_ RIUA=Y D UZN-C A N

D VA - NC D

RO 6K AMMENG

The
Microsoft
guide for

Micresoft Assembly
PR E-S.8
Language

andC

programmers

ADVANCED

PROGRAMMING

ADYVANCED

PROGRAMMING

The
Microsoft®
guide for
Assembly

Language

andC

programmers

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1986, 1988 by Ray Duncan

Published 1986. Second edition 1988.

All rights reserved. No part of the contents of this book may

be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Duncan, Ray, 1952-

Advanced MS-DOS programming.

Rev. ed. of: Advanced MS-DOS. ©1986.

Includes index.

1. MS-DOS (Computer operating system) 2. Assembler language
(Computer program language) 3. C (Computer program language)
1. Duncan, Ray, 1952- Advanced MS-DOS. IL. Title.
QA76.76.063D858 1988 005.4'46 88-1251

ISBN 1-55615-157-8

Printed and bound in the United States of America.

123456789 FGFG 321098

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Penguin Books Ltd., Harmondworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairu Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM® PC/AT® and PS/2® are registered trademarks of International Business Machines Corporation. CodeView®,
Microsoft® MS-DOS® and XENIX® are registered trademarks and InPort™ is a trademark of Microsoft Corporation.

Technical Editor: Mike Halvorson Production Editor: Mary Ann Jones

For Carolyn

Sectionl
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Section |l

Section 1l

Section IV

Contents

Road Map to Figures and Tables
Acknowledgments
Introduction

Programming for MS-DOS
Genealogy of MS-DOS
MS-DOS in Operation
Structure of MS-DOS Application Programs
MS-DOS Programming Tools
Keyboard and Mouse Input
Video Display

Printer and Serial Port

File Management

Volumes and Directories

Disk Internals

Memory Management

The EXEC Function
Interrupt Handlers

Installable Device Drivers
Filters

Compeatibility and Portability
MS-DOS Functions Reference

IBM ROM BIOS and Mouse Functions
Reference

Lotus/Intel/Microsoft EMS Functions Reference

Index

ix
X1
X116

11

21

43

65

85
105
127
165
177
195
217
243
259
297
313
333
493

613
647

Road Map to Figures and Tables

MS-DOS versions and release dates
MS-DOS memory map

Structure of program segment prefix (PSP)
Structure of .EXE load module

Register conditions at program entry
Segments, groups, and classes

Macro Assembler switches

C Compiler switches

Linker switches

MAKE switches

ANSI escape sequences

Video attributes

Structure of normal file control block (FCB)
Structure of extended file control block
MS-DOS error codes

Structure of boot sector

Structure of directory entry

Structure of fixed-disk master block

LIM EMS error codes

Intel 80x86 internal interrupts (faults)
Intel 80x86, MS-DOS, and ROM BIOS interrupts
Device-driver attribute word
Device-driver command codes

Structure of BIOS parameter block (BPB)
Media descriptor byte

8
20
23
32
36
40
47
49
53
61
92
97,98

129
131
145
180
184
192
207, 208
246
248
264
267
269
270

ix

Acknowledgments

My renewed thanks to the outstanding editors and production staff at
Microsoft Press, who make beautiful books happen, and to the talented
Microsoft developers, who create great programs to write books about.
Special thanks to Mike Halvorson, Jeff Hinsch, Mary Ann Jones, Claudette
Moore, Dori Shattuck, and Mark Zbikowski; if this book has anything
unique to offer, these people deserve most of the credit.

Xi

Introduction

Advanced MS-DOS Programming is written for the experienced C or
assembly-language programmer. It provides all the information you need
to write robust, high-performance applications under the MS-DOS operat-
ing system. Because I believe that working, well-documented programs
are unbeatable learning tools, I have included detailed programming
examples throughout—including complete utility programs that you can
adapt to your own needs.

This book is both a tutorial and a reference and is divided into four
sections, so that you can find information more easily. Section I discusses
MS-DOS capabilities and services by functional group in the context of
common programming issues, such as user input, control of the display,
memory management, and file handling. Special classes of programs,
such as interrupt handlers, device drivers, and filters, have their own
chapters.

Section II provides a complete reference guide to MS-DOS function calls,
organized so that you can see the calling sequence, results, and version
dependencies of each function at a glance. I have also included notes,
where relevant, about quirks and special uses of functions as well as
cross-references to related functions. An assembly-language example is
included for each entry in Section II.

Sections III and IV are references to IBM ROM BIOS, Microsoft Mouse
driver, and Lotus/Intel/Microsoft Expanded Memory Specification func-
tions. The entries in these two sections have the same form as in Section
11, except that individual programming examples have been omitted.

The programs in this book were written with the marvelous Brief editor
from Solution Systems and assembled or compiled with Microsoft Macro
Assembler version 5.1 and Microsoft C Compiler version 5.1. They have
been tested under MS-DOS versions 2.1, 3.1, 3.3, and 4.0 on an 8088-based
IBM PC, an 80286-based IBM PC/AT, and an 80386-based IBM PS/2 Model
80. As far as I am aware, they do not contain any software or hardware de-
pendencies that will prevent them from running properly on any IBM PC—
compatible machine running MS-DOS version 2.0 or later.

xiii

Changes from the First Edition

Xiv

Readers who are familiar with the first edition will find many changes in
the second edition, but the general structure of the book remains the
same. Most of the material comparing MS-DOS to CP/M and UNIX/XENIX
has been removed; although these comparisons were helpful a few years
ago, MS-DOS has become its own universe and deserves to be considered
on its own terms.

