

ADVANCED

PROGRAMMING

R A V 0 U N CAN

ADVANCED
®

®

PROGRAMMING

The

Mlcrosoft@

guide for

Assembly

Language

andC

programmers

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1986, 1988 by Ray Duncan
Published 1986. Second edition 1988.
All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Duncan, Ray, 1952-
Advanced MS-DOS programming.
Rev. ed. of: Advanced MS-DOS. ©1986.
Includes index.
1. MS-DOS (Computer operating system) 2. Assembler language
(Computer program language) 3. C (Computer program language)
I. Duncan, Ray, 1952- Advanced MS-DOS. II. Title.
QA76.76.063D858 1988 005.4'46 88-1251
ISBN 1-55615-157-8
Printed and bound in the United States ofAmerica.

123456789 FGFG 321098

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Penguin Books Ltd., Harmondworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, .Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairu Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IB~ PCIA~ and PS/2GP are registered trademarks of International Business Machines Corporation. CodeVie~
Microsof~ MS-DOS~ andXEN~are registered trademarks and InPort™ is a trademark of Microsoft Corporation.

Technical Editor: Mike Halvorson Production Editor: Mary Ann Jones

For Carolyn·

Contents

Road Map to Figures and Tables ix
Acknowledgments xi
Introduction xiii

Section I Programming for MS-DOS 1
Chapter 1 Genealogy of MS-DOS 3
Chapter 2 MS-DOS in Operation 11
Chapter 3 Structure of MS-DOS Application Programs 21
Chapter 4 MS-DOS Programming Tools 43
ChapterS Keyboard and Mouse Input 65
Chapter 6 Video Display 85
Chapter 7 Printer and Serial Port 105
Chapter 8 File Management 127
Chapter 9 Volumes and Directories 165
Chapter 10 Disk Internals 177
Chapter 11 Memory Management 195
Chapter 12 The EXEC Function 217
Chapter 13 Interrupt Handlers 243
Chapter 14 Installable Device Drivers 259
Chapter 15 Filters 297
Chapter 16 Compatibility and Portability 313
Section II MS-DOS Functions Reference 333
Section III IBM ROM BIOS and Mouse Functions 493

Reference

Section IV Lotus/InteVMicrosoft EMS Functions Reference 613

Index 647

Road Map to Figures and Tables

MS-DOS versions and release dates
MS-DOS memory map
Structure of program segment prefix (PSP)
Structure of .EXE load module
Register conditions at program entry
Segments, groups, and classes
Macro Assembler switches
C Compiler switches
Linker switches
MAKE switches
ANSI escape sequences
Video attributes
Structure of normal file control block (FCB)
Structure of extended file control block
MS-DOS error codes
Structure of boot sector
Structure of directory entry
Structure of fixed-disk master block
LIM EMS error codes
Intel 80x86 internal interrupts (faults)
Intel 80x86, MS-DOS, and ROM BIOS interrupts
Device-driver attribute word
Device-driver command codes
Structure of BIOS parameter block (BPB)
Media descriptor byte

8
20
23
32
36
40
47
49
53
61
92
97,98

129
131
145
180
184
192
207,208
246
248
264
267
269
270

ix

Acknowledgments

My renewed thanks to the outstanding editors and production staff at
Microsoft Press, who make beautiful books happen, and to the talented
Microsoft developers, who create great programs to write books about.
Special thanks to Mike Halvorson, Jeff Hinsch, Mary Ann Jones, Claudette
Moore, Dori Shattuck, and Mark Zbikowski; if this book has anything
unique to offer, these people deserve most of the credit.

xi

Introduction

Advanced MS-DOS Programming is written for the. experienced C or
assembly-language programmer. It provides all the information you need
to write robust, high-performance applications under the MS-DOS operat­
ing system. Because I believe that working, well-documented programs
are unbeatable learning tools, I have included detailed programming
examples throughout-including complete utility programs that you can
adapt to your own needs.

This book is both a tutorial and a reference and is divided into four
sections, so that you can find information more easily. Se<;tion I discusses
MS-DOS capabilities and services by functional group in the context of
common programming issues, such as user input, control of the display,
memory management, and file handling. Special classes of programs,
such as interrupt handlers, device drivers, and filters, have their own
chapters.

Section II provides a complete reference guide to MS-DOS function calls,
organized so that you can see the calling sequence, results, and version
dependencies of each function at a glance. I have also included notes,
where relevant, about quirks and special uses of functions as well as
cross-references to related functions. An assembly-language example is
included for each entry in Section II.

Sections III and IV are references to IBM ROM BIOS, Microsoft Mouse
driver, and Lotus/InteVMicrosoft Expanded Memory Specification func­
tions. The entries in these two sections have the same form as in Section
II, except that individual programming examples have been omitted.

The programs in this book were written with the marvelous Brief editor
from Solution Systems and assembled or compiled with Microsoft Macro
Assembler version 5.1 and Microsoft C Compiler version 5.1. They have
been tested under MS-DOS versions 2.1, 3.1, 3.3, and 4.0 on an 8088-based
IBM PC, an 80286-based IBM PC/AT, and an 80386-based IBM PS/2 Model
80. As far as I am aware, they do not contain any software or hardware de­
pendencies that will prevent them from running properly on any IBM PC­
compatible machine running MS-DOS version 2.0 or later.

xiii

Changes from. the First Edition
Readers who are familiar with the first edition will find many changes in
the second edition, but the general structure of the book remains the
same. Most of the material comparing MS-DOS to CP/M and UNIX/XENIX
has been removed; although these comparisons were helpful a few years
ago, MS-DOS has become its own universe and deserves to be considered
on its own terms.

The previously monolithic chapter on character devices has been broken
into three more manageable chapters focusing on the keyboard and
mouse, the display, and the serial port and printer. Hardware-dependent
video techniques have been de-emphasized; although this topic is more
important than ever, it has grown so complex that it requires a book of its
own. A new chapter discusses compatibility and portability of MS-DOS
applications and also contains a brief introduction to Microsoft OS/2, the
new multitasking, protected-mode operating system.

A road map to vital figures and tables has been added, following the Table
of Contents, to help you quickly locate the layouts of the program segment
prefix, file control block, and the like.

The reference sections at the back of the book have been extensively up­
dated and enlarged and are now complete through MS-DOS version 4.0,
the IBM PS/2 Model 80 ROM BIOS and the VGA video adapter, the
Microsoft Mouse driver version 6.0, and the Lotus/Intel/Microsoft Ex­
panded Memory Specification version 4.0.

In the two years since Advanced MS-DOS Programming was first
published, hundreds of readers have been kind enough to send me their
comments, and I have tried to incorporate many of their suggestions in
this new edition. As before, please feel free to contact me via MCI Mail
(user name LMI), CompuServe (user ID 72406,1577), or BIX (user name
rduncan).

Ray Duncan
Los Angeles, California
September 1988

xiv

SPECIAL OFFER

Companion Disk to
ADVANCED MS-DOS PROGRAMMING,

2nd edition

Microsoft Press has created a Companion Disk to ADVANCED MS­
DOS PROGRAMMING, 2nd edition, available in either 5.25-inch or
3.5-inch format. This disk contains all of the source files and execut­
able files from the book and is an essential resource for anyone who
wants to forgo the drudgery of typing code (and the time required to
find and correct those inevitable typing errors).

The Companion Disk to ADVANCED MS-DOS PROGRAMMING is
available only from Microsoft Press. To order, use the special reply
card bound in the back of the book. If the card has already been used,
send $19.95, plus sales tax if applicable (CA residents 5% plus. local op­
tion tax, CT 7.5%, FL 6%, MA 5%, MN 6%, MO 4.225%, NY 40/0 plus lo­
cal option tax, WA State 7.8%) and $2.50 per disk for domestic postage

.and handling, $6.00 per disk for foreign orders to: Microsoft Press,
Attn: Companion Disk Offer, 21919 20th Ave S.E., Box 3011, Bothell,
WA 98041-3011. Please specify 5.25-inch or 3.5-inch format. Payment
must be in U.S. funds. You may pay by check or money order (payable
to Microsoft Press) or by American Express, VISA, or MasterCard;
please include both your credit card number and the expiration date.
All orders are shipped 2nd day air upon receipt of order to Microsoft.

If you have questions or comments about this disk, please contact Ray
Duncan via MCI Mail (user name LMI), CompuServe (user ID
72406,1577), or BIX (user name rduncan).

If this disk proves defective, please send the defective disk along with
your packing slip to: Microsoft Press, Consumer Sales, 16011 NE 36th
Way, Box 97017, Redmond, WA 98073-9717.

Chapter 1

Genealogy of MS-DOS

In only seven years, MS-DOS has evolved from a simple program loader
into a sophisticated, stable operating system for personal computers that
are based on the Intel 8086 family of microprocessors (Figure 1-1). MS­
DOS supports networking, graphical user interfaces, and storage devices
of every description; it serves as the platform for thousands of application
programs; and it has over 10 million licensed users-dwarfing the com­
bined user bases of all of its competitors.

The progenitor ofMS-DOS was an operating system called 86-DOS, which
was written by Tim Paterson for Seattle Computer Products in mid-1980.
At that time, Digital Research's CP/M-80 was the operating system most
commonly used on microcomputers based on the Intel SOSO and Zilog
2-S0 microprocessors, and a wide range of application software (word
processors, database managers, and so forth) was available for use with
CP/M-SO.

To ease the process of porting 8-bit CP/M-80 applications into the new 16­
.bit environment, 86-DOS was originally designed to mimic CP/M-SO in
both available functions and style of operation. Consequently, the struc-:­
tures of 86-DOS's file control blocks, program segment prefixes, and exe­
cutable files were nearly identical to those of CP/M-80. Existing CP/M-SO
programs could be converted mechanically (by processing their source­
code files through a special translator program) and, after conversion,
would run under S6-DOS either immediately or with very little hand
editing.

Because 86-DOS was marketed as a proprietary operating system for
Seattle Computer Products' line of S-100 bus, SOS6-based microcomputers,
it made very little impact on the microcomputer world in general. Other
vendors of SOS6-based microcomputers were understandably reluctant to
adopt a competitor's operating system and continued to wait impatiently
for the release of Digital Research's CP/M-86.

In October' 19S0, IBM approached the major microcomputer-software
houses in search of an operating system for the new line of personal com­
puters it was designing. Microsoft had no operating system of its own to
offer (other than a stand-alone version of Microsoft BASIC) but paid a fee
to Seattle Computer Products for the right to sell Paterson's 86-DOS. (At
that time, Seattle Computer Products received a license to use and sell
Microsoft's languages and all sos6 versions of Microsoft's operating sys­
tem.) In July 1981, Microsoft purchased all rights to 86-DOS, made sub­
stantial alterations to it, and renamed it MS-DOS. When the first IBM PC
was released in the fall of 1981, IBM offered MS-DOS (referred to as PC­
DOS 1.0) as its primary operating system.

4 Programming/orMS-DOS

IBM also selected Digital Research's CP/M-s6 and Softech's P-system as
alternative operating systems for the pc. However, they were both very
slow to appear at IBM pc dealers and suffered the additional disadvan­
tages of higher prices and lack of available programming languages. IBM
threw its considerable weight behind PC-DOS by releasing all the IBM­
logo PC application software and development tools to run under it. Con­
sequently, most third-party software developers targeted their products
for PC-DOS from the start, and CP/M-86 and P-system never became sig­
nificant factors in the IBM PC-compatible market.

In spite of some superficial similarities to its ancestor CP/M-SO, MS-DOS
version 1.0 contained a number of improvements over CP/M-SO, including
the following:

• An improved disk-directory structure that included information about
a file's attributes (such as whether it was a system or a hidden file), its
exact size in bytes, and the date that the file was created or last
modified

• A superior disk-space allocation and management method, allowing
extremely fast sequential or random record access and program
loading

• An expanded set of operating-system services, including hardware­
independent function calls to set or read the date and time, a filename
parser, multiple-block record I/O, and variable record sizes

• An AUTOEXEC.BAT batch file to perform a user-defined series of
commands when the system was started or reset

IBM was the only major computer manufacturer (sometimes referred to as
OEM, for original equipment manufacturer) to ship MS-DOS version 1.0
(as PC-DOS 1.0) with its products. MS-DOS version 1.25 (equivalent to IBM
PC-DOS 1.1) was released in June 1982 to fix a number of bugs and also to
support double-sided disks and improved hardware independence in the
DOS kernel. This version was shipped by several vendors besides IBM, in­
cluding Texas Instruments, COMPAQ, and Columbia, who all entered the
personal computer market early. Due to rapid decreases in the prices of
RAM and fixed disks, MS-DOS version 1 is no longer in common use.

MS-DOS version 2.0 (equivalent to PC-DOS 2.0) was first released in March
1983. It was, in retrospect, a new operating system (though great care was
taken to maintain compatibility with MS-DOS version 1). It contained
many significant innovations and enhanced features, including those
listed on the following page.

Genealogy ofMS-DOS 5

1iI Support for both larger-capacity floppy disks and hard disks

f!J Many UNIX/XENIX-like features, including a hierarchical file struc-
ture, file handles, VO redirection, pipes, and filters

Ii) Background printing (print spooling)

mI Volume labels, plus additional file attributes

IiJ Installable device drivers

1iJ A user-customizable system-configuration file that controlled the load­
ing of additional device drivers, the number of system disk buffers, and
so forth

II) Maintenance of environment blocks that could be used to pass infor­
mation between programs

II An optional ANSI display driver that allowed programs to position the
cursor and control display characteristics in a hardware-independent
manner

IE Support for the dynamic allocation, modification, and release of
memory by application programs

lB Support for customized user command interpreters (shells)

Ii) System tables to assist application software in modifying its currency,
time, and date formats (known as international support)

MS-DOS version 2.11 was subsequently released to improve international
support (table-driven currency symbols, date formats, decimal-point sym­
bols, currency separators, and so forth), to add support for 16-bit Kanji
characters throughout, and to fix a few minor bugs. Version 2.11 rapidly
became the base version shipped for 8086/8088-based personal com­
puters by every major OEM, including Hewlett-Packard, Wang, Digital
Equipment Corporation, Texas Instruments, COMPAQ, and Tandy.

MS-DOS version 2.25, released in October 1985, was distributed in the Far
East but was never shipped by OEMs in the United States and Europe. In
this version, the international support for Japanese and Korean character
sets was extended even further, additional bugs were repaired, and many
of the system utilities were made compatible with MS-DOS version 3.0.

MS-DOS version 3.0 was introduced by IBM in August 1984 with the
release of the 80286-based PCIAT machines. It represented another major
rewrite of the entire operating system and included the important new
features listed on the following page.

6 Programming/orMS-DOS

IIiJ Direct control of the print spooler by application software

(I Further expansion of international support for currency formats

iii Extended error reporting, including a code that suggests a recovery
strategy to the application program

III Support for file and record locking and sharing

IiJ Support for larger fixed disks

MS-DOS version 3.1, which was released in November 1984, added sup­
port for the sharing of files and printers across a network. Beginning with
version 3.1, a new operating-system module called the redirector inter­
cepts an application program's requests for I/O and filters out the requests
that are directed to network devices, passing these requests to another
machine for processing.

Since version 3.1, the changes to MS-DOS have been evolutionary rather
than revolutionary. Version 3.2, which appeared in 1986, generalized the
definition of device drivers so that new media types (such as 3.5-inch
floppy disks) could be supported more easily. Version 3.3 was released in
1987, concurrently with the new IBM line of PS/2 personal computers, and
drastically expanded MS-DOS's multilanguage support for keyboard map­
pings, printer character sets, and display fonts. Version 4.0, delivered in
1988, was enhanced with a visual shell as well as support for very large file
systems.

While MS-DOS has been evolving, Microsoft has also put intense efforts
into the areas of user interfaces and multitasking operating systems.
Microsoft Windows, first shipped in 1985, provides a multitasking, graphi­
cal user "desktop" for MS-DOS systems. Windows has won widespread
support among developers of complex graphics applications such as
desktop publishing and computer-aided design because it allows their
programs to take full advantage of whatever output devices are available
without introducing any hardware dependence.

Microsoft Operating System/2 (MS OS/2), released in 1987, represents a
new standard for application developers: a protected-mode, multitasking,
virtual-memory system specifically designed for applications requiring
high-performance graphics, networking, and interprocess communica­
tions. Although MS OS/2 is a new product and is not a derivative of
MS-DOS, its user interface and file system are compatible with MS-DOS
and Microsoft Windows, and it offers the ability to run one real-mode (MS­
DOS) application alongside MS OS/2 protected-mode applications. This
compatibility allows users to move between the MS-DOS and OS/2 envi­
ronments with a minimum of difficulty.

Genealogy ofMS-DOS 7

MS-DOS 1.0
. PC-DOS 1.0 1981: First operating system on IBM PC

. MS-DOS 1.25
PC-DOS 1.1

Double-sided disk support and bug fIXes added:
widely distributed by OEMs other than IBM

MS-DOS 2.0
PC-DOS 2.0

1983: Introduced with IBM PCIXT;
support for UNIXlXENIX-like hierarchical
file structure and hard disks added

Introduced with PCjr;
2.0 with bug fixes

1985: Far East OEMs;
support for extended
character sets

1987: Compatibility
with OS/2
Presentation Manager

1985: Graphical
user interface
for MS-DOSI Windows

1.0

,
Windows

2.0

2.0 with inter­
national support

2.01 with bug fixes

1988: Support for
logical volumes
larger than 32 MB;
visual shell

1986: Support
for 3.5-inch
disks added

1984: Introduced
with PC/AT;
support for 1.2
MB floppy disk,
larger hard disk added

1984: Support
for Microsoft
Networks added

1987: Introduced
with IBM PS/2;
generalized code­
page (font) support

MS-DOS 3.2
PC-DOS 3.2

MS-DOS 3.1
PC-DOS 3.1

Figure 1-1. The evolution 0/MS-DOS.

8 Programming/orMS-DOS

What does the future hold for MS-DOS? Only the long-range planning
teams at Microsoft and IBM know for sure. But it seems safe to assume that
MS-DOS, with its relatively small memory requirements, adaptability to
diverse hardware configurations, and enormous base of users, will remain
important to programmers and software publishers for years to come.

Genealogy ofMS-DOS 9

Chapter 2

MS-DOS in Operation

It is unlikely that you will ever be called upon to configure the MS-DOS
software for a new model of computer. Still, an acquaintance with the
general structure of MS-DOS can often be very helpful in understanding
the behavior of the system as a whole. In this chapter, we will discuss how
MS-DOS is organized and how it is loaded into memory when the com­
puter is turned on.

The Structure ofMS-DOS
MS-DOS is partitioned into several layers that serve to isolate the kernel
logic of the operating system, and the user's perception of the system,
from the hardware it is running on. These layers are

• The BIOS (Basic Input/Output System)

• The DOS kernel

• The command processor (shell)

We'll discuss the functions of each of these layers separately.

The BIOS Module
The BIOS is specific to the individual computer system and is provided by
the manufacturer of the system. It contains the default resident hardware­
dependent drivers for the following devices:

• Console display and keyboard (CON)

• Line printer (PRN)

• Auxiliary device (AUX)

• Date and time (CLOCK$)

• Boot disk device (block device)

The MS-DOS kernel communicates with these device drivers through I/O
request packets; the drivers then translate these requests into the proper
commands for the various hardware controllers. In many MS-DOS sys­
tems, including the IBM PC, the most primitive parts of the hardware
drivers are located in read-only memory (ROM) so that they can be used
by stand-alone applications, diagnostics, and the system startup program.

The terms resident and installable are used to distinguish between the
drivers built into the BIOS and the drivers installed during system initial­
ization by DEVICE commands in the CONFIG.SYS file. (Installable drivers
will be discussed in more detail later in this chapter and in Chapter 14.)

12 Programmingfor MS-DOS

The BIOS is read into random-access memory (RAM) during system ini­
tialization as part of a file named IO.SYS. (In PC-DOS, the file is called
IBMBIO.COM.) This file is marked with the special attributes hidden and
system.

The DOS Kernel
The DOS kernel implements MS-DOS as it is seen by application pro­
grams. The kernel is a proprietary program supplied by Microsoft Corpo­
ration and provides a collection of hardware-independent services called
systemfunctions. These functions include the following:

• File and record management

• Memory management

• Character-device input/output

• Spawning of other programs

• Access to the real-time clock

Programs can access system functions by loading registers with function­
specific parameters and then transferring to the operating system by
means of a software interrupt.

The DOS kernel is read into memory during system initialization from the
MSDOS.SYS file on the boot disk. (The file is called IBMDOS.COM in PC­
DOS.) This file is marked with the attributes hidden and system.

The Conunand Processor
The command processor, or shell, is the user's interface to the operating
system. It is responsible for parsing and carrying out user commands, in­
cluding the loading and execution of other programs from a disk or other
mass-storage device.

The default shell that is provided with MS-DOS is found in a file called
COMMAND.COM. Although COMMAND.COM prompts and responses
constitute the ordinary user's complete perception of MS-DOS, it is im­
portant to realize that COMMAND.COM is not the operating system, but
simply a special class of program running under the control of MS-DOS.

COMMAND.COM can be replaced with a shell of the programmer's own
design by simply adding a SHELL directive to the system-configuration
file (CONFIG.SYS) on the system startup disk. The product COMMAND­
PLUS from ESP Systems is an example of such an alternative shell.

MS-DOS in Operation 13

More about COMMAND.COM
The default MS-DOS shell, COMMAND.COM, is divided into three parts:

• A resident portion

Ii An initialization section

II A transient module

The resident portion is loaded in lower memory, above the DOS kernel
and its buffers and tables. It contains the routines to process Ctrl-C and
Ctrl-Break, critical errors, and the termination (final exit) of other tran­
sient programs. This part of COMMAND.COM issues error messages and
is resporlsible for the familiar prompt

Abort. Retry. Ignore?

The resident portion also contains the code required to reload the tran­
sient portion of COMMAND.COM when necessary.

The initialization section of COMMAND.COM is loaded above the resi­
dent portion when the system is started. It processes the AUTOEXEC.BAT
batch file (the user's list of commands to execute at system startup), if one
is present, and is then discarded.

The transient portion of COMMAND.COM is loaded at the high end of
memory, and its memory can also be used for other purposes by applica­
tion programs. The transient module issues the user prompt, reads the
commands from the keyboard or batch file, and causes them to be exe­
cuted. When an application program terminates, the resident portion of
COMMAND.COM does a checksum of the transient module to determine
whether it has been destroyed and fetches a fresh copy from the disk if
necessary.

The user commands that are accepted by COMMAND.COM fall into three
categories:

II Internal commands

• External commands

II Batch files

Internal commands, sometimes called intrinsic commands, are those
carried out by code embedded in COMMAND.COM itself. Commands in
this category include COPY, REN(AME), DIR(ECTORY), and DEL(ETE).
The routines for the internal commands are included in the transient part
of COMMAND.COM.

14 ProgrammingforMS-DOS

External commands, sometimes called extrinsic commands or transient
programs, are the names of programs stored in disk files. Before these
programs can be executed, they must be loaded from the disk into the
transientprogram area (TPA) of memory. (See "How MS-DOS Is Loaded"
in this chapter~) Familiar examples of external commands are CHKDSK,
BACKUP, and RESTORE. As soon as an external command has completed
its work, it is discarded from memory; hence, it must be reloaded from
disk each time it is invoked.

Batch files are text files that contain lists of other intrinsic, extrinsic, or
batch commands. These files are processed by a special interpreter that is
built into the transient portion of COMMAND.COM. The interpreter reads
the batch file one line at a time and carries out each of the specified
operations in order.

In order to interpret a user's command, COMMAND.COM first looks to
see if the user typed the name of a built-in (intrinsic) command that it can
carry out directly. If not, it searches for an external command (executable
program file) or batch file by the same name. The search is carried out
first in the current directory of the current disk drive and then in each of
the directories specified in the most recent PATH command. In each
directory inspected, COMMAND.COM first tries to find a file with the ex­
tension .COM, then .EXE, and finally .BAT. If the search fails for all three
file types in all of the possible locations, COMMAND.COM displays the
familiar message

Bad command or fi 1e name

If a .COM file or a .EXE file is found, COMMAND.COM uses the MS-DOS
EXEC function to load and execute it. The EXEC function builds a special
data structure called a program segment prefix (PSP) above the resident
portion of COMMAND.COM in the transient program area. The PSP con­
tains various linkages and pointers needed by the application program.
Next, the EXEC function loads the program itself, just above the PSP, and
performs any relocation that may be necessary. Finally, it sets up the
registers appropriately and'transfers control to the entry point for the pro­
gram. (Both the PSP and the EXEC function will be discussed in more
detail in Chapters 3 and 12.) When the transient program has finished its
job, it calls a special MS-DOS termination function that releases the tran­
sient program's memory and returns control to the program that caused
the transient program to be loaded (COMMAND.COM, in this case).

A transient program has nearly complete control of the system's resources
while it is executing. The only other tasks that are accomplished are those

MS-DOS in Operation 15

performed by interrupt handlers (such as the keyboard input driver and
the real-time clock) and operations that the transient program requests
from the operating system. MS-DOS does not support sharing of the
central processor among several tasks executing concurrently, nor can it
wrest control away from a program when it crashes or executes for too
long. Such capabilities are the province of MS OS/2, which is a protected­
mode system with preemptive multitasking (time-slicing).

How MS-DOS Is Loaded
When the system is started or rese~, program execution begins at address
OFFFFOH. This is a feature of the 8086/8088 family of microprocessors
and has nothing to do with MS-DOS. Systems based on these processors
are designed so that address OFFFFOH lies within an area of ROM and con­
tains a jump machine instruction to transfer control. to system test code
and the ROM bootstrap routine (Figure 2-1).

The ROM bootstrap routine reads the disk bootstrap routine from the first
sector of the system startup disk (the boot sector) into memory at some
arbitrary address and then transfers control to it (Figure 2-2). (The boot
sector also contains a table of information about the disk format.)

The disk bootstrap routine checks to see if the disk contains a copy of MS­
DOS. It does this by reading the first sector of the root directory and
determining whether the first two files are IO.SYS and MSDOS.SYS (or
IBMBIO.COM and IBMDOS.COM), in that order. If these files are not pres­
ent, the user is prompted to change disks and strike any key to try again.

ROM bootstrap routine

~ Top of RAM

Figure 2-1. A typicaI8086/8088-based computer system immediately aftersystem
startup or reset. Execution begins at location OFFFFOH, which contains a jump in­
struction that directsprogram control to the ROM bootstrap routine.

16 ProgrammingforMS-DOS

ROM bootstrap routine

tlJ--------------------f Top of RAM

Disk bootstrap routine

.... Arbitrary load location

Figure 2-2. The ROM bootstrap routine loads the disk bootstrap routine into memory
from thefirst sector ofthe system startup disk and then transfers control to it.

If the two system files are found, the disk bootstrap reads them into
memory and transfers control to the initial entry point of IO.SYS (Figure
2-3). (In some implementations, the disk bootstrap reads only IO.SYS into
memory, and IO.SYS in turn loads the MSDOS.SYS file.)

The IO.SYS file that is loaded from the disk actually consists of two sepa­
rate modules. The first is the BIOS, which contains the linked set of resi­
dent device drivers for the console, auxiliary port, printer, block, and
clock devices, plus some hardware-specific initialization code that is run
only at system startup. The second module, SYSINIT, is supplied by
Microsoft and linked into the IO.SYS file, along with the BIOS, by the
computer manufacturer.

SYSINIT is called by the manufacturer's BIOS initialization code. It deter­
mines the amount of contigUous memory present in the system and then
relocates itself to high memory. Then it moves the DOS kernel,
MSDOS.SYS, from its original load location to its final memory location,
overlaying the original SYSINIT code and any other expendable initializa­
tion code that was contained in the IO.SYS file (Figure 2-4).

Next, SYSINIT calls the initialization code in MSDOS.SYS. The DOS
kernel initializes its internal tables and work areas, sets up the interrupt
vectors 20H through 2FH, and traces through the linked list of resident de­
vice drivers, calling the initialization function for each. (See Chapter 14.)

MS-DOS in Operation 17

Disk bootstrap routine

ROM bootstrap routine

.... Top of RAM

.... In temporaty location

Interrupt vectors

BIOS (from IO.SYS)

SYSINIT (from IO.SYS)

DOS kernel (from MSDOS.SYS)

Figure 2-3. The disk bootstrap reads thefile IO.SYS into memory. Thisfile contains
the MS-DOS BIOS (resident device drivers) and the SYSINIT module. Either the disk
bootstrap or the BIOS (depending upon the manufacturer's implementation) then
reads the DOS kernel into memoryfrom the MSDOS.SYSfile.

These driver functions determine the equipment status, perform any nec­
essary hardware initialization, and set up the vectors for any external
hardware interrupts the drivers will service.

As part of the initialization sequence, the DOS kernel examines the disk­
parameter blocks returned by the resident block-device drivers, deter­
mines the largest sector size that will be used in the system, builds some
drive-parameter blocks, and allocates a disk sector buffer. Control then
returns to SYSINIT.

When the DOS kernel has been initialized and all resident device drivers
are available, SYSINIT can call on the normal MS-DOS file services to
open the CONFIG.SYS file. This optional file can contain a variety of com­
mands that enable the user to customize the MS-DOS environment. For

18 ProgrammingforMS-DOS

ROM bootstrap routine

SYSINIT module
~ Top of R...c\M

00400H
OOOOOH

~~"<

~
.--!!'"

Installable drivers
File control blocks
Disk buffer cache

DOSkemel

BIOS

Interrupt vectors

~ In final location

Figure 2-4. SYSINIT moves itselfto high memory and relocates the DOS kernel,
MSDOS.SYS, downward to itsfinal address. The MS-DOS disk buffer cache andfile
control block areas are allocated, and then the installable device drivers specified in
the CONFIG.SYSfile are loaded and linked into the system.

instance, the user can specify additional hardware device drivers, the
number of disk buffers, the maximum number of files that can be open at
one time, and the filename of the command processor (shell).

If it is found, the entire CONFIG.SYS file is loaded into memory for pro­
cessing. All lowercase characters are converted to uppercase, and the file
is interpreted one line at a time to process the commands. Memory is allo­
cated for the disk buffer cache and the internal file control blocks used by
the handle file and record system functions. (See Chapter 8.) Any device
drivers indicated in the CONFIG.SYS file are sequentially loaded into
memory, initialized by calls to their init modules, and linked into the
device-driver list. The init function of each driver tells SYSINIT how
much memory to reserve for that driver.

After all installable device drivers have been loaded, SYSINIT closes all
file handles and reopens the console (CON), printer (PRN), and auxiliary

MS-DOS in Operation 19

(AliX) devices as the standard input, standard output, standard error, stan­
dard list, and standard auxiliary devices. This allows a user-installed
character-device driver to override the BIOS's resident drivers for the
standard devices.

Finally, SYSINIT calls the MS-DOS EXEC function to load the command
interpreter, or shell. (The default shell is COMMAND.COM, but another
shell can be substituted by means of the CONFIG.SYS file.) Once the shell
is loaded, it displays a prompt and waits for the user to enter a command.
MS-DOS is now ready for business, and the SYSINIT module is discarded
(Figure 2-5).

