‘An impressive collection of the very best PC power-user tips and secrets. 3 DISKS
Highly recommended.” — PETER NORTON INCLUDED

REVISED FOR

DOS Lk
POWER'TOOLS

TECHNIQUES, TRICKS AND UTILITIES

ALL-TIME BESTSELLING
BOOK/SOFTWARE PACKAGE -

PAUL SOMERS ON . 500,000 COPIES IN PRINT

1an 100 all-new utilities on disk

ed coverage of commands and
agement

DOS
POWER
TOOLS"

2nd Edition,
Revised for DOS 5.0

DOS
POWER
TOOLS

2nd Edition,
Revised for DOS 5.0

Techniques, Tricks,
and Utilities

Paul Somerson

BBBBBBBBBB

DOS Power Tools, 2nd Edition, Revised for DOS 5.0
A Bantam Book / July 1991

All rights reserved.

Copyright © 1990 by Paul Somerson and Ziff Communications Company
Second Edition Revisions copyright © 1991 by Bantam Doubleday Dell
Publishing Group, Inc.

Cover design © 1991 by Bantam Books, Inc.

Interior design by Nancy Sugihara
Produced by Micro Text Productions, Inc.

Composed in Ventura Publisher by Context Publishing Services

This book may not be reproduced in whole or in part, by mimeograph or any
other means, without permission. For information address: Bantam Books.

Throughout this book, tradenames and trademarks of some
companies and products have been used, and no such uses
are intended to convey endorsement of or other affiliations with the book.

Bantam Books (“Bantam *) warrants that the physical diskettes are free from defects in
materials and workmanship for a period of 90 days from the date of purchase. If Bantam
receives notification within the warranty period of defects in material or workmanship,
Bantam will replace the defective diskette(s). The remedy for the breach of this warranty will
be limited to replacement and will not encompass any other damages, including but not
limited to loss of profit, and special, incidental, consequential or other claims.

BANTAM AND THE AUTHORS SPECIFICALLY DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH
RESPECT TO THE DISKETTES, THE PROGRAMS THEREIN CONTAINED, THE
PROGRAM LISTINGS IN THE BOOK, AND/OR THE TECHNIQUES DESCRIBED IN THE
BOOK, AND IN NO EVENT SHALL BANTAM OR THE AUTHORS BE LIABLE FOR ANY
LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

ISBN 0-553-35464-7

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, a division of
Bantam Doubleday Dell Publishing Group, Inc. Its
trademark, consisting of the words “Bantam Books™ and the
portrayal of a rooster, is Registered in U.S. Patent and
Trademark Office and in other countries. Marca Registrada,
Bantam Books, Inc., 666 Fifth Avenue, New York, New
York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

Contents

Preface xiii

PART 1

Getting Up to Speed 1

1

The Development of DOS 3

DOS10 5
DOS2.0 7
DOS 3.0 10
DOS 4.0 16

DOS 5.0—Room to Move 17

DOS 5.0: An Overview 21
Yesterday’s History: DOS 4.0 22
And Now,DOS 50 24

New Feature Summary 24 * A Few Pre-installation Notes 26 * A DOS
Uninstallation 28 * A Setup: The DOS 5.0 Installation Procedure 29 » Old
Bats and Config Considerations 32

A Closer Look at DOS 5.0 32

Memory Management 33 o Of Modes and MEM 33 » Categorzes of
Random Access Memory 35

vi DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Better Memory Management Tactics 37

A Pair of Memory Management Specifications 37 ® A Duo of Drivers and a
DOS Command 39 ¢ Loading Drivers and TSRs in Reserved Mémory 40 e
A Look at Memory Savings 41

Other DOS 5.0 Features 47

. Attribute Command (ATTRIB) 47 ¢ DEBUG Your Hex Math 48
DIRectory Command Enhancements 48 © DOSKEY 52 ® DRIVPARM 52 o
EDIT 53 ¢ EXPAND 54 ¢ Friendlier Formatting 55 ® Help Screens 59 o
MIRROR 60 ® Quick! Where’s the BASIC? 61 » SETVER 61 * The SHELL
Game 63 Undeleting a Deletion 66 * Unformatting a Format 67

Beyond 5.0 74

3 Disk Organization, Files, Filenames 77

The Physical Disk 78
File Types 82

Program Files 82 ® Nonprogram Files 85

Creating Filenames 86
Reserved Filenames 88
The Parts of a Filename 92
The PATH Command 95
Wildcards 103

Filename Extensions 116

4 Hard Disks Made Easy 119

Formatting the Hard Disk 120

Subdirectory Structure 121

Directory Limits 125

Disk Tools 125

Customizing Your Prompt 130

The CONFIG.SYS File 131

Important Files 135

The DOS RAMdisk 144

Protecting AUTOEXEC.BAT and CONFIG.SYS 145
Hidden Files 147 :
Subdirectory Navigation 149

Finding Files 153

Moving Files 154

Fine-Tuning Your Hard Disk System 155

Caveat Emptor 157

Contents vii

5 Hex Class 159

Pattern Recognition 164

Chip Logic 171

Bit Masks 173

Hex Marks the Spot 175

Multiplying and Dividing Hex Numbers 178

6 The Keys to the Kingdom 181

Typewriter Keys 182

High-Bit Characters 184

Shift and Special Purpose Keys 186

Cursor Movement and Number Pad Keys 198
Freezing the Display = 204

CapsLock 205

Esc 206

Function Keys 207

New Keyboard Tricks 215

Keyboard Magic with DOS 5.0’s DOSKEY 216
The CPU — The Brains of the PC 225

7 Chips and Memory 225

RAM 229

Parity Problems 232

ROM — Free Programs 234

Mapping the Meg 242

The Original Way to Expand Memory = 246

Unofficial Ways to Expand Memory for DOS (Pre-5.0) 248
DOS 5.0 Memory Management 249

Expanded vs. Extended 250

Memory and the Bus 253

PART 11

The DOS Tools 255

8 EDIT and EDLIN 257
How to Start EDIT 258

Starting EDIT from the DOS Prompt 258 e Starting the Editor from
DOSSHELL 259

viii DOS Power Tools, 2nd Edition, Revised for DOS 5.0
Accessing EDIT’s Menu Options 260

Using Dialog Boxes 262
Customizing the Editor 263

Using the Mouse Scroll Bars 264
Getting Help 265

Viewing Help Text While Editing 265 o Printing Help Information 266
Browsing Through a Document 266

Setting Bookmarks 267

Moving the Cursor for Editing 267
Editing Text 268

Inserting Special Characters 269
Copying, Cutting, and Pasting with the Clipboard 269

Selecting Text to Copy, Cut or Delete 269 * Using the Clipboard 270
Using the Search Options 271

Using the Find Option 271 e Finding and Changing Text 272

Using the File Options 273
Printing the Document 274
EDLIN 274

Starting EDLIN 278

The EDLIN Commands 280

Append Lines 280 * Copy Lines 280 ® Delete Lines 281 * Edit Line 283
End Edit 284 * Import Files 285 o Insert Lines 285 e List Lines 287
Merge Files 289 ¢ Move Lines 289 ¢ Page 291 ® Quit Edit 294 ¢ ReadIn
Files 294 o Replace Text 294 o Search Text 297 * Transfer Lines 299 e
Write Lines 300

Using EDLIN 301
ECHO Version Madness 304

9 DEBUG 307

Addresses 309

Starting Up DEBUG 340

Naming a File for Loading or Writing =~ 342
Displaying Memory Contents 343
Entering New Memory Contents 348
Filling a Block of Memory 353

Moving a Block of Memory 356

Contents ix

Searching for Characters 362

Assembling ASM Instructions 369
Unassembling Instructions 374

Displaying Register and Flag Contents 388
Performing Hexadecimal Arithmetic =~ 396
Comparing Two Blocks of Memory 400
Loading Disk Information into Memory = 402

Loading Files 403 ¢ COM vs. EXE 407 * Loading Sectors 409

Writing Information from Memory to Disk 423
Quitting DEBUG 429
Advanced Commands 430

Input/Display a Single Byte from a Port 430 e Output/Send a Single Byte to
a Port 430 e Execute Program in Memory (Go) 433 e Execute and Show
Registers/Flags (Trace) 434 * Execute One Instruction (Proceed) 434

Expanded Memory Magic 438

10 ANSI and Other DOS Drivers 439

DRIVER.SYS 440

RAMDRIVE.SYS 443

HIMEM.SYS 445

EMM386.EXE 445

SMARTDRV.SYS 450

DISPLAY.SYS, EGA.SYS, PRINTER.SYS, and SETVER.EXE 451
ANSLSYS 451

Working with Color 465 ® Full Screen Displays 484 * Mode-Setting
Commands 491 * Redefining Keys 492 ® Macro Magic 503

PART III

Power User’s Secrets 507

11 Batch Techniques 509

Easy Batch File Creation 510 ® Turning ECHO Off 513 ¢ REMinding
Yourself 515 ¢ Jumping, Skipping, Looping, and Branching 519 e
ERRORLEVEL — Best Command, Worst Name 519 Breaking Out of a
Batch Job 534 e Putting It All Together 543 :

The Batch Commands 548

ECHO 549 REM 558 ® GOTO 559 CALL 566 ® FOR..IN..DO 572
PAUSE 577 * Replaceable Parameters 578 © SHIFT Parameters 584
Environment Variables 587 ¢ IF 589

x DOS Power Tools, 2nd Edition, Revised for DOS 5.0

12

13

14

Batch File Applications 624

DOS Notepads 624 e A Date with DOS 626 ® Free Dialer 628 o Free
Telephone Directory 630 e Daily Chores 633 ® Time of the Month 638 e
Current Events 640 ® Real-Time Batch File Entries 642 ¢ More Efficient
Copies 643 ® AUTOEXEC.BAT 645

The DOS Enyironment 649

Setting Environment Variables 651
Expanding Environment Size 653

Altering the Environment Size 653 e Patching DOS 2.x and DOS 3.0 654

Using COMMAND to Load a Temporary Environment 655
The COMSPEC Command 656
The PATH Command 657

Methods for Reducing the PATH String 659 * Editing and Saving the
PATH 661

The PROMPT Command 663
The SET Command 666
Using Environment Variables in Batch Files 667

Screens and Color 671

Inthe Cards 701

Storage Schemes 704
Blanking Out the Screen 710
Cursor Words 711

Clear Colors 713

Adapters 715

EGA, VGA, and Beyond 715

Monitors 717
VGA Internals 719
Other Features 724

Vertical Interrupt 724 » Alternate fonts 725 e Palettes 726 ¢ VGA
Extensions 726

VESA 727
Coprocessors 732

8514/A 733 XGA 734
DOS Commands 735
RECOVER 735

Contents xi

15 Favorite Tips 735

CHKDSK 736 » COPY 738 » VERIFY 744 ¢ DISKCOPY 746 *
ASSIGN 747 ¢ APPEND 747 ¢ EXE2BIN 749 KEYBxx 749 o
GRAPHICS and GRAFTABL 752 » STACKS 753 « XCOPY 753 o
COMMAND 755 o SYS 760 » FDISK 761 o

DOS Filters 767
Printers 786
Security 793

16 When It All Goes Wrong 799

PART 1V

The Utilities DOS Forgot 809

17 [Utilities 811
Summary of Programs and Credits 813

PART V

Quick Reference 967

18 The PC-DOS 5.0 Commands 969

Primary DOS 5.0 Commands 970
DOS 4.0 CONFIG.SYS Commands 1027
DOS 4.0 Batch File Commands 1035

19 EDLIN, DEBUG, and ANSI Commands 1043

EDLIN 1043
DEBUG 1044
ANSLSYS 1045

Cursor Movers 1045 * Erasing and Screen Clearing 1047 = Color and
Attribute Setting 1048 * Mode Controls 1049 ® Keyboard Controls 1050

Index 1055

Preface

Many PC users think DOS is simply the few seconds of disk grinding between the time
they hit the power switch and the time their favorite software pops onto the screen.
They’ve learned how to format a disk and copy a floppy but are ignorant of the genuine
magic it can perform in the right hands. Still, even experienced users often miss important
shortcuts and tricks. This book and the programs on the accompanying disk will make
mastering any DOS system a breeze.

If you’ve ever wondered why computers aren’t easier to deal with, you’re not alone.
It’s really not your fault — the standard DOS manual is a fat, inscrutable alphabetical
reference crammed with useless details on how to use Norwegian characters or hook your
computer to a nuclear reactor. It doesn’t try very hard to help you. If General Patton were
alive today he’d slap it.)

Worse, the DOS manual makes even the few things that you have to do every day —
like print out files — insanely complex. A typical entry on its PRINT command reads:

Format: [d:][path]PRINT[/D:device]{/B:buffsiz]
[/U:busytick][/M:maxtick][/S:timeslice]
[/Q:quesiz][/C][/T][/P][[d: [path]

[filename][.ext] ...]

Clear? And it follows this madness with six pages of dense, oblique prose that would
make Hemingway weep. So what’s a busytick? According to the manual it “specifes the
number of clock ‘ticks® PRINT waits until the PRINT device is available. . . If PRINT
waits longer than [U:busyticks, it gives up its time slice.” Clock ticks? Print device? Time
slice?Give us all a break.

You don’t really have to understand what maxticks are, or what a buffsiz is. But
knowing about these details can actually save you time and trouble. In this case, they’ll
let you print one or more documents without tying up your whole system, so you can start
working on other documents right away. We’ll explain every one of these PRINT terms

xiii

xiv DOS Power Tools, 2nd Edition, Revised for DOS 5.0

later in crisp, understandable English. And in any case we’ll give you a handful of PRINT
shortcuts you can type in to start speeding up your own work, even if you don’t want to
learn what it all means.

So Who’s This Book For?

Glad you asked. It’s for every serious user who wants to work faster, smarter, and better.

If you’re starting out, or if you want a refresher course in the fundamentals, plunge in
at the beginning. If you happen to be a black belt expert, you’ll still learn plenty; just
skim over the first few chapters (we’ll bet that even advanced users will find tricks they
didn’t know).

But no matter where you start, you’ll soon find yourself collecting armloads of
powerful tips, shortcuts, and advanced techniques. Trust us. Hundreds of thousands of
smart readers do on a regular basis.

But a Whole Book On DOS?

This book starts with DOS. But it shows users at every level how to operate their whole
systems better. DOS affects every aspect of operation, from keyboards to screens to
printers to modems to disk drives.

You can nibble at it and pick up the few techniques you need to get a specific job done,
or devour every word and become a true PC guru. If you want the hex numbers and the
undocumented commands and the environment variables it’s all here. But if all you want
to do is master the basics and make your time at the computer so efficient you won’t
believe you ever did it the hard way, you can do that too.

Okay, So What Exactly Is DOS?

It’s easier to start with what DOS isn’t. It isn’t very easy, friendly, or forgiving. Several
years ago IBM responded to such criticism by publishing a booklet with little dancing
birds in the margins. This didn’t solve the problem. Users still did things the hard way,
or avoided doing anything tricky in the fear they’d damage their files (and they were
often right to worry).

Sometimes using DOS is a little like manipulating plutonium in the next room through
a thick glass window using remote- control robot hands. It’s far too clumsy. And s-1-o-w.
What you really want to do is just get in there and grab what you’re working on and knead
it into shape. But the mechanisms DOS provides are cambersome and seemingly difficult
to master.

Preface xv

Using a PC means creating, changing, displaying, printing, copying, moving, and
storing files. DOS does the really dirty work for you — interpreting and processing the
commands you type, loading programs into memory, salting away. your work in a
semipermanent form that can readily be retrieved and altered, or sending data down a
cable to a printer or another computer.

DOS has a truly limited vocabulary of a few dozen commands to handle all of this.
Many of these commands are primitive, incomplete, even purposely crippled to protect
you from yourself. Some are useless. The trick is to master the important ones, super-
charge the incomplete ones, learn the effective DOS shortcuts that can automate your
daily chores, and get your hands on a few necessary tools that DOS forgot. This book
shows you how, with step-by-step instructions — and provides a slate of powerful
programs to do all the hard work for you.

Keeping Current

One reason DOS is so thorny is that it has to adapt to a rapidly changing technology while
remaining compatible with the older hardware and all the original commands. Even so,
it should be a whole lot friendlier and easy to get along with. That’s where we come in.

Times really have changed. The reason its creators called it DOS (short for Disk
Operating System) was that it let users work with floppy disks, which were revolutionary
two decades ago, but are commonplace to even kindergarteners now. These days optical
disks (laser-based storage systems somewhat similar to audio CDs) and even a few hard
disks can put a gigabyte — a billion characters’ worth — of storage space at your
fingertips in a fraction of a second.

(Some system manufacturers are even starting to talk about terabytes — a trillion
characters’ worth. Sending a terabyte of data to someone over a 1,200-baud modem
would take over two millenia, give or take a century.)

To put this in perspective, when IBM introduced its first PC in 1981 it actually stuck
a plug on the back so users could store data on cassette tape recorders — a method so
inefficient it’s laughable today.

Impatient?

To be a real power user you should understand what makes your system tick, and be
familiar with its evolution and internal structure. This is especially important because
DOS comes in so many flavors, revisions, and dialects that you have to know how to
handle the important differences between versions.

If you see a term in the early chapters of this book that you don’t fully grasp, don’t
worry. It will all be explained in detail a little later. However, if you just can’t wait to
plunge in and start boning up on specific tips, jump ahead to the following chapters.

xvi DOS Power Tools, 2nd Edition, Revised for DOS 5.0

How to Use This Book

The shortest distance between two points may be a straight line, but frankly, we prefer
the scenic route. It may take you just a bit longer, but it’s a lot more fun. When you travel
on an expressway you often miss the sights.

This book will turn anyone into a true power user. But don’t be scared by its size. You
don’t have to start at page 1 and follow it all the way through to the end (although if you

- do, you’ll become an absolute DOS wizard). Most readers tend to jump around from

place to place, and this book is designed to accommodate them.

You can use this book and disk several different ways:

o If you're still fairly new at this, you can learn the ropes quickly by glancing at the
Up to Speed section.

¢ If you need the best possible tips on a specific area such as organizing your hard
disk, harnessing the color abilities of your new monitor, automating complex file
management tasks, or taming your keyboard, jump directly to that particular
chapter. \ ‘

» If you’re interested in wringing the maximum horsepower out of your system, be
sure to investigate the advanced techniques in the DOS Tools pages. -

¢ And if you really want to stomp on your system’s accelerator, step through every
last trick in the Power User Secrets section.’

No matter what your level, be sure to try the programs on the accompanying disks.
They’ll make it a snap to master every aspect of your system.

Warhi,ng.’ |

As with any power tools, be extremely careful when using the programs and tips in this
book and on the disks.

Read the appropriate manual entries carefully before running any of the programs. Not
all programs will work on all systems (for instance, some are designed for EGAs, ATs,
or PS/2 systems only). And just as you wouldn’t plug too many power tools into the same
outlet, if you want to load lots of different programs into memory at once, experiment
with them to see how your hardware configuration handles it before working with any
unsaved data. o

The final section of this book contains two additional resources — a detailed program
manual and a series of handy DOS quick reference charts. The manual is more than just
a list of command syntaxes. It’s jam-packed with tips, technical explanations, and
ingenious customization hints. Both are extremely useful.

Preface xvii

No Os

Note that in virtually every example in the text, a 0 is the numeral zero and not a capital
o. Similarly, a 1 is a one and not a lowercase L. This book assumes you’re using a version
of DOS 2.1 or later. If you’re not, go out right now and get your hands on the very latest
version available.

While virtually all the tricks included here are utterly safe, a few (like those that deal
with advanced disk modification techniques) are so powerful that you have to use extreme
caution when trying them. The text includes stern warnings about these, but be sure you
observe the following rules: read each entire section carefully before attempting the
procedures mentioned, don’t try modifying any of the procedures, and if you're really
nervous, don’t execute them. The book contains thousands of other equally useful but
less fearsome tips to try.

Finally, the book makes extensive use of a technique called redirection to create and
modify files. In most cases, this involves creating a small text file that DOS redirects, or
feeds, into its DEBUG file-customization program. When creating these small text files
or scripts be sure to use a “pure-ASCII” word processor. The DOS 5.0 EDIT, or older
versions EDLIN editor will create such files, as will the ASCII/text modules of popular
word processors such as Microsoft Word, WordStar, XyWrite, or WordPerfect.

As it’s used here, a pure-ASCII file is one that, with just a few exceptions, contains
nothing other than the letters, numbers, and punctuation that you can type directly from
the keyboard. Most word processors throw in other nontext characters to handle format-
ting commands such as underlining or margin settings. But just about every word
processor lets you create files without these formatting characters.

You can test whether your own word processor is capable of producing such files by
using the DOS TYPE command to display them. If you create a file called TEST.FIL,
for example, just make sure you’re at the DOS A> or C> prompt and type:

TYPE TEST.FIL

If all you see is clear, unadulterated text, you’re probably safe. But if you see odd
characters, or if the text jumps and beeps its way across the page, look at your word
processor’s manual under “DOS files” or “Text files” or “ASCII files” and try again.

‘Whether you’re just starting out, or you’re an old hand at DOS, the tips and programs
included here will make you the master of your system rather than the other way around.
Isn’t that why you started using a computer in the first place?

This second edition revised for DOS 5.0 includes all the earlier magic — and adds
critical new tips, shortcuts, and power-user techniques on DOS 5.0, using extended and
expanded memory, advanced video tricks, the shell, and much, much more. And it brings
you over 100 new utilities to handle the really tricky parts. Try it; you won’t believe how
easily it will help you truly master things — or how hard it used to be before you learned
its secrets.

Special thanks to all the people who made this revised edition possible: the
authors of the the utility programs who were so generous with their creations;
John Woram, Tom Sheldon, and Bradley Dyck Kliewer, who provided the
technical depth and range for much of the new material; and the Bantam staff
and freelancers --Janice Borzendowski, Maureen Drexel, Steve Gambino, Steve
Guty, Barbara Hanson, Randall Pink, Jeff Rian, Cheryl Smith, Tom
Szalkiewicz, and Raine Young--who pulled it all together.

Kenzi Sugihara
Vice President and Publisher
Bantam Electronic Publishing

Getting Up to
-~ Speed

The Development of
DOS

Personal computers began appearing in the mid 1970s, initially as hobbyist toys that
didn’t even have keyboards or screens. The first real one, named Altair by a magazine
editor’s 12-year old daughter who liked a Star Trek episode that took place in that star
system, was built around a jazzed-up calculator chip, the Intel 8080. (Today Intel supplies
the state-of-art CPUs for all of IBM’s desktop computers.) Produced as a do-it-yourself
kit by a company called MITS (for Micro Instrumentation Telemetry Systems), it
originally came with 256 bytes of memory, enough to hold only three or four lines of
text. Since it lacked a keyboard, you entered information into it by flipping a series of
switches on the front panel in binary on-off sequences. Because it had no screen, you had
to decode the binary patterns of blinking lights it produced. And it didn’t let you store
information permanently. Compared to that, DOS is positively telepathic.

Two teenagers, Bill Gates and Paul Allen, who had gotten their digital feet wet by
starting Traf-O-Data, a company that made Intel-based computers to measure how many
cars rolled over a rubber hose stretched across a road, happened to see a picture of the
Altair on the cover of Popular Electronics magazine, and developed a version of the
BASIC programming language for it. Gates later upgraded Altair BASIC to give it
primitive file-management disk-storage abilities, something that would come in handy
later. The pair subsequently changed the company name to Microsoft; by 1976 the
industry had progressed to the point where Gates was already railing against software
pirates (although back then users were making illegal copies of punched paper tape rather
than floppy disks). A few years later Gates became the world’s youngest billionaire.

Soon after the Altair introduction, a coterie of hard-driving salespeople and “est”
devotees became the market leaders with their IMSAI 8080, another Intel-chip machine,

4 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

and the first computer aimed squarely at small businesses. To let users store data
efficiently, IMSAI developed a floppy disk drive whose motors and circuits were run by
a program called CP/M (short for Control Program for Microcomputers), which it had
licensed from Intergalactic Digital Research — later shortened to Digital Research.
Digital Research’s Gary Kildall had created CP/M while working for Intel, to scale down
the mainframe PL/I programming language into a version that would fit on a microcom-
puter. Intel hadn’t seen much value in this brand new CP/M operating system and had
given Kildall all rights to it.

The early versions of DOS owe quite a bit to CP/M. In fact, things like the COM formats
of CP/M and DOS and the basic system calls were so similar that programmers could
easily switch up from CP/M. CP/M used a command interpreter called CCP (for Console
Command Processor), and two fundamental system files called BDOS and BIOS that
handled files and I/O. This arrangement is nearly identical to the DOS COM-
MAND.COM, IBMDOS.COM, and IBMBIO.COM system trio. What was especially
remarkable about CP/M was that it took up only 4K of space. DOS 1.0 doubled that, and
has been mushrooming ever since.

Chain store magnate and leathercrafter Charles Tandy tried unsuccessfully to buy
computers from IMSAI, then ended up creating his own system, the TRS-80, which
contained a competing Zilog Z-80 chip, boasted slightly more than 4,000 characters of
memory (a page or two of text), and came fully assembled rather than in kit form. To
shave a few dollars off the price he designed it to work entirely in uppercase letters.
Customers snapped them up as fast as Tandy could make them.

What really kicked the microcomputer business into high gear, however, were a
handful of visionary renegades from California and Florida.

In 1976 Steves Wozniak and Jobs, whose early careers included a stint peddling “black
box” devices to circumvent AT&T long distance billing computers, bought some MOS
6502 chips and built a few hundred copies of a computer that they christened the Apple
L. It too worked in uppercase characters only. Their second-generation Apple II offered
an optional floppy disk drive, and sold several orders of magnitude more. One reason for

. its success was a revolutionary program called VisiCalc, which was cobbled together by
Dan Bricklin, Dan Fylstra, and Bob Frankston. Visicalc turned Wozniak and Jobs’s little
computer into a powerful financial analysis and planning machine.

But not all operating systems work on all chips. The increasingly popular CP/M ran
on chips made by Zilog and Intel but not on the Apple’s MOS processor.

Microsoft’s Gates and Allen moved to Seattle to write programming languages for
computers built around Intel and Zilog processor chips and running CP/M. Dismayed
that their languages wouldn’t work on MOS-based Apples, they considered translating
them all to run on Apple’s proprietary operating system, an arduous job. Instead, they
joined the crowd, licensed CP/M, and sold it along with an add-in board that had a Zilog
chip on it. Apple owners could stick the Microsoft board in their systems and run any
CP/M programs.

But Apple was an eight-bit machine and Gates and Allen felt Intel’s new 16-bit
processors were the wave of the future. So did a local board maker named Tim Patterson
who worked for Seattle Computer Products. All earlier processor chips managed data in
eight-bit chunks. Intel’s new 8088/8086 chip family doubled the processing power.

The Development of DOS 5

Patterson’s board sported an 8086, and he needed a new 16-bit operating system to
take advantage of it. Digital Research had announced that it was planning to tweak CP/M
into a 16-bit CP/M-86 version, but Patterson couldn’t wait. In early 1980 he started work
on one of his own design called QDOS (for Quick and Dirty Operating System) that was
to become 86-DOS (or SCP-DOS) and eventually just plain DOS. To make it relatively
easy for programmers to translate CP/M software to his system, he retained fundamental
CP/M file-management structures and mimicked the way it loaded and ran programs.
Patterson then added a device called a File Allocation Table (FAT) which Gates had used
in Altair disk BASIC , and a few other refinements.

DOS 1.0

In late 1980, IBM approached Microsoft and revealed that it was considering production
of its own eight-bit personal computer. Vast helpings of money, ego, pride, and general
corporate paranoia have tempered the details of this exchange, but the popular version is
that IBM wanted Microsoft to design a version of BASIC for its new machine that would
be delivered on a ROM chip inside the IBM chassis. Gates was happy to oblige and
wanted to do a whole raft of languages, as the story goes, but argued that IBM should
consider a 16-bit computer instead. When IBM asked who made a 16-bit operating
system, Gates is said to have suggested that IBM contact Gary Kildall — and supposedly
even dialed the phone to Digital Research himself.

Here the tale gets very fuzzy. According to one telling of it, when IBM trooped down
to see Digital Research the next day, Kildall’s wife and lawyer were hesitant to sign
IBM’s strict nondisclosure agreements. Other stories had Kildall out flying his plane
while IBM executives waited impatiently for him to land. Microsoft’s own publications
admit that Gates and Allen had heard rumors that Kildall was about to buy a version of
BASIC from a Microsoft competitor and give it away free with every copy of CP/M-86,
which didn’t exactly endear him to them.

In any event, Gates and Allen bought the rights to Patterson’s 86-DOS for around
$50,000 and proposed to IBM that Microsoft provide BASIC, FORTRAN, Pascal,
COBOL, an 8086 Assembly language, and the 86-DOS operating system for the new
computer. IBM agreed in November 1980, and on August 12, 1981 introduced the world
to its new PC and its main operating system, Microsoft’s DOS 1.0 (which IBM called
PC-DOS). At the announcement, IBM mentioned that users would someday be able to
buy two competing operating systems: CP/M-86 or the UCSD p-System. But IBM priced
these much higher than DOS, and since they were late in reaching the market and received
little support from other software vendors, they went nowhere.

Computer hardware (the chips and disk drives and other parts inside the cabinet) isn’t
useful without software (the programs that put the chips through their paces). And IBM
didn’t initially offer much software — EasyWriter, a bug-filled version of a mediocre
word processor; Adventure, a mainframe text game adapted for smaller computers; a DOS
version of VisiCalc; some artless business software; a few Microsoft languages; and one
or two other packages.

6 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The most popular and powerful programs back then — dBASE II and WordStar — ran
only on CP/M systems. One of IBM’s highest priorities was to make it easy for software
vendors to translate programs from CP/M to DOS, and it was smart enough to know that
making it easy meant making the two operating systems similar.

Many of the DOS features that today’s users truly hate — such as overly brief
eight-character filenames with three-character extensions, terse prompts like A>, and
unfriendly or missing messages (such as stony silence in response to file deletions) were
directly swiped from CP/M. So were underlying structures such as File Control Blocks
(FCBs), Program Segment Prefixes (PSPs), and reliance on CP/M’s memory loading
addresses.

DOS did change a few CP/M quirks. File lengths that were rounded off in CP/M were
reported precisely in DOS. Some commands were turned around to be more logical.
Programmers could treat input and output to peripheral devices such as printers and
screens the same way that they handled files. DOS’s variable record lengths made disk
storage and retrieval far more efficient. DOS could load and run larger EXE-format files
in addition to the smaller standard CP/M-style COM-format files which were limited to
64K. And it could keep a program loaded in memory but inactive so that users could pop
it onto their screens whenever they needed it. DOS relied on a FAT, first used by Bill
Gates and Tom Patterson, to keep track of where all the various pieces of a file were
stored, and could read and write more than one pxece of data at a time, which speeded up
disk activity significantly.

DOS at least theoretically made it easier for programmers to create their own versions
of the COMMAND.COM user interface, although none has ever caught on. But the ability
to run scripts of commands called batch files did become very popular. When DOS
reported inevitable errors, it did so in.a slightly friendlier way than CP/M, and it handled
severe hardware errors far better. DOS also sniffed out new disks automatically while
CP/M forced users to log such changes manually, and it kept track of the date files were
created or changed.

It also split the COMMAND.COM user mterface into several parts, a mixed blessing.
‘When the PC was new, and IBM offered it with a maximum 65,536 characters of memory
(which is usually rounded off to 64K), this feature was welcome since it let other
space-hungry software temporarily steal a few thousand characters of memory space from
DOS. When the user was finished with the software he’d have to then insert his DOS
disk in drive A: so the part of DOS that hadn’t been stolen could reload the part that had.
Trouble was that a short time later users were buying systems with ten times that much
memory, and the amount of space freed up by this technique was relatively insignificant.
Baut floppy disk users still had to contend with keeping a DOS disk handy to reload the

“transient” stolen part.

One of the worst things about the first IBM PC and its operating system was that it
could store only 163,840 (160K) characters of data on floppy disks that were clearly
capable of squirreling away twice that much. A standard floppy disk has two usable sides,
but IBM’s original drives (and DOS) took advantage of just one.

And the initial DOS release contained several nasty bugs. In mid-1982 IBM began
selling PCs with double-sided drives, and released DOS version 1.1 to handle the new

The Development of DOS 7

storage abilities and fix several of the early bugs. Microsoft then released its own similar
generic DOS upgrade, which it called MS-DOS 1.25.

The initial release of DOS was tiny and relatively crude. Version 1.0 TIME and DATE
commands were sepatate short programs rather than part of the main COMMAND.COM
user interface. While the DOS 1.0 directory listing noted the date a file was created or
changed, it ignored the time. The MODE command couldn’t set communications speeds
or protocols, or let the PC’s parallel printer adapter work with the many serial printers
on the market. You weren’t able to have the COPY command join (or concatenate)
smaller files into larger ones. The onscreen prompts and messages were especially ugly
and cryptic.

DOS 1.1 fixed all these problems, or at least made them less irritating. The biggest
problem of all was that DOS was still constrained by its CP/M heritage and its clanky
internal structure. And although IBM doubled the amount of disk storage space from
163,840 (160K) characters to 327,680 (320K), users found this was far from enough.
They demanded disks that were faster and more efficient.

DOS 2.0

In March 1983, IBM announced its PC-XT, a beefed up version of the standard PC that
came with three additional internal expansion slots (for a total of eight), a ten-megabyte
hard disk, a heftier power supply, and a new version of DOS — 2.0.

The new hard disk (which IBM referred to as a fixed disk) could hold the equivalent
of more than 31 double-sided floppies. But all that storage space introduced a new
problem. DOS 1.0'and 1.1 had crammed all the file information for each floppy disk into
asingle directory. A single-sided floppy directory had room for a maximum of 64 entries,
and you could fit only 112 on a double-sided diskette.

Keeping track of all the files on a hard disk meant coming up with a new DOS file
management and directory system. CP/M had dealt with large disks by splitting (or
partitioning) them evenly into smaller ones, an inelegant and inefficient solution. But
UNIX, an operating system developed by the phone company, could handle vast volumes
of files with relative style and ease. Microsoft had licensed UNIX, and was offering a
version of it called XENIX. At the heart of UNIX/XENIX was a hierarchical or
tree-structured directory system that gave users lots of ﬂex1b111ty in dividing up the
available storage space.

Microsoft adapted this tree-structured system as the core of a significantly new
incamnation of DOS — version 2.0. But it blundered slightly. UNIX used a slash (/) to
identify the hierarchical subdirectory levels that acted as branches on the tree structure.
But earlier DOS versions used such slashes as switches, command suffixes (such as the
/S in FORMAT /S) that turned certain optional features on and off. Microsoft substituted
a backslash () to identify subdirectory levels, which ended up confusing a whole
generation of DOS and UNIX users, and caused much consternation abroad where
foreign keyboards often didn’t come with backslash characters.

8 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

IBM and Microsoft also had to find a way to deal with an explosion in the number and
type of devices that manufacturers were stamping out for the PC. One of DOS’s main
roles was to manage the communication between the PC and anything you could hook
up to it. If DOS had to contain explicit internal tables and instructions for every possible
external device it would end up being absurdly large and cumbersome.

Microsoft designed a new version of DOS with hooks in it so that manufacturers of
peripheral equipment could supply installable device driver programs to hook the new
hardware effortlessly into the operating system. Users could load these specific additional
sets of instructions into DOS as needed, through a special CONFIG.SYS file. This file
also let users customize the configuration of their systems by telling DOS such things as
how much memory it should devote to disk buffers (areas of memory that hold disk data
for speedy access), how many files could be opened simultaneously, and how frequently
DOS should check to see whether a user might be hitting the Ctrl-Break panic button. It
also made it easy for users to load a replacement command processor if they weren’t
planning on using the standard COMMAND.COM, or tell DOS if they were storing
COMMAND.COM in an unusual place. And it gave users extended screen and keyboard
control with ANSL.SYS, a special device driver supplied by Microsoft in an unsuccessful
attempt to standardize certain parts of the user interface across different computer
systems.

Version 2.0 introduced several commands most users can’t live without. It’s hard to
believe, but versions 1.0 and 1.1 didn’t offer any way to clear the screen. CLS now does
it, although unless you’re one of the few users taking advantage of ANSI, it will reset
your screen colors to drab grey on black. This version was the first to offer batch file
commands such as ECHO, IF, FOR, SHIFT, and GOTO. If you haven’t yet mastered
these, you’ll be amazed at how they can help automate drudgework. We’ll show you how
(and point out tricks for retaining colors when you clear your screen) a bit later.

DOS 2.0 also introduced a raft of commands and utilities to give users control of hard
disks, although some, like the pathetic TREE command — designed to “display the entire
directory structure” — were a bad joke. DOS 4.0 finally fixed this.

Perhaps to compensate, IBM threw in a gem that has become a power user’s best friend
— the mini-assembler in DEBUG. You can become an absolute computer whiz without
ever having to learn a single thing about hex codes or assembly language. But if you want
to climb inside your system and stomp on the gas pedal, there’s no better way. It’s a lot
easier than you think.

One of the most significant changes in DOS 2.0 was the way it dealt with files
internally. To remain compatible with CP/M, DOS versions 1.0 and 1.1 kept track of
critical file information with a device called a File Control Block (FCB). But as programs
became more sophisticated they were forced to manipulate the data stored in FCBs
directly, which was awkward and potentially dangerous And FCBs had no provisions
for subdirectory names.

DOS 2.0 introduced file handles as an optional way to streamline disk management.
Once DOS knew about a particular file in a particular subdirectory, it could act on that
file simply by using a two-character shorthand code called a handle. In addition, DOS
established five special handles that made it a snap to switch inputs and outputs. Normally
the keyboard and screen (which DOS collectively refers to as the console or CON) act as

The Development of DOS 9

both the input and output. But DOS 2.0 let users “redirect” input and output to or from
printers, files, or other devices. And it allowed users to pipe streams of data through filters
to do things like turn uppercase files into lowercase ones, strip out extraneous characters,
or sort records in alphabetical order.

The sample filters DOS 2.0 provided are actually pretty useful. They’ll let you slog
through files and skim out the text you want saved or discarded. They’ll sort your
directories (or any list of names, numbers, or items that have carriage returns at the end
of each entry) lightning fast. And they’ll pause your displays for you so you’ll never again
have text scroll off your screen too quickly to read.

To top it off, DOS 2.0 provided rudimentary background processing. DOS was
originally designed as a single-tasking operating system that let users do just one thing
at a time. But the designers of version 2.0 threw in a PRINT spooler command that could
print out one file while a user was actively working on another.

‘While spoolers are nothing new, this one was. Spoolers normally lop off a big chunk
of RAM and trick DOS into sending files to memory that were really destined for the
printer. Then they wait for a quiet moment and re-route the files onto your printed page.
When they’re done printing, however, they still hold onto all the memory they hogged
— very inefficient. The DOS PRINT command reads files off your disks and uses your
precious memory much more sparingly. It watches how you work, and about 18 times
each second, if you’re not doing something at that precise moment, it sneaks a few
characters at a time to the printer. Your computer is so blazingly fast that this “time
slicing” technique makes it appear that it’s doing two things at once, when what it’s really
doing is alternating so quickly you don’t notice it. And the best part is that if you happen
to be working on something that takes more of your computer’s constant attention than
usual, you can adjust how frequently the spooler tries to intercede.

In addition, DOS increased the number of 512-byte sectors — the wedge-shaped
magnetic pie slices on a floppy disk that actually hold your data — from eight to nine.
‘While DOS kept the number of tracks in each sector at 40, this upped the storage capacity
of double-sided floppy disks from 320K to 360K. DOS 2.0 also let users add electronic
volume labels to their disks, gave them access to a part of memory called the environment
in which critical system settings were maintained, made memory allocation more
efficient, and threw in more than two dozen new commands.

With so many changes and new features, you’d think a brand new version of DOS such
as 2.0 would be filled with insidious bugs. And you’d be right. In March 1984, a year
after the PC-XT introduction, IBM released DOS version 2.1 to excise these software
errors — and to handle a hardware error it produced called the PCjr.

The less said about the PCjr the better. While it provided more colors onscreen in
graphics mode than IBM’s real microcomputers, and came with three-voice sound that
could play chords, it was utterly nonstandard inside and out. In fact, it used such a cheap,
flimsy disk drive that DOS 2.1 actually had to slow down the drive performance so the
thing wouldn’t crash.

What’s especially sad about this is that lots of users still rely on DOS 2.1, which means
they have to put up with unacceptably slow drive access times even though they’re using
machines that could handle much higher speeds. A pity. And one of many good reasons
to upgrade to a more recent DOS edition.

10 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Microsoft ended up producing versions 2.05, 2.11, 2.2, and 2.25 with an added
modicum of international time, date, keyboard, and currency support. These may come
in handy if you need to work with Korean Hangeul or Japanese Kanji characters; today
Microsoft sells DOS in more than 60 assorted languages.

DOS 3.0

IBM’s PC and PC-XT brought microcomputing into the mainstream of American
business. But these machines were both relatively slow and small. In fact, they weren’t
really even true 16-bit computers. While a 16-bit Intel 8088 central processing unit (CPU)
ticked away inside each one, their system bus — the connecting pathway of wires that
ties the CPU to all the other parts of the system — was a bottleneck that worked in eight-bit
chunks only.

- IBM introduced its first genuine 16-bit system, the PC-AT. Compared to IBM’s earlier
releases, this was a rocket ship of a computer. Inside was an 80286 CPU with a trick up
its sleeve — it could run everything IBM and Microsoft threw at it and could also
accommodate Microsoft’s next-generation OS/2 operating system. And it needed a new
version of DOS — 3.0.

Engineers measure computer performance in many ways. Two prime indicators are
the clock speed of the CPU and the average access time of the hard disk. The faster the
clock, the faster a computer processes instructions and the faster just about everything
runs. The speedier the hard disk average access time, the speedier it can read and write
programs and data. The higher the clock speed and the lower the average access time,
the nimbler the system.

Both the PC and the PC-XT ran at 4.77 megahertz (MHz). IBM sold many different
brands of hard disks for the XT, and the average access time was somewhere between 80
and 115 milliseconds.

The official clock speed of IBM’s first AT was 6 MHz, but users quickly found out
that by replacing a socketed $4 quartz crystal on the main system board they could boost
performance to 8 or even 9 MHz without any ill effects. (IBM is famous for publishing
ultraconservative specifications and holding down performance a bit on purpose.) When
IBM discovered that users were hot-rodding their systems, they wrote a program that
acted as a speed governor and put it onto a system ROM chip to prevent tampering.

All of IBM’s AT hard disks ran at speeds of 40 milliseconds or better. Unfortunately,
the first big batch of PC-ATs came with CMI-brand drives that crashed in shockingly
high numbers. Hard disks — rapidly spinning precision-crafted aluminum platters with
magnetic coatings on both sides — need precise feedback on where their magnetic
read/write heads are located. If the location mechanism is off by even a tiny bit the heads
can write bad data over good or wipe out important tables that tell the computer where
files are stored.

Hard disk heads actually “fly” on a cushion of air directly above the surface of the
platters themselves. All decent hard disks retract or park the magnetic heads when the
power goes off so they don’t sink down and plow furrows into your data. To save money,
CMI disks used what many believe was an unreliable implementation of wedge servo

The Development of DOS 11

technology. Most other hard disks used a dedicated positioning surface, a whole side of
a hard disk platter that contained no user data and instead acted as a map to the platters
that did. But not CMI's AT drives. And these drives didn’t park the heads when you
turned the power off. The heads just dropped down onto the data area and scraped against
it.

IBM never really admitted doing anything wrong, but tens of thousands of users know
differently. If this black episode in microcomputing history had a silver lining, it was that
it taught hard disk users how absolutely imperative it is to make frequent and comprehens-
ive backup copies of their work.

In any event, a PC-AT running at 8 MHz was 67 percent speedier than a standard PC
or PC-XT. The PC-AT hard disk was twice as fast as the speediest PC-XT drive, which
made everything seem a lot more energetic, and ended up turbocharging disk-intensive
applications such as database searches. On top of all that, the PC-AT could deal with
memory in 16-bit chunks, while the PC and PC-XT had to lumber along with half that
amount. Clone makers soon began producing respectable AT imitations that chugged
along even faster. To avoid falling behind the competition too much, IBM eventually had
to nudge the performance upward slightly each time it refined the AT design.

IBM’s newest PS/2 line of hardware and the many high-performance clones on the
market make even the fastest IBM PC-AT look like it’s standing still. With CPU speeds
of 20 and even 24 MHz, hard disk access times in the high teens, and a 32-bit bus that
moves information nearly four times as efficiently as the one in the original PC, these
hot new microcomputers give refrigerator-sized minicomputers a run for their money.

The PC-AT was originally delivered with a 20-megabyte hard disk, although subse-
quent versions have enhanced both the AT’s speed and the size of its hard disk. Still,
20,480,000 characters’ worth of storage meant that backing it all up would take 56
standard 360K double-density floppies. The mind reels. Apparently, so did IBM’s. It
dropped a quad-density floppy disk drive, which could hold 1.2 megabytes of data — or
the equivalent of nearly four 360K floppies — into each PC-AT. IBM refers to these as
high-capacity drives. Unhappy users have called them something else, unprintable here.

The PC-AT’s new DOS, version 3.0, could handle the increased floppy disk storage.
But it also had to understand every other floppy format. In the space of six years IBM
had introduced single-sided and double-sided drives, with eight or nine sectors, and in
double or quad density, so downward compatibility meant knowing how to deal with:

160K single-sided 5-1/4 inch drives
180K single-sided 5-1/4 inch drives
320K double-sided 5-1/4 inch drives
360K double-sided 5-1/4 inch drives
1.2M double-sided 5-1/4 inch drives

Well, there’s compatibility and there’s compatibility. Out of the 25 different possible
combinations of using the DISKCOPY command to move information from one to the
other, 16 won’t work.

‘What’s more, IBM’s PS/2 hardware uses 3-1/2 inch diskettes, a whole new ball game.
These smaller diskettes are sturdier, easier to transport, and vastly more efficient at storing

12 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

information. IBM characteristically complicated matters by producing two different and
slightly incompatible 3-1/2 inch formats, one that holds 720K and one capable of storing
1.4 megabytes of data. The 5-1/4 inch 320/360K floppy format won’t go away very
quickly, since so many vendors have made it the standard for program distribution. But
the PC-AT’s 1.2 megabyte drive and the low-end PS/2 720K diskette are orphans.

All IBM microcomputers gave users a clock and calendar that could stamp DOS
directory listings with the time and date files were created or most recently changed. But
users had to set the clock each time they started (booted up) their systems, unless they
had purchased an add-in board with a battery-driven clock on it (and most did). The
PC-AT came with its own internal battery-run clock/calendar, although it wasn’t until
DOS version 3.3 that users could reset it easily.

Figure 1.1 shows the configurations of all of IBM’s PCs through the PS/2 80.

ID Speed I/OBus Maximum DOS
Model Byte CPU (MHz) (Bits) - RAM Keyboard Version
PC FF 8088 4.77 8 640K old 1.0
XT FE 8088 4.77 8 640K old 2.0
PCjr FD 8088 4.77 8 640K special 2.1
AT FC 80286 6/8 16 15M both 3.0
PC/2 FB - 8088 4.77 8 640K both -
XT/286 FC 80286 6 16 - 15M both -
Convertible Fo 80C88 4.77 8* 640K special -
Model 25 FA 8086 8 8* 640K new -
Model 30 FA 8086 8 8 640K new -
Model 50 FC 80286 10 16 16M new 3.3+
Model 60 FC 80286 10 16 16M new 3.3+
Model 70 F8 80386 16/20 32 4G new 3.3+
Model 80 F8 80386 16/20 32 4G new 3.3+

"Models 25 & 30 have a 16-bit memory bus. Data on late-model machines courtesy of John Woram’s PC
Configuration Handbook.

Figure 1.

1. Hardware Configurations of IBM’s Personal Computers

Program developers live by a rule: “The software is never finished.” Each release of
DOS or any commercial application is quickly followed by a version with bug fixes,
speedups, and forgotten utilities. Market considerations force manufacturers to ship
everything at the earliest possible date. Microsoft officially admits that DOS 3.0 “wasn’t
quite ready” at the introduction of the PC-AT. But it went out the door anyway.

Today, virtually every desk in America has a telephone in one corner. IBM’s vision
of the future puts a computer terminal next to it, and strings all the terminals together

The Development of DOS 13

electronically. Networking computers this way does have lots of advantages. It lets users
“mail” messages and files to each other, and share centralized data bases of information.
Someday when everyone has to send text to everyone else and when it’s easier and
cheaper to consult a far wider range of databases, this will be attractive.

Networks can also let users share expensive peripherals like plotters or laser printers,
but it doesn’t make much sense to install three $1,500 network hookups to share one
$1,500 printer. Today networks are interesting to a minority of users only — although
the number grows as the costs and headaches often associated with using them are
reduced. Networks introduce their own special set of problems. Two users may reach for
the same data base records at the same time, and something has to mediate the conflict.
Worse, giving users access to centralized information means someone has to decide who
has the authority to read what files and change which data. And then something has to
keep track of the authorization levels and enforce it all, and make sure the right data is
routed to the right place.

Microsoft designed DOS version 3.0 to support the official IBM PC network hardware.
Unfortunately, the AT was ready before the network features of DOS were, and the
Microsoft designers had to deactivate these features in the final product. They finally
turned them back on in version 3.1, released in November 1984. But DOS 3.1 was picky;
it would handle only certain “well-behaved” networks. (“Misbehaved” products are ones
that use undocumented commands, or bypass software safeguards by manipulating
hardware directly, or otherwise bend industry rules to enhance performance.)

DOS 3.0 introduced a streamlined method for integrating FCBs and handles. And
while it provided a small handful of new features, none was a radical departure from
DOS 2.1. In fact, IBM stated in its documentation that “DOS 3.0 does not replace DOS
2.1.” But it did fix a nasty 2.1 oversight, by making it harder for users to format their
hard disks if they weren’t careful. (It wasn’t until version 2.0 that DOS asked for
confirmation if users tried to delete all the files on their disk with a single ERASE *.*
command.) Version 3.0 also let users make files read-only to prevent any inadvertent
changes or deletions.

Version 3.1 provided better aliasing features to combine drives and directories and to
trick DOS into treating a subdirectory like a disk drive. DOS 3.2 introduced users to 3-1/2
inch diskettes (although the tools it provided to handle this were downright awful), made
it easier for them to upgrade DOS versions, and gave them one of the best, but least-used,
new commands, XCOPY.

DOS 3.3, tossed off by IBM pitchmen at the introduction of the PS/2 as an “interim
solution” and the operating system for a string of dogs including the PC Convertible,
Portable PC, and PCjr, deftly excised a heap of user headaches, and added a few sizzling
new tricks.

As all seasoned hard disk users are aware, working efficiently on a hard disk machine
means pigeonholing related programs and data in electronic file drawers called sub-
directories. But users who are currently working in one subdirectory often want to execute
a program or look at data stored in another.

Since version 2.0, users had been able to tell the PATH command to check specified
subdirectories for executable files (with filenames ending in COM, EXE, or BAT). This
let users run programs in other subdirectories, but it didn’t let them get at distant data.

14 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Nonexecutable files remained immune to even the most comprehensive search, forcing
power users to purchase commercial “path éxtender” programs such as FilePath or File
Facility, or struggle with the DOS 3.1 SUBST command. The DOS 3.3 APPEND
command made the process relatively easy — and a lot cleaner.

Serial ports are your system’s main gateway to the outside world. Version 3.3 let
MODE work with four serial ports rather than just two (OS/2 can juggle up to eight), and
cruise along at up to 19,200 baud, double the previous limit. And IBM finally recognized
‘that at least twice a year users need to reset their internal IBM clocks and provided a way
to do this without having to hunt down their Diagnostics disks, figure out which option
adjusts the time, and then grind through all the irritating preliminary screens. The 3.3
TIME and DATE commands automatlcally adjusted IBM CMOS memory to reflect the
change.

Another improvement was the newfound ability of the DOS 3.3 ATTRIB command
to gang-process all files in a directory and its related subdirectories, which made it easier
to create backups and prevent inadvertent file deletions or changes. Unfortunately, the
same process used by ATTRIB can also “hide” ﬁles from casual snooping, but IBM won’t
show you how. (We will.) ,

The original DOS architects preferred working with 512-byte disk sectors, and used a
FAT to keep track of what data is in which sector. When they designed the FAT they
used 16-bit addresses, which' allowed a maximum of 65,536 (64K) table entries. This
clamped a firm 32 megabyte limit (512 x 65,536 = 33,554,432 bytes) on the size of any
physical hard disk. To get around this limit, manufacturers either had to increase the
sector size, which made their hardware nonstandard and relatively wasteful, or come up
with a whole new file management scheme, which ended up being even more nonstan-
dard.

IBM tuned DOS 3.3 to divide physical hard disks into smaller logical drives, and fixed
the FDISK command to create extended DOS partitions in addition to the primary ones
users were able to carve out previously. Each extended partition could be further
subdivided into logical drives 32 megabytes or smaller, with their own drive letters.
Compaq quickly made it even easier to use enormous hard disks, by introducing a DOS
version (3.31) that boasted 32-bit FAT addresses.

To expedite directory searches with the new generatlon of larger hard disks, DOS 3.3
provided a filename cache utility called FASTOPEN. Caches keep track of things in
memory rather than on disk, speeding up many processes significantly. FASTOPEN
notes the location of files and subdirectories (which are really just special classes of files)
the first time you hunt for them, and then directs DOS to the exact spot on the disk the
next time you have to deal with them.

The DOS BACKUP command had always been so pathetlc that an entire industry of
third-party backup software has evolved to fill in the gaps. While the version 3.3
enhancements aren’t going to put all those developers out of business, they will bring
some users back into the fold. Under previous DOS versions you had to format a tall stack
of disks before starting the backup process. If you ran out of formatted disks halfway
through you had to abort and either find a way to catch up, or start the whole elaborate,
time-consuming procedure over again. .

The Development of DOS 15

In DOS 3.3 the BACKUP command can summon the FORMAT command and prepare
unformatted disks if necessary — with certain irritating restrictions. And you have to
limit the disks and drives you use; it still can’t mix and match. The DOS 3.3 BACKUP
works faster and more efficiently than older versions, by copying all smaller files to a
single enormous one, and by creating a guide file that tells DOS how to take the big file
apart and restore it properly later. It will also create a log file telling you what it did where.

The DOS 3.3 RESTORE gives you added flexibility in restoring backed-up files by
date and time, as well as those deleted or changed since you backed them up, or files that
are no longer on the target disk. Better yet, while older versions of RESTORE let you
accidently obliterate your current system files IBMBIO.COM, IBMDOS.COM, and
COMMAND.COM or their generic counterparts) with older backed-up versions, DOS
3.3 RESTORE won’t. Inadvertently mixing versions of hard disk system files is like
replacing a heart surgeon, in the middle of an operation, with a tree surgeon.

Batch files can take much of the anguish out of tricky or repetitive tasks. The first thing
most power users do when they create a batch file is turn off the display by issuing an
ECHO OFF command. This stops DOS from littering your screen with the frantic
prompts, messages, and other electronic graffiti a batch file triggers. But users had no
authorized way of preventing this ECHO OFF command from adding to the screen clutter
itself. Version 3.3 users can prevent such clutter simply by prefacing any command with
a @ symbol.

In addition, DOS 3.3 could CALL one batch file from another, execute it, and then
return to the original batch file and continue executing it. Doing this kind of “nesting”
under previous editions of DOS meant that each batch file had to load its own separate
version of COMMAND.COM, do its work, exit, and drop back to yet another version —
‘which was sort of like restarting a movie each time a latecomer walked into the theatre.
DOS 3.3 also documented environment variables for the first time, which let users pass
information back and forth from application to application.

DOS 3.0 to 3.2 came in five international flavors. By executing the appropriate
KEYBxx command, users could transform the keyboard into British, German, French,
Italian, or Spanish modes. With version 3.3, IBM totally revamped the way DOS handled
foreign alphabets. IBM’s manuals have gotten a bit better over the years, but the three
abstruse and seemingly contradictory chunks on this international support virtually defy
comprehension. IBM prefaced its long appendix-like treatment of the topic with the
caveat “You can use code page switching without fully understanding everything about
it.” After poring over the text, you’ll know why this was included. And if you live in the
United States, you’ll take one look, put your hand over your heart, and say “Thank God
we’re Americans.” o

For the first time, DOS 3.3 set a default number of disk buffers based on your system’s
configuration. Under previous versions, it assumed every PC and XT user really wanted
only two and every AT user only three. DOS will now sniff out what hardware you have
available, and allocate from two buffers (minimal RAM and no high density floppies,
3-1/2 inch diskettes, or hard disks) to 15 (any machine with 512K or more of RAM). If
you’re using a big hard disk you may want more than 15. Better yet, you should try a
commercial file cache program.

16 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

DOS 4.0

Through seven years of upgrades, IBM and Microsoft still hadn’t made it any easier to
learn the ropes, or do simple tasks like move groups of files from one place to another.
Beginners who thought they could just press a button or two and have their new computers
do all the work found themselves staring at a lonely DOS prompt on an otherwise blank
screen. Worse, DOS still made it too easy for even experienced users to do dangerous
things like wipe out their work by copying older versions of files onto newer ones.

Some users relished the challenge and learned to rattle off thorny strings of DOS
commands bristling with backslashes and inscrutable parameters like MAXTICK,
TIMESLICE, QUESIZ, and CODEPAGE. Many operated solely by brute force and
avoided doing anything the least bit complex. Others bought special menu-based inter-
face programs called DOS shells to step them over the rough spots, or else gave up and
bought Macs.

One of the most irksome problems was that DOS couldn’t really handle single hard
disks bigger than 32 megabytes. It forced users to employ silly schemes like dividing up
one large storage device into little pieces, so that a single 200 meg hard disk might end
up as drives C:, D:, E:, F:, G:, H:, and I.. While IBM had always been the first hardware
manufacturer to solve such problems, this time Compaq became frustrated with such
limitations and made a special arrangement with Microsoft to introduce a slightly
enhanced version it called 3.31. (Another irritating constraint was that DOS couldn’t use
more than 640 kilobytes of RAM for most tasks.)

Then on a steamy 1988 summer afternoon in New York City (and with little fanfare)
IBM released a new incarnation of DOS called 4.0, which was quickly followed by a bug
fix called 4.01. Collectively most users referred to these new versions either as “DOS 4”
or “the big, expensive, new version of DOS that nobody uses.” As with every other major
new version of DOS, this one increased in size, and added some powerful new utilities.
But it also came with a DOS shell cleverly named the “DOS Shell” that promised to tame
just about every formerly nightmarish system chore. Unfortunately it didn’t.

Microsoft and IBM wanted DOS to fade away so they could sell expensive new
programs like Windows and OS/2 and Presentation Manager (PM), and pricey new
hardware. Users were demanding huge machines with tons of RAM and hard disk space
and friendly features, and it was growing increasingly difficult to graft such things onto
what was essentially a tricked-up version of CP/M and Unix, with the worst drawbacks
of each. ‘

However, by the end of the *80s, according to Microsoft chairman Bill Gates (who
licenses all copies of DOS and knows the real numbers), various hardware manufacturers
had sold an astonishing 60 million DOS systems. While vendors were hyping their hot
new 80386- and 80486-based machines, tens of millions of users owned systems that
lacked the sophisticated chips, expensive color graphics, and whopping amounts of
memory required to handle OS/2. And frankly, huge numbers of DOS users really didn’t
need the fancy multitasking or data exchange abilities of OS/2.

The Development of DOS 17

‘What they did want was something easier, smarter, friendlier, and more powerful. DOS
4.0 was a step in the right direction, but a baby step. Microsoft finally realized that some
users wanted more power and ease but simply weren’t going to need complex OS/f2-like
operating systems, and it privately announced that a friendlier DOS 5 would be forth-
coming,

DOS 5.0—Room to Move

After months of testing, Microsoft finally released MS-DOS 5.00 in June of 1991.
Corroborating the rumors that circulated while it was in beta, it features an organized and
sanctioned workaround to the worst aspects of the 640K barrier, allowing much of DOS
itself to reside in the area above 640K, and providing support for loading device drivers
and TSR programs in this memory space. On a typical 386-or-better system with more
than 640K of memory, DOS 5.0 will, with a bit of fine-tuning, leave more than 620K
free for applications. In addition, an improved Shell, on-line help, a new BASIC
interpreter, an enhanced command-line edit capability, and a long-awaited alternative to
EDLIN are included, along with some significant improvements to familiar commands
like DIR and ATTRIB. It also provides a number of features that users previously had to
seek in third-party software, such as the capability to unerase a file, or unformat a disk.
And for the first time, DOS directly supports task swapping — if you’ve got the patience
to put up with the DOS shell. A full treatment of these and other topics follows, in the
next chapter.

Figure 1.2 shows the relative sizes of the various versions of DOS. You can use the
chart provided to look at the size of COMMAND.COM on diskettes formatted with the
/S option and determine the DOS version number. Note that while DOS 4.0 was a
whopping six times larger than the first DOS version, and 38 percent fatter than its
immediate predecessor, DOS 5.0, when loaded into high memory, takes up only as much
space as DOS 2.1 did.

Figure 1.3 traces the addition of commands through versions of DOS, up to 5.0. Figure
1.4 shows which commands were modified in which versions.