The previously monolithic chapter on character devices has been broken
into three more manageable chapters focusing on the keyboard and
mouse, the display, and the serial port and printer. Hardware-dependent
video techniques have been de-emphasized; although this topic is more
important than ever, it has grown so complex that it requires a book of its
own. A new chapter discusses compatibility and portability of MS-DOS
applications and also contains a brief introduction to Microsoft OS/ 2, the
new multitasking, protected-mode operating system.

A road map to vital figures and tables has been added, following the Table
of Contents, to help you quickly locate the layouts of the program segment
prefix, file control block, and the like.

The reference sections at the back of the book have been extensively up-
dated and enlarged and are now complete through MS-DOS version 4.0,
the IBM PS/2 Model 80 ROM BIOS and the VGA video adapter, the
Microsoft Mouse driver version 6.0, and the Lotus/Intel/Microsoft Ex-
panded Memory Specification version 4.0.

In the two years since Advanced MS-DOS Programming was first
published, hundreds of readers have been kind enough to send me their
comments, and I have tried to incorporate many of their suggestions in
this new edition. As before, please feel free to contact me via MCI Mail
(user name LMI), CompuServe (user ID 72406,1577), or BIX (user name
rduncan).

Ray Duncan

Los Angeles, California
September 1988

SPECIAL OFFER

Companion Disk to
ADVANCED MS-DOS PROGRAMMING,
2nd edition

Microsoft Press has created a Companion Disk to ADVANCED MS-
DOS PROGRAMMING, 2nd edition, available in either 5.25-inch or
3.5-inch format. This disk contains all of the source files and execut-
able files from the book and is an essential resource for anyone who
wants to forgo the drudgery of typing code (and the time required to
find and correct those inevitable typing errors).

The Companion Disk to ADVANCED MS-DOS PROGRAMMING is
available only from Microsoft Press. To order, use the special reply
card bound in the back of the book. If the card has already been used,
send $19.95, plus sales tax if applicable (CA residents 5% plus local op-
tion tax, CT 7.5%, FL 6%, MA 5%, MN 6%, MO 4.225%, N'Y 4% plus lo-
cal option tax, WA State 7.8%) and $2.50 per disk for domestic postage
‘and handling, $6.00 per disk for foreign orders to: Microsoft Press,
Attn: Companion Disk Offer, 21919 20th Ave S.E., Box 3011, Bothell,
WA 98041-3011. Please specify 5.25-inch or 3.5-inch format. Payment
must be in U.S. funds. You may pay by check or money order (payable
to Microsoft Press) or by American Express, VISA, or MasterCard;
please include both your credit card number and the expiration date.
All orders are shipped 2nd day air upon receipt of order to Microsoft.

If you have questions or comments about this disk, please contact Ray
Duncan via MCI Mail (user name LMI), CompuServe (user ID
72406,1577), or BIX (user name rduncan).

If this disk proves defective, please send the defective disk along with
your packing slip to: Microsoft Press, Consumer Sales, 16011 NE 36th
Way, Box 97017, Redmond, WA 98073-9717.

Programming

for MS-DOS

Chapter1

Genealogy of MS-DOS

In only seven years, MS-DOS has evolved from a simple program loader
into a sophisticated, stable operating system for personal computers that
are based on the Intel 8086 family of microprocessors (Figure 1-1). MS-
DOS supports networking, graphical user interfaces, and storage devices
of every description,; it serves as the platform for thousands of application
programs; and it has over 10 million licensed users—dwarfing the com-
bined user bases of all of its competitors.

The progenitor of MS-DOS was an operating system called 86-DOS, which
was written by Tim Paterson for Seattle Computer Products in mid-1980.
At that time, Digital Research’s CP/M-80 was the operating system most
commonly used on microcomputers based on the Intel 8080 and Zilog
Z-80 microprocessors, and a wide range of application software (word
processors, database managers, and so forth) was available for use with
CP/M-80.

To ease the process of porting 8-bit CP/M-80 applications into the new 16-
bit environment, 86-DOS was originally designed to mimic CP/M-80 in
both available functions and style of operation. Consequently, the struc-
tures of 86-DOS’s file control blocks, program segment prefixes, and exe-
cutable files were nearly identical to those of CP/M-80. Existing CP/M-80
programs could be converted mechanically (by processing their source-
code files through a special translator program) and, after conversion,
would run under 86-DOS either immediately or with very little hand
editing.

Because 86-DOS was marketed as a proprietary operating system for
Seattle Computer Products’ line of S-100 bus, 8086-based microcomputers,
it made very little impact on the microcomputer world in general. Other
vendors of 8086-based microcomputers were understandably reluctant to
adopt a competitor’s operating system and continued to wait impatiently
for the release of Digital Research’s CP/M-86.

In October 1980, IBM approached the major microcomputer-software
houses in search of an operating system for the new line of personal com-
puters it was designing. Microsoft had no operating system of its own to
offer (other than a stand-alone version of Microsoft BASIC) but paid a fee
to Seattle Computer Products for the right to sell Paterson’s 86-DOS. (At
that time, Seattle Computer Products received a license to use and sell
Microsoft’s languages and all 8086 versions of Microsoft's operating sys-
tem.) In July 1981, Microsoft purchased all rights to 86-DOS, made sub-
stantial alterations to it, and renamed it MS-DOS. When the first IBM PC
was released in the fall of 1981, IBM offered MS-DOS (referred to as PC-
DOS 1.0) as its primary operating system.