ROM bootstrap routine

~ Top of RAM

Transient part of COMMAND.COM

BIOS

DOS kernel

Transient program area

I,i-- R_e_s_id_e_n_t_p_art_o_fC_O_MMAN__D_.C_O_M _____t

;::; Installable drivers
File control blocks
Disk buffer cache

I
~~~,I------------------------t

I
i
I

00400H!~-----------------__1
OOOOOH J . Interrupt vectors

~~.. :.<,IE·~&!!m.,mA ii,.S11.;mm~,.m·.".«-im.m:mmmmiimBiEmBm.Ei«~ifBm'Bi~mmi.<.·~

Figure 2-5. Thefinal result ofthe MS-DOS startupprocessfor a typical system. The
residentportion ofCOMMAND.COM lies in low memory, above the DOS kernel. The
transientportion containing the batch-file interpreter and intrinsic commands is
placed in high memory, where it can be overlaid by extrinsic commands and appli­
cation programs running in the transientprogram area.

20 ProgrammingforMS-DOS



Chapter 3

Structure of MS-DOS
Application Programs



Programs that run under MS-DOS come in two basic flavors: .COM pro­
grams, which have a maximum size of approximately 64 KB, and .EXE
programs, which can be as large as available memory. In Intel 8086
parlance, .COM programs fit the tiny model, in which all segment regis­
ters contain the same value; that is, the code and data are mixed together.
In contrast, .EXE programs fit the small, medium, or large model, in which
the segment registers contain different values; that is, the code, data, and
stack reside in separate segments..EXE programs can have multiple code
and data segments, which are respectively addressed by long calls and by
manipulation of the data segment (DS) register.

A .COM-type program resides on the disk as an absolute memory image,
in a file with the extension .COM. The file does not have a header or any
other internal identifying information. A .EXE program, on the other
hand, resides on the disk in a special type of file with a unique header, a
relocation map, a checksum, and other information that is (or can be)
used by MS-DOS.

Both .COM and .EXE programs are brought into memory for execution by
the same mechanism: the EXEC function, which constitutes the MS-DOS
loader. EXEC can be called with the filename of a program ~o be loaded by
COMMAND.COM (the normal MS-DOS command interpreter), by other
shells or user interfaces, or by another program that was previously loaded
by EXEC. If there is sufficient free memory in the transient program area,
EXEC allocates a block of memory to hold the new program, builds the
program segment prefix (PSP) at its base, and then reads the program into
memory immediately above the PSP. Finally, EXEC sets up the segment
registers and the stack and transfers control to the program.

When it is invoked, EXEC can be given the addresses of additional infor­
mation, such as a command tail, file control blocks, and an environment
block; if supplied, this information will be passed on to the new program.
(The exact procedure for using the EXEC function in your own programs
is discussed, with examples, in Chapter 12.)

.COM and .EXE programs are often referred to as transient programs. A
transient program "owns" the memory block it has been allocated and has
nearly total control of the system's resources while it is executing. When
the program terminates, either because it is aborted by the operating sys­
tem or because it has completed its work and systematically performed a
final exit back to MS-DOS, the memory block is then freed (hence the
term transient) and can be used by the next program in line to be loaded.

22 ProgrammingforMS-DOS



The Program Segment Prefix
A thorough understanding of the program segment prefix is vital to suc­
cessful programming under MS-DOS. It is a reserved area, 256 bytes long,
that is set up by MS-DOS at the base of the memory block allocated to a
transient program. The PSP contains some linkages to MS-DOS that can be
used by the transient program, some information MS-DOS saves for its
own purposes, and some information MS-DOS passes to the transient
program-to be used or not, as the program requires (Figure 3-1).

Int 20H

Segment, end of allocation block

Reserved

Long call to MS-DOS function dispatcher

Previous contents of termination handler interrupt vector (Int 22H)

Previous contents of Ctrl-C interrupt vector (Int 23H)

Previous contents of critical-error handler interrupt vector (Int 24H)

Reserved

Segment address of environment block

Reserved

Default file control block #1

Default file control block #2
(overlaid if FCB #1 opened)

~=
.w;:;::~::~~!~~!~~~ ---

0080H

OOSCH

006CH

002CH

002EH

Offset
OOOOH

0002H

0004H
OOOSH

OOOAH

OOOEH

0012H

0016H

Command tail and default disk transfer area (buffer)
OOFFH

Figure 3-1. The structure oftheprogram segmentprefiX.

Structure ofMS-DOS Application Programs 23



In the first versions of MS-DOS, the PSP was designed to be compatible
with a control area that was built beneath transient programs under Digi­
tal Research's venerable CP/M operating system, so that programs could
be ported to MS-DOS without extensive logical changes. Although MS­
DOS has evolved considerably since those early days, the structure of the
PSP is still recognizably similar to its CP/M equivalent. For example, offset
OOOOH in the PSP contains a linkage to the MS-DOS process-termination
handler, which cleans up after the program has finished its job and per­
forms a final exit. Similarly, offset 0005H in the PSP contains a linkage to
the MS-DOS function dispatcher, which performs disk operations, con­
sole input/output, and other such services at the request of the transient
program. Thus, calls to PSP:OOOO and PSP:0005 have the same effect as
CALL 0000 and CALL 0005 under CP1M. (These linkages are not the
"approved" means of obtaining these services, however.)

The word at offset 0002H in the PSP contains the segment address of the
top of the transient program's allocated memory block. The program can
use this value to determine whether it should request more memory to do
its job or whether it has extra memory that it can release for use by other
processes.

Offsets OOOAH through 0015H in the PSP contain the previous contents of
the interrupt vectors for the termination, Ctrl-C, and critical-error han­
dlers. If the transient program alters these vectors for its own purposes,
MS-DOS restores the original values saved in the PSP when the program
terminates.

The word at PSP offset 002CH holds the segment address of the environ­
ment block, which contains a series of ASCIIZ strings (sequences ofASCII
characters terminated by a null, or zero, byte). The environment block is
inherited from the program that called the EXEC function to load the cur­
rently executing program. It contains such information as the current
search path used by COMMAND.COM- to find executable programs, the
location on the disk of COMMAND.COM itself, and the format of the user
prompt used by COMMAND.COM.

The command tail-the remainder of the command line that invoked the
transient program, after the program's name-is copied into the PSP
starting at offset 0081H. The length of the command tail, not including the
return character at its end, is placed in the byte at offset 0080H. Redi­
rection or piping parameters and their associated filenames do not appear
in the portion of the command line (the command tail) that is passed to
the transient program, because redirection is transparent to applications.

24 Programming/orMS-DOS



To provide compatibility with CP1M, MS-DOS parses the first two parame­
ters in the command tail into two default file control blocks (FCBs) at
PSP:005CH and PSP:006CH, under the assumption that they may be file­
names. However, if the parameters are filenames that include a path speci­
fication, only the drive code will be valid in these default FCBs, because
FCB-type file- and record-access functions do not support hierarchical file
structures. Although the default FCBs were an aid in earlier years, when
compatibility with CP1M was more of a concern, they are essentially use­
less in modern MS-DOS application programs that must provide full path
support. (File control blocks are discussed in detail in Chapter 8 and
hierarchical file structures are discussed in Chapter 9.)

The 128-byte area from 0080H through OOFFH in the PSP also serves as
the default disk transfer area (DTA), which is set by MS-DOS before pass­
ing control to the transient program. If the program does not explicitly
change the DTA, any file read or write operations requested with the FCB
group of function calls automatically use this area as a data buffer. This is
rarely useful and is another facet of MS-DOS's handling of the PSP that is
present only for compatibility with CP1M.

o WARNING Programs must not alter any part of the PSP below
offset 005CH.

Introduction to .COM Programs
Programs of the .COM persuasion are stored in disk files that hold an ab­
solute image of the machine instructions to be executed. Because the files
contain no relocation information, they are more compact, and are loaded
for execution slightly faster, than equivalent .EXE files. Note that MS-DOS
does not attempt to ascertain whether a .COM file actually contains exe­
cutable code (there is no signature or checksum, as in the case of a .EXE
file); it simply brings any file with the .COM extension into memory and
jumps to it.

Because .COM programs are loaded immediately above the program seg­
ment prefix and do not have a header that can specify another entry point,
they must always have an origin of OIOOH, which is the length of the PSP.
Location OIOOH must contain an executable instruction. The maximum
length of a .COM program is 65,536 bytes, minus the length of the PSP
(256 bytes) and a mandatory word of stack (2 bytes).

When control is transferred to the .COM program from MS-DOS, all of the
segment registers point to the PSP (Figure 3-2). The stack pointer (SP)

Structure ofMS-DOS Application Programs 25



ss:sp

Stack grows downward from top of segment

1

l
Program code and data

CS:OIOOH

Program segment prefIX

CS:OOOOH
DS:OOOOH
ES:OOOOH
SS:OOOOH

Figure 3-2. A memory image ofa typical.COM-typeprogram after loading. The
contents ofthe .COMfile are brought into memoryjust above theprogram segment
prefix. Program, code, and data are mixed together in the same segment, and all seg-
ment registers contain the same value.

register contains OFFFEH if memory allows; otherwise, it is set as high as
possible in memory minus 2 bytes. (MS-DOS pushes a zero word on the
stack before entry.)

Although the size of an executable .COM file can't exceed 64 KB, the cur­
rent versions ofMS-DOS allocate all of the transient program area to .COM
programs when they are loaded. Because many such programs date from
the early days of MS-DOS and are not necessarily "well-behaved" in their
approach to memory management, the operating system simply makes
the worst-case assumption and gives .COM programs everything that is
available. If a .COM program wants to use the EXEC function to invoke
another process, it must first shrink down its memory allocation to the
minimum memory it needs in order to continue, taking care to protect its
stack. (This is discussed in more detail in Chapter 12.)

When a .COM program finishes executing, it can return control to MS­
DOS by several means. The preferred method is Int 21H Function 4CH,
which allows the program to pass a return code back to the program,
shell, or batch file that invoked it. However, if the program is running

26 Programming/orMS-DOS



under MS-DOS version 1, it must exit by means of Int 20H, Int 21H Func­
tion 0, or a NEAR RETURN. (Because a word of zero was pushed onto the
stack at entry, a NEAR RETURN causes a transfer to PSP:OOOO, which con­
tains an Int 20H instruction.)

A .COM-type application can be linked together from many separate ob­
ject modules. All of the modules must use the same code-segment name
and class name, and the module with the entry point at offset OIOOH
within the segment must be linked first. In addition, all of the procedures
within a .COM program should have the NEAR attribute, because all exe­
cutable code resides in one segment.

When linking a .COM program, the linker will display the message

Warning: no stack segment

This message can be ignored. The linker output is a .EXE file, which must
be converted into a .COM file with the MS-DOS EXE2BIN utility before
execution. You can then delete the .EXE file. (An example of this process
is provided in Chapter 4.)

An Exatllple .COM Progratn
The HELLO.COM program listed in Figure 3-3 demonstrates the structure
of a simple assembly-language program that is destined to become a
.COM file. (You may find it helpful to compare this listing with the
HELLO.EXE program later in this chapter.) Because this program is so
short and simple, a relatively high proportion of the source code is ac­
tually assembler directives that do not result in any executable code.

The NAME statement simply provides a module name for use during the
linkage process. This aids understanding of the map that the linker pro­
duces. In MASM versions 5.0 and later, the module name is always the
same as the filename, and the NAME statement is ignored.

The PAGE command, when used with two operands, as in line 2, defines
the length and width of the page. These default respectively to 66 lines
and 80 characters. If you use the PAGE command without any operands, a
formfeed is sent to the printer and a heading is printed. In larger pro­
grams, use the PAGE command liberally to place each of your subroutines
on separate pages for easy reading.

The TITLE command, in line 3, specifies the text string (limited to 60
characters) that is to be printed at the upper left corner of each page. The
TITLE command is optional and cannot be used more than once in each
assembly-language source file.

Structure ofMS-DOS Application Programs 27



Figure 3-3. The HELLO.COMprogram" listing.

28 Programming/orMS-DOS

(continued)



Figure 3-3. continued

Dropping down past a few comments and EQU statements, we come to a
declaration of a code segment that begins in line 22 with a SEGMENT
command and ends in line 49 with an ENDS command. The label in the
leftmost field of line 22 gives the code segment the name _TEXT. The
operand fields at the right end of the line give the segment the attributes
WORD, PUBLIC, and 'CODE'. (You might find it helpful to read the
Microsoft Macro Assembler manual for detailed explanations of each pos­
sible segment attribute.)

Because this program is going to be converted into a .COM file, all of its
executable code and data areas must lie within one code segment. The
program must also have its origin at offset OIOOH (immediately above the
program segment prefix), which is taken care of by the ORG statement
in line 24.

Following the ORG instruction, we encounter an ASSUME statement on
line 27. The concept of ASSUME often baffles new assembly-language
programmers. In a way, ASSUME doesn't "do" anything; it simply tells the
assembler which segment registers you are going to use to point to the
various segments of your program, so that the assembler can provide seg­
ment overrides when they are necessary. It's important to notice that the
ASSUME statement doesn't take care of loading the segment registers with
the proper values; it merely notifies the assembler ofyour intent to do that
within the program. (Remember that, in the case of a .COM program, MS­
DOS initializes all the segment registers before entry to point to the PSP.)

Within the code segment, we come to another type of block declaration
that begins with the PROC command on line 29 and closes with ENDP on
line 40. These two instructions declare the beginning and end of a pro­
cedure, a block of executable code that performs a single distinct func­
tion. The label in the leftmost field of the PROC statement (in this case,
print) gives the procedure a name. The operand field gives it an attribute.
If the procedure carries the NEAR attribute, only other code in the same
segment can call it, whereas if it carries the FAR attribute, code located
anywhere in the CPU's memory-addressing space can call it. In .COM
programs, all procedures carry the NEAR attribute.

Structure ofMS-DOS Application Programs 29



For the purposes of this example program, I have kept the print pro­
cedure ridiculously simple. It calls MS-DOS Int 21H Function 40H to send
the message Hello World! to the video screen, and calls Int 21H Function
4CH to terminate the program.

The END statement in line 51 tells the assembler that it has reached the
end of the source file and also specifies the entry point for the program. If
the entry point is not a label located at offset OIOOH, the .EXE file resulting
from the assembly and linkage of this source program cannot be con­
verted into a .COM file.

Introduction to .EXE Programs
We have just discussed a program that was written in such a way that it
could be assembled into a .COM file. Such a program is simple in struc­
ture, so a programmer who needs to put together this kind of quick utility
can concentrate on the program logic and do a minimum amount of wor­
rying about control of the assembler. However, .COM-type programs have
some definite disadvantages, and so most serious assembly-language
efforts for MS-DOS are written to be converted into .EXE files.
Although .COM programs are effectively restricted to a total size of 64 KB
for machine code, data, and stack combined, .EXE programs can be prac­
tically unlimited in size (up to the limit of the computer's available
memory)..EXE programs also place the code, data, and stack in separate
parts of the file. Although the normal MS-DOS program loader does not
take advantage of this feature of .EXE files, the ability to load different
parts of large programs into several separate memory fragments, as well
as the opportunity to designate a "pure" code portion of your program
that can be shared by several tasks, is very significant in multitasking envi­
ronments such as Microsoft Windows.

The MS-DOS loader always brings a .EXE program into memory immedi­
ately above the program segment prefix, although the order of the code,
data, and stack segments may vary (Figure 3-4). The .EXE file has a
header, or block of control information, with a characteristic format
(Figures 3-5 and 3-6). The size of this header varies according to the num­
ber of program instructions that need to be relocated at load time, but it is
always a multiple of 512 bytes.

Before MS-DOS transfers control to the program, the initial values of the
code segment (CS) register and instruction pointer (IP) register are calcu­
lated from the entry-point information in the .EXE file header and the
program's load address. This information derives from an END statement

30 Programming/orMS-DOS



Data segment

SS:SP

i Stack segment: stack grows

~ downward from top of segment

g ~
SS: OOOOH I.!-:-----------~----------___

_t

r~

I
t

Program code

CS:OOOOH

Program segment prefIX

OS :OOOOH ~~#-m:..~mmmmBil&i;~;J··~'(.m.~rm·: 1i&·,.m,mm...i$.-mi<'mJ.§~~im1·i!"mrcam,:~~m/a'&1'~~lm:m.·,·~m,·,~;mmimmm~rw.

ES:OOOOH

Figure 3-4. A memory image ofa typical .EXE-typeprogram immediately after

loading. The contents ofthe .EX.E file are relocated and brought into memory above

theprogram segmentprefix. Code, data, and stack reside in separate segments and

need not be in the ordershown here. The entrypoint can be anywhere in the code seg­

ment and is specified by the END statement in the main module oftheprogram. When

theprogram receives control, the DS (data segment) and ES (extra segment) registers

point to theprogram segmentprefix; theprogram usually saves this value and then

resets the DS and ES registers to point to its data area.

in the source code for one of the program's modules. The data segment

(DS) and extra segment (ES) registers are made to point to the PSP so that

the program can access the environment-block pointer, command tail,

and other useful information contained there.

The initial contents of the stack segment (SS) and stack pointer (SP) regis­

ters come from the header. This information derives from the declaration

of a segment with the attribute STACK somewhere in the program's

source code. The memory space allocated for the stack may be initialized

or uninitialized, depending on the stack-segment definition; many pro­

grammers like to initialize the stack memory with a recognizable data pat­

tern so that they can inspect memory dumps and determine how much

stack space is actually used by the program.

When a .EXE program finishes processing, it should return control to MS­

DOS through Int 21H Function 4CH. Other methods are available, but they

offer no advantages and are considerably less convenient (because they

usually require the CS register to point to the PSP).

Structure ofMS-DOS Application Programs 31



Byte offset
OOOOH
OOOlH
0002H
0004H
0006H
0008H
OOOAH
OOOCH
OOOEH
OOIOH
0012H
0014H
0016H
0018H
OOlAH
OOlBH

First part of.EXE file signature (4DH)
Second part of .EXE fue signature (5AH)

Length of file MOD 512
Size of file in 512-byte pages, including header

Number of relocation-table items
Size of header in paragraphs (16-byte units)

Minimum number of paragraphs needed above program
Maximum number of paragraphs desired above program

Segment displacement of stack module
~ Contents of SP register at entry

Word checksum
Contents of IP register at entry

Segment displacement of code module
Offset of first relocation item in file

Overlay number (0 for resident part of program)

~
Variable reserved space

Relocation table

Variable reserved space

' . Program and data segments

. >'

Stack segment

Figure 3-5. Theformat ofa .EXEload module.

The input to the linker for a .EXE-type program can be many separate ob­
ject modules. Each module can use a unique code-segment name, and the
procedures can carry either the NEAR or the FAR attribute, depending on
naming conventions and the size of the executable code. The program­
mer must take care that the modules linked together contain only one seg­
ment with the STACK attribute and only one entry point defined with an
END assembler directive. The output from the linker is a file with a .EXE
extension. This file can be executed immediately.

32 ProgrammingforMS-DOS



Figure 3-6. A hex dump ofthe HELLO.EXE program, demonstrating the contents of
a simple .EXE load module. Note thefollowing interesting values: the .EXE signature
in bytes OOOOH and 0OOlH, the number ofrelocation-table items in bytes 0006H and
OOOm, the minimum extra memory allocation (MIN_ALLOC) in bytes OOOAH and
OOOBH, the maximum extra memory allocation (MAX-ALLOC) in bytes OOOCH
and OOODH, and the initialIP (instruction pointer) register value in bytes 0014Hand
0015H. See also Figure 3-5.

An ExaOlple .EXE Progratn
The HELLO.EXE program in Figure 3-7 demonstrates the fundamental
structure of an assembly-language program that is destined to become a
.EXE file. At minimum, it should have a module name, a code segment, a
stack segment, and a primary procedure that receives control of the com­
puter from MS-DOS after the program is loaded. The HELLO.EXE pro­
gram also contains a data segment to provide a more complete example.

The NAME, TITLE, and PAGE directives were covered in the HELLO. COM
example program and are used in the same manner here, so we'll move to
the first new item of interest. After a few comments and EQU statements,
we come to a declaration of a code segment that begins on line 21 with a
SEGMENT command and ends on line 41 with an ENDS command. As in
the HELLO.COM example· program, the label in the leftmost field of the
line gives the code segment the name _TEXT. The operand fields at the
right end of the line give the attributes WORD, PUBLIC, and 'CODE'.

Following the code-segment instruction, we find an ASSUME statement on
line 23. Notice that, unlike the equivalent statement in the HELLO.COM
program, the ASSUME statement in this program specifies several differ­
ent segment names. Again, remember that this statement has no direct
effect on the contents of the segment registers but affects only the opera­
tion of the assembler itself.

Structure ofMS-DOS Application Programs 33



1: name
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13: stdin
14: stdout

. 15: stderr
16:
17: cr equ
18: If equ
19:
20:
21: _TEXT
22:
23: assume
24:
25: print proc
26:
27: mov
28: mov
29:
30: mov
31: mov
32: mov
33: mov
34: int
35:
36: mov
37: int
38:
39: print endp
40:
41: _TEXT ends
42:
43:
44: - DATA
45:
46: msg db
47: db
48:

Figure 3-7. The HELLO.EXEprogram listing.

34 Programmingfor MS-DOS

(continued)



Figure 3-7. continued

Within the code segment, the main print procedure is declared by the
PROC command on line 25 and closed with ENDP on line 39. Because the
procedure resides in a .EXE file, we have given it the FAR attribute as an
example, but the attribute is really irrelevant because the program is so
small and the procedure is not called by anything else in the same
program.

The print procedure first initializes the DS register, as indicated in the
earlier ASSUME statement, loading it with a value that causes it to point to
the base of the data area. (MS-DOS automatically sets up the CS and SS
registers.) Next, the procedure uses MS-DOS Int 21H Function 40H to dis­
play the message Hello World! on the screen, just as in the HELLO.COM
program. Finally, the procedure exits back to MS-DOS with an Int 21H
Function 4CH on lines 36 and 37, passing a return code of zero (which by
convention means a success).

Lines 44 through 51 declare a data segment named _DATA, which con­
tains the variables and constants the program will use. If the various mod­
ules of a program contain multiple data segments with the same name, the
linker will collect them and place them in the same physical memory
segment.

Lines 54 through 58 establish a stack segment; PUSH and POP instructions
will access this area of scratch memory. Before MS-DOS transfers control
to a .EXE program, it sets up the SS and SP registers according to the
declared size and location of the stack segment. Be sure to allow enough
room for the maximum stack depth that can occur at runtime, plus a safe

Structure ofMS-DOS Application Programs 35



number of extra words for registers pushed onto the stack during an MS­
DOS service call. If the stack overflows, it may damage your other code
and data segments and cause your program to behave strangely or even to
crash altogether!

The END statement on line 60 winds up our brief HELLO.EXE program,
telling the assembler that it has reached the end of the source file and pro­
viding the label of the program's point of entry from MS-DOS.

The differences between .COM and .EXE programs are summarized in
Figure 3-8.

•COMprogram .EXEprogram

Maximum size 65,536 bytes minus 256 bytes No limit
for PSP and 2 bytes for stack

Entry point PSP:0100H Defined by END statement
AL at entry OOH if default FCB #1 has valid Same

drive, OFFH if invalid drive
AH at entry OOH if default FCB #2 has valid Same

drive, OFFH if invalid drive
CS at entry PSP Segment containing module

with entry point
IP at entry 0100H Offset of entry point within

its segment
DS at entry PSP PSP
ES at entry PSP PSP
SS at entry PSP Segment with STACK

attribute
SP at entry OFFFEH or top word in avail- Size of segment defined with

able memory, whichever is STACK attribute
lower

Stack at entry Zero word Initialized or uninitialized
Stack size 65,536 bytes minus 256 bytes Defined in segment with

for PSP and size of execut- STACK attribute
able code and data

Subroutine calls Usually NEAR NEAR or FAR
Exit method Int 21H Function 4CH Int 21H Function 4CH

preferred, NEAR RET if preferred
MS-DOS version 1

Size of file Exact size of program Size of program plus header
(multiple of 512 bytes)

Figure 3-8. Summary 0/the differences between .COM and .EXEprograms, includ­
ing their entry conditions.

36 Programming/orMS-DOS



More About Assembly-Language Programs
Now that we've looked at working examples of .COM and .EXE assembly­
language programs, let's backtrack and discuss their elements a little more
formally. The following discussion is based on the Microsoft Macro As­
sembler, hereafter referred to as MASM. If you are familiar with MASM
and are an experienced assembly-language programmer, you may want to
skip this section.

MASM programs can be thought of as having three structural levels:

• The module level

• The segment level

• The procedure level

Modules are simply chunks of source code that can be independently
maintained and assembled. Segments are physical groupings of like items
(machine code or data) within a program and a corresponding segrega­
tion of dissimilar items. Procedures are functional subdivisions of an exe­
cutable program-routines that carry out a particular task.

Progralll Modules
Under MS-DOS, the module-level structure consists of files containing the
source code for individual routines. Each source file is translated by the as­
sembler into a relocatable object module. An object module can reside
alone in an individual file or with many other object modules in an object­
module library of frequently used or related routines. The Microsoft Ob­
ject Linker (LINK) combines object-module files, often with additional
object modules extracted from libraries, into an executable program file.

Using modules and object-module libraries reduces the size of your appli­
cation source files (and vastly increases your productivity), because these
files need not contain the source code for routines they have in common
with other programs. This technique also allows you to maintain the rou­
tines more easily, because you need to alter only one copy of their source
code stored in one place, instead of many copies stored in different appli­
cations. When you improve (or fix) one of these routines, you can simply
reassemble it, put its object module back into the library, relink all of the
programs that use the routine, and voila: instant upgrade.

Structure ofMS-DOS Application Programs 37



Progratn Segtnents
The term segments refers to two discrete programming concepts: physical
segments and logical segments.

Physical segments are 64 KB blocks of memory. The Intel 8086/8088 and
80286 microprocessors have four segment registers, which are essentially
used as pointers to these blocks. (The 80386 has six segment registers,
which are a superset of those found on the 8086/8088 and 80286.) Each
segment register can point to the bottom of a different 64 KB area of
memory. Thus, a program can address any location in memory by appro­
priate manipulation of the segment registers, but the maximum amount of
memory that it can address simultaneously is 256 KB.

As we discussed earlier in the chapter, .COM programs assume that all
four segment registers always point to the same place-the bottom of the
program. Thus, they are limited to a maximum size of 64 KB..EXE pro­
grams, on the other hand, can address many different physical segments
and can reset the segment registers to point to each segment as it is
needed. Consequently, the only practical limit on the size of a .EXE pro­
gram is the amount of available memory. The example programs through­
out the remainder of this book focus on .EXE programs.

Logical segments are the program components. A minimum of three logi­
cal segments must be declared in any .EXE program: a code segment, a
data segment, and a stack segment. Programs with. more than 64 KB of
code or data have more than one code or data segment. The routines or
data that are used most frequently are put into the primary code and data
segments for speed, and routines or data that are used less frequently are
put into secondary code and data segments.

Segments are declared with the SEGMENT and ENDS directives in the
following form:

name SEGMENT attributes

name ENDS

The attributes of a segment include its align type (BYTE, WORD, or
PARA), combine type (PUBLIC, PRIVATE, COMMON, or STACK), and
class type. The segment attributes are used by the linker when it is com­
bining logical segments to create the physical segments of an executable

38 ProgrammingforMS-DOS



program. Most of the time, you can get by just fine using a small selection
of attributes in a rather stereotypical way. However, if you want to use the
full range of attributes, you might want to read the detailed explanation in
the MASM manual.

Programs are classified into one memory model or another based on the
number of their code and data segments. The most commonly used
memory model for assembly-language programs is the small model,
which has one code and one data segment, but you can also use the
medium, compact, and large models (Figure 3-9). (Two additional models
exist with which we will not be concerning ourselves further: the tiny
model, which consists of intermixed code and data in a single segment­
for example, a .COM file under MS-DOS; and the huge model, which is
supported by the Microsoft C Optimizing Compiler and which allows use
of data structures larger than 64 KB.)

Model Code segments Data segments

Small One One
Medium Multiple One
Compact One Multiple
Large Multiple Multiple

Figure 3-9. Memory models commonly used in assembly-language and Cprograms.

For each memory model, Microsoft has established certain segment and
class names that are used by all its high-level-language compilers (Figure
3-10). Because segment names are arbitrary, you may as well adopt the
Microsoft conventions. Their use will make it easier for you to integrate
your assembly-language routines into programs written in languages such
as C, or to use routines from high-level-language libraries in your
assembly-language programs.

Another important Microsoft high-level-language convention is to use the
GROUP directive to name the near data segment (the segment the pro­
gram expects to address with offsets from the DS register) and the stack
segment as members of DGROUP (the automatic data group), a special
name recognized by the linker and also by the program loaders in
Microsoft Windows and Microsoft OS/2. The GROUP directive causes log­
ical segments with different names to be combined into a single physical
segment so that they can be addressed using the same segment base ad­
dress. In C programs, DGROUP also contains the local heap, which is
used by the C runtime library for dynamic allocation of small amounts
of memory.

Structure ofMS-DOS Application Programs 39



Memory Align Combine Class
model Segment name type type type Group

Small _TEXT WORD PUBLIC CODE
_DATA WORD PUBLIC DATA DGROUP
STACK PARA STACK STACK DGROUP

Medium module_TEXT WORD PUBLIC CODE

_DATA WORD PUBLIC DATA DGROUP
STACK PARA STACK STACK DGROUP

Compact _TEXT WORD PUBLIC CODE
data PARA PRIVATE FAR_DATA

_DATA WORD PUBLIC DATA DGROUP
STACK PARA STACK STACK DGROUP

Large module_TEXT WORD PUBLIC CODE

data PARA PRIVATE FAR_DATA

_DATA WORD PUBLIC DATA DGROUP
STACK PARA STACK STACK DGROUP

Figure 3-10. Segments, groups, and classesfor the standard memory models as used
with assembly-languageprograms. The Microsoft C Optimizing Compiler and other
high-level-language compilers use a superset ofthese segments and classes.

For pure assembly-language programs that will run under MS-DOS, you
can ignore DGROUP. However, if you plan to integrate assembly-language
routines and programs written in high-level languages, you'll want to fol-
low the Microsoft DGROUP convention. For example, if you are planning
to link routines from a C library into an assembly-language program, you
should include the line

DGROUP group _DATA, STACK

near the beginning of the program.

The final Microsoft convention of interest in creating .EXE programs is
segment order. The high-level compilers assume that code segments al­
ways come first, followed by far data segments, followed by the near data

40 Programming/orMS-DOS



segment, with the stack and heap last. This order won't concern you much
until you begin integrating assembly-language code with routines from
high-level-language libraries, but it is easiest to learn to use the conven­
tion right from the start.

PrograOl Procedures
The procedure level of program structure is partly real and partly concep­
tual. Procedures are basically just a fancy guise for subroutines.

Procedures within a program are declared with the PROC and ENDP
directives in the following form:

name PROC attribute

RET

name ENDP

The attribute carried by a PROC declaration, which is either NEAR or FAR,
tells the assembler what type of call you expect to use to enter the pro­
cedure-that is, whether the procedure will be called from other routines
in the same segment or from routines in other segments. When the assem­
bler encounters a RET instruction within the procedure, it uses the
attribute information to generate the correct opcode for either a near
(intra-segment) or far (inter-segment) return.

Each program should have a main procedure that receives control from
MS-DOS. You specify the entry point for the program by including the
name of the main procedure in the END statement in one of the pro­
gram's source files. The main procedure's attribute (NEAR or FAR) is
really not too important, because the program returns control to MS-DOS
with a function call rather than a RET instruction. However, by conven­
tion, most programmers assign the main procedure the FAR attribute
anyway.

You should break the remainder of the program into procedures in an or­
derly way, with each procedure performing a well-defined single func­
tion, returning its results to its caller, and avoiding actions that have global
effects within the program. Ideally procedures invoke each other only by
CALL instructions, have only one entry point and one exit point, and al­
ways exit by means of a RET instruction, never by jumping to some other
location within the program.

Structure ofMS-DOS Application Programs 41



For ease of understanding and maintenance, a procedure should not ex­
ceed one page (about 60 lines); if it is longer than a page, it is probably too
complex and you should delegate some of its function to one or more sub­
sidiary procedures. You should preface the source code for each pro­
cedure with a detailed comment that states the procedure's calling
sequence, results returned, registers affected, and any data items accessed
or modified. The effort invested in making your procedures compact,
clean, flexible, and well-documented will be repaid many times over
when you reuse the procedures in other programs.

42 Programming/orMS-DOS



Chapter 4

MS-DOS Programming Tools



Preparing a new program to run under MS-DOS is an iterative process
with four basic steps:

• Use of a text editor to create or modify an ASCII source-code file

• Use of an assembler or high-level-language compiler (such as the
Microsoft Macro Assembler or the Microsoft C Optimizing Compiler) to
translate the source file into relocatable object code

• Use of a linker to transform the relocatable object code into an execut-
able MS-DOS load module

• Use of a debugger to methodically test and debug the program

Additional utilities the MS-DOS software developer may find necessary or
helpful include the following:

• LIB, which creates and maintains object-module libraries

• CREF, which generates a cross-reference listing

• EXE2BIN, which converts .EXE files to .COM files

• MAKE, which compares dates of files and carries out operations based
on the result of the comparison

This chapter gives an operational overview of the Microsoft program­
ming tools for MS-DOS, including the assembler, the C compiler, the
linker, and the librarian. In general, the information provided here also
applies to the IBM programming tools for MS-DOS, which are really the
Microsoft products with minor variations and different version numbers.
Even if your preferred programming language is not C or assembly lan­
guage, you will need at least a passing familiarity with these tools because
all of the examples in the IBM and Microsoft DOS reference manuals are
written in one of these languages.

The survey in this chapte~, together with the example programs and refer­
ence section elsewhere in the book, should provide the experienced pro­
grammer with sufficient information to immediately begin writing useful
programs. Readers who do not have a background in C, assembly lan­
guage, or the Intel 80x86 microprocessor architecture should refer to the
tutorial and reference works listed at the end of this chapter.

44 Programmingfor MS-DOS



FlleTypes
The MS-DOS programming tools can create and process many different
file types. The following extensions are used by convention for these files:

Extension

.ASM

.C

.COM

.CRF

.DEF

.EXE

.H

.INC

.LIB

.LST

.MAP

.OBJ

.REF

File type
Assembly-language source file
C source file
MS-DOS executable load module that does not require relocation at

runtime
Cross-reference information file produced by the assembler for

processing by CREF.EXE
Module-definition file describing a program's segment behavior

(MS OS/2 and Microsoft Windows programs only; not relevant
to normal MS-DOS applications)

MS-DOS executable load module that requires relocation at
runtime

C header file containing C source code for constants, macros, and
functions; merged into another C program with the #include
directive

Include file for assembly-language programs, typically containing
macros and/or equates for systemwide values such as error
codes

Object-module library file made up of one or more .OBJ files;
indexed and manipulated by LIB.EXE

Program listing, produced by the assembler, that includes memory
locations, machine code, the original program text, and error
messages

Listing of symbols and their locations within a load module;
produced by the linker

Relocatable-object-code file produced by an assembler or compiler
Cross-reference listing produced by CREF.EXE from the

information in a .CRF file

The Microsoft Macro Assembler
The Microsoft Macro Assembler (MASM) is distributed as the file
MASM.EXE. When beginning a program translation, MASM needs the fol­
lowing information:

• The name of the file containing the source program

• The filename for the object program to be created

• The destination of the program listing

• The filename for the information that is later processed by the cross­
reference utility (CREF.EXE)

MS-DOS Programming Tools 45



You can invoke MASM in two ways. If you enter the name of the assembler
alone, it prompts you for the names of each of the various input and output
files. The assembler supplies reasonable defaults for all the responses ex­
cept the source filename, as shown in the following example:

C>MASM <Enter>

Microsoft (R) Macro Assembler Version 5.10
Copyright eC) Microsoft Corp 1981, 1988. All rights reserved.

Source filename [.ASM]: HELLO <Enter>
Object filename [HELLO.OBJ]: <Enter>
Source listing [NUL.LST]: <Enter>
Cross-reference [NUL.CRF]: <Enter>

49006' Bytes symbol space free

o Warning Errors
o Severe Errors

C>

You can use a logical device name (such as PRN or COMl) at any of the
MASM prompts to send that output of the assembler to a character device
rather than a file. Note that the default for the listing and cross-reference
files is the NUL device-that is, no file is created. If you end any response
with a semicolon, MASM assumes that the remaining responses are all to
be the default.

A more efficient way to use MASM is to supply all parameters in the com­
mand line, as follows:

MASM [options] source,[object),[listing],[crossre[J

For example, the following command lines are equivalent to the preceding
interactive session:

C>MASM HELLO"NUL,NUL <Enter>

or

C>MASM HELLO: <Enter>

These commands use the file HELLO.ASM as the source, generate the
object-code file HELLO.OB], and send the listing and cross-reference files
to the bit bucket.

48 ProgrammingforMS-DOS



MASM accepts several optional switches in the command line, to control
code generation and output files. Figure 4-1 lists the switches accepted by
MASM version 5.1. As shown in the following example, you can put fre­
quently used options in a MASM environment variable, where they will be
found automatically by the assembler:

C>SET MASM=/T /li <Enter>

The switches in the environment variable will be overridden by any that
you enter in the command line.

In other versions of the Microsoft Macro Assembler, additional or fewer
switches may be available. For exact instructions, see the manual for the
version of MASM that you are using.

Switch

IA
IBn
IC
ID
IDsymbol

IE

IIpath
IL
ILA
IML

IMX

IMU
IN

IP
IS
IT

IV
IWn
IX
IZ
IZd
IZi

Meaning

Arrange segments in alphabetic order.
Set size of source-file buffer (in KB).
Force creation of a cros~-reference (.CRF) file.
Produce listing on both passes (to find phase errors).
Define symbol as a null text string (symbol can be referenced by

conditional assembly directives in file).
Assemble for 80x87 numeric coprocessor emulator using IEEE real-

number format.
Set search path for include files.
Force creation of a program-listing file.
Force listing of all generated code.
Preserve case sensitivity in all names (uppercase names distinct from

their lowercase equivalents).
Preserve lowercase in external names only (names defined with PUBLIC

or EXTRN directives).
Convert all lowercase names to uppercase.
Suppress generation of tables of macros, structures, records, segments,

groups, and symbols at the end of the listing.
Check for impure code in 80286/80386 protected mode.
Arrange segments in order of occurrence (default).
"Terse" mode; suppress all messages unless errors are encountered

during the assembly.
"Verbose" mode; report number of lines and symbols at end of assembly.
Set error display (warning) level; n=Q-2.
Force listing of false conditionals.
Display source lines containing errors on the screen.
Include line-number information in .OBj file.
Include line-number and symbol information in .OBj file.

Figure 4-1. Microsoft Macro Assembler version 5.1 switches.

MS-DOS Programming Tools 47



MASM allows you to override the default extensions on any file-a feature
that can be rather dangerous. For example, if in the preceding example
you had responded to the Objectfilename prompt with HELLO.ASM, the
assembler would have accepted the entry without comment and destroyed
your source file. This is not too likely to happen in the interactive com­
mand mode, but you must be very careful with file extensions when
MASM is used in a batch file.

The Microsoft C Optimizing Compiler
The Microsoft C Optimizing Compiler consists of three executable files­
Cl.EXE, C2.EXE, and C3.EXE-that implement the C preprocessor, lan­
guage translator, code generator, and code optimizer. An additional con­
trol program, CL.EXE, executes the three compiler files in order, passing
each the necessary information about filenames and compilation options.

Before using the C compiler and the linker, you need to set up four envi­
ronment variables:

Variable Action

PATH=path Specifies the location of the three executable C compiler files (Cl,
C2, and C3) if they are not in the current directory; used by
CL.EXE.

1NCLUDE=path Specifies the location of #include files (default extension .H) that
are not found in the current directory.

LIB=path Specifies the location(s) for object-code libraries that are not found
in the current directory.

TMP=path Specifies the location for temporary working files created by the C
compiler and linker.

CL.EXE does not support an interactive mode or response files. You al­
ways invoke it with a command line of the following form:

CL [options] file [file ... ]

You may list any number of files-if a file has a .C extension, it will be
compiled into a relocatable-object-module COB]) file. Ordinarily, if the
compiler encounters no errors, it automatically passes all resulting .OB]
files and any additional .OB] files specified in the command line to the
linker, along with the names of the appropriate runtime libraries.

The C compiler has many optional switches controlling its memory
models, output files, code generation, and code optimization. These are
summarized in Figure 4-2. The C compiler's arcane switch syntax is
derived largely from UNIXIXENIX, so don't expect it to make any sense.

48 ProgrammingforMS-DOS



Switch

lAx

Ic
IC
ID<name>[=text]
IE
!EP
IF<n>
IFa [filename]
IFc [filename]
/Fe [filename]
/FI [filename]
!Fm [filename]
IFo [filename]
IFPx

IFs (filename]
IGx

IH<n>
II<path>
IJ
/link [options]
lOx

Meaning

Select memory model:
C = compact model
H = huge model
L = large model
M = medium model
S = small model (default)

Compile only; do not invoke linker.
Do not strip comments.
Define macro.
Send preprocessor output to standard output.
Send preprocessor output to standard output without line numbers.
Set stack size (in hexadecimal bytes).
Generate assembly listing.
Generate mixed source/object listing.
Force executable filename.
Generate object listing.
Generate map file.
Force object-module filename.
Select floating-point control:

a = calls with alternate math library
c = calls with emulator library
c87 =calls with 8087 library
i = in-line with emulator (default)
i87 = in-line with 8087

Generate source listing.
Select code generation:

0= 8086 instructions (default)
1 = 186 instructions
2 = 286 instructions
c = Pascal style function calls
s = no stack checking
t [n] = data size threshold

Specify external name length.
Specify additional #include path.
Specify default char type as unsigned.
Pass switches and library names to linker.
Select optimization:

a = ignore aliasing
d = disable optimizations
i =enable intrinsic functions
I = enable loop optimizations
n =disable "unsafe" optimizations
p =enable precision optimizations
r = disable in-line return
s = optimize for space

Figure 4-2. Microsoft C Optimizing Compiler version 5.1 switches. (continued)

MS-DOS Programming Tools 49



IP
ISx

ITc<.file>
lu
lU<name>
N<string>
lW<n>
IX
IZx

Figure 4-2. continued

Switch Meaning

lOx t =optimize for speed (default)
(continued) w = ignore aliasing except across function calls

x = enable maximum optimization (equivalent to IOailt IGs)
Send preprocessor output to file.
Select source-listing control:

l<columns> = set line width
p<lines> = set page length
s<string> =set subtitle string
t<string> =set title string

Compile file without .e extension.
Remove all predefined macros.
Remove specified predefined macro.
Set version string.
Set warning level (0-3).
Ignore "standard places" for include files.
Select miscellaneous compilation control:

a = disable extensions
c =make Pascal functions case-insensitive
d = include line-number information
e =enable extensions (default)
g =generate declarations
i = include symbolic debugging information
I =remove default library info
p<n> =pack structures on n-byte boundary
s = check syntax only

The Microsoft Object linker
The object module produced by MASM from a source file is in a form that
contains relocation information and may also contain unresolved refer­
ences to external locations or subroutines. It is written in a common for­
mat that is also produced by the various high-level compilers (such as
FORTRAN and C) that run under MS-DOS. The computer cannot execute
object modules without further processing.

The Microsoft Object Linker (LINK), distributed as the file LINK.EXE, ac­
cepts one or more of these object modules, resolves external references,
includes any necessary routines from designated libraries, performs any
necessary offset relocations, and writes a file that can be loaded and exe­
cuted by MS-DOS. The output of LINK is always in .EXE load-module for­
mat. (See Chapter 3.)

50 frogrammingfor MS-DOS



As with MASM, you can give LINK its parameters interactively or by enter­
ing all the required information in a single command line. If you enter the
name of the linker alone, the following type of dialog ensues:

C>LINK <Enter>

Microsoft (R) Overlay Linker Version 3.61
Copyright eC) Microsoft Corp 1983-1987. All rights reserved.

Object Modules [.OBJ]: HELLO <Enter>
Run File [HELLO.EXE]: <Enter>
List File [NUL.MAP]: HELLO <Enter>
Libraries [.LIB]: <Enter>

C>

If you are using LINK version 4.0 or later, the linker also asks for the name
of a module-definition (.DEF) file. Simply press the Enter key in response
to such a prompt. Module-definition files are used when building
Microsoft Windows or MS OS/2 "new .EXE" executable files but are not
relevant in normal MS-DOS applications.

The input file for this example was HELLO.OB]; the output files were
HELLO.EXE (the executable program) and HELLO. MAP (the load map
produced by the linker after all references and addresses were resolved).
Figure 4-3 shows the load map.

Figure 4-3. Map produced by the Microsoft Object Linker (LINK) during the genera­
tion ofthe HELLO.EXE programfrom Chapter3. Theprogram contains one CODE,
one DATA, and one STACKsegment. Thefirst instruction to be executed lies in the
first byte ofthe CODE segment. The $$TYPES and $$SYMBOLS segments contain in­
formation for the CodeView debugger and are notpart oftheprogram; these segments
are ignored by the normalMS-DOS loader.

MS-DOS Programming Tools 51



You can obtain the same result more quickly by entering all parameters in
the command line, in the following form:

LINK options objectfile, [exejile], [mapjile], [libraries]

Thus, the command-line equivalent to the preceding interactive session is

C>LINK HELLO.HELLO.HELLO •• <Enter>

or

C>LINK HELLO,.HELLO: <Enter>

If you enter a semicolon as the last character in the command line, LINK
assumes the default values for all further parameters.

A third method of commanding LINK is with a response file. A response
file contains lines of text that correspond to the responses you would give
the linker interactively. You specify the name of the response file in the
command line with a leading @ character, as follows:

LINK @jilename

You can also enter the name ofa response file at any prompt. Ifthe response
file is not complete, LINK will prompt you for the missing information.

When entering linker commands, you can specify multiple object files
with the + operator or with spaces, as in the following example:

C>LINK HELLO+VMODE+DOSINT.MYPROG •• GRAPHICS: <Enter>

This command would link the files HELLO.OBj, VMODE.OBj, and
DOSINT.OBj, searching the library file GRAPHICS.LIB to resolve any ref­
erences to symbols not defined in the specified object files, and would
produce a file named MYPROG. EXE. LINK uses the current drive and
directory when they are not explicitly included in a filename; it will not
automatically use the same drive and directory you specified for a pre­
vious file in the same command line.

By using the + operator or space characters in the libraries field, you can
specify up to 32 library files to be searched. Each high-level-language
compiler provides default libraries that are searched automatically during
the linkage process if the linker can find them (unless they are explicitly
excluded with the INOD switch). LINK looks for libraries first in the cur­
rent directory of the default disk drive, then along any paths that were

52 Programming/orMS-DOS



provided in the command line, and finally along the path(s) specified by
the LIB variable if it is present in the environment.

LINK accepts several optional switches as part of the command line or at
the end of any interactive prompt. Figure 4-4 lists these switches. The
number of switches available and their actions vary among different ver­
sions of LINK. See your Microsoft Object Linker instruction manual for
detailed information about your particular version.

Switch FuUform

IA:n IALIGNMENT:n

IB IBATCH

ICO ICODEVIEW

ICP ICPARMAXALLOC

IDO IDOSSEG

IDS IDSALLOCATE

IE IEXEPACK

IF /FARCALLTRANSLATION

IHE IHELP
IHI !HIGH
II lINFORMATION

Meaning

Set segment sector alignment factor. N must be
a power of 2 (default = 512). Not related to
logical-segment alignment (BYTE, WORD,
PARA, PAGE, and so forth). Relevant to
segmented executable files (Microsoft
Windows and MS OS/2) only.

Suppress linker prompt if a library cannot be
found in the current directory or in the
locations specified by the LIB environment
variable.

Include symbolic debugging information in the
.EXE file for use by CodeView.

Set the field in the .EXE file header controlling
the amount of memory allocated to the
program in addition to the memory required
for the program's code, stack, and initialized
data.

Use standard Microsoft segment naming and
ordering conventions.

Load data at high end of the data segment.
Relevant to real-mode programs only.

Pack executable file by removing sequences of
repeated bytes and optimizing relocation
table.

Optimize far calls to labels within the same
physical segment for speed by replacing
them with near calls and NOPs.

Display information about available options.
Load program as high in memory as possible.
Display information about progress of linking,

including pass numbers and the names of
object files being linked.

(continued)

Figure 4-4. Switches accepted by the Microsoft Object Linker (LINK) version 5.0.
Earlier versions use a subset ofthese switches. Note that any abbreviation for a switch
is acceptable as long as it is suffiCient to specify the switch uniquely.

MS-DOS Programming Tools 53



Figure 4-4. continued

/PADC:n IPADCDDE:n

/NOF /NOFARCALLTRANSLATION

/NOG /NOGROUPASSOCIATION

/NOI /NOIGNORECASE
/NON /NONULLSDOSSEG

/NOP /NOPACKCODE

/O:n /OVERLAYINTERRUPT: n

IPAC(:n] IPACKCODE[:n)

Switch

/INC

ILl

/M[:n)

/NOD

/NOE

FuUform

/INCREMENTAL

ILINENUMBERS

/MAP[:n)

/NODEFAULTLIBRARYSEARCH

/NOEXTENDEDDICTSEARCH

Meaning

Force production of .SYM and .ILK files for
subsequent use by ILINK (incremental
linker). May not be used with IEXEPACK.
Relevant to segmented executable files
(Microsoft Windows and MS OS/2) only.

Write address of the first instruction that
corresponds to each source-code line to the
map file. Has no effect if the compiler does
not include line-number information in the
object module. Force creation of a map file.

Force creation of a .MAP file listing all public
symbols, sorted by name and by location.
The optional value n is the maximum
number of symbols that can be sorted
(default = 2048); when n is supplied, the
alphabetically sorted list is omitted.

Skip search of any default compiler libraries
specified in the .DB] file.

Ignore extended library dictionary (if it is
present). The extended dictionary ordinarily
provides the linker with information about
inter-module dependencies, to speed up
linking.

Disable optimization of far calls to labels
within the same segment.

Ignore group associations when assigning
addresses to data and code items.

Do not ignore case in names during linking.
Arrange segments as for /DOSSEG but do not

insert 16 null bytes at start of _TEXT
segment.

Do not pack contiguous logical code segments
into a single physical segment.

Use interrupt number n with the overlay
manager supplied with some Microsoft
high-level languages.

Pack contiguous logical code segments into a
single physical code segment. The optional
value n is the maximum size for each
packed physical code segment (default =
65,536 bytes). Segments in different groups
are not packed.

Add n filler bytes to end of each code module
so that a larger module can be inserted later
with ILINK. Relevant to segmented execut-·
able files (Windows and MS OS/2) only.

(continued)

54 Programming/orMS-DOS



Figure 4-4. continU!!d

Switch FuQform

/PADD:n /PADDATA:n

!PAU /PAUSE

/SE: n /SEGMENTS: n

/ST:n /STACK:n

IW !WARNFIXUP

Meaning

Add n filler bytes to end of each data module
so that a larger module can be inserted later
with ILINK. Relevant to segmented execut­
able files (Microsoft Windows and MS OS/2)
only.

Pause during linking, allowing a change of
disks before .EXE file is written.

Set maximum number of segments in linked
program (default = 128).

Set stack size of program in bytes; ignore stack
segment size declarations within object
modules and definition file.

Display warning messages for offsets relative
to a segment base that is not the same as
the group base. Relevant to segmented
executable files (Microsoft Windows and
MS OS/2) only.

The EXE2BIN Utility
The EXE2BIN utility (EXE2BIN.EXE) transforms a .EXE file created by
LINK into an executable .COM file, if the program meets the following
prerequisites:

II It cannot contain more than one declared segment and cannot
define a stack.

.. It must be less than 64 KB in length.

• It must have an origin at OIOOH.

• The first location in the file must be specified as the entry point
in the source code's END directive.

Although .COM files are somewhat more compact than .EXE files, you
should avoid using them. Programs that use separate segments for code,
data, and stack are much easier to port to protected-mode environments
such as MS OS/2; in addition, .COM files do not support the symbolic
debugging information used by CodeView.

Another use for the EXE2BIN utility is to convert an installable device
driver-after it is assembled and linked into a .EXE file-into a memory­
image .BIN or .SYS file with an origin of zero. This conversion is required
in MS-DOS version 2, which cannot load device drivers as .EXE files. The
process of writing an installable device driver is discussed in more detail
in Chapter 14.

MS-DOSProgramming Tools 55



Unlike most of the other programming utilities, EXE2BIN does not have
an interactive mode. It always takes its source and destination filenames,
separated by spaces, from the MS-DOS command line, as follows:

EXE2BIN sourcefile [destinationfile]

If you do not supply the source-file extension, it defaults to .EXE; the
destination-file extension defaults to .BIN. If you do not .specify a name
for the destination file, EXE2BIN gives it the same name as the source file,
with a .BIN extension.

For example, to convert the file HELLO.EXE into HELLO.COM, you would
use the following command line:

C>EXE2BIN HELLO.EXE HELLO.COM <Enter>

The EXE2BIN 'program also has other capabilities, such as pure binary
conversion with segment fixup for creating program images to be placed
in ROM; but because these features are rarely used during MS-DOS appli­
cation development, they will not be discussed here.

The CREF Utility
The CREF cross-reference utility CREF.EXE processes a .CRF file pro­
duced by MASM, creating an ASCII text file with the default extension
.REF. The file contains a cross-reference listing of all symbols declared in
the program and the line numbers in which they are referenced. (See
Figure 4-5.) Such a listing is very useful when debugging large assembly­
language programs with many interdependent procedures and variables.

CREF may be supplied with its parameters interactively or in a single com­
mand line. If you enter the utility name alone, CREF prompts you for the
input and output filenames, as shown in the following example:

C>CREF <Enter>

Microsoft (R) Cross-Reference Utility Version 5.10
Copyright (C) Microsoft Corp 1981-1985. 1987. All rights reserved.

Cross-reference [.CRF]: HELLO <Enter>
Listing [HELLO.REF]:

15 Symbols

C>

56 Programming/orMS-DOS



Figure 4-5. Cross-reference listing HELLO.REF produced by the CREF utilityfrom
thefile HELLO.CRF, for the HELLO.EXE program examplefrom Chapter3. The sym­
bols declared in theprogram are listed on the left in alphabetic order. To the right of
each symbol is a list ofall the lines where that symbol is referenced. The number with
a # sign after it denotes the line where the symbol is declared. Numbersfollowed by a
+ sign indicate that the symbol is modified at the specified line. The line numbers
given in the cross-reference listing correspond to the line numbers generated by the
assembler in theprogram-listing (.LST) file, not to anyphysical line count in the origi­
nal sourcefile.

The parameters may also be entered in the command line in the following
form:

CREF CRF_file, listing_file

For example, the command-line equivalent to the preceding interactive
session is:

C>CREF HELLO,HELLO <Enter>

MS-DOS Programming Tools 57



If CREF cannot find the specified .CRF file, it displays an error message.
Otherwise, it leaves the cross-reference listing in the specified file on the
disk. You can send the file to the printer with the COpy command, in the
following form:

COpy listing_file PRN:

You can also send the cross-reference listing directly to a character device
as it is generated by responding to the Listing prompt with the name of
the device.

The Microsoft library Manager
Although the object modules that are produced by MASM or by high­
level-language compilers can be linked directly into executable load mod­
ules, they can also be collected into special files called object-module
libraries. The modules in a library are indexed by name and by the public
symbols they contain, so that they can be extracted by the linker to satisfy
external references in a program.

The Microsoft Library Manager (LIB) is distributed as the file LIB.EXE. LIB
creates and maintains program libraries, adding, updating, and deleting
object files as necessary. LIB can also check a library file for internal con­
sistency or print a table of its contents (Figure 4-6).

LIB follows the command conventions of most other Microsoft program­
ming tools. You must supply it with the name of a library file to work on,
one or more operations to perform, the name of a listing file or device,
and (optionally) the name of the output library. If you do not specify a
name for the output library, LIB gives it the same name as the input library
and changes the extension of the input library to .BAK.

The LIB operations are simply the names of object files, with a prefix
character that specifies the action to be taken:

Prefix

+

Meaning

Delete an object module from the library.
Extract a module and place it in a separate .OBJ file.
Add an object module or the entire contents of another library

to the library.

You can combine command prefixes. For example, -+ replaces a module,
and •- extracts a module into a new file and then deletes it from the
library.

58 Programming/orMS-DOS



Figure 4-6. Extractfrom the table-of-contents listing produced by the Microsoft
Library Manager (LIB) for the Microsoft C library SLIBC.LIB. Thefirst part ofthe list­
ing is an alphabetic list ofallpublic names declared in all ofthe modules in the
library. Each name is associated with the object module to which it belongs. The sec­
ondpart ofthe listing is an alphabetic list ofthe object-module names in the library,
eachfollowed by its offset within the libraryfile and the actual size ofthe module in
bytes. The entryfor each module isfollowed by a summary ofthepublic names that
are declared within it.

When you invoke LIB with its name alone, it requests the other informa­
tion it needs interactively, as shown in the following example:

C>LIB <Enter>

Microsoft (R) Library Manager Version 3.08
Copyright eC) Microsoft Corp 1983-1987. All rights reserved.

Library name: SLIBC <Enter>
Operations: +VIDEO <Enter>
List file: SLIBC.LST <Enter>
Output library: SLIBC2 <Enter>

c>

MS-DOS Programmtng Tools 59



In this example, LIB added the object module VIDEO.OB] to the library
SLIBC.LIB, wrote a library table of contents into the file SLIBC.LST, and
named the resulting new library SLIBC2.LIB.

The Library Manager can also be run with a command line of the follow­
ingform:

LIB library [commands],[list],[newlibrary]

For example, the following command line is equivalent to the preceding
interactive session:

C>LIB SLIBC +VIDEO,SLIBC.LST,SLIBC2: <Enter>

As with the other Microsoft utilities, a semicolon at the end of the com­
mand line causes LIB to use the default responses for any parameters that
are omitted.

Like LINK, LIB can also accept its commands from a response file. The
contents of the file are lines of text that correspond exactly to the
responses you would give LIB interactively. You specify the name of the
response file in the command line with a leading @ character, as follows:

LIB @filename

LIB has only three switches: II (/IGNORECASE), IN (/NOIGNORECASE),
and /PAGESIZE: number. The /IGNORECASE switch is the default. The
INOIGNORECASE switch causes LIB to regard as distinct any symbols
that differ only in the case of their component letters. You should place the
IPAGESIZE switch, which defines the size of a unit of allocation space for
a given library, immediately after the library filename. The library page
size is in bytes and must be a power of 2 between 16 and 32,768 (16, 32, 64,
and so forth); the default is 16 bytes. Because the index to a library is al­
ways a fixed number of pages, setting a larger page size allows you to store
more object modules in that library; on the other hand, it will result in
more wasted space within the file.

The MAKE Utility
The MAKE utility (MAKE.EXE) compares dates of files and carries out
commands based on the result of that comparison. Because of this single,
rather basic capability, MAKE can be used to maintain complex programs
built from many modules. The dates of source, object, and executable files
are simply compared in a logical sequence; the assembler, compiler,
linker, and other programming tools are invoked as appropriate.

60 Programming/orMS-DOS



The MAKE utility processes a plain ASCII text file called, as you might ex­
pect, a make file. You start the utility with a command-line entry in the
following form:

MAKE makeftle [options]

By convention, a make file has the same name as the executable file that is
being maintained, but without an extension. The available MAKE
switches are listed in Figure 4-7.

A simple make file contains one or more dependency statements sepa­
rated by blank lines. Each dependency statement can be followed by a list
of MS-DOS commands, in the following form:

targetfile : sourcefile ...

command

command

If the date and time of any source file are later than those of the target file,
the accompanying list of commands is carried out. You may use comment
lines, which begin with a # character, freely in a make file. MAKE can also
process inference rules and macro definitions. For further details on these
advanced capabilities, see the Microsoft or IBM documentation.

Switch

ID
II

IN

IS
IX <.filename>

Meaning

Display last modification date of each file as it is processed.
Ignore exit (return) codes returned by commands and programs

executed as· a result of dependency statements.
Display commands that would be executed as a result of

dependency statements but do not execute those commands.
Do not display commands as they are executed.
Direct error messages from MAKE, or any program that MAKE

runs, to the specified file. Iffilename is a hyphen (-), direct
error messages to the standard output.

Figure 4-7. Switchesfor the MAKE utility.

MS-DOS Programming Tools 61



A Complete Example
Let's put together everything we've learned about using the MS-DOS pro­
gramming tools so far. Figure 4-8 shows a sketch of the overall process of
building an executable program.

Assume that we have the source code for the HELLO.EXE program from
Chapter 3 in the file HELLO. A SM. To assemble the source program into
the relocatable object module HELLO.OB] with symbolic debugging infor­
mation included, also producing a program listing in the file HELLO.LST
and a cross-reference data file HELLO.CRF, we would enter

C>MASM IC IL IZi IT HELLO: <Enter>

To convert the cross-reference raw-data file HELLO.eRF into a cross­
reference listing in the file HELLO.REF, we would enter

C>CREF HELLO.HELLO <Enter>

MASM
source-code

file

I C or otherI HLL source-
~ code file
~*'~"":'K-lW.==.I.':?I'lW~~~

MASM Compiler

"
Relocatable

object-module !-­

file (.OB])

UB

:.~ Executable
program
(.EXE)

LINKObject-module
libraries 1----:lr-..--------tl~@1

(.LIB)

EXE2BIN

"
HLL

runtime
libraries

Executable
program
(.COM)

Figure 4-8. Creation ofan MS-DOS application program, from source code to exe­
cutablefile.

62 ProgrammingforMS-DOS



To convert the relocatable object file HELLO.OBI into the executable file
HELLO.EXE, creating a load map in the file HELLOMAP and appending
symbolic debugging information to the executable file, we would enter

C>LINK IMAP ICODEVIEW HELLO: <Enter>

We could also automate the entire process just described by creating a
make file named HELLO (with no extension) and including the following
instructions:

hello.obj : hello.asm
masm IC IL IIi IT hello:
cref hello.hello

hello.exe : hello.obj
link IMAP ICODEVIEW hello:

Then, when we have made some change to HELLO.ASM and want to
rebuild the executable HELLO.EXE file, we need only enter

C>MAKE HELLO <Enter>

Pro g Resources and References
The literature on IBM PC-compatible personal computers, the Intel 80x86
microprocessor family, and assembly-language and C programming is
vast. The list below contains a selection of those books that I have found
to be useful and reliable. The list should not be construed as an endorse­
ment by Microsoft Corporation.

MASM Tutorials
Assembly Language Primerfor the IBM PCand XT, by Robert Lafore. New
American Library, New York, NY, 1984. ISBN 0-452-25711-5.

808618088180286 Assembly Language, by Leo Scanlon. Brady Books,
Simon and Schuster, New York, NY, 1988. ISBN 0-13-246919-7.

CTutorials
Microsoft C Programmingfor the IBM, by Robert Lafore. Howard K. Sams
& Co., Indianapolis, IN, 1987. ISBN 0-672-22515-8.

Proficient C, by Augie Hansen. Microsoft Press, Redmond, WA, 1987. ISBN
1-55615-007-5.

MS-DOS Programming Tools 63



futel80x86 Microprocessor References
iAPX 88 Book. Intel Corporation, Literature Department SV3-3, 3065
Bowers Ave., Santa Clara, CA 95051. Order no. 210200.
iAPX 286 Programmer's Reference Manual. Intel Corporation, Literature
Department SV3-3, 3065 Bowers Ave., Santa Clara, CA 95051. Order no.
210498.

iAPX 386 Programmer's Reference Manual. Intel Corporation, Literature
Department SV3-3, 3065 Bowers Ave., Santa Clara, CA 95051. Order no.
230985.

PC, PCIAT, and PS/2 Architecture
The IBM Personal Computer from the Inside Out (Revised Edition), by
Murray Sargent and Richard L. Shoemaker. Addison-Wesley Publishing
Company, Reading, MA, 1986. ISBN 0-201-06918-0.
Programmer's Guide to PC & PS/2 Video Systems, by Richard Wilton.
Microsoft Press, Redmond, WA, 1987. ISBN 1-55615-103-9.
Personal Computer Technical Reference. IBM Corporation, IBM Technical
Directory, P. O. Box 2009, Racine, WI 53404. Part no. 6322507.
Personal Computer AT Technical Reference. IBM Corporation, IBM
Technical Directory, P. O. Box 2009, Racine, WI 53404. Part no. 6280070.
Options and Adapters Technical Reference. IBM Corporation, IBM
Technical Directory, P. O. Box 2009, Racine, WI 53404. Part no. 6322509.
Personal Systeml2 Model 30 Technical Reference. IBM Corporation, IBM
Technical Directory, P. o. Box 2009, Racine, WI 53404. Part no. 68X2201.
Personal Systeml2 Model 50/60 Technical Reference. IBM Corporation,
IBM Technical Directory, P. O. Box 2009, Racine, WI 53404. Part no.
68X2224.

Personal Systeml2 Model 80 Technical Reference. IBM Corporation, IBM
Technical Directory, P. o. Box 2009, Racine, WI 53404. Part no. 68X2256.

64 Programming/orMS-DOS



ChapterS

Keyboard and Mouse Input



The fundamental means of user input under MS-DOS is the keyboard.
This follows naturally from the MS-DOS command-line interface, whose
lineage can be traced directly to minicomputer operating systems with
Teletype consoles. During the first few years ofMS-DOS's existence, when'
8088/8086-based machines were the norm, nearly every popular applica­
tion program used key-driven menus and text-mode displays.

However, as high-resolution graphics adapters (and 80286/80386-based
machines with enough power to drive them) have become less expensive,
programs that support windows and a graphical user interface have
steadily grown more popular. Such programs typically rely on a pointing
device such as a mouse, stylus, joystick, or light pen to let the user navi­
gate in a "point-and-shoot" manner, reducing keyboard entry to a
minimum. As a result, support for pointing devices has become an impor­
tant consideration for all software developers.

Keyboard Input Methods
Applications running under MS-DOS on IBM PC-compatible machines
can use several methods to obtain keyboard input:

JlI MS-DOS handle-oriented functions

iJ MS-DOS traditional character functions

iJ IBM ROM BIOS keyboard-driver functions

These methods offer different degrees of flexibility, portability, and hard­
ware independence.

The handle, or stream-oriented, functions are philosophically derived
from UNIX/XENIX and were first introduced in MS-DOS version 2.0. A
program uses these functions by supplying a handle, or token, for the
desired device, plus the address and length of a buffer.

When a program begins executing, MS-DOS supplies it with predefined
handles for certain commonly used character devices, including the
keyboard:

Handle

o
1
2

3
4

Device name

Standard input (stdin)
Standard output (stdout)
Standard error (stderr)
Standard auxiliary (stdaux)
Standard printer (stdprn)

opened to

CON
CON
CON
AUX
PRN

66 Programming/orMS-DOS



These handles can be used for read and write operations without further
preliminaries. A program can also obtain a handle for a character device
by explicitly opening the device for input or output using its logical name
(as though it were a file). The handle functions support va redirection,
allowing a program to take its input from another device or file instead of
the keyboard, for example. Redirection is discussed in detail in Chapter 15.

The traditional character-input functions are a superset of the character
I/O functions that were present in CP/M. Originally included in MS-DOS
simply to facilitate the porting of existing applications from CP/M, they
are still widely used. In MS-DOS versions 2.0 and later, most of the tradi­
tional functions also support I/O redirection (although not as well as the
handle functions do).

Use of the IBM ROM BIOS keyboard functions presupposes that the pro­
gram is running on an IBM PC-compatible machine. The ROM BIOS key­
board driver operates at a much more primitive level than the MS-DOS
functions and allows a program to circumvent I/O redirection or MS­
DOS's special handling of certain control characters. Programs that use
the ROM BIOS keyboard driver are inherently less portable than those that
use the MS-DOS functions and may interfere with the proper operation of
other programs; many of the popular terminate-and-stay-resident (TSR)
utilities fall into this category.

Keyboard Input with Handles
The principal MS-DOS function for keyboard input using handles is Int
21H Function 3FH (Read File or Device). The parameters for this function
are a handle, the segment and offset of a buffer, and the length of the
buffer. (For a more detailed explanation of this function, see Section II of
this book, "MS-DOS Functions Reference.")

As an example, let's use the predefined standard input handle (0) and Int
21H Function 3FH to read a line from the keyboard:

(continued)

Keyboard andMouse Input 67



(continued)

When control returns from Int 21H Function 3FH, the carry flag is clear if
the function was successful, and AX contains the number of characters
read. If there was an error, the carry flag is set and AX contains an error
code; however, this should never occur when reading the keyboard.

The standard input is redirectable, so the code just shown is not a
foolproof way of obtaining input from the keyboard. Depending upon
whether a redirection parameter was included in the command line by
the user, program input might be coming from the keyboard, a file,
another character device, or even the bit bucket (NUL device). To bypass
redirection and be absolutely certain where your input is coming from,
you can ignore the predefined standard input handle and open the con­
sole as though it were a file, using the handle obtained from that open
operation to perform your keyboard input, as in the following example:

(continued)

68 Programming/orMS-DOS



(continued)

When a programmer uses Int 21H Function 3FH to read from the key­
board, the exact result depends on whether MS-DOS regards the handle to
be in ASCII mode or binary mode (sometimes known as cooked mode and
raw mode). ASCII mode is the default, although binary mode can be
selected with Int 21H Function 44H (IOCTL) when necessary.

In ASCII mode, MS-DOS initially places characters obtained from the key­
board in a 128-byte internal buffer, and the user can edit the input with the
Backspace key and the special function keys. MS-DOS automatically
echoes the characters to the standard output, expanding tab characters to
spaces (although they are left as the ASCII code 09H in the buffer). The
Ctrl-C, Ctrl-S, and Ctrl-P key combinations receive special handling, and
the Enter key is translated to a carriage return-linefeed pair. When the user
presses Enter or Ctrl-Z, MS-DOS copies the requested number of charac­
ters (or the actual number of characters entered, if less than the number
requested) out of the internal buffer into the calling program's buffer.

In binary mode, MS-DOS never echoes input characters. It passes the Ctrl­
C, Ctrl-S, Ctrl-P, and Ctrl-Z key combinations and the Enter key through to
the application unchanged, and Int 21H Function 3FH does not return
control to the application until the exact number of characters requested
has been received.

Ctrl-C checking is discussed in more detail at the end of this chapter. For
now, simply note that the application programmer can substitute a custom
handler for the default MS-DOS Ctrl-C handler and thereby avoid having
the application program lose control of the machine when the user enters
a Ctrl-C or Ctrl-Break.

Keyboard Input with Traditional Calls
The MS-DOS traditional keyboard functions offer a variety of character
and line-oriented services with or without echo and Ctrl-C detection.
These fu~ctionsare summarized on the following page.

Keyboard andMouse Input 69



1",21HFunction

OIH
06H
om
08H
OAH
OBH
OCH

Action

Keyboard input with echo
Direct console I/O
Keyboard input without echo
Keyboard input without echo
Buffered keyboard input
Input-status check
Inputl"'buffer reset and input

Orl-C checking

Yes
No
No
Yes
Yes
Yes
Varies

In MS-DOS versions 2.0 and later, redirection of the standard input affects
all these functions. In other words, they act as though they were special
cases of an Int 2IH Function 3FH call using the predefined standard input
handle (0).

The character-input functions (OIH, 06H, 07H, and OSH) all return a char­
acter in the AL register. For example, the following sequence waits until a
key is pressed and then returns it in AL:

The character-input functions differ in whether the input is echoed to the
screen and whether they are sensitive to Ctrl-C interrupts. Although MS­
DOS provides no pure keyboard-status function that is immune to Ctrl-C,
a program can read keyboard status (somewhat circuitously) without in­
terference by using Int 2IH Function 06H. Extended keys, such as the IBM
PC keyboard's special function keys, require two calls to a character-input
function.

As an alternative to single-character input, a program can use buffered­
line input (Int 21H Function OAH) to obtain an entire line from the key­
board in one operation. MS-DOS builds up buffered lines in an internal
buffer and does not pass them to the calling program until the user
presses the Enter key. While the line is being entered, all the usual editing
keys are active and are handled by the MS-DOS keyboard driver. You use
Int 2IH Function OAH as follows:

(continued)

70 Programmtng/orMS-DOS



(continued)

Int 21H Function OAH differs from Int 21H Function 3FH in several impor­
tant ways. First, the maximum length is passed in the first byte of the
buffer, rather than in the CX register. Second, the actual length is returned
in the second byte of the structure, rather than in the AX register. Finally,
when the user has entered one less than the specified maximum number
of characters, MS-DOS ignores all subsequent characters and sounds a
warning beep until the Enter key is pressed.

For detailed information about each of the traditional keyboard-input
functions, see Section II of this book, "MS-DOS Functions Reference."

Keyboard Input with ROM BIOS Functions
Programmers writing applications for IBM PC compatibles can bypass the
MS-DOS keyboard functions and choose from two hardware-dependent
techniques for keyboard input.

The first method is to call the ROM BIOS keyboard driver using Int 16H.
For example, the following sequence reads a single character from the
keyboard input buffer and returns it in the AL register:

Int 16H Function OOH also returns the keyboard scan code in the AH
register, allowing the program to detect key codes that are not ordinarily
returned by MS-DOS. Other Int 16H services return the keyboard status
(that is, whether a character is waiting) or the keyboard shift state (from
the ROM BIOS data area OOOO:0417H). For a more detailed explanation of
ROM BIOS keyboard functions, see Section III of this book, "IBM ROM
BIOS and Mouse Functions Reference."

Keyboard andMouse Input 71



You should consider carefully before building ROM BIOS depeIldence into
an application. Although this technique allows you to bypass any I/O redi­
rection that may be in effect, ways exist to do this without introducing de­
pendence on the ROM BIOS. And there are real disadvantages to calling
the ROM BIOS keyboard driver:

• It always bypasses I/O redirection, which sometimes may not be
desirable.

• It is dependent on IBM PC compatibility and does not work correctly,
unchanged, on some older machines such as the Hewlett-Packard
TouchScreen or the Wang Professional Computer.

• It may introduce complicated interactions with TSR utilities.·

The other and, more hardware-dependent method of keyboard input on
an IBM PC is to write a new handler for ROM BIOS Int 09H and service the
keyboard controller's interrupts directly. This involves translation of scan
codes to ASCII characters and maintenance of the type-ahead buffer. In
ordinary PC applications, there is no reason to take over keyboard I/O at
this level; therefore, I will not discuss this method further here. If you are
curious about the techniques that would be required, the best reference is
the listing for the ROM BIOS Int 09H handler in the IBM PC or PC/AT
technical reference manual.

Ctrl-C and Ctrl-Break Handlers
In the discussion of keyboard input with the MS-DOS handle and tradi­
tional functions, I made some passing references to the fact that Ctrl-C en­
tries can interfere with the expected behavior of those functions. Let's
look at this subject in more detail now.

During most character I/O operations, MS-DOS checks for a Ctrl-C (ASCII
code 03H) waiting at the keyboard and executes an Int 23H if one is
detected. If the system break flag is on, MS-DOS also checks for a Ctrl-C
entry during certain other operations (such as file reads and writes). Ordi­
narily, the Int 23H vector points to a routine that simply terminates the
currently active process and returns control to the parent process­
usually the MS-DOS command interpreter.

In other words, if your program is executing and you enter a Ctrl-C, acci­
dentally or intentionally, MS-DOS simply aborts the program. Any files the
program has opened using file control blocks will not be closed properly,
any interrupt vectors it has altered may not be restored correctly, and if it

72 ProgrammingforMS-DOS



is performing any direct I/O operations (for example, if it contains an in­
terrupt driver for the serial port), all kinds of unexpected events may
occur.

Although you can use a number of partially effective methods to defeat
Ctrl-C checking, such as performing keyboard input with Int 21H Func­
tions 06H and 07H, placing all character devices into binary mode, or
turning off the system break flag with Int 21H Function 33H, none of these
is completely foolproof. The simplest and most elegant way to defeat Ctrl­
C checking is simply to substitute your own Int 23H handler, which can
take some action appropriate to your program. When the program termi­
nates, MS-DOS automatically restores the previous contents of the Int 23H
vector from information saved in the program segment prefix. The follow­
ing example shows how to install your own Ctrl-C handler (which in this
case does nothing at all):

The first part of the code (which alters the contents of the Int 23H vector)
would be executed in the initialization part of the application. The han­
dler receives control whenever MS-DOS detects a Ctrl-C at the keyboard.
(Because this handler consists only of an interrupt return, the Ctrl-C will
remain in the keyboard input stream and will be passed to the application
when it requests a character from the keyboard, appearing on the screen
as AC.)

When an Int 23H handler is called, MS-DOS is in a stable state. Thus, the
handler can call any MS-DOS function. It can also reset the segment regis­
ters and the stack pointer and transfer control to some other point in the
application without ever returning control to MS-DOS with an IRET.

Keyboard andMouse Input 73



On IBM PC compatibles, an additional interrupt handler must be taken
into consideration. Whenever the ROM BIOS keyboard driver detects the
key combination Ctrl-Break, it calls a handler whose address is stored in
the vector for Int IBH. The default ROM BIOS Int IBH handler does
nothing. MS-DOS alters the Int IBH veCtor to point to its own handler,
which sets a flag and returns; the net effect is to remap the Ctrl-Break into
a Ctrl-C that is forced ahead of any other characters waiting in the key­
board buffer.

Taking over the Int IBH vector in an application is somewhat tricky but
,extremely useful. Because the keyboard is interrupt driven, a press of Ctrl­
Break lets the application regain control under almost any circum­
stance-often, even if the program has crashed or is in an endless loop.

You cannot, in general, use the same handler for Int IBH that you use for
Int 23H. The Int IBH handler is more limited in what it can do, because it
has been called as a result of a hardware interrupt and MS-DOS may have
been executing a critical section of code at the time the interrupt was ser­
viced. Thus, all registers except CS:IP are in an unknown state; they may
have to be ~ved and then modified before your interrupt handler can exe­
cute. Sim~larly, the depth of the stack in use when the Int IBH handler is
called i~Ajnknown, and if the handler is to perform stack-intensive opera­
tions, it' may have to save the stack segment and the stack pointer and
sWit~'h to a new stack that is known to have sufficient depth.

In normal application programs, you should probably avoid retaining con­
trol in an Int IBH handler, rather than performing an IRET. Because of
subtle differences among non-IBM ROM BIOSes, it is difficult to predict
the state of the keyboard controller and the 8259 Programmable Interrupt
Controller (PIC) when the Int IBH handler begins executing. Also, MS­
DOS itself may not be in a stable state at the point of interrupt, a situation
that can manifest itself in unexpected critical errors during subsequent I/O
operations. Finally, MS-DOS versions 3.2 and later allocate a stack from an
internal pool for use by the Int 09H handler. If the Int IBH handler never
returns, the Int 09H handler never returns either, and repeated entries of
Ctrl-Break will eventually exhaust the stack pool, halting the system.

Because Int IBH is a ROM BIOS interrupt and not an MS-DOS interrupt,
MS-DOS does not restore the previous contents of the Int IBH vector
when a program exits. If your program modifies this vector, it must save
the original value and restore it before terminating. Otherwise, the vector
will be left pointing to some random area in the next program that runs,
and the next time the user presses Ctrl-Break a system crash is the best
you can hope for.

74 ProgrammingforMS-DOS



Ctrl-C and Ctrl-Break Handlers and High-LevellLanguages
Capturing the Ctrl-C and Ctrl-Break interrupts is straightforward when
you are programming in assembly language. The process is only slightly
more difficult with high-level languages, as long as you have enough infor­
mation about the language's calling conventions that you can link in a
small assembly-language routine as part of the program.

The BREAKASM listing in Figure 5-1 contains source code for a Ctrl­
Break handler that can be linked with small-model Microsoft C programs
running on an IBM PC compatible. The short C program in Figure 5-2
demonstrates use of the handler. (This code should be readily portable to
other C compilers.)

(continued)

Figure 5-1. BREAK.ASM: A Ctrl-C and Ctrl-Break interrupt handler that can be
linked with Microsoft Cprograms.

Keyboard andMouse Input 75



Figure 5-1. continued

(continued)

76 Programming/orMS-DOS



Figure 5-1. continued

p,u~h

P9P:;

mav

(continued)

Keyboard and Mouse Input 77



Figure 5-1. continued

(continued)

Figure 5-2. TRYBREAK.C: A simple Microsoft Cprogram that demonstrates use ofthe
interrupt handler BREAK.ASMfrom Figure 5-1.

78 ProgrammingforMS-DOS



Figure 5-2. continued

Keyboard andMouse Input 79



In the example handler, the procedure named capture is called with the
address of an integer variable within the C program. It saves the address of
the variable, points the Int IBH and Int 23H vectors to its own interrupt
handler, and then returns.

When MS-DOS detects a Ctrl-C or Ctrl-Break, the interrupt handler sets
the integer variable within the C program to true (1) and returns. The C
program can then poll this variable at its leisure. Of course, to detect more
than one Ctrl-C, the program must reset the variable to zero again.

The procedure named release simply restores the Int IBH and Int 23H
vectors to their original values, thereby disabling the interrupt handler.
Although it is not strictly necessary for release to do anything about Int
23H, this action does give the C program the option of restoring the
default handler for Int 23H without terminating.

Pointing Devices,
Device drivers for pointing devices are supplied by the hardware manu­
facturer and are loaded with a DEVICE statement in the CONFIG.SYS file.
Although the hardware characteristics of the available pointing devices
differ greatly, nearly all of their drivers present the same software inter­
face to application programs: the Int 33H protocol used by the Microsoft
Mouse driver. Version 6 of the Microsoft Mouse driver (which was current
as this was written) offers the following functions:

Function

OOH
OlH
02H
03H
04H
OSH
06H
07H
OSH
09H
OAH
OBH
OCH
ODH
OEH
OFH
lOH

Meaning

Reset mouse and get status.
Show mouse pointer.
Hide mouse pointer.
Get button status and pointer position.
Set pointer position.
Get button-press information.
Get button-release information.
Set horizontal limits for pointer.
Set vertical limits for pointer.
Set graphics pointer type.
Set text pointer type.
Read mouse-motion counters.
Install interrupt handler for mouse events.
Turn on light pen emulation.
Turn off light pen emulation.
Set mickeys to pixel ratio.
Set pointer exclusion area.

(continued)

80 Programming/orMS-DOS



(continued)

Function

13H
14H
ISH
16H
I7H
ISH
19H
lAH
IBH
ICH
IDH
lEH
IFH
20H
21H
22H
23H
24H

Meaning

Set double-speed threshold.
Swap mouse-event interrupt routines.
Get buffer size for mouse-driver state.
Save mouse-driver state.
Restore mouse-driver state.
Install alternate handler for mouse events.
Get address of alternate handler.
Set mouse sensitivity.
Get mouse sensitivity.
Set mouse interrupt rate.
Select display page for pointer.
Get display page for pointer.
Disable mouse driver.
Enable mouse driver.
Reset mouse driver.
Set language for mouse-driver messages.
Get language number.
Get driver version, mouse type, and IRQ number.

Although this list of mouse functions may appear intimidating, the aver­
age application will only need a few of them.

A program first calls Int 33H Function OOH to initialize the mouse driver
for the current display mode and to check its status. At this point, the
mouse is "alive" and the application can obtain 'its state and position; how­
ever, the pointer does not become visible until the process calls Int 33H
Function OlH.

The program can then call Int 33H Functions 03H, 05H, and 06H to moni­
tor the mouse position and the status of the mouse buttons. Alternatively,
the program can register an interrupt handler for mouse events, using Int
33H Function OCH. This latter technique eliminates the need to poll the
mouse driver; the driver will notify the program by calling the interrupt
handler whenever the mouse is moved or a button is pressed or released.

When the application is finished with the mouse, it can call Int 33H Func­
tion 02H to hide the mouse pointer. If the program has registered an inter­
rupt handler for mouse events, it should disable further calls to the handler
by resetting the mouse driver again with Int 33H Function OOH.

For a complete description of the mouse-driver functions, see Section III
of this book, "IBM ROM BIOS and Mouse Functions Reference." Figure 5-3
shows a small demonstration program that polls the mouse continually, to
display its position and status.

Keyboard andMouse Input 81



(continued)

Figure 5-3. MQUDEMO.C: A simple Microsoft Cprogram thatpolls the mouse and
continually displays the coordinates ofthe mousepointer in the upper left corner of
the screen. The program uses the ROMBIOS video driver, which is discussed in Chap­
ter ~ to clear the screen andposition the text cursor.

82 Programming/orMS-DOS



Figure 5-3. continued

Keyboard and Mouse Input 83





Chapter 6

Video Display



The visual presentation of an application program is one of its most im­
portant elements. Users frequently base their conclusions about a pro­
gramts performance and "polish" on the speed and attractiveness of its
displays. Therefore, a feel for the computer system's display facilities and
capabilities at all levels, from MS-DOS down to the bare hardware, is
important to you as a programmer.

Video Display Adapters
The video display adapters found in IBM PC-compatible computers have
a hybrid interface to the central processor. The overall display characteris­
tics, such as vertical and horizontal resolution, background color, and
palette, are controlled by values written to I/O ports whose addresses are
hardwired on the adapter, whereas the appearance of each individual
character or graphics pixel on the display is controlled by a specific loca­
tion within an area of memory called the regen buffer or refresh buffer.
Both the CPU and the video controller access this memory; the software
updates the display by simply writing character codes or bit patterns di­
rectly into the regen buffer. (This is called memory-mapped I/O.)

The following adapters are in common use as this book is being written:

lit Monochrome/Printer Display Adapter (MDA). Introduced with the
original IBM PC in 1981, this adapter supports 80-by-25 text display on
a green (monochrome) screen and has no graphics capabilities at all.

E Color/Graphics Adapter (CGA). Also introduced by IBM in 1981, this
adapter supports 40-by-25 and 80-by-25 text modes and 320-by-200,
4-color or 640-by-200, 2-color graphics (all-points-addressable, or APA)
modes on composite or digital RGB monitors.

II Enhanced Graphics Adapter (EGA). Introduced by IBM in 1985 and
upwardly compatible from the CGA, this adapter adds support for 640­
by-350, 16-color graphics modes on digital RGB monitors. It also sup­
ports an MDA-compatible text mode.

iii Multi-Color Graphics Array (MCGA). Introduced by IBM in 1987 with
the Personal System/2 (PS/2) models 25 and 30, this adapter is partially
compatible with the CGA and EGA and supports 640-by-480, 2-color or
320-by-200, 256-color graphics on analog RGB monitors.

II Video Graphics Array (VGA). Introduced by IBM in 1987 with the PS/2
models 50, 60, and 80, this adapter is upwardly compatible from the
EGA and supports 640-by-480, 16-color or 320-by-200, 256-color
graphics on analog RGB monitors. It also supports an MDA-compatible
text mode.

86 Programming/orMS-DOS



• Hercules Graphics Card, Graphics CardPlus, and InColor Cards. These
are upwardly compatible from the MDA for text display but offer
graphics capabilities that are incompatible with all of the IBM adapters.

The locations of the regen buffers for the various IBM PC-compatible
adapters are shown in Figure 6-1.

FEOOOH

F4000H

COOOOH

BCOOOH

B8000H

BlOOOH

BOOOOH

AOOOOH

varies

00400H

OOOOOH

I· ROMBIOS

m·
~ System ROM, Stand-alone BASIC, etc.i:

I Reserved for BIOS extensions

r
(hard-disk controller, etc.)

Zi

f
~ Reserved
~

_.

~ 16 KB regen buffer for CGA, EGA, MCGA, and VGA
in text modes and 200-line graphics modes

~~

Reserved

~ 4 KB.Monochrome Adapter regen buffer

?j

i Regen buffer area for EGA, MCGA, and VGA
in 3S0-line or 480-line graphics modes

":~

~

Transient part of COMMAND.COM

-.
r
.1' Transient program area~

I'
~.

~

I MS-DOS and its buffers,
~ tables, and device drivers

~
Interrupt vectors

.:*_.....m>~.....;,>1'l' .?:-'\$X:::::::$"w.%~;,?,.·~.,:W~~$:'t~f.:::»W>W&m:-,:,*w.<-.<.mc_ mo_,* ;_'~"~"''''**'''_~;~>~~""..,..r.*>...x*;t'*' """'),~

Figure 6-1. Memory diagram 0/an IBM PC--eompatiblepersonal computer, shOWing
the locations o/the regen buffers/or various adapters.

Video Display 87



Support Considerations
MS-DOS offers several functions to transfer text to the display. Version 1
supported only Teletype-like output capabilities; version 2 added an op­
tional ANSI console driver to allow the programmer to clear the screen,
position the cursor, and select colors and attributes with standard escape
sequences embedded in the output. Programs that use only the MS-DOS
functions will operate properly on any computer system that runs MS­
DOS, regardless of the level of IBM hardware compatibility.

On IBM PC-compatible machines, the ROM BIOS contains a video driver
that programs can invoke directly, bypassing MS-DOS. The ROM BIOS
functions allow a program to write text or individual pixels to the screen
or to select display modes, video pages, palette, and foreground and back­
ground colors. These functions are relatively efficient (compared with the
MS-DOS functions, at least), although the graphics support is primitive.

Unfortunately, the display functions of both MS-DOS and the ROM BIOS
were designed around the model of a cursor-addressable terminal and
therefore do not fully exploit the capabilities of the memory-mapped,
high-bandwidth display adapters used on IBM PC-compatible machines.
As a resu~t, nearly every popular interactive application with full-screen
displays or graphics capability ignores both MS-DOS and the ROM BIOS
and writes directly to the video controller's registers and regen buffer.

Programs that control the hardware directly are sometimes called "ill­
behaved," because they are performing operations that are normally
reserved for operating-system device drivers. These programs are a
severe management problem in multitasking real-mode environments
such as DesqView and Microsoft Windows, and they are the main reason
why such environments are not used more widely. It could be argued,
however, that the blame for such problematic behavior lies not with the
application programs but with the failure of MS-DOS and the ROM
BIOS-even six years after the first appearance of the IBM PC-to pro­
vide display functions of adequate r.ange and power.

MS-DOS Display Functions
Under MS-DOS versions 2.0 and later, the preferred method for sending
text to the display is to use handle-based Int 21H Function 40H (Write File
or Device). When an application program receives control, MS-DOS has
already assigned it handles for the standard output (1) and standard error
(2) devices, and these handles can be used immediately. For example, the
sequence at the top of the follOWing page writes the message hello to the
display using the standard output handle.

88 Programming/orMS-DOS



If there is no error, the function returns the carry flag cleared and the
number of characters actually transferred in register AX. Unless a Ctrl-Z
is embedded in the text or the standard output is redirected to a disk file
and the disk is full, this number should equal the number of characters
requested.

As in the case of keyboard input, the user's ability to specify command­
line redirection parameters that are invisible to the application means that
if you use the predefined standard output handle, you can't always be sure
where your output is going. However, to ensure that your output actually
goes to the display, you can use the predefined standard error handle,
which is always opened to the CON (logical console) device and is not
redirectable.

As an alternative to the standard output and standard error handles, you
can bypass any output redirection and open a separate channel to CON,
using the handle obtained from that open operation for character output.
For example, the following code opens the console display for output and
then writes the string hello to it:

(continued)

Video Display 89



(continued)

As with the keyboard input functions, MS-DOS also supports traditional
display functions that are upwardly compatible from the corresponding
CP1M output calls:

~ Int 21H Function 02H sends the character in the DL register to the stan­
dard output device. It is sensitive to Ctrl-C interrupts, and it handles
carriage returns, linefeeds, bell codes, and backspaces appropriately.

f!J Int 21H Function 06H transfers the character in the DL register to the
standard output device, but it is not sensitive to Ctrl-C interrupts. You
must take care when using this function, because it can also be used
for input and for status requests.

118 Int 21H Function 09H sends a string to the standard output device. The
string is terminated by the $ character.

With MS-DOS version 2 or later, these three traditional functions are con­
verted internally to handle-based writes to the standard output and thus
are susceptible to output redirection.

The.sequence at the top of the following page sounds a warning beep by
sending an ASCII bell code (07H) to the display driver using the tradi­
tional character-output call Int 21H Function 02H.

90 ProgrammingforMS-DOS



·.-: ~r
i.'

y ;

.·C"

""', .. /

"". ,\:

The following sequence uses the traditional string-output call Int 21H
Function 09H to display a string:

Note that MS-DOS detects the $ character as a terminator and does not
display it on the screen.

Screen Control with MS-DOS Functions
With version 2.0 or later, if MS-DOS loads the optional device driver
ANSI.SYS in response to a DEVICE directive in the CONFIG.SYS file, pro­
grams can clear the screen, control the cursor position, and select fore­
ground and background colors by embedding escape sequences in the
text output. Escape sequences are so called because they begin with an
escape character (lBH), which alerts the driver to intercept and interpret

.the subsequent characters in the sequence. When the ANSI driver is not
loaded, MS-DOS simply passes the escape sequence to the display like any
other text, usually resulting in a chaotic screen.

The escape sequences that can be used with the ANSI driver for screen
control are a subset of those defined in the ANSI 3.64-1979 Standard.
These standard sequences are summarized in Figure 6-2. Note that case is

Video Display 91



significant for the last character in an escape sequence and that numbers
must always be represented as ASCII digit strings, not as their binary
values. (A separate set of escape sequences supported by ANSI.SYS, but
not compatible with the ANSI standard, may be used for reprogramming
and remapping the keyboard.)

Escape
sequence
Esc[2J
Esc[K
Esc[row;colH

Esc[nA
Esc[nB
Esc[nC
Esc[nD
Esc[s
Esc[u
Esc[6n

Esc[nm

Meaning
Clear screen; place cursor in upper left corner (home position).
Clear from cursor to end of line.
Position cursor. (Row is the y coordinate in the range 1-25 and col

is the x coordinate in the range 1-80 for 80-by-25 text display
modes.) Escape sequences terminated with the letterf instead
of H have the same effect.

Move cursor up n rows.
Move cursor down n rows.
Move cursor right n columns.
Move cursor left n columns.
Save current cursor position.
Restore cursor to saved position.
Return current cursor position on the standard input handle in the

format Esclrow;coIR.
Select character attributes:
o= no special attributes
1 = high intensity
2 = low intensity
3 = italic
4 = underline
5 =blink
6 = rapid blink
7 = reverse video
8 = concealed text (no display)
30 = foreground black
31 = foreground red
32 =foreground green
33 = foreground yellow
34 =foreground blue
35 = foreground magenta

(continued)

Figure 6-2. The ANSIescape sequences supported by the MS-DOS ANSI.SYS driver.
Programs running underMS-DOS 2.0 or later may use thesefunctions, ifANSI.SYS isloaded, to control the appearance ofthe display in a hardware-independent manner.The symbol Esc indicates an ASCIIescape code - a character with the value IBH.Note that cursorpositions in ANSIescape sequences are one-based, unlike the cursorcoordinates used by the IBM ROM BIOS, which are zero-based. Numbers embedded inan escape sequence must always be represented as a string 0/ASCII digits, not as their
binary values.

92 Programming/orMS-DOS



Figure 6-2. continued

Escape
sequence

Escl=nh

Escl=7h
Esc[= 71

Meaning

36 = foreground cyan
37 =foreground white
40 = background black
41 = background red
42 =background green
43 =background yellow
44 =background blue
45 = background magenta
46 = background cyan
47 = background white
Select display mode:
o= 40-by-25, 16-color text (color burst off)
1 = 40-by-25, 16-color text
2 =80-by-25, 16-color text (color burst off)
3 =80-by-25, 16-color text
4 = 32Q-by-200, 4-color graphics
5 = 320-by-200, 4-color graphics (color burst off)
6 =620-by-200, 2-color graphics
14 = 64Q-by-200, 16-color graphics (EGA and VGA, MS-DOS 4.0)
15 = 640-by-350, 2-color graphics (EGA and VGA, MS-DOS 4.0)
16 = 640-by-350, 16-color graphics (EGA and VGA, MS-DOS 4.0)
17 =640-by-480, 2-color graphics (MCGA and VGA, MS-DOS 4.0)
18 = 640-by-480, 16-color graphics (VGA, MS-DOS 4.0)
19 = 320-by-200, 256-color graphics (MCGA and VGA, MS-DOS 4.0)
Escape sequences terminated with I instead of h have the same

effect.
Enable line wrap.
Disable line wrap.

Binary Output Mode
Under MS-DOS version 2 or later, you can substantially increase display
speeds for well-behaved application programs without sacrificing hard­
ware independence by selecting binary (raw) mode for the standard out­
put. In binary mode, MS-DOS does not check between each character it
transfers to the output device for a Ctrl-C waiting at the keyboard, nor
does it filter the output string for certain characters such as Ctrl-Z.

Bit 5 in the device information word associated with a device handle con­
trols binary mode. Programs access the device information word by using
Subfunctions OOH and OlH of the MS-DOS IOCTL function (1/0 Control,
Int 21H Function 44H). For example, the sequence on the following page
places the standard output handle into binary mode.

Video Display 93



Note that if a program changes the mode of any of the standard handles, it
should restore those handles to ASCII (cooked) mode before it exits.
Otherwise, subsequent application programs may behave in unexpected
ways. For more detailed information on the IOCTL function, see Section II
of this book, "MS-DOS Functions Reference."

The ROM BIOS Display Functions
You can somewhat improve the display performance of programs that are
intended for use only on IBM PC-compatible machines by using the ROM
BIOS video driver instead of the MS-DOS output functions. Accessed by
means of Int lOH, the ROM BIOS driver supports the following functions
for all of the currently available IBM display adapters:

Function

Display mode control
OOH
OFH

Cursor control
OIH
02H
03H

Writing to the display
09H
OAH
OEH

94 Programming/orMS-DOS

Action

Set display mode.
Get display mode.

Set cursor size.
Set cursor position.
Get cursor position and size.

Write character and attribute at cursor.
Write character-only at cursor.
Write character in teletype mode.

(continued)



(continued)

Function

Reading/rom the display
08H

Graphics support
OCH
ODH

Scroll or clear display
06H
07H

Miscellaneous
04H
OSH
OBH

Action

Read character and attribute at cursor.

Write pixel.
Read pixel.

Scroll up or initialize window.
Scroll down or initialize window.

Read light pen.
Select display page.
Select palette/set border color.

Additional ROM BIOS functions are available on the EGA, MeGA, VGA,
and PCjr to support the enhanced features of these adapters, such as pro­
grammable palettes and character sets (fonts). Some of the functions are
valid only in certain display modes.

Each display mode is characterized by the number of colors it can display,
its vertical resolution, its horizontal resolution, and whether it supports
text or graphics memory mapping. The ROM BIOS identifies it with a
unique number. Section III of this book, "IBM ROM BIOS and Mouse
Functions Reference," documents all of the ROM BIOS Int lOH functions
and display modes.

As you can see from the preceding list, the ROM BIOS offers several desir­
able capabilities that are not available from MS-DOS, including initializa­
tion or scrolling of selected screen windows, modification of the cursor
shape, and reading back the character being displayed at an arbitrary
screen location. These functions can be used to isolate your program from
the hardware on any IBM PC-compatible adapter. However, the ROM
BIOS functions do not suffice for the needs of a high-performance, in­
teractive, full-screen program such as a word processor. They do not sup­
port the rapid display of character strings at an arbitrary screen position,
and they do not implement graphics operations at the level normally re­
qUired by applications (for example, bit-block transfers and rapid drawing
of lines, circles, and filled polygons). And, of course, they are of no use
whatsoever in non-IBM display modes such as the monochrome graphics
mode of the Hercules Graphics Card.

Video Display 95



Let's look at a simple example of a call to the ROM BIOS video driver. The
following sequence writes the string hello to the screen:

(Note that the SI and DI registers are not necessarily preserved across a
call to a ROM BIOS video function.)

Memory-mapped Display Techniques
Display performance is best when an application program takes over
complete control of the video adapter and the refresh buffer. Because the
display is memory-mapped, the speed at which characters can be put on
the screen is limited only by the CPU's ability to copy bytes from one loca­
tion in memory to another. The trade-off for this performance is that such
programs are highly sensitive to hardware compatibility and do not al­
ways function properly on "clones" or even on new models of IBM video
adapters.

Text Mode
Direct programming of the IBM PC-compatible video adapters in their
text display modes (sometimes also called alphanumeric display modes) is
straightforward. The character set is the same for all, and the cursor home

96 Programming/orMS-DOS



position-(x,Y) = (O,O)-is defined to be the upper left corner of the
screen (Figure 6-3). The MDA uses 4 KB of memory starting at segment
BOOOH as a regen buffer, and the various adapters with both text and
graphics capabilities (CGA, EGA, MCGA, and VGA) use 16 KB of memory
starting at segment B800H. (See Figure 6-1.) In the latt~r case, the 16 KB is
divided into "pages" that can be independently updated and displayed.

(0,0) _-------_ (79,0)

(0,24) (79,24)

Figure 6-3. Cursor addressingfor BO-by-25 text display modes (IBM ROM BIOS
modes 2, 3, and 7).

Each character-display position is allotted 2 bytes in the regen buffer. The
first byte (even address) contains the ASCII code of the c~aracter,which is
translated by a special hardware character generator into a dot-matrix pat­
tern for the screen. The second byte (odd address) is the attribute byte.
Several bit fields in this byte control such features as blinking, intensity
(highlighting), and reverse video, depending on the adapter type and dis­
play mode (Figures 6-4 and 6-5). Figure 6-6 shows a hex and ASCII dump
of part of the video map for the MDA.

7

B

B = Blink
I = Intensity

6' 5

Background

4 3 2 1

Foreground

o

Display

No display (black)
No display (white) *
Underline
Normal video
Reverse video

·VGAonly

Background

000
111
000
000
111

Foreground

000
111
001
111
000

Figure 6-4. Attribute bytefor BO-by-25 monochrome text display mode on the MDA,
Hercules cards, EGA, and VGA (IBM ROMBIOS mode 7).

Video Display 97



7

B

6 5

Background

4 3 2 1

Foreground

o

B =Blink or background intensity (default =blink)
I =Foreground intensity or character select (default = intensity)

Value

o
1
2

3
4
5
6
7
8
9

10
11
12
13
14
15

Color

Black
Blue
Green
Cyan
Red
Magenta
Brown
White
Gray
Light blue
Light green
Light cyan
Light red
Light magenta
Yellow
Intense white

Figure 6-5. Attribute bytefor the 40-by-25 and 80-by-25 text display modes on the
CGA, EGA, MCGA, and VGA (IBM ROMBIOS modes 0-3). The table ofcolor values
assumes defaultpaletteprogramming and that the B orI bit controls intensity.

Figure 6-6. Example dump ofthefirst 160 bytes ofthe MDA:S regen buffer. These
bytes correspond to thefirst visible line on the screen. Note that ASCII character codes
are stored in even bytes and their respective character attributes in odd bytes; all. the
characters in this example line have the attribute normal video.

98 ProgrammingforMS-DOS



You can calculate the memory offset of any character on the display as the
line number (y coordinate) times 80 characters per line times 2 bytes per
character, plus the column number (x coordinate) times 2 bytes per char­
acter, plus (for the text/graphics adapters) the page number times the size
of the page (4 KB per page in 80-by-25 modes; 2 KB per page in 40-by-25
modes). In short, the formula for the offset of the character-attribute pair
for a given screen position (x,y) in 80-by-25 text modes is

offset =((y • SOH + x) • 2) + (page • lOOOH)

In 40-by-25 text modes, the formula is

offset =((y • SOH + x) • 2) + (page • 0800H)

Of course, the segment register being used to address the video buffer
must be set appropriately, depending on the type of display adapter.

As a simple example, assume that the character to be displayed is in the
AL register, the desired attribute byte for the character is in the AH regis­
ter, the x coordinate (column) is in the BX register, and the y coordinate
(row) is in the ex register. The following code stores the character and at­
tribute byte into the MDA's video refresh buffer at the proper location:

More frequently, we wish to move entire strings into the refresh buffer,
starting at a given coordinate. In the next example, assume that the DS;SI
registers point to the source string, the ES:DI registers point to the starting
position in the video buffer (calculated as shown in the previous ex­
amp~e), the AH register contains the attribute byte to be assigned to every
character in the string, and the ex register contains the length of the
string. The following code moves the entire string into the refresh buffer:

Video Display 99



Of course, the video drivers written for actual application programs must
take into account many additional factors, such as checking for special
control codes (linefeeds, carriage returns, tabs), line wrap, and scrolling.

Programs that write characters directly to the CGA regen buffer in text
modes must deal with an additional complicating factor-they must ex­
amine the video controller's status port and access the refresh buffer only
during the horizontal retrace or vertical retrace intervals. (A retrace inter­
val is the period when the electron beam that illuminates the screen
phosphors is being repositioned to the start of a new scan line.) Other­
wise, the contention for memory between the CPU and the video con...
troller is manifest as unsightly "snow" on the display. (If you are writing
programs for any of the other IBM PC-compatible video adapters, such as
the MDA, EGA, MCGA, or VGA, you can ignore the retrace intervals; snow
is not a problem with these video controllers.)

A program can detect the occurrence of a retrace interval by monitoring
certain bits in the video controller's status register. For example, assume
that the offset for the desired character position has been calculated as in
the preceding example and placed in the BX register, the segment for the
CGA's refresh buffer is in the ES register, and an ASCII character code to
be displayed is in the CL register. The following code waits for the begin­
ning of a new horizontal retrace interval and then writes the character into
the buffer:

100 Programming/orMS-DOS



The first wait loop "synchronizes" the code to the beginning of a horizon­
tal retrace interval. If only the second wait loop were used (that is, if a
character were written when a retrace interval was already in progress),
the write would occasionally begin so close to the end of a horizontal
retrace "window" that it would partially miss the retrace, resulting in scat­
tered snow at the left edge of the display. Notice that the code also dis­
ables interrupts during accesses to the video buffer, so that service of a
hardware interrupt won't disrupt the synchronization process.

Because of the retrace-interval constraints just outlined, the rate at which
you can update the CGA in text modes is severely limited when the updat­
ing is done one character at a time. You can obtain better results by
calculating all the relevant addresses and setting up the appropriate regis­
ters, disabling the video controller by writing to register 3D8H, moving the
entire string to the buffer with a REP MOVSW operation, and then
reenabling the video controller. If the string is of reasonable length, the
user won't even notice a flicker in the display. Of course, this procedure
introduces additional hardware dependence into your code because it
requires much greater knowledge of the 6845 controller. Luckily, snow is
not a problem in CGA graphics modes.

Graphics Mode
Graphics-mode memory-mapped programming for IBM PC-compatible
adapters is considerably more complicated than text-mode programming.
Each bit or group of bits in the regen buffer corresponds to an addressable
point, or pixel, on the screen. The mapping of bits to pixels differs for
each of the available graphics modes, with their differences in resolution
and number of supported colors. The newer adapters (EGA, MCGA, and
VGA) also use the concept of bitplanes, where bits of a pixel are segre­
gated into multiple banks of memory mapped at the same address; you
must manipulate these bit planes by a combination of memory-mapped
I/O and port addressing.

IBM-video-systems graphics programming is a subject large enough for a
book of its own, but we can use the 640-by-200, 2-color graphics display
mode of the CGA (which is also supported by all subsequent IBM text/
graphics adapters) to illustrate a few of the techniques involved. This
mode is simple to deal with because each pixel is represented by a single
bit. The pixels are assigned (x,y) coordinates in the range (0,0) through
(639,199), where x is the horizontal displacement, y is the vertical
displacement, and the home position (0,0) is the upper left corner of the
display. (See Figure 6-7.)

Video Display 101



(0,0) _-------_ (639,0)

(0,199) (639,~99)

Figure 6-7. Point addressing/or 640-by-2DO, 2-colorgraphics modes on the CGA,
EGA, MCGA, and VGA (IBM ROM BIOS mode 6).

Each successive group of 80 bytes (640 bits) represents one horizontal
scan line. Within each byte, the bits map one-for-one onto pixels, with the
most significant bit corresponding to the leftmost displayed pixel of a set
of eight pixels and the least significant bit corresponding to the rightmost
displayed pixel of the set. The memory map is set up so that all the even y
coordinates are scanned as a set and all the odd y coordinates are scanned"
as a set; this mapping is referred to as the memory interlace.

To find the regen buffer offset for a particular (x,y) coordinate, you would
use the following formula:

offset =((y AND 1) • 2000H) + (y/2 • SOH) + (x/B)

The assembly-language implementation of this formula is as follows:

After calculating the correct byte address, you can use the following for­
mula to calculate the bit position for a given pixel coordinate:

bit =7 -(x MOD 8)

102 Programming/orMS-DOS



where bit 7 is the most significant bit and bit 0 is the least significant bit. It
is easiest to build an 8-byte table, or array of bit masks, and use the opera­
tion X AND 7 to extract the appropriate entry from the table:

(XAND7)

o
1
2

3

Bit mask

80H
40H
20H
lOH

(XAND7)

4
5
6
7

Bit mask

08H
04H
02H
OlH

The assembly-language implementation of this second calculation is as
follows:

The program can then use the mask, together with the byte offset pre­
viously calculated, to set or clear the appropriate bit in the video con­
troller's regen buffer.

Video Display 103





Chapler7

Printer and Serial Port



MS-DOS supports printers, plotters, modems, and other hard-copy output
or communication devices with device drivers for parallelports and serial
ports. Parallel ports are so named because they transfer a byte-8 bits­
in parallel to the destination device over eight separate physical paths
(plus additional status and handshaking signals). The serial port, on the
other hand, communicates with the CPU with bytes but sends data to or
receives data from its destination device serially-a bit at a time-over a
single physical connection.

Parallel ports are typically used for high-speed output devices, such as
line printers, over relatively short distances (less than 50 feet). They are
rarely used for devices that require two-way communication with the
computer. Serial ports are used for lower-speed devices, such as modems
and terminals, that require two-way communication (although some
printers also have serial interfaces). A serial port can drive its device reli­
ably over much greater distances (up to 1000 feet) over as few as three
wires-transmit, receive, and ground.

The most commonly used type of serial interface follows a standard called
RS-232. This standard specifies a 25-wire interface with certain electrjcal
characteristics, the use of various handshaking signals, and a standard
DB-25 connector. Other serial-interface standards exist-for example, the
RS-422, which is capable of considerably higher speeds than the RS-232­
but these are rarely used in personal computers (except for the Apple
Macintosh) at this time.

MS-DOS has built-in device drivers for three parallel adapters, and for two
serial adapters on the PC or PC/AT and three serial adapters on the PS/2.
The logical names for these devices are LPTl, LPT2, LPT3, COM1, COM2,
and COM3. The standard printer (PRN) and standard auxiliary (AUX)
devices are normally aliased to LPTl and COM1, but you can redirect PRN
to one of the serial ports with the MS-DOS MODE command.

As with keyboard and video display I/O, you can manage printer and
serial-port I/O at several levels that offer different degrees of flexibility
and hardware independence:

• MS-DOS handle-oriented functions

• MS-DOS traditional character functions

• IBM ROM BIOS driver functions

In the case of the serial port, direct control of the hardware by application
programs is also common. I will discuss each of these I/O methods
briefly, with examples, in the following pages.

106 Programming/orMS-DOS



Printer Output
The preferred method of printer output is to use the handle write function
(Int 21H Function 4OH) with the predefined standard printer handle (4).
For example, you could write the string hellC! to the printer as follows:

If there is no error, the function returns the carry flag cleared and the
number of characters actually transferred to the list device in register AX.
Under normal circumstances, this number should always be the same as
the length requested and the carry flag indicating an error should never be
set. However, the output will terminate early if your data contains an end­
of-file mark (Ctrl-Z).

You can write independently to several list devices (for example, LPn,­
LPT2) by issuing a specific open request (Int 21H Function 3DH) for each
device and using the handles returned to access the.printers individually
with Int 21H Function 40H. You have already seen this general approach
in Chapters Sand 6..

An alternative method of printer output is to use the traditional Int 21H
Function OSH, which transfers the character in the OL register to the
printer. (This function is sensitive to Ctrl-C interrupts.) For example, the
assembly-language code sequence at the top of the following page would
write the the string hello to the line printer.

Printer and Serial Port 107



Programs that run on IBM PC-compatible machines can obtain improved
printer throughput by bypassing MS-DOS and calling the ROM BIOS
printer driver directly by means of Int 17H. Section III of this book, "IBM
ROM BIOS and Mouse Functions Reference," documents the Int 17H func­
tions in detail. Use of the ROM BIOS functions also allows your program
to test whether the printer is off line or out of paper, a capability that
MS-DOS does not offer.

For example, the following sequence of instructions calls the ROM BIOS
printer driver to send the string hello to the line printer:

(continued)

108 Programming/orMS-DOS



(continued)

Note that the printer numbers used by the ROM BIOS are zero-based,
whereas the printer numbers in MS-DOS logical-device names are one­
based. For example, ROM BIOS printer 0 corresponds to LPTl.

Finally, the most hardware-dependent technique of printer output is to ac­
cess the printer controller directly. Considering the functionality already
provided in MS-DOS and the IBM ROM BIOS, as well as the speeds of the
devices involved, I cannot see any justification for using direct hardware
control in this case. The disadvantage of introducing such extreme hard­
ware dependence for such a low-speed device would far outweigh any
small performance gains that might be obtained.

The Serial Port
MS-DOS support for serial ports (often referred to as the auxiliary device
in MS-DOS manuals) is weak compared with its keyboard, video-display,
and printer support. This is one area where the application programmer is
justified in making programs hardware dependent to extract adequate
performance.

Programs that restrict themselves to MS-DOS functions to ensure por­
tability can use the handle read and write functions (Int 21H Functions
3FH and 40H), with the predefined standard auxiliary handle (3) to access
the serial port. For example, the following code writes the string hello to
the serial port that is currently defined as the AUX device:

(continued)

Printer and Serial Port 109



(continued)

The standard auxiliary handle gives access to only the first serial port
(COMl). If you want to read or write COM2 and COM3 using the handle
calls, you must issue an open request (Int 2lH Function 3DH) for the
desired serial port and use the handle returned by that function with Int
2lH Functions 3FH and 40H.

Some versions of MS-DOS have a bug in character-device handling that
manifests itself as follows: If you issue a read request with Int 2lH Func­
tion 3FH for the exact number of characters that are waiting in the driver's
buffer, the length returned in the AX register is the number of characters
transferred minus one. You can circumvent this problem by always re­
questing more characters than you expect to receive or by placing the
device handle into binary mode using Int 2lH Function 44H.

MS-DOS also supports two traditional functions for serial-port 1/0. Int 2lH
Function 03H inputs a character from COMl and returns it in the AL regis­
ter; Int 2lH Function 04H transmits the character in the DL register to
COMl. Like the other traditional calls, these two are direct descendants of
the CPIM auxiliary-device functions.

For example, the following code sends the string hello to COMl using the
traditional Int 21H Function 04H:

(continued)

110 Programming/orMS-DOS



(continued)

MS-DOS translates the traditional auxiliary-device functions into calls on
the same device driver used by the handle calls. Therefore, it is generally
preferable to use the handle functions in the first place, because they
allow very long strings to be read or written in one operation, they give
access to serial ports other than COMl, and they are symmetrical with the
handle video-display, keyboard, printer, and file I/O methods described
elsewhere in this book.

Although the handle or traditional serial-port functions allow you to write
programs that are portable to any machine running MS-DOS, they have a
number of disadvantages:

ei The built-in MS-DOS serial-port driver is slow and is not interrupt
driven.

8iI MS-DOS serial-port I/O is not buffered.

~ Determining the status of the auxiliary device requires a separate call
to the IOCTL function (Int 2lH Function 44H)-if you request input
and no characters are ready, your program will simply hang.

~ MS-DOS offers no standardized function to configure the serial port
from within a program.

For programs that are going to run on the IBM PC or compatibles, a more
flexible technique for serial-port I/O is to call the IBM ROM BIOS serial­
port driver by means of Int 14H. You can use this driver to initialize the
serial port to a desired configuration and baud rate, examine the status of
the controller, and read or write characters. Section III of this book, "IBM
ROM BIOS and Mouse Functions Reference," documents the functions
available from the ROM BIOS serial-port driver.

Printer and Serial Port 111



For example, the following sequence sends the character X to the first
serial port (COMl):

As with the ROM BIOS printer driver, the serial-port numbers used by the
ROM BIOS are zero-based, whereas the serial-port numbers in MS-DOS
logical-device names are one-based. In this example, serial port 0 corre­
sponds to COMl.

Unfortunately, like the MS-DOS auxiliary-device driver, the ROM BIOS
serial-port driver is not interrupt driven. Although it will support higher
transfer speeds than the MS-DOS functions, at rates greater than 2400
baud it may still lose characters. Consequently, most programmers writing
high-performance applications that use a serial port (such as telecom­
munications programs) take complete control of the serial-port controller
and provide their own interrupt driver. The built-in functions provided by
MS-DOS, and by the ROM BIOS in the case of the IBM PC, are simply not
adequate.

Writing such programs requires a good understanding of the hardware. In
the case of the IBM PC, the chips to study are the INS8250 Asynchronous
Communications Controller and the Intel 8259A Programmable Interrupt
Controller. The IBM technical reference documentation for these chips is
a bit disorganized, but most of the necessary information is there if you
look for it.

112 Programming/orMS-DOS



The TALK Program
The simple terminal-emulator program TALK.ASM (Figure 7-1) is an ex­
ample of a useful program that performs screen, keyboard, and serial-port
I/O. This program recapitulates all of the topics discussed in Chapters 5
through 7. TALK uses the IBM PC's ROM BIOS video driver to put charac­
ters on the screen, to clear the display, and to position the cursor; it uses
the MS-DOS character-input calls to read the keyboard; and it contains its
own interrupt driver for the serial-port controller.

(continued)

Figure 7-1. TALK.ASM: A simple terminal-emulatorprogramforIBM PC--compatible
computers. Thisprogram demonstrates use ofthe MS-DOS and ROMBIOS video and
keyboardfunctions and direct control ofthe serial-communications adapter.

Printer and Serial Port 113



Figure 7-1. continued

(continued)

114 ProgrammingjorMS-DOS



Figure 7-1. continued

(continued)

Printer and Serial Port 115



Figure '-I. continued

(continued)

116 Programming/orMS-DOS



Figure 7-1. continued

(continued)

Printer and Serial Port 117



Figure 7-1. continued

(continued)

118 Programming/orMS-DOS



Figure 7-1. continued

(continued)

Printerand Serial Port 119



Figure 7-1. continued

(continued)

120 Programming/orMS-DOS



Figure 7-1. continued

(continued)

Printer and Serial Port 121



Figure 7-1. continued

(continued)

122 Programming/orMS-DOS



Figure 7~1. continued

(continued)

Printer and Serial Port 123



Figure 7-1. continued

(continued)

124 Programming/orMS-DOS



Figure 7-1. continued

The TALK program illustrates the methods that an application should use
to take over and service interrupts from the serial port without running
afoul of MS-DOS conventions.

The program begins with some equates and conditional assembly state­
ments that configure the program for half- or full-duplex and for the
desired serial port (COMI or COM2). At entry from MS-DOS, the main rou­
tine of the program-the procedure named talk-checks the status of
the serial port, initializes the display, and calls the asc_enb routine to take
over the serial-port interrupt vector and enable interrupts. The talk pro­
cedure then enters a loop that reads the keyboard and sends the charac­
ters out the serial port and then reads the serial port and puts the
characters on the display-in other words, it causes the PC to emulate a
simple CRT terminal.

The TALK program intercepts and handles control codes (carriage return,
linefeed, and so forth) appropriately. It detects escape sequences and
handles them as a subset of the Televideo 950 terminal capabilities. (You
can easily modify the program to emulate any other cursor-addressable
terminal.) When one of the PC's special function keys is pressed, the
program disables serial-port interrupts, releases the serial-port interrupt
vector, and exits back to MS-DOS.

There are several TALK program procedures that are worth your attention
because they can easily be incorporated into other programs. These are
listed in the table on the following page.

Printer and Serial Port 125



Procedure

asc_int

com_stat

com_in

com_out
cis
clreol

home
gotoxy
getxy
pc_out
pc_stat
pc_in

Aetlon

Takes over the serial-port interrupt vector and enables interrupts
by writing to the modem-control register of the INS82S0 and
the interrupt-mask register of the 8259A.

Restores the original state of the serial-port interrupt vector and
disables interrupts by writing to the interrupt-mask register of
the 8259A.

Services serial-port interrupts, placing received characters into a
ring buffer.

Tests whether characters from the serial port are waiting in the
ring buffer.

Removes characters from the interrupt handler's ring buffer and
increments the buffer pointers appropriately.

Sends one character to the serial port.
Calls the ROM BIOS video driver to clear the screen.
Calls the ROM BIOS video driver to clear from the current cursor

position to the end of the line.
Places the cursor in the upper left corner of the screen.
Positions the cursor atthe desired position on the display.
Obtains the current cursor position.
Sends one character to the PC's display.
Gets status for the PC's keyboard.
Returns a character from the PC's keyboard.

126 Programming/orMS-DOS



Chapter 8

File Management



The dual heritage of MS-DOS-CP/M and UNIX/XENIX-is perhaps
most clearly demonstrated in its file-management services. In general,
MS-DOS provides at least two distinct operating-system calls for each ma­
jor file or record operation. This chapter breaks this overlapping battery
of functions into two groups and explains the usage, advantages, and
disadvantages of each.

I will refer to the set of file and record functions that are compatible with
CP1M as FCB functions. These functions rely on a data structure called a
file control block (hence, FCB) to maintain certain bookkeeping informa­
tion about open files. This structure resides in the application program's
memory space. The FCB functions allow the programmer to create, open,
close, and delete files and to read or write records of any size at any record
position within such files. These functions do not support the hierarchical
(treelike) file structure that was first introduced in MS-DOS version 2.0, so
they can be used only to access files in the current subdirectory for a given
disk drive.

I will refer to the set of file and record functions that provide compatibility
with UNIX!XENIX as the handle functions. These functions allow the
programmer to open or create files by passing MS-DOS a null-terminated
string that describes the file's location in the hierarchical file structure (the
drive and path), the file's name, and its extension. If the open or create
operation is successful, MS-DOS returns a 16-bit token, or handle, that is
saved by the application program and used to specify the file in subse­
quent operations.

When you use the handle functions, the operating system maintains the