18 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

DOS 1.0 — 13312 bytes used by system files

COMMAND COM 3231
IBMBIO COM 1920
IBMDOS COM 6400
DOS 1.1 — 14336 bytes used by system files
COMMAND COM 4959
IBMBIO COM 1920
IBMDOS CoM 6400
DOS 2.0 — 40960 bytes used by system files
COMMAND CoM 17664
IBMBIO COM 4608
IBMDOS COM 17152
DOS 2.1 — 40960 bytes used by system files
COMMAND COM 17792
IBMBIO COM 4736
IBMDOS COM 17024
DOS 3.0 — 60416 bytes used by system files
COMMAND COM 22042
IBMBIO COM 8964
IBMDOS COM 27920
DOS 3.1 — 62464 bytes used by system files
COMMAND COM 23210
IBMBIO COM 9564
IBMDOS COM 27760
DOS 3.2 — 69632 bytes used by system files
COMMAND CoM 23791
IBMBIO COM 16369
IBMDOS COM 28477
DOS 3.3 — 78848 bytes used by system files
COMMAND COM 25307
IBMBIO COM 22100
IBMDOS COM 30159
DOS 4.0 — 108544 bytes used by system files
COMMAND COM 37637
IBMBIO COM 32816
IBMDOS COM 36000
DOS 5.0 — 118669 bytes used by system files
COMMAND COM 47845
IO SYS 33430
MSDOS SYS 37394

8-04-81
7-23-81
8-13-81

5-07-82
5-07-82
5-07-82

3-08-83
3-08-83
3-08-83

10-20-83
10-20-83
10-20-83

8-14-84
7-05-84
7-05-84

3-07-85
3-07-85
3-07-85

12-30-85
12-30-85
12-30-85

3-17-87
3-18-87
3-17-87

6-17-88
8-03-88
8-03-88

4-09-91
4-09-91
4-09-91

12:00a
12:00a
12:00a

12:00p
12:00p
12:00p

12:00p
12:00p
12:00p

12:00p
12:00p
12:00p

8:00a
3:00p
3:00p

1:43p
1:43p
1:43p

12:00p
12:00p
12:00p

12:00p
12:00p
12:00p

12:00p
12:00p
12:00p

5:00a
5.00a
5:00a

Figure 1.2. Relative Sizes of All IBM DOS Versions

New External Commands

DOS 1.0 DOS1.1 DOS 2.0/2.1 DOS 3.0 DOS 3.1 DOS 32 DOS 3.3 DOS 4.0 DOS 5.0
BASIC.COM EXE2BIN.EXE ANSLSYS ATTRIB.COM BASIC.PIF DRIVER.SYS 4201.CPL DOSSHELL.BAT DELOLDOS.EXE
BASICA.COM ASSIGN.COM GRAFTABL.COM BASICAPIF REPLACEEXE 5202.CPl MEM.EXE DOSKEY.COM
CHKDSK.COM BACKUP.COM KEYBFR.COM JOIN.EXE XCOPY.EXE APPEND.EXE XMAEM.SYS DOSSWAP.EXE
COMMAND.COM FDISK.COM KEYBGR.COM SUBST.EXE COUNTRY.SYS XMA2EMS.SYS EDIT.COM
COMP.COM FIND.EXE KEYBIT.COM DISPLAY.SYS EGASYS
DATE.COM GRAPHICS.COM KEYBSP.COM EGA.CPI EMM386.EXE
DEBUG.COM MORE.COM KEYBUK.COM FASTOPEN.EXE HELP.EXE
DISKCOMP.COM PRINT.COM LABEL.COM KEYB.COM HIMEM.SYS
DISKCOPY.COM RECOVER.COM SELECT.COM KEYBOARD.SYS LOADFIX.COM
EDLIN.COM RESTORE.COM SHARE.EXE LCD.CPI MIRROR.COM
FORMAT.COM SORT.EXE VDISK.LST NLSFUNC.EXE QBASIC EXE
LINK.EXE TREE.COM VDISK.SYS PRINTER.SYS SETVER.EXE
MODE.COM UNDELETE.EXE
SYS.COM UNFORMAT.EXE
TIME.COM
New Internal Commands

DOS 1.0 DOS 1.1 DOS 2.0/2.1 DOS 3.0 DOS 3.1 DOS 3.2 DOS 33 DOS 4.0 DOS 5.0
COoPY DATE BREAK COUNTRY (none) (none) CALL INSTALL DEVICEHIGH
DIR DEL BUFFERS DEVICE CHCP SWITCHES LOADHIGH
ERASE REN CD FCBS TRUENAME LH
PAUSE TIME CHDIR LASTDRIVE (undocumented)
REM CLS
RENAME CTTY
TYPE ECHO

ERRORLEVEL

EXIST

EXIT

FILES

FOR

GOTO

IF

MD

MKDIR

PATH

PROMPT

RD

RMDIR

SET

SHIFT

VER Note: Files with extensions are predominantly external commands or device drivers. Those without extensions are either

zglll‘lFY internal commands (part of COMMAND.COM) or configuration commands that work specifically with CONFIG.SYS.
Figure 1.3. New DOS Commands and Utilities

61 SOQ fo wmawdojanaqg ayJ

DOS 1.0

(none)

DOS 1.0

(none)

DOS 1.1

(TIME.COM)
(DATE.COM)
FORMAT.COM
CHKDSK.COM
ERASE.COM
DISKCOMP.COM
DISKCOPY.COM
LINK.EXE
DEBUG.EXE
MODE.COM

DOS 1.1

(none)

DOS 2.0/2.1

CHKDSK.COM
COMP.COM
DEBUG.COM
DISKCOMP.COM
DISKCOPY.COM
EDLIN.COM
FORMAT.COM

DOS 2.0/2.1

DIR
DEL ERASE

DOS 3.0

FORMAT.COM
BACKUP.COM
RESTORE.COM
DISKCOMP.COM
DISKCOPY.COM
GRAPHICS.COM

DOS 3.0

DATE
(external command
paths okay)

Modified External Commands

DOS 3.1

LABEL.COM
TREE.COM
LINK.EXE

DOS 3.2

ATTRIBEXE
COMMAND.COM
DISKCOMP.CM

. DISKCOPY.COM

FORMAT.COM
SELECT.COM

*
environment size

Modified Internal Commands

DOS 3.1

(none)

DOS 3.2

SHELL

DOS 3.3

ATTRIB.EXE
BACKUP.COM
FDISK.COM
GRAFTABL.COM
MODE.COM
RESTORE.COM

DOS 3.3

ECHO
DATE
TIME

DOS 4.0

ANSILSYS
APPEND.EXE
BACKUP.COM
CHKDSK.COM
DISPLAY.SYS
DISKCOMP.COM
DISKCOPY.COM
FASTOPEN.EXE
FDISK.COM
FORMAT.COM
GRAFTABL.COM
GRAPHICS.COM
KEYB.COM
MODE.COM
PRINTER.SYS
REPLACE.EXE
SELECT.EXE
SHARE EXE
SYS.COM
TREE.COM
VDISK.SYS

DOS 4.0

BUFFERS
COUNTRY
DEL

DIR
ERASE
LABEL

TIME
VoL

DOS 5.0

ATTRIB.EXE
DOSHELL.EXE
FORMAT.COM
MEM.EXE
RAMDRIVE.SYS
SMARTDRIVE.SYS

DOS 5.0

DIR

Figure 1.4. Modified DOS Commands and Utilities

0°S SO +10f pasiazy ‘uomipi pug ‘sjoof, 1amod SOd 0T

DOS 5.0: An Overview

The first edition of the IBM Disk Operating System, or DOS, was introduced in 1981 to
support the company’s entry into the world of personal computers. Right from the start,
DOS was perceived to be an IBM product, although it was in fact developed by Microsoft
— with a little help from Big Blue of course. “IBM” and “DOS” were printed on the
spine of the manual, but inside, “Disk Operating System by Microsoft, Inc.,” was printed
on the title page. Blurred authorship notwithstanding, DOS version 1.0 was not much
more than a grab bag of features “borrowed” from earlier operating systems, with a
COMMAND.COM processor that was some 3231 bytes long. Today, the file with the
same name eats up almost 50K bytes. Back in version 1.0 days, you had to run separate
standalone programs to set the date and time. You couldn’t store more than 160Kb on a
single diskette. You could rename, copy or erase a file, but if you wanted to do much
more than that, you were out of luck. But this wasn’t such a big deal way back then. IBM
sold its PC-1 with a measly 16Kb of RAM inside, and many users stored data on analog
audio cassettes.

In early 1982 IBM acknowledged that the operating system had a few little problems
and released what it called the Version 1.1 DOS Upgrade (some others called it the “DOS
1.0 bug fix™). The manual noted: “We’ve just brushed the surface of the many enhance-
ments.” Big Blue was not kidding.

Over the years, subsequent DOS enhancements have brought us hard disk support, the
hierarchical file system, networks, all sorts of diskette sizes, and a foreign alphabet —
the latter often used to describe much of the former. For good measure, the
IBM/Microsoft marriage partners even threw in a collection of tantalizing utility pro-
grams; some good, some bad and some just plain awful. To help feed and clothe the
ever-expanding clone marketplace, Microsoft began distributing its part of the operating
system to other manufacturers, some of whom would add enhancements before bundling
it with their own hardware systems.

21

22 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

But almost immediately after the release of each new DOS version, some new
hardware would outpace the new operating system, much to the distress of the user in
search of “more”: more hard disk space, more RAM, more colors, more this and more
that. Oh yes, and an interface that would please the normal human, if not the computer
nerd.

From time to time the DOS programming wizards would announce new solutions to
various longstanding problems. But wait: isn’t “DOS programming wizards” one of those
oxymorons, like “military intelligence” or “business ethics”? Aren’t one of these partners
the same wonderful people who brought us TopView and DisplayWrite? And did not
these very same wizards sell (or try to sell) a lot of truly wretched accounting software
designed for an obsolete minicomputer?”

Well, yes. But every now and then the wizards would get something right and help
DOS dig its way out of the software doghouse. For DOS version 3.2, they developed
XCOPY — one of the finest DOS utilities ever. And over the years since DOS 1.0, the
companies everyone loves to hate have spent much effort burnishing other facets on the
surface of the operating system that everyone loves to hate. Today, some shine brightly.
Others could use a bit more polish.

Yesterday ’s History: DOS 4.0

In the long march towards the ultimate operating machine, DOS 4.0 was a giant step.
Backwards. Its bug list was long, and over the first two years of its life, IBM released a
regular stream of CSDs (Corrective Service Diskettes) to its authorized dealers. By
mid-1990 the various updates had fixed many of its quirks, and history may yet celebrate
DOS 4.0 as a powerful marketing tool — for OS/2. However, version 4.0 did have its
good points, a few of which are listed here. These features were significantly different
from, or simply didn’t exist in, the earlier DOS editions. Most of the features described
here have been retained or improved in DOS 5.0.

Ease of Installation

You didn’t have to worry much about installing DOS 4.0; the INSTALL diskette took
care of most of the chores for you. It figured out what kind of hardware you had and
busied itself creating system subdirectories, copying the proper files into them, and
making all the proper configuration settings (well, almost all the proper settings).

The DOS Shell
‘ Users who previously needed a dog-eared manual and a bottle of Excedrin to get up and
running were jolted by the sight of the new DOS Shell, a friendly full-color screen that

offered to load any application or take care of mundane diskette and file chores at the
touch of a few keys.

DOS 5.0: An Overview 23

The DOS Shell brings prompt relief to anyone suffering the discomforts of a C> prompt
allergy, and it protects both the neophyte and the guru from such esoterica as, say

[d:] [path) FORMAT d:[/s] (/1] (/8] [/v][/B] (/4] [/N:9] [/T:80] [/F]

All that, merely to prepare a diskette for use. The Shell does away with such turgid
command-line syntax in favor of the point-and-shoot menu style that has made the (gasp!)
Apple Macintosh so popular. For a company’s MIS department, it may be ranked as a
blessing from above, since it allows the executive computerphobe to get through the
business of the day by simply negotiating an onscreen menu, rather than by making
endless calls downstairs to Corporate 911.

Yet some users neither want nor need a layer of insulation between themselves and
their operating system. In fact, there are those who regard the DOS shell as some kind of
infoclam defense against penetration from the outside world. Such folk prefer to navigate
the old-fashioned way — by executing their orders at the DOS prompt. It may not look
pretty, but it’s often faster, especially for those who know their way around the keyboard.
For such users, DOS 4.0 made some effort to standardize the way it interpreted instruc-
tions. For example, the early DOS rules for switches and other command tail parameters
(all that business following the FORMAT command above) were not always consistent.
Sometimes you could type in your backslashes and other punctuation in one long, endless
chain, and sometimes you couldn’t: you’d need to use delimiters — symbols (space,
comma, etc.) that separate one switch or other parameter from another. And of course
you’d have to get all your variables right, or else try to guess which one was wrong. In
early versions of DOS,a FORMAT B: /S /Zcommand would display a terse “Invalid
parameter” message. It was up to you to guess which parameter was invalid.

Things are better now. DOS 4.0 helped out by reporting “Invalid switch /Z” so you
knew just where the problem lay, if not yet how to fix it. But DOS 5.0 takes care of even
that little detail (see below).

Improved Disk and RAM Management

DOS 4.0 finally broke through two nasty barriers — the 32 Mbyte hard disk ceiling and
the 640Kb RAM limit. While eatlier versions let users slice an enormous hard disk into
smaller logical drives, each no greater than 32 Mbytes, DOS 4.0 let you treat any size
hard disk as a single drive. And, for the first time, DOS acknowledged that the user may
need more than minimal RAM. In previous editions, RAM addresses above 640K were
all but ignored. You could install an electronic disk up there, but that was about it. DOS
4.0 opened up the higher-memory real estate to other applications by supporting the LIM
(Lotus/Intel/Microsoft) Expanded Memory Specification. In the IBM version of DOS
4.0, the required device driver — XMA2EMS.SYS (Big Blue has a way with names) —
would work only with IBM-brand EMS memory (surprise!), but Microsoft’s generic
driver (HIMEM.SYS) works well on most systems.

24 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Other Improvements

All DOS upgrades have provided more and better system tools, and DOS 4.0 was no
exception. It introduced several new utilities, and supercharged nearly two dozen existing
commands. The new goodies ranged from friendlier formatting to better backups, most
of which have been carried forward into DOS 5.0, as described below.

And Now, DOS 5.0

But first, another backward glance. Prior to version 5.0, users might have purchased the
operating system directly from IBM, in which case it was — according to the accompa-
nying User’s Manual — the “IBM Operating System.” For the vast IBM-compatible
market, Microsoft supplied an OEM (Original Equipment Manufacturer) DOS directly
to the hardware manufacturer, who might make some modifications before delivering it
to the end-user. In this case, it was usually bundled with the computer itself, and a retail
sale of this brand of DOS was rare.

But effective with DOS 5.0, the Microsoft marketeers have come out of their own DOS
marketing shell with two versions of DOS, both described here.

The Upgrade Path

A new MS-DOS 5.0 Upgrade package is available through traditional retail outlets, such
as your friendly(?) local computer dealer. This version can only be installed on a system
that is already up and running with an earlier version of DOS installed. It will not install
itself on a brand new machine.

The OEM Version

This is the new DOS in the old familiar format, as sold to the user by IBM and the other
OEMs out there in hardwareland. This is the version to buy for your brand new computer.

Unless otherwise noted, this chapter follows the DOS path described in the Microsoft
MS-DOS version 5.0 manual.

New Feature Summary

To help you decide if DOS 5.0 is for you, here’s a brief list of some features that are either
new or considerably enhanced over previous versions, notably over DOS 4.0. Later on,
each of these features will be described in greater detail.

Memory Management

As noted in the first paragraph of this chapter, DOS has not gotten smaller with age. But
with that age has come wisdom: DOS is now smart enough to install much of itself above
the 640Kb point, thus freeing valuable conventional memory space for running your

DOS 5.0: An Overview 25

applications. With an 80386 or better microprocessor, various device drivers and pro-
grams can also be moved out of the conventional memory area, again leaving more space
below for other programs. And if you’re wondering just what is going on inside all that
RAM, the MEM command shows where all your loaded programs have landed, and
where the free space is. With luck, and good memory management, there should be plenty
of it.

Oops Guard

The new UNFORMAT and UNDELETE utilities do just what you think they do.

The Help Screen

Except for DOS, just about every application out there offers the user some sort of
onscreen help. Now, so does DOS. Just follow any command with /? and, instead of the
command being executed, the screen displays a brief explanation of the command,
followed by a list of the various switches and other parameters that are available. It
doesn’t always eliminate the need for the manual, but it might offer just enough
information to jog your own memory.

A New Editor

For years, DOS gurus have lamented the limitations of the EDLIN utility, which was,
and is, a cheap-and-dirty little line editor. If not quite all you needed to write the next
great American novel, it was, and is, all you need to knock off a quickie batch file, or
something no more demanding than that.

EDLIN bashers now have a bigger target to shoot at. Although old EDLIN itself is still
around, and still does what it does quite nicely, the new EDIT utility is a full-screen editor
with considerably more power and flexibility.

Bigger Partitions

As noted above, the old 32Kb hard disk limit is gone. DOS 5.0 supports disk partitions
of up to two gigabytes, which is 1,073,741,824 times two. If that won’t do, you’re
probably too verbose.

Better Directories

Starting now, you can append various switches to the familiar DIR command, to sort your
directory list alphabetically, by date/time, by type (i.e., extension) and/or by file size. If
you have a favorite sorting style, you can specify it as a default setting in the DOS
environment.

The Basic BASIC

It’s gone! Good old GWBASIC has given way to QBASIC, a scaled-down version of the
Microsoft QuickBASIC language, which is sold separately. According to the manual,

26 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

QBASIC “provides a complete environment for programming in the BASIC language.”
That depends on how one defines “complete.” Actually, QuickBASIC is complete.
QBASIC leaves out all the compiling options. But it should be enough to convince you
that Microsoft’s really complete version is well worth having around, especially for those

" times when you need a little something done, but you don’t feel quite up to facing the
complexities of C or the arcana of assembly.

A Few Steps Beyond F3

Most DOS users know about hitting function key F3 to bring the last command back to
the screen. It’s quite helpful when that command was one of those dreadful lines with all
sorts of parameters, and you only got one of them wrong. But what if you want the
next-to-last command, or maybe the one before that? With the TSR (Terminate, Stay
Resident) DOSKEY program loaded, you can use the arrow and page up/down keys to
fetch various command lines that were entered prior to the one that now appears on screen.

Denser Data

The DOS 5.0 manual lists a new switch (/f:2.88) for the familiar FORMAT command.
The addition lets you format 2.88Mb 3.5” diskettes, or it will just as soon as the necessary
hardware (drives) and software (diskettes) hit the market. There was talk of a 2.88 diskette
drive for the IBM models 90 and 95, but both machines made their debut with 1.44Mb
drives as standard. But sooner or later the drives will show up, and DOS 5.0 is ready for
them.

Easier Installation

Not the least of DOS 5.0’s attractions is its hassle-free installation. Upgrading from an
earlier DOS is easy; installing DOS 5.0 on a brand new computer is easier still. The DOS
5.0 Installation section below shows how to do both. After that, we’ll take a closer look
at some of the bells and whistles.

A Few Pre-installation Notes

Until version 4.0, DOS was downward compatible; each new version could handle just
about anything created by an older version. For example, insert an old single-sided 160Kb
diskette into a 1.2 Mb drive and type DIR — after a few seconds you’ll see the directory
of diskette files. :

For the sake of that downward compatibility, when any command format was changed,
the command will usually still operate in the old format as well as the new. For example,
here are the new (DOS 4.0 and 5.0) and old ways to set the parameters for a serial
communications port:

MODE COM1:2400, N, 8, 1
MODE COM1 BAUD=2400 PARITY=NONE DATA=8 STOP=1

DOS 5.0: An Overview 27

DOS 4.0 and 5.0 recognize either format, while only the first one will function with
pre-DOS 4.0 operating systems.

However, there was one little compatibility problem that IBM introduced in its own
version of DOS 4.0. Assuming you had previously formatted your hard disk with an
earlier IBM DOS (3.3, for example), there would be no problem in upgrading to the latest
DOS. But if you had the temerity to use a non-IBM DOS in the past, then Big Blue would
not be pleased with you. During an upgrade to the new IBM DOS, the installation routine
would display an “Invalid media type” error message and quit. The problem is due to a
special eight-character “OEM identification field” in the boot sector at the beginning of
a hard disk partition. This field stores the manufacturer’s name and the version of DOS
resident on the hard disk. If it was an IBM version, the field contained the letters “IBM *
(with a space after the “M™). If not, it contained something like “MSDOS” or “0S2.”
‘When IBM’s installation routine looks at this spot on the disk, if it sees anything other
than “IBM ~ it grinds to a halt and issues that invalid media error message.

Compag and some other non-IBM vendors actually put the letters “IBM ” in this
location just to be sure they remain as compatible as possible with IBM versions.
However, if your hard disk does not pass an IBM media inspection, and you know your
way around DEBUG, you can modify the OEM ID field so that IBM DOS will install
itself without incident. To see what’s in the OEM ID field in your system, make sure your
DOS DEBUG program is handy, and type the following lines exactly as they appear but
make sure to read these notes first.

Note 1: Type carefully. Don’t experiment, and heaven forbid, don’t enter a W (Write)
command unless you’re sure you know what you’re doing. In fact, before trying this,
back up your entire hard disk. Typing in the following lines without error won’t hurt
anything, but it’s a good excuse to make sure you're completely backed up.

Note 2: The following DEBUG instructions assume your hard disk is drive C. The
DEBUG utility refers to drives by number rather than by letter, and it starts numbering
at O rather than at 1. So, drive A is 0, drive B is 1, C is 2 and so on. This can be initially
confusing, so be incredibly careful when using DEBUG and drive numbers!

For a system with a bootup hard disk C, type DEBUG and press the Enter key. When
you see the DEBUG hyphen prompt at the left edge of your screen, type:

L 100 2 0 1

The terse command instructs DEBUG to load (L) data to memory address 100, from drive
C (2). The drive-C data to be loaded begins at disk sector 0, and comprises 1 sector only.
The hard drive light will blink on for an instant, and then you’ll see another DEBUG
hyphen prompt. Then type:

D 103 L5

which means; display (D) on screen the data bytes beginning at address 103. List (or
display) five bytes only (LS).

If your hard disk was formatted with IBM DOS, you’ll see the magic letters “IBM”
over at the right side of your screen. If the disk was formatted with some other version,

28 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

you should see something like “MSDOS” over there instead. The whole works should
look like this:

C> DEBUG
-L 100 2 0 1
-D 103 LS
- XXXX:0100 49 42 4D 20 20 IBM

If you see something other than the IBM signature, and you want to upgrade to an IBM
DOS, you can do it via the DEBUG utility. Just be careful. One little finger slip and you
might corrupt your hard disk boot record, which you really don’t want to do. If you want
to try this, continue reading here. Otherwise, just hit Q key and then press the Enter key
to quit DEBUG. Or to continue, type the following lines at the hyphen prompt:

-E 103 "IBM "
-W 100 2 0 1
-Q

In the first line (-E) above, make sure you insert a blank space after the letters IBM and
before the final closing quotation mark. The next line (-W) writes the new information
into sector 0 and the final line (-Q) quits DEBUG.

Now reboot and try the installation again. When you’re finished, restore all your
backed up files to the hard disk.

A DOS Uninstallation

If you’re taking the DOS upgrade path, the installation procedure described below will
be augmented by an “uninstall” procedure. This requires one or two scratch diskettes,
depending on your diskette and hard drive capacity. If necessary, the diskette(s) may be
used later on to restore your system’s previous DOS version, and might be regarded as
an insurance policy for those who have learned the hard way never to trust a DOS version
number that ends with a zero.

After DOS 5.0 is installed, you’ll discover an OLD_DOS directory on drive C. As the
name suggests, OLD_DOS contains nothing more mysterious than your old DOS version,
whatever it was. If you decide to return to this version, insert your UNINSTALL 1 diskette
in drive A, reboot and follow the onscreen directions. Your old AUTOEXEC.BAT and
CONFIG.SYS files will be returned to drive C, as will the old COMMAND.COM and
system files. DOS 5.0 will be removed and your previous version will once again be in
place. Microsoft does not say why you would ever want to do this, but there it is, just in
case you do.

The OLD_DOS directory is of course created on the day you do the upgrading, so its
date and time stamps record when that upgrade took place. Next, the new DOS 5.0 files
are moved into your original DOS directory to replace the old ones that were just copied

DOS 5.0: An Overview 29

into OLD_DOS. But since the old DOS directory (not the files, just the directory) remains
intact, its date and time stamps indicate when it was originally created. Thus, the
OLD_DOS directory appears to be newer than the new one. You might want to remember
this little bit of trivia, just so you don’t lose sleep later on wondering why your DOS
directory seems to be so much older than the files it contains.

Once you've determined that DOS 5.0 is really where it’s at, you’ll probably want to
free up the space occupied by that new OLD_DOS directory and its contents. To do so,
log onto the DOS 5.0 directory, type DELOLDOS and press the Enter key. Follow the
onscreen instructions to remove the old DOS. But wait a while just to be safe, for once
OLD_DOS is gone, the UNINSTALL diskette(s) won’t bring it back.

A Setup: The DOS 5.0 Installation Procedure

Perhaps it’s just change for the sake of change, but the former Install procedure is now
called Setup, and it comes to you on multiple 3.5" or 5.25” diskettes. During the install
. . . oops, Setup procedure, you will be prompted to insert MS-DOS 5.0 Disk x into drive
A and press the Enter key to continue. Depending on the set of diskettes you use, the
prompts will of course appear at different points during the complete procedure. The
description below applies to a setup made from the 5.25" diskettes and to a DOS directory
on drive C; that is, on your hard disk.

To begin a completely new installation, boot the system with MS-DOS SETUP diskette
1 in drive A. To upgrade, boot with your old DOS and then insert diskette 1 in drive A.
Log onto that drive, type SETUP and press the Enter key. In either case, you’ll see a brief
“Please wait” message as the Setup program inspects your system configuration. This is
followed by a “Welcome to Setup” screen which reminds you of the help screens that are
available during the Setup procedure. If you are upgrading an earlier DOS, the screen
message reminds you to have one or two UNINSTALL diskettes ready.

The next screen prompts you to enter “Y” if you use a network, or “N” if you don’t.
If you answer in the affirmative, you are prompted to exit Setup and review the
documentation for making network files compatible with DOS 5.0. After doing so,
resume the Setup procedure.

If you are upgrading an earlier DOS, the next screen prompts you to “Back up hard
disk(s)” before continuing. If you elect to do so, follow the onscreen prompts. When the
backup procedure is done, reinsert Setup diskette 1 in drive A and press the Enter key.
Otherwise, select the “Do not back up hard disk(s)” option.

Press the Enter key to continue your Setup. When you do, the screen displays the
following default settings:

DATE/TIME : today’s date and time
COUNTRY : United States
KEYBOARD : US Default

INSTALL TO : Hard Disk

The settings are correct.

30 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

If all the settings are not correct, select the appropriate line by pressing the up arrow
key until that line is highlighted. Then press the Enter key to display a list of available
options. Again, using the arrow keys, highlight the desired new option (say, some other
country). Press the Enter key once more to return to the screen shown above. The new
option should now be seen. When you have finished making changes, highlight the
“settings are correct” line and press the Enter key to move on to the next screen, which

displays
Install to : C:\DOS
Run Shell on startup : YES

The listed options are correct.

As before, change either option if you wish to do so, and then press the Enter key to
continue the installation. (The Shell option is described in its own section later on in this
chapter.) ,

If you are upgrading an earlier version of DOS, you will be prompted to insert an
UNINSTALL diskette in drive A. Follow the onscreen prompts to format and prepare
the UNINSTALL diskette(s). Then reinsert the Setup diskette in drive A and continue
the installation as described in the section below entitled, “Your Hard Disk is Formatted.”

However, if this is a new installation and your hard disk is not yet formatted, you will
instead be prompted to make one of the following choices:

Allocate all free hard disk space for MS-DOS.
Allocate some free hard disk space for MS-DOS.
Do not allocate free hard disk space for MS-DOS.

This is as good a place as any to learn about the Help (F1) key, for there’s more to those
first two choices than first meets the eye. For example, you may indeed want to allocate
all free hard disk space to MS-DOS, bur you may also want to divide that space into
several partitions. If so, then although the first choice looks like the right choice, it isn’t.
If you pick it by accident, Setup creates one monster DOS partition on your hard disk. If
that’s what you really wanted, then fine, you got it. But if you were planning to create
two or more patrtitions, you should have picked the second choice in the above list. So
before making any “obvious” choice that is not based on previous installation experience,
press the F1 key to verify that your choice is the right one. Often enough it’s not, and in
such cases a quick scan of the help screen will spare you a bit of time and a lot of
aggravation.

If you select choice two, you will be prompted to insert disk 2 into drive A. When you
do, the first of several FDISK screens is seen, and you can go about the work of setting
up a primary and an extended partition, and then divide the latter into several logical
drives. If you’re not sure how to get through all this, both the FDISK utility and partitions
are described in detail later on in this chapter.

DOS 5.0: An Overview 31

‘When you are finished with FDISK, you will be prompted to (re)insert disk 1 in drive
A and press the Enter key. When you do, the system reboots itself and displays the
following prompt:

Hard disk partition C: is unformatted.
MS-DOS version 5.0 does not recognize
unformatted media.

Exit Setup
Format Partition

To continue, select the “Format Partition” option and press the Enter key. An onscreen
message continuously updates the percentage of the partition that has been formatted.
When the partition is completely formatted, the screen display repeats for each remaining
unformatted partition. ,

If you wish to complete the DOS 5.0 installation, you must take the time now to format
each partition. In other words, you can’t postpone formatting the remaining partitions for
another day. If you decide to “Exit Setup,” that’s just what will happen; you get dumped
back to the DOS prompt and have to restart the installation. When you do, you wind up
right back here where you left off. So sit tight, finish the formatting and then move on to
the next step in the DOS installation, as described immediately below.

Your Hard Disk Is Formatted

Regardless of how you got here, you are now ready to finish the DOS installation and
get on to other things. Insert SETUP disk 1 in drive A (if it is not already there) and press
the Enter key. You should see the following screen:

MS-DOS version 5.0 is now being set up.

Setup installs a basic MS-DOS system. See the 'Microsoft
MS-DOS Usexr’s Guide and Reference’ to learn about additional

features.

You may want to read the chapter on optimizing your system
in the manual. This chapter describes how to fine-tune
MS-DOS to achieve maximum performance.

X% complete

For the moment, forget about seeing that manual for additional features or boning up
on system optimization. You’ll be too busy inserting diskettes in drive A in response to
an onscreen prompt which periodically overlays the screen shown above.

As the contents of each setup diskette are copied to the DOS directory on drive C, the
“x% complete” legend updates itself and a horizontal bar gives a graphic progress report.

32 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

In addition, the lower right-hand corner of the screen keeps you posted with a “Reading
filename” message.
If an error occurs during the setup operation, you’ll see a message like this:

An error occurred while reading or writing to drive
A:

Try the operation again.
Fail the operation.

Note the filename that appears in the lower right-hand corner of the screen. If it’s
something not absolutely essential to your computer’s well-being (say, GORILLA.BAS),
you may decide not to try the operation again. However, if the file is potentially important
(for example, anything with a COM or EXE extension), retry it a few times before giving
up. If the error persists, make a note of the file name, select the “Fail” option and continue
the installation. When you’re done installing everything else, try the EXPAND command
(described below) to copy the troublesome file to the DOS directory.

When all the files have been transferred, remove the last SETUP diskette from drive
A and press the Enter key. The system reboots itself, and if all’s well, you’ll be ready to
do whatever it is that made you buy the computer in the first place.

Old Bats and Config Considerations

If your system previously held an earlier DOS version, SETUP either modified the old
CONFIG.SYS and AUTOEXEC.BAT files, or it created an entirely new set of these files.
In the latter case, your original files are saved with numeric extensions in place of the
usual SYS and BAT extensions. It’s a good idea to compare the contents of the old files
and the new ones, to make sure that nothing important has been left out. If you find that
DOS 5.0 has indeed forgotten to include some critical line from your original configura-
tion or batch file, you can edit the new version to restore the missing information. If you
can’t find your originals, have a look on the UNINSTALL diskette, where they’ll appear
as CONFIG.DAT and AUTOEXEC.DAT.

With DOS 5.0 installed, watch the onscreen display carefully the first few times the
system is booted. If you see any error messages such as “filename not installed,” “wrong
DOS version,” or whatever, there’s probably something in your CONFIG.SYS or
AUTOEXEC.BAT file that needs to be fixed. For example, an old DOS 4.0 VDISK.SYS
driver in your configuration file does not automatically get replaced by DOS 5.0’s
RAMDRIVE.SYS file. You’ll have to edit the CONFIG.SYS file yourself to make the
necessary change.

A Closer Look at DOS 5.0

The rest of this chapter reviews many of the DOS 5.0 enhancements in detail. To keep
descriptions reasonably short and screen displays reasonably clear, remember that each

DOS 5.0: An Overview 33

line typed in by the user must end by pressing the Enter key and, when a screen prompt
calls for a user response (usually Y or N), the user will press the appropriate key.

Since memory management and the related commands are such an important — and
potentially confusing — aspect of DOS 5.0, this subject is discussed first and then
followed by details about the other DOS 5.0 features.

Memory Management

Users of earlier DOS versions complained about two annoying constraints — the 32
Mbyte hard drive barrier, and the 640Kb RAM wall. It was possible to get around the 32
Mb limitation by splitting massive drives into smaller logical ones with their own drive
letters. But, until version 4.0, DOS didn’t provide any mechanism for using large amounts
of memory past 640K. Its only concession to this was the ability to use “extended”
memory for large VDISK RAMdisks.

Not all expanded memory hardware will work with the supplied DOS 4.0 drivers. But,
since the DOS version doesn’t really let users do much with expanded memory, and since
boards come with their own expanded memory drivers, this isn’t much of a loss.

The DOS 4.0 MEM command reports the amount of expanded memory available. And
DEBUG 4.0 lets technically oriented users see the status of expanded memory with the
XS command, allocate EMS with XA, map it to a logical page with XM, and deallocate
it XD.

While users often confuse extended and expanded memory, these two kinds of memory
enhancements are very different. The only similarity is that they don’t use the system’s
main 640Kb of memory.

Of Modes and MEM

As the PC family moves ever farther away from its PC (as in IBM PC) roots, new jargon
is coined to increasingly confuse the user. For example, there’s now a “real” mode (as
opposed to an “unreal” one?) and also a protected mode. Protected against what?, one
might ask, and get an answer that has little to do with the word “protected.” Sometimes
it makes you wonder who thinks these terms up, and where they studied English.

With DOS 5.0 offering so much more memory management capability than its
predecessors, a quickie look at a few potentially confusing terms may come in handy for
negotiating the memory-related features described later in the chapter.

Real Memory‘

In computer jargon, the term refers specifically to the system memory that lies within the
1Mbyte addressing limit of the 8088 (IBM PC & XT) and 8086 (PS/2 models 25 and 30)
microprocessors. Such memory is accessed via the familiar segment:offset address
format, in which the segment gives the address of a paragraph (16-byte) boundary, and
the offset indicates the number of bytes above that address. Thus, 4000:0100 points to a
segment that begins at (decimal) paragraph 16384 (4 x 4096). Multiply that number by

34 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

16 to find the absolute address of the segment, which is 262144. Then add the offset (0100
= decimal 256) to find the actual address.

This memory is “real” in the sense that the segment:offset address points directly to a
specific physical/logical memory location. So by extension, one might expect that any
directly addressable memory (say, the 80286’s 16Mb, or the 80386’s 4Gb) is no less real
than that first IMb. Yet the term is — as IBM might put it — “reserved” for just that part
of the total system memory that can be accessed via the 20 address lines (A0-A19) of an
8088 and 8086 MPU.

Virtual Memory

The ANSI and ISO standards organizations prefer to call it virtual storage, but everybody
else uses virtual memory to refer to data residing on a large storage medium, such as a
hard disk. Such memory is accessed by mapping it into real memory addresses.

Real Mode

‘When any microprocessor addresses the 1Mb real memory area described above, it is
said to be operating in the real mode. Therefore, this is the only mode in which the 8088
and 8086 can operate. Subsequent MPUs (80 x 86) can of course operate in the real mode
for the sake of compatibility, or in the protected mode described next.

Protected Mode

Beginning with the 80286 microprocessor, memory far beyond the 1Mb limit became
accessible to any operating system/hardware combo that was up to the challenge of
managing all that space. To break the former 1Mb limit, the segment:offset format
described earlier is replaced by a Selector:offset addressing scheme. Instead of having a
segment point to a paragraph boundary, the selector points to a 64-bit segment descriptor
stored in a separate local or global descriptor table. In turn, the descriptor points to the
segment’s starting address. The offset functions as before.

In the 80286 MPU, 24 bits within the segment descriptor define the segment’s starting
address, which means that 224 = 16Mb is available. If that’s not enough, the 80386
MPU picks up an additional elght bits, for 232 = 4G-bytes of memory addressing
capability.

Well, this is all very impressive, but what’s it got to do with that word “protected?”

Nothing. Unfortunately for readers in search of computer terms that follow the usual
laws of common sense, protected mode does nothing to describe enhanced memory-ad-
dressing prowess. Instead, it merely refers to the memory protection feature that is an
added attraction of the latest batch of MPUs. The protected mode makes sure that memory
allocated to any application is protected against invasion from other programs running
at the same time. Otherwise, there would be regular system crashes as one’s word
processor ran amok through the spreadsheet, or worse.

DOS 5.0: An Overview 35

As its name suggests, the protected mode does its job without regard to the type of
memory — real or virtual — that needs protection. In other words, the real and protected
modes are not mutually exclusive. But of course, this feature is not retroactive; if you
don’t have a *286 or better, you get real (only) but you don’t get protected (ever). Just
one more reason for upgrading.

Categories of Random Access Memory

Figure 2.1 is a simplified PC memory map, and each memory area seen in the figure
is described briefly here. Unfortunately, as already noted, the computer industry is
devoted to descriptive terms that convey almost no meaning, and worse, that look
pretty much like other terms with quite different meanings. Therefore, it may be
necessary to read at least a few of the following descriptions several times to
distinguish one from another.

Base Memory

The amount of memory actually installed in the conventional memory area. These days
it should be 640Kb, which is the limit of the conventional memory area.

Expanded memory
(for use below 1 Mb)

Extended memory block (EMB)

3

Extended memory

High memory area (HMA)-64Kb
. 1024Kb _ upper memory block (UMB)

Reserved memory, upper memory area-384Kb

640Kb Video memory-128Kb

Conventional memory-640Kb

Figure 2.1. PC Memory Map

36 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Conventional Memory

Also called User Memory since it is immediately available for user applications, this is
the 640KDb area beginning at absolute address zero.

Expanded Memory

This is unassigned random access memory that may be mapped into lower memory
addresses. In the real mode, a device driver shuffles 16Kb chunks of expanded memory
in and out of page frames located below 1Mb, as described by an EMS (Expanded
Memory Specification, described below).

Expansion Memory

A term loosely applied to any random access memory used to expand a personal
computer’s capacity. Due to the similarity between “expanded” and “expansion,” it’s
important to remember that the latter term applies to any additional RAM, and is
frequently encountered in describing various memory devices that may be installed
within the Conventional (user) or Extended Memory areas.

Extended Memory

The extended memory area comprises RAM installed (or mapped) to begin at 1024Kb
(1Mb). Until recently, it was pretty much restricted to electronic disk and disk caching
applications. However, Extended Memory can now be put to other uses via the XMS
(Extended Memory Specification, see below).

Extended Memory Block (EMB)

The XMS describes the creation of extended memory blocks within the Extended Memory
area. The blocks are then available for use, in much the same way that expanded memory
is managed by the EMS. v
Note that although “X” is the popular abbreviation for eXtended, and “E” is for
- Expanded, the Extended Memory Block is usually abbreviated as EMB. XMB would
have been the more logical choice, which is probably why it isn’t used.

High Memory Area (HMA)
This XMS term defines the first 64Kb block of memory in the extended memory area.

Reserved or Upper Memory Area

This is the area between 640 and 1024Kb, containing video memory, ROM on various
installed adapters, expanded memory RAM, etc. The system ROM BIOS is located at
the top of this memory area.

DOS 5.0: An Overview 37

Upper Memory Block (UMB)

This is a block of unused memory within the Reserved Memory Area between 640K and
1024K. DOS 5.0 can load much of itself within this area, thus freeing up conventional
memory for user applications.

Video Memory

Also referred to as graphics memory, this is the 128Kb area immediately following
conventional memory, which is occupied by the RAM on various display adapters.

Better Memory Management Tactics

One of DOS 5.0’s noteworthy features is its ability to release much of the conventional
memory space formerly taken up by device drivers, TSR programs and by DOS itself.
By kicking all this stuff up beyond the 640Kb barrier, DOS 5.0 gives the user considerably
more room in which to run applications.

But of course the additional free space doesn’t just show up automatically because
you’re using DOS 5.0. To get it, you must first configure your system with the appropriate
memory management drivers and then load DOS, other device drivers and your TSR
programs into the upper reaches of RAM. To do all this, you’ll need to add a few lines
to your configuration file to set up the necessary memory management schemes, and then
make further changes to get everything up and running. The following sections show
what you need, and where you need it. We begin with a quick look at memory
management specifications, then move on to the drivers that take advantage of these
specs, and conclude with instructions on how to load whatever you want to load into
upper memory.

A Pair of Memory Management Specifications

Assuming you’ve survived the memory mine field planted above, the next step in the
operating system obstacle course is to get your programs safely across the same rocky
road. To bring some semblance of order to a potentially chaotic subject, the following
two memory specifications have been introduced.

EMS (Expanded Memory Specification)

When the PC was first introduced, users could take advantage only of the bottom 640Kb
of RAM — and some of this was needed for DOS functions, BIOS tables, etc. As
programs grew in size, and needed more memory space for data, vendors began thinking
up schemes for exceeding the 640Kb limit. Not long after Big Blue introduced the PC
AT, Lotus and Intel got together to see what could be done to to break through the barrier.
Shortly thereafter they were joined by Microsoft, and the trio introduced the

38 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Lotus/Intel/Microsoft Expanded Memory Specification — or LIM EMS for short.
Actually, it was properly introduced as LIM EMS version 3.2, to signify its compatibility
with a certain operating system then in widespread use. The specification gave users
(mostly users of enormous spreadsheets) an additional eight Mb of memory in whxch to
romp with their data.

Next, another set of industry players — AST, Quadram and Ashton-Tate — produced
a superset of LIM EMS, which they called EEMS (Enhanced EMS). It didn’t really go
anywhere, although Quarterdeck’s DESKview window-oriented multitasking software
used it and became something of a success.

Still later, the LIM folks issued their own enhanced EMS version 4.0, and added
multitasking abilities of their own. EMS 4.0 also upped the RAM limit from 8 Mb to 32
Mb, and it quickly became the standard. DOS 4.0 supported this version, and so does
DOS 5.0.

The Expanded Memory Specification has not repealed the real mode address law,
which still stands at that old 1Mb memory limit. Instead, it permits expanded memory to
be paged into the addressable memory area. At first, EMS could handle only four page
frames within the Reserved Memory area above 640Kb. However, EMS 4.0 can juggle
as many as 50 pages within any 1 Mb area, provided they don’t conflict with main system
RAM, video buffers, ROM BIOS code, etc.

But you can’t just pop in an EMS driver and expect your programs to automatically
use all that extra memory; each application must be specifically written (or rewritten) to
do its own expanded memory management.

Expanded Memory and DEBUG

If you use EMM386.EXE or some other device driver that supports expanded memory,
the DOS DEBUG utility will show you the status of that memory. Just type DEBUG and
press the Enter key. When you see the DEBUG's hyphen prompt, type XS (eXpanded-
memory Status) to display a status report such as:

Handle 0000 has 0018 pages allocated

Physical page 04 = Frame segment 4000

Physical page 05 Frame segment 4400

Physical page 06 Frame segment 4800
(additional pages listed here)

Physical page 03 = Frame segment DCOO

18 of a total 28 EMS pages have been allocated
1 of a total 40 EMS handles have been allocated

XMS (Extended Memory Specification)

The Extended Memory Specification is conceptually similar to the Expanded Memory
Specification just described, except that it uses extended memory to perform much the
same functions.

DOS 5.0: An Overview 39

A Duo of Drivers and a DOS Command

DOS 5.0 provides two memory management device drivers and a new command that
loads much of DOS itself into the high memory area. To make use of these features, your
configuration file must be modified as described here. Once this is done, you can move
most of your device drivers and TSR programs out of conventional memory, also
described below.

HIMEM.SYS

This extended memory specification (XMS) driver provides an entry into extended
memory to those programs that can take advantage of it. As part of its memory
management chores, HIMEM makes sure that programs do not try to load themselves
into the same memory addresses.

The following device command line must appear in your CONFIG.SYS file ahead of
any other device lines that load programs or drivers into reserved or extended memory
(such as EMM2386.EXE below).

DEVICE=HIMEM.SYS

EMM386.EXE

As indicated by the filename, this driver is an expanded memory manager (EMM) which
wants to see an 80386 or better MPU. Actually, it’s an expanded memory emulator, since
it uses your system’s extended memory to emulate expanded memory. With the appro-
priate device driver line added to your CONFIG.SYS file, EMM386.EXE provides
expanded memory to any application that needs it.

The driver will also supply UMB (Upper Memory Block) management within the
reserved memory area, thus allowing programs and other device drivers (but not itself)
to be loaded into reserved memory. In this context, it is sometimes referred to as a “UMB
provider” without identifying it by name (perhaps just to make sure you’re paying
attention).

Assuming your computer has extended memory available, and an 80386 or better
MPU, first add the extended memory manager HIMEM.SYS line described above to
your CONFIG.SYS file. Then insert the following line with the appropriate parameter:

Device line Memory to be managed is

DEVICE=EMM386 .EXE ram expanded and reserved

DEVICE=EMM386 .EXE noems reserved only
Running DOS on High

One of the ways in which DOS 5.0 can save conventional memory is to load much of
itself into the High Memory Area, that is, into the first 64Kb of extended memory. For
example, with DOS loaded in the usual manner, the MEM /c command will show that

40 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

MSDOS has chewed a 54144-byte chunk out of conventional memory. DOS 5.0’s new
DOS command can be used to move a 40Kb chunk of DOS out of conventional memory,
thus freeing up that amount of space for other use. The same command is also used to
provide the link to reserved memory that is required by EMM and other drivers, as shown

here. :
Device line Purpose
DOS=high load part of DOS into HMA
DOS=umb provide a link between conventional and reserved memory

DOS=high, umb do both

The umb parameter must be included if you plan to load device drivers into reserved
memory, as described later in this section.

Driver/DOS Summary

Assuming you want to sweep out your conventional memory as described above, just
add the following lines to your CONFIG.SYS file:

DOS=high, umb
DEVICE=HIMEM.SYS
DEVICE=EMM386 .EXE ram (or noems)

Make sure that the HIMEM line appears before the EMM386 line. The DOS= command
line can appear at any location in the file.

Loading Drivers and TSRs in Reserved Memory

Finally, it’s time to modify your CONFIG.SYS and AUTOEXEC.BAT files so that your
other device drivers and TSR programs will be loaded into reserved memory instead of
taking up space in conventional memory. There’s almost nothing to it: just change every
DEVICE line to DEVICEHIGH in your configuration file. Thus:

Device line Purpose

DEVICE=HIMEM. SYS load HIMEM into conventional memory (as
required — it can’t be loaded into reserved
memory)

DEVICEHIGH=ANSI.SYS load ANSI into reserved memory

DEVICEHIGH=filename.ext load some other driver into reserved memory

Some device drivers expand to take up more space than the size indicated by a directory
listing would indicate. If the expanded space exceeds that available in the UMB area,
there could be a device error or a system crash. If this happens, the DEVICEHIGH line

DOS 5.0: An Overview 41

can be revised to include a size parameter. To find the required size, first load the device
driver in the usual manner. Now execute the DOS MEM /PROGRAM command
(described below) to display the amount of memory occupied by various installed
programs, including the device driver of interest. Finally, modify the DEVICEHIGH line
to include this value, as follows:

DEVICEHIGH size=xxxx (path and name of device driver)

In either of the above examples, the device driver will be loaded into low memory if there
is not enough UMB space available for it.

Inyour AUTOEXEC.BAT file, use the LOADHIGH command to load other programs
into reserved memory. In the following examples, a typical path instruction is included

for illustration purposes.
Command line Purpose
C:\UV\UV on load Personics UV (UltraVision) utility into
conventional memory
LOADHIGH C:\UV\UV on load the UV utility into reserved memory

Not all programs are compatible with the LOADHIGH command, so do a little
experimenting to determine if your program runs properly from within the reserved
memory area. In case of any unpredictable results, try the same operation with the
program loaded in conventional memory. If this cures the problem, then the program is
indeed incompatible with UMB. If not, then there is some other problem which should
be resolved before trying LOADHIGH again.

As afinal caution, note that although the LOADHIGH command can be executed from
within a batch file, it cannot itself be used to load a batch file into the UMB area.

A Look at Memory Savings

The original PC architecture was designed way back when full-fledged applications like
WordStar needed only about 90Kb, and 640Kb seemed like a generous amount. The
ancient 8088 chip could work with (or address) only one Mbyte of RAM, and it needed
to employ the old segment:offset trick just to sneak past the first 64Kb.

These days many applications can barely squeeze into 640K, and serious users often
find themselves ramming megs of RAM into their systems. A microprocessor like the
80386 or the awesome 1486 can address vast quantities of RAM, and vendors are trying
to convince users that they have to run lots of memory-hungry applications at the same
time. Today’s systems can take advantage of far more RAM than the old and conventional
640KDb of “user memory” by using extended and expanded memory.

Prior to DOS 4.0, the existence of such “high” memory was barely acknowledged, and
there were no DOS tools to examine it. But with DOS 4.0 came the powerful MEM

42 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

command, which provided a report on system memory allocation — including extended
and expanded memory. And by appending a /DEBUG or [PROGRAM switch to the
command, DOS displayed an incredibly detailed map of what was where in memory.

MEM /PROGRAM, or MEM /P, tells you about all programs currently loaded in
memory (you may be surprised how many you see when you first try it). The more
powerful MEM /DEBUG, or MEM /D, supplements the [PROGRAM data with valuable
information on device drivers and DOS/BIOS low-memory areas. The option isn’t for
everyone, since much of the information is fairly exotic, and all numbers are in hex
notation. However, it can be extremely helpful if you’re trying to shoehorn lots of popup
programs into memory, since it shows how much RAM each one consumes. It also lets
you spot ill-mannered TSRs that lop off wasteful amounts of memory every time you run
them. And if you’re a programmer or someone with an insatiable curiosity about how
your system works, you’ll just love the MEM /D command.

DOS 5.0 adds a new switch to the MEM command, and this may be used to get a
general idea of how the conventional memory area is affected by all the memory
management described above. Here’s a brief description, followed by several screens of
memory-usage information.

MEM /CLASSIFY (or MEM /C)

When /C is appended to the MEM command, the screen shows a concise report of
conventional and upper-memory usage. For example, the listing below is a simple
CONFIG.SYS listing, immediately followed by the memory report delivered by typing
MEM/C and then pressing the Enter key.

DEVICE=C:\DOS\SETVER.EXE
DEVICE=C: \DRIVERS\ANSI-UV.SYS

DEVICE=C:\DRIVERS\RCD.SYS /f

Conventional Memory :

Name Size in Decimal Size in Hex
MSDOS 54144 (52.9K) D380
SETVER 400 (4K) 190
ANSI-UV 1664 (6K) 680
RCD 10912 (10.7K) 2AA0
COMMAND 4704 (6K) 1260
SETVID . 720 (0.7K) 2D0
uv 19456 (19.0K) 4C00
DE 2256 (2.2K) 8DO0
FREE 64 (0.1K) 40
FREE 559744 (546 .6K) 88A80

Total FREE : 559808 (546 .7K)

DOS 5.0: An Overview 43

Total bytes available to programs : 559808
(546 .7K)
Largest executable program size : 559600
(546 .5K)

4456448 bytes total contiguous extended memory
4456448 bytes available contiguous extended memory

The last two lines show that all contiguous extended memory is available for use. But for
the moment, this use is limited to electronic disks and disk caching.

Note that MS-DOS occupies 52.9Kb of conventional memory and is followed by the
three drivers loaded by the CONFIG.SYS file. The SETVID, UV, and DE entries are
three utilities loaded by the AUTOEXEC.BAT file (not shown).

To free up some space, the first thing to do is get DOS (most of it, that is) out of
conventional memory, and this is done by adding two lines to the configuration file, as
shown here:

DOS=HIGH
DEVICE=C:\DOS\HIMEM. SYS
DEVICE=C:\DOS\SETVER .EXE
DEVICE=C:\DRIVERS\ANSI-UV.5YS
DEVICE=C:\DRIVERS\RCD.SYS /f

Now type MEM/C again to display the following memory report:

Conventional Memory :

Name Size in Decimal Size in Hex
MSDOs 13536 (13.2K) 34E0
HIMEM 1184 (2K) 4A0
SETVER 400 (4K) 190
ANST-UV 1664 (6K) 680
RCD 10912 (10.7K) 2AA0
COMMAND 2624 (2.6K) A40
SETVID 720 (0.7K) 2D0
uv 19456 (19.0K) 4C00
DE 2256 (2.2K) 8D0
FREE 64 (0.1K) 40
FREE 601216 (587 .1K) 92C80
Total FREE : 601280 (587.2K)

Total bytes available to programs : 601280

44 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

(587 .2K)
Largest executable program size : 601072
(587 .0K)

4456448 bytes total contiguous extended memory
0 bytes available contiguous extended memory
4390912 bytes available XMS memory
MS-DOS resident in High-Memory Area

Note that both the MSDOS and COMMAND sizes are smaller and there is therefore more
conventional memory available. Also, the lines at the bottom of the listing have changed.
The contiguous extended memory is gone, but there are now 4390912 bytes of XMS
memory available. This is still extended memory, but it’s no longer contiguous because
the first 64Kb of it are missing since HIMEM.SY'S has picked it up for use by MS-DOS,
as reported in the last line above.

But now, back to conventional memory space. The next step is to move the three device
drivers (SETVER, ANSI-UV, RCD) into the upper-memory area, which is accomplished
by modifying the DOS= command, installing the EMM386 expanded memory emula-
tor/manager, and changing the DEVICE lines to DEVICEHIGH, as shown below. In this
example, the ram parameter on the EMM386 line enables expanded memory manage-
ment, as described earliet.

DOS=HIGH, UMB
DEVICE=C:\DOS\HIMEM. SYS
DEVICE=C:\DOS\EMM386 .EXE ram
DEVICEHIGH=C: \DOS\SETVER.EXE
DEVICEHIGH=C:\DRIVERS\ANSI-UV.SYS
DEVICEHIGH=C:\DRIVERS\RCD.SYS /f

To move the three utilities (SETVID, UV, DE) into upper memory, change each line
in the AUTOEXEC.BAT file to begin with LOADHIGH=filename. Having done all that,
the SETVER, ANSI-UV and RCD drivers should all be loaded into upper memory, along
with the three utilities just mentioned. But one of them, UV, still appears in the
conventional memory area, as shown here.

Conventional Memory :

Name Size in Decimal Size in Hex
MSDOS 13552 (13.2K) 34F0
HIMEM 1184 (2K) 4A0
EMM386 9424 (2K) 24D0
COMMAND 2624 (6K) A40
uv 19456 (19.0K) 4C00

(

DOS 5.0: An Overview 45

FREE 608832 (594.6K) 94A40

Total FREE : 608896 (594 .6K)

Upper Memory :

Name Size in Decimal Size in Hex
SYSTEM 163840 (160.0K) 28000
SETVER 400 (" 0.4K) 190
ANSI-UV 1664 (1.6K) 680
RCD 10912 (10.7K) 2AA0
SETVID 720 (0.7K) 2D0
DE 2256 (2.2K) 8D0
FREE 16672 (16.3K) 4120
Total FREE : 16672 (16.3K)

Total bytes available to programs (Conventional+Upper) : 625568 (610.9K)
Largest executable program size : 608688 (594.4K)
Largest available upper-memory block : 16672 (16.3K)

655360 bytes total EMS memory
262144 bytes free EMS memory

4456448 bytes total contiguous extended memory
0 bytes available contiguous extended memory
3997696 bytes available XMS memory
MS-DOS resident in High-Memory Area

The reason our UV utility is still parked down there in the conventional memory lot is
simple: at the moment, the largest available upper-memory block is only 16.3Kb, as
reported above. Since that’s not enough room for UV, the LOADHIGH command is
ignored and the utility stays put.

The shortage of upper memory is because the ram parameter on the EMM386 line in
CONFIG.SYS has enabled expanded memory support, and in so doing, has whittled away
at the available memory. (See the EMM?386.SYS section earlier in the chapter for more
details.) Since we don’t need expanded memory, we can fix this by changing ram in line
3 to noems (No Expanded Memory) and try again.

DOS=HIGH, UMB
DEVICE=C:\DOS\HIMEM. SYS
DEVICE=C:\DOS\EMM386.EXE noems
DEVICEHIGH=C:\DOS\SETVER.EXE
DEVICEHIGH=C:\DRIVERS\ANSI-UV.SYS

46 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
DEVICEHIGH=C:\DRIVERS\RCD.SYS /f

Conventional Memory :

Name Size in Decimal Size in Hex
MSDOS 13552 (13.2K) 34F0
HIMEM 1184 (1.2K) 4A0
EMM386 9424 (9.2K) 24D0
COMMAND 2624 (2.6K) A40
FREE 64 (0.1K) 40
FREE 628304 (613.6K) 99650
Total FREE : 628368 (613.6K)

Upper Memory :

Name Size in Decimal Size in Hex
SYSTEM 163840 (160.0K) 28000
SETVER 400 (0.4K) 190
ANSI-UV 1664 (1.6K) 680
RCD) 10912 (10.7K) 2AA0
SETVID 720 (0.7K) 2D0
uv 19456 (19.0K) 4C00
DE 2256 (2.2K) 8D0
FREE 62736 (61.3K) F510
Total FREE : 62736 - (61.3K)

Total bytes available to programs (Conventional+Upper) : 691104 (674.9K)
Largest executable program size : 628160 (613.4K)
Largest available upper memory block : 62736 (61.3K)

4456448 bytes total contiguous extended memory
0 bytes available contiguous extended memory
4205568 bytes available XMS memory
MS-DOS resident in High Memory Area

The above exercise is just one example of how DOS 5.0 can be tweaked for optimum
memory management. There are many additional memory management parameters for
just about every command line shown above.

DOS 5.0: An Overview 47

Other DOS 5.0 Features

In addition to the enhanced memory management facilities described above, DOS 5.0
introduces a lot of other operating system bells and whistles. Some early DOS commands
have been souped up with extra parameters or switches, and several entirely new
commands and utilities have been added to the repertoire. Three of the latter (MIRROR,
UNDELETE and UNFORMAT) are included under license from Central Point Software,
and are part of that company’s PC Tools software. The UNFORMAT utility is equivalent
to PC Tools’ REBUILD utility.

Attribute Command (ATTRIB)

In every file header, the byte following the filename and extension is the file attribute
byte, in which each bit defines a file parameter. Effective with DOS 5.0, the ATTRIBute
command allows all file attribute bits to be changed. Each such attribute is described

here.
Attribute bit Determines if
archive - data has been written to the file since the last backup session
hidden the filename appears in the directory listing
read-only the file is write-protected
system the file is a system file

If the attribute bit is set (1), the file possesses the attribute defined by that bit; if the bit
is cleared (0), that attribute is disabled. To set or clear a file attribute, type the ATTRIB
command, followed by a plus (set) or minus (clear) sign, and the name of the file, as

shown here:
ATTRIB command Purpose
ATTRIB +p filename Set the attribute bit defined by p.
ATTRIB -p filename Clear the attribute bit defined by p.
ATTRIB Display all file attributes of all files in the current directory.
ATTRIB/S Display files in this directory and in its subdirectories.

ATTRIB #p filename /S Set (+) or clear (-) the attribute bit defined by p for all files with
filename in this directory and in its subdirectories.

The last example above may be useful for modifying all files with a common extension,
as for example, all *.SYS files.

Replace the p above with one of the following parameters. To change more than one
file attribute, simply repeat the p parameter, as required.

48 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Attribute

parameter Purpose

+A set archive bit

-A clear archive bit

+H set hidden-file bit
-H clear hidden-file bit
+R set read-only bit

-R clear read-only bit
+S set system-file bit
-S clear system-file bit

The ATTRIB command can also be used to search out all occufrences of a certain
filename, or all filenames that contain a common extension. For example, to search all
subdirectories for files with an EXE extension, just type

ATTRIB *.EXE /s

DEBUG Your Hex Math

The DEBUG utility has been around forever, and there’s nothing new to report for DOS
5.0. However, there is an often overlooked feature that may help anyone who can’t figure
out how the sum of FE and DC is 1DA and the difference is 22 (or can’t even figure out
what all that means).

With DEBUG loaded, just type an H and follow it with any two hexadecimal numbers.
When you press the Enter key, the next line reports the sum and difference of the numbers.

Thus:
-H FE DC
01DA 0022

This can come in handy for those quick hex calculations that need to be done every once
in awhile. However, there is one little caution. The answers are given only in four digits,
thus the sum of say, FOOO and 1000 (10000) is reported as 0000. So if any such value
appears to be less than the sum of its parts, you need to append a hex 1 to the beginning
of the number.

DIRectory Command Enhancements

Even the lowly old DIRectory command has been souped up with several new DOS 5.0
switches. In each case the format is as follows:

DIR /X:p

DOS 5.0: An Overview 49

where X is the desired switch and p is some modifying parameter. To specify additional
switches, simply repeat the /X as appropriate. Note that not all switches are followed by
a parameter.

Attributes (/A:p)

This switch displays only those files whose attribute is specified by the letter following
the colon. For example, use the following:

Attribute switch Displays

JA:A files ready for archiving (for backup)
JA:-A files that have already been archived
JA:D directory names only

JA:-D filenames only (no subdirectories listed)
JA'H hidden files

JA:-H files that are not hidden

J|A'R read-only files

JA:-R files that are not read-only

JA:S system files

JA:-S all files except system files

/A all hidden, system and regular files

Bare (Show File Names only) (/B)

This switch displays a bare directory listing; that is, one in which only the filename and
extension is displayed. If the /B switch is used together with /W (wide), the latter switch
is ignored.

Search Subdirectories (/S)

The /S switch shows the contents of the current directory and all its subdirectories. Or
you can use it to search for one or more files lost in the maze of directories and
subdirectories. For example,

Search switch Displays

/S all directory and subdirectory listings
/S filename.ext a specific file

/S WS* * all files beginning with WS

/S * EXE all files with an EXE extension

The search may be narrowed as required. For example, to search an entire drive, type the
command from the root directory. Or, log onto any subdirectory to confine the search to
just that directory and its own subdirectories. If the search switch finds the desired file
or files, the directory containing the file(s) is displayed, followed by the names of the

50 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

files. This is followed by the name of the next directory (if any) and its files, and so on
until all occurrences of the searched item have been found.

The search switch is helpful for flushing out all the backup files that accumulate over
time. Just log onto the root directory and type

DIR /S *.BAK

Or, type a specific filename to make sure that the same name does not exist in two
separate locations.