Programming for MS-DOS

IBM also selected Digital Research’s CP/M-86 and Softech’s P-system as
alternative operating systems for the PC. However, they were both very
slow to appear at IBM PC dealers and suffered the additional disadvan-
tages of higher prices and lack of available programming languages. IBM
threw its considerable weight behind PC-DOS by releasing all the IBM-
logo PC application software and development tools to run under it. Con-
sequently, most third-party software developers targeted their products
for PC-DOS from the start, and CP/M-86 and P-system never became sig-
nificant factors in the IBM PC—compatible market.

In spite of some superficial similarities to its ancestor CP/M-80, MS-DOS
version 1.0 contained a number of improvements over CP/M-80, including
the following:

» An improved disk-directory structure that included information about
a file’s attributes (such as whether it was a system or a hidden file), its
exact size in bytes, and the date that the file was created or last
modified

= A superior disk-space allocation and management method, allowing
extremely fast sequential or random record access and program
loading

= An expanded set of operating-system services, including hardware-
independent function calls to set or read the date and time, a filename
parser, multiple-block record 1/0, and variable record sizes

® An AUTOEXEC.BAT batch file to perform a user-defined series of
commands when the system was started or reset

IBM was the only major computer manufacturer (sometimes referred to as
OEM, for original equipment manufacturer) to ship MS-DOS version 1.0
(as PC-DOS 1.0) with its products. MS-DOS version 1.25 (equivalent to IBM
PC-DOS 1.1) was released in June 1982 to fix a number of bugs and also to
support double-sided disks and improved hardware independence in the
DOS kernel. This version was shipped by several vendors besides IBM, in-
cluding Texas Instruments, COMPAQ, and Columbia, who all entered the
personal computer market early. Due to rapid decreases in the prices of
RAM and fixed disks, MS-DOS version 1 is no longer in common use.

MS-DOS version 2.0 (equivalent to PC-DOS 2.0) was first released in March
1983. It was, in retrospect, a new operating system (though great care was
taken to maintain compatibility with MS-DOS version 1. It contained
many significant innovations and enhanced features, including those
listed on the following page.

Genealogy of MS-DOS

Support for both larger-capacity floppy disks and hard disks

Many UNIX/XENIX-like features, including a hierarchical file struc-
ture, file handles, I/O redirection, pipes, and filters

Background printing (print spooling)
Volume labels, plus additional file attributes
Installable device drivers

A user-customizable system-configuration file that controlled the load-
ing of additional device drivers, the number of system disk buffers, and
so forth

Maintenance of environment blocks that could be used to pass infor-
mation between programs

An optional ANSI display driver that allowed programs to position the
cursor and control display characteristics in a hardware-independent
manner

Support for the dynamic allocation, modification, and release of
memory by application programs

Support for customized user command interpreters (shells)

= System tables to assist application software in modifying its currency,
time, and date formats (known as international support)

MS-DOS version 2.11 was subsequently released to improve international
support (table-driven currency symbols, date formats, decimal-point sym-
bols, currency separators, and so forth), to add support for 16-bit Kanji
characters throughout, and to fix a few minor bugs. Version 2.11 rapidly
became the base version shipped for 8086/8088-based personal com-
puters by every major OEM, including Hewlett-Packard, Wang, Digital
Equipment Corporation, Texas Instruments, COMPAQ), and Tandy.

MS-DOS version 2.25, released in October 1985, was distributed in the Far
East but was never shipped by OEMs in the United States and Europe. In
this version, the international support for Japanese and Korean character
sets was extended even further, additional bugs were repaired, and many
of the system utilities were made compatible with MS-DOS version 3.0.

MS-DOS version 3.0 was introduced by IBM in August 1984 with the
release of the 80286-based PC/AT machines. It represented another major
rewrite of the entire operating system and included the important new
features listed on the following page.

Programming for MS-DOS

Direct control of the print spooler by application software

Further expansion of international support for currency formats

Extended error reporting, including a code that suggests a recovery
strategy to the application program

Support for file and record locking and sharing
® Support for larger fixed disks

MS-DOS version 3.1, which was released in November 1984, added sup-
port for the sharing of files and printers across a network. Beginning with
version 3.1, a new operating-system module called the redirector inter-
cepts an application program’s requests for I/O and filters out the requests
that are directed to network devices, passing these requests to another
machine for processing.

Since version 3.1, the changes to MS-DOS have been evolutionary rather
than revolutionary. Version 3.2, which appeared in 1986, generalized the
definition of device drivers so that new media types (such as 3.5-inch
floppy disks) could be supported more easily. Version 3.3 was released in
1987, concurrently with the new IBM line of PS/2 personal computers, and
drastically expanded MS-DOS’s multilanguage support for keyboard map-
pings, printer character sets, and display fonts. Version 4.0, delivered in
1988, was enhanced with a visual shell as well as support for very large file
systems.

While MS-DOS has been evolving, Microsoft has also put intense efforts
into the areas of user interfaces and multitasking operating systems.
Microsoft Windows, first shipped in 1985, provides a multitasking, graphi-
cal user “desktop” for MS-DOS systems. Windows has won widespread
support among developers of complex graphics applications such as
desktop publishing and computer-aided design because it allows their
programs to take full advantage of whatever output devices are available
without introducing any hardware dependence.