data structures that contain bookkeeping information about the file inside
its own memory space, and these structures are not accessible to the ap­
plication program. The handle functions fully support the hierarchical file
structure, allowing the programmer to create, open, close, and delete files
in any subdirectory on any disk drive and to read or write records of any
size at any byte offset within such files.

Although we are discussing the FeB functions first in this chapter for
historical reasons, new MS-DOS applications should always be written
using the more powerful handle functions. Use of the FCB functions in
new programs should be avoided, unless compatibility with MS-DOS
version 1.0 is needed.

128 Programming/orMS-DOS



Using the FeB Functions
Understanding the structure of the file control block is the key to success
with the FCB family of file and record functions. An FCB is a 37-byte data
structure allocated within the application program's memory space; it is
divided into many fields (Figure 8-1). Typically, the program initializes an
FCB with a drive code, a filename, and an extension (conveniently accom­
plished with the parse-filename service, Int 21H Function 29H) and then
passes the address of the FCB to MS-DOS to open or create the file. If the
file is successfully opened or created, MS-DOS fills in certain fields of the
FCB with information from the file's entry in the disk directory. This infor­
mation includes the file's exact size in bytes and the date and time the file
was created or last updated. MS-DOS also places certain other information
within a reserved area of the FeB; however, this area is used by the
operating system for its own pUlposes and varies among different versions
of MS-DOS. Application programs should never modify the reserved area.

For compatibility with CP/M, MS-DOS automatically sets the record-size
field of the FCB to 128 bytes. If the program does not want to use this
default record size, it must place the desired size (in bytes) into the record­
size field after the open or create operation. Subsequently, when the pro­
gram needs to read or write records from the file, it must pass the address
of the FCB to MS-DOS; MS-DOS, in turn, keeps the FCB updated with in­
formation about the current position of the file pointer and the size of the

Byte offset
OOH
OlH

09H

OCH
OEH
lOH

I4H
16H
I8H

20H
21H

Drive identification

Filename (8 characters)
.,.

:
Extension (3 characters)

~ Current-block number
Record size

File size (4 bytes)

Date created/updated
Time created/updated

Reserved

Current-record number

Relative-record number (4 bytes)
H ~ ...

Note 1

Note 2

Note 2

Note 9
Note 10

Notes 3, 6

Note 7
NoteS

Note 9

NoteS

Figure 8-1. Normalfile control block. Total length is 3 7 bytes (25H bytes). See notes
onpages 133-34.

File Management 129



file. Data is always read to or written from the current disk transfer area
(DTA), whose address is set with Int 21H Function lAH. If the application
program wants to perform random record access, it must set the record
number into the FCB before issuing each function call; when sequential
record access is being used, MS-DOS maintains the FCB and no special in­
tervention is needed from the application.

In general, MS-DOS functions that use FCBs accept the full address of the
FCB in the DS:DX register and pass back a return code in the AL register
(Figure 8-2). For file-management calls (open, close, create, and delete),
this return code is zero if the function was successful and OFFH (255) if
the function failed. For the FCB-type record read and write functions, the
success code returned in the AL register is again zero, but there are sev­
eral failure codes. Under MS-DOS version 3.0 or later, more detailed error
reporting can be obtained by calling Int 21H Function 59H (Get Extended
Error Information) after a failed FCB function call.

When a program is loaded under MS-DOS, the operating system sets up
two FCBs in the program segment prefix, at offsets 005CH and 006CH.
These are often referred to as the default FCBs, and they are included to
provide upward compatibility from CP1M. MS-DOS parses the first two
parameters in the command line that invokes the program (excluding any
redirection directives) into the default FCBs, under the assumption that
they may be file specifications. The application must determine whether
they really are filenames or not. In addition, because the default FCBs
overlap and are not in a particularly convenient location (especially for
.EXE programs), they usually must be copied elsewhere in order to be
used safely. (See Chapter 3.)

Figure 8-2. A typical FCB file operation. This sequence ofcode attempts to open the
file whose name waspreviouslyparsed into the FCB named my_feb.

130 Programming/orMS-DOS



Note that the structures of FCBs under CP1M and MS-DOS are not identi­
cal. However, the differences lie chiefly in the reserved areas of the FCBs
(which should not be manipulated by application programs in any case),
so well-behaved CPIM applications should be relatively easy to port into
MS-DOS. It seems, however, that few such applications exist. Many of the
tricks that were played by clever CP1M programmers to increase perfor­
mance or circumvent the limitations of that operating system can cause
severe problems under MS-DOS, particularly in networking environ­
ments. At any rate, much better performance can be achieved by thor­
oughly rewriting the CP1M applications to take advantage of the superior
capabilities of MS-DOS.

You can use a special FCB variant called an extendedfile control block to
create or access files with special attributes (such as hidden or read-only
files), volume labels, and subdirectories. An extended FCB has a 7-byte
header followed by the 37-byte structure of a normal FCB (Figure 8-3).
The first byte contains OFFH, which could never be a legal drive code and
thus indicates to MS-DOS that an extended FCB is being used. The next 5
bytes are reserved and are. unused in current versions of MS-DOS. The

Byte offset
OOH
OIH

06H
07H
08H

IOH
I3H
ISH
I7H

IBH
IDH
IFH

27H
28H

OFFH

Reserved (5 bytes, must be zero)

Attribute byte

Drive identification

Filename (8 characters)

Extension (3 characters)

Current-block number
Record size

File size (4 bytes)

Date created/updated
Time created/updated

Reserved

Current-record number

Relative-record number (4 bytes)
.. .. • v > • • ~~>'m Yl'l .~~

Note 11

Note 12

Note 1

Note 2

Note 2

Note 9
Note 10

Notes 3, 6
Note 7
Note 8

Note 9

Note 5

Figure 8-3. Extendedfile control block. Total length is 44 bytes (2CH bytes). See notes
onpages 133-34.

File Management 131



seventh byte contains the attribute of the special file type that is being ac­
cessed. (Attribute bytes are discussed in more detail in Chapter 9.) Any
MS-DOS function that uses a normal FCB can also use an extended FCB.

The FCB file- and record-management functions may be gathered into the
following broad classifications:

Function Action

Common FCBfile operations
OFH Open file.
10H Close file.
16H Create file.
Common FCB record operations
14H Perform sequential read.
15H Perform sequential write.
21H Perform random read.
22H Perform random write.
27H Perform random block read.
28H Perform random block write.

Other vital FCB operations
lAH Set disk transfer address.
29H Parse filename.

Less commonly 'USed FCBfile operations
13H Delete file.
17H Rename file.

Less commonly 'USed FCB record operations
23H Obtain file size.
24H Set relative-record number.

Several of these functions have special properties. For example, Int 21H
Functions 27H (Random Block Read) and 28H (Random Block Write)
allow reading and writing of multiple records of any size and also update
the random-record field automatically (unlike Int 21H Functions 21H and
22H). Int 21H Function 28H can truncate a file to any desired size, and Int
21H Function 17H used with an extended FCB can alter a volume iabel or
rename a subdirectory.

Section II of this book, "MS-DOS Functions Reference," gives detailed
specifications for each of the FCB file and record functions, along with
assembly-language examples. It is also instructive to compare the preced­
ing groups with the corresponding groups of handle-type functions listed
on pages 140-41.

132 Programming/orMS-DOS



(continued)

File Management 133



Notes for Figures 8-1 and 8-3. continued

FeB File-Access Skeleton
The following is a typical program sequence to access a file using the FCB,
or traditional, functions (Figure 8-4):

1. Zero out the prospective FCB.

2. Obtain the filename from the user, from the default FCBs, or from the
command tail in the PSP.

3. If the filename was not obtained from one of the default FCBs, parse
the filename into the new FCB using Int 21H Function 29H.

4. Open the file (Int 21H Function OFH) or, if writing new data only,
create the file or truncate any existing file of the same name to zero
length (Int 21H Function 16H).

5. Set the record-size field in the FCB, unless you are using the default
record size. Recall that it is important to do this after a successful open
or creat~peration.(See Figure 8-5.)

6. Set the relative-record field in the FCB if you are performing random
record I/O.

7. Set the disk transfer area address using Int 21H Function lAH, unless
the buffer address has not been changed since the last call to this func­
tion. If the application never performs a set DTA, the DTA address
defaults to offset 0080H in the PSP.

8. Request the needed read- or write-record operation (Int 21H Function
14H-Sequential Read, 15H-8equential Write, 21H-Random Read, 22H­
Random Write, 27H-Random Block Read, 28H-Random Block Write).

(continued)

134 ProgrammingforMS-DOS



(continued)

Figure 8-4. Skeleton ofan assembly-languageprogram thatperformsfile and record
va using the FCB/amily of/unctions.

File Management 135



Figure 8-4. continued

(continued)

136 Programming/orMS-DOS



00 Drive 03

~
40 4D
59 59
46 46
49 Filename 49
4C 4C
45 45
20 20
20 20
44 44
41 Extension 41
54 54
00 Current block 00
00 00
00 Record size 80
00 00
00 80
00 File size 3D
00 00
00 00
00 File date 43
00 OB
00 File time Al
00 52

: 00 03~

? 00 02
00 42
00 Reserved 73
00 00
00 01
00 35
00 OF
00 Current record 00
00 00

.' 00 00
00

Relative-record number
00

00 00
1;i\'~~..wzA' .. -~ .- ~~~ _.. -.:.c: .>,;j.=~~, ... ~,,,.,

Byte offset FCB before open

OOH
0IH
02H
03H
04H
OSH
06H
07H
OSH
09H
OAH
OBH
OCH
OOH
OEH
OFH
10H
IIH
I2H
I3H
I4H
ISH
I6H
I7H
ISH
I9H
IAH
IBH
ICH
10H
IEH
IFH
20H
21H
22H
23H
24H

FCB contents FCB after open

Figure 8-5. A typicalfile control block before and after a successful open call
(Int 21HFunction OFH).

File Management 137



9. If the program is not finished processing the file, go to step 6; other­
wise, close the file (Int 21H Function 10H). If the file was used for
reading only, you can skip the close operation under early versions of
MS-DOS. However, this shortcut can cause problems under MS-DOS
versions 3.0 and later, especially when the files are being accessed
across a network.

Points to Retnetnber
Here is a summary of the pros and cons of using the FCB-related file and
record functions in your programs.

Advantages:

III Under MS-DOS versions 1 and 2, the number of files that can be open
concurrently when using FCBs is unlimited. (This is not true under MS­
DOS versions 3.0 and later, especially ifnetworking software is
running.)

[II File-access methods using FCBs are familiar to programmers with a
CP/M background, and well-behaved CP/M applications require little
change in logical flow to run under MS-DOS.

iii MS-DOS supplies the size, time, and date for a file to its FCB after the
file is opened. The calling program can inspect this information.

Disadvantages:

• FCBs take up room in the application program's memory space.

III PCBs offer no support for the hierarchical file structure (no access to
files outside the current directory).

r!I FCBs provide no support for file locking/sharing or record locking in
networking environments.

II In addition to the read or write call itself, file reads or writes using
FCBs require manipulation of the FCB to set record size and record
number, plus a previous call to a separate MS-DOS function to set the
DTA address.

III Random record I/O using FCBs for a file containing variable-length
records is very clumsy and inconvenient.

iii You must use extended PCBs, which are incompatible with CP/M any­
way, to access or create files with special attributes such as hidden,
read-only, or system.

138 ProgrammingjorMS-DOS



WI The FCB file functions have poor error reporting. This situation has
been improved somewhat in MS-DOS version 3 because a program can
call the added Int 21H Function 59H (Get Extended Error Information)
after a failed FCB function to obtain additional information.

II Microsoft discourages use of FCBs. PCBs will make your program more
difficult to port to MS OS/2 later because MS OS/2 does not support
FCBs in protected mode at all.

Using the Handle Functions
The handle file- and record-management functions access files in a
fashion similar to that used under the UNIX!XENIX operating system.
Files 'are designated by an ASCIIZ string (an ASCII character string termi­
nated by a null, or zero, byte) that can contain a drive designator, path,
filename, and extension. For example, the file specification

C:\SYSTEM\COMMANO.COM

would appear in memory as the following sequence of bytes:

43 3A 5C 53 59 53 544540 5C 43 4F 40 40 41 4E 44 2E 43 4F 4000

When a program wishes to open or create a file, it passes the address of
the ASCIIZ string specifying the file to MS-DOS in the DS:DX registers
(Figure 8-6). If the operation is successful, MS-DOS returns a 16-bit handle
to the program in the AX register. The program must save this handle for
further reference.

Figure 8-6. A typical handlefile operation. This sequence ofcode attempts to open
thefile designated in the ASCIIZ string whose address ispassed to MS-DOS in the
DS:DX registers.

File Management 139



When the program requests subsequent operations on the file, it usually
places the handle in the BX register before the call to MS-DOS. All the
handle functions return with the CPU's carry flag cleared if the operation
was successful, or set if the operation failed; in the latter case, the AX
register contains a code describing the failure.

MS-DOS restricts the number of handles that can be active at anyone
time-that is, the number of files and devices that can be open concur­
rently when using the handle family of functions-in two different ways:

• The maximum number of concurrently open files in the system, for all
active processes combined, is specified by the entry

FILES=nn

in the CONFIG.SYS file. This entry determines the number of entries
to be allocated in the systemfile table; under MS-DOS version 3, the
default value is 8 and the maximum is 255. After MS-DOS is booted
and running, you cannot expand this table to increase the total number
of files that can be open. You must use an editor to modify the CON­
FIG.SYS file and then restart the system.

• The maximum number of concurrently open files for a single process
is 20, assuming that sufficient entries are also available in the system
file table. When a program is loaded, MS-DOS preassigns 5 of its po­
tential 20 handles to the standard devices. Each time the process issues
an open or create call, MS-DOS assigns a handle from the process's pri­
vate allocation of 20, until all the handles are used up or the system file
table is full. In MS-DOS versions 3.3 and later, you can expand the per­
process limit of 20 handles with a call to Int 21H Function 67H (Set
Handle Count).

The handle file- and record-management calls may be gathered into the
following broad classifications for study:

Function Action

Common handlefile operations
3CH Create file (requires ASCIIZ string).
3DH Open file (requires ASCIIZ string).
3EH Close file.

Common handle record operations
42H Set file pointer (also used to find file size).
3FH Read file.
40H Write file.

(continued)

140 Programming/orMS-DOS



continued

Function Action

Less commonly used handle operations
41H Delete file.
43H Get or modify file attributes.
44H IOCTL (VO Control).
45H Duplicate handle.
46H Redirect handle.
56H Rename file.
57H Get or set file date and time.
5AH Create temporary file (versions 3.0 and later).
5BH Create file (fails if file already exists; versions 3.0 and later).
5CH Lock or unlock file region (versions 3.0 and later).
67H Set handle count (versions 3.3 and later).
68H Commit file (versions 3.3 and later).
6CH Extended open file (version 4).

Compare the groups of handle-type functions in the preceding table with
the groups of FCB functions outlined earlier, noting the degree of func­
tional overlap. Section II of this book, "MS-DOS Functions Reference,"
gives detailed specifications for each of the handle functions, along with
assembly-language examples.

Handle File-Access Skeleton
The following is a typical program sequence to access a file using the
handle family of functions (Figure 8-7):

1. Get the filename from the user by means of the buffered input service
(Int 21H Function OAH) or from the command tail supplied by MS­
DOS in the PSP.

2. Put a zero at the end of the file specification in order to create an
ASCIIZ string.

3. Open the file using Int 21H Function 3DH and mode 2 (read/write
access), or create the file using Int 21H Function 3CH. (Be sure to set
the CX register to zero, so that you don't accidentally make a file with
special attributes.) Save the handle that is returned.

4. Set the file pointer using Int 21H Function 42H. You may set the file­
pointer position relative to one of three different locations: the start of
the file, the current pointer position, or the end of the file. If you are
performing sequential record I/O, you can usually skip this step
because MS-DOS will maintain the file pointer for you automatically.

File Management 141



5. Read from the file (Int 21H Function 3FH) or write to the file (Int 21H
Function 40H). Both of these functions require that the BX register
contain the file's handle, the ex register contain the length of the
record, and the DS:DX registers point to the data being transferred.
Both return the actual number of bytes transferred in the AX register.

In a read operation, if the number of bytes read is less than the number
requested, the end of the file has been reached. In a write operation, if
the number of bytes written is less than the number requested, the disk
containing the file is full. Neither ofthese conditions is returned as an
error code; that is, the carry flag is not set.

6. If the program is not finished processing the file, go to step 4; other­
wise, close the file (Int 21H Function 3EH). Any normal exit from the
program will also close all active handles.

(continued)

Figure 8-7. Skeleton ofan assembly-languageprogram thatperforms sequential
processing on an inputfile and writes the results to an outputfile using the handlefile
and recordfunctions. This code assumes that the DS and ES registers have already
been set topoint to the segment containing the buffers andfilenames.

142 Programming/orMS-DOS



Figure 8-7. continued

may
tnt

moy ah.3fh
may bx.handlel
moy cx,recsiil
moy dx.offset buffer
int- 21h
jc bad_read-

ax,ax

fnamel db 'OLDFILE.DAT',O
fname2 db 'NEWFI LE. OAT' .0
handlel dw 0
haildle2 dw 0
buffer db recsize dup (1)

File Management 143



Points to Retnetnber
Here is a summary of the pros and cons of using the handle file and record
operations in your program. Compare this list with the one given earlier
in the chapter for the FCB family of functions.

Advantages:

• The handle calls provide direct support for I/O redirection and pipes
with the standard input and output devices in a manner functionally
similar to that used by UNIX!XENIX.

• The handle functions provide direct support for directories (the
hierarchical file structure) and special file attributes.

• The handle calls support file sharing/locking and record locking in
networking environments.

• Using the handle functions, the programmer can open channels to
character devices and treat them as files.

• The handle calls make the use of random record access extremely
easy. The current file pointer can be moved to any byte offset relative
to the start of the file, the end of the file, or the current pointer posi­
tion. Records of any length, up to an entire segment (65,535 bytes), can
be read to any memory address in one operation.

• The handle functions have relatively good error reporting in MS-DOS
version 2, and error reporting has been enhanced even further in MS­
DOS versions 3.0 and later.

• Microsoft strongly encourages use of the handle family of functions in
order to provide upward compatibility with MS OS/2.

Disadvantages:

• There is a limit per program of 20 concurrently open files and devices
using handles in MS-DOS versions 2.0 through 3.2.

• Minor gaps still exist in the implementation of the handle functions.
For example, you must still use extended FCBs to change volume
labels and to access the contents of the special files that implement
directories.

144 Programming/orMS-DOS



MS-DOS Error Codes
When one of the handle file functions fails with the carry flag set, or when
a program calls Int 21H Function 59H (Get Extended Error Information)
following a failed FCB function or other system service, one of the fol­
lowing error codes may be returned:

Value Meaning

MS-DOS version 2 error codes
01H
02H
03H
04H
OSH
06H
07H
08H
09H
OAH (10)
OBH (11)
OCH (12)
ODH (13)
OEH (14)
OFH (15)
10H (16)
11H (17)
12H (18)

Function number invalid
File not found
Path not found
Too many open files
Access denied
Handle invalid
Memory control blocks destroyed
Insufficient memory
Memory block address invalid
Environment invalid
Format invalid
Access code invalid
Data invalid
Unknown unit
Disk drive invalid
Attempted to remove current directory
Not same device
No more files

Mappings to critical-error codes
13H (19) Write-protected disk
14H (20) Unknown unit
ISH (21) Drive not ready
16H (22) Unknown command
17H (23) Data error (CRC)
18H (24) Bad request-structure length
19H (25) Seek error
1AH (26) Unknown media type
IBH (27) Sector not found
1CH (28) Printer out of paper
IDH (29) Write fault
1EH (30) Read fault
1FH (31) General failure

MS-DOS version 3 and later extended error codes
20H (32) Sharing violation
21H (33) File-lock violation
22H (34) Disk change invalid

(continued)

File Management 145



continued

Value Meaning

MS-DOS version 3 and later extended error codes, continued
23H (35) FCB unavailable
24H (36) Sharing buffer exceeded
25H-31H (37-49) Reserved
32H (50) Unsupported network request
33H (51) Remote machine not listening
34H (52) Duplicate name on network
35H (53) Network name not found
36H (54) Network busy
37H (55) Device no longer exists on network
38H (56) NetBIOS command limit exceeded
39H (57) Error in network adapter hardware
3AH (58) Incorrect response from network
3BH (59) Unexpected network error
3CH (60) Remote adapter incompatible
3DH (61) Print queue full
3EH (62) Not enough room for print file
3FH (63) Print file was deleted
40H (64) Network name deleted
41H (65) Network access denied
42H (66) Incorrect network device type
43H (67) Network name not found
44H (68) Network name limit exceeded
45H (69) NetBIOS session limit exceeded
46H (70) Temporary pause
47H (71) Network request not accepted
48H (72) Print or disk redirection paused
49H-4FH (73-79) Reserved
50H (80) File already exists
51H (81) Reserved
52H (82) Cannot make directory
53H (83) Fail on Int 24H (critical error)
54H (84) Too many redirections
55H (85) Duplicate redirection
56H (86) Invalid password
57H (87) Invalid parameter
58H (88) Net write fault

Under MS-DOS versions 3.0 and later, you can also use Int 21H Function
59H to obtain other information about the error, such as the error locus
and the recommended recovery action.

146 ProgrammingforMS-DOS



Critical-Error Handlers
In Chapter 5, we discussed how an application program can take over the
Ctrl-C handler vector (Int 23H) and replace the MS-DOS default handler, to
avoid losing control of the computer when the user enters a Ctrl-C or Ctrl­
Break at the keyboard. Similarly, MS-DOS provides a critical-error-handler
vector (Int 24H) that defines the routine to be called when unrecoverable
hardware faults occur. The default MS-DOS critical-error handler is the
routine that displays a message describing the error type and the cue

Abort. Retry. Ignore?

This message appears after such actions as the following:

• Attempting to open a file on a disk drive that doesn't contain a floppy
disk or whose door isn't closed

• Trying to read a disk sector that contains a CRC error

• Trying to print when the printer is off line

The unpleasant thing about MS-DOS's default critical-error handler is, of
course, that if the user enters an A for Abort, the application that is cur­
rently executing is terminated abruptly and never has a chance to clean
up and make a graceful exit. Intermediate files may be left on the disk,
files that have been extended using FCBs are not properly closed so that
the directory is updated, interrupt vectors may be left pointing into the
transient program area, and so forth.

To write a truly bombproof MS-DOS application, you must take over the
critical-error-handler vector and point it to your own routine, so that your
program intercepts all catastrophic hardware errors and handles them ap­
propriately. You can use MS-DOS Int 21H Function 25H to alter the Int 24H
vector in a.well-behaved manner. When your application exits, MS-DOS
will automatically restore the previous contents of the Int 24H vector from
information saved in the program segment prefix.

MS-DOS calls the critical-error handler for two general classes of errors­
disk-related and non-disk-related-and passes different information to
the handler in the registers for each of these classes.

For disk-related errors, MS-DOS sets the registers as shown on the follow­
ing page. (Bits 3-5 of the AH register are relevant only in MS-DOS
versions 3.1 and later.)

File Management 147



0

AL 0-7
DI 0-7

8-15
BP:SI

Register

AH

Bit(s)

7
6
5

4

3

1-2

Significance

0, to signify disk error
Reserved
o=ignore response not allowed
1 =ignore response allowed
o=retry response not allowed
1 =retry response allowed
o=fail response not allowed
1 =fail response allowed
Area where disk error occurred

00 =MS-DOS area
01 =file allocation table
10 = root directory
11 =files area

o=read operation
1 =write operation
Drive code (0 =A, 1 =B, and so forth)
Driver error code
Not used
Segment:offset of device-driver header

For non-disk-related errors, the interrupt was generated either as the
result of a character-device error or because a corrupted memory image
of the file allocation table was detected. In this case, MS-DOS sets the
registers as follows:

Register

AH
DI

BP:SI

Bit(s)

7
0-7
8-15

Significance

1, to signify a non-disk error
Driver error code
Not used
Segment:offset of device-driver header

To determine whether the critical error was caused by a character device,
use the address in the BP:SI registers to examine the device attribute word
at offset 0004H in the presumed device-driver header. If bit 15 is set, then
the error was indeed caused by a character device, and the program can
inspect the name field of the driver's header to determine the device.

At entry to a critical-error handler, MS-DOS has already disabled interrupts
and set up the stack as shown in Figure 8-8. A critical-error handler cannot
use any MS-DOS services except Int 21H Functions 01H through OCH (Tra­
ditional Character I/O), Int 21H Function 30H (Get MS-DOS Version), and
Int 21H Function 59H (Get Extended Error Information). These functions
use a special stack so that the context of the original function (which gen­
erated the critical error) will not be lost.

148 Programming/orMS-DOS



-
Flags

es -

IP
==+-

ES

DS

BP

DI
~

SI

DX

ex

BX

AX

==
Flags

es ~

IP
-

~

Flags and eS:IP pushed
on stack by original
Int 21H call

SS:SP on entry to
Int 21H handler

Registers at point of
original Int 21H call

Return address for
Int 24H handler

SS:SP on entry to
Int 24H handler

Figure 8-8. The stack at entry to a critical-error handler.

The critical-error handler should return to MS-DOS by executing an IRET,
passing one of the following action codes in the AL register:

Code

o

1
2

3

Meaning

Ignore the error (MS-DOS acts as though the original function call had
succeeded).

Retry the operation.
Terminate the process that encountered the error.
Fail the function (an error code is returned to the requesting process).

Versions 3.1 and later only.

The critical-error handler should preserve all other registers and must not
modify the device-driver header pointed to by BP:SI. A skeleton example
of a critical-error handler is shown in Figure 8-9.

File Management 149



150

Figure 8-9.A skeleton example 0/a replacement critical-error handler.

Programming/orMS-DOS

(continued)



Example Programs: DUMP.ASM andDUMPeC
The programs DUMP.ASM (Figure 8-10) and DUMP.C (Figure 8-11) are
parallel examples of the use of the handle file and record functions. The
assembly-language version, in particular, illustrates features of a well­
behaved MS-DOS utility:

11 The program checks the version of MS-DOS to ensure that all the func­
tions it is going to use are really available.

File Management 151



II The program parses the drive, path, and filename from the command
tail in the program segment prefix.

• The program uses buffered I/O for speed.

• The program sends error messages to the standard error device.

iii The program sends normal program output to the standard output
device, so that the dump output appears by default on the system con­
sole but can be redirected to other character devices (such as the line
printer) or to a file.

The same features are incorporated into the C version of the program, but
some of them are taken care of behind the scenes by the C runtime
library.

Figure 8-10. The assembly-language version: DUMP.ASM.

152 Programming/or MS-DOS

(continued)



Figure 8-10. continued

(continued)

File Management 153



Figure 8-10. continued

(continued)

114 Programming/orMS-DOS



Figure 8-10. continued

(continued)

File Management 155



Figure 8-10. continued

(continued)

156 Programming/orMS-DOS



Figure 8-10. continued

(continued)

File Management 157



Figure 8-10. continued

(continued)

158 Programming/orMS-DOS



Figure 8-10. continued

(continued)

File Management 159



Figure 8-10. continued

(continued)

160 Programming/orMS-DOS



Figure 8-10. continued

Figure 8-11. The eversion: DUMP.C. (continued)

File Management 161



Figure 8-11. continued

(continued)

162 ProgrammingforMS-DOS



The assembly-language version of the DUMP program contains a number
of subroutines that you may find useful in your own programming efforts.
These include the following:

Subroutine

argc
argv

w2a
b2a
ascii

Action

Returns the number of command-line arguments.
Returns the address and length of a particular command-line

argument.
Converts a binary word (16 bits) into hex ASCII for output.
Converts a binary byte (8 bits) into hex ASCII for output.
Converts 4 bits into a single hex ASCII character.

It is interesting to compare these two equivalent programs. The C pro­
gram contains only 77 lines, whereas the assembly-language program has
436 lines. Clearly, the C source code is less complex and easier to main­
tain. On the other hand, if size and efficiency are important, the
DUMP.EXE file generated by the C compiler is 8563 bytes, whereas the
assembly-language DUMP.EXE file is only 1294 bytes and runs twice as
fast as the C program.

File Management 163





Chapter 9

VolUfiles and Directories



Each file in an MS-DOS system is uniquely identified by its name and its
location. The location, in turn, has two components: the logical drive that
contains the file and the directory on that drive where the filename can
be found.

Logical drives are specified by a single letter followed by a colon (for ex­
ample, A:). The number of logical drives in a system is not necessarily the
same as the number of physical drives; for example, it is common for large
fixed-disk drives to be divided into two or more logical drives. The key
aspect of a logical drive is that it contains a self-sufficient file system; that
is, it contains one or more directories, zero or more complete files, and all
the information needed to locate the files and directories and to determine
which disk space is free and which is already in use.

Directories are simply lists or catalogs. Each entry in a directory consists of
the name, size, starting location, attributes, and last modification date and
time of a file or another directory that the disk contains. The detailed in­
formation about the location of every block of data assigned to a file or
directory is in a separate control area on the disk called the file allocation
table (FAT). (See Chapter 10 for a detailed discussion of the internal format
of directories and the FAT.)

Every disk potentially has two distinct kinds of directories: the root direc­
tory and all other directories. The root directory is always present and has
a maximum number of entries, determined when the disk is formatted;
this number cannot be changed. The subdirectories of the root directory,
which mayor may not be present on a given disk, can be nested to any
level and can grow to any size (Figure 9-1). This is the hierarchical, or
tree, directory structure referred to in earlier chapters. Every directory has
a name, except for the root directory, which is designated by a single
backslash (\) character.

MS-DOS keeps track of a "current drive" for the system and uses this drive
when a file specification does not include an explicit drive code. Similarly,
MS-DOS maintains a "current directory" for each logical drive. You can
select any particular directory on a drive by naming in order-either from
the root directory or relative to the current directory-the directories that
lead to its location in the tree structure. Such a list of directories, separated
by backslash delimiters, is called a path. When a complete path from the
root directory is prefixed by a logical drive code and followed by a file­
name and extension, the resulting string is a fully qualifiedfilename and
unambiguously specifies a file.

166 Programming/orMS-DOS



Drive
identifier

Root directory
(volume label)

Figure 9-1. An MS-DOSfile-system structure.

Drive and Directory Control
You can examine, select, create, and delete disk directories interactively
with the DIR, CHDIR (CD), MKDIR (MD), and RMDIR (RD) commands.
You can select a new current drive by entering the letter of the desired
drive, followed by a colon. MS-DOS provides the following Int 21H func­
tions to give application programs similar control over drives and
directories:

Function

OEH
19H
39H
3AH
3BH
47H

Action

Select current drive.
Get current drive. .
Create directory.
Remove directory.
Select current directory.
Get current directory.

Volumes and Directories 167



The two functions that deal with disk drives accept or return a binary
drive code-O represents drive A, 1 represents drive B, and so on. This
differs from most other MS-DOS functions, which use 0 to indicate the
current drive, 1 for drive A, and so on.

The first three directory functions in the preceding list require an ASCIIZ
string that describes the path to the desired directory. As with the handle­
based file open and create functions, the address of the ASCIIZ string is
passed in the DS:DX registers. On return, the carry flag is clear if the func­
tion succeeds or set if the function failed, with an error code in the AX
register. The directory functions can fail for a variety of reasons, but the
most common cause of an error is that some element of the indicated path
does not exist.

The last function in the preceding list, Int 21H Function 47H, allows you to
obtain an ASCIIZ path for the current directory on the specified or default
drive. MS-DOS supplies the path string without the drive identifier or a
leading backslash. Int 21H Function 47H is most commonly used with Int
21H Function 19H to build fully qualified filenames. Such filenames are
desirable because they remain valid if the user changes the current drive
or directory.

Section II of this book, "MS-DOS Functions Reference," gives detailed in­
formation on the drive and directory control functions.

Searching Directories
When you request an open operation on a file, you are implicitly perform­
ing a search of a directory. MS-DOS examines each entry of the directory
to find a match for the filename you have given as an argument; if the file
is found, MS-DOS copies certain information from the directory into a
data structure that it can use to control subsequent read or write opera­
tions to the file. Thus, if you wish to test for the existence of a specific file,
you need only perform an open operation and observe whether it is suc­
cessful. (If it is, you should, of course, perform a subsequent close opera­
tion to avoid needless expenditure of handles.)

Sometimes you may need to perform more elaborate searches of a disk
directory. Perhaps you wish to find all the files with a certain extension, a
file with a particular attribute, or the names of the subdirectories of a cer­
tain directory. Although the locations of a disk's directories and the
specifics of the entries that are found in them are of necessity hardware
dependent (for example, interpretation of the field describing the starting
location of a file depends upon the physical disk format), MS-DOS does
provide functions that will allow examination of a disk directory in a
hardware-independent fashion.

168 Programming/orMS-DOS



In order to search a disk directory successfully, you must understand two
types of MS-DOS search services. The first type is the "search for first"
function, which accepts a file specification-possibly including wildcard
characters-and looks for the first matching file in the directory of in­
terest. If it finds a match, the function fills a buffer owned by the request­
ing program with information about the file; if it does not find a match, it
returns an error flag.

A program can call the second type of search service, called "search for
next," only after a successful "search for first." If the file specification that
was originally passed to "search for first" included wildcard characters
and at least one matching file was present, the program can call "search
for next" as many times as necessary to find all additional matching files.
Like "search for first," "search for next" returns information about the
matched files in a buffer designated by the requesting program. When it
can find no more matching files, "search for next" returns an error flag.

As with nearly every other operation, MS-DOS provides two parallel sets
of directory-searching services:

Action

search for first
search for next

FCBfunction

IlH
12H

Handlefunction

4EH
4FH

The FCB directory functions allow searches to match a filename and ex­
tension, both possibly containing wildcard characters, within the current
directory for the specified or current drive. The handle directory func­
tions, on the other hand, allow a program to perform searches within any
directory on any drive, regardless of the current directory.

Searches that use normal FCBs find only normal files. Searches that use
extended FCBs, or the handle-type functions, can be qualified with file at­
tributes. The attribute bits relevant to searches are as follows:

Bit

o
1
2
3
4
5

Significance

Read-only file
Hidden file
System file
Volume label
Directory
Archive needed (set when file modified)

Volumes and Directories 169



The remaining bits of a search function's attribute parameter should be
zero. When any of the preceding attribute bits are set, the search function
returns all normal files plus any files with the specified attributes, except
in the case of the volume-label attribute bit, which receives special treat­
ment as described later in this chapter. Note that by setting bit 4 you can
include directories in a search, exactly as though they were files.

Both the FCB and handle directory-searching functions require that the
disk transfer area address be set (with Int 21H Function lAH), before the
call to "search for first," to point to a working buffer for use by MS-DOS.
The DTA address should not be changed between calls to "search for first"
and "search for next." When it finds a matching file, MS-DOS places the
information about the file in the buffer and then inspects the buffer on the
next "search for next" call, to determine where to resume the search. The
format of the data returned in the buffer is different for the FCB and
handle functions, so read the detailed descriptions in Section II of this
book, "MS-DOS Functions Reference," before attempting to interpret the
buffer contents.

Figures 9-2 and 9-3 provide equivalent examples of searches.for all files in
a given directory that have the .ASM extension, one example using the
FCB directory functions (Int 21H Functions IlH and 12H) and the other
using the handle functions (Int 21H Functions 4EH and 4FH). (Both pro­
grams use the handle write function with the standard output handle to
display the matched filenames, to avoid introducing tangential differences
in the listings.)

(continued)

Figure 9-2. Example 0/an FCB-type directory search using Int 21HFunctions I1H
and 12H. This routine displays the names ofallfiles in the current directory that have
the .ASM extension.

170 Programming/orMS-DOS



Figure 9-2. (continued)

Volumes and Directories 171



(continued)

Figure 9-3. Example ofa handle-type directory search using Int 21H Functions 4EH
and 4FH. This routine also displays the names ofallfiles in the current directory that
have a .ASM extension.

172 ProgrammingforMS-DOS



Figure 9-3. (continued)

Moving lFiles
The rename file function that was added in MS-DOS version 2.0, Int 21H
Function 56H, has the little-advertised capability to move a file from one
directory to another. The function has two ASCIIZ parameters: the "old"
and "new" names for the file. If the old and new paths differ, MS-DOS
moves the file; if the filename or extension components differ, MS-DOS re­
names the file. MS-DOS can carry out both of these actions in the same
function call.

Of course, the old and new directories must be on the same drive, because
the file's actual data is not moved at all; only the information that describes
the file is removed from one directory and placed in another directory.
Function 56H fails if the two ASCIIZ strings include different logical-drive
codes, if the file is read-only, or if a file with the same name and location
as the "new" filename already exists.

The FCB-based rename file service, Int 21H Function 17H, works only on
the current directory and cannot be used to move files.

Volumes and Directories 173



Volume Labels
Support for volume labels was first added to MS-DOS in version 2.0. A vol­
ume label is an optional name of from 1 to 11 characters that the user
assigns to a disk during a FORMAT operation. You can display a volume
label with the DIR, TREE, CHKDSK, or VOL command. Beginning with
MS-DOS version 3.0, you can use the LABEL command to add, display, or
alter the label after formatting. In MS-DOS version 4, the FORMAT pro­
gram also assigns a semi-random 32-bit binary ID to each disk it formats;
you can display this value, but you cannot change it.

The distinction between volumes and drives is important. A volume label
is associated with a specific storage medium. A drive identifier (such as A)
is associated with a physical device that a storage medium can be mounted
on. In the case of fixed-disk drives, the medium associated with a drive
identifier does not change (hence the name). In the case of floppy disks or
other removable media, the disk accessed with a given drive identifier
might have any volume label or none at all.

Hence, volume labels do not take the place of the logical-drive identifier
and cannot be used as part of a pathname to identify a file. In fact, in MS­
DOS version 2, the system does not use volume labels internally at all. In
MS-DOS versions 3.0 and later, a disk driver can use volume labels to
detect whether the user has replaced a disk while a file is open; this use is
optional, however, and is not implemented in all systems.

MS-DOS volume labels are implemented as a special type of entry in a
disk's root directory. The entry contains a time-and-date stamp and has
an attribute value of 8 (Le., bit 3 set). Except for the attribute, a volume
label is identical to the directory entry for a file that was created but never
had any data written into it, and you can manipulate volume labels with
Int 21H functions much as you manipulate files. However, a volume label
receives special handling at several levels:

• When you create a volume label after a disk is formatted, MS-DOS al­
ways places it in the root directory, regardless of the current directory.

• A disk can contain only one volume label; attempts to create additional
volume labels (even with different names) will fail.

• MS-DOS always carries out searches for volume labels in the root direc­
tory, regardless of the current directory, and does not also return all
normal files.

In MS-DOS version 2, support for volume labels is not completely inte­
grated into the handle file functions, and you must use extended FCBs

174 ProgrammingforMS-DOS



instead to manipulate volume labels. For example, the code in Figure 9-4
searches for the volume label in the root directory of the current drive.
You can also change volume labels with extended FCBs and the rename
file function (Int 21H Function 17H), but you should not attempt to remove
an existing volume label with Int 21H Function 13H under MS-DOS ver­
sion 2, because this operation can damage the disk's FAT in an unpredict­
able manner.

In MS-DOS versions 3.0 and later, you can create a volume label in the ex­
pected manner, using Int 21H Function 3CH and an attribute of 8, and you
can use the handle-type "search for first" function (4EH) to obtain an ex­
isting volume label for a logical drive (Figure 9-5). However, you still must
use extended FCBs to change a volume label.

Figure 9-4. A volume-label search underMS-DOS version 2, using an extendedfile
control block. Ifthe search is successful, the volume label is returned in buff, format­
ted in thefilename and extensionfields ofan extended FCB.

Volumes and Directories 175



Figure 9-5. A volume-label search underMS-DOS version 3, using the handle-type
file functions. Ifthe search is successful (carryflag returned clear), the volume name
isplaced at location buff+lEH in theform ofan ASCIIZ string.

176 ProgrammingforMS-DOS



Chapter 10

Disk Intern.als



MS-DOS disks are organized according to a rather rigid scheme that is
easily understood and therefore easily manipulated. Although you will
probably never need to access the special control areas of a disk directly,
an understanding of their internal structure leads to a better understand­
ing of the behavior and performance of MS-DOS as a whole.

From the application programmer's viewpoint, MS-DOS presents disk
devices as logical volumes that are associated with a drive code (A, B, C,
and so on) and that have a volume name (optional), a root directory, and
from zero to many additional directories and files. MS-DOS shields the
programmer from the physical characteristics of the medium by providing
a battery of disk services through Int 21H. Using these services, the pro­
grammer can create, open, read, write, close, and delete files in a uniform
way, regardless of the disk drive's size, speed, number of read/write
heads, number of tracks, and so forth.

Requests from an application program for file operations actually go
through two levels of translation before resulting in the physical transfer
of data between the disk device and random-access memory:

1. Beneath the surface, MS-DOS views each logical volume, whether it is
an entire physical unit such as a floppy disk or only a part of a fixed
disk, as a continuous sequence of logical sectors, starting at sector O. (A
logical disk volume can also be implemented on other types of storage.
For example, RAM disks map a disk structure onto an area of random­
access memory.) MS-DOS translates an application program's Int 21H
file-management requests into requests for transfers of logical sectors,
using the information found in the volume's directories and allocation
tables. (For those rare situations where it is appropriate, programs can
also access logical sectors directly with Int 25H and Int 26H.)

2. MS-DOS then passes the requests for logical sectors to the disk device's
driver, which maps them onto actual physical addresses (head, track,
and sector). Disk drivers are extremely hardware dependent and are
always written in assembly language for maximum speed. In most ver­
sions of MS-DOS, a driver for IBM-compatible floppy- and fixed-disk
drives is built into the MS-DOS BIOS module (IO.SYS) and is always
loaded during system initialization; you can install additional drivers
for non-IBM-compatible disk devices by including the appropriate
DEVICE directives in the CONFIG.SYS file.

Each MS-DOS logical volume is divided into several fixed-size control
areas and a files area (Figure 10-1). The size of each control area depends
on several factors-the size of the volume and the version of FORMAT
used to initialize the volume, for example-but all of the information

178 Programming/orMS-DOS



Boot sector
Reserved areaI1:1-------------------------4

w; File allocation table #1

I
mw
t:!~ p_O_SS_ib_l_e_a_dd_i_ti_on_a_l_c_op_i_e_s_Of_F_A_T --I

Root directory

Files area

Figure 10-1. Map ofa typical MS-DOS logical volume. The boot sector (logical sector
0) contains the OEM identification, BIOSparameter block (BPB), and disk bootstrap.
The remaining sectors are divided among an optional reserved area, one or more
copies ofthefile allocation table, the root directory, and thefiles area.

needed to interpret the structure of a particular logical volume can be
found on the volume itself in the boot sector.

The Boot Sector
Logical sector 0, known as the boot sector, contains all of the critical infor­
mation regarding the disk medium's characteristics (Figure 10-2). The first
byte in the sector is always an 80x86 jump instruction-either a normal
intrasegment JMP (opcode OE9H) followed by a 16-bit displacement or a
"short" JMP (opcode OEBH) followed by an 8-bit displacement and then
by an NOP (opcode 90H). If neither of these two JMP opcodes is present,
the disk has not been formatted or was not formatted for use with MS­
DOS. (Of course, the presence of the JMP opcode does not in itself ensure
that the disk has an MS-DOS format.)
Following the initial JMP instruction is an 8-byte field that is reserved by
Microsoft for OEM identification. The disk-formatting program, which is
specialized for each brand of computer, disk controller, and medium, fills
in this area with the name of the computer manufacturer and the manu­
facturer's internal MS-DOS version number.

Disk Internals 179



OOH

03H

OBH

OOH

OEH

10H

IIH

I3H

I5H

I6H

ISH

IAH

ICH

20H

24H

25H

26H

27H

2BH

36H

3EH

E9 xx xx or EB XX 90

OEM name and version
(8 bytes)

Bytes per sector (2 bytes)

Sectors per allocation unit (1 byte)

Reserved sectors, starting at 0 (2 bytes)

Number of FATs (1 byte)

Number of root-directory entries (2 bytes)

Total sectors in logical volume (2 bytes)

Media descriptor byte

Number of sectors per FAT (2 bytes)

Sectors per track (2 bytes)

Number of heads (2 bytes)

Number of hidden sectors (4 bytes)

Total sectors in logical volume
(MS-DOS 4.0 and volume size >32 MB)

Physical drive number

Reserved

Extended boot signature record (29H)

32-bit binary volume ID

Volume label (11 bytes)

Reserved (8 bytes)

Bootstrap

B
P
B

]

MS-DOS
version 2.0

MS-DOS
version 3.0

MS-DOS
version 4.0

Additional
MS-DOS 4.0
information

Figure 10..2. Map ofthe boot sector ofan MS-DOS disk. Note theIMP at offset 0, the
OEM identificationfield, the MS-DOS version 2 compatible BIOSparameter block
(bytes OBR-17R), the three additional WORDfieldsfor MS-DOS version 3, the double­
word number-of-sectorsfield and 32-bit binary volume IDfor MS-DOS version 4.0,
and the bootstrap code.

180 ProgrammingforMS-DOS



The third major component of the boot sector is the BIOS parameter block
(BPB) in bytes OBH through 17H. (Additional fields are present in MS-DOS
versions 3.0 and later.) This data structure describes the physical disk
characteristics and allows the device driver to calculate the proper physi­
cal disk address for a given logical-sector number; it also contains informa­
tion that is used by MS-DOS and various system utilities to calculate the
address and size of each of the disk control areas (file allocation tables and
root directory).

The final element of the boot sector is the disk bootstrap routine. The disk
bootstrap is usually read into memory by the ROM bootstrap, which is ex­
ecuted automatically when the computer is turned on. The ROM
bootstrap is usually just smart enough to home the head of the disk drive
(move it to track 0), read the first physical sector into RAM at a predeter­
mined location, and jump to it. The disk bootstrap is more sophisticated. It
calculates the physical disk address of the beginning of the files area,
reads the files containing the operating system into memory, and transfers
control to the BIOS module at location 0070:0000H. (See Chapter 2.)

Figures 10-3 and 10-4 show a partial hex dump and disassembly of a PC­
DOS 3.3 floppy-disk boot sector.

Figure 10-3. Partial hex dump ofthe boot sector (track 0, head 0, sector 1) ofa PC­
DOS version 3.3 floppy disk. This sector contains the OEM identification, a copy ofthe
BIOSparameter block describing the medium, and the bootstrap routine that reads
the BIOS into memory and transfers control to it. See also Figures 10-2 and 10-4.

Disk Internals 181



Figure 10-4. Partial disassembly ofthe boot sectorshown in Figure 10-3.

The Reserved Area
The boot sector is actually part of a reserved area that can span from one
to several sectors. The reserved-sectors word in the BPB, at offset OEH in
the boot sector, describes the size of this area. Remember that the number
in the BPB field includes the boot sector itself, so if the value is 1(as it is on
IBM PC floppy disks), the length of the reserved area is actually 0 sectors.

The File Allocation Table
When a file is created or extended, MS-DOS assigns it groups of disk sec­
tors from the files area in powers of 2. These are known as allocation
units or clusters. The number of sectors per cluster for a given medium is
defined in the BPB and can be found at offset ODH in the disk's boot sec­
tor. Below are some example cluster sizes:

Dlsktype

5.25" 180 KB floppy disk
5.25" 360 KB floppy disk
PC/AT fixed disk
PCIXT fixed disk

182 Programming/orMS-DOS

Powerof2

o
1
2
3

Sectors/cluster

1
2
4
8



The file allocation table (FAT) is divided into fields that correspond di­
rectly to the assignable clusters on the disk. These fields are 12 bits in MS­
DOS versions 1 and 2 and may be either 12 bits or 16 bits in versions 3.0
and later, depending on the size of the medium (12 bits if the disk contains
fewer than 4087 clusters, 16 bits otherwise).

The first two fields in the FAT are always reserved. On IBM-compatible
media, the first 8 bits of the first reserved FAT entry contain a copy of the
media descriptor byte, which is also found in the BPB in the boot sector.
The second, third, and (if applicable) fourth bytes, which constitute the
remainder of the first two reserved FAT fields, always contain OFFR. The
currently defined IBM-format media descriptor bytes are as follows:

Descriptor

OFOH
OF8H
OF9H

OFCH
OFDH

OFEH

OFFH

Medium

3.511 floppy disk, 2-sided, IS-sector
Fixed disk
5.2511 floppy disk, 2-sided, 15-sector
3.511 floppy disk, 2-sided, 9-sector
5.2511 floppy disk, I-sided, 9-sector
5.2511 floppy disk, 2-sided, 9-sector
811 floppy disk, I-sided, single-density
5.2511 floppy disk, I-sided, 8-sector
8" floppy disk, I-sided, single-density
8" floppy disk, 2-sided, double-density
5.2511 floppy disk, 2-sided, 8-sector

MS-DOS version
whereflrst
supported

3.3
2.0
3.0
3.2
2.0
2.0

1.0

1.1

The remainder of the FAT entries describe the use of their corresponding
disk clusters. The contents of the FAT fields are interpreted as follows:

Value

(O)OOOH
(F)FFO-(F)FF6H
(F)FF7H
(F)FF8-(F)FFFH
(X)xxx

Meaning

Cluster available
Reserved cluster
Bad cluster, if not part of chain
Last cluster of file
Next cluster in file

Each file's entry in a directory contains the number of the first cluster as­
signed to that file, which is used as an entry point into the FAT. From the
entry point on, each FAT slot contains the cluster number of the next
cluster in the file, until a last-cluster mark is encountered.

At the computer manufacturer's option, MS-DOS can maintain two or
more identical copies of the FAT on each volume. MS-DOS updates all

Disk Internals 183



copies simultaneously whenever files are extended or the directory is
modified. If access to a sector in a FAT fails due to a read error, MS-DOS
tries the other copies until a successful disk read is obtained or all copies
are exhausted. Thus, if one copy of the FAT becomes unreadable due to
wear or a software accident, the other copies may still make it possible to
salvage the files on the disk. As part of its procedure for checking the in­
tegrity of a disk, the CHKDSK program compares the multiple copies
(usually two) of the FAT to make sure they are all readable and consistent.

The Root Directory
Following the file allocation tables is an area known in MS-DOS versions
2.0 and later as the root directory. (Under MS-DOS version 1, it was the
only directory on the disk.) The root directory contains 32-byte entries
that describe files, other directories, and the optional volume label (Figure
10-5). An entry beginning with the byte value E5H is available for reuse; it
represents a file or directory that has been erased. An entry beginning
with a null (zero) byte is the logical end-of-directory; that entry and all
subsequent entries have never been used.

OOH

OSH

OBH

OCH

I6H

ISH

IAH

ICH

20H

Filename

Extension

File attribute

Reserved

Time created or last updated

Date created or last updated

Starting cluster

File size, 4 bytes

Note 1

Note 2

Note 3

Note 4

Note 5

Figure 10-5. Format 0/a single entry in a disk directory. Total length is 32 bytes
(20H bytes).

184 Programming/orMS-DOS



Disk Internals 185



The root directory has a number of special properties. Its size and posi­
tion are fixed and are determined by the FORMAT program when a disk is
initialized. This information can be obtained from the boot sector's BPB. If
the disk is bootable, the first two entries in the root directory always
describe the files containing the MS-DOS BIOS and the MS-DOS kernel.
The disk bootstrap routine uses these entries to bring the operating sys­
tem into memory and start it up.

Figure 10-6 shows a partial hex dump of the first sector of the root direc­
tory on a bootable PC-DOS 3.3 floppy disk.

Filename Extension Attribute Reserved File size (in bytes)

End of occupied
portion of directory Time Starting cluster

Attribute byte for
volume label entry

Figure 10-6. Partial hex dump ofthefirst sector ofthe root directoryfor a PC-DOS
3.3 disk containing the three systemfiles and a volume label.

The Files Area
The remainder of the volume after the root directory is known as the files
area. MS-DOS views the sectors in this area as a pool of clusters, each
containing one or more logical sectors, depending on the disk format.
Each cluster has a corresponding entry in the FAT that describes its cur­
rent use: available, reserved, assigned to a file, or unusable (because of
defects in the medium). Because the first two fields of the FAT are
reserved, the first cluster in the files area is assigned the number 2.

186 Programming/orMS-DOS



When a file is extended under versions 1 and 2, MS-DOS searches the FAT

from the beginning until it finds a free cluster (designated by a zero FAT

field); it then changes that FAT field to a last-cluster mark and updates the

previous last cluster of the file's chain to point to the new last cluster.

Under versions 3.0 and later, however, MS-DOS searches the FAT from the

most recently allocated cluster; this reduces file fragmentation and im­

proves overall access times.

Directories other than the root directory are simply a special type of file.

Their storage is allocated from the files area, and their contents are 32­

byte entries-in the same format as those used in the root directory­

that describe files or other directories. Directory entries that describe

other directories contain an attribute byte with bit 4 set, zero in the file­

length field, and the date and time that the directory was created (Figure

10-7). The first cluster field points, of course, to the first cluster in the files

area that belongs to the directory. (The directory's other clusters can be

found only by tracing through the FAT.)

All directories except the root directory contain two special directory en­

tries with the names • and ... MS-DOS puts these entries in place when it

creates a directory, and they cannot be deleted. The. entry is an alias for

the current directory; its cluster field points to the cluster in which it is

Subdirectory name Attribute byte indicating a subdirectory entry Reserved

Reserved Date subdirectory created

Time subdirectory created

File size indicated as zero bytes

Starting cluster of subdirectory file

Figure 10-7. Extractfrom the root directory ofan MS-DOS disk, showing the entry

for a subdirectory namedMYDIR . Bit 4 in the attribute byte is set, the clusterfield

points to thefirst cluster ofthe subdirectoryfile, the date and time stamps are valid,

but thefile length is zero.

Disk Internals 187



found. The .. entry is an alias for the directory's parent (the directory
immediately above it in the tree structure); its cluster field points to the
first cluster of the parent directory. If the parent is the root directory, the
cluster field of the .. entry contains zero (Figure 10-8).

Alias for current r1tr~.rtr'\'nT Attribute bytes indicating a subdirectory

Alias for parent directory

Figure 10-8. Hex dump o/the/irst block o/the directory MYDIR. Note the. and ..
entries. This directory contains exactly onefile, MYFILE.DAT.

Interpreting the File Allocation Table
Now that we understand how the disk is structured, let's see how we can
use this knowledge to find a FAT position from a cluster number.

If the FAT has 12-bit entries, use the following procedure:

1. Use the directory entry to find the starting cluster of the file in
question.

2. Multiply the cluster number by 1.5.

3. Use the integral part of the product as the offset into the FAT and move
the word at that offset into a register. Remember that a FAT position
can span a physical disk-sector boundary.

4. If the product is a whole number, AND the register with OFFFH.

5. Otherwise, "logical shift" the register right 4 bits.

6. If the result is a value from OFF8H through OFFFH, the file has no
more clusters. Otherwise, the result is the number of the next cluster
in the file.

188 Programming/orMS-DOS



On disks with at least 4087 clusters formatted under MS-DOS version 3.0
or later, the FAT entries use 16 bits, and the extraction of a cluster number
from the table is much simpler:

1. Use the directory entry to find the starting cluster of the file in
question.

2. Multiply the cluster number by 2.

3. Use the product as the offset into the FAT and move the word at that
offset into a register.

4. If the result is a value from OFFF8H through OFFFFH, the file has no
more clusters. Otherwise, the result is the number of the next cluster in
the file.

To convert cluster numbers to logical sectors, subtract 2, multiply the
result by the number of sectors per cluster, and add the logical-sector
number of the beginning of the data area (this can be calculated from the
information in the BPB).

As an example, let's work out the disk location of the file IBMBIO.COM,
which is the first entry in the directory shown in Figure 10-6. First, we
need some information from the BPB, which is in the boot sector of the
medium. (See Figures 10-3 and 10-4.) The BPB tells us that there are

• 512 bytes per sector

• 2 sectors per cluster

• 2 sectors per FAT

• 2 FATs

• 112 entries in the root directory

From the BPB information, we can calculate the starting logical-sector
number of each of the disk's control areas and the files area by construct­
ing a table, as follows:

Area

Boot sector
2 FATs • 2 sectors/FAT
112 directory entries

•32 bytes/entry
/512 bytes/sector

Total sectors occupied by
bootstrap, FATs, and root
directory

Length (sectors)

1
4
7

12

Sector numbers

OOH
01H-04H
05H~OBH

Disk Internals 189



Therefore, the first sector of the files area is 12 (OCH).
The word at offset OlAH in the directory entry for I~MBIO.COM gives us
the starting cluster number for that file: cluster 2. To find the logical-sector
number of the first block in the file, we can follow the procedure given
earlier:

1. Cluster number - 2 = 2 - 2 = O.

2. Multiply by sectors per cluster = 0 • 2 = o.
3. Add logical-sector number of start of the files area = 0 + OCH = OCH.
So the calculated sector number of the beginning of the file IBMBIO.COM
is OCH, which is exactly what we expect knowing that the FORMAT pro­
gram always places the system files in contiguous sectors at the beginning
of the data area.

Now let's trace IBMBIO.COM's chain through the file allocation table
(Figures 10-9 and 10-10). This will be a little tedious, but -a detailed under­
standing of the process is crucial. In an actual program, we would first
read the boot sector using Int 25H, then calculate the address of the FAT
from the contents of the BPB, and finally read the FAT into memory, again
using Int 25H.

From IBMBIO.COM's directory entry, we already know that the first clus­
ter in the file is cluster 2. To examine that cluster's entry in the FAT, we
multiply the cluster number by 1.5, which gives 0003H as the FAT offset,
and fetch the word at that offset (which contains 4003H). Because the
product of the cluster and 1.5 is a whole number, we AND the word from
the FAT with OFFFH, yielding the number 3, which is the number of the
second cluster assigned to the file.

Figure 10-9. Hex dump ofthefirst block ofthefile allocation table (track 0, head 0,sector2)for the PC-DOS3.3 disk whose root directory is shown in Figure 10-6. Noticethat thefirst byte ofthe FATcontains the media descriptor bytefor a 5.25-inch,
2-sided, 9-sectorfloppy disk.

190 ProgrammingforMS-DOS



Figure 10-10. Assembly-languageprocedure to access thefile allocation table
(assumes 12-bit FATfields). Given a cluster number, theprocedure returns the con­
tents ofthat cluster's FATentry in the AX register. This simple example ignores thefact
that FATentries can span sector boundaries.

To examine cluster 3's entry in the FAT, we multiply 3 by 1.5, which gives
4.5, and fetch the word at offset 0004H (which contains 0040H). Because
the product of 3 and 1.5 is not a whole number, we shift the word right
4 bits, yielding the number 4, which is the number of the third cluster
assigned to IBMBIO.COM.

In this manner, we can follow the chain through the FAT until we come to
a cluster (number 23, in this case) whose FAT entry contains the value
OFFFH, which is an end-of-file marker in FATs with 12-bit entries.

We have now established that the file IBMBIO.COM contains clusters 2
through 23 (02H-17H), from which we can calculate that logical sectors
OCH through 38H are assigned to the file. Of course, the last cluster may

Disk Internals 191



be only partially filled with actual data; the portion of the last cluster used
is the remainder of the file's size in bytes (found in the directory entry)
divided by the bytes per cluster.

Fixed-Disk Partitions
Fixed disks have another layer of organization beyond the logical volume
structure already discussed: partitions. The FDISK utility divides a fixed
disk into one Qr more partitions consisting of an integral number of
cylinders. Each partition can contain an independent file system and, for
that matter, its own copy of an operating system.
The first physical sector on a fixed disk (track 0, head 0, sector 1) contains
the master boot record, which is laid out as follows:

Bytes
OOO-lBDH
IBE-ICDH
lCE-lDOH
IDE-IEDH
lEE-lFDH
IFE-IFFH

Contents

Reserved
Partition #1 descriptor
Partition #2 descriptor
Partition #3 descriptor
Partition #4 descriptor
Signature word (AASSH)

The partition descriptors in the master boot record define the size, loca­
tion, and type of each partition, as follows:

Byte(s)
OOH
OlH
02H-03H
04H

OSH
06H-07H
OSH-OBH
OCH-OFH

Contents

Active flag (0 = not bootable, SOH =bootable)
Starting head
Starting cylinder/sector
Partition type
OOH not used
OlH FAT file system, 12-bit FAT entries
04H FAT file system, 16-bit FAT entries
OSH extended partition
06H "huge partition" (MS-DOS versions 4.0 and later)
Ending head
Ending cylinder/sector
Starting sector for partition, relative to beginning of disk
Partition length in sectors

The active flag, which indicates that the partition is bootable, can be set
on only one partition at a time.

192 ProgrammingforMS-DOS



MS-DOS treats partition types 1, 4, and 6 as normal logical volumes and
assigns them their own drive identifiers during the system boot process.
Partition type 5 can contain multiple logical volumes and has a special
extended boot record that describes each volume. The FORMAT utility
initializes MS-DOS fixed-disk partitions, creating the file system within
the partition (boot record, file allocation table, root directory, and files
area) and optionally placing a bootable copy of the operating system in
the file system.

Figure 10-11 contains a partial hex dump of a master block from a fixed
disk formatted under PC-DOS version 3.3. This dump illustrates the parti­
tion descriptors for a normal partition with a 16-bit FAT and an extended
partition.

Type byte for partition 1 Active (bootable) partition flag

First partition entry
Second partition entry
Third partition entry
Fourth partition entry

Figure 10-11. A partial hex dump ofa master blockfrom a fixed diskformatted
underPC-DOS version 3.3. This disk contains two partitions. Thefirstpartition has a
16-bit FATand is marked "active" to indicate that it contains a bootable copy ofPC­
DOS. The secondpartition is an "extended"partition. The third andfourth partition
entries are not used in this example.

Disk Internals 193





Chapter 11

Memory Management



Current versions of MS-DOS can manage as much as 1 megabyte of con­
tiguous random-access memory. On IBM PCs and compatibles, the
memory occupied by MS-DOS and other programs starts at address OOOOR
and may reach as high as address 09FFFFR; this 640 KB area of RAM is
sometimes referred to as conventional memory. Memory above this ad­
dress is reserved for ROM hardware drivers, video refresh buffers, and the
like. Computers that are not IBM compatible may use other memory
layouts.

The RAM area under the control of MS-DOS is divided into two major
sections:

• The operating-system area

• The transient-program area

The operating-system area starts at address OOOOH-that is, it occupies
the lowest portion of RAM. It holds the interrupt vector table, the operat­
ing system proper and its tables and buffers, any additional installable
drivers specified in the CONFIG.SYS file, and the resident part of the
COMMAND~COM command interpreter. The amount of tnemory oc­
cupied by the operating-system area varies with the version of MS-DOS
used, the number of disk buffers, the size of installed device drivers, and
so forth.

The transient-program area (TPA), sometimes called the memory arena,
is the remainder of memory above the operating-system area. The
memory arena is dynamically allocated in blocks called arena entries.
Each arena entry has a special control structure called an arena header,
and all of the arena headers are chained together. Three MS-DOS Int 21H

functions allow programs to allocate, resize, and release blocks of
memory from the TPA:

Function

48H
49H
4AH

Action

Allocate memory block.
Release memory block.
Resize memory block.

MS-DOS itself uses these functions when loading a program from disk at
the request of COMMAND.COM or another program. The EXEC function,
which is the MS-DOS program loader, calls Int 21H Function 48H to allo­
cate a memory block for the loaded program's environment and another
for the program itself and its program segment prefix. It then reads the
program from the disk into the assigned memory area. When the program
terminates, MS-DOS calls Int 21H Function 49H to release all memory
owned by the program.

196 Programming/orMS-DOS



Transient programs can also employ the MS-DOS memory-management
functions to dynamically manage the memory available in the TPA. Proper
use of these functions is one of the most important criteria of whether a
program is well behaved under MS-DOS. Well-behaved programs are
most likely to be portable to future versions of the operating system and
least likely to cause interference with other processes under multitasking
user interfaces such as Microsoft Windows.

Using the Memory-Allocation Functions
The memory-allocation functions have two common uses:

• To shrink a program's initial memory allocation so that there is enough
room to load and execute another program under its control.

• To dynamically allocate additional memory required by the program
and to release the same memory when it is no longer needed.

Shrinking the Initial Melllory Allocation
Although many MS-DOS application programs simply assume they own
all memory, this assumption is a relic of MS-DOS version 1 (and CP/M),
which could support only one active process at a time. Well-behaved MS­
DOS programs take pains to modify only memory that they actually own
and to release any memory that they don't need.

Unfortunately, under current versions of MS-DOS, the amount of memory
that a program will own is not easily predicted in advance. It turns out that
the amount of memory allocated to a program when it is first loaded de­
pends upon two factors:

• The type of file the program is loaded from

• The amount of memory available in the TPA

MS-DOS always .allocates all of the largest available memory block in the
TPA to programs loaded from .COM (memory-image) files. Because .COM
programs contain no file header that can pass segment and memory-use
information to MS-DOS, MS-DOS simply assumes the worst case and gives
such a program everything. MS-DOS will load the program as long as
there is an available memory block as large as the size of the file plus 256
bytes for the PSP and 2 bytes for the stack. The .COM program, when it
receives control, must determine whether enough memory is available to
carry out its functions.

Memory Management 197



MS-DOS uses more complicated rules to allocate memory to programs
loaded from .EXE files. First, of course, a memory block large enough to
hold the declared code, data, and stack segments must be available in the
TPA. In addition, the linker sets two fields in a .EXE file's header to inform
MS-DOS about the program's memory requirements. The first field,
MIN_ALLOC, defines the minimum number of paragraphs required by
the program, in addition to those for the code, data, and stack segments.
The second, MAX_ALLOC, defines the maximum number of paragraphs
of additional memory the program would use if they were available.

When loading a .EXE file, MS-DOS first attempts to allocate the number of
paragraphs in MAX_ALLOC plus the number of paragraphs required by
the program itself. If that much memory is not available, MS-DOS assigns
all of the largest available block to the program, provided that this is at
least the amount specified by MIN_ALLOC plus the size of the program
image. If that condition is not satisfied, the program cannot be executed.

After a .COM or .EXE program is loaded and running, it can use Int 21H
Function 4AH (Resize Memory Block) to release all the memory it does
not immediately need. This is conveniently done right after the program
receives control from MS-DOS, by calling the resize function with the seg­
ment of the program's PSP in the ES register and the number of para­
graphs that the program requires to run in the BX register (Figure 11-1).

(continued)

Figure 11-1. An example ofa .COMprogram releasing excess memory after it
receives controlfrom MS-DOS. Int 21HFunction 4AH is called with ESpointing to the
program ~ PSP and BX containing the number ofparagraphs that theprogram needs
to execute. In this case, the new sizefor theprogram~ memory block is calculated as
theprogram image sizeplus the size ofthe PSP (256 bytes), rounded up to the next
paragraph..EXEprograms use similar code.

198 ProgrammingforMS-DOS



Figure 11-1. continued

Dynanlic Allocation ofAdditional Metnory
When a well-behaved program needs additional memory space-for an
I/O buffer or an array of intermediate results, for example-it can call Int
21H Function 48H (Allocate Memory Block) with the desired number of
paragraphs. If a sufficiently large block of unallocated memory is avail­
able, MS-DOS returns the segment address of the base of the assigned area
and clears the carry flag (0), indicating that the function was successful.

If no unallocated block of sufficient size is available, MS-DOS sets the
carry flag (1), returns an error code in the AX register, and returns the size
(in paragraphs) of the largest block available in the BX register (Figure
11-2). In this case, no memory has yet been allocated. The program can
use the value returned in the BX register to determine whether it can con­
tinue in a "degraded" fashion, with less memory. If it can, it must call Int
21H Function 48H again to allocate the smaller memory block.

When the MS-DOS memory manager is searching the chain of arena
headers to satisfy a memory-allocation request, it can use one of the fol­
lowing strategies:

IJ First fit: Use the arena entry at the lowest address that is large enough
to satisfy the request.

• Best fit: Use the smallest arena entry that will satisfy the request,
regardless of its location.

III Last fit: Use the arena entry at the highest address that is large enough
to satisfy the request.

Memory Management 199



Figure 11-2. Example ofdynamic memory allocation. The program requests a 32 KB
memory blockfrom MS-DOS, fills it with -ls, writes it to disk, and then releases it.

200 ProgrammingforMS-DOS



If the arena entry selected is larger than the size requested, MS-DOS di­
vides it into two parts: one block of the size requested, which is assigned
to the program that called Int 21H Function 48H, and an unowned block
containing the remaining memory.

The default MS-DOS allocation strategy is first fit. However, under MS­
DOS versions 3.0 and later, an application program can change the strat­
egy with Int 21H Function 58H.

When a program is through with an allocated memory block, it should use
Int 21H Function 49H to release the block. If it does not, MS-DOS will
automatically release all memory allocations for the program when it
terminates.

Arena Headers
Microsoft has not officially documented the internal structure of arena
headers for the outside world at present. This is probably to deter pro­
grammers from trying to manipulate their memory allocations directly in­
stead of through the MS-DOS functions provided for that purpose.

Arena headers have identical structures in MS-DOS versions 2 and 3. They
are 16 bytes (one paragraph) and are located immediately before the
memory area that they control (Figure 11-3). An arena header contains the
following information:

• A byte signifying whether the header isa member or the last entry in
the entire chain of such headers

• A word indicating whether the area it controls is available or whether it
already belongs to a program (if the latter, the word points to the pro­
gram's PSP)

• A word indicating the size (in paragraphs) of the controlled memory
area (arena entry)

MS-DOS inspects the chain of arena headers whenever the program re­
quests a memory-block allocation, modification, or release function, or
when a program is EXEC'd or terminated. If any of the blocks appear to
be corrupted or if the chain is broken, MS-DOS displays the dreaded
message

Memory all ocati on error

and halts the system.

Memory Management 201



In the example illustrated in Figure 11-3, COMMAND.COM originally
loaded PROGRAM1.COM into the TPA and, because it was a .COM file,
COMMAND.COM allocated it all of the TPA, controlled by arena header
#1. PROGRAM1.COM then used Int 21H Function 4AH (Resize Memory
Block) to shrink its memory allocation to the amount it actually needed to
run and loaded and executed PROGRAM2.EXE with the EXEC function
(Int 21H Function 4BH). The EXEC function obtained a suitable amount of
memory, controlled by arena header #2, and loaded PROGRAM2.EXE
into it. PROGRAM2.EXE, in turn, needed some additional memory to
store some intermediate results, so it called Int 21H Function 48H (Allo­
cate Memory Block) to obtain the area controlled by arena header #3. The
highest arena header (#4) controls all of the remaining TPA that has not
been allocated to any program.

Unowned RAM controlled by header #4

Arena header #4

Memory area controlled by header #3; additional
storage dynamically allocated by PROGRAM2.EXE

Arena header #3

Memory area controlled by header #2,
containing PROGRAM2.EXE

Arena header #2

Memory area controlled by header #1,
containing PROGRAM1.COM

Arena header #1
,> owo«~

~ Top of RAM
controlled by MS-DOS

~ Bottom of transient­
program area

Figure 11-3. An example diagram ofMS-DOS arena headers and the transient­
program area. The environment blocks and their associated headers have been
omittedfrom thisfigure to increase its clarity.

202 ProgrammingforMS-DOS



Lotus/Intel/Microsoft Expanded Memory
When the IBM Personal Computer and MS-DOS were first released, the
640 KB limit that IBM placed on the amount of RAM that could be directly
managed by MS-DOS seemed almost unimaginably huge. But as MS-DOS
has grown in both size and capabilities and the popular applications have
become more powerful, that 640 KB has begun to seem a bit crowded.
Although personal computers based on the 8028.§ anq_~Q~86 have the po­
tential to manage up to 16_I!:legabytes of RAM under operati~...§.Y§l~ITlS.
~ as MS OSL~an~LX_~tilI{.J.this is little coffifort to the millions of users
of 8086/8088-based computers and MS-DOS.

At the spring COMDEX in 1985, Lotus Development Corporation and Intel
Corporation jointly announced the Expanded Memory Specification 3.0
(EMS), which was designed to head off rapid obsolescence of the older
PCs because of limited memory. Shortly afterward, Microsoft announced
that it would support the EMS and would enhance Microsoft Windows to
use the memory made available by EMS hardware and software. EMS ver­
sions 3.2 and 4.0, released in fall 1985 and summer 1987, expanded support
for multitasking operating systems.

The LIM EMS (as it is usually known) has been an enormous success. EMS
memory boards are available from scores of manufacturers, and "EMS­
aware" software-especially spreadsheets, disk caches, and terminate­
and-stay-resident utilities-has become the rule rather than the
exception.

What Is Expanded Metnory?
The Lotus/InteVMicro~oftExpanded Memory Specification is a functional
definition of a bank-switched memory-expansion subsystem. It consists
of hardware expansion modules and a resident driver program specific to
those modules. In EMS versions 3.0 and 3.2, the expanded memory is
made available to application software as 16 KB pages mapped into a con­
tiguous 64 KB area called the page frame, somewhere above the main
memory area used by MS-DOS/PC-DOS (0-640 KB). The exact location of
the page frame is user configurable, so it need not conflict with other
hardware options. In EMS version 4.0, the pages may be mapped
anywhere in memory and can have sizes other than 16 KB.

The EMS provides a uniform means for applications ~o access as much as 8
megabytes of memory (32 megabytes in EMS 4.0). The supporting soft­
ware, which is called the Expanded Memory Manager (EMM), provides a
hardware-independent interface between application software and the
expanded memory board(s). The EMM is supplied in the form of an

Memory Management 203



installable device driver that you link into the MS-DOS/PC-DOS system
by adding a line to the CONFIG.SYS file on the system boot disk.

Internally, the Expanded Memory Manager consists of two major por­
tions, which may be referred to as the driver and the manager. The
driver portion mimics some of the actions of a genuine installable device
driver, in that it includes initialization and output status functions and a
valid device header. The second, and major, portion of the EMM is the
true interface between application software and the expanded-memory
hardware. Several classes of services are provided:

• Verification of functionality of hardware and software modules

• Allocation of expanded-memory pages

• Mapping of logical pages into the physical page frame

• Deallocation of expanded-memory pages

• Support for multitasking operating systems

Application programs communicate with the EMM directly, by means of
software Int 67H. MS-DOS versions 3.3 and earlier take no part in (and in
fact are completely oblivious to) any expanded-memory manipulations
that may occur. MS-DOS version 4.0 and Microsoft Windows, on the 'other
hand, are "EMS-aware" and can use the EMS memory when it is available.

Expanded memory should not be confused with extended memory. Ex­
tended memory is the term used by IBM to refer to the memory at physical
addresses above 1 megabyte that can be accessed by an 80286 or 80386
CPU in protected mode. Current versions of MS-DOS run the 80286 and
80386 in real mode (8086-emulation mode), and extended memory is
therefore not directly accessible.

Checking for Expanded Metllory
An application program can use either of two methods to test for the exis­
tence' of the Expanded Memory Manager:

• Issue an open request (Int 21H Function 3DH) using the guaranteed
device name of the EMM driver: EMMXXXXO. If the open function
succeeds, either the driver is present or a file with the same name coin­
cidentally exists on the default disk drive. To rule out the latter, the
application can use IOCTL (Int 21H Function 44H) subfunctions OOH
and 07H to ensure that EMM is present. In either case, the application
should then use Int 21H Function 3EH to close the handle that was ob­
tained from the open function, so that the handle can be reused for
another file or device.

204 Programming/orMS-DOS



iii Use the address that is found in the Int 67H vector to inspect the device
header of the presumed EMM. Interrupt handlers and device drivers
must use this method. If the EMM is present, the name field at offset
OAH of the device header contains the string EMMXXXXO. This ap­
proach is nearly foolproof and avoids the relatively high overhead of
an MS-DOS open function. However, it is somewhat less well behaved
because it involves inspection of memory that does not belong to the
application.

These two methods of testing for the existence of the Expanded Memory
Manager are illustrated in Figures 11-4 and 11-5.

(continued)

Figure 11-4. Testingfor the Expanded Memory Manager by means ofthe MS-DOS
open and fOCTIfunctions.

Memory Management 205



Figure 11-4. continued

Figure 11-5. Testingfor the Expanded Memory Manager by inspection ofthe name
field in the driver's device header.

206 Programmingfor MS-DOS



Using Expanded Memory
After establishing that the memory-manager software is present, the ap­
plication program communicates with it directly by means of the "user in­
terrupt" 67H, bypassing MS-DOS/PC-DOS. The calling sequence for the
EMM is as follows:

In general, AH contains the EMM function number, AL holds the subfunc­
tion number (if any), BX holds a number of pages (if applicable), and DX
contains an EMM handle. Registers DS:SI and ES:DI are used to pass the
addresses of arrays or buffers. Section IV of this book, "Lotus/Intel/
Microsoft EMS Functions Reference," details each of the expanded
memory functions.

Upon return from an EMM function, the AH register contains zero if the
function was successful; otherwise, it contains an error code with the most
significant bit set (Figures 11-6 and 11-7). Other values are typically
returned in the AL and BX registers or in a user-specified buffer.

Error code

DOH
80H

8tH
82H
83H
84H
8SH
86H
87H

88H

Meaning

Function successful.
Internal error in Expanded Memory ~anager software (could be

caused by corrupted memory image of driver).
Malfunction in expanded-memory hardware.
Memory manager busy.
Invalid handle.
Function requested by application not defined.
No more handles available.
Error in save or restore of mapping context.
Allocation request specified more logical pages than physically

available in system; no pages allocated.
Allocation request specified more logical pages than currently

available in system (request does not exceed physical pages
that exist, but some are already allocated to other handles);
no pages allocated.

(continued)

Figure 11-6. Expanded Memory Manager error codes common to EMS versions 3.0,
3.2, and 4.0. After a call to EMM, the AH register contains zero ifthefunction was
successful or an error code in the range 80H through BFH ifthefunction failed.

Memory Management 207



Figure 11-6. continued

Error code

89H
8AH

8BH

8CH
8DH

8EH

8FH

Error code

90H
91H
92H

93H

94H

95H
96H
97H

98H
99H
9AH

9BH

9CH

9DH

Meaning

Zero pages; cannot be allocated.
Logical page requested to be mapped located outside range of

logical pages assigned to handle.
Illegal physical page number in mapping request (not in range

0-3).
Page-mapping hardware-state save area full.
Save of mapping context failed; save area already contains context

associated with requested handle.
Restore of mapping context failed; save area does not contain

context for requested handle.
Subfunction parameter not defined.

Meaning

Attribute type not defined.
Feature not supported.
Source and destination memory regions have same handle and

overlap; requested move was performed, but part of source
region was overwritten.

Specified length for source or destination memory region is longer
than actual allocated length.

Conventional-memory region and expanded-memory region
overlap.

Specified offset is outside logical page.
Region length exceeds 1 MB.
Source and destination memory regions have same handle and

overlap; exchange cannot be performed.
Memory source and destination types undefined.
This error code currently unused.
Alternate map or DMA register sets supported, but the alternate

register set specified is not supported.
Alternate map or DMA register sets supported, but all alternate

register sets currently allocated.
Alternate map or DMA register sets not supported, and specified

alternate register set not zero.
Alternate map or DMA register sets supported, but alternate

register set specified is either not defined or not allocated.

(continued)

Figure 11-7. Expanded Memory Manager error codes unique to EMS version 4.0.
Most ofthese errors are related to the EMSfunctions for use by operating systems and
would not normally be encountered by application programs.

208 ProgrammingforMS-DOS



Figure 11-7. continued

Error code

9EH
9FH

AOH
AIH
A2H

A3H

A4H

Meaning

Dedicated DMA channels not supported.
Dedicated DMA channels supported, but specified DMA

channel not supported.
No handle found for specified name.
Handle with this name already exists.
Memory address wrap; sum of the source or destination

region base addre~s and length exceeds 1 MB.
Invalid pointer passed to function, or contents of source array

corrupted.
Access to function denied by operating system.

An application program that uses expanded memory should regard that
memory as a system resource, like a file or a device, and employ only the
documented EMM services to allocate, access, and release expanded­
memory pages. Such a program can use the following general strategy:

1. Establish the presence of the Expanded Memory Manager by one of
the two methods demonstrated in Figures 11-4 and 11-5.

2. After the driver is known to be present, check its operational status
with EMS Function 40H.

3. Check the version number of EMM with EMS Function 46H, to ensure
that all services the application will request are available.

4. Obtain the segment of the page frame used by EMM with EMS Func­
tion41H.

5. Allocate the desired number of expanded-memory pages with EMS
Function 43H. If the allocation is successful, EMM returns a handle that
the application can use to refer to the expanded-memory pages that it
owns. This step is exactly analogous to opening a file and using the
handle obtained from the open function for read/write operations on
the file.

6. If the requested number of pages are not available, the application can
query EMM for the' actual number of pages available (EMS Fu~ction

42H) and determine whether it can continue.

7. After the application has successfully allocated the needed number of
expanded-memory pages, it uses EMS Function 44H to map logical
pages in and out of the physical page frame in order to store and
retrieve data in expanded memory.

Memory Management 209



8. When the program finishes using its expanded-memory pages, it must
release them by calling EMS Function 45H. Otherwise, the pages will
be lost to use by other programs until the system is restarted.

Figure 11-8 shows a skeleton program that illustrates this general approach.

An interrupt handler or device driver that uses EMS follows the same gen­
eral procedure outlined in steps 1 through 8, with a few minor variations.
It may need to acquire an EMS handle and allocate pages before the
operating system is fully functional; in particular, you cannot assume that
the MS-DOS Open File or Device, IOCTL, and Get Interrupt Vector func­
tions are available. Thus, such a handler or driver must use a modified ver­
sion of the "get interrupt vector" technique (Figure 11-5) to test for the
existence of EMM, fetching the contents of the Int 67H vector directly.

A device driver or interrupt handler typically owns its expanded-memory
pages permanently (until the system is restarted) and never deallocates
them. Such a program must also take care to save and restore EMM's page­
mapping context (EMS Functions 47H and 48H) whenever it accesses
expanded memory, so that use of EMS by a foreground program will not
be disturbed.

The EMM relies on the good behavior of application software to avoid the
corruption of expanded memory. If several applications that use expand­
ed memory are running under a multitasking manager such as Microsoft
Windows and one or more of them does not abide strictly by EMM con­
ventions, the data of some or all of the applications may be destroyed.

(continued)

Figure 11-8. A program illustrating the general strategyfor using expanded memory_

210 ProgrammingforMS-DOS



Figure 11-8. continued

Memory Management 211



Extended Memory
Extended memory is RAM storage at addresses above 1 megabyte
(100000H) that can be accessed by an 80286 or 80386 processor running in
protected mode. IBM PC/AT- and PS/2-compatible machines can
(theoretically) have as much as 15 MB of extended memory installed, in
addition to the usual 1MB of conventional memory.

Protected-mode operating systems such as Microsoft XENIX or MS OS/2
can use extended memory for execution of programs. MS-DOS, on the
other hand, runs in real mode on an 80286 or 80386, and programs run­
ning under its control cannot ordinarily execute from extended memory
or even address that memory for storage of data. However, the ROM BIOS
contains two routines that allow real-mode programs restricted access to
extended memory:

ROMBlOSfunctlon

Int I5H Function 87H
Int I5H Function 88H

Action

Move extended-memory block.
Get extended-memory size.

These routines can be used by electronic disks (RAMdisks) and by other
programs that want to use extended memory for fast storage and petrieval
of information that would otherwise have to be written to a slower physi­
cal disk drive. Section III of this book, "IBM ROM BIOS and Mouse Func­
tions Reference," documents both of these functions.

You should use these ROM BIOS routines with caution. Data stored in ex­
tended memory is, of course, volatile; it is lost if the machine is turned off.
The transfer of data to or from extended memory involves a switch from
real mode to protected mode and back, which is a relatively slow process
on 80286-based machines; in some cases it is only marginally faster than
actually reading the data from a fixed disk. In addition, programs that use
the ROM BIOS extended-memory functions are not compatible with the
MS-DOS compatibility mode of MS OS/2.

Finally, a major'deficit in these ROM BIOS functions is that they do not
make any attempt to arbitrate between two or more programs or drivers
that are using extended memory for temporary storage. For example, if an
application program and an installed RAMdisk driver attempt to put data
in the same area of extended memory, no error will be returned to either
program, but the data of one or both may be destroyed.

Figure 11-9 shows an example of the code necessary to transfer data to and
from extended memory.

212 Programming/orMS-DOS



(continued)

Figure 11-9. Moving blocks ofdata between conventional memory and extended
memory, using the ROMBIOS extended-memoryfunctions. For additional informa­
tion on theformat ofthe block move descriptor table, see the entryfor Int 15H
Function 87H in Section III ofthis book, I iBMROMBIOS andMouse Functions Refer­
ence. " Note thatyou must specify the extended-memory address as a 32-bit linear
address rather than as a segment and offset.

Memory Management 213



Figure 11-9. continued

(continued)

214 Programming/orMS-DOS



Figure 11-9. continued

Memory Management 215





Chapler12

The EXEC FWlction



The MS-DOS EXEC function (Int 21H Function 4BH) allows a program
(called the parent) to load any other program (called the child) from a
storage device, execute it, and then regain control when the child pro­
gram is finished.

A parent program can pass information to the child in a command line, in
default file control blocks, and by means of a set of strings called the envi­
ronment block (discussed later in this chapter). All files or devices that the
parent opened using the handle file-management functions are duplicated
in the newly created child task; that is, the child inherits all the active
handles of the parent task. Any file operations on those handles by the
child, such as seeks or file I/O, also affect the file pointers associated with
the parent's handles.

MS-DOS suspends execution of the parent program until the child pro­
gram terminates. When the child program finishes its work, it can pass an
exit code back to the parent, indicating whether it encountered any errors.
It can also, in turn, load other programs, and so on through many levels of
control, until the system runs out of memory.

The MS-DOS command interpreter, COMMAND.COM, uses the EXEC
function to run its external commands and other application programs.
Many popular commercial programs, such as database managers and
word processors, use EXEC to run other programs (spelling checkers, for
example) or to load a second copy of COMMAND.COM, thereby allowing
the user to list directories or copy and rename files without closing all
the application files and stopping the main work in progress. EXEC can
also be used to load program overlay segments, although this use is
uncommon.

Making Memory Available
In order for a parent program to use the EXEC function to load a child
program, sufficient unallocated memory must be available in the transient
program area.

. When the parent itself was loaded, MS-DOS allocated it a variable amount
of memory, depending upon its original file type-.COM or .EXE-and
any other information that was available to the loader. (See Chapter 11 for
further details.) Because the operating system has no foolproof way of
predicting how much memory any given program will require, it gener­
ally allocates far more memory to a program than is really necessary.

218 Programming/orMS-DOS



Therefore, a prospective parent program's first action should be to use Int
21H Function 4AH (Resize Memory Block) to release any excess memory
allocation of its own to MS-DOS. In this case, the program should call Int
21H Function 4AH with the ES register pointing to the program segment
prefix of the program releasing memory and the BX register containing
the number of paragraphs of memory to retain for that program. (See
Figure 11-1 for an example.)

o WARNING A .COMprogram must move its stack to a safe area if
it is reducing its memory allocation to less than 64 KB.

Requesting the EXEC Function
To load and execute a child program, the parent must execute an Int 21H
with the registers set up as follows:

AH=4BH

AL =OOH (subfunction to load child program)

DS:DX =segment:offset of pathname for child program

ES:BX =segment:offset of parameter block

The parameter block, in turn, contains addresses of other information
needed by the EXEC function.

The Progratn Nam.e
The name of the program to be run, which the calling program prOVides
to the EXEC function, must be an unambiguous file specification (no wild­
card characters) and must include an explicit .COM or .EXE extension. If
the path and disk drive are not supplied in the program name, MS-DOS
uses the current directory and default disk drive. (The sequential search
for .COM, .EXE, and .BAT files in all the locations listed in the PATH
variable is not a function of EXEC, but rather of the internal logic of
COMMAND.COM.)

You cannot EXEC a batch file directly; instead, you must EXEC a copy of
COMMAND.COM and pass the name of the batch file in the command
tail, along with the Ie switch.

The EXECFunction 219



The Param.eter Block
The parameter block contains the addresses of four data objects:
• The environment block

• The command tail

• Two default file control blocks

The space reserved in the parameter block for the address of the environ­
ment block is only" 2 bytes and holds a segment address. The remaining
three addresses are all double-word addresses; that is, they are 4 bytes,
with the offset in the first 2 bytes and the segment address in the last
2 bytes.

The Environment Block
Each program that the EXEC function loads inherits a data structure
called an environment block from its parent. The pointer to the segment
of the block is at offset 002CH in the PSP. The environment block holds
certain information used by the system's command interpreter (usually
COMMAND.COM) and may also hold information to be used by transient
programs. It has no effect on the operation of the operating system
proper.

If the environment-block pointer in the EXEC parameter block contains
zero, the child program acquires a copy of the parent program's environ­
ment block. Alternatively, the parent program can provide a segment
pointer to a different or expanded environment. The maximum size of the
environment block is 32 KB, so very large chunks of information can be
passed between programs by this mechanism.
The environment block for any given program is static, implying that if
more than one generation of child programs is resident in RAM, each one
will have a distinct and separate copy of the environment block. Further­
more, the environment block for a program that terminates and stays resi­
dent is ~ot updated by subsequent PATH and SET commands.
You will find more details about the environment block later in this
chapter.

The Command Tail
MS-DOS copies the command tail into the child program's PSP at offset
0080H, as described in Chapter 3. The information takes the form of a
count byte, followed by a string of ASCII characters, terminated by a car­
riage return; the carriage return is not included in the count.

220 Programming/orMS-DOS



The command tail can include filenames, switches, or other parameters.

From the child program's point of view, the command tail should provide

the same information that would be present if the program had been run

by a direct user command at the MS-DOS prompt. EXEC ignores any 1/0­

redirection parameters placed in the command tail; the parent program

must provide for redirection of the standard devices before the EXEC

call is made.

The Default File Control Blocks

MS-DOS copies the two default file control blocks pointed to by the EXEC

parameter block into the child program's PSP at offsets 005CH and 006CH.

To emulate the function of COMMAND.COM from the child program's

point of view, the parent program should use Int 21H Function 29H

(the system parse-filename service) to parse the first two parameters of

the command tail into the default file control blocks before invoking the

EXEC function.

File control blocks are not much use under MS-DOS versions 2 and 3,

because they do not support the hierarchical file structure, but some ap­

plication programs do inspect them as a quick way to get at the first two

switches or other parameters in the command tail. Chapter 8 discusses file

control blocks in more detail.

Returning from the EXEC Function
In MS-DOS version 2, the EXEC function destroys the contents of all regis­

ters except the code segment (CS) and instruction pointer (IP). Therefore,

before making the EXEC call, the parent program must push the contents

of any other registers that are important onto the stack and then save the

stack segment (SS) and stack pointer (SP) registers in variables. Upon

return from a successful EXEC call (that is, the child program has finished

executing), the parent program should reload SS and SP from the variables

where they were saved and then pop the other saved registers off the

stack. In MS-DOS versions 3.0 and later, the stack and other registers are

preserved across the EXEC call in the usual fashion.

Finally, the parent can use Int 21H Function 4DH to obtain the termination

type and return code of the child program.

The EXEC function will fail under the following conditions:

• Not enough unallocated memory is available to load and execute the

requested program file.

• The requested program can't be found on the disk.

The EXECFunction 221



• The transient portion of COMMAND.COM in highest RAM (which
contains the actual loader) has been destroyed and not enough free
memory is available to reload it (PC-DOS version 2 only).

Figure 12-1 summarizes the calling convention for function 4BH. Figure
12-2 shows a skeleton of a typical EXEC call. This particular example uses
the EXEC function to load and run the MS-DOS utility CHKDSK.COM.
The SHELL.ASM program listing later in this chapter (Figure 12-5) pre­
sents a more complete example that includes the use of Int 21H Function
4AH to free unneeded memory.

Figure 12-1. Calling conventionfor the EXECfunction (Int 21HFunction 4BH).

222 ProgrammingforMS-DOS



(continued)

Figure 12-2. A briefexample ofthe use ofthe MS-DOS EXEC call, with all necessary

variables and command blocks. Note theprotection ofthe registersforMS-DOS ver­

sion 2 and the masking ofinterrupts during loading ofss:sp to circumvent a bug in

some early 8088 CPUs.

The EXEC Function 223



Figure 12-2. continued

More About the Environment Block
The environment block is always paragraph aligned (starts at an address
that is a multiple of 16 bytes) and contains a series of ASCIIZ strings. Each
of the strings takes the following form:

NAME=PARAMETER

An additional zero byte (Figure 12-3) indicates the end of the entire set of
strings. Under MS-DOS version 3, the block of environment strings and the
extra zero byte are followed by a word count and the complete drive,
path, filename, and extension used by EXEC to load the program.

Figure 12-3. Dump ofa typical environment block underMS-DOS version 3. Thisparticularexample contains the default COMSPECparameterand two relativelycomplex PATHand PROMPTcontrol strings that were set up by entries in the user'sAUTOEXECfile. Note thepath andfile specification ofthe executingprogramfollow­ing the double zeros at offset 0073H that denote the end ofthe environment block.

224 ProgrammingforMS-DOS



Under normal conditions, the environment block inherited by a pr?gram
will contain at least three strings:

COMSPEC=variable

PATH=variable

PROMPT=variable

MS-DOS places these three strings into the environment block at system
initialization, during the interpretation of SHELL, PATH, and PROMPT
directives in the CONFIG.SYS and AUTOEXEC.BAT files. The strings tell
the MS-DOS command interpreter, COMMAND.COM, the location of its
executable file (to enable it to reload the transient portion), where to
search for executable external commands or program files, and the format
of the user prompt.

You can add other strings to the environment block, either interactively or
in batch files, with the SET command. Transient programs can use these
strings for informational purposes. For example,. the Microsoft C Compiler
looks in the environment block for INCLUDE, LIB, and TMP strings to tell
it where to find its #include files and library files and where to build its
temporary working files.

Example Programs: SHEU.C and SHEU.ASM
As a practical example of use of the MS-DOS EXEC function, I have
included a small command interpreter called SHELL, with equivalent
Microsoft C (Figure 12-4) and Microsoft Macro Assembler (Figure 12-5)
source code. The source code for the assembly-language version is con­
siderably more complex than the code for the C version, but the names
and functionality of the various procedures are quite parallel.

(continued)

Figure 12-4. SHELL.C: A table-driven command interpreter written in Microsoft C.

The EXEC Function 225



Figure 12...4. continued

(continued)

226 Programming/orMS-DOS



Figure 12-4. continued

(continued)

The EXECFunction 227



Figure 12-4. continued

(continued)

228 Programming/orMS-DOS



Figure 12-4. continued

(continued)

Figure 12-5. SHELL.ASM: A simple table-driven command interpreter written in
Microsoft Macro Assembler.

The EXECFunction 229



Figure 12-5. continued

(continued)

230 ProgrammingforMS-DOS



Figure 12-5. continued

(continued)

The EXECFunction 231



Figure 12-5. continued

(continued)

232 ProgrammingforMS-DOS



Figure 12-5. continued

(continued)

The EXECFunction 233



Figure 12-5. continued

(continued)

234 ProgrammingforMS-DOS



Figure 12-5. continued

(continued)

The EXECFunction 235



Figure 12-5. continued

(continued)

236 Programming/orMS-DOS



Figure 12-5. continued

(continued)

The EXEC Function 237



Figure 12-5. continued

238 Programming/orMS-DOS



The SHELL program is table driven and can easily be extended to provide
a powerful customized user interface for almost any application. When
SHELL takes control of the system, it displays the prompt

sh:

and waits for input from the user. After the user types a line terminated
by a carriage return, SHELL tries to match the first token in the line against
its table of internal (intrinsic) commands. If it finds a match, it calls the
appropriate subroutine. If it does not find a match, it calls the MS-DOS
EXEC function and passes the user's input to COMMAND.COM with the
IC switch, essentially using COMMAND.COM as a transient command
processor under its own control.

As supplied in these listings, SHELL "knows" exactly three internal
commands:

Command

CLS

DOS
EXIT

ActiOn

Uses the ANSI standard control sequence to clear the display
screen and home the cursor.

Runs a copy of COMMAND.COM.
Exits SHELL, returning control of the system to the next lower

command interpreter.

You can quickly add new intrinsic commands to either the C version or the
assembly-language version of SHELL. Simply code a procedure with the
appropriate action and insert the name of that procedure, along with the
text string that defines the command, into the table COMMANDS. In
addition, you can easily prevent SHELL from passing certain "dangerous"
commands (such as MKDIR or ERASE) to COMMAND.COM simply by
putting the names of the commands to be screened out into the intrinsic
command table with the address of a subroutine that prints an error
message.

To summarize, the basic flow of both versions of the SHELL program is
as follows:

1. The program calls MS-DOS Int 21H Function 4AH (Resize Memory
Block) to shrink its memory allocation, so that the maximum possible
space will be available for COMMAND.COM if it is run as an overlay.
(This is explicit in the assembly-language version only. To keep the ex­
ample code simple, the number of paragraphs to be reserved is coded
as a generous literal value, rather than being"figured out at runtime
from the size and location of the variou~ program segments.)

The EXECFunction 239



2. The program searches the environment for the COMSPEC variable,
which defines the location of an executable copy of COMMAND.COM.
If it can't find the COMSPEC variable, it prints an error message and
exits.

3. The program puts the address of its own handler in the Ctrl-C vector
(Int 23H) so that it won't lose control if the user enters a Ctrl-C or
a Ctrl-Br~ak.

4. The program issues a prompt to the standard output device.

5. The program reads a buffered line from the standard input device to
get the user's command.

6. The program matches the first blank-delimited token in the line
against its table of intrinsic commands. If it finds a match, it executes
the associated procedure.

7. If the program does not find a match in the table of intrinsic com­
mands, it synthesizes a command-line tail by appending the user's
input to the IC switch and then EXECs a copy of COMMAND.COM,
passing the address of the synthesized command tail in the EXEC
parameter block.

8. The program repeats steps 4 through 7 until the user enters the com­
mand EXIT, which is one of the intrinsic commands, and which causes
SHELL to terminate execution.

In its present form, SHELL allows COMMAND.COM to inherit a full copy
of the current environment. However, in some applications it may be
helpful, or safer, to pass a modified copy of the environment block so that
the secondary copy of COMMAND.COM will not have access to certain
information.

Using EXEC to Load Overlays
Loading overlays with the EXEC function is much less complex than using
EXEC to run another program. The overlay can be constructed as either a
memory image (.COM) or relocatable (.EXE) file and need not be the same
type as the program that loads it. The main program, called the root seg­
ment, must carry out the following steps to load and execute an overlay:

1. Make a memory block available to receive the overlay. The program
that calls EXEC must own the memory block for the overlay.

240 ProgrammingjorMS-DOS



2. Set up the overlay parameter block to be passed to the EXEC function.
This block contains the segment address of the block that will receive
the overlay, plus a segment relocation value to be applied to the con­
tents of the overlay file (if it is a .EXE file). These are normally the
same value.

3. Call the MS-DOS EXEC function to load the overlay by issuing an Int
21H with the registers set up as follows:

AH=4BH

AL =03H (EXEC subfunction to load overlay)

DS:DX =segment:offset of overlay file pathname

ES:BX =segment:offset of overlay parameter block

Upon return from the EXEC function, the carry flag is clear if the over­
lay was found and loaded. The carry flag is set if the file could not be
found or if some other error occurred.

4. Execute the code within the overlay by transferring to it with a far call.
The overlay should be designed so that either the entry point or a
pointer to the entry point is at the beginning of the module after it is
loaded. This technique allows you to maintain the root and overlay
modules separately, because the root module does not contain any
"magical" knowledge of addresses within the overlay segment. '

To prevent users from inadvertently running an overlay directly from the
command line, you should assign overlay files an extension other than
.COM or .EXE. It is most convenient to relate overlays to their root seg­
ment by assigning them the same filename but a different extension, such
as .OVL or .OVl, .OV2, and so on.

Figure 12-6 shows the use of EXEC to load and execute an overlay.

(continued)

Figure 12-6. A code skeletonfor loading and executing an overlay with the EXEC
function. The overlayfile may be in'either .COM or .EXE format.

The EXECFunction 241



Figure 12-6. continued

242 Programming/orMS-DOS



Chapter 13

Interrupt Handlers



Interrupts are signals that cause the computer's central processing unit to
suspend what it is doing and transfer to a program called an interrupt han­
dler. Special hardware mechanisms that are designed for maximum speed
force the transfer. The interrupt handler determines the cause of the inter­
rupt, takes the appropriate action, and then returns control to the original
process that was suspended.

Interrupts are typically caused by events external to the central processor
that require immediate attention, such as the following:

• Completion of an I/O operation

• Detection of a hardware failure

• "Catastrophes" (power failures, for example)

In order to service interrupts more efficiently, most modern processors
support multiple interrupt types, or levels. Each type usually has a
reserved location in memory, called an interrupt vector, that specifies
where the interrupt-handler program for that interrupt type is located.
This design speeds processing of an interrupt because the computer can
transfer control directly to the appropriate routine; it does not need a
central routine that wastes precious machine cycles determining the
cause of the interrupt. The concept of interrupt types also allows inter­
rupts to be prioritized, so that if several interrupts occur simultaneously,
the most important one can be processed first.

CPUs that support interrupts must also have the capability to block inter­
rupts while they are executing critical sections of code. Sometimes the
CPU can block interrupt levels selectively, but more frequently the effect is
global. While an interrupt is being serviced, the CPU masks all other inter­
rupts of the same or lower priority until the active handler has completed
its execution; similarly, it can preempt the execution of a handler if a dif­
ferent interrupt with higher priority requires service. Some CPUs can even
draw a distinction between selectively masking interrupts (they are
recognized, but their processing is deferred) and simply disabling them
(the interrupt is thrown away).

The creation of interrupt handlers has traditionally been considered one
of the most arcane of programming tasks, suitable only for the elite cadre
of system hackers. In reality, writing an interrupt handler is, in itself,
straightforward. Although the exact procedure must, of course, be cus­
tomized for the characteristics of the particular CPU and operating sys­
tem, the guidelines on the following page are applicable to almost any
computer system.

244 Programming/orMS-DOS



A program preparing to handle interrupts must do the following:

1. Disable interrupts, if they were previously enabled, to prevent them
from occurring while interrupt vectors are being modified.

2. Initialize the vector for the interrupt of interest to point to the pro­
gram's interrupt handler.

3. Ensure that, if interrupts were previously disabled, all other vectors
point to some valid handler routine.

4. Enable interrupts again.

The interrupt handler itself must follow a simple but rigid sequence of
steps:

1. Save the system context (registers, flags, and anything else that the
handler will modify and that wasn't saved automatically by the CPU).

2. Block any interrupts that might cause interference if they were allowed
to occur during this handler's processing. (This is often done automati­
cally by the computer hardware.)

3. Enable any interrupts that should still be allowed to occur during this
handler's processing.

4. Determine the cause of the interrupt.

5. Take the appropriate action for the interrupt: receive and store data
from the serial port, set a flag to indicate the completion of a disk­
sector transfer, and so forth.

6. Restore the system context.

7. Reenable any interrupt levels that were blocked during this handler's
execution.

8. Resume execution of the interrupted process.

As in writing any other program, the key to success in writing an interrupt
handler is to program defensively and cover all the bases. The main
reason interrupt handlers have acquired such a mystical reputation is that
they are so difficult to debug when they contain obscure errors. Because
interrupts can occur asynchronously- that is, because they can be caused
by external events without regard to the state of the currently executing
process-bugs in interrupt handlers can cause the system as a whole to
behave quite unpredictably.

Interrupt Handlers 245



Interrupts and the IntelSOxs6 Family
The Intel 8Ox86 family of microprocessors supports 256 levels of priori­
tized interrupts, which can be triggered by three types of events:

• Internal hardware interrupts

• External hardware interrupts

• Software interrupts

Internal Hardware Interrupts
Internal hardware interrupts, sometimes called faults, are generated by
certain events encountered during program execution, such as an attempt
to divide by zero. The assignment of such events to certain interrupt num­
bers is wired into the processor and is not modifiable (Figure 13-1).

Interrupt Vector Interrupt
level address trigger 8086/88 80286 80386

ooH ooH-03H Divide-by-zero x x x
01H 04H-07H Single step x x x
02H 08H-OBH Nonmaskable

interrupt (NMI) x x x
03H OCH-OFH Breakpoint x x x
O4H 10H-13H Overflow x x x
05H 14H-17H BOUND exceeded x x
06H 18H-IBH Invalid opcode x x
om lCH-lFH Processor extension

not available x x
08H 20H-23H Double fault x x
O9H 24H-2m segment overrun x x
OAH 28H-2BH Invalid task-state

segment x x
OBH 2CH-2FH Segment not present x x
OCH 30H-33H Stack segment

overrun x x
ODH 34H-37H General protection

fault x x
OEB 38H-3BH Page fault x
OFH 3CH-3FH Reserved
10H 4OH-43H Numeric coprocessor

error x x
11H-1FH 44H-7FH Reserved

Figure 13-L Internal interrupts (faults) on the Intel 8086188, 80286, and 80386
microprocessors.

246 Programming/orMS-DOS



External Hardware Interrupts
External hardware interrupts are triggered by peripheral device con­
trollers or by coprocessors such as the 8087/80287. These can be tied to ei­
ther the ~;PV'~ nonmaskable-interrupt.(NMI) pin or its maskable-interrupt
(INTR) pin. The._N¥! line is usually reserved for interrupts caused by such
catastrophic events as a memory parity error or a power failure.

Instead of being Wired directly to the CPU, the interrupts from external
devices can be channeled through a device called the Intel 8259A Pro­
grammable Interrupt Controller (PIC). The CPU controls the PIC through
a set ofI/O ports, and the PIC, in turn, signals the CPU through the INTR
pin. The PIC allows the interrupts from specific devices to be enabled and
disabled, and their priorities to be adjusted, under program control.

A single PIC can handle only eight levels of interrupts. However, PICs can
be casca~ed together in a treelike structure to handle as many levels as
desired. For example, 80286- and 80386-based machines with a PC/AT­
compatible architecture use two PICs wired together to obtain 16 indi­
vidually configurable levels of interrupts.

INTR interrupts can be globally enabled and disabled with the CPU's STI
and CLI instructions. As you would expect, these instructions have no
effect on interrupts received on the CPU's NMI pin.

The manufacturer of the computer system and/or the manufacturer of the
peripheral device assigns external devices to specific 8259A PIC interrupt
levels. These assignments are realized as physical electrical connections
and cannot be modified by software.

Software Interrupts
Any program can trigger software interrupts synchronously simply by
executing an INT instruction. MS-DOS uses Interrupts 20H through 3FH
to communicate with its· modules and with application programs. (For
instance, the MS-DOS function dispatcher is reached by executing an Int
21H.) The IBM PC ROM BIOS and application software use other inter­
rupts, with either higher or lower numbers, for various purposes (Figure
13-2). These assignments are simply conventions and are not wired into
the hardware in any way.

Interrupt Handlers 247



Interrupt Usage Machine

DOH Divide-by-zero PC,AT,PS/2
0IH Single step PC,AT, PS/2
02H NMI PC, AT, PS/2
03H Breakpoint PC,AT, PS/2
04H Overflow PC, AT, PS/2
05H ROM BIOS PrintScreen PC, AT, PS/2

BOUND exceeded AT, PS/2
06H Reserved PC

Invalid opcode AT, PS/2
07H Reserved PC

80287/80387 not present AT, PS/2
08H IRQO timer tick PC,AT, PS/2

Double fault AT, PS/2
09H IRQI keyboard PC,AT, PS/2

80287/80387 segment overrun AT, PS/2
OAH IRQ2 reserved PC

IRQ2 cascade from slave 8259A PIC AT, PS/2
Invalid task-state segment (TSS) AT, PS/2

OBH IRQ3 serial communications (COM2) PC,AT, PS/2
Segment not present AT,PS/2

OCH IRQ4 serial communications (COMI) PC,AT, PS/2
Stack segment overflow AT, PS/2

ODH IRQ5 fixed disk PC
IRQ5 parallel printer (LPT2) AT
Reserved PS/2
General protection fault AT, PS/2

OEH IRQ6 floppy disk PC,AT, PS/2
Page fault AT, PS/2

OFH IRQ7 parallel printer (LPTI) PC,AT, PS/2
10H ROM BIOS video driver PC,AT, PS/2

Numeric coprocessor fault AT,PS/2
IIH ROM BIOS equipment check PC, AT, PS/2
12H ROM BIOS conventional-memory size PC, AT, PS/2
I3H ROM BIOS disk driver PC, AT, PS/2
14H ROM BIOS communications driver PC,AT, PS/2
15H ROM BIOS cassette driver PC

ROM BIOS VO system extensions AT,PS/2
I6H ROM BIOS keyboard driver PC, AT, PS/2
17H ROM BIOS printer driver PC, AT, PS/2
I8H ROM BASIC PC, AT, PS/2

I9fI ROM BIOS bootstrap PC, AT, PS/2

(continued)

Figure 13-2. Interrupts with special significance on the IBMpc, PC/AT, and PS/2
and compatible computers. Note that the IBM ROMBIOS uses several interrupts in the
range DOH-1FH, even though they were reserved by Intelfor CPUfaults. IRQ numbers
refer to Intel 8259A PICpriority levels.

248 ProgrammingforMS-DOS



Figure 13-2. continued

Interrupt

lAH
IBH
lCH
IDH
lEH
IFH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH-2EH
2FH
30H-3FH
40H
41H

42H
43H
44H
46H
4AH
5AH
5BH
6OH-66H
67H
68H-6FH
70H
71H
72H
73H
74H

75H
76H
77H
78H-7FH
80H-FOH
F1H-FFH

Usage

ROM BIOS time of day
ROM BIOS Ctrl-Break
ROM BIOS timer tick
ROM BIOS video parameter table
ROM BIOS floppy-disk parameters
ROM BIOS font (characters 80H-FFH)
MS-DOS terminate process
MS-DOS function dispatcher
MS-DOS terminate address
MS-DOS Ctrl-C handler address
MS-DOS critical-error handler address
MS-DOS absolute disk read
MS-DOS absolute disk write
MS-DOS terminate and stay resident
MS-DOS idle interrupt
MS-DOS reserved
MS-DOS network redirector
MS-DOS reserved
MS-DOS multiplex interrupt
MS-DOS reserved
ROM BIOS floppy-disk driver (if fixed disk installed)
ROM BIOS fixed-disk parameters
ROM BIOS fixed-disk parameters (drive 0)
ROM BIOS default video driver (if EGA installed)
EGA, MCGA, VGA character table
ROM BIOS font (characters OOH-7FH)
ROM BIOS fixed-disk parameters (drive 1)
ROM BIOS alarm handler
Cluster adapter
Used by cluster program
User interrupts
LIM EMS driver
Unassigned
IRQ8 CMOS real-time clock
IRQ9 software diverted to IRQ2
IRQ10 reserved
IRQ11 reserved
IRQ12 reserved
IRQ12 mouse
IRQ13 numeric coprocessor
IRQ14 fixed-disk controller
IRQ15 reserved
Unassigned
BASIC
Not used

Machine

AT, PS/2
PC,AT, PS/2
PC,AT, PS/2
PC,AT, PS/2
PC,AT, PS/2
PC,AT, PS/2

PC, AT, PS/2
PC
AT, PS/2
PC, AT, PS/2
PC, AT, PS/2
PCjr
AT, PS/2
AT, PS/2
PC, AT
PC, AT
PC,AT, PS/2
PC, AT, PS/2

AT, PS/2
AT, PS/2
AT, PS/2
AT, PS/2
AT
PS/2
AT, PS/2
AT, PS/2
AT, PS/2

PC,AT, PS/2
PC, AT, PS/2

Interrupt Handlers 249



The Interrupt-Vector Table
The bottom 1024 bytes of system memory are called the interrupt-vector
table. Each 4-byte position in the table corresponds to an interrupt type (0
through OFFH) and contains the segment and offset of the interrupt han­
dler for that level. Interrupts 0 through 1FH (the lowest levels) are used for
internal hardware interrupts; MS-DOS uses Interrupts 20H through 3FH;
all the other interrupts are available for use by either external hardware
devices or system drivers and application software.

When an 8259A PIC or other device interrupts the CPU by means of the
INTR pin, it must also place the interrupt type as an 8-bit number (0
through OFFH) on the system bus, where the CPU can find it. The CPU
then multiplies this number by 4 to find the memory address of the inter­
rupt vector to be used.

Servicing an Interrupt
When the CPU senses an interrupt, it pushes the program status word
(which defines the various CPU flags), the code segment (CS) register, and
the instruction pointer (IP) onto the machine stack and disables the inter­
rupt system. It then uses the 8-bit number that was jammed onto the sys­
tem bus by the interrupting device to fetch the address of the handler from
the vector table and resumes execution at that address.

Usually the handler immediately reenables the interrupt system (to allow
higher-priority interrupts to occur), saves any registers it is going to use,
and then processes the interrupt as quickly as possible. Some external
devices also require a special acknowledgment signal so that they will
know the interrupt has been recognized.

If the interrupt was funneled through an 8259A PIC, the handler must send
a special code called end ofinterrupt (EOI) to the PIC through its control
port to tell it when interrupt processing is completed. (The EOI has no
effect on the CPU itself.) Finally, the handler executes the special IRET
(INTERRUPT RETURN) instruction that restores the original state of the
CPU flags, the CS register, and the instruction pointer (Figure 13-3).

Whether an interrupt was triggered by an external device or forced by
software execution of an INT instruction, there is no discernible differ­
ence in the system state at the time the interrupt handler receives control.
This fact is convenient when you are writing and testing external interrupt
handlers because you can debug them to a large extent simply by invoking
them with software drivers.

250 Programming/orMS-DOS



Figure 13-3. TYPical handlerfor hardware interrupts on the 80x86family ofmicro­
processors. In real life, the interrupt handler would need to save and restore only the
registers that it actually mOdified. Also, ifthe handler made extensive use ofthe ma­
chine stack, it would need to save and restore the SS and SP registers ofthe interrupted
process and use its own local stack.

Interrupt Handlers 251



Interrupt Handlers and MS-DOS
The introduction of an interrupt handler into your program brings with it
considerable hardware dependence. It goes without saying (but I am say­
ing it again here anyway) that you should avoid such hardware depen­
dence in MS-DOS applications whenever possible, to ensure that your
programs will be portable to any machine running current versions of
MS-DOS and that they will run properly under future versions of the
operating system.

Valid reasons do exist, however, for writing your own interrupt handler for
use under MS-DOS:

• To supersede the MS-DOS default handler for an internal hardware in­
terrupt (such as divide-by-zero, BOUND exceeded, and so forth).

• To supersede the MS-DOS default handler for a defined system excep­
tion, such as the critical-error handler or Ctrl-C handler.

• To chain your own interrupt handler onto the default system handler
for a hardware device, so that both the system's actions and your own
will occur on an interrupt. (A typical example of this is the "clock-tick"
interrupt.)

• To service interrupts not supported by the default MS-DOS device
drivers (such as the serial communications port, which can be used at
much higher speeds with interrupts than with polling).

• To provide a path of communication between a program that termi-
nates and stays resident and other application software.

MS-DOS provides the following facilities to enable you to install well­
behaved interrupt handlers in a manner that does not interfere with
operating-system functions or other interrupt handlers:

Function

Int 21H Function 25H
Int 21H Function 35H
Int 21H Function 31H

Action

Set interrupt vector.
Get interrupt vector.
Terminate and stay resident.

These functions allow you to examine or modify the contents of the sys­
tem interrupt-vector table and to reserve memory for the use of a handler
without running afoul of other processes in the system or causing memory
use conflicts. Section II of this book, "MS-DOS Functions Reference,"
describes each of these functions in detail, with programming examples.

252 Programming/orMS-DOS



Handlers for external hardware interrupts under MS-DOS must operate
, under some fairly severe restrictions:

• Because the current versions of MS-DOS are not reentrant, a hardware
interrupt handler should never call the MS-DOS functions during the
actual interrupt processing.

• The handler must reenable interrupts as soon as it gets control, to
avoid crippling other devices or destroying the accuracy of the system
clock.

• A program should access the 8259A PIC with great care. The program
should not access the PIC unless that program is known to be the only
process in the system concerned with that particular interrupt level.
And it is vital that the handler issue an end-of-interrupt code to the
8259A PIC before performing the IRET; otherwise, the processing of
further interrupts for that priority level or lower priority levels will be
blocked.

Restrictions on handlers that replace the MS-DOS default handlers for in­
ternal hardware interrupts or system exceptions (such as Ctrl-C or critical
errors) are' not quite so stringent, but you must still program the handlers
with extreme care to avoid destroying system tables or leaving the operat­
ing system in an unstable state.

The following are a few rules to keep in mind when you are writing an
interrupt driver:

• Use Int 21H Function 25H (Set Interrupt Vector) to modify the interrupt
vector; do not write directly to the interrupt-vector table.

• If your program is not the only process in the system that uses this in­
terrupt level, chain back to the previous handler after performing your
own processing on an interrupt.

• If your program is not going to stay resident, fetch and save the current
contents of the interrupt vector before modifying it and then restore
the original contents when your program exits.

• If your program is going to stay resident, use one of the terminate-and­
stay-resident functions (preferably Int 21H Function 31H) to reserve
the proper amount of memory for your handler.

• If you are going to process hardware interrupts, keep the time that in­
terrupts are disabled and the total length of the service routine to an
absolute minimum. Remember that even after interrupts are reenabled
with an STI instruction, interrupts of the same or lower priority remain
blocked if the interrupt was received through the 8259A PIC.

Interrupt Handlers 253



ZERODIV, an Example Interrupt Handler
The listing ZERODIV.ASM (Figure 13-4) illustrates some of the principles
and guidelines on the previous pages. It is an interrupt handler for the
divide-by-zero internal interrupt (type 0). ZERODIV is loaded as a .COM
file (usually by a command in the system's AUTOEXEC file) but makes it­
self permanently resident in memory as long as the system is running.

The ZERODIV program has two major portions: the initialization portion
and the interrupt handler.

The initialization procedure (called init in the program listing) is exe­
cuted only once, when the ZERODIV program is executed from the MS­
DOS level. The init procedure takes over the type 0 interrupt vector,
prints a sign-on message, then performs a terminate-and-stay-resident
exit to MS-DOS. This special exit reserves the memory occupied by the
ZERODIV program, so that it is not overwritten by subsequent application
programs.

The interrupt handler (called zdiv in the program listing) receives control
when a divide-by-zero interrupt occurs. The handler preserves all regis­
ters and then prints a message to the user asking whether to continue or to
abort the program. We can use the MS-DOS console I/O functions within
this particular interrupt handler because we can safely presume that the
application was in control when the interrupt occurred; thus, there should
be no chance of aCCidentally making overlapping calls upon the operat­
ingsystem.

If the user enters a C to continue, the handler simply restores all the regis­
ters and performs an IRET (INTERRUPT RETURN) to return control to
the application. (Of course, the results of the divide operation will be use­
less.) If the user enters Q to quit, the handler exits to MS-DOS. Int 21H
Function 4CH is particularly convenient in this case because it allows the
program to pass a return code and at the same time is the only termina­
tion function that does not rely on the contents of any of the segment
registers.

For an example ofan interrupt handler for external (communications port)
interrupts, see the TALK terminal-emulator program in Chapter 7. You
may also want to look again at the discussions of Ctrl-e and critical-error
exception handlers in Chapters 5and 8.

254 Programming/orMS-DOS



(continued)

Figure 13-4. A simple example ofan interrrupt handlerfor use within the MS-DOS
environment. ZERODIV makes itselfpermanently resident in memory and handles
the ·CPU's internal divide-by-zero interrupt.

Interrupt Handlers 255



Figure 13-4. continued

(continued)

256 Programming/orMS-DOS



Figure 13-4. continued

(continued)

Interrupt Handlers 257



Figure 13-4. continued

258 Programming/orMS-DOS



Chapter 14

Installable Device Drivers



Device drivers are the modules of an operating system that control the
hardware. They isolate the operating-system kernel from the specific
characteristics and idiosyncrasies of the peripheral devices interfaced to
the central processor. Thus, the driver's relationship to the kernel is analo­
gous to the operating system's relationship to application programs.

The installable device drivers that were introduced in MS-DOS version 2
give the user great flexibility. They allow the user to customize and con­
figure the computer for a wide range of peripheral devices, with a
minimum of troublesome interactions and without having to "patch" the
operating system. Even the most inexperienced user can install a new
device into a system by plugging in a card, copying a driver file to the boot
disk, and editing the system configuration file.

For those inclined to do their own programming, the MS-DOS installable
device drivers are interfaced to the hardware-independent kernel through
a simple and clearly defined scheme of function codes and data struc­
tures. Given adequate information about the hardware, any competent
assembly-language programmer can expect to successfully interface even
the most bizarre device to MS-DOS without altering the operating sys­
tem in the slightest and without acquiring any special or proprietary
knowledge 'about its innards.

In retrospect, installable device drivers have proven to be one of the key
usability features of MS-DOS. I feel that they have been largely responsible
for the rapid proliferation' and competitive pricing of high-speed mass­
storage devices for MS-DOS machines, and for the growing confidence of
the average user toward "tampering With" (upgrading) his or her machine.

MS-DOS Device-Driver Types
Drivers written for MS-DOS fall into two distinct classes:

• Block-device drivers

• Character-device drivers

A driver's class determines what functions it must support, how it is
viewed by MS-DOS, and how it makes the associated physical device ap­
pear to behave when an application program makes a request for I/O.

260 ProgrammingforMS-DOS



Character-Device Drivers
Character-device drivers control peripheral devices that perform input
and output one character (or byte) at a time, such as a terminal or printer.
A single character-device driver ordinarily supports a single hardware
unit. Each character device has a one-to-eight-character logical name, and
an application program can use this name to open the device for input or
output, as though it were a file. The logical name is strictly a means of