Combination Bare Name and Search (/B/S)

When these two switches are both appended to the DIRectory command, each line
displays the complete path name followed by the nams (only) of the appropriate file.

Sort Order (/O:p)

The directory listings may be sorted as specified by a letter following the colon, as

indicated here.
Sort switch Directory is sorted
JO:D by date and time; earliest first
JO:-D by date and time; latest first
JO:E alphabetically by extension
JO:-E alphabetically by extension, in reverse order
10:G with directories grouped before filenames
10:-G with directories grouped after filenames
JO:N alphabetically by filename
JO:-N alphabetically by filename, in reverse order
JO:S by size; smallest first
JO:-S by size; largest first

Preset Directory Display

If you would like to use one or more of the above switches every time you execute the
DIRectory command, simply add the directory command (DIRCMD) environment
variable to your AUTOEXEC.BAT file. For example, to display your directory listings
sorted in reverse alphabetical order, include hidden files, and pause when the screen is
full, add the following line to the batch file.

SET DIRCMD=/0O:-N/A/P

The next time the system is rebooted, the DIR command will display the directory listing
as specified by SET DIRCMD.

DOS 5.0: An Overview 51

Wide Directory Listing (/W)

When the DIR command is followed by the /W (wide) switch, all displayed directories
are enclosed in square brackets, as shown in this sample line from a wide directory listing.

COMMAND . COM [Dos] [MACE] GENS386 .5YS IBMCDROM. SYS

A DIRectory Search and Destroy Mission

The DIR command can be used in conjunction with the FIND command, to locate all
filenames that contain a certain string. This can be quite handy for flushing out all those
backup files that accumulate on your hard disk over time. For example, the following
one-liner searches the root directory and all subdirectories on drive C for files witha BAK
extension, and writes the complete path and filename for each such file into a new file
named HITLIST.

DIR C:\ /S /B | FIND “"BAK" > C:\HITLIST

The following QuickBASIC program will now erase every backup file whose name is
in your HITLIST, after which it destroys the evidence by wiping out the HITLIST itself:

OPEN "C:\HITLIST" FOR INPUT AS #1
WHILE NOT EOF (1)
INPUT #1, FILENAMES
KILL FILENAMES
WEND
KILL "C:\HITLIST"
CLOSE #1: END

If you’d rather be asked if it’s OK to kill each file, just replace the KILL. FILENAME$
line above with the following two lines:

PRINT "OK to kill "; FILENAMES; : INPUT OK$
IF OK$ = "Y" OR OK$ = "y" THEN KILL FILENAMES$

How Many Bytes?

As a final enhancement, the DOS 5.0 directory listing tallies up the bytes of all files in
the current directory and gives that figure to the right of the number of files in the
directory. The second line reports — as before — the number of free bytes remaining on
the complete disk. Thus: ’

xx file(s) XxXXxx bytes

XXXXXXX bytes free

52 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

DOSKEY

‘When the DOSKEY utility is loaded, it maintains a record of your recent DOS commands,
which may be recalled by pressing the up and down arrow keys or the page up and down
keys. To use the utility, type either DOSKEY at the DOS prompt or add the command
to your AUTOEXEC.BAT file.

After DOSKEY has been loaded, and several DOS commands have been issued, you
can toggle through these commands by pressing one of the following keys:

Press this key To go

Up arrow to the previous command
Down arrow to the next command

Page up to the earliest command

Page down to the latest command

Left arrow back one character (nondestructive)
Right arrow forward one character
Ctrl+Left arrow back one word (nondestructive)
Ctrl+Right arrow forward one word

Home to the beginning of the line
End to the end of the line

Escape key clear the present command line

Repetitive presses of an up or down arrow key will toggle forward or backward through
the entire list, one command at a time. When the first (or last) command is reached, the
next keypress will return to the top (or bottom) of the list, and subsequent keypresses will
again toggle through the list.

DOSKEY also lets you define keypress macros for repetitive tasks, or your own custom
commands. If, for example, you just can’t live without the Unix Is command,

DOSKEY ls=dir

will give you at least the illusion of being able to run part of Unix on your PC.

DRIVPARM

The default operating parameters of a block device can be changed by inserting a
DRIVPARM (Drive Parameters) command in your configuration file. A block device is
any mass storage device, such as a diskette or hard disk drive, or a tape drive, Bernoulli
box, etc. The term is used because data is sent to and from such a device in blocks —
generally, of 512 bytes.

The DRIVPARM command’s /I switch supports a 3.5" diskette drive in a PC whose
ROM BIOS does not recognize this size device. Or, within certain limits, you can change
drive capacity. For example, a 5.25" 1.2Mb drive can be tricked into thinking it’s a 360Kb

DOS 5.0: An Overview 53

or smaller capacity drive. Or, a 3.5” 1.44Mb drive can be downgraded to 720Kb.
Unfortunately, you can’t convince a low-capacity drive to function at some higher
capacity though.

The command line syntax is

DRIVPARM=/D:d /F:f /I

where

d physical drive number (0 = drive A, 1 = drive B, etc.)

£ desired drive type
0o 160-360Kb 5.25"
1 1.2Mb 5.25"
2 720Kb 3.5"
5 hard disk
6 tape drive
7 1.44Mb 3.5"
8 read/write optical disk
9 2.88Mb 3.5"

/1 specify a 3.5" drive, if not supported by ROM BIOS

Other DRIVPARM switches specify the number of heads (fH), sectors (/S) and tracks
uD.

If you attempt to trick say, a 1.44Mb drive into 2.88Mb capacity (nice try!), and then
format a diskette in that drive, the following error message will be seen:

Formatting 2.88M
Parameters not supported by drive.

However, the DRIVPARM command may be useful if it becomes necessary to do a
DISKCOPY operation between drives of the same size but of dissimilar capacities. It
may also be used to revise the track and sector configuration of a tape drive.

EDIT

For those who need more editing power than is available in DOS EDLIN, DOS 5.0 offers
a new full-screen editor for creating ASCII files. To begin editing, simply type EDIT,
optionally followed by the name of the file you wish to edit. The EDIT utility recogmzes
keystroke combinations used by Microsoft Word and WordStar.

To use the maximum number of lines possible on your monitor display configuration,
type EDIT /H at the DOS prompt. Once the editor is up and running, an extensive set of
help screens is available to answer just about any question that might come up.

The EDIT utility requires the presence of the QBASIC.EXE file, which is also resident
in the DOS subdirectory. So even if you have no plans to use QBASIC, don’t erase it if

54 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

you expect to use the editor. In any case, the remarks in the QBASIC section below about
cursor shape in the insert mode apply to the EDIT utility, as well as to QBASIC.

EXPAND

Most of the files on the DOS 5.0 installation diskettes are in a compressed format. For
each such file, the three-letter file name extension ends with an underline character; thus
the compressed FORMAT.COM is listed as FORMAT.CO_, DRIVER.SYS is
DRIVER.SY_, and so on. A compressed file is not directly executable; in order to run,
it must first be expanded to its full size. This takes place automatically as DOS 5.0
installs itself, and in the process each underline is automatically replaced by the
appropriate letter.

In the event of subsequent damage to, or loss of, a file, you can return to the DOS
installation diskettes and expand just the file for which you need a fresh copy. Assuming
the compressed file is on a diskette in drive A, and you want the expanded copy to be
written into the DOS subdirectory on drive C, the command line syntax is:

EXPAND A:FILENAME.CO_ C: \DOS\FILENAME.COM

As just shown, the command expands one file at a time and must be repeated for each
compressed program that you wish to expand. This is no big deal if you just want to
expand a file or two, but you may prefer to run a batch file if you need to expand more
than a few files. If so, create a batch file called X.BAT which contains the following
lines:

FOR %%X IN (A:*.EX) DO EXPAND $%%X C:\DOS
CcD \DoOs
RENAME *.EX *.EXE

The first line (which just about defies comprehension) really means the following:

1. Find the first file defined by (A:*.EX_). That is, a file on drive A whose extension
is EX_.
2. FOR each such file (temporarily called “X”) DO the following:
EXPAND it (i.e., EXPAND % %X).
3. Write the expanded file to the C:\DOS subdirectory.

By comparison, the next two lines are a piece of cake: log onto the DOS subdirectory
and change each file named *.EX_ to *.EXE.

To expand all compressed files on drive A, change the batch file expression in
parentheses to (A:*.??_) and add a RENAME line for every other file category (RE-
NAME *.CO_ *.COM, and so on).

DOS 5.0: An Overview 55

Friendlier Formatting

The eight different diskette formats encountered in PC applications are listed below.
Fortunately, not all are in wide use today: most 5.25" diskettes are now formatted at either
360Kb or 1.2Mb, with the first three configurations (160, 180, 320Kb) phased out in favor
of the last two. Nevertheless, it may be necessary to format a 5.25” diskette at one of the
lower capacities for use in someone’s older machine.

For 3.5" diskettes, both 720Kb and 1.44Mb capacities are in wide use, with the 2.88Mb
diskette expected to reach the market momentarily. It doubles the capacity of the 1.44Mb
diskette by packing 36 sectors into the track, which probably makes it double-quadruple
(octuple?) density. Such diskettes require a new diskette drive.

Tracks Sectors Use format
Capacity Sides Jside Jtrack Density size switch
5.25" diskettes
160Kb one 40 8 double /£:160
180Kb one 40 9 double /£:180
320Kb two 40 8 double /£:320
360Kb two 40 9 double /£:360
1.2Mb two 80 15 quadruple /f:1200 or 1.2
3.5" diskettes
720Kb two 80 9 double J£720
1.44Mb two 80 18 quadruple /f:1440 or 1.44
2.88Mb two 80 36 /£:2880 or 2.88

The Format of FORMAT

The FORMAT command must be followed by a drive letter parameter and optionally by
one or more switches to modify the procedure as required for the specific application. In
all cases, the command is written as

FORMAT A: /x /y /z

where x, y, z are replaced by the actual letter(s) required. Switches that are new to DOS
5.0 are described in the following sections.

Sizing Up the Format

The size switch listed above may be ignored for most routine operations, since the diskette
is automatically formatted at the default capacity of the drive in use. However, when it

56 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

becomes necessary to format a diskette at a capacity lower than that of the drive, then the
switch must be appended to the format command line, as shown here.

FORMAT A: /f:xxxx

The /f:xxxx style of specifying the desired diskette capacity was introduced in DOS 4.0.
For prior versions, it was necessary to append switches for tracks-per-side (/T:40, for
example) and sectors-per-track (N:/8) data. The /f:2880 size is new to DOS 5.0, and
requires a 2.88Mb diskette drive.

Some Format Size Cautions

Note that there are 40 tracks per side on all 5.25" diskettes except the 1.2Mb diskette,
which accommodates 80 tracks per side. In order to write 80 tracks in the same space
formerly occupied by 40, the read/write head on a 1.2Mb drive is considerably narrower
than the head on any other 5.25" drive, and therefore is the written track on the diskette
surface. This of course presents no problem when a 1.2Mb drive is used with a 1.2Mb
diskette. But when such a drive formats a diskette to any other capacity, the diskette may
not work properly in some non-1.2Mb drives. This is because the narrow diskette track
width does not line up properly with the wide read/write head on the lower capacity drive.
Therefore, before formatting a lot of 360Kb diskettes in a 1.2Mb drive, do one or two
and try them out in the 360Kb drive. To be on the extra-safe side, at the first opportunity
copy all critical files to another diskette that actually was formatted in a 360Kb drive.

Many 1.44Mb drives will format any 3.5" diskette at either 720Kb or 1.44Mb. So it
may seem like a bargain to buy 720Kb diskettes and format them at 1.44Mb. You may
even get away with it for awhile. But, due to the different magnetic characteristics of the
two types of diskette surfaces, there’s a very good chance that your “1.44Mb” diskettes
will eventually become unreadable. In which case, the bargain will not be such a bargain
after all. So find some other way to save money, and buy the kind of diskettes you really
need for the job at hand.

Safe Formatting

Effective with DOS 5.0, the default format mode is a “safe format,” in which your stored
programs, data files, etc. are not erased during the FORMAT operation. Instead, only the
FAT (file allocation table) and the root directory are wiped clean. As a consequence, the
entire disk surface appears to be (and in fact, is) ready to be reused. However, the
“missing” data can be recovered by the UNFORMAT command, should you discover (it
happens) that you really didn’t mean to do that format in the first place.

The safe format features can be disabled — and formatting speeded up — by appending
the /Q and/or /U switches after the FORMAT command, as shown here:

FORMAT A: /Q /U

If neither the /Q nor the /U switch is used, the disk is safe-formatted. The use of either
switch modifies the operation as described below.

DOS 5.0: An Overview 57

The /Q (“quick”) Switch

This switch deletes the FAT and root directory, but saves this information elsewhere on
the disk surface for subsequent use by the UNFORMAT utility. The data area is left intact,
and the disk surface is not scanned for bad sectors. Therefore the /Q switch should be
used only on a previously formatted surface that you know is in good shape. In fact, if
the disk is brand new (unformatted) then an attempt to do a quick format will display the
following error message:

Invalid existing format.
This disk cannot be Quickformatted.
Proceed with Unconditional Format (Y/N)?

The /Q switch also does not work with 160Kb and 320Kb diskettes that were previously
formatted with DOS versions other than than MS-DOS 5.0.

The /U (“unconditional”) Switch

This switch also deletes the FAT and root directory, but does not retain this information
elsewhere for use by the UNFORMAT utility. The data area is likewise erased, and the
disk surface is scanned for bad sectors. With all data deleted, the disk surface cannot be
unformatted later on.

The /Q and /U Switches

To save even more formatting time, use both switches to reformat a diskette that is known
to be in good shape. The /Q switch prevents the /U switch from erasing the data area, so
data can be recovered by the UNFORMAT utility.

Safe Format Summary
The table below summarizes the effect of each switch on the FORMAT command.

Format Saves unformat Checks for Wipes out
switch info bad sectors program data
none yes yes no

Q yes no no

JU ‘1o yes yes

Q/U no no no

Note: These new DOS 5.0 switches make the FORMAT utility a bit more foolproof.
Now you must go to the trouble of appending the /U (only) switch if you really want to
do a thorough sector check and data erasure. Any other switch choice, including no

58 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

switches at all, leaves you with a recoverable disk. In other words, this is the only option
that performs a complete format procedure.

Use the /U switch to format a new diskette. With no previous information that needs
to be saved, this cuts down on formatting time yet insures that the surface is good.

‘When a formatted disk is reformatted to a different configuration (size, sectors, tracks),
the format is by default unconditional, since the track and sector layout must be rewritten
to suit the new configuration. If you wish to do this, but do not use the /U switch, the
following warning message will be seen before the format begins:

Existing format differs from that specified.
This disk cannot be unformatted.
Proceed with Format (Y/N)?

Add a Label

The FORMAT command’s /V:label switch has been around since DOS 4.0, and it hasn’t
changed with DOS 5.0. It lets you enter the desired volume label at the beginning of the
FORMAT procedure, and if you use it, you won’t be prompted for a label later on.
However, don’t use the label switch if you’re going to format more than one diskette,
unless you want all the diskettes to have the same label. Or, if you don’t mind “cheating,”
append the /V: switch to the FORMAT command anyway, then hold down the Alt key
and type in 255 at the number keypad area of the keyboard. This gives each formatted
diskette a “label” of one blank space, which should at least prevent one diskette from
being confused with another later on.

Format Error Messages

If you attempt to format a disk that is almost full, the following error message may show
up:

Drive B error. Insufficient space for the MIRROR image file.
There was an error creating the format recovery file.

This disk cannot be unformatted.

Proceed with Format (Y/N)?

Despite the sinister tone of the warning, you can still unformat the diskette later on by
using the UNFORMAT command before writing new data. However, if you see this
message in the first place, consider it a warning to stop for a closer look at the directory
contents. Are you sure you want to consign everything to oblivion? If so, use the /Q and
/U switches described above to provide your files with a quick and painless death.

If you wish to proceed with formatting, but want to maintain the option to unformat
later on, answer no (“N” or “n”) and make room for the UNFORMAT.DAT file by
transferring a few files elsewhere. Then repeat the FORMAT instruction.

DOS 5.0: An Overview 59

Help Screens

The DOSHELP.HLP file in the DOS subdirectory contains a brief description of each
MS-DOS and batch command. To display this list, simply type HELP at the DOS prompt
and press the Enter key.

For a more detailed help screen, type HELP, a space, and then the desired command
name. Or for slightly faster assistance, type the command name first and follow it with
the /? switch. For example, for help with the DIR command, type either

C>HELP DIR
or
C>DIR /?
to display the following help screen.
Displays ablist of files and subdirectories in a directory.

DIR [drive:] [path] [filename]l [/P] [/W] [/Al[[:]attributes]]
{/o[[:]sortordex]] [/s] [/B] [/L]

[drive:] [path] [filename]
Specifies drive, directory, and/or files to list.

/P Pauses after each screenful of information.

/W Uses wide list format.

/A Displays files with specified attributes.

attributes D Directories R Read-only files
H Hidden files A Files ready for archiving
S System files - Prefix meaning “‘not”

/0 List by files in sorted order.

soxrtorder N By name (alphabetic) S By size (smallest first)
E By extension (alphabetic) D By date & time (earliest first)
G Group directories first - Prefix to reverse order

/s Displays files in specified directory and all subdirectories.

/B Uses bare format (no heading information or summary).

/L Uses lowercase.

Switches may be preset in the DIRCMD environment variable. Override
preset switches by prefixing any switch with - (hyphen) — for example, /-W:

‘When you type HELP plus the command name, DOS searches the DOSHELP.HLP
file, and if it finds the name the complete help screen is displayed. For internal commands,
the help screen information is read from the COMMAND.COM file. For external
commands, the information resides in the external program itself. Thus, the DIR help

60 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

screen is embedded in COMMAND.COM, while the debug utility’s help screen is an
integral part of the DEBUG.EXE program.

If the desired command name is not listed in the DOSHELP file, then a “Help not
available for this command™ message is seen and DOS does not bother looking for a help
screen. The message may mean help is indeed not available, or simply that DOS didn’t
find the command name in DOSHELP.HLP, as is the case with the undocumented
TRUENAME command (described below).

To bypass the search through DOSHELP.HLP, simply type the command name first,
followed by the /? switch. This sends DOS directly to COMMAND.COM or to the
appropriate external file to display the appropriate help screen. In the case of
TRUENAME, the help screen (“Reserved command name”) still isn’t much help though.

MIRROR

The new DOS 5.0 MIRROR.COM utility is a TSR program that saves disk-recovery data
for subsequent use by the UNFORMAT and UNDELETE commands that are described
below. For example, to keep track of future deletions on a diskette in drive B, simply
type MIRROR B: /TB at the DOS prompt (no colon after the drive letter following the
/T switch). This creates a read-only MIRROR.FIL file on the diskette and, the next time
you delete a file on that diskette, file-recovery data is written to a hidden
PCTRACKR.DEL on the diskette. The screen displays are shown here.

B:\>MIRROR A: /TA

Creates an image of the system area.

Drive A being processed.

The MIRROR process was successful.
Deletion-tracking software being installed.

The following drives are supported;
Drive A - Default files saved.
Installation complete.

With MIRROR in place, recovery from an accidental FORMAT or DELETE (or ERASE)
is considerably faster and less susceptible to error. If the MIRROR command line is
written into your AUTOEXEC.BAT file, then every time the system is booted, MIRROR
saves a copy of the file allocation table and root directory for the specified drive(s). The
information is written to a read-only file named MIRORSAV .FIL.

Saving Partition Information

The MIRROR utility can also save hard disk partition information to a diskette for
subsequent use by the UNFORMAT utility, should the need arise. To use this feature,
type the following command at the DOS prompt:

DOS 5.0: An Overview 61

MIRROR /PARTN

Now press the Enter key to display the following message:

The partition information from your hard disk drive(s) has been read.

Next, the file PARTNSAV.FIL will be written to a floppy disk. Please
insert a formatted diskette and enter the name of the diskette drive.
What drive? A

Assuming drive A is correct, press the Enter key. Or type in some other drive letter. The
PARTNSAV.FIL file is written to the diskette in the designated drive, and “Successful”
is displayed on screen. It’s a good idea to make frequent use of this feature, as a regular
part of your disaster insurance program. For further details, refer to “Rebuilding a
Partition Table” in the Unformat section below.

Quick! Where’s the BASIC?

The old familiar GWBASIC has been replaced by Microsoft’s QuickBASIC Interpreter.
The DOS 5.0 QBASIC program offers many of the features of Microsoft’s complete
QuickBASIC program, although it is not possible to compile the BASIC programs
created with the interpreter. For that, you’ll need to buy the complete program, which is
sold separately.

To delete line numbers from a program written under the earlier GWBASIC, load
QBASIC and then run the included REMLINE.BAS program. Many programs change
the cursor shape from its standard blinking underline to a horizontal rectangle as a visual
cue that the insert mode is enabled. In this mode text may be inserted into a line without
overstriking whatever is already there. Instead, characters to the right of the cursor simply
move right to make room for the inserted text. Although QBASIC also offers this facility,
it keeps you on your toes by reversing the de facto cursor standard: a blinking underline
indicates the (default) insert mode, while a vertical rectangle appears when the insert
mode is disabled.

Note that the new DOS 5.0 EDIT utility requires the presence of the QBASIC.EXE
file. So, even if you have no plans to use QBASIC, don’t erase it unless you also don’t
want the EDIT utility.

SETVER

Once DOS 5.0 is installed, if an application displays a “Wrong DOS version” error
message, the SETVER command can be used to modify a DOS version table stored in
the MSDOS.SYS hidden file. To view the existing table, type SETVER without any

62 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

parameters and press the Enter key. This displays a table of existing programs and the
DOS version required for each one, as shown by the following table excerpts:

EXCEL.EXE 4.10
MSCDEX.EXE 4.00
IBMCACHE. SYS 3.40
NET.COM 3.00
METRO. EXE 3.31

If your version of say, WHATEVER.EXE demands DOS 3.10, you can add this
information to the table by entering the following command:

SETVER WHATEVER.EXE 3.10

To make sure you’re properly impressed by the gravity of fooling around with version
numbers, the following message is displayed:

WARNING - The application you are adding to the MS-DOS version table
may not have been verified by Microsoft on this version of MS-DOS.
Please contact your software vendor for information on whether this
application will operate properly under this version of MS-DOS.

If you execute this application by instructing MS-DOS to report a
different MS-DOS version number, you may lose or corrupt data, or
cause system instabilities. In that circumstance, Microsoft is not
responsible for any loss or damage.

Version table successfully updated. The version change will take
effect the next time you restart your system.

To verify that the table has indeed been updated, type SETVER again and press the Enter
key to display the revised table. Note that although the above warning message indicates
that the change has already been written to the version table, you must reboot the system
in order for it to take effect. So if you decide you don’t want to keep the change in the
table, delete it before rebooting by typing

SETVER WHATEVER.EXE /DELETE

Note: Although SETVER modifies the version table hidden within itself, neither the
length of the file nor its file creation date are changed.

SETVER and Virus Detection Utilities

Some some virus detection utilities display a warning message if a file has been recently
modified, while others monitor the system files for tampering. Since the SETVER
command modifies the SETVER.EXE file, such utilities will either report this file as a

DOS 5.0: An Overview 63

as a possible suspect for virus infection, or warn you of impending attack as SETVER is
about to revise the version table.

If virus detection is a consideration, you may want to run a routine virus check before
using the SETVER command, to make sure no files are corrupted. Then, use the SETVER
utility as required and follow it up by immediately running the virus check once again,
this time ignoring the warning message; or if an online virus detection utility prevents
SETVER from doing its work, temporarily disable it until SETVER is finished.

The SHELL Game

For the DOSaphobic computer user, the big news about DOS 4.0 was the brand-new
shell. If you just couldn’t handle long, involved, exacting DOS commands, and didn’t
like the idea of facing a blank screen each time you started up, the shell did away with
all that. You’d never again have to stare at a DOS prompt unless you really wanted to.

The Shell can indeed make hours at the keyboard far less intimidating for anyone who
refuses to crack the manual. Once you learn which keys control what operations, you’ll
be amazed at how easy it is to to run, print, move, copy, delete, rename, view or sort just
about anything. Yet the Shell isn’t for everyone. Yes, it can make life easier for the casual
user, the beginner and the confirmed DOS hater. But if you’re reading this book, you
may not want or need it, although you should know how to configure it and what it can
do in case you have to set things up for a DOS novice.

The Shell can do a few things that DOS alone can’t do, such as renaming subdirectories.
In the pre-Shell era you had to go through a four-step ritual: 1. Create a new subdirectory,
2. Copy the old subdirectory files into it, 3. Delete the files in the old subdirectory, and
4. Remove the now-empty old subdirectory. Five minutes of nuisance work just to rename
asubdirectory. And if you made a mistake during the copying process, you could actually
wipe out all your files by concatenating them into one big useless file.

Installing the Shell

During the initial DOS 5.0 installation procedure, a DOSSHELL line is inserted into your
AUTOEXEC.BAT file, unless you chose not to select this option, as described earlier in
this chapter in the DOS 5.0 installation section. If the Shell is not automatically loaded
during bootup, you can start it from the DOS prompt at any time simply by typing
DOSSHELL and pressing the Enter key.

In either case, the first screen you’ll see is the MSDOS Shell screen shown in Figure
2.2. The screen is divided into several sections.

Menu Bar

This is a single line across the top of the screen which lists the available menus. On startup
the listed menus are; File, Options, View, Tree and Help. Press the Actions function key
(F10) to gain access to these menu options. When you do, the File option is highlighted,

64 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Starting address
segment decimal conten
in hex in Kb begin extended memory
1024 ———
FC00 100
FB00 992 Bios [B8
F400 976
FOO0 960 ———
EC00 944
0 928
£400 912
E000 896 —
DCoo 880
D800 864 LIM XMS # token ring
D400 848
D000 832 ———
C€Co0 816 ———M token ring
€800 800 ——— Ml XT hard disk 1l ESDI controller
C400 84
C000 . VGA
BCOO
B800 4 CIGA
8400
B00O _ MDA (4Kb)
A000 840 — VGA, MCGA
8000 512 ——
6000 384 onventional**
4000 256 emory area
2000 128
0000 000 ——
* Each line = 16Kb

** Eachline = 128Kb
W -ROM; #: =RAM

Figure 2.2. MS DOS Shell Screen

and you can toggle through all the others by pressing the Tab key or using a mouse if one
is installed.

As a typical example, wander over to Options, press the Enter key to view the
pull-down Options menu, and select Colors. You can do this in one of three ways: drag
the mouse down to Colors, or type the letter “0” (as in cOlors), or hit the down arrow key
a few times to move the highlight bar to Colors and then press the Enter key. In any case,
you’ll see a menu of screen colors, including those perennial favorites, Hot Pink, Emerald
City and Turquoise. If you’re leery (you should be) about any of these decorator delights,
preview it by toggling over to the Preview bar. Then take two Excedrin and go back to
one of the other selections.

Drive Selector

Immediately below the Menu Bar is the name of the current directory, followed by a list
of all your active drive letters. The current drive letter is highlighted.

Directory Tree

Just below the Drive Selector area, the left side of the screen shows the directory tree for
the current drive. The tree is pruned though: it only shows the first level of subdirectories
within the current directory. If any of these contain subdirectories of their own, a plus
sign shows up within the brackets to the immediate left of the name. To view the next
level of subdirectories, toggle down to one of these plus signs and press the + key. Or
press Ctrl-Shift-Asterisk to light up the complete directory tree. As you toggle through
the directory tree, the File List to the right of the screen shows the filenames in the selected
directory.

DOS 5.0: An Overview 65

File List

The area to the immediate right of the Directory Tree shows the first eight files within
the current directory.

Program List Area

On start up, the bottom half of the screen shows a “Main” menu listing of four options:

- Command prompt, Editor, MS-DOS QBasic and [Disk Utilities]). The brackets around
the latter option indicate that it leads to additional options. These are disk copying, backup
and restore, quick and regular format and undelete.

Perhaps the biggest attraction of the DOS Shell is that it gives a reasonably clear map
of the total system, which is certainly a lot more informative than staring ata DOS prompt
and wondering what’s really out there. Given a mouse or some hands-on experience
navigating the Shell via the keyboard, it’s quite easy to get from anywhere to just about
anywhere else in the system. On the other hand, you can get there a lot faster from the
DOS prompt, provided you know where you want to go in the first place.

If you’re still feeling your way around your PC, or around DOS 5.0, stick with the
Shell for awhile. You’ll know when it’s time to seek out the DOS prompt. In the
meantime, don’t overlook the possibilities of task-swapping.

Task Swapping

If you need multitasking, you’ll just have to switch to OS/2. Oh yeah? Before you chuck
DOS, select Options and toggle on down to Enable Task Swapper. When you enable the
option, the Active Task List in the lower right-hand quadrant of the screen lists the
programs you want to run simultaneously. Assuming there are not yet any names in the
list, just start any program by highlighting its name in the appropriate subdirectory and
pressing the Enter key. While the program is running, press Ctrl+Esc toreturn to the DOS
Shell. The name of the program should now be seen in the Active Task List. Now start
some other program.

To return to the first program, hold down the Alt key, press the Tab key once but do
not release the Alt key. The screen clears, and a bar at the top lists a program name or
MS-DOS Shell. Press the Tab key a few times to toggle through the available selections
(which come from your Active Task List). When you see the desired name at the top of
the screen, release the Alt key, and that program starts running. Now use the Alt and Tab
keys to switch back and forth between programs. (It takes a bit of practice.)

To remove a program from the active list, simply exit the program in the usual manner.
The program name disappears from the Active Task List. Or, you can Tab over to the
Active Task List, select the program you want to delete, and press the Delete key. If the
program happens to be active, you will be warned about a potential data loss. You can
either return to the program and make an orderly exit, or bail out from here anyway.

You can also add a program to your active list by selecting its name and pressing
Shift+Enter. The name shows up on the active list and the program can be run as just
described.

66 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

To disable the Task Swapper, first delete all programs from the Active Task List, then
select Options and again move down to Enable Task Swapper. When you press the Enter
key, the now-empty Active Task List is deleted from your screen.

Undeleting a Deletion

File destruction need not always be wholesale: it’s just as easy to accidentally erase just
a file or two with the FORMAT command. In this case, the DOS 5.0 UNDELETE
command comes in handy. For example, let’s say you’ve just erased COMMAND.COM
from drive C, and that the MIRROR utility is in place. Let’s see what happens when you
simply type UNDELETE. The screen display will look like this:

Directory: C:\
File Specifications: *.*

Deletion-tracking file contains 1 deleted files.
Of those, -1 files have all clusters available,
0 files have some clusters available,

0 files have no clusters available.

MS-DOS directory contains 1 deleted files.
Of those, 1 files may be recovered.

Using the deletion-tracking file.

COMMAND COM 47845 3-22-01 5:10a ...A Deleted: (date and time)
All of the clustexs for this file are available. Undelete (Y/N)?Y

File successfully undeleted.

If the MIRROR utility had not been loaded, then the final lines of the screen display
would look like this:

?OMMAND COM 47845 3-22-01 5:10a ...A Undelete (Y/N)?Y
Please type the first character for ?OMMAND .COM: C

File successfully undeleted.

The /L (list) switch can be used with UNDELETE to simply display a list of all files and
subdirectories found by the UNFORMAT utility.

DOS 5.0: An Overview 67

Unformatting a Format

If you’ve ever lost important files by accidentally formatting a diskette, you’ll appreciate
DOS 5.0’s new UNFORMAT command, which restores such information, provided
certain conditions are met. The diskette must have been previously formatted under DOS
5.0’s default “safe format™ mode, in which information essential to file recovery is
preserved for future use. And, you must not have written new files to the disk before
attempting the unformat procedure.

Assuming the MIRROR utility is active, you can unformat your diskette by simply

typing

UNFORMAT A:

You’ll see a screen display that looks like this:

Restores the system area of your disk by using the image file created
by the MIRROR command.

WARNING !! WARNING !!

This command should be used only to recover from the inadvertent use of
the FORMAT command or the RECOVER command. Any other use of the UNFORMAT
command may cause you to lose data! Files modified since the MIRROR image

file was created may be lost.
Searching disk for MIRROR image.

The last time the MIRROR or FORMAT command was used was at (time) on (date).
The prior time the MIRROR or FORMAT command was used was at (time) on (date).

If you wish to use the last file as indicated
above, press L. If you wish to use the prior
file as indicated above, press P. Press ESC
to cancel UNFORMAT.

L

The MIRROR image file has been validated.
Are you sure you want to update the system area of your drive B (Y/N)? Y

The system area of drive B has been rebuilt.
You may have to restart the system.

Type DIR B: to display your directory listings. If all went well, all the files in your root
directory and subdirectories are recovered.

68 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

A Worst-Case Unformat

Now let’s assume that Edsel Murphy has been “helping” you maintain your system. You
have a critical diskette that was formatted with the /Q and the [U switches, so although
the data area is not erased, the FAT and directory listings have not been saved. And of
course you forgot to use the MIRROR utility. Well, all is not lost (yet). Retry the
UNFORMAT command with the /U switch. Whatever this /U stands for (the manual
doesn’t say), it permits UNFORMAT to work (slowly, very slowly) in the absence of the
MIRROR file. However, only your subdirectories and the files contained therein will be
recovered. Files in the root directory remain lost.

The following example shows the various screen displays when the /U switch is used
to unformat a diskette in drive B.

UNFORMAT B: /U

Insert disk to rebuild in drive B:
and press ENTER when ready.

CAUTION !!
This attempts to recover all the files lost after a
format, assuming you’ve not been using the MIRROR command.

This method. cannot guarantee complete recovery of your files.

The search-phase is safe: nothing is altered on the disk.
You will be prompted again before changes are written to the disk.

Using drive B:

Are you sure you want to do this?
If so, press Y; anything else cancels.
?Y

Searching disk...

100% searched, 2 subdirectories found.
Files found in the root: 0
Subdirectories found in the root: 2

Walking the directory tree to locate all files...
Path=B:\

Path=B:\SUBDIR.1\
(the recovered subdirectory 1 contents appear here)

Path=B:\SUBDIR.2\
(the recovered subdirectory 2 contents appear here)

Path=B:\

DOS 5.0: An Overview 69

Files found: xx
Warning! The next step writes changes to disk.

Are you sure you want to do this?
If so, press Y; anything else cancels.
?Y

Checking for file fragmentation...
Path=B:\

Path=B:\SUBDIR.1\

Path=B:\

Path=B:\SUBDIR.2\

Path=B:\

xx files recovered.

Operation completed.

Type DIR B: to see what your unformatted diskette looks like. Since the prior FORMAT
did not save the root directory and MIRROR was not in use, no files in your root directory
are recovered and your subdirectories have lost their original names and are now labeled
SUBDIR.1, SUBDIR.2, and so on. It’s not great, but it’s better than losing the whole
works.

Rebuilding a Partition Table

The UNFORMAT utility may also be employed to restore a corrupted hard disk partition
table. To do so, type UNFORMAT /PARTN at the DOS prompt. You will be prompted
to insert the diskette containing PARTNSAV.FIL into drive A. (See “Saving Partition
Information” in the MIRROR section above for details on the PARTNSAV.FIL file.).
With the PARTNSAV.FIL diskette in place, press the Enter key to display a summary
of the partition table that will be rebuilt on your hard drive, such as the one shown here.

Partition information was saved by MIRROR 6M, (date and time)
01d partition information for fixed disk # 1 (DL=80h)

Total_size) Start_partition End_partition
Type Bytes Sectors Cyl Head Sector Cyl Head Sector Rel#
DOS16 Boot 32M 65504 0 1 1 31 63 32 32
DOS16 30M 61408 32 1 1 61 63 32 32
DOS16 30M 61408 62 1 1 91 63 32 32
DOS16 23M 47072 92 1 1 114 63 32 32

Options: Q - quit, take no action.
1 - restore partition records for fixed disk # 80h.

Which option?

70 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

To continue, press the 1 key. You will be asked if you’re really sure this is what you
want to do. If so, type YES and again press the Enter key to actually do the restoration.
When the operation is completed, press the Enter key one more time to reboot the system.

DOS Documented and Otherwise, or, When All Else Fails,
Read the Manual

Not the]easf attraction of DOS 5.0 is its entirely new documentation, some of which is
actually written in English. Here’s a brief overview of what you’ll find.

DOS 5.0 User’s Guide And Reference.

This 600+ page manual is divided into the following sections:

Part 1 MS-DOS Fundamentals
1 Learning About Your Computer
2 Command-Line Basics
3 MS-DOS Shell Basics
Part 2 Working with MS-DOS
Working with Files
Working with Directories
Managing Disks
Advanced Command Techniques
Customizing MS-DOS Shell
Working with MS-DOS Editor
Part 3 Customizing MS-DOS
10 Working with Batch Programs
11 Customizing Your System
12 Optimizing Your System
13 Customizing for International Use
Part 4 MS-DOS Reference
14 Commands
15 Device Drivers
Appendixes
A Keyboards and Their Codes
B Messages

=l B B e WRV I N

Index

Perhaps the best feature of the User’s Guide and Reference is its “Commands” chapter
(14), which includes just about everything you need to know for daily operations. Listed
alphabetically are all the DEBUG and EDLIN parameters, batch commands, FORMAT
instructions and, of course, all the routine DOS commands. The layout will come as
blessed relief to users upgrading from IBM’s DOS 4.0 manual, in which it was almost
impossible to find anything without consulting the index first.

DOS 5.0: An Overview 71

For further information about various commands, the cross-referencing to earlier
chapters is good but not great. For example, the DOS command in Chapter 14 suggests
that, “For an introduction to using the DOS command and reserved memory, see Chapter
12.” Needless to say, there are no headings in that chapter for either the DOS command
or for reserved memory. No doubt the information is buried in there somewhere (it’s a
big chapter) but you’ll have to do a page-by-page search to ferret it out. Once you do find
it, mark the DOS section of Chapter 12 accordingly, in case you need to find it again
later.

The front of the book information is extensive, but could be better organized — you’ll
need to do a lot of skipping around to find all you need to know about any topic. Again,
make your own marks as you go, for future reference. At the back of the book many error
messages don’t show up in the “Messages” appendix (B), and the index still needs some
work.

Well, software documentation is supposed to be difficult to read, if only to make books
like DOS Power Tools so valuable. But as such tomes go, the Microsoft User’s Guide
and Reference is a cut or two above much of the competition, if not yet up there with
Herman Melville and friends.

Don'’t forget to README

In addition to the User’s Guide, don’t overlook the README, APPNOTES, UMB and
any other text files found in the DOS subdirectory — look for files with a TXT extension.
Here you’ll find the latest information on changes that didn’t make it into the regular
documentation, up-to-date notes on various hardware compatibility issues, memory
management details, and so on.

The Packing List

Another bit of documentation is the PACKING.LST file found on one of the DOS 5.0
distribution diskettes. This uncompressed file shows the names of all the programs on
the entire set of diskettes. For the benefit of users who will install DOS 5.0 on diskettes,
PACKING.LST also shows the correct contents for each diskette that will be made during
the installation.

Neither list of filenames is in alphabetical order, which is no big deal unless you refer
to the list frequently, in which case it’s a nuisance. If you want to sort the list for easier
access, first make a copy of that part which lists the distribution diskette files. Using your
word processor, search for every hard carriage return symbol and replace it with a tab
and a return symbol. Now move the cursor down to the first filename on the last diskette.
Replace every tab return pair with tab-(x)-return, where x is the number of the last
diskette. Now move up to the next-to-last diskette and do it again, but this time make x
the number of that diskette. Repeat the procedure for each diskette in the list. When you’re
finished, sort the list. The result should look something like this:

5202.cp_ (5)
ansi.sy (2)

72 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

append.ex (5)
appnotes. txt (6)
assign.co_ (5)
attrib.ex_ (5)
autoexec.bat (1)
backup.ex (5)
cga.gr_ (3)

and so on. The number in parentheses is of course the diskette on which the listed file is
found.

The Undocumented Side of DOS

Psst, want to look at something you’re not supposed to see? It’s easy, if you enjoy a little
detective work. It’s the kind of snooping every experienced user does if there’s even the
slightest hint of undocumented goodies lying within the latest version of DOS. The trick
is first to find one of them, and then to figure out what to do with it.

The first part is easy. DOS comes with two kinds of commands, external and internal.
The external commands are the ones you see in the DOS directory — all those standalone
programs with the COM and EXE extensions, such as CHKDSK.COM or XCOPY.EXE.
To run any one of these, all you need do is type its name (minus the extension) and hit
the Enter key — that is, assuming the program with that name is in the current directory,
or that your PATH control knows where to find it.

However, the names of important commands such as DIR, COPY, RENAME, ERASE
— as well as batch file commands like GOTO, ERRORLEVEL and IF — don’t show up
in the DOS directory at all. Instead, the main COMMAND.COM file contains both the
name and the instruction code for each of these commands. Hence, they’re referred to as
internal commands, and DOS stores them in a dispatch table at the very end of the
COMMAND.COM file.

All internal commands have priority over external commands and batch files with the
same name. So unless you know a little trick (add a .\ prefix), you’ll never be able to run
a batch file called DIR.BAT, since DOS will find its internal DIR command first and
never even get to your DIR.BAT file.

If you want to sse COMMAND.COM’s table of internal commands, just type DEBUG
\COMMAND.COM and then type the lines below that start with DEBUG’s hyphen
prompt. The intervening lines are displayed in response to your instructions.

-8 100 fffe "PATH=PROMPT"
XXXX:ATA3
XXxxX:E003

-D A7A3

What all this means is that you’ve instructed DEBUG to search for the
“PATH=PROMPT” string, which it finds at the two locations beginning with xxxx. In

DOS 5.0: An Overview 73

the last (-D) line, you're telling DEBUG to display the first occurrence of that string,
which happens to mark the beginning of COMMAND.COM's dispatchtable. You should
see the string on the right-hand side of the screen, followed by some meaningless (to you,
that is) characters and a lot of periods.

Now alternately press D and the Enter key a few times to move through the complete
table. Interspersed amongst all the meaningless characters, you’ll see NOT,
ERRORLEVEL, EXIST, DIR, CALL and all the other internal commands. Keep an eye
out for words you don’t recall seeing before. Like TRUENAME.

So, now you know there’s this new DOS command called TRUENAME, but with no
documentation you don’t know what it does. Unless you’re an absolute DOS DEBUG
demon, now’s the time to bail out of DEBUG. Press Q and the Enter key to return to the
DOS prompt.

Well, go ahead and get it over with: type TRUENAME at the DOS prompt and see
what happens.

Nothing. It turns out that the command only does something after you’ve used SUBST,
ASSIGN or JOIN. Taking SUBST as an easy example, it’s used to assign a single drive
letter to a long subdirectory path, as in SUBST H: C:\LETTERS\FINANCE\MARCH

From now on, whenever you need access to

C:\LETTERS\FINANCE\MARCH, simply log onto drive H instead.

But what is drive H’s true name? Just type TRUENAME H: to find out. As you may
suspect by now, you’ll see the C:\LETTERS (etc.) line displayed on screen. So, it turns
out that TRUENAME can help sort through the confusion generated by SUBST and the
other two DOS “alias” commands, ASSIGN and JOIN.

SUBST can fool old dBASE or eatly WordStar programs into loading their overlay
files from a subdirectory instead of a diskette, and it lets you put a single drive letter
instead of a long search path into your PATH and APPEND strings. Besides, it’s a lot
easier to switch back and forth between \PROGRAMS\NEW\WORDPROC\MSWORD
and \DOS\UTILS\DISK\TOOLS by referring to them as drives M and T.

ASSIGN will soothe a cranky application that insists on having certain files on
diskettes in drives A or B. And with JOIN, files in different locations can be treated as if
they were all in one place.

All this can be useful. But if you’re doing too much of it at 3:00 AM and you make
backup copies or delete files without thinking about what you’re doing, you can really
screw things up. In this case, TRUENAME comes to the rescue by reporting the real
identity of each drive or subdirectory. For example, if you’re logged onto drive T and
can’t remember what it really is, just type TRUENAME and press the Enter key. You’ll
be reminded that drive T is your \DOS\UTILS\DISK\TOOLS subdirectory. Or if you’re
elsewhere at the moment when uncertainty strikes, type TRUENAME followed by the
drive letter in question and a colon. Again, TRUENAME gives you the information you
need.

Very nice, but why is there no documentation in either DOS 4.0 where TRUENAME
was introduced, or in DOS 5.07 Well, there’s an old saying that

74 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Hardware folks work from dawn ’til setting sun,
But a programmer’s job is never done.

There’s always some little bit of code that wants tweaking, or an exotic bug that needs
to be sprayed. Most of the time the programmers get all the kinks out (well, most of the
kinks) before the software is released. If a feature isn’t working just right yet, it can be
disabled before the production runs, yet the feature’s instruction code may remain in
place, even though the feature itself is not quite ready to be brought to the public’s
attention.

It wasn’t always like this. In the early days, some software actually went out the door
with known bugs crawling around inside. Today, this doesn’t usually happen. Or if it
does, the manual carries lots of warnings not to do the thing that still has the bug.

TRUENAME seems to work well, and if there are bugs they’re rather well-behaved
(so far). Since it wasn’t entirely disabled, maybe it won’t cause havoc. But then again,
maybe it will. So if you’re the overly cautious type, don’t tempt the fates by invoking its
name. But if your files are all backed up (really), and you like to live dangerously,
well ...

Beyond 5.0

It seems that every time you pick up a computer publication, the guru-de-jour is predicting
the imminent demise of DOS. It’s possible to make a strong case for a slick multitasking
operating system with a friendly front end, but OS/2 isn’t it. It’s also easy to make a case
for something as friendly and intuitive and technologically dazzling as the Mac or the
NeXT machine, but the massive body of DOS software offers a tenfold quantity
advantage over the software for those two sexy systems put together. And people buy
their hardware because of the software. It’s even possible to consider an interim step like
some of the new and markedly improved Windows versions, but if you’re interested in a
GUI (Graphical User Interface), Apple does it better.

The truth is that the huge base of IBM-compatible systems isn’t one market; it’s three.
At the beginning of the 1990s, according to Microsoft chairman Bill Gates, there were
over 40 million DOS machines in use. One market comprises several million high-priced,
high-end corporate systems stuffed with expensive peripherals that let their users talk to
mainframes all day. There’s another market of systems used for education, impressing
office visitors, and letting the kids zap aliens. This might include a subset of a few million
doddering antiques and closet dwellers. But take all that away from Bill’s 40 million
DOSers and you’re still left with a nice little core market of 20 to 30 million serious
average users.

Many of these folks struggle along as best they can, avoiding anything tricky and
running batch files set up by someone else a long time ago. These low-current users are
intimidated by the hardware and software documentation, and are reluctant to spend
whatever time it might take to become power users. Which is unfortunate.

DOS 5.0: An Overview 75

But these millions of users do have a lot of investment tied up in their DOS. They or
their companies have spent a bundle of bucks to buy hardware and software. Even more
important, they’ve spent their own time learning how to copy files, format disks, start a
program, load data and do all the dozens of chores we all face daily. Is this megagroup
suddenly going to chuck it all and run to OS/2? Not likely.

The real tragedy is that DOS is extremely powerful and flexible, if you know just the
right tricks and have just the right tools. But the DOS manual is no great teaching aid,
and DOS sometimes doesn’t provide the tools anyway, although DOS 5.0 certainly goes
a long way to remedy both ills. But of course there is still much that needs to be done.
For example, should one really have to deal with crotchety IF ERRORLEVEL syntax;
and shouldn’t DOS provide at least one program for returning ERRORLEVEL codes?
Why even give this powerful feature an intimidating name like ERRORLEVEL? Even
though it can be used to report whether your formatting operation ran into trouble, it’s
vastly more useful as an interactive tool.

Some programmers hate DOS because it doesn’t give them all the memory they need
for fat, sloppy code or slapping on tons of flashy features. On the other hand, other
programmers like DOS because they can write tight, efficient Assembly Language code
(which you really can’t do as easily with OS/2), and because their programs can
communicate directly to the hardware.

Face it — DOS is never going to be OS/2. But at least for a while, neither is OS/2.
Software upgrades have to be vastly better than their predecessors, or users just can’t be
bothered. Until someone can demonstrate that a hot new operating system is significantly
better, the millions of DOS users will remain faithful.

In the future, DOS will get even friendlier and more tractable, but it’s never going to
be a slick multitasking protected mode system with decent interprocess communications,
terrific memory management, and an awesome interface.

Go back and read that last sentence again. It was taken word-for-word from the
previous version of DOS Power Tools, Second Edition. So if you’ve read this chapter
carefully, you may want to suggest that a writer must never say “never.” DOS 5.0 has
chipped its way into multitasking, memory management is much improved, and the
interface — if not totally awesome — is at least much improved.

But do most users really need even more than this? Only if new applications suddenly
arrive that blow today’s software into the weeds and don’t run under DOS. This hasn’t
happened, and it probably won’t for a few years. Besides, DOS works on just about
anything from an old PC-1 to a pocket machine to the newest high-end hardware. OS/2
doesn’t want to play on any of the 8088 and 8086 systems.

If you really need to run several huge programs concurrently and swap data from one
to the other, and you have a sufficiently new system, try OS/2. But if you’re like most
users, you’ll benefit even more — at least for the next few years — by learning how to
tame DOS and add powerful tools to it. This book shows you how.

Disk Organization,
Files, Filenames

The first thing most users do when they walk over to a computer equipped with a hard
disk is type DIR to see what’s there. On a well-organized system you’ll probably see

something like:

Volume in drive C is WORKDISK

Volume Serial Number is 104F-16CD

Directory of C:\

COMMAND COM
CONFIG SYS
AUTOEXEC BAT
DOs

WORDSTAR
DBASE

LOTUS

7 File(s) 28220672 bytes free

However, try this on a disorganized floppy disk system and you’ll see a real mess:

37

<DIR>
<DIR>
<DIR>
<DIR>

637
47
256

6-17-88
10-18-90
10-18-90
10-18-90
11-06-90

2-11-90
12-03-90

Volume in drive A has no label

Volume Serial Number is 104F-16CD

Directory of A:\

77

12
7
12
7
12

12

:00p
:07a
:01a
:09%a
122a
12:
:02a

00a

78 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

TF86_CDY RPT 65387 1-01-80 7:07a
TF86_CDY BAK 54396 1-01-80 12:01a

RRXWFEB7 4QS 6754 1-01-80 7:07a
FIN_ 54TT RPT 11239 1-01-80 11:01p
SPELLIT <DIR> 1-01-80 12:02a
PROSEWIZ EXE 86456 4-17-87 9:54p
FIN 54TT BAK 9437 1-01-80 5:07p
COMMAND COM 37637 6-17-88 12:00p
AUTOEXEC BAT 256 1-01-80 12:01l1a
etc.

When you type DIR and press the Enter key, DOS shows you what’s in the directory
that you happen to be using. Directories are storage bins, like drawers in a file cabinet.
Just as some file cabinets prevent you from opening more than one file drawer at once,
you can look at the contents of only one directory at a time. Each line in the main part of
a DIR listing represents either a single file stored in that directory, or the name of another
related directory on the same disk.

And just as some well-organized workers keep their file cabinets in meticulous shape
and can find any document in seconds, while others live in the shadow of chaos and can’t
find anything without tedious searching, disks can be well-organized or in total disarray.
Fortunately, once you know the basic techniques and have a few powerful programs
handy, your computer can do all the organizing for you. This book will show you the
tricks and provide the programs you need.

The Physical Disk

All diskettes and hard disks use the same basic technology. The surface of each is coated
with a material that can store lots of isolated magnetic charges. An electromagnetic coil
of wire or special “stepping” motor propels a tiny magnetic read-write head over the
surface of the disk. When you want to store information, you tell a controller circuit to
move the magnetic head to an unused part of the disk, then send signals into the head that
alter the magnetic charges on a small adjacent area of the surface. When you want to
retrieve information, you have the controller move the head to the appropriate area and
tell the head to sniff out the pattern of magnetic charges located there.

It’s actually a lot more complicated than this. When you issue a command, something
has to interpret your typing and figure out what you’re trying to do. If it determines that
you want to load a program, it has to decipher the name and location of the file, and look
on the appropriate disk to make sure it’s there. Files are normally stored in small chunks
scattered over the surface of the disk, and something has to thread all the chunks together,
then find an unused area in memory and copy the chunks there in the right order. At this

Disk Organization, Files, Filenames 79

point things get even more complex, since something has to rope off the area of memory
that holds the program, set up other memory areas for storage, see if you entered any
parameters after the name of the program that need processing, and pass control to the
program.

Fortunately, DOS handles all the details. All you have to do is type in the filename and
press Enter.

Individual floppy disks on IBM’s eatliest PC could hold a mere 64 files, or 160,256
bytes of programs and data. As users began demanding bigger and more efficient systems,
manufacturers first tried cramming additional storage space onto the same 5-1/4 inch
floppies. But as space needs skyrocketed, vendors started introducing increasingly large
hard disks — as well as 3-1/2 inch diskettes that could store as much as 1,457,664 bytes
of information — more than nine times the capacity of the first PC diskettes.

IBM’s first hard disk, for the XT, held ten megabytes; the first for the AT could store
20 megs. Users accustomed to floppy disks initially wondered how they could possibly
fill so relatively enormous a storage space. But having all their programs and files at their
fingertips was so seductive that users quickly clamored for more. Stacks of today’s
muscular hard disks and optical disks can salt away bytes in the gigabyte range (giga
means billion and is pronounced “jig-guh” the way gigantic is pronounced “jy-gan-tic”
— although most users say “giga™ with a hard g as in “gargantuan”).

But DOS wasn’t designed for such massive storage. It doesn’t store data in long,
continuous, uninterrupted blocks of space. If it did, making additions and deletions to
files would become insanely inefficient, since each time you made a file longer, DOS
would have to find a brand new uninterrupted amount of disk area to store the enlarged
file. So DOS divides files up into little pieces and stores the pieces in small areas called
clusters.

Clusters are made up of sectors. Each sector — the smallest possible user storage area
on any DOS disk — is 512 bytes long. On some disks, like the earliest single-sided 160K
and 180K floppies, or the high-density 1.2 megabyte 5-1/4 inch and 1.44 megabyte 3-1/2
inch diskettes, each cluster contains just one sector. At the other end of the scale, the
absurdly inefficient ten-megabyte XT hard disk allots eight sectors to each cluster, which
means it takes 8 x 512, or 4,096 bytes to store even the smallest file on an original XT.
And some mammoth DOS 5.0 hard disks are even worse.

When you store a file on a disk, DOS splits it into cluster-sized chunks and starts
looking for vacant parts of your disk to hold these chunks. On a newly formatted hard
disk, all these chunks can be continuous and uninterrupted. But on a disk that’s seen
months or years of heavy use — especially one that’s nearly filled with data — DOS has
to look long and hard to find empty spaces, and may end up dividing a typical file into
dozens of fragmented clusters scattered all over the surface of your disk.

DOS relies on a chart called the File Allocation Table (FAT) to remember which
clusters on the disk are temporarily unused, and to keep track of where all the scattered
chunks of your files are located. It also uses a special nondisplaying part of the disk’s
directory to steer itself into each file’s very first cluster. But while the directory contains
the address of the initial cluster, the FAT maintains the addresses of all the rest of any
file’s clusters. The FAT is so important that most disks contain two identical copies, and

80 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

DOS updates both each time it adds, deletes, or changes a file. This way if one copy of
the FAT becomes damaged, DOS can consult the other for the vital mapping information
it needs.

A raw disk is sort of like a tract of undeveloped land that someone wants to turn into
a housing development crammed with one-acre lots. At first the land is just one large
uniform property that may have some random buildings, hills, gulleys, and dirt roads on
it. The first thing the developer does is flatten out the property, divide the land into lots,
and build a grid of roads that lead to each individual lot. He may find that one or two lots
contain jagged rocks or swampy areas that can’t easily be converted into homes. Then
he constructs a main office and puts a map of the development on the wall, displaying
the addresses of each lot and marking off the few that have cliffs or quicksand that prevent
them from being sold. As buyers start purchasing homes, the developer crosses off these
lots one by one.

Fresh from the factory, a disk is just one large uniform surface that has some random
information on it (left over from the manufacturing process). The first thing a user has to
do with a disk is format it, which divides the disk into uniform sectors, evens out the
random magnetic hills and valleys in key places, creates the underlying maps and
structures, and reports any “bad” sectors that are magnetically unstable or unfit for
holding data.

(Actually, hard disks require two kinds of formatting, low-level and high-level. To
continue our analogy, a low-level format is like drawing a map of the land. A high-level
format is like actually putting in roads. Most hard disks come from the factory with the
low-level formatting already done. And today many dealers even do the DOS high-level
formatting to spare users the grief of having to read the manual.)

When the developer first starts hawking his hundreds of homes, the map of available
lots is wide open, except for the few that are too craggy or wet to build on. Likewise,
when a disk is first formatted, its map of available sectors is wide open, except for the
few that are magnetically unsuited to store information. If one huge clan of families
approached the developer just as he started selling, and wanted to buy a long string of
homes adjacent to each other, the developer could easily put them all in a row, then cross
an entire contiguous block of homes off the map. But if the developer sold most of the
building lots to unrelated families, the map would start filling up in somewhat random
order. Over the years, many of these unrelated families would sell their individual homes
and move out, and the development would always contain some homes that were
temporarily vacant. If the clan descended on the development a few years after it was
built, they probably wouldn’t be able to find a string of homes next to each other, and
would have to settle for one here, one there, one way over there, etc.

‘When a disk is newly formatted and empty, you can store files in relatively contiguous
clusters. But as you add new files and erase old ones, and make existing files smaller and
larger, you end up with pieces of your files all over the disk. It’s far faster to load and
write files that aren’t scattered in many pieces. Hard disk users should periodically make
full file-by-file backup copies of all their files, reformat their disks, and then put all the
important files back. This has three good effects:

Disk Organization, Files, Filenames 81

1. It makes sure everything is backed up.

2. It unfragments files so they load faster. When you back up a file, DOS takes all the
scattered pieces from the far-flung reaches of your hard disk and puts them all together
in one continuous area on the newly formatted backup floppy or tape. When you go
back later and restore your backed up files to the newly formatted hard disk, DOS
writes the file in one long, efficient, continuous piece. Of course, as soon as you start
editing it again, the efficiency plummets. Because programs don’t change much,
however, reformatting your disk and then copying programs back to it may speed up
loading dramatically.

3. Itcleans up unwanted files, giving you lots more free space on your hard disk. You’ll
be surprised at how many files you'll decide aren’t worth copying back to the hard
disk once you’ve backed them up. Having them available on a backup floppy or tape
means you can always retrieve them if you need to. But by not copying them back to
your hard disk, you’ll end up with free space for new files — and you’ll prevent the
wasteful “churning” DOS is forced to do when it tries to hunt down the few vacant
sectors on an overstuffed hard disk.

DOS had a serious design problem when it came to large hard disks. When you asked
ittostore a file, DOS consulted the FAT to find out where the unused sectors were located.
And when you later asked DOS to load a file, it looked up the locations of the bulk of
the file’s sectors by again examining the FAT.

The engineers who originally designed DOS had to decide how big the FAT should
be. Making it too small meant limiting the number of bytes users could store on a single
. disk. But if they made it too large, they would have ended up with an ungainly FAT that

would have taken up too much raw space on each disk. (And remember, this was back
.in the days when a standard diskette held a trifling 160K, the standard PC came with 16K
of RAM, and IBM seriously thought users were going to store their data on cheap tape
recorders.) They finally settled on giving the FAT a maximum of 16-bit addresses, which
- meant that the largest possible table could have 64K worth of entries. Since each entry
on the chart was a sector 512 bytes long, the maximum size of any single DOS disk was
64K x 512, or 32 megabytes.

The first IBM hard disk FAT, for the XT, used 12-bit, or 1.5 byte, addresses Each
address was made of three hexadecimal digits (16-bit addresses use four hex digits). But
since FAT values are maintained as even pairs of hex digits, and because of the
“back-words” storage technique used by the CPU, juggling 12-bit FAT addresses can be
a real headache. Fortunately, DOS does all the work. '

. While 32 megabytes must have seemed enormous in the early 1980s, today it can seem

small and cramped. The FDISK command in IBM’s PC-DOS 3.3 let users divide one
large physical hard disk into several smaller logical drives, each 32 megabytes or less,
and each with its own drive letter. Compaq DOS version 3.31 extended the idea of logical
drives by adding 32-bit FAT addresses, which allow logical drives as large as half a
gigabyte. IBM’s DOS 4.0 finally smashed through the 32 Mb barrier, allowmg single
enormous hard drives.

82 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

File Types

Files are either executable or nonexecutable. Executable files come in two classes —
most are programs (with COM or EXE extensions) that your system can run, such as
WordStar, or CHKDSK, or 1-2-3. But DOS can also execute batch files (with BAT
extensions), which are sequential lists of DOS commands and program names. DOS
churns through batch files a line at a time, executing any DOS commands on each line
and running any programs you’ve specified there.

Most other files store data, in one of two forms. Some data film are in text or low-bit
ASCII format, which means that they contain nothing but the alphanumeric characters
you could produce on a conventional typewriter. You can use the DOS TYPE command
to read such ASCII files (although the TYPE command can also handle high-bit ASCI
characters without missing a beat). But such files waste lots of space, and aren’t very
secure from prying eyes. Many data files are stored in proprietary nontext formats that
compress the data more efficiently than ASCII files, and keep the information safe from
snoopers. If you try using the DOS TYPE command on these, you'll either see a
meaningless mass of what look like random characters, or a few familiar words inter-
spersed with gibberish.

Some special kinds of nonexecutable files, with extensions like SYS or DRV contain
instructions that your operating system uses to control hardware better. The DOS
ANSILSYS device driver gives you enhanced keyboard and screen control. VDISK.SYS
turns some of your memory into a virtual disk (as IBM calls it), or RAMdisk. And
DRIVER.SYS lets you use some of IBM’s external oddball drives.

You may also see files on recent DOS disks that have PIF extensions, which stands
for Program Information File. IBM invented the PIF file for use with its TopView

- operating environment. Although TopView is now extinct, Microsoft also used PIF files
for its Windows operating environment. Some programs are specially written to run under
Microsoft Windows. But many normal programs that run under DOS can still run under
Windows. Microsoft refers to these programs as either standard applications or old
applications.