Microsoft Operating System/2 (MS OS/2), released in 1987, represents a
new standard for application developers: a protected-mode, multitasking,
virtual-memory system specifically designed for applications requiring
high-performance graphics, networking, and interprocess communica-
tions. Although MS OS/2 is a new product and is not a derivative of
MS-DOS, its user interface and file system are compatible with MS-DOS
and Microsoft Windows, and it offers the ability to run one real-mode (MS-
DOS) application alongside MS OS/2 protected-mode applications. This
compatibility allows users to move between the MS-DOS and OS/2 envi-
ronments with a minimum of difficulty.

Genealogy of MS-DOS

MS-DOS 1.0
PC-DOS 1.0

S

| Ms-DOs1.25
PC-DOS 1.1

R

MS-DOS 2.0
PC-DOS 2.0

SR R

1981: First operating system on IBM PC

Double-sided disk support and bug fixes added:
widely distributed by OEMs other than IBM

1983: Introduced with IBM PC/XT;
support for UNIX/XENIX-like hierarchical
file structure and hard disks added

MS-DOS 2.01

RS RS,

MS-DOS 2.11

SRR NGRS

2.0 with inter-
national support

Introduced with PCjr;
2.0 with bug fixes

I

2.01 with bug fixes

MS-DOS 3.0
PC-DOS 3.0

MS-DOS 3.1
PC-DOS 3.1

MS-DOS 3.2
PC-DOS 3.2

MS-DOS 3.3
PC-DOS 3.3

R

MS-DOS 4.0
PC-DOS 4.0

R

!

1984: Introduced 1985: Far East OEMs;

with PC/AT; support for extended
support for 1.2 character sets

MB floppy disk,

larger hard disk added

1984: Support
for Microsoft

Networks added 1985: Graphical
user interface
for MS-DOS

1986: Support

for 3.5-inch

disks added

1987: Introduced
with IBM PS/2;
generalized code-
page (font) support

1987: Compatibility
with OS/2
Presentation Manager

1988: Support for
logical volumes
larger than 32 MB;
visual shell

Figure 1-1. The evolution of MS-DOS.

Programming for MS-DOS

What does the future hold for MS-DOS? Only the long-range planning
teams at Microsoft and IBM know for sure. But it seems safe to assume that
MS-DOS, with its relatively small memory requirements, adaptability to
diverse hardware configurations, and enormous base of users, will remain
important to programmers and software publishers for years to come.

Genealogy of MS-DOS

Chapter 2

MS-DOS in Ope

It is unlikely that you will ever be called upon to configure the MS-DOS
software for a new model of computer. Still, an acquaintance with the
general structure of MS-DOS can often be very helpful in understanding
the behavior of the system as a whole. In this chapter, we will discuss how
MS-DOS is organized and how it is loaded into memory when the com-
puter is turned on.

The Structure of MS-DOS

MS-DOS is partitioned into several layers that serve to isolate the kernel
logic of the operating system, and the user’s perception of the system,
from the hardware it is running on. These layers are

m The BIOS (Basic Input/Output System)
m The DOS kernel
s The command processor (shell)

We'll discuss the functions of each of these layers separately.

The BIOS Module

12

The BIOS is specific to the individual computer system and is provided by
the manufacturer of the system. It contains the default resident hardware-
dependent drivers for the following devices:

s Console display and keyboard (CON)
= Line printer (PRN)

m Auxiliary device (AUX)

Date and time (CLOCKS$)

= Boot disk device (block device)

The MS-DOS kernel communicates with these device drivers through 1/0
request packets; the drivers then translate these requests into the proper
commands for the various hardware controllers. In many MS-DOS sys-
tems, including the IBM PC, the most primitive parts of the hardware
drivers are located in read-only memory (ROM) so that they can be used
by stand-alone applications, diagnostics, and the system startup program.

The terms resident and installable are used to distinguish between the
drivers built into the BIOS and the drivers installed during system initial-
ization by DEVICE commands in the CONFIG.SYS file. (Installable drivers
will be discussed in more detail later in this chapter and in Chapter 14.)

Programming for MS-DOS

The BIOS is read into random-access memory (RAM) during system ini-
tialization as part of a file named 10.SYS. (In PC-DOS, the file is called
IBMBIO.COM.) This file is marked with the special attributes hidden and
system.

The DOS Kernel

The DOS kernel implements MS-DOS as it is seen by application pro-
grams. The kernel is a proprietary program supplied by Microsoft Corpo-
ration and provides a collection of hardware-independent services called
system functions. These functions include the following:

B File and record management

s Memory management

Character-device input/output
m Spawning of other programs
® Access to the real-time clock

Programs can access system functions by loading registers with function-
specific parameters and then transferring to the operating system by
means of a software interrupt.

The DOS kernel is read into memory during system initialization from the
MSDOS.SYS file on the boot disk. (The file is called IBMDOS.COM in PC-
DOS.) This file is marked with the attributes #idden and system.

The Command Processor

The command processor, or shell, is the user’s interface to the operating
system. It is responsible for parsing and carrying out user commands, in-
cluding the loading and execution of other programs from a disk or other
mass-storage device.