identification for MS-DOS and has no physical equivalent on the device.

MS-DOS's built-in character-device drivers for the console, serial port,
and printer are unique in that an application program can access them in
three different ways: .

• It can open them by name (CON, AUX, PRN, etc.) for input and output,
like any other character device.

• It can use the special-purpose MS-DOS function calls (Int 21H Func­
tions Ol-OCH).

• It can use the default handles (standard input, standard output, stan­
dard error, standard auxiliary, and standard printer), which do not
need to be opened to be used.

The number of additional character-device drivers that can be installed is
t,

limited only by available memory and by the requirement that each driver
have a unique logical name. If more than one driver uses the same logical
name, the last driver to be loaded will supersede any others and will
receive all I/O requests addressed to that logical name. This fact can occa­
sionally be turned to advantage; for example, it allows the user to replace .
the system's default CON driver, which does not support cursor position­
ing or character attributes, with the more powerful ANSI.SYS driver.

ASCII vs Binary Mode
MS-DOS regards a handle associated with a character device to be in ei­
ther ASCII (cooked) mode or binary (raw) mode. The mode affects MS­
DOS's buffering of data for read and write requests. The driver itself is not
aware of the mode, and the mode does not affect its operation. An appli­
cation can select the mode of a handle with the IOCTL function (Int 21H
Function 44H).

During ASCII-mode input, MS-DOS requests characters one at a time from
the driver and places them into its own internal buffer, echoing each to the
screen (if the input device is the keyboard) and checking each character

Installable Device Drivers 261



for a Ctrl-C (03H). When the number of characters requested by the appli­
cation program has been received, when a Ctrl-Z is detected, or when the
Enter key is pressed (in the case of the keyboard), MS-DOS terminates the
input and copies the data from its internal buffer into the requesting pro­
gram's buffer. Similarly, during ASCII-mode output, MS-DOS passes the
characters to the device driver one at a time and checks for a Ctrl-C pend­
ing at the keyboard between each character. When a Ctrl-e is detected,
MS-DOS aborts the input or output operation and transfers to the routine
whose address is stored in the Int 23H vector.

In binary mode, MS-DOS reads or writes the exact number of bytes re­
quested by the application program, without regard to any control charac­
ters such as Enter or Ctrl-C. MS-DOS passes the entire request through to
the driver in a single operation, instead ofbreaking it into single-character
reads or writes, and transfers the characters directly to or from the re­
questing program's buffer.

Block-Device drivers
Block-device drivers usually control random-access mass-storage devices
such as floppy-disk drives and fixed disks, although they can also be used
to control non-random-access devices such as magnetic-tape drives.
Block devices transfer data in chunks, rather than one byte at a time. The
size of the blocks may be either fixed (disk drives) or variable (tape
drives).

A block driver can support more than one hardware unit, map a single
physical unit onto two or more logical units, or both. Block devices do not
have file-like logical names, as character devices do. Instead, MS-DOS
assigns drive designators to the block-device units or logical drives in an
alphabetic sequence: A, B, and so forth. Each logical drive contains a file
system: boot block, file allocation table, root directory, and so forth. (See
Chapter 10.)

A block-device driver's position in the chain of all drivers determines the
first letter assigned to that driver. The number of logical drive units that
the driver supports determines the total number of letters assigned to it.

Block-device drivers always read or write exactly the number of sectors
requested (barring hardware or addressing errors) and never filter or
otherwise manipulate the contents of the blocks being transferred.

282 Programming/orMS-DOS



Structure of an MS-DOS Device Driver
A device driver consists of threOe major parts (Figure 14-1):

• A device header

• A strategy (strat) routine

• An interrupt (intr) routine

We'll discuss each of these in more detail as we work through this chapter.

Initialization
Media check

Build BPB
IOCTL read and write

Status
Read

Write, write/verify
Interrupt routine Output until busy

Flush buffers
Device open
Device close

Check whether removable
GenericIOCTI.

Get/Set logical device

Strategy routine

Device-driver header
..~ .. V:«"O':l'),,"«'V~"Vx-.~~»::'«'I;.:r'':;

Figure 14-1. General structure ofan MS-DOS installable device driver.

The Device Header
The device header (Figure 14-2) lies at the beginning of the driver. It con­
tains a link to the next driver in the chain, a set of attribute flags for the
device (Figure 14-3), offsets to the executable strategy and interrupt rou­
tines for the device, and the logical-device name (if it is a character device
such as PRN or COM1) or the number of logical units (if it is a block
device).

Installable Device Drivers 263



Link to next driver, offset

Link to next driver, segment

Device attribute word

Strategy entry point, offset

Interrupt entry point, offset

Logical name (8 bytes) if character device

Number of units (1 byte) if block device,
followed by 7 bytes of reserved space

Byte offset

OOH

02H

04H

06H

08H

OAH

Figure 14-2. Device-driver header. The offsets to the strat and intr routines are off­
setsfrom the same segment used topoint to the device header.

Bit Significance

15 1 if character device, 0 if block device
14 1 iflOCTL read and write supported
13 forblockdev~~:

1 if BIOS parameter block in boot sector should be used to determine media
characteristics, 0 if media ID byte should be used

for character devices:
1 if output until busy supported

12 Reserved (should be 0)
11 1 if open/close/removable media supported (MS-DOS °3.0 and later)
7-10 Reserved (should be 0)
6 1 if generic IOCTL and get/set logical drive supported (MS-DOS 3.2 and

later)
5 Reserved (should be 0)
4 1 if CON driver and Int 29H fast-output function supported
3 1 if current CLOCK$ device
2 1 if current NUL device
1 for block devices:

1 if driver supports 32-bit sector addressing (MS-DOS 4.0)
for character devices:
1 if standard output device (stdout)

o 1 if current standard input device (stdin)

Figure 14-3. Device attribute word in device header. In block-device drivers, only
bits 6, 11, and 13-15 (and bit 1 in MS-DOS version 4.0) have significance; the
remainder should always be zero.

264 ProgrammingforMS-DOS



The Strategy Routine
MS-DOS calls the strategy routine (strat) for the device when the driver is
first loaded and installed, and again whenever an application program
issues an I/O request for the device. MS-DOS passes the strategy routine a
double-word pointer to a data structure called ~ request header. This
str~cture contains information about the type of operation to be per­
formed. In current versions of MS-DOS, the strategy routine never actually
performs any I/O operation but simply saves the pointer to the request
header. The strat routine must not make any Int 21H function calls.

The first 13 bytes of the request header are the same for all device-driver
functions and are therefore referred to as the static portion of the header.
The number and contents of the subsequent bytes vary according to the
type of function being requested (Figure 14-4). Both MS-DOS and the
driver read and write information in the request header.

The request header's most important component is a command code, or
fun~tion number, passed in its third byte to select a driver subfunction
such as read, write, or status. Other information passed to the driver in the
header includes unit numbers, transfer addresses, and sector or byte
counts.

Figure 14-4. Format ofrequest header. Only thefirst 13 bytes are common to all
driverfunctions; the numberand definition ofthe subsequent bytes vary, depending
upon thefunction type. The structure shown here is the one used by the read and
write subfunctions ofthe driver.

Installable Device Drivers 265



The Interrupt Routine
The last and most complex part of a device driver is the interrupt routine
(intr), which MS-DOS calls immediately after it calls the strategy routine.
The interrupt routine implements the device driver proper; it performs (or
calls other resident routines to perform) the actual input or output opera­
tions, based on the information passed in the request header. The strat
routine may not make any Int 21H function calls, except for a restricted set
during-driver initialization.

When an I/O function is completed, the interrupt routine uses the status
field in the request header to inform the DOS kernel about the outcome of
the requested I/O operation. It can use other fields in the request header
to pass back such useful information as counts of the actual sectors or
bytes transferred.

The interrupt routine usually consists of the following elements:

• A collection of subroutines to implement the various function types
that may be requested by MS-DOS (sometimes called the command­
code routines)

• A centralized entry point that saves all affected registers, extracts the
desired function code from the request header, and branches to the
appropriate command-code routine (typically accomplished with a
jump table)

• A centralized exit point that stores status and error codes into the re­
quest header (Figures 14-5 and 14-6) and restores the previous contents
of the affected registers

The command-code routines that implement the various functions sup­
ported by an installable device driver are discussed in detail in the follow­
ingpages.

Bit(s) Significance

15 Error
12-14 Reserved
9 Busy
8 Done
0-7 Error code if bit 15 =1

FigUre 14-5. Valuesfor the return status word ofthe request header.

266 Programming/orMS-DOS



o
1
2
3
4
5
6
7
8
9
OAH
OBH
OCH
OD-QEH
OFH

Meaning

Write-protect violation
Unknown unit
Drive not ready
Unknown command
Data error (CRC)
Bad request-structure length
Seek error
Unknown medium
Sector not found
Printer out of paper
Write fault
Read fault
General failure
Reserved
Invalid disk change (MS-DOS versions 3.0 and later)

Figure 14-6. Driver error codes returned in bits 0 through 7 ofthe return status
word ofthe request header.

Although its name suggests otherwise, the interrupt routine is never en­
tered asynchronously (on an I/O completion interrupt, for example).
Thus, the division of function between strategy and interrupt routines is
completely artificial in the current versions of MS-DOS.

The Command-Code Routines
A total of 20 command codes are defined for MS-DOS device drivers. The
command codes (which are not consecutive), the names of the associated
driver-interrupt routines, and the MS-DOS versions in which they are first
supported are as follows:

Command Character Block MS-DOS
code FunctUm driver driver version

0 Init (Initialization) X X 2.0
1 Media Check X 2.0
2 BuildBPB X 2.0
3 IOCTLRead X X 2.0
4 Read X X 2.0
5 Nondestructive Read X 2.0
6 Input Status X 2.0
7 Flush Input Buffers X 2.0
8 Write X X 2.0

(continued)

Installable Device Drivers 267



(continued)

Command Character Block MS-DOS
code Functlon driver driver version

9 Write with Verify X 2.0
10 Output Status X 2.0
11 Flush Output Buffers X 2.0
12 IOCTL Write X X 2.0
13 Device Open X X 3.0
14 Device Close X X 3.0
15 Removable Media X 3.0
16 Output Until Busy X 3.0
19 Generic IOCTL X ·X 3.2
23 Get Logical Device X 3.2
24 Set Logical Device X 3.2

As you can see from the preceding table, a driver's interrupt section must
support functions 0 through 12 under all versions of MS-DOS. Drivers
tailored for MS-DOS 3.0 and 3.1 can optionally support an additional four
functions, and MS-DOS drivers for versions 3.2 and later can support three
more (for a total of 20). MS-DOS inspects the bits in the attribute word of
the device-driver header to determine which of the optional functions a
driver supports, if any.

Some of the functions are relevant only for character-device drivers and
some only for block-device drivers; a few have meaning to both types. In
any case, both driver types should have an executable routine present for
each function, even if it does nothing except set the done flag in the status
word of the request header.

In the command-code descriptions that follow, RH refers to the request
header whose address was passed to the strategy routine in ES:BX, BYTE
is an 8-bit parameter, WORD is a 16-bit parameter, and DWORD is a far
pointer (a 16-bit offset followed by a 16-bit segment).

Function OOH (0): Driver Initialization
MS-DOS requests the driver's initialization function (init) only once,
when the driver is first loaded. This function performs any necessary
device hardware initialization, setup of interrupt vectors, and so forth. The
initialization routine must return the address of the position where free
memory begins after the driver code (the break address), so that MS-DOS
knows where it can build certain control structures and then load the next
installable driver. If this is a block-device driver, init must also return the
number of units and the address of a BPB pointer array.

268 Programming/orMS-DOS



MS-DOS uses the number of units returned by a block driver in the
request header to assign drive identifiers. For example, if the current maxi­
mum drive is D and the driver being initialized supports four units, MS­
DOS will assign it the drive letters E, F, G, and H. Although the device­
driver header also has a field for number of units, MS-DOS does not
inspect it.

The BPB pointer array is an array of word offsets to BIOS parameter
blocks (Figure 14-7). Each unit defined by the driver must have one entry
in the array, although the entries can all point to the same BPB to conserve
memory. During the operating-system boot sequence, MS-DOS scans all
the BPBs defined by all the units in all the block-device drivers to deter­
mine the largest sector size that exists on any device in the system and
uses this information to set its cache buffer size.

The operating-system services that the initialization code can invoke at
load time are very limited-only Int 21H Functions 01H through OCH and
30H. These are just adequate to check the MS-DOS version number and
display a driver-identification or error message.

Many programmers position the initialization code at the end of the driver
and return that address as the location of the first free memory, so that MS­
DOS will reclaim the memory occupied by the initialization routine after
the routine is finished with its work. If the initialization routine finds that
the device is missing or defective and wants to abort the installation of the
driver completely so that it does not occupy any memory, it should return

Byte(s)

00-01H
02H
03H-04H
OSH
06H-07H
08H-09H
OAH
OBH-OCH
ODH-OEH
OFH-I0H
IIH-12H
I3H-14H
ISH-18H
I9H-IEH

Contents

Bytes per sector
Sectors per allocation unit (power of 2)
Number of reserved sectors (starting at sector 0)
Number of file allocation tables
Maximum number of root-directory entries
Total number of sectors in medium
Media descriptor byte
Number of sectors occupied by a single FAT
Sectors per track (versions 3.0 and later)
Number of heads (versions 3.0 and later)
Number of hidden sectors (versions 3.0 and later)
High-order word of number of hidden sectors (version 4.0)
If bytes 8-9 are zero, total nutnber of sectors in medium (version 4.0)
Reserved, should be zero (version 4.0)

Figure 14-7. Structure ofa BIOSparameter block (BPB). Everyformatted disk
contains a copy ofits BPB in the boot sector. (See Chapter 10.)

Installable Device Drivers 269



number of units as zero and set the free memory address to CS:OOOOH. (A
character-device driver that wants to abort its installation should clear bit
15 of the attribute word in the driver header and then set the units field
and free memory address as though it were a block-device driver.)

The initialization function is called with

RH+2
RH+ 18

RH+22

It returns:

RH+3
RH+ 13
RH+ 14
RH+ 18

BYTE
DWORD

BYTE

WORD
BYTE
DWORD
DWORD

Command code =0
Pointer to character after equal sign on CONFIG.SYS line

that loaded driver (this information is read-only)
Drive number for first unit of this block driver (0 = A, 1 = B,

and so forth) (MS-DOS version 3 only)

Status
Number of units (block devices only)
Address of first free memory above driver (break address)
BPB pointer array (block devices only)

Function om (1): Media Check
The media-check function applies only to block devices, and in character­
device drivers it should do nothing except set the done flag. This function
is called when a drive-access call other than a simple file read or write is
pending. MS-DOS passes to the function the media descriptor byte for the
disk that it assumes is in the drive (Figure 14-8). If feasible, the media­
check routine returns a code indicating whether the disk has been
changed since the last transfer. If the media-check routine can assert that
the disk has not been changed, MS-DOS can bypass rereading the FAT
before a directory access, which improves overall performance.

Code

OFOH
OF8H
OF9H
OF9H
OFCH
OFDH
OFEH
OFFH

Meaning

3.5", 2-sided, 18-sector
fixed disk
3.5", 2-sided, 9-sector
5.25", 2-sided, IS-sector
5.25", I-sided, 9-sector
5.25", 2-sided, 9-sector
5.25", I-sided,8-sector
5.25", 2-sided, 8-sector

Figure 14-8. Current validMS-DOS codesfor the media descriptor byte ofthe request
header, assuming bit 13 in the attribute word ofthe driver header is zero.

270 ProgrammingforMS-DOS



MS-DOS responds to the results of the media-check function in the fol­
lowing ways:

• If the disk has not been changed, MS-DOS proceeds with the disk
access.

• If the disk has been changed, MS-DOS invalidates all buffers associated
with this unit, including buffers containing data waiting to be written
(this data is simply lost), performs a BUILD BPB call, and then reads
the disk's FAT and directory.

• If the disk-change status is unknown, the action taken by MS-DOS de­
pends upon the state of its internal buffers. If data that needs to be
written out is present in the buffers, MS-DOS assumes no disk change
has occurred and writes the data (taking the risk that, if the disk really
was changed, the file structure on the new disk may be damaged). If
the buffers are empty or have all been previously flushed to the disk,
MS-DOS assumes that the disk was changed, and then proceeds as
described above for the disk-changed return code.

If bit 11 of the device-header attribute word is set (that is, the driver sup­
ports the optional open/close/removable-media functions), the host sys­
tem is MS-DOS version 3.0 or later, and the function returns the disk­
changed code (-1), the function must also return the segment and offset
of the ASCIIZ volume label for the previous disk in the drive. (If the driver
does not have the volume label, it can return a pointer to the ASCIIZ string
NO NAME.) If MS-DOS determines that the disk was changed with un­
written data still present in its buffers, it issues a critical-error OFH (invalid
disk change). Application programs can trap this critical error and prompt
the user to replace the original disk.

The media-check function is called with

Unit code
Command code =1
Media descriptor byte

RH+ 1 BYTE
RH+2 BYTE
RH+13 BYTE

It returns

RH+3 WORD
RH+ 14 BYTE

Status
Media-change code:
-1 if disk changed
oifdon't know whether disk changed
1 if disk not changed

RH + 15 . DWORD Pointer to previous volume label, if device attribute bit
11 = 1 and disk has been changed (MS-DOS versions 3.0
and later)

[nstallable Device Drivers 271



Function 02H (2): Build BIOS Paratneter Block (BPB)
The build BPB function applies only to block devices, and in character­
device drivers should do nothing except set the done flag. The kernel uses
this function to get a pointer to the valid BPB (see Figure 14-7) for the cur­
rent disk and calls it when the disk-changed code is returned by the
media-check routine or the don't-know code is returned and there are no
dirty buffers (buffers with changed data that have not yet been written to
disk). Thus, a call to this function indicates that the disk has been legally
changed.

The build BPB function receives a pointer to a one-sector buffer in the re­
quest header. If bit 13 in the driver header's attribute word is zero, the
buffer contains the first sector of the FAT (which includes the media iden­
tification byte) and should not be altered by the driver. If bit 13 is set, the
driver can use the buffer as scratch space.

The build BPB function is called with

RH+ 1
RH+2
RH+ 13
RH+ 14

It returns

BYTE
BYTE
BYTE
DWORD

Unit code
Command code = 2
Media descriptor byte
Buffer address

RH+3
RH+ 18

WORD Status
DWORD Pointer to new BPB

Under MS-DOS versions 3.0 and later, if bit 11 of the header's device at­
tribute word is set, this routine should also read the volume label off the
disk and save it.

Function 03H (3): I/O-Control Read
The IOCTL read function allows the device driver to pass information di­
rectly to the application program. This function is called only if bit 14 is
set in the device attribute word. MS-DOS performs no error check on
10CTL I/O calls.

The IOCTL read function is called with

RH+ 1
RH+2
RH+ 13
RH+ 14
RH+ 18
RH+20

BYTE
BYTE
BYTE
DWORD
WORD
WORD

Unit code (block devices)
Command code =3
Media descriptor byte
Transfer address
Byte/sector count
Starting sector number (block devices)

272 Programming/orMS-DOS



It returns

RH+3
RH+18

WORD
WORD

Status
Actual bytes or sectors transferred

Function 048 (4): Read
The read function transfers data from the device into the specified
memory buffer. If an error is encountered during the read, the function
must set the error status and, in addition, report the number of bytes or
sectors successfully transferred; it is not sufficient to simply report an
error.

The read function is called with

RH+ 1
RH+2
RH+ 13
RH+ 14
RH+18
RH+20

BYTE
BYTE
BYTE
DWORD
WORD
WORD

Unit code (block devices)
Command code = 4
Media descriptor byte
Transfer address
Byte/sector count
Starting sector number (block devices)

For block-device read operations in MS-DOS version 4, if the logical unit is
larger than 32 MB and bit 1 of the driver's attribute word is set, the follow­
ing request structure is used instead:

RH+ 1
RH+2
RH+ 13
RH+ 14
RH+ 18
RH+20
RH+26

BYTE
BYTE
BYTE
DWORD
WORD
WORD
DWORD

Unit code
Command code =4
Media descriptor byte
Transfer address
Sector count
Contains -1 to signal use of 32-bit sector number
32-bit starting sector number

The read function returns

RH+3
RH+18
RH+22

WORD
WORD
DWORD

Status
Actual bytes or sectors transferred
Pointer to volume label iferror OFH is returned (MS-DOS
versions 3.0 and later)

Under MS-DOS versions 3.0 and later, this routine can use the count of
open files maintained by the open and close functions (ODH and OEH)
and the media descriptor byte to determine whether the disk has been il­
legally changed.

Installable Device Drivers 273



Function 05H (5): Nondestructive Read
The nondestructive read function applies only to character devices, and in
block devices it should do nothing except set the done flag. It returns the
next character that would be obtained with a read function (command
code 4), without removing that character from the driver's internal buffer.
MS-DOS uses this function to check the console driver for pending Con­
trol-C characters during other operations.

The nondestructive read function is called with

RH+2

It returns

RH+3

RH+13

BYTE

WORD

BYTE

Command code = 5

Status
If busy bit =0,. at least one character is waiting
If busy bit = 1, no characters are waiting
Character (if busy bit =0)

Function 06H (6): Input Status
The input-status function applies only to character devices, and in block­
device drivers it should do nothing except set the done flag. This function
returns the current input status for the~evice, allowing MS-DOS to test
whether characters are waiting in a type-ahead buffer. If the character
device does not have a type-ahead buffer, the input-status routine should
always return the busy bit equal to zero, so that MS-DOS will not 'wait
forever to call the read (04H) or nondestructive read (OSH) function.

The input-status function is called with

RH+2

It returns

RH+3

BYTE

WORD

Command code =6

Status:
If busy bit =1, read request goes to physical device.
If busy bit = 0, characters already in device buffer and read

request returns quickly.

Function om (7): Flush Input Buffers
The flush-input-buffers function applies only to character devices, and in
block-device drivers it should do nothing except set the done flag. This
function causes any data waiting in the input buffer to be discarded.

274 Programming/orMS-DOS



The flush-input-buffers function is called with

RH+2

It returns

RH+3

BYTE

WORD

Command code =7

Status

Function 08H (8): Write
The write function transfers data from the specified memory buffer to the
device. If an error is encountered during the write, the write function must
set the error status and, in addition, report the number of bytes or sectors
successfully transferred; it is not sufficient to simply reportan error.

The write function is called with

RH+l
RH+2
RH+ 13
RH+ 14
RH+ 18
RH+20

BYTE
BYTE
BYTE
DWORD
WORD
WORD

Unit code (block devices)
Command code = 8
Media descriptor byte
Transfer address
Byte/sector count
Starting sector number (block devices)

For block-device write operations in MS-DOS version 4, if the logical unit
is larger than 32 MB and bit 1 of the driver's attribute word is set, the fol­
lowing request structure is used instead:

RH+l
RH+2
RH+ 13
RH+ 14
RH+ 18
RH+20
RH+26

BYTE
BYTE
BYTE
DWORD
WORD
WORD
DWORD

Unit code
Command code = 8
Media descriptor byte
Transfer address
Sector count
Contains -1 to signal use of 32-bit sector number
32-bit starting sector number

The write function returns

RH+3
RH+ 18
RH+22

WORD
WORD
DWORD

Status
Actual bytes or sectors transferred
Pointer to volume label if error OFH returned (MS-DOS

versions 3.0 and later)

Under MS-DOS versions 3.0 and later, this routine can use the reference
count of open files maintained by the open and close functions (ODH and
OEH) and the media descriptor byte to determine whether the disk has
been illegally changed.

Installable Device Drivers 275



Function 09H (9): Write with Verify
The write-with-verify function transfers data from the specified memory
buffer to the device. If feasible, it should perform a read-after-write
verification of the data to confirm that the data was written correctly.
Otherwise, Function 09H is exactly like Function 08H.

Function OAH (10): Output Status
The output-status function applies only to character devices, and in
block-device drivers it should do nothing except set the done flag. This
function returns the current output status for the device.

The output-status function is called with

RH+2

It returns

RH+3

BYTE

WORD

Command code = 10 (OAH)

Status:
If busy bit = 1, write request waits for completion of current

request.
If busy bit =0, device idle and write request starts

immediately.

Function OBH (11): Flush Output Buffers
The flush-output-buffers function applies only to character devices, and in
block-device drivers it should do nothing except set the done flag. This
function empties the output buffer, if any, and discards any pending out­
put requests.

The flush-output-buffers function is called with

RH+2

It returns

RH+3

BYTE

WORD

Command code = 11 (OBH)

Status

Function, OCR (12): I/O-Control Write
The IOCTL write function allows an application program to pass control
information directly to the driver. This function is called only if bit 14 is set
in the device attribute word. MS-DOS performs no error check on IOCTL
I/O calls.

276 Programming/orMS-DOS



The IOCTL write function is called with

RH+1
RH+2
RH+ 13
RH+14
RH+ 18
RH+20

It returns

RH+3
RH+18

BYTE
BYTE
BYTE
DWORD
WORD
WORD

WORD
WORD

Unit code (block devices)
Command code = 12 (OCH)
Media descriptor byte
Transfer address
Byte/sector count
Starting sector number (block devices)

Status
Actual bytes or sectors transferred

Function ODH (13): Device Open
The device-open function is supported only under MS-DOS versions 3.0
and later and is called only if bit 11 is set in the device attribute word of the
device header.

On block devices, the device-open function can be used to manage local
buffering and to increment a reference count of the number of open files
on the device. This capability must be used with care, however, because
programs that access files through FCBs frequently fail to close them, thus
invalidating the open-files count. One way to protect against this possibi­
lity is to reset the open-files count to zero, without flushing the buffers,
whenever the answer to a media-change call is yes and a subsequent build
BPB call is made to the driver.

On character devices, the device-open function can be used to send a
device-initialization string (which can be set into the driver by an applica­
tion program by means of an IOCTL write function) or to deny simulta­
neous access to a character device by more than one process. Note that the
predefined handles for the CON, AUX, and PRN devices are always open.

The device-open function is called with

RH+1
RH+2

It returns

RH+3

BYTE
BYTE

WORD

Unit code (block devices)
Command code = 13 (ODH)

Status

Function OIEH (14): Device Close
The device-close function is supported only under MS-DOS versions 3.0
and later and is called only if bit 11 is set in the device attribute word of the
device header.

Installable Device Drivers 277



On block devices, this function can be used to manage local buffering and
to decrement a reference count of the number of open files on the device;
when the count reaches zero, all files have been closed and the driver
should flush buffers because the user may change disks.

On character devices, the device-close function can be used to send a
device-dependent post-I/O string such as a formfeed. (This string can be
set into the driver by an application program by means of an 10CTL write
function.) Note that the predefined handles for the CON, PRN, and AUX
devices are never closed.

The device-close function is called with

RH+l
RH+2

It returns

RH+3

BYTE
BYTE

WORD

Unit code (block devices)
Command code = 14 (OEH)

Status

Function OFH (15): Retnovable Media
The removable-media function is supported only under MS-DOS versions
3.0 and later and only on block devices; in character-device drivers it
should do nothing except set the done flag. This function is called only if
bit 11 is set in the device attribute word in the device header.

The removable-media function is called with

RH+l
RH+2

It returns

RH+3

BYTE
BYTE

WORD

Unit code
Command code = 15 (OFH)

Status:
If busy bit =1, medium nonremovable
If busy bit = 0, medium removable

Function lOB (16): Output Until Busy
The output-until-busy function is supported only under MS-DOS versions
3.0 and later, and only on character devices; in block-device drivers it
should do nothing except set the done flag. This function transfers data
from the specified memory buffer to a device, continuing to transfer bytes
until the device is busy. It is called only if bit 13 of the device attribute
word is set in the device header.

278 Programming/orMS-DOS



This function is an optimization included specifically for the use of print
spoolers. It is not an error for this function to return a number of bytes
transferred that is less than the number of bytes requested.

The output-until-busy function is called with

RH+2 BYTE Command code = 16 (10H)
RH+ 14 DWORD Transfer address
RH+ 18 WORD Byte count

It returns

RH+3 WORD Status
RH+ 18 WORD Actual bytes transferred

Function 13H (19) Generic IOCTL
The generic IOCTL function is supported only under MS-DOS versions 3.2
and later and is called only if bit 6 is set in the device attribute word of the
device header. This function corresponds to the MS-DOS generic IOCTL
service supplied to application programs by Int 21H Function 44H Sub­
functions OCH and ODH.

The generic IOCTL function is passed a category (major) code, a function
(minor) code, the contents of the SI and DI registers at the point of the
IOCTL call, and the segment and offset of a data buffer. This buffer in turn
contains other information whose format depends on the major and
minor IOCTL codes passed in the request header. The driver must inter­
pret the major and minor codes in the request header and the contents of
the additional buffer to determine which operation it will carry out, then
set the done flag in the request-header status word, and return any other
applicable information in the request header or the data buffer.

Services that the generic IOCTL function may invoke, if the driver sup­
ports them, include configuration of the driver for nonstandard disk for­
mats, reading and writing entire disk tracks of data, and formatting and
verifying tracks. The generic IOCTL function has been designed to be
open-ended, so that it can be used to easily extend the device-driver
definition under future versions of MS-DOS.

The generic IOCTL function is called with

RH+ 1
RH+2
RH+ 13
RH+ 14
RH+ 15
RH+ 17
RH+ 19

BYTE
BYTE
BYTE
BYTE
WORD
WORD
DWORD

Unit number (block devices)
Command code = 19 (13H)
Category (major) code
Function (minor) code
SI register contents
DI register contents
Address of generic IOCTL data packet

Installable DeviceDrivers 279



It returns

RH+3 WORD Status

Function 17H (23): Get Logical Device
The get-logical-device function is supported only under MS-DOS versions
3.2 and later and only on block devices; in character-device drivers it
should do nothing except set the done bit in the status word. This function
is called only if bit 6 is set in the device attribute word of the device
header. It corresponds to the get-Iogical-device-map service supplied to
application programs through Int 21H Function 44H Subfunction OEH.

The get-logical-device function returns a code for the last drive letter used
to reference the device; if only one drive letter is assigned to the device,
the returned unit code should be zero. Thus, this function can be used to
determine whether more than one drive letter is assigned to the same
physical device.

The get-logical-device function is called with

RH+1 BYTE Unit code
RH+2 BYTE Command code =23 (17H)

It returns

RH+1 BYTE Last unit referenced, or zero
RH+3 WORD Status

Function 18H (24): Set Logical Device
The set-logical-device function is supported only under MS-DOS versions
3.2 and later and only on block devices; in character-device drivers it
should do nothing except set the done bit in the status word. This function
is called only if bit 6 is set in the device attribute word of the device
header. It corresponds to the set-Iogical-device-map service supplied to
application programs by MS-DOS through Int 21H Function 44H Subfunc­
tionOFH.

The set-logical-device function informs the driver of the next logical­
drive identifier that will be used to reference the physical device. The unit
code passed by the MS-DOS kernel in this case is zero-based. relative to
the number of logical drives supported by this particular driver. For ex­
ample, if the driver supports two floppy-disk units (A and B), only one
physical floppy-disk drive exists in the system, and the set-logical-device
function is called with a unit number of 1, the driver is being informed that
the next read or write request from the kernel will be directed to drive B.

280 Programming/orMS-DOS



The set-logical-device function is called with

RH+I
RH+2

It returns

RH+3

BYTE
BYTE

WORD

Unit code
Command code = 24 (ISH)

Status

The Processing of a Typical I/O Request
An application program requests an I/O operation from MS-DOS by load­
ing registers with the appropriate values and executing an Int 21H. This
results in the following sequence of actions:

1. MS-DOS inspects its internal tables and determines which device
driver should receive the I/O request.

2. MS-DOS creates a request-header data packet in a reserved area of
memory. (Disk I/O requests are transformed from file and record infor­
mation into logical-sector requests by MS-DOS's interpretation of the
disk directory and FAT.)

3. MS-DOS calls the device driver's strat entry point, passing the address
of the request header in the ES:BX registers.

4. The device driver saves the address of the request header in a local
variable and performs a FAR RETURN.

5. MS-DOS calls the device driver's intr entry point.

6. The interrupt routine saves all registers, retrieves the address of the
request header that was saved by the strategy routine, extracts the
function code, and branches to the appropriate command-code sub­
routine to perform the function.

7. If a data transfer on a block device was requested, the driver's read or
write subroutine translates the logical-sector number into a head, track,
and physical-sector address for the requested unit and then performs
the I/O operation. Because a multiple-sector transfer can be requested
in a single request header, a single request by MS-DOS to the driver can
result in multiple read or write commands to the disk controller.

8. When the requested function is complete, the interrupt routine sets
the status word and any other required information into the request
header, restores all registers to their state at entry, and performs a FAR
RETURN.

Installable Device Drivers 281



9. MS-DOS translates the driver's return status into the appropriate return
code and carry-flag status for the MS-DOS Int 21H function that was
requested and returns control to the application program.

Note that a single request by an application program can result in MS-DOS
passing many request headers to the driver. For example, attempting to
open a file in a subdirectory on a previously unaccessed disk drive might
require the following actions:

• Reading the disk's boot sector to get the BPB

• Reading from one to many sectors of the root directory to find the en­
try for the subdirectory and obtain its starting-cluster number

• Reading from one to many sectors of both the FAT and the subdirectory
itself to find the entry for the desired file

The CLOCK Driver: A Special Case
MS-DOS uses the CLOCK device for marking file control blocks and direc­
tory entries with the date and time, as well as for providing the date and
time services to application programs. This device has a unique type of
interaction with MS-DOS-a 6-byte sequence is read from or ·written to
the driver that obtains or sets the current date and time. The sequence has
the following format:

a 1 2 3 4 5
Days Days Minutes Hours Seconds/ Seconds

low byte high byte 100

The value passed for days is a 16-bit integer representing the number of
days elapsed sinceJanuary 1, 1980.

The clock driver can have any logical-device name because MS-DOS uses
the CLOCK bit in the device attribute word of the driver's device header to
identify the device, rather than its name. On IBM PC systems, the clock
device has the logical-device name CLOCK$.

Writing and Installing a Device Driver
Now that we have discussed the structure and capabilities of installable
device drivers for the MS-DOS environment, we can discuss the mechani­
cal steps of assembling and linking them.

• 2 Programming/orMS-DOS



AsselIlbly
Device drivers for MS-DOS always have an origin of zero but are other­
wise assembled, linked, and converted into an executable module as
though they were .COM files. (Although MS-DOS is also capable of loading
installable drivers in the .EXE file format, this introduces unnecessary
complexity into writing and debugging drivers and offers no significant
advantages. In addition, it is not possible to use .EXE-format drivers with
some IBM versions of MS-DOS because the .EXE ioader is located in
COMMAND.COM, which is not present when the installable device
drivers are being loaded.) The driver should not have a declared stack
segment and must, in general, follow the other restrictions outlined in
Chapter 3 for memory-image (.COM) programs. A driver can be loaded
anywhere, so beware that you do not make any assumptions in your code
about the driver's location in physical memory. Figure 14-9 presents a
skeleton example that you can follow as you read the next few pages.

(continued)

Figure 14-9. DRIVER.ASM: Afunctional skeletonfrom which you can implement
your own working device driver.

Installable Device Drivers 283



Figure 14-9. continued

(continued)

284 Programming/orMS-DOS



Figure 14-9. continued

(continued)

Installable Device Drivers 285



Figure 14-9. continued

(continued)

286 Programming/orMS-DOS



Figure 14-9. continued

(continued)

Installable Device Drivers 287



Figure 14-9. continued

(continued)

288 Programming/orMS-DOS



Figure 14-9. continued

(continued)

Installable Device Drivers 289



Figure 14-9. continued

(continued)

290 Programming/orMS-DOS



Figure 14-9. continued

The driver's device header must be located at the beginning of the file
(offset OOOOH). Both words in the link field in the header should be set to
-1. The attribute word must be set up correctly for the device type and
other options. The offsets to the strategy and interrupt routines must be
relative to the same segment base as the device header itself. If the driver
is for a character device, the name field should be filled in properly with
the device's logical name. The logical name can be any legal 8-character
filename, padded with spaces and without a colon. Beware of accidentally

Installable Device Drivers 291



duplicating the names of existing character devices, unless you are inten­
tionally superseding a resident driver.

MS-DOS calls the strategy and interrupt routines for the device by means
of an intersegment call (CALL FAR) when the driver is first loaded and in­
stalled and again whenever an application program issues an VO request
for the device. MS-DOS uses the ES:BX registers to pass the strat routine a
double-word pointer to the request header; this address should be saved
internally in the driver so that it is available for use during the subsequent
call to the intr routine.

The command-code routines for function codes 0 through 12 (OCI-l) must
be present in every installable device driver, regardless of device type.
Functions 13 (ODH) and above are optional for drivers used with MS-DOS
versions 3.0 and later and can be handled in one of the following ways:

• Don't implement them, and leave the associated bits in the device
header cleared. The resulting driver will work in either version 2 or
version 3 but does not take full advantage of the augmented func­
tionality ofversion 3.

• Implement them, and test the MS-DOS version during the initialization
sequence, setting bits 6 and 11 of the device header appropriately.
Write all command-code routines so that they test this bit and adjust to
accommodate the host version of MS-DOS. Such a driver requires more
work and testing but will take full advantage of both the version 2 and
the version 3 environments.

• Implement them, and assume that all the version 3 facilities are avail­
able. With this approach, the resulting driver may not work properly
under version 2.

Remember that device drivers must preserve the integrity of MS-DOS. The
driver must preserve all registers, including flags (especially the direction
flag and interrupt enable bits), and if the driver makes heavy use of the
stack, it should switch to an internal stack of adequate depth (the MS-DOS
stack has room for only 40 to 50 bytes when a driver is called).

If you install a new CON driver, be sure to set the bits for standard input
and standard output in the device attribute word in the device header.

You'll recall that one file can co~tain multiple drivers. In this case, the
device-header link field of each driver should point to the segment offset
of the next, all using the same segment base, and the link field for the last
driver in the file should be set to -1,-1. The initialization routines for all
the drivers in the file should return the same break address.

292 Programming/orMS-DOS



linking
Use the standard MS-DOS linker to transform the .OB] file that is output
from the assembler into a relocatable .EXE module. Then, use the
EXE2BIN utility (see Chapter 4) to convert the .EXE file into a memory­
image program. The extension on the final driver file can be anything, but
.BIN and .SYS are most commonly used in MS-DOS systems, and it is
therefore wise to follow one of these conventions.

Installation
After the driver is assembled, linked, and converted to a· .BIN or .SYS file,
copy it to the root directory of a bootable disk. If it is a character-device
driver, do not use the same name for the file as you used for the logical
device listed in the driver's header, or you will not be able to delete, copy,
or rename the file after the driver is loaded.

Use your favorite text editor to add the line

DEVICE=[D:][PATHJFILENAME.EXT

to the CONFIG.SYS file on the bootable disk. (In this line, D: is an op­
tional drive designator and FILENAME.EXT is the name of the file con­
taining your new device driver. You can include a path specification in the
entry ifyou prefer not to put the driver file in your root directory.) Now re­
start your computer system to load the modified CONFIG.SYS file.

During the MS-DOS boot sequence, the SYSINIT module (which is part of
IO.SYS) reads and processes the CONFIG.SYS file. It loads the driver into
memory and inspects the device header. If the driver is a character-device
driver, SYSINIT links it into the device chain ahead of the other character
devices; if it is a block-device driver, SYSINIT places it behind all pre­
viously linked block devices and the resident block devices (Figures 14-10,
14-11, and 14-12). It accomplishes the linkage by updating the link field in
the device header to point to the segment and offset of the next driver in
the chain. The link field of the last driver in the chain contains -1,-1.

Next, SYSINIT calls the strat routine with a request header that contains a
command code of zero, and then it calls the intr routine. The driver exe­
cutes its initialization routine and returns the break address, telling MS­
DOS how much memory to reserve for this driver. Now MS-DOS can pro­
ceed to the next entry in the CONFIG.SYS file.

You cannot supersede a built-in block-device driver-you can only add
supplemental block devices. However, you can override the default system
driver for a character device (such as CON) with an installed driver by

Installable Device Drivers 293



giving it the same logical-device name in the device header. When pro­
cessing a character I/O request, MS-DOS always scans the list of installed
drivers before it scans the list of default devices and takes the first match.

NUL

!
CON

!
AUX

!
PRN

!
CLOCK

!
Any other resident block

or character devices

Figure 14-10. MS-DOS device-driver chain bejore any installable device drivers
have been loaded.

NUL

!
Installable character­

device drivers

!
CON

!
AUX

!
PRN

!
CLOCK

!
Any other resident block

or character devices

!
Installable block­

device drivers

Figure 14-11. MS-DOS device-driver chain after installable device drivers have been
loaded.

294 ProgrammingjorMS-DOS



Strategy Interrupt
Address Attribute routine routine Type Units Name

00E3:0111 8004 OFDS OFEO C NUL
0070:0148 8013 008E 0099 C CON
0070:0100 8000 008E OQ9F C AUX
oo70:028E 8000 oo8E OOAE C PRN

0070:0300 8008 008E OOC3 C CLOCK

0070:03CC 0000 008E 00C9 B 02

0070:01EF 8000 oo8E 009F C COM1
0070:02A0 8000 oo8E OOAE C LPT1
o070:06FO 8000 008E 00B4 C LPT2

0070:0702 8000 oo8E OOBA C LPT3

0070:0714 8000 008E OOAS C COM2

End of
device chain

Figure 14-12. Example listing ofdevice chain underMS-DOS version 2.1, 'plain
vanilla" IBM PC with nofixed disks or user device drivers. (C=characterdevice,
B=block device)

Debugging a Device Driver
The most important thing to remember when testing new device drivers is
to maintain adequate backups and a viable fallback position. Don't modify
the CONFIG.SYS file and install the new driver on your fixed disk before it
is proven! Be prudent-create a bootable floppy disk and put the modi­
fied CONFIG.SYS file and the new driver on that for debugging. When
everything is working properly, copy the finished product to its perma­
nent storage medium.

The easiest way to test a new device driver is to write a simple assembly­
language front-end routine that sets up a simulated request· packet and
then performs FAR CALls to the strat and intr entry points, exactly as
MS-DOS would. You can then link the driver and the front end together
into a .COM or .EXE file that can be run under the control of CodeView or
another debugger. This arrangement makes it easy to trace each of the
command-code routines individually, to observe the results of the 1/0,
and to examine the status codes returned in the request header.

Tracing the installed driver when it is linked into the MS-DOS system in
the normal manner is more difficult. Breakpoints must be chosen
carefully, to yield the maximum possible information per debugging run.
Because current versions of MS-DOS maintain only one request header in­
ternally, the request header that was being used by the driver you are trac­
ing will be overwritten as soon as your debugger makes an output request

Installable Device Drivers 295



to display- information. You will find it helpful to add a routine to your ini­
tialization subroutine that displays the driver's load address on the console
when you boot MS-DOS; you can then use this address to inspect the
device-driver header and set breakpoints within the body of the driver.

Debugging a device driver can also be somewhat sticky when interrupt
handling is involved, especially ·if the device uses the same interrupt­
request priority level (IRQ level) as other peripherals in the system.
Cautious, conservative programming is needed to avoid unexpected and
unreproducible interactions with other device drivers and interrupt han­
"dlers. If possible, prove out the basic logic of the driver using polled I/O,
rather than interrupt-driven I/O, and introduce interrupt handling only
when you know the rest of the driver's logic to be solid.

Typical device-driver errors or problems that can cause system crashes or
strange system behavior include t~e following:

• Failure to set the linkage address of the last driver in a file to -1

• Overflow of the MS-DOS stack by driver-initialization code, corrupting
the memory image of MS-DOS (can lead to unpredictable behavior dur­
ing boot; remedy is to use a local stack)

• Incorrect break-address reporting by the initialization routine (can
lead to a system crash if the next driver loaded overwrites vital parts of
the driver)

• Improper BPBs supplied by the build BPB routine, or incorrect BPB
pointer array supplied by the initialization routine (can lead to many
confusing problems, ranging from out-of-memory errors to system
boot failure)

• Incorrect reporting of the number of bytes or sectors successfully
transferred at the time an I/O error occurs (can manifest itself as a sys­
tem crash after you enter R to the Abort, Retry, Ignore? prompt)

Although the interface between the DOS kernel and the device driver is
fairly simple, it is also quite strict. The command-code routines must per­
form exactly as they are defined, or the system will behave erratically.
Even a very subtle discrepancy in the action of a command-code routine
can have unexpectedly large global effects.

296 Programming/orMS-DOS



Chapter 15

Filters



A filter is, essentially, a program that operates on a stream of characters.
The source and destination of the character stream can be files, another
program, or almost any character device. The transformation applied by
the filter to the character stream can range from an operation as simple as
character substitution to one as elaborate as generating splines from sets
of coordinates.

The standard MS-DOS package includes three simple filters: SORT, which
alphabetically sorts text on a line-by-line basis; FIND, which searches a
text stream to match a specified string; and MORE, which displays text
one screenful at a time. .

System Support for Filters
The operation of a filter program relies on two MS-DOS features that first
appeared in version 2.0: standard devices and redirectable I/O.

The standard devices are represented by five handles that are originally
established by COMMAND.COM. Each process inherits these handles
from its immediate parent. Thus, the standard device handles are already
open when a process acquires control of the system, and it can use them
with Interrupt 2lH Functions 3FH and 40H for read and write operations
without further preliminaries. The default assignments of the standard
device handles are as follows:

Handk

o
1
2

3
4

Name

stdin (standard input)
stdout (standard output)
stderr (standard error)
stdaux (standard auxiliary)
stdprn (standard printer)

Default device

CON
CON
CON
AUX
PRN

The CON device is assigned by default, to the system's keyboard and video
display. AUX and PRN are respectively associated by default with COMl
(the first physical serial port) and LPn (the first parallel printer port). You
can use the MODE command to redirect LPn to one of the serial ports;
the MODE command will also redirect PRN.

When executing a program by entering its name at the COMMAND.COM
prompt, you can redirect the standard input, the standard output, or both
from their default device (CON) to another file, a character device, or a
process. You do this by including one of the special characters <, >, »,
and : in the command line, in the form shown on the following page.

298 Programming/orMS-DOS



Symbol

<file

< device

> file
» file

> device
pl :p2

Wed
Takes standard input from the specified file instead of the

keyboard.
Takes standard input from the named device instead of the

keyboard.
Sends standard output to the specified file instead of the display.
Appends standard output to the current contents of the specified

file instead of sending it to the display.
Sends standard output to the named device instead of the display.
Routes standard output of programpl to become the standard

input of programp2. (Output ofpl is said to be piped to p2.)

For example, the command

C>SORT <MYFILE.TXT >PRN <Enter>

causes the SORT filter to read its input from the file MYFILE. TXT, sort the
lines alphabetically, and write the resulting text to the character device
PRN (the logical name for the system's list device).

The redirection requested by the <, >, », and: characters takes place at
the level of COMMAND.COM and is invisible to the program it affects.
Any other process can achieve a similar effect by redirecting the standard
input and standard output with Int 21H Function 46H before calling the
EXEC function (Int 2lH Function 4BH) to run a child process.

Note that if a program circumvents MS-DOS to perform its input and out­
put, either by calling ROM BIOS functions or by manipulating the key­
board or video controller directly, redirection commands placed in the
program's command line do not have the expected effect.

How Filters Work
By convention, a filter program reads its text from the standard input
device and writes the results of its operations to the standard output
device. When it reaches the end of the input stream, the filter simply
terminates. As a result, filters are both flexible and simple.

Filter programs are flexible because they do not know, and do not care
about, the source of the data they process or the destination of their out­
put. Thus, any character device that has a logical name within the system
(CON, AUX, COMl, COM2, PRN, LPTl, LPT2, LPT3, and so on), any file on
any block device (local or network) known to the system, or any other
program can supply a filter's input or accept its output. If necessary, you

Filters 299



can concatenate several functionally simple filters with pipes to perform
very complex operations.

Although flexible, filters are also simple because they rely on their parent
processes to supply standard input and standard output handles that have
already been appropriately redirected. The parent must open or create
any necessary files, check the validity of logical character-device names,
and load and execute the preceding or following process in a pipe. The
filter concerns itself only with the transformation it applies to the data.

Building a Filter
Creating a new filter for MS-DOS is a straightforward process. In its
simplest form, a filter need only use the handle-oriented read (Interrupt
21H Function 3FH) and write (Interrupt 21H Function 40H) functions to
get characters or lines from standard input and send them to standard out­
put, performing any desired alterations on the text stream on a character­
by-character or line-by-line basis.

Figures 15-1 and 15-2 contain prototype character-oriented filters in both
assembly language and C. In these examples, the translate routine, which
is called for each character transferred from the standard input to the stan­
dard output, does nothing at all. As a result, both filters function rather
like a very slow COpy command. You can quickly turn these primitive fil­
ters into useful programs by substituting your own translate routine.

If you tryout these programs, you'll notice that the C prototype filter runs
much faster than its MASM equivalent. This is because the C runtime li­
brary is performing hidden blocking and deblocking of the input and out­
put stream, whereas the MASM filter is doing exactly what it appears to be
doing: making two calls to MS-DOS for each character processed. You can
easily restore the MASM filter's expected speed advantage by adapting it
to read and write lines instead of single characters.

300 Programming/orMS-DOS



(continued)

Figure 15-1. PROTO.ASM, the source codefor a prototype character-oriented
MASMfilter.

Filters 301



Figure 15-1. continued

302 ProgrammingforMS-DOS



Figure 15-2. PROTO.C, the source codefor a prototype character-oriented Cfilter.

The CLEAN Filter
As a more practical example of MS-DOS filters, let's look at a simple but
very useful filter called CLEAN. Figures 15-3 and 15-4 show the assembly­
language and C source code for this filter. CLEAN processes a text stream
by stripping the high bit from all characters, expanding tabs to spaces, and
throwing away all control codes except carriage returns, linefeeds, and
formfeeds. Consequently, CLEAN can transform almost any kind of word­
processed document file into a plain ASCII text file.

Filters 303



(continued)

Figure 15-3. CLEAN.ASM, the source codefor the MASM version ofthe CLEAN filter.

304 ProgrammingforMS-DOS



Figure 15-3. continued

(continued)

Filters 305



Figure 15-3. continued

(continued)

306 Programming/orMS-DOS



Figure 15-3. continued

(continued)

Filters 307



Figure 15-3. continued

(continued)

308 ProgrammingforMS-DOS



Figure 15-3. continued

(continued)

Figure 15-4. CLEAN.C, the source codefor the C version ofthe CLEAN filter.

Filters 309



Figure 15-4. continued

(continued)

310 Programming/orMS-DOS



Figure 15-4. continued

When using the CLEAN filter, you must specify the source and destination
files with redirection parameters in the command line; otherwise, CLEAN
will simply read the keyboard and write to the display. For example, to
filter the document file MYFILE.DOC and leave the result in the file
MYFILE. TXT, you would enter the following command:

C>CLEAN <MYFILE.DOC >MYFILE.TXT <Enter>

(Note that the original file, MYFILE.DOC, is unchanged.)

One valuable application of this filter is to rescue assembly-language
source files. If you accidentally edit such a source file in document mode,
the resulting file may cause the asse~bler to generate spurious or confus­
ing error messages. CLEAN lets you turn the source file back into some­
thing the assembler can cope with, without losing the time you spent to
edit it.

Another handy application for CLEAN is to list a word-processed docu­
ment in raw form on the printer, using a command such as

C>CLEAN <MYFILE.DOC >PRN <Enter>

Filters 311



Contrasting the C and assembly-language versions of this filter provides
some interesting statistics. The C version contains 79 lines and compiles to
a 5889-byte .EXE file, whereas the assembly-language version contains
265 lines and builds an 1107-byte .EXE file. The size and execution-speed
advantages of implementing such tools in assembly language is obvious,
even compared with such an excellent compiler as the Microsoft C

Optimizing Compiler. However, you must balance performance consid­
erations against the time and expense required for programming, par­
ticularly when a program will not be used very often.

312 ProgrammingforMS-DOS



Chapter 16 .

Co1l1patibility and Portability



At the beginning of this book, we surveyed the history of MS-DOS and
saw that new versions come along nearly every year, loosely coupled to
the introduction of new models of personal computers. We then focused
on each of the mainstream issues of MS-DOS applications programming:
the user interface; mass storage; memory management; control of "child"
processes; and special classes of programs, such as filters, interrupt han­
dlers, and device drivers.

It's now time to close the circle and consider two global concerns of MS­
DOS programming: compatibility and portability. For your programs to
remain useful in a constantly evolving software and hardware environ­
ment, you must design them so that they perform reliably on any reason­
able machine configuration and exploit available system resources; in
addition, you should be able to upgrade them easily for new versions of
MS-DOS, for new machines, and, for that matter, for completely new envi­
ronments such as MS OS/2.

Degrees ofCompatibility
If we look at how existing MS-DOS applications use the operating system
and hardware, we find that we can assign them to one of four categories:

• MS-DOS-compatible applications

• ROM BIOS-compatible applications

• Hardware-compatible applications

• "Ill-behaved" applications

MS-DOS-compatible applications use only the documented MS-DOS
function calls and do not call the ROM BIOS or access the hardware di­
rectly. They use ANSI escape sequences for screen control, and their input
and output is redirectable. An MS-DOS-compatible application will run
on any machine that supports MS-DOS, regardless of the machine config­
uration. Because of the relatively poor performance of MS-DOS's built-in
display and serial port drivers, few popular programs other than com­
pilers, assemblers, and linkers fall into this category.

ROM BIOS-compatible applications use the documented MS-DOS and
ROM BIOS function calls but do not access the hardware directly. As re­
cently as three years ago, this strategy might have significantly limited a
program's potential market. Today, the availability of high-quality IBM­
compatible ROM BIOSes from companies such" as Phoenix has ensured
the dominance of the IBM ROM BIOS standard; virtually no machines are

314 Programming/orMS-DOS



being sold in which a program cannot rely as much on the ROM BIOS in­
terface as it might on the MS-DOS interface. However, as we noted in
Chapters 6and 7, the ROM BIOS display and serial drivers are still not ade­
quate to the needs of high-performance interactive applications, so the
popular programs that fall into this category are few.

Hardware-compatible applications generally use MS-DOS functions for
mass storage, memory management, and the like, and use a mix of MS­
DOS and ROM BIOS function calls and direct hardware access for their
user interfaces. The amount of hardware dependence in such programs
varies widely. For example, some programs only write characters and at­
tributes into the video controller's regen buffer and use the ROM BIOS to
switch modes and position the cursor; others bypass the ROM BIOS video
driver altogether and take complete control of the video adapter. As this
book is written, the vast majority of the popular MS-DOS "productivity"
applications (word processors, databases, telecommunications programs,
and so on) can be placed somewhere in this category.

"Ill-behaved" applications are those that rely on undocumented MS-DOS
function calls or data structures, interception of MS-DOS or ROM BIOS in­
terrupts, or direct access to mass storage devices (bypassing the MS-DOS
file system). These programs tend to be extremely sensitive to their envi­
ronment and typically must be "adjusted" in order to work with each new
MS-DOS version or PC model. Virtually all popular terminate-and-stay­
resident (TSR) utilities, network programs, anq disk repair/optimization
packages are in this category.

Writing Well-Behaved MS-DOS Applications
Your choice of MS-DOS functions, ROM BIOS functions, or direct hard­
ware access to solve a particular problem must always be balanced against
performance needs; and, of course, the user is the final judge of a pro­
gram's usefulness and reliability. Nevertheless, you can follow some basic
guidelines, outlined below, to create well-behaved applications that are
likely to run properly under future versions of MS-DOS and under multi­
tasking program managers that run on top of MS-DOS, such as Microsoft
Windows.

Pro~anGstructure

Design your programs as .EXE files with separate code, data, and stack
segments; shun the use of .COM files. Use the Microsoft conventions for
segment names and attributes discussed in Chapter 3. Inspect the environ­
ment block at runtime to 19cate your program's overlays or data files; don't
"hard-wire" a directory location into the program.

Compatibility and Portability 315



Check host capabilities

Obtain the MS-DOS version number with Int 21H Function 30H during
your program's initialization and be sure that all of the functions your
program requires are actually available. If you fi·nd that the host MS-DOS
version is inadequate, be careful about which functions you call to display
an error message and to terminate.

Use the enhanced capabilities of MS-DOS versions 3 and 4 when your
program is running under those versions. For exampleJ you can specify a
sharing mode when opening a file with Int 21H Function 3DH, you can
create temporary or unique files with Int 21H Functions 5AH and 5BH, and
you can obtain extended error information (including a recommended
recovery strategy) with Int 21H Function 59H. Section II of this book con­
tains version-dependency information for each MS-DOS function.

Input and output

Use the handle file functions exclusively and extend full path support
throughout your application (being sure to allow for the maximum pos­
sible path length during user input of filenames). Use buffered I/O when­
ever possible. The device drivers in MS-DOS versions 2.0 and later can
handle strings as long as 64 KB, and performance will be improved ifyou
write fewer, larger records as opposed to many short ones.

Avoid the use of FCBs, the Int 25H or Int 268 functions, or the ROM BIOS
disk driver. If you must use FCBs, close them when you are done with
them and don't move them around while they are open. Avoid reopening
FCBs that are already open or reclosing FCBs that have already been
closed-these seemingly harmless practices can cause problems when
network software is running.

Memory management
During your program's initialization, release any memory that is not
needed by the program. (This is especially important for .COM pro­
grams.) If your program requires extra memory for buffers or tables, allo­
cate that memory dynamically when it is needed and release it as soon as
it is no longer required. Use expanded memory, when it is available, to
minimize your program's demands on conventional memory.

As a general rule, don't touch any memory that is not owned by your pro­
gram. To set or inspect interrupt vectors, use Int 21H Functions 25H and
35H rather than editing the interrupt vector table directly. If you alter the
contents of interrupt vecto~s, save their original values and restore them
before the program exits.

316 Programming/orMS-DOS



Process management
To isolate your program from dependencies on PSP structure and reloca­
tion information, use the EXEC function (Int 21H Function 4BH) when
loading overlays or other programs. Terminate your program with Int 21H
Function 4CH, passing a zero return code if the program executes suc­
cessfully and a nonzero code if an error is encountered. Your program's
parent can then test this return code with Int 21H Function 4DH or, in a
batch file, with the IF ERRORLEVEL statement.

Exception handling

Install Ctrl-C (Int 23H) and critical-error (Int 24H) handlers so that your
program cannot be terminated unexpectedly by the user's entry of Ctrl-C
or Ctrl-Break or by a hardware I/O failure. This is particularly important if
your program uses expanded memory or installs its own interrupt
handlers.

ROM BIOS and Hardware-CoOlpatible Applications
When you feel the need to introduce ROM BIOS or hardware dependence
for performance reasons, keep it isolated to small, well-documented pro­
cedures that can be easily modified when the hardware changes. Use
macros and equates to hide hardware characteristics and to avoid spread­
ing "magic numbers" throughout your program.

Check host capabilities

If you use ROM BIOS functions in your program, you must check the ma­
chine model at runtime to be sure that the functions your program needs
are actually available. There is a machine ID byte at FOOO:FFFEH whose
value is interpreted as follows:

F8H PS/2 Models 70 and 80
F9H PC Convertible
FAH PS/2 Model 30
FBH PC/XT (later models)
FCH PC/AT, PC/XT-286, PS/2 Models 50 and 60
FDH PCjr
FEH PC/XT (early models)
FFH PC "Classic"

In some cases, submodels can be identified; see Int 15H Function COH on
page 573. Section III of this book contains version-dependency informa­
tion for each ROM BIOS function.

When writing your own direct video drivers, you must determine the type
and capabilities of the video adapter by a combination of Int lOH calls,

Compatibility and Portability 317



reading ports, and inspection of the ROM BIOS data area at 0040:0000H
and the memory reserved for the EGA or VGA ROM BIOS, among other
things. The techniques required are beyond the scope of this book but are
well explained in Programmer's Guide to PC and PS/2 Video Systems
(Microsoft Press, 1987).

Avoid unstable hardware
Some areas of IBM personal computer architecture have remained
remarkably stable from the original IBM PC, based on a 4.77 MHz 8088, to
today's PS/2 Model 80, based on a 20 MHz 80386. IBM's track record for
upward compatibility in its video and serial communications controllers
has been excellent; in many cases, the same hardware-dependent code
that was written for the original IBM PC runs perfectly well on an IBM
PS/2 Model 80~ Other areas of relative hardware stability are:

• Sound control via port 61H

• The 8253 timer chip's channels 0 and 2 (ports 40H, 42H, and 43H)

• The game adapter at port 201H

• Control of the interrupt system via the 8259 PIC's mask register at
port 21H

However, direct sound generation and manipulation of the 8253 timer or
8259 PIC are quite likely to cause problems if your program is run under a
multitasking program manager such as Microsoft Windows or DesqView.

Keyboard mapping, the keyboard controller, and the floppy and fixed disk
controllers are areas of relative hardware instability. Programs that by­
pass MS-DOS for keyboard or disk access are much less likely to function
properly across the different PC models and are also prone to interfere
with each other and with well-behaved applications.

OS/2 Compatibility
MS-DOS is upwardly compatible in several respects with OS/2, Microsoft's
multitasking protected-mode virtual memory operating system for 80286
and 80386 computers. The OS/2 graphical user interface (the Presentation
Manager) is nearly identical to Microsoft Windows 2.0. OS/2 versions 1.0
and 1.1 use exactly the same disk formats as MS-DOS so that files may
easily be moved between MS-DOS and OS/2 systems. Most important,
OS/2 includes a module called the "DOS Compatibility Environment" or
"3.x Box," which can run one MS-DOS application at 'a time alongside
protected-mode OS/2 applications.

318 Programming/orMS-DOS



The 3.x Box traps Int 21H function calls and remaps them into OS/2 func­
tion calls, emulating an MS-DOS 3.3 environment with the file-sharing
module (SHARE.EXE) loaded but returning a major version number of 10
instead of 3 for Int 21H Function 30H. The 3.x Box also supports most
ROM BIOS calls, either by emulating their function or by interlocking the
device and then calling the original ROM BIOS routine. In addition, the
3.x Box maintains the ROM BIOS data area, provides timer ticks to appli­
cations via Int lCH, and supports certain undocumented MS-DOS services
and data structures so that most TSR utilities can function properly.
Nevertheless, the 3.x Box's emulation of MS-DOS is not perfect, and you
must be aware of certain constraints on MS-DOS applications running
under OS/2.

The most significant restriction on an MS-DOS application is that it does
not receive any CPU cycles when it is in the background. That is, when a
protected-mode application has been "selected," so that the user can in­
teract with it, the MS-DOS application is frozen. If the MS-DOS application
has captured any interrupt vectors (such as the serial port or timer tick),
these interrupts will not be serviced until the application is again selected
and in the foreground. OS/2 must freeze MS-DOS applications when they
are in the background because they execute in real mode and are thus not
subject to hardware memory protection; nothing else ensures that they
will not interfere with aprotected-mode process that has control of the
screen and keyboard.

Use of FCBs is restricted in the 3.x Box, as it is under MS-DOS 3 or 4 with
SHARE.EXE loaded. A file cannot be opened with an FCB if any other
process is using it. The number of FCBs that can be simultaneously
opened is limited to 16 or to the number specified in a CONFIG.SYS
FCBS= directive. Even when the handle file functions are used, these
functions may fail unexpectedly due to the activity of other processes (for
example, if a protected-mode process has already opened the file with
"deny all" sharing mode); most MS-DOS applications are not written with
file sharing in mind, and they do not handle such errors gracefully.

Direct writes to a fixed disk using Int 26H or Int 13H are not allowed. This
prevents the file system from being corrupted, because protected-mode
applications running concurrently with the MS-DOS application may also
be writing to the same disk. Imagine the mess if a typical MS-DOS unerase
utility were to alter the root directory and FAT at the same time that a
protected-mode database program was updating its file and indexes!

Compatibility and Portability 319



MS-DOS applications that attempt to reprogram the 8259 to move the in­
terrupt vector table or that modify interrupt vectors already belonging to
an OS/2 device driver are terminated by the operating system. MS-DOS
applications can change the 8259's interrupt-mask register, disable and
reenable interrupts at their discretion, and read or write any VO port. The
obvious corollary is that an MS-DOS program running in the 3.x Box can
crash the entire OS/2 system at any time; this is the price for allowing real­
mode applications to run at all.

Porting MS-DOS Applications to OS/2
The application program interface (API) provided by OS/2 to protected­
mode programs is quite different from the familiar Int 21H interface ofMS­
DOS and the OS/2 3.x Box. However, the OS/2 API is functionally a
proper superset of MS-DOS. This makes it easy to convert well-behaved
MS-DOS applications to run in OS/2 protected mode, whence they can be
enhanced to take advantage of OS/2's virtual memory, multitasking, and
interprocess communication capabilities.

To give you a feeling for both the nature of the OS/2 API and the practices
that should be avoided in MS-DOS programming if portability to OS/2 is
desired, I will outline my own strategy for converting existing MS-DOS
assembly-language programs to OS/2. For the purposes of discussion, I
have divided the conversion process into five steps and have assigned
each an easily remembered buzzword:

1. Segmentation

2. Rationalization

3. Encapsulation

4. Conversion

5. Optimization

The first three stages can (and should) be performed and tested in the MS­
DOS environment; only the last two require OS/2 and the protected-mode
programming tools. As you read on, you may notice that an MS-DOS pro­
gram that follows the compatibility guidelines presented earlier in this
chapter requires relatively little work to make it run in protected mode.
This is the natural benefit ofworking with the operating system instead of
against it.

320 Programming/orMS-DOS



Segmentation
Most of the 80286's protected-mode capabilities revolve around a change
in the way memory is addressed. In real mode, the 80286 essentially emu­
lates an 8088/86 processor, and the value in a segment register corre­
sponds directly to a physical memory address. MS-DOS runs on the 80286
in real mode.

When an 80286 is running in protected mode, as it does under OS/2, an
additional level of indirection is added to memory addressing.! A segment
register holds a selector, which is an index to a table of descriptors. A de­
scriptor defines the physical address and length of a memory segment, its
characteristics (executable, read-only data, or read/write data) and access
rights, and whether the segment is currently resident in RAM or has been
swapped out to disk. Each time a program loads a segment register or ac­
cesses memory, the 80286 hardware checks the associated descriptor and
the program's privilege level, generating a/ault if the selector or memory
operation is not valid. The fault acts like a hardware interrupt, allowing
the operating system to regain control and take the appropriate action.

This scheme of memory addressing in protected mode has two immediate
consequences for application programs. The first is that application pro­
grams can no longer perform arithmetic on the contents of segment regis­
ters (because selectors are magic numbers and have no direct relationship
to physical memory addresses) or use segment registers for storage of tem­
porary values. A program must not load a segment register with anything
but a legitimate selector provided by the OS/2 loader or resulting from an
OS/2 memory allocation function call. The second consequence is that a
program must strictly segregate machine code ("text") from data, placing
them in separate segments with distinct selectors (because a selector that
is executable is not writable, and vice versa).

Accordingly, the first step in converting a program for OS/2 is to turn it
into a .EXE-type program that uses the Microsoft segment, class, and
group conventions described in Chapter 3. At minimum, the program
must have one code segment and one data segment, and should declare a
group-with the special name DGROUP-that contains the "near" data
segment, stack, and local heap (if any). At the same time, you should
remove or rewrite any code that performs direct manipulation of segment
values.

1 Although the 80386 has additional modes and addressing capabilities, current versions of
OS/2 use the 80386 as though it were an 80286.

Compatibility and Portability 321



After restructuring and segmentation, reassemble and link your program
and check to be sure it still works as expected under MS-DOS. Changing
or adding segmentation ofte'n uncovers hidden addressing assumptions in
the code, so it is best to track these problems down before making other
substantive changes to the program.

Rationalization

Once you've successfully segmented your program so that it can be linked
and executed as a .EXE file under MS-DOS, the next step is to rationalize
your code. By rationalization I mean converting your program into a com­
pletely well-behaved MS-DOS application.

First, you must ruthlessly eliminate any elements that manipulate the
peripheral device adapters directly, alter interrupt priorities, edit the sys­
tem interrupt-vector table, or depend ·on CPU speed or characteristics
(such as timing loops). In protected mode, control of the interrupt system
is completely reserved to the operating system and its device drivers, I/O
ports may be read or written by an application only under very specific
conditions, and timing loops burn up CPU cycles that can be used by
other processes.

As I mentioned earlier in this chapter, display routines constitute the most
common area of hardware dependence in an MS-DOS application. Direct
manipulation of the video adapter and its regen buffer poses obvious
difficulties in a multitasking, protected-memory environment such as
OS/2. For porting purposes, you must convert all routines that write text to
the display, modify character attributes, or affect cursor shape or position
into Int 21H Function 40H calls using ANSI escape sequences or into ROM
BIOS Int lOH calls. Similarly, you must convert all hardware-dependent
keyboard operations to Int 21H Function 3FH or ROM BIOS Int 16H calls.

Once all hardware dependence has been expunged from your program,
your next priority is to make it well-behaved in its use of system memory.
Under MS-DOS an application is typically handed all remaining memory
in the system to do with as it will; under OS/2 the converse is true: A pro­
cess is initially allocated only enough memory to hold its code, declared
data storage, and stack. You can make the MS-DOS loader behave like
the OS/2 loader by linking your application with the /CPARMAXALLOC
switch. Alternatively, your program can give up all extra memory during
its initialization with Int 21H Function 4AH, as recommended earlier in
this chapter.

After your program completes its initialization sequence, it should
dynamically obtain and release any additional memory it may require for

322 Programming/orMS-DOS



buffers and tables with MS-DOS Int 21H Functions 48H and 49H. To en­
sure compatibility with protected mode, limit the size of any single allo­
cated block to 65,536 bytes or less, even though MS-DOS allows larger
blocks to be allocated.

Finally, you must turn your attention to file and device handling. Replace
any calls to FCB file functions with their handle-based equivalents,
because OS/2 does not support FCBs in protected mode at all. Check
pathnames for validity within the application; although MS-DOS and the
3.x Box silently truncate a name or extension, OS/2 refuses to open or
create a file in protected mode if the name or extension is too long and
returns an error instead. Replace any use of the predefined handles for the
standard auxiliary and standard list devices with explicit opens of
COM1, PRN, LPTl, and so on, using the resulting handle for read and write
operations. OS/2 does not supply processes with standard handles for the
serial communications port or printer.

Encapsulation
When you reach this point, with a well-behaved, segmented MS-DOS ap­
plication in hand, the worst of a port to OS/2 is behind you. You are now
ready to prepare your program for true conversion to protected-mode
operation by encapsulating, in individual subroutines, every part of the
program that is specific to the host operating system. The objective here is
to localize the program's "knowledge" of the environment into small pro­
cedures that can be subsequently modified without affecting the re­
mainder of the program.

As an example of encapsulation, consider a typical call by an MS-DOS ap­
plication to write a string to the standard output device (Figure 16-1). In
order to facilitate conversion to OS/2, you would replace every instance of
such a write to a file or device with a call to a small subroutine that "hides"
the mechanics of the actual operating-system function call, as illustrated
in Figure 16-2.

Another candidate for encapsulation, which does not necessarily involve
an operating-system function call, is the application's code to gain access
to command-line parameters, environment-block variables, and the name
of the file it was loaded from. Under MS-DOS, this information is divided
between the program segment prefix (PSP) and the environment block, as
we saw in Chapters 3 and 12; under OS/2, there is no such thing as a PSP,
and the program filename and command-line information are appended
to the environment block.

Compatibility and Portability 323



Figure 16-1. Typical in-line codefor an MS-DOSfunction call. This particular se­
quence writes a string to the standard output device. Since the standard output might
be redirected to a file without theprogram ~ knowledge, it must also check that all of
the requested characters were actually written; ifthe returned length is less than the
requested length, this usually indicates that the standard output has been redirected to
a diskfile and that the disk isfull.

(continued)

Figure 16-2. Codefrom Figure 16-1 after Hencapsulation." The portion ofthe code
that is operating-system dependent has been isolated inside a subroutine that is called
from otherpoints within the application.

324 Programmingfor MS-DOS



Figure 16-2. continued

When you have completed the encapsulation of system services and ac­
cess to the PSP and environment, subject your program once more to
thorough testing under MS-DOS. This is your last chance, while you are
still working in a familiar milieu and have access to your favorite debug­
ging tools, to detect any subtle errors you may have introduced during the
three conversion steps discussed thus far.

Compatibility and Portability 325



Conversion
Next, you must rewrite each system-dependent procedure you created
during the encapsulation stage to conform to the OS/2 protected-mode
API. In contrast to MS-DOS functions, which are actuated through soft­
ware interrupts and pass parameters in registers, OS/2 API functions are
requested through a far call to a named entry point. Parameters are passed
on the stack, along with the addresses of variables within the calling pro­
gram's data segment that will receive any results returned by the function.
The status of an operation is returned in register AX-zero if the function
succeeded, an error code otherwise. All other registers are preserved.

Although it is not my intention here to provide a detailed introduction to
OS/2 programming, Figure 16-3 illustrates the final form of our previous
example, after conversion for OS/2. Note especially the addition of the
extrn statement, the wlen variable, and the simulation of the MS-DOS
function status. This code may not be elegant, but it serves the purpose of
limiting the necessary changes to a very small portion of the source file.
Some OS/2 functions (such as DosOpen) require parameters that have no
counterpart under MS-DOS; you can usually select reasonable values for
these extra parameters that will make their existence temporarily invisible
to the remainder of the application.

(continued)

Figure 16-3. Codefrom Figure 16-2 after "conversion. " The MS-DOSfunction call
has been replaced with the equivalent OS/2function call. Since the knowledge ofthe
operating system has been hidden inside the subroutine by theprevious encapsulation
step, the surroundingprogram ~ requestsfor write operations should run unchanged.
Note that the OS/2function had to be declared as an external name with the 'jar" at­
tribute, and that a variable named wlen was added to the data segment ofthe
application to receive the actual number ofbytes written.

326 Program!",ingforMS-DOS



Figure 16-3. continued

Compatibility and Portability 327



Figures 16-4, 16-5, and 16-6 list the OS/2 services that are equivalent to
selected MS-DOS and ROM BIOS Int 21H, Int 10H, and Int 16H calls. MS­
DOS functions related to FCBs and PSPs are not included in these tables
because OS/2 does not support either of these structures. The MS-DOS
terminate-and-stay-resident functions are also omitted. Because OS/2 is a
true multitasking system, a process doesn't need to terminate in order to
stay resident while another process is running.

MS-DOS Description OS/2functlon

Int21H
Function
0 Terminate process DosExit
1 Character input with echo KbdCharIn
2 Character output VioWrtTTY
3 Auxiliary input DosRead
4 Auxiliary output DosWrite
5 Printer output DosWrite
6 Direct console I/O KbdCharIn,

VioWrtTTY
7 Unfiltered input without echo KbdCharIn
8 Character input without echo KbdCharIn
9 Display string VioWrtTTY
OAH (10) Buffered keyboard input KbdStringln
OBH (11) Check input status KbdPeek
OCH (12) Reset buffer and input KbdFlushBuffer,

KbdCharIn
ODH (13) Disk reset DosBufReset
OEH (14) Select disk DosSelectDisk
19H (25) Get current disk DosQCurDisk
IBH (27) Get default drive data DosQFSlnfo
lCH (28) Get drive data DosQFSlnfo
2AH (42) Get date DosGetDateTime
2BH (43) Set date DosSetDateTime
2CH (44) Get time DosGetDateTime
2DH (45) Set time DosSetDateTime
2EH (46) Set verify flag DosSetVerify
30H (48) Get MS-DOS version DosGetVersion
36H (54) Get drive allocation DosQFSInfo

information

(continued)

Figure 16-4. Table ofselected MS-DOSfunction calls and their OS/2 counterparts.
Note that OS/2functions are typically morepowerful andflexible than the corre­
sponding MS-DOSfunctions, and that this is not a complete list ofOS/2 services.

328 ProgrammingforMS-DOS



Figure 16-4. continued

MS-DOS Description OS/2fu,nction

38H (56) Get or set country DosGetCtryInfo
information

39H (57) Create directory DosMkdir
3AH (58) Delete directory DosRmdir
3BH (59) Set current directory DosChdir
3CH (60) Create file DosOpen
3DH (61) Open file DosOpen
3EH (62) Close file DosClose
3FH (63) Read file or device DosRead
40H (64) Write file or device DosWrite
41H (65) Delete file DosDelete
42H (66) Set file pointer DosChgFilePtr
43H (67) Get or set file attributes DosQFileMode,

DosSetFileMode
44H (68) I/O control (IOCTL) DosDevIOCtl
45H (69) Duplicate handle DosDupHandle
46H (70) Redirect handle DosDupHandle
47H (71) Get current directory DosQCurDir
48H (72) Allocate memory block DosAllocSeg
49H (73) Release memory block DosFreeSeg
4AH (74) Resize memory block DosReAllocSeg
4BH (75) Execute program DosExecPgm
4CH (76) Terminate process with DosExit

return code
4DH(77) Get return code DosCWait
4EH (78) Find first file DosFindFirst
4FH (79) Find next file DosFindNext
54H (84) Get verify flag DosQVerify
56H (86) Rename file DosMove
57H (87) Get or set file date and time DosQFilelnfo,

DosSetFileInfo
59H (89) Get extended error DosErrClass

information
5BH (91) Create new file DosOpen
5CH (92) Lock or unlock file region DosFileLocks
65H (101) Get extended country DosGetCtrylnfo

information
66H (102) Get or set code page DosGetCp,

DosSetCp
67H (103) Set handle count DosSetMaxFH
68H (104) Commit file DosBufReset
6CH (108) Extended open file DosOpen

Compatibility and Portability 329



ROM BIOS

Int 10H
Function
o
1
2

3
6
7
8
9
OAH (10)
OEH (14)
OFH (15)·

10H (16)
13H (19)

Description

Select display mode
Set cursor type
Set cursor position
Get cursor position
Initialize or scroll window up
Initialize or scroll window down
Read character and attribute
Write character and attribute
Write character
Write character in teletype mode
Get display mode
Set palette, border color, etc.
Write string in teletype mode

OS/2function

VioSetMode
VioSetCurType
VioSetCurPos
VioGetCurPos
VioScrollUp
VioScrollDn
VioReadCellStr
VioWrtNCel1
VioWrtNChar
VioWrtTTY
VioGetMode
VioSetState
VioWrtTTY

Figure 16-5. Table ofROMBIOS Int 10Hvideo-display driverfunctions used byMS­
DOS applications and their OS/2 equivalents. This is not a complete list ofOS/2 video
services.

ROM BIOS

Int 16H
Function
o
1
2

Description

Read keyboard character
Get keyboard status
Get keyboard flags

OS/2function

KbdCharIn
KbdPeek
KbdGetStatus

Figure 16-6. Table ofROMBIOS Int 16Hkeyboard driverfunctions used byMS-DOS
applications and their OS/2 equivalents. This is not a complete list ofOS/2 keyboard
services.

Optimization

Once your program is running in protected mode, it is time to unravel
some of the changes made for purposes of conversion and to introduce
various optimizations. Three obvious categories should be considered:

1. Modifying the program's user-interface code for the more powerful
OS/2 keyboard and display API functions.

2. Incorporating 80286~specificmachine instructions where appropriate.

3. Revamping the application to exploit the OS/2 facilities that are unique
to protected mode. (Of course, the application benefits from 08/2's
virtual memory capabilities automatically; it can allocate memory until
physical memory and disk swapping space are exhausted.)

330 Programming/orMS-DOS



Modifying subroutines that encapsulate user input and output to take ad­
vantage of the additional functionality available under OS/2 is straight­
forward, and the resulting performance improvements can be quite dra­
matic. For example, the OS/2 video driver offers a variety of services that
are far superior to the screen support in MS-DOS and the ROM BIOS, in­
cluding high-speed display of strings and attributes at any screen position,
"reading back" selected areas of the display into a buffer, and scrolling in
all four directions.

The 80286-specific machine instructions can be very helpful in reducing
code size and increasing execution speed. The most useful instructions
are the shifts and rotates by an immediate count other than one, the three­
operand multiply where one of the operands is an immediate (literal)
value, and the push immediate value instruction (particularly handy for
setting up OS/2 function calls). For example, in Figure 16-3, the sequence

mov ax, offset DGROUP: wl en

push ax

could be replaced by the single instruction

push offset DGROUP :wl en

Restructuring an application to take full advantage of OS/2's protected­
mode capabilities requires close study of both the application and the
OS/2 API, but such study can payoffwith sizable benefits in performance,
ease of maintenance, and code sharing. Often, for instance, different parts
of an application are concerned with I/O devices of vastly different
speeds, such as the keyboard, disk, and video display. It both simplifies
and enhances the application to separate these elements into
subprocesses (called threads in OS/2) that execute asynchronously, com­
municate through shared data structures, and synchronize with each
other, when necessary, using semaphores.

As another example, when several applications are closely related and
contain many identical or highly similar procedures, OS/2 allows you to
centralize those procedures in a dynamic link library. Routines in a
dynamic link library are bound to a program at its load time (rather than
by LINK, as in the case of traditional runtime libraries) and are shared by
all the processes that need them. This reduces the size of each application
.EXE file and allows more efficient use of memory. Best of all, dynamic
link libraries drastically simplify code maintenance; the routines in the li­
braries can be debugged or improved at any time, and the applications
that use them will automatically benefit the next time they are executed.

Compatibility and Portability 331







Notes to the Reader
This section documents the services that the MS-DOS kernel provides to
application programs via software interrupts 20H-2FH. Each MS-DOS
function is described in the same format:

• A heading containing the function's name, software interrupt and
function number, and an icon indicating the MS-DOS version in which
the function was first supported. You can assume that the function i~

available in all subsequent MS-DOS versions unless explicitly noted
otherwise.

• A synopsis of the actions performed by the function and the circum­
stances under which it would be used.

• A summary of the function's arguments.

• The results and/or error indicators returned by the function. A com­
prehensive list of error codes can be found in the entry for Int 21H
Function 59H.

• Notes describing special uses or dependencies of the function.

• A skeleton example of the function's use, written in assembly language.

Version icons used in the synopsis, arguments, results, or Notes sections
refer to specific minor or major versions, unless they include a + sign to in­
dicate a version and all subsequent versions.

For purposes of clarity, the examples may include instructions that would
not be necessary if the code were inserted into a working program. For
example, most of the examples explicitly set the segment registers when
passing the address of a filename or buffer to MS-DOS; in real applica­
tions, the segment registers are usually initialized once at entry to the pro­
gram and left alone thereafter.

334 Section II



Int 2m Function Summary by Number

Hex Dec Function name Vers F/Hl

OOH 0 Terminate Process 1.0+
01H 1 Character Input with Echo 1.0+
02H 2 Character Output 1.0+
03H 3 Auxiliary Input 1.0+
04H 4 Auxiliary Output 1.0+
05H 5 Printer Output 1.0+
06H 6 Direct Console I/O 1.0+
07H 7 Unfiltered Character Input Without Echo 1.0+
08H 8 Character Input Without Echo 1.0+
09H 9 Display String 1.0+
OAH 10 Buffered Keyboard Input 1.0+
OBH 11 Check Input Status 1.0+
OCH 12 Flush Input Buffer and Then Input 1.0+
ODH 13 Disk Reset 1.0+
OEH 14 Select Disk 1.0+
OFH 15 Open File 1.0+ F
10H 16 Close File 1.0+ F
IlH 17 Find First File 1.0+ F
12H 18 Find Next File 1.0+ F

13H 19 Delete File 1.0+ F

14H 20 Sequential Read 1.0+ F

15H 21 Sequential Write 1.0+ F

16H 22 Create File 1.0+ F

17H 23 Rename File 1.0+ F

18H 24 Reserved
19H 25 Get Current Disk 1.0+

lAH 26 Set DTA Address 1.0+

1BH 27 Get Default Drive Data 1.0+

lCH 28 Get Drive Data 2.0+

IDH 29 Reserved
lEH 30 Reserved
IFH 31 Reserved
20H 32 Reserved
21H 33 Random Read 1.0+ F
22H 34 Random Write 1.0+ F

23H 35 Get File Size 1.0+ F
24H 36 Set Relative Record Number 1.0+ F
25H 37 Set Interrupt Vector 1.0+
26H 38 Create New PSP 1.0+
27H 39 Random Block Read 1.0+ F
28H 40 Random Block Write 1.0+ F
29H 41 Parse Filename 1.0+

1 Specifies whether file functions are FCB- or handle-related.
(continued)

MS-DOS Functions Reference 335



Int 21H Function Summary by Number continued

Hex Dec Function name Vers F/H

2AH 42 Get Date 1.0+
2BH 43 Set Date 1.0+
2CH 44 Get Time 1.0+
2DH 45 Set Time 1.0+
2EH 46 Set Verify Flag 1.0+
2FH 47 Get DTA Address 2.0+
30H 48 Get MS-DOS Version Number 2.0+
31H 49 Terminate and Stay Resident 2.0+
32H 50 Reserved
33H 51 Get or Set Break Flag, Get Boot Drive 2.0+
34H 52 Reserved
35H 53 Get Interrupt Vector 2.0+
36H 54 Get Drive Allocation Information 2.0+
37H 55 Reserved
38H 56 Get or Set Country Information 2.0+
39H 57 Create Directory 2.0+
3AH 58 Delete Directory 2.0+
3BH 59 Set Current Directory 2.0+
3CH 60 Create File 2.0+ H
3DH 61 Open File 2.0+ H
3EH 62 Close File 2.0+ H
3FH 63 Read File or Device 2.0+ H
40H 64 Write File or Device 2.0+ H
41H 65 Delete File 2.0+ H
42H 66 Set File Pointer 2.0+ H
43H 67 Get or Set File Attributes 2.0+
44H 68 IOCTL (1/0 Control) 2.0+
45H 69 Duplicate Handle 2.0+
46H 70 Redirect Handle 2.0+
47H 71 Get Current Directory 2.0+
48H 72 Allocate Memory Block 2.0+
49H 73 Release Memory Block 2.0+
4AH 74 Resize Memory Block 2.0+
4BH 75 Execute Program (EXEC) 2.0+
4CH 76 Terminate Process with Return Code 2.0+
4DH 77 Get Return Code 2.0+
4EH 78 Find First File 2.0+ H
4FH 79 Find Next File 2.0+ H
50H 80 Reserved
51H 81 Reserved
52H 82 Reserved
53H 83 Reserved

(continued)

336 Section II



lot 21H Function Summary by Number continued

Hex Dec Function name Vers FIH

54H 84 Get Verify Flag 2.0+
55H 85 Reserved
56H 86 Rename File 2.0+
57H 87 Get or Set File Date and Time 2.0+ H
5SH 88 Get or Set Allocation Strategy 3.0+
59H 89 Get Extended Error Information 3.0+
5AH 90 Create Temporary File 3.0+ H
5BH 91 Create New File 3.0+ H
5CH 92 Lock or Unlock File Region 3.0+ H
5DH 93 Reserved
5EH 94 Get Machine Name, Get or Set Printer Setup 3.1+
5FH 95 Device Redirection 3.1+
60H % Reserved
6tH 97 Reserved
62H 98 Get PSP Address 3.0+
63H 99 Get DBCS Lead Byte Table 2.25 only
64H 100 Reserved
65H 101 Get Extended Country Information 3.3+
66H 102 Get or Set Code Page 3.3+
67H 103 Set Handle Count 3.3+
68H 104 Commit File 3.3+ H
69H 105 Reserved
6AH 106 Reserved
6BH 107 Reserved
6CH 108 Extended Open File 4.0+ H

lot 21H Function Summary by,Category

Hex Dec Function name Vers FIH

Character //0
01H 1
02H 2
03H 3
O4H 4
05H 5
06H 6
07H 7
OSH 8

Character Input with Echo
Character Output
Auxiliary Input
Auxiliary Output
Printer Output
Direct Console I/O
Unfiltered Character Input Without Echo
Character Input Without Echo

1.0+
1.0+
1.0+
1.0+
1.0+
1.0+
1.0+
1.0+

(continued)

MS-DOS Functions Reference 337



Int 21H Function Summary by Category continued

Hex Dec Function name Vers FIH

09H 9 Display String 1.0+
OAH 10 Buffered Keyboard Input 1.0+
OBH 11 Check Input Status 1.0+
OCH 12 Flush Input Buffer and Then Input 1.0+

File Operations
OFH 15 Open File 1.0+ F
10H 16 Close File 1.0+ F
11H 17 Find First File 1.0+ F
12H 18 Find Next File 1.0+ F
13H 19 Delete File 1.0+ F
16H 22 Create File 1.0+ F
17H 23 Rename File 1.0+ F
23H 35 Get File Size 1.0+ F
29H 41 Parse Filename 1.0+ F
3CH 60 Create File 2.0+ H
3DH 61 Open File 2.0+ H
3EH 62 Close File 2.0+ H
41H 65 Delete File 2.0+ H
43H 67 Get or Set File Attributes 2.0+
45H 69 Duplicate Handle 2.0+
46H 70 Redirect Handle 2.0+
4EH 78 Find First File 2.0+ H
4FH 79 Find Next File 2.0+ H
56H 86 Rename File 2.0+
57H 87 Get or Set File Date and Time 2.0+ H
5AH 90 Create Temporary File 3.0+ H
5BH 91 Create New File 3.0+ H
67H 103 Set Handle Count 3.3+
68H 104 Commit File 3.3+ H
6CH 108 Extended Open File 4.0+ H

Record Operations
14H 20 Sequential Read 1.0+ F
ISH 21 Sequential Write 1.0+ F
1AH 26 Set DTA Address 1.0+
21H 33 Random Read 1.0+ F
22H 34 Random Write 1.0+ F
24H 36 Set Relative Record Number 1.0+ F
27H 39 Random Block Read 1.0+ F
28H 40 Random Block Write 1.0+ F
2FH 47 Get DTA Address 2.0+
3FH 63 Read File or Device 2.0+ H

(continued)

338 Section II



Int 211J Function Summaryby category continued

Hex Dec Function name Vers F/H

40H 64 Write File or Device 2.0+ H
42H 66 Set File Pointer 2.0+ H
5CH 92 Lock or Unlock File Region 3.0+ H

Directory Operations
39H 57 Create Directory 2.0+
3AH 58 Delete Directory 2.0+
3BH 59 Set Current Directory 2.0+
47H 71 Get Current Directory 2.0+

Disk Management
ODH 13 Disk Reset 1.0+
OEH 14 Select Disk 1.0+
19H 25 Get Current Disk 1.0+
IBH 27 Get Default Drive Data 1.0+
lCH 28 Get Drive Data 2.0+
2EH 46 Set Verify Flag 1.0+
36H 54 Get Drive Allocation Information 2.0+
54H 84 Get Verify Flag 2.0+

Process Management
OOH 0 Terminate Process 1.0+
26H 38 Create New PSP 1.0+
31H 49 Terminate and Stay Resident 2.0+
4BH 75 Execute Program (EXEC) 2.0+
4CH 76 Terminate Process with Return Code 2.0+
4DH 77 Get Return Code 2.0+
62H 98 Get PSP Address 3.0+

Memory Management
48H 72 Allocate Memory Block 2.0+
49H 73 Release Memory Block 2.0+
4AH 74 Resize Memory Block 2.0+
58H 88 Get or Set Allocation Strategy 3.0+

Network Functions
5EH 94 Get Machine Name, Get or Set Printer Setup 3.1+
5FH 95 Device Redirection 3.1+

Time and Date
2AH 42 Get Date 1.0+
2BH 43 Set Date 1.0+
2CH 44 Get Time 1.0+
2DH 45 Set Time 1.0+

(continued)

MS-DOS Functions Reference 339



Int 21H Function Summary by Category continued

Hex Dec Function name Vers FIH

Miscellaneous System Functions
25H 37 Set Interrupt Vector
30H 48 Get MS-DOS Version Number
33H 51 Get or Set Break Flag, Get Boot Drive
35H 53 Get Interrupt Vector
38H 56 Get or Set Country Information
44H 68 10CTL (1/0 Control)
59H 89 Get Extended Error Information
63H 99 Get Lead Byte Table
65H 101 Get Extended Country Information
66H 102 Get or Set Code Page

Reserved Functions

1.0+
2.0+
2.0+
2.0+
2.0+
2.0+
3.0+
2.25 only
3.3+
3.3+

18H
1DH
1EH
1FH
20H
32H
34H
37H
50H
51H
52H
53H
5SH
5DH
60H
61H
64H
69H
6AH
6BH

340 Section II

24
29
30
31
32
50
52
55
80
81
82
83
85
93
96
97

100
105
106
107

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved



Int 200
Terminate process

[1.0]

Terminates the current process. This is one of several methods that a program can use to perform a final
exit. MS-DOS then takes the following actions:

• All memory belonging to the process is released.

• File buffers are flushed and any open handles for files or devices owned by the
process are closed.

• The termination handler vector (Int 22H) is restored from PSP:OOOAH.

• The Ctrl-C handler vector (Int 23H) is restored from PSP:OOOEH.

• [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

• Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran­
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

Call with:

Returns:

CS

Nothing

= segment address of program segment prefix

Notes:

Example:

• Any files that have been written to using FCBs should be closed before performing
this exit call; otherwise, data may be lost.

• Other methods of performing a final exit are:

- Int 21H Function OOH
- Int 21H Function 3tH
- Int 21H Function 4CH
- Int 27H

• [2.0+] Int 21H Functions 31H and 4CH are the preferred methods for termination,
since they allow a return code to be passed to the parent process.

• [3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Terminate the current program, returning control to the program's parent.

int 20h transfer to MS-DOS

MS-DOS Functions Reference 341



Int2m
Function OOH
Terminate process

[1.0]

Terminates the current process. This is one of several methods that a program can use to perform a final
exit. MS-DOS then takes the following actions:

• All memory belonging to the process is released.

• File buffers are flushed and any open handles for files or devices owned by the
process are closed.

• The termination handler vector (Int 22H) is restored from PSP:OOOAH.

• The Ctrl-C handler vector (Int 23H) is restored from PSP:OOOEH.

• [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

• Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran­
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherWise, a prompt is issued for the next user command.

Call with:

Returns:

AH
CS

Nothing

=OOH
= segment address of program segment prefix

Notes:

Example:

• Any files that have been written to using FCBs should be closed before performing
this exit call; otherwise, data may be lost.

• Other methods of performing a final exit are:

- Int 20H
- Int 21H Function 31H
- Int 21H Function 4CH
- Int 27H

• [2.0+] Int 21H Functions 31H and 4CH are the preferred methods for termination,
since they allow a return code to be passed to the parent process.

• [3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Terminate the current program, returning control to the program's parent.

mov
int

ah,O
21h

function number
transfer to MS-DOS

342 Section II



Int2lH
Function OlH
Character input with echo

[1.0]

[1] Inputs a character from the keyboard, then echoes it to the display. If no character is ready, waits until
one is available.

[2.0+] Reads a character from the standard input device and echoes it to the standard output device. If no
character is ready, waits until one is available. Input can be redirected. (If input has been redirected,
there is no way to detect EOF.)

Call with:

Returns:

AH

AL

=OIH

= 8-bit input data

Notes:

Example:

• If the standard input is not redirected, and the character read is a Ctrl-C, an Int 23H
is executed. If the standard input is redirected, a Ctrl-C is detected at the console,
and BREAK is ON, an Int 23H is executed.

• To read extended ASCII codes (such as the special function keys FI to FlO) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

• See also Int 2lH Functions 06H, 07H, and OSH, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

• [2.0+] You can also read the keyboard by issuing a read (Int 2lH Function 3FH) using
the predefined handle for the standard input (OOOOH), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

Read one character from the keyboard into register AL, echo it to the display, and store it
in the variable char.

char db

mov
int
mov

o

ah.l
21h
char.al

: input character

function number
transfer to MS-DOS
save character

MS-DOS Functions Reference 343



Int2lli
Function 02H
Character output

[1.0]

[1] Outputs a character to the currently active video display.

[2.0+] Outputs a character to the standard output device. Output can be redirected. (If output is redi­
rected, there is no way to detect disk full.)

Call with:

Returns:

AH
DL

Nothing

=02H
= 8-bit data for output

Notes:

Example:

• If a Ctrl-C is detected at the keyboard after the requested character is output, an
Int 23H is executed.

• If the standard output has not been redirected, a backspace code (OSH) causes the
cursor to move left one position. If output has been redirected, the backspace code
does not receive any special treatment.

• [2.0+] You can also send strings to the display by performing a write (Int 21H Func­
tion 4OH) using the predefined handle for the standard output (OOOlH), if output has
not been redirected, or a handle obtained by opening the logical device CON.

Send the character"." to the standard output device.

mov
mov
int

Int2lli
Function 03H
Auxiliary input

ah,2
dl , •*'
21h

function number
character to output
transfer to MS-DOS

[1.0]

[1] Reads a character from the first serial port.

[2.0+] Reads a character from the standard auxiliary device. The default is the first serial port (COMl).

Call with: AH =03H

344 Section II



Returns: AL = 8-bit input data

Notes:

Example:

• In most MS-DOS systems, the serial device is unbuffered and is not interrupt-driven.
If the auxiliary device sends data faster than your program can process it, characters
may be lost.

• At startup on the IBM PC, PC-DOS initializes the first serial port to 2400 baud, no
parity, 1 stop bit, and 8 data bits. Other implementations of MS-DOS may initialize
the serial device differently.

• There is no way for a user program to read the status of the auxiliary device or to
detect I/O errors (such as lost characters) through this function call. On the IBM PC,
more precise control can be obtained by calling ROM BIOS Int 14H or by driving the
communications controller directly.

• If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

• [2.0+] You can also input from the auxiliary device by requesting a read (Int 21H
Function 3FH) using the predefined handle for the standard auxiliary device
(0003H) or using a handle obtained by opening the logical device AUX.

Read a character from the standard auxiliary input and store it in the variable char.

char db

mov
int
mov

o

ah,3
21h
char,al

: input character

function number
transfer to MS-DOS
save character

Int21H
Function 04H
Auxiliary output

[1.0]

[1] Outputs a character to the first serial port.

[2.0+] Outputs a character to the standard auxiliary device. The default is the first serial port (COMl).

Callwith:

Returns:

AH
DL

Nothing

=04H
= 8-bit data for output

MS-DOS Functions Reference 345



Notes:

Example:

• If the output device is busy, this function waits until the device is ready to accept a
character.

• There is no way to poll the status of the auxiliary device using this function. On the
IBM PC, more precise control can be obtained by calling ROM BIOS Int 14H or by
driving the communications controller directly.

• If a Ctrl-~ is detected at the keyboard, an Int 23H is executed.

• [2.0+] You can also send strings to the auxiliary device by performing a write (Int
21H Function 40H) using the predefined handle for the standard auxiliary device
(OO03H) or using a handle obtained by opening the logical device AUX.

Output a "." character to the auxiliary device.

moy
mov
int

Int 21H
Function 05H
Printer output

ah.4
dl • •*'
21h

function number
character to output
transfer to MS-DOS

[1.0]

[1] Sends a character to the first list device (PRN or LPn).

[2.0+] Sends a character to the standard list device. The default device is the printer on the first parallel
port (LPn), unless explicitly redirected by the user with the MODE command.

Call with:

Returns:

AH
DL

Nothing

=05H
=8-bit data for output

Notes: • If the printer is busy, this function waits until the printer is ready to accept the
character.

• There is no standardized way to poll the status of the printer under MS-DOS.

• If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

• [2.0+] You can also send strings to the printer by performing a write (Int 21H
Function 40H) using the predefined handle for the standard printer device (OO04H)
or using a handle obtained by opening the logical device PRN or LPT1.

346 Section II



Example: Output the character"." to the list device.

mov
mov
int

Int 21H
Function 06H
Direct console I/O

ah.5
dl • •*'
21h

function number
character to output
transfer to MS-DOS

[1.0]

Used by programs that need to read and write all possible characters and control codes without any inter­
ference from the operating system.

[1] Reads a character from the keyboard or writes a character to the display.

[2.0+] Reads a character from the standard input device or writes a character to the standard output
device. I/O may be redirected. (If I/O has been redirected, there is no way to detect EOF or disk full.)

Call with: AH
DL

=06H
= function requested

OOH-FEH if output request
OFFH if input request

Returns:

Notes:

If called with DL = OOH-OFEH
Nothing

If called with DL = FFH and a character is ready
Zero flag = clear
AL = 8-bit input data

If called with DL = FFH and no character is ready
Zero flag = set

• No special action is taken upon entry of a Ctrl-C when this service is used.

• To read extended ASCII codes (such as the special function keys Fl to FlO) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

• See also Int 21H Functions 01H, 07H, and 08H, which provide character input with
various combinations of echo and/or Ctrl-C sensing, and Functions 02H and 09H,
which may be used to write characters to the standard output.

MS-DOS Functions Reference 347



• [2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (OOOOH), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

• [2.0+] You can also send characters to the display by issuing a write (Int 21H Func­
tion 40H) using the predefined handle for the standard output (OOOlH), if output has
not been redirected, or a handle obtained by opening the logical device CON.

Examples: Send the character "." to the standard output device.

moy
moy
int

ah,6
dl,' *'

21h

function number
character to output
transfer to MS-DOS

Read a character from the standard input device and save it in the variable char. If no
character is ready, wait until one is available.

char db o : input character

wait: moy ah,6 function number
moy dl,Offh parameter for read
int 21h transfer to MS-DOS
jz wait wait until char ready
moy char,al save the character

Int2m
Function 07H
Unfiltered character input without echo

[1.0]

[1] Reads a character from the keyboard without echoing it to the display. If n<? character is ready, waits
until one is available.

[2.0+] Reads a character from the standard input device without echoing it to the standard output device.
If no character is ready, waits until one is available. Input may be redirected. (If input has been redi­
rected, there is no way to detect EOF.)

348 Section II



Call with:

Returns:

AH

AL

=om

=8-bit input data

Notes:

Example:

• No special action is taken upon entry of a Ctrl-C when this function is used. If Ctrl-C
checking is required, use Int 2IH Function 08H instead.

• To read extended ASCII codes (such as the special function keys FI to FlO) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

• See also Int 2lH Functions OIH, 06H, and 08H, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

• [2.0+] You can also read the keyboard by issuing a read (Int 2lH Function 3FH) using
the predefined handle for the standard input (OOOOH), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

Read a character from the standard input without echoing it to the display, and store it in
the variable char.

char db

mov
int
mov

o

ah,7
21h
char,al

: input character

function number
transfer to MS-DOS
save character

Int2m
Function 088
Character input without echo

[1.0]

[1] Reads a character from the keyboard without echoing it to the display. If no character is ready, waits
until one is available.

[2.0+] Reads a character from the standard input device without echoing it to the standard output device.
If no character is ready, waits until one is available. Input may be redirected. (If input has been redi­
rected, there is no way to detect EOF.)

Call with:

Returns:

AH

AL

=08H

=8-bit input data

MS-DOS Functions Reference 349



Notes: • If the standard input is not redirected, and the character read is a Ctrl-C, an Int 23H
is executed. If the standard input is redirected, a Ctrl-C is detected at the console,
and BREAK is ON, an Int 23H is executed. To avoid possible interruption by a Ctrl-C,
use Int 2lH Function 07H instead.

• To read extended ASCII codes (such as the special function keys FI to FlO) on the
ffiM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

• See also Int 2lH Functions OIH, 06H, and 07H, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

• [2.0+] You can also read the keyboard by issuing a read (Int 2lH Function 3FH) using
the predefined handle for the standard input (OOOOH), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

Example: Read a character from the standard input without echoing it to the display, alloWing pos­
sible detection of Ctrl-C, and store the character in the variable char.

char

Int21H
Function 098
Display string

db

mov
int
mov

o

ah,8
21h
char,al

function number
transfer to MS-DOS
save character

[1.0]

[1] Sends a string of characters to the display.

[2.0+] Sends a string of characters to the standard output device. Output may be redirected. (If output has
been redirected, there is no way to detect disk full.)

Call with:

Returns:

AH
DS:DX

Nothing

=09H
= segment:offset of string

350 Section II



Notes: • The string must be terminated with the character $ (24H), which is not transmitted.
Any other ASCII codes, including control codes, can be embedded in the string.

• See Int 21H Functions 02H and O6H for single-character output to the video display
or standard output device.

• If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

• [2.0+] You can also send strings to the display by performing a write (Int 21H Func­
tion 40H) using the predefined handle for the standard output (0001H), if it has not
been redirected, or a handle obtained by opening the logical device CON.

Example: Send the string Hello World, followed by a carriage return and line feed, to the standard
output device.

cr
lf

msg

equ

equ

db

Odh
Oah

'Hello World',cr,lf,'S'

moy ah,9 function number
moy dx,seg msg address of string
moy ds,dx
moy dx,offset msg
int 21h transfer to MS-DOS

Int21H
Function OAH (10)
Buffered keyboard input

[1.0]

[1] Reads a line from the keyboard and places it in a user-designated buffer. The characters are echoed to
the display.

[2.0+] Reads a string of bytes from the standard input device, up to and including an ASCII carriage return
(ODH), and places them in a user-designated buffer. The characters are echoed to the standard output
device. Input may be redirected. (If input has been redirected, there is no way to detect EOF.)

Call with: AH
DS:DX

=OAH
= segment:offset of buffer

Returns: Nothing (data placed in buffer)

MS-DOS Functions Reference 351



maximum length of input
actual length of input
actual input placed here

Notes:

Example:

• The buffer used by this function has the following format:

Byte Contents
o maximum number of characters to read, set by program
1 number of characters actually read (excluding carriage return), set

by MS-DOS
2+ string read from keyboard or standard input, terminated by a carriage

return (ODH)

• If the buffer fills to one fewer than the maximum number of characters it can hold,
subsequent input is ignored and the bell is sounded until a carriage return is
detected.

• This input function is buffered with type-ahead capability, and all of the standard
keyboard editing commands are active.

• If the standard input is not redirected, and a Ctrl-C is detected at the console, an
Int 23H is executed. If the standard input is redirected, a Ctrl-C is detected at the
console, and BREAK is ON, an Int 23H is executed.

• See Int 21H Functions 01H, O6H, om, and 08H for single-character input from the
keyboard or standard input device.

• [2.0+] You can also read strings from the keyboard by performing a read (Int 21H
Function 3FH) using the predefined handle for the standard input (OOOOH), if it has
not been redirected, or a handle obtained by opening the logical device CON.

Read a string that is a maximum of 80 characters long from the standard input device,
placing it in the buffer named buff.

buff db 81
db 0
db 81 dup (0)

moy ah,Oah function number
moy dX,seg buff input buffer address
moy dS,dx
moy dX,offset buff
int 21h transfer to MS-DOS

352 Section II



Int21H
Function ODH (11)
Check input status

[1.0]

[1] Checks whether a character is available from the keyboard.

[2.0+] Checks whether a character is available from the standard input device. Input can be redirected.

Callwith:

Returns:

AH

AL

=OBH

= OOH if no character is. available
FFH if at least one character is available

Notes:

Example:

• [1] If a Ctrl-C is detected, an Int 23H is executed.

• [2.0+] If the standard input is not redirected, and a Ctrl-C is detected at the console,
an Int 23H is executed. If the standard input is redirected, a Ctrl-C is detected at the
console, and BREAK is ON, an Int 23H is executed.

• If a character is waiting, this function will continue to return a true flag until the
character is consumed with a call to Int 21H Function 01H, 06H, om, 08H, OAH,
or 3FH.

• This function is equivalent to IOCTL Int 21H Function 44H Subfunction 06H.

Test whether a character is available from the standard input.

mov ah,Obh function number
int 21h transfer to MS-DOS
or a1 , a1 character waiting?
jnz ready jump if char ready

Int21H
Function OCH (12)
Flush input buffer and then input

[1.0]

[1] Clears the type-ahead buffer and then invokes one of the keyboard input functions.

[2.0+] Clears the standard input buffer and then invokes one of the character input functions. Input can
be redirected.

MS-DOS Functions Reference 353



Call with: AH = OCH
AL =number of input function to be invoked after resetting buffer (must be

OlH, 06H, am, 08H, or OAH)

(if AL = OAH)
DS:DX = segment:offset of input buffer

Returns: (if called with AL = OlH, 06H, 07H, or 08H)
AL = 8-bit input data

(if called with AL = OAH)
Nothing (data placed in buffer)

Notes: • The function exists to allow a program to defeat MS-DOS's type-ahead feature. It
discards any characters that are waiting in MS-DOS's internal type-ahead buffer,
forcing the specified input function to wait for a character (usually a keyboard entry)
that is truly entered after the program's request.

• The presence or absence of Ctrl-C checking during execution of this function
depends on the function number placed in register AL.

• A function number in AL other than OlH, 06H, om, 08H, or OAH simply flushes the
input buffer and returns control to the calling program.

Exam.ple: Clear the type-ahead buffer, then wait for a character to be entered, echoing it and then
returning it in AL. Store the character in the variable char.

char db °

mov ah,Och function number
mov al ,1 subfunction = input char
int 21h transfer to MS-DOS
mov char,al save character

Int21H
Function ODH (13)
Disk reset

[1.0]

Flushes all file buffers. All data that has been logically written by user programs, but has been temporarily
buffered within MS-DOS, is physically written to the disk.

Call with: AH =ODH

354 Section II



Returns: Nothing

Notes: - This function does not update the disk directory for any files that are still open. If
your program fails to properly close all files before the disk is removed, and files
have changed size, the data forced out to the disk by this function may still be inac­
cessible because the directory entries will not be correct.

- [3.3+] Int 21H Function 68H (Commit File) should be used in preference to this func­
tion, since it also updates the disk directory.

Example: Flush all MS-DOS internal disk buffers.

mov
int

Int21H
Function OEH (14)
Select disk

ah,Odh
21h

function number
transfer to MS-DOS

[1.0]

Selects the specified drive to be the current, or default, disk drive and returns the total number of logical
drives in the system.

Call with:

Returns:

AH
DL

AL

=OEH
= drive code (0 =A, 1 = B, etc.)

= number of logical drives in system

Notes: - [1] 16 drive designators (0 through OFH) are available.

- [2] 63 drive designators (0 through 3FH) are available.

- [3.0+] 26 drive designators (0 through 19H) are available.

- To preserve upward compatibility, new applications should limit themselves to the
drive letters A-Z (0 = A, 1 = B, etc.).

- Logical drives means the total number of block devices: floppy disks, simulated disk
drives (RAMdisks), and hard-disk drives. A single physical hard-disk drive is fre­
quently partitioned into two or more logical drives.

- [1) [2] In single-drive IBM PC-compatible systems, the value 2 is returned in AL,
because PC-DOS supports two logical drives (A: and B:) on the single physical

MS-DOS Functions Reference 355



Example:

floppy-disk drive. The actual number of physical drives in the system can be deter­
mined with ROM BIOS Int 11H.

• [3.0+] The value returned in AL is either 5 or the drive code corresponding to the
LASlDRIVE entry (if any) in CONFIG.SYS, whichever is greater.

Make drive B the current (default) disk drive. Save the total number of logical drives in
the system in the variable drives.

drives db 0

mov ah,Oeh function number
mov dl ,1 drive 1 c::a B
int 21h transfer to MS-DOS
mov drives,al save total drives

Int 21H [1.0]
Function om (15)
Openftle

Opens a file and makes it available for subsequent read/write operations.

Call with: AH
DS:DX

=OFH
= segment:offset of file control block

Returns:

Notes:

If function successful (file found)
AL = OOH

and FeB filled in by MS-DOS as follows:
drivefield (offset OOR) = l/ordriveA, 2/or drive B, etc.
current blockfield (offset OCH) = OOH
record sizefield (offset OEH) = OOBOR
f2.0+J sizejield (offset lOR) = file size/rom directory
f2.0+J datefield (offset 14H) = date stamp/rom directory
f2.0+J timejield (offset 16H) = timestamp/rom directory

If function unsuccessful (file not found)
AL = OFFH

• If your program is going to use a record size other than 128 bytes, it should set the
record-size field at FCB offset OEH after the file is successfully opened and be/ore
any other disk operation.

356 Section II



Example:

• If random access is to be performed, the calling program must also set the FCB
relative-record field (offset 21H) after successfully opening the file.

• For format of directory time and date, see Int 21H Function 57H.

• [2.0+] Int 21H Function 3DH, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

• [3.0+] If the program is running on a network, the file is opened for read/write
access in compatibility sharing mode.

Attempt to open the file named QUACK.DAT on the default disk drive.

myfcb db 0 drive ~ default
db 'QUACK filename. 8 characters
db 'OAT' extension, 3 characters
db 25 dup (0) remainder of FCB

mov ah,Ofh function number
mov dx.seg myfcb address of FCB
mav ds,dx
mov dx,offset myfcb
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if open failed

Int2ffi
Function 10H (16)
Close file

[1.0]

Closes a file, flushes all MS-DOS internal disk buffers associated with the file to disk, and updates the disk
directory if the file has been modified or extended.

Call with: AH
DS:DX

= lOH
= segment:offset of file control block

Returns: If function successful (directory update successful)
AL = OOH

If function unsuccessful (file not found in directory)
AL =FFH

MS-DOS Functions Reference 357



Notes:

Example:

• [1] [2] MS-DOS ver~ions 1 and 2 do not reliably detect a floppy-disk change, and an
error can occur if the user. changes disks while a file is still open on that drive. In the
worst case, the directory and file allocation table of the newly inserted disk can be
damaged or destroyed.

• [2.0+] Int 21H Function 3EH should be used in preference to this function.

Close the file that was previously opened using the file control block named myfcb.

myfcb db 0 drive - default
db 'QUACK filename. 8 characters
db 'OAT' extension. 3 characters
db 25 dup (0) remainder of FCB

mov ah.l0h function number
mov dx.seg myfcb address of FCB
mov ds.dx
mov dx.offset myfcb
int 21h transfer to MS-DOS
or al.al check status
jnz error jump if close failed

Int2m
Function 1m (17)
Find first file

Searches the current directory on the designated drive for a matching filename.

[1.0]

Call with: AH
DS:DX

= 11H
=segment:offset of file control block

Returns: If function successful (matching filename found)
AL = OOH

and buffer at current disk transfer area (DTA) address filled in as an unopened normal
FCB or extended FCB, depending on which type of FCB was input to function

If function unsuccessful (no matching filename found)
AL = FFH

358 Section II



Notes:

Example:

• Use Int 21H Function lAH to set the DTA to point to a buffer of adequate size before
calling this function.

• The wildcard character? is allowed in the filename in all versions of MS-DOS. In ver­
sions 3.0 and later, the wildcard character • may also be used in a filename. If? or •
is used, this function returns the first matching filename.

• An extended FCB must be used to search for files that have the system, hidden, read­
only, directory, or volume-label attributes.

• If an extended FCB is used, its attribute byte determines the type of search that will
be performed. If the attribute byte contains OOH, only ordinary files are found. If the
volume-label attribute bit is set, only volume labels will be returned (if any are pres­
ent). If any other attribute or combination of attributes is set (such as h~dden, system,
or read-only), those files and all ordinary files will be matched.

• [2.0+] Int 21H Function 4EH, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

Search for the first file with the extension .COM in the current directory.

buff db 37 dup (0) receives search result

myfcb db 0 drive .... default
db '11111111' wildcard filename
db 'COM' extension'" COM
db 25 dup (0) remainder of FCB

set DTA address
mov ah,lah function number
mov dx,seg buff buffer address
mov ds,dx
mov dx,offset buff
int 21h transfer to MS-DOS

search for first match
mov ah,llh function number
mov dx, seg myfcb address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if no match

MS-DOS Functions Reference 359



Int21H
Function 12H (18)
Find next file

[1.0]

Given that a previous call to Int 21H Function IlH has been successful, returns the next matching file­
name (if any).

CaI.l with: AH
DS:DX

= 12H
= segment:offset of file control block

Returns:

Notes:

Example:

If function successful (matching filename found)
AL = OOH

and buffer at current disk transfer area (DTA) address set up as an unopened normal
FCB or extended FCB, depending on which type of FCB was originally input to Int 21H
Function IlH

If function unsuccessful (no more matching filenames found)
AL =FFH

• This function assumes that the FCB used as input has been properly initialized by a
previous call to Int 21H Function IlH (and possible subsequent calls to Int 21H
Function 12H) and that the filename or extension being searched for contained at
least one wildcard character.

• As with Int 21H Function I1H, it is important to use Int 21H "Function lAH to set the
DTA to a buffer of adequate size before calling this function.

• [2.0+] Int 21H Functions 4EH and 4FH, which allow full access to the hierarchical
directory structure, should be used in preference to this function.

Assuming a previous successful call to function IlH, search for the next file with the
extension .COM in the current directory. If the DTA has not been changed since the
previous search, another call to Function tAH is not necessary.

buff db 37 dup (0) receives search result

my_feb db 0 drive 1::1 default
db '11111111' wildcard filename
db 'COM' extension 1::1 COM
db 25 dup (0) remainder of FCB

360 Section II



transfer to MS-DOS
check status
jump if no match

search for next match
function number
address of FeB

transfer to MS-DOS

moy ah,lah
moy dx,seg buff
moy ds,dx
moy dx,offset buff
int 21h

moy ah,12h
moy dx,seg myfcb
moy ds,dx
moy dx,offset myfcb
int 21h
or al , al
jnz error

set DTA address
function number
buffer address

Int 218
Function 138 (19)
Delete file

[1.0]

Deletes all matching files from the current .directory on the default or specified disk drive.

Call with: AH
DS:DX

= 13H
= segment:offset of file control block

Returns: If function successful (file or files deleted)
AL = OOH

If function unsuccessful (no matching files were found, or at least one matching file
was read-only)
AL = FFH

Notes: • The wildcard character? is allowed in the filename; if? is present and there is more
than one matching filename, all matching files will be deleted.

• [2.0+] Int 21H Function 41H, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

• [3.0+] If the program is running on a network, the user must have Create rights to
the directory containing the file to be deleted.

MS-DOS Functions Reference 361



Example: Delete the file MYFILE.DAT from the current disk drive and directory.

myfcb db 0 drive = default
db 'MYFILE' filename, 8 chars
db 'OAT' extension, 3 chars
db 25 dup (0) remainder of FCB

mov ah.13h function number
mov dx,seg myfcb address of FCB
mov ds.dx
mov dx.offset myfcb
int 21h transfer to MS-DOS
or al.al check status
jnz error jump, delete failed

Int 21H
Function 14H (20)
Sequential read

Reads the next sequential block of data from a file, then increments the file pointer appropriately.

[1.0]

Call with: AH
DS:DX

= 14H
= segment:offset of previously opened file control block

Returns: AL =OOH
OlH
02H
03H

if read successful
if end of file
if segment wrap
if partial record read at end of file

Notes: • The record is read into memory at the current disk transfer area (DTA) address,
specified by the most recent call to Int 21H Function lAH. If the size of the record
and the location of the buffer are such that a segment overflow or wraparound would
occur, the function fails with a return code of 02H.

• The number of bytes of data to be read is specified by the record-size field (offset
OEH) of the file control block (FCB).

• The file location of the data that will be read is specified by the combination of the
current block field (offset OCH) and current record field (offset 20H) of the file con­
trol block (FCB). These fields are also automatically incremented by this function.

362 Section!!



• If a partial record is read at the end of file, it is padded to the requested record length
with zeros.

• [3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

drive <::I default
filename, 8 chars
extension, 3 chars
remainder of FCB25 dup (0)

o
'QUACK
'OAT'

Read 1024 bytes of data from the file specified by the previously opened file control
block myfcb.

myfcb db
db
db
db

Example:

mov
mov
mov
mov

ah,14h
dx,seg myfcb
ds,dx
dx,offset myfcb

function number
address of FCB

: set record size
mov word ptr myfcb+OeH,1024
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if read failed

Int 21H [1.0]
Function 15H (21)
Sequential write

Writes the next sequential block of data into a file, then increments the file pointer appropriately.

Call with: AH
DS:DX

= ISH
= segment:offset of previously opened file control block

Returns: AL =OOH
01H
02H

if write successful
if disk is full
if segment wrap

Notes: • The record is written (logically, not necessarily physically) to the disk from memory
at the current disk transfer area (DTA) address, specified by the most recent call to
Int 21H Function lAH. If the size of the record and the location of the buffer are such

MS-DOS Functions Reference 363



Example:

that a segment overflow or wraparound would occur, the function fails with a return
codeof02H.

• The number of bytes of data to be written is specified by the record-size field (offset
OEH) of the file control block (FCB).

• The file location of the data that will be written is specified by the combination of
the current block field (offset OCH) and current record field (offset 20H) of the file
control block (FCB). These fields are also automatically incremented by this
function.

• [3.0+) If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Write 1024 bytes of data to the file specified by the previously opened file control block
myfcb.

myfcb db
db
db
db

mov
mov
mov
mov

o
'QUACK
'OAT'
25 dup (0)

ah,15h
dx,seg myfcb
ds,dx
dx,offset myfcb

drive - default
filename, 8 chars
extension, 3 chars
remainder of FCB

function number
address of FCB

: set record size
mov word ptr myfcb+Oeh,1024
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if write failed

Int 218 [1.0]
Function 168 (22)
Create file

Creates a new directory entry in the current directory or truncates any existing file with the same name to
zero length. Opens the file for subsequent read/write operations.

Call with: AH
DS:DX

= 16H
= segment:offset of unopened file control block

364 Section II



Returns: If function successful (file was created or truncated)
AL = OOH

and FCB filled in by MS-DOS as follows:
drivefield (offset DOH) = 1 for drive A, 2 for drive B, etc.
current blockfield (offset OCH) = OOH
record sizefield (offset OEH) = 0080H
[2.0+J sizefield (offset 10H) = filesizefrom directory
[2.0+J datefield (offset 14H) = datestampfrom directory
[2.0+J timefield (offset 16H) = time stampfrom directory

If function unsuccessful (directory full)
AL = FFH

Notes: • Since an existing file with the specified name is truncated to zero length (i.e., all data
in that file is irretrievably lost), this function must be used with caution.

• If this function is called with an extended file control block (FCB), the new file may
be assigned a special attribute, such as hidden or system, during its creation by set­
ting the appropriate bit in the extended FCB's attribute byte.

• Since this function also opens the file, a subsequent call to Int 21H Function OFH is
not required.

• For format of directory time and date, see Int 21H Function 57H.

• [2.0+] Int 21H Functions 3CH, 5AH, 5BH, and 6CH, which provide full access to the
hierarchical directory structure, should be used in preference to this function.

• [3.0+] If the program is running on a network, the user must have Create rights to
the directory that will contain the new file.

Example: Create a file in the current directory using the name in the file control block myfcb.

myfcb db
db
db
db

o
'QUACK
'OAT'
25 dup (0)

drive = default
filename, 8 chars
extension, 3 chars
remainder of FCB

mov ah,16h function number
mov dX,seg myfcb address of FCB
mov dS,dx
mov dX,offset myfcb
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if create failed

MS-DOS Functions Reference 365



Int 21H
Function 17H (23)
Rename file

Alters the name of all matching files in the current directory on the disk in the specified drive.

[1.0]

Call with: AH
DS:DX

= 17H
=segment:offset of "special" file control block

Returns:

Notes:

Example:

If function successful (one or more files renamed)
AL = OOH

If function unsuccessful (no matching files, or new filename matched an existing file)
AL =FFH

• The special file control block has a drive code, filename, and extension in the usual
position (bytes 0 through OBH) and a second filename starting 6 bytes after the first
(offset IlH).

• The? wildcard character can be used in the first filename. Every file matching the
first file specification will be renamed to match the second file specification.

• If the second file specification contains any? wildcard characters, the corresponding
letters in the first filename are left unchanged.

• The function terminates if the new name to be assigned to a file matches that of an
existing file.

• [2.0+] An extended FCB can be used with this function to rename a directory.

• [2.0+] Int 21H Function 56H, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

Rename the file OLDNAME.DAT to NEWNAME.DAT.

myfcb db 0 drive CD default
db 'OLDNAME ' old file name, 8 chars
db 'OAT' old extension, 3 chars
db 6 dup (0) reserved area
db 'NEWNAME ' new file name, 8 cha·rs
db 'OAT' new extension, 3 chars
db 14 dup (0) reserved area

366 Section II



mov ah,17h function number
mov dX,seg myfcb address of FeB
mov dS,dx
mov dX,offset myfcb
int 21h transfer to MS-DOS
or al ,al check status
jnz error jump -if rename failed