Windows looks for a PIF file whenever you want to run an old application. The PIF
file contains information about the program and tells Windows things like how much
memory the application needs and how “well-behaved” the program is. An “ill-behaved”
program generally writes directly to the display memory. Virtually all word processors,
spreadsheets, and graphics programs do. Windows cannot run these programs in a window
and may have trouble multitasking them. It has to give up the entire display because it
has no way of knowing when the program will write to the screen. (A program that does
not write directly to display memory, but instead goes through DOS or the BIOS to
display everything, can be run in a window, share the screen with other applications, and
often be multitasked.)

Program Files

Programs all sport either COM or EXE extensions. The COM stands for command and
the EXE for executable files, but theyre really both executable. They’re also unreadable.

Disk Organization, Files, Filenames 83

If you manage to peek inside one (using the COPY /B trick mentioned below) all you’il
see is beeping, flashing gibberish punctuated by any error messages and English-lan-
guage prompts or instructions that happen to be imbedded inside the program code.

The gibberish is really just an artifact. Each byte of every program has a value between
0 and 255; your system interprets strings of these values as instructions that put your
programs through their paces. But since IBM’s version of the ASCII character set
contains 256 separate characters with values between 0 and 255, when you display the
contents of a program onscreen your system prints the ASCII characters that happen to
represent the value of each byte. These characters generally have nothing to do with the
actual program instructions. The beeping and flashing is caused when your system tries
to display certain very low values that DOS interprets as control characters.

COM files are memory image files. The pattern of bytes in the file on the disk is exactly
the same as the pattern when the file is loaded into memory, which isn’t the case with
EXE files. They can’t be larger than 64K, and are generally more compact than EXE
files. DOS always loads COM files at offset 100H (which is why DEBUG starts COM
files at address 100H), and squeezes a 256-byte Program Segment Prefix (PSP) beneath
it. The bottom half of the PSP contains a lot of important addresses that tell DOS where
to find the things it needs, and the top half contains a copy of the command tail — the
part of the command line that you entered at the DOS prompt after the filename. Any
parameters and switches show up here. DOS also uses this upper area as a default Disk
Transfer Area (DTA), a file I/O buffer space.

The COM file extension came from the older CP/M operating system, since the first
versions of DOS were heavily based on CP/M. In fact, the COM file formats of CP/M
and DOS (including the PSP that DOS builds when it loads a COM file) are practically
identical. For software developers, this similarity helped ease the eatly transition to the
PC. Programmers could ignore the segmented addressing scheme of the 8086 and work
with just 64K of program and data space, the same as under CP/M.

EXE files are gradually replacing COM files. The mix of code and data in the same
segment and the calculation of segment addresses outside the code segment are two of
the major stumbling blocks that limit PC programs to one megabyte of addressable
memory and prevent them from running under the 80286 extended-memory protected
mode. Strictly speaking, COM files no longer exist under OS/2, although you can still
run these programs in a “DOS Mode” session. For the millions of older systems running
DOS, however, COM programs will still work as advertised.

While programmers once prided themselves on what tight, sleek assembly language
COM programs they could write, EXE programs today are often pieced together by teams
of coders who use higher-level languages like C and end up with enormous, often sloppy
programs that are relative memory hogs.

The EXE format started with DOS and can handle programs larger than 64K; in fact,
an EXE file can snatch around 600K in a typical maxed-out system. It does this by using
multiple segments for program code, data, and a special storage area called the stack (see
Chapter 7). Each of these segments can be 64K long. DOS looks at a special header at
the beginning of any EXE file to figure out how and where to load the individual
segments. Every EXE header contains information that DOS needs to load the program
into memory correctly, juggle the segment assignments, and allocate space for it to run.
You can’t see this header information if you load the EXE file directly into DEBUG,

84 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

because DEBUG uses the header to perform all the space allocation and fix-ups and gets
the program ready to run. But you can look at the header if you first rename the file to
give it an extension other than EXE and then load it into DEBUG. (But then you won’t
be able to run it in DEBUG, so don’t try.)

Use the following commands to examine the first part of the file header on a sample
EXE program called SAMPLE.EXE: :

RENAME SAMPLE.EXE SAMPLE.XXX
DEBUG '
N SAMPLE.XXX

Lo

Do
Q

One value in the header specifies the number of 16-byte paragraphs needed after
the end of the loaded program. This extra memory space is used for the heap and the
stack. During calculations, the stack is used to store intermediate results. The heap
is used by the program mostly for dynamic storage. If a program executes a STRING$
command or DIMensions an array, the result has to be put somewhere, and it goes in
the heap. In a program that does a lot of dynamic string and array allocation, the heap
can get pretty cluttered up and disorganized. At times, normal execution can grind to
a halt while the program cleans up the heap in a process technically referred to as

“garbage collection.”

You can examine the PSP by loadmg the EXE file (not the renamed XXX file) or COM

file into DEBUG. To look at SAMPLE.EXE, type:

DEBUG SAMPLE.EXE
DOL 100
Q

In all DOS versions before 3.3 users received a utility called EXE2BIN that can
translate certain kinds of EXE files into COM (BIN stands for binary) files. (In 3.3 IBM
moved EXE2BIN to the DOS Technical Reference Manual.) Only EXE files that have

- been specially prepared, generally in assembly language, can be successfully turned into
COM files. These programs must not contain a stack segment, must have no references
to relocatable segments, and must begin execution at offset 100H in the file. Since an
executable EXE file must have a stack segment and generally uses separate code and data
segments, the two formats are essentially incompatible.

Disk Organization, Files, Filenames 85

Nonprogram Files

Programs produce and process data. This data is either in pure-low-bit-ASCII text format
or in some compressed proprietary form.

A “pure-low-bit” ASCII file contains only letters, numbers, punctuation, the symbols
“#3% &’ O*+-[<=>@[\]*_‘{|} ~, tabs, and variations of the carriage return/line feed com-
bination that tells your system to end one line and start the next one. Such files can’t
include most characters with ASCII values less than 32 or greater than 127.

Word processors often use special proprietary formats that rely on ASCII characters
lower than 32 or greater than 127 to keep track of things like settings (margins, line
spacing, etc.) and special printing tricks (underlines, boldfaces, pitch changes, etc.). But
most good word processors include a mode that will let you create and edit pure-ASCII
files. Or if they don’t, they’ll usually let you strip out any offending characters from their
proprietary formats and leave just the letters, numbers, and punctuation.

Pure-low-bit ASCII files are usually called just ASCII files, text files, or DOS files.
You can tell if a file is pure ASCII by using the DOS TYPE command to display its
contents onscreen. If it looks like normal everyday text, it’s probably pure ASCII or close
to it. However, if it’s jumbled, or littered with smiling faces, math symbols, crooked lines,
and foreign language characters, it’s not a pure-ASCII file.

If you have a file punctuated with jumbled characters, you can view the stripped
contents by using the DL.EXE program on one of the accompanying disks, and using the
F option to toggle the high bits off. Most word processors have the ability to produce a
straight ASCII file; those that don’t often can be converted to straight ASCII through the
conversion routines of one that does. For example, you can use WordPerfect’s CON-
VERT utility to convert WordStar files to WordPerfect format, and then save it in
WordPerfect’s DOS text format to get an ASCII file.

While powerful word processors — with their abilities to move and copy blocks of
text, perform formatting magic, and search for and replace strings of characters — are at
one end of the editing spectrum, the DOS COPY CON command is at the other. The DOS
EDLIN text editor is somewhere in between, although few users ever bother with EDLIN,
since everyone either uses word processors, program editors, or even the character
handling features of programs like /-2-3 to create small text files.

All COPY CON can really do is copy characters from the keyboard to a file. The only
“editing” it offers is the ability to erase mistakes on the current line with the backspace
or left arrow key. But it’s fast and convenient, and it lets you create short files without
having to leave DOS or have your word processor handy.

COPY CON creates absolutely pure ASCII text files, without any embedded codes,
except to indicate the end of the file. It’s simple to create a file such as a batch file using
COPY CON. First, just pick a filename that ends with BAT, such as DIRSIZE.BAT, type
it in after the command COPY CON at the DOS prompt, and press the Enter key:

COPY CON DIRSIZE.BAT

86 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

DOS will drop the cursor down a line and just sit there waiting for you to do something.
Start typing up to 127 characters of text per line (126 if it’s the last line). If you make a
mistake, you can backspace it away only if it’s on the same physical line of the screen as
the cursor. Lines wrap down one row on the screen when they reach 80 characters, so if
you’re typing the 81st and you notice a goof at character 79, you’re out of luck. (To abort
the process and start again, press Ctrl-Break.) When you’re done typing each line, press

Enter key to start the next one.

In this case, type in a command to sort the DIR listing in reverse size order and discard
extraneous lines:

DIR | FIND "-" | FIND /V "<" | SORT /R /+14 | MORE

(To make this work, you’ll have to have the DOS FIND.EXE, SORT.EXE, and
MORE.COM files on the same disk as the batch file you’re creating, unless they’re in a
subdirectory that your PATH command knows about.) Before pressing the Enter key at
the end of the line, press the F6 function key. You’ll see a “Z onscreen. This tells DOS
you’re done. Then press the Enter key and you should see the message:

1 File(s) copied

Check the directory and you’ll see a new file called DIRSIZE.BAT. If you do have the
FIND.EXE, SORT.EXE, and MORE.COM files handy, typing DIRSIZE at the DOS
prompt will produce a directory listing sorted by file size, with the biggest files at the top.

If for some reason you have changed the meaning of the F6 key (either with ANSL.SYS
or a commercial macro-writing program like ProKey), you could instead hold down the
Ctrl key and press Z. Or you could even hold down the Alt key, type 26 on the number
pad (not the top row keys), and then release the Alt key. All three methods will put an
ASCII character 26 end-of-file marker at the end of the file.

Most of the time you can put the *Z end-of-file marker at the end of the last command
rather than on an extra line all by itself at the very end of the file. However, certain
commands, such as ECHO, require that you follow the command with a carriage return
rather than an end-of-file marker. And if you do put the Ctrl-Z on a line by itself, the

. batch file will usually end up putting two prompts on the screen after it finishes executing.

Creating Filenames

You can’t store any information on any disk unless you give it a filename. Unfortunately,
because of its CP/M heritage, DOS limits the length of all filenames to 11 characters, just
enough to remind you what’s inside the file, but far too few if your file contains chart #2
for the fourth quarter income report on the Airframe Division of Amalgamated Electron-
ics, since you’ll end up with some cryptic entry like ADAE4QIN.CH2.

Disk Organization, Files, Filenames 87
Filenames can contain:

o the letters A through Z

® the numerals O through 9

® thecharacters‘ ~‘!1 @#$% " & ()-_{}

® high-bit characters (with ASCII values over 127)

Filenames can’t contain:

spaces
characters treated as spaces, such as = ; , tab

the “wildcard” characters ? and *

characters with special DOS meanings .:”\/|<>+[]
control characters (with ASCII values less than 33)
lowercase letters (DOS automatically uppercases these)

Many of the ASCII characters with values between 128 and 165 are foreign language
versions of a, e, i, 0, u, and y. When creating filenames, the American version of DOS
tends to ignore the wide range of accent marks and treat these as the plain old vowels.
And DOS turns all lowercase letters into their uppercase versions, which means that you
can’t have one file called:

autoexec.bat
and a different one called:
AUTOEXEC.BAT

(Actually, if you use the brute-force techniques described in Chapter 9 on DEBUG, you
can do this, by loading and writing absolute sectors. But while DOS will acknowledge
that this lowercase file exists by including it in DIR listings, it won’t let you change or
delete or examine it — except with DEBUG. This does let you keep the file secure, but
fooling around with your directory directly is a bad idea unless you know exactly what
you’re doing and are sure all your files are backed up. And on a hard disk, where you can
really lose big if you make one silly mistake, it’s an especially bad idea.)

This capitalized exclusivity also means that upper- and lowercase pairs of special
characters such as the ones with values 128/135, 145/146, 148/153, 129, 154, and 164/165
automatically turn into their uppercase versions.

Using some of the more unusual high-bit ASCII characters for filenames can keep
prying fingers away, since few users have ASCII charts handy when they snoop inside
someone else’s system, and even fewer know the Alt-keypad method of generating these
odd characters (described in Chapter 6). There’s nothing more confounding to a casual
snoop than entering a DIR command and seeing an entire screen full of gibberish where
the filenames should be.

88 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

If you try to create a filename using ASCII 127 (with the Alt-keypad technique), DOS
will just backspace the previous character away. But you can use this character in a
filename, if you find a way to type it in. BASIC lets you do it. Try typing in the following
CHARI127.BAS program:

100 ‘CHAR127.BAS

110 OPEN CHR$(127) FOR OUTPUT AS #1
120 PRINT #1,"It works..."

130 CLOSE:SYSTEM

Then, at the DOS prompt, type:

BASICA CHAR127.BAS

(or GWBASIC CHAR127 if you’re using a generic MS-DOS version of BASIC).

The CHAR127.BAS program will create a file with a single ASCII character 127 as
the filename. This character will show up in DIR listings as a delta (which looks like a
little house).

You can view it by typing:

DIR ?

because using the single ? wildcard in a DIR command will display all the filenames that
are just one character long.

If you try to use an illegal character, such as an asterisk, DOS will discard everything
from the asterisk on. So if you type:

A>COPY CON NOTE*IT

DOS will discard the asterisk and the IT that follows, and create a file called NOTE.

Reserved Filenames

DOS is selfish about its internal names for devices such as printers, communications
hardware, the keyboard/screen combination (which is collectively called the console, or
CON), and a special dummy device with interesting properties, known as NUL. One
reason for this hands-off attitude is that you can use some DOS commands on devices as
well as files. For instance, while the COPY command is great for backing up your files
to another disk or subdirectory (the more recent XCOPY command is even better), you
can also use COPY in conjunction with the CON device to create files:

COPY CON FILENAME

Disk Organization, Files, Filenames 89

Using COPY this way tells DOS to take whatever the user is typing at the keyboard and
put it in a file called FILENAME (or any other legal filename you specify). And if you

type:

COPY /B COMMAND.COM CON

you’ll be able to see the entire contents of COMMAND.COM onscreen, since copying
a file to CON reads it from a disk and sends it to your display. You can’t do this with a
TYPE COMMAND.COM command, since all but the very shortest executable files
contain addresses or instructions loaded with ASCII 26 characters. The DOS TYPE
command interprets these ASCII 26 characters as end-of-file markers, and grinds to a
halt as soon as it stumbles over the first one.

The /B that appears directly after the COPY command in the above example is called
a switch. Switches turn optional command features on and off (and can also furnish
needed values and settings at the same time). In this case, the /B switch tells DOS to look
at the directory listing, figure out the exact number of bytes in the file you want copied,
and copy them all — including any ASCII 26 characters it sees (which it displays as little
arrows). You can slap lots of different switches onto various commands, producing such
nightmarish results as:

PRINT /D:LPT2 /B:8192 /U:2 /M:4 /S:20 /Q:20 B:\INFO\FIL1l C:\FIL2

This particular thorny command would use DOS’s background printing feature to print
two files in a row — one on drive B:, the other on drive C: — using the second of two
printers that were attached to your system. And it would let you run another program
while the files were printing. (See the next chapter for a full discussion of backslashes
and subdirectories.)

DOS refers to the prompt and all the commands, switches, filenames, and miscella-
neous parameters following it as the command line. Everything after the actual command
itself is called the command tail. Here’s an example:

command line ————
l switch

A>COPY /B COMMAND.COM CON

prompt ’ I—— command tail

command

CON isn’t the only device that’s useful with COPY. You could print out a copy of
your AUTOEXEC.BAT file with the command:

COPY AUTOEXEC.BAT PRN

90 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

And COPY isn’t the only command that works with devices. If you wanted to send a
formfeed command to your printer to advance the paper, you could do it with:

ECHO "L > PRN

(You create the “L by holding down the Ctrl key and typing L. Typing ECHO "L PRN
without the > redirection symbol won’t do anything other than printing a *L PRN
onscreen.)

Because DOS has to know when you want it to use PRN or CON as a device, you can’t
use such reserved device names as filenames. Names like:

e CON
e PRN
® PRN.XYZ

are invalid. (PRN.XYZ is no good because DOS interprets the dot after PRN as a space,
leaving the filename as just PRN.) However, you could use PRN as the extension, or
along with other characters in the filename. These are all legal:

® DRIVER4.PRN
® XYZPRN
® PRN1.CON

But stay away from the following reserved DOS device names:

CLOCKS$

CON (keyboard/screen)

AUX (first serial port)

PRN (first parallel printer)

NUL (dummy device)

COM1, COM2, COM3, COM4 (serial ports 1 through 4)
LPT1, LPT2, LPT3 (parallel printer ports 1 through 3)

COM 1 is pretty much interchangeable with AUX, and LPT1 with PRN. NUL is useful
for getting rid of most simple DOS messages — although it can’t suppress serious error
messages.

If you try copying your COMMAND.COM file to something called ABC.COM, with
the command:

COPY COMMAND.COM ABC.COM
DOS will oblige, and print a:

1 File(s) copied

message. If you then type DIR to see what’s on your disk, you’ll see two files with
identical sizes:

Disk Organization, Files, Filenames 91

COMMAND COM 47845 3-22-91 12:00p
ABC coM 47845 3-22-91 12:00p

But if you try copying it to a file called NUL.COM, with the command:
COPY COMMAND.COM NUL.COM

DOS will interpret this command as
COPY COMMAND.COM NUL

and discard the .COM part. Copying a file to the NUL device makes DOS go through the
motions but not actually copy anything. It will still print a:

1 File(s) copied

message, but when you type DIR you won’t see any file called NUL.COM. Similarly, if
‘you try copying your startup AUTOEXEC.BAT file to one called PRN.BAT, with the
command:

COPY AUTOEXEC.BAT PRN.BAT
DOS will toss the .BAT part and interpret this command as:
COPY AUTOEXEC.BAT PRN

Since copying any file to the PRN device will cause it to be printed on your default
LPT1 printer, this command will either print out your AUTOEXEC.BAT file (if your
printer happens to be turned on and connected properly) or freeze your system as DOS
tries to print a file to a printer that’s not responding.

You can also run into trouble if you try to create a file that has the same name as a
subdirectory entry. If you’re in a directory that has a subdirectory called BIN branching
off of it, typing DIR will produce a listing that includes something like:

BIN . <DIR> 12-15-90 10:59p

If you then try to create a file called BIN, you’ll see a message that makes it look as if
you just created a file called BIN even though you didn’t.

COPY CON BIN
This is a test
“Z
This is a test
1 File(s) copied

This happens because subdirectories are really just special kinds of files, and you can’t
have two files in the same directory with the same name. When you try to create a file

92 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

called BIN, DOS looks at the directory and sees there’s already a file with that name.
However, instead of reporting that it can’t create the file, it lies. If you think that’s
unfriendly, you’re right. But you have to very careful with filenames in general. If
you’ve been working on a 100,000-byte file called LIFSTORY that’s on drive A: and

you type:

COPY CON LIFSTORY
Oops

and press the F6 function key (to tell DOS you’re at the end of the file) and then the Enter
key, DOS will wipe out the 100,000 byte file and replace it with the new four-byte file
you just created.

Similarly, if you want to print out a short file, such as your startup AUTOEXEC.BAT
file, you can type:

COPY AUTOEXEC.BAT PRN

which will copy the file to your default printer. But if you accidentally switch the order
and type:

COPY PRN AUTOEXEC.BAT
DOS will print a:
0 File(s) copied

message — and then wipe out your AUTOEXEC.BAT file. Gone. So be very careful
with filenames. And make sure you have everything backed up.

The Parts of a leename

Filenames can be as short as one character, or as long as 11. Once they grow past eight,
however, they start encroaching on the filename extension. Most users refer to the entire
name of the file as the filename, which isn’t technically correct. According to IBM, the
whole thing is really called a filespec (short for file specification), and has three patts:

d:FILENAME.EXT
where:
d: is the drive the file is on

FILENAME s the actual filename
EXT is the optional filename extension

Disk Organization, Files, Filenames 93

A period separates the filename from its extension, although DOS doesn’t display
periods in DIR listings. You don’t have to use a period when you’re dealing with files
that don’t have extensions, although doing so won’t hurt. So you could create a file called
TEST by typing either:

COPY CON TEST
or:
COPY CON TEST.

Technically you need to include a drive letter in the filespec, since you can have two
similarly named files on two drives with utterly different contents — A:DATAFILE can
be totally unrelated to B:DATAFILE. However, DOS tries to second-guess you if you
omit something it needs. If you’re on drive A: and you want to have DOS give you a
report on the status of your file and memory use, you can type:

A :CHKDSK.COM
or simply:
CHKDSK

In the second version of this command, DOS fills in the missing (A:) drive letter and
(COM) extension for you by furnishing defaults. Since you were already logged onto
drive A: DOS makes drive A: the default. Whenever you issue a command that needs a
drive letter, DOS will try using the current drive. And you don’t need to supply the COM
extension when you’re running a command like CHKDSK. The reason for this is a bit
complicated: »

When DOS sees something on the command line, it tries to figure out, or parses, what
you typed by first capitalizing it if necessary, then looking for delimiters (spaces, and
things like commas and equal signs that act the same as spaces), switches (like /B), drive
letters, subdirectory paths, and filenames. It assumes that the very first thing you typed
on the command line after the prompt i$ the main command itself.

This command can be one of four things: an internal command, an external command,
the name of the application program, or a typo or missing filename.

Internal commands are the instructions that execute many of the fundamental DOS
operations such as DIR and TYPE. They are actually buried inside the main DOS
COMMAND.COM command processor. DOS first compares what you typed to the list
maintained inside COMMAND.COM. In version 5.0 the list contains these commands:

BREAK LH
CALL MD
CD MKDIR

CHCP NOT

94 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

CHDIR

PATH
CLS PAUSE
COPY PROMPT
CTTY RD
DATE REM
DEL REN
DIR RENAME
ECHO RMDIR
ERASE SET
ERRORLEVEL SHIFT
EXIST TIME
EXIT TRUENAME (undocumented)
FOR TYPE
GOTO VER
IF VERIFY
LOADHIGH VOL

Some of these are just parts of larger commands. EXIST and ERRORLEVEL really
only work with IF. FOR and IN DO work together. And NOT doesn’t do anything by
itself. These few have slightly different properties (which you’ll see a bit later) from the
others on the list.

If it finds a match, COMMAND.COM then runs the proper instructions, which are
also kept inside COMMAND.COM, to execute the command. If it can’t find a match, it
starts looking in the default directory for an external command or applications program
with the name you typed. If it can’t find the specified filename in the current directory,
it will see if you’ve specified a PATH and start looking in all the directories that this
PATH specifies. :

External commands are separate programs, outsidle of COMMAND.COM. DOS
version 5.0 contains 50 of these, all of which end in COM or EXE:

APPEND.EXE
ASSIGN.COM
ATTRIB.EXE
BACKUP.EXE
CHKDSK.EXE
COMP.EXE
DEBUG.EXE

DISKCOMP.COM

DISKCOPY.COM
DOSKEY.COM
DOSSHELL.COM
DOSSHELL.EXE
DOSSWAP.EXE

HELP.EXE
JOIN.EXE
KEYB.COM
LABEL.EXE
LOADFIX.COM
MEM.EXE
MIRROR.COM
MODE.COM
MORE.COM
MSHERC.COM
NLSFUNC.EXE
PRINT.EXE
QBASIC.EXE

Disk Organization, Files, Filenames 95

EDIT.COM RECOVER.EXE
EDLIN.EXE REPLACE.EXE
EMM386.EXE RESTORE.EXE
EXE2BIN.EXE SETVER.EXE
EXPAND.EXE SHARE.EXE
FASTOPEN.EXE SORT.EXE
FC.EXE SUBST.EXE
FDISK.EXE SYS.COM
FIND.EXE TREE.COM
FORMAT.COM UNDELETE.EXE

GRAFTABL.COM UNFORMAT.COM
GRAPHICS.COM XCOPY.EXE

Users sometimes forget that these DOS external commands are actually separate
programs, and that they won’t work unless the appropriate programs are in the default
directory or are in a directory that their PATH command knows about. (And yes,
COMMAND.COM, the part of DOS that actually processes the commands you enter,
can be an external command itself, and a very useful one as you’ll soon see.)

You can also type the name of an application program on the command line. DOS
doesn’t give its external commands any priority over commercial applications with
similar names. It simply tries to run an internal command first and if that doesn’t work,
it then looks for a file in the current directory that has a matching filename and a COM,
EXE, or BAT extension. If it happens to find a DOS program that fits the bill, it runs it.
But if you didn’t have any external DOS commands handy, and for some reason you
renamed your main WS.COM WordStar file to CHKDSK.COM, typing CHKDSK would
run WordStar.

Other commands such as BUFFERS, BREAK, DEVICE, FILES, FCBS, LAST-
DRIVE, STACKS, COUNTRY, SHELL, INSTALL, IFS, CPSW, COMMENT, REM,
and SWITCHES are installation programs that work with CONFIG.SYS and are part of
the IBMBIO.COM or generic I0.SYS file.

Finally, if DOS doesn’t understand what you’ve entered, you’ve probably mistyped a
command or entered the name of a file that DOS cannot locate. This is usually a PATH
problem.

The PATH Command

The PATH command specifies a list of the important directories you want DOS to search
when it can’t find an executable program in the current directory: DOS keeps this list in
a special section of memory called the environment.

If you weren’t able to use PATHs to tell DOS where to search, you’d either have to
keep copies of all your important programs in all your subdirectories, or you’d always
have to specify each program’s precise location each time you ran it. And if you’re
wondering why DOS can’t just search in every single directory, doing so on even a

96 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

medium-sized hard disk could take a while each time you typed a command. A typical
PATH might look something like:

PATH D:\;C:\;C:\BIN;C:\DOS;C:\DOS\BAT;C: \SK;C: \DOS\NORTON

which tells DOS to look in the following places for the file you specified, if it can’t find
it in the current directory:

D:\ (the root directory of drive D:)
C:\ (the root directory of drive C:)
C:\BIN

C:\DOS

C:\DOS\BAT

C:\SK

C:\DOS\NORTON

If you wanted to run a program that wasn’t in the current directory or in any of the
places listed in your PATH statement, DOS wouldn’t be able to run it unless you explicitly
entered the name of the directory this file happened to be in. So if the CHKDSK.COM
command was in a subdirectory called:

C:\LIONS\TIGERS\AND\BEARS
and your PATH didn’t mention this subdirectory, typing just:

C>CHKDSK

wouldn’t run the program. Even though it was on your disk, if DOS couldn’t find it, it
couldn’t run it. You could run it, however, by typing:

C:\LIONS\TIGERS\AND\BEARS\CHKDSK
or: |

\LIONS\TIGERS\AND\BEARS\CHKDSK

Here’s a fine point but an important one: Note the initial backslash character at the
very beginning. By putting this backslash character there, you’re telling DOS that the
specified PATH for the CHKDSK file started at the root directory. If you omitted this
initial backslash:

LIONS\TIGERS\AND\BEARS\CHKDSK

DOS would assume that the first directory in the list — LIONS — was a directory one
level below whatever directory you happened to be in at the time. If you were logged into

Disk Organization, Files, Filenames 97

the root directory, this wouldn’t matter. But if you were already in a directory called
\WIZ\OZ, and you omitted the initial backslash before LIONS, DOS would think you
were really telling it to run:

\WIZ\OZ\LIONS\TIGERS\AND\BEARS\CHKDSK

‘And if you happened to be in one called INCOME\REPORT\4Q, DOS would assume
you meant:

\INCOME\REPORT\4Q\LIONS\TIGERS\AND\BEARS \CHKDSK

When you include an initial backslash in a PATH, you are giving DOS an explicit
PATH. When you omit the backslash you give DOS a relative path — one that starts a
level down from whatever directory you are in at the time.

If you made a typing mistake when you entered the command, or specified a program
that DOS couldn’t find, all you’d get would be an error message that told you:

Bad command or file name

Also, remember that DOS can execute only three kinds of files — those that end in
COM or EXE or BAT. So if you had just the following files on your disk:

CHKDSK
CHKDSK.WKS
CHKDSK.BAS
CHKDSK.DBF
CHKDSK.SYS
CHKDSK.DRV
CHKDSK.PIF

and you typed CHKDSK, all you’d get would be the “Bad command or file name” error
message, even though DOS uses extensions such as SYS or PIF (but not on executable
programs). o

- By including the name of a subdirectory in your PATH, you tell DOS to look in that
directory for executable files (with COM, EXE, or BAT extensions). But PATHs are for
executable files only; DOS won’t be able to find nonexecutable files, such as your data
files, or overlay files that help programs work, in subdirectories specified in your PATH.
To have DOS search through your directories to find nonexecutable files, use the
APPEND command introduced with version 3.3.

- DOS will always execute internal commands first, then COM files, then EXE files,
and finally BAT files. So if you have these three files on your disk:

e RUNME.COM
o RUNME.EXE
- o RUNME.BAT

98 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

and you type RUNME, you’ll always run RUNME.COM. You'’ll never get a chance to
run either RUNME.EXE or RUNME.BAT, since DOS always tries to run COM files
before any other kind of program. If you erased RUNME.COM, you could run
RUNME.EXE, but you’d never be able to run RUNME.BAT while either RUNME.COM
or RUNME.EXE was in the same directory.

Baut that’s if you try just RUNME without any extension. What if those three RUNME
files are on your disk, and you include the extension by typing RUNME.EXE or
RUNME.BAT? Sorry, out of luck. DOS will still execute RUNME.COM.

If you have any separate programs on your disk that happen to have the same name as
most of the internal DOS commands, you’ll never be able to run these at all. This means
you can’t ever create executable files like BREAK.COM, REM.EXE, DATE.COM, or
SET.BAT, since DOS will look inside COMMAND.COM, find a match, and execute the
internal command before it has a chance to run the external COM, EXE, or BAT version.

While most of the internal commands will indeed preempt external versions, you can
actually use four parts of internal command names in external programs: ERRORLEVEL
(which under certain circumstances DOS truncates to ERRORLEV), EXIST, INDO, and
NOT.

So don’t try creating a batch file that has the same basic filename as a program you’re
using. If you wanted to set up a batch file that logged into your WP subdirectory, activated
underlining on an EGA screen, then ran WordPerfect (and you had a program called
UNDERLIN.COM handy to handle this) you could do it with something like:

CD C:\WP
UNDERLIN ON
WP

However, you couldn’t name this batch file WP.BAT, since typing WP would simply
bypass the WP.BAT file and load the WP.EXE program. Instead, name it something like
W.BAT.

Well, okay, if you’re a stickler, there actually is a way to run a program that has the
same name as an internal command.

All you have to do is prefix the similarly named program with a drive letter or path.
For example, if you had a special program on your disk that sorted the directory, and you
were using something newer than DOS 2.x and just had to name it DIR.COM, you could
run it by typing:

.\DIR

The .\ is DOS shorthand that specifies a file in the current directory. If you omitted this
prefix, all you’d get is the normal DOS DIR listing, since COMMAND.COM always
gives internal commands priority over external commands with the same name. However,
prefacing a command with a drive letter or path designation tells DOS that you want to
execute an external file rather than an internal command.

You won’t be able to add a .\ prefix like this in DOS versions 2.x, since version 3.0
was the first that let you specify a drive and path before external commands. But if you’re

Disk Organization, Files, Filenames 99

logged into a directory called C:\WORK and the DIR.COM program also happens to be
in that directory, you could run it by entering:

\WORK\DIR

You really shouldn’t have to worry about this, however, since you can almost always
come up with a name that’s slightly different from the actual internal DOS command.

Fooling COMMAND.COM’s knee-jerk reflex to give internal commands priority can
actually save you grief. Say your office is short of PCs, and you have to share your hard
disk system with a less sophisticated user. Your worst fear is that your co-worker will try
to format a floppy disk, forget to add the drive letter in the FORMAT command, and end
up wiping out the contents of the hard disk.

This was all too easy on older versions of DOS. Newer versions of FORMAT.COM
won’t do anything unless the user specifies a drive letter. And newer versions can also
tell if a user is trying to reformat a hard disk, and won’t budge unless the user types in
the hard disk’s volume label. Still, the message DOS prints: ’

Enter current Volume Label for Drive C:
WARNING, ALL DATA ON NON-REMOVABLE DISK
DRIVE C: WILL BE LOST!

Proceed with Format (Y/N)?

is confounding to someone who has no idea what a non-removable disk is, and if a new
or clumsy user has a deadline and needs to format a disk, well, that’s what backups are
for.

Hard-disk-format victims have devised all sorts of solutions to prevent hard disk
format. The best is obviously to remove the FORMAT.COM program from your disk,
or rename it to something that would throw beginners off track. But a new user could
always bring a floppy disk copy of FORMAT.COM over and copy it onto the hard disk.

If you don’t mind patching COMMAND.COM, you can prevent most FORMAT
heartache by tricking COMMAND.COM into thinking FORMAT is an internal com-
mand. DOS maintains a table of internal commands insidle COMMAND.COM and
always checks there first when you enter something on the command line. FORMAT is
six letters long. Three internal commands — PROMPT, RENAME, and VERIFY — also
have six letters in their names. If you replace the six letters in one of these entries with
the letters “FORMAT” DOS will see FORMAT on the table when it checks to see if you
entered an internal command, and won’t execute any external program with the same
name.

But putting FORMAT in the table means getting rid of one of the existing six-letter
table entries. Fortunately, RENAME has a shorter version, REN. So if you replace the
letters RENAME in the table with FORMAT you’ll still be able to rename files by using
REN. But changing the letters R-E-N-A-M-E to F-O-R-M-A-T in the lookup table won’t
change the actual instructions that DOS uses to rename files. So if a userenters FORMAT,
DOS will see it on the table and execute the rename procedure. Since you can’t rename

100 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

files unless you specify an existing name and a new name, all you’ll get is an error.

Typing:
FORMAT OLDNAME.TXT NEWNAME.DOC

will rename a file called OLDNAME.TXT to NEWNAME.DOC. And typing:
FORMAT C:

will Just produce an “Invalid number of parameters” message.

But this won’t work if a user boots off a diskette and executes the FORMAT command
that’s on the floppy. And patching COMMAND.COM isn’t always such a good idea. If
you do it, be sure that all versions of COMMAND COM on your disk are identical.
Otherwise DOS can become confused.

You could use either the Norton Utilities or DEBUG to change RENAME to FOR-
MAT. Once you’ve patched COMMAND.COM, use REN to rename FORMAT.COM
to FORMATT[].COM (where [] stands for an ALT+255 null). To do this, type:

REN FORMAT.COM FORMAT

but don’t press the Enter key yet — hold down the Alt key and type 255 on the numeric
keypad, then release the Alt key. The cursor will move over one space. Then type:

.COM

and press the Enter key.
Finally, create a batch file called F.BAT:

ECHO OFF

CLS

ECHO Insert disk in drive A: and
PAUSE

FORMAT[] A: /V /s

Remember to type in FORMAT][] (where [] represents Alt+255) when creating your
batch file, or this won’t work.

To patch COMMAND.COM with DEBUG, first make a backup copy of COM-
MAND.COM called COMMAND.OLD so that if you make a mistake you can start over.
Then type: .

DEBUG COMMAND.COM
Find out how long your version is by typing:

RCX

and pressing the Enter key twice. You’ll see something like:

Disk Organization, Files, Filenames 101
CX BAES5
Take the four-digit hex number following the CX and type:
S 100 LBAES5 "RENAME"

(substituting the four-digit hex number if yours is different from BAES). Press the Enter
key and you should see something like:

48B8:81DC

Ignore the leftmost four digits, preceding the colon. Take the rightmost four digits and
type:

E 81DC "FORMAT"

(substituting the four-digit hex number if yours is different from 81DC). Press the Enter
key. Then press W (and Enter) to write the new version back to disk, and Q (and the
Enter) to quit DEBUG. Once you’ve patched COMMAND.COM, reboot.

Another simple way to prevent unwanted formatting is to rename FORMAT.COM to
something innocuous like DATA.COM and then insert a simple reboot routine at the
beginning of your old FORMAT.COM file. Type in FORMAT and the system will
reboot. Type in DATA and you can format disks. Make sure you have DEBUG.COM
handy, and type in the following ten lines to create both files.

DEBUG

N FORMAT.COM
L

N DATA.COM

FORMAT .COM
100 B8 40 00 8E D8 B8 34 12
108 A3 72 00 EA 00 00 FF FF

O v I s I

Be sure to press the Enter key at the end of each line. You could of course create a tiny
16-byte reboot file called FORMAT.COM, but the short length would be a tipoff to an
unauthorized user that something was amiss.

If you try this, you can format a floppy in drive A: by typing:

DATA A:
And if you type FORMAT at the DOS prompt your system will do a warm reboot. If you

really want to be safe, change the 34 12 at the end of the line that begins E 100 to 7F 7F,
so the line looks like:

" 102 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
E 100 B8 40 00 8E D8 B8 7F 7F

This will make your system do a long cold boot with all the slow memory diagnostics.

Before DOS 5.0, some users created a file on every disk that contained a sorted DIR
listing. You can do this easily if you have the DOS programs MORE.COM, FIND.EXE,
and SORT.EXE handy. (It’s best to have them on a hard disk in a subdirectory that your
PATH knows about.) Just type:

DIR | SORT | FIND "-" | FIND /V "<" > DIRFILE

The DIR command produces a list of files as well as a report on how many bytes are free,
how many files are there, and what the volume label is, if one exists. The | is the pipe
sign, and the > is a redirection sign. The default devices for input and output (J/O) are
obvious: input usually comes from the keyboard; output usually goes to the screen. But
starting with version 2.0, DOS let you mix and match I/O. You can take output that would
normally appear on your screen, and instead reroute it to your printer or modem — or
capture the characters by turning them into a file on your disk. Similarly, you can take
characters in a file on your disk and feed them into a program just as if you were typing
them at the keyboard. And you can filter files through pipes on the way from one place
to another. This lets you do things like search for or screen out certain characters, or sort
jumbled lists into orderly ones. Piping and redirection of I/O are extremely powerful tools
that you’ll use often.

Using the SORT command as shown above will arrange the DIR listing in rough
alphabetical order. The first FIND command will screen out most of the miscellaneous
DIR information and leave just the filenames, since files all have hyphens in their creation
dates but miscellaneous “bytes free” or “Volume in” reports rarely use hyphens. The
second FIND will weed out any subdirectory listings, because each contains a <DIR>

instead of a size:
Volume in drive C is WORKDISK «——— Miscellaneous DIR
Volume serial Number is 104F-16CD information mostly
Directory of C:\] filtered out by first
FIND command
COMMAND COM 47845 14-09-91 5:00a
CONFIG sYS 47 10-18-90 7:07a
AUTOEXEC BAT 256 10-18-90 12:01la
DOs <DIR> 10-18-90 7:09a Subdirectory
WORDSTAR <DIR> 11-06-90 12:22a listings filtered out
DBASE <DIR> 2-11-90 12:00a by the second FIND
LOTUS <DIR> 12-03-90 12:02a | commqnd
. : Miscellaneous DIR
7 File(s) 28220672 bytes free information filtered
out by first FIND

command

Disk Organization, Files, Filenames 103

The final redirection command sends the output to a file called DIRFILE. You could then
view the sorted list of files on your disk by typing:

TYPE DIRFILE
If your list was longer than 24 files, you could type:
MORE < DIRFILE

which would show you a screenful at a time (assuming you were using a monitor that
displayed the standard 25 lines), then pause and prompt you to press any nonshift key to
view another screenful.

If you do this to all your disks, you’ll end up with a different version of DIRFILE on
each one. The one on drive A: is really A:DIRFILE, the one on B: is B:DIRFILE, etc.
And when you do just about anything with these files you have to use the appropriate
drive letters, so they really are part of the filespec.

Even though IBM’s various manuals don’t seem to agree in their definition of the
filespec, a file’s PATH is just as important as its drive letter, especially on a hard disk,
and should be thought of as a fourth filespec component. Just as you can have two
similarly named files called A:DIRFILE and B:DIRFILE, you can also create
C:\DOS\DIRFILE and C:\WORD\DIRFILE on the same physical disk.

Wildcards

You don’t have to specify the PATH if you’re referring to files in the current — or default
— subdirectory. If you’re logged into a subdirectory called \DOS and you want to check
out your COMMAND.COM file, all four commands below will produce the same result:

DIR COMMAND.COM

DIR C:\DOS\COMMAND.COM
DIR \DOS\COMMAND.COM
DIR \COMMAND.COM

DOS is very flexible, and provides even more ways to ferret out just the COM-
MAND.COM file entry. In DOS 5.0, you could type:

DIR \COMMAND.COM /S
to see occurrences of COMMAND.COM. Or you could simply type DIR and use a DOS
filter to screen out everything that didn’t have the character string “COMMAND COM”
in it:

DIR | FIND "COMMAND COM"

104 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Unfortunately, you’d have to specify “COMMAND COM” rather than “COM-
MAND.COM” because that’s how the DIR listing displays it. DOS is flexible, but
consistently inconsistent.

You could also isolate COMMAND.COM in directory searches by looking for a part
of its filename:

DIR | FIND "COMMAND"

Howeyver, if you had a game on your disk called COMMANDO.EXE, and a list of
WordPerfect commands called WCOMMAND.LST, this filtering technique would find
all three files with the characters “COMMAND?” in their names.

Finding one file is easy. However, you might want to look at an entire class of related
files, such as all the COM files on your disk, at one time. Or you may have several
customized versions of COMMAND.COM, such as COMMAND1.COM and COM-
MAND?2.COM on your disk and want to look at the date you created each version.

DOS makes it easy to list such groups of files, by using one of two special symbols on
the command line. IBM calls this pair — an asterisk (*) and a question mark (?) — global
file name characters. Everyone else calls them wildcards.

A question mark can stand for any single character (including a blank, or no charac-
ters). An asterisk can represent up to 11 characters. If you apply this rule to the character
string:

?UN

you could substitute ten single characters in place of the ? and end up with English words
— BUN, DUN, FUN, GUN, HUN, NUN, PUN, RUN, SUN, TUN (a big barrel).
If you tried this with the character string:

SYL*

you could substitute all sorts of character combinations of varying lengths in place of the
* and end up with words like SYLLABLE, SYLLABUB, SYLLABUS, SYLLOGISM,
SYLPH, and SYLVAN. Of course, not all of these could be filenames, because some are
longer than eight characters. If you tried to create a file called SYLLOGISM, DOS would
end up calling it SYLLOGIS.M since it allows a maximum of eight characters to the left
of the extension.

Suppose your disk contained the following files:

COMMAND.COM
COMMAND.CO
COMMAND.EXE
C.COM
COMMAND1.COM
COMMAND.C
ZOMMAND.COM
COMMAND.ZOM

Disk Organization, Files, Filenames 105

COMMA.COM
COMMAND
COMM.AND
7771
REDLINE.DBF

The broadest possible wildcard directory search would be:
DIR *.*

which is really the same as:
DIR

or:
DIR *

or:

DIR ?°??7?2?2?22?2.?2?27

An asterisk to the left of a period lets DOS substitute from one to eight characters there.
An asterisk to the right of a period lets DOS substitute from zero to three characters there.
A filename needs at least one character to the left of the period, but can get by just fine
with no characters after the period. One asterisk used by itself can stand for all 11 possible
characters. When you issue a DIR command without anything after it, DOS internally
puts *.* after it. And it then turns all the asterisks into the correct number of question
marks. So when you type DIR, DOS first translates it to DIR *.* and then finally to DIR
72772772.277 (both of which will show all your files).

Incidentally, you could also see the complete set of files in any directory by typing:

DIR .

but this technique doesn’t have anything to do with wildcards. Used this way, the period
following DIR is shorthand for the current subdirectory itself, just as a double period
represents the parent directory. You can see these special directory entries by logging
into any subdirectory and typing DIR. You’ll see, for example,

Volume in drive C is WORKDISK
Volume Serial Number is 104F-16CD
Directory of C:\DOS

<DIR> 3-15-90 5:15p
<DIR> 3-15-90 5:15p

106 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Wildcards really come in handy when you use them to isolate certain parts of filenames.
For instance, you could limit your search to files that end in COM only with the command:

DIR *.COM

This tells DOS to accept anything on the left side of the period, but to screen out all files
that have something other than a COM to the right of the period. This command would
display every file on the above sample list that ended in COM, and no others:

COMMAND.COM
C.COM
COMMANDI1.COM
ZOMMAND.COM
COMMA.COM

If you put the asterisk on the other side of the period:
DIR COMMAND. *

DOS wouldn’t care what was after the period, but would list only those files with the
precise letters “COMMAND” — and only those letters — before the period:

COMMAND.COM
COMMAND.CO
COMMAND.EXE
COMMAND.C
COMMAND.ZOM
COMMAND

This variation would list plain old COMMAND (with no extension) because an asterisk
to the right of a period can stand for three, two, one, or no characters. COMMAND with
no extension is really the same as:

COMMAND .

but you rarely see it listed that way.

However, this particular search won’t list COMMAND1.COM, since COMMANDI1
is not equal to COMMAND, and you told DOS to list only those files with the exact string
“COMMAND?” to the left of the period. If you wanted to include COMMAND1.COM
in the list, you’d have to broaden the previous command either with:

DIR COMMAND* . *

or:

Disk Organization, Files, Filenames 107
DIR COMMAND*
or even with:
DIR COMMAND?.*

Remember, asterisks can represent from one to 11 letters, but a question mark always
represents just one character. All three of the above commands would produce the same
result:

COMMAND.COM
COMMAND.CO
COMMAND.EXE
COMMAND1.COM
COMMAND.C
COMMAND.ZOM
COMMAND

You should always try to limit wildcard searches by making them as explicit as
possible. A command like:

DIR C*.COM
would list any file that started with C and ended with COM:
¢ COMMAND.COM
e C.COM
¢ COMMANDI1.COM
¢ COMMA.COM

You could limit the search to list only files that ended in COM and that started with
the letter C but had five or fewer characters to the left of the period, with:

DIR ??77??.COM
which would yield:

e C.COM
e COMMA.COM

If you wanted files that started with the letter C and had extensions that started with
the letter C, you could try:

DIR C*.C*

108 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
or:
DIR C*.C??
which would both list:

COMMAND.COM
COMMAND.CO
C.COM
COMMAND1.COM
COMMAND.C
COMMA.COM

To narrow this search to files that started with the letter C and had extensions shorter
than two characters long, this would do it:

DIR C*.??
You’d see just:

e COMMAND.CO
¢ COMMAND.C

You get the idea. One thing to watch out for is that once DOS sees an asterisk, it ignores
everything following the asterisk up to the next period or the end of the filename. So:

DIR C*QQQ.COM
will list
- COMMAND.COM
C.COM

COMMAND1.COM
COMMA.COM

just as if you had typed:
DIR C*.COM

And trying:
DIR *OMMAND. *OM

or even:

Disk Organization, Files, Filenames 109
DIR *HELLOTHERE

will list every file on your disk, since DOS ignores what comes after the asterisks and
treats these two commands as:

DIR *.*
and:
DIR *
‘What you probably meant to type rather than DIR *OMMAND.*OM was:
DIR ?OMMAND.?0M
which will yield:

o COMMAND.COM
¢ ZOMMAND.COM
¢ COMMAND.ZOM

since all three of these are the same except for the very first letter and the first letter of
the extension. The more specific you make the command, the more you’ll limit the search.

Wildcards are especially useful in deleting groups of files and in making backups.
Many word processors create backup files with BAK extensions, and these can eat up
lots of space. Once you’ve determined that you don’t need these files any longer, you
can wipe out the whole gang of them with a simple command:

DEL *.BAK

And wildcards can take the drudgery out of backups. If you spent all day working on
the fourth quarter projections, and all the files have 4Q0 extensions (for fourth quarter of
1991), you can copy them all from your hard disk to a floppy with the command:

COPY *.4Q9 A:

(or the even better DOS 3.2 and later XCOPY *.4Q0)

Of course, many applications use their own extensions, so you may have to put
identifying codes at the beginning rather than the end of the filename. If you were working
on the Sturm and Drang accounts, you might want to give these files names like:

e 4QOSTURM.WK1
e 4QODRANG.WK1

110 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The problem with naming files this way is that you later might want to copy all your
Drang accounts to one disk, and they might have names like:

* 4QODRANG.WK1
e DRANG.RPT
¢ 90DRANG.MEM

You could put the DRANG part at the beginning of the filenames:

¢ DRANG4Q0.WK1
e DRANG.RPT
¢ DRANG90.MEM

which would let you handle them with a DRANG*.* wildcard. But this way you wouldn’t
necessarily be able to use wildcards to find all the files with 4QO0 in them. STURM4Q0
and DRANG4QO0 have the same number of letters, which would let you use ?27??74Q0,
but a filename like GUB4QO would throw the process off.

DOS doesn’t make it easy to use wildcards when the string of characters you want to
isolate is in different places in the filenames. But you can employ a combination of
sophisticated DOS tricks to do it, as long as the DOS FIND.EXE program is either in your
current directory or is in a directory that your PATH knows about. It gets a little
complicated (no one ever said DOS would be easy) so you may want to refer to the chapter
on batch files before you tackle this:

Use your pure-ASCII word processor, EDLIN, or the DOS COPY CON command to
create two BAT files. (Before you try this, be sure you don’t already have a file on your
disk called DOIT.BAT, because this process will erase it. If you do, either rename the
existing file, or change all the references in COPYSOME.BAT and NEXTFILE.BAT
from DOIT.BAT to something else.)

First, COPYSOME.BAT:

ECHO OFF

IF %2!==! GOTO OOPS

IF EXIST DOIT.BAT DEL DOIT.BAT

FOR %%A IN (*.*) DO COMMAND /C TESTTHEM %%A %1 %2
COMMAND /C DOIT

DEL DOIT.BAT

GOTO END

: O0PS

ECHO Enter a string to search for, and a drive
ECHO or directory to copy the matching file to
: END

Then, TESTTHEM.BAT:

ECHO OFF
ECHO COPY %1 %3 | FIND "%2" >> DOIT.BAT

Disk Organization, Files, Filenames 111
Then, to copy any filename with the string DRANG in it to drive A:, just type:
COPYSOME DRANG A:
Or to copy the files to \WORK\ACCT\1990, type:
COPYSOME DRANG \WORK\ACCT\1990

The COPYSOME.BAT batch file will first make sure that you entered both a string of
characters to search for and a drive or directory to copy the matching files to. If you forget
one or the other it will abort the process and print an error message.

Be sure you enter the string first and the drive or directory second. And make certain
that you enter the string in all uppercase letters, and that you don’t put quotation marks
around the string.

COPYSOME will then use a FOR batch command to take all the filenames in your
directory one by one and feed them into the second TESTTHEM.BAT batch file. The:

$3A %1 %2

at the end of the FOR command will pass three parameters to TESTTHEM.BAT. Each
time the FOR command cycles through, this will replace % %A with the name of the file,
%1 with the character string you’re trying to match, and %2 with the drive or directory
you want to copy everything to. But by the time these parameters reach TEST-
THEM.BAT, the parameters shift slightly:

% %A in COPYSOME becomes %1 in TESTTHEM
%1 in COPYSOME becomes %2 in TESTTHEM
%2 in COPYSOME becomes %3 in TESTTHEM

Each time COPYSOME passes these parameters to TESTTHEM, TESTTHEM translates
the:

ECHO COPY %1 %3 | FIND "%2" >> DOIT.BAT
line to something like:
ECHO COPY 90DRANG4.MEM A: | FIND “DRANG" >> DOIT.BAT
The command at the beginning of this line would normally use ECHO to display the text
following the word ECHO. But this batch file pipes this text through the FIND filter.
FIND will look at the text to see if it contain the specified string (in this case “DRANG”).
If the text doesn’t contain the specified string, nothing else will happen and the process

will continue with the next filename. But if FIND does locate the string it passes the string
through to the very end of the command. Here, the final:

>DOIT.BAT

112 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

command takes any text that survived the FIND test and adds it to a file called DOIT.BAT.
Note that a single > sign creates a new file and redirects data into it. A double >> sign
will create a file if none exists, and will append data to the file if it’s already there. You
have to use a double >> sign here because each time you find a filename with the
characters DRANG in it, you’re going to add an additional line to DOIT.BAT, and you
don’t want each new line to wipe out the old one.

So if COPYSOME.BAT passes TESTTHEM.BAT parameters like:

$%A = 90DRANG4 .MEM
%1 = DRANG
$2 = A:

TESTTHEM plugs these into its main command and ends up with:
ECHO COPY 90DRANG4.MEM A: | FIND "DRANG" >> DOIT.BAT
Since the characters “DRANG” are indeed in the string:
COPY 90DRANG4 .MEM A:
the FIND filter passes this string through to the:
>DOIT.BAT
command, where the string is appended to the DOIT.BAT file.

However, if COPYSOME passes TESTTHEM parameters that don’t include the
specified characters, such as:

%$%A = 90STURM4 .MEM
%1 = DRANG
%2 = A:
TESTTHEM will turn this into:

ECHO COPY 90STURM4.MEM A: | FIND "DRANG" >> DOIT.BAT

The FIND test won’t pass anything through, since the characters “DRANG” aren’t in the
COPY 90STURM4.MEM A: string.

‘When the FOR command in the COPYSOME.BAT file has worked all the way through
the (*.*) set of files, COPYSOME will execute the command in the next line:

COMMAND /C DOIT

This will run the DOIT.BAT file you just created, and make all the copies. When DOIT
has made its last copy, DOS will delete DOIT.BAS and the process ends.

Disk Organization, Files, Filenames 113

‘Whew. Okay, it’s convoluted, but it shows what you can do by slapping together a few
DOS commands. And once you have both the COPYSOME.BAT and TESTTHEM.BAT
batch files on your disk, you don’t have to worry about how they work. You just use
them. It’s a whole lot easier than sitting down with (shudder) paper and pen and making
a list of all the files you have to copy and then typing in the COPY commands one by
one.

Incidentally, if you’re using a version of DOS 3.3 or later, replace the:

FOR %%A IN (*.*) DO COMMAND /C TESTTHEM %%A %1 %2
line in COPYSOME.BAT with:
FOR %%A IN (*.*) DO CALL TESTTHEM $%A %1 %2

Do the same thing with the COMMAND /C DOIT line that follows. Prefix the initial
ECHO OFF with a @ sign (so it looks like @ ECHO OFF), which will prevent it from
displaying onscreen.

Using CALL will expedite things a bit and get rid of some screen clutter The
COPYSOME.BAT batch file turns ECHO OFF to prevent commands from showing up
on the screen as they execute. But when you use COMMAND /C to run another batch
file, DOS loads a second copy of COMMAND.COM, which turns ECHO on again for
the second batch file. CALL leaves the ECHO state alone. If it’s off in the first batch file,
CALL leaves it off.

Be careful when you're using a command such as REN (or its longer version
RENAME) or DEL (or its longer cousin ERASE) with wildcards, since the wildcard may
end up including more files than you intended.

If you tried to delete all your BAK backup files by typing:

DEL *.BA*

you would erase anything with an extension beginning with BA. Since this includes batch
files (which end in BAT) and BASIC program files (which normally end in BAS), you’d
delete far more than you wanted. The safe way to delete or rename is to use the DIR
command with the wildcard structure first, and then to use the DEL or REN. DOS makes
this easy, since it lets you use the F3 key to duphcate any or all of what you typed in the
previous command.

So if the only files in your directory that had extensions beginning with BA were indeed
backup files, you could type:

DIR *.BA*

and see something like:

114 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Volume in drive C is WORKDISK

Volume Serial Number is 104F-16CD
Directory of C:\ACCOUNT

SCHEDULE BAK
4Q0DRANG BAK
DRANG BAK
90DRANG BAK

4 File(s) 4122624 bytes

16256
21256
32932

9674

10-17-90
10-24-90
11-12-90
11-15-90

free

you could then just type DEL and press F3:

DEL *.BA*

12:01a

1

6:32a
1:40a
1:23p

However, if you tried typing DIR *.BA* and you saw:

Volume in drive C is WORKDISK

Volume Serial Number is 104F-16CD
Directory of C:\ACCOUNT

AUTOEXEC BAT
SCHEDULE BAK
RUN BAT
4Q0DRANG BAK
DRANG BAK
CHART BAS
90DRANG BAK

256
16256
128
21256
32932
28932
9674

2-11-90
10-17-90
2-12-90
10-24-90
11-12-90
8-22-90
11-15-90

7 File(s) 4122624 bytes free

:15p
:0l1a
:28a
:32a
:40a
:32p
:23p -

you could see that the DEL *. BA* would have erased too much. If this happens, just
narrow the focus of the wildcard by changing the command to DEL * . BAK instead.
DOS is a little protective of your files. If you type just:

DIR C*

DOS will display everything beginning with the letter C (such as COMMAND.COM).

But if you type:

DEL C*

DOS won’t erase COMMAND.COM or anything else that has an extension of any kind.
(It will, however, erase files that begin with C but don’t have extensions.) It’s decent of
DOS to make the directory search wildcards broader than the deletion wildcards.

Disk Organization, Files, Filenames 115

One place that a wildcard can come in very handy is in fixing filenames with spaces
in them. DOS won’t let you put a space in a filename, but some programs (and even
BASIC) will. If you try to create a file called

SPACE IT
DOS 5.0 will get confused and print an error message that warns:
Too many parameters - IT

But you can create such a file with BASIC. Type in the following short BADNAME.BAS
program:

100 ' BADNAME.BAS

110 OPEN "SPACE IT" FOR OUTPUT AS #1
120 PRINT #1,"OCoops..."

130 CLOSE:SYSTEM

Then, at the DOS prompt, type:
A>BASICA BADNAME

(or GWBASIC BADNAME if you’re using a generic MS-DOS version of BASIC). The
BADNAME.BAS program will create a file with a space in it called SPACE IT. To see
this file, just type:

DIR S*
and sure enough you’ll see:
SPACE IT 11 11-17-90 5:31p

If you try to rename or copy or delete the file, you won’t be able to, since DOS will
interpret the space as the end of the filename, not a character in the middle. Depending
on what you’re trying to do all you’ll get is error messages like:

e Invalid number of parameters

¢ Duplicate file name or File not found
® Invalid parameter

e File not found

You could remove the space by loading your disk’s directory sectors into DEBUG and
changing the name with the DEBUG E command. But why bother, when a simple
wildcard operation can do it for you? Just type:

116 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
REN SPACE?IT SPACEIT

and you’ll end up with something called SPACEIT that will respond to all normal DOS
commands.

Filename Extensions

Filenames can contain from one to eight characters. Extensions can have from zero to
three characters. You don’t have to use extensions, but they help you organize or search
for data. However, you can’t use an extension without a filename preceding it. These are
all valid filenames:

A
AB

ABB

A.BBB
AAAAAAAA
AAAAAAAA B
AAAAAAAA BB
AAAAAAAA BBB
O}
~1@#%S. &-

$

These aren’t:

AAAAAAAAA (more than eight characters in the filename)
AAA (no filename)

AAAAAAAA AAAA (more than three characters in the extension)
AAAAAA A (space in the filename)

AA+AA/A (illegal characters + and / in filename)

? (illegal character)

If you do try creating a file such as:

ABCDEFGHIJKLM.NOPQRSTUVWXYZ
L]

filename .ext

DOS will truncate the filename to the first eight characters before the dot, and the
extension to the first three characters after the period, producing:

ABCDEFGH.NOP

Disk Organization, Files, Filenames 117

Extensions are important, since they tell DOS which files it can try to execute and which
it can’t, and how in memory to load the executable ones. You and your programs can use
extensions to organize your files. Most applications keep track of their specialized data
files by giving them extensions, such as WKS for old-style 1-2-3 worksheets and DBF
for old-style dBASE database files.

And by using extensions you can exploit DOS’s formidable wildcard abilities. Without
this wildcard magic it would be a real headache to do simple everyday chores like copying
all your database files from drive C: to drive B:. First you’d have to type DIR to see all
the files in your logged subdirectory, and then write down the names of each one that
you thought was a database file. Then you’d have to copy them one by one. Instead,
assuming you’re on drive C: and that all your database files end with a DBF extension,
you can simply type:

COPY *.DBF B:

Normally DOS will print a message when it’s done, reporting how many files it copied.
If you want to suppress this message, just stick a > NUL on the end of the command. This
redirects the output of the command (which in this case is just the “File(s) copied”
message) into a special DOS device called NUL that simply discards the characters.

Typing:
COPY *.DBF B: > NUL

will make the copies and avoid screen clutter. Doing this isn’t such a good idea when
you’re making important backup copies, since you want to know the number of files that
DOS actually was able to copy. If you have 30 files on your disk that have a DBF
extension and DOS reports: '

2 File(s) copied

you can tell something is wrong, and go back and fix the problem before it’s too late.

However, most serious users have to issue so many commands to set things up properly
when they start working that they put all these commands in a special startup file called
AUTOEXEC.BAT. DOS executes this startup file automatically when you power up
each day. These users also know that they can improve performance by lopping off a
chunk of memory and convincing DOS to treat this memory as a super-fast disk called a
RAMdisk. So their AUTOEXEC.BAT files are filled with commands to copy files from
floppies or hard disks to RAMdisks. This normally produces a long cascade of “1 File(s)
copied” messages. Adding a > NUL to each COPY command in your AUTOEXEC.BAT
will do away with these unsightly messages.

(Incidentally, IBM and Microsoft have had more than half a decade to cram sophisti-
cated tricks into DOS and generally refine it. It’s hard to believe that they still have DOS
printing an idiotic message like “1 File(s) copied.” Or refusing to tell you how many files
DOS erased when you use a wildcard with the DEL or ERASE commands.)

118 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

In this chapter we described the basic principles of data storage and the physical
properties of the disk. While the PC will place data in its own convenient locations, it’s
up to you to impose a structure on that data by organizing it into files and assigning those
files unique and descriptive names. DOS has some inflexible rules that define what it will
and will not recognize in a filename. We've presented those rules here, as well as some
simple tips to help you create workable filenames.

In the next chapter we’ll take a closer look at how to manage these files on a hard disk.

Hard Disks Made Easy

The single most important productivity enhancement for most users is a fast hard disk.
A hard disk gives you instant access to all your files, speeds up operation dramatically,
and makes “disk full” errors a lot less common. Floppies are how new software products
are packaged, and how you back up your files — unless you use a tape drive or Bernoulli
box. They’re also for the birds. Hard disks used to be expensive and unreliable. That’s
all changed. Today they’re inexpensive and unreliable. I’ve personally replaced seven
hard disks over the past three years, and have to perform tedious daily ministrations to
keep my current one purring.