The default shell that is provided with MS-DOS is found in a file called
COMMAND.COM. Although COMMAND.COM prompts and responses
constitute the ordinary user’s complete perception of MS-DOS, it is im-
portant to realize that COMMAND.COM is not the operating system, but
simply a special class of program running under the control of MS-DOS.

COMMAND.COM can be replaced with a shell of the programmer’s own
design by simply adding a SHELL directive to the system-configuration
file (CONFIG.SYS) on the system startup disk. The product COMMAND-
PLUS from ESP Systems is an example of such an alternative shell.

MS-DOS in Operation

14

More about COMMAND.COM
The default MS-DOS shell, COMMAND.COM, is divided into three parts:

& A resident portion
& An initialization section
e A transient module

The resident portion is loaded in lower memory, above the DOS kernel
and its buffers and tables. It contains the routines to process Ctrl-C and
Ctrl-Break, critical errors, and the termination (final exit) of other tran-
sient programs. This part of COMMAND.COM issues error messages and
is responsible for the familiar prompt

Abort, Retry, Ignore?

The resident portion also contains the code required to reload the tran-
sient portion of COMMAND.COM when necessary.

The initialization section of COMMAND.COM is loaded above the resi-
dent portion when the system is started. It processes the AUTOEXEC.BAT
batch file (the user’s list of commands to execute at system startup), if one
is present, and is then discarded.

The transient portion of COMMAND.COM is loaded at the high end of
memory, and its memory can also be used for other purposes by applica-
tion programs. The transient module issues the user prompt, reads the
commands from the keyboard or batch file, and causes them to be exe-
cuted. When an application program terminates, the resident portion of
COMMAND.COM does a checksum of the transient module to determine
whether it has been destroyed and fetches a fresh copy from the disk if
necessary.

The user commands that are accepted by COMMAND.COM fall into three
categories:

Internal commands
External commands
a Batch files

Internal commands, sometimes called intrinsic commands, are those
carried out by code embedded in COMMAND.COM itself. Commands in
this category include COPY, REN(AME), DIR(ECTORY), and DEL(ETE).
The routines for the internal commands are included in the transient part
of COMMAND.COM.

Programming for MS-DOS

External commands, sometimes called extrinsic commands or transient
programs, are the names of programs stored in disk files. Before these
programs can be executed, they must be loaded from the disk into the
transient program area (TPA) of memory. (See “How MS-DOS Is Loaded”
in this chapter.) Familiar examples of external commands are CHKDSK,
BACKUP, and RESTORE. As soon as an external command has completed
its work, it is discarded from memory; hence, it must be reloaded from
disk each time it is invoked.

Batch files are text files that contain lists of other intrinsic, extrinsic, or
batch commands. These files are processed by a special interpreter that is
built into the transient portion of COMMAND.COM. The interpreter reads
the batch file one line at a time and carries out each of the specified
operations in order.

In order to interpret a user's command, COMMAND.COM first looks to
see if the user typed the name of a built-in (intrinsic) command that it can
carry out directly. If not, it searches for an external command (executable
program file) or batch file by the same name. The search is carried out

" first in the current directory of the current disk drive and then in each of
the directories specified in the most recent PATH command. In each
directory inspected, COMMAND.COM first tries to find a file with the ex-
tension .COM, then .EXE, and finally .BAT. If the search fails for all three
file types in all of the possible locations, COMMAND.COM displays the
familiar message

Bad command or file name

If a .COM file or a .EXE file is found, COMMAND.COM uses the MS-DOS
EXEC function to load and execute it. The EXEC function builds a special
data structure called a program segment prefix (PSP) above the resident
portion of COMMAND.COM in the transient program area. The PSP con-
tains various linkages and pointers needed by the application program.
Next, the EXEC function loads the program itself, just above the PSP, and
performs any relocation that may be necessary. Finally, it sets up the
registers appropriately and transfers control to the entry point for the pro-
gram. (Both the PSP and the EXEC function will be discussed in more
detail in Chapters 3 and 12.) When the transient program has finished its
job, it calls a special MS-DOS termination function that releases the tran-
sient program’s memory and returns control to the program that caused
the transient program to be loaded (COMMAND.COM, in this case).

A transient program has nearly complete control of the system’s resources
while it is executing. The only other tasks that are accomplished are those

MS-DOS in Operation

15

performed by interrupt handlers (such as the keyboard input driver and
the real-time clock) and operations that the transient program requests
from the operating system. MS-DOS does not support sharing of the
central processor among several tasks executing concurrently, nor can it
wrest control away from a program when it crashes or executes for too
long. Such capabilities are the province of MS OS/2, which is a protected-
mode system with preemptive multitasking (time-slicing).

How MS-DOS Is Loaded

16

When the system is started or reset, program execution begins at address
OFFFFOH. This is a feature of the 8086/8088 family of microprocessors
and has nothing to do with MS-DOS. Systems based on these processors
are designed so that address OFFFFOH lies within an area of ROM and con-
tains a jump machine instruction to transfer control to system test code
and the ROM bootstrap routine (Figure 2-1).

The ROM bootstrap routine reads the disk bootstrap routine from the first
sector of the system startup disk (the boot sector) into memory at some
arbitrary address and then transfers control to it (Figure 2-2). (The boot
sector also contains a table of information about the disk format.)