Int 21H
Function 18H (24)
Reserved

Int 21H
Function 19H (25)
Get current disk

Returns the drive code of the current, or default, disk drive.

[1.0]

Call with:

Returns:

AH

AL

= 19H

= drive code (0 =A, 1 = B, etc.)

Notes:

Example:

• To set the default drive, use Int 21H Function OEH.

• Some other Int 21H functions use drive codes beginning at 1 (that is, 1 = A, 2 = B,
etc.) and reserve drive code zero for the default drive.

Get the current disk drive and save the code in the variable cdrive.

cdrive db

mov
int
mov

o

ah.19h
21h
cdrive,al

: current drive code

function number
transfer to MS-DOS
save drive code

MS-DOS Functions Reference 367



Int 2tH
Function lAB (26)
Set DTA address

[1.0]

Specifies the address of the disk transfer area (DTA) to be used for subsequent FeB-related function calls.

Call with: AH
DS:DX

=lAH
= segment:offset of disk transfer area

Returns: Nothing

Notes: • If this function is never called by the program, the DTA defaults to a 128-byte buffer
at offset OOBOH in the program segment prefix.

• In general, it is the programmer's responsibility to ensure that the buffer area speci­
fied is large enough for any disk operation that will use it. The only exception to this
is that MS-DOS will detect and abort disk transfers that would cause a segment wrap.

• Int 21H Function 2FH can be used to determine the current disk transfer address.

• The only handle-type operations that rely on the DTA address are the directory
search functions, Int 21H Functions 4EH and 4FH.

Exam.ple: Set the current disk transfer area address to the buffer labeled buff.

buff db 128 dup (1)

moy ah,lah function number
moy dx,seg buff address of disk
moy ds,dx transfer area
moy dx,offset buff
int 21h transfer to MS-DOS

Int2lH
Function tBH (27)
Get default drive data

[1.0]

Obtains selected information about the default disk drive and a pointer to the media identification byte
from its file allocation table.

388 Section II



Callwith: AH =lBH

OFSH
OF9H

Returns:

Notes:

Example:

If function successful
AL = sectors per cluster
DS:BX = segment:offset of media ID byte
ex = size of physical sector (bytes)
DX = number of clusters for default drive

If function unsuccessful (invalid drive or critical error)
AL =FFH

• The media ID byte has the follOWing meanings:

OFOH 3.S-inch double-sided, 18 sectors
or "otherU

fixed disk
S.2S-inch double-sided, IS sectors
or 3.S-inch double-sided, 9 sectors

OFCH S.2S-inch single-sided, 9 sectors
OFDH S.2S-inch double-sided, 9 sectors
OFEH S.2S-inch single-sided, 8 sectors
OFFH S.2S-inch double-sided, 8 sectors

• To obtain information about disks other than the one in the default drive, use
Int 21H Function lCH or 36H.

• [1] The address returned in DS:BX points to a copy of the first sector of the actual
FAT, with the media ID byte in the first byte.

• [2.0+] The address returned in DS:BX points only to a copy of the media ID byte
from the disk's FAT; the memory abbve that address cannot be assumed to contain
the FAT or any other useful information. If direct access to the FAT is required, use
Int 2SH to read it into memory.

Determine whether the current disk drive is fixed or removable.

mov ah.lbh function number
int 21h transfer to MS-DOS

check media ID byte
cmp byte ptr [bx].Of8h
je fixed jump if fixed disk
jmp floppy : else assume floppy

MS-DOS Functions Reference 369



Int21H
Function lCH (28)
Get drive data

[2.0]

Obtains allocation information about the specified disk drive and a pointer to the media identification
byte from its file allocation table.

Callwith: AH
DL

=ICH
= drive code (0 = default, 1 = A, etc.)

OF8H
OF9H

Returns:

Notes:

If function successful
AL = sectors per cluster
DS:BX = segment:offset of media ID byte
ex = size of physical sector (bytes)
DX = number of clusters for default or specified drive

If function unsuccessful (invalid drive or critical error)
AL = FFH

• The media ID byte has the following meanings:

OFOH 3.5-inch double-sided, 18 sectors
or "other"
fixed disk
5.25-inch double-sided, IS sectors
or 3.5-inch double-sided, 9 sectors

OFCH S.2S-inch single-sided, 9 sectors
OFDH 5.2S-inch double-sided, 9 sectors
OFEH 5.25-inch single-sided, 8 sectors
OFFH 5.25-inch double-sided, 8 sectors

• In general, this call is identical to Int 21H Function IBH, except for the ability to
designate a specific disk drive. See also Int 21H Function 36H, which returns similar
information.

• [1] The address returned in DS:BX points to a copy of the first sector of the actual
FAT, with the media ID byte in the first byte.

• [2.0+] The address returned in DS:BX points only to a copy of the media ID byte
from the disk's FAT; the memory above that address cannot be assumed to contain
the FAT or any other useful information. If direct access to the FAT is required, use
Int 25H to read it into memory.

370 Section II



Example: Determine whether disk drive C is fixed or removable.

mav
mov
int

ah,lch
dl,3
21h

: function number
: drive code 3 = C
: transfer to MS-DOS

: check media ID byte
cmp byte ptr ds:[bx],Of8h
je fixed : jump if fixed disk
jmp floppy : else assume floppy

Int21H
Function IDH (29)
Reserved

Int 21H
Function lEH (30)
Reserved

Int 21H
Function IFH (31)
Reserved

Int 21H
Function 20H (32)
Reserved

MS-DOS Functions Reference 371



Int 21H
Function 21H (33)
Random read

Reads a selected"record from a file into memory.

[1.0]

Call with: AH
DS:DX

= 21H
= segment:offset of previously opened file control block

Returns: AL =ooH
01H
02H
03H

if read successful
if end of file
if segment wrap, read canceled
if partial record read at end of file

Notes:

Example:

• The record is read into memory at the current disk transfer area address, specified by
the most recent call to Int 21H Function 1AH. It is the programmer's responsibility to
ensure that this area is large enough for any record that will be transferred. If the size
and location of the buffer are such that a segment overflow or wraparound would
occur, the function fails with a return code of 02H.

• The file location of the data to be read is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset OEH) of the FCB.
The default record size is 128 bytes.

• The current block field (offset OCH) and current record field (offset 20H) are up­
dated to agree with the relative-record field as a side effect of the function.

• The relative-record field of the FCB is not incremented by this function; it is the
responsibility of the application to update the FCB appropriately if it wishes to read
successive records. Compare with Int 21H Function 27H, which can read multiple
records with one function call and automatically increments the relative-record field.

• If a partial record is read at end of file, it is padded to the requested record length
with zeros.

• [3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Open the file MYFILE.DAT, set the record length to 1024 bytes, then read record number
4 from the file into the buffer named buff

myfcb db a drive = default
db 'MYFILE' ; filename, 8 chars
db 'OAT' ; extension, 3 chars
db 25 dup (0) remainder of FeB

buff db 1024 dup (1) receives read data

372 Section II



moy
moy
moy
moy
int
or
jnz

may
may
int

ah,Ofh
dx,seg myfcb
ds,dx
dx,offset myfcb
21h
al , al
error

ah,lah
dx,offset buff
21h

open the file
function number
address of FeB

transfer to MS-DOS
check open status
jump if no file

set DTA address
function number
read buffer address
transfer to MS-DOS

set record size
may word ptr myfcb+Oeh,1024

: set record number
may word ptr myfcb+21h,4
may word ptr myfcb+23h,O

may
may
int
or
jnz

Int2lH
Function 22H (34)
Random write

ah,21h
dx,offset myfcb
21h
a1 , al
error

read the record
function number
address of FeB
transfer to MS-DOS
check status
jump if read failed

[1.0]

Writes data from memory into a selected record in a file.

Call with: AH
DS:DX

=22H
= segment:offset of previously opened file control block

Returns: AL =OOH
OlH
02H

if write successful
if disk full
if segment wrap, write canceled

MS-DOS Functions Reference 373



Notes:

Example:

• The record is written (logically, not necessarily physically) to the file from memory at
the current disk transfer address, specified by the most recent call to Int 21H Func­
tion lAH. If the size and location of the buffer are such that a segment overflow or
wraparound would occur, the function fails with a return code of 02H.

• The file location of the data to be written is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset OEH) of the FCB.
The default record size is 128 bytes.

• The current block field (offset OCH) and current record field (offset 20H) are up­
dated to agree with the relative-record field as a side effect of the function.

• The relative-record field of the FCB is not incremented by this function; it is the
responsibility of the application to update the FCB appropriately if it wishes to write
successive records. Compare with Int 21H Function 28H, which can write multiple
records with one function call and automatically increments the relative-record field.

• If a record is written beyond the current end of file, the space between the old end
of file and the new record is allocated but not initialized.

• [3.0+] If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Open the file MYFILE.DAT, set the record length to 1024 bytes, write record number 4
into the file from the buffer named buff, then close the file.

myfcb db 0 drive - default
db 'MYFILE' filename, 8 chars
db 'DAT' extension, 3 chars
db 25 dup (0) remainder of FCB

buff db 1024 dup (1) buffer for write

open the file
mov ah,Ofh function number
mov dx, seg myfcb address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h transfer to MS-DOS
or al , al check status
jnz error jump if no file

set DTA address
mov dX,offset buff buffer address
mov ah,lah function number
int 21h transfer to MS-DOS

set record size
mov word ptr myfcb+Oeh,1024

374 Section II



: set record number
mov word ptr myfcb+21h,4
mov word ptr myfcb+23h,O

write the record
mov ah,22h function number
mov dx,offset myfcb address of FCB
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if write failed

close the file
mov ah,lOh function number
mov dx,offset myfcb address of FCB
int 21h transfer to MS-DOS
or al , a1 check status
jnz error jump if close failed

Int 21H
Function 23H (35)
Get file size

[1.0]

Searches for a matching file in the current directory; if one is found, updates the FCB with the file's size in
terms of number of records.

Call with: AH
DS:DX

=23H
= segment:offset of unopened file control block

Returns:

Notes:

If function successful (matching file found)
AL = OOH

and FCB relative-record field (offset 21H) set to the number of records in the file,
rounded up if necessary to the next complete record

If function unsuccessful (no matching file found)
AL =FFH

• An appropriate value must be placed in the FCB record-size field (offset OEH) before
calling this function. There is no default record size for this function. Compare with
the FCB-related open and create functions (Int 21H Functions OFH and 16H), which
initialize the FCB for a default record size of 128 bytes.

• The record-size field can be set to 1 to find the size of the file in bytes.

• Because record numbers are zero based, this function can be used to position the
FeB's file pointer to the end of file.

MS-DOS Functions Reference 375



Example: Determine the size in bytes of the file MYFILE.DAT and leave the result in registers
DX:AX.

myfcb db
db
db
db

mov
mov
mov
mov

o
'MYFILE '
'OAT'
25 dup (0)

ah,23h
dx,seg myfcb
ds.dx
dx,offset myfcb

drive CIa default
filename, 8 char6
extension, 3 chars
remainder of FCB

function number
address of FCB

: record size CIa 1 byte
mov word ptr myfcb+Oeh.l
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if no file

get file size in bytes
mov ax,word ptr myfcb+21h
mov dx,word ptr myfcb+23h

Int 218
Function 24H (36)
Set relative record number

[1.0]

Sets the relative-record-number field of a file control block (FCB) to correspond to the current file
position as recorded in the opened FCB.

Call with: AH
DS:DX

=24H
=segment:offset of previously opened file control block

Returns: AL is destroyed' (other registers not affected)

FeB relative-record field (offset 21H) updated

Notes: • This function is used when switching from sequential to random I/O within a file.
The contents of the relative-record field (offset 21H) are derived from the record size
(offset OEH), current bloc~ (offset OCH), and current record (offset 20H) fields of the
file control block.

376 Section II



Example:

• All four bytes of the FCB relative-record field (offset 21H) should be initialized to
zero before calling this function.

After a series of sequential record transfers have been performed using the file control
block myfcb, obtain the current relative-record position in the file and leave the record
number in OX.

myfcb db
db
db
db

mov
mov

o
'MYFILE '
'OAT'
25 dup (0)

dx,seg myfcb
ds,dx

drive .... default
filename, 8 chars
extension, 3 chars
remainder of FCB

make FCB addressable

: initialize relative
: record field to zero

mov word ptr myfcb+21h,0
mov word ptr myfcb+23h,0

mov
mov
int

ah,24h
dx,offset myfcb
21h

now set record number
function number
address of FCB
transfer to MS-DOS

load record number in OX
mov dx,word ptr myfcb+21h

Int 218
Function 258·(37)
Set interrupt vector

Initializes a CPU interrupt vector to point to an interrupt handling routine.

[1.0]

Call with:

Returns:

AH
AL
DS:OX

Nothing

= 25H
= interrupt number
=segment:offset of interrupt handling routine

MS-DOS Functions Reference 377



Notes:

Example:

• This function should be used in preference to direct editing of the interrupt-vector
table by well-behaved applications.

• Before an interrupt vector is modified, its original value should be obtained with
lnt 21H Function 35H and saved, so that it can be restored using this function before
program termination.

Install a new interrupt handler, named zdiv, for "divide by zero" CPU exceptions.

moy ah,25h function number
moy al.O interrupt number
moy dx,seg zd1y address of handler
moy ds,dx
moy dx.offset zdiY
int 21h transfer to MS-DOS

zdiY:
; ret

int OOh handler
(does nothing)

Int 21H
Function 26H (38)
Create new PSP

[~.O]

Copies the program segment prefix (PSP) of the currently executing program to a specified segment
address in free memory, then updates the new PSP to make it usable by another program.

Call with:

Returns:

AH
DX

Nothing

=26H
=segment of new program segment prefix

Notes: • After the executing program's PSP is copied into the new segment, the memory size
information in the new PSP is updated appropriately and the current contents of the
termination (Int 22H), Ctrl-C handler (Int 23H), and critical-error handler (Int 24H)
vectors are saved starting at offset OAH.

• This function does not load another program or in itself cause one to be executed.

• [2.0+] Int 21H Function 4BH (EXEC), which can be used to load and execute pro­
grams or overlays in either .COM or .EXE format, should be used in preference to
this function.

378 Section II



Example: Create a new program segment prefix 64 KB above the currently executing program.
This example assumes that the running program was loaded as a .COM file so that the
CS register points to its PSP throughout its execution. If the running program was loaded
as a .EXE file, the address of the PSP must be obtained with Int 21H Function 62H (under
MS-DOS 3.0 or later) or by saving the original contents of the DS or ES registers at entry.

mov ah,26h function number
mov dx,cs PSP segment of

this program
add dx.l000h add 64 KB as

paragraph address
int 21h transfer to MS-DOS

Int2lH
Function 27H (39)
Random block read

[1.0]

Reads one or more sequential records from a file into memory, starting at a designated file location.

Call with:

Returns:

AH
ex
DS:DX

AL

ex

=27H
= number of records to read
= segment:offset of previously opened file control block

= OOH if all requested records read
OlH if end of file
02H if segment wrap
03H if partial record read at end of file

= actual number of records read

Notes: • The records are read into memory at the current disk transfer area address, specified
by the most recent call to Int 21H Function lAH. It is the programmer's respon­
sibility to ensure that this area is large enough for the group of records that will be
transferred. If the size and location of the buffer are such that a segment overflow or
wraparound would occur, the function fails with a return code of 02H.

• The file location of the data to be read is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset OEH) of the FCB.
The default record size is 128 bytes.

MS-DOS Functions Reference 379



drive ca default
filename, 8 chars
extension, 3 chars
remainder of FCB

Example:

• After the disk transfer is performed, the current block (offset OCH), current record
(offset 20H), and relative-record (offset 21H) fie.lds of the FCB are updated to point
to the next record in the file.

• If a partial record is read at the end of file, the remainder of the record is padded
with zeros.

• Compare with Int 21H Function 21H, which transfers only one record per function
call and does not update the FCB relative-record field.

• [3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Read four l024-byte records starting at record number 8 into the buffer named buff,
using the file control block myfcb.

myfcb db 0
db 'MYFILE'
db 'OAT'
db 25 dup (0)

buff db 4096 dup (1) buffer for data

set DTA address
mov ah,lah function number
mov dx,seg buff address of buffer
mov ds,dx
mov dx,offset buff
int 21h transfer to MS-DOS

set relative-record number
mov word ptr myfcb+21h,8
mov word ptr myfcb+23h,0

: set record size
mov word ptr myfcb+Oeh,1024

read the records
mov ah,27h function number
mov cx,4 number of records
mov dx,offset myfcb address of FCB
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if read error

380 Section II



Int 21B
Function 28B (40)
Random block write

[1.0]

Writes one or more sequential records from memory to a file, starting at a designated file location.

Call with:

Returns:

AH
ex
DS:DX

AL

ex

=28H
= number of records to write
= segment:offset of previously opened file control block

= OOH if all requested records written
01H if disk full
02H if segment wrap

= actual number of records written

Notes: • The records are written (logically, not necessarily physically) to disk from memory at
the current disk transfer area address, specified by the most recent call to Int 21H
Function 1AH. If the size and location of the buffer are such that a segment overflow
or wraparound would occur, the function fails with a return code of 02H.

• The file location of the data to be written is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset OEH) of the FCB.
The default record size is 128 bytes.

• After the disk transfer is performed, the current block (offset OCH), current record
(offset 20H), and relative-record (offset 21H) fields of the FCB are updated to point
to the next record in the file.

• If this function is called with ex = 0, no data is written to the disk but the file is ex­
tended or truncated to the length specified by combination of the record-size (offset
OEH) and the relative-record (offset 21H) fields of the FCB.

• Compare with Int 21H Function 22H, which transfers only one record per function
call and does not update the FCB relative-record field.

• [3.0+] If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Example: Write four 1024-byte records, starting at record number 8, to disk from the buffer named
buff, using the file control block myfcb.

myfcb db 0 drive - default
db 'MYFILE' filename. 8 chars
db 'OAT' extension. 3 chars
db 25 dup (0) remainder of FeB

(continued)

MS-DOS Functions Reference 381



buff db 4096 dup (1) buffer for data

set OTA address
mov ah.lah function number
may, dx.seg buff address of buffer
mov ds.dx
mov dx.offset buff
int 21h transfer to MS-DOS

set relative-record number
mov word ptr myfcb+21h.8
mov word ptr myfcb+23h.0

: set record size
mov word ptr myfcb+Oeh.l024

mov
mov
mov
int
or
jnz

ah.28h
cx.4
dx.offset myfcb
21h
al.al
error

write the records
function number
number of records
address of FeB
transfer to MS-DOS
check status
~ump if write error

Int21H
Function 29H (41)
Parse filename

Parses a text string into the various fields of a file control block (FeB).

[1.0]

Call with: AH
AL

=29H
=flags to control parsing

Bit 3 = 1 ifextensionfield in FCB will be modified only ifan
extension is specified in the string beingparsed.

= 0 ifextensionfield in FCB will be modified regardless; ifno
extension ispresent in the parsed string, FCB extension is
set to ASCII blanks.

Bit 2 = 1 iffilenamefield in FCB will be modified only ifa filename is
specified in the string beingparsed.

= 0 iffilenamefield in FCB will be modified regardless; ifno
filename ispresent in theparsed string, FCBfilename is set
to ASCII blanks.

382 Section II



Bit 1 = 1 ifdrive ID byte in FCB will be modified only ifa drive was
specified in the string beingparsed.

=0 ifthe drive ID byte in FCB will be modified regardless; ifno
drive specifier ispresent in theparsed string, FCB drive­
codefield is set to 0 (default).

Bit 0 = 1 ifleading separators will be scanned off(ignored).
= 0 ifleading separators will not be scanned off.

DS:SI = segment:offset of string
ES:DI = segment:offset of file control block

Returns: AL

DS:SI
ES:DI

= OOH if no wildcard characters encountered
01H if parsed string contained wildcard characters
FFH if drive specifier invalid

= segment:offset of first character after parsed filename
=segment:offset of formatted unopened file control block

Notes:

Example:

• This function regards the following as separator characters:
[1] : . ; , =+ tab space / n []

[2.0+] : . ; , = + tab space

• This function regards all control characters and the following as terminator
characters:

: .;, = + tab space < > I /" []
• If no valid filename is present in the string to be parsed, upon return ES:DI + 1

points to an ASCII blank.

• If the * wildcard character occurs in a filename or extension, it and all remaining
characters in the corresponding field in the FCB are set to ?

• This function (and file control blocks in general) cannot be used with file specifica­
tions that include a path.

Parse the stringfname into the file control block myfcb.

fname db 'O:QUACK.DAT',O filename to be parsed

myfcb db 37 dup (0) becomes file control block

mov ah,29h function number
mov al,Olh skip leading separators
mov si,seg fname address of filename
mov ds,si
mov si,offset fname
mov di,seg myfcb address of FeB

(continued)

MS-DOS Functions Reference 383



mov
mov
int
cmp
je

Int 21H
Function 2AH (42)
Get date

es,d1
di,offset myfcb
21h
al,Offh
error

transfer to MS-DOS
check status
jump. drive invalid

[1.0]

Obtains the system day of the month, day of the week, month, and year.

Call with: AH =2AH

Returns: ex = year (1980 through 2099)
DH = month (1 through 12)
DL = day (1 through 31)

Under MS-DOS versions 1.1 and later
AL = day of the week (0 = Sunday, 1 = Monday, etc.)

Notes: • This function's register format is the same as that required for Int 21H Function 2BH
(Set Date).

• This function can be used together with Int 21H Function 2BH to find the day of the
week for an arbitrary date. The current date is first obtained with Function 2AH and
saved. The date of interest is then set with Function 2BH, and the day of the week
for that date is obtained with a subsequent call to Function 2AH. Finally, the current
date is restored with an additional call to Function 2BH, using the values obtained
with the original Function 2AH call.

Example: Obtain the current date and save its components in the variables yeat; day, and month.

year dw 0
month db 0
day db 0

384 Section II



mov ah,2ah function number
int 21h transfer to MS-DOS
mov year,cx save year (word)
mov month,dh save month (byte)
mov day,dl save day (byte)

Int 21H
Function 2BH (43)
Set date

Initializes the system clock driver to a specific date. The system time is not affected.

[1.0]

Callwith: AH
ex
DH
DL

=2BH
= year (1980 through 2099)
= month (1 through 12)
= day (1 through 31)

Returns: AL =OOH
FFH

if date set successfully
if date not valid (ignored)

Note: • This function's register format is the same as that required for Int 21H Function 2AH
(Get Date).

Exatnple: Set the system date according to the contents of the variables year, day, and month.

year dw 0
month db 0
day db 0

mov ah,2bh function number
mov cx,year get year (word)
mov dh,month get month (byte)
mov dl,day get day (byte)
int 21h transfer to MS-DOS
or al , al check status
jnz error jump if date invalid

MS-DOS Functions Reference 385



Int 21H
Function 2CH (44)
Get time

[1.0]

Obtains the time of day from the system real-time clock driver, converted to hours, minutes, seconds, and
hundredths of seconds.

Callwith:

Returns:

AH

CH
CL
DH
DL

=2CH

= hours (0 through 23)
= minutes (0 through 59)
=seconds (0 through 59)
= hundredths of seconds (0 through 99)

Notes:

Example:

• This function's register format is the same as that required for Int 21H Function 2DH
(Set Time).

• On most IBM PC-compatible systems, the real-time clock does not h;lve a resolution
of single hundredths of seconds. On such machines, the values returned by this
function in register DL are discontinuous.

Obtain the current time and save its two major components in the variables hours and
minutes.

hours db 0
minutes db 0

mov ah,2ch function number
int 21h transfer to MS-DOS
mov hours,ch save hours (byte)
mov minutes,cl save minutes (byte)

Int 21H [1.0]
Function 2DH (45)
Set time

Initializes the system real-time clock to a specified hour, minute, second, and hundredth of second. The
system date is not affected.

386 Section II



Call with: AH
CH
CL
DH
DL

=2DH
= hours (0 through 23)
= minutes (0 through 59)
= seconds (0 through 59)
= hundredths of seconds (0 through 99)

Returns: AL =OOH
FFH

if time set successfully
if time not valid (ignored)

Note:

Example:

• This function's register format is the same as that required for Int 2IH Function 2CH
(Get Time).

Set the system time according to the contents of the variables hours and minutes. Force
the current seconds and hundredths of seconds to zero.

hours db 0
minutes db 0

mov ah.2dh function number
mov ch.hours get hours (byte)
mov cl.minutes get minutes (byte)
mov dx.O force seconds and

hundredths to zero
int 21h transfer to MS-DOS
or al •al check status
jnz error jump if time invalid

Int 21H [1.0]
Function 2EH (46)
Set verify flag

Turns off or turns on the operating-system flag for automatic read-after-write verification of data.

Call with:

Returns:

AH
AL

DL

Nothing

=2EH
= OOH if turning off verify flag

OIH if turning on verify flag
= OOH (MS-DOS versions 1 and 2)

MS-DOS Functions Reference 387



Notes: • Because read-after-write verification slows disk operations, the default setting of the
verify flag is OFF.

• If a particular disk unit's device driver does not support read-after-write verification,
this function has no effect.

• The current state of the verify flag can be determined using Int 21H Function 54H.

• The state of the verify flag is also controlled by the MS-DOS commands VERIFY
OFF and VERIFY ON.

Example: Save the current state of the system verify flag in the variable vjlag, then force alJ subse­
quent disk writes to be verified.

vflag db o ; previous verify flag

;" get veri fy fl ag
mov ah,54h function number
int 21h transfer to MS-DOS
mov vflag,al save current flag state

set verify flag
mov ah,2eh function number
mov al ,1 AL = 1 for verify on
mov dl,O DL must be zero
int 21h transfer to MS-DOS

Int 2IB
Function 2FH (47)
Get DTA address

Obtains the current address of the disk transfer area (DTA) for FeB file read/write operations.

[2.0]

Call with:

Returns:

AH

ES:BX

=2FH

= segment:offset of disk transfer area

Note: • The disk transfer area address is set with Int 21H Function lAH. The default DTA is
a 128-byte buffer at offset BOH in the program segment prefix.

388 Section II



Example: Obtain the current disk transfer area address and save it in the variable olddta.

olddta dd

mov
int

ah.2fh
21h

: save disk transfer address

function number
transfer to MS-DOS

save it as DWORD pointer
mov word ptr olddta.bx
mov word ptr olddta+2.es

Int21H
Function 30H (48)
Get MS-DOS version number

[2.0]

Returns the version number of the host MS-DOS operating system. This function is used by application
programs to determine the capabilities of their environment.

Call with: AH
AL

=30H
=OOH

Returns:

Notes:

If running under MS-DOS version 1
AL = OOH

If running under MS-DOS versions 2.0 or later
AL = major version number (MS-DOS 3.10 = 3, etc.)
AH = minor version number (MS-DOS 3.10 =OAH, etc.)
BH = Original Equipment Manufacturer's (OEM's) serial number (OEM-

dependent-usually OOH for IBM's PC-DOS, OFFH or other values
for MS-DOS)

BL:CX = 24-bit user serial number (optional, OEM-dependent)

• Because this function was not defined under MS-DOS version 1, it should always be
called with AL = OOH. In an MS-DOS version 1 environment, AL will be returned
unchanged.

• Care must be taken not to exit in an unacceptable fashion if an MS-DOS version 1 en­
vironment is detected. For example, Int 21H Function 4CH (Terminate Process with
Return Code), Int 21H Function 40H (Write to File or Device), and the standard error
handle are not available in MS-DOS version 1. In such cases a program should dis­
play an error message using Int 21H Function 09H and then terminate with Int 20H
or Int 21H Function OOH.

MS-DOS Functions Reference 389



Example: Get the MS-DOS version number, terminating the current process with an error message
if not running under MS-DOS version 2.0 or later.

cr equ Odh ASCII carriage return
lf equ Oah : ASCII line feed

msg db cr,lf
db 'Wrong MS-DOS version'
db cr, lf, '$'

mov ax,3000h function number
int 21h transfer to MS-DOS
cmp al,2 version 2 or later?
jae labe11 yes, jump

display error message
mov ah,09 function number
mov dx,offset msg message address
int 21h transfer to MS-DOS

terminate process
mov ah,O function number
int 21h transfer to MS-DOS

labe11:

Int21H
Function 3m (49)
Terminate and stay resident

[2.0]

Terminates execution of the currently executing program, passing a return code to the parent process,
but reserves part or all of the program's memory so that it will not be overlaid by the next transient pro­
gram to be loaded. MS-DOS then takes the following actions:

• File buffers are flushed and any open handles for files or devices owned by the
process are closed.

• The termination handler vector (Int 22H) is restored from PSP:OOOAH.

• The Ctrl-C handler vector (Int 23H) is restored from PSP:OOOEH.

• [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

• Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran­
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

390 Section II



Call with:

Returns:

AH
AL
DX

Nothing

= 31H
= return code
= amount of memory to n~serve (in paragraphs)

Notes:

Example:

• This function call is typically used to allow user-written utilities, drivers, or interrupt
handlers to be loaded as ordinary .COM or .EXE programs and then remain resident.
Subsequent entrance to the code is via a hardware or software interrupt.

• This function attempts to set the initial memory allocation block to the length in
paragraphs specified in register DX. If other memory blocks have been requested
by the application using Int 21H Function 48H, they will not be released by this
function.

• Other methods of performing a final exit are:

Int 20H
- Int 21H Function OOH
- Int 21H Function 4CH
- Int 27H

• The return code may be retrieved by a parent process with Int 21H Function 4DH
(Get Return Code). It can also be tested in a batch file with an IF ERRORLEVEL
statement. By convention, a return code of zero indicates successful execution, and a
nonzero return code indicates an error.

• This function should not be called by .EXE programs that are loaded at the high end
of the transient program area (that is, linked with the /HIGH switch) because
doing so reserves the memory that is normally used by the transient part of
COMMAND.COM. If COMMAND.COM cannot be reloaded, the system will fail.

• [2.0+] This function should be used in preference to Int 27H because it supports
return codes, allows larger amounts of memory to be reserved, and does not require
CS to contain the segment of the program segment prefix.

• [3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Exit with a return code of 1 but stay resident, reserving 16 KB of memory starting at the
program segment prefix of the process.

mov
mov
mov
int

ah,31h
al ,1

dx.0400h
21h

function number
return code for parent
paragraphs to reserve
transfer to MS-DOS

MS-DOS Functions Reference 391



Int 21H
Function 32H (50)
Reserved

Int21H
Function 33H (51)
Get or set break flag, get boot drive

[2.0]

Obtains or changes the status of the operating system's break flag, which influences Ctrl-C checking
during function calls. Also returns the system boot drive in version 4.0.

Call with: If getting break flag
AH =33H
AL = OOH

If setting break flag
AH =33H
AL = 01H
DL = OOH

01H

[4] If getting boot drive
AH =33H
AL =OSH

if turning break flag OFF
if turning break flag ON

Returns:

Notes:

If called with AL = OOH or 01H
DL = OOH break flag is OFF

01H break flag is ON

[4] If called with AL = OSH
DL = boot drive (1 = A, 2 = B, etc.)

• When the system break flag is on, the keyboard is examined for a Ctrl-C entry
whenever any operating-system input or output is requested; if Ctrl-C is detected,
control is transferred to the Ctrl-C handler (Int 23H). When the break flag is off,
MS-DOS only checks for a Ctrl-C entry when executing the traditional character
I/O functions (Int 21H Functions 01H through OCH).

• The break flag is not part of the local environment of the currently executing pro­
gram; it affects all programs. An application that alters the flag should first save the
flag's original status, then restore the flag before terminating.

392 Section II



Example: Save the current state of the system break flag in the variable brkjlag, then turn the
break flag off to disable Ctrl-C checking during most MS-DOS function calls.

brkflag db 0 : save break flag

get current break flag
mov ah.33h function number
mov al.O AL - 0 to get flag
int 21h transfer to MS-DOS
mov brkflag.dl save current flag

now set break flag
mov ah.33h function number
mov al.1 AL = 1 to set flag
mov dl.O set break flag OFF
int 21h transfer to MS-DOS

Int 21H
Function 34H (52)
Reserved

Int 21H
Function 35H (53)
Get interropt vector

Obtains the address of the current interrupt-handler routine for the ~pecifiedmachine interrupt.

[2.0]

Call with:

Returns:

AH
AL

ES:BX

=35H
= interrupt number

= segment:offset of interrupt handler

Note: • Together with Int 21H Function 25H (Set Interrupt Vector), this function is used by
well-behaved application programs to modify or inspect the machine interrupt
vector table.

MS-DOS Functions Reference 393



Example: Obtain the address of the current interrupt handler for hardware interrupt level 0 (divide
by zero) and save it in the variable oldintO.

oldintO dd

mov
mov
int

?

ah,35h
al,O
21h

: previous handler address

function number
interrupt level
transfer to MS-DOS

save old handler address
mov word ptr oldintO,bx
mov word ptr oldintO+2,es

Int21B
Function 36B (54)
Get drive allocation information

[2.0]

Obtains selected information about a disk drive, from which the drive's capacity and remaining free
space can be calculated.

Call with: AH
OL

=36H
= drive code (0 = default, 1 = A, etc.)

Returns:

Notes:

Example:

If function successful
AX = sectors per cluster
BX = number of available clusters
ex = bytes per sector
OX = clusters per drive

If function unsuccessful (drive invalid)
AX = FFFFH

• This function regards "lost" clusters as being in use and does not report them as part
of the number of available clusters, even though they are not assigned to a file.

• Similar information is returned by Int 21H Functions 1BH and 1CH.

Calculate the capacity of disk drive C in bytes, leaving the result in the variable drvsize.
(This code assumes that the product of sectors/cluster • bytes/sector will not overflow
16 bits.)

394 Section II



drvsize dd ? drive C size in bytes

mov ah,36h function number
mov dl,3 drive C .- 3
int 21h transfer to MS-DOS

mul cx sectors/cluster
* bytes/sector

mul dx * total clusters
result now in DX:AX

store low word
mov word ptr drvsize,ax

: store high word
mov word ptr drvsize+2,dx

Int21H
Function 378 (55)
Reserved

Int 21H
Function 38H (56)
Get or set country information

[2.0]

[2] Obtains internationalization information for the current country.

£3.0+] Obtains internationalization information for the current or specified country or sets the current
country code.

Call with: If getting country information (MS-DOS version 2)
AH = 38H
AL = 0 to get "current" country information
DS:DX = segment:offset of buffer for returned information
If getting country information (MS-DOS versions 3.0 and later)
AH = 38H
AL = 0 to get "current" country information

I-FEH to get information for countries with code < 255
FFH to get information for countries with code >= 255

MS-DOS Functions Reference 395



BX = country code, if AL = FFH
DS:DX = segment:offset of buffer for returned information

If setting current country code (MS-DOS versions 3.0 and later)
AH =38H
AL = 1-FEH country code for countries with code < 255

FFH for countries with code >= 255
BX = country code, if AL = OFFH
DX =FFFFH

Returns: If function successful
Carry flag = clear

and, if getting internationalization information
BX = country code
DS:DX = segment:offset of buffer holding internationalization information
and buffer filled in as follows:

=0 if12-hour clock
= 1 if24-hour clock

bit 2

bit 1

10H
11H

02H-06H
07H-08H
09H-OAH
OBH-OCH
ODH-OEH
OFH

(for PC-DOS 2.0 and 2.1)
Byle(s) Contents
00H-01H date format

0= USA mdy
1 = Europe dmy
2 =Japan ymd

02H-03H ASCIIZ currency symbol
04H-05H ASCIIZ thousands separator
06H-Om ASCIIZ decimal separator
08H-1FH reserved

(for MS-DOS versions 2.0 and later, PC-DOS versions 3.0 and later)
Byte(s) Contents
00H-01H date format

O=USA mdy
1 = Europe dmy
2 =Japan ymd
ASCIIZ currency symbol string
ASCIIZ thousands separator character
ASCIIZ decimal separator character
ASCIIZ date separator character
ASCIIZ time separator character
currency format
bit 0 =0 ifcurrency symbolprecedes value

=1 ifcurrency symbolfollows value
=0 ifno space between value and currency symbol
=1 ifone space between value and currency symbol
=0 ifcurrency symbol and decimal are separate
=1 ifcurrency symbol replaces decimal separator

number of digits after decimal in currency
time format
bit 0

396 Section II



12H-15H case-map call address
16H-17H ASCIIZ data-list separator
18H-21H reserved

If function unsuccessful
Carry flag = set
AX = error code

Notes: • The default country code is determined by the COUNTRY= directive in
CONFIG.SYS or by the KEYBxx keyboard driver file if one is loaded. Otherwise,
the default country code is OEM-dependent.

• The previous contents of register ex may be destroyed by the Get Country Informa­
tion subfunction.

• The case-map call address is the segment:offset of a FAR procedure that performs
country-specific mapping on character values from SOH through OFFH. The pro­
cedure must be called with the character to be mapped in register AL. If an alternate
value exists for that character, it is returned in AL; otherwise, AL is unchanged. In
general, lowercase characters are mapped to their uppercase equivalents, and ac­
cented or otherwise modified vowels are mapped to their plain vowel equivalents.

• [3.0+] The value in register DX is used by MS-DOS to select between the Set Country
and Get Country Information subfunctions.

• [3.3+] Int 21H Function 65H (Get Extended Country Information) returns a superset
of the information supplied by this function.

Examples: Obtain internationalization information for the current country in the buffer ctrybuf

ctrybuf db 34 dup (0)

moy ah.38h function number
moy al.O get current country
moy dx.seg ctrybuf address of buffer
moy ds.dx for country information
moy dx.offset c~rybuf

int 21h transfer to MS-DOS
jc error : jump if function failed

If the program is running under PC-DOS 3.3 and the current country code is 49 (West
Germany), ctrybufis filled in with the following information:

dw
db
db

OOOlh
'OM' .0.0.0
'.' ,0

date format
ASCIIZ currency symbol
ASCIIZ thousands separator

(continued)

MS-DOS Functions Reference 397



db ',' ,0 ASCIIZ decimal separator
db '.' ,0 ASCIIZ date separator
db '.' ,0 ASCIIZ time separator
db 02h currency format
db 02h digits after decimal
db 01h time format
dd 026ah:176ch case-map call address
db ':' ,0 ASCIIZ data-list separator
db 10 dup (0) reserved

Int 21H
Function 39H (57)
Create directory

Creates a directory using the specified drive and path.

[2.0]

Call with: AH
DS:DX

=39H
= segment:offset of ASCIIZ pathname

Returns:

Note:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX =error code

• The function fails if:
- any element of the pathname does not exist.
- a directory with the same name at the end of the same path already exists.
- the parent directory for the new directory is the root directory and is full.
- [3.0+] the program is running on a network and the user running the program has

insufficient access rights.

Create a directory named MYSUB in the root directory on drive C.

dname db

mov
mov
mov
mov

'C:\MYSUB',O

ah,39h
dx,seg dname
ds,dx
dX,offset dname

function number
address of pathname

398 Section II



int
jc

Int 21B
Function 3AH (58)
Delete directory

21h
error

transfer to MS-DOS
jump if create failed

[2.0]

Removes a directory using the specified drive and path.

Call with: AH
DS:DX

=3AH
= segment:offset of ASCIIZ pathname

Returns:

Note:

Example:

If function successful
Carry flag =clear

If function unsuccessful
Carry flag =set
AX = error code

• The function fails if:

- any element of the pathname does not exist.
- the specified directory is also the current directory.
- the specified directory contains any files.
- [3.0+] the program is running on a network and the user running the program has

insufficient access rights.

Remove the directory named MYSUB in the root directory on drive C.

dname db 'C:\MYSUB',O

moy ah,3ah function number
moy dX,seg dname address of pathname
moy dS,dx
mov dx.offset dname
int 21h transfer to MS-DOS
jc error jump if delete failed

MS-DOS Functions Reference 399



Int2m
Function 3BH (59)
Set current directory

Sets the current, or default, directory using the specified drive and path.

[2.0]

Call with: AH
DS:DX

=3BH
= segment:offset of ASCIIZ pathname

Returns:

Notes:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• The function fails if any element of the pathname does not exist.

• Int 21H Function 47H can be used to obtain the name of the current directory before
using Int 21H Function 3BH to select another, so that the original directory can be
restored later.

Change the current directory for drive C to the directory \MYSUB.

dname db 'C:\MYSUB',O

mov ah,3bh function number
mov dx,seg dname address of pathname
mov ds,dx
mov dx,offset dname
int 21h transfer to MS-DOS
jc error jump if bad path

400 Section II



Int 21B
Function 3CH (60)
Create file

[2.,0]

Given an ASCIIZ pathname, creates a new file in the designated or default directory on the designated or
default disk drive. If the specified file already exists, it is truncated to zero length. In either case, the file is
opened and a handle is returned that can be used by the program for subsequent access to the file.

Call with: AH
cx

DS:DX

=3CH
= file attribute (bits may be combined)

BU(s) Significance (ifset)
o read-only
1 hidden
2 system
3 volume label
4 reserved (0)
5 archive
6-15 reserved (0)

= segment:offset of ASCIIZ pathname

Returns:

Notes:

If function successful
Carry flag = clear
AX = handle

If function failed
Carry flag = set
AX = error code

• The function fails if:
- any element of the pathname does not exist.
- the file is being created in the root directory and the root directory is full.
- a file with the same name and the read-only attribute already exists in the speci-

fied directory.
- [3.0+] the program is running on a network and the user running the program has

insufficient access rights.

• A file is usually given a normal (0) attribute when it is created. The file's attribute
can subsequently be modified with Int 21H Function 43H.

• [3.0+] A volume label can be created using an attribute of OOOSH, if one does not
already exist. When files are created, bit 3 of the attribute parameter should always
be clear (0).

• [3.0+] See the entries for Int 21H Functions 5AH and 5BH, which may also be used to
create files.

• [4.0+] Int 21H Function 6CH combines the services of Functions 3CH, 3DH,
and 5BH.

MS-DOS Functions Reference 401



Example: Create and open, or truncate to zero length and open, the file C:\MYDIR\MYFILE.DAT,
and save the handle for subsequent access to the file.

fname db

fhandle dw

'C:\MYDIR\MYFILE.DAT',O

may ah,3ch function number
xor cx,cx normal attribute
moy dx,seg fname address of pathname
moy ds,dx
moy dx,offset fname
int 21h transfer to MS-DOS
jc error jump if create failed
moy fhandle,ax save file handle

Int 21H
Function 3DH (61)
Openftle

[2.0]

Given an ASCIIZ pathname, opens the specified file in the designated or default directory on the desig­
nated or default disk drive. A handle is returned which can be used by the program for subsequent access
to the file.

Call with: AH
AL

DS:DX

=3DH
= access mode

BU(s) Significance
0-2 access mode

000 = read access
001 =write access
010 = read/write access

3 reserved (0)
4-6 sharing mode (MS-DOS versions 3.0 and later)

000 =compatibility mode
001 = deny all
010 =deny write
011 = deny read
100 =deny none

7 inheritance flag (MS-DOS versions 3.0 and later)
o= child process inherits handle
1 = child does not inherit handle

= segment:offset of ASCIIZ pathname

402 Section II



Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = handle

If function unsuccessful
Carry flag = set
AX = error code

• Any normal, system, or hidden file with a matching name will be opened by this
function. If the file is read-only, the success of the operation also depends on the
access code in bits 0-2 of register AL. After opening the file, the file read/write

.pointer is set to offset zero (the first byte of the file).

• The function fails if:
- any element of the pathna~edoes not exist.
- the file is opened with an access mode of read/write and the file has the read-

only attribute.
- [3.0+] SHARE.EXE is loaded and the file has already been opened by one or more

other processes in a sharing mode that is incompatible with the current program's
request.

• The file's date and time stamp can be accessed after a successful open call with
Int 21H Function 57H.

• The file's attributes (hidden, system, read-only, or archive) can be obtained with
Int 21H Function 43H.

• When a file handle is inherited by a child process or is duplicated with Int 21H
Function 45H or 46H, all sharing and access restrictions are also inherited.

• [2] Only bits 0-2 of register AL are significant; the remaining bits should be zero for
upward compatibility.

• [3.0+] Bits 4-7 of register AL control access to the file by other programs. (Bits 4-6
have no effect unless SHARE.EXE is loaded.)

• [3.0+] A file-sharing error causes a critical-error exception (Int 24H) with an error
code of 02H. Int 21H Function 59H can be used to obtain information about the
sharing violation.

• [4.0+] Int 21H Function 6CH combines the services of Functions 3CH, 3DH,
and 5BH.

Open the file C:\MYDIR\MYFILE.DAT for both reading and writing, and save the
handle for subsequent access to the file.

fname db 'C:\MYDIR\MYFILE.DAT' .0

fhandle dw 1

(continued)

MS-DOS Functions Reference 403



mov ah,3dh function number
mov al ,2 mode - read/write
mov dX,seg fname address of pathname
mov dS,dx
mov dX,offset fname
int 21h transfer to MS-DOS
jc error jump if open failed
mov fhandle,ax save file handle

Int 21H
Function 3EH (62)
Close file

[2.0]

Given a handle that was obtained by a previous successful open or create operation, flushes all internal
buffers associated with the file to disk, closes the file, and releases the handle for reuse. If the file was
modified, the time and date stamp and file size are updated in the file's directory entry.

Call with: AH
BX

=3EH
= handle

Returns:

Note:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• If you accidentally call this function with a zero handle, the standard input device is
closed, and the keyboard appears to go dead. Make sure you always call the close
function with a valid, nonzero handle.

Close the file whose handle is saved in the variablefhandle.

fhandle dw 0

mov ah,3eh function number
mov bX,fhandle file handle
int 21h transfer to MS-DOS
jc error jump if close failed

404 section!!



Int 21B
Function 3FH (63)
Read file or device

[2.0]

Given a valid file handle from a previous open or create operation, a buffer address, and a length in bytes,
transfers data at the current file-pointer position from the file into the buffer and then updates the file
pointer position.

Call with: AH
BX
cx
DS:DX

=3FH
= handle
= number of bytes to read
= segment:offset of buffer

Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

• If reading from a character device (such as the standard input) in cooked mode, at
most one line of input will be read (i.e., up to a carriage return character or the
specified length, whichever comes first).

• If the carry flag is returned clear but AX = 0, then the file pointer was already at end
of file when the program requested the read.

• If the carry flag is returned clear but AX < CX, then a partial record was read at end
of file or there is an error.

• [3.0+] If the program is running on a network, the user must have Read access rights
to the directory and file.

Using the file handle from a previous open or create operation, read 1024 bytes at the
current file pointer into the buffer named buff.

buff db 1024 dup (1) buffer for read

fhandle dw 1 contains file handle

(continued)

MS-DOS Functions Reference 405



may ah,3fh function number
may dx,seg buff buffer address
may ds,dx
may dx,affset buff
may bx,fhandle file handle
moy cx,1024 length to read
int 21h transfer to MS-DOS
jc error jump, read failed

cmp ax,cx check length of read
jl done jump, end of file

Int 21H
Function 40H (64)
Write file or device

[2.0]

Given a valid file handle from a previous open or create operation, a buffer address, and a length in bytes,
transfers data from the buffer into the file and then updates the file pointer position.

Call with: AH
BX
ex
DS:DX

=40H
= handle
= number of bytes to write
= segment:offset of buffer

Returns:

Notes:

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX =error code

• If the carry flag is returned clear but AX < CX, then a partial record was written or
there is an error. This can be caused by a Ctrl-Z (lAH) embedded in the data if the
destination is a character device in cooked mode or by a disk full condition if the
destination is a file.

• If the function is called with ex = 0, the file is truncated or extended to the current
file pointer position.

• [3.0+] If the program is running on a network, the user must have Write access rights
to the directory and file.

406 Section II



Example: Using the handle from a previous open or create operation, write 1024 bytes to disk at
the current file pointer from the buffer named buff.

buff db 1024 dup (?) buffer for write

fhandle dw

mov ah,40h
mov dx,seg buff
mov ds,dx
mov dx,offset buff
mov bx,fhandle
mov cx,1024
int 21h
jc error
cmp aX,1024
jne error

Int 21B
Function 4m (65)
Delete file

contains file handle

function number
buffer address

file handle
length to write
transfer to MS-DOS
jump, write failed
entire record written?
no, jump

[2.0]

Deletes a file from the specified or default disk and directory.

Call with: AH
DS:DX

=41H
= segment:offset of ASCIIZ pathname

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• This function deletes a file by replacing the first character of its filename in the
directory with the character e (E5H) and marking the file's clusters as "free" in the
disk's file allocation table. The actual data stored in those clusters is not overwritten.

• Only one file at a time may be deleted with this function. Unlike the FCB-related
Delete File function (Int 21H Function 13H), the • and? wildcard characters are not
allowed in the file specification.

MS-DOS Functions Reference 407



Example:

• The function fails if:
- any element of the pathname does not exist.
- the designated file exists but has the read-only attribute. (Int 21H Function 43H

can be used to examine and modify a file's attribute before attempting to
delete it.)

- [3.0+] the program is running on a network, and the user running the program
has insufficient access rights.

Delete the file named MYFILE.DAT from the directory \MYDIR on drive C.

fname db 'C:\MYDIR\MYFILE.DAT',O

moy
moy
moy
moy
int
jc

ah,41h
dX,seg fname
dS,dx
dX,offset fname
21h
error

function number
filename address

transfer to MS-DOS
jump if delete failed

Int 21H
Function 42H (66)
Set file pointer

sets the file location pointer relative to the start of file, end of file, or ~urrent file position.

[2.0]

Call with: AH
AL

BX
ex
OX

=42H
= method code

OOH absolute offset from start of file
OIH signed offset from current file pointer
02H signed offset from end of file

= handle
= most significant half of offset
= least significant half of offset

Returns: If function successful
Carry flag = clear
OX = most significant half of resulting file pointer
AX = least significant half of resulting file pointer

If function unsuccessful
Carry flag = set
AX =error code

408 Section II



Notes: • This function uses a method code and a double-precision (32-bit) value to set the file
pointer. The next record read or written in the file will begin at the new file pointer
location. No matter what method is used in the call to this function, the file pointer
returned in DX:AX is always the resulting absolute byte offset from the start of file.

• Method 02H may be used to find the size of the file by calling Int 21H Function 42H
with an offset of 0 and examining the pointer location that is returned.

• Using methods 01H or 02H, it is possible to set the file pointer to a location that is
before the start of file. If this is done, no error is returned by this function, but an
error will be encountered upon a subsequent attempt to read or write the file.

Examples: Using the file handle from a previous open or create operation, set the current file
pointer position to 1024 bytes after the start of file.

fhandle dw ?

mov ah,42h function number
mov al,O method - absolute
mov bx,fhandle file handle
mov cx,O upper half of offset
mov dx,1024 lower half of offset
int 21h transfer to MS-DOS
jc error jump, function failed

The following subroutine accepts a record number, record size, and handle and sets the
file pointer appropriately.

call this routine with BX - handle
AX = record number
ex = record size

returns all registers unchanged

setptr

setptr

proc near
push ax
push cx
push dx
mul cx
mov cX,ax
xchg cx,dx
mov ax,4200h
int 21h
pop dx
pop cx
pop ax
ret
endp

save record number
save record size
save whatever's in OX

size * record number
upper part to ex
lower part to OX

function number &method
transfer to MS-DOS
restore previous OX

restore record size
restore record number
back to caller

MS-DOS Functions Reference 409



Int 21H
Function 43H (67)
Get or set file attributes

Obtains or alters the attributes of a file (read-only, hidden, system, or archive) or directory.

[2.0]

Call with: AH
AL

ex

DS:DX

=43H
= OOH to get attributes

01H to set attributes
= file attribute, if AL = 01H (bits can be combined)

Bit(s) Signiflcance (ifset)
o read-only
1 hidden
2 system
3-4 reserved (0)
5 archive
6-15 reserved (0)

= segment:offset of ASCIIZ pathname

Returns:

Notes:

If function successful
Carry flag = clear
CX =file attribute

BIt(s) Significance (ifset)
o read-only
1 hidden
2 system
3 volume label
4 directory
5 archive
6-15 reserved (0)

If function unsuccessful
Carry flag = set
AX =error code

• Bits 3 and 4 of register CX must always be clear (0) when this function is called; in
other words, you cannot change an existing file into a directory or volume label.
However, you can assign the "hidden" attribute to an existing directory with this
function.

• [3.0+] If the program is running on a network, the user must have Create access
rights to the directory containing the file whose attribute is to be modified.

410 Section I!



Example: Change the attribute of the file D:\MYDIR\MYFILE.DAT to read-only, so that it cannot
be accidentally modified or deleted by other application programs.

rdonly equ Olh : file attributes
hidden equ 02h
system equ 04h
volume equ 08h
subdir equ lOh
archive equ 20h

fname db 'D:\MYDIR\MYFILE.DAT',O

mov ah,43h function number
mov al,Olh subfunction - modify
mov cX,rdonly read-only attribute
mov dX,seg fname filename address
mov dS,dx
mov dX,offset fname
int 21h transfer to MS-DOS
jc error jump if modify failed

Int 21H
Function 44H (68)
10CTL (I/O control)

[2.0]

Provides a direct path of communication between an application program and a device driver. Allows a
program to obtain hardware-dependent information and to request operations that are not supported by
other MS-DOS function calls.

The IOCTL subfunctions and the MS-DOS versions in which they first became available are:

Subfunction

OOH
OlH
02H
03H
04H
OSH
06H

Name

Get Device Information
Set Device Information
Receive Control Data from Character Device Driver
Send Control Data to Character Device Driver
Receive Control Data from Block Device Driver
Send Control Data to Block Device Driver
Check Input Status

MS-DOS version
2.0
2.0
2.0
2.0
2.0
2.0
2.0

(continued)

MS-DOS Functions Reference 411



continued

Subfu:nction

07H
08H
09H
OAH (10)
OBH (11)
OCH (12)

ODH (13)

OEH (14)
OFH (15)

Name

Check Output Status
Check If Block Device Is Removable
Check If Block Device Is Remote
Check If Handle Is Remote
Change Sharing Retry Count
Generic I/O Control for Character Devices
CL = 4SH: Set Iteration Count
CL =4AH: Select Code Page
CL = 4CH: Start Code Page Preparation
CL = 4DH: End Code Page Preparation
CL = SFH: Set Display Information
CL =6SH: Get Iteration Count
CL =6AH: Query Selected Code Page
CL = 6BH: Query Prepare List
CL =7FH: Get Display Information
Generic I/O Control for Block Devices
CL =4OH: Set Device Parameters
CL = 41H: Write Track
CL = 42H: Format and Verify Track
CL = 47H: Set Access Flag
CL =60H: Get Device Parameters
CL =61H: Read Track
CL =62H: Verify Track
CL =67H: Get Access Flag
Get Logical Drive Map
Set Logical Drive Map

MS-DOS version
2.0
3.0
3.1
3.1
3.1

3.2
3.3
3.3
3.3
4.0
3.2
3.3
3.3
4.0

3.2
3.2
3.2
4.0
3.2
3.2
3.2
4.0
3.2
3.2

Only 10CTL Subfunctions OOH, 06H, and 07H may be used for handles associated with files. Subfunctions
OOH-OSH are not supported on network devices.

Int 218
Function 448 (68) Subfunction 008
IOCTL: get device information

Returns a device information word for the file or device associated with the specified handle.

[2.0]

Call with: AH
AL
BX .

412 Section II

=44H
=OOH
= handle



6
7
8-13
14

= clear
= device information word

For a file:
Bit(s) Significance
0-5 drive number (0 =A, 1 = B, etc.)
6 0 if file has been written

1 if file has not been written
7 0, indicating a file
8-15 reserved

For a device:
Bit(s) Significance
o 1 if standard input
1 1 if standard output
2 1 if NUL device
3 1 if clock device
4 reserved
5 0 if handle in ASCII mode

1 if handle in binary mode
oif end of file on input
1, indicating a device
reserved
oif IOCTL subfunctions 02H and 03H not supported
1 if IOCTL subfunctions 02H and 03H supported
reserved15

If function unsuccessful
Carry flag = set
AX = error code

If function successful
Carry flag
DX

Returns:

Notes: • Bits 8-15 ofDX correspond to the upper 8 bits of the device-driver attribute word.

• Bit 5 of the device information word for a handle associated with a character device
signifies whether MS-DOS considers that handle to be in binary ("raw") mode or
ASCII ("cooked") mode. In ASCII mode, MS-DOS filters the character stream and
may take special action when the characters Ctrl-C, Ctrl-S, Ctrl-P, Ctrl-Z, and car­
riage return are detected. In binary mode, all characters are treated as data, and the
exact number of characters requested is always read or written.

Example: See Int 21H Function 44H Subfunction 01H.

MS-DOS Functions Reference 413



Int 21H
Function 44H (68) Subfunction om
IOCTL: set device information

[2.0]

Sets certain flags for a handle associated with a character device. This subfunction may not be used for a
handle that is associated with a file.

6
7
8-15

Call with: AH
AL
BX
OX

=44H
=OlH
= handle
= device information word

Bit(s) Significance
o 1 if standard input
1 1 if standard output
2 1 if NUL device
3 1 if clock device
4 reserved (0)
5 0 to select ASCII mode

1 to select binary mode
reserved (0)
1, indicating a device
reserved (0)

Returns:

Notes:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• If register DH does not contain OOH, control returns to the program with the carry
flag set and error code 0001H (invalid function) in register AX.

• Bit 5 of the information word for a handle associated with a character device sig­
nifies whether MS-DOS considers that handle to be in binary ("raw") or ASCII
("cooked") mode. See Notes for Int 21H Function 44H Subfunction OOH.

Place the standard output handle into binary ("raw") mode. This speeds up output by
disabling checking for Ctrl-C, Ctrl-S, and Ctrl-P between each character.

414 Section!!



get device information
mov ax,4400h function &subfunction
mov bx,l standard output handle
int 21h transfer to MS-DOS

mov dh,O force DH - 0
or dl,20h set binary mode bit

set device information
mov ax,4401h function &subfunction
int 21h transfer to MS-DOS

lot 218 [2.0]
Function 44H (68) Subfunction 028
IOCTL: read control data from character device driver

Reads control data from a character-device driver. The length and contents of the data are specific to
each device driver and do not follow any standard format. This function does not necessarily result in any
input from the physical device.

Call with: AH
AL
BX
ex
DS:DX

=44H
=02H
= handle
= number of bytes to read
= segment:offset of buffer

Returns:

Notes:

If function successful
Carry flag = clear
AX = bytes read

and buffer contains control data from driver

If function unsuccessful
Carry flag = set
AX = error code

• If supported by the driver, this subfunction can be used to obtain hardware­
dependent status and availability information that is not supported by other
MS-DOS function calls.

MS-DOS Functions Reference 415



Example:

• Character-device drivers are not required to support IOCTL Subfunction 02H. A pro­
gram can test bit 14 of the device information word returned by IOCTL Subfunction
OOH to determine whether the driver supports this subfunction. If Subfunction 02H
is requested and the driver does not have the ability to process control data, control
returns to the program with the carry flag set and error code 0001H (invalid func­
tion) in register AX.

Read a control string from the standard list driver into the buffer buff.

stdprn equ 4 standard list handle
buflen equ 64 length of buffer

ctllen dw
buff db

1
buflen dup (0)

length of control string
receives control string

mov aX,4402h function &subfunction
mov bX,stdprn standard list handle
mov cX,buflen buffer length
mov dX,seg buff buffer address
moy dS,dx
mov dX,offset buff
int 21h transfer to MS-DOS
jc error jump if read failed
mov ctllen,ax save control string length

Int 21H [2.0]
Function 44H (68) Subfunction 03H
IOCTL: write control data to character-device driver

Transfers control data from an application to a character-device driver. The length and contents of the
data are specific to each device driver and do not follow any standard format. This function does not
necessarily result in any output to the physical device.

Call with: AH
AL
BX
ex
DS:DX

=44H
=03H
= handle
= number of bytes to write
= segment:offset of data

416 Section!!



Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

• If supported by the driver, this subfunction can be used to request hardware­
dependent operations (such as setting baud rate for a serial port) that are not sup­
ported by other MS-DOS function calls.

• Character-device drivers are not required to support IOCTL Subfunction 03H. A pro­
gram can test bit 14 of the device information word returned by IOCTL Subfunction
OOH to determine whether the driver supports this subfunction. If Subfunction 03H
is requested and the driver does not have the ability to process control data, control
returns to the program with the carry flag set and error code 000lH (invalid func­
tion) in register AX.

Write a control string from the buffer buff to the standard list device driver. The length
of the string is assumed to be in the variable ctllen.

stdprn equ 4 standard list handle
buflen equ 64 length of buffer

ctllen dw 1 length of control data
buff db buflen dup (1) contains control data

mov ax,4403h function &subfunction
mov bx,stdprn standard list handle
mov dx,seg buff buffer address
mov ds,dx
mov dx,offset buff
mov cx,ctllen length of control data
int 21h transfer to MS-DOS
jc error jump if write failed

MS-DOS Functions Reference 417



Int21H
Function 44H (68) Subfunction 048
IOCTL: read control data from block-device driver

[2.0]

Transfers control data from a block-device driver directly into an application program's buffer. The length
and contents of the data are specific to each device driver and do not follow any standard format. This
function does not necessarily result in any input from the physical device.

Call with: AH
AL
BL
ex
DS:DX

=44H
=04H
=drive code (0 =default, 1 = A, 2 = B, etc.)
= number of bytes to read
= segment:offset of buffer

Returns:

Notes:

Example:

If function successful
Carry flag =clear
AX = bytes transferred

and buffer contains control data from device driver

If function unsuccessful
Carry flag = set
AX = error code

• When supported by the driver, this subfunction can be used to obtain hardware­
dependent status and availability information that is not prOVided by other MS-DOS
function calls.

• Block-device drivers are not required to support IOCTL Subfunction 04H. If this
subfunction is requested and the d~iverdoes not have the ability to process control
data, control returns to the program with the carry flag set and error code OOOlH
(invalid function) in register AX.

Read a control string from the block-device driver for drive C into the buffer buff.

buflen equ 64 length of buffer

ctllen dw
buff db

mov
mov
mov
mov

?

buflen dup (0)

ax,4404h
bl,3
cx,buflen
dx,seg buff

length of control string
receives control string

function &subfunction
drive C 1::1 3
buffer length
buffer address

418 Section!!



mav
mav
int
jc
mav

ds.dx
dx.affset buff
21h
error
ctllen.ax

transfer to MS-DOS
jump if read failed
save control string length

Int 21B
Function 44H (68) Subfunction 05B
IOCTL: write control data to block-device driver

[2.0]

Transfers control data from an application program directly to a block-device driver. The length and con­
tents of the control data are specific to each device driver and do not follow any standard format. This
function does not necessarily result in any output to the physical device.

Call with: AH
AL
BL
ex
DS:DX

=44H
=OSH
= drive code (0 = default, 1 = A, 2 = B, etc.)
= number of bytes to write
= segment:offset of data

Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

• When supported by the driver, this subfunction can be used to request hardware­
dependent operations (such as tape rewind or disk eject) that are not provided by
other MS-DOS function calls.

• Block-device drivers are not required to support IOCTL Subfunction OSH. If this
subfunction is requested and the driver does not have the ability to process control
data, control returns to the program with the carry flag set and error code OOOlH
(invalid function) in register AX.

Write a control string from the buffer buff to the block-device driver for drive C. The
length of the string is assumed to be in the variable ctl/en.

buflen equ

ctllen dw

64

?

length of buffer

length of control data

(continued)

MS-DOS Functions Reference 419



buff db buflen dup (1) contains control data

mov ax.4405h function &subfunction
mov bl.3 driveC = 3
mov dx.seg buff buffer address
mov ds.dx
mov dx.offset buff
mov cx.ctllen length of control data
int 21h transfer to MS-DOS
jc error jump if write failed

Int 2IH
Function 44H (68) Subfunction 06H
IOCTL: check input status

Returns a code indicating whether the device or file associated with a handle is ready for input.

[2.0]

Call with: AH
AL
BX

=44H
=D6H
= handle

Returns: If function successful
Carry flag = clear

and, for a device:
AL = OOH

F@
or, for a file:
AL = DOH

FFH

If function unsuccessful
Carry flag =set
AX = error code

if device not ready
if device ready

if file pointer at EOF
if file pointer not at EOF

Note: • This function can be used to check the status of character devices, such as the serial
port, that do not have their own "traditional" MS-DOS status calls.

•

420 Section II



Example: Check whether a character is ready from the standard auxiliary device (usually COMl).

stdaux equ 3 : standard auxiliary handle

mov ax,4406h function &subfunction
mov bx,stdaux standard auxiliary handle
int 21h transfer to MS-DOS
jc error jump if function failed
or al , al test status flag
jnz ready jump if character ready

Int 21B
Function 44H (68) Subfunction om
IOCTL: check output status

Returns a code indicating whether the device associated with a handle is ready for output.

[2.0]

Call with: AH
AL
BX

=44H
=07H
= handle

Returns: If function successful
Carry flag = clear

and, for a device:
AL = OOH

FFH

or, for a file:
AL = FFH

If function unsuccessful
Carry flag = set
AX = error code

if device not ready
if device ready

Note: • When used with a handle for a file, this function always returns a ready status, even
if the disk is full or no disk is in the drive.

MS-DOS Functions Reference 421



Example: Check whether the standard auxiliary device (usually COMl) can accept a character
for output.

stdaux equ 3 : standard auxiliary handle

mov ax,4407h function &subfunction
mov bx,stdaux standard auxiliary handle
int 21h transfer to MS-DOS
jc error jump if function failed
or a1 , al test status flag
jnz ready jump if not busy

Int21H
Function 44H (6S) Subfunction OSH
IOCTL: check ifblock device is removable

[3.0]

Checks whether the specified block device contains a removable storage medium, such as a floppy disk.

Call with: AH
AL
BL

=44H
=08H
=drive number (0 = default, 1 =A, 2 = B, etc.)

Returns: If function successful
Carry flag = clear
AL = OOH

OIH

If function unsuccessful
Carry flag = set
AX = error code

if medium is removable
if medium is not removable

Notes: • If a file is not found as expected on a particular drive, a program can use this sub-
function to determine whether the user should be prompted to insert another disk.

• This subfunction may not be used for a network drive.

• Block drivers are not required to support Subfunction 08H. If this subfunction is
requested and the block device cannot supply the information, control returns to
the program with the carry flag set and error code OOOIH (invalid function) in
register AX.

422 Section II



Example: Check whether drive C is removable.

mov ax.4408h function &subfunction
mov bl.3 drive 3 ..... C
int 21h transfer to MS-DOS
jc error jump if function failed
and al .1 test type of medium
jnz fixed jump if not removable

Int21H
Function 44H (68) Subfunction 09H
IOCTL: check ifblock device is remote

[3.1]

Checks whether the specified block device is local (attached to the computer running the program) or
remote (redirected to a network server).

Call with: AH
AL
BL

=44H
=09H
= drive number (0 = default, 1 =A, 2 = B, etc.)

Returns:

Note:

If function successful
Carry flag = clear
DX = device attribute word

bit 12 = 0 ifdrive is local
1 ifdrive is remote

If function unsuccessful
Carry flag = set
AX = error code

• Use of this subfunction should be avoided. Application programs should not distin­
guish between files on local and remote devices.

MS-DOS Functions Reference 423



Example: Check whether drive D is mounted on the machine running the program or is a network
drive.

mov ax,4409h function &subfunction
mov bl,4 drive 4 .... 0
int 21h transfer to MS-DOS
jc error jump if function failed
and dx,lOOOh test local/remote bit
jnz remote jump if network drive

Int21H
Function 44H (68) Subfunction OAH (10)
IOCTL: check ifhandle is remote

[3.1]

Checks whether the specified handle refers to a file or device that is local (located on the PC that is
running the program) or remote (located on a network server).

Call with: AH
AL
BX

=44H
=OAH
= handle

Returns: If function successful
Carry flag = clear
DX = attribute word for file or device

bit 15 = 0 ifloeal
1 ifremote

If function unsuccessful
Carry flag = set
AX =error code

Notes: • Application programs should not ordinarily attempt to distinguish between files on
local and remote devices.

• If the network has not been started, control returns to the calling program with the
carry flag set and error code OOOlH (invalid function) in register AX.

424 Section II



Example: Check if the handle saved in the variable jhandle is associated with a file or device on
the machine running the program or on a network server.

fhandle dw ? : device handle

mov ax,440ah function &subfunction
mov bx,fhandle file/device handle
int 21h transfer to MS-DOS
jc error jump if function failed
and dx,8000h test local/remote bit
jnz remote jump if network handle

Int 21H
Functiolll44H (68) Subfunction OBH (11)
IOCTL: change sharing retry count

[3.1]

Sets the number of times MS-DOS retries a disk operation after a failure caused by a file-sharing violation
before it returns an error to the requesting process. This subfunction is not available unless the file­
sharing module (SHARE.EXE) is loaded.

Call with: AH
AL
ex
DX

=44H
=OBH
= delays per retry (default = 1)

= number of retries (default = 3)

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• The length of a delay is a machine-dependent value determined by the CPU type
and clock speed. Each delay consists of the following instruction sequence:

xor cx,cx
loop

which executes 65,536 times before falling out of the loop.

• The sharing retry count affects the behavior of the system as a whole and is not a
local parameter for the process. If a program changes the sharing retry count, it
should restore the default values before terminating.

MS-DOS Functions Reference 425



Example: Change the number of automatic retries for a file-sharing violation to five.

moy ax,440bh function &subfunction
moy cx,1 delays per retry
moy dx,5 number of retries
int 21h transfer to MS-DOS
jc error : jump if function failed

Int 21R
Function 44H (68) Subfunction OCR (12)
10CTL: generic I/O control for character devices

[3.2]

Provides a general-purpose mechanism for communication between application programs and character­
device drivers.

Call with: AH
AL
BX
CH

CL

DS:DX

=44H
=OCH
= handle
= category (major) code:

OOH = unknown
OlH = COM1, COM2, COM3, or COM4 (3.3)
03H = CON (keyboard and display) (3.3)
05H = LPT1, LPT2, or LPT3 (3.2)

= function (minor) code:
45H = Set Iteration Count (3.2)
4AH = Select Code Page (3.3)
4CH =Start Code Page Preparation (3.3)
4DH = End Code Page Preparation (3.3)
5FH = Set Display Information (4.0)
65H = Get Iteration Count (3.2)
6AH = Query Selected Code Page (3.3)
6BH = Query Prepare List (3.3)
7FH = Get Display Information (4.0)

= s.egment:offset of parameter block

Returns: If function successful
Carry flag = clear

and, if called with CL =6SH, 6AH, 6BH, or 7FH
DS:DX = segment:offset of parameter block

426 Section II



Notes:

If function unsuccessful
Carry flag = set
AX = error code

• If the minor code is 45H (Set Iteration Count) or 65H (Get Iteration Count), the
parameter block is simply a 2-byte buffer containing or receiving the iteration count
for the printer. This call is valid only for printer drivers that support Output Until
Busy, and determines the number of times the device driver will wait for the device
to signal ready before returning from the output call.

• The parameter block for minor code 4DH (End Code Page Preparation) has the
following format:

dw
dw

2
o

length of following data
(reserved)

• For MS-DOS version 3.3, the parameter block for minor codes 4AH (Select Code
Page) and 6AH (Query Code Page) has the following format:

dw 2 length of following data
dw? ; code page 10

For MS-DOS version 4.0, minor codes 4AH and 6AH also set or get the double-byte
character set (DBCS) lead byte table, and the following format is used:

dw
dw
db

db
db

(n+2)*2+1
?

start.end

start.end
0.0

length of following data
code page 10

OBCS lead byte range 1

OBCS lead byte range n

• The parameter block for minor code 4CH (Start Code Page Preparation) has the
following format:

dw

dw

dw

dw
dw

dw

o

n

?

1

1

font type
bit 0 = 0 downloaded

= 1 cartridge
bits 1-15 = reserved (0)
length of remainder of

parameter block
number of code pages in

the following list
code page 1
code page 2

; code page n

• The parameter block for minor code 6BH (Query Prepare List) has the following
format, assuming n hardware code pages and m prepared code pages (n <= 12,
m <= 12):

MS-DOS Functions Reference 427



dw (n+m+2)*2
dw n
dw ?

dw ?

length of following data
number of hardware code pages
hardware code page 1
hardware code page 2

dw
dw
dw
dw

dw

?

m

?

hardware code page n
number of prepared code pages
prepared code page 1
prepared code page 2

: prepared code page m

• After a minor code 4CH (Start Code Page Preparation) call, the data defining the
code page font is written to the driver using one or more calls to the IOCTL Write
Control Data subfunction (Interrupt 21H, Function 44H, Subfunction 03H). The for­
mat of the data is device- and driver-specific. After the font data has been written to
the driver, a minor code 4DH (End Code Page Preparation) call must be issued. If no
data is written to the driver between the minor code 4CH and 4DH calls, the driver
interprets the newly prepared code pages as hardware code pages.

• A special variation of the minor code 4CH (Start Code Page Preparation) call, called
"Refresh," is required to actually load the peripheral device with the prepared code
pages. The refresh operation is obtained by requesting minor code 4CH with each
code page position in the parameter block set to -1, followed by an immediate call
for minor code 4DH (End Code Page Preparation).

• [4.0+] For minor codes SFH (Set Display Information) and 7FH (Get Display Informa­
tion), the parameter block is formatted as follows:

428 Section II

db
db
dw
dw

db
db
dw

dw
dw
dw
dw

o
o
14

?

o

?

?

1

level (0 in MS-DOS 4.0)
reserved (must be 0)

length of following data
control flags
bit 0 .... 0 intensity

.... 1 blink
bits 1-15 .... reserved (0)

mode type (1 .... text. 2 = APA)
reserved (must be 0)

colors
o = monochrome compatible
1 2 colors
2 4 colors
4 16 colors
8 256 colors
pixel columns
pixel rows
character columns
character rows



Example: Get the current code page for the standard list device.

stdprn equ

pars dw
dw

4

2
?

standard list handle

length of data
receives code page

mov ax,440ch function &subfunction
mov bx,stdprn standard list handle

"mov ch,5 LPTx category
mov cl,6ah query code page
mov dx,seg pars parameter block address
mov ds,dx
mov dx,offset pars
int 21h transfer to MS-DOS
jc error jump if function failed

Int 21H
Function 44H Subfunction ODD (13)
10CTL: generic I/O control for block devices

Provides a general-purpose mechanism for communication between application programs and block­
device drivers. Allows a program to inspect or change device parameters for a logical drive and to read,
write, format, and verify disk tracks in a hardware-independent manner.

Call with: AH
AL
BL
CH

CL

DS:DX

=44H
=ODH
= drive code (0 = default, 1 = A, 2 = B, etc.)
= category (major) code:

OBH = disk drive
= function (minor) code:

40H = Set Device Parameters
41H = Write Track
42H =Format and Verify Track
47H = Set Access Flag (4.0)
60H = Get Device Parameters
61H = Read Track
62H = Verify Track
67H = Get Access Flag (4.0)

= segment:offset of parameter block

MS-DOS Functions Reference 429



Returns:

Notes:

If function successful
Carry flag = clear

and, if called with CL = 60H or 61H
DS:DX = segment:offset of parameter block

If function unsuccessful
Carry flag = set
AX = error code

• The minor code 40H (Set Device Parameters) function must be used before an at­
tempt to write, read, format, or verify a track on a logical drive. In general, the
following sequence applies to any of these operations:

- Get the current parameters (minor code 60H). Examine and save them.
- Set the new parameters (minor code 40H).
- Perform the task.
- Retrieve the original parameters and restore them with minor code 40H.

• For minor codes 40H (Set Device Parameters) and 60H (Get Device Parameters), the
parameter block is formatted as follows:

Special-functions.field: offset DOH, length = 1 byte
Bit(s) Value Meaning
o 0 device BPB field contains a new default BPB

1 use current BPB
lOuseall fields in parameter block

1 use track layout field only
2 0 sectors in track may be different sizes (should always be

avoided)
1 sectors in track are all same size; sector numbers range

from 1 to the total number of sectors in the track (should
always be used)

3-7 0 reserved

Device typefield: offset 01H, length 1 byte
Value Meaning
o 320/360 KB, S.2S-inch disk
1 1.2 MB, S.2S-inch disk
2 720 KB, 3.S-inch disk
3 single-density, 8-inch disk
4 double-density, 8-inch disk
S fixed disk
6 tape drive
7 other type of block device

Device attributes.field: offset 02H, length 1 word
Bit(s) Value Meanblg
o 0 removable storage medium

1 nonremovable storage medium
1 0 door lock not supported

1 door lock supported
2-15 0 reserved

430 Section II



Number ofcylindersfield: offset 04H, length 1 word
Maximum number of cylinders supported on the block device

Media typefield: offset 06H, length /1 byte

Value Meaning
o 1.2 MB, S.2S-inch disk
I 320/360 KB, S.2S-inch disk

Device BPBfield: offset 07H, length 31 bytes
For format of the device BPB, see separate Note below.
If bit 0 = 0 in special-functions field, this field contains the new default BPB for the
device.
If bit 0 = I in special-functions field, the BPB in this field is returned by the device
driver in response to subsequent Build BPB requests.

Track layoutfield: offset 26H, variable-length table
Length Meaning
Word number of sectors in track
Word number of first sector in track
Word size of first sector in track

Word number of last sector in track
Word size of last sector in track

• The device BPB field is a 31-byte data structure that describes the current disk and
its control areas. The field is formatted as follows:
Byte(s) Meaning
OOH-OIH bytes per sector
02H sectors per cluster (allocation unit)
03-04H reserved sectors, beginning at sector 0
OSH number of file allocation tables (FATs)
06H-07H maximum number of root-directory entries
08H-09H number of sectors
OAH media descriptor
OBH-OCH sectors per FAT
ODH-OEH sectors per track
OFH-10H number of heads
11H-14H number of hidden sectors
ISH-18H large number of sectors (if bytes 08H-09H=0)
I9H-IEH reserved

• When minor code 40H (Set Device Parameters) is used, the number of cylinders
should not be altered, or some or all of the volume may become inaccessible.

• For minor codes 4IH (Write Track) and 6IH (Read Track), the parameter block is
formatted as follows:
Byte(s) Meaning
OOH special-functions field (must be 0)
OIH-02H head
03H-04H cylinder
OSH-06H starting sector
om-08H sectors to transfer
09H-OCH transfer buffer address

MS-DOS Functions Reference 431



Example:

• For minor codes 42H (Format and Verify Track) and 62H (Verify Track), the parame­
ter block is formatted as follows:
Byte(s) Meaning
OOH special-functions field

BU(s) Signijkance
o 0 = FormatlVerify track

1 = Format status call (MS-DOS 4.0 only)
1-7 reserved (0)

01H-02H head
03H-04H cylinder
In MS-DOS 4.0, this function may be called with bit 0 of the special-functions field
set after a minor code 40H call (Set Device Parameters) to determine whether the
driver supports the specified number of tracks and sectors per track. A status is
returned in the special-functions field which is interpreted as follows:
Value Meaning
o specified number of tracks and sectors per track supported
1 this function not supported by the ROM BIOS
2 specified number of tracks and sectors per track not supported
3 no disk in drive

• For minor codes 47H (Set Access Flag) and 67H (Get Access Flaw, the parameter
block is formatted as follows:
Byte Meaning
OOH special-functions field (must be 0)
01H disk access flag
When the disk access flag is zero, access to.the medium is blocked by the driver. The
flag is set to zero when the driver detects an unformatted medium or a medium with
an invalid boot record. When the access flag is nonzero, read/write operations to the
medium are allowed by the driver. A formatting program must clear the disk access
flag with minor code 47H before it requests minor code 42H (Format and Verify
Track).

Get the device parameter block for disk drive C.

dbpb db 128 dup (0) : device parameter block

mov ax,440dh function &subfunction
mov bl,3 drive C <::1 3
mov ch,8 disk category
mov cl.60h get device parameters
mov dx,seg dbpb buffer address
mov ds,dx
mov dx,offset dbpb
int 21h transfer to MS-DOS
jc error jump if function failed

432 Section II



Int21H
Function 44H (68) Subfunction OEH (14)
IOCTL: get logical drive map

Returns the logical drive code that was most recently used to access the specified block device.

[3.2]

Call with: AH
AL
BL

=44H
=OEH
= drive code (0 =default, 1 =A, 2 = B, etc.)

Returns:

Note:

Example:

If function successful
Carry flag = clear
AL = mapping code

OOH ifonly one logical drive code assigned to the block device
01H-1AH logical drive code (1 = A, 2 = B, etc.) mapped to the block

device

If function unsuccessful
Carry flag = set
AX = error code

• If a drive has not been assigned a logical mapping with Function 44H Subfunction
OFH, the logical and physical drive codes are the same.

Check whether drive A has more than one logical drive code.

mov ax.440eh function &subfunction
mov bl.1 drive 1 = A
int 21h transfer to MS-DOS
jc error jump if function failed
or al.al test drive code
jz labe11 jump. no drive aliases

MS-DOS Functions Reference 433



Int21H
Function 44H (68) Subfunction om (15)
IOCTL: set logical drive map

Sets the next logical drive code that will be used to reference a block device.

[3.2]

Call with: AH
AL
BL

=44H
=OFH
= drive code (0 = default, 1 = A, 2 = B, etc.)

Returns:

Note:

Example:

If function successful
Carry flag = clear
AL = mapping code

DOH ifonly one logical drive code assigned to the block device
01H-1AH logical drive code (1 = A, 2 = B, etc.) mapped to the block

device

If function unsuccessful
Carry flag = set
AX = error code

• When a physical block device is aliased to more than one logical drive code, this
function can be used to inform the driver which drive code will next be used to
access the device.

Notify the floppy-disk driver that the next access will be for logical drive B.

mov ax.440fh function &subfunction
mov bl.2 drive 2 - 8
int 21h transfer to MS-DOS
jc error jump if function failed

434 Section II



Int 21H
Function 45H (69)
Duplicate handle

[2.0]

Given a handle for a currently open device or file, returns a new handle that refers to the same device or
file at the same position.

Call with: AH
BX

=45H
= handle to be duplicated

Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = new handle

If function unsuccessful
Carry flag = set
AX = error code

• A seek, read, or write operation that moves the file pointer for one of the two
handles also moves the file pointer associated with the other.

• This function can be used to efficiently update the directory for a file that has
changed in length, without incurring the overhead of closing and then reopening the
file. The handle for the file is simply duplicated with this function and the duplicate
is closed, leaving the original handle open for further read/write operations.

• [3.3] See also Int 21H Function 68H (Commit File).

Duplicate the handle stored in the variable fhandle, then close the duplicate. This
ensures that all buffered data is physically written to disk and that the directory entry for
the corresponding file is updated, but leaves the original handle open for subsequent file
operations.

fhandle dw

mov
mov
int
jc

mov
mov
int

o

ah,45h
bx,fhandle
21h
error

bx,ax
ah,3eh
21h

: file handle

get duplicate handle
function number
original file handle
transfer to MS-DOS
jump if dup failed
now close dup'd handle
put handle into ax
function number
transfer to MS-DOS

(continued)

MS-DOS Functions Reference 435



jc

Int21H
Function 46H (70)
Redirect handle

error jump if close failed

[2.0]

Given two handles, makes the second handle refer to the same device or file at the same location as the
first handle. The second handle is then said to be redirected.

Call with: AH
BX
CX

=46H
= handle for file or device
= handle to be redirected

Returns:

Notes:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• If the handle passed in ex already refers to an open file, that file is closed first.

• A seek, read, or write operation that moves the file pointer for one of the two
handles also moves the file pointer associated with the other.

• This function is commonly used to redirect the standard input and output handles to
another file or device before a child process is executed with Int 21H Function 4BH.

Redirect the standard output to the list device, so that all output directed to the console
will appear on the printer instead. Later, restore the original meaning of the standard
output handle.

stdin equ 0

stdout equ 1

stderr equ 2
stdaux equ 3
stdprn equ 4

dhandle dw 0 duplicate handle

436 Section II



get dup of stdout
mov ah,45h function number
mov bx,stdout standard output handle
int 21h transfer to MS-DOS
jc error jump if dup failed
mov dhandle,ax save dup'd handle

redirect standard output
to standard list device

mov ah,46h function number
mov bx,stdprn standard list handle
mov cx,stdout standard output handle
int 21h transfer to MS-DOS
jc error jump if redirect failed

restore standard output
to original meaning

mov ah,46h function number
mov bx,dhandle saved duplicate handle
mov cx,stdout standard output handle
int 21h transfer to MS-DOS
jc error jump if redirect failed

close duplicate handle
because no longer needed

mov ah,3eh function number
mov bx,dhandle saved duplicate handle
int 21h transfer to MS-DOS
jc error jump if close failed

Int 21H
Function 47H (71)
Get current directory

[2.0]

Obtains an ASCIIZ string that describes the path from the root to the current directory, and the name of
that directory.

Call with: AH
DL
DS:SI

=47H
= drive code (0 = default, 1 = A, etc.)
= segment:offset of 64-byte buffer

MS-DOS Functions Reference 437



Returns:

Notes:

Example:

If function successful
Carry flag = clear

and buffer is filled in with full pathname from root of current directory.

If function unsuccessful
Carry flag = set
AX = error code

• The returned path name does not include the drive identifier or a leading backslash
(\). It is terminated with a null (OOH) byte. Consequently, if the current directory is
the root directory, the first byte in the buffer will contain OOH.

• The function fails if the drive code is invalid.

• The current directory may be set with Int 21H Function 3BH.

Get the name of the current direc~ory for drive C into the buffer named dbuff.

dbuff db 64 dup (0) : receives path string

mov ah,47h function number
mov dl,03 drive C - 3
mov si,seg dbuff buffer address
mov ds,si
mov si,offset dbuff
int 21h transfer to MS-DOS
jc error jump if error

Int21H
Function 4SH (72)
Allocate memory block

Allocates a block of memory and returns a pointer to the beginning of the allocated area.

[2.0]

Callwith: AH
BX

=48H
= number of paragraphs of memory needed

Returns: . If function successful
Carry flag = clear
AX = base segment address of allocated block

438 Section II



Notes:

Example:

If function unsuccessful
Carry flag = set
AX = error code
BX = size of largest available block (paragraphs)

• If the function succeeds, the base address of the newly allocated block is AX:OOOO.

• The default allocation strategy used by MS-DOS is "first fit"; that is, the memory
block at the lowest address that is large enough to satisfy the request is allocated.
The allocation strategy can be altered with Int 21H Function 58H.

• When a .COM program is loaded, it ordinarily already "owns" all of the memory
in the transient program area, leaving none for dynamic allocation. The amount
of memory initially allocated to a .EXE program at load time depends on the
MINALLOC and MAXALLOC fields in the .EXE file header. See Int 21H Function
4AH.

Request a 64 KB block of memory for use as a buffer.

bufseg dw : segment base of new block

moy ah.48h function number
mov bx.l000h block size (paragraphs)
int 21h transfer to MS-DOS
jc error jump if allocation failed
moy bufseg.ax save segment of new block

Int21H
Function 49H (73)
Release memory block

Releases a memory block and makes it available for use by other programs.

[2.0]

Call with: AH
ES

=49H
= segment of block to be released

Returns: If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

MS-DOS Functions Reference 439



Notes:

Example:

• This function assumes that the memory block being released was previously ob­
tained by a successful call to Int 21H Function 48H.

• The function will fail or can cause unpredictable system errors if:

- the program releases a memory block that does not belong to it.
- the segment address passed in register ES is not a valid base address for an exist-

ing memory block.

Release the memory block that was previously allocated in the example for Int 21H Func­
tion 48H (page 438).

bufseg dw? : segment base of block

mov
mov
int
jc

ah,49h
es,bufseg
21h
error

: function number
: base segment of block

.:' transfer to MS - DOS
: jump if release failed

Int21H
Function 4AH (74)
Resize memory block

[2.0]

Dynamically shrinks or extends a memory block, according to the needs of an application program.

Call with: AH
BX
ES

=4AH
= desired new block size in paragraphs
= segment of block to be modified

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code
BX = maximum block size available (paragraphs)

• This function modifies the size of a memory block that was preViously allocated with
a call to Int 21H Function 48H.

• If the program is requesting an increase in the size of an allocated block, and this
function fails, the maximum possible size for the specified block is returned in regis­
ter BX. The program can use this value to determine whether it should terminate, or
continue in a degraded fashion with less memory.

440 Section II



Example:

• A program that uses EXEC (Int 21H Function 4BH) to load and execute a child pro­
gram must call this function first to make memory available for the child, passing the
address of its PSP in register E~ and the amount of memory needed for its own code,
data, and stacks in register BX.

Resize the memory block that was allocated in the example for Int 21H Function 48H
(page 438), shrinking it to 32 KB.

bufseg dw : segment base of block

mov ah.4ah function number
mov bx.0800h new size (paragraphs)
mov es.bufseg segment base of block
int 21h transfer to MS-DOS
jc error jump. resize failed

Int 21H
Function 4BH (75)
Execute program (EXEC)

[2.0]

Allows an application program to run another program, regaining control when it is finished. Can also be
used to load overlays, although this use is uncommon.

Call with: AH
AL

ES:BX
DS:DX

=4BH
= subfunction

OOH = Load and Execute Program
03H = Load Overlay

= segment:offset of parameter block
= segment:offset of ASCIIZ program pathname

Returns: If function successful
Carry flag = clear

[2] all registers except for CS:IP may be destroyed
[3.0+] registers are preserved in the usual fashion

If function unsuccessful
Carry flag = set
AX = error code

MS-DOS Functions Reference 441



Notes:

Example:

• The parameter block format for Subfunction OOH (Load and Execute Program) is
as follows:
Bytes Contents
OOH-OIH segment pointer to environment block
02H-03H offset of command line tail
04H-05H segment of command line tail
06H-07H offset of first FCB to be copied into new PSP + 5CH
08H-09H segmentoffi~tFCB

OAH-OBH offset of second FCB to be copied into new PSP + 6CH
OCH-ODH segment of second FCB

• The parameter block format for Subfunction 03H (Load Overlay) is as follows:
Bytes Contents
OOH-OIH segment address where overlay is to be loaded
02H-03H relocation factor to apply to loaded image

• The environment block must be paragraph-aligned. It consists of a sequence of
ASCIIZ strings in the form:

db 'COMSPEC=A:\COMMAND.COM',O

The entire set of strings is terminated by an extra null (OOH) byte.

• The command tail format consists of a count byte, followed by an ASCII string, ter­
minated by a carriage return (which is not included in the count). The first character
in the string should be an ASCII space (20H) for compatibility with the command tail
passed to programs by COMMAND.COM. For example:

db 6,' *.OAT',Odh

• Before a program uses Int 21H Function 4BH to run another program, it must release
all memory it is not actually using with a call to Int 21H Function 4AH, passing the
segment address of its own PSP and the number of paragraphs to retain.

• Ordinarily, all active handles of the parent program are inherited by the child pro­
gram, although the parent can prevent this in MS-DOS 3.0 and later by setting the
inheritance bit when the file or device is opened. Any redirection of the standard in­
put and/or output in the parent process also affects the child process.

• The environment block can be used to pass information to the child process. If the
environment block pointer in the parameter block is zero, the child program inherits
an exact copy of the parent's environment. In any case, the segment address of the
child's environment is found at offset 002CH in the child's PSP.

• After return from the EXEC function call, the termination type and return code of
the child program may be obtained with Int 21H Function 4DH.

See Chapter 12.

442 Section II



Int21H
Function 4CH (76)
Terminate process with return code

[2.0]

Terminates the current process, passing a return code to the parent process. This is one of several
methods that a program can use to perform a final exit. MS-DOS then takes the following actions:

• All memory belonging to the process is released.

• File buffers are flushed and any open handles for files or devices owned by the
process are closed.

• The termination handler vector (Int 22H) is restored from PSP:OOOAH.

• The Ctrl-C handler vector (Int 23H) is restored from PSP:OOOEH.

• [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

• Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion and the transient
portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and inter­
preted; otherwise, a prompt is issued for the next user command.

Call with:

Returns:

AH
AL

Nothing

=4CH
= return code

Notes: • [2.0+] This is the preferred method of termination for application programs because
it allows a return code to be passed to the parent program and does not rely on the
contents of any segment register. Other methods of performing a final exit are:

- Int 20H
- Int 21H Function OOH
- Int 21H Function 31H
- Int.27H

• Any files that have been opened using FCBs and modified by the program should be
closed before program termination; otherwise, data may be lost.

• The return code can be retrieved by the parent process with Int 21H Function 4DH
(Get Return Code). It can also be tested in a batch file with an IF ERRORLEVEL
statement. By convention, a return code of zero indicates successful execution, and a
non-zero return code indicates an error.

• [3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

MS-DOS Functions Reference 443



Example: Terminate the current process, passing a return code of 1 to the parent process.

mov
mov
int

Int21H
Function 4DH (77)
Get return code

ah.4ch
al.Olh
21h

function number
return code
transfer to MS-DOS

[2.0]

Used by a parent process, after the successful execution of an EXEC call (Int 21H Function 4BH), to
obtain the return code and termination type of a child process.

Call with:

Returns:

AH

AH

AL

=4DH

= exit type
OOH ifnormal termination by Int 20H, Int 21HFunction OOH, or
Int 21H Function 4CH
o1H iftermination by user's entry ofCtrlDC
02H iftermination by critical-error handler
03H iftermination by Int 21HFunction 31H or Int 27H

= return code passed by child process (0 if child terminated by Int 20H,
Int 21H Function OOH, or Int 27H)

Notes:

Example:

• This function will yield the return code of a child process only once. A subsequent
call without an intervening EXEC (Int 21H Function 4BH) will not necessarily return
any valid information.

• This function does not set the carry flag to indicate an error. If no previous child
process has been executed, the values returned in AL and AH are undefined.

Get the return code and termination kind of child process that was previously executed
with Int 21H Function 4BH (EXEC).

retcode dw

mov
int
mov

?

ah.4dh
21h
retcode.ax

: return code. termination type

function number
transfer to MS-DOS
save child process info

444 Section II



Int 21H
Function 4EH (78)
Find first file

[2.0]

Given a file specification in the form 9f an ASCIIZ string, searches the default or specified directory on
the default or specified drive for the first matching file.

Call with: AH
CX

DS:DX

=4EH
= search attribute (bits may be combined)

Bit(s) Significance (ifset)
o read-only
1 hidden
2 system
3 volume label
4 directory
5 archive
6-15 reserved (0)

= segment:offset of ASCIIZ pathname

Returns:

Notes:

If function successful (matching file found)
Carry flag = clear

and search results returned in current disk transfer area as follows:
Byte(s) Description
00H-14H reserved (0)
I5H attribute of matched file or directory
I6H-17H file time

bits OOH-04H =2-second increments (0-29)
bits 05H~AH = minutes (0-59)
bits OBH~FH=hours (0-23)

I8H-19H file date
bits OOH-04H = day (1-31)
bits 05H-oBH = month (1-12)
bits 09H-OFH =year (relative to 1980)

IAH-IDH file size
1EH-2AH ASCIIZ filename and extension

If function unsuccessful (no matching files)
Carry flag = set
AX = error code

• This function assumes that the DTA has been previously set by the program with Int
2IH Function IAH to point to a buffer of adequate size.

• The * and? wildcard characters are allowed in the filename. If wildcard characters
are present, this function returns only the first matching filename.

MS-DOS Functions Reference 445



Example:

• If the attribute is 0, only ordinary files are found. If the volume label attribute bit is
set, only volume labels will be returned (if any are present). Any other attribute or
combination of attributes (hidden, system, and directory) results in those files and
all normal files being matched.

Find the first .COM file in the directory \MYDIR on drive C.

fname db 'C:\MYDIR\*.COM'.O

dbuff db 43 dup (0) : receives search results

set DTA address
mov ah.lah function number
mov dx.seg dbuff result buffer address
mov ds.dx
mov dx.offset dbuff
int 21h transfer to MS-DOS

search for first match
mov ah.4eh function number
mov cx.O normal attribute
mov dx.seg fname address of filename
mov ds.dx
mov dx.offset fname
int 21h transfer to MS-DOS
jc error jump if no match

Int21H
Function 4FH (79)
Find next file

[2.0]

Assuming a previous successful call to Int 21H Function 4EH, finds the next file in the default or specified
directory on the default or specified drive that matches the original file specification.

Call with: AH =4FH

Returns:

Assumes DTA points to working buffer used by previous successful Int 21H Function
4EHor4FH.

If function successful (matching file found)
Carry flag = clear

and search results returned in current disk transfer area as described for Int 21H

Function 4EH

446 Section II



Notes:

Example:

If function unsuccessful (no more matching files)
Carry flag = set
AX = error code

• Use of this call assumes that the original file specification passed to Int 21H Function
4EH contained one or more • or? wildcard characters.

• When this function is called, the current disk transfer area (DTA) must contain infor­
mation from a previous successful call to Int 21H Function 4EH or 4FH.

Continuing the search operation in the example for Int 21H Function 4EH, find the next
.COM file (if any) in the directory \MYDIR on drive C.

fname db 'C:\MYDIR\*.COM',O

dbuff db

mov
int
jc

43 dup (0)

ah.4fh
21h
error

: receives search results

search for next match
function number
transfer to MS-DOS
jump if no more files

Int 21H
Function 50H (80)
Reserved

Int 21H
Function 5ill (81)
Reserved

Int 21H
Function 52H (82)
Reserved

MS-DOS Functions Reference 447



Int 218
Fuitction 538 (83)
Reserved

Int218
Function 548 (84)
Get verify flag

Obtains the current value of the system verify (read-after-write) flag.

[2.0]

Call with: AH

Returns: AL

= 54H

= current verify flag value
OOH ifverify off
olH ifverify on

Notes: • Because read-after-write verification slows disk operations, the default state of the
system verify flag is OFF.

• The state of the system verify flag can be changed through a call to Int 21H Function
2EH or by the MS-DOS commands VERIFY ON and VERIFY OFF.

Example: Obtain the state of the system verify flag.

muv
int
cmp
je

Int 218
Function 558 (85)
Reserved

448 Section II

ah,54h
21h
al,01h
labe11

fun~tion number
transfer to MS-DOS
check verify state
jump if verify on
else assume verify off



Int21H
Function 56H (86)
Renameftle

[2.0]

Renames a file and/or moves its directory entry to a different directory on the same disk. In MS-DOS
version 3.0 and later, this function can also be used to rename directories.

Call with: AH
DS:DX
ES:DI

= 56H
= segment:offset of current ASCIIZ pathname
= segment:offset of new ASCIIZ pathname

Returns:

Notes:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• The function fails if:

- any element of the pathname does not exist.
- a file with the new pathname already exists.
- the current pathname specification contains a different disk drive than does the

new pathname.
- the file is being moved to the root directory, and the root directory is full.
- [3.0+] the program is running on a network and the user has insufficient access

rights to either the existing file or the new directory.

• The. and? wildcard characters are not allowed in either the current or new
pathname specifications.

Change the name of the file MYFILE.DAT in the directory \MYDIR on drive C to
MYTEXT.DAT. At the same time, move the file to the directory \SYSTEM on the
same drive.

oldname db

newname db

'C:\MYDIR\MYFILE.DAT' .0

'C:\SYSTEM\MYTEXT.DAT'.O

moy
moy
moy
moy
moy
moy
moy

ah.56h

dx.seg oldname
ds.dx
dx.offset oldname
di.seg newname
es.di
di.offset newname

function number
old filename address

new filename address

(continued)

MS-DOS Functions Reference 449



int
jc

21h
error

transfer to MS-DOS
jump if rename failed

Int21H
Function 57H (87)
Get or set file date and time

Obtains or modifies the date and time stamp in a file's directory entry.

[2.0]

Call with:

Returns:

Notes:

If getting date and time
AH =sm
AL = DOH
BX = handle

If setting date and time
AH =sm
AL = 0IH
BX = handle
CX = time

bits OOH-04H = 2-second increments (0-29)
bits 05H-GAH = minutes (0-59)
bits OBH-GPH = hours (0-23)

ox = date
bits ooH-04H = day (1-31)
bits 05H-08H = month (1-12)
bits 09H-OFH = year (relative to 1980)

If function successful
Carry flag = clear

and, if called with AL = DOH
CX = time
OX = date

If function unsuccessful
Carry flag = set
AX = error code

• The file must have been previously opened or created via a successful call to Int 2IH
Function 3CH, 30H, SAH, 5BH, or 6CH.

• If the I6-bit date for a file is set to zero, that file's date and time are not displayed on
directory listings.

• A date and time set with this function will prevail, even if the file is modified after­
wards before the handle is closed.

450 Section II



Example: Get the date that the file MYFILE.DAT was created or last modified, and then decom­
pose the packed date into its constituent parts in the variables month, day, and year.

fname db

month dw
day dw
year dw

mov
mov
mov
mov
mov
int
jc

mov
mov
mov
int
jc

mov
and
mov
shr
mov
and
mov
shr
and
add
mov

mov
int
jc

•MYFI LE. OAT' .0

o
o
o

ah.3dh
al.O
dx.seg fname
ds.dx
dx.offset fname
21h
error

bx.ax
ah.57h
al.O
21h
error

day.dx
day.01fh
cl.5
dx.cl
month.dx
month.Ofh
cl.4
dx.cl
dx.03fh
dx.1980
year.dx

ah.3eh
21h
error

first open the file
function number
read-only mode
filename address

transfer to MS-DOS
jump if open failed

get file date/time
copy handle to BX
function number
o = get subfunction
transfer to MS-DOS
jump if function failed

decompose date
isolate day

isolate month

isolate year
relative to 1980
correct to real year
save year

now close file.
handle still in BX
function number
transfer to MS-DOS
jump if close failed

MS-DOS Functions Reference 451



Int2lli
Function 58H (88)
Get or set allocation strategy

[3.0]

Obtains or changes the code indicating the current MS-DOS strategy for allocating memory blocks.

Call with:

Returns:

Notes:

Example:

If getting strategy code
AH = 58H
AL = OOH

If setting strategy code
AH = 58H
AL = OIH
BX = desired strategy code

OOH =firstfit
01H = best/a
02H = lastfit

If function successful
Carry flag = clear

and, if called with AL = OOH
AX = current strategy code

If function unsuccessful
Carry flag = set
AX = error code

• The memory allocation strategies are:

- First fit: MS-DOS searches the available memory blocks from low addresses to
high addresses, assigning the first one large enough to satisfy the block allocation
request.

- Best fit: MS-DOS searches all available memory blocks and assigns the smallest
available block that will satisfy the request, regardless of its position.

- Last fit: MS-DOS searches the available memory blocks from high addresses to
low addresses, assigning the highest one large enough to satisfy the block alloca­
tion request.

• The default MS-DOS memory allocation strategy is First Fit (code 0).

Save the code indicating the current memory allocation strategy in the variable strat,
then change the system's memory allocation strategy to "best fit."

strat dw o ; previous strategy code

452 Section II



get current strategy
mov ah.58h function number
mov al.O o = get strategy
int 21h transfer to MS-DOS
jc error jump if function failed
mov strat.ax save strategy code

now set new strategy
mov ah.58h function number
mov al .1 1 = set strategy
mov bx.l 1 = best fit
int 21h transfer to MS-DOS
jc error jump if function failed

Int 21H
Function 59H (89)
Get extended error information

[3.0]

Obtains detailed error information after a previous unsuccessful Int 21H function call, including the
recommended remedial action.

Call with:

Returns:

AH
BX

AX

=59H
=OOH

= extended error code
OlH
02H
03H
04H
05H
06H
07H
08H
09H
OAH(lO)
OBH(ll)
OCH(12)
ODH(13)
OEH(14)
OFH(15)
lOH(16)
IlH(17)

function number invalid
file notfound
path notfound
too many open files
access denied
handle invalid
memory control blocks destroyed
insufficient memory
memory block address invalid
environment Invalid
format invalid
access code invalid
data invalid
unknown unit
disk drive invalid
attempted to remove current directory
not same device

MS-DOS Functions Reference 453



454 Section II

12H(lB)
13H(19)
14H(20)
15H(21)
16H(22)
17H(23)
lBH(24)
19H(25)
lAH(26)
lBH(27)
lCH(2B)
lDH(29)
lEH(30)
lFH(31)
20H(32)
21H(33)
22H(34)
23H(35)
24H(36)
25H-31H
32H(50)
33H(51)
34H(52)
35H(53)
36H(54)
37H(55)
3BH(56)
39H(57)
3AH(5B)
3BH(59)
3CH(60)
3DH(61)
3EH(62)
3FH(63)
40H(64)
41H(65)
42H(66)
43H(67)
44H(68)
45H(69)
46H(70)
47H(71)
4BH(72)
49H-4FH
50H(BO)
51H(Bl)
52H(B2)
53H(B3)

no morefiles
disk write-protected
unknown unit
drive not ready
unknown command
data error (CRC)
bad request structure length
seek error
unknown media type
sector notfound
printer out ofpaper
writefault
readfault
generalfailure
sharing violation
lock violation
disk change invalid
FCB unavailable
sharing buffer exceeded
reserved
unsupported network request
remote machine not listening
duplicate name on network
network name notfound
network busy
device no longer exists on network
netBIOS command limit exceeded
error in network adapter hardware
incorrect responsefrom network
unexpected network error
remote adapter incompatible
print queuefull
not enough spacefor printfile
printfile canceled
network name deleted
network access denied
incorrect network device type
network name notfound
network name limit exceeded
netBIOS session limit exceeded
file sharing temporarilypaused
network request not accepted
print or disk redirection paused
reserved
file already exists
reserved
cannot make directory
fail on Int 24H (critical error)



BH

54H(84)
55H(85)
56H(86)
57H(87)
58H(88)
59H(89)
5AH(90)

= error class
01H
02H

03H
O4H
05H
O6H

07H
O8H
09H
OAH(lO)
OBH(ll)

OCH(12)
ODH(13)

too many redirections
duplicate redirection
invalidpassword
invalidparameter
network devicefault
function not supported by network
required system component not installed

ifout ofresource (such as storage or handles)
ifnot error, but temporary situation (such as locked region
in file) that can be expected to end
ifauthorization problem
ifinternal error in system software
ifhardwarefailure
ifsystem softwarefailure not thefault ofthe activeprocess
(such as missing configuration files)
ifapplication program error
iffile or item notfound
iffile or item ofinvalid type orformat
iffile or item locked
ifwrong disk in drive, bad spot on disk, or storage medium
problem
if item already exists
unknown error

BL = recommended action
OlH retry reasonable number oftimes, then prompt user to

select abort or ignore
02H retry reasonable number oftimes with delay between

retries, then prompt user to select abort or ignore
03H get corrected information from user (typically caused by

incorrectfilename or drive specification)
O4H abort application with cleanup (i.e., terminate the

program in as orderly a manner aspossible: releasing
locks, closingfiles, etc.)

05H perform immediate exit without cleanup
O6H ignore error
07H retry after user intervention to remove cause oferror

CH = error locus
OlH unknown
02H block device (disk or disk emulator)
03H network
O4H serial device
05H memory

and, for MS-DOS 3.0 and later,

ES:DI = ASCIIZ volume label of disk to insert, if AX = 0022H (invalid
disk change)

MS-DOS Functions Reference 455



Notes:

Example:

• This function may be called after any other Int 21H function call that returned an er­
ror status, in order to obtain more detailed information about the error type and the
recommended action. If the previous Int 21H function call had no error, OOOOH is
returned in register AX. This function may also be called during the execution of a
critical-error (Int 24H) handler.

• The contents of registers CL, OX, SI, 01, BP, OS, and ES are destroyed by this
function.

• Note that extended error codes 13H-IFH (19-31) and 34 (22H) correspond exactly
to the error codes O-OCH (0-12) and OFH (15) returned by Int 24H.

• You should not code your programs to recognize only specific error numbers if you
wish to ensure upward compatibility, because new error codes are added in each
version of MS-DOS.

Attempt ·to open the file named NOSUCH.DAT using a file control block; if the open
request fails, get the extended error code.

myfcb db 0 drive = default
db 'NOSUCH filename, 8 chars
db 'OAT' extension, 3 chars
db 25 dup (0) remainder of FCB

labell: open the file
mov ah,Ofh function number
mov dX,seg myfcb address of FCB
mov dS,dx
mov dx,offset myfcb
int 21h transfer to MS-DOS
or a1 , a1 check open status
jz success jump if opened OK

open failed, get
extended error info

mov ah,59h function number
xor bx,bx BX must = 0
int 21h transfer to MS-DOS
or aX,ax double check for error
jz success jump if no error

cmp bl,2 should we retry?
jle labell yes, jump
jmp error no, give up

456 Section II



Int21H
Function 5AH (90)
Create temporary file

[3.0]

Creates a file with a unique name, in the current or specified directory on the default or specified disk
drive, and returns a handle that can be used by the program for subsequent access to the file. The name
generated for the file is also returned in a buffer specified by the program.

Call with: AH
CX

DS:DX

=5AH
= attribute (bits may be combined)

Bit(s) Significance (ifset)
o read-only
1 hidden
2 system
3-4 reserved (0)
5 archive
6-15 reserved (0)

= segment:offset of ASCIIZ path

Returns:

Notes:

If function successful
Carry flag = clear
AX = handle
DS:DX = segment:offset of complete ASCIIZ pathname

If function unsuccessful
Carry flag = set
AX = error code

• The ASCIIZ path supplied to this function should be followed by at least 13 addi­
tional bytes of buffer space. MS-DOS adds a backslash (\) to the supplied path, if
necessary, then appends a null-terminated filename that is a function of the current
time.

• Files created with this function are not automatically deleted when the calling pro­
gram terminates.

• The function fails if
- any element of the pathname does not exist.
- the file is being created in the root directory, and the root directory is full.

• See also Int 21H Functions 3CH, 5BH, and 6CH, which provide additional facilities
for creating files.

• [3.0+] If the program is running on a network, the file is created and opened for
read/write access in compatibility sharing mode.

MS-DOS Functions Reference 457



Example: Create a temporary file with a unique name and normal attribute in directory \ TEMP of
drive C. Note that you must allow room for MS-DOS to append the generated filename to
the supplied path. The complete file specification should be used to delete the tempo­
rary file before your program terminates.

fname db
db

fhandle dw

'C:\TEMP\'
13 dup CO)

?

pathname for temp file
receives filename

file handle

mov ah,5ah function number
mov cx,O normal attribute
mov dx,seg fname address of pathname
mov ds,dx
mov dx,offset fhame
int 21h transfer to MS-DOS
jc error jump if create failed
mov fhandle,ax save file handle

Int 21H
Function 5HU (91)
Create new file

[3.0]

Given an ASCIIZ pathname, creates a file in the designated or default directory on the designated or
default drive, and returns a handle that can be used by the program for subsequent access to the file. If a
file with the same name already exists, the function fails.

Call with: AH
ex

DS:DX

=5BH
= attribute (bits may be combined)

Bit(s) Significance (ifset)
o read-only
1 hidden
2 system
3 volume label
4 reserved (0)
5 archive
6-15 reserved (0)

= segment:offset of ASCIIZ pathname

458 Section II



Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = handle

If function unsuccessful
Carry flag = set
AX = error code

• The function fails if:
any element of the specified path does not exist.
a file with the identical pathname (i.e., the same filename and extension in the
same location in the directory structure) already exists.
the file is being created in the root directory, and the root directory is full.
[3.0+] the program is running on a network, and the user has insufficient access
rights to the directory that will contain the file.

• The file is usually given a normal attribute (0) when it is created, and is opened for
both read and write operations. The attribute can subsequently be modified with Int
21H Function 43H.

• See also Int 21H Functions 3CH, 5AH, and 6CH, which provide alternative ways of
creating files.

• This function may be used to implement semaphores in a network or multitasking
environment. If the function succeeds, the program has acquired the semaphore. To
release the semaphore, the program simply deletes the file.

Create and open a file named MYFILE.DAT in the directory \MYDIR on drive C;
MS-DOS returns an error if a file with the same name already exists in that location.

fname db 'C:\MYDIR\MYFILE.DAT' ,a

fhandle dw ? : file handle

mov ah,5bh function number
xor cX,cx normal attribute
mov dX,seg fname filename address
mov dS,dx
mov dX,offset fname
int 21h transfer to MS-DOS
jc error jump if create failed
mov fhandle,ax save file handle

MS-DOS Functions Reference 459



Int21D
Function 5eD (92)
Lock or unlock file region

[3.0]

Locks or unlocks the specified region of a file. This function is not available unless the file-sharing
module (SHARE.EXE) is loaded.

Call with: AH =5CH
AL =OOH if locking region

OIH if unlocking region
BX = handle "<'.0--,<,'0-:\ Q.,

ex = high part of region offset of)

DX = low part of region offset
;

SI = high part of region length r;O
DI = low part of region length \ Q, \~

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• This function is useful for file and record synchronization in a multitasking environ­
ment or network. Access to the file as a whole is controlled by the attribute and file­
sharing parameters passed in open or create calls and by the file's attributes, which
are stored in its directory entry.

• The beginning location in the file to be locked or unlocked is supplied as a positive
double precision integer, which is a byte offset into the file. The length of the region
to be locked or unlocked is similarly supplied as a positive double precision integer.

• For every call to lock a region of a file, there must be a subsequent unlock call with
exactly the same file offset and length.

• Locking beyond the current end of file is not an error.

• Duplicate handles created with Int 2IH Function 45H, or handles redirected to the
file with Int 21H Function 46H, are allowed access to locked regions within the same
process.

• Programs that are loaded with the EXEC call (Int 21H Function 4BH) inherit the
handles of their parent but not any active locks.

• If a process terminates without releasing active locks on a file, the result is un­
defined. Therefore, programs using this function should install their own Int 23H
and Int 24H handlers so that they cannot be terminated unexpectedly.

460 Section II



Example: Assume that a file was previously opened and that its handle was saved in the variable
}handle. Lock a 4096 byte region of the file, starting at 32,768 bytes from the beginning
of the file, so that it cannot be accessed by other programs.

fhandle dw : file handle

mov ah.5ch function number
mov al .0 subfunction 0 = lock
mov bx.fhandle file handle
mov cx.O upper part of offset
mov dx.32768 lower part of offset
mov si .0 upper part of length
mov di.4096 lower part of length
int 21h transfer to MS-DOS
jc error jump if lock failed

Int21H
Function 5DH (93)
Reserved

Int 21H
Function 5EH (94) Subfunction OOH
Get machine name

[3.1]

Returns the address of an ASCIIZ (null-terminated) string identifying the local computer. This function
call is only available when Microsoft Networks is running.

c3llwith: AH
AL
DS:DX

= 5EH
=OOH
= segment:offset of buffer to receive string

CL
DX:DX

Returns: If function successful
Carry flag = clear
CH = OOH if name not defined

<> OOH if name defined
= netBIOS name number (if CH <> 0)
= segment:offset of identifier (if CH <> 0 )

MS-DOS Functions Reference 461



Notes:

Example:

If function unsuccessful
Carry flag = set
AX = error code

• The computer identifier is a IS-byte string, padded with spaces and terminated with
a null (OOH) byte.

• The effect of this call is unpredictable if the file-sharing support module is not
loaded.

Get the machine name of the local computer into the buffer named mname.

mname db 16 dup (1)

mov ax,5eOOh function &subfunction
mov dx,seg mname address of buffer
mov ds,dx
mov dx,offset mname
int 21h transfer to MS-DOS
jc error jump if function failed

or ch,ch make sure name exists
jz error jump if no name defined

Int21H
Function 5EH (94) Subfunction 02H
Set printer setup string

[3.1]

Specifies a string to be sent in front of all files directed to a particular network printer, allowing users at
different network nodes to specify individualized operating modes on the same printer. This function call
is only available when Microsoft Networks is running.

Call with: AH
AL
BX
ex
DS:SI

=SEH
=02H
= redirection list index
= length of setup string
= segment:offset of setup string

Returns: If function successful
Carry flag = clear

462 Section II



Notes:

Example:

If function unsuccessful
Carry flag = set
AX = error code

• The redirection list index passed in register BX is obtained with Function SFH Sub­
function 02H (Get Redirection List Entry).

• See also Function SEH Subfunction 03H, which may be used to obtain the existing
setup string for a particular network printer.

Initialize the setup string for the printer designated by redirection list index 2 so that the
device is put into boldface mode before printing a file requested by this network node.

setup db Olbh,045h ; selects boldface mode

mov ax,5e02h function &subfunction
mov bx,2 redirection list index 2
mov cx,2 length of setup string
mov si,seg setup address of setup string
mov ds,si
mov si,offset setup
int 21h transfer to MS-DOS
jc error jump if function failed

Int 21H
Function 5EH (94) Subfunction 03H
Get printer setup string

[3.1]

Obtains the printer setup string for a particular network printer. This function call is only available when
Microsoft Networks is running.

Call with: AH
AL
BX
ES:DI

=SEH
=03H
= redirection list index
= segment:offset of buffer to receive setup string

Returns: If function successful
Carry flag = clear
ex = length of printer setup string
ES:DI = address of buffer holding setup string

MS-DOS Functions Reference 463



Notes:

Example:

If function unsuccessful
Carry flag = set
AX = error code

• The redirection list index passed in register BX is obtained with Function 5FH Sub­
function 02H (Get Redirection List Entry).

• See also Int 21H Function 5EH Subfunction 02H, which is used to specify a setup
string for a network printer.

Get the setup string for this network node associated with the printer designated by re­
direction list index 2.

setup db

mov
mov
mov
mov
mov
int
jc

64 dup (1)

ax,5e03h
bx,2
di,seg setup
es.di
di.offset setup
21h
error

: receives setup string

function &subfunction
redirection list index 2

address of buffer

transfer to MS-DOS

jump if function failed

Int 218
Function 5FH (95) Subfunction 028
Get redirection list entry

[3.1]

Allows inspection of the system redirection list, which associates local logical names with network files,
directories, or printers. This function call is only available when Microsoft Networks is running and the
file-sharing module (SHARE.EXE) has been loaded.

Call with: AH
AL
BX
DS:SI
ES:DI

=5FH
=02H
= redirection list index
= segment:offset of 16-byte buffer to receive local device name
= segment:offset of 128-byte buffer to receive netWork name

Returns: If function successful
Carry flag = clear
BH = device status flag

bit 0 = 0 ifdevice valid
= 1 ifnot valid

464 Section II



Note:

Example:

BL = device type
03H ifprinter
04H ifdrive

ex = stored parameter value
DX = destroyed
BP = destroyed
DS:SI = segment:offset of ASCIIZ local device name
ES:DI = segment:offset of ASCIIZ network name

If function unsuccessful
Carry flag = set
AX = error code

• The parameter returned in CX is a value that was previously passed to MS-DOS in
register CX with Int 21H Function 5FH Subfunction 03H (Redirect Device). It repre­
sents data that is private to the applications which store and retrieve it and has no
meaning to MS-DOS.

Get the local and network names for the device specified by the first redirection
list entry.

local db 16 dup (?) receives local device name

network db 128 dup (?) receives network name

mov ax.5f02h function &subfunction
mov bx.O redirection list entry 0
mov si .seg local local name buffer addr
mov ds.si
mov si.offset local
mov di.seg network network name buffer addr
mov es.di
mov di.offset network
int 21h transfer to MS-DOS
jc error jump if call failed

or bh.bh check device status
jnz error jump if device not valid

MS-DOS Functions Reference 465



Int21H
Function 5FH (95) Subfunction 03H
Redirect device

[3.1]

Establishes redirection across the network by associating a local device name with a network name. This
function call is only available when Microsoft Networks is running and the file-sharing module
(SHARE.EXE) has been loaded.

Call with: AH
AL
BL

ex
DS:SI
ES:DI

=5FH
=03H
= device type

03H ifprinter
04H ifdrive

= parameter to save for caller
= segment:offset of ASCIIZ local device name
=segment:offset of ASCIIZ network name, followed by ASCIIZ password

Returns:

Notes:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• The local name can be a drive designator (a letter followed by a colon, such as uD:"),

a printer name, or a null string. Printer names must be one of the following: PRN,
LPTl, LPT2, or LPT3. If a null string followed by a password is used, MS-DOS at­
tempts to grant access to the network directory with the specified password.

• The parameter passed in ex can be retrieved by later calls to Int 21H Function 5FH
Subfunction 02H. It represents data that is private to the applications which store
and retrieve it and has no meaning to MS-DOS.

Redirect the local drive E to the directory \ FORTH on the server named LMI, using the
password FRED.

locname db

netname db
db

'E:' ,0

'\\LMI\FORTH' ,0

'FRED',O

: 1oca1 dri ve

466 Section II



mov aX,5f03h function &subfunction
mov bl,4 code 4 ~ disk drive
mov si,seg locname address of local name
mov ds,s;
mov s; ,offset locname
mov di.seg netname address of network name
mov eS,d;
mov di ,offset netname
int 21h transfer to MS-DOS

jc error : jump if redirect failed

Int 21H
Function 5FH (95) Subfunction 04H
Cancel device redirection

[3.1]

Cancels a previous redirection request by removing the association of a local device name with a network
name. This function call is only available when Microsoft Networks is running and the file-sharing
module (SHARE.EXE) has been loaded.

Call with: AH
AL
DS:SI

= SFH
=04H
= segment:offset of ASCIIZ local device name

Returns:

Note:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• The supplied name can be a drive designator (a letter followed by a colon, such as
"D:"), a printer name, or a string starting with two backslashes (\ \). Printer names
must be one of the following: PRN, LPTl, LPT2, or LPT3. If the string with two
backslashes is used, the connection between the local machine and the network
directory is terminated.

Cancel the redirection of local drive E to the network server.

locname db 'E: ' .0

(continued)

MS-DOS Functions Reference 467



mov ax,5f04h function &subfunction
mov si,seg locname address of local name
mov ds, si
mov si,offset locname
int 21h transfer to MS-DOS
jc error : jump if cancel failed

Int 21H
Function 60H (96)
Reserved

Int 21H
Function 6tH (97)
Reserved

Int 21H
Function 62H (98)
Get PSP address

[3.0]

Obtains the segment (paragraph) address of the program segment prefix (PSP) for the currently execut­
ing program.

Call with:

Returns:

AH

BX

=62H

= segment address of program segment prefix

Notes: • Before a program receives control from MS-DOS, its program segment prefix is set
up to contain certain vital information, such as:

- the segment address of the program's environment block
- the command line originally entered by the user
- the original contents of the terminate, Ctrl-C, and critical-error handler vectors
- the top address of available RAM

• The segment address of the PSP is normally passed to the program in registers DS
and ES when it initially receives control from MS-DOS. This function allows a pro­
gram to conveniently recover the PSP address at any point during its execution,

. without having to save it at program entry.

468 Section II



Example: Get the segment base of the program segment prefix, then copy the command tail from
the PSP into the local buffer named buff.

ctail equ 080H PSP offset, command tail

buff db

mov
int

mov
mov
mov
mov
mov
mov
inc
xor

80 dup (1)

ah,62H
21h

ds,bx
si ,offset ctail
di,seg buff
es,di
di,offset buff
cl,[si]
cl
ch,ch

copy of command tail

get PSP address
function number
transfer to MS-DOS

copy command tail
PSP segment to OS
offset of command tail
local buffer address

length of command tail
include count byte

cld
rep movsb

Int 21H
Function 63H (99)
Get DBCS lead byte table

copy to local buffer

[2.25 only]

Obtains the address of the system table of legal lead byte ranges for double-byte character sets (DBCS), or
sets or obtains the interim console flag. Int 2IH Function 63H is available only in MS-DOS version 2.25; it
is not supported in MS-DOS versions 3.0 and later.

Call with: AH
AL

=63H
= subfunction

OOH ifgetting address ofDBCS lead byte table
OlH ifsetting or clearing interim consolejlag
02H ifobtaining value ofinterim consoleflag

If AL = OIH
DL =OOH

OIH
if clearing interim console flag
if setting interim console flag

MS-DOS Functions Reference 469



Returns:

Notes:

If function successful
Carry flag = clear

and, if called with AL = OOH
DS:SI = segment:offset of DBCS lead byte table

Of, if called with AL = 02H
DL =value of interim console flag

If function unsuccessful
Carry flag = set
AX = error code

• The DBCS lead byte table consists of a variable number of two byte entries, termi­
nated by two null (OOH) bytes. Each pair defines the beginning and ending value for
a range of lead bytes. The value of a legal lead byte is always in the range 80-0FFH.

• Entries in the lead byte table must be in ascending order. If no legal lead bytes are
defined in a given system, the table consists only of the two null bytes.

• If the interim console flag is set, Int 21H Functions 07H (Unfiltered Character Input),
08H (Character Input without Echo), and OBH (Keyboard Status) will support interim
characters.

• Unlike most other MS-DOS services, this function call does not necessarily preserve
any registers except SS:SP.

• [4.0] The address of the DBCS lead byte table can also be obtained with Int 21H
Function 6SH.

Int 21H
Function 64H (100)
Reserved

Int2lH
Function 65H (101)
Get extended country information

Obtains information about the specified country and/or code page.

[3.3]

Call with: AH
AL

=6SH
= subfunction

OlH = Get General Internationalization Information
02H = Get Pointer to Uppercase Table
04H = Get Pointer to Filename Uppercase Table
06H = Get Pointer to Collating Table
07H = Get Pointer to Double-Byte Character Set (DBCS) Vector
(MS-DOS versions 4.0 and later)

470 Section II



BX = code page of interest (-1 = active CON device)
CX = length of buffer to receive information (must be >= 5)
DX = country ID (-1 = default)
ES:DI = address of buffer to receive information

Returns: If function successful
Carry flag = clear

and requested data placed in calling program's buffer

If function unsuccessful

Carry flag
AX

= set
= error code

bit 1

bit 2

=0 if12-hour clock
= 1 if24-hour clock

case-map routine call address
ASCIIZ data list separator
reserved

19H-ICH
IDH-IEH
IFH-28H

17H
I8H

09H-ODH
OEH-OFH
10H-I1H
12H-13H
I4H-ISH
16H

• The information returned by this function is a superset of the information returned
by Int 2IH Function 38H.

• This function may fail if either the country code or the code page number is invalid,
or if the code page does not match the country code.

• The function fails if the specified buffer length is less than five bytes. If the buffer to
receive the information is at least five bytes long but is too short for the requested
information, the data is truncated and no error is returned.

• The format of the data returned by Subfunction 01H is:
Byte(s) Contents
OOH information ID code (1)
0IH-02H length of following buffer
03H-04H country ID
OSH-06H code page number
07H-08H date format

0= USA mdy
1 = Europe d my
2=Japan ymd
ASCIIZ currency symbol
ASCIIZ thousands separator
ASCIIZ decimal separator
ASCIIZ date separator
ASCIIZ time separator
currency format flags
bit 0 =0 ifcurrency symbolprecedes value

= 1 ifcurrency symbolfollows value
=0 ifno space between value and currency symbol
=1 ifone space between value and currency symbol
=0 ifcurrency symbol and decimal are separate
= 1 ifcurrency symbol replaces decimal separator

number of digits after decimal in currency
time format
bit 0

Notes:

MS-DOS Functions Reference 471



• The format of the data returned by Subfunctions 02H, 04H, 06H, and 07H is:
Byte(s) Contents
OOH information ID code (2, 4, or 6)
0IH-05H double-word pointer to table

• The uppercase and filename uppercase tables are a maximum of 130 bytes long. The
first two bytes contain the size of the table; the following bytes contain the upper­
case equivalents, if any, for character codes 80H-FFH. The main use of these tables
is to map accented or otherwise modified vowels to their plain vowel equivalents.
Text translated with the help of this table can be sent to devices that do not support
the IBM graphics character set, or used to create filenames that do not require a spe­
cial keyboard configuration for entry.

• The collating table is a maximum of 258 bytes long. The first two bytes contain the
table length, and the subsequent bytes contain the values to be used for the corre­
sponding character codes (O-FFH) during a sort operation. This table maps
uppercase and lowercase ASCII characters to the same collating codes so that sorts
will be case-insensitive, and it maps accented vowels to their plain vowel
equivalents.

• [4.0+] Subfunction 07H returns a pointer to a variable length table of that defines
ranges for double-byte character set (DBCS) lead bytes. The table is terminated by a
pair of zero bytes, unless it must be truncated to fit in the buffer, and has the follow­
ing format:

dw length
db start1,end1
db start2.end2

db 0.0

For example:

dw 4
db 81h.9fh
db OeOh.Ofch
db 0.0

• In some cases a truncated translation table may be presented to the program by
MS-DOS. Applications should always check the length at the beginning of the table,
to make sure it contains a translation code for the particular character of interest.

Examples: Obtain the extended country information associated with the default country and code
page 437.

buffer db 41 dup (0) : receives country info

472 Section II

mov
mov

ax.6501h
bx.437

function &subfunction
code page



mov cx,41 buffer length
mov dx,-1 default country
mov di,seg buffer buffer address
mov es,di
mov di,offset buffer
int 21h transfer to MS-DOS
jc error jump if function failed

In this case, MS-DOS filled the following extended country information into the buffer:

buffer db 1 info ID code
dw 38 length of following buffer
dw 1 country ID (USA)
dw 437 code page number
dw 0 date format
db '$' ,0,0,0,0 currency symbol
db ,

" ,0 thousands separator
db '.' ,0 decimal separator
db , - ' ,0 date separator
db ':' ,0 time separator
db 0 currency format flags
db 2 digits in currency
db 0 time format
dd 026ah:176ch case map entry point
db ',' ,0 data list separator
db 10 dup (0) reserved

Obtain the pointer to the uppercase table associated with the default country and code
page 437.

buffer db 5 dup (0) : receives pointer info

mov ax,6502h function number
mov bx,437 code page
mov cx,5 length of buffer
mov dx, -1 default country
mov di ,seg buffer buffer address
mov es,di
mov di,offset buffer
int 21h transfer to MS-DOS
jc error jump if function failed

MS-DOS Functions Reference 473



In this case, MS-DOS filled the following values into the buffer:

buffer db 2 info 10 code
dw 0204h offset of uppercase tabJe
dw 1140h segment of uppercase table

1140:0200
1140:0210
1140:0220
1140:0230
1140:0240
1140:0250
1140:0260
1140:0270
1140:0280

and the table at I140:0204H contains the following data:

o 1 234 5 6 7 8 9 ABC 0 E F
80 00 80 9A 45 41 8E 41 8F 80 45 45

45 49 49 49 8E 8F 90 92 92 4F 99 4F 55 55 59 99
9A 9B 9C 90 9E 9F 41 49 4F 55 A5 A5 A6 A7 A8 A9
AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9
BA BB BC BO BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9
CA CB CC CO CE CF DO 01 02 03 04 05 06 07 08 09