Even the most expensive hard disks are frail and transitory. Many users wedge PC-ATs
or PS/2s into floor stands beneath their desks, which is fine until they start playing
knee-hockey with their systems. Others blithely slide working XTs back and forth across
their desks to make room for paperwork, or routinely lift a corner of the chassis to retrieve
something that’s burrowed beneath it.

You’ve all probably seen versions of the famous illustration whete a human hair, a
smoke particle, and even the greasy schmutz of a fingerprint seem enormous compared
to the gap between the magnetic head of a hard disk and the rotating disk platter itself.
With tolerances slightly above the angstrom level, dropping a chassis a quarter inch, or
tapping it with your toe, is the hard disk equivalent of an atom bomb going off directly
overhead. :

It’s true that packages like the Norton Utilities and Mace Utilities, and even the
dangerous DOS RECOVER command, can rescue parts of text files that remain intact
. after a bounced magnetic head has plowed little oxide furrows into the disk surface. But
these programs aren’t very good at resurrecting program files, or chunks of data stored
in binary format. And when you see a message like:

General Failure error reading d;ive C
Abort, Retry, Ignore, Failv?

120 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

well, that’s what backups are for.

If you set up your hard disk properly, you’ll not only take the anguish out of daily
backups, but you’ll also end up working a whole lot smarter and more efficiently. While
you’ll have to learn how to handle subdirectories, the tips and utilities provided here
should make it a breeze. Once you learn the basics — and install the tools you’ll find in
this chapter — you’ll be able to solo with the best of them.

Formatting the Hard Disk

Hard disks require two kinds of formatting, low-level and high-level. These days the
fundamental low-level formatting is done at the factory. You or your dealer have to do
the high DOS-level formatting.

Dealers nowadays test and set up hard disks before shipping them to purchasers.
Unfortunately, they also usually follow the questionable advice in the DOS manual and
copy all the files from the two DOS floppy disks onto the root directory. For best
performance, you should clean things up if you log into a brand new hard disk, type DIR,
and see the listing scroll off your screen. But you can’t just erase or move all the files
there; you’ll learn which ones have to stay in a moment.

If your dealer or MIS department didn’t set up your system, it’s fairly straightforward.

(If you have a hard disk that no one has touched, and all you see when you try to start
isa “161 — System Options Not Set” message, hunt for the SETUP program, which on
older systems IBM perversely buried on its Diagnostics disk. Put this disk in drive A:,
turn the computer on, press F1 when prompted, and answer the questions about date,
time, hard disk type, floppy disk type(s), and memory size. If you need to know the drive
type, check to see that it’s not in the documentation that came with your system. If it’s
not, take the cover off the computer and look for the number on the label on the front of
the drive. If all else fails, call your dealer. DOS 4.0 combed out the wrinkles and made
installation a whole lot easier.)

Once the setup program has run, insert your DOS disk in drive A: and turn your system
on. Press the Enter key twice when asked for the date and time. Type in:

FDISK

and press the Enter key, and when you see the “Fixed Disk Setup Program” screen, accept
the defaults by pressing the Enter key again to create a DOS partition, and then once more
to tell the program you want to devote the entire hard disk to DOS.

You can slice up a standard hard disk into as many as four partitions, and jump from
one to the other by using FDISK. Take our word for it, unless you have a penchant for
dabbling in other operating systems, you don’t want to.

After you’ve answered the partitioning questions, press any key and your system
should reboot. This time, unless you’re using an AT or XT-286 or PS/2 with a battery-
operated clock, enter the correct date and time when asked. Type:

Hard Disks Made Easy 121
FORMAT C:/S/V

and, if necessary, verify that you want to proceed by entering Y.

The /S suffix, or switch tells DOS you not only want to format the hard disk, but want
to add the three system files — IBMBIO.COM, IBMDOS.COM (or their non-IBM-spe-
cific cousins), and COMMAND.COM — to it so you can boot without having to stick a
DOS floppy disk in drive A:.

If you forgot to add the /S, or if your system is delivered with a hard disk that’s been
FDISKed and formatted but without these three system files, turn your system on with
your main DOS disk in drive A:, enter the correct date and time, and then type:

SYs C:
COPY COMMAND.COM C:

The [V switch tells DOS to let you add a volume name. This doesn’t really do much
except let you personalize your directory listings and CHKDSK reports, and avoid the
pesky “Volume in drive C has no label” messages. With recent versions of DOS you can
always go back and use the LABEL command to add or revise the volume label.

Subdirectory Structure

Many users who are either lazy or are befuddled by the terse explanation of subdirectories
in the DOS manual end up dumping all their files into the main, or root directory. It’s
called a root directory because all other subdirectories branch off of it in a shape vaguely
resembling an upside-down tree, or more accurately, a family tree, with the progenitor
planted at the top and all the descendants fanning out beneath him. A simple representa-

tion looks likes this:
Level One Root
Directory
l
Level Two Subdirectory Subdirectory
#1 #2

You could make the tree much more complex, with third, fourth and fifth levels
dangling below the second, each one bristling with additional subdirectories. Too few
subdirectories and you end up with unmanageable numbers of files in each; too many
and you can run into PATH problems (more about that later).

122 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Note that the schematic representation of your subdirectory structure doesn’t have to
be in the form of a symmetric tree. An equally valid way to describe the above setup is:

— Root Subdirectory #1

Subdirectory #2

Note also that the root of the tree is at the top, so it’s really an upside-down tree. A
lower level is one farther away from the root. As you go higher in the tree you get closer
to the root. This sounds confusing, and it is. Just be thankful that IBM didn’t choose
UNIX instead of DOS.

IBM’s XT and AT hard disks (which in its typically contrary way IBM calls fixed disks
because they’re fixed in place and not removable like floppies) can hold between ten and
30 million characters; under DOS 4.0 and 5.0, newer systems can squirrel away as many
as half a billion. With storage space so capacious, keeping similar files grouped together
is a necessity. Otherwise, you (and DOS) would have to sort through hundreds or
thousands of files each time you wanted to find a single program to run.

Just as you can’t be at two places at the same time (unless you have a good lawyer),
DOS lets you log into only one subdirectory at a time. When you first boot up, DOS logs
you into the root directory of either your hard disk or the diskette in drive A:. If you
installed the necessary DOS system files on your hard disk, and if you either didn’t have
a floppy disk in drive A: or had one there but left the drive A: door open, you’ll boot off
the hard disk. If this doesn’t happen it’s probably because you either have some bizarre
brand-X hard disk or an early PC with an old ROM chip that doesn’t understand hard
disks.

You really need only three files in your root directory:

¢ COMMAND.COM
o AUTOEXEC.BAT
e CONFIG.SYS

Plus SHARE.EXE under DOS 4.0 or 5.0 using extra-large hard disks. Actually, a root
directory formatted with the /S/V option will contain two additional, hidden files,
IBMBIO.COM and IBMDOS.COM (or in DOS 5.0 and Microsoft’s earlier versions of
MS-DOS I0.SYS and MSDOS.SYS), plus the volume label, which is also stored in a
small hidden file. They’re called hidden files since they won’t show up in normal
directory searches. But they’re there, and you can see at least the system files at the top
of the list when you type:

CHKDSK C:/V

IBMBIO.COM contains additions and corrections to the gut-level device-handling
BIOS routines that come with your system on ROM chips. IBMDOS.COM provides other

Hard Disks Made Easy 123

fundamental services for things like copying and deleting files, searching through the
directory, or reading the keyboard.

Technically, you can patch these system files and put the COMMAND.COM, AU-
TOEXEC.BAT, and CONFIG.SYS files in other places than the root directory. But
playing with your hidden files is like playing with fire.

COMMAND.COM is the primary command interpreter, processor, and loader that
watches what you type at the DOS prompt. When it sees you trying to execute an internal
command such as DIR, TYPE, RENAME, COPY, or ERASE, it can dispatch these right
away, since the main routines for these are stored insidle COMMAND.COM (which is
why they’re called internal commands). When it can’t find an internal command to match
what you typed — such as FORMAT, SORT, or 123 — it looks in a set of directories
you specify, called a path, for files with COM, EXE, or BAT extensions, and tries to load
or execute these external commands. In addition, a disposable part of COMMAND.COM
looks for the startup AUTOEXEC.BAT file to execute immediately after bootup.

Every hard disk system should have an AUTOEXEC.BAT file, if only to set the proper
system prompt. But it’s also handy for loading resident popup programs like SideKick
into memory, changing screen colors, setting operating modes (to switch monitors or
specify communications protocols, for instance), copying files into RAMdisks, and
otherwise automatically configuring your system the way you like it.

The normal DOS hard disk prompt is a cryptic:

c>
which tells you only that at that moment DOS recognizes drive C: — rather than the other
drives in your system — as the active drive. Once you start creating subdirectories and
jumping around from one to another, you’ll want to know which subdirectory you’re
currently logged into. By issuing the command:

PROMPT PSSG

you’ll tell DOS to report the name of the subdirectory along with the drive that’s active,
each time you finish executing a command or program. The root directory prompt will
change to:

c:\>

The solitary backslash is DOS’s shorthand for indicating the root directory. If the
backslash-greater-than-sign combination is too visually jarring, you could adapt the
prompt to:

PROMPT S$P:

which will make the root directory appear as:

C:\:

124 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Remember, the \ sign all by itself stands for the root directory. You can always see what’s
in the root directory, for instance, by typing:

DIR \

. Later, when you add other subdirectories, you’ll connect subdirectory names and their
files with \ characters. So a subdirectory called DOSPT that’s one level down from the
root directory would actually be called \DOSPT. And if you were to branch an additional
subdirectory off of \DOSPT, and called it \UTIL, the actual name of this new subdirectory

- would be \DOSPT\UTIL. A file called TOOLS.DOC in this new subdirectory would then
be called \DOSPT\UTIL\TOOLS.DOC.

One of the handiest, but most confusing, aspects of naming files in subdirectories is
that you could pepper your hard disk with other TOOLS.DOC files. So a TOOLS.DOC
file on drive C: in the \DOSPT subdirectory would really be C:\DOSPT\TOOLS.DOC,
while a different version in the root directory would be C:\TOOLS.DOC. The full name
of any file has three parts — drive letter, path, and the actual filename-plus-extension.

A representation of this structure would be:

Root . \
One Level Down \DOSPT
Two Levels Down \DOSPT\UTIL

The root directory doesn’t have a user-defined name such as DOSPT, so DOS designates
it as just \ with nothing following it. The DOS manuals clearly state that the maximum
length of any subdirectory path — the list of directory names from the top (root) to the
deepest level — may be no longer than 63 bytes, measured from the beginning of the
first name to the end of the last name, excluding slashes in front or at the end.

DOS function call 47H (Get Current Directory) requires a 64-byte area in memory to
return the current directory path. It is not preceded by a backslash but it is terminated by
a hex 0, so this is consistent with the 63-character restriction.

How many nested levels are allowed in a directory structure? Although the manuals
never say so, the answer is obviously 32. If each of the subdirectory names is one letter
long and they are separated by backslashes, then 32 levels would make the total length
63.

Of course, 32 nested levels of subdirectories would place an enormous drain on DOS
as well as on the human user’s mental faculties. What happens if you attempt to go beyond

Hard Disks Made Easy 125

32?7 Don’t even try. You may get away with it but DOS will make life hard after that and
you’ll have difficulty just removing that snarl of subdirectories.

Directory Limits

You can store up to 64 files in the root directory of a single-sided floppy disk (if you can
still find one), and 112 files in the root directory of a more common 360K floppy and
720K 3 1/2" disk. The root directory on the 1.2 megabyte floppy and 1.44 megabyte
high-density 3 1/2” disk holds 224. And there’s space on most hard disk root directories
to store 512 files.

But don’t test this out on your hard disk. If you do, you’ll end up after the 509th with
a “File creation error” message (the 510th, 511th, and 512th are the two hidden system
files and the hidden volume label). Any subdirectory entries you may have in the root
directory are really just special types of files, so they’re included in the count too. So you
may run out of room well before you actually have a chance to create the 512th file.

The number of directory entries in a subdirectory is limited only by available space on
the disk. That’s because each subdirectory is really just a special kind of file that keeps
track of other files. Because the subdirectory itself is a file, it can grow the same way a
data file grows when you add information to it.

Remember — if you really want to organize your hard disk properly, don’t put any
other files on your root directory than the ones mentioned above. Then, when you type:

DIR C:\

all you’ll see is one screenful of your bootup files and main subdirectory listings. It’ll be
an index into your hard disk.

Disk Tools

When IBM introduced its hard disk XT, it added several UNIX-like hierarchical
subdirectory features (as well as a UNIX-like tree structure) to the new release of DOS
that accompanied it (version 2.0). Among these powerful new commands were:

¢ MKDIR (and MD)
¢ RMDIR (and RD)
¢ CHDIR (and CD)
e PATH

Nobody anywhere ever uses the command names MKDIR, RMDIR, and CHDIR, since
the shorthand versions MD, RD, and CD will do just fine. Of course, since the IBM DOS
documentation is not exactly what you’d call friendly, you can’t look up these commands
by hunting for the shorter versions in the alphabetical reference manual. MD, CD, and
RD aren’t even in the manual’s index. Nice touch, IBM.

126 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The MD command creates a new subdirectory. The first thing you should do after
running FDISK and FORMAT is create a DOS subdirectory. To do this, type:

MD \DOS
If you are sure you are in the root directory, you can also type:
MD DOS

since both commands will do the same thing — create a subdirectory one level down
from where you currently are, in the root directory. v

By omitting the backslash (as in MD DOS) you’re saying “create a directory called
DOS that’s one level down in the subdirectory tree from where I currently am.” By
including the backslash (as in MD \DOS) you’re saying “create a directory called DOS
that is one level down from the root directory,” since the single backslash specifies the
root directory.

The method that omits the backslash uses relative locations. The technique that
includes the backslash uses absolute locations. Both have their advantages. We’ll discuss
this in more detail later. This is a critical distinction, and a point of real confusion among
new hard disk users. (Many DOS commands allow alternate phrasings. For instance, you
can use several different syntaxes to perform the same COPY command, depending on
what you want to do and where you currently are.)

Once you’ve created the \DOS subdirectory, log into it (or Change Directories) from
the root directory by issuing the CD DOS (or CD \DOS) command. Here’s a shortcut —
once you’ve typed MD \DOS to create the subdirectory, type the letter C and then press
F3. F3 repeats the previous command, so it will fill in the command line with the rest of
what you typed at the previous DOS prompt. So at the C> prompt you’d type:

MD \DOS

then press the Enter key. Then you’d type:
) ,

and press F3. As soon as you did yéu’d see:
cD \DoS

Press the Enter key and DOS will log you into your new \DOS subdirectory, and you’ll
see:

c>

How do you know you’re in the \DOS subdirectory? If you type in DIR you’ll get
something like:

Hard Disks Made Easy 127

Volume in drive C is POWER_TOOLS
Volume Sexrial Number is 104F-16CD
Directory of C:\DOS

<DIR> © 6-10-90 10:48p
<DIR> 6-10-90 10:48p
2 File(s) 20840448 bytes free

You can see the current directory in the second line of the DIR report. But if you
remembered to set your prompt to $P: you could automatically tell which directory you
were logged into, since instead of:

c>
as soon as you typed CD \DOS you’d see:
C:\DOS:

Typing CD by itself will also display the current subdirectory. But that’s an extra step.
Notice that DOS already thinks you have two files in the \DOS subdirectory with the
peculiar names . and .. and with <DIR> where the file size usually goes. Dot notation
will be covered a bit later. The <DIR> tells you you’re dealing with subdirectory entries.
- Now go back to the root directory. You can do this one of two ways.
You can use the absolute locatlon technique and issue a command that says “move to
the root directory™:

CD \
or you can say “move one level up from where I am” w1th the command:
CD ..

You could have typed CD\ rather than CD \, and CD.. rather than CD .. since in this
case DOS isn’t picky about extra spaces (unless you’re using one of the older DOS
versiotis, in which case the space between the CD and the .. is mandatory). The double
dot stands for the parent directory of the one you’re currently logged into — the directory
(or subdirectory) directly one level up toward the root. In this case the only level up is
the root.

If you’re curious, the single dot stands for the directory you’re currently in. This
shorthand actually comes in handy when you’re prompted for a subdirectory name and
you’re in one five levels deep and would rather type a single period than a long, elaborate
pathname — although just pounding on the Enter key sometimes works in such situations.

If you’re deep inside one subdirectory like A\B\C\D\E\F\G and you’re using the DOS
COMP utility to compare a file there with another file deep within another directory like
\1\2\3\4\5\6, you can enter:

128 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
coMP \1\2\3\4\5\6\PROGRAM

COMP will respond with a message to enter the directory the other version of the file is
in. Just type a period, which tells DOS to look at the subdirectory you’re currently logged
into. Or, you could specify the period on the command line, as was done earlier:

coMP \1\2\3\4\5\6\PROGRAM .
or:
coMP . \1\2\3\4\5\6\PROGRAM

You can also use the dot to simplify erasing all the files in a subdirectory. Instead of
typing:

DEL *.*
all you really have to type is:
DEL .

This technique can be potentially dangerous, however. If you let someone who doesn’t
understand subdirectories use your system you can run into trouble. If a novice user
doesn’t have a clue what the . and .. represent in a directory listing but does know about
the DIR and ERASE commands, and somehow logs into a directory one level down from
the root, he or she may be tempted to erase these mysterious double dot entries and end
up deleting all the files in the current and root directories.

DOS will respond with a:

Are you sure (Y/N)?
warning when you try to erase an entire subdirectory like this, but that’s not a threatening
enough message to a novice. You can make this message meaner by patching COM-
MAND.COM, but many users feel COMMAND.COM is sacrosanct and shouldn’t be
touched. If you’re not one of these, here’s how to avoid potential mass-erasure problems
like this by changing the message from:

Are you sure (Y/N)?
to:

Now hit the N key!!
First, make sure you have a copy of DEBUG.COM handy, and then make a backup copy

of COMMAND.COM called COMMAND.OLD so that if you make a mistake you can
start over. Then type:

Hard Disks Made Easy 129
DEBUG COMMAND.COM
Find out how long your version is by typing:
RCX

and pressing the Enter key twice. You'll see something like:
CX 9305

Take the four-digit hex number following the CX and type:
S 100 9305 "Are you sure"

(substituting the four-digit hex number if yours is different from 9305). Press the Enter
key and you should see something like:

4938:7CB2
Ignore the first four digits preceding the colon. Take the rightmost four digits and type:
E 7CB2 "Now hit the N key!!"

(substituting the four-digit hex number if yours is different from 7CB2). Press the Enter
key. Then press W (and Enter) to write the new version back to disk, and Q (and Enter)
to quit DEBUG. Once you’ve patched COMMAND.COM, reboot.

If you do this, make sure you don’t mix patched and unpatched versions of COM-
MAND.COM on the same disk, or you'll confuse DOS. ‘

In any event, once you’ve used the CD\ or the CD .. command, and you’re back in the
root directory, type DIR and you’ll see a new listing along with:

Volume in drive C is POWER_TOOLS

Volume Serial Number is 104F-16CD
Directory of C:\

COMMAND COM 47845 4-09-91 5:00a

CONFIG SYS 128 4-09-91 6:30a
AUTOEXEC BAT 640 4-09-91 8:12p
DOs <DIR> 4-09-91 10:48p

The <DIR> tells you that you now have a subdirectory one level down from the root
directory. '

130 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Customizing Your Prompt

The PROMPT command can do all sorts of tricky things, such as reporting the time and
date, or the DOS version. If you ask it to, it will print the current time whenever you do
something that summons another DOS prompt, such as press the Enter key again, or finish
executing a program. It will not act as a clock and display the continuously changing
time. And it will display time in hundredths of seconds based on a 24-hour clock. If you
want it to print just the hours and minutes, you can backspace away everything else, with
the command:

PROMPT It’s now S$TSHSHSHSHSHSH

Users who discover the PROMPT command’s flexibility invariably end up creating
strange prompts such as:

PROMPT +Q0QQ0+$_$B SNSG $BS_+S050$050+S5
which produces:

>

+ —
0
+ —

or:

PROMPT LNS$SG SLSNSGS $BS $0$0$0$

which yields:

<C> <KC>

A less frivolous use of the PROMPT command is in sending escape sequences to the
ANSI.SYS extended screen driver, which can give you precise control over the way your
monitor looks and works. The real strength of including $P in any PROMPT command
is that when you log into a subdirectory, DOS will display the name of that subdirectory.
So if your PROMPT setting is $P: and you create a subdirectory called STAR in which
you keep all your WordStar files, and you move from the root directory into that
subdirectory, your prompt will change from:

Cc:\:
to:

C:\STAR:

Hard Disks Made Easy 131

To see the command that most recently configured your prompt, type SET on a line
by itself, which displays the system’s environment — the fundamental settings that tell
DOS where to look for key files and how to prompt the user. To restore the prompt to its
original C> just type PROMPT with nothing following it.

Customizing your prompt isn’t all roses. Once you tell DOS to include the subdirectory
name in the prompt, it will relentlessly seek one out. So if you have a $P in your PROMPT
command and log into a floppy drive, then remove the disk from that floppy drive and
do something that generates an “Abort, Retry, Ignore, Fail?” message, DOS won’t budge
until you stick the diskette back in the floppy slot. Only newer versions of DOS give you
the additional option to “Fail” which actually lets you succeed here. If you are offered
this option, type F, then enter the drive letter of your hard disk.

A second disadvantage is that if you have tons of multilayered subdirectories with long
directory names, and you’re logged into one five levels deep, the prompt may be so long
that your commands wrap around the right edge of your screen. The best solution is to
keep subdirectory names short. In addition to preventing wraparound problems, this
makes it far easier to switch between subdirectories. It’s a lot simpler to type \WST\UT
than \WORDSTAR\UTILITY, especially when you’re doing it several times a day.
(While you’re at it, truncate the names of programs you use every day. Why type EDITOR
when you could just key in ED? If you don’t like the idea of renaming your files you can
always create batch files with short names that can run programs with longer ones.) Also,
resist the temptation to use extensions in subdirectory names since they’ll just make the
whole process more cumbersome and prone to error.

Another solution to wraparound ills is to end all your prompts with a $_ which jumps
the cursor down to column 1 of the line below. Unfortunately, doing this will confuse
certain DOS utilities like MORE that are designed for single-line prompts and will end
up scrolling information off the screen before you can read it.

The CONFIG.SYS File

Apart from AUTOEXEC.BAT, the only other file that normally has to be in the root
directory is CONFIG.SYS. Your system will run without a CONFIG.SYS file, but will
work better with one. And certain programs demand one. If you’re using a database
manager, for instance, that handles more than eight open files at once, you have to prepare
DOS for juggling the extra ones with a FILES= command in CONFIG.SYS.

But where CONFIG.SYS really shines is in increasing disk-read buffers, loading
device drivers, and adding logical drives to your system.

For some odd reason, IBM specified a default of two buffers for the XT, and a paltry
three for the AT. Recent DOS versions allocate 15 buffers for any system with more than
512K of RAM. Buffers are simply chunks of memory set aside to store the data your
system most recently read from or wrote to your disk, although some buffers don’t store
written data. If you have to go back and read or write the same data, it’s far speedier to
do so via these memory buffers than to have to move the magnetic heads again and slurp
up or slap down the information on the physical disks one more time.

132 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Buffer needs vary from system to system, and the number of buffers is often a topic
of heated discussion when tech types get together. Virtually everyone agrees that three
is a joke. Somewhere around ten or 15 seems right for XT users, and 20 or 30 for AT
users and other power users. Specifying too many is as detrimental to performance as too
few, since your system will end up wasting time as it churns through endless reams of
data it will never use. .

If you currently have a directory crammed with hundreds of files, it’s easy to
demonstrate how increasing the number of buffers can help boost performance. First,
make sure you don’t have a CONFIG.SYS file, or if you do, that it doesn’t contain a
BUFFERS= command. If yours does, rename it temporarily.

Reboot, and issue a DIR command. The first few dozen files scroll rapidly by, but
eventually the buffers fill, and the display suddenly turns balky. If you get tired of
watching your files bounce slowly upward, interrupt the directory listing by holding down
the Ctrl key and tapping either the C key or the ScrollLock key. Then, when you’re back
in the root directory at the DOS prompt, create a CONFIG.SYS file by typing:

COPY CON CONFIG.SYS
and then pressing the Enter key. The cursor will drop down a line. Type:
BUFFERS=20

and then press Enter, the F6 function key, and then the Enter key again. You'll see the
message:

1 File(s) copied

Reboot and reissue the DIR command. Now virtually all the files will fly by, not just the
first few, since your system can load a giant chunk of directory data from your disk into
memory at one pass and not have to keep reading the disk in little sips.

CONFIG.SYS is also where you instruct your system to load device drivers such as
the DOS VDISK.SYS virtual disk (RAMdisk), or drivers to link your basic hardware
with mice, nonstandard external storage devices, 3-1/2 inch outboard floppy drives, or
giant hard disks. Under DOS 4.0, you can use the INSTALL command to load your TSR
programs here.

And it’s where you tell DOS how many drives you’re going to want to use. When you
boot up, DOS assumes a maximum of five (drives A: through E:). But if your system is
loaded to the gills with hard disks, half-heights, microfloppies, and other exotica, you
might need more. And if you use the SUBST command to fool your system into treating
a subdirectory like a disk drive to get around PATH or environment limitations, you’il
have to prearrange it with a LASTDRIVE= CONFIG.SYS command.

Apart from the hidden DOS system files, COMMAND.COM, AUTOEXEC.BAT, and
CONFIG.SYS, a well-organized disk’s root directory should contain no other nonhidden
files.

Hard Disks Made Easy 133

Some users don’t mind having their important DOS utilities in their root directory, and
cut through the clutter of a messy directory with a DIR/P (paused directory) or DIR/W
(wide directory) command. This won’t radically degrade performance, and may actually
be a hair faster than storing the utilities in a separate \DOS subdirectory, if the files are
kept at the very beginning of the hard disk directory. But it’s even faster to keep them on
a RAMdisk. And clutter gets to be a bad habit. Soon you start dumping files anywhere.

As mentioned eatlier, it’s a good idea to clean up a root directory cluttered with
extraneous files. If all a dealer or corporate systems installer did when setting up your
brand new system was copy all the DOS files from their original floppies to your root
directory, you can go ahead and erase everythmg except COMMAND.COM (which is
required to reboot the computer).

You can see if all the files in your root directory are also on your DOS disk either by
putting the DOS disk in drive A: and then typing:

DIR C:/W
and then:
DIR A:/W
for a wide-display filenames-only listing. Or, turn on your printer and either type:
DIR C: > PRN
and then:
DIR A: > PRN

or hold down the Ctrl key and press P (or PrtSc) to toggle your printer on so that it echoes
everything simultaneously to the printer and the screen, and type DIR C: and then DIR
A: for a printed copy of your directory listing. If you used the Ctrl-P (or Ctrl-PrtSc)
technique to turn simultaneous printing on, hold down the Ctrl key and type P (or PrtSc)
once more to toggle it off.

You can also see what’s on your disk by sorting the files in order of their extension.
The command:

DIR | SORT /+10 | MORE

will make it easy. For this to work, the DOS SORT.EXE and MORE.COM files must be
on the current directory, or be in directories that you’ve included in your PATH command.
The DOS COMP utility can also come in handy here. If your DOS disk is in drive A:,

type:

COMP . A:

134 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

(The period used in this example is a shorthand way to indicate whatever rectory you
are currently in.)

Any way.you do it, if you see that all you have on your root director s DOS files,
erase all the files except COMMAND.COM (you’ll put them back in the proper places
later). If you have AUTOEXEC.BAT or CONFIG.SYS files, examine t :ir contents by
using the TYPE command. To see what’s inside CONFIG.SYS, just typc:

TYPE CONFIG.SYS
If you see other files listed, such as:

DEVICE=RAMDRIVE.SYS . 360 /E

DEVICE=ANSI.SYS

DEVICE=MOUSE. SYS
you’ll want to leave VDISK.SYS, ANSI.SYS, and MOUSE.SYS where they are on the
root directory. Later you can move them out of the root directory to a subdirectory called
\BIN (so named because that’s where you store your programs, which are in binary,
nontext format), and change the CONFIG.SYS file so that it says:

DEVICE=\BIN\RAMDRIVE.SYS 360 /E

DEVICE=\BIN\ANSI.SYS

DEVICE=\BIN\MOUSE.SYS

Similarly, if you use the TYPE command to examine AUTOEXEC.BAT and see that
it loads SideKick with the command SK, leave SK.COM in the root directory for now.
Later, if you create a third-level subdirectory below \BIN called \BIN\KICK, and move
your SideKick files there, you would change the line in your AUTOEXEC.BAT file from:

SK
to:

\BIN\KICK\SK

The TYPE command is terrific for peeking into short text files. But if a file is longer
than 24 lines, the beginning will scroll off the screen before you can read it. To prevent
this, use the MORE.COM utility, which shows you the contents of files a screenful at a
time. If your AUTOEXEC.BAT is getting long, type:

MORE < AUTOEXEC.BAT
You could also enter:

TYPE AUTOEXEC.BAT | MORE

but the first method is more efficient and easier to type.

Hard Disks Made Easy 135

Important Files

You should now copy all the important files from your DOS floppy disks into your new
DOS subdirectory. You can log onto drive A: and type:

COPY *.* C:\DOS
or, while in the root directory in drive C:, type:
COPY A:*.* \DOS

Or you could log into C:\DOS (with the CD DOS or CD \DOS command) and simply
type:

COPY A:*.*
or:
COPY A:.

Even better is to use the XCOPY command introduced with DOS 3.2. COPY works
one file at a time. XCOPY will read in as many commands in one gulp as memory allows,
then spit them out in one continuous stream without bouncing back and forth repeatedly
the way COPY does. XCOPY is also a terrific backup tool.

If you’re logged into C:\DOS and you have XCOPY handy, just type:

XCOPY A:

Make sure you copy the important files from both the main DOS floppy disk and the
supplemental one. Starting with DOS 3.3, these are called “Operating” and “Startup”
disks. With DOS 4.0 you get three “Operating” disks, plus an “Install,” a “Select,” and
a “Shell.”

However, you can skip some of the files nobody ever uses, such as VDISK.LST (a
long assembly language source code file for programmers), anything that ends with a
BAS extension (unless you think DONKEY is an exciting and challenging game), and
some of the stranger utilities such as KEYBIT.COM and KEYBFR.COM which load in
foreign keyboard templates (in this case Italian and French). These foreign utilities were
all combined into one file called KEYB in version 3.3.

You can also toss BASIC, since BASICA does everything BASIC does and more. In
fact, with version 3.3, BASIC just loads BASICA. It’s hard to believe, but some of the
programs on some of the more recent versions of DOS will work only on the PCjr; try
running MUSICA.BAS for instance. Do however copy DEBUG.COM, which, for some
bizarre reason is not on the main DOS disk. Incidentally, while IBM removed the
documentation for DEBUG from the 3.3 manual, it left the program on the disk.

Now that you've created a subdirectory (called \DOS) one level down from the root
directory, go ahead and create another subdirectory on the same level as \DOS, called
\BIN. But be careful. Why?

136 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

If you’re currently logged into either the root directory or the \DOS directory, you
could create \BIN with the absolute command:

MD \BIN

This command in effect says “create a subdirectory one level down from the root directory
and call it BIN.” The single \ prefix means “one level down from the root directory.”
However, if you forget the backslash and try the command:

MD BIN

two different things will happpen, depending on where you currently are on your hard
disk, since omitting the backslash makes this a relative command rather than an absolute
one.

Typing MD BIN will create a subdirectory that’s one level down from where you
currently are. So if you’'re currently logged into the root directory, MD BIN will create
a subdirectory called \BIN that’s one level down from the root.

But if you’re currently logged into \DOS, which is already one level down from the
root, and you type MD BIN, you’ll end up creating a subdirectory called \DOS\BIN that’s
one level down from \DOS and two levels down from the root. That’s because leaving
out the backslash in the MD command makes it a relative rather than an absolute

command . .
To recap, if you already have a subdirectory called \DOS, but you’re currently logged
into the root directory:
Youarehere \

\DOS

and you type MD BIN, you’ll end up with:

Root \

One Level Down \DOS \BIN

Hard Disks Made Easy 137

which is what you want. But if you’re already one level down, in \DOS:

Root \

Youare here — \DOS

and you type MD BIN, you’ll get:

Root \
One Level Down \DOS
Two Levels Down \DOS\BIN

Actually, it really doesn’t matter which way you set up your subdirectories. Most users
aren’treally comfortable creating tree structures any more complex than one or two levels
deep. A few prefer intricately filigreed systems. For best results, keep it simple. The only
real reason to create lots of subdirectories branching off of each other is if your work
demands it. .

For instance, if you’re a CPA with many clients, each one deserves its own subdirec-
tory, and each will require still deeper subdirectory levels of organization. It’s good
practice to keep records separated by year or quarter or even month, depending on the
quantity of files. But while it might make sense to keep expenses in one subdirectory and
income in another, it would be ridiculous to have one called:

\SMITHCO\1990\JUNE\EXPENSES\OFFICE\PENCILS
and another:
\SMITHCO\1990\JUNE\EXPENSES\OFFICE\STAPLES

If you’ve followed the earlier instructions properly, you now have two subdirectories
called \DOS and \BIN, each one level down from the root directory. \DOS contains all

138 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

the important files you copied from your two main DOS disks. \BIN should contain all
the smaller non-DOS utilities and batch files you use every day.

Once you’ve created your \BIN subdirectory, copy these utilities into it (by adapting
any of the syntaxes you used to copy your DOS files into \DOS, above). Log into \BIN

by typing:
CcD \BRIN

and run VTREE by typing:
VTREE

You should see something that looks like:
—F DOS

L BIN

This may not be a very impressive graphic representation, but it’s vastly better than the
nearly useless output produced by older versions of the DOS TREE.COM utility. All
TREE.COM used to do was grind out a long, slightly confusing textual description. With
just two subdirectories it’s not so tetrible, but with 20 or 30 all you get is an unmanageable
scrolling mess. And displaying such a graphic object as a hierarchical tree with words
alone is like trying to describe colors to someone who’s congenitally blind.

You can make TREE slightly more useful by adding an /F switch, which will display
all the files in all the subdirectories. But even this use of TREE is overshadowed by the
far better CHKDSK /V, which also lists all the files on your disk. CHKDSK /V displays
full pathnames; TREE /F doesn’t. And TREE pads all its listings with unnecessary spaces,
which makes it scroll rapidly off your screen. As a bonus, CHKDSK /V adds the standard
CHKDSK report detailing the number of files, bytes free, etc. And it displays the hidden
files; TREE /F doesn’t. Finally, CHKDSK /V is far faster.

Incidentally, early versions of TREE contain a nasty bug. When the TREE command
in PC-DOS 2.0, 2.1, and 3.0 encounters a directory with an extension, such as
UTILS.NEW, it stops in its tracks after it has finished listing any directories below the
one with the extension. DOS didn’t get around to fixing it until version 3.1.

Earlier TREE versions also don’t list files in the root directory when you specify the
[F parameter after TREE. The upgraded TREE in DOS versions 3.1 and later also fixes
this problem.

If you’re not using DOS 4.0 or 5.0, copy VTREE.COM into your \BIN subdirectory.
Then type:

ERASE \DOS\TREE.COM

Note that in the above example, the full name of the primitive DOS utility that you just
expunged was \DOS\TREE.COM rather than just TREE.COM. That’s because you can

Hard Disks Made Easy 139

have different versions of similarly named files in different subdirectories. You can even
have similarly named subdirectories; if you wanted to (but trust us, you don’t) you could
have a subdirectory called \DOS and one called \BIN\DOS on the same disk.

For instance, you could rename VITREE.COM to TREE.COM and put it in \BIN. So
if you keep the original DOS version in the \DOS subdirectory, your hard disk would
then contain files called \DOS\TREE.COM (which is the original DOS version) and
\BIN\TREE.COM (which is the renamed version of VTREE.COM). To run the original
DOS version, you'd type:

\DOS\TREE
To run VTREE.COM, which for this example you renamed to TREE.COM, you’d type:
\BIN\TREE

If you were in the root directory, and you hadn’t yet used the PATH command to tell
DOS where to look for executable files, and you typed:

TREE

you wouldn’t run either \DOS\TREE or \BIN\TREE,; all you’d get is a “Bad command
or file name” message. As discussed above, when you type a command like TREE at the
DOS prompt, COMMAND.COM first checks whether it’s an internal command, and
when it discovers it’s not, checks the current directory and then a PATH — a specified
set of directories — for a file by that name with a COM, EXE, or BAT extension. If \DOS
and \BIN aren’t yet included in the path, COMMAND.COM won’t check in those
subdirectories, and won’t run either version of TREE.COM.

You can tell COMMAND.COM to check in both of these subdirectories with the
command:

PATH C:\DOS;C:\BIN
or:
PATH C:\BIN;C:\DOS

The difference between these two is that if the top path is active, DOS will look in the
\DOS subdirectory before it looks in \BIN. In the second example it will examine \BIN
before \DOS. If DOS finds a TREE file ending in COM, EXE, or BAT, it will stop looking
and execute the file. So if the first path is in use, typing TREE will run the DOS version
of TREE. If the second path is in use, DOS will find the renamed version of VTREE and
run it. If you had files called TREE.COM, TREE.EXE, and TREE.BAT in either
subdirectory, DOS would run TREE.COM. It always looks for COM files first, then
EXEs, and finally BATs. But it won’t look for filenames with any other extensions, such
as data files or program overlays. If you have a version of DOS 3.3 or later, you can use

140 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

the APPEND command to mimic the PATH command and find any kind of file. If you’re
using an earlier version, you can purchase a commercial PATH extender like Filepath or
File Facility. But save yourself heartache and upgrade to the most current DOS version
available. ‘

It’s best to include a PATH command like either of the ones above in your startup
"AUTOEXEC.BAT file. And if you’re using a PATH extender or APPEND, add a separate
line in your AUTOEXEC.BAT for it too.

As mentioned above, the SET command can show you the command you entered to
customize your prompt. Typing SET on a line by itself will also display the current path
setting, as will typing PATH by itself. You can always modify your existing path setting
by following the PATH command with the new list of subdirectories, joined together
with semicolons.

A smarter technique for adding path settings is to use environment variables. These
variables weren’t documented until version 3.3, and they don’t work at all in version 3.0.
And you have to make sure you have enough environment space to accommodate these
variables.

The environment is a special area of memory that DOS uses to store important settings
like your current PROMPT setting, what directories your path includes, and where to
look for your main copy of COMMAND.COM. You can also park variables there by
using the SET command, and retrieve them in batch files by wrapping the variable name
in percent signs. So if you wrote a small batch file that included just the lines:

SET COLOR=BLUE
ECHO %COLOR%

the first line of the batch file would insert the string:
COLOR=BLUE

into the environment, and the second line would look in the environment for the value,
replace #COLOR% with BLUE, and display the word:

BLUE

on screen. If you later typed:
SET COLOR=RED

and ran a batch file that included the line:
ECHO %COLOR%

it Qould print:

RED

Hard Disks Made Easy 141
To get rid of the COLOR environment variable, just type:
SET COLOR=

with nothing after the equals sign. At any point you can see all your environment settings
by typing:

SET

at the DOS prompt.

However, DOS sets up a default environment that’s only 160 bytes long, and this space
fills up quickly. You can make it bigger, but the method varies with the DOS version
you’re using. Under DOS 2.0 and 2.1 you can patch COMMAND.COM at address ECF
to represent the number of 16-byte memory paragraphs that will make up your new
environment. (For DOS 2.11 the address is DF3.) DOS 3.0 and 3.1 lets you put a:

SHELL [d:] [path] COMMAND.COM /E:n /P

command in your CONFIG.SYS file, where n is the number of 16-byte paragraphs. For
versions 3.2 and later, use the same SHELL command but specify the actual number of
bytes rather than paragraphs. You can increase the size from the default of 160 bytes up
to 32K in DOS 3.2, 3.3, 4.0, and 5.0, but the maximum size in earlier versions is 62
paragraphs, or 992 bytes.

Once you’ve made sure you have enough environment space, create a small batch file
called ADDPATH.BAT by getting into DOS, typing in the lines below, pressing the Enter
key at the end of each one, and then pressing the F6 key and the Enter key one final time
when you’re all done. Do it right and you’ll get a “1 File(s) copied” message afterwards:

COPY CON ADDPATH.BAT

ECHO OFF

IF %1!==! GOTO OOPS
PATH=%PATH%; %1

GOTO END

:O0PS

ECHO Enter the new directory after %0
ECHO that you want to add to your PATH
:END

To test it out, assuming you don’t already have PATH set, create a simple PATH to your
C:\DOS directory with the command:

PATH=C: \DOS

Then type either PATH or SET to make sure you typed it in properly. To extend the path
so it included C:\BIN, you’d ordinarily have to type:

142 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
PATH=C:\DOS;C:\BIN
But if you have ADDPATH.BAT handy, all you have to do is type:
ADDPATH C:\BIN

Then type SET or PATH again and you’ll see the path setting has indeed been extended.
When the PATH statement is short, this doesn’t save much typing. But when your path
goes all the way across the screen, you’ll appreciate it. It works by using an environment
setting as a variable. The %#PATH®% is a variable that tells DOS “look inside the current
environment setting and substitute, in place of the #PATH% in the batch file, whatever
follows the word PATH=.” The technique also uses what is called a replaceable parameter
. — the %1. When DOS sees this in a batch file, it replaces the %1 with the first word or
string of characters you typed on the command lme immediately following the name of
the batch file.
So if the batch file is called ADDPATH, and at the DOS prompt you typed:

ADDPATH HELLO

it would replace the %1 with HELLO.

The “IF % 1!==! GOTO OOPS” (note the double equal sign) tests to see whether you
typed anything in after the name of the batch file. If you did type something in, like
C:\BIN, DOS replaces the %1 with C:\BIN and turns the test into:

IF C:\BIN!==! GOTO OOPS

Now C:\BIN! is clearly not equal to !, so thé test fails. However, if you entered nothing
after the name of the batch file, % 1 would be equal to nothing, and DOS would turn the
test into:

IF !==1 GOTO OOPS

Sure enough, ! does equal !, so the batch file will jump to the “label” called :OOPS, where
it prints a message providing instructions. (Labels are preceded with colons and don’t
execute.) This effectively jumps around the “PATH=%PATH%;%1” command if you
forgot to enter an additional path extension. DOS will replace the %0 in the line that says
“ECHO Enter the new directory after %0 with the name of the batch file itself. This
way, if you change the name of the batch file from ADDPATH.BAT to something else,
DOS will always display. the current name in the instructions.

If you did enter a new subdirectory that you wanted tacked onto the end of your path,
DOS would concatenate it when it came to the “PATH=%PATH%;%1” line. It would
replace the %PATH% with the current path and the %1 with the new subdirectory you
just typed in. And it would tack on the semwolon DOS uses to separate subdirectories.
If the current path was:

Hard Disks Made Easy 143

PATH C:\DOS
and you typed in:
ADDPATH C:\BIN
you’d end up with:
PATH C:\DOS;C:\BIN
The equal sign sometimes used after PATH is optional; DOS treats it as a space. Typing:
PATH C:\DOS
or.
PATH=C:\DOS

will produce identical results. If you do like to experiment with your path settings, you
can always make it easy to reset everything by typing:

~ PATH > OLDPATH.BAT

at the DOS prompt before you make any changes. This redirects the environment string
into a batch file called OLDPATH.BAT. When you’re done changing the PATH, just

type:
OLDPATH

at the DOS prompt to put things back to normal. Sometimes you may need to add
directories to your PATH setting temporarily, then get rid of the additions when
you’re done. You can adapt the process described above by modifying ADDPATH
slightly:

COPY CON ADDPATH.BAT

ECHO OFF

IF %1!==! GOTO OOPS

SET P1=%PATH$%

PATH=%PATH%; %1

GOTO END

: O0PS

ECHO Enter the new directory after %0
ECHO that you want to add to your PATH
: END

144 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
Then create another called PATHOLD.BAT that restores the original PATH:

ECHO OFF
PATH=%P1%
SET P1=

For instance, if you want to add C:\BIN to your existing PATH temporarily, type:
ADDPATH C:\BIN

just the way you did before. But when you’re done, to restore things the way they were
before you made the addition, just type:

PATHOLD

The new “SET P1=%PATH%” line simply creates a dummy variable called P1 that
stores the contents of the old PATH, before you make any PATH changes.
PATHOLD.BAT then takes the original PATH — stored under the P1 environment
variable — and puts things back the way they were, then gets rid of the dummy P1.

The only problem with this is that you have to single-step your way through. If you
add one directory and later want to get rid of it and add another one, you have to run
PATHOLD before you add the second one. If you don’t, ADDPATH will add the second
new one onto the first.

The DOS RAMdisk

As every power user knows, a RAMdisk is a section of memory that some software has
tricked DOS into treating like an additional physical disk drive. RAMdisks are far faster
than even the fastest hard disks, since they contain no moving parts. The tradeoff, of
course, is that RAMdisks are volatile; all data stored on them vanishes when you turn the
power off or when the current in your wall socket hiccups.

To install the free RAMdisk that comes with later versions of DOS, make sure the
DOS RAMDRIVE.SYS program is in your C:\DOS subdirectory, and include this line
in your CONFIG.SYS file:

DEVICE=C:\DOS\RAMDRIVE.SYS

This command will set up a virtual drive D: with a default 64K of available space. If you
want a larger RAMdisk, you can specify the number of bytes at the end of the command,
plus, in DOS 5.0, the sector size, maximum number of files or directories, and whether
to use extended or expanded memory. For example,

DEVICE=C:\DOS\RAMDRIVE.SYS 360

would set up a drive D: that’s the same size as a standard double-sided floppy. However,
IBM won’t let you DISKCOPY into it. RAMdisk software from other manufacturers,

Hard Disks Made Easy 145

such as AST’s SUPERDRYV, will let you use the DISKCOPY command. IBM’s VDISK
and Microsoft DOS 5.0’'s RAMDRIVE driver will let you create multiple virtual disks,
configure the sector size and number of directory entries, and, in the most recent versions
of DOS, use extended or expanded memory.

Under DOS 4.0 and 5.0, you can install VDISK.SYS or RAMDRIVE.SYS in extended
or expanded memory. Using expanded memory can be a problem on some systems with
proprietary caches that conflict with the DOS BUFFER command. (In DOS 4.0 you need
to specify /X after your BUFFERS command to use VDISK's /X expanded memory
abilities.) A safer way is to put RAMDRIVE into extended memory. To create a 128K
RAMdisk in extended memory, include a line in your CONFIG.SYS file that reads:

DEVICE=C:\DOS\RAMDRIVE.SYS 128 /E

The trick is to figure out which major programs, batch files, and utilities you use
frequently and insert a cascade of commands in your AUTOEXEC.BAT file to copy
those files to the RAMdisk. Then make sure your path includes this new drive. In the
example used above, the path would now look like:

PATH=D: \;C:\DOS;C:\BIN

Putting D:\ first means that the root directory of the RAMdisk is the first place DOS will
look.

It’s smart to put all your batch files except the tiniest ones into a RAMdisk, since batch
files execute one slow line at a time. Watching even a hard disk grind its way through a
medium sized batch file is no fun.

Let’s say you use three programs very often — CHKDSK.COM, a color-setting and
screen-clearing program called C.COM, and BROWSE.COM. Your AUTOEXEC.BAT
file would contain the lines:

COPY C:\CHKDSK.COM D: > NUL
COPY C:\C.COM D: > NUL
COPY C:\BROWSE.COM D:Z.COM > NUL

The > NUL at the end of each line gets rid of the “1 File(s) copied” messages. Notice
that the third line not only copies BROWSE.COM to D: but also renames it to Z.COM.
That’s because Z is a lot easier to type than BROWSE since Z is one letter long and
happens to be at the lower lefthand corner of the keyboard.

Protecting AUTOEXEC.BAT and CONFIG.SYS

Most software packages these days either come with instructions that suggest creating
one or more dedicated subdirectories, or have their own installation programs that do it
automatically.

However, these automatic installers can be downright dangerous. Some replace your
versions of AUTOEXEC.BAT and CONFIG.SYS with their own, when they really ought

146 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

to modify yours rather than trashing them. Others hide files, which makes it difficult to
remove subdirectories.

You can prevent your AUTOEXEC.BAT and CONFIG.SYS files from being
written over by using the TYPE or BROWSE commands or your word processor to
examine the program’s BAT and installation programs. If you see a command that
simply copies that program’s versions of AUTOEXEC.BAT and CONFIG.SYS to
your hard disk, you can use your word processor to adapt your existing files rather
than watch them get trashed.

A smart idea is to maintain a small subdirectory called \BAKUP containing nothing
but your current versions of COMMAND.COM, AUTOEXEC.BAT, and CONFIG.SYS.
Every time you update one of these, copy it to the \BAKUP subdirectory. Then when a
program installs itself destructively you can type:

COPY \BAKUP \
This is shorthand — you could have said:

COPY \BAKUP*.* \
Or, you can log into the root directory and just type:

COPY BAKUP
DOS thinks that when you tell it to perform a task such as copying or deleting and you
specify just the name of the subdirectory, you are asking it to do something to all the files
in the subdirectory. So if you have a \BIN directory and you type:

DEL \BIN
DOS assumes you want to wipe out every file in the subdirectory just as if you had typed:

DEL \BIN*.*
In both cases it will warn you in its quirky way with the message:

Are you sure (Y/N)?
(DOS 4.0 and 5.0 make it clearer by adding a message “All files in directory will be
deleted!™)

Keeping duplicates of your important root directory files in a \BAKUP subdirectory
is also a good idea if you try to get too tricky. While DOS usually pauses to warn you if
you try to delete all the files in a directory, you can sidestep the protection. Execute either

of the commands:

FOR %A IN (*.*) DO DEL %A

Hard Disks Made Easy 147
or:
ECHO Y | DEL *.,*

and DOS will merrily wipe out every last nonhidden file. The syntax for the above FOR
command is correct if you type it in at the DOS prompt (be careful if you try this). But
if you want to use it in a batch file replace both single % signs with double %% signs
(and be even more careful).

An easy way to keep your files safe is to use the ATTRIB command to make them all
read-only so they can’t be deleted, overwritten, or changed. Just type:

ATTRIB *.* +R

Hidden Files

Hidden files can be a real problem with subdirectories. Few users keep the same
subdirectory structure for very long. Most end up cutting and pasting branches of the tree
as they get more sophisticated or desperately short of space, or when they replace
applications packages with newer ones.

The RD command removes subdirectories, but only when they’re empty. If you’ve left
even one file or lower-level subdirectory in them, you won’t be able to expunge the
subdirectory.

Some programs, in spiteful attempts at copy protection, install hidden files that you
can’t see in normal directory searches. If you try to remove a subdirectory that you think
is empty, and you see this message:

Invalid path, not directory,
or directory not empty

first check to see if you’ve left any subdirectories branching off the one you want to get
rid of. If so, you have to move or erase the contents of those lower-level subdirectories
first, then use the RD command to remove them.

If there aren’t any files or lower-level subdirectories, some nasty application has
probably planted a hidden file there. You can check on this by executing the CHKDSK
/V | MORE command, which will show all the files on your disk a screenful at a time,
including the hidden ones. Then use ATTRIB.EXE to unhide the file.

Warning: Some commercial software packages not only hide files but scramble the
arrangement of DOS sectors beneath the hidden file. If at all possible, always try to use
the deinstallation program that came with the software package before using a utility to
reveal the program so you can erase it.

Changing the file attributes to “hidden” or “read-only” will prevent programs from
overwriting them. These utilities use function 43H of INT 21 to first check the existing
attribute byte, and change only the bits that need modification. ORing the existing value
with 1 makes it read-only; ORing it with 2 makes the file hidden. ANDing it with FE

148 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

takes away the read-only attribute; ANDing it with FD unhides the file. This way it leaves
other attributes (system or archive) as they were.

Unfortunately, you can’t use function 43 to change the attribute byte of subdirectories
or volume labels, so this won’t let you meddle with those.

Be careful when hiding files en masse. If you issued a command such as:

FOR %A in (*.*) DO HIDE %A

you’d end up with a whole directory of hidden files. You won’t be able to use a similar
command to unhide them all at once, since DOS won’t see any files to unhide. You’ll
have to unhide all your files individually. The safest thing to do if you hide lots of files
is first create a master file listing all the filenames, and put this master file in another
directory or on another disk. If you’re on drive C: you could use a command like:

DIR > B:C-HIDDEN.LST

Of course, with DOS 5.0, you can use the enhanced features of ATTRIB.EXE to unhide
files en masse rather simply with

ATTRIBU -h *, *

Making all your root directory files hidden may look interesting, but it can confuse
anyone else who tries to work with your system. Making them read-only will prevent
other programs from changing (or deleting) them, but you’ll still see them in normal DIR
searches.

Some awful installation programs change things as they proceed. They may rename a
driver file on the original disk or delete files once they’ve copied them to a hard disk. If
the installation process is interrupted, or if it’s so dumb that it doesn’t know when
something’s gone wrong, you may have trouble reinstalling things later.

Another clever way to prevent having software packages replace or otherwise modify
AUTOEXEC.BAT is to make your AUTOEXEC.BAT tiny and have it run another
start-up batch file with a different name that does all the real work. This way if something
clobbers the file on your disk named AUTOEXEC.BAT, it won’t hurt your real startup
file.

To do this, just put the following two lines in your AUTOEXEC.BAT:

ECHO OFF
SETPATH STARTUP

All this does is execute another batch file called SETPATH.BAT:
SET NCRMPATH=C:\DCS;C:\UTIL;C:\

PATH $%NORMPATH$%
%1

Hard Disks Made Easy 149

SETPATH.BAT sets the path, and then executes the STARTUP.BAT file, since its %1
replaceable parameter refers to the word STARTUP in the last line of the AU-
TOEXEC.BAT file.

The STARTUP.BAT file contains all commands you normally would have placed in
an AUTOEXEC.BAT file:

PROMPT $PSG

PRINT /D:PRN /Q:32

CARDFILE C:\UTIL\CARDFILE.TXT
DOSKEY

CTYPE /MA

SPEEDUP

There are several advantages to this technique:

o The AUTOEXEC.BAT file is simple to recreate if it is destroyed or inadvertently
modified.

® The PATH command is in its own separate batch file, making it easy to change if
directories are added or removed.

e The SETPATH.BAT file can quickly restore the default path if it has been changed.

® By creating a batch file like ADDPATH.BAT:

PATH 3%NORMPATH%; %1

it’s easy to add a new directory to the path temporarily, and then restore it later
with SETPATH.BAT. Don’t try this with buggy DOS 3.0 however.

o If all memory resident programs are removed by utilities such as INSTALL/RE-
MOVE, running STARTUP.BAT restores the memory resident programs as they
were at power-on time.

Another ingenious protection solution is to change COMMAND.COM so it looks for
a file with a name other than AUTOEXEC.BAT. In fact, the first file COMMAND.COM
tries to execute doesn’t even have to end in .BAT.

Subdirectory Navigation

It’s easy to create new subdirectories and move around inside existing ones if you have
the right tools handy and follow a few simple rules.

The first rule is to remember that when you want to move up — toward the root
directory — all you have to do is type:

CDh ..

150 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

(or CD ..) to jump to each successive parent directory. However, when you finally land
in the root directory, you can’t move up any more levels, trying to do so will produce an
“Invalid directory” message.

It is especially easy to back out to the root directory by using the P3 key. If you’re in
a subdirectory five levels deep called:

LEV1\LEV2\LEV3\LEV4\LEV5

(you can tell this by the C:\LEV l\LEV2\LEV3\LEV4\LEV5: prompt thét your PROMPT
$P: command displays) and you want to jump back to the root directory, you can do this
the easy way, by typing: ‘

CD \
or, you can jump upward a level at a time by typing:
CD ..

once and then tapping the F3 key four more times. Each time you do, DOS will repeat
the earlier command, and since that command is CD .."it will bounce you rapidly
rootward.

To move in the other direction, down from the root directory to LEVS, you could of
course simply type:

CD \LEV1\LEV2\LEV3\LEV4\LEV5

However, you can’t type:
CD \LEVS

because that would tell DOS to jump you into a subdirectory called \LEVS that was just
one level down from the root directory. The real name of the \LEVS subdlrectory above
is not just \LEVS; it’s \LEV1\LEV2\LEV3\LEV4\LEVS.

Another way to get from the root directory to there is by using the relative version of
the CD command to bounce you down one level at a time. Note that since DOS keeps
track of each subdirectory by its full pathname rather than by just its partlcular branch
on the tree, you could have a path like:

C:\SHARE\AND\SHARE\ALIKE
since the subdirectory:

C: \SHARE

Hard Disks Made Easy 151
is utterly different from:
C: \SHARE\AND\SHARE

One is a single level down from the root directory, while the other is three levels down.
However, having similar names like this is confusing, and is a bad idea for an important
reason you'll see later.

To go from the root to the lowest branch one level at a time, you’d type:

CD SHARE
CD AND

CD SHARE
CD ALIKE

‘When you’re on one branch of a tree it’s easy to bounce around from one subdirectory
to another on the same level. If you have a tree that looks like this:

FRUIT

APPLE PEACH GRAPE

and you’re currently in \FRUIT\APPLE and you want to jump to \FRUIT\GRAPE, you
can type in: - :

CD ..\GRAPE
since the .. is shorthand for the parent directory (\FRUIT). But jumping from one deep
branch of your subdirectory structure to a completely different branch can be a bad
typist’s nightmare.

If you’re currently logged into:

\FRUIT\PEACH
and you want to jump to:

\PROGS\STAR\VER3\MEMOS\MERGER

you’d normally have to type in:

CD \PROGS\STAR\VER3\MEMOS\MERGER

152 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Awful. But there’s a far easier trick. If your hard disk is set up properly you can simply
type:

MERGER

and DOS will zap you there.

The trick is to create either a slate of small batch files — or one huge batch file — to
do all the switching. If you had a batch file called MERGER.BAT on your hard disk, in
a subdirectory included in your path, with the contents:

CD \PROGS\STAR\VER3\MEMOS\MERGER

typing MERGER would execute that batch file, which would in turn execute the proper
thorny CD command. This is why it’s a good idea to have subdirectories that avoid
confusingly similar names. You can create a new batch file every time you issue an MD
command to create a new subdirectory.

But how do you know what directories are on your disk? Simple. Just redirect the
output of VTREE into a file called VTREE.PIC with the command:

VTREE > VTREE.PIC
and then create a small batch file called V.BAT:

COPY CON V.BAT
BROWSE VTREE.PIC

(If you’re using DOS 4.0 or 5.0, substitute TREE for VTREE.) Press the Enter key after
each line, and when you’re finished, press the F6 function key and then the Enter key
one more time.

Redirect the output of VTREE into VTREE.PIC every time you create a new subdirec-
tory or remove an existing one. Then, assuming BROWSE.COM and V.BAT are in a
subdirectory that you’ve included in your PATH, each time you type:

v

you’ll see an instant graphic representation of your subdirectory tree structure. You can
use the arrow and PgUp/PgDn keys to move around in the tree. Pressing Esc will return
you to DOS where you can switch to the target subdirectory by using one of the
BATMAKR programs described above.

If you have SideKick, an even better adaptation of this method is to use SideKick’s
notepad as a window that displays the VTREE.PIC file as the default. Store VTREE.PIC
in your \BIN subdirectory. Bring up SideKick’s main menu, and type F7 or S for the setup
menu. Type in \BIN\VTREE.PIC as the new Notefile name and press F2 to save this as

Hard Disks Made Easy 153

the default. Then whenever you pop up SideKick and select the notepad, the graphic
representation will jump onto the screen. Press QG to turn on the graphics line characters
that connect the subdirectories.

Once you’ve created a lot of individual switcher files, make sure that whenever you
create a new subdirectory, you also create a batch file (which goes in \BIN or \BAT) that
simply contains the full pathname of the subdirectory with a CD\ prefix. So if you’re
adding a new directory called 1\2\3\4\5, create a batch file called 5.BAT:

cD \1\2\3\4\5

and put this batch file into \BIN or \BAT. Then, just type S to jump directly into your
\1\2\3\4\5 directory.

You’ll obviously have a problem with this if your disk contains two subdirectories
with similar names, such as \ACCOUNT\1990\TAX and \ACCOUNT\1991\TAX. In this
case you’d have to either change one of the names slightly, or forego this technique.

Some users feel this is too wasteful, since each file, no matter how small, can take up
from 2K to 8K. However, this is a small price to pay for ease of tree-hopping.

Finding Files

Users have their own favorite ways to find files buried deep inside a long-forgotten
subdirectory. The FF and WHEREIS programs on one of the accompanying disks can
help. But by executing a simple FINDFILE.BAT batch file you can have DOS do it:

ECHO OFF

IF %1!==! GOTO OOPS

ECHO NOW SEARCHING DIRECTORIES FOR "%1"

CHKDSK /V | FIND "%1" | MORE

GOTO END

:O0PS

ECHO Enter a filespec (or part of one) after %0
: END

FINDFILE exploits the /V feature of CHKDSK.COM. The /V option lists all files in
all subdirectories, but you wouldn’t know this from some of the early DOS manuals,
which describe it with meaningless remarks like saying it will “display a series of

- messages indicating its progress, and provide more detailed information about the errors
it finds.” The more recent editions of the manual are a little clearer.

Adding a /V switch makes it a snap to search for a particular file. FINDFILE pipes the
output of CHKDSK /V through the FIND.EXE and MORE.COM filters, so you have to
have these DOS utilities on the same subdirectory as FINDFILE.BAT or in a directory
your path knows about.

154 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
If you wanted to search for BASICA.COM, for instance, you would simply type:

FINDFILE BASICA

If you typed:
FINDFILE BASIC

the batch file would locate both BASIC.COM and BASICA.COM, and any other
filename with the capital letters BASIC in it. You may also use parts of names. Typing:

FINDFILE ASICA

would find BASICA.COM. This comes in handy if you want to look for files with the
same extensions. Enter:

FINDFILE .COM

and you'll see all your COM files. Remember to enter capital letters only. And don’t put
quotes around the filenames or parts of filenames you want to find — the batch file will
do this for you automatically. FINDFILE won’t display a special message telling you no
matches were found if it comes up empty. But this will be obvious when no matches are
displayed on your screen. The only real problem with this is that FINDFILE.BAT is slow,
especially on a nearly full hard disk, since it has to pipe hundreds or thousands of
filenames through a filter, and create temporary files while it does so. You could redirect
the output of CHKDSK /V into a file and adapt FINDFILE so it looks at the existing list
of filenames instead of having to recreate the list each time. The tradeoff is that such a
list has to be updated frequently, and ends up always being at least a bit out of date.
(You can do the same trick with ATTRIB \filename /S.)