The disk bootstrap routine checks to see if the disk contains a copy of MS-
DOS. It does this by reading the first sector of the root directory and
determining whether the first two files are I0.SYS and MSDOS.SYS (or
IBMBIO.COM and IBMDOS.COM), in that order. If these files are not pres-
ent, the user is prompted to change disks and strike any key to try again.

ROM bootstrap routine

< Top of RAM

Figure 2-1. A typical 8086/8088-based computer system immediately after system
startup or reset. Execution begins at location OFFFFOH, which contains a jump in-
struction that directs program control to the ROM bootstrap routine.

Programming for MS-DOS

ROM bootstrap routine

< Top of RAM

Disk bootstrap routine

00400H
00000H i, _ Interrupt vectors

Figure 2-2. The ROM bootstrap routine loads the disk bootstrap routine into memory
from the first sector of the system startup disk and then transfers control to it.

If the two system files are found, the disk bootstrap reads them into
memory and transfers control to the initial entry point of IO.SYS (Figure
2-3). (In some implementations, the disk bootstrap reads only IO.SYS into
memory, and I0.SYS in turn loads the MSDOS.SYS file.)

The I0.SYS file that is loaded from the disk actually consists of two sepa-
rate modules. The first is the BIOS, which contains the linked set of resi-
dent device drivers for the console, auxiliary port, printer, block, and
clock devices, plus some hardware-specific initialization code that is run
only at system startup. The second module, SYSINIT, is supplied by
Microsoft and linked into the IO.SYS file, along with the BIOS, by the
computer manufacturer.

SYSINIT is called by the manufacturer’s BIOS initialization code. It deter-
mines the amount of contiguous memory present in the system and then
relocates itself to high memory. Then it moves the DOS kernel,
MSDOS.SYS, from its original load location to its final memory location,
overlaying the original SYSINIT code and any other expendable initializa-
tion code that was contained in the 10.SYS file (Figure 2-4).

Next, SYSINIT calls the initialization code in MSDOS.SYS. The DOS
kernel initializes its internal tables and work areas, sets up the interrupt
vectors 20H through 2FH, and traces through the linked list of resident de-
vice drivers, calling the initialization function for each. (See Chapter 14.)

MS-DOS in Operation

< Arbitrary load location

17

18

ROM bootstrap routine

<« Top of RAM

Disk bootstrap routine

DOS kernel (from MSDOS.SYS)

SYSINIT (from 10.SYS)

BIOS (from I0.SYS)

00400H
00000H

Interrupt vectors

Figure 2-3. The disk bootstrap reads the file I0.SYS into memory. This file contains
the MS-DOS BIOS (resident device drivers) and the SYSINIT module. Either the disk
bootstrap or the BIOS (depending upon the manufacturer’s implementation) then
reads the DOS kernel into memory from the MSDOS.SYS file.

These driver functions determine the equipment status, perform any nec-
essary hardware initialization, and set up the vectors for any external
hardware interrupts the drivers will service.

As part of the initialization sequence, the DOS kernel examines the disk-
parameter blocks returned by the resident block-device drivers, deter-
mines the largest sector size that will be used in the system, builds some
drive-parameter blocks, and allocates a disk sector buffer. Control then
returns to SYSINIT.

When the DOS kernel has been initialized and all resident device drivers
are available, SYSINIT can call on the normal MS-DOS file services to
open the CONFIG.SYS file. This optional file can contain a variety of com-
mands that enable the user to customize the MS-DOS environment. For

Programming for MS-DOS

< In temporary location

ROM bootstrap routine

< Top of RAM
SYSINIT module

Installable drivers

File control blocks
Disk buffer cache

DOS kernel

<4 In final location

00400H

Figure 2-4. SYSINIT moves itself to high memory and relocates the DOS kernel,
MSDOS.SYS, downward to its final address. The MS-DOS disk buffer cache and file
control block areas are allocated, and then the installable device drivers specified in
the CONFIG.SYS file are loaded and linked into the system.

instance, the user can specify additional hardware device drivers, the
number of disk buffers, the maximum number of files that can be open at
one time, and the filename of the command processor (shelD).

If it is found, the entire CONFIG.SYS file is loaded into memory for pro-
cessing. All lowercase characters are converted to uppercase, and the file
is interpreted one line at a time to process the commands. Memory is allo-
cated for the disk buffer cache and the internal file control blocks used by
the handle file and record system functions. (See Chapter 8.) Any device
drivers indicated in the CONFIG.SYS file are sequentially loaded into
memory, initialized by calls to their init modules, and linked into the
device-driver list. The init function of each driver tells SYSINIT how
much memory to reserve for that driver.

After all installable device drivers have been loaded, SYSINIT closes all
file handles and reopens the console (CON), printer (PRN), and auxiliary

MS-DOS in Operation

19

(AUX) devices as the standard input, standard output, standard error, stan-
dard list, and standard auxiliary devices. This allows a user-installed
character-device driver to override the BIOS's resident drivers for the
standard devices.

Finally, SYSINIT calls the MS-DOS EXEC function to load the command
interpreter, or shell. (The default shell is COMMAND.COM, but another
shell can be substituted by means of the CONFIG.SYS file.) Once the shell
is loaded, it displays a prompt and waits for the user to enter a command.
MS-DOS is now ready for business, and the SYSINIT module is discarded
(Figure 2-5).