OA DB DC DO DE OF EO E1 E2 E3 E4 E5 E6 E7 E8 E9
EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9
FA FB FC FO FE FF

Int21H
Function 66H (102)
Get or set code page

Obtains or selects the current code page.

0123456789ABCOEF
.... EA.A .. EE

EIII ..... O.OUUy.
...... AIOU .

[3.3]

Call with: AH
AL

BX

=66H
= subfunction

01H= Get CodePage
02H = Select Code Page

= code page to select, if AL = 02H

Returns:

Note:

If function successful
Carry flag = clear

and, if called with AL = 0IH
BX = active code page
DX = default code page

If function unsuccessful
Carry flag = set
AX = error code

• When the Select Code Page subfunction is used, MS-DOS gets the new code page
from the COUNTRY.SYS file. The device must be previously prepared for code page
switching with the appropriate DEVICE= directive in the CONFIG.SYS file and
NLSFUNC and MODE CP PREPARE commands (placed in the AUTOEXEC.BAT file,
usually).

474 Section!!



Example: Force the active code page to be the same as the system's default code page, that is,
restore the code page that was active when the system was first booted.

get current and
default code page

mov ax,6601h function number
int 21h transfer to MS-DOS
jc error jump if function failed

set code page
mov bx,dx active .... default
mov ax,6602h function number
int 21h transfer to MS-DOS
jc error jump if function failed

Int 218
Function 678 (103)
Set handle count

Sets the maximum number of files and devices that may be opened simultaneously using handles by the
current process.

Call with: AH
BX

=67H
= number of desired handles

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• This function call controls the size of the table that relates handle numbers for
the current process to MS-DOS's internal, global table for all of the open files and
devices in the system. The default table is located in the reserved area of the
process's PSP and is large enough for 20 handles.

• The function fails if the requested number of handles is greater than 20 and there
is not sufficient free memory in the system to allocate a new block to hold the
enlarged table.

MS-DOS Functions Reference 475



Example:

• If the number of handles requested is larger than the available entries in the
system's global table for file and device handles (controlled by the FILES entry in
CONFIG.SYS), no error is returned. However, a subsequent attempt to open a file or
device, or create a new file, will fail if all the entries in the system's global file table
are in use, even if the requesting process has not used up all its own handles.

Set the maximum handle count for the current process to thirty, so that the process can
have as many as 30 files or devices opened simultaneously. (Five of the handles are
already assigned to the standard devices when the process starts up.) Note that a
FILES=30 (or greater value) entry in the CONFIG.SYS file would also be required for the
process to successfully open 30 files or devices.

mov ah,67h function number
mov bx,30 maximum number of handles
int 21h transfer to MS-DOS
jc error jump if function failed

Int 218
Function 688 (104)
Commit file

[3.3]

Forces all data in MS-DOS's internal buffers associated with a specified handle to be physically written to
the device. If the handle refers to a file, and the file has been modified, the time and date stamp and file
size in the file's directory entry are updated.

Call with: AH
BX

=68H
= handle

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

• The effect of this function is equivalent to closing and reopening a file, or to
duplicating a handle for the file with Int 21H Function 45H and then closing the
duplicate. However, this function has the advantage that it will not fail due to lack of
handles, and the application does not risk losing control of the file in multitasking or
network environments.

476 Section II



Example:

• If this function is requested for a handle associated with a character device, a success
flag is returned, but there is no other effect.

Assume that the file MYFILE.DAT has been previously opened and that the handle for
that file is stored in the variable ./handle. Call the Commit File function to ensure that
any data in MS-DOS's internal buffers associated with the handle is written out to disk
and that the directory and file allocation table are up to date.

fname db
fhandle dw

'MYFILE.DAT',O ASCIIZ filename
? : file handle

moy ah,68h function number
moy bx,fhandle file handle
int 21h transfer to MS-DOS
jc error jump if commit failed

Int 21H
Function 69H (105)
Reserved

Int 21H
Function 6AH (106)
Reserved

Int 218
Function 6BH (107)
Reserved

MS-DOS Functions Reference 477



Int 21H
Function 6CH (108)
Extended open file

[4.0]

Given an ASCIIZ pathname, opens, creates or replaces a file in the designated or default directory on the
designated or default disk drive. Returns a handle that can be used by the program for subsequent access
to the file.

7

14

3
4-6

8-12
13

=6CH
=OOH
= open mode

Bit(s) Significance
0-2 access type

000 = read-only
001 = write-only
010 = read/write
reserved (0)
sharing mode
000 = compatibility
001 = deny read/write (deny all)
010 = deny write
011 = deny read
100 = deny none
inheritance
o= childprocess inherits handle
1 = child does not inherit handle
reserved (0)
critical error handling
o=execute Int 24H
1 = return error to process
write-through
o= writes may be buffered and deferred
1 = physical write at request time

15 reserved (0)
= file attribute (bits may be combined; ignored if open)

Bit(s) Significance (ifset)
o read-only
1 hidden
2 system
3 volume label
4 reserved (0)
5 archive
6-15 reserved (0)

AH
AL
BX

CX

Call with:

478 Section II



Returns:

Notes:

Example:

DX = open flag
Bits Significance
0-3 action if file exists

0000 = fail
0001 = openfile
0010 = replacefile

4-7 action if file doesn't exist
0000 = fail
0001 = createfile

8-15 reserved (0)
DS:SI = segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear
AX = handle
ex = action taken

1 = file existed and was opened
2 = file did not exist and was created
3 =file existed and was replaced

If function failed
Carry flag = set
AX = error code

• The function fails if:
- any element of the pathname does not exist.
- the file is being created in the root directory and the root directory is full.
- the file is being created and a file with the same name and the read-only attribute

already exists in the specified directory.
- the program is running on a network and the user running the program has in­

sufficient access rights.

• A file is usually given a normal (0) attribute when it is created. The file's attribute
can subsequently be modified with Int 21H Function 43H.

• This function combines the capabilities of Int 21H Functions 3CH, 3DH, and 5BH. It
was added to MS-DOS for compatibility with the DosOpen function of OS/2.

Create the file MYFILE.DAT, if it does not already exist, in directory \MYDIR on drive C,
and save the handle for subsequent access to the file.

fname db

fhandle dw

'C:\MYDIR\MYFILE.DAT' ,0

(continued)

MS-DOS Functions Reference 479



mov ax,6cOOh function number
mov bx,4042h read/write, deny none,

write-through mode
xor cx,cx normal attribute
mov dx,OOlOh create if doesn't exist,

fail if exists
mov si,seg fname address of pathname
mov ds,si
mov si,offset fname
int 21h transfer to MS-DOS
jc error jump if open failed
mov fhandle,ax save file handle

Int 22H
Terminate handler address

[1.0]

The machine interrupt vector for Int 22H (memory locations OOOO:0088H through OOOO:008BH) containsthe address of the routine that receives control when the currently executing program terminates via Int20H, Int 27H, or Int 21H Functions OOH, 31H, or 4CH. The address in this vector is also copied into offsetsOAH through ODH of the program segment prefix (PSP) when a program is loaded but before it beginsexecuting, and is restored from the PSP (in case it was modified by the application) as part of MS-DOS'stermination handling.

This interrupt'should never be issued directly.

Int23H
Ctrl-C handler address

[1.0]

The machine interrupt vector for Int 23H (memory locations OOOO:008CH though OOOO:008FH) containsthe address of the routine which receives control when a Ctrl-C is detected during any character I/Ofunction and, if the Break flag is ON, during most other MS-DOS function calls. The address in this vectoris also copied into locations OEH through IlH of the program segment prefix (PSP) when a program isloaded but before it begins executing, and is restored from the PSP (in case it was modified by the appli­cation) as part of MS-DOS's termination handling.
This interrupt should never be issued directly.

Notes: • The initialization code for an application can use Int 21H Function 25H to reset the
Interrupt 23H vector to point to its own routine for Ctrl-C handling. In this way, the
program can avoid being terminated unexpectedly as the result of the user's entry of
a Ctrl-C or Ctrl-Break.

480 Section II



Example:

• When a Ctrl-C is detected and the program's Int 23H handler receives control, all
registers are set to their values at the point of the original function call. The handler
can then do any of the following:

- Set a local flag for later inspection by the application, or take any other appropri­
ate action, and perform an IRET. All registers must be preserved. The MS-DOS
function in progress will be restarted from scratch and will proceed to cOI:lple­
tion, control finally returning to the application in the normal manner.

- Take appropriate action and then perform a RET FAR to give control back to MS­
DOS. The state of the carry flag is used by MS-DOS to determine what action to
take. If the carry flag is set, the application will be terminated; if the carry flag is
clear, the application will continue in the normal manner.

- Retain control by transferring to an error-handling routine within the application
and then resume execution or take other appropriate action, never performing a
RET FAR or IRET to end the interrupt-handling sequence. This option will cause
no harm to the system.

• Any MS-DOS function call may be used within the body of an Int 23H handler.

See Chapter 5.

Int24H
Critical-error handler address

[1.0]

The machine interrupt vector for Int 24H (memory locations OOOO:0090H through OOOO:0093H) contains
the address of the routine that receives control when a critical error (usually a hardware error) is
detected. This address is also copied into locations I2H through ISH of the program segment prefix (PSP)
when a program is loaded but before it begins executing, and is restored from the PSP (in case it was
modified by the application) as part of MS-DOS's termination handling.

This interrupt should never be issued directly.

Notes: • On entry to the critical-error interrupt handler, bit 7 of register AH is clear (0) if the
error was a disk I/O error; otherwise, it is set (1). BP:SI contains the address of a
device-driver header from which additional information can be obtained. Interrupts
are disabled. The registers will be set up for a retry operation, and an error code will
be in the lower half of the DI register, with the upper half undefined.
The lower byte of DI contains:
OOH write-protect error
OIH unknown unit
02H drive not ready
03H unknown command
04H data error (CRC)
OSH bad request structure length
06H seek error
07H unknown media type
OSH sector not found

MS-DOS Functions Reference 481



Example:

09H printer out of paper
OAH write fault
OBH read fault
OCH general failure
ODH reserved
OEH reserved
OFH invalid disk change (MS-DOS version 3 only)

Note that these are the same error codes returned by the device driver in the request
header. Also, upon entry, the stack is set up as shown in Figure 8-8, page 149.

• When a disk I/O error occurs, MS-DOS automatically retries the operation before
issuing a critical-error Int 24H. The number of retries varies in different versions of
MS-DOS, but is typically in the range three to five.

• Int 24H handlers must preserve the SS, SP, DS, ES, BX, CX, and DX registers. Only Int
21H Functions OlH-OCH and 59H can be used by an Int 24H handler; other function
calls will destroy the MS-DOS stack and its ability to retry or ignore an error.

• When the Int 24H handler issues an IRET, it should return an action code in AL that
will be interpreted by DOS as follows:
o ignore the error
1 retry the operation
2 terminate the program
3 [3.0+] fail the function call in progress

• If the Int 24H handler returns control directly to the application program rather than
to MS-DOS, it must restore the program's registers, removing all but the last three
words from the stack, and issue an IRET. Control returns to the instruction immedi­
ately following the function call that caused the error. This option leaves MS-DOS
in an unstable state until a call to an Int 21H function higher than Function OCH
is made.

See Chapter 8.

Int 258
Absolute disk read

[1.0]

Provides a direct linkage to the MS-DOS BIOS module to read data from a logical disk sector into memory.

Call with: For access to partitions <= 32 MB
AL = drive number (0 = A, 1 = B, etc)
ex = number of sectors to read
ox = starting sector number
DS:BX = segment:offset of buffer

For access to partitions> 32 MB (MS-DOS 4.0 and later)
AL = drive number (0 = A, 1 = B, etc)
ex =-1
DS:BX = segment:offset of parameter block (see Notes)

482 Section II



Returns:

Notes:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code (see Notes)

• All registers except the segment registers may be destroyed.

• When this function returns, the CPU flags originally pushed on the stack by the INT
25H instruction are still on the stack. The stack must be cleared by a POPF or ADD
SP,2 to prevent uncontrolled stack growth and to make accessible any other values
that were pushed on the stack before the call to INT 25H.

• Logical sector numbers are obtained by numbering each disk sector sequentially
. from cylinder 0, head 0, sector 1, and continuing until the last sector on the disk is

counted. The head number is incremented before the track number. Logically adja­
cent sectors may not be physically adjacent, due to interleaving that occurs at the
device-adapter level for some disk types.

• The error code is interpreted as follows: The lower byte (AL) is the same error code
that is returned in the lower byte of 01 when an Int 24H is issued. The upper byte
(AH) contains:
OlH if bad command
02H if bad address mark
04H if requested sector not found
OSH if direct memory access (DMA) failure
10H if data error (bad CRC)
20H if controller failed
40H if seek operation failed
SOH if attachment failed to respond

• [4.0+] When accessing partitions larger than 32 MB under MS-DOS version 4, this
function uses a parameter block with the following format:
Bytes Description
00H-03H 32-bit sector number
04H-05H number of sectors to read
06H-07H offset of buffer
OSH-09H segment of buffer

Read logical sector 1 of drive A into the memory area named buff. (On most MS-DOS
floppy disks, this sector contains the beginning of the file allocation table.)

buff db 512 dup (1) : receives data from disk

(continued)

MS-DOS Functions Reference 483



mov al,O drive A
mov cX,l number of sectors
mov dX,l beginning sector number
mov bX,seg buff buffer address
mov dS,bx
mov bx,offset buff
int 25h request disk read
jc error jump if read failed
add sp,2 clear stack

Int26H
Absolute disk write

[1.0]

Provides a direct linkage to the MS-DOS BIOS module to write data from memory to a logical disk sector.

Call with:

Returns:

Notes:

For access to partitions <= 32 MB
AL = drive number (0 =A, 1 = B, etc)
CX = number of sectors to write
DX = starting sector number
DS:BX = segment:offset of buffer

For access to partitions> 32 MB (MS-DOS 4.0 and later)
AL = drive number (0 = A, 1 = B, etc)
ex =-1
DS:BX = segment:offset of parameter block (see Notes)

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code (see Notes)

• All registers except the segment registers may be destroyed.

• When this function returns, the CPU flags originally pushed onto the stack by the
INT 26H instruction are still on the stack. The stack must be cleared by a POPF or
ADD SP,2 to prevent uncontrolled stack growth and to make accessible any other
values that were pushed on the stack before the call to INT 26H.

• Logical sector numbers are obtained by numbering each disk sector sequentially
from cylinder 0, head 0, sector 1, and continuing until the last sector on the disk is
counted. The head number is incremented before the track number. Logically adja­
cent sectors may not be physically adjacent, due to interleaving that occurs at the
device-adapter level for some disk types.

484 Section II



Example:

• The error code is interpreted as follows: The lower byte (AL) is the same error code
that is returned in the lower byte of DI when an Int 24H is issued. The upper byte
(AH) contains:
OIH if bad command
02H if bad address mark
03H if write-protect fault
04H if requested sector not found
08H if direct memory access (DMA) failure
IOH if data error (bad CRC)
20H if controller failed
40H if seek operation failed
80H if attachment failed to respond

• [4.0+] When accessing partitions larger than 32 MB under MS-DOS version 4, this
function uses a parameter block with the following format:
Bytes Description
OOH-03H 32-bit sector number
04H-OSH number of sectors to read
06H-07H offset of buffer
08H-09H segment of buffer

Write the contents of the memory area named buff into logical sector 3 of drive C.
Warning: Verbatim use of the following code could damage the file system on your
fixed disk. There is, unfortunately, no way to provide a really safe example of this
function.

buff db 512 dup (1) : contains data for write

mov al,2 drive C
mov cx,1 number of sectors
mov dx,3 beginning sector number
mov bx,seg buff buffer address
mov ds,bx
mov bx,offset buff
int 26h request disk write
jc error jump if write failed
add sp,2 clear stack

MS-DOS Functions Reference 485



Int27H
Terminate and stay resident

[1.0]

Terminates execution of the currently executing program, but reserves part or all of its memory so that it
will not be overlaid by the next transient program to be loaded. MS-DOS then takes the following actions:

• File buffers are flushed and any open handles for files or devices owned by the
process are closed.

• The termination handler vector (Int 22H) is restored from PSP:OOOAH.

• The Ctrl-C handler vector (Int 23H) is restored from PSP:OOOEH.

• [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

• Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion and the transient
portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and inter­
preted; otherwise a prompt is issued for the next user command.

Call with:

Returns:

DX

CS

Nothing

= offset of the last byte plus one (relative to the program segment prefix)
of program to be protected

= segment of program segment prefix

Notes: • This function call is typically used to allow user-written utilities, drivers, or interrupt
handlers to be loaded as ordinary .COM or .EXE programs, then remain resident.
Subsequent entrance to the code is via a hardware or software interrupt.

• This function attempts to set the initial memory allocation block to the length in
bytes specified in register DX. If other memory blocks have been requested by the
application via Int 21H Function 48H, they will not be released by this function.

• Other methods of performing a final exit are:

- Int 20H
- Int 21H Function OOH
- Int 21H Function 31H
- Int 21H Function 4CH

• This function should not be called by .EXE programs that are loaded at the high end
of the transient program area (Le., linked with the /HIGH switch), because doing so
reserves the memory normally used by the transient part of COMMAND.COM. If
COMMAND.COM cannot be reloaded, the system will fail.

• This function does not work correctly when DX contains values in the range
OFFFIH-OFFFFH. In this case, MS-DOS discards the high bit of the value in DX,
resulting in the reservation of 32 KB less memory than was requested by the
program.

• [2.0+] lnt 21H Function 31H should be used in preference to this function, because it
supports return codes, allows larger amounts of memory to be reserved, and does
not require CS to contain the segment of the program segment prefix.

486 Section II



Example:

• [3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Terminate and stay resident, reserving enough memory to contain the entire program.

pend

Int28H
Reserved

Int29H
Reserved

Int2AH
Reserved

Int2BH
Reserved

Int2CH
Reserved

mov
int

equ

end

dx.offset pend
27h

$

ox ~ bytes to reserve
terminate. stay resident

offset. end of program

MS-DOS Functions Reference 487



Int2DH
Reserved

Int2EH
Reserved

Int2FH
Multiplex interropt

[3.0]

Provides a general-purpose avenue of communication with another process or with MS-DOS extensions,
such as the print spooler, ASSIGN, SHARE, and APPEND. The multiplex number in register AH specifies
the process or extension being communicated with. The range OOH-BFH is reserved for MS-DOS; appli­
cations may use the range COH-FFH.

Int2FH
Function om
Print spooler

[3.0]

Submits a file to the print spooler, removes a file from the print spooler's queue of pending files, or ob­
tains the status of the printer. The print spooler, which is contained in the file PRINT.COM, was first
added to MS-DOS in version 2.0, but the application program interface to the spooler was not docu­
mented until MS-DOS version 3.

Call with: AH
AL

DS:DX

= OIH
= subfunction

DOH = Get Installed State
OlH = Submit File to be Printed
02H = Remove Filefrom Print Queue
03H = Cancel All Files in Queue
04H = Hold PrintJobs for Status Read
05H = Release Hold

= segment:offset of packet (Subfunction OIH)
segment:offset of ASCIIZ pathname (Subfunction 02H)

488 Section II



Returns:

Notes:

If function successful
Carry flag = clear

and, if called with AL = OOH
AL = print spooler state

OOH ifnot installed, ok to install
OlH ifnot installed, not ok to install
FFH ifinstalled

or, if called with AL = 04H
DX = error count
DS:SI = segment:offset of print queue file list

If function unsuccessful
Carry flag = set
AX = error code

• The packet passed to Subfunction OIH consists of five bytes. The first byte contains
the level, which should be OOH for current versions of MS-DOS. The following four
bytes contain the segment:offset of an ASCIIZ pathname, which may not include
wildcard characters. If the specified file exists, it is added to the print queue.

• The. and? wildcard characters may be included in a pathname passed to Subfunc­
tion 02H, making it possible to delete multiple files from the print queue with one
call.

• The address returned by Subfunction 04H points to a list of 64-byte entries, each
containing an ASCIIZ pathname. The first pathname in the list is the file currently
being printed. The last entry in the list is a null string (a single OOH byte).

Int2FH
Function 028
ASSIGN

Returns a code indicating whether the resident portion of the ASSIGN utility has been loaded.

[3.2]

Call with: AH
AL

=02H
= subfunction

OOH = Get Installed State

Returns: If function successful
Carry flag = clear
AL = ASSIGN installed status

OOH ifnot installed, ok to install
OlH ifnot installed, not ok to install
FFH ifinstalled

If function unsuccessful
Carry flag = set
AX = error code

MS-DOS Functions Reference 489



Int2FH
Function lOR (16)
SHARE

Returns a code indicating whether the SHARE.EXE file-sharing module has been loaded.

[3.2]

Call with: AH
AL

= 10H
= subfunction

OOH = Get Installed State

Returns: If function successful
Carry flag = clear
AL = SHARE installed status

OOH ifnot installed, ok to install
o1H ifnot installed, not ok to install
FFH if installed

If function unsuccessful
Carry flag = set
AX = error code

Int2FH
Function B7H (183)
APPEND

[3.3]

Allows an application to test whether APPEND has been installed. If APPEND is resident, returns the
APPEND version, state, and the path used to search for data files.

Call with: AH
AL

BX

=B7H
= subfunction

OOH = Get Installed State
02H= GetAppend Version (4.0)
O4H = Get Append Path Pointer (4.0)
O6H = Get Append Function State (4.0)
07H = Set Append Function State (4.0)
IlB = Set Return Found Name State (4.0, see Note)

= APPEND state (if AL = 07H)
Bit(s) Signfjlcance (ifset)
o APPEND enabled
1-12 Reserved (0)
13 /PATH switch active
14 IE switch active
15 IX switch active

490 Section II



Returns:

Note:

If function successful
Carry flag = clear

and, if called with AL = OOH
AL = APPEND installed status

OOH ifnot installed, ok to install
01H ifnot installed, not ok to install
FFH if installed

or, if called with AL = 02H (MS-DOS 4.0)
AX = FFFFH if MS-DOS 4.0 APPEND

or, if called with AL = 04H (MS-DOS 4.0)
ES:DI = segment:offset of active APPEND path

or, if called with AL = 06H (MS-DOS 4.0)
BX = APPEND state (see above)

If function unsuccessful
Carry flag = set
AX = error code

• If the Return Found Name State is set with Subfunction IlH, the fully qualified file­
name is returned to the next application to call Int 21H Function 3DH, 43H, or 6CH.
The name is placed at the same address as the ASCIIZ parameter string for the Int
21H function, so the application must be sure to provide a buffer of adequate size.
The Return Found Name State is reset after APPEND processes one Int 21H
function call.

MS-DOS Functions Reference 491







Notes to the Reader
In the headers for ROM BIOS video driver (Int IOH) function calls, the
following icons are used:

[MDA]
[CGA]
[PCjrl
[EGA]
[MCGA]
[VGA]

Monochrome Display Adapter
Color/Graphics Adapter
PCjr system board video controller
Enhanced Graphics Adapter
Multi-Color Graphics Array (PS/2 Models 25 & 30)
Video Graphics Array (PS/2 Models 50 and above)

In the remainder of this section, the following icons are used:

[PC]
[Al1
[PS/2]

Original IBM PC, PC/XT, and PCjr, unless otherwise noted.
PC/AT and PC/XT-286, unless otherwise noted.
All PS/2 models (including Models 25 and 30), unless other­

wise noted.

ROM BIOS functions that are unique to the PC Convertible have been
omitted.

Some functions are supported only in very late revisions of a particular
machine's ROM BIOS (such as Int lAH Functions OOH and OIH on the
PC/XT). In general, such functions are not given an icon for that machine
since a program could not safely assume that they were available based on
the machine ID byte(s).

Summary ofROM BIOS and Mouse Function Calls

Int

10H
10H
10H
10H
10H
10H
10H
10H
10H
10H
10H
10H
10H

Function

OOH
OlH
02H
03H
04H
05H
06H
om
OSH
09H
OAH(lO)
OBH (11)

Subfunction Name

Video Driver
Set Video Mode
Set Cursor Type
Set Cursor Position
Get Cursor Position
Get Light Pen Position
Set Display Page
Initialize or Scroll Window Up
Initialize or Scroll Window Down
Read Character and Attribute at Cursor
Write Character and Attribute at Cursor
Write Character at Cursor
Set Palette, Background, or Border

(continued)

494 Section III



Summary ofROM BIOS and Mouse Function Calls continued

Int Function SUbfunction Name

10H OCH (12) Write Graphics Pixel
10H OOH (13) Read Graphics Pixel
10H OEH (14) Write Character in Teletype Mode
10H OFH (15) Get Video Mode
10H 10H (16) OOH Set Palette Register
10H 10H (16) 01H Set Border Color
10H 10H (16) 02H Set Palette and Border
10H 10H (16) 03H Toggle Blink/Intensity Bit
10H 10H (16) 07H Get Palette Register
10H 10H (16) 08H Get Border Color
10H 10H (16) 09H Get Palette and Border
10H 10H (16) 10H (16) Set Color kegister
10H 10H (16) 12H (18) Set Block of Color Registers
10H 10H (16) 13H (19) Set Color Page State
10H 10H (16) ISH (21) Get Color Register
10H 10H (16) 17H (23) Get Block of Color Registers
10H 10H (16) 1AH (26) Get Color Page State
10H 10H (16) 1BH (27) Set Gray-Scale Values
10H 11H (17) OOH Load User Font
10H 11H (17) 01H Load ROM 8-by-14 Font
10H 11H (17) 02H Load ROM 8-by-8 Font
10H 11H (17) 03H Set Block Specifier
10H 11H (17) 04H Load ROM 8-by-16 Font
10H 11H (17) 10H (16) Load User Font, Reprogram Controller
10H 11H (17) 11H (17) Load ROM 8-by-14 Font, Reprogram

Controller
10H 11H (17) 12H (18) Load ROM 8-by-8 Font, Reprogram

Controller
10H 11H (17) 14H (20) Load ROM 8-by-16 Font, Reprogram

Controller
10H 11H (17) 20H (32) Set Int 1FH Pointer
10H 11H (17) 21H (33) Set Int 43H for User's Font
10H 11H (17) 22H (34) Set Int 43H for ROM 8-by-14 Font
10H 11H (17) 23H (35) Set Int 43H for ROM 8-by-8 Font
10H 11H (17) 24H (36) Set Int 43H for Rom 8-by-16 Font
10H 11H (17) 30H (48) Get Font Information
10H 12H (18) 10H (16) Get Configuration Information
10H 12H (18) 20H (32) Select Alternate PrintScreen
10H 12H (18) 30H (48) Set Scan Lines
10H 12H (18) 31H (49) Enable/Disable Palette Loading
10H 12H (18) 32H (50) Enable/Disable Video
10H 12H (18) 33H (51) Enable/Disable Gray-Scale Summing
10H 12H (18) 34H (52) Enable/Disable Cursor Emulation

(continued)

IBM ROM BIOS and Mouse Functions Reference 495



Summary ofROM BIOS and Mouse Function Calls continued

Int Function SUbfunction Name

10H 12H (18) 35H (53) Switch Active Display
10H 12H (18) 36H (54) Enable/Disable Screen Refresh
10H 13H (19) Write String in Teletype Mode
10H 1AH (26) Get or Set Display Combination Code
tOH IBH (27) Get Functionality/State Information
10H 1CH (28) Save or Restore Video State

11H Get Equipment Configuration

12H Get Conventional Memory Size

13H Disk Driver
13H OOH Reset Disk System
13H 01H Get Disk System Status
13H 02H Read Sector
13H 03H Write Sector
13H 04H Verify Sector
13H 05H Format Track
13H 06H Format Bad Track
13H 07H Format Drive
13H 08H Get Drive Parameters
13H 09H Initialize Fixed Disk Characteristics
13H OAH (10) Read Sector Long
13H OBH (11) Write Sector Long
13H OCH (12) Seek
13H ODH (13) Reset Fixed Disk System
13H OEH (14) Read Sector Buffer
13H OFH (15) Write Sector Buffer
13H 10H (16) Get Drive Status
13H 11H (17) Recalibrate Drive
13H 12H (18) Controller RAM Diagnostic
13H 13H (19) Controller Drive Diagnostic
13H 14H (20) Controller Internal Diagnostic
13H 15H (21) Get Disk Type
13H 16H (22) Get Disk Change Status
13H 17H (23) Set Disk Type
13H 18H (24) Set Media Type for Format
13H 19H (25) Park Heads
13H 1AH (26) Format ESDI Drive

14H Serial Communications Port Driver
14H OOH Initialize Communications Port
14H OlH Write Character to Communications Port

(continued)

496 Section III



Summary ofROM BIOS and Mouse Function Calls continued

lilt Function Subfunction Name

14H 02H Read Character from Communications
Port

14H 03H Get Communications Port Status
14H 04H Extended Initialize Communications

Port
14H OSH Extended Communications Port Control

15H I/O Subsystem Extensions
ISH OOH Turn On Cassette Motor
15H 01H Turn Off Cassette Motor
15H 02H Read Cassette
15H 03H Write Cassette
15H OFH (15) Format ESDI Drive Periodic Interrupt
15H 21H (33) OOH Read POST Error Log
15H 21H (33) 01H Write POST Error Log
15H 4FH (79) Keyboard Intercept
15H 80H (128) Device Open
15H 81H (129) Device Close
15H 82H (130) Process Termination
15H 83H (131) Event Wait
15H 84H (132) ReadJoystick
15H 85H (133) SysReqKey
15H 86H (134) Delay
15H 87H (135) Move Extended Memory Block
15H 88H (136) Get Extended Memory Size
15H 89H (137) Enter Protected Mode
15H 90H (144) Device Wait
15H 91H (145) Device Post
15H COH (192) Get System Environment
15H CIH (193) Get Address of Extended BIOS Data

Area
15H C2H (194) OOH Enable/Disable Pointing Device
15H C2H (194) 01H Reset Pointing Device
I5H C2H (194) 02H Set Sample Rate
I5H C2H (194) 03H Set Resolution
15H C2H (194) 04H Get Pointing Device Type
15H C2H (194) OSH Initialize Pointing Device Interface
15H C2H (194) 06H Set Scaling or Get Status
15H C2H (194) 07H Set Pointing Device Handler Address
I5H C3H (195) Set Watchdog Time-Out
I5H C4H(I%) Programmable Option Select

(continued)

IBM ROM BIOS andMouse Functions Reference 497



Summary ofROM BIOS and Mouse Function Calls continued

1", Function Subfunction Name
16H Keyboard Driver
16H OOH Read Character from Keyboard
16H 01H Get Keyboard Status
16H 02H Get Keyboard Flags
16H 03H Set Repeat Rate
16H 04H Set Keyclick
16H OSH' Push Character and Scan Code
16H 10H (16) Read Character from Enhanced

Keyboard
16H 11H (17) Get Enhanced Keyboard Status
16H 12H (18) Get Enhanced Keyboard Flags

17H Parallel Port Printer Driver
17H OOH Write Character to Printer
17H 01H Initialize Printer Port
17H 02H Get Printer Status

18H ROM BASIC

19H Reboot System

1AH Real-time (CMOS) Clock Driver
1AH OOH Get Tick Count
1AH 01H Set Tick Count
1AH 02H Get Time
1AH 03H Set Time
1AH 04H Get Date
1AH OSH Set Date
1AH 06H Set Alarm
1AH om Reset Alarm
1AH OAH (10) Get Day Count
1AH OBH (11) Set Day Count
1AH 80H (128) Set Sound Source

33H Microsoft Mouse Driver
33H OOH Reset Mouse and Get Status
33H 01H Show Mouse Pointer
33H 02H Hide Mouse Pointer
33H 03H Get Mouse Position and Button Status
33H 04H Set Mouse Pointer Position
33H OSH Get Button Press Information
33H 06H Get Button Release Information
33H om Set Horizontal Limits for Pointer
33H 08H Set Vertical Limits for Pointer
33H 09H Set Graphics Pointer Shape

(continued)

498 Section III



Summary ofROM BIOS and Mouse Function Calls continued

Int

33H
33H
33H
33H
33H
33H
33H
33H
33H

33H
33H
33H
33H
33H

33H
33H
33H
33H
33H
33H
33H
33H
33H
33H
33H

Function

OAH (10)
OBH (11)
OCH (12)
ODH(13)
OEH (14)
OFH (15)
10H (16)
13H (19)
14H (20)

15H (21)
16H (22)
17H (23)
18H (24)
19H (25)

1AH (26)
1BH (27)
1CH (28)
1DH (29)
1EH(30)
1FH (31)
20H (32)
21H (33)
22H (34)
23H (35)
24H (36)

SUbfunction Name

Set Text Pointer Type
Read Mouse Motion Counters
Set User-defined Mouse Event Handler
Turn On Light Pen Emulation
Turn Off Light Pen Emulation
Set Mickeys to Pixels Ratio
Set Mouse Pointer Exclusion Area
Set Double Speed Threshold
Swap User-defined Mouse Event

Handlers
Get Mouse Save State Buffer Size
Save Mouse Driver State
Restore Mouse Driver State
Set Alternate Mouse Event Handler
Get Address of Alternate Mouse Event

Handler
Set Mouse Sensitivity
Get Mouse Sensitivity
Set Mouse Interrupt Rate
Select Pointer Page
Get Pointer Page
Disable Mouse Driver
Enable Mouse Driver
Reset Mouse Driver
Set Language for Mouse Driver Messages
Get Language Number
Get Mouse Information

IBM ROM BIOS andMouse Functions Reference 499



IntlOH
Function OOH
Set video mode

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Selects the current video display mode. Also selects the active video controller, if more than one video
controller is present.

Call with:

Returns:

AH
AL

Nothing

=OOH
= video mode (see Notes)

Notes: • The video modes applicable to the various IBM machine models and video adapters
are as follows:

Text/
Mode Resolution Colors graphics MDA CGA PCjr EGA MCGA VGA

OOH 4O-by-25 16 text

color burst off

01H 4Q-by-25 16 text

02H 8O-by-25 16 text
color burst off

03H 8O-by-25 16 text

04H 32Q-by-200 4 graphics

05H 32Q-by-200 4 graphics

color burst off

06H 640-by-200 2 graphics

om BO-by-25 21 text

OBH 160-by-200 16 graphics

09H 32Q-by-200 16 graphics

OAH 640-by-200 4 graphics

OBH reserved

OCH reserved

ODH 32Q-by-200 16 graphics

OEH 640-by-200 16 graphics

OFH 640-by-350 22 graphics

10H 640-by-350 4 graphics .3

10H 640-by-350 16 graphics .4

11H 640-by-480 2 graphics

12H 640-by-480 16 graphics

13H 32Q-by-200 256 graphics

1 Monochrome monitor only.
2 Monochrome monitor only.
3 EGA with 64 KB of RAM.
4 EGA with 128 KB or more of RAM.

• The presence or absence of color burst is only significant when a composite monitor
is being used. For RGB monitors, there is no functional difference between modes
OOH and OlH or modes 02H and 03H. On the eGA, two palettes are available in
mode 04H and one in mode OSH.

500 Section III



• On the PC/AT, PCjr, and PS/2, if bit 7 of AL is set, the display buffer is not cleared
when a new mode is selected. On the PC or PCIXT, this capability is available only
when an EGA or VGA (which have their own ROM BIOS) is installed.

IntlOH
Function om
Set cursor type

[MDA] [eGA] [PCjr] [EGA] [MCGA] [VGA]

Selects the starting and ending lines for the blinking hardware cursor in text display modes.

Call with:

Returns:

Notes:

AH = OlH
CH bits 0-4 = starting line for cursor
CL bits 0-4 = ending line for cursor

Nothing

• In text display modes, the video hardware causes the cursor to blink, and the blink
cannot be disabled. In graphics modes, the hardware cursor is not available.

• The default values set by the ROM BIOS are:
Display Start End
monochrome mode 07H 11 12
text modes 00H-03H 6 7

• On the EGA, MeGA, and VGA in text modes 00H-03H, the ROM BIOS accepts cur­
sor start and end values as though the character cell were 8 by 8 and remaps the
values as appropriate for the true character cell dimensions. This mapping is called
cursor emulation.

• You can turn off the cursor in several ways. On the MDA, CGA, and VGA, setting
register CH = 20H causes the cursor to disappear. Techniques that involve setting
illegal starting and ending lines for the current display mode are unreliable. An
alternative is to position the cursor to a nondisplayable address, such as (x,y)=(0,25).

Int lOB [MDA] [eGA] [PCjr] [EGA] [MCGA] [VGA]
Function 02H
Set cursor position

Positions the cursor on the display, using text coordinates.

Call with: AH
BH
DH
DL

=02H
= page
= row (y coordinate)
= column (x coordinate)

IBM ROM BIOS andMouse Functions Reference 501



Returns:

Notes:

Nothing

• A separate cursor is maintained for each display page, and each can be set indepen­
dently with this function regardless of the currently active page. The number of
available display pages depends on the video adapter and current display mode. See
Int lOH Function OSH.

• Text coordinates (x,y)=(O,O) are the upper left corner of the screen.

• The maximum value for each text coordinate depends on the video adapter and
current display mode, as follows:
Mode Maximum x Maximum y
DOH 39 24
01H 39 24
OOH ~ M
03H 79 24
04H 39 24
MH ~ M
06H 79 24
07H 79 24
08H 19 24
09H 39 24
OAH 79 24
OBH reserved
OCH reserved
ODH 39 24
OEH 79 24
OFH 79 24
lOH 79 24
IIH 79 29
12H ~ ~

13H 39 24

Int lOB [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 03B
Get cursor position

Obtains the current position of the cursor on the display, in text coordinates.

Call with:

Returns:

AH
BH

CH
CL
DH
DL

=03H
= page

= starting line for cursor
= ending line for cursor
= row (y coordinate)
= column (x coordinate)

502 Section III



Note: • A separate cursor is maintained for each display page, and each can be inspected in­
dependently with this function regardless of the currently active page. The number
of available display pages depends on the video adapter and current display mode.
See Int IOH Function OSH.

IntlOH
Function 048
Get light pen position

Obtains the current status and position of the light pen.

[CGA] [PCjr] [EGA]

Call with:

Returns:

AH

AH

BX
CH
ex
DH
DL

=04H

= OOH if light pen not down/not triggered
OIH if light pen dOWn/triggered

= pixel column (graphics x coordinate)
= pixel row (graphics y coordinate, modes 04H-06H)
= pixel row (graphics y coordinate, modes ODH-13H)
= character row (text y coordinate)
= character column (text x coordinate)

Notes: • The range of text and graphics coordinates returned by this function depends on the
current display mode.

• On the CGA, the graphics coordinates returned by this function are not continuous.
The y coordinate is always a multiple of two; the x coordinate is either a multiple of
four (for 320-by-200 graphics modes) or a multiple of eight (for 640-by-200 graphics
modes).

• Careful selection of background and foreground colors is necessary to obtain maxi­
mum sensitivity from the light pen across the full screen width.

IntlOH
Function 058
Set display page

[CGA] [PCjr] [EGA] [MCGA] [VGA]

Selects the active display page for the video display.

IBM ROM BIOS andMouse Functions Reference 503



for modes OOH and 01H (CGA, EGA, MCGA, VGA)
for modes 02H and 03H (CGA)
for modes 02H and 03H (EGA, MCGA, VGA)
for mode 07H (EGA, VGA)
for mode ODH (EGA, VGA)
for mode OEH (EGA, VGA)
for mode OFH (EGA, VGA)
for mode 10H (EGA, VGA)

For CGA, EGA, MCGA, VGA
AH =OSH
AL = page

0-7
0-3
0-7
0-7
0-7
0-3
0-1
0-1

Callwith:

For PCjr only
AH =OSH
AL = subfunction

80H = read CRT/CPUpage registers
81H = set CPUpage register
82H = set CRTpage register
83H = set both CPUand CRTpage registers

BH = CRT page (Subfunctions 82H and 83H)
BL = CPU page (Subfunctions 8lH and 83H)

Returns: If CGA, EGA, MCGA, or VGA adapter
Nothing

If PCjr and if function called with AL= 80H-83H
BH = CRT page register
BL = CPU page register

Notes: • Video mode and adapter combinations not listed above support one display page
(for example, a Monochrome Adapter in mode 7).

• Switching between pages does not affect their contents. In addition, text can be
written to any video page with Int lOH Functions 02H, 09H, and OAH, regardless of
the page currently being displayed.

• On the PCjr, the CPU page determines the part of the physical memory region
OOOOOH-1FFFFH that will be hardware mapped onto 16 KB of memory beginning
at segment B800H. The CRT page determines the starting address of the physical
memory used by the video controller to refresh the display. Smooth animation
effects can be achieved by manipulation of these registers. Programs that write
directly to the B800H segment can reach only the first 16 KB of the video refresh
buffer. Programs requiring direct access to the entire 32 KB buffer in modes 09H and
OAH can obtain the current CRT page from the ROM BIOS variable PAGDAT at
0040:008AH.

504 Section III



Int lOB [MDA] [eGA] [PCjr] [EGA] [MCGA] [VGA]
Function 06H
Initialize or scroll window up

Initializes a specified window of the display to ASCII blank characters with a given attribute or scrolls up
the contents of a window by a specified number of lines.

Call with:

Returns:

AH
AL
BH
CH
CL
DH
DL

Nothing

=06H
= number of lines to scroll (if zero, entire window is blanked)
= attribute to be used for blanked area
= y coordinate, upper left corner of window
= x coordinate, upper left corner of window
=y coordinate, lower right corner of window
= x coordinate, lower right corner of window

Notes: • In video modes that support multiple pages, this function affects only the page
currently being displayed.

• If AL contains a value other than OOH, the area within the specified window is
scrolled up by the requested number of lines. Text that is scrolled beyond the top of
the window is lost. The new lines that appear at the bottom of the window are filled
with ASCII blanks carrying the attribute specified by register BH.

• To scroll down the contents of a window, see Int lOH Function 07H.

Int lOB [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function om
Initialize or scroll window down

Initializes a specified window of the display to ASCII blank characters with a given attribute, or scrolls
down the contents of a window by a speCified number of lines.

Call with:

Returns:

AH
AL
BH
CH
CL
DH
DL

Nothing

=07H
= number of lines to scroll (if zero, entire window is blanked)
= attribute to be used for blanked area
=y coordinate, upper left corner of window
=x coordinate, upper left corner of window
= y coordinate, lower right corner of window
=x coordinate, lower right corner of window

IBM ROM BIOS andMouse Functions Reference 505



Notes: • In video modes that support multiple pages, this function affects only the page
currently being displayed.

• If AL contains a value other than OOH, the area within the specified window is
scrolled down by the -requested number of lines. Text that is scrolled beyond the
bottom of the window is lost. The new lines that appear at the top of the window
are filled with ASCII blanks carrying the attribute specified ~y register BH.

• To scroll up the contents of a window, see Int lOH Function 06H.

Int lOB [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 08B
Read character and attribute at cursor

Obtains the ASCII character and its attribute at the current cursor position for the specified display page.

Call with: AH =08H
BH = page

Returns: AH = attribute
AL = character

Note: • In video modes that support multiple pages, characters and their attributes may be
read from any page, regardless of the page currently being displayed.

Int lOB [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 09B
Write character and attribute at cursor

Writes an ASCII character and its attribute to the display at the current cursor position.

Call with: AH
AL
BH
BL
ex

=09H
=character
= page
= attribute (text modes) or color (graphics modes)
= count of characters to write (replication factor)

Returns: Nothing

506 Section III



Notes: • In graphics modes, the replication factor in ex produces a valid result only for the
current row. If more characters are written than there are remaining columns in the
current row, the result is unpredictable.

• All values of AL result in some sort of display; control characters, including bell,
backspace, carriage return, and line feed, are not recognized as special characters
and do not affect the cursor position.

• After a character is written, the cursor must be moved explicitly with Int 10H Func­
tion 02H to the next position.

• To write a character without changing the. attribute at the current cursor position,
use Int 10H Function OAH.

• If this function is used to write characters in graphics mode and bit 7 of BL is set (1),
the character will be exclusive-OR'd (XOR) with the current display contents. This
feature can be used to write characters and then "erase" them.

• For the CGA and PCjr in graphics modes 04H-06H, the bit patterns for character
codes 80H-FFH are obtained from a table whose address is stored in the vector for
Int 1FH. On the PCjr, the address of the table for character codes OOH-7FH is stored
in the vector for Int 44H. Alternative character sets may be installed by loading them
into memory and updating this vector.

• For the EGA, MCGA, and VGA in graphics modes, the address of the character defini­
tion table is stored in the vector for Int 43H. See Int 10H Function 11H.

Int IOU [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OAR (10)
Write character at cursor

Writes an ASCII character to the display at the current cursor pOSition. The character receives the
attribute of the previous character displayed at the same position.

Call with:

Returns:

AH
AL
BH
BL
ex

Nothing

=OAH
= character
= page
= color (graphics modes, PCjr only)
= count of characters to write (replication factor)

Notes: • In graphics modes, the replication factor in ex produces a valid result only for the
current row. If more characters are written than there are remaining columns in the
current row, the result is unpredictable.

• All values of AL result in some sort of display; control characters, including bell,
backspace, carriage return, and line feed, are not recognized as special characters
and do not affect the cursor position.

IBM ROMBIOS andMouse Functions Reference 507



• After a character is written, the cursor must be moved explicitly with Int lOH Func­
tion 02H to the next position.

• To write a character and attribute at the current cursor position, use Int lOH Func­
tion09H.

• If this function is used to write characters in graphics mode and bit 7 of BL is set (1),
the character will be exclusive-OR'd (XOR) with the current display contents. This
feature can be used to write characters and then "erase" them.

• For the CGA and PCjr in graphics modes 04H-06H, the bit patterns for character
codes 80H-FFH are obtained from a table whose address is stored in the vector for
Int IFH. On the PCjr, the address of the table for character codes OOH-7FH is stored
in the vector for Int 44H. Alternative character sets may be installed by loading them
into memory and updating this vector.

• For the EGA, MCGA, and VGA in graphics modes, the address of the character defini­
tion table is stored in the vector for Int 43H. See Int IOH Function IIH.

Int lOB [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OBB (11)
Set palette, background, or border

Selects a palette, background, or border color.

Call with: To set the background color and border color for graphics modes or the border color for
text modes
AH =OBH
BH =OOH
BL = color

To select the palette (320-by-200 4-color graphics modes)
AH =OBH
BH = OIH
BL = palette (see Notes)

Returns: Nothing

Notes: • In text modes, this function selects only the border color. The background color
of each individual character is controlled by the upper 4 bits of that character's
attribute byte.

• On the eGA and EGA, this function is valid for palette selection only in 320-by-200
4-color graphics modes.

508 Section III



• In 320-by-200 4-color graphics modes, if register BH = OIH, the following palettes
may be selected:
Palette Pixel value Color
o 0 same as background

1 green
2 red
3 brown or yellow

I 0 same as background
1 cyan
2 magenta
3 white

• On the CGA in 640-by-200 2-color graphics mode, the background color selected
with this function actually controls the display color for nonzero pixels; zero pixels
are always displayed as black.

• On the PCjr in 640-by-200 2-color graphics mode, if BH = OOH and bit 0 of register BL
is cleared, pixel value 1 is displayed as white; if bit 0 is set, pixel value I is displayed
as black.

• See also Int IOH Function IOH, which is used for palette programming on the PCjr,
EGA, MCGA, and VGA.

IntlOH
Function OCR (12)
Write graphics pixel

[CGA] [PCjr] [EGA] [MCGA] [VGA]

Draws a point on the display at the specified graphics coordinates.

Call with:

Returns:

AH
AL
BH
ex
DX

Nothing

=OCH
= pixel value
= page
= column (graphics x coordinate)
= row (graphics y coordinate)

Notes: • The range of valid pixel values and (x,y) coordina~esdepends on the current
video mode.

• If bit 7 of AL is set, the new pixel value will be exclusive-OR'd (XOR) with the
current contents of the pixel.

• Register BH is ignored for display modes that support only one page.

IBM ROMBIOS andMouse Functions Reference 509



IntlOB
Function ODB (13)
Read graphics pixel

[CGA] [PCjr] [EGA] [MCGA] [VGA]

Obtains the current value of the pixel on the display at the specified graphics coordinates.

Callwith:

Returns:

AH
BH
ex
DX

AL

=ODH
=page
= column (graphics x coordinate)
= row (graphics y coordinate)

= pixel value

Notes: • The range of valid (x,y) coordinates and possible pixel values depends on the
current video mode.

• Register BH is ignored for display modes that support only one page.

Int lOB [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OEB (14)
Write character in teletype mode

Writes an ASCII character to the display at the current cursor position, using the specified color (if in
graphics modes), and then increments the cursor position appropriately.

Call with:

Returns:

AH
AL
BH
BL

Nothing

=OEH
= character
= page
= foreground color (graphics modes)

Notes: • The special ASCII codes for bell (07H), backspace (OSH), carriage return (ODH), and
line feed (OAH) are recognized, and the appropriate action is taken. All other char­
acters are written to the display (even if they are control characters), and the cursor
is moved to the next position.

• In video modes that support multiple pages, characters can be written to any page,
regardless of the page currently being displayed.

• Line wrapping and scrolling are provided. If the cursor is at the end of a line, it is
moved to the beginning of the next line. If the cursor reaches the end of the last line
on the screen, the screen is scrolled up by one line and the cursor is placed at the

510 Section III



beginning of a new blank line. The attribute for the entire new line is taken from the
last character that was written on the preceding line.

• The default MS-DOS console driver (CON) uses this function to write text to the
screen. You cannot use this function to specify the attribute of a character. One
method of writing a character to the screen with a specific attribute is to first write
an ASCII blank (20H) with the desired attribute at the current cursor location using
Int 10H Function O9H and then write the actual character with Int 10H Function
OEH. This technique, although somewhat clumsy, does not require the program to
explicitly handle line wrapping and scrolling.

• See also Int 10H Function l3H.

Int lOB [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Functiolll om (15)
Get video mode

Obtains the current display mode of the active video controller.

Callwith:

Returns:

AH

AH
AL
BH

=OFH

= number of character columns on screen
= display mode (see Int 10H Function OOH)
= active display page

Note: • This function can be called to obtain the screen width before clearing the screen
with Int 10H Functions 06H or 07H.

Int lOB [PCjr] [EGA] [MCGA] [VGA]
Function lOB (16) Subfunction OOB
Set palette register

Sets the correspondence of a palette register to a displayable color.

Call with: On the PCjr, EGA, or VGA
AH = 10H
AL = OOH
BH = color value
BL = palette register (OO-OFH)

On the MCGA
AH = 10H
AL = OOH
BX = 07l2H

IBM ROM BIOS andMouse Functions Reference 511



Returns:

Note:

Nothing

• On the MCGA, this function can only be called with BX = 0712H and selects a color
register set with eight consistent colors.

IntlOB
Function lOB (16) Subfunction om
Set border color

Controls the color of the screen border (overscan).

[PCjr] [EGA] [VGA]

Call with: AH
AL
BH

= 10H
=OIH
= color value

Returns: Nothing

IntlOB
Function lOB (16) Subfunction 02B
Set palette and border

[PCjr] [EGA] [VGA]

Sets all palette registers and the border color (overscan) in one operation.

Call with: AH
AL
ES:DX

= 10H
=02H
= segment:offset of color list

Returns:

Notes:

Nothing

• The color list is 17 bytes long. The first 16 bytes are the color values to be loaded into
palette registers 0-15, and the last byte is stored in the border color register.

• In 16-color graphics modes, the following default palette is set up:
Pixel value Color
01H blue
02H green
03H cyan
04H red
OSH magenta
06H brown

512 Section III



Pixel value
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH

Color
white
gray
light blue
light green
light cyan
light red
light magenta
yellow
intense white

Int lOB [PCjr] [EGA] [MeGA] [VGA]
Function lOB (16) Subfunction 03B
Toggle blink/intensity bit

Determines whether the most significant bit of a character attribute will select blinking or intensified
display.

Call with: AH
AL
BL

= lOH
=03H
= blink/intensity toggle

o= enable intensity
1 = enable blinking

Returns: Nothing

IntlOB
Function lOB (16) Subfunction om
Get palette register

Returns the color associated with the specified palette register.

Call with: AH = lOH
AL =07H
BL = palette register

Returns: BH = color

[VGA]

IBM ROM BIOS and Mouse Functions Reference 513



Int10H
Function 10H (16) Subfunction 08H
Get border color

Returns the current border color (overscan).

[VGA]

Call with: AH
AL

Returns: BH

= 10H
=08H

= color

Int10H
Function 10H (16) Subfunction 09H
Get palette and border

Gets the contents of all palette registers and the border color (overscan) in one operation.

[VGA]

Call with: AH
AL
ES:DX

= 10H
=09H
= segment:offset of 17-byte buffer

Returns: ES:DX = segment:offset of buffer

and buffer contains palette values in bytes OOH-OFH and border color in byte 10H.

Int10H
Function 10H (16) Subfunction 10H (16)
Set color register

[MeGA] [VGA]

Programs an individual color register with a red-green-blue (RGB) combination.

Call with: AH
AL
BX
CH
CL
DH

514 Section III

= lOH
= lOH
= color register
= green value
= blue value
= red value



Returns:

Note:

Nothing

• If gray-scale summing is enabled, the weighted gray-scale value is calculated as
described under Int lOH Function lOH Subfunction IBH and is stored into all three
components of the color register. See also Int lOH Function 12H Subfunction 33H.

Int10B
Function lOB (16) Subfunction 12B (18)
Set block ofcolor registers

Programs a group of consecutive color registers in one operation.

[MeGA] [VGA]

Call with:

Returns:

AH
AL
BX
ex
ES:DX

Nothing

= lOH
= 12H
= first color register
= number of color registers
= segment:offset of color table

Notes: • The table consists of a series of 3-byte entries, one entry per color register to be pro­
grammed. The bytes of an individual entry specify the red, green, and blue values
(in that order) for the associated color register.

• If gray-scale summing is enabled, the weighted gray-scale value for each register is
calculated as described under Int lOH Function lOH Subfunction IBH and is stored
into all three components of the color register. See also Int lOH Function 12H Sub­
function 33H.

Int10B
Function lOB (16) Subfunction 13B (19)
Set color page state

Selects the paging mode for the color registers, or selects an individual page of color registers.

[VGA]

Call with: To select the paging mode
AH = lOH
AL = 13H
BH = paging mode

DOH for 4 pages of64 registers
01H for 16pages of16 registers

BL = OOH

IBM ROM BIOS and Mouse Functions Reference 515



Returns:

Note:

To select a color register page
AH = IOH
AL = I3H
BH = page
BL =OIH

Nothing

• This function is not valid in mode I3H C320-by-200 256-color graphics).

Int10H
Function 10H (16) Subfunction 15H (21)
Get color register

Returns the contents of a color register as its red, green, and blue components.

Call with: AH = IOH
AL = I5H
BX = color register

Returns: CH = green value
CL = blue value
DH = red value

IntlOH
Function 10H (16) Subfunction 17H (23)
Get block ofcolor registers

[MCGA] [VGA]

[MCGA] [VGA]

Allows the red, green, and blue components associated with each of a set of color registers to be read in
one operation.

Call with: AH
AL
BX
ex
ES:DX

= IOH
=17H
= first color register
= number of color registers
= segment:offset of buffer to receive color list

Returns: ES:DX = segment:offset of buffer

and buffer contains color list

516 Section III



Note: .. The color list returned in the caller's buffer consists .of a series of 3-byte entries cor­
responding to the color registers. Each 3-byte entry contains the register's red, green,
and blue components in that order.

Intl0H
Function 10H (16) Subfunction lAB (26)
Get color page state

Returns the color register paging mode and current color page.

[VGA]

Call with:

Returns:

AH
AL

BH
BL

= 10H
=1AH

= color page
= paging mode

OOH if4 pages of64 registers
01H if16pages of16 registers

Note: a See Int 10H Function lOH Subfunction 13H, which allows selection of the paging
mode or current color page.

Intl0H
Function 10H (16) Subfunction ffiH (27)
Set gray-scale values

[MeGA] [VGA]

Transforms the red, green, and blue values of one or more color registers into the gray-scale equivalents.

Call with:

Returns:

AH
AL
BX
ex

Nothing

= 10H
=1BH
= first color register
= number of color registers

Note: • For each color register, the weighted sum of its red, green, and blue values is calcu­
lated (300A> red + 590A> green + 11% blue) and written back into all three components
of the color register. The original red, green, and blue values are lost.

IBM ROM BIOS andMouse Functions Reference 517



lot lOB [EGA] [MeGA] [VGA]
Function llH (17) Subfunctions OOB and lOB (16)
Load user font

Loads the user's font (character definition) table into the specified block of character generator RAM.

Call with:

Returns:

AH
AL
BH
BL
CX
DX
ES:BP

Nothing

= IlH
= OOH or lOH (see Notes)
= points (bytes per character)
= block
= number of characters defined by table
= first character code in table
= segment:offset of font table

Notes: • This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-paints-addressable) modes, see Int lOH Function IlH Sub­
functions 20H-24H.

• If AL = lOH, page 0 must be active. The points (bytes per character), rows, and
length of the refresh buffer are recalculated. The controller is reprogrammed with
the maximum scan line (points - 1), cursor start (points - 2), cursor end (points­
1), vertical display end ((rows*points) - 1), and underline location (points - 1,
mode 7 only).

If Subfunction lOH is called at any time other than immediately after a mode set, the
results are unpredictable.

• On the MCGA, a Subfunction OOH call should be followed by a Subfunction 03H call
so that the ROM BIOS will load the font into the character generator's internal font
pages.

• Subfunction lOH is reserved on the MCGA. If it is called, Subfunction OOH is
executed.

lot lOB [EGA] [VGA]
Function 1lH (17) Subfunctions OlH and 1lH (17)
Load ROM 8-by-14 font

Loads the ROM BIOS default 8-by-14 font table into the specified block of character generator RAM.

Call with: AH
AL
BL

= IlH
= OlH or IlH (see Notes)
= block

518 Section III



Returns:

Notes:

Nothing

• This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-points-addressable) modes, see Int 10H Function IlH Sub­
functions 20H-24H.

• If AL = I1H, page 0 must be active. The points (bytes per character), rows, and
length of the refresh buffer are recalculated. The controller is reprogrammed with
the maximum scan line (points- 1), cursor start (points- 2), cursor end (points­
1), vertical display end ((rows.points) - 1), and underline location (points - 1,
mode 7 only).

If Subfunction IlH is called at any time other than immediately after a mode set, the
results are unpredictable.

• Subfunctions 01H and IlH are reserved on the MCGA. If either is called, Subfunction
04H is executed.

Int 10H [EGA] [MeGA] [VGA]
Function 11H (17) Subfunctions 02H and 12H (18)
Load ROM 8-by-8 font

Loads the ROM BIOS default 8-by-8 font table into the specified block of character generator RAM.

Call with:

Returns:

AH
AL
BL

Nothing

= IlH
= 02H or 12H (see Notes)
= block

Notes: • This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-points-addressable) modes, see Int 10H Function IlH Sub­
functions 20H-24H.

• If AL = 12H, page 0 must be active. The points (bytes per character), rows, and
length of the refresh buffer are recalculated. The controller is reprogrammed with
the maximum scan line (points- 1), cursor start (points- 2), cursor end (points­
1), vertical display end ((rows.points) - 1), and underline location (points- 1,
mode 7 only).

If Subfunction 12H is called at any time other than immediately after a mode set, the
results are unpredictable.

• On the MCGA, a Subfunction 02H call should be followed by a Subfunction 03H call,
so that the ROM BIOS will load the font into the character generator's internal font
pages.

• Subfunction 12H is reserved on the MCGA. If it is called, Subfunction 02H is
executed.

IBMROMBIOS andMouse Functions Reference 519



IntlOB
Function 11H (17) Subfunction 03B
Set block specifier

[EGA] [MCGA] [VGA]

Determines the character blocks selected by bit 3 of character attribute bytes in alphanumeric (text)
display modes.

Call with: AH
AL
BL

= IIH
=03H
= character generator block select code (see Notes)

Returns:

Notes:

Nothing

• On the EGA and MeGA, the bits of BL are used as follows:
Bits Significance
0-1 character block selected by attribute bytes with bit 3 = 0
2-3 character block selected by attribute bytes with bit 3 = 1
4-7 not used (should be 0)

• On the VGA, the bits of BL are used as follows:
Bits Significance
0,1,4 character block selected by attribute bytes with bit 3 = 0
2,3,5 character block selected by attribute bytes with bit 3 = 1
6-7 not used (should be 0)

• When using a 256-character set, both fields of BL should select the same character
block. In such cases, character attribute bit 3 controls the foreground intensity.
When using 512-character sets, the fields of BL designate the blocks holding each
half of the character set, and bit 3 of the character attribute selects the upper or
lower half of the character set.

• When using a 512-character set, a call to Int 10H Function 10H Subfunction OOH
with BX = 0712H is recommended to set the color planes to eight consistent colors.

Int lOB [MCGA] [VGA]
Function I1H (17) Subfunctions 04H and 14H (20)
Load ROM 8-by-16 font

Loads the ROM BIOS default 8-by-16 font table into the speCified block of character generator RAM.

Call with: AH
AL
BL

520 Section III

= IIH
= 04H or 14H (see Notes)
= block



Returns:

Notes:

Nothing

• This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-points-addressable) modes, see Int 10H Function 11H Sub­
functions 20H-24H.

• If AL = 14H, page 0 must be active. The points (bytes per character), rows, and
length of the refresh buffer are recalculated. The controller is reprogrammed with
the maximum scan line (points- 1), cursor start (points- 2), cursor end (points­
1), vertical display end (rows*points- 1 for 350- and 400-line modes, or rows
*points *2 -1 for 200-line modes), and underline location (points- 1, mode 7
only).

If Subfunction 14H is called at any time other than immediately after a mode set, the
results are unpredictable.

• On the MCGA, a Subfunction 04H call should be followed by a Subfunction 03H call
so that the ROM BIOS will load the font into the character generator's internal font
pages.

• Subfunction 14H is reserved on the MCGA. If it is called, Subfunction 04H is
executed.

Int lOB [EGA] [MeGA] [VGA]
Function 11H (17) Subfunction 20B (32)
Set Int 1FH font pointer

Sets the Int 1FH pointer to the user's font table. This table is used for character codes 80H-FFH in
graphics modes 04H-06H.

Callwith:

Returns:

AH
AL
ES:BP

Nothing

= 11H
=20H
= segment:offset of font table

Note: II This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int 10H Function 11H
Subfunctions OOH-14H.

• If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

IBM ROMBIOS and Mouse Functions Reference 521



Int 10H [EGA] [MCGA] [VGA]
Function 1m (17) ·Subfunction 2m (33)
Set Int 43H for user's font

Sets the vector for Int 43H to point to the user's font table and updates the video ROM BIOS data area. The
video controller is not reprogrammed.

Call with: AH
AL
BL

ex
DL
ES:BP

= IlH
= 21H
=character rows specifier

OOH ifuser specified (see register DL)
01H = 14 (OER) rows
02H = 25 (19H) rows
03H = 43 (2BH) rows

= points (bytes per character)
= character rows per screen (if BL = OOH)
= segment:offset of user font table

Returns:

Notes:

Nothing

• This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int 10H Function IlH
Subfunctions OOH-14H.

• If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

Int 10H [EGA] [MCGA] [VGA]
Function 1m (17) Subfunction 22H (34)
Set Int 43H for ROM 8-by-14 font

sets the vector for Int 43H to point to the ROM BIOS default 8-by-14 font and updates the video ROM BIOS
data area. The video controller is not reprogrammed.

Call with: AH
AL
BL

DL

522 Section III

= IlH
= 22H
= character rows specifier

OOH ifuserspecified (see register DL)
01H = 14 (OER) rows
02H = 25 (19H) rows
03H = 43 (2BH) rows

= character rows per screen (if BL = OOH)



Returns:

Notes:

Nothing

• This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int 10H Function IlH
Subfunctions OOH-14H.

• If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

• When this subfunction is called on the MeGA, Subfunction 24H is substituted.

Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunction 23H (35)
Set Int 43H for ROM 8-by-8 font

Sets the vector for Int 43H to point to the ROM BIOS default 8-by-8 font and updates the video ROM BIOS
data area. The video controller is not reprogrammed.

Call with: AH
AL
BL

DL

= IlH
= 23H
= character rows specifier

OOH ifuser specified (see register DL)
01H = 14 (OEH) rows
02H = 25 (19H) rows
03H = 43 (2BH) rows

= character rows per screen (if BL = OOH)

Returns:

Notes:

Nothing

• This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int 10H Function IlH
Subfunctions OOH-14H.

• If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

Int10H
Function I1H (17) Subfunction 24H (36)
Set Int 43H for ROM 8-by-16 font

[MCGA] [VGA]

Sets the vector for Int 43H to point to the ROM BIOS default 8-by-16 font and updates the video ROM BIOS
data area. The video controller is not reprogrammed.

IBM ROM BIOS and Mouse Functions Reference 523



Call with: AH
AL
BL

DL

= I1H
=24H
= row specifier

OOH ifuser specified (see register DL)
OlH = 14 (OEH) rows
02H = 25 (19H) rows
03H = 43 (2BH) rows

=character rows per screen (if BL = OOH)

Returns:

Note:

Nothing

• This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int 10H Function 11H
Subfunctions OOH-14H.

• If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

Int lOB [EGA] [MeGA] [VGA]
Function llH (17) Subfunction 30B (48)
Get font information

Returns a pointer to the character definition table for a font and the points (bytes per character) and rows
for that font.

Call with: AH
AL
BH

= 11H
=30H
= font code

OOH
01H
02H
03H
04H
05H
06H
07H

=current Int 1FH contents
=current Int 43H contents
=ROM 8-by-14font (EGA, VGA only)
= ROM 8-by-8font (characters OOH-7FH)
= ROM 8-by-8font (characters 80H-FFH)
= ROM alternate 9-by-14font (EGA, VGA only)
= ROM 8-by-16font (MeGA, VGA only)
= ROM alternate 9-by-16font (VGA only)

Returns: ex
DL
ES:BP

= points (bytes per character)
= rows (character rows on screen - 1)
= segment:offset of font table

524 Section III



Intl0H
Function 12H (18) Subfunction 10H (16)
Get configuration information

Obtains configuration information for the active video subsystem.

[EGA] [VGA]

Call with:

Returns:

AH
BL

BH

BL

CH
CL

= 12H
= 10H

= display type
o ifcolor display
1 ifmonochrome display

= memory installed on EGA board
OOH if64KB
OlH if128KB
02H if192KB
03H if256KB

= feature bits (see Notes)
= switch setting (see Notes)

Notes: • The feature bits are set from Input Status register 0 in response to an output on the
specified Feature Control register bits:
Feature Feature control Input status
bites) output bit bit
005
106
2 1 5
316
4-7 not used

• The bits in the switch settings byte indicate the state of the EGA's configuration DIP
switch (1 = off, 0 = on).
Bit(s) Significance
o configuration switch 1
1 configuration switch 2
2 configuration switch 3
3 configuration switch 4
4-7 not used

IBM ROM BIOS and Mouse Functions Reference 525



Intl0H
Function 12H (18) Subfunction 20H (32)
Select alternate printscreen

[EGA] [VGA]

Selects an alternate print-screen routine for the EGA and VGA that works properly if the screen length is
not 25 lines. The ROM BIOS default print-screen routine always prints 2S lines.

Call with: AH = 12H
BL = 20H

Returns: Nothing

Intl0H
Function 12H (18) Subfunction 30H (48)
Set scan lines

[VGA]

Selects the number of scan lines for alphanumeric modes. The selected value takes effect the next time Int
10H Function OOH is called to select the display mode.

Call with: AH
AL

BL

= 12H
=scan line code

OOH = 200 scan lines
01H = 350 scan lines
02H = 400 scan lines

=30H

Returns: If the VGA is active
AL = 12H

If the VGA is not active
AL = OOH

Intl0H
Function 128 (18) Subfunction 3tH (49)
Enable/disable default palette loading

[MeGA] [VGA]

Enables or disables loading of a default palette when a video display mode is selected.

526 Section III



Call with: AH
AL

BL

= I2H
=DOH to enable default palette loading

0IH to disable default palette loading
= 3IH

Returns: If function supported
AL = I2H

Intl0H
Function 12H (18) Subfunction 32H (50)
Enable/disable video

[MCGA] [VGA]

Enables or disables CPU access to the video adapter's I/O ports and video refresh buffer.

Call with: AH
AL

BL

= I2H
= OOH to enable access

0IH to disable access
= 32H

Returns: If function supported
AL = I2H

Intl0H
Function 12H (18) Subfunction 33H (51)
Enable/disable gray-scale summing

Enables or disables gray-scale summing for the currently active display.

[MCGA] [VGA]

Call with: AH
AL

BL

= I2H
= OOH to enable gray-scale summing

0IH to disable gray-scale summing
=33H

Returns:

Note:

If function supported
AL = I2H

• When enabled, gray-scale summing occurs during display mode selection, palette
programming, and color register loading.

IBM ROM BIOS andMouse Functions Reference 527



Intl0H
Function 12H (18) Subfunction 34H (52)
Enable/disable cursor emulation

[VGA]

Enables or disables cursor emulation for the currently active display. When cursor emulation is enabled,
the ROM BIOS automatically remaps Int 10H Function 01H cursor starting and ending lines for the current
character cell dimensions.

Call with: AH
AL

BL

= 12H
= OOH to enable cursor emulation

01H to disable cursor emulation
=34H

Returns: If function supported
AL = 12H

Intl0H
Function 12H (18) Subfunction 35H (53)
Switch active display

[MeGA] [VGA]

Allows selection of one of two video adapters in the system when memory usage or port addresses
conflict between the two adapters.

Call with: AH
AL

BL
ES:DX

= 12H
= switching function

OOH to disable initial video adapter
01H to enable system board video adapter
02H to disable active video adapter
03H to enable inactive video adapter

=3SH
= segment:offset of 128-byte buffer (if AL = OOH, 02H, or 03H)

Returns: If function supported
AL = 12H

and, if called with AL = OOH or 02H
Video adapter state information saved in caller's buffer

or, if called with AL = 03H
Video adapter state restored from information in caller's buffer

528 Section III



Notes: • This subfunction cannot be used unless both video adapters have a disable capa­
bility (Int 10H Function 12H Subfunction 32H).

• If there is no conflict between the system board video and the adapter board video
in memory or port usage, both video controllers can be active simultaneously and
this subfunction is not required.

Intl0H
Function 12H (18) Subfunction 36H (54)
Enable/disable screen refresh

Enables or disables the video refresh for the currently active display.

[VGA]

Call with: AH
AL

BL

= 12H
= OOH to enable refresh

01H to disable refresh
=36H

Returns: If function supported
AL = 12H

Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 138 (19)
Write string in teletype mode

Transfers a string to the video buffer for the currently active display, starting at the specified position.

Call with: AH
AL

= 13H
= write mode

o attribute in BL;
string contains character codes only; and cursorposition is not
updated after write

1 attribute in BL;
string contains character codes only; and cursorposition is
updated after write

2 string contains alternating character codes and attribute bytes;
and curso.rposition is not updated after write

3 string contains alternating character codes and attribute bytes;
and cursorposition is updated after write

IBM ROM BIOS andMouse Functions Reference 529



Returns:

Notes:

BH = page
BL = attribute, if AL = DOH or 01H
ex = length of character string
OH =Y coordinate (row)
OL = x coordinate (column)
ES:BP = segment:offset of string

Nothing

• This function is not available on the original ffiM PC or PCIXT unless an EGA video
adapter (which contains its own ROM BIOS) is installed.

• This function may be thought of as an extension to Int lOB Function OEH. The con­
trol characters bell (Om), backspace (08H), line feed (OAH), and carriage return
(OOH) are recognized and handled appropriately.

IntlOH
Function 1AH (26)
Get or set display combination code

[PS/2]

Returns a code describing the installed display adapter(s) or updates the ROM BIOS's variable describing
the installed adapter(s).

Call with: AH
AL

BH
BL

=lAH
= subfunction

DOH =get display combination code
01H = set display combination code

= inactive display code (if AL = 01H)
= active display code (if AL = 01H)

Returns:

Note:

If function supported
AL = 1AH

and, if called with AL = OOH
BH = inactive display code
BL = active display code

• The display codes are interpreted as follows:
Code(s) Video subsystem type
OOH no display
01H MOA with 5151 monitor
02H eGA with 5153 or 5154 monitor
03H reserved
04H EGA with 5153 or 5154 monitor

530 Section III



Code(s)
05H
06H
om
OSH
09H
OAH
OBH
OCH
ODH-FEH
FFH

Video subsystem type
EGA with 5151 monitor
PGA with 5175 monitor
VGA with analog monochrome monitor
VGA with analog color monitor
reserved
MCGA with digital color monitor
MCGA with analog monochrome monitor
MCGA with analog color monitor
reserved
unknown

IntlOH
Function ffiH (27)
Get functionality/state information

[PS/2]

Obtains information about the current display mode as well as a pointer to a table describing the charac­
teristics and capabilities of the video adapter and monitor.

Callwith: AH
BX
ES:DI

=lBH
= implementation type (always OOH)
= segment:offset of 64-byte buffer

IBH
lCH
IDH
lEH-lFH
20H

Returns:

Notes:

If function supported
AL =IBH
and information placed in caller's buffer (see Notes)

• The caller's buffer is filled in with information that depends on the current video
display mode:
Byte(s) Contents
OOH-03H pointer to functionality information (see next Note)
04H current video mode
05H-06H number of character columns
07H-08H length of video refresh buffer (bytes)
09H-OAH starting address in buffer of upper left corner of display
OBH-IAH cursor position for video pages 0-7 as eight 2-byte entries; first byte of

each pair is y coordinate, second byte is x coordinate
cursor starting line
cursor ending line
active display page
adapter base port address (3BXH monochrome, 3DXH color)
current setting of register 3B8H or 3D8H

IBM ROMBIOS andMouse Functions Reference 531



Byte(s)
2lH
22H
23H-24H
25H
26H
27H-28H
29H
2AH

2BH
2CH
2DH

2EH-30H
3lH

32H

33H-3FH

532 Section III

Contents
current setting of register 3B9H or 3D9H
number of character rows
character height in scan lines
active display code (see Int lOH Function lAH)
inactive display code (see Int lOH Function lAH)
number of displayable colors (0 for monochrome)
number of display pages
number of scan lines
DOH = 200 scan lines
0IH = 350 scan lines
02H = 400 scan lines
03H = 480 scan lines
04H-FFH = reserved
primary character block (see Int lOH Function llH Subfunction 03H)
secondary character block
miscellaneous state information
BU(s) Significance
o = 1 if all modes on all displays active (always 0 on MeGA)
1 = l.if gray-scale summing active
2 = 1 if monochrome display attached
3 = 1 if mode set default palette loading disabled
4 = 1 if cursor emulation active (always 0 on MCGA)
5 = state ofl/B toggle (0 = intensity, 1 = blink)
6-7 = reserved
reserved
video memory available
DOH = 64KB
0IH = 128KB
02H = I92KB
03H = 256KB
save pointer state information
BU(s) Significance
o = 1 if 512-character set active
1 = 1 if dynamic save area active
2 = 1 if alpha font override active
3 = 1 if graphics font override active
4 = 1 if palette override active
5 = 1 if display combination code (DCC) extension active
6-7 = reserved
reserved



02H

OIH

OSH
09H
OAH

• Bytes 0-3 ..of the caller's buffer contain a OWORO pointer (offset in lower word,
segment in upper word) to the following information about the display adapter
and monitor:
Byte(s) Contents
OOH video modes supported

Bit Significance
o = 1 if mode OOH supported
1 = 1 if mode OIH supported
2 = 1 if mode 02H supported
3 = 1 if mode 03H supported
4 = 1 if mode 04H supported
5 = 1 if mode 05H supported
6 = 1 if mode 06H supported
7 = 1 if mode 07H supported
video modes supported
Bit Significance
o = 1 if mode OSH supported
1 = 1 if mode 09H supported
2 = 1 if mode OAH supported
3 = 1 if mode OBH supported
4 = 1 if mode OCH supported
5 = 1 if mode OOH supported
6 = 1 if mode OEH supported
7 = 1 if mode OFH supported
video modes supported
Bit(s) Significance
o = 1 if mode IOH supported
1 = 1 if mode IIH supported
2 = 1 if mode I2H supported
3 = 1 if mode I3H supported
4-7 = reserved

03H-06H reserved
07H scan lines available in text modes

Bit(s) Significance
o = 1 if 200 scan lines
1 = 1 if 350 scan lines
2 = 1 if 400 scan lines
3-7 = reserved
character blocks available in text modes (see Int IOH Function IIH)
maximum number of active character blocks in text modes
miscellaneous BIOS capabilities
Bit Significance
o = 1 if all modes active on all displays (always 0 for MeGA)
1 = 1 if gray-scale summing available
2 = 1 if character font loading available
3 = 1 if mode set default palette loading available
4 = 1 if cursor emulation available
5 = 1 if EGA (64-color) palette available
6 = 1 if color register loading available
7 = 1 if color register paging mode select available

IBM ROM BIOS andMouse Functions Reference 533



2

3
4-7
reserved
save area capabilities
Bit(s) Sigmficance
o = 1 if supports 512-character sets
1 = 1 if dynamic save area available
2 = 1 if alpha font override available
3 = 1 if graphics font override available
4 = 1 if palette override available
5 = 1 if display combination code extension available
6-7 = reserved
reserved

Contents
miscellaneous BIOS capabilities
Bit(s) Signlflcance
o = 1 if light pen available
1 = 1 if save/restore video state available (always 0 on

MCGA)
= 1 if background intensity/blinking control available
= 1 if get/set display combination code available
= reserved

OFH

OCH-ODH
OEH

Byte(s)
OBH

IntlOB
Function leB (28)
Save or restore video state

[PS/2]

Saves or restores the digital-to-analog converter (DAC) state and color registers, ROM BIOS video driver
data area, or video hardware state.

Call with: AH
AL

ex

ES:BX

=lCH
= subfunction

DOH to get state buffer size
01H to save state
02H to restore state

= requested states
Bit(s) Sigmfica1lCe (ifset)
o save/restore video hardware state
1 save/restore video BIOS data area
2 save/restore video DAC state and color registers
3-15 reserved

= segment:offset of buffer

Returns: If function supported
AL =lCH

534 Section III



Notes:

and, if called with AL = OOH
BX = buffer block count (64 bytes per block)

or, if called with AL =01H
State information placed in caller's buffer

or, if called with AL = 02H
Requested state restored according to contents of caller's buffer

• Subfunction OOH is used to determine the size of buffer that will be necessary to
contain the specified state information. The caller must supply the buffer.

• The current video state is altered during a save state operation (AL =0IH). If the
requesting program needs to continue in the same video state, it can follow the save
state request with an immediate call to restore the video state.

• This function is supported on the VGA only.

IntllH
Get equipment configuration

Obtains the equipment list code word from the ROM BIOS.

[PC] [AT] [PS/2]

Call with:

Returns:

Nothing

AX = equipment list code word
Bit(s)
o
1
2

2-3

4-5

6-7

8
9-11
12

Significance
= 1 if floppy disk drive(s) installed
= 1 if math coprocessor installed
= 1 if pointing device installed (PS/2)

system board ram size (PC, see Note)
00 = 16 KB
01 = 32 KB
10 = 48 KB
11 =64KB
initial video mode
00 reserved
01 40-by-25 color text
10 80-by-25 color text
11 80-by-25 monochrome
number of floppy disk drives (if bit 0 = 1)
00 = 1
01 = 2
10 = 3
11 = 4
reserved
number of RS-232 ports installed

= 1 if game adapter installed

IBM ROMBIOS andMouse Functions Reference 535



Bit(s)
13

14-15

Significance
= 1 if internal modem installed (PC and XT only)
= 1 if serial printer attached (PCjr)

number of printers installed

Note: • Bits 2-3 of the returned value are used only in the ROM BIOS for the original
IBM PC with the 64 KB system board and on the PCjr.

Int12H
Get conventional memory size

[PC] [AT] [PS/2]

Returns the amount of conventional memory available for use by MS-DOS and application programs.

Call with:

Returns:

Nothing

AX = memory size (in KB)

Notes: • On some early PC models, the amount of memory returned by this function is con­
trolled by the settings of the dip switches on the system board and may not reflect
all the memory that is physically present.

• On the PC/AT, the value returned is the amount ofjunctional memory found during
the power-on self-test, regardless of the memory size configuration information
stored in CMOS RAM.

• The value returned does not reflect any extended memory (above the 1 MB bound­
ary) that may be installed on 80286 or 80386 machines such as the PC/AT or PS/2
(Models 50 and above).

Int13H
Function OOH
Reset disk system

[PC] [AT] [PS/2]

Resets the disk controller, recalibrates its attached drives (the read/write arm is moved to cylinder 0), and
prepares for disk I/O.

Call with: AH
DL

=OOH
=drive

OOH-7FH floPPY disk
BOH-FFH fixed disk

536 Section III



Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

• This function should be called after a failed floppy disk Read, Write, Verify, or For­
mat request before retrying the operation.

• If called with OL >= SOH (Le., selecting a fixed disk drive), the floppy disk controller
and then the fixed disk controller are reset. See also Int 13H Function OOH, which
allows the fixed disk controller to be reset without affecting the floppy disk
controller.

Int13H
Function om
Get disk system status

Returns the status of the most recent disk operation.

[PC] [AT] [PS/2]

Call with:

Returns:

AH
DL

AH
AL

=OlH
= drive

OOH-7FH floPPY disk
BOH-FFH fixed disk

=OOH
= status of previous disk operation

OOH no error
01H invalid command
02H address mark notfound
03H disk write-protected (F)
04H sector notfound
05H resetfailed (H)
06H floppy disk removed (F)
07R badparameter table (R)
OBH DMA overrun (F)
09H DMA crossed 64 KB boundary
OAR bad sectorflag (H)
OBH bad trackflag (H)
OCR media type notfound (F)
ODR invalid number ofsectors on format (R)
OEH control data address mark detected (R)
OFH DMA arbitration level out ofrange (H)

IBM ROM BIOS andMouse Functions Reference 537



Note:

10H uncorrectable CRC1 or ECC2 data error
IlH ECC corrected data error (H)
20H controllerjailed
40H seekjailed
80H disk timed-out (failed to respond)
AAH drive not ready (H)
BBH undefined error (H)
CCH writefault (H)
EOH status register error (H)
FFH sense operationfailed (H)

H =fixed disk only, F =floppy disk only

1 Cyclic Redundancy Check code
2 Error Checking and Correcting code

• On fixed disks, error code IIH (ECC data error) indicates that a recoverable error
was detected during a preceding Read Sector (Int I3H Function 02H) function.

Int13H
Function 02H
Read sector

Reads one or more sectors from disk into memory.

[PC] [AT] [PS/2]

Call with: AH
AL
CH
CL
DH
DL

ES:BX

=02H.
= number of sectors
= cylinder
= sector
= head
= drive

OOH-7FH floppy disk
80H-FFH fixed disk

=segment:offset of buffer

Returns: If function successful
Carry flag = clear
AH =OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH =status (see Int I3H Function 01H)

538 Section III



Notes: • On fixed disks, the upper 2 bits of the IO-bit cylinder number are placed in the up­
per 2 bits of register CL.

• On fixed disks, error code 1lH indicates that a read error occurred that was cor­
rected by the ECC algorithm; in this event, register AL contains the burst length. The
data returned is probably good, although there is a small chance that the data was
not corrected properly. If a multi-sector transfer was requested, the operation was
terminated after the sector containing the read error.

• On floppy disk drives, an error may result from the drive motor being off at the time
of the request. The ROM BIOS does not automatically wait for the drive to come up
to speed before attempting the read operation. The requesting program should reset
the floppy disk system (Int 13H Function OOH) and retry the operation three times
before assuming that the error results from some other cause.

Int13H
Function 03H
Write sector

Writes one or more sectors from memory to disk.

[PC] [AT] [PS/2]

Call with: AH
AL
CH
CL
DH
DL

ES:BX

=03H
= number of sectors
= cylinder
= sector
= head
= drive

OOH-7FH floppy disk
BOH-FFH fixed disk

= segment:offset of buff~r

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OIH)

• On fixed disks, the upper 2 bits of the IO-bit cylinder number are placed in the up­
per 2 bits of register CL.

• On floppy disk drives, an error may result from the drive motor being off at the time
of the request. The ROM BIOS does not automatically wait for the drive to come up

IBM ROMBIOS andMouse Functions Reference 539



to speed before attempting the write operation. The requesting program should reset
the floppy disk system (Int 13H Function OOH) and retry the operation three times
before assuming that the error results from some other cause.

Int13H
Function 04H
Verify sector

[PC] [AT] [PS/2]

Verifies the address fields of one or more sectors. No data is transferred to or from memory by thisoperation.

Callwith: AH
AL
CH
CL
OH
OL

ES:BX

=04H
= number of sectors
= cylinder
= sector
= head
=drive

OOH-7FH flopPY disk
80H~FH fixed disk

= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH
AL = number of sectors verified
If function unsuccessful
Carry flag =set
AH = status (see Int 13H Function 01H)

• On PCs, PCIXTs, and PC/ATs with ROM BIOS dated earlier than 11/15/85, ES:BX
should point to a valid buffer.

• On fixed disks, the upper 2 bits of the lo-bit cylinder number are placed in the up­
per 2 bits of register CL.

• This function can be used to test whether a readable media is in a floppy disk drive.
An error may result from the drive motor being off at the time of the request,
because the ROM BIOS does not automatically wait for the drive to come up to
speed before attempting the verify operation. The requesting program should reset
the floppy disk system (Int 13H Function OOH) and retry the operation three times
before assuming that a readable floppy disk is not present.

540 Section III



Int13H
Function 05H
Format track

Initializes disk sector and track address fields on the specified track.

[PC] [AT] [PS/2]

Call with: AH
AL
CH
DH
DL

ES:BX

=05H
= interleave (PC/XT fixed disks)
= cylinder
= head
= drive

OOH-7FH floppy disk
80H-FFH fixed disk

= segment:offset of address field list (except PCIXT fixed disk, see Note)

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

• On floppy disks, the address field list consists of a series of 4-byte entries, one entry
per sector, in the following format:
Byte Contents
o cylinder
1 head
2 sector
3 sector-size code

OOH if128 bytesper sector
01H if256 bytesper sector
02H if512 bytesper sector (standard)
03H if1024 bytesper sector

• On floppy disks, the number of sectors per track is taken from the BIOS floppy disk
parameter table whose address is stored in the vector for Int 1EH.

• When this function is used for floppy disks on the PC/AT or PS/2, it should be pre­
ceded by a call to Int 13H Function 17H to select the type of medium to be
formatted.

• On fixed disks, the upper 2 bits of the 10-bit cylinder number are placed in the up­
per 2 bits of register CL.

IBM ROM BIOS andMouse Functions Reference 541



• On PC/XT-286, PC/AT, and PS/2 fixed disks, ES:BX points to a 512-byte buffer con­
taining byte pairs for each physical disk sector, as follows:

Byte Contents
o OOH for good sector

BOH for bad sector
1 sector number

For example, to format a track with 17 sectors and an interleave of two, ES:BX would
point to the following 34-byte array at the beginning of a 512-byte buffer:

db OOh.Olh.OOh.Oah.OOh.02h.OOh.Obh.OOh.03h.OOh.Och
db OOh.04h.OOh.Odh.OOh.05h.OOh.Oeh.OOh.06h.OOh.Ofh
db OOh.07h.OOh.10h.OOh.08h.OOh.llh.OOh.09h

Int13H
Function 06H
Format bad track

Initializes a track, writing disk address fields and data sectors and setting bad sector flags.

[PC]

Call with: AH
AL
CH
DH
DL

=06H
= interleave
= cylinder
= head
=drive

BOH-/lFH fixed disk

Returns: If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag =set
AH = status (see Int 13H Function 01H)

Notes: - This function is defined for PCIXT fixed disk drives only.

• For additional information, see Notes for Int 13H Function 05H.

542 Section III



Int13H
Function om
Format drive

[PC]

Formats the entire drive, writing disk address fields and data sectors, starting at the specified cylinder.

Call with: AH
AL
CH
DL

=om
= interleave
= cylinder
= drive

BOH-FFH fixed disk

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

• This function is defined for PC/XT fixed disk drives only.

• For additional information, see Notes for Int 13H Function 05H.

Int13H
Function 08H
Get drive parameters

Returns various parameters for the specified drive.

[PC] [AT] [PS/2]

Call with: AH
DL

=08H
= drive

00H-7FH floppy disk
80H-FFH fixed disk

Returns: If function successful
Carry flag = clear
BL = drive type (PC/AT and PS/2 floppy disks)

01H if360 KB, 40 track, 5.25"
02H if1.2 MB, 80 track, 5.25"
03H if 720KB, BOtrack, 3.5"
O4H ifl.44MB, 80 track, 3.5"

IBM ROMBIOS and Mouse Functions Reference 543



Notes:

CH = low 8 bits of maximum cylinder number
CL = bits 6-7 high-order 2 bits of maximum cylinder number

bits 0-5 maximum sector number
DH = maximum head number
DL = number of drives
ES:DI = segment:offset of disk drive parameter table
If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

• On the PC and PCIXT, this function is supported on fixed disks only.
• The value returned in register DL reflects the true number of physical drives at­

tached to the adapter for the requested drive.

Int13H
Function 09H
Initialize fixed disk characteristics

[PC] [AT] [PS/2]

Initializes the fixed disk controller for subsequent I/O operations, using the values found in the ROMBIOS disk parameter block(s).

Call with:

Returns:

AH =09H
DL = drive

BOH-FFH fixed disk
and, on the PC/XT
Vector for Int 41H must point to disk parameter block
or, on the PC/AT and PS/2
Vector for Int 41H must point to disk parameter block for drive 0
Vector for Int 46H must point to disk parameter block for drive 1

If function successful
Carry flag = clear
AH =OOH
If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

544 Section III



Notes: • This function is supported on fixed disks only.
• For PC and PCIXT fixed disks, the parameter block format is as follows:

Byte(s) Contents
00H-01H maximum number of cylinders
02H maximum number of heads
03H-04H starting reduced write current cylinder
05H-06H starting write precompensation cylinder
om maximum ECC burst length
OSH drive options

Bit(s) Significance (ifset)
0-2 drive option
3-5 reserved (0)
6 disable ECC retries
7 disable disk-access retries

09H standard time-out value
OAH time-out value for format drive
OBH time-out value for check drive
OCH-OFH reserved

• For PC/AT and PS/2 fixed disks, the parameter block format is as follows:
Byte(s) Contents
OOH-OIH maximum number of cylinders
02H maximum number of heads
03H-04H reserved
05H-06H starting write precompensation cylinder
07H maximum ECC burst length
OSH drive options

Bit(s) Significance (ifset)
0-2 not used
3 more than S heads
4 not used
5 manufacturer's defect map present at maximum

cylinder + 1
6-7 nonzero (10,01, or 11) if retries disabled

09H-OBH reserved
OCH-ODH landing zone cylinder
OEH sectors per track
OFH reserved

Int13H
Function OAR (10)
Read sector long

[PC] [AT] [PS/2]

Reads a sector or sectors from disk into memory, along with a 4-byte ECC code for each sector.

IBM ROM BIOS and Mouse Functions Reference 545



Call with: AH
AL
CH
CL
OH
OL

ES:BX

=OAH
= number of sectors
= cylinder
= sector (see Notes)
= head
= drive

BOH-FFH fixed disk
= segment:offset of buffer

Returns:

Notes:

If function successful
Carry flag =clear
AH = OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH = status (see Int l3H Function OlH)

• This function is supported on fixed disks only.

• The upper 2 bits of the lO-bit cylinder number are placed in the upper 2 bits of
register CL.

• Unlike the normal Read Sector function (Int l3H Function 02H), ECC errors are not
automatically corrected. Multisector transfers are terminated after any sector with a
read error.

Int13H
Function OBH (11)
Write sector long

[PC] [AT] [PS/2]

Writes a sector or sectors from memory to disk. Each sector's worth of data must be followed by its 4-byte
ECC code.

Call with: AH
AL
CH
CL
OH
OL

ES:BX

=OBH
= number of sectors
= cylinder
= sector (see Notes)
= head
= drive

BOH-FFH fixed disk
= segment:offset of buffer

546 Section III



Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OIH)

• This function is supported on fixed disks only.

• The upper 2 bits of the IO-bit cylinder number are placed in the upper 2 bits of
register CL.

Int13H
Function OCH (12)
Seek

[PC] [AT] [PS/2]

Positions the disk read/write heads to the specified cylinder, but does not transfer any data.

Call with: AH
CH
CL
DH
DL

=OCH
= lower 8 bits of cylinder
= upper 2 bits of cylinder in bits 6-7
= head
= drive

80H-FFHfixed disk

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OIH)

• This function is supported on fixed disks only.

• The upper 2 bits of the IO-bit cylinder number are placed in the upper 2 bits of
register CL.

• The Read Sector, Read Sector Long, Write Sector, and Write Sector Long functions
include an implied seek operation and need not be preceded by an explicit call to
this function.

IBM ROMBIOS andMouse Functions Reference 547



Int13H
Function ODH (13)
Reset fixed disk system

[PC] [AT] [PS/2]

Resets the fixed disk controller, recalibrates attached drives (moves the read/write arm to cylinder 0), and
prepares for subsequent disk I/O.

Call with: AH
DL

=ODH
= drive

BOH-FFHfixed disk

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int I3H Function 01H)

• This function is supported on fixed disks only. It differs from Int I3H Function OOH
in that the floppy disk controller is not reset.

Int13H
Function OEH (14)
Read sector buffer

[PC]

Transfers the contents of the fixed disk adapter's internal sector buffer to system memory. No data is read
from the physical disk drive.

Call with: AH
ES:BX

=OEH
= segment:offset of buffer

Returns:

Note:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag =set
AH = status (see Int I3H Function 01H)

• This function is supported by the PCIXT's fixed disk adapter only. It is not defined
for fixed disk adapters on the PC/AT or PS/2.

548 Section III



Int13H
.Function OFH (15)
Write sector buffer

[PC]

Transfers data from system memory to the fixed disk adapter's internal sector buffer. No data is written to
the physical disk drive.

Call with: AH
ES:BX

=OFH
= segment:offset of buffer

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

• This function is supported by the PCIXT's fixed disk adapter only. It is not defined
for fixed disk adapters on the PC/AT or PS/2.

• This function should be called to initialize the contents of the sector buffer before
formatting the drive with Int 13H Function OSH.

Int13H
Function lOB (16)
Get drive status

[PC] [AT] [PS/2]

Tests whether the specified fixed disk drive is operational and returns the drive's status.

Call with: AH
DL

= lOH
= drive

80H-FFHfixed disk

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

• This function is supported on fixed disks only.

IBM ROMBIOS andMouse Functions Reference 549



Int13H
Function I1H (17)
Recalibrate drive

[PC] [AT] [PS/2]

Causes the fixed disk adapter to recalibrate itself for the specified drive, positioning the read/write arm to
cylinder 0, and returns the drive's status.

Call with: AH
DL

= IlH
= drive

BOH-FFHfixed disk

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

• This function is supported on fixed disks only.

Int13H
Function 12H (18)
Controller RAM diagnostic

[PC]

Causes the fixed disk adapter to carry out a built-in diagnostic test on its internal sector buffer, indicating
whether the test was passed by the returned status.

Call with: AH = 12H

Returns:

Note:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 01H)

• This function is supported on PC/XT fixed disks only.

550 Section III



Int13H
Function 13H (19)
Controller drive diagnostic

[PC]

Causes the fixed disk adapter to run internal diagnostic tests of the attached drive, indicating whether the
test was passed by the returned status.

Call with: AH = I3H

Returns:

Note:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int I3H Function 01H)

• This function is supported on PC/XT fixed disks only.

Int13H
Function 14H (20)
Controller int~rnaldiagnostic

[PC] [AT] [PS/2]

Causes the fixed disk adapter to carry out a built-in diagnostic self-test, indicating whether the test was
passed by the returned status.

Call with: AH = I4H

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int I3H Function 01H)

• This function is supported on fixed disks only.

IBM ROMBIOS andMouse Functions Reference 551



Int13H
Function 15H (21)
Get disk type

[AT] [PS/2]

Returns a code indicating the type of floppy or fixed disk referenced by the specified drive code.

Call with: AH
DL

= ISH
=drive

OOH-7FHfloppy disk
80H-FFHfixed disk

Returns:.

Note:

If function successful
Carry flag = clear
AH = drive type code

OOH ifno drive present
OlH iffloppy disk drive without change-line support
02H iffloppy disk drive with change-line support
03H iffixed disk

and, if fixed disk (AH = 03H)
CX:DX = number of 5I2-byte sectors

If function unsuccessful
Carry flag =set
AH = status (see Int I3H Function 01H)

• This function is not supported on the PC or PC/XT.

Int13H
Function 16H (22)
Get disk change status

[AT] [PS/2]

Returns the status of the change line, indicating whether the disk in the drive may have been replaced
since the last disk access.

Call with: AH
DL

552 Section III

= 16H
= drive

OOH-7FH floppy disk



Returns:

Notes:

If change line inactive (disk has not been changed)
Carry flag = clear
AH = DOH

If change line active (disk may have been changed)
Carry flag = set
AH =06H

• If this function returns with the carry flag set, the disk has not necessarily been
changed; the change line can be activated by simply unlocking and locking the disk
drive door without removing the floppy disk.

• This function is not supported for floppy disks on the PC or PC/XT.

Int13H
Function 17H (23)
Set disk type

Selects a floppy disk type for the specified drive.

[AT] [PS/2]

Call with: AH
AL

SL

= I7H
= floppy disk type code

DOH not used
01H 3201360 KBfloPPY disk in 360 KB drive
02H 3201360 KBfloppy disk in 1.2 MB drive
03H 1.2 MBfloPPY disk in 1.2 MB drive
04H 720 KBfloppy disk in 720 KB drive

= drive
00H-7FHfloppy disk

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OIH)

• This function is not supported for floppy disks on the PC or PC/XT.

• If the change line is active for the specified drive, it is reset. The ROM BIOS then sets
the data rate for the specified drive and media type.

IBM ROM BIOS and Mouse Functions Reference 553



Int13H
Function 18H (24)
Set media type for format

Selects media characteristics for the specified drive.

[AT] [PS/2]

Call with: AH
CH
CL
DL

= ISH
= number of cylinders
= sectors per track
= drive

OOH-7FHflopPY disk

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH
ES:DI = segment:offset of disk parameter table for media type

If function unsuccessful
Carry flag = set
AH = status (see Int I3H Function 01H)

• A floppy disk must be present in th~ drive.

• This function should be called prior to formatting a disk with Int 13H Function OSH
so that the ROM BIOS can set the correct data rate for the media.

• If the change line is active for the specified drive, it is reset.

Int13H
Function 19H (25)
Park heads

[PS/2]

Moves the read/write arm to a track that is not used for data storage, so that data will not be damaged
when the drive is turned off.

Call with: AH
DL

= I9H
= drive

BOH-FFHfixed disk

Returns: If function successful
Carry flag = clear
AH =OOH

554 Section III



Note:

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

• This function is defined for PS/2 fixed disks only.

Int13H
Function lAB (26)
Format ESDI drive

[PS/2]

Initializes disk sector and track address fields on a drive attached to the ESDI Fixed Disk Drive Adapter/A.

Call with: AH
AL

CL

DL

ES:BX

=lAH
= relative block address (RBA) defect table count

o ifno RBA table
>0 ifRBA table used

= format modifier bits
BU(s) Significance (ifset)
o ignore primary defect map
1 ignore secondary defect map
2 update secondary defect map (see Notes)
3 perform extended surface analysis
4 generate periodic interrupt (see Notes)
5-7 reserved (must be 0)

= drive
80H-FFHfixed disk

= segment:offset of RBA table

Returns:

Notes:

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

• This operation is sometimes called a "low level format" and prepares the disk for
physical read/write operations at the sector level. The drive must be subsequently
partitioned with the FDISK command and then given a "high level format" with the
FORMAT command to install a file system.

IBM ROM BIOS and Mouse Functions Reference 555



• If bit 4 of register CL is set, Int I5H is called with AH = OFH and AL = phase code
after each cylinder is formatted or analyzed. The phase code is defined as:

0= reserved
1 = surface analysis
2 =formatting

See also Int I5H Function OFH.

• If bit 2 of register CL is set, the drive's secondary defect map is updated to reflect er­
rors found during surface analysis. If both bit 2 and bit 1 are set, the secondary defect
map is replaced.

• For an extended surface analysis, the disk should first be formatted by calling this
function with bit 3 cleared, then analyzed by calling this function with bit 3 set.

Intl4H
Function OOH
Initialize communications port

[PC] [AT] [PS/2]

Initializes a serial communications port to a desired baud rate, parity, word length, and number of
stop bits.

Call with:

Returns:

AH
AL
DX

AH

AL

=OOH
= initialization parameter (see Notes)
= communications port number (0 = COMI, 1 = COM2, etc.)

= port status
Bit Significance (ifset)
o receive data ready
1 overrun error detected
2 parity error detected
3 framing error detected
4 break detected
5 transmit holding register empty
6 transmit shift register empty
7 timed-out

= modem status
Bit Significance (ifset)
o change in clear-to-send status
1 change in data-set-ready status
2 trailing edge ring indicator
3 change in receive line signal detect
4 clear-to-send
5 data-set-ready
6 ring indicator
7 receive line signal detect

556 Section III



Notes: • The initialization parameter byte is defined as follows:

765 43 2 10
Baud rate Parity Stop bits Word length
000=110 XO=none O=lbit 10= 7 bits
001 = 150 01 = odd 1 = 2 bits 11 = 8 bits
010 = 300 11 = even
011 = 600
100 = 1200
101 = 2400
110 = 4800
111 = 9600

• To initialize the serial port for data rates greater than 9600 baud on PS/2 machines,
see Int 14H Functions 04H and 05H.

Intl4H
Function om
Write character to communications port

[PC] [AT] [PS/2]

Writes a character to the specified serial communications port, returning the current status of the port.

Call with: AH
AL
DX

=OlH
= character
= communications port number (0 = COM1, 1 = COM2, etc.)

Returns: If function successful
AHbit7 = 0
AH bits 0-6 = port status

Bit Significance (ifset)
o receive data ready
1 overrun error detected
2 parity error detected
3 framing error detected
4 break detected
5 transmit holding register empty
6 transmit shift register empty

AL = character (unchanged)

If function unsuccessfid (timed-ouO
AH bit 7 = 1
AL = character (unchanged)

IBM ROM BIOS and Mouse Functions Reference 557



Int 14B [PC] [AT] [PS/2]
Function 02B
Read character from communications port

Reads a character from the specified serial communications port, also returning the port's status.

Call with: AH
DX

=02H
= communications port number (0 = COMl, 1 = COM2, etc.)

Significance (ifset)
overrun error detected
parity error detected
framing error detected
break detected

Returns: If function successful
AHbit7 = 0
AH bits 0-6 = status

BU
1
2

3
4

AL = character

If function unsuccessful (timed-out)
AH bit 7 = 1

Int14B
Function 03B
Get communications port status

Returns the status of the specified serial communications port.

[PC] [AT] [PS/2]

Call with: AH
DX

Returns: AH
AL

=03H
= communications port number (0 = COMl, 1 = COM2, etc.)

= port status (see Int 14H Function OOH)
= modem status (see Int 14H Function OOH)

Intl4H
Function 04H
Extended initialize communications port

[PS/2]

Initializes a serial communications port to a desired baud rate, parity, word length, and number of stop
bits. Provides a superset of Int 14H Function OOH capabilities for PS/2 machines.

558 Section III



Callwith: AH =04H
AL = break flag

OOH no break
01H break

BH = parity
OOH none
01H odd
02H even
03H stickparity odd
04H stickparity even

BL = stop bits
OOH 1 stop bit
01H 2 stop bits ifword length = 6--8 bits
01H 1.5 stop bits ifword length = 5 bits

CH = word length
OOH 5 bits
01H 6 bits
02H 7 bits
03H Bbits

CL = baud rate
OOH 110 baud
01H 150 baud
02H 300 baud
03H 600 baud
04H 1200 baud
05H 2400 baud
06H 4800 baud
07H 9600 baud
08H 19,200 baud

DX = communications port number (0 = COM1, 1 = COM2, etc.)

Returns: AH = port status (see Int 14H Function OOH)
AL = modem status (see Int 14H Function OOH)

Intl4H [PS/2]
Function 058
Extended communications port control

Reads or sets the modem control register (MCR) for the specified serial communications port.

Call with: AH =05H
AL = subfunction

DOH to read modem control register
01H to write modem control register

IBM ROM BIOS andMouse Functions Reference 559



Returns:

BL = modem control register contents (if AL = 01H)
Bit(s) Sign#ficance
o data-terminal ready
1 request-to-send
2 Out1
3 Out2
4 loop (for testing)
5-7 reserved

DX = communications port number (0 = COM1, 1 = COM2, etc.)

If called with AL = OOH
BL = modem control register contents (see above)

If called with AL = 01H
AH = port status (see Int 14H Function OOH)
AL = modem status (see lnt 14H Function DOH)

Int15H
Function OOH
Turn on cassette motor

Turns on the motor of the cassette tape drive.

[PC]

Call with: AH =OOH

Returns:

Note:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status

86H ifcassette notpresent

• This function is available only on the PC and the PCjr. It is not supported on the
PC/XT and all subsequent models.

Int15H
Function om
Turn off cassette motor

Turns off the motor of the cassette tape drive.

560 Section III

[PC]



Call with: AH =OlH

Returns:

Note:

. If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status

86H ifcassette notpresent

• This function is available only on the PC and the PCjr. It is not supported on the
PC/XTand all subsequent models.

Int15H
Function 02H
Read cassette

Reads one or more 256-byte blocks of data from the cassette tape drive to memory.

[PC]

Call with: AH
ex
ES:BX

=02H
= number of bytes to read
= segment:offset of buffer

ifCRCerror
ifbit signals scrambled
ifno data found
if invalid command
ifcassette notpresent

Returns:

Note:

If function successful
Carry flag = clear
OX = number of bytes actually read
ES:BX = segment:offset + 1 of last byte read

If function unsuccessful
Carry flag = set
AH = status

OlH
02H
04H
80H
86H

• This function is available only on the PC and on the PCjr. It is not supported on the
PC/XT and all subsequent models.

IBM ROM BIOS andMouse Functions Reference 561



Int15H
Function 03H
Write cassette

Writes one or more 256-byte blocks of data from memory to the cassette tape drive.

·[PC]

Call with: AH
ex
ES:BX

=03H
= number of bytes to write
= segment:offset of buffer

if invalid command
ifcassette notpresent

Returns:

Note:

If function successful
Carry flag = clear
ex =OOH
ES:BX = segment:offset + 1 of last byte written

If function unsuccessful
Carry flag = set
AH = status

80H
86H

• This function is available only on the PC and on the PCjr. It is not supported on the
PC/XT and all subsequent models.

Int15H
Function om (15)
Format ESDI drive periodic interrupt

[PS/2]

Invoked by the ROM BIOS on the ESDI Fixed Disk Drive Adapter/A during a format or surface analysis
operation after each cylinder is completed.

Call with: AH
AL

=OFH
= phase code

0= reserved
1 = surface analysis
2 = formatting

Returns: If formatting or analysis should continue
Carry flag = clear

If formatting or analysis should be terminated
Carry flag = set

562 Section III



Notes: • This function call can be captured by a program so that it will be notified as each
cylinder is formatted or analyzed. The program can count interrupts for each phase
to determine the current cylinder number.

• The default ROM BIOS handler for this function returns with the carry flag Set.

Int15H
Function 21H (33) Subfunction OOH
Read POST error log

[PS/2]

Returns error information that was accumulated during the most recent power-on self-test (POST).

Call with: AH
AL

= 21H
=OOH

= invalid command
= function not supported

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH
BX = number of POST error codes stored
ES:DI = segment:offset of POST error log

If function unsuccessful
Carry flag = set
AH = status

80H
86H

• The error log consists of single-word entries. The first byte of an entry is the device
error code, and the second is the device identifier.

• This function is not available on the PS/2 Models 25 and 30.

Int15H
Function 2lH (33) Subfunction OlH
Write POST error log

Adds an entry to the power-on self-test (POST) error log.

[PS/2]

Call with: AH
AL
BH
BL

= 21H
=OlH
= device identifier
=device error code

IBM ROM BIOS and Mouse Functions Reference 563



Returns: If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

01H
80H
86H

= error listfull
= invalid command
= function not supported

Note: • This function is not available on the PS/2 Models 25 and 30.

Int15H
Function 4FH (79)
Keyboard intercept

Invoked for each keystroke by the ROM BIOS's Int 09H keyboard interrupt handler.

[PS/2]

Call with: AH
AL

=4FH
= scan code

Returns:

Notes:

If scan code consumed
Carry flag = clear

If scan code not consumed
Carry flag = set
AL = unchanged or new scan code

• An operating system or a resident utility can capture this function to filter the raw
keyboard data stream. The new handler can substitute a new scan code, return the
same scan code, or return the carry flag clear causing the keystroke to be discarded.
The default ROM BIOS routine simply returns the scan code unchanged.

• A program can call Int I5H Function COH to determine whether the host machine's
ROM BIOS supports this keyboard intercept.

Int15H
Function 80H (128)
Device open

Acquires ownership of a logical device for a process.

564 Section III

[AT] [PS/2]



Call with: AH
BX
CX

=80H
= device ID
= process ID

Returns:

Note:

If function successful
Carry flag = clear
AH =ooH

If function unsuccessful
Carry flag = set
AH = status

• This function call, along with Int ISH Functions 8IH and 82H, defines a simple pro­
tocol that can be used to arbitrate usage of devices by multiple processes. A multi­
tasking program manager would be expected to capture Int ISH and provide the
appropriate service. The default BIOS routine for this function simply returns with
the carry flag clear and AH = OOH.

Int15H
Function 8tH (129)
Device close

Releases ownership of a logical device for a process.

[AT] [PS/2]

Call with: AH
BX
CX

=8IH
= device ID
= process ID

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status

• A multitasking program manager would be expected to capture Int ISH and provide
the appropriate service. The default BIOS routine for this function simply returns
with the carry flag clear and AH = OOH. See also Int ISH Functions 80H and 82H.

IBM ROM BIOS and Mouse Functions Reference 565



Int15H
Function 82H (130)
Process termination

Releases ownership of all logical devices for a process that is about to terminate.

[AT] [PS/2]

Call with: AH
BX

=82H
= process ID

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag =set
AH = status

• A multitasking program manager would be expected t9 capture Int ISH and provide
the appropriate service. The default BIOS routine for this function simply returns
with the carry flag clear and AH = OOH. See also Int tSH Functions 80H and 8tH.

Int15H
Function 83H (131)
Event wait

[AT] [PS/2]

Requests setting of a semaphore after a specified interval or cancels a previous request.

Call with:

Returns:

If requesting event wait
AH =83H
AL = OOH
CX:DX = microseconds
ES:BX = segment:offset of semaphore byte

If canceling event wait
AH =83H
AL = 0IH

If called with AL = OOH, and function successful
Carry flag = clear

If called with AL = OOH, and function unsuccessful (Event Wait already active)
Carry flag = set

If called with AL = OlH
Nothing

566 Section III



Notes: • The function call returns immediately. If the function is successful, bit 7 of the sema­
phore byte is set when the specified interval has elapsed. The calling program is
responsible for clearing the semaphore before requesting this function.

• The actual duration of an event wait is always an integral multiple of 976 microsec­
onds. The CMOS date/clock chip interrupts are used to implement this function.

• Use of this function allows programmed, hardware-independent delays at a finer
resolution than can be obtained through use of the MS-DOS Get Time function (Int
21H Function 2CH, which returns time in hundredths of a second).

• See also Int ISH Function 86H, which suspends the calling program for the specified
interval in milliseconds.

• This function is not supported on the PS/2 Models 25 and 30.

Int15H
Function 84M (132)
Read joystick

Returns the joystick switch settings and potentiometer values.

[AT] [PS/2]

Call with: AH
'DX

=84H
= subfunction

OOH to read switch settings
01H to read resistive inputs

Returns:

Notes:

If function successful
Carry flag = clear

and, if called with DX = OOH
AL = switch settings (bits 4-7)

or, if called with DX = 01H
AX = A(x) value
BX = A(y) value
CX = B(x) value
DX = B(y) value

If function unsuccessful
Carry flag = set

• An error condition is returned if DX does not contain a valid subfunction number.

• If no game adapter is installed, AL is returned as OOH for Subfunction OOH (Le.,
all switches open); AX, BX, CX, and DX are returned containing OOH for Subfunc­
tion OIH.

• Using a 250 KOhm joystick, the potentiometer values usually lie within the
range 0-416 (OOOO-OlAOH).

IBM ROMBIOS andMouse Functions Reference 567



Int15B
Function 85B (133)
SysReqkey

Invoked by the ROM BIOS keyboard driver when the SysReq key is detected.

[AT] [PS/2]

Call with: AH
AL

=85H
= key status

OOH ijkey make (depression)
01H ifkey break (release)

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status

• The ROM BIOS handler for this function call is a dummy routine that always returns
a success status unless called with an invalid subfunction number in AL. A multitask­
ing program manager would be expected to capture Int ISH so that it can be
notified when the user strikes the SysReq key.

Int15B
Function 86B (134)
Delay

Suspends the calling program for a specified interval in microseconds.

[AT] [PS/2]

Call with: AH
CX:DX

=86H
= microseconds to wait

Returns:

Notes:

If function successful (wait was performed)
Carry flag = clear ~

If function unsuccessful (wait was not performed)
Carry flag = set

• The actual duration of the wait is always an integral multiple of 976 microseconds.

• Use of this function allows programmed, hardware-independent delays at a finer
resolution than can be obtained through use of the MS-DOS Get Time function
(Int 2IH Function 2CH, which returns time in hundredths of a second).

568 Section III



• See also Int ISH Function 83H, which triggers a semaphore after a specified interval
but does not suspend the calling program.

Int15H
Function 87H (135)
Move extended memory block

Transfers data between conventional memory and extended memory.

[AT] [PS/2]

Call with: AH
CX
ES:SI

=87H
= number of words to move
= segment:offset of Global Descriptor Table (see Notes)

Returns: If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status

OlH
02H
03H

ifRAMparity error
ifexception interrupt error
ifgate address line 20failed

Notes: • Conventional memory lies at addresses below the 640 KB boundary, and is used for
the execution of MS-DOS and its application programs. Extended memory lies at ad­
dresses above 1 MB, and can only be accessed by an 80286 or 80386 CPU running in
protected mode. As much as 15 MB of extended memory can be installed in an IBM
PC/AT or compatible.

• The Global Descriptor Table (GDT) used by this function must be set up as follows:
Byte(s) Contents
OOH-OFH reserved (should be 0)
10H-IIH segment length in bytes (2*CX - 1 or greater)
12H-14H 24-bit source address
ISH access rights byte (always 93H)
16H-17H reserved (should be 0)
18H-19H segment length in bytes (2*CX - 1 or greater)
lAH-ICH 24-bit destination address
IDH access rights byte (always 93H)
lEH-2FH reserved (should be 0)
The table is composed of six 8-byte descriptors to be used by the CPU in protected
mode. The four descriptors in offsets OOH-OFH and 20H-2FH are filled in by the
ROM BIOS before the CPU mode switch.

IBM ROM BIOS andMouse Functions Reference 569



• The addresses used in the descriptor table are linear (physical) 24-bit add~esses in
the range OOOOOOH-FFFFFFH-not segments and offsets-with the least significant
byte at the lowest address and the most significant byte at the highest address.

• The block move is performed with interrupts disabled; thus, use of this function may
interfere with the operation of communications programs, network drivers, or other
software that relies on prompt servicing of hardware interrupts.

• Programs and drivers that access extended memory with this function cannot be
executed in the Compatibility Environment of OS/2.

• This function is not supported on the PS/2 Models 25 and 30.

Int15H
Function 88H (136)
Get extended memory size

Returns the amount of extended memory installed in the system.

[AT] [PS/2]

Call with:

Returns:

AH

AX

=88H

= amount of extended memory (in KB)

Notes: • Extended memory is memory at addresses above 1 MB, which can only be accessed
by an 80286 or 80386 CPU running in protected mode. Because MS-DOS is a real­
mode operating system, extended memory can be used for storage of volatile data
but cannot be used for execution of programs.

• Programs and drivers that use this function cannot be executed in the Compatibility
Environment of OS/2.

• This function is not supported on the PS/2 Models 25 and 30.

Int15H
Function 89H (137)
Enter protected mode

Switches the CPU from real mode into protected mode.

[AT] [PS/2]

Call with: AH
BH

BL

ES:SI

=89H
= interrupt number for IRQO, written to ICW2 of 8259 PIC #1 (must be

evenly divisible by 8, determines IRQO-IRQ7)
= interrupt number for IRQ8, written to ICW2 of 8259 PIC #2 (must be

evenly divisible by 8, determines IRQ8-IRQ15)
= segment:offset of Global Descriptor Table (GDT)

570 Section III



Returns:

Notes:

If function successful (CPU is in protected mode)
Carry flag = clear
AH =OOH
CS = user-defined selector
DS = user-defined selector
ES = user-defined selector
SS = user-defined selector

If function unsuccessful (CPU is in real mode)
Carry flag = set
AH =FFH

• The Global Descriptor Table must contain eight descriptors set up as follows:
Offset Descriptor usage
OOH dummy descriptor (initialized to 0)
OBH Global Descriptor Table (GOT)
IOH Interrupt Descriptor Table (IDT)
I8H user's data segment (OS)
20H user's extra segment (ES)
28H user's stack segment (SS)
30H user's code segment (CS)

38H BIOS code segment

The user must initialize the first seven descriptors; the eighth is filled in by the ROM
BIOS to prOVide addressability for its own execution. The calling program may modi­
fy and use the eighth descriptor for any purpose after return from this function call.

• This function is not supported on the PS/2 Models 25 and 30.

Int15H
Function 90H (144)
Device wait

[AT] [PS/2]

Invoked by the ROM BIOS fixed disk, floppy disk, printer, network, and keyboard drivers prior to per­
forming a programmed wait for I/O completion.

Call with: AH
AL

ES:BX

=90H
= device type

OOH-7FH serially reusable devices
80H~FH reentrant devices
COH-FFH wait-only calls, no corresponding Postfunction

= segment:offset of request block for device types 80H-FFH

IBM ROMBIOS andMouse Functions Reference 571



Returns:

Notes:

If no wait (driver must perform its own time-out)
Carry flag = clear
AH =OOH

If wait was performed
Carry flag = set

• Predefined device types are:
OOH disk (may time-out)
OIH floppy disk (may time-out)
02H keyboard (no time-out)
03H pointing device (PS/2, may time-out)
80H network (no time-out)
FCH fixed disk reset (PS/2, may time-out)
FDH floppy disk drive motor start (may time-out)
FEH printer (may time-out)

• For network adapters, ES:BX points to a network control block (NCB).

• A multitasking program manager would be expected to capture Int ISH Function
90H so that it can dispatch other tasks while I/O is in progress. The default BIOS
routine for this function simply returns with the carry flag clear and AH = OOH.

Int15H
Function 9ffi (145)
Device post

[AT] [PS/2]

Invoked by the ROM BIOS fixed disk, floppy disk, network, and keyboard drivers to signal that I/O is
complete and/or the device is ready.

Call with:

Returns:

AH
AL

ES:BX

AH

=91H
=device type

OOH-7FH serially reusable devices
BOH-BFH reentrant devices

= segment:offset of request block for device types 8OH-BFH

=OOH

Notes: • Predefined device types that may use Device Post are:
OOH disk (may time-out)
OIH floppy disk (may time-out)
02H keyboard (no time-out)
03H pointing device (PS/2, may time-out)
80H network (no time-out)

572 Section III



• The ROM BIOS printer routine does not invoke this function because printer output
is not interrupt driven.

• A multitasking program manager would be expected to capture Int I5H Function
9IH so that it can be notified when I/O is completed and awaken the requesting
task. The default BIOS routine for this function simply returns with the carry flag
clear and AH = OOH.

Int15H
Function COH (192)
Get system environment

[AT] [PS/2]

Returns a pointer to a table containing various information about the system configuration.

Call with: AH =COH

Returns: ES:BX = segment:offset of configuration table (see Notes)

Notes: • The format of the system configuration table is as follows:

OOH orOIH
02H

OOH orOIH

Byte(s)
OOH-OIH
02H
03H
04H
05H

Contents
length of table in bytes
system model (see follOWing Note)
system submodel (see follOWing Note)
BIOS revision level
configuration flags
Bit Significance (ifset)
o reserved
1 Micro Channel implemented
2 extended BIOS data area allocated
3 Wait for External Event is available
4 keyboard intercept (Int I5H Function 4FH) available
5 real-time clock available
6 slave 8259 present (cascaded IRQ2)
7 DMA channel 3 used

06H-09H reserved

• The system model and type bytes are assigned as follows:
Machine Model byte Submodel byte
PC FFH
PC/XT FEH
PC/XT FBH
PCjr FDH
PC/AT FCH
PC/XT-286 FCH
PC Convertible F9H

IBM ROM BIOS andMouse Functions Reference 573



Machine
PS/2 Model 30
PS/2 Model 50
PS/2 Model 60
PS/2 Model 70
PS/2 Model 80

Model byte
FAH
FCH
FCH
F8H
F8H

Submodel byte
DOH
04H
OSH
04H or09H
OOH orOIH

Int15H
Function cm (193)
Get address ofextended BIOS data area

Returns the segment address of the base of the extended BIOS data area.

Call with: AH = CIH

[PS/2]

Returns:

Notes:

If function successful
Carry flag = clear
ES = segment of extended BIOS data area

If function unsuccessful
Carry flag = set

• The extended BIOS data area is allocated at the high end of conventional memory
during the POST (Power-On-Self-Test) sequence. The word at 0040:00I3H (memory
size) is updated to reflect the reduced amount of memory available for MS-DOS and
application programs. The first byte in the extended BIOS data area is initialized to
its length in KB.

• A program can determine whether the extended BIOS data area exists with Int I5H
Function COHo

Int15H
Function C2H (194) Subfunction OOH
Enable/disable pointing device

Enables or disables the system's mouse or other pointing device.

[PS/2]

Call with: AH
AL
BH

574 Section III

=C2H
=OOH
= enable/disable flag

OOH = disable
01H = enable



Returns: If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status

01H
02H
03H
04H
05H

if invalidfunction call
if invalid input
ifinterface error
ifresend
ifnofar call installed

Int15H
Function C2H (194) Subfunction om
Reset pointing device

[PS/2]

Resets the system's mouse or other pointing device, setting the sample rate, resolution, and other charac­
teristics to their default values.

Call with: AH
AL

=C2H
=OIH

Returns:

Notes:

If function successful
Carry flag = clear
AH =OOH
BH = device ID

If function unsuccessful
Carry flag = set
AH = status (see Int ISH Function C2H Subfunction OOH)

• After a reset operation, the state of the pointing device is as follows:

- disabled;
- sample rate at 100 reports per second;
- resolution at 4 counts per millimeter;
- and scaling at 1 to 1.

The data package size is unchanged by this function.

• The application can use the other Int ISH Function C2H subfunctions to initialize
the pointing device to other sample rates, resolution, and scaling, and then enable
the device with Int ISH Function C2H Subfunction OOH.

• See also Int ISH Function C2H Subfunction OSH, which incidentally resets the point­
ing device in a similar manner.

IBM ROMBIOS and Mouse Functions Reference 575



Int15H
Function C2H (194) Subfunction 02H
Set sample rate

Sets the sampling rate of the system's mouse or other pointing device.

[PS/2]

Call with: AH
AL
BH

=C2H
=02H
= sample rate value

OOH = 10 reportspersecond
01H = 20 reportspersecond
02H = 40 reportspersecond
03H = 60 reportsper second
O4H = 80 reportspersecond
05H = 100 reportsper second
O6H = 200 reportspersecond

Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see Int ISH Function C2H Subfunction OOH)

• The default sample rate is 100 reports per second after a reset operation (Int ISH
Function C2H Subfunction 0IH).

Int15H
Function C2H (194) Subfunction 03H
Set resolution

Sets the resolution of the system's mouse or other pointing device.

[PS/2]

Call with: AH
AL
BH

576 Section III

=C2H
=03H
=resolution value

OOH = 1 countper millimeter
01R = 2 countsper millimeter
02H = 4 countsper millimeter
03H = 8 countsper millimeter



Returns:

Note:

If function successful
Carry flag = clear
AH =OOH

If function unsuccessful
Carry flag = set
AH = status (see lot ISH Function C2H Subfunction OOH)

• The default resolution is 4 counts per millimeter after a reset operation (Int ISH
Function C2H Subfunction 0IH).

Int15H
Function C28 (194) Subfunction 048
Get pointing device type

Returns the identification code for the system's mouse or other pointing device.

[PS/2]

Call with: AH
AL

=C2H
=04H

Returns: If function successful
Carry flag = clear
AH =OOH
BH = device 10

If function unsuccessful
Carry flag = set
AH = status (see Int ISH Function C2H Subfunction OOH)

Int15H
Function C28 (194) Subfunction 058
Initialize pointing device interface

[PS/2]

Sets the data package size for the system's mouse or other pointing device, and initializes the resolution,
sampling rate, and scaling to their default values.

Call with: AH
AL
BH

=C2H
=OSH
= data package size in bytes (1-8)

IBM ROMBIOS andMouse Functions Reference 577



Returns: If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int ISH Function C2H Subfunction OOH)

Note: • After this operation, the state of the pointing device is as follows:

- disabled;
- sample rate at 100 reports per second;
- resolution at 4 counts per millimeter;
- and scaling at 1 to 1.

Int15H
Function C2H (194) Subfunction 06H
Set scaling or get status

[PS/2]

Returns the current status of the system's mouse or other pointing device or sets the device's scaling
factor.

Call with: AH
AL
BH

=C2H
=06H
= extended command

DOH = return device status
01H =set scaling at 1:1
02H = set scaling at 2:1

Significance
= 1 if right button pressed
= reserved
= 1 if left button pressed
= reserved
= 0 if 1:1 scaling

1 if 2:1 scaling
= 0 if device disabled

1 if device enabled
= 0 if stream mode

1 if remote mode
= reserved7

5

6

If function successful
Carry flag =clear
AH =OOH

and, if called with BH = OOH
BL = status byte

Bit
o
1
2

3
4

Returns:

578 Section III



CL =resolution
DOH = 1 countper millimeter
01H =2 countsper millimeter
02H = 4 countsper millimeter
03H = 8 countsper millimeter

DL = sample rate
OAH = 10 reportsper second
14H =20 reports per second
2BH = 40 r'eportsper second
3CH = 60 reportsper second
50H =80 reports per second
64H = 100 reportsper second
CBH =200 reports per second

If function unsuccessful
Carry flag = set
AH = status (see Int ISH Function C2H Subfunction OOH)

Int15H
Function C2H (194) Subfunction 078
Set pointing device handler address

[PS/2]

Notifies the ROM BIOS pointing device driver of the address for a routine to be called each time pointing
device data is available.

Call with: AH
AL
ES:BX

=C2H
=om
= segment:offset of user routine

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int ISH Function C2H Subfunction OOH)

• The user's handler for pointing device data is entered via a far call with four parame­
ters on the stack:
SS:SP+OAH status
SS:SP+08H x coordinate
SS:SP+06H y coordinate
SS:SP+04H z coordinate (always 0)

The handler must exit via a far return without removing the parameters from
the stack.

IBM ROMBIOS andMouse Functions Reference 579



• The status parameter passed to the user's handler is interpreted as follows:
Bit(s) Significance (tfset)
o left button pressed
1 right button pressed
2-3 reserved
4 sign of x data is negative
5 sign of y data is negative
6 x data has overflowed
7 y data has overflowed
8-15 reserved

Int15H
Function C3H (195)
Set watchdog time-out

Enables or disables a watchdog timer.

[PS/2]

Call with: AH
AL

BX

=C3H
= subfunction

DOH to disable watchdog time-out
01H to enable watchdog time-out

=watchdog timer counter (if AL =01H)

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set

• The watchdog timer generates an NMI interrupt.

• This function is not available on the PS/2 Models 25 and 30.

Int15H
Function C4H (196)
Programmable option select

[PS/2]

Returns the base Programmable Option Select register address, enables a slot for setup, or enables an
adapter.

580 Section III



Call with: AH
AL

BL

=C4H
= subfunction

OOH to return base POS adapter register address
01H to enable slot
02H to enable adapter

= slot number (if AL = OIH)

lo6H
l07H

l03H
l04H
lOSH

Returns:

Notes:

If function successful
Carry flag = clear

and, if called with AL =OOH
DX = base pas adapter register address

If function unsuccessful
Carry flag = set

-. This function is available only on machines using the Micro Channel Architecture
(MCA) bus.

• After a slot is enabled with Subfunction OIH, specific information can be obtained
for the adapter in that slot by performing port input operations:
Port Function
IOOH MCA ID (low byte)
IOIH MCA ID (high byte)
I02H Option Select Byte 1

bit 0 = 1 if enabled, = 0 if disabled
Option Select Byte 2

Option Select Byte 3
Option Select Byte 4
bits 6-7 = channel check indicators
Subaddress Extension (low byte)
Subaddress Extension (high byte)

Int16H
Function OOH
Read character from keyboard

Reads a character from the keyboard, also returning the keyboard scan code.

[PC] [AT] [PS/2]

Call with:

Returns:

AH

AH
AL

=OOH

= keyboard scan code
= ASCII character

IBM ROMBIOS andMouse Functions Reference 581



Int16H
Function om
Get keyboard status

[PC] [AT] [PS/2]

Determines whether a character is ready for input, returning a flag and also the character itself, if one
is waiting.

Call with: AH =01H

Returns:

Note:

If key waiting to be input
Zero flag = clear
AH = keyboard scan code
AL = character

If no key waiting
Zero flag = set

• The character returned by this function when the zero flag is clear is not removed
from the type-ahead buffer. The same character and scan code will be returned by
the next call to Int 16H Function OOH.

Int16H
Function 02H
Get keyboard flags

[PC] [AT] [PS/2]

Returns the ROM BIOS flags byte .that describes the state of the various keyboard toggles and shift keys.

Call with: AH = 02H

Returns: AL = flags
Bit
o
1
2
3
4
5
6
7

Significance (ifset)
right Shift key is down
left Shift key is down
Ctrl key is down
Alt key is down
Scroll Lock on
Num Lock on
Caps Lock on
Insert on

Note: .' The keyboard flags byte is stored in the ROM BIOS data area at OOOO:0417H.

582 Section III



Int16H
Function 03H
Set repeat rate

Sets the ROM BIOS key repeat ("typematic") rate and delay.

[PC] [AT] [PS/2]

Call with:

Returns:

Notes:

On the PC/AT and PS/2
AH =03H
AL = 05H
BH = repeat delay (see Notes)
BL = repeat rate (see Notes)

On the PCjr
AH =03H
AL = subfunction

OOH to restore default rate and delay
01H to increase initial delay
02H to decrease repeat rate by one-half
03H to increase delay and decrease repeat rate by one-half
04H to turn offkeyboard repeat

Nothing

• Subfunctions OOH-04H are available on the PCjr but are not supported by the PC or
PC/XT ROM BIOS. Subfunction 05H is available on PC/ATs with ROM BIOS's dated
11/15/85 and later, and on the PS/2.

• On the PC/AT and PS/2, the value in BH controls the amount of delay before the first
repeat key is generated. The delay is always a multiple of 250 milliseconds:
Value Delay (msec.)
OOH 250
01H 500
02H 750
03H 1000

• On the PC/AT and PS/2, the value for the repeat rate in characters per second can be
chosen from the following table:
Value Repeat rate (characters per second)
OOH 30.0
01H 26.7
02H 24.0
03H 21.8
04H 20.0
05H 18.5
06H 17.1
om 16.0
08H 15.0

IBM ROMBIOS andMouse Functions Reference 583



Value
0911
OAH
OBH
OCH
ODH
OEH
OFH
10H
IIH
12H
13H
14H
15H
16H
17H
18H
19H
lAH
IBH
lCH
IDH
lEH
IFH

Int16H
Function 048
Setkeycllck

Repe.at rate (characters per second)
13.3
12.0
10.9
10.0
9.2
8.6
8.0
7.5
6.7
6.0
5.5
5.0
4.6
4.3
4.0
3.7
3.3
3.0
2.7
2.5
2.3
2.1
2.0

[PC]

Turns the keyboard click on or off.

Call with: AH
AL

=04H
= subfunction

OOH to turn offkeyboard click
01H to turn on keyboard click

Returns:

Note:

Nothing

• This function is supported by the PCjr BIOS only.

584 Section III



Int16B
Function 05B
Push character and scan code

Places a character and scan code in the keyboard type-ahead buffer.

[AT] [PS/2]

Call with: AH
CH
CL

=05H
= scan code
= character

Returns:

Note:

If function successful
Carry flag = clear
AL = OOH

If function unsuccessful (type-ahead buffer is full)
Carry flag = set
AL = 0IH

• This function can be used by keyboard enhancers and other utilities to interpolate
keys into the data stream seen by application programs.

Int16B
Function lOB (16)
Read character from enhanced keyboard

Reads a character and scan code from the keyboard type-ahead buffer.

[AT] [PS/2]

Call with: AH

Returns: AH
AL

= lOH

= keyboard scan code
= ASCII character

Note: • Use this function for the enhanced keyboard instead of Int I6H Function OOH. It
allows applications to obtain the scan codes for the additional FII, F12, and cursor
control keys.

IBM ROM BIOS and Mouse Functions Reference 585



Int16H
Function IlH (17)
Get enhanced keyboard status

[AT] [PS/2]

Determines whether a character is ready for input, returning a flag and also the character itself, if one
is waiting.

Call with: AH = IIH

Returns:

Notes:

If key waiting to be input
Zero flag = clear
AH = keyboard scan code
AL = character

If no key waiting
Zero flag =set

• Use this function for the enhanced keyboard instead of Int 16H Function OOH. It
allows applications to test for the additional FII, F12, and cursor control keys.

• The character returned by this function when the zero flag is clear is not removed
from the type-ahead buffer. The same character and scan code will be returned by
the next call to Int 16H Function IOH.

Int16H
Function 12H (18)
Get enhanced keyboard flags

[AT] [PS/2]

Obtains the status of various enhanced keyboard special keys and keyboard driver states.

Call with:

Returns:

AH

AX

= 12H

= flags
Bit
o
1
2

3
4
5
6
7
8

Signiftcance (ifset)
right Shift key is down
left Shift key is down
either Ctrl key is down
either Alt key is down
Scroll Lock toggle is on
Num Lock toggle is on
Caps Lock toggle is on
Insert toggle is on
left Ctrl key is down

586 Section III



Note:

Bit Significance (ifset)
9 left Alt key is down

10 right Ctrl key is down
11 right Alt key is down
12 Scroll key is down
13 Num Lock key is down
14 Caps Lock key is down
15 SysReq key is down

• Use this function for the enhanced keyboard instead of Int 16H Function 02H.

Intl7H
Function OOH
Write character to printer

[PC] [AT] [PS/2]

Sends a character to the specified parallel printer interface port and returns the current status of the port.

Call with: AH
AL
DX

=OOH
= character
= printer number (0 = LPTl, 1 = LPT2, 2 = LPT3)

Returns: AH = status
Bit
o
1
2

3
4
5
6
7

Significance (ifset)
printer timed-out
unused
unused
I/O error
printer selected
out of paper
printer acknowledge
printer not busy

Intl7H
Function om
Initialize printer port

Initializes the specified parallel printer interface port and returns its status.

[PC] [AT] [PS/2]

Call with: AH
DX

=OIH
= printer number (0 = LPTl, 1 = LPT2, 2 = LPT3)

IBM ROM BIOS andMouse Functions Reference 587



Returns: AH = status (see Int 17H Function OOH)

Intl7H
Function 02H
Get printer status

Returns the current status of the specified parallel printer interface port.

[PC] [AT] [PS/2]

Call with:

Returns:

AH
DX

AH

=02H
= printer number (0 = LPTl, 1 = LPT2, 2 = LPT3)

= status (see Int 17H Function OOH)

Int18H
ROM BASIC

[PC] [AT] [PS/2]

Transfers control to ROM BASIC.

Call with: Nothing

Returns: Nothing

Note: • This function is invoked when the system is turned on or restarted if attempts to'