Moving Files

When users normally move a file from one subdirectory to another, they first copy the
file with the COPY command and then use ERASE to delete the original. Or they write
a short batch file to do it:

COPY %1 %2
ERASE %1

The problem with such a batch file is that if an incorrect destination is specified, it can
fail to make the copy but then go ahead and erase the original anyway. You could try the
following MOVEIT.BAT batch file:

ECHO OFF
IF NOT %2! == ! GOTO TEST

Hard Disks Made Easy 155

ECHO You must specify what to move
ECHO and where to move it to, eg:
ECHO %0 CHKDSK.COM \DOS

GOTO END

:TEST

IF NOT EXIST %2\%1 GOTO COPY

ECHO %1 is already in %2

ECHO To prevent overwriting %1, pzress
ECHO Ctrl-Break right now. Otherwise
PAUSE

:COPY

COPY %1 %2\%1>NUL

IF NOT EXIST %2\%1 GOTO ERROR

ERASE %1

GOTO END

: ERROR

ECHO Error in destination specified, or
ECHO the file to be moved is not in
CD

: END

MOVEIT.BAT starts by checking to see if you entered the correct number of param-
eters, and gives you a help message if you didn’t. It then copies the file, using %2\%1 so
you don’t have to spell out the name of the file in both locations (wildcards will work).
However, this limits you a bit, since you have to be in the directory of the file you are
trying to copy. (You could modify it to COPY %1 %2 if you like, which would allow
you to copy files without having to first log into those files’ subdirectory — but you
would have to spell out the name of the file in both places.) Finally, it erases the original
file only if it finds the new one.

It’s smart to confirm that the copy was indeed made before deleting the original. But
versions of DOS earlier than 3.0 will have problems with IF EXIST tests and paths.

MOVEIT.BAT checks to make sure the file isn’t already at the destination subdirectory
before you copy it, which prevents you from accidentally overwriting files. If you see a
message warning you that you’re about to obliterate an existing file, just press Ctrl-Break
and then the Y key to abandon the process. Otherwise, press any key to proceed.

Fine-Tuning Your Hard Disk System

While DOS limits the number of files you can shoehorn into the root directory, and smart
users know to keep their root directories small, the number of files in each of your
subdirectories is limited only by the amount of space on your disk.

But it’s not wise to let your subdirectories get too big, unless you have an easy way to
back them up. ’

The DOS BACKUP and RESTORE commands aren’t very slick, but they’re free and
can split large files up and spread them over several disks. You can back up incrementally,

156 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

by having BACKUP copy only files created or changed after a certain date, or modified
since the last time you backed up. You can tell BACKUP to dig down into your
subdirectory structure and overwrite earlier versions or add a new version along with the
old.

But, BACKUP should format brand new disks automatically. And it changes backed-
up programs slightly so you can’t just run them unless you first RESTORE them. You
have to be careful (and use the /P switch) when you’re restoring files backed up with
earlier DOS versions so you don’t write the wrong system files onto your hard disk. DOS
3.3 and later versions are careful about this; earlier ones weren’t.

Because of all these potential problems, many users keep their subdirectories small
enough so each can be copied onto a single floppy disk. And they’re starting to discover
the terrific DOS 3.2 XCOPY command as a better way to create backups. This obviously
won'’t work with giant files. If you work with large files, you have to either grit your teeth
and use BACKUP, or buy a tape drive or Bernoulli box.

Do get into the habit of backing up regularly. The morning you turn your system on
and hear a sound like a wrench in a blender, you’ll be glad you did.

Backing up just the files you changed or added recently is better than not backing up
at all, but when your hard disk goes south, you’ll have to spend days putting all the little
puzzle pieces back together. It’s a good stopgap measure, but nothing beats making
complete archive copies of the whole disk.

A real advantage to backing up everything at once is that you’ll be able to streamline
your file structure and end up working far faster. The routine process of adding to and
editing down your files each day ends up sowing little file fragments more or less at
random over the surface of your disk.

You should periodically copy all your files to a backup medlum (and get rid of the
duplicates, BAK versions, and dead data in the process), reformat your hard disk, and
then copy everything back. You’ll notice an immediate improvement in speed. When
you do this, put the subdirectories that you path to at the very beginning of your directory
by making sure they’re the first ones you copy to the newly formatted disk.

One final pearl is obvious, but bears repeating. Think before you FORMAT. Even
though the latest versions of DOS make you type in a Y and then press the Enter key
before going ahead and wiping everything out, late at night you may misinterpret the
question or press a Y when you meant N, or have some aberrant and lethal combination
of JOIN, APPEND, and SUBST bubbling away under the surface that steers an innocent
floppy request into a jolt of panic. (And never run RECOVER, unless you’re really
desperate, since this will bollix up everything and turn your hard disk structure and all
the files on it into anonymous mush.)

A few seconds into the formatting process the hard disk FATs and directories get
zeroed out, and any attempt at resurrection is only a best guess. It is possible to bring
much of your data back to life with a utility like Mace’s or Norton’s, especially if you
let them park a copy of your FAT ahead of time. But don’t tempt fate.

If you’re working on something time-sensitive and critically important, stop frequently
while you’re working and make a working copy to a floppy. It is possible to corrupt a
hard disk if you're writing to it and the local power company decides that moment would
be a good one to switch generators. You can set up a batch file to automate the process.

Hard Disks Made Easy 157

Otherwise you might end up spending the rest of the evening patching together little
shards of your work that you’ve fished out of the magnetic murk.

If you notice that performance is degrading, or hear the percussive rhythm of repeated
read retries, run Norton’s disk diagnosis and repair programs. This takes a few minutes,
but can ferret out developing problems and zap out bad sectors better than DOS can. And
if Norton reports grief, back up everything pronto and hie down to your dealer. When
hard disks start whimpering they go downbhill real fast. Hard disk problems never just go
away.

Caveat Emptor

If you don’t yet own a hard disk, remember, no matter what kind of hard drive you’re
considering, don’t buy yourself trouble. Make sure it’s (1) safe, and (2) fast. While no
hard disk is immune to potential disaster, some are more fragile than others. Since most
users back up their data infrequently, a hard disk problem can wipe out weeks of work.

Don’t buy a hard disk unless its heads retract automatically when you turn the power
off. Otherwise, they’ll just drop down to the disk and take a bite out of whatever data’s
there.

And don’t get stuck with a low-speed disk in a high-speed system. While you can
measure hard disk performance many different ways, the most common single gauge is
average access time in milliseconds. The lower the number, the faster the drive. IBM’s
original PC-XT drives crept along at 80 to 115 ms. Today’s best performers are in the
very low teens. You can make things even faster by using buffers or a disk cache, by
setting up your hard disk files and directories properly and keeping things pruned and
orderly, reformatting, then restoring only the files you truly need and making sure they’re
unfragmented.

While other factors can influence speed, average access time is a fairly reliable
performance indicator. Take pains not to buy a hard drive that’s dragging its foot,
especially in a computer that runs at a relatively high clock speed.

Hex Class

OK, this is your chance. If you’re fairly new to all this, or if all you want is a thorough
mastery of the DOS commands, with a double armload of time-saving tricks and
ingenious shortcuts thrown in, turn to the next chapter. Because it’s time to talk about
binary and hex. You can get by just fine without them. But if you really want to make
your system hum, you should know your way around inside. And inside means hex
numbers.

It’s really not all that difficult; 1t s just that dlscussmns of 1s and Os are not inherently
absorbing. Still, being a power user means knowing at least a little about all this so that
later when we talk about things like binary. bit masks (to give you total control over the
shift keys on your keyboard) and hexadecimal addresses (to help you recover lost data)

“you don’t just scratch your head and turn on HBO. So here goes. We'll try to make it as
painless as possible. And we’ll throw-in a few surprises you’ll like.

There’s no such thing as a little bit pregnant, or a little bit dead. You either are or you
aren’t. Life offers few such absolutes. A hundred people look at a sculpture in an art
museum. A third love it. A third hate it. A third look at their watches.

If you watch old Fred Astaire movies you rarely see objects that are all black or all

. white. Some things are close, but if you look carefully you’ll admit that they are 2 percent
grey or 98 percent grey. And most things are closer to the middle of the scale.

High-contrast photographic paper, on the other hand, is designed to produce a stark

‘black-on-white image without any greys whatsoever. You put it into a darkroom enlarger
and project a normal photographic negative with lots of shadows and grey shades onto
it. Anything that’s 49.99 percent grey or lighter doesn’t trigger the silver salts and remains
bright and white; wherever anything is 50 percent grey or darker, however, the paper
turns jet black.

The world is analog. A dot of color on a TV screen is produced by a fast-changmg
wave-shaped signal and can be one of hundreds of thousands of hues and tints. However,
the waveform is subject to all kinds of distortion and deterioration; make a copy ofa TV

159

160 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

show on a VCR and then a copy of the copy, and after a few generations play it back on
the same TV set and you’ll see the colors and the general sharpness are very different
from the original. Each copy chews up the shape of the wave a little; after thousands of
copies all you’d have is hissy static and a demonstration of entropy in action.

Computers are digital. A dot on a computer screen is produced by a hard, cold,
unchanging numeric value. Create a graphics image on a digital computer and make
hundreds of successive copies of it and display the 500th one on the same computer and
it will have the exact same colors as the original. When you copy a file containing the
data that make up the picture, all the mechanisms involved make sure if the value of the
first dot in the file was a 69, it remains a 69. It’s easier to pack more information into an
analog signal. But if you need precision, you have to sacrifice a little quantity for quality.
And when you’re dealing with computers, the integrity of your data is sacrosanct.

The fundamental building block of digital information is a bit (short for binary digit).
One bit can’t store much information by itself; it has a short menu — on or off, 1 or 0,
“high” or “low.” But in the right chip at the right time, a single bit can trigger instructions
that change or move lots of other bits, and when you start stringing millions of them
together incredibly fast, you can get some real work done.

Some people are adept at fudging their way through life, laying down dense fog like
a PT boat. But you can’t fudge a bit. It’s either in one state or the other — one of life’s
few absolutes. Binary numbering makes a lot of sense on a digital computer, a system
made up of hundreds of thousands of interconnected switches that are either on or off.
Simple two-position switches can indicate the status of something (like an “occupied”
sign on a jet), store data (a W or L is what you really want to know about what your local
baseball team did the night before), or execute important decisions (like switching tracks
to send Chicago trains either north to Boston or south to Washington). But bits are most
useful when arranged in groups of eight called bytes. A byte is a convenient way to store
eight related pieces of information, such as the condition of eight different status
indicators deep in the heart of your main chips. It’s also handy for representing a letter,
number, or special character such as 1/2 or the symbol for pi. And while chips deal with
long binary streams of 1s and Os, humans prefer friendlier alphabets.

Your system is built to move information in one, two, or four byte chunks — depending
on whether you’re using an eight-bit, 16-bit, or 32-bit computer — rather than in lots and
lots of individual bits. (Actually, some second-level processors, like those used by newer
display adapter boards, even work with halves of bytes called nibbles, and a base-8
numbering system called octal. If you’re genuinely interested in such sleight-of-hand,
you may want to dabble in octal a little later.)

If you noticed that everything so far seems to be divisible by the number 2, you’re
right. It all leads back to binary. Display adaptors use one, two, four, or eight bits to
specify colors. PCs rely on a mixture of eight and 16. Systems based on Intel’s 80286
chip, can handle 16 from stem to stern. And the latest crop of 80386 and 80486

- powerhouses devour 32 at a single gulp. Users once added extra computer memory in
packages of about 64,000 bytes. Today the number has jumped to roughly sixteen times
that. '

We all like round numbers. Folks who make it to 100 get on the evening news. The
advent of a decade is important enough; we’re on the verge of a new century and

Hex Class 161

millenium, and the celebration will undoubtedly be eye-popping, all because of a few
well-placed zeros.

The computer industry likes round numbers too. But in this business they should really
be called “around” numbers, since the two most common big ones — a K for kilobyte
(around a thousand bytes) and M for megabyte (around a million bytes) are actually 1,024
and 1,048,576, respectively.

Inflation is affecting even these numbers. Huge storage devices (optical disks and
monstrous hard disks) that can salt away a gigabyte (around a billion characters) or two
are appearing on the scene. (Incidentally, the word is pronounced JIG-uh-byte, not
GIG-uh-byte, since it comes from the same root as giant and gigantic rather than
gargantuan.) And chip makers love to see our reaction when they start talking about the
80386/80486’s ability to address a terabyte (around a trillion bytes). (The root for this
word, which means monster, was last in the news as “teratogenic” when it described the
property of the drug thalidomide to deform offspring.)

One kilobyte is 2*10 (2x2x2x2x2x2 X2 x 2 x 2 x 2). One megabyte is 2*20. So
when you see a memory board that holds 64K, it actually can juggle 64 x 1,024, or 65,536
bytes. And when someone tells you a PC’s 8088 chip can directly handle a megabyte of
memory, they mean 1,048,576 rather than just a paltry one million memory locations.
However, it’s far easier to call these amounts Ks and megs, which everyone does anyway.

Working with binary or hex numbers isn’t intrinsically harder than dealing with
decimals; it’s just that we’ve all had so much practice with decimal calculations that we’re
pretty handy with them by now. But play with binary and hex for a while and you’ll pick
it up pretty fast.

Odds are that we use a decimal (base-10) system because human have ten fingers and
toes. So let’s count toes. In decimal it’s easy. But start with 0 instead of 1 to make it a
little less dull.

Voo NPD WD —=O

Ten toes, ten digits. At this point you run out of both. Any more and you have to go to
double-digits.

Counting in binary is easy too. The decimal system has ten digits to play with. When
you run out, you have to start using more than one digit, and you do it by putting a 0 in
the column where the single digits were, and a 1 in the next column.

The binary system has two digits to play with, 0 and 1. When you run out, you also
put a 0 in the column where the single digits were, and a 1 in the next column. Only you

162 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

run out a lot sooner. So you have to keep putting Os in the columns where you just ran
out and 1s in the next column over to the left. Counting toes in binary looks like this:

0 (the first number, just as with decimal)

1 (ran out of single digits; shift over one column)
10

11 (ran out of double-digits; shift again)

100

101

110

111 (that’s all the triple-digits; shift one more time)
1000

1001 (last toe)

People often pad binary numbers out with Os, so the same counting process could just
as easily look like:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

How do you translate a decimal number into binary format? The key is to become
comfortable with the first nine powers of 2. Remember that 2"0 is equal to 1.

2°8 =256
2°7 =128
2°6 =64
2°5=32
2°4 =16
2"3-=8
2"2-4
2"1=2
2°0-=1

Look at the binary version of this chart and you’ll see an interesting pattern that will make
sense in a moment:

2"8 = 100000000
2*7 = 010000000

Hex Class 163

2"6 = 001000000
2*5 = 000100000
2"4 = 000010000
2"3 = 000001000
2*2 = 000000100
2*1 = 000000010
2"0 = 000000001

Now pick a number to translate: 13.

The goal is to see which of the powers of 2 make up this number. Consult the chart
and look for the biggest number that’s equal to or smaller than the one you’ve picked
(13). Obviously the number that fits this description is 8. Since 8 is the fourth one in the
chart, the binary version of 13 will have four binary digits, and the leftmost one will be
a 1 (although you could stick Os on the left, since leading Os don’t mean anything in binary
just as they don’t in decimal; 00000027 is the same in decimal as just plain 27). Then,
since you already considered the 8, get rid of it. Subtract it from 13.

1

After subtracting 8 from 13, you’re left with 5. Look at the chart again. The next number
under 8 is 4. Since you can safely subtract 4 from 5 without ending up with a negative
number, put another 1 in the next position over to the right, and subtract the 4 from 5 to
leave a remainder of 1.

11

Consult the chart again. The next lower number after 4 is 2. But you can’t subtract the 2
from 1 or you’d end up with a negative number. So you’ll put a O in the next position
over.

110_

The last number on the chart is 1. You can subtract 1 from the remainder of 1 and still
not have a negative number, so put a final 1 in the rightmost position.

1101

Decimal 13 is equal to binary 1101.
Another way to look at what you just did is to say 13 ismadeupof1 1 0 1

1 x 23 = 8
1 x 22 = 4
0 x 2%1 0
1 x 270 = 1

Total = 13

164 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Going from binary to decimal is easier. Pick a number: 00110100. Ignore the Os on the
left side (remember, 00000027 in decimal is equal to plain old 27). This leaves a six-digit
binary number, 110100. Turn it on its side and put it next to the lowest six entries on the
chart. Mutiply as indicated, then add up the resuit:

2°5 = 32
2%4 16
23 = 0
22 = 4
21 = 0
20 = 0
Total = 52

OO i O = =
L I T B

You don’t really need the chart. You do need to remember the sequence of 1,2, 4, 8, 16,
32, 64, 128, 256. Then whenever you see a binary number, just count over from the right,
and in your head say “that’s no 1s plus no 2s plus a 4 (subtotal=4) plus no 8s plus a 16
(subtotal 20) plus a 32 (total 52).” It’s easier than it sounds.

Pattern Recognition

‘While your system can deal with 256 different characters, all it’s really doing is handling
256 different numeric values. In one of the only fairly successful attempts to standardize
anything on the PC, IBM adopted (and added to) a character-numbering system called
ASCII (pronounced as-kee, and standing for the American Standard Code for Information
Interchange). In every ASCII file a capital A has a value of decimal 65, a capital B 66, a
lowercase a 97, a lowercase b 98, etc.

Your keyboard lets you type 95 characters directly — 26 uppercase and 26 lowercase
letters, ten digits, a space, and 32 punctuation marks:

IHSB&O* .- 5 <=>2@N*_" {1}~

In addition, your keyboard and computer have to agree on codes for other important
operations such as tabs, backspaces, escapes, carriage returns, line feeds, form feeds
(otherwise known as page breaks), and so on. You can generate these codes by holding
down the Ctrl key and pressing letter keys; to generate a 3 you’d hold down the Ctrl key
and press a C (since Cis the third letter in the alphabet). You can use a Ctrl-C, abbreviated
as “C, to stop many DOS operations in their tracks, just as with Ctrl-ScrollLock.
(However, in IBM BASIC, a “C will act as a carriage return.) A few of the important
operations (some in DOS; some in BASIC) with ASCII codes below 32 are shown in
Figure 5.1.

Hex Class 165

Ctrl Code ASCII Value What it does in DOS and/or BASIC
0 Nul

‘B 2 Jump to previous word

“C 3 Break; carriage return in BASIC
“E 5 Erase to end of line

“F 6 Jump to next word

*G 7 Beep

"H 8 Backspace

‘1 9 Tab

) 10 Line feed

K 11 Home (sometimes)

‘L 12 Form feed
‘M 13 Carriage return

*N 14 End of line

‘P 16 Toggle echo to printer on and off
“Q 17 Restart scrolling in CP/M type operations
‘R 18 Toggle Insert/overtype

“S 19 Toggle scrolling on and off

‘Z 26 End of file

“ 27 Esc

“\ 28 Cursor right

"1 29 Cursor left

~ 30 Cursor up

- 31 Cursor down

Figure 5.1. Control Code Operations

You can fit all the letters of the alphabet, digits, punctuation, and control codes (with
ASCII values lower than 32) into 128 characters. Early seven-bit systems could address
only 128 characters, since 2"7 is 128. IBM added one bit to this system and doubled the
number of characters to 256.

The leftmost side of a number is the high order side and the rightmost side the low
order one. This is obvious; for the decimal number 567, for instance, the 5 stands for how
many hundreds and the 7 for how many ones. Hundreds are higher than ones in any
system, so the 5 is on the high side and 7 on the low side.

Because adding this additional bit meant slapping it onto the leftmost side, ASCII
numbers over 128 — which all have a 1 as the leftmost digit — are sometimes referred
to as high-bit characters.

IBM’s high-bit characters let you use foreign languages, create mathematical formulas,
and draw box-character pictures and borders. IBM also added a few printable symbols
to the ASCII characters with values under 32 (for instance, decimal ASCII character 11
produces the biological male sign and character 12 the female sign).

166 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

BIOS provides many different methods for writing characters. You could use some-
thing like BIOS service hex OE, which treats the screen like a teletype, advancing the
cursor automatically each time it prints a character, and wrapping text down to the next
line when necessary.)

However, this service gives special treatment to four ASCII characters:

decimal 7 — beep

decimal 8 — backspace
decimal 10 — linefeed
decimal 13 — carriage return

If you use it to print these four, you won’t see their character symbols onscreen. Try
to write an ASCII 7 with service OE, for instance, and instead of displaying the small
centered dot character that IBM assigned to a character 7, all you’ll get is a beep.

BIOS services 09 and OA will print the characters IBM assigned to all 256 ASCII
values, including the troublesome four above. All three services, 09, OA, and OE, will
display three ASCII characters as blanks:

® decimal 0 — null
® decimal 32 — space
® decimal 255 — blank

The difference between services 09 and 0OA is that service 09 can change the attribute
as it writes each character, while service OA can’t. But with both of these you have to
advance the cursor yourself, since BIOS won’t do it for you.

The SHOWCHAR.COM program will first use BIOS service 08 to read the attribute
at the current cursor position, and will then use service 06 to clear the screen to that
position. Then it will display all 256 characters in rows of 32.

MOV AH, 8 ; read attribute at cursor

INT 10 ; do it

MOV BH, AH ; move attribute into BH

MOV AX, 0600 ; clear screen :

XOR CX,CX ; starting wth upper lefthand corner
MOV DX, 1849 ; and using whole 25 x 80 screen

INT 10 ; do it

XOR DX,DX ; put cursor in upper left corner
XOR BH, BH ; of page 0

MOV CcX,1 ; just print one character at a time
PUSH AX ; save value of character

MOV AH, 02 ; set cursor position

INT 10 ; do it

POP AX ; restore value of character

Hex Class 167

MOV AH, 0A ; write character to screen

INT 10 ; do it

INC AL ; get ready for next character
ADD DL, 2 ; two columns over

CMP DL, 40 ; 1s cursor at end of row?

JINZ 12F ; no, so skip next routine

INC DH ; otherwise move down a line
XOR DL,DL ; and back to beginning of line
CMP AL,FF ; is it last character?

JNZ 0117 ; no, go back and print next one
RET ; yes, bye

You can create a script file that will produce the program for you. Create a script file
called SHOWCHAR.SCR that contains the following nine lines:

E 0100 B4 08 CD 10 88 E7 B8 00 06 31 C9 BA 49
E 010D 18 CD 10 31 D2 30 FF B9 01 00 50 B4 02
E 011A CD 10 58 B4 0OA CD 10 FE CO 80 C2 02 80
E 0127 FA 40 75 04 FE C6 30 D2 3C FF 75 E4 C3
N SHOWCHAR.COM

RCX

0 = W
'S

Be certain you press the Enter key at the end of each line, especially the last one with
the Q. Then make sure DEBUG.COM version 2.0 or later is handy at the DOS prompt,

type:
DEBUG < SHOWCHAR.SCR

Displaying the ASCII characters in rows of 32 shows that the lowercase alphabet letters
have values that are decimal 32 (hex 20) higher than their uppercase cousins.

You can experiment with this program to change the way it displays characters. For
instance, once you’ve created it, you can type:

DEBUG SHOWCHAR.COM
E 115 DO 07

E 123 EB 0A

N SHOWFULL.COM

W

Q

168 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The basic SHOWCHAR.COM program displays only one of each character at a time.
SHOWFULL.COM will display 2,000 (hex 7D0) characters at a time — a full 25 x 80
screenful. BIOS will flash through all 256 full screens of characters in a few seconds.

Or, to see the difference between services 09 and OA, first use a pure-ASCII word
processor or EDLIN to create the following ADDCOLOR.SCR script file. Be sure to
press the Enter key at the end of each line, especially the last one with the Q:

E 11D 88 C3 B4 09 CD 10 FE CO 80 C2 01 80 FA
E 12A 40 75 04 FE C6 30 D2 3C FF 75 E2 C3

N SHOWCOLR.COM

RCX

36

W

Q
Then, at the DOS prompt, type:
DEBUG SHOWCHAR.COM < ADDCOLOR.SCR

and you’ll end up with a variation of SHOWCHAR.COM called SHOWCOLR.COM
that displays each character using the ASCII value of the character as the attribute. If
you’re using a color monitor, you’ll see all 256 possible attributes.

SHOWCOLR.COM will display four rows of characters, rather than the eight pro-
duced by SHOWCHAR.COM. All four rows will be in color, and because of the BIOS
color numbering system, the foreground colors in the bottom two rows will be blinking.
The four rows will be divided into four chunks of background colors that are each 16
characters wide. Within these chunks, each of the 16 characters will have a different
foreground color. The leftmost eight will appear in normal colors, while the rightmost
eight will appear as high-intensity (bright) colors.

Here’s why:

It’s easiest to see how this works by using the hex value of each attribute. All
attributes can be expressed as two-digit hex numbers. The lefthand and righthand
digits can each range from 0 to F, which yields decimal 256 possible values from 00
through FF.

The lefthand digit represents the background color, and the righthand digit the
foreground color. So on a color system, a number like 71 will produce blue (1) text on a
white (7) background, while 17 will yield white text on a blue background. The hex color
assignments are shown in Figure 5.2.

However, a value like 4E will produce bright yellow text (E) on a red (4) background,
while E4 will produce bright blinking yellow text on a red background. Any value that
has a lefthand digit higher than 7 will blink. So a number like 71 won’t blink, while a
number like 81 will.

Hex Class 169

Value Color Value Color
1 Blue 9 Bright blue
2 Green A Bright green
3 Cyan (Lt Blue) B Bright cyan
4 Red C Bright red
5 Magenta D Bright magenta
6 Brown E Bright yellow
7 ‘White F Bright white

~—— background only

foreground

Figure 5.2. Hex Color Assignments

Any value that has a righthand digit higher than 7 will appear as a high-intensity color.
So a number like 47 will produce a normal, low-intensity color, while 48 will display
something in high-intensity.

When you type something like:

DEBUG SHOWCHAR.COM < ADDCOLOR.SCR

what you’re doing is using the redirection abilities of DOS (versions 2.0 and later) to take
characters in a file and treat them as keystrokes that DEBUG uses to create a file. DEBUG
doesn’t care where its keystrokes are coming from — a live user at the keyboard or a file
that contains keystrokes that the user put there long ago.

Redirecting script files like this makes a lot of sense when you’re using DEBUG to
create files, since it lets you check your typing, and since you can often adapt script files
so DEBUG can create customized variations of programs for you.

To create files using this technique, make sure you use a pure-ASCII word processor,
the DOS EDLIN line editor, or the DOS COPY CON command. If you’re not sure
whether your word processor can produce pure ASCII text (a file composed of just letters
and numbers and punctuation, and not containing anything else), just load it up and type
a paragraph and save it as a short file called TEST. Then exit your word processor and
get into DOS and type:

TYPE TEST

You could also use lowercase letters, by typing:

type test

170 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

since DOS translates all characters into uppercase before trying to do anything serious
with them, except in a few rare examples such as the with ANSL.SYS keyboard and screen
extender that are discussed later.

Either way, if all you see is the text you typed and nothing else, your word processor
should do just fine for creating script files. But if your screen fills with “garbage”
characters that jump around and beep and clear the screen, you’ll have to use another
method. Most word processors have a way to create pure-ASCII files; check your manual
under “text files” or “ASCII” or “DOS files” or “program editing.”

To create the file directly in DOS, make sure you’re at the DOS prompt, and type:

COPY CON SHOWCHAR.SCR

and press the Enter key. The cursor should do nothing except drop down a line and blink
dully at you.

Start typing the script, line by line. Make sure each line is absolutely correct before
you press the Enter key at the end of it; if you make any mistakes use the backspace key
to erase them and then type in the right characters.

Be sure to press the Enter key at the end of each line, especially the last one (with the
lonesome Q).

‘When you’re all done, and you’re sure you’ve pressed the Enter key after the final Q,
the cursor should be directly below the Q. Press the grey F6 function key and then press
the Enter key one last time. When you press the F6 key you’ll see a *Z appear, and then
when you press the final Enter key you’ll see a “1 File(s) copied” message. You’ll then
be back at the DOS prompt again. If you want, type DIR SHOWCHAR.SCR and you
should see the file you just created with a number just under a thousand beside it, and a
date and time. If you don’t, you did something wrong and should start the whole process
over again.

The COPY CON FILENAME (where FILENAME stands for the name of the file you
want to create and not the word “FILENAME?” itself) command tells DOS to take the
information you’re typing at the console (the keyboard and screen) and copy it into a file
with the name you entered after the word CON. Pressing the F6 function key when you’re
all done puts a special character at the end of your file called (surprise) an end-of-file-
marker. This special character has an ASCII value of 26, and there are several other ways
you could put this character there. The easiest is to hold down the Ctrl key and press the
Z key while you’re holding it down. The “Z that shows up on the screen when you do
either is shorthand for Ctrl-Z.

DOS generally stops in its tracks when it sees an end-of-file marker, as do many
commercial software products. So, when creating text files, be careful not to let a stray
*Z wander into your file or DOS will ignore everything that follows.

The only real problem with using the COPY CON technique is that you can’t back up
and correct a line above the one you’re working on. You can fix problems only in the
current line. If you make a mistake and don’t catch it in time, you have to start over, or

Hex Class 171

go in and edit the file later with EDLIN or a real word processor. And if you have one of
those handy, you might as well create the whole file on it.

Anyway, once you've created the SHOWCHAR.SCR script file, locate your supple-
mental DOS disk and look for DEBUG.COM on that disk.

Copy DEBUG.COM onto the disk that has SHOWCHAR.SCR on it. If you’re way
ahead of this discussion and have a hard disk with DEBUG in a subdirectory that you’ve
included in your path, fine. If you don’t understand a word of that last sentence, go back
to the Hard Disk chapter to review the PATH command.

Finally, to create the final program, make sure both SHOWCHAR.SCR and
DEBUG.COM are on the disk you’re currently using, and at the DOS prompt type:

DEBUG < SHOWCHAR.SCR

You’ll see the SHOWCHAR.SCR scroll down your screen. You don’t want to see
anything that says “error.” If you do see any error messages, use the DOS TYPE command
(as mentioned above) to make sure you actually did create a pure ASCII file. If the file
goes by too quickly, you can stop and start it from scrolling by holding down the Ctrl key
and pressing the S key. Also, be sure you left a blank line above RCX;; if you didn’t you’ll
see a string of error warnings.

If your whole system locks up, it’s because you forgot to press the Enter key after the
final Q. Reboot, then go back and retype the SHOWCHAR.SCR file and press the Enter
key twice for good measure at the end. What the “DEBUG < SHOWCHAR.SCR”
command does is take the script file you just created and redirect it into the DEBUG.COM
program. Essentially, it takes the keystrokes that you typed in earlier when you created
the file and feeds them into DEBUG. Those keystrokes contain data and DEBUG
commands to assemble the data into a file called a COM file or command file (one that
you can run in DOS and that ends in .COM). Script files like this are handy, especially
when you create them with a real word processor, because they let you correct previous
mistakes and it’s easy to modify them slightly and create improved versions of the COM
files.

‘When you'’re all done, just be sure you’re looking at a DOS prompt, and type:

SHOWCHAR
and you’ll see every ASCII character.

Chip Logic

Dealing with all the binary 1s and Os is a nuisance. But they really come in handy when
you have to do logical operations.

172 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Why is the ASCII value for A 65 and for @ 97? Look at the bmary representations of
the first few letters of the alphabet:

A 65 1000001 B 66 1000010 C 67 1000011
a 97 1100001 b 98 1100010 ¢ 99 1100011
si:!th Si)llth si)l(th
bit bit bit
2"5) 2*5) 2*5)
=32 =32 =32

The lowercase version of each is identical to the uppercase version, except that in all
cases the sixth binary digit over from the right is a 1 in the lowercase version and a 0 in
the uppercase one.

The easy way to find out the decimal value of a binary bit is to count over from the
right “1,2, 4, 8, 16, 32, 64....” Do this and you’ll reach 32 when you get to the sixth binary
digit. You could also try to remember that the sixth bit over is 2*5, since computer
numbering systems generally start with O rather than 1 and since the rightmost bit is 2*0.
But some users forget, and make the sixth bit 2”6, which is wrong.

Subtract 65 (the value of uppercase A) from 97 (the value of lowercase A) and you’ll
get 32. So you can instantly calculate the value of any capital letter by subtracting decimal
32 from the value of the lowercase letter. And, of course, you could add 32 to the value
of the uppercase letter to obtain the ASCII value of the lowercase letter.

If you wanted to convert every lowercase character in a typical text file to uppercase
you couldn’t just subtract 32 from the ASCII value of every letter, since files contain
mixtures of uppercase and lowercase letters. Subtracting 32 from all the lowercase letters
would indeed yield uppercase ones. But if you did this blindly, you’d also end up
subtracting 32 from the letters that were already uppercase, which would turn them into
something unrecognizable.

Here’s a short sentence, with the decimal ASCII value of each character shown beneath
it:

I L o v e NY
73 76111118 101 78 89

Subtract 32 from each and you get:

) , OVE .9
41 44 79 86 69 46 57

As you can see from the “ABC” and “abc” examples above, subtracting 32 from the
value of a number is the same as turning the sixth bit (2*5) from a 1to 2 0. Sc what you
really want to do is find a way to look at the sixth bit and turn it into a 0 only if it’s
currently a 1.

Hex Class 173

Your computer can do this instantly, by using logical operations. In this case, you
would use the logical AND operation to make letters uppercase, and the logical OR
operation to make them lowercase.

The most useful logical operations are AND, OR, NOT, and XOR. They’re fairly
intuitive, but as with binary numbers, they take some getting used to. Think of them as
miniature legal contracts.

If a contract says you will be paid if you:

write a novel
AND
write greeting cards

obviously you’ll get paid only if you write both. If a contract says you will be paid if you:

write a novel
OR
write greeting cards

you have to write only one of these to get paid (what a choice). If a contract says you will
be paid if you:

do NOT grow crops this year

you’ll fatten your bank account only if your back 40 sit idle.

We all deal with AND, OR, and NOT operations regularly. XOR, which stands for
eXclusive OR, simply flips one binary state to another, but can also add binary numbers
together (see “Chomping at the Bit”). Flipping twice brings you back to the original state.

Computers use XOR operations for all sorts of things. If you XOR a value with itself,
you cancel it out and end up with 0. And if you want to produce graphic animations, you
first XOR one image onto the screen to draw something at a certain location, and then
XOR the same image at the same location again to restore the screen to the way it was
originally. Since the second XOR effectivelv erases the image (by canceling out the
changes), you can move an image across your screen by having XOR repeatedly draw it
and then erase it.

Bit Masks

ANDing any ASCII value with decimal 223 will capitalize lowercase letters and leave
uppercase letters alone. AND works by comparing two values (the example below will
compare one bit at a time) and returning a 1 only when both values are nonzero.

174 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

AND Table
1 AND 1 =1
1 AND 0 =0
0 AND 1 =0
0 AND 0 =0

In binary notation, 223 is 11011111, and this number works as a bit mask. ANDing any
binary number of eight digits or less with it will leave things the way they were in every
position except the sixth over from the right, where it will leave Os alone and change 1s
to Os. This forces the digit in that position to become a 0, which is the same as subtracting
32. But it does this only when there’s a 1 in that position. In other words, it subtracts 32
only when there’s a 32 there to subtract. It’s called a mask because it masks out any
changes except in the one place where we want the change to happen — the 0 in the 2*5
position. .

Since A (decimal 65) is binary 01000001, while a (decimal 97) is binary 01100001,
ANDing these numbers with 11011111 could be represented as:

01000001 (65)
AND 11011111 (223)
01000001 (65)

01100001 (97)
AND 11011111 (223)
01000001 (65)

ANDing either a 0 or a 1 with 1 in effect leaves the value alone, and ANDing both a
0 and a 1 with O in effect turns the value into a 0. The binary number 11011111 forces
the 25 bit — the sixth one from the right — to become a 0 and leaves all the other bits
the way they were. "

Changing a bit from 0 to 1 is often referred to as setting the bit, and changing it from
a 1 to a O as unsetting the bit. The only difference between a lowercase letter and its
capital counterpart is that the 25 bit is set (=1) in the lowercase version. ANDing it with
11011111 unsets the bit, changing it to a 0 and lowering the ASCII value by 32.

To reverse the process and turn capital letters into lowercase ones, use the logical OR
operation to OR a value with 32.

OR Table
1 OR 1 =1
1 OR 0 =1
0 OR 1 =1
0 0 =0

OR

32 equals binary 00100000. Since ORing either a 1 or a 0 with 0 in effect leaves the value
alone, and ORing either a 1 or a 0 with 1 in effect turns the value into a 1, the binary

Hex Class 175

number 00100000 forces the 2*5 bit to become a 1 and leaves all the other bits the way
they were.

This sets the unset 25 bit in an uppercase letter, changing it to a 1 and raising the
ASCII value by 32. But it leaves already set bits just the way they were.

01000001 (65)
OR 00100000 (32)
01100001 (97)

01100001 (97)
OR 00100000 (32)
01100001 (97)

Hex Marks the Spot

Nobody likes dealing in cumbersome eight-bit binary numbers. But our more comfortable
decimal (base-ten) system doesn’t really lend itself to the base-two world of computers.
A base-16 number system does, since every eight-bit binary number can be expressed as
two single-digit base- 16, or hexadecimal, numbers strung together. In fact, it’s easier to
translate binary numbers into hexadecimal and back than to translate binary into decimal
and back. o
Hexadecimal (hex for short) numbering works just like decimal numbering except that
it provides six additional digits. The first ten digits are the same as the ten decimal ones
* you use every day. But you run out of digits after you get to 9. Hex then tacks on the first
six letters of the alphabet. So, you count to 10 in hex like this (decimal values are shown
in parentheses):

0(0)
1(1)
2(2)
33
44
55
6 (6)
7(7)
8®)
&)
A (10)
B(11)
C(12)
D (13)
E(14)
F(15)
10 (16)

176 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

How do you tell a hexadecimal 10 (which is really equal to decimal 16) from a
garden-variety decimal 10? Hex numbers usually end with an H (or an h), or have a &H
(or &h) prefix attached. So,

10h
10H
&H10
&h10

are all the same number.

Programmers often like working with two-digit hex numbers, so they’ll stick zeros
onto the left side. 0D is the same as D; OA the same as A. Scripts often use “,0D,0A” at
the end of the messages to tell the program to insert a carriage return (an OD character)
and a linefeed (an OA character) at the end of the text.

Hex is handy because you can squeeze lots of values into a compact amount of space.
Using decimal numbers takes three digits to write 156 of the ASCII characters (all the
ones greater than 99). But every ASCII character can fit into two hex digits (decimal 255
is the same as hex FF).

Your system comes from the factory containing certain important gut-level tools and
programs already loaded on ROM chips (which will be discussed in the next chapter),
and each generation of these chips has important changes from previous versions. You
can figure out which set of chips is in your system by peeking at a specific memory
location, or address. The address that tells you the date your system ROM was released
is 61440:65525 in decimal, but is FOO0:FFF5 in hex.

To see this date yourself, get into DOS, make sure DEBUG.COM is on your disk, and

type:
DEBUG

You’ll see a (-) at the left edge of your screen; this is DEBUG's prompt the same way
that “OK” is BASIC’s prompt and A> or C> is DOS’s default prompt. Type:

D FOOO:FFF5 L8

and press the Enter key. The date will appear at the right edge of your screen. Then press
Q and then Enter to quit DEBUG and return to DOS.
You could also retrieve the date by plugging the numbers into a short BASIC program:

100 DEF SEG=61440!

110 FOR A=0 TO 7

120 PRINT CHRS (PEEK(65525!+A));
130 NEXT

The hex version of this program doesn’t save much typing, though:

Hex Class 177

100 DEF SEG=&HF000

110 FOR A=0 TO 7

120 PRINT CHRS (PEEK (&HFFF5+A)) ;
130 NEXT

Hex also makes binary translations a dream. For instance, what is the binary equivalent
of FF? Well, that one’s too easy, since it’s equal to 255, and 255 is the highest number
you can make out of 1s and Os, which means it must be made up of all 1s:

11111111

But pick any other hex number: &H3D (61 in decimal notation). Each hex digit stands
for half of an eight-digit binary number. Remember that one binary digit is a bit and that
eight bits make a byte. And that half a byte is called a nibble. (Get it? Byte? Nibble?)

In &H3D, the 3 stands for the lefthand (or high) nibble, and the D for the righthand
(or low) nibble. In binary notation, decimal 3 is 0011, while decimal 13 — which is what
hex D is equal to — is 1101. We figured that out above.

So hex 3D is equal to 00111101. This is easier to see if you put a space in the middle:
0011 1101.

Going from binary to hex is also easy. What’s 10100101? First break it in half: 1010
0101. The left half (or high nibble) is 1010:

1 x 2*3 = 8
0 x 2%2 0
1 x 21 = 2
0 x 2% 0

Total = 10 decimal, or A in hex

The right half (low nibble) is 0101:

0 x 23 = 0
1 x 22 = 4
0 x 21 = 0
1 x 2% 1
Total = 5 decimal, or5 in hex

Therefore, 10100101 is AS in hex, or 165 in decimal. Note that the numbers 1 through 9
are the same in decimal and hex. Most new users get the hang of it pretty quickly, but
they all make a common mistake of putting 10 after 9 in hex, when everyone knows hex
9 is followed by hex A. Don’t worry, you’ll get used to it. It’s not really all that hard to
convert two-digit hex numbers into decimal. First, convert each digit into decimal. From
the above example, A is equal to 10, and 5 is equal to 5. Multiply the value of the left-hand
digit by 16 and add the righthand digit to it:

(10x 16) + 5 = 165.

178 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Converting a decimal number 256 or less to hex is only a little harder. First divide the
number by 16. You’ll probably end up with a whole number quotient and a remainder.
Convert them each to single digit hex numbers. Put the whole number on the left and the
remainder on the right:

165/ 16 = 10 with a remainder of 5
10 = A
5=35

So the hex representation is AS.

Hex is the language of DEBUG. And DEBUG is an incredible power tool. It lets you
rip open the DOS covers and repair, examine, or customize anything. And it makes it
easy to create and customize short assembly language programs like SHOWCHAR.COM
above.

Multiplying and Dividing Hex Numbers

Translating numbers into and out of hex is hard enough, and adding or subtracting them
is no picnic, but multiplying and dividing is out of the question. Lots of books show you
how; we’ll spare you the grief. Actually, we will tell you how: just install a copy of
Borland’s classic SideKick on your system. Even the older version of the software comes
with an ASCII chart, a powerful notepad/clipboard that can lift text off your screen and
move it to another program or store it in a file, and a terrific decimal/hex/binary calculator.
Some programmers even use the WordStar-like notepad as their main program editor.
BASIC makes it a snap to translate most integer values in and out of hex. And it can
simplify working with ASCII values. Type either BASICA or GWBASIC to get the ball
rolling. To have it figure out the decimal value of the hex number 7ABC, just type:

PRINT &H7ABC
and press the Enter key. BASIC will print out:

31420

Unfortunately, since BASIC has to work with both positive and negative integers, the
largest positive integer it can deal with is 32,767 (7FFFH). Tell it to PRINT &H7FFF
and you’ll indeed get 32767 (without the comma). But since BASIC can handle only
65,536 possible integers, it has to rope off the half starting with 32,768 and pretend they’re
negative numbers. So entering:

PRINT &H8000
will get you

-32768

Hex Class 179

Note that while you may use either &H or &h as a prefix, BASIC won’t understand H
or h suffixes on hex numbers. If you tried to type PRINT 7FFFH you’d get:

7 0
since BASIC would think you were asking it to print the value of 7 (which is 7) and then
print the value of the variable FFFH, which would be zero unless you had by chance
assigned it another value previously.
However, if you treat this operation as a calculation, BASIC will oblige with higher
numbers. Enter:
PRINT &H7FFF+1
and BASIC will return:
32768
Try:
PRINT &H7FFF+&H7FFF
and you’ll get:
65534
You can go the other way, from decimal to hex, without such headaches. Type in:
PRINT HEXS$ (64206)
and BASIC will respond with:
FACE
(&HFACE is a valid hex number). You can go all the way up to:
PRINT HEXS (65535)
which will produce:
FFFF
Try anything higher, such as:
PRINT HEX$ (65535+1)

and BASIC will simply print the error message “Overflow.”

180 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

To figure out the ASCII value of any character, nestle it inside parentheses and quotes,
and preface it with ASC. Type:

PRINT ASC("A")
and you’ll get its decimal ASCII value:

65

To convert numbers from 0 to 255 into their respective ASCII characters, put the
decimal ASCII value inside parentheses and preface it with CHR$. Enter:

PRINT CHRS$(65)
and you’ll see:
A

You can also use hex notation when producing ASCII characters. You could have

typed:

PRINT CHRS (&H41)
to produce the same:

A

since hex 41 is equal to decimal 65.

Baut if all you have to do is add or subtract hex numbers, which is usually the case, you
can do it for free by using DEBUG. Just get into DOS, type DEBUG, and at the DEBUG
hyphen (-) prompt, type in the letter H followed by any two hex numbers of four digits
or less, and press the Enter key. DEBUG will print out the sum of your numbers and the
difference.

It might look something like this:

-H FFFF 0001
0000 FFFE

DEBUG reports sums in four digits only, as you can see from the example above, since
FFFFH + 1 equals 10000H, not 0000H. But that doesn’t matter much, because four digits
is plenty for what you’ll have to do with hex.

The Keys to the
Kingdom

Sure, sure. You’re an old hand at the keyboard, and your fingers automatically reach for
the home row when you climb out of bed in the morning. But you may not know all the
PC keyboard’s basic tricks.

First, a quick history: the earliest PC sported an 83-key keyboard that divided the user
community into two camps. Most of us loved it, since it had the best “feel” of any
keyboard ever made. IBM spends a lot of time sticking people in chairs and watching
them work, and all this ergonomic research paid off handsomely.

The few ragtag complainers and malcontents who hated it did have one valid point —
the placement of some of the keys was nonstandard. The Enter key was somewhat small
and too far to the right. The left Shift key was a little far to the left. The whole right side
of it was a bit crowded. And you couldn’t tell what state the Shift keys happened to be
in. :
The original 84-key PC-AT keyboard fixed all these woes, and bcame an instant and
absolute classic. However, IBM didn’t know when to stop, and ended up moving the
function keys from the left side to the top, doing random damage to the Ctrl and Alt keys,
and using a slightly cheaper mechanism to pop the keys up after you press them down.

The subsequent generation of 101/102-key keyboards featured separate number and
cursor pads, stuck on a handful of new keys, and were as wide as your desk. They also
made it difficult to use some software products. For example, millions of WordStar users
depended on having the Ctrl key beside the A key.

-But all the IBM keyboards shared the same glorious feel. Each had exactly the right
amount of “overstrike” so that you had to build up a certain amount of pressure to reach
a trigger point before the key sprang into action. Each clicked on the way down and on

181

182 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

the way up, giving users unparalleled tactile feedback and boosting their morale by
subconsciously making them think they were typing twice as fast. Every key was
bounce-free; pallid plastic clone keyboards commonly stuttered extra characters onto the
screen, but not IBM’s. IBM’s was angled perfectly, and expertly scooped and dished so
that your fingers fit precisely onto the wide keytops. It was also heavy, so that muscular
typing wouldn’t chase it around the desktop.

Some users liked competitors’ keyboards because they were silent. That’s like prefer-
ring beer to vintage champagne because the bottles are easier to open. The IBM keyboard
is so good that it’s almost reason enough to stick with IBM (unless you can’t resist
increased power from a company like Compaq or low price from a mail order vendor).
Using anything else is like kneading gummy marshmallows or typing on a pocket
calculator. '

Users switching from typewriters to computers are often stymied by the welter of extra
PC keys. After all, four separate ones have left arrows on them. Function keys are
intimidating to new users, as are such foreign-looking characters as:

"{H\~ <>

And labels like SysReq, PgDn, and PrtSc can initially confound anyone. However, until
someone comes up with a flawless voice recognition device, IBM’s crisp, solid, elegant
keyboards will remain the best ways to digitize your thoughts and data.

The keys to the kingdom come in four families:

The normal typewriter keys (and their less familiar cousins such as <, >, and |).

The shift and special purpose keys.

The cursor-movement and number-pad keys.

The grey function keys (F1 through F10 on older models, F1 through F12 on newer
ones).

PN

Typewriter Keys

Nothing is really different about these on the PC keyboard except that you get a few extras
thrown in — and some common keys, such as the cents sign, are missing.

This is because computer keyboards are designed to work with the ASCII character
set. As mentioned earlier, IBM adopted (and enhanced) a character-numbering system
called ASCII (American Standard Code for Information Interchange). Deep down,
computers don’t know anything about letters. But they’re terrific at juggling numbers.
So when it has to move an A from one place to another, your computer actually uses the
number 65 to represent the A. Programs in your ROM chips translate these values into
the dot patterns that draw the actual characters on your screen. But to the computer, an
A is always a 65 (uniess it’s a lowercase a, in which case it’s a 97).

You can type in 95 of the ASCII characters shown in Figure 6.1 from your keyboard.
In the chart, the number in each lefthand column is the ASCII value of the character
beside it.

The Keys to the Kingdom 183

*
32

33
34
35
36
37
38
39
40
41
2
43
44
45
46

ASC CHR | ASC. CHR | ASC CHR | ASC CHR | ASC CHR | ASC CHR
(SPC) | 48 0 64 @ 80 P 96 . 112 P
! 49 1 65 A 81 Q 97 a 113 q
" 50 2 66 B 82 R 98 b 114 r
51 3 67 c 83 S 99 c 115 s
$ 52 4 68 D 84 T 100 d 116 t
% 53 5 69 E 85 U 101 e 117 u
& 54 6 70 F 86 \' 102 f 118 v
‘ 55 7 T G 87 w 103 g 119 w
(56 8 72 H 88 X 104 h 120 X
) 57 9 73 I 89 Y 105 i 121 y
* 58 : 74 J 90 z 106 j 122 z
+ 59 ; 75 K 91 [107 k 123 {
, 60 < 76 L 92 \ 108 1 124 |
- 61 - 77 M 93 .] 109 m 125 }
. 62 > 78 N 94 - 110 n 126~
/ 63 ? 79 o) 95 _ 111 o 127 A

47

o " Character 32 is a space, and is generated when you tap the spacebar.
IBM calls character 127 a delta but it’s actually shaped like a small house.

Figure 6.1. ASCII Typewriter Keys

The characters you see onscreen will differ slightly from system to system. Characters
on IBM monochrome screens are made up of lots of dots. Those on EGA displays are
nearly as sharp and clear as monochrome characters. But CGA character sets are crude.
The dot patterns for each monitor are contained on special ROM chips attached to the
respective display adapters. But IBM keeps a set of these CGA patterns in the main system
ROM so it can draw characters when you’re in BASIC graphics screens 1 and 2. The
characters are crude because they’re drawn in a grid eight dots wide and eight dots high
— not very conducive to graceful curves and tricky angles.

You can’t easily look inside your main system ROM but the BASIC ROMPRINT.BAS
program below can (starting at address FOO0:FAGE). It reads the values stored there and
interprets them as light and dark blocks on your screen. The main ROM stores the patterns
for each character as a sequence of eight binary numbers, one per row. ROMPRINT
retrieves the decimal value of each number and translates it into the binary pattern for
each row. It lets you strike actual keys from the keyboard, or enter ASCII values between
0 and 127 from the chart shown in Figure 6.1. If you want to see the dot patterns for the
digits 0-9, enter their ASCII values (0 = 48,1 = 49 ... 9 = 57). If you do type in ASCII

‘numbers, press the Enter key after entering any values with fewer than three digits. When

you’re all done, press the F10 function key to end the program.

184 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

100 ‘ROMPRINT — displays ROM ASCII dot patterns
110 SCREEN 0:COLOR 2,0,0:LOCATE ,,0:KEY OFF:DEFINT A-Z:CLS
120 DEF SEG=0:POKE 1047,PEEK(1047) OR 32:KEY 10,""

130 ’ --- points to ROM; sets up print characters ---
140 DEF SEG=&HFOOO:A$=STRING$(2,219):B$=STRING$(2,176)
150 ’ --- gets ASCII value ---

160 PRINT "Type a key, or enter any number between"

170 PRINT "000 and 127 (press the <F10> key to end): ";

180 IS$=INKEYS$:IF I$="" THEN 180 ELSE IF I$=CHRS$(0)+"D" THEN END
190 IF I$=CHR$(13) THEN IF C$="" THEN D=13:GOTO 240 ELSE 220
200 IF IS$>CHRS$(57) OR IS$S<CHRS (48) THEN D=ASC(I$) :GOTO 240
210 C$=CS+IS$:PRINT IS;:IF LEN(C$)<3 THEN 180

220 IF VAL(C$)>127 THEN C$="":CLS:GOTO 160 ELSE D=VAL(CS)
230 ' --- draws dot pattern row by row ---

240 CLS:FOR E=1 TO 8

250 F=PEEK(&HFA6D+ (8*D) +E)

260 IF F=0 THEN PRINT STRINGS (16,176) :GOTO 300

270 FOR G=7 TO 0 STEP -1

280 IF F<2*"G THEN PRINT BS$; ELSE PRINT AS;:F=F-2°'G

290 NEXT:PRINT

300 NEXT:PRINT:IF D<>11 AND D<>12 THEN PRINT TAB(8);CHRS$ (D) .
310 PRINT:C$="":GOTO 160

The program also displays the actual life-size character beneath the enlarged dot
pattern. It won’t display the whole character set, since the system uses some with values
like 7, 10, 12, and 13 to control the position of the cursor, clear the screen, beep, and
manage other display chores. But ROMPRINT will show you the actual patterns stored
in ROM for every single one.

High-Bit Characters

Display adapters are designed to zap the appropriate character dot patterns onto the screen
very rapidly. BASIC’s graphics modes have to go in and draw text characters a dot at a
time. And inall 1.x and 2.x versions of DOS, users couldn’t put any of the high-bit foreign
language, math, and border-drawing characters (with ASCII values over 127) onto
BASIC graphics screens, since the patterns for these weren’t stored on the system ROM
chips.

But DOS version 3.0 offered a new utility called GRAFTABL.COM that made it
possible to display the high-bit characters. All you had to do was type in GRAFTABL
before loading BASIC and DOS would create a memory-resident lookup table containing
the proper values. GRAFTABL.COM remained the same in versions 3.1 and 3.2, but
when IBM introduced its confounding foreign language features in version 3.3 it made

The Keys to the Kingdom 185

GRAFTABL.COM five times larger to accommodate slight differences in foreign
character sets.

The GRAFPRNT.BAS program below looks inside GRAFTABL.COM, reads the
character patterns into an array, and uses ROMPRINTs binary pattern printer to display
an enlarged version of any ASCII character from 128 through 255. It checks to make sure
you have a proper version handy, and automatically sniffs out whether it’s dealing with
an older GRAFTABL.COM or a fat new one, since the internal structures are different.

100 ' GRAFPRNT — prints GRAFTABL.COM hi-bit ASCII patterns

110 SCREEN 0,0:KEY OFF:COLOR 2,0,0:CLS:DEFINT A-2

120 DEF SEG=0:POKE 1047 ,PEEK(1047) OR 32:DEF SEG:KEY 10,""

130 DIM H(128,8) :M$=STRINGS (2,176) : N$=STRINGS (2,219)

140 ’ --- open GRAFTABL, get version, validate, fill array ---
150 OPEN "GRAFTABL.COM" AS #1 LEN=1:FIELD #1,1 AS A$

160 IF LOF(1)=1169 THEN S=4 ELSE S=48

170 GET #1,1+S:IF ASC(A$)<>120 THEN CLOSE:GOTO 360

180 FOR B=1 TO 128:LOCATE 1,1,0:PRINT 128-B:FOR C=1 TO 8

190 GET #1, (B-1)*8+C+S:H(B,C)=ASC(AS) :NEXT:NEXT:CLOSE:CLS

200 ' --- gets ASCII value ---

210 PRINT "Enter any number between 128 and 255"

220 PRINT "or (press the <F10> key to end): ";

230 I$=INKEYS$:IF I$="" THEN 230 ELSE IF I$=CHR$(0)+"D" THEN END
240 IF I$>CHRS$(57) OR I$<CHRS$ (48) THEN BEEP:GOTO 230

250 C$=C$+IS$:PRINT I$;:IF LEN(CS$)<3 THEN 230

260 IF VAL(C$)<128 OR VAL(C$)>255 THEN C$="":CLS:GOTO 210

270 ' --- draws dot pattern row by row ---

280 CLS:FOR E=1 TO 8

290 F=H(VAL(CS$)-127,E)

300 IF F=0 THEN PRINT STRINGS$(16,176) :GOTO 340

310 FOR G=7 TO 0 STEP -1

320 IF F<2*G THEN PRINT M$; ELSE PRINT NS$;:F=F-2'G

330 NEXT:PRINT

340 NEXT:PRINT:PRINT TAB(8);CHRS (VAL(CS)) : PRINT:CS$="":GOTO 210
350 * --- if correct file is not found ---

360 PRINT "Put DOS 3.0 or later GRAFTABL.COM on disk and restart"

If you want to see the cents sign that’s missing from the IBM keyboard, just run
GRAFPRINT and type in 155. (If your printer can handle it, you can insert this character
into your documents where needed, by using the Alt-key method described below.)

The nonalphanumeric typewriter keys have their own ASCII codes:

® Backspace 8
e Tab 9
e Enter 13

186 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

You can see the characters produced by these three by pressing the actual keys. Or you
could press Ctrl-H to print a backspace, Ctrl-I to print a tab, and Ctrl-M to print a
backspace. (Pressing Ctrl-H means holding down the Ctrl key and pressing the H key.)
In fact, you could also see the lower 26 ASCII characters by running ROMPRINT, and
holding down the Ctrl key while you type the letters of the alphabet.

Why?

Shift and Special Purpose Keys

A typewriter contains just one set of Shift keys, in which both keys do the exact same
thing and are duplicated just to make two-handed typing easier. The PC keyboard
contains three different sets of Shift keys, not just one. Each changes the meaning of an
alphanumeric key just as pressing the A key by itself produces an “a” but pressing it while
holding the Shift key down produces a capital A. To your computer, a and A are totally
different characters with different ASCII codes (although certain programs, such as DOS
and BASIC, automatically translate most lowercase keys to their uppercase versions).

When you type an A, the keyboard sends two special codes to the CPU — the first a
hardware interrupt telling it to wake up because a key has been struck, and the second a
scan code telling it that this particular key happened to be a capital A. Then, when you
lift your finger off the A, the keyboard actually sends a third release code telling the CPU
you’re all done, which comes in handy when you’re holding down a key to repeat a whole
row of the same character, such as an underline.

But your PC needs to keep track of more than just letters, numbers, and punctuation.
It has to know when you want to go to the next line, or the next page, or tab over to the
right — or when to beep to get your attention, or to stop when you press the panic button
because something is going wrong. And the programs you run have to know lots more,
such as when text should be underlined or boldfaced.

To make it easy for you to generate these additional codes, your PC gives you two
extra Shift keys, Ctrl and Alt. All these extra Shift keys really do is change the codes
generated by your normal alphanumeric typewriter keys. It’s up to the program you’re
running to interpret the special codes that you type into meaningful commands. Unfor-
tunately, there’s virtually no standardization of codes today; just about every program
uses its own completely unique set. The code that tells one word processor to shift into
boldfaced text might tell another word processor to change the right margin.

When you type any letter, your computer looks at a special pair of status bytes at
locations 417 and 418 in the very bottom (0000) segment of memory to see if any of the
Shift keys are engaged. Whenever you hold down a Shift key or toggle one on, your
computer “sets” (turns from O to 1) an individual bit in one of these two bytes to keep
track of every shift state in the system. It then resets (turns back to 0) the relevant bits
when you lift your finger or toggle a Shift key off. Later we’ll provide tools that give you
control over these bytes and let you set them in any state you want.

The Keys to the Kingdom 187

If the status bytes show that no Shift keys are active, your computer translates the scan
code sent by the letters on your keyboard into ASCII values somewhere between 97 (an
a) and 122 (a z).

If you're holding down the normal Shift key, your computer knows you want a capital
letter, and translates the keystroke into an ASCII value between 65 (A) and 90 (Z). The
ASCII value for each uppercase letter is the same as the value for the lowercase letter
minus 32, and your computer can instantly turn a lowercase letter into its uppercase
version simply by turning the sixth bit from a 1 to a 0. In the binary representation of the
ASCII code for every lowercase letter, the sixth bit over from the right is always on (set
to 1). In every uppercase letter, this bit is turned off (set to 0). When this bit is on, it adds
a value of 2”6 (or 32) to the ASCII code. Turning the bit on adds 32 and lowercases any
letter; turning it off subtracts 32 and uppercases the letter.

You can verify this by looking at Figure 6.1, which is conveniently arranged in columns
16 entries long. The uppercase letters in columns 3 and 4 are in the same relative positions
as the lowercase versions in columns S and 6. Each is just shifted 32 table entries (or
exactly two columns) over.

When you type in letters while holding down the Ctrl key, your computer generates
codes between 1 (for both A and a) and 26 (for both Z and z). The ASCII value for these
is the same as the value for the corresponding uppercase letter minus 64.

Typing Ctrl-A is the same to your computer as typing Ctrl-a; the Ctrl key takes
precedence over the normal Shift key. (When manuals refer to Ctrl-shifted keys they
always use capital letters, so you’ll see Ctrl-A and Ctrl-B but never Ctrl-a and Ctrl-b.)

If you’re in DOS, typing Ctrl-A will put a “A onscreen. The caret (*) as a prefix is
shorthand for Ctrl. As mentioned earlier, some of the Ctrl-shifted keys trigger DOS or
BASIC operations. You can tell DOS you’re done creating a file by typing Ctrl-Z. You
can make DOS beep by telling it to ECHO a *G. To see this in action, get into DOS, type
the following line, and press the Enter key. To generate the “G, hold down the Ctrl key
and type G while the Ctrl key is down:

ECHO "G
You could also have typed:

COPY CON BEEP
“G"Z

which would have created a file called BEEP. (To create the “G and the “Z, hold down
the Ctrl key and press GZ.) Then type:

TYPE BEEP

and you’d hear the familiar tone. If you try this, erase the BEEP file you just created by
typing ERASE BEEDP, or else you’ll clutter up your disk.