ROM bootstrap routine

< Top of RAM

Transient part of COMMAND.COM

Transient program area

Resident part of COMMAND.COM

Installable drivers
File control blocks
Disk buffer cache

DOS kernel

BIOS

Interrupt vectors

Figure 2-5. The final result of the MS-DOS startup process for a typical system. The
resident portion of COMMAND.COM lies in low memory, above the DOS kernel. The
transient portion containing the batch-file interpreter and intrinsic commands is
Dlaced in high memory, where it can be overlaid by extrinsic commands and appli-
cation programs running in the transient program area.

Programming for MS-DOS

Chapter 3

Structure of MS-DOS
Application Programs

Programs that run under MS-DOS come in two basic flavors: .COM pro-
grams, which have a maximum size of approximately 64 KB, and .EXE
programs, which can be as large as available memory. In Intel 8086
parlance, .COM programs fit the tiny model, in which all segment regis-
ters contain the same value; that is, the code and data are mixed together.
In contrast, .EXE programs fit the small, medium, or large model, in which
the segment registers contain different values; that is, the code, data, and
stack reside in separate segments. .EXE programs can have multiple code
and data segments, which are respectively addressed by long calls and by
manipulation of the data segment (DS) register.

A .COM:-type program resides on the disk as an absolute memory image,
in a file with the extension .COM. The file does not have a header or any
other internal identifying information. A .EXE program, on the other
hand, resides on the disk in a special type of file with a unique header, a
relocation map, a checksum, and other information that is (or can be)
used by MS-DOS.

Both .COM and .EXE programs are brought into memory for execution by
the same mechanism: the EXEC function, which constitutes the MS-DOS
loader. EXEC can be called with the filename of a program to be loaded by
COMMAND.COM (the normal MS-DOS command interpreter), by other
shells or user interfaces, or by another program that was previously loaded
by EXEC. If there is sufficient free memory in the transient program area,
EXEC allocates a block of memory to hold the new program, builds the
program segment prefix (PSP) at its base, and then reads the program into
memory immediately above the PSP. Finally, EXEC sets up the segment
registers and the stack and transfers control to the program.

When it is invoked, EXEC can be given the addresses of additional infor-
mation, such as a command tail, file control blocks, and an environment
block; if supplied, this information will be passed on to the new program.
(The exact procedure for using the EXEC function in your own programs
is discussed, with examples, in Chapter 12.)

.COM and .EXE programs are often referred to as transient programs. A
transient program “owns” the memory block it has been allocated and has
nearly total control of the system’s resources while it is executing. When
the program terminates, either because it is aborted by the operating sys-
tem or because it has completed its work and systematically performed a
final exit back to MS-DOS, the memory block is then freed (hence the
term transient) and can be used by the next program in line to be loaded.

Programming for MS-DOS

The Program Segment Prefix

A thorough understanding of the program segment prefix is vital to suc-
cessful programming under MS-DOS. It is a reserved area, 256 bytes long,
that is set up by MS-DOS at the base of the memory block allocated to a
transient program. The PSP contains some linkages to MS-DOS that can be
used by the transient program, some information MS-DOS saves for its
own purposes, and some information MS-DOS passes to the transient
program—to be used or not, as the program requires (Figure 3-D).

Offset
0000H
0002H Int 20H
Segment, end of allocation block
0004H
Reserved
0005H
Long call to MS-DOS function dispatcher
000AH

Previous contents of termination handler interrupt vector (Int 22H)

000EH
Previous contents of Ctrl-C interrupt vector (Int 23H)
0012H

Previous contents of critical-error handler interrupt vector (Int 24H)
0016H |

Reserved

002CH

Segment address of environment block
002EH

Reserved

005CH

Default file control block #1

006CH

Default file control block #2
(overlaid if FCB #1 opened)

0080H

R

00FFH |

Figure 3-1. The structure of the program segment prefix.

Structure of MS-DOS Application Programs

N

23

In the first versions of MS-DOS, the PSP was designed to be compatible
with a control area that was built beneath transient programs under Digi-
tal Research’s venerable CP/M operating system, so that programs could
be ported to MS-DOS without extensive logical changes. Although Ms-
DOS has evolved considerably since those early days, the structure of the
PSP is still recognizably similar to its CP/M equivalent. For example, offset
0000H in the PSP contains a linkage to the MS-DOS process-termination
handler, which cleans up after the program has finished its job and per-
forms a final exit. Similarly, offset 0005H in the PSP contains a linkage to
the MS-DOS function dispatcher, which performs disk operations, con-
sole input/output, and other such services at the request of the transient
program. Thus, calls to PSP:0000 and PSP:0005 have the same effect as
CALL 0000 and CALL 0005 under CP/M. (These linkages are not the
“approved” means of obtaining these services, however.)

The word at offset 0002H in the PSP contains the segment address of the
top of the transient program’s allocated memory block. The program can
use this value to determine whether it should request more memory to do
its job or whether it has extra memory that it can release for use by other
processes.

Offsets 000AH through 0015H in the PSP contain the previous contents of
the interrupt vectors for the termination, Ctrl-C, and critical-error han-
dlers. If the transient program alters these vectors for its own purposes,
MS-DOS restores the original values saved in the PSP when the program
terminates.

The word at PSP offset 002CH holds the segment address of the environ-
ment block, which contains a series of ASCIIZ strings (sequences of ASCII
characters terminated by a null, or zero, byte). The environment block is
inherited from the program that called the EXEC function to load the cur-
rently executing program. It contains such information as the current
search path used by COMMAND.COM to find executable programs, the
location on the disk of COMMAND.COM itself, and the format of the user
prompt used by COMMAND.COM.