read a boot sector from the fixed disk or floppy disk drives are unsuccessful.

Int19H
Reboot system

Reboots the operating system from the floppy disk or fixed disk drive.

Call with: Nothing

Returns: Nothing

[PC] [AT] [PS/2]

Notes: • The bootstrap routine reads Sector 1, Track 0 into memory at location OOOO:7COOH
and transfers control to the same address. If attempts to read a boot sector from the
floppy disk or fixed disk are unsuccessful, control is transferred to ROM BASIC by
execution of an Int ISH.

588 Section III



• If location 0000:0472H does not contain the value 1234H, a memory test will be per­
formed before reading the boot sector.

IntlAH
Function 008
Get tick count

Returns the contents of the clock tick counter.

[AT] [PS/2]

Call with:

Returns:

AH

AL

CX:DX

=OOH

= rolled-over flag
OOH ifmidnight notpassed since last read
<>OOH ifmidnight was passed since last read

= tick count (high 16 bits in CX)

Notes: • This function is supported by the PC/XT and PCjr ROM BIOS, but is not present in
the ROM BIOS for the original PC.

• The returned value is the cumulative number of clock ticks since midnight. There
are 18.2 clock ticks per second. When the counter reaches 1,573,040, it is cleared to
zero, and the rolled-over flag is set.

• The rolled-over flag is cleared by this function call, so the flag will only be returned
nonzero once per day.

• Int lAH Function 01H can be used to set the clock tick counter to an arbitrary
32-bit value.

IntlAH
Function om
Set tick count

Stores a 32-bit value in the clock tick counter.

[AT] [PS/2]

Call with:

Returns:

AH
CX:DX

Nothing

= 01H
= tick count (high 16 bits in CX)

IBM ROMBIOS andMouse Functions Reference 589



Notes: • This function is supported by the PC/XT and PCjr ROM BIOS, but is not present in
the ROM BIOS for the original pc.

• Int lAH Function OOH is used to read the value of the clock tick counter.

• The rolled-over flag is cleared by this function call.

IntlAH
Function 02H
Get time

Reads the current time from the CMOS time/date chip.

[AT] [PS/2]

Call with: AH =02H

Returns: CH
CL
OH
OL

= hours in binary coded decimal (BCD)
= minutes in BCD
=seconds in BCD
= daylight-saving-time code

DOH ifstandard time
01H ifdaylight saving time

and, if clock running
Carry flag = clear

or, if clock stopped
Carry flag = set

IntlAH
Function 03H
Set time

Sets the time in the CMOS time/date chip.

[AT] [PS/2]

Call with: AH
CH
CL
DH
DL

=03H
= hours in binary coded decimal (BCD)
= minutes in BCD
=seconds in BCD
=daylight-saving-time code

OOH ifstandard time
01H ifdaylight saving time

Returns: Nothing

590 Section III



IntlAH
Function 04H
Get date

Reads the current date from the CMOS time/date chip.

Call with: AH = 04H

[AT] [PS/2]

Returns: CH =century (19 or 20) in binary coded decimal (BCD)
CL =year in BCD
DH = month in BCD
DL = day in BCD

and, if clock running
Carry flag = clear

or, if clock stopped
Carry flag = set

IntlAH
Function 05H
Set date

Sets the date in the CMOS time/date chip.

[AT] [PS/2]

Call with: AH
CH
CL
DH
DL

=OSH
= century (19 or 20) in binary coded decimal (BCD)
= year in BCD
= month in BCD
= day in BCD

Returns: Nothing

IntlAH
Function 06H
Setalarm

Sets an alarm in the CMOS date/time chip.

[AT] [PS/2]

IBM ROMBIOS andMouse Functions Reference 591



Callwith: . AH
CH
CL
DH

=06H
= hours in binary coded decimal (BCD)
= minutes in BCD
= seconds in BCD

Returns:

Notes:

If function successful
Carry flag = clear

If function unsuccessful (alarm already set, or clock stopped)
Carry flag = set

• A side effect of this function is that the clock chip's interrupt level (IRQ8) is enabled.

• Only one alarm may be active at any given time. The alarm occurs every 24 hours at
the specified time until it is reset with Int lAH Function 07H.

• The program using this function must place the address of its interrupt handler for
the alarm in the vector for Int 4AH.

IntlAH
Function 078
Reset alarm

Cancels any pending alarm request on the CMOS date/time chip.

[AT] [PS/2]

Callwith:

Returns:

AH

Nothing

=om

Note: • This function does not disable the clock chip's interrupt level (IRQ8).

IntlAH
Function OAH (10)
Get day count

Returns the contents of the system's day counter.

[PS/2]

Call with: AH =OAH

Returns: If function successful
Carry flag = clear
ex = count of days since January 1,1980

If function unsuccessful
Carry flag = set

592 Section III



IntlAH
Function ODH (11)
Set day count

Stores an arbitrary value in the system's day counter.

[PS/2]

Call with: AH
CX

=OBH
= count of days since January 1, 1980

Returns: If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set

IntlAH
Function 80H (128)
Set sound source

. Sets up the source for tones that will appear on the PCjr's "Audio Out" or RF modulator.

[PC]

Call with:

Returns:

AH
AL

Nothing

=80H
= sound source

OOH if8253 programmable timer, channel 2
01H ifcassette input
02H if '~udioIn" line on I/O channel
03H ifsound generator chip

Note: • This function is supported on the PCjr only.

Int33H
Microsoft Mouse driver

The Microsoft Mouse driver makes its functions available to application programs via Int 33H. These
functions have become a de facto standard for pointer device drivers of all varieties. Unlike the other
function calls described in this section, the Microsoft Mouse driver is not part of the ROM BIOS but is
loaded by a DEVICE= directive in the CONFIG.SYS file. All mouse-function information applies to the
Microsoft Mouse driver version 6. Earlier versions of the driver may not support all of these functions.

IBM ROM BIOS and Mouse Functions Reference 593



Int33H
Function OOH
Reset mouse and get status

Initializes the mouse driver and returns the driver status. If the mouse pointer was previously visible, it is
removed from the screen, and any previously installed user handlers for mouse events are disabled.

Call with: AX = OOOOH

Returns:

Note:

If mouse support is available
AX =FFFFH
BX = number of mouse buttons

If mouse support is not available
AX = OOOOH

• After a call to this function, the mouse driver is initialized to the following state:

- Mouse pointer at screen center (see Int 33H Functions 03H and 04H)
- Display page for mouse pointer set to zero (see Int 33H Functions IDH and IEH)
- Mouse pointer hidden (see Int 33H Functions OIH, 02H, and IOH)
- Mouse pointer set to default arrow shape in graphics modes, or reverse block in

text modes (see Int 33H Functions 09H and OAH)
- User mouse event handler disabled (see Int 33H Functions OCH and I4H)
- Light pen emulation enabled (see Int 33H Functions OOH and OEH)
- Horizontal mickeys to pixels ratio at 8 to 8, vertical ratio at 16 to 8 (see lnt 33H

Function OFH)
- Double speed threshold set to 64 mickeys/second (see Int 33H Function I9H)
- Minimum and maximum horizontal and vertical pointer position limits set to in-

clude the entire screen in the current display mode (see Int 33H Functions 07H
and08H)

Int33H·
Function om
Show mouse pointer

Displays the mouse pointer, and cancels any mouse pointer exclusion area previously defined with Int
33H Function IOH.

Call with:

Returns:

AX

Nothing

= OOOlH

594 Section III



Note: • A counter is maintained which is decremented by calls to Int 33H Function 02H
(Hide Mouse Pointer) and incremented (if nonzero) by this function. When the
counter is zero or becomes zero, the mouse pointer is displayed. When the mouse
driver is reset with Int 33H Function OOH, the counter is forced to -1.

Int33H
Function 02H
rode mouse pointer

Removes the mouse pointer from the display. The driver continues to track the mouse position.

Call with:

Returns:

AX

Nothing

=0002H

Note: • A counter is maintained which is decremented by calls to this function and incre­
mented (if nonzero) by Int 33H Function 01H (Show Mouse Pointer). When the
counter is zero, the mouse pointer is displayed. When the mouse driver is reset with
Int 33H Function OOH, the counter is forced to -1.

Int33H
Function 03H
Get mouse position and button status

Returns the current mouse button status and pointer position.

Call with:

Returns:

AX

BX

CX
DX

= 0003H

= mouse button status
Bit(s) Signiflca~e(ifset)
o left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

= horizontal (X) coordinate
=vertical (Y) coordinate

Note: • Coordinates are returned in pixels regardless of the current display mode. Position
(x,y) = (0,0) is the upper left corner of the screen.

IBM ROMBIOS andMouse Functions Reference 595



Int33H
Function 04H
Set mouse pointer position

Sets the position of the mouse pointer. The pointer is displayed at. the new position unless it has been
hidden with Int 33H Function 02H, or the new position lies within an exclusion area defined with Int 33H
Function 10H.

Call with:

Returns:

AX
ex
OX

Nothing

= 0004H
= horizontal (X) coordinate
=vertical (Y) coordinate

Notes: • Coordinates are specified in pixels regardless of the current display mode. Position
(~y) = (0,0) is the upper left corner of the screen.

• The position is adjusted if necessary to lie within the horizontal and vertical limits
specified with a previous call to Int 33H Functions 07H and OSH.

Int33H
Function 05H
Get button press information

Returns the current status of all mouse buttons, and the number of presses and position of the last press
for a specified mouse button since the last call to this function for that button. The press counter for the
button is reset to zero.

Call with:

Returns:

AX
BX

AX

BX
CX
OX

= 0005H
= button identifier

o = left button
1 = right button
2 =center button

= button status
BIt(s) Significance (ifset)
o left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

= button press counter
= horizontal (X) coordinate of last button press
= vertical (Y) coordinate of last button press

596 Section III



Int33H
Function 06H
Get button release information

Returns the current status of all mouse buttons, and the number of releases and position of the last release
for a specified mouse button since the last call to this function for that button. The release counter for the
button is reset to zero.

Call with:

Returns:

AX
BX

AX

BX
ex
DX

= 0006H
= button identifier

o = left button
1 = right button
2 = center button

= button status
Bit(s) Significance (ifset)
o left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

= button release counter
= horizontal (X) coordinate of last button release
= vertical (Y) coordinate of last button release

Int33H
Function om
Set horizontal limits for pointer

Limits the mouse pointer display area by assigning minimum and maximum horizontal (X) coordinates
for the mouse pointer.

Call with:

Returns:

AX
ex
DX

Nothing

= 0007H
= minimum horizontal (X) coordinate
=~aximum horizontal (X) coordinate

Notes: • If the minimum value is greater than the maximum value, the two values are
swapped.

• The mouse pointer will be moved if necessary so that it lies within the specified
horizontal coordinates.

IBM ROM BIOS and Mouse Functions Reference 597



• See also Int 33H Function 10H, which defines an exclusion area for the mouse
pointer.

Int33H
Function 08H
Set vertical limits for pointer

Limits the mouse pointer display area by assigning minimum and maximum vertical (Y) coordinates for
the mouse pointer.

Call with:

Returns:

AX
ex
DX

Nothing

= 0008H
= minimum vertical (Y) coordinate
= maximum vertical (Y) coordinate

Notes: • If the minimum value is greater than the maximum value, the two values are
swapped.

• The mouse pointer will be moved if necessary so that it lies within the specified
vertical coordinates.

• See also Int 33H Function 10H, which defines an exclusion area for the mouse
pointer.

Int33H
Function 09H
Set graphics pointer shape

Defines the shape, color, and hot spot of the mouse pointer in graphics modes.

Call with:

Returns:

AX
BX
ex
ES:DX

Nothing

= 0009H
= hot spot offset from left
= hot spot offset from top
= segment:offset of pointer image buffer

Notes: • The pointer image buffer is 64 bytes long. The first 32 bytes contain a bit mask
which is ANDed with the screen image, and the second 32 bytes contain a bit mask
which is XORed with the screen image.

• The hot spot is relative to the upper left corner of the pointer image, and each pixel
offset must be in the range -16 through 16. In display modes 4 and 5, the horizontal
offset must be an even number.

598 Section III



Int33H
Function OAH (10)
Set text pointer type

Defines the shape and attributes of the mouse pointer in text modes.

Call with:

Returns:

AX
BX

ex

ox

Nothing

= OOOAH
= pointer type

o = software cursor
1 =hardware cursor

=AND mask value (if BX =0) or
starting line for cursor (if BX = 1)

=XOR mask value (if BX = 0) or
ending line for cursor (if BX = 1)

Notes: • If the software text cursor is selected (BX = 0), the masks in ex and OX are mapped
as follows:
Bit(s) Significance
0-7 character code
8-10 foreground color
11 intensity
12-14 background color
15 blink

For example, the following values would yield a software mouse cursor that inverts
the foreground and background colors:
AX =OOOAH
BX = OOOOH
ex = 77FFH
ox =7700H

• When the hardware text cursor is selected (BX = 1), the values in ex and OX are the
starting and ending scan lines for the blinking cursor generated by the video adapter.
The maximum scan line which may be used depends on the type of adapter and the
current display mode.

Int33H
Function OBH (11)
Read mouse motion counters

Returns the net mouse displacement since the last call to this function. The returned value is in mickeys;
a positive number indicates travel to the right or downwards, a negative number indicates travel to the left
or upwards. One mickey represents approximately 1/200 of an inch of mouse movement.

IBM ROMBIOS andMouse Functions Reference 599



Call with:

Returns:

AX

ex
DX

= OOOBH

= horizontal (X) mickey count
= vertical (Y) mickey count

Int33R
Function OCR (12)
Set user-defined mouse event handler

Sets the address and event mask for an application program's mouse event handler. The handler is called
by the mouse driver whenever the specified mouse events occur.

Call with:

Returns:

AX
ex

ES:DX

Nothing

= OOOCH
= event mask

Bit(s) Significance (ifset)
o mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5 center button pressed
6 center button released
7-15 reserved (0)

= segment:offset of handler

Notes: • The user-defined event handler is entered from the mouse driver by a far call with
registers set up as follows:
AX mouse event flags (see event mask)
BX button state

Bit(s) Significance (ifset)
o left button is down
1 r~h~buttonisdown

2 center button is down
3-15 reserved (0)

ex horizontal (X) pointer coordinate
DX vertical (Y) pointer coordinate
51 last raw vertical mickey count
DI last raw horizontal mickey count
D5 mouse driver data segment

• If an event does not generate a call to the user-defined handler because its bit is not
set in the event mask, it is still reported in the event flags during calls to the handler
for events which are enabled.

600 Section III



• Calls to the handler are disabled with Int 33H Function OOH or by calling this func­
tion with an event mask of zero.

• See also Int 33H Functions 14H and 18H.

Int33H
Function ODH (13)
Turn on light pen emulation

Enables light pen emulation by the mouse driver for IBM BASIC. A "pen down" condition is created by
pressing the left and right mouse buttons simultaneously.

Call with: AX = OOODH

Returns: Nothing

Int33H
Function OEH (14)
Turn off light pen emulation

Disables light pen emulation by the mouse driver for IBM BASIC.

Call with: AX = OOOEH

Returns: Nothing

Int33H
Function om (15)
Set mickeys to pixels ratio

Sets the number of mickeys per 8 pixels for horizontal and vertical mouse motion. One mickey represents
approximately 1/200 of an inch of mouse travel.

Call with: AX
CX
DX

= OOOFH
= horizontal mickeys (1-32,767, default = 8)
= vertical mickeys (1-32,767, default = 16)

Returns: Nothing

IBM ROMBIOS and Mouse Functions Reference 601



Int33H
Function 10H (16)
Set mouse pointer exclusion area

Defines an exclusion area for the mouse pointer. When the mouse pointer lies within the specified area, it
is not displayed.

Callwith: AX
ex
DX
51
DI

=0010H
= upper left X coordinate
=upper left Y coordinate
= lower right X coordinate
= lower right Y coordinate

Returns:

Note:

Nothing

• The exclusion area is replaced by another call to this function or cancelled by Int
33H Functions OOH or 01H.

Int33H
Function 13H (19)
Set double speed threshold

Sets the threshold speed for doubling pointer motion on the screen. The default threshold speed is 64
mickeys/second.

Call with: AX
DX

= 0013H
= threshold speed in mickeys/second

Returns:

Note:

Nothing

• Doubling of pointer motion can be effectively disabled by setting the threshold to a
very large value (such as 10,000).

602 Section III



Int33H
Function 14H (20)
Swap user-defined mouse event handlers

Sets the address and event mask for an application program's mouse event handler and returns the ad­
dress and event mask for the previous handler. The newly installed handler is called by the mouse driver
whenever the specified mouse events occur.

Call with:

Returns:

AX
CX

ES:DX

CX
ES:DX

= 0014H
= event mask

Bit(s) Significance (ifset)
o mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5 center button pressed
6 center button released
7-15 reserved (0)

= segment:offset of event handler

= previous event mask
= segment:offset of previous handler

Notes: • The Notes for Int 33H Function OCH describe the information passed to the user­
defined event handler. See also Int 33H Function 18H.

• Calls to the event handler are disabled with Int 33H Function OOH or by setting an
event mask of zero.

Int33H
Function 15H (21)
Get mouse save state buffer size

Gets the size of the buffer required to store the current state of the mouse driver.

Call with:

Returns:

AX

BX

= 001SH

= buffer size (bytes)

Note: • See also Int 33H Functions 16H and 17H.

IBM ROMBIOS andMouse Functions Reference 603



Int33H
Function 16H (22)
Save mouse driver state

Saves the mouse driver state in a user buffer. The minimum size for the buffer must be determined by a
previous call to Int 33H Function ISH.

Call with:

Returns:

AX
ES:DX

Nothing

= 0016H
= segment:offset of buffer

Note: • Call this function before executing a child program with Int 21H Function 4BH
(EXEC), in case the child also uses the mouse. After the EXEC call, restore the pre­
vious mouse driver state with Int 33H Function 17H.

Int33H
Function 17H (23)
Restore mouse driver state

Restores the mouse driver state from a user buffer.

Call with:

Returns:

AX
ES:DX

Nothing

= 0017H
=segment:offset of buffer

Note: • The mouse driver state must have been previously saved into the same buffer with
Int 33H Function 16H. The format of the data in the buffer is undocumented and
subject to change.

Int33H
Function 18H (24)
Set alternate mouse event handler

Sets the address and event mask for a an application program mouse event handler. As many as three
handlers with distinct event masks can be registered with this function. When an event occurs that
matches one of the masks, the corresponding handler is called by the mouse driver.

604 Section III



Call with: AX
CX

ES:DX

= 0018H
= event mask

Bit(s) Significance (ifset)
o mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5 Shift key pressed during button press or release
6 Ctr! key pressed during button press or release
7 Alt key pressed during button press or release
8-15 reserved (0)

= segment:offset of handler

Returns:

Notes:

If function successful
AX = 0018H

If function unsuccessful
AX =FFFFH

• When this function is called, at least one of the bits 5, 6, and 7 must be set in
register CX.

• The user-defined event handler is entered from the mouse driver by a far call with
registers set up as follows:
AX mouse event flags (see event mask)
BX button state

Bit(s) Significance (ifset)
o left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

CX horizontal (X) pointer coordinate
OX vertical (Y) pointer coordinate
SI last raw vertical mickey count
DI last raw horizontal mickey count
DS mouse driver data segment

• If an event does not generate a call to the user-defined handler because its bit is not
set in the event mask, it can still be reported in the event flags during calls to the
handler for events that are enabled.

• Calls to the handler are disabled with Int 33H Function OOH.

• See also Int 33H Functions OCH and 14H.

IBM ROM BIOS and Mouse Functions Reference 605



Int33H
Function 19H (25)
Get address ofalternate mouse event handler

Returns the address for the mouse event handler matching the specified event mask.

Call with: AX
ex

=0019H
=event mask (see Int 33H Function 18H)

Returns:

Note:

If function successful
ex =event mask
ES:DX = segment:offset of alternate event handler

If function unsuccessful (no handler installed or event mask does not match any
installed handler)
ex = OOOOH

• Int 33H Function 18H allows as many as three event handlers with distinct event
masks to be installed. This function can be called to search for a handler that
matches a specific event, so that it can be replaced or disabled.

Int33H
Function lAB (26)
Set mouse sensitivity

Sets the number of mickeys per 8 pixels for horizontal and vertical mouse motion and the threshold speed
for. doubling pointer motion on the screen. One mickey represents approximately 1/200 of an inch of
mouse travel.

Callwith:

Returns:

AX
BX
ex
DX

Nothing

= 001AH
= horizontal mickeys (1-32,767, default = 8)
=vertical mickeys (1-32,767, default = 16)
=double speed threshold in mickeys/second (default = 64)

Note: • See also Int 33H Functions OFH and 13H, which allow the mickeys to pixels ratio
and threshold speed to be set separately, and Int 33H Function IBH, which returns
the current sensitivity values.

606 Section III



Int33H
Function ffiH (27)
Get mouse ~ensitivity

Returns the current mickeys to pixels ratios for vertical and horizontal screen movement and the
threshold speed for doubling of pointer motion.

Call with:

Returns:

AX

BX
ex
DX

= 001BH

= horizontal mickeys (1-32,767, default =8)
= vertical mickeys (1-32,767, default = 16)
= double speed threshold in mickeys/second (default =64)

Note: • See also Int 33H Functions OFH, 13H, and 1AH.

Int33H
Function leH (28)
Set mouse interrupt rate

Sets the rate at which the mouse driver polls the status of the mouse. Faster rates provide better resolu­
tion in graphics mode but may degrade the performance of application programs.

Call with:

Returns:

AX
BX

Nothing

= 001CH
= interrupt rate flags

Bit(s) Significance
o no interrupts allowed
1 30 interrupts/second
2 50 interrupts/second
3 100 interrupts/second
4 200 interrupts/second
5-15 reserved (0)

Notes: • This function is applicable for the InPort Mouse only.

• If more than one bit is set in register BX, the lowest order bit prevails.

IBM ROMBIOS andMouse Functions Reference 607



Int33H
Function lDH (29)
Select pointer page

Selects the display page for the mouse pointer.

Call with: AX
BX

=OOlDH
= page

Returns:

Note:

Nothing

• The valid page numbers depend on the current display mode. See Int lOH
Function OSH.

Int33H
Function lEH (30)
Get pointer page

Returns the current display page for the mouse pointer.

Call with: AX

Returns: BX

= OOIEH

= page

Int33H
Function 1FH (31)
Disable mouse driver

Disables the mouse driver and returns the address of the previous Int 33H handler.

Call with: AX = OOlFH

Returns: If function successful
AX = OOlFH
ES:BX = segment:offset of previous Int 33H handler

If function unsuccessful
AX = FFFFH

608 Section III



Notes: • When this function is called, the mouse driver releases any interrupt vectors it has
captured other than Int 33H (which may include Int lOH, Int 71H, and/or Int 74H).
The application program can complete the process of logically removing the mouse
driver by restoring the original contents of the Int 33H vector with Int 21H Function
25H, using the address returned by this function in ES:BX.

• See also Int 33H Function 20H.

Int33H
Function 20H (32)
Enable mouse driver

Enables the mouse driver and the servicing of mouse interrupts.

Call with:

Returns:

AX

Nothing

= 0020H

Note: • See also lnt 33H Function IFH.

Int33H
Function 21H (33)
Reset mouse driver

Resets the mouse driver and returns driver status. If the mouse pointer was previously visible, it is
removed from the screen, and any previously installed user handlers for mouse events are disabled.

Call with: AX = 0021H

Returns:

Note:

If mouse support is available
AX = FFFFH
BX = number of mouse buttons

If mouse support is not available
AX = 0021H

• This function differs from Int 33H Function OOH in that there is no initialization of
the mouse hardware.

IBM ROM BIOS and Mouse Functions Reference 609



Int33H
Function 22H (34)
Set language for mouse driver messages

Selects the language that will be used by the mouse driver for prompts and error messages.

Call with:

Returns:

AX
BX

Nothing

= 0022H
= language number

o = English
1 = French
2 = Dutch
3 = German
4 = Swedish
5 = Finnish
6 = Spanish
7 = Portuguese
8 = Italian

Note: • This function is only available in international versions of the Microsoft Mouse
driver.

Int33H
Function 23H (35)
Get language number

Returns the number of the language that is used by the mouse driver for prompts and error messages.

Call with:

Returns:

AX

BX

=0023H

= language number (see Int 33H Function 22H)

Note: • This function is only available in international versions of the Microsoft Mouse
driver.

610 Section III



Int33H
Function 24H (36)
Get mouse information

Returns the mouse driver version number, mouse type, and·the IRQ number of the interrupt used by the
mouse adapter.

Call with:

Returns:

AX

BH
BL
CH

CL

= 0024H

= major version number (6 for version 6.10, etc.)
= minor version number (OAH for version 6.10, etc.)
= mouse type

1 = bus mouse
2 = serial mouse
3 = InPort mouse
4 = PS/2 mouse
5 =HPmouse

= IRQ number
o = PS/2
2, 3, 4, 5, or 7 = IRQ number

IBM ROMBIOS andMouse Functions Reference 611







Notes to the Reader
The Lotus/Intel/Microsoft Expanded Memory Specification (EMS) defines
a hardware/software subsystem, compatible with 80x86-based microcom­
puters running MS-DOS, that allows applications to access as much as 32
MB of bank-switched random-access memory. The software component,
called. the Expanded Memory Manager (EMM), is installed during system
initialization by a DEVICE= directive in the CONFIG.SYS file in the root
directory on the boot disk.

After ensuring that the EMM is present (see Chapter 11), an application
program communicates directly with the EMM using software interrupt
67H. A particular EMM function is selected by the value in register AH and
a success or error status is returned in register AH (error codes are listed
on pages 207-209). Other parameters and results are passed or returned
in registers or buffers.

An icon in each function heading indicates the EMS version in which that
function was first supported. You can assume that the function is available
in all subsequent EMS versions unless explicitly noted otherwise.

Version icons used in the synopsis, parameters, results, or Notes section
refer to specific minor or major EMS versions, unless they include a + sign
to indicate a version and all subsequent versions.

The material in this section has been verified against the Expanded
Memory Specification version 4.0, dated October 1987, Intel part number
300275-005. This document can be obtained from Intel Corporation, 5200
N.E. Elam Young Parkway, Hillsboro, OR 97124.

Summary ofEMM Functions

Function

40H (64)
41H (65)
42H (66)
43H (67)
44H(68)
45H (69)
46H (70)
47H (71)
48H (72)
49H (73)
4AH(74)
4BH (75)

614 Section IV

Subfunction Description

Get Status
Get Page Frame Address
Get Number of Pages
Allocate Handle and Pages
Map Expanded Memory Page
Release Handle and Expanded Memory
Get Version
Save Page Map
Restore Page Map
Reserved
Reserved
Get Handle Count

(continued)



Summary ofEMM Functions continued

Function

4CH (76)
4DH(77)
4EH (78)
4EH (78)
4EH(78)
4EH(78)
4FH (79)
4FH (79)
4FH (79)
50H (80)
50H (SO)

51H (81)
52H (82)
52H(82)
52H (82)
53H (83)
53H (83)
54H (84)
54H (84)
54H(84)
55H (85)
55H (85)
56H (86)
56H (86)
56H (86)
57H (87)
57H (87)
58H (88)
58H (88)
59H (89)
59H (89)
5AH(9Q)
SAH(9Q)
SBH (91)
SBH (91)
SBH (91)
SBH (91)
5BH(91)
SBH (91)
5BH (91)
SBH (91)
SBH (91)
SCH (92)

SDH(93)
SDH(93)
SDH(93)

Subfunctlon

OOH
01H
02H
03H
OOH
OIH
02H
OOH
01H

OOH
01H
02H
OOH
01H
OOH
01H
02H
OOH
01H
OOH
01H
02H
OOH
01H
OOH
01H
OOH
01H
OOH
01H
OOH
01H
02H
03H
04H
OSH
06H
07H
OSH

OOH
01H
02H

Description

Get Handle Pages
Get Pages for All Handles
Save Page Map
Restore Page Map
Save and Restore Page Map
Get Size of Page Map Information
Save Partial Page Map
Restore Partial Page Map
Get Size of Partial Page Map Information
Map Multiple Pages by Number
Map Multiple Pages by Address
Reallocate Pages for Handle
Get Handle Attribute
Set Handle Attribute
Get Attribute Capability
Get Handle Name
Set Handle Name
Get All Handle Names
Search for Handle Name
Get Total Handles
Map Pages by Number and]ump
Map Pages by Address and]ump
Map Pages by Number and Call
Map Pages by Address and Call
Get Space for Map Page and Call
Move Memory Region
Exchange Memory Regions
Get Addresses of Mappable Pages
Get Number of Mappable Pages
Get Hardware Configuration
Get Number of Raw Pages
Allocate Handle and Standard Pages
Allocate Handle and Raw Pages
Get Alternate Map Registers
Set Alternate Map Registers
Get Size of Alternate Map Register Save Area
Allocate Alternate Map Register Set
Deallocate Alternate Map Register Set
Allocate DMA Register Set
Enable DMA on Alternate Map Register Set
Disable DMA on Alternate Map Register Set
Deallocate DMA Register Set
Prepare Expanded Memory Manager for

Warm Boot
Enable EMM Operating-System Functions
Disable EMM Operating-System Functions
Release Access Key

Lotus/Intel/Microsoft EMS Functions Reference 615



Int67H
Function 40H (64)
Get status

Returns a status code indicating whether the expanded memory software and hardware are present and
functional.

Call with: AH =40H

Returns:

Note:

If function successful
AH =OOH

If function unsuccessful
AH =error code

• This call should be used only after an application has established that the Expanded
Memory Manager is in fact present, using one of the techniques described in
Chapter 11.

Int67H
Function 4m (65)
Get page frame address

Returns the segment address of the page frame used by the Expanded Memory Manager.

[EMS 3.0]

Call with: AH =41H

Returns:

Notes:

If function successful
AH =OOH
BX = segment base of page frame

If function unsuccessful
AH =error code

• The page frame is divided into four 16 KB pages, which are used to map logical ex­
panded memory pages into the physical memory space of the cpu.

• The application need not have already acquired an EMM handle to use this function.

• [EMS 4.0] Mapping of expanded memory pages is not necessarily limited to the 64
KB page frame. See also Int 67H Function 58H Subfunction OOH.

616 Section IV



Int67H
Function 42H (66)
Get number of pages

[EMS 3.0]

Obtains the total number of logical expanded memory pages present in the system and the number of
pages that are not already allocated.

Call with: AH = 42H

Returns:

Notes:

If function successful
AH =OOH
BX = unallocated pages
DX = total pages

If function unsuccessful
AH = error code

• The application need not have already acquired an EMM handle to use this function.

• [EMS 4.0] See also Int 67H Function 59H Subfunction OIH.

Int67H
Function 43H (67)
Allocate handle and pages

[EMS 3.0]

Obtains an EMM handle and allocates logical pages of expanded memory to be controlled by that handle.

Call with: AH
BX

=43H
= number of pages to allocate (must be nonzero)

Returns: If function successful
AH =OOH
DX = EMM handle

If function unsuccessful
AH = error code

Lotus/Intel/Microsoft EMS Functions Reference 617



Notes: • This is the equivalent of a file open function for the expanded memory manager.
The handle that is returned is analogous to a file handle and owns a certain number
of expanded memory pages. The handle must be used with every subsequent re­
quest to map memory and must be released by a close operation before the
application terminates.

• This function may fail because there are no handles left to allocate or because there
is an insufficient number of expanded memory pages to satisfy the request. In the
latter case, Int 67H Function 42H can be used to determine the actual number of
pages available.

• [EMS 4.0] Int 67H Function 51H can be called to change the number of pages allo­
cated to an EMM handle.

• [EMS 4.0] The pages allocated by this function are always 16 KB for compatibility
with earlier versions of EMS. See also Int 67H Function 5AH Subfunctions OOH and
01H.

• [EMS 4.0] Handle OOOOH is always available for use by the operating system, and a
prior call to this function is not required. The operating system must call Int 67H
Function 51H to assign the desired number of pages to its reserved handle.

Int67H
Function 44H (68)
Map expanded memory page

[EMS 3.0]

Maps one of the logical pages of expanded memory assigned to a handle onto a physical memory page
that can be accessed by the cpu.

Call with: AH
AL
BX
DX

=44H
= physical page
= logical page
=EMMhandle

Returns: If function successful
AH =OOH

If function unsuccessful
AH = error code

Notes: • The logical page number is in the range {O ... n-1}, where n is the number of pages
allocated or reallocated to the handle by a previous call to Int 67H Function 43H,
51H, or 5AH. Logical pages allocated by Int 67H Function 43H or Function 5AH Sub­
function OOH are always 16 KB long; logical pages allocated by Int 67H Function
5AH Subfunction 01H are referred to as raw pages and are not necessarily 16 KB.

• [EMS 3] The physical page is in the range 0-3 and lies within the EMM page frame,
whose base address is obtained from Int 67H Function 41H.

618 Section IV



• [EMS 4.0] A list of the available physical pages and their addresses may be obtained
from Int 67H Function 58H Subfunction OOH.

• [EMS 4.0] If this function is called with BX = -1, the specified physical page is un­
mapped (made inaccessible for reading or writing).

Int67H
Function 45H (69)
Release handle and expanded memory

[EMS 3.0]

DeaHocates the expanded memory pages assigned to a handle and then releases the handle.

Call with: AH
DX

=45H
=EMMhandle

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• If this function is not called before a program terminates, the EMS pages it owned
remain unavailable until the system is restarted. Programs that use EMS should in­
stall their own Ctrl-C handlers and critical-error handlers (Ints 23H and 24H) so that
they cannot be terminated unexpectedly.

• [EMS 4.0] When a handle is released, its name is set to all ASCII nulls.

Int67H
Functiolll 46H (70)
Get version

Returns the EMS version supported by the expanded memory manager.

[EMS 3.0]

Call with: AH =46H

Returns: If function successful
AH = OOH
AL = version number

If function unsuccessful
AH = error code

Lotus/Intel/Microsoft EMS Functions Reference 619



Notes: • The version number is returned in binary code decimal (BCD) format, with the in­
teger portion in the upper 4 bits of AL and the fractional portion in the lower 4 bits.
For example, under an EMM that supports EMS version 3.2, AL is returned as the
value 32H.

• Applications should always check the EMM version number to ensure that all of the
EMM functions they require are available.

Int67H
Function 47H (71)
Save page map

[EMS 3.0]

Saves the contents of the page-mapping registers on the expanded memory hardware, associating those
contents with a particular EMM handle.

Call with: AH
DX

=47H
=EMMhandle

Returns:

Notes:

If function successful
AH =ooH

If function unsuccessful
AH =error code

• This function is used by interrupt handlers or device drivers that must access ex­
panded memory. The EMM handle supplied to this function is the handle that was
assigned to the handler or driver during its own initialization sequence, not to the
program that was interrupted.

• The mapping context is restored by a subsequent call to Int 67H Function 48H.

• [EMS 4.0] This function saves only the mapping state for the 64 KB page frame
defined in EMS 3. Programs that are written to take advantage of the additional
capabilities of EMS 4.0 should use Int 67H Function 4EH or 4FH in preference to
this function.

Int67H
Function 48H (72)
Restore page map

[EMS 3.0]

Restores the contents of the page-mapping registers on the expanded memory hardware to the values
associated with the specified handle by a previous call to Int 67H Function 47H.

620 Section IV



Call with: AH
DX

=48H
= EMMhandle

Returns:

Notes:

If function successful
AH = OOH

If function unsuccessful
AH = error code

• This function is used by interrupt handlers or device drivers that must access ex­
panded memory. The EMM handle supplied to this function is the handle that was
assigned to the handler or driver during its own initialization sequence, not to the
program that was interrupted.

• [EMS 4.0] This function restores only the mapping state for the 64 KB page frame
defined in EMS 3. Programs that are written to take advantage of the additional
capabilities of EMS 4.0 should use Int 67H Function 4EH or 4FH in preference to
this function.

Int67H
Function 49H (73)
Reserved

[EMS 3.0]

This function was defined in EMS version 3.0 but is not documented for later EMS versions, so it should be
avoided in application programs.

Int67H
Function 4AH (74)
Reserved

[EMS 3.0]

This function was defined in EMS version 3.0 but is not documented for later EMS versions, so it should be
avoided in application programs.

Int67H
FunctiolIl4BH (75)
Get handle count

Returns the number of active expanded memory handles.

[EMS 3.0]

Lotus/Intel/Microsoft EMS Functions Reference 621



Call with: AH =4BH

Returns:

Notes:

If function successful
AH =OOH
BX = number of active EMM handles

If function unsuccessful
AH =error code

• If the returned number of EMM handles is zero, the expanded memory manager is
idle, and none of the expanded memory is in use.

• The value returned by this function is not necessarily the same as the number of
programs using expanded memory because one program may own multiple EMM
handles.

• The number of active EMM handles never exceeds 255.

Int6.7H
Function 4CH (76)
Get handle pages

Returns the number of expanded memory pages allocated to a specific EMM handle.

[EMS 3.0]

Call with: AH
DX

=4CH
= EMM handle

Returns:

Notes:

If function successful
AH =OOH
BX =number of EMM pages

If function unsuccessful
AH =error code

• [EMS 3] The total number of pages allocated to a handle never exceeds 512. A handle
never has zero pages allocated to it.

• [EMS 4.0] The total number of pages allocated to a handle never exceeds 2048. A
handle may have zero pages of expanded memory.

622 Section IV



Int67H
Function 4DH (77)
Get pages for all handles

[EMS 3.0]

Returns an array that contains all the active handles and the number of expanded memory pages associ­
ated with each handle.

Call with: AH
ES:DI

=4DH
= segment:offset of buffer (see Notes)

Returns:

, Notes:

If function successful
AH = OOH
BX = number of active EMM handles

and buffer filled in as described in Notes

If function unsuccessful
AH = error code

• The buffer is filled in with a series of DWORD (32-bit) entries, one per active EMM
handle. The first word of an entry contains the handle, and the second word contains
the number of pages allocated to that handle.

• The maximum number of active handles is 256 (including the operating system
handle 0), so a buffer size of 1024 bytes is adequate in all cases.

Int67H
Function 4EH (78) Subfunction OOH
Save page map

[EMS 3.2]

Saves the current page-mapping state of the expanded memory hardware in the specified buffer.

Call with: AH
AL
ES:DI

=4EH
=OOH
= segment:offset of buffer (see Notes)

Returns: If function successful
AH =OOH

and buffer filled in with mapping information (see Notes)

If function unsuccessful
AH = error code

Lotus/Intel/Microsoft EMS Functions Reference 623



Notes: • The buffer receives the information necessary to restore the state of the mapping
registers using Int 67H Function 4EH Subfunction OIH. The format of the informa­
tion may vary.

• The size of the buffer required by this function can be determined with Int 67H
Function 4EH Subfunction 03H.

• Unlike Int 67H Function 47H, this function does not require a handle.

Int67H
Function 4EH (78) Subfunction om
Restore page map

[EMS 3.2]

Restores the page-mapping state of the expanded memory hardware using the information in the speci­
fied buffer.

Call with: AH
AL
DS:SI

=4EH
=OIH
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH =error code

• The buffer contains information necessary to restore the state of the mapping regis­
ters from a previous call to Int 67H Function 4EH Subfunction OOH or 02H. The
format of the information may vary.

• Unlike Int 67H Function 48H, this function does not require a handle.

Int67H
Function 4EH (78) Subfunction 02H
Save and restore page map

[EMS 3.2]

Saves t~e current page-mapping state of the expanded memory hardware in a buffer and then sets the
mapping state using the information in another buffer.

Call with: AH
AL
DS:SI
ES:DI

=4EH
=02H
= segment:offset of buffer containing mapping information (see Notes)
= segment:offset of buffer to receive mapping information (see Notes)

624 Section IV



Returns:

Notes:

If function successful
AH = DOH

and buffer pointed to by ES:DI filled in with mapping information (see Notes)

If function unsuccessful
AH = error code

• The buffer addressed by DS:SI contains information necessary to restore the state of
the mapping registers from a previous call to Int 67H Function 4EH Subfunction DOH
or 02H. The format of the information may vary.

• The sizes of the buffers required by this function can be determined with Int 67H
Function 4EH Subfunction 03H.

• Unlike Int 67H Functions 47H and 48H, this function does not require a handle.

Int67H
Function 4EH (78) Subfunction 03H
Get size of page map information

[EMS 3.2]

Returns the size of the buffer that is required to receive page-mapping information using Int 67H Func­
tion 4EH Subfunctions OOH and 02H.

Call with: AH
AL

=4EH
=03H

Returns: If function successful
AH = DOH
AL = size of buffer (bytes)

If function unsuccessful
AH = error code

Int67H
Function 4FH (79) Subfunction OOH
Save partial page map

[EMS 4.0]

Saves the state of a subset of the expanded memory page-mapping registers in the specified buffer.

Call with: AH
AL
DS:SI
ES:DI

=4FH
=OOH
= segment:offset of map list (see Notes)
= segment:offset of buffer to receive mapping state (see Notes)

Lotus/Intel/Microsoft EMS Functions Reference 625



Returns:

Notes:

If function successful
AH. =OOH

and buffer filled in with mapping information (see Notes)

If function unsuccessful
AH = error code

• The map list contains the number of mappable segments in the first word, followed
by the segment addresses of the mappable memory regions (one segment per word).

II To determine the size of the buffer required for the mapping state, use Int 67H Func­
tion 4FH Subfunction 02H.

Int67H
Function 4FH (79) Subfunction om
Restore partial page map

Restores the state of a subset of the expanded memory page-mapping registers.

[EMS 4.0]

Call with: AH
AL
DS:SI

=4FH
=OlH
= segment:offset of buffer (see Note)

Returns:

Note:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• The buffer contains mapping information and must have been prepared by a pre­
vious call to Int 67H Function 4FH Subfunction OOH.

Int67H
Function 4FH (79) Subfunction 028
Get size of partial page map information

[EMS 4.0]

Returns the size of the buffer which will be required to receive partial page-mapping information using
Int 67H Function 4FH Subfunction OOH.

Call with: AH
AL
BX

=4FH
=02H
= number of pages

626 Section IV



Returns: If function successful
AH =OOH
AL = size of array (bytes)

If function unsuccessful
AH = error code

Int67H
Function 50H (80) Subfunction OOH
Map mulltiple pages by number

[EMS 4.0]

Maps one or more of the logical expanded memory pages assigned to a handle onto physical memory
pages that can be accessed by the CPU. Physical pages are referenced by their numbers.

Call with: AH
AL
CX
DX
DS:SI

= SOH
=OOH
= number of pages to map
= EMM handle
= segment:offset of buffer (see Note)

Returns:

N()te:

If function successful
AH = OOH

If function unsuccessful
AH = error code

• The buffer contains a series of DWORD (32-bit) entries that control the pages to be
mapped. The first word of each entry contains the logical expanded memory page
number, and the second word contains the physical page number to which it should
be mapped. If the logical page is -1, the physical page is unmapped (made inacces­
sible for reading or writing).

Int67H
Function 50H (80) Subfunction om
Map multiple pages by address

[EMS 4.0]

Maps one or more of the logical expanded memory pages assigned to a handle onto physical memory
pages that can be accessed by the CPU. Physical pages are referenced by their segment addresses.

Lotus/Intel/Microsoft EMS Functions Reference 627



Call with: AH
AL
ex
ox
OS:SI

=50H
=01H
= number of pages to map
=EMMhandle
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• The buffer contains a series of OWORO (32-bit) entries that control the pages to be
mapped. The first word of each entry contains the logical page number, and the sec­
ond word contains the physical page segment address to which it should be mapped.
If the logical page is -1, the physical page is unmapped (made inaccessible for read­
ing or writing).

• The mappable segment addresses may be obtained by calling Int 67H Function 58H
Subfunction OOH.

Int67H
Function 5tH (81)
Reallocate pages for handle

Modifies the number of expanded memory pages allocated to an EMM handle.

[EMS 4.0]

Call with: AH
BX
OX

= 51H
= new number of pages
= EMMhandle

Returns:

Note:

If function successful
AH = OOH
BX = logical pages owned by EMM handle

If function unsuccessful
AH = error code

• If the requested number of pages is zero, the handle is still active, and pages can be
reallocated to the handle at a later time; also, the handle must still be released with
Int 67H Function 45H before the application terminates.

628 Section IV



Int67H
Function 52H (82) Subfunction OOH
Get handle attribute

[EMS 4.0]

Returns the attribute (volatile or nonvolatile) associated with the specified handle. A nonvolatile memory
handle and the contents of the expanded memory pages that are allocated to it are maintained across a
warm boot operation (system restart using Ctrl-Alt-Del).

Call with: AH
AL
DX

= 52H
=OOH
= EMMhandle

Returns: If function successful
AH =OOH
AL = attribute

o
1

If function unsuccessful
AH = error code

=volatile
=nonvolatile

Int67H
Function 52H (82) Subfunction om
Set handle attribute

Sets the attribute (volatile or nonvolatile) associated with the specified handle. A nonvolatile memory
handle and the contents of the expanded memory pages that are allocated to it are maintained across a
warm boot operation (system restart using Ctrl-Alt-Del).

Call with: AH
AL
BL

DX

= 52H
= OlH
= attribute

o = volatile
1 = nonvolatile

= EMMhandle

Returns:

Note:

If function successful
AH = OOH

If function unsuccessful
AH = error code

• If the expanded memory hardware cannot support nonvolatile pages, this function
returns an error.

Lotus/Intel/Microsoft EMS Functions Reference 629



Int67H
Functlon 52H(82) Subfunctlon02H
Get attribute capability

[EMS 4.0]

Returns a code indicating whether the Expanded Memory Manager and hardware can support the non­
volatile attribute for EMM handles.

Call with: AH
AL

= 52H
=02H

Returns: If function successful
AH =OOH
AL = attribute capability

o = only volatile handles supported
1 = volatile and nonvolatile handles supported

If function unsuccessful
AH = error code

Int67H
Function 53H (83) Subfunction OOH
Get handle name

Returns the 8-character name assigned to a handle.

[EMS 4.0]

Call with: AH
AL
OX
ES:OI

=53H
=OOH
= EMMhandle
= segment:offset of 8-byte buffer

Returns:

Note:

If function successful
AH =OOH

and name for handle in specified buffer

If function unsuccessful
AH = error code

II A handle's name is initialized to 8 zero bytes when it is allocated or deallocated.
Another name may be assigned to an active handle with Int 67H Function 53H
Subfunction OtH. The bytes in a handle name need not be ASCII characters.

630 Section IV



Int67H
Function 53H (83) Subfunction om
Set handle name

Assigns a name to an EMM handle.

Call with: AH
AL
OX
DS:SI

= 53H
=OlH
= EMM handle
= segment:offset of 8-byte name

Returns:

Notes:

If function successful
AH = OOH

If function unsuccessful
AH = error code

• The bytes in a handle name need not be ASCII characters, but the sequence of 8
zero bytes is reserved for no name (the default after a handle is allocated or deallo­
cated). A handle name should be padded with zero bytes, if necessary, to a length of
8 bytes.

• A handle may be renamed at any time.

• All handle names are initialized to 8 zero bytes when the system is turned on. The
name of a nonvolatile handle is preserved across a warm boot. (See Int 67H Func­
tion 52H Subfunctions OOH and 02H.)

Int67H
Function 54H (84) Subfunction OOH
Get all handle names

Returns the names for all active handles.

[EMS 400]

Call with: AH
AL
ES:DI

= 54H
=OOH
= segment:offset of buffer (see Notes)

Returns: If function successful
AH =OOH
AL = number of active handles

I ., and buffer filled in with handle-name information (see Notes)

If function unsuccessful
AH = error code

Lotus/Intel/Microsoft EMS Functions Reference 631



Notes: IIJ The function fills the buffer with a series of 10-byte entries. The first 2 bytes of each
entry contain an EMM handle, and the next 8 bytes contain the name associated with
the handle. Handles that have never been assigned a name have 8 bytes of 0 as a
name.

• Because there is a maximum of 255 active handles, the buffer need not be longer
than 2550 bytes.

Int67H
Function 54H (84) Subfunction om
Search for handle name

Returns the EMM handle associated with the specified name.

[EMS 4.0]

Call with: AH
AL
OS:SI

= 54H
=OlH
= segment:offset of 8-byte handle name

Returns: If function successful
AH =OOH
OX = EMM handle

If function unsuccessful
AH = error code

Int67H
Function 548 (84) Subfunction 02H
Get total handles

[EMS 4.0]

Returns the total number of handles that are supported by the Expanded Memory Manager, including the
operating-system handle (0).

Call with: AH = 54H
AL = 02H

Returns: If function successful
AH =OOH
BX = number of handles

If function unsuccessful
AH = error code

632 Section IV



Int67H
Function 55H (85) Subfunctions OOH and 01H
Map pages and jump

[EMS 4.0]

Alters the expanded memory mapping context and transfers control to the specified address.

Call with: AH
AL

OX
OS:SI

= 55H
= subfunction

o = map using physicalpage numbers
1 = map using physicalpage segments

= EMMhandle
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• The buffer contains map-and-jump entries in the following format:
Offset Length Description
OOH 4 far pointer to jump target
04H 1 number of pages to map before jump
05H 4 far pointer to map list (see below)

The map list in turn consists of DWORO (32-bit) entries, one per page. The first word
of each entry contains the logical page number, and the second word contains the
physical page number or segment (depending on the value in register AL) to which it
should be mapped.

• A request to map zero pages and jump is not considered an error; the effect is a
simple far jump.

Int67H
Function 56H (86) Subfunctions OOH and 01H
Map pages and call

[EMS 4.0]

Alters the expanded memory mapping context and performs a far call to the specified address. When the
destination routine executes a far return, the EMM again alters the page-mapping context as instructed
and then returns control to the original caller.

Lotus/Intel/Microsoft EMS Functions Reference 633



Call with: AH
AL

DX
DS:SI

= S6H
= subfunction

o = map using physicalpage numbers
1 = map using physicalpage segments

= EMM handle
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH = OOH

If function unsuccessful
AH = error code

• The format of the buffer containing map and call information is:
Offset Length Description
OOH 4 far pointer to call target
04H 1 number of pages to map before call
OSH 4 far pointer to list of pages to map before call (see below)
09H 1 number of pages to map before return
OAH 4 far pointer to list of pages to map before return (see below)
OEH 8 reserved (0)

Both map lists have the same format and consist of a series of double-word entries,
one per page. The first word of each entry contains the logical page number, and the
second word contains the physical page number or segment (depending on the value
in register AL) to which it should be mapped.

• A request to map zero pages and call is not an error; the effect is a simple far call.

• This function uses extra stack space to save information about the mapping context;
the amount of stack space required can be determined by calling Int 67H Function
56H Subfunction 02H.

Int67H
Function 56B (86) Subfunction 02H
Get stack space for map page and call

[EMS 4.0]

Returns the number of bytes of stack space required by Int 67H Function 56H Subfunction OOH or OIH.

Call with: AH
AL

= S6H
= 02H

Returns: If function successful
AH = OOH
BX = stack space required (bytes)

If function unsuccessful
AH = error code

634 Section IV



Int67H
Function 578 (87) Subfunction 008
Move memory region

[EMS 4.0]

Copies a memory region from any location in conventional or expanded men10ry to any other location
without disturbing the current expanded memory mapping context.

Call with: AH
AL
DS:SI

= S7H
=OOH
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• The format of the buffer controlling the move operation is:
Offset Length Description
OOH 4 region length in bytes
04H 1 source memory type (0 = conventional, 1 = expanded)
OSH 2 source memory handle
07H 2 source lnemory offset
09H 2 source memory segment or physical page number
OBH 1 destination memory type (0 = conventional, 1 = expanded)
OCH 2 destination memory handle
OEH 2 destination memory offset
10H 2 destination lnemory segment or physical page number

III A length of zero bytes is not an error. The maximum length of a move is 1 MB. If the
length exceeds a single expanded memory page, consecutive expanded memory
pages (as many as are required) supply or receive the data.

[I If the source and destination addresses overlap, the move will be performed in such
a way that the destination receives an intact copy of the original data, and a nonzero
status is returned.

Int67H
Function 518 (87) Subfunction om
Exchange memory regions

[EMS 4.0]

Exchanges any two memory regions in conventional or expanded memory without disturbing the current
expanded memory mapping context.

Lotus/Intel/Microsoft EMS Functions Reference 635



Call with: AH
AL
DS:SI

=57H
= OIH
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• The format of the buffer controlling the exchange operation is the same as for lnt
67H Function 57H Subfunction OOH.

• An exchange of zero bytes is not an error. The maximum length of an exchange is 1
MB. If the length exceeds a single expanded memory page, consecutive expanded
memory pages (as many as are required) supply or receive the data.

• If the source and destination addresses overlap, the exchange is not performed and
an error is returned.

Int67H
Function 588 (88) Subfunction OOH
Get addresses ofmappable pages

[EMS 4.0]

Returns the segment base address and physical page number for each mappable page in the system.

Call with: AH
AL
ES:DI

=58H
=OOH
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH =OOH
ex = number of entries in mappable physical page array

and page number/address information in buffer (see Notes)

If function unsuccessful
AH = error code

• Upon return from the function, the buffer contains a series of double-word entries,
one per mappable page. The first word of an entry contains the page's segment base
address, and the second contains its physical page number. The entries are sorted in
order of ascending segment addresses.

• The size of the buffer required can be calculated with the information returned by
Int 67H Function 58H Subfunction OIH.

636 Section IV



Int67H
Function 580 (88) Subfunction om
Get number of mappable pages

Returns the number of mappable physical pages.

Call with: AH
AL

=58H
=OlH

Returns:

Note:

If function successful
AH = OOH
ex = number of mappable physical pages

If function unsuccessful
AH = error code

• The information returned by this function can be used to calculate the size of the
buffer that will be needed by Int 67H Function 58H Subfunction OOH.

Int67H
Functi01I159H (89) Subfunction 008
Get hardware configuration

Returns information about the configuration of the expanded memory hardware.

Call with: AH
AL
ES:DI

=59H
=OOH
= segment:offset of buffer (see Notes)

Returns:

Notes:

If function successful
AH =OOH

and hardware configuration information in buffer.

If function unsuccessful
AH = error code

II Upon return from the function, the buffer has been filled in with hardware configu­
ration information in the following format:
Offset Length Description
OOH 2 size of raw expanded memory pages (in paragraphs)
02H 2 number of alternate register sets
04H 2 size of mapping-context save area (in bytes)

Lotus/Intel/Microsoft EMS Functions Reference 637



2

Length
2

08H

Offset
06H

Description
number of register sets that can be assigned to DMA
channels
DMA operation type (0 = DMA may be used with alternate
register sets; 1 = only one DMA register set available)

• The size returned for the mapping-context save area is the same as the size returned
by Int 67H Function 4EH Subfunction 03H.

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int67H
Function 59H (89) Subfunction om
Get number of raw pages

[EMS 4.0]

Obtains the total number of raw expanded memory pages present in the system and the number of raw
pages that are not already allocated. Raw memory pages may have a size other than 16 KB.

Call with: AH
AL

= S9H
=OlH

Returns: If function successful
AH = OOH
BX = unallocated raw pages
DX = total raw pages

If function unsuccessful
AH = error code

Note: • If the Expanded Memory Manager supports only pages of standard size~ the values
returned by this function are the same as those returned by Int 67H Function 42H.

Int67H
Function 5AD (90) Subfunction OOH
Allocate handle and standard pages

[EMS 4.0]

Allocates an EMM handle and associates standard (16 KB) expanded memory pages with that handle.

Call with: AH
AL
BX

= SAH
=OOH
= number of standard pages to allocate

638 Section IV



Returns:

Note:

If function successful
AH = OOH
OX = EMM handle

If function unsuccessful
AH = error code

• Unlike Int 67H Function 43H, allocating zero pages with this function is not an error.

Int67H
Function 5AH (90) Subfunction om
Allocate handle and raw pages

[EMS 4.0]

Allocates a raw EMM handle and associates raw expanded memory pages with that handle.

Call with: AH
AL
BX

=5AH
=OlH
= number of raw pages to allocate

Returns:

Notes:

If function successful
AH =OOH
OX = handle for raw EMM pages

If function unsuccessful
AH = error code

• Raw memory pages may have a size other than 16 KB.

• Allocation of zero pages is not an error.

Int67H
Function 5HH (91) Subfunction OOH
Get alternate map registers

[EMS 4.0]

Returns the number of the active alternate register set or, if no alternate set is active, saves the state of the
mapping registers into a buffer and returns its address.

Call with: AH
AL

=5BH
=OOH

Lotus/Intel/Microsoft EMS Functions Reference 639



Returns:

Notes:

If function successful and alternate map register set active
AH =OOH
BL = current active alternate map register set

If function successful and alternate map register set not active
AH = DOH
BL = OOH
ES:DI = segment:offset of alternate map register save area (if BL = 0)

If function unsuccessful
AH = error code

• The address of the save "area must have been specified in a previous call to Int 67H
Function SBH Subfunction OIH, and the save area must have been initialized by a
previous call to Int 67H Function 4EH Subfunction OOH. If there was no previous call
to Int 67H Function SBH Subfunction OIH, the address returned is zero, and the
registers are not saved.

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int67H
Function 5BH (91) Subfunction om
Set alternate map registers

[EMS 4.0]

Selects an alternate map register set or (if alternate sets are not supported) restores the mapping context
from the specified buffer.

Callwith: AH
AL
BL
ES:DI

=SBH
= OIH
= alternate register set number or OOH
= segment:offset of map register context restore area (if BL = 0)

Returns: If function successful
AH =OOH

If function unsuccessful
AH = error code

Notes: • The buffer address specified in this call is returned by subsequent calls to Int 67H
Function SBH Subfunction OOH with BL = OOH.

• The save area must have been initialized by a previous call to Int 67H Function 4EH
Subfunction OOH.

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

640 Section IV



Int67H
Function 5BH (91) Subfunction 02H
Get size of alternate map register save area

Returns the amount of storage needed by Int 67H Function 5BH Subfunctions OOH and OIH.

Call with: AH
AL

=5BH
=02H

Returns:

Note:

If function successful
AH = OOH
OX = size of buffer (bytes)

If function unsuccessful
AH = error code

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int67H
Function 5BH (91) Subfunction 03H
Allocate alternate map register set

Allocates an alternate map register set for use with Int 67H Function 5BH Subfunctions OOH and OIH. The
contents of the currently active map registers are copied into the newly allocated alternate map registers
in order to provide an initial context when they are selected.

Call with: AH
AL

= 5BH
=03H

Returns:

Note:

If function successful
AH = OOH
BL = alternate map register set number or zero, if no alternate

sets are available

If function unsuccessful
AH = error code

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Lotus/Intel/Microsoft EMS Functions Reference 641



Int67B
Function 5BB (91) Subfunction 04H
Deallocate alternate map register set

[EMS 4.0]

Releases an alternate map register set that was previously allocated with Int 67H Function 5BH Subfunc­
tion03H.

Callwith: AH
AL
BL

=5BH
=04H
= alternate register set number

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• The current alternate map register set cannot be deallocated.

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int67B
Function 5BB (91) Subfunction 05B
Allocate DMA register set

Allocates a DMA register set.

[EMS 4.0]

Call with: AH
AL

=5BH
=05H

Returns:

Note:

If function successful
AH =OOH
BL = DMA register set number (0 = none available)

If function unsuccessful
AH = error code

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

642 Section IV



Int67H
Function 5HH (91) Subfunction 06H
Enable DMA on alternate map register set

Associates a DMA channel with an alternate map register set.

Call with: AH
AL
BL
DL

=5BH
=06H
= alternate map register set
= DMA channel number

Returns:

Notes:

If function successful
AH =OOH

If function unsuccessful
AH = error code

• If a DMA channel is not assigned to a specific register set, DMA for that channel will
be mapped through the current register set.

• If zero is specified as the alternate map register set, no special action is taken on
DMA accesses for the specified DMA channel.

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int67H
Function 5HH (91) Subfunction om
Disable DMA on alternate map register set

[EMS 4.0]

Disables DMA accesses for all DMA channels associated with a specific alternate map register set.

Call with: AH
AL
BL

=5BH
=07H
= alternate register set number

Returns: If function successful
AH =OOH
If function unsuccessful
AH = error code

Lotus/Intel/Microsoft EMS Functions Reference 643



Note: • This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int67H
Function 5BH (91) Subfunction 08H
Deallocate DMA register set

[EMS 4.0]

Deallocates a DMA register set that was previously allocated with Int 67H Function SBH Subfunction OSH.

Call with: AH
AL
BL

=SBH
=08H
= DMA register set number

Returns:

Note:

If function successful
AH = OOH

If function unsuccessful
AH = error code

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int 67H [EMS 4.0]
Function 5CH (92)
Prepare Expanded Memory Manager for warm boot

Prepares the expanded memory hardware for an impending warm boot. This function affects the current
mapping context, the alternate register set in use, and any other expanded memory hardware dependen­
cies that would ordinarily be initialized at system boot time.

Call with: AH =SCH

Returns: If function successful
AH =OOH

If function unsuccessful
AH = error code

644 Section IV



Note: • If an application maps expanded memory at addresses below 640 KB, the applica­
tion must trap all possible conditions that might lead to a warm boot, so that this
function can be called first.

Int67H
Function 5DH (93) Subfunction OOH
Enable JEMM operating-system functions

Enables the operating-system-specific EMM functions (Int 67H Functions 59H, 5BH, and 5DH) for calls
by any program or device driver. (This is the default condition.)

Call with: AH
AL
BX:CX

=5DH
=OOH
= access key (if not first call to function)

Returns:

Notes:

If function successful
AH = OOH
BX:CX = access key (if first call to function)

If function unsuccessful
AH = error code

• An access key is returned in registers BX and CX on the first call to Int 67H Function
5DH Subfunction OOH or OIH. The access key is required for all subsequent calls to
either function.

• This function is intended for use by operating systems only.

Int67H
Function 5DH (93) Subfunction om
Disable EMM operating-system furtctions

[EMS 4.0]

Disables the operating-system-specific EMM functions (Int 67H Functions 59H, 5BH, and 5DH) for calls
by application programs and device drivers, reserving the use of these functions for the operating
system.

Call with: AH
AL
BX:CX

=5DH
=OIH
= access key (if not first call to function)

Lotus/Intel/Microsoft EMS Functions Reference 645



Returns:

Notes:

If function successful
AH =OOH
BX:CX = access key (if first call to function)

If function unsuccessful
AH = error code

• An access key is returned in registers BX and CX on the first call to Int 67H Function
SDH Subfunction OOH or OIH. The access key is required for all subsequent calls to
either function.

• This function is intended for use by operating systems only.

Int67H
Function 5DH (93) Subfunction 02H
Release access key

[EMS 4.0]

Releases the access key obtained by a previous call to Int 67H Function SDH Subfunction OOH or OIH.

Call with: AH
AL
BX:CX

=SDH
=02H
= access key

Returns: If function successful
AH = OOH

If function unsuccessful
AH = error code

Notes: • With respect to the operating-system-specific expanded memory functions, the
EMM is returned to the state it had when the system was initialized. A new access
key is returned by the next call to Int 67H Function SDH Subfunction OOH or OIH.

• This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

646 Section IV



Index
References to tables and illustrations are in italics.

Speciall Characters
: 298-99
.187
.. 187-88
;60
< 298-99
> 298-99
» 298-99
@60
86-DOS operating system 4

A
Absolute disk read 482-84
Absolute disk write 484-85
adapters, video display 86-87
alarm

reset 592
set 591-92

align type 38
Allocate alternate map register set (EMS)

641
Allocate DMA register set (EMS) 642
Allocate handle and pages (EMS) 617-18
Allocate handle and raw pages (EMS) 639
Allocate handle and standard pages

(EMS) 638-39
Allocate memory block 438-39
ANSI.SYS device driver, screen control 91

escape sequences used with 92-93
APPEND 490-91
application program interface (API) 320
application programs. See MS-DOS

application programs, porting to
OS/2; MS-DOS application
programs, structure of; MS-DOS
application programs, writing
compatible

arena entries 196
arena headers 196, 201

diagram example 2G2
ASCII es~ape code 92-93
ASCII mode 69

character-device drivers in 261-62
ASCII text files 56
ASCIIZ strings 24, 139, 168

.ASM files 45. See also assembly-language
programs

assembly-language programs 37-42
to access file allocation table 191
BREAK.ASM 75-78
CLEAN.ASM 304-9
DRIVER.ASM 283-91
DUMP.ASM 152-61
HELLO.COM example 27-30, 33-36
program modules 37
program procedures 41-42
program segments 38-41
PROTO.ASM 301-2
SHELL.ASM program 229-38
TALK.ASM 113-26
ZERODIV.ASM 254, 255-58

ASSIGN 489
ASSUME statement 29, 33
attribute byte

color text display 98
monochrome text display 97

attribute word, device 264
Auxiliary device (AliX) 12, 106, 298. See

also serial port
Auxiliary input 344-45
Auxiliary output 345-46

B
background, set 508-9
BACKUP command 15
.BAT (batch) files 15
Batch files 15
binary mode 69

character-device drivers in 261-62
output 93-94

BIOS module 12-13, 17
get address of extended, 574

BIOS parameter block (BPB) 181, 189
build 272
structure 269

bit planes 101
blink/intensity bit, toggle 513
block-device drivers 260,262

check for remoteness 423-24
check removability of 422-23
generic I/O control of 429-32

Index 647



block-device drivers, continued
read control data from 418-19
write control data to 419-20

Boot disk device (block device) 12
boot drive, get 392-93
boot sector, disk 179-82

map of 180
partial disassembly of 182
partial hex dump 181

bootstrap routine 16, 17
border

get color 514
get palette and 514
set 508-9
set color 512

BREAK.ASM program 75-78
break flag, get or set 392-93
Buffered keyboard input 351-52
Build BIOS Parameter Block (function

02H) 272 .

c
CALL instructions 41
Cancel device redirection 467-68
cassette motor

read 561
turn off 560-61
turn on 560
write 562

.C files 45. See also C language
Change sharing retry count 425-26
character blocks, set specifier 520
character-device drivers 260, 261-62

ASCII vsbinary mode 261-62
generic I/O control 426-29
read control data from 415-16
write control data to 416-17

character input!output. See also keyboard
input; mouse, input; pointing
device, input; printer output; serial
port

Int 21H 44H 10CTL (I/O control)
411-43

Int 21H functions, summary 337-38
(table)

processing typical I/O request 281-82
Character input with echo 343
Character input without echo 349-50
Character output 344
CHDIR (CD) command 167
Check if block device is remote 423-24
Check if block device is removable

422-23

648 Index

Check if handle is remote 424-25
Check input status 353, 420-21
Check output status 421-22
child programs 218
CHKDSK command 15,174,222
Clanguage

CLEAN.C 309-11
compiler (seeC Optimizing Compiler)
DUMP,C program 151, 161-63
linking Ctrl-C and Ctrl-Break handlers

to programs in 75-80
MOUDEMO.C 82-83
polling mouse and displaying mouse

coordinates 82-83
PROTO.C303
SHELL.C 225-29
TRYBREAK 78-79
tutorials 63

class type 38
CLEAN filter 303-11

assembly source code 304-9
C source code 309-11

clock, set tick count 589-90
CLOCK driver 282
Close file 357-58, 404-5
code page, get or set 474-75
code segment 38
code segment (CS) register 30
Color/Graphics Adapter (CGA) 86,

98,102
color page state

get 517
set 515-16

color register(s)
get 516
get block of 516-17
set 514-15
set block of 515

COM1, COM2, COM3 devices 106,
110-12,298

combine type 38
command code routines, device-driver

267-81
function OOH, Driver initialization

268-69
function 01H, Media Check 270-71
function 02H, Build BIOS Parameter

Block (BPB) 272
function 03H, I/O-Control Read

272-73
function 04H, Read 273
function OSH, Nondestructive Read 274
function 06H, Input Status 274



command code routines, continued
function 07H, Flush Input Buffers

274-75
function 08H, Write 275
function 09H, Write with Verify 276
function OAH, Output Status 276
function OBH, Flush Output Buffers

276
function OCH, I/O-Control Write

276-77
function ODH, Device Open 277
function OEH, Device Close 277-78
function OFH, Removable Media 278
function 10H, Output Until Busy

278-79
function 13H, Generic IOCTL 279-80
function 17H, Get Logical Device 280
function 18H, Set Logical Device

280-81
names of, and MS-DOS version support

267-68 (table)
COMMAND.COM file 14-16

load 20
replacing 13
use of EXEC function 218

COMMAND.COM PLUS 13
command processor (shell) 13. See also

COMMAND.COM file
commands, types of, accepted by

COMMAND.COM 14-15
command tail 24, 220-21
Commit file 476-77
compatibility and portability 313-31

degrees of compatibility 314-18
MS-DOS applications 315-17
ROM BIOS and hardware­

compatible applications 317-18
OS/2 compatibility 318-31

.COM program file(s) 15, 22, 25-30, 45
assembly-language program

transformed into 27-30
vs .EXE files 22, 36 (table)
memory allocation for 197-98
memory image of a typical 26

CONFIG.SYS file 12
installing device driver 293
opening 18-19

configuration
get equipment 535-36
get information 525
get system environment 573-74

console, direct input/output 347-48. See
also video display

Console display and keyboard (CON) 12,
298-99

control data
read, from block-device driver 418-19
read, from character-device driver

415-16
write, to block-device driver 419-20
write, to character-device driver

416-17
Controller drive diagnostic 551
Controller internal diagnostic 551
Controller RAM diagnostic 550
cooked mode 69
C OptimiZing Compiler 44, 48-50

environmental variables 48
version 5.1 switches 49-50

COpy command 14, 58
Country information

get extended 470-74
get or set 39S-98

CP/M operating system 4, S
FCB compatibility with 129, 130-31
program segment prefix compatibility

with 24,25
Create directory 398-99
Create file 364-65, 401-2
Create new file 458-59
Create new PSP 378-79
Create temporary file 457-58
CREF utility 44, 56-58

cross-reference listing for HELLO.REF
57

.CRF files 45, S6
Critical-error handler address 481-82
critical-error handlers 24, 145, 147-51

address 481-82
skeleton program example 150-51
stack at entry to 148, 149

cross-reference listing. See CREF utility
Ctrl-Break and Ctrl-C handlers 72-80

compatibility issues 317
Ctrl-C handler address 480-81
high-level languages and 75-80

cursor
addressing 97
enable/disable emulation 528
get position 502-3
read character and attribute at 506
set position 501-2
set type 501
write character and attribute at 506-7
write character at 507-8

Index 649



D
data segment 38
data segment (DS) register 31, 35
Date and time device (CLOCK$) 12
day count

get 592-93
set 593

Deallocate alternate map register set
(EMS) 642

Deallocate DMA register set (EMS) 644
.DEF files 45
Delay 568-69
DEL(ETE) command 14
Delete directory 399
Delete file 361-62, 407-8
dependency statements 61
descriptors, memory segment 321
device

cancel redirection 467-68
close 565
get device information 412-13
open 564-65
post 572-73
read file or 405-6
redirect 466-67
set device information 414-15
wait 571
write file or 406-7

Device Close (command code function
OEH) 277-78

Device close (MS-DOS function) 565
DEVICE commands 12
device drivers, installable 12-13,259-96

CLOCK driver 282
command-code routines 267-81
debugging 295-96
chain before/after driver installation

294
chain listing 295
device attribute word 264
error codes 267
MS-DOS type 260-63
processing of typical input!output

requests 281-82
structure of MS-DOS 263-67

device header 263-64
interrupt routine 266-67
strategy routine 265

writing and installing 282-95
assembly 283-92
installation 293-95
linking 293

650 Index

device drivers, resident 12-13
Device Open (command-code function

ODH) 277
Device open (MS-DOS function) 564-65
Device post 572-73
Device wait 571-72
Digital Research 4
DIR command 14, 167, 174
Direct console I/O 347-48
directory 166, 167-73

create 398-99
delete 399
format of a single entry in a disk

184,185
functions controlling 167-68
get current 437-38
hierarchical (tree) structure 166, 167
moving files 173
root 184-86
searching 168-73
set current 400

directory operations, Int 21H functions
summary 339

Disable DMA on alternate map register
set (EMS) 643-44

Disable EMM operating system functions
(EMS) 645-46

Disable mouse driver 608-9
disk(s) 177-94. See also drive, logical;

ESDI Fixed Disk Drive Adapter
absolute read 482-84
absolute write 484-85
boot sector 179-82
controller drive diagnostic 551
controller internal diagnostic 551
controller RAM diagnostic 550
file allocation table 182-84

interpreting the 188-92
files area 186-88
fixed-disk partitions 192-94
format 543
format bad track 542
format track 541-42
get change status 552-53
get current 367
get default drive data 368-69
get drive allocation information

394-95
get drive-data 370
get drive parameters 543-44
get drive status 549
get type 552
initialize fixed disk characteristics

544-45



disk(s), continued
map of typical logical volume 179
park heads 554-55
read sector 538-39
read sector buffer 548
read sector long 545-46
recalibrate 550
reserved area 182
reset 354-55
reset fixed disk system 548
root directory 184-86, 187
seek 547
select 355-56
set media type 554
set type 553
set verify flag 387-88
verify sector 540
write sector 539-40
write sector buffer 549
write sector long 546-47

disk bootstrap routine 16
memory location of 17

disk management, Int 21H functions
summary 339

disk-related errors 147,148 (table)
Disk reset 354-55
disk system

get status 537-38
reset 536-37

disk transfer area (DTA) 25, 130
get 388-89
set 368

display page, set 503-4
Display string 350-51
DOS kernel 12, 18

memory location of 19
double-byte character sets (DBCS), get

lead byte table 469-70
drive, logical 166, 167-73. See also disk(s)

get map 433
set map 434
vsvolume 174

driver. See device drivers, installable;
device drivers, resident

DRIVER.ASM program 283-91
Driver Initialization (function DOH)

268-69
DUMP.ASM program 151, 152-61

subroutines 163
DUMP.C program 151, 161-63
Duplicate handle 435
dynamic link library 331
dynamic memory allocation 199, 200, 201

E
echo

character input with 343
character input without 349-50
unfiltered character input without

348-49
EMS. See Expanded Memory

Specification (EMS)
Enable/disable cursor emulation 528
Enable/disable default palette loading

526-27
Enable/disable gray-scale summing 527
Enable/disable pointing device 574-75
Enable/disable screen refresh 529
Enable/disable video 527
Enable DMA on alternate map register

set (EMS) 643
Enable EMM operating system functions

(EMS) 645
Enable mouse driver 609
encapsulation of subn.Jutines 323,

324-25
end of interrupt (EOI) 250
ENDP command 35, 41
ENDS command 29, 38
END statement 30-31, 36, 41
Enhanced Graphics Adapter (EGA) 86,

97, 98, 102
Enter protected mode 570-71
environment block 24, 220, 224-25

dump of a typical 224
three strings contained in 225

EQU statement 33
error codes, device driver 267
error codes, MS-DOS 145-51

critical 145, 147-51
expanded memory 207-9

error information, get/set 453-56
escape sequences, ANSI 92-93
ESDI Fixed Disk Drive Adapter

format drive 555
format periodic interrupt 562-63

Event wait 566-67
Exchange memory regions (EMS) 635-36
EXE2BIN utility 44, 55-56
EXEC function 15, 217-42. See also Int

21H Function 4BH
calling convention 222
compatibility in MS-DOS applications

317
environment block 220, 224-25

Index 651



EXEC function, continued
example programs SHELL.C and

SHELL.ASM 225-40
basic flow of both 239-40
internal commands in 239

example use of 223-24
loading overlays with 240, 241-42
making memory available for 218-19
reference 441-42
requesting 219-21
returning from 221-24

.EXE (executable) program file(s) 15,22,
30-36,45

assembly language program
transformed into 33-36

vs .COM files 22, 36 (table)
converting, to .COM files (see EXE2BIN

utility)
header 30
load module contents 33
load module format 32
memory allocation for 198
memory image of 31
use for compatible MS-DOS

applications 315
Expanded Memory Manager (EMM)

203-4
checking for 204, 205-6
enable/disable system functions

645-46
error codes 207-9

Expanded Memory Specification (EMS)
201-11

checking for expanded memory 204-6
expanded memory defined 203-4
functions reference (see Section IV)

summary 614-15
use of expanded memory 207-11

skeleton program illustrating 210-11
Extended communications port control

559-60
extended file control block 131

volume-label search using 175
Extended initialize communications port

558-59
extended memory 204, 212-15

moving blocks of data between
conventional memory and 213-15

Extended open file 478-80
external (extrinsic) commands 15
external hardware interrupts 247
extra segment (E5) register 31

652 Index

F
FAR attribute 35

vsNEAR29
faults (internal hardware interrupts) 246,

321
file(s)

area, in disks 186-88
close 357-58, 404
commit 476-77
create 364-65, 401-2
create new 458~59

create temporary 457-58
delete 361-62,407-8
extend~dopen 478-80
find first 358-59, 445-46
find next 360-61, 446-47
get file size 375-76
get/set date and time 450-51
lock/unlock file region 460-61
logical drive 166
moving 123
name and location 166
open 356-57, 402-4
read 405-6
rename 366, 449-50
types 45
write 406-7

file-access skeleton program
using FCB functions 134,135-37
using handle functions 141, 142-43

file allocation table (FAT) 166, 182-84
assembly program to access 191
contents 183
interpreting 188-92
media descriptor bytes 183

file attributes, get or set 410-11
file control blocks (FCBs) 25, 128

default 130,221
directory searching with 169,170-71
extended 131, 133-34, 175
file management with FCB functions

129-39
advantages/disadvantages 138-39
file-access skeleton program 134-38
functions listed 132
vs handle functions 128

normal 129, 133-34
before/after open call (lnt 21H

Function OFH) 137
restricted use 316, 319
typical operation of 130



file management 127-63
example programs DUMP,ASM and

DUMP,C 151-63
FCB functions 128, 129-39
handle functions 128, 139-44
MS-DOS error codes 145-51

filename
fully qualified 166
parse 382-83
requesting EXEC function 219

file operations, Int 21H functions
summary 338

file pointer, set 408-9
file system 166

structure 167
filters 297-311

building 300-303
CLEAN filter 303-11
operation of 299-300
prototype 301-3
system support for 298-99

Find first file 358-59, 445-46
Find next file 360-61, 446-47
fixed-disk partitions 192-94
font functions 518-24
Format bad track 542
Format drive 543
Format ESDI drive 555-56
Format ESDI drive periodic interrupt

562-63
Format track 541-42
Flush input buffer and then input 353-54
Flush Input Buffers (function 07H)

274-75
Flush Output Buffers (function OBH) 276

G
Generic I/O control for block devices

429-32
Generic I/O· control for character devices

426-29
Generic 10CTL (function 13H) 279-80
Get addresses of mappable pages

(EMS) 636
Get address of alternate mouse event

handler 606
Get address of extended BIOS data

area 574
Get all handle names (EMS) 631
Get alternate map registers (EMS)

639-40
Get attribute capability (EMS) 630

Get block of color registers 516-17
Get border color 514
Get button press information 596
Get button release information 597
Get color page state 517
Get color register 516
Get communications port status 558
Get configuration information 525
Get conventional memory size 536
Get current directory 437-38
Get current disk 367
Get cursor position 502-3
Get date 384-85, 591
Get day count 592
Get DBCS lead byte table 469-70
Get default drive data 368-69
Get device information 412-13
Get disk change status 552-53
Get disk system status 537-38
Get disk type 552
Get drive allocation information 394-95
Get drive data 370-71
Get drive parameters 543-44
Get drive status 549
Get DTA address 388-89
Get enhanced keyboard flags 586-87
Get equipment configuration 535-36
Get extended country information

470-74
Get extended error information 453-56
Get extended memory size 570
Get file size 375-76
Get font information 524
Get functionality/state information

531-34
Get handle attribute (EMS) 629
Get handle count (EMS) 621-22
Get handle name (EMS) 630
Get handle pages (EMS) 622
Get hardware configuration (EMS)

637-38
Get interrupt vector 393-94
Get keyboard flags 582
Get keyboard status 582
Get language number 610
Get light pen position 503
Get Logical Device (command-code

function) 280
Get logical drive map 433
Get machine name 461-62
Get mouse information 611
Get mouse position and button status 595
Get mouse save state buffer size 603

Index 653



Get mouse sensitivity 607
Get MS-DOS version number 389-90
Get number of mappable pages (EMS)

637
Get number of pages (EMS) 617
Get number of raw pages (EMS) 638
Get or set allocation strategy 452-53
Get or set break flag, get boot drive

392-93
Get or set code page 474-75
Get or set country information 395-98
Get or set display combination code

530-31
Get or set file attributes 410-11
Get or set file date and time 450-51
Get page frame address (EMS) 616
Get pages for all handles (EMS) 623
Get palette and border 514
Get palette register 513
Get pointer page 608
Get pointing device type 577
Get printer setup string 463-64
Get printer status 588
Get PSP address 468-69
Get redirection list entry 464-65
Get return code 444-45
Get size of alternate map register save

area (EMS) 641
Get size of page map information (EMS)

625
Get size of partial page map information

(EMS) 626-27
Get stack space for map page and call

(EMS) 634
Get status (EMS) 616
Get system environment 573-74
Get tick count 589
Get time 386, 590
Get total handles (EMS) 632
Get verify flag 448
Get version (EMS) 619
Get video mode 511
Graphics CardPlus 87
graphics mode memory-mapped

programming 101-3
gray-scale

enable/disable summing 527
get values 517

GROUP directive 39

654 Index

H
handle functions

check if handle is remote 424-25
directory searching 169-70,172-73
DUMP.ASM program 151, 152-62
DUMP.C program 151, 161-63
duplicate handle 435
file/record management with 139-44

advantages/disadvantages 144
vs FCB functions 128
file access skeleton program 141-43
functions listed 140-41
typical operation 139

keyboard input 62, 67-69
redirect handle 436-37
set handle count 475-76
use for compatible MS-DOS

applications 316
volume-label search using 176

hardware-compatible applications
314-15, 317-18

header
device 263, 264, 269
.EXE program files 30

Hercules Graphics Card 87,97,98
HELLO.COM program 27, 28-29, 30

hex dump of 33
map produced by Object Linker during

generation of 51
HELLO.EXE program 33, 34-35, 36
HELLO.REF program, cross-reference

listing 57
.H files 45
Hide mouse pointer 595

I
IBMBIO.COM file 16

disk location 189-92
IBM Corporation, role in MS-DOS

development 4-5
IBMDOS.COM file 13, 16
IBM PC 64

PC/AT 64
pS/264
regen buffers in memory for various

adapters 87
"ill-behaved" applications 315
.INC files 45
In-Color Card 87
Initialize communications port 556-57
Initialize fixed disk characteristics

544-45



Initialize or scroll window down 505-6
Initialize or scroll window up 505
Initialize pointing device interface

577-78
Initialize printer port 587-88
input. See character input/output;

keyboard input; mouse, input;
pointing device, input; serial port

input buffer, flush 353-54
Input/Output (VO)-Control Read

(function 03H) 272':'73
Input/Output (I/O)-Control Write

(function OCH) 276-77
input/output (I/O) redirection 67, 298-99
input status, check 353, 420
Input Status (command-code function

06H) 274
INS8250 Asynchronous Communications

Controller 112
installable device drivers 12-13
Int 10H, ROM BIOS video driver

Function OOH, Set video mode 94, 500
Function 01H, Set cursor type 94, 501
Function 02H, Set cursor position

94,501
Function 03H, Get cursor position

94,502
Function 04H, Get light pen position

95,503
Function 05H, Set display page 95, 503
Function 06H, Initialize or scroll

window up 95, 505
Function 07H, Initialize or scroll

window down 95, 505
Function 08H, Read character and

attribute at cursor 95, 506
Function 09H, Write character and

attribute at cursor 94, 506
Function OAH, Write character at

cursor 94, 507
Function OBH, Set palette,

background,orborder95,508
Function OCH, Write graphics pixel

95,509
Function ODH, Read graphics pixel

95,510
Function OEH, Write character in

teletype mode 94,510
Function OFH, Get video mode 94, 511
Function 10H palette functions

Subfunction OOH, Set palette register
511

Subfunction 01H, Set border color
512

Int 10H, Function 10H, continued
Subfunction 02H, Set palette and

border 512-13
Subfunction 03H, Toggle blink!

intensity bit 513
Subfunction 07H, Get palette

register 513
Subfunction 08H, Get border color

514
Subfunction 09H, Get palette and

border 514
Subfunction 10H, Set color register

514
Subfunction 12H, Set block of color

registers 515
Subfunction 13H, Set color page state

515-16
Subfunction 15H, Get color register

516
Subfunction 17H, Get block of color

registers 516
Subfunction lAH, Get color page

state 517
Subfunction 1BH, Set gray-scale

values 517
Function 11H, font functions

Subfunctions OOH and 10H, Load
user font 518

Subfunctions 01H and 11H, Load
ROM 8-by-14 font 518

Subfunctions 02H and 12H, Load
ROM 8-by-8 font 519

Subfunction 03H, Set block specifier
520

Subfunctions 04H and 14H, Load
ROM 8-by-16 font 520

Subfunction 20H, Set Int 1FH font
pointer 521

Subfunction 21H, Set Int 43H for
user's font 522

Subfunction 22H, Set Int 43H for
ROM 8-by-14 font 522

Subfunction 23H, Set Int 43H for
ROM 8-by-8 font 523

Subfunction 24H, Set Int 43H for
ROM 8-by-16 font 523

Subfunction 30H, Get font
information 524

Function 12H
Subfunction 10H, Get configuration

information 525
Subfunction 20H, Select alternate

printscreen 526
Subfunction 30H, Set scan lines 526

Index 655



Int 10H, Function 12H, continued
Subfunction 31H, Enable/disable default

palette loading 526-27
Subfunction 32H, Enable/disable video

527
Subfunction 33H, Enable/disable gray­

scale summing 527
Subfunction 34H, Enable/disable cursor

emulation 528
Subfunction 35H, Switch active display

528
Subfunction 36H, Enable/disable screen

refresh 529
Function 13H, Write string in teletype

mode 529
Function lAH, Get or set display

combination code 530
Function 1BH, Get functionality/state

information 531
Function 1CH, Save or restore video

state 534
Int 11H, Get equipment configuration 535
Int 12H, Get conventional memory size

536
Int 13H, ROM BIOS disk driver 319

Function OOH, Reset disk system 536
Function 01H, Get disk system status

537
Function 02H, Read sector 538
Function 03H, Write sector 539
Function 04H, Verify sector 540
Function 05H, Format track 541
Function 06H, Format bad track 542
Function 07H, Format drive 543
Function 08H, Get drive parameters

543
Function 09H, Initialize fixed disk

characteristics 544
Function OAH, Read sector long 545
Function OBH, Write sector long 546
Function OCH, Seek 547
Function ODH, Reset fixed disk system

548
Function OEH, Read sector buffer 548
Function OFH, Write sector buffer 549
Function 10H, Get drive status 549
Function 11H, Recalibrate drive 550
Function 12H, Controller RAM

diagnostic 550
Function 13H, Controller drive

diagnostic 551
Function 14H, Controller internal

diagnostic 551
Function 15H, Get disk type 552

656 Index

Int 13H, continued
Function 16H, Get disk change status

552
Function 17H, Set disk type 553
Function 18H, Set media type for

format 554
Function 19H, Park heads 554
Function lAH, Format ESDI drive 555

Int 14H, ROM BIOS Serial
communications port driver 111

Function OOH, Initialize
communications port 556

Function 01H, Write character to
communications port 557

Function 02H, Read character from
communications port 558

Function 03H, Get communications
port status 558

Function 04H, Extended initialize
communications port 558

Function 05H, Extended
communications port control 559

Int 15H, ROM BIOS I/O Subsystem
Extensions

Function OOH, Turn on cassette motor
560

Function 01H, Turn off cassette motor
560

Function 02H, Read cassette 561
Function 03H, Write cassette 562
Function OFH, Format ESDI drive

periodic interrupt 562
Function 21H

Subfunction OOH, Read POST error
log 563

Subfunction 01H, Write POST error
log 563

Function 4FH, Keyboard intercept 564
Function 80H, Device open 564
Function 81H, Device close 565
Function 82H, Process termination 566
Function 83H, Event wait 566
Function 84H, Read joystick 567
Function 85H, SysReq key 568
Function 86H, Delay 568
Function 87H, Move extended memory

block 569
Function 88H, Get extended memory

size 570
Function 89H, Enter protected mode

570
Function 90H, Device wait 571
Function 91H, Device post 572



Int 15H, continued
Function COH, Get system

environment 317, 573
Function C1H, Get address of extended

BIOS data area 574
Function C2H

Subfunction OOH, Enable/disable
pointing device 574

Subfunction 01H, Reset pointing
device 575

Subfunction 02H, Set sample rate
576

Subfunction 03H, Set resolution 576
Subfunction 04H, Get pointing

device type 577
Subfunction 05H, Initialize pointing

device interface 577
Subfunction 06H, Set scaling or get

status 578
Subfunction om, Set pointing

device handler address 579
Function C3H, Set watchdog time-out

580
Function C4H, Programmable option

select 580
Int 16H, ROM BIOS keyboard driver 322

Function OOH, Read character from
keyboard 581

Function 01H, Get keyboard status 582
Function 02H, Get keyboard flags 582
Function 03H, Set repeat rate 583
Function 04H, Set keyclick 584
Function 05H, Push character and scan

code 585
Function 10H, Read character from

enhanced keyboard 585
Function 11H, Get enhanced keyboard

status 586
Function 12H, Get enhanced keyboard

flags 586
Int 17H, ROM BIOS Parallel port printer

driver 108-19
Function OOH, Write character to

printer 587
Function 01H, Initialize printer port

587
Function 02H, Get printer status 588

lnt ISH, ROM BASIC 588
Int 19H, ROM BIOS Reboot system 588
Int lAH, Real-time (CMOS) Clock Driver

Function OOH, Get tick count 589
Function 01H, Set tick count 589
Function 02H, Get time 590
Function 03H, Set time 590

Int lAH, continued
Function 04H, Get date 591
Function 05H, Set date 591
Function 06H, Set alarm 591
Function 07H, Reset alarm 592
Function OAH, Get day count 592
Function OBH, Set day count 593
Function 80H, Set sound source 593

Int 20H, Terminate process 341
Int 21H, MS-DOS system functions

function execution in a typical VO
request 281-82

function summary by category 337-40
(table)

function summary by number 335-37
(table)

Function OOH, Terminate process 342
Function 01H, Character input with

echo 70, 148, 343
Function 02H, Character output 90, 344
Function 03H, Auxiliary input 110,

344-45
Function 04H, Auxiliary output 110,

345-46
Function 05H, Printer output 107,

346-47
Function 06H, Direct console I/O 70,

73, 90, 347-48
Function 07H, Unfiltered character

input without echo 70, 73, 348-49
Function 08H, Character input without

echo 70, 349-50
Function 09H, Display string 90,

350-51
Function OAH, Buffered keyboard

input70-71,351-52
Function OBH, Check input status 70,

353
Function OCH, Flush input buffer and

theninput70,353-54
Function ODH, Disk reset 354-55
Function OEH, Select disk 167, 355-56
Function OFH, Open file 132, 137,

356-57
Function 10H, Close file 132, 357-58
Function 11H, Find first file 358-59
Function 12H, Find next file 360-61
Function 13H, Delete file 132, 361-62
Function 14H, Sequential read 132,

362-63
Function 15H, Sequential write 132,

363-64
Function 16H, Create file 132, 364-65

Index 657



lnt 21H, continued
Function 17H, Rename file 132, 173,

366-67
Function 18H, Reserved 367
Function 19H, Get current disk 167,

168,367
Function lAH, Set DTA address 130,

132,368 .
Function 1BH, Get default drive data

368-69
Function 1CH, Get drive data 370
Function 1DH, Reserved 371
Function 1EH, Reserved 371,
Function 1FH, Reserved 371
Function 20H, Reserved 371
Function 21H, Random read 132,

372-73
Function 22H, Random write 132,

373-75
Function 23H, Get file size 132,375-76
Function 24H, Set relative record

number 132, 376
Function 25H, Set interrupt vector 147,

252,253,316,377-78
Function 26H, Create new PSP 378-79
Function 27H, Random block read 132,

379-80
Function 28H, Random block write

132,381-82
Function 29H, Parse filename 129, 132,

382
Function 2AH, Get date 384-85
Function 2BH, Set date 385
Function 2CH, Get time 386
Function 2DH, Set time 386-87
Function 2EH, Set verify flag 387-88
Function 2FH, Get DTA address

388-89
Function 30H, Get MS-DOS version

number148,319,389
Function 31H, Terminate and stay

resident 252, 253, 390-91
Function 32H, Reserved 392
Function 33H, Get or set break flag, get

boot drive 392-93
Function 34H, Reserved 393
Function 35H, Get interrupt vector 252,

316,393-94
Function 36H, Get drive allocation

information 394-95
Function 37H, Reserved 395
Function 38H, Get or set country

information 395-98
Function 39H, Create directory 167,

398-99

658 Index

Int 21H, continued
Function 3AH, Delete directory 167, 399
Function 3BH, Set current directory 167,

400
Function 3CH, Create file 140, 401-2
Function 3DH, Open file 107, 110, 140,

204,402-4
Function 3EH, Close file 140, 204, 404
Function 3FH, Read file or device 67, 69,

71,109,110,141,298,300,322,405­
6

Function 40H, Write file or device 35, 88,
107, 109, 110, 141, 298, 300, 322,
406-7

Function 41H, Delete file 141, 407-8
Function 42H, Set file pointer 141,

408-9
Function 43H, Get or set file attributes

141,410-11
Function 44H, 10CTL (I/O control) 69,

93-94, 111, 204, 205, 411-34
Subfunction OOH, IOCTL: get device

information 412-13
Subfunction 01H, IOCTL: set device

information 414-15
Subfunction 02H, IOCTL: read

control data from character device
driver 415-16

Subfunction 03H, IOCTL: write
control data to character device
driver 416-17

Subfunction 04H, IOCTL: read
control data from block device
driver 418-19

Subfunction 05H, 10CTL: write
control data to block device driver
419-20

Subfunction 06H, 10CTL: check
input status 420-21

Subfunction 07H, IOCTL: check
output status 421-22

Subfunction 08H, IOCTL: check if
block device is removable 422-23

Subfunction 09H, IOCTL: check if
block device is remote 423-24

Subfunction OAH, 10CTL: check if
handle is remote 424-25

Subfunction OBH, IOCTL: change
sharing retry count 425-26

Subfunction OCH, IOCTL: generic
I/O control for character devices
426-29



Int 21H, Function 44H, continued
Subfunction ODH, IOCTL: generic

I/O control for block devices
429-32

Subfunction OEH, IOCTL: get logical
drive map 433

Subfunction OFH, IOCTL: set logical
drive map 434

Function 45H, Duplicate handle 141,
435

Function 46H, Redirect handle 141, 299,
436-37

Function 47H, Get current directory
167,168,437-38

Function 48H, Allocate memory block
196,202,323,438-39

Function 49H, Release memory block
196, 323, 439-40

Function 4AH, Resize memory block
196,198,202,219,239,322,440-41

Function 4BH, Execute program
(EXEC) 202, 299, 441-42 (see also
EXEC function)

Function 4CH, Terminate process with
return code 26, 31, 35, 317, 443-44

Function 4DH, Get return code 221,
444-45

Function 4EH, Find first file 445-46
Function 4FH, Find next file 446-47
Function 50H, Reserved 447
Function 51H, Reserved 447
Function 52H, Reserved 447
Function 53H, Reserved 448
Function 54H, Get verify flag 448
Function 55H, Reserved 448
Function 56H, Rename file 141, 173,

449-50
Function 57H, Get or set file date and

time 141, 450-51
Function 58H, Get or set allocation

strategy 452-53
Function 59H, Get extended error

information 130, 145, 148, 453-56
Function 5AH, Create temporary file

141,457-58
Function 5BH, Create new file 141,

458-59
Function SCH, Lock or unlock file

region 141, 460-61
Function SDH, Reserved 461
Function SEH, Machine name and

printer setup
Subfunction OOH, Get machine

name 461-62

Int 21H, Function 5EH, continued
Subfunction 02H, Set printer setup

string 462-63
Subfunction 03H, Get printer setup

string 463-64
Function SFH, Device redirection

Subfunction 02H, Get redirection list
entry 464-65

Subfunction 03H, Redirect device
466-67

Subfunction 04H, Cancel device
redirection 467-68

Function 60H, Reserved 468
Function 61H, Reserved 468
Function 62H, Get PSP address 468-69
Function 63H, Get DBCS lead byte

table 469-70
Function 64H, Reserved 470
Function 65H, Get extended country

information 470-74
Function 66H, Get or set code page

474-75
Function 67H, Set handle count 141,

475-76
Function 68H, Commit file 141, 476-77
Function 69H, Reserved 477
Function 6AH, Reserved 477
Function 6BH, Reserved 477
Function 6CH, Extended open file 141,

478-80
Int 22H, Terminate handler address 480
lnt 23H, Ctrl-C handler address 317,

480-81
Int 24H, Critical-error handler address

147,317,481-82
Int 25H, Absolute disk read 482-84
Int 26H, Absolute disk write 319, 484-85
Int 27H, Terminate and stay resident

486-87
lnt 28H, Reserved 487
Int 29H, Reserved 487
Int 2AH, Reserved 487
Int 2BH, Reserved 487
Int 2CH, Reserved 487
Int 2DH, Reserved 488
lnt 2EH, Reserved 488
Int 2FH, Multiplex interrupt 488

Function OlH, Print spooler 488-89
Function 02H, ASSIGN 489
Function 10H, SHARE 490
Function B7H, APPEND 490-91

Int 33H, Microsoft Mouse driver 593
Function OOH, Reset mouse and get

status 80,594

Index 659



lnt 33H, continued
Function 01H, Show mouse pointer 80,

594
Function 02H, Hide mouse pointer 80,

595
Function 03H, Get mouse position and

button status 80, 595
Function 04H, Set mouse pointer

position 80, 596
Function 05H, Get button press.

information 80, 596
Function 06H, Get button release

information 80, 597
Function 07H, Set horizontal limits for

pointer 80, 597
Function 08H, Set vertical limits for

pointer 80, 598
Function 09H, Set graphics pointer

shape 80, 598
Function OAH, Set text pointer type 80,

599
Function OBH, Read mouse motion

counters 80, 599
Function OCH, Set user-defined mouse

event handler 80, 600
Function ODH, Turn on light pen

emulation 80, 601
Function OEH, Turn off light pen

emulation 80, 601
Function OFH, Set mickeys to pixels

ratio 80, 601
Function 10H, Set mouse pointer

exclusion area 80,602
Function 13H, Set double speed

threshold 81, 602
Function 14H, Swap user-defined

mouse event handlers 81, 603
Function 15H, Get mouse save state

buffer size 81, 603
Function 16H, Save mouse driver state

81,604
Function 17H, Restore mouse driver

state 81,604
Function 18H, Set alternate mouse

event handler 81, 604
Function 19H, Get address of alternate

mouse event handler 81, 606
Function lAH, Set mouse sensitivity 81,

606
Function IBH, Get mouse sensitivity

81,607
Function lCH, Set mouse interrupt rate

81,607

660 Index

Int 33H, continued
Function IDH, Select pointer page 81,

608
Function lEH, Get pointer page 81, 608
Function IFH, Disable mouse driver 81,

608
Function 20H, Enable mouse driver 81,

609
Function 21H, Reset mouse driver 81,

609
Function 22H, Set language for mouse

driver messages 81, 610
Function 23H, Get language number

81,610
Function 24H, Get mouse information

81,611
Int 67H, Expanded Memory Manager

functions 204, 205, 207
Function 40H, Get status 616
Function 41H, Get page frame address

616
Function 42H, Get number of pages

617
Function 43H, Allocate handle and

pages 617
Function 44H, Map expanded memory

page 618
Function 45H, Release handle and

expanded memory 619
Function 46H, Get version 619
Function 47H, Save page map 620
Function 48H, Restore page map 620
Function 49H, Reserved 621
Function 4AH, Reserved 621
Function 4BH, Get handle count 621
Function 4CH, Get handle pages 622
Function 4DH, Get pages for all

handles 623
Function 4EH

Subfunction OOH, Save page map
623

Subfunction 01H, Restore page map
624

Subfunction 02H, Save and restore
page map 624

Subfunction 03H, Get size of page
map information 625

Function 4FH
Subfunction OOH, Save partial page

map 625
Subfunction 01H, Restore partial

page map 626
Subfunction 02H, Get siz~ of partial

page map information 626



Int 67H, continued
Function SOH

Subfunction DOH, Map multiple
pages by number 627

Subfunction 01H, Map multiple
pages by address 627

Function 51H, Reallocate pages for
handle 628

Function 52H
Subfunction DOH, Get handle

attribute 629
Subfunction 01H, Set handle

attribute 629
Subfunction 02H, Get attribute

capability 630
Function 53H

Subfunction OOH, Get handle name
630

Subfunction 01H, Set handle name
631

Function 54H
Subfunction DOH, Get all handle

names 631
Subfunction 01H, Search for handle

name 632
Subfunction 02H, Get total handles

632
Function 55H

Subfunctions OOH and 01H, Map
pages and jump 633

Function 56H
Subfunctions OOH and 01H, Map

pages and call 633
Subfunction 02H, Get stack space for

map page and call 634
Function 57H

Subfunction DOH, Move memory
region 635

Subfunction 01H, Exchange memory
regions 635

Function 58H
Subfunction OOH, Get addresses of

mappable pages 636
Subfunction 01H, Get number of

mappable pages 637
Function 59H

Subfunction OOH, Get hardware
configuration 637

Subfunction OIH, Get number of raw
pages 638

Function 5AH
Subfunction OOH, Allocate handle

and standard pages 638
Subfunction 01H, Allocate handle

and raw pages 639

Int 67H, continued
Function 5BH

Subfunction OOH, Get alternate map
registers 639

Subfunction 01H, Set alternate map
registers 640

Subfunction 02H, Get size of
alternate map register save area
641

Subfunction 03H, Allocate alternate
map register set 641

Subfunction 04H, Deallocate
alternate map register set 642

Subfunction 05H, Allocate DMA
register set

Subfunction 06H, Enable DMA on
alternate map register set 643

Subfunction 07H, Disable DMA on
alternate map register set 643

Subfunction 08H, Deallocate DMA
register set 644

Function 5CH, Prepare expanded
memory manager for warm boot
644

Function 5DH
Subfunction OOH, Enable EMM

operating system functions 645
Subfunction 01H, Disable EMM

operating system functions 645
Subfunction 02H, Release access key

646
Intel 80x86 microprocessor family 4, 8,

38,64,203
interrupts and 246-51

Intel 8259A Programmable Interrupt
Controller 112, 320

internal hardware interrupts 246
internal (intrinsic) commands 14
interrupt(s) 13, 244-45. See also Int 10H

through Int 67H
external hardware 247
internal hardware 246
servicing 250-51
software 247-49
types 244

interrupt handlers 16
example (ZERODIV.ASM) 254-58
MS-DOS and 252-53
servicing 250, 251
tasks 245
typical 251

interrupt (intr) routine, device-driver
266-67, 293. See also command
code routines

Index 661



interrupt vector 17, 244
get 393-94
set 377-78

interrupt vector table 250
IOCTL (I/O control). See Int 21H,

Function 44H
10.SYS file 16,17

memory location of 18

J
Japanese character set 6
joystick, read 567

K
kernel. See DOS kernel
keyboard

get enhanced flags' 586-87
get enhanced status 586
get flags 582
get status 582
input with/without echo 70
intercept 564
key repeat rate and delay 583-84
push character and scan code in buffer

585
read character from 581
read character from enhanced 585
set keyclick 584

keyboard input 65-72
buffered 351-52
Ctrl-C and Ctrl-Break handlers 72-80,

317
with handles 66, 67-69
read character from keyboard 581
with ROM BIOS functions 71-72
with traditional calls 69-71

Keyboard input with echo 70
Keyboard input without echo 70
Keyboard intercept 564
Korean character set 6

L
.LIB files 44, 45, 58. See also Library

Manager (LIB)
Library Manager (LIB) 44, 58-60

operations prefix characters 58
table-of-contents listing for SLIBC.LIB

59
light pen

get position 503
turn off emulation 601
turn on emulation 601

662 Index

line printer (PRN) 12, 106, 298
LINK. See Object Linker (LINK)
Load ROM 8-by-8 font 519
Load ROM 8-by-14 font 518-19
L9ad ROM 8-by-16 font 520-21
Load user font 518
Lock or unlock file region 460-61
Lotus/Intel/Microsoft Expanded Memory

(LIM EMS). See Expanded Memory
Specification (EMS)

LPn, LPT2, LPT3 devices 106, 298
.LST files 45

M
machine name, get 461-62
Macro Assembler (MASM) 44, '45-47

command line mode 46
interactive mode 46
levels

modules 37
procedures 41-42
segments 38-41

tutorials 63
version 5.1 switches 47

make files 61
MAKE utility 60-61

switches for 61
Map expanded memory page (EMS) 618
.MAP files 45
Map multiple pages by address (EMS)

627-28
Map multiple pages by number (EMS)

627
Map pages and call (EMS) 633-34
MASM. See Macro Assembler (MASM)
master boot record 192
Media Check (function 01H) 270-71
memory

allocation
dynamic, of additional 199-201
shrinking 197-99

conventional 196
moving blocks of data between

extended memory and 213-15
expanded (see Expanded Memory

Specification (EMS))
image of .COM file 26
image of .EXE file 31
location of disk bootstrap program in

17
location of 10.SYS in 18
location of ROM bootstrap routine in

16



memory, continued
location of SYSINIT, DOS kernel,

MSDOS.SYS in 19
making available, for EXEC function

218-19
map after startup 20
RAM 196

memory areas, 196. See also arena entries;
arena headers; transient program
area (TPA)

memory block
allocate 438-39
get/set allocation strategy 452-53
move extended 569-60
release 439-40
resize 440-41

memory interlace 203
memory management 195-215

arena headers 201-2
expanded memory 203-11

using 207-11
extended memory 212-15
Int 21H functions summary 339
MS-DOS applications compatibility

and 316
using memory-allocation functions

197-202
memory-mapped input/output 86,

96-103
graphics mode 101-3
text mode 96-101

memory models 39
segments, groups, classes for 40

memory segment 321-22
memory size

get conventional 536
get extended 570

mickeys, set to pixel ratio 601
Microsoft Mouse driver 593-611
miscellaneous system functions, Int 21H

functions summary 340
MKDIR (MD) command 167
Monochrome/Printer Display Adapter

(MDA) 86, 97, 98
example dump, regen buffer 98

MOUDEMO.C program 82-83
mouse. See also pointing device

disable driver 608-9
driver 593
enable driver 609
get address of alternate event handler

606
get button press information 596
get button release information 597

mouse, continued
get information 611
get language number 610
get mouse save state buffer size 603-4
get position and button status 595
get sensitivity 607
hide pointer 595
input 80-83
read motion counters 599-600
reset and get status 594
reset driver 609
save driver state 604
set alternate event handler 604-5
set double speed threshold 602
set graphics pointer shape 598
set interrupt rate 607
set language for driver messages 610
set pointer exclusion area 602
set pointer horizontal limits 597-98
set pointer page 608
set pointer position 596
set pointer vertical limits 598
set sensitivity 606
set text pointer type 599
set user-defined event handler

600-601
show pointer 594-95
summary of function calls 494-99
swap user-defined event handlers 603

Move extended memory block 569-70
Move memory region (EMS) 635
MS-DOS. See also Operating Systeml2

(OS/2)
genealogy 3-9
interrupt handlers and 252-53
loading 16-20
programming tools (see programming

tools)
structure 12-16

MS-DOS application programs, porting to
OS/2318-31

conversion 326-30
encapsulation 323, 324-25
MS-DOS function calls and OS/2

counterparts 328-29
optimization 330-31
rationalization 322-23
ROM BIOS functions and OS/2

equivalents used in MS-DOS
applications 330

segmentation 321-22
MS-DOS application programs, structure

of 21-42

Index 663



MS-DOS application programs, continued
assembly-language programs 27-30,

37-42
.COM programs introduced 25-30
creation of 62-63
.EXE programs introduced 30-36
program procedures 41-42
program segment prefix 23-25

MS-DOS application programs, writing
compatible 314, 315-17

check host capabilities 316
exception handling 317
input and output 316
memory management 316
process management 317
program structure 315

MS-DOS error codes 145-51
MS-DOS functions 334

conversion of, to OS/2 function calls
326-27

display functions 88-94
binary output mode 93-94
screen control 91-93

EXEC (see EXEC function)
file control block (FCB) 129-39
handle 139-44
memory management/allocation 196,

197-202
OS/2 equivalents to 328-29
printer output 107-9
reference (see Section 11)
serial port 109-12
typical in-line code for call to 324

MSDOS.SYS file 13, 16
memory location of 19

MS-DOS versions
1.04-5,138
1.255
2.00 5-6, 174

error codes 145
volume-label search under 175

2.11,2.256
3.06-7, 138, 174

error codes 145-46
volume-label search under 176

3.1, 3.2, 3.3, 4.0 7
get number 389-90
support for select command code

routines by 267-68 (table)
Multi-Color Graphics Array (MCGA) 86,

102
Multiplex interrupt 488

664 Index

N
NAME statement 27, 33
NEAR attribute 27

vsFAR 29
NEAR RETURN 27
network functions, Int 21H functions

summary 339
Nondestructive Read (function 05H) 274
non-disk-related errors 147, 148 (table)

o
Object Linker (LINK) 37, 44, SO-55

map produced by, of HELLO.EXE
program 51

switches accepted by 53-55
object modules 37

libraries (see Library Manager (LIB))
linking .COM files from 27, 37. See also

Object Linker (LINK)
.OBJ files 45
Open file 356-57, 402-4
Operating System/2 (OS/2) 7

code optimization 330-31
compatibility issues 318-20
function calls equivalent to MS-DOS

function calls 328-29
function calls equivalent to ROM BIOS

function calls 330
porting MS-DOS applications to OS/2

320-31
ORG instruction 29
output. See character input/output;

printer output; serial port
output status, check 421-22
Output Status (command-code function

OAH) 276
Output Until Busy (function 10H) 278-79
overlays, loading with EXEC 240, 241-42

p
PAGE command 27, 33
page frame 203
palette

enable/disable default 526-27
get border and 514
get register 513
set 508-9
set border and 512-13
set register 511-12

parallel ports 106



parameter block, requesting EXEC
function 220-21

parent programs 218
Park heads 554-55
Parse filename 382-84
partitions, fixed-disk 192-94
Paterson, Tim 4
path 166
PC-DOS

version 1.0 4
version 1.1 5
version 2.0 5-6
version 3.0193-94

piping parameters 24
pixel 101

formula to calculate bit position for
102-3

read graphics 510
set mickeys to pixel ratio 601-2
write graphics 509

pointing device
enable/disable 574-75
get device type 577
get scaling or get status 578-79
initialize interface 577-78
input 80-83
reset 575
set handler address 579-80
set resolution 576-77
set sample rate 576

POP instruction 35
portability. See compatibility and

portability
POST (power-on self-test)

read error log 563
write error log 563-64

Prepare expanded memory manager for
warm boot (EMS) 644-45

Presentation Manager, OS/2 318
printer 106, 107-9. See also line printer

(PRN); standard printer (stdprn)
get setup strings 463-64
get status 588
initialize port 587
write character to 587

printer output 106, 107-9, 346-47. See
also TALK.ASM program

printer setup string
get 463-64
set 462-63

printscreen, select alternate 526
Print spooler 488-89
PRN device 12, 106,298-99

PROC command 29, 35, 41
procedure, declaring beginning/end of

29
process management

for compatibility in MS-DOS
applications 317

Int 21H functions summary 339
terminate process 566

Process termination 566
Programmable Interrupt Controller (PIC)

247
Programmable option select 580-81
programming tools 43-64

C Optimizing compiler 48-50
CREF utility 56-58
example using 62-63
EXE2BIN utility 55-56
file types 45
Library Manager 58-60
MAKE utility 60-61
MASM 45-47 (see also Macro

Assembler (MASM))
Object Linker 50-55 (see also Object

Linker (LINK))
resources and references 63-64

program modules, assembly-language 37
program procedures 41-42
program segment prefix (PSP) 15, 23-25

create new 378-79
get address 468-69
structure of 23

program segments, assembly-language
38-41

protected mode, enter 570-71
PROTO.ASM program 301-2
PROTO.C program 303
P-system operating system 5
Push character and scan code 585
PUSH instruction 35

R
Random block read 379-80
Random block write 381-82
Random read 372-73
Random write 373-75
rationalizing code 322-23
raw mode 69
Read (function 04H) 273
Read cassette 561 .
Read character and attribute at cursor 506
Read character from communications

port 558

Index 665



Read character from enhanced keyboard
585

Read character from keyboard 581
Read control data from block-device

driver 418-19
Read control data from character device

driver 415-16
Read file or device 405-6
Read graphics pixel 510
Read joystick 567
Read mouse motion counters 599-600
Read POST error log 563
Read sector 538-39
Read sector buffer 548
Read sector long 545-46
Reallocate pages for handle (EMS) 628
Reboot system 588-89
Recalibrate drive 550
record(s)

set relative number 376-77
using FeB functions 129-39
using handle functions 139-44

record operations, Int 21H functions
summary 338-39

Redirect device 466-67
Redirect handle 436-37
redirection, input/output 24,67,298-99

cancel 467-68
redirection list entry, get 464-65
.REF files 45, 56
refresh buffer 86
regen buffer 86

example dump of MDA adapter 98
formula to determine offset 102
memory diagram showing location of

87
Release access key (EMS) 646
Release handle and expanded memory

(EMS) 619
Release memory block 439-40
Removable Media (function OFH) 278
REN(AME) command 14
Rename file 366-67, 449-50
request header format 265

command codes for (see command
code routines, device-driver)

reserved area, disk 182
reserved functions

EMS 621
Int 21H functions summary 340

Reset alarm 592
Reset disk system 536-37
Reset fixed disk system 548
Reset mouse and get status 594

666 Index

Reset mouse driver 609
Reset pointing device 575
resident device drivers 12
Resize memory block 440-41
RESTORE command 15
Restore mouse driver state 604
Restore page map (EMS) 620-21, 624
Restore partial page map (EMS) 626
RET instruction 41
retrace interval 100
return code

get 444
terminate process with 443-44

RMDIR (RD) command 167
ROM 8-by-8 font

load 519
set Int 43H for 523

ROM 8-by-14 font
load 518-19
set Int 43H for 522-23

ROM 8-by-16 font
load 520-21
set Int 43H for 523-24

ROM BASIC 588
ROM BIOS

display functions 94-96, 330
interrupts of special importance to 247,

248-49
keyboard functions 67

input with 71-72
ROM BIOS compatibility 314-16, 317-18

avoid unstable hardware 318
check host capabilities 317-18
functions of, and OS/2 equivalents 330

ROM BIOS function calls. See also
Section III

summary 494-99
ROM bootstrap routine 16
root directory 166, 184-86, 187

partial hex dump 186
RS-232 serial-interface standard 106
RS-422 serial-interface standard 106

s
Save and restore page map (EMS) 624-25
Save mouse driver state 604
Save or restore video state 534-35
Save page map (EMS) 620, 623
Save partial page map (EMS) 625-26
scan lines, set 526
screen control with MS-DOS functions

91-93
screen refresh, enable/disable 529



Search for handle name (EMS) 632
Seattle Computer Products 4
Seek 547
SEGMENT command 29, 33, 38
segment register 321
Select alternate printscreen 526
Select disk 355-56
selector 321
Select pointer page 608
Sequential read 362-63
Sequential write 363-64
serial port 106,109-12. See also

TALK.ASM program
extended initialize port 558-59
extended port control 559-60
get status 558
initialize 556-57
read character from 558
write character to 557

Set alarm 591-92
Set alternate map registers (EMS) 640
Set alternate mouse event handler 604-5
Set block of color registers 515
Set block specifier 520
Set border color 512
Set color page state 515-16
Set color register 514-15
Set current directory 400
Set cursor position 501-2
Set cursor type 501
Set date 385, 591
Set day count 593
Set device information 414-15
Set disk type 553
Set display page 503-4
Set double speed threshold 602
Set DTA address 368
Set file pointer 408-9
Set graphics pointer shape 598
Set gray-scale values 517
Set handle attribute (EMS) 629
Set handle count 475-76
Set handle name (EMS) 631
Set horizontal limits for pointer 597-98
Set Int 1FH font pointer 521
Set Int 43H for ROM 8-by-8 font 523
Set Int 43H for ROM 8-by-14 font 522-23
Set Int 43H for ROM 8-by-16 font 523-24
Set Int 43H for user's font 522
Set interrupt vector 377-78
Set keyclick 584
Set language for mouse driver messages

610
Set Logical Device (function 18H) 280-81

Set logical drive map 434
Set media type for format 554
Set mickeys to pixels ratio 601
Set mouse interrupt rate 607
Set mouse pointer exclusion area 602
Set mouse pointer position 596
Set mouse sensitivity 606
Set palette and border 512-13
Set palette, background, or border 508-9
Set palette register 511-12
Set pointing device handler address

579-80
Set printer setup string 462-63
Set relative record number 376-77
Set repeat rate 583-84
Set resolution 576-77
Set sample rate 576
Set scaling or get status 578-79
Set scan lines 526
Set sound source 593
Set text pointer type 599
Set tick count 589-90
Set time 386-87, 590
Set user-defined mouse event handler

600-601
Set verify flag 387-88
Set vertical limits for pointer 598
Set video mode 500-501
Set watchdog titne-out 580
SHARE 490
shell. SeeCOMMAND.COM file;

command processor (shell)
SHELL.ASM program 229-38
SHELL.C program 225-29
Show mouse pointer 594-95
SLIBC.LIB, table-of-contents listing for

59
Softech company 5
software interrupts, 247-49
sound source, set 593
STACK attribute 31
stack pointer (SP) register 25-26, 31, 35
stack segment 38
stack segment (SS) register 31,35
standard auxiliary device (stdaux) 20,

323
default device 298
handle 66

standard error device (stderr) 20
default device 298
handle 66

standard input device (stdin) 20
default device 298
handle 6(), 67

Index 667



standard list device 20,323
standard output device (stdout) 20

default device 298
handle 66

standard printer (stdprn)
default device 298
handle 66

strategy (strat) routine, device-driver
265,293

string(s)
display 350-51

Swap user-defined mouse event handlers
603

Switch active display 528-29
switches

C OptimiZing compiler 49-50
Library Manager 60
Macro Assembler 47
Make utility 61
Object Linker 53-55

SYSINIT module 17, 18, 20
installing device drivers 293
memory location of 19

SysReq key 568
system file table 140-41

T
TALK.ASM program 113-26
teletype mode

write character in 510-11
write string in 529-30

terminal-emulator program. See
TALK.ASM program

Terminate and stay resident 390-91,
486-87

Terminate handler address 480
Terminate process 341, 342
Terminate process with return code

443-44
text-mode memory-mapped

programming 96-101
threads 331
time and date

day count 592, 593
get date 384-85,591
get time 386, 590
set date 385, 591
set time 386-87, 590

TITLE command 27, 33
Toggle blink/intensity bit 513
transient program 15, 22. See also .COM

program file(s); .EXE (executable)
program file(s)

668 Index

transient program area (TPA) 15, 196. See
also arena entries; arena headers

TREE command 174
TRYBREAK.C program 78-79
Turn off cassette motor 560-61
Turn on cassette motor 560
Turn off light pen emulation 601
Turn on light pen emulation 601

u
Unfiltered character input without echo

348-49
UNIX/XENIX operating system 66, 128,

139
user font

load 518
set Int 1FH pointer 521
set Int 43H for 522

v
verify flag, get 448
Verify sector 540
video display 85-103

adapters 86-87
enable/disable 527
get functionality/state information

531-34
get or set combination code 530-31
memory-mapped techniques 96-103

graphics mode 101-3
text mode 96-101

MS-DOS display functions 88-94
binary output mode 93-94
screen control with 91-93

ROM BIOS display functions 94-96
save or restore video state 534-35
support considerations 88
switch active display 528-29

Video Graphics Array (VGA) 86, 97, 98,
102

video mode
get 511
set 500-501

VOL command 174
volume labels 174-76

search, using extended file control
block 175



w
watchdog time-out, set 580
window

initialize or scroll down 505-6
initialize or scroll up 505

Windows 7, 318
Write (function 08H) 275
Write cassette 562
Write character and attribute at cursor

506-7
Write character at cursor 507-8
Write character in teletype mode 510-11
Write character to communications port

557
Write character to printer 587

Write control data to block-device driver
419-20

Write control data to character-device
driver 416-17

Write File or Device 406-7
Write graphics pixel 509
Write POST error log 563-64
Write screen in teletype mode 529-30
Write sector 539
Write sector buffer 549
Write sector long 546-47
Write with Verify (function 09H) 276

z
ZERODIV.ASM program 254, 255-58
Zilog Z-80 microprocessor 4

Index 669





Ray Duncan received a B.A. in chemistry at the University of California,
Riverside, and an M.D. at the University of California, Los Angeles; he spe­
cialized in pediatrics and neonatology at the Cedars-Sinai Medical Center
in Los Angeles. Duncan has been involved with microcomputers since
the Altair days and has written many articles for personal computer
magazines, including Dr. Dobbs Journal, Programmer's Journal, and
BYTE; he is currently a contributing editor to PC Magazine. In addition,
Duncan is the founder of Laboratory Microsystems Incorporated, a soft­
ware house specialiZing in FORTH interpreters and compilers. Duncan
was the general editor of THE MS-DOS ENCYCLOPEDIA.



The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
Microsoft Word.

Cover design adapted by Becky Geisler-Johnson from original design by
Ted Mader and Associates.

Interior text design by Darcie S. Furlan

Principal typography by Lisa G. Iversen and Jean Trenary

Text composition by Microsoft Press in Garamond with display in Gara­
mond Bold, using the Magna composition system and the Linotronic 300
laser imagesetter.



Solid Technical Information. Expert Advice.
ADVANCED MS-DOS® PROGRAMMING, 2nd ed.
Ray Duncan
The preeminent source of MS-DOS information for assembly-language and C pro
grammers—now completely updated with new data and programming advice cover
ing: ROM BIOS forthe IBM PC, PC/AT, PS/2, and related peripherals; MS-DOS
through version 4; version 4 of the LIM EMS; and OS/2 compatibility considerations.
Duncan addresses key topics, including character devices, mass storage, memory allo
cation and management, and process management. In addition, there is a healthy assor
ment of updated assembly-language and C listings that range from code fragments to
complete utilities. And the reference section, detailing each MS-DOS function and in
terrupt, is virtually a book within a book.
$24.95 [Book Code 86-966681

THE MS-DOS® ENCYCLOPEDIA
The ultimate reference for insight, data, and advice to make your MS-DOS programs
reliable, robust, and efficient. 1600 pages packed with version-specific data. Annota

tions of more than 100 system function calls, 90 user commands, and a host of key pro
gramming utilities. Hundreds of hands-on examples, thousands of lines of code, and
handy indexes. Plus articles on debugging, writing filters, installable device drivers,

TSRs, Windows, memory management, the future of MS-DOS, and much more.
Researched and written by a team of MS-DOS experts —many involved in the

creation and development of MS-DOS. Covers MS-DOS through version 3.2, with a
special section on version 3.3.

$134.95 [ Book Code 86-96122)

MICROSOFT® QUICKC® PROGRAMMING
The Waite Group
Your springboard to the core of Microsoft QuickC. This book is loaded with practical
information and advice on every element of QuickC, along with hundreds of specially
constructed listings. Included are the tools to help you master QuickC's built-in librar
ies; manage file input and output; work with strings, arrays, pointers, structures, and
unions; use the graphics modes; develop and link large C programs; and debug your
source code.
$19.95 | Book Code 86-96114]

MICROSOFT® QUICKBASIC, 2nd ed.
Douglas Hergert

"No mailer what your level of programming experience, you'll find this
book irreplaceable when you start to program in QuickBASIC."

Online Today
This new edition of MICROSOFT QUICKBASIC—completely updated for version4

— is a great introduction to all the development tools, features, and user-interface
enhancements in Microsoft QuickBASIC. And there's more —six specially designed,

:"ull-length programs including a database manager, an information-gathering and data-
analysis program, and a chart program that reenforce solid structured programming

techniques.
$19.95 [Book Code 86-96387]

Available wherever books and software are sold. Or order directly from Microsoft Press.

Solid Technical Information. Expert Advice.

THE MS-DOS'" ENCYCLOPEDIA

MICROSOFT'" QUICKC'" PROGRAMMING
The \Vaile Group

Your springboard to the core of Microsoft Quicke. This book is loaded with practical
information and advice on every clement ofQuickC. along with hundreds of specially
constructed listings. Included arc the tools to help you masterQuickC's built-in librar­
ies: manage filc input and output; work with strings. arrays, pointers. structures. and
unions: usc the graphics modes: dcvelop :llld link large C programs: and debug your
source code.
$19.95 IBook Code 86-96114)

ADVANCED MS·DOS'" PROGRAMMING, 2nd ed,
Ray DUllcan

The preeminent source of MS-DOS information for assembly-language and C pro­
gr.lInmcrs-now completely updated with new data and programming advice cover­
ing: ROM BIOS forthc IBM PC. PC/AT. PS/2. and rclmed peripherals: MS·DOS
through version 4: version 4 orlile LI M EMS; and OS/2 compatibility considerations.
Duncan addresses key lopics. including c1mnlclcrdcvices. mass storage. memory allo­
cmion and nl4lnagcmenl. and process management. In addition.lhere is a healthy assor
men! ofupdalcd assembly-language and Clistings that range from code fragments to
complete utilities. And the reference section. detailing each MS-DOS function and in­
terrupt. is virtually a book within a book.
$24,95 [Book Code 86,966681

The ultimate reference for insight. data. and advice to make your MS-DOS programs
reliable. robust. and efficient. 1600 pages packed with version-specific data. Annota­

tions of more than 100 system function calls. 90 user commands, and a host ofkey pro­
gramming utilities. Hundreds of hands-on examples. thousands of linesofcode, and
handy indexes. Plus articles on debuggi ng, writing filters. inst;! Iluble device drivers.

TSRs. Windows. memory m:magelllcnt, the future of MS-DOS. lind lIluch more.
Researched and written by a team of MS-DOS expens-nmny involved in the

creation and development of MS-DOS. Covers MS-DOS through version 3.2. with a
special section on vcrsion 3.3.

$134.95 (Book Code 86-96122)

MICROSOFT'" QUICKBASIC, 2nd ed,
Douglas Hergerl

"No maffc,. whal your Inel ofprogramming experience. you' II filld Ihis
book irreplaceable whell you sial"! 10 program ill QllickBASIC,"

Online Tod3)'

This new edition of MICROSOFT QUICKBASIC-completely updated for version 4
- is a great introduclion to allthe dcvclopment tools. features. and user-interface

enhancements in Microsoft QuickBASle. And therc's morc-six specially designed.
full-length programs including a database Tllanager. an information-gathering and data­

analysis program. :lIld a chart program that reenforce solid structured programming
techniques.

$19,95 IBook Code 116·963871

Available wherever books and software are sold, Or order directly from Microsoft Press.



Hardcore Computer Books
THE NEW PETER NORTON PROGRAMMER'S GUIDE TO
THE IBM PC® & PS/2®
Peter Norton and Richard Wilton
A must-have classic on mastering the inner workings of IBM microcomputers—now
completely updated to include the PS/2 line. Sharpen your programming skills and
learn to create simple, clean, portable programs with this successful combination of
astute programming advice, proven techniques, and solid technical data. Covers the mi
croprocessors; ROM BIOS basics and ROM BIOS services; video, disk and keyboard
basics; DOS basics, interrupts, and functions (through version 4); device drivers and
video programming; and programming in C. QuickBasic. and TurboPascal. Accept no
substitutes; this is the book to have.
$22.95 [Book Code 86-96635]

INSIDE OS/2
Gordon Let win

"The best way to understand the overall philosophy of OS/2 will be lo
read this book." Bill Gates

Here —from Microsoft's Chief Architect of Systems Software —is an exciting techni
cal examination of the philosophy, key development issues, programming implications,

and a look at the role of OS/2 in the office of the future. Letwin provides the first in-
depth look at each of OS/2's design elements. This is a valuable and revealing program

mer-to-programmer discussion of the graphical user interface, multitasking, memory
management, protection, encapsulation, interprocess communication, and direct device

access. You can't get a more inside view.
$19.95 [Book Code 86-96288]

inSIDE Offi

KftCTlLETUIl
(hilflTliaiSŝ ars&tuaeflfctBJi

faaiodtytSB^S

ADVANCED
O S / 2
PROGRAMMING,

ADVANCED OS/2 PROGRAMMING
Ray Duncan
Authoritative information, expert advice, and great assembly-language code make this
comprehensive overview of the features and structure of OS/2 indispensable to any se
rious OS/2 programmer. Duncan addresses a range of significant OS/2 issues: program
ming the user interface; mass storage; memory management; multitasking; interprocess
communications; customizing filters, device drivers, and monitors; and using OS/2
dynamic link libraries. A valuable reference section includes detailed information on
each of the more than 250 system service calls in version 1.1 of the OS/2 kernel.
$24.95 [Book Code 86-96106] [Available 12/20/88]

PROGRAMMING WINDOWS
Charles Petzold

Your fastest route to successful application programming with Windows. Full of in
dispensable reference data, tested programming advice, and page after page of creative

sample programs and utilities. Topics include getting the most out of the keyboard,
mouse, and timer; working with icons, cursors, bitmaps, and strings; exploiting Win
dows' memory management; creating menus; taking advantage of child window con

trols; incorporating keyboard accelerators; using dynamic link libraries; and mastering
the Graphics Device Interface (GDI). A thorough, up-to-date, and authoritative look al

Windows' rich graphical environment.
$24.95, soft cover [Book Code 86-96049]

$34.95, hardcover [Book Code 86-96130]

Available wherever books and software are sold. Or order directly from Microsoft Press.

Hardcore ComputerBooks
THE NEW PETER NORTON PROGRAMMER'S GUIDE TO
THE IBM PC'" & PS/2'"
Peter Norto1l and Richard Wawn
Amust-have classic on maslering the inner workings of IBM microcomputers-now
complelcly updated to include the PS/21inc. Sharpen your programming skills and
learn tocreale simple, clean. portable programs with this successful combination of
astute programming ad\·jcc. proven techniques. and solid technical data. Covers the mi·
croprocessors: ROM BIOS basics and ROM BIOS services: video. disk and keyboard
basics: DOS basics. interrupts. and functions (through version 4); device drivers and
video programming: and programming in C. QuickBasic. <Iud TurboPasc'LI. Accep! no
substitutes; this is the book to have.
$22.95 [Book Cude 86·966351

INSIDE OS/2
Gordoll Lelw;1I

"The bestll'ay 10 understand 'he o\'erall philosophy 0/OS12 will be 10

read Ihis book." Hill Gales

Here - from Microsofl's Chief Architect of Systcms Softwarc - is an exciting techni­
cal examination of the philosophy. key de\'elopmcnt issues, progr.lnlming implications,

and a look allhe role ofOS/2 in the office of the fUlUre. Letwin provides the firsl in­
depth look at each ofOS/2'sdesign elements, This is a valuable and revealing progrJm­

mer-to-programmcrdiscussion oflhe graphical user interface. multitasking. memory
management. protect ion. encapsulation. inlerprocess communication. and direct dcvice

access. You can't gel a more inside view.
$19.95 IHook Code 86-96288\

I~" ''''''''0'' •• CO"

ADVANCED OS/2 PROGRAMMING
Ray DlIllcan

Authoritative information. expert advice. and great assembly-language code make this
comprehensive oven'iew of the features and structure ofOS/2 indispensable to any se­
rious OS/2 programmer. Duncan addresses a range of significant OS/2 issues: program·
ming thc user interface: mass storage: memory management; multitasking; interprocess
communications: customizing fillers, device drivers, and monitors; and using OS/2
dynamic link libraries. Avaluable reference section includes detailed information on
each of the more than 250 system service calls in version 1.1 of the OS/2 kernel.
$24.95 [Hook Code 86-96106) IAvailable 12120/88)

PROGRAMMING WINDOWS
Charles Petzold

Your fastest route 10 successful application programming with Windows. Full of in­
dispensable reference dala, tested programming advice. and page after page of creative

s:lmple programs and utilities. Topics include gelling Ihe most oul orthe keyboard.
mouse, and timer: working with icons. cursors. bitmaps, and strings: exploiting Win­
dows' mcmory managcment; crcating menus: taking advantagc of child window con­

trols: incorporating kcyboard accelerators: using dynamic link libraries; and mastering
the Graphics Device Interfacc (GDI). Athorough, up-to-date, and authoritativc look at

Windows' rich gmphical cnvironment.
$24.95, softcO\'cr [Hook Code 86-960491

534.95, hardcO\'cr (Book Code 86-96130)

PROG~',MMING

.WINDOWS

t' •
.,;$+-1l':--'- .

Available wherever books and software are sold. Or order directly frolll Microsoft Press.



M
icr

os
oft

 P
re

ss
 bo

ok
s a

re
 av

ail
ab

le 
wh

er
ev

er
 bo

ok
s a

nd
 so

ft
wa

re
 ar

e 
so

ld.
 O

r y
ou

 ca
n 

or
de

r d
ire

ctl
y f

ro
m

 M
icr

os
oft

 P
re

ss
.

Pl
ac

e 
yo

ur
 cr

ed
it c

ar
d 

or
de

r b
y 

ca
llin

g 
80

0-
63

8-
30

30
 (I

n 
M

D
ca

ll c
oll

ec
t, 

82
4-

73
00

). 
8:

15
 A

M
 to

 4
:1

5 
PM

, M
on

da
y 

th
ro

ug
h

Fr
ida

y. 
Or

 us
e 

thi
s o

rd
er

 fo
rm

.

N
AM

E

AD
DR

ES
S

C
IT

Y
ST

AT
E

YE
S.

..p
lea

se
 se

nd
 m

e 
the

 bo
ok

s l
ist

ed
 be

low
:

O
rd

e
r 

C
o

d
e 

Q
ty

. 
T

it
le

Al
l o

rd
er

s 
ar

e 
sh

ipp
ed

 vi
a 

UP
S 

gr
ou

nd
 de

liv
er

y.
Su

bt
ot

al
Sa

les
 Ta

x
Sh

ipp
ing

 &
 H

an
dli

ng

TO
TA

L

Sa
les

 Ta
x:

C
A 

re
s

id
e

n
ts

 
a

d
d 

6
.5

%
M

A 
an

d 
M

D
 

re
si

de
nt

s 
ad

d 
5%

W
A 

st
at

e 
re

si
de

nt
s 

ad
d 

8.
1%

Po
sta

ge
 &

 H
an

dli
ng

 C
ha

rg
es

:
O

n
e 

b
o

o
k 

$
2

.5
0

E
ac

h 
ad

di
ti

on
al

 
bo

ok
 

$.
75

PA
YM

EN
T:

D
 C

he
ck

/M
on

ey
 O

rd
er

 Q
 V

 IS
A

□ 
M

as
ter

Ca
rd

 □
 A

 m
er

ica
n 

Ex
pr

es
s

C
R

ED
IT

 C
AR

D
 N

O
.

EX
P.

 D
AT

E
KI

IK
K

5
0 

& ®

O G >-— O
<M

2
- 

j?
3 RAMME

PC®
 & PS

O
 SYSTE

£. = ~r~
2^

*5
~

C
/3

 ®
 C

/3 ŵ

cr rz> ST © CT
Q as 3 !?rD rD rD © rD en

.. , .. ..l

E " .:.... ~
~ • 'C
= 0 = 0
~ ;; " ....

~ :::....=...
~

:c
~

'"~.:::
"~~
0=e0<,
~

"-
::>.,
>
~

!L
~

~
~

"
"~
~

<

~

N

"
~I I I I I I I

MICROSOFT OUICKI>A5IC
POCXiRAMMERS lOQ.lO<

..=:0...0 j

Available wherever books and software are sold.
Or order directly from Microsoft Press.

THE MICROSOFT®
QUICKBASIC
PROGRAMMER'S
TOOLBOX
Jo/m Clark Craig

This essel1tiallibr:lry of sub­
progr:lms. functions. ilnd utililies
designed 10 supercharge your
Quick BASIC programs addresses
COllllllon (llld unusual program­
ming tasks: ANSI.SYS screen
comrol • mouse support _ pop-up
windows _ graphics. string
manipulations. bitm:ll1ipulation
• editing routines. game pro­

gramming. intcrlanguagc calling - and more. You're guaranteed 10 lurn
to this superb collection :lgain and :lg:lin $22.95 IUook Code 86-964031

PROGRAMMER'S
GUIDE TO PC® & PS/2®

VIDEO SYSTEMS
Ric/wrd Wi/IOn

No mailer what your hardw:lrc
<.'Ol1figuration. here is all the in­

formation you need to create fasl.
professional. even stullni ng video

graphics all IBM pes. compat-
ibles. and PS/2s. No other book

offers such dctai led. specia1izcd
programming dat:l.lcchniques.
ilnd advice to help you program

directly [0 the hardware. And no
other book offers such invaluable
source code examples, Whatcver graphic output you wanl-lext. circles.

region fill. alphanumeric charactcrscls. bit blocks. animation-the
info is here. $24.95 [Book Code 86-961631

THE PROGRAMMER'S
PC SOURCEBOOK
Thom /'/()~(JI/

Here is imporlant f:lclUal infor­
mation- previously publishcd in
scores ofOlhcr sourccs -orga­
nized into onc convcnient refer·
cnce. Focusing on IBM pes and
compiltibles. PS/2s :lnd MS-DOS.
the hundreds ofchans and lables
cover: _ numeric convcrsions and
charactcr sets. DOS commands
and Ulilitics. DOS funclion calls
and SllppOrllables • DOS BIOS
calls and supporltables _other
interrupls, mouse, and EMS sup­

l)Ort • keyboards. vidco ada pIers. ilnd peripherals. chips. jumpers.
switches. and registers. and more. $24.95 lHonk Code 86·962961

Unbeatable Programmers' References

I

~

~
~

~

~
:::::
~

>
~

u

g
Q

"<u
~

3
;
u

~
~

~

"Q
Q
<

~

;;

~

~
~

;:;; :l"- "'> 0

o .~
t E
1:<
°0
~~.. 0 ~

!:"'":§.u
r5t;~
::;;~~
:>-u~

::00

O~
~ ~

t"i vi
~ .

.:::..,;c..c
~ ~:::E ~
-oQ..ce
a':::::'-:
'" ~ 0 »
~ea.g.§ .~ """l C

"::a1i:~
~ E"4? -:
r:eg:::E
ou ..... ooC-

~f:W;
.g:.sr;f!
~ t ~:::E
.. "0..0 "'C: •
~ot",E
:; a"E~..s
'" u 0 .....

~ []~~
'" 0'= r-;- ~
~ ."E~­ci:'O ... oollJ
-~::...:~
'sjr: 5 .!!o
o ~ »-
.~ ~ e 8 ;;­
:::E~a:~:guu..