188 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The important DOS Ctrl and alphabetic key combinations are:

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Generally breaks out of whatever you happen to be doing at the
time. Interchangeable most of the time (not in BASIC) with
Ctrl-Break.

Beep (only when used in certain ways).

Same as backspace.

Same as Tab.

Same as Enter.

Acts as a “toggle” to turn a feature on and off that sends whatever
is appearing onscreen simultaneously to your printer. Be sure
your printer is on before trying this. If your system “hangs” and
all you get is an error message, press Ctrl-P again to toggle it off.
Typing in Ctrl-PrtSc is usually the same as typing Ctrl-P, al-
though Ctrl-PrtSc works in BASIC while Ctrl-P doesn’t. This
shouldn’t be confused with Shift-PrtSc, which dumps an image
of whatever is onscreen to your printer one whole screen at a
time.

Freezes and restarts some DOS operations (like scrolling DIR
listings); similar to Ctrl-NumLock except that Ctrl-Numlock
will only suspend things while Ctrl-S will pause and restart them

DOS end-of-file marker.

You can see the characters IBM uses to represent all the ASCII codes below 32 by
running ROMPRINT and typing in Ctrl-A for ASCII character 1, Ctrl-B for character 2,
etc. Figure 6.2 shows the ASCII Ctrl characters. To extend the ASCII chart, shown in
Figure 6.1, attach these two columns to the left side:

The Keys to the Kingdom 189

ASCII Crtl CHR ASCII Ctrl CHR
0 @ 16 AP >
1 AA ® 17 rQ .
2 AB] 18 AR ¢
3 AC v 19 AS n
4 AD 3 20 AT q
5 AE & 21 AU §
6 AR PS 22 Ay -
7 rG . 23 AW ¢
8 AH | 24 X t
9 Al ° 25 AY l
10 AJ 26 AZ -
11 AK § 27 A -
12 AL Q 28 ~N -
13 M) 29 Al I
14 AN) 30 A A
15 A0 2 31 A v

Figure 6.2. ASCII Ctrl Characters

Some of the characters in Figure 6.2 may look a little strange. The ** means Ctrl-caret
and the “_ means Ctrl-underline, which look odd, but don’t worry, since you’ll never
really have to use them. The *[represents ASCII character 27, or Esc, and you definitely
will have lots of reasons to use this one. It plays a critical role in issuing escape codes or
escape sequences that can put your printer through its paces or help send DOS commands
to set screen colors or redefine keys using ANSL.SYS.

The * @ (ASCII character 0) is a null that your system uses to identify plain old function
keys, function keys you press while holding down Shift keys (Shift, Ctrl, Alt), or various
keys you press while holding down the Alt key (such as Alt-A, Alt-5, or Alt-=). Some
programs, especially communications software, insert nulls as placeholders in data files,
which can play havoc with noncomprehending applications like old-fashioned word
processors.

As mentioned above, the Ctrl key has a special role when used with some of the
nonalphabetic keys:

Same as Ctrl-P; toggles simultaneous printing to screen and
Ctrl PtrSc | printer.

*

Nearly the same as Ctrl-S; suspends some DOS operations (but
Ctrl Num | another key has to restart them).

190 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Nearly the same as Ctrl-C; breaks or stops many DOS opera-

Ctrl if;'ol? tions. Stops BASIC operations while Ctrl-C won’t.
C.

Performs “warm” reboot that restarts system but
Ctrl Alt Del bypasses time-consuming diagnostic tests. Hold
Ctrl and Alt down first and then press Del.

interchangeable in DOS, but only Ctrl-PrtSc will echo what’s on the screen to the printer;
Ctrl-NumLock will pause the display but Ctrl-S won’t, and Ctrl-Break will stop BASIC
in its tracks but Ctrl-C won’t.

However, BASIC throws in a few Ctrl-key gifts of its own. Ctrl-Home clears the
screen, Ctrl-left arrow (or Ctrl-B) moves the cursor to the previous word, Ctrl-right arrow
(or Ctrl-F) moves the cursor to the next word, and Ctrl-End (or Ctrl-E) erases to the end
of the current line. Ctrl-K moves the cursor to the home position at the screen’s upper
left corner, Ctrl-L clears the screen (just like Ctrl-Home), Ctrl-N moves the cursor to the
end of the current line (like the End key), Ctrl-G really does beep, Ctrl-R toggles between
insert and overwrite modes, and Ctrl-[simulates an Esc. The odd quartet of Ctrl-\, Ctrl-],
Ctrl-caret, and Ctrl-underline move the cursor right, left, up, and down, respectively.

Both Shift keys work exactly alike, although your computer can tell whether you’ve
pressed the left or right one. Game designers often use the different Shift keys to perform
different tasks, such as triggering left or right flippers in pinball games. Each Shift key
doesn’t do much more than flip the case of letters. It turns lowercase letters into uppercase
ones, just like the Shift on a typewriter. It also works backwards when the CapsLock key
is toggled on, so that uppercase keys turn into their lowercase cousins.

The Shift key also temporarily reverses the state of the cursor/number pad. The
NumLock toggle is normally off so the pad works in cursor mode when you first boot up
(although IBM turned it back on when it delivered the 101-key wide-load keyboard, since
it assumed everyone would use the number pad for numbers and the independent cursor
pad'to move the cursor). Pressing the Shift key switches the state of the cursor/number
pad for as long as you hold it down, so that if NumLock is toggled on, pressing Shift-8
will move the cursor up a line rather than putting an 8 onscreen. Dedicated spreadsheet
users can take advantage of this so they don’t have to keep toggling the NumLock back
and forth to move the cursor between numeric entries.

And of course, the reverse is also true — holding down the Shift key while the cursor
pad is in cursor mode will let you type in numbers without having to change the state of
the pad. This is especially handy on machines that don’t have shift indicator lights, since
it lets users stay in one mode all the time and use the Shift key only when they have to
switch temporarily to the other mode and back. .

Shift does have one special trick up its sleeve. You can use it to imake hard copies on
your printer of whatever text happens to be on your screen, simply by pressing Shift-
PrtSc. This is referred to as a screen dump. The dump will show only the current screen;

The Keys to the Kingdom 191

if you want to take every single line on your screen and “echo” it simultaneously to your
printer, use Ctrl-PrtSc or Ctrl-P instead. (While Ctrl-P will toggle simultaneous printing,
all Shift-P will do is print a capital S on your screen.)

The problem with Shift-PrtSc is that if you trigger it inadvertently it will either waste
a sheet of paper if your printer is currently turned on and online (connected to your PC
and ready to receive characters), or freeze your system if the printer is either turned off
or offline. If this happens, the easiest thing to do is turn the printer on, let it print the screen
dump, and then turn it off. If you don’t have a printer connected, you may have to wait
for the system to time out since it will give up and unfreeze the system after a good long
wait.

It’s fairly simple to deactivate the screen dump feature, since a screen dump is an
interrupt (INT 5). The first thing such an interrupt does when triggered is look in the
Interrupt Vector Table to find the address of the actual dumping program. You could
poke around in the table and change the address to something harmless, but this would
disable the feature the whole time your system was running, unless you went back and
restored it. A better way is to use the utility we provide, which puts a message on your
screen after you press Shift-PrtSc and asks if you really want to go ahead or if you just
pressed the keys by mistake. If you did press them accidentally, the utility will go away
and give you back control of your system before it has a chance to lock up.

Screen dumps don’t always work. Text screens often contain high-bit ASCII border
and box-drawing characters that many printers don’t understand. While your screen may
display a very fancy menu box with shadows on two sides giving it a classy 3-D effect,
dumping the image to your printer may produce an ugly mess. And true graphics images
often send printers into fits. If you want to dump unusual characters or fancy graphics
images to your IBM-compatible printer, load the memory-resident DOS GRAPHICS
utility first (simply by typing GRAPHICS at the DOS prompt). Then type Shift-PrtSc. If
you don’t have an official IBM printer, this may not work. Some printer manufacturers
who persist in using nonstandard codes may supply their own graphics screen dump
programs. And just about every non-IBM Shift-PrtSc graphics dump will have little white
horizontal stripes on it, since IBMs official graphics resolution is — surprise — different
from most other manufacturers’.

Temporarily reverses whatever shift state the keyboard is in. Normally, all
Shift this does is turn lowercase letters into capital letters. But if CapsLock is on
and everything you’re typing is capitalized, holding either Shift key down
lets you type a few lowercase letters. Even better, it flips the state of the
cursor/number pad, to let you move the cursor while in numeric mode or
enter numbers while in cursor mode.

Prints a screen dump — a copy of whatever is currently on the
Shift PrtSc | screen. If you want a graphics image printed, you have to execute
* the external DOS GRAPHICS command first, and hope when
your salesman sold you that “IBM compatible” printer he wasn’t
just blowing smoke.

192 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The Alt key doesn’t really do much on its own, but team it up with the number pad
and you get a powerful tool. About the only thing the Alt key does, in fact, is provide a
shorthand way of writing and editing BASIC programs. When you’re using the BASIC
editor, instead of having to type SCREEN, you can just press Alt-S and the word SCREEN
will pop onto the screen. BASIC supplies Alt-key shortcuts for every letter of the alphabet
except J, Q, Y, and Z. But not too many programmers really use these. Figure 6.3 shows
the Alt-key combinations that can be used in BASIC.

Alt-A AUTO Alt-M MOTOR
Alt-B BSAVE Alt-N NEXT
Alt-C COLOR - Alt-O OPEN
Alt-D DELETE - Alt-P PRINT
Alt-E ELSE Alt-R RUN
Alt-F FOR Alt-S SCREEN
Alt-G GOTO Alt-T THEN
Alt-H HEX$ - Alt-U USING
Alt-1 INPUT Alt-V VAL
AltK KEY Alt-W WIDTH
Alt-L LOCATE Alt-X XOR

Note: No Alt-key combinations for J,Q,Y,Z

Figure 6.3. BASIC Alt-Key Shortcuts

Although these shortcuts are currently built into IBM hardware, they’re really out of
date. The MOTOR command, for instance, is used only to start and stop tape cassette
operation, and the mechanism for this was discontinued years ago. But the command
remains. (Actually, early BASIC programmers found a legitimate use for this command.
All it really did was turn a mechanical switch called a solenoid on or off, and programmers
found that by repeatedly and rapidly turning it on and then off, they could generate a
motorboat sound.)

The Alt key’s real magic is in generating ASCII characters. By holding down the Alt
key, typing in a decimal ASCII value on the number pad, and then releasing the Alt key,
you can make any character appear at the cursor except one — a null, or ASCII character
0. Null identifies shifted key combinations or nonalphanumeric keys such as Home, End,
or F1. (IBM claims you can generate this null character by typing in Alt-2, but that doesn’t
work. However, pressing the F7 function key in DOS will generate an ASCII 0 and put

- a * @ onscreen; if you’re using the DOS COPY CON technique to create a small file, just
tap F7 to insert a null.) This technique works only with the number pad. Holding down
the Alt key and typing the numbers on the top-row typewriter keys just won’t do it.

The Alt-number pad technique is extremely useful for creating fancy borders, boxes,
math formulas, foreign language characters, and anything else you can construct out of

The Keys to the Kingdom 193

the high-bit ASCII characters — those with values greater than 127. It’s also handy for
exercising the ASCII characters with very low values — less than 32.

Want to see a smiling face in DOS? Just type ECHO and a space, hold down the Alt
key, type 1 (or 2), release the Alt key, and press the Enter key. Then have a nice day. You
could have also typed Ctrl-A in place of Alt-1, or Ctrl-B instead of Alt-2, to generate the
face character. It’s easy to remember that A is the first letter of the alphabet, B the second,
C the third, and Z the 26th. But quick — which letter do you hold down for V? It’s far
easier to type Alt-22.

And while you can use the Ctrl-key combinations as well as the Alt- key ones for very
low characters, once you get past Z, you're strictly in Alt territory.

To generate little boxes in DOS, type the two sets of keystrokes that follow. An
instruction like ALT-201 means:

1. Hold down the Alt key.
2. Type 201 on the number pad, not the top row.
3. Release the Alt key.

An “Enter” means press the Enter key, “space” means tap the spacebar, and “F6” means
lean on the grey F6 function key.

For a small single-line box For a small double-line box:
COPY CON SINGLE COPY CON DOUBLE
Enter Enter

ALT-218 ALT-201

ALT-196 ALT-205

ALT-196 ALT-205

ALT-191 ALT-187

Entex Enter

ALT-179 ALT-186

space space

space space

ALT-179 ALT-186

Enter Enter

ALT-192 ALT-200

ALT-196 ALT-205

ALT-196 ALT-205

ALT-217 ALT-188

Enterx Enter

Fé6 Fé6

Enter Enter

When you’re done, type:

TYPE SINGLE

194 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
for a single-line box, and
TYPE DOUBLE

for a double-line box.
The boxes look like this:

-

Once you have the basic box parts — the four corners, the horizontal line, and the
vertical line — created, you can work on the files with your word processor and use the
block copy feature to expand it and change its shape. Some word processors may be
confused by the high ASCII values, however.

You can combine single and double-line boxes in four possible ways. The ASCII
values you need to know to draw these are as follows:

Single horizontal, single vertical:

218 196 194 191

r - T 1
£ 179 | | 179
195 | 197- 4+ { 180
L — 1 1

192 196 193 217
Double horizontal, double vertical:

201 205 203 187

IF = r i)
186 | | 186
204 |t 206- 3 4 185

200 205 202 188
Single horizontal, double vertical:

214 196 210 183

w - T T
186 | | 186
199 |t 215- 4 j 182
L - i i

di
211 196 208 189

The Keys to the Kingdom 195
Double horizontal, single vertical:

213 205 209 184

F = 7 1
179 | | 179
198 k 216- 4 181

L = L 4

212 205 207 190

You can also use the high-bit solid and shaded characters to draw pictures onscreen.
You may want to use the GRAFPRNT.BAS program to look at these in more detail. IBM
provides a kit of eight:

219 solid box
178 75% grey
177 50% grey
176 25% grey
220 bottom half
223 top half
221 left half
222 right half

These may not seem like a flexible enough arsenal, but with a little ingenuity you can
use these and other high-bit characters to draw charts, tables, graphs, and even animated
pictures.

You use the Alt key in BASIC instead of the usual CHR$(n) notation. If you wanted
to print a capital A you could tell BASIC:

PRINT CHRS$ (65)
Or you could say:
PRINT "A"

The same is true with high-bit characters. Just type in PRINT and the left quotation mark,
use the Alt-number pad technique to generate the character you want, and then type a
closing quotation mark. It’s all the same to BASIC. But even if you never want to touch
a line of BASIC, the Alt key can be very useful, especially if you keep sensitive files on
your disks.

One of the very best uses of the Alt key is in adding a special kind of blank character
in your filenames that can prevent casual users who don’t know the trick from gaining
access to your sensitive files.

196 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

If you keep a file on your disk that you don’t want anyone to see, you can do several
things to keep it out of harm’s way:

Lock your system whenever you walk away from it for even a few seconds.

Hide the file from normal directory searches.

Hide the subdirectory in which the file is stored.

Give the file an incomprehensible name such as LVX_1TQY or an innocent one like

DIAGNOST.PRG.

5. If your applications software can handle it (some can’t), put a Cirl-Z DOS end-of-file
marker as the first character in the file, to prevent casual snoops from using the DOS
TYPE command to view the contents.

6. Slap (mostly) invisible character on the end of it that most users won’t figure out.

PON -

Actually, there’s only one way to keep your data safe, and that’s to maintain it on
removable media such as floppy disks or Bernoulli cartridges, and keep these locked up.
(To edit or consult such secret files, security-conscious users frequently copy them from
floppies to their hard disks and then put them back on floppies when they’re done. Then
they erase the sensitive files from their hard disk. Programs like the Norton Utilities make
it easy for someone to come along and “unerase” these files. But Norton also provides a
utility called WIPEFILE that can totally obliterate any traces of your secret data. If you
do use a program like WIPEFILE, be sure to check your hard disk for all erased files,
since many applications create temporary work files without your knowledge that remain
hidden on your disk. These can be just as dangerous in the wrong hands as the originals.)

Trick #6 above is easy. To try it, create a dummy file called DUMMY.BAT by typing
the program below and pressing the Enter key at the end of each line. Press the F6 function
key where it says <F6>, and then press the Enter key again at the very end. Note — don’t
actually enter the @ sign shown in the filename. In place of the @ after the word
DUMMY, enter Alt-255 by holding down the Alt key, typing 255 on your number pad,
and then releasing the Alt key. What looks like a space will appear above the cursor. Then
continue typing the letters .BAT that follow this character.

COPY CON DUMMY@.BAT
ECHO OFF
ECHO Most users couldn’t get this far
<F6>
Verify that the file is on your disk by typing:
DIR DUM*, *

and you’ll see something like:

DUMMY BAT 49 9-08-90 10:59p

The Keys to the Kingdom 197

Since this is a batch file, you should be able to execute it simply by typing the part of the
filename before the BAT extension. But if you type just:

DUMMY
all you’ll get is an error message that says:
Bad command or filename

This is because the name of the file isn’t DUMMY.BAT,; it’'s DUMMY @.BAT, where
the @ represents the ASCII 255 blank character. Now press the F3 key, which will dredge
up the last command you typed, and put the letters DUMMY at the DOS prompt — but
don’t press the Enter key yet. Instead, use the Alt-key trick to type in the Alt-255
character, and then press the Enter key. You should see:

ECHO OFF
Most users couldn’t get this far

Remember, this filename has six characters before the BAT extension, not five. The sixth
is ASCII character 255, which is a blank. It may be annoying to have to use the Alt-255
technique every time you want to do anything with the file, but it will keep the honest
people from snooping into it.

Unscrupulous users will always find a way. They may know the Alt-key trick. If they
don’t, they’ll realize something is fishy when they try the DOS TYPE command:

TYPE DUMMY.BAT

and nothing happens. If they’re smart, they’ll know another way to display the contents
of files. All they have to do is type:

COPY DUM*.* CON /B

This command tells DOS to display the full contents every file beginning with the letters
DUM. Adding a /B at the end gets around the trick of putting a Ctrl-Z as the first character
of the file.

This trick works fairly well with directory listings, since DOS puts spaces between the
left half of the filename and its extension rather than a period. But if you copied a file
that had an Alt-255 character in its filename, DOS would tip its hand. If this file were the
only one on your disk that started with the letters DUM, and you typed:

COPY DUM*.,* ZUM*, 6 *

198 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
DOS would print:

DUMMY .BAT
1 File(s) copied

which would reveal the extra blank character before the period. Still, it will keep casual
users from causing problems.

If you already know what subdirectories are, you might want to use this Alt-255 trick
the next time you create one. (If you don’t, refer to Chapter 3, and then come back here
and try this.) When you type MD (or MKDIR) to create a subdirectory, add an Alt-255
to the end of the subdirectory name just as you did with the DUMMY filename above.
Once you’ve created it, you won’t be able to log into it, or remove it, or do anything to
it unless you tack on the Alt-255. The only problem with this is that if you change your
DOS prompt (with a command like $P:) the blank space will look odd. If you created a
subdirectory called C:\DOS* (again, where the * represents an Alt-255), and your prompt
was indeed $P:, when you logged into it you’d see:

c:\Dos

Still, casual users would think the blank was a space, and wouldn’t be able to log into
the subdirectory unless they knew how to generate an ALT-255.

Holding down the Alt key and typing an ASCII code
Alt on the number pad, and then releasing the Alt key
‘produces an ASCII character for that code, here an
upside down ;| for ASCII character 173.

1 7 3
End | | Home PgDn

You don’t have to type in all three numbers; Alt-1 works just like Alt-001. And if you
type more than three numbers, the PC first does a mod 256 operation on the it (converts
it to an integer between 0 and 255). One interesting note about the Alt key — if you press
it and the Ctrl key and either Shift key at the same time, the PC gives the Alt key priority,
and then Ctrl. It works alphabetically.

While you can’t use the top row numbers to generate Alt-key ASCII codes, they’ll
work just as well as the number pad when it comes to entering numbers in most
applications. But numbers aren’t the only characters that you can enter in different ways.

Cursor Movement and Number Pad Keys

Your keyboard sports two pluses and two minuses, as well as two periods and two
asterisks. This redundancy makes sense, since IBM had to keep users happy who were
accustomed to typewriter layouts, while appealing to green eyeshade types who use

The Keys to the Kingdom 199

adding machine keypads all day long. IBM’s wide-body keyboard goes even further in
this direction.

One thing that confuses legions of new users are the four keys with arrows on them
pointing left. These do four very different things:

|Enter —

—
—

4

Backspace — moves the cursor left one character at a time, erasing characters
as it plows through them.

Enter — tells DOS (and most applications) to process the line you just typed.

Tab — moves the cursor a preset number of spaces. DOS tabs only to the
right, but some applications let you use Shift-Tab to move to previous tab

stops.

Left Arrow (or Cursor Left) — moves the cursor left, like the backspace, but
nondestructively, sliding under characters without erasing.

But these aren’t the only potentially troublesome pairs or trios of keys.

L ! 1
1 End
) 0 0]
0 Ins
| ?
\

New users have to learn that they can’t type a
lowercase L when they want to enter the digit 1.
Some typewriter keyboards don’t have 1s on them,
since “ell” and 1 are so similiar. But to a computer,
these are totally different classes of characters that
it treats in two distinct ways. And the PC even
provides two keys to enter the digit 1.

Similarly, the digit O is not a capital O. Since these
are often hard to distinguish on some systems, expe-
rienced users put a slash through zeros whether
entered from the top row or the number pad.

Everybody uses slashes, in fractions, in dates, or in
constructions like either/or. But unless you’ve spent
much time with integer division or with DOS sub-
directories, you probably haven’t had to use a back-
slash much. Don’t worry, you will.

200 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

PriSc * X In school, we learned to use an x as a multiplication
- 8 operator. Your computer prefers an asterisk (*). In
fact, it insists on it. Either * key will do.

” Many computer operations let you substitute a sin-
‘ . gle quote (*) for a double quote () and vice versa
(although there are times when this won’t work).
The ‘ is a grave accent, and is definitely not a
quotation mark. Although you may get away with
using it in a word processor as a single left quote, if
your computer is expecting a quotation mark of
some sort and sees an accent, it will balk.

The underline isn’t actually much longer than the
hyphen or minus sign, unless you look at it very
carefully. Of course, it’s down at the bottom of the
line, so you can’t miss it. But is its lowercase version
a hyphen or a minus? It doesn’t really matter, since
it’s usually interchangeable with the grey minus

key.
5 Similarly, is a period different from a decimal point?
D‘el Not when you type it in using either of these two
: Kkeys.
+ + Isn’t there a song about these two? “You must
- remember thus, a plus is just a plus...“ Here, that’s
very true.

The funny thing is that when most new users first get their hands on a PC keyboard, they
complain about all the extra keys. Once they master the new keyboards, if they ever have
to use a typewriter again they end up echoing Ronald Reagan’s line “where’s the rest of
me?”

The NumLock key — which toggles the cursor pad between its numeric and cursor-
moving states — is the source of much user consternation. Somehow it always seems to
wriggle itself into the opposite state from the one you want. If you’re trying to move your
cursor up the screen, for instance, you may end up with a row of 888888s instead, since
Up Arrow and 8 share the same key.

It’s possible to set the state of a Shift Lock key more or less permanently, and then run
a short program that disables it for as long as you want. A second program is for users
who don’t ever enter numbers on the cursor pad and causes the PC to beep if NumLock
is set wrong. A third program can change any shift state with a single command. But most

The Keys to the Kingdom 201

Bit: 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
!
' | Right Shift
Left Shift
Ctrl
Alt
ScrollLock
NumLock
CapsLock
Insert
PC If bit If bit 6th Line Replacement for
Shift Bit is set is set ShiftKey Script
Key to1l to 0 turns on turns off
Insert 7 on off OR AL,80 AND AL,7F
CapsLock 6 on off OR AL 40 AND AL,BF
NumLock 5 on off OR AL,20 AND AL,DF
ScrollLock 4 on off OR AL,10 AND AL,EF
Alt 3 down up OR AL,08 AND AL F7
Ctrl 2 down up OR AL,04 AND AL,FB
Left Shift 1 down up OR AL,02 AND AL,FD
Right Shift 0 down up OR AL,01 AND AL,FE

Figure 6.4. Keyboard Status Control Bytes at Address 0000:0417

users want the flexibility to shift it back and forth, and they don’t need any extra beeps.
If you want to take our word for this, and skip the slightly technical explanation that
follows, jump ahead in this chapter right now to the section on freezing your display.

Since IBM’s 101/102-key keyboard provides a number pad and a separate cursor pad,
it designed the keyboard to start operating with the number pad already in numeric mode.
Some users hate this. If you’re among them, you can create a tiny program that will reset
the NumLock state for you. You can add the name of this tiny file to your AUTO-
EXEC.BAT program to do the resetting right after you boot up. Figure 6.4 shows you
how.

The PC keeps track of the state of each Shift key by setting (turning to 1) and unsetting
(turning to 0) individual bits in the Keyboard Status Control Byte at address 0000:0417
in RAM. It’s easy to adapt an all-purpose assembly language program to set or unset any
of these Shift keys. The basic framework is a file called SHIFTKEY .SCR:

202 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

N UNAMEIT.COM <— 1. REPLACE THE FILENAME.
A

MOV DX, 0040

MOV DS, DX

MOV AL, [0017]

AND AL,DF <— 2. CHANGE THIS LINE.

MOV [0017],AL

INT 20

RCX

0 = 1

Use a word processor to create the basic SHIFTKEY.SCR, starting with the
N UNAMEIT.COM line and ending with the Q. Be sure to leave the blank line above
the RCX, and press the Enter key after each line, especially the last line.

Then, to create a particular assembly language file to set one of the Shift keys the way
you want it, all you have to do is:

1. Make a copy of the SHIFTKEY.SCR file and call it WORKFILE.SCR, by typing:
COPY SHIFTKEY.SCR WORKFILE.SCR

2. Change the UNAMEIT.COM in the top line to reflect what you’re going to use the
program for. If you want to set the CapsLock key on, you might pick a name like
CAPSON.COM. If you want to set the NumLock key off, choose a name like
NUMOFF.COM.

3. Here’s the only slightly tricky part. Replace the entire sixth line — the one that now
says

AND AL,DF

with a line from Figure 6.4. If you look at the two righthand columns in the chart,
you’ll see that the AND AL,DF turns NumLock off (if this is what you want, leave
it alone). If you want to do something like turn the CapsLock on, however, you’d
change it to

OR AL, 40

4. Then save this WORKFILE.SCR file with the changes you just made, and put it on
the same disk as DEBUG.COM version 2.0 or later. To create the file, type:

DEBUG < WORKFILE.SCR

The Keys to the Kingdom 203

Obviously, this isn’t much use in changing the status of a key like Altor Ctrl. But these
individual files are very useful for toggling the shift locks on your keyboard the exact
way you want just as if you manually leaned on them yourself. You can put these in batch
files that first set the appropriate shift state and then load your favorite commercial
software, so the program comes up with all the shifts properly set and ready to go.

The assembly language utilities that you create this way all use the same technique.
First they load the segment (0040) and the offset (0017) addresses. As mentioned earlier,
you can express just about every address in many different ways. The address 0040:0017
is the same as 0000:0417, which is the same as absolute address 417. IBM calls the byte
at this address the Keyboard Status Control Byte, or the Status Byte, and you’ll often
hear this important location referred to as the byte at address 417.

The utility then looks up the value at this address, and puts it into a workspace called
a register. It performs a logical bit-mask operation on this value, forcing one particular
bit to turn on or off, and then moves the newly changed value back to its old 417 address.

All a bit mask does is turn a single specified bit on (so it’s a 1) or off (so it’s a 0) while
making sure the other seven bits in the byte aren’t disturbed. The logical operation process
itself is interesting since it has to be smart enough to switch the state of a bit when the
bit is set incorrectly, but leave the state of the bit alone if it’s already set properly. (Bit
masks are explained in detail in the previous chapter.)

Remember that either Shift key will temporarily switch the state of the cursor/number
pad. Soif you’re entering a series of numbers with NumLock set on, and you see a mistake
and want to move the cursor up a few rows, just hold down either the left or right Shift
and tap the Up Arrow key a few times. When you’re done, release the Shift and you’re
back in numeric mode. And this works just as well the other way around.

But be careful. If NumLock is on and you’re entering figures into the number pad, and
you decide to hold down the Shift key to move the cursor, don’t type in a period, since
a shifted period is the same as a tap of the Delete key and something will vanish.

Incidentally, you can perform several bit mask operations at once. If you want to turn
CapsLock and NumLock on at the same time, just add the two hex numbers in the OR
column.

CapsLock OR AL,40
+ NumLock OR AL,20
Both OR AL,60

(Remember that these are hex numbers. Adding 40 + 20 equals 60 both in decimal and
hexadecimal notation. But adding 80 + 20 equals A0 in hex.)

Figuring out the combination AND numbers to turn shift states off isn’t really all that
hard. If you’ll notice, the numbers in the AND column are just hex FF minus the numbers
in the OR column. If OR AL,60 turns both the CapsLock and NumLock on, you can
figure out which values will turn them off when used with a logical AND:

FF
- 60
9F

204 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

So to turn CapsLock and NumLock off with the same command, use:

AND AL, 9F
Cril Num And of course you freeze DOS displays in mid-scroll by pressing
Lock Ctrl-NumLock. But to restart things you have to press a letter or
number key. Ctrl-S is a better bet because the two keys are close

together and because you can unfreeze the paused display just
by pressing Ctrl-S again.

Freezing the Display

“Now hold on a minute,” you might say, “let me get this straight. If I want to freeze my
display while it’s scrolling I have to hold down the Ctrl key and press NumLock? The
key right next to NumLock on most systems is ScrollLock, but it doesn’t seem to have
anything to do with scrolling. You mean IBM named one key ScrollLock but didn’t give
it any connection with scrolling, and then went ahead and assigned a key the power to
stop scrolling, but called it NumLock? Does IBM make up this stuff as it goes along?”

Well, you said it, we didn’t.

To make matters worse, written below the ScrollLock label almost as an afterthought,
and invisible in poor light, is the word “Break.” Now ask yourself this: If you’re new at
this, and someone’s just spent a pile of money on a system that’s taken you and an installer
a week to get working, and you already have a deadline staring you in the face, are you
going to let any of your fingers even close to a key named Break? Especially a key that’s
somehow supposed to lock scrolling but doesn’t do anything of the sort?

If you think about it for a second or two you’ll realize that a panic button key isn’t such
a bad idea, since it’s so easy for a computer to start running madly off in the opposite
direction, and you need a device to get its attention again. But when your system is
cranking madly away processing something you don’t want it to, or scrolling through a
long list that suddenly reveals the items you were searching for, the last thing you want
to have to do is grope for two different keys. Imagine if a huge stamping press had a
two-part red emergency stop button. If OSHA ever bought a PC they’d have the guy who
designed the Break feature making little rocks out of big ones.

But remember, IBM provides an easier way to hit the brakes, with Ctrl-C, even through
Ctrl-C and Ctrl-ScrollLock aren’t exactly the same. The one thing they both may do is

~put a “C on the screen if they manage to bring a process to its knees. Why didn’t IBM
use the far more mnemonic Ctrl-B to trigger this? They thought Ctrl-C was easy to
remember, since by the time you find the two proper keys to press you’re screaming
“Come on already, break!”

The worst thing about having to grope bhndly for Ctrl-ScrollLock or Ctrl-NumLock is
that if your fingers slip a bit you may end up pressing Ctrl-PrtSc, which may indeed stop
everything in its tracks as your system tries to send output to a printer that’s turned off.

Break isn’t just for emergencies. Some programs, like the current versions of EDLIN
distributed along with DOS, are so primitive that they make you use Ctrl-ScrollLock to
stop normal editing commands. Give us a break.

The Keys to the Kingdom 205

Pawing at Ctrl-ScrollLock or Ctrl-break won’t always stop what you're doing. Some
programs use these key combinations to trigger their own commands. Typing Ctrl-C in
WordStar is the same as pressing the PgDn key. And if you press Ctrl-ScrollLock all
WordStar 3.3 will do is put a

(Vpéwen?

on your screen.
Programmers can write software using a variety of keyboard-reading techniques that
explicitly check or refrain from checking to see whether the user pressed Ctrl-C. DOS
checks to see whether a user typed Ctrl-C only during standard input/output such as
accepting keystrokes or displaying a file using the TYPE command, and when it’s in
control of printing or communications. But version 2.0 let users add the command:

SET BREAK=ON

to their CONFIG.SYS system configuration file, which forces DOS to check for this
combination of keystrokes more frequently. However, forcing DOS to do anything
usually slows it down a bit, and increased break-checking is no exception.

You can turn the extra break-checking on and off at the DOS prompt. Just type BREAK
ON to enable the additional checks and (surprise) BREAK OFF to disable them. Typing
just BREAK by itself will report the current ON or OFF status.

Mostly interchangeable with Ctrl-C, and both stop or “break out”

Crl Seroll of DOS operations most of the time.

Lock

Secroll Used alone, this key exercises the finger muscles only.

Lock

CapsLock

New users often gripe that the CapsLock key doesn’t work properly. On typewriters it
usually hunkers down a quarter inch or so and stays there to let you know it’s set. Early
PCs offered a feature to let you know as well. It was called looking at the screen to see
whether everything you were typing was iN tHE wRONG sTATE.

The AT and subsequent systems changed all this, by providing status lights to display
the current state of the CapsLock, NumLock, and ScrollLock shifts. For some inexplica-
ble reason, IBM left these off some of its later keyboards, even though the spaces for
them were clearly visible. And with enough fancy fingerwork, you can knock these status
lights out of synch, so they blink on when they should be off and vice versa. We’ll explain
how to reset them later.

The other complaint most often voiced by novices is that CapsLock doesn’t shift
“uppercase” punctuation marks properly. Toggle the CapsLock on and press the comma
key expecting to see its upstairs < sign, or type the top row 1 when you want a ! and all

206 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Esc

you get is the unshifted version of each. Presumably IBM either felt the downstairs keys
were more important, or thought that the only keys the CapsLock should adjust were the
ones with just one character stamped on them — the alphabetic keys. Any key with two
characters on it needs a tap on the Shift key to produce its upper version.

The Esc key is another (smaller scale) panic-button. In DOS, it stops what you’re typing,
prints a backslash, drops the cursor down to the next line, and gives you a chance to start
over. It won’t give you back your DOS prompt though, because it figured if you wanted
to do that you’d pound on Ctrl-C. Instead, it assumes you interrupted your earlier
command and want to try entering it again. _

In most commercial applications, Esc steps you backwards through a succession of
hierarchical menus or commands, or cancels operations. It’s one of the few conventions
adopted by a large number of program designers; the only other one is that F1 will
summon some sort of help screen. If you’re ever using a new application and the manual
isn’t handy or isn’t indexed (hard to believe but true) or was written by the programmer
and not a professional manual writer, and you’re stuck, try drumming on the Esc key until
you land in a familiar place.

ASCII character 27, generated by the Esc key, wakes up certain printers and screens.
When you print a page all you’re really doing is sending a stream of characters out the
back of your system and down a cable to another set of processors in another hardware
box. These other processors watch the data go by and convert it into printed characters
by moving the printer’s motors, gears, or mirrors, But they also watch for special control
or escape codes that trigger the printer’s processor to change the current configuration.

Commands like these can tell your printer to use larger or smaller characters, change
paper trays or ribbon colors, adjust spacing measurements, shift to different type fonts,
even print sideways (in landscape mode rather than portrait — these terms were
borrowed from the art world where portraits are generally taller than they are wide and
landscapes the other way around).

Escape sequences can also tell DOS you’re trying to send it a special ANSL.SYS
command. Few users take advantage of ANSI (which stands for the American National
Standards Institute and is pronounced ANN-see), since its commands are nasty to deal
with and don’t work all the time. When everything is properly set, they can turn drabs
screens into lush, colorful ones. But if you’re not expecting an ANSI file brimming with
escape characters and left brackets, and you try to do anything with it, you end up with
a mess.

DOS screens are usually a dull grey on black, and work only one line at a time. And
even if you’ve set your screen colors using a smallutility like any of the ones we provide
later, as soon as you type CLS to clear the screen, DOS jumps back to grey on black. The
ANSI screen commands can position your DOS cursor anywhere you want it and set any
character to any color. And the colors stick, so that CLS simply erases characters but
doesn’t meddle with any colors you’ve chosen.-

You can also use the ANSI codes to redefine and add primitive macro features to your
keyboard. And you can get at much of its magic through the underused DOS PROMPT
command.

The Keys to the Kingdom 207

Function Keys

Function keys (F1 through F10 on older systems, F1 through F12 on newer ones) fall
neatly into two categories — underused and overused. Some software, like WordPerfect,
makes such extensive use of the these keys that it can be hard to remember whether to
press F8, Ctrl-F8, Shift-F8, or Alt-F8 to get something done. Other software, like DOS,
makes such feeble use of function keys that a few keys remain unassigned and most that
are assigned remain unpopular with users.

Actually, function keys can be helpful in two ways. They can compress lots of
hard-to-remember or tricky-to-type keystrokes onto one single key. And they can act as
dedicated command keys so that pressing F1 brings up a help screen, orstriking F9 jumps
you to the beginning of a file and F10 to the end.

DOS uses the first seven function keys, F1 through F7, to make life a little easier at
the keyboard. One key, F3, is indeed a terrific tool. The others are occasionally handy.
(BASIC gives function keys far more intrinsic power.) You can harness ANSI’s redefi-
nition abilities to make function keys more useful, but few users bother. Most either don’t
use function keys much, or else purchase a full-fledged keyboard macro package like
ProKey or SuperKey to redefine keys.

The majority of DOS’s built-in function keys let you re-execute the previous DOS
command you just entered, either exactly as you entered it earlier, or with changes. DOS
puts all the keystrokes you type for each command into a template. If you typed in:

DIR
the template would contain just the letters D, I, and R. If you typed:
COPY C:\DOS\UTILITY*.PRG B:\BACKUP\DOS\PROGS *.PBK /V

that whole long string of characters from the intial COPY to the final /V would be in the
template. The ability to re-execute commands isn’t such a big deal when all you're doing
is typing DIR repeatedly. But even then, it’s easier to press one key than three, and when
you're dealing with long and thorny commands this can be an absolute blessing.

Some of the examples below use the same sample template, and assume you are logged
onto drive C:

COPY A:ABCD B:WXYZ

Both of these take one key at a time from the
previous command and copy it to the current com-
mand. So if you had finished executing the sample
COPY command shown here, and were back again
at the DOS prompt, the first time you press either of
these keys, you’d see:

F1 or

208 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
Press either key once again and the screen would look like:
(0]
Press either one of these seven more times and you’d see:
COPY A:AB
So if you wanted to repeat the previous command, you could simply hold down the F1
or right-arrow key until DOS displayed the entire previous template. If you then press

the Enter key, DOS would execute this command just as if you had typed it in. But there’s
a far easier way than dredging up all the keystrokes one at a time.

One tap on F3 zaps the last command entered back onscreen. This is one of
the best things the designers of DOS ever did. Since users frequently find
themselves repeating DOS commands, and since many commands involve
hard-to-type combinations of slashes, backslashes, colons, and hierglyphic
filenames, F3 is a genuine boon.

F3

Even better, you can use these keys to “fill out” the rest of a command. Here’s a good
example: Once you copy critical files, you may want to check the validity of the copies
by using the COMP command to compare them to the originals. Both COPY and COMP
are four letters long, and both share the same basic syntax. So once you type in:

COPY A:ABCD B:WXYZ
and press the Enter key to make the copies, you can simply type in:
COMP

and then press the F3 key. DOS will fill in the rest of the template for you, supplying
drives and filenames of both the original files and the copies:

COMP A:ABCD B:WXYZ

You may have to edit the command slightly. If you used a /V suffix, or switch, at the
end of the original COPY command to verify the accuracy of your copies, you’ll have to
delete it from the COMP command. But this is simple; just backspace it away. (Inciden-
tally, adding a /V to verify the copying process — which is the same as giving DOS a
VERIFY ON command — doesn’t compare the two files byte by byte. Instead, it simply
makes sure that DOS can read the appropriate sectors that contain the copy of your file,
and then does a CRC check — a crude test for errors that catches flagrant mistakes but
can be fooled. To compare two files more precisely, use the limited PC-DOS COMP or

the better MS-DOS FC commands.)

The Keys to the Kingdom 209

Pressing F3 to COMP a file after you COPY it isn’t really necessary unless your drives
are acting up and generating error messages. But it doesn’t hurt, especially when you’re
copying a vitally important file from a RAMdisk or hard disk to a single backup floppy.
We’ve had lots of trouble with IBM’s awful 1.2 megabyte floppy drives, where COPY
/V bubbles blithely along without reporting any errors but COMP catches them by the
fistful.

F1/right arrow and F3 can also turn a:

DISKCOPY A: B:
command into a:

DISKCOMP A: B:
with a few simple keystrokes. Just tap F1 six times, type in MP to replace the final two
PY characters of DISKCOPY, and then press F3. (You really shouldn’t use DISKCOPY

to back up your files, for reasons we’ll get to later.) But again, DOS provides an easier
way.

plus any The first six letters of DISKCOPY and DISKCOMP
F2 char- are identical. You can have DOS copy those six
acter letters from the old template into the new one by
entering F2 and the seventh letter (in this case, the
P in DISKCOPY). Typing F2 and the P would
produce:
C>DISKCO

You could then type MP and then press F3 to finish changing the DISKCOPY A: B: into
a DISKCOMP A: B:. v

Typing F2 and then a character will look inside the template created by the previous
command and copy everything up to (but not including) that character onto the screen.
In the unlikely event that you want to do the reverse — copy everything after a specific
character — DOS will happily oblige.

SWEEP.COM, a program on one of the accompanying disks, lets you execute
commands in all the subdirectories on your disk. You can see all the backup files that
end with a .BAK in all of your subdirectories, by typing:

SWEEP DIR *.BAK
While this will display the backup files in every subdirectory, you might want to focus
on the ones in the subdirectory you’re currently working in (you can be in only one

subdirectory at a time). You could re-enter the command:

DIR *.BAK

210 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

but DOS provides a slightly easier way.

plus an Just type F4 and then D, and DOS will skip over all
y the characters up to the D in the word DIR. However,
F4 char- s :
acter you won’t see anything onscreen. But then press F3
and DOS will put the rest of the previous command
onscreen, from the D onward. The F4 key works like
the F2 key in reverse.

So, if the previous command was:
SWEEP DIR *.BAK

and you typed F4, then D, then F3, you’d see:
DIR *.BAK

The F2 and F4 keys will always jump over or to the first occurrence of the character
you specify. If you want to jump over or to a second or third occurrence of that character
you can repeat the command a second or third time. But this gets confusing, especially
when you’re working with F4 and can’t see what you’re doing. Few users rely on the F2
key, and virtually nobody uses F4.

If you’re trying any of the above tricks and you get hopelessly lost or confused, you
can always press Ctrl-ScrollLock or Ctrl-C to abort, and start again on the next line.
However, if you want to make some corrections in the current line, and keep working on
it, you can do so.

Pressing F5 replaces the old template from the previous command with the
new one you’re working on. You can then continue to edit this new one, using
the F1, F2, F3, and F4 keys. This is another fairly useless and unpopular
function key.

F5

While DOS provides the F1 through F5 keys to edit the command line template, it
tosses in two more simple tools.

When you create files in DOS you have to tell it when you’re done. You do this by
adding an end-of-file marker as the very last character. This special character is a Ctrl-Z,
with an ASCII value of 26 — easy to remember since Z is the 26th letter of the alphabet.
You can generate this character using three different techniques. First, you could hold
down the Ctrl key and press Z. Second, you could hold down the Alt key, type 26 on the
number pad (not the top row number keys), and then release the Alt key. Or third, you
could simply press F6. Each will put a *Z onscreen and an end-of-file marker (which may
show up under certain circumstances as a small right-pointing arrow) in your file.

Pressing F6 isn’t much more efficient than typing Ctrl-Z. But it’s there, and lots of
users are accustomed to ending files by pressing F6 and then the Enter key.

The Keys to the Kingdom 211

Puts an ASCII character 26 (Ctrl-Z end-of-file marker) onto the screen at the
F6 current cursor position.

The only other function key that does anything at all is F7, which sticks a null — with
an ASCII value of 0 — onto the screen at the current cursor position. Pressing F7 prints
a * @ and can generate a CHR$(0) if you need one. You probably won’t. But if you do,
be glad F7 is there, since this null character is the only one you can’t create using the
Alt-key-plus-number-pad technique.

Puts an ASCII character 0 (null) onto the screen at the current cursor position.
F7

Several other keys can help you edit in DOS:

Pressing the Esc key cancels whatever you’re doing, prints a backslash (Y),
Esc and drops the cursor down one line without disturbing the contents of the old
template. You can often get a similar interrupted result by pounding on
Ctrl-ScrollLock or Ctrl-C.

Pressing the Ins key lets you insert characters at the cursor position without
Ins wiping out any characters in the template. DOS is normally in overstrike or
overwrite mode, which means that if you put the cursor in the middle of a
word and start typing, DOS will obliterate the old characters with any new
ones you type. The Ins key will tell DOS to go into insert mode, which pushes
existing text to the right as you type in new characters.

You’ll find yourself using the Ins key often. If you were currently logged into drive
C: and you tried to execute the example mentioned earlier:

COPY A:ABCD B:WXYZ
but you forgot the A: before ABCD, you’d end up with:
COPY ABCD B:WXYZ

This would tell DOS to copy the file ABCD from your current drive (which in this case
would be C:) to drive B: and rename it WXYZ. What you really wanted to do however
was copy the ABCD file on drive A:, but you forgot to specify the A:. If DOS found a
file on drive C: called ABCD it would copy C:ABCD to B: and rename it during the
process. But if DOS couldn’t find it (which was probably the case) it would print an error
message. To fix the command, you’d either lean on the F1 or the right arrow key to read
the:

212 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

COPY

out of the old template, or you’d press F2 A, which would do the same thing a little faster.
Then, press Ins to put DOS into insert mode and type A:

COPY A:

and finally, press F3 to put the rest of the old template onscreen:

COPY A:ABCD B:WXYZ

Del simply deletes keys from the template one by one. If you spelled COPY
Del COPPY, you’d just position the cursor on one of the Ps and press Del to erase
it. You need to use the Del key when dealing with characters inside words.
(COP Y isn’t the same thing as COPY.) The Del key lets you close up the
word and get rid of the extra space.

However, if the letter you have to erase happens to be at the beginning or end of a
word, you can usually just press the space bar to get rid of it, since DOS interprets one
space the same way it treats many continuous spaces. So:

C> COPY A:ABCD B:WXYZ

will do the same thing as the original example. If you spelled COPY mistakenly as
COPYY, you could simply position the cursor on the second Y and press the spacebar.

If you realize you’ve made a typing mistake while you’re working on the same line,
you could either press F35 to replace the old template with the new one, and then move
to the offending character and write over it, or you could backspace to the mistake, correct
it, and then re-enter the rest of the command. The left arrow key will do the same thing.
Both backspace “destructively” since they erase everything as they move.

or 4 Erases characters and moves the cursor to the left.

——

Of all the DOS function keys, the best is clearly F3. You’ll find yourself using it all
day long. One of the handiest F3 tricks lets you verify wildcard deletions. If you’re
working on a corporate contest, and have a lot of old files on your disk like CON-
TEST.RUL, CONTEST.TXT, CORP.LOG, and CORP.TXT, and you want to delete
them all with the command:

DEL CO*.*

The Keys to the Kingdom 213

you’d better be careful, since this command would also erase files such as COM-
MAND.COM and COMP.COM. To see what files you would erase with such a wildcard
command, first type:

DIR CO*.*
If all you see is something like:
CONTEST RUL 1920 8-17-90 8:00p
CONTEST TXT 26624 9-08-90 3:07p
CORP LOG 3968 9-12-90 9:03p
CORP TXT 7552 8-21-90 1:02p
Then just type:
DEL

and press the F3 key, which will add the remaining characters from the previous template:
DEL CO*.*

However, if you see files like COMMAND.COM in the directory listing, you can avoid
potential trouble by making the DEL command more specific. In this case you might
want to try it in two stages, first:

DEL CON*, *
and then:
DEL COR* ., *

But even then it doesn’t hurt to try DIR CON*.* and DIR COR*.* first and then use F3
when you’re satisfied you won’t erase any unexpected files.

F2 can be a real lifesaver as well. Whenever you tell DOS about a disk drive you have
to use a colon. Unfortunately, the colon is a shifted character, and it’s common when
typing rapidly or working late to press the lowercase semicolon instead. If you end up
with a command such as:

COPY A;ABCD B:WXYZ

DOS will become confused, since it treats a semicolon like a space (tabs, equals signs,
and commas are also turned into delimiters that work like spaces). It will think that you’re
trying to copy a file called A on your current drive and rename it to ABCD in the process.

214 DOS Power Tools, 2nd Edition, Revised for DOS 5.0
But it won’t understand the B:WXYZ and will print an “Invalid number of parameters”
message.
To fix this, simply press F2 and then a semicolon, which will put a: -

COPY A

onscreen. Then type a colon and press F3 and the command will be ready to go.
Figure 6.5 summarizes the keys that will execute certain DOS functions.

Key DOS Function

F1' Copies characters one by one from old template to new
F2 Copies up to specified character from old template

F3 Copies all remaining characters from old template

F4 Skips up to specified character from old template
FS** Replaces old template with existing one

F6 Generates ASCII 26 end-of-file marker (*Z)

F7 Generates ASCII 0 null (* @)

Esc Interrupts and cancels changes in current line

Ins Switches DOS from overwrite mode into Insert mode
Del e Erases character at cursor and skips over it in template
Bksp Erases one character to the left

" Sameas right arrow key
x%
wxySame as Ctrl-Z

Same as left arrow key

Figure 6.5. Keys that Produce Selected DOS Functions.

Assuming that you’re logged onto drive C: and that the previous command was COPY
A:ABCD B:WXYZ, here’s what you can do with function keys:

Pressing Produces

F1 C

F2+W COPY A:ABCD B:

F3 COPY A:ABCD B:-WXYZ
F4+W+F3 WXYZ

If you then press F5, DOS would replace the old COPY A:ABCD B:WXYZ template
with these.

The Keys to the Kingdom 215

New Keyboard Tricks

IBM started letting users program their keyboards with the first AT. By issuing a few
simple BASIC commands you can experiment with IBM’s programmable keyboards to
see how they work, or to customize the key action.

To change the keyboard’s LED shift-lock indicators, just issue an OUT &H60,&HED
(the SET/RESET LEDS command), and follow this immediately with an OUT &H60,nn
(where nn is a binary value indicating which LEDs to turn on). Bit 0 is for the ScrollLock
indicator, bit 1 is for NumLock and bit 2 is for CapsLock.

The KBD program on the accompanying disk allows you to toggle the key values.

It’s simple to change both the typeamatic repeat rate and delay, using the KBD, QKRP,
or EQKRP programs on the accompanying disks, or the MODE command in DOS 4.0
and 5.0. If you are forever frustrated by the slowness of the keyboard,

MODE CON RATE=32 DELAY=1
will speed things up to the maximum directly allowed by DOS, while
MODE CON RATE=1 DELAY=4

will give you lots of time to reflect on the meaning of life between keystrokes.

You can also create two assembly language files, FAST.COM and SLOW.COM, that
will also set the rates. Just make sure DEBUG.COM is handy and type in the following
ten lines, pressing Enter at the end of each one. '

DEBUG

E 100 BO F3 E6 60 B9 00 10 90 E2 FD BO 00 E6 60 C3
N FAST.COM

RCX

F

W

E 10B 7F

N SLOW.COM

W

Q

When you’re done, you’ll have two new files on your disk. For a laugh, type:
SLOW

and press Enter. See what your typematic rate is like. You won’t believe it. Then, to speed
things up considerably, type:

FAST

216 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

and press Enter. If you’ve never speeded up your keyboard before, you won’t believe
this either. To change the rates, patch the byte in either SLOW.COM or FAST.COM at
address 10B.

Keyboard Magic with DOS 5.0°s DOSKEY

Beyond the simple line-editing capabilities of the function keys, DOS 5.0’s DOSKEY
provides an entirely new set of features for dealing with the command line. DOSKEY
lets you recall, modify, and execute previously issued DOS commands, using the arrow
keys and the PageUp/PageDn keys to go back and forth through the DOS-maintained
stack of recent commands. Unlike the STACK utility on the accompanying disks,
DOSKEY only displays one previous command line at a time — although you can display
all the previous commands in the buffer with F7, you can’t cursor to them directly and
execute them as you can in STACK.

You can either make DOSKEY a permanent part of your system utilities, by including
it in your AUTOEXEC.BAT, or just invoke it from the command line when you know
you’re going to have a lot of repetitive command sequences or keystrokes to wade
through. There are two basic approaches to using DOSKEY, and deciding which one is
best for you is a simple matter of taste. If you’re most comfortable finding solutions by
trial and error, DOSKEY’s ability to recall previous commands lets you experiment with
a variety of commands, and then only reuse those you like. If, on the other hand, you find
it hard to go on a picnic without making a list first, DOSKEY’s macro capability lets you
create your own custom commands based on the exact sequences of keystrokes you’ll
need to accomplish the task at hand. Let’s suppose you want to find a very important
snippet of information about Windows you saw while glancing through one of the many
READ.ME files you know are scattered throughout your hard disk. Of course, you no
longer have a clue as to which particular READ.ME it was in, or even if it was called
READ.ME or README.1ST, so the task is to locate and search each of the possible
files. You could start by typing

ATTRIB \READ*.* /S
which produces a response like

: \SYS\DOS\README . DOC

: \SYS\DOS\README . TXT

: \SYS\SIDEKICK\READ.ME
: \SYS\WIN\README . TXT
:\SYS\DEVS\READ .ME

: \SYS\INSET\README.DOC

bl - A A 4
oo No NN NS

The Keys to the Kingdom 217

: \SYS\HIJAAK\READ .ME

: \WP\WS4 \README . COM

: \WP\WS4 \README . TXT

: \LANGS \ PASCAL\DOC\READ . ME
: \LANGS \MSPASCAL\README . DOC
: \APPS\ Q2 \README . COM

: \APPS\Q2 \README

i i i i <
eNeNoNeNeNeNe!

To look through the files, you’d normally summon up your favorite word processor or
file browser with the first file name, as in

EDIT C:\SYS\DOS\README .DOC
Then after perusing the file, use F2 and F3 to change the filename to
EDIT C:\SYS\DOS\README.TXT

and so on down the list. Of course, at some point, the file names will start scrolling off
the top of the screen, and you’ll need to stop, reissue the ATTRIB command, and then
pick up where you left off with EDIT and the pathname for the next file. With DOSKEY
installed, a few simple up-arrow keystrokes will get you to the ATTRIB command, and
after you’ve gotten the file names back on the screen, a few more keystrokes will get you
to the last EDIT command you issued.

If you’re even more organized, you can start the whole process by using DOSKEY to
define the first step, issuing the ATTRIB command, as a single keystroke:

DOSKEY 1=ATTRIB \READ*.* /S

so when the file names scroll off the screen, you need only type 1 to refresh the list, and
up-arrow only twice to get back to the last EDIT command. Once you get started with
DOSKEY, it’s easy to get carried away. Have fun!

The following figures summarize the ASCII hex and decimal values, and the scan code
values in both hex and decimal for the various keys and key combinations.

218 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Character Decimal Hex Character Decimal Hex
‘@ 0 00 @ 64 40
*A 1 01 A 65 41
‘B 2 02 B 66 42
“C 3 03 C 67 43
‘D 4 04 D 68 44
*‘E 5 05 E 69 45
“F 6 06 F 70 46
‘G 7 07 G 71 47
*H 8 08 H 72 48

| 9 09 ¢ 73 49
~J 10 0A J 74 4A
*K 11 OB K 75 4B
“L 12 oC L 76 4C
‘M 13 0D M 77 4D
‘N 14 OE N 78 4E
*0 15 OF (o) 79 4F
‘P 16 10 P 80 50
‘Q 17 11 Q 81 51
‘R 18 12 R 82 52
S 19 13 S 83 53
T 20 14 T 84 54
‘U 21 15 U 85 55
vV 22 16 v 86 56
‘W 23 17 w 87 57
*X 24 18 X 88 58
Y 25 19 Y 89 59
A 26 1A Z 90 5A
‘[27 1B [91 5B
"\ 28 1C \ 92 5C
" 29 1D] 93 5D
an 30 1E . 94 SE
A 31 1F _ 95 SF
SP 32 20 ¢ 96 60
! 33 21 a 97 61
” 34 22 b 98 62
35 23 c 99 63
$ 36 24 d 100 64
% 37 25 e 101 65
& 38 26 f 102 66
’ 39 27 g 103 67
(40 28 h 104 68
) 41 29 i 105 69
* 42 2A j 106 6A
43 2B k 107 6B

Figure 6.6. ASCII Characters with Decimal and Hex Values

The Keys to the Kingdom 219

Character Decimal Hex Character Decimal Hex
, 44 2C 1 108 6C
- 45 2D m 109 6D
. 46 2E n 110 6E
/ 47 2F o 111 6F
0 48 30 P 112 70
1 49 31 q 113 71
2 50 32 T 114 72
3 51 33 s 115 73
4 52 34 t 116 74
5 53 35 u 117 75
6 54 36 v 118 76
7 55 37 w 119 77
8 56 38 X 120 78
9 57 39 y 121 79
: 58 3A z 122 TA
5 59 3B { 123 7B
< 60 3c I 124 7C
= 61 3D } 125 7D
> 62 3E ~ 126 TE
? 63 3F 0 127 TF

Figure 6.6. ASCII Characters with Decimal and Hex Values (continued)

Key Hex Scan Code Decimal Scan Code
Escape 01 01
' 02 02
@2 03 03
#3 04 04
$4 05 05
% S 06 06
6 07 07
&7 08 08
*8 09 09
9 0A 10
)0 0B 11
_- oC 12
+= oD 13
Backspace OE 14
Tab OF 15
Qq 10 16
Ww 11 17

Figure 6.7. Key Scan Codes

220 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Key Hex Scan Code Decimal Scan Code
Ee 12 18
Rr 13 19
Tt 14 20
Yy 15 21
Uu 16 22
Ii 17 23
Oo 18 24
Pp 19 25
{[1A 26
}1 1B 27
Enter 1C 28
Ctrl 1D 29
Aa 1E 30
Ss 1F 31
Dd 20 32
Ff 21 - 33
Gg 22 34
Hh 23 35
Jj 24 36
Kk 25 37
L1 26 38
3 27 39
v 28 40
~* 29 41
Left Shift 2A 42
A 2B 43
Zz 2C 44
X x 2D 45
Cc 2E 46
Vv 2F 47
Bb 30 48
Nn 31 49
Mm 32 50
<, 33 51
>, 34 52
7/ 35 53
Right Shift 36 54
PrtSc * 37 55
Alt 38 56
Space Bar 39 57
Caps Lock 3A 58
F1 3B 59
F2 C 60
F3 3D 61

Figure 6.7. Key Scan Codes (continued)

The Keys to the Kingdom 221

Key Hex Scan Code Decimal Scan Code
F4 3E 62
F5 3F 63
F6 40 64
F7 41 65
F8 42 66
F9 43 67
F10 44 68
Num Lock 45 69
Scroll Lock 46 70
7 Home 47 71
8 Cursor Up 48 72
9 Pg Up 49 73
- (gray key) 4A 74
4 Cursor Left 4B 75
5 4C 76
6 Cursor Right 4D 71
+ (gray key) 4E 78
1 End 4F 79
2 Cursor Down 50 80
3PgDn 51 81
0 Insert 52 82
. Del 53 83
Sys Req(84 Key) 54 84
101 Key Board Extended Keys
Pause El 225
Gray Keys Cursor Left E0 4B
Cursor Right EO0 4D
Cursor Down EO 50
Cursor Up E0 48
Delete EO0 53
End EO 4F
Home EO0 47
Insert EO052
Page Down EO0 51
Page Up EO0 49
Pause E11D45E19DC5
Print Screen EO 2A E0 37
Keypad Area Enter EO I1C
/ E0 35
Other Keys Right Alt EO0 38
Right Ctrl EO0 1D
Figure 6.7. Key Scan Codes (continued)

222 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Key Decimal Hex Key Decimal Hex

Combination Code Code Combination Code Code
NUL 3 03 Shift-F1 84 54
Shift-Tab 15 OF Shift-F2 85 55
Alt-Q 16 10 Shift-F3 86 56
Alt-W 17 11 Shift-F4 87 57
AltE 18 12 ‘ Shift-F5 88 58
Alt-R 19 13 Shift-F6 89 59
Alt-T 20 14 Shift-F7 90 5A
Alt-Y 21 15 Shift-F8 91 5B
Alt-U 22 16 Shift-Fo 92 5C
Alt-I 23 17 Shift-F10 93 5D
Alt-0 24 18 Ctrl-F1 94 SE
Alt-P , 25 19 Ctrl-F2 95 SF
Alt-A 30 1E Ctrl-F3 96 60
Alt-S 31 IF Ctrl-F4 97 61
Alt-D 32 20 Ctrl-F5 98 62
Alt-F 33 21 Ctrl-F6 99 63
Alt-G 34 22 Ctrl-F7 100 64
Alt-H 35 23 Ctrl-F8 101 65
Alt-J 36 24 Ctrl-F9 102 66
Alt-K 37 25 Ctrl-F10 103 67
Alt-L 38 26 Alt-F1 104 68
Alt-Z 44 2C Alt-F2 105 69
Alt-X 45 2D Alt-F3 106 6A
Alt-C 46 2E Alt-F4 107 6B
Alt-V 47 2F Alt-F5 108 6C
Alt-B 48 30 Alt-F6 109 6D
Alt-N 49 31 Alt-F7 110 6E
AltM 50 32 Alt-F8 111 6F
Fl 59 3B Alt-F9 112 70
3] 60 3C Alt-F10 113 71
P 61 3D Ctrl-PrtSc 114 72
F4 62 3E Ctrl-Cursor Left 115 73
F5 63 3F Ctrl-Cursor Right 116 74
F6 64 40 Ctrl-End 117 75
F7 65 41 Ctrl-PgDn 118 76
F8 66 42 Ctrl-Home 119 77
Fo 67 43 Alt-1 120 78
F10 68 44 Alt-2 121 79
Home 71 47 Alt-3 122 7A

Figure 6.8. Key Combination Codes

The Keys to the Kingdom 223

Key Decimal Hex Key Decimal Hex
Combination Code Code Combination Code Code
Cursor Up 72 48 Alt4 123 7B
PgUp 73 49 Alt-5 124 7C
Cursor Left 75 4B Alt-6 125 D
Cursor Right 77 4D Alt-7 126 TE
End 79 4F Alt-8 127 7F
Cursor Down 80 50 Alt-9 128 80
PgDn 81 51 Alt-0 129 81
Ins 82 52 Alt-- 130 82
Del 83 53 Alt-= 131 83
Shift-F1 84 54 Ctrl-PgUp 132 84

Figure 6.8. Key Combination Codes (continued)

Value Alt Ctrl L-Shft R-Shft
00
01 X
02 X
03 X X
04 X
05 X X
06 X X
07 X X X
08 X
09 X X
0A X X
0B X X X
oC X X
(U] X X X
OE X X X
OF X X X X

Note: X means key is pressed

Figure 6.9. Shift-Mask Value Table

Chips and Memory

Deep down, all people are pretty much alike. True, some have blue eyes and some have
brown, some are well over six feet tall and others short and stumpy, and one may pick
up the Unified Field Theory where Einstein left off while another becomes the nation’s
latest celebrity thrill killer. But their internal parts are basically similar. The same is true
with PCs.