The command tail—the remainder of the command line that invoked the
transient program, after the program’s name—is copied into the PSP
starting at offset 0081H. The length of the command tail, not including the
return character at its end, is placed in the byte at offset 0080H. Redi-
rection or piping parameters and their associated filenames do not appear
in the portion of the command line (the command tail) that is passed to
the transient program, because redirection is transparent to applications.

Programming for MS-DOS

To provide compatibility with CP/M, MS-DOS parses the first two parame-
ters in the command tail into two default file control blocks (FCBs) at
PSP:005CH and PSP:006CH, under the assumption that they may be file-
names. However, if the parameters are filenames that include a path speci-
fication, only the drive code will be valid in these default FCBs, because
FCB-type file- and record-access functions do not support hierarchical file
structures. Although the default FCBs were an aid in earlier years, when
compatibility with CP/M was more of a concern, they are essentially use-
less in modern MS-DOS application programs that must provide full path
support. (File control blocks are discussed in detail in Chapter 8 and
hierarchical file structures are discussed in Chapter 9.)

The 128-byte area from 0080H through O00FFH in the PSP also serves as
the default disk transfer area (DTA), which is set by MS-DOS before pass-
ing control to the transient program. If the program does not explicitly
change the DTA, any file read or write operations requested with the FCB
group of function calls automatically use this area as a data buffer. This is
rarely useful and is another facet of MS-DOS’s handling of the PSP that is
present only for compatibility with CP/M.

QO WARNING Programs must not alter any part of the PSP below
offset 005CH.

Introduction to .COM Programs

Programs of the .COM persuasion are stored in disk files that hold an ab-
solute image of the machine instructions to be executed. Because the files
contain no relocation information, they are more compact, and are loaded
for execution slightly faster, than equivalent .EXE files. Note that MS-DOS
does not attempt to ascertain whether a .COM file actually contains exe-
cutable code (there is no signature or checksum, as in the case of a .EXE
file); it simply brings any file with the .COM extension into memory and
jumps to it.

Because .COM programs are loaded immediately above the program seg-
ment prefix and do not have a header that can specify another entry point,
they must always have an origin of 0100H, which is the length of the PSP.
Location 0100H must contain an executable instruction. The maximum
length of a .COM program is 65,536 bytes, minus the length of the PSP
(256 bytes) and a mandatory word of stack (2 bytes).

When control is transferred to the .COM program from MS-DOS, all of the
segment registers point to the PSP (Figure 3-2). The stack pointer (SP)

Structure of MS-DOS Application Programs

SS:SP

Stack grows downward from top of segment

U

Program code and data

CS:0100H

Program segment prefix

ES:0000H
S$S:0000H

Figure 3-2. A memory image of a typical .COM-type program after loading. The
contents of the .COM file are brought into memory just above the program segment
prefix. Program, code, and data are mixed together in the same segment, and all seg-
ment registers contain the same value.

register contains OFFFEH if memory allows; otherwise, it is set as high as
possible in memory minus 2 bytes. (MS-DOS pushes a zero word on the
stack before entry.)

Although the size of an executable .COM file can't exceed 64 KB, the cur-
rent versions of MS-DOS allocate all of the transient program area to .COM
programs when they are loaded. Because many such programs date from
the early days of MS-DOS and are not necessarily “well-behaved” in their
approach to memory management, the operating system simply makes
the worst-case assumption and gives .COM programs everything that is
available. If a .COM program wants to use the EXEC function to invoke
another process, it must first shrink down its memory allocation to the
minimum memory it needs in order to continue, taking care to protect its
stack. (This is discussed in more detail in Chapter 12.)

When a .COM program finishes executing, it can return control to MS-
DOS by several means. The preferred method is Int 21H Function 4CH,
which allows the program to pass a return code back to the program,
shell, or batch file that invoked it. However, if the program is running

Programming for MS-DOS

under MS-DOS version 1, it must exit by means of Int 20H, Int 21H Func-
tion 0, or a NEAR RETURN. (Because a word of zero was pushed onto the
stack at entry, a NEAR RETURN causes a transfer to PSP:0000, which con-
tains an Int 20H instruction.)

A .COM-type application can be linked together from many separate ob-
ject modules. All of the modules must use the same code-segment name
and class name, and the module with the entry point at offset 0100H
within the segment must be linked first. In addition, all of the procedures
within a .COM program should have the NEAR attribute, because all exe-
cutable code resides in one segment.

When linking a .COM program, the linker will display the message
Warning: no stack segment

This message can be ignored. The linker output is a .EXE file, which must
be converted into a .COM file with the MS-DOS EXE2BIN utility before
execution. You can then delete the .EXE file. (An example of this process
is provided in Chapter 4.)

An Example .COM Program

The HELLO.COM program listed in Figure 3-3 demonstrates the structure
of a simple assembly-language program that is destined to become a
.COM file. (You may find it helpful to compare this listing with the
HELLO.EXE program later in this chapter.) Because this program is so
short and simple, a relatively high proportion of the source code is ac-
tually assembler directives that do not result in any executable code.

The NAME statement simply provides a module name for use during the
linkage process. This aids understanding of the map that the linker pro-
duces. In MASM versions 5.0 and later, the module name is always the
same as the filename, and the NAME statement is ignored.

The PAGE command, when used with two oper<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>