you use the VARARG keyword; see Section 9.4.3). If
you pass fewer arguments than the macro procedure expects, remaining parame-
ters are assigned empty strings (unless default values have been specified). This
may cause errors. For example, if you call the writechar macro with no argu-
ment, it generates the following:

mov d1,

The assembler generates an error for the expanded statement but not for the
macro definition or the macro call.

Macros can be made more flexible by leaving off macro arguments or adding ad-
ditional ones. The next section tells some of the ways you can handle missing or
extra arguments.

9.2.3 Specifying Required and Default Parameters

You can specify required
and default parameters for
macros.

You can give macro parameters special attributes to make them more flexible
and improve error handling; you can make them required, give them default
values, or vary their number. Because variable parameters are used almost exclu-
sively with the FOR directive, discussion of them is postponed until Section
9.4.3, “FOR Loops and Variable-Length Parameters.”

The syntax for a required parameter is

parameter:REQ
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A default value fills in
missing parameters.
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For example, you can rewrite the writechar macro to require the char
parameter:

writechar MACRO char:REQ

mov ah, 2 ;; Select DOS Print Char function
mov dl, char ;3 Select ASCII char
int 21h ;3 Call DOS

ENDM

If the call does not include a matching argument, the assembler reports the error
in the line that contains the macro call. The effect of REQ is to improve error
reporting.

Another way to handle missing parameters is to specify a default value. The
syntax is

parameter:=textvalue

Suppose that you often use writechar to beep by printing ASCII 7. The fol-
lowing macro definition uses an equal sign to tell the assembler to assume the
parameter char is 7 unless you specify otherwise:

writechar MACRQO char:=<7>

mov ah, 2 ;3 Select DOS Print Char function
mov dl, char ;3 Select ASCII char
int 21h ;3 Call DOS

ENDM

In this case, char is notrequired. If you don’t supply a value, the assembler
fills in the blank with the default value of 7 and the macro beeps when called.

The default parameter value is enclosed in angle brackets so that the supplied
value will be recognized as a text value. Section 9.3.1, “Text Delimiters (< >)
and the Literal-Character Operator (!),” explains this in more detail.

Missing arguments can also be handied with the IFB, IFNB, .ERRB, and .ERRNB
directives. They are described briefly