The CPU — The Brains of the PC

At the heart of every microcomputer is a microprocessor, a skinny sliver of purified
crystaline silicon that has been doped — coated with impurities that give it electronic
switching abilities — etched with a witch’s brew of poisonous gasses, and then entombed
in a small ceramic block. When people talk about “the chip” inside a PC they mean this
one. It’s often referred to as a CPU or central processing unit, although you never hear
anyone say “hey, nice unit in that computer.”

The two most popular microcomputer CPUs these days are made by Intel and Motorola
in “clean rooms” straight out of science fiction movies, where workers pad the halls
wearing sneeze masks and special dust-free booties. (Chips are fast because they’re so
small and densely packed that signals can move from one place on them to another a few
millionths of an inch away in a few billionths of a second. The scale is so infinitesimal
that a dust speck on a chip would be like an aircraft carrier in your bathtub.) The two
biggest microcomputer companies are Apple and IBM. Apple switched from chips made
by MOS Technology to the Motorola 68000 family of CPUs. IBM has stuck with the
Intel 8088/8086/80x86 line of chips from the beginning.

What distinguishes a CPU from humbler chips is its ability to do arithmetic and logical
operations, decode special instructions, and issue appropriate controlling signals to other
chips in the system. One typical instruction might store a character in the computer’s

225

226 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

main memory, while another instruction will fetch the character back when needed. The
CPU can communicate with the rest of the system through numbered ports. And it comes
from the chip foundry with a tiny amount of memory aboard, located in places called
registers. An 8088 CPU has a scant 14 registers, each capable of storing two bytes. A
byte can hold any eight-bit binary address or a single character like an A or a 4. When
two bytes are strung together, as they are in registers, they’re called a word. Virtually
everything your computer does is in one form or other shuttled in and out of those registers
at incredible speeds.

For their tiny size, registers are power-packed. They do things like store memory
addresses (the PC’s 8088 registers can handle up to a million different ones), hold data,
keep track of which instructions to execute next, and maintain status and control
indicators called flags that report on the success or failure of previous instructions and
can control how the CPU executes current and future ones.

The CPU sits astride the computer’s bus, a multilane highway of wires that carries
data, controlling signals, and electrical power to all the major parts under the hood. The
wider the bus the greater the amount of data a computer can move in a single operation.
A PC or PC-XT has eight data lines, an AT-class machine 16, and an 80386/486 system
32.

The original PC is classed as a 16-bit machine, since its 8088 CPU does indeed
manipulate information in 16-bit chunks — but only inside the CPU itself. When its CPU
needs raw data to work on, or when it finishes processing some information and wants
to store it back in memory, it has to break the data into eight-bit pieces so it can squeeze
through the narrow eight-bit bus. A timer circuit commonly called the clock sends pulses
down one of the bus lines several million times each second to keep everything
synchronized. In a PC the timer ticks at 4.77 megahertz (MHz). Since mega- means
million and Hertz means cycles-per-second, that may seem pretty fast. Well, compared
to a postal worker maybe, but these days 4.77 MHz is a real crawl. Current hardware runs
at up to ten times the original PC’s clock speed.

A clock is like the big sweaty guy on a galley slave ship in a gladiator movie beating
out the rowing tempo on a drum. The more energetic his drumming the faster the ship
moves. However, no microcomputer actually performs calculations at anywhere near the
clock rate. The PC, like virtually every other computer, is a Von Neumann machine
(named after mathematician John Von Neumann who contributed to the design of early
room-sized computers such as ENIAC). Von Neumann machines execute all instructions
one at a time. Some state-of-the-art supercomputers, like those made by Cray, can process
similar groups of instructions concurrently in what is called parallel processing. Every
Von Neumann CPU wastes lots of time waiting for the current instruction to finish so it
can trigger the next one. And instructions can hog lots of timer cycles. Even the PC’s
NOP (pronounced no-opp) instruction, a placeholder that is expressly there to do nothing
except wait, takes three clock cycles to execute.

(The clock in the original PC is actually a special Intel chip that oscillates at 14.31818
MHz, or three times as fast as the often-quoted 4.77 MHz clock speed. This is too fast
for most circuits, so other timer chips inside the PC use every third or fourth or fifth of
these ticks to slow down the pace for their own needs.)

Chips and Memory 227

Most CPUs are pretty capable at doing basic integer arithmetic (remember, they were
first designed as calculator chips) but stumble over floating point operations, which
require juggling of decimal points and so take longer and demand more precision than
working with whole numbers. Normally, when software has to work with decimal
numbers it uses relatively slow brute-force tricks, and can end up dragging its feet and
rounding off calculations crudely.

‘When IBM first introduced the PC it left a large empty socket next to the CPU that it
eventually filled with a numeric coprocessor chip called an 8087. This number-crunching
chip was designed to perform the complex calculations Intel’s main 8088 and 8086 CPUs
couldn’t handle efficiently. And it included special built-in circuitry to zip through things
like trigonometric operations in the blink of an electronic eye. As Intel re-engineered its
8088/8086 into an 80286 and then an 80386 and later an 80486, it made sure the
companion math coprocessors kept pace.

However, just sticking a math chip in the empty socket doesn’t make every software
application run faster. Some applications, such as word processors or data base managers,
don’t do much tricky math. And while some applications, such as CAD (computer aided
design) packages, engineering programs, and spreadsheets, could run far faster by using
such a number cruncher, unless the software includes special instructions to wake up the
math chip and send data to it, the chip will just sit idly by.

Computers can get things done one of two ways. They can actively and repeatedly go
out and check whether something has happened yet, or they can lie back and wait for
events to announce themselves. Continuously polling the hardware to see whether the
user has hit a key, a disk drive has stopped spinning, or a printer is turned on is incredibly
wasteful. Today’s CPUs are interrupt-driven, somewhat like a hospital emergency room
staff that’s normally in low gear doing routine record keeping but can spring into action
when necessary. And as in an emergency room, certain interrupts have priority over
others. If a physician is adjusting one patient’s bandage and the local rescue crew wheels
in a sword swallower who tried shoplifting a chain saw, the focus of attention changes
instantly. If your computer is leisurely printing out a document and you happen to start
typing, its attention has to shift quickly or the keystrokes will be lost forever.

When a computer detects an incoming interrupt, it parks or “pushes” critical informa-
tion about what it was originally doing into a section of memory called astack and attends
to the interrupt. Then when the CPU is finished handling the interrupt, it retrieves or pops
the critical information it temporarily stored so it can get back to what it was originally
working on. And it can stack such information many levels deep, so that if a second, more
urgent interrupt barges in, the CPU parks information about the first interrupt while it
works on the second, and so on.

This temporary storage device is called a stack because it resembles a box-shaped
device in a cafeteria with a hole in the top for dishes and a spring at the bottom to push
the dishes upward. Both the cafeteria and the computer stacks are designed so that only
the top item on the stack is accessible; as you push each new item onto it, it presses all
the items beneath it down one level each time. And when you remove an item from either
stack, the one directly under it pops up and rises to the top. It’s like a union seniority
system when times are hard: LIFO — last in, first out.

228 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

If you were very methodical and had just finished washing a pile of dishes with the
letters of the alphabet painted on them, and you wanted to store them in the right order,
you’d put dish labeled Z in the cafeteria storage device first.

—_—7 — —_—Y — —_X—
Empty DishZ Dish Y Dish X
Dish Stacker
(X-ray view)

Dish Z would then be at the very top of the stack, since it was the only one in the stack.

_—7

—Y — —_X —
Dish Stacker Dish Y Dish X

Then, you’d put dish Y on top of dish Z. Dish Y would push dish Z down inside the
storage box and then would become the top dish.

—Y —

_X
Dish Stacker Dish X

Continue by putting dish X on top of dish Y, which then disappears down the stack along
with dish Z. Only dish X is visible.

_X —

Dish Stacker

To get to dish Z at this point, you’d have to first pop dish X off, and then pop off dish Y.

Chips and Memory 229

As any harried office worker knows, processing interrupts is a tricky business. You
have to be able to respond quickly to genuine crises, ignore persistent but trivial ones,
put all such interruptions in proper priority order, and make sure that everything is
eventually dispatched. To take pressure off the main CPU, IBM routed all interrupt
requests through a chip cleverly named an Interrupt Controller. In the PC and PC-XT
this chip can juggle as many as eight interrupts at once; by daisy-chaining two of these
chips together, the PC-AT’s designers were able to have it handle up to 15 simulta-
neously.

Other semi-intelligent chips control other important aspects of operation, leaving the
CPU free to chew its way through programs and data while leaving the actual dirty work
to specialists. Instead of filtering every last byte of your data through its registers, the
CPU knows how to delegate. Handling data on disks is painfully slow since the system
has to make sure the disks are spinning at the proper rate, move a magnetic head to a
directory table to figure out where the data is, wait for that area of the disk to come
spinning around, move the heads to read it, and maybe even go back and repeat the process
if the data is scattered over several locations (as it often is). Shuffling data around in
memory is fast; there are no moving parts.

One common CPU chore is to move large amounts of information from slow disks to
fast memory and back. Passing it all through the CPU’s skimpy registers would be
ridiculously inefficient (as it was on the PCjr). The PC’s DMA (direct memory access)
controller can bypass this potential bottleneck; it’s like an interstate beltway that skirts a
city while the main highway chugs its way downtown.

Other controller chips manage the disk drives, the keyboard, the video output, and
some of the input and output. Fortunately, DOS — with the help of some gut-level BIOS
(basic input/output software) programs built into the PC — takes care of all the messy
details so you don’t have to.

RAM

Some chips, like the CPU and the DMA controller, contain small amounts of onboard
memory for temporary storage. But all the garden-variety day-to-day storage and retrieval
activities take place in the main system RAM.

Every microcomputer comes with two kinds of memory, RAM and ROM. RAM
originally stood for random access memory, but it really should be called RWM for
read/write memory. ROM stands for read only memory, which is correct. RAM,
ROM, and disks are all random-access storage devices since they let you jump
directly to any point on them to store or look up information. You don’t have to slog
through storage areas 1 and 2 to get to storage area 3. But RAM and ROM chips have
several important differences. ROM chips contain vital, permanently stored informa-
tion put there by your computer manufacturer. Turn the power off and this informa-

230 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

tion remains intact. You can’t change, or “write” over this information directly (although
IBM provided a clever way to update it). But you can retrieve, or “read” it. That’s why
it’s called read-only.

‘When you turn your system on, programs stored on a ROM chip tell the hardware how
to begin operating. After sniffing around to figure out what hardware happens to be
hooked up to your system, a special program on a ROM chip tests your RAM to make
sure it’s working properly. In all but the earliest PCs, as it checks memory, this POST
(Power On Self Test) diagnostic program displays the amount of RAM it has tested and
approved. This is the slowly changing number you see in the upper lefthand corner of
your screen when you start. The POST tests memory by writing information into RAM
and then reading it back and comparing it with the original information to make sure
RAM hasn’t mangled it. You can read from both ROM and RAM. But you can write only
to RAM.

ROM never changes. The information on it always stays the same, whether the power
is on or off. The only way to fix serious bugs on them is to yank them out and replace
them with newer models. IBM’s early PC ROM chips had several annoying deficiencies.
One chip couldn’t divide properly by 10, but that was corrected in a hurry. And the early
PC ROMs made it hard for users to stuff the maximum 640K of RAM into their systems,
or to boot up from hard disks.

We’ll get to where all this memory is located a little later in this chapter. For now,
think about memory as a concert hall, with several sections, and numbered seats in each
section. ROM is all the way in the back of the hall. RAM hogs all the good seats, from
the first row to about two-thirds of the way toward the rear.

Each new version of DOS contains patches to some of the gut-level programs and
tables delivered on ROM chips. These patches can’t alter the ROM .chips themselves.
But when the PC starts up each day, it takes some of the permanent ROM information
and copies it into “low” RAM memory — the first rows of theatre seats — and then goes
to the copy of the information rather than the original ROM chip when it needs to look
something up. (The million or so characters of memory in a PC are arranged in regions
called segments that will be discussed soon; ROM data is stored in a distant Siberia far
from the “lower” 640K of RAM where most of the computer’s action takes place.) The
patches provided with each new DOS version can and regularly do overwrite the older
ROM information that’s been copied into low memory.

As you use your system, you write information into RAM. When RAM fills up, you
have to erase unwanted information to make room for new data. And, when you turn your
system off, all the information stored in RAM vanishes forever. Sometimes your local
power company or a fellow employee turning on an air conditioner or heater that’s
plugged into the same outlet accidentally does this for you while you’re working, so you
have to be fanatical about taking the data stored in memory and copying it onto a more
or less permanent storage medium like a disk frequently.

RAM and ROM are both memory chips that store information. The important similar-

ran ans ok

ities and differences in storage devices are shown in Flguu: 7.1.

Chips and Memory 231

Storage Devices RAM ROM Disks
Data already on it when you turn computer on No Yes Maybe
Data remains on it when you turn computer off No Yes Yes
Can read information from it Yes Yes Yes
Can write information to it Yes No Yes
Can change the information on it Yes No Yes
Can handle information very quickly Yes Yes No

Figure 7.1. Characteristics of Storage Devices

Here’s an easy way to remember the difference between memory chips. Let’s say you
walk into a classroom, and see an empty blackboard at one end of the room (RAM), and
a bulletin board inside a glass display case at the other (ROM).

The bulletin board may contain schedules, fire drill codes, and lists of telephone
numbers. The blackboard has nothing on it. You can write on the blackboard. But you
can’t write on the glass-covered bulletin board. You can read information from both.
When you fill the blackboard, you have to erase some older information so you have
room to write down the newer data. When class is over, you erase the blackboard, turn
out the lights, and leave. The blackboard is again empty. But the bulletin board at the
other end of the room still contains the information that was on it when you entered. And
it will be there tomorrow.

Blackboard Bulletin board

1. B ‘When you start, the blackboard is empty. The bulle-
ack up your . N N -
dataoftent | tin board already has information on it.

2. |sBcDEFGHUK! | Back up your You can write data on the blackboard but not the

abedefghijk dataoftent | bulletin board.
3. | 1234567890K Back up your Yo.u. can change information on the blackboard by
1@#5% “&*(0_ data often! wrltmg new data over old data.

4. Back up your When finished, you erase the data from the black-

dataoftent | Doard, but not the bulletin board, which remains
intact.

RAM ROM

232 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

All data stored in RAM vanishes when you turn the power off; such storage is volatile.
Information on ROM chips remains intact when the power snaps off;, this kind of storage
is non-volatile.

Parity Problems

While there are eight bits in a byte, the PC’s RAM normally handles small packages of
information nine bits at a time rather than eight. The extra bit is called a parity bit and
it’s a crude way to insure the integrity of your data. One bit can make a whale of
difference. Here’s why:

To your CPU, the letter U is a just the decimal number 85. The binary representation
of 85 is:

01010101

(If you skipped ahead to here, and you’re mystified by all those 1s and Os, go back two
chapters and read how binary numbers work. It’s actually pretty simple.)

Change just a single bit from one state to the other — say the fourth one over from the
left — and the binary number becomes:

01000101

which translates to decimal 69, or the value of E.

The problem is that one letter can make a big difference. If you write a computer letter
to the newly crowned heavyweight boxing champ and the message comes out “chump”
or “chimp” you’d better take a long and sudden vacation. And switched letters are bad
enough. If you’re working on a spreadsheet and such an error changes an income
projection of $7,000,000 to $237,000,000, you can really lose big.

To help prevent such disasters, the PC initially adds up the number of 1s in the binary
representation of each byte and then adjusts the ninth bit to tell itself whether the number
of 1s in the byte is even or odd.

In the exampie above, the binary value of U was 01010101, which has four 1s in it,
while the binary value of E was 01000101, which has only three 1s. As it moves each
byte around the system, a PC continually looks at this ninth bit to make sure it accurately
reflects whether the number of 1s in the byte is even or odd. If a single bit somehow gets
switched around from 1 to 0, or from O to 1, the parity bit and the number of 1s won’t
match any longer, and the system will generate a dreaded “Parity Check” error.

Actually, the error isn’t so bad, it’s what the system does when it sees this error that’s
insidious. After displaying the message in the upper left corner of your screen, it just
plain stops whatever it was in the process of doing and shuts down. At this point you’re
totally locked out of any data stored in RAM. The only thing you can do is turn the power
off and start everything all over again. If you’ve been careful about saving your work to
a disk every few minutes, all you lose are the few changes you made since the last disk
save, If you haven’t saved anything, you say “darn™ and learn to save next time.

Chips and Memory 233

The parity error may have occurred because a RAM chip failed — they do mysteriously
break from time to time. Or a stray cosmic ray may have zapped the chip as it passed
through you and the earth on its way to Neptune. Or a balky generator at your local power
company may have burped out some fluctuation in the line voltage that got past your
computer’s power supply. If it was a bad chip you’ll get the same message again after
you reboot, and you either have to figure out which chip went south, yank it out, and
replace it, or pay your dealer to do it. If a chip on your main system board — the one that
the CPU is attached to — fails, the system will display PARITY CHECK 1. If it senses
a broken chip on an add-in board it will display PARITY CHECK 2. While the PC-AT
is a little less terse, if this happens to you, a cheerier message is not what you want or
need.

You’ll know you have a bad chip if you reboot and see an error message beginning
with a string of numbers followed by 201. The four hexadecimal digits that precede the
201 can pinpoint the exact chip that failed. On a PC, the machine will boot and you’ll get
an instant PARITY CHECK message that overwrites the 201 numbers, so you have to
look quickly. On an XT, the message is not overwritten. On PS/2 systems, IBM replaced
the PARITY message with two numerical error codes:

e 110 for PARITY CHECK 1
e 111 for PARITY CHECK 2

These are two numbers you won’t want to see.

What the PC really should do when it detects such an error is put the offending data
onscreen (if it’s still able to) with the message: “Error detected in this data. Should I
continue (Y/N)?” If the error was in the programming code that puts your software
through its paces, or in a long list of numbers, you may want to quit and restart. But if all
you see is the message:

The bank robber’s holdup note said “I have a gub.”

you can fix the error and continue without losing any work.

What is particularly irritating about parity errors is every one out of nine (11.11%)
times such errors occur it’s the result of the error-detecting mechanism and not incorrect
data. All a parity error detector does is compare eight bits to one bit. If the chip with the
one parity bit on it fails, your data — the other eight bits — may be perfectly fine, but
the comparison test will indicate a problem and shut down your system.

Parity-checking can prevent data integrity problems. But only some of them. If one bit
gets changed in a byte, the system will ferret out the problem. But if two bits in a single
byte change, the parity detection bit will accurately reflect the oddness or evenness of
the number of 1s. If the original byte was U or 01010101, the number of 1s is four, which
is even. If you flip any two bits from 1 to 0 or from 0 to 1, you’ll still have an even number
of bits, although the new number won’t represent a U anymore.

ROM is not parity checked. Some clone makers let you flick a switch to disable RAM
parity checking. And some portable computers don’t check parity, since that lets the
manufacturers put in fewer chips that consume less power, and power sipping is the name

234 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

of the game with laptops. If you have the option of turning parity checking on or off, you
should probably leave it on anyway. But in any case you should save your work to disk
often.

Larger computers that can’t afford to stop dead in their tracks use a more sophisticated
system called error correction. But this takes even more space, and incorporating error
corrections into the PC would mean changing the underlying system architecture. And
it’s not perfect. The common error correcting scheme used today can fix one-bit errors,
but it can only detect — not fix — errors of two or more bits in a single byte. All PCs
will have error correction abilities someday, but they don’t yet.

Future microcomputers may also have static RAM. All but a few of today’s PCs use
dynamic RAM that needs to be recharged or “refreshed” hundreds of times each second,
which limits memory speeds. Static RAM doesn’t need to be continually recharged, and
is faster than dynamic RAM, but far more expensive. However, it’s great for memory
caches.

ROM — Free Programs

When you buy a PC you get two sets of free programs. One set, called microcode, is
permanently hard-wired into the circuitry of the CPU and tells it (in the tersest, most
inscrutable machine code possible) how to operate. The other set comes on a few ROM
chips and provides software routines that help the system function. Programs that are
delivered on chips are in a netherworld somewhere between hardware and software.
Hardware is the machinery itself. Software is the list of instructions that tell the hardware
what to do. :

Your home phonograph, tape deck, or CD player is hardware. The records, disks, and
tapes contain software. The general rule is if it has a wire coming out of it, it’s hardware.
If it doesn’t do anything until you memorize a manual that sounds as if it was translated
from a foreign language by a bored high school student, it’s software.

Programs (software) that come delivered on ROM chips (hardware) are called firm-
ware. Firmware includes copyright information, tests, tables, error messages, and a
toolkit of useful routines that display characters on the screen in the colors of your choice,
read information from a disk or keyboard, or send a copy of what’s on your screen to
your printer. ROM chips on IBM computers also include a stripped down version of the
BASIC language.

Every piece of commercial software on the market uses at least some of these routines,
by issuing what are called software interrupts. Software interrupts are different from the
hardware interrupts mentioned earlier, which let the computer know you’re pressing a
key or that the printer just ran out of paper. And they’re also different from the panicky
interrupts triggered inside the CPU when something truly bizarre or unexpected happens
like when something tries to divide by zero.

All programs have to perform the same basic operations such as interpreting key-
strokes, displaying characters on a screen, or reading information from disks. The routines
on ROM chips handle the hard part. Some programs, in a mad quest for extra speed or

Chips and Memory 235

control, bypass these routines and control the hardware directly. But most programs are
content to use the toolkit IBM (and its copycat clone makers) provided.

To see one of these routines in action, walk over to any IBM computer and turn the
power on without putting a disk in the drive. If the computer doesn’t have a hard disk,
BASIC will appear onscreen. If it does have a hard disk, load BASIC by typing:

BASIC

and then pressing the Enter key. Then type the following line exactly as it appears:
DEF SEG=61440:R=57435:CALL R

Press the Enter key and your system will reboot. What this command does is use the
BASIC language that comes on one IBM ROM chip to run a little firmware program on
another ROM chip that restarts your system.

The PC’s 8088 CPU can keep track of, or address, slightly more than a million memory
locations. Just about everything the CPU does use addresses in one form or another. It’s
either looking in one location to see what’s there, parking data temporarily in another
location so it can process other data, or running short programs that are kept at certain
addresses.

But a million is a big number, and it’s sometimes easier to work with smaller numbers.
If you’re in New York City, which has a telephone area code of 212, and you have to call
someone nearby, you want to be able to dial just the seven-digit phone number and not
have to punch in a 1 and the extra three digits of the area code each time you make a local
call. If most of your calls are indeed local, this saves time as well as wear and tear on the
dialing finger. When you dial any seven digits (that don’t start with a 1), the phone
company assumes you’re calling a number in the immediate vicinity.

If you want to talk to someone in Seattle, you can add the extra area code numbers,
and the phone company knows you’re not placing a local call.

The 8088 CPU addresses memory locations in a similar way. It divides the whole
one-megabyte range of possible addresses into 16 regional sections called segments that
are each 64K bytes long. (Newer systems can address more memory, and do it directly.)

The DEF SEG in the example that appeared earlier switches BASIC to one of these
segments (in this case the very topmost one), which happens to be where IBM keeps track
of the ROM chip routines that make up its main BIOS input/output toolkit.

This kind of memory segmentation can be useful, since it can let programs use smaller
numbers to keep track of important local addresses. Working with most smaller numbers
is faster than struggling with bigger ones. But they can also be the bane of programmers,
since the advantage in using smaller, local numbers applies only to whatever 64K
segment the programmer happens to be using at that time. Most programs these days are
considerably larger than 64K, which means jumping repeatedly from one 64K segment
to another.

Remember, computers are built around chips that have a really limited perspective.
The fundamental piece of information in any chip is a bit. And a bit can be in only one

236 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

of two states, on or off. So a one-bit chip (if one existed) could theoretically keep track
of only two possible locations, at address O or address 1. Not very useful.

A two-bit chip — one with room for twice as many binary digits as a one-bit chip —
could theoretically keep track of 22 (2 x 2, or four) locations, at binary addresses:

00 (decimal 0)
01 (decimal 1)
10 (decimal 2)
11 (decimal 3)
I

two

bits

If you kept on adding bits to the addressing mechanism, you would double the number
of locations each time. A three-bit system could handle 23 (2 x 2 x 2, or eight) locations:

000 (decimal 0)
001 (decimal 1)
010 (decimal 2)
011 (decimal 3)
100 (decimal 4)
101 (decimal 5)
110 (decimal 6)
111 (decimal 7)
I

three

bits

A 16-bit chip like the 8088 can address only 216 (65,536) bytes directly. So 17 bits
could address 2 x 65,536 (131,072) bytes; 18 bits 2 x 131,072 (262,144) bytes; 19 bits 2
X 262,144 (524,288) bytes; and 20 bits 2 x 524,288 (1,048,576) bytes — the “megabyte”
used as the standard measure of memory.

Now hold on It says here that the PC can address one megabyte of memory. But
the calculations above show that it would take 20 bits to address a full 1,048,576 bytes.
The CPU inside the PC is a 16-bit 8088, and with 16 bits all you can address is 65,536
bytes. How does a 16-bit CPU handle 20-bit addresses?

Easy. Well, not exactly. It uses two addresses for each memory location, one for the
segment itself and one for the offset into that segment. If you use the concert hall metaphor
mentioned earlier, the segment is the section and the offset is the seat. So you could have
two seats numbered 27 — one in the orchestra and one in the balcony. Just as the full
number of the seats might be something like 027 and B27, you can express the address
of any byte in your PC as SEGMENT:OFFSET.

In the DEF SEG statement, the number 61440 was the segment address. The other
number, 57435, was the offset. So:

Chips and Memory 237
DEF SEG=61440:R=57435:CALL R

was the same as saying “look at the 57,435th byte in from the beginning of the segment
that begins at address 61440 and run the program that starts there.”

If you think this sounds confusing, you’re right. Instead of having to wrestle with
segmented addresses, programmers would much rather have had a chip that could do
direct linear addressing, where each byte had an address from 0 to 1,048,576. If the PC
had a linear addressing system, the BASIC program could have said “run the program at
address 1,040,475.”

'You may be scratching your head now and wondering two things. First, how did 61440
and 57435 become 1,040,475? Second, do you really have to know all this?

The answer to the second question is a qualified no. PC users should really never have
to take the tops off their computers and fiddle with the boards inside. Their systems should
figure out what equipment is attached and then configure all the important settings
automatically. DOS should be smart enough to anticipate what the user wants to do next,
and deal with the user in a far friendlier and more intelligent way. Software should be
infinitely flexible and understanding, and continually customize itself to the user’s
changing needs and abilities.

But we’re still in the frontier of this business. We're pioneers (although at least we
don’t have to load programs from paper tape and read blinking lights to get our work
done like the computer scouts who blazed the early trails in the 70s.) It’s still the Wild
West out there. Each new software company gallops onto the scene yelling “My standard
is better than your standard.” The ensuing Darwinian gunfights weed out the real losers
but wound a lot of bystanders like us in the process.

You can have someone else set up and repair your system, and can struggle through
your favorite software without ever knowing about memory segments. But the more you
know about your system the better off you’ll be. Most users discover that the longer they
spend at their systems the more proficient they get and the more they want to be able to
do. If you know the basics you’ll be able to adapt your system and get it to do far more
things far faster and far more easily. And prevent disasters.

Here’s a specific example: Once a week like clockwork our suppott line gets a panicky
phone call from someone who inadvertently exited a word processor without ever having
saved the file to disk. If the caller was using mainstream word processing software, and
didn’t touch the computer after realizing what happened, it’s usually fairly simple to look
inside the user’s RAM, find the file, and copy it from memory to a disk.

A rescue job like this starts by having the DOS DEBUG.COM program search through
memory for the first few words of the user’s file. DEBUG is very good at this, but can
search only one segment at a time. If you know how segments work, finding unsaved
files is a snap.

As mentioned earlier, the 14 registers inside the CPU are each two bytes long. A
two-byte register can hold 16 bits, so the biggest number any of its registers can
manipulate is 2" 16, or 65,536. (If you want to use signed numbers that could be either
positive or negative, the largest value would be 32,767 and the smallest -32,768. But take
it from us, for the purposes of this book you don’t want to.)

238 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

“Since there are 16 64K memory segments,” you might argue, “the CPU could have
used a kind of shorthand and called the first segment 0, the second segment 1, the third
2, and the last one 15. Then our BASIC reboot program could have been written DEF
SEG=15:R=57435:CALL R.” But that won’t work.

The reason is that while the addressable memory in a PC is indeed split into 16
segments each 64K long for certain purposes, programmers need to divide available
RAM into much finer slices than in such whopping chunks.

Just about all programs use memory in several standard ways. Some RAM has to store’
the actual program instruction code itself — the part that “runs.” Some is needed to store
the data that the program creates or changes. A little is needed for the stack, a storage
area that holds addresses and miscellaneous amounts of temporary information. And
sometimes programs have to work with so much data that they need a little extra room
for it.

The 8088 CPU has four different segment registers to keep track of these four kinds
of segments:

Code segment (CS)
Data segment (DS)
Stack segment (SS)
Extra segment (ES)

Since registers control segment addresses, the maximum number of addresses can’t be
greater than the largest number a 16-bit register can hold — 65,536, or 64K. In dealing
with PCs you keep coming across that 64K number. 64K is the:

number of possible segment addresses

maximum number of bytes in a segment

number of port addresses the CPU can use for IO
maximum size of a COM program

maximum size of a BAS (BASIC) program

all because:

® the 8088 is a 16-bit chip
® each bit can be in two states (0 or 1)
® 50216 = 65,536 (64K)

But while the maximum size of each segment is 64K, the segments can (and do) overlap
each other. And they can be far smaller than 64K.

A stack segment can be fairly tiny. Unless you change it with a CLEAR command, for
instance, the default size of the stack in BASIC is either 512 bytes or one-eighth of the
available memory, whichever is smaller. If you’re not nesting lots of short routines, or
trying to fill in or “paint” complex pictures (both of which need more than the usual
amount of stack space so BASIC can interrupt operations and jump to other operations

Chips and Memory 239

repeatedly and then get back to what it was doing) this 512 bytes will do just fine. If
programmers had to lop off 64K for each segment, they’d end up wasting tons of space.

If each segment had to be 64K, it could start at only one of 16 fixed places in memory.
So to make things more flexible, the CPU lets programmers deals with any one of 65,536
different segment addresses. The only restriction is that each segment has to start at the
beginning of a paragraph.

Paragraph?

In computer parlance, a paragraph is simply a number that is evenly divisible by 16.
The reason for this is that while the 8088 CPU can address 1,048,576 total bytes, its
segment registers can handle only 65,536 possible segment starting addresses. Divide
1,048,576 by 65,536 and you get 16. You can have a segment start at the very first
paragraph (0), or at paragraph 1, or at paragraph 65,535. But it can’t start at paragraph
1.5.

It’s sort of like talking about fingers. You like to deal with whole hands, not fractions
like 1.5 hands. And just as each set of hands is made up of ten smaller parts (fingers),
each paragraph is made up of hexadecimal 10 smaller parts (bytes). What is written as
10 in hex notation is equal to 16 in our more familiar decimal system.

The idea of paragraphs is familiar to anyone who has used DEBUG. If the lower 128
ASCII characters were loaded into the very bottom part of your system’s memory (and
there’s a good reason why they aren’t, since other important things are kept there), and
you used the DEBUG D command to display them, you’d see something like:

0000:0000 00 01 02 03 04 05 06 07-08 09 OA OB OC OD OE OFc..uvvvuennn
0000:0010 10 11 12 13 14 15 16 17-18 19 1A 1B 1C 1D 1E 1Fiuinvnennnn.
0000:0020 20 21 22 23 24 25 26 27-28 29 2A 2B 2C 2D 2E 2F PORSR& () %+, -,/
0000:0030 30 31 32 33 34 35 36 37-38 39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
0000:0040 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
0000:0050 50 51 52 53 54 55 56 57-58 59 5A 5B 5C 5D 5E SF PORSTUVWXYZ [\] *_
0000:0060 60 61 62 63 64 65 66 67-68 69 6A 6B 6C 6D 6E 6F ' abcdefghijklmno
0000:0070 70 71 72 73 74 75 76 77-78 79 7A 7B 7C 7D 7E 7F parstuvwxyz{|}~.
l +~———— individual 16-byte paragraphs — ASCII —
offset
segment
address

Each horizontal line is one paragraph, and contains 16 bytes. The two groups of
four-digit numbers on the left, separated by the colon, are the segment and offset
addresses. (Each is only four digits long because DEBUG works exclusively in hexadec-
imal notation and can cram any number from 0 to 65,536 into four hex digits.) The
numbers in the middle are the hexadecimal representations of the bytes in each paragraph.
DEBUG will display the actual characters each byte represents at the right side of its
display, if the characters have ASCII values greater than 31 (1F in hex) and less than 127
(7F in hex). Otherwise it prints dots.

240 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The decimal number for the segment 61440 is actually FOOO in hex. And the decimal
57435 offset is hex EO5B. The conventional notation for memory addresses is SEG-
MENT:OFFSET, so this address is really FO00:E05B.

To translate a two-part address like FO00:E05B into a single linear or absolute address
that actually points to the precise one byte in the PC’s megabyte of memory that you
want, just shift and add.

In this case, shifting means bumping the number up by one decimal place, or order of
magnitude. The decimal orders of magnitude start with 1, 10, 100, 1000, 10000; each
time you add a zero. What you’re really doing is multiplying the previous number by 10,
since we use a base-10 number system.

Shifting over a digit in hex means multiplying by 16. The decimal equivalents of the
first few hex orders of magnitude are 1, 16, 256, 4096, 65536. In hex, these are 1H, 10H,
100H, 1000H, 10000H; multiplying by 16 is really multiplying by 10H. So first, multiply
the segment address by 16 to shift it up a notch. This is simple; stick a 0 on the end of
FO000 and you get FO000. Then add the offset to it:

F0000
+ EO5B
FEO5SB

Hex FEO5B is indeed equal to decimal 1,040,475. To check it, multiply decimal 61440
by 16 and add 57435 to it.

While only the four segment registers mentioned earlier can keep track of the segment,
your system can calculate and juggle offsets in lots of different ways. Segment and offset
registers deal with two-byte addresses. General purpose registers (called AX, BX, CX,
and DX), which can be pressed into action to hold two-byte offsets, can also store single
byte values. Because of this, the four general purpose registers are often divided in halves.
If you looked inside AX and found it holding the value EO5B, the “low” half of that
two-byte pair (5B) would be in register AL (L. = Low) and the “high” half (EO) in register
AH (H = High).

But — are you ready for this? — if you stored the offset address EO5B in register AX,
it would end up switched around, tail first, in the form 5B E0. Why?

Don’t peek inside your system and expect to see all addresses in the form FO00:EO5B.
Most of the time programs establish the segment they’re working in early on and then
just specify offsets inside that segment — like dialing local phone numbers without the
area codes.

But if the segment you’re using is FO0O, you’ll never see it written that way. F000 is
really two bytes, FO and 00. A pair of bytes joined like this is called a word. Your PC
uses a backwards (or “backwords™) method for storing each of these, so FOOO is actually
stored O0FO. :

In the word FOOO (or any hex number bigger than a single byte), the most significant
byte is the larger one (FO) and the least significant byte is the smaller one (00). The PC
stores such two- byte addresses with the least significant byte first. It stores strings of
letters such as error messages in the normal non-backwards way, however.

Chips and Memory 241

That’s because the PC puts the upper half of the number higher in memory and the
lower half lower in memory, which makes perfect sense. When you scan through
memory, you generally start from near the bottom and move upward, which also makes
sense, so you hit the low byte first. When you refer to the address of a word, you always
mean where the word starts, and it starts at the lower half.

To simplify things, say you'’re storing the word FO0O at absolute memory address 1.
The normal way to map out on paper how memory works is to put the very bottom part
at the top of the page and work downward:

Bottom of Memory Lower
Absolute address 0
Absolute address 1 —— 00
Absolute address 2 FO
Absolute address 3
Toward the top of Higher
memory

Confusing? At first. It’s especially diabolical when dealing with the 12-bit addresses
that the PC-XT File Allocation Table (FAT) used to keep track of clusters. But for now,
just remember that if you’re using DEBUG to search for segment F000, you’ll have to
tell it to hunt for 00 FO.

One more note about addresses — the same absolute address can be expressed in many
different ways. This is sort of like saying you could express the decimal number 10 as (5
+5)or (8 +2).

The very bottom of memory is at relative address 0000:0000, and absolute address
00000. (The very top is FOOO:FFFF or FFFFF.) The absolute hex address one paragraph
up from the bottom of memory (10H bytes up in hex; 16 bytes up from the bottom in
decimal) would be 00010. You could express this as 0000:0010. But you could just as
easily write it as 0001:0000. All three refer to the same location in memory.

To test this, use the shift-and-add technique mentioned earlier:

for 0000:0010 for 0001:0000
I I
00000 00010
+ 0010 + 0000
00010 00010

Obviously, the higher up you go into memory the more ways you have of referring to
paragraph addresses (sometimes called paragraph boundaries) using relative SEG-
MENT:OFFSET notation. One is just as good as another in telling your CPU how to
behave.

242 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Mapping the Meg

But you can’t get your hands on the whole megabyte of memory. IBM originally divided
the available megabyte into 16 blocks, each one 64K long, and reserved some for ROM,
and some for the displays, some for expansion room, which was used eventually by
gut-level BIOS extension programs to handle things like hard disks that weren’t offered
originally. It left the remaining ten blocks, or 640K, for your programs.

Well, almost 640K. DOS takes up a good chunk, and the amount grew with each release
prior to DOS 5.0. BIOS needs a little, to store keystrokes when you type so fast the
program you’re using can’t soak them all up right away, and to keep track of things like
whether the Ctrl key is being held down, how much memory is installed, the current video
mode, the current time (expressed in clock ticks since midnight), how many lines can fit
on your screen, or what equipment is supposedly installed in your system.

Each PC maintains a sort of travel agency called the Interrupt Vector Table at the
absolute bottom of memory. When something generates an interrupt, it checks this table
to see where it should go for the routine that will do the actual work. This table is very
popular; it’s used by BIOS, DOS, the interrupt controller chip, the main CPU itself, and
even the programs you may be running at the time. It’s really just a list of up to 256
four-byte addresses, in SEGMENT:OFFSET form.

When interrupt 0 (“Divide by Zero”) needs to know where in the total megabyte to
look for the special routine to deal with such an error, it checks the first four bytes (table
entry #0) for the address or vector. When interrupt 1 (used by DEBUG) drops in, it checks
the next four byte address (table entry #1). When INT 2 (which is usually how interrupts
are abbreviated) is involved, you have problems, because odds are that’s a parity error
lurching toward its fatal nonmaskable interrupt goodnight kiss. If you poke around in this
table and replace an existing entry with the address of your own program, the table will
send the respective interrupt to your program rather than the old one.

The top segment of the megabyte is taken up by your system ROM, which needs this
space to store the tests that are performed during the initial power-on diagnostic check
to make sure things are working propetly, and the gut-level BIOS routines that take care
of the nitty-gritty details in controlling your drives, keyboard, clock, displays, printer,
serial port, and memory.

The middle BO0OO segment was originally allocated for video. PC displays are mem-
ory-mapped, which means that each video memory address corresponds with a small but
specific area of the screen. If you have a color system, running this program:

100 DEF SEG=&HB800
120 POKE 1,78

130 POKE 0,1

140 POKE 3999,100
150 POKE 3998,2

will put four values into memory at segment BSOOH that your CRT controller will turn
instantly into characters and colors onscreen. This particular program will put a small

Chips and Memory 243

yellow-on-red face in the upper lefthand corner of your screen and a red-on-yellow one
in the lower righthand corner. (If you’re using a monochrome screen, omit lines 120 and
140, and change the &HB80O in line 100 to &HB000.)

A rough map of the entire megabyte would look something like:

Segment
0000

--INT vector table

--DOS BIOS low memory tables
1000
2000
3000
4000

640K user RAM area

5000
6000
7000
8000
9000

--COMMAND.COM transient part
A000 --Used by EGA and VGA Adapter
B00O --Mono Display Adapter
gggg - --CGA Display Adapter

--ROM extensions (e.g., PC-XT hard disk

BIOS)
D000
E000 --Page frame for older Expanded Memory
Manager

F000 --System ROM
F400 = fpe-----ec-ccecccccccccceccnoccan. -1 --BASIC and older system ROM

Top of Memory

244 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The lower 640K (segments 0000 through 9000) can get pretty crowded. Users
commonly wedge in the Interrupt Vector Table, the low-memory BIOS control area, the
updated IBMBIO.COM and IBMDOS.COM system file patches and services (or their
generic Microsoft equivalents), the guts-level DOS kernel (which manages system
functions such as file and memory management), any device drivers (such as
MOUSE.SYS or ANSL.SYS), disk buffers, stacks, environment and file control blocks,
the resident slice of COMMAND.COM (the part that prints the friendly “Abort, Retry,
Ignore, Fail?” message when your drive door is open), and the transient slice (the part
that’s responsible for the friendly A> prompt and that parses and executes your com-
mands), as well as any commercial programs that are currently running or are resident
but inactive (such as SideKick), the stack and data for these programs, and any DOS TSRs
(Terminate-and-Stay-Resident programs) such as MODE and PRINT that lurk in the
background.

When IBM first introduced the PC, it left several gaps in the megabyte. The first was
at segment AOOO, the one directly after the 640K of user memory. Since the next hunk
of RAM real estate wasn’t officially claimed until segment BOOO or B80O, this left 64K
of prime memory for the taking. Users quickly figured out that they could set the tiny
and inaccessible DIP switches (which supposedly stands for “dual in-line package
switches” but really means “damned invisible plastic” since they’re so hard to see) to
turn 640K into 704K or even more.

The next 64K memory block after AO0OO was for extended video displays like the EGA
and VGA, among other things. IBM’s common monochrome adapter locked up an
address in this block, B000. But CGAs (color/graphics adapters) used a starting address
higher up the block, at B800. This meant that enterprising memory hounds could squeeze
out the additional 32K between BOOO and B80O and use it above the extra 64K they
already swiped at A00O. ﬁ

The settings on block 2 of PC and PC-XT dip switch blocks to do this were:

Switch 704K 736K
1 ON OFF
2 ON ON

3 OFF OFF
4 ON ON

5 OFF OFF
6 OFF OFF
7 OFF OFF
8 OFF OFF

YR A

Users who had IBM’s originai ROM chip set found it wouldn’t recognize more than
544, but IBM sold a replacement part up until the middle of 1987. And memory hungry

Chips and Memory 245

users had to purchase expansion RAM boards sophisticated enough to let them set the
addresses of such additional RAM to A000 and B00O, so it wouldn’t conflict with existing
memory, and so that DOS could find it. This undocumented memory enlarger worked
fine for a few years. The POST memory diagnostic routine would examine this additional
user memory, and the DOS CHKDSK.COM utility would report it.

But a new generation of IBM displays created a new problem. IBM’s outdated CGA
was, in a word, pathetic. It produced an image so grainy you thought you were looking
at it through a screen door.

Display adapters draw letters and numbers out of dot patterns in a grid called a
character box. The monochrome adapter’s relatively detailed character box measures 9
dots x 14 dots. However, this really works out to 7 x 11 since the leftmost and rightmost
columns and the top two rows and bottom row are blank, and serve as character
separators to keep nearby letters from touching. And the bottom two rows are reserved
for descenders on characters such as q, y, j, g, and p.

The CGA character box is a crude 8 x 8. The only character separators are the rightmost
column and the bottom row, so this produces 7 x 7 dot characters. However, the bottom
row also doubles as space for descenders, so the lower parts of letters such as q and y
actually touch the tops of tall letters below them.

Worse, the CGA adapter didn’t have enough memory on it, so that each time it scrolled
up one line the entire display would go dead and turn black for a fraction of a second and
then flash back into life. Repeated scrolling meant an extremely disturbing flicker. And
to top it off, while the memory on the monochrome adapter was dual ported so you could
write data to it at the same time you were reading other data from it without disturbing
the onscreen image, trying this on a monitor attached to a CGA card produced a jarring
burst of visible static called “snow.” The monochrome adapter put a total of 720 x 350
dots onscreen (and came with a long-persistence phosphor that removed any hint of
flicker, and blurred the last traces of dots into what looked like solid lines), while all the
CGA could muster was 640 x 200. And the mono adapter could form characters faster
and pump data onto the screen faster. IBM really seemed to have designed the CGA to
hook up to television sets. As proof, its CGA characters were all constructed of double-dot
patterns to overcome the inherent fuzziness and imprecision of home TVs. Users could
change jumper J3 on the CGA itself so that it would produce slightly sharper single-dot
characters in a 5 x 7 grid. But to do this you had to rip open your system, pull out the
board, and solder in a wire! Would you?

IBM wasn’t interested in color back then, and still makes life hard for users of color
systems. The CLS clear screen command still resets any existing colors to grey on black,
unless the user happens to have ANSLSYS loaded and properly configured, and ANSI
can be a pain in the neck, since not all software can handle it.

However, IBM wised up and realized it had to upgrade the color display, and eventually
introduced the EGA and VGA (and the 8514/A).

The EGA and VGA devoured memory, and claimed the block at AOOO for the start of
their high-resolution graphics modes, which conflicted with users who had reset their
system switches to push RAM past 640K.

246 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The Original Way to Expand Memory

IBM’s very first PC came standard with a tiny 16K of RAM, on 16K memory chips. One
reason DOS was so scrawny back then is that it had to squeeze inside this small scrap of
RAM. If you were really adventurous you could expand it all the way up to 64K, but all
that extra memory wasn’t cheap back then.

Several years later IBM started putting 64K RAM chips on its system board, and just
about everyone bought multifunction/memory expansion cards and shoved the full
complement of 640K into their machines. Eventually IBM would move to 256K and one
megabyte chips and let users play with eight megs or more.

But users quickly found 640K wasn’t enough.

First, programmers who had written very tight, compact assembly language applica-
tions software soon found that they could crank out programs faster, and maintain them
more easily, if they wrote them in a compiled language that ended up taking more disk
space. And programs began getting feature-crazy, so that software vendors could crow
about how their packages offered fancy but useless chrome strips and tailfins that
competitor’s products didn’t.

Second, users began creating larger data files. Instead of keeping separate yearly
spreadsheets on company performance, for instance, they found they could combine the
last five years into one massive whopper.

Finally, users discovered memory-resident, or TSR, programs. You’d load these into
memory and they’d sit idly in the background waiting to spring into the foreground. TSR
(Terminate-and-Stay-Resident) programs like these turned out to be so useful and popular
that many users couldn’t get any work done unless three or four of them were stuffed into
RAM.

SideKick, the granddaddy of them all, provided a-pop-up calculator, ASCII table,
clipboard/notepad, dialer, and calendar. Others let you create keyboard macros, so that
one or two keystrokes could trigger hundreds more and pare repetitive tasks down to size;
or would kick your modem into action periodically to download your electronic mail; or
back up your hard disk onto a tape drive every night at 5:00.

All PCs shared three space problems. You couldn’t run programs that were larger than
640K, and even that figure was low, since you also had to take into account the overhead
required by DOS and BIOS. You couldn’t put more than 640K of data into memory, and
again, you had to leave space for DOS, BIOS, and at least part of your program. And you
couldn’t have DOS handle individual hard disks that were larger than 32 megabytes.

Lotus Development Corporation, the makers of 1-2-3, finally got tired of listening to
their customers scream that they couldn’t create enormous spreadsheets. So together with
chip-maker Intel, they developed a variation of an old “bank switching” technique and
named it the Expanded Memory Specification 3.0. Later, they twisted Microsoft’s arm
to endorse a 3.2 mutation of it and called the result the Lotus/Intel/Microsoft (LIM)
Expanded Memory Specification 3.2, or “LIM spec memory” for short.

Shortly afterward, board manufacturer AST enlisted two other industry heavyweights,
Quadram and Ashton-Tate, and published a much more flexible EMS version they called

Chips and Memory 247

EEMS (Enhanced EMS). EEMS was a superset of EMS, which caused problems since
software designed for EMS boards would run on EEMS hardware but it wouldn’t always
work the other way around. Both gave users up to eight megabytes of additional memory,
although various headaches with drivers and multiple memory boards prevented the spec
from being exploited fully.

The Lotus/Intel/Microsoft trio then enhanced some of AST’s ideas and added a few
of their own and announced an improved version called LIM 4.0. This new LIM spec
- quadrupled the potential amount of expanded memory in a system from eight megs to
32, gave developers a whole new set of programming tools, and added better support for
multitasking and program execution in high memory. This solved the “large data”
problem temporarily. It didn’t solve the “large program™ problem. Recent operating
systems such as OS/2 and hot chips like the 80386 make short work out of memory
problems. And both Microsoft and IBM have tricks up their sleeves as larger hard disks
become common. Compaq was first to smash the 32 meg hard disk barrier with DOS
3.31, although other vendors had done it in a wasteful way by increasing sector size past
512 bytes.

The original LIM bank switcher used expanded memory that wasn’t a part of the PC’s
addressable one megabyte. Just add a bank-switching memory expansion board to your
system, tell your CONFIG.SYS bootup configuration file about a program called an
Expanded Memory Manager (EMM), and any LIM-aware software could toss enormous
data files around in RAM with abandon.

The trick was to grab (or map) one unused 64K segment near the top of the PC’s
addressable megabyte of RAM and use it as a narrow doorway into the far greater amount
of memory on the bank switching card itself. This doorway was called a page frame and
contained four smaller 16K sections called windows.

While the original spec demanded one contiguous 64K chunk of RAM, later enhance-
ments eased the requirements slightly, and made the mapping process far more accom-
modating.

When a program like 7-2-3 needed more space in RAM for a growing spreadsheet,
it could put information into expanded memory, and retrieve it later, by shuttling it
up and back 16K at a time through one of the windows. The EMM had to be smart
enough to know when /-2-3 needed something that wasn’t currently in one of these
little windows, and shuffle things around to snag it and bring it down to the page
frame.

Expanded memory is like a research department in a small office using a bank of four
elevators connected to a vast warehouse of archives. Whenever they need a single
document from the warehouse, they can send the elevator up to retrieve it. But if they
want several hundred volumes, they’re going to have to use all the elevators and make
several trips. The elevators are all one size, which makes it wasteful to get just one scrap
of paper, and slow to retrieve large amounts of data. Since the warehouse manager doesn’t
want his precious data to get lost, and since there isn’t much room to spare in the research
department office, when the researchers want something new they have to send some of
the older stuff back.

248 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Unofficial Ways to Expand Memory for DOS (Pre-5.0)

Even though your application software could get around the 640K barrier, DOS versions
before 5.0 couldn’t — at least not officially. As you collect TSRs, begin experimenting
with DOS device drivers and resources like IBMCACHE, FASTOPEN, and VDISK,
and/or upgrade to newer (and larger) releases of DOS, what’s left of that original 640K
grows smaller and smaller. If you want to see exactly how your system uses memory, the
RAMMAP and MAPMEM utility programs on the accompanying disks or DOS 5.0’s
MEM /C will really open your eyes to how much memory is used by the typical array of
startup devices and programs in your CONFIG.SYS and AUTOEXEC.BAT files. To
paraphrase Everett Dirksen, “A couple of Kb here, a couple of Kb there, pretty soon it
adds up to real memory.”

Before EGA came along, several brave souls had tried poaching over the 640K
boundary to use the then-vacant 64K block starting at AO0OO. When IBM began using this
block for the EGA adapter card, many of these same memory-hungry power users cast
covetous eyes on the other gaps in the 640K-1Mb address space — if you’re using an
EGA, then the memory dedicated to an MDA or CGA adapter should be free to use for
other purposes, shouldn’t it? Even though these gaps are not contiguous to the original
640K (and thus of limited use to regular applications), a lot of high-powered thought has
gone into finding some use for this memory space.

From these efforts, a number of products are now available to allow you to free up
space in the 640K area of conventional memory by mapping any available expanded
memory into the unused memory areas between 640K and 1 MB, to create high RAM.
Programs like 386-to-the-Max from Qualitas and QEMMS86, QEMM 50/60, and QRAM
from Quarterdeck Systems install as device drivers in your CONFIG.SYS file. Once
installed, they allow you to load your TSRs and other device drivers up in high RAM
using special loader programs, leaving free the space these TSRs and devices would
otherwise occupy in regular RAM. Howeyver, not all these products work with all PCs.
Basically, there are three levels of hardware-dependent functionality available:

1. 386 and 486-specific products, such as QEMM-386 from Quarterdeck and 386-to-
the-Max from Qualitas. On some high-speed 286 and 386 machines, the contents of
the ROM BIOS is copied to RAM during bootup, to take advantage of the faster
access time of high-speed RAM relative to ROM. This RAM is then mapped to the
normal ROM address space, and is known as shadow RAM. On machines where this
technique is supported (using the Chips and Technology NEAT or LEAP chip sets),
these 386 and 486 memory managers can map RAM directly to the gaps between
physical devices in the address space between 640K and 1024K. On other 386 or 486
machines, the memory managers can convert some of the extended memory present
above 1024K to expanded RAM in the 640-1024K region. Once converted, TSRs,
device drivers, and even DOS resources like FILES and BUFFERS (in the 5.0 version
of QEMM386) can be moved io high RAM.

2. products for older 8088-8086, or 80286 machines machines with either add-in
expanded memory boards or with shadow ram. Unless you have an AT compatible

Chips and Memory 249

with shadow RAM, you must have an expanded RAM card to be able to make use of
high RAM without disabling your graphics capabilities. Even though the PS/2s and
many AT compatibles come with 1024K of memory standard, the additional 384K
above 640K is configured as extended memory, and the various software EMS
simulators such as EMS40.SY'S can’t provide the hardware support needed to allow
the expanded memory manager to remap the converted memory to useful high RAM.

3. on machines with extended memory but no expanded memory, you can get an
additional 96K of room for DOS or for high memory, but at the cost of limiting
yourself to character-only graphics. Quarterdeck’s VIDRAM will allow you to
expand the memory available to DOS to 736Kb by temporarily disabling your CGA,
EGA, and VGA graphics capabilities, taking over the address spaces used by the
video RAM and filling them with any available extended memory it finds in your
system. If you absolutely must use three or four large TSRs and a memory-hungry
program like dBASE IV or Paradox on your XT simultaneously, this approach is
worth a look, but most folks won’t want to give up the graphics.

When all else failed, a simpler, slightly more labor intensive approach to managing
memory was via the CONFIG.CTL utility for controlling which device drivers were
loaded in CONFIG.SYS at bootup, and the INSTALL/REMOVE utilities for loading and
unloading TSRs. With DOS 5.0, of course, HIMEM.SYS and EMM386.SYS manage the
Upper Memory Block (UMB), and expanded or extended memory.

DOS 5.0 Memory Management

New with DOS 5.0 are several tools that help solve the perennial memory problem
inherent in IBM’s original decision to allocate only 640K for user applications. On
systems with extended memory, DOS 5.0 can load much of its code into the High Memory
Area (HMA) which is the first 64K block above 1 Megabyte, leaving only a small kernel
in the 640K application area to grab commands and service requests and then vector them
to the appropriate routines in the HMA. HIMEM.SYS and EMM386.SY S are two device
drivers that provide extended and expanded memory management on machine capable
of supporting these features, typically 80386 or later machines with more than 1 megabyte
of RAM.

HIMEM.SYS manages extended memory, using the XMS (eXtended Memory Spec-
ification) standard, and the High Memory Area (HMA), the first 64K block above 1
Megabyte. It must be the first device driver that manages or uses extended memory in
your CONFIG.SYS file, as it controls other drivers’ access to both the HMA and extended
memory areas. If you’re already using the version of HIMEM.SYS that came with
Windows 3.0, you should replace the older HIMEM.SYS with the one that comes with
DOS 5.0.

EMM386 is both an expanded memory manager, taking extended memory from
HIMEM and converting it to simulate expanded memory for applications that need it,

250 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

and the manager of the Upper Memory Blocks (UMBs) between 640K and 1 Meg. On
386 or better systems with more than 1 megabyte of memory, the CONFIG.SYS sequence

DEVICE=drive:\path\HIMEM.SYS
DEVICE=drive:\path\EMM386 .EXE NOEMS
DOS=HIGH, UMB

will give you the ability to free up as much of the 640K memory area as possible, by
loading DOS into high memory and allowing you to load your other device drivers and
TSRs into the UMB area using the new DEVICEHIGH and LOADHIGH (or LH)
commands. If you absolutely need expanded memory for your applications, put RAM
instead of NOEMS on the DEVICE=EMM?386.EXE line — this will give you expanded
memory capability, but will significantly reduce the amount of UMB space you can use.

With the UMB area properly set up, you can now load subsequent device drivers in
your CONFIG.SYS file into high memory wusing the syntax
DEVICEHIGH=drive:\path\devicename. Unfortunately, HIMEM.SYS and
EMM386.EXE can’t themselves be loaded high (at least in this release), but almost
anything else is fair game. Obvious candidates are ANSLSYS, MOUSE.COM or
MOUSE.SYS, network drivers and SHARE.EXE (which, by the way, you only need load
if you’re using a network or multitasking software that really might need SHARE’s file
locking capability — it’s no longer needed just because your disk partitions are greater
than 32Mb, as it was for DOS 4.0.)

To get the most efficient use of the UMB, it’s best to load the larger devices first —
you can experiment with different sequences and check the results using MEM /C. The
same holds true for TSRs in your AUTOEXEC.BAT, which are loaded with the
comparable LOADHIGH drive:\path\filename syntax.

With HIMEM.SYS and EMM386.EXE installed on a 80386 or i486 and the rest of the
normal assortment of device drivers and simple TSRs loaded high, CHKDSK should
show about 630K free. On a stock IBM 80286-based machine, DOS itself will load high
but the UMB space won’t be available for device drivers or TSRs, so the best you can
reasonably hope for is about 600K. And on an 8088/8086 machine, don’t expect to see
any real benefit at all — just consider DOS 5.0 as yet another reason to upgrade your
hardware.

Expanded vs. Extended

‘Who names these things? Few enough users really understand what’s going on under
their hoods anyway, and you’d think the folks who invent all this stuff would go out of
their way to make it clear and unconfusing. Then again, these are the same people who
created a multibillion dollar industry based around a computer system so hostile to
novices that if brand new users somehow manage to get their systems hooked up properly
and figure out which one of eight possible ways to insert their DOS floppy disks is right,
their reward is a black screen with nothing on it but an A> in the corner.

Chips and Memory 251

Some rascals decided to call bank-switched RAM expanded memory, while calling the
special kind of RAM available in 80286 and 80386 machines (like the PC-AT and most
PS/2s) extended memory. These even sound the same if you say them both fast enough.

Working on one of today’s hot chips in a normal everyday one-megabyte configuration
with 640K or less of usable RAM is called running in real mode. However, you can tweak
chips like the 80286 to run in a special, enhanced state called protected mode. A protected
mode system lets users directly address more than one megabyte of memory, and lets
them multitask, or run several programs simultaneously.

Previous attempts at multitasking ran into lots of trouble. The usual bugaboo was that
if three programs were churning through their paces at the same time and one crashed,
the whole house of cards would tumble down. That’s bad enough in real mode when one
program with one set of data crashes and burns; it’s downright evil when a crashed
multitasking system does two or three times the normal damage. Protected mode protects
the user from this nightmare — when one program crashes, the others keeping humming
blithely away.

When people mention the bit-size of a computer, they’re really talking about the micro-
processor register size used for storing data within the CPU. (However, if they mention two
numbers, the second one is the width of the bus.) The register size was eight bits (one byte)
for the ancient generation of 8080 and Z-80 chips popular before the PC was introduced; 16
bits (one word) for the 8088, 8086 chips, and 80286, which are used in the PC, AT, and some
of the PS/2 systems; and 32 bits (a long word or double word) for the 80386 and i486. These
chips can often divide larger registers into several smaller ones.

The CPU includes an arithmetic logic unit (ALU) that can do addition and subtraction,
logical ANDs and ORs, bit shifts, and negation on the data in the registers. To be efficient,
the ALU has to operate on whole registers at once. Microprocessors also generate
addresses to access data from memory, and perform arithmetic operations on these
addresses. Ideally, the microprocessor should use the same ALU to operate on both data
and addresses.

The early eight-bit 8080 chip would have been simpler if it had used only eight bits
for addressing. But this would have limited its addressing abilities to just 256 bytes (2*8).
Instead, the 8080 forms addresses by sticking two bytes together. This chip has minimal
16-bit arithmetic capabilities.

Both the 8086 and 8088 CPUs handle data internally in 16-bit chunks, although the
8088 used in the PC and XT accesses memory externally only eight bits at a time. The
easiest way for the designers of the PC to handle memory addresses would have been to
limit the machine to 64K (2" 16) so the CPU could address everything directly. But 64K
is just too small. Instead, they had the CPU in the PC and XT calculate physical addresses
by adding a 16-bit offset register to a 16-bit segment register that has been shifted to the
left four bits. The result is a 20-bit address that can access one megabyte. But the chip is
really only working with 16 its for both data and address.

With the advent of the 80286 chip things got even more complex. In real mode, the
80286 works the same as the 8086 and 8088. In