~~~
~ ~-
...o"OoQ
~~~
~~~
~ ~

~
~

=
~ u

~ "'~ ~
'r;; E "0 lSu Q.> C _

, "0 ~ ~

.. E 0 'fi ::c .2
~-8:E::;a(I~:6
!- .- "0 - "" !2:"O
",~§a~.o~
~«<~g~
VlU:::;;::::o..OW

~
.2
~=
~
~

,~
:;; ~
~

.§
~=
~ &:
~
0

~

~
~

-" .
~ .. .·u
vi t
t.l •
:>- '

:;
:.::
::>..
:.::
IOl
::l
:.::,

i &
en

™
 s£a>

O
X

)Jai
o

o
*- "53

-
i

3.-=
ri

a

o>

S=
C

-

O
co

"5
I

tt>
i—

c
r/f

CJ>
—

>o
o

c3
.;:

.£
4>

S-'J
IE

-->—
^

p
O

=
£

£j
5

cZ
esC

72
O

l)

i
i

—
O

*3
c

j
C

■~<= S 5 S 44 5

O5 §
^ s

S3

H
 E^ = ?r ~ -5 «

c
i

«
O

U

3

0

I ̂ -8
E

g
o

,o m
 ^

O
 °

2 a:

_
o

<

OHUEx,t/3C9en

u
j=

-a

«" £ J
cv O

 S3

C
j

v>

cwHUP8 9.

E ==

-J<Hen:nEd

O
 o E £

.S II .S
> is =
-H

I
S a.

os S£
.2

a
&

•3 < *
—

 ii
C

J
--

is
.

^
o

c

C-1

. - i o
C

3
=

O

-
M

BUSINESS REPLY M
AIL

F
IR

S
T

C
LA

S
S

P
E

R
M

IT
N

O
.

108
B

E
LLE

V
U

E
.W

A

PO
STAG

E W
ILL BE PAID

 BY ADDRESSEE

M
icrosoft

Press
Attn: C

onsum
er Sales D

ept.
16011 N

E 36th W
ay

Box 97017
R

edm
ond, W

A 98073-9717

NO
 PO

STAG
E

NECESSARY
IFM

AILED
IN

 THE
UNITED

 STATES

Programmer's
Quick References

o
ro

-p.

MS-DOS FUNCTIONS
Ray Dill/Cali

Covers DOS through version 3.l
$5.95 [nook Code 86·9641.11

At last! Now you can have inslam access U!

key programming information. Whethel
you're an assembly-language or C program­
mer, you'll find these books exceptionally use­
ful. The guides include overviews of each ser·
vice along wilh a list of the pammclcrs 01
arguments Ihe service requires, the results il
returns, version
dependencies. and
valuable program·
ming notes and
warnings. All al
your fingertips!

ESSENTIAL OS/2 FUNCTIONS
Ray Dill/Cali

Greal for anyone involved in OS/2
application progralluning! ~Ierc is the
most lICCUr:lIC, up·lo·dall~ information

on lhc OS/21.0 Kernel functions calls
withinlhc applications

program inlcrface (API).
$9.95 [nook Code 86·968661

IBM@ ROM BIOS
Ray DlIllcan

Alllhccorc inform:uion on each
orthe ROM BIOS services.

$5.95 IUook Code 86·964781

C zZ
~ ,;mO
mz~~~
°-i::bocncn
(J)I?cn-t
:-imm>~
~ 0)J\<I
m -<m
Ul

."

ljjlJJ
riC
~(J)
en -z

m
ri:(J)
~(J)
-;

5JJ15mm-U

"'~m

~s:
~:t>
~r

"
~
m

";=..-
'"m
'II
"'"-<»
a
a
:II
m
~
m
m

:Altllo;:J>S;
(tI 0 0 ~_.o.>< ;:ln3 'O~ .. .,
a -.]Zn~
" 0 _ a ac. .- l~J ::J ~
.. -J W (,() f""f"

-G 0\""'0
;;; 5-~~
'0 ::E"~
00 to C/lo u to
-J r0­
w en,
'0
-.]

-.]

ORDER CARD

For information on the Companion Disks to Advanced MS-DOS Programming, 2nd ed., please see page xv.

YES..•please send me copies of the Companion Disk to
Advanced MS-DOS Programming, 2nd ad. at $19.95 each (U.S. funds only) $ _

SalesTaX(Seeratechartbelow.) $ _
California - 5% (plus local option tax); Connecticut -7.5%; Florida - 6%; Massachusetts - 5%;
Minnesota - 6%; Missouri - 4.225%; New York - 4% (plus local option tax); Washington - 7.8%

Postage and Handling Charges. $2.50 per disk (domestic orders)
$6.00perdisk(foreignorders) $ _

Please check correct box: D 51J4-inch format D 31J2-inch format TOTAL $ _
097-000-222 097-000-225

Name _
Please Print

Address _

Daytime Phone #: (

D American Express
(15 numbers)

D MasterCard
(16 numbers)

DVISA
(13 or 16 numbers)

City State ZIP _

Payment: D Check/Money Order

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Credit Card No. [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] Exp. Date, _

Signature, _

All orders shipped 2nd day air.

III
BUSINESS REPLY CARD

NO POSTAGE
NECESSARY

IFMAILED
INTHE

UNITED STATES

FIRST CLASS PERMITNO.108 BELLEVUE, WA

POSTAGE WILL BE PAID BYADDRESSEE

MICROSOFT PRESS
Attn: Advanced MS-DOS Programming, 2nd ed.

Companion Disk Offer
21919 20th Ave SE
Box 3011
Bothell, WA98041-3011

ISBN 1-55615-157-8

1111111 52495

9 781556 ,51576111

	Contents
	Road Map to Figures and Tables
	Acknowledgments
	Introduction
	Section I Programming for MS-DOS
	Chapter 1 Genealogy of MS-DOS
	Chapter 2 MS-DOS in Operation
	Chapter 3 Structure of MS-DOS Application Programs
	Chapter 4 MS-DOS Programming Tools
	Chapter 5 Keyboard and Mouse Input
	Chapter 6 Video Display
	Chapter 7 Printer and Serial Port
	Chapter 8 File Management
	Chapter 9 Volumes and Directories
	Chapter 10 Disk Internals
	Chapter 11 Memory Management
	Chapter 12 The EXEC Function
	Chapter 13 Interrupt Handlers
	Chapter 14 Installable Device Drivers
	Chapter 15 Filters
	Chapter 16 Compatibility and Portability

	Section II MS-DOS Functions Reference
	Section III IBM ROM BIOS and Mouse Functions Reference
	Section IV Lotus/Intel/Microsoft EMS Functions Reference
	Index

